

With internal battery and nuhi-scale the PIFCO All-inone Radiometer tents everything elecerical, Radio and P.A. tiquipments, Household appliances of all kinds, Car Lighting Systems, Bell and 「eleprinter Circuits. May be used on AC or DC mains.
()btuinable from your toca. dealer. If any dificully, zerite dired to:-

PIFCO LTD., WATLING ST., MANCHESTER 4 and at $36-37$ UPPER THAMES ST., LONDON. E.C. 4

Freat Soldering?'Always specify ERSIN MULTICORE to be precise

Wherever presision soldering is essential, manufacturers, engineers and handymen rely on multicori Fife es a mulgiore shoder just made for the joh you have in hand lfere are some of them.

BE SURE OF SUCCESS IN RECEIVING F.M. PROGRAMMES BY BUILDING THE "MAXI-Q" F.M. FEEDER UNIT.

full constrtetional detats, Point to Point wiring diagram and alignment instructions are given in our Iechnical Bulletin DTB.8, price $1 / 6$. The guaramteed components described below have been acclained hy thousands as the tinest obtainable. F.M. S(Al.E ANI) POINTER MECHANISM SHORTI.Y AVAIL ABILE. Price $9 / 0$ RATIO DISCRIMINATOR TRANSIORMEK 10.7 Me,s. Ref. RDT. 1.
A $10.7 \mathrm{mc} / \mathrm{s}$. transformer for use in ration discriminator type circuit. Can size 1 gin. square x 2lin. high. Secondary winding of bifitur construction. Iron dust core tuning, polystyrenc former and sitver mica condensers. Price $12 / 6$ each.
PHASE IDSCRIMINATOR TRANSFORMER IO.7 me's. Ref. PDT.I.
A miniature $10.7 \mathrm{mo} / \mathrm{s}$, transformer for use in frequency modulation detector circuits where the limiter'Fuster-Secley tyme of circuit is employed. Designed for carrier deviation of $+75 \mathrm{kc} / \mathrm{s}, \mathrm{Qk}=1.5$. Wound on black Bakelite fornaer, complete with iron dust slugs and two 6 B.A. threaded fixing holes on 532 in . centres. Screening cath 18 in . x $13 / 16 \mathrm{in}$. square. Price $9 /$. each. 1.F. TRANSFORMER IFT.11/10.7.

A miniature I.F. Transformer of nominal frequency of $10.7 \mathrm{Mc} / \mathrm{s}$. The transformer is primarily intended for the J.F. Stages of frequency modulation receivers and converters. The Q of each winding is 90 and the coupling eritical. Construction and dimensions as PDT.I. Price 6/- each.

1.F. TRANSFORMER IFT,11/10.7/1.. As IFT.11/10.7 but with sccundary tap for Jimiter input circuits. Price $6 /$ each. GENERAL CATALOGUE covering technical information on full range of componemts, $1 / *$ post free. Obtainable from all reputable stockists or in case of difficulty direct from works.

DENCO. (CLACTON) LTD. 357/9 Old Road, Clacton-on-Sea, Essex

STOP PRESS : "Osram" " 912 " and "Mullard" " 5-10" Amplifier Chassis and Hronze finished I-ront Panel. Price 21'- each. The "Practical Wireless" "Fury Four " uses the "Maxi-Q" Yellow (3/11) and Green ("hassis Mounting Coils (4/9) (please state frequency range when ordering). Also available are the "Fury lour "Chassis and Pasolin Front Panel, 19/6. Long and Medium Wave T.R.F. Coils, wound on Polystyrenc Formers, $9 /$ - per pair. IFF.I, Improved $465 \mathrm{ke} / \mathrm{s}$. I.F. Filter, wound on polysiyrene former, 4/I.

Positively the 2 BEST T／Vs yet built for the Home Constructor！

The STERN＇S．＂TELE－VIEWERS＂
5 CHANNEL SUPERHET RECEIVERS
Suitable for any transmitting channel and for which commercial adaptors $\because \prime /=$ PERFECT PIGTURE QUALITY

SIMPLF DIACRA，HS MANE FF FERECI FRIMGE AREA RECEPTION CONSTRUCTION EASY

BETTER RECEPTION AT HALF COMMERCIAL COST

The＂WMDE－ANGLE＂

TELEEVIEWERR
＊This is the most efficient large screen TV yot offered to constructors．
\star Excellent Time Base efficiency producing 15 to 16 Kv with ample scanning power for C．R．T．＇s up to 17 inch．
CAN BE COM－ BUILT FOR．

233－0－0

（Plus cost－of C．R．T．）

 The complete set of ASSEMBLY INSTRUC－ TIONS for these T／Vs are available for 5－cach． They include really detailed PRACTICAL LAYOUTS．WIRING DATA AND COMPONENT PRICE LIST．ALL COMPONENTS ARE AVAILABLE FOR INDIVIDUAL PURCHASE．
STERN RADIO LTD． 109 \＆115，FLEET STREET，E．C．4．

Tel．：CENTRAL 5812－3－4．

即 ALPHA．．． 3 WATT AMPLIFIER COMPLETE

FOR VALUE COMPARE THIS PRICE

WIRE WOUND RESISTORS
Available in the fothowith balue．：－ 2in． $50 \Omega .104 \Omega$ ． $154+\Omega$ ． 2019Ω ．

 ance plua or filinly 10 Eer cent． katingan on wat，1，eat．Tl watt， $1 / 3$ ea．； $1 \bar{j}$ watt， $1 / 9 \mathrm{ea}$.

MAINS TRANSFORMERS 3WAY MOUNTING TYPE
 Apromilary 2ab－o－zoll r． 80 InA．
B．i：w． 4 amps．， 5 x．© amps．．with taps at 4 V ．on filament winditus． 1 rice $17 / 8$ each．
MT2．Primary $0.214 .4240-2006$
 6．：：v． 4 smps．：5 r．＂2 ampe．Both itament whatings tappeil $\& \quad \mathbf{v}$ ． Price 176 each．
MT3． 30 volt 2 amp．tapping＊as follows ： $3,4,5,5,8,5,10.1 \pm, 15,18$ 24， 24 v． $17 / 8$ each．

CHASSIS

Ahminium Onlrilled with Kein－ fispent rorners．Asailatue it the anowilly sizes．
 （in．6in．© tin in．．．．．．．．．．．．．．．8／3 ea． Min．くin．2lin．．．．．．．．．．．．． $7 / 3$ ea．
 1tin．！im．． Ail are fonar घidecl－iilpail for radio． remeiver ${ }^{\text {An }}$－ampliders－fuwer－ rereiver
parks，el

HEATER

TRANSFORMERS

230 v ．Input ovolt amp．
 230 v．（nput 4 vinlt $1 . \overline{\text { amp．}}$ 30 v．Input 4 wolt $!\mathbf{t} 0$ amp．

 234 v．luput 83.3 volt $1 . \mathrm{T}$ amp．

TERMS ：Cash with order or C．O．D．Postage to be added to orders as follows：9d，up to $10 / \mathrm{F}$ ； $1 / \mathrm{Cup}$ to 20／－； $1 / 6$ up to 40／－；2／－up to 25 ．MAlL ORDER ONLY ：Send 6d．in stamps for illus．catalogue．

This is not a kit of parts but a complete amplifier．Ready and tested for use．At
an unbeatable price． Post，etc． $2 / 6$

All cathpoment \％of recent mataliantire ＊A．C．Mann－Fully laclatel． \star Tiate and fulture Control \star litput and Output surk－k？
＊：Watts Output－Siegative Feed－ hack
\star Sinitable fur Hi－li lickuns．

COILS ．COILS T．R．F．COILS
WEARITE＂p＂COILS
 PHF：
$3 /-$ each．

COILS

cuthplete with eircuit lingram 5＇B pair．

MINi COILS

OSMOR＂Q A ＂COILS पOE，QA2，QHF゙2，QO：Q，QA QHF＇s，etc．，ete．，\＆i，eatio．

suitable for suitwase Purtables，etc． Dech，wave ourro．4／each．Long wave osc．．4t．each．lang wave loading coil，4－ewch．Pratme aerlial． 4－each．Midzet l．f．tranafurmers， for use with abouve， 8 ， 6 pair．

3-BAND SUPERHET RECEIVER

 MAY 13 E . $\mathbf{£ 7} 19.6^{\text {Plus } 2 / 6 \mathrm{Pk}}$ BULLTFOR $\mathbf{E 7 . 1 9 . 6}$ \& Carr.Latest type Superhet Circuit using 4 valves and metal rectifiers for "operation on 2001250 volts A.C. mains. Waveband, coverage - short metres, and \div Jong $900-2.009$ metres. Valve llne-up $6 \mathrm{K8}$ ireq, changer 6K7 iF: 6Q7 6 Vo output. The attractive cabinet to house the Receiver size 12 in , long, 61 in . high. $5 \% \mathrm{in}$. deep can be supplied in etther WALNUT or IVORY BAKELITE or WOOD. INSTHCCTION BOOKS $1 /$ - each, (post wiring diagrams, also a detatied sloch

CABINETS-PORTABLE

Montel I'C/1

Brown Rexine covered. 1511
Overall dimensions 15 in . x 134in. x 5 in , Clearance under lid when closed 2tin. Mofel lPC/2
Grey Lizard Jexine covered, 45/-
Overall dimensions $15 i n$. x 13in. $x 61 n$. Overall dimensions $15 i n, ~ x ~ 131 n . ~$
Clearance under lid when , closed $31 n$. Model 1 C/3
Rexine type covering in various colours. 69/6.
Overall dimensions $16 i \mathrm{in}$. $x 14 \frac{1}{1} \mathrm{n}$. x 101 in . Clearance under lid when closed 6inn. All the above Cabinets are supplied with Panel, Carrying H a $n d l e$ and Clips Packing and Postage 2/6. Send for delails of the Premier Wide angle
Televisor design which may be built for 200 .

TRF RECEIVER

 The circuit is the latest type TRF using 3 valves and Metal Rectifiers for operation on 200/250 A.C. mains. Wave band coverage is $180 / 530$ metres on medium wave and 800/2,000 metres on long wave. The dial is illuminated and the Valve line-up is 6 K 7 H.F. Pentode $6 J 7$ Detector and 6V6-Output.
frow) which includes Assembly and ist of priered components.

DECCA MODEL 37A

DUAL SPEED RECORD PIAYEIR Includes turnover crystal pick-up with sapphire stylus and a light-weight plastic spring-balanced arm. Heavy gauge pressed steel case with brown ename nish in good quality for operation on . complete. £6.19.6. Plus pkg. and carr. 5/-.

GARRARD $\mathbf{S 5}$

GAIRRALID Rim Drive 78 r.p.m.. complete with magnettc pick-up and turn table, £4.19.6. plus $2 / 6$ pkg. and carr.

SEND 2! $\frac{1}{2}$. STAMP FOR OUR

 1955 CATALOGUE.
4-WATT AMPLIFIER

 Valve line-up 6Sl27. 6V6 and 6X5. FOR A.C. MAINS 2001250 volts. The oulput Valve is of the beam type and reeds 4 watts into a specially designed output
Transformer
which is suitable for either 3-ohm or 15-ohni Speakers. Negative feedback is applied Transformer over the whole Amplifier to the Input stage giving an excellent irequency response. Due to the high Irequency response. Due to the high gain and wide range tone controls any type of pick-up may be used, plete, tested and ready for use, $£ 5 / 5 /$ plus $3 / 6 \mathrm{pkg}$. and carr.
INSTRECTION BOOK $1 /$ (post free which includes Assembly and wiring diagrams, also a detailed Stock List of briced components.

C. R. TUBES

VCR 517C 61 in . picture. This tube is a replacement for the VCR87 and VCR517. Guaranteed full size picture. PIRICE, $35 /-$ Plus $2 / 6$ pkg. carr, ins. VCR 5169 in . Blue picture. Heater Volts 4 . Anode $4 \mathrm{Kv}_{\ddot{\mathrm{Pl}} \text { in }}$ in Manufacturer's original Carton. Plu

COMPONENTS AVAILABLE FOR THE MULLARD AND OSRAM AMPLIFIER DESIGN
mammemmeminENRY,

CORVFIRTER F.N. NIT .88/100 Mc/s

We can now offer this selfcontained Unit comprising 6 valves: 2-6BA6, EB91. VR137. EF54. EF54. Two local stages and separate local oscillator, also Muirhead Graduated vernier
Criveensuring eas taning.
("omplete Fiv. Unit
New RF " 26 "' Unit
with 3 valves.
VR137. EF54,
EF54. Chassis
stamped out for \quad casy conversion $£ 1.15 .0$
Complete set of all
components for
conversion includ-
ing $2-6 B A 6$ and
EB91. tuning con-.
denser, I.F.T's
and Osc, coils, re-
sistors and fixed
condensers, plugs,
wire and tag -strips
£4.12.6
Instruction Book with technical circuit and comgrams
Special offer of all above items and fF20, inclustage 3/-
Charge for allgnment when completed
Assembled, aligned
and ready for use $£ 8.10 .0$
All Items sold separately.

(RADIO LTD.)

SPECIAL OFFER '38' WALKIE TALKIE SETS We have purchased large quantity of the above " 38 " Sets. and can now offer same complete with 5 valves: 4phone, headphones, junction

box and collapsible aerial.

 Freq. range 7.4 to $9 \mathrm{mc} / \mathrm{s}$. Range approx. 5 miles. In absoluteiy new condition and Guaranteed Air Tested at $59 / 6$. carriase 5/-.

Ideal for tape recording and Ideal for tape recording and former required.

PACKAIRDIBEI.I.

 Brand new complete with: 28 D7 and 6 SL7GT and instruction. book 12/6P. \& P. 2/f.

28-page Catalogue, 3I. Open Mon.-Sat. 9-6.

High Quality Amplifier \& Reproducer

has been hailed with enthusiasm by home constructors and music lovers throughout the country. Designed to do full justice to the best of modern L.P. recordings, the Osram '912' sets a startlingly new standard of realism in domestic sound reproduction. The versatile tone control system with its variable treble slope also enables old and worn, but often treasured, records to be played with the maximum of musical enjoyment.

FREQUENCY IN CYCLES PER SECOND

How to build the Osram ' 912 '

Osram '912', 9 octaves, 12 watts, ultra-linear output stage, base and treble tone controls, variable treble slope, stage-by-stage wiring instructions.

From your dealer or by post 3 d. extra from Osram Volve \& Electronics Department.

PRICE
3/6

Overall frequency respunse of the complete equipment, comprising L.P. record, specified pick. up. Osram 912 amplifier and G.E.C. Metal Cone Loudspeaker in octogonal loaded-port cobinct.

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, LONDON, W.C. 2

RADIO SUPPLY CO. (Leeds) LTD.

32, THECALLS, LEEDS, 2

Terms C.W.O. or C.O.D. No C.O.D. under \&1. Postage 1^{\prime} - extra under 10/-. 1/6 extra under £1. 2/-extra under $£ 2,2 / 6$ extra under 23 . Open 9 to 5.30 . Sats. until 1 p.m. Catalogue 6d. Trade List 5 d S.A.E. please with enauiries.

(HASSIS (Undrilled Aluminium)

18 s.w.g. amplifier (4-sided)
$14 \mathrm{in} . \times 10 \mathrm{in}, \times 3 \mathrm{n} .7 / 1114 \mathrm{in}$. $9 \mathrm{in} . \therefore 2 \operatorname{in} .6 / 11$ 16 in. $\% 101 n . \times 31 r .8 / 3$
18 s.w.g. receiver $t y p e$.
$18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. receiver type. in . $\mathrm{in} . \times 2 \mathrm{in} .3 / 3$
7 in. $\times 4!\mathrm{in} . \times 2 \mathrm{in} .2 / 911 \mathrm{in} .<6 \mathrm{in} . \cdot 2!\mathrm{in} .3 / 11$ $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. receiver type.
$12 \mathrm{n} . \times 8 \mathrm{in} . \times 24 \mathrm{in} \ldots 5 / 316 \mathrm{in} . \times 8 \mathrm{in} . \times 21 \mathrm{in} .7 / 6$ $201 \mathrm{n} . \times 8 \mathrm{in} .-24 \mathrm{n}$..
16 s.w.g. amplifier type. 4 -sïded.
$12 \mathrm{in} . \times 8 \mathrm{in} . \times 21 \mathrm{in}$.
$61 n . \times 81 n . \times 2 \operatorname{in} . . . \quad . . . \quad \cdots \quad . . . \quad 7 / 11$

DEGGUVT, TRAVEFS 230 , 50 a/rs ${ }_{8}$ (G)VT. TRAXSFS. 230 , 50 c/cs.
 4 times, 25i9. Carr. 51
4 v .2 .5 a., $4 / 8 ; 4 \mathrm{v} .6 \mathrm{a}$. High Ins., 7/9; 48 v. 1 日.. $9 / 9$. Carr. $5 /$ extra on foliowing types : 460 v. 200 mA .6 .3 v .5 a., $27 / 9$: types C.T. 1500 v. 200 mA .6 .3 v. 5 a., $27 / 9$: 6.3 v. 0.6 a. 4 v. 6 a.. 4 v. 3 a. 4 v. 6 v. ${ }^{6}$ a. 3 a., 5 v. 2 a., $22 / 9: 1.220$ v. $350 \mathrm{~mA} .610-0-610$ $\mathrm{v} .150 \mathrm{~mA} 300-0-100$ v. 150 mA . $610-0-610$ $250-0-250 \mathrm{v} .200 \mathrm{~mA} .6 .3 \mathrm{v} .8 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{a} .$, , 22/9. AMMETERS Moving Coll (EX-GOVT.) G.E.C. $0-5 \mathrm{amps}, 2 \mathrm{in}$. scale. $11 / 9$.

SILVER MICA CONDENSERS. 5,10 , $15,20,25,30,35,40,50,100,120,150,200$. $230,300,400,500,11,000$ (.001 mfd.), 2,000 pfd. (.002 mfd.), 6 in. each : $3 / 9$ doz. One t/te MIDGET MAINS TRANSFORMER. Manufacturer's Surplus. Primary 220/240 V. Secs. $220-0-220$ v. $60 \mathrm{~mA} ., 6.3$ v. 2 \&

VOLLME CONTROLS with long (hin diam.) spindles, all valves less switch $2 / 9$: with S.P. switch. 3 '9: with D.P. switch. 4/6.

EX-GONI. AITO TRANSFOIRMEIES Double ivound, $50 \mathrm{c} / \mathrm{cs}$. $10-0-200-220-240$ v. to $10-0-275-295-315 \mathrm{v}$. 1,000 watts. 69/6: 0-230 v. tapped every 11 volts from 57.5 v. 5.000 watts (21 amps.). $86 / 15$ - Carriage on above $5 /-$
15-10-5-0-195-215-235 v. 500 w., 2\%/g.

EN-GONT, METAL BLOGK (PAPEIR) CONDENSERS
4 mfd .500 V., $2 / 9: 4 \mathrm{mfd} .1 .500$ v.. $4 / 9$: $4 \mathrm{mfd} .2 .000 \mathrm{v} . .7 / 8: 6-6 \mathrm{mfd} .400 \mathrm{v} . .5 / 11$ $8-8 \mathrm{mfd} .500$ v.. 8.11 ; 4 mfd .400 v., plus $2 \mathrm{mfd} .250 \mathrm{v} ., 1 / 11$; $8 \mathrm{mfd} .500 \mathrm{v} . \mathrm{i} 5 / 9$; $15 \mathrm{mid} .500 \mathrm{v}$. . $6 / 9$.

EX-GOVT. E.H.T. SMOOTHERS .02 mfd .8000 v cans, $1 / 11$. 25 mfd $4,000 \mathrm{v}$. Blocks. $4 / 9: .5 \mathrm{mid} .2,500 \mathrm{v}$ ${ }_{1}$ Blocks, $3 / 9$ mfd $4,5 \mathrm{mfd}$. $3,500 \mathrm{v}$. cans, $3 / 3$;

EN-GONT ACCLMILATORS With Non-Spili vents. Unused and guaranteed 2 V. 16 A.H., 5/9.

H,T ELIMINATOR AND TRICKIA CIIARGER KITY, Input $200-250 \mathrm{v}$. A.C. Output 120 V .40 mA , fully smoothed. and rectified supply to charge 2 v . acc. Price with steel case and circuit, 29/6. Or ready for use, 8'9 extra.

R.S.C. 4-5 WATT
 HIGH GAIN AMPLIFIER

 TYPE A5

 TYPE A5}A Inghly mensilive 4-valve qualisy amplilier for the fonie, small cluls, etc. Bnly 50 millivolts input is reguired for fulf output so that it is sultable for ust Wead., in adrest higinulitelity birek-up wirk-ifys and practically all mes of Srparate iBass and 'Trebis controls are provided, These give full long-lblaying record onualisation. Jiant leviel is
 of negntive feedbiack is used. 15 D. B . 300 v. 25 mA. and $1 . T$. of 6.3 v. 1.5 of is available for the supply of a iksion Feever Unit, or Tapw Deck oreampiliher. For A.c. malns input of 200-230250 v. 50 c/es. Chassis in not allve. Kit is complete in every detallandincludes fully punched chassis (with baseplate) with grepn crackle finjsh, and polnt: to-point wiring diagrams and instrictions. Exaeptional value at onis $94 / 15 /-$ or assembled restly for Hse 30/-extra, pias $3 / 8$ carr.
TV. PREA MPLIFLEIT (Plessey) For Fringe Areas. Brand Now. Complete with 6F13 valve. Only 29/B.
HF26 UNITS BIEAND NEM CARTONFM. Only 39/6. Carr. 2/6.
EX-(iOVT. VALVES (NEW)

IT4 Each | 7/9 | ESN7GT Each |
| ---: | :--- |
| O/9 | |

IT4	$7 / 9$	$6 S N 7 G T$
IR5	$7 / 9$	6 V 6 C

IR5	$7 / 9$	6 V 6 G	$8 / 9$
IS5	$7 / 9$	6 V 6 GT	$7 / 9$
3 S	$7 / 9$	6 X 5 T	$8 / 9$

$3 \mathrm{S4}$
5 Y 3 G
5 Y 3 G
5 U 4 G
5Z4G

		$7 / 11$	
6 F 4 G	$9 / 6$	1246	$7 / 9$
6 F	$7 / 9$	12 K 7 GT	$10 / 6$

$\begin{array}{llllr}6 \mathrm{~K} 7 \mathrm{G} & 5 / 11 & 15 \mathrm{D} 2 & 4 / 9 \\ 6 \mathrm{~K} 8 \mathrm{G} & 8 / 8 & 25 \mathrm{Z} 4 \mathrm{G} & 9 / 6\end{array}$

| $6 S K 7 M e t ~ 7 / 9$ | EBC3 | $10 / 8$ | SP61 | $2 / 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | | | | |

PC4 (1) VU120 $2 / 11$ mPECIAL OFFEiR. Ex-Equip. Coodmans 3lin. P.M. Speaker with Battery
pentode output trans.. $12 / 9$.

BUILID ONE OF THESE NEW RADIOS!

CAN RE BUHLT FOR ONLI 49/6
Build this exeerdionally sensitive twin-triode radio. Uses unique assembly system and can be built by anyone without any radio knowledge whatever in 45 minutes. Handsome black-crackle steel case with specially made black and gold dial with Stations radio only 6 in. x 5in. x in Covers all medium and long waves. uses one only all-cry
battery which lasts many months as H.T. Consumption is only 1 to 1.5 m. .a. Ideal for bedroom, garden, holidays, etc. Complete kit oniy 49/6. Pont Frer (sent by return with full set of clear, easy-to-follow. plans). All marts sold separately.
MAINS VERSION WITH SPEAKER 89/6 Post Free.
A.C. Mains only. Twin-triode mains verslon with speaker, completely hum-free, with exceptional tone, optional negative reed back. Very low consumption. Complete kit with speakrr, etcii parts sold separately. READ THESE THSTLDONIALS.Mp. Carter, of Worcecter writes . "tust a few lines to let you Mr. Carter, of Worecater, writes: Just a few lines to let you Know how pleased I am with the midget portable radio. I wors surprised at the number of station I could get with a clear performance The day evening on the mediun uraveband'l counted 32 separate stations Iay very pleased with the set, which is well warth the money.
 Ready to use chassis Punched,
 sper A.C. Mains 200 ind (Sent with full set of clear, easy-to-follow plans.) All barts, eabinet, speaker, cte., sold senarately.
READ THIS TESTIMONJAL.-Mr, Berkwith. of Jondon, W'. 3 writes: " Thank you for the radio which I receited safely. I must say that 1 was rather surprised and tery pleased indeed with. the performance. I do not think there is anything on the market to beat it ! the tone is perfect, reception very clear, and the stations iust roll in. Up to now I have receined about 20 stations and all very clear. I may add that 1 think for the modest price charged 1 am more than satisfied."

GOOD QUALITY AMPLIFIER 85/-

A.C. Mains, amplifier with optional negative feedback. Complerte Kit, 85/- Posit Free. With tone control. Beam tetrode output, $3 / 4$ watts. Excellent frequency response. For A.C. Mafns, 200/250 volts. Complete Kit, 85/- Post Free. (Sent with full set of clear, easy-to-follow plans. 2 All parts sold separately.

BRIGHTON RADIO \& TELEVISION CO. ($\left.{ }_{(10 \% 12}^{\mathrm{PEPTI}}\right)$
 69, PRESTON STREET, BRIGHTON, 1 .

BARGAINS $8:$! THE BEST COMPONENT " BUY" POSSIBLE

CERAMIC VARIABLE CONDEN. SERS, split stator plated vanes, spaced 035 ball bearings butterfly 15/15 P.F extended spindle $2 / 6$

VARIABLE CONDENSERS, 100 pF ceramic insula-2/-
tion
each tion
sean

CERAMIC TRIMMERS, air spaced silver-plated vanes, 22 pF. Packed in $\begin{aligned} & \text { lo's and singles, screwdriver } \\ & \text { adjustment. }\end{aligned}$
doz.

ALL ITEMS GUARANTEED UNUSED

WHA VGE
CHA
N CHANGE 2-wafer, $\begin{aligned} & \text { 6-pole, } \\ & \text { 3-way } \text { Switches. }\end{aligned}$ each $/ / 3$
Standard + in. Spindles

BRAND NEW POTS POTS I00K, ispindle...........each $/ /=$ POTS, 1 meg., $\frac{1}{}$ spindle.....each $\| /=$ POTS, 3 gang each, $70 \mathrm{~K}$. each $/ /=$ HUMDINGER POTS, 100 ohm. Miniature wire wound.........each POTS COLVERN, 200 ohms, 5 watts. Wire wound, N.P, case each WIRE-WOUND POTS, 2,000 ohm., 5 watts, E. case............each 100K MINIATURE POTS each BAKELITE SQUARES, polished. 6d. 4in. $\times 4$ in. x in.

LARGE STOCKS AVAILABLE Minimum order for any goods, $2 / 6$. Please add sufficient to cover postage.

RESISTORS

ERIE RESISTORS, $47 \mathrm{~K}, 2$-watt. ERIE RESISTORS, 1,200 ohm, $\frac{1}{2}$ watt, 2 watt 150K I watt 22 K I watt, 70 K I watt; price 2 watt, 3d.; I watt, 2d. : $\frac{1}{2}$ watt, Id. PAXOLIN RESISTOR PANELS, with fixing brackets. Size 4in. x 3in., contains J-10w. 5 K 2-5w. 120 K, I-47K
$1-56 \mathrm{~K}, 5 \mathrm{~W}$, Brand new 1-56K, 5w. Brand neweach /g WIRE - WOUND VITREOUS 9d.

SLEEVING

SLEEVING, various colours, 1 mm . and 1.5 mm . Permanoid, Peribraid-in $8 / 6$ coils of 144 yards................per coll
VALVEHOLDERS, B9G, Paxolin VALVEHOLDERS, B9G, Paxolin doz . $/=$ VALVEHOLDERS, UX5. Am- 5/STAND - OFF INSULATORS, 2/-
miniature, I inch only doz. FERRANTI M. AMP. METERS, 7/6 $0-150$ flush square, 2 in.............each $/ 6$ FERRANTI M. AMP. METERS, $9 /:$
$0-5 \mathrm{~mA}$, square, $2 \mathrm{in}$. each

30-AMP. ONE-WAY DOUBLE POLE Charging Switches on bin. Ebonite Base, 9 d
ex Admiralty......

Bigger and Better Pictures " BRIMAR Shortly available-The BRIMAR $2 I$-inch TELETUBE C2IHM

This Rectangular Wide Deflection Teletube with Aluminized Screen and external Conductive Coating, operates at 16 kV . It is fitted with an improved tetrode gun assembly giving excellent overall focus and minimum astigmatism.

Brimar have developed powerful valves suitable for use with existing or future types with larger screen areas 6CD6G/50CD6G (AC/DC)-Line Output Valves with a peak current of $\frac{1}{2}$ amp, and plenty of power in hand for wide angle scanning.
6U4GT-Efficiency Diode-The high working peak heater to cathode potential renders a separate highly insulated heater supply unnecessary.
R19-E.H.T. Rectifier-A replacement for the American IX2A but with higher Ratings.
RM5-H.T. Rectifier-A worthy successor to the RM4, with a rating of 300 mA . This rectifier has a reserve of power and should be used initially in equipment so that addi-- tional valves may be added if required without redesigning the power supply stages.

Valves for the BAND III CONVERTOR (for 6 volt oparation).
*ECC84-Consists of two separate high slope triode units designed for use as a V.H.F. cascode amplifier.
*ECF82-is a triode pentode frequency changer featuring a high slope triode and a high slope pentode with a high input impedance.
6BW7-The 6BW7 is recommended in areas where extra sensitivity is required. It has a slope of $9.3 \mathrm{~mA} / \mathrm{V}$ with anode and screen voltages of 180 v .

- The PCC84 and PCF82 are . 3 amp equivalents of these types and are stitable for. equipments witerz series connected valvas are used.

Stamdard Telephomes and Cobles Limifod FOOTSCRAY, SIDCUP, KENT. Footscray. 3333

Interference: Compulsory Suppression

TNO new sets of regulations relating to electrical interference on radio and television. will come into force on September Ist this year. They give the Post-master-General power to control interference of radio and television caused by refrigerators, domestic and industrial appliances which are driven by small electric motors, such as vacuum cleaners, hair driers and drills. These are the common sources of interference with radio and with television.

The regulations lay down the requirements which must be complied with by manufacturers, assemblers and importers of all electrical refrigerators, and by users of new and old electric motors. It should be explained, however, that the introduction of electric motor regulations does not mean that everyone using a vacuum cleaner, hair drier or other domestic electric apparatus will have to fit a suppressor at once. The Postmaster-General states that " only a proportion of these appliances cause interference," and he hopes that in such cases the owners of the appliances will co-operate by having the trouble put right when it is pointed out to them by the Post Office. The new powers will be used only where it is necessary for the Post Office to insist on an appliance being put right because it causes interference and the owner will not voluntarily have a suppressor fitted.

The Postmaster-General hopes that there will be a progressive extension of the current practice of certain manufacturers who produce appliances incorporating suppressors or who provide for an easy addition of a suppressor if it proves necessary. The question of making the regulations for small motors apply to manufacturers is to be reviewed during the next two years.

The standards laid down in the regulations, that is the limits of interference and the frequency ranges over which they are to apply, have necessarily been based on data derived from existing sound and television broadcasting services, for which they are designed to give adequate protection in areas of moderate fieldstrength, provided the receiving installation, which includes the aerial system, is satisfactory. The standards are also expected to give adequate
protection to the proposed frequency-modulated V.H.F. sound broadcasting service in Band 2 (87.5 to $100 \mathrm{Mc} / \mathrm{s}$) and to go some way towards eliminating interference in the higher range of frequencies (Band 3) to be used for the new I.T.A. television service.

Attention is drawn to the importance of earthing in accordance with the regulations laid down by the I.E.E. for the electrical equipment of buildings. For many appliances where earthed metal work is present, exposed metal work should be earthed, and earthing is even more important when interference suppressors are fitted to an appliance, the only exceptions being all-insulated, double-insulated appliances and those used in earth-free situations.

RADIO SALES

ACCORDING to Brema Retail Market Survey, sales of radio receivers and radiograms were consistently higher in 1954 than in 1953, and for the December quarter for 1954 were the highest recorded since the war. In January of this year, 122,000 radio receivers and radiograms were sold. Whether the new hire purchase restrictions will cause a recession in trade will not be known until the next Brema Report. The Chancellor, in re-introducing the hirepurchase restrictions, blamed hire-purchase, particularly of wireless and television sets, for the present inflationary trend. The fact is that the total volume of hire-purchase business is relatively so small a part of our expenditure on goods within the country that it cannot possibly have the result or the effect attributed to it by the Chancellor.

"BEGINNER'S GUIDE TO RADIO"

EVER since this series commenced in May, March, 1955, there has been a constant demand for the twenty-three issues containing the series. All back issues have now been absorbed, but readers will be pleased to know that in view of the heavy demand it has been decided to reprint the series in book form. It will, of course, be some months before the book is ready, and an announcement will be made herein when it is published.-F. J. C.

V.H.F. Wavelength

THE BBC anticipates that by December the North-East of England will have its own V.H.F. wavelength and Home, Light and Third programmes.

Sound Children's Hour Goes to Sea THE aircraft carrier H.M.S. Bulwark, at sea in the Channel, will be the setting for a "live" broadcast in Children's Hour on May 26th. A team of BBC commentators and engineers with lohn Lane, the producer of the programme, will join the ship for an exercise during which listeners will hear commentaries from on board and from aircraft that have been flown off. The broadcast has been arranged with the fall co-operation of the Admiralty.

Laundry by Radio-telephone

HIDDEN in a maze of side streets on the fringe of Shepherd's Bush is the first special laundry service in this country to use radio. Wigmore Laundries,

By "QUESTOR"

L.td., the pioneers of this nev/ idea, have installed Pye radio-telephones in two of their vans and a car.

From the moment the vehicles leave the depot each morning they are in constant touch with the head office, from which orders are frequently sent diverting them to other places as fresh requests are received from customers wanting immediate attention.

First Stage Finished

O^{N} Saturday, February 121h, Sir Charles Westlake, chairman of the Uganda Electricity Board, and members of the board's staff visited the site of work near Jinja to see the final stages in the construction of the 132,000 -volt transmission lines which have been built to carry power from Owen Falls to Kampala and Tororo.

The lines have a route length of 114 miles and are the first stage in the development of a grid transmission system for. Uganda, and maybe for the whole of East Africa.

Mr. Clyde Hickin, a radio amateur, monitors flood calls by short-wave radio at his home in Sydney. (See " Hams' Keep Lines Open.")

Broadcast Receiving Licences
THE following statement shows the approximate number of broadcast receiving licences issued during the year ended January, 1955. The grand total of sound and television licences was 13,903;950.

Region

London Postal
Home Counties
Midfand
North Eastern
North Western
\qquad

South Western
Wales and Border
Counties

Number

Total England and Wales
... 8,349,000
Scotland $\quad . . . \quad . . . \quad 1,028,157$
Northern Ireland
... $1,480,241$
... 1,428,047
... 1,164,308
... 1,536,153
... 1,185,041
... 956,631

Grand Total
219,021

Mr. W. R. Fletcher, B.Sc.
MR. W. R. FLETCHER, B.Sc. (Eng.), A.M.I.E.E., has been appointed Engineer-in-Chárge' 'at the Brookmans Park transmitting station.

Mr. Fletcher joined the BBC in 1936 as an assistant maintenance engineer at the Lisnagarvey (Northcrn Ireland) transmitting station. He has served at a number of the Corporation's transmitting stations, and in 1944 became a senior maintenance engineer at the BBC's overseas transmitting station at Rampisham, Dorset.

"Hams" Keep Lines Open

 INVALUABLE service was given in the flooded areas of New South Wales by amateur radio operators who kept communications open over hundreds of square miles. " Hans" throughout New South Wales and Queensland-T some of them transmitted from Army ducks and other vehicles $+A$ relayed messages to officials from the districts in distress, maintaining constant contact.sd

Cambridge Photographer Uses Radio-telephone

A WELL-KNOWN Cambridge photographer, Mr." Nye, the proprictor of Messrs. Bruce, has recently installed his car with Pye radio-telephonc.

Mr. Nye can thus help his staff with any technical problems that may arise while he is out and so eliminate possible hold-ups. Savings in time and petrol are considerable.

Light Programme Controller

M^{R}R. H. ROONEY PELLETIER succeeded Mr. Kenneth Adam, who has resigned, as Controller of the BBC Light Programme from April 4th.

