PRAGTIGAL Whitess
 SEPTEMBER 1967 26

IV
MINATHEE GTABILIEE
POWER

- UNIT

SOLDERING EQUIPMENT

FOR CATALOGUES APPLY DIRECT

ADCOLA PRODUCTS LTD. ADCOLA HOUSE GAUDEN ROAD LONDON, S.W. 4

Containing 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy reduces wear of copper soldering iron bits.

COCKTAIL/STEREOGRAM CABINET £25

PLEASE FILL IN THE COUPON FREE FOR YOUR COPY OF * FLOG
 LIST

WE HAVE TO URGENTLY MAKE ROOM IN OUR MAIN 13,000 SQUARE FEET BRIGHTON WAREHOUSE FOR THE SUPERB NEW RANGE OF JASON ELECTRONIC KITS AND EQUIPMENT THE FIRST OF WHICH WILL BE ARRIVING SHORTLY.

1
$\frac{7}{4}$ MILLION NEW VALVES SURPLUS to OUR NORMAL REQUIREMENTS OFFERED FOR LIMITED TIME AT SILLY PRICES. DAF96 4/-; UCH 81 4/6; 6K8G 1/9; ECC85 3/9; PCF86 5/-; EF85 3/6; 832 9/-: ETC., ETC., ETC.

1. Geloso 4000Ω De Luxe Headphones Type H600 (Listed 3 Gns.)
2. Geloso De Luxe Stethoset Headphone (Listed 3 Gns.)
3. Geloso Desk Pen Mikes. Quality Xtal Mike with High Quality Ball Pen (Listed 6 Gns.)
4. Toshiba Portable Record Player. 3 Speed with Variable Fine Speed Control, Ultra Modern Case, 200/250 V A.C., Excellent Volume and Quality (Listed 11 Gns.)
5. Raymor A.M./F.M. 9 tr. Radios. Japanese. Superior Quality Cabinet. Leather (Black) Finish. Model RM101. Highly Recommended (List 11 Gns.). Not a Midget! Size $7 \frac{11^{\prime \prime}}{} \times \mathbf{4} \frac{1^{\prime \prime}}{} \times 2 \mathbf{2 1}_{4}^{1 "}$.
6. Taya 8 Transistor Radiogram. Portable 2-Speed Player plus Medium Wave Transistor Radio. Size $10^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$. Absolutely complete to Xtal Cartridge and Batteries. (Normally £12). Limited Stocks.
7. B.B.C. 2 Aerials, 5 to 22 Element Fringevision. De Luxe Finish. All with 6 Reflectors in Parabola for Peak Efficiency. For Callers Only. All Branches.
8. Super Heavy Pointer Knobs. Black. Modern. (Normally 3/- each).

AND 100's MORE !!!
SALE AT ALL BRANCHES COMMENCED 17 JUNE SALE CONTINUING

POST NOW FOR FREE "FLOG LIST" to technical trading co., park crescent place, brighton Please send free "Flog List", without obligation, to	
NAME	
ADDRESS	
Block Capitals Please	
OR WRITE IF YOU PREFER NOT TO CUT COUPON	PW 967

Stookists of Leak, Quad, Chapman, Goodman, Armstrong, Tripletone, Linear Rogers, Truvox, Ferrograph, Wharfedale, ete. Post: $1 \mathrm{lb} .1 / 5,1 \mathrm{lb} .2 / 6,2 \mathrm{lb} .2 / 8,4 \mathrm{lb} .3 / 3,6 \mathrm{lb}, 4 /-, 14 \mathrm{lb} .5 / 6 . \quad$ All Mail Orders to Brighton please

[^0]
VIKING TRANSISTOR

40-50 WATT AMPLIFIER
OPERATING INSTRUCTIONS GENERAL, An extremely reliable lightweight amplifier capable of giving $40-50$ walts of undistorted sound, made possible by the use of the latest semi-conductors (transistors) and techniques which ensure space-age reliability under the most rugged conditions. It is

designed as a general purpose amplifer particulariy suitable for use with musical instruments that require exceptionally high treble response (not recommended for Bass Guitar). Tremolo facilities are available on Channe 1 only. INPUTS-CONTROLS-CHANNEL I (Tremolo): this contains two high gain input jack sockets controlied by Volume Control 1 which is mounted directly above the two sockets marked tremolo. BASS 1: gives a controlled boost to the lower frequencies on Channel 1 only. TREBLE 1: gives a controlled boost to the high frequencies on Channel 1 onty. TREMOLO: this operates on Channel 1 only and the variations of intensity and speed of the Tremolo beat is adjusted by the controls DEP'TH and SPEED. A socket is provided in the rear of the amplifier so that the Tremolo may be switched on and off by the use of a footswitch plugged into the socket. If you wish the Tremolo to be used without the footswitch, this is possible as the footswitch is only used to short out the effect. INPUTS AND CONTROLS-CHANNEL 2 (Normal): this contains two high gain input jack sockets controlled by Volume Control 2 which is mounted directly above the sockets marked Normal. TRE13LE which is mounted directly above the sockets marked Normal. TREBLE: gives a controlled boost to the treble frequencies on Channel 2 only.
MAINS VOLTAGE: fully adjustable, $\mathbf{Z 0} 00-250$ volts, A.C. 50 cycles. MAINS VOLTAGE: fully adjustable, $200-250$ volts, A.C. 50 cycles.
POWER OUTPUT: $40-50$ watts sirie wave British rating. Very little POWER OUTPUT: $40-50$ watts sime wave British rating. Very little
distortion. OUTPUT IMPEDANCE: 3 ohnis. Price 21 gas. plus $£ 1$ postage and packing.
MAINS TRANSFORMER, primary 200/250 volt, secondary $425 / 425$ volt. $250 \mathrm{~mA}, 6 \cdot 3$ volt 4 amp, 5 volt 3 amp; fully shrouded. chassis mounting. Price $\mathbf{£ 2 . 5 . 0}$ plus $7 / 6$ postage and packing. Auto transformer step-up-step-down, $240 / 110$ volt 400 watt. Price $\mathbf{~} 1.5 .0$ plus $7 / 6$ step-up-step-down,
postage and packing.
postage and packing. 63 volt, 3 amp drop through. Price $12 / 6$ plus $4 / 6$ postage and packing Elac 10 inch, 10,000 tines ceramic magnet, 3 or 15 ohms, 7 watt, $£ 1.9 .6$ plus $4 / 6$ postage and packing.

POCKET MULTI-METER

o.P.V. I $2 \hbar$ It 1 in. Meter size $2 \hat{b}$ I D.C. current 0.150 mA . Resistatice $0.100 \mathrm{k} \Omega$. Complete with test prods, hattery and full instructions, 42/6. P. \& P. 3/6. EREE GIFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket Multi-Meter.

600 mW SOLID STATE 4-TRANSISTOR AMPLIFIER

Features NPN and PNP Complementary Symmet rical Output Stage. The elimination of transformers ensures maximum efficiency and frequency response. Automatic heat compensation. Combined AC/DC feed back. Class B output stage, i.e. output power is proportional to total current consumption, this ensures long battery life. Under no signal condition(IQ) current drain is approx. 12 mA at 9 voits (4 mA in the output pair). Printed circuit construc-
 6010 mW at 5% distortion, 40 mmW at 2.5% distortion, 750 mlV at 70% distortion. Supply 0 volts. Total current consumption at a reasonable fistening level approx. 3540 mA at full power (speech and music), average 135 mA . Sensitivity for $50 \mathrm{~m} I V$ ontput is 10 mW . Frequency response -3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$. Price $15 /-$, plus $1 /-\mathrm{P} . \& \mathrm{P}$

8 -watt 4 -valve PUSH-PULL AMPLIFIER \& METAL RECTIFIER
Size: $\theta^{\prime \prime} \times 6^{\prime \prime} \times 1 \frac{1}{4^{\prime \prime}}$. A.C. Mains, $200-2.50 \mathrm{~V}+$ salves. For use with Std. or L.P. records, inusical instruments, all makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate
 bass and treble lift control. Two inputs, with controls for gram. and mike. Output transformer tapped for 3 and 15 ohm " $5^{\prime \prime}$ speaker to suit price $14 / 6$ plus $1 / 6 \mathrm{P}$. \& P. Crystal mike to suit $12 / 6$ plus $1 / 6 \mathrm{P} . \& \mathrm{P}$.

GEC KETTLE ELEMENT

3,000W WITH AUTOMATIC EJECTION 2001) 240 v . Size of hole required 1 p List Price 32/-. Our PRICE 15/-. P. \& P. $1 / 6$.

RADIO \& TV COMPONENTS (Acton) LTD

21c High Street, Acton, London, W3
Shop Hours 9 a.m.-6 p.m. Early Closing Wednesday All enquiries Stamped Addressed Annelopo

Also at 323 EDGWARE ROAD, LONDON, W.2. Personal shoppers only Early Closing Thursday. All orders by post to our Acton address.

8 VALVE STEREO RADIOGRAM CHASSIS

3-4 watts per channel. By famous manufacturer

Superb new 8-valve chassis covering long, medium and short waves on AM, also VHF transmissions on FM. AM circuit's higlı sensitivity permits internal aerial for most stations. Well-known Gorler tuning heart in separate FM input. Tone and volume controls. Extra large illuminated dial. External AM and FM aerial inputs. Gram. pick-up socket. Standard 3 ohm speaker. 200/250 volts A.C.
£14.14.0
P. \& P. £1

TRANSISTORISED $1 \frac{1}{2}$ WATT

AMPLIFIER

comprising Mullard 2AC 128, 20C 75 and 2 AA129 separate bass and treble volume controls. Complete with Power Supply AC mains 240 v. Size $7 \frac{1}{2}^{\prime \prime} \times 33^{\prime \prime} \times 2^{n}$ Price 50/- plus 2/6 P. \& P

ANTI-THIEF CAR BURGLAR ALARM

The Melguard Safermatic consists of an electrical device housed in small metal box $4^{\prime \prime} \times 2^{\prime \prime} \times 1 \frac{1}{2}$ ", which has been designed and developed to provide piotection required liy the average motorist at an economic cost. Using this system, an alarm and the immobilised condition is set antomatically as soon as you park the car. Should you leave the key in the ignition, no one but you can drive the car away. Upon entering the vehicle the method of starting the car is by switching on the ignition, depressing two hidden Switches and simultaneously operating the starter. Location of the switches is known only to you. Should the alarm be sel off it can be stopped by following the normal starting procedure. For 12v. operation. List price $79 / 6$, our price $29 / 6$ plus $2 / 6 \mathrm{P}$. \& P . Full easy-to-follow instructions supplied.

3 to 4 Watt AMPLIFIER

$3-4$ watt Amplifier built and tested. Chassis size 7 I $3 f x$ 1in. separate buss, treble and volume control. Double wound mains transformer, metal rectifier and out put
transformer for 3 ohns apeaker. \alves ECC81 and 6 V . 22.5 .0 plus $5 / 6 \mathrm{p}$. \& p .

The above ln Kit Form, e1.14.6 plus 5/6 p. \& p.
'MUSETTE' 6-Transistor Superhet Portable Radio 2f Speaker. $\star 6$ Transistor Super-
het Output 200mlV. \star Plastic Cabinet in red, size $43^{\circ} \times 3^{*} \times 18^{\circ}$ and gold speaker louvre. \star Horizontal Tuning Scale. * Ferrite Rod Internal Aerial - IF $460 \mathrm{kc} / \mathrm{s}$. \& All components Ferrite Rod and Tuning Assembly Ferint on printed boand t Assembly mount on printed board. A Operated from PP3 Battery. 大 Fully comprehensive instructions and point-to-point
wiring diagram. $\&$ Printed Circuit wiring diagram $*$ Printed Circuit Board. \star Tunable over medium and long waveband. \star Car aerial and earpiece socket.

Price 39/6, ine. carrying iree with parts. P. \& P P 3/i

NEW TRANSISTORISED
SIGNAL GENERATOR
Slze $5 \frac{1}{x} 3 \& \pm 1 \frac{1}{2}$. For $1 F$ and $K F^{\prime}$ alignment and AF output $700 \mathrm{c} / \mathrm{s}$ irequency coverage $460 \mathrm{ke} / \mathrm{e}$ te $2 \mathrm{mc} / \mathrm{s}$

POWER SUPPLY KIT

A.C. MAINS 200-250 V

Incorporating " C " core type mains transformer, full wave metal rectification and smoothing condenser. Smooth output 250 v. 250 mA and $6 \cdot 3 v .4$ amp for Heaters. 25/-. P. \& P. $9 / 6$.

FIRST QUALITY P.V.C. TAPE

S	8	9/-	5	850 ft 10/6
Std	1200 ft .	11/6	$3^{\prime \prime}$ T	
L.P.	240 4/-	$5{ }^{\prime \prime}$ T	1800\%....... 25
L.	1200 ft 11/6	5星"T	2400ft..... 32
L	180	- $-18 / 6$	$7^{\prime \prime}$ T	3600 ft .
D P	1800 f	18/6	4" T.P.	900 ft 15

EXTRACTOR FAN

AC Mains
GEC
DOORBELL
Complete with mains with mains transforme 240 v. AC \& bell push Price $\quad 12 / 6$
plus

Elegant Seven mk il a combined portable and CAR RADIO

 SPECIAL OFFER

 SPECIAL OFFER
 Buy yourself an easy to build 7 transistor radio and save at least £10.0.0. Now you can build this superb transistor superhet radio for under $\mathbf{£ 4 . 1 0 . 0}$. No one else can offer such a fantastic radio with so many de luxe star features.
 * De luxe grey wooden cabinet size $122^{\prime \prime} \times 8 \mathbf{i t}^{\prime \prime} \times 33^{\prime \prime}$.
 \star Horlzontal easy to read funing scale printed grey with black letters, size $11 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} 2^{\prime \prime}$
 * HIgh ' Q ' territe rod aerial.
 \star I.F. neutrallzation on each separate stage.
 * D.C. coupled push pull output stage with separate A.C. negative feedback.
 * Room fliling output 350 mW .
 * Ready etched and drilled printed clrcult board back printed for fool proof construction.
 * Fully comprehensive instructions and point-to-point wiring diagrams.
 * Car aerlal socket.
 * Fully tunable over medium and long wave. 168-535 metres and 1250-2000 metres.
 * All components ferrite rod and tuning assembly mount on printed board.
 * $5^{\prime \prime}$ P.M. speaker.
 * Parts list and circult diagram 2s. 6d. free with parts.
 Plus 7/6 P. \& P. Parts Llst and circuit diagram $2 / 6$ FREE with parts.

 \section*{onv $£ 4.4 .0$}

 \section*{onv $£ 4.4 .0$}
 POWER SUPPLY KIT
 To purchasers of 'Elegant Seven parts, incorporating mains transformer, rectifier and smoothing condenser. A.C. mains 200/250 volts. Output $9 v 100 \mathrm{~mA}$. $7 / 6$ extra.

 RADIO \& TV
 COMPONENTS (ACTON) LTD.

All orders by post to be sent to our Acton address

323 EDGWARE ROAD, LONDON, W2
Personal shoppers only. Early closing Thursday.

21C HIGH STREET, ACTON, LONDON, W3
OPEN 9 a.m.-6 p.m. INCLUDING SATS. EARLY CLOSING WED. GOODS NOT DESPATCHED OUTSIDE U.K. TERMS C.W.O. All enquiries stamped addressed envelope

BRADFORD Tel． 25349 10 North Parade．（Half－day Wed．） BRISTOL St．（Half－day Wed）Ter Castle BIRMINGHAM Western Arcade，opd．Snow Hill Station，CENtral 1279．No half－day DERBY

26 Osmaston R

 The Spot（Half－day Wed．） Tel． 41361DARLINGTON 13 post
EDINBURGH
133 Lelth
Street（Half－day Wed
Tel．Waverley 5766
HAOADH1 $\begin{aligned} & 326 \text { Argyle St } \\ & \text {（No half－day）}\end{aligned}$
403 Sauchiehall Street． Opp．Locarno Tel．332－1572 HULL
（Half－day Thursday）Tel． 20505

MAIL ORDERS TO： 102 Henconner Lane，Bramley． Leeds 13．No C．O．D．Under £1．Terms C．W．O．or C．O．D．
 supplied．S．A．E．withenquiries please．

LEICESTER ${ }_{32} \mathrm{HIgh}$ Street （Half－day Thurs．）Tel．： 56420
LEEDS
5－7 County（Mecca） Arcade，Briggate（No half－day） Tel． 28252
LIVERPOOL
73
Dale St． （No half－day）Tel．CENtra！ 3573 LONDON 238 Edgware Road， W2（Half－day Thurs．）Tel．PAD 1629． 96 High Halborn，WC1 Tel．HOL 9874 （Half－day Sat．）

MANCHESTER（nohali－ day）60A－60B Oldham St． Tel．CENtral 2778 MIDDLESBROUGH 106 Newport Road（Half－day Wednesday）Tel． 47096 NEWCASTLE UPON TYNE 41 Blackett Street Opp Fenwlcks Store（Half－day Wed．）Tel． 21469 SHEFFIELD 13 Exchange Street．Castle Market Bldgs．
（Half－day Thursday）Tel． 20716

AUDIOTRINE PLINTHS for Record Playing units． Teak finish cut for Garrard AT60，SP25 or Goldring
GL6B．Available with clear 66＇Perspex cover as illustrated
RECORD PLAYING UNITS All types available Ready for plugging in to Amplifler or Tape Recorder．
RP2 Conslsting of Garrard SP25 fitted Goldring RP2 CS90 high compliance ceramic Stereo／Mono ctrge with dmand stylus，above Only $19 \frac{1}{2}$ Gns．
plinth \＆cover．Normally \＆25．Carr．15／－ RP3 As above but with Goldring Lenco GL 68 Trans－ Normally over unit and CS90 Cartridge． $26 \frac{1}{2}$ Gns． RP3M with Pickering Masnetic Cart $34 \frac{1}{2}$ Gis． RSC TAG 6 WATT HIGH FIDELITY TRANSISTORISED AMPLIFIER
SOLID STATE CONSTRUCTION
 200－250v．AC mains operated Frequency Response 30－
$20,000 \mathrm{cps}-2 \mathrm{~dB}$ ．Harmonic Distortion 0.3% at 1000 cps ．
Separate Bass and Treble Separate Bass and Treble

HI－FI CATALOGUE AVAILABLE 4／6， Personal shoppers welcome．Open
Sats．except High Holborn branch．

EQUIPMENT STOCKED Cash or Terms Full range Hi－fi furniture
HI－FI LOUDSPEAKER ENCLOSURES All types of pleasing modern design acoustically fined and ported and bautnut veneer．Credit terms available JE8．Size 20×11 x $81 n$ ．Gives $\mathbf{f 4 . 1 9 . 9}$ pleasing result
 ance
speaker．Size $22 \times \mathrm{f}$
15
f 15 x 9ii．Carr．7／6 LS． 19.9 SE10．For 101n．Hi－Fi Speaker with provision for tweeter．
Size $24 \times 15 \times 101 \mathrm{n}$ ． f 6.19 .9 SE12．For outstanding performance with any 12 in ．Hi－Fi speaker Cut 8 Gis．
for tweter．Size $25 \times 16 \times 10 \ln$.

NEW RANGE OF LINEAR
HI－FI AMPLIFIERS IN STOCK

HIGH FIDELITY LOUDSPEAKER UNITS

 Cabinets of latest styling Satin Teak or Walnut． acoustically lined（and ported where appro－ priate）．Credit Trms avaiiable on aittunits． The FULTON Control．Idealas sensitive ext．unit or Tape Recorder etc．Incorporates Audiotine one 1 m ．speaker cone surround．Response 45－13，000 cps．Rating 8 watts．Imp． 3 ohms．Carr． $7 / 6$ §5．15．0
 The DORSET Size $22 \times 11 \times 81 n$ ． Response $45-18,000$ c．p．s．Rating 10 speaker．Impedance ${ }^{3}$ or
15 ohms．
C8．19．9 The DORCHESTER

Size $24 \times 15 \mathrm{x}$ 10in．Fitted Audiotrine HF101D Speaker． Rating 12 watts．Impedance 3 or 15 ohms ． Frequency Response $12 \frac{1}{2}$ Gns． The GLOUCESTER Size 25×16 x $10 i n$.
$12 i n$.
High flux 12in．High flux Cross－over unit Rating weeter． 10 watts． Smooth response $40-20,000$ c．p．s．Im－ Carr．15／－． $12 \frac{1}{2}$ Gins．
 The BRONTE Size $22 \times 15 \times 91 n$. Super 8 RSDD or Audiotrine HF Roll suraer，with Roll surround and dual cone．Rating dance3 watts．Impe－ carr．16／6． 13 Gns．
input socketa for Mike，Gram，Radio or
Tape．Input Selector Switch．Output for Tape．Input Selector Switch Output for
$3-15$ ohm speakers．Max Sensitivity 5 m ． Fully enclosed enameled case， 5tins．Attractive brushed diver facia plate
10t x 34 ins．and matching knobs．Complete iot 3 3ins．and matching knobs．Complete
kit of parts with full wiring diagrams kit instructions．
and farr $7 / 1 / 6$
On factory built with 12 mths． Or factory built with 12 mths． guarantee \＆7．19．11．
AUDIOTRINE HIGH FIDELITY SPEAKER SYSTEMS
Consisting of matched $12 i n$. 12，000line， 150 hm highquality
speaker；cross－over unit and Tweeter．Smooth response and extended frequency range ensure surprisingly realistic reproduction．Standard 10 wattrating．Orsenior Fane $122 / 10$ speaker

R．S．C．STEREO／TEN HIGH QUALITY AMPLIFIER A complete set of parts for the construction of a unit giving 5 watts high quality output on each channel（total 10 watts）．Sensitivity is 50 millivolts．Suitable all crystal or ceramic stereo heads．Ganged Bass and Treble Controls．Provision is made for use as straight（monaural） 10 watt amplifer．Valve line－up ECC83． ECCB3，EL84，EL84，EZ81，Outputs for $2-3$ ohm speakers．

R．S．C．STEREO／20 HIGH FIDELITY AMPLIFIER

PROVIDING 10／A WAITABLE FOR＂MEAK＂，GRAM，RADIO OR TAPE． Employing valves ECCB3，ECC83．ECL86．ECL86，ECL86，ECL86，EZ81．Frequeney maximum．Harmonic Distortion：（each channel）：0．2\％．太Four－position tone
compensation and Input Selector Switch．太Stereo／Mono switch．
＊Will amplify direct from Tape Heads．太Neon panel indicator．丸Handsome Perspex Frontplate太Separate rass＂Lift＂and＂Cut＂and treble＂Lift＂and＂Cut＂controls．Output transformers are high－ quality sectionally wound to required specifcation．Output matching for 3 and 15 ohm spkrs on each channel．Complete set of parts，point－to－point wiring diagrams and instructions． Or factory assembled，tested and supplied with our usual 12 months guarantee． 19 GnS．

Tweeters R．A． 3 ohm or 15

RSC．TEMI TrANSISTORISED VHIFFW RADIOTUWER
 \star High－sensitivity $\star 200-250 \mathrm{v}$ ．A．C．Malns

Total cost of parts
with detailed wiring diagramsandinstruc tions． Carr． Or factory built 151 Gins．Or in Teak ilustrated 191 Gns． Terms：Deposit $£ 5$ and 9 monthly pay ments 39／－
Total 822.11 .0.
 operation．\star Sharp A．M．Rejection． t IBrift－firee reception．t Output ample
（ar any amplifier（approx． 500 m．v．）． tor any amplifer（approx． $500 \mathrm{mi} . \mathrm{v}_{\mathrm{s}}$ ）． ＊simpie alignmentinstructions，＊Output t Output for feeding sterco Multiplexer． sistors．\star Designed for standard 80 ohm co－axial input． Made to visually match our Super 15 and 30 amplifiers and of the same high standard of performance and reliability．Tha pre－wired tuning head facili－ tates speed and simplicity of construction．Printed circuitry．Only first grade half the cost of comparable units．Stereo version available．

AUDIOTRINE HIGH FIDELITY

 LOUDSPEAKERSHeavy cast Latest high efficiency ceramic magnets． Dual Cone for extended frequency range．
 low fundamental resonance．Res－ ponse $40-18,000$ c．p．s．，Impedance 3 or 15 ohms．Post free．

FULLY TRANSISTORINEU 200／200V．A．U．Mains． OUTPUT 10 WATTS R．M．S．cont．into 15 ohms． Maximum instantineous Peak power into $3-4$ ohms． Maximum instantaneous Peak power output 28 watis HATEST MLLLARD TIRANSISTORS．AD149，AD149 OC127Z，OC81Z，OC44．OC44，OC81Z，OC44，AC107． EQUALISATION to Standard R．I．A．A．and C．C．I．R． Characteristics for Gram and Tape Heads， SENSITIVITIIGS：Magnetic P．U． 4 mV ．Crystal or
Ceramic P．U． 400 mV ．Microphone 4.5 mV ．Tape Head Ceramic P．U． 400 mV ．Microphone 4.5 mV ．Tape Head FREQUENCYRESPONSE：$\ddagger 2 \mathrm{~dB} 20-20,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ ． TRLBLE CONTROL：+15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$
HASS CONTROL：+12 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ．iIUM LIVEL：-75 dB ． HASS CONTROL：＋12dB to－ 15 dB at $50 \mathrm{c} / \mathrm{S} .110 \mathrm{M}$ ． $1.200 \mathrm{c} . \mathrm{p} . \mathrm{s} . ~ 0.25 \%$ NEGATIVE FEEDBACK：52dB．
Complete Kit of parts with full constructional details and $1 \frac{1}{2}$ Gns． point to point wiring diagrams． point to point wiring diagrams．Car． $12 / 6$ ．Terms：Deposit $49 /=$ and 9
Supplied factory built 15 Gons．Carr．
monthly payments $35 /$（Total £18．4．0）．Or fitted in beautiful walnut or monthiy payments 35／－（Total £18．4．0）．Or fitted in beautiful walnut or Teak veneered cabinet as illustrated， 4 Gis．extra．
ALL COMPNNENTS ETC，ARE GF A IIGII STANARD AND
GUPPLIED BY LEADING HRITISH MANUFACTURERS．

SIPICIFICATIONS COMPAKE MORE THAN FAV＇OUR ABLY with SLMILARIR AMPLILPERS AT TWICE TIIE COST

A IJUAL（CIIANNEL VEIRSION GF THIE SUFER Ganged Pots．Matched Components．
CROSS TATK：$-52 d \mathrm{~B}$ at $1,000 \mathrm{c} . \mathrm{p}$
CONTI OLS： 5 position InputSelector，Bass Control
 Treble Control，Volume Control，Balance Control，Stereo／
Mono Switch，Tape Monitor Switch．Mains Switch， Mono Switch Tape Monitor Switch Mains Switch， （2）Ceramic or Crystal P．U．（3）Radio／Aux．（4）Tape Head Microphone．Operation of the Input Selector Switch assures appropriate equalisation．
Rigid 18 s．w．g．Chassis．Size approx．12in．Wide，3in．High and 8 in．Deep．Neon Panel Indicator，Attractive Facia Plate and Spun Silver Matching Knobs，Above facilit

TIFSE UNITS ARE EMINENTLY SUITABLE FOR USE WTTH TILESE UNITS ARE WMINENTLY SUITABLE FOR LSE WITH
 SUPERB SOUNE OUTPUT QUALITY CAN BE OBTAINED BY USING WETH FIRST RATE ANCILIALKY
FQUIPMENF．All required parts，point to point wiring \quad Carr． $15 /-\quad$ GnS．
diagrams and detailed instructions． Unit factory bullt 264 Gins，or deposit 83／g and 9 monthly payments $59 / 3$ ． （Total £30．17．0）．Fitted cabinot as Super 1530 Gins．Carr． $15 /$－or Deposit （ 4.15 .6 and 9 monthly！paymts $67 /$（Total $£ 34.18 .6$ ）．Send S．A．E．for leaflet

LONDON－NEWCASTLE－GLASGOW Now rameneme now

AUDIOTRINE HI－FI TAPE RECORDER KIT

IREALISM AT INCREDIBLY LOW COST：\quad S．A．E．for
CAN BE ASSEMIBIEDIN AN HOUR． CAN BE ASSEMISHEDIN AN IOUR． Incorporating the latest Magnavox Tapedeck．The Audiotrine of 3 speeds．High Flux P．M．Speaker，empty Tape Spool，a Reel f Best Quality Tape and a handsome Portable Cabinet of latest ance equal to units in the $\varepsilon 50-£ 60$ class．Ineposit

 Level lndicator．Designed primarily as the link between a Magnavox
Tapelbeck and ili－Fi amplifier suitablemost Tape Decks．Terms availabl fully punched enamelled classis，point－to－boint wiring diagrams and
e4．17．9
instructions，or assembled reads for use 6 zns．olus $5 / 9$ earr． instructions．（）r assembled ready for use 6 zns，plus $5 / 9$ earr．
TAPE AMPLIFIERS $4-5$ Watts output 200 －20．20V Mains A．C．Sut table $£ 6.19 .11$

R．S．C．A10 30 WATT ULTRA LINEAR HI－FI AMPLIFIER

 d volume controls so that two separate inputs such as Gram and＂Mike＂can be mlxed．200－ 250 v ． $50 \mathrm{c} / \mathrm{s}$ A．C．mains．For 3 and 15 ohm speakers．Complete kit of parts 12 GMS．Carr． $12 / 6$ fully punched chassis，point－to－point wirlng diagrams and instructions． 12 gith ing $12 / 6$ perforated cover with carrying handles can be supplied for $21 /$ ．Send s．a．e．for leafiet． TERMS：Deloosit 48／－and 9 monthly 1 ayments of 33／7（Total £1\％．10．3）．LOUDSPEAKER CORNER CONSOLE CABINETS Attractive design

R．S．C．A11 HIGH FIDELITY 12－14 WATT AMPLIFIER

R．S．C．4／5 watt A5 HIGH GAIN AMPLIFIER

A highly－sensitive 4－valve quality amplifier for the home，small club，ete，Suitable for all crystal or ceramic P．U．heads and practi－ cally all＂mikes＂．Separate Hass and Treble controls giving＂llift＂ and＂cut＂，II um level 7idB down．Negative Feedback i5dB．Reserve power supply $300 \mathrm{v} 25 \mathrm{~m} . \mathrm{a}, 6.3 \mathrm{v}$ ．1．5a．for Radio Tuner or Tape Pre－ ，main $300-250 y$ ．Speaker output 3 olims．Complete in every detail with

Highly sensitive．Push－Pull high output，with Pre－amp．／Tone control available．Hum level－70dB．Frequency response $\pm 30830-20,000 \mathrm{c} / \mathrm{s}$ ． Specially designed sectionally wound ultra linear output transformer th 807 output valves．All first grade components．Valves EF＇86． Sensitivity 12 millivolts so that any kind of Microphone or Pick－up is suitable．Designed for Clubs，Sehools，Theatres， Dance Ifals or Outdoor Functions，etc．For use with Elece－
tronic Organ，Guitar，String Rass，etc．Gram，Radio or Tape． Reserve L．T．and H，T．for IRadio Tuner．Two inputs with associat－ PUSH－PULL ULTRA LINEAR OUTPUT＂BUILT－IN＇
TONE CONTROL PRE－AMP＂Two Input sockets with asso ciated controls allow mixing of＂mlike＂and gram．etc in etc．High
sensitivity．Valves ECC 83 ．ECC83，EL84，EL84，Ez81．High quallity sectionally wound output transformer specially designed for Ultra Linear operation and reliable small condensers of current
manufacture．INDIVIDUAL CONTROLS FOR BASS AND TREBLE．Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$ ．Six negative feedback 100 ps ．Hum level 60 dB ．SENSITIVITY 23 millivolts， parable with the very best designs．For Musical Instruments leciromic Guitars，etc．Reserve Power provides 300 v ． 30 mA ．and

R．S．C．COLUMN SPEAKERS
two－tone Rexine／Vynair，ideal for vocalists and Public Address， 15 ohm matching． Type C5s， 15 －2eq watts．Fitted five 8in．high flux speakers．Overall size approx．
$42 \times 10 \times 5$ in．or deposit $44 /$ and 15 Gns. 9 mthlypmts $34 / 9$（ ${ }^{2}$ otal 18 （ 1.6 ）
 10 watt speakers．Overall size
$56 \times 14 \times 9$ Gns．
approx．Carr． $15 /-$ Or Deposit \＆3．13．0 and 9 monthly payments of
$50 /$－（Total $£ 26.3 .0)$ ．

30 WATT HI－FI AMPLIFIER

for Guitar，Vocal or Instrumental Group
A 4 Input， 2 volume control H1－Fi unit with
 controls．Latest valves． Strong Rexine covered
cablnet with carrying handles，Attractive black／gold perspex facia．For 200－250v．A．C．mains．For 3 or 15 ohm speak－ 17 Gins．Carr
ers，Send S．A．E． $12 / 6$ for leaflet．Deposit 23 and 9 monthly

payments of $37 / 5$（Total \＆19．16．9）．

12in．HIGH QUALITY L＇SPEAKERS

In teak veneered cabinets．

 lines． 3 or 15 ohms．Carr． $7 / 6$ 20 Watt Model． 15 ohm．Size 18x18x10in，Gauss12，000lines． Terms avallable on both．5 Gns．
8 Gns． Carr．10／6

FANE HEAVY DUTY HI－FI SPEAKERS
122／10A Dual Cone， 12 in． 20 watt． 15 ohms．

LOUDSPEAKERS $\begin{aligned} & \text { Limited number at fraction } \\ & \text { of list price } 15 \text { ohms im－}\end{aligned}$

 pedance．Brand new，guaranteed．Terms avallable． 15in．EXTRA HEAVY DUTY 40 watts 12 Carr． $15 /-$ Massive units，Gauss 17,000 lines，Usually app．e19．
HIGH FIDELITY 12 in． 10 WATT SPEAKERS $59 /$／
Flux Density 12000 lines Impedance 3 or 15 ohms ． IR．S．C．GRAM AMPLIFIFR KIT． 4 watts output， R．S．C．GRAM AMPLIFIFR KiT． 4 watts output， Mains operation $200-250 \mathrm{v}$ ．A．C．Fully isolated chassis． rircuit，etc．supplied．Only $48 / 1$

 OC72，OC81， $2 / 11$,
Post $6 d$, for 3

JASON VHF／FM TUNER Complete kit
with valves £6．19．11

INTEREST

charges
REFUNDED
on H．P．and Credit Sale Accounts settled in 3 months．

[^1] OC44，OC45，3／11，OCF5，7／9．AF117 6／9．Post 6d．for 3 ．
$250 v .50 \mathrm{c} . \mathrm{p.s}$ ．Output for 4 and 15 ohm speakers．Kit complete to last nut．Chassis 88.15 .0
fully punched，Full instructions and point to－point wring diagrams cor factory built fil．15．0）．Metal cover with 2 handles available for $21 /$ ．TERMS ON Carr． $11 / 6$ ASALABLIDUNITS：Deposit $36 / 6$ and 9 monthly payments

R．S．C．BASS－REGENT 50 WATT AMPLIFIER UNIT For lead，rhythm，bass guitar and all othermusical instruments． For vocalists，gram，radio，tape，and general public addrass．
＊UNUSUALLY POWERFUL LOUDSPEAKER COMBINATION consist inin 20 watt unit with extended frequency un Pbe a FANE 121n． 20 watt unit with extended requency response． ＊Cabinets covered in two－tone Rexine／Vynair with gold trimmin $49 \frac{1}{2}$ Gnc Send S．A．E for leaflet．Or call at one of our maift＂and＂cut＂

B20 MULTI－PURPOSE AMPLIFIER especially suitable for Bass Guitar Incorporating massive $15 i n$ ，high flux loud－ treble controls．Two jack inputs separately controlled．Substantial cabinet attractively finished in Rexine and Vynair．Size approx $24 \times 21 x$ l1in．Send S．A．E．for leaflet． $29 \frac{1}{2}$ G1S． Or Deposit e4．14， 6 and 9 monthly $29 \frac{1}{2}$ GMS．
Dayments of $86 /-$（Total 434.8 .8 ）．Carr， $17 / 6$ ．

G80 80 WATT AMPLIFIER

2 Channels， 6 inputs．Tremolo 2 Col－ 1

 umns and 1 Bass speaker unit with－－1 GDSR．S．C．BATTERY／MAINS CONVERSION UNITS
Type BM1 eliminator．Size $5 \ddagger \times 4 \nmid \times 2 i n$ ．approx． Completely replaces batteries sup－ plying 1.5 V ，and 90 v ．where A．C． Mains $200 / 250 \mathrm{v}$ ． $50 \mathrm{c} / \mathrm{s}$ is available

$$
\begin{aligned}
& \text { ready for use } 59 / 11 \text {. } \\
& \hline
\end{aligned}
$$

G15 15 WATT AMPLIFIER for Lead or Rhythm Guitar，Vocal Groups，etc High－ficlity output．Separate bass and treble controls．Twin separately controiled inputs so
that two instruments or＂mike＂and pick－ups can bbused dut the same time．Heay Duty 122 n ．
watt Speaker．Cabinet covered in attractive

SELENIUM RECTIFIERS F．W．（Bridged）

HEAVY DUTY SELENIUM
12v． 15 amps，F．w．（Bridged）． $\underset{\text { RECTIFIERS }}{\text { OnIy }}$ 19／9

POWER PACK KIT

Consisting of Mains trans former．Metal Rectifier．Electrolytics，smoothing choke．chassis and circuit．200／250v．A．C． $22 / 11$
mains．Output 250 v .60 mA 6.3 v ． 22 Supplied 22 with case in lieu of chassis 26／i1．Or assembled 39／11

All 6112v．D．C．output．Max．A．C．input 18 y ．
1a．3／11．2a．b／11．3a．9／9．4a．12／9．6a．15／9．

 Gns．

MOVING COIL AMMETERS Sangamo thermo－couple type
O－3．5a．Dia．21in．

R．S．C．MAINS TRANSFORMERS

FULLY GUARANTEED．Interleaved and Impreg－ nated．Primaries $200-250 \%$ ． $50 \mathrm{o} / \mathrm{s}$ ． $250 \mathrm{~F}, 60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}$
FULLY SHROUDED UPRIGHT MOUNTVIG
$250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v} .2 \mathrm{a}$
$250-0-280 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v}, 3 \mathrm{a}$ $250-0-200 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$
$300-0-300 \mathrm{v}$.
$300 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$ ． 4 a ．c．t． 6.3 v ． For Mullard 510 Amplifier．
$350-0 \cdot 350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$ ． $25-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{~s}$ $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 6.3 \mathrm{v} .4 \mathrm{a}, 5 \mathrm{v} .3$ $450-0-450 \mathrm{Y} .250 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$ ，c．t．， $5 \nabla .3 \mathrm{a} .$.
TOP SHROUDED DROP－THROUGH TYPE TOP SHROUDED DROP－THROUGH TYPE $250-0-250 \mathrm{v} .70 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{~s}, 0$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{~s}$. $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{~s}$ ．
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$ ．
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v}$ ． 2 a ．
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{y}$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}$ ． 3 a ． $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$ ． $4 \mathrm{a}, 0-5-6.3 \mathrm{v}$ ． Guitable for Mullard 510 Amplifter． $350-0-350 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~s}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$ $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v}, 48,0-5-6.3 \mathrm{~V} .3 \mathrm{a}$ ．
FILAMENT OR TRANSISTOR POWER PA ．3v． 1.58 6／9 6 v a $7 / 9$ ． 2 v ． $1 \mathrm{a} 8 / 9,12 \mathrm{v}$ ．3a or 24 v ． $1.5319 / 8$ ； $0.9 .18 \mathrm{v} 19 / 9$ ． 5／9． $0-12$－25－42v．2s 27／9．
\＆n，16／1，TRANSFORMERS $0-9-15 \mathrm{~F}, 1 \mathrm{sa}, 18 / 11$ AUTO（Step UP／Step DOWN）TRANBFORMERS
$0-110 / 120 \mathrm{~F},-200-230-250 \mathrm{v}$ ． $50-80$ wat $0-110 / 120 \mathrm{v} .-200-230-250 \mathrm{v}$.
150 watts， $29 / 11,250$ watte， $49 / 9,500$ watte，
wat
$99 / 9$ OUTPUT TRANSFORMERS Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to $3 \Omega \quad 7 / 9$ Push－Pull 8 watte EL84 to 3Ω or 15Ω－ Push－Pull EL84 to 3 or $15 \Omega 10014$ watte Push－Pull Ultra Linear for Mullard 510 ．eta Push－Pull 15－18 watts，sectionally wound 6LB， KT66．etc．，for 3 or 15Ω Push－Pull 20 watt high quality sectionally 15Ω fully shrouded．
500THIN CHOKES $100 \mathrm{~mA}, 10 \mathrm{H}, 2000 \mathrm{D} / \mathrm{I} 18$. $30 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega 7 / 9$. $60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 1 \mathrm{I}$ ．$7 / 9$
\square

4 Jack Inputs ．

\section*{－}

$\begin{array}{r}\text { r } \\ \hline \\ \hline\end{array}$

[^2]

artereat

SOLDERING INSTRUMENTS

With re-styled moulded nylon handles

SEVEN SIZES, FROM 10 WATTS TO 55 WATTS

REPLACEABLE BITS, COPPER \& PERMATIP

EXCELLENT TEMPERATURE REGULATION

COOL, UNBREAKABLE

HANDLE
RAPID HEATING

SIMPLE SERVICING

LOW COST

ALL VOLTAGES

BITLOOS anti-seize compound really does prevent bits sticking available in 2 -oz. tubes

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL Telephone: 01-688-8589 \& 4559

N
 Dept PW6 30/32,SHUDEHILL MANCHESTER4. Telephone.(061) 8327710
 FREE GIFT OFFER

OF A BRAND NEW WORLD FAMOUS E.M.I. FISE SOLARSCOPE VALUE 2220 WITH EVERY ORDER VALUE 55 AND OVER. THIS UNIQUE INSTRUMENT VHIGK 18 A BOON TO SHORT WAVELISIENERS CLEARLY SHOWS THE AREAS F DAYLIGET AND DARKNESS ALL OVER TKE EARTE AT ANY GIVEN HOUR, MINI-MOTORS 3V to 4.5V operation. Ideal for mini-racing cars, toys "Large" ($11 / 5 \times$

BRAND NEW: Why use Sapphire styliin your record-player when at very little extra coat you can have a firat-grade GENUINE DIAMOND 8TYLU8 at 7/11 plus 6d. P.P. Available as replacements for the foliowing popular types only at present: BSR TC8LF GARRARD GC8 LP-ACOS GP 6S/67LP-RONETTE BP4O/LP-GARRARD GCE LP. SPEAKER8, 12 in. round bigh quality British fitted tweeter cone, 6 watts, in 3Ω or PR, 29/6 P.P. 3/6. ROUND 12in. R. \& A. 3Ω 25/6, P.P. 3/6. $2 t^{\circ}$ mond speaker 3Ω for your miniature equipment-4/- each, P. \& P. 1/-. Many other speakers from 2 in . to 13 in . available. Extension type, with wol. control, attractive finish; includes $7 \times 4 \mathrm{in}$. speaker. $82 / 6$, P. \& P. 4/6. Attractive extension speaker with two Jacks to suit all transistor sets for home or car. 17/6. P. \& P. 2/6.
TWEETER, 2 in. Black plastic cone, round on Square Frame. E.M.I. 3 a-12/6, plus 1/6 P. \& P .
MICROPHONES. LAPEL/HAND MIKE-1 in. dia. Lapei Clip, ideg for tape reoording. With lead. Very sensitive 7/6. P. \& P. 1/-.
CRYSTAL EAND MIKE. Robust and sensitive. Cream plastic case. Just the thing or tape reconlers 8/6. P. \& P. 1/6.
ACOB MIC 40-World famous Desk Mike, $13 / 9$ plus P. \& P. 1/3.
ACOS MIC 45-Splendid Curved Hand Grip Gryatal Mike, $14 / 6$ plus P. \& P. 1/6.
ACOS MIC 60-"Stick'" Type Cryatal Mike $18 / 6$ plus P. \& P. 1/6.

TELESCOPIC FLOOR STAND. HEAVY BA8E. Stsidard thread. 49/6. Cent. \& Pkg. 2/6 TELEPEONE PICK-UP COIL. For recording or amplifying both aldes of telephone conversation. Suction cup fitting to telephone, with lead, 76. P. \& P. 1/-
DNTER-COMM. DE-LUXE 2-WAY. Ideal for offices, workshops, theatres, etc. Highly efficient, safe BABY ALARM, No mains-works off PP3 battery, which lasts for months, obtainable everywhere. Buzzer cail system. complete with lead, plugg, battery, in handsome carton. $55 /-$. P. \& P, $2 / 6$.
PICK-UP ARM. Lightwelght, with T/O crystal cartridge and atyli for L.P. and 78 r.p.m. records on base with rest, 87/6. P. \& P. 2/6.

4 TRANSISTOR 3W AMPLIFIER. Size $21 \times 2 \frac{1}{2} \times 14,3,8$ or 15Ω outpat. 9 volt battery operated. Highly sensitive. Price (less battery) 59/6. P. \& P. 1/h.

RECORD PLAYER DECKS. GARRARD
SP25 DE LOXE 4-SPEED SINGLE PLAYER
80 SP25 DE LUXE 4-SPEED SINGLE PLAYER 89 g 6 fitted Mono Cartridge.

B.S.R. AOTOMATIC RECORD-CHANGER DECKS. LATEST MODELS. UACS-VEry popular-4 speed. Cap. six 7in., 10 in, , 12 in . records TIA 15/SS3D-As above, but with low mass p/u, arm, reducing record Wh ivar and heavier 10 in turntable, finished in pearl grey and black P. \& P. on all above 7/6. Price includes Free Gift.

PLINTHS Already cut out to suit most record decks. In attractive simulated wood
PLINTHS Aready cut out to suit most re
finiah, $17 \times 14 \times 4 \mathrm{in} .49 / 11$. P. $\&$ P. $6 / 1$.
MAGNAVOX "868" TAPE DECKS. LATEST MODRLS
 $200 / 250 \mathrm{~V} 50$ cycles a c. 3 speed, digit counter, piano tey controls. 7in. reels. Every modern feature. Speeds 1731 and $7 \frac{1}{1}$ i.p.s.
With f track Bradmatic heads
With t track Marriott heads
$\begin{array}{rrr}210 & 10 & 0 \\ 18 & 0 & 0\end{array}$
P. \& P. 10/-. Price includes Free Gilit.

PICK-UP CARTRIDGE REPLACEMENTS
STANDARD FIXINGFOR MOST RECORD-PLAYER ARMG. ALL TURN-OVER YPEB WHA MONO 19/B R.P. 78 R.P.M

73-2 STEREO 25/- each. ACOS -DE-1JUXE $17 / 6$ each. Postage and packing 9d. each.
Finest Quality British made MYLAR Recording Tape Fully Guaranteed. In Cartons.

 Sin. 900ft. Long Play 10/- 7 in . 2400ft. Double Play P. \& P. 1/-per reel. Four reels and over post pald.

POCKET MULTI-TEST METER. 1000Ω per volt. Volts $0 / 10 / 50 / 250 / 500 / 1000$ a.c. and d.c. Current: $0-1-100-500 \mathrm{~mA}$. Resistance: $0-100 \mathrm{k} \Omega$. Complete with test prods. instructions. 87/6. P. \& P. 1/6.
TRANSISTORS: Some popular types from our range:
OC44 and OC45 8/6 each. OC71 2/9. OC72 3/6. OC81 and OC81D 3/- each. OC169 3/9. OC170 8/6. AF117 4/F. OC26 7/6. GET8 5/9. General purpose (Approx. OC71) 1/- each.
NEW HIGE FREQUENCY TRANSISTORS. Sinclair ST140-4/-, ST141-6/-both capable of operating up to $700 \mathrm{Mc} / \mathrm{s}$. ALSO MAT $100-7 / 8$, MAT 101-8/6, MAT 120 $-7 / 8$, MAT $121-8 / 6$, ADT $140-15 /-$. High speed swiltching transigtors-BSY 26 BSY 28, BSY 65-5/- each.
THYRISTOR8. 100 PIV 5A: 12/6; 200 P1V 5A: 15/-. Postage 6d, up to 3. Over 12 sent P. \& P. paid.
R.F. FIELD INDICATOR. Ideal for use with radio controlled models. Checks radiation from existing antenna. Tuncs I to 250 Mc in 5 bands. sensitive 200 mA meter movement. 5 section plug-in aerial. Phone jack and crystal earpiece for monitoring. No battery required. Poweriul magnet for attaching to metal surfaces. Complete with
instructions, $47 / 6$, P. \& $P .2 / 6$.
TERMS. Cash with order. No C.O.D. Orders total $£ 5$ and over sent carriage paid (excepting Record player decks where carrlage is shown). Guaranteed money refunded if goods returned perfect within 7 days of deapatch.

REMEMBER THE NOVEL FEEE GIFT EXCLUSIVE TO US!
Callers welcome-Very many more lines to choose Irom. Open 9.80 a.m.-6 p.m. Mon. Bat. STOCKISTS OF ALL SINCLAIR, OIR-KIT MARTIN KITS-DETAILS Sat. 8TOCKISTS OF ALL SINCLAIR, OIR-KIT MARTIN KITS-DETAILS
WITH PLEABERE.

