PRACTICAL WIRELESS
 JULY 1966
 216

FREE INSIDE

> 24-PAGE
> POCKET GUIDE
> TESTING TRANSITTOR AND VALVE CIRCUITS

SOLDERING EQUIPMENT

FOR CATALOGUES APPLY DIRECT

> ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD, LONDON, S.W. 4

> Telephones: MACaulay 3101 4272

NOMBREX

WIDE RANGE
TRANSISTORISED SIGNAL GENERATOR MODEL 27
\star Range $150 \mathrm{Kc} / \mathrm{s}-350 \mathrm{Mc} / \mathrm{s}$ * Direct Calibration * Mod. or Unmod. output \star Accuracy better than 2% £10.16.9.

ALSO AVAILABLE
Audio Generator 63
£17.1.9 Inductance Bridge 66 £18.6.9 Power Supply Unit 61 .. £6.14.6

WIDE RANGE TRANSISTORISED
C.R. BRIDGE-Model 62

6 Ranges: 1Ω to 100 M
1 pF to $100 \mu \mathrm{~F}$
\star Visual null indicator
\nleftarrow Power factor check
\star Electrolytic leakage test
\star Battery operated
£9. 6.9.

All prices include battery, post and packing
S.A.E. for

Leaflet
Trade \& Export Enquiries Invited

Prompt Delivery

Estuary House, Camperdown Ter., Exmouth, Devon

GUITAR AMPLIFIERS with TREMOLO

12 months' guarantee (valves 3 months)

Five jack sockel input with four separate mixing gain of 10 milivoits makes it stritable for al types of guitars and microphones. Separate Bass and Treble controls. Master gain control. Tremolo speed and depth controls. Jemote tremolo switch socket, 7. .i and 15 ohms outputs. 30 and 50 watt valves EL34, GZ34. 15 watt $\begin{array}{lll}\text { E133, } \\ \text { valves } & \text { ECO834, } \\ \text { HCC83 }\end{array}$ valves ECO83, ECC83
EL84, FL84, EZ81. Two extra valves EOC83 used in the tremolo circuit Tremolo operates on one input only. Black and gold front panel (fitted tremolo type only at present). Chassis finished PRICES
50 watt with tremolo . $£ 21.17 .6$
50 watt less tremolo
30 watt 4 ith tremolo
30 watt lexs tremolo.

219.10 .0
1010

$\pm 16.17 .6$
15 watt less tramolo.
£18.17.6

stamp appreciated. Suital, speakers, Bakers 12in. Guitar L.S.. 5 gns. Bakers 10̆hi Gtamp appreciated. suitalis speakers,

Cash with order moly, regrot no C.O.D.

ALtisfaction or Money Back Grarantee on goods if returned untused ALL FALYES ARE NEW UNLESS OTHERWISE INFORMED.
INSURANCE. POSTAGE 1 valve 9d., 2-11 6d. per valve. Free over 12.

FREE TRANSI

100 HI-STABS 100Ω to 5 ma 9/6 co-AX, low loss, bd. yd., 25 yds. 11/6;
 MICROPHONE CABLE. Highest quality black, grey, white, 9d. per yard.
100 CONDENSERS
$9 / 6$
 DULCI (VHF) FM TUNERS MODEL FMT/5. Self powered $200 / 2000$ A.C. A.F.C. High sensitivity for fringe and long distance reception. Size $11 \frac{1}{4} \mathrm{x}$ $8 \frac{1}{3} \mathrm{in}$. x $3 \frac{1}{3} \mathrm{in}$. high. Weight $7 \frac{1}{\mathrm{~b}} \mathrm{l}$ b. In case frished in satil ehrome and black. We can Nfer these high fidelity instruments Limited number or LOUDSPEAKERS. 3Ω Top Gis $\begin{array}{llll}6 \frac{1}{2} \text { in. } & 7 / 6 & 7 \times 4 \text { in. } & 8 / 6\end{array}$ ELPICO MONO PREAMPS DPA15. Latest black/satin chrome finish multiple input channels selector, base and treble controls. Natches all pickups and mikes. Provision tape record. 5 Gins.
ing. Normally 10 gns. our price

HITACHI PORTABLE

TAPE RECORDER

STOCKS GOING FAST 1 Latest Hitachi Fabulous quality reproduction of music, 6 -transistor. $1 \frac{1}{8}$ in. and $3 \frac{3}{7} \mathrm{in}$. speeds. Output 500 mW high quality speaker. Fast drive. Size 8^{3} meter. Precision capstan
 spares available. With tape, 19 Gns. CAR RADIOS

8 Gns.
Latest Autolux fully transibtorised Large purchase enables us to sell thes 14 gus.) at the amazing price of 8 Gns.
RADIOGRAM GHASSIS QUALITY BARGAINS Heavy duty A.C. mains, complete with Stereo AM
Stereo AM, 6 valve, all wave 11 Gins.
(normally 17 gns.). Mono AM/FM, 6 valve. 12 Gns. Stereo AM/FM, 7 valve, 17 Gns.

Transistorised FM Tuner

TYPE FMT. 41 HIGH QUALITY : LOW NOISE : BATTERY OR MAINS OPERATION

Reproduction stands favourable comparison with tuners costing 3 times as much. Come and hear it (and compare it) any of our branches or send Brighton zeithout delay we anticipate
This beautifully compact 6 transistor machine size 6in.x4in. more interference-free reception. Months of use from a standard 9 volt battery or its small power requirements can be drawn from any amplifier. Low noise ning feeding no less than three i.f. stages tuning feeding no less than three i.f. stages
iminator terminating in an l.f. stage giving coupled to a double-tuned discriminato
ample output for all quality amplifiers.
avoid disappointment ORDER NOW \&8-10

STEREO AMPLIFIERS Acz662 3-4 watis per channel, excellent control panel, quality finish.
AC mains. superior velue at
6 230V AC CONVERTORS INPUT 12V D.C. Output 40 watts from

ENORMOUS PURCHASE. GUARAN-

 TEED. APPROX, HALF PRICE, WORLD FAMOUS MAKEWe ofier you fully tensilised polyester; mylar and P.V.C. tapes of identical quality hi-ff, wide range recording characteristics as top srade tapes. Quality control manufacture. They are truly worth a few more coppers than acetate, sub-standard, jointed or cheap imports. TRY ONE AND
Standard Play \quad Double Play $\begin{array}{lllll}3 \mathrm{in} . & \quad 150 \mathrm{ft} .2 / 3 & 3 \mathrm{in} . & 300 \mathrm{ft} . & 4 /- \\ 4 / 6 & 4 \mathrm{in} . & 600 \mathrm{ft} . & 8 /-\end{array}$ 5in. $\quad 600 \mathrm{ft}$. $/ / 6$ 5in. $1,200 \mathrm{ft}$ 15/-
 7 in . $1,200 \mathrm{ft} .13 / 6$ 7in. $2,400 \mathrm{ft} .2 \% /-$ 3in. Long Play 225 ft 2/9 Triple Play $\begin{array}{llll}3 \mathrm{in} . & 225 \mathrm{ft} .2 / 9 & 4 \mathrm{in} . & 900 \mathrm{ft} . \\ 4 \mathrm{in} . & 48 / \\ 400 \mathrm{ft} .5 / 6 & 5 \mathrm{in} . & 1,800 \mathrm{ft} .25 /\end{array}$ $\begin{array}{llll}\text { 4in. } & 400 \mathrm{ft} .5 / 6 & 5 \mathrm{in} . & 1,800 \mathrm{ft} .25 /- \\ 5 \mathrm{in} . & 900 \mathrm{ft} .10 / 6 & 5 \frac{3}{3} \mathrm{in} . \\ 2,400 \mathrm{ft} . & 34 /-\end{array}$
 7 in . $1,800 \mathrm{ft} 18 / 6$

Quadruple Play Postage $1 /$ reel 3 ft . 600 ft . $8 /-$ Quantity and Trade enquiries invited.

SPEAKER FABRIC

Superior Gold/Brown Vynide with small perforations, gift at $2 / 6$ sq,
$12 \mathrm{sq} . \mathrm{ft} .(4 \times 3)$ for only

CRM141. CRM142. Special bulk purehase CONNEOTING WIRE
enables us to offer these tubes at
this low price (carr $9 /$.
TRANSISTORS
GUARANTEED TOP QUALITY Huge reduction. Red Spot 1/6 White Spot R.F. $2 /$ $\begin{array}{llll}\text { Mullard Mstehed } & \text { Output } & \text { M/6 } \\ \text { Kits } & \text { OC81D } & \text { and } & \text { 2-0c81 } \\ 9 / 6\end{array}$ R.F. Kits OC44, OC45 (2) $\begin{array}{lllll}3 \text { transistors } & \text { AF } & \\ \text { AF114 } & 8 /- & \text { OC26 } & 9 /- & 0 \text { Cs1 } \\ 9 / 6\end{array}$
 $\begin{array}{llllll}\text { AF116 } & 7 / 6 & 0044 & 5 / 6 & 0082 & 6 /-\end{array}$ $\begin{array}{lllllll}\text { AF117 } & 6 /- & 0 \mathrm{CA5} & 5 /- & 0 \mathrm{Cl} 170 & 8 / 6 \\ \text { AF127 } & 7 / 6 & \text { OC72 } & 5 /- & \text { OC171 } & 8 / 6\end{array}$
GERMANIUM DIODES
General Purpose miniature
detector A.V.C. etc. $6 / 6$ doz.
$8 d$. detector A.V.C. etc. $6 / 6$ doz. Individually tested $9 / 6$ doz

1/-

SILICON REGTIFIERS

 Guaranteed performance. Top makes $120 \mathrm{ma} . \quad 2 / 9 \quad 500 \mathrm{ma}$.

TUHES \mid Carr. \& Ins. $12 / 6 \quad 6$ Months 12 Months NEW TYPES MOST MTL Car MAZDA COSSOP, EMITRON, COSSOR, SCOPE, BRIMAPFERRANTI TYPES PROCESSED

OUR OWN
FACTORY

Stockists of Leak, Quad, Ohapman, Goodman, Armstrong, Tripletone, Linear, Rodgers, Truvox, Ferrograph, Wharfedale, etc., etc. Post: 1lb. 1/6, 1권. 2/6, 2lb. 2/9, 41b. 3/3, 61b. 4/5/6.
All Mail Orders:- DEPT. W7, Devonian Court,
BRIGHTON Park Crescent Place.
Tel. 680722 (E.C. Weds.)
L0NDON 10 Tottenham Court Road. Tel. MUSeum 2639. (E.C. Weds.)
PORTSMOUTH ${ }^{350-352}$ Fratton
Road, Tel. 22034.
72 East Street,
Tel. 2585 I.

LASYYS FOR THE FINEST VALUE AND RADIO TO HOME CONSTRUCTORS

DEMONSTRATION STUDIOS

Lasky's Radio are proud to announce the opening of their restyled and completely modernised Hi-Fidelity and Electronics components store and showroom at:

207 EDGWARE ROAD W. 2

New features include spacious open layout, 'Tape Bar", Belf Service Components Dept., and Hi-Fi Demonstration Stadio. Absolutely new and right up to date for your easy cholce from the largest stocks in Great Britain-backed

$$
\begin{aligned}
& \\
& \text { REMEMBER } \text { LASKY's GEST } \\
& \text { THE } \text { GUARANTEE YOU } \\
& \text { IN } \text { ELECTRONICS }
\end{aligned}
$$

TRANSISTOR PORTABLES

> We consider our Construction Pareels to be the fnest value auailable on the home construction market. If on receipt you feel not competent to build the set, yous nay return it as received within 7 days, when the sum paid will be refunded less postage.

THE SKYROVER RANGE 7 transistor and 2 diode superhet portables-covering full med. plus 6 SW Bands.
The SKYROVER Mk. III.
(Illustrated). Now supplied with redesigned plastic cabinet in black, grey and ehrome with edgewise controls.
Controls: Waveband Selector. Volume Control with on/off $\$$ witch, Tuning Control. In plastic cabinet, size $10 \times 6 \frac{1}{2} \times 3 \frac{1}{2}$ in. with metal Can now
be built for
28.19 .6
Post
$5 /$ extra H.P. Terms: 45/- deposit and 11 monthly THE SKYROVER De Luxe Tone Circuit is incorporated, with separate Tone Circuit is incorporated, With separate
Tone Control in addition to Volume Control. Tone Control in addition to Volume Control. In a wood cabinet, size $11 \frac{1}{2}$ x $6 \frac{1}{2} \times 3$ xin.
covered with a washable material, with plastic trim and carrying handle. Also car aerial socket fitted
$\begin{array}{ll}\text { Can now } \\ \text { be built for } & 210.19 .6 \\ \text { Post } \\ \text { 5/- extra }\end{array}$ H.P. Terms: 55/- deposit and 11 monthly payments of 16/11. Total H.P.P., fi2.1.1.
 * LONG WAVEBAND ABLE FOR THE SKYROVER

A simple additlonal circuit provides coverage of the $1100 / 1950 \mathrm{M}$. band (intcluding 1500 M . Light programme). This is in addition to all existing Medium and Short warebands. All necessary Only $10 /=$ extra Post Free. This conversion is suitable for both recei vers that have already been constructed.

Data for eaeh receiver: 2/6 extra: Refunded if you purchase the parcel. Four \quad J\& batteries $3 / 4$ extra. All components available separately.

REALISTIC SEVEN

Fully tunable long and medium bands. Uses 7 Mullard Transistors; plus Diode OA70.

STAR features:

7 Transistor Superhet. 3 mo Milliwatt output $4 i n$. high flux speaker. All components mounted on a single printed circult board. Size $5 \frac{1}{2}$ x $5 \frac{1}{2}$ in. in one handle, size $7 \times 10 \times 3$ xin., in blue/grey. Easy to handie, size 7 x 10 x shin, in bluegrey. Easy to frequency $470 \mathrm{Kc} / \mathrm{s}$. Ferrite rod internal aerial. - Operates from PP9 or similar battery. Full comprehensive data supplied with each Receiver. All coils and I.F.s, ete., fully wound ready for mmediate assembly, An outstanding Receiver. 25 . 19.6 Battery $3 / 9$ extra. (All components avail. sep.). Data and ins. 2/6, refunded. if you purchase Battery
parcel.

TAPE. RECORDERS

MAGNAVOX-COLLARO 363 TAPE DECKS
The very latest 3 speed model -1 , 3 , $3 \frac{9}{4}, 7 \frac{3}{3}$ ips, available with either $\frac{1}{\frac{1}{2}}$ track or $\frac{1}{4}$ track head. Features include: pause con-
trol; digital counter: fast forward and rewind; new 4 pole fully sereened induction motor, interlocking keys. Size of top plate For $200 / 250 \mathrm{v}$. A.C. mains, 50 cps operation
 Lasky's Price Lasky's Price $\underset{\substack{\text { titrack } \\ \text { model }}}{\text { mold }}$ Carriage and Packing 7/6 extra

THE NEW GARRARD STEREO DECK
Now available from stock-superb specifi cation: three $\frac{1}{4}$ track stereo/mono heads 3 speeds- $1 \frac{2}{8}, 3 \frac{1}{4}, 7 \frac{1}{3}$ i.p.s.; takes forward and rewind: tape position indicator; panse control; separate record, replay and erase heads--4 tracks; piano key controls interlocked for all functions; stop) start can be remotely controlled; auto, tapeend stop. Heavy duty motor, capacitor star and run, large dynamically balanced fly wheel. Deck finished in grey plastic, size $14 \frac{1}{3} \times 12 \times 6$ in. depth below plinth 4 in . For I10v. 50 e.p.s. Mains operation, AutoGNS. Carriage \& Packing 10/6 extra
LASKY'S PRICE 291
INTERNATIONAL TAPE Famous American Erand-Fully Guaranteed in. Message tape, 150ft
$\begin{array}{cc}26 & 5 \text { sin. Long play, 1200ft. Acetate } \\ 3 & 9 \\ 7 & \text { Sbin. Standard play, 850it. PVC } \\ 7 & 58 \mathrm{in} \text {. Long play, } 1200 \mathrm{it} \text {. Mylar } \\ 10 & 0\end{array}$ in. Message tape, 225 ft .

Message tape, 300 ft .
3in. Triple play, 600 ft . Mylar
4in. Triple play, 900 ft . Mylar
$5 i n . ~ D o u b l e ~ p l a y, ~ 1200 \mathrm{ft}$. Mylar
oin. Long play, 900 it . Acetate.
jin.
bin. Triple play, 1800 ft . Mylar
in. Double play, 1800 ft Mylar
${ }_{5}^{5} \mathrm{sin}$. Triple play, 2400 ft . Mylar
7 in . Standerd play, 1200 ft . Acet
7 in . Standard play, 1200 ft . Sy . 7 in . Standard play, 1200 ft . My
7 in . Long play, 1800 tt . Mylar $\begin{array}{cl}7 \mathrm{in} . & \text { Long play, } 1800 \mathrm{it} \text {. Mylar } \\ 7 \mathrm{in} . & \text { Donble play, } 2400 \mathrm{ft} \text {. Mylar } \\ \text { 7in. } & \text { Long play, } 1800 \mathrm{ft} \text {. Acetate }\end{array}$ 7in. Long play, 1800 ft . Acetate 126
116
150
450
100
126
19
25
75
75
58

SPECIAL INTEREST ITEMS!

SPECIAL PURCHASE—UHF/VHF TUNERS

Well known British makers surplos stocks. Now available for the first Wen known British makers sur
TRANSISTORISED UHF MINIATURE MODEL shielded metal case only $3 \frac{1}{2}$ x $1 \frac{4}{4}, x$ 3in. Fully tunable - complete with two AF139 transistors. LASKY'S PRICE 3916
VALVE UHF MODEL
In metal case size $4 \times 6 \times 1 \frac{1}{4}$. Fully tanable-complete with PCC8 and
 TRANSISTORISED VHF MODEL I Minature turret type fitted with 12 sets of coils and 3 Mullard AF102
transistors. In metal case size $4 \times 2 \times 3$ xin. LASKY'S PRICE $29 / 6$ TRANSISTORISED VHF MODEL 2.
Sub-Miniature turret type fitted with 12 sets of colls and 3 Mulard AF102 transistor In metal case size $3 \times 1 \frac{1}{2} \times 2 \frac{1}{4} \mathrm{~m}$. LASKY'S PRICE 37/6 Add 2/6 Post and Packing on each.

GORLER UT 340 FM/VHF TUNING HEART

Permeability tuned-covering 87 to $108 \mathrm{Mc} / \mathrm{s}$. For use with one ECC85 valve. In metal

TRANSISTORS aLL BRAND NEW AND GUARANTEED

GET S1, GET S5, GET S6 2/6; 873A, 874P 3/6; OC45, OC71, OC81D 4/6; OC 44, OU70, OC76, OC81 5/6; (match pair 10/6); AF 117, OC $2006 / 6 ; 0 \mathrm{C} 42,0 \mathrm{C} 43$, OC 73, OC 82D 2/6; OC 201, OC 204 15/-; OC 205, OC $20619 / 6$; OC $2824 / 6$. 0075 8/-
TRANSFILTERS by BRUSH CRYSTAL CO., Available from stook.

TO-01B $465 \mathrm{kc} / \mathrm{s} . \pm 2 \mathrm{ke} / \mathrm{s}$	TO-02D $470 \mathrm{kc} / \mathrm{s} . \pm 1 \mathrm{kc} / \mathrm{s}$.	$7 / 6$ each
TO-01D $470 \mathrm{kc} / \mathrm{s} . \pm 2 \mathrm{kc} / \mathrm{s}$.	TF-01B $465 \mathrm{kc} / \mathrm{s}$. $\pm 2 \mathrm{kc} / \mathrm{s}$.	176 each

SINCLAIR SUPER MINIATURE KITS

THE MICRO-6 miniature radio only $14 / 5 \times 1 \times 3 / 101 \frac{1}{2} \mathrm{in}$.
THE SLIMLINE 2-transistor pocket radio
THE MICRO-FM (tuner/receiver)
THE X-20 20 watt P.W.M. amplige
THE X-20 20 watt P.W.M. amplifer
THE X-10 10 watt amplifier and pre-amp
Available ready built, tested and guaranteed buil
THE Z-12 12 watt amp. and pre-ainp., fully buit
THE Z-12 12 watt amp. and pre-amp., fully built $\underset{\text { Write for details of package deals. }}{\text { I }}$

LASKY'S RADIO FOR FINEST VALUE and COURTEOUS SERVICE

SERVICE IN GREAT BRITAIN AND HI-FI ENTHUSIASTS

B.S.R. 4-Speed Autochangers

 BRAND NEW AT LOWEST EVER PRICESBrand new and fully guaranteedcomplete with cartridge and stylus. UA14 4 speed mains model
UA16 4 speed mains model UA16 4 speed mains model UA16 9v. battery model UA20 4 speed mains model Add 5/- carriage and packing on each.

CONSTRUCTORS BARGAINS

NEW-LASKY'S MINIATURE TRANSISTOR AMPLIFIER MODULES

Incorporating the very latest circuitry to provide high sensitivity and good quality in conjunction with extreme small size and transistors used throughout. All designed to operate on 9 V . minjature battery.

TYPE PC 1. 3 transistor. Input sens. 50 mV , output 150 mW , output imp. 40Ω, size $2 \times 1 \times \frac{3}{c} i n$. PRICE 27/6 TYPE PC 2. 5 transistor. Input sens. 1mV, output 330 mW , output imp. 15Ω, size $2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{7}{2} i n$. PRICE 22/6
 TYPE PC 3.5 transistor. Input sens. 5 mV , out put 400 mV , output imp. 15Ω, size $2 \frac{1}{2} \times 1 \frac{1}{3} \mathrm{x}$亲in. PRICE 25/TYPE PC 4. 5 transistor. Input sens, 150 mV , output 330 mW , output imp. 15Ω, size
 TYPE PC 5. 6 transistor. Input sens. 8 mV , output 3 W , output imp. 3 3 , size
 TYPF PC 7. 6 transistor. Input seus. 8 mV , output IW, output imp, 8Ω, size $3 \times 19 \times$ Add $1 /-$ on each for Post and Packing.

GREENCOAT RECORD PLAYER

2 speed model for $33^{1 / 3}$ and 45 r.p.m. 6 v . Battery operated Complete with pick-up and fitted with crystal cartridge. Size only $7 \mathrm{i} \times 6$ in. Fitted with auto. stop and start. LASKY'S PRICE 59/6 Post $2 / 6$
$\begin{array}{ll}207 \text { EDGWARE ROAD, LONDON, W.2 } & \text { Tel. PAD } 3271 \\ 33 \text { TOTTENHAM CT. RD., LONDON, W.I } & \text { Tel. MUS } 2605\end{array}$ 33 TOTTENHAM CT. RD., LONDON, W.I Both open all day Saturday. Early closing Thursday.

42 TOTTENHAM CT. RD., LONDON, W.I
Tel. LAN 2573
152/3 FLEET STREET, LONDON, E.C. 4
Both open all day Thursday. Early closing Saturday.

THE

 PEMBRIDGE

 PEMBRIDGE
 COLLEGE

OF ELECTRONICS

 PROVIDES TRAINING
FULL-TIME COLLEEE COURSE IN RADIO AND TELEVISION

Our Course has now been extended to sixteen months' duration to include theoretical and practical instruction on transistor television receivers, U.H.F. television receivers and colour television.
Next course commences 6th September, 1966.
This Course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations.
Provides excellent practical experience on valve and transistor radio receivers and all well-known makes of television receivers.

To:

The Pembridge College of Electronics (Dept, P11)
34a Hereford Road, London, W.2.
Please send, without obligation, details of the Full-time Course in Radio and Television.

Name
Address

BENTLEY ACOUSTIC CORPORATION LTD.

Suppliers to H.M. Government 38 CHALCOT ROAD, LONDON, N.W.I
Telephone: PRIMROSE 9090
NEAREST UNDERGROUND: CHALK FARM. ALL GOODS LISTED BELOW, ACTUALLY IN STOCK, ALL GOODS ARE NEW, BEST QUALITY BRANDS ONLY, AND SUBJECT TO MAKERS' FULL GUARANTEE, PLEASE NOTE THAT WE DO NOT SELL ITEMS FROM USED EQUIPMENT NOR MANUFACTURERS' SECONDS \& REJECTS, WHICH ARE OFTEN DESCRIBED AS "NEW AND TESTED" BUT HAVE A SHORT AND UNRELIABLE LIFE.

WE REQUIRE FOR PROMPT CASH SETTLEMENT ALL TYPES OF VALVES, LOOSE OR BOXED, BUT MUST BE NEW

 $5000 / 50 \mathrm{v} .22 / 6$. Tubular types: $1 / 500 \mathrm{v} .2 /-; 2 / 500 \mathrm{v} .2 / 6 ; 4 / 500 \mathrm{v} .2 / 6 ; 8 / 450 \mathrm{v} .1 / 9 ; 8 / 500 \mathrm{v} .2 / 6 ; 8 \times 8 / 450 \mathrm{v} .3 / \mathrm{m} ; 8 \times 16 / 450 \mathrm{v} .3 / 9 ; 10 / 50 \mathrm{v} .1 / 6 ; 16 / 450 \mathrm{v} .2 / 9 ;$ $16 \times 16 / 450 \mathrm{v} .4 /-; 16 \times 32 / 350 \mathrm{v} .4 / 3 ; 32 / 350 \mathrm{v} .3 / \mathrm{u} ; 32 / 450 \mathrm{v} .3 / 9 ; 32 \times 32 / 350 \mathrm{v} .4 / \mathrm{a} ; 50 / 50 \mathrm{v} .1 / 9 ; 50 / 350 \mathrm{v} .4 / 6 ; 100 / 50 \mathrm{v} .3 / \mathrm{z} ; 250 / 25 \mathrm{v}, 3 / 9 ; 500 / 25 \mathrm{v} .4 / 6 ; 500 / 50 \mathrm{v} .5 / \mathrm{r} ;$
 Midget silicon rectifiers. Types BYIOD. Output 250 volts $\frac{1}{2}$ amp. No larger than a shirt button, $6 / 6$ each. Series limiting resistance, $1 / 6$.

[^0]LONDON:
${ }_{23}$ Tottenham Court Road, W.1. 309 Edgware Road, W, 2 . 162 Holloway Road, N. 7 .

MUS 5929/0095 PADdington 6963 FLEet Street $5812 / 3$ FLEet Street NOR12/3

9 Camberwell Church Street, s.E.5. RODney $28 \% 5$ GROYDON: 12 Suffolk House, George Stret Mereet.
MUNicipal 3250 BRISTOL: 26 Merchant Street, Bristol 1. Bristol 20261

LIVERPPOOL: 52 Lard street.
MAATCHESTER:
$20 / 22$ Withy Grove. M/C 4. Blaeltriars $5340 / 5246$ SHEFFIELD: 125 The Moor SHEFFIELD: 125 The Moor. Sheffeld 29993 NOTHINGHAM: Eastown House, Lincoln St, 45889

£8.19.6
Carriage and Carriage and
Insurance $7 / 6$

STERN-CLYNE The New MEGAMITE

Bookshelf size, full range

 Hi-Fi Speaker SystemApecial 5 inch, free-cone bass unit uses poweríul Feroba magnet to permit exceptional cone movement and provide superb, deep down bass response. housed with bass unit in heavily lugged, handsomely styled teak vencered cabinet, size only $13 \times 7 \times 8 \mathrm{in}$. deep. Ideal for fitment in bookshelves, room dividers, etc, as unobtrusive but high quality reproducers from Hi-Fi equipment. Imp. 15 ohms
Max. input 10 watts.
another superb exclusive from STERN-CLYNE The GRAMSTAND plinth-mounted Changer unit
specially designed, and exclusively manulactured for stern-Cryne to meet modern
demands bookshelf moting, space limited Hi-Fi systems. Famous high quality B.S.R. Changer is specially fitted with lightWeight tubular pick-up arm, stereo/Mono stylus. Heavy, balanced $10,1 / 2 \mathrm{im}$. turntable has spun silver centre and radially drilled mat.
Hardwood plinth has matt black top and is Hardwood plinth has matt black top and is fitted with integral P.V. plug and socket and
6it. length of mains connecting lead.

MONOGRAM

AMPLIFIER

Superb space and cost economy design specially
developed by Mulard Re. search Laboratories and quality constructed by SternClyne. Actually uses only one malti valve but provides an undistorted output from
any standard xtal pick-up. any stancard xtal pick-up.
Plus features include Bass Boost and Treble Cut controls, panel illumination and specially wound output transformer. Size only $10 \times 2 \frac{1}{2} \times 4$, 3 inn. high. Silver hammer chassis finlsh, satin silver
finish engraved panel. finish engraved panel. Kit of parts £4.10.0

Assembled £6.0.0
and tested
Carriage $4 / 6$.

* Make a high quality Tape Recorder economically, using the Magnavox 363 Tapedeck, HF/TR3

TAPE RECORDER EQUIPMENT

RECORDER CASE TYPE 3BI
Specially designed to house the Magnavox
363 Tapedeck, HFTTR3 Amplifier and up to 363 Tapedeck, HFFTR3 Amplifier and up to $10 \times$ bnn. speaker to do justice to the resuits. superbly styled, handsomely fish fised, in
grey fabric weave. Size $20 \times 15 \times 10.1 / 2 \mathrm{in}$. overall. $\quad \$ 5.0 .0$ carr. 7/6.
 RECOMMENDED SPEAKER UNIT
High quality Celestion 10×6 elliptical speaker (ilustrated). 30/- Carr. 3/6.

MAGNAVOX 363 TAPE TRANSPORTER

Manufactured to precise limits that permit recording and tape playback to the highest standards set by the Musio Industry. Simple reliable design emplops a siugle bigh-duty motor fiast wind on and rapid rewind control, 3 -speed selection with intercontrol, buspeed selection with interpiano key controls. Speeds 11 $1 \frac{1}{\frac{1}{8}, 1 \frac{3}{2}}$ and $7 \frac{1}{2}$ i.p.s. Wow and flutter 0.15% on $7 \frac{1}{2}$ i.p.s. Max. spool size 7 in. Playing time up to 120 min , per track from $1,200 \mathrm{ft}$. standard tape. Size $43 \pm \frac{\mathrm{x}}{\mathrm{I}}$ Ilin. plus 5xin. below mounting With it track heads. 813.19 .6 . Add 10/- cartiage and insuranee.

EXCLUSIVE OFFER
 OF TOP QUALITY RRFOPDING TAPE

New American branded tape by world renowned manufacturers and equal in quality to the best obtainable anywhere Guaranteed splice irce, red oxide coated, output. Resistant to moisture, heat, cold output. Resistant to moisture, heat, cold of Acetate and Polyester qualities, each distinctive boxed and cellophane wrapped in celotur coded cartons showin recording times at $7 \frac{1}{2}, 3 \frac{3}{4}$ and 17 i.p.s. Compare the prices!
RANGE AVAILABLE

POLYESTER

3 3in. 600ft. Double Play 7in. 1,200ft. Standard rin. $1,200 \mathrm{ft}$. Double Play 5 inin. 1,800ft. Double Pley 5in. 2,400t. Double Flay ACEIATE
5in. 600ft. Standard 5in. 900 ft . Long Play $5 \frac{3}{5} \mathrm{tn}$. 1,200ft. Long Play 12 8 Four or more reels post free. Spare spools, splicers and all Tape
Accessories also in stock.

HF/TR3 TAPE AMPLIFIER

Easily the best complete tape amplifier available to the home builder. Supplied already matehed for the Magnavox 363 to most other mays readily matched

Features include: switched equaliza tion for all speeds (COIR standards at $7 \frac{1}{2}$ i.p.s.) Treble boost incorporated playis for $3,7.5$, and 15 ohms, additional outputs for extension speaker phone monitoring on Record and Hi-Ft playback through existing systems Inputs for Mic. Pick-up, and VHF Radio, Valves: EF86, ECC83, EL84, EM81, ERZ81. Size overall; $11 \times 6 \times 6 \mathrm{in}$. (Panel $13 \frac{5}{\frac{3}{x}} \mathbf{x i n}$.). Power pack on separate chassis size $7 \frac{1}{2} \times 3 \times 4 \frac{\pi}{3} \mathrm{in}$. Amp. Assombled end tested fig ts carriage.
Carrying Case specially designed to take Magnavox 363 ana HF/TR3 unit. uper fy comlra mish, dark grey

0in. \times Gin. elliptical speaker suitable for use with above.

TAPE PRE-AMPLIFIER

 TYPE 'C'

Specially developed by Mullard Laboratories for use with high quality replay matohed for use with the Magnavox: 363 tapedeck. supplied speatures included ferroxoube pot core inductors for treble equalization, push puil oscillator heorporating ferroxcube transformer, adjustable output for matching to existing high-quality amplifer systems, inputs for Mic., Pick-up, Radio, etc. Totally enclosed in case size $11 \frac{1}{3} \times 6 \frac{1}{2} \mathbf{x}$ 3 年in. high. (Panel $11 \frac{1}{4} \times$ atin.) Power supply of 300 vde at 25 mA , and 6.3 F , at 1.5 A. is on separate subchassis size $6 \frac{1}{4} \times \frac{4}{2} \times 4 \frac{5}{8} i n, ~ h i g h ~ t o ~$ facilitate remote location from tape heads. Pre-amp and power pack Kit of parts £14. Assembled añ tested
£19. 10s. Add $7 / 6$ carriage.

BSR MONARCH UAI6

 with FULL-FI HEAD 4 -speed, plays 10 records, $18 \mathrm{in} ., 10 \mathrm{in}$. or 7 in . at 16, 33, 45 or 78 r.p.m. Intermixes 7 in ., 10 in ., and play position: colour, brown. Dimensions: 121 x $10_{3}^{3} \mathrm{in}$. Space required above baseboard $4 \frac{3}{3} \mathrm{in}$., below baseboard $2 \frac{3}{2} \mathrm{in}$. Fitted with Ful. Fi-turnover crystal head. Soldering Ir
Multi-Meter

POCKET MULTI-METER

Size $37 \times 2 \frac{7}{7} \times 1 \frac{3}{6} \mathrm{in}$. Meter size $2 \frac{1}{6} \times 1 \frac{3}{8} \mathrm{in}$. Sensitivity 1,000 O.P.V. on both A.C. and D.C. volts. $0-15,0.150,0-1,000$. D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete With test prods, battery and full instructions, 42/6. P. \& P.
3/6. FREE GIFT for limited period only, 30 watt Electric 3/6. FREE GIFT for limited period only. 30 watt Electric
Soldering Iron value $15 /$ to every purchaser of the Pocke

CHANNEL TUNER I.F.

16-19 Mc/s. Continuously tunable from 174-216 Mc / s. Valves required-PCF80 and PCC84 (in series). Cover BBC and TTA ranges. Also Police, Fire and Taxis, etc. Brand new by famous
maker, $10 /$, P. \& P. $3 /-$.
\qquad -

8-WATT 5-VALVE PUSH-PULL AMPLIFIER \& Metal RECTIFIER
Gize: $9 \times 6 \times 1 \frac{1}{4} \mathrm{in}$. A.C. Mains, 200-250v. 5 valves, For use with Std, or L.P. Tecords, musical instruments all makes of pick-ups and mikes. Output 8 watts treble lift control. Two inputs, with controls for gram. and mike. Output transformer tapped for and 15 ohm speech coils. Built and tested, $£ 8.19 .6$.
P. \& \mathbf{f}. $10 /-$

"MAYFAIR" 5-Transistor

 TAPE RECORDERCapstan-driven, battery operated. 71 and $3 \frac{2}{2}$ i.p.s.
Precision made. Push-button controls. High quality $2 \frac{2}{4} i n$. speaker. Push-pull circuit. Output 400 mW . Frequency response: $200-7,000 \mathrm{k} / \mathrm{s}$. Fast rewind. Up to 1 hour twin track playing sions: 8 in . x $1 \mathrm{ilin} . \mathrm{x} 3 \mathrm{zin}$. Weighs only 7 ib . Takes sions: 8 in. x $11 \mathrm{in} . x 37 \mathrm{in}$. Weighs only 7 lb . Takes plus $7 / 6$. P.

40W FLUORESCENT LIGHT KIT

bi-pin holders, starter and starter holder.

Incorporating GEC Choke size $8 \frac{1}{4} \mathrm{in} . \times 1 \frac{3}{4} \mathrm{in} . x$ $1 \frac{3}{4}$ in., 2 bi-pin holders,
starter and starter-holder. $11 / 6$ P. \&P. $4 / 6$. Twin 40 W Choke instant start for $2 \times 2 \mathrm{ft}$. tubes
 Similar to above: 80W. Fluorescent Light
Kit incorporating GEC choke size Il $\frac{3}{3}$ in.

17/6
P. \& P. $5 / 6$

CYLDON A.M./F.M. PERMEABILITY TUNER FOR ALL TRANSISTOR OPERATION
Size $2 \frac{1}{2} \mathrm{in}$. x $2 \frac{1}{6}$ in. approx. By famous manufacturer. A.M.-I.F. $470 \mathrm{ke} / \mathrm{s}$, F.M.-I.F. 10.7 Mc / s. A.M. coverage from $1,620 \mathrm{kc} / \mathrm{s}-525 \mathrm{ke} / \mathrm{s}$,
F. M. coverage 108 Mc/s.- $88 \mathrm{Mc} / \mathrm{s}$. Oircuit f.M. coverage 108 Mo/s.-88 Mo/s. Circuit 3rd A.M.-I.F.'s, Ist, end, 3rd and 4th F.M.-I.F.'s, V.H.F. Ose. choke A.M.-F. trap. All the above are the R.F. end of an A.M./F.M. receiver car
radio etc.
The above items: radio ete.

SILICON
RECTIFIERS 250 v. P.I.V. 750 milliamps. Six for $\% / 8$, post paid.

MAGNAVOX COLLARO
Set of three Tape Deck Motors. These are made for 110 v , but suitable auto. transformer is suppilied. Threemotors 39/6, P. \& P. $6 /-$.

CYLDON U.H.F. TUNER

Complete with PC. 88 and PC. 86 Valves. Full variable troning. New and unused. Size $4 \frac{1}{2} x 5 \frac{1}{3} \times 1 \frac{1}{2} \mathrm{in}$. Complete with eircuit
diagram.
plus $2 / 6 \mathrm{P}$. \& P .
$R \& T V$

FIRST QUALITY P.V.C. TAPE

$\begin{array}{lllllll}\text { 5inin. Std. 850ft. } & \text {. } & \text { 9/- } & \text { Sin. I.P. 850ft. } & \text {.. } & 10 / 6\end{array}$ $\begin{array}{lllllll}\text { in. Std. } 1200 \mathrm{ft} . & \text {. } & 11 / 6 & \text { 3in. T.P. } 600 \mathrm{ft} . & \cdots & 10 / 6 \\ \text { 3in. L.P. } 240 \mathrm{ft} . & . & 4 /- & \text { 5in. } & \text { T.P. } 1800 \mathrm{ft} & \cdots & 25 / 6\end{array}$
 7in. L.P. $1800 \mathrm{ft} . \quad$. $18 / 6 \quad$ 7in. T.P. 3600 ft.

MOTOR

$\frac{1}{4}$ H.P. 1440 revs., 82.10 .0 .
P. \& P. 10/-

These have been removed from equipment and have been fully reconditioned. Singlephase $230 / 250 \mathrm{~V}$.

POWER SUPPLY KIT
In metal case, size $3 \frac{3}{3} \mathrm{in}$. $x 2 \frac{1}{2} \mathrm{in}$. $x 2$ in. ineorporating mains transtormer, rectifier and condensers. $230 / 250$ A.C. Mains
Output: $9 \mathrm{~F}, 100 \mathrm{~mA}$. Price $10 / 6$ plus $3 / \mathrm{F}$. P. \& P.
P. \& P. on each 1/6, 4 or more post iree.
 $32 / 6$
$42 / 6$

-n: ..

3 to 4 WATT AMPLIFIER KIT

Comprising chassis $8 \frac{3}{3} \mathrm{in}$. x $2 \frac{1}{2}$ in. x lin. Double wound mains transformer, output transformer. Volume and
tone controls, resistors, condensers, etc. 6V6. ECC81 tone controls, resistors, condensers, etc. 6 V 6 . ECOB1 and reetal rectifier. Circuit $1 / 6$, free with kit. $29 / 6$ plus
$4 / 6$. P. \& P.

RADIO \& T.V. COMPONENTS (ACTON) LTD.
 \section*{2IB HIGH STREET, ACTON, LONDON W. 3}

SHOP HOURS 9 a.m. to 6 p.m. EARLY CLOSING WEDNESDAY
Goods not despatched outside U.K. All enquiries stamped addressed envelope. Terms C.W.O.

6 Transistors Superhet Output 200mw.

- Plastic Cabinet in red, size $4 \frac{3}{4}^{\prime \prime} \times 3^{\prime \prime} \times 13^{\prime \prime}$ and gold speaker louvre.
- Horizontal Tuning Scale.
- Ferrite Rod Internal Aerial.
- IF- 470 Kc .
- All components, Ferrite Rod and Tuning Assembly mount on printed board.
- Operated from PP3 Battery.
- Full comprehensive instructions and point-to-point wiring diagram.
- Printed Circuit Board.
- Tunable over medium and long wave band. Car aerial and ear piece socket.

The Radio with the STAR features
\star 4in. Speaker.

* 7 -transistor superhet. Output 350 mW .
\star Wooden cabinet, fitted handle with silver coloured fittings. Size $12 \frac{1}{4} \times 8 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$.
* Horizontal tuning scale, size $11 \frac{1}{4} \times 2 \frac{5}{8} \mathrm{in}$. in silver with black lettering.
\star All stations clearly marked.
\star Ferrite-rod internal aerial.
* I.F. neutralisation on each stage $460 \mathrm{kc} / \mathrm{s}$.

ONLY SA

Plus 616 P. \& P. Parts list and circuit diagram $2 / 6$. FREE with parts.
\star D.C. coupled output stage with

* All components: ferrite rod and tuning assembly mount on printed board.