Mr. Adam has been Controller of the Light Programme since December, 1950.

Obituary

$M^{R .}$ C. P. LOCKTON,. M.Sc. We learn with deep regret of the death of C. P. Lockton, M.Sc.(Tech.). chief engineer of Chloride Batteries, Ltd., on Sunday, February 20th.

Born in 1903, Cedric Philip Lockton was educated at Berkhamsted School, Herts, and at the Manchester College of. Technology, where he studied electrical engineering under Professor Miles Walker. In September, 1924, he was engaged by the Chloride Electrical Storage Co., Ltd., as assistant to the chief engineer. In October, 1949, he was appointed chief engineer to the company, which shortly afterwards changed its name to the present one, and held this position at the time of his death.

D ONALD MACADIE, M.B.E. We regret to announce the death of Donald Macadie, M.B.E.,

Mr. D. Macadic. the inventor of the AvoMeter.

He was born in the county of Caithness in 1871, came to London at an early age and joined the EdisonBel! Phonograph Company, later transferring to the National Telephone Company with whom he worked as an engineer in Liverpool and Nottingham. In 1932 the M.B.E. was conferred upon him and he retired from the Post Office in the following year at the age of 62.

Equipment for Atomic Plant

THE Marconi Wireless Telegraph Co., Lid., are to supply an industrial television equipment to the United Kingdom Atomic Eriergy Authority. This will be used at the Windscale plutonium factory at Sellafield, Cumberland.

Installation for the "Southern Cross "
THE fitting of a wide range of radio communication equipment and electronic aids to navigation on board the new 20,000 -ton Shaw Savill passenger liner Southern Cross has been completed by

Licences for Models Controlied by Radio
SOME changes have been made in the licence issued by the PostmasterGeneral to control modets by radio.
In future persons licensed to operate radio-controlled models will be only required to check the frequency of the transmitter as often as may be necessary to ensure that the sets operate only within the authorised radio frequency bands. In addition, the controlling apparatus may be operated by anyone, provided it is done under the personal supervision of the licensee.

Radio Economy

$\mathrm{B}^{B C}$ Director-
General Sir Ian Jacob has ordered a "cut down "in sound radio programmes due to the increasing popularity of television and the approach of an alternative TV programme in the autumn.

The single television programme is believed to have a larger audience than the Home, Light and Third programmes combined.

Pye/Polygon Agreement

PYE, LTD., announce that they have formed an association with the Polygon Record Co.

Mr. Alan Ficeman will be conducting the business of the Polygon Record Co. (1954) Ltd. from 66, Haymarket, London, S.W.I. This is also the address of the Nixa Record Co., Ltd.

Children's Requests

MORE than 54,600 requests were received by the BBC in connection with the Sound Children's Hour Request Week.
members of the technical staff of the Marconi International Marine Communication Co., Ltd., at Belfast. The Southern Cross was launched by Her Majesty the Queen in August last at the yard of Harland and Wolff, Ltd.

Gramophone Programmes Assistant

 M^{R}. DOUGLAS LAWRENCE has been appointed Assistant Head of Gramophone Programmes, succceding Mr. Thurstan Holland, who becane Second Assistant to the Light Programme on November 17hh, 1954.
"Perfect" Reception

THE new Frequency Modulation radio receivers, which are claimed to bring "perfect" reception to the listener, are expected to appear on the market soon and will cost about 25 guineas each.

Dealers in London and SouthEast England will be the first to receive them.

Radio Controlled Models

DETAILS OF SOME CRYSTAL STABILISED CONTROL TRANSMITTERS

By F. G. Rayer

THE output of a self-excited transmitter with a given number of valves is greater than that of a crystal-controlled transmitter with the same number of stages, but the latter has the advantage of maintaining frequency accurately. This can be a very important factor with home-built equipment. The tunable, self-excited type of transmitter will continue to operate even if set outside the permitted model control band. The constructor of such a

Fig. 1.-Simple crystal oscillator stage.
control band is from 26.96 to $\cdot 27.28 \mathrm{Mc} / \mathrm{s}$, and tunable equipment may easily operate outside this band, possibly without the user's knowledge. Stray capacities in wiring, and the influence of the aerial, may put a transmitter outside the permitted band. When this is so, harmonics may in some cases cause television interference over a wide area. With tunable transmitters, some accurate means of ascertaining frequency is therefore essential. If no such means be available, the transmitter may best employ a crystal for frequency stabilisation, since correct frequency operation may thereby be automatically assured.

The simplest type of crystal oscillator is shown in Fig. 1, and is generally most satisfactory. Other circuits exist, some making use of regeneration to increase output. These, however, have the disadvantage that in some cases the stage can be made to oscillate upon frequencies other than those desired, and some of the advantages of crystal control are thus lost.

Since it is not feasible to produce very thin crystals, the crystal will be of lower frequency than the signal to be radiated, which may conveniently be $27 \mathrm{Mc} / \mathrm{s}$ (approximately 11.11 metres). This difficulty is overcome by having a crystal frequency which is a multiple of the frequency to be employed in the completed transmitter. For example, crystals with a
frequency of $13.5 \mathrm{Mc} / \mathrm{s}, 9 \mathrm{Mc} / \mathrm{s}$ or $6.75 \mathrm{Mc} / \mathrm{s}$ would be suitable, as these figures may be multiplied to achieve $27 \mathrm{Mc} / \mathrm{s}$. In the case of ex-service or other crystals which may be to hand, these can be used if multiplication gives a figure between 26.96 and $27.28 \mathrm{Mc} / \mathrm{s}$. (Crystals of very low frequency are not very süitable, since additional stages would be required for multiplication.) If a crystal is to be purchased, one for $9 \mathrm{Mc} / \mathrm{s}$ is convenient.

In the interests of portability, battery-type valves are usually employed in model control transmitters. These have very low anode currents and gain, compared with mains valves, and it is, therefore, necessary to employ extra stages. For example, at least three valves will usually be required, though a higher output could be achieved with a single mains-type valve. The circuits given are not, therefore, suiitable for use with mains equipment. For 2 -volt operation, ordinary triodes, pentodes and power valves are satisfactory. For "all dry" equipment, B7G or octal valves can be used, those intended for output purposes being best in all stages.

Tuning Adjustment

With the circuit in Fig. 1 no oscillation will be obtained until, the tank circuit is tuned to the frequency of the crystal. A meter should be included in the H.T. circuit, and a fall in anode current: will. show that the valve has commenced to oscillate. The tank tuning condenser is thus adjusted until anede current is at minimum. For a $9 \mathrm{Mc} / \mathrm{s}$ crystal the tank coil may consist of 12 turns of 20 s.w.g. - wire on a ribbed former $1 \frac{1}{2}$ in. in diameter, the winding
occupying $1 \frac{1}{2}$ in. The condenser can be 100 ; pF.. In

Fig. 3.-Two common types of coupling arrangement.
the interests of efficiency, " miniature " coils are best avoided. The condenser capacity should also be small.

A pentode may also be used, as shown in Fig. 2. In each case the 100 k . resistor provides a D.C. grid path and enables bias to be generated. A slight increase in efficiency can be obtained by adding a short-wave H.F. choke in series, or by using two 50 k . resistors in series to reduce capacity.

Small detector or L.F. type valves can be used if the H.T. is at least 90 volts. If the crystal is of an active nature it is also possible to tune the tank circuit to a harmonic, to obtain some, or all, of the necessary frequency multiplication. But with low activity crystals, small valves, or low H.T. voltages, this cannot be done as the stage will not oscillate. If so, the necessary frequency multiplication must be achieved in later stages.'
A single valve, using the circuits in Figs. I and 2, can be used to energise or excite a transmitter, or to act as a frequency standard by which a tunable transmitter may be adjusted.

Multiplication and Driver Stages

The crystal-controlled stage may be coupled to a subsequent stage by means of a condenser, as shown at "A" in Fig. 3. The value of the coupling condenser is not critical, but should not exceed 100 pF . A mica condenser is required. A choke may be added in the grid circuit as mentioned.
A second method of coupling is shown at "B" and is particularly convenient when the crystalcontrolled stage is built as a small separate exciter unit for the transmitter. In both cases the grid circuit will be operating at the same frequency as the tank or anode circuit of the first stage, which will usually be that of the crystal, for the reasons given.
To obtain frequency multiplication the anode circuit of the second stage is tuned to the required

Fig. 4.-Push-pull oscillator circuit.

A number of push-pull or Class B battery valves exist, and can be used to keep the overall number of valves down. It is feasible to use such a valve as crystal-controlled oscillator and frequency multiplier, exactly as if two separate valves were present.

A further type of push-pull oscillator circuit is

Fig. 6.-Neutralising the output stage.
given in Fig. 4, and can give a somewhat greater output than a single valve of conventional type. Such valves may also be used in output stages, to obtain a greater output to energise the aerial, when H.T. voltages are low.

A complete oscillator and doubler or multiplier circuit is shown in Fig. 5. The anode circuit of the second valve will be tuned to a multiple, as explained. Here, a coil consisting of 10 turns of 20 s.w.g. wire, 3 in . in diameter and 13 in . long, tuned by a 75 pF condenser, may usually be employed for $27 \mathrm{Mc} / \mathrm{s}$. Exact coil details will depend upon stray capacity in the circuit, valves, etc. If subsequent trial shows that the frequency tuned is too high, the number of turns may be increased. If, however, it is too low, a turn or so may require to be removed from the coil.
Self-supporting coils may often be employed, and should be of such inductance that resonance is obtained with only small values of parallel capacity. The reduction in output resulting from small, inefficient coils, or excessive tuning capacity, can easily be observed with a field-strength meter.

Output Stages

A small output stage is shown in Fig. 6 and can give about 1 watt anode dissipation. Triodes may be used, or valves in parallel or push-pull. Since both grid and anode circuits are tuned to, or operating upon, the same frequency ($27 \mathrm{Mc} / \mathrm{s}$), it is necessary to employ some form of neutralisation to avoid self-oscillation. This can be done as shown. The neutralising condenser is of very small value, and adjusted until any tendency to self-oscillation is removed. Its purpose is to cancel out self-capacity in the valve.
If a loop or meter shows that the transmitter will still radiate when the crystal-controlled valve is withdrawn from its holder, then back coupling is causing oscillation. Interference between the coils

Fig. 5.-Oscillator and doubler circuit.
in different stages, or lack of correct neutralisation, may cause such oscillation. It should be climinated by the appropriate measures, since it means that the transmitter can operate upon other than crystalcontrolled frequency, exactly as can the simple, tuned type of transmitter.

The early stages of such a completed circuit are primarily concerned with frequency stabilisation and multiplication. For this reason it must be remem-

Fig. 7.-A simple field strength meter.
bered that they will contribute little to the final output of the transmitter. For example, three valves used as shown in Figs. 5 and 6 would result in a transmitter having an output similar to that of a single valve of output type, in a self-excited circuit. The range of such a transmitter depends upon the aerial and receiver, and would be sufficient where no great range is required. In practical construction, all tuning condensers should be panel operated, and a meter should be included for measuring the anode current.

Optimum Adjustment

Final adjustment is best undertaken when the actual powor radiated is measured, by means of a
meter such as that in Fig. 7. In this way the effect of any adjustment can be seen at once, as can the improvement in signal strength resulting from the use of longer aerials, etc. The meter can, initially, be quite near the transmitter, and have a very short aerial-about 6 in . to 12 in . Afterwards, it may be removed to a greater distance, its. readings being reported by a helper.

In adjusting equipment such as that described, the first tank circuit is tuned for minimum anode current. There will generally be no need to move the meter to the anode circuits of subsequent stages, to check tuning here, as a reading on the field strength meter should be readily obtainable. When this is so, the multiplier and aerial circuits are turred for maximum output. Any change to the aerial will make re-tuning of this circuit necessary. ${ }^{\text {F }}$ Finally, all circuits should receive a very careful adjustment for maximum radiated output.

When "the transmitter is correctly tuned, the receiver is tuned to it, for maximum response. Final adjustments should be at full range. . For C.W. control, the H.T. circuit of the transmitter may be keyed or switched. If no helper is available to do this, one of the various ex-servicé clockwork switching devices may be used to avoid frequent return to the transmitter to switch on and off.

The field strength meter, should at all times be carefully tuned for maximum response. It may subsequently be used as a frequency meter, if the condenser has a dial and pointer. If so used, a "standard " aerial must be fitted, such as provided by a rod 12 in . long. Any change in aerial length, or in the coil or wiring, would upset calibration. The meter should not be near a super-regenerative receiver, or a reading may be obtained from the latter, thereby confusing results.

Radio-controlled Taxis

Legion, officially opened the control centre, and spoke a goodwill message over one of the microphones to all the drivers who were patrolling throughout London.
THE use of Radio is increasing in the industrial field and already many districts have their own radio control installations for public transport services. This avoids much petrol waste by enabling the control centre to direct a driver to a new fare point, and also enables speedy repairs to be effected as the drivers are in constant touch with their headquarters. An ex-Service venture recently introduced a fleet of taxi-cabs in the London area, and these have been provided with a radio control link. All the drivers, numbering over 150 , are exService men, are owners of their cabs, and each is a shareholder in the parent company. The control centre is equipped with two stand-by transmitters and can handle 3,000 calls a day.

Inauguration

To inaugurate the service, Sir Jan Fraser, O.B.E., the well-known blind M.P. and President of the British

Sir Ian Fraser opening the new service.

further details of the new receiver

By S. A. Knight

(Comtinted from page 234 April issuc)
lead is not screened and may be any length within reason. R16 is wired on the base of this valve.

Neatness and care is paramount, especially with the midget valveholders employed, and the small type of iron is recommended for soldering.
It should be pointed out that the components specified in the list (resistances and condensers) are as used in the prototype, but alternatives are permissible provided they are reliable and of similar physical size, rating, etc. For example, Morganite "T" resistors may be used, and condensers by Hunts, etc., substituted for those specified as available. It is essential to avoid ex-Government condensers, particularly waxed paper types.
The pick-up filter (if used) and Gram. volume control are separate circuits and are not mounted on the main chassis, but more will be said of this later on when cabinet mounting is discussed.

Fixing feet for the chassis are provided as the photographs show by means of two strips of brass or steel (about $\frac{1}{2} \mathrm{in}$. by $\frac{1}{16} \mathrm{in}$. is suitable) bent into wide "U's" and bolted to the chassis front and rear faces. Again, the exact depth of these feet will depend upon the cabinet fixing employed.

Above chassis, two similar strips are bent to form protective " handles" and to act as stiffeners, being fixed to the scale bracket at the front and to the chassis at the rear. These give a final support to the scale assembly and enable the job to be inverted

Fig. 8.-A three-position equaliser network for use with a crystal pick-up.
without damage. Suitable fixing holes will be found ready drilled in the scale assembly bracket.

Power Chassis

The power unit is built on a chassis measuring 10 in . by 8 in . by 2 ! in. deep, but this size is not critical in any way and any size of this order will serve. It should, however, be of firm construction, and 16 s.w.g. aluminium is recommended.

No wiring diagram is given of this unit as the circuit of Fig. 1, and the photographs are sulficient working guides. The sixway lead from the receiver terminates in a plug which fits a socket mounted on the power chassis; a 12-pin plug and socket were used on the original design, pairs of tags being joined, but a 6 -way may be used directly, although the Bulgin 8-pin type is very suitable. For the heater wires in the connecting lead, 14/0076 flex is used, particularly for the PX4 run. Thinner wire will cause a voltage drop. For the common earth connection a heavier wire still is suggested.

The mains on-off switch is a separate control, and is not mounted on the power unit or the main chassis. It will be discussed again later on. The 500 mA . cartridge fuse is mounted in a clip above chassis for convenience in replacement.

A rear view of the completed radiogram.

Checking and Alignment

When the set and power unit have been assembled, wired and checked, the power unit should be connected to the main chassis by means of the six-way cable and a further check made to ensure that no cross connection has been made in this cable. With the

Fig. 9. - Oscillator amplitude curves.
valves then plugged into their proper holders, the receiver may be connected to the mains supply, the transformer tapping being set to the appropriate voltage.

For the present time, the magic-eye tuning indicator may be omitted from its holder or, if it is decided to use this as an alignment aid, it may be taped to one of the stiffening rails. When the valves have warmed up, a voltage check should be made against the figures given on page 273, the set being switched to medium waves. Some small differences will almost certainly be found, but the table gives the general order of voltage to be expected at the various points. If the main rail voltages are about 300 and 220 volts on either side of R21, the others will be correct also; R21 may require adjustment in some cases to drop the supply to the proper order of 220 volts on the R.F. end of the set. Differences of 10 per cent., however, are permissible.

Now switch the receiver to Gram. and check that the preamplifier $V 6$ now receives H.T. voltage and that its grid is "live." For the present, of course, the pick-up and equaliser network are not in circuit. With the tone controls set to about mid-positions, adjust VR1 on the power pack for minimum hum in the speaker; this setting is not critical, but a definite minimum point will generally be found. The hum level is extremely low for all settings of this control and its final position calls for care.

Now switch back to Radio and ensure that there is no change in
the hum level. Alignment proper may now begin.

Alignment

A signal generator (or $465 \mathrm{kc} / \mathrm{s}$ fixed aligner) is necessary for the I.F. alignment of this receiver, although the R.F. coils may be aligned on actual stations without any difficulty.

Aerial

Fig. 10.-Layout of R.F. compartment showing coil switt ching.
($166 \mathrm{kc} / \mathrm{s}$). Trim P2 for maximum output. Repeat the above until no improvement can be obtained. Transfer SG to the aerial socket and trim T3 at $350 \mathrm{kc} / \mathrm{s}$.
M.W. 200 m . ($1,500 \mathrm{kc} / \mathrm{s}$). Trim T8 and T5 for maximum output. 500 m . ($600 \mathrm{kc} / \mathrm{s}$). Trim Pl for maximum output. Repeat in order. Transfer SG to the aerial socket and trim T2 at $1,500 \mathrm{kc} / \mathrm{s}$.
S.W. 20 m . ($15 \mathrm{Mc} / \mathrm{s}$). Trim T7 and T4 for maximum output. rocking gang slightly while setting the former. Note: There are two positions for T7 which give an output ; use the one with least capacity. Check that the scale is correct at 45 m . $(66 \mathrm{Mc} / \mathrm{s})$. Transfer the SG to the aerial socket and trim TI at 45 m .
2. Station Alignment. The alignment is not difficult on medium and long wavebands by this method, but is not so easy on short wayes. On medium waves, use the Light (247 m .) and the Third (464 m .) as the check points. On long waves, the $1,500 \mathrm{~m}$. Light may be used, but it is better to use two stations at the ends of the scate if possible. Paris on $1,829 \mathrm{~m}$. is suitable, and any other around $1,200 \mathrm{~m}$. will do if it can be definitely identified.
It sometimes happens that additional padder capacity is required, particularly on the medium uaveband. This can be readily obtained by means of a parallel capacity to the adjustable padder; a silvered-mica type should be used for this purpose.

As an output indicator the magiceye may be used, or alternately, a milliammeter may be wired in the earthy end of VR1 volume control. For a modulated signal, of course, the actual speaker output may be used, but for more accurate results, an A.C. meter (about 10 volts) can be wired across the speaker speech coil. In all cases, alignment is made for a maximum reading, or closing of the tuning eye.
With the signal generator set to $465 \mathrm{kc} / \mathrm{s}$ and injected into the grid of V3, tune the trimmers of IFT2 for maximum output, keeping the input as low as possible consistent with a workable output. Then transfer the generator to the grid of V2 (pin 2) and set IFT 1 similarly; then recheck IFT 2. When satisfied that the transformers are properly peaked, seal the trimmers with small blobs of wax. Care should be taken to ensure that the signal generator output is screened right up to the input grid points and properly terminated or instability may result as the circuits come into line.
The following notes are now divided for signal generator and station alignment of the R.F. sections of the set respectively.

1. Generator alignment. All trimmers about half-settings, padders similarly. Inject the signal at the grid of Vi and align at the following frequencies (on the generator and receiver dial) in the order given :-
L.W. $850 \mathrm{~m} .(350 \mathrm{kc} / \mathrm{s})$. Trim T9 and T6 for maximum putput. $1,800 \mathrm{~m}$.

A view of the motor-board layout.

Oscillator Voltage

For those who wish to check on the oscillator amplitude, curves of grid current in R9 plotted against wavelength (set properly aligned) are given in Fig. 9.

These are obtained from a microammeter ($500 \mu \mathrm{~A}$ full scale) inserted in the bottom end of R9, the set then being tuned through each waveband and the meter reading noted. The optimum current is from 200 to $400 \mu \mathrm{~A}$ and it will be seen that reasonably level curves are obtained. Excessive current should be avoided, this being generally worse than low current (below $200 \mu \mathrm{~A}$) and leading to whistles as well as a reduction in gain. Damping resistors R 12 and R11 should not normally require adjustment, and if the current follows the curves given roughly, no changes need be made to them. The coupling coils of the oscillator inductances are already wound from resistance wire (on MW and SW) by the manufacturers and, with the additional resistances, give excellent results from this point of view of amplitude constancy over the bands.

Gramophone Use

As mentioned in an earlier article, the prototype of this receiver used a B.S.R. changer with crystal turnover pick-up, and the equaliser shown in the main circuit diagram is suitable for both L.P. and 78 recordings. For other types of pick-up (such as moving coil or iron) the manufacturer's recommendations regarding any equalisation should be followed. In this respect, the gram. volume control VR4 may require adjustment in value to load the pick-up properly. The bass response of this receiver is very good and care should be exercised in the mounting of a changer unit to avoid the possibility of acoustic feedback leading to rumble.

For those who require an equaliser suitable for three-speed use, a modified circuit is given in Fig. 8. This may be used if desired in place of the single
circuit already given $500 \mathrm{k} \Omega$ in this case.

Cabinet Mounting

The photographs show the general cabinet mounting adopted for this receiver. The exact form depends upon the constructor, but the general back view and motor-board layout of the prototype should provide the main points of design. Messrs. Elpreq Co. can supply the cabinet illustrated, and many others of similar design. The gram. volume knob is mounted just to the right of the record player, with the magiceye above it. If a switched equaliser is used, this could be mounted below the other control. White knobs, appropriately engraved, are used and the escutcheon supplied with the J.B. scale is painted white or cream to match.

Valve	Anode	Screen	Cathode
V1	200	95	2.5
$\mathrm{~V} 2^{*}$	205	95	2.5
V 3	210	165	3
V 7	95	60	2.3
$\mathrm{~V} 8 \dagger$	290	-	3540

* Osc. anode 100 volt.
\dagger Anode voltage measured between anode and filament.

Bias voltage measured across R 1 in power unit.
VOLTAGES TABLE.-Measured with receiver switched to M.W. on $1,000 \mathrm{~s} / \mathrm{v}$. meter, 500 v. range except for cathodes.

BOOK RECEIVED

WIRELESS AND ELECTRICAL TRADER YEAR BOOK : Radio, Television and Electrical Appliances, 1955. 26th Edition. Published at 12s. 6d. (Postage 6d.) (with a reduction to subscribers to WIRELESS AND Electrical Trader) by Trader Publishing Co., Ltd., Size $8 \frac{3}{4} \mathrm{in} . x \mathrm{x}_{2} \mathrm{i} \mathrm{in} .304$ pages. Bound paper boards.
THE Wireless and Electrical Trader Year Book, which was first published in 1925, has become the most important reference book to the radio and electrical industries. It is the standard guide for all connected with sales or service and of great assistance to overseas buyers wanting to contact British sources of supply.

Features of the 1955 edition include condensed specifications of nearly 300 current commercial television receivers and information on valve and cathode ray tube base connections, with over 300 valve base diagrams. These alone are invaluable to radio and TV service engineers.

For ease of reference the Year Book is divided into sections printed on distinctively coloured paper and each section is now separated by a stout card, with thumb index, giving details of contents.
One of the principal aims of the Year Book is to assist traders to keep abreast of the constant changes
in the names, addresses, telephone numbers and products of the firms engaged in the radio and electrical industries. The directory sections incorporating these revisions together with the carefully selected technical information and other practical data, make the Trader Year Book an invaluable time-saving reference book for every retailer and business man in the industry.

Principal contents include :
Directory of Principal Trade Organisations; Legal and General Information; Wage Rates; Radio Receiver I.F. Values; Valve Base Connections Diagrams; Mains Voltages; Addresses of Electricity Boards; Television Information and Data; Receiver Specifications of 1954/55 Models; Trade Addresses; Wholesaler Directory; Proprictary Names Directory; Classified Buyers' Guide.

THE SUPERHET MANUAL

5th Impression
By F. J. CAMM
7/6, by post 7/10
From
GEORGE NEWNES, LTD.,
Tower House, Southampton Street, Strand, W.C.2.

SCANNING the pages of short-wave club magazines some years old, the writer read with great interest the brief comments of a wellknown and recognised overseas expert DX listener, whose pre-war log entries totalled 60,000 and postwar ones 63,000 .
Obviously, to achieve such totals over a period of years calls for careful and consistent listening, knowing when and where to listen according to time of the day and season of the year, and being able to devote a considerable amount of time to searching.
It also calls for a good receiver and an efficient aerial system.

This does not mean that the receiver must be one of the higlt-priced communication type, or that the aerial system should be of text-book specification with an elaborate matching network. Proof of this is to be found in this listeners later comments for he says, "I have always used baby type receivers and ordinary aerials as distinct from beams, etc."

All this bears out the author's contention that providing one can devote sufficient time daily to world wide DX listening, success can be achieved with inexpensive equipment on both amateur and short-wave broadcast bands, if intelligently used.

When one studies sections devoted to listeningpost reports on DX heard, it is interesting to note that whilst many reporters use commercial conmunication type receivers, a percentage achieve results of equal merit using home-constructed - T.R.F.s, straight regenerative, superhets and converters and adaptors either mains or battery operated.

It would appear that within reason it matters little what type of apparatus is used provifng it is eflicient. Things do not, however, work out so easily in practice, for in some instances as in the case of wide coverage receivers, one must compromise.

Types of Apparatus

Two of the best DX enthusiasts who achieved really outstanding results, specialised in one instance on the amateur 'phone bands and in the other on the short-wave broadcast bands. The former used a battery-type converter feeding into a mains-type broadcasting superhet.' The other, a home-constructed battery T.R.F. and simple superhets.

Their monthly report on DX heard were not contined to a fraction of a column, but to a complete monthly article covering activities in their respective spheres, later to be followed by details of QSL cards received. This, of course, was previous to the war when the short-wave bands were free from the
senseless jamming which we have to tolerate nowadays.

Whip Aerials

Regular. readers may recall my remarks concerning the unsuitability of whip aerials for use in conjunction with straight regenerative receivers. This is because the aerial is mounted in a rubber base and consequently sways in the wind and this will cause spill-over if regeneration is used to the limit when tuned to a weak transmission. Unless whip aerials are rigidly mounted a stage of R.F. is desirable.

Indoors

There is no reason why this type of aerial mounted in a rubber base should not be used indoors. When the author installed the relay-controlled doublets in the roof space, a 12 ft . whip was also included. The rubber base was fastened to the rafters. As the down lead to the living-room had to be arranged as unobtrusively as possible, low-loss principles could only be applied in part. This arrangement, including down lead, totals 40 ft . It appears to be a good non-discriminating short-wave aerial.

Misleading Tests

Fortunate in many ways is the short-wave listener who has a small workshop or box room fitted up as a listening post. In several instances the receivers used in such places are capable of delivering considerable loudspeaker output.

Under the circumstances care, and some consideration for others, should be exercised when turning up the volume control. What may appear indoors to be reasonable volume may prove somewhat beyond all reason when heard out of doors.
The R 1116 double-superhet battery-driven receiver, for example, does not, with A.V.C. operating, provide terrific loudspeaker output, especially in a small room of the 12 ft . by 6 ft . kind. Its output is, in fact, less than that of the 1224 type receiver. If, however, the R1116 is tried out in conjunction with a good aerial in the average size living-roont, those who have never used one under those conditions will find that it is capable of providing more than sufficient volume and a high signal-to-noise ratio. Test your new receiver in the living-room first, if your listening post is a smaller room.

Scope for Listeners

The latest short-wave allocation book to hand lists a total of 1,725 allocated frequencies between 133.3
metres and 11.5 metres. Thus there is ample scope for listeners on these bands. Jamming, however, at present blots out many low-power DX transmissions..

Directional Aerials

In the author's experience it has been found that when using some types of communications superhets the quick response of the A.V.C. systent levels out the gradual gain as a rotary acrial is operated. In such instances it is advisable to switch out A.V.C. until maximimum gain is obtained.
In other cases, due to slower A.V.C. action, increasing gain is noted as the aerial system is rotated. When using right-angle relay-controlled doublets, noticeable gain of from three to four R points is obtained on weak signals when the aerials are switched and with A.V.C. in operation. While these effects centre on delay yoltages of different A.V.C systems, it should be understood that prevailing reception conditions have some bearing on the degree of gain obtainable, as the writer outlined some years ago in an article describing a series of tests which he had carried out some time previously. In the case of switched doublets the gain is not gradual but instantaneous, and thus beats the A.V.C. effect by a fraction of a second or so.
In my opinion a rotary aerial system is a real asset, especially when used with simple regenerative receivers. The gain on rotation is progressive, and one can, as it were, obtain "on the nose tuning" for on further rotation, after reaching a ccrtain point, the signal strength begins to fall.

With right-angle doublets, however, we have a compromise arrangement, but for all that one of the best methods available where rotary beams cannot be used. This applies especially in the case of indoor directional systems.
Personal experience with the indoor relay-controlled directional doublet system recently described by the author of this article, has proved several things, and it has been decided to make them a permanent addition to the various acrials in use.

Theory and Practice

Text books tell us that the doublet is most efficient at the frequency to which it is resonant. This is correct. Some text books also add that it is quite efficient over a wide band of frequencies outside the resonant frequency. Thus, while a doublet is most efficient at the frequency to which it is cut, it is by no means to be implied that it is a one frequency aerial. I mention this because many have been misled into thinking that way.

There are, of course, limits beyond which a doublet ceases to function as a doublet, and in remarking on efficiency we are concerned with operation within those limits.

Doublet Tuning

Transposed feeder lines, twisted feeder lines and open feeder lines may be used with doublet aerials. Transposed and open lines when used with this type of aerial can be used in conjunction with acrial tuning units most effectively.
Some text books strongly advise against attempts to tune doublets which include twisted feeders, due to the high distributed capacity of such feeders making resonance tuning difficult.
From recent experiments it would appear that these remarks apply to weatherproof twisted feeders for outdoor use and electrical flex. Using plastic-covered
flex, however, with his indoor system, the. writer experiences no difficulty in resonance-tuning the aerials. Obviously, the post-war plastic flex has a lower distributed capacity, and the simple tuner used tunes sharply and enabies a good match to be achieved without complication. The tuner will be described in a future article.

Tuners and Plug-in Coils

Recently the writer had the opportunity of examining a pre-war marine type battery T.R.F. of Dutch manufacture. This covered a very wide range and was fitted with a coil turret of sound design and precision manufacture.
Present-day coil turrets and packs are many times smaller but most efficient. : Many constructors, however, still prefer plug-in coils in spite of the inconvenience of coil changing. There are a number of most efficient plugyin coils available, at reasonable prices.
The cheapest on the market at present are of sound design and have been a stock line in many amateur supply shops for some years. Unfortunately, the range covered does not include the 10 metre and 160 metre bands. Inquiring as to the reason for this we'were informed that the manufacturers did not consider that the demand would justify the additional coils being made available. Checking through shortwave listener publications, and club members' reports, shows that the average amateur band listener covers everything from 10 metres to 160 metres, and that others find the shipping bands interesting. Added to this is the fact that at least two well-known firms provide a full range from 10 metres to long wave broadcaṡt.

Aids to DX Listening

While a great circle map, a good atlas and a gazetteer of the world are all usefful aids to the shortwave listener, the usefulness of the Solariscope does not seem to be appreciated generally.

During the past few months the author has been using one. This instrument, which is supplied complete with.a series of charts covering 12 nonths, enables one to check time differences and the light and darkness paths between the receiving station and transmitting station tuned to or to be searched for at any time throughout the 24 hours. It has considerable educational value and in addition prowides the listener with a better idea as to the effects of light and darkness relative to transmission and reception.

Forty Metres

The 40 metres amateur phone band used to be a very popular one with both listeners and transmitting amateurs. The encroachment of commercial broadcasters and jamming stations left but little space for those who had most right to this band. Consequently it has been more or less deserted by amateurs. I was pleased to hear a north London amateur phone and several others using the band one recent Sunday morning.

Amateur phone stations cannot compete with powerful broadcasters, and it would seem that to attempt to do so would be wasted effort. It is to be hoped however that those who have deserted this most interesting band will return in considerable numbers with a view to retaining this band which is after all allocated to them, and a recognised amateur band.

BRITAIN'S LEADING RECEIVER MANUFACTURERS make sure of maxinum coil performance

Be like the many famous frms who, by
specifying Osmor High Q Coils in specifying osmor High ${ }^{\text {a }}$ Q" Coils in
thousands, take no chances about quallty !
F.M Frequency Modulation comes its share in the design May : OSMOR does first-class circult of complete and a really tuner. Free circult, point to point wiring diagram, and full constructional information. (Send 5d. in stamps.)

OSMOR 'Q' COIL PACKS
Size only $14 \times 3!\times 2!$ with variable irondust cores and Polystyrene formers. Builtin trimmers. Tropicalised. Prealigned Receiver-
tested and tested and Guaranteed. Only 5 connections make. Mype
Bat and
Buperhets and
Sup
T.R.F. re-
ceivers. re- Ideal for the reliable construction construction of new sets, also for conversion of the 21 Receiver. TR1196, Type 18, Wartime

The NEW OSMOR

"SWITCH PACK". is now ready!
Complete and Prealigned full circuit included. State which station required $2 \mathrm{M} . \mathrm{W} .1 \mathrm{~L} . \mathrm{W}$. or $3 \mathrm{M} . \mathrm{W}, 48 /=\mathrm{p}$. Tax. .

SUPER ' Q ' for MAX. SELECTIVITY

A full range is available for all popular wavebands and purposes. The magnetic screening of the cup prevents other components from absorbing the Coil's power. thus maintaining the high ' Q ' value. Simple one-hole fixing. \star Only lin. high. * Packed in damp-proof containers * Adjustable iron-dust cores. * Fitted tags for easy connection. L. or

$$
5 /=\text { Incuit }
$$

CHASSIS CUTTER

Type	Hole Sizes	Price
1	lin. $\times 1$ in.	19/6
2	tin. x 1 inn.	18/9
3	in. x 1ıin.	22/6
4	17 in . x 2 in .	27/3

100 ton High tensile bolt now
supplied with No. 2.
Allen Key, 2/6.

Calling all amateurs!

> Have you a problem involving circuits in which Osmor Coils or Coil Packs are used, or intended to be used? Let our Jechnical Team solve it-just write us a letter. We're right up-to-date-we build the vorious circuits given in "Wireless World," "Practical Wireless." " Radio Constructor," etc., and we stock the components specified. Most Technical Colleges, Universities, etc., use Osmor Coils for research.
"PRACTICAL WIRELESS" Coronet Four - Beginners Superhet : An Economical Quality Receiver. A Stx Valve A.C. Superhet: Attache Case Portable R R155 Converter : A.C. Band-Pass 3 : Modern $1-$ Vanver A 2-Valve Feeder, Fury Four, Standara Modern reflex, etc.
"WIRELESS WORLD" "No Compromise" T.R.F. Tuner. " Midget 3-valve A.C. Mains Recelver." Sensitive 2 -valve Receiver. Refex Push-Pull 3 -valve Receiver, Minlature Bedside Recelver. Midget sensitive T.R.F., etc.

OSMOR STATION

 SEPARATORThe Separator may easily be tuned to climinate any one station within the ranges stated and fitting takes only a few seconds Aerial
Sharp tuning is plugs efrected by ad- in here
fusting the brass screw provided.

7/6

1-141-250 Type Metres Typo Metres $\begin{array}{lll}1-141-200 & 4-319-405 & 7-1450-1550 \\ 2-218-283 & 5-395-492 & \end{array}$ $\begin{array}{lll}2-267-341 & 5-395-492 & 8-410-550 ~ k c / s . ~\end{array}$ Spectal Separator to clear Rado Luxembourg, 10/6 each.

READERS' QUERIES!

