PRACTICAL WRELESS
 JULY 1967 216

TRANSFILTER
 PORTABLE

ADCOLA

SOLDERING EQUIPMENT

FOR CATALOGUES APPLY DIRECT

ADCOLA PRODUCTS LTD. ADCOLA HOUSE GAUDEN ROAD, LONDON, S.W. 4
 Telephones: MACaulay 0291/3

Telegrams:" "SOLJOINT" LONDON SW4

Less than HALF list price!
 SUPERB IUSTRAPHONE MOVING COIL MICCOPHONE

ONLY

Guaranteed brand new in maker's box . . . offered at below cost. list price £3.7.6. Your opportunity while surplus stocks last. This high quality microphone is 26/ POST FREE IN U.K. co-axial plug. Frequency response 70-12,000 cycles/sec., sensitivity —75, $\mathrm{db}(\mathrm{m})$. Medium impedance. nominal 600 ohms. Lead can be extended up to 100 ft . without loss of quality. FREE! Circuit for low-cost transistor pre-amp.lifier for matching to high-impedance input.

RUSH YOUR ORDER NOW!

Dept. PT/812, 29 Wright's Lane, Kensington, London, W.8.

PRE-PAK sEmiconductors

BARGAIN

PARCELS

Including variable condensers, I.f. coils, loudspeaker plugs/sockets, knohs, pots, condensers, tranaformer choke rectifer, transistors at a small iraction of list value. Die to heavy demand we are now packing them in Beveral sizes-TRY ONE.
3 lbs. (post 3/-)
14 lbs . (post $\mathrm{B} / \mathrm{F})$

> Transistorised IM Tuner

CALLERS WELCEME ranches

avoid disappointment
ORDER NOW \&8-10

AVOID AMPLITUDE DISTORTION WITH YOUR HI-FI AMP STABILISED TRANSISTOR POWER SUPPLY

- VARIABLE 0-15V. AT 0-1 AMP
- STABILISED FOR MAINS VAR. 210-250V.
© RIPPLE CORRECTED
- SHORT CIRCUIT PROTECTION
- HANDSOME STYLED CABINET
PRICE ONLY 6gns.
10 WATT TRANSISTOR AMP
Consisting above stabilised power pack (can be used separately), with built-in pre-amp and controls driving two x OC26 main amp. in styled cabinet New concept in value and design. 10 transistors, selection, vol. and tone controls equalisa tion.

PRICE 12gns.

ELPICO MONO PREAMPS
DPA15. Latest black/satin chrome finish raultiple input pick-ups and mikes. Provision tape recordinge. 4 GnS.

Value in VALVES
GUARANTEED 3 NONTH BY RETURN OF POST

ald valves are new unless otHerwise informed free TEANSIT INSURANCE. POSTAGE 1 valve 9d. 2-11 6d. per valve. Free over 12.										
					-cc8					19
5	4/9	6L1	25L6 6 T	$7 /$	ECF80	7/9	KT	12/-	TDD4	$1-$
184	4/9	6LBG 8/6	25Z4G	$7 /$	ECP82	7/8	KT68	5/9	U14/18	7/6
185	4/6	8L18 7/9	30F5	9/-	ECH21	101-	KT86	19/8	U25	9/6
174	$3 /-$	6LD20 816	30FL1	$9 / 9$	ECH35	11/-	K T88	$27 / 6$	U26	9/6
D21	$5 / 6$	6P25 12/-	$30 \mathrm{L15}$	11/6	ECH 42	10/6	KTW61	5/9	035	$12 / 6$
5	$81-$	$6 \mathrm{6P28}$ 9/6	30 P 4	11/6	ECH81	8/8	KTW63	5/-	037	11/-
4	5/3	687G 7/4	30P12	91-	ECE83	$7 / 9$	KTZ63	$7 /$	010	12/6
4G	$6 /$ -	697GT 8/9	30 PL 1	$11 /$	ECL80	$5 / 8$	MU14	71	U19]	$12 / 6$
3 GT	6/8	6SL7GT 6/9	35. 5	$9 / 6$	ECL88	716	N37	$9 / 6$	0281	0/6
249	819	BSN7GT 6/9	35L8GT	$8 / 6$	ECL83	10/6	N78	13/-	U288	15/-
24T	9/6	T 9/8	35W4	8/8	ECL88	9/6	N108	13/-	U329	16
3022	$9 / 6$	6V6G $4 / 9$ 6VGGT 19	3524GT	$5 / 9$	EF36	$4 / 9$	PC8	$8 / 6$	0801	19/-
6a8G	7/8	$8 / 9$	30L6GT	$8 / 6$	EF39	$1 /$	PC	7/6	UABC8	16
BaK5	$4 / 9$	6X4 4/6	80	7/6	EF40	10	84	$6 / 6$	UAF42	710
6405	5 -	6X0G 5/-	185B	19/6	EF41	9/-	PCC85	$7 / 8$	UB41	$8 / 6$
$8_{6}{ }^{\text {T6 }}$	$51-$		807	9/6	EF50	$3 / 3$	PCC88	$11 / 8$	UBC41	19
6EA6	5/6		855	$3 / 6$			PCC88	11/-	UBCs1	$8 / 9$
6BE6	$5 / 6$	${ }^{787}$	950	3/-	EF85	$6 / 8$	PCC180	918	UBF80	$7 / 8$
H8	8/6	\%C8 76	AZ31	8/6					$0 \mathrm{OFL}{ }^{\text {d }}$	7/6
68J6	71.	$\begin{array}{ll}7 \mathrm{C} 6 & 7 / 6 \\ 787\end{array}$	CBL31	10/6	EF8	$6 / 6$	PC	$8 / 8$		10/8
R7	9/8	$\begin{array}{rr}7 H 7 \\ 787 & 14 / 6\end{array}$	DAF96	773	EF183	8/6		$8 / 3$ $7 / 9$	Uc98	
6BW	5\%	7 Y 4	DF	-	EF184	$8{ }_{8}^{8 /-}$	PCL82	918	UCFs80	
$6 \mathrm{6c} 4$	$3 /-$	$100111 /-$	DK92	$8 / 6$	EL82	$5 /-$	PCL84	$9 /-$	UCH21	10/9
$8 \mathrm{BE5}$	5/6	$\begin{array}{ll}1002 & 12 / 6\end{array}$	DL92	$8 / 8$	EL33	12/-	PCL85	$9 / 8$	UCH 42	10/6
6 ec	41 -	10F1 7/6	DLe	6/6	EL34	11/8	PCL88	$9 / 6$	UCH81	7 7-
9	1	10LD11 14/6	DL	$7 / 3$	EL35	81 -	PL33	$8 / 8$	UCL82	8/-
$6 \mathrm{ED6G}$	171-	10P13 9/6	EABC80	8/9	EL38	15/-	PL36	11/-	UCL83	10/6
6D6	4/-	10P14 9/6	EAF42	$81 /$	EL41	9/9	PL38	$12 / 6$	UF41	9/-
611	6/8	12AT7 4/9	EB41	$4 / 6$	EL42	$8 / 9$	PL81	719	UF42	$6 / 9$
${ }^{6 F 6 G}$	5/-	12AU7 5/6	EB92	$2 / 9$	EL84	$8 / 8$	PL82	$5 / 9$	UF8:	$7 / 6$
6) 13	4/6	12AX7 6/-	EBC33	$7 / 6$	EM80	$71-$	PL83	8/-	UF8!	$8 / 8$
6 F 1	$7 / 6$	12J7GT 9/-	ERC41	9/6	EM81	$7 / 8$	PL84	71 -	UL42	101-
6 F 15	918	12K7GT 5/-	EBC01	8/9	EM84	$7 / 8$	PY31	$7 / 6$	UL44	14/-
8723	$81-$	12×8GT 9/6	EBF8	$7 / 9$	EY51	$7 / 6$	PY32	$9 / 8$	UL4	$10 / 6$
$6 \pm 5 \mathrm{G}$	4/-	12Q7GT 616	EBF8	$71-$	EY86	$7 / 8$	PY33	$7 / 6$	UL84	818
5	6/6	14S7 $14 / 6$	EBL21	11/-	EY88	$8 / 6$	PY80	5/8	UM80	$8 / 6$
6	$3 / 3$	19AQ5 5/6	ECC40	9/6	EZ40	$7 / 8$	PY81	$5 / 8$	OY21	$8 / 9$
6, ${ }^{\text {cos }}$	$5 / 8$	20D1 8/9	ECC81	$4 / 9$	EZ41	8/6	PY82	$5 / 6$	UY41	71-
6TJGT	$9 / 6$	20F2 9/6	ECC82	$5 / 6$	EZ80	5/6	PY83	5/9	UY85	$5 / 6$
6E7G	$2 / 8$	29 LI 16/-	ECC83	$61-$	EZ81	$81-$	PY88	8/6	VR105	51.
6E.70T	5/8	20P1 9/6	ECC84	$71-$	FC4	$81-$	PY800	$7 /$	VR150	5/-
6E8G	5/9	20P3 9/6	ECC85	5/9	GZ32	9/8	PZ30	$9 / 6$	x 66	$7 / 9$

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values, details of which are given in the latest edition of the Constructors' Booklet priced at 2/-.

Oscillator Coil	.P50/1AC (For OC45)	P50/1AC	(For AF117)	5/4
1st I.F. TransformerP50/2CC (For OC45)	P51/1	(For AF117)	5/7
2nd I.F. Transformer.	.P50/2CC (For OC45)	P51/2	(For AF117)	5/7
3rd I.F. TransformerP50/3CC (For OC45)	P50/3V	(For AF117)	6/-
	Rod AerialRA2W.		12/6	
	Driver TransformerLFDT4/1	9/6	
	Output Transformer.................OPT1	10/6	
	Printed Circuit...........................PCA1	...	9/6	

I.F. TRANSFORMERS \& COILS FOR VALVE CIRCUITS

Production of Tuning Coils (Type "H") and I.F. Transformers is being continued and details of these and our other components are given in an illustrated folder which will be forwarded on request with 4 d . postage please.

WEYRAD (ELECTRONICS) LIMITED
SCHOOL STREET, WEYMOUTH, DORSET

 The Sensational
 ALL-TRANSISTOR
 Communications Receiver

for use in the home, caravan, car or boat, H.P. facilities. Only $£ 48$ Part exchanges Write for brochure

170-172 CORPORATION STREET BIRMINGHAM 4
 Telephone: 021-236-1635

 17in.-f11.10.0
 17in.-f11.10.0
 3 Star Guarantee
 3 Star Guarantee
 * Tube & Valves
 * Tube & Valves
 \star Components Carr. 30/-
\star Components Carr. 30/-

TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS
FREE ILLUSTRATED
LIST OF TELEVISIONS
$17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$

TRANSISTOR PORTABLES

LONG WAVEBAND COVER FOR THE SKYROVER
A simple additional clrcuit provides coverage of the $1100 / 1950 \mathrm{M}$. band (ineluding 1500 M . Light programme). This
is in addition to all existing Medium is in addition to all existing Medium
and Short wavebands. All necessary and Short wavebands. All necesaary Only 10/= extra Post Free. This converston is suitable for receiver that have already been constructed. Data 2/6 extra: refunded if you purchase

THE SKYROVER De Luxe
7 transistor plus a diode superhet, 6 waveband portable receiver covering the full Medium Waveband and ghort Waveband $31-94 \mathrm{M}$ and also 4 separate switched band spread ranges, 13 M ., $16 \mathrm{M} ., 19 \mathrm{M}$. and 25 M . with Band Spread Tuning for accurate Station Selection. The coil pack and tuning wired and tested. The remalning assembly wan be completed in under three hours from our easy to follow, stage by stage instructions. Superhet, $470 \mathrm{Kc} / \mathrm{s}$. All Mullard Translstors and Diodes. Uses 4 U2 batteries. 5 in . Ceramic Magnet P.M. Speaker. 500 mW Output. Telescopic and Ferrite Kod Aerial. Tone Circuit with aeparate Tone Control. Volume Control. Tuning Control and Waveband Belector. In wood cahinet, size $11 \times 62 \mathrm{x}$
3 in . covered with washable material, plastic trim and carrying handle. Car aerial socket trima and carrying handle. Car aerial socket
fitted.

Can now
be built for
2. 19.6 $\underset{5 /- \text { extra }}{\text { Post }}$ H.P. Terms: $00 /-$ deposit and 11 monthly payments of 12/9. Total H.P.P. 810.0 .3 . Four U2 batteries $3 / 4$ extra.

SPECIAL INTEREST ITEMSI

NEW! LASKY'S CLEAR PLASTIC PANEL METERS
Precision made in Japan by HIOKI. Each meter boxed and fully guaranteed with all dxing nuts and washers. Sizes are

imA 8 Meter. $39 / 8$

Type MK-38A 2in, square		Type KR-65 3i $\times 3 \mathrm{in}$.	
1 mA DC ,	22/6	1 mADC	36/-
5 mA DC	22/6	5 mA DC	$35 /-$
300 V DC	22/6	300 V DC	35/-
$55 \mu \mathrm{~A}$	27/8	$500 \mu \mathrm{~A}$	$42 / 6$
1 mA S Meter	29/6	1 mA © Meter	39/6
Type MK-45A 1 inin. square		Type MK-65A 3in. sutare	
$1 \mathrm{mADC}$.	251-	I mA DC.............	88/-
5 mA DC.	25/-	5 mA DC.	$35 /-$
300 V DC	25/-	300 V DC	85/-
$500 \mu \mathrm{~A}$	251-	$500 \mu \mathrm{~A}$	39/6
1 mAS Meter.	35/-	1 mA 8 Meter	37/6

NOW AVAILABLE! - JOYSTICK AERIALS
Revolutionary variable frequeney antenna for tranamisaion and reception. With a variable matching unit these antennae perform as a high ' Q ' device at any selected Medium or Short waveband. Send for S.A. E. for descriptive leaflet. AERIALS ($7^{\prime} 8^{\prime \prime}$ Long) VFA Standard

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRAND TAPE AT RECORD LOW PRICES

EXPORT FM WIRELESS MICROPHONES

THE TTC MODEL B4002
Highly zensitive-suitable for either static or mobile use. Signala can be picked up by any Fards Bize only 3 which receives frequencief hetween 96-104 Mc/a over several hundred
 PRICE 10 Gng. Post Free anywhere in world.
 on one PP3 type battery. LABKY'S PRICE 12 Gns. Post Free bnywhere in world. These
cannot be operated in the U.K. owing to G.P.O. regulations,

Eranches

207 EDGWABE ROAD, LONDON, W. 2
Tel: 01.7233271
33 TOTIENHAM CT. RD, LONDON. W. 1
Tel: 01.6362605 Gpen all cosy Saricday, cerly clesing 1 pin Thunady 152/3 FLEET STREET, LONDON, E.C.4 Tel.: FLEet SL 2833

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3.15 CAVELL ST., TOWER HAMLETS, LONDON, E. 1 Tel.: 01.7904821

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKSHIRE
 Telephone: CLECKHEATON 2866

Special Offer, 19 Sets, Mark 3, in good clean condition. Parts removed, B section, 807 valve and TX section made US. Receiver valve, and Tested, all you would need is a Power Bench Tested, all you would
Pack. Price $35 /-$. Carriage 10/-.
19 Sets in fair condition as above and also removed is the meter and relay, 10/-. Carriage 10/-. Not tested.
Breaking Up 19 Sets. Relays 1000 hm coil. $2 /$-. Post and Packing $2 /$-. Doz. 26/-. Post paid. Jack Sockets. 7/6 Doz. Post paid.
Metal Toggle Switches 9d. Post and packing 7d. 7/6. Doz. Post paid
Pointer Knobs. 9d. Post and packing 6d. Doz. 7/6. Post paid.
46 Sets. New condition, less send receive switch, coils and crystals. 12/6. Post paid.
46 Set Whip Aerial Sections. Nine for $2 /$ Post and packing $1 / 6$.
EX RAF Wave Meter. Type W1649. Complete with Slow Motion Drive and Six Valves. Housed in wooden box used. 17/-. Carriage BRS 10/-.
Small Battery S.W. Chassis, complete with two tuner. Condensers, and slow motion drives. tuner. Conder
$6 /-$. Post paid.
88 Set Chassis, Valves, Send Receive Switch, and Crystals removed, $5 /-$. Post paid.
Untested 17 in . TV Sets. Complete with all Channels, 50/-, Carriage 10/-.
TV Chassis. Transformers removed. But complete with condensers, resistors, and valve holders. 10 for $22 /-$. Post paid.
Perspex TV Safety Screens, 2/- each, Post 4/each. Doz. for 30/-. Post paid.

Speakers Removed from TV Sets. All 3ohm PM and perfect $6 \times 4 \mathrm{in}$. and 6 in . round, $3 /-$, post $2 / 8$. Six for $22 /-$, post paid. $7 \times 4 \mathrm{in}$. $5 /-$, post $2 / 9$. Six for $34 /$ /-, post paid. 8in. round, $6 / 6$, post $3 / 6$. New 12in. Speakers with Bullt-in Tweeter. 28/6, post paid. 3 or 15 ohm Coil.

VALVE LIST
Ex Equipment. 3 months' guarantee
10F1, EF80, EB91, ECL80, EF50, PY82, PZ30, 20P3. All at 10/- per doz. Post paid. Single valves post 7 d .

ARP12	1/6	PL38	5/-	185BT	8/6
EB91	9d.	PL81	4/-	20D1	3/-
EBF80	3/-	PY33	5/-	20 Ll	5/-
ECC81	3/-	PY81	1/6	20P1	5/-
ECC82	3/-	PY82	1/6	20P3	2/6
ECC83	4/-	PZ30	5/-	20P4	8/6
ECL80	1/6	U25	5-	5U4G	4)-
EF50	1/-	U191	5/-	6B8	1/8
EF80	1/6	U281	5/-	6K7	1/9
EF91	9 d.	U282	5/-	6 K 25	5/-
EL38	5/-	U301	5/-	6P25	5/-
EY86	5/-	U329	5/-	6U4	5/-
KT36	5/-	U251	5/-	6V6	1/9
PCC84	2/-	U801	8/6	6P28	$5 /-$
PCF80	2/-	10C2	5/-	EY51	2/6
PCL82	4/-	10P13	2/6		

NEW VALVES EX UNITS

IT4, 2/-: IL4, 2/-: IA3, 2/6: IS5, 2/6: 12AT7, 3/-: 3A4, 2/6: EF91, 2/-: EB91, 1/3: EL01, 2/-: 3/: 3A4, 2/6: EFg1, 2/-: EB81, 1/- ELO1, $2 /-:$ ARP12 Valves, $22 /=$. Post paid.
New Boxed TV Tubes. 14in. MW36/44., 40/Carriage 10/-, 12 months' guarantee.
90 degree Tubes. Twelve months' guarantee. Slight glass fault, $30 /-$ and $50 /-$. Carriage $10 /$-.

Reclaimed Tubes. Six months' guarantee. AW43/80, 30/-. MW43/80, 30/-. MW43/69, 30/CRM172, 30/-. CRM142, 17/-. 12in. Tubes, 10/-. 17in. Tubes, perfect but without guarantee, 17/-. Carriage on any Tube in G.B., 10/-

EX Washing Machine Motors. Fully guaran teed. Single phase + h.p., 26/-. Sixth h.p., 15/-. Plus carriage, 10/-.
New Miniature Model Makers Motor. 6/6. Post paid.
New Miniature Blower Motor. 7/6. Post 2/-. Will run from 24 , 12 or 6 volts.

Jap Lapel Microphones. 5/-, Post paid.
Jap Mini Meter. Size $31 \times 2 \mathrm{in}$. Specifications 1 Sensitivity 1000 ohm per volt. AC/DC. DC voltage 0,12 volt. 0.120 volt. 0.1200 volt. AC voltage $0 \cdot 12$ volt. $0 \cdot 120$ volt. $0 \cdot 1200$ volt. DC current $0.1 \mathrm{MA} .0 \cdot 120 \mathrm{MA}$. Resistance $0 \cdot 200$ ohm. Complete with Test Leads and Battery. 32/6. Post paid.
Jap Personal Earpiece, small or large plug. 1/11. Post paid.
Silicon Rectifiers. Top Grade, Half amp 800 p.i.v. 3/-. Post paid. Half amp 400 p.i.v. $2 / 6$. Post paid. 5 amp 400 p.i.v. $4 /$-. Post paid. 5 amp 800 p.i.v. $5 /-$. Post paid. 5 amp 200 p.i.v. 2/6. Post paid.

Top Grade Diodes. 3/6 per dozen. Post paid, no duds.
Top Grade Mylar Tapes. 7in. Standard, 11/6. L.P., 14/-. 7in. D.P., 19/6. 5in. Standard, 7/9. L.P., $10 /-$ Post $1 / 6$ per tape

PEMBRIDGE

 COLLEGE
OF ELECTRONICS

 FOR TRAINNG IN RADIO AND TELEVSISON
FULL-TIME COLLEGE COURSE IN RADIO AND TELEVISION

Our Course, of sixteen months' duration, provides a fundamental training for radio and television engineers. It includes theoretical and practical instruction on transistor television receivers, U.H.F. television receivers and colour television.

Exactly half the time is spent on practical work and the course provides excellent practical experience on valve and transistor radio receivers and high-fidelity equipment and all well known makes of television receivers.

The Course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations.

Next Course commences 5th September, 1967.
To: The Pembridge College of Electronics (Dept. P11)
34a Hereford Road, London, W.2.
Please send, without obligation, details of the
Full-time Course in Radio and Television.

Name

Address

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE strap $1 / 6$ extra.
 This amazing receiver may
 $\pm 3.9 .6$ be built for only

8 stages- 6 transistors and 2 diodes
Covers Medium and Long Waves and EXTRA RAND FOR EASIER TUNING OF LUXEMBOURG, etc, Top quality 3in. Loudspeaker for quality output. Two RF stages for extra boost. High "Q" 6 in. Ferrite Rod Aerial. Approx. 350 mililwatts push-pull output. Handsome pocket size case with gilt fittings. Size 61×3 x 1 in. (Uses long-ife PPbrattery.) Carrying
P. \& P. 3/6

Parts Price List and easy bulld plans 2/-

NEW TRANSONA FIVE

Now with 3in. SpeakerI

"Home., Light. A.F.N.. Lux. all at good volume.," 7 stages-5 transistors and 2 diodes
Fully tunable over Medium and Long Wayes. Incorporates Ferrite rod aerial. fine tone super dynamic 3 in. speaker. etc. Attractive case. Size 64 x $4 \neq 1$ x 1 n. with red speaker grille. (Uses 1289 battery, avallable anywhere.) - Extended M.W. band for easier tuning of Luxembourg etc. Total cost of all 42/6
P. \& ${ }_{3 / 6}$ P. Parls Price List and easy bulld parts now only

NEW ROAMER SIX

NOW, WITH PHILCO MICRO-ALLOY R.F. TRANSISTORS

- 6 WAVEBAND 11
- 8 stages-6 transistors and 2 diodes Listen to stations half a world away with this 6 waveband portable. Tunable on Medium and Long Waves, Trawler Band and two Short Waves. Sensitive Ferrite rod aerial and telescopic aerial for short waves. Top grade transistors. 3in. speaker. hand SEXTRA BAND FOR EASIER TUNING OF LUXEMBOURG, ETC Total cost of all 63.196 P. \& P. Parts Price List and easy bulld Parts Price List and easy bulld
plans 21-
(Free with kit) (Free with kit).
 Total cost of ail

42/6
P. $\mathbb{1}^{\text {P. }} 3 /$ -
parts now only $1 /$ P. \& P. 3/-
 Pocket 5 med. and long wave $29 / 6$ P. .at. ${ }^{2}$.

TRANSONA SIX

- 8 stages- -6 transistors and 2 diodes A top performance recelver covering full Medjum and Long Waves. High-grade 3in. speaker makes listening a pleasure. Push-pull output. Ferrite rod aerial. Many stations listed in one evening includgrey with red grille. Size $6+x$ it x itin. (Uses PP4 battery available anywhere). Carrying strap $1 /$-extra
 - Extended M.W. band for easier tuning of Luxembourgetc. $\begin{array}{lllll}\text { Total cost of all } & 59 / 6 & \text { P. \& P. } & 3 / 6 & \begin{array}{l}\text { Parts Price List and easy build } \\ \text { parts now only }\end{array} \\ \text { plans } 1 / 6 & \text { (Free with kit) }\end{array}$

2 diodes
Our latest completely portable transistor rado covering Medium and Long waves heavy duty speaker, top grade transistors. volume control, tuning condenser, wave change slide switch, sensitive 6in. Feritte rud aerial. Push-pull output. Wonderful reception of BBC, Home and Light, 208 some leather-look pocket size case, only $6 \frac{1}{x} 34$ 友 lin. approx. with gilt speaker grille and supplled with hand and shoulder straps.
Total cost of all Parts Price List and easy bulld $\begin{array}{lllll}\begin{array}{l}\text { Total cost of all } \\ \text { parts now only }\end{array} \leq 3.9 .6 & \text { P. \& P. } & 3 / 6 & \text { Parts Price List and easy build } \\ \text { (Free wlth kit) }\end{array}$

Total cost of all parts now only

SUPER SEVEN

9 stages-7 transistors and 2 diodes
Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car, or can be fitted with carrying strap for outdoor fise. Completely portable-has bullt-in Ferrite rod aerisl for wonderful reception. Special circuit fncorporating 2 RF Stages. push-pull output, 3in. speaker (will drive large speaker), size an x by x intin. (Uses

Parts Price Ust and easy bulld
plans $2 /=\quad$ (Free w/th k / t)

The Key to Your Success . .Heathkit Manuals!

1 Helpful Guidance on Kit Building

Each Heathkit manual contains valuable tips for the kit builder. Shows you . . . how to unpack and set-up the kit for easy building . . . how to identify components by size, shape and coding . . . how to mount parts, cut leads and position them. It even explains and illustrates how to solder properly 'point-to-point' and on printed circuit boards.

2 Detailed Parts List

Inside every Heathkit manual are descriptions and pictures of each and every part for easy identification while you are building your kit.

3 Simple Step-by-Step Procedure

Guides you through each assembly step. Tells you exactly what part to use, what to do, and how to do it. Covers kit construction, alignment and installation . . . nothing is left to chance. Written in non-technical, everyday language so that everyone can understand the instructions.

4 Large 'Exploded' Diagrams

Large illustrations and pictorials show precisely where each component goes and many detailed diagrams are generously sprinkled among the instructions to illustrate how various assemblies go together.

5 Operating Instructions

Cover the use of your kit under virtually any situation, and recommend appropriate accessories where necessary. Even dwell on operational theory, if required for use.

6 Fault Finding Chart and Service Information

In the unlikely event that you do run into trouble, there's an 'In Case of Difficulty' section and a 'Fault Finding Chart' that lists difficulties and possible causes to assist you in locating your problem. Also our staff of Technical Correspondents is at your service to answer any question about construction, accessories or kit selection.

7 Circuit Description and Diagrams

If you are technically inclined or interested in learning about electronics, you'll find the Circuit Description, Circuit Diagram and block diagrams both helpful and educational.

8 Heathkit Guarantee

Any model when assembled in accordance with the Instruction Manual must meet our published specification for performance or the purchase price will be cheerfully refunded.

Build Your Own Heathkit Electronics

A kit for every interest-Home Workshop-Hi-Fi-Radio-Test-'Amateur' Treat yourself to superb LW, MW entertainment with the High-performance Car Radio Kit. CR-1.

[^0]

Hi-Fi performance from a "Mini"
 speaker kit with the 'AVON' BOOKSHELF SPEAKER SYSTEM

The challenge to our acoustic engineers was to design a speaker occupying the minimum space consistent with first class reproduction. The result of our efforts was the AVON, a compact unit of exceptional quality. Features two special speakers $6 \frac{1}{2}$ in. BASS, $3 \frac{3}{8} \mathrm{in}$. HF unit and cross over network. Good frequency response. Beautiful fully finished walnut veneered cabinet. Size only $7 \frac{3}{4} \times 13 \frac{1}{4} \times 8 \frac{3}{8} i n$. deep. Supplied in two units. Can be built for a total price
KIT f13.16.0 incl. P.t.

MOST MODELS CAN BE SEEN AND DEMONSTRATED AT THE HEATHKIT CENTRE, 233 TOTTENHAM COURT RD. LONDON

VIKING TRANSISTOR

40-50 WATT AMPLIFIER

OPERATING INSTRUCTIONS GENERAL, An extremely reliable lightweight amplifier capable of giving $40-50$ watts of undistorted sound, made possible by the use of the latest semi-conductors (transistors) and techniques which ensure space-age reliability under the space-age reliability under the
most rugged conditions. It is most rugged conditions. It is musical instruments that require exceptionally high treble response (not recommended for Bass Guitar). Tremolo facilities are available on Channe 1 only. INPUTS-CONTROLS-CHANNEL 1 (Tremolo): this contains two high gain input jack sockets controlled by Volume Control 1 which is mounted directly above the two sockets marked tremolo. BASS 1: gives controlled boost to the lower frequencies on Channel 1 only. TREBLE 1 gives a controlled boost to the high frequencies on Channel 1 only. TREMOLO: this operates on Channel 1 only and the variations of intensity and speed of the Tremolo beat is adjusted by the controls DEPTH and SPEED. A socket is provided in the rear of the amplifier so that the and SPEED. A socket is provided in the rear of the amplifer so that the Tremolo may be switched on and off by the use of a footswitch plugged into the socket. If you wish the Tremolo to be used without the foot-
switch, this is possible as the footswitch is only used to short out the switch, this is possible as the footswitch is only used to short out the
effect. INPUTS AND CONTROLS-CHANNEL 2 (Normal): this contains two high gain input jack sockets controlled by Volume Control 2 which is mounted directly above the sockets marked Normal. TREBLE: gives a controlled boost to the treble frequencies on Channel 2 only MAINS VOLTAGE: fully adjustable, $200-250$ volts, A.C. 50 cycles. POWER OUTPUT: $40-50$ watts sine wave British rating. Very little distortion. OUTPUT IMPEDANCE: 3 ohms. Price 21 gns. plus $£ 1$ postage and packing
WOLSEX U.H.F. AERIAL AMPLIFIER, two stage, gain 23 dB, noise factor 8 dB , power consumption 6 mA at 14 volts. Two AF186 tran sistors, complete with built-in power supply in metad case, list price 9 gns., our price $4 \frac{1}{2}$ gns. plus $2 / 6$ postage and packing.
MAINS TRANSFORMER, primary 200/250 volt, secondary 425/425 volt. $250 \mathrm{~mA}, 6.3$ volt $4 \mathrm{amp}, 5$ volt 3 amp ; fully shrouded. chassis mounting. Price $\mathbf{2 2 . 5 . 0}$ plus $7 / 6$ postage and packing. Auto transformer step-up-step-down, $240 / 110$ volt 400 watt. Price $£ 1.5 .0$ plus $7 / 6$ step-up-step-down,
MAINS TRANSFORMER 200/250 volt, secondary $250 / 250$ volt, 70 mA , $6 \cdot 3$ volt, 3 amp drop through. Price 12/6 plus 4/6 postage and packing. Elac 10 inch, 10,000 lines ceramic magnet, 3 or 15 ohms, 7 watt, $£ 1.9 .6$ plus $4 / 6$ postage and packing.

POCKET MULTI-METER
Slize $37 \times 21 \times 1$ in. Meter aize $2 \frac{1}{2} \times 1$ in. Sensitivity 1000 O.P. V. on both A.C. And D.C. volts. $0-15,0-150,0 \cdot 1000$. D.C. current $0-160 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Cowplete with tent prods, battery and full instructions, $42 / 8$. P. \& P.
3/6. FREE GIFT for limited period only, 30 watt Eiectric 3/8. FREE GIFT for limited period only. 30 watt Electric
Soldering Iron value $15 /-$ to every purchaser of the Pocket Soldering Iro

3 to 4 Watt AMPLIFIER
 3-4 watt Amplifier built and tested. Chassis size $7 \times 3\} \mathbf{x}$ Lin. Separate bass, treble and volume control. Double wound mains transformer, metal rectifier and ontput transtormer for 3 ohms speaker. Valves ECC81 and 6 V 6. zes. 5.0 plus $5 / 6 \mathrm{p}$. \& p .
 The above in Kjt Form, e1.14.6 plus $5 / 6 \mathrm{p}$. \& p .

"MUSETTE" 6-Transistor Superhet Portable Radio $\star 2$ n $^{-S p e a k e r . ~} \star 6$ Transistor Superhet Output $200 \mathrm{~mW} . \nmid$ Plastic Cabinet in red, size $43^{\prime \prime} x 3^{\circ} \times 14^{\circ}$ and gold speaker louvre. * Horizontal Tuning Scale, \star Ferrite Rod Internal Aerial. * IF $460 \mathrm{kc} / \mathrm{s}$. $*$ All components Ferrite Rod and Tuning Assembly Ferrite Rod and boning on printed board. Operated mount on printed board, from PP3 Battery. $*$ Fully comprefrom PP3 Battery. t Fully comprehensive instructions and point-to-point
wiring diagram. * Printed Circuit wiring diagram. * Printed Circuit long waveband. $*$ Car aerial and

Price 39/6. inc. carryjng strap. Circuit Diagram $2 / 6$
iree with parts. P. \& P. $3 / 6$. earpiece socket.

RADIO \& TV COMPONENTS (Acton) LTD

21c High Street, Acton, London, W3
Shop Hours 9 a.m. -6 p.m. Early Closing Wednesday
oodt not despatched outside U.K. Terms C.W.O. RADIOGRAM CHASSIS
Superb new 8 -valve chassis covering long, medium and short waves on AM, also VHF transnissions on FM. AM circuit's high sensitivity permits internal aerial for most stations. Well-known Gorler tuning heart in separate FM input. Tone and volume controls. Extra large illuminated dial. External AM and FM aerial inputs. Gram. pick-up socket. Standard 3 ohm speaker. 200/250 volts A.C.
£14.14.0 Size $17 \times 7 \times 5$ in. deep.
P. \& P. £1

Type E MOTOR Small A.C. mains motor $230 / 250$ volts complete with gearbox, 6 r.p.m. Price $15 /-$ plus $4 /-\mathrm{P}$. \& P. Similar to above motor but without gearbox. Price $9 / 6$ plus $3 /-\mathrm{P}$. \& P.

Silicon

 Rectifiers 250 v. P.I.V 750 milliamps Six for $7 / 6$, Post paid.TRANSISTORISED $1 \frac{1}{2}$ WATT AMPLIFIER
comprising 2AC 128, 20C 75 and 2 AA129 separate bass and treble volume controls. Complete with Power Supply $A C$ mains 240 v . Size $7 \frac{t^{\prime \prime}}{} \times 33^{\prime \prime} \times 2^{\prime \prime}$. Price $50 /-\mathrm{plus} 2 / 6 \mathrm{P}$. \&

POWER SUPPLY KIT

A.C. MAINS 200-250 V

Incorporating "C" core type mains transformer, full wave metal rectificatransformer, full wave metal rectificaoutput 250 v .250 mA and 6.3 v .4 amp . for Heaters. 25/-. P. \& P. 9/6.

FIRST QUALITY P.V.C. TAPE $59^{\prime \prime}$
$7^{\prime \prime}$
$3^{\prime \prime}$
$59^{\prime \prime}$
$7^{\prime \prime}$
$57^{\prime \prime}$ Std. 850ft.
 $\begin{array}{ll}5^{\prime \prime} & \text { L.P } \\ 3^{\prime \prime} & \text { T.P } \\ 5^{\prime \prime} & \text { T.P } \\ 5^{\prime \prime \prime} & \text { T.P } \\ 7^{\prime \prime} & \text { T.P }\end{array}$ P. 850ft...... $10 / 6$ 600ff........ $10 / 6$ L.P. 1200 ft. $\begin{array}{lll}3^{*} & \text { L.P. } \\ 7^{* \prime} & \text { L.P. } & 1240 \mathrm{ftt} \\ 7^{*} & \text { L.P. } \\ 1800 \mathrm{ft} \text {. }\end{array}$ 5i" D.P. 1800 ft . \qquad .P. 3600 ft
P. \& P. on each $1 / 6,4$ or more post free

EXTRACTOR FAN

8 -watt 4 -valve PUSH-PULL AMPLIFIER \& METAL RECTIFIER
Size: $9^{\prime \prime} \times 6^{\prime \prime} \times 11^{\prime \prime}$. A.C. Mains, 200-250V 4 valves. For use with Std. or L.P. records, musical instruments, all makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate bass and treble lift control. Two inputs, with

GEC

DOORBELL
Complete with inains transformer 240 v . AC \& illuminated bell push
plus \quad 5/6
P. \& P

AC Mains $230 / 250 \mathrm{v}$. complete with pull switch.
 Price 8 27/6 $\mathrm{pl}^{\text {plus }}$ \& 5 .
 controls for gram. and mike. Output transformer tapped for 3 and speech coils. Built and tested, £4.4.0. P. \& P. 11/-, $8^{\prime \prime} \times 5^{\prime \prime}$ speaker to suit price $14 / 6$ plus $1 / 6$ P. \& P. Crystal mike to suit $12 / 6$ plus $1 / 6 \mathrm{P}$. \& P.

GEC KETTLE ELEMENT

3,000W WITH AUTOMATIC EJECTION $200 / 240 \mathrm{v}$. Size of hole required 1 胃" List Price 32/-. Our PRICE
15/-. P. \& P. 1/6

NEW TRANSISTORISED SIGNAL GENERATOR

Bize $51^{\prime \prime} \times 31^{\circ} \times 11^{\circ}$. For IF and RF alignment and $A F$ nutpnt $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{mc} / \mathrm{s}$ in owitched frequencies, Ideal for alignBuilt and tested. $\quad 39 / 6$ \qquad
Also at 323 EDGWARE ROAD, LONDON, W.2. Personal shoppers only.
Early Closing Thursday. All orders by post to our Acton address.

Elegant Seven mk il a combined portable and CAR' RADIO

SPECIAL OFFER

Buy yourself an easy to build 7 transistor radio and save at least $\mathbf{£ 1 0 . 0} \mathbf{0}$. Now you can build this superb transistor superhet radio for under $£ 4.10 .0$. No one else can offer such a fantastic radio with so many de luxe star features.

* De luxe grey wooden cabinet size $12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{1 "}^{*} \times 3 \frac{1}{2}^{\prime \prime}$.
\star Horizontal easy to read tuning scale printed grey with black tetters, size $11_{1 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}}$
* High 'Q' ferrite rod aerlal.
\star I.F. neutralization on each separate stage,
* D.C. coupled push pull output stage with separate A.C. negative feedback.
* Room filling output 350 mW .
\star Ready etched and drilled printed circuit board back printed for fool prool construction.
* Fully comprehensive instructions and point-to-point wifing diagrams.
* Car aerial socket.
* Fully tunable over medium and long wave. 168-535 metres and 1250-2000 metres.
* All components ferrite rod and tuning as sembly mount on printed board.
* 5" P.M. speaker.
* Parts list and clrcult diagram 2s. 6d. free with parts.

onvy $£ 4.4 .0$

Plus 7/6 P. \& P. Parts List and circuit dlagram $2 / 6$ FREE with
parts.

All orders by post to be sent to our Acton address
323 EDGWARE ROAD, LONDON, W2 Personal shoppers only. Early closing Thursday.

21 C HIGH STREET, ACTON, LONDON, W3 OPEN 9 a.m.-6 o.m. INCLUDING SATS. EARLY CLOSING WED. GOODS NOT DESPATCHED OUTSIDE U.K. TERMS C.W.O. All enquiries stamped addressed envelope

Fi = = PO AMBITIOUS EIGINEFSS

 FREE.Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio and Electronic Courses, administered by our Specialist Electronics Training Division-the B.I.E.T. School of Electronics, explains the benefits of our Appointments Dept. and shows you how to qualify for five years promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $£ 30$ a week, send for your copy of "ENGINEERING OPPORTUNITIES" today-

Radio
Television
Electronics
Electrical
Mechanical
Civil
Production
Automobila
Aeronautical
Plastics
Building
Draughtsmanship
B.Sc.
CityGuilds Gen. Cert. of Education etc., atc.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

344B, Aldermaston Court, Aldermaston, Berks.

PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for beginners in Radio, T.V., Electronics, etc. A.M.I.E.R.E., City \& Guilds A.M.1.E.R.E., City \& Guild Radio Amateur's Exam
R.T.E.B. Certificate R.T.E.B. Certificate
P.M.G. Certificate P.M.G. Certificate Radio \& Television Servicing Practical Electronics Electronics Engineering Automation

INCLUDING TOOLS!

This specialist Electronics Divislon of B.i.E.T. NOW offers you a real laboratory training at home with practical equipmen. Ask for details.

THE BI.ET, IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

ZENER DIODES
Oomprehensive range 3 v . to 50 v , in three power ratinge all 5% tol. $350 \mathrm{~mW} 3 / 6$ each. $1 \cdot 5$ watt $5 /-$ each. 7 watt $7 / 6$ each.

	SCR'S (THYRISTORS)			
Pvo	50%	100 F	300 V	400 V
1 amp	8/8	$7 / 8$	12/8	15/-
3 amp 25 amp	7/8 30%	$8 / 6$ 85%	$14 / 6$ $47 / 8$	17\%

SEMI-CONDUCTOR BARGAINS

тype No.	Price	Typt No.	Price		Pries
2N1727	15/	MAT101	$8 / 6$	$0 \mathrm{C71}$	$8 / 6$
2N1728	10\%-	MAT120	719	$0 \mathrm{C72}$	$51-$
2N1742	251-	Matl2l	$8 / 6$	$0 \mathrm{OC7}$	6/-
2N 1747	25/	OAS	51,	$0 \mathrm{C76}$	51.
2N1748	10/-	OA10	6/-	$0 \mathrm{OC7}$	71
A0107	$8 /$	OA47	31-	0078	5/0
AC127	8/-	OA70	8/-	OC78D	51-
ACY17	$8 / 6$	OAT9	216	$0 \mathrm{OC81}$	5/-
ACY 18	5/6	0 A 81	2/6	$0 \mathrm{C81D}$	$5 /-$
AOY19	$8 / 6$	OA85	$2 / 6$	$0 \mathrm{C82}$	5/-
ACY20	$5 / 6$	OAg0	216	$0 \mathrm{C83}$	61-
ACY21	6/-	OA91	$2 / 6$	0 O 84	6/-
ACY22	4/6	OA200	$3 / 8$	0 Cl 39	$8 / 6$
AF114	71	0 O 202	4/8	$0 \mathrm{OC140}$	12/6
AFI15	8/6	0 C 22	10/-	0 Cl 70	$5 /-$
AF116	71.	$0 \mathrm{C23}$	$17 / 6$	00171	6/-
AF117	51-	0024	151-	0 C 200	$9 /$
AF118	10/-	0026	$7 / 6$	00201	$12 / 6$
AF139	$12 / 6$	OC28	15/-	00202	18/6
AF186	$17 / 6$	OC29	$17 / 6$	00203	12/6
AFZ12	15/-	$0 \mathrm{CS5}$	12/6	OCP71	15/
AsZz21	$15 /$	0036	15/-	ORP12	816
BC107	14/6	OC42	$8 / 6$	ORP60	10/-
BY100	$4 / 6$	0 C 44	4/-	SB078	616
BYZ13	$7 / 6$	$0 \mathrm{C45}$	$8 / 6$	SB305	818
MAT100	$7 / 9$	$0 \mathrm{C7} 0$	4/-	8B251	10/-

See in the Dark
INFRA-RED BINOCULARS

These infra-red blnoculars when fed from a high voltage source will enable objects to be seen in the dark, providing the objects are in the rays of an infra-red beam. Each eye tube containg a complete optical lens system as well as the infra-red cell, These optical systems can be used as lenses for
T.V. cameras-light cells, etc. (details supplied T.V. cameras-light cells, etc. (detals supplied The binoculars form part of the Army night belleved to be in good working order but sold without a guarantee. Price 88.17 .6 , plus $10 /$-carr. and ins. Handbook $2 / 6$.

8 RANGE TEST METER

 For checking car electrics, radio, IVf igntionMeasure AC
Resistance wolts. DC current, Resistance. Will last a lifetime $39 / 6 \underset{3 / 6)}{\text { (P. \& } P}$

STUPENDDUS OFFER-£11 for $£ 2$

Only recently sold for $810.9,6$. Note these features: - Long \& Medium Wave Long dial Push pull output A.V.C. and feed back - Ferrite aerial Six tranaistors Cabinet size $4 \frac{3}{3}$ in. I 3 in. I lin. With carrying strap. Foa get everything you need and instructions. $88 / 6$ plus $3 / 6 \mathrm{p}$. \& p . Brattery $1 / 9$ extra. Data separately $2 / 6$.

OVEN THERMOSTAT

Range $20^{\circ} \mathrm{F}-550^{\circ} \mathrm{F}$. Set by spindle control. Con* act rated at $20 \mathrm{amps} 250 \mathrm{v} .10^{\circ}$ sensing element on approximately 4^{\prime} copper capilliary tube. $12 / 6 \mathrm{~d}$

COSMOCORD PICK-UP

 for 7" recordsGrey plastic arm fitted with GP79/5 mono ceramie cartriage and replaceable stylus. Ref.
$\$ 79$ Freq. reaponse $50-8000 \mathrm{cps}, 250 \mathrm{mV}$ output. Tracking wt 9gme . $7 / 6$ each. Plus 2/6 P. \& P.

hydraulic valve

47. AO solenoid operated-inlet has removable filter, $17 / 8$ plua $2 / 6$ postage and insurance.

SUPERTONE G.C.V.
Saves you work -

Complete with batterles, ready to

Complete with batteries, ready THIS MONTH'S SNIP

Admiralty motor alternator, giving regulated 230 v . 50cycle stand-by AC supply is required. Also to yacht owners, caravan dwellers where 50 cycle supply is required to work TV or similar.

Admiralty motor alternator giving regulated 230 v . 50cycle output from 24 v . DC supply. Wonderfully made to stringent specifleation. Rating is 80 watts but like other Admiralty equipment
this rating can be increased 00% with safety. In grey metal box size $24 \times 10 \times 14 \mathrm{ln}$. approximately. Controla are DCon/off switch and changeover switch from malns to alternator. On the front panel also is output volt meter, and panel with fuses protecting input and output. Weight approximately 1001 bs , unused. Price e45 each (probably one tenth of cost to Government). Carriage extra st cost.