MARCONI TEST EQUIPMENT
TFI 144 GQ GTANDARD GIGNAL GENERATOR TF. $3290^{\prime 2}$ "Q" METER Brand new with all acce \%ITic. 875 . T.F. 195 M . BEAT FREQUENCY ONCILLATOR. $0.40 \mathrm{Kc} / \mathrm{S}$. $210 / 250$ v. A.C. 20 Carr. $307-$ All above offered in "xeellent condleti,
fully tested and checked and wifered at a fraction of original cost.

2-WAY RADIOS
super quality. Braml new and guaranteed.
3 tranilator
e6, 15.0 pr
 6 tranuistor $\quad 88.4 .0 \mathrm{pr}$. 6 transistor ${ }^{29.19 .6 ~ p r}$ 6 transistor De Luxe $\begin{gathered}\text { \&17.10.0 pr }\end{gathered}$
 13 tranastistor 500 MW 831.10 .0 pr
Trass. Travs. $1 W$ E85.0.0 pr. Post extra.
These cannot be operated in

GARRARD RECORD PLAYERS

SRP22 Player mono 84.4.0; 1000 changer mono or ateren 85.15 .6 ; 2000 changer mono or

 Transeription 86 gis. Brand new and guaranteed, All plus post and packing $5 /$-.

LAFAYETTE HI-FIDELITY

SOLID STATE

STEREO AMPLIFIERS Latest 1967 modela now available. Outstanding performance from
modern semis conductors. Provision for all types of inputa and outputs and coraprehenslve tone controls. Attractive metal cased free stand ing units.
Model LA-224T 30 watt 225, Carr. 7/6. Model LA-60T 60 watt $£ 37.10 .0$. Carr, 7/6. DETAILS ON REqUEST

LAFAYETTE MODEL HA-500 SSB/AM/CW 80 THROUGH 6 METRE RECEIVER

New outatanding Ham Bands only recelver covering the 80/40/20/15/10/6 metre bands. Incorporates 10 valves product detector
two mechanical filters $\$$ Meter dual conversion on all bands erystal calibrator B FO noise limiter serial trimmer. I.F's $2 \cdot 608 \mathrm{Mc} / \mathrm{s}$ and $455 \mathrm{Kc} / \mathrm{s}$. Output 8 ohms and 500 ohms. Operations 220/240 volt. A.C. Bupplied brand new and guaranteed with handbook. 42 gns. Carr. $10 /-$ - $100 \mathrm{Kc} / \mathrm{s}$ crystal $35 /-$.
\star TRANSISTORISED FM TUNER \star

 8 I.F. stages. diacriminator. eed most amplifers. Operates on 9 volt built read foverge Fartastic value for money. \&8.17.e. P. \& P. 2/6.

TRANSISTORISED
TWO-WAY TELEPHONE INTERCOM.
Operative over amazingly long distances. Beparate call and press to taik
buttons,
2-wlre connecbien. 1000 's of applications. Beautifully finished in ebony. Supplied complete with batteries and *5.19.6. P. \& P. 3/6.

R. 107 RECEIVERS

 $1.7-17.5 \mathrm{Mc} / \mathrm{s}$. Mains or 12 volt D.C. operation. Perfect condltion. \&15. Carr. 30/-TYPE-13 DOUBLE BEAM OSCILLOSCOPES $5.5 \mathrm{Mc} / \mathrm{s}$ Bandwidth Perfect condition

VARIABLE VOLTAGE

TRANSFORMERS

AMERICAN TAPE

First grade quality American tape Brand new. Disedunts for quantlities. 3 in., 235 ft . L.P. acetate 34in. 000 ft . T.P. mylar Blin., 600 ft . std. plastic 51 n .400 ft . L.P. acctate 5in., 1,200ft. D.P. mylar 5in., 1,800ft. T.P. uiglar 5 in. 1,200 ft. L.P. acetate
5 in. 1800 ft spina 2.400 ft . T. P. nuylar ${ }^{3} 1 \mathrm{in}$. $1,2,400 \mathrm{ft}$. T.P. niglar 7in., $1,800 \mathrm{ft}$. L. P. acetate 7in., 1,800ft. L.P. mylar 7in., 2,400ft. D.P. mylar. 7 in ., $3,600 \mathrm{ft}$. T.P. nilar Postage $2 /$-. Over 83 post paid,

CALLERS WELCOMEI

Open 9 a.m. to 6 p.m. every day Monday to Saturday. Trade anppiied. All itsms

Send today 5. P

catalocul

\star ELECTRONIC COMPONENTS * TEST EQUIPMENT * COMmUNICATIONS EQUIPMENT
\star HI-FI EQUIPMENT
We are proud to introduce our first comprehensive catalogne of Electronio Componente and equipment. Over 150 pages lully 1Hustrated, listing thousands of ttems many at bargain prices. Free discount coupons with every estalogue. Everyone in electronica should have a copy.

$0 n$ 9 $5-x-x$ (3)		CLEAR PLASTIC PANEL METERS					
		ex-stock. S.A.E. for illustrated leaflet. Discounts for					
		quantity. Available as follows: Type MR 38P, 1 21/32in. aquare fronts.					
		100-0-100 $1 . \mathrm{A}$	2\%/6	200 mA		100 V	22/6
		$500-0-500 \mu \mathrm{~A}$	$89 / 8$	300 mA	${ }^{22} / 8$	150 V D.	$22 / 6$
		$1-0.1 \mathrm{~mA}$	22/6	500 mA	29/6	300 V D.C	$82 / 6$
		1 mA	22/6	750 mA	28/6	500 V D.	2216
		2 mma	22/6	1 A D.C.	28/6	750 V D.	$28 / 6$
		5 mA	$22 / 6$	2 A D,C	$28 / 6$	15 V A.C	
		10 mA	22/6	SA D.C	22/6	50 V A.C.	
		20mA	$22 / 8$	3 V D.O.	22/6	150 V A.O.	28/6
00 2 A	27/6	50 mA	22/8	10 V D.C	$22 / 6$	300 V A	$22 / 6$
500 LA	25/-	150 ma		$50 \vee \mathrm{D.C}$'s' Meter 1	
50-0-5012A	29/6	POST EXTRA. Larger sizes available-send for lists.					

R209 MK. II COMMUNICATION RECEIVER

11 valve high grade communication recpiver sultable inr tropical une. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. AM/CW/FM Aerial trimmer, internal speaker and 12v. D.C. Interaal power supply, supplied in excelfent condition, fuliy

ADMIRALTY B. 40 RECEIVERS

Just released by the Miniatry. High uuality 10 valve receiver manufactured by Murphy. Coverage in 5 bands $650 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ /F. $500 \mathrm{Kc} / \mathrm{s}$. Incorporster $2 \mathrm{R} . \mathrm{F}$. and 3 I.F. atages, crysta Fandpasa ilter, noise limiter, crystal controlled B.F.O., calibrator, I.F. output, etc. Built-in speaker, output for phones. Operation
$150 / 230$ volt A.C. Bize $191 \times 13 \$ 1 \mathrm{n}$. x 16in. Wght. 114 tbs , offered in good working condition. feg 10.0. Carr, 30%. With ircuit diagrams. Also avallable B. 11 L.F. verslon of above. 15 $\mathrm{Kc} / \mathrm{m}^{+}+700 \mathrm{Kc} / \mathrm{s}$, , 917.10 .0 ., carr. $30 /$ -

LAFAYETTE KT-340 COMMUNICA TION RECEIVER SEMI-KIT Build thls wonderful receiver and save pounds Supplied semi completed, main components ready Full and preciae instristlons supplied. Speciffca tion:-8 valves + rectitier, 4 bands covering 550 $\mathrm{ke} / \mathrm{s},-30 \mathrm{Mc} / \mathrm{s}$. Incorporates 1 R.F, and 2 I.F stages, 'Q' multipler, B.F.O., A.N.L., 'G' meter, handspread, aerial trimmer etc. Operation 115/23 V, A.C. Prlce $\mathbf{2 5}$ mns. Carr. $10 /-$

HAM-1, 4 BAND COMMUNICATION RECEIVER 4 wavebands covering $535 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$ 5 valve superhet circuit. Incorporates 8 meter 4in. SPEAKER, FERRITE AERIAL AND EXTERNAL TELESCOPIC ARRIAL. Oper ation $220 / 240$ v. A.C. Supplied brand new with bandbook, 16.16.0. Carr. $10 /$.

NEW LAFAYETTE MODEL HA-700 A M/CW/SSB
AMATEUR CORMUNICATION RECEIVER 8 valve日, 5 bands incorporating 2 MECHANICAL FILTERA for exceptional selectivity and sensi$400 \mathrm{kc} / \mathrm{s}$., $550-1,600 \mathrm{kc} / \mathrm{s} ., 1 \cdot 6-4 \cdot 0 \mathrm{Mc} / \mathrm{s} ., 4 \cdot 8-$ $14.5 \mathrm{Mc} / \mathrm{s} . \quad 10.5-30 \mathrm{Mc} / \mathrm{s}$. Circuit incorporates R.F. stage, aerlal trimmer, noise limiter, B.F.O., product detector, electrical bandapread, 8 meter slide rule dial. Output for phones, low to $2 \mathrm{~K} \Omega$ or speaker 4 or 8 ohrus. Operation 220/240 volt

uew and guaranteed with handbook. 36 GNS. Carr, 10/- S.A.E. for leafet

NEW - 1967 edilion of Radio \& TV Servicing

Up-to-the-minute repair data for 1966-1967 popular Televisions, Radios, Radiograms, Car Radios and Record Reproducers.
One complete volume brings your repair library bang up-to-date!
You can't afford to be without this goldmine of money-spinning data for Radio and TV repair. It's packed with the Circuits, Diagrams, Alignment data and Repair hints you must have for the 1966-67 popular TVs and Radios. PLUS the very latest facts on COLOUR TV. All this in one essential 496-page volume that will more than repay its low cost on one repair job alone. Prove this for yourself. Send no money now-simply complete and post coupon today and this timesaving volume is yours to use for seven days WITHOUT OBLIGATION TO BUY. Apply now.

FOR THE FIRST TIME-

 COLOUR TV (PAL SYSTEM)Compiled by W. A. Montgomery B.Sc.
Head of Advanced Development Group, Consumer Products Division, S.T.C.
This year, Radio and Television Servicing contains an essential reference section of advance data on Colour Television. Illustrated with 46 circuits, diagrams and graphs, this big 32-page section explains basic encoding and decoding processes which will be in use when Colour Television is introduced to Britain.

You will find this new section of absorbing interest--essential reference for every TV and Radio repair workshop.
It's yours on 7 days

Vital Repair hints, Circuits and Data for all these makes Alba - Baird - Bush Cossor - Dansette
Decca - Defiant Dynatron - Ekco Ferguson = Ferranti Fidelity - G.E.C. Grundig = H.M.V. Kolster-Brandes Marconiphone Masteradio - Murphy National - Pam Perdio - Philips = Pye R.G.D. - Regentone Roberts'Radio-Sanyo Sharp - Standard
S.T.C. - Stella

Thorn - Ultra.
496 PAGES Nearly 270 Circuits
Over 290 printed panel diagrams, layout diagrams and waveform graphs.
Strong maroon binding with gold lettering to match volumes previously published in this famous series.

1 To:
Buckingham Press Ltd., Headington Hill Hall, Oxford.
Please send Radio \& TV Servicing (1966* 67 Models) without obligation to buy. If you accept this application I will post 5/- deposit 8 days after receipt of book, then $10 /$-monthly for 8 months, paying 85/- in all-or return the book. Cash price in 8 days $80 /$-.

1

If under 21 your father must fill up coupon
Full nam (BLock letters) \quad (Mr., M................................ Miss)
\qquad

	Tick V where onplicabla (The address on left ls -	
Occupation	My Property	
	Rented ynfurnished	
	Parents' Home	
	Furnished Accom.	
RV/3040	Temporary Address	

Richard Allan HIGH FIDELITY

 MllotuleSPECIFICATION-Bass Unit: Natural resonance 40 c.p.s. Flux density 14,000 Gauss. Total flux 56.000 Maxwells. Tweeter Unit: Flux density 6,000 Gauss. Total fux 9.000 width 64 in. (16.5 cm), depth 24 in . (6.4 cm), weight 5 ib. $(2.3 \mathrm{~kg})$. Power handling 10 watts in recommended enclosure. Impedance 5,8 or 15 ohms.
TECHNICAL DETAIIA:
The unit is a compact and self contained loudspeaker system which only needs to be fitted into a simple cabinet of the recommended design to produce a high fidelity loudspeaker of the highest quality.
The unit consists of a 5 in . bass unit, 4 in . tweeter and crossover network mounted on a duralumin plate which forms the front panel of the com plete enclosure.
The method of assembly of the module is unique in that the cone and synthetic rubber surround of the 5in. bass unit are mounted directly on to the duralumin front panel and the ceramic magnet is supported on substantial pillars attached to the pane
The tweeter is a special version of the 460 T unit with a doped cambric surround and extremely light suspension system.
The crossover network is a five element circuit using ferrite cored inductors and reversible electrolytic capacitors mounted on a printed circuit board.
Free constructional details of the recommended cabinet are readily available from us.

Where larger power handling is required several units may be mounted in a larger cabinet. multiple units may also be mounted in a column enclosare to forma high power handing. high quality line source. The unit may also be mounted directly into existing equipment or in cavities in wald forms the drive system of the 'Minette' enclosure, for detail see separate leaflet.

Patents applied for
Price $£ 8$ plus $£ 1.8 .3$ tax
for further details contact.
RICHARD ALLAN
RADIO LIMITED
Bradford IVd, Gomersal,
nr. Leeds, Yorks.
Tel: Cleckheaton $2442 / 3$
Ri.ithondallant
The Codar CR. keen short wave ding value for mones medium wave, receiver for CR.70A is outstand covers from 540 metres all the short just $£ 19.10 .0$ the CR. in four stable ranges, the rece and coastguard and including 10 meres. ight through metional amateur band hat now prevail allow wave and internaimproving condition where the rapidly imp rovingl-signs! , calla giving extremely high gall wherethon of world-wide 'al' eriai input stage giv. transformers prod 70 A recention or has a high ' Q ' aeria d, iron cored l.F. trans ains, the CR. 70 A The CR.70A has avel. Double tuned, $200-250$ volt AC malus, the cabinet measures with low noise level. high selecty your aerial and a 2 - 0 trol panel is finished ths! needs only ${ }^{\prime \prime} \times 3^{\prime \prime} \times 7 \frac{3}{4}^{\prime \prime}$ and the contralarteed for 12 mos store or direct from
 with chrome trim Codar equipment from your radis descriptive leaflets Buy your Codar equipmen also bring fully deserinn Codar. The ord.
Carriage 7/6 extra. H.P. terms availaintriodes) *ideal for SWLs $* 5$ valves (inc. wo amateur and giving 7 valve line-up $*$ Excelient on anal strength shipping frequencies $*$ Calibratic volume control meter (illuminated) *Auto for morse and S.S.B. *Separate B.F. oscillatorier tuning signals $*$ Two speed vermer

RECEIVER FOR $160=80$ MET 3.5 T28 RECEIV BANDS 1.8 -2MCis and 3.5 ${ }^{9}$ transistors, bandsplerd
 moblle or home receiver. ©asr. $0 / 6$ mobile or home
circuits. ONLY $£ 15.10 .0$. C

CRA5 MAINS T.R.F. SHORT-WAVEAR bandRECEIVER reception. * Saparale electicut 3 watts World wide recep motion drives. *O spread. *3 speaker. * Valves ECR. $2 / 3 \mathrm{hk}$ with 3 colls

 ready butl eady bu each.
livity. Power requ L.T. Size $8 \frac{1}{2} x 5$ and ingliuctions. 6.3 volts. 3 amp cables, plugs and complete W. Cart. 4/6. Self-powered P.R.30x
$\{5.10 .0$. 55.10 .0.
Carr. $4 / 6$.

- poply Please suppired) quel colial BDII
 sissx x atit X. TEL: 3149 BANK HOUSE, southwick sQuart. SOUTHwici
wotld.wide Min order server
world,wid (tick as required) chequel M.O.lP.O. value of \square should like £........................ A.P. detalls
$\because \square$
 ADDRESS
R.F. PRE-SELECTOR MOA Imags R.F. Pac/s 20 dB gain plus substantial mage Provides up to 20 dB ganallnoise ratio and sigh $12 . T$. rejection, improved signts $180-250$ volts 120 and h, bull

MMI-CLIPPER-OUR FAMOUS MINI-CLIPPER-RECEIVER SHORT. Wh in one evening. * Come * Can be bulte, one coil $25-75$ meres plete with instruction manus. and 3 . Carr.

\square Ed stamp
 H

NOMBREX
 INSTRUMENTATION

TRANSISTOR
R.F. GENERATOR

MODEL 31
£12.10.0

Post \& Pkg. 6/6 extra

NEW 1967 MODELS $\star \star \star$
6 d . stamp for leaflets of complete range

8 WATT PUSER-PULL OUTPUT AMPLIPTER, $200-250$ Volts A.C. EZ80, ECC83, 2 -EL84. Bass, treble, val/on-ofl. 55.15 .0 (7/6 P. \& P.).

20 ELEMENT MAST CLIPPING BBC-2 OUTDOOR AERLAL. State Btation required. 55/- (7/6 cerr.). BBC-2 Coax Cable 1/8 yd.

FINAL OFFER OF AM/FM MONO RADIOGRAM CHASSIS. 6 vRIVes, 5 push buttons.
 FEW'AT \&14.

3 WATT AMPLIFIER. $6 \times 4 \times 4 \frac{1}{6}$. Metai rectifler. GAM6 and ELS4. Mains and output tranaformer for 3 ohm speaker. Tone, vol, and ou/on. $6 \% / 6$ (6/- P. \& P.).

SPEAKERS. 20/= UNDER LIST. Heavy duty 12in. with cast aluminium frame 3 or 15 ohm . 45 Hz to 15 kHz . 20 Watt. $85 /-(7 / 6$ P. \& P.).

6 TRANSISTOR "SUPER SIX". M.W. and L.W. kit. 84 (5/- P. \& P.). Wooden cablet 11×7 x 3 in. All parts may be purchased separately.

TESTED AND ASSEMBLED R.F. TRANSISTOR STRIP. 3 IFs (double tuned), osc., diode, 3-AF117, P.C. board $\left.4 \frac{1}{4} 2 \right\rvert\,$ in., 470 KGZ . $25 /-$ (2/6 P. \& P.).

GRAMOPRONE AMPLIFIERS. (1) UCL82, UY85, mains and O.P. Trans. $7 \times 5 \mathrm{in}$. Sohm apeaker, $57 / 6$ (7/6 P. \& P.). (2) UY85, UCC85, UL84, then as for (1), 67/6 3-obm speaker
(7/6 P. \& P.).

COPPER CLAD BOARD. (A) $8 \times 8 x^{1} / 16^{\text {ln. }} 3 /-$ (Post $2 / 4$ any quantlty). (B) 74 $14+$ Yiln. $5 /$ - (Post $2 / 6$ any quantity).

2 z 4 WATT STEREO AMPLIFIER. Printed circuit. Separate power pack. Metal 2 4 WATT STEREO AMPLIFIER. Printed circuit. Muting switch and on/ỡ. 25.10 .0 (7/6 P. \& P.).

9-12 VOLT TRANSISTOR AMPLIFIERS. (1) 200 mW for 3 ohm speaker $30 /$ (2) 350 mW with switch, vol, control, for 3 ohm speakers $40 /-$. (3) $1-2$ watt for 8 ohm speakera, 57/6. (2/6 P. \& P. each type).

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. from station and Buses) FULL GUARANTEE
Aklershot 22240 CLOSED WEDNESDAY AFTERNOON CATALOGUE 6d.
\square

R.S.T. valve mail order co. 144-146 WELLFIELD ROAD, STREATHAM, S.W. 16

Perhaps you will be as surprised as the pundits when you hear the facts* about the BSR C1 ceramic cartridge '". . . another milestone on the public right-of-way to high fidelity"-said The Gramophone.
You could even be surprised to know that the BSR UA70 manuall automatic turntable unit is fitted with such a splendid cartridge and that its all round performance is equal to such high standards. But maybe not . . . you could be one of those sensible people who knew all along that BSR don't just make a lot of autochangers but a lot of very good autochangers.

[^3]BSR Limited, Monarch Works, Old Hill, Staffordshire.

for better sound reproduction

BSR UA70

 SPECIFICATION| Turntable | |
| :---: | :---: |
| Wow | .Less than $\cdot 2 \%$ |
| FlutterLess than . 06% | |
| Long term speed variation | |
| Less than $\cdot 5 \%$ | |
| Rumble (ref. 1 kHz) -29 dB | |
| Pick-up arm | |
| Counterbalanced lightweight arm with calibrated tracking pressure control, integral cueing device and automatic lock. | |
| Tracking pressure (depending on cartridge) | |
| 2 grams. min. | |
| Cartridge | |
| The now famous C1 ceramic | |
| Compliance | $5.2 \times 10^{-6} \mathrm{~cm} /$ dynes |
| Frequency response | $20-15,000 \mathrm{~Hz}$ |
| | $\pm 2 \mathrm{~dB}$ |
| Standard UA70 player £12.18.3* | |
| C1 Ceramic Cartridge | |
| sapphire stylus | £2. 7.0* |
| diamond stylus | £3. 1.9* |

BARGAIN OPPORTUNITIES

VEROBOARD-All standard sizes ip-

GARRARD UNITS \& PLINTHS

LM. 3000 Record Player with 9T.A. Btere Cartridge. Brand new as from factory . . AT, 60 Ml II De-luxe Auto-changer, diecast turntable. Less cartridge. EP.2s De-lure singte record player, die$\$ 10.19 .6$ cast turntable. Less cartridge 91 gna Packing and carrisge on any one of above 7/6 extra. Garrard Plinth. Ideal mounting for the Garrard Units offered here. Will readily sult any hi-fl set-up. In tine reak Complete with usetul soft plastio dust cover. Packing and carriage 5/. 75/Garrard clear-view rigid perspex cover (carrtage 3/6)
Garrard Mono Cartridgee from 15/-; Btereo from 25/.

TRS MULLARD AMPLIFIERS STEREO 10-10

 spec. With pre-amp, tapped o/p complete.£9.19.6 transformer 3 \& 15Ω, a!l controls, H.T, and L.T. outlet, mono, stereo and speaker phase switchlng. Complete with es cutcheon, knobs, plugs, etc. Ready built $£ 19.10 .0$
(p. \& p.12/6)

£17.10.0

($\mathrm{p} .8 \mathrm{p} .7 / 6$)
with passlve panel £ilis9.6
2 valve pre-amp kit £6.92.6
3-3 MONO
3 valve 3 watt ampllifer with controls, absolutely complete kIt Including panel, knobs, $\mathbf{f 7} 10.0$
etc. (p. \& p. $7 / 6$)

ONLY FROM T.R.S.

FREE LIBRARY WALLET WITH EVERY REEL

$22 / 6$ p. p. p. $1 / 6$ per reel
$12 / 6$
With each reel of thls tape by an internationally famous manufacturer we glve you a beautitully made wallet strongly made in simulated leather with space for a reel of tape each side. Thls is profosslonal quallty full frequency tape with metallsed leader/stop folls. These llbrary wallets solve once and for all the problems of storing tapes efficlently and tidlly.
pes eficientiy and tid
5ㅗㅕ" reel, 1200'
17/6
$\begin{array}{ll}\text { weel } 1800 \text { wallet. } & 22 / 6 \begin{array}{l}\text { with wallet } \\ \text { p. } 1 \text { p. } 1 / 6 \text { per reel }\end{array} \\ \text { with wallet }\end{array}$

A superbly powerful high performance Instrument for the keeneat enthusiasts. Provides tuning on long, medium and F.M. Wavebands. Excellent sensitivity food neg. feedback. Magic eye. 3 w. output. A.C. $200 / 250 \mathrm{~F}$. Circuit diagrama available. Aligned, tested and ready for use (Carr and ins. f13.19.6

4/-:12x18in. max. width $48^{\prime \prime}$ BONDACOUS Cabinet Aooustion Speaker approx. lin. thick 18 in, wide, any lengthick 18 in . $6 /-\mathrm{yd}$.
All Sinclair kits and prodncts in stock as advertised.

COMPONENT SPECIALISTS
Estab/ished 1946
70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
rel.: 01-684 2188. Hours 9 a.m. -6 p.m. 1 p.m. Wednesdays A few doors from Thornton Heath Stn. (S,R. V/ctorla section.)

PEOPLE PREFER MARTIN FOR RELIABILITY, FOR QUALITY, FOR ADD-ON-ABILITY, FOR ECONOMY

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTINit's simple to instal, good to listen to. and looks complately professional.

AMPLIFIER SYSTEMS • TUNERS • RECORDERS

MARTIN AUDIOKITS are available for Mono, and can be doubled up for stereo. or as complete stereo units. 3 ohm and 15 ohm systems are available. There is a special pre-amp for low output pick-ups and escutcheon panels to suit the arrangement you choose. The tuner is styled to match.

E 5-stage input Selector $£ 2.7 .6$

- Pre-amp/tone controls £3.2.6
- 10 watt amp. ($\mathbf{3}$ ohms) $£ 5.12 .6$
- 10 watt amp. (15 ohms) $\mathbf{£ 6 . 1 2 . 6}$
- Mains power supply $£ 2.15 .0$
- FM Tuner £12.19.3

Trade enquiries invited
From Radio and Hi -Fi Stockists
MARTIN ELECTRONICS LTD.
154/5 HIGH STREET, BRENTFORD.
MIDDLESEX. ISLe worth 1161/2

MARTIN ELECTRONICS 154 High Street, Brentford, Middlesex Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name
Address

SPECIAL INTEREST ITEMS!

SOLID STATE MULTIPLEX STEREO AM/FM TUNER/
AMPLIFIER CHASSIS
Model Tl0E-made for U.K. use by lamous North American manufacturer and originally installed in De Luxe Hi.Fi consoles costing several hundred pounds. The chassig is of ou tatanding appearance features plus an extremely comprehensive specification.
Penturea - Beparate
Festures Beparate transistorised AM and FM tuners - 3 AM wavebands-LW, MW and Continental T.R. band Mull FM cover with 5 push but ton preselected atations FMX feature which provides automatle switching from mono to stereo when with unique is recelved and vice versa - unique spllt amplifer facility for simultaneous play of radio plus any other source channel reverse oswitched inputs for tape and auxiliaries (sep sockets for tape in and out) switched extension speaker outlet thermal asiety trip - socket for stereo headphones.
rech. apec.: Output 10 watts RMS per channel; output $1 \mathrm{mp} .8 \Omega$ p.c.; sensitivity 50 mV for $8 W$ output at $1 \mathrm{Kc}$. ; ipput Imp. $100 \mathrm{~K} \Omega$ p.c.; 12 unique tumbler type function controls, 8 push button wavechange and station selection controls, vol., bass, treble and balance controls, push button contour (loudness) control; illuminated tuning scale; AM ranges: Mc/a with switched AFC. Operates on $200 / 250 \mathrm{~V} A . C$. LASKY'S PRICE 59 Gns Post \& Packing 20/-
A range of Hi-Fi Console Cablinets by the amme famons manufacturer are available at almost i list price and may be meen at our Hi-Fi Audio Centres.

TWO BAND TRANSISTOR CAR RADIO BARGAIN! THE ROYAL CR-62
A new high quality imported gill transistor auperhet car radio that really breaks the quality/
price barrier. A unique feature of this set are the four M/W band station preselection buttonare the you yourself set to your own four favourite statlons-this is in addition to full M / W band cover over $535-1605 \mathrm{Kc} / \mathrm{s}$ and full L / W band cover over $150-300 \mathrm{Kc} / \mathrm{a}$ (IF frequency 455 Kefo). Externally adjustable aerial trimmers
 ensure maximum output. Bix transistor (in-
cluding one drift type) and one diode circuit provides powerful 2 W output. The set is adjustable for use on elther positive or negative ground 12 V systems (external line fuse
 installation inatructions and 2 baffle boards (for round or eliptical gpeaker). Fully guaranteed.
LASKY'S PRICE E9.19.6 post 5/-
$6 \times$ 4in. eliptical 8Ω dynamio speaker $17 / 6$ extra-Post FREE.
SPECIAL ORFER-LOCEING CAR AERIAL Model B3003 eve section 402 extention heavy chrome telescopic wing mounting type with unique locking device to protect the LASEY'S 8PECLAL PRICE $39 / 6$ Post Free with the Royal CR-62. Bep. Post 2/6.

MICROPHONE BARGAIN

STC MODEL 414

A high quality omini directional moving coil microphone-sultable trankistor amplifiers etc. Attractlve prey moulded case for tre atanding or hand held use-size $2 \frac{1}{2} \times 29 \times 2 \frac{1}{8} \mathrm{in}$. Complete with $6 f t$. of screened cable. New and unused in makers cartons-fully guaranteed.

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES

3 in .	Message tape, 150ft.
	Message tape, 220 ft .
	Message tape
	Triple play, 600 ft . Myiar
	Triple play, 900ft. Mylar
	Double play, 1200t. Mylar
6 in.	Long play, 900 ft . Acetate
bi	Standard play, 600ft. PVC
	Triple play, 1800 ft . Mylar

CONSTRUCTORS BARGAINS

LONG WAVEBAND COVER FOR THE SKYROVER A slmple additional clicuit provides cluding 1500 M . Light programme). This is in addition to all existing Medium and Short wavebsuds. All necessary components with construction data. Onjy 10/= extra Post Free. This conversion is autable for recelvers that have already been constructed.

THE SKYROVER De Luxe 7 tranaistor plas 2 diode superhet, 6 waveband portsole receiver covering the foll 1-94M and also 4 separste switched band spread ranges, $13 \mathrm{M} ., 16 \mathrm{M} ., 19 \mathrm{M}$, and 26 M , with Band Spread Tuning for accurate Station Belection. The coil pack and tuning beart is completely factory assembled, wred and teated. Buperhet, $470 \mathrm{Kc} / \mathrm{s}$. Al Mullard Tranaistors and Dlodes. Usea 4 U2 500 mW Output Telesooplo and Ferrite Rod Aerial Tone Control Volume Control. Tuning Control and Waveband Selector, In wood cabinet, size 111×61 x 3 in. covered with wahable material, plagtic trim and cartylng handle. Car aerlal socket fitted.
Can now
be built for
E8.19.6
Post
s/extre H.P. Terms: 60/- deposit and 11 roonthly psyments of 12/8. Totel H.P.P. 810.0 .8 . Fonr U 2 batterjes $8 / 4$ extra. Data 2/6 extra: refunded if you purchase the parcel. All components avallable separately.

SPECIAL PURCHASE-_VALVE UHF TV TUNERS

Well known British makers surplus stocks. Now available for the frst time to the Home Constructors. Add $8 / 6$ Post and Psolring on each.
In metal case size $4 \times 6 \times 1$ in. Fully tunsble-complete with PC86 and PC88 valves.
LASKY'S PRICE 29/6 Without valves 7/6

NEW! LASKY'S CLEAR PLASTIC PANEL METERS

Precision made in Japan by HIOKI. Bach meter boxed and
fully guaranteed with all fixing nuts and weshers. Aizes are of front panel. Add $1 / 6$ Post on each.
Type KR-52 3×2 ¢in, (illustrated)
 imi $\begin{gathered}\text { M Meter.89/6 }\end{gathered}$
Type ME-38A 2in. square
1 mA DC.
300 V DC
$28 / 6$
$22 / 6$
$22 / 6$
$27 / 6$
$29 / 6$
$25 /-$
$25 /-$
$25 /-$
$25 /-$
$85 /-$
Type KR-6s 9: \times 3in

55 uA

1 mA § Meter
Type MK-45A ifin, \quad qquare
$5 \mathrm{~mA} D C$.
$500 \mu \mathrm{~A}$
1 mA \& Meter

300 V DC
1 mA DC
5 mA DC
300 V DC
500 LA
1 mA geter

TRANSISTOR FM TUNER

 CHASSISFully tunable-range 88 to $108 \mathrm{Mc} / \mathrm{s}$. Completely wired on printed circuit. 10.3 Mc/s. 1F. 6 trans. Bize $6 \frac{1}{2} \mathrm{I} 4 \mathrm{y} 2 \mathrm{tin}$. Operates from any 9v. D.C. source. Full data and clrcuit supplied.
LASKY'S PRICE f7.19.6 Post 5/- extra.

GORLER UT 340 FM/VHF TUNING HEART
Permeability tuned-covering 87 to $108 \mathrm{Mc} / \mathrm{s}$. For use with one ECC85 valve. In metal
LASKY'S PRICE $15 / 11$ Post $2 /$. ECC85 valve 9/- extra.

TRANSISTORS all brand new and guaranteed
 OC201, OC204 15/-; OC205, PC206 19/6; OC28 24/6; OC75 8/-.

TRANSFILTERS by BRUSH CRYSTAL Co. Available from atook.

Musicassotion-over 200 tities in stock Phllips, Mereary, Fontans, C.B.S., Pye,

Branches

207 EDGWARE ROAD, LONDON. W. 2
 Tel: $01-723 \quad 3271$
 33 TOITENHAM CT. RD. LONDON, W. 1
 Tel:: 01-636 2605
 Open all dav Satureay, early cossing 1 p.m. Tharsday
 152/3 FLEET STREET, LONDON, E.C.4 Tel: FLEet St. 2833

Open ali day Thurscay, cady cisaing 1 p.m. Saturday.
ALL MAIL ORDERS AND CORRESPONDENCE T0:3-15 CAVELL ST., TOWER HAMLETS, LONDON, E. 1 Tel: 01-790 4821

IONX PRACTICAL! VISUAL! \quad Mn- H_{m}

 a new 4-way method of mastering

4 CARRY OUT OVER 40 EXPERIMENTS ON
CIRCUITS AND SEE HOW THEY WORK.

BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK ... INCLUDING ...

```
- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- signal tracer
```

- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory - no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^4]
wifilitess

TOPIC OF THE MONTH

Keeping In Touch

TRADITIONALLY this space should be devoted to the burning issues of the day. In fact it is normally used not only as a platform for editorial policy but also to air subjects open to controversy.

One objective is to provide the raw material for further discussion and to this end comments sometimes scarcely disguise the tongue in cheek. This policy sometimes backfires, as witness the overseas reader whose faith in the British character sank when we spoke of sending a gunboat down the Rhine in protest against the Hertz! Then there was the reader who darkly hinted at a despotic editor campaigning against poppirates against the will of the otherwise 100% pro-pirate staff. So there must be no mention here of the rhino whip used to control this mutinous bunch of editorial personnel otherwise there will be a protest march on Tower House. Down you dogs!

A lesson to learn here is that it matters not only what you say-but how you say it. The only certain thing is that you will not please everyone. And the same applies, on an extended scale, to the contents of the magazine. Not only the editor, but his browbeaten staff are constantly striving for the impossibility of pleasing everyone.

How, for instance, does one cater for minority tastes without incurring the rage of those with more mundane appetites? How does one devise a succulent menu to leave most readers happily gorged? We can only hope to succeed by supplementing our own judgment with the reactions of readers. Constructive criticism, comment and suggestion are always welcome; indeed are vital. Interests and tastes change from time to time and only by keeping a finger on the pulse of our readers can we gauge our progress. That is why we value your letters.

Judging from the continued high circulation of P.W. we seem to be doing nicely-but don't let us get complacent as we sit back polishing our haloes! In the end it all comes back to the wellworn truism, that by and large you get the magazine you deserve!
W. N. STEVENS-Editor

NEWS AND COMMENT

Leader
News and Comment 320
On the Short Waves by John Guttridge and David Gibson, G3JDG
Book Review 345
Practically Wireless by Henry 348
Club Spot—Cray Valley Radio Society, G3RCV 363
CONSTRUCTIONAL
Miniature Stabilised Power Supply Unit by R Ley/and 322
Switched F.M. Tuner, Part 2 by W. Groome 325
Four wave-band set for the Novice by R. F. Graham 340
Bulb Tuning Indicator by A.J. McEvoy, B.Sc. 346
Two Metre Transmitter by F. G. Rayer, G3OGR 351
FEATURES
Repairing Radio Sets, Part VI by H. W. Hellyer 333
Connector Block Circuitry by J. B. Willmott, A.I.P.R.E. 344
Guide to Surplus Communications Receivers, Part 2
by K. Adkins, B.Sc. 359
OCTOBER ISSUE WILL BE PUBLISHED ON

[^5]
FIRST AID KIT FOR THE WORKSHOP

Ever burned yourself on the soldering iron or jabbed the screwdriver into your hand? Even if you are lucky and have not, it doesn't hurt to have a first-aid kit in the workshop or shack.

Illustrated above is a compact kit measuring $6 \frac{3}{4} \times 4 \frac{3}{4} \times 1 \frac{1}{2} \mathrm{in}$. (shown closed on the left). It contains $\frac{1}{2}$ oz. cotton wool, burn dressings, lint dressings, adhesive plaster, bandages, antiseptic cream, Elastoplast and a pair of scissors.

It's a good idea to slip it into your pocket if you're going mobile too, so that it doubles up as a car first-aid kit!

Price is $£ 1$, postage is free and kits are obtainable from George Bros. \& Mott, Gothic Works, 1 Hainault Road, London, E.11.

TRANSISTOR PROBES AID VETS.

A transistorised instrument to detect metal objects which accidentally get eaten by cows with fodder, has been designed at the Yerevan Veterinary Research Centre in Russia.

The portable device locates the object precisely and measures its size. The foreign body is then promptly extracted with a flexible magnetic probe. It operates on a flashlight battery lasting for 200 hours, long enough to treat over 2,500 cows.

VHF SOUND SERVICE FROM MADDYBENNY MORE

The v.h.f. sound service from the relay station at Maddybenny More, between Coleraine and Portrush, Northern Ireland, started on June 26. The three sound programmes are transmitted on v.h.f., horizontally polarized, on the following frequencies: Northern Ireland Home Service $93.1 \mathrm{Mc} / \mathrm{s}$; Light Programme 88.7 Mc/s; Third Network $90.9 \mathrm{Mc} / \mathrm{s}$.

OSCILLATOR IN TRANSISTOR CAN

A micro-oscillator, type F3185, has been developed by The Marconi Company. Completely sealed inside a tiny transistor can. this unit is the smallest in the Marconi range of oscillators.

The photograph shows the micro-oscillator with the cover removed. The deposited gold electrodes on the circular crystal have been left out in order to show the micro-circuit underneath.

ELECTRONIC REFLEX CAMERA

A miniature reflex camera with electronically controlled shutter speeds, said to be the first of its kind in the world market, has gone into serial production at the Pentacon camera and cine works of Dresden, East Germany.

Trade-named Praktica Electronic, the SLR camera is equipped with an electronic plane shutter speeded from 30 full seconds to $1 / 500$ th sec., with individual settings arranged in a geometrical series. The single shutter-speed setting does not rotate during exposure and positive-action settings are provided for each speed.

The electronic circuitry is powered by a Mallory PX 21 alkali-manganese cell. A change-over switch permits the adjustment of a mechanically controlled shutter speed of $1 / 60$ th second.

HALLICRAFTERS FROM ELECTRONIQUES

Electroniques (proprietors STC Limited) has augmented the 11,350 products it offers to radio and electronic hobbyists with a complete range of high-grade communications equipment.

An agreement has been concluded with the Hallicrafters Company of Chicago, whereby Electroniques will market the complete range of Hallicrafters radio communications products for amateur and commercial use. The agreement applies to the United Kingdom and is exclusive.

Hallicrafters amateur equipment includes high-performance receivers, transmitters and transceivers, and covers frequencies up to and including the v.h.f. bands. All apparatus is of compact, lightweight design offering the optimum performance and ease of use.

DESIGNS FOR VHF TRANSMITTERS

These v.h.f. transmitters have been designed by Mullard Applications engineers around two high-power silicon planar transistors, types BLY33 and BLY35. The circuits available are $8 \mathrm{~W}, 80 \mathrm{Mc} / \mathrm{s}$ a.m. transmitter; 7,11 and $15 \mathrm{~W}, 170 \mathrm{Mc} / \mathrm{s}$ a.m. transmitter; $15 \mathrm{~W}, 80 \mathrm{Mc} / \mathrm{s}$ f.m. transmitter; 25-30W, $170 \mathrm{Mc} / \mathrm{s}$ f.m. transmitter.
The supply voltage for the $25-30 \mathrm{~W}$ transmitter is 28 V . All the other designs operate from a 13.8 V supply.

ALL-GOLD INSTRUMENT INSURED FOR £4,000

One of the most expensive electronic instruments \mathbf{f} for Ib. - at this year's RECMF was this portable differential voltmeter (right) with a gleaming 24carat polished front panel and gold plating throughout.

The goiden instrument weighs only 241b. but is insured for over $£ 4,000$. It was the 10,000 th of its type produced by the American specialists John Fluke and took pride of place on the stand of Livingston Laboratories Ltd. of Watford, where it is being displayed alongside the first British-made equivalent off the production line (left). The home produced version is lighter and more compact than its golden U.S. forerunner, has an accuracy of 0.02% and is solid-state throughout. It is also cheaper because it attracts no duty.

MONO PICKUP DESIGN

Following the announcement by EMI Records Limited of their intention to introduce stereo-only classical LPs from July next, the following statement has been issued jointly by BREMA and the RECMF:-

It is not practicable to specify any clear-cut performance figures for pickups and their cartridges which will be suitable for playing stereo records, but satisfactory results should be obtained if the pickup used is either one which has been designed for stereo reproduction (though it may be wired for mono) or is a type which has good vertical compliance, low mechanical resistance and a low tip-mass. Many mono pickups produced in the past will be satisfactory although they were not designed specifically for stereo; in future it is expected that most mono pickups will be suitable, and these will be identified: - 'This mono pickup will play stereo records'.

Although some high-output pickups used with singlestage amplifiers may not fully meet these conditions, they may still be acceptable if it is desired only to play the record monophonically and on that particular piece of equipment. The manufacturers of the equipment should be consulted if it is desired to know whether a particular type is suitable.

THE WRONG RAY

In the caption to the photograph in Club Spot on page 219 in July issue the two Rays were transposed. Ray, the SWL is on the extreme left and Ray, G3MWF is pictured fourth from the left. Our sincere apologies to both Rays.

INTERNATIONAL MOBILE RALLY

"Keep going straight on and you can't miss us". The congenial voice boomed out of the loudspeaker in the car. The time around 1045, frequency-1950kc/s and the voice was John-GB3USA. Fifteen minutes later we were at the entrance to the United States Air Force Base, R.A.F. Alconbury and we had arrived at the Eighth International Mobile Rally organised by the Amateur Radio Mobile Society and the Third United States Air Force.

What a day. The sun blazed down and the people flocked in. Estimates reckoned some 5000 people attended and certainly by 2 p.m. the huge runway was crammed with cars six deep.

Couldn't make it? Want to know what you missed ? Well the big hanger looked like the annual RSGB Exhibition, with over 70 trade stands displaying just about everything from surplus equipment sales to commercial Amateur stations. Then there was the giant tombola, the numerous competitions-even one for the children, the Mid-Anglia police who demonstrated a radar trap, and a superb demonstration of radio controlled model aircraft which did just about everything except serve hot lunches on board. A popular event with the ladies was the demonstration by Helena Rubinstein beauty experts.

Perhaps the most significant factor in the tremendous success of the Rally was the wonderful hospitality of the Americans. There was "Bob" who served the most delicious hot-dogs direct from an open barbacue; and the man in sun-glasses smoking a cigar who drove a gaily decorated "train" round the base all afternoon to give rides to the children. The "train" by the way, was brought all the way over from Mildenhall. Out on the runways and roads round the Base men in uniform with white hats and gloves gave clear directions to all newcomers and directed them to the parking runway. They were still out there when we left at 5.30 p.m. The "Talking Bird", a huge aircraft which, inside, looked like a "baddies" communications centre in a James Bond film. Special buses were laid on to take us to see the Police dog display and for those who got thirsty, there was a nice long cool drink which had been kept in huge bins crammed with ice. With so much going on no wonder we were all so reluctant to leave. The weather was superb, and at half past five the sun was still blazing to attention patiently waiting for "permission to set Sir". If you missed the rally then-"like man you goofed". See you next year?

IRISH POLICE ON THE AIR

Ultra Electronics have received an initial order worth $£ 19,000$ from the Garda. Siochana (lrish Police) for their new "Cub" Pocketset.

The purchase of the "Cub" by the Irish Police follows their declared policy to provide their force with the most efficient and up-to-date equipment currently available.

The equipment is already in quantity production for the Home Office and many industrial users.

Designed to meet the ever growing need for personal lightweight, 2 -way radio communications equipment, the f.m. "Cub" weighs only 25ozs. It is the latest edition to the Vigilant range of portable equipment which is already used in large quantities by Police, Fire Services, public utilities and many commercial users throughout the United Kingdom and overseas.

CURRENTS can be provided from this 9 -volt supply of up to 100 mA to work radio or other transistorised circuits. The output is kept in the region of 9 volts throughout the normal current range by a series stabiliser consisting of a power transistor and a 250 mW zener diode. Beyond the stabilised range, a steep fall in voltage limits the short-circuit current to about 300 mA . The steeplyfalling characteristic belongs to the voltage-doubler rectifier system and is levelled out initially by the action of the transistor regulator, to give an output impedance of approximately 5Ω over its linear range.

Unlike most other types of power supply, it is not immediately damaged by overloads, but a shortcircuit lasting for half-an-hour or more would cause the transformer to overheat. A midget bell transformer, it has an unusually large voltage drop on load. On open circuit, the secondary voltages are 50% above the nominal values obtained at the rated 3 volt-amperes output. Choosing the 5 V section, about 18 volts appears across the voltage-doubling capacitors when no load is connected to the power unit. The excess voltage is dropped across the transistor, and only about 9 volts appears at the output. This is clearly shown in the graphs, Fig. 3, of the power unit before and after stabilisation.

Zener diode

The power dissipation in the transistor is low, and the small temperature rise in normal working is confined mainly to the transformer. The zener diode also works at well below its 250 mW rating. The maximum zener current (approximately 17 mA) occurs when there is no load on the power unit. At output currents above 100 mA , the current in the zener diode decreases to zero, stabilising action ceases, and the voltage falls.

There is an appreciable production spread in zener diodes, e.g. $\pm 5 \%$ or more. The nominal voltage of an OAZ207 is $9 \cdot 1 \mathrm{~V}$, and the output should not exceed 10 volts with a diode at the upper end of the production spread. It would in fact be rather less, possibly 9.8 V , owing to the base-emitter drop. A lower voltage than this could be guaranteed, if necessary. by using an OAZ206 with a nominal voltage of $8 \cdot 2 \mathrm{~V}$.

The characteristic of any good quality zener diode shows hardly any current at voltages below the
stabilised voltage, but when the stabilised voltage is reached, any further slight increase of voltage causes a large current to flow. This current is passed through a resistance in series with the diode, causing any surplus voltage to be dropped across the resistance, leaving the voltage across the zener diode almost unchanged, and only slightly higher. The zener diode is thus enabled to preserve an almost constant voltage despite large changes in the supply voltage, and in the face of variable loading. The constancy of stabilised voltage depends on the amount of resistance into which the zener diode works. Here it is a 470Ω resistance, together with the input resistance of the transistor.

The base-emitter potential difference of the transistor will be between 0.2 and 0.3 V according to the emitter current. Connecting the base of the transistor to the zener diode ensures that the emitter voltage will be within a fraction of a volt of the voltage across the zener diode. As long as the zener voltage is maintained, the output will be stabilised, and when with heavier loading, the zener current approaches zero, the voltage across the zener diode and the output voltage will both fall. The transistor functions as an emitter-follower, tying the output to the reference voltage, acting as a control amplifier to minimize the difference between them. The transistor handles a heavier current than the zener diode, a low wattage type, is able to control directly, and permits some improvement in stabilisation, by enabling the resistance in series with the zener diode to have a value as high as 470Ω.

A highly stabilised supply would have an output impedance that is only a small fraction of an ohm,

Fig. 1: Circuit diagram of the complete unit.

Fig. 2: Parts of the power supply box and interior wiring and layout. (1) side view, (2) opposite end, (3) bottom of box. (4) feet. (5) corner pieces, (6\& 7) inner ends. (8) flex retainer, (9) outer ends. (10) component board, (11) transistor heat sink, (12) component board wiring, (13) main component layout.
but this requires a multi-stage amplifier with temperature compensation. An output impedance of 5Ω compares quite well with that of a transistor radio battery.

Performance

After continuous working at 100 mA for a long period, the only noticeable change is a small decrease in output voltage, less than 2%, due to warming up. The low output impedance and freedom from ripple make it a suitable power unit for Class B amplifiers with outputs up to 1 watt (see Fig. 3).

Fig. 3: Regulation curves of the power unit.

Construction

An all-insulated construction was considered necessary, with complete separation of the primary and secondary circuits. The transformer itself meets this requirement, and the other components are housed under the transformer in a box made from $\frac{1}{18}$ in. insulating material, perforated with $\frac{5}{32} \mathrm{in}$. dia. holes for ventilation. To prevent the holes in the bottom from being blocked, it is raised on feet consisting of two hardboard strips. Hardboard is also used for the inner end pieces to provide thicker edges for gluing. An impact adhesive should be used that gives strong joints without becoming brittle.