Dear Sirs,
Can you suggest a cure for modulation hum. please?
To prevent modulation hum, connect a 10 K resistor or R.F. Choke from aerial to earth. This presents a low impedance to lower fre mentes (sio as c.p.s. ${ }^{2}$ as an anti-statio hunt hunt.

Dear Sirs.
The quality of reproduction of my receiver has improved. but the volume has decreased. Can you suggest the cause ?
We would suspact a bias condenser in the output stage. This might be open circuit and a measure of negative feedback is being applied.

Dear Sirs

I wish to increase the 1.4 v . output of my lattery superhet to obtain maximum output. What valve do you recommend? Mullard D.L.93.
Dear Sirs.
Will you please glve me a few tips to improve the selectivity of my 5 valve superhet?
Any improvement in selectivity may nearlu aluays be obtained by altering the arrangement ion (ail. The length, heioht anil greatly improve matters.

"RADIO CONSTRUCTOR"

Converting the TR1196 receiver to a general purpose s'het. receiver simple crystal diode set Radio feeder units. Economy 8 W.P.P. Amplifier. Whistle Filter. Circuit and details available for adding push-pull to the $5!6$ valve Osmor superhet.

mith's

Smith's for

Technical Books

Books on the theory and practice of electronics, new developments, circuit design, and other specialized subjects can be quickly supplied through your local Smith's shop or bookstall.

Your copies of PRACTICAL WIRELESS can be bound into attractive volumes; and all your stationery and printed matler supplied through our local branch.

W. H. Smith \& Son

for SPECIALIST BOOKS
Head Office: Strand House, London, W.C. 2

G2AK This Month's Berrgains

62AK
METERS. -21 in . Scale Flush Mounting. $0-10 \mathrm{~mA}, 0-30 \mathrm{~mA}$ and $0-100 \mathrm{~mA}, 12 / 6 \mathrm{ea} .2 \mathrm{in}$. Scale Square Flush, $0-50 \mathrm{~mA}$, $0-150 \mathrm{~mA}$. $0-3 \mathrm{~A}$ Thermo, $0-20 \mathrm{v}$. d.c., and $20 / 0 / 20 \mathrm{~A}$. d.c., $7 / 6$ ea. 2 lin. Scale Proj. Type Thermo, $0-15$ A., $7 / 6$ ea. 2 in. Scale Round Flush $0-\frac{1}{2} \mathrm{~A}$. Thermo and $0-350 \mathrm{~mA}$ ditto, $7 / 6$ ea. RACK SIZE CHASSIS. -17 in . long $\times 2 \frac{1}{2} \mathrm{in}$. deep $\times 12 \mathrm{in}$., $16 / 6$; $\times 10 \mathrm{in} ., 15 /=; \times 8 \mathrm{in} ., 14 /-. \mathrm{P} . \&$. P. I/:. All 16 s.w.g. ALI.
ABSORPTION WAVEMETERS. 3.00 to $35.00 \mathrm{Mc} / \mathrm{s}$. in 3 Switched Bands. $3.5,7,14,21$ and $28 \mathrm{Mc} / \mathrm{s}$. Ham Bands marked on Scale. Complete with Indicator Lamp. Only 10/6. P. \& P. 1/-.

VALVES.-B7G base, IT4, IS5, IR5, IS4, 354, 3V4, 7/6 ea., or 4 for 27/6. 807 's, 10/- ea. or 2 for 17/6. Most of the $1.4 \vee$. B7G range available at $8 / 6 \mathrm{ea}$.
HEADPHONES.--Low resistance type CLR No. 3, $9 / 6$. DLR No. 2, 13/6. High resistance CHR Mar. 2, 17/6, and the most sensitive of all DHR, No. 5B, $18 / 6$ per pair. P. \& P. $1 /$-pair. V.H.F. FANS.-Air Space Co-axial Cable, 150 ohm, good to $600^{\circ} \mathrm{Mc} / \mathrm{s}$; niormal price, $3 / \mathrm{II}$ per foot. Our Price, 20 jard coil, fl . Very limited quantity available.:
FISK SOLARISCOPES.-Complete with charts. Give World time, light and darkness paths. Invaluable to the $D X$ man. . List $21 /$-, our price $7 / 6$, post free.
PANL Home Crackle.-Black, Brown or Grèen, 3/- tin. P. \& P. 8d.

CONDENSERS.-8uF, 600 v . (Trop), 750 v . (Normal). New Ex-W.D. Srock, $5 / 6$ ea., p. \& p., $1 / 6$.
SPECIAL OFFER. DEAF AID CRYSTAL MIKE INSERTS. $10 / \mathrm{e}$ ea., or 2 for $17 / 6$.
Postage free on all orders over fl except. where specifically stated. PLEASE PRINT YOUR NAME AND ADDRESS.

C. H. YOUNG, G2AK

All callers.
IIO, Dale End,
Birmingham'4 (CEN 1635)
Mail Orders to Dept. 102 Holloway Head Birmingham I (MID 3254)

SOUTHERN RADIO'S WIRELESS BARGAINS

TRANSRECEIVERS. Type " 38 " Mark II (Walkie-Talkie). WITH FIVE VALVES in METAL CARRYING CASE. TESTED, $30 /-$ per set. EXTERNAL ATTACHMENTS FOR USE WITH " 38 " Transreceiver: THROAT MICROPHONES with lead and Plug, 4/6; HEADPHONES, $15 / 6$ per pair; IUNCTION BOX. 2/6; AERIALS, $2 / 6$.
TRANSRECEIVER. Type 18 Mark III. Superhet Receiver and Transmitter in TWO UNITS contained in Metal Case. Complete with 6 Valves, $£ 4 / 10 / \mathrm{F}$. ATTACHMENTS FOR " 18 " Transreceiver: HEADPHONES, 15/6; HAND MICROPHONE, 12/6; AERIALS, 5/-
RECEIVERS. Type R.'109. Bu॥lt-in Speaker. 8 Valves with Vibrator Pack for 6 Volts. In Metal Case. Short Waves, $\mathbf{E 5}$ each. Tested. TELESO NIC 4-Valve Battery Receiver. Four Hivac Valves in Metal Carrying Case. Provision for internal Batteries. Simply converted to Personal. Portable. $E 2$ per' set, including Conversion Sheet.
BOMBSIGHT COMPUTERS. Brand New ex-R.A.F. Contains Gyro. Motors; Rev. Counters; Gear Wheels, etc. Ideal for Model Makers, etc., $£ 3 / 5 /-$ each, plus 10/- Carriage.
LUFBRA HOLE CUTTERS. Adjustable ${ }_{\text {anin. }}$ to $3!\mathrm{in}$. for Metal ; Wood ; Plastic. etc., 6/6.
fESISTANCES. 100 Assorted. All useful values. Wire Ended, $12 / 6$ per 100.
CONDENSERS. 100 Assorted. Mica ; Tubular Meta!, etc., 15/per 100.
PLASTIC CASES. $14 \mathrm{in} . \times 10_{4}^{3} \mathrm{in}$. Ideal for Maps; Display, etc., 5/6. STAR IDENTIFIERS. Type I A-N. Covers both Hemispheres. in case, 5/6.
CONTACTOR TIME SWITCHES in sound-proof case. Two impulses per second. Thermostatic control. Clockwork Movement, $11 / 6$ each.
REMOTE CONTACTORS for use with above, $7 / 6$.
MORSE PRACTICE SET WITH BUZZER and TAPPER, 6/9. Complete with Battery, $9 / 6$.
METERS. 12 Instruments in slightly damaged condition. Assorted, 35/- for TWELVE.

List of RADIO BOOKS, $2 \frac{1}{2} \mathrm{~d}$. Postage and Carriage extra.
SOUTHERN RADIO, SUPPLY LTD.,
11, LITTLE NEWPORT 8T., LONDON, W.C.2. 'GERirard. 6653.

DUE to the difficulty of grinding crystals for operation on fundamental frequencies much above 7 megacycles (although fragile $14 \mathrm{Mc} / \mathrm{s}$ fundamental crystals do exist) the production of higher frequencies directly fromi a crystal oscillator stage is of interest. This is of even greater interest nowadays than in the past, for V.H.F. transmitters, if operated by chains of frequency multipliers from a fundamental crystal, have an inordinate number of stages. Also, V.H.F. receivers using crystal controlled frequency changing for stability cannot use an indefinite number of valves. Accordingly, means of extracting harmonic energy directly from a crystal stage are now of importance.

An early circuit giving harmonic output was the Tritet as shown in Fig. 1. While the crystal oscillates on its fundamental, harmonic output may be extracted in the anode circuit by tuning the anode tank to the required harmonic. The cathode tuned circuit is

Fig. 1.-The Tritet Circuit. A circuit often previously, used for good harmonic crystal output, although fundamental output is liable to give high crystal current with most valve types except the 6AG7.
adjusted to some frequency higher than the crystal fundamental, as tuning the cathode circuit to crystal frequency results in excessive crystal current and crystal fracture with popular tubes such as the 6L6, 6 F 6 or 6 V 6 frequently employed in this circuit. The Tritet, in fact, will give excellent second and third harmonic output, and can often be squeezed to give a watt or so of fourth and ceen fifth harmonic. The writer has used a Tritet with a $7 \mathrm{Mc} / \mathrm{s}$ crystal quadrupling to drive directly an 807 P.A. to 30 watts or so input on ten metres. Howeyer, crystal heating, and chirp due to crystal overloading, are bad features of the Tritet when used with the valve types mentioned.

A circuit forming a "capacity tap" analogue of the Tritet is fairly popular in the States for operation on crystal fundamental, second, third and fourth harmonic output. The circuit of Fig. 2 shows the "preferred " values for this circuit, which is reliable
and effective, provided that the oscillator tube is a 6AG7. The 6AG7 has exceptionally good internal shielding, and is capable of quadrupling with good
Fig. 2.-A circuit giving good output on fiundamental, second, third and fourth harmonics providing a 6AG7 valve is used. No other valve type should be used, however, as only the 6 AG7 has sufficiently good in-

output, but without excessive crystal current. Due to the good shielding of the 6AG7, loading effects are not reflected back into the crystal circuit, and keying is chirpless even when multiplying the crystal frequency four times. This circuit would no doubt be popular over here, but for the fact that supplies of the 6AG7 are difficult, so that they are virtually unobtainable.

Fig. 3.-A " reaction coil " type of overtone oscillator where the cristal replaces the feedback capacitor. Fig. 4.-A "Hartley" trpe overtone crystal circuit. $V_{0}=6 C 4, \frac{1}{2} J 6, \frac{1}{2} 12 A T 7$ or $\frac{1}{2} 12 A U 7$.

The 6AG7 circuit described is in fact the most successful of the " conventional" oscillator circuits. However, for the newer circuits, the principle of operation is different. The older circuits have the crystal oseillating at its fundamental, while nultiplying the fundamental in the anode circuit. The newer "overtone" circuits utilise the crystal actually oscillating at a mechanical overtone frequency. The quartz crystal is in fact a mechanical oscillating system, and can oscillate in harmonic modes which are odd multiples of the fundamental. Thus the

Fig. 5.-The neutralising condenser CN permits of nentralising the deleterious effects of the crystal capacity, so that higher overtones may be achieved. Circuit devised by F3GG.
modes are : hree, five, seven and so on, times the fundamental frequency. These harmonic modes also utilise the series resonance of the crystal, whereas the usual circuit favoured for conventional circuits in amateur practice utilise the parallel mode for fundamental operation. Consequently the actual overtone frequency is not exactly a multiple of the usual parallel resonance fundamental. This difference is only a few Kc / s even at $144 \mathrm{Mc} / \mathrm{s}$, but should be noted. Moreover, the overtone frequency is slightly lower than an exact multiple of the parallel fundamental oscillation frequency.

Low Impedance

The crystal in the series mode spresents a low impedance at resonance, unlike the high impedance of the parallel mode. Consequently the oscillator circuits for overtone operation utilise rather different principles from the more familiar crystal oscillator circuits. Usually the crystal forms a coupling element, which permits oscillation when the coupling is of low enough impedance. Thus oscillation occurs at the overtone frequency where the crystal has a low impedance. If this seems an alarming description, Fig. 3 shows an early type of " overtone" oscillator. The circuit is in fact identical with the familiar capacity-controlled reaction circuit, but with the crystal replacing the reaction condenser. The crystal only presents a low impedance at the overtone frequencies, so that oscillation takes place only when the tuned circuit is tuned to an appropriate overtone frequency. However, it is also true that the crystal will oscillate on its series fundamental mode if the circuit is tuned to the fundamental. Generally the tuned circuit is arranged to tune to the third harmonic so that the crystal oscillates at three times its fundamental frequency.

A more popular version is the circuit of Fig. 4. This is virtually a Hartley type osciliator' with the crystal again acting as "reaction' condenser." This circuit allows of easy adjustment of regeneration conditions, as the coil tap may be readily adjusted 10 provide optimum conditions. If too much regeneration exists, the circuit may self oscillate without the crystal controlling ascillation. With too little regeneration, the circuit may not oscillate promptly when H.T. is applied. Moving the tap towards the grid end of the coil reduces regeneration, while moving it nearer the anode end will increase regeneration. Usually the circuit is employed using one half of a $12 \mathrm{AU7}$ or 12AT7 as the oscillator, with the second triode section as a doubler or tripler. By this means, when using the third overtone, six or nine times crystal frequency may be obtained with

Fig. 6.-A Colpitts " Capacity Tap" version of the circuit of Fig. 4.
$V_{0}=6 C 4, \frac{1}{2} 6 . J 6$ or $\frac{1}{2} 12 A T 7$.
Fig. 7.-A shug-tuned version of the Colpitts type overtone crystal oscillator.
one miniature double triode. In fact, a watt or so of R.F. may be obtained, quite adequate for driving a further doubler for a $145 \mathrm{Mc} / \mathrm{s}$ TX, and adequate in any case for driving a multiplier in a V.H.F. crystal converter circuit.

Higher Overtones

While these overtone circuits are perfectly adequate for tripling or third overtone operation with most crystals, some difficulty will be experienced if higher overtone operation is attempted. This is not only because most crystals are not specially processed for good overtone operation, and in the usual holders have difficulty in " perking," but also because of the crystal capacity. At the higher frequencies the crystal capacity provides enough capacity for selfoscillation of the circuit, so that crystal operation is erratic. Generally; the circuit self-oscillates with a rough self-excited tone, and shows no disposition to crystal operation. Many circuits have been devised, a few of some complexity, for balancing out the crystal capacity, so that pure crystal control can be achieved. Generally these circuits are not too easy, for general operation. However, one " neutrodyne"" circuit of some interest has recently been published by J. Lollieux in the French amateur publication Rudio Ref. J. Lollieux (F3GG) has arranged to (Concluded at foot of page 294) in ,

The I.S.W.L. Open Letter

THE I.S.W.L. has sent an open letter to all members commenting on my paragraph in the February and March issues. I gather that as a result of those paragraphs several members have written to the League which seeks reply to my criticisms by means of this open letter. This reviews the position and the correspondence, and in order to allay any criticism the open letter explains how the League is run. But surely the members already knew this when they joined? Do people join the I.S.W.L. blindly without being told how the organisation is run? It would seem so from this letter, which says that "Thermion"s main preoccupation was the matter of finance." Their reply is : "We have never issued an audited balance-sheet because the cost of employing a firm of chartered accountants would be more than we could afford." With a membership, presumably, of some thousands, the revenue must be considerable, and bearing in mind that the league is not a trading concern, an audit by an independent auditor would not be expensive. The audit would, in fact, merely be concerned with the revenue from subscriptions, easily ascertainable from the receipt book, checked by the bank passbook, and also with outgoings such as postage and expenses. I offered to appoint an accountant who would have conducted this audit quite cheaply. The leaguc countered by expecting us to pay the fee. An audit at this stage, however, might be more complicated since it would be necessary to go back not only for the past year (audits are annual affairs) but to the commencement of the club.

They answer my criticism that the league does not hold annual general meetings nor elect its officers annually by stating that "by its constitution, the league is an international organisation and so effective general meetings of the membership are impossible." Rubbish! I am amused that the league should selfstyle itself as "international," but in any case it is quite possible to adopt the procedure of similar organisations where postal ballots are conducted. The various officers are nominated and ballot forms circulated to members. Is that "impossible" ${ }^{\text {? }}$? Again: "Presumably the meetings would have to be held in London." Nonsense again. Other organisations vary the venue of their annual general meetings, and in the cases where they are always held in London there has never been any difficulty in getting delegates from foreign countries to attend.

The letter informs us that the league's council as it stands consists of the three section editors of "Monitor" (a duplicated publication) and the league chairman, in addition to the secretary/ treasurer. The next paragraph is amusing as well as surprising: "How were we elected? The answer is simple-we weren't. Peter Bysh offered to take over the very arduous duties of hon. secretary and treasurer from Frank Baldwin : you can appreciate that not many members would be willing to give up almost every evening and week-end on league business as Peter does." How is it possible to say so without
asking the members? It is obviously wrong for one man to have to give his entire leisure in this way. What would happen if he were taken ill? We are told that Mr. Bysh also runs the Q.S.L. Bureau " and has borne the brunt of negotiations between the league and outside bodies. The three editors volunteered to write the various sections of 'Monitor' and were automatically incorporated on the Council.": If the members of the I.S.W.L. are satisfied with this bureaucratic autonomy, I certainly should not be. The "council" can do as it likes without reference to the members. For example: "The chairman was appointed by the council from the general membership."

I am glad to note that the league has " seriously considered the matter of holding elections, but have decided that they would take too long to carry through." Why? Because "we should have to ask for nominations in the 'Monitor,' wait the six weeks for surface mail from overseas members to arrive and then print the list of nominations in a later issue. Members would be asked to vote and, again allowing for overseas votes to reach us, it would be September before the results would be announced." Why do it through the "Monitor"? Indeed, the rules could provide for biennial elections to take care of the envisaged delays.

Here is a further statement from the letter: "We don't publish a list of members chiefly because of the work it would entail to compile a complete list from our file cards, but also because of the difficulty of keeping it up to date." This excuse simply will not hold water, for presuming that the league has 5,000 members (I believe the membership is much less) such a list could be typed out from properly-kept index cards in three evenings. Most clubs issue lists of members each year and every member knows that between each issue new members will be enrolled.

The letter informs members that Eric Alban, the ex-chairman of the league, was never treasurer of it as he states, but chairman and editor, and that the league was formed in 1946 and not 1947. Also, we are told that council meetings are held once a year, not three times yearly. How an organisation with such a small self-appointed council can operate an international organisation by meeting once a year I do not know. The league certainly could not run by "council" members keeping close touch with each other by correspondence and private visits throughout the year.

Some readers have pointed out the membership fee is practically absorbed by the production of the journal and in postage, and that they have therefore no money left to place the league on a proper footing. This amounts to an admission that the league is trying to run an international organisation on a shoestring. It cannot, therefore, be efficiently run, and the gravamen of my criticisms has been on that score. I maintain with vigour that members of such organisations have a right to a say in the conduct of the club's affairs.

Usimg TEST INSTRUMENTS
 Part 5 of a New Series of Articles Dealing with the Practical Application of Standard Test Equipment
 By Gordon J. King, A.M.I.P.R.E.
 (Continued from page 210 April issur)

WE have already seen that the current registered on a milliammeter flowing through a resistor of unknown value can be used as a direct indication of its value.

- It will be interesting to enlarge on this in the following way. Let us look again at the ohmmeter circuit at Fig. 16. When the terminals A and B are shorted the variable resistor Rv can be adjusted to produce f.s.d. on the milliammeter M. If we assume that a 3-volt battery B is used, then the circuit resistance to produce f.s.d. on a I milliampere meter will require to be 3,000 ohms. In such a case Rv would probably possess a maximum value of 5,000 ohms to permit ample scope to zero the meter.

Now when the short-circuit between the terminals A and B is removed, the meter will obviously return to zero current, but if a resistor of unknown value is connected between the terminals the meter will again deffect but not to full scale, since the extra resistance will reduce the current.
Let Ru represent the value of an unknown resistance, Id equal the f.s.d. current of the meter, Ir equal the current reading with Ru included, and R equal the meter circuit resistance excluding Ru , then :
$R \mathrm{u}=(\mathrm{R} \times \mathrm{Id} / \mathrm{Ir})-\mathrm{R}$.
For example, if the instrument embodies a meter having a f.s.d. of 1 milliampere, and a 3 -volt battery is used, and the introduction of an unknown resistance reduces the current reading to 0.5 milliampere, then : $\mathrm{Ru}=(3,000 \times 1 / 0.5)-3,000$, or $\mathrm{Ru}=2,000$ ohms.
From this we can clearly realise that by increasing the internal resistance of the instrument, adjusting it to a higher voltage range, for instance, and using an external battery to match the range used, very high resistances can be very easily measured. It is, of course,
necessary to know the f.s.d. current of the meter, and then calculate the resistance against the current scale of the meter.
Conversely, the meter may be shunted to achieve a more accurate assessment of low value resistances. If we refer back to the worked example, but this time suppose that the milliammeter has been shunted to read 10 milliamperes f.s.d., then a 200 -ohm resistor will produce the same extent of needle deflection. In other words, by MULTIPLYING the current range of the meter by a factor of 10 we have effectively DIVIDED the resistance range by the same factor.
Isolate the Component Under Test (12)
If we use our multi-range meter on the ohms range to assess a resistive value while the component is still connected in the circuit, we must always recognise the possibility of a false reading as the result of the shunt effect of some other resistive element in the same circuit. Fig. 17(a) illustrates this possibility, in which R1, R2, R3 and LI of TI might easily represent a circuit network in a TV set or broadcast receiver.

By connecting our ohmmeter as shown in an endeavour to measure the value of R2, we are actually measuring the resistance of R2 in shunt with the series combination comprising, R1, R3, and the resistance of the transformer winding LI-this can be more readily realised by looking at Fig. 17(b).
To avoid any error of this kind occurring it is essential to disconnect completely one, side of, the component under test as shown in Fig. 17(c). The same applies, of course, to transformers, chokes in fact, to any part that it is desired to measure resistively. Needless to say, the possible error will increase in proportion to the value of the resistance under test.

Fig. 17.-An ohmmeter connected across a resistor in a network such as (a) will not measure the true resistance as is clearly shown in (b). The resistor should always be isolated from the internal circuit before testing (c).

Beware When Testing the Resistive Value of an Inductor (13)

Receiver service data usually includes the resistance values for transformer windings, chokes, field coils, etc., provided they are not of an extremely low value which, anyway, would be more or less impossible to test by using an ordinary ohmmeter. It must be stressed at this point that values given for such components are average values only, and that the values do tend to deviate between specimens of, the same component by as much as 5 to 10 per cent. .

It is most important to know this fact because if, say, a line-output transformer is suspected as being responsible for a lack of E.H.T. in a television set, we may feel inclined to prove our suspicion by properly disconnecting the transformer from the circuit and comparing the resistance of the various windings against the data provided in the servicesheet. We might well discover that the resistance readings so obtained satisfy the tolerance of the component, and as a result eventually conclude that some para-normal disturbance is responsible for the apparent paradox that the circuit checks perfectly normal and yet it fails to work.

This is not really a paradox and it is not the result of para-normal disturbances : it simply means that we have overlooked the possibility of one or two adjacent turns short-circuiting in one of the transformer windings to reduce severely the inductance of the transformer without modifying by any easily measurable degree the resistance value of the winding.

Here, then, is the limitation of a normal resistance check so far as an inductor is concerned. Incidentally, this fact can be clearly proved by coupling a shortcircuit turn to a line-output transformer.

Checking Insulation (14)

It is often possible to perform a useful check of capacitor insulation by using an ordinary ohmmeter connected across the capacitor in the usual way: for this test the highest resistance range should, of course, always be used. Unfortunately, many multimeters are not sufficiently sensitive to provide a reasonable indication of insulation. For measuring the insulation of capacitors and inter-winding insulation of transformers, where a slight leakage may cause severe circuit disturbances, we can successfully adopt the method depicted in Fig. 18. Here is shown our multimeter adjusted to a voltage range to correspond to the H.T. line voltage in the receiver from which the capacitor was taken. The capacitor is connected in series with the meter, and as we have already seen, such procedure enables extremely high resistance values to be detected with very little trouble.

Apart from this, the test also advantageously subjects the capacitor to a voltage equal to the voltage it is subjected to under normal working conditions. Under this condition, then, an elusive insulation fault is liable more readily to be revealed; so far as capacitors are concerned, however, it is important not to exceed the working voltage under any circumstances.

Consideration of the test voltage must also be given if it is desired to check the cathode-to-heater insulation of a valve or picture-tube. If we apply between these electrodes a potential in the region of, say, 300 volts, the insulation might well be provoked to fail by reason of the test itself, for let it be remembered that the valve or tube may have a stipulated heater-to-cathode potential rating of something like 150 volts or less! For this reason a megger should never be used to check heater-to-cathode insulation.

While we are on the subject of checking interelectrode insulation, it will be worthwhile to bear in mind that an insulation defect may not occur while the heater is cold, and for this reason it is often a good idea to check the insulation first while the heater is cold, and then check it again while the heater warms up and during the time it takes to become really hot.

This applies mainly to a suspected heater-to-cathode
short, which, if it tends to be elusive; can usually be made to show itself during the temperature test by gently tapping the valve or the neck of the picturetube.

It may be found possible to continue energising the heater from the set itself while the test is performed. although in certain cases it is desirable to use a separate heater transformer, and connect the ohmmeter as shown in Fig. 19.

Check Instrument Polarity (15)

When checking electrolytic capacitors for insulation (leakage resistance) due attention should be given to the polarity of the applied voltage. If we

Fig. 18.-(Left) A multimeter set on a "volts" range to correspond to the receiver H.T. line voltage can be used to detect stight insulation leakages. Fig. 19.(Right) An ohmmeter should be used to check interelectrode insulation in a valve or picture-tube-it is often desirable to check for heater to cathode leakage. while the heater is energised.
apply such a capacitor across an ohmmeter the needle will.give a definite " kick " indicating, at least, that the capacitor possesses capacitance which is charging from the battery in the ohmmeter.

The needle will be observed gradually to return toward the high-resistance end of the "ohms" scale. and its final resting position will indicate the capacitor's leakage resistance in ohms.
The important factor here, though, is that if the capacitor is incorrectly polarised from the ohmmeter battery an excessive leakage resistance will be registered, which is liable to give the false impression that the capacitor is defective.
In most multimeters the positive lead is connected to the negative terminal of the internal battery. This means, then, that when measuring the leakage resistance of any electrolytic capacitor, the negative lead from the meter should be connected to the positive terminal of the capacitor, and the highest resistance range employed.
Similar consideration should be given when testing crystal diodes, rectifiers, and any other component whose resistance is liable to vary according to the direction of the current through it.

In conclusion, it must be stated that resistance tests' should never be performed on components which are already carrying current.

Using the Multimeter as a Sound Output Indicator (16)
Tuned circuit adjustments on a broadcast receiver
or on the sound section of a television receiver are best made in conjunction with a modulated signal generator and an audio-output meter. The experimenter often injects the modulated R.F. into the section of the receiver under adjustment in the proper way, and then tunes the associated circuits for maximum sound from the loudspeaker.

Although this aural method of adjustment can prove effective in a number of cases, it is not a 100 per cent. accurate method, as the ear does not readily distinguish between sounds of slightly different volume levels. By far the best procedure is to make use of an audio-output meter to indicate visually the loudness of the modulated note. A universal multimeter switched to an A.C. volts range can be made to serve this purpose with a high degree of súccess.

There are three ways in which the meter can be connected to the receiver to indicate A.F. output, and these are illustrated in Fig. 20.

Meter-connecting positions (a) and (b) are more or less the same, for in both cases the meter is arranged to measure the actual ${ }^{-}$A.F. voltage appearing across the primary winding of the output transformer. In position (a) the meter is connected directly across the transformer primary, while in position (b) the meter is isolated from the H.T. supply by capacitor CI.

Capacitor C1, as with capacitor C2, which represents a large value electrolytic smoothing capacitor, yields little impedance to the A.F. current, which permits the meter connection to be returned directly to the receiver chassis.
In position (c) the A.C. meter simply measures the A.F. voltage appearing across the speech-coil of the loudspeaker, but since the impedance here is consider-

Fig. 20.-Illustrating three methods of connecting añ A.C. voltmeter to indicate A.F. output.
ably lower than that across the primary of the transformer, a correspondingly lower voltage reading will be given.

Measuring A.F. Power (17)

\therefore Provided the inherent resistance of our universal multimeter on a selected A.C. volts range is reason-
ably high compared with the load resistance of the output valve (as seen across the primary of the output transformer), and provided-"we know the working impedance of the output valve, we can achieve a fairly accurate indication of the $A: F$. power delivered by the valve.

Let us suppose that the output valve loading is equivalent to 2,500 ohms, and that the meter records 50 volts due to a constant A.F. input voltage when connected as in position (a). Now, by applying the well-known formula for determining power, i.e., Watts equal Volts ${ }^{2}$ divided by Resistance, we readily discover the A.F. output to be in the region of 1 watt (50^{2} over 2,500).
(To be continued)

American Test Equipment

SIR,-Our attention has been drawn to your editorial in the March, 1955, issue of Practical Wireless, the last paragraph of which deals with American test equipment.

It would appear that a number of your readers have been given the impression that American kits of test equipment will shortly be " flooding " the market and will be available at prices below that of complete equipment currently sold in this country.

The position, to the best of our knowledge, is that the Import Licence Authority will now grant individual licences for the importation of certain American equipment-the reason for wishing to import the particular item required must be given. Kits of test gear are not being imported in quantity as your phrase " American invasion" would suggest.

You further state that " - but only complete expensive apparatus has: been available "-the inference being that the imported kits will be cheaper than complete British equipment. This is not true. For instance, the price of the Heathkit Condenser Checker is $£ 1312 \mathrm{~s}$. 6d. plus $£ 219 \mathrm{~s}$. 6d. for a stepdown transformer. Messrs. Taylor Instrument sell a similar complete and tested article for $£ 14$ and the price of our own CR50 Bridge is only $£ 6,19 \mathrm{~s}$. 6d. If you care to examine the prices of any of these kits you will find that in no instance are they cheaper than their complete and tested British counterpart.

The position in America is that wages are relatively higher than in this country, consequently a large saving can be made by purchasing a kit of parts rather than an assembled and tested instrument. This same saving does not hold in this country: It is surely much better to pay a matter of 10 s . or so extra to.obtain test equipment for which the manufacturer claims a stated accuracy rather than a:kit of parts producing an instrument of unknown accuracy when assembled. If you study the advertisements of any American kit manufacturer you will note that they are extremely "cagey" with regard to claims of accuracy.-Grayshaw Instruments (Harpenden).

NEWNES SHORT-WAVE MANUAL
 7th Edition
 6/-, or 6/6 by post from

GEORGE NEWNES, LTD : : Tower
House, Southampton Street,' London, W.C. 2

HEMBAMTTEXD						
NEW AND HBNED						
ACPP ACG/PES	8/8					
Атpt,	${ }_{8418}^{818}$			${ }_{7 / 8}^{6 / 6}$		
	${ }^{20 /}$	(tay	${ }_{6} 6$	\%/-		
EB34	2/-	${ }_{\text {\%P4 }}^{3}$	${ }^{\text {bAA }}$	\%	${ }_{8} \mathbf{8 6}$	
	776	${ }^{\text {T10 }} 10$	Sa	7/8	${ }^{347}$	
	111/6	${ }^{\text {Uxeze }}$		${ }_{8,6}^{88}$	7 R 7	
${ }^{\text {e }}$	${ }_{6}^{6 / 3}$	U81	${ }_{684}^{684}$	8\%/,	78	
${ }_{\text {ect }}$	${ }^{181}$	$\xrightarrow{\text { U2341 }}$	cien	$8 \cdot$	\%	
	${ }_{1418}^{1018}$	ciAft2	¢в ${ }^{\text {¢ }}$	${ }_{8 / 6}^{8 / 8}$	${ }_{807}^{80}$	${ }^{6}$
	86\%			${ }^{8 / 8}$		
	${ }^{8,816}$	${ }^{\text {UF+11 }}$	${ }_{6} \mathrm{CH}$	${ }^{8 / 6}$	S013	
Er	8 8/-	,		${ }_{81}^{6}$	9	
	${ }_{7}^{6}$			${ }^{8} 8.6$		
	10/-	Tr116		${ }_{7} 7$	${ }_{9}^{955}$	
(ekent	18.	YR150 ${ }^{\text {V }}$	${ }_{666} 6$	$7 / 8$	\%s	, 6
	${ }^{1218}$			${ }_{8 / 8}^{8 / 8}$		
	111/6	vris		${ }^{13} 16$	1	
		vT301 (TT11)		${ }_{1218}^{111 / 8}$,	111/8
	\%	vusg muly		${ }_{6}{ }^{\prime}$		${ }^{39}$
	${ }^{14 / 4}$		6	${ }^{3 / 6}$	$\stackrel{124}{12+}$	-
	11%)		${ }_{5}$	${ }^{12}$	-
	5/-	${ }_{\text {W72 }}{ }^{61}$		8,	${ }^{12 \mathrm{Le}}$	-
	${ }_{7 / 1 / 8}^{7 / 9}$	${ }_{\text {OLi }}$		$\underset{818}{8,18}$	-	
	${ }^{8 / 9}$	${ }_{114350}^{143}$		8 8/6		
	${ }^{8,9}$	${ }^{147}$	${ }_{6}^{6 K 7}$	88.	${ }^{120}$	710
	211/8	${ }_{818}^{7 / 8}$	${ }_{6}^{6 \times 8}$	${ }_{11 / 6}^{9 / 6}$	${ }_{1}^{1224}$,
	8\%	9	${ }_{6}^{6 L}$	${ }_{12 / 6}^{11 / 6}$	\%	A
	${ }_{79}^{7 / 9}$		${ }_{6} 6$	9/8		8 8/8
	${ }^{69}$, 7174		${ }^{76}$		$7 / 7$
	6,9	${ }_{220 \mathrm{VGG}}^{8 / 8}$	${ }_{6}^{607}$	\%		(10,6
M	5			8;-	20	10/-
	3/9	3,				$9 / 1$
	${ }_{12,18}^{12,6}$	${ }_{3}^{3 D 64}$	6,4,	8 8-	2504	cis
	${ }^{221 / 8}$	30, ${ }^{30} 10 / 8$	6, ¢6K	8, 8	258.	9/-
${ }_{\substack{\text { P P P M } \\ \text { Pic }}}$	8188	${ }_{3 \times 4}$		9\%		\%
	14.6	4D1		\%	${ }_{35174}$	10-1
${ }_{12 \mathrm{M}}$	101/-			${ }_{7 / 8}^{8 / 8}$,

TERMS: Cash with order or C.O.D. Postage and Packing charges extra, as follows : Orders value 10/- add 9d. ; 20/- add $1 /-$; 40/- add $1 / 6$; 65 add $2 /-$ uniess otherwise stated. Minimum C.O.D. fee and postage $2 / 3$.
MAIL ORDER ONLY

WHEN ORDERING PLEASE QUOTE "DEPT. P.W."

LOUDSPEAKER UNITS

 sin. Rola with output trans6!lin. Rola standard Type Aifin. Plessey 6!in. Truvox wafer speaker 8in. Plestey 1.in. Plessey 6fin. Mains energised oun findMains
not tield
HEATER TRANSFORMER Input Voltage 280 s 2 volt .5 nmep.
2 volt 3.11 amp.
4 volt 1.5 amp.
4 volt 3.4 amp.
5 volt 2.11 atnp.
6.3 volt.$\overline{3}$ amp.
fi. $\dot{3}$ volt if amp.
14. volt 7.5 amp.

RESISTORS
A fult range $\frac{1}{2}, \frac{1}{2}, 1$ watt resistors from 10a to 15 Mega.
$\frac{1}{}$ and is watt sizes, 3 d . each or $20 /-$ per 100.
1 watt size, 6 d . each or $40 /=$ per 10%.
TELEROD INDOOR AERLALS
For Kirk O'shotts frequency only. Complete with co-axial lead. Lister 29/6. Our Price, 19/11, post and packing, $1 / 6$

$$
\star
$$

STILL A PEW LEPT
"THE COMPACT" TV AERIAL TYPE CDA BY ANTIFERENCE, LTD. Full instructions with each one*
Listed $50 /$ Our briee, $14 / 6$, plus $1 / 6$ packing aud post.
\star
\star
BUZZER
(foldtone bake'ite-cased Buzzer (loud tone)

CEOKES

Pile wound H.F. chokes
 chokes chokes

CLIPS. ETC.
Condenser Clips, most sizes Bulldog ('harger Clips Crocodile (lips

COLL FORMERS
tin. coil formers with slugs.
lin. coil formers with slugs... Ceramic coll formers, fin dia., lin. long, 4 ribs

9d, ea.
da., Min. long, 4 ritos $\quad . .$. 4d, ea.