THE VECTRONOME CAPSTAN DRIVEN TAPE RECORDER

This is a truly portable self-contained instrument with built-in microphone and loudspeaker using a 5 transistor able for operation output mains or by chargeable batteries. Tape capacity is 25 minutes on easily changed apools. A tape position indicator gives quick reference to any part of dictationRecording level in automatically prejusted to sult operator. Interlock prevents unintentional erasures. Tape speed controlled by fy wheel driven capstan. Very portable in neat case with carrying handle, overall size of Which is approximately $6 \frac{1}{} \times 7 \frac{7}{} 2$ in. Price with tape, nickel cadmium rechargeable batteries and mains
battery charger \&9.19.6. (rather less battery charger
than $1 /$ original price). Postage and insurance 7/6. Unused and in perfect working order.

TWO NEW KITS

SRP 12 BATTERY OPERATED
RECORD DECK TheSRP 12 Battery Operated record deck. Made by Garrard unit of proved reliability, ideal if you
intend making a portable player. Operates from P.P. 9 or aimilar battery, runs at 33 or 45 R.P.M. Supplied complete with ceramle cartridge, suitable stereo or mono post and insurance

MAIN TRANSISTOR POWER PACK Designed to operate trangiator sets and amplifiers. Adjustable output $6 \vee$., $9 v$., 12 volts for $u p$ to $~ \$ 00 \mathrm{~mA}$ (class B worklng). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PP9, and others. Kit comprises: mains transformer rectifer, amoothing and load reslator, 5,000 and 500 mid , condensers, Zener diode and instructions. Real snip at
only $14 / 6$, plus $3 / 6$ postage.

9 VOLT PRECISION MOTOR

 Intended for driving battery operated tape recorders andrecord players. Laminated, 6 Pole armature with Brush Gear and rapid start switch. Normally 25/*. Our Price 9/-. plus post and insurance $1 / 6$.
12in. High fidelity loudspeaker. High max permanent either 3 or 15 ohm either 3 or 15 ohm speech coil. Will up to 10 watts. Brand new by famous maker. Price 29/6. With built-In tweeter
$35 /-$ plus $3 / 6$ post
and insurance.

SILICON RECTIFIERS

Tested
750 ma .

guaranteed				
1000 v	$1 / 8$	1 Amp.	100 v.	$3 /-$
200 v.	$1 / 6$		200 v.	$4 /-$
400 v.	$3 / 6$		400 v.	$8 /-$
1000 v.	$3 / 6$			
200 v.	$5 /-$	10 Amp.	100 v.	$9 / 6$
400 v.	$7 / 6$		200 v	$12 / 6$
600 v.	$8 / 6$		400 v.	$14 / 6$

 sub-miniature glass encased-only approx. in. long $\begin{array}{lll}\text { wire ended. } \\ & 400 \mathrm{~mA} & .50 \mathrm{v} .1 / 6 \\ 200 \mathrm{v} .4 / 6\end{array} \quad 100 \mathrm{v} .2 / 6$

W WAFER SWITCH
MINIATURE WAFER SWITCHES
4 pole, 2 way- 3 pole, 3 way- 4 pole, 3 way- 2 pole 4 way- 3 pole, 4 wsy- 2 pole, 6 way- 1 pole
All at $3 / 6$ each $38 /$ dozen, your awsortment.

PP3 Eliminator play your pocket radio from the majnal Bsve es. Complete component kit comprises 4 rectiners- mains and instructions. Only $6 / 6$, plus $1 /$ post.

SILICON PLANAR TRANSISTORS

2N2926-general purpose type, Suitable for A.F. or R.F. up to $200 \mathrm{mc} / \mathrm{s}, 3 /$ - each or 4 for

FLUORESCENT SNIP

Your opportunity to instali non-flicker atrip lighting at Your opportunity to install non-inczer strip lightiag at (Mazda) instant start llghting transformer suitable for one 4 ft .40 watt tube. This transformer is listed at over f7 but this month yon can buy the complete kit conaprising instant start choke/transformer, two tube ends and two Terry clips to hold tube. Special anip price
only $14 / 6$, plus $4 / 6$ post and insurance-don't miss only $14 / 6$, plus $4 / 6$ post

PHOTO-ELECTRIC KIT

All parts to make light operated switch/burglar alarm $/$ counter, etc. Kit comprises printed circuit, Laminated Boards and chemicala, Latching relay, Infra-red sensitive Photocelland Hood. 2 Transistors, cond., Terminal block. Plastic case. Essential data, circuits and P.C. chassis plans of 10 photo electric devices including auto. car parking light, modulated light alarm. Simple inllag tone electronic alarm-projector lamo stabiliser etc., etc. Only 30/6, plus 2/- post and insurance.

TRANS/CEIVERS
Communicate without connecting wires. Wonderful present for child. All transistor, crystal controlled with operation. Uses P.P. 3 batteries. Pair of instruments, complete and ready to use, £5.9.6. the two plus $\overline{5} /$ - post and insurance. These cannot be used in U.K.

SIMMERSTAT HEATER REGULATOR suitable to control elements, heater, soldering irons and boiling rings up to 2,000 wap ablus Where postage is not definitely stated as an
extra then orders over 83 are post free. Below \&s add 2/9. semi-conductors add 1/- post. Over £1 post free.

ELECTRONICS (CROYDON) LIMITED
(Dept. P. W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) a/so at 266 LONDON ROAD, CROYDON, SURREY

"SIURPASSE: All My Expectarions"
 M. I. CULLEN, CHELTENHAM

 -HITSTHEIT [7료 1 SYSTEMS

The Joystick VFA system is a remarkable invention. Its unique quality of high performance at any selected frequency from $1 \mathrm{M} / \mathrm{c}$. to $30 \mathrm{Mc} / \mathrm{s}$.particularly from difficult locations-has radically changed the attitude of both the licensed amateur and the shortwave listener towards their aerial problems.
Each Joystick VFA system is complete with a Joymatch matching unit suitable for your type of operation.
You cannot afford to ignore the potential of the Joystick VFA. The system is simple to use-the Joystick VFA will clip to a chimney, tree or mast, can be laid upon a pelmet, stood in the corner of a room, will even give a good account of itself in a basement.
You are strongly recommended to contact the Joystick factory immediately (or one of our agents) for a brochure with full details.
More Testimonials to Joystick Systems.
"The JO YSTICK V.F.A. is FANTASTIC. There is nothing like it". S.W.L. T.S. Kandola.
"Joystick has solved all my problems and I am more than, pleased. Two S. W.L. pals boutht Joysticks and are just as pleased". W. J. Jones, Coundon, Coventry.
U.K. Agents: G. W. Smith \& Co. (Radio) Ltd., 3 Lisle Street, London, W.C.2. Stephens-James Ltd., 70 Priory Road, Liverpool, 4. Chas. H. Young, 170/172 Corporation Street, Birmingham, 4. R.S.C. (Manchester) Ltd., 326 Argyle Street, Glasgow, C. 1 (and all branches). Swan \& Co. Products Lid., 247 Humber Ave., Coventry. Lasky's Radio (all branches). G3HSC, 45 Green Lane, Purley, Surrey. (Demonstrations by appointment).

Joymatch Type 3-General short wave coverage SWL (Junior model).

Joymatch Type 2A-General medium wave coverage extending aver short wave spectrum.
U.S. PATENT

No. 3274600.
S. AFRICA PATENT

No. 63/4389.
UK and World Patents applied for.

Joymatch Type 3A-General short wave coverage for SWL. Bandswitched for amateur bands.

TECHNICAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics \& Radio Engineers (Brit.I.R.E.)
- C. \& G. Telecommunication Techns' Certs.
- C. \& G. Supplementary Studies
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEMV SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator and multimeter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

BRADFORD Tel. 25349
10 North Parade. (Hah-day Wed.)
St. (Half-day Wed.) Tel. 22904
BIRMINGHA M ${ }_{30 / 31} \mathrm{Gt}$.
Western Arcade, opp. Snow HIII Statlon. CENtral 1279. No half-day

DERBY
Osmaston Rd
The Spot (Half-day Wed.)
The Spot
Tel. 41361

BSC
 HI-FI CENTRES LTD

MAIL ORDERS TO: 102 Henconner Lane, Bramley, Leeds 13. No C.O.D under £1. Terms C.W.O or C.O.D. Postage $4 / 6$ extra under £2. 5/9 extra under £5. Trade supplied. S.A.E. wlth enquirles

LEICESTER ${ }_{32} \mathrm{HIgh}$ Street (Half-day Thurs.) Tel.: 56420 LEEDS

5-7 County (Mecca) Arcade, Brlggate (No half-day) Tel.: 28252
LIVERPOOL 73 Dale St. (No half-day) Tel.: CENtral 3573 LONDON
W2 238 Edgware Road, W2 (Hal-day Thurs.) Tel.: PAD 1629. 96 High Holborn, WC1 Tel.: HOL 9874 (Half-day Sat.)

MANCHESTER ${ }_{\text {(No hal }}$ ay) 60A-60B Oldham St. MIDDLESBROUGH

 06 Newport Road (Half-day Vednesday) Tel.: 47096 NEWCASTLE UPON TYNE 41 Blackett Street Opp Fenwlcks Store (Half-day Wed.) Tel.: 21469 SHEFFIELD13 Exchange Street, Castle Market Bldgs. (Half-day Thursday) Tel.: 20716 AUDIOTRINE PLINTHS Teak finish cut for Garrard 1000. 2000,3000 , ATS Marrara
2. AT60. SP25 or Goldring Perspex cover as 1llustrated
RECORD PLAYING UNITS
Ready for plugging in to Ampliffer or Tape Recorder. RP2 Consisting of Garrard SP25 flttod Goldring ctrge with dmand stylus, above Only $19 \frac{1}{2}$ GnS. plinth \& cover. Normally As above but with Goldring Lenco GLe8 Trans RP3 As above but with Goliring unit and CS 90 Cartridge. Normally over f33. Terms avail

Only $26 \frac{1}{2}$ GnS.
TAPE AMPLIFIERS 4-5 Watts Output Suitable for use with Magnavox 363 Decks. Switched equalization. 200-250v Mains A.C.
Originally 13 Gns. Size $11^{*} \times 24^{\prime \prime} \times 6^{\circ}$ E.19.11

AUDIOTRINE HI-FI 'SPEAKER SYSTEMS

 Consisting of matched $12 i n$. 12,000 llne, 15 ohm high quality speaker; cross-over unit and Tweeter. Smooth response and extended frequency range ensure \quad reproduction. surprisingly realistic reproduction.Standard 10 watt rating. Or 5 Gins. Semior 20 watt inc. Fane. Carr. 8/9. Carr. $6 / 9$
$122 / 10$ speaker 7 Gns.
Tweeters R.A. 3 ohm or $15 \mathrm{ohm} 25 / 9$

RSC TAG 6 WATT HI-FI TRANSISTORISED

AMPLFIER

$200-250 \mathrm{AC}$ matins Frequency Res-
ponse $30-20.000 \mathrm{cps}-2 \mathrm{db}$ Separate Bass
and Treble 'lift' and cut' controls 3 and Treble 'lift' and 'cut' controls 3 input sockets for "Mike" Gram. Radio for 3-15 ohm speakers. Max. Sensitivity 5 mv. Fully enclosed \quad enamelled case, $91 \times 3 x \quad 19.1$

RSC. TITMI TRANSISTORISED VHIVIEM RADIOTUWER

Total cost of parts with detailed wiring diagra
tions. tions. Carr. 10/$12 \frac{1}{2}$,
\star IIIEh-sensitivity $\star 200-250 v$. A.C. Mains operation. \star Sharp A.M. Rejection. F Drift-free recebtion. * Output ample
for any anplifer (approx. 5if m.v.). - Simple alignment instructions. \star Outbut *Simpiealignmentinstructions. for feeding tuning meter. * Output for feeding Stereo Muitiplexer. * Output for eeding stereo Mintipiexer. Made to visually sistors. \# Desipned for slandard so olim eo-axlal input. tandard of performance and reliability. The pre-wired tuning same high tates speed and simplicity of construction. Printed circuitry. Only first grade translstors and components used. Our latest product giving you the best at

HIGH FIDELITY LOUDSPEAKER UNITS Cabincts of latest styling Satin Teak or Walnut, Caboustically lined (and ported where appropriate). Credit Terms avallable on all units. MINI $8 \quad 8$ WATT rating. 3 or 15 ohm. Frequency
igned high flux 5in. speaker with low fundamental resonance. Handsome Teak veneered cabinet. $\mathbf{~} \mathbf{~} 6 / 19 / 11$ The DORSET
 watts. Fitted Audiotrine HF811D The DORCHESTER Size $24 \times 15 \times 101 \mathrm{n}$. Fitted Audiotrine HF101D Speaker. Rating 12 watts. Impedance 3 or 15 ohms. Frequency
Response $30-20.000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. $12 \frac{1}{2}$ Gns.
Gns.

The GLOUCESTER Size ${ }^{24} \times 20 \times 8$ in.
12 in.
High
flux 12in. High flux Cross-over unit Rating 10 watts. Smooth response $40-20.000$ c.p.s. ImCarr. 15/. 12 Gins.
 The BRONTE Slze $22 \times 15 \times 9 i n$. Fupted Wharfedale Audiotrine HF 815 D Speaker, with Roll surround and dual cone. Rating dance 3 or 15 ohms 15/- $12 \frac{1}{2}$ Gns.

HI-FI CATALOGUE NOW AVAILABLE
prlce $3 / 3$ post pald.
Personal shoppers welcome. Open all day Personal shoppers welcome. Open
Sats. except High Holborn branch.

ALL LEADING MAKES OF HIFF EQUIPMENT STOCKED Cash or Terms HI-FI LOUDSPEAKER ENCLOSURES All types of pleasing modern design beaustifully finished in light Teak or Walnut veneer, Credit terms avallable JE8. Size $16 \times 11 \times 81 n$. Gives pleasing resul
 HI-F1 speaker. For optimum
SE8. For with any HI-Fi Speaker. For optimum £4.15.0 ance with any H1-F1 8in speaker. Size 227
15 x 9 m . Carr. $7 / 6.19 .9$ SE10. For 10in. Hi-F1 speaker with provision for tweeter.
Size $24 \times 15 \times 91 n$. $\mathbf{f 6 . 1 9 . 9}$ Carr. 10\% E6. 19.9 SE12. For outstanding performance with
any 122n. Hifli speaker. Cut $8 \mathrm{G} S$ any 122 n . Hi-Fl speaker. Cut 8 GnS .
for tweeter. Size $24 \times 20 \times 10 \mathrm{in}$.

NEW RANGE OF LINEAR
HI-FI UNITS STOCKED

R.S.C. STEREO/TEN HIGH QUALITY AMPLIFIER A complete set of parts for the construction of a unit giving 5 watts high quality all crystal or ceramic stereo heads. Ganged Bass and Treble Controls. Provision all crystal or ceramic stereo heads. Ganged Bass and Treble Controls. Provision ECC83. EL84, EL84, EZ81. Outputs for 2-3 ohm speakers. Point to point wiring diagrams and instructions supplied. Send S.A.E. for leaflet. Or supplied factory assembled with 12 months guarantee for 11 qns, $\mathbf{f 8} \mathbf{1 5 . 0}$

R.S.C. STEREO 20/HIGH FIDELITY AMPLIFIER

PROVIDING 10/1 WATT ULTRA LINEAR, PUSH-PLLL OUTPUT ON

 Employing valves ECC83, ECC83, ECL86. ECL86. ECL86, ECL86, EZ81. Frequeney Response: $+2 \mathrm{~dB} 30-20.000$ c.p.s. IIIm Level: 65 dB down. Sensitivity: 5 millivolts compensation and Input selector Switch. 太Stereo/Mono switch *Separate Bass "Lift" and "Cut" and trehle "Lift" and "Cut" controls, Output transformers are highquality sectionally wound to required specification. Output matching for 3 and 15 ohm spkrs. on 14 Gns. Or factory assembled, tested and supplied with our usual 12 months guarantee.

Carr. 12/6 19 Gns.

Or factory built finished cabinet as illustrated $19 \downarrow$ Gns. Terms: Deposit E^{5} and 9 monthly pay ments 39/-

AUDIOTRINEHIGH FIDELITY LOUDSPEAKERS

Heavy cast

 Latest high efficiency ceramic magnets. Dual cone for extended frequency range. low fundamental resonance Res ponse 40-18.000 c.p.s.. Impedance 3 or 15 ohms. Carr, $5 / 6$.
HF811D 8in. 10 WATV 4 Gns. HFLU1D 10 in . $1:$ WATEI 4 Gns.

FULLYTRANSISTORISED 200/250v. A.C. Mains OUTPUT 10 WATTSR.M.S. cont. into 15 ohms. instantaneous Peak power output 28 watts. PRINTED CRRCUTT CONSTRUCTION ADI49, AD149.
 EQUALISATION to Standard R.I.A.A. and C.C.IR. Characteristics for Gram and Tape Heads; SENSITIVITIES: Magnetic P.U. 4 mV. Crystal or Ceramic P.U. 400 mV . Microphone 4.5 mV . Tape Head 2.5 mV . RadiolAux or Ceramic P. 110 mV .
 VEGATIVE FEEDBACK: 52 dB .
Complete Kit of parts with full constructional details and
point to point wirlng diagrams.
 Teak veneered cabinet as illustrated, 4 Gns, extra.

TECIINICAL ÁSOB
TIONS COMPARE MOHE SPECIFICATIONS COMPARE MORE
THAN FAVOURABLY WITh SIMILAK THAN FAVOURABLY with SIMILAK
AMPLIFIERS AT TWHCE THE COST

A DUAI, CHANNEL VERSION OF THE SUPER Ganged Pots. Matched Components. RanOS TALK -52dB at 1000 .
CONTHOLA: 5 position Input Selector, Bass Control Creble Control. Volume Control, Balance Control, Stereol
 Mono Switch. Tape Monitor Switch. Mains Switch. INPUI SOCKETS (Matched Pairs). (1) Magnetic P.U. (2) Ceramic or Crystal P.U. (3) RadiolAux. (4) Tape Headi Microphone, Operation of the Input selector switch Rigid 18 S.W.g. Chassis, Size approx. 12in. Wide, 3in. High Plate and Spun Silver Matching Knobs, Above facllities, etc., except for Plate and Spun Silver Matching Knobs. Above facilit
Ganging and Balance Control, apply also to Super 15. THESE UNITS ARE EMINENTLY SUITABLE FOR USE WTTII Maonetic Moving C-UP OR MCROPIONE Crystai, ceramic SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BY
 diagrams and detailed instructions. 26 Carr. $13 / 9$ and 9 monthly payments $56 / 9$ (Total £29. 1.6). Fitted cabinet as Super 15291 Gns. Carr. 15/-or Deposit
$\mathbf{8 4 . 1 4 . 9}$ and 9 mthly paymts $65 / 10$ (Total £34.7.3). Send S.A.E. for leafet.

AUDIOTRINE HI-FI TAPE RECORDER KIT

AEALISM AT INCREDIBLY LOW COST

CANBE ASSEMBLED IN AN IOUR. ONLY A PAIRS OF SOLDEIRED JOINTS PLUS MAINS. High Quality Tape Amplifier with switched equalisation for each of 3 speeds. High Flux P.M. Speaker. empty Tape Spool. a. Reel of Best Quallty Tape and a handsome Portable Cabinet of latest styling finished dark grey leathercloth. Slze $141 \times 17 \times 81 \mathrm{x}$. and
clrcuit. Purchased separately would total approx. s34. Performance equal to units in the $£ 50-$ - 60 class. Deposit ${ }^{4}$ Ens. and 9 mthly paymts $58 / 6$ (Total $29 \& \mathrm{gns}$) $\frac{1}{2}$ CnS
 LINEAR TAPE PRE-AMPLIFIER. Type LIP/I Switched Equalisation. Positions for Recording at 1 inn., 3 in., Thin. per sec., and Playback, EM84 Recording cevelinitator. besigned primarily as the ink between a Magnavox

10 $\frac{1}{2}$ Gns. Tape Dick and Fi-Fi anpplifer suitobemostrepedecs Tormsanal

R.S.C. $4 / 5$ watt A5 HIGH GAIN AMPLIFIER

A highly-sensitive 4-valve quallty amplifier for the home, small club, etc. Suitahle for all crystal or ceramic P.U. heads and practically all "mikes". Separate Bass and Treble controls giving "lift"
and "cut". Hum level 7 l " down. Negative Feediback 15 dF . Rescrve power supply 3010 s 25 m .a., 6.3 v 1.5 a . For Radio Tuner or Tape Preamp. For A.C. mains $200-250 v$. Speaker output 3 ohms. Complete in every detail with fully punched enamelled chassis, point-to-point wiring diagrants and \quad 24.17.9
instructions. Or assembled ready for use 6 gns. plus $5 / 9$ earr.

R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER

tages. Performance figures equal to most expensive amplifers available, Hum level - 70 dB , Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. pecially designed sectionaily wound uitra linear output transformer EF86, ECC83, 807. 807, GZZ34. Separate Bass and Treble Controls. Sensitivity 12 millivolts so that any kind of Microphone or Plek-up is suitable. Designed for Clubs, Schools, Theatres, Dance Halls Or Outdoor Functions, etc. For use with Electronic Organ, Guítar, String Bass, etc. Gram, Radio or Tape. ed volume controls so that two separate inputs such as Gram and "Mike" can be mixed. 200 $250 v .50 \mathrm{c} / \mathrm{s} A . C$ mains. For 3 and 15 ohm speakers. Complete kit of parts 12 Gins. Carr.
fully punched chassis. point to point wiring diagrams and instructions. Supplied factory bullt with EL 34 output valves. 12 months guaranteo for 15 gas , If required perforated cover with carrying handles can be supplied for $21 /$. Send s.a.e. for leaflet.
TERMS; Debosit $48 /$ and 9 monthly payments of $32 / 7$ (Totail $i f, 10.3$).
JASON VHF/FM TUNER |LOUDSPEAKER CORNER CABINETS Attractive

R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER push-pull ultra linear output "bulttin" TONE CONTROL PRE-AMP Two input sockets with asso ciated controls allow mixing of "mike" and gram. etc., etc. High sensitivity. Valves ECC83, ECC83, EL84, EL84, EZ81. High quality sectionally wound output transformer speclally designed for Ultra Linear operation and reliable small condensers of current
manufacture. INDIVIDUAL CONTROLS FOR BASS AND manufacture. INDIVIDUAL CONTROLS FOR BASS AND
TREBLE. Frequenoy response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{o} / \mathrm{s}$. Six negative TREBLE. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{o} / \mathrm{s}$. Six negative
feedback loops. Hum level -60 dB . SENSITIVITY 23 millivolts, feedback loops. Hum level - $60 d B$. SFNSITIVITY 23 millivoits. Such as String Bass, dicetronie Gultars, etc. Reserve Power provides 300 v . 30 mA A, and 250v. $50 \mathrm{c} . \mathrm{p} .8$. Output for 4 and 15 ohm speakers. Kit complete to last nut. Chassis 88.15 .0
fully punched. Full instructions and point-to-point wiring diastams (or factory fully punched. Full instructions and point-to-point wiring diagrams (or factory
built $£ 11.15 .0$. Metal cover with 2 handles available for $21 /$. TEFMS ON Carr. $11 / 6$
ASSHMBIED UNTS; Deposit $36 / 6$ and 9 monthly payments of $25 / \theta$ (Total \&i3.8.3). Send ASSEMBLED UNITS; Deposit $36 / 6$ and 9 monthly payment

R.S.C. BASS-REGENT 50 WATT AMPLIFIER AN EXCEPTIONALLY POWERFUL HIGH QUALITY ALL-PURPOSE UNIT Forlead, rhythm, bass gultar and all other musical instruments. For vocallsts, gram, radlo, tape, and general public addrest. * UNUSUALLY POWERFUL LOUDSPEAKER COMBINATION consisting of a FANE HIGH FLUX $15 i n .30$ watt unit PLUS
a FANE $12 i n .20$ watt unit with extended frequency response. ane 12in. - Cabinets * Cabinets covered in two-tone Rexinel Vynair with gold trimming. Fitted carry$49 \frac{1}{2}$ Gns. Send S.A.E. for leaflet. Or call at one of our many branches and

B20 MULTI-PURPOSE AMPLIFIER especially suitable for Bass Guitar Incorporating massive $12 i n$. high flux loudspeaker. Rating 25 watts. Individual bass and treble controls controlled. Substantial cablnet attractively $24 \times 21 \times 111 \mathrm{n}$. Send S.A.E. for leaflet. 291 Bnc Or Deposilt. EA. Send S.A.E.E. for leartet. $29 \frac{1}{2}$ Gns. payments of $68 /$-. crotal 2 4.8.6. Carr. 17
LINEAR TREMOLO PRE-AMP UNIT ${ }_{\text {Suitable for }}$ use with any of our Amplifiers. Controls are Speed
freauency of interuptions). Deopth fror $4 \frac{1}{2}$ Gns. heavy or light effect). Volume and SWItch. ${ }^{2}$ UNIS
 TYpe BM1. ellminati. An sil-dry Completely Size $54 \times 41 \times 2 \mathrm{in}$. approz. plying 1.5 v . and gov. where a C maing $200 / 250 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$ is available. Complete kit with diasram $47 / 9$ or ready for use $59 / 11$.
SELENIUM RECTIFIERS F.W. (Bridged)
 HEAVY DUTY SELENIUM RECTIFIERS
12v. 15 amps. F.W. (Bridged).
OnI /9

G15 15 WATT AMPLIFIER for Lead or

 Rhythm Guitar, Vocal Groups, etc. High-fidelity output. Separate bass and treble controis. Twin separately controlled inputs so that two lestruments or "mike" and pick-upscan be used at the same time. Heary Duty $12 i n$. Rexine speaker. cabinet covered in attractive $19 \frac{1}{2}$ Gns. Carr. and 15 moth iny. Doyments of 4 mity

CLEARANCE SALE!

WATKINSCOPYCATECHO UNITS $19 \frac{1}{2}$ Carr. ${ }^{17}$

POWER PACK KIT
Consisting of Malns trans-
former. Metal Rectifer. Electrolytics. Smoothing
choke, chassis and circuit. 2001250y. A.c. $22 / 11$ choie, chassis and circuit. 2000255v. A. A. 22/11 with case in 1 eu of chassis 26/11. Or assembled 39/11.
HEAVY DUTY BATTERY CHARGER KITS 6/12v.
 Ammeter. Variabie Charge Rate Selector, Panois,
 and circuit. or assembled ready for use $10 /$ - extra.

LONDON-NEWCASTLE-GLASGOW

R.S.C. COLUMN SPEAKERS Covered in two-tone Rexine/Vynair. Ideal for vocalists
 speakers. Overall size approx.
422 10 Gns.
 10 watt speakers. Overall size 21 ins 56 watt speakers. Overall size 21 Gns. Or Deposit 23.11 .0 and 9 monthly payments of $46 / 7$ (Total £24.10.3).
30 WATT HI-FI AMPLIFIER
for Guitar, Vocal or Instrumental Group
A 4 Input, 2 volune control H1-Fi undt with
Separate Bass and Treble
 Separate Bass and Treble
controls. Latest Valves. Strong Rexine covered cabinet With carrying 3 or 15 ohm speak- A.C. Gis. Carr ers. Send S.A.E.
for leaflet. Deposit 23 and θ monthly
Total £1s.16.9).

12in. HIGH QUALITY L'SPEAKERS

 In teak veneered cablnets. ines. 3 or 150 hm . Carr. $7 / 6$f4.19.11
${ }_{18}^{20}$ Watit Model. 15 ohm. Size
f7.19.11
Rexine covered 51 extra.
Terms avallable on both.
FANE HEAVY DUTY HI-FI SPEAKERS ain. 20 watt. With Tweater Cone. Carr. $5 / 9$
$£ 5.11 .9$
LOUDSPEAKERS $\begin{gathered}\text { of limited number at fraction } \\ \text { of } 11 \mathrm{st} \text { price } 15 \text { ohms. } 1 \mathrm{~m}-\end{gathered}$ pedance. Brand new, guaranteed 12 in . HEAVY DUTY 30 watts 7 Carr. ${ }^{12 / 6}$ Normally
 Massive units with 31 n . Diam. Pole Pieces. Terms available. R.S.C. GRAM AMPIIFTER KIT. 3-4 watts output. Mains operation $200-250 v$. A.C. Fully isolated chassis. Circuit. etc. supplied. Only $49 / 11$.
 TRANSISTOR SALE

Mullard OC71, OC72, OC81, 2/11.
7/9, AF117 6/9. Post 8d, for 3.

INTEREST
 charges REFUNDED

on H.P. and Credit Sale Accounts settled in 3 months.
R.S.C. MAINS TRANSFORMERS

FULLI GUARANTBED, Interleaved and Impreg-

 nated. Primaries 200-850\%. 50 o/s. Screened. MLDGET CLAMPED TYPE $21 \times 2 i \times 2 t$. $250 \mathrm{v} ., 60 \mathrm{~mA}, 6.8 \mathrm{~F} .2 \mathrm{~s}$.$250-0-250 \mathrm{v}, 60 \mathrm{~mA}, 6.9 \mathrm{v}$.
FULLY sHROUDIRD UPRIGAT MOUNTMN $2500-0.250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v}$. $2 \mathrm{a}, 0-5-6.3 \mathrm{v} .2 \mathrm{a}$, $300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~s}, 0-5-65.8 \mathrm{v}$. 8 a $300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}$. 2 a . For Mullard 510 Amplifier
$350.0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{~A}, 0-5.6 .3 \mathrm{v}$. 2 s $350-0-350 \mathrm{v} .160 \mathrm{~mA}, 6.8 \mathrm{v}, 4 \mathrm{a}, 0-6.6 .3 \mathrm{v} .8 \mathrm{a}$. $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6.9 \mathrm{v}-4 \mathrm{~s}, 0 . t .18 \mathrm{v} .9 \mathrm{~s} .$.
$425-0.425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~g}, 6.3 \mathrm{v} .4 \mathrm{~m}, 6 \mathrm{v}$. $425-0-425 v .200 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 6.8 \mathrm{v} .4 \mathrm{a}, 6 \mathrm{v}$
$450-0-460 \mathrm{v} .250 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}$, at. 8 v .8 s TOP SHROUDED DROP-TKROUGE TYPE $250-0-250 \mathrm{v}$. $100 \mathrm{mmA}, 6.3 \mathrm{v} .8 .5 \mathrm{~s}$.
$250.0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .2 .5 \mathrm{~m}, 6.9 \mathrm{v}, 1 \mathrm{z}$
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{z}, 0-606.8 \vee, 2 \mathrm{a}$. $300-0-300 \mathrm{v} .100 \mathrm{~mA}$, $6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}$. 3a. $300-0-300 \mathrm{v}$. $130 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{~A}, 0-5-6.3 \mathrm{v}$. la.
Buitghie Buitable for Mullard 510 Amplifer $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.8 \mathrm{v} .4 \mathrm{a} ., 0-5-6.8 \mathrm{v} .9 \Theta$
$350-0-300 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~s}, 0-5-6.3 \mathrm{v}$ TIL FILAMENT OF TRAFSISTOR POWER PACK TJPer 12 v . 1a $8 / 8,12 \mathrm{v}$. 3a or 24 v . 1.5 a 19/9, $0-9-18 v .1 \mathrm{ka}$. 12v. 1a 8/8, 127 . 3 a or $24 / \mathrm{v}$.
$15 / 9.0-12-25-42 \mathrm{v}$. 2 a 27/9.
GHARGER TRANBFORMERS O-9-157. 1ta $13 / 1$ 24a. 16/11, 3a, 18/11, 5a, 81/11, 6a, 25/11, 8a, $31 / 11$ AUTO (8tep UP/Step DOWN) TRANSFORMERS
 OUTPUT TRANSFORMERS
Standard Pentode 6,0000 or 7,0000 to 30 Push-Pull 8 wath RL84 108Ω or 150 Puah-pull 10 watte $6 V 8$ ECL88 to $\$, 5,8$ or is Ω Push-pull BI\&4 to 3 ar 150 10-12 watte Puash-pull 15.18 watear, fectionally wound 6LB,
 wound, EL34, 6L6, qually seotionaly 150 fully shrouded MOOTENTG CEOKB: $150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \mathrm{O} 12 / 9$. $100 \mathrm{~mA}, 10 \mathrm{E}, 200 \mathrm{~g} 9 / 11$. $80 \mathrm{~mA}, 10 \mathrm{H}, 800127 / 9$.
$60 \mathrm{~mA}, 10 \mathrm{H}, 400 \mathrm{0} / 11$

HFFI EEMTRES LTD.

a new 4-way method of mastering

 ELECTRONICS by doing - and - seeing CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC
CIRCUITS AND SEE HOW THEY WORK... INCLUDING...

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS - SIMPLE COUNTER - TIME DELAY CIRCUIT - SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives
NAME
BLOCK CAPS
ADDRESS

TOPIC DF THE MONTH Flexibility

ONE thing about radio-life need never become dull. On the constructional side, there are always new ideas and developments to stimulate grey matter that may be in danger of becoming stagnant. In this issue, for instance, we have details of an experimental receiver using Transfilters in place of the more conventional i.f. transformers. These devices are new enough to be novel to most readers and they open up an interesting line for those with enquiring minds. Next month, too, we follow up with some experimental circuits based on field effect transistors, again offering scope for those wanting to work on something a little different.

But it is not only at his workbench that the keen amateur can keep on his toes. Users of the electromagnetic wave spectrum-and that must include almost all readers-should never complain of staleness or get into a rut. So long as we are dependent on the ionosphere and troposphere for radio communications, and subject to solar and other natural influences on propagation, one can always exploit the particular favourable circumstances of the moment with the added spur of anticipating how things will shape up in the near future.

The wise radio listener, or amateur transmitter, will take advantage of the prevailing situation and while the value of specialisation is acknowledged it is surely the amateur with an eye to opportunity and willingness for adaptability that will ultimately get the most out of the hobby.

In the last few years, conditions have favoured the I.f. bands and the more flexible enthusiasts have done well. Now that the sunspot pendulum is swinging back, the h.f. bands are coming into their own. Ten and fifteen metres, so often dead in recent years, are blossoming like spring flowers and 20 m is more like its old self. Despite the cyclic fluctuations, what might be called the middle h.f. bands (such as 20 m) remain comparatively consistent and this has led to a tendency with some to restrict their activities principally to these regions. Now that the sunspot cycle is favouring higher frequencies we hope that readers will take advantage of the fact-and that they will also try the I.f. areas more seriously when more optimised conditions return.
W. N. STEVENS-Editor

NEWS AND COMMENT

Leader

175
News and Comment
176, 202
On the Short Waves

$$
\begin{aligned}
& \text { by John Guttridge and David } \\
& \text { Gibson, G3JDG }
\end{aligned}
$$

Practically Wireless
by Henry 211
New Books 216
Club Spot--Southgate Radio Club, G3SFG 219
CONSTRUCTIONAL
The Class D Wavemeter by C. Molloy 178
Monitor for CW, AM and RF Output
by A. H. Jubb, B.Sc., GW3PMR 185
Simple Stabilised Power Supply by H. T. Kitchen 190
Transfilter Portable by A. J. McEvoy, B.Sc. 196
In-Line AGC Unit
by L. McNamara, B.Sc. 204
70 cm Preampby J. L. Oliver, G8ANJ212
GENERAL ARTICLES
Repairing Radio Sets, Part IV by H. W. Hellyer 181
Single Signal Reception byJ. O'Hare 201

[^1]
Clause 7

Would it be possible to print the details of your June leader on the next cover of Practical Wireless? As this item is of such great importance, it should be printed where everyone can see it as I feel it has not had the publicity it should have.

A. Parnham.

Grimethorpe,
Yorkshire.
[Other technical periodicals have also drawn attention to the possible dangers of this section of the Wireless Telegraphy Act. MP's have been alerted and questions have been raised in the House. Representations have been made to the PMG. So it would seem that this clause will be closely watched as the Bill goes through the House.

In a letter to the RSGB, the Post Office Radio Services Department says "Under this clause the Postmaster General will have the power to make orders specifying apparatus which is to be banned. In making an order we shall try to limit its scope to roughly the sort of apparatus which we wish to stop."
In our opinion the words "try" and "roughly" have an ominous ring about them, for here is a repetition of the very loose phraseology in the proposed amendments.

The GPO claim they are not aiming at "apparatus which amateurs purchase or construct themselves for their own use within the terms of their licence" and that their concern is "essentially to offer a measure of consumer protection, partly to the unsuspecting person who might obtain something before discovering that he cannot get a licence to use it."

The RSGB is pressing that exemption for radio amateurs should be written into the Bill. In the meantime, public spirited readers could well help protect our cause by bringing the matter to the attention of their local MP's]-Editor.

Improving Cheap Tape Recorders

Commenting on the article in the April 1967 issue of Practical Wireless, I have a 4TR Model A4411 and have found that to use the amplifier system on its own, it is unnecessary to incorporate a jack socket in series with the record/playback head.

Instead, by plugging in the microphone, turning the volume up, and putting the record/playback slide switch to a central position, the tape recorder readily serves as a public address, or amplifier for a radio tuner.

It would be interesting to know if this method is possible on other models.

[^2]
. NEMS AND..

PANEL LABELS

If you would like some labels to smarten up the gear then you're in luck. At Digswell, in Hertfordshire, the Sherrards Spastics Training Centre are turning out some very nice labels to order. Engraved on plastic with a choice of colours, they offer a very attractive bargain for the home constructor. The labels are adhesive backed and the lettering of your choice is available from $\frac{1}{16} \mathrm{in}$. to $1 \frac{1}{2} \mathrm{in}$. deep. Ham call-signs (not adhesive backed) containing $6 / 7$ letters engraved on plastic $6 \frac{1}{2} \times 2 \frac{1}{4}$ in. cost only 2 s . 6 d . Small labels-on/off, volume or what you will cost $1 \frac{1}{2} \mathrm{~d}$. per character, minimum order 9d.

The choice of colours is: white letters on a black background; black letters on white; red letters on white; white letters on red. Just send the label size, the wording you want, and leave the rest to "Sherrards".

Inquiries should be accompanied by a s.a.e. Orders should be sent to -Sherrards Training Centre, Digswell Hill, Welwyn, Herts. Terms c.w.o., delivery 3-4 weeks. Cheques and P.O's crossed and made payable to "Sherrards Training Centre".

ARMS MOBILE RALLY

The Amateur Radio Mobile Society is holding its annual Mobile Rally on Sunday June 18 at R.A.F. Alconbury, Huntingdon, now used by the U.S. Air Force.

A section will be set aside for the Hi-Fi enthusiast, and for the amateur radio enthusiast. Transmitting stations will be operating and talk-in stations will be working throughout the day on several wavebands.

The exhibition is open from 10 a.m. until 6 p.m. It is free of charge and there is a possibility of an air display and other attractions for the wives and children etc.

WE QUOTE

The following is a quote from the News Sheet of the Verulam Amateur Radio Club: "One of our members, has acquired a colour TV set. He has always been fascinated by TV. He says that he can turn elephants pink by just turning a knob." (We know a MUCH better way!).

PIRATE INTERFERENCE

It has been reported to the Postmaster General that "Radio Scotland" has recently been causing severe interference both to broadcasting services in'the Republic of Ireland and to radio communications with the New Island Lighthouse, at the entrance to Belfast Lough.

...COMMENT

MULLARD SPACE SCIENCE LABORATORY

Following a donation of $£ 65,000$ by the Mullard company, the Physics Department of University College, London, has established in Surrey an outstation for space science research, to be known as the Mullard Space Science Laboratory.

This picture taken in the Physics Department in London shows equipment to be mounted in a U.S. orbiting solar observatory satellite to be launched this year. The experiment is to study the emission of X-rays by the sun and is a more sophisticated version of one originally flown in the satellite Ariel I. Leicester University is collaborating with University College, London, in this experiment.

AN IMPROVED RADIOTELEPHONY TERMINAL

A new type of radio terminal equipment, known as Lincompex (Linked Compressor and Expander), which is claimed to improve the quality and efficiency of radio telephone circuits, is now going into service on a number of h.f. circuits operated by the GPO and the American Telephone and Telegraph Company.

The new system largely eliminates variations in speech volume and timbre caused by fading of the radio circuit and is very little affected by radio noise, which is effectively suppressed between syllables of speech. Lincompex equipment was developed and designed by the GPO and is manufactured in the UK. It has something in common with the compander systems used on long-distance cable circuits in that the speech signal is heavily compressed. This achieves a high level of modulation of the transmitter irrespective of speech amplitude and thus helps to minimise the effects of radio noise. Information required for restoring the original variations in speech amplitude is passed at syllabic rate to complementary expanders at the receiving end of the circuit by means of a narrow-band frequency-modulated control signal contained within the normal speech channel. The overall bandwidth requirements are, therefore, unchanged and modern independent sideband radio equipment will accept one or more Lincompex channels.

Zowie Henry!

I thought Batman had the edge on modern science, but I did not know modern transistor research had progressed so much until I read some copies of certain American magazines.

What exactly does the layman think a transistor is? According to the American mags. it is a cross between a perpetual motion machine and a sonic boom flame thrower. Just think! some people actually believe that sort of trash. (I used to before I discovered P.W.)

Why not have a competition to find out the most way-out use for a transistor? First prize could be a pile of old American fiction magazines.

J. Perry.

Wallasey,
Cheshire.
[We'd like to hear of ideas, anyway!]Editor.

You get what you pay for

Over a period of years I have bought kits from four P.W. advertisers, all without complaint. One does take a chance with many mail order goods but with radio kits one can get an insight by buying the plans and curcuit usually offered for around 2 s .6 d . If these are studied, the customer can gain some idea of what might be good value or just junk.

My advice to youngsters is not to buy kits at "give-away" prices. They may be tempting but the advertiser is in business to make money and naturally he's not giving anything away!

K. Marlow.

Worcester Park,
Surrey.

No case?

My worst fears materialised-dragged through Henry's column like a service sheet through a turing condenser (June ${ }^{9} 67$). Seriously though, surely $27 \mathrm{Mc} / \mathrm{s}$ R/T's should be advertised as export only (appreciating P.W. goes further afield than these shores)? Having experience in v.h.f. TV relay, problems from R / T pirates are a menace (G . J. King can confirm this).

The question of wasted space referred to pop pirate prosecution rather than new legislation, comment and Henry's humor-cum-criticism. By all means let us have comment and reference on the Wireless and Telegraphy Acts, but are court cases relevant to the home constructor?] think not.

By the way, Henry, I am DX'ing a full two hours before Coronation Street, and throwing kits out of the window is costly, glass is not cheap you know!

Touché Henry.
Ivor N. Newport. New Marston,
Oxford.
More News and Comment on page 202

Few short-wave listeners realise that a heterodyne frequency meter could assist them in pin-pointing stations. This article describes how the Class D, No. 1, wavemeter works, and how it may be used by shortwave listeners. Also included are modification details to enable the wavemeter to be operated from 6 V a.c. and from a.c. mains supplies.

One does not associate heterodyne frequency meters with DX-ing, for they are normally used for checking the frequency of transmitters. They can be used to check the scale calibration of receivers, to set a receiver accurately to a desired frequency and to ascertain the exact frequency of a station that is tuned in. Short-wave listeners may not be aware that such a low-priced precision instrument as the ex-WD Wavemeter Class D can bring these advantages. With its aid, the frequency of a new or an unidentified station can be measured with precision; quite an advantage if a report is to be sent to a DX club. Conversely, a station of known frequency can be located with ease even if it lies outside the normal broadcast bands.
Many short-wave receivers have a totally inadequate tuning scale. For example, the 60 metre band, which covers 300 kc / s, is compressed into approximately $\frac{5}{8}$ inch on the R.1155, making accurate frequency determination rather difficult. Experience of the band and reference to the position of known stations on it, can give good results but the method is tedious and uncertain. A bandspread control can be valuable

THE

CLASS D WAVEMETEA
but it has to be reset whenever the band is changed. A good logging scale (such as the CR. 100 possesses) does not solve the problem entirely as the scale has to be calibrated against frequency. This is a lengthy process involving the identification of a number of stations, always with the possibility of error.
The Wavemeter Class D enables a receiver to be set to any chosen frequency over a large part of the short waves with an accuracy of $1 \mathrm{kc} / \mathrm{s}$ or better. The final two digits of the frequency in kilocycles are read direct from a scale marked 0-100, on the wavemeter. Reference to graphs and calibration charts is unnecessary. In short, the wavemeter takes a lot of the guesswork out of DX-ing, especially for those who do not possess an expensive receiver.

PRINCIPLE OF OPERATION

The instrument consists of a $1 \mathrm{Mc} / \mathrm{s}$ orystal calibrator, which provides useful harmonics up to $30 \mathrm{Mc} / \mathrm{s}$, and a heterodyne frequency meter with two ranges, $1.9 \mathrm{Mc} / \mathrm{s}$ to $4 \mathrm{Mc} / \mathrm{s}$ and $4 \mathrm{Mc} / \mathrm{s}$ to $8 \mathrm{Mc} / \mathrm{s}$. The frequency meter comprises a variable frequency carrier oscillator modulated by a $100 \mathrm{kc} / \mathrm{s}$ orystal oscillator that is rich in harmonics. Upper and lower sidebands are produced and these spread over a large section of the short wave spectrum.

If a carrier frequency F is modulated by a lower frequency f, the products will include $F, F+f, F-f$; i.e. the carrier frequency, the upper sideband and the lower sideband. If f is rich in harmonics, that is

to say, if it contains frequencies of 2 times $\mathrm{f}, 3$ times f, etc., then these two will modulate F and the additional upper and lower sidebands will be $F+2 f$, $F-2 f, F+3 f, F-3 f$ and so on. The total products can be more conveniently written as $F ; F \pm f ; F \pm 2 f$; $\mathrm{F} \pm 3 \mathrm{f}$ and so on; these being the frequencies generated by the wavemeter.