The outer ends of the box overlap the connector blocks of the transformer and at one end a flex channel is provided in the simplest manner by shaping the top of the hardboard and adding a piece of toin. material on the inside to form the other wall of the channel.

Twisted plastic-covered flex, with the leads separated and uncrossed, fits into this channel, and the two leads are retained individually by the bends into the connector blocks.

At the other end of the transformer, fine plasticcovered stranded wire brings the input from the 5 V secondary into the box, and similar wire is used
for the d.c. output connections. These connecting leads are several inches in length to enable the component assembly to be inserted easily into the box.

The output connectors are a pair of large type transistor battery press studs, glued in position over the two apertures at the front. The tags are bent back on the inside so as to remain clear of the component assembly. The d.c. leads are soldered to these bent tags in the interior.

A pair of 6BA bolts 1 in . long secure the transformer on top of the box containing the other components. These screw into 6BA nuts that are imbedded in the hardboard, $\frac{1}{2}$ in. from the top. To make this possible, the hardboard is thickened to $\frac{1}{4} \mathrm{in}$. by additional corner pieces glued on the inside. The vertical holes for the 6BA bolts occur at the joins, but with care, the holes can be drilled satisfactorily. If splitting occurs, this can be remedied with further gluing.
Before the outer $\frac{1}{16}$ in. material is glued on over the ends, holes are made at right angles through the doubled hardboard, $\frac{1}{2}$ in. from the top, for the 6BA nuts. These holes can be made rectangular by inserting a needle file after drilling. The 6BA nut is pushed in and positioned by screwing the 6BA bolt through it from the top. The nut is then fixed with plastic wood. Finally the outer pieces are glued on.

Component assembly

The earlier type of OC35 is thicker and will not fit into this power supply, although it is otherwise suitable.
The more recent type is only $\frac{1}{4} \mathrm{in}$. in depth (excluding the soldering pins).
The transistor is bolted on a small heat sink with 4BA nuts and bolts. A tag is fitted under the head of one of these bolts for the collection connection. The heat sink, of 18 s.w.g. aluminium, has two $\frac{1}{4}$ in. flanges. To one of these a small square of Veroboard is fastened at right angles to the heat sink by a pair of 10BA countersunk bolts with nuts.
The Veroboard measures 1.45 by 1.35 in . and is sawn from a larger piece. If necessary it can be filed a little at the edges to allow it to be fitted easily into the box when attached to the heat sink. A small gap is filed at the top edge to leave sufficient room for the leads to the transformer secondary.

Three breaks are made in the copper strips. Two of these are necessary to avoid contact through the 10BA bolts with the heat sink. Three jumper links of 24 s.w.g. tinned copper are added. These are inserted from the other side of the Veroboard and soldered to the respective copper strips.

Wiring the power unit presents no difficulty if the proper sequence is followed. The resistor R1 is connected between the collector tag and the base pin of the transistor. A wire is taken from the base pin to an adjacent point on the board as shown. A heat sink should be applied on the transistor pin when soldering. The emitter pin also connects to the components board, and a flying lead is taken from it for the negative d.c. output. The other leads are taken from the points on the board shown, and must be of fine flexible plastic-insulated wire to

Transistor lead indentification is given with the respective pictorial diagrams. The 2N2926 has a central collector lead as shown in Fig. 8 (sketch A) and this must be bent (sketch B) to suit connections for Tr5. Tr6 and (sketch C) for Tr7. Sleeving should be fitted to all transistor leads.

After careful checking the tuner may be tuned without the lid on the screened compartments. Connect dipole, 9 V battery and crystal earpiece or amplifier. A rushing noise is normal in the absence of a signal and should disappear as a switched-in preset (TCl-TC3) is adjusted. If the entire capacitor range fails to bring in all three programmes adjust L4 by slight extension or compression to shift the resonant range. L1 and L2 are very broadly resonant and will not need adjustment at this stage, if at all, but L3 core should be adjusted half a turn at a time for every sweep with the tuning pre-set. When the three programmes have been located switch and tune all three pre-sets, then adjust L3 core for optimum performance over the band. Some adjustment of L2 (by slight extension or compression) may be necessary. Fit the screen lid and note the effect upon tuning. Adjust L4 to restore the range, a matter of a few trials before the lid is permanently attached by spot soldering in four or five places. Final adjustment is best achieved with a poor signal-from a split-flex indoor dipole, for example-so that you can tune L4 through the screen hole, and the pre-sets, for minimum background noise.

The excellent results obtained with a crystal earpiece suggest that the tuner can be used for "personal" listening, a far more enjoyable experience than plugging the earpiece into most transistor receivers. The audio output is more than ample and drives the author's 5 -watt transistor amplifier (without pre-amplifier) and should therefore be enough for most fidelity needs. An output capacitor will be necessary if this protection does not exist at the input of the amplifier or pre-amplifier-up to $50 \mu \mathrm{~F}$ and an appropriate working voltage for transistor equipment. The tuner requires a $9 \mathrm{~V}, 11 \mathrm{~mA}$ power supply and this can be supplied from other equipment provided the correct polarity is observed. A 12 V supply (maximum) will increase the sensitivity, frequency stability and output if this is necessary. The frequency stability of the oscillator will tolerate some supply variations but cannot be expected to offset the effects of very poor regulation.

Although a single-pole three-way switch is sufficient the photographs show a three-pole type with the unused tags earthed. There seems to be a tendency for dealers to stock only three-pole types on

Second and final

part - by W. GROOME

the grounds that these will do for one-, two- or three-pole use. Again, although dealers' stocks have become largely representative of the transistor era it is by no means easy to obtain switches smaller than those that have done service in valve circuits ever since the war. Because of this supply difficulty a standard-sized component has been specified. Despite all this, the tuner is small enough to fit into most fidelity housings very easily. Perhaps, when the required small components are readily available, I will cram the entire tuner into a fag-packet!

Note. Throughout this article the term "earth" means the positive line of the tuner.

CONSTRUCTION

Divide conductors as in Fig. 2, drill screw fixing holes in first (unused) conductor and through S21. Restore continuity here with bare-wire soldered connection S20 to S22. Drill hole at P30 to pass switch bush and fit platform with pre-set capacitors, secured by fitting switch. Connect insulated wire from midpoint of Q18 and Q19 to V32. Black connection from mid-point Z21 Z22 to mid-point M25 M26 and from there to M11. Make bare connection from T to S near hole 2. Make bare connection T25 U26 V27. Turn panel plain side upwards so that M1 is top left and switch is on right, then proceed as in Table 1.

TABLE I R.F. STAGE (FIG. 4)		
M2	N2 C1	
S2	02 R 2	
S3	Q3 C3	
	$\left.\begin{array}{l}\text { N1 } \\ 01\end{array}\right\} L 1$	See Fig. 3
M5	P5 R3	
S5	- R4	wire-to-wire with R3
S6	- C4	wire-to-wire with R4
	N3 Tr1	emitter
-	N5 Tr1	collector
-	P4 Tr1	
	S4 ${ }_{\text {Tr }}$	screen wire sleeved flat on panel
S7	M7 C2	wire sleeved, flat on panel
	$\left.\begin{array}{l} \text { M6 } \\ \text { N8 } \end{array}\right\}\llcorner 2$	Fig. 3 Equi-distant from other components and panel edge
M10	M8 R1	Wire sleeved, bent close to resistor and panel
	$\left.\begin{array}{l} \text { N9 } \\ \text { P9 } \end{array}\right\} \text { C5 }$	
T1		This screen support wire can be left until screen is fitted

Check work already done with circuit and pictorial diagrams, then turn panel, again plain side upwards, so that switch is on left and M1 is lower right. Work then proceeds generally in the direction left to right as before.

Check work thoroughly before fitting screens. The shorter screen should lie along row T. Trial fit first to mark positions of small partitions-R.F. partition to stand between rows 9 and 10 with C5 on one side

and RI the other, oscillator partition between rows 16 and 17 with C8 R8 on one side and C10 the other. After soldering partitions to screen attach plastic adhesive tape to areas likely to touch components when fitted, then fit screen to panel by soldering to wire supports T1 T24 F17. Attach the other (long) screen by soldering lap joint, partitions (hot iron outside, cored solder to joint inside) and a spot joint to tinplate platform near switch. Lid to be spot soldered after final tuning adjustment, or may be omitted if tuner is eventually to be fitted in a screened housing.

Connect the following leads as in Fig. 2:
Z1 negative, black flex. -9 V .
S 1 or T1 positive, red flex. OV.
M1 co-ax cable, core $\}$ to socket attached to
Sl ,", braid $\}$ housing.
Y1 a.f., output, via capacitor if this is not present in a.f. equipment input.
IMPORTANT. Observe polarity when connecting to other equipment. On no account must the positive line, the screens or the aerial be allowed to contact the earth or chassis of "negative earth" equipment. Next to a battery the simplest supply is a smooth, well-regulated -9 V from transistor equipment with positive earth. With negative-earth equipment connect $Z 1$ to equipment negative line and S 1 (or T 1) to +9 V obtained by dropper resistor or bleeder from equipment positive line.

two voltmeters for the workshop

The comparatively recent inclusion of silicon devices into electronic circuitry has brought one of the most simple measurement problems into the foreground. This article describes the construction of a modern a.c. millivoltmeter and a d.c. voltmeter incorporating silicon transistors.

the music box

a simple pre-set portable

Make this easy-to-build transistor portable receiver. Only three transistor stages to wire up. Utilises a cheap pre-wired audio strip with push-pull output stage. Tunes in the stations of your choice at the flick of a switch. Tagstrip wiring for ease of construction and only two controls. Full constructional details of case included.

economical speaker enclosure

The weakest link in many audio set-ups is the loudspeaker-or, to be more exact, its housing. Here is a simple and easy-to-build corner enclosure which should help to obtain better results from existing speakers.

October issue - on sale September 8th

RESERVE YOUR COPY NOW!

THE BROADCAST BANDS

by JOHN GUTTRIDGE

MIDDLE EAST

Egypt: Cairo Radio (U.A.R. Broadcasting and TV, P.O. Box 1186, Cairo) uses the new frequency of 15,050 in parallel 15,475 to carry its main Arabic programme.

Iran: Radio Iran (Ministry of Information, Meidan Ark, Tehran) is again using 3,780 for its home service and giving an excellent signal around 1,800 . The regional station Radio Isfahan gives a fair signal at 1715 on 7,890.

Iraq: Radio Baghdad (Salihiya, Baghdad) using additional frequencies to relay home service: On 15,400 from 0930-1200 and on 11,785 0530-0700 and 1200-2200.

Lebanon: Radio Lebanon (Ministry of Information, Beirut) transmits in its external service as follows: 1830-2030 on 17,750; 2300-0100 17,765; 0130-0400 11,965. Some reports give this last frequency as 11,760 .

Syria: Radio Damascus (Ommayad Square, Damascus) is relaying its home service on 17,860 at 1300-2300 and on 15,165 1900-2300. English is beamed to Europe at 1600-1700 over 15,165.

AFRICA

Algeria: Radiodiffusion-Television Algerienne (21 Boulevard des Martyrs, Algiers) is to start shortly using a $1,000 \mathrm{~kW}$ long wave transmitter. This will be the first long wave transmitter in Africa.

Ghana: Radio Ghana (Broadcasting House, P.O. Box 1633, Accra) is actually using 9,755 instead of the announced 9,760 for its 2000-2100 English transmission.

Nigeria: Radio Nigeria (Broadcasting House, Lagos) is now carrying its external service over $21,645 / 15,255 /$ $11,715 / 7,275$. English is at $1500-1600,1700-1900$, 2100-2200.

South Africa: Radio South Africa (P.O. Box 8606, Johannesburg) is once again using the $11 \mathrm{~m} . \mathrm{b}$. The transmission concerned is at 1000-1455 and frequencies are $25,730 / 21,495 / 17,805 / 15,200$. Careful tuning will bring in the home programme around 2100 on 3,250 .

[^6]9,912; 2045-2230 11,755.
Indonesia: Radio Republik Indonesia (P.O. Box 157, Djakarta) has English as follows 1900-2000; 2330-2400 9,865; 0900-0930 11,770; 1100-1200 9,865/11,770. A new home service outlet has been noted around 1100 on 5,065 .

Japan: N.H.K. (Tokyo) frequency usage for English and Japanese service is 0100-0730 15,105/15,195/ 15,$300 ; \quad 0800-0930 \quad 15,300 / 15,195 / 9,505 ; 1000-1330$ 9,505/11,815/15,300; 1400-1630 9,505/9,560/11,815; 1700-2130 9,560/11,815/15,105; 2200-0030 15,195/ $15,300 / 17,785$. Transmissions are every hour on the hour and last 30 minutes except for those at 1000,1400 and 2300 which last 90 minutes.

Pakistan: Radio Pakistan (Broadcasting House, Bunder Road, Karachi) has a dictation speed English news broadcast at 1335-1350 on 15,100/17,812. The U.K. English TX at 1945-2030 is now on 11,672/15,365.

NORTH AMERICA

Canada: C.B.C. (P.O. Box 6000, Montreal) has replaced 21,460 by 21,595 at 1100-1215 and 1345-2152 and has replaced 15,365 by 15,320 between 1100 and 1830.

CENTRAL AND SOUTH AMERICA

Bolivia: La Cruz de Sur (Cajon 1408, La Paz) is reported fair at 0200 over CP75 on 4,985 .

Brazil: Radio Exelcior (Rua Wenceslaut Brazil 78, Sao Paula) gives fair reception at 0100 on 9,585 .

Costa Rica: Radio Popular (Apartado 341, San José) is now using the additional frequency of 4,784 .

Uruguay: Radio Oriental (Olimar 1364, Montevideo) is fair at 0030 on 11,735 (CXA7).

Venezuela: Radio Maturin (Maturin). YVQH has been noted on 5,040 with fair signals around 0100 .

EUROPE

Germany: Deutsche Welle (Bruederstrasse 1, Postfach 344, 5 Koln) has made frequency changes in the following English TX: 1550-1620 15,275/17,880; 1900-1910 15,405/17,785.

Greece: Voice of America (Washington, U.S.A.) has closed its G8 Thessaloniki and Rhodes relays to avoid censorship.
U.S.S.R.: Radio Moscow (Moscow) now has the following European English schedule: 0700-0730 9,700/9,710/11,830/11,890/15,300/15,360; 1200-1230 $11,700 / 11,740 / 11,830 / 15,300 / 17,760 ; 1900-19301,322 /$ 9,710/9,770/11,830/15,170; 2000-2030 1,383/9,710/9,770 $11,830 / 15,170 ; \quad 2100-2200 \quad 1,443 / 9,710 / 9,770 / 11,830 /$ 12,060; 2200-2230 1,322/1,383/1,443/9,710/9,770/11,830

Thanks go this month to G. Coyne, M. E. Terry, R. J. Warner, the International Short Wave Club, and the Swiss Broadcasting Corporation.

THE AMATEUR BANDS by DAVID GIBSON, G3JDG

ASOMEWHAT controversial month with some claiming things were so bad they were going to take up chess, while others lamented that there were not enough hours on the clock to log all the DX. At '3JDG things were about half and half, but most s.w.l.'s logged my best ones anyway and threw a few more in for good measure.

From letters received it is now certain that $8 R$ is the new prefix for VP3. I reck on all people issuing a Countries List should give away a free pen with it for all the alterations that will arise while the darn thing is still in the post. I can hardly wait for instructions to change my call to VXY7JDG. (Many a true word!)

One or two have written in to ask about a competition or a table of some sort. If there are enough takers we might try this, any suggestions as to what form it should take?

Quite a heavy postbag this month so I'll replace my muzzle and press on with what others have heard.

LOW

Nothing extra special reported on topband other than hordes of G's and quite a large number of mobiles. Eighty fared a little better but surprise sur-prise-forty has been given a going over. John Wresdell (Yorks), logged ZL3IJ and ZL4LM on 80 s.s.b. so the DX is about on this band. John is 13 and takes the RAE in December. (Good luck OM).
R. Iball (Notts), AR88D, 80 ft . end-fed with 35 ft . 72Ω co-ax managed these on $7 \mathrm{Mc} / \mathrm{s}$ c.w.-HI7JMP, HK4AOY, KZ5FX, PY2AXZ, 3C2ATD, 6Y5RM.

Paul Baker (S. Wales), HE30, 100 ft . end-fed 30 ft . up snapped this little lot up on $7 \mathrm{Mc} / \mathrm{s}$ s.s.b.CN8AW, CN8BV, CR6IV, DJ, DL, DK, DM, EA4JV, F, HA, HB9, I1, MP4BEU, MP4TBO, OD5AR, OHØNI, OY7S, PY4FLR, PY7APS, PY7VKG, PY8QA, PZ1CF, TF 2 WKM , UAlKBX, UQ2KAJ, UW9AF, ZC4MO, ZD7CI, ZD8CX, 3 A 2 CQ , 4 X 4 VE , 9 G 1 BF , 9 H 1 AM , 9Q5SS. These were all received $2200-2400$ GMT.
F. Simpson (Yorks), no rig quoted, must be pretty good headphones, got these on $7 \mathrm{Mc} / \mathrm{s}$ phoneHK3BHV, K1GZL, K2ZKA, K4LYW, KP4CQY, PY4ND, PY7AKG, W3ADO, W4YWX, WA4MZI, WA9OIN, WB4FRL. Why is it all these stations never seem to be on forty when I listen. ('Tiz a conspiracy Jim Lad, Har that's what 'tiz).

A number of s.w.l's commented on the dozens of G stations who are about these days (and nights) on forty, so perhaps that $100 \mathrm{kc} / \mathrm{s}$ will begin to buzz again. Why not give it a try this month?

HIGH

It looks like twenty is still top DX dog with fifteen and ten a close second.

David Henbry (Sussex) roamed twenty with that O-V-O of his. This is coupled into a "Joymatch" No. 2 and the antenna is a 7 ft . vertical at 30 ft . David logged these on s.s.b.-CR4BC, CR6HI, EL2AJ, HK5AZA, KG4AM, KL7EBK, KP4AXC, LU2DGO, LU9DM, MP4BEU, MP4TBO, MP4MAX, OA4MX, PZ1CF, UWØIE, VP2AA, VP6WR, VP8IU, VS9ARS, XW8CC, YS1CPI, ZD3I, ZD8RD, 5H3JR, 6O1GB, 6W8DX, 6Y5GG, 8R1S, 9G1GA, 9U5BB, 9Y4VT.
D. Fry (Glos) 52 set. $\lambda / 4$ dipole (coo!), reports twenty lively especially late evenings. He scoopedHV3SJ, JA4DJO, KP4CRD, K7OEW/MM, PY1CAD, SV $\varnothing W L, ~ T I 2 P Z, ~ U A 3 K N D, ~ U B 5 K I W$, UWV3T, VQ9HJB, VS9MB, XW8CC, YV4QG, YV5ANF, 5A4TR, 6W8DX.

Is your name Philip, and do you live in the Langley Mill area of Nottingham? You've got an RX60 receiver and a 20 metre dipole in the loft, but you haven't got a second name! Anyway, on 20 a.m. and s.s.b. you logged-CE1AQ, CN8CS, CR4BC, CR6IV, CR7CH, EA8OG, EP2KW, HC1DX, HM5BF,HV3SJ, JA2BV, K8VWM/P/KG6, KA3FU, KA9LLE, KP4AST, KR6AB, KR6QG, KV4UA, LU3IQ, MP4BE, OD5EU, OY9IN, PY1CRI, PY7SM, TF2WKI, VE1AFY, VP9CP, VQ9HJB, VU2DKZ, VKØTO, VK7RE, WB2BWW, WB4BII, XW8BJ, YV3LA, ZC4TK, ZD3DM, ZD8RD, ZD9BI, ZE1AE, ZP5OG, ZS6AYI, 3A2CP, 5A1TV, $5 \mathrm{~A} 4 \mathrm{TV}, \quad 5 \mathrm{~N} 2 \mathrm{AB}, \quad 5 \mathrm{R} 8 \mathrm{AS}, \quad 5 Z 4 \mathrm{KL}$, 7Q7LZ, 8R1C, 8R1S, 9H1AB, 9Q5BIG. Take a bow Philip-whoever you are.
B. Hughes (Worcs), AR88D, dipole, listened on 15 for-HK1KS, JA9BXL, KZ5AO, KV4CX, 4S7PB (Ceylon), 5R8AS, 9M2PO, 9V1NP, WA $\varnothing D V T$.
L. Rowland (Cheshire), 9R-59, 150ft. end-fed, switched in the b.f.o. on 15 and heard these on s.s.b. CE3DM, CN8FC, CP6GC (Bolivia), CR4BC, EL2AI, EL9A, HC1MW, HI8LAL, HK1OI, HKØAI (San Andres Is.), HP3PJ, HR1CN, IS1VAZ, JA1AEH, JA2ADH, JA3JEJ, JA4ABS, JA8BIU, KG4AN, KG6FAE (Guam), KH6BFU, KL7WAH, KR6GF (Okinawa), KP4CP, KV4CX, KZ5FW, LU1DAB, MP4MAW, OA4JR, OD5DJ, PY1TX, PY2SD, PY5BK, PY6NG, SVØWV, TI2JH, TJ1AG, TU2AY (Ivory Coast), VK4QM. VK9XI (Christmas Island), VR1AT, VS9ARS, W5PBH, W6CCP, W7MSI, YA1DAN, YN1BKC, ZB2AM, ZC4JU, ZD8CX, ZP5JB, ZS1BD, ZS4LI, ZS5NX, ZS6PZ, ZS8L, 4S7PB, 4X4BL, 5A1TV, 5A2TR, 5A3TG, 5A4TR, 5A5TV, 5H3JL, 5N2AAJ, 5Z4KK, 8R1S, 9H1AG, 9J2AB, 9L1JW, 9M2NF, 9Q5BD, 9V1FF.
This is only three-quarters of the \log too!
K. Jeeves (Yorks) CR 70A, PC30, 80 ft . long wire, doesn't say what mode but heard these on 10 CN8BB, IT1ALG, UG6ARO, VE3FUG, VS9APW, ZE2JA, 3C3GCO, 5A1TK, 9H1X.

Signalman G. Gibson writes from Germany. He has an ECl0, 50 ft . long wire, and a sharp pair of ears. On 10 a.m. he got-CT3AM, CX6AD, LU5DRC, PY2CK, PY8SV, UB5GUS, UL7OB, ZE1CS, ZE2JA, ZS2OM, 9J2DF, while on s.s.b.-CR6IV, CR7BF, EP2GI, OH2TI, PY2OY, ZD8CX, 4X4BL, 9J2VX, 9Q5DD.
D. Goodhall (Rugby), HE30, 40 ft . long wirehooked these in on ten, mostly s.s.b.-EA4JN, HG5CZ, LU3IAG, OZ6HP, PAØBK, PY2AFL, UA6JP, ZC4TY.

CONTESTS/RALLIES

This month the list includes-August 13th, Derby Mobile Rally, at Rykneld School, Derby. That's it, sorry, can't find any contest, and no sign of anything else for August. On September 2nd-3rd is the V.H.F./IARU contest. Deadline for logs is, as usual, the 20th.

John Arminson Rouse A Tribute

May I express, as a reader of Practical Wireless, the shock and sorrow at hearing the news of the death of Mr. John Rouse, G2AHL, who was General Manager and Editor of the RSGB. I am sure I speak for many readers, RSGB members or not, because John had a high regard for 'PW' and he and I often spoke about articles and readers' letters in it.

The much improved RSGB Bulletin, and the very fine Third Edition of 'The Amateur Radio Handbook' is seen, I know, by many more people than just RSGB members. Mr. Rouse made both these developments possible with his tremendous devotion.

We have lost a much loved worker in the field of Amateur Radio, and I for one and the small band of boys in the Radio Club I run, have lost a personal friend. We will miss his cheerful anecdotes and great encouragement.-Ken Smith, G3JIX (Walthamstow, E.17).
[I am sure that all readers will join with myself and the PW staff in Ken Smith's tribute to the memory of John Rouse. Many of us have lost a personal friend and $P W$, the RSGB and amateur radio in general will sadly miss his devotion and loyalty to the cause of amateur radio. We must spare a thought, too, for the wife and daughter he left, for John was still only a young man. Amateur radio can ill-afford such tragic losses.]-W. N. Stevens.

Why not tape them?

Whilst attempting to wind a coil on a cotton-reel which became very tedious, I sought after a faster method. I tried a sewing machine but was unsuccessful then in despair tried using a portable tape recorder. The cotton reel fitted on the rewind spool perfectly and by using a screwdriver I was able to guide the wire on to the cotton-reel while the recorder was on rewind. After a little experimenting this was found to be very much quicker and neater than winding by hand.-S. Cooke-Willis (Auckland, New Zealand).

No more excuses, please

When are these types going to run out of excuses as to why they should be exempt from the RAE and the morse test? I refer to Mr. T. Hawker's letter in the July issue, who seems to think that just because he uses radio telephones he should be given an amateur licence.

Let's put this in its right perspective, this equipment is all commercial gear which is approved by the GPO and is also crystal controlled. The only qualification to operate it being, the ability to press a button and speak the appropriate language. A child of five could do it.

He asks where is the sense in it? Maybe this question is the answer to why he failed the RAE, he may not have enough enthusiasm. After all the RAE and the morse tests are the only way in which we can weed out the person who just wants a new toy to play with, from the real enthusiast who would be a competent amateur.

When I look around at some of the Bedfast Club members, I thank God that I have got all my human faculties as I don't think I would have the drive of these less fortunate types, there are no exemptions from the rule.

I have no time at all for the anti-RAE, the anti-morse, and the citizen band brigades, if these chaps were to spend a bit more time studying for these things and less time thinking up reasons whey they should be exempt, in no time at all they would be on the air saying how easy it was.

No hard feelings old man, best of luck for the next RAE.R. T. A. Brown, G3TOF, Hon. Secretary Harlow \& District Radio Society (Harlow, Essex).

Fault-finding on a "dead" receiver

I would like to comment on the series of articles "Repairing Radio Sets" by Messrs. Hellyer and King. I was trained in HM Forces and although the equipment we use may be a lot more sophisticated, the basic principles surely still apply.

The way I was taught to fault-
find on a "dead" set disagrees with the method shown in the series. I was taught to start at the a.f. end and work towards the r.f. end, by applying a suitable signal to first the speaker and then to the a.f. stages, i.f. stages and back to the r.f. stages and aerial input. The output should then be heard after each step.

If no input signal is heard, then the section in which the fault lies is the first one you have applied the signal to and obtained no output from the speaker.-J. F. May (Gosport, Hampshire).

The Author Replies:

The stage responsible for complete failure of a radio set can be located quickly by adopting one of three methods: (i) applying suitable signal in turn to the stages starting from the aerial input, (ii) as in (i) but starting from the loudspeaker and (iii) applying a modulated signal at the aerial and then tracing the signal in the set from input to output.

Methods (i) and (ii) can be discussed at length in terms of relative merit! If the trouble is open-circuit of the aerial coupling coil, for instance, method (ii) would take as long as method (i) would take to find an open-circuit in the loudspeaker. It is well known that HM Forces recommend method (ii); but this does not mean that the other methods are less effective. Forces equipment has to be maintained to a higher level than ordinary domestic radios, and technicians are often surrounded with test equipment designed for matching the equipment to be serviced; and each repair usually demands a stage-by-stage performance check in terms of voltage sensitivity and so forth and, as stated by Mr. May, if a common output meter is employed, then each input can immediately be translated into input sensitivity voltage.

The various methods of faultystage locating have not yet, in fact, been dealt with at length in the articles These are in hand for Part II, when the transistor set as a whole is put under the service microscope. The series commenced at the first stages, working to the audio section, because this is the normal direction of the signal. There was no other motive!

Build Your Own Heathkit Electronics

A kit for every interest-Home Workshop-Hi-Fi-Radio-Test-'Amateur'

 Treat yourself to superb LW, MW entertainment with the High-performance Car Radio Kit. CR-1.

Complete your motoring pleasure with this small, compact, high-performance car radio. It can be fitted to any make of car having 12 volt positive or negative earth system. Tastefully styled in neutral grey with matching black knobs and chrome trim to harmonise with any car colour scheme.
Features include:- Six transistor, 2-diode circuit. Completely pre-assembled and aligned tuning unit. High sensitivity, combined with wide range automatic gain control (AGC), minimises fading under weak reception conditions. Easy-tune dial. Push button long, medium, and tone selection.
The car radio is available for your convenience, in two separate units: RF Amplifier Kit CR-IT, £1.13.6 incl. P.T. IF/AF Amplifier Kit CR-IA, £11.3.6.
TOTAL PRICE KIT (excluding loudspeaker) $£ 12.17 .0$ incl. P.T. $8 \times 5 \mathrm{in}$. Loudspeaker, Pt. No. 401-505, £1.16.1 incl. P.T.

New! Portable Stereo Record Player, SRP-1

Automatic playing of 16, 33, 45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5in. special loudspeakers. For 220 250 v ac mains operation. Over-
 all cabinet size $15 \frac{9}{16} \times 3 \frac{7}{8} \times 10 \frac{1}{4} \mathrm{in}$.

Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives room filling volume.
кіт $£ 27.15 .0$ Assembled price on request.

Low-cost Stereo Amplifier, TS-23

Breaks the price barrier in quality transistor amplifier cost. Incorporates all the essential features for good reproduction from gramophone records, radio and other sources. Output 3 watts rms (15) each channel. Good frequency response for outstanding fidelity. Compact slim-line styling. Ganged Bass, Treble and Volume controls. 6 position Selector switch for programme sources. Attractive perspex two-tone front panel. 16 transistor, 4 diode circuit. Handsome fully-finished walnut veneered cabinet. Outputs for 8 or 15 ohm loudspeakers. Printed circuit boards. Size $37 \frac{7}{6} \times 13 \times 8 \mathrm{in}$. deep.
KIT (including cabinet) f18.19.0
Assembled price on request.

Hi-Fi performance from a "Mini" speaker kit with the 'AVON' BOOKSHELF SPEAKER SYSTEM

The challenge to our acoustic engineers was to design a speaker occupying the minimum space consistent with first class reproduction. The result of our efforts was the AVON, a compact unit of exceptional quality. Features two special speakers $6 \frac{1}{2} \mathrm{in}$. BASS, $3 \frac{3}{8} \mathrm{in}$. HF unit and cross over network. Good frequency response. Beautiful fully finished walnut veneered cabinet. Size only $7 \frac{3}{4} \times 13 \frac{1}{4} \times 8 \frac{3}{8} \mathrm{in}$. deep. Supplied in two units. Can be built for a total price
KIT f13.16.0 incl. P.T.

Our wide range of SERVICE INSTRUMENTS include: $3^{\prime \prime}$ OSCILLOSCOPE, Model OS-2

" Y " bandwidth $2 \mathrm{c} / \mathrm{s}$ to $3 \mathrm{Mc} / \mathrm{s}$. Push-pull vertical and horizontal amplifiers. Wide range time-base generator $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. Automatic lock-in synchronisation. Mumetal crt shield. Printed circuit construction. Access to vert deflection plates-ideal for transmitter modulation monitoring.
Amazing value. Compact size $5^{*} \mathrm{~W} . \times 73^{*} \mathrm{~L}$. $\times 12^{\prime \prime}$ deep. Outstanding performance. Fulfils hundreds of the routine requirements in servicing, etc.
KIT $£ \mathbf{2 3 . 1 8 . 0} \quad$ Assembled $£ 31.18 .0$

5 in . Oscilloscope 10-12U with $4.5 \mathrm{Mc} / \mathrm{s}$ bandwidth.
KIT $\mathbf{f 3 5 . 1 7 . 6 ~ A s s e m b l e d ~} £ 45.15 .0$

[^7]

Send for this Catalogue it's FREE

36 pages, many models in colour . . . Hi-Fi Audio. Radio ... Amateur gear, Britain's largest selection of top quality, electronic kits.

MOST MODELS CAN BE SEEN AND DEMONSTRATED AT THE HEATHKIT CENTRE, 233 TOTTENHAM COURT RD. LONDON

THE THE

 here comeThere are so many catalogues these days that at times it seems like an army on the march. Even in the field of radio and electronic components there are quite a number of productions.

We are convinced that the Home Radio Catalogue really does lead the way. But judge for yourself. How does one judge the merits of a catalogue? Just ask yourself these questions: 1. Is it really comprehensive? 2. Is it well indexed, well illustrated, well printed? 3. Is it backed by an extensive stock of the components listed? 4. Is ordering made clear and simple? 5. Is the service fast and efficient? The Home Radio Catalogue scores top marks on every point. Moreover, it is wonderful value ($7 / 6$ plus $1 / 6$ postage and packing) and every copy contains five vouchers, each worth $1 /$ - if used as directed. Send the coupon with your cheque or P.O. for $9 /-\ldots$ today!

The Home Radio Catalogue lists some 6,000 quality components, over 1,000 of them illustrated. With each catalogue you also get a Bookmark, an order form and an addressed envelope.
(Please write clearly) PLEASE NOTE: P. \&P. OHARGES QUOTED APPLY TO D.K. ONLY
P. P OH OVERSEAS ORDERS CEARGED EXTRA.

[^8]

repairing radio sets

PART 6

H. W. HELLYER

printed circuits

COPING with printed circuits is partly a matter of common sense, partly a matter of knowing how these aids to construction are designed, formed and used.

Contrary to idealist opinion, the printed circuit has not been employed-in many receivers-to eliminate the wiring. In some sets it seems to have further confused the issue. Certainly, printed circuits can make fault-finding much more difficult unless one unlearns the old procedures and gets acquainted with the new. In too many designs, the aim of printed circuit boards has been to reduce production costs, with no regard for servicing. In shortthey can be a mixed blessing.

However, like the poor, they are with us-if not to stay, at least, for a very long time to come. So it behoves us to find out as much as we can about them.

BASIC PRINCIPLES

The technique of forming interconnecting wiring flat on a piece of insulating material began with guided missile research toward the end of World War II. Some of the insulating materials then in use were bulky, expensive and less effective than those available to us now. The principle remains the same, though the processes of manufacture have developed.

Basically, the printed circuit is a board or laminate of high quality insulant with the wiring between components and test points or connections to other parts of the equipment laid out in a pattern of thin copper strips. This copper, the foil, is bonded to the laminate and the component leads are inserted through holes and soldered to the foil. We thus have the three basic ingredients of the system, the board, the foil and the bond, to consider.
A common type of board for rigid mounting is phenolic paper laminate. This is made in various thicknesses. Alternative materials are used, particularly where some flexibility is needed, or higher voltages have to be handled, or higher currents passed than those with which we are at present concerned. Most interesting of the recent developments has been a film type of printed circuit, completely flexible, very thin and almost transparent!
A copper foil, perhaps as thin as one and a half thousandths of an inch, is bonded to the board. The method of bonding is often a trade secret, as jealously guarded as a Whitehall file, so that, after processing, the very fine lines of copper that form the circuit will not lift away from the board, especially as components are fixed and soldered.
Heat is the great enemy, and for this reason, con-
siderably more care must be taken when dealing with printed circuits than when soldering conventional wiring. There are two danger points; first, the foil itself can lift when the bond is destroyed by heat, leaving a weak portion that may later fail; and, second, the method of construction means that components will generally be affixed by much shorter lead-out wires than with conventional wiring, and excess heat can damage small components. This last factor applies especially to transistors, of course.

PHOTO-ETCH METHOD

Perhaps the most popular way of making a printed circuit is the "photo-etch" method. The design for the print is carefully made-this being the foundation on which the whole process is built. Components are laid out so that the "wiring" takes the desired path, with inter-connections taking the shortest path possible, and no leads crossing where they should not!
This last apparently elementary point is vital in high frequency work to avoid instability and other undesirable effects. Anybody who doubts the importance of this preliminary planning may gain a new respect for the "back-room boys" of the electronic industry by doodling out a few simple drawings of printed circuits for his own amusement!
It is no easy matter to compress a dozen or so components in a couple of square inches, make sure that there is room to bend leads and mount them, and ensure that transistor leads do not have to cross, then draw out the maze that will eventually be the print without allowing adjacent connectors to encroach too closely. I speak with feeling!
However, assuming someone else is carrying out this tedious task, after the doodle is perfected a master drawing is prepared. This is drawn to scale, much larger than the required board, and all the details are put in, including the holes for the component wires (which appear as white circles on the black lines of the print). This "black-and-white" master drawing is photographed and the negative brought down to the actual size of the required board.
The copper foil which covers the whole board is emulsified and the negative is "printed" on to the plate by light exposure. The holes are drilled where indicated on the pattern and the printing is treated with an acid resistant chemical.

FIXING COMPONENTS

Then the treated board is placed in an etching bath whose solution of iron perchloride dissolves the surplus copper and leaves the printed wiring
untouched. The acid resist is then cleaned away and the board made ready for soldering.

Components are fixed to the board and soldered into place-again a highly specialised process, often individual to the manufacturer. The principal methods are dipping or wave soldering. In the first method, the board, with the ends of the components crimped into place, is briefly dipped into a bath of molten solder and all the joints are made in one go. Surplus solder is shaken off and the cooled board treated with protective shellac.

The alternative method moves the board along the surface of a bath of molten solder which is made to "wave", so that the copper foil and component wires skim through the wave.
There are other techniques, such as plating of circuits, silk-screen printing, double-sided bonding, where the print is made on both sides of the board, inter-connections being achieved by soldered "collars" that go through holes in the board, and spot-soldering methods that protect the wiring añd solder only the joints. The details are extremely interesting but must not concern us here, as the treatment of such circuits, for fault-finding and repair, follows much the same general pattern.

* TRACING FAULTS

Tracing faults on printed circuit boards can be difficult. Slight cracks, invisible to the naked eye, or dry joints that present a high resistance to the lowvoltage, low-current circuit and are hidden under respectable looking mounds of solder, are common troubles.
One device that can be useful is a simple length of wire terminated at each end by a sharp probe and used as a temporary shunt to "prove" suspected wiring on certain ranges of transistorised radio and tape recorders where experience had taught us open circuits through flexing could be found.
Because it is not easy to remove or disconnect components to make proving tests, a different approach to fault-finding has to be made when deal-

ing with printed circuits. My colleague, Gordon J. King, has already had something to say on this subject, and will be underlining this point when we come to the servicing of transistorised equipment and all the special care that this entails.

For the present, let me make a few purely practical remarks about the removal and replacement of components and the treatment of printed circuits, just to lay the ground.

First, and most important, point is to keep the heat applied to the minimum. The maker of the printed circuit went to a lot of trouble to get a good bond of foil to laminate. No use our ruining this by leaving a hot iron too long at a crucial junction.

\star REMOVING COMPONENTS

The practice of digging away at a joint to remove the end of a component wire, or the tag of a control, is one of the worst P-C offences. When removing a component whose wire end has been bent over, crimped or twisted, snip the lead above the board and allow the twisted end to drop away with the minimum of melting.

In many cases, even if the component is cut short, this technique will still allow enough wire end for a quick "straight-through" reconnection. If not -well, remember that the best way is to test and prove your fault first-then start hacking away at components.

If it is essential to make proving tests at component junction points, but then by doing so the presence of the component affects the meter reading -as when a test for a leaky capacitor is spoiled by the shunting effect of a resistor-then it may be legitimate to break the circuit.

This can be done by cutting through the foil with a sharp blade, and lifting it slightly at the cut. Do not scrape and scratch a path wide enough to drive a bus through, and avoid making this type of test unless no other method avails.

After each test, remake the broken foil with a 'bridge' of solder. (Hence the need to avoid wide

Printed circuits do not necessarily eliminate conventional wiring!

Poor joint, where tag of potentiometer or switch is strained away from the print. Note proximity of fixing screws with printed foil; always check that insulating washers are refitted.

Available now!
 The enthusiasts' greatest-ever components guide!

Over 600 pages packed full of tips, kits and details of over 11,350 different parts from 85 leading manufacturers!

Whafever your particular interest in elecfronics, you'll find the Electroniques Hobbies Manual a first-class investment.
It saves you time. No searching around for the parts you need. Every type of equipment - from stock components to sophisticated professional items-is here. Supplied by over 85 leading manufacturers, this equipment is all available by mail order on fast despatch.

It aids y our projects. Complete designs, and details of kits available for beginners and experts, are all contained in the Manual. Inside, too, there's a wealth of technical data, practical tips and formulae to help you build with confidence.
It costs just 10/6 post free. And it puts the whole electronic industry at your service, including the specialised knowledge of Electroniques. Behind this brilli-
ant new venture are the vast resources of STC and ITT, so you're assured of a first-class servicel
Be sure of your Electroniques Hobbies Manual. Clip the coupon, and send today-while stocks last!
Electroniques (Prop. STC Ltd.) Edinburgh Way, Harlow, Essex. Telephone: Harlow 26777.

High-grade components for amateur communications

66/4MG

FRE = TO AMBITIIOUS ENGINEERS

Have you sent for your copy?
ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio and Electronic Courses, administered by our Specialist Electronics Training Division-the B.I.E.T. School of Electronics, explains the benefits of our Appointments Dept. and shows you how to qualify for five years promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $£ 30$ a week, send for your copy of "ENGINEERING OPPORTUNITIES" todayFREE.

Radio
Television
Electronics
Electrical
Mechanical
Civil
Production
Automobile
Aeromautical
Plastics
Building
Draughtsmanship
B.Sc.
City \& Guilds
Gen. Cert. of
Education
etc., etc.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

344B, Aldermaston Court, Aldermaston, Berks.

PRACTICAL EqUIPMENT

Basic Practical and Theoretic Courses for beginners in Radio, T.V., Electronics, etc A.M.I'E.R.E., City \& Cuilds Radio Amateur's Exam R.T.E.B. Certificate P.M.G. Certificate Practical Radio Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

Please send me your FREE 132-page "ENGINEERING OPPORTUNITIES" (Write if you prefer not to cut page)
NAME.

This specialist Electron ics Division of B.I.E.T NOW offers you a real laboratory training at home with practical equipment. Ask for details.

INCLUDING TOOLS!

THE B.IE.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORID

Fig. 4: Cut off lug ends and clean out holes to refit component.

Fig. 1: Printed circuit danger spots. A-strained board where large components are fitted; B-poor return path at fixing bolt: C-end of soldered part (dry joint): D—charred board between conductors; E-lifted foil; F-control mounting; Gnarrow gap between conductors.

Also hairline cracks.

Fig. 5: Make extension "bit" to reach awkward spots. Wire can also be looped around a meter probe to gain access to

$$
\begin{aligned}
& \text { remote points. }
\end{aligned}
$$

breaks-the joint is always the weakest link in the circuit.)

* BREAKS IN PRINT

Where there are breaks in the print, as can happen when a board is flexed or a component strained, these mst be bridged strongly. If the break is the most common type, a hairline, simply scraping the foil clean at each side and soldering over the break should be sufficient. Try to avoid lifting the foil while doing so and do not apply the heat for too long. But where the break is more awkward, as, for example, when a burnout has charred adjacent regions of the board, other methods are needed.

A charred board may provide a conducting path for current, no matter how well you try to clean it. In this case, open circuit the print path at each side of the charred portion so that no current reaches it, then provide a wire link. These 'jumpers’ are best fitted from existing joint to joint, rather than soldered to stretches of the foil, where the weight of the new wire may tend to lift the thin foil and break the bond.

A common place for breaks to occur is at the anchor post of a large component, such as a potentiometer or switch. The more physical movement that is applied to this portion of the circuit, the more it should receive close attention-no matter how good the print appears to the naked eye. This

Fig. 2: Bridge joint with new section of wire. Avoid loose ends of foil and apply as little heat as possible to prevent broken ends from lifting.
Fig. 3: Solder new component to existing tail ends to avoid disturbing print.
is where the watchmaker's glass advocated in Part 2 comes in handy.

Fitting a new component can be awkward, especially in the last-mentioned case. Even the removal of the faulty part presents a problem. The technique with multi-tagged components is to melt the solder around the tag and, as it begins to cool, brush it away.

SOLDER TECHNIQUE

The trick is to catch it at just the right heat when the solder brushes away in a crystalline form that will not stick to other parts of the circuit. Let it get too hot-and you will have a short-circuiting streak across adjacent foil paths; not hot enough - it merely makes an unsightly mess around the tag.
When the surplus solder has been removed, the tags may be eased gently as heat is applied until the bond on all is broken. Then it should be possible to remove the component.

Of course, the correct way is to remove this surplus solder by the proper device, such as an aspirated solder gun, which Philips patented a few years ago, and which has proved such a boon to professional service engineers. But the average chap can hardly justify the expense for the odd occasion he may need it. In this case, he should weigh the cost of a new component, make sure the part he is removing is not needed again, and destroy it to make for easy removal!

This is not so daft as it sounds. It is far easier to remove the tail end of a resistor or capacitor, or the spade end of a switch or potentiometer lug, by first cutting the component away close to the top of the board, then melting the solder at the joint and withdrawing what is left. A good pair of pointed-nosed pliers or strong tweezers aid this operation.

When replacing a component on a congested board, it may be easier to fix the new one to the existing tail ends than to clean out joint holes and perhaps have force the new part in place.

An example is the larger resistor that takes the place of the maker's special miniature type that
has been proved faulty. Cut off this time with a slightly longer tail, twist the ends of the new component into anchor loops and quickly solder these to the tails.

It helps to tin the loops first, and perhaps scrape the tails to remove varnish or oxidisation. Do not apply heat too long, or the joint where the tail is fixed may be weakened. This method is especially handy where it is difficult to get at the rear of the printed circuit board.

* REPLACING COMPONENTS

Where there is insufficient room to mount the new component, consider the ruse of standing it vertically, with one end through the nearest convenient hole from which the old one has been taken, and the other end insulated by a short length of sleeving if necessary and bent to enter the other hole. Make sure there is enough 'headroom' for the board to be remounted-it is very easy to get caught in this way.

When it is possible to get at the anchor points and completely remove the old component, the next problem is in cleaning out the holes for the new one. Again, remove as much surplus solder as possible. Remember that solder once heated, cooled and reheated is much weaker than new.

Then sharpen a match-stick or, better still, an orange-stick from her ladyship's manicure set. Use the point to delve into the hole while heat is applied. As the solder cools, it will not stick to the wood, and a good, clear hole is left.

Refitting the component is a matter of convenience and taste. It may be found helpful to bend over the ends to make a more solid joint with the foil, but usually it is better to let the solder 'dome' over the tinned end of the lead-out wire. If removal ever becomes necessary again, you can save yourself a lot of snipping and avoid ruining components by adopting this method.

Ideally, the printed circuit joints, when remade, should be treated again with varnish to prevent corrosion, oxidisation, etc, but this is a counsel of per-fection-necessary on professional equipment; an added refinement at home.

VALVE BASES

Previously, we mentioned the device of easing out multi-tagged components by clearance of old solder.

Fig. 6: A bench light can be used to aid circuit tracingwired components will be seen "through" the panel. But avoid overheating components.

Fig. 7: Make straight joint through lug and allow solder to run on cleanly from a well-shaped iron bit.
Fig. 8: Look for poor jointing of potentiometer cases and, if necessary, make fresh chassis returns.
This may prove extremely difficult in-for example -the case of a damaged valve-base.

Here, a soldering iron that would melt all the tags simultaneously and allow us to lift the base clean away would be ideal. But as sizes of parts vary so much, marketing such a device would not be likely to excite great sales. Nevertheless, somewhat similar devices are on the market-but we can make our own for the odd occasion.
Use a fairly heavy gauge copper wire, bend it carefully to form a loop that touches the required joints. then bring up the end to loop in a coil around the bit of the soldering iron.

Heat is transferred from the bit to the copper wire loop and with a little practice, quite good clean removal jobs can be done. Similarly, where it is necessary to get between closely confined components, where the bit of the iron is likely to damage them, use a coiled length of copper wire, 16 or 18 s.w.g., and straighten the end to form a thin auxiliary bit.

* SEE-THROUGH BOARD

When fault tracing, the tedious business of following twisting lines of print and identifying the components on the other side of the board, can be eased by using a light at the opposite side of the board and getting a kind of X-ray picture of the layout. Many boards of laminated phenolic construction lend themselves admirably to this practice. Older types are usually too opaque.

Often, when wiring in new components, the unavoidable difference in size and shape prevents us from following the set-maker's original layout. In these cases it is quite legitimate to make a 'suspended joint', where two components meet and are connected together. This, despite the cry of 'botchers' from so many practicing servicemen, who have been brought up on the method of ordering the exact replacement from some far-distant manufacturer and keeping the customer waiting while it is obtained.

No wonder some far-sighted firms make fortunes
by marketing "general replacement" parts. (Readers who have not seen the Electroniques manual may perhaps be surprised to know what a very wide range is covered.)

- ANCHOR POINTS

Making soldered joints to tags, lugs and anchor points can be difficult, and the practice of wrapping lead-out wires twice around the gasworks and home before soldering is to be deprecated. Anyone who has had to dismantle many of these joints in congested equipment, where sleeving unravels like snow in the sunshine, will sympathise with this point of view.

A wire end put through the lug and perhaps bent over slightly to aid keeping it still while soldering is all that is needed. A good soldered connection is a good mechanical joint. The secret is to keep your iron clean, apply the right heat for the right length of time, and use a good resin-cored solder. Notplease not-the corrosive tinman's flux that dad left in the potting shed. Solder is cheap enough, and the little extra time and care at the preparation stage saves hours of fretting later.