* Operated from PP9 battery.

\star Full comprehensive instructions and point-topoint wiring diagrams.

* Printed circuit board, back printed with all component values.
* Fully tunable over medium and long waveband.
* Car aerial socket. Full after-sale service.

POWER SUPPLY KIT

To purchasers' of "Elegant Seven" parts, incorporating mains transformer, etc. A.C. mains $200-250 \mathrm{v}$. Output 9v. 50 mA . 716 extra.

ALL ENQUIRIES STAMPED ADDRESSED ENVELOPE

RADIO \& TV COMPONENTS (ACTON) LTD 2IC HIGH STREET • ACTON • LONDON • W. 3

OPEN 9 a.m.- 6 p.m. INCLUDING SATS, EARLY CLOSING WED. GOODS NOT DESPATCHED OUTSIDE U.K.
TERMS C.W.O.

technical training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics \& Radio Engineers (Brit.I.R.E.)
- C. \& G. Telecommunication Techns' Certs.
- C. \& G. Supplementary Studies
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 171, Intertext House, Parkgate Road, London, S.W.II
Please send me the ICS prospectus-free and without obligation.

\qquad
NAME
ADDRESS. \qquad

LATEST RADIOGRAM CABINETS 89.10 .0 .

Brand new long low design in veneered English walnut dia $40 \times 16 \times$ $15 \frac{1}{2}$ in. Carr. 30 /. Also Mini Gram Cabinets f3.0.0. Radiogram/Cocktail Cabinets (Personal Shoppers.)

EX-RENTAL TELEVISIONS

$17 \mathrm{in} .-£ 11.10 .0$
12 months' 3 star Guarantee \star Tube \star Valves \star Components COLOURED FREE LIST Channels for all areas Demonstrotions daily from Large Selection.
Personal collection or Insured

TWO-YEAR GUARANTEE On all our slimline TV's send for free list.

RESISTORS, 5/- per 100. New, Mostly High Stabs. Assorted. P. \& P. $2 /$. O Oerseas $3 / 6$.
VALVES 51 per 100. Assorted TV and Radio. surplus ex-rental dismantled receivers. Post 4/6 gend for list.
RECORD PLAYER CABINETS, 49/6. Latest designed covered cabinets. Takes any modern Autochanger. single player cabinets, 19/6. P. \& P. 5/6

[^1]
SUBBTITN PARKRAATO

AMPLIFIERS-TUNERS Selection

ARMSTRONG 221 10-10 watts Stereo, Mag PU and Filter . Cash £33.15.0 Or Dep 135-and 8 m. pymts. 49/6. ARMSTRONG 222 10-10 watts Stereo Ampliner........................... $£ 2 \%$. 10.0 Or Dep. 110/-and 12 m.pymts. $40 / 4$.......................... ARMSTRONG 224 F.M. TUNER Powered......

 ARMSTRONG 227 MONO 10W amp. with AM̈ AMM . Or Dep. $147 /$ and 12 m.pymts. $58 / 10$. (H, P. Price $£ 29.14 .0)$ Or Dep. 211 -and 12 prents as above with Stereo An

MOTORSEPICK-UPS: Selection

GARRARD SRP10 Mono
(H.P. Pash £22.10.0 (H.P. Price £24.6.0) . ($\mathrm{H} . \mathrm{P}$. Price £2sh £28.15.0
(M.P. Price 226.10 .0
.... Price $\begin{gathered}\text { £28.12.0 } \\ \text { £ } 3 \% 10.0\end{gathered}$
.ï.P. Price 2340.10 .0
HM.Cash £36.15.0

GARRARD Model 1000 Mono .. 85 Or Dep. $34 /$-and 6 m. pymts. $26 /$-. (H. . Cash $£ \% .10 .0$ GARRARD Model 3000 Stereo Lightweight arm Or Dep. $47 /-$ and 8 m. pumts. 25/6.

 GARRARD 401 Transcription Tabie. No arm... 22.10 .0

 Or Dep. 47I-and $3 m_{\text {g }}$ pymts. $25 / 6$.

 Leaflets available upon receipt of Gd. stamp
48-50, Surbiton Road, Kingston-on-Thames, Surrey Phone KIN. 5549

Hours 9 a.m. to 6 p.m. daily (1 p.m. Weds.)

NOT BUILD ONE OFOUR PORTABLE TRANSISTOR

 RADIOS..."A wonderful range of transistor radios using first grade components for guaranteed results"

FIRST FOR QUALITY, PERFORMANCE \& PRICE!

New TRANSONA

F $\sqrt{5}$ "Home, Light, A.F.N.
G.P., Durham

7 stages-5 transistors and 2 diodes
Fully tunable over Medium and Long Waves and Trawler Band. Incorpora ates Ferrite rod aerial, tuning contone super dynamic $2 \frac{3}{i n}$ in. speaker etc. Attractive case. Size $6 \frac{2}{x} \times 4 \frac{1}{2} \times 1 \frac{1 i n}{2}$. with red speaker grille. (Uses 1289 battery available anywhere.)
Total cost of all $42 / 6$ P. \& P. Parts Price List and easy build 3/6 plans 2/- (FREE with Kit)

POCKET FIVE

07 stages-5 transistors and 2 diodes Covers Medium and Long Waves and Trawler Band, a feature usually found in only the most expensive radios. On test Home, Light, Luxembourg and many Continental stations were received loud and clear. Designed round supersensitive Ferrite Rod Aerial and fine tone 28 in .. moving coil spoaker built into attractive black and gold
case. Size $6 \frac{1}{2}$ x $1 \frac{1}{2}$ X 3 in battery avaitable $1 \frac{1}{2} \mathrm{X}$ 3ifn. (Uses 1289

All components used in our receivers may be purchased separately if desired. Parts price list and easy build plans availa able separately at prices stated. Overseas post $10 / \mathrm{F}$
$\begin{array}{ll}\text { Total cost of all } \\ \text { parts now only } & 42 / 6\end{array}$
P. \& P. $\frac{1}{3 /-}$
parts now only 42 P. \& P. 3/-.
Parts Price List and easy build plans I/6 (FREE with Kit)

NEW ROAMER SEVEN Mk IV

7 WAVEBAND PORTABLE OR CAR RADIO Amazing performance and specification \star Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS
9 stages-7 transistors and 2 diodes FULLY TUNABLE ON ALL WAVEBANDS
Covers Medium and Long Waves, Trawler Band and three Short Waves to approx. 15 metres. ganged tuning condenser. Ferrite rod aerial for M \& L w wich toned 7 xin. speaker. Air spaced Real leather look case with gilt trim and shoulder and hand straps. Size $9 \times 7 \times 4 \mathrm{in}$. approx. * EXTRA BAND FOR EASIER TUNING OF PIRATE STATIONS etc

$$
\begin{aligned}
& \text { Total cost of parts now only } \\
& \text { build plans } 3 /-(\text { FREE with Kit) }
\end{aligned} \mathbf{£ 5 . | 9 . 6} \begin{aligned}
& \text { P. \& P. } \\
& \text { b }
\end{aligned}
$$

Parts Price List and easy build plans $3 /-$ (FREE with Kit)

MELODY SIX

". . amozed at volume and performance $\dot{\text { S.G. Stockton con-Tees to my expectations. }}$

8 stages-6 transistorsand 2 diodes
Our latest completely portable transistor radio covering medium and long waves. Tncorporates pre-tagged circuit grade transistors, volume speaker, top ing condenser, wave change slide switch. ing condenser, wave change slide Switch. pull output. Wonderful reception of B.B.C., Home and Light, 208 and many Continental stations. Handsome leather-look pocket size case, only $64 \times 8 \frac{1}{x}$ 1zin. approx. with gilt speaker grille and supplied with hand and shoulder straps.
$\begin{gathered}\text { Parts Price List and easy build } \\ \text { plans } 2 /- \text { (FREE with Kit) }\end{gathered}$
$\begin{aligned} & \text { Total cost of all } \\ & \text { parts } \\ & \text { now only }\end{aligned}$ $\mathbf{£ 3 . 9 . 6} \begin{aligned} & \text { P. \& P. } \\ & 3 / 6\end{aligned}$ plans 2/- (FREE with Kit) parts now only

SUPER SEVEN

- 9 stages-7 transistors and 2 diodes

Covers Medium and Long Waves and Trawler Band. The ideal radio for home, car or can be fitted with carrying strap for outdoor use. Completely portable - has built-in Ferrite rod circuit incorporating 2 R.F. Stages, push-pull output (will drive large speaker) Size 71 ष $5 \frac{1}{2} \times 11 i n$ (Uses 9% battery avail able anywhere.) Total cost of all parts now only

$$
\notin 3.19 .6
$$

$\underset{3 / 6}{\text { P. \& P. }}$
Parts Price List and easy build plans 2/- (FREE with Kit)

TRANSONA SIX
 88 stages- 6 transistors and 2 diodes
 This is a top performance receiver Covering full Medium and Long approx. 3in. speaker makes listening a pleasure. Push-pull output. Ferrite rod aerial. Many stations listed in one evening, including Luxembourg loud and clear. Attractive case in grey with red grille. Size $6 \frac{1}{4} \mathrm{x} 4 \frac{1}{2} \mathrm{x} 1 \frac{1}{4} i n$. (Uses PP4 battery available anywhere.) Carrying strap i/- extra.
 Parts Price List and easy build plans I/6 (FREE with Kit)

NEW ROAMER SIX

Now with PHILCO MICRO-ALLOY R.F.TRANSISTORS -6WAVEBAND!! - 8 stages-6 transistors and 2 diodes
Listen to stations half a world away with this 6 waveband portable. Tunable on Medium and Long Waves, Trawler band and two Shor and telescopic aerial for aerial waves. Top grade transistors, 3 in. speaker, handsome case with gilt fittings, Size $7 \frac{1}{2} \times 5 \frac{1}{2} \times 1 \frac{1}{2} i n$. Carrying strap 1/6 extra.

* EXTRA BAND FOR EASIER TUNING OF LUX, ETC. Ports Price List and easy build plans 2/: (FREE with Kit) Total cost of all 13.19 .6 P. \& P. parts now only 43.19 .63 .6

Callers side entrance Barratts Shoe Shop

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AFII7 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values, details of which are given in the latest edition of the Constructors' Booklet Priced at 2/m.

I.F. TRANSFORMERS \& COILS FOR VALVE CIRCUITS

Production of Tuning Coils (Type "H") and I.F. Transformers is being continued and details of these and our other components are given in an illustrated folder which will be forwarded on request with 4d. postage please.

WEYRAD (ELECTRONICS) LIMITED
 SCHOOL STREET, WEYMOUTH, DORSET

Heathkit models offer outstanding performance plus highest quality - at lowest cost
Anyone can build a Heathkit model. The easy-to-follow instruction manuals issued with each kit-set show you how. You will be proud of the professional appearance and performance of your finished model.

A KIT FOR EVERY INTEREST . . . FOR HOMĖ, WORKSHOP, SERVICE AND TEST DEPTS.

TEST \& SERVICE INSTRUMENTS

$10-124$

5in. OSCILLOSCOPE, 10-12U TB $10 \mathrm{c} / \mathrm{s}-500 \mathrm{ke} / \mathrm{s}$. 3in. OSCILLOSCOPE, OS- 2 TB $20 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$. - $\frac{1}{2}$ in. VALVE VOLTMETER,
 Gin. VALVE VOLTMETER, RF and HV probes available as extras
$\begin{array}{cccc}18 & 18 & 0 & £ 26 \\ 18 & 0\end{array}$

Kit Assembled
REGULATED POWER SUP-
PLY. IP-20U (Transistor), 0.550 V D.C. to 1.5 A
TV ALIGN GENERÄTOR̈, HFW-I, $3.6,220 \mathrm{Mc} / \mathrm{s}$

- RF SIGNAL GENERATOR, RF-IU. (Up to $100 \mathrm{Mc} / \mathrm{s}$ fund.) ...
- MULTIMETER, MM-IU (V. A, Res, dB)
... ...
$£ 3580 \quad £ 4780$
$£ 37 \quad 180 \quad £ 47 \quad 100$
£13 $80 \quad £ 19180$
± 12180 f18 || 6

Kit Assembled

- ELECTRONIC SWITCH, S-3U Scope Trace doubler
AUDIO SIGNAL GENERATÖR, ÄG-9U $10 \mathrm{c} / \mathrm{s}-100 \mathrm{kc} / \mathrm{s}$
- AUDIO SINE/SQ GENERATOR, A0-IU

Sq wave $20 \mathrm{c} / \mathrm{s}-25 \mathrm{kc} / \mathrm{s}$
SINE/SQ GENERATOR, IG-82U
Freq. range, $20 \mathrm{c} / \mathrm{s}-1 \mathrm{Mc} / \mathrm{s}$
AUDIO VALVE

- HAR. DISTORTION METER, IM-i2U

Many other instruments available.
Send for free Instrument Brochure.
£ $12 \quad 18 \quad 0 \quad £ 18 \quad 10 \quad 0$ $£ 22 \quad 100 \quad £ 30100$ £14 I5 0 E21 50 $£ 24100 \quad £ 36100$ € $1610 \quad 0 \quad £ 22180$ $£ 24 \quad 150 \quad £ 34 \quad 00$

AMERICAN HEATHKIT MODELS

A wide range available including:
ADE-LUXE AM/FM PORTABLE TRANSISTOR RADIO, GR-43. An outstanding Luxury model Kit $£ 102010$ incl. PT SHORT-WAVE RECEIVER, GR-64E. For short-wave listening at low cost

Kit $£ 22100$ Send for American Catalogue, $\bar{i} /$ - incl. Post.


```
TRANSISTOR RADIOS
"OXFORD" LW/MW RECEIVER, UXR-2
Kit \(£ 14.18 .0\), incl. P.T.
6 TRANSISTOR PORTABLE, UXR-I, LW/MW

> Kit £i2.II.O, incl. P.T.
"MOHICAN" GENERAL COVERAGE RE-
```


CEIVER, GC-IU $\quad . . \quad . . . \quad$... Kit $£ 37176$ Assembled $£ 45176$ ELECTRONIC WORKSHOP, EW-I (Experimental Kit) JUNIOR RADIO, UJR-I

47136 incl. P.T.
$\cdots \quad \cdots \quad \cdots \quad \notin 276$ incl. P.T. 1616 extra.
A WIDE RANGE OF BOOKS ON ELECTRONICS AND RADIO. PLEASE SEND FOR LISTS AND PRICES.

- All prices quoted above are Mail Order prices.

WELCOME TO OUR LONDON HEATHKIT CENTRE

 233 Tottenham Court RoadWe open MONDAY-SATURDAY 9 a.m. -5.30 p.m. THURSDAY 11 a.m. -2.30 p.m.

Telephone No: MUSEUM 7349 WHEN YOU ARE IN TOWN, WE HOPE YOU WILL VISIT US THERE

AUDIO $\mathrm{Hi}-\mathrm{Fi}$

F.M. TUNER (in two parts), $88-108 \mathrm{Mc} / \mathrm{s}$. Total price Kit fil 6.8 .0 , incl. P.T A.M./F.M. TUNER (in two parts), 88-i08 $\mathrm{Mc} / \mathrm{s}, \mathrm{L}-\mathrm{M}-\mathrm{S}$ waves. Total price $\mathrm{Kit} E 27.5 .0$, incl. P.T.
F.M. TUNER

Kit Assembled

- $3+3 W$ STEREO AMPLIFIER, S- 33 H . Inputs for P.U. (Deram) radio, Aux.
- 3+3W STEREO AMPLIFIER, S-33. Inputs for P.U. (crystal) or radio
$9+9 \mathrm{~W}$ STEREO AMPLIFIER, S. 99. $9+9 W$ STEREO AMPLIFIER, S-9.
Inputs for radio, tape, Aux., all P.U.s
20+20W STEREO AMPLIFIER, AA-22U
Transistor, inputs for P.U. (Mag.) and 4 other
5W MONO AMPLIFIER, MA.5.
Inputs for P.U. and radio
IOW POWER AMPLIFIER, M̈̈-12.
For use with Control units, UMC/USC ..
50W POWER AMPLIFIER, MA-50
4 CHANNEL MIXER TM-I.
Transistor, battery operated
- TAPE PRE-AMP (MONO) TA-IM.

Needs P.S. and Audio Amplifier

- MAGNAVOX 363 DECK, $\frac{1}{2}$ Track

Berkeley

SPEAKER SYSTEMS

- BERKELEY slim-line, 2-LS Cabinet, fully finished

Kit Assembled
$\leqslant 18100 \quad \$ 23 \quad 00$
$£ 25120 \quad £ 33170$
$£ 25 \quad 120 \quad £ 33 \quad 170$ 3-LS Cabinet (in the white)... COTSWOLD MFS, 3-LS Cabinet (in the white)

- SSU.1 Low-priced System, legs) £II i7 6 incl. P.T. A wide range of other Speakers available.
|||

'AMATEUR' EQUIPMENT

A wide range of models including:

- AMATEUR BANDS RECEIVER,

RA-1 ($160-10 \mathrm{~m}$). The ideal fixed station portable or mobile receiver. Many features
incl.: 'S' meter.
Kit $£ 39.6 .6$, Assembled $£ 52.10 .0$

- COMMUNICATIONS TYPE RECEIVER. RG-1, $1.5 \mathrm{Mc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}-1.7 \mathrm{Mc} / \mathrm{s}$

Kit Assembled

- 160-10M TRANSMITTER, DX-I00U
$639160 \quad 0530$
$E 79100 \in 104150$

Variable Freq. Oscillator, VF-IU, $£ 10.17 .6$. Balun Coil Unit, $B=I U$, E4.15.6. Grid-Dip Meter, GD-1U, $£ 10.19 .6$. Q Multiplier, QPM-I, \&8.10.0. Reflected Power Meter, HM=IIU, £8.5.0.
Also wide range of American models. Please send for details. Send for Amateur Brochure, free.

To: DAYSTROM LTD., Dept. P.W.-7, GLOUCESTER, ENGLAND
Please send me FREE BRITISH CATALOGUE (Yes/No)
INSTRUMENT BROCHURE (Yes/No)
Please send me FREE BRITISH CATALOGUE (Yes/No)
INSTRUMENT BROCHURE (Yes/No)
AMATEUR BROCHURE (Yes/No)
Full details of model(s)
American Catalogue, If= Post Paid (Yes/No)
NAME
ADDRESS

\qquad ..
$679100 \in 10400$
$£ 33190$ £45 80
-

MAIL ORDERS TO
102 Henconner Lane Bramiey, Leeds 13 Terms: C.W.O. or C.O.D. No C.O.D. under f1. Postage $3 / 6$ extra under $£ 2$.
$5 / 6$ extra under $£ 5$. Trade Supplied. S.A.E. with all enquiries please. Personal shoppers welcome at any branches below. Open all day Satur-
day. BRADFORD BRISTOL 10 North Parade. Tel. 14 Lower Castle Street (Half-day Wednesday) Tel.: 22904
BIRMINGHAM ${ }^{\text {Bircade }}$ Gt. Western
Hill Stition. central 1279. No. haildidy

 Wednesday) Tel.: 68043

 HULL 51 Syilie Street (Half-day LEICESTER ${ }^{32}$ Hat High street (Hzlf LEEDS ${ }^{5-7}$ COUnty Mecca) Aracad LIVERPOOL ${ }^{73}$ Dale St. (No natit LONDON $\begin{gathered}\text { (as) Edgware Road, W2 } \\ \text { (alf-day Thursday) }\end{gathered}$ Tel.: PADdington 1629 MANCHESTER 60A-60B Oldham St. Tel.: CENtral 2778 MIDDLESBROUGH
Large walk-round store,

 Tel.: 20716 (Half-day Thursday)
R.S.C. AI5 15 WATT (R.M.S.) HI-FI

TRANSISTOR AMPLIFIER with integral
pre-amp tone confor $3,7.5$ and 15 ohm speakers. Kit of parts consisting of Printed Circuit and
all components for
same including same including gillard or Mullard or Newmarket latest type semi-conductors. 86.19.9
Heat sink and full wiring instructions or with printed circuit fully wired and tested 30/- extra. Frequency Response: $\pm 1 \mathrm{~dB}$
$20-20,000 \mathrm{cps}$. Harmonic Distortion: 0.1% $20-20,000 \mathrm{cps}$. Harmonic Distortion: 0.1%
measured at 1000 o.p.s. Hum and Noise: measured at 1000 o.p.s. Hum and Noise: +9 dB to -14 dB at 40 c.p.s. Treble Control: +8 dB to - 13 dB at $10 \mathrm{Kc} / \mathrm{s}$. Suitable

AUDIOTRINE HI-FI LOUDSPEAKER

ENCLOSURES All types of pleasing modern "slimline" design acoustically lined and ported in alternative finishes of light Teak or medium Walnut. SE8. For optimum performance with
any Hi-Fi8in.speaker. Size $22 \times 15 \times 7 i n$ Or Deposit $18 /=$ and 9 mithly $9 \times 15 \times 7.0$ pmts of $12 / 6$ (86.10 .6 SE10. For 10 in . Hi-Fi speaker with proor Deposit 21/-and 9 mthly $56,19.9$
SE12. For outstanding performance with ONL Size $24 \times 20-F i$ speaker. Cut for tweeter. 8 Gis. monthly payments of 18/2 (Total \&9.10.6) \qquad

AUDIOTRINE HI-FI SPEAKER SYSTEMS

consisting of matched $12 \mathrm{in}, 12,000$ line, 15 ohm high quality speaker: cross-over unit (consisting of choke, condenser, etc.) and Tweeter. Smooth response surprisingly realistic reproduction Standard 10 watt rating. Or 84.19 .9 122/10 speaker £6.19.9. Carr. Carr. 5/6
7/6. Or Dep. 21/-and 9 mthly pmts of $15 / 4$ (Tt1 \&7.19.0).
AUDIOTRINE HFIOOD IOin. I5W
ML-FI Loudspeakers. Heavy cast construction. Dual cone. Smooth trecoil 3 or 15 ohms. Excep- $95.5 p e e c h$
tional value. Carr. $5 / 9$ 5. 15.0 W.B. "STENTORIAN" HI-FI. PM SPEAKERS HF1012. 10 watts rating. Where a really good quality speaker at a low price is required we formanee. Please state whether 3 or $\mathbf{E 5 , 1 0 , 0}$
15 ohms required. formance. Prease
1.5 ohms required. R.S.C. JUNIOR BASS RERELEX CABINET Designedfor above speaker, but suitable for any good quality $8 i n$. or $10 i n$, speaker. Acoustically lined and
ported. Medium Walnut veneer finish. Size $18 \times 12 x$ ported. Medium Walnut Veneer finish, Size $18 \times 12 \times$
10 in . Strongly made. Handsome appear- $\mathbf{8 4} 10.0$

HIGH FIDELITY LOUDSPEAKER UNITS

AUDIOTRINE PETITE

Really ing performance. Size only $10 \frac{1}{2} \times 62 \times 7+12$ Rating 10 watts. Frequency range $45-1$

20,000 c.p.s. Cabinet beautifully finished in Teak (light) or Walnut (medium). Fitted specially designed Heavy cast 5 in. speaker with large pole pieces, extra long Impedance 3 ohms or 15 ohms. 11 GnS . payments of 25/-(Total \&13.1.0). Carr. 7/6
The GLOUCESTER
Handsome
"slimline
The GLOUCE simime" cabinet, acoustically lined. Size $24 \times 20 \times 6 \frac{1}{2}$. Finished light
Teak or medium Wainut. $12 i n$, high fux

 12,000 line speaker. Cross-over unit and Tweeter. Rating 10 watts. Smooth 15 ohms. or Deposit $36 /$ and 11 Cns. 9 monthly payments $25 /-11$ EnS.The BRONTE Handsome cabinet of modern styling. Acoustically lined and finished Teak or Walnut. Size 22 x 15 x 7 in . Fitted Wharfedale Super 8 RSDD Speaker, with Roll surround and dual cone. Rating 6 waves. Impedance 15 ohms. Or Deposit $39 /$ - and 9 (12 Ens.
TWEETERS R.A. 3 ohm 25/9. 15 ohm 25/9 CORNER CONSOLE CABINETS
 Strongly made. Beautiful polished
walnut veneered finish, Pleasing wainut veneered inish. Pleasing
design. Junior Model. For up to 8in. speaker. Approx. $20 \times 49 / 9$
11 x 8in.
Carr. $5 / 649$ Standard Model. To take up to 10 in . Speaker. Size $27 \times$ X $\quad 5$ GnS. Senior Model. To take up to 12 in . speaker and with Tweeter cut-out.
Size approx. $30 \times 30 \times 15 i n$. (Recommended for use with Audiotrine speaker system.) Terms
availabIe. 8 Carr. $8 / 6$ Gns.
R.S.C. GRAM AMPLIFIER KIT, 3 watts output. Mainsoperation $200-250 \mathrm{v}$. A.C. Fuliy isolated chassis.

R.S.C. STEREO/TEN HIGH QUALITY AMPLIFIER
high quality output on each channel (total 10 watts) Sensitivity is Suitable all crystal or ceramic stereo heads. Ganned Bass and Treble Control equal variation of "lift"' and "cut'". Provision is made for use as straight (monaural) 10 watt amplifier. Valve line-up ECC83, ECC83, ELB4, EL84, EZ81. Outputs Send S.A.E. for leafet. Full constructional details and price list 2/6. 98150 Or supplied factory assembled with 12 months' guarantee for 11 gns. Terms: Deposit $36 /-$ and 88.15 .0

R.S.C. STEREO 20/HIGH FIDELITY AMPLIFIER

PROMDING 1014 WATT ULTRA LINEAR PUSH-PULL OUTPUT ONEACH UITABLE FOR "MIKE", GRAM. RADIO OR TAPF. Based on
 65 dB down. Sensitivity: 5 millivolts maximum. Harmonic distortion: (each channel) 0.2%. Send s.a.e, for leaflet
\star Four-position tone compensation.
\star Will amplify direct from Tape Fieads
\star Stereo/Mono switch.

* Separate Bass "Lift", and "Cut" and

Neone panel indicator
\star Neon panel indicator.

Output transformers are high-quality sectionally wound to required specification. Output matching for 3 and 15 ohm point wiring diagrams and instructions.
Or factory assembled, tested and supplied with our usual 12 months guarantee. Or Deposit £3 and 9 month1y

FULLY TRANSISTORISED $200 / 250 \mathrm{v}$. A.C. Mains Operation. 10 WATTS R.M.s. into 15 ohms. 15 WATYS R.M.S. into $3-4$ ohms.
Maximum instantaneous Peak power output 28 watts PRINTED CIRCUIT CONSTRUCXION. LATESTMULLARD TRANSISTORS. AD149, AD149, 00127Z, 0081Z, 0C44, 0044, 0081Z, 0044, POSITION INPUT SELECTOR SWITCH GtUALSATION to Standard R.I.A.A. and Fi̛ds TAPE MONITORING FACILITIES. SENSITIYTTIES: Magnetic P.U. 4 mV . Crystal or Ceramic P.U. 400 mV . Microphone 4.5 mV .
Tape Head 2.5 mV . Radio/Aux or Ceramic P.U. 110 mV
 BASS CONTROL: +12 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HARMONIC DISTORTION at 10 Watts
1,000 c.p.S. 0.35%. HUM LEVEI, - 75 dB . VEGATIVE FEEDBACK: 52 AB

TECHINICAL WITH SPCIFLCATIUNS
APPEARANCE AND COMPARING APPEARANCE AND COMPARING

MORE THAN FAVOURABLYWITH | MORE THAN FAVOURABLY WITH |
| :--- |
| SIMILAR AMPLIFIERS AT |
| -3 |

IMPORTANT NOTE flgures are given in R.M.S. Rated output and music or I.H.F.M., otherwise we could obviously quote muoh higher outputs

D DUAL CHANNEL VERSION OF THE SUPER 15. Employing Twin Printed Circuits. Close tolerance Ganged Pots. Matched Components. CROSS-TAEM: 52 dB at $1,000 \mathrm{c}$.p.s.
CONTROLS:5 position InputS Selector, Bass Control, StereolMono Switch, Tape Monitor Switch, Mains Switch. netic P.U. (2) Ceramic or Crystal P.U. (3) Radio/ Aux. (4) Tape Head/Microphone.
Operation of the Input Selector Switch assures appropriate equalisation.
Rigid 18 s.w.g. Chassis. Size approx. 12in. Wide, Attractive rigid Perspox Facia Plate and Matching Spun Silver Knobs. Neon Panel Indicator. Above facilities, etc., except for Ganging and Complete Kit of parts with full constructional details Circuit wired and tested $30 /$ - extra or Kit with printed $1 \mathbf{1} \frac{1}{2}$ Gns. 9 monthly payments of $22 / 6$ (Total e1.3.14.6). Attractive Walnut or Teak fnished cabinet 5 gns. or Deposit $1 \hat{1}$ - and 9 monthly payments $11 /-$ (Total $£ 5.16 .0$. Or unit factory built and tested. complete with cabinet and with our usual 12 months guaran- 181 Gns.
tee. Or Deposit $£ 3.9 .0$ and 9 monthly payments $£ 2$ Carr. 12/6 Total £21.9.0). ALL COMPONENTS ETC. ARE OF A HIGH STANDARD AND
SUPPLSED BY LEADING BRITISH MANUFACTURERS.

SOUND OUTP UT QUALITY CAN BE OBTAINED BY USIVG WITH
FIRST RATE ANCILLARY EQUIPMENT. All required parts. point to FIRESTRATE ANCILLARY EQUIPMENT. All required parts, point to cuits can be supplied with appropriate components assem-
bled, soldered and tested
6 Gor exs. and 9 mthly pmts $38 / 6$ (Total te3.12.6).
9 Atractive Walnut or Teak finished cabinet 5 Gns. or Deposit 1y/- and 9 monthly payments $11 /$ - (Total £5.16.0). Or unit completely assembled Or Deposit £4.12.0 and 9 mthly pmts 64/- (Total ss3.s.0).

AUDIOTRINE HI-FI TAPE RECORDER KIT
REALISM AT INCREDIBLY LOW COST
CAN BE ASSEMBLED IN AN HOUR, SHES PLUS MAINS. Incorporating the latest Masnavox Tapedeck. The Audiotrine each of 3 speeds. High FIux P.M. Speaker, empty Tape Spool. ing Cabinet of latest styling and finished dark grey leathercloth. Size $14 \frac{1}{3} \times 17 \times 8 \frac{1}{2}$ in. high and circuit. Total cost if
purchased individually approximately $£ 35 . ~ P e r f o r m a n c e$

R.S.C. $4 / 5$ watt A5 HIGH GAIN AMPLIFIER

A highly-sensitive 4-valve quality amplifier for the home, small chub, ete. Suitable for an crystal or ceramic P.U. heads and practically ail "mikes". Separate Bass and down. Negative Feedback 15dB. H.T. of $300 v$. 7 mA and L.T. of 6.3v. 1.5a. available for supply of Radio Tumer or Tape Deck pre-amp. For A.C. mains $200-250 v$. Speaker punched Hamamer finished chassis, poimt-to-point wiring diagrams and instruetions. Exeeptional value 84.17 .9 or assembled ready for use $25 /-$ extra, Dius $3 / 6$ carr. Depo
5 monthiy payments of $22 / 6$ (Total $£ 6.15,0$) for assembled unit.
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER A highly sensitive Push-Pull high output unit with self-contained Pre-
amp./Tone ControlStages, Performance figures compare equally with amp./Tone Control Stages. Performance figures compare equally with
most expensive amplifiers available. Hum level - 70 dB. Frequency response $\pm 3 d B 30-20,000$ o/s. A specially designed sectionally wound ultra linear output transformer is used with 807 output valves. - GZ34. Separate Bass and Treble Controls. Minimum input $\int_{\text {phone or piek-up is suitable. The unit is designed for Clubs, }}^{\text {require }}$ Fchools, Theatres, Dance Halls or Outdoor Functions, etc. Gram, Radio or Tape. Output Socket provides L.T, and H.T. for Radio Tuner. Two inputs with associated volume controls so that two separate inputs such as Gram and "Mike" can
be mixed. $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ A.C. mains. Output for 3 and 15 ohm speakers. Complete kit of parts with fully punched chassis and point to point wiring diagrams and 12 Cins. Carr. nstructions
Supplied factory built with WL34 output valves, 12 months guarantee for $15 \mathrm{gns}$. . If required perforated cover with carrying handles can be supplied for 21/-. Send s.a.e. for leaflet.
TERMS: Deposit 48/- \& 9 monthly payments of $33 / 7$ (Total $81 \% .10 .3$).
HIGH. FIDELITY 12-14 WATT AMPLIFIER TYPE A11

PUSH-PULL ULTRA LINEA

 TONE CONTROL PRE-AMP Two input sockets with associated controls allow mixing of ECC83, EL84, EL84, EZ81. High quality sectionally wound output transformer specially designed for Ultra Linear operation and CONTROLS FOR BASS AND TREBLE "Lift" and "Cut". Frequency response t3dB $30-20,000 \mathrm{c} / \mathrm{s}$. Six negative feedback loops. Hum level 60 dB . SENSI'TIVIT' 23 millivolts. Suitable for Crystal or Ceramic P. Us, aill types "mikes". Comparable with the very best designs. For Musical instruments such as String Bass, Fiectronic Guitars, etc. Output Socket provides 300 v . 30 m A, and 6.3 v . 1.5 a . for supply of a Radio Tuner. Size complete to last nut. Chassis fuat punched, Full instructions and point-
 inlustrated leaftet detailing Cabinets, Speakers, Mikes, etc.

R.S.C. BASS-REGENT 50 WATT AMPLIFIER AN EXCEPTIONALLY POWERFUL HIGH QUALITY ALL-PURPOSE UNIT For lead, rhythm, bass guitar and all other musical instruments. For vocalists, gram, radio, tape and general public address UNUSUALLY POWERFUL LOUDSPEAKER COMBINATION consisting of a
FANE HIGH FLUX 15in. 30 watt unit PLUS a FANE 12in. 20 watt unit with extended frequency response, $t 4 J a c k$ Inputs and two Volume Controls for simultaneous use of up to 4 pick-ups or "mikes" Cabinets covered in two-tone Rexine/Vynair with gold trimming. Fitted carry-ing handles, * Separate Bass and Treble Controls giving "lift" and "cut". $49 \frac{1}{2}$ EnS. Send S.A.E. for leaffet. Or call at one of our many branches and

R.S.C. B20 MULTI-PURPOSE AMP. especially suitable for Bass Guitar incorporating massive 15 in , high fux oudspeaker. Rating 25 watts. Individual separately controntrod.s. Substantial cabinet attractively finished in Rexine and Vynair. Size approx. $24 \times 21 \times 11 i n$. Send S.A.E. for leafiet. Or
Deposit 24.14 .6
$29 \frac{1}{2}$
End. monthly payments of $66 /=$ (Total £34.8.6)

COMPLETE POWER PACK KIT Mains Crinsisting of Mains Transformer, Metal Rectifier, Electrolytios,
 metal cover 26/9
R.S.C. BATTERY TO MAINS CONVERSION UNITS.
battery Te BMinator An all-dry battery eliminator. Size $5 \hat{x} 1$ replaces batteries supplying
$1.4 v$, and $90 v$. where A.C. mains $200 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is available. Complete kit with adagram
$44 / 9$ or ready for use $59 / 6$.
R.S.C. GI5 I5 WATT AMPLIFIER for Lead or Rhythm Guitar, Mike Gram or Radio High-fidelity output. Separate bass and treble so that two instruments or "mike" and pickups can be used at the same time. Heary Duty ups can be used at the same time. Heary Duty attractive Rexine/Vynair. Size approx, 18 x
 Carr, 15/- leaflet.

TRANSISTORISED SOUND MIXER

 ng of up to 4 standard jack inputs, Enables mix tape, gram, tuner, etc., into single output. Compact and completely, self-contained. Uses. $49 / 9$standard 9v. battery.
LINEAR TREMOLO PRE-AMP UNIT Suitabie for use with any of our Amplifiers. Controls are Speed (frequency of interruptions). Depth (for 4 (ins.

GARRARD 3000 AUTO-CHANGERS

tone 10 OW mass Hi - A Stereo/Mono
Cartridge. Approx. $2 / 3$ normal price
Carr. 6/6Approx.
with Sono
£8.19.9

FANE HEAVY DUTY HI-FI SPEAKERS 12in. 20 watt.
Type 122/10. Post $5 / 6$. Type 122/10. Post 5/6. 5 Gns.

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexine/Vynair. Ideal for vocalists and Public Address. 15 ohm matching. speakers. Overall size approx. $12 \frac{1}{2} G 1 S^{*}$ 9 mthlypmts 28-/(Total\&14,12.0) Carr, 10/-
TypeC412, 40 watts. Fitted four 12in. 12,000 lin Type C412, 40 watts. Fitted four 12 in. 12,000 line 10 watt speakers. Overall size $19 \frac{1}{2}$ Cins. Or Deposit 3 gns, and 9 monthly payments of

I8in. 60 WATT EXTRA HEAVY DUTY

 LOUDSPEAKERSFamous make. Normal
price over £25. Very limited aumber to clear with fall guar-17 ©is.
12in. HIGH QUALITY LOUDSPEAKERS
 In walnut veneered cabinet. 10 Watt
Model. Gauss 12,000 lines. 94.19 .6 Terms: Deposit $15 /-$ and 9 Carr, $5 / 6$ monthly payments of $11 / 2$ (Total $£ 5.15 .6$) Temms: Deposit 24/6 and 9 ? ${ }^{2} 7.19 .6$ Total 88.19 .9).
30 Watt Model. 15 ohms. Or
Deposit $22 / 4$ and 9 mont Deposit 22.4 and 9 month

10 Ens. Carr. 10 bayments of 22/4 (Total \&11,13.0). Any of above in extra
30 WATTHIFI AMPLIFIER for Lead, Rhythm, Bass Guitar, Vocal or Instrumental Groups
A four Input, two volume control Hi-Fi 'cut' and 'boost' controls. Latest type
valves. Housed in strong Rexine covvalves, Housed in strong Rexine covAttractive black and gold perspex fascia plate. For $200-250 \mathrm{v}$. A.C. mains. Output
for 3 or 15 ohm speakers. Send S.A.H. for leaflet. Deposit es and 9 monthly
payments of $37 / 5$ (Total $£ 19.16 .9$). Car

HEAYY DUTY SELENIUM RECTIFIERS

12v. 15 amps. F.W. (Bridge).
19/9
TRANSISTOR SALE Mulaard OC71 2/11, OC45 3/11,
 Ediswan XA 101 3/9,
up to 3 transistors.

CHARGES

on H.P. and Credt Sale Accounts
settled in 3 months.

INTEREST
 R.S.C. MAINS TRANSFORMERS fully guaranteed

 Interieaved and Impregnated. Primaries 200-850v, 50 ols. Soreened

$300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a} \ldots . .$.
$300-0-300 \mathrm{v} .180 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{c}$ c.t., 6.3 v .1 a . For Mullard 510 Ampliffer

| $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}, 3 \mathrm{a}, \ldots$ | $31 / 9 / 9$ |
| :--- | :--- | :--- | :--- |
| $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a}, \ldots$ | $42 / 9$ | $425-0-425 \nabla .200 \mathrm{~mA}, 6.3 v .4 a$, c.t., $5 v, 3 a, .12$

$425-0-425 \nabla .200 \mathrm{~mA}, 6.3 v .4 a, 6.3 v, 4 a, 5 \mathrm{v} .3 \mathrm{a}$ TOP SEROUDED DROP-TEROUGH TYPE $250-0-250 \mathrm{v} .70 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 2 a $250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 6.3 \mathrm{v} .1 \mathrm{a}$ $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v} .2 \mathrm{a}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .0-5-6.8 \mathrm{v} .3 \mathrm{a}$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .0-5-6.3 \mathrm{v} .3 \mathrm{a}$.
$300-0.300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 0-5-6.3 \mathrm{v} .1 \mathrm{a}$ suitable for Mullard 510 Amplitier ...
 FILAMENT TRANSFORMERSfally shrouded

LEARN ELECTRONICS -AS YOU BUILD - 40 CIRCUITS EXPERIMENTS TEST GEAR

 including . . .

CATHODE RAY OSCILLOSCOPE

Valve Experiments
Transistor Experiments
Electro-magnetic Experiments
Basic Amplifier
Basic Oscillator
Basic Rectifier
Signal Tracer
Simple Counter
Time Delay Circuit

The full equipment supplied comprises valves, transistors, photo-tube, modern type chassis board, printed circuit board, full range resistors, capacitors and inductors, transformers, potentiometers, switches, transistors, valves, all hardware, wiring and every detail required for all practical work plus CATHODE RAY OSCILLOSCOPE for demonstrating results of all experiments carried out. All practical work fully described in comprehensive PRACTICAL MANUALS. Tutor service and advice if needed.

This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components; their symbols and how to read a completed circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used, and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computors and automation; photoelectrics; counters, etc., and rules and procedure for fault finding and servicing of all types of electronic equipment.
NO PREVIOUS KNOWLEDGE NEEDED NO MATHS USED OR NEEDED REASONABLE FEE-NO EXTRAS REQUIRED
SENT IN ATTRACTIVE BOX
A completely NEW up-to-date
home study experimental
course by
BRITISH NATIONAL
RADIO SCHOOL -
Britain's Leading Electronic
Training Organisation.

POST NOW FOR FREE BROCHURE

[^2]NAME \qquad

ADDRESS
OR WRITE IF YOU PREFER NOT TO CUT COUPON PW 7.66

TOPIC OF THE MONTH

Pilkington Revisited

THE socialogical and cultural findings of the Pilkington Committee on Broadcasting, which delivered its report in 1962, provided a seven-day wonder which was eagerly exploited by the Press, the Industry and do-it-yourself psychiatrists.

The technical problems discussed in the famous report, however, are still with us in part. For example, despite a strong recommendation to start local broadcasting, the Government of the day took no action, nor have subsequent Governments. As the subject is again "under review" we took out our report and waded through the evidence, reports, statements, opinions in this vade-mecum. The Committee came out in favour of local radio stations, organised by the BBC. And we feel inclined to agree.