A triode hexode mixer valve is used (see Fig. 1), the triode working as a $100 \mathrm{kc} / \mathrm{s}$ crystal oscillator whose output is rich in harmonics. The control grid and screen grid of the mixer section form a feedback carrier oscillator which is adjustable over a range of $100 \mathrm{kc} / \mathrm{s}$ and has a scale marked from 0 to 100. The two oscillations are mixed to produce at the output terminal, the carrier frequency C and $\mathrm{C} \pm 100 \mathrm{kc} / \mathrm{s}, \quad \mathrm{C} \pm 200 \mathrm{kc} / \mathrm{s} \quad \mathrm{C} \pm 300 \mathrm{kc} / \mathrm{s}$ and so on throughout the range of the instrument. Means are provided for calibrating the carrier frequency scale against the $100 \mathrm{kc} / \mathrm{s}$ crystal, so accuracy is ensured.

An example will make the operation clear. On the range marked $1.9 \mathrm{Mc} / \mathrm{s}$ to $4 \mathrm{Mc} / \mathrm{s}$ the carrier frequency is $3 \cdot 4 \mathrm{Mc} / \mathrm{s}$ (0 on the scale) and is adjustable to $3.5 \mathrm{Mc} / \mathrm{s}$ (100 on the scale). When the scale is at zero the carrier of $3.4 \mathrm{Mc} / \mathrm{s}$ plus the upper sidebands 3.5 , $3 \cdot 6,3 \cdot 7$ etc., and the lower sidebands $3 \cdot 3,3 \cdot 2,3 \cdot 1$, etc., will be generated. If the scale is set to 01 , the carrier will now be $3.401 \mathrm{Mc} / \mathrm{s}$ and the upper and lower sideband will be $3 \cdot 501,3 \cdot 601$, etc., and $3 \cdot 301,3 \cdot 201$, etc. With the scale set to 43 , the carrier will be $3.443 \mathrm{Mc} / \mathrm{s}$, $3 \cdot 543,3 \cdot 743$, etc., and $3 \cdot 343,3 \cdot 243,3 \cdot 143$, etc. Briefly, the carrier frequency whatever its value will be accompanied by the carrier plus and minus $100 \mathrm{kc} / \mathrm{s}$ and harmonics of $100 \mathrm{kc} / \mathrm{s}$.

If a lead from the wavemeter output terminal is brought near the receiver aerial terminal, the frequencies generated by the frequency meter will be picked up by the receiver as unmodulated carriers. When the receiver is tuned to an unknown station and the wavemeter tuning control is rotated, a whistle will be heard at the receiver output. This is the beat between the unknown station and one of the outputs from the wavemeter. When the beat is adjusted to zero, the last two digits of the station's frequency in kc / s are read direct from the wavemeter's tuning scale. The other digits will be read from the receiver tuning scale provided it is accurate to within $100 \mathrm{kc} / \mathrm{s}$, which will normally be the case.

USING THE 1Mc/s CRYSTAL CALIBRATOR

When the receiver tuning scale is not accurate enough to estimate frequency to the nearest $100 \mathrm{kc} / \mathrm{s}$, then the $1 \mathrm{Mc} / \mathrm{s}$ calibrator will have to be used. For example, to tune the receiver to $4311 \mathrm{kc} / \mathrm{s}$, set the switch to the $1 \mathrm{Mc} / \mathrm{s}$ position and pick up the 4th harmonic. Now switch-in the frequency meter to the 4 to $8 \mathrm{Mc} / \mathrm{s}$ range and set the dial to zero. An output will be obtained at $4.0 \mathrm{Mc} / \mathrm{s}$ and also at $4 \cdot 1,4 \cdot 2,4 \cdot 3$. Advance the receiver tuning until $4 \cdot 1,4 \cdot 2$ and finally 4.3 are picked up. Set the wavemeter to 11 and advance the receiver tuning once more. When the wavemeter is next heard it will be tuned to $4311 \mathrm{kc} / \mathrm{s}$.

Fig. 2: Unmodified power supply circuit of the Class D wavemeter.

When testing a newly-constructed receiver, it may not be possible to identify the different harmonics of $1 \mathrm{Mc} / \mathrm{s}$ and in this case the transmissions from the frequency standard stations must be utilised. MSF in Rugby operates on $5 \mathrm{Mc} / \mathrm{s}$ and can easily be identified by the 1 -second clock-like pulses of tone that it transmits. There are also frequent transmissions of the callsign in morse. Do not be surprised if the station suddenly disappears. The schedule is $5 \mathrm{~min}-$ utes ON and 5 minutes OFF. This is by international agreement so that the frequency can be used by other frequency standard stations abroad without mutual interference. Frequency standard stations can also be heard on $2 \cdot 5,10,15,20$ and $25 \mathrm{Mc} / \mathrm{s}$, the well-known WWV, at Fort Collins, Colorado, can be heard on the higher frequencies.

Once $5 \mathrm{Mc} / \mathrm{s}$ has been located, the receiver tuning is decreased in frequency until the 4th harmonic at $4 \mathrm{Mc} / \mathrm{s}$ is found and the wavemeter set as described above. As can be seen, the wavemeter is an excellent substitute for a signal generator when lining up r.f. and oscillator circuits.

EXTENDING THE RANGE

Although the range of the frequency meter is only from $1.9 \mathrm{Mc} / \mathrm{s}$ to $8.0 \mathrm{Mc} / \mathrm{s}$, weaker harmonics extend well outside these limits. The writer often uses his wavemeter on the medium waveband and it can certainly be used on the 31,25 and 19 meter bands. The harmonics become progressively weaker the further they are from the fundamental and a direct connection from the wavemeter to the receiver input may be necessary in order to receive them. When checking a frequency in the 19 m band the procedure to adopt is to tune in the wanted station, unplug the aerial, connect the wavemeter output in

Fig. 3: Top view of the chassis with the socket arrangement of the vibrator inset.

its place and use the wavemeter as before. Operation on frequencies higher than the 19 m band gradually becomes more difficult as the harmonics are weak and closely spaced, but with care, results can be obtained on 16 m .

PHYSICAL DESCRIPTION

The wavemeter is housed in a metal case approximately $8 \frac{1}{2}$ by $7 \frac{1}{2}$ by 6 in . Mounted on the front panel are:
(1) A tuning knob and illuminated scale marked 0 to 100.
(2) A calibration control, used to set the zero of the tuning scale.
(3) Phones socket, for use with low impedance phones for listening to beats when calibrating. The phones are only used when calibrating and are not required while measuring.
(4) A 3-position switch which enables the $1 \mathrm{Mc} / \mathrm{s}$ marker oscillator or alternatively either of the two frequency meter ranges, to be selected.
(5) An output terminal.

The wavemeter is supplied in a wooden transit case complete with working instructions, a pair of low impedance phones and a pair of battery clips. The intending purchaser should ensure that all of these items are supplied. The power requirement is $1 \cdot 1 \mathrm{~A}$ at 6 V d.c. and the battery clips are used to make connection to a 6 V battery.

CONVERTING TO 6V A.C. OPERATION

Some readers will find it inconvenient to operate the wavemeter from a 6 V battery owing to the high current consumption. Reference to Fig. 2 shows that the 6 V d.c. is applied to the dial lamp, then through a filter circuit $(\mathrm{Cl}, \mathrm{L} 1$, and C 2$)$ to the heater of valve V1 and finally to a vibrator which is connected to the primary of transformer T1. The secondary is connected to a bridge rectifier and smoothing circuit to produce the h.t. supply.

The vibrator switches rapidly between the two sections of the centre tapped primary of T1 applying a 6 V pulse to each half in turn. If the vibrator is removed and a 6 V a.c. supply connected to either of the two halves of T1 primary, an alternating voltage of approximately the correct value will appear across Tl secondary and drive the h.t. supply as before. The dial lamp and heater of V1 can also be run from 6 V a.c. All that is required then to convert the instrument to work from a 6 V a.c. supply is to unplug the vibrator and connect either half of the
primary of T to the new power supply. This can be done quite easily by strapping either but not both ends of the primary winding of T1 to chassis. A convenient method of doing this is to use a pair of banana-type plugs, joined by a short length of wire and plugged into the working vibrator holder as shown in Fig. 3. The power leads can now be connected to any 6 V a.c. supply that is available and is capable of supplying $1 \cdot 1 \mathrm{~A}$. Figure 3 also shows the location of the working vibrator.

A word of caution. Depending on the Mark number, C 2 can be either a $0.5 \mu \mathrm{~F}$ paper capacitor or a $50 \mu \mathrm{~F} 12 \mathrm{~V}$ working reversible electrolytic. The electrolytic will not be damaged by the temporary application of 6 V a.c. but if the wavemeter is to be used permanently on a.c. supplies it would be advisable to disconnect one side of this capacitor. If the $0.5 \mu \mathrm{~F}$ paper capacitor is fitted it can be left in circuit.

CONVERTING TO A.C. MAINS OPERATION

After preliminary tests using an external heater transformer and the method described above, the writer decided it would be convenient to operate the wavemeter direct from the mains supply. This entailed fitting a heater transformer inside the wavemeter. There is plenty of room to mount it underneath the chassis if redundant components and the spare valve, spare vibrator and their holders are removed. Figure 4 shows the power supply section of the instrument after modification. Capacitors Cl and C2, choke L1, suppressor resistors R1 and R2 and the working vibrator ought to be removed. Before starting work, the 3 -pin crystal should be unplugged to prevent damage to it. The $1 \mathrm{Mc} / \mathrm{s}$ and $100 \mathrm{kc} / \mathrm{s}$ crystals are mounted together in a common case, see Fig. 4 for the pin connections.

The heater transformer is bolted to the bottom surface of the chassis in the space vacated by the spare valve-holder and spare vibrator holder. If C 2 is the electrolytic type, the moun'ting bracket will have to be removed. This is soldered to the chassis in two places. A small hacksaw was used to cut off the bracket. This method was thought to be the lesser of two evils as the application of heat to the instrument to unsweat the bracket would very likely cause damage. No problem exists of course if the paper type of capacitor is in use. As the working vibrator is no longer required its holder and associated wiring might as well be removed.

Precise details how to fit the transformer to the chassis are not given, as the item used came from the spares box and was un-named. It is a standard 1.5A heater transformer and it fitted easily into the available space. Additional space can be created if required, by removing the paxolin panel fixed in an upright position to the rear of the chassis. This panel mounts the 820Ω bias resistor and parallel $0.01 \mu \mathrm{~F}$ capacitor connected to the cathode of V 1 ; these can be wired from the valve base.

Great care should be taken, not to interfere with any of the components around the switch especially the trimmers and cores. The small variable tuning capacitor which is the frequency control looks like any small panel mounting variable but is in fact a precision straight-line frequency eapacitor. On no account should the split vanes be bent, otherwise the scale shape and calibration will be ruined.

repairing radio sets

PART 4

H. W. HELLYER

Nothing is more frustrating than having to tackle a completely unfamiliar drive cord system. Faced with a control spindle that goes one way, a drive drum that wants to go another and a pointer traverse that appears to bear no relation to either, the faint-heart will probably surrender; spending the rest of his days twiddling the ganged tuning capacitor by hand from the back of the set!

Working out the mechanics of the unfamiliar drive system needs patience, a steady hand and a knowledge of the fundamental reasons for the position of springs, cords, stops and pointers. Gordon J. King, in his notes on alignment, gives us many of the clues, and we now have to adapt the theory to practice. The following notes are based on a number of popular and typical systems, chosen to illustrate a range of manufacturers' foibles.

Figure 4-1, for example, shows a simple system which is very widely used. It consists of a drum attached to the spindle of the tuning capacitor, a separate drive spindle, rotating in a bush that is usually built into the faceplate behind the dial or the front flange of the chassis, a pointer and a single pulley.

THE DRIVE DRUM

There are many sorts of drum, some as simple as the type illustrated, others with ridges, flanges and perhaps auxiliary grooves to accommodate a drive system for the more restricted travel of a v.h.f. tuner.

Nevertheless, "they follow the same principle, being clamped to the capacitor spindle and turned by the pull of the drive cord wrapped around the grooved outer flange. The cord enters the face portion of the drum through a cut-out in the flange

and is anchored to lugs that usually consist of simple pressed-out stampings.
The system shown has one end of the cord anchored, the other attached to a spring, to take up inevitable play in the complete system and to reduce backlash. (Like any other shock-absorber device, it suffers from the defect that over-tensioning can cause the fault it is intended to overcome.)

The position of the drum relative to the capacitor spindle is important. With the pointer at one end of its travel the ganged capacitor will be either fully open or fully closed. Note the scale markings and check that the pointer is at the lowest frequency (highest wavelength) end of the scale when the vanes of the tuning capacitor are fully meshed. The setting of the drum will then depend on the direction of rotation needed to open the gang and the way the cord is routed.

If the arrangement is like Fig. $4-1$, with the drum having to rotate anti-clockwise, and the cord coming directly from the drum to the pointer, then the cut-out will be as shown. so that a small amount of wrap remains on this portion of the cord (drawn darker to identify the direction of traverse).

Then, the other end of the cord, from the pointer or any pulley system, will approach the drum and wrap around it completely once before entering the cut-out. Anti-clockwise pull then unwraps this turn while wrapping on a similar length from the pointer section.

A little patient study should enable us to relate this to systems which differ in physical layout-and, in extremis, a few moments with the stub of a pencil and the back of an envelope should clear up any doubts.

Fig. 4-1: Simple cord drive system. A, drum with grooved flange; B, centre-boss, bush on gang spindle; C, waist in manual
 control spindle; D, free-running pulley; E, pointer, angled to lap over scaleplate.
Fig. 4-2 (below): Philips system, with pointer held at each end and drum at right angles to scale. A, angled pulley.

From the pointer, the cord passes over a freerunning pulley and thence to the drive spindle. The general method is to wrap two or more turns around a "waist" of the spindle, but there are again many variations depending on the grip required to overcome inertia of the system. Some spindles have no waist, others use a flanged bush.

The important factor is the relative entry and departure position of the cord, to prevent turns riding over each other and perhaps jamming. This is quite a common fault; once more, a little study before assembling will pay dividends.

THE DRIVE CORD

A similar stricture applies to the position of the cord in the flange of the drum. Turns should ride beside each other, and it may be necessary to move the drum in or out along the spindle to achieve this. Note that the drum is usually secured by a couple of screws through the central bush, and make sure these are tight.

There is a great deal of drag with some systems, especially when the ham-handed friend tries to reach a station beyond the end of the band! Antibacklash springs are no proof against this sort of treatment, and the result is that the drum moves around slightly, eventually spilling the cord off when the rotation is reversed. This fault is prevalent with the large, thin drums that tend to flex with the pull.

One other fault source to inspect is the pressing where the brass bush is fastened to the aluminium or mild steel drum. Looseness at this point can be troublesome. On occasion, a touch of Araldite around the joint will cure a tendency to "creep".

When fitting drive cords to this type of system, and many similar types, it is best to start at the fully open or fully closed position, leaving the pointer off for the preliminary work.

Anchor the loop of the cord and pass it round the drum in the required direction-which you will already have worked out-and hold it near the departure point with a small piece of adhesive tape. Then loop around the drive spindle, over the pulley, again securing with sticky tape, and back to the drum. Hook the spring on its lug, feed the end of the cord through the loop of the spring, make sure all the slack in the system is taken up and pull to tension the spring before knotting the cord.

As the final move is made, it will be necessary to hold the drum in its extreme position. Do not over-
tension the spring; the fitting of the pointer. will probably take up a little more slack in the cord.

One useful hint, when a complicated run makes the final tying of the cord a job for a nimble-fingered octopus, is to run the drive cord over the inner spindles of one or two free pulleys (D in Fig. 4-1). This helps hold the cord temporarily in position and allows a

Even the small transistor radio has its drum and pulley. The cord ends are coupled to a single spring. little extra tensioning as the cord is fed into the groove of the pulley to complete the job.

THE POINTER

The pointer is fitted to the cord in such a way as to ensure a straight approach and departure, as shown in detail in Fig. 4-5. When a cursor is used, this is bent to run along the edge of the faceplate, and a clean surface is essential to prevent erratic jumping of the pointer.

This type of fitting has the pointer pushed in the shape of a U-clip through the small spring or slotted channel at the bottom of the cursor, allowing some adjustment of vertical and horizontal alignment. This can be handy to avoid the free-running pointer knocking against dial bulbs or plate boltheads.

Figure $4-5 \mathrm{~A}$ shows the bent clip type of pointer and in this case a small felt pad is fitted near the bottom, to aid even running, prevent the pointer scraping and catching or rattling against the dial glass.

PHILIPS SYSTEM

From the general to the particular. Fig. 4-2 shows a popular Philips arrangement that is devised to keep the pointer travelling in a regular aplane across a fairly broad dial. The direction of travel is at right angles to the diameter of the drum so the pulley assembly includes one (A in diagram) set at an angle.

This pulley is usually mounted on a pressed-out lug which may become bent, and a common fault with the rather wide and thin drums is incorrect

Fig. 4-3: Example of the spring-tensioned cord on a small-diameter pulley. This will give precise drive.

entry angle of the cord. with consequent spillage. Note that the Philips technique of attaching both cords to the anchor spring is employed. This is necessary as any displacement will offset the pointer from the vertical. When making up this type it is easier to measure off the complete length, allowing for loops, and refit as a unit. In the example, Philips F4G50A or Stella ST332, the cord length from loop knot to loop knot is $71 \frac{1}{2}$ in. For the position shown, the tuning gang is at maximum, i.e. closed.
An example of precise drive with a spring-tensioned cord, but employing a small drum and a "square" pulley arrangement, is the RGD RR214, or K-B KRO16 of Fig. 4-3. Here, the cord loops around each end of a small spring that itself turns with the extension drum. In addition to the waist on the manual control spindle, an anti-spill flange is used-an idea some other makers could copy to advantage. This is a small transistorised set, with a medium-wave and two short-wave bands, plus an f.m./v.h.f. band, and the drive must be quite precise in action. To assist spot tuning on a.m. bands, a fine tuning control is fitted, consisting of a small capacitor mounted with its spindle concentric with the tuning spindle.

* MARCONIPHONE SYSTEM

Also using a drum but with a very different pulley arrangement is the Marconiphone 4308 system of Fig. 4-4. This example is given to show the type of cord routing necessary when drive is greatly toward one end. This is an a.m./f.m. radiogram chassis, and the precision of the gang movement

Robust band-switch with sealed contacts, the stage sections isolated to minimise interaction. Note flywheel employed to give smooth tuning control.

Fig. 4-5 (left): Two methods of mounting pointer on cord.

Fig. 4-6 (right): Dual-section drum for cord take-up where travel of pointer exceeds circumference of tuning drum.
is aided by a type of gear arrangement with thin brass plates toothed to the drive wheel.

The gang is a four-section type, tracking differences being made up by shaped plates. The backlash is taken up by the end of the cord being passed through a slot in the drum and attached to the spring which anchors to a small peg.

The important factor here is the crossover point and the run of the pointer. Incorrect initial setting can cause tangles and spillage that will give some trouble as the chassis is mounted sideways in a fairly confined cabinet.

* TWO-SECTION DRUM

A small drum device that can give problems when encountered for the first time is the twosection type on which the cord is wrapped several times, as shown in Fig. 4-6. This was widely employed on earlier models of the Raymond and Beethoven range and has since been used by Alba and others. In the latter assembly, a manual drive spindle with a small drum of its own is used, the cord wrapping twice around this.

Another peculiarity is the pointer, which has a short inner arm that is intended to be the alignment marker. The cord wraps in the drum in the manner shown when the pointer is at the remote end; the exact point of crossover from one drum section to the other, through the cut-out, is vital. Too many turns on one or other section leads to a most horrifying tangle.

When facing one of these assemblies with no exact information, always start with the pointer at one end and wrap the cord on the first section of the drum just once, then as many times on the second section as will take up the pointer travel. This can be calculated or quite simply measured. Again, a few moments longer in preparation saves hours of guesswork.

F.M. TUNING

F.M. tuning on the Alba 5601, 5701 and associated models, is by movement of cores of the f.m. unit, actuated by the common tuning capacitor control. To align, it is necessary to set up the a.m. tuning for correct movement of pointer and scale traverse, then position the spindle of the f.m. tuner so that it rests against the front stop with the main gang fully open. This should provide correct tracking, and preset capacitors then allow for the fine adjustment.
Other types of f.m. tuner have the coil or capacitor adjustment effected by traverse of a pivoted bracket in a slot or cam cut-out of the main drum.

Usually, as with typical Bush designs, there is some adjustment provided by setting of a calibration lever around which the secondary drive cord is wrapped.

On all assemblies of this type, which employ a subsidiary drive depending on the a.m. drive to position f.m. capacitors or coils, it is imperative that the main drum position is checked and a.m. calibration double-checked before setting the f.m. drive travel from one end of the movement.

Preset tuning has been achieved in a number of ways, from the cumbersome motorised devices which swept the gang and pointer to a pre-arranged stop, down to the simple electrical selection of alternative tuning components. The latter system is used, for example, on those sets with a single station button, generally tuned to Luxembourg. Selection disconnects the ganged capacitor and substitutes fixed and preset components.

There are many types of band switch, some being quite delicate assemblies, others robust rotary "clangers". The latter seldom need any adjustment, but contacts are generally quite large and a touch of cleaning is of benefit.

Care must be taken when using switch-cleaner on these switches as a little time is needed for the carrier to evaporate, and even when it does, an excess of oil may provide a tracking path from switch contacts bearing h.t. voltages to others of lower potential.

SWITCH FAULTS

A common fault with slide type switches is dis'placement of one of the fine wiper contacts. These are lightly sprung against small lugs of metal pressed into the composition slide, or against foil print that forms the shorting bars.

Clumsy adjustment will always lead to trouble, and the first check is for complete travel and retraction of the slide. Dirt can cause inadequate movement and the usual system is reception on one waveband only, or reception of a single station on both bands.

The latter effect is caused by the incorrect switching of the type of circuit that merely adds capacity for Long Wave tuning. Slide switches with ballbearings in runners along the top and usually activated by Bowden cable are common to a number of Philips models.

Adjustment is limited to bending the lugs that contain the nipples at the end of the cable. Care must be taken not to kink the steel wire of the cable. A touch of light grease at the ends will help stop the

Simple slide switch for band-changing on printed-circuit board, with contact springs that slot into t the plastic runner.

Sealed tuning gang has small compression trimmers. Care must be taken not to damage dielectric plates-see text.

small scraping noises that these devices make when they are ageing.

Some types of rotary switch tend to wear at the slotted centre portion of the wafer, allowing a little play which gives erratic contact. It is a legitimate repair practice to fit a small wedge (cut from a valve support spring or similar brass strip), finishing off with a touch of solder at each side of the wedge to retain its position. Alternatively, wood or plastic with Araldite fixing can be used.

Slot wear is also the enemy in the type of switch lever that operates by remote control from the knob spindle. One type is favoured by Philips and depends on a hinge and pivot action. Some of the wear can be compensated by dismantling the clamp bracket, hammering the edges of the slot and roughening the clamp-screw thread to ensure a tighter fit: but replacement is the only certain cure.

Another type, employed on some B.R.C. models, requires a sprung clamp to be screwed on the circular section spindle. Again, wear that is usually caused by loosening and subsequent continued use requires a complete dismantling, re-shaping and resetting. Always look for the correct action of the switch actuating levers before suspecting the switch itself.

NOISE TROUBLES

Sources of noise that are relevant to switch action, and often difficult to pin-point, are the earth return blades fitted to many types of ganged tuning capacitors. These are sprung into engagement with the rotor, acting as a "brush" type of earth return. Contact lubricant at the wiper point helps considerably.

Always check that the vanes of open-type tuning capacitors are clean. Blow out the particles of dust and make sure no oil or grease has run on to the vanes. Where magnetic particles are attracted to steel blades-rare, but possible-disconnect the gang completely, apply a low a.c. such as the heater voltage, and blow between the vanes to loosen the particles.

Do not try to rub off the particles and risk distorting the vanes. Above all, avoid loosening blades at their roots-once a common source of noise on short-waves, but less often encountered in these days of improved component design.

The small, sealed ganged capacitors used in many portable sets should need no attention-in theory. In practice, it is all too easy to distort the assembly by excessive pressure on the trimmers. Paper or
-continued on page 200

MONITORIfr

 (3454)

 (3454)}

by A. H. Jubb BSc. GW3PMR

The meter M1 measures the diode current and may therefore be used as an indication of r.f. power output from the transmitter. The meter should be a moving coil type having a sensitivity of 500 microamps or better. In the writer's case a 50 microamp meter was used as this was to hand. Resistor VR1 controls the sensitivity of the meter and should always be left in the zero resistance position when not in use to avoid damaging the meter movement when switching the transmitter on.

The loudspeaker used in the oscillator can be almost any miniature low impedance type; the writer used a small 8 ohm speaker taken from a discarded pocket receiver. If required a level control can be added by connecting a $100 \Omega 2$ variable resistor in parallel with the speaker.

components list

Resistors:	Inductors:
R1 150	T1 Repanco TT9
R2 $12 \mathrm{k} \Omega$	RFC1 2.5 mH
VR1 10k Ω	
VR2 $25 \mathrm{k} \Omega$	
Capacitors:	Semiconductors:
C1 $0.01 \mu \mathrm{~F}$ disc ceramic	Tr1 n-p-n see text
C2 $0 \cdot 01 \mu \mathrm{~F}$ disc ceramic	Tr2 OC82
C3 $0.1 \mu \mathrm{~F}$	D1 OA81
	D2 MR75 see text
Miscellaneous:	
SPST toggle switch, two normally open jack sockets, PP4 battery, $500 \mu \mathrm{~A}$ meter (see text), low impedance	
loudspeaker, solder, wire, etc.	

THE BROADCAST BANDS

AFRICA

EGYPT: Cairo Radio (P.O. Box 1186, Cairo) now is 13 m. .b. on 21,615 with Bengali 1100 , Hindi 1200 and English 1300-1430. The European TX from 1745-2315 (English 2145) now on 12,005/9,475. For the South American service 15,360 is being used. Noted on this frequency is Portuguese 2330-0030.

Ethiopia: Radio Voice of the Gospel (P.O. Box 654, Addis Ababa) has English at 0530 on 11,$890 ; 1900$ on 15,$115 ; 1700$ on 9,$570 ; 1800$ on 9,$705 ; 1655$ on 6,055 ; 1345 on $15,315 / 15,410$. Also Monday to Friday only at 0930 on 17,$840 ; 1000$ on 21,$590 ; 1130$ on 17,740; and 1200 on 15,340 .

Ghana: Ghana Broadcasting Corporation (Broadcasting House, P.O. Box 1633, Accra). Recent schedule changes include English 2000-2100 on 11,850/9,760; 1330-1430 17,910; Portuguese 1500-1630, 1815-1900 6,070 (New TXs). Hausa transmissions have been dropped as have all transmissions before 1330. Good reception of the internal service has been noted on 4,980 around 1900.

Liberia: Radio Station ELWA (Box 192, Monrovia) has English on $11,950 / 17,760 / 21,535$ at $0600-0800$, 1000-1200, 1545-1645.

Nigeria: Nigerian Broadcasting Corporation (Broadcasting House, Lagos). Good reception given by the commercial service on 4,990 around 1830.

Tunisia: Radiodiffusion Television Tunisienne (139 Avenue de Paris, Tunis) transmits in Arabic 0400-0800 and 1700-0030 on 6,195 and 0400-1800 on 11,970.

South Africa: Radio South Africa (P.O. Box 8606, Johannesburg). The European service is now as follows: English 1900-1955 11,785/9,525; French 18001855 15,245/11,900/9,525; German 2030-2125 15,200/ 11,785; Dutch 2130-2225 and Portuguese 2230-2325 on 11,785/9,720.

ASIA

Afghanistan: Radio Afghanistan (Ansari Watt, Kabul) now has English to Europe at 1800 -1830 on 15,265 and 11,856 or 11,770 . German is at 1730 on the same frequencies. The Home Service schedule is now 0100-0400 and $0700-0900$ on $6,000 / 7,200,1100-13306,000$, and $1130-1800$ on 7,200 .

China: Radio Peking (Broadcasting Administration, Fu Hsin Men, Peking). English reported at 1300 on 9,340 and $2030-2230$ on $6,290 / 6,300$ and 42 and $45 \mathrm{~m} . \mathrm{b}$. Arabic has been noted at 1900 on 7,485 , French at 2200 on 7,315 and Hindi at 1645 on 6,290 .

India: All India Radio (P.O. Box 500, New Delhi) now uses 49, 41, 25, and 19m.b. for English 2245-0115 and 16, 19m.b. at 1330-1500.

Iran: Radio Iran (Meidan Ark, Tehran) now using 11,752/15,132 from 1000-2200. English is 2000-2030.

Japan: N.H.K. (Tokyo) has made following frequency changes: General service-2000-2030 9,560/ 11,815/15,195; 2100-2130 and 2200-2230 9,700/11,815/ 15,195. The Middle East and North African service in French, English and Arabic is now on 9,525/11,780 at 1730-1900.
Jordan: Broadcasting Service of Hashimite Kingdom of Jordan (P.O. Box 909, Amman) using new frequency of 6,045 for Arabic home service. Signs on at 0330 .
Korea (Republic): Korean Broadcasting System (Yejangdong 8, Chung-ku, Seoul) now to Europe in English 0630 and French 0700-0730 on 15,425.
Lebanon: Radio Lebanon (Ministry of Information, Beirut) now uses 15,350 for its 1830 -2030 transmission beamed to Africa. English is at 1830-1900.
Saudi Arabia: Saudi Arabian Broadcasting (Ministry of Information, Airport Road, Djeddah) has been noted using the 100 kW transmitter on 15,150 for the Arabic service after 2100 .
Turkey: Radio Ankara (T.RT, Genel Mudurlugu, Ankara) now has Turkish 1730-1815 and French 1930-1945 on 9,515.
Vietnam (North) Radio Hanoi (58 Quan-su Street, Hanoi) has English 1000-1030, 9,760/7,210; 1300-1330, 1530-1600 1,240/7,210/9,840/11,840; 2300-2330 1,240/ 9,840/11.840.

AUSTRALASIA

Australia: Radio Australia (P.O. Box 428G, Melbourne) now transmits in English to Europe from 06450745 on 11,710/9,560.

NORTH AMERICA

Canada: C.B.C. (P.O. Box 6000, Montreal) now in English to Europe at 1215-1313 on 15,365, 0730-0800 9,625/5,990; 1516-1529 17,820/21,595; 2115-2150 15,320/11,720/9,630 and to Africa 0730-0800 17,715/ 15,390/11,920 (BBC relay frequencies) and 1832-1915 21,595/15,390/11,920.
USA: Radio New York Worldwide (WNYW) (485 Madison Avenue, New York, NY 10022) was off the air from April 9 to 17 when its five transmitters were destroyed by fire. A skeleton schedule is now being operated in English to Western Europe from 1800 to 2100 on $21,530 / 17,845 / 15,440$ although full-time operations are being planned for the near future. DXing Worldwide is at 2030. Reception reports will be greatly appreciated.
Voice of America (Washington D.C., 20547) is still using 3,980 for English to Europe 1400-2330 despite the fact it is not listed in the current schedule.
Information has come this month from Radio New York Worldwide, Swiss Broadcasting Corporation, Internation Short Wave Club, A. E. Roxburgh, A. Givens, D. Walsh, S. L. Utting, G. Rutherford, T. E. Rogers, and R. Bowen.

With the new 600-page Electroniques Hobbies Manual, you can obtain these and over 11,350 other items-either direct from Electroniques or through your local Electroniques dealer! The service is fast. The choice is the most comprehensive ever offered. And the components, which are supplied by 85 leading manufacturers, meet every kind of need-whether the project is advanced or elementary.

1. COMPONENTS A wide range of individual components is available. These include microphones, headsets, pickup arms, cartridges and styli. Hardware accessories such as audio connectors, transformers and microphone stands are also available. Featured above are the STC 4114 microphone price $32 / 6$ and the STC 65/1A Stereo headset at £7.7.0. Both plus $3 / 6 \mathrm{~d}$. post and packing.
2. MODULAR UNITS Featured above is the GMA20 audio amplifier module having a music power rating of 15 watts. This is one of a range of modular units including microphone amplifiers, audio amplifiers, modulators and tuners. Price of the GMA 20 is $82 / 6 \mathrm{~d}$. plus $3 / 6 \mathrm{~d}$. post and packing.
3. KITS This 25 watt Hi-Fi Loudspeaker kit is manufactured by our associates in Germany, and fulfils the highest standards. Supply direct from the factory enables us to offer these magnificent kits at the modest price of $£ 7.10 .3$. plus 3/6d. post and packing.
4. COMPLETE EQUIPMENT A range of complete equipments is also available, and among these are included microphone mixers, pre-amps, tuners and stereo amplifiers. In the illustration are the Eagle Stereo Amplifier, price £18.5.0. and the Eagle $A M / F M$ tuner, price £28.17.9. Both plus $3 / 6 \mathrm{~d}$. post and packing.

DES/GNS Throughout the Hobbies Manual are useful designs for building your own equipment. Included are circuit diagrams and details for audio amplifiers, tone controls, tape recorders and preamps.

For the 600-page Electroniques Hobbies Manual or further details of the products displayed on this page write to: Electroniques (Prop.STC) Ltd., Edinburgh Way, Harlow, Essex. Telephone: Harlow 26777

electroniques

1967 INSTRUMENTATION by NOMBREX

custom built - Modern strling - NEW features

```
FIRST RELEASES OF OUR NEW RANGE IN SMART 1967 STYLING
    elegant Cases, stoved hammer finish, recesSed PaNelS.
    NeW PaNels, three colour StYling, NOW 7" = 5"
    ULTRA-MODERN CONTROLS. SPIN DISC STYLED KNOBS.
\star INSTANT BATTERY ACCESS. MAINS-bATTERY PROVISION.
```

TRANSISTORISED AUDIO GENERATOR MODEL 30

- $100 \mathrm{c} / \mathrm{s}$ to 100 kc
- Sine or square wave
- Laboratory standard
- Accurate and reliable
- Stable calibrated output
f19.10.0
NOMBREX LTD - Exmouth - Devon - England

Trade and Export Enquiries Invited
S.A.E. for full Technical Leaflets

UK Post \& Packing 6/6 extra

TRANSISTORISED POWER SUPPLY UNIT MODEL 22

- Output volts 0-15 d.c.
- Maximum current 500 mA
- 2% regulation to full load
- Auto overload protection
- Voltage and current metered
£14.0.0

Tel: 3515

PEOPLE PREFER MARTIN FOR RELIABILITY, FOR QUALITY, FOR ADD-ON-ABILITY, FOR ECONOMY

MARTIN AUDIOKITS are available for Mono, and can be doubled up for stereo. or as complete stereo units. 3 ohm and 15 ohm systems are available. There is a special pre-amp for low output pick-ups and escutcheon panels to suit the arrangement you choose. The tuner is styled to match.

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTINit's simple to instal, good to listen to. and looks completely professional.

AMṔLIFIER SYSTEMS • TUNERS • RECORDERS

$\begin{array}{lr}\text { 1 } & \text {-stage input Selector } \\ \text { - } & £ 2.7 .6 \\ \text { Pre-amp/tone controls } & £ 3.2 .6 \\ 10 \text { watt amp. (} 3 \text { ohms) } £ 5.12 .6 \\ \text { 10 watt amp. (} 15 \text { ohms) } £ 6.12 .6 \\ \text { Mains power supply } & £ 2.15 .0 \\ \text { FM Tuner } & £ 12.19 .3\end{array}$
Trade enquiries invited
154/5 HIGH STREET, BRENTFORD, MIDDLESEX. ISLeworth 1161/2

MARTIN ELECTRONICS

154 High Street. Brentford, Middlesex
Please send Recordakit/F.M. 'Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name
Address

THE AMATEUR BANDS

by DAVID GIBSON, G3JDG

FOR those who have been patiently awaiting the arrival of the sun spots, I've got newsthey're here! Here, there, everywhere, lovely sun spots. The h.f. bands have been wide open to just about everywhere. Ten metres has been crammed with W's, and some really good openings to the Pacific. Fifteen has brought in the fabulous crop of consistent DX, and Twenty has been anything but quiet.

TWENTY/FIFTEEN

David Henbrey (Sussex), has really clobbered me this month. I was all set to casually brag about my DX on Twenty when I found he'd heard 'em all plus a couple of dozen more! The bit that really hurt is that he's using an $\mathrm{O}-\mathrm{V}-\mathrm{O}$ receiver. It must be the earthing system that does it. David's log for 20 s.s.b. reads-CN8AW, CX4AW, FG7XL, HK3LT, HR1KAS, JA1AEA, K6KPS, KH6BX, KH6FRT, KP4AST, MP4BEU, OD5FA, OH $\varnothing N H$, TF2WKH, VK - 2AVA, 2KM, 2LA, 3AOK, 3SX, 4TY, 5LC, VP8AO/OX, VP8IU, VS9ALV, VU2DKŻ, ZD7IP, ZSIJF, 3C8ML, 5T5KG, 9Q5 HF. It must be the earth-must be.

D Clark (Bucks), P.W. Progressive S.W. Receiver + PR30 preselector heard these on 20 s.s.b.BY2PJ, CN8AW, CR6HF, DU2BH, EP2AX, HK4AET, HR1CX, HV3SJ, JA4VX/MM, KA2EP, KP4AST, KV4AB, KW6EJ, LU1ALF, OD5EP, PY3BXW, UJ8AC, VP2AP, VP8AO/P/OX, VP8IU, VP9CP, VQ1DK, VR5FB, VR6YB/P, VS9ALV, XW8AX, YV5ANF, ZC4CN ZE1AE, ZS1KG, 3C3FJZ/P/SU, $5 \mathrm{H} 3 \mathrm{KJ}, \quad 6 \mathrm{Y} 5 \mathrm{~TB}$, $9 \mathrm{HII}, ~ 9 \mathrm{M} 2 \mathrm{NF}$, 9Q5HF.

Howard Dearing (Herts), is 13 years old, and is taking the R.A.E. in December. His Hammarlund Super Pro. plus 140ft. end fed raked in-BYICYG, HS4AK, JA1AEA, JA2JAA, KG6IJ, KH6SIN, KJ6BZ (Johnston Is.), KL7AAH, OA5KAL, OD5OK, OX3WX, ST3ELJ (Sudan), SVøWS, TF2WKH, TG9EP (Guatemala), VK2-AGW, ALQ, AMB, AR, AVW, KAL, KM, LA, NI, OAR, QN, WV, VK3AAR, VK4JR, VU2BN, XE1CCC, YK1AM (Syria), ZL-1AFG, 1AX, 2AFZ, 2BDA, 2HPK, 3IR, 5A4TK. All on 20 metres s.s.b.
L. Rowland (Cheshire), 9R-59, 150ft. end fed shows what's about on $21 \mathrm{Mc} / \mathrm{s}$. On s.s.b. he loggedCE3ZN, CX7CP, EL2A, EL2Z, EP2BQ, HC1KQ, HZ1AZ, KL7BFB, KV4FA, KP4CSU, SV $\varnothing S M$, TF2WKE, VK-2AH, 2ATB, 2AYT, 3ABA, 3AHS, 3JT, 3VP, 3VT, 3ZR, 5FM, 5DX, 5PX, 5SN, 7RX, VR2EK, W6BE, WA6EPP, YS1DHE, ZD8CX, ZE8SKI, ZL-IAFO, 1AIE, 2BE, 4AC, ZS6AOU, $5 \mathrm{~T} 5 \mathrm{KG}, 5 \mathrm{~T} 5 \mathrm{KJ}, 9 \mathrm{GIBY}, 9 \mathrm{Q} 5 \mathrm{FF}$.
B. Stratton (Middx), PCR3, PR3OX, 18 ft . vertical fed at the top (yeah, why not?), hooked these on $21 \mathrm{Mc} / \mathrm{s}$ s.s.b. EA8CB, HL9KH, HL9TC, KZ5JB, KZ5TN, PJ2CH, PZ1BO (a.m.), UD6BR, YA1DAN, 9M6MG, 9Q5GZ, 9U5DP.

Someone sent in a magnificent log for 15 metres, but forgot to enclose a letter, no name or anything. Whoever you are, if you heard that lot I'd like to buy your receiver. Please write your name and the gear on the reports OM's.

TEN

Don't wait for the sunspot peak, listen now. George Owen (Bristol), did on his GC1U and Joystick antenna. The following were all a.m.-CO8RA, CR4BC, CR6AR, CT2AP, CT3AS, CX1BY, CX4DG (not guilty), EA8BN, FM7WQ, HI3XRM, HI8XAL, HK4AEU, KP4ACX, LU1IN, LU4DIU, LU5DEG, LU6DRL, MP4BGM, OA4JR, PY1ATV, PY2CDS, PY3AF, PY4DFJ, SV3ZAI, VP3GI, VP3ELJ, VP6UN, XE2CJ, YO3ABU, YV1LH; YV4AW, YV5AQD, ZD3E, ZC4GY, ZS1BS, ZS6RO, 9GIGM, 9H1X, 9J2GJ, 9Y4VS. On s.s.b.-CE6EZ, CX2CN, HC8JG, KV4CI, KZ5NS, OA4OV, OD5CN, PY1YD, YV5BCS, ZD8CX, ZE1AA, ZS1JA, ZS4OI, ZS6OY, 4U1FU (Gaza Strip), 5A1TS, 9G1FF, 9H1AM, 9J2DT.
P. Rotheroe (Surrey), 10-5, 45 ft . end fed, all s.s.b. —BY4AS, CP1IW, CR6DX, CT1OS, CX8AAW, FH8CD, JA3SZ, K3SBB, K4SDW, K6ILB/P, K \varnothing REV, MP4BEU, PY7ALC, SV $\varnothing W U, ~ U A 6 C P$, VO1HI, VS9APW, WA5REB, W5LAT, WA6HXW, W \varnothing BUL, YV1FV, ZC4GB, ZS5BC, 9GIDM.

LF END

D. Baker (Lancs), PCR3 into a BC-453-B, 66 ft . dipole heard I1CTL, OK1AIR (5 watts), VE1UT, VO1FX, VO1HI, VS9ALV on 80 s.s.b. M. Pemberton (Bucks) Veritone CR150 + PR30 also listened on 80 s.s.b. for LA5KS, ON 5JE, UR2QZ, VE1AA, VEIIE, WAIMLR.

Norman Henbrey (Sussex), EA12, 20 metre dipole bagged some goodies on 80 s.s.b.-CN8AW, TF3OM, TI2NA, W4FZJ/KP4, ZL-3AAD, 3RJ, 3WT, 4LM, 3B1FX, 3ClUA. Norman says there's not much on 40 this month and confesses he only heard -CN8AW, CN8BV, HK3BEJ, JA2BAY, PY2EGA, PY7ARJ, PY7VON, PZ1CF, UA9BE, VP6KL, YV1PW, 4X4DH, 7XøAH. It must be the earth!
F. Simpson (Yorks) 840c, 10 metre dipole, listened on 40 and rescued-EP2BG, KP4CQY, K1GZL, K3WQC, K4EV, TG7EH, UA3RDO, UA4KED, UW9AF, W2HSB, W3SNC, W4NTU, W8LCT, W9TCT, WAIHFC, WA4PNG, WB4EVM.

NEWS

Rumours that VP3 (Guiana) will soon be 8 R , anyone confirm? GB3STD is the St. Dunstan's Station, and in June (21-30) there will be a special station on from the Isle of Wight at the third Island Industries Fair. $160-10+2$ with the callsign GB3IIF. FB8YY is on 20 c.w. at breakfast-time (take your toast into the shack) from Adelie Island. How about listening for G3JDG/P, 160 a.m./c.w., from Point Clear Bay, June 4-11th?

Contests and rallies for June include 3rd-4th, National Field Day; 11th, Medway Mobile Rally near Maidstone in Kent; 18th, ARMS Mobile Rally at Alconbury, Hunts.; 18th, Hunstanton Bucket and Spade Party; 18th. DF Qualifying Event; 25th, Longleat Mobile Rally near Warminster, Wilts.; July 2nd, 2 metre portable contest; July 9th, RSGB National Mobile Rally at Gilwell Park, Chingford. I hope to be at most of these rallies and would be pleased to have an eyeball QSO with any readers. Deadline for logs is 20 th.

SPECIFICATION

H.T. voltage: Variable from 200V to 260 V
H.T. current: 60 mA max.
H.T. ripple: $\quad 15 \mathrm{mV}$ at 250 V
Heater voltage : $3 \cdot 15-0-3.15 \mathrm{~V}$ at 2.7 A (floating)
$\mathrm{IP} / \mathrm{OP}$ variations: O / P varies 1% for 10% I/P variation
O/Presistance: 15Ω at D.C.

WHERE ever work of an experimental nature is undertaken, the provision of suitable power supplies is one of the primary concerns. Although it is sometimes possible to tap into an existing power supply, this is not always convenient or desirable. Overlooking convenience, let us examine "desirability" a little further, particularly in respect of a.f. high tension supplies. The first apparent effect of tapping into an existing supply is that the o/p, or terminal voltage will fall, the fall increasing as the current drawn increases. This is due to the source resistance of the supply, and is an inherent characteristic of all basic power supplies. While this fall may not matter in some applications, in others it may prove to be completely unacceptable, for example the fall in terminal voltage may be so great that the remaining voltage will be too low to fulfil its intended purpose.
Supposing the load current is fluctuating in a regular or sporadic fashion, the terminal voltage will rise and fall in sympathy. The greater the difference in the off load/on load currents, the greater will be the amplitude of the terminal voltage fluctuations. This virtual modulation of the terminal voltage could cause instability in a high gain amplifier consisting of several voltage amplifying stages in cascade. In the case of a single ended power amplifier, the anode current could exceed 50 or 60 mA , and the voltage across the anode load could exceed 100 V peak to peak. If the power supply has a high source resistance, a goodly portion of this voltage swing will find its way onto the h.t. line,
and from there (assuming intervalve decoupling is absent) will arrive at the anode of the input valve. Although the input signal will have received some amplification at this point, its amplitude may still be less than the amplitude of the feed back voltage. If the relative phase angles are just right, the circuit will burst into instability, the frequency of oscillation depending on the time constants of the amplifying and feedback networks.

