An economical framophone Amplifier

With internal battery and muiti-scale the PIFCO All-inOne Radiometer tests everything electrical, Radio and P.A. Equipments, Household appliances of all kinds, Car Lighting Systems, Bell and Teleprinter Circuits. May be used on AC or DC mains.

Obtainable from your loca dealer.
29/6d.
COMPLETE
PIFCO LTD., WATLING ST., MANCHESTER 4 and at 36-37 UPPER THAMES ST., LONDON. E.C. 4

Fmest Soldering? Always specify ERSIN MULTICORE to be precise

Wherever precision soldering is essential, manufacturers, engineers and handymen rely on multicore. There's a multicore solder just made for the job you have in hand. Here are some of them.

MULTICORE SOLDERS LTD.
MULTICORE WORKS, HEMEL HEMPSTEAD. HERTS (BOXMOOR 3636)

Worlal-wide testimon

EVERY CLAIM we have made for these remarkable units has been substantiated by users and experts (including F. J. Camm, John Gilbert, P. Wilson, H. J. BartonChapple and L. Ormond Sparkes) - they have produced the largest volume of unsolicited testimony ever known in the history of loudspeaker manufacture.
From every part of the world we are told that the quality of reproduction is unrivalled except at many times the price-that these units have enabled everyone to enjoy High Fidelity at realistic cost.
We are truly grateful for this amazing response.
Points to note: patented Cambric Cone, high flux density Alcomax magnet, die-cast chassis, Universal impedance speech coil (at $3,7.5$ and 15 ohms) on 8, 9 and to inch models.

Prices from $37 / 6$ to $\mathbf{6 9 . 1 5 . 6 \text { (tax paid). }}$
Ready-to-assemble Bass Reflex Console Cabinet for $10^{\prime \prime}$ or $\mathbf{1 2}^{\prime \prime}$ unit, $\mathbf{f} \mathbf{I O} \mathbf{J 0 . 0}$. Corner Console Cabinet for $8^{\prime \prime}$ unit, $\mathbf{E 5} \mathbf{I O} \mathbf{0}$.

Write for leaflets, or see and hear them any Saturday between 9 a.m. and 12 noon at our London Office, 109 Kingsway, London, W.C.2.

PREMIER RADIO COMPANY

B. H MORRIS \& CO., (RADIO) LTD

Trephone:
OPEN THIL
$6^{\text {² P. M. SATURDAYS }}$
(Dept. P.W.) 207, EDGWARE ROAD, LONDON, W. 2 AMBANSADORK 4083

BUILD THESE NEW PREMIER DESIGNS

3-BAND SUPERHET RECEIVER MAY BE $\mathbf{8 7 1 9 . 6}{ }^{\text {Plus } 2 / 6 \mathrm{PK} \text {. }}$

Latest type Superhet Circuit using 4 valves and metal recturers for operation on $200 / 250$ volts A.C. mains. Waveband covergge - short metres and medium 180-550 metres, and long $900-2,000$ metres, Valve line-up 6 K 8 Det. Changen 1 6V6 output The irst A. house the Recelver stze 12 ine cabinet to high 5 tin deep can be supolied to. din WALNUT ORIVORY BAKELITE Or WOOD.
INSTRUCTION BOOKS $1 /$ - each, (po wlring diagrams, also a detalled stoch

CABINETS-PORTABLE

Morlel PC/1
Brown Rexine covered, 15:11
Overall dimensions $15 \mathrm{in}, x$ 13kin. x in Clearance under lid when closed 2 lin . Model PC/2
Grey Lizard Rexine covered. 45/-
Overall dimensions 15in. x 13 in . x 6 in . Clearance under lid when ,closed 31n. Model PC/3
Rexine type covering In various colours, 09/6.
Overall dimensions 161 In . x 14 itn . x 102 In . Clearance under lid when closed 61 In: All the above Cabinets are supplied with Panel. Carrylng Hand le and Clips. Packing and Postage $2 / 6$
Send for details of the Premier Wide angle Televisor desion which may be butlt for $\mathbf{2 m 0}$.

TRF RECEIVER

 The circuit is the latest type TRF using 3 valves and Metal Rectifiers for operation on 200/250 A.C. mains. Wave band coverage is $180 / 550$ metres on medium wave and E00/2,000 metres on long wave. The dial ts illuminated and the Valve line-up is 6K7 H.F. Pensode 6.J7 Detector and $6 \mathrm{~V} 6-$ output
free) whieh inchines Assembly and dist of priced commonents. \qquad

DECCA MODEL 37A

DUAL SPEED RECORITPJAYEIK includes turnover crystal piok-up with sapphire stylus and a ltght-weight plastic spring-balanced arm. Heavy cauge spressed steel case with brown fauge finjsh in good quality for operation on A.C. mains $200 / 250$ v. 50 c.p.s. Supplie. complete. £B.19.6. Plus pkg. and carr. 5/-.

GARRARD S5

GARRARI Rim Drive 78 r.p.m. complete with magnetic pick-up and turntable, $£ 4.19 .6$, plus $2 / 6 \mathrm{pkg}$. and carr.
SEND 21 d . STAMP FOR OUR 1955 CATALOGUE.

whtch is suitable for elther 3 -ohm or 15-0hm Speakers. Negative feedback is applied from the secondary of the output Transformer over the whole Amplfrequency response. Due to the high requency response. Due to the high gain and wide range tone controls any type $9 \times 7 \times 5 i n$. Price of Amplifier com plete, tested and ready ior use, $85 / 5 /$ plus 3 tested and rerr
NSSIRETIGN IROOK $1 /$ (most free) which inclucles Assembly and wiring diasranas, ifiso a cletailed stoek List of uriceal contponernts.

C. R. TUBES

ICR 517C 61in, picture. This tube is a replacement for the VCRif and VCR517. Guaranteed full size picture. ik $2 / 6$ pk. carr. ins. Plus $2 / 6$ pkg. carr. ins. ©R 51691 n . Blue picture. Heater Volts 4. Anode 4 KV .. In 5/-pkg., carr. ins. PRICE. £1.19.6.

BRIEF SPECIFICATION:

- Heavy Duralumin Baseplate $15^{\prime \prime} \times 11 \frac{1_{2}^{\prime \prime}}{}$
- Three independent motors
- Three speeds: $3 \frac{3}{4}, 7 \frac{1}{2}$ and 15 i.p.s.
- Twin-ťrack recording, $7^{\prime \prime}$ reels ($1,200 \mathrm{ft}$.)
- Foolproof '"drop in' tape loading
- Simple two-knob contral
- Positive mechanical braking
- Interlocked switching
- Visual playing time indication
- Fast forward or reverse in 45 seconds
- Plays all makes of pre-recorded Tapes
- Azimuth adjustment to Record/Playback Head

GUARANTEED NEW AND BOKED

\star	\star		＊		t	＊	＊	＊	\＄	＊	\pm		＊		＊	＊	t	＊
	AC／P	0／0	EFsis	11／6	ME IEX	5／－	rr－	13／6	118.7	$7 / 8$	6． 4.16	718		6／6	7B5	9／6	12A ${ }^{-1}$	9／－
＋	AC＇6／IPES		EK：	8＇－	N：	12／－	［F＋1	11／－	14.	716	6AQ．i	8／6	tik7t：	6／－	787	$8 / 6$		10／－
		$5 / 6$	F1，	12／6	Pr c＇at $^{\text {c }}$	$12 / 6$	11．11	$11 / 6$	14．5	$7 / 6$	6A ${ }^{\text {d }}$＋	8／－	5K7t！T	8／6	713	$8 / 6$	120	8／－
	ATP4	6／6	F1．3＊	13／－	1＇（F）N	$12 / 6$	CY＋1	$10 / 6$	I＇1＇4	$2 / 6$	6134	6／－	おに7 M	6／9	7 ${ }^{\text {H7 }}$	8／－	12114	51.
	1390	14／－	E1．41	$11 / 6$	$\underline{1}$	$12 / 6$	Vposs	8／－	11．	8／－	6B8C：	4／－	6K×1：	$8 /-$	TU7	$81-$	1：35	6／0
＊	111696	71－	E1， 4 ：	1318	PEN゙ロッ	8^{\prime}	YR10．73	$5 / 6$	二15x：	7／－	6BA6	8／－	おんv！心	$9 / 6$	7 R 7	$8 / 6$	1－にス	$9 /-$
	1）11，4	4／－	HLLi4	12／3	1＇EX 4i	8／6	VR116	4／－	－245＊	$6 / 9$	6BE6	8／．	641	$11 / 6$	洨	$8 / 6$	1こんス（T	9 \％－
	$11 \mathrm{H733}$	10／－	ELS！	$8 /$	［1w1	14.6	VRIJ0／3	9／－	$\cdots \mathrm{A}$ ：	B／9	GBR7	$9 / 6$	6 LIG	12／6	7i＋	8／6	103712T	91－
＋	1 H 81	10／．	EM：	9 －	P1＊＊	10\％－	ソ9\％（18	32）	－${ }^{\text {a }}$	51－	6 EWH	$8 / 6$				10／－	12＊${ }^{\text {a }}$	$7 / 6$
－	1：1148	2／－	EY馬	14．6	P1．83	12；－		8／－	3.14	8／－	6BX 6	14／8	64，7 M	$7 / 6$	7	8 －	1	5／6
	FiA50	$2 /-$	HY！	$7 / 6$	1－M12M	10／－	リT7．）（K）	44	3154	5／－	$8{ }^{6} 4$	8／－	120	$7 / 6$	41	$8 / 6$	$1 \because 4.57$	816
		21－	EZ＋4	10／－		516		7／6	341	9／－	$60^{\circ} \mathrm{EOT}$	$7 / 6$	62才：	9／－	8119	916	1ごに7	$8 / 6$
t	12134	11.	1：\％＋1	11．－	PV：a	76	V丁口01		30：	10／－	$6 C^{6} 6$	6／B	6－77：1	9／－	815	2／9	$1 \because \cdots 1.7$	$9 / 6$
	HRC：33	2／6	H314	5／－	P） 11	$9 / 8$	硣	6／－	$3 \mathrm{B4}$	$8 / 6$	$6{ }_{6} 9$	8.	617 T		9001	$5 / 6$	$1 \because+47$	$8 / 6$
	FB104	11／－	H63：	79	PY゙4L	10／6	vए39（	U12／	3 y 4	8／－	$6 \mathrm{Cl1369}$	18／6		8／－	914%	$5 / 6$	12ッR＂	$7 / 6$
\star	1S15\％80	$11 / 6$	HT，1800	$3 \% 9$	118．7	15：－	14，	$8 / 6$	41）1	$31-$	6113	6／－	6－178	$7 / 6$	chnas	$5 / 6$	2011	9／－
，	NCs\％	$6 / 3$	HL23い以	716	\＄1：3	816	VC111	$3 / 6$	$\underline{\square}$	8／－	tilli	213	6－3\％ 7	6／－	gury	5／6	20F＇2	12／6
	HCP1	$2 / 6$	H12010	$6 / 9$	$\leq P \leq{ }^{10}$	$8 / 9$	Y1120 ${ }^{\text {a }}$	3！－	ご + （		6F6\％	7／6	disjoit	8／－	90005	6／－	밴， 1	10／－
	ECY3	$8 / 6$	HPalle	76	N14t	$3 / 9$	wht	91－		$8 / 6$	6F5\％	$8 / 6$	6゙ャにす	$8 / 3$	954	$2 /-$	20P：	$11 / 8$
＊	ECC3J	$8 / 6$	HRtr10	$8 / 9$	\＄1．41	$2 / 6$		$10 / 6$	3ysut	$8 / 6$	6FB4	7／8	bisla	$81 /$		$4 / 9$	2ll $x^{2}+$	11／－
	Fernsis	13／－	KT2	5／－	TH2\％	$7 / 8$	W7i	$9 / 6$	\％／3＇	$8 / 6$	GFl^{6}	18／6	6xN゙G（1）	9／－	955	$3 / 6$	－ 5 An：	$8 / 8$
	EClit4:	$10 / 6$	KTN－	10／－	Tヤ゚め゙	$9 /-$	Wif	$8 / 6$	5724：	$8 / 6$	6FI4	$12 / 6$	fisut	$8 \mathrm{~g}-$	$10 \mathrm{C}+2$	$13 / 6$		8／6
\star	WCJP4	14／8	$1 \mathrm{~T} \div 3 \mathrm{C}$	$11 / 6$	${ }^{1} 10$	9／－	$\begin{aligned} & W \times 1 \\ & x=1 \end{aligned}$	10／－	6.47	$10 / 6$	fiFl．）	11／6	6idst	8／6	10FI	10／－	3544t	12／－
	lifs	6／6	$\begin{aligned} & \mathrm{KTOH} \\ & \mathrm{KTH} \end{aligned}$	11／6	\％	8／6	X78	14／－	6．AM，	$10 / 6$	606f	8／6	6s\％	7／6	10F9	18／－		9／8
	EF36	8／8／8	кT\％	$8 / 8$ 819	［25	$14 / 8$ $10 / 6$	O7．t 1.15	6／－	6．4\％	$6 / 6$ $8 / 8$	${ }^{6} \mathrm{H} 6$	$3 / 6$ $5 /-$	6ए54：	$8 / 6$ $7 / 6$	1HLD11 10 P （	11／6	－	1119
大	EF39	016	KTw6s	719	［201	10／6	14．71T	B／6	OAL	$7 / 6$	6．Ju：	5／8－	6Vul：	$7 / 6$ $7 / 8$	10P1：	1116	$351.61 \mathrm{~L}^{\prime}$	813
	EP41	20／－	К＇TV＋1	619	「104	10／－	1AT	$11 / 6$	6．1J5	9／－	6Jbit\％	\＄／6	6）${ }^{\text {civer }}$	7／6	10814	11／6		101－
	5120．4y	8／－	LIMOIO	619	「AF゙＋3	12\％	1 mb	8／－	1）以下，	9／－	foJ．is	6／6	five	15／\％	1246	8／9	\＃5Z4CT	$8 / 8$
\star	WF50	6／0	1．P－2011	C／9	［＇B41	9／7	1 L 4	716	balm	\％／－	がJ	8／－	6X +	$8 \mathrm{i}-$	12AH8	$11 / 8$	SMlfitic	818
	EFOt	\％／－	ML ${ }^{\text {d }}$	8， 6		110，	1 LD	$6 / 8$	6.4317	716	f3．\％	8／6	9： 17 T	819	1こAT	9／－1	316，	$7 / 6$

MAGNETIC PICK－UP HEAD
For conversion of Acoustic Ciramophone to Electrie repro－ dictions．Fitted with I niver⿻a Aln．For use with siundaril size Needle Hightr polished plactic brown finish．＇Irpe 11＂，\％om！ hrown buish．Gutput volts．Special Prize $17 / 8$ eia．

METAL TUBULAR OONDENSERS （WIRE LAND3） gprague 1 mid．3ubts．．．．9d，e3．

 Mathory i 1 ，5uls．．．． $1 /-$ Rhe T．C．C．，Metalmite， 02 msa．9ins．

SILVER MICA CONDENSERS Irozens of sizes avallable，incliding

 Price 3rd．ell．

MOULDED MICA CONDENSERS All by well－known makera．T．C． ibubilier，Hunts．etc．Imal（ 1 Gu pr）．

 ． 41 （ $10,\left(\mathrm{Mm}, \mathrm{pH}\right.$ ），ete．All $4 \frac{1}{2} \mathrm{~d}$ ．each．

OSMOR COIL PACK Tyne
H．
T．
50
vp W．T．8．， 50% $15+50-1$

HEADPHONES
suplus Cl．R．phoves， 1 2st．Ω ．$/ 16 \mathrm{mair}$ UHK ．， $4,000 \Omega$ 11／6．pr． lHHK ，13．A．．．． $13 / 6 \mathrm{rm}$ ．

CRYSTAL DIODES
Two for 211 or $12 /=$ doz．

Atherican strpiliss a Throat Nictophousz，type Ti：ors． Atc．
（：artati Microphone（arplus）． wita－li－In barulle，bakelite ale ．

CHOKES
P＇It wound IT．F．chokes ．．．．1／－cr． ？HI ？ng $\Omega 60 \mathrm{~mA}$ ，L．E． －laker

0 mA ．L．F ．
BUZZER
（1）hiltone liakelite－chse．
luzger（lomi tone）

ALPHA invite you to build this 4 valve， 2 wave． band Superhet Portable

Full details，eireuit diagram point to point wiring instrue－ tious，and courlete list of components．Available $2 / 6$ ea Caze can be sup plied separately Available in the followitsg attrac． tive colours ： －Lizard lirey －Blue．
－Marnon． All components can he suppliel sepatately．

TELEROD INDOOR
AERIALS AERIALS
For Kirk（6：shott－fre
quency otsty．Cratiplete
whith co－avial lesd．Listed
at ami packime 111

STILL A FEW LEFT ＂THE COMPACT＂TV AERIAL TYPE CD4 BY ANTIFERENCE，LTD．

Full inatructions with each one． Listed $\overline{b / 2 / \%}$ Our price，14／6，plas 1／6 pacting and post．

TERMS：

Cash with order or C．O．D．Postage and Parking charges extra，as follows：Orders value $10 /$ add 9d．；20；add $1 /=$ ；40／－add $1 / 6$ ； 65 add $2 /-$ unless otherwise stated．Minimum C．O．D．fee and postage $2 / 3$ ．
MAIL ORDERONLY

LOUDSPEAKER CABINETS

Thisathractive walnot finished cabinat of availahle for b！ia．ur Mith．Neaker Intita．Metal spegiger iret，complete with luxck and itubler feet．
6！in．type
 base．Price $13 / 6$ Fitith．
8in．type
Measures 10 jin．\times ll＇in．x تुin．at
base．Price $20 / 3$ ens＇h．

WHEN ORDERING PLEASE QUOTE＂DEPT．P．W．＂

IASKYS RADIO
 SPECIAR OFFER : MULIT-TEST METEIRS 1.000 ohins per volt. Basic movement 400 micro-amp., 3 n. A.C. D.C. $n-5 ; 000$ V., $0-1$ a mp. 11 switched ranges; 100,000 ohms (using 3 v. battery supplied) Also decibel range. In polished wood carrying case ($6 \times 6 \frac{1}{2} \mathrm{in}$. closed). with leather handle and space for test leads. Made in U.S.A. LASKI'S PRICE 95/- Post \& Insur., 3/6. TEST
 GAVGED 'TUNING
 CONDENSERS Standard 2-gang, $2 \frac{1}{5} \times 1 \frac{1}{2} \times 21 m$. Standard 3-gang, $2!\times 1 \frac{1}{3} \times 3 \frac{1}{2}$. ${ }_{7}$ Stan
 Midget 2-gang with trimmers,
 Miniature 3 -gang. less trimmers, 3 x 18 x. 11 in .. $10 / 6$.

INEXPENSIVE RADIO YOU CAN EASILY BUILD

ALL COMPONENTS AND CABINETS AVAILABLE SEPARATELY

PNRCLL No, 2. Contains everything to build this T.R.F. 3-valve Set for 2001250 A.C. mains. mel: and long wave. Uses 6K7G, 6J7. 6V6, and metal rectifiers. Neat Plastic Cabinet. walnut or jvery finish. or Wood Cabinet as illus. on right. size $12 \times 6 \frac{1}{2} \times 5 \frac{1}{\mathrm{in}}$. deep.
INsTRUCTION BOOK and shopping

1. post free.

CABINEI ONI, Plastic or Wood, as ilius.. 1 r//6. Carr. $2 / 6$

LASKY'S 4-WATT A.C. AMPLIFIER KIT

Uses 1 each 6SL7. 6V6, 5Z4. All components, chassis valves, output trans., mains trans. eA.5.0. Carrlage and Packing, $2 \cdot 6$.
INSIRLCTION LOOK and shopping list, 1/- post free.

Special Offer:

DRILLED CHASSIS \& DIAL ASSEMBLY

I.F. TRANSFORMFRS MINIATURE. WFARITE TYPE 550.
W45-520 ke/s. $8 / 6$ per pair.
WEARITE TYPE 500
$450-470 \% \mathrm{hc} / \mathrm{s}, 8 / 6$ per-pair.

P.M. LOUDSPEAKERS

12in. Plessey, 3 :ohms, $37 / 6$. 10 in . Heary Duty, aluminium speech coll. 3 ohms, 26/6.
 $9 / 6$; 10 in ., $191-$
rinin C.R.TURES NFAELY HALE PIRICE Famous make, Metal cone. amp. heater, e.h.t. required $10-14 \mathrm{kv}$. $1012 \mathrm{~K}^{\prime} \mathrm{S}$ PRICE £1219.6.

PLEASE ADDRESS ALL MAIL ORDERS TO HARROW ROAD

all day
SAT.
Half duy
370, HARKOW 1ROA1D. PADDIVGTON, W.g. Telephone: CUNningham 1979-7214.

Thers.

PARCEL No. 1. Contains everything to build ${ }^{5}$ this 4 -valive. 3 -wave Superhet for $200 / 250$ A.C. mains. Uses 6K8. 6K7, 6Q7. 676 valves. Attractive Wood Cabinet, walnut veneer or Plastic Cabinet as illus. on left, size $12 \times 6 \frac{1}{2} \times 5$ in. deep. INSTEUCTION HOOK and shopping]ist, $1 /$ - post free.

AN HE HOHLT FOR
£7.19.6
Carr $\frac{8}{8 / 6}$

POSt the coupon today for our bROCHURE ON THE LATEST METHODS Of HOME TRAINING FOR OVER 150 CARERS \& HOBBIES

PRIVATE AND INDIVIDUAL TUITION IN VOUR OWN HOME Lity and Eullds Grouped Certificates in Telccommunications: A.M. Brit. I.R.E. Examination, Radio Amateur's Licence, Rádio and Television Servicing Certificates, General Radio and Television Courses, Radar, Sound Recordira, etc. Also Courses in all other branches of Engineering and Commerce.

The advantages of E.M.I. training. \star The teaching methods are planned to meet modern industrial requirements. $*$ We offer training in all subjects which provide lucrative jobs or interesting hobbies. * A tutor is personally allotted by name to ensure private and individual tuition. 太 Free advice covering all aspects of training is given to students before ard after enrolling with us.

Courses from 15/- per month

NEW
LEARN THE PRACTICAL WAY. With many of our courses we supply actual equipment. Courses include: Radio, Television, Electronics, Draughtsmanship, Carpentry, Photography, and | Commercial Art, etc.

Post THIS ogopow Thafy

Send without obligation your FREE book.
E.M.I. INSTITUTES, Dept. 32K

43 Grove Park Road, London, W.4.
Phone: Chiswick 4417/8.
NAME

- JUNE

SUBJECT(S) OF INTEREST

THE "WEYRAD" SIGNAL GENERATOR
 AN INSTRUMENT OF HIGH ACCURACY AT LOW COST

Coverage' $100 \mathrm{Kc} / \mathrm{s}-70 \mathrm{Mc} / \mathrm{s}$ (on fundamentals).
Accuracy better than $\pm 2 \%$ on all ranges.

- Large, clearly calibrated scale.
- Modulated or C.W. output.
- $500 \mathrm{c} / \mathrm{s}$ A.F. source.
-

S.G.M.I-A.C. mains operation. Double wound, varnish-impregnated transformer, tapped 210/225/250 volts.
S.G.B.I-All dry battery operated.

- All components are by well-known manufacturers ensuring maximum reliability.
- Both types in quantity production.
- Illustrated leaflet available, price 2d.

WEYMOUTH RADIO MANUFACTURING CO., LTD. CRESCENT STREET, WEYMOUTH, DORSET

All thase ${ }^{\text {EFSOS. GRYSTAL PRODUGTS }}$

 -and wore too - go to show that faithifut reproduction need not be expensive

COSMOCORD LTD. ENFIELD, MIDDLESEX. ENFIELD 4022

An Interference Racket?

AMEMBER of Parliament, during the recent debate on interference suppression in the House of Commons, gave a warning of the possibility of exploitation of the regulations by spivs. He said that it would be comparatively easy for an unscrupulous person to knock at the door, say that there had been complaints of interference, and then proceed to sell some kind of phoney, and perhaps useless, piece of apparatus.

The reply was that the Regulations would be enforced only when the interference was unreasonable and when the owner would not take action of his own accord. It is probable that only in a small minority of cases would it be necessary to do this.

The G.P.O. analysis of interference complaints shows that the majority of complaints relate to interference with television. During the year ended January 20th, 1955, 55,566 complaints were received regarding interference with sound radio and 85,636 relating to interference with television. It is our view that interference with sound radio by television receivers is more widespread than these statistics would indicate, for the simple reason that most people now own a sound as well as a television receiver and may be reluctant to complain about interference in case one or other of their own receivers is also causing interference.

THE RADIO SHOW

T Earls Court from August 24th to September 3rd. This and our associated journals will, as hitherto, be represented on our stand. We shall as in past years produce a special design to signalise the occasion. We are at present experimenting with frequency-modulation circuits, and we mention this because of the large number of letters we have received on the subject of F.M. We hope this year that there will be a greater display of components for amateur set builders, and that some of the smaller suppliers of kits and parts will be represented at the Radio Show.

ABOUT CLUBS

A
S a result of the remarks of a contributor on the subject of clubs, we have received a large amount of correspondence from members of similar organisations seeking our advice. Our
advice is brief and to the point. It is that no one should join a club unless it is run on constitutional lines, where the members themselves have a say in the conduct of the club's affairs and are able to elect their officers, and their club officials each year. In general, proprietor clubs, that is clubs founded by some individual or some group of individuals for the purpose of profit, should be avoided. They. are not clubs properly so described but businesses. It is quite clear from the correspondence that some of these clubs are breaking the law, and that their sponsors are either unaware of or deliberately abrogating the provisions of the various Acts relating to clubs, particularly the Business Names Act.

Our contributor this month postulates a hypothetical case in which someone could start a club, install himself as the proprietor, attract a large membership, and therefore a large annual revenue, and give very little of it back in the form of service to the club. The members would have no redress, except to resign. Where a club claims national or international standing, it should undoubtedly be run on the lines we have already laid down in this journal.

We make these comments because some members of the club in question have stated that they are satisfied with the present order of things. But is the law being obeyed? We repeat what we have stated in other issues, that it is absolutely necessary for a balance-sheet to be published and that such balance-sheets should be independently audited.

This journal has always acted as a watchdog for its readers, and in the 22 years of its history has investigated a large number of clubs, some of whom were found to be specious and merely run for profit. It is because of complaints we receive that investigations are made, and we hope that readers who are members of any club will continue to keep us informed when matters arise which do not comply with club practice.

We do not intend to imply that all clubs are not properly run, but very few are. This may be due in the large majority of cases to incompetence or ignorance, and once the defects are pointed out matters are often remedied. Proprietary clübs are seldom satisfactory and accurate investigation impossible, because the books are not kept in accord with book-keeping practice.-F. J. C.

Round the Ulorat Wiretess

Broadeast Receiving Licences

THE following statement shows the approximate number of broadcast receiving licences issued during the year ended February, 1955. The grand total of sound and television licences was 13,916,246.

Region	Number
ondon Posta	1,464,333
Home Counties	1,419,552
Midland	1,148,320
North Eastern	1,523,698
North Western	1,173,445
South Western	
Wales and Border	
Counties	78
Total England and Wales 8,271,318	
Scotland ...	1,019,013
Northern Ireland	218,522
Grand Totals	
Grand Totals	9,508,853

Head of Religious Broadcasting

THE BBC has announced that the Reverend Roy McKay has been appointed Head of Religious Broadcasting as from June 20th.

A technician replaces an output unit into the radio distribution unit of a channel used by controllers sfrcaking to aircraft. (See "Air Traffic Control".)

By "QUESTOR"

The present Head of Religious Broadcasting is the Reverend Francis House, O.B.E., who was appointed in 1947. His predecessors were the late Dr. F. A. Iremenger (1933-39) and Dr. J. W. Welch (1939-46).

BBC Concerts

D
URING May the BBC will present a series of seven concerts to be given on. Wednesdays and Sundays by the BBC Symphony Orchestra and Chorus at the Royal Festival Hall. Doctor Bruno Walter will conduct four of the seven concerts, the dates of which are May $11,15,18,22,25$, 29 and June 1.

Air Traffic Control
A NEW Air Traffic Control Centre for Southern England, which has been built at London Airport, recently began operations.

It replaces the Air Traffic Control Centre at Uxbridge, Middlesex, which was separated from the longrange radar unit at London Airport by five miles of telephone wires. The main feature of the new centre is that for the first time the air traffic controllers work alongside the radar unit. This represents a fundamental change. Radar is now accepted as an essential part of the cont rol system, rather than an adjunct, and it is expected that the new integrated centre will handle the ever-increasing volume of air traffic over Southern England with greater speed and efficiency than was possible before.

The heart of the new centic consists of a control room 60 ft . by 50 ft . with a "service space" of the same size immediately below it. Only those items of radio and radar equipment required by the controlling staff are located in the control room itself - the only radar equipments to be seen, for instance, are desk-mounted units of the shape and size of a table-model television set. Associated equipment has been placed immediately below or in nearby equipment rooms and is easily reached for maintenance purposes without disturbing the operating staff.

G.E.C. Atomic Energy Plans

THE General Electric Co. Ltd., announces that Mr. R. N. Millar, lately chicf mechanical engineer to the British General Electric Co. (Pty.) Lid., Australia, has been appointed to take charge of its newly formed Industrial Atomic Energy Section.

Cyprus Broadcasting Station

O^{N} April 3rd came news that the Marconi 20 kW tansmitter at the Cyprus Broadeasting Station at Nicosia had been damaged by saboteurs and was out of operation.

An emergency plan on an around-the-clock basis was rushed into action at Marconi's Chelmsford works. Forty-eight hours later a complete 2 kW broadcasting transmitter was in packing cases ready for shipment.

The transmitter was flown 10 Cyprus the next day, accompanied by Marconi engineers. Marconi's stated that, barring unforescen contingencies, the equipment should be operational within a short time after arrival.

Marconi Mast Radiators for Corfu

 IN the face of severe German competition, Marconi's Wireless Telegraph Co., Ltd., has secured an important order from the Greek Broadcasting authorities.The order, which was obtained through the company's Greek agents, Messrs. P. C. Lycourezos, Ltd., is for two 148-metre (approx. 485 ft .) mast radiators of galvanised lattice steel, complete with R.F. transmission line of the five-wire unbalanced type, aerial matching
equipment, an earth system, test apparatus and spares.

- The masts are to be installed on the island of Corfu, at a coastal site about 3 kilometres south-west of the town of Corfu. The aerial matching equipment will be coupled to an existing 50 kW transmitter.

The installation work is to be carried out by Marconi engineers.

Invisible Hearing Aid

IT is reported from the U.S.A. that a new hearing aid has been developed which is entirely invisible. Made to resemble a pair of horn-rimmed eyeglasses it incorporates over 200 component parts in a standard width and weight spectacle frame, and a thin, colourless, flexible tube lin . in length leads direct to the ear from the bow. The microphone is in the frame directly behind the ear. The miniature battery lasts 180 hours.

F.M. Litigation

THE long-standing action against R.C.A. has now been settled by the payment of $1,000,000$ dollars by the R.C.A. to the estate of the late Major Armstrong. The action was commenced in 1948 by Armstrong, accusing the R.C.A. and N.B.C. of infringement of five of his basic patents on frequency modulation.

Hi-Fi Demonstration

A NEW idea in hi-fidelity sound demonstrations, named "Soundorama" took place in Washington. A 90 -piece orchestra played a selection which was tape recorded and then played back through a most ingenious network. For this, ten 50 -watt amplifiers were used, and ten three-way loudspeaker systems mounted on the stage with the orchestra. The audience were thus able to compare the original with the played back recording.

Inventor of Radar Caught

SIR ROBERT WATSON-WATT, the noted radar pioneer, was 1rapped in Kingston, Ontario, whilst speeding. He was fined $\$ 12.50$, and it was stated that the policc checked his speed by means of a radar installation.

Ampliphase Transmitter

A NEW system being used by the modulated signal to be obtained
with only a few watts of audio power instead of the 35 kW normally required. The system uses phase modulation principles to produce standard amplitude modulation. Its circuitry permits two phase-modulated amplifiers to produce a combined power equal to the output of much larger AM

Sutton Coldfield Television Transmitting Station in which post he has remained until taking up his present appointment.

Radio and TV Sales

THE second of the interim statements of retail sales of radio and television receivers derived

One of the radio officers of the new 20,000-ton Shaw Savill passenger liner" Sowthern Cross" at work with the Marconi Marine equipment in the radio room. He is seent tuning the "Mercury" receiver, while other equipment shown "comprises (l. to r.) the "Worldspan"" main transmitter, " Reliance" emergency transmitler. "Electra" receiver "Alert" emmergency receiver and " Allokey" antomatic keying unit.
transmitters, resulting in a saving of operating costs of up to 50 per cent.

BBC Engineering Division Appoint-

 mentTHE BBC announces the appointment of Mr. T. P. Douglas, M.B.E., as Engineer-in-Charge, Sutton Coldfield Television Transmitting Station.

Mr. Douglas joined the BBC in 1938 as a junior maintenance engineer at the Daventry Transmitting Station.

During the war he held a commission in the Royal Corps of Signals and was, for $3 \frac{1}{2}$ years, a prisoner of war in Siam. He was awarded the M.B.E. in 1948 in recognition of his services while in captivity when he was actively engaged in radio work.
Mi. Douglas returned to the BBC at Daventry in 1946. He was transferred to Kirk o'Shotts Television Transmitting Station in 1951 and in 1953 became the Assistant Engineer-in-Charge of the
from the British Radio Equipment Manulacturers Association monthly market surveys shows that, as compared with January, there was vintually no change in the sales during February of radio receivers and radiograms, but television sales fell in comparison with January by approximately 10,000 .

Estimated National Retail Sales Radios and Television Month Radiograms Receivers January $1955 \quad 122,000 \quad 97,000$ February 1955 122,400 87,200

An approach is being made to over 1,000 additional dealers requesting their co-operation in the extension of the B.R.E.M.A. sample. This extension has been designed to obtain returns for trade in March, and monthly thereafier, from a sufficiently large and representative cross-section of traders to enable reliable regional estimates to be made and for stocks and sales to be analysed, e.g., showing sales for cash and hire purchase or creudit.

A GOOD AMPLIFIER FOR UNDER £5

By A. Selwood

As for valves, practically any good pentode and triode will do ; in the circuit of Fig. 1 an SP61 amplifier and a triode-connected EF50 splits the signal.
The only other feature of interest in the circuit is the use of the 6 volt RK 34 as the double-triode output valve. The RK34 was chosen for no other reason than that it may be bought for just half a crown. Originally it was designed as an R.F. power output valve capable of handling 20 watts, so there is little likelihood of it overloading in the present circuit. Another RK34 with its grids tied to their separate anodes is used as the full-wave rectifier.

The feedback loop and the scratch filter are elementary, and, some may say, rudimentary. Nevertheless they function quite well.

Most "shop" mains transformers will need an extra volt wound on to their rectifier windings, since the RK34 has a 6 volt heater. In most cases this is very easy because the rectifier windings are put on last, at the outside of the coil. But do make sure ! Loose H.T. windings are an unpleasant sight, and 38 s.w.g. is tricky to handle.

Price List

The price of parts list is complete, and compiled from the catalogue of Messrs. Radio Supply Co. Ltd., Leeds. The items marked with an asterisk

The Circuit

The heart of this amplifier is the semi-starvătion operated pentode, and the difect coupling to the phasesplitter. The anode of the first valve works about a steady voltage of 100 volts ; this state of affairs being brought about by appropriate choice of the anode load resistor and of the screen potential for V1. Now it so happens that a positive bias of 100 volts or so is required by the phase splitter, which then draws its four or five milliamps quite happily. The simple nature of the coupling and a typical set of operating conditions are shown above. The load resistors of the phase-splitter must be of exactly equal value. They may best be matched, if they are the latge two-watt type, by filing a slot into the resistor of lower value, and deepening it until the resistors are the same value. A touch of hot shellac will keep moisture out of the cut.

Under view of the complete amplifier.
do not appear to be readily obtained elsewhere. When the amplifier is complete, it is essential to check that the anode voltage of V 1 is within 10 volts of 100 volts positive. If it is not, a slight amount of
juggling with the value of R6 will be necessary. Voltages and currents at other parts of the circuit are indicated below; they were measured with a $50 \mu \mathrm{~A}$ meter.

The sound output is more than sufficient for a room 20 ft . square, and the gain is such that the amplifier overloads at maximum volume and 400 mV input. The quality is good to listen to : it cannot be
lished in these pages, whilst we are at all times willing to assist ${ }^{\circ}$ readers who find themselves in difliculty in getting satisfactory results from apparatus built from the descriptions in these pages. we are

PARTS PRICE LIST

*Mains Trans. $\mathbf{3 5 0 - 0 - 3 5 0}$ v. 70 mA ; 6.3 v. 2 a. : 5 v. 2 a. (needs s'ight modification)
Choke-50 hy 50 mA (or near)... $\quad .$.
*O/P Trans.-push-pull 8 watt 6v. 6 to 3Ω
C8 + C9-16 $/ 1 \mathrm{~F}+16 \mu \mathrm{~F}$ Dubilier electrolytic 500 v .
$\mathrm{C} 3+\mathrm{C} 4-5 / / \mathrm{F}+8 / / \mathrm{F}$ Dubilier electroIytic 500 v .
*V3, V4-RK34 at 2/6
$\begin{array}{llll}\ldots & \ldots & 3 & 9\end{array}$
*V3, V4-RK34 at
V1-SP61 at $2 / 9$
V2-EF50

HARDWARE

1—chassis 16 s.w.g. $12 \mathrm{in} . \times 8 \mathrm{in} . \times 2$ 2 in .
1-Switch Arrows T.S.P., 250 v. 1 a. ..
1-British screened top cap
1-Fuseholder and 250 mA fuse
*2-UX 7-pin ceramic bases RK34 at 10id.
1-I. O. valveholder
1-B9G ceramic vaiveholder
4-plain top clips
1-tag board
Sundries
s. d.
$18 \quad 9$
9
$7 \quad 11$
59
$\begin{array}{ll}3 & 9 \\ 5 & 0\end{array}$
$2 \quad 9$
9

The Radio Components Show

DETAILS OF SOME OF THE EXHIBITS AT THE R.E.C.M.F. EXHIBITION IN LONDON

TTHIS year's exhibition of component parts showed very little which was new in the radio line, although, as readers of our companion paper will see, several new television items were on show. In the main, however, the exhibition merely consisted of well-known lines plus one or two new versions of popular items. The greatest part of the new developments was concerned with the printed circuit technique, which no doubt in time will revolutionise the construction of all forms of electronic apparatus. T.C.C. had some interesting items in this connection, as they are now specialising in this particular branch. These included:

Front view of the new Plessey 5-channel pre-selector.
Several high quality amplifiers.
Radio receivers of the A.C./D.C. and battery types.
Portable with contained battery.
TV tuners for Band I and Band III.
Aerial filters for TV receivers.
Eross-over networks.
I.F. transformers for TV.
J.F. transformers and amplifiers for TV.

Transistor cemputor panels.
Telephone distribution panels.
Flexible circuits, etc., etc.
Other printed circuit developments were seen on the Belling Lee Stand, and one of these is here illustrated. It is a circuit connector. These are designed for easy installation, and can be mounted side-byside in multiples of four connector strips to produce a practically unlimited number of contacts. They can be "stacked" with spacers between for component mounting. They can be mounted direct to plates, printed or otherwise, and are suitable for mounting on ceramic and laminated plastic printed circuits.