CLEANING

Other odd chemicals that are to be shunned are the solvents and cleaning fluids that some folk appear to have used on printed circuits. Even carbon-tetra-chloride, which has a great many cleaning and degreasing uses, and was once the standby of all who wanted to 'lubricate' a volume control, can be dangerous. Apart from its toxic effect-fumes should never be inhaled-it can cause many types of plastic to soften and run.

For cleaning plastics, methylated spirit is safer, and in some instances an impregnated wadding (again borrowed from her ladyship's silver or brasscleaning cache) will give a good burnish.

But for degritting controls and for cleaning switches, the proprietary chemicals that were mentioned in Part 2 simply cannot be beaten. If they will not do the job, the control is due for replacement anyway!

Sometimes, it is difficult to get at the inside of a potentiometer to apply the cleaner. Many plastic edge-type controls, for example, appear to be completely sealed. In these cases it is quite legitimate to drill a small hole in the side casing and inject through this. After allowing the necessary evaporation time, the hole could be resealed to prevent dust entering.

* NOISE FAULTS

A popular place for noise faults is at the junction of spindle and bush of a 'conventional' volume control. One tape recorder manufacturer realised this very early on and provided a spring clip that separately earthed the spindle. Where movement noise is bothersome, a drop of switchcleaner run down the spindle at this point may help. Remember, only a drop-don't drown it.

Another popular place for noise to originate is

Example of typical printed circuit layout, where the output transistors are mounted on a separate sub-chassis. which acts as a heat sink. Note the use of a jumper wire for interconnection of sections of the main printed circuit.

A simple hook is often more effective than a bulky, wrapped joint.

Wire ends of components can be joined firmly by inserting them in a twist or coil, where size of replacements precludes exact fitting.
at the 'earthing' point on the body of a control. This applies also to some types of switch. The connection may be firmly soldered, but if you inspect the control closely you will note that this is to a shell, and the shell makes contact with the bush by a bent-over clamp. And time and heat may have worked its insidious depredations at this point.

So clean off the control at the junction of parts and solder the contraption together. It is surprising how many hum troubles in audio equipment have been cured by this ruse.

[^9]

THIS superhet receiver tunes approximately $10-600$ metres in four bands. It has only three valves-frequency changer, regenerative 1.6 Mc / s i.f. amplifier and detector, and output stage. This, and the use of a panel aerial trimmer, practically removes any alignment or trimming difficulty, while providing good sensitivity. Tested at $14 \mathrm{Mc} / \mathrm{s}$, a $3 \mu \mathrm{~V}$ signal at the aerial was just audible in the loudspeaker. Due to the relatively high intermediate frequency, there is good freedom from second channel interference from unwanted transmissions.

Fig. 1 is the circuit and a few points should be noted. VC1/VC2 is the ganged tuning capacitor, and though a value of about 315 pF is specified a some-
at about half capacity. The panel trimmer VC3 is then adjusted as necessary for maximum signal strength. VC4 is for bandspreading, and useful for amateur and other congested bands. A $10 \mathrm{pF}, 15 \mathrm{pF}$ or 20 pF capacitor is most suitable. Should a 2 -gang capacitor be to hand, its sections can be connected in parallel with VC1/VC2.

OSCILLATOR PADDER

Each oscillator coil requires its own padder. Range 2 is approximately $515-1545 \mathrm{kc} / \mathrm{s}$ and has a 100 pF padder connected to tag 2 of the holder, range 3 is about $1 \cdot 67-5 \cdot 3 \mathrm{Mc} / \mathrm{s}$ with 350 pF padder to tag 3 , range 4 is $5-15 \mathrm{Mc} / \mathrm{s}$ with a 1000 pF padder to tag 4 ,

Fig. 1: Complete circuit of the receiver. The capacitor Cx is optional and is discussed in the text.
what larger value can be fitted with no loss of efficiency. The one fitted had an integral ball drive, but a separate drive and scale would be in order. Trimmer TC1 serves for all oscillator coils and is left
and range $510 \cdot 5-31 \cdot 5 \mathrm{Mc} / \mathrm{s}$ with a 2000 pF padder connected to tag 6. These values are easily obtained and not exactly as specified for the coils, but are suitable with TC1 and VC3 adjusted as explained.

\square Rifxherit

AHAM

REGENERATIVE I.F.

The grid circuit of V2 is permanently tuned to about $1.6 \mathrm{Mc} / \mathrm{s}$. Regenerative feedback is applied through TC2, and controlled by VR1, and as the grid circuit is not variable tuned, frequent adjustment of VR1 is not required.

With V2 somewhat below the critical point at which oscillation nearly arises, the receiver has good general sensitivity and selectivity. As VR1 is advanced a point is reached where both selectivity and sensitivity to weak signals greatly increase-this is the optimum setting of VR1 for speech and music (telephony). Turning VR1 further causes a heterodyne, and allows reception of Morse (c.w.), single sideband (s.s.b) transmissions can also be resolved with some adjustment of VR1, unless rather powerful. If too strong, reducing sensitivity with VC3 helps.

VR2 is an audio gain control, and either speaker or phones can be plugged into the panel jack. The ratio of Tr1 is not correct for phones, but as V3 can provide much more power than wanted this does not seem important. Low or medium impedance headsets are best, but high impedance phones can be approximately matched by using a second output transformer (same ratio as T1), with low impedance winding connected to the jack plug, and high impedance winding to the phones.

The receiver runs from a separate power pack. Heaters require 6.3 V at 0.9 A and the h.t. drain is about $50-60 \mathrm{~mA}$, at 220 to 250 V (max).

The power pack must have a mains transformer which provides h.t. and l.t., so that the receiver is completely isolated from the mains.

Positions of valveholders and other items can be seen from Fig. 2. Chassis dimensions could be modified somewhat. The large holes are best made by drilling a small pilot hole, and using a valve-holder punch. Mark through valveholder lugs and drill $\frac{1}{8} \mathrm{in}$. holes for 6BA bolts.

THE I.F. COIL

This is screened by the aluminium can in which it is supplied, and screening is essential. The bottom of the can is drilled to clear the threaded portion of the coil, and five small holes are also drilled $1 \frac{1}{4} \mathrm{in}$. from the bottom, so that leads may pass through as in Fig. 3. Capacitor C5 is wired across the pins inside the can.
The i.f. coil tunes about $1 \cdot 4-1 \cdot 7 \mathrm{Mc} / \mathrm{s}$ by adjusting its core, and the best frequency is around $1 \cdot 6 \mathrm{Mc} / \mathrm{s}$. A nut locks the core, as moving it alters tuning

Fig. 2: Above-chassis layout and main drilling dimensions.

Fig. 3: Underside wiring diagram.

\star components list

Resistors:

R1	22k $\Omega 1 \mathrm{~W}$	R3	$47 \mathrm{k} \Omega$	R5	$1 \mathrm{M} \Omega$	R7	$220 \mathrm{k} \Omega$	R9	270 1 1 W
R2	270Ω	R4	27k $\Omega 1 \mathrm{~W}$	R6	$100 \mathrm{k} \Omega$	R8	$10 \mathrm{k} \Omega$		

Capacitors:

C1	$0.05 \mu \mathrm{~F}$ paper	C8	$2 \mu \mathrm{~F} 250 \mathrm{~V}$ electrolytic
C2	$0.02 \mu \mathrm{~F} 150 \mathrm{~V}$ paper	C9	1000 pF mica
C3	100 pF mica	C10	$25 \mu \mathrm{~F} 25 \mathrm{~V}$.electrolytic
C4	$0.01 \mu \mathrm{~F}$ paper	C11	1000 pF 350 V paper
C5	470 pF mica	C12	$0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
C6	100 pF mica	Cx	25 pF mica-optional
C7	$0.1 \mu \mathrm{~F}$ paper		

VC1/VC2 315 pF twin gang or similar
VC3 50 pF variable
VC4 10 pF variable
TC1 30 pF air spaced trimmer
TC2 25 pF air spaced or ceramic
P Padder capacitors-100pF, 350pF, 1000pF and 2000pF silver mica 10%

Miscellaneous:

VR1 $250 \mathrm{k} \Omega$ linear. VR2 $250 \mathrm{k} \Omega \log$ V1 ECH81, V2 6BR7, V3 6BW6, three B9A skirted valveholders, two B9A non-skirted valveholders, chassis $12 \times 5 \times 3 \mathrm{in}$. deep, panel $12 \times 6 \frac{1}{2} \mathrm{in}$., knobs, wire, etc.
unimportant, provided it is higher than the voltage present. C 8 could be $8 \mu \mathrm{~F}$ and $\mathrm{C} 1050 \mu \mathrm{~F}$ if to hand. C9 can be $1000 \mathrm{pF}(0.001 \mu \mathrm{~F})$ to $0.01 \mu \mathrm{~F}$, but should be mica. VR2 may be $500 \mathrm{k} \Omega$, C11 may be 5000 pF $(0.005 \mu \mathrm{~F}$) or even $0.01 \mu \mathrm{~F}$.

Connections from tag 2 of V2 to C6 and R5 must be as short as possible and clear of heater wiring or hum may arise. Components and wiring associated with V2 and V3 are best close against the chassis.

ADJUSTMENTS

Insert V2 and V3 and VR2 at its maximum clockwise position. Temporarily place the aerial lead near the connection from pin 8 of the i.f. coil. Open TC2 fully, and adjust VR1 for maximum sensitivity. This is not the fully clockwise position,
but an intermediate one giving the most suitable G2 voltage, and will be shown by maximum background noise, or possibly reception of a transmission which can be tuned in by rotating the i.f. coil core. Close TC2 until oscillation just begins, which can be prevented by turning back VR1 slightly.

If TC2 is at too high capacity, oscillation arises with a much lower G2 voltage than optimum, so sensitivity is reduced. Rotate the i.f. coil core to find a spot where no transmission is received. If a signal generator is available, this can be found near $1 \cdot 6 \mathrm{Mc} / \mathrm{s}$. Otherwise adjust the core so that all the brass thread is above the chassis, then slowly screw it down until a position is found which gives no direct reception at the intermediate frequency. Such reception is untunable during normal operation of the receiver, but is avoided by screening as described, and by keeping the aerial away from C6 and associated wiring.

VR1 and VR2 should be turned back somewhat, V1 and a pair of coils inserted, with TC1 set about half closed. Any transmission tuned in should peak up for maximum volume when VC3 is rotated. VC3 should be neither fully open, nor fully closed, this giving maximum efficiency on all frequencies.

If it is found that the required trimming adjustment falls outside that available by means of VC3, towards the low frequency end of any band (VC1/ VC2 closed) adjust the coil cores until this is prevented. The best position is that which allows tuning from one end of the band to the other without any need to re-adjust VC3, except for optimum possible reception of weak signals.

If a signal generator is available, band coverage can be set by rotating the cores of the oscillator (white) coils. The aerial (blue) coils are then adjusted for best results. Should VC3 need to be fully open at the high frequency end of any band, this can be corrected by slightly screwing down TCI.

If the aerial is very long, results may be improved by placing a small capacitor (Cx) in series. A 25 pF or 50 pF pre-set capacitor should be satisfactory, or a small fixed component can be tried. This allows the aerial circuit to tune more sharply, and avoids overloading V1 or V2 with strong signals.

For normal reception, VR1 can be placed so as to give good results, and tuning carried out with VC1/ VC2. But for weak signals it will be found that critical adjustment of VC3 and VR1 makes a considerable difference.

For general short wave reception range 4 is most suitable. Range 3 includes the $1 \cdot 8-2 \cdot 0$ and $3 \cdot 5-3 \cdot 8 \mathrm{Mc} / \mathrm{s}$ amateur bands, and other transmissions. Range 5 covers frequencies often capable of long distance results. Range 2 permits usual medium wave coverage, if wanted. A good earth improves reception, though long distance reception is possible without an earth.
—continued from page 324
enable the component assembly to drop easily into place.

components list

R1	$470 \Omega \pm 10 \% \frac{1}{2} \mathrm{~W}$
C1	$200 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C2	$200 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C3	$200 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
Tr1	OC35 (recent manufacture) D1
RS310 D2	
$\left.\begin{array}{l}\text { RS310 } \\ \text { D3 }\end{array}\right\}$ S.T.C. or similar silicon rectifiers	
	OAZ207 (Mullard)

T1 Small bell transformer with 5V tap (Friediand Lilliput)
Veroboard, battery connectors, etc.

One of the silicon rectifiers connects at its negative side to the collector tag. The flange on each rectifier corresponds to the cathode in a thermonic rectifier and is the positive end.

A red spot on the zener diode indicates the lead that is to be connected to the positive side of the supply.

The $200 \mu \mathrm{~F}$ capacitors are mounted in line with the zener diode and rectifiers on the inside between them and the power transistor. The negative lead of each capacitor is bent over and brought down the side of the capacitor so that the two leads can be inserted into adjacent holes on the board. The capacitors should be insulated with plastic sleeves.

PRACTICAL ELECTRONICS

ELECTRONIC STOPCLOCK

Accurately measuring the interval of time elapsing between any two events or stimuli, this high precision stopclock has four switched ranges: $0-0.012 ; 0-0.12 ; 0-1.2$ and $0-12$ seconds. Capable of a wide variety of applications, with a novel design based on standard, ready made "Logic Blocks"

SCREENWIPER DELAY UNIT

An easy-to-make fitment for the motorist. Provides adjustable delay between each sweep of the wiper blades.

Special Features:
ELECTRONIC TELEPHONE EXCHANGES MICROELECTRONICS—Pt. 2

AN ANNOUNCEMENT

The field of television is an interesting and varied one. For enthusiasts with an inquiring mind, and this will include almost all our readers, we recommend the next issue of Practical Television which is on sale August 18th.

Practical Television features articles on aerials, signal boosters, test equipment and in fact just about everything in the field of television.

A current series of articles discusses colour television in down-to-earth terms. Articles in line for publication include a study of interference, reports on the latest colour TV receivers, and even how to connect headphones safely to your TV.

Practical Television costs only 2/and is obtainable from your newsagent

CONNECTOR BLOCK CIRCUITRY

APROBLEM which is very often encountered when assembling a radio receiver, amplifier or other piece of equipment, is that of quickly substituting differing values of resistors or capacitors, or making wiring alterations to one or more sections of the apparatus under construction in order to observe the effect and to achieve optimum working conditions. In the "Good Old Days" (actually a little before the writer was old enough to pursue this fascinating hobby of radio) when all components had large brass terminals and were connected up by means of thick chunks of copper wire, it was a simple matter to carry out alterations to components or wiring.

There is available to the constructor now a very suitable alternative form of "terminal" in the form of polythene connector blocks. These are available in various forms, the most popular being of 2 amp current carrying capacity, obtainable as blocks containing 2, 3, or 12 connections. Each connector comprises a small brass "coupling" into which wires can be pushed from either end, with two small grub screws provided to secure the wires. The whole is embedded in solid polythene, screw holes are provided in the polythene by means of which the blocks can be secured to any mounting surface, and as the polythene is an excellent insulator, these blocks can be secured directly to an aluminium chassis without any risk of short circuits. The " 12 section" blocks can be cut with a sharp knife or razor blade to any desired length and hence the number of connector points adjusted to suit the constructor's needs of the moment.

Fig 1: Typical 12-way connector block.
The obvious use for connector blocks is, of course, as a ready means of quickly connecting together the various separate units of a receiver or amplifier (where unit construction is adopted) such as the power supply unit and amplifier; provided the connections are plainly labelled on the chassis adjacent to the connector block, a ready means of feeding in heater and h.t. supplies from a power unit is provided.

A more novel use for conneator blocks has
J. B. WILLMOTT, A.I.P.R.E.

Fig 2: Theoretical circuit of simple audio amplifier
Fig 3: Suggested connector block layout of Fig 2. R7. R8, C6, C7 \& C8 are not mounted on tagboard-see text.

recently been adopted by the author when constructing experimental gear; instead of using paxolin tagstrips or tagboards for securing resistors and capacitors, a double line of polythene connector blocks spaced some $1 \frac{1}{4} \mathrm{in}$. apart forms a very effective substitute (see Fig. 3). The measurements of a 12 -section connector block are $3 \frac{3}{4} \mathrm{in}$. long by $\frac{7}{8} \mathrm{in}$. wide, thus it is possible to place the two parallel blocks with $1 \frac{1}{4} \mathrm{in}$. clearance botween them in an overall space of $2 \frac{1}{4} i n$., which in turn means that they
can be mounted on the $2 \frac{1}{2} \mathrm{i}$. deep side runner of the popular range of aluminium chassis, and leave just enough room for the external connections to the blocks without protruding above the level of the chassis walls.

Before attempting to wire up a piece of home designed equipment, work out carefully from the theoretical circuit diagram which components can be conveniently mounted on "tagboards" and hence the number of "ways" required on the tagboard(s). Remember, intervalve coupling components, grid resistors, grid stoppers and other similar signal carrying portions of a circuit should not normally be mounted on tagboards, as this introduces longer connecting leads and more risk of instability and interaction between wiring than can be tolerated. Such components should always be wired up by the shortest possible leads between the valveholders, etc. Decoupling components, bias resistors and by-pass capacitors can nearly always be mounted in groups without ill effect. A typical example is given in Fig. 2 of the circuit of a simple two-stage a.f. amplifier (no component values are given as obviously these will depend on the types of valves involved and the h.t. voltage supply available), and in Fig. 3 a suggested arrangement for mounting resistors and capacitors on a connector block "tagboard" of the type described, which it will be noted requires the use of an 11-way "board".
When the project has been completed, and found
to be in working order, experiments to find the optimum value of resistors (or capacitors) can be readily carried out, changing one component at a time. For example, if one started off with R1 a $1 \mathrm{M} \Omega$ component, the effect of altering this "up" to $1.2 \mathrm{M} \Omega$ or $1.5 \mathrm{M} \Omega$, or "down" to $68 \mathrm{k} \Omega$ or $470 \mathrm{k} \Omega$ for example, can be tried out. It is surprising what a difference in overall performance can be made in quite a simple piece of equipment by experimenting on these lines.
The connector blocks referred to can be obtained from several component suppliers advertising in this magazine, and also in good D.I.Y. shops and some chain stores.
Lastly, whilst the remarks in this article have been primarily concerned with valve circuits, there is no reason why similar principles should not be adopted in experimental transistor work (provided space is not of prime consideration). A very quick means of "hooking up" transistors and their associated components is afforded.

One final word, whilst it is not really intended that these connector blocks should replace tagboards, etc., in permanent equipment, the author has found that provided the grub screws securing the component wires, etc., are tightened firmly home, there has been no noticeable deterioration in performance as compared to equipment wired by conventional means with 100% soldered joints, even after long periods of use.

Book Review

[^10]11 HE title is no idle boast. Too often, books on mathematics are the stale, rehashed collections of formulæ-. . . three men working for seventeen hours dig a trench twelve feet long by .. This book aims squarely at the radio and electronic technician and hits bang on target. Every example, description of method, formula or fact has a bearing on the subject.

This second edition has been re-written in consultation with practising engineers and mathematicians, particularly in semiconductor development. Thus, we find technical terms relevant to our subject continually cropping up, being explained and subsequently worked into the text. Much hard cogitation has obviously gone into such styling.

Beginning with simple equations and the technique

IN-LINE AUDIO A.G.C. UNIT

Two of the illustrations in the article describing an in-line audio a.g.c. unit, published in the July issue, were incorrect. In the circuit diagram (Fig. 2) on page 204 the emitter and collector symbols for Tr2 are reversed. The emitter should be towards the negative line as this is an $n-p-n$ transistor, with the transformer as the collector load. The other error concerns the same transistor, but on the component layout (Fig. 3) : the diagram is correct, but the letters identifying the collector and emitter are reversed.
of numbers and the use of symbols, the 24 chapters work through basic algebra, powers, curves and their uses, more detailed functions of x, logarithms, trigonometry, Fourier and other series, differentiation and integration, series, polar co-ordinates, vectors and complex calculus.

Right in the middle we find a brief refresher. Ch. 9 deals with "Some Peculiarities"-wise words of advice on the need for accuracy and the use of approximation, with handy notes on signs. The next chapter is a beautifully concise work on powers, exponents and the slide rule.

Intended as a supplement to the deeper textbooks in electronic technology, no specialist knowledge is needed. Taking the book as a course and reading for an average of a half-an-hour a day, the technician who has grown stale can refresh himself and should undoubtedly advance his knowledge at the same time.

The emphasis is on worked examples and these are directly aimed toward the student's chosen field. For the reader who thinks mathematics a dull and difficult subject, this book will come as a welcome relief.-H.W.H.

Practical Wireless Binders

A first class magazine deserves first class treatment. Store your copies of Practical Wireless with a new Easi-binder, specially designed to hold 12 copies of the new large size. It has a special pocket for storing those blueprints and data sheets too. Yours for 14s. 6d. from: Binding Dept., George Newnes Ltd., Tower House, Southampton Street. London, W.C. 2.
Note. Please state the volume number required otherwise a blank cover will be sent.

FOR many years the cathode ray tuning indicator has been the accepted way of presenting visually the amplitude of signals in valve circuits. The constructor will be familiar with its use in radio sets to indicate tuning accuracy, and in tape recorders where it provides a clear warning of any overmodulation of the tape by too strong a recording signal.

The device relies on the deviation of an electron stream by a grid whose voltage depends on the strength of the signal, with the result that the pattern of the glow produced when the stream falls on a phosphor like that of a TV tube, is shifted in proportion to the signal. Such a device is obviously unsuitable for applications in transistorised circuitry, where there is no heater supply available for a filament to emit the electrons, and no high voltages to focus them into a beam. Admittedly, a few transistorised tape recorders have obtained sufficient h.t. to operate a miniature cathode ray indicator (the DM70), most manufacturers have fallen back on the use of small meters.

The circuit to be described was developed to supply the need for a low-voltage low-current visual display of signal strength without resorting to a moving-coil meter. Since any system involving cathode rays is excluded by power requirements, some other light source is necessary. Photoemissive diodes are still too expensive, though very attractive from the point of view of circuitry, so the only possibility was the old-fashioned filament bulb. A system which merely varied the brightness of a bulb would not be a definite, or even attractive, indicator, and there is the additional disadvantage that the current drawn by a bulb would be twice that of the radio or tape
amplifier for which it served as indicator! It was therefore decided to develop a circuit in which the bulb would flash on and off at a rate depending on the signal strength. This holds the extra advantage that the current is reduced to a fraction of that of a continuously-glowing lamp. The familiar multivibrator circuit can be set up to switch the bulb on and off at a suitable rate, this frequency being controlled by the time constants of the R-C circuits in each leg of the device.

Circuit description

The circuit finally evolved is shown in Fig. 1. Tr2 and $\operatorname{Tr} 3$ will be recognised as the transistors forming the multivibrator, and it will also be noted that they are n-p-n types. Trl, a p-n-p type, forms the resistive element in an R-C timing network with C 2 . The resistance to which Trl is equivalent, depends on the biasing current supplied at its base, which in turn is set by the input voltage applied through R1. In operation, therefore, the current available to charge C 2 is the product of the bias current and the common-emitter current gain of TrI. Therefore, the higher the bias current, the higher the charging current, and as a consequence, the shorter the time required to charge $C 2$, and therefore the higher the repetition frequency of the multivibrator. Trl also functions as a buffer between the multivibrator and the signal source; otherwise there would be some direct connection between these, and as well as the reference voltage being supplied to the multivibrator, high harmonics of the multivibrator frequency, extending into and beyond the audio range, would be forced back into

Fig. 1(a): Basic circuit of the tuning indicator unit (numbers denote tags on groupboard-see Fig. 2). Fig. 1(b): Extra circuitry to obtain control d.c. in a tape recorder.

Most transistorised apparatus as yet available relies on germanium p-n-p transistors, and it is the positive line which is chosen conventionally as the earth line. This is the reason for the otherwise unusual choice of transistor polarities for the
multivibrator transistors. The signal to be indicated will usually be small and close to the potential of the earth line of the set. It will therefore be able to control directly the bias level of Trl only if this is a $p-n-p$ device. Similarly, acting as a current amplifier, $\operatorname{Tr} 1$ can give $\operatorname{Tr} 2$ the necessary forward bias only if the latter is an n-p-n unit.

Control voltage

In the above remarks and in Fig. 1, it is assumed that the signal is applied to Trl in the form of a d.c. voltage proportional to the strength of the audio component in the circuit. This is the case in a radio set, in which the appropriate voltage to indicate is that of the a.v.c. line. This is obtained from the d.c. component of the output from the detector diode, which is arranged to be positive-going, beyond the potential of the earth line. The first i.f. amplifier, receiving its bias current from a potential divider connected to this line, is then biased back and its gain reduced. If Trl is then connected through R1 to this line, it follows that, when the set tunes in a signal and the a.v.c voltage builds up, its base will go more positive, and its bias current will fall. Between collector and emitter it will then be equivalent to a larger resistor, since there is a lower current for the same applied voltage. The time constant is increased, and the frequency reduced. Visually, this means that, as a station is tuned in, the bulb will flash more slowly; if the constructor wishes, R1 may be reduced until it stops completely on the strongest local stations.

Audio equipment

It was also mentioned that the circuit is a suitable indicator for audio equipment and tape rerecorders; in these, however, there is not usually a convenient d.c. potential proportional to the volume level, analogous to the radio set's a.v.c. Fig. 1b shows the modification to the circuit of Tr 1 to operate off the signal as it appears on the volume control of the recorder. According to the sense of the diode D1, the rate of flashing may be either increased or decreased. It is convenient with tape recorders to use for R 1 a value of resistor which just suppresses flashing at the onset of overloading of the amplifier. This can be as clear and definite an indication as the closing of the display of a cathode ray device on a mains recorder. The constructor might choose to replace R1 with a preset potentiometer in order to achieve best results. Finally, should it happen that an indicator is required for a radio or amplifier using $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors and a negative earth, it is only necessary to change Trl for n-p-n, and $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ for $p-n-p$ types.

Construction

Construction of the indicator is simplicity itself, even for the beginner. Fig. 2 shows the arrangement of one prototype, on a ten-way group board. Even without miniature capacitors it measures only $1.5 \times 1.2 \times 0.5$ inches. A decoupling resistor and capacitor are added in the supply line to prevent

Resistors

R1	$6.8 \mathrm{k} \Omega$	R4	$10 \mathrm{k} \Omega$
R2	$270 \mathrm{k} \Omega$	R5	100Ω
R3	$1.8 \mathrm{k} \Omega$		
All	10%	$\frac{1}{4} \mathrm{~W}$	

Capacitors:

C1	$10 \mu \mathrm{~F} 9 \mathrm{~V}$ electrolytic
C 2	$10 \mu \mathrm{~F} 9 \mathrm{~V}$ electrolytic
C 3	$100 \mu \mathrm{~F} 9 \mathrm{~V}$ electrolytic

Semiconductors:

Tr1 OC71 general purpose p-m-p
Tr2 OC139 audio n-p-n
Tr3 OC139 audio n-p-n

Miscellaneous:

Lamp 6V 0.06A, miniature 5 -wav tag board, wire, etc.
any noise from the multivibrator, blocked by the buffer action of Tr 1 , from entering the audio amplifier through its power supply.

The circuit diagram is numbered corresponding to the tags on the board to assist in identification of the components during construction.

One final point deserves consideration-the

Fig. 2: Groupboard showing layout of components-note that C5/R3 are mounted externally but. this is not essential if a larger (ie. 12 or 14 way) groupboard is utilised.
mounting of the indicator in the set. The lamp-holder-a standard m.e.s. type-is fixed at some convenient position on the front of the set, so that the bulb is visible through an aperture which, for appearance's sake, may be covered with a coloured plastic disc. However, the leads from the unit to the lamp should be twisted, in the same way as heater leads in valve amplifiers, and for the same reason, namely to prevent noise being induced into signal circuits. The location of the group board is not critical, but should clicks be heard in the speaker as the lamp flashes, the cause is probably the proximity of the multivibrator to a tuned circuit, and relocation will solve the problem. For battery economy a switch may be built in to save the 15 mA . of the indicator circuit when listening for long periods to a single station. At other times the circuit is switched in, if only to serve as a dial light.

practically Wirieless commentary by HENRV

T1 HERE is something impressively legal about the usual form of guarantee. With its archaic script, pretty red seal and clauses of small print, it is more suited to frame and hang on the wall than file in the bureau. And for all the good most of them are, they might just as well be used for decoration.

Nowadays, we are conditioned to want some sort of assurance that goods are better than we should deserve. The goggle-box nightly churns out these assurances. "Splosh washes cleaner", "Use Rubbit for the Deep-DownGlow", "Pablum is better than ordinary bread". But . . . Cleaner than what-sand and pebbles? What if we only want a common surface shine? And, surely, this is ordinary bread?

We find the same thing in the press. The cleverer copy-writers cash in quickly with those intriguing advertisements that begin: "Well, perhaps we DON'T make the fastest petrol" or the intellectual ones that waffle on for half a page about something apparently irrelevant so that one congratulates oneself at the end for discovering the business of the advertiser.

So it is with guarantees. This week I broke my trusty electric shaver-trying to save the cost

[^11]of a visit to the barber by cropping some of that back-growth, my wife said. She brought me a packet of emergency wet-shaving blades and stark across the inevitable plastic cocoon was the glaring red slogan, "Guaranteed".

What would happen if I sent one of the treacherous things back because my pampered beard refused to succumb and supplied bloodstained skin shavings as evidence? Would the guarantee be honoured? Or would I be referred to some obscure item of small print that I had carelessly cast away with the wrapper?

This, roughly, is the position when one buys a bit of radio equipment. Twelve Months Guarantee, says the dealer, and we go off all unsuspecting. Then discover, if things go wrong, that the small print has absolved the maker from practically every hazard except an act of God.

Guarantees do not cover service charges. Time, trouble, labour, S.E.T. and other evils, make the dealer unduly avaricious. When we take our faulty radio back to his shop, he is perfectly entitled to charge a normal fee. Often he does not.

He has no hope of recouping losses from the manufacturer. Even the brand new models he has had to repair before he dare put them in his window carry no extra bonus for his service. Some makers talk airily about "discounts covering the cost of minor adjustment," and we can guess what our radio repair man says about that. Small wonder he sometimes describes himself as the manufacturer's final inspection department.

The contractual element enters more strongly when we buy our equipment directly from source.
"Provided the card is filled in and returned within seven days." Did we remember to date it correctly? Dare we update it, or will they check? Can they check?

Supposing we did remember to

Unfortunate experience with the cat.
post the darn thing off. "The Superspecial shall have been used strictly in accordance with the instructions." Does that exclude the time we lent it to Aunt Mabel who had that unfortunate experience with the cat? "The Superspecial must not have been tampered with, dismantled or subjected to misuse."

And, to cap it, we are solely responsible for packing chargesand insurance, it seems. We remember what happened to that Christmas parcel; the forms we had to fill in to convince the GPO that we had not been sending contraband. We recall the tales of hijacked goods wagons, of large-scale pilfering, the Great Train Robbery, flood damage, fire . .. In the end, we probably settle for a quick ropair by the little man around the corner.

But fate still dogs us. When the set comes back it bears a label: "Three Months Repairs Guarantee." We congratulate ourselves on a new lease of life and when the thing goes wrong a week later march back with confidence oozing from our ears.

How sad! The guarantee covers only the work done-and this is a different fault, to be sure. Same symptoms, maybe, but a different fault. Sorry, Sir, you'll have to pay again. But you get another guarantee.

CCTV CAMERA

Made by N.E.V. Portable, Iransistorised. Two models, 405 lines and 625 lines. Will work with uormal T.V. receivers. Original price over $£ 100$ each, Brand new and unused. £29. Please specify 625 or 405 lines.
ACOS TYPISTS STETHOSCOPE Made for use with Tape Recorder but equally suitable for
$15 /-$ each.

SIMMERSTAT

TYX-FL and TYX-F. Both popular types atted to many cookers. Buitable for $230 / 240 \mathrm{v}$. up to 15 12/6 each.

SATCHWELL

OVEN THERMOSTAT
Type TO. With capilillary tube and sensor. 20 amp . A.C. type and as fitted to many cookers. Adjuxt-
aible ly controt knob (not supplied) $18 / 6$ each.

MESSAGE TAPES
150ft. Scotch Tape on 3in. spools. Normally 4/6 each. We after 4 taper for 101

TAPE CASSETTE

holds 2 -3in. apools. supplied with one empty spool only. Fits the "Arruw anil several other tape recorders. 7/- each or 3 for $£ 1.0 .0$.
FANE 20 WATT HI-FI SPEAKER This is a 120 in. model with $2 i n$. roice coil. Really best amp periormance which will do justice the retail at $\& 7$ or ${ }^{2} 3$ each. We can offer a limited quantity at 88.9 .6 . 15 ohm coil only. Carriage and insurance 7/6. Similar model, especially tesigned for guitar amplifiers, same price. Please specify

WHITE CIRCULAR FLEX

 Ideal for lighting drops, twin made by BICC. postage.EDGEWISE CONTROL
Morganite, as fitted many transistor radios. 2 K or (THYRISTORS

R's (THY				
Pin	50 V	100\%	$300{ }^{\text {\% }}$	400 V
1 amp	6/6	$7 / 6$	8/6	9/8
3 amp	$7 / 6$	$8 / 6$	976	1016
25 amp	301-	85\%-	47/6	601-

SILICON RECTIFIERS

7 70up and guaranteed

100 v .	1/3	1 Arnp.	100%	3/-
200 v .	1/6		200 c .	4/-
400 v .	3/6		400 v .	81-
100 v .	3/6			
200 v ,	5/-	10 Amp .	1005.	$9 / 6$
400 v .	7/8		200 v .	$12 / 6$
600 v .	9/8		400 s .	14/6

Bulbrainiature glass encased-only approx. Bin.
400 HIA . $50 \mathrm{v} .1 / 6 \quad 100 \mathrm{v}$. $2 / 8200 \mathrm{v}$. $4 / \mathrm{B}$
SEMI-CONDUCTOR BARGAINS

Type		t'ype		Type	
No	Price	No.	Pri		rice
2x1727	15/-	MAT120	7/9	OC72	5
2N1728	101-	MAT121	$18 / 6$	0073	61-
$2 \mathrm{NLTE2}$	25-	OA5	$51-$	00076	
2N1747	$251-$	OA10	6/-	OC77	7 -
$2 \mathrm{NiT48}$	101-	OA47	$31-$	0078	5)-
AP 107	$9 /-$	OA70	$21-$	0 CTHD	5-
AC127	9/-	OA79	$2 / 6$	$0 \mathrm{C} \times 1$	5 -
Cr17	$8 / 6$	OA81	$2 / 6$	OC811	$51-$
Ac'Yı	$5 / 6$	OA85	$2 / 6$	OCP^{2}	51-
Ac- Y 19	618	OA90	$2 / 6$	OC83	51
Clo	5/8	OA91	2/6	$0 \mathrm{CB4}$	6)-
ACY21	$61-$	OA200	3/3	OC139	$8 / 8$
Aryes	4/8	OA202	4/3	OC140	12/8
AF114	$7 /-$	OC20	12/6	OCl70	5-
AF'115	$6 / 6$	0 Czz	101-	OCli	81 -
AFP116	71	0023	17/6	OC200	-
AF'17	$51-$	OC24	15/-	OC-201	$12 / 6$
AF118	10\%-	$0 \mathrm{Cz6}$	716	OC202	18/6
AF139	$12 / 6$	OC28	$151-$	OC203	12/6
AF'18i	$17 / 6$	OC29	17/6	OCP71	151-
AFZ12	151-	OC35	12/8	ORP12	8/6
ABZ?	151-	0 O 36	151-	orpfo	101-
BC107	14/6	0 C 42	616	sB078	616
Byi00	4/6	0 C 44	$41-$	яв30а	8/6
BYZ13	$7 / 6$	OC45	316	8B261	10/-
matioo	$7 / 9$	OC70	$4{ }^{-}$	ST140	4/-
AT101	8/6	OC71	3/6	ST14	-

MINIATURE WAFER SWITCHES

12v. INVERTER

Fully transistorised for operating a long by 1 l loy 1 lin . 23.10 .0 . Post and iusurance 3/-

5 TRANSISTOR AMPLIFIER Muunted on a pronted board, size approx, 6 in . x socket and push-pull output ising pair of OC81. An excellent amplifier rated at 1 watt for gram or tape recorder. Price 22.10.0.

[^12]

THE VECTRONOME CAPSTAN DRIVEN TAPE RECORDER

This is a truly portable self-contained ustrument with built -in microphone and loudspeaker ning a s transistor able for operation from mains or by chargeable batteries. Tape capacity is 5 minutes on easily changed apools. Tape position indicator gives quick Kecording level is putomationlly pre et during dictation and can be ad uated to sult operstor Interlock prevents unintentional erasures. Tape seed controlled by fly wheel driven capstan. Very portable in neat case with carrying handle, overall size of which is approximately $6 \frac{1}{\frac{1}{1}} \times 7 \frac{1}{3} \times 2$ n. Price with tape, nickel cadmium rechargeable batteries and malns battery charger 29.19.6. (rather less nsurance 7/6. Jpused and in perfect nsurance $7 / 6$.

GARRARD

AUTO RECORD PLAYER Model 2000

This is one of the latest products the World's most experlenced naker of fine record reproducers. Its aperior reaturea include-automatic playing of up to 8 mixed size records--manual and starting whout refecting Jow stylus pressure- large diameter turn-table for max. stability adjustments nclude pick-up height-ple up dropping pow fot and with preasure. size is cartridge for stereo-and mono. L.P. and 78. Supplied complete with mounting template and service sheet. Offered this month at the Specisl Snip price of 26.8.6. plus $7 / 6$ carriage and insurance

F.M. TUNER
of exceptlonal quality, giving really fantastic results with virtually no noise. Suitable for mains or battery operation. 6 tranalators-three $1 F$ stages-double tuned discriminator. Complete, new, and built up all ready to work on chasuis. Size $6 \times 4 \times x$ inn. With tining scale and
slow funtion drive. A $£ 12.12 .0$ tuner for only $£ 6.19 .6$ plus $3 / 6$ post and ine.

HURSEAL AUTOMATIC TIME SWITCH
12 hour, 15A, to control heating, lighting, radio, inmersion heaters, etc. Regular price $£ 4.4 .0$. Limited quantity $39 / 6 \mathrm{p} . \& \mathrm{p} .3 /$

HEAT AND LIGHT UNIT
Bring luxury to your bathroom-have comforting heat where you now only have ight-sil the parts to build a fulisize (1min. will build it in an hour- 12 in .750 watt circular ailica glase encased element-opal bowi for up to 100 watt lamp-non-rust spun refector-white enamelled base heat shield, pull switch, magnificent unit as sold normally at $£ 4,5.0$ only $49 / 6$ plus $7 / 6$ carr. and insurance.

BATTERY OPERATED TAPE DECK

With Capstan contru. This unit ia extremely well made and meanures approx. $6 \times 5 \times 2 \mathrm{in}$. deep. Haw three piann key type controls fur Record, Playback and Rewind. Motor is a upecial hesvy dinty type intended apools ready to invtall. Record, Replay head is the sools ready to install. Record, Replay head is the amplifer. Price 84.15 .0 . Post and insurance $4 / 6$.

Kit, of parts for switched F.M. issues $\mathbf{2 4 . 1 5 . 0}$. P. \& ins. 3/6.

EX-WD BARGAIN Easily rebuildable to short wave radio

This is the 46 Receiver It has a range of approx. 5 miles. Operates from dry bstterias. Complete with six vaives and
in metal caso. in metal case
Size approx. Size approx.
l2in. x in. $3 i \mathrm{in}$. Complete but less erystan, not tested no guaranteed. 19/6 plus $7 / 6$ post and insurance. Should not beoperat ed as a tranamitter in the U.K

See in the Dark
INFRA-RED BINOCULARS

These Infra-red binoculare when fed from a high voltage source will enable objects to be seen in the dark, providing the objects are in the rays of an infa-red beam. Wach eye bube contains a complete Thege optical systems can be used as lenses for T. V, cameras-light cells, etc. (details supplled) The binoculary form part of the Army nigh driving (Tabby) equipment. They are unused and believed to be in good working order but sold without a guarantee. Price 88.17 .6 , plus $10 /$ cart. and ins. Handbook 2/6,

RECORD DECK

 Heavy guage pressed metal plynth, alze 13in. I witch and 10 in . turntable. Motor normally main working but 78 r.p.im. only. Could no doubt be altered to 33 or $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Limited quantity only 29/6 each, plus post and insurance $6 / 6$.9 VOLT PRECISION MOTOR
Intended tor dring bathery operated tape recorders and Pole armature with Brush (lear and rapid start switch.
 Normally 25% Our price $/ 6$.
phts port and insurance $1 / 6$.

MAINS TRANSISTOR POWER PACK

Denigned to operate transistor sets and ampliflers. Adjustable output $68 ., 9 \mathrm{v} ., 12$ volts for up to 500 mA (elaws B working). Takes the piace of any of the following bat teries: PP1, PP3, PP4, mains transformer rectifier, smoothing and load resistor, 5.000 and 500 mfd . condensers. Zener diode and instructions. Real anip at only 14/6, plus 3/6 postage.

SENSITIVE HAND

MICROPHONE
Dynamic type. Low impedance, moving with h ant i-microphonle coupling to handle Extra small size but very aensitive. $15 /$

POLYESTER FILLED

FLUORESCENT CHOKE

Extra ailent operation, suitable for 230 with two bi-pin mush on eads, two spring tube clips, starter and starter holder $17 / 6$ complete. Postsge for kit or choke only is $4 / 6.80$ watt as above, price $17 / 6$
for the choke or $21 /-$ for the kit. Post $4 / 6$. STUPENDOUS OFFER - £11 for $\mathbf{E} 2$

any recently sold for t10.8.6. Note these features - Long \& Medium Wave Long dial Puah pull output A.V.C. and feed back Ferrlte aerial Six transiators Cabinet size 4 tin. x Sin x lin. with carrying strap. You get everything you need and instructions. 38/6 plus 3/6 p. \& p

ELECTRONICS (CROYDON) LIMITED

(Dept. P. W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) a/so at 266 LONDON ROAD, CROYDON, SURREY

UNLIMITED OPPORTUNITIES exist today for＂getting on＂．．．but only for the fully trained man．Let ICS＇s tuition develop your talents and help you to success．
STUDY IS EASY with ICS guidance．The courses are thorough．Printed manuals，fully illustrated，make study simple and progress sure．
YOUR ROAD TO SUCCESS can start from here－today． Complete this coupon and post it to us，for full particulars of the course which interests you．MODERATE FEES INCLUDE ALL BOOKS．

Take the right course now

ADVERTISING \＆ART Layout and Typography Commercial llustrating Oil \＆Water Colour BUILDING \＆CIVIL ENG＇NG Architecture，Bricklaying Building Construction Builders Draughtsuan Buiders Quantities Interior Decoration Heating \＆Ventilation Heating \＆Ventilation COMMERCE

Book－keeping

Accountancy \＆Costing
Ousinese Training
Purcharing，Storekeeping
Becretaryship
Ghorthand \＆Typing Computer Programming Bmall Businesa Owners
DRAUGHTSMANSHIP
Architectural，Mechanical Drawing Office Practice
ELECTRONICS
Computers
Electronic Technicians Iddustrial Electronies

FARMING

Arable \＆Livestock Pig \＆Poultry Keeping Farm Management \＆Accounts GENERAL EDUCATION G．C．E．subjects at Ordinary \＆ Advanced Level Good Enghish F＇ureign Langunges

HORTICULTURE Home Gardening Park Gardening Market Gardening MANAGEMENT Business Managemen
Hotel Management Hotel Management Industrial Management Office Janagement Prsilic Relations（IPR） Transport Management Works Management Work Study Foremanship MECHANICAL \＆MOTOR ENG＇NG Engineering Maths． Diesel Engines，Welding Industrial Instrumentation Workshop Practi Meritor Mechan PoLICE Entrance Promotion Examination PHOTOGRAPHY Practical Photography RADIO，TV \＆ELECTRICAL Bervicing \＆Engineering Radis Construction（with Kits） P．M．G．Certificates Telecommunications Electricians Electrical Contractors SELLING
Company lieps． Marketing
WRITING FOR PROFIT
Telerision Seriptwriting
Short－story Writing
Free－lance Jominalism Technical writing

INTENSIVE COACHING for all principal examinations－G．C．E．． Secretaryship，Accountancy，Engineering，Work Study，Manage－ ment．Radio，Transport and Surveying．Special courses for G．C．E．French，German Oral Tests．

Member of the Association of British Correspondence Colleges

international correspondence schools

 （Dept．172）Intertext House，Parkgate Rd．，London，S．W．11
Send FREEbookon．．
\qquad
\qquad
\qquad

ELECTROLYTIC CONDENSERS							
． $25 \mu \mathrm{~F}$	3 volt	$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$16 \mu \mathrm{~F}$	16 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	10 volt	$4 \mu \mathrm{~F}$	4 volt	$16 \% \mathrm{~F}$	30 volt	$64 \mu \mathrm{~F}$	10 volt
$1 \mu \mathrm{~F}$	15 volt	$4 \mu \mathrm{~F}$	12 volt	16 p ，F	150 volt	$64 \mu \mathrm{~F}$	40 volt
${ }_{1}{ }^{2} \mathrm{~F}$	40 volt	$4 \mu \mathrm{~F}$	25 volt	$20 \mu \mathrm{~F}$	3 volt	$100 \mu \mathrm{~F}$	3 volt
$1 \mu \mathrm{~F}$	50 volt	$4 \mu \mathrm{~F}$	100 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	6 volt
$1 / 2 F$	350 volt	$51 / \mathrm{F}$	6 volt	$20 \mu \mathrm{~F}$	9 volt	$100 \mu \mathrm{~F}$	10 volt
1．25 $\mu \mathrm{F}$	16 volt	$5 \mu \mathrm{~F}$	25 volt	$20 \mu \mathrm{~F}$	15 volt	$100 \mu \mathrm{~F}$	92 volt
$2 \mu \mathrm{~F}$	3 volt	$5 \mu \mathrm{~F}$	50 volt	$25 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	15 volt
$2 \mu \mathrm{~F}$	9 volt	$5 \mu \mathrm{~F}$	70 volt	$25 \mu \mathrm{~F}$	12 volt	150 2 F	12 volt
$2 \mu \mathrm{~F}$	10 volt	${ }^{6} \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$	25 volt	150 $\mu \mathrm{F}$	25 volt
$2 \mu \mathrm{~F}$	15 volt	$6 \mu \mathrm{~F}$	15 volt	$25 \mu \mathrm{~F}$	30 volt	200\％ F	3 volt
$2 \mu \mathrm{~F}$	70 volt	$6.4 \mu \mathrm{~F}$	40 volt	$30 \mu \mathrm{~F}$	6 volt	$200 \mu \mathrm{~F}$	4 volt
$2 \mu \mathrm{~F}$	150 volt	$8{ }^{8} \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	10 volt	$200 \mu \mathrm{~F}$	16 volt
$2.5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	15 volt	$250 \mu \mathrm{~F}$	2.5 volt
$2.5 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$32 \mu \mathrm{~F}$	1.5 volt	$250 \mu \mathrm{~F}$	9 volt
$3 \mu \mathrm{~F}$	3 volt	$10 \mu \mathrm{~F}$	6 volt	$32 \mu \mathrm{~F}$	25 volt	$250 \mu \mathrm{~F}$	15 volt
$3 \mu \mathrm{~F}$	12 volt	$10 \mu \mathrm{~F}$	10 volt	$40 \mu \mathrm{~F}$	3 volt	$320 \mu \mathrm{~F}$	2.5 volt
$3 \mu \mathrm{~F}$	25 volt	$10 \mu \mathrm{~F}$	12 volt	$40^{2} \mathrm{~F}$	6.4 volt	500 2 F	4 volt
$3 \cdot 2 \mu \mathrm{~F}$	6 volt	$10 \mu \mathrm{~F}$	25 volt	$50 \mu \mathrm{~F}$	6 volt	640 $\mu \mathrm{F}$	2.5 volt
$3 \cdot 2 \mu \mathrm{~F}$	6.4 volt	$12.5 \mu \mathrm{~F}$	4 volt	$50 \mu \mathrm{~F}$	9 volt	$750 \mu \mathrm{~F}$	18 volt
$3.2 \mu \mathrm{~F}$	40 volt	$12.5 \mu \mathrm{~F}$	40 volt	$64 \mu \mathrm{~F}$	2.5 volt	$1000 \mu \mathrm{~F}$	6 volt

	PAPER CONDENSERS					
$.001 \mu \mathrm{~F}$	500 volt	$.02 \mu \mathrm{~F}$	600 AC	$-25 \mu \mathrm{~F}$	350 volt	
$.001 \mu \mathrm{~F}$	1000 volt	$.02 \mu \mathrm{~F}$	350 volt	$-5 \mu \mathrm{~F}$	150 volt	
$.002 \mu \mathrm{~F}$	500 volt	$-1 \mu \mathrm{~F}$	350 volt	$.5 \mu \mathrm{~F}$	350 volt	
$.005 \mu \mathrm{~F}$	750 volt	$.1 \mu \mathrm{~F}$	750 volt	$.5 \mu \mathrm{~F}$	500 volt	

All at 15／－per 100 or mlxed packet（our selection） 50 for $10 / \%$
VERY SPECIAL VALUE！SILVER MICA，POLYSTYRENE，CERAMIC CONDENSERS．Very well assorted．Mixed types and values． $10 /=$ per 100. RESISTORS
Very small $\frac{1}{3}$ watt， 5% long leads，ideal for transistor work $\frac{1}{4}$ watt assorted vaiues including printed circuit types $10 /$－for 100 $55 /-$ for 1000
$\frac{4}{2}$ watt to 3 watt mixed values and types 10／－for 100 $55 /-$ for 1000 To clear 10 meg ．$/ \mathrm{a}$ watt resistors，$£ 1$ per 1,000 ．WIRE－WOUND 3 watt． 5 watt， 6d．each． 7 watt， 10 watt，9d．each．Mosi values， 1Ω to $47 \mathrm{k} \Omega$ ．

TRANSISTORS

AFZ12 screened V．H．F．oscillator transisiors，5／．each．OC44，OC45 R．F．Tran－ sistors， $2 / 6$ each．OC81D， $2 / 6$ each．OC71 equivalent $1 /-$ each，£3 per 100. Swltehing Transistors ASY 22 （P．N．P．）or I．B．M．（N．P．N．） 6 for $10 / \%$ Car radio type Output Transistors type NKT405 10／－each．Unmarked，untested transistors， 50 for 10\％．Light－sensltive translstors similar to OCP71，2／－each．

| | TELEVISION VALVES，BRAND NEW AND BOXED | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PCF80 | $7 / 6$ | PCC84 | $6 / 6$ | PCL83 | $9 /-$ |
| PCL84 | $7 / 6$ | EY86 | $6 /-$ | PCL85 | $7 / 6$ |
| PL36 | $9 / 6$ | PCC89 | $9 /-$ | ECC82 | $6 / 6$ |
| ECL80 | $6 / 6$ | PCL82 | $7 / 6$ | PY33 | $9 /-$ |
| PL81 | $7 / 6$ | PY81 | $6 /-$ | | |

SILICON DIODES．Make excellent detectors，also sultable for keying electronic organs． $1 /$ each or 20 for $10 /$－．
BY100 TYPE TELEVISION H．T．RECTIFIERS．SPECIAL PRICE 5／＊each， 30／－doz．ORP 12 light sensitive resistors 9／－each．
TRANSISTOR BATTERY ELIMINATORS－same size as PP9 30／－；PP6 20／－． BATTERY CHARGERS，with meter and fuse． 4 amp． $6 / 12$ volf 55／－each．
SOLON MODEL 615 Slim Pencil－bit Soldering Irons 25／－each．
WELLER DUAL－HEAT SOLDERING GUN，57／6．
NUTS，SCREWS and WASHERS，very uselul assorted packs，6／• each． TRANSCEIVERS（not for use in U．K．）£7．10．0 palr．
SIGNAL INJECTOR．Parts and clrculit to make $10 /$－only．
SIGNAL TRACER．Parts and circuit to make 10% only．
MOTOR CAR REV．COUNTER（less 1 mA meter）．Parts and clrcuit to make 10／－only．
TRANSISTORS，COMPONENTS AND CIRCUIT．To convert 1 mA meter to 0 to 10 Meg ．ohm meter $10 /$ ．
TRANSISTORISED RUMBLE AND SCRATCH FILTER（for improving reproduction of old records）all components and circuit $\mathbf{3 0} / \mathrm{m}$ ．
SINCLAIR．All products In stock including latest version of MICRO－6．World＇s smallest radio，and only 59／6．
NEEDLES FOR RECORD PLAYERS．HALF PRICES．All types below at 3／6 ea． TC8LP；GC2LP；GC8LP；BF40LP；GP67LP；GP37：GP59；TC8 Stereo LP：Studio OLP．CARTRIDGES．Sonotone Mono 10\％．Acos 15\％．Acos Stereo Sapphire 12／6．Diamond 17／6．All complete with needles！
LAPEL MICROPHONES．Magnetic or Crysial 10／－each．
TAPE RECORDER MPCROPHONES．Fantastic value at $12 /$ each．
ACOS MIC． 45 30／－，Many other both crystai and dynamic in stock．
THIN CONNECTING WIRE． $10 y \mathrm{ds} .1 /-; 100 \mathrm{yds} .7 / 6 ; 500 \mathrm{yds} .25 /-$ post $4 / 6$ ； 1，000yds．40／－post 6／－．
LOUDSPEAKERS．121n．Richard Allen 37／6．121n．Bakers Gultar £5．5．0．
$3 \mathrm{in} ., 4 \mathrm{in}$ ． 5 in ．and $5 \times 3 \mathrm{in}$ ．all at $10 / \cdot$ each． $8 \times 2 \frac{3}{4} \mathrm{in} .12 / 6,2 \mathrm{in} .80 \mathrm{ohm} 7 / 6$ ．
EA RPIECES．Magnetic or Crystal 5／－each．
VEROBOARD

VEROBOARD								
$2 \frac{1}{1} \times 5 \mathrm{in}$ ．	．	．．3／11	Terminal Pins．．	－	－	－	50 for	3／－
$2 \frac{1}{1} \times 3$ 等in，	－	．．3／3	Spot Face Cutter	．	\cdots	\cdots		7／3
$3 \frac{3}{4} \times 5 \mathrm{in}$ ．	．	．．5／6	Pin Insert Tool	．	－	\cdots		9／6
33，\times 3 ${ }^{\frac{3}{1} \mathrm{in}}$ ．		．．3／11	Special Offer．Cutter \＆ 5 boards $2 \frac{1}{6} \times 1 \mathrm{ln}$ ． $9 / 9$					

ORDERS BY POST TO

G．F．MILWARD， 17 Peel Close，Drayton Bassett，Staffs．

PLEASE INCLUDE APPROPRIATE POSTAGE COSTS
No enquiries without stamped addressed envelope
For customers in the Birmingham area，goods may be obtained from Rock Exchanges， 231 Alum Rock Road，Birmingham 8.