A further disadvantage of a basic supply, is that the o/p voltage cannot be easily altered. True, a variable resistor in series with the h.t. line will permit some variation, but if large currents are involved this system becomes impracticable. Also, sincee it is in series with the supply voltage, the poor regulation is made even worse.

The Solution

The answer to these problems lies in the use of an electronic regulator or stabiliser. The most elementary type (Fig. 1) is capable of controlling the output voltage at the operators' will, but is not capable of compensating automatically for varying load currents. Variation of o/p voltage is achieved by the manual operation of the potentiometer VR across the input voltage. The action of the circuit

A

Fig. 1: Circuit showing an elementary tvpe of voltage stabilisation.
Fig. 2: Basic circuit providing automatic control of the terminal voltage.

MARCONITEST EQUIPMENT
TF. 1444 STANDARD SIICNAL GENHEATOR $85 \mathrm{Kef5},-25 \mathrm{Mc} / \mathrm{g}, 200 \mid 2301$. A.C. 285. Carr. $30 /$ Mories 275. T.F. 196M. BEAT FREQUENCY OSCTLLATOR. $0-40 \mathrm{Kc} / \mathrm{s}$. $200 / 250$ v. A.C $£ 20$. ('arr. 30/- All above offered in excellent condition fully tested and checkid and offered at a fraction of uriginal coat.

2-WAY RADIOS Euper quality. Brand new and guaranteed 3 trajpibtur \quad E6.15.0 pr. 4 transistur \quad e7.19.6 pr. 5 transistor 88.4 .0 pr .
 in transistor $£ 17.10 .0 \mathrm{pr}$. 10 transistor 828.10 .0 pr . Trans. IW $\mathbf{8 3 5 . 0 . 0} \mathrm{pr}$. Post extra. These cannot be operated in U.K.

SINCLAIR TRANSISTOR AMPLIFIERS

Z12 Amplifier 89/6; Z12 Power Pack 79/6; Stereo 25 Pre-Amplifier E0.10.6; Micro FM Radio Kita 55.19 .6 ; Micro 6 Radio Kit 59/6; Micromatic Radlo Kit 50/5; Ready built 79/6. Post paid.

GARRARD RECORD PLAYERS

SRP12 Player minno $\mathbf{~ 4 . 4 . 0 ; 1 0 0 0 ~ c h a n g e r ~ m o n u s ~ u t e r e n ~ 5 5 . 1 8 . 6 ; 2 0 0 0 ~ c h a n g e r ~ m o n a ~ o r ~}$

 Brand new and guaranteed. All plus pritt and packing 3/-

LAFAYETTEHI-FIDELITY SOLID STATE STEREO AMPLIFIERS Latest 1967 models now available Outstanding performance from mokiarn remes conituctors. Provislon for all sypes of inpute and outputs and cumprehensive tone controin

 IEETALLS ON REQIEI'T

LAFAYETTE MODEL HA-500 3SB/AM/CW 80 THROUGH 6 METRE RECEIVER

New outstanding Ham Bands only recelver covering the $80 / 40 / 20 / 15 / 10 / 6$ metre bands.
Incorporates 10 valves product detector Incorporates 10 valves pronuct detector two mechanical gilters 8 Meter dual con-
veruion on all bands crystal calibrator B. F. 0 . unise limiter aerial trimmer $1 . \mathrm{F}$. $\mathrm{s} 2-608 \mathrm{Mc} / \mathrm{s}$ and $455 \mathrm{Kc} / \mathrm{f}$. Out put 8 ohms and 500 ohms . Operations 220/240 volt. A.C. Supplied brand new and guaranteed with handbook. 42 gns. Carr. $10 /-.100 \mathrm{Kc} / 4$ cryatal $85 /$

* TRANSISTORISED FM TUNER \star

VARIABLE VOLTAGE
TRANSFORMERS
Brand New-fully Shrouded. Input 230 v .
 0/60 c/9. Output 0-260 1 Amp.

8Amp
10 Amp
213.1.0
217.0
$10 \operatorname{Amp} \cdot \ldots . . \begin{array}{r}\text { \&17.0.0 } \\ 12 \\ \text { Amp }\end{array}$ ${ }_{2 \cdot 5}^{20}$ Amp Amp \ldots PortableMetal Case with Meter, Fuses, etc. 99.17 .6 .

TRANSISTORISED TWO-WAY TELEPHONE INTERCOM.
Operative over amazingly
ling wistances. Separate call and press to talk tion. $1000^{\circ} \mathrm{s}$ of of applicatimus. Beautifully flaished in plunty. Supplied comFiletp with batteries and wall bracket. \&5.19.6. P. \& P. 3/6.

R. 107 RECEIVERS

 1-7-17.5 Mcis, Maine or 12 volt D.c. coperation. Perfeet eondition. \&15. Carr. $30 /$JOYSTICK
Aerials and Tuners in Stock S.A.E. for Leaflet

AMERICAN TAPE
First grade quality American tapea
Brand hew. Dinconnts for quantitles. 3in. 225 ft. L. P. acetate 3tin. 600 ft . T. P. mylar Bin., 000 ft .std. plastie. 5in., 900 ff . $1 . \mathrm{P}$. ace tate Sin., 1,200ft. D.P. mylar 5 in .. 1, 800 ft . T.P. mylar 5pin.. l, \&00ft. L. P, muretar万? in.., 2,400ft. T.P. mylar 7 in., 1,200ft. . .td. mylar. 7 in ., 1,800ft. L.P. aretate 7 in., 1,800ft. 1.P. mytar 7 in., 2,400ft. D.P. mylar in.. 3.bi0ft. T.P. mylar

CALLERS WELCOME!

open 9 a.m. to 6 p.m. every day Monds to Salurday. Trade supplied. AIl items available as previously advertised.

CATALIOCUE

\star ELECTRONIC COMPONENTS
\star TEST EQUIPMENT

* COMMUNICATIONS EQUIPMENT \star HI-FI EQUIPMENT

We are proud to introduce our first comprehensive catajozue of Eectronle Components and equipment. Over 150 pages Iully illustrated, listing thousands of iteme many at bargain prices. Free ditcount ponpons with every ontalogue. Everyone in electronios should have a cops.

R209 MK. II COMMUNICATION RECEIVER

11 valve high grade communfation receiver suitahle jor tropical use. $1-20 \mathrm{Mc} / \mathrm{s}$, on 4 bands. AM/Cw/FM Aerial trimmer, Internal speaker and 12 v . D.C. Internal power supply. Supplied in excellent condition, fully tested and checkei. 215.0 .0 . Carr. 20
LAFAYETTE HA-63 COMMUNICATION RECEIVER

outanding value. High-class 4 band receiver covering $500 \mathrm{kc} / \mathrm{s}-31$ Mc/s. Seven valves plus rectifler, RE" stage, illuminated "g" meter, $1.5 \mu V$ sensitivity. Electrical bandipread on
$80 / 40 / 20 / 15$ and 10 inetre bands. Blide rula $80 / 40 / 20 / 15$ and 10 inetre bands. Butput for
dial, aerial trimmer. B.F.O., ANL, Outpu phones or qpeaker. $115 / 220 / 240 \mathrm{~V}$. A.C. Brasu

LAFAYETTE KT-340 COMMUNICA TION RECEIVER SEMI-KIT
Build thls wonderful receiver and save pounds. Supplied semi completed, main components ready mounted, R.F. section atready wired and aligned. Full and precise iustructions supplied. Specifics
tion:- 8 valves + rectffer, 4 bands covering 680 $\mathrm{kc} / \mathrm{s} .-30 \mathrm{Mc} / \mathrm{s}$. Incorporater $1 \mathrm{R} . \mathrm{F}$. and $2 \mathrm{I} . \mathrm{F}$. stagen, 'Q' multiplier, B.F.O., A.N.L., 'g' meter bandspread, aerial trimmer etc. Operation 116/230 V. A.C. Price 25 gns. Carr. 101

COMMUNICATION RECEIVER

4 wavebands covering $535 \mathrm{kc} / \mathrm{s}$. to $30 \mathrm{Mc} / \mathrm{s}$. 6 valve superhet circuit. Incorporates $\&$ meter B.E.O., BANDBPREAD TUNIN(; BUILT-IN 4in. GPEAKER, FERRITE AERIAL AND EXTERNAL TELESCOPIC AERIAL. Operation $220 / 240$ v. A.C. Supplied brand new with'handbcok. \$16.16.0. Carr. 10%.
NEW LAFAYETTE MODEL HA-700 AM/CW/SSB AMATEUR COMMUNICATION RECEIVER

8 valves, 5 bands incorporating 2 MECHANICAL-
FILTERS for exceptional selectivity and gensitivity. Frequency coverage on 5 bands 150 -
 14.6 Mc/s.
R.F. stage, aerial trimner, noise limiter, B.F.O., prodnet detector, electrical bandspread, 8 meter, slide rule dial. Output for phones, low to 2 K a or speaker 4 or 8 ohms. Operation z20/240 volt.
A.C. Size 7 ain. $\% 15 \mathrm{in} . \times 10 \mathrm{in}$. Supplied brand Aew and guaranteed wilh handbook. 36 Gras. Carr. 10/. S.A.E. for leadet

(RADID) LINITED Phone: GERRARD 8204/9155 Cables: SMITHEX LESQUARE 3.34 LSIE STREET, LONDON, W.C.

DE LUXE PLAYERS
4-Speed Players 2-tone Cabinets 17 I 15×8 inin. High
fax londspeakers and High Quality Ampliflers ready built. Quality outp
and Bass controls. Specialinstructions 30 minutes only 5 wires to join. 12 months'guarantee TO BUILD

YOURSELF

Post $2 / 6$ per item PORTABLE CABINET As illustrated to fit
standard player
$69 / 6$ or autochanger.
3 WATT AMPLIFIER Ready made snd tested. With UCL88 triode pentode ralve and 59/6
loudspeaker. loudspeaker.
SINGLE PLAY UNITS SINGLE PLAY UNITS
BSR GUY

E4.19.6 Garrard SRP19 84.19 .6 | Gerrard SPP5 | |
| :--- | :--- |
| Philips AG1016 | \&10. |
| 10.6 | | $\begin{array}{ll}\text { Philips AG1016 } & \text { E12. } 9.6 \\ \text { Garrard A70 } & \mathbf{E 1 9 . 1 9 . 6}\end{array}$ Garrard LAB80 $\begin{array}{ll}\text { Garrard } \\ \text { Garrard } 401 & \text { £29.19.6 }\end{array}$ ecast turntable $£ 10.10 .6$ Garrard Teak Wood Base WB1. Ready cut for $72 / 6$

meunting. $1000,2000,3000$, SP25, AT60 FULL WAVE BRIDGE SELENIUM RECTIFIERS:
 tor charging at 2,6 or 12 ह., $1 \frac{1}{4}$ amps., $17 / 6 ; 2$ amps., $21 /-$; 4 amps., $25 /$-. Circuit included. Amp meter 5 amp., 10/6. WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p. 2-way, or 2 p. 6 -way, or 3 p. 4 -way, $3 / 6$ each.
1 p. 12-way or 4 p. 2 -way, or 4 p .3 -way, $3 / 6$ each. BARGAIN XTAL PICK-UP ARM Complete with ACOS LP-78 Turno ver Eead and Styli 20/- : Stereo 30/-. SPEAKER FRET Tygan various colourg, $52 i n$. Wide from 10/-It: 28 in . Wide from $5 /$ fit. Samples S.A.E. EXPANDED METAL Gold or Siver $12 \times 12 i n, 6 / \%$
NEW GARRARD. GRAM MOTORS $100-130 \mathrm{v}$. A.C. $15 /-$ NEW GARRARD. GRAM MOTORS 100-130v. A.C. 15/-
pair tor $200 / 250 \mathrm{v}$. (in series), or $10 /$ - each (Post $2 / 6$).

STELLA RECORD PLAYER AMPLIFIER 4 watt. 2 stage. 8 to 7 ohm. Neg. feed back. UCL82, UY85. 200-250v. A.C. tapped input. Chassias size $8 \times 2 \downarrow \times 4$ in, high. Golighed Wood Panel $6 \times 2 \mathrm{ain}$. Brand controls on separate
Pown
maker's

guarantee. Bargain | NEW TUBULAR ELECTROLYTICS | CAN TYPE | |
| :--- | :--- | :--- | :--- | :--- |
| $2 / 350$ | $2 / 3$ | $100 / 25$ |

 $16 / 450$ V. \begin{tabular}{ll|ll}
$12 / 450$ \& $3 /-$ \& $8+8 / 450 \%$. \& $3 / 6$

$32 / 450$ \& $3 / 9$ \& $8+16 / 450 \nabla^{2}$ \& $3 / 9$

$25 / 25$ \& $1 / 9$ \& $16+16 / 450 \%$ \& $4 / 3$

$25 / 25 \mathrm{\nabla}$. \& $1 / 8$ \& $8+16 / 450 \mathrm{\nabla}$. \& $3 / 8$

$50 / 50 \mathrm{v}$. \& $2 / 6$ \& $32+8950 \mathrm{\nabla}$. \& $4 / 3$

 $50 / 50 \mathrm{v} . \quad 2 /-|$

$32+32 / 350$

\& PAPER TUBUL/A

\hline
\end{tabular}

850v. -0.1 9d., $0.52 / 8 ; 1 \mathrm{mfd} .3 / ; 2 \mathrm{~m} \mathrm{md} .150 \mathrm{v} .3 / \mathrm{c}$
$1.000 \mathrm{v},-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.012 / 6$. E.H.T. CONDENSERS, 0.001 mld , $7 \mathrm{kV} ., 6 / 6 ; 20 \mathrm{kV}$, , $10 / 6$.

SUB-MIN. ELECTROLYTICS, $1,2,4,5,8,16,25,30,50,100$, $250 \mathrm{mld} .15 \mathrm{v} .2 / 8 ; 500,1000 \mathrm{mld} .12 \mathrm{v} .3 / 6 ; 2000 \mathrm{mld} .25 \mathrm{v} .9 / 6$. CERAMIC 500 V . 1 pF. to 0.01 mfd ., 9 d . Discs $1 / \mathrm{f}$ -
SLLVER MICA. Close tolerance (plus or minus $\frac{1}{\mathrm{I}} \mathrm{pF}$.), 5 to $47 \mathrm{pF} ., 1 /$ - iditto $1 \% 50$ to 800 pF . $1 / \sim ; 1,000$ to $5,000 \mathrm{pF}$. $2 /-$ TWIN GANG. "0-0" 208 pF . +176 pF ., $10 / 6 ; 365 \mathrm{pF}$. p minis ture, $10 /-; 500 \mathrm{pF}$. standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$ midget lesa trimmers, 7/6; 500 pF . alow motion, gtandard $8 /-$ SHORT WAVE. Single 10 pF ., $25 \mathrm{pF} ., 50 \mathrm{pF} ., 75 \mathrm{pF}$. $100 \mathrm{pF} ., 160 \mathrm{pF}$., $5 / 6$ each. Can be ganged, Couplers 9 d . each. TUNING. Solid dieleotric. 100 pF ., 300 pF ., $500 \mathrm{pF} ., 3 / 6$ each. TRIMMERS. Compression ceramic $30,50,70 \mathrm{pF} ., 9 \mathrm{Pd}$. .
$100 \mathrm{pF} ., 150 \mathrm{pF} ., 1 / 3 ; 250 \mathrm{pF} ., 1 / 6 ; 600 \mathrm{pF} ., 750 \mathrm{pF} ., 1 / 9$.
 250v. RECTIFIERS. Selenium t wave $100 \mathrm{~mA} 5 /-;$ BY100 $10 /-\mathrm{c}$
CONTACT COOLED \quad wave 60 mA . $7 / 6 ; 85 \mathrm{~mA} 9 / 6$.

MAINS TRANSFORMERS

${ }^{\text {l'ost }}$ $250-0-250,80 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{a} ., 6.3 \mathrm{z}$. 1a., or 5 v . $2 \mathrm{a} . \ldots . .25 / \mathrm{e}$ $350-0-35080 \mathrm{~mA} ., 6.3 \mathrm{v}, 3.5 \mathrm{a} ., 6.3 \mathrm{v} .1 \mathrm{a}$., or $5 \mathrm{v} .2 \mathrm{a} . . .$. MINIATURE $200 \mathrm{~F} .20 \mathrm{~mA} ., 6.3 \mathrm{~F}$. 1 s . MIDGET 220 v . 45 mA ., 6.3 y . Fa Small $250-0-25050 \mathrm{~mA} ., 6.3 \mathrm{v}$. ${ }^{2}$. HEATER TRANS. 6.3 F ., 11 a., $8 / 6 ; 8.3 \nabla .4 a$ GENERAL PURPOSE LOW VOLTAGE. O utputs $8,4,5$
 AUTO TRANSFORMERS $0-115-230$ volt Iaput/Output

BAKER 12 in. MAJOR
 The ideal High Fidelity Loadspealer for high public address, ete. Built in high efficieney tweeter cone.
 Voice Coil impedance 15 ohms. Max. Power 20 watts. Bass Res. $\begin{array}{ll}40 / 50 & \text { ops. } \\ 14.000 & \text { gauss. }\end{array}$ 14.000 gauss. Coil dismeter Response 40-14,501 cps. Magnet material Alcomax, overall dia. 12lin., overall depth Price f8 Post Free CATALOUUE S.A.K. GROUP MODELS FOR VOCALS,

 BASS, LEAD and REYTEM GUITARSCote0 cps. Voice Coils 15 ohms. Heavy Duty. 'Group 25' 'Group 35' ${ }^{\prime}$ Group 50'

LOUDSPEAKERS P.M. 3 OHBS. 2fin., 3in., 4in., bin. 7in. 4 in., $15 / 6$ each; 8in. 22/6; 6in. 18/6; $10 \mathrm{in} .30 /-$ E.M.I. Double Cone $13 \frac{1}{2} \times 8$ in., 8 or 15 ohm models, $45 /-$ SPECIAL OFFERS! 8 ohm .2 in., $5 \mathrm{in}, ; 15 \mathrm{ohm} .5 \mathrm{in}, 7 \times 4 \mathrm{in}$. $25 \mathrm{ohm} .5 \mathrm{in} ., 6 \times 4 \mathrm{in}$. ; $35 \mathrm{ohm} .5 \mathrm{in},. 7 \times 4 \mathrm{in}$. $; 80 \mathrm{ohm} .2{ }_{4} \mathrm{in}$. 15/6 each type.
Quslity Horn Tweeters $3-16 \mathrm{kc} / \mathrm{s}$. $10 \mathrm{wn}$. 27/6. Crossover $14 / 6$. JACK SOCKETS Std. open-circuit $2 / 6$, close circuit $4 / 6$. Chrome Lead Socket 76. DIN 3-pin $1 / 8$ 5-pin 1/6; Lead 3/6.; 2.5 mm .; 3.5 mm . $1 / 9$; DIN 3 -pin $3 / 6 ; 5-$ pin $5 / 4$.

DE LUXE TAPE SPLICER. Cuts, trims, joins. $14 / 6$ Tape Heada: Collaro 2 track 28/6 pair. B.8.R. 4 traok 99/6 CCHAMYEL IRAKSISTOR MCROPHOSE YIXER Add musical highlights and sound effects to recordings. Will mix mierophone, records, tape and tuner
with sebarate controls into single ouljut. PRIMO A. 18 TRANSCRIPTION TONE ARM. 5 gIS. Moving Coil Stereo Dlamond Cartridge 20-18,000 ops. 5 gns.

VALVES
 SAME DAY SERVICE
 NEW! TESTED! GUARANTEED!

SETS 1R5, 185, 1T4, 334, 3V4, DAF91, DF91, DK91, DL92, DL94.

RE도르B RADDO

85 ESSEX.

Tel. 01-550 7441 Postage on 1 valve 9d. extra. On 2 valvesor more, postage 8d. per
valve extra. Any Parcel Insured againgt Damage in Transit 6 d . extra.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad, Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROChURE to
NAME ...

$7 / 67$
BRITISH NATIONAL RADIO SCHOOL
is quite simple. VR is capable of adjusting the valves' grid bias so that it is positive or negative with respect to its cathode. If it is positive, the valve conducts and the terminal voltage increases. If it goes negative, the valve is cut off and the terminal voltage decreases. Provided the valves' voltage and current ratings are not exceeded quite a wide control of voltage and current can be provided.

Automatic control of terminal voltage in spite of varying load currents, and variation of terminal voltage at the will of the operator is provided by the circuit of Fig. 2, which differs from its predecessor by the inclusion of $V 2, V 3, R 1, C 1$. VR has been transferred from the input to the output.

The operation of the circuit of Fig. 2 is quite simple and depends on negative feedback for its

Fig. 3 (above): Complete circuit of the power unit.
Fig. 4 (below): Component positioning and drilling guide. operation. Effectively, there are two n.f.b. loops operating in parallel, one to deal with slow changes in the load current or when the load is intermittently switched on and off, and the other to deal with rapid changes in the load current. Both are initiated at the grid of V2 and operate as follows. Let us suppose that a load has been suddenly switched into ciruit and, as a result, the terminal voltage starts to fall. A fraction of this voltage is fed to V2 grid by VR1. The cathode of V2 is held at a constant voltage by the stabiliser or reference neon V3 and the grid voltage therefore goes negative with respect to the cathode. As the grid goes negative the anode current falls, and the voltage across the anode load resistor RI decreases. The anode voltage therefore increases, and this increase is passed to the grid of V1. As this increase is positive going VI will pass an increased current and in a well designed regulator this increase will be just enough to maintain the terminal voltage at its original value. Disconnecting a load will work in an opposite direction and in each case the terminal voltage will remain (almost) unchanged.

The second feed back loop for rapid fluctuations in load current is provided by Cl. This capacitor is necessary because although rapid fluctuations are fed back to the grid of V2 via VR1, they are attenuated by a factor equal to the resistance either side of the wiper of VR1. Since the original amplitude of these fluctuations is often less than the change in terminal voltage occasioned by the switching in and out of a load, the voltage arriving at the grid is insufficient to provide adequate compensation. Cl allows virtually the full fluctuating (terminal) voltage to be impressed upon the grid of V 2 and compensation is therefore more effective.

Stabilisation against fairly rapid mains voltage

variation is provided by R1 and R2 which form a potential divider feeding the screen of $V 2$, and therefore exercise some control over its gain. At the same time they allow an increased current to be fed to the reference neon V3 which would suffer
current starvation (and thereby fail to pertorm its function of providing a stable reference voltage) if it were fed only by the meagre cathode current of V2. C2 performs the function of suppressing any noise generated by $\vee 3$.

Circuitry

The complete circuit is shown in Fig. 3 and consists essentially of the circuit of Fig. 2 with the addition of the power supply components, plus the alteration of VI from a triode to a pentode. The mains transformer is a standard type but the 6.3 V winding used to power the heater of the 6 X 4 rectifier and the 6L6 regulator valve must be well insulated because it supplies two valves whose cathodes are several hundred volts above earth potential. This winding must $n o t$ be earthed to chassis, if it is, or if its insulation breaks down, the heater to cathode ratings of the two valves will be exceeded.

The second heater winding is used to supply V3 heater and also external equipment. On the prototype a $3.15 \mathrm{~V}-0-3.15 \mathrm{~V}$ (or 6.3 V C.T.) winding was used, having a current rating of 3 A . As the EF80 has a 0.3A heater, 2.7 A was left for the external equipment. This winding was also left floating permitting either the centre tap, or either side of the heater to be earthed at will. The winding can also be used to supply a valve or valves whose cathode/s may be well above earth potential, without putting undue strain on their heater/cathode insulation.

Smoothing

During off load periods, the voltage across the smoothing components $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{RI}, \mathrm{L} 1$, will rise to the peak value of the input voltage, approximately 420 V . RI can be replaced by another choke, in which case the smoothing will be somewhat improved. Conversely, R1, C1 can be omitted when smoothing will only be fractionally poorer since the feedback network will tend to compensate for their omission. This does not mean that pre-regulator smoothing can be, or should be, skimped, as every little helps. From L1 C3 the smoothed unregulated h.t. is fed into the anode of V2 the series regulator valve via the fuse F2. This affords a measure of
protection should the valve fail, or should the o / p terminals be short circuited.

The rest of the circuit is essentially similar to the skeleton of Fig. 2 with the addition of the grid stoppers R4 and R8 and the V 2 screen stopper R6, these values being uncritical. All grid stoppers should be soldered as close to their respective valve base tags as possible, as their effectiveness decreases as the separation between valve tag and resistor body increases.

As before VRI controls the terminal voltage but its range has been restricted by R 9 and R 10 . At first sight, it might appear possible to vary the terminal voltage between zero and the voltage at the anode of $V 2$, in practice this is not possible. In order to pass current, $V 2$ has to have a voltage across it (VR in Fig. 2), and this voltage subtracted from VI leaves us with Vo, which is the terminal voltage. Vo can therefore never equal V_{I}. A second reason for restricting the range of the terminal
voltage is that the stabilisation rapidly deteriorates (which is the same as saying the internal resistance is increased) below and above a certain terminal voltage.

It is vitally important not to exceed the voltage and current ratings of all components. To do so is to curtail the life of the over run components, perhaps abruptly and violently. Over run electrolytic capacitors can explode with almost unbelievable force and can constitute a considerable personal hazard. Cl in particular has a busy time and must possess not only an adequate d.c. voltage rating but also an adequate a.c. current rating. This must be $\sqrt{ } 2$ times greater than the peak d.c. current drawn. Thus it must have an a.c. ripple rating of 150 mA if the peak d.c. current drawn is 100 mA .

Resistor R5 is most important, and must be a IW high stability type if the internally generated noise is to be held to a very low level. It is desirable, though not essential, for R8, R9 and R10 to be $\frac{1}{2} \mathrm{~W}$ hi stabs. If the constructor feels particularly affluent, he could, with some advantage, make R3 and R7 hi stabs.

Construction

A chassis drilling guide is shown in Fig. 4, and Fig. 5 shows the under chassis layout. The mains transformer, smoothing choke, valve holders, fuses, switches, and capacitors are bolted on, and wiring can commence using 22 s.w.g. tinned copper wire suitably sleeved. Sleeving can be obtained in various colours and the beginner is strongly advised to obtain several different colours. Subsequent faultfinding is much easier if the various parts of the circuit are colour coded. Particular attention must be paid when the electrolytic capacitors C1, C2, C3 are being wired in, as a reversal of polarity

components list

Resistors:

R1	$270 \Omega 3 W$ wire wound	$R 6$	$220 \Omega \frac{1}{2} \mathrm{~W}$
R2	$100 \mathrm{k} \Omega 1 \mathrm{~W}$	$R 7$	$68 \mathrm{k} \Omega 1 \mathrm{~W}$
R3	$68 \mathrm{k} \Omega 1 \mathrm{~W}$	$R 8$	$100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R4	$10 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	R9	$100 \mathrm{k} \Omega 1 \mathrm{~W}$
R5	$300 \mathrm{k} \Omega 1 \mathrm{~W}$ HiStab	R10	$100 \mathrm{k} \Omega 1 \mathrm{~W}$
VR1	$50 \mathrm{k} \Omega$ Lin		

Capacitors:

C1	$8 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic	C 4	$0.5 \mu \mathrm{~F} 350 \mathrm{~V}$
C 2	$16 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic	C 5	$0.1 \mu \mathrm{~F} 350 \mathrm{~V}$
C 3	$16 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic		

Valves:

V1	6×4	V3	EF80
V2	6 L 6	V4	85 A 2

Miscellaneous:

Mains transformer $300-0-300 \mathrm{~V} 60 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$, 3.15-0-3.15V 3A.; two-way tag strip, four-way tag strip; two B7G valve holders, B9A valve holder, octal valve holder; three-way mains input plug and socket, two output sockets, red, two output sockets, yellow, output socket, black, output socket, white; bulb $6.3 \mathrm{~V} 0.15 \mathrm{~A}, 2 \mathrm{~A}$ fuse and holder, 100 mA fuse and holder, choke- $10 \mathrm{H} 60 \mathrm{~mA} 200 \Omega$, 2-pole 2 -way switch, 1 -pole 2 -way switch.

Fig. 6: Paralleling valves for increased current rating.
could prove explosively disastrous. Short circuits can also cause great damage and a sharp lookout should be kept for drops of solder and wire clippings lodged among valve pins.

Initial tests can commence with an ohmmeter connected between chassis and the unregulated and regulated h.t. points. The electrolytic capacitors will. give a low initial reading, which should slowly increase to around $50 \mathrm{k} \Omega$. The regulated h.t. should not read under $250 \mathrm{k} \Omega$, which is the combined resistance of R9, VR1, R10. The resistance between rectifier heater and chassis should be infinity. If the resistance checks are satisfactory it is safe to proceed with voltage and current measurements.

With the mains connected, and a voltmeter capable of reading some 500 V d.c. connected between Cl and earth, the mains switch S 1 can be closed. The voltage should commence to rise after several seconds, smoothly and steadily to 420 V . Due to meter and component tolerances, the indicated voltage may differ slightly from the nominal of 420 V . Since there is no load current being drawn, the same voltage should be present at the anode of V2. The next check point is the o / p terminal, where the voltage should be variable between 260 V and 200 V . Again, due to tolerances, the indicated voltage may be somewhat different. The voltage across V 4 will be 85 V , its cathode current should be centred round 6 mA , with a top and bottom limit of 10 mA and 2.7 mA . ${ }^{\text {Exceeding }}$ the top limit will over run the valve, whilst a current, less than 2.7 mA will result in poor stabilisation. These currents can be controlled by altering R3 and R7 in proportion i.e. if R3 is halved, R7 should also be halved, so that the screen grid of V 3 is maintained at around 200 V . If these checks aare satisfactory the power supply can be considered ready for active service. Provided the current drain is kept within the ratings of V1, V2 and the mains transformer, a long and trouble free period of service should result.

THE writer, who has for some time been considering the construction of a comprehensive transistorised communications receiver, decided to assemble a fairly simple radio using Transfilters* (ceramic filters) before committing himself to their use in a more complex project.

Readers will be familiar with at least one application of the piezoelectric effect, in the crystal cartridge of a record player. Here a mechanical stress is applied to a crystal of Rochelle salt by the needle as it tracks the groove in the record, and a voltage proportional to the stress is developed, across the crystal due to the piezoelectric effect. Similarly, if a voltage is applied across such a crystal from an outside source, the dimensions of the crystal change. The principle is also applied in the quartz crystals often used as frequency standards in "ham" and commercial transmitters. Just as a clock pendulum takes a fixed time for each swing, so each crystal has a natural frequency of vibration from which it cannot depart. If the frequency of an applied alternating voltage matches this natural frequency, the energy supplied electrically transfers to the mechanical vibration. The amplitude of the displacements is therefore much larger than in the case of forced vibrations resulting from an applied field of a different frequency. This is the phenomenon known as resonance. A resonant crystal can then fix the fre-

[^3]quency of an oscillator in the same way as a tuned circuit. In the Transfilter these characteristics are added to an impedance matching facility, and as a consequence the device can replace a tuned transformer. A closer examination of this final point is worthwhile.

IMPEDANCE MATCHING

It will be remembered that maximum power transfer between two circuits occurs when the output impedance of the first is equal to the input imperdance of the second. In a common-emitter transisto- amplifier, the input impedance is low, while the output impedance is relatively high; in other words, the signal applied to a transistor is at a fairly high current and low amplitude (voltage), while, at the output, the current is quite low for the amplitude involved. If much of the transistor's amplification is not to be lost in the coupling, some form of impedance matching circuit must be inserted between this and the following stage. This is effected in the i.f. transformer by choice of an appropriate natio between the number of turns in the primary and in the secondary windings of the transformer. A further design consideration is selectivity, the ability of the transformer to reject signals at frequencies even slightly separated from the i.f. This depends on the "Q" of the coil, a factor influenced by the actual number of turns on the tuned winding of the coil. All these characteristics are built into the Transfilter.

The element of importance in a Transfilter is, of course, the piezoelectric crystal; in those used in the radio to be described, it is a disc of lead-zirconate-titanate ceramic. One side is coated with

Fig. 1: Circuit diagram of the complete receiver.

silver and forms a terminal common to the input and output circuits. A ring and a dot of silver on the other face form the output and input terminals respectively. It will be remembered from the description of the piezoelectric effect that the potential generated is proportional to the mechanical stress at any point on the crystal. Therefore the high impedance electrode is applied at the point where maximum displacement occurs, and as the discs vibrate in a radial mode, this corresponds with the dot terminal at the centre of the disc. No current actually flows through the device, but as already explained, there is an energy transfer between the electrical circuits and the mechanical vibration. The resulting power loss from the driving stage is the equivalent of a load; similarly the input of the

Fig. 2. Transfilter equivalent circuits in conventional components.
following stage places a mechanical damping on the vibrating crystal. The energy transferred depends on the area across which transfer is possible, as well as the concentration of energy in that area. Therefore, the central high-impedance dot terminal is of small area, while the outer ring terminal has a much larger contact area; this is because, as already mentioned, a higher voltage is applied, and a larger displacement occurs at the centre, so that there is a concentration of energy there. On the ring, in contrast, the amplitude of the mechanical vibration is lower, and a larger area is required to absorb the power transferred through the Transfilter. Therefore, the difference in area and amplitude correspond exactly to the differences in current and voltage in a conventional transformer, and an impedance matching characteristic results. Further, this matching is frequency-specific, since the applied signal cannot cause vibrations of appreciable amplitude unless it is at the resonant frequency. As for the selectivity of the current, it will be remembered that the Q of a crystal is very high. The damping effect of the load will reduce this somewhat, but the figure of 450 is quoted for the units specified,

which compares very favourable with the 110 of a typical single-tuned i.f. transformer.

How, then, could the Transfilter be expected to compare with the transformer in a typical i.f. stage? Obviously, with the higher Q , greater selectivity would be expected, which would give sharper tuning and a reduction in adjacent-channel interference, a property which is very desirable with the current overcrowded wavebands. This is associated with a low mid-band insertion loss, that is, that most of the power of the input signal applied at the resonant frequency of the Transfilter finds its way at the proper impedance into the following stage. As a result, the radio should be more sensitive to the station to which it is tuned, while discriminating more effectively against transmissions on frequencies even only slightly separated from the desired carrier.

FREQUENCY STABILITY

Such advantages are not achieved without some. difficulties, however. It is important to ensure that the ratio between the source and load impedances is set close to the value for which the Transfilter is designed to match; otherwise damping exceeding the specified limits may cause its resonant frequency to change. This will not trouble the constructor if he uses transistors manufactured to a reasonably close tolerance, especially in regard to their input impedance. (If, however, "surplus" transistors are employed, and unsatisfactory operation results, this may be the explanation of the problem, and a possible cure is to vary the base bias, so shifting the operating point of the transistor.)

One other piezoelectric device is employed in the circuit, the filter element type TF-01D, which

Internal view of the completed receiver.

Fig. 3(a): Passband of i.f. stage using (1) an emitter bypass capacitor (2) a type TF Transfilter.
Fig. 3(b): Attenuation curve of emitter bypass Transfilter type TF.
replaces the bypass capacitor otherwise required across the emitter resistor of TR2. This increases still further the selectivity of the circuit, the attenuation curve is shown in Fig. 3a. All three of the ceramic filters are chosen to operate at the same resonant frequency under the conditions expected in the circuit. As external adjustment of this frequency analogous to tuning an i.f. transformer is impossible, the supplier has to set this accurately during manufacture, and package the element so that long-term stability of resonant frequency can be expected. In fact the Transfilters are supplied to operate at $470 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{kc} / \mathrm{s}$, and frequency stability is claimed to be within 0.2% over ten years, and within 0.1% between $-20^{\circ} \mathrm{C}$. and $+60^{\circ} \mathrm{C}$. Such figures should satisfy even the most critical constructor.

CIRCUIT DESCRIPTION

Now to consider the particular circuit employed. The frequency changer is completely standard, covering long and medium wavebands, and as such requires no further comment. As no current can flow through the Transfilters, resistors R4 and R8 are inserted to carry the collector currents of Trl and Tr 2 . As can be seen, the symbol chosen by the manufacturers to represent the Transfilter clearly expresses its structure and relationship to the quartz crystals used in transmitting, as already noted. An orthodox i.f. transformer is used to drive the diode detector.
The audio stage is a four-transistor unit with an -n-p-n-p-n-p complementary output stage delivering approximately 300 mW to a $2 \frac{1}{2} \mathrm{in}$. loudspeaker.

A PP3 type battery was used in the prototype, but depending on the loudspeaker fitted, there may be space for the larger and more economical PP4.

Fig. 4: Connection details for the ferrite rod aerial.

The receiver is assembled on two separate etched circuit boards. one carrying the frequency changer and band switching components, and the other the i.f. amplifier with its transfilters and the audio stage. The mounting of these boards is illustrated-the r.f. board fixed with screws to the front of the cabinet so that the spindle of the tuning capacitor projects through the hole in the front of the cabinet, and the volume control is accessible through the aperture in the side; the i.f. and audio board then fits perpendicular to this along the length of the cabinet. The ferrite rod (T1) is mounted in a plastic

Fig. 5: Component layout of r.f. printed circuit board.
clip on the r.f. board. The tuning dial may have to be modified for the Plessey gang specified. This is done by obtaining two metal washers which just fit on the spindle and pressing them with a hot soldering iron into the plastic of the dial, one on each side. The dial will now be a good fit on the spindle, and when the set is assembled, can be retained in place by a screw in the threaded centre hole of the spindle.

ETCHED CIRCUIT BOARD

The method of preparation of etched circuit boards will be familar to regular readers. The patterns for the application of the protective paint to the copper laminate on the boards are shown, and should be carefully copied. When this paint is dry, the unwanted copper is removed with ferric chloride (FeCl_{3}) solution, the paint scraped off, and the board carefully washed and dried. In this particular case, due to the complex patterns, the alternative of assembly on pieces of "Veroboard" seems impractical, but for those really anxious to avoid the use of chemicals it is possible to mount the components on a plain paxolin sheet, and connect them on the reverse side with thin tinned copper wire. With either method, component mounting holes must be drilled with a fine bit, and a cut-out made in the r.f. board to take the tuning capacitor. (A fretsaw proves the most convenient tool for the operation.) On the r.f. board, the volume control, tuning capacitor, and wavechange switch must be mounted on the copper side of the board if they are to be accessible through the appropriate apertures. The tuning capacitor is fixed in position by bending its terminals stepwise to let it a little into its cut-out, and then soldering them to the "islands" of copper left for them. It must not be forgotten to earth the tag at the centre of the tuning capacitor with a short length of copper wire to the circuit board. Other connections between the two boards are the negative supply to the potential divider for the base of Trr, the earth or positive line, and the signal output to Fl at intermediate frequency from the collector of Trl. Finally the ferrite rod aerial (T1) is mounted in its clip and the appropriate connections made to the tuning

Fig. 7: Transfilter details (a) type TO (b) type TF.
capacitor and wavechange switch. The wires to the aerial windings should not be made unduly short, as the position of these must be adjusted during alignment. Before mounting the assembly in the cabinet, a slot must be cut in the front of the cabinet for access to the wavechange switch, as the photograph shows.

R.F. ALIGNMENT

After checking with a testmeter to ensure that there are no short circuits or other obvious faults, a battery may be connected and the set switched on. Since the i.f. stages are already aligned, with the exception of the i.f. transformer preceding the diode, the local station should be audible at fair strength. Alignment can therefore begin by peaking i.f.t. 1 core. R.F. alignment is carried out first on the medium wave, by adjusting the aerial and oscillator inductances while tuning a station at the low-frequency (longer wavelength) end of the band. A station at the high-frequency (Luxembourg) end is then selected, and maximum volume obtained by the proper setting of the trimmers mounted on the -continued on next page

Fig. 6: Layout of the i.f. and audio printed circuit board.
tuning capacitor. For perfect alignment the aerial coil and oscillator core may be rechecked. Since only the BBC Light programme is of interest on the long waveband, the oscillator trimmer and the aerial coil were considered to provide sufficient adjustment for this band. If the medium wave alignment was properly carried out, this programme should be immediately audible, and maximum volume is achieved using the above components, without touching those which affect performance on the other band.

components list

The reader will realise that this is not a set recommended as a first attempt for the beginner; neither is it to be regarded as a quality "hi-fi" receiver, but rather as a test and experimental unit to gain experience with unfamiliar components, both as regards assembly and in general use. As such, the writer feels that it is a worthwhile project, and would make the following assessment of the finished receiver. Sensitivity, while as good as that of any comparable pocket portable, was not as outstanding as one would expect from the quoted insertion loss figures for the Transfilters. However, they really proved their worth for selectivity. On the long waveband, the Light programme came in with the precision of tuning that one associates with a medium wave station, while in the evening the usual confused babble of stations around 200 metres was incisively cut through. As for quality, the simple output stage and small loudspeaker do not provide a fair test, but on making tape recordings from the diode detector stage, very satisfactory results were obtained. In conclusion, the author would like to thank the Brush Clevite Company Limited, manufacturers of the Transfilters, for information and co-operation received.

repairing radio sets

-continued from page 184
polythene spacers may be used (the dielectric constant thus obtained enabling a physically smaller capacitor to be constructed).

With these devices, as with compression trimmers that employ thin slips of mica, it is important that the dielectric is not chipped, bent or otherwise damaged. Replacing these insulating chips with another material (the ubiquitous polythene bag has possibilities!) may then require re-setting of the trimmers and padders to regain correct calibration and tracking.
Gordon J. King has discussed the techniques of alignment in Part 3 and at this point we need not pursue the matter.

* AERIAL SECTION

As a final note, the aerial section of the average receiver consists nowadays of coils wound on a ferrite rod or slab, giving fairly broad tuning, their position on the rod providing a point of maximum gain. The danger points are always the lead-out wires. These are very fine, usually enamelled and perhaps covered as well. When they break it is often an advantage to repair at the coil end, taping the joint to the rod or coil former and allowing the strain to be taken by the new lead-not the original fine wire.

More will be said about this, and the types of switch and control component used in smaller sets when we discuss the repair and adjustment of portable receivers.

FOR maximum response from any receiver, all stages should be in tune, i.e.: r.f., i.f., and b.f.o. By the method described here this can be achieved easily and speedily for any desired frequency, involves only one movement-the main tuning dial-and ensures that each time the receiver is "spot on". It is a method used by all professional radio operators throughout the world and is called "single signal reception".
S.S.R. is a method of tuning a receiver by listening for a predetermined tone output. When at anytime this predetermined tone is heard, it is immediately known that the receiver is "on tune" in every stage in the set. In the initial setting up of the receiver the b.f.o. is off-set by an amount equal to the required tone so that the signal received must be at intermediate frequency in the i.f. stages and hence receiving maximum response.

All too often one picks up a radio journal and reads an article on the subject which states something like. ..." and if the signal should drift, follow it down with the b.f.o." or " . . . search with the b.f.o." This is wrong! The beat frequency oscillator is not a fine tuner. When your receiver is properly set up, the b.f.o. control should never be touched! If it is, you will be upsetting the output response curve, thus lowering the gain and therefore reducing signal strength of those already too weak and coveted DX stations.

AUDIO FREQUENCY IMAGE

Enthusiasts fresh to radio and lacking experience, sometimes unknowingly tune their receiver to the audio image and attempt copy.

The difference between the resonant signal and the audio image in terms of readability and signal strength is a staggering amount and is only appreciated when one has learnt to discriminate between the two.

In technical terms the audio frequency image is a frequency $2 \mathrm{kc} / \mathrm{s}$ off tune in the i.f. stages at intermediate frequency. Let us take an example. If we wish to tune our receiver to WWV on $10 \mathrm{Mc} / \mathrm{s}$ and our i.f. is say $500 \mathrm{kc} / \mathrm{s}$, our b.f.o. should be $499 \mathrm{kc} / \mathrm{s}$. We have:-

R.F.	L.O.	I.F.	B.F.O.	A.F.
$10000 \mathrm{kc} / \mathrm{s}$	$10500 \mathrm{kc} / \mathrm{s}$	$500 \mathrm{kc} / \mathrm{s}$	$499 \mathrm{kc} / \mathrm{s}$	$1 \mathrm{kc} / \mathrm{s}$

Now if our receiver is tuned to $9998 \mathrm{kc} / \mathrm{s}$ in mistake for $10000 \mathrm{kc} / \mathrm{s}$ we have:-

$$
\begin{array}{ccccc}
\text { R.F. } & \text { L.O. } & \text { I.F. } & \text { B.F.O. } & \text { A.F. } \\
9998 \mathrm{kc} / \mathrm{s} & 10498 \mathrm{kc} / \mathrm{s} & 498 \mathrm{kc} / \mathrm{s} & 499 \mathrm{kc} / \mathrm{s} & 1 \mathrm{kc} / \mathrm{s}
\end{array}
$$

In other words we have a signal identical to the required one but $2 \mathrm{kc} / \mathrm{s}$ off tune in the i.f. stages and not giving maximum response.

This effect is known as the audio image and can easily be demonstrated by taking the main tun-

ing dial through any c.w. signal past the zero beat and up through the other side with the crystal filter in circuit.
The advantages of single signal reception are speedy and accurate tuning. Also, no interfering signal can give you the exact same tone output as the required signal tuned to resonance, therefore the interfering signal has a weaker response and consequently a weaker gain.

SETTING UP

Before you commence work the receiver should be set up initially as follows:-
(1) Switch receiver to its highest range and set main dial around say 25 to $30 \mathrm{Mc} / \mathrm{s}$ with only background noise in the headphones.
(2) Switch to narrowest selectivity. This brings the crystal filter into circuit.
(3) Zero beat the b.f.o. with the noise in the i.f. stages. This will be noticed as a "hole" in the noise or a drop in intensity. The b.f.o. is now at intermediate frequency.
(4) Still in the narrow selectivity position switch the receiver to a lower range and with the main dial find and zero-beat any strong signal. The receiver is now at resonance in all stages.
(5) Now off-set the b.f.o. control to the required tone of your own choice.
(6) Using the main tuning dial go down through the dead-space and up the other side until the audio image is heard; this is a regional tone but weaker. If the receiver is fitted with a phasing control eliminate the a.f. image. A word here to the novice; in some receivers such as the HRO series, the phasing control is external. In practice it is also used to eliminate unwanted interfering stations $0 \cdot 3$ to $3 \mathrm{kc} / \mathrm{s}$ above and below resonance.