OS胃OR COLL PACES

Type H.O., 48/-; L.M. 40/-; T.1., 50/\%., 48/=; L.M. 40/\%; Type M.

HEADPHONES

Surplus CLR phones, 120Ω 7/6 pair

CRYSTAL DIODES
Two for 2/1 or 12/: doz.

大 $\star \star \star \star \star \star$
\qquad is available for finia. or 8in. speaker units. Metal speaker fret, complete with hack and rubber feet.
$6 \frac{1}{2 n}$. type
Meavures
8 $\frac{\mathrm{in} \text {. } \times 8!\mathrm{in}, \times 41 \mathrm{in} \text {. at }}{}$ base. Price 16/8 each.
8in. type :
Measures 10 lin, x 10 in. x 3 in , at

MAGNETIC PICK-UP HEAD

Fior ronversion of Acoustic (irabuphone to Riectric reprodinrtion. Fitted with Universa Alantor for any type of tone weadle Highly polished plaptic Nearles. Highly polishen plaptic brouft tittish. Type 112, ,000

METAL TUBULAR CONDENSERS GETAL (WIRE ENDS) Sprague . 1 wht 3010 w ... 9d. ea
 Sprague. . 5 mid. 3 ñv. ... 6d.
SILVER MICA CONDENSERS bozens of sizes available, onchuling
 $300 \mathrm{pH}, 540 \mathrm{pF}, 1,100 \mathrm{pF}$, etc., etc. Price 3id. ea.
MOULDED MICA CONDENBERS All by well-known makers. T.C.C' yubilier. Huats, etc. (NNA1 (100 pr). $.0002\left(200 \mathrm{pF}^{\mathrm{F}}\right)$, .0003 (300 pF^{2}. .0003 (500 pF). (x) $(1,000 \mathrm{DF})$ $01(10,000 \mathrm{pF})$, ete. All 4 fd . each,

"l.ustaphone" trpe moving coil Microphone on table stand with 84/10/0.
American surplus Throat
Microphones, twpe TMUB

etc. \cdots... $4 /$-set swith in hanane (surplus) | swith ill hande, bakefite |
| :--- |
| case ... |
| $\begin{array}{l}\text {... }\end{array}$... | MICRO-SWITCE Tyne midrach Ball type

interrupter switch ... $\quad . .$.
$3 / 3$ ea

THE "WEYRAD" SIGNAL GENERATOR
 AN INSTRUMENT OF HIGH ACCURACY AT LOW COST

\author{

- Coverage $100 \mathrm{Kc} / \mathrm{s}-70 \mathrm{Mc} / \mathrm{s}$ (on fundamentals).
}
- Accuracy better than $\pm 2 \%$ on all ranges.
- Large, clearly calibrated scale.
- Modulated or C.W. output.
- $500 \mathrm{c} / \mathrm{s}$ A.F. source.
- S.G.M.I-A.C. mains operation. Double wound, varnish-impregnated transformer, tapped 210/225/250 volts.
- S.G.B.l-All dry battery operated.
- All components are by well-known manufacturers ensuring maximum reliability.
- Both types in quantity production.
- Illustrated leaflet available,. price 2 d .

WEYMOUTH RADIO MANUFACTURING CO., LTD: CRESCENT STREET, WEYMOUTH, DORSET

£2. 6. 0. Poost components, circuit diagram and full instructions. Batteries : 1.5 v. L.T. (Type D18), 8d. ; 30 v. H.T. (Type Bl19), 4/3. Price without crystal microphone, £2.2.0.
NOTE: As the crystal microphone is not used in the Pocket Radio, it can, if desired, be used as a general microphone and it does not require a matching transformer.
Come along. SEE and HEAR this Miniature POCKET RADIO demonstrated.
Orders and Enquiries to Dept. 'P.'
PRDDPS BROS.LTD: Telephone LANgham 0141. Shop Hours : $9-6$ p.m. Thursday : $9-1$ p.m. Open all day 8aturday.

Receiving F.M. Transmissions

HINTS ON THE TYPE OF APPARATUS REQUIRED, AND DETAILS OF CURRENT

TRANSMISSIONS

By W. J. Delaney

SINCE the publication last year of details of Frequency Modulation principles, many queries have been received from readers concerning the type of apparatus required for receiving the programmes and details of the available transmissions. At the beginning of this year there was only the experimental radiation from Wrotham on $91.4 \mathrm{Mc} / \mathrm{s}$ and $93.8 \mathrm{Mc} / \mathrm{s}$ devoted to a relay of the Light and Home programmes. This transmitter closed down from March 7th until the beginning of April during which period Alexandra Palace radiated test transmissions on $93.8 \mathrm{Mc} / \mathrm{s}$. It is planned to cover the whole country with a V.H.F. network using this system of modulation, and most listeners should be in a position to pick up their local transmitter as it comes on the air. The BBC cannot however, at the time of going to press, give any dates or other details except so far as concerns the London transmitter. This, the first of the new chain, will be brought into service on or about May 2nd.

Frequencies

The new station will transmit the three BBC programmes, the Light Programme on a frequency of $89.1 \mathrm{Mc} / \mathrm{s}$, the Third Programme on $91.3 \mathrm{Mc} / \mathrm{s}$, and the Home Service on $93.5 \mathrm{Mc} / \mathrm{s}$. The effective radiated power will be 120 kW in each case, and the transmissions will be horizontally polarised. The station will serve the London area and South-East England within a range of about 50 miles.
The new transmitter at Wrotham, which will carry the Home Service, differs from the two already installed in that it is built as two separate units for operation in parallel, with each unit capable of maintaining the service at reduced power in the event of a fault on the other. For the first few weeks of the V.H.F. service from Wrotham, only one of these transmitter units will be in operation, and the Home Service transmissions will not be at full power; the effect of this is not likely to be noticeable except at extreme range.

Aerials

As already stated, the transmissions are horizontally polarised which means that for maximum performance the receiving aerial must be erected in a horizontal position. Whilst a proper aerial may be obtained, and will undoubtedly be needed in fringe areas. within quite a wide range of the transmitter quite an inexpensive aerial will suffice. A simple form of indoor aerial can be made from twin flex by untwisting the end to a distance of 2 ft .6 in . to make a straight horizontal portion 5 ft . long with the down lead at the centre. The other end
of the flex should be connected to the input torminals of the receiver. For best results the direction of the horizontal portion should normally be at right angles with a line drawn to the transmitter. Since the signal strength at the receiver increases with the height of the aerial above ground, the latter should be mounted as high as possible, for preference in the loft of the house or above the roof.

For those who wish to make a more ambitious aerial, or who are situated at a distance, reflectors and/or directors may be added, following a similar technique to that used in present-day television equipnent. The figure of 5 ft . already given will come roughly in the centre of the V.H.F. band, and if a reflector is used it should be roughly 5 ft . 3in. long, and the director 4 ft . 9 in ., in other words 3 in . or so longer or shorter according to the position of the additional element. The spacing between the aerial and the reflector should be about 30 in ., and between aerial and director roughly half of this. Reflectors are placed, behind the aerial and directors in front (relative to the direction of the transmitter) and both reflectors and directors are insulated from the supporting crossbar and aerial itself, and are not connected to the aerial.

Tuners

Standard 70 ohm television coaxial feeder may be used, although the type of feeder will depend upon the input arrangements in the tuner or receiver used with the aerial. If the aerial is folded in order to reduce overall dimensions, the impedance will be raised to about 300 ohms and call for a different type of feeder or special matching arrangements.
(Concluded on page 294)

A Combined $465 \mathrm{kc} / \mathrm{s}$ Modulated Oscillator and Oudio Oscillator

An All-dry One-valve Test Unit

By A. A. Tucker

THE following is a description of a compact piece of apparatus which is easily and quickly built with few components. The author has found it most useful for rapid checking and faultfinding on superhet receivers.

The Circuit

The valve is a pentagrid (IR5, CV782) working in a tuned-grid-tuned-anode circuit which utilises the inner grid to produce oscillation at a frequency of $465 \mathrm{kc} / \mathrm{s}$. Modulation is achieved by A.F. feedback between the screen and control grids, by means of a small phone output transformer, the grid side of which is tuned to 1,000 c.p.s. The interelectrode capacity existing hetween the anode and injection grid is insufficient to cause oscillation and it is therefore supplemented by a 5 pF capacitor (Fig. I).
Output controls may be added to the circuit shown, but the A.F. outputs have a convenient amplitude and proximity of the R.F. probe to the test point gives sufficient control over I.F. input.
circuit should be resonant at a slightly higher frequency.

If other equipment is not available, the adjustments may be executed with the aid of a correctly aligned

receiver. First, with the anode tuning core in minimum position, inject into the first I.F. stage and search for oscillations by tuning the grid coil. If not

Figs. 2 and 3.-Details of coil and valve base connections.
1R5 CVIEz
Open circuit output amplitudes are approximately : 3 volts at I.F.
3 volts at A.F.1.
1.5 volts at A.F.2.

Depth of modulation at 1,000 c.p.s., 50 per cent.
All outputs are sine waves.
The tuned anode and grid circuits are provided by the two sides of an I.F. transformer, and because oscillation is maintained by the Miller effect, magnetic coupling between the two windings must be destroyed by means of a copper screen at éarth potential (Fig. 2).

Construction presents no problem. The positioning' of components does not need special care other than making R.F. leads short and rigid. The writer's model has overall dimensions of $4 i n$. by $4 i n$. by $4 i n$.
The frequency of R.F. oscillation is determined by the grid tuned circuit, whilst the anode tuned
\qquad . asila setilition ceases. A slighty higher frequency setting of the anode coil is the correct operational point.

Use

The I.F. output is sufficiently strong to force through the R.F. section of a superhet receiver, and so a set may be tested overall except for the local oscillator.

If a fault exists the 3 v . A.F. output connected across the primary of the output transformer (power disconnected) will test the speaker, transformer, and whether the transformer is connected the right way round. From there move back, testing at the grid of each stage, using A.F. or I.F. outputs where appropriate, until the faulty section is found, and then search in the same manner for the defective component.
1.F. alignment may be carried out by applying the I.F. output to the signal grid of the mixer valve with the L.O. out of circuit.

PART 1.-THE RECEIVER
By W. Schroeder

THE signals reaching us from outer space are weak, and detecting them and precisely measuring their strength calls for a very high degree of sensitivity of both the radio and the recording equipment.

As the average radio constructor is hardly interested in absolutely precise equipment-the results obtained with that could be appreciated only by an astro-physicist-the apparatus to be described here was designed with a view to simplicity in construction and operation without sacrificing an appreciable degree of sensitivity.

The intensity of the radiations reaching us from extra-terrestrial sources in the wavebands from 15 metres down to 1 centimetre is in the same region as the thermal noise generated by the aerial. The receiving apparatus, therefore, must have a very high amplification. It is also desirable to have a wide bandwidth in order to make a maximum of power available for detection. The signal-to-noise ratio should be as low as possible, and the qquipment is preferably operated from a stabilised power supply, or from reliable batteries, to keep the gain at a constant level, and to make it possible to detect even small changes in the intensity of the received radiations.

Considering these requirements, the successful construction of a radiotelescope seems to be beyond the capabilities of an amateur. A T.R.F. receiver with sufficient gain has-of necessity --insufficient bandwidth, and the input of a superhet seems to be too noisy to be of any practical use.

A super-regenerative receiver can, however, easily be made to fulfil these requirements satisfactorily. It has sufficient bandwidth, extremely high gain, and its signal-to-noise ratio can be kept low enough to be employed usefully to detect the faint signals from the sun or the Milky Way.

The usual form of the superregenerative receiver provides an output which is proportional to the logarithm of the signal

List of Values
$\mathrm{R} 1=50 \mathrm{~K} \Omega$ $R 2=10 \mathrm{~K} \Omega$ $R 3=100 \mathrm{~K} \Omega$ $\mathrm{R} 4=100 \mathrm{~K} \Omega$

Fig. 1.- Basic, circuit of super-regenerative receiver working in linear mode. V1—Quench oscillator, V2-Super-regenerative oscillator, V3-Detector.
$\mathrm{R} 5=25 \mathrm{~K} \Omega$
$\mathrm{R} 6=100 \mathrm{~K} \Omega$ (Variable)
$\mathrm{Cl}=0.01 \quad \mu \mathrm{~F}$
$\mathrm{C} 2=100 \mathrm{pF}$
$\mathrm{C} 3=0.001 \quad \mu \mathrm{~F}$
$\mathrm{C} 4=100 \mathrm{pF}$
$\mathrm{C} 5=50 \mathrm{pF}$
$\mathrm{C} 6=25 \mathrm{pF}$ (split stator)
$\mathrm{C} 7=0.001 \mu \mathrm{~F}$
$\mathrm{C} 8=0.001$$\mu \mathrm{~F}$
an alternating voltage which is superimposed on the steady grid-bias voltage.

During the positive parts of the quench-cycles, the
anode current has a component at carrier modulation frequency which, in radio astronomy, is a random noise.

As the gain of a super regenerative receiver of this kind is proportional to the period of the quench cycle, this should be made as long as possible.

Five hundred cycles per second is by no means too low a frequency, and as the actual noise received is of no importance, it does not matter if the output is modulated by an audible frequency.

Gain is also increased by adjusting the gridvoltage of the super regen erative oscillator to a

I super-regenerative valve tecomes conductive, and oscillations begin to build up.

The exact moment when these two voltages cancel one another to the extent of making the valve conductive is the only part of the whole quench-cycle during which the receiver is sensitive either to signal or to noise. The signal (or noise) voltage then present determines the initial amplitude of the oscillations which afterwards build up to about one million times that value. Fig. 2 shows the envelope of the super-regenerative oscillations during one quench-cycle without and with a signal at the receiver input in relation to the grid-voltage at the oscillator.
During the n gative parts of the quench cycles, the valve must be biased beyond the cut-off point to make sure that the oscillations cease; otherwise the next burst of oscillations builds up from the remainder of the oscillations from the previous cycle, instead of from the signal, with consequent loss of sensitivity.
As the current required by thevalve to start oscillation is only a fraction of the current passed by the same valve when used as an amplifier, the shot noise is considerably smaller, and the noise factor is decreased. This can be further improved by making the coupling very tight, thus further reducing the current required to start the valve oscillating.

The mean anode current of the oscillator increases during each burst of oscillation and, as the mean of the oscillation amplitudes alters with the signal strength, the

Fig. 4.-Circuit of the complete receiver consisting of grounded grid R stage, L.F. crystal rectifier
making sure of this, and the oscillation envelope should have a shape as indicated in Fig. 2. On no account must the top of the curve be flattened down.

Finally, the gain is inversely proportional to the capacity included in the tuning circuit, and this should consequently be kept as low as possible. At the short wavelengths concerned, a few picofarads are all that is needed, anyway.

Taking all this in account, the super-regenerative receiver should have a gain of about 90 to 100 decibels.

R.F. Stage

If this receiver is connected to an aerial, it is liable to radiate oscillations which will interfere with neighbouring receivers, and which may be reflected by nearby metal objects and thus give misleading indications of received signal power. It is, therefore, necessary to precede it by an R.F. a m plifier,
he author. The unit on the left contains R.F. uench oscillator and detector. The other F. amplifier and valve voltmeter.
which has the advantage of giving some improvement in the signal-to-noise ratio.

Unfortunately, it also-destroys what is possibly the greatest advantage of the super-regenerative receiver in its application as a radio telescope : this

Fig. 3.-Basic diagram of grounded grid R.F. amplifier.
is the advantage of single circuit tuning with its consequent bandwidth. The application of a grounded grid R.F. amplifier triode, however, avoids this complication, see Fig. 3.

The output from the detector stage, which is either a silicon diode as used in radar receivers or a germanium diode capable of rectifying V.H.F.s, is amplified in a single-stage L.F. amplifier and then rectified by four germanium diodes in bridge circuit. These can be low-grade types, but must be reasonably well matched (Fig. 4). The output from the L.F. stage is, of course, a 500 c.p.s. frequency, the amplitude of which is determined by the strength of the received signal. The condenser C11 is, therefore, charged to a D.C. potential which is proportional to the signal.

The circuit associated with V5 acts like a valvevoltmeter, and the $0-1 \mathrm{~mA}$ meter in the anode lead gives an indication of the signal strength. Without an aerial connected to the set, the reading obtained will

LIST OF COMPONENTS

(Fig. 4)
R1-According to valve
R2-50 k!
R3-10 k :
R4- $100 \mathrm{k} \Omega$
R5-100 k!2
R6-250 k!? pot.
R7-100 k 2
R8-According to valve
R9-100 k!
R10-250 k Ω pot.

C1-0.001 /F
C2-0.05 $/ / \mathrm{F}$
C3- $0.001 \mu \mathrm{~F}$

C4--To tune secondary of T1 to 500 cps .
C5 $0.001 /{ }_{1 / 5}$
C6 $-25 \mathrm{pF}^{\text {(}}$ (split stator tuning condenser)
C7- 50 pF
C8-0.001 ${ }_{\mu} \mathrm{F}$
C9-10 10 F
C10-0.001 2 F
C1I-25 $\mu \mathrm{F}$ electrolitic
C12-0.1 $\mu \mathrm{F}$
C13-25 $\mu \mathrm{F}$. electrolytic
C14-0.001 $\mu \mathrm{F}$
C15-8 $\mu \mathrm{F}$ electrolytic
e, quench oscillator, R.F. oscillator, crystal detector, L.F. lie voltmeter.

 1 1 I

 006
correspond to the noise generated in the set itself, and although this consists of random voltages, the meter gives a comparatively steady reading, because it is damped by the circuit constants. The bias of V5 can be adjusted to give a reading of 0.01 mA (this is easier to adjust correctly than zero). After connecting the aerial the new reading obtained corresponds to signal voltage received plus noise generated by the aerial itself. By directing the aerial towards a part of the sky which is known to be practically free from radiations, the meter can again be adjusted to give a reading of 0.01 mA , and then any reading different from this is due to actually received radiations.
Because of the high amplification none of the readings will be completely steady; the needie will always fluctuate somewhat, but quite small signals still give a reading which it is possible to distinguish from these fluctuations.

Layout of the Receiver

While Fig. 4 shows the final circuit of the complete receiver, Fig. 5 is a diagram of a suggested layout. The whole receiver is mounted on two strips of wood, 1 in . by $\frac{1}{2} \mathrm{in}$. by 18 in . long, which are screwed to the top of two blocks of wood 2 in . by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in. thick. A third strip of wood is screwed to the front and this carries all the adjustable controls. The whole chassis is given two coats of aluminium paint and is then ready for mounting the components.

The sensitivity of a receiver built along these lines is very great indeed. If a noise factor of 2 or 3 is obtained on the meter waveband-which is quite possible with modern U.H.F. valves-an input of only $10-14$ watts gives a clear indication. With a receiver bandwidth of $1 \mathrm{Mc} / \mathrm{s}$ and an aerial gain of only 10, the greatest part of the Milky Way gives a clear indication of radiations. From some parts these
are, under the conditions mentioned, about 10 to 20 times greater than the minimum detectable.

Individual "radio stars," or the sun under normal conditions, do not radiate enough power to give a reading on this receiver. Not even when extreme care has been taken to stabilise the gain of the receiver. But a nethod was discovered some years ago which increases the sensitivity several hundred or thousand times, and this has the added advantage of eliminating any instability in the gain of the instrument.

Increasing Sensitivity

Fig. 6 shows the modifications necessary to obtain this enormous sensitivity. V6 is a noise generator

Fig. 5.-Suggested layout of receiver.
coupled to the receiver input by L3. The noise power generated can be adjusted by altering the filament voltage, but always working the valve at saturation point, that is, with the full high-tension on the anode.
Two seni-circular aluminium plates rolate on a common shaft at a speed of about 25 rps , alternatingly coupling the aerial and the noise generator to the input. Any difference between the intensities of the received signal and the comparison noise appears as a 25 cps square-wave modulation in the output of V 4 of the receiver.
This is mixed in a Cowan modulator (the four germanium diodes must be well matched to avoid cross-modulation) with another 25 cps square waye produced by the battery and the two brushes connecting a metal foil on the driving shaft of the plates, which make contact throughout the time the acrial is coupled to the receiver, and breaking it while the generator is coupled to it.
The receiver output is either in phase or 180 deg. out of phase with this square wave, and thus producing either an increase or a decrease of the D.C. voltage at the output of the mixer. This D.C. potential is measured by a valve volmeter as in Fig. 4.

This arrangement eliminates any instability in the receiver, as now only the difference between two noise levels is measured, and it greatly increases the sensitivity.
Fig. 6 -Additional circuitry for incteased sensitivity. V6-Noise generator.
(To be corcluded)

Yolume Controls 80 ohn Midget Edisman type MTANDARI din. dian

 Loog spiniles (iuran- Pulythene ingristevi. teed 1 year. All valica 10,010 ohms to 2 Meg . ohme.$\begin{array}{cc}\text { No } 8 w . ~ S . P . S w . ~ I n .1 " . ~ \\ \text { 3/- } & 4 /- \\ \text { COAX PLUGS } & \ldots\end{array}$ $\begin{array}{lll}\text { SOCEETS } & \cdots & 1 /! \\ \text { LINE CONNBCTOR } & 1 / 2\end{array}$ $\begin{array}{lll}\text { LINE CONNBCTOR } & 1 / 2 \\ \text { OUTLET BOXES } . . . & 4 / 6\end{array}$ OUFLET BOXES ... 4/6 (just releanel) 9 d , yd. BALANCED TWIN FEEDERR per yd. 6 d.$\left.\} \begin{array}{l}80 \\ \text { TWIN SCREENED FEEDER per yd. } 1 / \mathrm{c}\end{array}\right\} \begin{aligned} & \text { ohms }\end{aligned}$ 60 OHM COAX CABLE 8d, per yrl. sin. tia. TRIMEMES, Coramic, 30.70 pf. 9 d .100 pf . $150 \mathrm{pi} ., 1 / 3$; $250 \mathrm{pf} . .1 / 6$; $300 \mathrm{pf} ., 1 / 8$ RRSISTORS.-AII values; 10 ohma to 10 meg. Ew., 8d.; wi, 5d.: 1 w.. 8d, ; 2 w., 8d.; High Atability, \& w. $1 \%, 2 /-100$ ohmes to 10 Meg
WIRE-WOUND RESISTORS.-J Jatent typue Silicone
 $1 / 8$ ez. ; 10 w. (1 Iín. x fin.) 25 ohms- 10.046 , ihats
 2/- ea. Also 15,000 ohnis- 33.000 ohnus 5 w., $1 / 9$ 13,000 ohans-33, 100 ohnis J 0 w., 2/3.
WIRE-WOUND POTS. 3 WATY. FAMOUS MAKE. Pre-Set Bin.'T.V. Type Standard Size Knurled Slotted K nob. Spiudle. High Grade. All values 2.5 whms to 30 All Valnes. (tow whras ta K.. 3/- ei. 50 K., $4 /-$ is K:, 5/6: 3010 K., 6/6. I)itto farhon Track W/W EXT. SPEAKER 50 K . to 2 Mer., $3 /=$ W/W EXT. SPEAKER
CONTROL $10 \Omega, 3 /-$ O/P TRANSFORMERS. tandard Pentorle, 4 ditto tapped print, $4 / 8$; small pentome, $3 / 8$. L.F. CHOKES 10 h .53 bia., $5 / \mathrm{m}=20 / 25$ h. $100 / 150$ ma., 12/6. 5 h. 350 ma, $15 /-15 \mathrm{~h}, 104$ man, $10 / 6$ LYNX. 3 h , $250 \mathrm{ma} ., 13 / 6$. SIMPLEX, if h. 150 mil 10/6. MAINS TRANS. - Made in otr unn workwopm to high grade specification. Fuily inter-lensell abl impregnated. T'upped prim, ㄹ(t) v. $/ \pm 50$ v., Heater Trans., 6.3 v., $1 \frac{1}{2}$ amp., $7 / 6$; ditte ti.3 צ.. is anus.
 80 ma., 6.3 V., 4 a., f) v., a an. ditto $3(1)-(0-300$, ditto 250-0-050, 26/=. AMPLIFIER TRANS. 250 v. 54 nia t wave, 6.3 צ. : a. Filly Whrithten, 27/6. Vieu master Auto Type, $35 / \mathrm{m}$. Simplex, $35 / \mathrm{m}$. $1 / \mathrm{H}$ Quality Radiogram (Morley), Mains Trans., 35/La.F. Choke, 13/B. Output Truns., 35/-. Sperials to requirements.
 Specitied Wufer Switches, 22/6 per eet of 3.
TYANA.-Midget Soldering Iron, $100 / 250$ 5. or 230/230 v., $14 / 11$. TYANA TRIPLE THEEE. Complete with detachahle beach etaini,
ISW SOLON MIDGET IRON, 25 w., $18 / 6$, C.E.T. GEATER ISOLATION TRANEFORMER Low leakage windin boost. Ratio $1 ; 1$ br $1: 1.2 \breve{J}_{3}, 2$ v., $^{2} 10 / 6 ; 4 \mathbf{v}_{\mathrm{r}}, 10 / 8$; 6,3 v., 10/6: $12 v_{\text {., }} 10 / 6$. MALNS PBMMARIES and Epeciale to Order, etc., 12/6 each.
CRYSTAL DIODE-Very sensitive. G. L.C., 2/-V'HOLDERS.-Pax; lnt. Uot., 4d. E EF50, EASU, 6d. ; R12A CRT, 143. Moulded; Int. Uct.
 B8G, B9A, 1/-: VCR97, 2/6, Ceramio: EPSO, SAGSTRIPS.-2- or 3-क 2y, 2d. ; 4- or 5-way, 3d. 6- way, 4d. ; 9 - or 16 -way, 6 d ., etc.
TOGGLE SWITCEES EX-GOVT.-"On-off," gd, Lrsin M cure solder 60/40. Jtik. or $18 \mathrm{~g} ., 5 / 6 \frac{1}{2} \mathrm{lb}$.
 Conneet
BLEEVING. Yarions colours, 1 mm , and 2 mm . 2d. Yd. 3 mm . and 4 mon., 3d. 3 d .6 mm .5 d. vd. \&B.A. or 8 B.A. Nuts, Bolts and Wayher Kite, fib. in., or fin. Li: per doz.
FUSES.-I $\frac{1}{2}$. all values 60 ma . to 10 a ., 4 d .
ALADDIN FORMERS ard cores, tiu., 8d. : in., 10d. SLOW MOTION DRIVES.-Epieyclic ratis $6: 1,2 / 8$. 200-250 Volt SFRECTOR SOCKET (edin. I lin.) with Pluy, $1 /=$ PILOT LAMPS. - 6.3 v. .3 a , 8 d . SPEAKER FRET,-Expanded anotised metal.
 MAINS DROPPERS. Ailicone cuater, with elieler clipa. lö amp. 1,540) ohms (2 lin. A Jin.), $4 / 3$ ea, anp low ohms (3 ain. $1 /$ im., $4 / 3$ ea.
 750 ohuns now-comted ($3 \frac{1}{2 i n}$. x ifin.), $4 / 6$ ea. LFNE CORD. 3 amp, wo ohms pier tont, 2 ; mir. 100 ohthes per foot, 2 \& ay, $1 / 6$ a yard; $3-$ may, $1 / 9$ a yard.

ALL WAVE RADIOGRAM CHASSIS THREE WAVEBANDS
M. W. 16 wi.-5in m .

FIVE VALVES M. W. $2 \mathrm{mj} \mathrm{m} .-550 \mathrm{~m}$.

LATEAT MDMGET L. W' M10 $112-2,094 \mathrm{in}$. WERIEN.
 govilion wavechange Nuitch. Nhort-Medmmelong Gram. How Motina Thning. Hpeaker and Pick-11p commectims. Higt Q inon-ilust crired coils, 46 . Kc/a I.F. I.atest cireuit terhhique, delayed and segrative remanack. Output approa, 4 watts. Ghans onthat 1 ransiormer on changis. Chassis bize zontal ur vertial tyase drailabie, lit by 2 jilot zontal or vertical type arailabie, lit by 2 Pilot M.W. Ked, s.W. White. Four Knobs nuplied. Wialriut or Mors to choice aliunal and culibrtited © 'haskis isalated from mains, PRICE fo 15.0 "arriage entl liantrance, $4 / 6$.
sin. of loin. menkers to match available.

RADIO CHASSIS KIT

All commonenta available for buidding np Classis as per illustrated phots above. Drilled and punched chas is $13 \frac{1}{2} \mathrm{~h}$. $\mathrm{x} ~ \mathrm{~J}$ in. complete with tivine briwikete, lackplate ami lial llin. x $4 l$ if.. Tuniug Drum, I'ulteys, Pointer Spring, Irive Cord, etce, 22/6. P. \& p. $2 / 6$. Mains Trans., $22 / 6$; I.F. Tralıe, $10 / 6$ וr. ; Tuin tiang. 8/6; Cuils, $2 / 6$ ea., ete., etc.

RECOMMENDED FOR ABOVE CEASSS

 BARGALN VALUE IN RECORD CHANGERS. Brand New Plensey 3-speed Autochanger Mixer Unit for 7, 10 and 12in. Records. Twin Hi-Fi Xtal Hesd with Dnopoint sapphire stylns. Plays 4,000 records. Sprang monnting. Superb Quality. Bargain Price 91 gns. Bame board aize $15 \frac{1}{2} . \dot{x} 12 \frac{1}{2}$. Height $5!i m$. Depth 2in.

SUB MINIATURE VALVES WIRE ENDS

3 VALVE AMPLIFIER

With variable Tune and volume controls. 3 Milket B.V.A. valven- 4 watts output. Neg, feellack. Chassis isolated from Mains. A.C' 6hm/ent r. A quality amplifier at an econemilal price. PRICE 2.19 .6. Carr. $2 / \mathrm{m}$. Nired
and tested, $7 / 6$ extra. Cireuit and instr. free.

WAVECHANGE SWITCHES.-Midget type, single wafer. ${ }^{2}$ pole, 2 -way, 3 mole 2 -why, $2 / 6$ ea, : 1 yole
 CONDENSERS. New Htock, 001 mid, 8 kV . T.C.C., 5\%. Ditte, 12.5 kV . $2 / 6$; 2 pf. to 36 pf .
 Mprague 510) v.. ite N.S.F. 500 v., 1 mind. 350 v .
 Sd. : . 05 mind. and . I mid., 1/-. . 5 m mid., $1 / 6$; Tubular . 5 mid. 330 ve, $1 / 9$. SILVER MICA CONDENSERS,- 10%
 DITTO 10 (ex stock).
1.5 pf , to $500 \mathrm{pf},. 1 / 8.515 \mathrm{pf}$. to $5,000 \mathrm{pf}, 2 / \mathrm{s}$.

ELECTROLYTICS ALL TYPES NEW STOCK Tubular Wire ends \mid jo/2ju v. Plestrey $\quad 1 / 9$ $5+16 / 500 \mathrm{v}$ Imbiliter $16+16 / 5000 \mathrm{v}$. Jult, $6 /-$
 1/275 v. B.E. 1/27.3 :. B.E.C $4 / 500$ v. Huats $\begin{array}{ll}4 / 5 \mathrm{t}) & \text { V. Hunts } \\ \mathrm{g} / 4 \mathrm{Fin} & \text { v. B.E.C. }\end{array}$ $8 / 450$ ₹. T.E.C. $8 / .100$ v. Jubilier $10 / 510 \%$. Dubilier thigun v. Jubilier $\begin{array}{ll} \\ N+4 / 500 & \text { 4/ Dulsilier } \\ \text { 4/6 }\end{array}$ $\begin{array}{lll}16 / 351) \\ \text { v. B.R.C'. } & 8 /-\end{array}$ 32/350 v. Buhblier $x 2 / 500$ v. Dubilier $32+32(351)$ v. 1ubb. 5/6 $32+52 / 500$
32
$1 / 9$
$2 /-$ Cen Types, Clips, 3d. ea.

 $\begin{array}{lll}1 / 2 / 6 \\ 32 / 350 & v . \text { Dubilier } & 4 /-\end{array}$

 $\begin{array}{lll}25+5 / 6 n 0 & \text { v. B.F.C. } & 8 / 6 \\ 8+16 / 450 & \text { v. }\end{array}$ $\begin{array}{lll}8+16 / 50 & \text { v. K.S.C, } \\ 8+10 / 501 & \text { v. T.C.C, } & 5 / 8\end{array}$ $8+16 / 500$ v. T.C.C. $5 / 6$
$16+16 / 450)$ v. B.E.C. $5 / 6$ $16+16 / 450$ v. B.E.C. $5 / 6$
$16+16 / 5 \mu)$ v. Ihab. 6/$16+32 / 350$ พ. T.e.C. $4 / 6$ $30+32 / 480$ v. B. Fi. 1^{-}, 6/6 $60+10(1 / 3.20 \mathrm{y}$. F 1 ninte $11 / 6$ $100+\because(0) / 27.1$ v. B.E.C SPRCIALS. - (an. Types. 500 mfil. in v., $3 / \mathrm{m}$ $1,(40) \mathrm{mhl}+1$, thon midt. 6 v., $6 / 6 ; 1,500 \mathrm{mfd} .6 \mathrm{v}$. ,
 SENTERCEL RECTIETERS
SENTERCEL RECTIFTERS. E.H.T. TYPE FLYBACK FOLTAGES.-K3/2.j $2 \mathrm{kV} .4 / 3 ; \mathrm{K} / 403.2$
 TYPE - KYi' 12/6; K3/160 1t kV, 18/~. KAINS

 ENGRAVED CONTROL KNOBS for din. Apindle. !iv. diam. Wilaut ue I vorz. Gold Filled, "" Focus," Cuintrast," Brightness," "Brilliance," "Brilliance-On-Of","
Of." Record-Play,"
 "ram." "Radio-Gram." $1 / 6$ ea Plain knotm to Gram. Radio-fram, $1 / 6$ ea, Plain knotw to match zbove, 1 im., 10d, ean, 11 in dian $8 d$, ea. or Ivory. sin., l/= ea. lin., 8d. ea. Puinter Knobs Black with white Line, 9d.
WEARITE " P " TYPE COILS. All ranges. 1 to 7. $2 / 6$ ea, Osmor Q verien Coils, slug tuners, Ali rankes from 3/6. Allen $2 / 6$, 11 , REACTION COND.-.061, .0003, .0005. mid. \$/6 ea.

I.F. TRANSFORMER8.
 $465 \mathrm{~K} / \mathrm{cs}$.
 Pye Semi Midget, 6/9 pr. Allen Standard size, $10 / 6$ pr. Wearite Standard 8 i pr. Wearite

ALUMINIUM CHASSIS.-18 s.w.g. Pieib, undriled. lolded 4 sidea and riveted corners lattice fixing holes. Strong and soundly constracted with 2 in. sides. 7 in. I 4 in., 46 ;

CEARGER TRANS PRIM,- $1 / 200 / 250$ 0.9 v.-L5 v. (for charging $6 v$, and 12 v.) J. 5 a., 13/6 WLL WAVE BRIDGE SELENIUR RECTIIT FULL WAVE BRIDGE SELENIUK RECTIFIERS,-
 H.F. MIDGET CHOKES.-14 M.H., 2/6 cach. BRIMISTORS.- " ZI for . 3 a heater chains, $3 / 6$. CZM for , 15 th, or 2 a.. 2/6. CZ3 (Pilut 1,amın, 1/6. COPPER ENAMEL WIRE.- $\frac{1}{2}$ lb, 14 to 20 s.w.R. SWITCH CLEANER Finiel, squirt apout, $3 / 9$ tin. SWIN GANG TUNING CONDENSERS.--37. T . iniget, $6 / 8$; difto, with inst cover and trimmery, titto. with tifmmere, $8 / 6$.
RECORDING TAPE.-seoteh Roy 1,000 ft. reels LOUDSPEAKERS P.M., 3 OHM.
Goolmans tin. square, 16/6; biin., 17/6; 7in, Elliptical. 18/6; 8in. toodmans, 18/6; 10ha. l'icssey, 25 !-
T.R.S.

RADIO COMPONENT SPECIALISTS (THO. 2188)

 Now at 70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
SUPERIOR RADIO SUPPLIES

Tel : ELGar 3644.

A REALLY OUTSTANDING PORTABLE!