As the BBC is already organised on both a National and Regional basis, it would be a natural development to purely local broadcasting. And local station managers could always call upon selected BBC programmes to supplement local items. A comprehensive and flexible network as opposed to the likelihood of non-stop juke-box radio.

Stations run by commercial companies are placed in the invidious position of trying to serve local interests and also obligations to advertisers-which, in the long run, is incompatible. To serve local hopes, endeavours and interests there must be as much freedom as possible from external direction. The BBC, financed by licence revenue, would have no obligation to pursue any objective other than that of the public radio service.

There must be an answerable public corporation to assume responsibilities for a service. The BBC, as such, fulfils this requirement. But a corporation made answerable to a multitude of commercial companies would find it impossible to ensure that the major obligation to the public was met-and the essential purpose of the service would be largely frustrated.

Moreover, the BBC estimate that a nationwide system of local v.h.f. stations could be set up at an additional licence fee of only five shillings. This, we feel, would be good value for the money.
W. N. STEVENS, Editor

NEWS AND COMMENT

Leader175
News and Comment 177, 200
On the Short Waves
by John Guttridge and David Gibson, G3JDG 190
Practically Wireless by Henry 211
Club Spot-Northern Heights
Amateur Radio Society G2SU 219
CONSTRUCTIONAL
Grid Dip Oscillator
by A. S. Carpenter, G3TYJ 178
A Short Wave Receiver for the
Young Constructor by H. Webster 182
Electrostatic Recording by K. T. Wilson 186
VHF Beam Rotator for the Loft by A. J. Turner, G3UFP 194
Wide Range A.F. Oscillator by R. Leyland 196
Variable Power Supply by H. Wagner 208
Imperial Transmitter-Part 2 by F. G. Rayer, G30GR 212
GENERAL ARTICLES
AGC in Tape Recording by H. W. Hellyer 202

[^3]
Simple Proximity Detector

With reference to the article in the March issue of Practical Wireless, "A Simple Proximity Detector" I would like to draw attention to page 940 , column 2, paragraph 4, regarding the d.c. setting of this unit.
(1) It is the responsibility of the Police Force to protect your property and if they are informed of your absence they will do so.
(2) The Electricity Authority cannot as far as I am aware, in the majority of cases, cut off the electricity without entering the premises, so your door is likely to be damaged and very insecure.
(3) The nuisance caused by the ringing could cause neighbours to take civil court action against you for interfering with their peace and comfort and may be able to claim damages for the interference.
All of these points could be overcome if the operator leaves his keys with a responsible neighbour who can turn the implement off and possibly reset it. You must also of course inform the local police of the keyholder's name and address. This will save tying up a member of the understaffed police for some considerable time.
D. E. McNair.

Slough,
Buckinghamshire.

Wake Up Dealers

I am getting weary in my search for a dealer who will take money from me and, in exchange, do at least one of two thingsnamely, align my home-built f.m. tuner and test for me some valves.

Because I have no proof of where the parts for the tuner were bought the best I have been able to achieve so far, and after almost begging for it, was 17 s . 6 d . worth of very dubious alignment. The tuner very little better than before and no explanation. Possibly the construction is at fault, but as it once worked well I doubt it.

And the valves! London is littered with radio shops whose testers are permanently out of order, not available for use at any time other than those set down by unwritten and ever changing rules, or just not available owing to staff shortage. Where valve testing is done it is usually as a favour rather than a service and I hate paying for a favour.

Own up gentlemen. Both these services can only be performed by you and you are entitled to charge at a rate that makes them economical for you. Isn't it obvious to you that the man who does the job willingly and properly-even if he is charging more for it now than beforeis the man we will go to when we are next spending out on a large item of equipment. Barry Fox.

London N.W.3.

NEWS AND. .

BETTER COMMENTARY FOR RACE FANS

Standard Telephones and Cables Limited used two 1,000W audio amplifiers, 300 horn loudspeakers and some thirty miles of wire to provide Brands Hatch motor-racing circuit with a new sound commentary system.

The loudspeakers, pole-mounted around stands and track, take speech from a possible six different commentary spots throughout the circuit, to sixteen acres of open-air spectator area. Another 25 cabinet speakers are used in indoor enclosures.

The new system provides clearer and more powerful sound using equipment transistorised throughout, except for the amplifier power output stages.

HOSPITAL SOUND SYSTEM

A new hospital nearing completion at High Wycombe, Buckinghamshire, will have one of the most comprehensive communications systems of its kind.
A $£ 30,000$ installation will enable patients to speak to nurses from their beds, as well as providing the usual radio and television sound programmes. The system, by Hadley Telephone and Sound Systems Ltd., of Smethwick, serves 228 beds in thirteen wards.

Telefunken enter the field of casette tape recorders with their "Magnetophon 401". This recorder, shown above, uses casettes conforming to the "DC System International", a system acknowledged throughout the Continent as standard for this type of equipment.

Battery-operated, the Magnetophon 401 half-track recorder provides a total of 90 or 120 minutes playing time, depending on the casette used. The amplifier employs 12 transistors for its 2 W output. Frequency response is $40-10,000 \mathrm{c} / \mathrm{s}$, and signal-to-noise ratio better than 45 dB . The price is 46 guineas.

LIGHTHOUSES WIRED WITH BICC CABLES

Two lighthouses-one of legendary interest, the other a unique modern structure-have been wired exclusively with cables manufactured by British Insulated Callender's Cables Limited.

The 155 year old, 115 foot Bell Rock lighthouse, built on Inchcape Rock II miles south east of Arbroath by Robert Stevenson, grandfather of Robert Louis, has been electrified after operating hitherto on oil. Its 730,000 candlepower red and white signal has now been replaced by a 3.5 kW 100 volt tungsten filament lamp.

BICC supplied Bell Rock with approximately 1100 yards of $660 / 1100$ volt mineral insulated cables and accessories.
The new lighthouse is on Kish Bank, 9 miles out in Dublin Bay, and is the largest of its type to be built anywhere. It is 117 feet high and has a $2,000,000$ candlepower light giving a double flashing character every 30 seconds.

The light apparatus, rotated by an electric motor once every 60 seconds, comprises eight 120 volt 1000 W filament type projector lamps in the focus of eight 18 inch diameter parabolic reflectors, each flash being made up by two reflectors. The voltage applied to the lamps is reduced to 90 volts to increase their average life to 800 hours.

...COMIMENT

BRITAIN'S PART IN MOON SHOT

Britain is providing a vital link in the communications network American astronauts will use in speaking to Earth, when the first U.S. spoce-shot heads for the moon.

The Marconi Company is building a satellite communicationsgroundstation which will be erected on Ascension Island in the Atlantic, ready for the Apollo moon-shot which is planned to put men on the moon.

This photograph shows a model of the station. Parts of the supporting gantry are already on the Island and other sections, including the 42 ft . diameter dish aerial and electronic sub-systems are under test at Marconi's Chelmsford factory.

COMPACT STEREO AMPLIFIER

Silicon transistors are used throughout a new stereophonic amplifier made by Goodmans Industries Limited. Feeding into 8Ω, this amplifier, the Maxamp 30, will deliver 15 W per channel with a total harmonic distortion claimed to be less than 0.4% (at $1,000 \mathrm{c} / \mathrm{s}$).
The Maxamp 30 measures only $10 \frac{1}{2} \mathrm{in}$. $\times 5 \frac{1}{2} \mathrm{in}$. $\times 7 \frac{1}{4} \mathrm{in}$. and its polished wood cabinet contains integrated pre-amplifier and power-pack as well as the amplifier itself. The amplifier features all the usual controls and facilities (including provision for stereo headphone listening) and costs $£ 49 \mathrm{lOs} .0 \mathrm{~d}$. Frequency response is $20 \mathrm{c} / \mathrm{s}-20 \mathrm{kc} / \mathrm{s}$.

DERBY WINNER

A few months ago, Derby and District Amateur Radio Society held their Annual Dinner.

Over 180 people attended the Dinner and members voted it a great success. During the evening Mr. A. G. G. Melville, the Society's President, presented awards won by various members during 1965. Our photograph shows Mr. R. E. F. Street (left), Derby and District Vice-Chairman, receiving the Founder Members' Trophy for winning the Constructors' Contest.

Don't Sink the Pirates

Whilst one must agree with the sentiments expressed in the Editorial of the April Practical Wireless, I nevertheless feel that our off-shore buccaneers have proved useful in a few respects.

Firstly they have probably indicated to the BBC that there is a healthy demand for "Wallpaper" music throughout the day, and that in a fun-crazy trend-setting 1966 England the younger generation look for "live" radio. Whether they are going to get it after we finally sink the pirates is another matter, but they have a case if our legal system still wishes to live up to its claim of catering for all tastes.

Secondly it seems to have proved that a commercial radio network of some sort or another would go down well over here (possibly via v.h.f. on a local basis), and that leading manufacturers and traders would not be slow in coming forward to take advantage of it. Critics have made much of the possible evils of endless advertising breaks, but I hardly consider this to be a particularly valid argument. If the nation's eyeballs can lap it up on TV without undue ill effect, likewise the ears should be able to take it.

In conclusion, I shouldn't worry too much about interference complaints from Eastern Europe whilst our pirates eke out the threatened last days. I have not noticed any particular eagerness on the part of the Communist bloc to honour frequency agreements, and for a good example of the "Law of the Jungle" what could be better than the new Peking transmitter on approximately $1525 \mathrm{kc} / \mathrm{s}$? It nearly blots out Caroline at times ... !
P. H. Dobbs.

Westbury-on-Trym, Bristol.

No. 19 Set Mods

Your contributor S. Simpson is to be congratulated for his article on No. 19 Set modifications. At no time can I recall a more explicit set of instructions for carrying out a modification.
Unfortunately I do not possess a 19 set but do have an R1155 and BC348 which I would like to modernise. As these sets are quite common, many readers, I am sure, would like to see similar articles on these.

I wonder if there is a volunteer amongst your contributors who may have done similar mods on the R1155?
R. E. Robinson.

Darlington.
Well, how about it ?-Editor.

More News and Comment on Page 200

GRID DIP OSCILLATOR
 AT some time or other most radio constructors find themselves in need of frequency checking apparatus. Because of this, the familiar g.d.o. is frequently found in amateur stations for, although very precise frequency checking is scarcely possible with the device, it is a most useful one and is sometimes considered handier than a signal generator.
 The usefulness of a g.d.o is dependent on its calibration accuracy and holding stability, therefore in a home-built item care is required, firstly to con-

struct a physical rugged specimen, secondly to ensure reasonably good calibration and thirdly to obtain an attractive unit.
G.D.O. circuitry and uses is already well-known so the emphasis here is on construction, since converting a circuit diagram into a satisfactory practical physical form is not always easy. The prototype is attractive in appearance and it can, with care, be copied easly. A fair amount of work is involved, but only simple tools are needed; to construct the prototype, for instance, a 3 in . vice, a hand drill and a few files were the only items used to fashion the metal work.

In the prototype, power requirements are met via a separate power supply unit which is also used to power various other items from time to time. Space does exist, however, for an internally fitted power unit where considered necessary.

Circuitry

Looking at Fig. 1, valve V1 is arranged in an oscillatory type of circuit, coil L and capacitor VC1 forming the main frequency-determining components. At switch-on, the oscillator produces valve grid current and this is recorded by meter M inserted at the earthy end of R1. Adequate sensitivity demands use of a meter of $500 \mu \mathrm{~A}$ f.s.d. or better, VR1 ensuring that at no time can the meter be over-driven.

Fitment of the closed circuit jack socket is beneficial, for headphones may be plugged in for

Fig. I: Circuit of the oscillator.

A.S. CARPENTER G3TYJ

monitoring purposes, or an audio signal may be injected to modulate the r.f. signal being generated. When no jack plug is inserted the g.d.o. functions normally.

The g.d.o. may also be used as an absorbtion wavemeter if its h.t. supply is disconnected and if this facility is required a simple toggle or slide switch should be inserted at point " \times ". Such a switch may be mounted on the front panel to the left of the indicating meter. Since an excellent absorption wavemeter already exists at the author's location the facility was not necessary.

No calibration of the meter scale is necessary. Calibration scales are associated with VC1 plug-in coils (L) enabling unbroken coverage of the frequency range $1 \cdot 75-150 \mathrm{Mc} / \mathrm{s}$ this embracing virtually all amateur bands. U.H.F. bands are not accommodated, a separate device being recommended at these frequencies.

Capacitor VC1 consists of a $2 \times 75 \mathrm{pF}$ specimen pruned from a discarded RF27 unit, but other types are usable-the Jackson 02 for example, or a suitable split-stator item.

Constructional

The main casing consists basically of two L-shaped pieces of 16 s.w.g. aluminium-Fig. $2 a$, b-section a carrying most of the assembly. The final length of each section is $9 \frac{3}{4} \mathrm{in}$. but it may be beneficial to commence with pieces 12 in . long and 4 in . wide, making the bends as indicated but leaving an oddment to be cut away from both ends of each piece later. In this way neatness is assured and matching sections result.

The front panel and end-plate cut-outs may then be marked out as is shown in Fig. $2 a$. In the absence of more refined tools, a series of small holes should be drilled along the inners of the cut-outs marked, after which the unwanted metal may be carefully pruned away leaving ragged edges which may be cleaned up with a file.

The panel becomes progressively weaker as the work proceeds but this is not too important for rigidity returns with the fitment of components. The

section shown in Fig. $2 b$ is also prepared along the lines indicated.

The Main Chassis

To avoid defacing the front panel unduly, the bulk of the construction is carried on a small chassis, the scheme being shown in Fig. 3. This chassis is constructed and wired separately, eventually being located and held by a pair of retaining brackets. Control shafts of VC1 and VR1 then pass through the front panel, a $2 \frac{3}{4} \mathrm{in}$. diameter drum of the type used with cord drive tuning mechanisms being first fitted to VC1.

A piece of stiff white card on which arcs are drawn in Indian ink is glued to the drum flat surface. The card measures 3 in. in diameter and carries the calibration. A piece of perspex affixed to the front panel affords protection and keeps out dust; a cursor line is scribed and inked in.

Details relating to the main chassis and which completes the metalwork are shown in Fig. 3 and are self-explanatory.

The valve holder may then be fitted as indicated and this assembly wired as far as is convenient. The meter may then be mounted on the front panel casing together with the international valve holder and the jack socket. The main chassis is then affixed after which final connections are made using tags 1 and 5 of the octal valveholder to take the connections from VCl. A tag strip bolted under one of the retaining bracket bolts may be used as an anchor point for the 3-core power supply cable from the p.s.u.

It should be noted that at this juncture no power should be applied, or damage to the valve will result!

Coils

Prototype coils are wound on plastic formers of $1 \frac{1}{2} \mathrm{in}$. outside diameter and 2 in . long, force-fitted on to the bases of discarded octal valves of the 6 K 8 , 6 K 7 , etc., variety, the glass bulbs and internal structures having been removed.

Before smashing the bulb of an unwanted valve it should be placed in a paper bag. Holding the base of the valve firmly the glass bulb is tapped smartly with a hammer! Careful removal of all debris leaves a strong former which, unfortunately, is not long enough for g.d.o. purposes. Plastic, paxolin, or even stiff card, tubing suitable for fitting over the base is now sought and fixed firmly.

At this point a test coil of about 12 turns of

Fig. 4: General layout of main components.
enamelled copper wire should be wound up and plugged in to the g.d.o. Power is then applied and VR1 adjusted to give a meter reading of approximately half scale deflection. If the coil turns are now gripped firmly between a finger and thumb the meter reading should decrease, thus indicating that the device is functioning. The g.d.o. may then be switched off and the sample coil removed for subsequent amendment.
A total of seven coils are needed, plus a loop or hairpin coil, and while details relating to each range are given in Table I, in another construction variations are likely. This is of no importance, the main requirement being to obtain overlapping coverage from range to range.
table I

Coil	Turns	Spacing	S.W.G.*	Range in $M \mathrm{Mc} / \mathrm{s}$
LI	76	Close	30	$1.75-3.50$
L2	40	$"$	24	$2.80-5.50$
L3	28	$"$	24	$5.0-9.0$
L4	12	Wire dia	24	$8.50-16.5$
L5	5	$"$	24	$16.0-32.0$
L6	$2 \frac{1}{2}$	$"$	20	$31.0-60.0$
L7	$1 \frac{1}{4}$	$"$	20	$45 \cdot 0-80.0$
L8	Loop	-	20	$70.0-150.0$

*enamelled copper wire.
Note: L8 consists of a hairpin loop $\frac{1}{2}$ in. long wired across the pins I and 5 of a octal valve bases of the type used in metal valves; type $6 \mathrm{H} 6,6 \mathrm{SH} 7$, etc.

The "cut and try" coil winding method adopted was first to wind a former full of 30 s.w.g. enamelled copper wire and then remove turns experimentally using the g.d.o. and a wavemeter which was adjusted to $1.75 \mathrm{Mc} / \mathrm{s}$, the vanes of VCl in the g.d.o. being fully enmeshed. Immediately the signal due to the g.d.o. was detected, the turns left on the coil were counted and these were found to number 76.
This coil was then made L1 and, with the vanes of VCl opened, a check was made with the wavemeter to find the high frequency point. For L2 slightly over half the number of turns used for L 1 were wound on. The wavemeter was then set slightly 1.f. of the highest frequency reading found with L1 and VCl readjusted to full capacitance.

Again a few turns were removed until the wavemeter gave an indication whereupon VCl was reset to the opposite end of its travel to find the high frequency point for the coil. This procedure was adopted until all coils showed overlapping frequency characteristics although as yet no actual calibration had been attempted. Windings were then sealed and doped.
If no wavemeter exists, a communications receiver could be employed or the oddment of circuitry shown in Fig. 5 used in conjunction with a signal generator. Here, socket SK1 is the generator output socket and L is a coil of some eight turns of

Fig. 5: How a signal generator may be utilised for coil checking in conjunction with an additional oddment of circuitry.
enamelled copper wire about 1in. in diameter. A meter with a full scale sensitivity of around 1 mA is connected at the M terminals or the workshop testmeter suitably adjusted may be used.

If the g.d.o. coil is brought close to L the current reading due to the signal generator and seen on the meter connected to terminals M will increase. Immediately the g.d.o. is tuned to the same frequency as the signal generator a violent kick will be indicated by the pointer of the externally connected meter.

Calibration

Before attempting calibration, the perspex cursor plate and the scale should receive attention along the lines shown in Figs. 6a,b. The perspex cannot be

Fig. $6 a$ (above): The calibrated scale. Note that the low frequency scaling is close to the shaft whilst the outside compartments are reserved for the higher frequencies. This scale must not be taken literally; it is merely a guide, and in any case the rotors of the tuning capacitor used were capable
of a 360° movement!

Fig. $6 b$ (left): Dimensions of the perspex cursor.

\star components list

\section*{Resistors:
 RI 47 k ת
 R2 $22 \mathrm{k} \Omega$ I watt
 Capacitors:
 | Cl | 100 pF silver mica | C 4 | 1000 pF ceramic |
| :--- | :--- | :--- | :--- |
| C 2 | 100 pF silver mica | VCI | $2 \times 75 \mathrm{pF}$ (see text) |
| C 3 | 1000 pF ceramic | | |
 Valve:
 VI 6C4
 Meter:
 $0-500_{\mu} \mathrm{A}$ miniature plastic-type panel meter.
 Miscellaneous:
 Tuning drum $2 \frac{3}{4} \mathrm{in}$. diameter, closed circuit jack socket, B7G valve holder, preferably ceramic, I.O. valve holder, Control knobs (2), 3-core mains type lead, On/off toggle or slide switch- 250 V d.c., oddment perspex, wire for coils, bases for coils (see text), 16 s.w.g. aluminium, paxolin or plastic tubing, etc.}

Extras to include P.S.U. Item:

Miniature transformer-mains a.c. input. Secondaries: $0-200 \mathrm{~V}$ at $25 \mathrm{~mA}, 6.3 \mathrm{~V}$ at 1 A . Half-wave rectifier, Electrix contact cooled type 250 V d.c. at 50 mA . Miniature tubular electrolytic, $16+16 \mu \mathrm{~F}, 275 \mathrm{~V}$ wkg. One 1500Ω resistor, 1 watt.
placed in position until calibration has been completed so care must be taken to ensure that the line scribed on it agrees exactly with that drawn on the card scale.

A piece of stiff white card is then placed across the g.d.o. scale cut-outs and fixed with sellotape in such a way that one edge occupies the position later to be taken by the scribed line.

Using a pin-sharp pencil point, calibration marks are made lightly on the scale, the final marks being filled in later in Indian ink with a mapping pen. Calibration up to $30 \mathrm{Mc} / \mathrm{s}$ is easily accomplished using a communications receiver and cross checking with a crystal marker. The signal generator method previously mentioned may also be employed with rather less accuracy perhaps but may be necessary in any case for the highest frequency ranges. Any crystals that are around can also be made use of, as may MSF and other similar transmissions.

Finalising the Unit

If a self-contained unit is required, the circuitry and components of Fig. 7 may be inserted, these being placed inside the casing beneath the meter. The sides are easily filled in using expanded metal speaker fret, the edges of which are folded to give increased strength. The casing may then be lacquered or spray painted to taste, after which suitable legends may be applied, preferably through -continued on page 189

Fig. 7: A suitable power circuit that can be included if required.

THIS simple short wave receiver has been designed specifically for the young and relatively inexperienced constructor. The author has memories of his own schoolboy experiences, which in retrospect appeared to consist of recurrent financial crisis which more often than not coincided with an item of more than particular interest in these pages! His own interest in amateur radio was sparked off by the description, in an extremely early edition of "Practical Wireless", by an article entitled "The Solo Knob Three". As its name implies, the receiver controls were compounded into a single knob! Although the present day reader may smile at this description, the receiver certainly met with an enthusiastic reception. Unfortunately, due to the then relatively high cost of components, the author's receiver never quite got off the stocks!
Bearing these nostalgic recollections in mind, the author has endeavoured to keep the cost of the receiver described in this article down to an absolute minimum. Although the simplest materials have
been employed, the performance of the finished receiver is extremely pleasing.
The total building cost of the receiver is roughly $£ 4$ to $£ 5$.

Circuit Description

The circuit diagram of the receiver is given in Fig. 1. For the benefit of the young reader a fuller description than usual is given of the functions of the various components employed in the circuit. V1, which is a 6 SH 7 pentode, functions as a grid leak detector. The coil, L2, in conjunction with the tuning capacitor, VC2, constitutes the tuned circuit. Radio frequency energy from the aerial is fed via VCl to the coupling coil, L 1 , which is inductively coupled to L2.
The purpose of the variable capacitor, VC 1 , in the aerial lead, is to enable the aerial coupling to be varied. At the same time it helps in the elimination of dead spots. These so called dead spots are caused

THE
 BY H. WEBSTER

when the aerial absorbs energy from the tuned circuit. When this occurs, regeneration, on which the leaky grid detector is dependent for its sensitivity, is difficult to obtain. Regeneration is obtained by feeding back energy in the correct phase to the grid circuit-an example, incidentally, of positive feedback. The magnitude of this effect depends chiefly on the size of L3 and C2, the proximity of L3 to L2, and the gain of V1. In the receiver the gain of V1 and hence the degree of feedback, is controlled by varying the screen voltage by means of the potentiometer VR1.
After rectification the signal is fed via C6 to the volume control, VR2, and then on to the grid of

Fig. 1: Circuit diagram of complete receiver and power pack.

Fig. 2 (right): Drilling dimensions for chassis (shown folded flat for clarity).
Fig. 3 (below): Drilling dimensions for panel.

V2 which is a medium impedance triode. The amplified signal developed across the V2 anode load resistor, R 7 , is fed to the high resistance headphones via the coupling capacitor, C8.

Power supplies for the receiver are derived from a simple half wave rectifier circuit. Since the current demand is quite modest, a midget type of mains transformer may be used. Complete wiring details of this unit are given in Fig. 8.

Construction

The prototype was constructed on a $9 \times 5 \times 3 i n$. universal chassis. The front panel is a nominal 10 x 7 in . chassis top plate from the same chassis range. The main drilling dimensions for the chassis and panel are given in Figs. 2 and 3. Note that the panel drilling details are only applicable to the specified dial. When the valve holders are mounted make sure they are orientated correctly as shown in Figs. 4 and 5 . Similarly ensure that the 6 pin coil holder is mounted with pins 1 and 4 pointing to the rear of the chassis. The correct mounting of VC1 on the front panel is of some importance. It will be seen in Fig. 3 that the mounting hole for VC1 is larger than that required for VC2. This is to enable VC1 to be mounted so that it is insulated from the panel. Two fibre washers are used for this purpose, one on each side of the panel as shown in Fig. 4. If this precaution is neglected, no signals will be obtained, since the aerial input will be effectively shorted to earth via the rotor shaft of VC1.

Although wiring of the receiver is quite straightforward a few tips concerning wiring techniques are given to help the absolute tiro.

For successful soldering a really hot iron is essential and each soldering operation should be conducted as quickly as possible. Whereever possible keep the leads short and stiff to minimise the effects of vibration. Of course don't carry this to extremes and cut the component leads too short, or damage to the component may result during the soldering operation. As an example of the correct technique to adopt, consider the wiring of the 7 way tag strip at the rear of the chassis. It will be seen that R2, R3 and C3 are soldered to one tag as shown in Fig. 6. Do not solder each component separately to the tag, instead thread the three leads through the tag hole and solder all three simultaneously. As a guide, the lead lengths of R2

Fig. 4; Layout of components on top of chassis.
and R3 can conveniently be about $\frac{3}{4}$ to 1 in . Although the method may appear obvious it is surprising how many constructors make a multi soldered joint (no pun intended!) out of such an operation. The general outcome is an unsightly blob of solder. The same remarks apply to all joints where two or more wires are joined to the same tag.

When soldering the electrolytic capacitors C5 and C7 into circuit ensure that the correct polarity is observed. This type of capacitor is generally marked at the positive end, either with a red spot or a + symbol.

The radio frequency choke in the anode circuit of V1 is connected at one end to tag 4 of the V2 valveholder. This tag is merely used as an anchorage point since V2 has no internal connection to pin 4.

Coil Winding

The receiver covers the h.f. band $2-30 \mathrm{Mc} / \mathrm{s}$ in three ranges. The coils are wound on Eddystone 6 pin formers as shown in Fig. 7. The required number of turns for each range is given in the table. Begin by winding on L2, and in the case of range 1 ensure that sufficient space is left at the top of the
former for the aerial coupling winding L1. When winding the coils, keep the wire reasonably taut on the former so that the resulting coil is rigid. A sloppy winding will result in poor frequency stability. Take care that the reaction winding, L3, is wound in the correct sense as shown in Fig. 7. On ranges 2 and 3 the aerial coupling coil is interwound at the earthy end of $\mathbf{L} 2$.

Before winding any of the coils work out the approximate space occupied by each winding and "then drill the holes in the former so that when the wire is subsequently threaded through the holes it takes the shortest possible path to the pins. Avoid any criss crossing of wires inside the former.

Power Pack

This unit is built on a $4 \times 3 \times 2 \mathrm{in}$. deep aluminium chassis as shown in Fig. 8. The mains transformer should be an upright mounting type delivering about $200-250$ volts at $20-30 \mathrm{~mA}$ and 6.3 volts at 1 ampere. A small midget choke used in conjunction with C9 and C10 ensures a hum-free d.c. output. The metal rectifier is of the half wave type. Almost any type is suitable, provided that it is rated at 250 volts and is capable of passing a few
 milliamps. The wiring details given in Fig. 8 are self explanatory.

Testing

When the receiver has been completed a few simple tests should be carried out prior to connecting the receiver to the mains supply.
If the constructor has access to a meter the

Fig. 6: Simple continuity test.
Fig. 5 left: Wiring of receiver, below chassis.

* components list

```
Resistors:
\begin{tabular}{llrl} 
RI & IM \(\Omega\) & R3, R4 & \(27 \mathrm{k} \Omega\) \\
R2, R5, R7 & \(100 \mathrm{k} \Omega\) & R6 & \(2 \cdot 2 \mathrm{k} \Omega\)
\end{tabular}
Potentiometers:
VRI \(50 \mathrm{k} \Omega\) wire wound
VR2 \(\quad 500 \mathrm{k} \Omega\) carbon, log.
Capacitors:
C1, C2
100 pF silver mica
\(\mathrm{C} 6, \mathrm{C} 8 \quad 0.05 \mu \mathrm{~F}\) tubular 350 V
C3, C4 \(\quad 0.1 \mu \mathrm{~F}\) tubular 350 V
C5 \(\quad 1 \mu \mathrm{~F}\) electrolytic 350V
C7 \(\quad 25 \mu \mathrm{~F}\) electrolytic 25 V
\(\mathrm{VCl} \quad 25 \mathrm{pF}\) Wavemaster
VC2 160pF Wavemaster
Valves:
VI 6SH7,6AC7 V2 6J5,6C5
```


Miscellaneous:

```
Coil former, plain, type 537, Stratton. Coil formers, threaded, type 538, Stratton (2 required). Coil holder, 6 pin, type 964, Stratton. International octal valve holders (2). Tag strips, 7 way (1), 4 way (1). Aluminium chassis, universal type (Home Radio), \(9 \times 5 \times 3\) in. Aluminium panel, \(10 \times 7 \mathrm{in}\). Dial drive (Jackson 4489). Jack socket (Bulgin). Jack plug (Bulgin). Headphones (high resistance type). R.F. choke, type 737 (Stratton). Transformer, \(200 / 250 \mathrm{~V}, 40 / 50 \mathrm{~mA}, 6.3 \mathrm{~V}\) IA, R.C.S., Croydon. Smoothing choke, \(10 \mathrm{H}, 30 \mathrm{~mA}\). \(8+8 \mu \mathrm{~F}\) electrolytic capacitor (C9, Cl0) 450VW. Metal rectifier, \(250 \mathrm{~V}, 40 / 50 \mathrm{~mA}\). Screws, wire, etc.
```

resistance between HT + and the earth line of the receiver should be measured. It should be roughly $75 \mathrm{k} \Omega$. Also check the heater circuit. The valves must not be fitted for this test as their heater elements are of low resistance and thus, leaks will not show up. If no meter is available a few rough and ready tests may be carried out with a 3.5 volt flashlamp bulb and a 4.5 volt battery as follows.
Connect the lamp and battery in series across the

Fig. 8: Construction of power pack.

mportant,
pins numbered looking down into coll former.

Fig. 7; Method of coil winding and table of data.

Range	L]	12	L3
2.0/5Mc/s.	$\begin{gathered} 6 \mathrm{t} \\ \text { close wound } \\ * \end{gathered}$	$\begin{aligned} & 40 \mathrm{t} \\ & \text { close wound } \\ & 26 \text { s.w.g. } \\ & \text { enamelled } \end{aligned}$	5t close wound spaced $\frac{3}{16} \mathrm{in}$. from L2
$5.0 / 12.0 \mathrm{Mc} / \mathrm{s}$	$3 t$ interwound at earthy end of L2	$\begin{array}{\|c\|} \hline 15 \mathrm{t} \\ \text { wound } 14 \mathrm{t} . \text { p.i. } \\ 18 \text { s.w.g. } \end{array}$	$1 \frac{1}{2} \mathrm{t}$ close wound spaced $\frac{1}{\mathrm{i}} \mathrm{in}$. from L2
12/30Mc/s	$2 \frac{1}{2} \mathrm{t}$ interwound at earthy end of L2	$\begin{array}{\|c\|} \hline 4 \mathrm{t} \\ \text { wound } 14 \mathrm{t} \text {.p.i. } \\ 18 \text { s.w.g. } \end{array}$	23 t close wound spaced $\frac{3}{16}$ in. from L2

* This coil wound on Eddystone plain former type 537. LI wound at aerial end of L2 and spaced $\frac{1}{8} \mathrm{in}$. from L2.
Remaining coils wound on Eddystone threaded former type 538.
LI and L 3 on all coils wound with 26 s.w.g. enamelled wire.
receiver HT + line and earth as shown in Fig. 6. If all is in order the lamp will remain unlit. Naturally this test will only show up a dead short or a resistance of a few ohms. The same test may also be applied across the heater leads. If the lamp lights up in either of these tests it is imperative that steps are taken to find out the cause of the short circuit.

The power pack may also be tested in a similar manner by connecting the tester across the HT+ and HT - leads. If these tests are satisfactory the receiver may now be put into operation. Plug in the range 2 coil (on which there is a good deal of activity) and the two valves. The headphones are plugged into the jack socket at the front of the panel.

Connect the power leads to the appropriate terminals on the power pack, connect the mains supply, and the valve heaters should light up almost immediately. A slight background noise should also be heard in the phones. Advance VR2 to maximum and then slowly advance the regeneration control from its minimum position until the receiver is just on the verge of oscillation. Tuning may now be done with VC2. The constructor will find that the position of the regeneration control will not remain constant over any given frequency band but will require adjustment from time to time. Always work with the regeneration control set so that the receiver is just on the verge of oscillation. The receiver is then in its most sensitive condition.

ELECTROSTATIC RECORDING

SINCE every magnetic effect has an electrostatic counterpart, it is rather surprising that electrostatic recording has been so neglected, compared to magnetic recording. Indeed, it is only recently that serious attempts have been made to develop the techniques and to devise a theory of the recording mechanism.

In conventional magnetic recording, we use a magnetic tape and record by modulating the current through an electromagnet, the recording head. In electrostatic recording, we use a dielectric tape and modulate the voltage on an electrode.
In magnetic recording, we can eliminate to a very great extent the effect of the nonlinear shape of the magnetisation characteristic of the tape by high-frequency bias; and a similar effect is found with electrostatic recording.
In both systems, the high-frequency response is dependent on the construction of the recording heads, but the electrostatic system has advantages at the low-frequency end of the scale.
A typical electrostatic recording system is shown in Fig. 1. The tape is drawn between two knife-

Fig. 1: Typical electrostatic recording system.
edges, one earthed and the other connected to the signal and the bias source in series. The bias is of the order of 100 volts at $350 \mathrm{kc} / \mathrm{s}$.
For replay, the tape is again drawn past a knifeedge, this time connected to an amplifier. The output is considerable by magnetic recording standards, some 40 mV for an input resistance of one $\mathrm{M} \Omega$.

Even with such a crude system, and using d.c. bias instead of the a.c. bias system shown, quite reasonable results are obtainable, certainly better than can be obtained with magnetic recording using a permanent magnet bias system. D.C. bias should be about 1 kV , and a circuit of a suitable system is shown in Fig. 2.

The frequency response of this system is rather restricted, however, and for a more ambitious

Fig. 2: Simple electrostatic circuit using d.c. bias.
system, a.c. bias must be used, preferably with the refinement of shielded heads.
The construction of heads for electrostatic recorders is very much easier than the corresponding task for magnetic recorders, and much remains to be discovered about the best way of making such a head.

For the simple system, the best possible electrodes are razor-blades; there are few sharper edges available to anyone. Many of the modern stainlesssteel razor-blades are coated with p.t.f.e. (Polytetrafluoroethylene), a plastic with excellent insulation properties, and they can be used to construct a more advanced type of head, the sandwich type shown in Fig. 3, which will give a frequency response second to none.

This head consists of three blades clamped together, the inner one being insulated from the outside two. The signal is fed to the inner blade and the outer two are either earthed or connected to a separate bias supply (in which latter case no bias in series with the signal is needed). When the outer blades are connected to earth, they act as shields to prevent the charge spreading on the tape, and hence the high-frequency response is improved.
The use of the two shield electrodes to carry

Fig. 3: Electrostatic head made from razor-blades.

[RTIAR - QUALITY

AMOTHER GDDAR TRIUMPH!

THE NEW 1966 CR. $\%$ A COMMUNICATION RECEIVER.
This completely new receiver sets a new high standard for performance and finish unequalled at the price, and is a worthy adation to theoutstanding range or CODAR quality communication equipment. Frequency range: $560 \mathrm{Ko} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ ($540-10$ $4.2 \mathrm{Mc} / \mathrm{s}-115 \mathrm{Mc}$ ranges; $560 \mathrm{Kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s} ; 1.5 \mathrm{Mc} / \mathrm{s}-4.2 \mathrm{Mc} / \mathrm{s}$, band calibrated in frequ/s- $30 \mathrm{Mc} / \mathrm{s}$. Slide rule scales for each scale in degrees. Two specd vernier plus an additional logging slow tune action. Unique vernier tuning control with reverse CR. 70 A employing High ' Q ' Air-spaced CODAR giving extremely high gain with low noise level. Panel aerial trimmer for peaking weak signals. Double tuned I.F. Iron cored transformers. $470 \mathrm{Kc} / \mathrm{s}$ with EF183 frame grid vaive for maximum gain and selectivity. 5 valves (including two twin triodes) giving 7 valve line-up. Separate B.F.O. stage for CW and ssB reception. Calibrated signal strength ' S ' meter, illuminated. Automatic Volume control. Panel phone jack for 'private listening. 2-3 ohm output for external speaker. (Matching unit Organasol Satin lustre finish s, metal cabinet in the new $200 / 250 \mathrm{v}$. Ready built. Not a Kit at the fantastic low price of £19.10.0. Carr. 7/6.
CODAR R.F. PRE-SELECTOR MODEL P.R. 30 . Considerably improves the performance of any superhet receiver over 1.5-30 Mc/s. Uses EF 183 Frame Grid Valve, and provides up to noise ratio and selectivity, Selector switch for either dipole or single wire antenne. Power requirements $180-250$ volts 12 m A H.T. 6.3 volts, 3 amp L.T. Size $8 \frac{1}{2} \times 5 \times 4$ in. Ready built, complete with cables, plugs and instructions, £5.10.0. Carr. 3/6. MODEI P.R.30X. Self powered model for $200-250 \mathrm{v}$. A.C. Also provides 25 mA at 200 v . H.T. and 6.3 v . 1 amp L.T. for other accessories 87.4.0. Carr. 3/6.

CODAR "‘Q" MULTIPLIER MODEL R.Q.10. For use with any superhet receiver with an I.F. between 450 and $470 \mathrm{Kc} / \mathrm{s}$ Provides considerable increase in selectivity for either peaking or rejecting a signal on AM, CW, or SSB, BFO. Size $8 \frac{1}{2} 5 \times 4 i n$ Power requirements $180-250 \mathrm{v}$. H.T. at 5 mA 6.3 y . 3 amp L.T. Ready built complete with cables, pluss and instructions, E6.15.0. Carr. 3/6. MODEL R.Q.10X. Self powered version for $200-250 \mathrm{v}$. A.C. and also provides 25 mA at 200 v . H. T. and 6.3 v .1
amp . L. T. for other accessories $£ 8.8 .0$. Carriage $3 / 6$.
COD. L.T. for other accessories 28.8 .0 . Carriage $3 / 6$. newest most compact transmitter for fixed or mobile use on $8 \frac{1}{8} 5 \times 4$ in. (Base area is less than two-thirds of this parel) High stability new type calibrated VFO. 1.8-2.0 Mc/s and 3.5-3.8 Mc/s (up to $4 \mathrm{Mc} / \mathrm{s}$ export). Air-spaced CODAR COIL Pinet output, P.A. Plate current meter plus neon indicator, Plateoutput, P.A. Plate current meter plus neon indicator, Platechange over for 6 or 12 volts heater supply. Ready built 16.10 .0. and 12 v . Solid state for Mobile use, complete with all Transmit Receive changeover switching available.
CODAR-KTT CR. $45 K$ MAINS T.R.F. SHORT-WAVE RECEIVER. World wide reception-North and South America, Russia, India, Australia, Far East, Amateurs, Shipping, etc. *Separate electrical bandspread. * 3 slow motion vernie drives, \star Low loss polystyrene plug-in coils, factory aligned \$ Dials calibrated in frequencies and degrees. \star Power output HZ80. Size $12 \times 51 \times 7$ in. CODAR-KIT CR.A5K complete with valves 3 colls (10-28, 25-75, 60-176 metres) and 11 page instruction manual, 89.10.0. Carr. 5/6. Extra coils $4 / 9$ each. Instruction manual only $4 /$-(credited on order). (Canalso be supplied ready built-price on request).
CODAR-KIT MENICLIPPER-OUR FAMOUS SHORT WAVE RECEIVER * Can be built in one evening ready to switch on and bring the world to your fingertips at very low cost. $*$ Supplied complete with valve, one coil $25-75$ metres and 4 -page instruction manual. PRICE 39/6. Carr. 3/-. Extra Coils $4 / 9$ each. Instruction Manual only $2 /=$ (credited on order). Electrical Bandspread available. Provision to add. 2 transistor amplifier.

SEND 6d. IN STAMPS FOR ILLUS. LEAFLETS OF THE CODAR RANGE
H.P. TERMS AYAILABLE - WORLD-WIDE MAIL ORDER SERYICE

Canada: Codar Radio of Canada, Tweed, Ontario

R.S.T. VALVE MAIL ORDER CO. 144-146 WELLFIELD ROAD, STREATHAM, S.W.I6

All valves
brand new and boxed

Open Daily to Callers
Tel. STR 0199, 1649

PLEASE NOTE OUR NEW ADDRESS

KEDOCO TRANSISTORISED MODULES BRING TOP QUALITY TO HOME CONSTRUCTION HI-FI TAPE EQUIPMENT - AT INCREDIBLY LOW COST!

KEDOCO STAR FEATURES Kedoco quality control ensures high product performance-always. Transistorised modules ready-assembled for simple, speedy wiring into circuit. Units operate from 12 volts-ideal for out-and-about recording. Miniaturization of modules permits compact packaging. Complete flexibility in design from seven basic units. Money-back guarantee on all products.