TUO IIETRE TRAIISIIITTER

F.G.RAYER G30GR

TTHE 144Mc/s amateur band covers a very wide frequency range compared with the low frequency bands, and crystal control is quite often used offering a simple means of obtaining good frequency stability. In addition to its obvious use on the $144 \mathrm{Mc} / \mathrm{s}$ band, a transmitter of the kind described here may be adapted for use as a driver, with its output frequency multiplied into the $420 \mathrm{M} / \mathrm{cs}$ band. The new Class B licence permits operating on frequencies above $420 \mathrm{Mc} / \mathrm{s}$ without any need to pass the Morse test, call-signs being allocated in the G8 (followed by three letters) series.

Figure 1 is the circuit, V1 using an $8 \mathrm{Mc} / \mathrm{s} 3$ rd overtone type crystal so that output is obtained directly on $24 \mathrm{Mc} / \mathrm{s}$. If the tuned circuit $\mathrm{LI} / \mathrm{VCl}$ is tuned for maximum output, oscillation may not recommence after switching on and off, and VCl is adjusted slightly as necessary to correct this.

V2 triples to $\mathbf{7 2} \mathrm{Mc} / \mathrm{s}$, while V3 doubles to $144 \mathrm{Mc} / \mathrm{s}$ driving the power amplifier V4 at $144 \mathrm{Mc} / \mathrm{s}$ ensuring reasonable efficiency. As grid current is very important, VC2 is panel operated, and a grid current meter is included. It is possible to omit this meter, fitting a jack for an external test-meter or similar instrument. If a grid dip oscillator is available this will be very useful to check the frequencies of the various circuits before applying power. Should a g.d.o. not be to hand, tuning up can be accomplished by means of the indicating wavemeter described. Initial adjustments should be made stage by
stage, and no h.t. must be applied to h.t. 2 until the circuits are correctly tuned. If the coil details given are followed carefully, this should avoid any serious error such as working on the wrong harmonic. The coil details are given exactly as a guide, and this does not mean that somewhat dissimilar coils would not be satisfactory if a g.d.o. can be brought into use to adjust their frequency.

CONSTRUCTION

This is quite straightforward, with all circuits except the p.a. anode and output below the chassis. A piece of aluminium $4 \frac{1}{4} \mathrm{in}$. $\times 9 \frac{3}{1} \mathrm{in}$. has $\frac{1}{4} \mathrm{in}$. flanges bent on it, and is shaped to fit as in Fig. 2. The positions of valveholders and other items on the chassis can be judged from Figs. 2 and 3.

Figure 3 is the underside of the chassis. Heater and h.t. leads run close against the chassis. All bypass capacitors are connected with very short leads.

OVERTONE OSCILLATOR

The oscillator is intended for 3rd overtone type crystals, and other crystals may not be satisfactory. With the $8 \mathrm{Mc} / \mathrm{s}$ overtone crystal, the Iowest frequency present is the overtone, or $24 \mathrm{Mc} / \mathrm{s}$. The output frequency of the transmitter is approximately x18 the crystal frequency, and crystals can be chosen on this basis.

The position of the tapping T on LI considerably influences results, and will probably have to be

Fig. 1: Circuit diagram of the two metre transmitter.
adjusted to suit the particular operating conditions. If the tapping is too near the grid end G of L1, no oscillation will be obtained. But if the tapping is too near the anode end A, oscillation will continue at all frequencies to which L1 may be tuned. When the tapping is correctly placed oscillation arises only at the crystal overtone.

L1 is wound with 24 s.w.g. enamelled wire, on a 9/32in. diameter cored former. There are 18 turns in all, with the tapping 5 turns from the grid or crystal

Fig. 2: Layout of the components in the p.a. compartment above chassis.
end, Fig. 4. Some adjustment of the ease with which the circuit oscillates can be made by modifying the position of the core, and restoring tuning by VC1. If a g.d.o. is available, place V1 and V2 in, and set L 1 core and VCl to give resonance on $24 \mathrm{Mc} / \mathrm{s}$. Include a meter between R1 and the h.t. line, and apply about $250-300 \mathrm{~V}$. Current may be around 10 mA off tune, falling to $8-9 \mathrm{~mA}$ on tune. If adjustments of $\mathrm{VC1}$ and L 1 core do not produce a dip in current, the circuit may not be oscillating. A receiver or sensitive wavemeter tuned to $24 \mathrm{Mc} / \mathrm{s}$ will show this. Alternatively, there will be a sharp rise in current if L1 is shorted, if the circuit was oscillating. If oscillation is not obtained, tapping T may need to be a turn or so nearer A. Should these tests show the circuit oscillates, but that the frequency can be tuned by VCl , tapping T needs to be a turn or so nearer G. If a g.d.o. is not handy, use a receiver or wavemeter to make sure that LI is not tuned to $16 \mathrm{Mc} / \mathrm{s}$ or $32 \mathrm{Mc} / \mathrm{s}$ in error. Some 3rd overtone type crystals will oscillate at multiples other than the one required.

When adjustment is correct, adjusting L1 or VCI will only slightly change the frequency, due to pulling the crystal, and if L1 is put very far off resonance, oscillation will cease, as shown by a rise in anode current.

Coil L2 has 6 turns of 16s.w.g. wire, spaced to occupy $\frac{3}{4}$ in., with an outside diameter of $\frac{5}{8} \mathrm{in}$. The
shortest possible connections are used from the coil to tag 5, and from C5 to the coil and chassis.

Insert V3. Temporarily insert a meter between R6 and chassis (positive to chassis). If a g.d.o. is available, adjust TC 1 until L 2 is resonant at $72 \mathrm{Mc} / \mathrm{s}$. If no g.d.o. is to hand, adjust TC1 for maximum grid current through R6, this should be over 0.5 mA . Check with the wavemeter that L2 is tuned to $72 \mathrm{Mc} / \mathrm{s}$, and not some other multiple. Adjustments of TC1 may seem quite flat, because it is in series with V3 grid capacity. TC1 should be at least half closed. Should L2 not tune to $72 \mathrm{Mc} / \mathrm{s}$, it must be stretched or compressed slightly.

The driver coil L3 is adjusted to $144 \mathrm{Mc} / \mathrm{s}$ with the parallel trimmer TC2. L3 is 2 turns of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire, with an outside diameter of $\frac{5}{8} \mathrm{in}$. and turns separated to occupy $5 / 16 \mathrm{in}$. With grid current obtained through R6 as mentioned, rotate TC2 for maximum output, as shown by a wavemeter or lamp loop. The latter can be 1 turn of insulated wire, soldered directly to a 0.06 ampere bulb. The trimmer, L3, and C7 have the shortest possible leads. If L3 does not tune to $144 \mathrm{Mc} / \mathrm{s}$, it will have to be compressed or stretched slightly.

PA GRID COIL

As stray capacity is otherwise too great for efficient working, this is series tuned by VC2. It has $5 \frac{3}{4}$ turns of 16 s.w.g. wire, and is $\frac{1}{2} \mathrm{in}$. long, with an outside diameter of $\frac{1}{2} \mathrm{in}$. Wire V4 holder with stout conductors ($16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) and the shortest leads possible. Take by-pass capacitor and other connections to the tags adjacent to the sockets, not to the ends of the tags. A paxolin holder of the thin type, with little solid material, was found satisfactory, and the moulded type of holder with embedded sockets should not be used. A ceramic or other low-loss holder is preferable.

Connect L4 directly from tag 5 to VC2. Cut one lead of R9 very short, and solder this to the centre of L4. Put V4 in, but be sure no h.t. is applied to anode or screen grid. L3 and L4 are closely coupled as in Fig. 3. Adjustments in all stages can now be directed towards obtaining maximum grid current. With VC2 correctly adjusted, grid current should be 2 mA to 3 mA . If maximum grid current is with VC2 open, stretch L4 slightly. Should maximum grid current be obtained with VC2 closed, press the turns of L4 slightly together.

All the previous trimming adjustments can be checked now, to get maximum grid current on the meter. Although L3 and L4 need to be close together, on no account must they touch. The adjustments of TC2 and VC2 to some extent depend on each other, but after these are peaked VC2 should allow ample adjustment of grid current on the meter.

PA ANODE COIL

The p.a. anode coil L5 has $4 \frac{1}{2}$ turns of 14 s.w.g. wire wound to an outside diameter of $11 / 16 \mathrm{in}$. The coil is $\frac{3}{4} \mathrm{in}$. long and a $\frac{1}{2} \mathrm{in}$. flexible lead is soldered to the anode end. This can be a piece of co-axial cable outer braiding, or a number of pieces of bared flex twisted together. The other end goes directly to VC3. A 14s.w.g. wire runs from VC3 moving plates tag to chassis.

RFC2 is self-supporting and has 30 turns close wound of $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire on a $\frac{1}{4} \mathrm{in}$. diameter rod. Straighten a piece of wire and fix one

BUILD YOURSELF A OUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

THE MAGNIFICENT GOAMERZ.

 SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!- Fully tinahle wavebamis-MW1. Mw2, LW, SW 1 , SW 2 , SW3 and Trawler Band.
- Exira Medinm waveband provides easier foung of 'poli' statious.
- Built in ferrite rod aeritll for Medium and Lang Waves.
- 5 Section 22 inch chrome plated telescopio aerial for : \%hort Waves-can be angled and otateir peak W. listering.
- Socket for Car Aerial.
- Powerful pish pull output.
- 7 transistora and two diodes including Philco Micro-Alloy R.F. Transistors.
-Famnus make 7in. x 4 in. P.M. speaker for rich-tone volume.
- Atr spaced ganged tuning condenser
- Separate on/off switch, volume control, wave change switches and tuning control.
- Attractive leather look case with hand and shoulder straps. Size 9in. x 7in. x 4in. approx.
- First grade componenta.
- Easy to follow instructions and iliagrams make the Roamer 7 a pleasure to buid with guaranteed results.

Total building costs

£5.19.6 . 8 P 5/6

Total building costs $42^{\prime} 6_{\substack{P \\ \beta, G}}^{\mathcal{G} P .}$

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE Attractive case with red speaker grille. size 67 x $41 \times 1 \mathrm{fin}$. Fully tunable. 7 stages- 5 transistors andunioden, terite rou aerial, timiug comilenser, apeaker, all Arst grade components. Easy build
plans and parts price list $1 / 6$. (FREE witl kit). Medium, Short Wave, and Trawier Band version can be supplied if preferred.

MELODY SIX

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER

Handsome leather look case size $\left.6 \frac{3}{4} \times 3\right\} \times 17$ in with gilt trim and hand and shoulder straps, Fully thiable over bot h Mindun and Long waves. Incorporates pre-tagged circuit unard, 8 stages-
6 transistors and 2 diodes, ferrite rol aerial, pushfitransistors and 2 diodes, ferrite rol aerial, push-
pull output, wave change slide switch, tuning condenser, volume contron, win, hoving con 2/- (FREE with kit). $2 /$ (FREE with kit).

Total building costs
 59'6
 P. \& P 3/6

Total building costs
$418 \underset{3 / 6}{P . \& P \text {. }}$

To1al building costs

$$
8 囚 / 8 \underset{3 / 6}{P . \& P}
$$

POCKET FIVE

TWO WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive black and gold case. Size $5 \frac{1}{3} 1 \frac{1}{2} \times$ 3 inin. Fully tunable over both Medium and Long
Waves with extended Waves with extended M.W. band for easier tuning of "pop" stations. All grat grade com-
 moving coil speaker etc. Fasy build plans and parts price list. I/f (FREE with kit) plans and POCKET FIVE Medium and Long Wave version with miniature speaker ONLY $29 / 6$ P, \& P. $3 / 6$.

MELODY MAKER 6
THREE WAVEBAND PORTABLE WITH 3in, SPEAKER

Smart pocket size case, $6 \frac{1}{} \times 3 \times 11 \mathrm{in}$. with gilt fittings. Fulty tunable over both Medium and Long "pop" stations. 8 stages- 6 transistors and diodes, top grade 3in speaker, 2 R.F. atagen for extra boort, high ' Q ' ferrite rod aerral. Easy build plans aud parts price list. 2/- (FREE with kit).

Total building costs

$$
7 \otimes / \& \underset{3 / 6}{P}
$$

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in, SPEAKER

Altractive case size $7 \frac{1}{2} \times 5 \frac{1}{2} \times 1 / 3 \mathrm{in}$. With gill Attings and carrying otrap. The deal radio for Waves and outhoors. Covers Medium and Long orporating Trawler Band. Special circuit in corrite rod aerial. 7 . Btages, puali pull output, rerrite rod aerial, 6 transistors and 2 dickes, 3 in grade components. Easy build plans and parts. Price list 2/- (FREE with kit).

RADIO EXCHANGE CO.

 Saturday 9-12.30 p.mDE LUXE PLAYYERS
4-Speed Mono Players 2-tone
Cabinets $17 \times 15 \times 8$ in. High Cabinets $17 \times 15 \times 8$ in. High
fux loudspeakera and High fux loudspeakers and High Quality Quality output. Volume and Bass controls. Specialinstructions
enable assembly in 30 minutes, only 5 12 months' months' gnarantee. TO BUILD YOURSELF

Post 2/6 per item PORTABLE CABINET As illastrated to fit standard player 69/6 or autochanzer.
3 WATT AMPLIFIER. Weady made and tested. tode valve and 50 tode valve and 59/6
loudspeaker. SINGLE PLAY MONO BSR GU7
 Philips AG1016 212. 9.6 Garrard A70 \&10.10.8 Garrard LAB80 e2Z4.19.6 Garrard 401 229.19.6 Garrard Te stereo/mono Heads $12 / 6$ extra. monnting mounting. 1000, 2000, 3000, SP25, AT60

SUPERIOR AMPLIFLER Ready made and tested. Guaranteed better sound. Pully isolated AC Mains Transiormer 4 watt ont-
put. ECL8
triode penput. ECL86
tode valve. Volume and tode valve. Volume and
tone controls with knobs, Quality
Loudspeaker
89/6 AUTOCHANGE MONO BSR Superalim 25.19.6 Garrard $1000 \quad$ 25.19.6 Garrard 2000 \&8.19.B Garrard 3000 Garrard AT60 Mk. diecast turntable E12.19.6

CHARGERTRANSFORMERS P. \& P. 2/6 ior 8 or 12 v., 11 amps., $17 / 6 ; 2$ amps., $21 /-4$ amps.; $25 /-$. Circuit included. WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p .2 -way, or 2 p. 6-wgy, or 3 p .4 -way, $3 / 6$ each. 1 p. 12 -way or 4 p. 2-why. or 4 p. $3-$ way, $3 / 6$ each, ACOS LP-78 Turnover Head and Styli 20/-; Steroo 30/-. SPEAKER FRET Tygan various colours, 58in. wide from $10 /-1$ t. $26 i n$. Wide irom $5 /-\mathrm{ft}$. Samples S.A.E. EXPANDED METAL Gold or Silver 12 I 12 in . 6/-.
NEW GARRARD GRAM MOTORS 100 -180v. A.C. 15/ NEW GARRARD GRAM MOTORS 100-180v. A.C.

STELLA RECORD PLAYER AMPLIFIER 4 watt. 2 atage. 3 to 7 ohm . Neg. leed back. UCL82, UY85. 4 watt. 2 日tage. 3 to 7 ohm. Neg. leed back. UCL82, UY85.
$200-250 \%$. A.C. tapped input. Chassis size $8 \times 2 \mathrm{2} \times 4 \mathrm{in}$. High. 200-250v. A.C. tapped input. Chassis gize $8 \times 23 \times 4 i n$. high.
Gold/Wginut knobs. Volume and Tone controls on separate Polished Wood Panel $6 \times 2 \mathrm{Kin}$. Brand new with $78 / 6$
maker's guarantee. Bargain price. Post $2 / 6$

NEW TUBULAR ELECTROLYTICS CAN TYPES

 $\begin{array}{lllllllll}4 / 350 & \nabla . & 2 / 3 & 250 / 25 & \nabla . & \cdots & 2 / 6 & 16 / 600 & \%\end{array} \quad . \quad 12 / 6$ \begin{tabular}{ll|lllll}
$8 / 450$

\& v. \& $2 / 3$ \& $500 / 15$

V. \& \cdots \& $3 /-$ \& $16+18 / 500$

\hline

 $16 / 450$ ₹. $\quad 3 /-\quad 8+8 / 450$ ₹. $\quad 3 / 6,32+32 / 450$ ₹.

$2 / 450$

v. \& $1 / 9$ \& $16+18 / 450$ \& v. \& $4 / 3$ \& $60+100 / 350$ \& v. $11 / 6$

$25 / 25$ \& v_{4} \& $2 /-1$ \& $32+32 / 350$ \& v. \& $4 / 9$

$50 / 50$ \& $100+200 / 275 \mathrm{v} .12 / 6$

\hline
\end{tabular} SUB-MIN. ELECTROLYTIC8, $1,2,4,5,8,16,85,30,50,100$, $50 \mathrm{mld} .15 \mathrm{v} .2 / 6 ; 500,1000 \mathrm{mld} .12 \mathrm{y}, 3 / 8,200 \mathrm{mid}, 25 \mathrm{v}, 9 / 6$. ERAMIC 500q. 1 pr. to 0.01 mid ., 9 d . Discs $1 /$ -

PAPER TUBULARS

$350 \nabla,-0.19 \mathrm{~d} ., 0.52 / 6 ; 1$ midd. $3 /-; 2$ mid. $150 \mathrm{v} .3 /-$
00 v . 0.001 to 0.059 d - $; 0.11 /-; 0.251 / 6 ; 0.53 /-\quad 01$ H T CONDENSERS 0.001 mld 7 EV 6/6: 20 V , $10 / 6$ ILVEP MCA Nose SILVER MICA. Close tolerance (plus or minus $\frac{1}{2} \mathrm{pF}$.), 5 to 47pF, $1 /-;$ ditto $1 \% 50$ to $800 \mathrm{pF} \mathrm{1/-;} 1,000$ to $3,000 \mathrm{pF} .42 /-$ ure, $10 /-; 500 \mathrm{pF}$. standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$ midget less trimmers, $7 / 6 ; 500 \mathrm{pF}$, slow motion, standard $9 /-$; mall 3 -gang $500 \mathrm{pF} .18 / 9$. Single " 0 " 365 pF . 7/6. twin 10/-, 8HORT WAVE. Single 10 pP ., $25 \mathrm{pF}_{-,} 50 \mathrm{pF}$-, 75 pF , 00 pF ., $160 \mathrm{pF} .5 / 6$ each. Can be ganged. Couplers 9d. each. TUNING. Solid dielectric. $100 \mathrm{pF} .300 \mathrm{pF} ., 500 \mathrm{pF} ., 3 / 6$ eaoh. TRIMMERS. Compression ceramic 30, 50, $70 \mathrm{pF} ., 9 \mathrm{~d}$. $100 \mathrm{pP}, 150 \mathrm{pP} ., 1 / 3 ; 250 \mathrm{pF} ., 1 / 6 ; 600 \mathrm{pP} .750 \mathrm{pF} ., 1 / 8$.

 MAINS TRANSFORMERS 250-0-250 80m $2 / 6$ each
 350-0.350 80mA., 6.3v. 3.5A., $6.3 v$. 1a., or $5 v .2 a28 / 6$ MINIATURE 800 v . 20 mA ., B. 3 v . 1 a . MIDGET 220 v . 45 mA ., 6.3v. 2s...
Small 250-0-250 50 mA ., 6.3v. 2a.
HEATER TRANS. B.3v. $1 \frac{1}{2} \mathrm{~B}, \mathrm{~s} / \mathrm{B}: 6.3 \mathrm{v} \cdot 4 \mathrm{a}$ Ditto tapped sec. $1.4 \mathrm{v}, \mathrm{C}^{2}, 3,4,5,6.3 \mathrm{v} .1 \frac{1}{8} \mathrm{a}$. GENERAL PURPOSE LOW VOLTAGE. Outputs $3.4,5$,
 AUT, 5, TRANSFORMERS 0 -115- 230 volt Input/Output 60w. 18/6; 150w. 25/-; 500w. 92/6; 1,000w. 175/-.
 CATA LOGUE S.A. F.
GROUP MODEL FOR VOCALS, BRSS, LEAD and RHYTHM GUITARS $30-10,000 \mathrm{cps}$. Voice Coils 15 ohms . Heavy Duty "Group 25" "Group 35" 'Group 50"

Quality Horn Tweeters $3-18 \mathrm{ke} / \mathrm{s}$. 10w. 27/8. Grossover $14 / 6$. LOUDSPEAKERS P.M. 3 OHMS. 2 in., 3in., 4 in., Sin. $7 \mathrm{in} . \times 4 \mathrm{in}$., $15 / 6$ each; 8in. 22/6; 64in. 18/6; 10in. 30/E. Mi. I. Donble Cone $13 \frac{1}{2} \times 8$ in. 3 or 15 ohm models, $45 /-$ SPECLAL OFFER! 8 ohm. 2 tin., 5 in.; 15 ohm . $5 \mathrm{in} ., 7 \times 4 \mathrm{im}$ $15 / 6 \quad 25$ ohm. Sin, $6 \times 4 i n ., 35 \mathrm{ohm} .3 \mathrm{in}$., $8 \mathrm{in} ., 7 \times 4 \mathrm{in}$, 5/6 EACH-ANY TYPE. 80 ohm. $2 t$ in. 21 in , JACK SOCKETS Std open-oircuit $2 / 8$, close oircuit $4 / 8$ Chrome Lead Socket 7/6 DIN 3-pin $1 / 3$ 5-pin 1/6; Lead 3/8; Phono Plugs $1 /$-. Socket $1 /-$. JACK PLUGS Std. Chrome 3/ $.5 \mathrm{~mm} . ; 8.5 \mathrm{~mm}$. $1 / 8$; DIN $3-$ pin $3 / 6 ; 5-$ pin $5 /-$.
DE LUXE TAPE SPLICER. Cuts, trims, joins.
For editing and repairs. With 3 blades. $14 / 6$ For editing and repairs. With 3 blades. $14 / 6$
Tape Heads: Collaro 2 track $28 / 6$ pair. B.S.R. 4 track $99 / 6$ 4-MEXYXEL TRANSISTOE MICROPIONE NIXFRE Add musical highlights and sound effects to recordings. Will mix microphone, records, tape and tuner $52 / 6$
with selograte controls into single outFut. with seprrate controis into Bingle outhus. 5 gns. PRIMO A. 18 TRANSCRIPTION TONE ARM. With tracking tam plate and two Plug-in ghelis

end to some object. Wind by rotating the rod, keeping tension on the wire. Then when the rod is removed the turns will not spring out, but will remain as a solenoid. The actual tapping point is slightly off centre on the coil, as shown.

With no h.t. applied to V4 rotate VC2. A dip in grid current should be found indicating resonance for L5. If this is not found, compress or stretch L5, or check its frequency with a g.d.o. L6 is a single turn of 14 s .w.g. wire, covered in stout sleeving. The co-axial socket is fixed to a bracket. and the ends of L6 go directly from this to VC4. A lead from VC4 moving plates tag runs to the socket outer member at a soldering tag.

NEUTRALISING

Series tuned screen neutralising is used, adjusted by TC3. The choke r.f.c.l is 90 turns of 38 s.w.g. wire on a $3 / 16 \mathrm{in}$. diameter former. With TC3 fully closed, and no h.t. applied to V4, tune VC3 so that the dip in grid current mentioned is seen. Unscrew TC3 while VC3 is swung from side to side. A point should be found when the dip in grid current is much smaller, or absent and TC3 is left in this position.

PA TUNING

As a 6146 may readily draw a destructive anode current, a first test at reduced voltage is wise. Take h.t. 2 to a 250 V or similar supply, with a switch in circuit. A domestic lamp can be used as an arifificial load. This is not ideal at $144 \mathrm{Mc} / \mathrm{s}$, and will present a much higher impedance than the usual load. A temporary loop having 2 or 3 turns of insulated wire should be made and connected by short leads to the lampholder terminals. Put this loop near L5, switch on the h.t. 1 supply, and adjust VC2 for about 2 mA grid current. Switch on h.t.2, and immediately rotate VC3 for a dip in anode current. If this is under about 100 mA , bring the lamp loop nearer L5. With 25 watts input (100 mA at 250 V) a 15 W lamp should light fairly brightly.

Efficiency is much higher with increased voltages. VC2 may need slight re-adjustment after

Fig. 4: Coil details. For winding instructions see text.
applying h.t. to V4. A 275 V or 300 V supply is recommended for h.t.l. When a lamp or other artificial load is connected to the output socket, closing VC4 from zero increases loading, but a $200 / 250 \mathrm{~V}$ lamp is too high an impedance for this to be sufficient for full p.a. input.
C.W. ratings of the 6146 at $175 \mathrm{Mc} / \mathrm{s}$, are given as 140 mA anode current at 320 V . At $60 \mathrm{Mc} / \mathrm{s}$, ratings are 112 mA at 600 V . Telephony ratings are

Fig. 3: Under chassis wiring diagram showing layout of components.
normally somewhat lower. In addition, the highest input ratings need ample grid drive, or full output is not obtained. In view of this, the amplifier has been operated at about 100 mA anode current, from a 320 V supply.

PA BIAS

The p.a. must not be operated without sufficient grid current (bias) or off resonance, or in conditions where the output obtained is so low that the anode dissipation is exceeded. With normal care, this should not be difficult. For increased output, R10 may be reduced to $16 \mathrm{k} \Omega$.

Point h.t. 2 is supplied with modulated h.t. from the secondary of a modulation transformer. The modulator can be of normal type with a pair of 6L6 or 807 valves or similar stage delivering power about equal to half the p.a. input.

Note that the h.t. must be removed when changing crystals, if this is not done the valves could be permanently damaged.

WAVEMETER

If a g.d.o. or wavemeter is not available, a simple indicating wavemeter can be constructed as in Fig. 5. Provided the inductance and other details are exactly as shown, accuracy should be high enough for the various harmonic multiples to be identified. The output from the diode is taken to a test-meter or other instrument with a 1 mA or similar range. The variable capacitor is fitted to a piece of

components list

Capacitors:		Variable Capacitors:	
All di	c ceramic except C3	TC1	30pF Beehive
C1	2000pF	TC2	8pF Beehive
C2	2000pF	TC3	30pF Beehive
C3	25pF mica	VC1	5 pF) air-
C4	2000pF	VC2	10pF spaced
C5	2000pF	VC3	15 pF (s.w.
C6	2000pF	VC4	75 pF variables
C7	2000pF		
C8	2000pF		
C9	2000pF	Induc	tors:
C10	2000pF	RFC1	
C11	2000pF	RFC2	
C12	2000pF		
		L2	See text and
Resis	ors:	L3	Fig. 4
R1	$10 \mathrm{k} \Omega 2 \mathrm{~W}$	L4	
R2	$3.9 \mathrm{k} \Omega$	15	
R3	$56 \mathrm{k} \Omega$		J
R4	$33 \mathrm{k} \Omega$		
R5	$1 \mathrm{k} \Omega$		
R6	$68 \mathrm{k} \Omega$	Valve	
R7	20k $\Omega 1 \mathrm{~W}$		6C4
R8	470Ω		6AM6
R9	$22 \mathrm{k} \Omega$		5763
R10	20k $\Omega 3 \mathrm{~W}$		6146
Miscellaneous:			
Crystal ($8 \mathrm{Mc} / \mathrm{s} 3$ rd overtone); two B7G skirted valve holders with cans; one B9A skirted trolder with can; one octal holder; 5 mA meter; 150 mA meter; chassis $12 \times 5 \times 3$ in.; crystal holder; co-ax socket; four knobs; tagstrip; wire; solder etc.			

Fig. 5: Details and layout of suitable wavemeter.
insulating material, to serve as a handle and carry a card scale.

For the $22-72 \mathrm{Mc} / \mathrm{s}$ band, take $17 \frac{1}{2} \mathrm{in}$. of 16 s .w.g. wire, and straighten it. Wind $5 \frac{1}{2}$ turns so that the coil has an outside diameter of $9 / 10 \mathrm{in}$. and is $\frac{1}{2} \mathrm{in}$. long, with the ends going directly to the tuning capacitor. For the $65-200 \mathrm{Mc} / \mathrm{s}$ band, use 4 in . of 16 s.w.g. wire. Bend this round a suitable object to form the loop as shown, and solder it to the capacitor. To cover both bands, it is necessary either to make two wavemeters, or to unsolder the unwanted coil. The wavemeter coil is loosely coupled to the appropriate transmitter coil, and tuned for maximum reading on the milliammeter.

Fixed capacitors should be of high-frequency by_continued on page 360

Top view of the chassis showing p.a. screening.

INCREASE YOUR KNOWLEDCE

MEMBER OF THE ASSOCIATION
OF BRITISH CORRESPONDENCE COLLEGES

CHOOSE THE RIGHT COURSE FROM
RADIO AND TELEVISION ENGINEERING, INDUSTRIAL TELEVISION, RADIO AND TELEVISION SERVICING,' ELECTRONICS, COMPUTERS AND PROGRAMMING, ELECTRONIC TECHNICIANS, SERVOMECHANISMS, TELEMETRY, CLOSED CIRCUIT TV, INSTRUMENTATION, AND PRINCIPLES OF AUTOMATION

ALSO EXAMINATION COURSES FOR:
Inst. of Electronic and Radio Engineers
C. \& G. Telecommunication Techns'. Cert
C. \& G. Supplementary Studies
R.T.E.B. Fadio/TV Servicing Cert.
P.M.G. Certificates. Radio Amateurs' Exam.

LEARN AS YOU BUILD

Practical Radio Courses: Gain a sound knowledge of Radio as you build YOUR OWN 5-valve superhet Receiver and Transistor Portable, Signal Generator, Multitester and professional type valve voltmcter. At the end of the course you have valuable practical equipment and a fund of personal knowledge and skili. ICS Practical Radio and Electronic Courses open a new world to the keen amateur.

STARTLING NEWS ABOUT AERIALS!

"AS GOOD AS A 3 ELEMENT BEAM". So say the American "CQ" Magazine-the Radio Amateurs" Journal. The Aerial under review was the "JOYSTICK" Variable Frequency Antenna. But the JOYSTICK V.F.A. is NOT a beam. It receives signals equally well from ALL DIRECTIONS, so you do not have to rotate it as the 3 element beam must be rotated to point in the direction of the incoming signal. Add to this fact that it receives (and transmits where required) equally as well on ANY SPOT FREQUENCY on any amateur or broadcast band anywhere in the Short Wave and Medium Wave Spectrum and you must agree, as countless happy users agree-
THAT THE JOYSTICK V.F.A. IS TRULY AN AMAZING AERIAL!
YOUR "JOYSTICK" V.F.A. STOCKIST

Bath:
BIRMINGHAM:
BRIGHTON:
BRISTOL:
CARDIFF: CHELTENHAM: COVENTRY: DARLINGTON:

EDINBURGH: GLASGOW:

HARTLEPOOL: HARWICH:
HULL:
LEICESTER:
LIVERPOOL:
LONDON:

LUTON:
MANCHESTER: R.S.C. Hi-Fi Centres Lid., 60a Oldham Street. MIDDLESBROUGH: R.S.C. Hi-Fi Centres Ltd., 106 Newport Road. NEWCASTLE
UPON TYNE:
NEWPORT, MON.: K. F. Paull Ltd., 14 Dock Street.
PORTSMOUTH: Technical Trading Co., $350-352$ Fratton Road. PURLEY:

READING:
SHEFFIELD:
SOUTHAMPTON:
WORCESTER:
WORTHING:
Ryland \& Huntley, 15 Old Bond Street.
Chas. H. Young Ltd., 170-172 Corporation Street.
Technical Trading Co., Park Crescent Place.
R.S.C. Hi-Fi Ltd., 14 Lower Castle Street, Bristol 1.
Wesak Radio, 54 Daniel Street, Cathays. S.P.A. Radio, 335-337 High Street.

Swanco Products Ltd., 247 Humber Avenue.
R.S.C. Hi-Fi Centres Ltd., 13 Post House Wynd.
R.S.C. Hi-Fi Centres Ltd., 133 Leith Street.
R.S.C. Hi-Fi Centres Ltd., 326 Argyle Street. R.S.C. Hi-Fi Centres Ltd., 403 Sauchiehall Street.
The Radio Shop, 58 Park Road.
C. H. Bernard \& Sons Lid., George Street.
R.S.C. Hi-Fi Centres Ltd., 91 Paragon Street. Short Wave (Hull), 24a Newland Avenue. S. May Ltd., 12-14 Church Gate.

Stephens-James Ltd., 70 Priory Road.
G. W. Smith \& Co. Ltd., 3-34 Lisle Street, London, W.C. 2
Lasky's Radio Ltd., 118 and 207 Edgware Road, London, W. 2
Lasky's Radio Ltd., 33 and 42 Tottenham Court Road, London, W.I.
Lasky's Radio Ldd., i52-153 Fleet Street, London, E.C. 4.
Alfred Imhof Lid., $112-116$ New Oxford Street, London, W.C. 2 .
R. T. \& I. Electronics Lid., Ashville Old Hall, Ashville Road, London, E. 11.
Coventry Radio Ltd., 189-191 Dunstable Road.
R.S.C. Hi-Fi Centres Ltd., 41 Blackett Street.

G3HSC, 45 Green Lane, (Dem. by appt. phone 01 UPL 2896).
Lovering Bros., 76 Kings Road.
R.S.C. Hi-Fi Centres Ltd, 13 Exchange Street, Castle Market Buildings.
Technical Trading Co., 72 East Street.
Jack Porter Ltd., 30-31 College Street.
G. W. M. Radio Lid., 40-42 Portland Road. Technical Trading Co., Montague Street.

By the time this list appears in print it will be incomplete so
PLEASE ENQUIRE AT YOUR LOCAL DEALER OR DIRECT TO
PARTRIDGE ELECTRONICS LTD. (Dept. PW1)
Prospect Road, Broadstairs, Kent.

VALVES
SAME DAY SERVICE NEW! TESTED! GUARANTEED!

SETS 1R5, 135, 1T4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94 Set of 4 for 16/9. DAF96, DF96, DK 96, DL 96,4 for $24 / 6$

PUBLICATIONS FOR RADIO AMATEURS AND ENTHUSIASTS

	$10 /-$
A Course in Radio Fundamentals	$6 / 6$
RSGB Amateur Radio Call Book	$18 / 6$
Understanding Amateur Radio	$5 / 9$
A Guide to Amateur Radio	$3 /-$
Communications Receivers	$18 / 6$
Radio Amateurs' V.H.F. Manual	$28 /-$
Antenna Handbook, Vol. 1	$4 / 6$
Test Equipment Handbook	$24 / 6$
Better Short Wave Reception	$26 /-$
How to Listen to the World	$13 / 2$
Short Wave Listening	$38 /-$
Dictionary of Radio and Television	$6 / 6$
Short Wave Receivers for the Beginner	$10 / 6$
Wireless World Radio Valve Data	$2 /-$
Morse Code for Radio Amateurs	$28 /-$
Beam Antenna Handbook	$23 / 6$
Mobile Manual for Radio Amateurs	$23 / 6$
Service Valve and Semiconductor Equivalents $5 / 6$	
Radio Amateurs' Handbook	$44 /-$
Admiralty Great Circle Map	$8 /-$
	a/l prices include postage

We also keep a large selection of log books (see last month's advertisement).

> Further details of other publications, information about membership, and a free sample copy of the RSGB Bulletin (the RSGB monthly journal), may be obtained by writing to:

RADIO SOCIETY of GREAT BRITAIN, Dept. PW,

PART 2

AR-8516L

This outstanding receiver, manufactured by R.C.A., is probably the last word in valve receivers. It was designed only a few years ago for marine communications, and a few of them have since become available on the amateur market. The receiver covers $80 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ continuously, in 18 bands as follows:

1	$80 \mathrm{kc} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$
2	$200 \mathrm{kc} / \mathrm{s}-520 \mathrm{kc} / \mathrm{s}$
3	$520 \mathrm{kc} / \mathrm{s}-1300 \mathrm{kc} / \mathrm{s}$
4	$1 \cdot 09 \mathrm{Mc} / \mathrm{s}-3 \cdot 09 \mathrm{Mc} / \mathrm{s}$
5	$2-4 \mathrm{Mc} / \mathrm{s}$
6	$4-6 \mathrm{Mc} / \mathrm{s}$
7	$6-8 \mathrm{Mc} / \mathrm{s}$
8	$8-10 \mathrm{Mc} / \mathrm{s}$
9	$10-12 \mathrm{Mc} / \mathrm{s}$

On bands 1 and 2 , the receiver operates as a single superhet with an i.f. of $45 \mathrm{kc} / \mathrm{s}$. On bands 3,4 and 5 operation is as a double superhet with i.f.'s of $455 \mathrm{kc} / \mathrm{s}$ and $45 \mathrm{kc} / \mathrm{s}$. On bands 6 to 18 the receiver is a triple superhet with 2 nd and 3 rd i.f.'s of $455 \mathrm{kc} / \mathrm{s}$ and $45 \mathrm{kc} / \mathrm{s}$ respectively, and the first i.f. tunable from either 2$4 \mathrm{Mc} / \mathrm{s}$, or from $1 \cdot 09-3 \cdot 09 \mathrm{Mc} / \mathrm{s}$.

The valve line-up is as follows:
3BZ6 (Bands 6-18) R.F. Amplifier.
3CB6 (Bands 6-18) 1st Mixer to $2-4 \mathrm{Mc} / \mathrm{s}$ or $1 \cdot 09-3 \cdot 09 \mathrm{Mc} / \mathrm{s}$.
3CB6 (Bands 6-18) Oscillator.
3BZ6 (Bands 6-18) l.F. Amplifier.
or (Bands 1-5) R.F. Amplifier.
3CB6 (Bands 1-2) 1st Mixer to 45 kc 's.
or (Bands 3-5) Ist Mixer to $455 \mathrm{kc} / \mathrm{s}$.
or (Bands 6-18) 2nd Mixer to 455 kc 's.
7AU7 (Bands I-3) V.F.O.
3CB6 (Bands 4-18) V.F.O.
3BZ6 $455 \mathrm{kc} / \mathrm{s}$ I.F. Amplifier.
3BZ6 $455 \mathrm{kc} / \mathrm{s}$ I.F. Amplifier.
3BZ6 $455 \mathrm{kc} / \mathrm{s}$ I.F. Amplifier.
3BE6 (Bands 3-5) 2nd Mixer to $45 \mathrm{kc} / \mathrm{s}$.
or (Bands 6-18) 3rd Mixer to 45 kc 's.
7AU7 Oscillator and crystal calibrator.
5U8 $455 \mathrm{kc} / \mathrm{s}$ B.F.O.
3AL5 $455 \mathrm{kc} / \mathrm{s}$ Detector and A.G.C.
5 U8 $45 \mathrm{kc} / \mathrm{s}$ I.F. Amplifier.
7 AU7 $45 \mathrm{kc} / \mathrm{s}$ B.F.O.
$3 \mathrm{AL5} 45 \mathrm{kc} / \mathrm{s}$ A.G.C.
1N34A 45kc/s crystal detector.
3AL5 Noise Limiter.
7AU7 A.F. Amplifier.
7AU7 Feedback Amplifier.
12CU5 A.F. Output.

Some of the valves serve more than one function.
Five positions of selectivity are available: $6 \mathrm{kc} / \mathrm{s}$, $3 \mathrm{kc} / \mathrm{s}, 1.5 \mathrm{kc} / \mathrm{s}, 0.8 \mathrm{kc} / \mathrm{s}$ and $0.1 \mathrm{kc} / \mathrm{s}$. The $6 \mathrm{kc} / \mathrm{s}$ and $3 \mathrm{kc} / \mathrm{s}$ bandwidths are available only on the $455 \mathrm{kc} / \mathrm{s}$ i.f. system. A mechanical filter is operative on bands 3-18. A noise limiter is included, and the a.g.c. has both fast and slow positions. An " S " meter is incorporated. C.W. receiver sensitivity for a 6 dB signal plus noise-to-noise ratio is as follows:

$$
\begin{array}{ll}
\text { Bands } 1-2 & 3 \text { microvolts } \\
\text { Bands 3-5 } & 2 \text { microvolts } \\
\text { Bands 6-18 } & 1 \text { microvolt. }
\end{array}
$$

Frequency drift due to changes in external environment or supply voltage is extremely low, and there is no long-term drift. The horizontal tuning scale has frequency markings at $50 \mathrm{kc} / \mathrm{s}$ intervals, and a circular logging scale enables frequencies to be read to $1 \mathrm{kc} / \mathrm{s}$.

Output is arranged for high impedance phones, 3Ω speaker or 600Ω line. An output is also available at $455 \mathrm{kc} / \mathrm{s}$ for FSK adaptors, etc. The receiver may be operated either from 115 V a.c. or d.c., or from 230 V a.c. The complete receiver weighs 91 lb , due mainly to the heavy gauge metalwork.

Modifications: It is unlikely that the performance could be improved.

Availability: As only a few of these receivers were ever released, a certain amount of difficulty may be encountered in obtaining one. Second-hand prices would probably run into three figures, although this is still a fraction of the original price. Manuals were available with the receivers.

BC453 BC454 BC455

These sets are popularly known as "Command Receivers", and were used in aircraft of the US Army. They are of totally shielded, all-aluminium, construction and are very light and compact. They were originally designed to operate from the 28 volt d.c. aircraft supply. The three receivers are identical except for their frequency coverage and i.f. frequencies, which are given below:

BC453	$190-550 \mathrm{kc} / \mathrm{s}$.	I.F.	$85 \mathrm{kc} / \mathrm{s}$.
BC454	$3-6 \mathrm{Mc} / \mathrm{s}$.	I.F.	$1415 \mathrm{kc} / \mathrm{s}$.
BC455	$6-9 \cdot 1 \mathrm{Mc} / \mathrm{s}$.	I.F.	$2830 \mathrm{kc} / \mathrm{s}$.

Minor variations of these receivers are denoted by a suffix letter, e.g. BC453A.

These three receivers originate from a piece of equipment known as the SCR274. Another series, known as the ARC-5, contains an almost identical set of command receivers.

The command receiver has 6 valves, as follows:

Three 12 SK 7 , one 12 SR 7 , one 12 A 6 , one 12 K 8 . The circuitry includes one r.f. stage, two i.f. stages, mixer, detector, b.f.o. and audio. A 28 volt dynamotor power supply is incorporated. In its original form, the command receiver has output for 300 or $4,000 \Omega$ headphones. The circuitry does not usually incorporate a.g.c., but it is believed that a few command sets in the ARC-5 series do have this feature.

The size of the command receiver is 5 in . x 8 in . x 12 in ., and its weight is only about 6 lb .

Modifications. The command receiver has become very popular both in the USA and in this country, mainly because of its cheapness and small size. It is not normally used on its own as a communications receiver, but is used in conjunction with v.h.f. coverters, or as a second i.f. channel for another communications receiver. It is admirably suited for both of these functions, after a certain amount of modification.

The first and obvious modification is to replace the 28 volt dynamotor with an a.c. power supply. It is possible to mount an a.c. power supply on the chassis in the position formerly occupied by the dynamotor, although reasonably small components must be used. The unit must supply 250 V at 50 mA . The valve heaters were originally wired for 25.2 volts, and must be rewired for operation from the more usual heater voltage supplies.

For loudspeaker operation, the output transformer must be changed, and it will probably be necessary to provide more audio power.

Few controls are provided and it will be necessary to modify the panel in order to allow for the mounting of the additional controls provided by the electrical modifications.