The

S UPEREX

55 ATTACHE

BUILDING COST 67 - $15 \cdot 0$ Plus P.P.

* 4 valve superhet L.M. wave. $\star 7 \mathrm{in}$. x 4in. elliptioal speaker \star Latest miniature valves. \star Very attractive cabinet. \star A.B.C. Construction booklet

> TEABMS: Cash with order or C.O.1). Exira charge fior Co.b. U.K. and N. Ireland only.

This is a first-class receiver which we guarantee will give the very best of reception in all parts of the country. No trouble has been spared to ensure simplicity of construction. combined with equality in appearance and performance to any commercial models All parts available separ ately, Send 1/6 for " Superex 55 " construction booklet.

PERSONAL SHOPPERS WELCOME

NEW! EXPERIMENTAL KITS in Radio. T.V. etc.

learn the practical way

Specially prepared sets of radio parts (which you receive upon enrolment) with which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business - these Practical Courses are intended for YOU-and may be yours at very moderate cost.

EASY TERMS FROM 15/- A MONTH

All lessons and equipment supplied immediately and become your own property.

POST THIS GOUPDN TODAY

Please send me your FREE book on Practical Courses To: E.M.I. INSTITUTES, Dept. 32X, Grove Park Road, London. W. 4.

NAME
ADDRESS

SUBIECT(S)

EXPERIMENTAL

OUTFITS:

RAD
RADIO (basic) - A course in basic principles.
RADIO - Instruction and equipment from which you build a Radio Receiver.
TELEVISION - instruction and equipment for building a Television
Also for Mechanics, Electricity, Chemistry, Photography, Carpentry,
Draughtsmanship, Commercial Art, Amateur s.W. Radio, Languages.
E.M.I. HNGTITUES $\begin{aligned} & \text { The only Postal College which is part } \\ & \text { of a world-wide industriat Organisation }\end{aligned}$

MAKING TRAMSISTORS

HOW TO USE SURPLUS DIODES IN THE CONSTRUCTION OF MODERN TRANSISTORS

By H. T. Noar

TCHE small . 161 dia. germanium diodes with wire ends can be made into a transistor as shown on the attached sketches. This assembly calls for two diodes, a body made from a type of knob usually found in the spares box, adjusting plates of strip bräss from a spent battery, and a small piece of tube approximately $3 / 16 \mathrm{in}$. outside diameter. The diodes àre broken apart and both catswhiskers used, while one crystal is used and the other kept as a spare.
To construct, first modify the knob as shown, cutting off to length and.file the end true. Next, drill all holes, using a No. 49 drill for 8 BA tapping. The central hole should be drilled to a push fit for whatever piece of tube is available. Next, saw.cut, keeping directly across the centre, then file out the $5 / 16 \mathrm{in}$. wide slot. The ends of the whiskers should be trimmed on an oilstone before cutting off the heavy

wire to length. This is attached to the brass adjusting plates by soldering at a slight angle as shown. The 9/32in. dimension should be as nearly equal as possible in both plates, although any slight difference is taken up by varying the shims on assembly. A piece of mica, about .002 in . thick, $\frac{1}{4} \mathrm{in}$. by $\frac{3}{3} \mathrm{in}$. approximately, is placed in the slotyand held in position with paper packing on each .side. The ends of the whiskers should project $1 / 16 \mathrm{in}$. beyond the bottom edge of the mica sheet.
The glass end of the germanium crystal should be left on, and is cemented to the end of the tube, which should be countersunk slightly. The wire end is brought out of the end of the tube through a piece of rubber sleeving.

Solder flexible wire to the adjusting plates to connect underneath through holes in the base. The

Fig. 1 (left).-Elevation and plan of the finished component, and Fig. 2 (right)-Details of modifications to control knob.
shims are made of thick paper or 010 in . copper sheet, cut to the same size as the adjusting plates. This is for height adjustment, so that when assembled, each whisker touches the crystal with exactly the same pressure. When assembling use a magnifying glass to examine the position of points through the sighting hole.

The tube must be a fairly tight fit in the central
hole so as to stay in position once the correct position has been found. The crystal is pushed up against the catsiwhiskers until the resistance to either reads about 700 ohms in one direction, and about .5 megohms in the other direction. The tube should then be cemented lightly in position and a cardboard cap made to fit over the whole assembly and keep out dust, etc.

Forming

To form the collector it is necessary to pass a pulse current of about 250 volts through one of the whiskers, which should be painted red or marked C. This can be accomplished by discharging a $.1 \mu \mathrm{~F}$ condenser between the collector and the crystal at regular intervals until the back resistance drops to about 8,000 ohms. Commence using a small value condenser and low voltage, and working up to $.1 \mu \mathrm{~F}$ at up to 300 volts. Should the crystal become damaged due to overload, it can be turned round, readjusted and the collector re-formed.

Figs. 3 and 4.-Details of the adjusting plates, and an enlarged view through sight hole showing spacing of catswhisker.

adjusting regeneration. However, the 50/500 capacitor combination shown will provide excellent results when using either a $6 \sqrt{ } 6$ or a 12 AT 7 in the oscillator circuit. Fig. 6 shows the circuit, while an al:ernative slug-tuned version is shown in Fig. 7. For a $144 \mathrm{Mc} / \mathrm{s}$ transmitter, an $8 \mathrm{Mc} / \mathrm{s}$ crystal could be employed, with the first triode of a 12AT7 or 6 J 6 oscillating on the third overtone, i.e. $24 \mathrm{Mc} / \mathrm{s}$. The second triode section of the $6 \mathbf{1 6}$ or 12AT7 can double or triple to give 48 or $72 \mathrm{Mc} / \mathrm{s}$ output which, passed to a doubler or tripler, provides direct $144 \mathrm{Mc} / \mathrm{s}$ drive for, say, an 832. Line-ups of this sort are, in fact, common for 2 metre working, and for third overtone operation the circuits shown are generally docile and stable when correctly adjusted.

RECEIVING F.M. TRANSMISSIONS
 (Conchuded from page 285)

For the reception of the transmission, a plug-in feeder will no doubt prove most useful, as the majority of listeners have a good radio, or amplifier used with a radio tuner or gramophone unit, and a tuner may be built with an output designed to be connected to the pick-up sockets of such an amplifier or receiver. There are several commercial tuners on the market and we shall be describing further designs in due course. There are several alternative arrangements available, but the critical part of any F.M. receiver is in the detector circuits, and although it is possible to make up the special Iransformers which are required they are available ready-made from at least one firm. The normal superhet circuit is best, and the tuning may be pre-set or manual, according to individual preference. An 1.F. of round about $10 \mathrm{Mc} / \mathrm{s}$ is suitable and again I.F. transformers made for this frequency are commercially obtainable. At the high frequencies used for these transmissions stability is a most important factor, and care is necessary in the layout and wiring of any feeder or receiver. and also in the disposition of certain parts to avoid the effects of temperature changes.

TWO COMPLETE Hi-Fi AMPLIFIER KITS

STERN RADIO LTD. $109 \& 115$ FLEET ST., E.C.4.

NOW AVAILABLE WITH
THEREMARKABLE NEW

Details of full range notr comprising $1 / 8 \mathrm{~m} ., 316 \mathrm{in}$.i 1 din . $3 / 8 \mathrm{Bin}$.-
 Sole Manufacturers and Distribntors :

The soldering bit which lasts indefinitely, does ant becone pitted or lose its face and requires no reshaping. fliny or maiu tenance. Fixed bit models and repiaceabl
all
siz 38.

- no transformer

NECESSART

- FOR MANS OR LOW voltages.
Rapid Heat ing-Extreme Light voltage when orriering.)

LIGHT SOLDERING DEVELOPMENTS LTD. 106, GEORGE STREET, CROYDON, SURREY. Tel. CROydon 8589
tape THE VESPA
DECK

2-SPEED-
$3_{i}^{\frac{\pi}{i n}, ~ \& ~} 7$ in. TWIN TRACK

MODEL 521. Compact Deck. 7 in. x llin., 5 in, reels. Kit, 67.10 .0. MODEL 721. Standard Deck, 10 in, x lim. 7in, reels. Kit. 68.10.0, Easy to assemble, precision-machined parts, latest high-fidelity heads, first-class motors, full assembly instructions. Either model fully built and tested, 27/6 extra. Send stamp for full details :
E.W.A.s 266, warbreck drive, blackpool.

The SMALLEST HIGH PERFORMANCE TAPE RECORDER
The

In a class completery by itself!
Completely self-contained for recording - playback through your own favourite amplifier or radio, ensuring faithful and flawless reproduction. Send for illustrated leafte! and derails.

26 cns

Or complete with dosk microphone and ONE HOUR spool of tape for 631.4.6.
Buy on the M.O.S. PERSONAL CREDIT PLAN-fs deposit and 12 mihly payments of f.2.9.2. (Or up to 18 mths. if required.)

* Single Knob Control
* One Hour's Recording or Playing Time
* Weight only 16 lb.
\star Size $12 \frac{13}{\circ} \times 10^{\prime \prime} \times 42^{\prime \prime}$ (detachable lid)
* Infinite Impedance Output - no mismatch possible

All proprietary branded merchandise is available on the M.O.S. Personal Credit Plan-send for details.
E. \& G. MAIL ORDER SUPPLY CO. The Radio Centre 33 Tottenham Court Road, London, W.I. Te!. MU5 6667

THE POCKET LOUDSPEAKER SET

Using our clear drawings and instructions you can build a midget loudspeaker receiver small enough to tit in the jacket pocket. This receiver is fully self-contained-no aerlal, earth used are of the new layer type specially produced by a famous British maker for this class of receiver Only one single-gens midget variable condenser is used for tuning, and the receiver requires no alignment. The midget components chosen are current British production. not surplus or forelgn. Instructions and Drawings, including Theoretical Circuit and Point-to-Point Wiring Diagram.

PRICE 3/6 POST FREE
This offer applies onty to fit. Hritmin, Irish Republid and Vorthern Ireltand

SWIFT RADIO

102, BATH RD., WILLSBRIDGE, Nr. BRISTOL
Orders by post only

THE " METRIX" MODEL 410

- 10 rages mith a seasitivity of $j 00$ ohms per sult irom $7 \mathrm{j}-7.50$ volts. A.C. and D.C, Vults 15-7.3 150-atob-7n 0 , lieswance 0.100 olims. Weig ht: 1 1h. :- ous and 8 month!y tamments of $22 / 5$

THE "METRIX" MODEL 460
Hith "S ranges. Internul resibtance 10.000 ohms per volt A.C. and D.C.
 uegohms in two ripges, Dimensions: Jitu, x 4in. x lifin. Weigh:, th. © oss. Casil R+ice ± 14.64 or $35 /$ - deposit aud 8 monthly paymentu of 35%.

3, Corbetk Passage, Rotherhithe New Road, London, S.E.i6, Telephate : DEAmondsey 4341 . E.xt. 1. \qquad

A RECEIVER COUNTERPART TO THE SMALL ONE-WATT TRANSMITTER DESCRIBED IN THE MARCH ISSUE
By T. W. Dresser

IN a recent issue of Practical Wireless the writer described the "Cigar Box Transmitter," an extremely small 1 watt transmitter suitable for the amateur without mains electrical supplies or who is so restricted for space that anything in the nature of a normal sized shack and transmitter is entirely out of the question. In the present article it is proposed to describe the receiver counterpart to that transmitter, an equally small unit which, despite its small dimensions and simple circuit arrangement, will nevertheless put up quite a good show.

To begin with, those who think only in terms of double conversion, erystal filters, phasing controls and the other more elaborate gadgets of the highpriced commercial receivers, will not be interested in this receiver. None of those adornments can be built into a T.R.F., but even without them the performance of this receiver is not one to be despised. The circuit consists of an R.F. amplifier, leaky-grid detector, with reaction, and audio amplifier. All the valves are of the same type, IT4's, just as are those in the transmitter. The excellent performance arises principally from good layout, adequate screening and the very smooth regeneration provided by potentiometer control on the screen grid of the detector. It has been called a cigar box receiver, and it can easily be built into such a box, as was the original, but there is no reason why it should not be assembled in a metal case or on a small metal chassis, and, in some cases, this may be an advantage in that it helps to keep down hand-capacity effects. These were not noticeable in the prototype, as the cigar box was completely lined with aluminium foil, which made a most effective screen.

Construction

The form of construction used at the R.F. end may be rather unusual, but it has many advantages, noticeably in keeping grid and anode leads down to a minimum length and in isolating the R.F. stage

from the detector as far as unwanted interaction was concerned. Nor is it difficult to build as the screen can be removed from the box, the R.F. valveholder and the detector grid coil holder fitted and wired to some extent before it is permanently fastened into position. This greatly facilitates construction.

As originally built, the receiver covered the five main amateur bands, $3.5,7,14,20$ and $30 \mathrm{Mc} / \mathrm{s}$, using a ganged 15 pF tuning condenser. With some small changes it can be made to cover 3.5 to $30 \mathrm{Mc} / \mathrm{s}$ continuously, and the coil data and all necessary information is given for both coverages.

The theoretical diagram is given in Fig. 1, and it will be noted that the reaction is controlled by varying the screen-grid voltage, a method which has a lot in its favour in that it does not affect the tuning to any noticeable degree. The detector anode load is a high-inductance L.F. choke of some hundreds of Henries and that used by the writer was a prewar component. It is questionable whether such a choke can be obtained to-day, but the primary winding of an ordinary intervalve transformer will serve just as well. In that case, the secondary can be left disconnected or placed in series with the primary, but care must be taken to see that it is truly in series, and not connected in such a way that it reduces the inductance of the primary, which can happen. As with its companion transmitter, all components should be as
small as possible consistent with good quality.

Lay-out

Fig. 2 shows the lay-out of the receiver. The cigar box is lined with thin, completely flat and unwrinkled, aluminium foil, pressed well down at all corners and fastened round the edge of the box with drawing pins or strips of aluminium screwed down. The screens are then cut and bent from sheet aluminium to the dimensions in Fig. 3, and the R.F. valveholder and detector grid coil-holder mounted, as shown. The screen can then be screwed inside the box with very small brass wood screws of no more than $\frac{3}{6} \mathrm{in}$. or $\frac{1}{2} \mathrm{in}$. in length. The remainder of the construction and the wiring are quite straightforward and if the diagrams are followed carefully, there is little likelihood of error:

As with any other short-wave receiver all wiring should be as short as possible, and a common earthing point should be used for each stage. Coil formers should be of good quatity material, such as polystyrene, and the tuning gang (or coupled condensers) should preferably have ceramic insulation.

The only differences between the amatear band version, and that for 3.5 to $30 \mathrm{Mc} / \mathrm{s}$ continuous coverage are in the size of the coil formers and the sockets for them, and in the capacity of the tuning condensers. In the first mentioned the coil formers

Fig. 2. -Lay-ollt of the receiver.
are Maxi-Q dust cored 5-pin types, with holders to suit, and the tuning condenser is a 2 -gang 15 pF variable or two separate 15 pF coupled together. In the continuous coverage version the tuning condenser is a two-gang 100 pF variable, and the coil formers are standard 1.25 in . 5 -pin types with sockets to match. The change in the mechanical layout is so small that it needs no detailed description.

As the interior of the cigar box is completely covered with aluminium foil, it is advisable to keep a close eye on connections and wiring generally in order that they may not earth to the foil. Where there is any danger of this a small piece of cardboard or fibre under valveholders and at strategic points will eliminate the danger. As with all T.R.F. receivers, a good aerial is half the battle. If the receiver is to be used with the cigar box transmitter, the same aerial will serve for both: a simple form of switching will change over the batteries and the aerial from transmitter to receiver simultancously. If the receiver is to he used alone, an aerial as high and as long as possible should be erected. In conclusion, the quiet background and signal getting qualities of this little set will prove a pleasant surprise to those accustomed to elaborate A.C. lypes, and, at the same time, its cheapness is such that even the beginner need not remain without a short-wave receiver if he has the pound or two necessary to build it.

LASKY'S PAGE OF MONEY-SAVING OFFERS

EX-A.M. RECEIVEIE TYPE R. 1155

5 Frequency ranges : 18.5-7.5 $\mathrm{Mc} / \mathrm{s}: \quad 7.5-3.0 \mathrm{Mc} / \mathrm{s}: 1.500-600$ $\mathrm{kc} / \mathrm{s} ; 500-200 \mathrm{kc} / \mathrm{s}$; $200-75 \mathrm{kc} / \mathrm{s}$ supplied in maker's original wood transit case.

BRAND NEW. $\mathrm{s}^{11} 119.6$. Secondhand. Grade 1. £9.19.6 Secondhand. Grade 2, E7.19.6 Carriage $17 / 6$ extra, including 10/-returnable on packing case.

AssLEM13EED POWHEL
PACK/GLTPET MAGE FOR R, 1155 RECEIVEIR For use on $200-250 \mathrm{v}$. A.C. mains. Complete with 2 valves. In metal case size: $12 \times 7 \times 51 \mathrm{ins}$.

LANKY'S IRICIE, 79/6 Power Carr. 5/- extra. Power l'ack as above. Fitted with Glin. p.m: speaker. LASKMS IPIIGE, \&5.5.0 Carriage 5/- extra.
L. א. Mr WVET.R.F.COILS. With Circuit. 4/11 pair
H. d N. DE'AI, WHESSuperhet Coils. Aerlal and oscillator. 5/11 pair
AEIRIAL, ROI) SIETTIONS Steel. heavily copper plated. l2ins. long. 1 in . diameter. Any number may be fitted together. 1PIC昰 $2 / 6$ per doz. Post free.
TELLVISION SEILENIUM

- IRETMFIEIRS
* Sentercel " ${ }^{\text {S }}$ S.T.C. range. KBi40. 3.2 kV $81-$ $\mathrm{K} 3 / 45.3 .6 \mathrm{kV}$.
$\mathrm{K} 3 / 50,4.0 \mathrm{kV}$.
K3/100. 12.8 kV
$\mathrm{K} 3 / 160,12.8 \mathrm{kV}$
$\mathrm{K} 3 / 200.16 \mathrm{kV} .$.
" SENTEIRCRI, " METAI. RM1 RECTIFIEISS RM1, $125 \mathrm{~V} ., 60 \mathrm{~m} / \mathrm{A}$. RM3., $125 \mathrm{~V} ., 125 \mathrm{~m}^{\prime} / \mathrm{A}$. $.3 / 10$ RMM. $125 \mathrm{~V} ., 125 \mathrm{~m} / \mathrm{A}$. .5 $. .16 /-$

GANGED TUNINC CONDENSEARS .000 J Mfd. 41 in . spindle. Standard 2 -gang. $22 \times 1 \frac{1}{2} \times 21 n$. 5 for Standard 3-gang. $2: x$ with

MINIATURE 3-GANG TENING CONDPNSEIRS Size 3×1 x $\times 1$ in. in. in. spindle. less
SPECIAI, OFFER ACOS CRISMAL PICKIP HEADS crystal cartridge in die-cast case. Listed 42/11. LASKY's PRII E, Z2/6. Cartridge alone. lists 279.
I.ASKN.S PRICE, 17/6.

THE "SOUND MASTER" TAPE DECK KIT

limited quantity only ORIGINAL List price $£ 13.13 .0$

LASKY'S £6.| 5.0 PRICE
 Post \& Plige

A real high fidelfty Tape Recorder for the home constructor. Easily wired and assembled. Lasky's now offer the Complete Kit of Brenell components to make this super quality berf. ogether wircuit diagrams and stage by sta details, at the above bargain price.

A Deck of this quality deserves the finest motors and heads: Set of 3 (ollaro Motorin, $£ 5.15 .0$.
"Wrarite" Heads. Red Seal. £4.4.0 pair. Gold Seal, £7.7.0 The Deck complete with motors, heads, etc., can be bullt for $£ 17.17 .0$.
All specified components, valves, chassis, etc., for the amplifier available from stock. Cabinet as illustrated also available.
Instruction Book, 30 pages, 6/6. post free. Credited in full If Deck Kit purchased.
When completed this Tape Recorder is comparable with models costing Slo0 or more.

LASKY'S RADIO CONSTRUCTOR PARCELS

N). 1. A.C. SUPERHET. 4 valves plus metal rectifer. Lone. mediumand short wavebands. In every attractive cabinet, cither walnut veneer or ivory or walnut plastic. For $200,250 \mathrm{v} .50 \mathrm{c}$. p.s. All components, valves, mains transformer, cabinet, djal and metalwork. LASKl's IPIRICF, efr.19.6. Post \& pkg. $2 / 6$ extra. M(1.2. A.C. T.R.F. - 3 valves plus metal rectifier. L. \& M. wavebands. For construction in attractive wood or plastic cabinet walnut or ivory finish. For $200 / 250 \mathrm{v} .50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. All components. mains transformer, cabinet, dial and metalwork.

LANKY's PIRI'E; £5.10.0. Post \& pkg. $2 / 6$ extra.
NO. 3. 4-WATT A.C. AMPLIFIER.-Uses 1 each 6SL7, 6V6 and $5 Z 4$. All components. chassis. valves, output trans." mains trans. IASKV'S IITH, £4.5.0. Post \& pkg. $2 / 6$ extra,
Instruction Books for the above, price $1 /=$ each. All components available separately

VE RADIO CHASSIS \star Brand New and Unused. A.C. D.C. 2002 * I.F. $465 \mathrm{ke} / \mathrm{s} . \quad$ A.V.C. * 3 Station Pre set

* Station Pre Set
* Frame atrial.
- Chassis only 10×5 ins. - Max. height 5yins. Completely wired and ready for use, with the addition of a speaker and output Lransformer. Two controls-Volume used : 10C1, 10F9 or UF41. 10LD11 10P14, U404 or UY41. 1,ASKI"S PKICE, 69/6, less Valves. Postage $3 / 6$ extra. PRICE COMPLETE, £5.10.6.

$\begin{array}{ccc}6 \text { or } 12 \text { V.F. W. Bridge. } \\ \text { amp. } & 62 \prime \\ \text { amp. }\end{array}$	2	$\mathrm{amp} . .$.	$11 / 3$	1
4	amp amp.. 6 v.	$2 / 6$		

I.J. TRANSFOIRMERE
 WEARITE TYPE 550 . WEAR $445-520 \mathrm{kc} / \mathrm{s} .8 / 6$ per pair. WE

$$
450-470 \mathrm{kc} / \mathrm{s} .8 / 6 \text { per pair. }
$$

('IRINTAL, I)IGW)
Wire ends. Glass.................... 1
l'ype WX. 6 . Wire ends.. $1 / 6$
$1 / 6$
"TRIKETIRON" SEPPEIR INH)("FIR ('OIIA Full range, including the new "Ferrite" rod frame aerials. Ji6in. diam.
4in. medium wave............. $8^{\prime} 9$ Bin., med. \& long wave........12.9 Post extra.

SIPECIAL, PURCIIASI:
 16in. (.IR. TUIEF

 Famous make offered at nearly Half Price. Metal cone, 3 amp. heater, e.h.t. required $10-14 \mathrm{kv}$. LANKY'S I'RIC'F. £12.19.6.Carr. \& ins.. 22/6 extra.
16in. FILTERE MASK HS(IT(IIESN to suit above C.R.T., 15/- Post extra.

PI ASTIC ENCTCTIIEON
With dark screen filter
12in.............. $12 / 6$ 16in...........25/-
SUPRIRHET COIL IPANS No. 1. L.M.S.G. Size $4 \frac{2}{2} 5 \mathrm{x}$ 2 ins. With in spindle...... $19 / 6$ No. 2. M.S.S. Size : $4 \times 4 \times 3 i n s$ Both for use with $465 \mathrm{kc} / \mathrm{s}$. I.F.

LOEDDSIEAKHEN First Quality, All 3 ohms speech coil. Less output trans Gin...........12/6 8in.........19i11 6ıin. 18/6. 10 in . 19/6. 6ivn 151.-

Open
all day
all day
Half day
Thurs.

HIRE PURCHASE TERMS ON CERTAIN ITEMS Send details of sour needs.

THIS IS THE "PRE-SET 3"
A new really inexpenslve Radio for Bedroom, Kitchen

Full details of Circuit. Polnt-to-Pomp Wiring Diagram and Parts Price List. Prier 6d.

* SUMMERIS COMING

START BUILDING

The
 "HOLIDAY FOUR"

A four-valve superhet all-dry portable with amuzine quality and volbrae ingeal for camping. days etc. Frame Aerial Can be assembled in a couple of hours at a cost of about £\%. Send today for full instructions, drawings. circuit and price list, 1/= post paid.

We stock all the eompunentwforthe Mutiani 5/10 and G.E.C." 912 " amplifiers. S.A.E. for detailed price list

HOME RADIO OF MITCHAM
18\%. LONDON ROAD, MFIHAM, SUIRHEY. Mit. 3282 .
The quality component specialists.

T/V TECHNOLOGY
 - RADIO ENGINEERING
 - ELECTRONICS
 - RADIO SERVICING

There's a big future in $T / / \downarrow$ and Radio. Act now ! Increase your knowledge. Back up experience with a sound theoretical background. I.C.S. offer courses of instruction in-
T/V TECHNOLOGY
ADVANCED SHORT.WAVE RADIO
RADIO ENGINEERING
RADIO SERVICE ENGINEERING RADAR

ELECTRONICS

FREQUENCY MODULATION
I.C.S will also coach you for the following examinations :-
B.I.R.E. ; P.M.G. Certificate for Wireless Operatórs; Radio Servicing Certificate (R.T.E.B.) ; 'C. \& G. Telecommunications, etc., etc.
DON'T DELAY-WRITE TO-DAY for free descriptive booklet, stating which subject or examination interests you. Fees include all books needed. Examination students coached until successful. Reduced terms for H.M. Forces. Dept. I70D, I.C.S., 7I, Kingsway, W.C. 2.

CR5J BRIICE
Measures capacitance from 10 pFd to 100 mFd and resistance from 10 hm to 10 megohms in fourteen ranges. Neon leakage rest for condensers. Operates from 200/250 volt A.C. mains. Indication of balance is given by magic eye. Specially designed for bench use, with case and panel of steel finished black wrinkle. Complete with all valves and instructions. PRICE 66/19/6, plus 4/6 carr./packing. Hire Purchase: $£ 3$ deposit and four monthly payments of 22/-.
SIGNAL GENERATOR, SG50, covers $100 \mathrm{kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$ in six bands on fundamentals, either unmodulated or internally modulated with 400 cps. Uses two type Z 77 valves and SenTerCel rectifier and double wound mains transformer. In olive green metal case with carrying handle, size $12 \mathrm{in} . \times 8 \mathrm{in} . \times 4 \mathrm{in}$. deep. Front panel of green perspex engraved in white. We claim this to be the best value on the market at only $\mathbf{5 7 / 1 9 / 6 \text { , plus } 6 / = . ~}$ carr./packing.
Please send stamped, addressed envelope for illustrated leaflets by recurn post.
Obtoinable from sole London stockist: Charles Britain (hadio), Ltd., 11, Upper Saint Martins Lane, W.C.2, or direct from the manufacturers-

GRAYSHAW INSTRUMENTS
 54. Overstone Road, Harpenden, Herts.

INSTAิNiTAME Soldering

Not a momene's waiting

 Never a Dry Joint With Your
'SOLO' SOLDERING TOOL Complete 85/- or Spot solders instantly on belng apolied to 16/- dep. and 6 job. Solder (standard cored) trisger fed from mihly. phits. of reel in handle. Cold till actually used. Works rom 6 V , battery or A.C, mains. In fitted 12/8 steel case with built-in mains transformer.
spares, solder, ready to use. Details onsrequest. free.
Solo Toof 37/6. Special Transformer 28/3 Also available-the remarkable self-powered Electro-Saw for hand use. power tools by Bridges. Black \& Decker and Wolf. ALL ON TERMS. Send for list.
[TODD]T Dept. P.W. 50
PRODUCTS, LTD. 5. GOSWELL RD. LGNDON, E.C.1.

FIREQUEVCY MiobITATIOX:-Denco Feeder Unit. Complete set of components (except valves) exactly as specifled. £5.5.0 Denco technical bulletin lssued free with complete kit. or send $1 / 6$ for bulletin and price list of individual components.
SOLVDMASTER T IPE HHCORDER. All specifled components Constructional envelope. 6/6. WB209 Cabinet. f6. WB208 Speaker. $50 /-3$ WB201 amp. Chassis, elc. $35 /$ WB203 Pillars, etc., $11 / 2$.
WB202 Power Chassis, 31/6. WB201 Mains Trans. E3.7.6. WB205 Choke. 19/6. WB206 Out. Trans. 12'. WB207 Bias coil. 6/. Collaro Motors. £5.15.0. LAB resistors and pots, £2.8.6. 3 NSF Switches, 35/6. Lustraphone C51Z mike, $£ 5.15 .0$. Brenell Comps. £13.13.0. TCC condensers. 83/-. Wearite Kit. £7. Bulgin kit. 70OSIAN 912 AMPLIFIISR,-Set of all components except valves and speaker. £14.10.0. GEC Metal cone speaker, £8.15.0. Osram instructional book 1 ssued with complete kit, or send $3 / 6$ for book and price list of individual components.

FRANKLIN \& HALL

371, HAVANT ROAD, FARLINGTON, PORTSMOUTH, HANTS.

I$\mathrm{N} \cdot$ the first and second articles of this series we devoted our attention to the various types of relay which are likely to beencountered in radio work; and discussed also their operation when used by themselves or in various circuits designed to alter their speed of operation.

This month we shall pass on to relay circuits proper, illustrating how they may be used for remote control and for various automatic switching processes.

Remote Transmitters

Remote control is a matter of interest to many

Fig. 14. - A simple remote control circuit for a transmitter.
radio enthusiasts. Particularly is this true of the amateur who may wish to control his transmitter from a distant receiving point.
An extremely simple two-line circuit capable of doing this is shown in Fig. 14. This circuit uses two relays, one slow to release, $\frac{B}{1}$, and one capable of operating at Morse speeds, $\frac{A}{1} \because$ It is assumed that the transmitter heaters are left switched on per-

manently (or, at least, during operating periods), the only remote control switching desired being that of H.T.

When the key at the receiver is used to send a message, relay $\frac{A}{1}$ follows it in the normal manner and keys the transmitter. Relay $\frac{B}{1}$ energises as well, but, since it is slow to release, it is not able to release during the short time existing between the Morse characters sent by the key; and it keeps the transmitter switched on all the time the message is being sent. In practice it would probably be necessary to commence by sending a short dash to energise initially retay $\frac{B}{1}$; after which it could be relied upon to remain closed until keying was completed.

One of the two interconnecting lines of Fig. 14 could possibly be dispensed with by using an earth return. However, earth returns do not always give reliable results.

Despite the fact that this circuit is simple and useful, it has several disadvantages. The first of these is the need to send the initial dash to switch on the H.T. It could happen that, after a short pause in sending, the H.T. relay may have released; whereupon, on resumption, the first few characters will be lost until the transmitter switches on again. However, once the operator has become used to working with the circuit, this effect should not be too troublesome. A possible second disadvantage lies in the fact that

Fig. 15 (a) (left).-A circuit capable of controlling two operations over two interconnecting lines. Fig. 15 (b) (right).-The circuit of (a), expanded to comtrol three operations. On closing $S 1$, relay $\frac{A}{1}$ energises; on closing $S 2$, relay $\frac{B}{2}$ energises; and, on closing $S 3$, both relays energise. The switches are so wired that no damage can result if more than one switch is accidentally operated at the same time.
transmitter H.T. appears whilst the key is depressed with the result that it is always switched on on load.

An alternative scheme would consist of using separate circuits for keying and switching. It is possible to control several relays over two remote lines, but the necessary circuitry does not readily allow the use of a high-speed keving relay. An easy solution consists of using a three-line system, two lines of which are used for keying; whilst the remaining line, with one of the keying lines, is employed for all the switching that may be required. Alternatively, two lines with an earth return could possibly be used instead of the three.

Control Over Two Lines

We stated just now that several relays can be controlled over two lines. If a uni-selector amangement is emploved, the number of different circuits which may be brought into operation over two lines becomes very large indeed. However, we shall be dealing with uni-selectors next month; and so it would be better to concern oulselves here with some examples of what may be done with normal relays.

Fig. I5 (a) shows a simple circuit designed to control two relays over a single pair of lines. When Si is closed, relay $\frac{A}{1}$ energises, current being passed to its coil by the rectifier in series with it. When S2 is closed, a voltage of the opposite polarity is connected across the lines and relay $\frac{B}{1}$ energises. (The "arrow" of the rectifiers in the diagram shows the direction of electron current flow.)

This circuit is nol fool-proof, however, because damage to the batteries would result if S 1 and S 2 were both pressed down at the same time. The battery circuit could be protected by a fuse, but a better solution would consist of making SI a double-pole switch, its additional contacts breaking the supply to S 2 when it was closed.
If, instead of D.C., an alternating voltage were applied to the lines, both relays would operate. This is due to the fact that both rectifiers would conduct on alternate hali-cycles and apply D.C. (unsmoothed) to their respective relays. Advantage could be taken of this effect to allow a third control to be used.

Since A.C. would then be required at the controlling point, it would be worth while to dispense with the energising batteries altogether and use rectified A.C. instead. A circuit showing how this may be done is given in Fig. 15 (b).

It will be noticed that, although two relays only are still being used, their contacts control three external circuits. If the contact circuits are traced out it may be seen that, when $\frac{A}{l}$ energises by itself, a

Fig. 17.-A circuit which enables a relay to operate and "hold on" after a momentary energising impulse. This impulse would be provided by closing S1. S2 releases the relay.

circuit is made to terminal 1 via contacts AI and BI. When $\frac{B}{2}$ energises by itself, external circuít No. 2 is made via $A 1$ and $B 2$. When both relays energise, external circuit No. 3 is made; this appearing via contacts AI and B1. (It is assumed that the external circuits are actuated by the positive source of supply connected to the arm of contact Al.)

In practice it would be found that the application of unsmoothed half-wave-rectified A.C. to the relay

Fig. 16. - A simple circuit, explained in the text, by means of which two circuits may be controlled over two line's. SI is comnected in the manner shown to prevent any damage which might result if both switches were operated at the same time.
coils would cause them to " chatter" rather badly. A solution would consist in having them slugged so that they were slow to release. Relays which are slow to operate and release would cope just as well, provided that the user was prepared to wait a moment or two before they came into operation. (An ordinary relay could be fairly effectively slugged by wrapping, and soldering, several thicknesses of copper foil around the outside of the coil.)