PRE-AMPLIFIERS

TAPE PRE-AMP SSTR/7. Compensates for the higher frequency attentuation present on all tape recordings to give a flat response output up to $15 \mathrm{kc} / \mathrm{s}$. Makes a complete hi-fi tape amplifier if used in conjunction with a Miniclassic. All silicon transistor; zero hum; high gain and equalised at $7 \frac{1}{2}^{\prime \prime}$ per sec. to give flat response output. Simple mod. described in accompanying instructions allows equalisation accompanying instructions all speeds. Suitable for all medium impedance at allspeeds. Suitable for all medisembled 2916. MINICLASSIC PRE-AMP SSPA/50. Tone controlled high gain pre-amplifier designed specially for application with the SS3/9. All specially frar applicon transistor; zero hum; requires 12 volt + H.T. High fidelity complete with tone and volume controls. Separate inputs for crystal ceramic cartridge and radio enable Miniclassic to be used with ceramic cartridge or magnetic pickup. Assembled 391 .
MINICLASSIC SS3/10. High fidelity 4 watt main amplifier; ideal for use with SSTR/7 and makes complete tape amplifier, $16 \mathrm{c} / \mathrm{s}$ to 30 kc / s. Requires $12 \mathrm{volt}+\mathrm{HT}$ and will operate directly from crystal piekup. 6 transistors and directly from crystal piekup. 6 transistors and two diodes all mounted on precision board. Max. music power 4 watts into circuit board. Max. music power
3 ohm speaker. Assembled 59/=.

MINICLASSIC SS3/9. Similar to SS3/10 but requires 18 volts and gives greater power. 6 watts peak. Assembled $69 /$.

MICROPHONES

CRYSTAL MICROPHONE. Complete with detachable desk stand; smooth slim round design with satin chrome finish. Supplied with locking on/off switch, 7 ft . cable. Response 60 to 10,000 eps. fl.18.0.
OMNI-DIRECTIONAL DYNAMIC MICROPHONE. A beautifully finished professional microphone. Response 30 to 13,000 cps. Supplied with desk stand and cable £3.12.6.
LAPEL DYNAMIC MICROPHONE. $1^{\prime \prime}$ diameter. Very sensitive and supplied with long lead and plug. 12/6.
LEVEL METER. Miniacure moving coil meter specially produced for level indication in tape recording. E1.4.9.
FECORD AMPLIFIER SSH9/3. Fully transistorised. High voltage HT rail derived from oscillator. Provides substantially constant current record signal. I volt input sensitivity. Power consumption 1 mA at 12 volts and ImA at 75 volts. Latter derived from erase oscillator SSOI3. Assembled 45/-.

TAPE OSCILLATOR SSO13. Complete unit incorporating push pull transistor oscillator incorporating push pull transistor oscording bias. Ferrite pot core push-pull oscillator, frequency $50-60 \mathrm{kc}$. All silicon transistor. Provides high voltage (75v.) D.C. Rail for operating record amplifier. High efficiency unit requiring $12 v$. D.C. at 250 mA . The only unit on the market at such an economical price. Complete $69 /$.
POWER SUPPLIES. 12 volt, 1 amp and designed to supply complete tape system. 59/30 vole, 3 amp designed to power Kedoco hi-fi 20 watt power amplifiers. 69/-.
KEDOCO ELECTRONICS also manufacture a range of 20 watt hi-fi amplifiers. SS20/7, E9.19.6. SS20/8 de luxe, il gns. SS20/9'table model, 19 gns. F.M. Tuner SS5F E7.9.6. A.M. Tuner Type SS4AM £4.9.6.
TV/FM Booster battery operated, bands I and 2, 32/3. De luxe mains model, band III, 45/= Transistors, zeners, resistors and capacitors. See Practical Electronics for details of these other top-quality Kedoco transistorised products or send S.A.E. for leaflets.
All KEDOCO products are fully guaranteed. Should you not be completely satisfied we will Immediately refund your money if purchases are returned within seven days of receipt.

KEDOCO ELECTRONICS LTD. NEW SHOWROOMS AND MAIL ORDER DEPARTMENT Dept. PW. 76 Victoria Road, Swindon. Personal callers welcome. Open 9 a.m.- -6.30 p.m. weekdays. Wednesday early closing
the bias supply is a very recent innovation, and is almost an exact electrostatic equivalent of the "cross-field head" for magnetic tape recorders. The cross-field head, invented in the United States and used on several professional-quality tape recorders, the Japanese Akai models in particular.

The use of the shields greatly increases the capacity of the head, and a suitable driving circuit must be used. A cathode-follower is not wholly suitable; the capacity of the head is so high that the cathodefollower ceases to follow on negativegoing signals due to the valve cutting off.

This could be overcome by using a power valve and having a very high standing current. Another, better, method is to use the circuit sometimes referred to as the "super cathode - follower", shown in Fig. 4. Since one of the two valves must be driven on at any given time, irrespective of the polarity of the input signal, the output impedance remains low at all times.

The shielded head should not be used for

Fig. 4: Super cathode-follower. replay, as the high capacity causes a considerable loss of signal at high frequencies.

Some notes on the construction of the shielded head may be of interest. Some selection of razorblades may be necessary to find three which will not short to one another when glued together. If the blades available have a poor coating, a very thin mica shim may be used as a spacer at the blade end in addition to those used further up.

Mica sheet is very readily split into very thin portions, and with some practice, shims of 0.0001 in . can be produced. The best technique of producing such shims is to use a sharp needle to split a piece of good-quality mica at one edge. A drop of water should then be run down the needle into the split.

The water will spread between the natural layers of the mica and assist in the splitting operation. The use of water in this way also helps to prevent trouble caused by the needle crossing between layers. The mica sheets should be gently slid apart when the needle has been passed between them all over the area of the sheet.

The mica shims should be well dried before use, as they tend to retain water. The mica used must be clean and fresh; mica from an old electric iron element is useless, as it is brittle and cannot be worked readily.

The contacts to the blade should be soldered on before assembly. Stainless steel is difficult to solder, and a very hot iron is essential. The outer blades are connected together, and the inner is kept separate; remember to check the insulation between outer and inner after assembly.

The glue used should be good quality polystyrene
cement, although "Araldite" is more suitable if the blades can be kept in a suitable clamp while the adhesive sets.

Any normal tape drive from a magnetic recorder is suitable but the tape must press only very lightly against the blades, for obvious reasons. Uncoated tape is available from any manufacturer of magnetic tape (to special order) or from British Visqueen Ltd. (Acetate tape) or Dupont (Mylar tape).
" Some recent work has indicated that the permanence of the recordings can be improved by neutralising the excess charge on the tape by passing it through a "bath" of positive ions. This is done by creating a corona discharge near the tape after it has passed the recording head, although other methods such as a radioactive source can be used.

A needle held in a block of rubber and connected by suitable e.h.t. cable to a power supply (such as the e.h.t. generator of a TV set; an old set can be bought for far less than the price of building an e.h.t. supply) of at least 10 kV will give a sufficiently brisk corona for this purpose.

GRID DIP OSCILLATOR

-continued from page 181
the medium of transfers. Finally, the pencilled calibration marks may be erased and the perspex fixed with PK screws.

Uses of the G.D.O.

The uses of these devices are already well known but, briefly, the unit may be used for setting up the tuned stages in either transmitters or receivers, etc., without even having to switch them on! The g.d.o. is merely brought close to the circuit being checked and carefully tuned until a sharp current dip is noted on the meter.
If no dip occurs, the coil in use is the incorrect one or inadequate coupling is taking place. Immediately a dip is noted, the g.d.o. is withdrawn and carefully retuned until only the merest detection of dip is possible. The scale is then read.

As a signal generator the unit may be placed close to the aerial lead of a receiver and if a modulated signal is required, the output from an audio generator may be injected at J 1 and will be heard when the receiver is suitably tuned. Harmonics of the signal generated by the g.d.o. will also be tuneable and can also be made use of if required.

The g.d.o. may also prove useful for making c.w. or s.s.b. transmissions intelligible on a receiver not fitted with a b.f.o. No physical connection between receiver and g.d.o. is necessary to do this. Nor is modulation required: the g.d.o. is tuned close to the frequency of the signal sought and front-end injection results.

The g.d.o. may also be used to check the resonance points of aerials. Removing the h.t. supply to the g.d.o. as mentioned earlier enables the device to be used as a 'phone monitor or as an absorption wavemeter or r.f. indicator. In these cases radiated radio frequency is detected.
In conclusion it can be fairly stated that this g.d.o. is well worth the trouble entailed in its construction; it will, quite definitely prove an attractive addition to many stations.

Abstract

Albania: Radio Tirana (Rue Ismail Quemal, Tirana) has been reported with English at $0000-0030$ on 7,265; $0230-0300$ 9,520; 0630-0700, 2000, 2200-2230 $7,265 / 9,390$. One report says the 2000 TX is on 7,150 .

Algeria: Radiodiffusion-Television Algerienne (21 Boulevard des Martyrs, Algiers) has English from $2200-2230$ over $890 / 1,304 / 6,175$. Arabic is now being carried in the afternoons over 9,510 .

Brazil: Radio Bandeirantes (Casillon Postale 372, Sao Paulo) is reported drifting around 11,917 .

Colombia: Voz Bogota (Aereo 13018, Bogota) has been heard at 0045 on $\operatorname{HJCF}(5,960)$.

Clandestine: Radio Espana Independente can be heard between 1600-1700 on 17,695 in Spanish. Some reports say this station is located in Rumania. Has anyone any further details?

Congo: Radiodiffusion Ufac (Boite Postale 97, Elisabethville) has moved to a new frequency of 5,033 .

Czechoslovakia has, according to the International Short Wave Club, stopped jamming. Countries still engaged in jamming and to whom the club's antijamming campaign applies are Bulgaria, China, German Democratic Republic, and the U.S.S.R. occasional jamming by Hungary, Portugal and Spain.

Holland: Nederlansche Radio Unie (P.O. Box 150, Hilversum) is reported to have started a new home service transmission, Hilversum III on 1,250 .

Radio Nederland Wereldomroep (P.O. Box 222, Hilversum) has produced an English-Spanish DX vocabulary to assist Dx'ers listening and reporting to South American stations. It is obtainable free on writing, as is the printed material for the latest Dutch by Radio course. Lessons are broadcast during English transmissions on Wednesdays. The English beam to West Africa from the Bonaire relay in the $19 \mathrm{~m} . \mathrm{b}$. is now at $2130-2220$. The European relay of the 1430-1520 and 1900-1950 English transmissions is now on 6,020. The 2000-2050 English transmission is now aired in the 25,31 and $49 \mathrm{~m} . \mathrm{b}$. and the $2100-$ 2150 English transmission is in the 19 and 25 m.b.

Monaco: Trans World Radio (Rue de la Poste 5, P.O. Box 141, Monte Carlo) is now using 5,955 for its 11145-1215 French transmission. There is bad interference with Radio Liberty which also uses the same channel.

Peru: Radio Cuzco (Montero 114, Cuzco) has been heard at 0015 on the new frequency of 6,250 .

Poland: Radio Warsaw (Warsaw) has made frequency changes in the following English transmissions 1930$20001,502 / 5,995 / 6,135 / 7,125 ; 2230-23001,502 / 5,995 /$ 7,270; 2303-2330 818. The multilingual concert programmes at 1500-1630 and 2330-0100 are now on 1,502/5,995 and 1,502/7,125/7,270 respectively.
Portugal: Radio Portugal (Rua do Quelhas 2, Lisbon) has made frequency changes in the following transmissions: $0730-090021,495 / 17,740$ or 17,880 or 17,890 or 17,895; 2015-2100 6,025/7,285; 0300-0345 5,985; 0400-0445 6,025/6,185.

[^4]Uruguay: Radio Sarandi (Corporacion de Publicidad SA, Enriqueta Compte y Rique 1282, Montevideo) has been heard over CXA68 11,885 around 2215. Identifies "Noticia Radio Sarandi" every quarter hour.
U.S.S.R.: Radio Vilnius (Lietuvas TSR Radijas, ul Kanarskio 49, Vilnius) broadcasts in English on Mondays and Fridays at 2100 on $665 / 1,106 / 1,554$ and 2230 on $665 / 1,106 / 1,554 / 5,900 / 7,200 / 7,400$. The North American English service of Radio Moscow is relayed daily from 2300-2330 over 7,185/7,300.

Venezuela: Radio Juventud (Apartment 567y 576, Barquisemeto) can be heard around 2230 over YVNK, 4,900. Ondas Populares (Apartmentado 2057, Caracas) can be heard at 0035 over YVKF, 4,880. Radio Cultura (Apartmentado 1931, Caracas) can be heard around 0030 on YVKD 5,050. Radio Nacional (P.O. Box 3979, Caracas) can be heard on YVSC, 9,640 at 2400.

Reporters this month were D. Kennedy, D. A. Lavender, Middlesbrough High School S.W. Club, B. Burling, D. Mines, G. Roberts, and G. Lamb.

The Avo Multiminor Mk4 is the latest version of this well-proven multi-range measuring instrument. Designed and assembled to high standards of reliability, the Avo Multiminor offers sïmple yet instant range selection with a single rotary switch. There is only one pailr of sockets for all measurements, and the scale plate is clearly marked for easy reading.

Accuracy is within the limits laid down in B.S.S. $89 / 1954$ for up to $3 \frac{1}{4}$ " scale length industrial portable instruments.

Panclimatic construction enables the Multiminor to be used in all types of climatic conditions. The instrument is supplied in an attractive black carrying case, complete with interchangeable test prods and

Inexpensive Easy-to-IISe Pooket Size

Write for full details.

AYO
ITI AVOCET HOUSE • ARCHCLIFFE ROAD • DOVER • KENT Telephone:D

BRAND NEW AM/FM (V.H.F.) RADIOGRAM
CHASSIS AT $£ 15.15 .0$ (Carriage Paid)

$$
\text { Chassis aize } 15 \times 6 \frac{3}{x} 5{ }^{3} \text { gin. high. New manufacture. Dial } 14 \frac{1}{2} \times 4 i n . \text { in } 2 \text { colours, }
$$ predominantiy cream. 200-250v. A.C. only.

Pick-up Ext. Speaker. Ae., E., and Dipole Sockets. Five push-buttons- LW, MW, SW, FMA and Gram. Aligned and tested. O.P. Transformer Tone control $1000 \cdot 1900 \mathrm{M}$;
 $3 \cdot 0 \mathrm{~mm}$ speaker required.
$9 \times 6 \mathrm{in}$. ELLIPTICAL SPEAKER, 20/- to purchasers of this chassis.
TERMS: (Chaseis), 44.0 .0 down and 5 monthly payments of aR.10.0. Total H.P. price, si6i10.0. Cheap Room Dipole for V.H.F., 12/6. Feeder 6d. per yard. Circuit diagram, 2/6. Carriage to N. Ireland, 20/- extra.

NEW 6 PUSH-BUTHON STEREOGRAM CHASSIS. M.W.; S.W.1; S.W.2; V.H.F.; Gram; Sterce Gram. Two separate channels for Stereogram with batance control,
Also operate with two speakers on Radio. Chassis size: $15 \times 7 \times 6 \frac{1}{2}$ in high. Dial Also operates with two speakers on Radio. Chassis size: $15 \times 7 \times 6 \frac{1}{2} \mathrm{im}$ high. Dial
cream and red. $15 \times 3 \mathrm{~m}$. Valves: ECC85, ECH81, EF89, $2 \times \mathrm{ECL} 86$, EM84 and
 of $63 /$ - Totail K.P. price, 520.15 .0 . Cream moulded escutcheon included. 190-550M; $18-51 \mathrm{M} ; 60-187 \mathrm{M}$; VHF $86-100 \mathrm{mc} / \mathrm{s}$.

TAPE AMPLIFIER FOR COLLARO OR MAGNAVOX TAPE DECKS - 2 TRACK

Chassis 1gi $\times 5 \frac{1}{2} \times 4 \frac{1}{4}$ in. high. Plastic front panel "gold" finish-124 $\times 4 \frac{1}{4} \mathrm{in} .200 \cdot 250$ A.C. Pecord Playback amp. switeh; Oft/On-Tone; Vol/Mic; Vol/Gram; Mic. Input; Gram. Thpa, Sepasate power pack. Complete amp. and power pack, 87.19.6. (6/- P. \& R.)

SELF-ROWERED VHF TUNER CHASSIS
Covering 88-95 Mc/s, Dims. $8 \times 6 \times 6 \mathrm{in}$, high Valves ECC85, GABC80 and 2-EF89's with metal rectifier. Maina transformer. Fully wired and tested ONIY 88.17 .6 (carr. paid). Room dipole, 12/6. Freeder 6d. per yard.

The

SUPER 6

LONG \& MEDIUM WAVE TRANSISTOR RADIO

A quality radio available as a kit or ready-built. The sparkling performance and superb finish of the completed recelver give you value equivalent to a f12.12.0 commercial model.
\star All new parts. $\star 6$ transistors and diode. $\star 350 \mathrm{~mW}$ output. \star Superhet circuit \star Ferrite rod aerial. \star Weymouth Radio printed circuit board. \star Component positions and references printed on back of board. \star Nicely styled wooden cabinet, $11 \times 7 \frac{1}{2} \times 3 \frac{12}{}$. * Vinyl covered in various colours. $\mathcal{*} 6 \times 4 \mathrm{in}$. speaker giving good, bass and treble response. \star Full instruction booklet, $2 /$. Free with kit. \rightarrow I.f.
frequencs $470 \mathrm{kc} / \mathrm{s}$. t Lining pp service if required frequency $470 \mathrm{kc} / \mathrm{s}$. \backslash Lining up service if required. \star All parts supplied separately Write for list, S.A.EL.
OR FULLT $B U I L T$ e6.7.6. Tax and Carr. Paid.

BATPERY ELIMINATOR for Transistor Radios requining 9v. Fully smoothed ($5000+1000 \mathrm{mf}^{\prime}$). $5^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{} \times 1 \frac{1}{1}^{\prime \prime}$ overall. Tapped input for $200 / 10,220 / 30,240 / 50 \mathrm{v}$. Output 9v. at 10 mma . Good Regulation. Price 25/., (3/- P. \& P.)

GLADSTONE RADIO

 66 ELMS ROAD, ALDERSHOT, Hants.(2 mins from station and Buses)
Aldershot 22240 CLOSED WEDNESDAY AFTYERNOON CATALOGEE 6d. Regrat oversess orders cannot be executed

LITESOLD SOLDERING INSTRUMENTS

- SEVEN SIZES, From 10 WATTS TO 55 WATTS.
- REPLACEABLE BITS, COPPER \& PERMATIP.

EXCELLENT TEMPERATURE REGULATION.

- COOL, UNBREAKABLE HANDLE.
- RAPID HEATING.
- SIMPLE SERVICING.
- ALL VOLTAGES.
- LOW COST.

LITESOLD instruments are compact and nicely balanced. Bits are spring-collet mounted for firmness and easy removal. Copper bits are standard, in sizes from $\frac{3^{\prime \prime}}{32^{\prime \prime}}$ to $\frac{13^{\prime \prime}}{32^{2}}$ dia. PERMATIP bits are slightly slower, but eliminate bit face wear. LITESOLD elements are encased in specially pre-oxidised wire for constant temperature regulation from new-less glamour but honest design, also apparent in the simple, unbreakable handle, with the element unit secured by two self-tapping screws (servicing couldn't be easier) and firm, spring-on clip. LITESOLD hollowspindle construction prevents heat loss into the handle (which DOES stay cool) and improves performance. Useful LITESOLD accessories include HEAT GUARDS for elements, and BENCH STANDS.

Free details of the whole wide range of LITESOLD and ADAMIN soldering equipment in brochure SPIO.
LIGHT SOLDERING DEVELOPMENTS LTD.,
28. Sydenham Road, Croydon, Surrey. Telephone; CROydon 8589.

APATCHY period for the Amateur Bands this month, with conditions varying quite a bit at times. All the top band sleuths appear to have hung up their trusty headphones in spite of the DX still popping up on this band. Even a simple t.r.f. raked in GM, GW, and quite a few Europeans and these with only 20 to 30 ft . of 32 s.w.g. enam. wire for an aerial.

At the other end of the spectrum the 10 metre band has stirred a bit more and was open for some eight consecutive days. In a couple of years I prophesy this band will hold more DX than 20, and most probably on phone too. Just ask anybody who remembers the last sunspot max. on ten.

Fourteen and 21 megs. still provide most of the more exotic stuff. Twenty metres at the time of writing, wakes around 0800 and still has activity at midnight. Fifteen metres usually peaks between 1400 and 2000 , though it's always worth a listen just in case.

Eighty and 40 don't have such a good following. Most people who listened reported G's and EU's with some W activity between 3.8 and $4.0 \mathrm{Mc} / \mathrm{s}$. The DX is comparatively easy on 20 and 15 but just try the l.f. bands and see how you really rate as an SWL.

Low Frequencies

No reports for $1.8 \mathrm{Mc} / \mathrm{s}$ this month (one minute's silence please with heads reverently bowed). Eighty not much better. Francis Breame (Liphook) 19 set, 50 ft . l.w. reports numerous G's, DJ, DL etc., J. Hutchison (Blackpool), CR100, PR30, a.t.u. 40ft. 1.w. also reports most of Europe including DJ, DL, EA4, ON, OZ, VO1DN, VE1AOL. On 7Mc/s L. Jackson (Manchester) R1155B, 120ft. 1.w. logged LZ2KLC, KP4TIN, K3MTK, K3UKZ, UF6LA, VE1OU, VP7NQ, W1ZW, W2LXK, WA4NXC, all c.w. between 0025 and 0235 . E. Goonan (Manchester) 19 set, 50 ft . end fed, heard most of Europe on $7 \mathrm{Mc} / \mathrm{s}$, including a W1 calling "CQ 10." (Yes, I wonder, too!) the best for the session was CR4AB on c.w.

Fourteen and Twenty-One

All sorts of gear pulling in all sorts of stations, those two bands are a hive of activity. If you only hear Europe on these bands-take up knitting! And as I cast off the last row of a jumper, let's see what the "sharp of ear" have been up to. Chis Claydon (Fife) 840C, 60ft. end fed, 20 metresCE3UT, CO6PH, CP5AQ, EA8EY, HC2SB, HK7UL, HP1BR, K7UW, KZ5LC, LU801, OA4NVE, TI2PZ, VE5US, VE6AAA, VK3AHQ, VK5TG, VP9FX, 6Y5AR. 15 metres-EA9AD, FL8MC, HM1DR, JA- 1LPZ, 2HO, 3EGE, 4BJO, 6TL, 9AMJ, KICAU/KG6 (Guam) PY7AC/ \emptyset, UAØLL, VK2EO, VK6RU, VP7NN, VS6FK (Hong Kong), VU2FN (India), VU2GC, YN6BF (Nicaragua ZS3XG, 606BW, 6W8DD, 9L1HL, 9M2BM, Dave Skidmore (Belper) HE4O, 20 metre dipole, 20 Metres-CN8MD 58, CR6CN 56, EA6AR 59, EP2AX 58, HR1SO 59, HS1AK/P 58, IS1VAZ 59, KP4AST 58, KR6UL 57, KX6BQ 56, LA3JM/P 59, MP4BFU, OHØNJ 59, OX3LP

59, OD5EE 58, OY7S 44, TF3UA 57, UA9EU 58, VE1AED/SU 57, VE1ADL 58, VP7NA 58, VP9BN 58, XW8AZ 58, YN1RA 58, ZB2AO 59, ZD8J 57, ZS1TZ 58, W5HWR/VP9 58, 4X4FQ 58, 5AITS 59, 5A3TB 59, 5A5TJ 59. On 15 metres Chris heard CN8FF 59, CX5AAN 57, HK8DQ 58, IT1GAI 59, KH6FBG/3 58, KP4MXN/MM 58, KV4CX 59, LU8AEF 57, PY1PAD 58, PY2AHM 58, SV1BH 59, YV5BPJ 58, 7X2AH 59, 9Q5DA 57. The two numbers after each call are the standard RST code to give an indication of how these signals are arriving at the earphones. In the \log for 15 which follows the G calls logged are DX! The receiver is a 1950 Pye radiogram, the aerial is 50 ft . end fed, and the QTH is South AfricaCR6HH, CR7IZ, DJ8WP, G30AW, G3SMH, G8WPP, I1BVZ, IT1JR,' K2LBB, MP4BBA, W8HRV, W9MOD, VK6QL, ZE1BP, 5N2FEL, 5R8AL, 7Q7LC, 9Q5WO. Tnx P. Elliott for the report. Steve Wilson (Ossett) CR45 t.r.f., 130 ft . l.w., reckons twenty is bursting, he reports good sigs from--BV1USA, CR6UL, CR7IZ, CR9AM, EA8AM, EP2AX, ET3USA, HS1AK, JA1SBF/MM, JA5CC, JA6BEE, KR6QW, LA21K/P (Jan Meyen Is), MP4BCC, OA4RQ, OD5LX, PJ2ME, 'PY's, PZ1K, SVØWJ (Crete), SV1CC, T12MY, UAØKAE, VR4CN, 4X4QI, 5A1TZ, $9 \mathrm{~K} 2 \mathrm{AM}, 9 \mathrm{~J} 1 \mathrm{AB}, 9 \mathrm{M} 4 \mathrm{LP}$. Not bad for a t.r.f.? Wait till you see the 15 metre $\log -\mathrm{CM} 1 \mathrm{AR}, \mathrm{CN} 8 \mathrm{MI}, \mathrm{CR} 4 \mathrm{BB}, \mathrm{CR} 6 \mathrm{FE}, \mathrm{CX} 9 \mathrm{AAN}$, ET3USA, FS7RT, EA8ER, G3BID/CN/M, HK2AG, KP4BFF, KV4CK, KZ5SN, MP4BBA, OD5EL, PZ1BE, PY2AIR, FG7XX, SV1AB, SVØWJ, WA4PXP, WA5KKM, WN2TIB, YV7AJ, ZC4GB, ZE8JV, ZS1FT, ZS5AK, ZS6MM, 4X4QW, 5A1TZ, 5A3CAA, 5N2AAF, 5R8CR, $6 \mathrm{~W} 8 \mathrm{DD}, 606 \mathrm{BW}$ (Somalia Rep.), 9H1AD, 9J2IE, 9G1FL. Anthony Watts (Tenbury Wells), 9J21E, 9G1FL.

Ten Metres

Paul Baker again, reports CF7FR, F9DL, many G's, LU2ADP, W's, ZC4TX, ZS1BV. Chis Claydon, too heard ZC4TX, ZS6AAC, ZS6DF, 7Q7RM, 9Q5LG, 9V1LP. C. Clarke (Farnham), 12 valve hombrew plus panoramic adaptor, folded ground plane, logged CE3PT, CN8MI, CR4BC, CR6AN, CR7IZ, ZE-2JA, 2JE, 3JO, 8JJ, ZP5KT, ZS1BV, JA, JH, 2OM, 4OI, 4PU, 6AYI, 6DK, 5A3TX, 5H3JJ, 5X5JK, 7Q7RM, 9J2-DT, RO, VX, WR, 9Q5-HD, JW.

Next Month

VR6TC (Pitcairn) 15 metres is around but takes a bit of catching. VK9GN is in New Guinea with the Wycliffe Bible Translators. He runs 150 w . c.w. to a ground plane. (We know he's real too-Chris Claydon has a QSL from him). VK9PL (Papua) has been coming through in UK at 5 and 9 plus on 15 metres. Congrats to G3DYY for winning the fourth RSGB 7Mc/s DX Contest with a score of 2,342 points on c.w. Congrats for winning the phone section to GI3CDF who notched up 2,350 points. Contests for June include 4-5th National Field Day, 19th D. F. Qualifying Event, July 3. Fourth $144 \mathrm{Mc} / \mathrm{s}$ Contest (portables). Deadline for this month's logs is June 26.

0NE great advantage of the v.h.f. bands is that aerials are small yet highly directional and efficient. To make best use of these 'aerials it is desirable that they be made fully rotatable so that they can be turned to increase the strength of the station being received or to eliminate unwanted signals.

However, if the aerials are placed on an outside mast they become difficult to rotate as a fairly powerful motor is required and the mast must be strong and well guyed, all of which adds considerably to the expense.

In order to keep down the cost while retaining the facility of rotation, the author decided to place the aerial in the loft. Although the signal strength is reduced, no new mast is required and a simple rotator suffices.

The first attempts at a system for use in the loft were not very successful. Several motors were tried, which either failed to turn the beam or turned it too fast. Power supplies also had to be found for the low voltage d.c. types. As no indication of the beam's direction could be simply obtained, the idea of a motor-driven system was abandoned in favour of the system described.

No motor is employed, the beam being turned by a single continuous belt which passes through two $\frac{1}{8}$ in. dia. holes in the ceiling. The advantages of this system, beside minimal cost, are variable speed so that the beam may be quickly turned and yet accurately set, and simplicity in indicating the beam's direction.

The beam is supported on a 1 in . dia. wooden pole sold as a broomstick, between two convenient joists. The bearings at both ends consist of pieces of $\frac{1}{4} \mathrm{in}$. dia. brass or steel rod. These are drilled and countersunk (see Fig. 1), and set in the joists.

The other part is formed by $\frac{1}{4} \mathrm{in}$. rod ground
to a point. This is set firmly in the broomstick by drilling $\frac{1}{4} i n$. holes in the ends and making two cuts at right angles to enable the wood to be squeezed on to the rod with a Jubilee clip (see Fig. 2).

A bicycle fixed-wheel sprocket is fitted to the $\frac{1}{4} \mathrm{in}$. rod and this is driven by a chain attached to the belt. This is the only difficult part of the job, the part which calls for ingenuity on the part of the individual constructor, as the sprocket must be fixed concentrically to the $\frac{1}{4} \mathrm{in}$. spindle. The problem is that the size of the hole in the sprocket is much larger being $1 \frac{3}{8} \mathrm{in}$. diameter.

Close-up of author's two-metre rotating aerial.

The best solution is to have a suitable adaptor made, but there are many small engineering firms who will undertake such work. However, the author was able to improvise a connector using an old loudspeaker magnet.

This was just the right size to fit the flange on the sprocket and the polepiece drilled to accept a $\frac{1}{4}$ in. shaft. The shaft was threaded and two nuts used to clamp the magnet. This is shown in Fig. 3, and Fig. 4 shows a suitable connector to have made up.

No doubt other possibilities will occur to readers but the solution offered, although crude, works perfectly. A different type of cog could be used provided it can be positively driven and this would eliminate the problem.

Two small pulleys are supported above the holes in the ceiling by a board between the joists, for the belt to run over (see Fig. 5).

In the shack, the belt runs around a large drum of the type used as a slow-motion drive cord drum. A large one is required to enable the beam to be swung through 360 degrees. The author's is $4 \frac{1}{2} \mathrm{in}$. dia. This is fixed to the wall by a suitable bracket (see Fig. 6). The scale indicating direction is fixed to the drum.

The belt is best made of nylon cord of the type used for curtains, as this has great strength and will not stretch. The overall length of the belt should be kept as short as possible. If a long length is required in the loft it will be necessary to use extra pulleys to prevent the chain slipping off the cog.

A large spring is incorporated to keep the belt tight. This is best placed between the chain and belt as it then provides a convenient way of shortening the belt by hooking it on another link of the chain.

The author has used this arrangement to turn a four-element beam for two metres. This it does easily and could obviously turn a larger array if required, the maximum size being governed most of all by the space available in the loft.

Part of pulley which projects beneath the ceiling.

Fig. 1: The fixing ends for the centre rod which carries the full weight of the aerial.

Fig. 2: A method of securing the brass or steel rods to the ends of the centre rod.

Fig. 3: Author's method of fitting the sprocket to the metal rod at the lower end of the centre rod.

Fig. 4: Enlarged view of the clamping plates for the sprocket.
Fig. 5: Two pulleys attached to a sheet of hardboard for guiding the Nylon belts through the ceiling.

Fig. 6: Lower pulley, showing the fixing arrangements.

WITH its five ranges, this transistorised oscillator tunes from $5 \mathrm{c} / \mathrm{s}$ to $75 \mathrm{kc} / \mathrm{s}$ by variation of the resistances and capacitances of a Wien network. This form of tuning has insufficient selectivity for the suppression of distortion unless the amplitude is closely controlled, and this function is taken over by a sensitive thermistor which maintains a constant amplitude and the maximum output is at a level of 1 volt r.m.s. independent of frequency.

Scales

Linear potentiometers if incorporated for the fine tuning produce a crowding of readings at the high frequency end of the scales and the tuning becomes correspondingly more critical in setting. This is satisfactorily overcome through obtaining ganged potentiometers wound to an inverse semi\log characteristic, and the result is an approach to an ideal frequency scale on which octaves are represented by nearly equal distances along the scale.

A simple form of transparent cursor is employed on the tuning dial, its straight edge serving as a

YYIDE REA

BY R. LEYLAND

ruler for initially marking in the frequency divisions, and subsequently as an indicating-line sweeping the five scales, but a hair-line cursor could easily be substituted if preferred. Two limit positions are first marked on the dial, which is temporarily secured in place with a few spots of adhesive, and act as reference points for aligning the cursor when the knob is being refitted.
The cursor is fastened on the knob by a 1 in . aluminium disc countersunk for the three 8BA screws, and there is a thin washer underneath, on the $\frac{1}{4}$ in. shaft, preventing contact with the dial. The small clearance between the cursor and dial avoids scratches and does not introduce any appreciable parallax in readings.

After calibration in pencil, the dial is removed for inking-in, and is covered with a clear plastic material. Then it is replaced and cemented permanently in position. Small countersunk screws could be used instead, but if any of the paint situated beneath the dial is affected by the adhesive, it can be scraped off and more adhesive successfully applied.
The dial and escutcheons are of aluminium to which drawing paper is bonded with adhesive; the circles, etc., for the scales having first been inscribed with Indian ink. On completion of the scales, some preliminary experiment is advisable before proceeding to cover the dial with the clear plastic. A clear adhesive is spread thinly with a circular motion and allowed to become almost dry before pressing the plastic material down on top.

Circuit Description

The oscillator circuit uses p-n-p transistors throughout and consists of a feedback loop around transistors $\operatorname{Tr} 1$ to $\operatorname{Tr} 4$. The fifth transistor $\operatorname{Tr} 5$,

Fig. I: Theoretical diagram of the audio oscillator.

GE A.F. OSCILLATOR

an extra stage to feed the step attenuator, increases the total battery current to 25 mA at 9 volts. The circuit works on battery voltages up to 12 volts, at which the current is about 35 mA . When the voltage falls as low as 6 volts there is a tendency towards distortion.

Oscillation is at the frequency of zero phase shift in the Wien network, which delivers one-third of its input votage to the base of Tr1. However, the actual input to $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ is reduced by feedback via thermistor type R53. The thermistor keeps the output across VR2 close to 1 volt r.m.s. by controlling the amount of negative feedback. Any excess of output above 1 volt r.m.s. is transferred by the thermistor to R7 where it becomes negative feedback to reduce the input to the amplifier.

Although power-actuated, the thermistor is effectively a voltage-controlled resistance with a gradual response to changes in the r.m.s. value, and it takes over the task of keeping the output at a constant level. Its response, too slow to cause distortion

FIg. 2: Oscillator chassis (lower side)
even at the lowest frequencies, cannot cope immediately with transients such as that caused by switching on, and it therefore takes a moment or two to settle dewn.

Direct current is kept out of the thermistor by feeding it from the output side of C12. The emitter of $\operatorname{Tr} 4$ is also a low-impedance driving point for the Wien network and is able to preserve a constant a.f. voltage across it, despite large changes of network impedance with tuning as the ganged potentiometers are varied between their minimum and maximum value. High values of capacitance for C12 and C14 provide a low coupling impedance down to subsonic frequency, but except for C11 the positive feedback loop is direct-coupled, and C11 feeding the high input impedance of $\operatorname{Tr} 3$ need not be so high in value.

To avoid loading the Wien network, the amplifier has a very high input impedance, produced by the emitter-follower, Tr 1 , which feeds Tr 2 , which also has its input impedance raised by the emitter resistor R6. The bias resistors R2 and R3 are in

Fig. 3: Oscillator chassis (upper side).
effect part of VR1b and do not shunt the input impedance of the transistor stages. An adequate current in $\operatorname{Tr} 1$ is ensured by an emitter resistor R4. This cannot be omitted altogether, but in the more usual arrangements R4 would have a much higher value and would be connected to the +ve line instead of to the emitter of Tr2. It works quite well as shown however, with high gain transistors.

The amplifying stages $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ have negative feedback applied locally by the emitter resistors. There is also the overall negative feedback via the thermistor, which is cancelled out at one frequency by positive feedback from the Wien network. The amplification is adequate to maintain the stabilised output up to about $80 \mathrm{kc} / \mathrm{s}$ on range 5 at which point oscillation ceases. A small capacitor across

R11 would maintain the oscillation right up to the end of the scale on range 5, but this shifts the calibration, and it seems undesirable to impair the performance in order to extend the coverage above $80 \mathrm{kc} / \mathrm{s}$ in an oscillator that is intended primarily for audio frequencies.
Tr4, an emitter-follower output stage, must have the full signal-handling capacity, so it is biased to midway between zero and the -9 V supply line, and as it has a low emitter load resistance, it will take a current of some 10 mA . A further output stage, Tr5, is included to feed the switched attenuator without appreciable loading on VR2.

Attenuator

Accurate attenuation is less important than that it should be independent of frequency, because in measurements on the gain of amplifiers, it is probably better to rely upon an a.f. voltmeter of the thermionic or transistor type, with its own multirange facilities.
The continuously variable attenuaton of VR2 can be calibrated at $50 \mathrm{c} / \mathrm{s}$ using a rectifier voltmeter of fairly high impedance, and does not appear to be quite linear. The rectifier voltmeter was carefully checked against an accurate moving iron type supplied from a transformer, using low resistance potential dividers to obtain smaller voltages.

For larger attenuations there are fixed steps. Ideally the step attenuator should possess a constant output impedance, so that the insertion loss on connecting a load remains the same at every step. The impedance should be unaffected by the output transistor, which must therefore offer low output impedance. However, it is equally possible to utilise a very high output impedance, which is available at the collector.

Instead of a constant impedance, the attenuator shown in the oscillator circuit, Fig. 1, has a low impedance, about 80Ω at the 100 mV step and less at the other steps. At the 1 V position of the attenuator, loads of resistance less than $1 \mathrm{k} \Omega$ should not be connected if distortion is to be minimised,
but at the other attenuator steps, any value of load can be connected.

The low resistance attenuator elements had to be constructed by winding them on cards. These are of 0.024 in s.r.b.p. sheet, which can be cut with scissors, and the edges are smoothed with emery cloth. The resistances, of the non-inductive type, are made by winding two wires simultaneously in opposite directions on the card, exchanging the bobbins between hands at each half turn. The card is mounted vertically, and connections are made as in Fig. 8. One resistance wire is adjusted to twice the resistance value. Then the other is connected and adjusted to give the correct value. One of the resistors has the value $1 \cdot 11 \Omega$, which in parallel with 10Ω yields a value of 1Ω.

To protect them against damage, a box of insulating material is fitted over the resistances, and fixed to pillars with 6BA screws. The entire attenuator is constructed as a separate unit from the oscillator chassis, although mounted beside it. Data for the wire-wound resistances is as follows:

Resistance	Wire (Constantan)	Lengths	Card Size
1Ω	30 s.w.g. d.s.c.	Two 36 cm.	$1 \times \frac{5}{8} \times 0.024 \mathrm{in}$.
$1 \cdot 1 \Omega$	30 s.w.g. d.s.c.	Two 38 cm.	$1 \times \frac{1}{16} \times 0.024 \mathrm{in}$.
9Ω	38 s.w.g. d.s.c.	Two 74 cm.	$1 \times \frac{11}{16} \times 0.024 \mathrm{in}$.
90Ω	44 s.w.g. d.s.c.	Two 2 m.	$1 \times \frac{7}{8} \times 0.024 \mathrm{in}$.
900Ω	47 s.w.g. d.s.c.	Two 8.5 m.	$1 \frac{1}{4} \times 1 \frac{3}{8} \times 0.024 \mathrm{in}$.

An appreciable amount of work is involved in the construction and adjustment of these resistances, and a very adequate alternative form of attenuator can be made as in Fig. 7, using high stability resistors of 5% tolerance. These are made in preferred values, and the values selected give the attenuator a constant output impedance of approximately 95Ω with the same attenuation ratios as before-i.e., 10:1. Altering the voltage across a load impedance by a factor of 10 alters the power by a factor of 100 (or 20 db), so these can also be described as 20 db steps.

Construction

The oscillator chassis consists of a piece of $7 \frac{1}{4} \mathrm{x}$ $3 \frac{3}{4} \times 1 / 16 \mathrm{in}$. paxolin, suitably drilled to take push-fit eyelets, and the case is made from 18 s.w.g. aluminium.
The larger capacitors are secured on the chassis by soldering their leads into eyelets. Smaller capacitors, mounted around the miniature wavechange switch S1 are connected to two junction points formed by soldering short pieces of wire vertically into eyelets. (See Fig. 2). Interconnections on the reverse side of the oscillator chassis only require sleeving where they cross as shown in Fig. 3.
The oscillator chassis is mounted on $\frac{5}{8} \mathrm{in}$. spacers with 6BA countersunk bolts, $\frac{7}{8}$ in. long, through the top of the metal case. Shakeproof washers are placed under the 6BA nuts on the chassis. The attenuator is mounted in the same way.
components list

Resistors:		
RI $2 \cdot 2 \mathrm{k} \Omega$	R8	$56 \mathrm{k} \Omega$
R2 $15 \mathrm{k} \Omega$	R9	$10 \mathrm{k} \Omega$
R3 $2 \cdot 7 \mathrm{k} \Omega$	R10	$3.9 \mathrm{k} \Omega$
R4 Ik Ω	R1I	$1 \mathrm{k} \Omega$
R5 $2 \cdot 2 \mathrm{k} \Omega$	R12	470Ω
R6 470Ω	R13	$5.6 \mathrm{k} \Omega$
R7 100Ω	R14	$10 \mathrm{k} \Omega$
Capacitors:		
$\mathrm{Cl} \quad 1 \mu \mathrm{~F} 125$		
C2 $0 \cdot 1 \mu \mathrm{~F}$		
C3 $0.01 \mu \mathrm{~F} \mathrm{125V}$ polyester		
C4 1000 pF tubular ceramic		
C5 100 pF tubular ceramic		
C6 $1 \mu \mathrm{~F} 125 \mathrm{~V}$ polyester		
C7 $0.1 \mu \mathrm{~F} 125 \mathrm{~V}$ polyester		
C8 $0.01 \mu \mathrm{~F} 125 \mathrm{~V}$ polyester		
C9 1000 pF tubular ceramic		
C10 100pF tubular ceramic		
CII $100 \mu \mathrm{~F}$ I5V electrolytic		
CI2 $1000 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic		
CI3 $100 \mu \mathrm{~F}$ I5V electrolytic		
Transistors:		
TrimTr5 OC45 Mullard		
Miscellaneous		
Thermistor type R53 (S.T.C.)		
VRI $25 \mathrm{k} \Omega$ dual-ganged potentiometer, both sections inverse semi-log. Reliance type TW.		
VR2 $\mathrm{k} \Omega$ non-inductive potentiometer, Reliance type TW.		
SI, S3 2 pole, 2 way rotary switch.		
S2 On/off	h. Fl	coaxial socket.