Other receivers (such as the AR88 etc.) have the phasing control internal and it is preset by trimmer adjustment; this comes into circuit with the crystal filter at selectivity $4(1 \cdot 5 \mathrm{kc} / \mathrm{s})$. The audio image could be eliminated by having such good selectivity in the i.f. stages that it receives no response at all, but in practice this has not yet been realised.

The receiver is now set up for single signal reception providing the b.f.o. control and phasing control are not, repeat not, moved.

West Kent Courses

Readers living in the West Kent area may be interested to hear of our radio and electronics courses. From September 1967 until July 1968 we shall be running full time radio and television servicing and electronics servicing courses to intermediate City and Guilds/ETEB Certificate level. Applications can be considered from prospective students residing outside Kent.
M. D. Turner.

West Kent College, 88 Grosvenor Road, Tunbridge Wells.

9 to 5 Ham

One of my pet grouses concerns amateur licences. During the course of my work I am fully competent to be trusted with the use of v.h.f. radiotelephone equipment with a range of up to 35 miles under favourable conditions. As a member of the AA, I could also enjoy the facilities of two-way radioalbeit at a fee.

Yet, as simple me has failed the RAE twice, I am denied the pleasure of ham radio. Where is the sense in it all? I only hope that my third attempt at the RAE may prove more successful. Meanwhile it looks as if I'm confined to v.h.f. 9 to 5 !
T. Hawker.

Southmead, Bristol.

Unimportance of Transistors

Edwin King (P.W. April 67) seems to be having trouble with his transistors. I used to worry unduly once, but now I find the best way round this trouble is put in any old transistor, using sockets in the experimental set-ups, and gradually increase the voltage to the stage under development, whilst monitoring the current in the collector circuit. One can get quite a good idea of what's going on, and even save a semiconductor from destruction. There is, by the way, quite a good transistor equivalents book by R.C.A. It is not cheap, but it is very helpful.

In actual fact, it's really extraordinary how similar any given type of transistor (r.f. a.f. etc.) of one make is to its equivalent of another make; this sounds Irish, but I'm sure Edwin King will get my point. It's only when we soar into the v.h.f. and u.h.f. regions that we find we have to get the right transistor . . . or else.
l'd like to see a nice "one square Hertz" on my scope screen. Teenagers really would take me for a nut, if I said he was a square.
Hugh Wagner.
Kuala Lumpur,
Malaysia.

NEWS AND..

P.W. AND P.TV. FILMSHOW 1967

The Chairman, Mr. W. N. Stevens, opened the meeting and introduced members of the P.TV. and P.W. editorial team to the audience. He explained the problems of catering for a wide variety of interests and a wide range of technical levels among readers of both journals. He then introduced Mr. S. L. Johnson who spoke of the market research he is undertaking in order to provide the editor with facts and figures to add to the pool of knowledge as to reader requirements.

Mr. I. Nicholson then introduced the Mullard film "Electrons in Harness"-in essence a tour around the Mullard Research Laboratories outlining the programmes of development now being undertaken. After the film, and a break for refreshments, during which readers had an opportunity to meet fellow enthusiasts, Mr. Nicholson delivered a lecture on "'Transistors in Television".

He outlined the advantages and disadvantages of the use of transistors in television circuitry, explaining that it was because of their greatly improved noise performance at u.h.f. that transistors first entered the television field, of necessity in the u.h.f. tuner. The four main stages in a transistorised TV receiver which had presented design problems, were the tuner, the video output stage, the line output stage and the power supply. Mr. Nicholson said that these difficulties had been presented because, until recently, they simply had not had suitable transistors to fulfil these requirements.

In conclusion, Mr. Nicholson said that there was little doubt that the use of transistors in colour television would move faster than in monochrome. The stages in a colour receiver from the decoder system right up to the colour difference (chrominance and luminance output stages would be transistorised also. He said that on average the colour set would utilise fifteen transistors in addition to the eleven or so in the tuners and i.f.'s. So, with monochrome sets having several diodes, eleven transistors and seven or eight valves, the colour sets would have rather more diodes, twenty-five transistors (instead of eleven) and probably ten valves (instead of seven or eight), so it should now be obvious to everybody that as far as television was concerned, transistors were definitely IN.

Picture shows Dennis Rookard from Radio New York Worldwide interviewing Mr. I. Nicholson (centre) and Mr. W. N. Stevens, the Editor.

...COMMENT

HIGH PERFORMANCE 'SCOPE

The Solartron Electronic Group, Farnborough, Hampshire, has introduced a new high performance solid state portable oscilloscope. Called the CD 1642 , it weighs only 22 lb . and has a screen area of $6 \times 10 \mathrm{cms}$. Operation can be from mains, external d.c. $12-30 \mathrm{~V}$ or from an internal battery. UK selling price is $£ 299$.

RADIO NEW YORK WORDWIDE BACK ON AIR!

After eight days of radio silence due to a fire which destroyed its transmitters, Radio New York Worldwide's international outlet, WNYW resumed operations on Monday, 17 April 1967 with broadcasts to Western Europe in the English language on $21.530,17.845$ and $15.440 \mathrm{Mc} / \mathrm{s}$ from 1800 to 2100 GMT daily.

With full-time operations now being planned for the near future, Radio New York Worldwide will operate on this provisional schedule until further notice.

DXing Worldwide . . . Radio New York Worldwide's special programme for the international listener interested in news as to what stations are being heard in his area, features dealing with the world of international radio, electronics and technical news can be heard at 2030 GMT on $21 \cdot 530,17 \cdot 845$ and 15.440.

CARDIN DESIGNS A TRANSISTOR RADIO

Pierre Cardin, Paris fashion designer has set a new trendin transistor radios! He has designed a new set-the Civic-made to be worn rather than carried.

The set was produced as a result of international co-operation between France as represented by Cardin; Civic, the
 British electrical retailing group and Mitsubishi, the $3,000,000,000$ dollar a year Japanese manufacturing complex. The result is a pocketsized m.w.7-transistor receiver weighing only 7oz. and measuring $3 \frac{3}{8} \times 1 \frac{3}{4} \times 3 \frac{3}{8}$ in. which should sell at about 6 guineas.

It is housed in a green case with gold trim and there is a space for personalising the set with the owner's initials. It has a small cord attached enabling it to be hung from a belt or a lapel.

THE LATEST HEATHKIT CATALOGUE FROM DAYSTROM

Daystrom Ltd., Gloucester, announce their latest catalogue 87/2. The new models featured in it include the a.m. $/$ f.m. Stereo Tuner, model AFM-2 which matches the styling of the AA-22U amplifier, and the new American s.s.b. models consisting of the SB-101 Transceiver, SB-301. Receiver and SB401 Transmitter. In addition the HW12A and HW-32A restyled transceivers are featured. Copies of the catalogue are obtainable free, from Daystrom at the above address.

Chance of Success

A kit is sold to amateurs on the basis that it will make a functional radio if parts are assembled with the necessary care. If parts are missing or if any component is defective or outside tolerances, the kit will not produce the object it was sold to the customer to make. Surely the reverse of caveat emptor applies here, for the amateur cannot be expected to test components. The position is different if any part of the construction has been attempted, for the goods will have been materially altered.

A kit I recently purchased contained small components which the supplier stated had been "batch tested" only. The standard reached in the tests was not disclosed, but using the conventional formula $P=x^{n}$, where P is the probability of making a defect-free set, \mathbf{x} is the batch-test good proportion and n is the number of components in the set, then the following table is obtained:

\% good com- ponents in batch-test sample Over	\% probability of $99 \cdot 9$
set being defect free	
99.9	Certainty
$99 \cdot 0$	95.5
$98 \cdot 0$	36
$97 \cdot 0$	22
$96 \cdot 0$	12
$95 \cdot 0$	8
$94 \cdot 0$	4.5

Below $94.0 \quad$ No chance at all $\mathrm{n}=50$ in the table, since this is the minimum number of components in a transistor superhet radio set.

Who would buy a set with the assurance of only a 60% chance of success? What are the normal batch-test results like? A star system, like that for petrol, now that BS4040 is in use, should be employed. In this case, packets of components for kits would bear stars giving a grading for the range of the first per-cent of defectives found in batch tests. The 99 rating could be omitted completely !

Since the above grading system would be too fine for some kits, it clearly pays to examine the components before starting assembly and to query even one defect. The Sale of Goods 1893 Act is almost sure to be on the purchaser's side. R. B. Anderton.

Black heath,
London, S.E. 3 .

Topband Transceiver

With reference to my topband transceiver (P.W. March, 1967), I have found a vast improvement in speech quality by connecting a 33 pF capacitor between the diode and the v.f.o. tuned circuit. The capacity of the diode by itself is not really sufficient.
T. Simon.

St. Albans, Hertfordshire.

in-line audio AGCunit l. MchaMarba . .Sc.

READERS familiar with semiconductor radio circuits will know that the gain of an amplifier stage is dependent on the biasing of the various transistors. In the standard superhet circuit, the diode following the final i.f. transformer performs a dual function. When an amplitude modulated, high frequency signal enters it, the negativegoing half of each cycle is blocked, while the positive-going half passes through, to develop a proportional voltage across the load. This is usually the volume control, see Fig. 1. The amplitude of this voltage at any moment corresponds to the audio signal modulating the distant transmitter, but there is also a d.c. component generated.

Since only positive-going half cycles are passed by the detecting diode, it follows that the time average of the voltage across the volume control will be a d.c. which is positive with respect to the earth line. (In this discussion, it is assumed that the usual p-n-p transistors and positive earth line are employed, as illustrated in Fig. 1.) This d.c. component as filtered out and smoothed by $\mathrm{R} 2, \mathrm{Cl}$ and C 2 (cp. the smoothing circuit of the standard h.t. power supply) has a voltage dependent on the power of the r.f. signal received by the set. If, then, the potential divider supplying the bias to the first i.f. amplifying transistor is connected between the decoupled negative line and this smoothed positive d.c. source, rather than between the negative line and earth, it follows that when a more powerful signal is tuned in, the base will go more positive and the transistor will be biased nearer cut-off. The gain of that particular amplifier stage will therefore drop. This is the whole point of an a.g.c. circuit-to reduce the difference in the signal as delivered to the audio amplifier when stations of significantly different powers are received. Otherwise, if the set were made sufficiently sensitive to receive the weaker signals, it would be seriously overloaded, with resultant distortion, when tuned to a local transmitter.

The same problem arises with audio systems. If one tries to tape a discussion, it is usually necessary

\star components list

to adjust the gain control each time a speaker neareror further from the microphone wishes to come in. A similar problem arises with public address systems in halls. It is almost comparable to the operation of ${ }^{-}$ one of the earlier t.r.f. radio receivers, in which it was necessary to tune the band with one hand on the tuning knob and the other on a reaction or f.f: gain control! Prompted to some extent by a recent. Practical Wireless article (H. W. Hellyer, July 1966), the author decided to investigate an add-on unit that would give existing p.a. systems ortape recorders an automatic gain control feature (now available on a few models.) For convenience, the; unit should require no adjustment once built, other-wise it would confer no advantage over the normal manual gain control, but would simply receive theoutput from the microphone, apply the automatic: amplitude limitation, and pass the resulting signal into the recorder or amplifier in the normal manner. It was also required that the quality of the repro-duction would be, as far as possible, unimpaired, unlike the "clipper" type of limiter, which changes. the shape of the input waveform, and, though satis-

Fig. 1: Typical a.g.c. system found in transistor. receivers.

know the ime the world over wilh the fantastic SeIKO world ${ }^{3}$ lime watch

The World Time watch actually tells you at a glance the time not only here at home, but also in places like Tokyo, Sydney, Auckland, Honolulu, Los Angeles, Chicago, Karachi, Calcutta, Bangkok or Hong Kong.
An invaluable aid for the short wave enthusiast, this 17 jewel watch is made by SEIKO ... which means guaranteed accuracy, superb finish and highest quality. Only SEIKO stop watches and sports timers were officially selected to time the Tokyo Olympics.

ELECTROLYTIC CONDENSERS							
-25 $\mu \mathrm{F}$	3 volt	$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$16 \mu \mathrm{~F}$	16 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	10 volt	$4 \mu \mathrm{~F}$	4 volt	$16 \mu \mathrm{~F}$	30 volt	64 $\mu \mathrm{F}$	10 volt
$1 \mu \mathrm{~F}$	15 volt	$4 \mu \mathrm{~F}$	12 volt	$16 \mu \mathrm{~F}$	150 volt	$64 \mu \mathrm{~F}$	40 volt
$1 \mu \mathrm{~F}$	40 volt	$4 \mu \mathrm{~F}$	25 volt	$20 \mu \mathrm{~F}$	3 volt	$100 \mu \mathrm{~F}$	3 volt
$1 \mu \mathrm{~F}$	50 volt	$4 \mu \mathrm{~F}$	100 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	6 volt
$1 \mu \mathrm{~F}$	350 volt	$5 \mu \mathrm{~F}$	5 volt	$20 \mu \mathrm{~F}$	9 volt	100 $\mu \mathrm{F}$	10 volt
$1.25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	25 volt	$20 \mu \mathrm{~F}$	15 volt	100 $\mu \mathrm{F}$	12 volt
$2 \mu \mathrm{~F}$	3 volt	$5 \mu \mathrm{~F}$	50 volt	$25 \mu \mathrm{~F}$	6 volt	100 ${ }^{\text {F F }}$	15 volt
$2 \mu \mathrm{~F}$	9 volt	$5 \mu \mathrm{~F}$	70 volt	$25 \mu \mathrm{~F}$	12 volt	150 $\mu \mathrm{F}$	12 volt
$2 \mu \mathrm{~F}$	10 volt	$6 \mu \mathrm{~F}$	12 volt	$25 \mu \mathrm{~F}$	25 volt	150 $\mu \mathrm{F}$	25 volt
$2 \mu F$	15 volt	$6 \mu \mathrm{~F}$	15 volt	$25 \mu \mathrm{~F}$	30 volt	$200 \mu \mathrm{~F}$	3 volt
$2 \mu \mathrm{~F}$	70 volt	$6.4 \mu \mathrm{~F}$	40 volt	$30 \mu \mathrm{~F}$	6 volt	$200 \mu \mathrm{~F}$	4 volt
$2 \mu \mathrm{~F}$	150 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	10 volt	$200 \mu \mathrm{~F}$	96 volt
$2.5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	6 volt	$30 \mu \mathrm{~F}$	15 volt	$250 \mu \mathrm{~F}$	2.5 volt
$2.5 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$32 \mu \mathrm{~F}$	1.5 volt	250 2 F	9 volt
$3 \mu \mathrm{~F}$	3 volt	10, F	6 volt	$32 \mu \mathrm{~F}$	25 volt	$250 \mu \mathrm{~F}$	15 volt
$3 \mu \mathrm{~F}$	12 volt	$10 \mu \mathrm{~F}$	10 volt	40 $\mu \mathrm{F}$	3 volt	$320 \mu \mathrm{~F}$	2.5 volt
$3 \mu \mathrm{~F}$	25 volt	$10 \mu \mathrm{~F}$	12 volt	$40 \mu \mathrm{~F}$	6.4 volt	500 F F	4 volt
$3.2 \mu \mathrm{~F}$	6 volt	10, F	25 volt	$50 \mu \mathrm{~F}$	6 volt	$640 \mu \mathrm{~F}$	2.5 volt
$3 \cdot 2 \mu \mathrm{~F}$	6.4 volt	$12.5 \mu \mathrm{~F}$	4 voit	$50 \mu \mathrm{~F}$	9 volt	$750 \mu \mathrm{~F}$	18 volt
$3.2 \mu \mathrm{~F}$	40 volt	$12.5 \mu \mathrm{~F}$	40 volt	$64 \mu \mathrm{~F}$	2.5 volt	1000 $\mu \mathrm{F}$	6 volt

		PAPER CONDENSERS			
$-001 \mu \mathrm{~F}$	500 volt	$.02 \mu \mathrm{~F}$	600 AC	$-25 \mu \mathrm{~F}$	350 volt
$.001 \mu \mathrm{~F}$	1000 volt	$.02 \mu \mathrm{~F}$	350 volt	$.5 \mu \mathrm{~F}$	150 volt
$.002 \mu \mathrm{~F}$	500 volt	$-1 \mu \mathrm{~F}$	350 volt	$.5 \mu \mathrm{~F}$	350 volt
$.005 \mu \mathrm{~F}$	750 volt	$.1 \mu \mathrm{~F}$	750 volt	$.5 \mu \mathrm{~F}$	500 volt

All at $\mathbf{1 5 /}$ - per 100 or mixed packet (our selection) 50 for 10/-.
VERY SPECIAL VALUE! SILVER MICA, POLYSTYRENE, CERAMIC CONDENSERS. Very well assorted. Mixed types and values. 10/- per 100.

RESISTORS

Very small ! watt, 5% long leads, Ideal for transistor work .. 10/. for 50 ${ }_{\frac{1}{4}}^{3}$ watt assorted values including printed circuit types 101$10 /-$ for 100
$55 /-$ for 1000
$\frac{1}{2}$ watt to 3 watt mixed values and types 10/- for 100
To clear 10 meg . $1 / 4$ watt resistors. £1 per 9000 WIRE-WOUND $35 /$ for 1000 6d. each. 7 watt, 10 watt, 8 d . each. Most values, 1Ω to $47 \mathrm{k} \Omega$.

TRANSISTORS
AFZ12 screened V.H.F, oscillator transistors, 5/- each. OC44, OC45 R.F. Transistors, 2/6 each. OC8iD, 2/6 each. OC71 equivalent 1/- each, f3 per 100. Switching Transistors ASY 22 (P.N.P.) or I.B.M. (N.P.N.) 6 for 10/m. Car radio type Output Transistors type NKT405 10/- each. Unmarked, untested translstors, 50 for $10 / \mathrm{m}$. Light-sensitive transistors similar to OCP71, 2/-each.

	TELEVISION VALVES, BRAND NEW AND BOXED				
PCF80	$7 / 6$	PCC84	$5 / 6$	PCL83	$9 / 6$
PCL84	$7 / 6$	EY86	$6 / /$	PCL85	$7 / 6$
PL36	$9 /-$	PCC89	$9 / 6$	ECC82	$6 / 6$
ECL80	$6 / 6$	PCL82	$7 / 6$	PY33	$9 /-$
PL81	$7 / 6$	PY81	$6 /=$		

SILICON DIODES. Make excellent detectors, also suitable for keyIng electronic organs. 1/- each or 20 for 10/-
BY100 TYPE TELEVISION H.T. RECTIFIERS. SPECIAL PRICE 5/- each 30/- doz. ORP 12 light sensitive resistors $9 /-$ each
TRANSISTOR BATTERY ELIMINATORS - same size as PP9 30/-; PP6 $20 /$
BATTERY CHARGERS, with meter and fuse. $4 \mathrm{amp} .6 / 12$ volt $55 /-$ each.
SOLON MODEL 615 Slim Pencil-bit Soldering frons $25 / 4$ each.
WELLER DUAL-HEAT SOLDERING GUN, $57 / 6$.
NUTS, SCREWS and WASHERS. very uselul assorted packs, 6/- each.
WALKIE-TALKIES (not for use in U.K.) $\mathbf{7 . 1 0 . 0}$ pair.
SIGNAL INJECTOR. Parts and circuit to mahe $10 /$ - only.
SIGNAL TRACER. Parts and circult to make $10 /-$ only.
MOTOR CAR REV. COUNTER (less 1 mA meter). Parts and clicult to make 10; Only.
TRANSISTORS, COMPONENTS AND CIRCUIT. To convert 1 mA meter to 0 to 10 Meg . ohm meter $10 /$.
TRANSISTORISED RUMBLE AND SCRATCH FILTER (for improving reproduction of old records) all components and circuit 30/..

SINCLAIR. All products in stock Including latest version of MICRO-6. World's smallest radio, and only 59/6.
NEEDLES FOR RECORD PLAYERS. HALF PRICES. All types below at $3 / 6 \mathrm{ea}$. TC8LP; GC2LP; GC8LP; BF40LP; GP67LP; GP37; GP59; TC8 Stereo LP; Studio OLP. CARTRIDGES. Sonotone Mono 10\%. Acos 15/. Acos Stereo Sapphire 12/6. Diamond 17/6. All complete with needles!
LAPEL MICROPHONES. Magnetic or Crystal 10/- each.
TAPE RECORDER MICROPHONES. Fantastic value at 12/-each
ACOS MIC. 45 30/-. Many other both crystal and dynamic in stock.
THIN CONNECTING WIRE. $10 y \mathrm{ys}$. $1 /-; 100 y \mathrm{ys} .7 / 6$; 500 yds . 25/- post $4 / 6$; $1,000 y$ ds. $40 /=$ post $6 /-$

LOUDSPEAKERS. 12 in . Richard Allen 37/6. 12 in . Bakers Guitar 25.5.0. $3 \mathrm{in} ., 4 \mathrm{in}$. 5 in , and $5 \times 3 \mathrm{in}$. all at $10 /$ each. $8 \times 2^{\frac{3}{4} \mathrm{in}} .12 / 6.2 \mathrm{in} .80$ ohm $7 / 6$. EARPIECES. Magnetic or Crystal 5/- each.

VEROBOARD								
$2 \frac{1}{2} \times 5 \mathrm{in}$.	.	.. 3/11	Terminal Pins..	.-			50 for	3/-
$2 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$.	.	.. 3/3	Spot Face Cutter					
$3 \frac{3}{2} \times 5 \mathrm{in}$.		.. 5/6	Pin Insert Tool					9/6
$3{ }^{\frac{3}{2}} \times 3^{\frac{1}{1}} \mathrm{i} \mathrm{in}$.		.. 3/11	Special Offer.		Oa			

[^4]please include appropriate postage costs
No enquiries without stamped addressed envelope
For customers in the Birmingham area, goods may be obtalned from Rock Exchanges, 234 Alum Rock Road, Birmingham δ.

Fig. 2 (above): Circuit of the in-line audio a.g.c. unit.
Fig. 3 (right): Printed circuit board layout and component position information. Note: the polarity of C4 is correct.
factory for amateur transmitters, is obviously unacceptable where more than intelligible speech is wanted.

Figure 2 shows the circuit ultimately evolved, and a comparison with the radio type of a.g.c. circuit brings out its most important features. The first transistor, Trl, is used as a normal common-emitter amplifier, if we ignore for the moment the variation in the bias supply. It develops an amplified output across R3, which is taken to the main amplifier. However, Trl and R3 also form the potential divider supplying the base bias of $\operatorname{Tr} 2$, as well as applying to it the amplified signal from Tr . Tr 2 is an n-p-n transistor, also operated in a commonemitter amplifying mode. The primary of the transformer Tl is the load in which the output of Tr ? appears. If the signal is regarded merely as an alternating current, it may be pointed out that in the secondary of TI there will be an induced alternating voltage whose amplitude depends on that of the microphone output. Dl then simply converts this into a d.c. positive supply, just as in the case of the a.g.c. circuit discussed earlier. Its application to the bias circuit of Trl with the resulting effect on the gain of this transistor, is obvious.

The smoothing components, however, deserve closer attention. In the case of the radio receiver, the volume control is paralleled by a small capacitor. This component is insufficient to smooth the fluctuations across it completely, but serves merely to turn the series of half-cycles of i.f. passed by the diode into an even audio signal. CI, following later, smooths the d.c. component, to provide the bias supply to the i.f. amplifier. In the audio a.g.c. circuit, on the other hand, all signals are at the same frequency, and the problem is rather to design the circuit to average the signal over a sufficiently long time. The biasing resistors and C4 form a network

with a fixed time constant. Should this time constant be too short, transient peaks such as sudden crescendos in music, will be suppressed. However, if it is too long, the amplifier will be overloaded for a noticeable period before the automatic reduction in gain becomes effective. The values given in Fig. 2 were found satisfactory in practice, realustic presentation of musical passages is achieved, since the device does not eliminate those rapid variations in loudness which give music life, but rather adjusts over a period of some seconds to accommodate changes in the general volume level.

Before proceeding to describe the actual construction of the unit, it is necessary to point out that, as transistors used in the common-emitter mode have a much lower input impedance than valves, there will be a serious mismatch if a high-impedance crystal microphone, as supplied with many tape recorders, is employed, resulting in a great loss of sensitivity. This circuit is a satisfactory match only to magnetic microphones, and if the reader wishes to use a crystal microphone, it will be necessary to insert a matching transformer between the microphone and the a.g.c. unit or drive the unit through a common-collector (emitter-follower) preamp.

Figure 3 shows the pattern of the conductors on the etched circuit board used in the prototype, though the reader may have to modify it if he requires a preamp as mentioned earlier, or is forced to use a larger (or smaller!) transformer. Production of etched boards is an operation familiar to regular readers, involving the application of a protective layer of cellulose paint to those areas of the copper foil on the paxolin circuit board which are to be retained as conductors, after which the unwanted remainder is etched away by soaking for some hours in a concentrated solution of ferric chloride. The components are then mounted through

Input amplitude		0	4	6	8	10	12	14	16	18	20	40	60	80	100	120	140	160
Output (volts)		0	. 03	. 06	-16	- 22	- 28	$\cdot 34$	- 38	$\cdot 41$. 44	53	. 54	54	. 54	. 54	54	54
A.G.C. (volts)		0	0	. 04	. 08	$\cdot 14$	- 20	- 27	$\cdot 34$	- 41	. 47	. 77	. 90	1.00	$1 \cdot 10$	$1 \cdot 16$	1.21	1.27

Fig. 4: From this graph it can be seen that inputs within the range 30 to 120 mV give an almost constant output. holes drilled in the panel and their terminal wires soldered carefully to the conductors. Care must be taken with the polarity of the capacitors-that shown for C4 is not an error, remembering the explanation given of the operation of the rectifying diode D1.

The case used to contain the unit will depend on the application to which it is put, the materials available, etc., but for the reader's guidance the prototype is illustrated. A neat and professional appearance was achieved by building it, with its on/off switch, input jack socket, and battery (a PP4) into a plastic container supplied as a storage box for colour slides.

In operation, the unit is connected to the microphone and tape recorder, and switched on. The average recording level is set in the normal way using the gain control and observing the deflection of the meter or closing of the tuning indicator. From then on, the unit operates to maintain the amplitude of the recording signal at this level. The difference in the recording is easily observable, and not the least attractive feature is the degree of preamplification accorded.

The graph, shown in Fig. 4, is the result of a testrun on the prototype. A $400 \mathrm{c} / \mathrm{s}$ audio tone was fed into the unit from an Advance type Hl calibrated audio signal generator, and for each setting of the input level, the r.m.s. value of the output voltage and the a.g.c. line d.c. voltage were read on a Heathkit model V7A valve voltmeter. The actual results are given in Table 1. For the determination of the a.g.c. voltage developed, the meter was set at zero for quiescent conditions, so that the occurrence of the small negative voltage across the diode is not indicated in the table. The graph indicates that, with inputs of between 6 and 18 mV from a 600Ω source the output has a linear relation to the input, but for higher inputs, the output amplitude tends towards a constant value. The a.g.c. voltage, on the other hand, continues to rise, levelling off only with inputs of the order of 200 mV . The fact that, over a wide range of input levels, the gain of the unit falls off with increasing amplitude, is obvious.

SIMPLE STABILISED POWER SUPPLY

Higher current demands will require a new transformer having the requisite current capacity. Also, the series regulator valve will need attention, and here the simplest course is to add further valves in parallel with the existing valve, as in Fig. 6. The series valves are connected effectively in parallel, separated only by additional anode, screen and grid stoppers. As the $g m$ of the valves are additive, the additional gain is very high and instability has to be guarded against. The use of stoppers wired hard up against their respective valve tags, and the avoidance of long straggling leads should prove satisfactory.

Different Outputs

Output voltages that differ from the prototype will require a suitable transformer and, possibly, a change in the values of R9 and R10, bearing in mind the remarks made earlier about the deterioration in the stability if R9 and R10 are incorreotly selected. In order to increase the output voltage, R9 will have to be decreased in value, allowing V3 grid to be made more positive with respect to its cathode. A decrease in terminal voltage will require a reduction in the value of R 10 , allowing the grid of $V 3$ to be made more negative than its cathode.

Conclusion

In conclusion a few words about the series regulator valve, V2. Almost any high power valve can be used in this position. A 6L6 valve was used in the prototype because it was to hand. Direct equivalents are the Osram KT66 and the Mullard EL35. An EL34 can also be plugged straight in, but requires pin one, which is its suppressor grid, to be connected to its cathode, pin 8. Pin 1 on the 6L6, KT66, EL35, is not connected to any electrode. Pin 6 on these valves has been omitted and has been used as a tie point for R3. With a change of base to UX5 the 807 can be used but, as it has a top cap anode, an anode suppressor having a value of 22Ω must be regarded as essential. In order to be effective, it must be soldered as close to the conneotor as possible. Among the B9A based valves, the line output valve EL81, would make an excellent choice. This too has a top cap anode and requires an anode stopper of about 22Ω. A single 6L6, EL34 or 807 , could be replaced by a number of B 9 A based EL84's or N709's but, as this valve already has a high gm the risk of instability is very much greater if more than three or four valves are paralleled. Stoppers must be fitted in every anode, screen and grid, and the anode and grid wiring kept well apart. As far as the rectifier is concerned, ensure that its voltage and current ratings are adequate and that it has a heater that can be run off the same winding that feeds the series regulator valve.

It is difficult to arrive at an accurate estimate of probable cost since much depends on the individual's spares box and on what he can beg or exchange. Assuming that surplus valves, purohased from a reputable dealer, are used with new components, the total cost should not exceed $£ 7$. \square

RDIAR - QUALITY

THE CR. 0 A COMMUNICATION RECEIVER
This completely new receiver sets a new high standard for performance and finish unequalled at the price, and is a worthy cation equipment. Frequency range: $560 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ ($540-10$ metres) in four ranges; $560 \mathrm{Kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$; $1.5 \mathrm{Mc} / \mathrm{s}-4.2 \mathrm{Mc} / \mathrm{s}$ $4.2 \mathrm{Mc} / \mathrm{s}-11.5 \mathrm{Mc} / \mathrm{s}$; $11.5 \mathrm{Mc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Side rule scales for each band calibrated in frequencies plus an additional logging scale in degrees. Two speed vernier tuning control with reverse slow tuning action. Unique aerial input stage exclusive to the giving extremely high gain with low noise level Panel aeria trimmer for peaking weak signals. Double tuned IF Iron cored transformers. $470 \mathrm{Kc} / \mathrm{s}$ with EF1 83 frame grid valve for maximum gain and selectivity. 5 valves (including two twin triodes) giving 7 valve line-up. Separate B.F.O. stage for CW and SSB reception. Calibrated signal strength ' S ' meter, illumin ated. Automatic Volume control. Panel phone jack for 'private listening, $2-3$ ohm output for external speaker. (Matching unit optional extra.) Superb styling, metal cabinet in the new 2001250 v Deady built Not a Fit at the fantastic low price of £19.10.0. Carr. 7/6.
CODAR R.F. PIRE-SELECTOR MODEL P.IR.30. Consider ably improves the performance of any superhet receiver over 20dB gain plus substantial image rejection, improved signal noise ratio and selectivity. Selector switch for either dipole or single wire antenna. Power requirements $180-250$ volts 12 mA H.T.6.3 volts. 3 amp L.T. Size $8 i \mathrm{x} 5 \times 4 \mathrm{in}$. Ready built. complete With cables. piugs and instructions, es. 10.0 . Carr. 4/6 MODET P.R.30X. Self powered model for $200-250 \mathrm{v}$. A.C. Also provides ${ }_{£}^{25 m A} 4.0$. Carr. $4 / 6$. . 200 . and 6.3 v .1 amp L.T. for other accessories 2.7.4.0. Carr. $4 / 6$

CODAR "(2" MCLTIPLIER MOINEL R.Q. 10 . For use with any superhet receiver with an I.F. between 450 and $470 \mathrm{Kc} / \mathrm{s}$
Provides considerable increase in selectivity for either peaking or rejecting a signal on AM. CW. or SSB, BFO. Size $81 \times 5 \times 41 n$ Power requirements $180-250 \mathrm{v}$. H .T. at 5 mA . 3 v . .3 amp L . T Ready built complete with cables. plugs and instructions. £6.15.0. Carr. 4/6. MODEL R.(1.IOX. Self powered version for $200-250 \mathrm{v}$. A.C. and also provides 25 mA at 200 v . H.T. and 6.3 v . 1 amp. L.T. for other accessories \&8.8.0. Carriage 4/6.
CODAR A.T.5, I2 WATT 2 1BANI) TRANSMITTER. The newest most compact transmitter for ixed or mobile use on $160-80$ metres. The tiny TX with the BIG voice'. Size only $81 \times 5 \times 41 n$. (Base area is less then two-thirds of this page! High stability new type calibrated VFO. $1.8-2.0 \mathrm{Mc} / \mathrm{s}$ and $3.5-3.8$ Mc / s (up to $4 \mathrm{Mc} / \mathrm{s}$ export). Air-spaced CODAR COIL Pi-net Screen modulator. AM/CW switch and Panel key jack. Plate changeover for 6 or 12 volts heater supply. Ready built $£ 16.10 .0$.
 and 12 v . Solid state for Moblle use. complete with all Transmit Receive changeover switching available.
COHAR-KIT CR.45K MAINS T.R.F. SHOHTTWADE RECEIMER. World wide reception-North and South America Russia, India, Australia, Far East. Amateurs, Shipping, etc \star Separate electrical bandspread. $\star 3$ slow motion vernier drives. \star Low loss polystyrene plug-in coils, factory aligned \star Dials calibrated in frequencies and degrees. \& Power output EZ80. Size $12 \times 54 \times 7$ COD $12-\mathrm{KIT}^{\prime} \mathrm{CR} 4 \mathrm{~K}$ complete with valves. 3 coils (10-28, 25-75,60-176 metres) and it page instruction manual. £9.10.0. Carr. 6/-. Extra coils $5 /$ each. Instruction manual only 4/-(credited on order). (Can also be supplied ready built-price on request
COIDAR-KIT MINI-CLIPPEIR-ORR FANOUS SHORTWAVE RECEIVER \star Can be built in one evening ready to switch on and bring the world to your ingertips at very low cost. \star supplied complete with valve. one coll $20-75$ metres and 4-page instruction manual. PRICE 39/6. Carr. 3/-. Extra coils $5 /-$ each. Instruction manual only $2 /$-(credited on order) Electrical banher amplifer, a vallable separately

We must apologise to customers for the delivery delay on some products due to the exceptional number of orders being received and the acquisition of further new factory premises.

We are doing our best to clear outstanding orders as quickly as possible.

Send Ed. in stamps itor illustrated leaflets of the Codar range - H.P. terms available World-wide Mail Order Service

[

BARGAIN OPPORTUNITIES

LARGE STOCKS of transistors, transistor components, coils, switches, valves,
speakers, etc. always available at keenspeakers, etc. always available at keen-
eat corapetitive prices. See latest T.R.S. ent corapetuve prices. See latest T. K.o.
ilsts. TYGAN FRET or Vynair speaker fabrle, $12 \times 12 \mathrm{in}$. 2/=; 12×1 Bin. $3 /-; 12 \times 24 \mathrm{in}$.
41-, е山.
BONDADOUST Speaker Cabinet Acoustic Wadding, approx. lin. thick, 18 in . Wide, ang length cut, $2 / 3 \mathrm{ft}$. B/- yd
EXPANDED ANODIZED METAL Attractlve gilt finish $\frac{1}{f} \times \frac{1}{s}$. diamond mesh $4 / 6$ sq. ft. Multiples of 6 in. cut Max. Bize $4 \times 3 \mathrm{ft}$. $47 / 6$ plus carr.
VEROBOARD-All standard sizes in-

 VOLUME CONTROLS - $5 \mathrm{~K}-2 \mathrm{Meg}$. ohms. 3in. spindles. Morganite Midget Type 1 tin. dlam Guar. 1 year. LOG or LLN. ratios less $8 w .3 / 6$. DP. $S w . ~$
8 tereo less $8 w .7 / 8.100 \mathrm{~K}$ to 2 M ohmin stereo less Sw, 7/6. 100K to 2 M ohme
with DP Sw. $\mathrm{g} / 6$. STEREO BALANCE CONTROL. Log/ Anti- $\log 5 \mathrm{~K}, 1$ meg, 1 meg, 2 meg. $9 /-$

TAPE AMPLIFIER

WITH 4 VALVES, FRONT \& 6.5 .0
PANEL, WIRED \& TESTED
Absolutely complat OUTSTANDING T.R.S. VALUE-Alsolutely complete,
maing nowered amplifer for B.S.R. T.D.2 Deck. Supmaing powered amplifer for B.S.R. T.D.2 Deck. Sup-
plied wired and teated. Facilities inclule mike/radio/ plied wired and teated. Facilities inclule mike/radio/ P. in inputs, playback switching, superimpose, hagic ing. With front panel and knobs. £6.5.0. (P. \& P. 7/6) Contemporary stuled 2 -tone cathinet $39 / 6_{i / 6 .)}^{\text {(P. \& }} \mathbf{P}$.
to take above. Size $14 \times 13 \pm \times 7 \frac{1}{2} \mathrm{in}$. to take above.
Detarhable lid.
T.R.S. MULLARD STEREO 10-10

Valve amplitier by T.R.S. to exact Mullard spec Complete with pre-amp and o/n trunstormers tapped for 3 and 15Ω Bass, treble, volume. balance controls
Outlet for $11 . T$ and L.T. for tuner. S witching for mono stereo and speaker phasing. Shronded pre-ampComplete with plugs, sockets, escutcheon, knobs, etc E17.10.0 At present supplied wired and version available very shortly.

7 VALVE AM/FM RG CHASSIS
A superbly poweriul high performance instrument for the keenest enthusiasts. Provides tuning on long mediun and F.M. wavebands. 3 wave-band L/M/FM Permeability tuning on F.M. Large clear dia. A.V.C good neg. feedback. Magic eye
$200 / 250 \mathrm{v}$. Circuit diagrams available. Aligned, tested and ready for use 〈Carr, and ins $\pm 13,19.6$ 7/6). S.A.E. brings full details. $\pm 13,19.6$

WE ARE APPOINTED STOCKISTS for all sinclair and peak SOUND PBODUCTS

RESISTORS-Modern ratings, full range 10 ohms to 10 megohms, $10 \% \frac{1}{2}-\frac{1}{2}$ w, 4d, each. $\frac{1}{}$ w. 6d. each. 5% Hi-Stab., $\frac{1}{2}$ w. 5d. each, $\frac{1}{2}$ w. 6d, each (10S-1 meg.) : 1.2 meg-10 meg. $10 \% \frac{3}{4}$ w. 5d. each, $\frac{1}{2}$ w. 6d. each. 1% HIgh-stab., $\frac{1}{2}$ w. $1 / 6$ each (below 100 ohms $2 /$ - each). WIREWOUND RESISTORS. 25 ohms to $10 \mathrm{~K} .5 \mathrm{w} .1 / 6 ; 10 \mathrm{w} .1 / 9$; $15 \mathrm{w} .2 / \mathrm{-}$. Pre-set skeleton pots. various values $2 /$ - each.
CONDENSERS. Silver Mica. All values 2 pF to $1,000 \mathrm{pF}, 6 \mathrm{~d}$. each. Ditto ceramics, 9d. Tub. 450 v . T.C.C., etc. 001 mFd to 0.1 mFd $350 \mathrm{v} .10 \mathrm{~d}_{.} .02 \mathrm{mF}$ to $0.1 \mathrm{mF}, 500 \mathrm{v} .1 / \mathrm{m} .25$ T.C.C. $1 / 6.5$ T.C.C. 1/9. CLOSE TOL. S/MICAS. $10 \% 5 \mathrm{pF}-500 \mathrm{pF} 9 \mathrm{~d} .600-5,000 \mathrm{pF} 1 /-.1 \% 2 \mathrm{pF}-$ 100 pF 11d. $100-250 \mathrm{pF} \mathrm{1/2;270-800} \mathrm{pF} \mathrm{1/4;800-5,000} \mathrm{pF} \mathrm{2/-}$
ALUMIN. CHASSIS. 18 g . Plain undrilled, folded 4 sides, 2 in . deep $6 \times 4 \mathrm{in} .4 / 6 ; 8 \times 6 \mathrm{in} .5 / 9 ; 10 \times 7 \mathrm{in} .6 / 9 ; 12 \times 6 \mathrm{in} .7 / 6 ; 12 \times 8 \mathrm{in} .8 /-$, etc.

EXCLUSIVE T.R.S. TAPE OFFER FREE LIBRARY WALLET WITH EVERY REEL

With each reel of this tape by an Internationally famous manufacturer we give you a beautifully made wallet strongly made in simulated leather with space for a reel of tape each side. This is professional quality full frequency tape with metallsed leader/stop foils. These library wallets solve once and for all the problems of storing tapes efficiently and tidily.
$12 / 6$
17/6
$7^{\text {rreel }} 18000^{\prime \prime} 22 / 6$ with wallet $12 /$ ITMPTY TAPE REELS
with wallet. 22/6
EMPTY TAPE REELS

Please send S.A.E. with all enquiries

TRS RADIO
COMPONENT SPECIALISTS

Established 1946
70 BRIGSTOCK ROAO, THORNTON HEATH, SURREY

You'll find it easy to learn with this outatandingly successinl
new' pictorial method-the essential facts are explained in new pictorial method-the essential facts are explained in the simplest language, one at a time; and each ts illustrated learning techniques. This has proved that the Pictorial Approacb to learning is the quickest and soundest way of

TO SELRAY BOOK CO.

60 HAYES HILL, HAYES, BROMLEY, KENT
Please send me Without Obligation to Purchase, one of the above sets on 7 Days Free Trial. I will either return set, carriage paid. it good condition within 7 days or send the following amonnts. Basic Electricity 70/-. Cash Price or Down Payment of $15 /$ followed by 4 fortnightly payments of $15 /$ each. Basic Electronics 82/Cash Price or Down Payment of $15 /-$ followed by 5 fortnightly payments of $15 /-$ each This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order Tick set required (on/y ONE set allowed on free trial)

BASIC ELECTRICITY 70/ \square BASIC ELECTRONICS 82/ \square
BASIC ELECTRONIC CIRCUITS 40/-
BASIC INDUSTRIAL ELECTRICITY 40/: All prices
BASIC SYNCHROS \& SERVOMECHANISMS 38/- \square include
BASIC TELEVISION PART 122
postage
Signature
(If under 21 , signature of parent or guardian)
name

practically Wireless commentary by HENRV

WEARING one of his other hats, Henry is required on occasion to answer readers' queries. And what a mixed bunch of perplexing posers these turn out to be.
"I have a Super-Fi special with Squared-Plus Output Wide Range Speakers", says one trusting innocent, who has read too many advertisements. ‘How do I add a stereo decoder?"

How indeed? One could be brutally honest and tell him to scrap the whole arrangement and start again from scratch-but that might lead to the kind of recriminations that end in solicitor's letters from the managing director of Super-Fi Incorporated. One could waste editorial paper in relating the various theoretical dictas on the subject: one could write a minor treatise on stereo-but to what effect? All our innocent wants is a plain direction . . . connect A to B and X to Y and tune over the band till the bleeps reach a null

To be absolutely blunt, one could refer him to the down-toearth articles that Gordon King, to name but one, has published in these pages. But our fourpenny stamp would just be wasted.

Come out from behind that manual, Joe!

My heart bleeds for the chap who cries that he cannot get his kit to work. Henry's views on kits have already been aired, yet it must again be said that "you gets what you pays for." Some kit suppliers bend over backwards to help the constructor. Having seen their enquiries department in action, this contributor wonders how they ever make a profit. Others are not so accommodating.
This bloke wants to connect a microphone via a mile or two of cheap flex to a high impedance input. That one says he has "low output" on a set whose hazy description would suit practically anything in the catalogue. The next letter gives masses of details about valve voltages, but makes no mention of what constructive tests are being made-we hope that the writer is taking note of the current series of articles on servicing.

Would it be cheeky to hope that some of the servicemen among our readers are also taking note? Yes, you, Joe. Come out from behind that over-sized service manual where you hide your copy of PW, and none of that: "Well, we've got to see what the opposition is getting up to."
Now and again we get the plaintive query from Joe and his mates: "Where can I get a humpot for a Sunfire X5?" or can you tell us the present address of Messrs. Fly-by-night, he may ask in desperation. Even using letter-headed notepaper, or, more likely, the firm's order form. He could get the information from his public library in many cases, but after all that's what we are paid for, he thinks. Pause for hollow laughter - if Henry worked out the time per letter in research, cross-correspondence, paper, envelopes and stamps to the odd readers who forget to enclose them, plus airmail to the international readers who do not

Cry on our corporate shoulder
know how to repay us for our kindness, etc . . . the ultimate cost would work out to something quite formidable.

Then why do it? Why be an Aunt Ada? In moments of depression Henry may echo, "Why, indeed". But, truly, the rewards are great. In chasing for information up one alley, the enquiring mind turns up all sorts of interesting signposts to other alleys. Many an article has germinated from the seed planted by a reader's letter.

One point should be stressed. This letter-answering is sparetime work. Henry is only a small cog in a geared-up team of specialists. Each is a practising engineer. Each probably has more than enough to keep him busy with his daily round. The correspondence tends to mount till one tackles it in an excess of guilt on a convenient wet Sunday. hence the occasional delay. Forgive us our trespasses, Dear Reader; curse us if you like, cry on our corparate shoulder-here, borrow my hanky-ask the impossible, describe the improbable, give voice to the unprintable, but write.

After all, it's the only proof we have that you are reading us!

Sincerely,
Henry, in another hat.

IANY users of the v.h.f. and u.h.f. bands are not satisfied with the equipment they operate, and have at some time or other thought about adding a preamplifier to boost gain. The author of this anticle has had several previous attempts at building preamps with little success. In fact, they tended to make matters worse instead of better. It is not, however, the case for the one described in this article. The number of QSOs have literally doubled since it was introduced. Stations that were R3, S5 are now coming in R5, S8-9.