In connection with the development of these printed circuit applications the Multicore Company have developed the special solder which they showed at the last exhibition, and now the complete range at present offered for the soldering of printed circuits is as follows:
P.C.1. Multicore Abrasive Degreaser.
P.C.2. Multicore Dip Cleaner.
P.C.10. Multicore Activated Surface Preservative.
P.C.20. Multicore Special Non-corrosive Liquid Flux.
P.C.21. Oil-free Special Non-corrosive Liquid Flux.
P.C.31. Multicore Alloy for Printed Circuit Solder Baths.
P.C.35. Ersin Multicore 5 -core Solder for hand soldering the printed circuits.
P.C.38. Special Multicore Alloy Service.
P.C.40. Multicore Anti-oxidant Oil.
P.C.50. Multicore Finishing Enamel.

Trade Items

As the largest manufacturer of components to the trade, the Plessey Company naturally had the widest range of separate items, and as many of these are used by other manufacturers in their products, an inspection of the stand gave a very good all-round idea as to what is available. Apart from the special television apparatus, two new pre-selectors, the PV98 and PV98A, were shown. These are designed for use in conjunction with a single-channel fixed frequency H.F. receiver, such as the Plessey PR53A, PR53C or PR51C, to provide switched selection of any one of five pre-set crystal-controlled channels in the frequency range $2.7-27 \mathrm{Mc} / \mathrm{s}$.

The PV98 is fitted with a crystal-controlled B.F.O. for use when receiving C.W. signals, while the PV98A is designed for M.C.W. and R/T working. Both are extremely versatile and may be used on conjunction with Plessey or other manufacturers' units in commercial communication networks. In an F.S.K. installation, for example, the use of a PV98 in conjunction with stable oscillators PG81 and PG82, provides five-channel reception with the same high stability as the standard PVR80 equipment, and is hence suitable for unattended operation.

When the stability requirements are less critical,

One of the many printed circuit adaptations-a Belling Lee plug and socket combination.
the PV98 may be used with its own internal oscillators, making an F.S.K. installation available at very moderate cost. Operational trials have shown that extremely good performance can be achieved if the vernier controls are periodically adjusted.

One of the new " C " core potted components-by' Whiteley Electrical.

Both pre-selectors comprise an R.F. stage, a crystal-controlled H.F. oscillator and a mixer, giving a low impedance coaxial output at a fixed frequency of $2.1 \mathrm{Mc} / \mathrm{s}$. The R.F. stage is tuned by pre-set circuits and the oscillator stage crystal controlled, the appropriate circuits being selected by a single five-position rotary switch manually operated from the front panel. Alternatively, the selector switch may be motor-driven from the rear, thus permitting remote control.

Additional facilities are available on the PV98 for operation from external oscillators. The tuned circuits are mounted as plug-in units, six ranges being provided to cover the frequency band.

Two pre-selectors and two receivers may be connected to form a dual-diversity combination, the receiver outputs feeding a conventional path selector or diversity switch unit. Under these conditions the channel frequency crystals need only be fitted in one of the pre-selectors, as the two may be operated with H.F. oscillator circuits cross-coupled, and similarly for diversity telegraphy two B.F.O. outputs are provided for the operation of both receivers

Plessey's new 3in. loudspeaker.
driven by a single crystal fitted in one only of the pre-selectors.

Switches

F.M. slider switches were seen, and are intended for a variety of purposes, including F.M. radio and TV band switching. They utilise H-type contacts in groups of three, and as many as six groups may be incorporated on one switch. Being flat, the switches may be mounted horizontally or vertically and thus occupy the minimum of space. They are slideroperated, either directly or by some external means such as a cam or a simple rotary switch. Both springloaded and non-spring-loaded types were shown.

Condensers

Gear-driven and in-built ganged capacitors were also seen. The integral ball drive variable capacitors types " U " and " S " are fitted with integral reduction drives having ratios of approximately $6: I$, thus simplifying the design of receivers, since additional cord or other slow-motion drives are unnecessary.

Control knobs shown are of various types, while the capacitors displayed included minjature plasticcased electrolytics, NATO-type electrolytics and tubular paper capacitors.

New sealed lampholders, type X.L.1, designed primarily for use on radio and electronic equipment, and holding lamps with standard miniature Edison

screw caps were shown. For these lampholders two interchangeable caps are available. One is a translucent moulding in a wide variety of colours to suit individual requirements. The second is a dimmer cap consisting of a light alloy die-cast fitting with a plastic filter coupled to a shutter.

Plessey have recently designed additional types of output transformers. Among those displayed were a miniature transformer for use in "personal" sets, in conjunction with sub-miniature output valves and where the primary direct current is limited to 3 milliamperes maximum : size 10 for use in battery portable and "personal" sets in conjunction with sub-miniature valves operating above 4 milliamperes direct current in the primary; size 13 a for use with 10 in . speakers operating in the 4 - to 5 -watt range, and size 15 for use with high-fidelity equipment, with a power output rating of 6 watts maximum.

Loudspeaker

The 3 in . inset loudspeaker, shown on the lef? was specially developed in conjunction with S.R.D.E. for use in Services equipment and is suitable for
any application in which a small size, clear reproduction of speech and the ability to withstand extreme climatic conditions are essential requirements.

The inset loudspeaker is mounted in a sealed metal

backing plate by means of vibration-proof rubber mouldings, the connections being brought out of the case through ceramic seals. The front is protected by a perforated steel cover. The magnet system is of the totally enclosed centre-pole type. The frequency response has been specially adjusted to give maximum intelligibility of speech under conditions of high ambient noise and has extreme sensitivity over the range $800 \mathrm{c} / \mathrm{s}$ to $5,000 \mathrm{c} / \mathrm{s}$ with a frequency response extending to $400 \mathrm{c} / \mathrm{s}$. It will handle 1 watt and has a speech coil impedance of 10 ohms. The commercial versions are made with either round or square mounting flange.

Tape Recorders

Among the several tape recorders shown were the special Ferrograph instruments shown by Messrs.

Wright and Weaire. These included instruments having tape speeds from $11 / 16$ c.p.s. up to 15 c.p.s. in a variety of portable and rack-mounted forms to meet the varying needs of industry, research, education and entertainment.

Auxiliary apparatus for use with Ferrograph recorders including:

Endless loop cassettes. Signal operation switch units. Pulse units.

Mention must also be made in this connection of the novel Bib tape splicer shown by Multicore. This has previously been dealt with in these pages, but has now been redesigned and is now known as the Mark 2 and incorporates two tape retaining clamps which, in addition to having extensions on them providing an even casier releasing arrangement, are also fitted so that the clamp openings both operate identically towards the tape recorder. It is claimed that this makes tape splicing a quicker and simpler job without losing any of the virtually foolproof advantages of the original Bib product.

Multicore Solders, Ltd., state that if an earlier model has already been bought and the user requires this latest modification, the work will be undertaken on receipt of the Splicer, properly labelled with the owner's name and address, and a postal order for 2 s .

Potted Chokes

Another type of component which is coming into increasing use is the "C" core potted transformer and choke. Illustrative of these is the W/B component shown on page 335. This has a "C" core moulded in Aroldite, and is fitted with waterproof plugs and sockets. Other W/B exhibits included the complete range of Stentorian high fidelity loudspeakers, now incorporating the patented Cambric cone from $2 \frac{1}{2} \mathrm{in}$. to 18 in . in diameter, including 8 in. , 9 in . and 10 in . models fitted with universal impedance speech coils, providing instant matching at $3,7.5$ and 15 ohms.

Millimicro-second Photography

THE use of image converter tubes as the shutters of ultra high speed cameras is now well established. The image of the object to be photographed is focused on the sensitive photocathode of the tube. When operating voltages are applied a duplicate image appears at the opposite end of the tube. To photograph fast transient phenomena the tube is switched on by voltage pulses synchronised with the phenomena, the actual photographic record being made by an ordinary camera.

In the past circuit limitations have fixed the lower limit of exposure at about 30×100^{2} seconds. In a new Mullard instrument the use of a coaxial pulsing system enables the exposure time to be reduced ten times, i.e., to 3×10^{-8} seconds.

In a demonstration at the Physical Society's Exhibition recently a voltage pulse produced by a very fast spark discharge travels down a coaxial line to trigger on the tube. At the same time the light generated by the spark is guided by mirrors to the photocathode of the image tube. When the light path is lengthened by moving the mirrors a point is reached where the image of the spark on the viewing screen disappears, because the light arrives at the photocathode after the voltage pulse which triggers the tube has died away.

New Reflectometer System

ONE of the most important elements in the HewlettPackard reflectometer system for wide-range microwave impedance measurements is the new 'hp' 416A Ratio Meter. This instrument automatically combines forward and reverse signals and displays their ratio directly. Reflection coefficient is read directly on a front panel meter. A separate output terminal is provided to operate an oscilloscope or recorder. The Ratio Meter includes an R.F. power monitor indicating proper power level. Accuracy obtainable for swept frequency measurement is ± 0.015 reflection coefficient ; for single frequency measurement, ± 0.005 reflection coefficient. Model 416A may also be used to measure S.W.R. in connection with slotted lines. A reference voltage from the system power source applied to the ratio meter eliminates error due to amplitude variation.

Another important instrument in the reflectometer system is the new 'hp' 670HM Swept Frequency Oscillator. This equipment operates over a frequency range from 7 to 10 KMC . It may be manually tuned or motor driven to sweep any portion of this frequency band automatically. Sweep is at a velocity which is constant and sufficient to ensure a clear trace on a long-persistence oscilloscope. The instrument has a direct-reading frequency dial.

BI-METAL strips are fairly easy to obtain from surplus dealers, or they could possibly be made at home. Manufactured strips are capable of giving delays up to three or four minutes. When used in the circuit of Fig. 20, the double action ensures that the strip is always cold and ready for re-use as soon as it has completed its cycle.
It will be noticed also that, in the event of a mains failure, the energising voltage to relays $\frac{A}{3}$ and $\frac{B}{1}$ ceases. These relays would then de-energise and, on resumption of the mains supply, it would be necessary for the bi-metal strip to operate before H.T. could be obtained once more. The circuit, therefors, protects the equipment in which it is used against all foreseeable accidents. (The energising voltage for the relays should, of course, be derived "after" the on-off switch of the equipment.)

In last month's article we discussed a relay circuit by means of which it was possible to control three remote circuits over two lines (see Fig. 15 (b)). This month we shall examine a system which is capable of controlling many more operations whilst still requiring only the two interconnecting lines. As this system lends itself very easily to control by radio, this aspect will be given due prominence as well.

The Uniselector

One of the most practicable devices for enabling a large number of remote circuits to be operated over a single pair of lines is the uniselector. (The uniselector

Fig. 22.-A simplified diagram illustrating the construction and operation of a forward-acting uniselector.

the fourth article in a new series

 DEALING WITH A MOST USEFUL TYPE OF RADIO ACCESSORYBy J. R. Davies

(Contimued from page 305, May issue.)
is used in automatic telephone exchanges to interpret the impulses sent by dialling.)

A simplified diagram of a standard uniselector is shown in Fig. 22. Its operation is quite simple and is almost self-explanatory. When its coil is energised the armature is attracted to the core, causing the pawl to pyll the ratchet wheel through the distance occupied by one tooth and thereby move the wipers (i.e., the moving contacts at the ends of the contact or "wiper arms") to the next contact in the bank. On de-energising the coil the armature restoring spring brings the armature and pawl back to their original positions. The pawl, on returning, engages with the next tooth of the ratchet wheel. The detent spring (a fixed spring which bears against the teeth of the ratchet wheel), prevents the wheel from rotating backwards as the pawl returns.
It will be readily seen that, by energising and de-energising the uniselector coil the requisite number of times, it is possible to set the uniselector wipers to any desired position. With a uniselector, therefore, a large number of different operations can be controlled over two interconnecting leads alone, simply by sending the requisite number of impulses.

Practical Details

The uniselector shown in Fig. 22 has 25 fixed contacts on the contact bank. This is a standard number (although not by any means necessarily the number used for all uniselectors), and corresponds to what is necessitated by a 10 -number telephone dial.

In practical use the 25 contacts shown in the diagram resolve themselves down to 24 , since, when one wiper is resting on the 25 th fixed contact, the

Fig. 23 (a).-A pair of bridging wipers. They are depicted here moving from one fixed contact to the next. (b) A pair of non-bridging wipers.
wiper on the opposite arm is resting on the first. The remaining 24 contacts then split into two halves of 12 contacts each, the first 12 contacts being paralleled with the remaining 12 contacts (i.e., contact 1 to contact 13,2 to 14,3 to 15 , and so on). With this method of connection it is unimportant whether the rotating wipers start a dialling cycle at contact I or contact 13. The 12 contacts" remaining " are the number required for dialling purposes. - Of these, one contact is used for "homing " or reference purposes, another is spare and the remaining 10 correspond to the 10 numbers on the telephone dial.

Although only one contact bank was shown in the simplified diagram in Fig. 22, uniselectors usually have at least two banks and often more.

Fig. 22 also showed two interruptor contacts ; these being operated by the armature and breaking. as the armature moved to the core. These contacts are used "for " homing "-a process" which will be explained later. It can be readily imagined that, if these contacts were connected between the coil and an energising voltage, they could cause the uniselector armature to vibrate in the same manner as does that of a bell or buzzer. The pawl, being fixed to the armature, would move in a similar fashion and would cause the ratchet wheel to be turned through one tooth for each. vibration of the armature; with the result that the wipers would rotate at a relatively high speed. $\because:$:

Another point of importance lies in the fact that two different types of wiper may be employed. These two types are known as bridging and non-bridging wipers, and are illustrated in Fig. 23. Bridging wipers are used when it is necessary to ensure that no break occurs between contacts.

Returning to Fig. 22 again, it may be remembered that the pawl of the uniselector shown in this diagram moved the: ratchet wheel when that armature was attracted to the core. The force driving the ratchet wheel was derived therefore from the movement of the armature. In a large number of uniselectors the ratchet wheel is moved when the armature releases, the force driving the wheel being derived this time from the armature restoring spring. When the armature of such a uniselector moves to the energised position it causes the pawl to engage with the next ratchet wheel tooth. This latter type of relay is known as "reverse-acting." That of Fig. 22 is "forwardacting."

Having gone thus far into the theory and design of the uniselector, it would now be of interest to show how we can use it in a practical circuit.

Circuit Design

Such a circuit is shown in Fig. 24. For this circuit we need a reverse-acting uniselector with two contact banks ; one having bridging wipers and one having non-bridging wipers. Twelve contacts are shown in the diagram for each bank, the remaining 13 (assuming a 25 -contact uniselector), being omitted for simplicity. The purpose of the circuit is to so control the uniselector that it will automatically select one of 10 circuits; control being effected over two lines. (It could also be controlled by a radio link; Sl and $\mathbf{S} 2$ keying the transmitter carrier, and a relay in the receiver closing their circuit on reception of the carrier.)

Although the circuit of Fig. 24 may be, at first sight, a little complex, this is only because it takes advantage of the refinements offered by the uniselector. The circuit could very conveniently be operated by a dial,
but, as such components are difficult for the experimenter to obtain, the switch and push-button are used instead.

Operating the Uniselector

Let us now see how the circuit operates. We start off by closing SI. This energises relay $\frac{A}{3}$ and, after a second or two, relay $\frac{B}{2}$ as well (the latter being slow to operate and release). We then press the push-button, S2, a predetermined number of times corresponding to the number of impulses we wish to transmit to the uniselector coil. Each time S2 is pressed, relay $\frac{A}{3}$ de-energises, causing its break contact Al to close. Relay' $\frac{B}{2}$ does not de-energise during this period because it is slow to operate and relcase. Thus, each time relay $\frac{A}{3}$ de-energises, a circuit is completed from the positive source of supply via contacts B1 (closed all the time) and A1 (closed when relay $\frac{A}{3}$ de-energises) to the uniselector coil, and thence to earth. The uniselector armature then energises and de-energises (once for each pressure on the push-button), and correspondingly causes the ratchet wheel to be.turned through the requisite number of teeth. When S2 has been pressed and released for the last time it is left alone, whereupon relay $\frac{A}{3}$ stays energised and the uniselector comes to rest, its wipers positioned at the contact selected.

During this time, another cirçuit has come into operation on Bank 1. As soon'as we started to press the push-button, and the bridging wipers of Bank 1 left contact 1 of that bank, they commenced to complete (via contacts 2 to ${ }^{2} 12$ inclüsive), ame energising circuit to reläy $\frac{\mathrm{C}}{1}$; this circutit"being completed by the make contact. A2. However, due to the fact that relay $\frac{\mathrm{A}}{3}$ is centinually energising and de-energising whilst the push-button impulses are being sent, this energising circuit is intermittent. Relay $\frac{C}{1}$ is slow to operate and release and this intermittent energising current is. insufficient to cause it to energise. This condition would automatically be satisfied if a dial were used instead of SI and S2. With the push-button it would probably be necessary to send the impulses fairly quickly, and to try to keep the time of each approximately equal to the time between impulses. When impulse sending has been completed, and S2 is left closed, relay $\frac{A}{3}$ remains energised; and the energising current to relay $\frac{C}{I}$ becomes constant. Relay $\frac{\mathrm{C}}{1}$ therefore energises.
$\dot{\text { As soon as it }}$ it energises, a circuit is made, via contact $C 1$, contact $A 3$, and the wiper of Bank 2 , to the appropriate external circuit selected. It will be seen that the purpose of relay $\frac{C}{l}$ is to prevent unwanted
(Continued on page 341)
0 mima smor News

OSMOR RADIO PRODUCTS LIMITED

Dept. P.60)
418 belgilicon romd SOLTII CROYDON. surney. CROydon $5148 / 3$.

EFFICLENCY TESTS PROVE SUPERIORITY OF TIIESE FAMOLS BRITISI RADIO PRODLCTS!

Many famous Radio firms use thousands of Osmor High "Q" Cuils. They take no chances about quality.-specifying the bsst:

F.MFrequency Modulation comes to stay! OSMOR does its share in the design of coili and a really rrst-ciass circuit ore circuit point to coint wiring diagram, and full constructional information. (Send 5d. in stamps.)

OSMOR ' Q ' COIL PACKS
Size only $1 \ddagger \times 3 k \times 24$ with variable irondust cores and Polystyrene formers. Builtin trimmers. Tropicalised. preallgned Receivertested and guaranteed. Only 5 connections make. types for Mains and Battery Superhets and T.R.F. ceivers. Ideal for the rellable construction of new sets, also for conversion of the 21 Receiver. TR1196. Type 18. Wartime Utility and others.

The NEW OSMOR

"SWITCH PACK"’ is now ready! Complete and Prealigned full circuit in cluded. State which station required 2 M.W. I L.W. or 3 M.W. $48 /=\mathrm{p}$. Tax.

SUPER ' Q ' for MAXIMUM

SELECTIVITY

A full range is avallable for all popular wavebands and purposes. The magnetic scrcening of the cup prevents other components from ab sorbing the Coil's power, thus maintaining the high ' Q ' value. Simple. one-hole fixing. \star Only lin. high. \star Packed in damp-proof containers. * Adjustable iron-dust cores. \star Fitted tags for easy connection. L. or
 M.W.

> 5/- circuit.

CHASSIS CUTTER

Type	Hole Sizes	Price
1	lin. x lim.	19/8
2	h in. x 11 in .	18:9
3	? in. x lin.	22/6
4	$1: 1 n .82 \mathrm{n}$.	$27 / 3$

100 ton Hish tensile bolt now supplied with No. 2.
Allen Key. 2:8.

Calling all amateurs!

Have you a problem involving circuits in which Osmor Coils or Coil Packs are ussd, or intended to be used? Let our Technical Team solve it-just write us a letter. We're right up-to-date-we build the various circuits given in "Wireless World," "P Practical Wireless," " Radio Constructor," etc., and we stock the components specified. Most Technical Colleges, Universities, etc., use Osmor Coils for research.

OSMOR STATION

 SEPARATORThe Separator may easily be tuned to eliminate any one station within the ranges stated and ftting takes on!y a, few seconds. Aerial Sfarped by id plugs effected by ad-
justing the brass screw provided

$7 / 6$

Plugs

Type Metres Type Metren Typs Metres

$1-141-250$	$4-319-405$	$7-1450-1550$
$2-218-283$	$5-35-492$	$8-410-550 \mathrm{kc} / \mathrm{s}$
$3-367-341$	$6-455-587$	

READERS' QUERIES:

Dearsirs

1 want to add a little negative feed-back to my 5-valve superhet. Please give me x simple scheme.
The simplest iray to apply a measure of N.F. is to omit the bias decoupling capacitor of the output valve.
Dear Sirs. I wish to insert a meter as an indicator when peaking your coilpack. and to determine the optimum signal entease state a destruction of the wiring.
The meter may be placed acrass the bias resistor of the frequency changer. The miter must be a high-impedance RF meter.
Dear Sirs.
If I fit push-pull output shall I get more output from my existing single valve output?
If all the valve types were the same yoti urould not obtain a greater output from push-pull. but quafity shauld be considerubly improved. Dear Sirs,
I am experfenclng instablity in the I.F. stages of an F'M receiver. Could you statie a possible cause of this.
Tuo causes of instability which come to mind-insufficient decoupliny of either cathode or anode circuits (possibly the use of an inductive type of condenser) or, the failure to use a common earthing point for the I/P decoupling. etc., and a different common point for the OIP decoupling. etc.
"PRACTICAL WIRELESS" Coronet Four ; Beginners Supernet : An Economical Quality Receiver. A Six Valve A.C. Superhet Attache Case Portable; R1155 Converter ; A.C. Band-Pass 3 , Modern 1-Valver A 2 -Valve Feeder, Fury Four, Standar A.C. Power Pack: 3-speed Autogram ; Modern reflex, etc.

"WIRELESS WORLD"

"No Compromise" T.R.F. Tuner. Midget 3-valve A.C. Mains Receiver. Sensitive 2 -valve Receiver. Reflex Push-Pull 3-valve Recelver, Miniature Bedside Receiver. Midget sensitive T.R.F., etc.

"RADIO CONSTRUCTOR"

Converting the TRll93 receiver to a general purnose s'het. receiver simple general purnose s het. receiver slmple crystal diode set. Radio feeder whistle Economy 8 W.P.P. Amplifer. Wailable Filer circuit and detalls available Osmor superhet.

PRECISION BUILT MATCHED COMPONENTS

M.E. GANG CONDENSER

Available as 1,2 or 3 gang, 490 p.F. nominal capacity, matched and standardised to close limits. Supplied with trimmers if required.
Other capacities available-details on request.
Cadmium plated steel frame.
Aluminium Vanes.
Low loss non-hygroscopic. insulation.
Spindle $\frac{1}{1} \mathrm{in}$. dia. projects $1 \frac{1}{1} \mathrm{in}$. from front plate. Front area $2 \frac{3}{3} \mathrm{in} . \times 2 \frac{5}{16} \mathrm{in}$. including sweep of vanes.
tength excluding spindle :
1 gang - 1 表in.
2 gang - $2 \dot{i n} \mathrm{in}$.
3 gang - 3 gin. Price

9/3d.

14/-d.
18/3d.

S.L. 8 SPIN WHEEL DRIVE

A precision slide rule drive. Complete with 3 -band glass scale, $9 \mathrm{in} . \times 43 \mathrm{in}$.

Printed-short, medium and long wave bands with station names.

Scale length 7in.
The spin wheel drive gives easy control through a ratio of 24-1. Fitted with constant velocity coupling. eliminating strain on the Condenser, and providing mechanical and electrical isolation from vibration and noise.

Supplied with florentine bronze escutcheon.
Price - 27/6d. complete.
Write for fully illustrated catologue.

J
 BROS. (LONDON) LTD. KINGSWAY . WADDON SURREY

Telegrams :
WALFILCO, SOUPHONE, LONDON
Telephone : CROYDON 2754-5

SOLDERING - SAF - SIMPIE-SPEEPY with the sensational

BALANGED GRIP SOLDERING GUN
« NOW IN A NEW UNBREAKABLE CASE
WITH HOOK ATTACHED FOR HANGING OVER WORKBENCH
The PRIMAX-SOLDERER is the ideal tool for any RADIO-TVTELEPHONE mechanic or amateur. Just the tool for service calls and small jobs on the bench. For semi-continuous soldering. Available for $110,200 / 220$ and $220 / 250 \mathrm{v}$. A.C.. $50 / 60$ cycles ($60 \mathrm{w}_{\mathrm{t}}$), One year guorontee. Specially designed for easy soldering on hard-to-reach jobs.

* TRIGGER CONTROL for semi-continuous use.
* EXCLUSIVE ALLOY TIP_never needs re-tinning or filing, fasts indefinitely under normal use and care.
* INSTANT HEATING-Ready for soldering in 6 seconds.
* COMPACT LIGHTWEIGHT-slips into pocket or tool-kit, weighs only 24 ounces.

Sole Distributors :-
S. KEMPNER, Ltd. 29, Paddington Street, W. 1

Tel. HUNTER 0755.
Through wholesalers and retoilers

G2aK
 This Month's Hargains
 62AK

METERS.-2 2 in . Scale Flush Mounting. $0-10 \mathrm{~mA}, 0.30 \mathrm{~mA}$ and 0-100 mA, $12 / 6$ ea. 2in. Scale Square Flush, 0-50 mA, $0-150 \mathrm{~mA}, 0-3 \mathrm{~A}$ Thermo, $0-20 \mathrm{v}$. d.e., and $20 / 0 / 20$ A. d.c., $7 / 6$ ea. 21 in . Scale Proj. Type Thermo, 0-15 A., $7 / 6$ ea. 2 in. Scale Round Flush $0-\frac{1}{2}$ A. Thermo and $0-350 \mathrm{~mA}$ ditto, $7 / 6$ ea. RACK SIZE CHASSIS. -17 in . long $\times 2 \frac{1}{2} \mathrm{in}$. deep $\times 12 \mathrm{in}$., $16 / 6$; $\times 10 \mathrm{in}$., $15 /-$; $\times 8 \mathrm{in} ., 14 /-$ P. \&."P. $1 /-$. All 16 s.w.g. ALI. ABSORPTION ẄVEMETERS. -3.00 to $35.00 \mathrm{Mc} / \mathrm{s}$. in 3 Switched Bands. 3.5, 7, 14, 21 and $28 \mathrm{Mc} / \mathrm{s}$. Ham Bands marked on Scale. Complete with Indicator Lamp. Only 10/6. P. \& P. $1 /$-.

VALVES.-B7G base. IT4, IS5, IR5, IS4, 354, 3V4, 7/6 ea., or 4 for $27 / 6$. 807's. 10/- ea. or 2 for 17/6. Most of the 1.4 v . B7G range available at $8 / 6$ ea.
HEADPHONES.-Low resistance type CLR No. 3. 9/6. DLR No. 2. 13/6. High resistance CHR Mar. 2, $17 / 6$, and the most sensitive of all DHR, No. 5B. $18 / 6$ per pair. P. \& P. 1/- pair. V.H.F. FANS.-Air Space Co-axial Cable, ISO ohm, good to $600 \mathrm{Mc} / \mathrm{s}$; normal price, $3 / 11$ per foot. Our Price, 20 yard coil, $\notin 1$. Very limited quantity available.
FISK SOLARISCOPES.-Complete with charts. Give World time, light and darkness paths. Invaluable to the DX man. List $21 /$-, our price $7 / 6$, post free.
PANL Home Crackle.-Black, Brown or Green, 3/- tin. P. \& P. 8d.

CONDENSERS.-8uF, 600 v . (Trop), 750 v . (Normal). New Ex-W.D. Stock, 5/6 ea., p. \& p., 1/6.
SPECIAL OFFER. DEAF AID CRYSTAL MIKE INSERTS. 10/- ea., or 2 for $17 / 6$.
Postage free on all orders over $\{1$ except where specifically stated. PLEASE PRINT YOUR NAME AND ADDRESS.

C. H. YOUNG, G2AK

All collers.
110, Dale End.
Dirmingham 4 (CEN 1635°)
Mail Orders to Dept. " p " 102, Holloway Head, Birmingham I (MiD 3254)
circuits being operated until the uniselector has come to rest.

When the operation selected by the push-button and the wiper of Bank 2 has been completed, the uniselector can be brought back to its original state again and be made ready for the next cycle of events. This is carried out by the simple process of opening SI.

Homing

The act of opening $S i$ first of all causes relay $\frac{A}{3}$ to be de-encrgised, whereupon its contact A3 breaks the controlled circuit selected on Bank 2. Another contact, A2, then breaks the energising circuit to relay C which, after a pause duc to its slugging, de-energises; and thus becomes ready for the next cycle.

Also, when SI opened and relay $\frac{A}{3}$ de-energised, a further break contact, AI, came into operation, causing the uniselector coil to be energised. (As the uniselector is reverse-acting this merely causes, the pawl to engage with the next tooth of the ratchet wheel). In addition, opening S1 also de-energised relay $\frac{B}{2}$, the armature of which, after a pause due to the slugging of the relay, releases. Contact BI then breaks, removing the direct supply to the uniselector coil ; whilst contact B2 makes, causing an energising circuit to be made to the same coil via its interruptor contacts and the bridging wipers of Bank 1. The armature of the uniselector then functions in the same manner as a buzzer and rotates the wipers. When the wipers of Bank 1 reach contact 1, the supply to the interruptor contacts breaks, and the uniselector comes to rest in its original position. (This last operation is known as "homing.")

The circuit is then ready for the next cycle of control.

Practical Points

As may be imagined, the circuit of Fig. 24 can prave to be extremely useful, since it offers a convenient means of control. (There is, of course, no reason why the ten operations used in the circuit could not be increased.) The process of obtaining a uniselector should not be too difficult as these are beginning to appear on the surplus narket.

It was mentioned above that the uniselector could be operated by a radio link as well as by direct lines. Its employment in radio-controlled models appears, therefore, to be very attractive. Unfortunately, however, the uniselector is rather a heavy item of equipment and, in addition, it needs a fairly large energising current. It would be impracticable to energise it from any source of supply other than an accumulator. The use of the uniselector is therefore restricted, so far as radio control is concerned, to the larger and heavier models; or to static apparatus.

If the constructor wishes to overcome these difficulties, there is little to prevent him from using a home-made uniselector in place of the manufactured article. With care and ingenuity, it should be possible to make a simplified version which would be small, light, and moderate in current consumption. The "homing" circuit of the larger model could be dispensed with : and the entire operation could be reduced to that of a simple-step-by-step switch. It would probably be found easier to make the homemade model forward-acting, in which case it could be
actuated by sending single positive pulses from the transmitter. Without the "homing" circuit the uniselector would, of course, maintain the last position selected for it.

Fig. 24.-A uniselector control circuit. Its action is described in the text.

There are several small disadvantages to this simplified form of control, the most obvious being that the uniselector would operate every circuit through which its wipers passed. If it was considered to be of sufficient importance, this trouble could be obviated by using a relay which is slow to operate (see Fig. 11 (d)), it being energised by the same receiver circuit that operates the uniselector coil. Should a serics of controlling impulses be sent to the uniselector, this relay would remain de-energised. If, however, on the last impulse the transmitter key were kept closed, the relay would then energise and complete the selected circuit. On opening the transmitter key the relay would at once de-energise and the controlled circuit would be disconnected.
A second disadvantage of the simplified homemade uniselector lies in the fact that the operator has to remember at what contact he last left the uniselector wipers before he can send the requisite number of impulses needed to give a new order. This disadvantage could possibly be overcome by using another uniselector at the transmitter, this also being operated by the control button (or key), and serving to light appropriate indicator lamps. If the uniselectors in the model and the transmitter commenced operating in step, the indicator lamps would then show the state of affairs existing in the model.
(To be continued.)

WITH the meter connected as in position (b) the result would not be quite so accurate as the reactance of C , and C 2 would be bound to have some effect on the voltmeter reading-probably causing it to read something less than 50 volts.

Now let us suppose that the meter is connected as in position (c), and that the loudspeaker loading at this point is, say, 4 ohms, then with the valve delivering 1 watt of A.F. we should get a reading of something like 2 volts, by altering the " watts formula " round like this: Volts equal the square-root of watts times the resistance in ohms.

When taking power output measurements it is desirable to disconnect the loudspeaker and connect in place an equivalent value resistor capable of dissipating the full A.F. power.

Receiver alignment and overall sensitivity tests usually call for some means of measuring A.F. power, and such tests will be dealt with in full later on in this series; at this point, however, it is as well to realise that the universal multimeter can be admirably employed for this function.

The Multimeter as an R.F. Indicator (18)

As is very well known, the detector circuit of a broadcast or television receiver is essentially an R.F. rectifier. The modulated R.F. signal is usually applied direct to the anode of a diode valve, or to the equivalent terminal on a crystal diode, and the modulated signal, together with a D.C. potential corresponding to the amplitude of the R.F., is developed across the associated load resistor.

Within certain limits, and excluding the stabilising action of the A.V.C. system, any variation of directcurrent in the load resistor will be governed by the amplitude of the R.F. voltage applied to the receiver. Advantage is sometimes taken of this factor as a broadcast receiver alignment aid, and is nearly always used to assist in the alignment of television receivers.

A typical vision detector circuit is depicted at Fig 21, in which the $5,600 \mathrm{ohm}$ resistor RI constitutes the detector load. To achieve signal indication in the vision channel, therefore, it is necessary simply to unsolder R1 from the chassis (earth line), and connect in series a D.C. milliameter having a f.s.d. of not more than 1 milliampere. As is shown in the circuit, it is desirable to decouple the meter with a capacitor Cl to avoid any possibility of instability -Cl should have a value in the region of $0.05 \mu \mathrm{~F}$.

It is readily possible by this means to observe with a high degree of accuracy any alteration in sensitivity of the vision channel at a spot frequency selected on the signal generator-which, incidently, should be unmodulated-as the result of adjustments to the tuned circuits. Normally a current in the region of

250 microamps should be expected to correspond to a peak-white picture signal.

As an alternative method-but one which is liable to induce instability under certain critical conditions -the actual voltage appearing across the diode load can be measured and used as a signal indication by connecting a multimeter set on the 0-1 volt range across the resistor-connécting the positive lead to the cathode side of the resistor.

If a multimeter of mediocre sensitivity only is available, such as one possessing, say, 500 ohms per volt, this can be used on the $0-20$ milliampere range and inserted in series with the anode load resistor of the video amplifier valve, being suitably by-passed by a capacitor-see Fig. 22.

The sync pulses in certain receivers are extracted from the cathode circuit of the video amplifier valve. The Murphy V114 series receivers use this arrangement, which is illustrated in Fig. 23. A stable and reliable method for signal indication in the vision channel on such a circuit is by measuring the volts drop across the cathode load resistor. A multimeter adjusted to the 100 volts range is suitable for this purpose.

If a very sensitive multimeter or valve-voltmeter is available it can be connected between the cathode of the picture-tube (assuming cathode modulation)

Fig. 21.-Showing how the current in the detector load resistor can be used to provide an indication of R.F.
and receiver chassis. The meter should be adjusted approximately for f.s.d. on a volts range under conditions of no signal. Since the tube is cathode modulated, the presence of a signal will cause a fall in potential at the anode of the video amplifier valve (relative to chassis), being the reverse of the previously described methods, where a RISE in voltage or current indicates the presence of signal in the vision channel.

It must be stressed that in all these tests it is most important to kesp the meter connecting leads as short as possible, and this applies especially where the meter lead is connected to the picture-tube cathode direct. As previously intimated it is not necessary to modulate the R.F. signal applied to the receiver under test, for we are not bothered about extracting the modulation content as a means of R.F. signal indication, we are simply measuring the rectified R.F. voltage to determine the magnitude of signaland thus the relative sensitivity of the R.F./I.F. circuits-arriving at the detector valve.

We are readily able to follow the rectified R.F. in D.C. form past the detector load resistor, and right up to the picture-tube, so far as television receiver is concerned. Because, as we are well aware, the post detectơr circuits are all coupled to retain the D.C. component of the vision signal.

With an ordinary broadcast receiver this does not apply, of course. Here we can measure the D.C. potentia corresponding to the R.F. only at the detector load resistor-past this point the D.C. content of the signal is lost owing to the isolating feature of the A.F. coupling capacitor.

General Testing (19)

There is little doubt that a good multimeter represents the most essential tool of the experimenter and practical radio man. It should be the aim of all experimenters and home-constructors either to make or purchase an instrument having a sensitivity of, at least, 10,000 ohms per volt on the D.C. ranges. Although instruments of lower sensitivity possess a wide range of application, something just that little bit better is usually demanded for TV work where extremely high resistance networks are often encountered-indeed, it is when working on such circuits that one realises the limitations imposed by instruments of low and mediocre sensitivity.
The writer ventures to suggest that practically any fault in a broadcast or television receiver can be brought to light by knowledgeable application of a high sensitivity multimeter. This is not to suggest that other test instruments are superfluous to the general cause, indeed, this is far from true as we shall later realise in subsequent articles in this series. Certain critical adjustments demand the employment of instruments of an entircly different kind, and in the service department, where time is at a premium, a host of instruments is often desirable to reduce the time spent on a repair, and consequently keep its cost down to a respectable level !

Now to get back to the multimeter, we have so far covered its general applications-other tesis will, of course, suggest themselves to the experimenter from what has already been described.

Seemingly, voltage tests would appear to represent the main mode of analysing a faulty receiver. In the writer's opinion, this is not true, for it would be suggested that the whole of a receiver can be readily and conclusively analysed by current measurements.

The function of each valve stage can be individually analysed in this way without seriously disturbing the voltage distribution of the circuit. Defects ranging from the local oscillator to the output section can be pin-pointed simply by breaking the appropriate circuit and introducing a milliammeter.

As an illustration in this respect, it may or may not be realised that a milliammeter inserted in series with the grid resistor of the local oscillator valve will immediately indicate whether or not the valve is doing its job. The 0-1 milliampere range should be used for this test, and one can rest assured that the valve is oscillating if the grid current reading can be reduced to zero by shunting the tuned circuil with an $0.1 \mu \mathrm{~F}$ capacitor.

A less sensitive milliammeter can be inserted in series with the anode of the oscillator valve if more convenient, when an appreciable alteration in valve current by by-passing the tuned circuit with a capacitor will indicate oscillation. Any valve stage can be checked for spurious oscillation by adopting this mode of current analysing.

Excessive cathode current in the sound output valve accompanied by distortion of reproduction represents an example of current analysing that -would almost certainly lead the operator to suspe: trouble in the valve biasing network. A fautt of this nature is frequently caused by a coupling capacitor developing a slight leak, thereby permitting the grid to go positive and as a consequence outweighing its normal negative potential. This would be quickly proved as fact if, on disconnecting the capacitor from the valve grid, the cathode current reduced to normal.

As will have been noticed, this individual current test proved not only that the excessive current was in some way tied up with the accompanying distortion, but it also proved that the coupling capacitor was faulty without the necessity of testing it subjectively.

A short-circuit occurring in the cathode by-pass capacitor would undoubtedly provoke a similar set

Fig. 22.-With a less sensitive instrumemt R.F. is best detected by connecting an 0-20 mA meter in series with the video load resistor.
of symptoms, but here, again, removal of the suspect from the circuit would soon reveal its defect.

There is, of course, always the possibility of a faulty valve upsetting one's initial suspicions, although even a valve fault could more or less be eventually proved by performing a simple current test.

This same mode of testing can be readily adopted in any other stage. Erratic and intermittent faults may be found to require a lengthy current test, but there is no doubt about it, that somewhere in the circuit the current is going to alter as the result of the fault.