Fig. 6: The tuning knob and cursor.

Fig. 7: Wirewound attenuator resistance.

Fig. 8: Alternative form of attenuator.
Frequency calibration of the oscillator by using an oscilloscope is greatly facilitated by temporarily setting up an auxiliary oscillator. Next month details will be given of a special form of auxiliary oscillator which produces an elliptical trace.

Ex Service Equipment

No doubt many readers will have experienced difficulty and sometimes frustration in trying to undo nuts and screws fitted to this equipment. These parts are usually varnished around the nuts and screw ends and it is almost impossible to remove them in the normal manner without breakage.
It has been suggested that a hot soldering iron applied to the nut will do the trick, but this method is clumsy and not entirely satisfactory.
The best way I have found is to dissolve the varnish by applying a little cellulose thinners, and after a few minutes, the nuts can be easily removed with a suitable box spanner. Moreover, they can be used again and there is no risk of damage to any components that one wishes to salvage.
F. B. Poppitt.

> Bearsden, Dunbartonshire.

Single Circuit Panels

Mr. R. G. Young's letter in the June issue of Practical Wireless referred to my article "Single Circuit Panels" and asks why I assume that copper cladding has to be used.
I do not. The idea of using wire for panels of similar purpose was fully described in my article "Bread-board Wiring" published in the January 1965 issue.

W. Groome.

Halesowen, Worcestershire.

Add-on B.F.O.

I have just fitted an "Add-on BFO" as described in your October 1965 issue to my transistor set (Lasky's Radio Skyrover with extra audio stage). I found that in order for the circuit to operate correctly, it was necessary to wire a $0.01 \mu \mathrm{~F}$ capacitor across the $10 \mathrm{k} \Omega$, R1 resistor.
M. J. Draycott.

Hitchin,
 Hertfordshire.

Anyone a Genius

With reference to the letter from Mr. Wright in last month's Practical Wireless I have an idea which may perhaps interest this gentleman and other readers.

I also became interested in the "fuzz box", but did not really take to the idea of distortion. I found that instead of this a relatively high frequency tremolo unit gave a similar effect.
The transistor tremolo is simply a preamplifier with its source of power fed from a multivibrator circuit at $5-15 \mathrm{c} / \mathrm{s}$. This uses discharge capacitors of about $2 \mu \mathrm{~F}$. If these were decreased to say $0.5 \mu \mathrm{~F}-1 \mu \mathrm{~F}$ and the rest of the circuit correspondingly a suitable frequency would be obtained. M. Gilbert.

Crayke,
York.

NEWS AND..

U.S. SHOWGASE IN BRITAIN

The American stand at the Instruments Electronics and Automation Show, just ended at Olympia, London, represented the biggest ever export promotion undertaken by the United States' electronics industry in Britain. The stand was also the largest single display at the exhibition, showing products from some 72 of America's leading manufacturers in the field.

America's space programme has given her electronics and computer industries fresh impetus during recent years and many of the exhibits illustrated the commercial and industrial applications which have resulted from equipment and techniques developed during space research.

GERMAN HI-FI EOUIPMENT

The turntable shown above, complete with stereo pick-up, is made by the German firm of Braun A. G. and costs $£ 187$. It is part of Braun's new Studio 1000 range of hi-fi equipment, which also includes tuner unit ($£ 338$), stereo control amplifier ($£ 345$) and speaker system ($£ 523$).

All these units have been designed and manufactured to the highest standards to achieve faithful sound reproduction. The tuner (CE 1000) and the amplifier (CSV 1000) are both transistorised. The tuner covers I.w., m.w., s.w. and f.m. and incorporates switchable a.f.c. which is automatically turned off when the hand touches the separate f.m. tuning knob. There is also a built-in tuning meter.

The control amplifier, which includes a separate preamplifier within the same cabinet, provides 55 W per channel continuous output with distortion below 0.3% at $\mathrm{Ikc} / \mathrm{s}$. There are more than the normal number of controls and the five inputs feature variable sensitivity.
The L 1000 speaker system was designed to meet standards set by the German Institute for Radio Technology. In one enclosure Braun house three woofers, eight mid-range speakers and two tweeters.

The turntable (PS 1000) operates on four speeds although a fine-speed control permits exact settings, helped by a built-in stroboscope. The pick-up arm is balanced by two adjustable counterweights and turntable shut-off is achieved by a photo-electric device.

Fi-Cord International are the U.K. agents for all Braun equipment which, by the way, includes many more moderately priced hi-fi units.

RADIO SOCIETIES AMALGAMATE

On June Ist, the South London Mobile Club, Wimbledon and District Radio Society and the Purley and District Radio Club merged to form a new association. Hon. Secretary of the new Southern Amateur Radio Association is B. Negri, G3LXN.

COMMENT

PHILIPS' SUPER-PORTABLE

Philips recently unveiled some 30 new products-radios, radiograms, television receivers and record players-at a trade fair in Brighton, Sussex. As with each of these categories, radios on show ranged from the economy class to high quality; from the "Popmaster" pocket portable at $£ 7$ 19s. 6d., to the FM-AM De Luxe at...... . well, first see what you get.

It covers seven bands; l.w., m.w., four s.w. and f.m., plus an extended long wave band which permits reception of beacon transmitters, weather forecasts and time signals and trawler band coverage which picks up marine broadcasts. Adjustable a.g.c. on s.w. and a.f.c. on f.m. improves reception, as does the d.c. tuning meter. The IW output comes via a 5 in . x 7in. speaker and the transistorised circuit operates from six $1 \cdot 5 \mathrm{~V}$ cells although it can be connected to a main unit. Outdoor aerials for a.m. and f.m. can be connected, but apart from the normal ferrite aerial, in-built frame and telescopic dipole antennae take care of s.w. and f.m. reception. Gramophone and tape inputs, built-in earphone, illuminated dial, world-wide time map, treble and bass tone controls and azimuth ring for navigation, sum up most of the "extras", although there are more. And the price for this $\mathbf{I} 4 \frac{1}{2} i n . \times 10 i n$. portable?-just $[00$ guineas.

JUDGEMENT ON RADIOS

In the April issue of "Which?", the Consumers' Association journal, 25 portable radios are candidly assessed for quality, operation and value. Laboratory tests and listening panels produced a revealing set of results on radios costing from $£ 3$ 9s. 6d. to $£ 11$ Ils.

R/Ts FOR P.C.s

"Beat" constables in six divisions of the Metropolitan Police District are now equipped with portable two-way radio telephones.
The introduction of "mobile" communications, to the Force followed some months' trial with standard equipment. The design which evolved from these tests consists of a main receiver/transmitter unit and a microphone/loudspeaker. Except when in use, the whole equipment is concealed in the policeman's uniform and the makers overcame a major obstacle by incorporating the aerial in the flexible lead joining the two units, thus obviating an inconvenient rod aerial.

The new equipment will eventually put all London's pedestrian police officers in close contact with master stations in sub-divisional headquarters and mobile R / T vehicles.

STEREO TAPES FOR MOTORISTS

The new Veritone tape-player for cars and boats operates automatically when pre-recorded tape cassettes are inserted. The main unit fits beneath the dashboard of a car as shown above, and provides over 30 minutes of stereo sound from two or four speakers.

Apart from a whole library of jazz, pop and classical music, taped language lessons are also available. Cassettes cost $£ 2$ IOs. each and tape-player and two speakers, 48 guineas. Veritone Limited, are the U.K. distributors.

S.W. Broadcast Stations

Again your magazine prints information on the stations Radio Moscow, Radio Pekin, Radio Berlin International, Radio Prague and Radio Sofia, Bulgaria. Are you and Mr. Guttridge unaware of the amount of deliberate interference caused by these stations which insist upon using 98% of all the available channels in the broadcasting bands from 16 m to 75 m .

They do not seem to be only satisfied with ordinary a.m. but also use distorted modulation and buzzing noise transmitters and they now have the nerve to operate a.m. and noise producing machines in the amateur 20 and 40 metre bands. I think that these stations should not be mentioned in Practical Wireless and when they see that they are losing support, perhaps they will do something about the interference they are causing.
N. D. Mugford.

> R.A.F. Episkopi,
> B.F.P.O. 53.

We would be interested to hear what other readers may have to say on this rather controversial point-Editor.

Tapespondent Wanted

I should like to tapespond with any person of similar age to myself (16) who takes an interest in SWL radio in general, tape recording, special effects amplifiers, music ("pop", electronic or otherwise) or any associated subject.

I am at the moment studying for the R.A.E.
P. C. Underhill.

> Pant Mawr, Harlech,
> Merioneth, Wales.

4 Metres

I Read in the April 1966 issue of Practical Wireless a letter from F. G. Rayer concerning v.h.f. coils. The one he described was to tune the v.h.f. f.m. station at Wrotham on $3 \cdot 1$ metres. Quote: "but three turns about $\frac{5}{8} \mathrm{in}$. diameter, $\frac{3}{8} \mathrm{in}$. long self supporting'. I myself would be interested in application to 4 metres etc. and would therefore like to hear from other readers interested.
R. A. Adair.

13 Seaview Terrace,
Holywood,
Co. Down,
N. Ireland.

Correspondent Wanted

I would like to correspond with anyone of my own age (15) who has built the "Versatile Gramophone Amplifier" on page 336 of the August 1964 edition of P.W. A. Kenward.

289 Longford House,
Uxbridge Road, Hampton Hill, Middx.

FIRST, let's get rid of one misconception. Automatic control of recording level is not a new technique. Many of the older dictating machines and one or two portable tape recorders employed signal-operated gain control circuits. These were, of course, intended for speech reproduction, where intelligibility is more important than absolute fidelity, and some frequency compression can be tolerated.

Lately, the leading tape recorder manufacturers have brought out models which are "automatic", but which sacrifice nothing in terms of quality. These have raised howls of protest from the tape recording enthusiasts, who regard the loss of a manual recording level control in much the same light as the motoring aficionado regrets the absence of a gear-lever in a car with automatic transmission. As a peace-offering, the manufacturers now provide an "over-riding" switch to allow either automatic or manual control.

Quite Simple

The principle of a.g.c. is quite simple. In its essentials it consists merely of a bias applied to a controlled amplifier stage, or stages, in proportion to the level of the incoming signal. The greater the signal, the greater this bias, and the more the overall amplifying system tends to return to a steady statepredetermined by a delay applied to the bias line.

Complications ensue when we apply the bias to different stages, as in a television receiver or a quality radio; then these delays differ, and extra circuitry is needed to prevent interaction between

stages. We are not concerned with these factors at present, and reference to Fig. 1 is sufficient to illustrate the principles of a.g.c.

This is part of the circuit of a conventional radio receiver. The i.f. signal, after amplification by V1, is applied to the detector diode D1, rectified and passed, as an audio signal, to the a.f. amplifier V2.

Part of the i.f. signal is tapped off via C1, applied to the second diode, D2, rectified and applied via filter circuits as a varying d.c. bias to the grid circuit of V1. R1, the a.g.c. diode load, is returned to chassis, and the cathode of the double-diode triode valve is self-biased by R 2 , decoupled by C 2 .

But the bottom end of the a.f. detector load is returned to the cathode directly. Thus, the a.g.c. rectifier has to overcome the bias of the valve before it can begin to conduct. This provides the "delay" -which is a delay in voltage, not time. The a.g.c. does not come into operation until a certain minimum level of signal is reached.

The components, R3, C3, filter the a.f. component from the bias, and the long time constant ensures a steady bias, proportional to the average variations in signal level. The overall time constant of the circuit is an important consideration during designtaken for granted by those of us that use and repair the receivers.

For audio circuits, the time constant becomes even more important, and it is this fact that makes tape recorder a.g.c. difficult to design. Obviously, a bias voltage exactly proportional to the signal would be the same as a simple reduction in gain. (In this, and the following discussion, the term bias refers to the

Fig. I: (on the left) shows a conventional radio a.g.c. circuit and Fig. 2: illustrates the control range of the a.g.c. circuit.
a.g.c. voltage, and not the recording bias, with which we are not at the moment concerned.)

Similarly, a circuit with the same "averaging" characteristic as the radio circuit would be useless. Consider a passage of music which starts with a loud chord, or clash of cymbals. The opening high-level signal would set the bias circuits in operation and determine the level of bias, which would then die away as no further loud signals sustained it.

But the period of time over which it dies away could include several quiet sounds, which would be recorded even more quietly despite the fact that they would not normally be great enough in signal level to produce an appreciable bias. This is more clearly seen if we study a diagram of the effect of tape recorder a.g.c. on a signal, and note the time factors.

Fig. 2 shows the control range of the circuit. This is actually the curve of the a.g.c. circuit of the Philips EL3552. The vertical axis shows the sensitivity, measured in dB , and the horizontal axis represents time, in seconds.

This machine has a maximum control range of 30 dB , which is quite sufficient for normal purposes. When a loud sound occurs, the control circuit comes into operation and almost instantaneously the attenuation from 0 to -30 dB occurs.

At this point, if no further loud sounds occur, the circuit begins to recover, and the curve shows that in approximately one minute the original amplifier sensitivity is restored.

Effects of A.G.C.

The effect of the audio signal is shown in Fig. 3, also reproduced from the Philips data on the EL3552, which was one of the pioneer models of modern a.g.c. techniques.

The hard curve shows a passage of music with a pronounced peak at B. The chain-dotted line from point \mathbf{R} indicates the level (0 dB , see Fig. 2) at which the control circuit comes into operation. Note the attenuation period, t .

The recorded signal is now reduced from its peak at B to the level of R, and then follows the curve of the dotted line. Note next that this is virtually a replica of the hard curve. The important relationship between variations of sound intensity is maintained; in other words, distortion is not introduced.
This may seem, at first, a contrary argument to the time-constant point that was previously

Fig. 3: (above) shows the effect of a.g.c. on a musical passage. R indicates the suppression level, " t " the fall time, and the dotted line an uncontrolled signal. Fig. 4: (on the right) shows the form of control used on dictating machines featuring two-position sensitivity switches for record and playback levels.
discussed. To understand it more fully we need to consider the recording process. We need, in fact, to consider what we do when we set the tape recorder to its desired level by a manual gain control.

Suppose, for example, we record at a gain lower than we should. The tape will be undermodulated, and when we play this back it will be necessary to turn up the volume control to get the required output.

But this introduces noise, the inevitable problem due to electro-mechanical, and purely electronic limitations of the system. Tape hiss, input stage noise level, hum, etc., are more evident at high playback volume control settings.

Adjusting the Record Level

If, on the other hand, we record with the gain control too far advanced, the tape is overmodulated and distortion sets in. No matter what volume control setting we then use on playback this distortion will be present. The recording level indicator, be it neon lamp, meter or magic eye, is there for the purpose of warning us when we tend to overmodulate.

In other words, it is a peak-indicating device. We set our level so that the sounds being recorded do not overmodulate the tape on peaks and know that the rest of the sound is in proportion.

This then is precisely what the automatic circuit is doing. By setting the circuit to come into operation at the level R in Fig. 3 we are ensuring that no incoming signal will overmodulate the tape, and the short fall and slow rise of the curve then gives us a recorded signal at the correct level throughout.

The setting of the level R is determined during design, and preset controls are incorporated to allow for small variations. We shall come to the difficulty of adjusting these controls as we consider the circuits.

The circuit of Fig. 4, from an early version of the popular Grundig Stenorette, is very similar to the radio circuit we have already looked at. A double-diode-pentode valve is used, with diodes strapped.

The signal is applied via a $2,000 \mathrm{pF}$ capacitor from a tapping on the secondary of the output transformer to the diode anode, and the load is the $10 \mathrm{M} \Omega$ resistor R1. Filtering is provided by R2, C2 and R3, C3, and the bias voltage is applied to the pentode section of the EBF80 and to the grid of the input stage.

Fig. 5: The left-hand circuit (a) shows the automatic control section of a transistorised dictating machine. Part of the output is fed back to bias the first transistor. The other circuit (b) shows a different method, with the emitter voltage varied by a rectified signal voltage from the output transformer.

A feature of this circuit with some bearing on the operation of the automatic control is the twoposition sensitivity switch S1. This selects the tapping position along the anode load of the first stage, from which the signal is taken to the second, and is made further adjustable by the preset resistor VR1.

Using Feedback

A variant of this circuit is used in the later, transistorised version of the Stenorette, as seen in Fig. 5a. Here, the audio signal from the output transformer is again used, causing the diode D1 to conduct.

The difference is that control of the base bias potential of $\operatorname{Tr} 1$ has to be effected without any alteration in the load impedance or other parameters. This is done by making D1 part of the stabilising circuit of the base bias circuit, feeding the stabilising voltage from the junction of R1, R2, which are across the negative to chassis potential of the instrument.

Audio is then applied to the diode via R3, C1, and as it conducts, the base potential of $\operatorname{Tr} 1$ changes, reducing its gain.

The circuit of Fig. 5b is a refinement of this, used on the Stenomatic dictating machine, also by Grundig. Although this machine is not typical, being mechanically very different from the tape recorder types, and using coated foil wrapped around a rotating drum instead of conventional spools, its circuitry is what concerns us here, and Fig. 5 b shows it has two diodes, apparently in opposition.

Again, the prime aim is to control the bias of Tr1, but this time by altering emitter voltage. Normal d.c. stabilisation of the Trl base is by the potential divider R1, R2. R3 biases the diode D1 in a forward direction. When an audio signal arrives via the lowpass filter $\mathrm{C} 1, \mathrm{R} 4$, it is applied to the second diode, D2, rectified positively and used to counter the forward resistance of D1.

C2 is used to smooth out audio frequency variations of rapid periodicity and C3 is the charge capacitor. The reference level across C 3 is used to alter the bias of Trl.

Another transistorised circuit, but with more serious audio functions and therefore with a choice
of both manual and automatic recording level, is that of the Fi-Cord 202, shown in Fig. 6. When the gain control is turned fully anti-clockwise the switch S2A opens and the transistor $\operatorname{Tr} 2$ is part of the collector load of Tr1. (Note that a fixed d.c. collector load, R4, is provided, or damage to the transistor would ensue during switching.)

When the machine is in the Play condition, Tr2 is shorted out. During Record, the emitter bias of Tr 2 is set by the full resistance of VR1 (in its minimum position) and the base receives a rectified audio signal.

Varying the Impedance

This causes it to change impedance and act as a varying a.c. load to the first stage collector, giving an automatic control of volume. In fact, with a transistor connected in this way, its impedance varies inversely with the amplitude of the signal being fed back.

The circuit is very responsive to peaks, but the built-in delay of later machines to maintain regular balance between uncontrolled and controlled levels, as shown in Figs. 2 and 3, has not been given such weight.
The extra circuitry involved in obtaining this regularity for quality work can be seen by reference

Fig. 6: In this Fi-Cord 202 circuit, a transistor is used as a varying collector load for the first amplifier: its impedance being varied by the feedback.

Fig. 7: Elements of the control circuit of the Philips EL3552. Component values are as follows; R4, $22 \mathrm{k} \Omega: R 5,68 \mathrm{k} \Omega: R 6,10 \mathrm{k} \Omega: R 7$, $22 \mathrm{k} \Omega: R 9,470 \mathrm{k} \Omega: R 10,10 \mathrm{M} \Omega: R 12,100 \mathrm{k} \Omega: \mathrm{RI} 3,100$ ohms: R14, $22 \mathrm{M} \Omega: R 15,100 \mathrm{k} \Omega: R I 7,22 \mathrm{M} \Omega: R 18,100 \mathrm{k} \Omega: R 40,22 \mathrm{M} \Omega$: C6, $4 \cdot 7 \mathrm{kpF}:$ C7, $390 \mathrm{pF}:$ C8, 33 kpF : C10, 47 kpF : C12, 10 kpF .
to Fig. 7, which shows the portion of the Philips EL3552 circuit under discussion. It will be noted that a control triode is used as an amplifier, to obtain sufficient amplitude of signal from the output of the transistorised first stage, rather than tapping off a portion of the amplified output.

The controlled stage is an EF83, vari-mu valve whose grid circuit consists, during selection of the Auto function, of the load of the diode rectifier. The signal from the collector of $\operatorname{Tr} 1$ is fed to the EF83 grid via C10 and the manual volume control, for normal; i.e., "Manual" operation, but when the "Auto" switch is selected this part of the circuit is bypassed by Sk2 and the direct signal is via C10 and C12.

At the same time, the other section of Sk2 closes and the two series resistors R14 and R40 become part of the grid load of the vari-mu valve. The rectified output from the triode valve supplies the negative potential to control the gain of the valve and the exact choice of component values gives the delay, which is approximately one minute for microphone signals with this machine.

A similar principle is employed with the Elizabethan Automatic tape recorder (see Fig. 8). A control triode is used to amplify the signal for application to a rectifying circuit, providing a negative potential to the grid of a vari-mu valve.

The particular points to note about this circuit are the preset controls, VR2 to determine the output of the triode, and VR1 to set the recording level, and the voltage doubler circuit, D1 and D2, which gives both a larger and a better regulated bias voltage. The necessary long time constant is supplied by the combination of the
rectifier reservoir capacitor, $\mathrm{C} 6(1 \mu \mathrm{~F})$, and the load resistor, R10 ($80 \mathrm{M} \Omega$).

Adjusting the Charge Capacitor

Because of this long time constant it is necessary to use a little circumspection when testing and setting up automatic tape recorders. The charge capacitor C6 must be discharged between recording level settings if any alteration is made to the presets or quite misleading results can be obtained.

On the foregoing machine, with an input of 2 mV at $1 \mathrm{kc} / \mathrm{s}$ to the microphone socket, and a valve voltmeter measuring the output at the anode of the stage subsequent to the controlled valve, the control preset must first be turned fully clockwise and then the record level preset turned slowly for a reading of 12 V . Then the input is increased to 20 mV and the control preset adjusted until this same reading is obtained.

If one is too ham-fisted, and the reading passes the necessary level, one must discharge C6 and start

Q MAX．CHASSIS CUTTER

Complete：a die，a punch，an Allen screw and key

$\frac{1}{2} \mathrm{in}$ ．	14%	$1 \frac{1}{16} \mathrm{i}$ ．	181．	$1 \frac{3}{4} \mathrm{in}$ ．	$22 / 6$
的in．	1419	Itin．	$181=$	2 in	3413
$\frac{3}{4} \mathrm{in}$ ．	1516	Itin．	$18 / 6$	$2 \frac{3}{32} \mathrm{in}$ ．	3719
$\frac{7}{6}$ in．	1519	I厚in．	201．	2，$\frac{1}{2} \mathrm{in}$ ．	44／3
lin．	18／－	I $\frac{1}{2} \mathrm{in}$ ．	2016	lin．s	3116

 MOVIV CARBON MIFE with Switch ．．．．．．．．．．．．．．．． （Stiohtly soiled but granon
BARGAIN XTAL PICK－UP ARM Complete with ACOS LP－78 Turnover Head and Stylii 20／－；Stereo 30／

NEW ELECTROLYTICS FAMOUS MAKES TUBULAR TUBULAR GAN TYPES

$25 / 25$					
$50 / 50$	v．	..	$2 /-$	$\mathbf{3 2}+32 / 850$	v． $4 / 6$
$100+200 / 275 v .12 / 6$					

$350 \mathrm{v},-0.19 \mathrm{~d} .0 .51 / 9 ; 1 \mathrm{mid} .8 /-; 2 \mathrm{mfd} .150 \mathrm{v} .3 /-$
$500 \mathrm{v},-0.001$ to 0.05 ga．； $0.11 /-0.251 / 6 ; 0.52 / 6$ ． $1,0007,-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.12 /=$ E．H．T．CONDENSERS．0．001md．， 7 kV ．， $8 / 6 ; 20 \mathrm{kV} ., 10 / 6$

SUB－MIN．ELECTROLYTICS．1，2，4，5，8，16，25，30，50， 100 $500,1,000$ mid．15v．2／6； 1,000 wifd． $50 \mathrm{~F}, 7 / 6 ; 2,000 / 5011 / 6$ CERAMIO， 500 V ． 1 pF ．to 0.01 m ．d．， 9 d ．DISC CERAMICS 1／－PULSE CERAMICS 10 pF ．to 180 pF ．， 12 kV ．， $2 / 6$ ． SILVER MICA．Close tolerance（plos or minus $\frac{1}{2} \mathrm{pF}$ ．）， 5 to
 TWIN GANG．＂0， $29208 \mathrm{pF}+176 \mathrm{pF}^{2}, 10 / 6 ; 365 \mathrm{pF}$, minia－
trie $10 / ; 500 \mathrm{pF}$ ，standard with trimmers， $9 /-$ ；midget， $7 / 6$ ； midget with trimmers， $9 /-500 \mathrm{pF}$ ．slow motion，standard $9 /-$ Small 3－gang 500 pFF ． $18 / 6$ ．Single＂ 0 ＂ 365 pF ． $7 / 6$ ．
 TUNING．Solid dielectric． $100 \mathrm{pF} ., 300 \mathrm{pF},, 500 \mathrm{pF}, 3 / 6$ each TRIMMERS．Compression ceramic 30,50 pF．， $3 / 6$ each $100 \mathrm{pF} ., 150 \mathrm{pF} ., 1 / 8 ; 250 \mathrm{pF} ., \mathrm{I} / 6 ; 600 \mathrm{pF}, \mathrm{y} 70 \mathrm{pF} ., 1 / 9$.

BEST BRITISH PVC RECORDING TAPES

 L．P．7in．1800ft．．．．．．．10／6 D．P．7in．2400ft．．．．．．．29／6
 Spare Spools 2／6．Tape Splicer 5／－Leader Tape 4／6．
Tape Eeads：Collaro 2 traok $28 / 6$ pair． 4 track 70／－pair．

MAINS TRANSFORMERS $\xlongequal[\substack{\text { Past } \\ 2 \% \text { each }}]{\substack{\text { ．}}}$

$250-0-250,80 \mathrm{~mA}, 6.8$ v． 3.5 a．Rectifier 6.3 v． 1 a． MT． 510 300－0300 1200 A
MINIATURE 200 v． $20 \mathrm{~mA}, 6,3 \mathrm{v} .4$ a
MIDGET $220 \mathrm{v} .45 \mathrm{~mA}, 6,8 \mathrm{~V} .2 \mathrm{a}$ ．
SMALL， $300-0+300 \mathrm{v}, 70 \mathrm{~mA}, 6,3$ ． m .4 a ．
HEATER TRANS． 6.3 v．11 $\frac{1}{2}$ a．， $7 / 6 ; 6.3 \mathrm{v} .4 \mathrm{a}$ ．
$\begin{array}{llll}\text { Ditto tapped sec．1．4 } \mathrm{v} ., 2,3,4,5,6,3 & \text { v．} 4 \text { a．} & 10 / 6 \\ & 10 / 6\end{array}$ GENERAL PURPOSE LOW VOLTAGE．Outputs $3,4,5$ ， $3,8,9,10,12,15,18,24$ and 307 ．at 2 ．Outputs 3 Ditto， 1 amp．， $5,10,15,20,25,30,40,45,30,55,6029 / 6$
AUTO TRANS． $150 \mathrm{w} ., 0,115 \mathrm{v}, 230 \nabla ., 25 / \mathrm{F} ; 500 \mathrm{~m} .82 / 6$
 LOUDSPEAKERS P．M． 3 OHMS． $2 \frac{1}{2}$ in．，3in．，4in．， 5 in． $7 \mathrm{in} . \times \operatorname{4in}_{3,} 15 / 8$ each； 8 in ． $17 / 6 ; 6 \frac{1}{2} \mathrm{in}, 16 / 6 ; 12 \mathrm{in} .30 /-$ （15 ohms 35／$) ; 10 \mathrm{in} . \times 6 \mathrm{in} .22 / 6 ; 8 \mathrm{in} \times 5 \mathrm{in} .21 /-; 9 \mathrm{in} . \times 6 \mathrm{in}$. $21 /-$ ．E．M．I．Double Cone $13 \frac{1}{2} \times 8$ in． 8 or 15 ohm models， $45 /-$ Stentorian 10in．HF1012， 25 ； 8 in．HR812，\＆4．Crossover $35 /$ Horn Tweeters 3－16 Ko／s． $10 \mathrm{w} 29 / 6 ; 20 \mathrm{w} 20 \mathrm{Kc} / \mathrm{s}$ 。 $99 / 6$
T．V．REMOTE CONTROLLER．For Philips 19TG111A 121A，125A，142A，23TG111A，118A，121A 131A．Stell STI033A，39A，43A，53A．Cossor OT1910A，21A，CT2310A 21A，81A．Ready to plug in，with 11it 7 way cable，dual pot Volume and Brightness， 0 asi diode，etc．，etc．List $\mathbf{G g n s}$ NEW，MAKERS BOXES，OUR PRICE $12 / 6$ POST FREE．
JACK SOCKETS Std．open－circuit 2／6，close－circuit 4／6 Lead Socket 6／－．Grundig 3－pin 1／3；Lead 3／6
Phono Plugs 1／－．Socket 1／－，Banana Plugs I／－．Sookets 1／ WACK PLGGS STANDARD．Soreened 3／－，Grundig 3 －pin $3 /$ 2 p．2－way，or 2 p．6－way，or 3p．4－way or 1p．12－way；ea．3／6 4 p .2 －way，or $4 \mathrm{p} .3-$ way， $8 / 6 ; 8 \mathrm{p} .4$－way， 2 wafer，．．．． $6 / 6$ Wavechange＂MAKITS＂＇ 1 p．12－way， 2 p． 6 －way， 3 p． 4 －way， 4 p．3－way， 6 p．2－way．Prices include click spindles adjustable stops，spaces，ete．， 1 wafer，8／6； 2 wafer， $12 / 6$ 3 wafer， $16 /-; 4$ waier， $10 / 6 ; 5$ wafer， $23 /-;$ extre wafers， $2 / 6$ TOGGLE SWITCHES，s．p．2／－；d．p．3／6；d．p．d．t．4／－． SPEAKER－FRET．Tygan various colours，52in．wide from EXPANDED METAL．Gold Or Silver 12×12 in 6%

FRES

 10 AMBITIOUS ENATLEFRS

 10 AMBITIOUS ENATLEFRS

 the latest edition of encineering opportunities

 the latest edition of encineering opportunities}

Have you sent for your copy？ ENGINEERING OPPORTUNITIES is a highly informative 156 －page guide to the best paid engineering posts．It tells you how you can quickly prepare at home for a recognised en－ gineering qualification and outlines a wonder－ ful range of modern Home Study Courses in all branches of Engineering．This unique book also gives full details of the Practical Radio and Electronic Courses，administered by our Specialist Electronics Training Division－－the B．I．E．T．School of Electronics，explains the benefits of our Employment Dept．and shows you how to qualify for five years promotion in one year．

SATISFACTION OR REFUND OF

Whatever your age or experience，you cannot afford to miss reading this famous book．If you are earning less than $£ 30$ a week，send for your copy of ＂ENGINEERING OPPORTUNITIES＂today－

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

（Dept．344B）， 29 Wrights Lane，London，W． 8

WHICH IS YOUR PET SUBJECT？

Mechanical Eng． Electrical Eng．， Civil Engineering， Radio Engineering， Automobile Eng．， Aeronautical Eng．， Production Eng．， Building，Plastios， Draughtsmanship， Television，ete．

GET SOME LETTERS AFTER YOUR NAME

$$
\begin{gathered}
\text { A.M.I.Mech.E. } \\
\text { A.M.I.C.E. } \\
\text { A.M.I.Prod.E. } \\
\text { A.M.I.M.I. } \\
\text { A.I.O.B. } \\
\text { B.So. } \\
\text { A.M.I.E.R.E. } \\
\text { Oity \& Guilds } \\
\text { Gen. Cert.of Education } \\
\text { Etc., etc. }
\end{gathered}
$$

\footnotetext{

PRACTICAL EQUIPMENT

Basic Practical and Theoretic Courses for beginners in Radio，T．V．，Electronics，etc．，
A．M．I．E．R．E．，City \＆Guilds Radio Amateur＇s Exam R．T．E．B．Certificate P．M．G．Certificate Practical Radio
Radio \＆Television Servicing Practical Electronics
Electronics Engineering Automation

INCLUDING TOOLS！

The specialist Electron－ ics Division of B．I．E．T ics Division of B．T．E．T．
NOW offers you a real laboratory training at home with practical equipment．Ask for details．
B．I．E．T．
SCHOOL OF
ELECTRONICS

all over again. As a check, increase the input to 100 mV , when readings should be between 6 and 24 V ; reducing the input to 2 mV and discharging C6 again should then give a reading of 8 V or more.

Constant Record Level

Enough has been said to have emphasised the difference in automatic gain control circuits as employed in tape recording from the simpler circuits of radio and television receivers. The difficulty of ensuring a full dynamic range, even when fortissimo and pianissimo passages alternate in quick succession, requires quite stringent design limits and more care in setting up these machines.

Our final example, perhaps a classic of its kind, is the Grundig TK18, which, though not the first, was perhaps the most widely publicised when it was launched in 1963. The essentials of this circuit are shown in Fig. 9.
part of a potential divider across the h.t., to give better regulation of cathode bias voltage.

Because of this the cathode by-pass capacitor is rated at 70/80 volts working-a small point but one which may save a small explosion if it is overlooked!

The second triode acts as a cathode follower, and the signal is passed to its grid, while the lower end of the grid load returns to a tapping in the cathode network. This brings the bias point to the straight portion of the valve characteristic.
\therefore The rectifier MR2 handles the audio signal and charges the $10 \mu \mathrm{~F}$ capacitor C6. This is an MKT type, and not an electrolytic, and has to have a working voltage of 125 volts. The bias is fed to the grids of both the EF86 input amplifier and the vari-mu controlled valve, EF83.

The cathode of this valve is biased via the recording sensitivity control in the cathode of the first half of the ECC81. The shorter period of time constant during microphone recording, where staccato speech signals may be encountered, is

Fig. 9: Control circuit of Grundig TK18, with only the essential parts of circuit included.

The important points to note are that the delay period is as much as 15 minutes for a high level (radio or pick-up input) signal and 3 minutes for the microphone signals. The machine runs at maximum recording level until a strong input is applied, when the bias takes over.

The reason for the auto-gain control not coming in before a small signal is applied is to reduce the hum and noise at high level.

In this case, the control signal is tapped off from the same point as the feed to the recording head, via a $68 \mathrm{k} \Omega$ and $0.01 \mu \mathrm{~F}$ capacitor in series, and applied to the grid of the second half of an ECC81 double triode.

In the cathode of this valve there are two preset resistors, the Threshold VR2 and the Recording Sensitivity VR1 controls. These provide an overall setting of bias so that signals of more than 10 volts will be amplified, but not those beneath this level. It will be noted that the cathode circuit is actually
provided by switching a $6.8 \mathrm{M} \Omega$ resistor, R12, across the leak circuit, by S 2 , the microphone switch.

AT1 and AT2 are parts of the Record and Start switch contacts and serve to mute the circuit when the machine is switched to neutral.

It can be seen that the setting of the Threshold control is vital for correct operation, and, as mentioned previously, care must be taken when adjusting not to over-run the right point.

Space limitation prevents a detailed description of the setting up procedure, which requires an audio generator, a valve-voltmeter, and various networks of resistors across which the readings have to be made. Readers who may require this information can obtain it through the Enquiry Service.

The prime purpose of this article has been to show the methods and techniques of control used in tape recording, and, while by no means exhausting the range, may have demonstrated that this is not such a simple matter as it may at first appear.

THE variable power supply unit described here has been knocked-up by the author from his "bits box" to provide a d.c. source to help him when experimenting with transistor circuits. Meters for monitoring the output voltage and current are included in this transistorised unit, which has a continuously variable output from zero to 20 V d.c. and will give about an amp on the lower voltages.

From the circuit it can be seen that the voltage control is achieved by varying the base potential of the series power transistor Tr1, which operates as a current limiting device. As the base/ collector potential of this transistor falls, more current is allowed to pass and thus, the output voltage increases.

The base potential of the series transistor $\operatorname{Tr} 1$ is varied by the other transistor in the circuit, which can be considered as a variable resistor across the collector and base of the series power transistor Tr1. As the control transistor $\operatorname{Tr} 2$ conducts (its base/collector potential being reduced by the potentiometer in the base circuit), the d.c. resistance path from emitter to collector falls and at maximum conduction the emitter voltage is almost the same as that on the collector. Thus the collector/base potential of the series power transistor $\operatorname{Tr} 1$ is reduced to near zero, which allows maximum current to fow through it.
The current required for the control transistor is quite small. In fact it is so small, the author's unit utilises signal diodes (OA85) to rectify the output of a heater transformer. This part of the circuit makes use of a split capacitor arrangement to voltage double the output of the transformer

By H. Wagner

before it is applied to the voltage adjusting potentiometer in the base of the control transistor.

The shunt resistor value has not been included as this will vary with the meter to be used, which should have a full scale defiection of 100 mA . The easiest way to get the correct resistor is to put 100 mA through the meter and then adjust the length of the shunt resistor wire until a reading of 10 mA is obtained.

Precise construction details have not been included in this article as almost any type of meter and transformer can be used so long as the electrical specifications are similar to those given on the circuit diagram.

Some of the components used by the author can be substituted. For example, the smoothing choke in the control circuit supply could easily be replaced by a $470 \Omega \frac{1}{2} \mathrm{~W}$ resistor.

As far as the metalwork is concerned, almost anything can be used. The author built his unit in a tin box that previously contained cream crackers. The lid was replaced by a piece of paxolin, which supports the meters, switches and some of the components.

Layout is not critical, but it should be remembered that the power transistors, especially the series transistor Trl, should be mounted on a heat sink. Mica washers should be used when attaching the transistors to the heat sink which can be made from 16 s.w.g. aluminium sheet.

No protection facilities are provided on this unit, so it is important to avoid accidental shorting of the output which can result in permanently damaging the series power transistor Tr1.

LAFAYETTE HA-63 COMMUNICATION RECEIVER

7 valves plus Rectifitr. 4 Bands, $550 \mathrm{ke} / \mathrm{s}-$ $31 \mathrm{Mc} / \mathrm{s}$. " B " Meter-BFO-ANI-BandNew 24 Gns. Carr. paid.

LAFAYETTE HA-230 AMATEUR COMMUNICATIONS RECEIVER
Supersedes model HE-30. 8 valves + rectiीer Continuous coverage on 4 bands. $550 \mathrm{Kc} / \mathrm{s}$ Multiplier, B.F.O., ANL, " S^{\prime} " meter, Elect 9 bandspread. Aerial trimmer, etc. Supplied brand new and guaranteed. 833. S.A.E. for full details Also available in semi Kit Form, 25 Gns.

LAFAYETTE HA-55A
AIRCRAFT RECEIVER
 RECEIVER sensitivity. Incorporates 2 RF atages including 60W4 Nuvistor, 8 tubes for 11 tube performance, solid state power supply, adjustable squelch control, slide rule dial, built-in 4in. speaker and front panel phone jack. $220 / 240 \mathrm{~V}$. A.C. $108.176 \mathrm{Mc} / \mathrm{s}$ Groumd Plane Antenna $59 / 6$.
HAM-I COMMUNICATION RECEIVER
5 valve superhet, receiver covering 550 $\mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ on 4 bands. Special features ' B ' Meter. B.F.O. Built-in 4in, speaker. Operation 220/240 B. A.C. Brand New with hand book. 16 GNS. Carr. 10/-. S.A.E. for details.

MAIN LONDON
AGENTS FOR CODAR

SINCLAIR TRANSISTOR AMPLIFIERS
Z12 Amplifier 89/6; Power Pack 54/-; X10 Amplifier Built 86.19.6. Kit $25.19 .6 ;$ X10 Power Pack $54 /$-; X20 Amplifier
Built $\mathbf{~ c 9 . 1 9 . 6 . ~ K i t ~}$ EQUIPMENT All items available as ${ }^{\text {FiM Radio Kit }}$ \&5.19.6. Micro 6, 59/6; TR 750 amp Kit,
advertised.

TRANSISTORISED TWO-WAY
TELEPHONE TELEPHONE
INTERCOM.
Operative over amazingly cang distances. Separate buttons, 2 -wire connedtion. 1000 's of applications. Beantifully finished in ebony. Supplied complete with batteries and wall brackets.
\& P. 3/6.
MAGNAYOX 363 TAPE DECKS New 3-speed tape deck, supersedes old
Collaro studio deck. 2 -track f10.10.0, Collaro studio deck. $\quad 2$-track
4 -track si3.10.0. Carr. Paid.

P.C.R. 3 RECEIVERS

Absolutely brand new. 3 wayebands. 190-550 metres and $2.2-23 \mathrm{Mc} / \mathrm{s}$. With power supply 12v. D.C., 19/6; 230 v . A.C. 35/-.