Other popular modifications include the addition of a noise limiter; and the replacement of the 12SK7 valves with 12SG7's in order to improve gain.

The BC453 version is normally employed as a second i.f. channel. It is set up to receive the i.f. signal from the main receiver, and then amplifies this signal at $85 \mathrm{kc} / \mathrm{s}$, at which frequency it is possible to obtain adequate selectivity for operation in the most crowded of bands.

The BC454 and BC455 versions are normally employed as single i.f. channels v.h.f. converters.

Availability. Unlike the majority of the other receivers dealt with in this guide, the command receiver seems to come on to the surplus market in a steady trickle, rather than in batches. They are doubtless much more readily available in the United States. It is usually possible to hunt one down in the West End, as most retailers seem to hold a small supply of them at one time or another. The position is almost certain to become more difficult in the future.

Prices range up to a maximum of $£ 4$ or $£ 5$, depending on condition. The writer was lucky enough to obtain two of them, two or three years ago, for 2 s . 6 d . each! (In grade 3 condition, of course).

Command receivers can quite easily be obtained on the second-hand market, and here one has the advantage that the receiver has probably already been modified, although perhaps not to the purchaser's satisfaction.

Command receiver manuals are not widely available, and indeed are not generally considered necessary owing to the numerous modifications to this receiver published in the amateur radio press in the last ten years or so.

To be continued

TC2 is at quite low capacity, so the coil may be compressed slightly if needed.

CW WORKING

Cathode keying of V4, suitable for lower frequencies, cannot be used. However, the screen grid supply to V3 can be keyed, and bias applied through L4 so that the input to V4 does not exceed 20 watts during key up intervals. In this case R9 should be reduced to $2.2 \mathrm{k} \Omega$, and the negative bias taken to positive on the 5 mA meter. Bias from a small power pack delivering some 40 V or so is most convenient, with a potentiometer to allow voltage adjustment. A check should then be made with no drive so that V 4 d.c. input (voltage x current) is not over 20W for the anode and 3 W for the screen grid.

During phone or c.w. working, the p.a. must be so coupled and loaded that the d.c. input does not exceed by more than 20 W the r.f. output obtained. In the absence of bias from a power pack or battery, R9 must be $22 \mathrm{k} \Omega$.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 \& 5/- \& 6CW4 12/- \& 10 Pl 3 12/- \& \(50000681 /-\) \& DK40 10/6 \& EF40 8/9 \& KT44 5/9 \& QQVO3/10 \& U251 9/- \& AF124 7/6 \& 0473 3/- \\
\hline OB2 \& 6/- \& 6D3 7/6 \& 10 P 14 13/- \& 50L6GT 6/- \& DK91 4/9 \& EF41 0/- \& KT61 12]- \& 30/- \& U281 8/9 \& AF125 \(8 / 6\) \& OA79 8/- \\
\hline OZ4 \& \(4 / 3\) \& \(611681-\) \& 12A6 5/- \& 52 KU 14/6 \& DK92 7/6 \& EF42 \(3 / 6\) \& KT63 4/- \& Q875/20 \& U282 12/8 \& AFl26 7/\% \& OA81 2/- \\
\hline 1 A3 \& 2/6 \& 6E5 9/6 \& 12AC6 8/- \& 53KU 14/6 \& DK96 6/6 \& EF50 2/6 \& KT66 18/6 \& 10/6 \& U301 12/6 \& AF127 3/6 \& OA85 3/- \\
\hline 1 A 4 \& \(12 / 6\) \& 6F1 9/6 \& 12AD6 9/- \& 72 6/6 \& DL33 6/6 \& EF54 6/- \& \(\begin{array}{ll}\text { KT74 } \& 18 / 6\end{array}\) \& Qsi50/15 \& U329 9/- \& AF139 27/6 \& OA86 4/- \\
\hline 1 AD \& 5/- \& 6F6G 4/- \& 12AE6 7/6 \& 77 5/- \& DL35 4/9 \& EF80 4/6 \& KT76 716 \& Q10 9/6 \& U403 6/6 \& AF178 13/6 \& OA90 3/- \\
\hline 1A7GT \& -7/6 \& 6F6GT/M \& 12AH7 5/- \& 78 4/9 \& DL72 15/- \& EF83 9/9 \& KT88 27/6 \& R10 15/- \& U404 6/- \& AF179 13/6 \& OA91 8\%- \\
\hline 1 Cl \& \(4 / 9\) \& \(7 / 6\) \& 12AT6 4/8 \& 80 513 \& DL75 301- \& EF85 4/6 \& KTW61 4/8 \& R11 10/8 \& U801 18/- \& AF180 18/6 \& OA95 2/- \\
\hline 1022 \& \(7 / 6\) \& 6F7G 5/- \& 12AT7 3/6 \& 45A2 8/6 \& DL92 4/9 \& EF86 6/3 \& KTW62 12/6 \& R12 5/6 \& U4020 6/- \& AF181 14/- \& OA182 3/- \\
\hline 103 \& 6/6 \& 6 FBG 5/- \& 12AU6 \(4 / 9\) \& 90 At 67/8 \& DL94 5/6 \& EF89 4/9 \& KTW63 4/- \& R16 34/11 \& VMP4G 17/- \& AF188 80/- \& OA:200 3/- \\
\hline 1 Ca \& 4/8 \& \({ }_{6} 6 \mathrm{Fl2}\) 3/3 \& 12AU7 4/6 \& 90AV 67/6 \& DL96 8/= \& EF91 3/3 \& KTZ41 6/- \& R17 17/6 \& VM84B 12/6 \& AFZ12 5/- \& 04202 2/- \\
\hline 106 \& \(10 / 6\) \& 6 F13 3/6 \& 12AV6 \(5 / 9\) \& 90CG 34/\% \& DLS10 10/6 \& EF92 \(2 / 6\) \& L63 4/8 \& R18 9/6 \& VP2 \(3 / 6\) \& A8Y27 101- \& OA210 9/6 \\
\hline 105 \& 6/- \& 6 Fl 4 15/- \& \(12 A X 7\) 4/6 \& 90 CV 83/6 \& DM70 6/- \& EF97 8/- \& LP2 * \(9 / 6\) \& R19 6/9 \& VP2B 9/6 \& ASY28 8/- \& OA2I1 13/6 \\
\hline 1D6 \& \(9 / 6\) \& \(6 F 1510 / 9\) \& 12AY7 \(9 / 9\) \& 90 Cl 16/- \& DM71 9/9 \& EF98 9/- \& MHD4 7/6 \& R52 7/6 \& VP4 \(14 / 6\) \& A8Y29 10\%- \& OAZ20012/- \\
\hline IFDI \& 6/- \& 6 Fl 17 12/6 \& 12BA6 5/- \& 150B2 14/6 \& DW4/350 \& EF183 6/3 \& MHLD6 \({ }^{\text {a/6 }}\) \& RG1/240A \& VP4A 14/6 \& AY100 26/- \& OAZ20110/6 \\
\hline 1FD9 \& 8/3 \& 6 F18 \(7 / 6\) \& 12BE6 5/3 \& \(150 \mathrm{C2} 5 /-\) \& 8/6 \& EF184 5/9 \& M \(12 / 8\) \& 85/- \& VP4B 11/- \& BA115 5/- \& OAZ202 9/- \\
\hline 166 \& 6/- \& 6 F 23 8/- \& 12 BH 7 6/- \& 161 15j- \& DW4/500 \& EH90 7/6 \& \begin{tabular}{ll}
ML6 \& \(12 / 6\) \\
\hline
\end{tabular} \& RK34 7/6 \& VP13C 7/- \& BA116 9/- \& OAZ203 9/6 \\
\hline \(1 \mathrm{H} \mathrm{S}^{\text {¢ }}\) \& 7/- \& \(6 \mathrm{F2} 4\) 10/- \& 12E1 17/6 \& 185BT 35/- \& \(8 / 6\) \& ELa3 3/- \& \(\begin{array}{ll}\text { MS4B } \& 20 / 5\end{array}\) \& 9130 25/- \& VP23 \(2 / 6\) \& BCY10 5/- \& OAZ204 9/0 \\
\hline 11.4 \& 2/6 \& \(6 \mathrm{~F}^{2} 32\) 3/- \& 12 J5GT \(2 / 6\) \& 301 20/- \& DY80 519 \& EL33 12/- \& \(\begin{array}{ll}\text { MSP4 } \& 12 / 6\end{array}\) \& \& VP41 5/- \& BCY12 5/- \& OAZ210 \(7 /-\) \\
\hline 1LD5 \& \(5 /-\) \& \(6 \mathrm{G6G}\) - \(2 / 6\) \& \(1257 \mathrm{GT} 6 / 6\) \& \(30218 / 6\) \& DY87 \(5 / 9\) \& EL34 9/6 \& MV12/14 4/- \& GP13C 12/6 \& VR75 21/- \& BCY33 5/- \& OAZ205 9/- \\
\hline 1LN5 \& 4/6 \& \(6 \mathrm{B6OT} \quad 1 / 8\) \& 12K5 8/- \& 303 15/- \& E80F 24/- \& EL35 10/- \& \(\begin{array}{lll}\text { MX40 } \& 12 / 6\end{array}\) \& \(\begin{array}{ll}\text { SP42 } \\ \text { SP61 } \& 12 / 6\end{array}\) \& VR105 5/- \& BCY34 5j- \& 0 Cl 61 \\
\hline 1N6GT \& \(7 / 8\) \& 6.550 \& \(12 \mathrm{K7GT} 8 / 6\) \& \(30516 / 6\) \& E83F \(24 /-\) \& EL36 8/9 \& N37 23/3 \& GP61 2/- \& VR150 5/- \& BCY38 5/- \& OC16W \\
\hline 1 Pl \& 6/- \& 6J5GT 4/6 \& 12K8GT 7/9 \& 306 18/6 \& E88CC 12/- \& EL37 18/6 \& \(\begin{array}{ll}\text { N37 } \\ \mathrm{N} 78 \& 23 / 8 \\ \mathbf{3 8} / 4\end{array}\) \& TDD2A 18/6 \& VT61A 7/- \& BCY39 5j- \& 85/- \\
\hline 1P10 \& \(4 / \mathrm{B}\) \& 6 J 63 3/- \& 12Q7GT 3/6 \& 807 11/9 \& E180F \(17 / 6\) \& EL41 8/G \& \begin{tabular}{ll}
N78 \\
N 108 \& \(38 / 4\) \\
\hline \(28 / 7\)
\end{tabular} \& TDD4 \(7 / 8\) \& VT501 3/- \& BC107 10/- \& \(0 \mathrm{Cl19}\) 25/- \\
\hline \(1 \mathrm{Pl1}\) \& \(5 / 6\) \& \(637 \mathrm{G} \quad 4 / 9\) \& 12SA7GT \& 956 2/- \& E1148 1/9 \& EL42 \(7 / 6\) \& N108 26/7 \& TH4B 10/- \& VU111 8/- \& BFY50 5/- \& \(0 \mathrm{CL22} 51\). \\
\hline 1R5 \& \(4 / 9\) \& \(657 \mathrm{GT} 8 / 6\) \& 6/8 \& 1821 10/6 \& EA50 1/6 \& EL81 8/- \& /- \& TH21C 10/6 \& VU120 12/- \& BFY51 5j- \& OC23 7\%- \\
\hline 134 \& \(4 / 9\) \& \(6 \mathrm{K6OT} 5 /-\) \& 12 Sc 7 4/- \& 5763 10/- \& EA76 13/- \& EL83 6/9 \& P41 3/6 \& TH30C 14/6 \& VE120a \& BFY52 5/- \& \(0 \mathrm{C25}\) 7/- \\
\hline 185 \& \(3 / 3\) \& \(6 \mathrm{K7G} \quad 1 / 8\) \& 12887 3/- \& \(7475 \quad 2 / 6\) \& EABC80 5/9 \& EL84 4/8 \& P61 2/8 \& TH233 8/9 \& 12/- \& BY100 3/6 \& OC26 5/- \\
\hline 1 T 28 \& \(84 / 11\) \& \(6 \mathrm{K7GT}\) 4/6 \& \(12 \mathrm{sy7}\) 5/- \& A1834 20/- \& EAC91 3/3 \& EL85 7/6 \& PABC80 \(7 / 6\) \& TP22 5/- \& VU133 7/- \& BY101 11/6 \& \(0 \mathrm{C28} 5 / \mathrm{F}\) \\
\hline 1 T 4 \& \(2 / 6\) \& \(6 \mathrm{K80}\) 3/- \& 128 K 7 3/- \& ACO44 14/- \& EAF42 \(7 / 6\) \& EL86 8/- \& \begin{tabular}{ll}
PC86 \& \(8 / 6\) \\
\hline \(\mathrm{PC88}\) \& \(8 / 6\)
\end{tabular} \& TP25 5/- \& W42 11/- \& BY105 11/6 \& OC29 16/6 \\
\hline \(1 \mathrm{U4}\) \& 5/8 \& \({ }_{6}^{6 K 8 G T} 7 / 6\) \& 12897 8/- \& AC2PEN \& EB41 4/9 \& EL91 2/6 \& PC88 816 \& TP2620 7/6 \& W61M \(24 / 6\) \& BY114 8/- \& OC30 8f- \\
\hline 1U5 \& \(5 / 8\) \& 6 K 25 24/- \& \(125 R 75 /-\) \& \(19 / 6\) \& EB91 2/3 \& EL95 5/- \& PC95 8 - \({ }^{\text {P/8 }}\) \& TY86F \& W63 10/6 \& BYZ12 \(7 / 8\) \& 0 C 35 10\% \\
\hline 2D13C \& \(7 /-\) \& 6 LI 10/- \& \(12 Y 4\) 2/- \& AC2PEN/ \& EBC3 20/6 \& ELL80 13/- \& \({ }^{\text {PC97 }}\) 5/8 \& 11/10 \& W76 8/6 \& BYZ13 \(7 / 6\) \& OC36 10\% \\
\hline 2 D 21 \& 5/B \& 6LBGT 7/6 \& 13 Dl 5/- \& DD 19/6 \& EBC33 6/- \& EM71 14/- \& PC900 8/F \& UABC80 \(5 / 3\) \& W77 \(2 / 6\) \& CG12E 4/- \& OC38 12/6 \\
\hline 2 X 2 \& \(81 /\) \& 6L7GT/M \& 1803 9/- \& AC6PEN \(4 / 9\) \& EBC41 7/3 \& EM80 5/9 \& PCC84 5/6 \& UAF42 7/9 \& W81M 6/- \& CG46H 4/- \& \(0 \mathrm{OC4} 1\) 5/- \\
\hline 3A4 \& \(3 / 6\) \& 5/6 \& 14H7 9/6 \& AC/PEN (5) \& EBC81 0/3 \& EM81 6/9 \& \(\begin{array}{ll}\text { PCCR5 } \& 6 / 9 \\ \text { PCC8 }\end{array}\) \& UB41 10/6 \& W101 26/2 \& QD3 \(6 / 6\) \& OC42 6/8 \\
\hline 3A5 \& 8/- \& 6L18 7/6 \& 148718 \& \(19 / 6\) \& EBC90 \(3 / 9\) \& EM84 6/- \& \({ }^{\text {PCC88 }}\) PCCs9 \(10 / 8\) \& UBC41 \(6 / 6\) \& W107 \(10 / 6\) \& GD4 6/6 \& OC43 12/8 \\
\hline 3 B 7
3 D 6 \& 51/9 \& \(6 \mathrm{LL19}\) 19/- \& \(18 \quad 12 / 8\) \& AO/PEN (7) \& EBC91 5/m \& EM85 11/- \& \(\begin{array}{ll}\text { PCC89 } \& 9 / 9 \\ \text { PCC189 } \& 8 / 3\end{array}\) \& UBC81 6/6 \& W729 10/- \& GD5 5/6 \& \(0 \mathrm{C44}\) 8/- \\
\hline 3Q4 \& 5/8 \& \({ }^{6 L D D 20} 876\) \& \(\begin{array}{cr}19 \& 10 / 6 \\ 19 \mathrm{AQS} \\ 7 / 3\end{array}\) \& ACSG/VM \({ }^{19 / 6}\) \& EBF80 \(5 / 9\) \& EM87 8/6 \& PCF80 6/3 \& UBF80 5/6 \& X24 18/6 \& OD6 5/6 \& OC44PM 8/8 \\
\hline 3Q6GT \& 6/6 \& \(6_{61} 12 /-\) \& 19RG6G \& ACBG/VM \(12 /\) - \& EBF83
EBF89
5/9 \& EY81 7/: \& PCF'82 6/- \& \(\begin{array}{ll}\text { UBF89 } \& 0 / 9 \\ \text { UBL21 } \& 9 \%\end{array}\) \& X41 10/- \& \(\begin{array}{ll}\text { GD8 } \& \text { 4/- } \\ \text { GD9 } \& 4 /-\end{array}\) \& \\
\hline 384 \& 4/9 \& 6 P 25 12/- \& 20/5 \& ACTHI 10\%- \& EBL21 10/3 \& FY83 9/- \& PCF84 8/- \& UC92 5/6 \& \(\times 63\) 7/6 \& GD10 4/- \& OC46 3/- \\
\hline 3 V 4 \& \(5 / 6\) \& 6 P 26 12/- \& \(20 \mathrm{D1}\) 10/- \& AC/TP 19/6 \& EC52 \(4 / 3\) \& EY84 9/6 \& PCF86 8/- \& UCC84 8/- \& X64 5/6 \& GD11 4/- \& OC65 28/6 \\
\hline 4 DI \& 3/8 \& \(6 \mathrm{6P2}^{8}\) 25/- \& 20D4 \(20 / 5\) \& AC/VP112/- \& EC53 12/6 \& EY86 5/9 \& PCF801 8/8 \& UCC85 6/6 \& X65 5/6 \& GD12 4/- \& \(0 \mathrm{C66}\) 85/- \\
\hline bR4GY \& \(8 / 9\) \& 6Q7C 5/- \& 20 FL 201/6 \& AC/VP211/- \& EC54 \(61-\) \& EY87 5/9 \& \(\mathrm{PCF}^{802} 9 / 8\) \& UCF80 \(8 / 8\) \& \(\times 66 \quad 7 / 8\) \& GD14 10/- \& \(0 \mathrm{OC7} 0\) 3/6 \\
\hline 5 U 4 G \& 4/9 \& 647GT 8/8 \& 20L1 13/: \& ATP4 2/8 \& EC70 4/8 \& EY88 7/6 \& PCF805 9/6 \& UCH21 9/u \& \(\times 76 \mathrm{M} 7 / 8\) \& GD15 8/- \& \(0 \mathrm{C71}\) 2/6 \\
\hline 5 V 46 \& 8/- \& 6R7G 5/6 \& \(20 \mathrm{Pl} 17 / 6\) \& AZ1 8/- \& ECs6 11/6 \& EY91 3/- \& PCF806 11/8 \& UCH42 8/6 \& \(\times 78\) 26/8 \& GD16 4/- \& \(0 \mathrm{OC72}\) 2/6 \\
\hline 5 Y 3 GT \& 5/8 \& 6R7GT 11/- \& \(20 \mathrm{P} 315 /=\) \& AZ31 7/9 \& EC88 10/6 \& EZ35 5/3 \& PCL81 9/- \& UCH81 8/- \& \(\times 79\) 40/9 \& GET102 \(8 / 6\) \& \(0 \mathrm{C73}\) 16/- \\
\hline 523 \& 7/6 \& 68A7CT 7/- \& \(20 \mathrm{P} 416 /-\) \& AZ41 6/6 \& EC91 4/- \& EZ40 6/- \& PCL82 613 \& UCL82 \%- \& X81M 29/1 \& GET103 4/8 \& 0074 8/- \\
\hline \(5 \mathrm{Z4G}\) \& \(7 / 6\) \& \(68 \mathrm{C7} \quad 8 / 6\) \& \(20 \mathrm{P5}\) 16/- \& B36 4/9 \& EC92 6/6 \& EZ41 8/6 \& PCL83 816 \& UCL33 8/9 \& \(\times 10129 / 1\) \& GET104 \& 0075 2/- \\
\hline 6/80L2 \& 918 \& 68 Cl 7 7/0 \& 25A6G 7/6 \& BLA3 10/6 \& ECC31 15/6 \& EZ80 3/9 \& PCL84 7/- \& UF41 719 \& \(\times 109\) 26/- \& 12/- \& OC76 3/- \\
\hline \({ }^{6} \mathbf{A 8 G}\) \& 7/6 \& \(68173 /-\) \& 25LG6 \(4 / 9\) \& CCH35 \(20 / 8\) \& ECC32 \(4 / 8\) \& EZ81 4/3 \& PCL85 813 \& UF42 4/9 \& Y63 5/- \& GET105 18/- \& \(0 \mathrm{C77}\) 4/- \\
\hline 6AC7 \& 3/- \& 6857 5/- \& \(25 \mathrm{Y5}\) 6/- \& CK506 6/6 \& ECC33 29/1 \& EZ90 3/6 \& PCL\&6 8/- \& UF80 6/9 \& Y65 5/- \& GETlll \& \(0 \mathrm{C78}\) 31- \\
\hline 6AGS \& \(2 / 6\) \& 68 K 7 4/6 \& 25 Y6G 8/6 \& CL4 19/6 \& ECC34 \(29 / 8\) \& FW4/500 \& PCL88 13/8 \& UF85 \(7 / 8\) \& Z63 4/9 \& 15/6 \& \(0 \mathrm{C781}\) 3/- \\
\hline 6AG7 \& \(5 / 9\) \& 68L74T 4/8 \& \({ }^{2574 G} \quad 6 / 3\) \& CL33 19/8 \& ECC35 4/9 \& (1) 8/6 \& PEN45 \(7 /-\) \& UF86 9/- \& 266 7/3 \& GET113 5/- \& 007981 l \\
\hline 6AJ5 \& 8/6 \& 6sN7GT 4/8 \& 2585 7/- \& OV6 \({ }_{\text {ck }}\) 2/6 \& ECC40 \(9 / 6\) \& FW4/800 \& PEN45D \({ }^{19 / 8}\) \& UF89 \(5 / 6\) \& Z77 3/3 \& GET114 476 \& \(0 \mathrm{C81}\) 2/3 \\
\hline 6AK5 \& 4/8 \& 68Q7 8/= \& \({ }^{25 Z 67 \%} 816\) \& CV63 10/6 \& ECC81 3/6 \& \(8 / 6\) \& + 46 4/6 \& UL41 \(8 / 9\) \& Z329 10/- \& GET115 17/- \& 0C81D 2/3 \\
\hline 6AK\% \& 6/9 \& \(\begin{array}{lr}6817 \& 12 / 6 \\ 6887 \& 2 /-\end{array}\) \& \(\begin{array}{ll}28 \mathrm{D7} \& 6 / 9 \\ 30 \mathrm{Cl} \& 6 / 8\end{array}\) \& \(\begin{array}{ll}\text { CV271 } \& 12 / 6 \\ \text { CV428 } \& 19 \%\end{array}\) \& \(\begin{array}{ll}\text { ECC82 } \& 4 / 6 \\ \text { ECC83 } \& 4 / 6\end{array}\) \& \(\begin{array}{ll}\text { GZ30 } \& 7 / 6 \\ \text { GZ322 } \& 9 /-\end{array}\) \& PEN46
PEN383
日/6 \& \(\begin{array}{ll}\text { UL46 } \& 9 / 6 \\ \text { UL84 } \& 5 / 8\end{array}\) \& 7729 618 \& GET11612/- \& \(0 \mathrm{C81m} 5 /-\) \\
\hline (iALS \& \(8 / 8\) \& 6U4GT 9/8 \& \(30 \mathrm{Cl5}\) 10/6 \& CY1 16/4 \& ECC83 416 \& \(\begin{array}{ll}\text { GZ33 } \& 12 / 6\end{array}\) \& PEN384 \& UM80 5/- \& 28/- \& GET118 \(7 / 8\)
GET119 \(/ 6\) \& \begin{tabular}{ll}
0 CB 82 \& \(2 / 3\) \\
\(0 \mathrm{CB2D}\) \& \(2 / 6\)
\end{tabular} \\
\hline 6AM4 \& 16/6 \& 6 U 5 5/- \& \(30 \mathrm{Cl17} 11 / 6\) \& CY1C \(6 / 6\) \& ECC85 5/- \& GZ34 10\% \& 11/6 \& UR1C 6/6 \& Transistor* \& GET573 \& \(\begin{array}{ll}0 \mathrm{C} 83 \& 3 /-\end{array}\) \\
\hline 6AM5 \& 2/8 \& 6U79 7\% \& 30 Cl 8 9/6 \& CY31 \(6 / 6\) \& ECC88 7- \& GZ37 14/6 \& PEN4531D \& UU5 71- \& and diodes \& 12/6 \& \(0 \mathrm{C84}\) 4/- \\
\hline 6AM6 \& \(3 / 3\) \& \(6 \mathrm{V6G}\) - \(3 / 6\) \& 30 Fb - \(9 / 8\) \& D1 \(1 / 8\) \& ECC189 9/- \& H30 5/- \& \(18 / 6\) \& UU8 16/6 \& 2N404 7/6 \& GET587 \& \(0 \mathrm{Cl23} \quad 4 / 6\) \\
\hline \(6 \mathrm{AQ5}\) \& \(4 / 8\) \& 6V60t 6/6 \& 30 FLl 18/- \& D15 15/8 \& ECC804 9/6 \& HABC80 9/3 \& PENA419/6 \& UU12 4/3 \& AA120 4/6 \& 12/6 \& OC139 12/- \\
\hline 6Al6 \& 201- \& \(6 \times 4 \quad 3 / 6\) \& 30 FL 12 18/- \& 1035 \& ECC80719/9 \& \begin{tabular}{ll}
HLi \\
\hline \(1 / 6\)
\end{tabular} \& PEN/DD \& UY1N \(10 / 3\) \& AA129 3/- \& GET87210/- \& OC140 19/- \\
\hline 6AT6 \& \(3 / 9\) \& \(6 \times 5 \mathrm{CT} 5 / 3\) \& \(30 \mathrm{LI} \quad 5 / 6\) \& \(077 \quad 2 / 3\) \& ECF80 7/ \& 11 LLBC 4/- \& 4020 17/6 \& UY21 9/- \& \(\mathrm{ACl07} 3 / 6\) \& GET873 5/- \& 0 Cl 69 4/- \\
\hline 6AU6 \& 5/6 \& \(657612 / 6\) \& \(30 \mathrm{L15}\) 12/- \& DAC32 7- \& ECF82 619 \& HL22 10/6 \& PFL20018/6 \& UY41 5/6 \& AC113 7/- \& GET874 \& \(0 \mathrm{Cl170}\) 2/6 \\
\hline 6AV6 \& \(5 /-\) \& 7A7 12/6 \& 301.17 12/- \& DAF91 3/3 \& ECF86 8/8 \& HL23DD \(5 /-\) \& PL33 9/- \& UY85 4/9 \& AC114 8/- \& 23/6 \& \(0 \mathrm{Cl171}\) 4/- \\
\hline 6B8G \& \(2 / 6\) \& \(7 \mathrm{B6}\) 10/8 \& 30 P 4 11/6 \& DAF96 6/- \& ECF804 84/- \& HL41 3/9 \& 1 L36 9/- \& U10 9/- \& AC126 \(2 / 6\) \& GET887 7/6 \& \(0 \mathrm{Cl72}\) 4/- \\
\hline 6BA6 \& 4/6 \& \(7 \mathrm{B7}\) 7/- \& 30 P 4 MR \& DCC90 8/- \& ECH3 23/3 \& HL41DU \& \(\begin{array}{ll}\text { PL38 } \& \text { 18/9 }\end{array}\) \& U12/14 7/6 \& AC127 2/- \& GET882 10\% \& OC200 6/6 \\
\hline 6BE6
6BG6G \& \(4 / 8\)
\(20 / 5\) \& \(\begin{array}{ll}7 \mathrm{CV} \& 40 /- \\ 7 \mathrm{Cb} \& 8 / \mathrm{l}\end{array}\) \& 30P12 18/\% \& DD4 \(10 / 6\) \& \(\mathrm{ECH}^{2} \mathbf{1}\) 9/8 \& 19/8 \& \(\begin{array}{ll}\text { PL81 } \& 8 / 9 \\ \text { PL81A } \& 8 / 9\end{array}\) \& U16 15/- \& ACl28 2/- \& GET889 \(7 / 6\) \& 0 C 201 23/- \\
\hline 6BH6 \& 8/6 \& \(7 \mathrm{CH7}\) \& \begin{tabular}{l}
\(30 \mathrm{Pl2}\) \\
30 P 19 \\
\hline \(10 \%\)
\end{tabular} \& DD41 \(12 / 6\) \& ECH33 \(22 / 8\) \& HL42DD8/- \& \begin{tabular}{ll}
PL81A \& 8/9 \\
\\
\hline 18
\end{tabular} \& U17 5/- \& AC154 6/- \& GET890 7/6 \& OC202 88/- \\
\hline \({ }_{6}^{68 J 6}\) \& 71 \& \(\begin{array}{lr}\text { 7H7 } \\ 787 \& \text { 12/6 }\end{array}\) \& \(\begin{array}{ll}30 \mathrm{Pl} \& 10 /- \\ 30 \mathrm{P}, 1 \& 12 / 9\end{array}\) \& DDT4 716 \& \(\begin{array}{ll}\text { ECH35 } \& 8 / 7 \\ \text { ECH42 } \& 8 / 9\end{array}\) \& HLI33DD \(_{9 / 6}\) \& \({ }^{\mathrm{P}} \mathrm{L} 838\) 8/- \& \(\begin{array}{ll}\text { U18/20 } \& \text { 6/8 } \\ \text { U19 } \& 40 /-\end{array}\) \& \(\begin{array}{ll}\text { AC155 } \& 8 / 6 \\ \text { AC156 } \& 8 /-\end{array}\) \& GET896
GET897
G/6 \& \(\begin{array}{ll}0 C 203 \& 12 / 6 \\ 06204 \& 10 / 6\end{array}\) \\
\hline \(6 \mathrm{BQ5}\) \& 4/6 \& 7 V 7 \(5 /-\) \& \(30 \mathrm{PL} 1313 / 8\) \& DF33 7/9 \& ECH81 5\%- \& HN309 26/6 \& PL84 6 \& U22 5/8 \& \(\begin{array}{lr}\text { AC156 } \\ \text { AC157 } \& \text { 10/8 }\end{array}\) \& GET897 \(7 / 6\) \& \(\begin{array}{ll}0 C 204 \& 10 / 6 \\ 00206 \& 10 / 6\end{array}\) \\
\hline \(6 \mathrm{BG7A}\) \& \(7 \%\) \& \(7 \mathrm{Y} 4 \quad 6 / 6\) \& \(30 \mathrm{PL} 1413 / 8\) \& DF66 15/- \& ECH83 7/- \& HVR2 8/8 \& PL500 13/6 \& บ25 11/- \& ACl66

A \& GEX13 3/6 \& OC812 8\%-

\hline $6 \mathrm{6R7}$ \& $91-$ \& | 812 | |
| :--- | :--- |
| $98 \mathrm{WW6}$ | $8 / 6$ |
| 18 | | \& 30 PL L5 $13 / 6$ \& DF72 30/- \& ECH84 616 \& HVR2A 8/9 \& PM84 9/8 \& U26 $\quad 8 / 6$ \& AC167 12/- \& QEX35 4/6 \& OCP71 27/6

\hline 6BR8 \& 8/- \& 9BW6
912 \& $35 \mathrm{A5} 15 /-$ \& DF91 2/6 \& ECL80 6/- \& IW3 516 \& $\begin{array}{ll}\text { PX4 } & 14 / 6\end{array}$ \& U31 6/8 \& AC168 15/- \& GEX36 10/= \& ORP12 15/-

\hline 6B87
6BW6 \& $16 / 6$
$7 /-$ \& $\begin{array}{ll}9122 & 3 /- \\ 9127 & 7 / 6\end{array}$ \& $35 \mathrm{L6GT}$ 6/8 \& DF96 6/- \& ECLB2 $8 / 3$ \& 1W $4 / 3505 / 6$ \& $\begin{array}{ll}\text { PY32 } & 8 / 6 \\ \text { PY33 } & 8 / 6\end{array}$ \& U33 13/6 \& $\mathrm{ACl69}^{6 / 6}$ \& GEX45/17/- \& $\begin{array}{lll}\text { T82 } & 12 / 6\end{array}$

\hline 6BW6
68 C \& 5/- \& $\begin{array}{ll}9107 & 7 / 6 \\ 1001 & 8 / 6\end{array}$ \& $\begin{array}{lr}35 W 4 & 4 / 6 \\ 3573 & 10 /-\end{array}$ \& $\begin{array}{lll}\text { 1)F97 } & \text { 10/- } \\ \text { JH30 } & \text { 15/6 }\end{array}$ \& ECL83 9/- \& IW $4 / 5006 /-$
$\mathrm{KBC} 320 / 5$ \& $\begin{array}{ll}\text { PY33 } & 8 / 6 \\ \text { PY80 } & 5 /-\end{array}$ \& $\begin{array}{ll}\text { U35 } & 16 / 8 \\ \mathbf{1 3 7} & 84 / 11\end{array}$ \& AC176
AD140
$10 / 6$ \& GEX55/1 \& T83 15/-

\hline 6 BX 6 \& 4/6 \& 1002 12/- \& $35 \% / 41$ T $4 / 6$ \& \& ECL85 \& $\begin{array}{lll}\mathrm{KBC32} & 20 / 5 \\ \mathrm{~K} 535 & 12 / 6\end{array}$ \& ${ }^{\text {P }}$ Y 81815 \& $\begin{array}{lr}\text { U37 } & 34 / 11 \\ \mathbf{U 4 5} & 15 / 6\end{array}$ \& $\begin{array}{ll}\text { AD140 } & 10 / 6 \\ \text { A D149 } & 10 / 6\end{array}$ \& GEX64 11/6 \& SX641 10/-

\hline $6 \mathrm{C4}$ \& $2 / 3$ \& 101) 7/- \& 35256 T $5 / 6$ \& \& ECL8 719 \& KL35 11/6 \& PY82 5/- \& U50 5/- \& AF102 18j- \& GEX 66 15/- \&

\hline 605 ST \& 41- \& 1012 11/8 \& $42 \mathrm{5} / \mathrm{-}$ \& 1) H7\% $^{3 / 9}$ \& ECLLs00 \& KLL32 21/7 \& PY83 5/6 \& U52 4/9 \& AFll4
4/- \& $\begin{array}{ll}\text { GEX } \\ \text { GT3 } & 5 /-\end{array}$ \& XA102 19/6

\hline $6 \mathrm{C6}$ \& 318 \& 10 Fl 18/8 \& 43810% \& JH81 10/9 \& 2319 \& KT2 5/- \& PY88 7/3 \& U76 4/6 \& AF115 3/- \& M1 $2 / 10$ \& XA103 15/\%

\hline 609 6 CD6G \& $10 / 9$
$19 / 6$ \& $\begin{array}{ll}10 \mathrm{F9} & 9 /- \\ 10 \mathrm{~F} 18 & 9 /-\end{array}$ \& 4576GT 15/- \& DH101 25/- \& EF22 $6 / 6$ \& KT8 15/- \& PY800
PY801
c/e \& U78 3/6 \& AF116 3/- \& M3 2/10 \& MAT100 $7 / 9$

\hline 6CD60
6 CD 7 \& $19 / 6$
$9 / 6$ \& $\begin{array}{ll}10 \mathrm{Fl} 18 & 9 /- \\ 10 \mathrm{LD} 3 & 8 / 8\end{array}$ \& 50A5 21/10 \& DH107 \& EP36 3/- \& KT32 4/9 \& ${ }_{\text {PY801 }}$ \& U101 19/6 \& AF117 4/- \& OAS $5 / 6$ \& MAT1018/6

\hline 6CH6 \& 61. \& 10LD11 10\% \& $\begin{array}{ll}50 \mathrm{B5} & 6 / 3 \\ 5005 & 5 / 9\end{array}$ \& DK32 ${ }^{\text {16/11 }}$ \& $\begin{array}{ll}\text { EF37A } \\ \text { EF39 } & \text { 7/- } \\ \text { L/- }\end{array}$ \& $\begin{array}{ll}\text { KT36 } & 29 / 1 \\ \text { KT41 } & 18 / 6\end{array}$ \& $\begin{array}{ll}\text { PZ30 } & 9 / 6 \\ \text { QP21 } & 5 /-\end{array}$ \& $\begin{array}{ll}\text { U107 } & 17 / 8 \\ \text { L191 } & 10 \%\end{array}$ \& $\begin{array}{ll}\text { AF118 } \\ \text { AF119 } & 3 /- \\ 3 /-\end{array}$ \& $\begin{array}{ll}0 \text { O110 } & 6 / 6 \\ 0 \times 70 & 3 /=\end{array}$ \& MAT120 7/9

\hline
\end{tabular}

MATCHED TRANSISTOR SETS 1-OC44 and 2-OC45 8/8; 1-OCB1D and 2 OC81 8/6; 1 OC82D and 2 OC82 8/6; Bet of three OC83 (GET118/119) 8/6; 1-GET874P sIeeved yellow, 1-
WE REQUIRE FOR PROMPT CASH SETTLEMENT ALL TYPES OF VALVES, LOOSE OR BOXED, BUT MUST BE NEW
ELECTROLYTICS. Can types: $8 \times 8 \mathrm{mfd} / 500 \mathrm{v} 6 / 9 ; 8 \times 16 \mathrm{mfd} / 500 \mathrm{v} 7 / 3 ; 16 \mathrm{mfd} / 500 \mathrm{v} 5 / 6 ; 16 \times 16 \mathrm{mfd} / 500 \mathrm{v} 8 /-; 16 \times 32 \mathrm{mfd} / 450 \mathrm{v} 9 /-;$ $32 \mathrm{mfd} / 500 \mathrm{v} 7 /-; 32 \times 32 \mathrm{mfd} / 450 \mathrm{v} 4 / 9 ; 50 \times 50 \mathrm{mfd} / 350 \mathrm{v} 5 / 6 ; 60 \times 250 \mathrm{mfd} / 275 \mathrm{v} 9 / 9 ; 60 \times 250 \mathrm{mfd} / 350 \mathrm{v} 16 / 6 ; 60 \times 250 \times 10 \mathrm{mfd} / 275 \mathrm{v} 13 /-;$ $64 \times 100 \mathrm{mfd} / 450 \mathrm{v} 18 / 9 ; 64 \times 120 \mathrm{mfd} / 350 \mathrm{v} 8 / 6 ; 100 \times 200 \mathrm{mfd} / 275 \mathrm{v} 8 /-: 100 \times 200 \mathrm{mfd} / 350 \mathrm{v} 17 / 9 ; 100 \times 200 \times 60 \mathrm{mfd} / 300 \mathrm{v} 17 / 9 ;$ $100 \times 300 \times 100 \times 16 \mathrm{mfd} / 275 \mathrm{v} 22 /-; 100 \times 400 \mathrm{mfd} / 275 \mathrm{v} 12 / 9 ; 100 \times 400 \times 16 \mathrm{mfd} / 275 \mathrm{v} 20 / 9 ; 150 \times 200 \mathrm{mfd} / 350 \mathrm{v} 20 / 9 ; 200 \mathrm{mfd} / 350 \mathrm{v}$ $10 / 9 ; 200 \times 200 \times 100 \mathrm{mfd} / 350 \mathrm{v} 24 / 9 ; 1000 \mathrm{mfd} / 50 \mathrm{v} 9 /-; 2000 \mathrm{mfd} / 50 \mathrm{v} 11 / 9 ; 5000 \mathrm{mfd} / 25 \mathrm{v} 13 / 6 ; 5000 \mathrm{mfd} / 50 \mathrm{v} 24 / 9 ;$ Tubular types: $1 \mathrm{mfd} / 500 \mathrm{v}$ $2 / 3 ; 2 \mathrm{mfd} / 500 \mathrm{v} 2 / 6 ; 4 \mathrm{mfd} / 500 \mathrm{v} 2 / 9 ; 8 \mathrm{mfd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mfd} / 500 \mathrm{v} 3 /-; 8 \times 8 \mathrm{mfd} / 450 \mathrm{v} 2 / 9 ; 8 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 /-; 10 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 6 ;$ $16 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 16 \times 32 \mathrm{mfd} / 350 \mathrm{v} 3 / 6 ; 32 \mathrm{mfd} / 350 \mathrm{v} 3 /-; 32 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 32 \times 32 \mathrm{mfd} / 350 \mathrm{v} 4 / 9 ; 50 \mathrm{mfd} / 350 \mathrm{v} 5 / 3 ; 100 \mathrm{mfd} / 450 \mathrm{v} 9 / 6 ;$ $64 \mathrm{mfd} / 450 \mathrm{v} 8 / 9$.

EXPRESS POSTAL SERVICE! ALL ORDERS DESPATCHED SAME DAY AS RECEIVED

[^13]
YOUR CAREER in RADIO \& ELECTRONIGS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Futlest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks. Please send FREE BROCHURE to:
NAME. ... Block
ADDRESS.

DAVIS \& WHITWORTH LTD.
BY 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX PHONE: SOUTHEND (OSO2) 46344

[^14] Gend for our FREE lists and catalogue of all our products Check your own equivalemts with our free substitution chart.

With our free substitution chart. FIRST EVER LOGIC $\begin{aligned} & \text { for yourself. Full instructions for a noughts and crosses machine, binary }\end{aligned}$ counters, timers, etc. L. $15 \mathrm{gns} . L .210 \mathrm{gns}$. No nerd to purchase both kits, you can start with L.2, wheh incorporates I.1. DETAlLS PREE.
NO CONNECTION WITH ANY OTHER FIRM. MINIMUM ORDER 10/CASH WITH ORDER PLEABE, add $1 /$ post and packing. OVERSEAS ADD EXTRA FOR AIRMAIL.
H.A.C. ${ }^{\text {shofrifisuve }}$ NEW RELEASE: MODEL"DX'"

Famous for over 30 years for Short-Wave Equipment of quality, "H.A.C." were the original suppliers of Short. Wave Heceiver Kits for the
smateur constructor. Over 10,000 satisfed smateur conntructor Over 10,000 satisfled customers including Technical Colleges, Hos-
pitals, Public Schools, R.A.F., Army, Hams, etc. IMPROVED 1987 RANGE
One vaive model "DX", complete kit-price 56/6 (Postage and packing 3/6)
Customers say: "Definitely the beat one-valve s.W. Kit available at any price." This kit contains all genuine short-wave components, drilled chascis, valve, sccessories and fult instructions. Ready to assemble, and of course, as all our producta-i uliy guaranteet. Full range of other
$\mathrm{B} . \mathrm{W}$. kits still available, including the famons 8.W. kita still available, includng the famons
model " K " (recomnended by radio clubs). All model K (recommended despatched by return. (Mail order only.) gend now for a descrintive catalogue. order form. etc., to:-
"'H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

NEW RANGE U.H.F. AERIALS FOR BBC 2 (625) line transmissions All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors. 35 $\begin{array}{ll}\text { I.oft Mounting Arrays, } \\ 11 & \text { element. } 42 / 6 \text {. } 14 \text { element. } 50 / \text { - } 18\end{array}$ element. $5 \% / 6$. ivitl Mountink with Cranked Arm. 7 elemens, $60 /$-, 11 element 6r/- 14 element. 75/-. 18 element, $82 / 6$ Mast Mounting with 2 in . clamp. 7 element, 42/6; 11 element, $55 /-; 14$ element, 62/-; 18 element. 70/-. Chimmey Mounting Arrays, Coniplets, 7 element, $72 / 6 ; 11$ element. 80/-; 14 element, 8\%/6: 18 element, $95 /$-. Complete assembly instructions With every unit. from $75 /$ - State clearly channel number required on all orders.

BBC • ITV • F.M. AERIALS

1BRC (Isand 1). Telescoplc
loft. 21/. External S/D. $30 /-$ "H" 22.10 .0 . ITV (Isand 33 , 3 element loft array, 251 - 5 element, $35 /$ Wall mounting, 3 element. $35 /-5$ element. 45/-
Combined BBCIITY, Lioft $1+3,41 / 3 ; 1+5,48 / 9$; Wall mounting $1+3,56 / 3 ; 1+5 ;$ $63 / 9 ;$ Chimney $1+3,63 / 9 ;$
$1+5,71 / 3$.
VHF transistor pre-amps, VHF transistor pre-amps,
$75 /-$. .
Loft $\mathrm{S} / \mathrm{D}, 12 / 6, ~ " H " .30 /-3$ F.M. (Band 2). Loft S/D, 12/6, "H". 30/-3 3
element. 52/6. External units available. element, 52/6. External units available.
Co-ax cable. $8 d$, ya. Co-ax plugs, $1 / 3$. Outlet Co-ax cable, 8d, yd. Co-ax plugs, $1 / 3$. Outle
boxes, $4 / 6$. Diplexer Crossover Boxes. $12 / 6$. boxes, 4/6. Diplexer crossover Boxes, $12 / 6$. for illustrated lists.
Quotations for special arrays avaitable on request
K.V.A. ELECTRONICS (Dept, P.W.) 27 Central Parade, New Addington Surrey CRO OJB LODGE HILL 2266

No． 17
 CRAY VALLEY RADIO SOCIETY

THE Cray Valley Radio Society was founded in 1946 to provide a focal point for Radio Amateurs and Short Wave Listeners living in the vicinity of Cray Valley，a district covering Eltham，Sidcup，Bromley，Orp－ ington and the Crays．Member－ ship now consists of over 40 licensed operators and nearly 20 Short Wave Listeners drawn from a wide variety of trades，profes－ sions and students．

Early licences

The Society is proud to include among its members，four opera－ tors，G2HP，G2MI（who is Presi－ dent and a member of the RSGB Council），G2WI and G2ZI，all licensed in the earliest days of Amateur Radio．

There is no doubt that QUA， the Society＇s newsletter，does a great deal to keep members in touch．This is published regularly
each month，the present editor being G3DNC．Contributions from members are always wel－ come and usually make up a satisfactory proportion of the contents，varying from technical articles to miniature masterpieces of doggerel．

Meetings

The Society meets twice monthly．On the first Thursday in the month at the Congregational Church Hall，Court Road， Eltham，London S．E． 9 the meet－ ing is usually devoted to a tech－ nical lecture or feature．The sec－ ond meeting，held a fortnight later at All Saints Church Hall， Bercta Road，New Eltham，Lon－ don S．E． 9 is usually a＂natter－ nite＂because past experience has shown that members seldom have enough opportunity at the princi－ pal meeting to say all that they want to in the limited time avail－

Members at the 1966 NFD．From the left they are：Chris，G3VLT；Alan，G3ANK； Bill，G2AQB；and Dave，G3RGS．
able for conversation．It is hoped to alter the meeting night for this event in due course so that those members who find Thursdays inconvenient will at least be able to attend some of the meetings．

Until a few years ago there was little or no interest in contest operating but in the last three years，the Society has participated in both h．f．and v．h．f．contests with varying degrees of success． In an attempt to co－ordinate the efforts of individual members， G3VLT has taken on the job of Liaison Officer and hopes to pro－ duce improved results．

Balance of activities

One problem which must be common to many Societies is that of getting a reasonable balance of activities．This particular aspect has recently engaged the attention of the Cray Valley man－ agement committee to the extent of sending a questionnaire to all members and it is hoped that the future programmes based on sug－ gestions received will be to their liking．

Society net

The Society runs a net on Top Band on Fridays at 21.00 hours and there is also a rival，though none the less popular，net on four metres at 20.00 hours on Tues－ days．The Top Band net has proved a valuable source of pub－ licity for attracting new members who，by this means，often first learn of the club＇s existence．

Activity weekends are held at intervals，mainly with the object of giving other amateurs an opportunity of qualifying for the Cray Valley Award．Particulars of this are obtainable by sending a stamped addressed envelope to G3MCA．

No permanent QTH

One big handicap that has not yet been overcome is the lack of a permanent headquarters where gear can be installed and aerials erected. The Society looks forward to the day when this object can be achieved.

WVC award

The Society award a certificate to any licensed amateur who can give proof of two-way communi-
cation, any mode, any band. To gain the number of points pertaining to his locality, e.g., G stations requirie, 15 points, Euro pean stations require 10 points and DX stations require 5 points.

One point is given for contacting each Society member and three points for contacting the Society Station, G3RCV. Net QSO's are void. Log extract, certified by two other licensed amateurs, or QSL's and 5 I.R.C. (or 2s. 6d.) to G3MCA.

To gain the required points, G3RCV need not be QSO'd. GM, GD, GC, GI and GW stations count as European.

The present committee includes G3JJC (Chairman) G3VLX (Secretary) and G3TCC (Treasurer). Anyone interested in joining will be welcome at any meeting: alternatively they can contact the secretary at $850-6945$, evenings or weekends, or write to G3VLX, 234 Halfway Street, Sidcup, Kent.