Faults in the A.V.C. system can be brought to light by introducing a milliammeter in series with the anode of each controlled variable-mu valve in turn. A substantial reduction in anode current is sufficient proof that A.V.C. bias is reaching the valves and reducing their gain in the proper manner when the receiver is tuned to a powerful station.

Estimating Capacitance (20)

Some multimeters are separately scaled in capacitance values and embody features for connecting an add-on capacitance measuring unit. If one is not lucky enough to possess an instrument of this kind, however, a method of determining the approximate value of a capacitor is available.

The test boils down simply to that of measuring the alternating current passed by a capacitor of unknown value as the result of a known voltage. The capacitor and meter are connected in series across the A.C. mains-the mains voltage will be known from accurate measurement beforehand-the current in the capacitor may be read from the A.C. milliammeter, and the capacitance can be resolved with the aid of the following formula :

Capacitance in $\mu \mathrm{F}=1 \times 3184 / \mathrm{E}$,
where $\mathrm{I}=$ the current in amperes, and $\mathrm{E}=$ the applied 50 cps. voltage.

Fig. 23.-In certain video circuits the voltage variation across the cathode resistor provides a suitable R.F. indication.

Owing to the resistance of the meter being in series with the capacitor; a certain calculation error is inevitable ; nevertheless, this will:usually be so small as to be insignificant for normal purposes.

The main problem of a test of this kind is that of protecting the meter should the capacitor develop a short-circuit while being measured. Such a possibility can be completely avoided by introducing a resistor, as a current-limiting device, in series with the capacitor as shown in Fig. 24. The presence of this resistor will, unfortunately, provoke considerable error in capacitance calculation if the above formula is used, though as a compromise the resistor could be included initially and, then short-circuited during the shortest possible time that an accurate current reading can be taken.

Even so, this still leaves the meter as the target should anything happen to the capacitor, and since meters are expensive items and not readily replaceable, it is best always to leave a resistor in circuit to limit the current to a safe value, and introduce a factor

Fig. 24.- A method of determining the value of a paper capacitor-not suitable for electrolytic types. Fig. 25.-A method of determining the value of an unknown capacitor by comparing it against one of known value.
to the above formula to correct it for resistance. The following formula is quite suitable and should always be used when a resistance follows the capacitor :

Capacitance in $\mu \mathrm{F}=3184 / \sqrt{ }\left(\mathrm{E} / \mathrm{I}^{2}\right.$ minus R^{2}, where $\mathrm{E}=$ the applied 50 cps . voltage, $\mathrm{I}=$ the alternating current in amperes, and $R=$ the resistance in ohms.

There is another interesting and fairly accurate method of measuring capacitance, whereby the reactarfice of a known capacitor can be compared against that of an unknown capacitance. A circuit set-up of such an arrangement is shown in Fig. 25, from which will be seen that the known and unknown capacitors are connected in series across an A.C. supply, and the voltage developed across the known one measured on a high-resistance A.C. voltmeter.

It will also be seen that if the leads connecting the unknown capacitor (Cx) to the circuit are shorted, the full A.C. supply voltage will be developed across the known capacitor (C), and the meter will read accordingly. It is often desirable to get this circuit working after the style of an ohmmeter, and for this purpose the variable resistor R permits the meter to be set to zero at full scale when the tests leads are shorted.
(To be continued.)

The Business Names Act

APROPOS my recent remarks regarding. radio clubs, it is not generally known that in certain circumstances it is necessary for clubs to register under the Business Names Act, particularly where such clubs are run for profit. The provisions of that Act to some extent safeguard the members, for it is necessary to issue an annual balance sheet. The Act was designed to protect the public from exploitation by any person or persons who start a club with the idea of collecting annual subscriptions in return for some nebulous scrvice which only absorbs a very small part of the annual sum received. Suppose, to take as an example a hypothetical case, someone started a club such as the International Radio Guild, appointed himself as the proprictor, without providing anything in the rules for annual meetings or elections, membership being obtained merely by filling in a form and paying, say, 10 s. a'year subscription. Further suppose that the club caught on and obtained a membership of, say, half a mitlion. The annual revenue from subscriptions would therefore be $£ 250,000$. That is a considerable sum of money, and the members have every right to know what is happening to it and whether it is being spent in promoting the interests of the club. Clubs are of two types-proprictary clubs and members' clubs. The members of the latter are co-owners therein in law, but not so the members of a proprietary club who are merely the payingeguests of the proprietors. Nearly every properly run club is constituted, regulated and governed by rules which provide for the admission of members, the subscriptions payable, the conduct of the club, and for the retirement of the officers and expulsion of members.

In my view the I.S.W.L. is a proprietary club, and as it does not publish a batance sheet to each member. they have no means of knowing how the money is spent or how much is being received. No doubt the intention was that it should be a members' club. In view of the large amount of correspondence I have received, it seems desirable, if the League is to continue, that it should be reformed, remodelled and run on proper and democratic lines.

I referred last month to a letter sent out by the I.S.W.L. to all members. At least, I was informed that it had been sent to all members, but one member, who resides in Barrow on Humber, tells me that he did not receive it and the first he knew of it was when he read my notes. I gather that at one tinie the books of the league were in a bad state, and it took months to square them up. Many letters requesting subscription renewal were sent to members, and many sarcastic replies were received, with statements that they had paid up their subs. but had not received a receipt. Is it not wue that most of the members approached did not renew their subscription the following year? It seems obvious that an audit back to the days of the league's formation would now be impossible. Indeed, no audit could be possible, without a list of members.

I feel that the only satisfactory solution is for a Special General Meeting to be called with the object of appointing a sub-committee to investigate the club's affairs and issue a report thereon. This investigating committee should be given the widest possible powers of investigation.

Commercial Radio ?

IF the I.T.A. commercial television programme proves successful will the advice given in the Beveridge Report be ignored and commercial radio programmes introduced? If such programmes are right for television they must be equally right for radio. The price of one minute of TV programme time is, I understand, just short of $£ 1,000$. I do not foresee that many advertisers are going to get their money back from such a transitory form of publicity; bearing in mind the many restrictions which are to be placed on the amount of advertising plugging which will be permitted. A cheaper form of visual advertisement would be through the cinema screens of this country, the coverage of which'must be at least equal to the TV viewing audience. In any case, it is obvious that commercial TV is designed to appeal only to very large and prosperous companies. for very few of the'smaller ones could afford $£ 1,000$ for a minute of programme time.

The Newspaper Strike

O NE effect of the protracted newspaper strike was to force many more millions of listeners to switch on to the news programmes which they often ignored because they had already received the news from their morning or evening newspaper. It is a pity in some ways that the BBC did not more extensively enlarge its news features during the run of the strike, although I understand that a general agreement was reached amongst the publishers and the BBC not to do anything which would savour of an attempt to cash in on the absence of newspapers. But then the public was entirely cut off from the woild during the newspaper strike and had to rely upon the BBC news bulletins. There were some millions who could not listen in and had to rely upon gossip for their news. The results of the municipal elections were a matter of national importance and so was the resignation of Sir Winston Churchill. Large numbers of the public were unaware of the results of the elections.

As new's dissemination is a matter of national interest the Government itself should have produced a daily national news sheet as it did during the General Strike, if it was impracticable for the BBC temporarily to fill the breach. It is true that the BBC did add a few minutes to the news bulletin, but the extra time was totally inadequate. It is on such occasions that a very small pocket portable with single earphone would be of great advantage, especially if it were designed to run on very low H.T. voltage in order to keep the weight down. The quality of reproduction would be secondary in importance. If any readers have built such receivers I should like to have details of them.

More About BBC Frequency Modulation

LATEST NEWS CONCERNING THE V.H.F. STATIONS`

THE BBC has placed an order with Marconi's Wireless Telegraph Co., Ltd., for the construction of 26 V.H.F. frequency modulated (F.M.) transmitters for sound broadcasting. Delivery will commence within 14 monthss.

These transmitters, of Marconi design, comprising 24 of $4 \frac{l}{2}$ kilowatts power and two of 10 kilowatts, will form part of the BBC's plan to provide a powerful reinforcement to the coverage of its present mediumand long-wave stations, by the use of V.H.F. F.M. stations.
As envisaged, the $4 \frac{1}{2}$ kilowatt transmitters will operate in parallel pairs, each pair handling one programme. Thus, six of these transmitters will be used on each three-programme station. The two 10 kilowatt transmitters will be used in parallel at the BBC's existing V.H.F. station at Wrotham, where there are already two 25 -kilowatt Marconi transmitters.

Nine Marconi station monitors have also been ordered by the BBC for use on this project.

Technical Details

Many new features are incorporated in the transmitters and the performance of each is outstanding in its own particular output-category.
These transmitters, comprising units of basically similar designi, but suitably arranged to provide the variou's ouitput ratings, operate on the frequency band 87.5-108 Mc/s.
Air-cooled valves are used throughout, leading to a simplification of equipnent, with reduced installation and mainteriance costs.
The F.M.Q. drive unit used on these transmitters, employs a frequency-modulated. quartz crystal and supplies an output at the carrier-frequency. This signal is then amplified to raise it to the required output tevel, the number of amplification stages used depending on the rated power-output of that particular type off transmitter.

The-initial.A.F. amplification stages consist of at double teitrode stage, capacity coupled 10 a pair of tetrode valves, the anode circuits of which take the form of quarter-wave balanced lines magnetically coupled to a 50 -ohms line, from which the output is taken sat 250 W .

A third amplifier stage is added (in this case a triode), for the 1 kW equipment. The input is fed via the 50 -ohms line to the cathode, the two cathode leads bcing at the same. R.F. potential and forming the inner member of a tuned unbalanced line. The grid is grouided and the anode circuit takes the form of a concentric line whose electrical length is variable by moving an R.F. short-circuit along the linc. A tuncd inductive coupling takes power from the anode line and feeds to the aerial termination.

For the $4!\mathrm{kW}$ transmitter a further identical triode amplifier stage is added; while for the 10 kW case yet another amplifier stage is used, employing two such arrangements in parallel.

Northerin Transmitter

A further contract for the supply, installation and setting to work of six 10 kW V.H.F. frequencymodulated transmitters to serve the North of England
area has also been placed. The order also calls for the provision of the necessary driye, phasing and monitoring equipment, and four combining units.
The six transmitters for the North of England are to be sited at Holme Moss, and will féed inio the slotted aerial array which forms an integral part of the existing 750ft. television mast, in accordance with the BBC's plan for shared TV/FM sites. The transmitters will operate in parallel pairs, one pair handling the Home programme, another the Light, and the remaining pair the Third programme. Each unit will therefore have an output power of 20 kW , which, in conjunction with the high-gain aeriat, is estimated to produce an effective radiated power of 120 kW . It is anticipated that the new station may become operational in the latter half of 1956.
The range cannot as yet be stated with certainty, but the BBC estimate the coverage to be roughly over an area bounded on the north by a line running from Barrow to Bridlington and on the south by a line from Rhyl to Cleethorpes. There will, however, be local variations in the fringe areas because of the screening effect of hills and large buildings.

Assembly work in progress on a Marconi $4 \frac{1}{2} \mathrm{~kW}$ F.M. transmitter for the $B B C$.

REFRESHER COURSE IN MATHEMATICS
 $8 / 6$, by post $8 / 10$.
 by F. J. CAMM

GEORGE NEWNES, LTD.
Tower House, Southampton Street, London, W.C. 2

COST UNDER \&4 MINIMAINS Uses high.efficiency colls covers long and medium wavebands and fits into the neat -limited quantiy only the parts including cabinet the parts, including cabinet falig. plus 2)- everythins stuctional data free with the structio part
$1^{\prime} 3$.

Good reception on both medium and long waves. All parts neluding - three valves, resistors, - tuning - condensers. in fact, everything except loudspeaker, cabinet and chassis arailable if you haven't something suitable) costs only 19/6: data avallable separately, price $1 /$:

COMPONENT BARGAINS

(all new and unused) Flac focus marnet type Nlus 9d. post. Output transformers standard pentode matching ordinary. 2/6: push-pull, centre tapped, $3 / 8$. Coils suitable for F.M. and T.V. with dust cores and fixing lugs. 12 assorted. 5/6. I.F. transformers, medium, small size, exceptional high Q potted construction, tuning over $450-470 \mathrm{kc}$'s, $5 / 6$ pser pair. 2-gang tuning condenser - midget, "0005, $5 / 6$. ${ }^{1}$ meg. pots. with switch, $1 / 9$ less switch.
$1 / 3$ double pole switch. 2/-

SPEAKERS

in. p.m.			
6tin. p.m.			
$8 \mathrm{in} . \mathrm{p.m}$.			
in. p.m.			
2 in . p.m.			

THE CLEVELAND OCTAVIAN

In this instrument is combined the exceptional qualities of the G.E.C. metal cone loudspeaker in its ideal cabinet and a most modern 3 -valve amplifier. This combination whil give a realisin of musical reproduction not easily obtained even at twice or three times its price and is definitely the reproducer for bringing out the full frequency now available in long-playing microgroove recordings. If you can, please come to one of our branches and hear this fine instrument-failing this, then take our word that it is realiy good and send an order
 to-day. Price 27
ruineas or e4 $10 / 0$ guineas or e4/10/0 12 monthly pay ments of $£ 2 / 5 / 9$ carriage and insur ance 10 -. Amplifer available separately at £10'10.

OCTAGONAL

SPEAKER CABINET Conforming exactly to the designer's specification-suit able for G.E.C. metal cone speaker-price £12/10- or $37 / 6$ deposit. balance by 12 of £10/6, carriage a n d insurance. 5 extra.
CLE'YELAND Hi Fi GRAMOPHONE UNIT

Operates from standard 53 cycle mains -a thoroughly good job with dozens of applications - limited quantity only-17/6 packing, $1 / 6$.

Mains transformer and chove by Haines Radio to Standard 50 cycle input with Radio. Ltd.. Sinandard Secondaries : 500-0-500 yolt at 500 miliamp and 6.3 volt at 6 amps. also choke to match 10 henrys at $500 \mathrm{mili}-$ amps. Limited quantity onis at 45)- the par. Carriage and packing 5/-extra.

COMMUNICATIONS RECEIVER RII55
 YOURS FOR 30

The R115j is considered to be one of the finest communication receivers available to-day. Its frequency range is $75 \mathrm{ke} / \mathrm{s}$ to $18 \mathrm{Mc} / \mathrm{s}$. It is complete with 10 valves and is fitted In a black metal case. Made for the R.A.F. so obviously a robust recelver which wil ive years of service. Completely overhanied and guacanteed in perfect working order, Price 89/19/6, or will be sent on receipt or deposit. 3'-. Balance by 12 monthly payments of $16 / 3$ Carriage and Transit Case 15!- extra. Anins

CABINETS FOR ALL

We undoubtedly hold the largest stock of cabinets in the country. All are mads of the finest ply wood. veneered and pollished and all radio and motor boards are left uncut to sult your own equipment! 'phe top one
 nstallation. A wonderful bargain at fe10/plus 5-carriage. Hire Purchase 15-deposit. STOP Latest model AutolChangers in PRESS $\begin{aligned} & \text { stock. Price ell } 12 \text { monthly payments of } 18!9 .\end{aligned}$
ALL DRY BATTERY SET VALVES
IT4. IR5, IS5. 3A4, offered as a set, 30l- the four
THE BENDIX RA-1B COMMUNICATIONS RECEIVER

Orlginally intended for the American Forces this fine receiver, a small quantity of which has been released by the Ministry of supply, is available to you if you act promptly. Designed to receive C.W. or R.T. It uses probably the finest band spreading arrangement possible. and covers the
Band 1 . 15 to $.315 \mathrm{mc}^{\prime} \mathrm{s}$
$\left.\begin{array}{lcccc}\text { Band 1 } & .15 & \text { to } & .315 \mathrm{mc}^{\prime} \mathrm{s} \\ \text { Band } 2 & .315 & \text { to } & .680 \mathrm{mc} / \mathrm{s} \\ \text { Band } 3 & .680 & \text { to } & 1.5 & \mathrm{mc} / \mathrm{s} \\ \text { Band } 4 & 1.8 & \text { to } & 3.7 & \mathrm{mc} / \mathrm{s}\end{array}\right\} 1 . \mathrm{e.}$.20 to 200
$\begin{array}{lllrl}\text { Band } 5 & 3.7 & \text { to } & 7.5 & \mathrm{mc} / \mathrm{s} \\ \text { Band } 6 & 7.5 & \text { to } & 15.0 & \mathrm{me} / \mathrm{s}\end{array}$
The Sensitivity $1 s 4$ micro valves for full output. It uses 8 valves and operates from batteries (12 or 24 volt) or from the mains through a power pack. It has built in output stage with a jack socket for Controls, all of which are brought to the front panel, include aerial switch comparative condenser, main tunins condenser, band selector. C.W. switch, power on'off switch, and

Very compactly built in crackle finished case. these sets are brand new, having never been used and guaranteed in perfect working order-
 LF-PRICE OFFER
BEETHOVEN CHASSIS Extremely well built on chassis size approx. $91 \times 74 \times 81$. using only first-class components. Iully aligned and tested. $10-240$ oit A.C. mains pera covering medium and two shorts Complete special price this month is balance by 12 monthly payments of $51 / 3 / 6$. carriage and insurance 10/-. Order now to avoid disappointment. Circuit diagram and component data liven free with sets. or avallable separately price 2!6. post free.

is The Bureau, wainut finished and highly polished, size approximately 30 in . hugh, 32in. wide, and 16 m . deep. Price 16 guinexs or 32/- deposit. carliage 12/6. The
centre one is The Em-
oress, our most popular cabinet, size 32 in. high 36 in . wide, and $16=1 \mathrm{~m}$ ined sycamore. Jrice 15 rifineas, or H.P. deposit 32-, carriage 12 i. The lower one is The Contemporary, size gin. high, 30in. Wide and 10,in. deep. Oak finished with contrasting mould H.P. deposit 19.- car rage 12,6

MULLARD AMPLIFIER "510"

A high Quality Amplifier designed bymullardengineers. Power ont put exceeds 10 watts, harmonic distortion less than 40°. Frequency response almost flat from 10 to 20,000 C.P.S. - very suitable for use with the Acos "Hi G." and other good pick-ups. Cempletely made up and ready to work. is $£ 12^{\prime} 10$ - or $25 /$-deposit. plus 10^{\prime}-cesrr, and insurance.

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to Dept. 7, RUISLIP.

[^0] 4921

With buflt-in matching transformer for direct connection to grid of amplifier valve. These mikes are ex the famous BC. 610 Transmitter and give perfect speech quality. they are all brand new with 9ft. screen lead and 3-pin plug. packed in original carton.

Price $£ 2$
plus $1 / 6$ postage and packing.
We are offering As NHIV, COMPISHE TR. 1186 TRANCEIVERS, as illustrated. Outfit comprises, 6 valve Superhet, 3 Valve Transmitter, Power Unit and Relay Unit. All complete on chassis. Present range $4-6.5$ mansmicter, Power unit and reiay unit. All comcover $1.5 \mathrm{mc} / \mathrm{s}-7 \mathrm{mc} / \mathrm{s}$ and power output up to 8 patts which can be easily adapted to cover any band of frequencies from medium bropeceiver $\mathbf{t o m o l s}$. The Transmitter range can also be easily extended and by medium broadcast to condenser to tank circuit wtll cover $1.5 \mathrm{mc} / \mathrm{s}$. Circuit and conversion detalls included with each unit. Each outfit is despatched in transio case at the amazing low price of 83 plus carriage 10/-. If despatched without Transit Case, $£ 2 / 10 /-$, plus $8 / 6$ carriage.

Large Quantities of Our Unused Component Bargains still available at Prices below Manufacturing Costs.

Crramie Variable Condensers split stator 15/15 Pf., $2 / 6$ each. Ceramic Trimmers 22 Pf., 5i- per doz. Variable Condensers 100 Pf. ceramic insulation, 2/- each. lariable condensers in screening case 50 Pf., $1 /$ - each. Permanoid Sleesing coils of approx. 1 gross yds. 1 mm . and 1.5 mm . $8 / 6$ per coll. Ferranti M/Amp. Meters Boxed 0-150 flush square 2in., 7/6 each. Wave change switches 2 wafer 6 pole 3 -way standard! spindies, $1 / 3$ each. Percelain Stand-offs, insulators only, miniature lin., 2/- doz. Pots 100 K and 1 meg . : spindle and 3 -gang each 70 K . all at $1 /$ each. 11umdinger Pots 100 ohm. miniature wire wound and Colvern do. 200 Ohms. 5 w., 2/each. 100 K Miniature Pets lin. long spindle. 1/- each. Erte Kesistors 47 K 2 watt boxed in 50 's \& 5 's. Erie Resisions 1.200 Ohm . w . boxed in 50 's 2 watt 150 K 1 watt, 22 K 1 watt, 70 K 1 watt : price. 2 watt 3d., 1 watt 2d., I watt 1d. Paxolin Resistor Panels (stze 4in. x 3in.) with fixing brackets contains 1-10 w. $5 \mathrm{~K}, 2-5 \mathrm{w}$. $120 \mathrm{~K} .1-47 \mathrm{~K}, 1-56 \mathrm{~K}, 5 \mathrm{w}$. Brand new, each. 1/9. Wire Wound Vitreous 10-watt wire ends 500 d , each, 9d. Add sufficient for postage.

WOOLLEYS RADIO \& ELECTRICAL SUPPLIES LTD.

 615 BORDESLEY GREEN, BIRMINGHAM, 9.
Space-saning suggestion

CHASSIS MOUNTING D R Y ELECTROLYTIC
 CONDENSERS

The saving of space resulting from the use of these condensers is one of the chief reasons for their popularity. Type 928 is of particular interest to designers of rectifier units as a small and efficient substitute for a large 800 v . paper condenser.

Except where indicated, these condensers use plain foil electrodes. The can is negative, but when this connection is not required via the chassis, insulating washers and terminal tags are available upon request.

Capacity tolerance; -20% to $+50 \%$. Voltage range; 250 v. to 800 v. Peak Working.

Capacity in $\mu \mathrm{F}$.	Peak Work Volts	Surge Volts	Dimensions in Inches			T.C.C. Type No.	List Price Each
			H.	D.	Serewed Boss		
* 32	350	400	27	1	$\frac{1}{2}$	312	91.
8	500 500	600 600	27	1	$\frac{1}{2}$	512 512	$7 /-$ $8 /-$
16	500	600	$4 \frac{1}{2}$	$1 \frac{1}{2}$	${ }^{2}$	512	11/6
32,	500	600	4i ${ }^{2}$	1 $\frac{1}{2}$	$\frac{3}{4}$	512	17/6
*8	800	900	$4 \frac{1}{2}$	$1 \frac{1}{2}$	$\frac{3}{4}$	928	18/-

*Etched Foil.

THE TELEGRAPH CONDENSER CO. LTD

RADIO DIVISION: NORTH

TTHE east coast receiving station of R.C.A. Communications Inc. is located at River Head Long Island, a few miles east of Rocky Point, and approximately 70 miles from the centre of New York City.

This site, which when purchased 30 years ago was barren land with sandy soil, is flat for many miles around. Four miles north is Long Island Sound, with the Atlantic Ocean eight miles to the south.

The original receiving station dates before the short-wave era when long waves were used exclusively.

River Head To-day

The River Head site is divided into two areas, the east being 600 acres and the west 1,264 acres. The receivers as used at River Head are gigantic affairs when compared with short-wave receivers as we know them. Built-in shielded sections and rack mounted, a complete receiver takes up a considerable amount of space.

The Receivers

The total number of short-wave receivers available is 69 diversity groups divided into three sets. It is interesting to know that the number of valves used and in operation total 10,000 .

When one considers the number of spare radio valves which must of necessity be kept for replacement purposes the grand total will be rather staggering.

The M1005 Receiver

This is the type of receiver used at the station, and here are brief details concerning it. Taking all types of valves as listed, these total 78. This receiver has three R.F. amplifiers, $3-6 \mathrm{Mc} / \mathrm{s}, 6-12 \mathrm{Mc} / \mathrm{s}$, 12-24 Mc/s respectively, followed by three further R.F. amplifiers and three third R.F. amplifiers. All stages at stated Mc/s, excepting the following :

Then follow three detectors and three oscillators, a first I, F. amp. First Stage at $450 \mathrm{kc} / \mathrm{s}$ and a first l.F. Second Stage. Next comes converters Z, Y and X, a $400 \mathrm{kc} / \mathrm{s}$ oscillator, isolation amps. Z, Y and X, followed by three $50 \mathrm{kc} / \mathrm{s}$ second I.F. amplifier stages, two diode detectors, monitor oscillator, monitor detector, monitor

A corner of the main operating room at Broad Street, New York.
mission line used at River Head is $4,000 \mathrm{ft}$. This is a four-wire, and not a transposed line.

Aerials

All aerials are directive; 24 Rhombic and 50 fishbone types. These are spaced in groups of three and arranged for space directivity reception 800 ft . apart. That this is an extensive aerial system will be appreciated, for there are 600 aerial poles which are 60 ft . to 150 ft . high. There are also eight stcel towers 160 ft . to 200 ft . high, together with 6,000 transmission line poles 16 ft . to 35 ft . high.

H.F. Traffic

The H.F. reception section averages a daily peak of 52 signals. Leased land lines are used between River Head and New York, as follows :

Sixteen lines 50 to 8,000 cycles transmission bands to New York, and two lines via Rocky Point to New York. There are also six lines from New York to Rocky' Point. For multi-channel transmissions 18 filter groups are available.

Radio Programmes

Another section deals with radio programme material, and Radiophoto transmissions. On this service, six diversity groups of three sets and one single-sideband receiver are used; three fishbone and 13 Rhombic aerials. All the aerials are directive.

Frequency Checking

There are three measuring positions. They cover the following ranges : $10 \mathrm{kc} / \mathrm{s}$ to $500 \mathrm{kc} / \mathrm{s}$.

In conjunction with this department three M.F. aerials, seven H.F. aerials of the fishbone type and V.H.F./U.H.F doublet aerials are used. Primary crystal standards are accurate to 1.5 parts in 10,000,000.

Comment

Readers of this article will appreciate that TransAtlantic and world-wide radiophone communication is radio in a very big way, far beyond what we carly listeners used to imagine in the days when we were, as it were, in on the early tests of commercial point-to-point and ship-to-shore-telephony.

During the years the author has contributed to this journal he has from time to time stressed the importance of an efficient aerial system, however simple its form may be, in order' to assure the maximum signal voltage transfer. That this is essential is proved when one realises that professional radio engineers like those of R.C.A. go to great expense in orcier to assure reliable communication day by day.

Diversity Reception

This is carried out with a view to receiving the required transmission at a constant and satisfactory signal level. To this end three separate aerials are coupled to three separate receivers tuned to the one frequency. By this means fading effects are compensated for. As is well known when using aerials located some distance apart, fading at any one time is not equally pronounced in all. Thus if the combined inputs are fed into a common output a constant signal or nearly so will be obtained.

New "Stereosonic"

at each end of one wall of the room, so that the subtended angle to the listener is approximately between 60 deg. and 90 deg. The new H.M.V. "Stereosonic" reproducer will give good resilts using any form of stereophonic tape, including those made by using spaced microphones, but the best results will be obtained with the new H.M.V. "Stereosonic" tapes made on the principles described above.

Using such tapes, a full field of sound is obtained, stretching across the space between the two loudspeakers. When the sound comes from a solo instrument intended to be in a central position, then a single apparent source of sound is heard from a position half-way between the two loudspeakers. The general enhancement of the realism of the reproduced sound is apparent at any position in the room, although the exact position of the sound source is reproduced with complete accuracy only over a listening area near the centre line between the two speakers.

An important feature of the "Stereosonic" records is that the listener can obtain an apparent increase of dynamic range. The reasons for this are not yet fully understood. The fortissimos for a given sound level (as measured by a sound level meter) appear to have a greater volume of sound compared to the normal single sound source, while the pianissimos can be reduced to a lower level with reasonable discrimination and clarity. A further feature is that a greater degree of reverberation is permissible on the recording than would be permissible with single-channel recording.

A completely steerable 30 ft. parabolic reflector used as a radio telescope at the Jodrell Bank experimental station.

AN input which is only a minute fraction of the noise power generated in the receiver still gives a clear indication, and with this improvement it may be well worth while to connect an automatic recording instrument instead of the meter to the output. This can even be calibrated directly in units of field strength.
An aerial-in order to be usefully employed in a radio telescope-must be highly directional. To a certain extent this property is inherent with all types

Fig. 1.-4-element stack of half-wave dipoles. Inphase feeding is achieved by crossing the feeders between clements.

Making a Radio Tele

A SIMPLE HOME-MADE BUT EFFICIENT INSTRUMENT FOR THE EXPERIMENTER

PART 2.-AERIAL SYSTEMS

By W. Schroeder

of aerials, but not nearly sufficiently for the purposes of radio astronomy.

Best known among the directional aerials, of course, is the usual television aerial, normally consisting of a half-wave dipole with a reflector placed behind it.

A simple dipole has a power gain of 1.64 over an aerial which receives at equal strength from any direction. Such a purely theoretical aerial is called an isotropic aerial and cannot be realised in practice. It is conceived merely as a standard for comparison.

For use in radio astronomy, however, acrials of considerably higher gain and directivity must be used. This can easily be achieved by using an array of several half-wave aerials and feeding them in phase (Fig. 1). Highest sensitivity is in the direction Z. The polar diagram of this four-element system is shown in Fig. 2. Sensitivity is zero at an angle of 30 degrees from the direction of the highest sensitivity (Z), and by increasing the angle a smaller maximum of sensitivity is found. These "side lobes" are present with all multi-element arrays.
The beam width of this aerial, which is reckoned to the angle at which half maximum sensitivity is measured (-6 db), is about 35 degrees. An eightelement system would have a beam width of 25 degrees, and by further increases the directivity can be made greater still.

If several such "stacks" are placed side by side, the directivity in the horizontal plane can be increased too. Such broadside arrays (Fig. 3) are used quite frequently in radio astronomy, and they are especially effective if a conducting screen, usually

Fig. 2.-Polar diagram of a system of feur halfwave dipoles. Highest sensitivity in direction Z, zero sensitivity in directions 30 deg. and 90 deg. (X).
consisting of wire netting, is placed one eighth of a wavelength behind the elements. This doubles the gain of each half-wave aerial, and the combined gain of the system in Fig. 3 would be $2 \times 1.64 \times 20=$ 65.6.

The screen at the back should overlap the aerials by at least half a wavelength. The beam width of the array shown is about ${ }^{9} 30$ degrees in any plane.

A more economical method, though a little more

Fig. 3.-Graphical representation of a 20-element broadside array, with screen behind. Power gain about 66, beam width 30 deg.
difficult to construct, is the erection of an array of Yagi aerials. A single unit of this type, consisting of a folded dipole, a reflector 0.15 wavelength behind the dipole, and five directors, 0.434 wavelength long, and spaced at half-wavelength intervals in front of the dipole, has a gain of about 20 and a beam width of 35 degrees. The measurements given represent the optimum values found experimentally.

Five such systems can conveniently be mounted on a frame which should be as large as possible to keep the beam width small (Fig. 4). Working on a wave. length of about 1 metre, and the Yagi elements at the corners of a square with sides 20 ft . long, the arrangement will provide a gain of 100 and a beam width as small as 10 degrees. (Beam width is approximately 60 wavelengths divided by length of the sides of the square. This formula also applies to broadside arrays).

Both broadside arrays and Yagi aerials, although extensively used in radio astronomy, have one great disadvantage : they have to be constructed for a specific wavelengih, and any desired change of this requires a complete rebuilding of the aerial system.

Overcoming a Disadvantage

This disadvantage can be overcome by the use of a parabolic reflector. This usually consists of a circular frame over which a wire mesh is stretched in such à manner that a crosssection through the centre is a true parabola, and the dipole is situated at the focus.

Theoretically such an aerial has a power gain of $\frac{4 \pi \mathrm{~A}}{\lambda^{2}}$ where $\mathrm{A}=$ area of the aperture, and $\lambda=$ wavelength. The spacing of the wire mesh introduces some losses, however. These amount to 20 per cent. if the wires

A partly adjustable broadside are spaced $\lambda / 10$ apart, and 35 per cent. if spaced $\lambda / 8$. The latter is the widest practicable spacing.

An aerial system of 20 ft . diameter, working on a wavelength of 1 metre, and with wires spaced 5in., would have a power gain of about 220, quite enough to feed our receiver and give useful indications of the radiations which reach us from the Milky Way. The beam width of the system would be in the region

of 10 degrees, quite a useful value for its intended application.

The construction of such an aerial is comparatively simple, especially if it is not required to be stecrable. This need be no great disadvantage, as a certain amount of steering is possible by tilting the arm which carries the dipole at the focus. Without much deterioration of gain or beam width a deflection of up to 15 degrees can be achieved.

Aerial Construction

The framework can be constructed of metal or timber, the simplest method being a number of poles stuck in the ground. The height of the uprights must be one quarter of the diameter of the framework, and

of sereral humbed half-wave
as near parabolical as possible, 12 uprights at least are necessary, but for larger systems working on shorter wavelengths, this number must be increased. At no point must the shape of the finished wire mesh depart more than $\bar{i} / 8$ from the true shape of a paraboloid.

In Fig. 5 are shown the suggested measurements for such an aerial, showing two of

Table 1

centre. Height from ground.
1 in.
3 in.
7 in.
12.5 in.
19.5 in.
$28 \mathrm{in}$.
38 in.
50 in.

A fixed array of Yagi aerials for the reception of extra-terrestrial radiations.
the dipole at the centre is fitted at the same height. To make the shape of the reffector
the uprights which are opposite one another with the arm carrying the dipole in the niddle, which it should be possible to tilt in a north-south dire ction. In the centre, a wire ring is fitted, which should

Fig. 4. - End-on view of an array of five Yagi-ariads. For $l=20 \mathrm{ft}$., and on a wavelength of 1 metre, the beam width is 10 des., and the power gain 100 .
have a diameter of 25 in ., and is fixed lin. from the ground. Twelve wires are soldered to this ring, and their other ends are laid over the tops of the uprights, and weighted down to keep them taut. At a distance of 25 in . from the centre, spacing wires are soldered to the twelve wires in such a manner as to keep the solder joints 3 in. from the ground. Further spacing wires are then added according to the measurements given in the table.
For smaller or larger aerials these measurements must be decreased or increased in proportion.

When all spacing wires are in place, the ends of the twelve mains wires are fixed to the tops of the uprights, and they should then all be in the shape of parabolas.
Starting from the innermost ring, further rings are soldered to the main wires at intervals of 4 in . Finally, another number of wires are soldered between the main ones, starting from that ring where the distance between the main wires just exceeds 4 in., and carrying on to the rim of the "bowl," so that at no point of the completed mesh there is a space of more than 4 in . between any two wires. A reflector built to these measurements can be used at wavelengths down to 70 cm . ($420 \mathrm{Mc} / \mathrm{s}$) and at that frequency would have a power gain of about 300 . If the spacing of the mesh is reduced to 2 in ., the gain reaches nearly 500 .

The dipole at the focus is best fitted with a reflector," behind it, on the side away from the "bowl." Although this has little effect on the gain, it considerably reduces the side lobes of the system.

It is necessary to match the aerial fairly accurately to the receiver input, as any mismatch not only results in a loss of power, but also introduces additional noise in the aerial, as the lost power is used to produce a thermal noise, and as the strength of this would not be constant it would lead to inaccurate indications.
If the aerial is built on level ground the beam is directed towards the zenith, and the measurements of the receiver therefore relate to that part of the sky which is right overhead at the time of observation.

As the Milky Way at certain times during the day reaches this position, fairly strong signals will be recorded. The radio telescope can be kept running all day long, and if it is made self-recording, a graph will be obtained showing the strength of radiations reaching us from different parts of the sky. These measurements can be compared with those taken 'on other days, but on the whole it will be found that the field strength recorded will be the same for any particular part of the sky.

By tilting the supporting arm of the dipole, the beam is displaced, and another part of the sky can be investigated. In each position, the beam sweeps out another circular strip of the sky, about 10 degrees wide, as the earth makes one revolution with regard to the fixed stars. When the possibilities of the aerial have been exhausted, the change to another wavelength offers new scope.
Hydrogen gas, which is fairly common in outer space, emits under certain conditions a strong radiation on a wavelength of 21 cm . The recording of this radiation and of the Doppler-shift associated with it has led to the most important results achieved by radio astronomy. So far, no other such " spectrum lines" have been discovered, but they should, theoretically, be present on some longer wavelengths. Here is a field of research for the keen amateur.
As "new stars" and other surprises in astronomy are almost always discovered by amateurs working with quite small telescopes, it is not impossible that in radio astronomy unexpected changes or developments are to be also first noticed by an amateur, in spite of the watching eyes of the scientists of Manchester University, who, at the end of this year, will take into use a new radio telescope of 250 ft . diameter.

Correction

In the first column on page 290 of last month's issue it was stated that the receiver would give certain results with an input of only 10-14. watts. This figure should, of course, have been 10^{-14} watts.

News from the Clubs

CLIFTON AMATEUR RADIO SOCIETY
Hon. Sec.: C. H. Bullivant, G3DIC, 25, St. Fillans Road, Catford, S.E.6.
$T^{\text {HE first D.F. contest in the } 1955 \text { series takes place on Sunday, }}$ May 8, in the vicinity of Farnborough. Kent. The club station, G3GHNN/A, will be operating portable between 11.00 lirs, and 16.00 hrs . on a frequency of $3504 \mathrm{Kc} / \mathrm{s}$ and as only low power will be used reports and QSOs will be welcomed.

Tape recording will be covered by Mr. L. Barnes on May 20 and the evening will comprise a demonstration and talk on the equipment being used.

Meetings are held every Friday at the clubrooms. 225, New Cross Road, London, S.E.14, at 7.30 p.m. Details of menbership may be obtained from the Hon. Secretary.
SOUTHEND \& DISTRICT RADIO SOCIETY
Hon. Sec.: 3. H. Barrance. M.B.E. (G3BUJ), 49, Swanage Road. Southend-on-Sea, Essex.

O

 N April 1 the judging of exhibits of home-built equipment for the Hudson and Pocock Cups took place. There were good number of entries. and the judges spent some time in determining the winners. Mr. J. L. Goss won the Pocock Cup. and Mr. A. D. Asher the Hudson Cup. These, together with a runner-up prize, won by Mr. C. W. Crags. A.M.I.E.E., were presented by Mrs. Goss. wife of the society's chairman. at the Hamfest, held at the Royal Stores Restaurant, the following day. Another Cup. the Peck Cup. was also prescated to Mr. day. Another Cup. he peabrook for the berformance during 1954, in "direcR. K. Seabrook for the best performance duringCOVENTRY AMATEUR RADIO SOCIETY
Hon. Sec. : J. H. Whitby. G3HDB, 24, Thornby Avenue, Kenilworth, Warwick shire.
FORTHCOMING Programme. At 9. Queens Road ($7.30 \mathrm{p} . \mathrm{m}$.) May 9, "Receiver Servicing," G3HDP. May 23. "Fre" quency Modulation." G6WH. June 2, Night on the Air. June 4-5. National Field Day. June 6. Junk Sale. June 20, "V.H.F.". G3BAK. July 2-3, Field Day. July 4. Lecture. July 7, Night on the Air. July 18. Lecture. A ugust i. No meeting. August 4. Night on the Air. August ${ }^{\prime}$ 7. Field Day. September 1, Night on the Air. September 4, Field Day.