DESIGN CONSIDERATIONS

In developing the final circuit a number of design considerations were taken into account. Noise was the most important factor, the author not being prepared to accept anything falling below commercially made wide-band amplifiers. Bandwidth did not create too much of a problem, for the 70 cm band is quite narrow (extending from 432 to $434 \mathrm{Mc} / \mathrm{s}$). However, the author feels the preamplifier should be adaptable to be used on other bands, especially BBC-2. To this end, coil details for the London BBC-2 transmissions are included in Table 1 along with data for the 2 metre band.

The idea of using valves was rejected for they consume rather a lot of power and their noise figures are no better than (if comparable to) semiconductor devices. Also it makes things tricky should the preamplifier want to be used in mobile applications. Field effect itransistors were considered, but their price tags still put them out of reach of most amateurs. When they come down in price, they will certainly be worth considering. So back to the transistor. Several were looked at before the AF239 was chosen: a compromise of price and noise figures. Alternative transistors that will work in the circuit are the AF139 and GM0290. The former is not quite so "hot" as the suggested device and the

Fig. 1: Circuit diagram of the 70 cm preamplifier. An alternative for the AF239 is the AF139.
Fig. 2 (right) : Underside view of the preamplifier.
latter might need some bias adjustment for optimum performance.

A circuit diagram of the preamplifier is shown in Fig. 1. As it can be seen from the diagram, the circuit is conventional, using a common-base configuration. This was adopted to avoid the problems of neutralisation. In the author's opinion, the noise figure is fractionally better using this methodalthough it may well be at the expense of a little gain.

CONSTRUCTION

The sealed chassis can be fabricated in brass or copper, or can be built into a discarded tin: the author used an old tobacco tin. Aluminium is not suitable for it is almost impossible to solder directly to it .

Once all the holes have been drilled in the chassis (see Figs. 2 and 3), the screen should be soldered into position. The screen can be cut from a small piece of tinplate, brass or copper (even an old piece of printed circuit board will suffice). Care must be taken to leave enough room for the transistor, which lies beneath the screen. The emitter and screen leads of the transistor should go to the input side and the collector and base leads to the output side of the chassis screen.

The next components to be fitted should be the trimmers, feed-throughs and the coaxial sockets. The trimmers may be $1-10 \mathrm{pF}$ or $1-5 \mathrm{pF}$ for 70 cm ; provided the range $1-4 \mathrm{pF}$ is covered.

The coils can be made by winding $1 \frac{1}{2}$ turns of 18 s.w.g. around a $\frac{1}{4}-\mathrm{in}$. diameter mandrel: leaving $\frac{1}{4} \mathrm{in}$. at the ends for mounting. Silver plated wire can be used, but the improvement is only marginal.

Component interconnections should be kept as short as possible, using only the component leads for the connections. Any positive-earth supply between 9 and 12 V d.c. (5 mA) will suffice.

to tin box Ready!

NEW 1967 EDITION OF

Radio \& TV Servicing

Up-to-the-minute repair data for 1966-1967 popular Televisions, Radios, Radiograms, Car Radios and Record reproducers

You can't afford to be without this goldmine of money-spinning data for Radio and TV Repair. It's packed with the Circuits, Diagrams, Alignment data and Repair hints you must have for the 1966-67 popular TVs and Radios. PLUS the very latest facts on COLOUR TV. All this in one essential 496 -page volume that will more than repay its low cost on one repair job alone. Prove this for yourself. Send no money now-simply post the coupon below and this time-saving volume is yours to use for seven days WITHOUT OBLIGATION TO BUY. It's a great money-makerl

Vital Repair hints, Circuits and Data for all these makes

Alba - Baird - Bush - Cossor - Dansette - Decca - Defiarit - Dynatron - Ekco Ferguson - Ferranti - Fidelity - G.E.C. - Grundig - H.M.V. - Kolster-Brandes Marconiphone - Masteradio - Murphy - National - Pam - Perdio - Philips Pye - R.G.D. - Regentone - Roberts' Radio - Sanyo - Sharp - Standard - S.T.C. Stella - Thorn - Ultra.

Big 32-page section of advance data on COLOUR TELEVISION (PAL SYSTEM)
Compiled by W. A. Montgomery, B.Sc. Head of Advanced Development Group, Consumer Products Division, S.T.C. This new, illustrated feature explains the basic encoding and decoding processes which will be in use shortly.

496 Pages

 Nearly 270 Circuits Over 290 printed panel diagrama, layout diagrams and waveformgraphs, Strong maroon binding with gold letterisg to match the volumes previously published in this famous series. A continuing service which keeps your library bang-up-to-date.
IT'S YOURS ON 7 DAYS FREE TRIAL

Now includes COLOUR TELEVISION

Buckingham Press Ltd., Headington Hill Hall, Oxford Without obligation to buy, please send-
\square RADIO \& TV SERVICING \square RADIO \& TV SERVICING 1966/67 Models
5/- dep. $10 /$ - monthly for 8 months, paying subscription price of $85 /-$. Cash price in 8 1965/66 Models
5/- deposit, 10/- monthly for 8 months, paying subscription price of $85 /-$. Cash price in 8 days 80/-. Tick (n) your cholce above.

- If both titles keot 101- deposil, then tol-monthly for 16 months paying 88.10 s . in all. Cash in 8 days $£ 8$.
If you accept this application ! will either send deposit in 8 days, then the monthly payments-or cash price(s) in 8 days-or return the books. If under 21 your father must fill in coupon.

Full Name
(BLOCK LETTERS)
Address
1
(Mr., Mrs., Miss) Tick V where , Miss Tick V where applicable $\left\{\begin{array}{l}\text { The address on left } 1:- \\ \hline \text { My Property } \\ \hline\end{array}\right.$
Rented unturnished Parents' Home Furnisted Accem.
Furnisted accam.

You can also see on Fres Trial RADIC \& TV SERVICING (1965-66 Models) If you missed seeing the 1966 .
edition of Radio \& TV Servicedition of Radio \& TV Servicing take advantage of this 1 offer. There are only a limited number of these :: big 496-page volumes available. When stocks are exhausted there can be no reprint. Full Servicing Data for nearly 390 POPULAR MODELS. Over 600 Circuits, Layout Dia- I, grams, Drawings and Tables. Hard wearing rich maroon Binding | with gold lettering. To see this volume on I' Free Examination sick (v) soupon on left.

OLRUS ELECTRONICS LTD.

PADdington 1515
9 NORFOLK PLACE (off Praed St.) LONDON, W. 2

Field Effect
Transistor
2N3819 18/-。
Moulded reed switch 14/-.
Moulded magnet 5/-.
Minlature Neon Lamp 1/8.
Mains Painal Neon 3/.

DO IT YOURSELF

 SECTIONAL CASE AND CHASSIS S.A.E. FOR LEAFLET TRANSFORMERS230 v Prim. 6-10-15-18.30v 2A 32/: 230v Prim. 6-10-18v 1A 28/: + P.P. $5 /-$.

CONTIL CASES
21 SWG Steel

Bmart electric blue finish with white paneloutaide dimensions.				
755	45/6	16127	98/6	
867	$47 / 6$	161275	189/6	P.P.
975	$47 / 6$	191010	183/-	mc.
1277	53/-	191010D	18\%/-	

Light Sensitive Switch
Eit 1 ORP12 Photocell-relay Tranalstorcircult 27/6
Kit 8 As above-Mains operation-TransKit 8 As Kit Rectifer 47/6
Kit 8 As Kit $2+$ Lens + Cast Alu. bor + Faxcler lamp. Folded beam operation 98/6 P.P. inc.

TRANSISTORS - DIODES - ZENER - VALVES FULLY GUARANTEED-FACTORY NEW. S.A.E. FOR FULL LIST. P.P. $2 /-\mathrm{in} \mathrm{f} 1 /-\mathrm{min}$. | | $18 / 6$ | ASY 26 |
| ---: | ---: | ---: |
| 2N1304 | $8 / 6$ | ASY 28 |

$$
\begin{aligned}
& 6 / 8 \\
& 6 / 8 \\
& \text { NKT228 } \\
& \text { NKT251 }
\end{aligned}
$$

\[
0

\] | $6 / 8$ | NKT228 |
| ---: | :--- |
| 6/6 | NKT251 |
| $7 / 6$ | NKT255 |
| 12/6 | NKT265 |
| $80 /$ | NKT271 | -

EXPLORER KIT
AM/FM VHF RECEIVER
Punched case and panel-2ADT e2.19.6 P.P. ine.

SINCLAIR

Z12 Int. 12W Ampl. and Preamp
PZ's Trans. Mains Power Unit
Micromatic Built 79/6. Built 79/6

Micro FM Kit 85.19.6.
Stereo 25 Preamp. and Control Unit Built f9.18.8 P.P. Inc.

TABLE 1

The preamplifier may be used on any v.h.f. or u.h.f. band provided that the tuned circuits are at resonance. This table details coil and trimmer changes necessary for BBC-2 London and the 2-metre band. 18 s.w.g. is used air spaced, wound on a $\frac{1}{4}$-in. diameter mandrel; taps are from the "cold" end.

BBC-2 2 Metres	Coils		Trimmers
	L1	L2	
	6 turns	6 turns	0-15pF
	tapped at	tapped at	
	1 turn	3 and 1 turns	
(London)	1 turn tapped at $\frac{1}{4}$ turn	1 turn	$0-3 p F$
		tapped at	
		$\frac{1}{2}$ and $\frac{1}{4}$ turns	

ALIGNMENT

Before alignment of the preamplifier can take place, it is necessary to thoroughly warm-up the associated receiver and convertor if they are of the valve type. With the preamp out of circuit, tune in a weak signal using the b.f.o. Now connect the preamplifier and peak it with TC1 and TC2. If this method fails, the stray pick-up of the third harmonic of a 2 -metre transmitter may be used. On no account must a strong signal be connected to the preamplifier (direct transmitter connection) otherwise damage may result. Some adjustment may be necessary to the coils, but this was not the case on the prototype.

Fig. 3: Top view of the preamplifier, plus the screen.

OPERATION

The preamplifier should not be used adjacent to the convertor (or main receiver if a single superhet) as this could lead to direct feedback causing instability as the gain of the preamplifier is quite high.

Should one wish to use the preamplifier at the mast head, it is a simple matter to adapt the unit for coaxial line powering. An r.f. choke, consisting of six turns of $32 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. close-wound $\frac{1}{8}$-in diameter, is required from the centre conductor of the output socket to the feed-through FC2.

In some cases it may be necessary to run the unit with a negative earth. To do this, complete inversion of the circuit is necessary.

Easy to construct from how-to-make details in the August PRACTICAL WIRELESS, this pre-set switched tuner for v.h.f.-f.m. incorporates a high-output pulse discriminator with diode transistor 'pump' and direst coupled output stage. Suitable for feeding hi-fi equipment. No tuned i.f. stages or discriminator circuit to align.

OTHER OUTSTANDING FEATURES

Field effect transistors

New-type transistors working on an entirely new principle. How they work, with experimental circtits showing various applications.

Guide to surplus communications receivers

A survey of some of the excellent war surplus receivers still on the market, giving specifications and pther data.

August issue on sale July 7th ORDERYOURCOPYNOW!

Books reviewed on this page are normally obtainable through any retail bookshop. In this instance, the information printed in heavy type should be quoted.
everyday electronics
245 Thomas Roddam. Published by Harrap \& Co. Lid.

T|HIS book describes how present-day electronic devices work in true Roddam fashion-textbook information presented in an easy-to-read style. Although the book ranges over the whole of the electronics field, emphasis is laid on the familiar radio and television receivers and on the way in which other electronic systems relate to them.

Beginning with a very elementary electrostatic experiment, the book progresses to computers and control; a subject that everyone should be familiar with. Intermediate chapters cover Circuit Elements, Valves, Transistors and Related Devices; Special Electronic Devices; Amplification of Electronic Signals; Oscillators and Modulators: Sound Waves: Television and Picture Transmission; Aerials and Propagation; Magnetrons, Lasers and Other New Devices.

Obviously it is not possible to cover such a wide field comprehensively in the space of one book, but Roddam's treatment of the subject makes compulsive reading for the newcomer; particularly sixth-formers. Mathematics have been kept to a minimum.-DCR.

三 TRANSISTOR CIRCUIT DESIGN AND ANALYSIS
 By E. Wolfendale, B.Sc., M.I.E.E. Published by lliffe Books Lid. 292 pages, $8 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$. Hard covers. Price 70s.

ALTHOUGH this book is aimed to give the professional engineer and the newcomer (undergraduate level) a comprehensive introduction to transistor circuit design and analysis, it may well be of interest to the amateur who wants to do some original work. Theory has been worked out from first principles for most of the equivalent circuits normally encountered in the electronics field. Theoretical equations have been used in the practical design examples so that the reader can see how the component values are selected.

The design examples illustrate the important points of theoretical design analysis for practical designs buit, it must be emphasised, they are not for optimum working--for in many cases the examples do not take into account spreads and tolerances. Hypothetical transistors, the characteristics of which are specified, are used in the design examples. It is, of course, possible to find semiconductors having the same characteristics as those used in the examples, but it is not the intention of this work to be a handbook of worked-out designs.

To fully understand the work covered by this book, a fairly high level of mathematics is required. There are nine chapters covering: Characteristics and Biasing; Small Signal Equivalent Circuits; The Large Signal or Pulse Equivalent Circuit and its Application to the Transistor as a Switch; Small Signal Low Frequency Amplifiers; Power Ampli-
fiers; Oscillators; Switching Circuits; and D.C. Amplifiers.

In the preface, the author states that this book has been designed to be used in conjunction with The Transistor, and together replace The Junction Transistor and its Applications.-DCR.

AUDIO
CONSTRUCTORS GUIDE
High Fidelity Audio Designs is a new publication from Ferranti Ltd. aimed at the designer and the home constructor. The text deals with design and performance factors of transistor audio circuitry including complete circuits (with full component values and specifications) of various preamplifiers, (from 7 to 150 watts), stabilised power supplies, a tape recording amplifier, a tape playback amplifier, a tape record devel indicator, a tape erase/bias oscillator and an f.m. tuner. Performance figures and graphs are provided. All the designs are based on Ferranti n-p-n and p-n-p silicon planar epitaxial transistors.
Although comprehensive data are given with all the designs, the general rule is not to provide physical constructional drawings. However, the end section of the 47 -page book covers the construction of amplifiers, a preamp and power supply in a practical way. These units use printed circuit panels which are obtainable from Ferranti Ltd.
All the preamplifiers and main amplifiers described are completely compatible and may be mixed without regard to impedance levels or sensitivities. All amplifiers are transformerless and an attempt has been made to exclude inductance either in the form of chokes or transformers in both large and small signal circuits.
The booklet High Fidelity Audio Designs is obtainable free to readers of P.W. from the address given below. The printed circuit boards needed to build the specific hi-fi set-up dealt with as a construction project can also be obtained from the same address at $f 1$ the pair. Write to: Ferranti Ltd., Gem Mill, Oldham, Lancashire.

PRACTICAL TELEVISION

Readers interested in colour television cannot afford to miss the current issue of our sister journal PRACTICAL TELEVISION in which a new colour television series begins. It is written by A. G. Priestley, a development engineer in one of the manufacturing organisations, for those who have a good understanding of black-and-white television and wish to know how the PAL colour receiver works.

June issue on sale now price 2s.

Fully guaranteed Individually packed VALVES

TELEPHONE HANDSET．Standard G．P．O．type； AVO ELECTRONIC MULTIMETER TYPE CT 38. AC mains operated 105－125v，\＆195－255v，45－66 c／s． 97 measurement ranges covering DC and AC cur－ on DC ranges $\pm 2 \%$ FSD．Accuracy on AC ranges $\pm 3 \%$ full FSD at $50 \mathrm{c} / \mathrm{s}$ ．Ranges：DC volts 250 mV － 10% ooV（ 10 M ohms -110 M ohms Input resistance）DC $10,000 \mathrm{~V}$（ 10 M ohms－ 110 M ohms input resistance） DC 100 mV －250V（with RF measuring head to $250 \mathrm{Mc} / \mathrm{s}$ ）AC current－ $10 \mu \mathrm{~A}-25 \mathrm{~A}$ ．Power output－ $50 \mu \mathrm{~W}-5 \mathrm{~W}$ ．Auto－ matic movement protection against overload．Meter reverse，balanced measurement facilities．Complete with all accessories．Laboratory tested condition． \＆22．10．0，Carrlage 15／－
HAMMARLUND SP 800－JX RECEIVER．Dual con－ version superhet． $540 \mathrm{kc} / \mathrm{s}$ to $54 \mathrm{Mc} / \mathrm{s}$ In 6 bands． Stabllity 0.01% or better．In as new，Jaboratory tested condition．Price on application．
＂S＂Meter for H．R．O．Receivert，Brand new £2．10．0． Carrlage paid U．K
CRYSTALS for H．R．O．In original National Unlon Housing，25／－，P．\＆P． $2 /$
VARIOMETER for No． 19 sets，17／6．P．\＆P．3／－
INSET MICROPHONE for telephone handset $2 / 6$ ． P．\＆P．21＊

SPARES FOR A．R．88D．RECEIVERS．Ask for your

 needs from our huge selection．CR 150／6 RECEIVER， $2-32 \mathrm{mc} / \mathrm{s}$ ．In 4 bands．Double conversion．Miniature valves． 8 positions 1 st oscillator selector，variable band with $100 \mathrm{c}-13 \mathrm{kc}$ built In call－ brator， 4 kc bandspread，valve metering and signal indicator．Noise Ilmiter，£40．Original P．S．U．£7．10．0． Carriage 20／－
MOVING IRON METERS
15 VAC
500 VAC
27／6
25j－
P．\＆P，all the above $\ddot{3} \dot{j}$－each

－4）	UB1	8／－	1322	301－	$5 \mathrm{R4C}$	9／－
85／－	YBC＇41	6／－	1859T	6／－	5 T 4	$7 /$
QQVO 6 －	（＇BF80	5／6	15baT	8\％	5 L 40	4／6
40 A 100／－	I＇cess	6／8	1E7G	$7 / 6$	5 V 4 4	8／－
QQ204－15	HCP＇s\％	$9 / 6$	$1 \mathrm{~F}^{2} \mathbf{2}$	3／－	5X4C：	$8 / 6$
57／6	UCH42	8／－	16：60t	6／－	5 Y 3 G ＇T	5／－
Q995／10 5／6	［CHEL	8／－	11.4	$2 / 6$	$5 \mathrm{Y} 3 W \mathrm{GT}$	TB
QS150／15	「（＇）ぶ	81－	1LA6	8／－		9／－
10\％	Uelas3	9／－	1 LCi	7／－	5\％44	8／6
Q81202 8／－	\FF4	8／6	$11 . \mathrm{H} 4$	4／－	6 AB 9	4／－
QV04／7 8／2	LIFM9	6／－	1N21	3／6	$6 \mathrm{ACF}^{6}$	3／－
R3 8／－	U1，41	7／6	1N213	4／－	6AC5	$2 / 6$
R10 12／6	1L284	$5 / 6$	1N43	4／－	fiacio	6／－
R（1）／240A	UP41	4／－	1N71	4／－	6AH6	10／－
25／－	U＇15	$71-$	1 K 4	$5 /-$	6A．57	$2 /-$
RK72 8／－	U19	8／6	184	5／－	6AK5	51.
H23 6／－	1 Y 21	7／6	185	4／6	6AK7	6／－
\＄1．30 12／6	UY41	6／6	1T4	3／－	6AK8	5／9
BP2 $8 / 6$	UY\％5	5／－	8A3	$51-$	6A15	3／－
H1＇41 1／6	V1．507	5）－	2 C 26	5／－	6ALSW	7／－
NP61 4／－	VPw3	2／6	2086A	71.	ficm	2／6
\＄P210 8／8	VP133	9／－	2 C 34	$7 /$	6am6	4／－

TRANSISTORS

O	20／－	O＇81	5／－	15	x 142	15）		
0	15／－	U（811）	3／8	O（：202 131	XCI5s	12		
C2	$9 / 6$	OCMIM	5／－	OC203 10／6	XCls6	15／－		
（35	12／6	OCH2	81.	OC204 15／－	2N24	9／6		
0 C 4	4／6	0C82	3／6	$00^{204} 151-$	2N41	$7 / 6$		
$0{ }^{0} 4$	$3 / 6$	OC83	51－		2 N 5	19／6		
OC：	3／6	OClit：	5／－	BCZ11 $7 / 6$	2N585	7／6		
0 C 72	$5 /-$	0 Cl 70	5／6	BY38 7／6	2N1090	7／6		
0073	8／6	OC200	$7 / 6$	XCl41 10／－	2N109	7／6		
$\begin{aligned} & \text { STV } 280 / 40 \\ & 24 /- \\ & \text { SU'2150A } \\ & 10 /- \\ & \text { S11E12 } 10 \% \\ & \text { T1SOX-20 } \end{aligned}$		，	1	$2 \mathrm{C46}$ 30／－	AQS	$7 \times$		
		V6105／31		2 CJ 1 12／－	6AQ5	9／－		
		$\checkmark 1150 / 30^{5 /-}$		$2 \mathrm{D} 215 /$	6A86	4／－		
		2×2 3／－	6A87G	15／－				
			$5 /$.	3 A 4 4／－	6AT6	4／－		
		V ${ }^{+} 34$	81.	3A108A 35／－	BAU6	6／－		
$\text { T1 } 00 \times-20$				YX3201	5／－	3A146J 55／－	6AX4	81.
TP22	5／－	VX8122	$5 /-$	$3 \mathrm{~A} / 167 / \mathrm{M}$	6B4G	17\％－		
TP25	15／－	YX8124	5／－	55／－	6B7	6／－		
TT11	5\％	W2l	$51-$	$\begin{array}{ll}3 \mathrm{~B} 7 & 5 /-\end{array}$	6B80	2／6		
TT15	35%	W118	101－	$\begin{array}{ll}3824 & 9 /- \\ 3 \mathrm{D} 6 & 4 /-\end{array}$	6BA6	5／－		
TTR31	$45 /-$	W119	9／－	$3 \mathrm{D6}$ 4／－	6BA7	51.		
TZ40	401－	X 65	5］－	$3 \mathrm{E29}$ 50］－	6BE6	$8 / 6$		
TZ0520	4／－	$\times 6$	$7 / 6$	$3 \mathrm{Q4}$ 61－	6BJ6	$7 / 6$		
TK20	161－	х76M	776	$3 \mathrm{QLGT} \mathrm{7} \mathrm{\%}$	${ }_{6}^{683}{ }^{6}$	7／8		
U81	18／－	$\mathbf{X 8 1 M}$	18／－	384	6BN ${ }^{\text {GBJ }}$	81%		
${ }^{\text {U 12／4 }}$	8／－	X118	$8 /$.	$\begin{array}{ll}3 V 4 & 5 / 9\end{array}$	6BNA 68 B 7	81－		
U17	$5 /-$	X 145	81.	4027 35／－	6BQ7A 6BR7	8／－		
18	8／－	Y ¢ 3	5／－	401 4／－	6BR7	9／－		
25	181－	Y 65	4／－	5 A 1736 5／－	6 BR	51－		
26	13）－	Z246A／1		5A174 5 ／－	${ }^{68} \mathrm{~B}_{6} 6$	71.		
U27	8／－		90／－	5 $\mathrm{H} 251 \mathrm{M} 40 /-$	6 BW 7	10／－		
U52	4／6	Z8006	201.	5R252M 35／－	$6 \mathrm{C4}$	6／－		
U191	11／8	Z COLU	101－	5B／253M	8 CbG	$2 / 6$		
1801	17／－	2900 T	12／－	15／－	6L5GT	6／－		
UABC80	0 8／－	1A3	81 －	5B254M 40／－	6C6	4／－		
UAF42	9／－	1A5G：T	5／－	5B255M 35／－	G	$3 /-$		

MANY OTHERS IN STOCK inctude Cathode
$10 /-1 /$－； $10 /$－to $£ 1,2 /$ ；uver $£ 1,2 /$－per $£ 1$ ；over $£ 3$
post free．C．O．D．4／－extra．

MINIATURE METERS

General Electric $1 \frac{13^{\prime \prime}}{2}$ round flush，clip mounted： 1 mA 16／－．P．P． $3 /-$ ．
SUB MINIATURE＂PENNY SIZE＂METERS
$1^{\prime \prime}$ round，flush，ring nut mounted 500 mA FDS，Cali brated 0－1 mA，20／－．P．\＆P．3／－．

LABORATORY TYPE VOLTMETERS

160V AC／DC $8^{\prime \prime}$ mirror Scale in wooden boxes， $9 \mathbb{T}^{*} \times$ $8 \frac{17}{3 /} \times 31^{\prime \prime}$ with carrying handle，brand new，32／－．P．\＆P

METERS， $4 \frac{1^{n}}{} \times 4 \frac{1}{4}$＂, 4^{n} long mirror scale panel moun－ ted，callbrated 0－1mA，55／－．P．\＆P．3／－
32／44FT．AERIALS each consisting of ten 3ft．，tin． dia，tubular screw－In sections． 14 it ．（ 7 section ）whip aerlal with adaptor to fit the $\frac{3}{8} i n$ ．rod，Insulated base， stay plate and stay assemblies，pegs，reamer，hammer， etc．Absolutely brand new and comple in canvas bag，$£ 3.9 .6$ ．P．\＆P． $10 / 6$ ．

A．R．88D．RECEIVERS．Fully recondtioned， 555 ． Rebull model fa5．Carriage paid U．K．
MARCONI SIGNAL GENERATOR TYPE TF144G $85 \mathrm{kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ ．Excellent laboratory tested condition with all necessary accessories with Instruction manual，£45．P．\＆P．15／－．
BOONTON STANDARD SIGNAL GENERATOR
MODEL 80．Frequency $2-400 \mathrm{Mc} / \mathrm{s}$ in six ranges．A．M．，

P．C．RADIO LTD．

 170 GOLDHAWK RD．，W． 12SHEpherd＇s Bush 4946

400 and $1,000 \mathrm{c} / \mathrm{s}$ ．and external modulation．Provision for pulse modulation．Piston type attentator， $0.1 \mu V$－
100 mV ．Separate meter for modulation level and carrier level．Precision flywheeling．117v．AC input with instruction manual．£95．Carriage $30 /$－＊

HSL 'FOUR' AMPLIFIER KIT
A.C. Mains 200/250v., 4 watt, using ECC83, EL84, EZ80分 広 valver.

- Heary duty double-wound mains transformer with electrostatic screen. Separate Bass, Treble and Volume controls, giving fully variable boost and cut with minimum tive feedback loop over 2 stages ensures high output at exages ensures high output at dow distortion factor. Suitsble for use with guitar microphone or record player. Provision for remote mounting of controls or direct on chassis. Chassia size oniy 7 inin. Wide $x 4 \mathrm{in}$. deep. Overall height $4!\mathrm{in}$. All components and valves are brand new. Very clear and concise instructions enable even the inexperienced amp with valves output transformer (3 ohms only) screened lead, wire, nuts, bolts solder etc. (No extras to buy) PRICE 79/6. P. \& P. 6/• Comprehensive circuit diag
parta list $2 / 6$ (iree with kit).

10/14 WATT HI-FI AMPLIFIER KIT For super reproduction-see previous advertisementi for BRAND NEW TV U.H.F. TUNER AND SOUND AND VISION I.F. PANEL By world tamous maker. Suitable for use in conversion
of TV sets to BBC2 (625 line reception). OFFERED of TV sets to BBC2 (626 line reception). OFFERRD
(less valves) AT THE BARGAIN PRICE OF ONLY (less valves) AT THE BARGAIN PRICE OF ONLY
87/6. Post paid. (The components are worth far more 87/6. Post paid. (The components are worth far more
than our price for the complete unit and due to the very than our price for the complete unit and due to the very
high value we regret that no correspondence can be entered into regarding this item).
MAINS TRANAFORMER. For Transistor power Eupplies. Pri. $200 / 240$ v. Sec. $9 \cdot 0-9$ v. st $500 \mathrm{~mA} .11 / \mathrm{-}$ P. \& P. $2 / 6$. MAINS TRANSFORMER. For transistor power supplies. Tapped pri. $200 \cdot 250$. Sec. $40-0.40$ at 1 amp (with elect rostatic screen) and 6.8 v . at . 5 amp for dial lampa etc.
Drop thro mounting. Stack size $1 \frac{1}{2}$ I 3 in. $87 / 6$.
 MATCHED PAIR OF \&1 WATT TRANBISTOR DRIVIER Output trans, tapped for 3 ohm and 15 ohm output. $10 /-$ pair plins $2 /-$ P. \& P.
$7-10$ watt OUTPUT TRANSFORMERS to match pair of KCL 86's tn push-put to 3 ohm output. ONL \bar{y} 11/-. KCL 88 's tn
P. \& P. $2 / 6$.

Open all day Saturday

Early closing Wed. 1 p.m. 4 feov minules from South Wimbledon

170 HIGH ST., MERTON, S.W. 19
CHErrywood 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

HIGH GAIN 4 TRANSISTOR

- Generous aize Driver and Output Transformers.
- Output transformer tapped for 3 ohm and 15 ohm speakers. Transistors (GET 114 or $\$ 1$ Mulland OC81D
and matched pair of OC81 o/p) 9 volt operaton and matched pair of OC81 o/p). 9 volt operation. - Everything supplied, wire, battery clipe, solder, etc. circuit diagram $2 / 6$. (Free with Kit). An parts sold separately.
8PECLAL PRICE 45/-. P. A. $3 /$.
Also ready built and tested, $59 / 6$. P. \& P. 8/A pair of TAls are ideal for atereo.
BRAND NEW TRANSISTOR BARGAINS
GET 15 (Matched Pbir) 15/-; V15/10p, 10/-; $0 C 71$ 5/-; OC76 6/-; AF117 7/6.
Bet of Mullard 6 transintors OC44, $2-$ OCA5, OC81D
matched paitr OC81 $25 / \mathrm{m}$ ORP12 Cadmluna Sulphide Cell 10/6.

EDISWAN MAZDA

PXA101 6/6; XA103 6/6.
R.F.1, Pack: 1-PXA102 Mixer; 2-PXA101 I.F. Amp.
 R.FA102 Mack: 2-PXA101 I.F. 1-PXA102 0sc.1L.F. 6 Pack: Consisting of FXBlis Driver Matched pair. PX171 mounted complete with hest sinks (Equiv.
OC81D and $0 C 81$) OC81D and 0C81)
ALL TRANBIBTOR POBT FRBE.
FYNALR AND REXINE SPEAKER AND CABINET
FABRICS. ADDROX. 54 In. FABRICs. Approx. 64in. Wide. Usually 35/-gard. Our 8.A.E. for samples. BRAND NEW. 12 in
Ourrent production by well-known Britleh mager. Ottered below list price at $89 / 6$. P. \& P. $5 /$-. Guitar models: 26 w. \$5.5.0; 35 w - 88.8 .0 .

(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTKD APPLY TO D.K. ONLY P. \& P OR OVEREE
CHARGD EXTRA.

R.S.T. valve mall order co. 144-146 WELLFIELD ROAD, STREATHAM, S.W. 16
 Mon.-Sat. 9 a.m.
 $-5.45 \mathrm{p.m}$.
 No Early Closing
 All valves Open Dally to Callers and boxed Tel.STR0199, 1649

FROM a practical point of view, the Southgate Radio Club has existed in its present form since 1956 although until December 1965 it was constituted as a Group of the R.S.G.B. During this time, membership has averaged about forty and attendance at monthly meetings has fluctuated according to the season and location of the meeting place. Over half of the members hold transmitting licences.

No permanent QTH

The problem of finding an ideal headquarters seems to have been with the Club for many years, and whilst the various locations have been satisfactory the Club has yet to find the perfect place where a Club Station can be permanently installed. Meanwhile, the search is continuing.

The Club functions primarily in order to give local Amateurs and Short-Wave Listeners an opportunity to meet and chat, the meetings being held on the second Thursday of every month except August, when many members are holidaying and there are not enough people to call a meeting.

Activities

There is always a special item on the agenda. Many well-known experts have lectured from time to time, but talks given by our own members have also proved highly successful despite the lack of experience in this direction on the part of these volunteers. After all, few licensed Amateurs can begin: "Unaccustomed as I am to public speaking . . ".

Interesting speakers heard recently include the Fire Brigade and the Port of London Authority.

Members of the Committee discuss a new project. From the left: Ray, G3MWF: Ron, G3PLB; Bruce, G3CWE; Ray, SWL; Alan, G3TIE: and Tony, G3PLF.

Other popular diversions are the annual home constructors' night, when a trophy is awarded for the best piece of equipment exhibited. Junk sales are also held twice yearly.

National Field Day

Club activities are not restricted to the monthly meetings. The high-spot of the Club calendar is probably National Field Day, where the Southgate Club is usually well placed in the competition. This year the Club will be operating under the callsign G5FA/P at Trent Park. Whilst members of the public will be made welcome, it must be stressed that Trent Park is a privately owned estate. Club exhibition stands at local horticultural shows and carnivals are very popular with members and the general public alike.

Mobile rallies, combining amateur radio with the widely popular car rallies, have been held from time to time but tighter police restriations and the extremely high demands made upon the organisers will probably curtail further activity in this direction.
R.S.G.B. Slow Morse Transmissions are held at 8 p.m. on Wednesday evenings by G8QU. He is believed to be the only Ham in the London pớstal district to do this.
The Club also has its own magazine: The Southgate Radio Club Newsletter which is ably edited by Bruce, G3WCE.

Helping the Scouts

On several occasions the Club has collaborated with local Scout troops to organise stations for the "Jamboree Of The Air," an international event in the Scouting

Brothers Tony and Ron with their rig. Gear from the top left is: VHF equipment, ATU's, Codar preselector, relay power supply. SWR indicator and a modified Class D wavemeter. Gear from the bottom left is: CR100, KW2000. Eddystone 888 and a KW Vanguard.

calendar. Licensing conditions nowadays forbid the use of transmitting equipment by unlicensed operators, and this has unfortunately made the event a lot less attractive to most Scouts.

Competitions, apart from National Field Day, seem to appeal to only a minority of the members, but recently a team has been formed to stimulate participation by the Club in other contests. They have found much pleasure in working together and hope that their efforts will help to keep the Club flag flying.
There is a growing interest in v.h.f. amongst members and G3MWF is trying to promote this even more.

New members welcome

The monthly meetings on the second Thursday of the month are held at Parkwood School, behind Wood Green Town Hall. Business begins at 8 p.m., visitors and new nembers whether they be licensed Hams, Short-Wave Listeners or just interested in radio will be made most welcome. Annual subscription for those under 18 is 10 s. and $£ 1$ for adults. There is no age limit for members.

If anybody is interested in joining the Club, contact the Secretary, Mr. Alan G. F. Dutton, G3TIE, at 77 South Lodge Drive, Southgate, London, N.14.

CW MONITOR

—continued from page 185
Layout is not critical, and any form of construction can be used. The prototype was constructed on a small piece of perforated paxolin board, and the whole unit enclosed in an Eddystone diecast box although the unit can, in fact, be built into a much smaller box than that shown.

The pick-up aerial can be a length of stout wire, or better still, a telescopic aerial of the type used in portable radios. The aerial is mounted by passing it through a grommet in the top of the box, and its base is force fitted to an Aladdin coil former bolted to the base of the box as shown in Fig. 2.

OPERATION

(i) As a c.w. monitor

Switch the unit on by means of Sl. Extend the pick-up aerial to a convenient length and key the transmitter. A tone should be heard from the loudspeaker in sympathy with the keying; when the key is up nothing should be heard. The frequency of the tone can be adjusted to suit the individual by means of VR2.

(ii) As a modulation monitor

Leave the monitor switched off in this case, and plug a pair of headphones into socket Jl. Switch the transmitter to the a.m. position and modulate it. The modulation should now be heard in the headphones.

(iii) As an r.f. monitor

Again leave the unit switched off, and switch on the transmitter. Adjust VR1 to give a suitable reading on the meter and tune the transmitter for maximum output using the meter as an indicator.

(iv) As a code practice oscillator

Switch the monitor on and plug a morse key into socket J2. Depressing the key will result in an audio tone being generated as before. Warning: When not in use always turn VR1 to the minimum sensitivity position to avoid damaging the meter when first switching on the transmitter.

This simple monitor has been found exceptionally useful at the writer's station and has proved a valuable asset for split frequency c.w. working. The unit functions satisfactorily up to $30 \mathrm{Mc} / \mathrm{s}$ and works on the $70 \mathrm{Mc} / \mathrm{s}$ band when extra coupling, in the form of a pick-up loop, is introduced between the transmitter p.a. and the aerial on the monitor.

HOME RADIO for

 "OUALITY COMPONENTS"

 "OUALITY COMPONENTS"}

The Home Radio Catalogue lists some 6,000 quality components (1,000 of them illustrated), but the key word is "quality". Before we catalogue any item we make sure the article is of the high quality that our customers have been led to expect from us; so having bought your catalogue you can buy with confidence. Our catalogue is backed by the fastest mail order service possible (any order received by us in the morning is invariably despatched the same day).

Don't delay-join our happy throng of satisfied customers. Send coupon for the catalogue today with your cheque or P.O. for 9/-. (7/6 for Catalogue, 1/6 P. \& P.) Every catalogue contains 5 coupons, each worth $1 /$ - if used as directed.

* To ensure speedy delivery of correspondence please include code at end of our address.

0028		10/-	$0 \mathrm{C46}$		4j-	0 C 2		8/8	AC128		3/6
0023		$9 / 8$	0C70	**	$8 / 6$	OCA2D		8/6	AD170		15/
0 O 26	.	$9 / 6$	0071	+	316	9 CE 4		5/6	AF114		$5 / 8$
0028	-	11/-	0078	\ldots	8/6	90169		4/6	AF115		b-
OC35	-	12/6	$0 \mathrm{C75}$	-	$8 / 6$	6×170		$4 / 6$	AF116		61-
$0 \mathrm{C36}$	\cdots	12/8	0076	.	4/-	${ }_{60} 171$		6/-	AF117		4/6
0 C 38	-	$12 / 6$	$0 \mathrm{OC78}$.	4/-	O<200		$7 / 8$	AFII8		45
OC44	,	3/6	OC78D	-	4/-	AC126		$3 / 8$	AF119		$4 / 6$
OC4	$+$	3/6	$\begin{aligned} & 0081 \\ & \text { OC81D } \end{aligned}$		$3 / 6$ $3 / 6$	ACl27	,	$8 / 6$	OA81		248

Send 3d. stamp for catalogue containing Ht-FM, Tranalistor Radioa, Microphonse, MOORDOWN RADIO LTD. 941 WIMBORNE ROAD MOORDOWN, BOURNEMOUTH. Tel: 59866
TEST METERS
Posket Test Meter
Pocket Test Meter D14
Specifications: $0-15-150-1,000 \mathrm{v} . \mathrm{DC}$ 8pecifications: $0-15-150-1,000 \mathrm{v} . \mathrm{DC}$
$(1,000 \mathrm{R} / \mathrm{V}) . \quad 0 \cdot 15-150-1,000 \mathrm{v} . \quad \mathrm{AC}$ $(1,000 \mathrm{R} / \mathrm{V})$
$(1,000 \mathrm{R} / \mathrm{V})$
DCesistance 0.100 Klliamperes ,
Resigtance $0.100 \mathrm{~K} \Omega$. $81 \mathrm{ze}: 57 \times 93 \times$ 30mm. Ony 89/-, Carr, 2/-.

EAGLE MULTIMETERS

All lirand new and guarsnteed 12 months.
TK20A 1,000 o.p.v., 35/-, punt 2/-.
EP10K 10.000 o.p.v., 67/b, post 3/-
EH30K 30,000 o.p.v., $105 /-$, post $4 / \beta$
The fullowing 3 models all have overload protection EP10KN 19,000 o.p.v., 85/e, post 4/6. F.P20K N 20,000 o.p.v, $98 /$ - post $4 / 16$ EP30KN 30,000 o.p.v., 130/-. post 4/6.

Send atamp for further details.
Headphones, Lightweight, 2,000 ohms. 12/-
PLANET INSTRUMENT CO 25(W) DOMINION avenue, LeEdS 7

A.R.R.L. RADIO AMATEURS HANDBOOK 1967

New Edition 40/-. Postage 4/6
World Indio and TV Handbook 1967 by Johansen. 32/-P. \& P, 1/Organs Transistor Nifctronice organs for the Amateur by Douglas. $18 /-$ P. \& P. 1/-. Loudsprakers and Toudsberaker Cabinets by Vander Wal. 15/-. P. \& P. 1/-.
25/-P P a P scilloscope Mandbook by Turner. 101 Vave to inse vour Oseilloscope by Middle ton. 21/-. P. \& P. 1/-
Transisior Sprecification and Substitution Handbook by Techpress. 21/. P. \& P. 1/-. TV F\&ult Findinu, 405-6\% Lifnes by Davies.
8/6. P. \& P. 9d.

Where possible 24-hour service guaranteed.
UNIVERSAL BOOK CO. 12 LITTLE NEWPORT STREET LONDON, W.C. 2
(Leicester Square Tube Station)

AMATEUR RADIO G3NAP SPECIALISTS G3POO

 STOCKISTSFull range Lafayette Receivers, Partridge "Joystick" antennas and tuners. Eagle products. Electroniques manual and products. R.S.G.B. publications.
Sommerkamp transmitters and receivers. Tokai transceivers (Amateur's licence required), Kw transmitters, receivers, etc. Contactor switchgear mobile equipment. Swan transceivers (Amateur's licence required), etc., etc. SAE Lists.

SWANCO PRODUCTS LTD 247 HUMBER AVENUE COVENTRY
Open all day Sat. Tet. cOV. 22714

A masterpiece of

 power, compactness, quality \& versatility■ 12 WATTS RMS CONTINUOUS SINE WAVE (24 W PEAK)
15 WATTS RMS MUSIC POWER (30 W PEAK)
[CAN BE RUN FROM BATTERIES
图 SIZE 3in. $\times 1 \frac{3}{4}$ in $\times 1$ in.

E Ultra-linear class B output and generous neg. feedback.
Frequency response $15-50,000 \mathrm{c} / \mathrm{s} \pm 1 \mathrm{~dB}$.
With unique manual of circuits.
算 Output suitable for 3, 7.5 and 15 ohm loads. Two 3 ohm speakers may be used in parallel.

- Input- 2 mV into 2 K ohms.
E Signal to noise ratiobetter than 60 dB . BUILT, TESTED AND GUARANTEED 89/6

SINCLAIR

Eight special H.F. transistors are used in the $\mathbf{Z . 1 2}$ to achieve results to compare favourably in every way with the costliest equipment you can buy. But the $Z .12$ is smaller, is more versatile and certainly saves you money. It is preferred not only for mono and stereo hi-fi, but it also enjoys enormous popularity fitted in electric guitars, used for P.A. and intercoms and many other instances where power and dependability are imperative. This superb amplifier with integrated pre-amp is supplied ready-built, tested and guaranteed together with the $\mathbf{Z . 1 2}$ manual which details matching, volume and tone control and selector switching circuits using one $\mathbf{Z} .12$ in mono or two in stereo.

Technical Description
The $\mathbf{Z .} 12$ measures only 3 in . $\times 1 \frac{13}{\mathrm{~g}} \mathrm{in} . \times$ $1 \frac{1}{\mathrm{t}} \mathrm{i}$. and weighs 3 ors. 8 spectal transistors are employed in original circuitry developed by Sinclair Radionics own research team. The unit, which Includes its own pre-amp, is ruggedly built. Two are ideal in stereo. This versatile amplifier can be powered by batteries or the PZ.3 12 volt car or other batteries.

SINCLAIR MICRO FM

needs no aligming
£5.19.6
Less than 3 in. $\times 1 \frac{3}{4} \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. F.M. Superhet using pulse counting discrlminator for superb audio quality. Low I.F. makes alignment unnecessary. Tunes 88-108 Mc/s. The telescopic aerial suffices for good reception in all but poorest areas. Signal to noise ratio
-30 dB at 30 microvolts. Takes standard 9 v . battery. One outlet serves for feeding to amplifier or recorder, the other allows set to be used as a pocket portable. Brushed and pollshed aluminlum front, spun aluminium dlal, A fascinating set to build which gives excellent reception by any standards. Complete $k / t / n c$, aerial case, earplece and instructions.

SINCLAIR

25
PRE-AMP AND CONTROL UNIT

For use with two Z.12's or any good hi-fi stereo system. The front panel is elegantly styled in solid brushed and polished aluminium with well styled solid aluminium knobs. Frequency response $25 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB}$ connected to two $\mathbf{Z . 1 2 ' s . ~ S e n s i t i v i t y ~ M i c . ~} 2 \mathrm{mV}$ into $50 \mathrm{k} \Omega$: P.U. -3 mV into $50 \mathrm{k} \Omega$: Radio -20 mV into 4.7Ω. Equalisation correct to within $\pm 1 \mathrm{~dB}$ on RIAA curve from 50 to $20,000 \mathrm{c} / \mathrm{s}$. Size $6 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. plus knobs.

SINCLAIR PZ.3. Transistorised mains power supply unit with ample output for two Z.12's and Stereo 25 together.

BUILT, TESTED
AND GUARANTEED
£9.19.6
79/6

SINCLAIR RADIONICS LTD., 22 Newmarket Rd., CAMBRIDGE
Telephone OCA3-52996

SINCLAIR MICROMATIC

There could not be a better time than NOW to enjoy using the Sinclair Micromatic. The performance of this British-designed and made 6-stage transistor set is fantastic. It assures reception from stations all round the dial and all round the clock with unsurpassed power and clarity, thanks to the unique new circuitry which this set incorporates. It plays virtually anywhere, indoors and out and you can enjoy vour listening without ever disturbing the privacy of others nearby. You will particularly like the fine appearance of the Micromatic-it is completely professional inside and out and you can build it for yourself or buy it complete ready to play at once.

Technical description

6 -stage receiver having two R.F. stages, a double diode detector and a powerful three stage A.F. amplifier, the output from which feeds into a specially matched high quality lightweight earpiece. The MICROMATIC has Its own bullt-in ferrite rod aerial and uses vernier type tuning over the medium wave band. A.G.C. counteracts fading from distant stations. The beautifully styled case is faced with an artist designed aluminium front panel of outstanding elegance, with aluminium tuning dial to match.

Complete kit in new "see-for-yourself" pack, instructions and solder.