A book reviewed

The notice of Donald Smith's ABC's of Electronic Test Equipment by "HWH" in the June number conveys so little of interest that one wonders why the work was noticed at all; the space might well have been given to better use. What does "HWH" expect for 16/- - a tome covering the entire field of test instrumentation in such detail that low-grade technicians can make their own in their garden sheds, from parts bought at "junk shops"? Has "HWH" spent a whole day at, say, the recent RECMF show at Olympia. Has he examined the shelves of books on electronics in his local public library? Above all, has he himself written any books on electronics, and is he really familiar with the problems of publishers to-day? If "yes" to all queries, I am surprised and annoyed by his notice of this unimportant but harmless enough book, which may be best left for technicians to discover for themselves without his hostile remarks. For my part, I want information about more important practical books.-W. H. Cazaly.
[We, too, would love to see more useful books, but can only review those sent. To ignore those that dissatisfy makes a mockery of the task reviewers set themselves.

ABC's of Electronic Test Equipment falls awkwardly between two stools. It would have been more interesting (though even less useful) if it merely listed the available test gear seen at the recent RECMF Exhibition. It would have been more useful if it had continued as it began and developed its theme of basic design. But to omit so much fundamental
information that even we "low-grade technicians" could not use it to work in our garden sheds certainly merited some adverse comment.

There are indeed many books on the public library shelves-this reviewer has written a few himself, Mr. C., and is aware of the blood and sweat they entail. The few that deal with test instruments are either very expensive or narrowly specialised. I feel sure the Editor would be delighted to give space to a review of any work that deserved the attention of his faithful band of practical readers]-H.W.H.

Infinite baffle mods

I note with interest G. R. Fletcher's article "Idea for an Infinite Baffle" published in the April edition of P.W.

Whilst commending the scheme from the technical (and domestic) point of view, I should like to suggest certain slight modifications: (1) the chimney can resonate like a closed organ pipe. Although the fundamental will almost certainly be too low in pitch to be noticeable (18c.p.s. for a 30 -foot chimney), the even harmonics emitted could produce devastating coloration.
(2) Front-to-back standing waves, reflected by hard materials such as firebrick, could present problems.
(3) The presence of a large lintel close to the rear face of the speaker cone causes "tunnel effect"-i.e. more coloration.

These effects can be remedied in the following ways:
(1) The chimney should be blocked above the speaker to make a rigid airtight seal. The height of the chamber so formed is not
critical, but should not be made a multiple of either major horizontal dimension. Mr. G. A. Briggs recommends ratios of $-1: 1 \cdot 25$: 1.6 or $1: 1.6: 2.5$-to minimise coloration.
The roof of the chamber should ideally be brick or concrete, but wood at least $\frac{1}{2}$ in. or preferably lin. thick could be substituted. Wood faced on the upper side with heavy unglazed ceramic tiles would be a good compromise.
(2) The whole cabinet should be lined on the inside with absorbent: a good thick layer of fluffy soot would help considerably.
(3) Bricks close to the speaker should be bevelled away:
The author's precaution of pushing newspaper wads up the chimney has probably saved him from the worst effects of column reson-ance-the pads will form an acoustic filter.
In conclusion-Good luck, Mr. Fletcher-an excellent idea.-W. S. Lymath, Engineer, Rank Wharfedale Ltd. (Bradford, Yorkshire).

Veteran valve identity

I wonder if you or your Correspondent P. J. Plater, of Wallington, Surrey (June '66) can help me with the valve line up of a veteran Burndpept 285.
As he says the valve identity marks do get lost, and this veteran was doing nicely, when it spluttered and stopped. I found that the ancient electrolitic was leaking and had evidently eaten through a lead to earth, but I cannot decide which of two tags it belongs to, till I know the identity of the output valve.-W. M. Mackenzie (Gosport, Hampshire).

NOW ADDED TO
 The COMMON CORE Series THE ‘NUMBERS GAME’

Play it with TRAINER-TESTER Response Sheet No. E3 and the eleven ADJUNCTIVE PROGRAMMING SUPPLEMENTS TO basic electricity and basic electronics

Full details and prices will be sent on application to
THE TECHNICAL PRESS LTD
112 WESTBOURNE GROVE, LONDON, W. 2
Incidentally BASIC TELEVISION part 1 is now ready (see below)

- ULTRALINEAR CLASS B DUT. PuT
12 WATTS RMS CONTINUOUS SINE WAVE OUTPUT (24 W . Peak)
- 15 WATTS MUSIC POWER OUTPUT (30 W. Peak)
- INPUT-2mV into 2Kohms
- OUTPUT suitable for 15, 7.5 and 3 ohm speakers. Two 3 ohm speakers may be used in parallel

Eight special H.F. transistors are used in the $\mathbf{Z . 1 2}$ to achieve results to compare favourably in every way with the costliest equipment you can buy. But the $\mathbf{Z . 1 2}$ is smaller, is more versatile and certainly saves you money. It is preferred not only for mono and stereo hi-fi, but it also enjoys enormous popularity fitted in electric guitars, used for P.A. and intercoms and many other instances where power and dependability are imperative. This superb amplifier with integrated pre-amp is supplied ready-built, tested and guaranteed together with the $\mathbf{Z . 1 2}$ manual which details matching, volume and tone control and selector switching circuits using one $\mathbf{Z . 1 2}$ in mono or two in stereo.

- IDEAL FOR USE WITH BATTERIES

BUILT,
tested and
guaranteed

SINCLAIR MICRO FM 7 TRANSISTOR COMBINED FM TUNER AND RECEIVER

Less than $3 \ln , \times 4 \frac{1}{3} \mathrm{in} . \times 3 \mathrm{in}$. F.M. Superhet using pulse counting discriminator for superb audlo quality. Low I.F. makes allgnment unnecessary. Tunes $88-108 \mathrm{Mc} / \mathrm{s}$. The tele scoplc aerlal suffices for good reception in all but poorest areas. Slgnal to noise ratio -30 dB at 30 microvolts. Takes standard 9 v , battery. One outlet standard 9v. battery. One outlet
serves for feeding to amplifier or serves for feeding to amplifier or
recorder, the other allows set to be used as a pocket portable. Brushed and pollshed aluminium front, spun aluminlum dlal. A fascinating set to bulld which glves excellent receptlon by any standards. Complete kit inc. aerfal, case, earpiece and Instructlons.

SINCLAIR STEREO
25
PRE-AMP AND CONTROL UNIT

For use with two Z.12's or any good hi-fi stereo system. The front panel is elegantly styled in solid brushed and polished aluminium with wall styled solid aluminium knobs. Frequency response $25 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}$ connected to two Z.12's. Sensitivity Mic. 2 mV into $50 \mathrm{k} \Omega$: P.U. -3 mV into $50 \mathrm{k} \Omega$: Radio -20 mV into 4.7Ω. Equalisation correct to within $\pm 1 \mathrm{~dB}$ on RIAA curve from 50 to $20,000 \mathrm{c} / \mathrm{s}$. Size $6 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. plus knobs.

SINCLAIR PZ.3 Transistorised mains power supply
unit with ample output for two $Z .12$'s and Stereo 25 together.

BUILT. TESTED

SINCLAIR RADIONICS LTD ${ }_{*}, 22$ Newmarket Rd., CAMBRIDGE

Actual Size

- calibrated slow-motion. DIAL
- gandspread and a.G.C
- TUNERS OVER M.W.
- FANTASTIC POWER. SELECTIVITY AND DUALITY
- GUARANTEELI 5 YRS.

Guarantee

Should you not be completely satisfied witl your purchase when you receive it from us, your money wilf be refunded in full at ance and without quastion. FULL SERVICE FAC ILITIES AVAILABLE TO ALL PURCHASERS.

with the world's smallest radio

To the fantastically small size of the Sinclair Micromatic must be added its brilliant performance. This British made set assures you at all times of choice of B.B.C. and many other stations in the medium waveband. After dusk, even more stations come in all around the dial with amazing power and excellent quality. Vernier type tuning takes full advantage of the set's selectivity. This remarkable set provides good listening no matter where you are-indoors, in car, bus, train-everywhere. The Sinclair Micromatic brings a refreshingly new approach to personal listening and for its size, appearance, price and performance, there is nothing to equal it anywhere in the world.

TECHNICAL DESCRIPTION OF THE SINCLAIR MICROMATIC 6 -stage receiver having two R.F. stages, a double diode detector and a powerful three stage A.F. amplifier, the output from which feeds into a specially matched high quality lightweight earpiece. The MICROMATIC has its own built-in ferrite rod aerial and uses vernier type tuning over the medium wave band. A.G.C, counteracts fading from distant stations. The beautifully styled case, size $1 / 5 \times 1^{3 / 1}$ a $x \frac{1}{2} i n$., is faced with an artist designed aluminium front panel of outstanding elegance, with aluminium tuning dial to match. Available as kit in "see-for-yourself" fitted pack, with earpiece, instructions and solder, or built and ready for use.

If you prefer not to cut th/s page, please quole PW9 when writling your order.

Please send
NAME
ADDRESS
or which I enclose cash/cheque/money
order value $£$..

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values, details of which are given in the latest edition of the Constructors' Booklet priced at 2/-.

Oscillator Coil	P50/1AC (For OC45)	P50/1AC	(For AF117)	5/4
1st I.F. Transformer	P50/2CC (For OC45)	P51/1	(For AF117)	5/7
2nd I.F. TransformerP50/2CC (For OC45)	P51/2	(For AF117)	5/7
3rd I.F. TransformerP50/3CC (For OC45)	P50/3V	(For AF117)	6/-
	Rod AerialRA2W.	12/6	
	Driver TransformerLFDT4/19/6	
	Output Transformer..................OPT1	10/6	
	Printed Circuit..........................PCA19/6	

I.F. TRANSFORMERS \& COILS FOR VALVE CIRCUITS

Production of Tuning Coils (Type "H") and I.F. Transformers is being continued and details of these and our other components are given in an illustrated folder which will be forwarded on request with 4d. postage please.

WEYRAD (ELECTRONICS) LIMITED SCHOOL STREET, WEYMOUTH, DORSET

> AERIAL WLRE: Coils of 25 yds. Single Strand $2 / 3+$ Rd. P. \& P.
> 1. Ministure Plug-in Relays. 185 Coil $4 \cdot 5 / 18 \mathrm{v}$. 2 Change over Contacts $18 / 6+1 / 6 \mathrm{P}$. \& P.
> 2. Miniature Plug-in Relays. 130 Coil 4, Light Duty
> Contacts. $9 / 15$ volts, $18 / 9+1 / 6$ P. \& P.
> 3. Heavy duty Car Alarm Relay 6/12 volts. 3 c/o
> Contacts. $27 / 6+1 / 6$ P. \& P.
> 4. 6 Folt octal base a/C Relays. 2 pairs heavy duty Contacts e/o. Complete with octal hase. $23 /=+1 / 6$ P. ${ }^{2} \mathbf{P}$

> B. Bases for Item 1 and 2. $8 / 9+6 \mathrm{~d}$. P. \& P.
> State whether wired or printed circuit.
> TEST METER: 8till available at reduced price of 23.19.6. 20 K per volt ITI-2, and 200 H . TAYLOR Jun. and Minor.
> Small robust Test Meter suitable for Field Service.
> $89 / 6+2 /-\mathrm{P}$ कै P
> LOUDPEAKERS; 82^{*} to 5^{*} from $7 / 6$ to $13 / 6+1 / 6$
> Dual Cone Richard Allen, 3 and $15 \mathrm{~g} \mathrm{29/8}+3 /$. P. \& P.
> Car Speakers $7^{*} \times 4^{*} 18 / 8+2 /$. P. \& $P \cdot 8^{\prime \prime}$ and 10^{*} Richard Allen.
> TEST LEADS: Pairs of Strong Test Leads $4 / 6$ per pr. TRANSFORMERS: $250-0-250$ sec. $60 \mathrm{M} / \mathrm{A} / 6 \cdot 3$ volts. $18 / 8+3 / 6$ P. \& P.
> TRANSFORMERS SUITABLE FOR SMALL POWER SDPPLIES: $\delta / 11 / 17$ volts at 4 gmps. $27 / 6+3 / 6$ P. α P. 3 to 30 volts tapped 2 amps. $30 / m+3 / 6 \quad$ P. \& P. $0-9-15$ volts. 11 amps. $10 / 6+3 /-$ P. \& P. 75 watt auto transformers. $10 / 6+2 / 6$ P. \& \mathbf{P}.
> OUTPUT TRANSFORMERS; Suitable for DL96 Midget. $6 / 6+2 / 6 \mathrm{P}, \& \mathbf{P}$. Suitable for EL85/UL84 Singles. $6 / 6+2 / 6 \quad$ P. \& P. Midget Choke Ontput. $6 / 6$ CARBON CON
> KARBON CONTROLS: 5 K to 2 M Lin. or Log. $3 / 6$. $\begin{aligned} & 5 \mathrm{~K} \text { to } 2 \mathrm{M} \text { Lin. or Log. with s/W. } 5 / 3+1 / * \text { P. \& P. } \\ & \text { WEYRAD RANGE of IFs, Coils, Driver \& output trs }\end{aligned}$ EAR PIECES; $2.5 \mathrm{~m} / \mathrm{m}$ or $3.5 \mathrm{~m} / \mathrm{m}$ Magnetic $2 / B$. Crystal $2.5 \mathrm{~m} / \mathrm{m} / 3.5 \mathrm{~mm} / \mathrm{m} .5 / 6$.
> SINCLAIR PRODUCTS: All units and Mat. Trans. TRANSISTORS: POPULAR RANGE. OC44, OC45, $0 \mathrm{C} 71,0 \mathrm{C} 72$, OC81, OC82, all at $2 / 6$.
> POWER TRANSISTORS: OC26, 10/9, $0022815 / 8$, osmor RA,
> OBMOR RANGE of IFs, Coils, Driver \& output trans. Write or call for our free Components List.

BOTH WELL ELECTRIC
8UPPLIES (Glasgow) LTD.
54 EGLINTON STREET,
GLASGOW, C.5. Tel. 041 soUth 2904. Hember of the Lander Group.

AMATEUR RADIO G3NAP SPECIALISTS G3POO STOCKISTS

Full range Lafayette Receivers, Partridge "Joystick" antennas and tuners. Eagle products. Electroniques manual and products. R.S.G.B. publications.
Sommerkamp transmitters and receivers. Tokai transceivers (Amateur's licence required), Kw transmitters, receivers, etc. Contactor switchgear mobile equipment. Swan transceivers (Amateur's licence required), etc., etc. SAE Lists.

SWANCO PRODUCTS LTD.
247 HUMBER AVENUE
COVENTRY
Open all day Sat. Tel: COV. 22714

Open 9-5.30 p.m. except Thursday 9-1 p.m. PERSONAL CALLERS WELCOME

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 6 \mathrm{~d}$. per word (minimum order $18 /$-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 4.12 \mathrm{~s}$. 6 d . per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

METAL WORK

METAL WORK: All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, Maudling Bk., Preston.

SERVICE SHEETS $(75,000)$ 4/- each: please add loose 4d. stamp: callers welcome: always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS for all makes, Radio, TV. Tape Recorders, 1925-1967. Prices from 1/-, Catalogue 6,000 models $2 / 6 \mathrm{~d}$. Free faultfinding guide with all Sheets. Please send stamped addressed envelope with all orders/ enquiries, HAMILTON RADIO, Western Road, St. Leonards, Sussex.

RADIO TELEVISION over 3,000 models. JOHN GILBERT TELEVISION. Ib Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS

4/- each, plus postage

We have the largest display of Service Sheets for all makes and types of Radios and Televisions, etc., in the country. Speedy service.
To obtain the Service Sheet you require please complete the attached coupon
Name:
Address:

To: S.P. DISTRIBUTORS
35/36 Great Marlborough Street. London, W. 1
Please supply Service Sheets for the following Make:

Model No.. Radio/TV
Make:
Model No. Radio/TV
Make: .
Model No... Radio/TV
I require the new 1967 List of Service Sheets at $1 / 6$ each plus postage.
(please delete items not applicable)
, enclose remittance of.
(which includes postage)
MAIL ORDERS ONLY (Sept.) PW

EDUCATIONAL

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.
BECOME 'Technically qualified' in your spare time, guaranteed diploma and exam home-study courses in radio, T.V. servicing and maintenance. T.T.E.B., City and Guilds, etc: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C. 1 .

TRAIN TODAY
 FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Electronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?
Courses include :

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- CLOSED CIRCUIT TV
- ELECTRONICS—many new courses
- ELECTRONIC MAINTENANCE
- INTRUMENTATION AND SERVOMECHANISMS
- COMPUTERS
- PRACTICAL RADIO (with kits)
- NEW PROGRAMMED COURSE ON ELECTRONIC FUNDAMENTALS
Guaranteed Coaching for :
- Inst. Electronic \& Radio Engs.
- C. \& G. Telecom. Techns' Certs.
- C. \&. G. Supplementary Studies
R.T.E.B. Radio/T.V. Servicing Cert.
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy Start today-The ICS Way

INTERNATIONAL

 CORRESPONDENCE SCHOOLS Dept. 173, Parkgate Rd., London, S.W.11. Please send FREE book on
Name

Address

EDUCATIONAL
 (continued)

CITY \& GUILDS (electrical, etc.) on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For details of modern courses in all of passes. For details of modern courses of electrical engineering, elenics, branches of electrical engineering, electronics,
radio, T.V., automation, etc., send for 132 page Handbook-FREE. B.I.E.T. (Dept. 168 K) Aldermaston Court, Aldermaston, Berks.

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies during 1967. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College, Colwyn Bay.

OUALIFY as a technician, to service COMPUTERS, COLOUR TELEVISION, AUTOMATIC CONTROL SYSTEMS.
Day or evening courses, include extensive practical work using modern equipment.
Also special course (2 days per week) enabling beginners to reach City and Guilds Intermediate level in six months. Full details from:-

Section 47/48,
Southall College of Technology,
Beaconsfield Road,
SOUTHALL, Middx.
TRANSISTOR COURSE: Professionally qualified tutors; free guidance. Material, components and illustrated instructions supplied. Also Basic Transistor Circuits Kit and Meter Also Basic Transistor Circuits Kit and Meter
Kit. Write for FREE Booklet to Dept. WA, Kit. Write for FREE Booklet to Dept. WA,
ELECTRONIC EXPERIMENTS, Brinklow, ELECTR
Rugby.

SITUATIONS VACANT

Abstract

TV and Radio, City \& Guilds, R.T.E.B.; Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV. Electronics. etc. write for 132-page handbook -FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY. (Dept. 137 K), Aldermaston Court, Aldermaston, Berks.

RADIO \& TV Exam, and Courses by Britain's finest Home-study School. Coaching for Brit.I.R.E., City \& Guilds Amateur's Licence, R.T.E.B., P.M.G. Cert., etc. FREE brochure from BRITISH NATIONAL RADIO SCHOOL, Russel Street, Reading.

ALDERMASTON COURT POSTAL TRAIN-
ING for B.Sc. (Eng) Part I, A.M.I.E.R.E.
ING for B.Sc. (Eng) Part A.M.S.E., City \& Guilds, G.C.E., etc. prepares A.M.S.E., City \& Guilds, G.C.E., etc. prepares
you privately for high pay and security as you privately for high pay and security as
Technician or Technologist. Thousands of passes. For details of Exams \& Courses in all branches of Engineering, Building. Electronics, etc. (including latest information on C.Eng.), write lor 132-page handbook-FREE. Please state interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K),' Aldermaston Court, Aldermaston Berks.

SITUATIONS VACANT (continued)
 RADIO TECHNICIANS

A number of suitably qualified candidates are required for permanent and pensionable employment (mostly in Cheltenham, but from time to time there are some vacancies in other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer " 0 " level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at $19-£ 812$, at $25-£ 1,046$ (highest age pay on entry) rising on 1.1.68 to; at $19-£ 828$, at $25-$ £1,076.

Prospects of promotion to grades in salary range $£ 1,159-£ 1,941$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT),
Government Communications
Headquarters
Oakley, Priors Road
CHELTENHAM, Glos.

BOOKS \& PUBLICATIONS

AUDIO, America's foremost journal. Year's subscription $43 /$-, specimen copy $4 /$-. All American radio journals supplied-list free, WILLEN (Dept. 40), 61a Broadway, London, E. 15.

HANDBOOKS	
	set Circuit and Notes
	155 set Circuit and Notes
	R.O. Technical Instructions
	set Technicail Instructions.
	6 set Working Instructions
	set Technical Instructions. .
	C. 221 Circult and Notes
	Wavemeter Class D Tech. Inst
	set Circuit and Notes
	C. 1000 (31 set) Circult and Notes
	R.100/B. 28 Circuit and Notes
	. 107 Circuit and Notes
	R.88D Instruction Manual
	set Circult and Notes
Circuit Diagram 3/- each post tree, R.1116/A R.1224/A, R.1355, R.F. 24,25 and 26, A. 1134 T.1154, CR. 300 . BC. 312, BC.342, BC. $348 \mathrm{~J}, \mathrm{BC} .348$ (E.M.P.), BC.624, 22 set.	
	set Sender and Receiver circ
esistor colour code indicator, 1/6 p/p	
S.A.E. with all enqulries please. Postage rates apply to U.K. only.	
Mail order only to:	
INSTRUCTIONAL HANDBOOK SUPPLIES	
DEPT. PW. TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8	

WANTED

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED

(continued)
WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.
WANTED: Popular Brand New Valves. R.H.S. Stamford House, 538 Great Horton Road, Bradford 7.

DAMAGED AVO METERS wanted. Models 7 and 8. Any condition. Any quantity. Send for packing instructions, HUGGETTS LTD. 2-4 Pawson's Road, West Croydon.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

VALVES WANTED, brand new popular types boxed. DURHAM SUPPLIES (C), 175 Durham Road, Bradford 8, Yorkshire.

PRACTICAL WIRELESS Back copies required July. Aug.. 1961; May, June, July, 1963; Oct., Nov.. 1964; Feb.. 1966. All letters answered. B. W. Hughes, il Henley Road. Ludlow, Shropshire.

FOR SALE

COMPUTER TRIAL 14

Now try it yourself !

Two-thousand DIGI-COMPS have been sold in the U.K.; that means countless hours of fun and instruction, aud programmed learning. This digital computer not only calculates, zolves problems and plays games it is accompanied by two large manuals which explain binary syatem, boolean algebra, elementary jogic and computer princtples to both the beginner and the more advanced. can put it on 14 -daya trial Th it itself-and now gou make up your matud।
simpiy send a cheque/P.o. for 2310 Br . 6d. (includes both manuals), then experiment with Digi-(comp for 14 days and if you are not satisfled we will refund payment in full:
Or. if you want more details write now for our trial-offer leaflet:-

18 Stam SYTEMS (File PWW)

MORSE MADE !

FACT NOT FICTION. If you start RIGET you will be FACT NOT FICTION If you start RIGBT you will be
reading amateur and commercial Morse within a month reading amateur and commercial
Using scientifically prepared 3 -speed records you automatically learn to recngnise the code RHYTHM withont tranwating. Yon can't help it, it's as eany as learning a tune. iNW.F.M. in 4 wreeks guaranteed. For details and course C.O.D. ring, s.t.4. 01-660 2896 or send sid. atamp for explanatory booklet to G8CHS/P. 45 GREEN LANE, PURLEY, SURREY

Dept. PW/9

FOR SALE
(continued)

COMPONENTS AT GIVE-AWAY PRICES: 92 Assorted resistors, condensers, valve holders, diodes, electrolytics, droppers, coils, pre-sets and plugs etc., etc., all brand new stock $10 /$ - lot. DIAMOND (MAIL ORDER) PRODUCTS, 204a FROGHALL LANE, HULL, EAST YORKSHIRE.

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns.-Special Offer 55/- each. Price 6 gns.-Special Offer 55/- each.
MINIFLUX 4-Track stereophonic/ monophonic Ferrite Erase Heads. List monophonic Ferrite Erase Heads. List
Price £3.10.0.-Special Offer $32 / 6$ each, or supplied together (one of each), at £3.17.6. SKN4 $\frac{1}{t}$-track stereophónic record/play heads for Transistor Circuits at $55 /$-each. Also available $\frac{1}{2}$-track and full-track monophonic Ferrite Erase Heads. All heads complete with technical specifications. Send S.A.E. for details. LEE ELECTRONICS, 400 Edgware Rd., Paddington 5521.

TRANSISTORS SPECIAL OFFER

1 watt S.T.C. $300 \mathrm{mc} / \mathrm{s}$ N.P.N. Silicon Planar Transistors, limited stocks $£ 1$ for 6 .

WITH DATA
3/- each. OC44, OC45, OC70, OC71, OC81, OC81D, OC200, GET16, GET20.
4/- each. AF114. AF115, AF116, AF117, OC170, OC171.
5/- each. OC139, OC140, GET7, GET8, GET9, XC141, BY100, OA211.

BSY27 7/6 each, OC20 10/- each
ZENER DIODES
All volts between 3.9 v . and 26 v . $\frac{1}{4} w 3 / 6$ each, $1.5 w 5 /-$ each, 7 w 6/- each.

Send 6d. for full lists:-
inc., S.C.R., Zeners.

78 BROAD STREET CANTERBURY, KENT

RECEIVERS \& COMPONENTS

TRANSMITTING VALVES, 813 or 4 B 13. also 811-G.B., 3 Guildford Close, West Worthing, Sussex. Worthing 6151.
(continued on next page)

RECEIVERS \& COMPONENTS (continued)

BARGAINS / BARGAINS !

Ex Government Equipment
HRO'S, AR88's, 19 Sets and equipment, 31 Sets, B44's. 88, 38 and 18 Sets and miscellaneous Surplus Equipment.

List 1/-

S.A.E. all enquiries

A.J.THOMPSON (Dept. P.W.)

Eiling Lodge, Codicote, Hitchin, Herts.

Tel.: Codicote 242

This set is made up of 3 separate units: (1) a two valve amplifier using a 6 V 6 output valve; (2) (some only, not built in the very latest models) a V.H.F. transreceiver covering $229-241 \mathrm{Mc} / \mathrm{s}$ using 4 valves; (3) the main short wave transmitter/receiver covering
in two switched bands, just below $2 \mathrm{Mc} / \mathrm{s}-4 \mathrm{Mc} / \mathrm{s}$, in two switched bands, just below $2 \mathrm{Mc} / \mathrm{g}-4 \frac{1}{4} \mathrm{Mc} / \mathrm{s}$, and $4 \frac{\mathrm{Mc} / \mathrm{s}-8}{} \mathrm{Mc} / \mathrm{s}$ (approx. $160-37 \cdot 5$ metres)
using 9 Falves. For R.T., C.W. and M.C.W. The receiver is superteterodyne having 1 R.F. stage, frequency changer two I.F. ($465 \mathrm{Ke} / \mathrm{s}$) signal detector, A.V.C. and outputstage. A B.F.O. included for C.W. or single side-band reception. T. X. out put valve 807 , other valves octal bases. Many extras, e.g. nettiog switch, quick flick dial settings, squelch etc. Power requirements LT 12 volta, HT receiver 275
voits D.C. HT transmitter 500 volts D.C., size approx. 17) x $7 \boldsymbol{i}$ I llins. Every set supplied in approx. 17 x 7 x 11 ns. Every set supplied in eluding circults, only $£ 4.10 .0 \mathrm{~d}$. ., or Grade 2 slightly used $50 /$ - carriage both 151 .
A FULL KIT of brand new attachments for this set including all connectors, controi box, headphones and mike, aerial tuning unit, co-axial lead etc. at VOLT POWRR UNIT in louvred metal cose to plug VOLT POWER UNIT in louvred metal case to plug
direct into set power socket to run (1) recelver, $70 /-$ direct into set power socket to run (1) recelver,
post $5 /-$ (2) TX and $\mathrm{RX}, \$ 6.10 .0$ post $7 / 6 \mathrm{~d}$. (3) 12 post 5/- (2) TX and RX, 86.10 .0 post 7/6d. (3) 12
Volt DC P.U. for receiver, 50/-carrtage 5/. A charge of 10\% to unpack and teat the receiver of these sets is made only if requested.
V.H.F. TRANSRECEIVER MK. 1/1

This is a modern self contained tunable V.H.F. low powered frequency modulated transreceiver for R.T. communication up to $8-10$ miles. Made for the Ministry of Supply at an extremely high cost by
well known British makers, using 15 midget B.G. 7 well known British makers, using 16 midget B.G.
valves, receiver incorporating $R . F$. amplifer. valves, receiver incorporating R.F. ampliaer.
Double superhet and A.F.C. Slow motion tuning with the dial calibrated in 41 channels each $200 \mathrm{Kc} / \mathrm{s}$ apart. The frequency covered is $39 \mathrm{mc} / \mathrm{s}-40 \mathrm{mc} / \mathrm{s}$. Also has built-in Crystal calibrator which gives pips to coincide with marks on the tuning dial. Power required L.T. 41 volts, H.T. 150 volts, tapped at 90 volts for receiver. Every set supplied complete with valyes and crystals. New in carton, complete With adjustable whip aerial, and circuit. Price 801-. Internal power unit stabilised for $200 / 250$ volts 4.C. input 8.10.0 extra.

RECEIVERS \& COMPONENTS (continued)
TRANSISTORS, UNMARKED, UNTESTED, 40 for $10 /-$, p. and p. $1 /-, 4$ packets post free. Relays, thousands of types, special catalogue free. General catalogue of Mechanical and Electrical Gear, Tools, etc. (5,000 items), free. K. R. WHISTON (Dept. PRW), New Mills, Stockport.

PADDED MOVING COIL HEADPHONES AND mike
 NEW CONDITION HIGH QUALITY

 HIGH IMPEDANCE Bargain 13/-, Post Paid S.A.E. for Lists of other Bargains SALOP ELECTRONICS 9a GREYFRIARS ROAD, COLEHAM SHREWSBURY, SHROPSHIRE\section*{R G R RADIO
 51 Burnley Road, Rawtenstall Rossendale, Lancs. Tel: Rossendale 3152
 Salvage Valves Good Emission Guaranteed
 | EF80 | $1 / 6$ | $30 P 4$ | $7 /-$ | $30 F L 1$ | $5 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ECC82 | $3 /-$ | EB91 | $1 /-$ | PL82 | $4 / 6$ |
| ECL80 | $3 / 6$ | EF85 | $5 /-$ | PL36 | $5 /-$ |
| 30F5 | $5 /-$ | PCL84 | $5 /-$ | PCC84 | $1 /-$ |
| PCF80 | $4 /-$ | EY86 | $4 /-$ | PY81 | $3 / 6$ |
| PL81 | $5 /-$ | U301 | $6 /-$ | PY33 | $6 /-$ |}

Speakers, ExT,V, 5 inch rnd. 3/6. 6×4 3/6. MIn. post 2/6.
BYi00 and equiv. rects. with 10 watt res. 5/6. Fireball tuners, less cover can 9/-
Ekco line O/P Trans, U26 type 35/-, post paid,
Push Button tuners, using 30L15 and 30C15 valves rectangular buttons $27 / 6$, post paid.
Postage on valves 6d, over three, post paid. S.A.E. with all enquiries.

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $\mathbf{i - 2 0}$ watt, 12/6. Post Free. WHITSAM ELECTRICÁL, 18 Woodrow Close, Perivale, Middlesex.

QUALITY NEW VALVES

Guaranteed six months. Postage							
DCC90	4/8	EF91	$2 / 6$	EL9		PL	
DF91	$2 /-$	EF92	$21-$	EY86	$81-$	PL83	
DL92	4/-	EF93	41-	PCC84	$5 / 6$	PY81	
ECC81	$3 /-$	EF95	$3 / 6$	PCC89	8/9	PY801	
ECC82	4/-	EF98	$7 /$	PCF80	${ }^{6 / 6}$	U25	11
ECC83	4/3	EF183	$61-$	PCF82	6/6	68H6	
ECC91	2/6	EF184	6/-	PCL 82	8/8	6СН6	
ECF82	6/9	EL84	4/6	PCL8	8/3		
ECH81	5/.	EL85	6/-	PL	$91-$	150B2	

500 mA rects.- 800 PIV 3/-, 600 PIV 2/9, 400 PIV $2 / 8$, 200 PI V 2/-, 100 PIV 1/9. Si transistors, $200 \mathrm{MHz}, 300 \mathrm{~mW}$ 1/9. SCR's 5 \& 10 Amp.-stocks limited-5 for \&1.
Mic $45 \quad 19 / 6$, Mic $40 \mathrm{l} /=$, Mic 60 82/6. Replacement Mic 45 19/ β, Mic $4015 /-$,
unlversal xtal, cartridges.
universal xtal. cartridges.
Mono-high $0 / \mathrm{P} 15 /-$, med $0 / \mathrm{P}$ 12/-, stereo-high 0/P Mono-high O/P 15/-, med O/P 12/-, Stereo-high O/P
$30 /-$, med $0 / \mathrm{P} 25 /-$. Above post paid. Large SAE for lista.

J. R. HARTLEY

2 Waterloo Terrace
Bridgnorth, Shropshire

BRAND NEW NORBIT UNITS

25/- post free

Consisting of 9×3 in. chassis,
Con Strips, Resistances
2-0C29s 2-0C35s
M.A.C. LTD., Troy Road, Morley, Nr. Leeds
Phone: Morley 2334
P.C.R. Rxs.

These are a 6 valve plua rectifler Long, Med and 8.W. Rxt covering s.w. 6 , 18 mis/s 50 to 10 meters, drive, supplied reauly to work for 230 v mains. Price: 88.10.0. plus $10 /$ carr.
Rect Unit Type 7
I/P $200 / 250 \mathrm{v}$ mains or 12 v D.C. $\mathrm{O} / \mathrm{Pg} 130 \mathrm{v}$ D.C. at $30 \mathrm{Ma} \mathrm{C.T}$.40 v A.C. $30 \mathrm{Ma}, 12 \mathrm{v}$ D.C. at 300 Ma fitted fuse, Ind lamp, terminal strips, spare vibrator, with circ new and boxed.
Price: 25/-plus $7 / 8$ carr
Indicator Unit Type 95
Contains C.R.T. type VCR97 green screen med persistence, 16 octal valves C.R.T. Fil trana, Focus, Metal shield, slow motion dial $50: 1$, 2 I 500 Pf tuning conds. 100 Kc crystal unit, $2 \times$ slow motion drives, Yaxley and Key swts etc. In good condition with outer cover size $9 \times 12 \times 18 \mathrm{in}$.
Price: 23.15.0. plua 10% carr.
APQ-48 I.F. Strips
These are a $30 \mathrm{Mc} / \mathrm{s} 10 \mathrm{Mc} / \mathrm{s}$ bandwidth I.F. strip using the following valves: $6 \mathrm{AK} 5 \times 7,6 \mathrm{AG7}, 12 \mathrm{AU7}$ 6AL5, in good condition.
Price: 22.2.6. plus 4/6 carr. post. B.N.C. and Power plugs to At above $2 / 6$ each. Test Sets 281 and 268
These are a portable teat oac intended to work off 6 V D.C. The 261 covers 175 to $305 \mathrm{Mc} / \mathrm{s}$ and the 266,95 to $180 \mathrm{Mc} / \mathrm{s}$. These units are directly calibrated, no xtals are required. O/P is modulated with variable freq osc. A small Ae system is supplied. Overall ${ }^{3 l z e} 7 \times 8 \times 1 \mathrm{in}$. with Price: Either type 23.5 oj . plus 107-carr. Or 86.0 .0 . R.F. Amplifer No. 4

This is the V.F.O. and P.A. rection of the Army No. 53 Tx, this unit covers the freq range 1.2 to 17.5 $\mathrm{Mc} / 8$ in 4 bands and uses the following valves:
Osc VT501, Buffer VT501, Driver 807 P.A. Two Ose VTrisi, Buffer VT501, Driver 807, P.A. Two 813 s , Bias rect 6×5, Voltage stab V8110×2. The following controls and meters are fitted: V.F.O. tuning by a large directly calibrated dial, Driver tuning, Grld drive P.A. tuning, Ae coupling, Ae Ae current, Ae C/O relay ts Atted. Heater and bias supplies are contained within unit. The following ext supplies are required: E.H.T. 1.5 Kv at 300 Ma , $400 \mathrm{vat} 100 \mathrm{Ma}, 230 \mathrm{v}$ A.C., 12 v D.C. The $0 / \mathrm{P}$ of the unit is 250 watts with one 813 removed and the 1.3 Kv reduced. This will bring it down to 150 watts. I/P. Unit is intended to woris into dipole Ae. Supplied new and crated with circ.
Price E15.0.0. plis 20,
RX. Unit TyDe ARRR-Z to $258 \mathrm{Mc} / \mathrm{B}$ and are intended to receive A.M. modutated sub carrier transmissions and in their present form are unsuitable for normal use. Thene Rx can, however, be modifled to work on 2 meters, i.e. they can be made to tune the band 125 to $150 \mathrm{Mc} / \mathrm{s}$. modification details and circ diagrams are supplied with re. The ollowing valves are used. ©A Krs, The small size of these, i.e. $5 \mathrm{t} x 4+$ in. front, 11 in. deep makes them well guited to mobile use. To carry out successtully the mods to these a Sig dien or Teat osc is required. Supplied in new condltion.
Price: 23.10.0. plus 6 /- post.
Test Set Type 253
These are a test osc covering 20 to $88 \mathrm{Mc} / \mathrm{s}$ in 4 bands, and are for 230 r mains supply. A large vernier dial is fitted, $2 \mathrm{Mo} / 4$ xtal is fitted for checking calibration,
Noise diode with 50 Ma neter is also nitted for noise checks. RF sigual is modulated with low frea xtals. supplied with cal charts, used condition. These units were used for checking the R.F. $24 / 27$ units.
Price: 23.5 .0 . plus $10 /$ - carr.
Portahle Gieger Counters
These are a 4 valve unit with CV2247 pick up tube, meter indication. 1 to 10 Milili Rongtens, socketz for phones or counter, supplied in waterproof carrying case size $10 \times 10 \times 8$ in. These units normally work off 2-150v dry bateries. These are not avalable but and tested. Price: 5.10.0. plus $8 / 6$ carr. Kit of parts
translgtor P. U. to work off 9 v battery $25 /-$.
Table ToD Cabinet
Overall size $25 \times 15 \times 17 \mathrm{in}$. Ali construction as lift up lid and removable back. New condition. Price: 22.5.0. plus $12 / 6$ cart
Type 88 Walkie-Taikies
These are a 4 -channel unit operating in the freq range 38 to $42 \mathrm{Mc} / \mathrm{s}$. They req $90 / 1.5 \mathrm{v}$ carbou mike
 with circ.
Price: 84.10 .0 . each plus 6/* post. Or 2 for 88.0 .0 .
post pald.
Comparator Unit AN/GRD
 $0 \mathrm{OB2x2}, 5 \mathrm{Y} 3$, H.T. from unt is 350 v at 100 Ma also 105/210v stabilised also contains U.H.F. cosx relay, L.F. trans, $30 \mathrm{c} / \mathrm{s}$ filter, block paper conds, panel
neons, etc. These unita are for 19 in. rack mounting and have slide on top cover. Size $19 \times \operatorname{Bin}$. front, 10 in . deep. New condition with circ.
Price: 83.15.0. plus 12/6 carr.
Invertor Units
I/P 12.5 v D.C. at 46 amps, $0 / \mathrm{P} 115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 345$ watts one phase, well under-rated. New and crated.
Price: 512.10.0. plus 25/- carr.
Rollar Induotors
For Ae tuning and loading, size of coil $2 \underline{i} \mathrm{in}$. dia, 7 in . long, approx 48 turns with knob and counter dial. Ex equip;
Price: $17 / 8$
Price: $1 / 6$ plus $4 / 6$ Post.
115 V P
dia. Ove/s 3000 R.P.M. outlet $2 \downarrow \times 1$ in., Inlet $1 \sharp$ in. dia. © verall fength $5 \underline{i n}$. Brand new, boxed. Price: 25/- plus $4 / 6$ post. $230 / 110$ trany 116 post paid.
B. Slater, 55 Handswoth Road, SHEFFIELD θ

RECEIVERS \& COMPONENTS (continued)

BRAND NEW TELEVISION TUBES!

2 YEAR GUARANTEE. VAST RANGE $12^{\prime \prime} £ 3 ; 14^{*}$ £4 (not CRM141) $17^{\prime \prime} £ 5.15 .6 ; 19^{*} £ 6.17 .6$ etc. etc. Carriage 12/-
Also British valves lists free!
PHILIP H. BEARMAN, 6 Potters Road,
New Barnet, Herts. Bar 1934/7873.

WILSON ELECTRONICS

$2 / \mathrm{esa}, \mathrm{AC126,127,128}$, OC75, 819 T (OC83).
2/6 вa. OC44, 45, $81 \mathrm{D} .81 .82 \mathrm{D}, 82$.
3/- ea. OC71, 72, 170, 84, AF118, 119
3/6 ea, AF115, 116, 117, 125, 127
4/-83. AF114, OC171, 172
7/- os. OC22, 23, 25, 26, 28, 30, 200,
R.F. FIELD METER MOD. 1300 (RF40) with aerial and ear piece $52 /-$
ACOS MIKE 45 18/6.
6d. per order. P. \& P. Likts 6d.
20 Bradbourne Avenue, Willord, Nottingham,

MICROMINIATURE MICROPHONES

 Sensitlve dynamic type. WIII pickup rustle of newspaper from 30 teet. Size $9 \mathrm{~mm} . \times 9 \mathrm{~mm} . \times 3.5 \mathrm{~mm}$. Impedance $1 \mathrm{~K} \Omega$.

ONLY 28/6
Post free-C.W.O.
MICRO DATA SYSTEMS
30 BAKER ST., LONDON, W. 1

ELECTRICAL

INSTANT * * ELECTRICITY ANYWHERE!

AMAZING NEW AMERICAN DYNA -
MOTOR UNIT which runs from any $12-\mathrm{v}$. CAR BATTERY and produces a BIG ELECTRICAL OUTPUT of $230 / 240 \mathrm{v}$. at 220 watts. Marvellous for TELEVISION, ELECTRICAL DRULS, MAINS LIGHTING and all Universal AC/DC mains equipment. ONLY $£ 12.10 .0$ plus $30 /$-carr. Send stamped addressed envelope for illustrated details. Open 7 days a week.

SCIENTIFIC PRODUCTS (Dept. N) Onward Building (rear of Fleet wood Arms Hotel), Mount Street, Fleetwood. Lancs.

240 VOLT ELECTRIC POWER FROM

 YOUR 12 volt or 6 volt CAR BATTERYRun your mains $\mathbf{A C / D C}$ equipment direct from
 your car battery your car battery with this compact
low battery conlow battery con-
sumption dynasumption dyna-
motor, Size only $5 i n . x$ 3in. Sturdy construction. Converts a 12 volt input to a 240 volt output. Huge purchase enables us to offer them at only 39/6 each, post and packing $5 /-$. 6 volt Input model only $35 /-$, p.p. 5/-. Thousands already sold. Dept PW2.S.\&R. Supplies, 14 Clifton Grove, Leeds 9

MISCELLANEOUS

ELECTRONIC MUSIC ?

Then how about making yourself an electric Organ? Constructional data availablefull circuits. drawings and notes! It has 5 octaves, 2 manuals and pedals with 24
stops-uses 41 valves. With its variable stops uses 41 valves. With its variable
attack you can play Classics and Swing.
Write Now for free leaffet and further Write NoW for free leaffet and further
detalls to C. S, $\mathbf{z 0}$ Maude Street, detalls to C. Si S., 20 Maude Street,
Darlington, Jurham, Send 3d. stamp.

MISCELLANEOUS

(continued)

METERS!

All types, new condition. reasonable prices, example. $100 \mu \mathrm{~A} 4$ ins. dia. 32/6.
S.A.E. for lists.

SALOP ELECTRONICS
9a Greyfriars Road Coleham
Shrewsbury, Shropshire

SEE THE WORLD-FAMOUS
HEATHKIT
Electronic Kits
at
233 Tottenham Court Road,
London, W.1 Tel.01-636-7349
Send for FREE Catalogue
Depl. TC3

PADGETTS RADIO STORE

OLD TOWN HALL, LIVERSEDGE, YORKS

Te/ephone; CLECKHEATON 2866

Speclal Offer. 19 Sets, Mark 3. In good clean condition. Parts removed. B section, 807 valve and TX section made U.S. Receiver Bench Tested, all you would need is a Power Pack. 19 Sets in fair condit
removed is fair condition as above and also 10/-. Not tested. 19 Sets. Relays 100 ohm coil. $2 /$ Post and Packing 2/-. Doz. 26/-. Post paid. Jack Sockets, 7/6 doz. Post paid.
Metal Toggle Switches, 9d. Post and packing 7d. $7 / 6$ doz, Post paid.
Pointer knobs, 9d. Post and packing 6d. Doz. 7/6. Post paid.
46 Sets. New condition, less send receive switch, Cons and orystals, 12/6. Post paid. tuners. Condensers, and slow motion drives. 9/-. Post paid.
88 Set Chassis, Valves, Send/Recelve Switch, and Crystals removed, i/6. Post paid.
TV Chassis. Transformers removed. But complete with condensers, resistors, and valve holders. 10 for $22 /-$ Post paid
and perfect $6 \times 41 n$. and $61 n$ round $A 113 \mathrm{hm}$ PM S1x for 22/-. Post paid, 7 x 4in., $5 /-$. Post 2/9. Six for $34 /-$ Post pald. $8 i n$. round, $6 / 6$. Post $3 / 6$. New 12ln. Speakers with Built-in Tweeter. 28/6. Post pald. 3 or 15 ohm Coil.

VALVE LIST,
Ex Equipment. 3 months' guarantec. 10F1, EF80, EB91, ECL80, EF50, PY82, PZ30, 20P3 Slingle valves post 7 d .

ARP12	1/6	PL36	5/-	185BT	816
EB91	9 ar .	PL81	4/-	20D1	3/-
EBF80	3/-	PY33	5/-	20 L 1	5/-
ECC81	3/-	PY81	$1 / 6$	20 P 1	$5 /$
ECCO^{2}	$3 /-$	PY82	1/6	20 P 3	$2 / 6$
$\underset{\text { ECCB }}{ }$	4/-	P250	5/- 5	20 P 4	$8 / 6$
${ }_{\text {EF50 }}$	$1 / 6$	U191	$5 /$	5 U 4 G	4/-
EF80	1/6	U281	5/-	${ }^{688}$	$1 / 8$
EF91	91.	U282	$5 /-$	${ }_{6 K 25}$	$1 / 9$
EL38	5/-	U301	$5 /-$	${ }_{6}^{6 K 25}$	$5 /-$
EY86	5/-	U329	5/-	6 P 25	$5{ }^{-}$
KT36	5/-	U251	5/-	6U4	5/-
PCC84	21.	U801	8/6	6 V 6	1/9
PCF60	$2 /-$	10C2	5/-	$6{ }^{628}$	5/-
PCL82	4/-	10P13	2/6	EY51	2/6

1T4, 2/-; IL4, $2 /-$; IA3, 2/6; ISis, 2/6; 12AT7, 3/-; 3A4, 2/6; EF91,2/-;EB91, 1/3; EL91, 2/-;UU8, 4/-; 6SN7, 2/6; 10P13, 4/-; box of 50 ARPi2 Valves, 22/-. Post paid.
New Boxed TV Tubes. 14in. Mw36/44., 40/-. Carriage 10/-12 months' guarantee. 90 degree Tubes. Twelve months guarantee. Iteclaimed Tubes. Six months' guarantee AW43/80, $30 /-. \quad M W 43 / 80.30 /-\quad$ MW43/69, $30 /-$ CRM172, 30/-. CRM42, 17\% 12in. Tubes, $10 /-$ 17in. Tubes, perfect but without guarantee. 17% Carriage on any Tube in G.B., 10/-

Resistors. $\frac{\mathrm{t}}{\mathrm{t}} \mathrm{W}, 10 \%$, High stab. $3 /-\mathrm{per}$ doz. $18 / 6$ per 100.
Capacitors. Min. Electrolytic. Pack of $12 \mathrm{~g} / \mathrm{-}$ Polyester and foil. Pack of 1281
Transistors. (Bee Lists for large selection). Matched
Output Kit. $0 \mathrm{CB} 1 \mathrm{D}+2 \times 0 \mathrm{CB1}$. $7 / 8$ per set
Type 020 PNP Germ. AF. 00 mw . 8/- per doz OC44, 545, 0C70,0C71, oC81, OC81D 2/3 each For completeach. OC25, 7/6, OC36. $10 /$ a.a.e to Laboratory Equipment (Eleo.). 38 Crawford St. London W.i.

HI-F1 KUBA ROYAL
STEREOPHONIC TUNER AMPLIFIER

High Fidelity stereo/tuner amplifier. A four wave band tuner unit integrated with a stereo amplifier. The most adyanced comprehensive chassis yet designed.
8 Piano Key Selectors.
Separate bass and treble controls.
Full tape recording and play back facilities, Complete with a 4 speaker system (2-4in. tweeters. 2 -10in. bass speakers) plus BSR 4 speed record changer. Model Ual with Fully guaranteed for one year including all valves.
Special Package offer only $\begin{aligned} & \text { f74.5.0. (Chassis }\end{aligned}$ only $49 \frac{1}{2}$ Gns.)
Terms
£24.15.0 deposit followed by 24 Monthly Payments of $£ 2,11.7$ (total H.P. $£ 36.13 .0$) $+17 / 6$ P. \& P. Send $£ 25.12 .6$ NOW.

For other stereophonic equipment see page 374.