EAST KENT RADIO SOCIETY

Hon. Sec.: D. Willianis, "Llandogo," Bridge, Canterbury, Kent.
THE society meets fortnightly on Tuesdays at "The Two - Brothers." Northgate Street, Canterbury. Nearly all radio and electronic subjects are covered. Raffles are held regtularly and lectures and demonstrations also. New members are joining nearly every meeting.

New members are welcome and visitors in the district.
TORBAY AMATEUR RADIO SOCIETY
Hon. Sec.: L. H. Webber, G3GDW, 43, Lime Tree Walk, Newton Abbot.
STEPS are being taken to assist our new blind member. Geo. Western, BRS. 20605 , to get his gear together, and to arrange additional help in technical and Morse instruction for him.

Volume Controls
Midgot litiswa long mpindles Guaran－ teed year．Al valuce
10,090 ohme to 2 Meg． lo，000
No SH．
No Sw．B．P．St．D．P．Sw coA工 PLUGS 4／0 COAX PLU LINE CONHECTO UTL CON BECTOR $1 / 2$ BALANCED TWIN FEEDER per yd．ed TWIN SCREENED FEEDER per yd．1／－$\}^{80}$ 50 OHM COAX CABLE 8d．，per 5 J ．॥in．lia． TRI界NERS，Ceramic， $30,70 \mathrm{pf}$. gd． 100 pt ． $150 \mathrm{pf} ., 1 / 3$ ； $950 \mathrm{pf} ., 1 / 6$ ；ti00 pf．， $1 / 9$. 4 R．，3d．；- All values： 10 ohms to 90 mei．．．
 WIRE－WOUND RPSISTORS ohnig to 10 Meg ． WIRE－WOUND RESISTORS．－Latest type Biliente coater． 5 ．（lin．x lin．） 25 ohms－l10，001）ohms，

 2／－eit．Also 15,000 ohirs－i33，000 ohms $\overline{\bar{a}} \mathrm{w} ., 1 / 9$ ； 15,040 ohms－ 33,000 whus 10 w．， $2 / 3$.
WIRE－WOUND POTS．3 WATE．FAMOUS MAKE． Pre－Set Min．T，V．Type．Standard size Po 2 is Knurled slotted Knob．Spindle．Iligh tiratle． All valpes＂J ohins to 30 K．，b／efa． 50 K．． $4 /=$ bitts ：$\overline{0}$（arben Track $\overline{0} 0 \mathrm{~K}, 4 \mathrm{t} \boldsymbol{2}$ SLeg．， $3 / \rightarrow$ all Values．Itef whms to $\overline{\bar{n}} \mathrm{~K} ., 5 / 6$ ； $100 \mathrm{~K} ., 6 / 8$. W／W EXT．SPEAKER CONTROL 10 の， $3 /-$ O／P．TRANSFORMERS． standard Pentomle 4／8 ditto tapped prim．， $4 / 9$ ；small pentosle， $3 / 9$

 LTNX，3h．v30 ma．，13／6，SIMPLEX，1t h．JJo man．， 10／6．HATMS TRANS，－Made in our own workshnps to high＇grade specification，Fully＇ibter－leaved and impregnated．Tapped prini． 500 v．+550 v．，Heaver

 250－0－259， $25 /-$ Viewmaster Auto Type， $35 /$ Bimplex $35 / \sim$ ．P／W TAPE DECK．22／6．I／W．Uthitit Radlogram（M）rley），Mains Trans．，35／－．L．F．Choke， 13／6．Output Trans．，35／－．AMPLFIER TRABS． 250 ． 50 ma，wave， 6.3 ₹． 2 a．Fully Shrouded， 17／6．Specials to requirements．
SOUNDMASTEE SPECIALS．－Mains Trans．，\＄5／ I．F．Chake，10／6，O／P Trans．，6／6．Einvelope，8／6 Specifled Wafer switches，2eto per set of 3 ．
 Complete with detachable bench stand，IB／o NEW SOLON MUDGET IRON．－ 25 w．， $18 / B^{\circ}$ C．R．T．EEATLR ISOLATION TRANSFORMER． Low leakage wiming with or without 45% ．
 ti． 3 v．， $10 / 6$ ； 12 v．， $10 / 6$ ．Ditto，with Mains Prim． $240 / 250^{\circ} \mathrm{v}$ ．，i2／6．Specials to order．
CRYBTAL DIODE，－Very sensitive．G．E．C．，2／－ V＇HOLDKRS．－Pax ：Int．Gct．，\＆idi，EP5o， EAJU，©d．；Bl2A CRT，l／3．Moulded：list．Oet 3d．B7\％，9d．；with gcreening lan，1／6；B8A， 1386，139A， $1 /=$ ：VCle97，2／6．Ceramie：EF50， B7G，1／－ENG．and AMER．5－7－antl 9－pin，etc．，1／－： TAG 8TAIPS．－2－or 3－way，2d．；4－or J－कay，3d． 6－way，4d．： 9 －or 10 －way， 84. ，etc．
TOGGLE SWITCRES EX－GOFT．－＂On－off，＂9d，
 3d．5d．；3i－per t th．T．c．uire，is to 28 e．w．g．， per yd．， $2 \mathrm{~d} . \mathrm{Pl}$＇．Connecting nire， 10 coleurs． single or strunied，2d．yd．
8LEEVING．－Various coluurs． 1 mm，and 2 inm ．． 2d．Yd． 3 mm ．and 4 nms．，3d．yal．is mm．Sd，yd． 4 B．A．or 6 B．A．Nuts，Bolts atud Waster Kits，$\frac{1}{4} \mathrm{D}$. sin．，or ilin． $1 /=$ per doz．
FUSES．－ $1 \frac{1}{2 i n}$ ．all values 60 ma ．to 10 a ． $4 d$.
ALADDIX FOR EERS and cores．tin．，8d．；fin．， $10 d$.
 00－250 Volt SFT EETOR SOCKET（3it，it）ith Flug，1／＝．PILOT LAEPS．－－6．3 v．．3 an， 8 d ． SPEAKER FRET－EXpauded anudised melal． i／3．x Yien．， $2 / 3 ; 12 \mathrm{in}$ ．X siln．， $3 /=12 \mathrm{in} . \times 12 \mathrm{in}$ ．， MAINS DROPPERS，－Silicone coatel sider clips． 15 मmp， 1,500 ohms roaterl，with ${ }^{2}$

 750 ohms nox－coated（ 3 jin．x itin．），ide amp LINE CORD． 3 amp，fit ohms per foot， 2 100 ohms per foot，？way，1／6 a yart ： 3 －way 10 a yord per joot，－82y，1／6 a yart ；3－way，1／8

ALL WAVE RADIOGRAM CHASSIS THREE WAVEBANDS FIVE VALVES 8．W． $16 \mathrm{~m} .-50 \mathrm{~m}$ ． M．W． 200 m ．$-\overline{5} \mathrm{~J} 0 \mathrm{~m}$ ．

LATEST MIDGET L．W．N00 mil－ 2000 m B．V．A． Brand New anl Guarantced．A．e．20ktems v．Fonr Graition Warechange switch．Short－Medinini－Long Gran，Sluw Motinn luning．Nucaker and Pick－nd ronnections．High \＆irou－dust cored coils，fibit ke / s I．F．Latest circhit teelinique，delinged A．t．C． and Negative reedback．Outpıt approx．f watts． 3 ohms output transformer un chassis．Chassis size
 cuntal or vertical type available，lit by $\frac{1}{2}$ pilot lampse Colour Black Station nalies，l．Wh．Green， H．W．Red，E．N．White Four Knobs sipplied． Wahuit or Irury to choiee，aligned and calibrated． hassis isolated from nains．PRICE CO 1 a itriage ard Insurance，4／6．
in．or luin．beakers to mitich available．

RADIO CHASSIS KIT

All components available for bulling up aud punched chassis i3in．x itin．complete With fising lurackets，backplite aud dial lim．x 41 in．，Tunitig Orum，Pullegs，Poibter Spring，Urive Curd，etc．，22／6．P．\＆p． $9 / 6$ ． Mants Trank．， $22 / 6 ; 1 . F$ ．＇Irans， $10 / 6$ pr．；
Tnin Gang， $8 / 6$ ；Coils， $2 / 6$ ean，ete．，ete．

> GECOMMENDED FOR ABOVE CHASSIS BARGAIN YALUE IN RECORD CHANGERS． Brand New Pleasey 3－ppeed Antochtnger Mirer Untal for 7， 10 and 12in，Records，Twin Hi－Fi Play 4.000 records．Spepoint mapphire stylus． Quality．Bargais Prige ol meng moanting，superb 15jin． 1 Litin．Height 5 ifin．Depth 2 in ．

BOESD

VALVES GUaramtzizd
$1 R 5 \quad 7 / 6 / 6 K 7 \quad 6 / 6 / E C H 4 \geq 10 / 6+E Z 40 \quad 10 /$

 3156

 Huge Stoek B．V．A．Valves at 1951 luw tax prices． For further surplus Bargain Volves send for Lists 3d． SPECIAL PRICE PER SET

$27 / 6$
$35 /-$

SUB MINIATURE VALVES WIRE ENDS

\star R．F．Pent． 625 v．L．F．Pent．1．g－ Brand New．Ex Deaf Aill Apparatus，by

XYF33	all at
IFA6	$7 / 6$ eash
IL．	$7 / 0$
$5034 X$	post iree

3 VALVE AMPLIFIER

Mith rarianie Tone and Volume controle， 3 Midget B．V．A．Valves．A watts output．Neg． 200／25t）Chassim solated from ains．A．C． mical price．PRICE $\$ 3.10 .6$ ．Carr， $2 / 6$ ．Wired and tested， $7 / 6$ extra．Circuit aud instr．free．

WAVECHANGE SWITCEES．－Midget type，aibgle waifor． 2 pole， 2 －way， 3 pole $2-w a y, 2$ eten； 1 pole 10－way， 2 pole 6 －way， 3 pole 4 －way， $3 / 6$ ea．； 4 pole 2 －way， 4 pole 3 －way， $3 / 6$ eu．
2 W＇AFER TYPE．－5 pole f－way， $6 / 9$ ．
CONDENSERS．Mica，N ．Mica，Ceramics．All pref． values． 3 pf．to 680 pf．．．d．ea， $5 /$ dox．Tubbulars 02 ani 1350 wad

 Г．C．C．， $9 / 6$ ．
SILVER MICA CONDENSERS－ 10% ．
 DITTO $]{ }^{\circ}$（ex stock）．
1.5 pf tu $500 \mathrm{pf} ., 1 / 9.515 \mathrm{pf}$ ．to $5,000 \mathrm{pf} ., 2 \%$ ．

ELECTROLYTICS ALL TYPES NEW STOCK

Tubular Wire ends

51／5u v．， $1 / 500$ v
$8 / 500$ v．，Dub．
$8 / 500$ v．，Bub．
$8+8$ 500 v．IJub．
$8+16450 \mathrm{v}$ ．Hunts
$16 / 450$ v．B．E．C．
$16+16 / 4 \% 0$ v．＇＇．c．C． $5 / 6$
32／350 v．B．E．C．\quad／／
$3 \div / 500$ \％．Dub．
$32+32 / 350$ v．B．F．C． $5 / 6$
$3^{2}+32 / 500$ ч．Dub． $7 / 4$ Can Typen，Cijps，3d．ea．
 $10+16 / 450$ Y．B．E．C． $5 / 6$ $16+1$ thatio v．Bab．6／－ 32／6w v．B．E．（ $32+32 / 450$ v．B．E．C．8／6
 $100 \div 200 / 275$ v．B．E．C 1500／6 v．B．L．C． $1000+1600 / 6$ v．B．s．e ${ }^{\prime}$ v．13．E．E 500 mifl． 12 จ．$\quad 3 / 6$ SENTERCEL RECTIFIERS．E．H．T．TYPE FLY BACE VOLTAGES．－K3／25 $2 \mathrm{kV} .4 / 3$ ； $\mathrm{K} 3 / 443.2$
 K3／100 $8 \mathrm{kV}, 12 / 6$ ；K3／Le $14 \mathrm{kV} ., 18 /$－MAINS TYPE，HM1， 125 v．，50 Ma．，4／－；RM2， 140 ma．， ENGRAVED CONTROL KNOBS for tib．Spindte． \＄iv．diand．Walnut or I fory．（iuld Filled．＂Fuews，＇ ＂Cont rast，＂＂Brightness，＂＂Brilliance，＂＂On－ Off＂，＂Brillianct－On－Off，＂＂．Hecort－Play，＂， ＇Vol．－On－Off，＂＂Volume＂，＂Tuing，＂＂Tooe，＂ Crame＂＂Late，＂＂Treble，＂＂Bass，＂＂M，M．L． Gram，Radio－Gram．＂ $1 / 6 \mathrm{ca}$ ．Plain kuobs to
 Superior Cnmarked Kubls with Gold Hing．Wahmut or Ivery， 1 in．，1／－ea．：lia．，9d，em．Fointer Kaubs， Black with White Line，of
2／EARITE ${ }^{4} P$＂TYPE COILS，All ranges， 1 to 7 ． 2／6 ea．Ommor 4 series Coils．slug tuned．Al Phiges from 3／b．Allen Coilm I_{2} ．，M．，S．Aerial aud Ose．1）ust core toned． $2 / 6 \mathrm{em}$
REACTJOX COND．－．0001，．0003，．0000゙．bifl．，3／6 er．

I，F，TRAM8FORMERs． $465 \mathrm{~K} /$ es．

 Pr．Wearite Midget $1800,15 / 6$ pr．

ALDMINTUK CHASSIS．－18 FTE Phin andribed，tolded 4 ades and riveled eornert Hutice ining moles．Strong and monndty
 18in．8／4；14in．x $11 \mathrm{in} \cdot{ }^{*}$ ，10／6；and 18in．
10in．x 3im．，16／6．
CHARGER TRANS．—Pritr．200－250\％．Sec
 FULL WAVE BRIDGE SELENIUM RECTIFIERS．
 a．，15／0，ba．，No／b． 12 v．$\frac{1}{2}$ 3．，F．W．only，4／6． R．F．MIDGET CHOKES．—14 H．H．， $2 / 6$ each．
BRIMISTORS．－CZI for ． 3 a heater chains， $3 / 6$ COPPER ENAMEL WIRE．－ $1 \mathrm{lb}, 14$ to 20 s． m, f $2 /=$ ； 22 to 28 月．w．g．， $2 / 6$ ； 30 to 40 s．w．g．， $3 / 6$ SWITCH CLEANER Fluid，squirt spout，a／9 tin． TWIN GANG TUNING CONDENSERS．－ 375 pf． $8 / 6$ ；onvJ mify．Standard siee with feet， $8 / 8$ ； ditto， 4 ith trimmers， $9 / 6$ ．
RECORDING TAPE．－Scotch Boy 1,200 ft．reels 30／－cach．Spare spool，5in．， $3 / 8$ ；7in．， $4 / 8$. LOUDSPEAKERS P．M．， 3 OHM
Hichard Allen，tin， 18,6 ；${ }^{\text {jing．Goulrnans，with }}$ raus．， $21 / 6$ ；blla．Goulrnane，17／6．7in，Eltiptheal 18／6；8is．Goodmans，18／6；10in．Plessey，25／－

(OMMUNICATIONSIRECHISTR IRA-IB. -Just released by the Air Ministry, this is a superb 6 waveband American Receiver covering 150-315 kcis., 315-680 ke/s.. 680-1.600 kc/s.. 1.80-3.70 mc's.. 3.70-7.50 mc/s., 7.50$15.0 \mathrm{mc} / \mathrm{s}$. Takes in all important bands. including Trawlers. Illuminated vernier scale is most accurately calibrated, and slow-motion tuning is completely free from backlash. Incorporates AVC, CW, and Sensitivity controls. Valves are 5 of 6 K 7 G . 1 of 6L7G. 1 of 6R7G, and 1 of 6K6G (output). Case size 10 in . x 7 in . x linn. finished in black crackle. Power requirements 6.3 V . and 250 v . All receivers aerial tested before despatch. ONLY $£ 11.18 .6$ (carriage, etc., 10/6.).
THASSIS OF INDICATOR 233.-Contains VCR97 C.R.T, holder, 11 valveholders, resistors, condensers, etc.. etc.;
BRAND NEW. ONLI $10 /$ - (carr., etc., $5 /$ -
F.H.T. TRANSFOIR MER.-NOTmal
230 V. Primary, with Secondary of 230 V. Primary, with secondary. of 2.800 v. D.C.). A special offer of interest to all uging the VRC97 or similar tube. size
 SNIP, and well worth buying as an insurance against failure of existins E.H.T. supplies. ONI.I 15/- (postage, , etc. $2 /-$).

POCKFF VOLTMETERS. not ex-Govt.*Read $0-15 \mathrm{v}$. and $0-300$ v. A.C. or D.C. BRAND NEW \& UNUSED. ONLY $18 / 6$.
HR:AVK DCTY TRANSFORMER.-Normal primaries. Has 3 separate windings of $5 \mathrm{v} .0-5 \mathrm{v}$. at 5 amps., and by using combinations will give various voltages at high current. Ex-Admiralty and extremely robust. BRAND NEW. ONLY $39 / 6$ (postage,
etc., 2/6). ALS.-British Standard 2-pin 500 $\mathrm{kc} / \mathrm{s} .15 \mathrm{l}$ - Miniature $200 \mathrm{kc} / \mathrm{s}$ and $465 \mathrm{kc} / \mathrm{s}$. 10/- each.
SPRAGUR.-. 1 mid. 600 v. metal tubulars, 10d, ea. $9 / 6$ dozen (add post).
1R.W. WITS TYPE 26 \& 2%-For use with the-R1355 or any receiver with a 6.3 v . supply. These are the variable tuning units which use 2 valves EF54, and 1 of EC52. Type 26 covers $65-60$ mos. ($5-6$ metres) and Type 27 covers 85-65 mes. \{3.5-5.0 metres). Complete with valves and BRAND NEW IN MAKER'S CARTONS. ONLY 29/6 each. '110KNS. -10 H 60 mA .641 .5 H 200 mA \%/6. $10 \mathrm{H}, 120 \mathrm{~mA} .10 / 6$ (post 1/* ea.). sPMAKLiRS.-P.M. $6: 1 \mathrm{n}$. Less trans.. 19.0.
8in. less trans.. $16 / 6 ; 10 \mathrm{in}$. with trans.. 8in. less trans. $16 / 6$
$2 \pi / 6$ (postage 2/- ea.).

METHRS

F.S.I). SIZF AND TII'E
5 mA. D.C. 2 in. Flush square 5 mA . D.C. 2 in. Flusi square. $150 \quad \because \quad$ D.C. 2 in. Flush square 500 " thermo 2 in. Flush square 500 .. thermo 2in. Proj, circular 30 amps D.C. $2 i n$. Proj. circular 40 amps D.C. 2 in. Proj. circular 30-0-30 amp. D.C. Car type moving iron 15 volts A.C. 2 in. Flush circ., mov. iron $8 / 6$ All buetert, Brand New in Maker's Ciartons Amounts given for carriage refer to inland on

U.E.I. CORPORATION,

138, Gray's Inn Road, London, W.C.I 138, Grays (Phone: THiRminus 788\%) (Opem until 1 p.m. Satimdasts. We are 2 fins, from Itigh Ifolloty by bus from Game Statlon)

d
 פNICOY

snour-piom anol

2 mew items of excepptional intrpest . . . NEW Eddystone '840A'

COMMUNICATIONS RECEIVER

Easy to see - easy to handle

NEW BANDSPREAD DEVICE
 LONG OPEN SCALES
 34 FEET of BANDSPREAD
 O EACH of 4 RANGES
 COVERS $\mathbf{3 0 . 6} \mathrm{Mc}$'s - $\mathbf{4 8 0} \mathrm{kc} / \mathrm{s}$
 (9.8-625 Matres)

This high-performance 7 -valve receiver has a full communications specification, including such features

- Accurate tuning and station resetling
- Beat Frequener Oscillator
- Internal loudspeaker
- Special aerial inpur for 400 ohms win OR single wire
- High sensitirity
- Rugged "BATTLESHIP" construction, works equally zeell from $A C$ or $D C$ mains
£49 or on WEBb'S EXTENDED PAYMENTS Deposit 49.16 .0 d . and 12 payments of f3.11.11d. or 18 pay. ments of $\mathrm{C2} .10 .1 \mathrm{~d}$.
EDist sifit hert the motrit on the "ATO. '. . descriplive brochure post free on request from Webb's Radio.
and the latest development from the rogers laboratory nocuta ' RD Junior'
For ${ }^{\text {FIIIIFII }}$, at a reasonable price
AMPLIFIER £25 Complete with Pre-amp. or on WEBB'S EXTENDED PAYMENTS Deposit $\mathbf{5 5 . 0 . 0 d}$. and 12 payments of El.16.8d. or 18 payments of E1.5.7d.
A POSTCARD BRINGS YOU A 12 PAGE BROCHURE ON THE 'RD JUNIOR'—YOU WILL SEE IT HAS ALL THE FACILITIES GIVEN BY OTHER OUTFITS COSTING DOUBLE.

14 80HO 8T., OXFORD ST., LONDON, W. 1 Telephone : GERrard 2089.
Shop Hours
9 a.m.-5.30 p.m.
Sols. 9 a.m.-I p.m.

> No. 1.-PYE 18A AND G18K SERIES
switch to be brought into operation will impair the receiver's apparent sensitivity, and may lead one to suspect a fault somewhere in the aerial coupling circuits.

A triode-hexode frequency changer valve (ECH35) produces local oscillations in the triode section, and receives the aerial signals on the first grid of the hexode section. The appropriate aerial and oscillator coils are brought into circuit by the waveband rotary switch, each contact on which is shown on the circuit, for simplicity, as a straightforward makebreak switch.

L4 is the short-wave coil and T1 the short-wave trimmer; L2 is the short-wave aerial coupling coil. L 5 is the medium-wave coil and L6 the long-wave coil. When an external or plate aerial is used, L3 acts as medium and long-wave aerial coupling coil. T2 is the medium-wave aerial trimmer. The selected coils being tuned by C3.

The oscillator grid and anode coils are selected in a similar manner; $L 7 / 10, L 8 / 11$ and $L 9 / 12$ being the short, medium and long-wave coils respectively. These are trimmed in the same order by means of T3, T4 and T5, and oscillator tuning is performed by C4 which is ganged to C3. A degree of fixed padding is achieved by the $570^{\circ} \mathrm{pF}$ capacitor C5.

Mixing takes place within the valve V1, and a 465 kc / s intermediate-frequency signal occurs across L13. This is conveyed, via the first I.F. transformer (I.F.T.1), to the signal grid of the I.F. amplifier valve
(Conimued on page 361)

Fig. 1.-Circuit diagram of Pye 18A, etc. The circuit is drawn with the waveband switch in the long wave position, and the tone control switch in the "fidelity" radio position. Switch $S 1$ is shown in the open position as wacitor values in microfarads, unless otherwise stated.

R.S.C. A4 HI-FIDELITY 25 WATT AMPLIFIER

A new design for 1955. "Push-Pull"

 output. "Built-in" Tone Control Preamp. stages. Increased sensitivity. Even further improved performance figures. Includes 7 valves. specially designed sectionally wound output transformer, block paper reservoir condenser and reliable small condensers of current manufacture. TWO SEPARATE INPUTS CONTROLLED BY SEPARATE VOLUMECONTROLS allow simultaneous use of etc.. etc. INDIVIDUAL CONTROLS FOR. BASS AND TREBLR " Lift "and "Cut" Frequency response $\pm 3 \mathrm{db}$. $30-30,000 \mathrm{c} / \mathrm{c}$. Six negative feedback loops. Hum level 66 db . down. ONLY 20 millivolts INPUT required for FULL OUTPUT. Certified harmonic distortion only $0.35^{\circ \prime i}$ measured at 10 watts. Comparable with the very best designs.ENTIRELY SUITABLE FOR SMALL HOMES OR I, RTRE HALLS CLUBS GARDEN PARTIES. DANCE HALLIS, etc. etc, For ELECTRONIC ORGAN Or LONG-PLAYING RECORDS. FOR ANY "MIKE', or' PICK-UP
H.P. TERMS ON ASSEMBLED UNITS DEPOSIT £2 and ten monthly payments 22/6.
A MPSH-PCIIE, 3-4 watt IfIGTI-A AIN AMPI.IFIER FGIR 83/\%6. FOr mains input 200-250 v. $50 \mathrm{c} / \mathrm{s}$. Complete kit of parts including circuit. point to point Wiring diagram, and instructions. Amplifler can be used with any type of Feeder Untt or Pick-up. This is not A.C.ID.C. $400-0-400 \mathrm{v}$. trans. (Output is for $2-3 \mathrm{ohm}$ speaker.) Supolied ready for for $2-3$ ohm extra. Carr. 2.6. Descriptive leaflet, 7d.

PHESSEY 3-SPESND MIXIGR AITO CHANGHR. Takes 7in.. 10in. and 12 in records, standard or long playing. Crystal Plok-up with Duo-point sapphire stylus changed from standard to long plavink For A.C. mains $200-250$ y 50 cics number. Brand New, cartoned, at only 10 mis., carr. 5/-.

BATLEIRY' SEIT CONDEIRTEIR KIF, All parts for converting any type of Battery recelver to All Mains. A.C. $200-250 \mathrm{~V}$. 50 c/cs. Kit will supply fully smoothed H.T, or 120 v .90 v . or 60 v at up to 40 mA . and fully smoothed L . T. or 2 v , at 0.4 to 1 a. Price, complete with circuit. 48/9. Or ready to use, $8 / 9$ extra.

PNRGONAI, SET HATTRERY SEPYR NFDEIT KIT. A complete set of parts for construction of a Unit (housed in metal case) to replace Batteries winere A.C. Mains supply is avaliable. Tnput $200-250$ v. 50 c/s. For 4 valve receivers requiring $00 \mathrm{v} .10 / 20 \mathrm{~mA}$. and 1.4 v . 250 mA . fully smoothed. Price complete 250 mA ., dircuit. Only 35/9. Or ready for use, $42 / 6$. size of unit, $5 t \times 4 \times I_{n}^{3}$ in.

For mains $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.
To charge 6 v. ace. at $2 \mathrm{a} . ., 25 / 6$.
To charge 6 or 12 v . acc. at 2 a., $31 / 6$.
To charge 6 or 12 v . acc. at at 4 a., $31 / 6$.
Above consist of transtormer, rull wave rectifier, fuses. fuscholders and steel case. Any type assembled and tested. $6 / 9$ extra.

THE SKYFGIIR 'T.IR.F. IRECFIVFIR. A design of a 3 -valve $230-250 \mathrm{v}$. A.C. Mains receiver with selenium rectifier. It con slsts of a variable Mu high gain Con stage followed by a low distortion anode bend detector. Power pentode output is used. Valve line up being 6K7 SPGl $6 F 6 G$. Selectivity and quality are well up to standard. and simplicity of construc tion is a special feature. Point to point wiring diagrams, instructions, and parts list. 2/6. This receiver can be built for a maximum of $£ 4 / 19 / 6$ including attractive Brown or Cream Bakelite or Walnut veneered wood cabinet $12 \times 6 \frac{1}{2} \times 5 \frac{1}{2}$

Size approx. 12-9-7in. For A.C. malns 200-$230-250 \mathrm{v} .50$ cics. Outputs for $3-$ and $15-\mathrm{ohm}$ speakers. Kit is eomplete to last nut Chassis is fully punched. Full instruc tions and point-to-point wiring diagrams or ready for use 50 - extre If readyired use, $50 /$ extra. Carriage $10 /-$ If required, cover as illustrated can be
supplied for 1 b/6.

 (PP (Sapphire Stylus). Speed 33t r.p.m. For A.C. mains $200-250$ v. Limited supply Brand New Cartoned. Perfect. Only £3/19/6. Plus carr. 5/- (Normal price 88 approx.).
 NEPE: PICK-TPS. High impedance magnetic type. Limited stocks at fraction of normal price. Only $35 /$. Brand New.
FOLK wTAGE IRADIO WHEDFIR
CNII, Design of a High Fidelity Tuner Unit T.R.F. L. \& M. Wave. Full decoupling. Self-contained heater supply. Only $250-400$ v. $10-15 \mathrm{~mA}$, H.T. required from main amplifier. Three valves and low distortion Germanium diode detector. Flat-topped response characteristic. oaded H.F. coils. Two variable-Mu controlled H.F. stages. 3-Gang condenser uning. Detailed wiring diagrams. parts ist, and illustration, 2/6. Total building cost, £3/15/-.

R.S.C. 10 WATT "PUSH-PULL" HIGH-FIDELITY AMPLIFIER A3

Fdeal for the quality enthusiast in the home or small hall. Two different inputs can be simultaneously applied and controlled by separate volume controls. Any kind of Pick-up is suitable and most microphones. Tone controls give full Long Playlng record equalisation for uncorrected Pick-ups. Sensitivity is very high, Only 1:30 millivolts required for full output. H.'T. and L.'T. available for Radio Feeder unit.
Complete with integral Pre-amp. Tone control stage (as A4 amplifier), using individual bass and treble lift and eut one control dix versilis mandisat fotips. Completely negligible hum and distortion. Frequency response $t 3$ and 30-20.000 C S Six valves A C mains $200-230-250$ v.- input only. Outputs for 3 and 15 ohm speakers. Kit of parts complete in every detall. plus 7/6 carriage.

GNS. Illustrated leaflet bel. Cover as for A4 s suitable. H.P. TERMSON ASSEMBLED UNITS. DEPOSIT £1/13/4. plus $7 / 6$ carriage, and nine monthly payments el.
P. H. SPEAKEIRS. All 2-3 ohms, 63in. Plessey, 16/9. 81 n . Plessey, 16/8. 101 n . Plessey, 18/6. 10in. R,A, 28/9. 10jn. Rola with trans., 29/6. 10in. W.B. "Stentorlan" fidelity type. Highly 1012 watts, hignuse with any of our amplifiers, $83 / 17 / 6$.
MICROPHONLS. Crystam high fidelity ypes. Recommended for use with our amplifiers. Acos. Hand or Desk type, 50/-: Stand type, with heavy floor base TERMS ON "MIKES," SPEAKERS, H.P. when supplied with our amplifiers.
COAKIAL CABLE, 75 ohms, in., 7al. yard. Twin Screened Feeder, gal, yard.

SNLEKIUM HECTIFIERS
6/12 V. T, T. H. H.W.
F. W. Ifridge ${ }^{2 / 3}$ D/
$\begin{array}{lll}6 / 12 \text { v. } 1 \text { a. } & 4 / 9 \\ f / 12 \text { v. } 2 \text { a. } & 8 / 8\end{array}$

$150 \mathrm{w}-40 \mathrm{~mA}$	$3 / 8$
250 v .50 mA	$6 / 9$
250 V .80 mA	$7 / 9$
RMA 250 v .250 mA	

R.S.C. MAINS TRANSFORMERS (GAMANF: Interleaved and lmpregnated. Primaries 200-230-250 v. 50 e/s screvined
 $250-0-250$ v. $70 \mathrm{~mA}, 6.3$ v. 2.5 a $13 / 9$ $260-0-260$ v. $70 \mathrm{~mA}, 6.3$ v. 2 a, 5 v. 2 a ... $16 / 9$ $250-0-350$ v. $80 \mathrm{~mA}, 6.3$ v. 2 a, 5 v. 2 z $\ldots 18 / 8$ $250-0-250$ v. $100 \mathrm{~mA}, 6.3$ v. 4 a, 5 v. 3 a ... $22 / 9$
$300-0-300$ v. $100 \mathrm{~mA}, 6.3$ v. 4 a, 5 v. 3 a $.22 / 9$ $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3$ v. 4 a, 5 v. 5.3 а ... 22/9 $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4$ a. C. $\mathrm{T} .22 / 9$ $0-4-5 \vee .3$ a
$350-0-350$ v. $150 \mathrm{mA}$..6 .3 v.. 4 a. 5 v. 3 a $\ldots 29 / 9$ $350-0-350$ v. $150 \mathrm{~mA}, 6.3 \mathrm{v} .2$ a. 6.3 v. 2 a . $29 / 9$

$250-0-250$ v. $60 \mathrm{~mA}_{\mathrm{F}} 6.3 \mathrm{v} .2$ a, 5 v. 2 a,

C.T. 0-4-5 v. 3 a ...
$250-0-250$ v. 100 mA .6 .3 v. 6 a, $\dddot{5}$ v. 3 ä $27 / 9$
$250-0-250$ v. 100 mA .6 .3 v. $6 \mathrm{a}, 5 \mathrm{v} .3$ a.
for R135j conversion $300-0-300$ v. $100 \mathrm{~mA}, 6.3^{\prime}$ v. -4 v. 4 ä,
$\begin{array}{ccccc}\text { С.'. 0-4-5 v. } 3 \text { a } & \cdots & \cdots & \cdots & \cdots\end{array}$

FILAMENT THANSFOEREIRS

All with $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ primaries 6.3 v
1.5 a. $5 / 9: 6.3$ v. 2 a, 7/6;0-4-6.3 v. 2 a, 7/9 12 v. 1 a, 7/11:6.3v. 3 a, $8 / 11 ; 6.3$ v. 6 a $17 / 6 ; 12 \mathrm{v} .3$ a or $2.4 \mathrm{v} .1 .5 \mathrm{a}, 17 / 6$.
CIIARGTEH TRANSPORNEIRS
All with 200-230-250 v. 50 c/s Primaries $\begin{array}{lllllll}0-9-15 & \text { v. } 14 & \text { a, } 11 / 9: 0-9-15 & \text { v. } 3 \text { a, } 18 / 9 \\ 0-9-15 & \text { v. } & 5 & \text { a, } 19 / 9: & 0-9-15 & \text { v. } 6 \text { a } & 29 / 9\end{array}$ SHOMTHIN氏(HOKES
$250 \mathrm{~mA} 3-5 \mathrm{H} 100 \mathrm{ohms} .$.
150 mA 7.10 H 250 ohms
100 mA 10 H 175 ohms Potted 80 mA 10 H 350 ohms
60 mA 10 H 400 ohms 119 11/9 60 mA 10 H 400 ohms 4/11
N.H.T. TRK. NSFOIRMEIRS

2,500 v. $5 \mathrm{MA} .2-0-2$ v. 1.1 a, $2-0-2 \mathrm{v}$.
1.1 a for V'CR97, VCR.517,

Midget Battery Pentode 66: 1 for Small Pentode 5.000 to 33Ω
Standard Pentode, 5:000 Ω to 3Ω Standard Pentode, $7 / 8,000 \Omega$ to 3Ω Standard Pentode. 10,000 s to 3Ω Multi-ratio $40 \mathrm{~mA}, 30: 1$. 45 $60: 1.90$ 1. Class B Push Pull
Push-Pull 10-12 watts $6 V 6$ to 3Ω or Push-Pull $10-12$ watts 6 V 6 to 3 a or
15 s . Sectionally wound... Push-Pull 10-12 watts to match 6V̈
$350-0.350$ v. $100 \mathrm{~mA}, 6.3$ v. -4 v. 4 a, $47 / 9$

Williamson Amplifier. etc. Suitable $49 / 9$
$450-0-450$ v. $250 \mathrm{~mA}, 6.3$ v. $6 \mathrm{a}, 6.3$ v. 6 a.
68/9

DIIDINA'ME 'IUANSFGRNEIRS Primaries $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}, 120 \mathrm{v} .40 \mathrm{~mA} 7 / 9$

 14/9to $3-5-8$ or $15 \Omega 2$
Push-Pull 20
Push-Pull 20 watts, sectionaliy $16 / 9$ wound 6L6. KT68, etc. to 3 or $15 \Omega 47 / 9$

There's a wonderful future for you in -

ELECTRONICS

Every day the demand for the expert in electronics grows. Radio, television, radar and the whole field of industrial electronics are rapidly expanding, and the trained specialist in these fields is assured of a well paid career in this quickly developing profession. Here is your opportunity to acquire specialist knowledge. Write for our free Brochure giving details of the following courses:

THREE-YEAR COURSE

in Telecommunication Engineering (including opportunity for nine months' practical attachment in E.M.I. Laboratories and Workshops). Next course commences on 14th September, 1955.

FOUR-YEAR COURSE

in Electronic Engineering. Intended for outsianding Science sixth-formers who are capable of training into future team leaders in scientific applications. Final qualifications are B.Sc. and City and Guilds Full Technological Certificate in Telecommunication Engineering. Next course commences on 4th October, 1955.

E.M.I. INSTITUTES

Dept. 32K, 10, Pembridge Square, London, W. 2. Telephone: Bayswater 5131/2.
The College associated with a world-wide elactronics industry neluding "His Master's Voice," Marconiphone. Columbia, atc

NOW AVAILABLE WITH THEREMARKABLE NEW

fiefails of full rante now comprision
41 made's folder Ato. s. S^{\prime}. 10 sent on request

The soldering bit whioh lasts indefinitely, does not beoame pitted or lope its laee and requires no reshaping, filing or main-tenance. Fired bit modely ant eplacoable bits available in all siz33.

NO TRANSFORMER

 necessary.
FOR MAIN VOLTAGES.

 Kapid Heating-Extreme Light-Ress-Twent models-Rit sizes 1/8in., $3 / 18 \mathrm{in}$., $1 / 4 \mathrm{in} ., \quad 3 / 8 \mathrm{in}$. Prices from 19/6. All voltages voltage when orderiag.)

LIGHT SOLDERING DEVELOPMENTS LTD., 106. GEORGE STREET, CROYDON, SURREY. Tel, CROydon 8589

THE POCKET LOUDSPEAKER SET

Using our clear drawings and instructions you can build a midget loudspeaker receiver small enough to flt. in the jacket pocket. This receiver is fully self-contained-no aerial, earth or external power supply being required: The midget-batteries used are of the new layer type specially produced by a ramous. British maker for this class of receiver. Only one simgle-gang midget variable condenser is used for tuning, and the recerver requires no alignment. The motget componernts chosen are
Instructions and Drawings, including Theoretical Circuit and Point-to-Point Wiring Diagram.

PRICE $3 / 6$ POST FREE
This offer applies only to Gt. Ibritain. Irish Republie and
torthern freland.

SWIFT RADIO

102, BATH RD., WILLSBRIDGE, Nr. BRISTOL
Orders by post only

MORSE CODE Training

 Send for the Candier
BOOK OF FACTS

It gives details of all Courses which include a Special one for acquiring amateur licence. CANDLER SYSTEM CO. Dept. 5L.O 52b, Abingdon Road, London, W.8. Candler System Co., Denver, Colorado, U.S.A.

Established 21 years

1155 RECEIVETSS.-NeV condition. complete with Valves. $£ 6-12-6$. carriage $8 / 6$. APNY,-Brand new RX with 14 Valves and Motor. Silly Price, $23-2-8$, carriage $7 / 6$. 1154 TX.-Brand new. complete with valves and meters. 17/6, carriage 10/6 (including transit case).
 Complete with two valves. Types CV1035 and Det. 210 . Condition fair. Valves O.K. $5 /-$ post $1 / 10$.
IEX-T.S.A.
DINGIIX TELESAOPIC AERIAL.-Complete with umbrella reflector Brand new. 5) post 1/9.
ANOTIER LOAD of the famous Type 17 Sets, less valves. Rough condition, but all guaranteed to work. 3/6. post $2 / 6$.
METAL BOX with three, silver mica capacitors 470 pF . Brand new. $1 /-$ post 4 d . VALVEHOLDERS.-Removed from new ex-W.D. undts. EF50 type pot. base. Bid., post 3d. : 5; doz. post free. Ampfinal type Mazda and standard, 4id., post 3d. ; 4/doz post free.
SRPPIEESSOR BOXES.-Complete with four chokes and four 11 condensers. 1/9, post $1 / 9$.
Mometal SCREEN for VCR97 tubes. 2/- post $1 / 9$.
ANCESCRIENING (ANS.-Removed from 1124 set. 5d. each, post 3 d . : $4 / 9$ doz..
post free. metal mok.--Complete with Yaxley switch and knob, also togsle switch. Yaxley switch and knob.
Brand new. $1 /$ post 9 d .
Brand new. 1/, post 9\%. 13AIRGiAIN PARCEL, 5,- post $2 / 6$ (mains
or battery). Over 30 ,- worth of spares. Money back guarantee.