Another method of controlling two relays over a single pair of lines is shown in Fig. 16. The operation of this circuit is extremely simple. The coil of relay B
has a higher resistance winding than has that of relay $\frac{A}{1}$; so that, assuming a similar construction, relay $\frac{B}{1}$ needs a higher voltage to energise it. Thus, when S1 of Fig. 16 is closed, relay $\frac{A}{1}$ alone comes into operation, selecting external circuit No. I. If S2 is closed, the additional voltage is sufficient to energise relay $\frac{B}{1}$ as well, thus operating circuit 2. Such a system is practicable, although it may not always be (comtinued on page 305)

R.S.C. A4 HI-FIDELITY 25 WATT AMPLIFIER

A new design for 1955. "Push-Pull" oumput Bullt-in Tone Control Prefurther improved performance figures Includes 7 valves, specially designed sectionally wound output transformer block paper reservoir condenser and reliable small condensers of current manufacture. TWO SEPARATE INPUTS CONTROLLED BY SEPARATE VOLUMECONTROLS allow simultaneous use of "Mike" and Gram., or Tape and Radio etc.etc INDIVIDUAL CONTROLS FOR BASS AND TREBLE $\cdot \cdot$ Lift" and 'c Cut,
Frequency response 4 db . $30-30,000 \mathrm{c} / \mathrm{a}$ Frequency response 43 db . $30-30,000$ c/r 66 db. down. ONLY 20 millivolts INPU' required for FULL OUTPUT. Certified harmonic distortion only $0.35^{\prime \prime}$, measured at 10 watts. Comparable with the very best designs.
ENTLRELY SUITABLE FOR SMALL HOMES OR IAIRGE HALLS. CLUBS GARDEN PARTIES. DANCE HALLS, ete. etc. For ELECTRONIC ORGAN or GUITAR. For STANDARD 9 GNS. FOR ANY' 'MIKE'' or PICK-UP

PIHESNY 3-SPEED MIXEN ATINO -iiNNGiER. Takes $7 \mathrm{in} ., 10 \mathrm{in}$. and 12 in . records, standard long playing, Crystal Pick-up with Duo-point sapphite stylus changed from standard to long playing position by simple switch movement. Limited number. Brand New. 10 gnts.. plus carr. $5 /$.
BATTERY SET CONVEIRTER KIT. Ail parts for converting any type oir Aattery recelver to An Mains. A.C. Battery recelver to All Mains. A.C.
$200-250 \mathrm{y}$. 50 clcs . Kit will supply fully smoothed H. 50 c/ 120 v . 90 v . or 60 v , at up smoothed H.T. or 120 v., 9 V . or 60 v. at up to 40 mA . and fully smoothed L.T. Or 2 v. at 0.4 to 1 a- Price, complete with circuit, 48/9. or ready to use, 8/9 extra.
PERSONDL, SE'T IBATTEIEY SUPER SEDER KIT: A complete set of parts for construction of a Unit (housed in metal case) to replace Batteries where A.C. Mains supply is available. Trput $200-250$ v. 50 cis. For 4 valve receivers requiring 90 v .10120 mA . and 1.4 v .250 mA . fully smoothed. Price complete with circuit. Only 35/9. Or ready for use, 42/6. Stze of unit. $5 \frac{1}{x} 4 \times 1 / \mathrm{in}$.
PATTLHEVCHARGER KITS
For mains $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.
To charge 6 v . acc. at 2 a., 25/6.
To charge 6 or 12 v . acc. at 2 a., $31 / 6$. To charge 6 or 12 V . acc. at, $4 \mathrm{a} ., 49 / 9$. Above consist of transformer, full wave rectifier, fuses, fuseholders and steel case. Any type assembled and tested. $6 / 9$ extra.
THE SKYFOUR 'T.R.F. ISECEIVER. A design of a 3 -valve $230-250 \mathrm{v}$. A.C. Mains A design of a 3-valve $230-250 \mathrm{~V}$. A.C. Mains receiver with selenium rectifier. It conSists of a variable Mu high gain H.F stage followed by a low distortion anode bend detector. Power pentode output is used. valve hine up being 6K7. SP6, 6F6G. Selectivity and qually are wetr up to standard, and simplicity oi construction is a special reature. Point to point Wiring diagrams. instructions. and part maximum of $£ 4 / 19 / 6$ including attractive Brown or Cream Bakelite or Walnut

Fhecrinolimics (Current production. Not ex-Govt.)

Tubuiar Tybes

 $8 \mu \mathrm{~F} 350 \mathrm{v} . \quad 1 / 6$ $8 \mu \mathrm{~F} 450$ v. $1 / 9$ $8 \mu \mathrm{~F} 500 \mathrm{v} . \quad 2 / 11$ $16 \mu \mathrm{~F} 350$ v. $\quad 2 / 3$ $\begin{array}{llll}16 \mu \mathrm{~F} & 350 & \text { V. } & 2 / 3 \\ 16 \mu \mathrm{~F} & 450 & \text { v. } & 2 / 9\end{array}$ ${ }_{16-16 \mu \mathrm{~F}}^{150}$ v. $4 / 11$ $50 \mu \mathrm{~F} 12 \mathrm{v} . \quad 1 / 3 \quad 32-32 \mathrm{mfd} .350 \mathrm{v} .4 / 9$

Size approx. 12-9-7in. For A.C. mains 200-$230-250 \mathrm{v} .50$ c/cs. Outputs for 3 - and $15-\mathrm{ohm}$ sucakers. kit is complete to last nut. chassis is ruily punched. Ful instrucsupplied. Unapproachable value at 9 lins. or ready for use. $50 /-$ extra. If required. cover as hllustrated can be supplied for 17/6. H.F. TERMS AVALIABLE.

R.S.C. 10 WATT "PUSH-PULL" HIGH - FIDELITY AMPLIFIER A3

Ideal for the quality enthusiast in the home or small hall. Two different inputs can be simultaneously applied and controlled by separate volume controls. Any kind of Plek-up is suitable and most microphones. Tone controls give full Long Plaving record equalisation for uncorrected Pick-ups. Sensitivity is very hish. Only 130 millivolts required for full output. H.T. and L.T. available for Radio Feeder unit.
Complete with integral Pre-amp. Tone control stage (as A4 amplifier), using negative leedback. giving humproof individual bass and treble lift and cut tone control. Six Negative Frodiback loons. Completely negligible hum and distortion. Frequency response $\% 3 \mathrm{db}$ $30-20,000$ c.p.s. Six valves. A.C. mains 200-230-250 v. input only. Outputs for 3 and 15 ohm speakers. Kit of parts complete in every Or ready for use. 45/- extra. Illustrated leaflet 01. Cover as for A4 is suitable. H.P. Terms on Ass. Units.

 'IP (Sapphire Stylus). Speed 33 r.p.n). For A.C. mains 200-250 v. Limited supply. For A.C. mains $200-250$ v. Limited Suppyy. £3/19/6. Plus carr. 5/- (Normal price \&8 approx.).

A PISH-IICI, $3-4$ watt HIMAII-(:AIN
AMPIIHIEKK FOR £3/7/6. For mains input $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Complete kit of parts includjng circuit, point to point wiring djagram, and instructions. Amplifler can be used with any type of Feeder Unit or Pick-up. This is not A.C.ID.C. with live chassis, but A.C. only with $400-0-400 \mathrm{Y}$. trans. (Output is for $2-3 \mathrm{ohm}$ speaker.) Supplied ready for use for 25/extra. Carr. 2/6. Descriptive leaflet. 7il.
FOUR NTAGE IRADIO FEDNELR NiT. Design of a High Fidelity Tuner Unit. L. \& M. Wave. Full decoupling. Self-contained heater supply. Detailed wiring diagrams. parts list, and illustration, 2/6. Total building cost. £3/15/-.
P.M. SPIEAKEIRS. All $2-3$ ohms, $6!$ in Plessey, 16/9. 8in. Plessey, 16/9. 10in, Plessey, 19/6. 10in. R.A., 26/9. 10in. Rola with trans., 29/6. 10in. W.B. "Stentorian" 3 or 15 ohm type HFl012 10 watts. Highly recommended for use with any of our amplifiers. £3/17/6.
MICROPIIONLS: Crystal high fidelity types. Recommended for use with our amplicis. Acos. Hand ousurk thpe. £6/19/6.
COANIAL CABLEE, 75 ohms, $\frac{\mathrm{I}}{\mathrm{i}} ., 7 \mathrm{Fl}$. yard. yard. SPEAKELES. All $2-3 \mathrm{ohms}$. 8 in . R.A. Field 600 ohms. $12 / 9$. 10 in . R.A. Field 1.000 or 1,500 ohms. 23/9.

SERENIEME HECTIPIERS 6/12 V. .T. Ty a. H.W.
F.W. Bridge Tyne
${ }_{6 / 12}^{6 / 12}$ v. 1 a.
1.1. Hypes H.1V.

6/12 v. 2 a. $\quad 8 / 8$
$\begin{array}{lll}150 & \mathrm{w}-40 \mathrm{~mA} & 3 / 9 \\ 250 & \mathrm{v} . & 50 \mathrm{~mA} \\ 650 & 6\end{array}$
$250 \mathrm{v} .80 \mathrm{~mA} 7 / 9$
$R \mathrm{M} 4250 \mathrm{v} .250 \mathrm{ma}$
R.S.C. MAINS TRANSFORMERS (GUAUNLYEL)

Interieaved and impregnated. Primaries 200-230-250 \%. 50 e/s Sererned

TOP SHROUDED, DHOP THROUQ11 $250-0-250$ v. $70 \mathrm{~mA}, 6.3$ v. 2.5 a $\quad \cdots 13 / 9$ $260-0-260$ v. $70 \mathrm{~mA}, 6.3$ v. 2 a, 5 v. 2 a ... $16 / 9$ $350-0-350$ v. $80 \mathrm{~mA}, 6.3$ v. $2 \mathrm{a} .5 \mathrm{v} .2 \mathrm{a} . . .189$ $250-0-250$ v. $100 \mathrm{~mA}, 6.3$ v. 4 a, 5 v. 3 a $28 / 9$ $300-0-300$ v. $100 \mathrm{~mA}, 6.3$ V. 4 a. 5 V. 3 凡 $22 / 9$ $350-0-350$ v. 100 mA .6 .3 v. 4 a, C.T.
${ }_{0}^{50-4-5}$ v. 3 a 100 mA .6 .3 v. 4 a. C.T. $23 / 9$
 $350-0-350$ v. $150 \mathrm{~mA}, 6.3$ v. 2 a, 6.3 v. 2 a, 5 v. 3 a 31/6

FCDAK NLIKOUDED CPR1GIIT
 $250-0-250$ v. 60 mA. 6.3 v. 2 a, 5 v. 2 a,

Mddget type $2 \downarrow-3-3 i n .2$. $\dddot{5}$ v. 2 a $17 / 6$
$250-0-250$ v. $100 \mathrm{~mA}, 6.3$ v. -4 v. 4 a,

$250-0-250$ v. 100 mA .6 .3 v. 6 a, 5 v. 3 a,
for R1355 conversion $\ldots . .$.
for R1355 conversion ... v. ... 4 a. 31
$300-0-300$ v. $100 \mathrm{~mA}, 6.3$ v. 4.
C.T. 0-4-5 v. 3 a
. 27/9
$350-0-350$ v. 100 mA .6 .3 v. 4 a. 5 v. 3 a $2 \% / 9$ $350-0-350$ v. $100 \mathrm{~mA}, 6.3$ v. -4 v. 4 a. $27 / 9$ C.T. 0-4-5 v, 3 a $\left.\begin{array}{ccccccc}350-0-350 & \text { v. } & 150 & \text { mA. } 6.3 \text { v. } & 4 & 2 \\ 0-4-5 & \text { v. } & 3 & \text { a } & \text { I. } & \ldots & \cdots\end{array}\right]$ $425-0-425$ v. 200 mA .6 .3 v. 4 a. C.T.
6.3 v. 4 a. C.T... 5 v. 3 a. Suitable

Williamson Amplifier, etc. ... 49/9 Williamson Amplifier. etc. $\mathbf{4}$ v. 6 .. | $450-0-450$ v. $250 \mathrm{~mA}, 6.3 \mathrm{v}$.6 a, 6.3 v. 6 a, | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{v} 3 a$. | \ldots | \ldots | \ldots | \ldots | \ldots |

ELIMINATOR TRANSFOIRMERS
Primaries $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s} .120 \mathrm{v} .40 \mathrm{~mA} 79$ 130 v .50 mA .6 v .3 a

FILAMENT TRANSFOLMERS
All with $200-250 \mathrm{v} .50 \mathrm{e} / \mathrm{s}$ primaries 6.3 V a. 5/9, 6. $2 \mathrm{a}, 3 \mathrm{a} 811$. 63 v 6 a $17 / 6: 12$ v. 3 a or 2.4 v. 1.5 a. $17 / 6$
CHARUER TRANSFOICMERS
All with 200-230-250 v. $50 \mathrm{c} / \mathrm{s}$ Primaries $\begin{array}{llllll}0-9-15 & \text { v. } & 14 & \text { a. } 11 / 9: 0-9-15 & \text { v. } & 3 \\ 0-9-15 & \text { v. } & 18 / 9 \\ \text { a. } 19 / 9: & 0-9-15 & \text { v. } 6 \text { a. } 22 / 8 .\end{array}$
SMOOTIING CHOKES
$250 \mathrm{~mA} 3-5 \mathrm{H} 100$ ohms.
100 mA 10 H 1750 ohms Potted
30 mA 10 H 350 ohms
60 mA 10 H 400 ohms

E.II.T. TIRANSFORMERS

2.500 v. $5 \mathrm{MA}, 2-0-2$ V. 1.1 a, $2-0-2$ v. otTPPTTTRANSFORDERE
Midget Battery Pentode 66:1 for 3S4. etc. \because mall Pen 5,000 o to 3Ω
Standard Pentode $5,000 \Omega$ to 3 g Standard Pentode. $7 / 8.000 \Omega$ to 3Ω Standard Pentode. $10,000 \Omega$ to 3Ω Multi-ratio $40 \mathrm{~mA} .30: 1.45 ; 1 \quad 4 / 9$ $60: 1,90$; 1 , Class B Push-pull ${ }^{2}$. $5 / 6$ Push-Pull io-i2 watts 6 V 6 to 3Ω or
15Ω. Sectionally wound $\ldots \quad 16$ Push-Pull 10-12 watts to match $6 \mathrm{VV}^{1}{ }^{1}$ to $3-5-8$ or 15Ω... ${ }^{15}$.. sectionaliy $18 / 9$ Push-Pull 20 watts. sectionally wound 6L6. KT66. etc., to 3 or $15 \Omega 47 / 8$ williamson type exact to spec.

Open 9 to 5.30 ; Sals, until $1 \mathrm{p} . \mathrm{m}$. Catalogue ba., Trade List 5 d . S.A.E. with all enquiries.
RADIO SUPPLY CO. 32, the (Leeds) Ltid. Leeds, 2

You can rely on us

For all reliable radio components, a Catalogue of which will be despatohed to you upon the receipt of your letter and 6d. Mullard, Osram Amplifiers, etc. on H.P. terms.
Due to popular demand we have prepared these Constructor and Repair-man's Hardware Kits

Kil A." Price 10/-	
Multiore Solder,	
Two Spindle Couplers.	Yellow Systofex.
Assorted Grommets.	One Spindle Extension.
Pocket Screwdriver.	6BAnd AB. Nuts \& Bolts.
Assorted Grid Caps.	2 yds. Nylon Drive Cord.

0.P. TRA NSFORMEIRS, 1/9..-Salvage. All tested. Post 6d. siourrifillts. 8'g.-Butler's ex-W.D.. new. $73^{\prime} \mathrm{in}$. dia.. 61 in . deep. Pre-focus fitting. Post $1 / 3$. Bulbs for above, 6 volts, 36 or 48 watt. 12 volt, 30.36 or 48 watt. 4/6. Post free.
 chrome finish. 12 or 24 volt. 12/9. Carriage 2/6.

AMPLIFIEISA. 77/6. - Push puli. 7 watts output. Universal. 4 valves and 1 rec. Ideal for pick-up or Mike. Post $2 / 6$. Ready to plug in.
AUIPIFIERS. 5\%/6. valves. A.C. or A.C. ${ }^{3}$ D.C. Ideal for pick-up or Mike. Post $2 / 6$. Ready to plug in.
AMPILFIEISS, 9\%/6. 7 valve push puli with extra pre-amp stage 3 controls.

T.V. TINTED SCIREDNS, 8/9.-Implosion prool. 3/16in. perspex. Slightiy scratched, does not affect viewlig. Post $1 / 3$. 14!in. X 113 in .
T.V. RUBBEIR MASKs, 10/9, -Soiled, need washing. Post $1 / 3$. Suitable 12in. screens.
T.V. TUBES AND CHASSIS.-We regret owing to overwhelming response further orders cannot be accepted for four weeks.

Send 2id. stamp for catalogue.

Free To Ambitious
 This 144-page Book ENGINEERS!

Have you sent for your copy?

'ENGINEERING OPPORTUNITIES

is a highly informative guide to the best-paid Engineering posis. It tells you how you can quickily prepare at home on : NO PASS-NO FEG" ierms for a recognised engineering qualificalion, outines the widest range of yuodern Home-Study Conties in all branches of Engineering and explains the bencfits of our Employment Dept. If you're earning less than $£ 15$ a week you cannot afford to miss reading this unique book. Send for your copy to-dayFREE.
Please FREE COUPON-=- -
Please send me your FREE 144 -page ENGINEEATNG OPPORTUNITIES
NAME ADDRESS \qquad Subjoct or Exam
that interests me
WHICH IS YOUR PET SUBJECT?
Mechonical Eng.
Electrical Eng. Civif Engineering Radio Engineering Automobile Eng. Aeronoutical Eng Production Eng. Building, Plastics Draughtsmanship Television, etc.
GET SOME LETTERS
AFTER YOUR

NAME!

A.M.I.Mech.E.
A.M.I.C.E.
A.M.I.P.E
A.M.I.M.I L.I.O.B.
A.F.R.Ae.S. B.Sc. A.M.Brit.I.R.E. CITY \& GUILOS GEN. CERT. OF EDUCATION
"British Instituto of Engineerine Tochnology", 4098, College House, 29-31. Wright's Lane, Kensington, W.8.

CONSTRUCTORS build these at
DOWN-TO-EARTH PRICES $\begin{array}{ll}\text { PERSONAL } \\ \text { PORTABLE } \\ \text { RADIO } & \\ \end{array}$

This litcle set was designed to give you a real personal portable radio that you can enjoy anywhere without disturbing others. Use it on camping trips, in bed, in your office, or juse anywhere. Send 2/- for layout. Wiring diagram and Components Price List.

1v SHORT-WAVE RADIO

* Covers $10-100$ merres
* World-wide reception.
* Low drain valve
* Picture diagram and instruction for beginners.
\star Assembling time 1 hr.

This I valye S.W. receiver can be built from our list of components for $\mathbf{3 0} /$ - including valve and I coil covering 20.40 metres. Provision is made to increase to 2 or 3 valyes if required. All components can be purchased separately and are colour-coded so that the beginner can build this set quite easily.
Send 2/-for specification, wiring diagram, layout and price list ta:-
R.C.S. PRODUCTS (RADIO) LTD II QLIVER ROAD, LONDON, E.IT. Mail order only.
very reliable. There is a slight possibility also that the extra energising voltage applied to relay $\frac{A}{1}$ when $S 2$ is closed may cause its coil to overheat.
The control of a relatively large number of operations over a small number of lines is not, of course,

confined entirely to the examples cited above. As, however, most other systems are especially applicable to radio control as well, we shall defer their description to the time when we come to deal with this particular aspect of the subject.

Time Switching

The ability of a relay to "hold on" by one of its own contacts after it has been momentarily energised makes it very useful in certain applications where it is desired to "trip" a circuit by a single short impulse.

A typical example is shown in Fig. 17. When contacts S1 of this diagram are momentarily closed, relay $\frac{A}{2}$ energises. As šoon as it encrgises, its make contact Al causes the coil to be connected continually to the energising supply. The relay can then only be released by opening S 2 whereupon it returns to its initial state and is ready for use once more.

This circuit could be utilised very successfully for switching a piece of equipment on or off at certain times. If, for instance, contacts are fitted to a clock, they could take the place of S1 and cause the relay to switch on the equipment at a pre-set time. The equipment could then be switched off by opening S2.
Alternatively, by using a second relay in the manner shown in Fig. 18, the clock could switch off the equipment as well. Switching off would be accomplished by momentarily closing contacts S3, these also being operated by the clock. The process of fitting contacts to a clock need not be considered as being somewhat clumsy since, when properly carried out, such a fitting can be made both neat and efficient. It should be pointed out again that it is necessary for SI and S3 (Fig. 18) to make a momentary contact only; and it is of no importance whatsoever if "such a contact is somewhat intermittent or " crackly."

A further eircuit which accomplishes the same thing is given in Fig. 19. This time the second relay is not required, relay $\frac{A}{2}$ being de-energised by momentarily short-circuiting its coil. To make this process possible it is necessary to feed the coil through a resistor (which should have approximately the same value as the resistance of the coil) and to use twice the energising voltage.

Delay Switching

Quite a different type of circuit is shown in Fig. 20, this' being used to delay the application of H.T. to certain types of equipment. The circuit is intended to ensure that L.T. has been applied for a fixed period of time before H.T. is switched on. A device of this sort is particularly necessary when mercury-vapour H.T. rectifiers are being employed, as the heaters of these valves need to warm up for at least a minute or two before H.T. can be connected.
The delay circuit employs two relays and what is known as a bi-metal strip. This latter consists of two lengths of metal whose coefficients of linear expansion for heat differ fairly widely. The two metals are riveted or welded together along their lengths to form a single strip. When heat is applied to the strip one of the metals expands by a greater extent than does the other, causing the whole strip to bend. Fig. 21 illustrates the process.

In Fig. 20 the bi-metal strip is heated by a coil of resistance wire wrapped around it and insulated from it by a layer of mica. The resistance wire could conveniently be heated by the L.T. supply of the equipment in which it is used.
Referring to the diagram, let us assume that the equipment is switched off and that the bi-metal strip is cold. As soon as the equipment is switched on L.T. is applied to the heating coil and the strip begins to warm up. After some time it has become suffciently hot,, and has bent over sufficiently far to touch the "hot", contact. This causes relay ${ }_{3}^{A}$ to energise, thereby switching off the supply to the heating coil by means of the break contact A1. Relay

Fig. 21.-Illustrating how a bi-metal strip bends when it is heated.
remains energised via
 its own contact A2. The bi-metal strip starts to cool; when sufficiently cool it touches the "cold" contact, energising the other relay via the make contact A3. H.T. is then switched on by contact B1.

Early Cricket Commentaries

IWONDER how many of my readers listened in to the test match commentaries from Australia last winter; or whether the hour deterred them? And, of those who did, what did they think of them? I thought them superior to ours, less donnish and slightly less repetitious, rather renarkable seeing that the rate of scoring was even slower than it is here. There was rather more camaraderie and interchange of views between the commentators than we are given, which seemed partly due to the presence of a "spectator" in Arthur Gilligan, whose presence helped to create a more sociable and less austere atmosphere than we provide. This practice could well be copied. I know we have experts at Test Matches such as Alf Gover and George Duckworth, but they don't quite function in the same way.

Anyhow, it will be four years before we cricket-fans will be called upon to tune in to the atmospheric cracklings which fill the air between here and Australia, and a deal can happen in the meantime.

"Personal Column "

I heard the last of Jenifer Wayne's present series of Personal Column of impressions, reflections and facts-" Tea-shops"-and it made me hope that another will soon follow. Miss Wayne has the ability to marshal the facts of our ordinary " lawful occasions" and to put our comings and goings-in the present instance our bath-bun and butter and our midday replenishment-into the right business-like perspective. Coupled with a fluent delivery and a pleasing personality, hers make very entertaining broadcasts.

Admirers of the work of Thomas Hardy, of whom I am one of the formost, will have derived great pleasure from the programme of reminiscences and recollections " by his friends," which was excellently edited and narrated by Henry Reed. A large number of distinguished people, who in their younger days knew the great man, contributed. No mention was made of the visit to Max Gate of the Duke of Windsor when Prince of Wales.

I also liked the radio adaptation of the actual work of another favourite author of mine, Henry Fielding's "The Journal of a Voyage to Lisbon"; racy and pungent as befits the creator of Tom Jones and Jonathan Wild, and vividly portrayed by Patience Collyer and Richard George, edited by Eric Ewens, and narrated by David Peel.

Plays

The best play of the month was probably Galsworthy's "Old English." starring Sir Cedric Hardwicke as Sylvanus Heythorp, chairman of the Island Navigation Co., one of those typically English gentlemen, dour as granite and as straight as a corkscrew, pursuing his will to the cost of his life. Galsworthy knew how to draw this to perfection. Sir Cedric brought to the parl all the rugged pigheadedness which the play's title symbolises. Heaven

Our Critic, Maurice
Reeve, Reviews Some Recent Programmes
save us from meeting such men in real life!
"One Fine Day" was a rather weak story of film-making and what purported to be "back-screen" life in the studios. It was done as Marjorie Westbury's choice in the series Stars in Their Choices. If it really was, I didn't think much of it.
"The Devil's General "' was a powerfui storyand good radio-of Nazi Germany. Trevor Howard was excellent as the Luftwafte general who, whilst despising Hitler and the Party, rides on the bandwagon and enjoys a pretty good time. Written by a German, Carl Zuckmayer, and seen at the Savoy Theatre in 1953, it should be a fairly authentic picture of war-time Germany. It was good entertainment and Mr. Howard was admirably supported by a very lengthy cast impossible to enumerate here.
R. F. Delderfield's "The Orchard Walls " was also the type of play that appeals to me : a play of high purpose and powerfully argumentative, whether we agree with it or not. This time it is the headmistress of a girls' school whose more than usually broadminded views bring her up against the governors and the usual cliques, especially her handling of the tricky case of the girl who has a passionate love-affair which obviously recalls memories. Angela Baddeley and Janet Burnell were powerfully contrasted as the headmistress and her assistant, each with opposing views on most subjects uatil the play is resolved by the retirement of one in fayour of the other. Again, no fault could be found with the supporting cast.
"The Violent Friends" was Winston Clewes"s well-known play about Jonathan Swift, Stella and Vanessa, a story so improbable that we would discount it were it not that history tells us it was actually lived out. How two such charming girls, apparently as beautiful as they were gifted, can fall devotedly in love with such a boor and a curmudgeon as the author of Gulliver, is past comprehension. But it makes a very good radio play. Donald Wolfit, Rosalind Iden and Mary Wimbush saw to it that the essential characters of the three chief protagonists were drawn to perfection.
"Payment Deferred," by Geoffrey Bell, was Richard Williams"-a recent award winner-"star"s choice." Perpetrator of as gruesome a murder as one could reasonably wish for, Mr. Williams was called upon to cover a wide range of emotion, wider than I have heard him play before. He was very successful, as was Betty Hardy as his wife.

As Important as Wars?

"Scrapbook for 1924," as usual, made out dancetunes and musical comedy airs to be at least as important as wars, revolutions and unemployment.

COMPLETELY BUILT SIGNAL GENERATOR

Coverage $120 \mathrm{Kc} / \mathrm{s}-320 \mathrm{Kc} / \mathrm{s}, 300 \mathrm{Kc} / \mathrm{s}-900 \mathrm{Kc} / \mathrm{s}, 900 \mathrm{Kc} / \mathrm{s}-2.75 \mathrm{Mc} / \mathrm{s}$, $2.75 \mathrm{Mc} / \mathrm{s}-8.5 \mathrm{Mc} / \mathrm{s} .8 .5 \mathrm{Mc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}, 17 \mathrm{Mc} / \mathrm{s}-50 \mathrm{Mc} / \mathrm{s} .25 .5 \mathrm{Mc} / \mathrm{s}-75$ Mc/s. Metal case $10 \times 61 \times 4$ inn. Size of scale 61×3 inn. 2 valves and rectiffer. A.C. mains $230-250$ V. Internal moduation or R.F. output continuously variabie 100 milli volts. C.W. and R.F. output continuously varkable moving coll output meter. mod. Switch, variable A.F. output and moving coll Black crackie funtshed case and white panel. Accuras or minus 2%. $4 / 19 / 6$ or $34 /-$ deposit and 3 monthly payments $25 /-. \quad P$, \& P, $4 /$ - extra.

Drop thro' $280-0-280,200 \mathrm{~mA} . .6$ v. $5 \mathrm{amps} ., 5$ v. 3 amps ., $2 \% / 6$.
Feater Transformer. Pri. $230-250$ v. 6 v. 11 amp., $6 /-; 2$ v. $2 k$ amp., $5 /-$
R.I. MAINS TRANSFORITERS, chassis mounting, feet and voltage panel. Primaries $200 / 250$.

 transformers 2/-. \quad v. C.T. 4 a. 4 v. C.T. 4 a. 4 v. C.T. 2.5 a.. 27/6.
 P. \& P. on the above trans

PATRELEN GENERATOR $40-70 \mathrm{Mc} / \mathrm{s}$. direct callbration. checks frame and line time base, frequency and linearity, vision channel allgnment, sound channel and sound rejection circuits, and vision channel band width. Silver plated colls, black crackie finished case, $10 \times 64 \times 411 \mathrm{n}$. and white ront panel. A.C. mains Cash price £ 2.19 .6 or $£ 1.9 .0$ deposit and 3 monthly payments of \&1. Post and packing 4/-extra.
TV. CoNVERTEIE for the new commercial stations, complete TV. CoNTEIR TFit for the new commercial stations. complete 186-196 Mc/s. band. I.F.:-will work into any existing TV. receiver, designed to work between $42-68 \mathrm{Mc} / \mathrm{s}$. Sensitivity 10 Mu/v, with any normal TV. set. Input :-arranged for 300 ohm feoder. B0 ohm feeder can be used with stight reduction in R.F. gain. Circuit EF80 as local oscillator, ECCB as R.F. amplifer and mixer. The gain of the frst stage, grounded grid R.E. $63 p l i f l e r, 10 \mathrm{db}$. Requires power supply of 200 V . D.C. at 25 mA. , 6.3 F. A.C. at 0.6 amp in input fiter ensuring complete feedom. Post and packing $2 / 6$.
Volume Controls. Long spindle less switeh, 50 K. 500 K .1 meg. Volume Controls. $\mathrm{Z} / 8$ each. P. \& ench.

CONSTIUCTOR'S PARCEL

MEDIUM A IONG-VAIE AC. MAINS 230/250 2-VALVE PLUS METAI, RECTIFIER, $22 / 6$.
Comprising chassis $101 \times 4 x \times 11 \mathrm{in}$., 2 waveband scale. tuning condenser, wavechange switch. volume-control, heater trans., metal rectifer: 2 varves and v/holders, smoothing and bias condensers, resistors and small condensers, and medium- and longwave coil, lita wound. Clrcuit and polnt-to-point. 1/3. Post and packing. $2 / 6$ extra.
Volume Controls. Long spindle and switch. 3. 1. 1 and 2 mep., $4 /-$ each ; 10 K and 50 K .36 each . $\frac{1}{2}$ and $1 \mathrm{meg} .$. long spindle. double pole switch, miniature. $5 /-$.
Standard Wave-change switches, 4-pole 3-way, 1/9: 5-pole Standard $1 / 9$. Minature 3 -pole 4 -way, 4 -pole 3 -way, 2/6. 2-pole 11-way twin wafer, $5 /-. \quad 1$-pole 12 -way single wafer, $5 / \mathrm{m}$.
RADIOGRAM CHASSIS.-5-valve A.C.ID.C. 3 -way band superhet, 195/255 volts 19-49, 2001550 and 1,000-2,000 metres. flywheel tuning frequency, 470 Kc 's iron-cored colls and 1 Fs . Size of chassis. 13 . 8 \& 8 . 2 . 17.6 .
Constructor's pared, comprising chassis $121 \times 8 \times 2 l i n$. cad. plated, 18 gauge, v/h. IF and trans. cut-outs, back-plate, 2 supporting brackets. 3 -waveband scale, new wavelength stations names. Size of scale 11×4 in.. drive sp. drum 2 pulleys. pointer. 2 bulb holders, 5 pax $I, 0$, \mathbf{V} / h. 4 knobs and pair of 465 IFS . twin gang, $16 \times 16 \mathrm{mid} .30$ whg. mains traks. with O.P. trans. P. \&

PLASTIC CABINET as illustrated, $11 \frac{1}{2} \times 6 \frac{1}{2} \times 54 \mathrm{n}$., in wainut or cream. ALSO IN POLISHED WALNUT, complete with T.R.F. chassis. 2 waveband scale, station names, new waveband backplate, drum pointer, spring, drive spindle, 3 knobs and back, 22/6. P \& P $3 / 6$
As above with Superhet Chass15. 23/6. P. \& P.. $3 / 6$. As above complete with new 51n. speaker to fit and O.P. trans. A5 above complete with new sin. speaker to it and \&.P. $3 / 6$.
Used metal rectifer, $230 \mathrm{v} .50 \mathrm{~mA} .3 / 6$; gang with trimmers. 6/6; M. \& L. T.R.F. colls. 5/-; 3 Govt. valves. 3 v/h and circuit
 4/8; heater trans.." $2 /-; 32 \times 32 \mathrm{mfd} . .4 /-;$ bias condenser, $1 /-$ resistor kit. 2/- : condenser kit. 4/-.
resistor kit. 2- condenser kit. Mains 3 Valve plus metal rectifler T.R.S. kit. In the above cabinet, ${ }^{3} 3.15 .0$. plons $3 / 6 \mathrm{P}$. \& P .
Used A.C. Mains. 5 valve. 3 wavebands. Superhet chassis. 111 in . $x 8\} \ln , \mathrm{x} 3 \mathrm{in}$. Complete with 3 waveband scale. $10 \mathrm{in} . \mathrm{x} 51 \mathrm{in}$. Pair 465 , K.C.I.F., tuning condenser, main transformer, volume control with switch. Tone Control, 3 waveband cotl pack. (This is a completely detachable unit on small chassis.) Various small condensers and resistors blasing condensers. 19/6. P. \& P. 3/6. As above 2 wavebands 15:-. P. \& P. 3/6.
Valvehollers. Paxolin octal. 4d. Moulded octal. 7ed. EF50. 7d. Moulded B7G. 7d. Loctal amphenol. 7d. Loctal pax. 4d. Mazda Amph. 7d. Mazda pax., 4d. B8A. B9A am
B7G with screening can, 1/6. Duodecal paxolnt gntimmers, 6/6. MIIget 00037 dust cover and trimmers. 8/6.
R. \& A. M.E. 6 kIn . speaker with O.P. trans., feld coll 175 ohms, 9/B. P. \& P. $2 / 6$.
R. \& A. 6 tin. M.E. speaker with O.P. trans., field $440 \mathrm{ohms} .10 / 6$. P. \& P. $2 / 6$
P. \& Pattery Charger, Input 290/250 ∇., output 6 and 12 v. 1 amp. Black crackle finlshed case size $10 \times 6 \times 4$ in. P. \& $\mathrm{P} .3 / \mathrm{m} .21 / \mathrm{c}$. Potsto \& Vegetable Peeler, by famous manufacturer, capacity 41 bs. . complete with water pump. All aluminium construction, white stove-enamel finish. Originally intended for adaption on an electric food-mixer, can be easily converted for hand Operation. ${ }^{39 / 6}$. P. \& P P P ${ }^{3 /-2 /-1}$
$300-0-300100 \mathrm{~mA} .6 \mathrm{v} .3 \mathrm{amp} ., 5$ จ. $2 \mathrm{amp} .22 / 6$.
10rop thro' $350-0.350 \mathrm{v} .70 \mathrm{~mA} ., 6 \mathrm{v} .2 .5 \mathrm{amp} ., 5 \mathrm{v} .2 \mathrm{amp} ., 14 / 6$. Drop thro' $250-0-250 \mathrm{v} .80 \mathrm{~mA} ., 6 \mathrm{v} .3 \mathrm{amp} ., 5 \mathrm{v} .2$ amp., $14 / 8$. $280-0-280$, drod throush, $80 \mathrm{~mA} . .6 \mathrm{v} .3 \mathrm{amp} . .5 \mathrm{v} .2 \mathrm{amp} .14 / 6$. $250-0-250,80 \mathrm{~mA}$., $6 \mathrm{v} .4 \mathrm{amp} ., 14 / \mathrm{c}$
Drop thro', $270-0-270,80 \mathrm{~mA} ., 6 \mathrm{~V} .3 \mathrm{amp} .4 \mathrm{y} .1 .5 \mathrm{amp} .{ }^{2} 13 / 6$. Drog thro' $270-0-27060 \mathrm{~mA} .6 \mathrm{~V} .3 \mathrm{amp}$. $11 / 6$.
Aute Trans. Input 200 N 50 . H.T. 350 V .350 mA . Separate L.T. 6.3 v. 7 a. 6.3 v. 11 amp. 5 Y. $3 \mathrm{amp} ., 25 /-$. P. \& P. $3 /-$

Pri. $200 / 250$. Secondary
 Mains Transformer, fully impregnated. input 200, 220. 230 and 240. St $600-0-600275 \mathrm{~mA}$., and 200 ४. at 30 mA ., complete with separate heater transformer. Input 210, 220, 230. 240 . Sec. 6.3 v . 2 amp. three times. $0.4,6.3 \mathrm{v}$. at 3 amp . and $5 \mathrm{v} .3 \mathrm{amp} ., 45 / \mathrm{F}$. P. \& P. 5/-
Mains Transformer. fully impregnated. Input 210, 220, 230, 240. Sec. $350-0-350,100 \mathrm{~mA}$., with separate heater transformer. Pri. 210. 220. 230, 240. Sec. 6.3 v. 2 amp., 6.3 v. 3 amp., 4 v. 6 amp., and $5 \mathrm{v} .2 \mathrm{amp} .30 \%$ P. \& P. 5%

32 mfd .350 wkg . $16 \times 24350 \mathrm{wkg}$. 4 mfd .200 wkg . 40 mfd . 450 wkg . $16 \times 8 \mathrm{mfd} ., 500 \mathrm{wkg}$. $16 \times 16 \mathrm{mfd} . .500 \mathrm{wkg}$. $8 \times 16 \mathrm{mrd} .450 \mathrm{wkg}$. $32 \times 23 \mathrm{mfd} .35 \mathrm{wkg}$. $32 \times \mathrm{mfd} 25 \mathrm{wkg}$. 25 mfd . 25 wkg .
250 mfd .. 12 v . wk
250 mid.. 500 whg.. wire
16 ends... 500 wkg... wire
8 mfd... 500 v. wkg., wire
8 mad... $350 \dddot{v}$. wkg., tă
8 mads... \cdots whe.
50 mfd., 25 v. wkg... wire ends...
$100 \mathrm{mfd} .{ }^{3} 350 \mathrm{wkg}$.
$100+200 \mathrm{mfd} . .350 \mathrm{whg} . .$.
$16+16 \mathrm{mfd} ., 350 \mathrm{wkg}$.