59/6

 79/6If you prefer not to cut this page, please quote " you prefer not to cut this pag

NEW - ENLARGED - IMPROVED EXPERIMENTER'S PRINTED CIRCUIT KIT

BUILD 36 INTERESTING PROJECTS ON a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $44^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degreaser, (8) 16-page Booklet Printed Circuils for Amateurs. (9) 2 Miniature Radlo Diais SW/MW/LW. Also free with each klt. (10) Essential Design Data, Circults, Chassis Plans, etc. for building.

36 TRANSISTORISED PROJECTS
A very comprehensive selection of circuits to suit everyone's requirements and constructional ability, Many recently developed very efficient designs published for the first time, including 6 new circuits.

EXPERIMENTER'S
PRINTED CIRCUIT KIT 8/6
Postage \& Pack. 1/6 (UK) Commonwealth: SURFACE MAIL 2/AIR MAIL 8/Australla, New Zealand South Africa, Canada
(1) Crystal Set with biased Detector. (2) Crystal Set with voltage-quadrupler detector, (3) Crystal Set with Dynamic Loudspeaker, (4) Crystal Tuner with Audio Amplifier. (5) Carrler Power Conversion Recelver. (6) Spilt-Load NeutralIsed Double Reflex. (7) Matchbox or Photocell Radlo. (8) "TRIFLEXON" Triple Reflex with self-adjusting regeneration (Patent Pending). (9) Solar Battery Loudspeaker Radio. The smallest 3 designs yet offered to the Home Constructor anywhere in the World.

3 SUBMINIATURE RADIO RECEIVERS

Based on the "Triflexon" circult, Let us know if you know of a smaller design published anywhere. (10) Postage Stamp Radio. Size only $1.62^{\prime \prime} \times \quad 95^{\prime \prime} x-25^{*}$. (11) Wrlstwatch Radlo $1-15^{\prime \prime} \times-80^{\prime \prime} \times \cdot 55^{\prime \prime}$. (12) RIng Radio $70^{\prime \prime} \times \cdot 70^{\prime \prime} \times \cdot 55^{*}$. (13) Bacterla-powered Radio. Runs on sugar or bread. (14) Radlo Control Tone Receiver. (15) Transistor P/P Ampllfier. (16) Intercom. (17) 1-vaive Amplifier. (18) Rellable Burglar Alarm. (19) LIght-Seeking Animal, Guided Missile. (20) Perpetual Motion Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radlation Detector. (24) Man/Woman Discriminator, (25) Signal Injector. (26) Pocket Transcelver (Licence required). (27) Constant Volume Intercom. (28) Remote Control of Models by induction. (29) Inductlve-Loop Transmitter. (30) Pocket Triple Reflex Radio, (31) Wristwatch Transmitter/ Wire-less Microphone. (32) Wire-iess Door Bell. (33) Ultrasonlc Switch/Alarm. (34) Selsmic Car Alarm. (35) Quality Stereo Push-Pull Amplifler. (36) LightBeam Telephone - "Photophone"

PHOTOELECTRIC KIT

BUILD 12 EXCITING PHOTOELECTRIC DEVICES
CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Cadmium Sulphide Photocell, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Prolect No. 1) which can be modified for modulated-light operation.

39/6

Postage \& Pack. $2 / 6$ (UK) Commonwealth: SURFACE MAIL 3/6 AIR MAIL £1.0.0
Australia, New Zealand, S. Africa, Canada \& U.S.A Also Essential Data CIrcults and Plans for Bullding
12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Swltch/Alarm. (2) Modulated-Light Alarm. (3) Long. Range Stray-light Alarm. (4) Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector Lamp StablIlser. (8) Electronic Projector Modulator, (9) Mains Power Supply, (10) Car ParkIng Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm. OPTICAL KIT Everything needed (except plywood) for bullding: 1, InvisibleBeam Prolector and 1 Photocell Receiver (as illustrated).
CONTENTS: 2 lenses, 2 mifrors, 2 45-degree wooden blocks, Inlra-red filter projector lamp holder, bullding plans, performance data, etc. Price 19/6. Postage and Pack. 1/6 (UK).

LONG RANGE OPTICAL KIT 29/6 p.p. 1/6
Send a S.A.E. for full delalls, a brief description and Photographs of alf Kils and all 50 Radio, Electronic and Photoelectric Projects. Assembled.

Obtainable from your local suppller or direct from
"'EXPERIMENTAL ELECTRONIC KITS"
Dep. YORK ELECTRICS, 333 York Rd., London S.W. 11

BRAND NEW AM/FM (V.H.F.) RADIOGRAM CHASSIS AT £15.15.0 (Carriage Paid) H.P. Available

 Pick-up Ext. Speaker. Ae., E. and Dipole Socket. Five push-buttous-LW, MW 5 , FM and Gram. Aligned and tented. Tune control 1000-1900M; 200-560M speaker requiret. Tape EZ砳

NEW 8 PUSH-BUTTON STEREOGRAM CHASSIS. M.W.; 8.w.1; S.W.2; V.H,F Gram: Stereo Gram. Two separate channels for Stereogramn with balance control cream and red. 15 x 3 in . $190-550 \mathrm{M}$; $18-51 \mathrm{M}$; $60-187 \mathrm{M}$: VHF $15 \mathrm{x}-100 \mathrm{Mc} / \mathrm{M}$. Valves: ECC85, ECH81, EF89, $2 \times$ ECLS6, EM84 and Rect. Price £19.19.0, carr, paid. Tap Sockets. Tone Control 2×3 watte.

TAPE AMPLIFIER FOR MAGNAVOX

TAPE DECKS - 2 or 4 TRACK (4 TRACK 25/- EXTRA)
Chassis 12 $2 \times 51 \times 41 \mathrm{in}$. high. Plastic front panel "gold" fanish- $12 \frac{1}{4} \times 41 \mathrm{in} .200-250$ A.C. Record/Playlack amp. switch; Off/On-Tone; Vol/Mic: Vol/Gram; Mic. Input; Gram, lnput; Monitor; Speaker Sockets. Valves 6BR7; 12AX7; EM84; EL84; 6 X 4 Separate power pack. Complete amp, and power pack, \&8.17.6. (6/-P. \& P.). Rexine covered cabinet (tan) $15 \frac{1}{2} \times 17 \times 9 \frac{1}{2}$. high with aloping front for amp: complete with two tweeter speakers, and speclal adapting brackets for Magnavox Deck-85/- (8)- carr.) 3 speed Maghavox 2 track tape deck £10.10.0; 4 track £12.15.0 Complete Recorders (with speed compensation) 2 track $\mathbf{~} \mathbf{2} 29$; 4 track 832 (carr. 25/-)
210 more on normal retail prices.

GLADSTONE RADIO
 66 ELMS ROAD, ALDERSHOT, Hants.

(2 mins. from Station and Buser) CLO\&ED WEDNESDAY AFTERNOON
Aldershot 22240
CATALOGt:F 6u.

A GUIDE TO AMATEUR RADIO By Pat Hawker, G3VA

A complete introduction to this absorbing hobby. Operating techniques, technical fundamentals, including equipment and aerial designs, QSLing, licensing, etc are all clearly explained.

RADIO AMATEURS' EXAMINATION MANUAL inc. postage By B. W. F. Mainprise, G5MP This is really supplementary to the Guide. the reader for sitting the Radio Amateurs'

By consulting these tables, servicenumbered valves and semiconductors can be readily identified.
Further details of other RSGB Publications, information about membership, and a free sample copy of the monthly RSGB Bulletin, may be obtained by writing to: RADIO SOCIETY of GREAT BRITAIN, Dept. P.W. 28 Little russell street, london, W.C. 1 TEL. 01-405 7373, 2444.

BROADWAY
 ELECTRONICS

GARRARD 4 SPEED DECES WITH CARTRIDGE: Antochangers: ATb Mk II 28.19.6. AT60 \&10.19.8. 3000, £8.8.0. 20011, E6.19.6. 1000, 25.19.6.
${ }^{\text {AT5 }}$-Mone 26.10.0.
. P P all changera
SINGLE PLAYERS:
SP25 with cartridge
SP25 with cartridge stereo or mono, 29.19 .6 . SRP 12, CARTRIDGES:
Ateren: EV2R. 25/-. APSM, 15/-. Reuter. sT1)/2.17/6. Mono: sinotone. $2 \mathrm{~T} \$ \mathrm{~s}, 15 \%$. A"Ms, $1 \mathrm{P} 67,15 /$ MicROPHONES:
Xtal Hand Mik
BM3 and 200 C 301 - P. \& P. $2 / 6$. Stand for same 9/6 \& 12/6. P. \& P. 2/-. AC'O8 Mlke 45, 81/-, ACOS Mike 40, 1876. DYn, Mike DM-991, 22/6. CM21 Atal, cont mol switch, 15/-T Telenhano Pick-up 10/6. P. \& P. i/., Xtal Lapel Mike, 7/6. © (uitar Mike, 12/6. P. \& P.

SPEAKER ENCLOSURES

Tony Corner Cabinet $20 \times 10 \times 7 \mathrm{in}$. takes 10×6 in. apeaker covered in Rexine and Vynair, 45/- P. \& P.
Blake cabinet size $18 \times 24!\times 9$ in., fabric coverel \$4.10.0. F. \& \& P. 10%
Haydon, $16 \ddagger \times 15 \times 7 \mathrm{in}$. fabric covered suitable for 12in. speaker, 45/-. P. \& P. 7/t.
Hapdon Enclosure fitted with 12 in . speaser and
 Hithi Bookshelf speaker enclospre foam lined, P. \& P.

Wooler for almue es 3.0.0. P. \& P. 2/0. Tweeter 12/6. P. \& P. 1/h. Combenser for crossover 2/6. Terminals
$2 / 6$ pair. P \& P^{\prime}. $1 /$.
PLINTH Teak finiah to mateb above Hi-Fi speaker size $173 \times 14 \times 4 \mathrm{in}$. for darrard $1000,2000,3000$, ATBO, SPOS,
SPEAKERS:
Elac Heavy duty Ceramic Magneta 11,000 inne, 10 in . fin. round 15 or 3 ohm or 15 ohm, 48/6. P. \& P. $3 / 6$. $13 \frac{1}{2} x 8$ in. 15 or 3 ohm, 38/6. P. \& P. 3/6. E.M.I. $42 / 6$. P. \& P. 3/6. E.M.T Tweeter, 12/6. P. \& P. 1/6. R.T.C. 12in. 20 watt 15 ohro Ceramic magnet 85.5 .0 . P. \& P. $3 / 6.8 \times 4 \mathrm{in}$. Elliptical 30 ohra $30 /-$. P. \& P. 3/6. All other speakers supplied-Goodranas, Bakers, W.B., BARGAINS IN TRANSISTORS:
BARGAINS IN TRANSISTORS:
ACL27, AFI $14,115,116,117,118,119, ~ O C L 69,170$. 171, 172, 200, 202, 203, 204, 5/6.
OC72, 75, 82, 83, AAZ12, BY 38 , BCZ11, 3/6. OC71, 81, 3/-, R.F. Preks 1 OC44, 2 OC45 8/8. AF Packs 1 OC81D. 20 C 81 (Mullard). 8/6. A.F. Pack 1 GETII 0 , 5/6. GET118, Red Spot, $2 /=$ OC42 , 28, 29, $9 / 6$. ORP12 Light Crll, 8/6. Dioden OA81 2/3. OA91, TRANSISTOR ELECTROLYTICS:

1. $2,4,5, R, 10,16,25,32,50,100 \mathrm{~m}$ fol 15 volt working, 250 mfd DC $3 /-500 \mathrm{mfd} 12 \mathrm{v}$ IC, $3 /-500 \mathrm{mfd} 50 \mathrm{v}$
 each. 4/- doz. P . \& P^{P}. $1 /$-minimum. $24 / 4$.

EARPIECES WITH CORD AND 3.5 mm . plag. 8 ohm magnetic, 3/-: $250 \mathrm{ohm}, 4 /$-. 180 ohm with clip, $6 / 6$. TRANSISTOR SPEAKERS 8 ohm 2in., 8/8; 3in.
 White (tikes Lilliput inths) 3/- each. P. \& P $1 /-$ PAPER CONDENSERS for Crose-Over Units mid. 2/6. P. \& P. $1 / 6$.
ROTARY SWITCHES
2 pole Mains switch, $3 /-1$ pole 12 way. 2 pole 2 way, 3 pole 3 way. 3 pole 4 way, 4 pole 3 way, $3 / B$ each. PIANOKRY PUSH BUTTON SWITCHES. 7 buttol fnchuding mains on/off. 6 banks of 6 P.C.O. 8/6. PUSH BUTTON SWITCHES, 4 bulton, 2 banks of 6 s.P.C.O., 1 bank uf 5 N.I.C.O. L off button $\$ / 6$. B. \&PTERY CHARGER TRANSFORMERS AND RECTIFIERS 4 amp. AEC Rect., 15/-. Heavy Ibuty Transformer $25 /-. \mathrm{J}^{\prime}$. \& P. P. $3 / 6$. 1 amp. Weatinghouse contact conled rect., 7/6. Transfonner 12/6, P. \& P. FERROX ROD ARRIAL with cuils, 8 x $4 \times \frac{1 n}{}$, 4/6. P. \& P. 1/-,

Stockists of Eagle Prolucte Goodmans W.B. Wharfedale Bakers Tripletone Linear, all makes or ampmers and speakers supple

92 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W. 17

Telephone BALham 3984
Closed a/l day Wednesday
(four minutes from Tooting Broadway Underground Station)

4:STATION INTIERCOM

26/9/6
solve your communica-
tion problems with this new 4-Station Transistor Intereom (1 master and 3 Subs), in de-luxe plastio cabinete for clesk or wall mounting. Call/talk/listen from Master to Subs and Subs to Master, Ideally suitable for Businuss. Mur
yery, Behools, Honpitaly, Office and Home. Operates on one 9 v battery. On/off switch. Volume control Complete with 3 connecting wires each 66 ff . and

Modernise business or home with this new two-way Portable Transistor Interoom. Consisting of Master and Sab. in strong plastic cabinets, for lesk or wall. Designed as a two-way instant communicaSub to Master. Operates on one gy battery | sub to Master. Operates on one $9 v$ battery. |
| :--- |
| Complete with 6 ift. wire. Battery $2 / 6 . ~ P . ~ \& ~ P . ~$ |

Why not boost business efficiency with this incredible De-lince Telephone Amplifler. Take down long telephone messages or converse without holding the handset. Indispensable in office/home. On/ofi switch.
Volume Control. Operates on one 97 battery. P. \& P. 2/6. Batiery $2 / 6$ extra.
price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (PW7
69 KENSINGTON HIGH STREET, LONDON, W.8.

SPECIAL OFFERS!

H.F. SIRENS: Have you found another use for our powerful yet miniature high frequency horns?
Already they are being nised in burglar and itre Alrady they are being used in burglar and tre alarma, and for all types of eqnipment where a clear penetrating sound is redulire
1.5/4.5 V. D.C. only 3/6 each phas 1/- P. \& P. Per horn.

TRANSISTORS: OC44, OC4D, OC71 and OC5.2. All at 2/8 each whas fit. P. \& I. OC81 at $2 / 3$ each RELAYS:

Miniature plug-in with 2 light duty e/o contarts. Coil 155 nhme. $4 \frac{1}{2} / 18 \mathrm{~s}$, D.C. 13/6.
Miniature plug-in with 4 light dinty c/o contacts.
Coil 130 ohms. $9 / 15 \mathrm{~V}$. D.C. $18 / 8$. Coil 130 , 1hmy. 9/15V. D.C. $18 / 8$.
Heavy duty car alarm relay. 6/12V. D.C. 3 heavy
Juty c/o contacte $27 / 8$. Wuty c/o contacts 27/6.

LOUDSPEAKERS: We carry a range of speakers to suil every application. Typical examples are:
. Went well $0.2 \mathrm{~W} .: 8$ nhm; 2lin. dia.7/9.
Weatwell 0.2 W.; 8 ohm; 3in. dia.9/6.

- Richard Allen I2in., 15 ohn with twecter, $37 / 6$ plum $3 /-\mathbf{1}^{2}$. \& 1 .

TEST METERS: 1TI-2. A superb buy for the dive rerning enginear witlia linited hutget 20 K , ohins/S: with all the usual desirathe fcaturem for tenting and experimenting. A suip at 68/6 plus $3 /-\mathrm{P}$. \& P .
CARBON CONTROLS: Excellent range available10 K ohm-2 Meg. ohms. All at $3 / 6$ each pluk 9d.

RECTLFIERS: BYL00 Type at $3 / 9$ each plus fil. P. \& P. All Sinclair products and lander security Devices al
SINCLAIR RADIONICS PRODUCTS. I.e. Z.12, Steren 25. P.Z 3 Power Unitn at List P

BOTHWELL ELECTRIC
SUPPLIES (Glasgow) LTD.
S4 EGLINTON STREET,
GLASGOW, C.5. Tel. 041 south 2904.
Nember of the Lander Group.

High Fidelity stereo/tuner amplifier. A four wave band tuner unit integrated with a stereo amplifier. The most advanced com prehensive chassis yet designed. 8 Piano Key Selectors.
Separate bass and treble controls
Full tape recording and play back facilities Complete with a 4 speaker system (2-4in twetters. $2-101 \mathrm{n}$. bass speakers plus BSR seramic cartridge and dlamond stylus Fully guaranteed for one year including all valves.
Special Package pffer only $\mathbf{\text { E74.5.0. (Chassis }}$ only 491 Gns.)
Terms
E24.15.0 deposit followed by 24 Monthly Payments of £2.11.7 (total H.P. £86.13.0) $+17 / 6$ P. \& P. Send £25.12.6 NOW.

For other stereophonic equipment see page for
230.

- Illustrated in ihis advertisement is just one fine cabinet from the Lewis Radio
- Each Lewis Radio Cabinet is carefully made by British Craftsmen and soundly constructed from the best materials available.
- Fill in coupon below to obtain FREE catalogue showing this wonderful range

I

LEWIS radio

LEWIS EADIO, 100, CMASE SIDE, SOUTHGATE
LONBON, N.14. TelephoneI PAL 3733/9666

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 6 \mathrm{~d}$. per word (minimum order $18 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting £4. 12s. 6d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

SITUATIONS VACANT

TV and Radio, City \& Guilds, R.T.E.B.; Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132-page handbook - FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY. (Dept. 137 K), Aldermaston Court, Aldermaston, Berks.

RADIO \& TV Exam. and Courses by Britain's finest Home-study School. Coaching for Brit.I.R.E., City \& Guilds Amateur's Licence, R.T.E.B., P.M.G. Cert.. etc. FREE brochure from BRITISH NATIONAL RADIO SCHOOL, Russel Street, Reading.

ALDERMASTON COURT POSTAL TRAINING for B.Sc. (Eng) Part 1., A.M.I.E.R.E., A.M.S.E., City \& Guilds, G.C.E., etc. prepares you privately for high pay and security as Technician or Technologist. Thousands of passes. For details of Exams \& Courses in all branches of Engineering, Building, Electronics, etc. (including latest information on C. Eng.), write for 132-page handbook-FREE. Please state interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

RADIO TECHNICIANS

A number of suitably qualified candidates are required for permanent and pensionable employment (mostly in Cheltenham, but from time to time there are some vacancies in other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to candidates who can offer " O " level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications.

Pay according to age, e.g. at $19-£ 747$, at $25-\mathrm{E} 962$ (highest age pay on entry) rising by four annual increments to $£ 1,104$.

Prospects of promotion to grades in salary range $£ 1,032-£ 1,691$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:
Recruitment Officer (RT).
Government Communications
Headquarters
Oakley, Priors Road
CHELTENHAM, Glos.

EDUCATIONAL

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies during 1967. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College, Colwyn Bay.

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.
I.E.R.E. City \& Guilds and R.T.E.B. exams. Specialised ICS home-study course will ensure success. For details of wide range of exam. and diploma courses in Radio, T.V. \& Electronics, also new practical courses with kits, write to: also new practical courses with kits, write to:
ICS (Dept. 542), Parkgate Road, London ICS.W.11.

BECOME 'Technically qualified' in your spare time, guaranteed diploma and exam. home-study courses in radio, T.V. servicing and maintenance. T.T.E.B., City and Guilds, etc: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.l.

CITY \& GUILDS (electrical, etc.) on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, T.V., automation, etc., send for 132 page Handbook-FREE. B.I.E.T. (Dept. 168 K) Aldermaston Court, Aldermaston, Berks.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Closed circuit TV, Numerical control \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.
ics dept. 541 parkgate rdad LDNDON, S.W.11.

SOUND RECORDINGS

A UNIQUE TAPE BUY! Top brand 7 in .
 1, at $2 /-, 2$ at $2 / 9,3-6$ at $3 / 6$. Bargains in all sizes. S.A.E. for list. E. C. KINGSLEY AND CO. LTD. 93 Tottenham Court Road, London W.1. EUSton 6500.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY. Maudling Bk., Preston.

SERVICE SHEETS $(75,000)$ 4/- each: please add loose 4d. stamp: callers welcome: always open. THOMAS BOWER 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS for all makes, Radio, TV, Tape Recorders, 1925-1967. Prices from 1/-, Catalogue 6,000 models $2 / 6 \mathrm{~d}$. Free faultfinding guide with all Sheets. Please send stamped addressed envelope with all orders/ enquiries, HAMILTON RADIO, Western Road, St. Leonards, Sussex.

RADIO TELEVISION over 3,000 models. JOHN GILBERT TELEVISION. 1 b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS

4/- each, plus postage
We have the largest display of Service Sheets for all makes and types of Radios and Televisions, etc., in the country. Speedy service.
To obtain the Service Sheet you require please complete the attached coupon

Name: .
Address: .

To: S.P. DISTRIBUTORS
35/36 Great Marlborough Street, London, W. 1
Please supply Service Sheets for the following Make: .

Model No.. Radio/TV
\qquad
Model No.. Radio/TV
Make: .
Model No. Radio/TV
1 require the new 1967 List of Service Sheets at $1 / 6$ each plus postage.
(please delete items not applicable)
$/$ enclose remittance of .
(which includes postage)
MAIL ORDERS ONLY
(July) PW

TAPES TO DISC-using finest professional equipment 45 . rpm-18/-. S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $t-20$ watt, 12/6. Post Free. WHITSAM ELECTRICAL, 18 Woodrow Close, Perivale, Middlesex.

BARGAINSI BARGAINSI

Ex. Government Equipment
HRO'S, AR88's, 19 Sets and equipment, 31 Sets, B44's. 88, 38 and 18 Sets and miscellaneaus Surplus Equipment.
List 1/-
S.A.E. all enquiries
A.J.THOMPSON (Dept. P.W.)

Eiling Lodge, Codicote, Hitchin, Herts.
Tel.: Codicote 242

WILSON ELECTRONICS

2/- ea. AC126, 127, 128, OC75, SI8T, S19T. $2 / 3$ ea. OC81, 81D, 82, 82D. 2/6' еа. OC'44, 45. 3/- ea. OC71, 72, 170, AF117, 118, 119.
3/6 ea, AF115, 116, 125, 127, AC107.
4/- ea. AF114, OC17I, 172 .
7/- ea. OC23, 25, 26, 28. 8/6 ea, OC200.
7/- ea. OC23, $25,26,28.8 / 6$
$11 / 6$ ea. AD140, OC35, 38 .
$11 / 6$ ea. AD140, OC35, 38.
Resistors 5%, $\frac{1}{2}$ watt, preferred values 10Ω to
$10 \mathrm{M} \Omega, 4 / 6 \mathrm{doz}$. $10 \mathrm{M} \Omega$, 4/6 doz.
20 Bradbourne Avenue, Wilford, Nottingham

TRANSMITTING VALVES, 813 or 4 BI 3. also $811-\mathrm{G} . \mathrm{B}, \mathrm{S} 3$ Guildford Close, West Worthing, Sussex. Worthing 6151.

PROFESSIONAL ELECTRONIC

 COMPONENTSSend now S.A.E. for our first of many mail order lists which includes bargain offer in high quality hi-stab res. Don't miss getting on our mailing list now

VAN-BEK ELECTRONICS
12 Market St., Altrincham. Cheshire

R \& R RADIO

61, BURNLEY RD. RAWTENSTALL, ROSSENDALE LANCS. TEL. ROSS 3152.

salvage valves				Tested before despatch			
6F13	4/6	U329	5/-	30PL1	4/-	PCO84	4/-
6 L 18	4/6	10 P 14	51-	PL36	6)-	PY81	8/6
EF80	1/6	20P5	6/6	PL82	3/6	U301	6/-
ECC82	8\%-	30P	75	U80 1	$7 / 6$	10 Pl 3	5/6
ECLS 80	316	6 F 15	51-	10F1	1/6	20 IL	2/-
30 F 5	$5 /-$	EB91	1/-	30FLI	51-	$30 \mathrm{Pl2}$	$51-$
PCF80	4f-	EF85	51-	PY32	6/-	PY83	5/-
PL81	$5 /-$	6/30L3	4/-	6U4GT	51.		
PZ30	5/-	20 P 3	8/-	EY86	4/-		

Speakers. Ex.T.V. 5in, round $6 \times 4 i n, 3 / 6 ; 8 i n$, round $6 /-$; post 2/-,
Line Output Transformera available. State set model No.
Turret Tuners, $8 /$ - post $2 /$ -
Scan Coils, etc. Quote set model No. with all enquiries and S.A.E. for prompt reply. All goods subject to satisfaction or money refunded.

RECEIVERS \& COMPONENTS

 (continued)TRANSISTORS, UNMARKED, UNTESTED, 40 for $10 /-$, p. and p. $1 /-, 4$ packets post free. Relays, thousands of types, special catalogue free. General catalogue of Mechanical and free. General catalogue of Mechanical and
Electrical Gear, Tools, etc. (5,000 items), free. Electrical Gear, Tools, etc. (5,000 items), free.
K. R. WHISTON (Dept. PRW), New Mills, K. R. WH

This set is made up of 3 separate units: (1) a two valve amplifer using a 6 V6 output valve; (3) (some only, not built in the very latest models) a V.H.F: (3) the main short wave transmitter/receiver covering, in two switched bancla, just below $2 \mathrm{Mc} / \mathrm{s}-41 \mathrm{Mc} / \mathrm{s}$, and $45 \mathrm{Mc} / \mathrm{s}-8 \mathrm{Mc} / \mathrm{s}$ (approx. $160-37.5$ metres) using 9 valves. For R.T., C.W. and M.C.W. The receiver is superheterodyne havlug 1 R.F. stage, frequeney changer, two I.F. ($465 \mathrm{Kc} / \mathrm{B}$) signal detector, A.V.C. and output stage. A B.F.O. included for C.W. or single side-band reception. T.X. output netting switch, quick flick dial settinga, squelch ete. neting switeh, quick tick 12 volts HT receiver 275 volts D.C.. HT tranamitter 500 volta 1U.C., size approx. 171 x $7 t \times$ llins. Every uet supplied in new or as new condition in carton with book in
 used $50 /$-carriage both 15/-
A FULL KIT of brand new attachments for this set including all connectors, control box, headphones and mike. aerial tuming unit co-axial lead etc. at
only $45 /-$ carriage $5 /-14$ voLT D.C. power unit with all connectors to set and battery, $30 /$-carriage 5/- WE MAKE A MAINS $200 / 250$ VOLT POWER UNIT in louvred metal case to plug direct into get power socket to run (1) receiver, 70/- post $5 /$ (2) TX and RX, $£ 6.10 .0$ post $7 / \mathrm{fid}$. A charge of $10 /$ to unpack and test the receiver of these sets is made
only if requested.
V.H.F. TRANSRECEIVER MK $1 / 1$

This is a modern self contained tunable V.II.F. low powered frequency modulated transreceiver for R.T, communication up to $8-10$ miles. Made for the Ministry of supply at an extremely high cost by well known British makers, using 15 millget B.G. 7 valves, receiver incorporating \mathbf{R}. \mathbf{F}. amplifter. Double superhet and A,F.C. Slow motion tuning with the dial calibrated in 41 channels each 200 K d/s, apart. The frequency covered is $39 \mathrm{me} / \mathrm{s},-48 \mathrm{me} / \mathrm{s}$. Also has built in Crystal calibrator which gives pips to coincide with marks on the tuning dial. Power 90 volts for receiver. Every set supplied complete with valves and crystals. New in carton, complete with adjustable whip aerial, andi circuit. Price 84.10 .0 , carriage $10 /-$. Headset or hand telephone 30/-.

ELECTRICAL

 ATYyIUEI from $12 m$ CAR BATTERY Wh AMERICAN DYNAMOTOR UYTT
 lapit 12r wipigi 200/2sty at 151 lo 228 watis Parler lor itelevision. powt fools and an

 lepl selintific phoducts, flefwori luts

COMPONENTS AT GIVE-AWAY PRICES: 92 Assorted resistors, condensers, valve holders, diodes, electrolytics, droppers, coils, pre-sets and plugs etc., etc., all brand new stock $10 /-\mathrm{lot}$. DIAMOND (MAIL ORDER) PRODUCTS, 204a FROGHALL LANE, HULL, EAST 204a FROGHA
YORKSHIRE.

HAMMER PATTERN BRUSH PAINT FOR PANELE, METALWORK	
RIAL TIN (covers 5 gg.ft.) 3/6d. +9 d .	
AIR DRYING ${ }^{\text {S }}$ JUST BRUBH ON	
WITHSTANDS $150^{\circ} \mathrm{C}$. OIL, WATER, ETC	
$2{ }^{\text {l }}$ oz.tins $\ldots . .3 / 6$ Very specis] prices	
Cartiage: Orders up to $5 / \mathrm{-}, 9 \mathrm{~d}$. ; up to $10 /-, 1 / 9$; over 10/-, 3!-, Colours: blue, silver, black or bronze. Return of post service, Monday to Friday.	
PINNIGAN BPECLALITY PAINTS (PW) Mickley Square, Stocksfield, Northumberland. Tel. stockatield 2280 .	

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns. -Special Offer 55/- each. MINIFLUX 4-Track stereophonic/ monophonic Ferrite Erase Heads. List Price $£ 3.10 .0$.-Special Offer $32 / 6$ each, or supplied together (one of each) at £3.17.6. SKN4 $\frac{1}{b}$-track stereophonic record/play heads for Transistor Circuits at $55 /$-each. Also available $\frac{1}{2}$-track and full-track monophonic Ferrite Erase Heads. All heads complete with technical Heads. All heads complete with technical
specifications. Send S.A.E. for details. LEEE ELECTRONICS, 400 Edgware Rd., Paddington 5521 .

TRANSISTORS SPECIAL OFFER

1 watt S.T.C. $300 \mathrm{mc} / \mathrm{s}$ N.P.N. Silicon Planar Transistors, limited stocks $£ 1$ for 6.

WITH DATA
3/• each. OC44, OC45, OC70, OC71, OC81, OC81D, OC200, GET16, GET20.
4/- each. AF114, AF115, AF116, AF117, OC170, OC171.

5/- each. OC139, OC140, GET7, GET8, GET9, XC141, BY100, OA211.
BSY27 7/6 each OC20 10/- each
ZENER DIODES
All volts between 3.9 v . and 26 v . $\frac{1}{4} w 3 / 6$ each, $1.5 w 5 /$. each, $7 w 6 /-$ each.

Send 6d. for full lists:-
inc., S.C.R., Zeners.

CURSONS

78 BROAD STREET CANTERBURY, KENT

FOR SALE

Dept. PW/7

\section*{MORSE | MADE |
| :---: |
| EASY |}

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month
Using sciontifically prepared 3 -speed-records you automatically learn to recognise the code RHYTHM without translating. You can't help it It's as easy as learning a tune. 18 w.p.m. in 4 weeks guaranteed.
For full explanatory booklet enclose 8d. in stamps to: G3CHS/P. For return C.O.D.

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities, al details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

VALVES WANTED, brand new popular types boxed. DURHAM SUPPLIES (C), 175 Durham Road, Bradford 8, Yorkshire.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED: Popular Brand New Valves. R.H.S. Stamford House, 538 Great Horton Road, Bradford 7.

DAMAGED AVO METERS wanted. Models 7 and 8. Any condition. Any quantity. Send for packing instructions. HUGGETTS LTD., 2-4 Pawson's Road, West Croydon.

WANTED NEW VALVES ONLY

Must be new and boxed
Payment by return
WILLIAM CARVIS LTD 103 North Street Leeds 7

MISCELLANEOUS

ALUMINIUM CHASSIS, PANELS, etc. Quick service, 'One-off's' welcome. Send sketch for quotation (stamp please). Trade supplied. FAIRISGRADES LTD., Barling, Nr. Southend, Essex.

CONVERTANY TVSET into an Oscilloscope. Diagrams and instructions 12/6. REDMOND, 42 Dean Close, Portslade, Sussex.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availableiull circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 attack you can play Classics and Swing.
Write NoW for free leaflet and further details to C. \& S., 20 Maude Street, Darington, Durham. Send 3d. stamp

BOOKS \& PUBLICATIONS

AUDIO, America's foremost journal. Year's subscription $43 /$-, specimen copy $4 /$-. All American radio journals supplied-list free, AILLEN (Dept. 40), 6la Broadway, London. E. 15.

SURPLUS HANDBOOKS

DEPT. PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

METAL WORK

ALL TYPES Metal Cabinets. Control Panels, Chassis, made to order. One-offs welcome. Send specifications, sketches, etc., to HAWLEY SUPPLY CO. (ELECTRICAL) LTD., 5 Ethelbert Road, Hawley, Dartford, Kent.

SPINDLES, Bushes, Distance Pieces etc. made to your requirements. Light precision made to your requirements. 'olight precision turning and screwcutting, one-off or batches. Quotation on receipt of pattern or drawing.
J. K. MOLD, 7 Wyvern Road, Moreton, Wirral, Cheshire.

METAL WORK: All types cabinets. chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD. Chapman Street, Loughborough.
"I have just received the current issue of the Radio New York Worldwide Listeners Club magazine, which is sent each month to all RNYWW Club members. Inside its attractive cover are several shortwave news items; technical tips (this issue deals with a choice of microphones); Shortwave Corner; an article dealing with the early life of Signor Marconi, the inventor of wireless; and an amusing little the inventor of wireless; and an amusing litte
story about the trials experienced by a newstory about the trials experien
comer to shortwave listening."
comer to shortwave listening, now for a free sample copy of the Radio New York Worldwide Listeners Club Bulletin! Radio New York Worldwide Listeners Club, 485 Madison Avenue. New York 10022 USA.

NEW RELEASE: MODEL"'DX"

Fsmous for over 30 years for thort-Wave Equipment of quality, "A.C." were the original suppliers of Sbort-Wave Receiver Kits for the
amateur constructor. Over 10,000 customers-including Technical Colleges, Hospitals, Public sehoolso R.A.F., Army, Hamas, etc.

IMPROVED 1867 RANGE

One-valve model "DX', complete kit-price 56/6 (Postage and packing 3/6.)
Guatomers say: "Definitely the best one-valve 8.W. Kit available at any price." This kit containa chasals genuine short-wave components, drilled Ready to assemecessories and full instructions. producte-fully guarante of course, as al ather 8.W. kits still suailable, incluiling the famous model "K (recommended bv radio clubs). All orders despatched by return. (Mail order only Send now for a descriptive catalogue, order form. etc, to -
"H.A.C." SHORT-WAVE PROOUCTS 29 Old Bond Street, London W. 1

"' G LOBE-KING.'

2-4 Metres $\mathbf{1 0 - 1 8 0}$ Metres

ALL TRANSISTOR

AMATELR VIIF and SHORT-WAVE KII'S Send stamped addressed envelope for free copy interesting literature describing latest products: Unique VHF kit model SR2/P. $70-150$ Mcs.. 68/6 D.p. 4/-. Short-Wave kit model TR2, 79/6 p.p. $5 /-$ - 'Mini-Amp' self-contained, cabinet size a mere $41 \times 3 \mathrm{f}^{*} \times 2 \AA^{*}$. $139 / 6$ p.p. 4/-. Despatch: Within 21 days from receipt of order. Overseas enthusiasts send local stamp for literature and special postal charges for your particular country: Sole makers 'Globe-King" (Regd.) products: Tel. : 24864: Est. 1943.

JOHNSONS (RADIO)

St. Martins Gate, Worcester

FANTASTIC NEW 1967 BARGAINS FROM CONCORD

The most accurate pocket size GALCULATOR in the world

The 66 inch OTIS KING scales give you extra accuracy. Write today for free booklet, or send $75 /$ for this invaluable spiral slide rule on approval with money back guarantee if not satisfied.
CARBIC LTD. (Dept. PW2)

54 Dundonald Road, London, S.W. 19

Questions and Answers Series

O. \& A. On TRANSISTORS

Clement Brown
Starting with the properties of semi-conductor materials, this book covers basic transistor circuits, transistors in radio receivers, high fidelity amplifiers and tape recorders and public address equipment.

96 pages. 60 line diagrams.

O. \& A. On RADIO

H. W. Hellyer

Starting with the fundamentais of electricity and sound and radio waves, this manual provides a thorough grasp of the principles of radio and television transmission and reception, with emphasis on modern practical techniques

128 pages. 70 line diagrams.
Only 8s. 6d, each from all booksellers or in case of difficulty by post, 10 s . from Newnes, Tower House, Southampton Street, W.C. 2

LOW-COST FIELD-EFFECT TRANSISTORS are now avallable, for Immediate despatch, from $10 / 6$ each.
These top quality junction field-effect transistors are now avallable at a price comparable with that of valves, for use in AF and RF appllcations where space and efficlency are at a premlum.
Brlef specifications of a few of the many devices held in stock, are glven below. For further information on these and a great many others send $2 / 6$ P.O. for a copy of our FET "DATA SUMMARY'", whlch will be avallable in mid-May.

Type	Channel	Package	$\left\|\begin{array}{c} \text { BV } \\ \text { GSS } \\ \text { (max.) } \\ \text { Volts } \end{array}\right\|$	$\begin{aligned} & \text { GSS } \\ & (\text { max. }) \\ & \cap A \end{aligned}$		SS max. A	$\begin{gathered} y_{\text {fs }} \\ \text { min. max. } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { C } \\ \text { Iss } \\ \text { max. } \end{array}$	Price
MPF 104	N	TO-92	25	1.0	1.0	50	1000/5000	7.0	10/6
MFE 2094	N	TO-72	50	0-1	0.4	H. 4	350/700	6.0	26/3
$2 \mathrm{~N} \quad 3819$	N	TO-92	25	2.0	2.0	20	2000/6500	8.0	24/-
2N 3820	P	TO-92	20	20	0.3	15	800/5000	32	24/-
2N 3909	P	TO.92	20	10	0.3	15	1000/5000	32	20/3

We can also supply hundreds of other semiconductors and a comprehensive selection of electronic components, some of which are llsted be ow:
TRANSISTORS: AF 108, 8/3; AF 139 12/6; OC $2925 / 6 ;$ OC $35 ; 16 / 6 ;$ OCP 71, 24/-: NKT $212,4 / 3$; NKT $218,3 / 11$; NKT $271,3 / 4$; NKT $274,3 \cdot 4$; NKT $676,4 /-$; NKT $773,4 / 8 ;$ 2G 302,5/4; $2 N 706,4 / 6 ; 2 N 2147,18 / \cdot ; 2 N 2646,14 /-; 2 N 2926$ (yellow), 4/3; $2 N 3563,6 / 3$ 2N $3638,8 /-; 2 N 3640,11 / 8 ; 2 N 3646,8 / 3 ; 2 N 3702,7 /-; \cdot \ln 3703 ; 8 /=$, etc.
DIODES AND RECTIFIERS: OA $91,2 / \cdot ;$ OA $95,2 / \cdot ;$ OA 200,3/•; OA 202, 4/•; BYZ 11 14/3; BYZ 12, 11/3; BYZ 13, $8 /-$; BZY 88/C6V2,6/\%, etc.
VARICAP DIODES: BA 110 ($8-12 \mathrm{p}), 5 / 9$; BA 111 ($45-65 \mathrm{p})$), 7/3; BA 112, ($80-120 \mathrm{p}$), 12/9, etc.
RESISTORS: $\frac{1}{2}$ W. Carbon film $5 \% 10$ ohm-10 Megohm, 31 d. each.
CAPACITORS: Electrolyflc from $1 / 5$. Polyester from 9d. Polystyrene from 10 d . Tantalum from $3 / 6$. Sllver Mica from 9 d . Send us a 11 st of your requlrements for a competitive quotatlon
TRANSFILTERS: Ceramic filters for use In transistor I.F. stages.
(INFORMATION ON REQUEST) TF-01D (470KHz), (Emitter Bypass), 7/-; TO-01D (470 KHz) (Interstage Coupling), $8 / 9$.

Please add 21. postage and packing on all ordess of £1 or less.
MAIL ORDER ONLY PLEASE TERMS: C.W.O. or C.O.D
M. R. Clifford \& Company (Components Dept.) 209A Monument Road, Edgbaston, Birmingham, 16.
P.S: Are you on our malling llst? If not, send $2 /-$ P. O. and recelve our current transistor price IIst (800/2) and amendment bulletin, and further Information as it becomes avallable.
P.P.S.: We are now an ELECTRONIQUES DEALER which makes us a single supply source for aimost every component need.

Magnificent 'Continental' Stereophonlc Radiogram Chassis with piano key switches; builtIn ferrite rod aerial. Comes complete with two 10^{*} elliptical loudspeakers; plus a mono/stereo 4-speed automatic record changer. Complete $29 \frac{1}{2}$ ons. (Units avallable separately If required. Chassis only, 21 gns.).
Speclal terms avallable of $\mathbf{5 1 0 . 6 . 6}$ deposit followed by 18 monthiy payments of $\$ 1.7 .3$ (total H.P. of $£ 34.17 .0$) $+17 / 6$ P. \& P. Send £11.4.0 now.

The Imperlal Stereophonlc 4 waveband chassls has the most advanced specifications yet offered In thls country. There is a built-in ferrite rod aerial, seven plano key buttons, controlling mono/stereo selection. Gram Long-Medlum-Short-FM-ON/OFF. The unlt comes complete with two 10^{*} elliptical loudspeakers plus a mono/stereo 4 speed automatic record changer. Complete $£ 41.9 .6$.
Chassis only, 291 gns.
Specisil terms available of $\mathbf{\$ 1 3 . 1 6 . 6 \text { deposit }}$ followed by 24 monthiy payments of $£ 1.8 .10$ (total H.P. £48.8.6) $+17 / 6$ P. \& P. Send $£ 14.14 .0$ now.

Thls most advanced radlogram chassis with automatic push button selection covers short, medium and iong wavebands plus V.H.F./F.M. Offered complete with 210×6 speakers 4 speed Stereo/Mono autochanger only £35.19.6. Chassis only, 251 gns. Special terms avallabie of $\mathbf{5 1 2}$ deposit followed by 18 monthly payments of E1.11.7 (total HP. 840.8 .8$)+17 / 8 \mathrm{P}$. \& P. Send £12.17.6 now.
All Lewis Radio equipment including valves are fully guaranteed for one year free of charge. For other Stereophonic Equlpment and Cabinets, see page 225.
Send your cheque or P.O. today while stocks last to Dept. P.77.

LEWIS radio

LEWIS RADIO, 100,CHASE SIDE, SOUTHGATI IONDON, N.I4. Telephonet PAL $3733 / 9666$

NEW RANGE U.H.F. AERIALS FOR

 BBC 2 (625) line transmissionsAll U.H.F. aerlals now fltted with tilting bracket and 4 element grid reflectors. Loft Mounting Arrays, 7 element, $35 /$ 11 element, $42 / 6$. 14 element. $50 /-$ it 18 element, 57/6. 7 element. $60 /=, 11$ element Cranked Arm, 14 element. $75 /-$ - 18 element, $82 / 6$ Mast Mounting with $2 i n$. clamp. 7 element 42/6; 11 element, 55/-; 14 element, 62/-; 18 element. 70/-. Chimney Mounting Arrays, Complete, 7 element, 72/6;11 element. $80 /-$ 14 element. $87 / 6 ; 18$ element, $95 /$-. Complete assembly instructions with every unit Low $751-$ State cleariy channel number required on all orders.

BBC • ITV • F.M. AERIALS

B13C (Band 1). Telescopic 10ft. $21 /-\quad$ External S/D
$30 /=$ " 22.10 .0 . 0) (1) I'TV (IBand 3). 3 element loft array, 25/-. 5 element element, $35 /-.5$ element. element, $35 /-.5$ element,
$45 /-$.
Combined BBCIITV. Loft $1+3,41 / 3 ; 1+5,48 / 9 ;$ Wall mounting $1+3$. $56 / 3 ; 1+5$. 63/9; Chimney $1+3.63 / 9$:
$1+5,71 / 3$. VHF transistor pre-amps, 75%.
F.M. (Band 2). Loft S/D. 12/6, " $\mathrm{H}^{\prime 4}$. 30/-, 3 element. 52/6. External units available. Co-ax cable. 8d. yd. Co-ax plugs, 1/3. Outlet boxes. 4/6. Diplexer Crossover Boxes. $12 / 6$. C.W.O. or C.O.D. P. \& P.5/-, Send 6d. stamps for illustrated lists.
Quotations for speclal arrays available on request
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade. New Addington Surrey CRO OJB LODGE HILL 2266

[^5]
NEW VALVES!