160

or

240

Pitv the poor output valve! Thiese are the possible values of a 200 ohm $20^{\prime \prime}$., are the possin vaiues of aven cathoue bias Resistor. o short unhappy low output, distortion, a shor unhappy life for Your valve. Accuracy in all components is essential for 1000 results. Fortunately you can check every resistor and condenser in a icw seconds with the Radio mall $31 / 6$ complete.
$5 \mathrm{megohms}-50,000$ ohms $50 \mathrm{mfd} .-2 \mathrm{mfd}$. $100.000 \mathrm{ohms}-1,000 \mathrm{ohms} 1 \mathrm{mfd} .-.01 \mathrm{mid}$. 1,003 ohms- 10 ohms. . 01 mfd. - 0005 mid. (500 pF)
NO CALIBRATING. An accurately calibrated panel with each kit. EASILY ASSEMBLED. Instructions, circult and diagrams.
OTHER KITS INCLUDE
Spot Frequency Sig. Gon.. 35^{\prime}. Tunable 1. F. Aligner, 17/6. Inductance Bridge. 42/6. Audio-Frequency Bridge. 38 . 6. Twin Multi-omer. 251.

Post and packing 1 '6 on all kits. Stamp for illustrated lists.
milif MAII. Dent. I

6. IRAL心KiL SF., NOTTIN(ifiA.

COPPER MIRE				
ENAMELLED			TINNED	
S.W.G.	2 ozs.	4 ors.	2 ozs.	4 ozs.
16	1/6	2/3	1/6	2/3
17	1/6	2/4	1/6	2/4
18	$1 / 6$	2/5	1/6	2/5
19	1/6	$2 / 6$		
20	1/7	$2 / 7$	1/7	2/7
21	$1 / 7$	2/8	1/8	2/8
22	1/8	2/9	1/8	2/9
23	1/9	2/10	1/9	2/10
24	1/9	$2 / 11$	1/9	2/11
25	1/10	3/-	1/10	3/-
26	$1 / 10$	3/1	1/10	3/1
27	$1 / 11$	3/2	1/11	3/2
28	1/11	3/3	1/11	3/3
29	2/-	3/4	2/-	3/4
30	2/-	3/5	2/1	3/8
31	2/1	3/6	2/2	3/9
32	$2 / 1$	3/7	2/3	3/11
33	2/2	3/8	2/4	4/1
34	2/2	3/9	2/5	4/3
35	2/3	$3 / 10$	2/6	$4 / 5$
36	2/3	$3 / 11$	2/8	4/8
37	2/4	4/1	2/9	4/11
38	2/5	4/3	2/11	5/2
39	$2 / 6$	4/5	3/-	5/5
40	2/7	4/7	3/2	5/9
POST PORDERS ONLY PLEASE.				
Send stamp for comprehensive lists.				
CRYSTAL VALVE				ON
RECEPTION GUARANTEED				
Polished wood cabinet, 15/-, post $1 /-$ A REAL CRYSTAL SET, NOT A TOY				
POST RADIO SUPPLIES				
33 Bourne Gardens, London, E. 4				

V 2 (EF39). On the radio position the function of this valve is quite conventional, the "amplified I.F: signal being developed in the second I.F. transformer (I.F.T.2), and passed on for demodulation to the signal diode in V3 (EBL31): The filtered A.F. signal thus appears across the 1 megohm volume control R2, and is taken through the grid-stopper R1 to the signal grid of the pentode section of V3.
This performs as the sound output valve and converts the signal into power, in conjunction with the output transformer TI, to drive the loudspeaker (L.S.)

Some of the I.F. signal voltage is taken by way of C6 to the A.V.C. diode in V3. This signal is thus rectified, loaded by R3 and filtered by R4 and C6, and used as A.V.C. bias for V1 and V2. A delay voltage and bias for $V 3$ pentode section is given by the two resistors in the cathode circuit of V3.
The network comprising switches, resistors and capacitors between the anode and the control grid cireuit of V3, constitutes a voltage negative feedback tone control arrangement, and is brought into modified action by means of the tone control switch Previously mentioned. Four positions-" Fidelity," "Brilliant," "Mellow 1," and "Mellow 2"-are dvailable on radio, and two positions-" Fidelity"

Figs. 2 (above) and 3 (below)-Top and botrom views of chassis, showing positions of various parts.
and "Mellow"-are available on gram., the seventh position actuates the receiver's main on/off switch.

These facilities enable the A.F. response of the receiver to be modified, and in practice the results achieved are quite effective. On the "gram" positions, however, a change takes place in the I.F. amplifier stage $V 2$.

A Reffex Arrangement

Switches S14, S15 and S17 open, and S16 and S18 close. This produces an A.F. coupling from V2, in virtue of the resistive load R5 in its anode, through C7 and C8 and the volume control, to the grid of V3. The pick-up signal, being applied across the correcting network R6, R7 and C9 between chassis and the lower end of L14, thus finds its way to the signal grid of V2. This valve, therefore, acts as a voltage amplifier and raises the pick-up signal to a level suitable for fully driving V3.

Other Features

Facilities are provided for using an extension loudspeaker. Switch $\$ 25$ brings the extension speaker into circuit, and switch $\$ 26$ mutes the internal speaker.

A double - wound transformer is employed in the power circuit, and thus the receiver can only be used on A.C. mains supplies.

Mains smoothing is catered for by the filter resistor R8 and the elctrolytic capacitors Cl and C 2 (a single-unit capacitor). In the radiogram version, R8 is replaced by a conventional smoothing choke; this is to minimise the residual hum which may otherwise become disturbing owing to the larger speaker baffle area of the radiogram cabinet.
Owing to the resulting rise in H.T. line potential, an additional resistive capacitive filter section is also included in the radiogram chassis.
The difference between' the tuning drive cord arrangements of the radio and radiogram versions is illustrated in Fig. 4.

General Faults -

If excessive hum is experienced when the receiver is switched to the gram position, a $4.7 \mathrm{~K}!$ I-watt resistor should be added between the H.T. line and the top of R'S, and a $2 \mu \mathrm{~F} 350$-volt electrolytic capacitor connected from the chassis to the junction of the resistors. Later model receivers in this series embody this modification.
Insufficient volume when using a-high-impedance màg-
netic pick-up on the radio version may be due to excessive damping as the result of the correcting network, R6 and C9. Enhanced performance may sometimes be achieved by removing these components from across the pick-up terminals.

A general lack of sensitivity has frequently been proved, the result ol an alteration in the value of one

Fig. 4.-Method of fitting luning drive table models : (b) on the radiogram chassis.
or more of the 70 pF fixed tuning capacitors across the I.F. transformer windings. These capacitors are contained within the I.F. screening cans, and if poor sensitivity seems to be an elusive feature of the receiver, one is nearly always rewarded by replacing these parts. We would mention, of course, that the faulty capacitor can be located by adjusting the I.F. transformer cores in turn. If it is noticed that a considerable rise in sensitivity occurs when one particular core is adjusted, and that the peaking point is outside the range of the adjustment, then the associated capacitor should be replaced.

Weak signals, both on radio and gram, should lead one to check the condition of the $47 \mathrm{~K} \Omega$ resistor which is situated in the top-cap connector of the EBL31 valve. Since this resistor is subjected to considerable heat from the valve, it has a habit of either going very high in value or completely opencircuit.

If an intermittent "rumbling" noise becomes superimposed on the reproduction, the top-cap of the EBL31 valve should be scrutinised, preferably through a magnifying glass, for it often happens that oxidisation occurs between the grid wire leading out of the valve and the solder blob on the top-cap. This condition is frequently visible as a small black dot in the centre of the solder. It is easily cleared by quickly melting the solder on the cap, and while it is still liquid giving the valve a vigorous shake. This will remove the solder and permit the wire to be thoroughly cleaned, tinned and re-soldered-and in nearly all cases, save the expense of a new valve.
Apart from the $25 \mu \mathrm{~F}$ electrolytic capacitor in the cathode circuit of the EBL31 valve becoming shortcircuited, distortion on gram. rarely occurs. If it happens on radio, however, it is generally caused by C6 becoming leaky.
If the radio section fails, but the gram. section remains live (on the radio version this can be proved by switching to gram. and touching the live pick-up terminal with a finger; if a fairly loud hum is produced, then it can be presumed that the gram. section is operational), VI should, of course, be tested first, but if the valve and its associated electrode voltages check normal, and a click from the loudspeaker can be obtained by touching the grid ton-cap of VI with
a screwdriver, then in nearly all cases it will be discovered that the oscillator grid-coupling capacitor C10 is open-circuited.

Apart from becoming completely open-circuited, this capacitor sometimes increases in value. This has the effect of preventing oscillation on the long waveband, the medium and short waves working normally, thougT probably slightly of tume on the scale.

An intermittent crackling or "rustling" noise should lead one to suspect V1 and V2 for loose electrodes. These can be tested for this fault in sill by removing the aerial. tuning to a quiet part of the lons or medium waveband, and then gently but sharply tapping the valves in turn with the end of a screwdriver handle. If the valve has a loose electrode fault it will be revealed by a crackling or rustling from the loudspeaker as it is tapped.

When making a test of this kind, care should be taken to ensure that the noise is not being caused by poor contacts between the valve pins and the valveholder sockets; as opposed to tapping the valve, this can generally be proved by wriggling the valve in its holder.
Another source of valve noise is a poor connection between the metallised red coating on the ECH35 and the EF39 and the wire which connects this coating to the cathode pin. This generally results if the envelope of the valve is loose in its base. Noise from this source can be cleared up by binding about six turns of tinned 20 s s.w.g. wire around the valve between the envelope and the base. This will improve the electrical connection between the metallising and tine metallising connecting wire. The wire can be held firmly in position cither by soldering it at the ends, or by tightly binding over the top of it with insulating tape

Alignment Procedure

The I.F. stages must be aligned first. To do this the receiver should be switched to the medium-wave position and the tuning set to the low-frequency end of the band (with the gang fully enmeshed). The A.V.C. should be made inactive by shorting C 6 , and the oscillator should be muted by shorting C4.

The volume control should be set at maximum, and a $465 \mathrm{kc} / \mathrm{s}$ signal applied to the top-cap of VI (the lop-cap connector should be removed and in its place a $\frac{1}{2}$ megohm resistor should be connected between the top-cap and chassis-this is necessary to maintain bias on the value). It is best to apply the signal through an $0.1 \mu \mathrm{~F}$ isolating capacitor, though the "earth". side of the signal generator can be connected direct to chassis (sec "Using Test Instruments "-which will appear later in the series). The signal generator should be modulated, and an output meter connected across the secondary of T .
The cores of L13, L14, L15 and L16 should be adjusted for maximum output (see Figs. 2 and 3). This concludes the I.F. alignment, and now the short circuit should be removed from C 4 , the resistor removed from VI grid, and the top-cap replaced.
The medium-waye section should next come under attention by applying a $1,500 \mathrm{kc} / \mathrm{s}$ signal, through a dummy aerial, between the aerial and earth sockets, and setting the tuning to correspond to this frequency (200 metres on the receiver scale). Before commencing operations, it is as well to ensure that the scale pointer is traversing the scale correctly, and that this
(Concluded on page 366.)

SUPERIOR RADIO SUPPLIES

（P．W．J） 37 HILLSIDE，STONEBRIDGE，LONDON，N．W．IO．
Tel．：ELGar 3644.

High Class Cabinets

SUPERIOR BUREAU

 veneer internal pansls in polished－syca more．A drop front lid covers a sloping． uncut control panel（141n．long x 1031n． high）along side which is an uncut base－ board（171in．long x 13 yin．back to（ront） The inslde of the drop frant lid is panelled in beige leatherette．In the lower part of the cabinet are two large storage cup－ boards（ 13 \}in. high. 7 in．wide． 161 in ．deep） The ild and cupboard handles are in chased Florentine bronze．Overall dimen－ stons（ 33 in ．high． 34 in ．long． 16 in ．deep） Price 117.0 .0 plus 15－carr．Send for Cabinet Leafiet．

The Home Constructors BATTERY PORTABLE！

 TheSUPEREX 55 ATTACHE
Huilding Cost £7．15．0，plus $3 / 6$ 1’．P．

－Outstanding Quality．
－7in．x 4in．Elliptical Speaker
－First Class Reception．
－ 4 Valve Battery Superhet．
－Cang and 10 in．x $8!i n$ ．x 5in．
Send $1 / 6$ for＂Superex 55 ＂Construction

IDEAL FOR TAPE RECORDERS S．R．BUREAU

A fine multi－purpose cabinet．finished in well figured walnut veneer and built to the highest standards of workmanship．A blank motor－board size（ 16 in ．long x 15 Ln ． deep）and radio panel size（i6in．Iong x Hin．high）is revealed when the front is pulle 1 down．Two large storage cupboards are located one on each side of the cabinet． Size of these compartments is $12 i n$ ．Wide x L5in．deep．Overall outside dimensions of the cabinet are 361 n ．long x 331 n ．high x lin．deep．Avallable prepared Un－
polished or Polished． Price £16．10．0 Polished，£13．10．0 U゙n－ polished．
Plus 15／－carr．Send for Cabinet Leaflet．
 －O．D．Extra charge for C．O．D．

mall lian an
 621 ROMFORD RD．LONDON，E．I2

RADIOGIKAM CHASGIS，29＇⿹．－Including Speaker． 5 valve s／het， 3 w／band A．C．mains．complete，but．less valves and dial．All used，tested，guaranteed．P．\＆P，4／6．Drawings 2／6 or free with order，Knobs $1 / 6$ set extra．Complete with valves $97 / 6$ ．
RADIO CHASSIS，\％／日，A．C．or Universal．sthet receivers． Less valves dial and electrolytics．Otherwise believed to be in working order．Note．－Our Bin．M．E．speaker fits some of these sets，we match on request with order．P．\＆P． $3 / 6$ ． RA1）CHASS1S，14／9．－As above with 3 band coil packs 465 I．F＇s．All used bargains．P．\＆P． $3 / 6$.
 ohms，or with O．P．trans．：149．Used，tested guaranteed Post $1 / 9$.
SIEAKEIRS，2／9．－ \sin ．M．E．field $1 k, 2 k, 5 k$ ohms．With O．P trans．4／9．Post 1／9．Used，tested guaranteed
V．H．F．RECEIDEIS 1124．17／6．－With 6 valves．Ex－W．D． new condition 6 channel switching．Recelves TV sound police，fire and amateurs 30.5 to $40 \mathrm{mc}^{\prime} \mathrm{s}$ ．I．F． $7 \mathrm{mc} / \mathrm{s}$ ．Post $2 / \mathrm{d}$ Drawings and conversion data free with each set．
V．H．F． 1125 SET，7／9．－New and boxed．This little set is a V．H．F．receiver．Requires modification to put it into service． Complete with valves．Post 2
IR．F．UNIT 24，12／6．－New and packed．Tuning 20－30 me＇s． Including valves．Post Risisis．－We hope to accept your further orders this month．after we have completed yout further orders this month，atter we have are sorry for the overwhelming response to previous ads．
 Std．size．Post 9d， Tested guaranteed．Also 3 gang．2\％．Post 9d． tested guaranteed．Also 3 gang．2iglytic． 120 mid．plus＇61 mid 350 volt．Post 1 －
 Primary． $100,120,200.250$ ．Make ideal auto trans．Post $2 /-$ ． Primary．inisis， $57 / 6 .-3$ vaive， 4 watt output，A．C．or universai PoSt 2／G． Post 3／6． with extra pre－amp stage， 3 controls．Post $3 / 6$.
whi extra $2 \neq 1$ stamb only for complete catalozue．

You can rely on us

For all rellable radio components，a Catalogue of which will be despatched to you upon the receipt of your letter and 6d．Muilard． Osram Amplifiers．etc．．on H．P．terms． Osram Amplifers．etc．．on H．P． Repair－man＇s Hardware Kits ：－

Kit＂A．＂Irice 10／－ Multicore Solder． Two Spindle Couplers． Assorted Grommets． Assorted Grommets Assorted Grid Caps．

Yellow Systoflex．
One Spindle Extension
6 B．A．and 4 B．A．Nuts \＆Bolts．
2 yds．Nylon Drlve Cord．
Two Pilot Bulbs．

Kit＂B．＂Price 25／－ One Tin Switchcleaner． Multicore Solder． Two Couplers．
Assortod Grommets． Pocket Screwdriver，
Two Drive Cord Springs．
Four Tag Strips．
Four Condenser Clips．
「「wo Pilot Bulbs．
Bib Wire－stripper \＆Cutter．

SUPFIK KIT 55／－．
Tin Cellulose Cement． Bib＂WIre－stripper Cutter．
ystoflex（extra quantity）
Two Spindle Extensions．
Assorted Grommets．
Pocket Screwdriver．
Four Cartrldge Fuses．
Assorted Springs．
Assorted Tar Strips．
Four Condenser Clips．
Six Pilot Bulbs．
Tin of Switchcleaner

Systonex．
One Extension Spindle
One E．A \＆ 4 B．A．Nuts and Bolts．
Assorted Grld Caps．
Connecting Wire．
Volume Control Nuts and
gross Solder Tags．

Large Carton Nulticore Solder． Three Spindle Couplers．
One Set Denco Trimining Tools．
6 B．A．\＆ 4 B．A．Nuts \＆Bolts． Large Screwdriver yds．Nylon Cord． Assorted Grid Caps． 25 Yus．Plastic Connecting Volume Cont．Nuts and Washers．
1 gross Solder Tags．

Postage ：Klt＂A．＂9d．Kit＂B＂and Super Kit．1／G All articles in the above kits are brand new and not in any way surplus or used soods．
We carry a most extensive range of all radio parts which we speclalise in supplying to Laboratorics and the experimenter．

RADIO SERVICING CO．
82，SOUTH EALING ROAD，LONDON，W．5．EAL 5：8

New Valve Construction

DETAILS OF .SOME NEW MULLARD VALVES

THE well-known : advantages of screen-grid valves for high-frequency amplification has led to the ividespread use of tetrode valves in radio transmitters, In order to preserve the good performance of tetrodes at very high and ultrà high frequencies, special types of construction are necessary. Some recent Mullard double tetrodes, incorporating such features as internal neutra'lising, operate efficiently at frequencies as high as $600 \mathrm{Mc} / \mathrm{s}$.

The design of transmitting valves for use at freqưencies above $150 \mathrm{Mc} / \mathrm{s}$ presents a number of problems. Stray capacitances and inductances inside the yalve envelope affect operation more and more as the working frequency is raised. Despite these difficulties, a special construction now used in Mullard double beam tetrodes makes possible efficient operation at frequencies up to $600 \mathrm{Mc} / \mathrm{s}$.

For high-frequency operation, the screen grid valve has the very important advantage over the triode that its anode-grid capacitance can be made very small. In high-frequency transmitters, tetrodes and pentodes may, therefore, be operated in conven-tional-circuits without neutralisation. As the working frequency is increased, however, the effect of stray inductance in the screen and cathode circuits becomes marked. Inductance in series with the cathode gives rise to degenerative feedback which results in a lowering of the valve input impedance. This causes a waste of drive power. Inductance in series with the screen grid can give rise to positive feedback which may result in instability.

Figs. 1, 2 and 5.-Cn and Cn ${ }^{1}$ in Fig. 5 are neutralising capacitors.

Fig. 6.-Two of the new valves.

An Early Solution

The earliest remedy to this problem was to incorporate two screen-grid valves in one envelope, with the screens and cathodes connected together by lowinductance straps, the centre point of a strap being brought out as a piñ connection. A typical circuit arrangement, showing stray inductance is illustrated in Fig. 1.

The existence of two separate electrode structures side-by-side in the envelope necessitated rather long grid and cathode straps, however, and these possessed sufficient self-inductance to cause undesirable feedback at still higher frequencies. At these higher frequencies, Fig. 1 ceases to be an adequate representation of the circuit, which becomes more like Fig. 2 . The effects of $L k, L k^{1}$, and $L s, L s^{i}$ are not cancelled by the push-pull connection.

In the current range of Mullard V.H.F. double tetrodes an improved method of construction is used to reduce lead inductance to the absolute minimum, and thus permit operation at frequencies as high as $600 \mathrm{Mc} / \mathrm{s}$. This construction is illustrated in Figs. 3 and 4. It will be seen from Fig. 3 that a single indirectly-heated cathode is employed. This is of roughly rectangular shape, and only the long sides which face the grids are coated with emissive material. In effect, there are two separate cathodes, interconnected by the short sides of the rectangle, which act as very low inductance straps. A single screen grid is placed round both grid-cathode systems, completely climinating the effects of screen-lead
self-inductance. In practice no screen decoupling capacitor is needed and the screen may be connected to its high-tension supply via a choke or resistor.

Since this type of construction virtually eliminates the effects of screen and cathode lead inductance, the only remaining cause of instability at V.H.F. is the small residual grid-anode capacitançe. It is possible for an amplifier to become unstable at certain high frequencies as a result of feedback through this capacitance. The effect is easily eliminated in a pushpull stage by connecting neutralising capacitors from the anode of each valve to the grid of the other. If, however, these capacitors are connected externally, the presence of stray inductance in anode and grid leads and the leads of the capacitors themselves, has the effect of upsetting neutralisation at high frequencies. This is illustrated in Fig. 5, in which the stray inductances are indicated.

Internal Condensers

In Mullard V.H.F. double tetrodes, the effect of the grid and anode lead inductances in respect of neutralisation has been eliminated by incorporating neutralising capacitors inside the valve. These take the form of small pieces of wire, indicated in Fig. 4 as C and C 1, connected to each grid support, each extending to a position near the anode of the other

Fig. 3.-Sectional vien of the electrode assembly.
tetrode. The result is a true direct electrical connection of electrode to capacitor without intervening stray inductance, and neutralising is effective at all frequencies.
The QQVO6-40A (CV2797) is a larger valve, with
an anode dissipation of 20 watts per anode-twice that of the QQVO3-20A. Under telegraphy conditions it gives at full ratings a load output of 72 watts at $200 \mathrm{Mc} / \mathrm{s}$. With reduced ralings, outputs of the order of 45 watts at $500 \mathrm{Mc} / \mathrm{s}$ are obtained.

Fig. 4.-The actual valve which is shown in sectional form in fig. 3.
These valves have certain interesting construttional features apart from the special electrode configuration described above.
The anodes are of molybdenum coated with powdered zirconium, which reduces secondary emission, improves radiation of heat, and acts as a getter, with the important advantage that its ability to absorb gases increases as the temperature is raised. The anode lead-out wires are made thick in order to reduce the adverse effects of self-inductance mentioned above.

SERVICING RADIO RECEIVERS

(Continued from page 362)

is properly synchronised to the movement of the vanes of the tuning gang; the tuning mechanism should be adjusted if necessary.

The medium-wave oscillator trimmer T4 (Fig. 3) and the medium-wave aerial trimmer T 2 (Fig. 2) should be adjusted for maxinum output. The calibration should be checked at $600 \mathrm{kc} / \mathrm{s}$ (500 metres). which, provided C5 is up to standard, should be found to be within a reasonable tolerance.

The long-wave oscillator trimmer T5 should next be brought into adjustment by applying a $250 \mathrm{kc} / \mathrm{s}$ (1,200 metres) signal, and setting the receiver accordingly. The trimmer should be adjusted for maximum output. Correct tracking should be
maintained over the entire band, provided the fixed padder C_{5} is of correct value.

The short-wave band should next be aligned by adjusting the short-wave oscillator trimmer T3 (Fig. 3), and the aerial trimmer Tl (Fig. 2) for maximum output at $17.14 \mathrm{Mc} / \mathrm{s}$ (17.5 metres).

Tracking should be checked at $6.98 \mathrm{Mc} / \mathrm{s}$ (43 metres), and if a considerable crror exists the turns spacing of the short-wave oscillator coil L10 should be altered slightly as a method of compensation. In order to achieve optimum. sensitivity over the whole of the short-wave band. the turns spacing of L4 should also be adjusted. After making coil adjustments of this kind, it will be necessary to repeat the short-wave alignment process until no further improvement is registered.

Finally, the shorl-circuit should be removed from the A.V.C. line.

TWO COMPLETE Hi-Fi AMPLIFIER KITS

Ideal Amplifier for General Home Use and for Small Halls, etc.
PRICE OF COMPLETE KIT, INNG VALVES and DRILLED CHASSIS E7.10.0. (Plus $2 / 6$ carr, and ins.) WE WILL SUPPLYIT COMPLETELY carr. and ins.) Designed for carr. and ins. high quality reproduction up to an output level of 10 watts, having 6 and in PushPegative feed-back. Suitable for use with all types of Pick-ups and most types of microphones and the output transformer provides for use of 3 and 15 ohm speakers. BRIEF FEATURES
Valve line-up 6J5, 6SN7, 574, with 6V6s in push-pull. - Firstclass reproduction of radio (where a tuning unit is used) and record playing. Separate Bass Boost and Ireble controls provide an excellent range of frequency control.
The ASSEMBLY MANUAL is available for $1 / *$ and includes detailed jayouts and component Price List
$\rightarrow 2=0$ B
12-Watt "HIGH FIDELITY" Push-Pull AMPLIFIER Comprising a Main Amplif and a Remote Control Pre-Amplifier/Tone Control Unit. The remote control unit measures only 7in. x4in. x 2 in . and contains four controls. contains our controls. Volume andaradio. Switch control. It - AVAILABLE ncorporates its own feed-back circuit on FOR \&14.0.0.(Carr the Bass Channel. Loop negative feodback is employed on the Main Anplifier which has a valve line up of 6.J5-6N7-5U4 with two PX25s in push-pull has a valve GSN7 are used in the remote control unit THF COMPL UNTT ASSEMBLED AND READY FOR USE 41700 andins. 5 -cxtra.) H.P. Terms \&4.5.0 Dep., 12 Months at £1.3.11. chinifar de:signt at an fraction of their cost Willianison and similar desigits at an fraction of their cost. The connmeta set of assembly instructions are available for $2 f$.

HENRY'S

"1R.1. 26" F.M.
CONVEISTER UNIT $88.100 \mathrm{Mc} / \mathrm{s}$
We can now offer this selfcontained Unit comprising 6 valves: 2-6BA6, EB91 VR137, EF54, EF51. Two I.F. stages and separate local oscillator, also Mulrhead Graduated Vernier Drive ensuring easy tuning. Special offer of
above item an
RF26, including
circuit. postage
3 -

INDICATOR UNITTYPE

 182AThis unit contains VCR517 Cathode Ray 6in. tube. complete with Mu-metai screen, 3 EF50, 4 SP6 and 15 U GG valves. W/W volume controls. resistors and condensers. Suicable either for basis of Thdo or Osstrucscope "Radio Construc. tor scope constructional $7 / 6 \mathrm{carr}$.)

TR1196 RECEIVER

 Receiver 27/73. This is a six-valve superhet recelver with $460 \mathrm{kc} / \mathrm{s}$ l.F's. s . plete with all valves${ }_{2}^{2}$ EFBC3. ${ }^{2}$ EK32, In brand new condition with full convercondition with dal SPECIAL OFFER $2 \% / 6$ (plus $2 / 6$carriage).
All Items sold separately.

(RADIO LTD.)

SPEGIAL OFFER ' 38 ' WALKIE TALKIE SETS We have purchased large quantity of the above " 36 " Sets, and can now offer same complete with 5 valves: 1VP23 and ATP4. Throat microphone, headphones, junction box and collapsible
Frea. range 7.4 to 9 mels. Range approx. 5 miles. In absolutely new condition and Guaranteed Air Tested at 59/6, carriage 5/-

VALVES - VALVES - VALVES

WE HAVE OVIGR 50,000 AMERICAN AND ENGLISH VALVIS IN STOCK AT VELY LOW PRICES, SEND 3d. FOI 28-PAGE ILLUSTISATED CATALOGUE:

CATHODE RAY TUBES (Brand New)
 VCR97 (slight cut-off) 15/VCR97 guaranteed fuli T/V Plcture. VCR517C, guaranteed full TV Picture VCR139A. guaranteed T/V Plcture 3BP1, Euaranteed fuil Carr Picture tubes. 2/-

> PIE 45 Me/s STIEIIP. TIPE 3582 UNITS. Size 15in. x 8in. x 2 in . Complete with $45 \mathrm{Mc} / \mathrm{s}$ Pye Strip, 12 valves, 10 EF50, EB34 and EA50, volume controls and hosts of Resistors and condensers. Sound and vision can be incorporated on this chassis with minimurn Modification data supplied. Price $£ 5$. Carriage paid.

TVEP 45 Me/s STisiP, TVi'E 3583 UNITS. Size plete with $45 \mathrm{Mc} / \mathrm{s}$ Pye plete with $45 \mathrm{Mc} / \mathrm{S}$ Pye EB34 and EA50, volume controls and hosts of Resiscontrols and hosts of Resisand vision can be incorporated on this chassis with ated on this space. New condition. Modification data supplled. Price £5 Carriage paid.

U.S.A. INDICATOR

 UNIT BC日g9A Complete with 3BP1 C/R Tube and Shield. 7 valves 2-6SN7GT, 6G6, 2X2, 6X5G volume controls, etc. Black crackle case, 5 in. $x 91 n . x 9 i n$ Ideal for portable 'scope Brand new condition, 65/Carrlage 5/-CKYSTAL MBCROPHONE

Ideal for tape recording and amplifiers. No matching transformer required.

SHECIML IRLIDUCTION	
1A7GT,	
(1C5GT or 1Q5GT) 40- Set	
10 EF50 (Ex-13rand	
$\begin{aligned} & \text { New Un } \\ & \text { each } \end{aligned}$	$\text { aits) } 5$
6K8G 6K7	
5Z4G, 6V6G 3 \%	
1R5, 155, 1T4, 1S4	
TP25. HLZ3DD	
VP23. P	EN25 (or
QP25) ... 25/-	
6K8G, 6K7C. 6Q7G.	
25.46 G	2525 (or
25Z6G 3 /	
12K8GT, 12K7	
3516GT	
50L6GT)37/6 .	
12SA7GT, 12SK7GT.	
$12 \mathrm{SQ7GT}, 3524 \mathrm{GT}$	
351.6 GT	
50L6GT)37/6

PACKARD ISEILL AMIPLIFIEIR			
Brand	new	complete	with
28D7	and	6SL7GT	and
instru	$\begin{gathered} \text { ction } \\ \text { P. } 8 \end{gathered}$	book	12

5, HARROW ROAD, PADDINGTON, LONDON, W. 2
TEL.: PADDINGTON 1008/9, 0401.

Free To Ambitious This 144-page Book

Have you sent for your copy? - Engineering OPPORTUNITIES
is a highly informative guide to the best-paid Engineering posts. It tells you how you can quickly prepare at home on "NO PASS-NO FFE." ierms for a recognised engineering qualification,outlines the widest range of modern Home-Study Courses in all branches of Engineering and explains the benefits of our Employment Dept, If you're earning less than fls a week you cannot alford to miss reading this unique book. Send for your copy to-dayFREE.
... FREE COUPON
Please send me your FREE 144-page ENGINEERING OPPORTUNITIES "

[^1]WHICH IS YOUR PET SUBJECT?
Mechanical Eng, Electrical Eng, Civil Engineering Radio Engineering Automobile Eng. Aeronautical Eng, Production Eng. Building, Plastics, Draughtsmanship Television, etc. GET SOME LETTERS AFTER YOUR NAME! A.M.I.Mech.E A.M.I.C.E. A.M.I.P.E. A.M.I.M.I. L.I.O.B, A.F.R.Ae,S B.Sc. A.M.Brit.I.R.E. CITY \& GUILDS GEN. CERT. OF EDUCATION etc., etc.
BIET

HANNEY of BATH offers:

OSR AM 912 Erie resistor-pot kit with ceramic tube resistors. very highly recommended. 29/6; Lab. resistor kit. 32/4: T.C.C. condensers. 55\%. PNRTiRIDGE: Components. with loose lead terminations, Mains trans., 44- Smoothing Choke. 29/6; Output trans. $76 / 9$ Price includes Partridge carriage packing charge. Printed panel. 148. W.B. Chassis. 28 6. NF1-. (Printed.) Ali-Chassis with beautirul Bronze Front Panel, 21/-. (Printed.) S.A.E. List.

MULLARD 5 VAINF: 10 WATT AMPLIFIGIS. T.C.C. Condensers. 45/-: Erie resistor-pot kit, $37 / 6$; Elstone Mains trans.. 36 /- : Elstone Output trans.. 451 - (both types) ; Denco chassis. $14 / 6$; Printed bronze panel 14 in . x sin.. 6/6. Small parts as per our list. Matched valves available for both the above designs.
FIREQUENCY MODULATION. For Wrotham high fidelity transmissions. DENCO technical bulletin giving circuit and point to point wiring diarram for building an F. M. Feeder unit, 1/9. post free. Wie have all components available. Priced parts list on application.
IIIGI FIDELITY SPEAKEIRS. W.B. HF810. 60/6. W.B. HF912. 67/-: W.B. H8/15/-. Goodnans or Orlin 111," $£ 9 / 15$ -
COILPACKS. DENCO. CP 4/L and CP 4/M, 33/4: CP 3/370 pr. and CP 3/50 pf. 428. OSMOR "Q" HO, 48/-: LM. 40-\% Bath $50-: T R F, 40 /: H F$ stage for HO pack, 20/-
by Weymouth, Osmor, Wearite, Denco. R.E.P.

HIIE ANGLE COMPONINTS, ALLEN, Teleking Chassis. $50 /-$ Coilsets (TK and Super-Visor). 446 ; LO. $308.40 /$: FO. 305. 50-: Coilsets (TK and S302e 31/: GíL. 16 and 18. 7/6 each: SC. 312. 21/: AT. 310 , $30 /-$ OP.117. $9 /-$ BT.314. 15/-: DENCO Chassis My- AT. ${ }^{2} 10,3 / 6$. Chassis. Super-Visor. $51 / 6$ Collsets Magna View, $41 / 2$ WA/DCA1, $43 /$ WA/FCA1, 31 , WA/FBT1, 16 -
Send Gel stamps for our General List of components for ViewSend 6at. stamps for our General Amplifier, Teleking. Magnavlew (Brimar and English Electric large screen TV), Super-Visor, Mul(Brimar and English Electerance Silver Micas., etc., etc. Please add $1 /$-postage to orders under $£ 1$ and $2 /$-above
L: F. HAMNEM
77, LOWER BRISTOL ROAD, BATH

Surplus Vibrator Power Units

DETAILS OF SURPLUS UNITS WHICH ARE AVAILABLE

By E. G. Bulley

THERE are available upon the surplus market various types of these units, some of which have been removed from other equipment, such as mobile transmitters and receivers, whilst others are new and unused and, in fact, still in sealed cartons.
Such units are extremely useful for supplying the power necessary for car radios or other similar mobile electrical equipment. The input power source for these units is mainly 6 and 12 volts. One will, therefore, appreciate that such voltages can be furnished by a car battery.

Fig. 1. - Circuit of a non-synchronous vibrator unit.

Now, at the same time one will appreciate that as the reed has made electrical contact with point "A" it has also short-circuited the energising coil, and thus the coil loses its magnetic property. The sprung reed is now released and carried by its own inertia to make contact with point " B." With the reed in contact with " B," the current now fows through the other half of the transformer primary. This cycle continually repeats itself, ". the reason being that as contact is broken at point "A" the shortcircuiting effect of the coil is cut out and results in , the coil once again becoming energised.

This interrupting phenomena

There are, however, two types of these units available, one incorporating what is known as a synchronous vibrator, and the other using a nonsynchronous unit. Typical units of the former consist of a vibrator, specially designed transformer, various capacitors and R.F. chokes: and this type of unit is self-rectifying. The other type of unit, namely the non-synchronous, employs a valve or metal rectifier in addition to the components already mentioned for the synchronous unit. The additional parts are required as being that the vibrator is of the non-rectifying type, as will be explained in the following paragraphs.

Non-synchronous

The non-synchronous vibrator consists of a single reed set equidistant between two contacts. The arm upon which this reed is assembled is secured at one end in a metal frame, and the other end is in the vicinity of a magnetic coil. To assist the reader to understand how a tibrator operates, reference should now be made to Fig. 1.

When the switch (SWI) is made, a specified voltage is applied to the coil of the vibrator, the coil becomes energised and a magnetic field is created. Under the influence of this the arm on which the reed is assembled is attracted. The reed thus makes contact with contactpoint "A," and by so doing the current flows through half the primary transformer winding.
wave gas-niled rectiner having what is termed an ionic heated cathode, and does not therefore require a heater voltage. Such units are extremely useful for car radios. The other types are conventional vacuum rectifiers and need no further comment.

Synchronous

In the synchronous units similar components are used, with the exception that a synchronous vibrator is employed. This eliminates the necessity for a separate rectifier. A typical circuit of such a unit is shown in Fig. 2. The reader will, therefore, by making reference to it, appreciate the fact that the vibrator here has an extra pair of contacts. These contacts are connected to the secondary winding of the transformer so that when the voltage is induced into this winding it is likewise fed back and rectified by the vibrator, the positive D.C. output being taken

Fig. 2. - Circuit of a synchronous vibrator.
from' the centre tap of the secondary winding.
Such units, however, in common with the nonsynchronous types, use R.F. chokes and capacitors. RFC1 and C1, RFC2 and C2 are filters, their presence being to prevent R.F. being passed to the circuit in which the unit is eventually connected. C3 is, however,

It may be found, however, that the rating and value has been obliterated, and in that case the correct value of the condenser can be determined by trial and error with an oscilloscope.

This is done by connecting the vertical plates of the oscilloscope across the primary winding and making a study of the waveforms. Typical waveforms are shown in Fig. 3. The reader must bear in mind that too large a buffer condenser will result in excessive wear on the vibrator contacts, whereas too low a value will cause arcing to occur at the faces of the contacts and thus reduce the life of the vibrator. As a matter of interest some units available
an important component in the unit and is essential to the correct operation of the unit. This condenser is termed the " buffer," its purpose being to provide the correct time constant for the circuit, and absorb any surges that may occur when the vibrator contacts make and break.

The value of this condenser is very critical and one should, therefore, bear in mind that if it is intended to replace this condenser, should it be faulty, only one of the correct value and rating should be employed.
upon the surplus market have the buffer condenser connected across the primary winding: this, however, is usually. only found in those utilising 32 -volt vibrators.

Condensers C4 and C5 form parfor the smoothing filter which is conventional, but it is as well to mention that a great number of the units available do not have their own smoothing : one must, therefore, add these to such units before incorporating them in any receiver, etc.

A Simple Neon Tuning Indicator

THOUGH magic eye and meter-tuning indicators are excellent and largely used, the cost of the "eye" or meter may prevent some constructors using these devices. Where a simple tuning indicator is required, at very low cost indeed, a neon bulb may be used in the circuit shown in Fig. 1. These neon bulbs may be obtained new from Osram and other makers, or purchased at extremely low cost from some ex-Service stockists. In the latter case, the ex-Service $10 \mathrm{E} / 327$ is suitable.