$2 /-$	
$4 /-$	
$1 / 3$	6
$3 / 6$	16
$4 / 6$	
$5 / 9$	6
$3 /-$	8
$4 / 6$	
$11 d$.	
$1 /-$	
$3 / 3$	
$2 / 6$	
$1 / 6$	
$1 / 9$	
4.6	
$9 / 6$	
$3 / 3$	

Ex Govt. 8 mid. $500 \mathrm{v} . \mathrm{wkg}$
 $16+32 \mathrm{mfd} ., 350 \mathrm{wkg}$. $50 \mathrm{mfd} ., 180$ wkg. 50 mid.. 180 wkg. 65 mrd .220 Wkg . 8 mfd .150 wkg. 50 mfd. 12 wkg. kig. : $32+32 \mathrm{mfd}$. . min. $27 \mathrm{~m}_{5}$ wk $\ddot{\square}$ $50 \mathrm{mfd} ., 50$ wkg. 8 mfd . wkg., wire ends... enत̈s Miniature wire ends moulded 100 pf. 500 pf. and .001 ea. $280-0-28080 \mathrm{~mA} .4$ V. 4 a., 250 V .2 a. A. $6.3^{\dddot{ }}$ v. 4 ä. twice 2 v. 2 a.
$2 / 6$
$7 /-$
$6 /-$ $1 / 9$
$1 / 6$ $1 / 6$
$8 / 6$ 110.

1/9

14/6 Auto-trans., input 2001250 19/6 HT 500 v, $250 \mathrm{~mA}, 6 \mathrm{v}$. 4 a. twice 2 V .2 a.
$250-0.25060 \mathrm{~mA} .6 .3 \mathrm{v}, 1.5$ a. $250-0-25060 \mathrm{~mA} .6 .3$ v. 1.5a.
$0-5-6.3$ v. 1.5 a. $. . . \quad 10 / 6$ Where post and packing charge
(Late D. COHEN)
23, HIGH STREET, ACTON, W. 3
(Opposite Granada Cinema)
Hours of Business: Saturdays 9-5 p.m.

Armstrong

Specialists for aver 20 years in the manufacture of

HIGHEST QUALITY CHASSIS

Hand made by Craftsmen

L23. 18.0
(inc. tax)

F.C. 48 radiogram chassis

with provision for F, , Tuner
8 VAEVES including 2 double triodes 8 WATLs output from push-pul

- NEGATIVE FHED BACK-20 dB. resulting in negligible distortion and high damplng factor
- IAASS and TIREEHLE controls independent and continuously varlable. LIFT isur of these controls.
- MAGIC EYE Tuning Indicator
- 4 IVAVF 15ANDS: $16-50,49-120,190-550$,
-900-2.000 metres
- Large 4-colour illuminated dial.

E21 (inc. tax)

- PERMEABILITY TUNIVG
- FIREEDONI FROM DIRHT
- AUTOMATIC LINITANG
- MAGIC EDE TUNING

COVERAGE: $85-93 \mathrm{Mc} / \mathrm{s}$. INAGE 12 C JECTION: 26 dB. I.F. HEIECTION: R.F. Stage is coupled to a high stabllity frequency changer. This is followed by two I.F. Stages and a triple dtode triode ratio detector and A.F. Stage. VAINE: Mullard ECC85, EF85̄, EF85, EABC80. Emu1.

All our models are sold under full and unconditional money back guarantee of satisfaction. Prices include Purchase Tax. Hire Purchase facilities are available.
Demonstrations at your local High Fldelity specialists or at our Snowrooms in Holloway. special High Fidelity Demonstrations each Thursday evening from 7 p.m.

ARMSTRONG WHLLEESSESCO.LTD.
WARLTERS ROAD, LONDON, N.7.

[^0]CWMMUNICATIOVS RECBEIVEIR 18.1155. Another purchase from the Air Ministrs enables us to once again offer this superlative Communications Recelver at prices to suit every pocket. A World Station Getter, this covers 5 wave ranges: $18.5-7.5 \mathrm{mc} / \mathrm{s} .0 .7 .5-3.0$
 adapted for mains use full detalls with circults of recelver being supplied New ln Maker's Cases and aerial tested. £11.19.6.
Ditto but slightly used for demonstrathon purposes. £9.19.6.
ACC MAINS IOOWLE PACK OETPUT SIAGI:-In black metal case enabling the receiver to be operated immediately without any modification, can be supplied as follows:-Less Speaker, £4 10/-: with 6!in. P.M. Speaker, £5/5/:- IF PURCHASING
DEDCT
$10 /-$ DEDCCT 10/ IF PURCHASING
RECGIVER \& POWER PACK, TORECEIVEI
GETHER.
Please add carrlage costs of $10 / 6$ for Receiver and $3 / 6$ for Power Pack.

EOCKEF VOLTMETEIRS, not ex-GortRead 0-15 v. and 0-300 v. A.C. or D.C. BRAND NEW \& UNUSED. ONLY $18 / 6$
mal prlmaries. Has 3 separate windints of mal primaries. Has 3 separate windings of
5 v. 0.5 at at S amps. and by using combinations will give various voltages at high tions will Eive various voltages at high robust. BRAND NEW. ONLY $39 / 6$ (postage, ctc. 2/6\%. kc / s. $15 /-$ Miniature $200 \mathrm{kc} / \mathrm{s}$ and $465 \mathrm{kc} / \mathrm{s}$. Pow each the R.1132A. this is a standard rack mount ing job to match the receiver and is for $200 / 250 \mathrm{~V}, 50$-cycle mains with outputs of 259 V.D.C. 100 mA , and 6.3 V. 4 amps. Fitced with H.T, current meter and voltmeter, this is a first-class unit, and can be used for a variety of recelvers. uscd, but tested working before despatch. ©NI, 90/-(carriage. etc. $5 /-2$ Connecting Cable with Jones Plugs for receiver and power unit. $10 /-$
AMEIRICAN I\&ORAIR TRANSFORM-HRS.- 12 v . D.C. input. output 255 v. 65 ma . Useful for car radio. or running electric shaver from car battery, etc. ONLY 2:/6 ACUUMIIIMPS.-These are ex-R.A.F. rotary vane type, and are ideal for handymen and model makers. etc. New and Unused. ONLY 22/6 (postage, etc.. $2 /-$). nobled normal A C Mains Power Pack smoothed normal A.C. Mains Powet Pack, ransformer being 34 , 6.3 v. 5 a.. 6.3 v. 250 mA .5 v. 2 a.. 6 valves BRAND NEW IN MAKER'S CASES. ONLY $4^{\text {r//6 }}$ (carriage 7/6)
HOUIS MFFLiRS.-For checking running time of equipment up to 9.999 hours. Operates from normal 50 cycles mains. BRAND W NTM'I: 26 e9.For use with the R 1355 or any receiver with a 6.3 v . supply These are the variabie tuntng unlts whtch use 2 valves Erf54, and 1 of EC52. Type 26 covers $65-60$ Mcs. (5-6 metres) and Type 27 covers $85-65$ Mcs. ($3.5-5.0$ metres). Complete with valves and BRAND NEW IN MOHEL, MAKER'S MOTUN.-Only $2 i n$. long and liin. diameter with tin. long spindle. Reversible poles. Will operate on $4,6.12$ or 24 volts D.C. ONLY $10 / 6$. CIOKES,-10H 60 mA .. $4 /=5 H^{2} 200 \mathrm{~mA}$. $7 / 6$, $10 \mathrm{H} 120 \mathrm{~mA} . .106$ (1)ost $1 /-\mathrm{ea}$.) SPMAKI:RS,-P.M. 6!in., less trans.. 19/6 $81 n$. less trans.. 19/6: 10in. with trans. 27/6 (postage 2/-ea.).

ト.א.I. SIZE: iNJTTHPL
...in. sizas IND TMPE PRICR: 100 m.a. D.C. 2fin. Flush circular 150 ". D.C. 2 in. Flush square 503 " thermo 2 in. Flush square 500 thermo 21n. Proj. clrcular 40 amps D.C. 2in. Proj. circular $\begin{array}{ll} & \text { amps } \\ \text { aln. Proj. circular } & 7 / 6\end{array}$ 15 volts A.C. Diin. Far tupe moving tron $5 /=$ All metera Mranil Nev* in Maker's Cartoris Amounts miven for carriage refer to inlana only.

U.E.I. CORPORATION,

133, Gray's Inn Road, London, W.C.I (13one* TLilminus 7937) (0)ori until 1 p,m, Saturdays. W6 are 2 mins. fromt Iligit Holloori (Chanedery Lant station) and 5 mins. by luns from King's Cross.)

Jocating Obscure 7aults

advice to service engineers and others on the tracing of dIFFICULT AND UNUSUAL FAULTS
By F. E. Apps

DURING the many years that I have been connected with radio and television servicing, I have on many occasions met other engineers who have been "stuck" on a job for a considerable time, and, in fact, did not seem to be able to locate the fault at all. Yet eventually when it has been found, the fault has generally been quite a simple one. The main reason for this has been the fact that the engineer in question has been working on a laiddown routine of checking, which he has followed meticulously and has been doing the same checks over and over again. In other words, he has been "going round in circles," all the while missing the fault.
Now, it is quite in order for the reader to ask why the laid-down routine checks for a faulty receiver do not find all the faults. The answer to that question is that faults, unfortunately, do not always' follow the usual lines as laid down in the many books on radio and television servicing, and in consequence are missed when checking.

How are these unusual faults to be located? The answer is that when the ordinary check methods fail, the intelligence and imagination of the engineer must be used. He must say to himself, what is there in the faulty circuit that I have not checked? I have checked valves, resistors, condensers, coils, etc. Is there any other component left, however unimportant, that I have missed? That is the way these difficult faults are found and an immense amount of time and worry saved.

I now propose to give a few instances of unusual faults and how they were found and eliminated.

Fault No. 1

This was a case of a 5 -valve superhet with a valve line-up of $6 \mathrm{~K} 8,6 \mathrm{~K} 7,6 \mathrm{Q} 7,6 \mathrm{~V} 6,5 \mathrm{Z4}$. The set had been running for a couple of years, and then suddenly developed a terrific hum. The engineer on the job, at."the owner's house, employed the usual checks, and located the hum as between the 6 Q 7 and 6 V 6 stage. Electrolytic replacements did not effect a cure, and he tried a new 6Q7, but the hum persisted. Thinking that perhaps the spare valve he tried was also faulty, he left the job and returned with another tested 6Q7. The hum was still there: He decided to take the set in for a thorough check. This he did, but the fault still eluded him. I happened to call in on him that day and he told me about it. I pointed out that he had checked everything except the valveholder. On removing this, a paxolin type, we found that a small sliver of solder had wedged itself in between the top and bottom leaves 'of the holder, apparently in manufacture, and had eventually shifted, until it was making a dead short between pins 7 and 8 when the valve was inserted.

Fault No. 2

This was a case of a small type receiver using A.C./D.C. type B7G valves. The fault was that the volume control became very noisy after an hour of being switched on. This component was removed,
cleaned, replaced, and components attached thereto checked. The fault again occurred. A new volume control was fitted, and although the period was now longer the fault' still occurred. The trouble was eventually located by touching the spindle of the volume control, which was found to be quite warm. This was being caused by a resistor carrying the total H.T. for the set, having been replaced previously by one of the correct resistance value but of insufficient wattage. This resistor lay close up to the volume control and heated it up sufficiently to cause imperfect contact between slider and track, and thus noise.

Fauit No. 3

Here was a case that ordinary checks could not find. The receiver was a six-waveband set with bandspread on four bands. The trouble occurred on band I, the highest frequency band, where a blank spot appeared in the centre of the band at a point where the owner of the set was wont to receive a certain station. R.F. and frequency changer valves were replaced, but there was no improvement. Sensitivity everywhere else was up to scratch and it was noticed that by altering the aerial trimmer of band II the blind spot was eliminated. Now this could mean that absorption was occurring between bands I and II at that spot. A faulty earth connection on the aerial section of the wavechange switch caused this trouble and on being re-made the fault was cured.

Fault No. 4

A fault that perhaps should not be classed as difficult is one where for some reason or other the tuning on a receiver alters quite an appreciable amount at intervals, and in some casés renders stations on some parts of the tuning range unreceivable. This fault is hard to find where the engineer has had insufficient experience. It is nearly always a poor "earth connection on the ganged condenser. This may be the actual soldered connection, but may also be the spade connectors to each section of the rotor of the gang. Dirty contact here can cause this at various settings of the gang.

Fault No. 5

Another case where standard tests did not apply was where a set developed microphony on bandspread bands, especially those at the higher frequency. The trouble had only appeared since the set was previously serviced for another reason. Valve replacement did not cure the trouble, and the fault was located in the oscillator section. Here the wiring had been disturbed and long leads were tightened, running parallel to screening and setting up microphony on the higher frequencies. A very small movement and repositioning of these leads cured the trouble.

Fault No. 6

R.F. in the audio stages of a set are generally only
traceable and eliminated by trial and error methods. In the case of a portable receiver for battery and A.C./D.C. mains, the trouble was caused by the leads to the output transformer on the speaker being shifted so that R.F. was picked up by them. Moving these leads eliminated this trouble.

Fault No. 7

Attention should always be paid to component positioning in sets, especially when the components are closely spaced. A case occurred where a set gave very noisy reception after being switched on for about half an hour. The trouble was caused by a $.02 \mu \mathrm{~F}$ coupling condenser heating up through its proximity
to a resistor. The replacement condenser was differently situated and the trouble vanished.

Fault No. 8

Intermittent performance at long intervals is one of the worst faults that the service engineer has to contend with. No real hard and fast rules can be laid down and the only method to adopt is to take one circuit at a time, if the circuit where the intermittency is unknown, and with meters at the vital points wait for it to occur. I have known sets to have periods of six or eight hours, so that this is definitely a workshop job, for it means "soak" testing.

News from the Clubs

BARNSLEY AMATEUR RADIO CLUB
Hon. Sec. : Mr. P. Carbuti, G2AFV, 33, Woodstock Road, Barnsley.
THE programme for March includes:
March 11th-Lecturettes.
March 25th-"Transistor Transmitling," by J. Ward.

THE EAST KENT RADIO SOCIETY

Hon. Sec, : Mr. D. Williams, Llandogo, Bridge, Canterbury. THE Society meets every Tuesday fortnight, at 8 p.m., at "The Two Brothers." Northgate Street, Canterbury.
Competitions, contests. Sales and lectures have teen arranged for this year. A cup is presented every year for the best constructed piece of appiratus. New members are cordially inviled.

BRIGHTON AND DISTRICT RADIO CLUB

Hon. Sec.: T. J. Huggett, 15, Waverley Crescent. Brighton. THE Brighton and District Radio Club meet every Tuesday, - at "The Eagle Inn," Gloucester Road, Brighton, at 7.30 p.m. At the Annual General Meeting the lollowing officers were elected.
Clairman, Mr. R. Langridge; vice-chairman, Mr. C. T. Fairchild; hon. secretary, Mr. T. J. Huggetf: treasurer, Mr. R. Sowerby; fifth member. Mr. D. Hensley.

It was agreed that the A.G.M. in future should be held in Sepitember, thus avoiding a change of committee in the middle of the winter season. A comprehensive programme has been arranged for the present season.
DERBY AND DISTRICT AMATEUR RADIO SOCIETY Hon. Sec.: F. C. Ward (G2CVV), S, Uplands Avenue, Littieover, Derby.
AT the Annual General Meeting on February 4th the following were re-elected to serve on the 19.5 Committee
Chairman, C. M. Swift (G33UK): hon. sec., F. C. Ward (G2CVV): hon. treasurer, W. R. Challe (G2DLJ) hon. contest sec., T. Darn (G3FGY) : committee, Messrs. A. McCabe (G4CO). B. J. C. Brown (G3JFD). C. Rodger (G3HJ) and F. Cox (G3GRM).

It was reported that the Society's assets stood at $\mathbf{5 8 5}$, net profit for the year amounted to some $£ 6$ and that the fully paid membership stood at 74. Meetings would continue to the held weekly for the prisent on a Wednesday. commencing at 7.30 p.m. but in order that juniors might obtain more benetit Irom membership, it was under consideration that the club rooms should be opened on a Friday evening for their benctit.

RAVENSBOURNE (DOWNHAM) AMATEUR RADIO CLUB Hon. Sec.: J. W'ilshaw. 4, Station RJ., Bromley. Kent.
T HE Society holds its meetings every Wednesday evening from $81010 \mathrm{p} . \mathrm{m}$. in the Science Room, Durinam Hill School, Downham Estate. Bromley, Kent (124 Bus), when RAE lectures, morse instruction, radio repairs and operating of the club transmitter (G3HEV) takes place. Ciub membership fee is Is. 63. annually and instruction is given by G2DHV (Chairman) alternately with G3FTI on the transmitter. New members are welcomed.

CLIFTON AMATEUR RADIO SOCIETY

Hon Sec.: C. H. Bullivan, G3DIC, 25, St. Fillans Rd., Catford, S.E.6.
T HE month of Fehruary was quite full for the Ciifton A.R.S. and, in addition to hearing two very interesting taiks and
taking part in a quiz. members were afforded the opportunity of visiting Electra House (P.O. Cable and Wireless Services).

The tirst of the two talks was given by G. Store, G3FZL, and his subject was "V.H.F." This was in the nature of an introduction to the very high frequencies and it is hoped that a number ol members will be encouraged to experiment in those regions.

The " New Zealand Z.C.I Mk. If" Iransmitter/receiver was covered by J. Lambert. G3FNZ, in the second talk and in addition to giving delails of the circuit and desirable modifications for amateur mobile use, the simplicity of tuning wis demonstrated.

Proposed programme for April :
April 81h-No meeting.
April 15th-"Direction Finding" by C. Hatfull, G3HZI.
April 22nd-Junk Sale.
April 29th-Constructional Evening and Ragchew.
Meetings are held the clubrooms. 225. New Cross Road, Lonton, S.E.1t, it 7.30 p.m.

SOUTHEND ANO DISTRICT RADIO SOCIETY

Hon. Sec. : J. H. Barrance, M.B.E., 49, Swanage Road, Southend-on-Sca. Essex.
MR. H. WILKINSON, holder of the locock Cur for "Best workmanship in home-constructed radio gear," continued his lecture on "Frequency Modulation" to members of the Southend Radio Suciety. He prefaced his lecture by comparing frequency with amplitude modulation, explaining that modulation is a change of the carrier or continuous wave emitted by a transmitier. This modilation or change reprotuces electronically the sounds it is intended to convey.
Amplitude modulation has. for technical and financial reasons, been almost exclusively used on medium frequencies. These frequencies have now beconse so congested that conditions which even now are chaotic will soon become impossible.

The BBC and radio engineers and manufacturers in all countries have already turned their attention to " very high frequency" transmissions using trequency modulation, with marked success for regional purposes.

Mr. Wilkinson traced out, with blackboard diagrams, the evolution of the F.M. Receiver. A German model has eventually fourd favour. In this receiver, modutation is effected by a device known as a radio detector ; it uses only two I.F. valves whereas tormer models required three.

TORBAY AMATEUR RADIO SOCIETY

Hon Sec. : I. H. Webber, G3GDW, 43, Lime Tree Walk, Newton Abbot

A
MEETING was held at the Y.M.C.A. Torquay, on Saturday, 19 th February, under G2GK. the Chairman. As a result of the recent successful social and dinser. it was resolved to hold a similar function this year before Christmas, instead of in the new year.

A hearty welcome was extended to a new member-George Western. BRS. No. 20605 who is unfortunately blind. He is being coached in technical subjects by Bern Symons. BRS. 19991 : they are also both working up their speeds in Morse. On a proposal by a memiher. George Western has been voted all Honorary Member of the Torbay Society.

Another new member, and a new call, is R. Coleman, G3KDV, of 16 . Castor Close. Brixham, S. Devon, who was also welcomed. The meeting closed. after an interesting talk by John Hawke, G3FUT, on "Audio Amplifiers."

At the April meeting, on 16the April, the Annual General Meeting of the Society will be held.

COST UNDER $¢ 4$ MINI MAINS
Uses high - efficiency colls. covers long and medium wavebands and fits into the neat white or broun bakelite cabinct the parts. inctuding cabinet. the parts. inctuding cabinet. valves. in fact. everything \&3/19/6 plus 2;- post. with the structional data fice with the part.

Good reception on both medium and lons wayes. All parts including three valves, reincluding thre condensers. in fact. everything except loud(avajlable if you haven't something suitable) costs only 19/6; data available separately, price 1/6.

COMPONENT BARGAINS
 (all new and unused)

Elac focus marnet tvpe No. R25-7D-price.
plus 9 d.
12/6,
post. transformers standard pentransiormers standard pen2/6: push-pull, centre 2/6 : puped, $3 / 6$. Coll's sultable for F.M. and T.V. with dust cores and fixing lugs. 12 assorted. $5 / 6$ I.F.
transformers. small size, exceptional high Q potted construction, turing over $450-470 \mathrm{kc} / \mathrm{s}$. $5 / 6$ per pair. 2-gang tuning condenser-midget. . 0005 , $5 / 6$. mer. pots. with switch, $1 / 9$: 1ess'switch. 1/8, double pole switch: 2/-.

SPEAKERS

5 in. p.m.	\ldots	\ldots	\ldots	$19 / 6$
6 in. p.m.	\cdots	\ldots	\ldots	$17 / 6$
8 in. p.m.	\cdots	\ldots	\ldots	$19 / 6$
10 in. p.m.	\cdots	\ldots	\ldots	$25 /-$
12 in. p.m.	\cdots	\ldots	\cdots	$35 /-$

 and tested, 110-240volt A.C. Mains operation. Three wave bands coverint medium and two shorts. Complete with five valves, frequency changer. double diode triode, pentode output and full wave rectifier. special cash-with-order price this month, s5/19/6, carriage and insulance $7 / 6$.

BEETHOVEN CHASSIS Extremely well buil on chassis size approx. $9 \frac{1}{2} \times \frac{1}{2} \times 84 . \quad$ using ondy trs, fully aligned

THE CLEVELAND OCTAVIAN

In this instrument is combined the exceptional qualities of the G.E.C. metal cone loudspeaker In its ideal cabinet and a most modern 3 -valve amplifier. This combination will give a realism of musical reproduction not easily obtained even at twice or three times its price and is definitely the reproducer for bringing out the full frequency now avatlable in long-playing microgroove recordings. If you can, please come to one of our branches and hear this fine instrument-failing this, then take our word that it is really good and send an order to-day. Price 27 guineas or eqtiol
deposit. balance by 12 monthly pay12 monthly payments of earriage and insurcarriage and insurance lable separately available se

OCTAGONAL

SPEAKER CABINET
Conforming exactly to the designer's specification-suitable for G.E.C. metal cone speaker-price £12/10/- or $37 / 6$ deposit, balance by 12 monthly payments of $£ 1 / 0 / 6$. carriage a n'd insurance, $5 /-$ extra.

A NEW APPROACH TO AN ALMOST UNIVERSAL PROBLEM
An electronic computor to indicate football results is described in our latest publication. The computor uses 3 -valves and information is fed into, 12 ratio arms. The result "home, zero-meter, suitably seled.
The information fed into the ratio arms can be derived from the operator's own pet methods. or alternatively the data freely available in newspapers and popular magazines can be used. The circuit is quite an interesting one but it is not diffecult to operate. When complete the unit is entrely self-contained and mains operated. The price of all components needed, excluding metal front plate and chassis. is, $£ 3 / 10 /$-. Our Publication "A New Approach" is provided free with orders. alternatively will be supplied separately tit $2 / 6$. post free.

THE BENDIX RA-1B COMMUNIGATIONS RECEIVER

Originally intended for the Alnerican Forces this fine receiver, a small quantity of which has been released by the Ministry of Supply. is avallable to you if you act promptiy. Designed to receive C.W. s R.T. it uses probably the finest band spreading arrangement possible, and covers the following bands
$\left.\begin{array}{lcccc}\text { Band 1. } & .15 & \text { to } & .315 \mathrm{mc} / \mathrm{s} \\ \text { Band } 2 & .3 \mathrm{~m}^{2} 5 & \text { to } & .660 \mathrm{mc} / \mathrm{s} \\ \text { Band } 3 & .680 & \text { to } & 1.5 & \mathrm{mc} / \mathrm{s} \\ \text { Band } 4 & 1.8 & \text { to } & 3.7 & \mathrm{mc} / \mathrm{s} \\ \text { Band } 5 & 3.7 & \text { to } & 7.5 & \mathrm{mc} / \mathrm{s} \\ \text { Band } 6 & 7.5 & \text { to } & 15.0 & \mathrm{mc} / \mathrm{s}\end{array}\right\}$ metres 20 to 200
The Sensitivity is 4 micro valves for full output. It uses 8 valves and operates from batteries (12 or 24 volt) or from the mains through a powe pack. It has built in output stage with a jack socket for Controls. all of which are brought to the front panel, include aerial switch comparative condenser, main tuning condenser, band selector. C.W. switch, power on/off switch, and volume control.
Very compactly built in crackle finished case. these sets are brand new, having never been used and guaranteed in perfect working orderspecial price this month is balance by 12 monthly payments of $£ 1 / 3 / 6$, carriage and insurance $10 /-$ Order now to avoid disappointment. Circuit diagram and component data given free with sets, or avallable separately price 2/6. post free.

FRICTON DRIVE MOTOR

Operates from standard 50 cycle mains -a thoroughly good job with dozens of applications-limited quantity only-17/6 each. post and packing. 1/6.
ALL DRY BATTERY SET VALVES 1T4, 1R5, 1S5. 3A4, offered as a set. 30/- the four. DECCA CRYSTAL PICK-UP
A snip for the connoisseur-turnover head. suitable all records. limited quantity only, $29 / 6$. plus 2i- post and packing.

THIS MONTH'S SNIP

Mains transformer and choke by Haine ${ }^{5}$ Radio, Ltd.. Standard 50 cycle input with 10 volts tappings. Secondaries : $500-0-500$ volt at 500 miliamp and 6.3 volt at 6 amps. also choke to match 10 henrys at 500 miliamps. Limited quantity only at 45i- the pair. Carrlage and packing 5 /- extra.

COMMUNICATIONS RECEIVER RIIS5

YOURS FOR 30/-

The R1155 is considered to be one of the finest communication receivers available to-day. Its frequency range is $75 \mathrm{KC} / \mathrm{s}$ to $18 \mathrm{Mc} / \mathrm{s}$.
lt is complete with 10 valves and is fitted in a black metal case. Made for the R.A.F. so obviously a robust receiver which will give years of service. Completely overhauled and guaranteed in perfect working order. Price e9/19/6, or will be sent on receipt of deposit of 30%. Balance by 12 monthly payments of $18 / 3$. Carriage and Transit Case 15/-extra. Mains Power Park. 85/10/-.

CABINETS FOR ALL

We undoubtedly hold the largest stock of cabinets in the country. All are made of the finest plywood, veneered and pollished, and all radio and motor boards are left uncut to suit your. own equipment. The top one

is The Bureau, walnut finished and highly polished, size approximately 30 in . high. 32in. wide. and 16in. deep. Price 16 \&uineas or 32/- deposit, carriage-12/6. The centre one is The Empress, our most popular cabinet. size 32 m . high 36 in . wide, and 186 in
deep, walnut finished, lined sycamore. Price 15 guineas, or H.P. deposit 32/- carriage 12/6. The lower one is The Contemporary, size 29 in . high. 30 in . wide and 151 in . deep. Oak finished with contrasting mouldings. Price $88 / 15 /-$ H.P. deposit 19/-, carriage $12 / 6$.

electronic precision equipment, lTd.

Post orders should be addressed to Dept. 7, RUISLIP.
42-46, Windmillill, 152-3, Fleet Strect, 29 . Stroud (irean Rd., 249, Kilburn Kuislip, Middx, E.C.4. 833 Finstury Park, N,4, High Road, Half day, Wednesday.|Half day. Saturday. Half day. Thursday. MAIda Vale Half day, Wednesday. Half day, Saturday. Hall day, Thursaay.

REPACO
 HIGH GAIN COILS

DUAL RANGE MINIATURE CRYSTAL SET COIL, with circuit. Type DRXI, 2/6.
IDUAL RANGE COIL with reaction. With 2 mains and 2 battery circuits. Type DRR2, 4/-.
MATCHED PAIR DUAL RANGE T:R.F. COILS, with reaction ;

(Regd. Design) with battery and mains circuits. Type DRM3, 8/ pair.
STANDARD I.F. TRANSFORMERS. Type S.E $13 \mathrm{in} . x$ lin. $x 23 \mathrm{in}$. Pre-aligned, $465 \mathrm{Kc} / \mathrm{s}$., $13 / 6$ pair MINIATURE I.F. TRANSFORMERS. Type M.S.E. 13/16in. x $13 / 16 \mathrm{in}$. x 1 i in . Pre-aligned, $465 \mathrm{Kc} / \mathrm{s}$., 12/6 pair.
FERRITE ROD AERIAL. Type FRi. Long and medium wave. Complete with fixing brackets, $12 / 6$.
\star All coils wound on low loss formers.
\star Individually tested and guaranteed.
\star Post 3d. on all orders. * Trade supplied.

Distributed by

RadIO EXPIRIMENTAL PRODUCTS LTIJ. 33, MUCH PARK STREET, COVENTRY Telephorre: Coventry 62572

TRAIN TO BE A RADIO \& T.V. ENGINEER

ready to meet F.M., V.H.F. and Colour Television developments.
Now is the time to learn the theoretical and practical principles-and so ensure your future in this rapidly expanding field of Electronics.

ONE-YEAR COURSE
 IN MODERN RADIO \& TV TECHNIQUES

A full-time day course in the Principles and Practice of Radio and Television. Next course commences on 29th August, 1955.

E.M.I. INSTITUTES

Dept. 32C, 10 Pembridge Square, London, W.2. Te'ephone: BAYswater 5131/2
The College associated with a world-wide electronics industry including "His Master's Voice," Marconiphone, Columbia, etc.

IA27

SPARKS' DAIA SHEETS

Guaranterd and Tosted ikidio Designs. Battery Operalerl.
Lol31. 2-V. Portable. M/L Waves. Compact Lo/30. 2-V. MiL Waves. Speaker sigs. Lo/35. 4-V.T.R.F. M/L waves. Good range L $\rho / 27$. 4 -V. All-wave Superhet. Very Neat. SHORT-WAVIES. LO $43.2-\mathrm{V} . \mathrm{S} . \mathrm{W}$. Receiver. Latest Plug-in Coils. Widely Praised. Data Shects. $2 / 6$ each, plus 21 d . stamp. PortABLE. Superhet $4-V$. M/L Waves. Range and tone. D/Sheet. $3 / 3$. plus $2 \frac{1}{d}$.

MULLAIED 10 II: AMPIIFILER
The Sparks version of a Tested practical Jayout of this noted circuit, with separate Control Unit. 3/9. Post Free.
SEND 2Id. STAMP FOR LISG OF 34 DESIGNS
Chassis and Components supplied.
L. ORMOND SPARKS (P),

8, COURT ROAD, SWANAGE, DORSET
.

READERS RADIO 24, COLBERG PLACE, STAMFORD HILL, LONDON, N.16. STA. 4587

H A Short wave EQUIPMENT

Noted for over 18 years for
S.W. Recelvers and Kits of Quality.
improved designs with Denco colls:
One-Valve Kit, Model "C" Price, ${ }_{50 \%}^{25 /-}$

- -

acessories, and full instructions.
Before orderins call and inspect a
iemonstration receiver, or send
ramped, addressed envelope for
descriptive catalogue.
H.A.C." SHORT-WAVE PRODUCTS
(Dept. Tis), 11, Old Bond Street.
London, W.1.

> Television, Radio, Record CABINETS MADE TO ORDER

ANY SIZE OR FINISH
CALL OR SEND DRAWINGS FOR QUOTATION

B. KOSKIE

72-76 Leather Lane, Holboru, E.C.I.
Phone: CHAncery 6791/2

(1)

The "Coronet"

SIR,-I wish to thank you for the circuit of the battery version of the "Coronet." I have built one myself, and it is second to none of the professional sets of the kind available in the local market. I had no previous knowledge of radio, other than building a one-valve stt, with regeneration. I had to use parts available here, i.e., coil pack, Weyrad 6BA ; three-waveband, 2 short and 1 medium ; loudspeaker, R. and A. 8 in . ; I.F. transformers, Wearite.

All the connections were done without soldering. -H. Dharmasena (Ceylon).
 Time and Frequency Checks SIR,-May 1 endorse and amplify on Mr. G. Prentis's letter in March Practical Wireless on time signals and fixed frequency transmitters. Working for Trinity House, often on radio beacons, I have recourse to use BBC time signals for setting up the control clocks. The lack of time signals at certain periods of the day, especially at the week-ends, causes considerable inconvenience.

After working on an equipment and having made some adjustment which means the clocks have to be reset, a delay of two or three hours is sometimes encountered and as these clocks must be accurately set, causes delay.

If the BBC could keep the

Using Test Instruments

SIR,-Reference Fig. 8 of the article, "Using Test Instruments." in February's issue of Practical Wireless.

Surely the simplest method with the circuit shown would be to adjust the voltage of the auxiliary H.T. supply until the current measured on the m/a meter is zero. Then the voltage registered on V is equal to Va. The original H.T. supply remaining connected. The resistance of the auxiliary source need not be considered.- M. R. Holland (Singapore).

Modifying the R1132A

SIR,-I would appreciate it very much if you could publish this letter in answer to the article written by Mr. L. H. Cox re the R1132A receiver, as interfering with the coils on this R.X. is a very tricky job. I know several people who have tried to do it and have failed dismally. I got over the difficulty by changing the tops of the Philips trimmers with some from an old RF24 unit, with the exception of the aerial trimmer. Alignment was carried out as per Mr. Cox's article. The aerial trimmer is experimented with by changing the trimmer completely for one from an RF24 unit. I have received good results here at Bedford on (a) 66 ft . (b) 12 ft . vertical whip (c) 28 in . dipole aerials. These-different aerials tuned well and except in the case of the dipole single wire was used. Wrotham is received with the indicator at about 160 deg. and 135 deg. on the scale. One thing with this system is that should it not work one can easily put the set back to normal ; with the coils interfered with it is a different matter.

I would appreciate it if any reader has modified a set for $144 \mathrm{Mc} / \mathrm{s}$ and could send me some details.David W. Butron (Bedford).

time signals at the same time each day it would help, but I can't see why they are not transmitted hourly. The time signal could be superimposed on the programme going out and would hardly be noticed except by those awaiting it.
I have long hoped for a British station broadcasting fixed frequencies particularly in the audio-frequency having spent many hours experimenting with electronic musical instruments.--J. F. B. Elder (Smalley.)

N.P.L. Transmissions

S$\mathrm{S}^{I R}$,-I feel that the letter from Mr. G. Prentis, published in the March issue of Practical Wireless, should not be allowed to pass without comment.

His reference to time and frequency checking services in the United States obviously refers to the transmissions from station WWV, but Mr. Prentis is apparently unaware of the similar services radiated from Rugby under the auspices of the National Physical Laboratory. The details in my possession refer to experimental transmissions which started in 1950, but I believe that these services have now been extended.

I believe that there are also some other, restricted, services by the Royal Greenwich Observatory through a station at Abinger on $2 \mathrm{Mc} / \mathrm{s}$ and by GBIRS (the H.Q. station of the Radio Society of Great Britain).

May I suggest that you devote some space in an early issue to details of these various transmissions for the information of your readers in general, as the WWV transmissions are not always satisfactorily received in this country.-E. S. Smith (Eltham).