AMERICAN TAPE

First grade quality American tapes. Brand new. Discounts for quantities. 3in., 225itt. L.P. acetate in., 600 ft . std. plastic in., 900 ft . L.P acetat in., 1,200ft. D.P. mylar bin., 1,800ft. T.P. mylar $5 \frac{8}{2} \mathrm{in} ., 1,200 \mathrm{ft}$. L.P. acetate $5 \frac{\text { anin., }}{4}$ I, 800 oft. D.P. mylar $5 \frac{3}{4}$ in., $2,400 \mathrm{ft}$. T.P. mylar 7 in., 1,200ft. std. mylar $7 \mathrm{in}, 1,800 \mathrm{ft}$. L. P. acetate in., 1,8001. L.P. mylar in., $2,400 \mathrm{ft}$. D.P. mylar Postage 2/-. Over 23 post paid

CALLERS WELCOME!
Open 9 a.m. to 6 p.m, every day Monday

2-WAY RADIOS

 Superb quality. Com and with all accessorie and fully guaranteed. 3 Transistor $\$ 7.19 .6 \mathrm{pr}$ 4 Transistor 11 Gns. 5 Transistor 88.5 .0 pr 9 Transistor f22.10.0 pr
10 Transistor 28 gns. pr
Post extra Post extra. (S.A.E.
full details).

VOITAGE

 STABILIZER TRANSFORMERS

Input $80-120 \mathrm{v}$ and $160-240 \mathrm{v}$ Constant output 110 v . or 240 v 250 watts. Brand New. si10.10.0.

VARIABLE VOLTAGE

TRANSFORMERS

Brand New fuily
Shrouded. Input 230 v

 2.5 Amp 5 Ainp
8 Amp
 10 Amp $\$ 13.10 .0$ $12 \mathrm{Amp} \quad . . \mathrm{\&}$ \& 19.10 .0 2.5 Amp \cdots... 232.10 .0 Hetal Case with Meter Fuses, etc. 29.17 .6 .

SILICON RECTIFIERS

209 F . PIV, 200 mA
400 v . PIV, 3 amp
300 v . PIV, 500 mA 800 v . PIV, 5 amp 400 v . PIV, 500 mA 0v. PIV, I amp 150\%. PIV, 165 mA

SILICON	RECTIFIERS
209 v . PIV, 200 mA	2/6
400 v . PIV, 3 amp	7/6
$1,000 \mathrm{v}, \mathrm{PIV}, 650 \mathrm{~mA}$	A $8 / 6$
800 v . PIV, 500 mA	5/6
800 v . PIV, 5 amp	'7/6
400 v . PIV, 500 mA	8/6
70 v . PIV, 1 amp	3/6
150\%. PTV, 165mA	1/-
Discounts for quar	es. Post extra.

TEST EQUIPMENT

PORTABLE OSCILLOSCOPE CT. 52
A compact (9in. x 8 in. x $16 \frac{1}{1}$ in.) general purpose 'scope 2sin. CRT. For . Band width 1 Mc/s. Mullard DG 7/5 complete with metal transit case, strap, A.c. Supplied visor hood. Brand new, \&22.10.0 Carr. 10/-. Supplied complete with instructions.

OS/8B/U OSCILLOSCOPES

ERSKINE TYPE I3 DOUBLE BEAM OSCILLOSCOPE
Time base $2 \mathrm{c} / \mathrm{s}-750 \mathrm{kc} / \mathrm{s}$. Calibrators at $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$. Separate YI and X_{2} amplifiers up to $5.5 \mathrm{Mc} / \mathrm{s}$. Operation 110/230 volt A.C. Supplied in perfect working order. $\mathbf{\text { f27.10.0. Carriage } 2 0 / - . ~}$

 GAL GENERATOR Accurate wide range signal $260 \mathrm{Mc} / \mathrm{s}$ covering $120 \mathrm{kc} / \mathrm{s}-$ $260 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly attennate. Variable R.F. 240 v . A.C. Operation 200 instruction Brand new with P. 7/6.
 S.A.E. for details.

LAFAYETTE NUVISTOR

 GRID DIP METERCompact, true one hand operation. Frequency range $1.7-180 \mathrm{Mc} / \mathrm{s}$. 230v. A.C. operation. Stupplied complete with all coils and instructions. \$12.10.0. Carr. 5/-.

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER
2 PF-2,000 MFD, 2 ohms200 Megohms. Also cheeks mpedance, turns ratio Brand New \&15. Carr. $7 / 6$.

TE22 SINE SQUARE WAVE

AUDIO GENERATORS

Sine: 20 cps to $200 \mathrm{kc} / \mathrm{s}$. on 4 bands.

 Square: 20 cps to $30 \mathrm{kc} / \mathrm{s}$. Output impedance 5,000 ohms. $200 / 250 \mathrm{v}$ A.C. operation. Supplied Brand teed with struction manual and leads. Ei5.NOMBREX EQUIPMENT
Transistorised Audio Generator 10-100,000 c / s. Sine or square wave. $£ 16.15 .0$. Transistorised Signal Generator $150 \mathrm{kc} / \mathrm{s}$. 300 Mc/s. 210.0.0.
Transistorised resistance capacity bridge 1Ω. $100 \mathrm{Meg} \Omega .1 \mathrm{pF}-100 \mu \mathrm{FF}$ e9.0.0. Tranaistorsed Thduction bridge, $1 \mu \mathrm{~N}-100 \mathrm{H}$. 218. Mains operated Transistor power supply All above post paid with battery. $\begin{aligned} & \text { ab.10.0. }\end{aligned}$

CLEAR PLASTIC PANEL METERS
First grade quality, Moving Coil panel meters, available ex-stock. S.A.A. for illustrated leafiet. Discounts for quantity. Available as follows: Type MR, 38P, I 21/32in. square iront

100-0-100 LA $2 \% 6$	200 mA	22	100V D.C	$22 / 6$
500-0-500 1 A 22/6	300 mA	22/6	15	22/6
1-0-1mA .. 22/6	500 mA	22/6	300 V D	
$1 \mathrm{~mA}{ }^{\text {a }}$, 22/6	750 mA	22/6	500 V	22/6
2mA 22/6	1A D.C.	22/6	750 V D.C	22/6
$5 \mathrm{~mA}22 / 6$	2 A D.C.	22/6	15 V A.C.	22/6
10 mA 22/6	5 A D.C.	22/6	50 V A.C.	22/6
$20 \mathrm{~mA} \quad \cdots{ }^{22 / 6}$	3 V D.C.	22/6	150 V A.C.	22/6
$50 \mathrm{~mA} \cdot \cdots .22 / 6$	10 V D.C.	22/6	300 V A.C.	22/6
100mA ... $22 / 6$	20 V D.C.	22/6	500 V A.C.	22/6
			'S'Meter 1m	
POST' EXXTRA	Larger		's Meter e- gend	$29 / 6$

 20,000 Y NW
 VOLTMETER

MODEL 500. 30,000 opv, $0 / 5 / 1 / 2.5 / 10 / 25$ $1100 / 250 / 500$ $1,25 / 10 / 25 / 100$
$/ 250 / 500 / 1,000$ A. $250 / 500 / 1,000 \mathrm{v}$
(1) $0 / 50 \mu \mathrm{~L} / 5 / 50$ $\begin{array}{lll}500 \mathrm{~mA} . & 12 \\ \mathrm{D} . \mathrm{C} .\end{array}$ $0 / 60 \mathrm{~K} / 6 \mathrm{Meg} . / 60$ Meg Ω. $\quad \mathbf{8 . 1 7 . 6}$

TEST SET TYPE. 5B
This is a battery operated crystal controlled test unit covering 100 to $125 \mathrm{Mc} / \mathrm{sic}^{\text {with modulation, there is also }}$ meter 1 Ma $22^{* *}, 3$ gang 18 pf turing condenser, Swts, Ind $14 \times 8 \times 12^{\prime \prime}$. Brand new and boxed, with circ.
Price 35/- plus 10/- carr.

TEST SET TYPE. 218

I/P. $230 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$, this is a Pulse generator covering $500 \mathrm{c} / \mathrm{s}$ to 10 Kc in two ranges, directly calibrated. The pulse width can be adjusted to 5, 4, 3, 2, 1 or . 5 Usec by strt on front panel, the 0/P can be swt to $+50,+10$ or -10 volts and is variable down to will volt, there is also a 20 Usec sync $0 / \mathrm{P}$ pulse. It is also possible to obtain a $1: 1$ sq. Wave and a Sawtooth from these units and it is possible to extend the freq range. Supplied in good Un-Tested 0 irs mam, por n-Tested.
Price $£ 4.10 .0$ plus $12 / 6$ carr.

$400 \mathrm{C} / \mathrm{S}$ INVERTTOR UNIT

$0 / \mathrm{P} 115 \mathrm{~F} 400 \mathrm{c} / \mathrm{s} 345$ watts, single phase. I / P for full O / P is 12.5 volls D.C. at 46 amps . These are supplied with starting relay, and are mounted on sprung mounting base. Very conservatively rated. Brand new and crated. Price 812.10 .0 plus 25/- carr.

METERS

Edgewise reading type, 1 Ma movement scale size $2 \times{ }^{10}{ }^{\prime \prime}$, front size $2 \frac{1}{4} x \times{ }^{5}$. deep, the scale is marked 0 to 10 with mounting bracket, ideal for tape recorders. Made by Taylor Inst., brand new.
Price 39/6 plus $2 / 6$ post.

POWER UNIT TYPE 284

I/P $230 \mathrm{v} 50 \mathrm{c} / \mathrm{s}, \mathrm{O} / \mathrm{P} 250 \mathrm{v}$ at 80 Ma a 6.3 v at 4 amps . These are a $19^{\prime \prime}$ rack mounting unit with outer cover, and have twin choke filter and block paper smoothing complete, in used condition and u-tested. Price $£ 2.10 .0$ plus $12 / 6$ carr.

CABLE CONNEOTORS
10 ft . of 12 core soreened cable fitted with Plessey plugs at each end.
Price 12/6 plus $3 /$ - post.

R220 Mk. 11 V.H.F. Rx
These are a $200 / 250 \mathrm{v} 50 \mathrm{c} / \mathrm{s} \mathrm{I} / \mathrm{P}$, single chanmel crystal controlled Rx intended to work on any channel between 60 and $100 \mathrm{Mc} / \mathrm{s}$, with suitable crystel. These are a double Superhat Rx employing 14 miniature valves as follows 6 AK5x3, EF92x3, EB91x2, 12AT7x2, EF91, EL91, 6X4, QS70/20. They have a built in speaker and sks for H phones and vol control for both. I.F. freq is $4.86 \mathrm{Mc} / \mathrm{s}$ and they have A.V.C. N.Lim, Control valve with relay, there is provision for wiring a tuning meter. These are supplied complete with crystal not to choice, but the $6 x$ we have are dumed th and coax ping, circ diagram in New condition Price 84.15 .0 plus $8 / 6$ carr.

R220 CABINET

These are aruminium cabinet with hinged lid and remove able back and will take 2 R220 Rx, and are fitted with 500 Ua meter that can be switched to monitor either Rx any other Rx or Tx wit when the internal fittings have any other Ren removed. In New condition. internal fitings have been removed.
Price $\mathbf{8 3 . 1 0 . 0}$ plas $10 /$ - carr.

S.W. Rx TYPE P.C.R. 3

These are a 6 valve 3 waveband $R x$ covering Med wave and 2.8 Waves 2.5 to 7 and 7 to $23 \mathrm{Mc} / \mathrm{s}$, valves EF39 R. ECH35 Mix, EF39x2 I.Fs, EBC33 Det \& L.F., 6 V6 OfP stage. They are tht, and sks for 1 or 2 motion drive A These are supplied with Vibrator pack for 12 v , set of 6 spare valves, coil of Ae wire, Insulators, etc. Supplied in new condition with suggested mods and improvements. Price $\{10.10 .0$ plus $15 /$ - carr.
Few 52 Rx in new condition at $\mathbf{8 1 0 . 1 0 . 0}$.

HEADPHONES TYPE DLR. 5
These are a low resistance head set complete with lead and plug. Brand new. Price 10/- plus $3 /$ - post.

MONITOR AN/GRD

This comprises a Scope, Bearing Ind and A.F. monitor, and contains the following C.R.T. 2BP1, valves 6AU6x2, $12 \mathrm{AV} 7 \times 2,6 A Q 5 \times 2,5 \mathrm{Y} 3 \times 2,6 A L 5,0 \mathrm{~L} 2,2 \mathrm{D} 21$, $12 \mathrm{AX7}$ also $3^{\prime \prime}$ speakers 360° Bearing Ind $41^{\prime \prime}$ Dia. Controls Focus, Brill, X \& Y Shift, Sync, Gain, X amp. Power I/P is $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 19^{\circ}$ rack unit with outer cover and eirc. Good condition.
Price s5.10.0 plus 12/6 carr.

AN/GRD. COMPARATOR UNIT
T/P $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$, contains valves $6 \mathrm{SN} 7 \times 5,6 \mathrm{BA} 6,6 \mathrm{AU} 6$, OB2x2, 5Y3, P.U. gives 350 v at $100 \mathrm{Ma}, 105$ and 210 V stabilised also A.F. trans Pria 30 K ohm C.T. Sec 13.5 K C.T. 14 conds block paper type, 39 c.p.s. Band pass
fitter. High grade U.H.F. coax relay with N . type connectors, number of other parts. New condition with circ.
Price $\$ 4.10 .0$ plus 12/6 carr.
AN/GRD Aerial system new cond 85 plus $12 / 6$ carr.

BLOWER MOTORS
I/P $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s}, 22$ watts, 3000 R.P.M. outlet $2 \frac{1}{2} \times 1 \frac{1}{2}$ ", inlet $1 \frac{1}{2}$ " Dia overall length $5 \frac{l^{\prime \prime}}{}$ Black crackle finish. Brand new and boxed.
Price 25/- plus 3/- post.
$230 / 110 \mathrm{v}$ Auto trans $9 / 6$ post paid.

RF. 32 TUNING UNITS

These tune 40 to $50 \mathrm{Mc} / \mathrm{s}, \mathrm{Ae}$, R.F. \& Mix cires can all be tuned irom front panel by 3 small slow motion drives. Valves SP61x3, 360 pf tuning conds etc. With cire, these are externally soiled.
Price 15/- plus 5/6 post.

Rx UNIT 3582

These comprise a 5 stage $7 \mathrm{Mc} / \mathrm{s}$ I.F. strip with Det \& Vid O/P. Valves SP61x7, 5U4, 6X5, the RF.24.25.26.27 \& 32 will plug into these. With circ, externally soiled. Price 15/- plus 10/- carr.

MAINS TRANS.

Pria. 200/250v, Secs 500-0-500 at 120 Ma , 4v 3.5a, 4v 2.5a, $6.3 v 300 \mathrm{Ma}$. these are an enclosed trans. made by Parmeko in good condition.
Price 1r/6 pius 5/6 post.

The Sensational ALL-TRANSISTOR! Communications Receiver

for use in the home, caravan, car or boat, H.P. facilities. Only $£ 48$ Part exchanges.

Write for brochure
I70-I72 CORPORATION STREET BIRMINGHAM 4

Telephone CEN 1635

YOUR CAREER in RADIO \& ELECTRONICS ?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.R.E. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Seryo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROCHURE to:

ADDRESS \qquad
\qquad
RADIO
SCHOOL

practically Wireless commentary by IEINII

NTOT even the most gullible reader imagines this article was dashed off while the toast cooled this morning. Scenes of a copy-boy straining at the leash while the "star reporter" tapped out his world-shaking scoop are commonly regarded as fiction. Even the Night Editor's office of the great

daily newspaper is less hectic than some playlets have made it appear.

When Henry announces an item of news, he has to face the disturbing possibility that in the meantime some clot will have superseded it, invented an alternative, elected a new Government or declared a revolution before the tit-bit appears in cold print.

This is partly the cost of electronic development. In one trade paper (mid-March) a correspondent recalled that in his day as an apprentice at an electrical accessories factory he was used to his foreman saying: "In five years, what we are making will be quite out of date."
Nowadays, in the electronics and communications sector, five days seems to be more like it. Some call it progress. This correspondent is often tickled by the way apparent "breakthroughs" are based on the ideas of our illustrious predecessors. And not only in theory.

Hence the commentary last February, which mentioned a few of these curious throwbacks. Hence, also, this long delay in answering
a criticism of that article, by John Niven Douglas, which appeared in the correspondence section of the April Practical Wireless. Between the first fine careless rapture of inspiration and the more careful perspiration that accompanies publication, there is a timelag.

This leads to a further shameful situation: the references that your columnist used may have been committed to that dusty limbo in the darkest corner of the workshop, or the magazines from which the reports were culled.

Since Mr. Douglas' polite reprimand was received, Henry has feverishly ransacked his back copies, but failed to turn up the news item about "mechanised h.f. systems". But this does not alter the basic argument.

Frequency synthesis, as Mr Douglas rightly points out, provides a system which "combines the stability of a crystal oscillator with the flexibility of a v.f.o.". It is indeed true that the frequency synthesiser is used by short-wave broadcast stations as the r.f. drive input to the transmitter. But this does not preclude its more sophisticated employment, even though attempts to limit the high cost have resulted in inferior units.

It is a fact that the principle has been allied to modular concepts and logic circuits to produce a system of lower cost and a high order of output purity. The Wadley system and the phase-locked loop system have affected receiver design, and constant development, using micro-miniaturisation techniques and computer channel selection, is already enabling the "con-stant-tuning-constant-lock" communications device to lend itself attractively to defence departments.

By using a pulse system of reference signals, both transmitter and receiver can be continually changing frequency-but precisely in step. To an eavesdropper, the frequency changes seem almost at

Where's that quote?
random, and the whole point of the modern development is the speed of the switching and the maintenance of frequency accuracy.
No, Mr Douglas, while Henry, in his ignorance, may have got hold of a wrong stick or two, he has this time grasped it by the right end.

Getting hold of the wrong stick is inevitable in this business of preparing a column some weeks before it will join the bills and the billet doux through the morning letter-box. The pace of electronic progress is such that predictions are outdated before they have left the pen. Jules Verne would have had a whale of a time in the nine-teen-sixties.

Yet there are certain lines of progress which seem inevitable, awaiting only the refinement of existing techniques, the advent of new materials and the release of classified information.

As I write, a report lies before me of a flat TV tube suitable for use in portable colour receivers. This news comes, of all places, from California. Yet I seem to remember Dr Gabor, now Professor at the Imperial College, putting forward his idea for this device a number of years ago.
Is this another example of the British hovercraft "complex", or are there still hopes that we might secure a small corner in the furthering of our own inventions?

THE 'IMPERIAL' 3-band transmitter F.G.RAYER G3OGR

THE box for the v.f.o. is easily made from "universal chassis" sections. One section has its flanges cut so that it can be bent to form the front and inner side of the box, and the flat top plate is then bolted on. The v.f.o. is then completely wired. After wiring, bolt the halfcompleted box to the chassis. The v.f.o. and transmitter can be tested before enclosing the box. This is done by bolting on the outer side, then fixing on the small back plate with self-tapping screws.

To avoid difficulty in securing correct coverage, a

Fig. 6: Construction and wiring of the v.f.o.

Wearite PHF6 coil or equivalent is recommended. The smaller winding, or primary, must be taken off completely. Then carefully unwind 31 turns from the grid end of the secondary. The remaining winding is L1. No means of adjusting the inductance is provided, as it was felt this was best. Trimmer TC1 is fixed to a bracket and reached through a hole in the side of the v.f.o box, and allows sufficient adjustment of band coverage.

VCl should preferably have two bearings and must be free from wobble. A small surplus 2-gang capacitor was actually fitted and frequency control was very smooth and satisfactory. No temperature compensating capacitor is included, on the grounds that this may in fact only give disappointing results. The whole v.f.o. is subjected to little heat and drift from this cause is small, and much less than can possibly be read on the v.f.o. scale.

TUNING ADJUSTMENTS

A quick check of v.f.o. coverage can be made by taking R2 to a convenient h.t. supply, and listening for the carrier with a receiver. Adjust TC1 to give coverage from $3 \cdot 5 \cdot 3 \cdot 8 \mathrm{Mc} / \mathrm{s}$, with a little to spare each end of the band.

When all construction is finished, and the v.f.o. box tightly bolted up, exact calibration can be undertaken. This is best done by using a crystal calibrator, or $100 \mathrm{kc} / \mathrm{s}$ crystal marker, in conjunction with the receiver. The $3 \cdot 5,3 \cdot 6,3 \cdot 7$ and $3 \cdot 8 \mathrm{Mc} / \mathrm{s}$ points can be marked, and the v.f.o. can be heterodyned against the crystal to note if there is any change in frequency with vibration, or drift. Neither of these should be troublesome nor very apparent.

To simplify calibration, the same v.f.o. band was used for the higher frequency bands. This means that $3.5 \mathrm{Mc} / \mathrm{s}$ on the v.f.o. is $7 \mathrm{Mc} / \mathrm{s}$ and $14 \mathrm{Mc} / \mathrm{s}$. With the v.f.o. tuned to $3.55 \mathrm{Mc} / \mathrm{s}$, the transmitter output frequency is $7 \cdot 1 \mathrm{Mc} / \mathrm{s}$ or $14 \cdot 2 \mathrm{Mc} / \mathrm{s}$, according to the band in use, and so on. That is, the v.f.o. scale
value, plus dozen. Less than one dozen price is 90 per dozen even this is only about $1 / 10$ of the catalogue price ad this is undoubtedy one of the best pots available.
Taning Condensers. 2 gang . 0005 mid air paced standard size with good length spindle per dozen.
Tuning Condenser. Bakelite type, 0.005 mfd for tuning or reaction $\frac{1}{4}$ in. spindle, $25 /-$ per doz or $3 / \mathrm{e}$ each, post $2 / 9$ per doz

TWO-WAY

 RADIOSGive communication over 4 mile. FULLY transistorised - arystal controlled, built-in telescopic aerial-press button operation-PP3 batteries -pair instruments complete plas 5/- post and insurance. plas 5/- post and insurance.
Not to be operated in VK.
transistor SET CASE Very modern eream cabinet, size $5 \frac{1}{4} \times 3 \times 13 \mathrm{in}$. with chrome hanile, tuning knob and soale. Price 4/6 plus 2/postage.

Printed Circuit Board TRF circuit $2 / 6$, superhet $3 / 6$, both with construcHonal daba.

FINE

TUNERS

50 pf with long spindle as illustrated, $1 / 6$, or 12/- doz. Twin 50 pi not 2/6, or 24/- doz.

Sheet

Paxolin

Ideal for transistor
projects. Special
offer 12 pancls 5×8 in., $5 /-$

CAR BATTERY \& FLUORESCENT

and because they have been making record players for so long GARRARD are your best choice-big range always in stock.
7/6 for post and insurance

1000	\ldots	\ldots	$£ 5.5 .0$	AT60	\ldots	\ldots	$£ 9.9 .0$
2000	\ldots	\ldots	$£ 6.9 .6$	SP25 \ldots	\ldots	$£ 10.9 .0$	
3000	\ldots	\ldots	$£ 7.19 .6$	LAB80	\ldots	$£ 25.0 .0$	
Complete with service sheet and template.							

THE 208 BAND SPREAD PORTABLE

(sort out the pirates, even mum can do it). All the parts including tested transistor to make up this fine set described in May issue of P.W. with illustrated cabinet, tuner and knobs. $£ 4.12 .6$, plus $7 / 6$ post and insurance.

ard players using Garrard-B.S.R. Collaro, etc., etc. The regular price of this for $15 /$ - (less than the price of styli), plus $2 /$ post and insurance.

Siemens High

Speed Relay

Two very sensitive ohm coils ad justable tension change over contact-plat. points. 100Ω plus $100 \Omega \%$, 1000Ω plus $1000 \Omega \mathrm{~L} / \mathrm{F}$
1750Ω plus $1750 \Omega 12 / 6$.

Morganite Sealed Pots, Another batch of these has arrived and we can now offer quite range nam 2 meg all at $6 /$ - per dozen per 1 meg, 1 meg, 2 meg, all at $6 /-$ per dozen per

The Princess superhet described below is a very fine little set that has been carefully designed for high performance. Only recently (under another name of course) this was on offer in many radio boen, for E10.10.0. but we have been fortunate in obtaining the now pass this saving on to you. now pass this saving on to you. chase this for only $39 / 6$ plus $3 / 6$ post and insurance. Note these features: Long and Medium Wave Long clear dial with travelling pointer and slow motion drive Push pull output approximately $350 \mathrm{~m} . \mathrm{w}$. A.V.C. and feed back

- Dust cored H.Q. I.F. transformers

High selectiviy ermy a Printed circuit board for fool-proof assembly e Economy output circuit gives long life from PP3 x 1. in .
You get over 100 parts (list value over f10). In fact everything yon need and easy to follow wiring and aligning instructions. Don't miss this wonderiful offer. Make up several while you have the chance. Use them as presents and you'll be loved for ever. Battery 1/9 extra. Data separately 2/6.

WE ARE BEST FOR GARRARD

 6, or 24- doz.
 boat lighting gives for three times as much light for same current as tree ordinary anso to light advertising dis plays on vans and lorries. $12 v$. 2 amps d.o. Hustrated 85.19 .6 plus $8 / 6$ post and insurance Mains operated fuorescent, also available complete as illustrated 2 ft. , 20 watt, $35 /-$ 3it., 40 watt, $37 / 6$ both pius $8 / 6$ post and ins alt $49 / 6$

DEAC RECHARGEABLE

BATTERIES These nickel cad mium cells have negligible internal resistauce. Will deliver current you require, reduce distortion and are ompletely renable. indefinitely. Replacerecharged indefinitely, Replace ments for PP3, $125 /=$ or send for list.

ACOS GP73 TURNOVER
 PICK-UP CARTRIDGE

For Stereo-LPitted with two Styli. Diamond for LPs, Sapphire for 78 s . This is mounted and is standard

TOURMASTER CAR RADIO

Medium and long wave (push button change) perm. tuning-six transistors including power output-undoubtedly one of the nicest cax adios available tocay-currently being sold at 14 gns. our price 89.19.6. Not a Kit bu*
built and ready to use.

MULTI PURPOSE NEON TEST UNIT

Robust, useful and instructive-test insulation - capacity - continuity - resistor-volume controls-also acts as signal injector and LI 4 way waier switch, ebonite neon indicatar, condensers, terminals, ete., with diag. only /6 plus $2 / 6$ post and insurance.

ENGINE REY, COUNTER

many of the jobs you have wanted to do-it can be permanently installed as a rev counter of as a portable instrument it will do such jobs as. measuring frequency of time base-pulse generator-filip-flup etc., etc. Kit comprises: metal front panel all prepared and stove enamelled, moving coils meter, 4 specially tested transiswor and diodes and all the necesdiagram (separately 2/6) all for $89 / 6$ plus $2 / 6$ post and ins.

NOUGHTS \& CROSSES MACHINE-an opportunity to make this very amusing itemdescribed in Practieal Electronies. Kit of 19 switches only $40 /$ post paid.
Neons for panel Game Switch, ete,-not the midget type but possibly more suitable. 12 for 10/6, post paid. Midget wire ended type, 1/3. (ex, equip.) or 1/9 new.

MAINS POWER PACK

MAINS POWER PACK desigued to operate transistor sets and amplifiers. Adjustable output $6 \mathrm{v}-\mathrm{-}$ 9 to 12v. for up to 500 mA (class B working). Takes the place of any of the following batteries: PR1, PP3, PP4 PP6, PPY, PP9, and others. Git comprises: mains transformer-rectifier, smoothing and load resistor, 5,000 and 500 mid. snip at only 14/6, plus $9 / 6$ post

TAPE RECORDER BARGAINS

Capstan Driven, 5 Transistors SPECLFICATION:-200/7,000 e.p.s -400 mW. ontput-double track-twin speei (3) and $7 \frac{1}{2}$) last rewind time-5in. spool gives one Size $8 \times 11 \times 3$ in. Completa with batteries Size $8 \times 11 \times 3 i n$, complete with batteries, miarophone Nothing to go wrong if you use a good tape and keep heads clean. Demonstration gladly given at our Croydon shop. Special Snip Price This Month $£ 11.11 .0$, post and insurance 6/6.

THE "MINY"
Best of the spool driven machines, remote control on mike, battery operated $26,19.6$ plus control on mike,
5/- post and ins.

TWO OUT OF SEASON BARGAINS 1. 750 watt infra red silica gloss heater-wall and insurance. 2. Two heat electri blanket element. Two completely water of elements each 13 yds tong connect both for full heat. 70 wath and

When poscage is not definitely stated as an extra then orders over $£ 3$ are post free. Below $£ 3$ add $2 / 9$.

EQUIPMENT CABINETS

OF DISTINCTION

THE NEW LEWIS RADIO CATALOGUE

Designed to assist your choice of

 The NewThe New Lewis Radio Cabinet Cata-ogue-the most comprehensive ever Please send your FREE cabinet catalogue.

NAME..
ADDRESS
(Dept. P76)
Capitals please

LEWIS radio

100 Chase Side, Southgate, London Tel.: Palmers Green 3733/9666

NEW 1966 Edition

WORLD RADIO TV IIANDBOOK

TRANSISTORS FOR TECHNICAL COLLEGES, by L. Barnes. 25/-. Post-辟
PICK UPS THE KEY TO HI-FI, by J. Walton. 10\%. Postage 6d.
GETTING STARTED WITH TRANSISTORS, by L. E. Garner. 28/-. Postage $1 /$ -
SERVICING ELECTRONIC ORGANS, by C. R. Pittman \& E. J. Oliver. 301-. Postage II-.
TRANSISTOR SUBSTITUTION HANDBOOK, a Foulsham-Sams Pub. 12/6. Postage $1 /$.
RADIO \& LINE TRANSMISSION, Vol. 1. 21/. Vol. 2. 22/6, by G. L. Danielson and R. S. Walker. Postage IIeach.
CIRCUITS FOR AUDIO AND TAPE RECORDING, by F. C. Judd. 716. Postage 9d.
TAPE RECORDING YEARBOOK, 1966. 716. Postage $1 /$ -

COMPLETE CATALOGUE, $1 /$-.
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKISTS
of British and American Technical Books
19-21 PRAED STREET
LONDON, W. 2
Phone: PADdington 4185
Open 6 days 9-6p.m.

Modernise business or home with thia new two-way Portable Transistor Intercom. Consisting of Master and Sub. in strong plastic cabinets, with chromium tion system. Call/talk/listen from Master to Sub and Sub to Master. Operates on one $9 V$ battery,
Complete with 60 ft. wire. Battery $2 /-$. P. \& P. $2 / 6$

 boost business, efficiency
with this with this De-Iuxe Telephone Amplifer with Rotary Calendar and Pen Holder. Take down long telephone messages or con verse without holding the handset. A status symbol? Yes, but very useril one. On/off switch. Volume Con trol. Operates on one 9V battery (supplied). P. \& \mathbf{P} 3/6. Full money refunded if not eatianied in 7 days. 169 KENSENGTON HIGH STREET, LONDON, W8

DE-LUXE RECORD PLAYER KIT

Incorporating 4 Sp, Garrard and Mullard latest 3 watt printed circuit amplifier (ECL 86 and EZ80) yol. bass and with \sin. x in with 8in. X Sin Contemporary speaker
tone cabinet, charcoal-grey and
off-white with matching blue-relief. Size 171in. 16 in x 8 in . A stylish unit capable of quality reproduction. Circuit and const. details 2/6 (free with kit).

COMPLETE KIT

£ 13.19 .6
Carr. and ins. 12/6. Ready wired 30/- extra. J.extra. Four contemporary mounting legs 6 in . $10 / 6$; 9in. 11/6; 12in. 12/6 extra

6 VALVE AM-FM TUNER

UNIT

Med. and VHI 190m-550m., 86 $\mathrm{Mc} / \mathrm{s} .-103 \mathrm{Mc} / \mathrm{s}$. 6 valves and Self-contained power unit A.C $200 / 250 \mathrm{~V}$ operation. Magic-eye indicator, 3 push button controls, on/ofr, Med., VHFF. Diodes and -colour perspex dial $11 \frac{1}{\mathrm{i}} \mathrm{im}$. $\times 4 \mathrm{in}$., chassis $11 \frac{5}{8} \mathrm{in} . \times 4 \mathrm{in} . \times \overline{3} \frac{3}{4} \mathrm{in}$. A recommended Fidelity Unit for use with Mullard " $3-3$ " or '5-10" Amplifier. Bargain Price. Complete kit of parts, inc. Power Pack as illustrated, \&10.19.6. Carr. 7/6. Ditto less Power Pack, \&9.19.6. Carr. 7/6. Circuit and Const. details, 4/6. Free with kit.

MULLARD "3-3" \& "5-10" HI-FI AMPLIFIER

3 OHM AND 15 OHMI OUTPUT. '3-3' Amp. 3 -valve, 3 watt Fin-fi quality at reasonable cost. Bass Boost and Ireble controls, quailty sectional output transformer, $40 \mathrm{c} / \mathrm{s}-25 \mathrm{kc} / \mathrm{s} \pm 1 \mathrm{~dB} .100 \mathrm{mV}$ for 3 W , less Complete Kit only 7 gins. Carr. $5 /$. . Wired and tested $\$ 8.10 .0$.
MULLARD " 5 -10" AMPLIFIER. 5 valves $10 \mathrm{~W}, 3$ and 15 ohms ontput, Mullard's famous circuit with heavy duty ultra-linear quality output tir. Basic ampliser kit price $£ 9.19 .6$. Carr. $7 / 6$. Ready built 2-VALVE PRE-AMP. DNIT. Based on Mullard's famous 2 -valve ($2 \times$ EF86) circuit with full equallsaelector switch. Size 9 in. $\times 6$ in. $\times 2$ in , 5 -position wired and tested, 47.19 .6 . Carr. $3 / 6$.

VOLUME CONTROLS-5K-2 Meg ohmas. 3 in . SPINDLEG, MORGANITE MIDGET TYPE $1 \frac{1}{5}$ in. dia. GUAR. 1 year LOG or LIN, ratios, less Sw. 3/6 D.P. Sw. 5/=. Twin Stereo less Sw., 7/6. 100K to 2 $\mathrm{m} / \mathrm{ohm}$ with D.P. Sw., 9/6. Some log/anti \log values less Sw., 9/-.
YGGAN FRET (Contem. pat.) $12 \mathrm{in} . \times 12 \mathrm{in}$. , $2 /-$ BONDACOUST \quad Speaker Cabinet Acoustic Wad ding. Approx. lini. thick, 18 in . wide, any length cut, 2/8 ft. $6 /-\mathrm{yd}$.
RESISTORS Full Range 10 ohms- 10 meg. ohms $20 \% \frac{1}{2}$ and $\frac{1}{2} W, 3 d$, $\frac{3}{4} W$, 5 d . (Midget types moderm CONDENSERS-Silver CONDENSERS-Silver Mica. All Values, 2 pf. to
 $1 . C . C$. ete. , 001 mid., 91 and $1 / 3507 ., 9 \mathrm{~A} .02 / 500 \mathrm{v}$. ALUMIN CHASSIS 518 g . Plain Undrille 4 sides, 2in. deep, 6 in . \times 5in., $4 / 6$; Sin. $\times 6 \mathrm{in} ., 5 / 8$ $10 \mathrm{in} . \times 7 \mathrm{in} ., 6 / 9 ; 12 \mathrm{in}, \times 6 \mathrm{in}$., $7 / 6 ; 6 ; 12 \mathrm{in} . \times 8 \mathrm{in} ., 8 / 8 /-$ etc.

Only a small selection from our
TRS gain lists, 3d.

RADIO COMPONENT $\underset{\substack{\text { sist } \\ 1949}}{ }$ SPECIALISTS
is multiplied by 2 or 4 , for 40 and 20 m bands respectively. These other frequencies can be calibrated throughout by tuning the v.f.o. against a $100 \mathrm{kc} / \mathrm{s}$ crystal marker, noting that $3.5 \mathrm{Mc} / \mathrm{s}$ corresponds with $7 \mathrm{Mc} / \mathrm{s}$ and $14 \mathrm{Mc} / \mathrm{s}$, and so on.

If required, it is easy to open out the tuning on the h.f. bands, as described later. This has no actual effect on efficiency, but does simplify tuning. With a smooth ball drive and large knob, it may be felt this modification is not wanted.

TUNING THE EXCITER

H.T. must on no account be applied to the p.a. until grid current is available, and an aerial or other load must be connected. With S1 at 20, adjust the core of L2 for resonance at about $7 \cdot 1 \mathrm{Mc} / \mathrm{s}$. Resonance may be found with a wavemeter, or by noting the grid current of V5, the net switch being closed. Also check that VC2 allows tuning L3 to 80, 40 and 20 m bands. Tuning here is for maximum grid current, as shown by the grid meter, but this should be kept down to 2.5 mA maximum, by adjusting VR1 as required. V5 is normally operated with about 2 mA grid current (44 V bias across R10).
To test the transmitter, a 60 watt household lamp is convenient as a load. A first test is best on 80 m . Set the exciter bandswitch to 80 and adjust VR1 for about 2 mA grid current, with VC2 tuned for maximum grid current. If desired, a reduced h.t. voltage can be applied to the p.a., or a $100 \mathrm{k} \Omega$ resistor may be temporarily connected in series with R11, to keep the input low. With VC4/VC5 closed, switch to "transmit" and quickly tune VC3 for minimum anode current. The input will be small, and is increased by opening VC4/VC5, at the same time always re-adjusting VC3 for minimum current. With normal screen voltage and a reasonably high anode potential, a 60 W lamp can be lit brilliantly.

With a high voltage, V5 may be destroyed in a few seconds, if operated without grid drive, or off resonance. In these conditions, the input is much higher than normal, and is dissipated as heat in the valve itself. Typical ratings for the 6146 are 112 mA anode current at 600 V , or an input of about 67 watts, screen current then being 9 mA at 150 V , with 2.8 mA grid current, and an output of 52 watts. The actual transmitter was, however, generally used with 100 mA input, and 2 to 2.5 mA grid current.

With high level modulation, results are satisfactory with a wide range of inputs and p.a. voltages. A 400 V supply allows 40 W input at 100 mA , and this has proved to be very satisfactory. Typical circuit point voltages are shown in Fig. 1. These were taken with a $2 \mathrm{k} \Omega / \mathrm{V}$ meter.

When it has been noted how the p.a. tunes, there is no need to employ the reduced h.t. voltage, or additional resistor in series with R11. However,

Fig. 7: Circuit diagram of the complete modulator.
rapid tuning of the p.a. is necessary. Tuning is more critical on 40 and 20 . On the higher frequencies, anode tuning results in some change of grid current (this is usual with an un-neutralised power amplifier). The convenience of having separate grid and anode meters permanently connected is then very apparent.

Sufficient grid drive was obtained with a 250 V supply to the exciter. The current drain is about 50 mA . The second supply will normally be 300 V or higher, to permit 30 W or more input. It should be able to deliver $200-250 \mathrm{~mA}$. The screen voltage of the 807 's should not exceed 300 V . This means that R 30 can be reduced with a 300 V or similar low supply, but should be increased with a 500 V or larger supply, so that the screen voltage is about $250-300 \mathrm{~V}$. With a 500 V supply and 270 ohms cathode bias resistor, the 807's are rated to provide 32 watts output, which will easily modulate the p.a. With a 400 V supply and 40 W input, only about 20 W will be required from the 807's. The modulator should not be operated with V5 withdrawn. Screening cans are used on all except the 6146 and 807's and regulator V2.

OPERATING THE TRANSMITTER

Brief operating details may be welcomed by anyone who is using this as a first transmitter. With a lamp load as described, speech should sound strong and distinct in a receiver. The receiver RF gain will probably need to be turned well back, and the receiver aerial input sockets may be shorted to chassis.

For normal operating, take a 75 ohms co-axial lead from the transmitter receiver aerial socket, to the receiver. Receivers with a 75 ohms input impedance will give best results with a dipole or other matched aerial. Interrupt one lead from the speaker transformer secondary to speaker, and take connections from here to the speaker muting sockets.

A dipole aerial can be used for any one band. It is usually about 128 ft . for $80,66 \mathrm{ft}$. for 40 , or 33 ft . for 20. The transmitter should load without difficulty into such a dipole, on the band for which the dipole is intended. Occasionally, the position of the aerial may alter its frequency, so that its length has to be changed slightly.

A balanced system, using 75 ohms twin-lead from a balun or tuner, is less likely to cause TVI than a co-axial fed aerial. An end-fed aerial generally requires a tuner, such as an aerial may be operated on all bands. The transmitter has been operated without TVI on the home TV receiver, with both dipoles and end-fed aerials, on 80, 40 and 20. This does not mean it will necessarily be free from TVI. in other circumstances, where the run of feeders, or other details, may be unfavourable.

The transmitter net switch allows the v.f.o. to be tuned to a clear frequency or to a received signal. After tuning for grid current, switch to transmit, and adjust loading (and grid current, if needed). This switch then provides complete control.

If it is wished to save a little on building costs, the surplus 807 may be used for p.a. The screen grid should receive about 250 V and input is up to 100 mA , 600 V maximum. Grid current can run at about 3.5 mA . No other changes are required.
C.W. and h.f. bandspread details next month.

NEXT MONTH in

THE MULTITEST

How to construct a comprehensive instrument combining Multimeter, L.C.R. Bridge, Signal Tracer, Signal Injector and Insulation Tester.

BEGINNER'S TRF4
Specially for beginners, this 4-transistor t.r.f. receiver covers the medium waveband and the 1500 m . long wave Light Programme.

DETERMINING GREAT CIRCLE BEARINGS AND DISTANCES

This special article explains how to receive and transmit maximum energy by precise orientation of the aerial.

NEGATIVE FEEDBACK

Shows how to improve reproduction, reduce hum level by correct feed back to audio amplifiers.