The component values shown were most suitable for a receiver with 250 volt H.T. line and 6 K 7 inter-mediate-frequency stage. Best results of all will be obtained by using two pre-set potentiometers or resistors of about 15 K and 500 K maximum value, so that circuit constants can be adjusted for the desired effect. The 5 K resistor (or 15 K pre-set resistance) is wired in the H.T. line to the I.F. stage, the .01 to $.1 \mu \mathrm{~F}$ condenser being for by-pass purposes.

The type of neon shown would not operate if connections to it were reversed. As it requires a large Edison screwholder, difficult to obtain, the glass bulb was made a push-fit in the panel, and leads soldered directly to the bulb as indicated.

As a station is tuned in, the voltage drop across the 5 K resistor falls, due to decreased valve anode current. The voltage applied to the neon thus increases. The receiver is therefore tuned for maximun glow. If pre-set resistances are used, the neon can be set so that it just fails to strike when tuned between stations. It will then begin to glow when a station is approached, and be brightest at the point of correct tuning. It will not operate with weak stations. A correct tuning indication can, however, be obtained on all the most powerful stations.

The circuit cannot be used with small sets having a low H.T. voltage. For receivers with higher H.T. voltages, or using different valves, the adjustable circuit in Fig. 2 may be employed. The .5 megohm potentiometer slider should be turned towards H.T. negative until the neon strikes. The degree of brightness change on tuning can then be adjusted by the 15 K resistor.

Fig 1 (left) --Showing the neon tuning inticator unit. Fig. 2 (right).--An adiustable circuit.

COMPLETELY BUILT SIGNAL GENERATOR

Coverage $120 \mathrm{Kc} / \mathrm{s}-320 \mathrm{Kc} / \mathrm{s}$. $300 \mathrm{Kc} / \mathrm{s}-900 \mathrm{Kc} / \mathrm{s}, 900 \mathrm{Kc} / \mathrm{s}-2.75 \mathrm{Mc} / \mathrm{s}$, $2.75 \mathrm{Mc} / \mathrm{s}-8.5 \mathrm{Mc} / \mathrm{s} .8 .5 \mathrm{Mc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s} .17 \mathrm{Mc} / \mathrm{s}-50 \mathrm{Mc} / \mathrm{s} .25 .5 \mathrm{Mc} / \mathrm{s}-75$ Mc / s. Metal case $10 \times 6 \mathrm{f} \times 4$ in. Size of scale $6 \frac{1}{2} \times 3$ in.. 2 valves and rectifier. A.C. mains $230-250$ v. Internal modulation of 400 c.p.s. to a depth of 30 per cent. modulated or unmodulated R.F. output continuously variable 100 milli volts. C.W. and mod. switch, variable A.F. output and moving coil output meter. Biack crackle finished case and white panel. Accuracy plus or \min iss 2 \%. $£ 4 / 19 / 6$, or 34 - deposit and 3 monthly payments 25/-. P. \& P. 4/-extra.

1) róp thro $283-0-280,200 \mathrm{~mA} .6$ v. 5 amps., 5 v. 3 amps., 2*/6.

Hentor Transformer, Pri. 230-250 v. 6 v. 11 amp., 8/= ; 2 v. 23 amp., $5 /-$.
TR.I. HAINS TRANSFORBIERS, chassis mounting, feet and voltage panel. Primarles $200 / 250$.
$350-0-35075 \mathrm{~mA} .6 .3$ v. 3 a. tap $4 \mathrm{v} .6 .3 \mathrm{v}, 1$ a.. $13 / 6$. $350-0.35070 \mathrm{~mA} .4 \mathrm{v} .5$ a., 4 v .2 .5 a., C.T., $18 / 6$. P. \& P. on above transformers 2'-
$500-0-500120 \mathrm{~mA} .4$ v. C.T. 4 a. 4 v. C.T.. 4 a. 4 v. C.T. 2.5 a. $27 / 6$. 500-0-500 250 mA .4 v. C.'T. 5 a. 4 v. C. T. 5 a. 4 v. C.T. 4 a. $39 / 6$. P. \& P, on the above transformers $3 /$.
PATTERN GEMEIRATOR: $40-70$ Mc/s. direct calibration. checks frame and line time base, frequency and linearity, vision channel alignment, sound channel and sound rejection circuits. and vision channel band width. Silver plated coils, black crackle finished case, $10 \times 6 z \times 41$ in. and white front panel. A.C. Mains $200-250$ volts. This instrument will align any rv. receiver. Cash price, 23.19 .6 or $£ 1.9 .0$ deposit and 3 monthly payments of 81. Post and packing 4/- extra.

TV. CONVERTFR for the new commercial stations. complete with 2 valves. Frequency:-can be set to any channel within the 186-196 Mc/s. band. I.F. -will work into any existing TV, receiver. designed to work between $42-63 \mathrm{Mc} / \mathrm{s}$. Sensitivity 10 Mulv. With any normal TV. set. Input: arranged for 300 ohm gain. Circuit EF80 as local oschlator. ECCB1 as F . F amplifier and mixer. The gain of the first stage, grounded grid R.E. amplifier. 10 db . Requires power supply of 200 v . D.C. at 25 mA . 6.3 \%. A.C. at 0.6 amp. Input inter ensuring complete freedom from unwanted signals. 2 simple adjustments only. 92.10.0. Post and packing $2 / 6$.
Volume Controls. Long spindle less switch, $50 \mathrm{~K} ., 500 \mathrm{~K} ., 1 \mathrm{meg}$. 2/6 each. P, \& P. 3d, each.

CONSTRUCTOR'§ PARCEI

MEDICM \& HONG-IVAVE A.C.MAINS 230/250 2-VALVE

Comprising chassis $104 \times 4 \frac{1}{4} 1$ in., 2 waveband scale, tuning condenser, wavechange switch. volume-control, heater trans. metal rectifier, 2 valves and v/holders, smoothing and bias conwave coil. litz wound. Circuit and point-to-point. 1/3. Post and wave coil. 11 tz wound
Volume Controls. Long spindle and switch, ${ }^{2}$. $\frac{3}{2}, 1$ and 2 meg., $4 /-$ each : 10 K . and 50 K ., 3/6 each. \ddagger and 1 meg., long spindie, doubie pole switch, miniature, 5/-
standard Wiavechange Switcheq, 4-poie 3-way. 1/9; 5-pole 3-way. 1/9. Miniature 3-pole 4-way, 4-pole 3-way, 2/6. 2-pole 11-way twin wafer, 5/-. 1-pole 12-way single wafer, 5/-.
IRADIOTRAM CTIASSIS.-5-valve A.C./D.C. 3-way band tuning frequency. $470 \mathrm{Kc} / \mathrm{s}$ iron-cored coils and IFs. Size of chassis. $13 \times 6 \frac{1}{2} \times 2 \frac{1}{2}$. Complete with valves and 8in. P.W. speaker, P. \& P. 5/-, $£ 8.17 .6$.

Constructor's pareel, comprising chassis 12 有 8×2 inn., cad. plated, 18 gauge, \mathbf{v} / h. IF and trans, cut-outs, back-plate, 2 supporting brackets. 3-waveband scale, new wavelength stations names. Size of scale $11 \frac{1}{1}$ itin. drive sp.. drum. 2 pulleys. printer, 2 bulb holders. 5 pax $1.0, \mathrm{v} / \mathrm{h}, 4 \mathrm{knobs}$ and pair of 465 IFs, twin amp., 5 v. 2 amp. and 61 in. M.E. speaker with O.P. trans. P. \& P. 3/6. 39/6.

PLASTIC CAIBINET as Hllustrated. II $\frac{1}{2} 6 \frac{1}{2} \times 5 \frac{1}{2}$. in walnut or cream. ALSO IN POLISHED WALNUT, complete with T.R.F chassis. 2 waveband scale, station names, new waveband, backplate, drum, pointer, spring, drive spindle, 3 knobs and back, $22 / 6$. P. \& P., 3/6

As above with Superhet Chassis, 23/6. P. \& P.. 3/6.
As above complete with new 5 in. speaker to fit and O.P. trans 37/6. P. \& P. 3/6. With Superbet Chassis. 39/6. P. \& P. 3/6.

Lsed metal reetifier, 230 v. 50 mA . $3 / 6$; gang with trimmers. 6/6; M. \& L. T.R.F. coils. $5 /=; 3$ Govt. valves. 3 v/h and circuit 4/6; heater trans., $6 / \mathrm{l}$: viume control with switch. $3 / 6$ wave-change switch, $2 /-: 32 \times 32 \mathrm{mfd}, 4 /-$: bias condenser, $1 /-$ resistor kit, $2 /=$ condenser kit, $4 /=$
Complete A.C. Mains 3 Valve plus metal rectifier T.R.S. kit. In the above cabinet, 8.15 .0 , plus $3 / 6 P$. \& P.
Csqi. A.C. Maims. 5 valve. 3 wavebands. Superhet chassis, 111 in . $\times 8 \frac{1}{2 i n}$. $\times 3 i n$. Complete with 3 waveband scale, 101 in . $\times 57 \mathrm{jn}$. Pair control with switch. Tone Control, 3 waveband coil pack. volume is a completely detachable unit on small chassis.) Various small condensers and resistors biasing condensers. 19/6, P, \& P. 3/6. As above 2 wavebands $15 /-\quad P$. \& P. $3 / 6$.
Valveholfiers. Paxolin octal, 4i. Moulded octal. 7d. EF50, 71. Moulded B7G. 74. Loctal amphenol. 7. Loctal pax., 4d. Mazda Amph., 7d. Mazds pax.. 4d. B8A. B9A amphenol, \%i. 87G with screening can, 1/6. Duodecal paxolin, 9d.
Twin-gank.0005 Tunimk Condensers, 5/-: With trimmers, 6/6. riget .0003, dust cover and irimmers, 8/6.
8/6. P. \&.E. P_{2} in. Speaker with O.P. trans., field coil 175 ohms P. \& A. $6 / \mathrm{in} . \mathrm{M} . \mathrm{E}$. speaker with O.P. trans. field $440 \mathrm{ohms} .10 / 6$. P. \& P. $2 / 6$.

Hattery Charfer, input $200 / 250$ v., output 6 and 12 v .1 amp. Back crackle finished case size $10 \times 6 \times 4 \mathrm{in}$. P. \& $P, 3 /$. 21/-. olato a feftable Perler, by famous manufacturer, capacity tion, white cote with water pump, All aluminium construction on an stectre-namel finish. Originally intended or a dapoperation. $39 / 6$. P.\& P. 3/-
Primary, $200-250 \mathrm{v}$, P. \& P. $2 i$
$300-0-300100 \mathrm{~mA} .6 \mathrm{~V}, 3$ amp., $5 \mathrm{v}, 2$ amp., $22 / 6$
Prop thre' $350-0-350$ v. $70 \mathrm{~mA} ., 6$ v. $2.5 \mathrm{amp}$.5 v. 2 amp. $14 / 6$.
Drop thri $250-0-250 \mathrm{v} .80 \mathrm{~mA} .6 \mathrm{v} .3 \mathrm{amp} .5 \mathrm{v}, 2 \mathrm{gmp} .14 / 6$.
$250-0-250,80 \mathrm{mA}$.6 v . $4 \mathrm{amp} .1 \mathrm{i}-$
Drop thro, $270-0.270,80 \mathrm{~mA} ., 6 \mathrm{v}, 3$ amp. $4 \mathrm{v} .1 .5 \mathrm{amp} 18 / 6.$. Drop thro' $270-0-270^{\prime} 60 \mathrm{~mA} .6 \mathrm{v} .3$ amp. $11 / 6$.
Auto Trans. Input $200 / 250$. H.T. 350 v. 350 mA . Separate L.T 6.3 v. 7 a, 6.3 v. $1 \frac{1}{2 m p .} 5 v, 3$ amp., 25/- P. \& P : $3 /-$

Pri. 200/250. Secondary 9 v. 3.5 amp.. 6.3 v. 3 amp., $12 / 6$.
Pri. 230 v. Sec. $500-0-500$ and $500-0-500250 \mathrm{~mA}$. bot h windings, 4 ซ. 3 amp., 4 v. 3 amp., 39/B. P. \&P. $5 /$
Nains Transformer, funly impregnated. input 200, 220,230 and 240. Sec, $600-0-600275 \mathrm{~mA}$, and 200 v . at 30 mA . complete with separate heater transformer. Input $210,220,230,240$. Sec. 6.3 v 2 mmp . three times, $0,4,6.3 \mathrm{v}$, at 3 amp . and $5 \mathrm{v} .3 \mathrm{mmp}, 45 \% . P$, ${ }_{5}$ P. 5
Mains Transformer, fully impregnated. Input $210,220,230$. 240. Sec. $350-0-350,100 \mathrm{~mA}$.. with separate heater transformer. Pri. $210,220,200,240$. Sec. 6.3 V. 2 amp., 6.3 v. 3 amp., 4 v. 6 amp., and 5 v .2 amp. $30 / \mathrm{m}$. P. $\& \mathrm{P}, 5 /-$

32 mfd .350 wkg .
$16 \times 24350 \mathrm{wkg}$.
4 mfd .200 wkg .
$40 \mathrm{mfd}, 450 w \mathrm{~kg}$.
$16 \times 8 \mathrm{mfd}$. 500 wkg .
$16 \times 16 \mathrm{mfd} ., 500 \mathrm{wkg}$
8 x 16 mfd .450 wkg.
$32 \times 23 \mathrm{mfd} ., 350 \mathrm{wkg}$.
$32 \times 32 \mathrm{mfd}$., 350 wkg . and
25 mfd i 25 whes
25 mid .25 Wkg.
$250 \mathrm{mfd} ., 12 \mathrm{w}$. wkg.
16 mid.. 500 wkg., wire
$8 \mathrm{mfd} ., 500 \mathrm{v}$. wkg., wire 8 mid., 350 華, wkg., tag ends... 25 w wke. wir $\begin{array}{cc}50 \text { mid., } 25 \text { v. wkg., wire } \\ \text { ends... } & . . .\end{array}$ $100 \mathrm{mfd} ., 350 \mathrm{wkg}$.
$100+200 \mathrm{mfd} .450 \mathrm{wkg}$.
$16+16 \mathrm{mfd} .350 \mathrm{wkg}$.

Ex Govt. 8 mfd .500 v . wkg.
size 31×11.2 for

$16+32$ mfd., 350 whg.
50 mfd .180 wkg .
65 mfd.. 220 wkg.
8 mfd.
$60+150 \mathrm{mfd} \mathrm{mg}$.
500
50 mg. $60+100$ mfd.. $280 w k g$.
50 mfd. 12 wkg. $32+32 m f d .$. min, 275 wkg.
$50 \mathrm{mfd} ., ~$
50 $50 \mathrm{mfd} . .50$. 5 kg .8 mfd . wing..wire ends... ends Miniature wire ends
moulded $100 \mathrm{pf} ., 500 \mathrm{pf}$. and . 001 ea. p., 500 pl.
$280-0$ - $28080 \mathrm{~mA}, 4$ v. 4 a..
250 v. 2350 m̈. 6.3 v. 4 ä.
Awto-trans. input $200 / 250$
HT 500 v. $250 \mathrm{MA}, 6$ v. 4a. twice 2 y. 2 a. 0-5-60 60 MA .6 .3 v. 1.5 .a. 19/6

Terms of business : Cash with order Despatch of goods within three days from receipt of order. Where post and packing charge is not stuted, please udid $1 / 6$ up to $101-2 /-u p$ to S 1 and $2 / 6$ up to $£ 2$. A 1 enquiries $S . A . E$. Lists 54 . each.

23, HIGH STREET, AGTON, W. 3 (OMosite Granada Cinema)
Hours of Business : Saturdays $9-5$ p.m.
Wednesdays 9-1 p.m. Other days 9-4.30 p.m.

RADIO/RADIOGRAM CHASSIS
BUILT TO HIGHEST TECHNICAL STANDARDS FOR THE CONNOISSEUR OF QUALITY MUSIC REPRODUCTION
NEW RANGE OF MODELS WITH LATEST FEATURES FERRITE ROD AERIAL. MINIATURE (BVA) VALVES STEEL CHASSIS
FULLY GUARANTEED A.C. MAINS $200 / 253$ VOLTS 3. WAVEBANDS. ASSEMBLED AND READY FOR USE
5 valve; chassis, 4 watt output, wid?
£13/18/3
range of tone control
£13/18/3
7 valves PUSH-PULL chassis, 6 wati oucput, separate bass and

Negative feedback applied from output transformer secondary.
Gram switch. ing on wavechange switch. Pluggin connections for pick = upi speaker, gram motor.
Choice of horizontal or vertical dial. Also magic eye fitment, dial escutcheon, matched 8 in. and 10 speakers.

FULL TRADE FACILITIES

DETAILED LIST AND DIMENSIONs.

DIRECT FROM THE MANUFACTURER THEDULCI CO. LTD., 99, VILLIERS RD., LONDON, N.W.2. Telebtone: Willesden 6678

SOUTHERN RADIO'S WIRELESS BARGAINS

TRANSRECEIVERS. Type " 38 " Mark " (Walkie-Talkie). WITH FIVE VALVES in METAL. CARRYING CASE. TESTED. 30/- per set. EXTERNAL. ATTACHMENTS FOR USE WITH " 38 " Transreceiver: THROAT MICROPHONES with lead and Plug, $4 / 6$; HEADPHONES, $15 / 6$ per pair: IUNCTION BOX 2/6: AERIALS, $2 / 6$.
TRANSRECEIVER. Typa 18 Mark III. Superhet Receiver and Transmitter in TWO UNITS contained in Metal Case. Comple:z with 6 Valves, $£ 4 / 10 /$. ATTACHMENTS FOR " 18 "' Transreceiver: HEADPHONES, $15 / 6$: HAND MICROPHONE, $12 / 6$: AERIALS, 5/-
RECEIVERS. TypeR.109. Buile-in Speaker. 8 Valves with Vibrator Pack for 6 Volts. In Metal Case. Short Waves, $£ 5$ each. Tested, TELESONiC 4-Valve Battery Receiver. Four Hivac Valves in Metal Carrying Case. Provision for internal Batteries. Simply converted to Personal Portable. $£ 2$ per sec, including Conversion Sheet.
BOMBSIGHT COMPUTERS. Brand New ex-R.A.F. Contains Gyro. Motors: Rev. Counters; Gear Wheels, etc. Ideal for Model Makers, etc., $£ 3 / 5 /$ - each, plus 10/- Carriage
LUFBRA HOLE CUTTERS. Adjustable 3 in. to 3 in. for Metal Wood; Plastic, etc., 6/6.
RESISTANCES, " 100 Assorted. All useful values. Wire Ended, 12/6 per 100.
CONDENSERS, 100 Assorted. Mica: Tubular Metal, etc., is $5 /-$ per 100.
PLASTIC CASES. 14in. $\times 10_{4}^{3}$ in. Ideal for Maps: Display. etc., 5/5. STAR IDENTIFIERS. Type I A-N. Covers both Hicmispleres. in case, $5 / 6$.
CONTACTOR TIME SWITCHES in sound-proof case. Two impulses per second. Thermostatic control. Clockworik Movきment, $11 / 6$ each.
REMOTE CONTACTORS for use with above, $7 / 3$.
MORSE PRACTICE SET WITH BUZZER and TAPPER, 6/9. Complete with Battery, $9 / 6$.
METERS. 12 instruments in slightly damaged confition. Assortei. 35/- for TWELVE.

List of RADIO BOOKS, 2!d. Postage and Carriage extra.

SOUTHERN RADIO SUPPLY LTD.,
 11, LITTLE NEWPORT ST., LONDON, W.C.2.
 GERrard 6653.

WOLF CUB

ELECTRIC DRILL

or 143 deposit and 8 monthly pavments of the same amount.
(£13.1\% 3) or $41 / 3$ and 8 or $4 / 8$ and $8 \times 4 / 8$. No. 8 x $8 \sqrt{2}$.
H.AFCD" (mesli (6a)

3, Corbits Passage, Rotheriothe Naw Raad, London S.E.10. Telephone : BERmondsyy $43 A 1$ Ext. 1

[^2]All मoblk fllarantered amd brand new.

371. HAVANT ROAD. FARLINGTON, PORISMOUTH, HANTS

 A DX AID
 DETAILS OF A SIMPLE AUDIO FREQUENCY LIMITER AND FILTER WHICH CAN BE ADDED TO AN EXISTING RECEIVER TO IMPROVE R.T. RECEPTION, PARTICULARLY ON HEADPHONES

As the reader will probably wish to incorporate this circuit in existing apparatus rather than build a separate unit, no constructional details are shown. There are, however, no snags in the wiring, though the A.F. choke should be positioned to avoid any possible hum induction.

M
OST amateurs will agree that headphones are essential to pick out those elusive DX signals which even the "family QRM" would drown if received on a loudspeaker.

For the purpose intended-for use with head-phones-the type to be described was found to be really efficient, simple and inexpensive to build, and having the advantage that it can be fitted to any type of receiver.
Basically it consists of a high-pass filter, followed by a full-wave clipper (set manually), and finally a low-pass filter.
The purist will probably argue that this circuit will introduce considerable distortion, but in practice even with maximum clipping (about 20 db)-when the output monitored on an oscilloscope would consist of square waves !-speech remains crisp and intelligible.

Bass response is attenuated before the clipper (by choice of coupling components) but maintained afterwards in order to preserve gain and reasonable quality. The low-pass filter used after the clipper is necessary to remove objectionable harmonics, but is also useful to restrict the audio frequency range to that required for speech.
In practice the "clipper level control". is set so that audio distortion is just noticeable with normal volume setting.
Another useful feature of this circuit, which will be more than appreciated by users of straight sets without AVC, is that the
audio output cannot exceed the sets without AVC, is that the
audio output cannot exceed the

To others, headphones are essential for a different reason-the music of an occasional "VK" at " R9+" is classified by the rest of the family under the general heading of " noise."
What all headphone listeners share in common, however, are repeated attacks of "tortured eardrums." When straining to hear a weak signal with the controls "all out " even a light switch operated in the vicinity can cause a click sufficient to give actual pain.
An efficient " noise or crash limiter " is clearly the answer and a filter to remove what is not wanted from the received signal. -

The Circuit

Several types of noise limiter were tested, from a simple "saturated pentode" to a "compound fullwave " type operating automatically on the carrierwive levela.

LIST OF PARTS

VR1-5K Wirewound Pot.
VI-6H6, ER91, etc. Any D. Diode valve will suit. Xtal diodes not R3-1 meg Ω watt carbon. recommended. C5-.002 $\mu \mathrm{F}$ paper Tub. C $6-50 \mu \mathrm{~F} 12$ volt Electro lytic.
$\mathrm{Cl}-.001 /$ /F paper Tub. $\mathrm{C} 2-.002 \mu \mathrm{~F}$ paper Tub. current). current). R1-100K $Q \frac{1}{4}$ watt carbon. R2-100k Ω watt carbon $R 2-100 k \Omega$
$R 3-1$ meg Ω watt carbon. suit. Xtal R4-l meg Ω i watt carbon. $V 2-6 J 5$-or output vaive pre-set level: so when tuning through the band from a weak station to a powerful one, the agonising moments before the volume control is re-adjusted are spared.

Graph showing response to be aimed at per R / T reception.

Graph showing how audio naveform is clipped on high-anplitude signal or noise pulse.

Programme Poillerers

Moderate Askey

TרHE Arthur Askey shosw, " Hello Playnates," struck me as very rioderate. Composed to precisely the same formula as all the others of its kind, "Big Hearted Arthur" did not seem half as funny as when he has seven or eight minutes all to himself, or very nearly so. The supporting cast of David Nixon, Diana Decker, Irene Handl and Pat Coombs, with Bob Sharples and his music, were about the same-fair to average. This type of show must have played itself out more or less; that is, pending the arrival of another IIma and àll who contributed to it. All we can expect is current events and personalities gagged with a bit of music thrown in to make two breaks. At least, that is all we get. Two of the "jokes" in " Hello Playmates" the last time I listened to it will serve to show the general level of its humour. "The only dog food that tastes like a postman's leg," and "When she sings 'I love Paris,' you can see the postcards in her eyes." Hardly another lima!

Saturday Jazz

The Saturday afternoon jazz programmes at 50 'clock make quite a remarkable series.
Goodness knows how long they have been going on now. I know of no other branch of music which has been treated over such a length of time so exhaustively or, if I may so, with such skill. They are very interesting and serve to show up one remarkable fact very plainly. The old records of dance bands of, say twenty years ago, are much more playable and "easy on the ear" than are records of "classical" music played on orthodox instruments and by orthodox combinations. Some of these latter sound frightfully primitive these days and that is, presumably, a sufficiently good reason for not playing them to any extent. Dance band recording seems to have been very superior to straight music in pre-electric days.

Of the many brilliant personalities whose work is featured in BBC programmes from time to time, few can rival Peter Scott for erudition, entertainment and microphonic efficiency. Son of the immortal Antarctic explorer, Mr. Scott is a naturalist of eminence and wide experience, and whether telling the children in Children's Hour about a bird's nest in Lapland, or their elders of his work in the bird sanctuary on, I think, the Severn, he is always one of the most welcome of broadcasters. He is that rare person, an expert at his job-and what a fascinating one-and a charming man.

Plays

One of the most rubbishy and unworthy plays ever offered on a Monday evening was sandwiched between two masterpieces. This was unfortunate in itself as it only served to show up its many weaknesses even more than if broadcast on its own.

I refer to "Christopher's Day," an adaptation by James McFarlan of Edwin O'Connor's story "The Oracle." The story, of a vanity-stuffed news commentator, who scales tawdry heights and ends in

Our Crilic, Maurice

Reeve, Reviews Some

Recent Programmes

murky depths, was of the feeblest description. Throughout the 90 minutes of its wearisome journey, we were plagued with the "Chris baby" of the floozic he was foolish enough to take up with. Any man with brains would never have looked in such a creature's direction. Or, having regrettably done so, would have been forced to shoot either her, or himself, or both. The piece was set in America though the assumed accents were far from convincing. James McKechnie, Tucker McGuire, Aletha Orr and many others learnt themselves to it all.

The two masterpieces were, of course, Shaw's "Major Barbara " and lbsen"s " The Master Builder." Would anyone have much chance with two such escorts? Irene Worth, Barbara Couper, Anthony Jacobs, Frank Pettingell, Hugh Manning and others gave themselves to Shaw, and Malcolm Keen, Gladys Young, Cyril Chaps, Preston Lockwood, George Merritt and Ursula Howells to Ibsen.
" Major Barbara" was in The Stars in Their Choices series. Good drama merits, and usually receives, a worthy performance as I have often pointed out in this column. There was some excellent acting in both these productions, notably by Mr . Pettingelt in Shaw and Mr. Keen in Ibsen.
"Caroline" was another Maugham tribute. It is surprising how many of the master's early works date, unlike Wilde, who has become a period classic along with Sheridan and Goldsmith. Perhaps we are still too near the times and the fashions. But the epigrams roll out and never fail to amuse and the theatrical craftsmanship is always fascinating. Roger Livesey and Ursula Jeans played it with unfailing charm and finesse. Richard Hurdnall, Noel Hood, Leslie Phillips, Avice Landone and Mairhi Russell adorned the cast. How like Jimmy Edwards Mr. Livesey frequently sounded.
" The Dover Road," by A. A. Milne, was ano her delightful play in The Stars in Their Choices series. Telling of an eccentric and wealthy bachelor living in great comfort hard by the road, who stops cloping couples and, on one pretext and another, invites them in to play host until he has convinced them of the "error" of their intentions. Many will remember Henry Ainley in the part at the Haymarket. It was extremely well acted by Laidman Browne, assisted by Brian Haines, Joy Rogers, John Gabriel, Lucille Lisle and Richard Bebb.

American Pianist

Julius Katchin is a brilliant young pianist from the United States who is deservedly making a name for himself. He did full justice to the fabulously difficult Brahms in D minor.

THE VALVE SPECIALISTS Benlley Acoustic Corp．Itid． 38，CHALCOT ROAD，N．W．1．

PRImrose 9090

024	6／－68\％7	6－311NU	9／－KP35	－
14.5	6／－681，7		101－K135	／－
106	$8 / 66457$	$8 / 6807$	\％／6下2	5／4
1 F 7	$6 / 86847$	716813	70／－K＇l＇44	7／2
1（：6）	$6 / 8 \mathrm{fUsec}$	X） $71-8: 12$	25／－K丁口1	12／－
11．4	6／－6「ご10	0） $7 / 88685 \mathrm{~A}$	15／－KT74	12／－
11.44	9／6 6UFG	$8 / 6 \times 8.5$	$7 / 6 \mathrm{NT} 6$	121－
11565	4／6 ifrge	7／－6ヶ7n	$3 / 6$ к＇wer	$25 / 4$
${ }^{1} \mathrm{INS}$.	4／6 6－6t\％	［ $7 / 61203$		6／6
1 MI	．12／6 6X4	$7 / 6 \div 152$	10／6 1，＋2	4／6
1 R .5	71－6x．	$8 / 8-5024$	$8 / 6 \mathrm{MHs}$	5／6
18.5	7／－61\％	8：－ 41334 X	7／8 M Lat	6／6
1 T 4	7／－6Y7	15－374：4	O1－MIA	$0 / 6$
	4／－1／4＋84	＋9／6－1193	$2 / 6 \times 77$	$7 / 6$
21133 C	4／－7A7	8／6 90\％	$5 / 6 \mathrm{~N} 1+2$	10／－
$\because \mathrm{D}: 1$	$8 / 6$ 7AN7	11／－90\％	5／9 N1：0	$10 / 6$
$2 \mathrm{x}:$	$4 / 67 \mathrm{~B} 7$	7／6 6004：	3／6 OM5	716
34.	71675	7／6 610180	5／6 Om5a	$10+6$
：317．	$8 / 67 \mathrm{Cb}$	\％／8 AC／HL	－1／6 0M： 13	$10 / 8$
3 Db	2／6 7108	$\mathrm{B}_{/ j} \mathrm{-} \mathrm{Al}^{1} /{ }^{\prime \prime}$	8／6003	9／5
3䖯：	7／－7H7	\％／6 AOP4	8／－0b3	$8 / 6$
3Y4	7／－7Q7	$8 / 6 \mathrm{AP} 4$	\％／8 Pec8	11\％
417	3／－787	$8 / 6$ ARPM（A）	A） $5 /-\mathrm{J}$＇9 Fmo	11／－
mut ${ }^{\text {a }}$	8／－7V7	8／6 ATP 4	3／－Pi＇1．3	12＇6
5×1	$8 / 67 \mathrm{Y}$	9／－B152	9／－Pen ${ }^{5} 5$	6／6
5 tr 3	\％／6．84\％	11／－B304	9／－Pen 40	
5\％3	8.68103	$2 / 6 \mathrm{~B} 3519$	11／－Pen 153	
TR4	$8 / 6803$	8／6 3L 2 B	z／8 P1．41	10\％
6．st，	10／6 110	9／6．177	6／－P1／${ }^{\text {P2 }}$	$8 / 6$
6AB7	8／－101）	4／8 DA90	$8 / 6$ P1．4．3	$1 / 6$
tiAbs	10／－10F9	8／6 ISAFYL	7－1／P12	4：－
${ }_{6} \mathrm{ACF}_{7}$	6／610LIHL1	$110 /-10 F 90$		7.6
©Aft5	$8 / 610 \mathrm{Pl} 3$	10／－1）F93	\％／－PY90	$8 / 8$
fiAdy	12／6 12A6	6／6 D）H30	15／6 PY81	$10 /=$
daK5	7／6 1：2H7	12／6 13H77	8／－PY4：	$7 / 6$
fiALS	6－12ATb	10／6 1）	10／－¢P91	
（AAM5	6／6 12AT7	\％－DH150	10）－42995／10	
SAMb	6／6．12AU7		7%	
6AQ．${ }^{\text {a }}$	8／6 12AX 7	7／－DK！	9／6 4R75／2	$10 / 6$
6AT6	8／－12RAfi	9／6 WLi」	9／6 प－150／5	
6 B 4	6／－12REd	6／8 11594	8／6	
487	$7 / 612 \mathrm{BH} 7$	12／6 DI． 94	$7 /$ Qvo4／7	
t1386	$4 /-12 \mathrm{EL}$ ．	30／－1）［819	10／6 RK3！	
6B8M	4／8 12H6	3／－Elids	2／－RLai7	－
68146	$6 / 61255$	－／－EiAsu	2）－HM4	
\＄8J6	\％／6 12K8	8／8 EA76	9／6 \＄130	
6 Bqa	10／6 124C7	$7 / 6 \mathrm{EACO} 1$		
${ }_{6 B} B^{2} 7$	9／－12467	5／6 ER34	2／－MPtil	$2 / 8$
6BW6	$7 / 6$ 124J7	7－EB41	11／－Tray	$8 / 6$
6BW7	9／6 123K7	6／－EB91	6／－TPrebe	$17 / 6$
tisx 6	10／6 12807	$8 / 6$ EBCS3	7／8 UABCN0	012／6
SCH_{4}	7／6 12887	$7 / 6$ ERC4	10\％URC＇1	8\％
606	6／6 12U5G	71－ECor	7／－HeH42	$9 / 6$
$5{ }^{1} 88$	8／61417	10／6 Ec53	5／6 UCH81	12／6
fiClo	10／614R7	10／8 HCC：3\％	9／－UP41	8／6
H0H0	6／6 16A5	9／8 ECC＊3）	$9 /-\mathrm{U} \times \mathrm{s}$	12／6
6．bi	8／6 1723	10／－ECusi	9／－17L	10／－
BF9\％	7／618	8／－ECC8．2	10／6 Ufat	$20 /-$
6 FHM	$8 / .19 \mathrm{Hl}$	10／－ECOP3	10／6［1ati	10：－
$6 F 8$	7／－19Y4	8／6 ECcol	7／6 U23	12\％
6Fll＇	9／－25L0	8／6 ECHE2	10／－ 431	12／6
6 F 12	8／8 25Z4	8／6 ECL40	10／－ 5 －${ }^{\text {a }}$	$\%$
6F17	$9 / 630$	$7 / 8 \mathrm{EF}^{2} 2$	9／－ 938	8.
6Fit	8／－35L6	8／－FPF3t	$4 / 6$ vix	${ }_{7}^{8}$
HF33	$9 / 635{ }^{\text {9／}}$	10／－RF：37	$10 / 6$ U14．	9／2
（ti）（UX）	－7／－3574	$8 / 6$ EF37A	1016 Ul．20	9\％－
dilij	6／63073	8／6 EFS！	6／6 С15：3	10：－
filtig	$2 / 6+2$	8／－K゙F	9／－ 1.51	$8 / 6$
6H0M	$3 / 6$＋2．UPT	15／－HFSul (1)	8／－Uisi9	8.6
tiolim	5／－510．5	10／－ $\mathrm{AF} 50(\mathrm{E})$	5／－03329 1	106
HiJ．${ }^{\text {M }}$	B／－ 0 UL 5	8／－EF\％+	5／－14at	10.6
6J13	2／6 5019	$8 / 6$ EFT：3	10／6 प＇vo	8%
6．37	5／－57	$8 / 6$ Erem	20／－19 4	
6にす	71－5\％	$8 / 6 \mathrm{EF91}$	8／6 V1，N4i，2A	
tK76	5／－6ISPT	15／－EPY	$7 / 6$ Vrㄹ（\％）	8／6
6K7M	5／6 6：1）19T	10／－FLis3		8／6
4K84	81.62 TK	101－E1at	10／6 vplik	7.6
diksite	$8 / 60^{2}$	9／－ELL 70	20／－VP．23	6.6
dKかM	9／－ 9.4 MF	10／6 EL心 1	10／6 ¢R2\％3	5：－
	10／－65KU	8／－ELS． 1	6／6 v To．jo	$6 /-$
6 L 5	$7 / 6$ 67114 1	10／6 Fanist 1	10／6 VU111	$31-$
6L，	$9 /-7{ }^{\text {\％}}$	4／6 EYらI 1	$11 /=$ VU13 ${ }^{\text {a }}$	3／－
di．7	$7 / 675$	8／6 L「い	766 VU13：3	4／－
ii．b3 1	10／676	7）－EZ 111	9／－witio	816
SN76：	7／8 77	$8 / 6 \mathrm{~F} \% \mathrm{~L}$ L	9／－พ1．う	$8 / 8$
SN7M	8／－78	86153	5／－16ti	78
W7	$8 / 8 \mathrm{H3}$	8／－HL：	3／－${ }^{\text {a }}$	0
117	$8 /-85 \mathrm{~A}{ }^{\circ} \mathrm{T} 1$	10／6 LLITO	$7 / 6 \times 14$	$9 / 6$
CHA7	$8 /-1 \geqslant 1{ }^{\text {c }}$	9／－H1心3 D	6／6 Х150 10	10\％
indy 1	10，－141TH	10／－H1．＋1	\％／6 X H （1．\％）	4／－
9＊：7	$6 / 6150821$	10／6 114．1530	6／－Y 4.3	76
bsh7	6／－2lulk	3／－HVH3A	7／6 277	6／6
i837	8／－$\because 1.536$	4／－K1scose	8／6 271910	0／6

Apecial offer of miniatures
 XI
All boved and guaranteed．Post 6d．each． Lumediate despatch．C．W．U．or C．O．D．

STAN WILLETTS

43，Spon Lane，West Brommich，Staffs． ＂A（0）s＂（IRYSTALA HICK－IP（GP10）． with stand，new and boxed，24，6．（List
 ft．metal spool，brand new， $14 / 9$ ，
P［1tLTON＂ $1.200 \mathrm{ft} .$, plastic spool brand new．$\frac{1}{6} / 6 . \mathrm{P}$ \＆P．，1／ chan，o－channel switched teletuner arand new with valves，EF 80 ，ECC81， 28.6 less valves， $12 / 6$ ．P ．\＆P ． $1 /$
Cr．E．C．1／－each ： $9 / 6$ doz．P IMINIA， Frit．1／－each＊ $9 / 6$ doz．P．\＆P．，3d GV6GT，6／3．6X5GT，6／9．6X4，6／9．6K7． 6SG7，metal，4／9．6K7G．4／6，6J5G $4 / 9$ 7／6 each 277 6／－68／－ 5／－．4D1．8D2．EA50．RK34．2C34， $1 / 9$ each． $11 / 6 . \quad{ }^{2} \mathrm{CF} 80$, PCC84， $30 \mathrm{I}, 6$ each．EY51 11．\＆P．6ג．1T4，1S5，1R5；3S4 or $1 S 4,24 / 9$ vet of 4, or $6 / 9$ each．P．\＆P．fid．

HIGHEST QUALITY CHASSIS

Hand rade by Craftsmen

233.18 .0 （inc．tar）

F．C． 48 radiogram chassis

with brovision for F．M．Tuner
－ 8 VAB．VES including 2 double triodes． 8 WATIS output from push－pull
－NEGATIVE FENID RACK－20 dB． resulting in negllgible distortion and high damping factor．
BASS and TREBI．E controls indepen－ Gent and continuously variable，LIFT as well as cut．unique Thermometer Visual Indicators ensure positive setting of these controls．
MAEICEE Tuning Indicator
4 WAVE：HANTS： $16-50,49-120,190-5.50$ ．
900－2，000 metres．
－Overall size $12 i \mathrm{in}$ ．x gin，$x ~ 9 y i n, ~ h i g h$.
F．M． 56 tuner

£21（inc．tax）
－PERMEABIRITI TUNING
－FISELEISONI FIEOM IDEIF゙I
－AC＇OMATIC LIMITING
－MAGIE ETE TENING
COVEIRAGE：85－95 Mc／s．IHAGE RE－ IFTHION： 26 dB I．H．HVHEXTION 60 dB ，CIICUIT：A low noise triode R．F．Stage is coupled to a high stability frequency changer．This is followed by two I．F．Stages and a triple diode triode ratio detector and A．F．Stage． 11 WES Mullard ECC85，SE85，EP85，EABC80，
EMB4．

All our models are sold under full and unconditional money back guarantee of satisfaction．Prices include Purchase Tax．Hire Purchase facllities are available．
Demonstrations at your local High Fidelity specialists or at our Show Fidelity Demonstrations each Thurs－ day evening from 7 p．m．

ARMSTRONG WELELESSENCO．LTD． Warlters Road，London，N．7． Telephone ：NORth 3213

BENDIX TX

T. 12 (C. (C.S.A.)

TX covering 300 kc .600 kc . and 3 meg. -9 Mc . In + Channels. Size 15in. x 10 in . x 101 n . Steel grey crackled case. 5 amp . T.C. Meter valves, 3 807, 4 12SK7. Brand new condition.