- Illustrated in this advertisement is just one fine cabinet from the Lewis Radio Range
Each Lewis Radio Cabinet is carefully made by British Craftsmen and soundiy constructed from the best materials
- Fill in coupon below to obtain FREE catalogue showing this wonderful range of cabinets.

The New Lewis Radio Cabinet Cata-
The New Lewis Radio Cabinet Cataprepared. Sent absolutely FREE!
Also available comprehensive range of stereophonic radiogram chassis and matching equipment. See page 374 Please send your FRE E cabinet catalogue \square Stereophonic equipment leafets \square NAME

ADDRESS
(Dept. P97)
Capitals please

LEWIS radio

UWWIS RADIO, 300,chast side, southgate
LONDON, N.14-Telephoner PAL 3739 /9666

BROADWAY ELECTRONICS

GARRARD 4 SPEED DECKS WITH CARTRIDGE: Autochangers: AT6 Mk II e8.19.6. AT60 £10.19.8. 3000 , £8.8.0. 2000, £6.19.6. 1000, £5.19.6.
AT5-Mono 86.10.0.
SLNGLE PLAYERS.
SP:4 with cartrilge stereo or mono, £9.18.6. (SP?25 with cast tiurntable £10.19.B.) SRP14, £4.5.0. P. \& P. 7/6.
CARTRIDGES:
Stereo: EV2h, $25 /$ - GP83, 15/-. Reuter, STD $/ 2,1 \% / 6$. Mono sonotone, $2 \mathrm{TR} 8_{+}$, 15/-. Acos, GP67, 15/-. TCS tegs bracket 18/6. 1', \& P.
MICROPHONES:
Xtal Hand Mikes. BM3 and 200 C 30/-. P. \& P. 2/6, 8tand for asme
12/6, P. \& P, 2/. ACOs Mike $45,21 /-\mathrm{ACOB}$ Mike 40, 18/6. Dyn, Mike DM-391, 22/6. CM21 Xtal. 12/6. CM20 Xtal, 9/6. Magnetic Hm 63C with remote control switch. 15/-. Telephone Pick-up 10/8. P. \& P'.
1/- Xtal Lapel Mike, 7/6. Guitar Mike, 12/6. P. \& P. $1 /=$

SPEAKER ENCLOSURES

Tony Corner Cabinet $20 \times 10 \times 7 \mathrm{in}$. takes $70 \times 6 \mathrm{in}$ spenker covered in Hexine and ∇ ynair, $45 /-$ - P. \& P. 5pea
Blake cablnet size $18 \times 241 \times 91 \mathrm{in}$., fabric covered £4.10.0. P. \& P. 10
Haydon, $16 \frac{1}{2} \times 15 \times 7 \frac{1}{2} \mathrm{n}$, fabric covered suitable for 12in, speaker, 45/. P. \& P. $7 / 6$.
Haydon Enolosure fitted with $12 i n$ speaker and volume control £4.17.6. P. \& P. 10/-.
$\mathrm{Hi}-\mathrm{Fi}$ Bookshelf speaker onolosure foam lined, cablnet size $104 \times 51 \times 7$ tin. Teak finish, $£ 3.0 .0$. P. P. 3/6.

Wooter for above £3.0.0. P. \& P. 2/6. Tweeter 12/6. P \& \mathbb{P}. 1/6. Condenser for crossover 2/6. Termiaals 2/6 pair. P. \& P, 1/-
PLDNTH Teak finish to match above Hi-Fi speaker size $17 \frac{1}{3} 14 \times 4 \mathrm{in}$. for Grarrard $1000,2000,3000$. ATB0, 8P25,
SPEAKERS:
Elac Heavy duty Cerarnic Magnets 11,000 Hne, 10 in . Elac Heavy duty Cerame Magnets 11,000 . \& P P. $3 / 6$.
round $10 \times 6 \mathrm{in} .3$ ohm or 15 ohm, $42 / 6$. P. 8 . 8in, round 15 or 3 ohm, 38/6. P. \& P. 3/6. E.M.I. $13\} \pm 81 \mathrm{n} .15$ or 3 ohm, 42/6. P, \& P. 3/6. E.M.T. Tweeter, 12/8. P. \& P. 1/ti. R.T.C. 12 in .20 watt 15 ohm Ceramic magnet e5.5.0. P. \& P. $3 / 6.8 \times 4 \mathrm{in}$. Elliptical 30 ohm $30 /$.. P. \& P. $3 / 6$. All other apeakers supplied-Goodmans, Bakers, W.B., Wharfedaie, Eagle, Tripletone.
BARGANS IN TRANSISTORS: $18,119,00169,170$, AC127, AF114, 115, 116, 117, 118,
$171,172,200.202,203,204,5 / 6$.
0C72, 75, 82. 83, AAZ12, BY38, BCZ11, 3/6. OC71. 81, 3/-. R.F. Packs 1 OC44, 2 OC45 8/6. AF Packa 1 OC81D, 2 OC81 (Mullard), 8/B. A.F. Pack 1 GET119, 5/6. GET113, Red Spot, 2f-. OC26, $28,29,9 / 6$. ORP12 Light Cell, 8/6. Diodes OA81 2/3. OA91, OA95, $1 / \theta$. P. \& P. $1 /-$
TRANSISTOR ELECTROYLTICS:
TRANSISTOR ELECTROYLTICS:
$1,2,4,5,8,10,16,25,32,50,100 \mathrm{mid} ~$
15
volt working, $1 / 3$, P. \& P. 1/-.
3500 mfd 12 V DC, $3 /-500$ ufd 25 v DC. 3/6. P. d P. 1

RESISTORS. watt 10% rom $3 \cdot 3$ ohm to 10 meg 5 d .
each, $4 /=$ doz. P. \& $\mathbf{P} .1 /-(\min m u m$ order $2 / 6)$. each, 4/-doz. P. \& P. 1/- (minimum order 2/6).

EARPIECES WITH CORD AND 3.5 mm . Dlug. 8 obm magnetic, $3 /-.250$ ohm, 4/-. 180 ohm with clip, $6 / 6$, Xtal 4/-. P. \& P. 6d
TRANSISTOR SPEAKERS 8 ohm 21n. 8/6; 3in. 10/6; 34 in. 12/8. P. \& P. 1/-. Blue, Green, Yellow,
PANEL LIGHTS. 6v. Red. Blue, White (uscs Lilliput bulbs) 3/- ebich. P. \& P . $1 /$ NEON PANELLLIGHTS 200-250v.3/-each. I' \& P. $1 /-$ PAPER CONDENSERS for Oross-Over Units 12 mid. 2/6. P. \& P. 1/-.
2 pole Mains Switch, $3 /-.1$ pole 12 way, 2 pole 2 way, 3 pole 3 way. 3 pole 4 way, 4 pole 3 way, $3 / 6$ each. P. A P P $1 /$ /. including mains on/oti. 6 banks of 6 P.C.O. 8/6. PERROX ROD AERIAL with coilg, $8 \times$ In. $5 / 6$.

Complete with battery and connecting wire 82.15.0. P. \&P. 2/6.
"SATELITE" TRANSISTOR RADIOS

Complete with case, earphone and battery. All tested before despatch. 6 transistor 43/6. P. \& P. 2/6. 9 transistor £4.19.6. P. \& P. 3/6.

Stockists of Eagle Products $-\begin{gathered}\text { Groodmans } \\ \text { Wharfedale }\end{gathered}$ W.B. Wharfedale Bazers Tripletone B.A.E. plesse. Trade terms to bona fide dealers.

92 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W. 17

Telephone BALham 3984
Closed all day Wednesday
(four minutes from Tooting Broadway Underground Station)

NEWVALVES!
 Guaranteed Set Tested 24-HOUR SERVICE

1R5	51	DL94	5/6	EY51	5/11	PY81	
188	3/9	13.96	5/11	EY88	5/8	1'Y82	19
1 T 4	$2 / 9$	DY86	$5 / 6$	EZ40	6/6	PY83	5/3
384	$4 / 3$	DY87	5/6	EZ80	4/3	PY800	5/11
3V4	5/6	EABC80	5/6	EZ81	4/6	I'Y801	$5 / 11$
874G	718	EBC41	$7 / 9$	G 234	819	R19	6/6
6 Fl	$8 / 3$	EBF80	5/9	KT61	6/3	U25	9/3
6L18	6/-	EBF89	519	N78	14/6	U26	$8 / 9$
10F1	9/6	ECC81	319	PC86	8/3	U191	10/-
10P13	8/3	ECC82	3/6	PC88	$8 / 3$	U301	11/6
$20 \mathrm{~F}^{4}$	10/3	ECX83	516	PC97	5/9	U801	161-
2011	$8 / 8$	ECOPs	5/8	PC900	81	UABC80	$8051-$
201'4	$12 / 6$	ECH35	5/9	1'CC84	5/3	UAF42	6/11
30F5	$9 / 9$	ECH42	$8 / 9$	${ }^{1} \mathrm{CC} 89$	9/9	UBC41	6/6
$301 / 4$	11/6	ECH81	$5 / 3$	1'cc1as	8/3	UBF89	5/9
301919	11/6	HCH84	7/9	P'CF80	6/3	UCC84	$7 / 9$
DAC32	6/9	ECLSO	$5 / 9$	PCF82	5/9	UCC85	61-
DAF91	$3 / 9$	ECLB 2	6/-	PCL82	613	UCF80	$81 /$
DAF96	5/11	ECL 86	716	${ }^{1} \mathrm{CL} 83$	$8 / 3$	UCH42	8/3
DF33	7/6	EF39	$3 / 6$	PGL84	$7 /$	UCH81	5/9
DF91	$2 / 9$	EF41	813	PCL85	$8 / 3$	UCL82	6/9
DF96	5/11	EF80	919	PL36	81-	UCLS	$8 / 6$
Dh33	71.	EFP85	$5 /-$	PL81	$8 / 3$	UF41	7/9
DK91	$5 /$	EF86	6/-	PL82	$6 / 8$	UF89	5/6
DK96	6/3	EF89	4/9	PL83	5/11	U141	7/9
DL33	$8 / 6$	EL33	$6 / 3$	PL8-4	$8 /-$	UL84	$6 /$
DL35	4/9	ELA1	$8 /-$	PY32	$8 / 3$	UY41	5/3
DL92	4/3	EL84	4/6	PY33	$8 / 3$	UY85	4/9

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON LONDON N. 16

TV TUBES

REBUILT \& RESCREENED

by Britain's largest independent Tube Rebuilder

MIDLAND TUBES LTD.
467/483 Oldham Road, Manchester, 10 Tel.: Collyhurst 4412

SUFFOLK TUBES LTD.
1/3 Upper Richmond Road, Putney, London, S.W. 15 Te/.: Vandyke 4304/5267

Football Pool Computer

forecasts results

- CHEAP, EASY TO BUILD ANYONE CAN OPERATE IT - SCIENTIFIC AID TO WINNING Analogue Computer
- Very simple, cheap, easy-to-build circuit. Multiplies and divides.
8 Fascinating demonstration of computer principles.
Clicults of the above, with two furthe clrcuits for the solution of Quadratic and Simultaneous equations, $4 / 6 \mathrm{~d}$ post free.
PLANET INSTRUMENT CO., 25(W) DOMINION AVE. LEEDS 7.

Magnificent 'ContInental' Stereophonic Radlogram Chassis with piano key switches, builtin territe rod aerial. Comes complete with two $10^{\prime \prime}$ elliptlcal loudspeakers, plus a mono/stereo 4-speed automatic record changer. Complete $29 \frac{1}{\frac{1}{2}}$ gns. (Units available separately If requlred. Chassis only, 21 gns.).
Special terms available of $£ 10.6 .6$ deposit followed by 18 monthly payments of £1.7.3
 flotal H.P.

The Imperlal Stereophonlc 4 waveband chassls has the most advanced specifications yet offered In thls country. There is a built-in ferrlte rod aerlal, seven plano key buttons, controlling mono/stereo selection. GramLong-Medium-Short-FM-ONIOFF. loudspeakers plus a mono/stereo 4 speed automatic record changer. Complete £41.9.6.
Chassis only, $29 \frac{1}{2}$ gns.
Special terms available of $\mathbf{£ 1 3 . 1 6 . 6}$ deposit followed by 24 monthly payments of £1.8.10 (total H.P. £48.8.6) $+\mathbf{1 7 / 6}$ P. \& P. Send £14.14.0 now.

Thls most advanced radlogram chassls with automatic push button selection covers short, medium and long wavebands plus V.H.F./F.M. Offered complete with 210×6 speakers 4 speed Stereo/Mono autochanger only $£ 35.19 .6$. Chassis only, $25 \frac{1}{2}$ ons. Special terms available of E 12 deposit followed by $i 8$ monthly payments of £1.11,7. (total H.P. £40.8.6) +17/6 P. \& P. Send £12.17.6 now.
All Lewis Radio equipment including valves are fully guaranteed for one year free of charge. For other Stereophonic Equipment and Cabinets, see page 373.
Send your cheque or P.O. today while stocks last to Dept. P.97.

LEWIS radio

LEWIS RADIO, 1OO, CHASE SIDE SOUTHCATE HONDON, N.14. Telephone: Pa1, $3733 / 9666$

BEPDK SENCOMOUCTORS 8 Radnor House 93197 Regent St IDEPT S London W 1

NEW AND TESTED VALUE PAKS

ae 10/- Pack of your own choice free with orde

 valued 24 or over2 Drift Trans. 2N 1225 Uerm. PNP $100 \mathrm{Mc} / \mathrm{s}$ 6 Matched Trans. OC44/45/81/81D. 15 Red Spot AF Trans. PNP.
4 giticon Rects. 3A $100 / 400$ pIV
10A silicon Kects. 50 end 100 8 Germ. Diodes OA70 Mullard
2 Ocl39 Trans. NPN 8witebing
1 12A SCR 100 PIV
3 Bil. Trana. 28303 PN P
10 Assorted Computer Tiodes
3 NPN Mcd. Speed Switching Trans.
Zener Diodes 250 mW 3-12V
$2200 \mathrm{Mc} / \mathrm{s}$ Bil. Trans. NPN BSiY $26 / 27$ 2 Bi-directionsl Trans, A\&Y6G PNP 3 Zener bioder $100 \mathrm{~mW} 33 \mathrm{~V} 5 \%$ Tol
4 High Current Trans. OC44 Eqvt.
Power Transistors 1 OC26 1 OC35 5 gilicon Recte. 400 PlV 250 mA 3 OC71 Transistors Mullard Type NPN Silicon Trans 70 Mc/s Power Trana. Oc? ${ }^{2}$
OA47 Gold Banded Diode 4 OA202 sil. Diedes Sub-min Low Nuise Trans. NPN 2N929/30 1 Sil. Trans. NPN VC13 100 ZT86 OA81 Diodes (CV448) 3 OC72 Transistors Mullari Type OC77- Trauriators Minlard Type Metal Alloy Transiuturs Mst Type
gil. Kects. 400 PLV 500 mA Gil. Rects. 400 PIV 500 mid GET883 Trans. Eqvt. 0C45 GET20 (lerm, PN Trans, with Heat-aink VHF Bil. Epoxy Trans. NPN $100 \mathrm{Me} / \mathrm{s}$ 2 2N708 Bi1. Trans. $300 \mathrm{Mc} / \mathrm{s}$ NPN. GT41/45 (ierm. Trans, PNP Eqvt. OC71
GT3iLLF Law Nolse (ierm. Trans. PNP GT31 LF Low Nolse Germ. Trans. PNP OA95 Germ. Dicules PIV 75 mA 3 NPN Germ. Trana, NKTz73 Eqvt. ACizo oc22 Power Trans, Germ. . OC25 Power Trans. Germ. OC73 Mullard Trans
4 AC128 Trans. PNP High Giai

2 AC127/128 Comp. pair PNP/NPN 5 TK224' Germ. Byitching Trens 2N1307 PNP \&witching Trans. 3 OC76 Mullard Trann.
20 Germ. Diodes General Purpose CG62H Germ. Diodes Eqvt. OA7 OC170 Trans. Mullard Type 3 AF116 Mullard Type Trans. .. 130 Amp Power Rectifier 100 PIV 4 ACl20 (ierm. PNP Trans. 51 Anp Germ. Rect. 200 PI 4 OAS Gold Bonded Diodes 1 ORP61 Photo-conductive cell 4 Silicon Rects. 100 PIV 750 n 3 AF117 Trans. Mul
7 OC81 Type Trans.
3 OC171 Trans. Mullard Type
1 ORP12 1'hoto-conductive cell LÖR 03 210 A 000 PIV BiI. Rects. IS425R 3 BCl08 Bil. NPN High Gain Trans 2 Zener Diodes 25 W 18 and 22 1 2N910 NPN Sill. Trans. VCB100 80 Me/s 21000 PlV Sil. Rect. 1-5A R8310 AF High Volt. AF Trans. PNP ACY 17 3 B8Y95A Sil. Trans. NPN $200 \mathrm{Mc} / \mathrm{s}$ ${ }^{2}$ sil. Power Trans. Mullard
1 AF139 VHF Gerin. Trans. 1500 Mc 1 Bil. Power Trans. N F'N $100 \mathrm{Mc} / \mathrm{B}$ TK201A Zener Diodes 3-15V Sub-min
1 2N 1132 PNP Epitaxial Planar sil. Trans 22 N697 Epitaxlal Planar Trana, Bil 4 Gerid. Power Trans. Eqvt, OC16 Mullard 1 Unijunction Trans. 2N2646 Eqvt. D5E29 1 Bil. Prans. $200 \mathrm{Mc} / 460 \mathrm{Vcb}$ ZTB3/84 Bii. Trank. 18104 160 Me/s HFE 200 NPN Tunnel Liode IN 3720 (TVDS
Unijunction Trans. 2N2160 To-5 can O . E. Sil. Rects. 5 A 400 PIV Stud Type 2 Germ. Power Trans, OC28/29 10 A Sil. Stud Reot. 800 PIV Tunnel Diode AEYII $1050 \mathrm{Mc} / \mathrm{s}$ BTC 2N2712 Sil. Epoxy Plans HFE225 max Sil. Power Trans. NPN 2872185 W 6 2N2 926 NPN EHI. Planar Trans. 6 BY100 Type Bil. Rectis
25 Bil. and Germ. Trans. Mixed ali Marked New

Minimum Order 10/-. CASH WITH ORDER PLEASE. Add 1/-postage and packing per Order. GUARANTEED by return postal tervice. Overseas add extra for Airmail.
Our vast stocks ohange daily with hundreds of gemiconduotor bargains beooming available. Just send $2 / 6$ to cover 3 months maung or our lateat stock liatn, Ey

VALUE PACKS for '67 NEW UNTESTED

120

GERM. sUB-MIN
DIODES 10/

50	mxxa	TRANSISTORS 1
16	cita	RECTIFIERS 10/-
20		
25		TRANSISTORS $10{ }^{\prime}$ -
10	Stick	SULCON PECT 10

75		GOLD-BONDED 10/-
	既	TRANSISTORS $10{ }^{\circ}-$

60	${ }_{\text {sinction }}^{\text {sind }}$	DIODES 10/-
40	ctick	TOP HAT 10'-
20		RECTIFIERS $10 \times$
40		TRANSISTORS 10\%
10	cosisp	C

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2
TeI. PARK 5641/2/3

Z \& I AERO SERVICES LTD.

Please send all correspondence and Mail-Orders to the Head Offce
When sending cash with order, please include $2 / 6$ in $\&$ for postage and bandling minimum charge 2/-. No c.o.d. orders accepted

Retail Shop
85 TOTTENHAM COURT ROAD CONDON W1
Tel. LANgham 8403
Open all day Saturday

OA2	B/-	6AK6	7/6	6 F 11	6J-	101.176							9/-	15/-	PLL80	10/-	019	10
OA3	10/-	6AL5	$31-$	6 Fl 2	41.	$10 \mathrm{Pl3}$ 15/-					I		EL82 8/-	KT66 16/-	PT15	151-	0251	6/-
OB2	61-	6AM6	4/-	6 F 13	6/6 ${ }^{-}$	$10 \mathrm{Pl4}$ 15/m							EL83 7/-	KT67 451-	PX4	$201-$	U281	$\begin{aligned} & 12]- \\ & 121 \end{aligned}$
OC3	6/-	6AM8	8/-	$6 \mathrm{~F}^{1} 14$	15/-	1103 7/-							EL85 7/6	$\begin{array}{lr} \text { KT76 } & 81- \\ \text { KT88 } & 23 / \end{array}$	$\begin{aligned} & \text { PX28 } \\ & \text { PY31 } \end{aligned}$	$\begin{array}{r} 151- \\ 5 /- \end{array}$	$\begin{aligned} & \text { U282 } \\ & \text { U301 } \end{aligned}$	$\begin{aligned} & 12 /- \\ & 11 /- \end{aligned}$
OD3	6/-	6AN8	10/-	6 F 15	11/-	11105 7/-							$\begin{array}{ll}\text { EL85 } & 7 / 6 \\ \text { EL86 } & 8 /-\end{array}$	$\begin{array}{ll} \text { KT88 } & \text { 23/- } \\ \text { LP2 } & 71- \end{array}$	PY31 PY32	$\begin{aligned} & 5 / 1 / 6 \\ & 8 / 6 \end{aligned}$	$\begin{aligned} & \text { U301 } \\ & \text { U403 } \end{aligned}$	$1 / 7 /$
OZ4A	51-	$6 A Q 4$	$5 /-$	6 F 17	6/-	$12 \mathrm{AC6} 81-$							EL86 $51-8$	LP2 ${ }_{\text {ME1401 }}$ 7/-	${ }_{\text {PY }}$	$\begin{aligned} & 8 / 6 \\ & 8 / 6 \end{aligned}$	$\begin{aligned} & \text { U403 } \\ & \mathrm{V} 404 \end{aligned}$	
IA3	4/-	6AQ5	5/6	6 F	$7 / 6$	12AD6 9/-							$\begin{array}{ll}\text { EL90 } & 5 / 6 \\ \text { EL91 } & 2 / 6\end{array}$	ME1401 20/- MH4 M	PY33	$\begin{aligned} & 8 / 6 \\ & 5 / 6 \end{aligned}$	$\begin{aligned} & \text { V404 } \\ & \text { U801 } \end{aligned}$	17/-
1A5G'	51-	6AR5	6/-	$6 \mathrm{~F}^{2} 23$	10%	12AE6 7/6							$2 / 6$	MH4	PY8	$6 /-$		
1 AFGT	8/-	6AR6	6/-	6 F 24	19/-	12ALS 7/-							L95 5/-	MH41 9/-	PY81	6/-	UABC8	5/3
1B3GT	81-	6AR8	17/6	$6 \mathrm{~F}^{2} 25$	121-	12AQ5 7/-							EL360 28/3	MHL4 5/\%	PY82	5/6	UAF41	9/7\%
105G	51-	6AS5	$5 /-$	$6 \mathrm{~F}^{28}$	10/6	l2AT6 5/-				1			EL821 6 6/-	MS/PEN $8 /-$ $M 8 / P E N T$	PY83	$\begin{aligned} & 6 /- \\ & 8 /- \end{aligned}$	UB41 UBC41	10/-
1D6	8/-	6 6A36	81-	${ }_{8}^{6} \mathrm{H} \mathrm{H} 4$	8 9/-	$\begin{array}{ll}\text { l2AT7 } & 4 /- \\ 12 A U 6 & 6 /-\end{array}$	LEC			- 1			EL822 $18 /-$	MS/PENT	$\begin{aligned} & \text { PY88 } \\ & \text { PY301 } \end{aligned}$	$\begin{gathered} 8 /- \\ 11 /- \end{gathered}$	UBC81	88
108GT	6/-	6AB7G 6ATB	15/-	654 6.550	9/-	l2ad6 $\begin{array}{ll}\text { 12AU7 } & 5 / 6\end{array}$							ELL80 13/-	N78 $16 /$ 16/	PY801	11/-	UBF80	8/6
$\begin{aligned} & 1 G 4 G T \\ & 1 G 6 G T \end{aligned}$	8/-	$\begin{aligned} & \text { GATB } \\ & \text { GAU } 6 \end{aligned}$	$4 / 6$ $5 / 6$	6.556 6.56	$4 / 7$ $3 / 6$	$\begin{array}{ll}\text { l2AU7 } & 5 / 6 \\ \text { l2AV8 } & 5 / 6\end{array}$	$\begin{array}{ll}30 \mathrm{PLL14} & 15 /- \\ 35 A 3 & 10 /-\end{array}$	5670 5686	101-	$\begin{array}{cc}\text { DK40 } \\ \text { DK91 } & \text { 11- } \\ \text { \% }\end{array}$	ECCl		EM34 13/-7		PY800	6/-	UBF89	
5G	7/-	6AU8	$9 /-$	6.57	81-	$12 \mathrm{AV7} 8 / \mathrm{m}$	35A5 10/-	5749	101-	DK92 8/-	ECC80		EM71 12/6	$\mathrm{P}^{\prime} \mathrm{C} 86$ 11/-	P730	8/6	UBL21	10/-
11.4	$2 / 6$	6AV5		$6 \mathrm{JJ7G}$	$51-$	12AW6 201-	35 B5 12/-	5751	12/-	DK96 7/-	ECC80		EM80 7/-	PC88 11/-	QP21	5/-	UC92	-
1N5G	8/-		11/-	6 K bG	$81-$	12AX7 6j-	3505 6/6	5763	101-	DL33 6/6	ECF80	718	EM81 7/-	PC97 7/6	QP25	$51-$	COC84	18
1 R 4	8/-	6av6	5/-	6K7GT	$51-$	12AY7 10J-	35 DF 12/-	5814A	101-	DL35 5/-	ECFY2	7/6	EM84 7/-	PC900 0/-	QP230	5/-	UCC85	6
IRb	61-	6AW8A	12/6	6K88	81-	12B4A 9/-	35L6GT 6/-	5965	$5 /-$	DL66 201-	ECPS2	12/-	EM85 11/-	PCC84 5/6	QqVO2		UCFRO	16
184	5/-	6B4G	1% -	6K8G	4/-	12BA6 8/-	$35 \mathrm{~W} 4 \quad 4 / 6$	6060	$51-$	${ }^{10} 568$ 10/-	ECF86		EM87 7/-	PCC85 7/-		45/-	CCH21	6
185	4/6	638	7\%-	6LAGO	7/6	$12 \mathrm{BE} 6 \quad 5 / 6$	$35 \mathrm{Z3}$ 10/-	6080	$25 /-$	$12 / 6$	H		EMM803	PCC89 11/-			UCH42	-
1 T 4	31.	6B8G	$2 / 6$	$6 \mathrm{L7}$	5/-	12 BH 7 6/-	3584 G 4/-	6146	25/-	DL91 5/-	ECH42			P(CC189 11/-		30/-	-	815
175G	$8 /-$	6BA	4/6	6117	$91-$	12BY7 10/-	35Z4GT 8/6	6159	321-	$25^{5 /-}$	ECH8	$5 / 3$	EN31 15/-	PCC805 11/-	QQV06	-40	UCH81	6/3
104	5/-	6BA7	15/-	6 L 18	$81 /$	$12 \mathrm{C8} \quad 4 / 6$	$35 \mathrm{Z5GT} 5 / 6$	6197	$201-$	DL93 4/-	ECH83	7/6	EN91 6/-	PCC806 11/-		90/-	UCL81	9/-
105	8/-	61366	4/6	61.D20	51.	$12 \mathrm{E1}$ 20/-	42 6/-	6203	$82 /-$	DL94 6/-	ECH84	${ }^{9}$	EN92 6/-	PCE800 10/6	QS83/3	7/6	UCL82	7/8
1 V 2	10/-	6BF6	6/-	6N7GT	71-	12K5 8/-	431 U 8/-	6293	$801-$	19L95 7/-	ECL80	$\overline{8}$	EY51 7l-	PCF80 $8 / 3$	Q492/10	4/2	UFL83	
1X2B	7/-	6 BF 7	15/-	6P25	12/-	12K7GT 7/-	50A5 12/-	60	$301-$	DL96	ECL81		81 71-	PCF82 6/6	QS93/10	$5 / 6$	UF9	
2026A	$7 /-$	$6 \mathrm{BG6G}$	161-	6 P 28	$12 / 6$	12 K 8 8/-	50B5 B/3	6939	451-	19M70	ECL82		EY83 9/-	PCF87 11/6	Q815011	58/-	UF4	$81 /$
2 C 34	$7 / 6$	6BH6	7/6	605	15/-	$12 \mathrm{Q7G}$ 4/-	5005 6/-	7360	$301-$				EY84 ${ }_{\text {EY86 }}$	PCF800 10/-	Q81200	10/=	UF42	-
$2 \mathrm{C40}$	$65 /-$	6BJ6	716	607	71	129A7 7	50CD6G2	7551		DY87 7/-		11/6	EY87 8/-	PCF801 9/6	QS1202	$8 / 6$	UF	7%
$2 \mathrm{CJ1}$	10/-	6 BK 4	28/6	6Q7G	$6{ }^{-}$	$12 \mathrm{SC7}$ 4/-	50L6GT 6/-	7586 7895		E80F 20\%-	ECL86	${ }^{11} 9$	$\begin{array}{ll}\text { EY87 } \\ \text { E722 } & \text { 8/- }\end{array}$	PCF802 9/6	QS1203	8/6	U P85	7/6
2CW	12/-	6BK7A	9/-	6847 6807	$71-$	$\begin{array}{ll}128 G 7 & 5 /- \\ 128 H 7 & 4 /-\end{array}$	$\begin{array}{lr}52 \mathrm{KGU} & \text { 7/2 } \\ \text { 53KU }\end{array}$	7895 9002	22/6	E880\% E80\% 27/6	EF9	101-	$\begin{array}{ll}\text { EZ22 } & 6 / 6 \\ \text { EZ35 } & 5 / 6\end{array}$	PCF805 11/-	QS1215	12/-	UF86	$9 /-$
26	$22 / 8$		10/-	68 F 5	81-	12SJ7 4/-	$55 \mathrm{CG} 30 /-$	9003	9/-	E88C0 12/6	EF36	$51-$	EZ40 7/8	PCF808 12/-		10/-	UF89	71-
$3 \mathrm{A4}$	4/-	GIBN6	$7 / 8$	68 F 7	7/-	$128 \mathrm{K7} \mathrm{5/-}$	580G 45/-	9005	15/-	E90CC 10/-	EF37A	$81-$	EZ41 8/*	CL89 10/6	QV	$591-$	UL41	$91-$
3A5	71 -	$6 \mathrm{BQ7A}$	7 \%	$6 \mathrm{SC7}$	6/-	12SL7GT7/6	75 Cl 13/-	AC2PE		F92CC 71-	FF39	61-	EZ80 5/-	PCL81 8/-		8/-	U1,44	6/6
3AV6	6/6	$6 \mathrm{BR7}$	11/-	6847	4/-	128N7GT7/6	80 6/-	D1)	10/-	E180CC 8/-	EF40	9/-	EZ81 5/ -	PCL82 7 \%	R2	81-	UM4	10/-
$3 \mathrm{B7}$	51-	$\mathrm{fiBR}^{\text {d }}$	5)-	6sJ7	7/-	128 R 7 5/-	83 Al 12/-	AC/H	DI	E180F ${ }^{\text {E }}$ 17/6	EF41	816	ER90 4/-	CL83 8/6	R10	15/-	UM80	5/-
3B28	401-	6B87	171-	68K7	6J-	1487 18\%	85 Al 25/-		8/-	E182CC 88/-	EF42	11/-	G810R 40/-	PCL84 \%/8	R18	7/6	UM81	10/-
3D6	4/-	6RW6	717	68k7ti	$4 / 6$	2001 9/-	$85 \mathrm{~A} 2 \quad 7 / 6$	AC/HL		EA50 2/-	${ }_{\text {EF52 }}$	$8 /$	GTE175M	PCE85 9/-	SP	-	UU5	-
3Q4	71-	$6 \mathrm{BW7}$	10\%-	68LIGT	6/8	$20 \mathrm{F2}$ 13/-	$85 \mathrm{~A} 3 \quad 5 / 8$	LDD	10/-	EABC80 6/6	EF54	88	12/-	PCL86 8/6	$\mathrm{SP}_{4} 1$	-	UU7	
3Q5G	8/6	6B76	6/-	68N7G	$5 / 6$	20 LI 18/-	90 AG 48/-	AC/TH	18/0	EAC91	EF55		35/8	PCL88 10/6	SP61	4/-	UU8	-
384	51-	6 BZ 7	11/-	$68 \mathrm{Q}^{7}$	7/-	2011 12/-	90AV 46/-	AC/VP2		EAF42 ${ }_{\text {ERC33 }}{ }^{\text {7/6 }}$				PCL800 12/-	8U45	15/-	UU10	$81-$
4	$81-$	6C4	$3 / 6$	${ }_{6 T 8}{ }^{\text {G/ R }}$	7/6	$\begin{array}{ll}20 \mathrm{P3} & 18 /= \\ 2084 & 18 /\end{array}$	$\begin{array}{ll}90 \mathrm{Cl} & 12 /- \\ 90 \mathrm{CG} & 25 /-\end{array}$	AR8 ${ }^{\text {ARP12 }}$	$6 /-$ $3 / 6$	EBC33 $7 /-$	EF83 EF85	$10 /-$ $8 / 6$	$\begin{array}{ll}\text { GZ32 } & 10 /- \\ \text { GZ34 } & 10 / \mathrm{F}\end{array}$		8U2150	A	$\begin{aligned} & \text { UU10 } \\ & \text { UY1N } \end{aligned}$	$8{ }_{9 /-}^{8 /-}$
4B32	801-	6C5	81	$6 T 8$	$6 / 6$ $7 / 6$	$\begin{array}{ll}20 \mathrm{P} 4 & 18 /- \\ 25 \mathrm{LGGT} & 8 / 6\end{array}$	$\begin{array}{ll}90 \mathrm{CG} & 25 /- \\ 90 \mathrm{CV} & 25 /-\end{array}$	ARP12	$3 / 16$ $0 /-$	$\begin{array}{ll}\text { EBC41 } & 8 / 6 \\ \mathrm{EBC81} & 6 / 3\end{array}$	EF85 EF86	$8 / 6$ $8 / 3$	$\begin{array}{ll}\text { GZ34 } & 10 /- \\ \text { GZ37 } & 12 /-\end{array}$	$\text { PEN25 } 5 /-$	-U2150	12/-	UY1N UY21	91- $9 / \mathrm{l}$
4E27	601-	$6 \mathrm{C50}$ ($8 /-$	$6 \mathrm{U} 8$	$7 / 6$ $9 / 6$	$\begin{array}{ll}\text { 25LGGT } 8 / 6 \\ 25 Z 46 & 8 /-\end{array}$	$\begin{array}{ll}90 \mathrm{CV} & 25 /- \\ 317 \mathrm{~N} 7 & 30 / \mathrm{L}\end{array}$	AT825	91- 51	$\begin{array}{ll}\text { EBC81 } \\ \mathrm{EBC90} & 4 / 6\end{array}$	EF86 EF89	$6 / 3$ $5 / 6$	G237 12/- HABC80 8/-	PEN45 7-	TP22	71.	$\begin{aligned} & \text { UY21 } \\ & \text { UY41 } \end{aligned}$	$8 / 6$ $6 / 6$
4THA 4 TSP	81-	$6 \mathrm{C6}$ 6 C 31	12/-	6U8A	$9 / 6$ $8 / 6$	$\begin{array}{ll}25 Z 46 & 8 /- \\ 25 Z 5 & 8 /-\end{array}$	$\begin{array}{ll}117 \mathrm{~N} 7 & 30 / \mathrm{L} \\ 150 \mathrm{~B} 2 & 10 /-\end{array}$	AW6	5/-	EBC90 EBC91 $4 / 6$ 1.	EF89 EF91	516	HABC80 8/- HBC 90 $5 /-$	PEN45DD	TP25	51-	UY82	$9 / 6$
4TSP	8/-	$\begin{aligned} & \text { 6C31 } \\ & 6 \mathrm{CB} 6 \end{aligned}$	12/-	6V6GT	8/6	25Z5 8/-	$\begin{array}{cr}150 \mathrm{~B} 2 & 10 /- \\ 150 \mathrm{~B} 3 & 8 /-\end{array}$	AZ11	$6 /-$ $9 /-$	EBC91 EBF80 16	EF913	$4 / 6$ $4 / 6$	$\begin{array}{ll} \text { HBC90 } & 5 /= \\ \text { HBC91 } & 5 / 6 \end{array}$	12/-	TP2620	${ }^{7 / 6}$	UY85	8/-
	00/-	$\begin{aligned} & 6 \mathrm{CB} 6 \\ & 6 \mathrm{CD} 6 \mathrm{C} \end{aligned}$	A17\%-	6X5GT	$5 / 6$	$28 \mathrm{D} 77 /$	211 30\%	AZ31	9/-	EBF83 8/-	EF94	$5 / 6$	HF98 6/-	PEN46 6/-	T21	35/-	FP23	$3 / 6$
R4GY	91-	8CG7	10/-	6Y6G	91-	$30 \mathrm{~A} 57-$	807 9/-	AZ41	71	EBF89 7\%-	EF95	5/-	HF94 6/-			401-	VP41	51-
5 U 4 GB	6/6	6CH6	8/-	$7 \mathrm{AG7}$	$7 /$	30 Cl 8/8	811 40\%-	CRI 31	15/-	EBL31 20J-	EF96	876	HL2 4J-		12/		VU39	8)-
508	$81 /$	6CL6	91-	7 76	11/-	$30 \mathrm{Cl5}$ 11/6	812 A 55/-	CCE35	10/-	EC86 12/-	EF97	10/8-	HL2K 4/-		12		W81M	6/-
5 V 4 G	$8 / 6$	60U	11/-	$7 \mathrm{B7}$	7 -	30 Cl 71116	815 851-	DA90	4/-	EC88 11/-	EF183	6/6	HL23 6/-	PEN453DD			W107	7/-
6Y3GT	51-	6CW4	121-	$7 \mathrm{B8}$	$8 \mathrm{j}-$	$30 \mathrm{Cl} 18 \mathrm{11/-}$	832 20/-	DACS2	$7 / 6$	EC90 $2 / 6$	EF184	816	HL28DD $6 /-$				W729	10/-
583	$7 / 6$	6CY5	81	$7 \mathrm{C5}$	11/-	30 F 5 10/-	$83717 / 6$	DAF40	10/-	$\begin{array}{ll}\text { EC91 } & 5 /- \\ \text { EC92 } & 6 / 6\end{array}$	EF804	21/-	$\begin{aligned} & \text { HL41 } 4 /- \\ & \text { HL42DD } \end{aligned}$	PENA4 7/6	U19	707-	76 M	$7 / 6$
5Z4G	71	6 CY 7	11/-	$7 \mathrm{C6}$	8/6	30 FLL 14J-	866 A 14/-	DAF91	4/6	$\begin{array}{lr}\text { EC92 } & 6 / 6 \\ \text { ECC3s } & 15 /-\end{array}$	EF811	12\% 10	$\begin{aligned} & \text { HL42D D } 8 /- \\ & \text { HL92 } \end{aligned}$	PENA4 $7 / 6$ PF86 $7 / 6$	U22	71-	XC12	$8 / 6$
6/30L2	$8 / 6$	6D4	151-	7C7	51-	$30 \mathrm{FL12}$ 19/-	$\begin{array}{ll}884 & 15 /- \\ 905 & 3 /-\end{array}$	DAF92	$6 / 2$ $8 / 6$	ECC3s $15 /-$	EP8812	101-	$\begin{array}{ll}\text { HLS2 } & 8 / 6 \\ \text { HL94 } & 7 /-\end{array}$	PF8618 PF8/-	U25	12/6	X Cl	$4 / 6$
6 68	81-	6D6	3/-	$7 \mathrm{H7}$	81-	30FL13 6/-	$\begin{array}{ll}905 & 3 /- \\ 968 & \text { 2/- }\end{array}$	${ }_{\text {DAF96 }}$	$6 / 6$ $7 /-$	ECC34 10/-	EF814	12/6	$\begin{array}{ll}\text { HL94 } \\ \text { HL132D } & \text { 7/- } \\ \text { /j- }\end{array}$	$\begin{aligned} & \text { PF818 10/- } \\ & \text { PFL200 14/- } \end{aligned}$	U26	12/6	XC16	7%
$6 \mathrm{AB4} 4$	6/6	6DK6	8/-	787	82\% 81		$\begin{array}{ll}968 & \text { 2/- } \\ 957 & 5 /-\end{array}$	${ }_{\text {DC90 }}^{\text {DCO }}$	77		EH90	7/6	HL132D 4/-	$\begin{aligned} & \text { PFL200 14/- } \\ & \text { PL36 } 9 /- \end{aligned}$		$72 / 6$	Y63	8/-
$\begin{aligned} & \mathbf{C A B 7} \\ & \text { 6ACSGT } \end{aligned}$	4/-	6DQ6G	11/-	784 774	8/-	$\begin{array}{lr}30 \mathrm{L1} & 5 / 6 \\ 30 \mathrm{Ll} 15 & 15 /-\end{array}$	$\begin{array}{ll}987 & 5 /- \\ 958 \mathrm{~A} & 4 /-\end{array}$	DCC90	7/-	ECC40 9/6	EK90	+ $15 / 6$	HL133DD 10 S	$\begin{array}{rr}\text { PL36 } & \text { 9/- } \\ \text { PL38 } & 16 /-\end{array}$	U37	201-	Y 65	51-
6AC7	4j-	6EA8	11/-	9BW	7.	30 L 17 15/-	959 8/-	DF64	$51-$	ECC81 4/-	EL33	12/6	HN369 15/-	PL81 6/6	U50	5/-	Z22	5/6
GAF4	10/-	6 F 1	14/-	10 C 2	13/-	30 P 12 9/-	9917 7/-	DF91	3/-	ECC82 51-	EL34	$9 / 6$	HY9* 4/6	PL82 7\%	U52	6/6	Z62	5/-
6AFGG	11/-	6 F 4	30/-	10D1		30 P 16 7/-	1267 20/-	DF92	$2 / 6$	ECC83 6/-	EL35	$5 /-$	KT2 7/-	PL83 616	U70	4/6	263	9/-
6AG5	2/6	6F5G	81-	10Fl	9\%-	30 P 18 8/6	2050 12/-	DF96	2/-	ECO84 6/6	EL36	$8 / 6$	КТ32 6/6	PL84 8/6	U76	4/-	Z86	101-
6AG7	6/-	6F6G	51 -	10F3	$8 /-$	30 Pl 19 13/-	5642 11/-	DH63	$8 /-$	ECC85 5/-	EL38	17/6	KT36 17/6	PL302 13/-	U78	4/-	Z759	23/-
6AF6	10\%-	6 F 7	-	10F9	10/-	30 PL 1 15/-	5651 7/6	DH101	$7 / 6$	ECC86 \%/-	EL41	$8 / 6$	KT41 7/6	PL500 $13 / 6$	U81	10\%-	Z803U	15/-
6AK5	5/-	6F8G	\$1-	10 Fl 18	91-	30 PL 13 15/-	\$654 8j.	DK 32	8/-	ECC88 8/-	EL42	$7 / 6$	KT44 5/-	PL504 14/-	U191	11/-	Z900T	13/-

TRANSISTORS

MULTIMETERS
 TXPE MF 15

A.C. and D.C. voltage ranges: D.C. current ranges: $500 \mu \mathrm{c}-10-100 \mathrm{mes}$
Resistance rangea: $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$. The meter is also calibrated for Inductance $(10-1000 \mathrm{H})$, capacity $(0.6 \mu \mathrm{~F})$ gnd output level measure$\begin{array}{lll}\text { menta. Eensitivity } & 2000 \Omega V \\ \text { Accuracy } \pm 2.5 \% \text { for D.C. and }\end{array}$ Accuracy $\pm 2.5 \%$ for D.C. and
$\pm 4 \%$ for A.C. messurements.

Dimension: $5 \frac{1}{2}$ x 3 x x 售in. Price 23.3.0.
Type 108-IT: 24 range precision portable meter. 5000 .p.v. D.C. Volte: 2.5-10-50-250-500-2500V. A.C. Volts: 10-50-100-250-500-2500V ; D.C. current 0.5-5-50-500mA Resistance 2000-20,000 ohms; 2-20 megohms. Power
output calibration in A.C. for 600 ohms line. Complete with prods and batteries, 5.5 .0 . P. \& P. 5/-.

TEXAS SILICON FULL-WAVE BRIDGE RECTIFIERS 1B20K 10100 piv, 2 amps , dimensions $1.4 \times 1.4 \times .6 \mathrm{in}$. $25 /-$ 1B40K10 100 piv, 4 gmps , dimensions $1.4 \times 1.4 \times 6 \mathrm{in} .30 /-$ 1 B100M10, 100 piv, 10 amps, dimensions $2 \frac{1}{} \times 24 \times 1 \mathrm{ln} .85 /$ Postage 1/6 per rectifier.

WE REQUIRE KLYSTRONS

TYPE 723A/B and 2K25
ALSO VALVES TYPE 813, 845, 810, 4C35, 5C22.
30/- paid subject to test

25 WATT SOLDERING IRONS

200-250 watt exceptionally well made lightweight soldering irons with polished wooden handles and chromium plated body. Angle bit of suffcient lengith for fong life, (P.P. 2/-). Spare bits 1/9. Spare elements 3/6.

ATTENTION - SALE

Sale of second-hand test equipment, Oscilloscopes, various Units, Chassis, Sub-assemblies, Relays, certain types of surplus Valves, etc., will take place at 44A Westbourne Grove, W.2, on Saturday, 30th September. Stocks must be cleared at any price.
ONE DAY ONLY
From 9 a.m. till 6 p.m.

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

IPRACTICAL
 WIRELESS
 query service

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN \star THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL RADIO. TV OR AUDIO EQUIPMENT.

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 8th September, 1967 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, SEPTEMBER 1967

[^0]: TEGHIVGAL
 RADING

 BRIGHTON $\begin{gathered}\text { Park, Creseent Place } \\ \text { Tel, } 880722\end{gathered}$
 PORTSMOUTH ${ }_{\substack{3 \\ \text { Tel. } 22035}}^{350-352 \text { Fratton Road }}$
 SOUTHAMPTON $\underset{\substack{72 \\ \text { Tel. } 258551}}{\substack{2,2 \\ \text { Satreet }}}$
 WORTHING ${ }_{\text {Tel }}^{132}$ Montague Street

[^1]:

[^2]:

[^3]: */f you'd like to read the independent test reports write to Arthur Nicholls at:

[^4]: TO: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we donol omploy representatives
 NAME
 BLOCK CAPS
 ADDRESS.
 PLEASE PW9

[^5]: All correspondence intended for the Editor should be addressed to : The Editor, "Practical Wireless'", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363 . Telegrams: Newnes London, W.C.2. Subscription rates, Including postage: 36 s. per year to any part of the world. ©) George Newnes Ltd., 1967. Copyright in all drawlngs, photographs and articles published in "Practical Wlreless" is speclfically reserved throughout the countrles algnatory to the Berne Convention and the U.S.A. Reproductions or Imitations of any of these are therefore expressly forbldden.

[^6]: ASIA
 Afghanistan: Radio Afghanistan (Ansari Watt, Kabul) has a new transmission beamed to Europe at $1100-1200$ over $17,825 / 15,340$.

 China (Taiwan): Voice of Free China (Taipei, Taiwan) now uses $17,890 / 17,780 / 17,720 / 15,345 / 15,125 / 11,825 /$ 7,130 for its 0200-0350 English transmission.

 India: All India Radio (P.O. Box 500, New Delhi) has English as follows: 2245-0015 7,235/9,615; 22450115 9,740/11,760; 0030-011511,710/15,105; 1000-1200 $15,105 / 15,165 / 17,705 / 17,890 / 21,615 ; 1330-150015,375 /$ 16m.b.; 1745-2230 7,215; 1745-2030 11,620; 17451945 15,230; 1945-2045 9,690/11,775; 1945-2230

[^7]: Many other models in wide range.

 - Prices quoted are Mail Order, retail prices in general slightly higher.
 - Full specification sheets of any model available upon request.

[^8]: Please write your name and address in block capitals NAME ADDRESS
 1
 home radio ltd., Dept. PW, 187 london road, mitcham. CR4 2 YO

[^9]: This article concludes the first section of this series by H.W. Hellyer and Gordon J. King. The second section will begin publication in about three months time, when the emphasis will be on transistor equipment.

[^10]: 三 mathematics for radio and electronic technicians By Dr. -Ing Fritz Bergtold. Publlshed by George Newnes Ltd. 304 pages. $8 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$. Hard Covers. Price 50 s.

[^11]: Cropping the back-growth.

[^12]: Where postage is not definitely atated as an extra then orders over $£ 3$ are post free. Below £3 add $2 / 9$. Bemi-conductors add $1 /$ - pont.
 Over $\$ 1$ post free.

[^13]: Terms of busineas-Cash with order only. Post/Packing 6d. per item. Orders over es post free. No C.O.D. All orders cleared day of receipt. Any parcel insured against damage in trangit for bd. extra. We are open for personal shoppers $9.00-5$ p,m. Sats, $9.00-1$ p.m. Complete list of modern and obsolete valves, resistors, condensers, transformers, potentiometers, microphones, etc. with terms of business 6d. Please enquire for any item not listed with S.A.E.

[^14]: all our semicondoctors have a written guarantee $\stackrel{\rightharpoonup}{\star}$