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

BROADWAY ELECTRONICS 92 MITCHAM ROAD, TOOTING, S.W. 17

Phone: BALham 3984

(four minutes from Tooting Underground Station)

GARRARD 4 SPEED DECKS WITH CARTRIDGE: Auto changers: AT60, £10.0.0; 3000, £8.8.8; 2000, £7.7.0; 1000, £6.6.0; Autoslim £5.5.0; De Luxe Autoslim with plug-in head, £5.15.0. P \& P. 6/ S.Sigle Players: SP25, £10.10.0; SRP12, f5.0.0; Garrard
Plinth. W.B.1, \&3.12.6. P. \& P. 4/6 for plinth. Motor boards 6/6 each.
CARTRIDGES: Ronette Stereo 25/-; Acos GP67, 15/-; G.C. 2 Garrard 15/-; AT6 shells 5/-. P. \& P. 6d. HGP83/2 Stereo 20/-.
SPEAKER ENCLOSURES: "TONY" Corner Cabinet $20 \times 10 \times$ 7 in ., takes 10 x 6in. speaker, covered in grey Rexine and Vynair,
 9in. Baffle sin. thick. Covered Rexine and Vynair, $\ddagger 5$. P. \& P. $10 /$. Extra baffe for 8 or 10 in . 3/6. "BLAKE DE LUXE" veneered with wood-grain Formica and standing on smart 6in. legs, e6.5.0.P. \&P. Speaker, 45/.. P. \& 8 P. $7 / 6$. Crystal Mike 200 C replaces BM3, $30 / \mathrm{F}$ speaker, 45/- P. \& P. S/ Stand for same, 9/6. P. \& P. 1/9. Guitar Pick-up with Screened Lead, 12/6. P. \& P. 6A. Crystal Lapel Mike, r/6. Neon Panel Light Arcolectric 240v. A.C., 2/6. P, \& P 6d. Tape Spools: 3in., 9d.; 4in., $1 /-$; $5 \mathrm{in} ., 1 / 3$; 5in., 1/9;'7in., $2 / \sim$ each.
BARGAINS IN TRANSISTORS. AC127, AF 114, 115, 116, 117, 118, 119, OC169, 170, 171, 172, 5/6 each. OC72, 75, 82, 3/6. OC71, 81M, 3/- RF Packs - 1 OC44, 2 OC45, 8/6. AF Packs- $10 \mathrm{OC} 81 \mathrm{D}, 20 \mathrm{OC81.6/}$ AF Pack-1 GET118, 2 GET119. 5/6.OC26, 28, 29, 7/6. ORP12 Ligh
Cell, $7 / 6$. Diodes OA81, 2/3, OA91, 1/9. P. \& P. on all these 6d.

EARPIECES with cord and 3.5 mm plug, 8 ohm magnetic $3 /-$ $250 \mathrm{ohm}, 4 /-180 \mathrm{ohm}$ Magnetic with clip. 6/6; Crystal, 4/-. P. \& P. 6d

SPEAKERS: ELAC Heavy duty Ceramic Magnet, 11,000 lines, 10in. round, 10×6, 15 or 3 ohm. 42/6. P. \&P. $3 / 6.8$ in. round 15 or

Stockists for Eagle Products, Goodmans, W.B. Wharfedale, Bakers Tripletone, Linear, all makes of amphifiers and speakers supplied. Let us quote for your requirements. S.A.E. please. NO C.O.D.

HOME RADIO LTD. Dept. PW, 187 London Road, Mitcham, Surrey. Phone: MIT 3282

when used as directed. If you have never had the good fortune to own one of these famous components catalogues, or if your own copy is now a bit long in the tooth, send the attached coupon with your cheque or P.O. for $9 /$-. Our pleasure in sending you the catalogue will be exceeded only by your

NORTHERN HEIGHTS AMATEUR RADIO SOCIETY

THE Society was formed after a meeting of persons interested on April 9th 1961. We were fortunate in having available for our fortnightly Wednesday meetings at the Sportsman Inn, Ogden, Halifax, a room at reasonable rent which is always comfortable and has such a fire in winter that we have no qualms about leaving our own firesides to attend a meeting.

Syllabus

A syllabus was arranged, an early item being a Junk Sale to help. raise funds for the purchase of a communications receiver for the use of a patient in a local Cheshire Home. Another early item on the agenda was the first of a series of our highly successful "Pea and Pie Suppers"-which are even more popular than the Annual Dinner-if food is involved, the turn-up is amazing! The Manchester Society have always been our guests on these occasions, the association between the two societies being the outcome of a meeting of a member of the Manchester Society, under highly respectable circumstances, with a lady member of our Society, on the sandhills at St. Annes-on-Sea. The true and highly respectable story of this meeting has now been lost in the mists of antiquity and still grows more juicy with every telling, especially on the Lancashire side of the Pennines!
D. Garlick and scouts at G3MVH, Jamboree station of Halifax Boy Scouts Association (1962), operated by members of the Northern Heights Amateur Radio Society. The scout sitting is now G3TQQ.

Sufficient members wishing to take the R.A.E. were available for us to ask for a course at the local Technical College and this has since been supplemented by a course in Morse Code on another evening.
We have had visits to innumerable places of interest, thanks to the efforts of our indefatiguable Secretary, including trips to radio and TV stations, TV studios, County C.I.D. H.Q., an atomic power station, radio, TV and audio equipment factories, Jodrell Bank, trade film shows and our annual marathon (overnight both ways) to the Radio Communications Exhibition in London.

Society Lectures

We have had lectures, to name only a few, on subjects ranging from "Lightning" (complete with demonstration of 2 ft . spark of artificial lightning!), "Radio Astronomy," "Radio on Stamps," to "Fire Prevention," "Tape Recording," and our old friend, W1BB, on tape and slides on " 160 m . DX'ing"-which has subsequently been lent to a large number of other societies after three full houses at our own meeting rooms. This is to say nothing of the more usual selection of subjects heard at radio society meetings-lectures on antenna problems, TX construction, s.s.b., v.h.f., D/F test equipment, station layout and a most illuminating and entertaining evening on "How I became a radio amateur," given as a joint effort by three of our younger members and which really brought the house down. We have shown technical films; as well as slides of the Society's outside events-the incidents on some of these, especially Field Days, being too incredible to relate.

Every year we have operated the station G3MVH for the Scout Jam-boree-on-the-Air and this event has been more successful in Scout contacts every year.

Twelve months ago our Society was granted the callsign G2SU, this being the callsign of the late Matthew Eskdale, a highly respected founder member of the Society and longstanding friend of many members.
This callsign was first used by the Society on a demonstration station at a local fete-one of several we run
every year-a time of anxiety and heartache (to say nothing of all kinds of ache from the aerial rigging) for those responsible. Although we have now done the demonstrations many times on each site, every occasion produces its problems-dicey trees and dubious canvas on marquees to be climbed for aerial rigging, scaffolding supplied without clamps, officious officials, open wire P.A. equipment, the sewing machine demonstration ("absolutely free from all radio and TV interference, Madam"-'"How in-teresting-in that case, would you like to come and listen to your sewing machines?"), the adjacent stand demonstrating the product of a small-time TV manufacturer where we had to go and connect up his aerials correctly for him in order to save our own reputations, power supplies which do not materialise at the time promised, gales, rain, storms (contact replies that the hail on our tent is "so $5+9$ " that he cannot hear our voices above it), working on live overhead cables protected only by very wet shoes and damp polythene sheet on wet trestle tables on a sea of mud, power failures, voltage regulation so bad that the rest of the lights on the ground dim when we switch to transmit, blowouts, aerials carried awaywe've had the lot and yet have always been fortunate enough by some means to keep the station on the air. We have ail learnt a lot in the process and as one of the team remarked on one occasion. "It's been a ${ }^{* * * *}$ of
a day, but I wouldn't have missed it for the world". It is these events which give an insight to up-andcoming youngsters on what happens (or fails to happen) amongst those wires stowed away at the back of the shack-many of these lads are now licensed themselves and we have the keenest and happiest crew of younger members one could wish for, and this fact, coupled with the experience of older members, is the lifeblood of any society. May we all go forward together for many more happy years in "our" Society.

PRACTICAL TELEVISION - JULY

Line Faults lllustrated
Troubles in the line scan stages may
be easily diagnosed, if the symptoms
displayed on the c.r.t. are correctly
analysed.

Line Faults Illustrated

Troubles in the line scan stages may be easily diagnosed, if the symptoms displayed on the c.r.t. are correctly analysed.

Stock Faults 11

A further series of articles dealing with typical recurrent faults in TV receivers.

TV H.T. Supply Systems

The different arrangements of d.c. h.t. supplies in many popular receivers are examined and explained.

On sale 23rd June 2/-

HIGH FIDELITY

SPECIFICATION－Bass Unit：Natural resonance 40 c．p．s．Flux density 14,000 Gauss． Total flux 56,000 Maxwells．Tweeter Unit： Flux density 6，000 Gauss．Total flux 9，000 Maxwells．Overall：Height liin．（ 28 cm ）， width $6 \frac{1}{2}$ in．（ 16.5 cm ），depth 2 inn．（ 6.4 cm ）， Weight 5 lb．（ 2.3 kg ），Power handing 10 watts in recommended enclosure．Impedance
5,8 or 15 ohms．

TECHNICAL DETAILS：

The unit is a compact and self contained loudspeaker system which only needs to be fitted into a simple cabinet of the recommended design to produce a high fidelity loudspeaker of the highest quality．
The unit consists of a 5 in ．bass unit，4in．tweeter and crossover network mounted on a duralumin plate which forms the front panel of the com－ plete enclosure．
The method of assembly of the module is unique in that the cone and synthetic rubber surround of the $5 i n$ ．bass unit are mounted directiy on to tantial pillars att pand to the panel The conventional chassis with all its disadvantages is thus eliminated．
The tweeter is a special version of the 460 T unit with a doped cambric surround and extremely light suspension system．
The crossover network is a five element circuit using ferrite cored inductors and reversible electrolytic capacitors mounted on a printed circuit board．
Free constructional details of the recommended cabinet are readily available from us．
Where larger power handling is required several units may be mounted in a larger cabinet，multiple units may also be mounted in a column enclos－ also be mount
The unit forms the drive system of the＇Minette＇enclosure，for details see separate leaffet．

Patents applied for

Price 68 plus $f 1.5 .9$ tax

For further details contact．
For further details conta
RADIO LAMITED
Bradiford Rd，Gomersal， nr Leeds，Yorks． Tel：Cleckheaton 2442／3

Richundallan

Build the smallest set in the world
－it＇s the inimitable

而icicib

SIX STAGE POCKET RECEIVER
Anyone can build it in an evening ONLY $1 \frac{4}{5}{ }^{\prime \prime} \times I_{1} \frac{3}{10}{ }^{3} \times \frac{1}{2}{ }^{\prime \prime}$ The wonderful Micro－6brings instations
，WEIGHS loz．
－FANTASTIC RANGE AND POWER
－PLAYS ANYWHERE
MALLORY MERCURY CELL ZM． $3 / 2$（2 required）each 1／11．Pack of Six 1016
 all round the medium waveband and has bandspread to bring in Luxembourg like a local station，yet it is actually smaller than a matchbox．Batteries and ferritemrod aerial are contained within the minute white，gold and black case， and the set will play virtually anywhere． Building the Micro－6 is easy．When com－ pleted，it will delight and enthral you with its fantastic performance which brings an intriguing new approach to radio listening．

This wonderful set has two stages of R．F．amplification，double diode de－ R．F．amplification，double diode de－
tector and 3 stages of audio ampli－
fication with powerful A．G．C．to counteract fading from distant stations．Slow motion tuning makes station separation easy．Kit complete with transistors，case，dial，light－ with transistors，case，dial，light－
weight earpiece and instructions
manual． weight earpiece and instructions
manual．

AB

How would you like to be an officer in the Royal Navy？

 and then train to be afully qualified
Electronic Engineer？ Impossible？ Very possible！

Not many people know this：but it＇s possible to train to be a graduate member of the Institution of Electronic and Radio Engineers while you＇re an officer in the Royal Navy．

As an electrical officer，you are given a training that lasts 4 years and which costs literally thousands．

You then get the technical and administrative experience to qualify you for the standing of chartered engineer．Which is getting the best of both worlds ：a commission and an excel－ lent civilian qualification．
What of the future？The Defence Review has re－affirmed the world－wide role of the Royal Navy．The vital protection of our shipping remains its constant task．The most modern tech－ nologies of nuclear propulsion，guided missiles and electronics are developing，and Polaris will take over the deterrent role by the 1970s．Here＇s a career that offers you responsibility，rich opportunities－and real reward．
Entry－Qualifications：G．C．E．＇O＇level in English，with（i）suitable O．N．C．，or（ii）three further G．C．E．passes including 2 at＇A＇level． （One＇A＇level should be in an appropriate maths or physics sub－ ject．）Scottish or Northern Ireland certificates equivalent to the above．Age Limits：17⿺辶 2 －25．Training Course： 4 years．Service Period： 16 years（pensionable）with every opportunity to put in for a permanent commission．

For full details complete and send the coupon below．
You should apply before the end of July．

Build the Worlds most amazing FM tuner-receiver

The Sinclair Micro F.M. is more than an F.M. Tuner; more than an F.M. Receiver, for it combines the advantages of both with many other unique features to make it the most advanced set of its kind in the world. Anyone can construct it for, unlike other F.M. constructional kits, the Micro F.M. needs no aligning and is ready to work as soon as it is finished. Pulse-counting detection gives better audio quality than any other discriminator system. Excellent sensitivity assures good reception using no more than the set's own small telescopic aerial in all but the worst reception areas. When built, the Sinclair Micro F.M. has all the appearance of a professionally engineered set both inside and out. Its distinctive, elegant exterior makes it particularly pleasing to own and to operate whether as a tuner for amplifier or tape recorder or independently as a self-contained pocket F.M. portable.

SUPPLY VOLTAGE-9V from self-contained standard battery CONSUMPTION-5mA SENSITIVITY-Typically 3 microvolts
 - SIGNAL. TO NOISE RATIO-30dB at 30 microvolts

AUDIO FREQUENCY RESPONSE $-10-20,000 \mathrm{c} / \mathrm{s} \pm 1 \mathrm{~dB}$

- A.F.C.-for automatically locking on to each station tuned in
- Inserting plug of earpiece or tuner lead switches set $O N$

TECHNICAL DESCRIPTION

THE SINCLAIR MICRO F.M. is a completely self-contained double-purpose F.M. superhet housed within a case less than $3^{\prime \prime}$ high $\times 1 \frac{3^{\prime \prime}}{}$ wide with a depth of $\frac{3^{\prime \prime}}{}{ }^{\prime \prime}$. It uses 7 transistors and 2 diodes. The R.F. amplifier is followed by a self-oscillating mixer and three stages of I.F. amplification which dispense with I.F. transformers and all problems of alignment. The final I.F. amplifier produces a square wave of constant amplitude which is eventually converted into uniform pulses so arranged that the original modulation is reproduced exactly. A pulse-counting detector ensures absolute linearity and therefore better audio quality at the output stages. After equalisation the signal is channelled to one output for feeding to amplifier or recorder and to another in which the receiver's own audio amplifying stage enables the Micro F.M. to be used as an independent self-contained pocket portable. A.F.C. is used to lock the programme tuned in. The telescopic aerial included with the kit will be found sufficient in all but the worst signal areas

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS

More power per square inch than any other

The Sinclair Z. 12 is a powerful high fidelity amplifier of exceptional compactness complete with its own high gain pre-amplifier and ready to connect to any input. lits great power gives to any input. its great power gives PER SQUAREINCH of its total size-a PER SQUARE INCH of its total size-a
standard of performance unsurpassed by standard of performance unsurpassed by
anything in its class. And because of its sixe and unique circuitry, you can now use quality amplification in applications never before possible.
8 special H.F. transistors are used in a circuit in which generous negative feed back and ultra-linear class B push-pull
output achieve the highest possible standards of quality - The unit will operate from 6 to 20 V. d.c., and when not using a battery, the new 15 to 50000 be found ideal Response$\mathrm{c} / \mathrm{s} \pm$ IdB Input sensitivity 2 mV into $2 K$ ohms $\begin{aligned} & \text { Signal to noise ratio is } \\ & \text { better than } 60 \mathrm{~dB} \text {. and the output may }\end{aligned}$ be fed directly into any load from 3 to 15 ohms, or two 3 ohm speakers may be used in parallel The manual included with the $\mathbf{Z} .12$ gives full details of matching tone and volume control circuits for mono and stereo, together with multiinput switching facilities.

NEW POWER SUPPLY UNIT SINCLAIR PZ. 3

This is an entirely new design using original circuitry based on advanced transistorised tech niques to achieve phenomenally good smoothing, thus assuring ideal operating conditions for the $Z .12$ for which it was designed. Ripple is a barely measurable 0.05 V . and the PZ. 3 will power two $Z .12 \mathrm{~s}$ with ease. Output 20V.d.c. for A.C. mains | $\begin{array}{l}\text { or } \\ \text { operation, } 200 / 250 \mathrm{~V} . \\ 50-60 \mathrm{c} / \mathrm{s} .\end{array}$ |
| :--- |
| $19 / 6$ |

Ready-built, tested and guaranteed, with Z.I2 monual

8916

Euarantes

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in fulland at once without question 15 WATTS R.M.S. MUSIC POWER (30 W. PEAK)

SIZE $-3^{\prime \prime} \times 1 \frac{3}{4}^{\prime \prime} \times 1 \frac{1}{3}{ }^{\prime \prime}$

- IDEAL FOR I2V. OPERATION
- FOR HI-FI, RADIO TUNER, GUITAR, INTERCOM, ETC.

If you prefer not to cut coupon from page, please mention P.W. 7 when writing your order.

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 6 \mathrm{~d}$. per word (minimum order $18 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 4.12 \mathrm{~s}$. 6 d . per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., Tower House, Southampton Street, London, WC2, for insertion in the next available issue.

TAPE RECORDERS, TAPES, Etc.

TAPES TO DISC - using finest professional equipment $-45 \mathrm{rpm}-18 / \mathrm{F}$. S.A.E. leaflet. DEROY, 52 Hest Bank Lane, Lancaster.
AMPEX SERIES 600 Professional Recording Tape. Type 641, $1,800 \mathrm{ft}$. Mylar on 7 in . spool. Complete with leader. Brand new in makers boxes. Usual price £3. Limited quantity available at 67/-for two spools. P. \& P. 2/- (or 37/-singly. at $67 /-\mathrm{for}$ two spools. P. \& P. 2/-(or 37)-singly.
P. \& P. $1 / 6$ E. C. KINGSLEY \& CO., 93
 EUSton 6500.

RECEIVERS \& COMPONENTS

TRANSISTORS, UNMARKED, UNTESTED. 40 for $10 /-, \mathrm{p}$. and $\mathrm{p} .1 /-, 4$ packets post free, Relays, thousands of types, special catalogue Relays, thousands of types, special catalogue free. General catalogue of Mechanical and Electrical Gear, Tools, etc. (S,000 items), free.
K. R. WHISTON (Dept. PRW), New Mills, Stockport.

$$
\begin{aligned}
& 40 \text { Semiconductors commonly used in } \\
& \text { Electronic and Radio Circuits consist- } \\
& \text { ing of } 20 \text { Transistors OC42-45-71-81, etc. } \\
& 10 \text { Silicon Rectifiers } 50-800 \text { PIV 200-800mA } \\
& \text { inc. BYIO0's plus } 10 \text { diodes OA70-79-81 } \\
& \text { Zener and Gold Bonded. } \\
& \text { All brand new. Volued over e5. For only 40I-, } \\
& \text { plus post and packing 1/-, to: } \\
& \text { BI-PAK SEMICONDUCTORS } \\
& 8 \text { Radnor House, } 93 / 97 \text { Regent St. London, WI }
\end{aligned}
$$

"HEATHKITS"' can now be seen in London and purchased on easy terms. Free brochure. DIRECT TV REPLACEMENTS LTD., Dept. PW7-9, 126 Hamilton Road, West Norwood, S.E.27. GIPsy Hill 6166.

19 SETS (A sets complete) with Power Packs, Control Box and all Connectors, tested and working R and $\mathrm{T}, \mathrm{£} 6 / 10 /$ - plus $35 /$-carriage and packing. Sets only, £4, $20 / \mathrm{c}$. and p. Head Sets £1. 46 SETS, new, unpacked, complete with 2 Head Sets, Connectors, Haversack, £6/10/-, carriage 17/6. WALDEN, Main Road Garage, South Green, Billericay, Essex.

RECEIVERS \& COMPONENTS

(continued)

COMPARE OUR PRICES

J. C. WOODWARD

94 Great Brickkiln Street Wolverhampton

SPEAKER REPAIRS. Cones fitted. Satisfaction guaranteed. L. S. REPAIRS, Pluckiey, Ashford, Kent.

R \& R RADIO \& TV SERVICE

Dept. P.W.
MARKET STREET, BACUP, LANCS.
Telephone 465

SALVAGE VALVES				Tested	despatok		
6 Fl 3	4/6	U329	5/-	PLat	6/-	20P4	6/6
6LI8	4/6	10P14	51-	PL82	$3 / 6$	$30 \mathrm{P16}$	$51-$
EF80	1/6	20P5	6/8	U801	27/6	PCC84	4i-
ECC82	3/-	30 P	\%	10F1	1/6	PY81	8/6
ECL80	$3 / 6$	6F15	51-	20F2	5/3	U301	6/-
$30 \mathrm{F5}$	$51-$	EB91	1/-	30 FL 1	51-	10 Pl 3	5/6
PL38	$61-$	EF85	$51-$	PY32	6/-	20D1	2/-
PCF80	4/-	6/30L2	4/-	6U4GT	5/-	30 Pl 2	5/-
PL81	51-	$20 \mathrm{P3}$	6/-	6 Fl	2/6	PY83	5/-
PZ30	$5 /-$	$30 \mathrm{PL1}$	4/-	EY86	4/-		

Speakers. Ex.TV. 5in. round $6 \times 4 \mathrm{in} ., 3 / 6 ; 8 \mathrm{in}$. round 6/-; post 2/-.
Line Output Transformers available. State set model No. Turret Tuners, $8 /-$, post $2 /-$.
Soan Coils, etc. Quote set model No. with all enquiries and S.A.E. for prompt reply. All good subject to satisfaction or money refunded.

FOR SALE

AERIAL MAST-KENT-about 50ft. high, sectional, skeleton construction, ideal for enthusiast or local radio communications. Cost $£ 750$ accept $£ 150$. BURROWS \& CO. 39/41 Bank Street, ASHFORD (Tel. 1294/8), KENT.

MORSE MADE !

The Famous RHYTHM RECORDED COURSE cuts the practise time down to an absolute minimum.
One student, aged 20 took only 13 DAYS and another, aged 69, took under a week to
read 18 wpm. If you wish to read Morse easily read 18 wpm. If you wish to read Morse easily two international reply coupons for full explanatory leaflet to
G3CHS, 45 Green Lane, Purley, Surrey.

FOR SALE

(continued)

ADHESIVE STRIP LABELS. 䏽" embossed Glossy. P.V.C. various colours. $1 \frac{1}{3} \mathrm{~d}$. letter. C.W O. \& S.A.E. to:- MR. BROWN, 1 Effie Place, London, S.W.6.

SPECIAL OFFER

GEVAERT TAPE. New, Boxed, 53 委, 600 ft . with Stop and Leader Tapes, 9/- or 6 for 50/-, post paid.
GRUNDIG MA1. 2 Transistor Pre-amps for Tape Monitoring or Microphone Boosters, 57/6, post paid.

LIST PRICE 4 GNS.
LEE ELECTRONICS
400 Edgware Road, Paddington 5521 Send for Free lists and details of above

VALVES \& SERVICE SHEETS

TV and RADIO, most makes PRICE $4 / 6$ each and 6d, postage. Valve Price List sent on receipt of stamped envelope. Valves guaranteed New \& Boxed. Mail Order only.
TV ELECTRONICS Marketing House
361. Edgware Road, London, W.2.

GET THIS AIR DRYING

HAMMER FINISH NOW:
So professional-the YUKAN aerosol way!

YUKAN Aerosol spraykit contains 16 ozs. fine quality, durable, easy instant
spray. No stove baking required. Available in Grey. Blue, Gold, Bronze at 14/11 Spray. No stove baking required. Available in Grey, Blue Gold, Bronze at $14 / 11$
at our counter, or $15 / 11$ carriage paid, per push button self-spray can. SPECIAL OFFER: 1 can plus optional transferable snap-on trigger handle (vaiue $5 /$-) for 18/11. carr. paid. Choice of 13 self-spray plain colligers and primer (motor can
YUKAN Dept. P.W. 7 307a Edgware Road, London W. 2
(Open all day Saturday.

Assorted High Stab Resistors, $7 / 6,100$.
Assorted Syflex P.F. Condensers, 7/6, 100.
Copper Laminate Board, $12^{\prime \prime} \times 12^{\prime \prime}, 5 /$-, double sided.
Paxolin Sheet, ${ }^{1} /{ }_{16^{\prime \prime}} \times 12^{\prime \prime} \times 12^{\prime \prime}, 3 /$-.
 6 sheets for $5 /$-.
White Plastic Sheet, approx. ${ }^{1} / 32^{\prime \prime}$ x $62^{\prime \prime}$ x $24^{\prime \prime}$. suitable dials, insulation, case fronts, etc, 4 sheets for 51 -
Small E.M. Counters, 5 digit, 500 ohm, 6/6.
Bulgin Extra Sensitive Micro Switch, 5/-. P.O. Kelay 2000 ohm. 1B, $5 /-1 \mathrm{M} .1 \mathrm{~B} 6 /$ -

Key Switches, 4 pole, 2 throw, 3/6. 3 position $\mathrm{DP}+\mathrm{DP}$ centre orf 5%. 3 c/o +4 c/o centre off. 6/-. DP + DP 2 for $5 /=$.
Plessey Plugs and Sockets, 12 way. $3 /$ - pr. 6 way, 5/-pr.
6 or 12 way screened cable to match, $3 /-\mathrm{yd}$. Breast Mike, 6/-. Carbon Inserts, 1/6.
Power Pack and L.F. Amplifier for 38 Set, $15 /-$ Battery Ever-Ready, $90 \mathrm{v}+7 \frac{1}{2} \mathrm{v}, 4 / 6,12$ for $30 /$-. Small Component Boxes, 12/6, for 60 sample 6d. M μ Metal Screen for 5μ P7 with fittings $6 / 6$. 200 m/a Fuses $14 \times 2,5 \%$, 100 .
100 volt Hand Generator, 2/6,
Valves New Boxed, 6V6, 4/6. EF91, 3/-. 6AL5, 3/-. Rheostat WW Rotary, $15 \mathrm{ohms}, 3.6 . \mathrm{amp}, 12 / 6$. Details of Instrument Case Assembly, Free send large addressed envelope
Elac Speakers, $5^{\prime \prime}$. $5 /-7^{\prime \prime} \times 4^{\prime \prime}$ " $7 /-8^{\prime \prime}, 8 /-$
Terms Cash with Order. Post. $2 /$ - on orders under 201 -.
Rotary Transformer. Input 12 volts output 250 v at $125 \mathrm{~m} / \mathrm{a}, 9 /-$
Rotary Transformer. Input 12 volts output 490 v at $65 \mathrm{~m} / \mathrm{a}, 9 /-$.
Seimens H.S. Sealed Relay. One c/o, $1700+1700$ ohms, 6/-.

E. R. NICHOLLS Mail Order and Retail Shop 46 LOWFIELD ROAD off SHAW HEATH, STOCKPORT CHESHIRE

SPECIAL OFFER

1 watt S.T.C. $300 \mathrm{mc} / \mathrm{s}$ N.P.N. Silicon Planar, 100\% Transistors limited stocks. El for 6 .

31- each. OC44, OC45, OC70 OC7I, OC8I, OC8ID, OC200, GETI6, GET20.

41- each. AFII4, AFII5, AFII6, AFII7, OCl70, OCI7I.

51- each. OCl39, OCI40, GET7, GET8, GET9, XCI41, BYI00, OA2II.

SUN SOLAR CELL KITS
24 page Booklet on Experiments inc. 4 Sun Solar Cells, III- set.
G.P.O. DIAL TELEPHONES 201- each.

35/- pair.

Send 6d. for full lists:inc., S.C.R., Zeners.

WANTED
WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.
DAMAGED AVO METERS wanted. Models 7 and 8. Any condition. Any quantity. HUGGETTS LTD., 2-4 Pawson's Road, West Croydon.

WANTED VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD. 103 North Street, Leeds 7

WANTED: Popular Brand New Valves. R.H.S. Stamford House, 538 Great Horton Road, Bradford 7.
WE BUY New Valves for cash, large or small quantities, old types or the latest by return. Send details. Quotations by return. WALTON'S WIRELESS STORES, 15 Church Street, Wolverhampton.

MISCELLANEOUS

CONVERT ANY TV SET into an Oscilloscope, Diagrams and instructions 12/6. REDMOND. 42 Dean Close, Portslade, Sussex.
"'BERNIESOUND"' (AUDIO ENGINEERS). Consulting Film/TV Sound Engineers. Details of services available from: Mr. Brown, 1 Effie Place, London, S.W.6.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availablefull circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable attack you can play Classics and Swing.
 details to C \& S., 20 Maude Street, Darlington, Durham. Send 3d stamp.

BOOKS \& PUBLICATIONS

AUDIO, America's foremost journal. Year's subscription $43 /$, specimen copy $4 /$. All American radio journals supplied-list free. WILLEN (Dept. 40), 61a Broadway, London, E. 15 .

SURPLUS HANDBOOKS

SERVICE SHEETS

SERVICE SHEETS for all makes of Radio and TV. 1925-1966. Prices from 1/- with free fault. finding guide. S.A.E. inquiries. Catalogue of 6,000 models $1 / 6$. Valves, modern and obsolete, Radio/TV Books. S.A.E. lists. HAMILTON RADIO, Western Road, St. Leonards, Sussex.
SERVICE SHEETS, Radio and Television, 4/post paid. VEST AND EMERY, 17 Hallgarth Street, Durham.

SERVICE SHEETS, Radio, TV, 5,000 models List 1/.. S.A.E. inquiries. TELRAY, 11 Maudland Bank, Preston.
SERVICE SHEETS $(75,000), 4 /-$ each. Callers welcome. Always open. 5 South Street, Oakenshaw, Bradford.

NO WAITING. Service Sheets for all makes of Radio and TV despatched by return post. 4/- each and S.A.E. GRIMSDYKE RADIO, 77 Merrion Avenue, Stanmore, Mddx.

SERVICE SHEETS

4/- each, plus postage
We have the largest display of Service Sheets for all makes and types of Radios and Televisions, etc., in the country. Speedy service.
To obtain the Service Sheet you require please complete the attached coupon.
Name:
Address:

To: S.P. DISTRIBUTORS
44 Old Bond St., London, W. 1
Please supply Service Sheets for the following:
Make:
Model No.
Radio/TV
Make:
Model No.............. Radio/TV
Make:
Model No.............. Radio/TV
I require the new 1966 List of Service Sheets at $1 / 6$ each plus postage.
(please delete items not applicable). I enclose remittance of.
(which includes postage)
MAIL ORDERS ONLY July PW

SITUATIONS VACANT

TV AND RADIO: A.M.I.E.R.E. City and Guilds R.T.E.B. Cert., etc., on "Satisfaction or refund of fee" terms. Thousands of passes. For details of Exams. and Home-training Courses (including practical apparatus) in all branches of Radio, TV and Electronics, write for 156 -page handbook-FREE. B.I.E.T. (Dept. 137K), 29 Wright's Lane, London, W. 8

RADIO AND TV Exam. and Courses by Britain's finest Home-study School. Coaching for Brit.I.R.E., City and Guilds Amateur's for Brit.I.R.E.,. City and Guilds Amateur's
Licence, R.T.E.B., P.M.G. Cert., etc. FREE Licence, R.T.E.B., P.M.G. Cert, etc. FREE
brochure from BRITISH NATIONAL RADIO SCHOOL, Russell Street, Reading.

A FULL-TIME TECHNICAL EXPERIENCED SALESMAN required for Retail Sales. Write, giving full details of age, previous experience and salary required to the Manager, HENRY'S RADIO LTD., 38 Edgware Road, London, W. 2.
A.M.I.Mech.E., A.M.I.E.R.E., City and Guilds G.C.E., etc. Become a Technician or Technologist for high pay and security. Thousands of passes. For details of Exams and Courses in all branches of Engineering, Building, Electronics, etc., write for 156-page handbook-FREE. B.I.E.T. (Dept. 169K), London, W.8.

9 自
 Telecommunications

Vacancies exist for Young Men keen to make Electronics their career who have not necessarily acquired great practical or theoretical knowledge, but who have suitable interest and who have possibly already constructed some equipment themselves. Training will be provided and applicants will be encouraged to take technical studies to further their careers. Applications to Personnel Manager, Cambridge Works Ltd., Haig Road, Cambridge. Telephone Cambridge 51351.

METAL WORK

METAL WORK: All types cabinets, chassis racks, etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

EDUCATIONAL

RADIO OFFICERS' Training Courses. Write Principal, Newport and Monmouthshire College of Technology.
'OCEAN LINERS and other ships require Radio Officers. State if Attendance or Postal Course desired. Approved Training Centre: Course desired. Approved Training Centre: Lancs".
RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies during 1966-67. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College, Colwyn Bay.

CITY AND GUILDS (Electrical, etc.) on "Satisfaction or refund of fee" terms. Thousands of passes. For details of modern courses sands of passes. For details of modern courses in all branches of Electrical Engineering. for 156 -page handbook-FREE. B.I.E.T. (Dept. 168 K), 29 Wright's Lane, London, W. 8

TRAIN FOR SUCCESS WITHICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.

ICS, DEPT. $54 I$ PARKGATE ROAD. LONDON, S.W. 11.

SOUND RECORDINGS

A UNIQUE TAPE BUY! Top brand 7in., 2,400ft., $25 /-; 5_{4}^{3} \mathrm{in} ., 1,200 \mathrm{ft} ., 15 /$-. P. and p. 1 at $2 /-, 2$ at $2 / 9,3-6$ at $3 / 6$. Bargains in all sizes. S.A.E. for list. E. C. KINGSLEY AND CO. LTD., 93 Tottenham Court Road, London, W.1, EUSton 6500.

KEY BOOK paper backs HI-FI AND AUDIO by A. T. Collins

Modern Designs for the Amateur Constructor. High Sensitivity Amplifier. Two-valve Preamp and Equaliser, Mains Gramophone Amplifier. Output Transformers and Loudspeakers, etc.

SIMPLE RADIO CIRCUITS

by A.T. Collins
A Complete 'Build Your Own Radio' Guide. Simple Mains Short Wave
Receiver, Medium Wave Transistor
Receiver, Dual Wave One-valve, etc.
3s. 6d. each from All Booksellers
or, in case of difficulty, 4s. each by post from George Newnes Ltd., Tower House, Southampion Street, London, W.C.2.

NEWNES

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS.
 Telephone: Cleckheaton 2866

Bomb Computers full of gears, motors, and many spares for the model maker, $37 / 6$. Carr, 12/6. $\begin{aligned} & \text { New Boxed TV Tube, type MW36/24, } 14 \mathrm{in} ., 37 / 6 .\end{aligned}$ Carriage 10/-
New Rebuilt TV Tubes, 17 and 19 in . types, slight seconds, 37/6. Carriage $10 /-$. Fully guaranteed.
New 500 Micro-Amp Meter from 68 Set Tx. 12/b. P/P $1 / 9$.
Muirhead Pattern Slow Motion Drives, Memoved from units, $5 /$. P/P 1/9.
Magice Eye with Holder. Ex Units Octal Base,
New Boxed Tube Unit, CR.100. Complete with Two small CRT Tubes VCRX393 and VCRX 298 . Plus 21 small valves and $0-1$ ma. meter. Relays removed, 57/- Carr. 101 .
Reclaimed Tubes. Six months' guarantee. AW43i80, 30/\% MW43/80, 30/ MW43/69, 30/, CRM172, 30/-. ORM142, 1 Y/- 12° Tubes $10 /=17^{\prime \prime}$ tubes perfect but without guarantee, $17 /$ each. Carriage on any tube in G.B., $10 /-$
Specialy Selected Nearly New Valves with 6

PY33	$6 / 6$	807	$5 /-$	EF91	$2 /-$
PCC84	$5 / 6$	ARP12	$1 / 6$	$6 \mathrm{K7}$	$1 / 9$
PCF80	$5 / 6$	ECL80	$3 / 6$	6 K 8	$2 /-$
PL 36	$6 / 6$	ECC83	$5 /$	6 V 6	$\mathbf{1 / 9}$
PL 31	$5 / 6$	ECC82	$4 / 3$		

> VALVE LIST

Ex Equipment, 3 months' guarantee

Single	16	St 7 d,			
EFB0	$1 / 6$	KT36	5/-	6 F 14	5/-
ECL80	1/6	PCF80	21 -	10 C 2	51-
EF91	9 d.	PCC84	2/-	10P13	$2 / 6$
EB91	9d.	PCL82	4/-	10P14	51-
EBF80	3/-	PCL83	$3 /$	20D1	21
ECC81	3/-	PCL84	3/-	$20 \mathrm{L1}$	51-
ECC82	3 I	PCL85	3/-	20P1	4/.
ECC83	4/-	PZ30	51-	20 P 4	$8 / 6$
EL84	5/-	PY81	1/6	U801	$8 / 6$
EY51	$2 / 6$	PY82	$1 / 6$	U329	5/-
EF50	$1 /-$	PL81	4/0	U301	51
EY86	5/-	PL36	51	U191	$5 /$
6 K 25	5/-	PY33	$51-$	U281	51-
6 U 4	5/=	$6 \mathrm{B8}$	1/6	U282	5/-
6 P 25	5\%	6 F 1	1/-	U25	5/4

Motors removed from Washing Maehines
i h.p. With pulley, 26/-. Carriage 10/- Hoover Mk.I., 15/- Carriage 7/6, $1 / 6$ h.p. motor.
13 Amp. Double Sockets. Brown Surface Type, 3/- Post $1 / 6,6$ for $18 /-$ Post paid.
New dap Earpieces complete with lead and plug. 8 ohms, 3 or 5 mm ., $1 / 11$ or 20/- per dozen, Diodes. Tion grade. No duds, 3/- per doz., Post Paia.
Perfect Speakers removed from T.V. sets. Round ${ }^{\prime \prime}$, $6 /=$ Rola $6 \times 4,3 /-$ Goodmans $7 \times 4,5 /-$ 6^{*} Round, 3/-. Philips $5^{\prime \prime}$ 'Round. 3/-. Plus Post on any Speaker $2 / 9.6 \times 4,6^{\prime \prime}$ and $5^{\prime \prime}$ Round Speakers,
6 for $20 /-$ Post Paid.

FAMOUS FOR THIRTY YEARS for SHORT-WAVE EQUIPMENT of QUALITY

- 4 SHORT-WAVE

H.A.C. Were the original suppliers of shortWave Receiver Kits for the amateur con$\begin{array}{cc}\text { structor. } & \text { Over } 10,000 \text { satisfied customers- } \\ \text { including } & \text { Technical } \\ \text { Colleges, }\end{array}$ Public Schools, R.A.F., Army, Hams, etc, IMPROVED 1966 RANGE
1-Valve model "CX", complete kit, Price $34 / 6$ Customers say: 'Deffinitely the best onevalve S.W. kit available at any price'. This kit contains all genuine Short-Wave cominstructions. Ready to assemble and of coturse, as all our products fully puaranteed FULL RANGE of other kits still arailable including the famous model ' K ', price $77 /$ Before ordering call and inspect a demonstration recelver or send for a descriptive catalogue and order form to:-
"H.A.C." SHORT-WAVE PRODUCTS (Dept. P.W.), 44 Old Bond St., London W.I

TRANSISTOR ELECTRONIC ORGANS

FOR THE AMATEUR BY DOUGLAS. I8/- p \& p I/-

 ABC's of Silicon Controlled Rectifiers by Lytel, 16/•, P. \& P. 1/-Bench Servicing Made Easy by Middleton,
241 -, P. P P 1 -24/-, P. \& P. 1/-.
Transistor Etched Circuit Projects by Kyle, 241-, P. \& P. 1/-.
Transistor Specification and Substitution Handbook by Techpress, 15/-, P. \& P. 1/-.
How to Build Proximity Detectors and Metal Locators by Shields, 20/-, P. \& P. $1 /$-. Solar Cell and Photocell Experimentors Guide by Hoberman, 24/-, P. \& P. 1/-.
Guide to B/C Stations by Wireless World, 5/-, P. \& P. 8d.

Where possible 24 hours service guaranteed.
UNIVERSAL BOOK CO.
12 LITTLE NEWPORT STREET LONDON, W.C. 2
(adjoining Lisle Street)
'PIRATE' SIGNAL BOOSTER

LUXEMBOURG

CAROLINE
LONDON
all for only $39 / 6$ with the Fabulous DEWTRON Wave Trap Just place NEAR your Transistor portable and NO CONNECTIONS! Use in car- NATEAD of

Send 52 (post free)
Mones-back guarantee (7 days)
D.E.W. Ltd., Dept. P.W., Ringwood Road,

KITS WITH AN ASSURED FUTURE

The Martin Audiokit assembly you own today can become part of an even better hi-fi system tomorrow. No other system allows you to enlarge your installation stage by stage in the way Audiokits do. They comprise a wide range of very well made prefabricated units in which the connections are standardised throughout. Each is rigorously tested to stated specification before despatch. NEW KITS FOR ADDING ON ARE IN COURSE OF PREPARATION NOW-so by starting with Martin today, you insure yourself for still better listening tomorrow.

Choose Martin for quality

- Build for 3 or 15 ohm system
- Start with Mono and add Stereo or start completely with Stereo
- Power packs availableProfessionally styled escutcheon plates
- Assembly is easy by following the well presented instructions
$\begin{array}{lr}5 \text { stage input Selector } & \notin 2.7 .6 \\ \text { Pre-amp. and vol. control } & £ 1.17 .6 \\ \text { Pre-amp. with tone controls } & £ 3.2 .6\end{array}$
Send for leaflet describing entire range
10 watt amp. (3 ohms)
10 watt amp. (15 ohms) Mains power supply
65.12 .6
66.12 .6
$f 2.15 .0$
$\pm 2.15 .0$

Martin Audiokits and Recordakits are obtainable from good stockists every. where. In cases of difficulty please write direct.