Carr. Paid \& (U.K.) Mainland,
IDST100.-Communication Rx. Covers $50 \mathrm{k}-30 \mathrm{Mc}$. in 7 bands. Turret Colls. (Limited supply.) £25. 18 SHT W.M. KIE.FI. NiL_-Covers 6-9 Mc. Complete with valves and aerial and circuit diagram, £3/7/6. Headset Mic, and KCy, 27.
11403 'X.-Covering ${ }^{2-9} \mathrm{Mc}$. Crystal not included. Appros. size, 20 in . x 14 in . $x 12 \mathrm{in}$. Grey steel cabinet alone worth the price. Valve line-up ; 26 V 6.1 EBC 33 . 1807. Less valves, £3/10:0. Circuit. 26.

> EFSJ $\begin{aligned} & 6 \mathrm{~V} \\ & 6 \mathrm{~J} 5\end{aligned}$ 6S.J7 $\begin{aligned} & \text { 6K8 } \\ & \text { VU134 }\end{aligned}$ ${ }_{8}^{807}{ }_{5}$ EF37 $\begin{aligned} & \text { 5Z4 } \\ & \text { EL50 }\end{aligned}$ $\begin{aligned} & \text { EL50 } \\ & \text { CV183 }\end{aligned}$ CV287 VR116 | $8 / 6$ | $6 B W 6$ | $8 / 6$ | $5 R 49$ |
| :--- | :--- | :--- | :--- |

$2: 8+8$ mfd - Electrovztic B:E.C. 450 volt wkg. 8 mifd.:
$32+32$ mid.bias, $25 / 25$ volt. $50 / 50$ yolt. $2!-$ each.
mid. 5/-Bions.- 1.1 .2 watt, carbon. Our selection, all
different. $12 / 6$ ion.
CONDENSEISS.-5 pf., 1 mdd. £1 per 100 .
RLG'TLPIERS.-RM3, 5/9; RM4, 14'- K $3 / 40,6^{\prime} 9$; K3/45, 8 .
METERS. $-10 \mathrm{~mA} .-500 \mathrm{~mA}$. f 2 per 12 .
Radio (ioverninent surplus Electrical 28, EAST STREAT. MIDDLESBROEGiI, Telephone: M113. 3418.

TWO-SFEED TAFE DECK $3 \frac{3}{4}$ " $7_{\frac{1}{2}}{ }^{\prime \prime} / \mathrm{sec}$.
Here is the heart of your Tape Recorder, If yov are building or modernising your own equipment you MUST have the latest BURGOYNE Tape Deck giving 2 speeds. designed for building into complete recorders.
EASY H.P. TECHNICAL DATA

FACILITIES

42/- deposit and $12 \mathrm{~m} h!$ parmentr of periodup 1018 month
Made exclusively for NOW IMMEDIATE DELIVERY E. \& G. MAIL ORDER SUPPLY 8O. The Radio Centre

33, Tottenham Court Road, London, W.I. MUSeum 6667

FREQUENCY MODULATION TUNERS

This is the
"DENCO' Tuner
Full constructional details including point-to-point diagram and detailed price list sent post paid 1/6.

This is the JASON Tuner
Full constructional details including point-topoint diagram and detailed price list sent post paid 2/-.

POWER SUPPLY UNIT suitable for either of these tuners can be supplied in kit form for $\mathbf{\text { f2-0-0. }}$ S:A.E. for details.
 (i, f.c."912." amplifiers. S.A.E. for detalled price list.

HOME RADIO OF MITCHAM
18\%, LONDON IROAD, NITCIIAN, SCIEREY. Mit. 3282. The quality component specialists.

train to be a RADIO \& T.V. ENGINEER

ready to meet F.M., V.H.F. and Colour Television developments.
Now is the time to learn the theoretical and practical principles and so ensure your future in this rapidły expanding field of Electronics.

ONE-YEAR COURSE

IN MODERN RADIO \& TV TECHNIQUES
A full-time day course in the Principles and Practice of Radio and Television. Next course commences on 29th August, 1955.

E.M.I. INSTITUTES

Dept. 32C, 10 Pembridge Square, London, W.2. Telephone : RAY'swater 5131/2
The College cssociated with a world-wide electronics industry including "His Master's Voice," Marconiphone, Columbia, ete.

(D) De e to
 I.F. amp./detector-avc/lst L.F.

R1155

SIR,--Until recently I have been very pleased with the performance of my R1155. Then one day I noticed that there was considerable distortion on deeply modulated signals. Once noticed, this has become a source of continual annoyance. I wonder if any other readers have noticed this on their 1155? I have tried all the usual remedies for possible causes : careful check of all valve voltageswithin the scope of my home-made voltmeter, 2,000 ohms per volt-and check of the filtering on the A.V.C. lines and of the alignment. But nothing seems to make any difference. The symptoms could be A.V.C. distortion or intermodulation; but like Jerome K. Jerome, each time I read of an ailment new to me, I feel sure that is what I have got.
I feed a tape recorder from the top end of the A.F. volume control through a 0.1 condenser and 1 meg. resistor in series, and with a 100 K resistor in parallel with the output socket to H.T. negative. The output socket to the recorder is fitted in a spare hole in the top left hand corner of the receiver panel, vacated by the meter balance control of the liss. This arrangement works very well and gives an output independent of the receiver volume control when using A.V.C. though not on " manual" when R.F. volume control is used.-J. P. Marchant (Bedford).

$\therefore \quad$ Amplifier Design

$S^{I R},-I$ read with much interest and more than a little surprise Mr. Kerslake's excursions in the field of audio-engineering, and in view of the-to say the least-astounding "practical" results he has achieved, I am surprised that he should wish Mr. Hindle to "evolve" a circuit.

I myself have been trying for years to achieve such realism, with theorists like Messrs. Williamson, Baxandall, etc., for guidance, but I see now that my efforts should have been empirical, and that theory must always take second place to good aural results.

In conclusion, therefore, I would like to invite Mr. Kerslake to present to an excited and expectant audio-world the exact circuitry, operating voltages and apparatus necessary for us to achicve all these "brilliances " and "realism in music."
Since Mr. Hindle has been invited to "deal" with the cathode-follower output stage, perhaps he also would care to comment on the above, possibly including what Mr. Kerslake calls the Hotse and Pony output.-W. A. Cornish (Leicester).

Unpopular Valves

SIR,-With reference to your " economical quality receiver," the saving in components, space and cost in using the double-diode-pentode valve 6 B 8 as

amp. is very worthwhile. Quite apart from doing away with two sets of bias resistors and condensers (one an electrolytic), the lowering of H.T. and L.T. current consumed, makes the use of physically smaller mains transformers possible, so that chassis and cabinet sizes can be reduced.

Consider the saving in cost: a 6K7 I.F. amp. stage plus 6Q7 needs :

2 valves	say $15 /-$
$2 \mathrm{v} /$ holders	say $1 /-$
7 resistors	say $2 / 4$
$2 \times .1 \mu \mathrm{~F}$ condensers say $1 /-$	
$1 \times 25 \mu \mathrm{~F}$ condensers say $2 / 6$	

$$
21 / 10
$$

A count of the cost in the third stage of the circuit referred to is most revealing, especially as two advertisers offer 6B8, in the April issue, at $4 /$-each !
This valve can also be used as a direct substitute for 6Q7 or EBC33, provided that the anode and screen are strapped together.

Another cheap space saver is the little 9003, which I always now use instead of 6 K 7 , wherever its. 15 amp . heater consumption permits.-Richard Page (B.A.O.R.5).

A Peculiar Fault

SIR,-I recently had an experience I feel would be of interest to participators of Practical Wirfless especially. The experience was concerned with the Ferguson model 208V. After the set had been switched on for about half a minute, and as the valve-heaters were warming up, the pilot lamp, which is in series with the valve-heaters, would gradually light up and then would "blow." This state of affairs pointed to a heater-to-cathode leakage in the rectifier valve being great enough to step up the heater-pilot-lamp, voltage, and thus cause the pilot lamp to "blow." The valve in question was the UY41 Mullard half-wave rectifier. A new UY4I Mullard valve was substituted and all was well. The original UY41 valve was subsequently , tested and found that a cathode-to-heater "short" developed as the valve was in the state of conducting.-J. H. Robinson (Thornton, Fife).

A.C.|D.C. Apparalus

SIR,-Quite often you publish some excellent " live chassis" circuits in your magazine. There are many newcomers to the fascinating hobby of radio construction quite unaware of the dangers involved when using A.C./D.C. receivers, etc.

Perhaps you could publish some basic rules regarding these sets, i.e., no metal parts to be accessible to the user, knob screw holes to be plugged. Chassis securing bolts beneath the cabinet are often overlooked and very few circuits include fuses in the
mains input. Mains droppers in confined spaces when using a wooden cabine! are a fire risk, too.
As a service engineer I often mect frightening " hook-ups," such as extension speaker connections to A.C./D.C. sets, no back panels, poor flex on 15 amp . plugs and stone floors to "earih" oneself. -A. E. J. Simons (York).

An Obscure Fault

SIR,-I have a receiver built from the Osmor " Q " coil pack type H.O. diagram, the valve line up being $6 \mathrm{~K} 8,6 \mathrm{~K} 7,6 \mathrm{Q} 7,6 \mathrm{~V} 6,5 \mathrm{Z4G}$.
The set suddenly stopped working, and as I had a complete change of working valves from another set I replaced valve for valve.

Fault (or, rather, unpardonable error) No. 1 was that one set of valves included a metalised 6 K 7 and the other did not. Somehow 1 managed to replace the 6 K 7 with a 6 Q 7 and vice versa.
Having corrected that fault 1 discovered that the heater of the $6 \mathrm{K7} 7$ (from the original set of valves) had burned out, but iss replacement only gave me a slow pop-pop noise which I believe is called motorboating.
Touching the grid of the 6K7 stopped the noise and brought in the station, though somewhat weakly
It was some time before it dawned on me just why the signal was not getling through.
The new 6K7 was of the metal can variety, and the earth pin had not been connected whilst originally wiring for such a replacement. The fault was immediately cured by earthing the pin which connects the casing to the valve holder, thereby removing the stray capacity.
As I said before, this is not an obscure fault, but it might be of use to Mr. Apps when he writes another of his interesting articles.-J. Crichton Bell (Southsea).

A Satisfied Reader

SIR,-I have for some time intended writing this letter, and the current issue (May) of Practical Wireless has finally prompted me to do so.

The very wide range of subjects covered in your publication, from radio-control for models to the construction of a gram, is an endess source of pleasure. One can pick up any issue of Practical Wireless and be pretty certain that it will contain an article on at least one radio subject in which one is particularly interested.

The articles are always well written in a style which permits of easy assimilation by the non-tectnical, at the same time containing sufficient facts and information to satisfy the more advanced reader.

I particularly like the way in which circuit diagrams are laid out and drawn ; your artist in this respect is, in my opinion, streets alhead of those of your conlemporaries.

There is one small detail 1 should like to bring to your attention.
In a recent issue of Practical Wireless there appeared an article on Pi-Network TX output
circuits by O. J. Russell. B.Sc. The same article appeared in at least two other radio periodicals though in a slightly altered form, of course.-J. D. Pearson (Barrow-on-Humber).

Modifying the R1132A

$S^{I R}$,-May I reply to the letter of Mr. David W. Button, of Bedford, in the May issue of Practical Wireless.
Mr. Button suggests that interfering with the coils of the RII32A is a very tricky job. I do not agree with this statement at all. I merely renoved the existing coils, and wound new ones and soldered these in position. True, there was the usual trial and error of squeezing up, and opening up of the turns to get the best results, and trimming to put the required frequencies on the dial where I wanted them.
A tiered circuin does not work as efficiently at either minimum or maximum, as it does in the centre of its range: therefore the most used frequencies should be trimmed to the centre or near the centre for best results. A 1132A Rx can be modified to an 1481 or 1526 by merely altering the coils. Providing the $R x$ is working before the modifications are undertaken, there is no trouble at all.

1 have seen 1132A converted to 1481 and 1526 with coils wound with 22 s.w.g. copper to 18 s.w.g. iroil wire and work all right. I am using one at the moment with $13 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. phosfor bronze wire, which is very hard and difficult to use for winding coils of fin. I. diameter, nevertheless it is working perfectly.

I see no reason why the trimmers should be changed at all unless they have been damaged. I have modified six of these $R x$ which are all working correctly as far as I know. Two people I know of have modified these sels with no trouble.

May I also add a few lines to J. F. B. Elder (Smalley) ie time and frequency checks. Why not tulle to MSF $2.5,5,10 \mathrm{Mc} / \mathrm{s}$, which gives vocal time checks every 14 minutes, also $1,000 \mathrm{c} / \mathrm{s}$ tone and one-second pulses? Clocks can be set at any fiveminute period throughout the 24 hours. Frequencies ale accurate to within ± 2 parts in 10^{8} of the nominal values,-L. H. Cox (S.W.18).

American Test Equipment

SIR.-Your correspondent signing "Grayshaw instruments" (Harpenden) (page 282, May. 1955, issue) entirely misses the point, which is that imported kits of parts are arailable to purchasers.
I have personally tried to buy test equipment bearing the trade name used by your correspondent, at a dealer who claimed to be the agent for the apparatus. This dealer had no slock to dispose of but did exhibit what purported to be a signal generator and which may or may not have contained innards.

A collcague of mine forwarded cash with an order for another widely advertised piece of test equipment which he received after seven months, having repeatedly written without reply in the interim and eventually being obliged to resort to legal advice.-M. L. Elliott (Fareham).

METEOR III ac or Ac/cc
(please state which)
NO, RADIO KNOWLEDGE NECESSARY. Easy-to-read diagram (and we MEAN EASY-TO-READ !) makes construccion'a simple job with Screwdriver. Pliers and Soldering Iron. ALL parts in stock NOW and TOTAL 97/6, plus $2 / 6$ for postage and packing.
SATISFACTION or WE REFUND CASH! NORMAN H. FIELD
Mail Orders : 97, Stratford Rd., Birmingham, II. Callers : 68, Hurst St., Birmingham, 5 (almost opposite Hippodrome)
Inspect our stocks of T.V., Radio Cabinets and Components for Hame Constructors.

THE HAM'S SHOP

cheapest television and electrical shop in gi. britain 45, WINETAVERN ST., BELFAST, NORTHERN IRELAND
(Fhone : Belfast 31849)
Rerriver-TR1196, complete with valves. £1/15/-: 1135. $£ 2$. Transmitior.-TR1196, £1, without valves. 10 -. Mee. Trans-mitier.-Type 38. $35 /-$ Ampllfer, with valves. £2. Power Pak. 12 v., £1. New Zaraland Transmittor 12 ma .-Mark 1. $28 / 10 /-$ Enif.,-R.F.Type 24 and 25 , with valves, 14i-. Type 6. \&2/15/Type 62, \&210-- Hornloudspakers.-Tannoy for P.A.. complete with units, $£ 2 / 10 /-$, Hollil IIallers-Complete with valves. $£ 5 / 10 /-$ (Cannot be repeated.) Morse Kris- 3/6. surakare-5in., $12 / 6$. Meters - 5 Mamp. $816 ; 50 \mathrm{M} / \mathrm{amp} 8 / 6$; $1 \mathrm{amp}, 8 / 6 ; 3.5 \mathrm{~K} . \mathrm{V} .12 / 6$. (Cannot be repeated.) V.(R . ('hassis.-With valves, \&l. Dials. 1191, 4/6. IDoor Bells--Work of mains. 3/- Iarge Hipass 'rer-minalk- 7 dd. ea., 7/- per doz. Cut-outs. 12 v . and 24 y. $8 / 6$. Miniature Votors- Work off 12 V . or 24 V ., A.C., $8 / 6$ ea. Trubes. 5CP1, £1: VR97, 30/- (no cut-offs) : 807. 8/-: 6V6. 7/6, Mrlal ISoxrs.-2/-. Chasis with (omponents.-5/- (worth $£ 1$ ea.). Transformers. $-350 / 350,80 \mathrm{~m} / \mathrm{amp} .4 \mathrm{v} .4 \mathrm{amp}$ and 4 v .3 amp . $141-$ ea. : $350-0-350,250 \mathrm{M} / \mathrm{amps} 6.3,7 \mathrm{amps}, 6.3$ at 4 amp.. 5 y ., at 3 amp (heavy duty), price, $27 / 6$. IRYets, Aluminimu,- $2 / 6$ per box
 Gnits-7/6 ea. Itattery (hassis.-With valves, 126. Superhet Flex.-50 yds., 22/6. (unfensers.-6 mfd. high voltage, $5 /-$ ea Flex.-50 yds., $22 / 6$. undensirs. -6 mfd . high voltage, $5 /-$ ea. Pown' I'aks,-200 m/a $250-250,6.3$ v, at 5 amp. £2. Irubl Fution -6d. ea. (Bakelite.) (rvitals,-2/6 ea. $2 / 6$ ea. Pulles wheels Binoculars.-10/-. iselavs.-2,000 or 5,000 ohms. $7 / 6$ ea. : 820 ohms 5/8. Bell Transformers. $5 / 6$ or 5,000 ohms, 76 ea. 620 -3.5 and 6 v . lamp, $5 / 6$ ea. Chokes. $-200 \mathrm{~m} / \mathrm{amp} 10 \mathrm{H} ., 3 / 6$. Hulls.
 with switch. 3/6. Value Holilers.-All types, from 6il. 26 ea. Fonmers and cores.-6il. Hivdrometors, 3-Ball type, 1/6. Pampas.-s1. Sonnd Projectors.-(2) with speaker (price on apdication). Valve Tester and Universal Meter (ompined. Abheriean, e8/10\%-- Hell Wire.- 100 yd. coils, suitable for wiring up. 4/6. Aerial Wire.-50ft., 1/-. Mie 'ransformers.-2/6. Polishril Ehonite Rodis.-gd. Coil Formers. -6×1 and $6 \times$ 易, $6 d$. ea. Morse key and Buzzer Sets.-5/-. Hesistory with Nhider Ailustment.- 300 ohms, 50 watt, $1 / 3$. 11. . Acrials. $2 / 6$. Angle poise Lamps.-25/-- Rod Acrial Bases.-2/6. Noise Limiters.ype), $29 / 10 /$ ($\cos 585$). T.V. Cabinets for Bin. or $81 n$. Tubes. 25/=. Crystal Mic Inserts.-5/6. Carbon Incerts--1/6. H.'. ratteries. 60 v. $3 / 8$ (or 47 v.). Insul. Tresters. e1. packing ank carriage extra. Please phelose s.A.E. with ENQUIRIES. DELIVERIES WITHIN 14 DAYS. ALWAYS AT YOUR SERVICE.

ALL WAVE RADIOGRAM CHASSIS THREE WAVEBANDS FIVE VALVES K.W. 16 m .-50 m. LATEHT MULLARII M.W. $2061 \mathrm{~m} .-5.50 \mathrm{~m} . \mathrm{ECH}_{42}$, EF 41 . EBC 41

Braml New and Guaranteed, with lutit. P.M Speaker. A.c. $200 / 234$ w. Four posititn Na iteh. Whort-Medium-Lang-Gialn. A.V.C. and Stgative feelback. Ont put 4.2 waits. (hassis 131 x I_{1} 2 inn. Giass pial-1min. x 41 in ., horizontal or vertical arailable. 2 Pilot Lampe. Four kimhs. Walmut or ivory, aligned and calibrated. Chassis isolatet from mains. PKICE $810 / 15 / 0$. (arriage 4/fi. (Without loin. speaker, $\varepsilon 9 / 15 / 0$).

RECOMMENDED FOR ABOVE CHASSIS Brand now Plessey 3 -speed A utochanger Mizer Unit tor 7, 10 and 12in. Records. Twin Hi-Fi Xtal Head with Duopoint sapphire stylus. Playe 4,000 records. Sprung mounting. Bargain 91 kni, post-free.

VCROT TESTED FULL PICTURE, 22

RECORDING TAPE. Rxalume Rargibiu. , Lo0 ft. reels High chercitivity. Brand new. 176.

ACID HEDROMETER. - Vew ex-(iovt. Tnbremk able. Packerl in metal cuse, 7 in, x llin. dia., 4/6. C.R.T. LOW LEAKAGE ISOLATION TRAN8 Ratit $1: 1.25,25 \%$ brost, 2 v., 10/6; $4 \mathrm{v} ., 10 / 6$ - 108 \&., $10 / 6$; 12.3 r., $10 / 8$ No connection with ony other firm. Pleage address all correspondeace correctiy at below.

Radio Component Specialists

 307, Whitehorse Read, West Croydon THO 1665Post tid. el ordern pert fref. C.O.I. Ith. Linta A. A.E.

80 . Сhm © OAX Nemi-sir spaced Polythene inoutatet. din. diam.
Ntranded core. Od losses cut 50%. 9f. yd. STASiDARD fa. dian. Coar GRADE 8d, yd. coAx pluas $\quad . . \quad 1 / 2$ 7/6 VALVES 7/6 * SALE PRICES *
 3Ft, liAMM, HEFH, GBW

 6N., स13, IOAN7. 261 ECTI, FFide, FFOt, EF!
 ('222, I'F4].

AND AT 8/6
 ECH42. EFTMMYI MU14 ANL AT $10 / 6$ 12AH8. 12KR. 12K7. 12 $35 \mathrm{LA}, 3574,25 Z 4, \mathrm{EFDA}$ EF80, ECLAO, PY82, ELA
Volume Controls Midget Ediswan type Long slimelles. Guaranteed 1 year. All values $10,06 t$ ohime to 2 Megobims. No Sw. S.P.SW. D.P.Sw, WIRE - WOUND POTS. Pre-Set Min. TV. Type All valuen 25 ohme to 30 K.. $3 /-$ ea. й 0 K., 4/5 Initto Carbon Track $\mathbf{5 0 k}$ to 2 Meg., $3 /-$
Stendard Size Pots, $21 i n$. spinule. 3 wt. 100 ohms to $501 \mathrm{~K}, 5 / 6 ; 100 \mathrm{~K}, \mathrm{~B} / \mathrm{B}$. CONTROL $16 \Omega, 3 /=$

TAPE RECORDERS P.W. and SOUND MASTER

We can supply complete kits or separate components for both the P.W. and Sound Master Tape Recorders.

Sound Master Instructions, 6/6.
FULL HIRE PURCHASE FACILITIES 3/- in the $£$ deposit.

WATTS RADIO,

8, Apple Market, Kingston-on-Thames, Surrey. Phone: KINgston 4099.
tAPE THE VESPA
DECK

MODEL 52I. Compact Deck. $7 \frac{1}{2}$ in. x llin., Sin. reels. Kit, E7.10.0. MODEL 72I. Standard Deck. latin. x l lin. 7in, reels. Kit, 88.10 .0 . Easy to assemble, precision-machined parts, latest high-fidelity heads, first-class motors. full assembly instructions. Either mode. fully built and tested, 27/6 extra. Send stamp for full details :
E.W.A., 266, warbreck drive, blackpool.

RECEIVERS \& COMPONENTS EVERYTHING FOR CONSTRUCTORS. O / P Transformers, heavy duty, 70ma, $4 / 6 ;$ tapped. $4 / 9 ;$ push puli, 6/6; snaall pentode, 3/9. I.F 11/G: 15 H 150 ma . 12/G; H.F. Clioke $14 \mathrm{~m} . \mathrm{H}_{\text {. }}$ 2/6. Heater Trans.. tapped prim., $200 / 250 \mathrm{v}, 6.3 \mathrm{v}, \quad 1 \frac{1}{2}$ amp., $7 / 6$; tapped sec., 2, 4. 6.3v. $1 \frac{1}{2}$ amp., $8 / 6$. Mains Trans. $350-0-350$. 80 ma . 6.3 V 4a. $5 v, 2 a$, ditto 250-0-250. 21/•, 3ray mounting. Tyana, Midget Soldering Iron, $200 / 220 \mathrm{v}$ or $230 /$ 250 v . 14/11; Triple Three with detachable bench stand. 19/6: Solon Midget Iron, $19 / 6 . C$ Conden ditto, $12.5 k v, 9 / 6$: 2pf. to 500 pf mlcas, 6d.; .001. $0.01 . \quad .02 .500 \mathrm{v}$ 05 mfd, and . 1 mid, $1 /=: 20$ mfd, 1/6: 5 mfd . $500 \mathrm{v} .1 / 9$. Silver Mici Condensers, 10%. 5pf. to 500pf.. 1 . G00pe. to 3,000pf. $1 / 3 ;$ ditto. 1%. ex stock, 1.5pf. to 500pf.. $1 / 9 ; 51001$ to 1.00 500 i $601000+1000$ 3/: 1,500 mid. 6v. $1 / 6: 1.000+1,000$ Sentercel Rectifiers. EHT Lype Flyback Voltage. $\mathrm{K} 3 / 25 \mathrm{kV} .4 / 3: \mathrm{K} / 40$ $3.2 \mathrm{kV}, 6 /-\mathrm{K} 3 / 45 \quad 3.6 \mathrm{kV}, 6 / 6 ; \mathrm{K} 3 / \mathrm{J} 0$ $4 \mathrm{kV}, 7 / 3 \mathrm{~K} / 100$ 8kV. 12/6: K3 160 $14 \mathrm{kV}, 18 / \cdot \quad$ Mains Type. RAll. 125 F,
 Enamel Wire, tib. 16 to 20 s.w.g.. $2 /: 2^{2}$ to 28 S.w.g., $2 / \mathrm{G}: 30$ to 40 $\begin{array}{lll}2 / * \\ \text { S.w.g., } 3 / 9, & \text { S.w.g. } 28 \\ \text { Stal Diode. sensitive }\end{array}$ S.w.g.. 3/9, Xtal Diode. Sensitive Brownl or Hi-grade smer.. $15 / 6$ pair. V'holders, Pax.: IO. 4d.: EF50, EA50. Gal. BleA CRT, 1/3; Moulded.: IO. 6d.: B7G, 9d.: with screening call, EF50. B7G. 1/•; All English: 9 pin and U.S.A. UX types, $1 /:$: VCR97 moulded boiders, 2/6, Aladdin Formers and core, tit. 8d, sin. 10d. Int. Octal Cable Plug (8-pin). with cover. 1/3. Brimistors. CZ1. 3a, 3/G: CZ2 .15a, 2/6; Aluminlun Chassis. 18 s.w.g, plaln 4 sides, riveted corners. x in $4 / 6$ holes. $2 \ln$ in.
 $10 / 6 ;$ and $18 i n$. x inin.. $x 3 i n .16 / 6$. RADIO COMPONENT SPECIALISTS 307. Whitehorse R1.. W. Croydon. 1 THO 1665.1 Post $6 d .$, el orders post free; c.o.d. 1/6. Lists s.a.e.
MIDDLESBROUGH. Largest stocks on N.-East coast. Radio/TV components, FM Kits, Gram, Cablnets, Tape Decks, Leak Ampllfers. Valves. etc Callers only. PALMERS. 106. New port Road. (Phone: 3096.)

LOUDSPEAKEAS repaired proinptly MODEL LOUDSPEAKER SERVICE Bullingdon Rd.. Oxford

SERVICE SHEETS, T.V and Radio over 2.000 models. sale or hilre: Valves and Components. S.A.E. with enquiries. W. J. GILBERT. 24. Frith ville Gardens. London. W.l2.

OSMOR for really efficient Coils. Coilpacks and all Radio Components as specified for many - Practical Wireless" circuits. See advert. on page 339 for free circuits offer or send 5d. Istampsi to OSMOR RADIO PRODUCTS LTD. (Dept. PC6 P339) 418. Brighton Road. South Croydon. (Tel.: Croydon 5148'9.)

AMERICAN RADIO Plans and Devices. Now available. Hundreds of new and startling devices you can new and starting devices you can
make. Only designs of this ivpe make. Only designs of this ivpe tadkies. ampliffers, recorders, magic eve alarms, etc.. etc, Full lists, data. illustrations Free of stamp. Send to-day. A.P.S. (IW). Sadgeford. King's Lynn.

ALL NEW GOODS. - 12 v . 4-pin Vibrator, 6/G; Battery Eliminator for 4 low consumpion valves, $90 \%, 12 \mathrm{ma}$ and $1.4 v, 125 \mathrm{ma}$. $47 / 6$, or complete Fit o! Parts and Diagram for $40 / \%$ Battery Charger, 2v. 6v. and 12v, 1 amp., at $40 / \therefore$ or k it of Parts and Wiring for Clarger for $35 / \cdot ; 30 \mathrm{H}$ 175 ma , Chokes. 1.70 ohm, $10 / \cdot \mathrm{i} 20 \mathrm{H}$, 100 ma . 200 ohm, 7/6; Condenser 1 mf , 2.500y. d.c.. wkg., 5/G; Con denser, $4 \mathrm{mx}, 2.000 \mathrm{v}$. d.c. wkg., 9/Monarch 3-sveed Autocnanget £11/10/: GLADSTONE RADIO G!adstone Place. Newton Abibot

Devon.
 HIGH FIDELITY-Bel FM VHF re-

 ceivers. from £8, complete and guarantced. Full constructional kits £7/5/•, collsets and separate parts Lists, $1 / \cdot$ New "Mullard" polnt four per cent. amplifiet. E19. BEL SOUND PRODUCTS CO.. Marlborough Yard. Archway. London N. 19 . Nr. Archway Northern Line. 25 mins, West End. Tel. ARC. 5078.EVERYTHING for Radio Constructors. List from SMITH, 98. West End Road. Morecambe
F.M. QUALITY RECEPTION. Ampll fiers, Valves, Condensers. Coils Resistors. Transformers: everything for the amateur. Stamp for lists for the amateur. sediate service. C. MICHEL 88A, Cleveland St. Euston Road 88A. Cleveland
W:1. EUS 8121.)

SITUATIONS VACANT

The enoapement of persons ansukering these adureitisements must be nade through a looad Of:ce of the Ministry of Labour or a Scheduled employment Aoency if the applicant is a man noed 18-c. inclusite or a woman aged $18-59$ Molusive. untess he or she, or the emploument. lion of Vucancies Order. 1952.

ELECTRONIC

APPRENTICESHIPS.
The Ministry of Supply invites appli catlons for Electronic Apprenticeships tenable for 5 years at the Radar Research Establishment Malvern. Worcestershire. Applicants should be 16 and under 17 years of age on September 1st, 1955 . They should be in possession of or expec to obtain. the Ceneral Certificate of Education at Ordinary level, with passes in four subjects. Including Mathematics and Physics (or other Sxience subjecti. or be of cquivalent educational standard. Technical School bovs are eligible to apply provided they have exemption from S. 1 Stage of the Ordinary National S. Stage of the Ordinary National and further particulars may be obtained froin Ministry of Supply, D.T'O. (Industr:all. 66/72. Gower Street. London, W.C.1. The closing date for receipt of applications is June 1st. 1955.
T/V AND RADIO.-A.M.Brit.I.R.E City and Guilds. R.T.E.B. Cert., etc. on " no pass-no fea" terms. Over 95% successes. Details of exams. and homz trairing courses in all branches of radio and T/V; write for 144-page handbook-free. B.I.E.T (Dept. 242G). 29. Wright's Lane Eondon. W.8.
A.M.I.Mech.E., A.M.Brit.I.R.E., City and Guilds, etc. on " no pass-no fee " terms; over $9 j^{\prime /}$ successes. For details of exams. and courses in all branches of engineering. building. etc.. Write for 144 -page landbook,
free. B.I.E.T. (Dept 242 B), 29 , free, B.I.E.T. (Dept, ${ }^{242}$

RADIO UNLIMITED offer this month: Diodes, 1/6; 0005 Tuner 3/•: 0005 Twin Gangs, 5/6; T.R.F Coils. 5/. pair; Mini. o-trans. for $P /$ port. $4 /-; \quad V /$ controls, all values 10 K to 2-Meg, 2/9; SP/SK., $4 /-\mathrm{i}$ W/W pots. $5 \mathrm{~K}-3$ watt, a/-: Diode Crystal Set. 13/6; Kit. 11/- Large range Amplifiers and Kits: list. Al Teletron and REP Coils in stock T.R.F. receiver kits. incl. valves $\begin{array}{llll}\text { and cabinet. } & \text { 93/6. } \\ \text { gised } \\ \text { Speakers. } \\ 1,000 & \text { ohms. } & 15 / 6\end{array}$ Bakers 121n. P.M.. list $£ 5 / 5 /$ - $99 /-$ Paker 12in PM 39/6. Pessey 12. P.
 Bumper bargain list now ready RADIO UNLIMITED, Elm Road Iondon. E.17. (KEY 4813.)
ALUMINIUM CHASSIS made to your requlrements: $16 \& 18$ gauge: any quantity. large or small. We will De pleased to quote. MACHINE CONTACTS. Building 336. Hurn A:rport. Christchurch, Hants
WINWOOD FOR VALUE. 3-wave 1. m . and s . Coilpack, 23/G; 2-valve + Rec. AC or AC/DC Amplifie: kit, incl. valves. 59/6; T.R.F. Kit. incl. cabinet and valves. 97/6; fresh stock, $25 \mathrm{mf} / 25 \mathrm{v}, 25 \mathrm{mf} / 50 \mathrm{v}$. $8 \mathrm{mf} / 450 \mathrm{v}$. 1/6 each: 8×16 and 16×16. 450 v 1/- each; $32 \times 33,450 \mathrm{x}$. 4/6; Syl Rec.. EF50, 7/G; 4D1. 9D2. SP41 SP61. 3/G each; 1A7. 3Q5. 7/6; I.R.F. Coils. 5/. pair. Stamp full
list. WINWOOD. 12. Roid. London. E.io. imail only. 1
VALVES, new, tested and guaranteed: Matched pairs. 6V6G and GT 17/. per pair: EF92. W77. 4/G; EB91 6AL5. G/G: 6F12. EF91. CAM6. 6V6G. 6VGGT, 5763. 7/6; 6BE6. 6BW6, 6BR7. 6K8G; 6SL7GT, 6SN7GT. GX4, 6X5GT. 8/-i 5U4G. 12AX7. $12 \mathrm{AT7}$. EV02 1010. ECH42 X PY82. 110. ECH42. CH5 EF EF85, 11/6; ECL80, EY5l, $12 / 6$. Coax Cable, 75 olim. fd . p. and p . Gd. R. J. COOPER. $7 d . y d .: ~ p . ~ a n d ~ p . ~ G d . ~ R . J . ~ C O O P E R . ~$
32.
South End, Croydon. Surrey (CRO 9186.)
WALNUT Radiogram Cabinets of distinction: stamp details. R. SHAW. 69. Fairlon Rd.. E.11.

BARGAIN SALE. A number of small SW Heceivers. cover all bands. fully calibrated spread. etc.. and other gear: all excellent condition: in full working order: very cheap. All enquirics welcomed bith s.a.e. for fuil descriptions. Box No. 254, c/o Practical Wireless
R.G.D. RADIOGRAM (1936). splendidly maintalned, in flne wainut cabinet. and with modern Garrard 3-speed record-player. for sale cheaply to technical expert able to look after this old aristocrat. 23, Edge St.. W.8. (Park 4777.)
TAYLOR 65B Sig. Gen. lo0kcs 45 mes . perfect. $55 . \quad 45$, Caterlham Ave.. Barkingside. Essex. (VAL 7304.) AVO. " 7 " (latest) new. £14/10/VINCETT. 39, Scrattons Terr. Barking. Essex.
EXS. FROM 4D. LIST. Test Prods 1/6.pr:- LMS Coil Pack with 465 Kcs
 CARTER'S. 465 , Washwood Heath Road. B'ham.. 8. (EAS 3017.)
R.F. UNITS, Types 26 at $27 / 6,25$ at $12 / 6,24$ at $11 /-; \quad$ brand new with
valves. valves: post $2 / 6$ E.W.S. CO.. 69
Church Rosd. Moseley. Birmingham

SURPLUS new Valves. 6K8G, $8 /-$ GSN7, 1R5. 6X5. 12AT7, 7/: 6AG5, 6U7. 6J5GT, VR91. 5/6; 6H6. VR65, 2/6; EF30. 8/6. S.A.E. for full list
Dalston, London, E. 8 .

BOOKS

I.P.R.E. TECHNICAL PUBLICATIONS. 6,500 Alignment Peaks for Superheterodynes, 5/0, post free. Data heterodynes, 5/9, post iree. Dtrength for constructing TV Aerial Strength
Meter. $7 / 6$. Sample copy. The Practical Radio Engineer. quarterly publication of the Institute, $2 / \sim:$ membership and examination data. 1/:: Secretary, I.P.R.E., 20, Fairfield Rd.. London. N.B.

AMERICAN MAGAZINES,--One-year " Audio Engineering." 35%, specimen copy, $3 / 6 ;$: Popular Science," $31 / 6$; "High Fidelity." $50 /$-. specimen copy, 4/6. Free booklet quoting others. WILLEN LTD., Dept. 40, 101, Fleet Street. London, E.C.4.

MAKING YOUR OWN? Telescopes,

 Enlargers, Binoculars, Microscopes. Projectors, or, in fact, anything that needs lenses. Then get our booklets, How .to use Ex-Gov. Lenses \$' Prisms." Nos. $1 \& 2$. price $2 / 6$ each: also our stereo book, "3-D Without Viewter's." price 7/6. Comprehensive lists of lenses, opical. radio and scientific gear, free for s.a.e. H. W. ENGLISH. Rayleigh Road, Hutton, Brentwood, Essex.
VALVES

ALL TYPES of Valves required for cash. State quantity and condition. cash. State quantity and condition. cot Road. N.W.1. IPRImiose 9090.)

VALYES WANTED, all types, state quantity. condition and prices asked. R.H.S. LTD., 155. Swan Arcade. Bradford, 1 .

1-Finger Pianists

Bulld your cwn clectronic keyboard and play everything! Send for tree leafet. Guitar. cello, fute and trumpet are all eass. Write now...

C \& S, 10 Duke St., Dariington, Co. Durham

VALVES, 6 months' guarantee; discount on orders of E1: wellknown maker. Send 5d., for list of over 70 types, including operating "gen." pin connections, prices, etc. BLANCHARD'S |PW1): 13 , 'Gainford Gardens, Manchester. 10 .

WANTED, Valves, EY51. ECL80, KT61, 6U4GT, PL81. 35Z4; prompt cash. WM. CARVIS LTD., 103 , North Street, Leeds, 7.