Guaranteed Set Tested
24-HOUR SERVICE

1 R 5	$5 /$	DL94	$5 / 6$	EY51	$5 / 11$	PY81	
18 ¢	$3 / 9$	DL9t	5/11	EY86	$5 / 3$	PY82	9
174	$2 / 9$	DY86	5/6	EZ40	61-	PY83	3
38.4	4/3	I) $\times 87$	5/6	EZR	4/3	PY800	$5 / 9$
4	5/6	EABC	5/6	EZ\%	4/6	PY801	$5 / 11$
V4	$7 / 9$	EBC41	$7 / 8$	G23	8/8	R19	6/6
${ }_{\mathrm{f}}^{\mathbf{F} \text { P }}$	8/3	HBF80	5/9	KTı	6/3	U25	9/3
6L18	61-	EBF89	5/8	N78	14/8	U26	$8 / 9$
10 Fl	$9 / 6$	ECC81	3/3	PC86	7/8	U191	10)-
10 Pl 13	813	ECC82	4/6	PC88	$7 / 6$	U301	11/6
20 F 2	$10 / 3$	ECC83	4/6	PC97	$5 / 9$	U801	16/.
${ }_{20} \mathrm{Pl}$	819	ECC85	5/3	PC900	81-	UABC8	5/-
201 '4	12/6	ECH35	$5 / 8$	PCC84	5/3	UAF42	6/11
30 F 5	$9 / 9$	ECH42	8/8	PCC89	9/9	U BC41	6/6
30 P 4	$11 / 6$	ECE81	5/-	PCC189	8/3	UBF89	5/9
30 P19	11/6	ECH84	$7 / 8$	PCF80	6/8	UCC84	7/9
1) AC32	$6 / 9$	ECL80	$5 / 9$	PCFR:	$5 / 9$	UCC85	6/-
AF91	$3 / 9$	ECLS 8	6/-	PCL82	6/3	UCF80	8/-
1)AF96	5/11	ECL8 ${ }^{\text {a }}$	7/6	PCL83	8/3	UCH42	8/8
1)F33	7/6	EF39	$8 / 6$	PCL84	$7 /-$	UCH81	5/9
1)F91	$2 / 9$	EF41	5/9	PCL85	$8 / 8$	UCL82	6/8
UF96	5/11	EF80	4/3	PL36	91-	UCL83	8/6
DK3:	7\%	VF85	5/-	PL81	8/3	UF41	$7 / 9$
DK91	$5 /-$	EF86	$6 /-$	PL82	$6 / 9$	UF89	5/6
DK96	$6 / 3$	EF89	4/9	PL83	5/11	U1,41	/9
DL33	6/6	EL33	$8 / 3$	Pl/84	8/-	UL84	8/-
10L35	$4 / 9$	EL41	8 -	PY32	$8 / 8$	UY41	/8
L92	4/3	EL84	4/	PY33	8/3	UY	/9
Portage on 1 valve 9d. extra. On 2 valves or more, phstage 6d, per valve extra. Any parcel insured against dumage in transit 6d extra. Office addrees, no callers.							

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON LONDON N. 16

An invaluable book for all those concerned with radio and electronic engineering -

MATHEMATICS
 for RADIO and ELECTRONICS TECHNICIANS

Dr.-Ing. Fritz Bergtold

This book begins with the most simple of equations and basic methods of calculations and gradually works its way through the various branches of mathematics which will be required by the radio and electronics technician.

The subjects covered include involution, curves, arrangement, transformation, the slide rule, logarithms, the treatment of trigonometrical functions, polar co-ordinates and the Gaussian plane, vectors and calculation with complex values.

$8 \frac{33^{\prime \prime}}{} \times 5 \frac{3^{\prime \prime}}{} .320$ pages

Line illustrations
50s

FROM YOUR BOOKSELLER or in case of difficulties 51s 6d from GEORGE NEWNES LTD., Tower House, Southampton St., London WC2.

B-DAK SEMICONDUCTORS

8 Radnor House 93/97 Regent St. London, W. 1

TUNNEL	$15 /-$ DIODES	AEY11 EACH
UNIJUNCTION	$15 /-$	2N2160
TRANSISTORS	EACH	2N2646

6. 2N2926 SPECIAL OFFER 20/-

TRANSISTOR MANUAL BY g. E. CIRCUITS, APPLICATIONS, INC
CHARACTERISTICS. G.L.A.S.C.RS.
THEORY. $30 /-$ THEORY, RATICHES, EACH APPLICATIONS P.P. 2/6
S.C.R. MANUAL by g.e.

FAIRCHILD BRAND NEW FROM U.S.A. 8 LEAD - EPOXY CASE RTML MICROLOGIC

COMPLETE

μ L 900 "Buffer" 19/6 DATA AND CIRCUITS SEND $\mu \mathrm{L} 914$ "Gate" 19/6 1/6. OR FREE
WITH ALL IC
$\mu \mathrm{L} 923^{\prime \prime} \mathrm{J} . \mathrm{K}$.
35/-
ORDERS
(FLIP.FLOP)
THESE DEVICES OPEN UP A WHOLE NEW CONCEPT in the WORLD of ELECTRONICS
"INTEGRATED CIRCUITS"
Our vast stocisa ehange daily with hundreds of Semioonductor
bargains becomius available Just send $2 / 6$ to cover 3 months mailing of our latest stoek lists, eqvi. charts, circuits, ete.

NEW TESTED VALUE PAKS

3 OCI39 Trans. NPN Mullard
2 Irift Trans. 2N $1225100 \mathrm{M} / \mathrm{C}$ PMP
6 Mat hed Trans. OC' $44 / 45 / 81 / 811)$
5 Rerl sput AF Trans. PS
5 Whit. Npot RF Traus. PAP
4 sil. Rectes 3A 1h0/400 PIV
4 High cirrent Trank. Oct 42

3 Oi 71 Trath, Mullard
3 ot's. Trans. Mullaril

8 biodes 0a7
15 AMP SCR 100 PIO
? Sil. Trans, wsing PNP
10 Asworted Computer Dindes
4 Zeners 5, 12 Vilta. Mixecl
$10 /-$
$10 /-$
$10 j-$
$10 j-$
$10 /-$
$10 /-$
$111 /-$
$10 /-$
$10 /-$
$10 /-$
$101-$
$10 /-$
101
111
$10 /-$
$10 /-$
$10 /-$
$10 /-$
$10 /-$

FREE $\begin{gathered}\text { One 10/- l'ack oif your own } \\ \text { choice free with orders }\end{gathered}$
 valued 44 or
 FREE

420417 Irans. equt. API $16 / 117$
$4200 \mathrm{M} / \mathrm{Cs}$ sil. Trans. BsY26/27
3 OA4A Culd Bunded Diodes
40 Avo2 sil. Wiodes Sulv.Min.
4 OAz02 Bil. Diodes Sul-Min
30077 Trans. Mullarit
3 High velt. AF Trans ivipučiz
${ }^{3}$ Begh Betit. AF Trans. PN
8 Sil. Trans. Oedoul Mullari
2 sit power Reet (f Amy 200 Piv BYzis

5 Theter Miodes $3-15$ Volts, Mixed 400
?N 1132 PNP PLANAR Trais's sil
4-GERM. Power Trans. equt. OCli Muilard
fi mil. Rect. Type BY190 410 PI' 550 mA .
3 Beloxs sil. Trans.
Minimum Order 10/. CASH WITH ORDER PLEASE. Add 1/- postage and packing per Order. GOARANTEED by return postal service. Overseas add extra for Airmail.
\star-VALUE PAKS - \star $\star E X T E N D E D$ RANGE \star \star NEW - UNTESTED *

120 gexa, gos mix. DIODES 10 50 mxxe TRANSISTORS $10 /-$

25 sis sux

30

40	

Z \＆I AERO SERVICES LTD．

Please send all correspondence and Mall－Orders to the Head O\＃lice
Whan sending cash with order，please include $2 / 6$ in $£$ for postage and banding
MLIMUM CHARGE 2／－No C．O．D．orders accepted

Retail Shop
85 TOTTENHAM COURT ROAD LONDON WI
TeI．LANgham 8403 Open all day Saturday

OA2					4／－	10 F		First Quality				Fully Guaranteed										6%				
OA3	101－	bA	${ }^{7 / 8}$	6 F	4／－	101	${ }^{718}$					$\begin{aligned} & \text { EL33 } \\ & \mathbf{E L} 34 \end{aligned}$	$\begin{gathered} 12 / 6 \\ 9 / 6 \end{gathered}$	$\begin{array}{cc} \mathrm{KT} 32 & \text { 日/6 } \\ \text { KT36 } & 17 / 6 \end{array}$	$\begin{aligned} & \text { PL302 } \\ & \text { PLAOO } \end{aligned}$	$13 / 6$	$\begin{aligned} & \mathbf{U} 251 \\ & \mathbf{U} 281 \end{aligned}$	81－9								
$\mathrm{OB2}^{\text {O }}$	61－	${ }_{6 A L 5}$	$3 /-$	${ }_{6 F 14}^{6513}$	${ }^{8 / 8}$	10P13	$15 \%-$														$9 / 6$	$\begin{array}{ll}\text { KT36 } & 17 / 8 \\ \text { KT41 } \\ 7 / 8\end{array}$	${ }_{\text {PTLIS }}$	13／8	U281	${ }_{127}^{127}$
OC3 OD3	${ }_{61-}^{61-}$	6AM6 6AN8	101－	${ }_{6}^{6 F 14}$	111／－	$10 \mathrm{P14}$	$\stackrel{151-}{71}$									${ }_{\text {EL36 }}$	$8 / 8$	KT41 ${ }^{\text {KT44 }}$	${ }_{P \times 4}{ }^{\text {PT }}$	2017	U282	11%				
OZ4A	$51-$	6AQ4	5	6 Fl 7	相	1105	7\％									EL38	17／6	KT45 15／－	PX25	151－	U403	\％／－				
143	4／．	6AQ5	$5 / 6$	6 Fl 8	$7 / 6$	12AC8										EL4	$8 / 8$	KT63 18／－	PY32	$8 / 6$	1404	1.				
1A5GT	5／－	6ars	81．	${ }^{6523}$	101－	12AD6	9\％－							D		EL4	$7 / 6$	ET67 451－	PY83	818	U801	7／－				
1A7GT	8／－	6AR6	8 8－	6 F	121－	12AE6	\％／6									ELS	9／－	KT76	PY80	$5 / 8$						
183GT	81	6AR8	17／6	6 F	127－	12AL5	7.									EL8	${ }_{7}^{81-}$	${ }^{\mathrm{K} 188} 823 /-$	${ }_{\text {PY8 }}{ }^{\text {PY8 }}$	${ }_{5 / 6} /$	UBAFt	10／－				
${ }_{108}^{108}$	81－	${ }_{6 \text { 6ABS }}^{6}$	$5 /-$ 8%	${ }_{6}^{676}$	10／6	$12 A Q 5$	7%									EL8	4／3／－1	$\text { LPL }^{\text {ME1401 }} 107-$	$\begin{aligned} & \text { PY82 } \\ & \text { PY } 83 \end{aligned}$	6／6．－	UB4 1 UBC4	101－				
1D6 1D8GT	${ }_{81-}^{81}$	$\begin{aligned} & \text { 6A88 } \\ & 6 \mathrm{AS7G} \end{aligned}$	$\begin{array}{r} 8 /- \\ 15 /= \end{array}$	${ }_{654}^{656}$	$81-$	$\begin{aligned} & 12 \mathrm{TG} \\ & 12 \mathrm{AT} 7 \end{aligned}$	5／－	E	E	P	N		1	V		EL	$7 / 8$	M 4 ¢ $5 /-$	${ }^{\text {PY }}$ P88 8	81.	UBC81	$8 / 8$				
1G4GT	81 －	8AT6	4／9	6.5	4／－	l2au	${ }^{6} \%$									E	$8 / 8$	MH41 9／－	PY301	$11 /$.	UBF80	${ }^{8 / 6}$				
196G7	\％－	6aub baU8	${ }_{91}^{8 / 8}$	6．J6	8／6	12AU	5／6	30PL	15	20.	121				6／－	ELA	${ }_{2 / 8}$	ME／IPE $8 /-$	PY800	${ }_{8 /-}$	UBL21	10\％				
1L4	$2 / 6$	BAV5		6 K	61－	12AV6	8／6	$30 \mathrm{PL13}$	15／－	5642	11／－	DF96	7	ECC84	818	EL95	5／．	Mg／PENT	PZ30	$8 / 6$	UC92	8／－				
1N5	81.		11／．	6K7	5	12AV	2017	${ }^{30} \mathrm{PL14}$		5661	$7 / 6$	DH63	B／	ECC85	51－	EL360	281－	10／－	$\mathrm{QP2}^{1}$	5 5－	UCC88	$9 /-$				
1 R 4	61	bava	5／－	6K8	$81 /$	12AX 7	6／－	35A3	101－	5654 5670	8\％\％	DH101	$8 / 6$	ECC88	81.	EL821	${ }^{6 /-}$	\％ 76	$\mathrm{QP}^{\text {QP25 }}$	5／－	UCC85	$8 / 8$ $9 / 6$				
IRb 184	${ }_{5 /-}^{61-}$	${ }_{6 B 4 \mathrm{C}}^{68}$		$\begin{aligned} & 6 \mathrm{KBC} \\ & 6 \mathrm{LAG} \end{aligned}$	${ }_{7 / 6}^{4 /-}$	$\begin{aligned} & 12 A Y 7 \\ & 12 A Y \end{aligned}$	10／－	35	121－	8670 8686	101－	DK32	11／－	ECCO8	${ }_{3 / 6}^{8 / 6}$	EM34	13／－	11／－	QP2		UCF80	$9 / 6$ $9 / 6$				
$\begin{aligned} & 184 \\ & 185 \end{aligned}$	5／8	6B4G	$\underset{\sim}{17-}$		$7 / 1$	${ }_{12 \mathrm{BA}}^{12 \mathrm{~B} 4 \mathrm{~A}}$	8／－	3¢В	12／8	6686 5749	$\begin{aligned} & 251 \\ & 101 \end{aligned}$	DK40	8／－	HCC189		EM35	81－	${ }_{\text {PC97 }}{ }_{\text {PC88 }} 11 / 1 / 1$		45／－	UCH42	8 \％				
174	3 C －	${ }_{688}$	$2 / 6$	$6 \mathrm{L17}$	$8 /$	12BE6	5／8	35D5	12／．	5751	121．	DK92	8 8－	ECCSO		EM80	7－	PC900 9－		10	UCH43	8－				
1 TbO	6	6 BAB	4／6	${ }^{6 L 18}$	61	12BE7	$6 /$	${ }^{3516}$		5763	101－	DK96	7	ECC807	7／6	EM81	71 －	PCC84 418		30／－	UCH81	6／3				
104	51	$6 \mathrm{BA}_{4} 7$	15／－	6LD20	5－	12BY			4／8	${ }_{5965}^{5814}$	101－	${ }_{\text {DL33 }}^{\text {DL33 }}$	${ }_{5 /-} 816$			EM84	71－1－	${ }^{\text {PCCOS }}$ 7／－		80	UCL81	${ }_{7 / 3}^{8 /-}$				
	$8 /-$	E6	$4 / 6$	${ }_{6 \times 25}^{6 N 707}$	121－	$12 \mathrm{C8}$	4／6	${ }_{35 \mathrm{Z} 4 \mathrm{G}}^{35 \mathrm{~L}}$	101－	5865 6060	$5 /$.	${ }_{\text {DLeb }}^{\text {DL3 }}$	${ }^{501}$ 5－	ECFP82	12／6			PCCS9 11／－			UCL． 83	87				
$1{ }^{172}$	101－	${ }^{68 F 6}$	81－	${ }_{6 P}^{6 P}$	12／8	12E1	20／－	$35 Z 4 \mathrm{G}$		6060 6080	5）－	${ }^{\text {DLEB }}$	101－	ECFF86	12／6	Em		PCCO89 11／－	$\begin{aligned} & \text { Q883/3/ } \\ & \text { Q892/10 } \end{aligned}$		UF9 ${ }^{\text {d }}$	10%				
$\begin{aligned} & 1 \mathrm{X} 2 \mathrm{~B} \\ & 2 \mathrm{~A} \end{aligned}$	71.	6BF7	${ }_{16 /-}^{15 /}$	6828 6850	${ }_{151}^{12 / 8}$	12K5	${ }_{7 /-}^{8 /-}$	35 Z	5／8	0146	251．	DL69	12／8	ECH35	11／－	EN31	$151-$	PCC805 11／－	Q895／10	5／8	UF41	81－				
2 C 34	7／6	6 BH 6	7／8	897	7%	12	$8{ }^{\text {j－}}$	42	$81-$	${ }^{6159}$	321.	D1．91	$55^{5}-$	ECH42	916	EN91	$8 /$	PCR800 10／6	Q815011		UF42	－				
2 C 51	101－	6BJ6	776	6876	$81-$	12970	$4 /$－	${ }_{50} 431$	8 81－1	6197		DL9		ECH883	${ }_{7 / 8}$	EN92	81.	PCF80 8／3	${ }_{\text {Q812 }}$		UF					
2 CW 4	121－	6 BK 4	22／6	${ }_{68,}^{687}$	71	128A7	$7 /$	${ }_{50 \mathrm{~B}}$	6／3	6197 6293	${ }_{801}$	${ }^{\text {DL94 }}$	8／－	ECH84	8 \％－	EY8	71.	PCF82 ${ }^{\text {PCF87 }}$	Q81203	$8 / 6$	UF85	716				
$\underset{2 \mathrm{E} 26}{2 \mathrm{D} 21}$	$\begin{array}{r} 62 / 6 \\ 22 / 6 \end{array}$	6BK7A		${ }_{68 \mathrm{~F}}^{68}$	87－	${ }_{128 G 7}^{128 C 7}$	51－1－	50 Cb	$8 /-$	6350	30%	${ }^{\text {DL95 }}$	$\%$	ECL80	$7 /$	EY8	9／－	${ }_{\text {PCFF8800 }}$ 10／－	QS1215	12／－	UF89	$9 /-$				
3 A 4	－－			68	7	12947	4／－	$50 \mathrm{CD6G}$	276	6839	451	DL96	$7{ }^{7}$	EC	718	EY	78	PCF801 9／6	QV03－1		UF					
3 A 5	71	6BN6	${ }^{7 / 6}$	68G7	$61-$	128.57	4）－	V		7360	301	DM70	$8 / 6$		${ }_{818}^{818}$	EY8	8／8	PCF802 9／6			UL4 1					
A	$8 / 6$	Q7A	7 7－	${ }_{6857}^{68 \%}$	$4 /-$	\％7	$5 /-$		12／6		$22 / 8$	${ }_{\text {DY86 }}$	$8 / 6$	ECLA4	12／－	EY8	8 8－	PCF805 11／－		$81-$		0\％－				
${ }^{3187}$	5／－		－			128LT ${ }^{\text {asid }}$	T7／6		301.	7896	22／6	DY87	71.	ECLAs	11／6	${ }_{\text {EZZ35 }}$	$5 / 6$	${ }_{\text {PCFF808 }} 12 \%$－	R2	8）－	UM80	5－1				
3B28	40／．	${ }_{6}^{6888}$	171－	68K57	4／8／8	128N7G	T7／8	${ }^{68 C G}$	451－	9002	$5 / 6$	E80F	20\％	ECLs6	${ }^{91}$	${ }_{\text {EZ } 236}$	716		R10	$15 /-$	UM81	$101-$				
${ }_{3 Q 4}$		6BW6	71	68176	$8 /$	14	18）．	75 Cl	13／－	9003	15	E88C	12／6		10，－	EZ41	81	PCL81 9／－	R1	1	UU0	$8 /-$				
3Q50	8／6	${ }^{68 W} 7$	101－	68N7	18	20D1	81－	89 A	${ }^{6 /-}$	${ }^{9} 18$	150\％	${ }_{\text {E920 }}$	10.	EF	8／－	Ez80	位	PCL82 7／－	${ }_{\text {BP }}$	\％－	UU7	7				
384	51.	${ }_{68 \mathrm{Bb}}^{6}$	81－	${ }_{68 \mathrm{R}}{ }^{\text {B8P }}$	${ }_{7}^{7 \%}$	20 F 2	13／－	85A		${ }^{\text {AC／HL／}} 8$		${ }_{\text {E180C }}$				${ }_{\text {EZ880 }}$	5／－	PCLI 83 $\mathrm{PCL84}$ $8 / 6$			UU9	7－				
$3{ }^{3} 4$	61－		11	68 B	${ }^{7} / 8$	$20 \mathrm{L1}$	13／－	${ }_{85 A 2}^{88 A 1}$	${ }_{76}{ }^{-1}$		$81-$	E180F	17／6	EF40	9.				8U45	15j．	UU10	81				
4－65A	80／－	${ }_{6}^{6 C 5}$	818	$\begin{aligned} & 6 \mathrm{~TB} \\ & \text { 6U8 } \end{aligned}$	${ }_{7 / 6}$			$85{ }^{3}$	5／6	AC					$8 / 6$	G8		PCLL88 $8 / 8$ 8.8	SU2150		UY1N	－				
$4 \mathrm{B32}$	$80 /-$	${ }_{6 C 5}^{605}$		${ }_{6} \mathrm{GUBA}^{\text {d }}$	$9 / 6$	${ }^{208}{ }^{208}$	12／－	${ }_{9040}$	481－	DDD	101－	EA50	21	EF42	11／－	G		PCLE8 1016		2／－	UY21					
4 E 27	8	$\begin{aligned} & 6 \mathrm{CbC} \\ & 6 \mathrm{C} \end{aligned}$	${ }_{4} /-$	${ }^{6 \times 89}$	${ }_{6 / 8}$	${ }^{25154}$	${ }^{13 / 7}$	90 AV	48／－	AC／TH1	$181-$	Eabc80	8／6	EF52	81 8－		$12 / 1$	PCIS00 12／－	${ }_{\text {TP22 }}$	71.	UY41	${ }^{8 / 8}$				
${ }_{4}$	8／－	${ }^{\text {Cas }}$	121－	6X4	41－	${ }_{25 \mathrm{Z} 4 \mathrm{C}}$	88 81－	${ }_{900 \mathrm{Cl}}^{90 \mathrm{Cl}}$	12\％－	AC／VP		EAC91	88 8／	EF	81.	GZ33	101.	PCL80110／6	Tr	${ }^{-1}$	UY82	／8				
		6CBE	6－	6x5	9／8	25 Z 5	$8{ }^{8 .}$		251－		8／8－	${ }_{\text {EAFC33 }}$	8	EF80	85	Gz34	101－	PEN25 5／－	TT21	85／－	vp	／6				
	100／－	${ }^{6 C D 6}$	A17\％－		91－	25 ZGGT	11.		30／－	AT825	$9 /$	EbC41	$8 / 6$	EF83	10／－	GZ37	12／－	5 71－	TZ40	401－	V41	\％－				
5R4Gy	9／－	${ }_{6 C H 6}^{6 C 07}$	8	${ }_{7} 7868$		28D7	71.	150 B 2	101－	AW6	51.	EBC81	8／3	EF85	8／8	\＃авC8	81－	50D	U10	$8 /-$	vU39	$8 /$				
${ }^{\text {SU4GB }}$	${ }^{8 / 6}$	${ }_{\text {6CL }}$ 6－18			${ }_{71}$	${ }^{30 \mathrm{~A} 5}$	71.	150 B	8／－	AZ11	8 8－	ebego	$4 / 6$	EF86	${ }^{8 / 3}$	HBC90	$51-$		U12／14	$8 /-$	W81m	$8 /$				
${ }_{5}^{5088}$	${ }_{816}^{81 .}$	${ }_{6}^{6 C L 6}$	11／－	${ }_{788} 78$	$81-$	${ }^{30 \mathrm{Cl}}$		21	301－	${ }_{\text {AZ31 }}$	9%	$\underset{\text { EBFP81 }}{ }$	7／8	EF	${ }^{5 / 8} 8$	${ }_{\mathrm{HfP}}^{\mathrm{HBC9}}$	6／6		${ }_{\mathbf{U 1 7} 17}{ }^{\text {U }}$		W107	$7 /$				
${ }_{5 \times 3 \mathrm{~S}}{ }_{\text {5 }}$	${ }_{51}^{816}$	${ }^{6 C Y} 5$	${ }^{91-}$	${ }^{\text {cos }}$	11／－	${ }_{30 \mathrm{C} 17}$	11／8	812 A	55／－		${ }_{7 \%}^{97}$	EBF80	88	${ }_{\text {EF93 }}^{\text {EF91 }}$	$4 / 8$	${ }_{\text {HF93 }}$	6／－	$71-$	U19 ${ }^{\text {U120 }}$	80／．	W729	$101-$				
$5 \mathrm{Z3}$	$7 / 6$	${ }^{6 C Y} 7$	11／－	7 Cb	$8 /$	30018	11／－	815	351.	CBL 31	15／－	EBF89	71－	EF94	5／6	HL2		PEN38310／－	U21	\％	X 76	${ }^{6}$				
5Z4G	7.	${ }_{60}^{60} 4$	151－			30F6	10／－	83	20／－	ССН35	101－	EBL31	201－	EF95	5／－	НL2к	$4 /$	PEN384 7－	U22	81		／8				
6／30L2	$8 / 6$		$31-$ $81-$	787	$22 /-$	30 FLl	14．－	837	17／8	DA90	4／－	EC86	12\％	${ }_{\text {EF96 }}$	$2 / 6$	HL23	B／－	10／－	U	12／8	${ }^{\mathbf{x} C 16}$	\％				
${ }_{648} 8$	$8 / 8$	6DQ8G	11／－	744		${ }_{30 \mathrm{FL} 12}$	19／－	886 A	14／－	DAC32	7／6	${ }_{\text {EC88 }}$	11／－		${ }_{10 \%} 10$	HL23D				12／6	Y63					
6484 8437	8／6－	6ESGT	81－	7174	$6 /$	30FL13	13／－	8724 884	40j－	DAF40	10／－	${ }_{\text {EC90 }}$	2／6．	EF988	10／6				U97	76 $201-$	${ }^{Y} 665$	\％				
csat	T10／－	6EA8	11／－	9BW6	$7 /$	，	5／6	955	3／－	DAF9	81	RC92	$6 / 6$	EF184	6／6	HL92	$8 / 6$	PF818 10／－	U50	5－	z．22	5／6				
UAC7	4／－	6F1	14／－	10c1	12／－	30L15	15／－	，	$2 /$	DAF96	$8 / 6$	Ecc3s	15／－	EF804	21／－	HL94	\％	PFL200 14／－	U52	／8	Z62	5－				
F4	10／－	$6^{6} 4$	30／－	1002	13／－	3017	15／－	957	$51-$	DC90	$7 /$	ECC35	17／－	EF811	121－	HL132D	D 4／－	$\mathrm{PL}^{\text {P68 }} 8$ 9－－	U70	$4 / 8$	283	－				
${ }^{64 F 6 G}$	11／．	${ }^{6 F 5}{ }^{\text {a }}$	8／－	$10 \mathrm{D1}$	71	12	8／－	95	\％	co	71.		${ }^{9 / 6}$	EF812	101－	HL133D		PL38 18／－	U76	4－	$\mathrm{Z}^{\text {Z6］}}$	101．				
${ }^{\text {ab }}$	$2 / 6$	${ }^{656} \mathrm{Ca}$	51.	10F1	$9 /$	16	$8 /$	959	81 －	DF33	－	ECC70	15／．	14	8		101．	$\mathrm{PlBla}^{\text {PL8 }}$ 7／－	U78	－		31－				
G7	8／－	$6{ }^{6} 7$	$51-$	10F3	$8 /$	$30 \mathrm{P18}$	6／8．	991	－	${ }_{\text {DF }}$	3／－	ECC81	4／－	EH900	$7 / 8$ $4 / 8$	HN309	4／8／－	$\begin{array}{ll}\text { PLS2 } & \text { P／83 } \\ \text { PL／B }\end{array}$	U8191	111－	${ }_{\text {Z900T }}^{28034}$	13／				
64日 6	10／－	6F8G	$5 /$	10F9	10	$80 \mathrm{P19}$		1267		DF		ECC82	b）－	EK	／8	HY90	4／8	PLS3 8／6	0191	11／－	29001	13				

TRANSISTORS

0 Cl 16	25／－	OC122	14／－	AD140	16／－	GETI14	－
$0 \mathrm{C23}$	15／－	OC139	8\％－	AD148	18／－	GET115	8／8
OC24	17／6	0 Cl 40	10／－	AFl02	18／－	QET116	12／－
0 C 25	9／6	00141	22／8	AFII4	$81-$	GET875	16
0C26	81－	dc170	6／－	AF115	7／－	GET880	2／－
0 C 28	12／6	OC171	6／－	AF116	\％－	Mat101	$18 / 6$
OC29	$14 / 9$	DO2	／8	AF117	6／．	MA＇T120	719
$0 \mathrm{OC35}$	$12 / 8$	0 C 201	17／6	AF118	14／＊	MAT121	8／6
$0 \mathrm{C3} 5^{\circ}$	$12 / 8$	00202	13／6	AF124	$81-$	T1166	6／－
OC42	$5 /-$	0 C 208	10／8	AF125	$8 / 6$	V30／30P	20／－
C44	J	OC204	$15 /-$	AF126	$8 /$	20309	5／－
$0 \mathrm{OC45}$	4／6	OC208	15／－			20871A	$5 /-$
OCF^{0}	5／－	06206	22／6	${ }_{\text {AF180 }}$	15／－	$2 \mathrm{Cas1}$	5／－
$0 \mathrm{OC71}$	51.	AC107	10／－	AFY10	22／8	2G403	B／－
0 Oc 2	$5 /-$	ACl25	6／8	AFZ11	$17 /$－	2N697	18／－
$0 \mathrm{C73}$	9／－	${ }^{\text {ACl }} 26$	$6 / 6$ $6 / 8$	AFZ12	$12 / 6$	2N756	6／6
0 O 75	61 －	AC	6	A8Y26	6／8	2N1134	81／
0076	6／－	${ }_{\text {ACl28 }}$		ASY28	8／6	2N1304	81－
$0 \mathrm{OC77}$	8）－	AC176	$7 / 6$	AsZ20	$7 / 6$	28002	201－
0.78 0.780	$5 /-$ $5 /-$	ACY17	$8 / 6$ $5 / 6$	ABZ21	15／－	28003 28004	201－
0C78D	5／－	ACY18	$5 / 8$ $8 / 6$	ABFY50	15／6	28004 28005	201－
OC81M OC8DM	5／－	ACY19	$8 / 8$ $5 /-$ 5	BFY50	8／6	28005 28006	501－
OC8DM 0088	5／－	ACV21	8／－	QE＇T103	5／6	28012	20\％－
$0 \mathrm{C8} 4$	5］－	ACY22	5／－	QET 113	5／－	28018	60\％

5 AMP THYRISTORS
Gate Voltage 3.25 at 120 mA
Green Bpot 400 P．I．V． $17 / B$ ．
TEXAS SILICON FULL－WAVE BRIDGE RECTIFIERS
$1820 \mathrm{~K} 10100 \mathrm{piv}, 2 \mathrm{amps}$ ，dimensions $1.4 \times 1.4 \times .6 \mathrm{in} .250$－
1B1003110， 100 piv， 10 amps，dimensions $2 t \times 2 t$ x 1 in .85 ／－
Poetage $1 / 6$ per rectifer．

MULTIMETERS
 TYPE MF 15

A．C．and D．C．voltage ranges D．O．current ranges． ס00 1 A－10－100mA Resistance ranges： $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$ ． The meter is also calibrated for
Inductance（ 10.1000 H ），capacity Inductance（ 10.1000 H ），capscity meats．Senstivity 2000 nV． $\pm 4 \%$ for A．C．neeasurements．
Dimension； $51 \times 3!\times 1 / \ln$ ．Price 83.3 .0 ．
Type 108－IT：${ }^{24}$ range precision portable meter． 5000 o．p．v．D．O．Volts： $2.5-10-60-250-600-2500$ V．A．C．Volts：
$10-50 \cdot 100-250-600-2500 \mathrm{~F}$ ；D．C．current $0.6 \cdot 5 \cdot 50-500 \mathrm{gn}$ Resistance 2000－20，000 ohms：2－20 megohans．Power output callbration in A．C．for 600 ohms liue．Complete with prods and batteries， 85.5 .0 ．P．\＆P， $5 /$ ．

Onr new price list of Valves．Tabes and Semiconductors is now ready．In addition to listing prices of some 2.300 types it is a useful reference work giving：Valve and Tube Equivalenus，Specifcation of Mierowave Tuber．Cathode Ray Tubes and Semiconductors．Sead S．A．E．（foolseap） now to ret sour copy free of charge．

> WE REQUIRE KLYSTRONS TYPE 723A／B and $2 K 25$
> ALSO VALVES TYPE 813，845， 810，4C35， 5 C22．

> 30／－paid subject to test

25 Watts $210-240 \mathrm{~V}$ SOLDERING IRONS

Recently imported extremely atiractive and sturalily built soldering irons with angle bits．Chrompum plated steel body with polished wooden handles．No bakelite
or breakable plastic used in construction，18／－，Spare bits or breakable plastic used in construction．18／－．Spare bits
$1 / 3$ ．Apare heating elementa $3 /-$ ．Handling and postage $3 /$ ．

CATHODE RAY TUBES

DG7－5，	55\％	095	80\％－	48P31	200／－
DG7．6，	$801-$	2 APl	40%	$\mathrm{BBPl}^{\text {B }}$	80／－
VCR138	501－	3GP1	40\％－	5 CPL	401－
VCR138A	60／－	4GP4	100／－	5UP7	80／－
VCR139A	301－	$48 \mathrm{P7}$	200\％－	$90 \mathrm{EG4P}$	180／－
09D	80／－	$48 \mathrm{Pl1}$	200\％		

ZENER DIODES

2．4v．Z2A24F，5／6．2．7v．Z2A27F，5／6．3．0v．Z2A30F，5／8． 3．8v，Z2AA38F，5／6．3．9v．Z2AA39F，5／6．4．25v．VR425A，8／6；
 OAZ209，
OAZA42， $7 / 6 ;$ OAZ222， $9 / 6$ ． $5.75 v$ ．VRS76BA，81－ 8.2% ． OAZ203，7／－；OAZ210，6／－．6．8v，OAZ204，7／－；OAZ224，
 11.0 v VR11A， $8 /-12.0 \mathrm{v}$ ．K844B， $8 /-$ OAZ213， $8 / 6.13 .0 \mathrm{~F}$ ． VR13A 8／－．16．0v，Z2A160F，5／8．18．0v．BZY20，7／6．
20.0 v ．ZN B20． $9 / 6.80 .0 \mathrm{v}$ ．Z2A．300F， $5 / 6.33 .0 \mathrm{v}$ ．Z3B330CF，

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL \star RADIO, TV OR AUDIO EQUIPMENT.

郎RACTICAL WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 7th July, 1967 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, JULY 1967

NEW SOLID STATE HIGH FIDELITY EQUIPMENT*** IMPROVED PERFORMANCE • NEW STYLING • NEW MODELS • MONO \& STEREO

MP3. Mono meamplitier. All silicon tow noise zener stabilised circuit. Full rang of controls-fully equalised inputs for xtal pu, dyn/xtal mic, rallio tuners. tape head and preamp. replay. Supplied built and tested on metal chassis complete with

SP6-2. Mono-stereo prearmplifier. Uses 8 ailionn/germanium dewhees. Fenerstabilised Completely new low noise design. Full range of controls and filters. Inputs for magmetic/xtal/ceramic cartridges, radio tuners, tape preamp. microphones, tape head, etc. Record cutput socket. Supplied built and tested on metal chassis with rey/silver front panel and tuatching knobs. Complete with input sockets an

SPA. Mono/atereo preamplifler as prevlously advertised. Complete with tront pane and knobs. Size $9 \times 34 \times 1$ in.

SP4 Price $£ 10.19 .6$, P.P. $3 / 6$
MPA12/3 and MPA12/15. 12 watt power amplifers for use with above preamplifiers
Improved response and perfinmance with even lower distortion levels. MPA12/3
or 3 to 5 ohm speakers, $24 / 28$ volt supplr. MPA $12 / 75$ for 10 to 16 ohm speakers,
response $\pm \mathbf{1 d B}, 30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. T'H1 $0 \cdot 2 \%$ at 12 watts. High gain stable puah-pull
output designs. Built on to metal chassis as hlustrated. Overall size $5 \times 2 \times 8$ in
Complete with handbook
MPA12/3 Price £4.10.0, P.P. 2/6
MPA12/15 Price 25.5.0, P.P. 2/6

MPA12 + 12. Twin ampliter for mono/stereo use with above preamplifiers. Consists of two matched MPA12/15 amplitiers (see abore) on single chassis. Output for 10 to 16 ohm speakers. $40 / 45$ volts suppls. Overall size $10 \times 2 \times 34 \mathrm{in}$

MPA12+12 Prioe 89.19.6, P.P. 4/-
MPA25. $25 / 30$ watt power amplifier for use with above preampliflers. New desigu and layout with improved response and overall performance. Output for 71 to 10 silicon and germanium devices. Supply $50 / 60$ volts. Overall aize $8 \times 2 \times 3$ tin.

MPA25 Price 27.10.0, P.P. 8/6

THE FINEST VALUE IN HIGH FIDELITY - FULLY GUARANTEED CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

Choice of
PREAMPLIFIERS
POWER AMPLIFIERS
MAINS UNITS
MALNS UNITS.
$110 / 240$ volt $50 / 60 \mathrm{c} / \mathrm{s}$ input AC/DC inses. Fully smoothed sind isolated. MU series has additional chokefuapacitors filtering and panel voltage selectors. All type on metal c
PS24/40. Output 24 and 45 volts amp. for use with 1 or 2 MPA12/3

Price 70/- P- $9 /$ MUR4/40. Choke smoothed. Out put 24 and 45 volts 1 amp. for use with 1 or 2 MPA12/3 and MPA12/1 MPA12+12. Price 8/18 Ontpu volts 1 amp. for use with 1 or MPAzu. Price 95/- p.p. \& RECOMMENDED SYSTEMS MP3 + MPA12/15 + P340 E14.12.6 $\mathrm{MP} 3+\mathrm{MP} 412 / 9+\mathrm{Pg} 24 \quad$ p.p. ${ }^{6 / 6}$ p.p. $6 / 6$ $\mathrm{BP} 6+\mathrm{MPA} 12+12$

$$
\begin{aligned}
& \text { or two MPBL2/5 } \\
& +\mathrm{MU} 40 \quad \text { e28.5.0, p.p. } 10 /-
\end{aligned}
$$

SP6-2 + (2) MPA12/3 + MU24 $\mathrm{BP} 6-2+$ (2) MPA25 + 226.150 p.p. $10 /=$ GP4+(2)MPA12/588.5.0 p.p. $10 / 6$ g2400 $\mathrm{SP} 4+(2) \mathrm{MPAl} 2 / 3+\mathrm{PS} 24$
 $\mathrm{MP} 3+(2) \mathrm{MPA} 2 / 3+\mathrm{MU} 24$
$+19.82$
COMPLETE BROCHURE FREE ON REQUEST

WE CAN SUPPLY FHOM STOCK MOST OF THE PARTS SPECIFIED ON CIRCUITS IN THIS wagazine. SEND LIST FOR QUOTATION.
OR BETTER STILLL-BUY THE NEW 196z CATALOGUE. EKERYTHING YOU NEED IS LISTED AND AVALABLE FROM STOCK.

SEE PAGE 231 FOROF STOCK ITEMS

7-TRANSISTOR

MW-LW SUPERHET
PORTABLE TO BULD
New printed circuit clesign with $\frac{1}{2}$ watt full power output. Fully tuable on both MW/
LW bands 7 tranuistors plus diode. PushLW bands. 7 tranuistors pus diode. Push
pull circuit. FITTED Ein. SI'AKER pull circuit. FITTED bin. speaker LARD TRANSISTORS. Easy to build with terrife results. All local pirate and Continen-
 request.

TOURMASTER TRANSISTOR
Car radio British Made 7-Transistor MW/LW Car Radio. 12 volt operated. 3 watt output. Push button Warechange. RF stage. Supplied built boxed ready to use with speaker and Baffe. Car
fixing kit and mannfacturers' current Axing kit and manntacturers
guarantee. Special Rargain Offer. Buy Now 1 EIST PRICE $15 \mathrm{GNS} . \quad \mathrm{E} 7.19 .6 \quad$ P.P.
Push button version 211.19.6, P.P. $4 / 6$.
PW AND PE DESIGNS
to build yoursel
Explorer (less chassis) 79/6; Explorer (with Chassis) 99/6: Multi-bund superhet E9.9.0. Photo Flash slave Unit 42/6. Aolid State S.A.E. parts list on request

VHF FM TUNER TO BULD 87/103 Mc/s Transistor Buperhet. Geared tuning. Terrific quality and sensitivity. For valve or transistor amplifiers. $4 \geq 3 \frac{1}{x}$ 2 tin. Complete with dial plate. I Mullard bly $20 /$ estral. Leaflet on $\mathbf{I 6 . 1 9 . 6}{ }^{\text {P.P }}$ request. Total Cost to Build $\mathbf{1 0} .1$

FM STEREO DECODER

 7 Mullard Transistors. Printed Circuit Deaign with stereo Indicator. For use with any valve or transistor Fm. Unes pot cores tico transis tors. Leaflet on request. As used by B.B.C and G.P.O.Complete Kil \quad BULD A QUALITY 2 OR 4
TRACK TAPE RECORDER 3-speed version using '383' decks - TWO-TRACK, Deck 810.10.0. Martin Amplifer 214.19.6. Cabinet and speaker 7 gns, Complete kits with FREE 7 in . 1200 ft tape spare spool. 27 gns.
Todays Value 545.
Todays Value f45. Deck 213.10 .0 . Martin

- FOUR-TRACK. - FOUR-TRACK. Deck R13.10.0. Martin Amplifler £15.19.6. Cabinet with Hpeake tape spare spool. 30 gns. p.p. 151
Todey's Value eso

MAYFAIR PORTABLE
ELECTRONIC ORGAN

Now available as

- Complete kit of parts
- Built and tested
- Prebuilt assemblies Reverberation units and recommended speakers and amplifiers in stock Designed by L. W. Roche

ble

Straightforward to build and tune-easy to play-fully guaranteed. All parts available separately-astounding value and performance. Start building for as little as $£ 5$.

- Plug-in printed circuits - 170 transistors and devices - 10 selected tone colours - Fully sprung keyboard Vibrato 6 Octaves of generators Simple locked-in tuning - $110 / 250$ volt mains unit Cabinet size $30 \frac{1}{4}{ }^{\text {" }} \times$ $15 \frac{1^{\prime \prime}}{} \times 9^{\prime \prime}$ Weight 35 lb . Cabinet with detachable legs, music stand and foot swell pedal - Fully detailed building manual with photos, drawings and full circuits.
COMPLETE RANGE OF ORGAN PARTS IN STOCK.
H.P. FACILITIES AVAILABLE TRADE/EXPORT SUPPLIED.

FULLY DETAILED LEAFLET AND
PRICE LIST ON REQUEST
Call for demonstration and play the Mayfatr

RELAYS, MOTORS, SWITCHES, MINIATURE COMPONENTS,
 Complete range in stock all types for every purpose. Also panel and multimeters, preclsion components, radio control crystals and parta, transistors, tunnel diodes, thyristors, LDR's, zenerg, rectiliers and diodes Everything you need or amateur and catalogue. The iarger forg LISTS AVALLABLE

HENRY'S RADIO LTD.

303 EDGWARE RD., LONDON. W. 2 PA Ddington 1008/9 (STD 01-723 1008) Open Mon. 10 Sat. 9 -6. Thurs. 1 p.m.
pen all day Saturday

1067 CATALOGDE

 Have you a copyl Full detalled andOver 200 pases of components equipment etc. Over 5,000 stock items FULLY DETAILED PRICE 8/B, post paid 5 Free discount vouch ers value 10/-
every catalogue.

200 PAGES-PLUS 1

[^0]: Complete your motoring pleasure with this small, compact, high-performance car radio. It can be fitted to any make of car having 12 volt positive or negative earth system. Tastefully styled in neutral grey with matching black knobs and chrome trim to harmonise with any car colour scheme.
 Features include:- Six transistor, 2-diode circuit. Completely pre-assembled and aligned tuning unit. High sensitivity, combined with wide range automatic gain control (AGC), minimises fading under weak reception conditions. Easy-tune dial. Push button long, medium, and tone selection.
 The car radio is available for your convenience, in two separate units: RF Amplifier Kit CR-IT, £1.13.6 incl. P.T. IF/AF Amplifier Kit CR-IA, £11.3.6.
 TOTAL PRICE KIT (excluding loudspeaker) $£ 12.17 .0$ incl. P.T.
 $8 \times 5 \mathrm{in}$. Loudspeaker, Pt. No. 401-505, £1.16.1 incl. P.T.

[^1]: All correspondence Intended for the Editor should be addressed to: The Editor, "Practlcal WIreless", George Newnes Ltd., Tower House, Southampton Street, London W.C.2. Phone: TEMple Bar 4363. Telegrams: Nownes London, W.C.2. Subscriptlon rates, Including postage: 36s. per yoar to any part of the world. (C) George Newnes Ltd., 1967. Copyright in all drawlngs, photographs and articles published in "Practical Wireless" Is specifically reserved throughout the countries slgnatory to the Berne Convention and the U.S.A. Reproductions or Imltations of any of these are therefore expressly forbldden.

[^2]: M. J. Osborn.

 Cowplain,
 Hants

[^3]: * Registered trade mark Brush Clevite Company Ltd.

[^4]: ORDERS BY POST TO
 G. F. MILWARD, 17 Peel Close, Drayton Bassett, Staffs.

[^5]: Resistor
 +W. 10%, High Stab. Class 1 low noise As ebove in assorted vass As above in
 Cepacitors
 Min. Electrolytics assorted values Polystyrene up to $0 \cdot 0047 \mathrm{uF}$ up to 0.022 uF

 8/- per doz values $\quad 9 /$ - per doz. Prangistors (Matched output kit. OC81D (Sore selection) Type 1020 PNP kit. OC81D $+2 \times 0 \mathrm{OC81} \quad$ 2/6 per set Type 1024 PNP Germanhum, RF, Typ. $4 \mathrm{Mc} / \mathrm{s}$. OC44, OC45, OC70, OC71, ACY22, 0C81D 17/6 per doz. | OCA4, OCAD, OC70, OC71, ACY22, 0C81D |
 | :--- |
 | Silleon Enitaxlal Planar BCl08 |
 | $5 / 6$ each | OC26 (7/6). OC25 (8/6). OC36 (10/-) Amplifer

 $\$$ Watt into 8 ohras from Xtal P.U. 9 Y Supply
 For complete tist of Laboratory C'omponents send S.A.E
 LABORATORY EQUIPMENT (ELEC) 38 Crawford St., London, W. 1 All goods C.W.O. and P.P. 1/6