MARTIN ELECTRONICS LTD., I54/I55 high ST., bRENTFORD, M'sEX Phone: ISLeworth 1161/2

PUBLICATIONS for the
 Radio Enthusiast

RSGB Amateur Radio Log Book

This log book is specially designed for keeping a record of radio contacts, and complies with the G.P.O. requirements for radio amateurs. It is also ideal for use by SWL's for logging stations heard, and some abbreviations likely to be heard ovet the air are listed on the inside covers, together with other useful information.

Price 616 (By post 71-)
RSGB Amateur Radio Call Book, 1966 Edn.
The second printing of the latest edition of this best selling annual directory of Amateur Radio Stations in the United Kingdom and the Republic of Ireland records more than 3,000 changes since the 1965 edition.

98 pages. Price 6/- (By post 6/6)

S.S.B. Equipment

Two popular designs by G2DAF, ideal for the amateur who wishes to construct a high-performance S.S.B. Transmitter are fully detailed in this 24 page booklet. The transmitter comprises the Mk.II G2DAF filter-type S.S.B. exciter for 180 watts p.e.p., and a full rating companion linear amplifier.

Price 31 - post free Obtainable from leading booksellers or direct from RSGB

Trade enquiries invited

Further details of other RSGB Publications, and information about membership of the RSGB, including a free copy of the monthly RSGB Bulletin, may be obtained on request from:

RADIO SOCIETY of GREAT BRITAIN, Dept. P.W. 28 Little Russell St., London, W.C.I. HOLborn 7373, 2444

Any holes in your knowledge of TRANSISTORS?

Whatever your interest in translstor circuitry, you will find the Mullard "Reference Manual of Transistor Circuits" and "Transistor Radios, Circuitry and Servicing Book": valuable sources of reference.

The former describes more than sixty circuits for both domestic and industrial applications.

The latter is an introduction to the subject and describes the basic properties of semiconductors, their function, elementary circuitry and servicing.

REFERENCE	TRANSISTOR
MANUAL OF	RADIOS
TRANSISTOR	Circuitry and
CIRCUITS	Servicing
U.K. PRICE	U.K. PRIGE
12/6	
Post extra 1/-	Sost exta,bd.

MullardGet your copies from your radio dealer, or send remittance with order to:
MULLARD LID-MULLARD HOUSE-TORRINGTON PLACE-LONDON WCI

Just published . . . a comprehensive guide for all interested in - or concerned with - transistors ...

TRANSISTOR POCKET BOOK

by R. G. Hibberd, B.Sc., N.I.E.E., Sen.M.I.E.E.E.

This addition to Newnes' series of technical pocket books provides a comprehensive guide to the characteristics and use of the various types of transistor that have come into use in recent years. It is based on the junction transistor, fully taking into account the latest varieties including the epitaxial planar, field effect, metal-oxide silicon and thin film types.
Early chapters describe the principles of operation, transistor characteristics, equivalent circuits and parameters and establishing suitable d.c. operating conditions. A chapter is included on the manufacture of transistors, so that the effect of the basic methods of fabrication and types of function on transistor characteristics is clearly understood. The operation and characteristics of associated semiconductor devices used in conjunction with transistors, such as the junction rectifier, silicon controlled rectifier, zener diode, tunnel diode, varactor diode and phototransistor are also described. Low level, high power and high frequency amplification; oscillator switch and d.c. amplifier circuits; radio receivers and power supply arrangements are all covered in separate chapters, practical circuits complete with transistor types and component values being included for these various applications. The book also includes notes on handling and testing transistors, and a chapter on solid state circuit techniques.

$3 / 2$ pages, 220 illustrations, 7 tables, 25s.

From your bookseller or by post 27s. from:
GEORGE NEWNES LTD.
Tower House, Southampton St., W.C. 2

TO O AT OUR PRICES

GERMANIUM RECTIFIERS GJ7M 24v $\frac{1}{2}$ amp 24/or $2 / 6$ each +6 d . postage Postage $1 /-$ MAT TRANSISTORS
Mat 101 and 121
816 each
Mat 100 and 120
MINIATURE GERMANIUM
DIODES P. \& P. 6d. BYIOO SILICON RECTIFIERS 800 v. P.I.V. 500 mA or 7/- each + 4d. post. SILICON RECTIFIERS
800 v . P.I.V. 5 amp P. \& P. 4d. 719 each f/= $65!$ TANK AERIALS
6 Section. Total Length $10^{\prime} 10^{\prime \prime}$. Perfect for Vertical Aerial or Fishing
10/F each \quad Rod. 6 P. \& P.
VEROBOARD Now in Stock
$\begin{array}{ll}2 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime} 3 / 8 & 2 \frac{1^{\prime \prime}}{2^{\prime \prime}} \times 3 \frac{3}{4^{\prime \prime}} 3 /- \\ 3 \frac{3}{4} & 35^{\prime \prime} 5 / 2\end{array} \frac{3}{4}^{\prime \prime} \times 3 \frac{3}{4}^{\prime \prime} 3 / 8$
Postage 6d. each extra.
TRANSISTOR HOLDERS
3 or 5 Pin Type
11/6 Doz.
$1 /=$ each $+4 d$. postage Postage 6d. This Month's Special
OC7I TRANSISTORS or 271-Doz.

2/Geach P. \& P.
RADIO SUPPLIES
PETHERICK'S Dept. P
22 HIGH STREET, BIDEFORD, N. Devon Tel.: Bideford 3217

DIGITAI COMPUTER

A simple digital Adder/Subtracter using switches and lamps only. A fascinating demonstration of Binary Arithmetic. Full circuit, with notes on the Binary System, $3 / 6$, post 1 , 10,000 o.p.v.. "11/6, post 2/-. EP30K, 30,000 o.p.v.. $112 /-$, post $2 / 9$. EP50K, 50,000 o.p.v.. 155/-, post 2/9. Leather case for EP50K, 32/-, post $1 / 6$.
1\% High Stability Resistors-2/- each, $\frac{1}{W}$. Full range 10Ω to $10 \mathrm{M} \Omega$. Many special non-
standard multimeter values in stock List.
Audio-I.F.-R.F. Oscillator. Simple transistor square wave circuit, multi-frequency output from audio up to $1.8 \mathrm{Mc} / \mathrm{s}$. Variable amplitude. For "Signal Injection" rapid receiver and amplifier testing, or for Morse practise. All parts except case and battery $10 /$-, post $1 /$-.

PLANET INSTRUMENT CO.,

25(w) DOMINION AVENUE, LEEDS 7

B METBES

The thrills of VHF Amateur Radio! Complete Kit, $70-150 \mathrm{Mc} / \mathrm{s}$, costs only $42 / 6$ (by post, UK, $3 / 3$ extra) -also now available, new transistor Short-Wave kit model TR2 10180 metres, ideal for beginners to Ham radio via simplified "Easy-Build" step-by-step instructions from 79/6. Write today enclosing a stamped addressed envelope for literature and full detalis. overseas enthusiasts note we despatch to all partur the "GLOBEKING" (Rega.) precision Etandard products tried and crusted by Amateurs everywhere.
JOHNSONS (Radio)
St. Martins Gate, Worcester

WEW RaNGE U...F. AERMALS FOR BBC 2 (625) line transmissions

All U.H.F. aerials now fitted with tilting bracket and 4 element grid refiectors Loft Mounting Arrays, 7 element, 35/-
 Cranked Arm, 7 element, $60 /-11$ element, $6 \% /-.14$ element. 75/-. 18 element, 82/6. Mast Mounting with 2in. clamp. 7 element. 42/6; 11 element, 55/-; 14 element, 62/-; 18 element, $70 /=$ Chimney Mounting Arrays, Complete, 7 element, r2/6; 11 element, $80 /$-; 14 element, 8\%/6; 18 element, 95/. Complete assembly instructions and hints on instal $1 / 6$ yd. U.H.F. Preamps, from $75 /$-. State pearly channel number required on all orders.

BBC • ITV F. F.M. AERIALS

BBC (Band 1). Telescopic loft, 21/- External S/D 30/- "H" (Band 3), 3 Element loft array, 25/-s 5 element 35/- Wall mounting, 3 eloment, 35/-. 5 element, Combined BBC/ITV. Loft $1+3,41 / 3 ; 1+5,48 / 9 ;$ Wail
mounting $1+3,56 / 3 ; 1+5$, $\begin{array}{ll}\text { mounting } \\ 63 / 9 ; ~ C h f m n e y ~ & 56 / 3 ; ~ \\ 1+3,63 / 9 ;\end{array}$ $63 / 9 ;$ Chfmney $1+3,63 / 9 ;$
$1+5,71 / 3$. VHF trans
VHF transistor pre-amps

F.M. (Band 2). Loft- S/D, 12/6, "F"", 30/-, 3 element, 52/6. External units available. Co-ax cable, 8d. yd. Co-ax plugs, 1/3. Outlet boxes, 4/6. Diplexer Crossover Boxes, 12/6. C.W.O. or C.O.D.P. \& P. 4/6. Send 6d.' stamps for illustrated lists.
Quotations for special arrays available on request
K.V.A. ELECTRONICS (Dept. P.W.) 27 Central Parade, New Addington Surrey LOD 2266

		$\begin{aligned} & 177^{1 / 2} \end{aligned}$						

THERMAL PLUS MECHANICAL CIRCUIT BREAKER FOR A.C. \& D.C. Current 1 amp. Protects against shorts (instantaneous cut out at approximately 8 amps .) and against overloads: 1.8 amp .30 seconds, 2.1 amp. 15 seconds, 2.5 amp . 8 seconds. Delayed cut off may be adjusted to different currents and times. Separate pair of contacts to indicating device. Dimensions $3 \frac{1}{2} \times 1 \frac{3}{3} \times \frac{7}{16}$ in. Price $12 / 6$. P. \& P. 216 . "CONNECT AND FORGET, CANNOT OVERCHARGE" "ESSTRON", MARK I AUTOMATIC BATTERY CHARGER. Initial charging rate $6-7$ amps. The charging rate automatically adjusts itself to the charge in the battery. Automatic current and voltage control. Patented application of magnetic amplification to battery charging. Indicator lights show battery
fully charged, receiving charge incorrectly confully charged, receiving charge incorrectly connected or faulty cells. Mains voltage 200/250 v. Built for 6 or 12 v . batteries. Measurements
$7 \times 5 \times 5 \frac{1}{2}$ in. Weight $8 \frac{1}{2} \mathrm{lb}$. Price $£ 7.19 .6$. P.P. 316 . 2 KW ULTRASONIC GENERATOR together with power supply unit for 200-250 v. A.C. Complete two chassis with interconnecting cables. Frequency 37 to $43 \mathrm{kc} / \mathrm{s}$ adjusted by fine control. Peak output 2 kw , average
output 500 w . Completely new with valves and output 500 w . Completely new with valves and manual $£ 65$ carriage paid U.K. Large selection VARIOMETER for No. 19 sets, 1716. P. \& P. 3/=.

MARCONI SIGNAL GENERATOR TYPE

 TF 801B/3/S. Frequency range $12-485 \mathrm{Mc} / \mathrm{s}$. in five ranges. Directly calibrated frequency dial. Output waveform: C.W. sinewave A.M., pulse A.M. (from ext. source only). Internal modufation frequency $1,000 \mathrm{c} / \mathrm{s}$. Output: a, normalcontinuously variable directly calibrated from 0.1 uv. -0.5 v. b, high: up to 1 v . modulated or 2 y . unmodulated, output impedance 50 ohms. Fine frequency tuning control, carrier on/off switch, built-in crystal calibration for $2 \mathrm{Mc} / \mathrm{s}$. excellent "as new" condition. Fully checked and guaranteed. 1115 , Carr. 30I.C.R. 100 RECEIVER. $60 \mathrm{kc}-420 \mathrm{kc}, 500 \mathrm{kc}-$ 13 mc . In 6 bands, 2 HF stages, 3 IF stages, AVC on both phone and CW. Excellent condition,

WELL PROVEN RELIABLE COMMUNICATION RECEIVER P.C.R. 3

(Made by Pye.) 3 bands, 1 medium wave, 2 $120-43 \mathrm{~m}, 3 \quad 43-13 \mathrm{~m}$. Overall sensitivity $1-2 \mu \mathrm{~V}$. $\mathrm{S} /$ Noise ratio 10 dB at $6 \mu \mathrm{~V}$. Circuit incorporates an RF stage, two I.F. stages, tone control, A.V.C. antenna trimmer. 6 V 6 output. Set in fully working condition together with headphones and speaker plug, E9.5.6. With vibratory supply unit, 12 v , E10.4.0. With specially tory supply unit, for, 210.4 .50 . With specially
built in P.S.U. for 211.17 .6 . Carriage either set 10%.
H.R.O. SENIOR TABLE MODEL TYPE
5A with "S" meter and crystal filter in excellent 5A with " S " meter and crystal filter in excellent set of 9 general coverage coils and mains P.S.U., E32. Carriage and packing 301 -
Ditto, but model " M ", $£ \mathbf{£ 2 8}$. Carriage and packing 30\%-.

P. G. RADIO LTD.
 170 GOLDHAWK RD.,W. 12 SHEpherd's Bush 4946

 Open 9-5.30 p.m. except Thursday 9 -I p.m.PERSONAL CALLERS WELCOME

TELEPHONE HANDSET. Standard G.P.O. type, new 12/n. P. \& P. 2/-.
INSET MICROPHONE for telephone handset, 2/6. P. \& P. $2 /$
evershed megger circuit tester 2 ranges. $0-1,000$ ohms. $100-200,000$ ohms with test leads leather carrying case. Tested $\mathbf{£ 4}$.19.6. P. \& P. 316 .
A.R.88D. RECEIVERS. Fully reconditioned, E55. Rebuilt model, 685 . Carriage paid U.K.
ULTRA MODERN POWER SUPPLY UNIT. Supply voltage A.C.: $105,110,115,200$, 205, 210, 220, 225, 230, 240, 245, 250 v. Available voltages D.C.
(a) $1700-1900$ v. Stabilised, adjustable approx. 1 mA .
(b) HT2 approx, 45 mA .
(c) $260-350$ v. stabilised, adjustable, approx.
(d) 450 m . approx. 30 mA .
(e) 4.5 V . approx. 150 mA .
(g) 6.3 v. A.C., 4.5 amp . common earth.

5 valves, 7 silicon rectifiers, 4 Solenium. HV reetifiers. Brand new, $\mathbf{6 9 . 1 0 . 0}$. Carriage 12I..
PHASE MONITOR ME-63/U. Manufactured recently by Control Electronics Inc. Measures recently by Control Electronics lnc. Measures
directly and displays on a panel meter the phase angle between two applied audio frequency signals within the range from $20-20,000 \mathrm{cps}$ to an accuracy of $+1.0^{\circ}$. Input signals can be sinusoidal or non-sinusoidal between 2 and 30 v peak. In excellent condition together with handbook and necessary connector. 445 .

Carriage 30/-

COMPLETE V.F.O. UNIT from TX53. Freq. range in 4 switched bands from $1.2-17.5 \mathrm{mc} / \mathrm{s}$. driver, two $\$ 130$ s as voltage stabilisers. Output sufficient to drive two 813 s in parallel. Slow motion drive directly calibrated in mc / s. Provision for crystal control, metering of buffer
and driver stage. Power requirements 400 y . and driver stage. Power requirements 400 y .
and 6.3 v. D.C. Can also be used as low power transmitter. In excellent condition with valves and circuit diagram. 65.19.6. P. $\%$ P. 15/-.

SPECIAL RADIO GHASSIS OFFERS
 HI-FICONTINENTAL STEREOPHONIC RADIOCRALA CHASSIS

Magnificent 'Continental' Stereophonic Radiogram Chassis with piano key switches, built-in ferrite rod aerial. Complete with two $10^{\prime \prime}$ elliptical loudspeakers, plus a mono/ stereo 4-speed autochanger. Complete £29.19.6. Chassis only $19 \frac{1}{2}$ gns.
Special terms available of $\mathbf{4 7 . 1 0 . 0}$ deposit followed by 18 monthly payments of $\in 1.9 .1$ (total H.P. of $£ 33.13 .6$) + is/= P. \& P. Send 88.5 .0 now.

The Imperial Stereophonic 4 waveband chassis has the most advanced specifications yet offered in this country. There is a builtin ferrite rod aerial, seven piano key buttons. Long-Medium-Short and VHF bands. Complete with two $10^{\prime \prime}$ loudspeakers plus a plete with two 10 loudspeakers plus a
mono-stereo 4 speed automatic record mono-stereo 4 speed auto
changer. Complete $£ 41.9 .6$. Chassis only $29 \frac{1}{2}$ gns.
Special terms available of $£ 10.7 .6$ deposit followed by 24 monthly payments of $£ 1.11 .8$ (total H.P. $£ 48.7 .6$) $+17 / 6$ P. \& P. Send $£ 11.5 .0$ now.

HI-FIEMPRESS RADIOERAM CHASSIS

This fabulous 'Empress' Hi-Fi radiogram chassis is offered complete with $10^{\prime \prime}$ loudspeaker plus 4 speed autochanger. At only $£ 24.3 .0$. This is the bargain of the year. Chassis only $15 \frac{1}{2}$ gns.
Special terms available of $\mathbf{£ 6 . 3 . 0}$ deposit followed by 18 monthly payments of $£ 1.3 .4$ (total H.P. $£ 27.3 .0$) $+151-$ P. 8. P. Send $£ 6.18 .0$ now.

All Lewis Radio equipment including valves are fully guaranteed for one year. Send your cheque or P.O. today while stocks last to Dept. P.76.

LEWIS radio

LEWIS RADIO, 100, CHASE SIDE, SOUTHOATE LoNDOts, N.14. Telephoner PAL 3733/9660

LOUDSPEAKERS:-Three bargains this month; 1. Westwell $0.2 \mathrm{~W} ; 80 \mathrm{hm} ; 2$ 2 in. dia., 7/9.
 speaker suitable for most car radios, 13/6. 1/6 P. \& P. on above speakers.
AERIAL WIRE:-Pure Copper, insulated; now available 75 ft . reels at excellent price of $5 /-+1 /-$ P. \& \mathbf{P}.

BATTERY ELIMINATORS:-1. Just try and buy one cheaper! Our "QUANTA" 9\%. power supply will run your transistor radio etc., direct from the mains. Complete With battery-booster strap. 2. For the connoisseur, the slightly more sophis pilot lamp is still cheap at $23 / 6+1 /-P$. \& P. 3. If your requirements are more demanding, why not treat yourself to a NORBLAN eliminatorreplaces even a PP9 battery, $20 / 6+1 / 6 \mathrm{P}$. \& P TEST LEAD KIT:-Truly excellent value Comprised of 2 long test leads with suitable probes; plus-in attachments (spade terminals crocodile clips and circuit probes). All in plastio TEST METERS:-1 Model 200H
TEST MENERS:-1, Model $200 \mathrm{H}-\mathrm{A}$ wonderful buy for the discerning engineer with a limited budget. 20K, ohms per voit makes this an resistance, capacitance and decibels, 24.9.6 post
2. Test 7-Inexpensive multimeter with built-in mirror to eliminate parallax errors. Why pay over s20 when this will often do the trick for only 92.5 .0 post free. Our range of meters is being continually extended.
SEMICONDUCTORS:-We carry a comprehensive range of transistors, diodes rectifiers and other range of transistoris, diodes, rectit
OA81 diodes, 2/3
OC44 transistors, $3 / 4$.
OC45 transistors, $3 / 4$
Post
free
Multi-purpose Paner NPN Transistors, $4 / 6$, $1.5 / 4.5 v$ D.C., $3 / 6$ each $+1 /-$ P. \& P.

Components list now available.
REMEMBER:

BOTHWELL ELECTRIC SUPPLIES (Glasgow) LTD 54 EGLINTON STREET GLASGOW, C. 5
Momber of the Lander Group
is at your disposal whether you are a personal or mail order customer. Use our FREE ADVISORY SERVICE by writing or 'phoning, soUth $2904-$ Trade enquiries welcomet.

NEW VALVES!

Guaranteed Set Tested
24 HOUR SERVICE

155	$3 / 9$	DLe		EL			
14	10	DL	$5 / 11$	EM			
884	10	DY8	$6 / 3$	EY	5/1	U2	
3 V 4		DY87	$6 / 9$	EX8	5/11	U2	
53G	$4 / 6$	EABC	5/6	EZ	$5 / 6$	U19	
F7G	1	EB91		EZ			
8	$3 / 8$	EBC4		E	(\%		
6G	11	B		K	${ }^{6 / 3}$		
2	11/-	EBF'8		N78	141		
20 L 1	11	ECC8		PCC8	¢	B	
20P3	$10 / 6$	ECC8		${ }^{\mathrm{PCC}}$	1018	UBF	
20P4	18/-	ECC8		PCFE	$6 /$		
L1	$9 / 3$	ECC85	$5 / 3$	PCF82	51		
15	$8 / 9$	哣		OFS05	-	UCC85	
PL13	$10 / 3$	ECH42	$7 / 9$	PCL8			
AC82	$6 / 9$	ECH8	$5 / 6$	PCL83			
F91	$3 / 9$	ECL 8	$5 / 11$	P	716	UCH4	
F9	5/11	ECL88	${ }^{6 / 6}$	PL36	$9 / 8$	UCH8 UCL82	
33	$7 / 6$	ECL88	$81-$	PL81	1		
91	${ }^{2 / 9}$	EF39	316	PL82		UF41	
F96	511	EF41	$5 / 9$	PL83	$6 / 11$	TT8	
K32	rym	EF80	$4 / 8$	PL8	61	UF889	
K91		EF85	51	PY32	819	UL4 4	
K92	$7 / 9$	EF86	$6 / 6$	PY33	$8 / 9$	UL84	
- 96	613	EF89	$4 / 8$	PY80	$4 / 9$	UY41	
DL38	$6 / 6$	EF91	$2 / 9$	PY81	6/-	UY8	$4 / 9$
DL35	419	33	$8 / 3$	PY82	$4 / 8$	Z77	$2 / 9$
Postage on 1 valve 9d. extra. On 2 valves or more, postage 6d. per valve extra. Any parcel insured against damage in transit 6d. extra. Omee address, no callers.							

GERALD BERNARD

83 OSBALDESTON ROAD
STOKE NEWINGTON LONDON N. 16

PLEASE MENTION

 practical Wireless WHEN REPLYING TO ADVERTISEMENTSSWLs • SWLs • SWLs • SWLs

Hark!

Hark!

-the DX is calling!

Special RX tuner
$44^{4^{\prime \prime}} \times 33^{\prime \prime}$
$\times 3 \frac{1^{\prime \prime}}{2}$

Variable Frequency

ANTENNA SYSTEM

This revolutionary and pat. pend. aerial system possesses the unique property of an even response over all irequencies between $1.4-30 \mathrm{Mc} / \mathrm{s}$. Every JOYSTICK Aerial System is supplied complete with feeder and an aerial matching unit Just connect your RX-it is ready to go and gives an unprecedented 'lift' to signal strengths especially for clift and cave' dwellers-EVEN FROM UNDERGROUND! Naturally the advantages of using the 'JOYSTICK' 'up-in-the clear are even greater
4,000 Joystics aerials all over the world have already shown that this is the first major break-
through for 20 years in the field of aerials. The performance for such a compact unit (7.6in assembled) is staggering. Even the sceptica have been convinced once they have understood the basic principles and have followed the simple "tune-up" procedure given in the detailed in structions.
New Joystick Range
There is now a whole new range of Joystick Aeria Systems-made to match your QTH, your rig and Your pocketl The SYSTEMS cover SWL, TX/RX Indoor and outdoor, moble and even a new SFSTEMS are reliable and permanent! Read ail about them in our new brochure:-
GUARANTEE: Partridge operate a rigid, 100% Money Back Guarantee if you're not completel satisfled!
Read testimonials from all over the world 'Four difierent receivers showed improved performance over a dipole" reports the U.S.A C.Q. Magazine.

Excellent results, Australia, Ceylon, Sout dirca at good strength although lately reception conditions have been
WA5LEM-Henry Wilkins III of Houston Texas, writes: "The Joy-stick really surprised m it really works like you said it would. . . I took al my dipoles down.
L.G. Rigden, Leighton Buzzard: "I cannot speak too highly of my internal Joystick which con tinues to give most excellent reception.
the Joystick for some months now and ame nsed than pleased with its performance... extremely good reports on 160Mi and 80M.

READ ALL ABOUT IT!

This ticket will bring you the new brochures by return of post!

2 New Titles:

Inexpensive books for all enthusiasts... .

KEY BOOK paperbacks

MORE SIMPLE RADIO CIRCUITS

A. T. Collins

The success of the first book in this series on radio circuits has encouraged me to produce a further selection of circuits for the radio enthusiast covering such interesting apparatus as amplifiers, power units, transistor receivers, superhets, etc. I am sure the constructor will enjoy building this apparatus as much as he did with the previous book. Contents: Two Station Radio and Amplifier Transistorised Converter for Short Waves - Double Triode Receiver with Power Unit - Beginner's Three Transistor Reflex - Modern Three Valve T.R.F. - F.M. Tuner - Two Transistor Portable - Four Valve Superhet - Mains Power Supply for Transistor Sets - Mains Portable with Two R.F. Stages.

61 line illustrations. 96 pages.

ELECTRONICS IN THE HOME

A. T. Collins

The popularity of electronics has increased considerably during the past few years and therefore this book has been produced for the constructor who wishes to open his garage doors by remote control, build his own intercom unit for the home, add sound to his projection of films and cutting out man-made interference on radio reception. These are a few of the many interesting chapters in the book. Contents: Unit for Remote Control - Recording Radio Receivers Home Audio System - MiW. and L.W. Mast Head Pre-Amp - Home Intercom Unit - Variable Voltage Transformer - Electronic Timer Mains Filter Unit - Extension Loudspeakers - 4W Amplifier for Home Films.

63 line illustrations. 96 pages.

Only 3s 6d each

from all booksellers
Including all branches of W. H. Smith, Wymans, Menzies, and Boots or in case of difficulty use this handy order form below.

[^5]| Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2
 Tel. PARK 564I/2/3
 Please write for full catalogue | | | Z \& I AERD SERVICES LTTD.
 Please send all correspondence and Mail-Orders to the Head Office When sending cash with order, please include $2 / 6$ in $£$ for postage and handling MINIMUM CHARGE 1/6. No C.O.D. orders aceepted | | | | | | Retail Shop 85 TOTTENHAM COURT ROAD ONDON WI
 Tel. LANgham 8403
 Open all day Saturday | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | |
| MudThastrrs

 with prods and battereses, 25.5.0.

 Complete with prods and batiery, k8.2.0. P. \& P. $7 / 6$. | | | | | | | | | | | |
| | | | | 7W 5\% | | | | miscellaneous siticon half wave power Reotifiers | | | |
| | | | | GRrmantum point contact diodes | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | ${ }^{1 / 8}$ | | | | |
| | $\xrightarrow{\text { Occao }}$ | | | | | | 4 | | | | |
| | ${ }^{\text {Ocos }}$ | 228 | | | | | | RS27AF (STC) 600 Div, 100 mA
 BY100 (Mulard) 700 pir, 450 m | | | |
| | | ${ }_{8 / 6}^{88 / 6}$ | ${ }^{\text {Tr80 }} 101$ | texas suicon foll-wave bridge rectifiers

 | | | | | | | |
| | - | | | | | | | | | | |
| | | | | | | | | SPECIAL OFFER OF METERS

 ${ }^{500} 10 \mathrm{~mA}$ D.C. M.C. 2 2in. Round | | | |
| STC SLicon junction rectifiers, Hall wave, | | | | | | | | | | | |
| | | | | | | | | Please offer us your surplus valves urgently required klystrons $723 \mathrm{~A} / \mathrm{B}$ and $2 \mathrm{~K} 25,30 /=$ paid
 subject to test | | | |

PRACTICAL WIRELESS
 blueprints

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.
 THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL A
RADIO, TV OR AUDIO EQUIPMENT.

IPRACTICAL WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 7th July, 1966 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, JULY, 1966

insulation in these couplers can badly upset the biasing of the output valves and cause distortion and overheating.

The driver stage has load resistors both in its anode and cathode circuits. This gives antiphase voltage swings to the control grids of the output valves, required for push-pull operation. The driver has less than unity gain (since amplifier stages. Contact bias (or grid current bias as it may be called) is provided on the driver valve by the grid resistor, which is possibly in the order of $10 \mathrm{M} \Omega$. Note that it is returned to cathode.

Unbalance in the output valves often causes trouble. It can arise from unmatched output valves or alteration in value of one of a matched pair of comthe output stage is correctly matched d.c.-wise, a voltmeter connected between the two anodes of the output valves should read almost zero volts. Some amplifiers have adjustable bias on one valve to secure such a balance. This is normally done by fitting a variable resistor in the cathode circuit of one of the output valves-separate cathode biasing resistors for each valve being used with
this arrangement. Excessive unbalance can cause a high content of harmonic this arrangement. Excessive unbalance can cause a high content of harmonic distortion.

Fig. 2

 gain of the amplifier at spot frequencies can be determined. This can be plotted against frequency to provide a diagrammatical illustration of the amplige
ponse curve, as shown in Fig.

To the input of the amplifier should be connected the aerial and to the output the diode detector, as shown in Fig. 3. If the amplifier is wideband, a jumble of several local or high-power transmissions will be heard in the 'phones if the amplifier is working, while if the amplifier is tunable, it should be possible to select a local transmission for the test.

A very powerful transmission may induce sufficient signal into a good aerial to cause some response with the aerial connected direct to the diode circuit point " A " of the detector (Fig. 3). If the signal is non-existent or very input of the amplifier, then one can be sure that the amplifier has gain, at least.

R6 also aids with the thermal compensation of the output pair of transistors, and although only of a relatively small
value (usually a matter of tens of ohms-or less) it does limit the emitter conditions and may save the transistors from damage.
Tr1 is the "driver"
stage, which is an ordinary voltage amplifier loaded at the collector by a transformer winding. The secondary of this transformer is centre-tapped and thus feeds antiphase secondary of the output transformer to the base or emitter circuit of an earlier stage. The biggest trouble in this type of circuit, then, is crossover distortion which is a function of stage balance and biasing, and tests should be made along the
lines discussed above in event of the trouble.
Fig. 9(b) gives a circuit of a valve push-pull output stage. These are nearly always arranged as class A amplifiers, and the one shown adopts the so-called
\dagger

example

 input signal turned wo to avoid ove coil and/or value of the tuning capacitane output peaks, keeping the some sort of indication on the meter at the output, and then adjusting the

The detector could be connected as in Fig. 3 and, with the approximate number of turns on the ferrite rod for 1.w. response, the tuning adjusted until the programme is heard in the 'phones (note: to enhance the pick-up it may be necessary to couple loosely an external aerial to the rod by winding a few
turns of the external aerial wire round the rod).
If the programme tunes (or approaches tuning) at full capacitance of the tuning capacitor more turns are required on the aerial winding proper. If then there are too many turns on the coil. Slight alteration in aerial coil inductance is obtained by moving the coil along the rod. At dead centre, the inductance is at maximum, and it falls as the coil is moved either side of centre towards

D.C. Tests

We shall consider valve and transistor circuits side-by-side in terms of testing as we have done so far. The first logical step to take is to check the supply voltage. In valve equipment we have the heater voltage as well as the high
tension (h.t.) voltage to consider. Heater voltage shows its presence by a glowing tension (h.t.) voltage to consider. Heater voltage shows its presence by a glowing
valve heater. The anode The anode supply of an r.f. amplifier is often fed through the winding of
a coil, while the screen is fed through a medium to high value resistor (some-
times direct from h.t. positive, depending on the nature of the circuit). If a coil is possible. Lack of screen grid voltage should lead (a) to a check of the
The emitter/base bias of (b) is set by R2 R3, and this time the signal input is through an electrolytic C1. A high value is necessary with transistor audio stages owing to the lower impedance at the input relative to valve control grid circuits. R1 contributes a little towards the biasing, but here serves mainly for thermal stabilisation (see booklet No. 2). The output signal is developed following stage. The polarity The polarity of the coupling electrolytic capacitors is important, for reversed
connection when replacing could lead to bias disturbance due to d.c. leakage. The insulation of these couplers can be tested as with valve circuits by noting any change in d.c. voltage across the emitter resistor R1 when the component is disconnected. When it is first connected again, a kick in emitter voltage is normal, owing to the charging current taken by the electrolytic. Negative feedback and reduced gain can also result from open-circuit or value reduction
of C 3 .
Transistor power amplifiers invariably feature a push-pull output stage, using either a pair of p-n-p transistors or one p-n-p and one n-p-n arranged in a complementary pair, coupled to the speaker through an electrolytic instead of the conventional transformer.

 ment of the d.c. conditions of the stage can be gleaned by measuring the voltage transistor. Thus, if an emitter resistor is employed in the circuit, a basic assess-re-checked, for it must be here where the trouble lies current is about normal, the dynamic parts of the circuit should be carefully If to the measured voltage divided by the value of resistance in thousands of ohms.

 may not have emission. This can be checked in situ with a voltmeter simply by
 feed resistor and (b) to a check of the insulation of the bypass capacitor to
chassis. If this is shorting there would be no screen volts and the short-circuit

 trouble. When C 1 is connected from the anode of a previous stage, poor can result from bias 1o/pue uo!niozsp peg -sıəy!jdure fia roj se 8u!!nseəu ృo \$1s!suoo 1 isai opduis \forall 'puouod. or by a faulty comcaused by lack of con-
duction in the valve
 bypass capacitor [ruenis sl! to pue
Iəddoxp pus uəo.jos

 ∞

aspect, we can analyse the circuits almost exactly as described for r.f. amplifiers. The fundamental difference being in the nature of the signal.

Of course, we rarely come across tuned audio amplifiers, though these do exist. Most audio amplifiers that we shall deal with have a relatively fiat reshigh audio (bass and treble) with hi-fi amplifiers.

As we saw in the previous booklets, these amplifiers are essentially for signal voltage or signal power-voltage or power amplifiers. The voltage amplifier amplifier which effectively translates the signal into audio power for operating \qquad the loudspeaker.

Voltage amplifiers are also integrated with equalising networks and tone controls, allowing the programme signals to be tallored as may be required by the nature of the programme source. The volume control is sometimes between
 A basic voltage amplifier is given in Fig. 8 for valve and transistor at (a) and (b) respectively. At (a) the stage is biased by the volts drop across the cathode resistor R1, the control grid being returned to the negative end of this resistor. Thus, the cathodo positive relative to the grid (making 1 .

The input signal is applied through Cl , the signal being developed across R3. The valve 'boosts' the signal and it is re-developed in amplified form
 Test 1 is obvious and will indicate the supply voltage to the stage. The
voltage at test 2 will depend on the resistance value of the collector load. In
 voltage. Test 1 checks the full supply voltage test 2 the collector voltage and transistors and (b) for n -p-n transistors. These circuits show three tests for make one or two tests to prove whether or not the transistor is working as it Once we have established that the junction voltages are reasonable, we can as zero conduction there is no internal short-circuit in the transistor, this trouble would also show A third possibility is failure of or both of the transistor jurstor. If impression of normal conduction and two, lack of base bias showing as lack Thus, we have two possibilities: one, a fault in the transistor giving the voltage drop across the emitter resistor. the matter of a few $\mu \mathrm{A}$. No ordinary meter would show this current in terms of collector current (and hence the current in the emitter resistor) will collapse in the emitter/base junction. If for some reason this current fails, then the

or common point) makes the oscilator suspect.

 Odhams Press Limited.
 to detail tests of this kind within the small compass of this booklet, but interested
 in circuits of that nature. The actual waveform generated can be displayed

 full supply voltage will be indicated irrespective of how the transistor is conducting. If there is a resistor in the order of thousands of ohms also in circuit, on how much current is passing through the collector resistor-the greater the current (hence, the greater the conduction of the transistor), the greater the volts drop across the resistor and the smaller the collector voltage. The base voltage will be very small, often well below one volt. This is because the emitter/base junction is always in forward conduction (by a matter of 9

is not told by this test, but often a knowledge of whether the stage is oscillating or not is sufficient.

This technique can be extended to most oscillators, including local oscillators of radio sets, erase and bias oscillators of tape recorders and oscillators used for test purposes and so forth. ио!̣е

s.sə!!!|dur * \boldsymbol{y}^{\prime} I here are positive, lack of operation of the r.f. amplifier should lead to a more
detailed check of the signal or dynamic conditions. Thus we can prove the d.c. conditions of the transistor, and if reactions in emitter voltage. pletely. This should-if the transistor is working-result in a substantial drop
 current to avoid the possibility of transistor damage. This can be achieved resistor to increase or decrease the base current. It is best to decrease the
 the meter connected as for the emitter test in Fig. 4(b)-reversed polarity Now, tests to prove the goodness of the transistor are possible by changing
the base current while observing the voltage across the emitter resistor. With measurements, a meter of 100,000 ohms/volt sensitivity is desirable. to avoid excessive shunting of the resistor on the low range. For base voltage voltmeter is essential. A meter of not less than 20,000 ohms/volt is necessary

 дәјаи su!peà моI 'әл!
link wire round the wire from the oscillator to the oscillator section of the tuning gang and several turns at the other end round the ferrite rod aerial.
It must be remembered, of course, that the local oscillator frequency is removed from the frequency (or wavelength) shown on the be the i.f. The frequency may, in fact, be equal to the incoming or tuned frequency plus (sometimes minus) the i.f.
As already intimated, a change in d.c. conditions occurs when an oscillating stage is heavily damped so that oscillations cease. This is reflected in terms of a change in anode current of a valve or collector current of a transistor.

If there is no cathode or emitter resistor (some oscillators may not have these components), the voltage change can be registered across an anode or collector resistor.
If neither of these connections is feasible, a low-reading current meter can (i) (ii) and (iii) at (a) for a valve oscillator
Now, the voltage or current should be carefully noted with the stage operating served when the oscillator tuned circuit is damped with a fairly large value capacitor. A 1 or $2 \mu \mathrm{~F}$ usually kills all signs of oscillation in most circuits.
are preset, adjustable either by trimmer or dust-iron core. If the d.c. conditions
 quency equal to the i.f. to arrange some means of detecting this (see, for instance, Fig. 3) and then to adjust the tuned circuits for maximum output.

Some i.f. stages have fed back to them as bias a potential derived from the detector or a.g.c. diode. Valve circuits have a negative bias that rises in valuepotental so the reduce the conductivity of the with rising signal amplitude. The d.c. conditions of these circuits should also be taken into account when analysing the stage from the d.c. aspect.

Lack of gain or reduced sensitivity of i.f. stages is sometimes caused by alteration in value of one or more of the fixed capacitors across the i.f. transformer windings. The " Q " or goodness factor of the winding may also deteriorof time.

Frequency Changers

 as an i.f. amplifier plus a local oscillator, the two functions happening in the the "difference frequency" being selected by the output tuned circuits (the i.f. transformers) for subsequent amplification.
Most enthusiasts, however, have a transistor portable covering the range
of frequencies covered by the suspect local oscillator, and this makes a good

 they have, they will almost certainly know how to apply them for frequencychecks. handy for tests of this kind, but few enthusiasts have such instruments. If oscillator signal is being generated. Being able to obtaincy is also desirable. A wavemeter or grid-dip oscillator is

When the local oscillator is in doubt, the d.c. conditions should be checked. them here. circuits of the various frequency changers, and it is not intended to reproduce detail the with arrangements for injecting an oscillator signal of suitable amplitude into
the mixer along with the incoming signal. Oscillators are considered later.

 a mixer and a local oscillator. With this system the mixer stage is almost
identical to an i.f. amplifier, though there are one or two differences in d.c.

[^0]: Terms of business-Cash with order only. Post/Pscking 6d. per item. Orders over \&5 post free. No C.O.D. All orders cleared day of recelpt. Any parcel insured against daanage in transit or 6d. extra. We are open for personal shoppers $9.00-0$ p.m, Sats. $9.00-1$ p.m. Complete list of modern and ohsolete valves, resistors, condensers, transiormers, potentiometers, mierophones, etc. With terms of business 6d. Plesse enquire for any item not listed with S.A.E.

[^1]: DUKE \& CO. (LONDON) LTD. 621/3 Romford Road, E. 12

 ILF 6001-2-3

[^2]: To BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE. Please send free Brochure, without obligation, to

[^3]: All correspondence intended for the Editor should be addressed to: The Editor, "Practical Wireless", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscription rates, including postage: $36 s$. per year to any part of the world. (c) George Newnes Ltd., 1966 . Copyright in all drawings, photographs and articles published in "Practical Wireless" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^4]: Rumania: Radio Bucharest (P.O. Box 111, Bucharest) gives date and frequency details on its QSL. The 15001530 English transmission beamed to Asia is now on 15,250.

 Switzerland: Swiss Broadcasting Corporation (CH 3000, Bern 16). has reintroduced its evening English transmission for the U.K. It is from 1845-2015 on $9,665 / 7,110$. The morning transmission from 11451315 remains on $9,665 / 11,865$. Other English transmissions affected by recent schedule changes are 0115-0245 6,120/9,535/11,715/11,775; 0415-0545 9,535/11,715/11,775; $0700-08309,595 / 11,775 ; 0845-$ 1015 15,305/15,430/17,830; 1330-1500 11,855/15,305/ 15,395/17,830; 1515—1645 11,880/15,255/15,305/ 17,830.

[^5]: $\boldsymbol{\sim} \boldsymbol{\sim}$ Please send me the following KEY BOOKS: MORE SIMPLE RADIO CIRCUITS ELECTRONICS IN THE HOME
 at 3s. 6d. each (by post 4s.). 1 enclose $£ \quad$: s.
 d. I
 \qquad
 \qquad
 ADDRESS
 PW766
 Simply send this form weith your vemitance of 4s. each title to-George