EDUCATIONAL

THE INSTITUTE of Practical Radio Engineers Home Study Courses are suitable coaching text for I.P.R.E. and other qualifying examinations. Fees are moderate. Syllabus of seven modern courses post free from SECRETARY, I,P.R.E., 20, Fairfield Ro.d. London, N.8.
MERCHANT NAVY Wireless School, Overseas Housc. Brooks' Bar, M/cr 16.
WIRELESS.-Day and Evening Class instruction for P.M.G. Certificate of Proficiency and Amateur Wireless Licence. Morse instruction only if required, also postal courses. Apply B.S.T. LTD.. 179, Clapham Rd., London. S.W.9.

ANNAKIN

$11 i=4$ Fillom chokes, $10 /-$, post free. Dubilier 0.0012 mfd mica conds. wires. new. 3\&. ea. Inise Marnets, 1 in . diam. x $316 i n$.. very powerful, 10 for $2 /$-. VH97 Hase comnectors. 6d. $\quad 30+30 \mathrm{pF}$ split Statol Variables, 96 . Germ, Dlotlea, $1 / 2$. 9004, V U111, $2 /-$ 'l'olarold Filters, $1 /$-.

> Money Back Guarantee.

Please sond plenty of postage: surplus refunded. C.W.O, only. Free Lists. 25, ASHFIEEDPLACE, OHHEY, YORKS.

Best Buy at Britain's

COMMUNICATION IURGEIVERS TYBE K1155..-For world-wide reception. Brand new and air-tested. ell.19.6. Shently Carriage 10/6.6. Extra Free models, $\begin{gathered}\text { s.19.6. }\end{gathered}$ with each receiver.
A.C. MAINS POWEREPAGK \& OITPICIT SWME,-These enable the R1155 to be used on the mains WITHOUT MODIFICATION. Three types. £4:10.0, £5.5.0. £6.10.0. Carriage 3/6. Send S.A.E. for full details of Powre Packs and Receivers or $1 / 3$ for
b roklet. b) roklet.

IRECEIVEIRS, TVPE 78 .-Two rankes, 2.4-5.9 and $5.8-13$ Me's. Has EF50 R.F. 6 K 8 Mixeriose. (variable inductance tuned): one I.F. stage. Built-in $100 \mathrm{Kc} / \mathrm{s}$ crysital
calibrator. Could make handy S het "aliorator Could make handy S/het new. Price. less valves and Xtal. $11 / 6$. plus $2 / 6$ postage.
H.R. IHEADPIIONES.-Consists of two high-resistance earpieces with adjustable metal headbands. Price, less cord. 6/6.
PACKARID BELI, PIRE-AMPI,IFIEIRS, Suitable for conversion to baby alarm, ampplete etc. contains minature relay. comBook. etc. BRAND NEW. U.S.A. 12/6 each. VALVE BARGAINS.-New and in original boxes. 6AG5. VR53 (EF39), VR5 (EF36). 6 B . 6 C Met. 6 SH7Met, all at $6 / 6$. 12 SC7Met 5/6. RK34, E1148, 954, ail at 2/6. Replacement bargain, EL50, 5/- New, ex units, 6AK. 7/6. VR91 (EF50) Sylvania. VT52 (EL32), 807. 7/6.

METEIR HAIRGAIN.-2lin. Prolection type. Two ranges. 12 and 120 volts, with multiplier. Brand New and Boxed, $5 / 8$ each.

CHARLES BRITAIN (RADIO); LTD.
II, Upper Saint Martin's Lane, London, W.C. 2 . TEM. O5
Shop hours, 9-6 p.m. (9-1 p.m. Thursdoy) Shop hours, $9-6$ p.m. (9-1 p.m.'Thursdoy)
OPEN ALL DAY SATURDAY-

SEE THE WORLD as a Radio Otficer. Short training: low fees. scholarships; boarding/day students Stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay

MERCHANT NAVY, Train as Radio Officer. The big liners are open to vou, but you must qualify for the P.M.G. Certificate. Day, Evening and " Radiocerts" Postal Courses. Est. 36 years. S.A.E. for prospectus from Director, THE WIRELESS SCHOOL. 21, Manor Gardens, London, N.7.
FREE: Brochure giving details of Home study Training in Radio. Television. and all branches of Electronics. Courses for the Hobby Enthusiast or for those aiming at the A.M.Brit.I.R.E., City and Guilds R.T.E.B.. and other Professional examinations. Train with the college operated by Britain's largest Electronics organisation; moderate fees. Write to E.M.I. INSTITUTES, Dept. PW.28, London, W.4.

CiTY AND GUILDS (Electrical, etc.) on " no pass-no fee" terms, Over 95% successes. For full detalls of modern courses in all branches of Electrical Technology send for our 144-page handbook-free and post free. B.I.E.T. (Dept. 242A), 29. Wright's Lane, London, W.8.

COVENTRY RADIO

189, DUNSTABLERD., LUTON, BEDS.

Phone : Luton 2677

The Quality Component Specialists offer you Kits of Parts for the following :-

Osram " 912 "Amplifier Manual
Mullard 10 -watt Amplifier $\quad . . . \quad$... $\quad 3 / 6$
Mul
The Coventry

6-watt Quality Amplifier ...
Denco F.M. Tuner Unit $1 / 6$

Complete Component Price Lists will be supplied with each Monual.

Have you had a copy of our 1954/5 60-page illustrated Component Catalogue, price $1 /$ plus 3d. postage?

ASTRAL RADIO PRODUCTS

- 110ME RUDIO, 32 page illustrated booklet. Simple wiring instructions for Crystal Set. 1, 2, 3 Valvers, 2/-, post 3d. ThF colls. Specified for IBedsifie Push-
 etc., $8 / 6$ pr., post 6d.
DUAL WAVE HF Coif. Specifled for -Summer All ibry Portable, Modern 1 Valver; Modern 2 Valver, 'etc., $4 / 3$, post 3d.
IFTMS Miniature, $1: \times 1-1 / 16$ round in cans. Extra high'Q.' Special offer, 8/6 pr., post 6 d K colls. ' AC.B 'pass 3.' $3 / 3$ each, post 6d. FRAME AERIALS. M.W., 5/-, post 4d. H.F. Choke (Osmor Q.C.1). 4/r, post 4d. (rystal Let Coils, L. \& M.W., 2/6, post 3d. 82, Centurion Road, Brishton,

BIG STOCKS mean SMALL PRICES

To reduce nilt Rtock of certain therns wo offer the following at reduced prices for limited preriod VALVES．－A ，makers cirtona ；B，unused．itoxed．

 RESISTORS－（Carbon）： $4.30 \Omega .5 .1 \mathrm{k}, ., 4$ for 9 d ． 1 w．$w \mathrm{k}_{\mathrm{r},} 75 \mathrm{k}, 180 \mathrm{k}, 6$ for $1 /=: 5 \mathrm{w}, 5010,7013 \mathrm{k}$
 POTENTIOMETERS，（Carbons：5Mm $k, 1$ dia．
 500 k．，ly dia．I spindle i an $1 / 8$（ 6 for $/ 6$ ） BARGAIN ASSORTMENTS，－Our thoice．）ह介 BARGAIN ASSORTMENTS，－（OHr（hoice．） micas．8／9， 100 micas，tabtiara，netra blark 10－（all qoudls Euarimieed thaserl STOCK LINES
CARBON RESISTORS－－I．A．B． tylue T（max．loal，f w．）．6d．；type R（max．foal 1 w．）．8d．
WIBE－WOUND RESISTORS，SILICONE COATED

 $10 \mathrm{w}, 2 / 6$ ．
MIDOET TUBULARS．－ 01,01 ， $4 \mathrm{~d} ., 3 / \mathrm{d}$ doz， SLVER CERAMIC TUBULARS．Wire－emfed． $4.7,7.5,10,15,20,22,27,33,39,47,55,7 i 5,104$ ， 150．240， $270,330,390,470,1.000,2,6011,3.004$ 3．000 pf．，9d．， $8 /-40 z$ ．
SPECIAL LOW LOSS COAX．OnIy gd．Mil．．stan． lard type，Bld．yd．（Both in／soss，appros．t＂ dis．）．
COAX FITTINGS．－8olderless plua． $1 / 2$ ：socket． 1／3；outlet bor，4／6 ：coupler（double sorke：）．1／ MINIATUR
10d．pait， PLOR VALVEHOLDERS．－Bift and Ig （very neat），1／9．International octal type．2／3．

Orders over \＆post irea．laiste 3 ， 1.
REED \＆FORD ${ }_{\text {AIND }}^{2 A}$ BURNLEY ROAD．

RECEIVER R1155

HRANID NEW．AEIKIAI TESTIEI
In maker＇s original transit case．Now is the chance to get one from the best dellvery

> we have had from the Ministry.
> E11-19-6. Carr. $10 / 0$

Send S．A．E．for further details or $1 / 3$ for publication giving circuit diagrams．etc． Others available from $£ 9.10 .0$ according to condition． CHR．New． $12 / 6$ pair．post 16
MiCiROA M MIFTistes． 250 F．S．D． $3!$ in， Flush Model S37．Specially scaled tor test meters．Knife edge pointers，masnetic shield．Brand New， 55
－These vision units arem valves and EA50．Our price oniy $6 s^{-}-$Post 26. ROTARI CONVERTFRi－Input 12 volts watt，92／6 each．Also avallable with 24 volt input，carr． $7 / 6$.
WILCO ELECTRONICS Drpt．P．w 204．Lower Addiscombe Bin．Crovilon．

METERS－BRAND N			NEW－BOXED		
FSD	Scale	Size	Type	Fit P	Price
$500 / 1 / 8$		31 n ．	MC	1\％1．R1］．	25／－
$\operatorname{lng} A$			3 C	F1．161．	18／6
9mit		Qith．	$\mathrm{MC}^{\text {c }}$	Pr．Rel．	10／6
111 mat		$3 \frac{1 m}{}$	3 C	Fl．Kd．	71
10 ma		atin．	MC	［Fl． Hd	201－
20 ma	2004	3tin．	MO	F1．Ral．	$7 /$
2－ma	50 A	3tin．	MC	F．Rd．	7／－
30 ma		Etin．	MC	lre．Itil．	6／－
（1） $11 / 120 \mathrm{~mA}$		9tn．	MC	Fl． $\mathrm{SH}_{\text {d }}$ ］	8／－
1000 ma	500m A	$\because \mathrm{in}$ ．	MC	F1．${ }^{\text {d }} 1$.	5／8
100 mi		3 lim.	MC	F1．Rd．	$7 /$
Lifoma		3 in ．	MC	Fl．Rd．	71
15 mma		23_{3} ．	TC	Fl．sq．	6\％－
200ma		3！in，	NC．	Fr．Rd．	71－
200 ma		sin．	MC	F1．8n．	6／－
2.00 mA		3 ｜it．	MU	FI．Rd．	$71-$
500 ma		Silin．	MC	Pr．Rel．	71－
1.1		2 ¢ ¢ da．	${ }^{1} \mathrm{C}$	Pr．Kıl．	71
1.4		9 aim．	MC	Pr．Hil－	$7 \cdot$
2． 5 A		glit．	MC	Pr．Ril．	8／－
3 A		7 \％11．	31 C	Fi．Ral，	25／－
3．${ }^{\text {A }}$		2 il ．	TC	Pr．Rus．	6／－
4 H		2 m.	ML	Pr．Sid．	8／－
8 A		2fin．	MO	Fl．sq．	10／－
20.0 .00 .8		2in．	1 C	F1．8d．	8／6
30 A		\％tit．	MC	Pr．an．	$7 /-$
50，		Gilı．	MI	Pr．Mel．	30／－
4（1）－Fin）Crales		815.	230\％	Ir．Met．	80／－
15x／limima		2in．	MC	Pr．Rd．	8／－
15．0．15v		$\because 1 \mathrm{in}$ ．	MO	Fl．Rd．	8 －
311 v		2it，	MC	F1．87．	9\％－
204	Slank	$3 \ddagger$ in．	MI	F1．Id．	6／－
2 114		3 ¢in．	MC^{1}	Fl，R1．	$8 /-$
$3+10 \mathrm{v}$		fili．	311	Pr，Rd，	301－
20） y		41 n ．	14	Fr．blet．	12／6

Pilot＇s Indicator with：meter movementa I 1 mA sumed o／に． 1 luat centre zero sealed $30.6 .30^{\circ}$ wevton，10／－
Ifat and enquiries．E．A．E．please！Temma Fasb whll order．Iostage extrit．Inmentiale deapinch．

Cal＇ers and Fost eilher Branch．
W．A．BENSON（PW），SUPERADIO 308，Rathbone Rd．4（Wechafel），LTD．， 116 LTverpool． pool 1．ROY 1130

ELECTRONIC MUSICAL INSTRUMENTS

by R．H．Dori

From one volume．you can now learn all about the intricacies of commercial electronic organs，including the Allen． the Baldwin．Connsonata．Hammond， Minshall－Estey．Lowrey Organo and others．together with many smaller instruments．Constructional details on the authors Electronorgan and the simpler Thyratone show you how to build one of these fascinating instru－ ments．
55% ．Od．
Fostage 1s．0d．
Transivior Audio Ampliferes by R．F．Shea， 59 ．Ou．postage 9d． Ifadio Amatequr＂，Ilametlomok，by A．R．R．L．．30』．Ot．postage $1 /$－ IfCA IRecelving Inlie Minmal．gis．Git． postage 6d．
Transi－iors－itheory and afrbioution． by Coblenz \＆Owens．42～．6d．．postage 9d．
Vintses for A．F．Amplifiera，by E．Rodenhuis，10＊．6tt．．postare 4d．
 A，5．Torrance．3w．Git．．postage 3d． llease uevite or call for our catalogus．

THE MODERN BOOK CO．

19－23，PRAED STREET， （Dept．P6）， LONDON，W．2．
Phone ：PADdington 4185 Open 6 days 9－6 p．m．

FIRST－CLASS

RADIO COURSES

GET A CERTIFICATE！

QUALIFY AT HOME－IN SPARE TIME
After brief．intensely Interesting scudy －undertaken at home in your spare time－yOU can secure your pro－ fessional qualification．Prepare for YOUR share in the post－war boom in Radio．Let us show you how ！

（Dept．461）．148，HOLBORN， LONDON，E．C．I

TELEKIT SUPPLY

Chantry Lane，Ibromley，Kent． Please mention P．W．and enclose 6d．postare． VALVES GUARANTEED

OZ4	4／－	6BE6	6／－	12A6 1299	
IL． 4	5／6	$6 \mathrm{BR7} 7$	816	（soil	
ILN5	ed）	6BS7	7／－	15D2	4／－
	3 －	6BW6	$6 / 6$	EF50	
155	64－	6CH6	6／6	W7T	
ITI	6／6	655	5.	1824	35
IU5	6／－	6V6	$7 /$	6AK6	6／6
3 4	6／6	6x4	66	6AQJ	8／
5763	8／－	6x5	$7 /-$	6 U 5	8
6AB	8／－	7 D .3	6 －	12ATū	／8
6AL5	6.	7 D	6／－	：3D1	$7 /$
6AMS	6／－	$7 \mathrm{H7}$	8／－	50 C 5	8
6AT3	76	${ }_{1}^{9 D 2}$	5．－	TTII	6
6B8 68 A6	$6 /-$	${ }_{12 \mathrm{BE}}{ }^{\text {120 }}$	6／6－	12BH7	

HECKENHAM，KENT
THE SIIOP FOL THE CONSTISLCTOH： NOW OIPEN AT 104，IIGill STHEE： HECKENIf．AM 3720

UNIVEREAE SIIUNTS 1% accuracy for any 1 mA , or 500 uA meter. Only one simple adjustment to make, no calibrating meter beins required. With instructions. Guaranteed one year. $\mathrm{S} 505(1 \mathrm{~mA}$.) covers $1,5,25$, 100 and 500 mA . 551 (1 mA .) covers $2,10,50$, 200, mA and 1 amp. Price 15/-.
Shunts for all meters with ranges to your specification. Reasonable prices. Please give meter details, ranges required and accuracy.
D.C. MULTIMETER KIT for 500 u A or 1 mA meter. Complete kit of 1 "\% High Stability resistors, other resistors, shunt S505 or S51, Potentiometer, and instructions, 28/-.
A.C./D.C. MULTIMETEREKTC-As above. but with 4 extra 1% High Stablity Resistors and Westinghouse Meter Rectiffer to give 4 A.C. volts ranges, $45 / 6$.
18-way, Single Pole, Switch, 7/-.
Westinghouse Meter Rectifiers, with 1% multipliers for four A.C. volts ranges and circuit. For $500 \mu \mathrm{~A}$ or 1 mA meter, $19 / 6$.
RESISTANCE BOX STANDARDS.'「welve 0.5\% Wirewound Resistors. 1, 2, 2 , $5,10,20.20,50,100,200,200$, and 500 ohms, giving ito 1.110 ohms in 1 ohm steps, $30 /$.
RRIDGE"'RATIO ARMS.-Nominal 100 ohms. Ratio 1 to 1. Ratio accuracy 0.01% $5 / 6 ; 0.1 \%, 4 / 6 ; 1 \%, 3 / 6$.
PRECISION RESISTORS.-Any value 1 to 1.000 ohms accuracy 0.5%. Eureka wound omt strip, $2 / 9$.
CALIHREATION SERVICE FOR RESISTANCB CAPACITY. BRIDGES find SIGNAL GENELRATORS.-Reasonable Charges.

STOP PRESS! !

109μ A MULTIMETER KIT AVAFLABLE NEXT MONTH.

MASSEY

25; Dominion Ave., Leeds, 7.
TELETRON SUPER INDUCTOR COILS
FERRITE ROD AERIALS. Wound on high permeabilicy Ferroxcube rod, for all dry or mains receivers. Dual wave, $12 / 9$; MW 8/9. Type HAX.' Selec tive crystal diode coil, for crystal sets, tape and quality amplifiers * High, Q *Litz wound * Dust cored, $3 /=$ HAX.L. (LW), 3/6. Dual wave TRF Coils (as
 illustrated). matched
pairs, 7/-pr. Transistor coils, I.F.T.'s, etc., etc., available from leading stockists. 3d. stamps for complete list and circuirs.

THE TELETRON CO., LTD., 266, Nightingale Rd.. London, N.9. How. 2527.

SPARKS' DATA SHEETS

Guaranteed and Tested Radio Designs. leattery Operated.
LO/31, 2-V. Portable, M/L Waves. Compact. $\mathrm{LO} / 30$. $2-\mathrm{V}$. M/L Waves..-Speaker sibs. TO/35. 4-V. T. P.F. M/L-Waves. Good range. Lo/27. 4-V. All-wave Superhet. Very Neat. SHORT-WAVHS.LO/43. 2-V. S, W. Receiver, Latest Plug-in Coils. Widely Praised. pore sheets, 26 each, plus 2 a. stamp Range and tone. D/Sheet, $3 / 3$, plus 2pe.

MLLLIARD 10 W. AMPIIFIER The Sparks version of a Tested practical layout of thls noted circult, with separate Control Unit. 3/9. Post Free.
SEND 21d. STAMP FOR LIST OF 34 DESIGNS
Chassis and Components Supplied. L. ORMOND SPARKS (P), 8, COURT ROAD, SWANAGE, DORSET

LYONS RADIO

LTD.
3, GOLDHAWK ROAD, Dept. M.P., SHEPHERDS BUSH, LONDON, W. 12.

Telephone : SHEpherds Bush 1729

TRANSUITTHIR/RECEIVERS, TYPE 58. -Canadian made walki-talki's. Frequency range $6-9 \mathrm{Mc} / \mathrm{s}$ continuousiy variable. Range approx. 5 miles. Front panel contains all controls together with 2 in. dia. meter and range change switch for checking operating voltages and current drain. Supplied complete (less batteries) wjth valves 12 1299A's. I 1R5, 3 1S5's. 2 1'T4's) microphone. headphones, 3 aerials (rod. wire and telescopic types, battery box and instructions. Weight of complete set (less batteries) approx. 12 lbs. Size $14 \times 68 \times 5 \mathrm{fin}$. In good condition and working order. PRTCE 55.19.6, carriage 4,6.
"PYI" 45 IIr's H.F. STRIIS.-Using $6 \mathrm{VR91}$'s and $1 \mathrm{VF92}$ valves these units form a complete vision recelver having 4 R.F. stages, detector, video amplifier, and phase spliter. In good condition. PRICE with valves, $62 /$, less valves, $35 /-$. Postage $2 / 6$.
5 WAY AABLIG-Outside da. 5/16in.. each conductor $9 / 012$ tnd. copper rubber insulated and colour coded. PRICE 1/- yd. Post any qty.. $1 / 6$. Trade enquiries for 100 yd . coils invited.
POWER TNITS, TIPE 16.-Contain rotary converter with separately wound feld. Input 24 v. D.C. Output : D.C. 300 V . 240 mA .150 v. 10 mA and 14.5 v. 4.9 A . With this latter section and with field connected to $1 t$ the converter could be operated from less than that stated above. The per cent. less than that stated above. The units are fitted with input and out put filters, carbon Housed in metal cases 12×8 starter relay. good condítion. SPECIAL LOW PAICE, good condition. SPEC
ONLY 12/6, carriage $5 /-$

VALVES
 SAME DAY SERVICE

 All Guaranteed New and Boxed 1.4V. miniatures. 1R5. 1S5: 1T4, 3S4. DAF91, DF91, DK91. DL92, 7/3; any 4 for $27 / 6$. $1 \mathrm{C} 5 \mathrm{GT} \quad 116$ 6L6G $10 / 635 Z 4 \mathrm{GT} 8 / 6 \mathrm{EZ40} \quad 8 / 6$
 $\begin{array}{llcccc}11 /-6 \mathrm{P} 28 & 18 / 680 & 8 / 6 \mathrm{GZ32} & 15 /- \\ 1 \mathrm{H} 5 \mathrm{GT} & 6 \mathrm{G} 7 \mathrm{GT} & 9 /-\mathrm{AZ} 31 & 10 / 6 \mathrm{HVR} & 15 /-\end{array}$

 $1 \mathrm{~S} 5 \quad 36 \mathrm{~V} 6 \mathrm{G}$ \% $/ 6 \mathrm{DAC32}$ Pen45 15 174 /3/6V6GT $/ 6 \quad 11 / 6$ PCF80

 | 50 | $8 / 6$ | 7 C 5 | $8 / 6$ | DK 92 | $7 / 6$ PL81 | $11 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}5 Z 4 \mathrm{G} & 9 /-7 \mathrm{H} 7 & \text { 8.6 } & \mathrm{DL} 33 & 11.6 & \mathrm{DL} 35 & 11 / 6 \\ 6 \mathrm{PL} 83 & 12 / 6\end{array}$

 | 6BA6 | $8 / 6$ | 10 P 13 | $10 /-$ | $10 / 6 \mathrm{~T} 41$ | $13 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 BE 6 | $6 / 6$ | 10 P 14 | $12 / 6$ | | | $\begin{array}{lllllll}6 B E 6 & 6 / 6 & 10 P 14 & 12 / 6 & \text { ECC81 } & \text { 9/- } / 422 & 7 / 6\end{array}$

6 J 6	$6 / 6$	20 F 2	$11 / 6$	EF50	EF/	UF42	$13 / 6$
$6 / 641$	$9 / 8$						

 | $6 K 8 G$ | $8 / 6$ | $25 Z 4 G$ | $8 / 6$ | EF92 | $5 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllll}6 K 8 G T & 9 /- & 2525 & \text { 8/G/EL91 } & 11 / 6 \text { W77 } & 5 / 6277 \\ & \text { Postage 4d. per valve extra } & & \end{array}$

READERS RADIO

 24, COLBERG PLACE, STAMFORD HILL; LONDON, N.16. STA. 4687
H.A.C. SHORT MANET

Noted for over 18 years for ..
S.W. Receivers and Kits of Qually.

Improved designs with Denco colls: Ore-Valve Kit, Model "C'" Brice, 25/= Two * * " "E"* * $50 /$

All kits complete with all components, accossories. and full instructions. Before ordering call and inspect. a demonstration receiver, or send stamped, addressed envelope for descriptive catalogue.
"H.A.C." SHORT-WAVE PRODUCTS (Dept. TH), 11, Old kond Street. + ITD. 11, Oldison

Television, Radio, Record CABINETS MADE TO ORDER

ANY SIZE OR FINISH

CALL OR SEND DRAWINGS FOR QUOTATION

72-76 Leather Lane, Holborn, E.C.1.
Phone : CHAncery 6791/2

REPANCO
 HIGH GAIN COILS

DUAL RANGE MINIATURE CRYSTAL SET COIL, with circuit. Type DRX1, 2/6.
DUAL RANGE COIL with reaction. With 2 mains and 2 battery circuits. Type DR R2, 4/-.
MATCHED PAIR DUAL RANGE
T.R.F. COILS, with reaction;

(Regd. Design) with battery and mains circuits. Type DRM3, 8/pair.
STANDARD I.F. TRANSFORMERS. Type S.E. $1 \ddagger$ in, x lin. $x 2 \frac{1}{2}$ in. Pre-aligned, $465 \mathrm{Kc} / \mathrm{s}$., $13 / 6$ pair. MINIATURE I.F. TRANSFORMERS. Type M.S.E. $13 / 16 \mathrm{in}, \mathrm{x} 13 / 16 \mathrm{in} . x 18 \mathrm{in}$. Pre-aligned, $465 \mathrm{Kc} / \mathrm{s}$., 12/6 pair.
FERRITE ROD AERIAL. Type FR1. Long and medium wave. Complete with fixing brackets, 12/6.
\star All coils wound on low loss formers.

* Individually tested and guaranteed.
\star Post 3 d . on all orders. \star Trade supplied.

Distributed by:

RADIO EXPERIMENTAL PRODUCTS LII.

33, MUCH PARK STREET, COVENTRY
Telephone : Coventry 62572

TIV TECHNOLOGY RADIO ENGINEERING ELECTRONICS RADIO SERVICING

There's a big future in T / V and Radio. Act now! Increase your knowledge. Back up experience with a sound theoretical background. I.C.S. offer courses of instruction in-
TIV TECHNOLOGY
ADVANCED SHORTWAVE RADIO RADIO ENGINEERING
RADIO SERVICE ENGINEERING RADAR
ELECTRONICS
FREQUENCY MODULATION
I.C.S. will also coach you for the following examinations :-M. Certificate for Wireless Operators; Radio Servicing Certificate (R.T:E.B.); C. \& G. Telecommunications, etc.

DON'T DELAY -WRITE TO-DAY for free descriptive booklet. stating which subject or examination interests you. Fees include all books needed. Examination students coached -. until successful.

 CRED BRIDGE
Measures capacitance from 10 phd to 100 mFd and resistance from 1 ohm to 10 megohms in fourteen ranges. Neon leakage test for; condensers. - Indication of balance given' by magic eye fed from high gain, pentode. Specially designed for bench use. with case and panel of stee finished black wrinkle, Complete with all valves and instructions for use from. $200 / 250$.volt A.C: mains. ONLY f6.19.6; plus $4 / 6$ carr packing. H.P. terms available from mannfacturers only -E 3 deposit and four monthly payments of $22 /$, carr/packing free. SIGNAL GENERATOR SG50 covers $100 \mathrm{kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$ in six bands on fundamentals, NOT harmonics. Either 400 cps modulation or CW. Uses two type EF91 valves and RM2 rectifier with double wound mains transformer. In handsome olivegreen metal case size 13 in . $\times 9 \mathrm{in}$. $\times 4 \mathrm{in}$. deep with handle, Com plete front panel of green perspex engraved white. Frequency accuracy 2 per cent. Still ONLY £7.19.6, plus 6/- carr/packing IMPORTANT, -All our equipment bears the name " Grayshaw Instruments " at the botrom right-hand corner.
Please send stamped and addressed envelope for illustrated leaflets by return post.
Sole London Stockists: Charles Britain (Radio), Ltd, II, Upper St. Martin's Lane, W.C.2, or DIRECT from the manufacturers. :-
ERAYSHAW INSTRDMENTS 54, Overtone Road,

BUILD THIS SET FOR 49/6

 Build this exceptlionally . . sensitive whetriode radio. Uses' unique sembly system, and'can be built 'by anyone Without any ariadion. knowledge whatvier in 45 minutes. Handsome blackcrackle steel -case with specially mande black and gold dial: With stations printed. Size of radio only Covers all Medium. covers an Medium and Long waves one only uses one on ty allergy 79 and lasts many months as H many months, as H.T. consumption is only to lt ma. Ideal for lieiterl textimuniris. Holidays, etc. Jeadafew of our many unsolicited testimonurs: Mr Robinson, of Harresgale, writes: "The set is working. very well. It gets all the stations I need. It is also very loud. I am giedty pleased with it. Will sou please send me details of anything eve you have, Mr. Norton counted 32 separate stations : I am very pleased medium waveband, 1 counted 32 separate stations in am very pleased with the set, which is wet worth the money. Ar. 1.ondon, W.3, writ us: I must say that was rather sell set. I do, not very pleased indeed with the performance or beat it! The tone is perfect. reception very clear. and the stations just roll in. Up to now I. have received about 20 stations aud all very clear. I may add I am more than received " satisfied.'
BuFf this powerful, lompranfe set. Total cost of parts, 4976 post free (for headphone reception). Sent by return of post. C.W.O. or C.OD. Parts for adding further valve and speaker-. Which fits inside case. 346. All parts sold separately, Note,by return. Overseas orders uelcomed-but regret no C.O.D.jabkaddBRIGHTON RADIO-\& TELEVISION CO:'
(PEPT.) 69, PRESTON ST., BRICHTON, 1.

Practical Wireless BLUEPRINT SERVICE

 PRACTICAL WIRELESSVo. of Bheprinl

CRYSTAL SETS

1/6d. each
1937 Crystal Keceiver .. PW71*
The " Junior" Crystal Sel

PW94*
2s. each
Dual - Wave "Crystal
Diode "
1'W95*

STRAIGIIT SETS

Battery Operated
One - valve : 2s. each
The "Pramid" Onevalver (Hf Pen)

PW93*
The Modern Oncvalver

PW96*
Two-valve: 2s. each.
The Signel Two (D \& LF)

PW76*
3s. each.
Modern Two-valver (two band receiver)
Three-value : 2s. each.
Summit Three (HF Pen, D. Pent

PW37*
The "Rapide" Straight 3 (D, 2 LF (RC \& Trans)

PW82*
F. J. Camm"s "Sprite"; Three (HF, Pen, D, Tel)

PW87*
3s. each.
The All-dry Three
PW97*
Four-valve : 2s. each.
Fury Four Super (SG, SG, D, Pen)

PW34C*
Mains Operated
Two-valve : 2s. each.
Selectone A.C. Radiogram Two (D, Pow) ... Three-valve: 3s. 6d. each.
A.C. Band-Pass 3
[1V99*
Four-valve : 2s. each.
A.C. Fury Four (SG, SG, D, Pent
A.C. Hall-Mark ($\mathrm{H} \ddot{F}$ Pen, D, Push Pull)

PW20*
PW45*

SUPERHETS

Battery Sets: 2s. each.
F. J. Camm's 2-valve Superhet PW52*
Mains Operated : 3s. 6d. each.
" Coronet" A.C. 4 ... PW100*
AC/DC" Coronet "Four PW101*

No. of Blueprint

SHOR'T-WAVE SETS

Battery Operated

One-valve: 2s. each.
Simple S.W. One-talver PW88*
Twotralve : 2 s . each.
Midget Short-wave Two
(D, Pen)
Three-valse : 2s. cach.
Experimenter's Shortwave Three (SG, D, pow,

PW30A*
The Prefect 3 (D, 2 LF (RC and Trans))

PWo3*
The Band-spread S.IV. Three (HF, Pen. D,
(Pen). Pen)
PW6 *

PORTABIES

Is. $6 d$.
The " Mini-Four" Alldry (4-valve superhet)

MISCELLANEOUS

2s. each.
S.W. Convertor-Adapter

> (l valve)
i.
(2 sheets), 7s. 6d.
The P.W. 3-speed Autogram
The P.W. Electronic Organ * (2 sheets), 7s. 6d.
TELEVISION
The 1'ractical Television Receiver, (3) sheets), 10/6

The "Argus" (6in. C.R. Tube), 2/6*
The "Super-Visor" (3 Sheets) 7/6*
The "Simplex"
. 3/•*

All the following bluemints, as well as the PRACTICAL WIRELESS numbers belono 94 ure pre-mar designs, hept in circulation for those amateurs who wish to utilise old components uthich they may have in their spures boi. The muiority of the components for these recerers ure no longer stocked by retailers.

AMATEUR WIRELESS AND WIRELESS MAGAZINE

STRAIGHT SETS

Battery Operated
One-valye: 2s.
B.B.C. Special One-

$$
\begin{aligned}
& \text { valver } \quad \text { Mains Operated }
\end{aligned}
$$

Two-valve: 2s. each.
Consoelectric Two (D,
Peri), A.C.
AW403

SPECIAL NOTE

THEisE blueprints are drawn lull size The issues containing descriptions of these sets are now out of print, but an asterisk denotes that construetional details are avail able, free with the blueprlat.

The index letters which precede the Blaeprint Number Indicate the periodlcal 11 which tite descripton appears Thus P.W. refers to l'RACTICAL 2. WIREL,ESS. A.W. to Amatebribreless. W.M. to Wireless Magazine

Send (prelerably) a postal urder to sover the cost of the BJueprint (stamps over tid. Whaccephable) to IRACIICAL WJRELESS' Blueprint Dept. . George Newhes, I.td. Tower House, Southampton Sureet Strand W.C. 2

Nor of
Blueprins

SHORT-WAVE SETS

Battery Operated

Onc-talve: 2s. cacle.
S.W. One-valver for American

AW429*
Two-valve: 2s. cach.
Uhtra-short Battery Two (SG, det P'en)

WM402*
Four-valve: 3s. each.
A.W. Short Wave Worldbeater (HF Pen, D, RC
Trans) AW436*
Standard Four - valleer
Short-waver (SG, D,
LF, P)...
WM383*

Mains Operated

Four-valse: 3s,
Standard Four-valve A.C.
Short-waver (SG, D,
RC, Trans)
WM391*

MISCELILANEOLS

Enthusiast's Power Am-
plifier (10 Walts) (3i-) WM387*
Listener's 5 -walt A.C.
Amplifier (3/-) ... WM392*
De Luxe Concert A.C.
Electrogram (2/-) ... WM403*

This coupon is available uncu JUNE
6th, 1955 and must accompany all
Queries. sent in accord with the
notice on page 377.
FRACTICAL WIRELESS. June. 1955°
D.C. Voltage

- 75 milivali-
$0-5$ volts
0-25
A.C. Voitage $0-100$ ".
0-500

> D.C. Current
$0-2.5$ milliamp:
$0-5$

- -100
- 50 r
GUARANTEE: The registered Trade Mark "Avo" is in itself a guarantee of high accuracy and superiority of design and craftsmanship. Every new AvoMinor is guaranteed by the Manufacturers against the remote possibility of defective materials or workmanship.

A dependably accurate instrument for testing and fault location is indispensable to the amateur who builds or services his own set.

The UNIVERSAL AVOMINOR

(as illusirated) is a highly accurate moving-coil instrument, conveniently compact, for measuring A.C. and D.C. voltage, D.C. current, and also resistance: 22 ranges of readings on a 3 -inch scale. Total resistance 200,000 ohms.

Size: 4?ins. x 3ims. x lifins. Complete with leals, interNent weight: 18 ozs. changeable prods and croco f10:10:0 dile clips, and instruction Price $10: 10: 0$ hook

The D.C. AVOMINOR

is a 2 -inch moving coil meter providing 14 ranges of reading of D.C. volage, current and resistance up to 600 volts, 120 milliamps, and 3 megohms resnectively. Total resistanc 100,000 ohms.

Size : 4kins. x 3hins. x linns. Complese as above
Nett weipht 12ozs. Price: $55: 5: 0$
Sole Proprietors and Manufacturers:-
AUTOMATIC COIL WINDER \& ELECTRICAL EQUIPMENT CO., LTD. Avocet House, 92/96, Vauxhall Bridge Rd., London S.W.I. 'Phone: VICtoria 3404-9

MAXI-Q
 REGD.

WE PROUDLY PRESENT OUR LATEST HIGH STANDARD LOW PRICED INSTRUMENT WHICH WE KNOW WILL BECOME A PRIZED AND INDISPENSABLE POSSESSION IN EVERY CONSTRUCTOR'S SHACK. MODULATED TEST OSCILLATOR MTO.1

* Provides a modulated signal suitable for I.F. alignment also trimming and tracking R.F. circuits.
* Frequency is continuously variable from $170-475 \mathrm{Kc} / \mathrm{s}$ and $550-1,600 \mathrm{Kc} / \mathrm{s}$.
* Operates from a single 9 volt grid bias battery (not supplied) which is housed within the unit.
* The case is manufactured from steel and is finished in matt black cellulose. The front panel is gloss black bearing white lettering. Dimensions are 5-1/16in. x 4-1/16in. x 3 in.
* Supplied with full operating instructions.

PRICE £3-15-0,
Obtainable from all reputable stockists or in cases of difficulty direct from works. General Catalogue covering technical information on full range of components, $1 /-$ post paid.

DENCO (CLACTON) LTD.,

 357/9 OLD ROAD, CLACTON-ON-SEA, ESSEXSTOP PRESS : "Osram," "912" and "Mullard" " 5-10" Amplifier Chassis and Bronze finished Front Panel, price 21// each. The Practical Wireless "Fury Four" uses the "Maxi-Q" Yellow (3/I1) and Green Chassis Mounting Coils (4/9) (please state frequency range when ordering). Also available are the "Fury Four". Chassis and Paxolin Front Panel. $19 / 6$. Long and Medium Wave T.R.F. Coils, wound on Polystyrene Formers, 9/- per pair. IFF.I, Improved $465 \mathrm{Kc} / \mathrm{s}$. I.F. Filter wound on polystyrene former, $4 / 1$.

[^0]: IRulshp, Midflx, HEC. Phone: RUISLIP 5780 Phone: CENtral 2833 Phone: ARChway 1049 tlalf day, Wednesday. Half day, Saturday! Half day. Thursdat Killburn. MAIda Vale

[^1]: : NAME
 \qquad
 Sublect or Exam.
 that interests me
 :British Instifute of Engineering Tachnology:
 © 409B, College House, 29-31, Wright's Lane, ! Kensington, W.8.

[^2]: SOUNDMASTER TAPE RECORDER COMPONENTS Constructional envelope. 6/6. WB209 Cabinet. £ô. WB203 Speaker, 50 -i. WB201 Amp-chassis, etc.. 35/\%. WB203 Pillars.
 etc 11/2, 8202 Power unlt chassis. $31 / 3$. WB204 Mains etc.. 11/2, WB202 Power unlt chassis. 31/0. WB201 Mains Trans. 67 6. WB205 Choke. 19/8. WB200 Out. Trans., $12 /-$ WB207 Bias Coif. $6 /$ Set of 3 Collaro Motors. $25 / 15 /$-. 1AB kit resistors, 48'6. 3 NSF Switches, 35/6. Lustraphone C517.. mike. £5 15 - Erenell kit. £13/13/- TCC cond. kit. 83/Wearite kit. fi ($2210 /-$ extra If Gold Seal). Bulgin kit, FREQUENCY MODULATION - DENCO FEEDER UNIT Complete set of components (except valves) exactly as specified, 85/5- Denco constructlonal bulletin issued free with complete isit, or send 1'6 for constructional details and price list Of individual components.
 OSRAM 912-AMPLIFIER-
 Complete set speciffed components, excent valves and speaker. £14/10-G.E.C. metal cone speaker, $£ 3 / 15 / 0$. OSRAM instructional booklet issuied free with complete kit. or send $3 / 6$ tor book and price list of individual components.