The Editor will be pleased to consider articles of a practical nature suitable for publication in "Practical Wireless." Such articles should be written on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hold himself responsibla for manuscripts. every effort will be made to return them if a stamped and addressed entelope is enclosed. All correspondence intended for the Edttor should be addressed. The Editor. "Practical Wireless." George Newnes. Led.. Tower House. Southampton Street, Strand. W. C. 2. Owing to the rapid progress in the desion of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patent.
Copyright in all drawings. photographs and articles published in "Practical Wireless " is specifically reserved throughout the countries Efgnatory, to the Berne Convention and the U.S.A. Reprqductions or imitations of any of these are therefore enpressly forbidden. "Bractical

News from the Trade

"Rai-Tel-Ade"
WHEN using the conventional hearing aid, the listener receives the output of a radio set, TV set or radiogram at second-hand, because the aid picks up the set's speaker output and reproduces it again. The user receives much distorted sounds for two reasons. First, the conventional hearing aid is designed to aid conversation between two or more persons conversing in comparatively close proximity, therefore, at normal distance from a radio set and at comfortable viewing distance from a TV set, the aid must be at full volume, which seriously distorts its output. Secondly, even at maximum volume, the aid does not pick up satisfactorily unless the sound output of the radio, TV or radiogram is uncomfortably high for those with normal hearing, thus increasing the distortion of the original sound output and also greatly amplifying the normal environmental noises thereby further adding to the distortion babel.
The obvious answer to this problem is an instrument which does not depend on reproducing sound secondhand. Instead, it should pluy into the output circuit of the radio, TV set or radiogram and itself receive the signals, which actuate the loudspeaker. The instrument turns these signals into sound, which the user receives directly from his ear-piece.

The " Rai-Tel-Ade" utilises the same type of miniature insert ear-piece as is used in the conventional heating aid. This is connected to the small "Rai-Tel-Ade " by a thin, plastic-covered flex.

The "Rai-Tel-Ade " being only 3 inches by $\mathbf{3}$ inches by $4 \frac{1}{6}$ inches, sits comfortably on a side table or the arm of an easy chair. It is connected by a long lead to the radio, TV set or radiogram to which connection is easily made without harming the most expensive or delicate set. Thus the user may sit in any part of the room and as far away from the sound source as is desired.
Extraneous noises are entirely eliminated and the user has a personal volume and tone control for speech or music on the instrument itself. Their use does not affect the loudspeaker output. Indeed, it gives the person who is hard of hearing greater independence than the unafllicted, because he, or she, can listen in and view with the loudspeaker switched off. This property makes the instrument useful for those with normal hearing, since parents may listen in without disturbing their children doing homework, for example.

The retail price, complete with plug and socket, connecting lead, miniature insert type receiver, which accepts the personal ear mould, is $£ 4$ 15s. Electric Aids, Orchard House, Sunbury-on-Thames, Middlesex.

"His Master's Voice" 3-Speed Radiogram at 32 gns.

TO meet the ever-growing demand -additionally stimulated by the steadily increasing sales of records of all kinds-for a compact, high-quality
and inexpensive radiogram, "His Master"s Voice" have made their Models 1507 and 1508 portable 3 -speed radiograms available at the attractive price of 32 gns. (including purchase tax). The Gramophone Co., Ltd., Hayes, Middlesex:

" Denco " Fish-Band Coils

IN response to a considerable number of requests,
Messrs. Denco have increased the new range of CP3 coil packs to include the $50 / 160$ metre Fish Band.
There appears to be quite a demand for this type of pack in coastal areas, and the reference number is CP/F 4 waveband coil pack.

Denco (Clacton) Limited, 357/9, Old Road, Clacton-on-Sea.

A New Magnetic Recording Tape

A NEW magnetic recording lape with an exceptional performance has been introduced by Salford Electrical Instruments Limited, at an unusually low price. Sold under the trade name of "Puretone" for 20s. a spool, it is a paper-based material with an output and frequency response which compares favourably with those of plastic tapes costing almost twice as much.
The new tape is sold in lengths of $1,200 \mathrm{ft}$. wound on specially designed plastic spools slotted to facilitate rapid threading, and other lengths of tape will shortly be available. The $1,200 \mathrm{ft}$. reels give 32 minutes playing time at $7 \frac{1}{2}$ inches/second, or 64 minutes at 33 inches/second. Twin track recording is also possible and this doubles the playing time : the tape can be used on all types of recorders. The highest grade oxide with a particle size range from $0.5-1.5$ microns, is used in the magnetic coating. The base, which is superior to that of many other paper tapes, consists of a high quality super calendered Kraft paper.
"Puretone" has the high tensile strength of about $6 \mathrm{lb} / \mathrm{sq}$. in. breaking strain with a coercive force and "emanence of 220 oersteds and 700 gauss respectively. " Static," the principle disadvantage of plastics-based tapes, is eliminated with the use of "Puretone."

The "Rai-Tel-Ade" hearing accessory.

ALFRED PADGETT 40，MEADOW LANE，LEEDS， 11

Established 21 years

Abstract

600° IIS4．TX．－Brand new，complete with valves and meters．17／6，carriage $8 /-$ 200 R．A．F：RACK TYPE AMPLIFIERS． －For PX25 valves in push－pull in Class A． Less valyes and meter，otherwise complete． With 200－230 v．power supply．Bargain Price．32／－，carriage 8／－． 1125 SETS complete with two 8D2 valves， 6／6，carriage 2／4． BRAND NEW 62A TUBE UNIT．－ Complete with EF5Os and picture－tester VCR97 tube． E4．5．0，carriage $8 /-$ 500 SMALL U．S．A．ELECTRO－MAG． TYPE MIKE．－Complete with on／of switch， $1 \frac{1}{2} \mathrm{in}$ ．diameter． $2 / 6$ ，post 8 d ． 2，000 8D2 VALVES．－1／－each，10／－per doz．Post 6d．Dozen lots post free． 2，000 954 VALVES．－ $1 / 3$ each， $12 / \cdot$ per doz．Post 4d．Dozen lors post free． WAR SURPLUS 15 mfd． 750 volt working condenser，1／6，post 1／3． G．P．O．MULTI－CONTACT KEY SWITCHES．－New．Removed from units． $2 / 6$ ，post 8d．＇ SMALL S－I INTER－VALVE TRANS－ FORMERS．－9d．each，post 6d Small Wirewound PRE＇SET POTS．Ideal for extension speaker，etc．1／－each， post $2!\mathrm{d}$ ． SMALL BAKELITE TOGGLE SWITCHES．－6d．，post 2．2d．5／－doz．， post free． 2，000 BRAND NEW VR65 VALVES．－ 2／－each，post 6d． 2,000 VR65A VALVES．－2／－each，post 6d． 2，000 BRAND NEW VRI37 YALVES．－ 1／3 each，post 6d． 500 BRAND NEW 524 VALVES．－8／－ each，post 6d．

BIG STOCKS mean SMALL PRICES

To reduce our gtock of certain items we offer the following at greatiy reduced prices for limited period． VALFES：Maker＇A cartons：6K7GT，63．JGT， $3 / 9$ ： 68K7．4／9：KKat（double trioile，which can also give useful output as full－wave rectifier）2／－．Phuid certons：6VtG $\mathrm{E} / 9$ ；647G 7／6；EB34 $1 / 6$ ． CONDENSERS：Micas： $30,50,75,200 \mathrm{pf}, .001$ ， ．002，． 005 m mf．， $2 / 6$ doz．Electrolytics ： 32 mfd ． 460 v．（large） $1 / 3$ ： $2,0100 \mathrm{mfd}$ ． 15 v ． $3 / 9$ ．metal block： $5+.5$ ，or $.1+.1$（400 v．） $4 d$.
RESISTORS（carbou）： $1 \mathrm{w} .30 \mathrm{k}, 73 \mathrm{k}, 180 \mathrm{k}, 6$ for $1 /-; 5 \mathrm{w} .500,700,3 \mathrm{k}$ ， $4 \mathrm{k}, 5,6 \mathrm{k}, 12 \mathrm{k}, 20 \mathrm{k}, 30 \mathrm{k}, 200 \mathrm{k}, 6$ for $3 / \mathrm{m}$ ． FOTENTIOMETERS（earbon）： $500 \mathrm{k}, 7 \mathrm{in}$ ．dis． 1 in ． eptaxle： $5 k, 100 \mathrm{k}, \mathrm{ltin}$ dia．in．spindle：boxed
 BARGAIN ASSORTMENTS： 50 micas 8／9． 100 BARGAIN AS8ORTMENTS： 50 tnicas $8 / 9,100$
micas，tubulars，metal blockg，etc．，．17／6．50＇resistent micas，tubulars，metal bl
from \mathbf{w} ．to $2 \mathrm{w} ., 8 / \mathrm{m}$

STOCK LINES

CAPBON RESISTORS，all values，LAB type T （thav．load 1 wi．），8d．：type R （max．load 1 w．），8d． WIRE WOUND RESISTORS，SLLICONE COATED， $25, \ldots 0,68,+100,150,300,250 e^{2} 350,540,680,1 \mathrm{k}$, $10 \mathrm{k}, 2 \mathrm{k}, \frac{9}{3} \mathrm{k}, 3 \mathrm{k}, 3 \mathrm{k}, 6.8 \mathrm{k}, 10 \mathrm{k}, 5 \mathrm{w}, 1 / 3$ ， G w． $1 / 9,10 \mathrm{w} .2 / 8 ; 47 \mathrm{k}, 50 \mathrm{k}, 5 \mathrm{w} .2 / 3,10$ w． $2,6$. MIDGET TUBULARS（tested）：．0．4．．01，3／6 doz． 6 解FID． 2040 v ，test，Inetal block， 3.9 （post s / H ）
BETTER PICTURES can be obtained by uslug oar BPECIAL LOW LOSS COAX．Uniy 9d．yu．．staralurd

COAX FITTINGS ：Univerral phuz，111d．；solderless plug．1／2；sucket， $1 / 3$ ；outiet box 4／6．Counter （double souket） $1 / 3$ ．
VALVEHOLDERS ：（Amphenol）U．A．A．and British octaly B7G，9d．：B8A，BKB，B9A，1／－．
Valve extrictor and pin atraightener for liat and B7G，2／6．
WHY ORDRR ELSEWEERE P In additimi to abore we can supply any valye or component in gencral nee：＇Just order C．O．D，or ask＇for quotation．

Orders over il post free：List－ 3 d ．
REFD \＆FORD AA，BURNLEY ROAD．

LYONS RADIO
 LTD．

3，GOLDHAWK ROAD，Dept．M．P．${ }_{-1}$ SHEPHERDS BUSH，LONDON，W．12．

Telephone：SHEpherds Bush 1729
＂PYE＂ 45 IIc．I．F．STRIPS．Using 6 VR91＇S（EF50）and 1 VR92（EA50）valves， these units form a complete vision receiver having 4 RF．stages ：detector in vider amplifter：and phase splitter．in good condition．PRICE．with valves，62／－，less valves $35 /$－，postage $2 / 6$ ．
SLIDIOK FINE HOLDEHS， 5 gmp ， size， 3 for 6／6， 6 for $11 / 9$ ．Trade enquiries invited for large quantities．
VILVE B．IIGGAINS．All new and guaran－ teed．1T4．1R5，3A4，EF91．6AM6．6L34，at 7／6 cach．6SH7 metal at $5 /-$ each． 646 metal at 3／－Each．
＂OWVEIR I＇NITS TYIP 285．These should make a fine TV or general purpose pack，or parts dismantled to incorporate in your own designs．1N1＇T 230 v ． 50 erps．A． mains，OUTPUT ：－E．H．T．2，000V．SM D．C at 150 mA L．T． 6.3 v .5 A ．and 6．3v．10A．A．C Soundiy constructed with fully impreg－ nated transformers and paper condensers （no electrolytics）．and with valves $5 \mathrm{U4}$ VU120 and VR91．Input／output plugs．fuse holders，and on／off switch mounted on front panel．In good condition and working order． supplied with circuit diagram．PRICE゙ ONLY 69／6．
TELEPIENE SETS TVPE D．NK．V． Housed in metal boxes $10 \times 6 \times 4 \frac{1}{2}$ in．，with hand set similar to the standard P．O．pat－ 1.5 v cells are required for obergtion．Ideal for cells are required for operation．Ideal suitable switching）in the Home．Factory． Office，etc．In good condition and working order．PRICE，per instrument，32／6，post 2／6． AMEIKICAN AITRCIRAFT IRECTETERSS． Brand New．Superb finish and layout． 8 valves， $6 K 6$ output BFO ，optional AVC， vernier illuminated dial． 6 switched wave－ bands covering 20，40，80， 160 metre amateur bands，trawler and shipplng bands con－ tinuous．Medium and longwaves con－ tinuous from 200 to 2,000 metres．An ex－
cellent communications recelver for only £15．p．p．10／－
BPNDIX RECEIVIER TVPI RA10． Brand New． 150 to $300 \mathrm{~K} / \mathrm{s} .1 .5$ to $5 \mathrm{Mc} / \mathrm{s}$ ， 5 to $10 \mathrm{Mc} / \mathrm{s}$ ： 7 valves，one each 6K8，6R7， $6 \mathrm{C} 5,6 \mathrm{~K} 6$ ． 3 of $6 \mathrm{SK7}$ ．Complete，whth all valves．£3．10．0，p．p．5／－．
INHICATOR NNT TV＇PF 233．New，in original cartons with VCROf and 8 valve＇s． $42 / 6$.
MIETELRS． 100 microamp 2！in．proj．rd， 27／6． $500 \mu \mathrm{~A}$ 17n．rd fi，scale 0 to $10,8 / 6$ ． $50 \mathrm{~mA}, 2 \mathrm{in} . \mathrm{sq}$ ．fi， $6 /$
IAEI．AYS．Post Office type． 3.000 series， 1,0002 to $2.000 \Omega 23 / 6 ; 5.000$ and $6,500226 /-$ 800 series， $1,000 \Omega, 3.0000$ ， $4 / 6$
SWITCMEN， 250 v， 3 a，bak，togele，all new， SPDT．DPST，1－ea．Metal tog．SPDT and OFF，long lever，lum．tip，2／－ea． 250 v 10 amp．，neat marked on／of． 2 pole．1／－ea． Ceramic 1 ax 8 pole．changeover $2 \mathrm{~B}, 1 / 9$
$\mathrm{Pax}, 6 \overline{\mathrm{p}}, 3 \mathrm{w} ., 2 \mathrm{~b}, 1 / 9.3 \mathrm{p}, 6 \mathrm{w} . .3 \mathrm{~b}, 1 / 9$ ．
 1 each VR101．VR102，35／－per set．SP4 $1 / 3$ leach VR101．VR102，35／－per set．SP41． $1 / 3$.
 $3 \mathrm{~K}, 100 \mathrm{~K}, 15 \mathrm{~K}, 1 /$ Polysrine Alladdin Coil with 1，D，core．9d．Ordjnary B_{i} ．

S．A．E．for Lists．

BATES SURPLUS STORE，

49，IVI ST．，HILKENIEEAD，CIIESHIIIE By Main Tunnel Entrance．
TELETRON SUPER INDUCTOR COILS Originators of Type HAX．selective Xtal diode coil，as Radio unit tn trape and quality Amplirs．3／－ea．Dual wave TRF coils（illus－ trated），matched pair．7／－． FPizitITE ROD Aerials．MW， 89：Dual wave， 129 ．If．C．t． and circults．The．Tererron
 HOW． 2527

OPPBER日				
COTTON COVERED			SIL	RED
S．W．G．	2 ozs．	4035.	2025.	4 ozs．
16	1／4	2／－	1／4	211
17	1／4	2／1	1／4	2／1
18	1／4	2／2	1／4	2／2
19	1／5	2／3	1／6	2／5
20	1／5	2／4	1／7	2／8
21	1／5	2／5	$1 / 8$	$2 / 10$
22	1／6	$2 / 6$	－1／9	3／－
23	$1 / 7$	$2 / 7$	1／10	3／2
24	$1 / 7$	2／8	1／10	$3 / 2$
25	1／8	2／9	1／11	$3 / 4$
26	1／9	2／11	21－	3／6
27	$1 / 10$	3／1	2／1	$3 / 8$
28	1／10	3／2	$2 / 2$	$3 / 10$
29	1／11	3／4	$2 / 3$	4／－
30	21－	3／6	2／4	4／2
31	$2 / 1$	$3 / 7$	2／5	4／4
32	211	$3 / 8$	$2 / 7$	4／8
33	2／3	3／11	2／10	5／2
34	2／4	4／2	2／11	5／4
35	2／6	4／5	3／1	5／8
36	$2 / 7$	4／8	3／3	6／－
37	3／－	5／6	－3／5	6／4
38	3／4	6／2	$3 / 7$	$6 / 8$
39	－	－	$3 / 10$	7／2
40	4／6	8／－	4／1	7／8

POST ORDERS ONLY PLEASE． send stamp for comprehensive
CRYSTAL SET
INCORPORATING THE SILICON CRYSTAL VALVE
Adjustable Iron Cored Coil
RECEPTION GUARANTEED Polished wood cabinet． $15 /$ ，post $1 /-$ POST RADIO SUPPLIES 33 Bourne Gardens，London，E．4
 DEPOSIT AND NINE FURTHER MONTHLY PAYMENTS OF $12 / 6$ ．CASH PRICE ／5．19．6．

Best Buy at Britain's
 On the H F band the ciple is employed. I.F. 465 Kc 's. Was designed to operate from 6 volts battery via vibrator pack. which is incorporated. Valves used are : Receiver-6 ARPI2's. 3 AR8's ; Transmitter-2 ATPT's. These valves have 2 voit fllaments and the set could be arranged to operate from 2 -volt Acc. and H.T. battery. Size approx. 18in. x loin. x llin. BRAND NEW condition, supplled less valves and vibrator. Price 49/6, pius 76 carriage.
COMNTVICRTION HECRIVEIZS TYIF 1R1155A.-For world-wide reception. Brand new and air-tested, £11.19.6. Slightly solled. £9.19.6. Used models, £7.19.6. Carriare $10 / 6$ extra. Free booklet supplied with each receiver.
SC. MAINSIDOWERE IPAKK \& OUTPUT SfiGE,-These enable the R1155 to be used on the mains WITHOUT ANY MODI. F'ICATION. Three types avallable. £4.10.0. E5.5.0. and de-luxe model with 8in. speaker. £6.10.0. Carriage 3/6. All Power Packs guaranteed six months. SAVE \&e乏s. DEAND POWER PN PRCHASINGRECEIVER AND POWER PACK TOGETHER. Send
S.A.E. for full details of Power Packs and S.A.E. for full details of Po
Recelvers or $1 / 3$ for booklet. Recelvers or 1/3 for booklet.
RHCEIVERS. T1FD: 78.-Two ranges. $2.4-5.9$ and $5.8-13 \mathrm{Mc} / \mathrm{s}$. Has EF50 R.F. $6 \mathrm{~K} 8 \mathrm{Mjxer} / \mathrm{osc}$. (varjable inductance tuned). one I.F. stage. Built-in $100 \mathrm{Kc} / \mathrm{s}$ crystal callbrator. Could make handy shet new. Price. less valves and Xtal, Brand plus $2 / 6$ postage. high-resistance metal headbands. Price. less cord. bi6. coversion to baby alarm amp lifier, etc Contains miniature relay Com plete with 6SL7. 28D7, Circuit. Instruction Book, etc. BRAND NEW. U.S.A $12 / 6$ each ALVE SAHGAINS. -New and in original boxes. 6AG5. VR53 (EF29). VRS6 (EF36) $6 K 7 \mathrm{G}, 6 \mathrm{C}$ Met. 6 SH 7 Met , all at 6/6, $12 \mathrm{SC7Met}$ 5'6. RK34, E1148. 954. all at 2/6. Replacement bargain. EL50. 5\%. New, ex units 6dK5, VR91 (EF50) Sylvania, VT52 (EL32), $807,76$.

SATURDAV IBARG:AINS
Every Saturday we dispose of various items of which we have too few to advertise at REAL CLEARANCE PRICES. Come and get YOUR bargain.
No reasonable offers refused.
No reasoneble ofters refused.
IR - AD MIRALTY TRANSFOIR MERS.Pri. 230 V. 50 c/s. Secondaries 5-0-5 This V .. and $5-0-5$,.. all at 5 amps. each. 5. 10. 15. 20. 25 v. at 5 anips. or other possible combinations. Size $4 \geq i n$. $x 441 n$. x 6 in. high. Welght 12 lbs. BRAND NEW. A very useful transformer at only 39'6.
FX-ADMIRAITV.-Pri. 230 धै. $50 \mathrm{c} / \mathrm{s}$. Secondary 620-550-375-0-375-550-620 v. (620 v. at $200 \mathrm{~m} / \mathrm{A} .550 \mathrm{v}$, at $250 \mathrm{~m} / \mathrm{A}$). Two rectifier windings of 5 v. 3 amps. each. Total rating 278 v A. Upright mtg. Welght 21 lbs. BRAND NEW. $42 / 6$.
F.H.T. TRINSFOiknEIES.-For VCR97, etc. Mains input. Output 2.500 v. 4 v. 2 a. plus $2 /$ postage.
MPVCINL SURPPIUS SNif. -230 v. $50 \mathrm{c} / \mathrm{s}$ input, ${ }^{2} \mathrm{KV}$. R.M.S. output (2.8 kV when rectified). Size $23 i n, x 2 i n . x 34 i n$. high.
 MINIATEIRE MOHMLA MUTiNS.-2in.
long x lifn. diam.. $3 / 16 i n$ dian. spindle. weight 5 ozs. Will work from 6 -volt dry battery and are reversible. Ball bearings. 1076 each. With blower, 126 each.
1K. W. \& \&. COIL IPAKN,-Superhet. 465 Kc's I.F, with circuit diasram and connections, 'Gram. position. $14 / 6$ each.
with slow-motion drive and anti- 390 pF ., With slow-motion drive and anti-backlash device. With trimmers. Brand New, boxed 3/6. plus $1 /$-postage.
con.I. DUTELT METER,-Desk TYpe. consists of a 2 in. 1 mA . meter with full wave bricge rectifier, Rance 0500 milli Watts and 0-5 watts. Brand New and Boxed

CHARLES BRITAIN (RADIO) LTD.

Lane, London, W.C.2,
Shop hours 9 6 TEM OS4 Shop hours, 9-6 p.m. (7-1 p.m. Thursday)

NEWOUR 1955 SUPA-HANDBOOK "THE HOME CONSTRUCTOR"* 20 CIRCUITS 76

PAGES

FOR 2/6 ONLY incorporating these star attractions

* 20 CIRCUITS-Superhets,T.R.
Sets. Amplifiers. Feeder Unit *SUPEqupment, etc. tional details-Fuli lavout and point supa-simplificed diagrams for buinding suint wiring tional details - wli construe Superhet coil pack. building a CAR IRADIG-Ek.
tional details. Full construc*
plete detais CHAKGEIR for buiding-
tRIEMP CHARGOR bullding a trinlo GEARGER.
tion. RePag.

Formulaesistance Colour informa-

* Formulae, and "know Cour Code. *idADIO iond know-how
formation
+rAmation and ilst.-General in-
+CATALGCiEME Constructors'
trated catalogue arofusely illusof components, receivers, books. YOufpment, Home Constructor

VALUAN'T GET BETTER
The most helpful book in th
$\begin{array}{lll}\text { SEND 2/6 FOR Trode, } \\ \text { And } & \text { TODAY COPY }\end{array}$ And, of course, our famous iron value at $3 /=$ ea. offer outstanding

1, Markhouse Road (Dept. P.5)

tustine Road, London, E. 17

ANNAKIN

IIIS ITLTLIR CIIGIES, 10/- post free Hark Insif. Kinolos. $1{ }_{4}^{3}$ in. diam. for flatted shafts, 6d. Dist Mingeto, jin. diam. x in.. very powerful, 10 for 2 -. Sieving, various colours, 12 yds.. 1/. Crvsini I)lodes, $1 / 2$. 500 ohm. W. W. Poline. $2 /$ PVesockets. 3a. Hastie Vire, 12 yds., 11d. RF. F. (hakex, 2in. diam. x iln.. 3d. U.S.W. Clioke's, 2i. Pleasc send enough postage, surplus refunded. Free Lists
25, ASHFIELD PLACE, OTLEY, YORKS.

ASTRAL RADIO PRODUCTS

HOM1: I: \IMI. 32 page booklet. fully

 fllustrated. Simple wiring instructions for Crystal Set. 1.2.3 valvers etc. 2/- post 3d. T.it.F. 'HiL as used in ALL DRY 3BAND 3. PUSHBUTTON 4 Bedside Pushbutton 4** $6 / 6$ nalr. post 6d.

1) TAL WAVI, II COII. for summer alldry portable 4/3, post 3d.
Iv COIL' for A.C. BANDPASS 3." $3 / 3$
FRt M ME:
88, Centurion IRoail, IFrighton, Sussex.

Beniley Acoustic Corp. LId.

38, CHALCOT ROAD, N.W.1. PRImrose 9090

 XFW10, XPW²0, XF゙Y10, XPY12, XFI23, X111.5, XBGil. $\overline{0}$, all at $6 / 6$ erch.
All hoxed and gharanteed. Post Grl. each. innediate despatch. C.W.O. or C.O.D

UNIVERSAI, SIIUNTS 1% accuracy for any 1 mA . or $500 \mu \mathrm{~A}$ meter. Only one simple adjustment to make, no calibrating meter beed one year. 5505 (1 mA .) covers $1,5,25$, 100 and 500 mA . $551(1 \mathrm{~mA}$.) covers $2,10,50$, 100 and 500 mA . $200, \mathrm{~mA}$ and 1 mp . Price 15/-.
Shunts for all meters with ranges to vour Shunts for all meters with ranges please pive meter details, ranges required and accuracy.
D.C. MITLTIMETEER KIT for 500 UA or 1 mA meter. Complete kit of "\%, High Stability reBistors, other resistors shunt 5505 or S 51 Potentiometer, and instructions, 26/-.
A.C./D. (C.MWTMETEIR KIT.-Asabove, but with 4 extra 1% High Stability Resistors and Westinghouse Meter Rectider to give 4 A.C. volts ranses, 45/6.
18-way, Single Pole, Switch. 7/-,
Westinghouse Meter Rectifiers, with $1^{\text {no }}$ multipliers for four A.C. volts ranges and
circuit. For 500 मA or 1 mA meter. $19 / 6$.
-RENISTANCE BOX STANIDARISS. Twelve 0.5% Wirewound Resistors. $1,2,2$, 5, 10, 20, $20,50.100,200,200$, and 500 ohms,
giving 1 to 1,110 ohms'in 1 ohm steps. $30 /-$. giving 1 to 1,110 ohms in lohm steps. - RHIIIXF IBATIO ARMS.-Nominal 100 © $5 / 6$; $0.1 \%, 4 / 6 ; 1 \%, 3 / 6$.
PHECISION RIESINTORS-Any value 1 to 1.000 ohms, accuŕacy 0.5%. Eureka wound on strip. '2/9.
CALIBIRATION SEIVVICE ROR RESIS--TANCE CAPACITY BRIDGES and SiGiNAL Charges.

MASSEY
 25, \&Dominion Ave., Leeds.

RECEIVER R1155

RIKANB NEW. ALIRIAI, TLSSTED
In maker's original transit case. Now is the chance to get one from the best delivery we have had from the Ministry.
Send S.A.E. for further details
publication. for further details or $1 / 3$ for publication giving circuit diagrams, etc.
Others available from $£ 9.10 .0$ according to condition.
H1EiHP116XIS,-High Resistance Type CHR New, $12 / 6$ palr, post 1/6.
M1世1R M. M MEFIFI\&S, 250 F.S.D. 31 in. Flush Model S37. Specially scaled for test meters. Knife edge pointers, magnetic
 are brand new and complete with 6 EF50 valves and EA50. Our price only 65/-. Post $2 / 6$. IRHTARS CONDERTRIRS.-Input 12 volts
D.C. output 230 volts A.C. 50 cycles. 100 D.C.. output 230 volts A.C. 50 eycles. 100
watt. $92 / 6$ each. Also available with 24 watt. $92 / 6$ each. A.
volt input. cart. $7 / 6$.
WILCO ELECTRONRCS Mept. P.WV.

Fits neatly inside your record player, leaving room for speaker. Dimensions 10 in . $\times 3!\mathrm{in}$. $\times 2 \mathrm{in}$. 4 watts quality output. Suitable for all speakers and with standard or L.P. all speakers and with standard or
pickups. Built-in powerpack. $200-250$ v. A.C. Valves $6 / 7$ and $6 \mathrm{~V}_{6}$ available at 20/extra for the pair, if required.

6d. stamp brings illustrated details.
Enquiries are now invited for our NEW MOBILE AMPLIFIER
$9-10$ watts output, operating from 6 v . battery, or on the mains with alternative plug-in powerpack. 110 volts or 200-250 v A.C. Send S.A.E. now for details.

ELECTRO-ACOUSTIC LABS
TAIN-ROSS-SHIRE, SCOTLAND
MORSE CODE Training
Send for the Candler
BOOK OF FACTS
It gives details of all Courses which include a Special one for acquiring amateur licence. CANDLER SYSTEM CO. Dept. 5LO 52b, Abingdon Road, London, W.8. Candler System Co., Denver, Colorado, U.S.A.
204. Lower Addiscombe Rd.. Croydun.

RADAR POCKET BOOK
 By R.S.H. BOULDING
 Just Published

154. Ou. Postage 7 d.
Itadin Amateur' =, Handtrook: 1955 by "A. R. R. L." 30ヶ. Od., postage 1E. Od.
Practical Dise Ifecording, by R. H. Dorf. 64. Odl.. postage 4d.'
Electonic Organs. by R. L. Eby. 40~, 011., postage 9 d.
Primejples \& Practice of Radar. hy
H. F. Penrose \& R. S. H. Bouldinc.
$50 \div$ or., postage 1s. od.
Felavision hinginerra Pooket Book. cdited by E. Molloy \& J. P. Hawker,
155. 64., postage 6d.

Telecommunfealions, by A. T. Starr, 354. Oul., postage 1s. 0d.

Basit Eifer ronic Test Instruments. by R. P. Turner. 324. Oll. postage 1s. od.
Audio Aniloology:
16s. Od., postage 9d.
16s. Od. postage 9d.
Ratio fave 1ata, compiled oy
less world." $3 \mathrm{~s} .6 \mathrm{ll} .$, postage
less World. 3s. 60 postage sa
 postage 4d.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS OF BRITISH AND AMERICAN. TECIINICAL BOOKS
19-23, PRAED STREET
(Dept. P.5)
LONDON, W. 2
'Phone : PADdington 4185. Open 6 days 9 -5 p.m.
Please urite or call for our calalogite.
GRAM-PAK AMPLIFIERS

\squareENSON'S ETTER ARGAINS
BRAND NEW. ORIGINAL CARTONS. R.F. UNITS. TYPES 26 or 27, 27/6, 24, 12/6. (Postiage $2 / 6$.)
BRAND NEW BENDIX RECEIVERS. RA-1B. Vernier ealibrated 6 wavebands, $0.15-15 \mathrm{Mc} / \mathrm{s}$ continuons (break $1.5-1.8 \mathrm{Mc} / \mathrm{s}$). BFO. AVC. Continues: 56 KrG . 1 6L\%, $1 / 6 R 7,1$ GK@. Blach wrinkle finish: 10 g 14 in . f15 (del'd mainland). DYNAMOTORS, wited "ives, les

 inland. TRANSFORMERS, new. sth, nuibs

 4 v י hn, 16/-. (P'st $2 /-$ ewch.) HETAL RECS.

METERS-BRAND NEW-BOXED
FSD Scale Size Type Fit Price

 Cish with onder. Postaye extraty Jmmediate deapati'h.
('allers and Post either Branch.

W. A. BENSON (PW). S UFERA DIO 308 Rathbone Rd., (W'chapel), LTD., 116 | Liverpool 13. | Wbitechapel |
| :--- | :--- |
| STO Lives | |
| 1004 | moel $1 . ~ R O Y ~$ |

STAN WILLETTS

43, 8pon Lane, West Bromwich, Stafte. Tel. :WES 2392 "AOS", CIESTAL IITK-NP—GP10. Brand New, boxed. 24/6 (list price 44/-). Brand New. boxed. 24, P . $1 /-.$, (ime price (c) EF80 ECC81. Brand new boxed, $28 / 6$ P. \& P 1
new. boxed, $28 / 6$. Fe \& Every one guaranteed. $6 \mathrm{~K} 7 \mathrm{G}, ~ 4 / 6: 6 \mathrm{~K} 7$ metal. 4/8: 6SG7 metal. 4/9: 6J5G, 4/9: 6SN7GT, 6SL7GT. metal, VT5 , EL32, 5/-: $6 \mathrm{~F} 6 \mathrm{G}, 5 / 6$; 6V6GT, 6/3: 6X5GT, 6/8: 6X4, 6/6; EA50. 1/9: 6/3: $6 \times 5 \mathrm{GT}, 6 / 8: 6 \mathrm{D}, 1 / 9,15 \mathrm{D} 2,9 \mathrm{D} 2,3 / 6:$
 PCC84, 9/9: 723. A/B, $78 /-$ P. \& P. 6d. 1T4, 1S5. 1R5. 1S4 or 3S4, 24/9 set of 4. or 6/9 each. P. \& P. 6d.
GNRNANILM CIRNSALA INODNE, (i.E.C. 1/-each, $8 / 6$ doz, P \& P. 3d.
 brand new, boxed, with valves 6SL7, 29 D 7 and circuit. 12/6. P. \& P. $1 /$

TELEKIT SUPPLY

Chaniry Lanc, Bromiey, Krnt. Please mention P.W. and enclose 6d. postage.

VALVES GUARANTEED

O24 4/-	6BE6	6/-	12A6 1299	
ILA $5 / 6$	6 BR 7	$8 \cdot 6$	(soile) $51-$
ILN5 (solled)	6BS7	71.	15 D 2	4'
3/-	6BW6	$6 / 6$	19AQ5	101-
IS5 6/-	6 CH 6	$6 / 6$	EF50	51
ITI 6/6	6.55	5/-	W77	51-
IU5 6/-	6V6	$7 /$	$1 \mathrm{B24}$	351-
3V4 616	6X4	6/6	6AK6	$6 / 6$
5763 8\%	6×5	71.	6A05	$81-$
6 A 8 81-	7D5	6/-	6SL7	$7 / 6$
$6 \mathrm{AL5}$ 61-	708	61-	6U5	61-
6AM6 6/=	$7 \mathrm{H7}$	6/-	1457	71
6AT6 \%/6	9 D 2	$51-$	12A'T6	$7 / 6$
$6 \mathrm{B8}$ 6 6\%	11 D 3	6/-	13 D 1	$7 /$
6BA6 6/-	12BE6	$6 / 6$	5005	$8 /-$

THE SIIOI FOR TIIE CONSTIRI'TGIR voW GPEN AT 104, HIGM STITIET,

RECEIVERS \& COMPONENTS GUARANTEED NEW VALVES : $2 / 6$, 3D6; 6/6, 6SK7, HVR2 (Near), 6K7

 6SL7, 80, 9/6, MU14, U22, 6Q7; 10/6,
 EF80. U25, UF41, UL41. PL82; 12/6, EX51: $15 /-\quad$ 6P25. Most B.VAA cates available at 1951 low-tax out own make. 12 months guarantee, 3 wavebands. 5 valves, ECH42, EF4l, EBC41. EL4l. EZ40 brand new and guaranteed. with 10 in . P.M. Speaker, A.C. $200 / 250 \mathrm{v}$, short. medium-long-gram. output 4.2 watts, chassis $13 \frac{1}{2} \times 5 \frac{1}{2}$ in., dial $10 i n$. x 4in., horizontal or vertical isolated from mains. Price $£ 10 / 15 / \%$ carriage and insurance. $4 / 6$ without loin. speaker, $\mathrm{c} 9 / 15 / \%$ carr. and ins. $4 / 6 i$ Highly recommended for above Chassis: Brand new Plessey $3-s p e e d$ Auto-changer Mixer Unit for 7. 10 and $12 i n$ records. Twin $\mathrm{Hi}-$ Fi Xtal Head with Duopoint sapphire stylus; plays 4,000 records; sprung mounting; superb quality: bargain price $9:$ gns., post iree. VCR97 Tube tested full picture, E2. Coax
Cable, 80 ohm standard, tin. diam., air spaced, 9d. yd. Vol. Controls, Midget, long spindle, all values, 10 K to 2 meg., 12 m. guar., $4 / 9 ; 10$ ohm w/w pot $3 /:$ Electro. lytics, new stock, $2 / 450 \mathrm{v} 2 / 3,8 / 500 \mathrm{v}$ Dub. $2 / 9,16 / 350 \mathrm{v}$, $3 / 450 / 25 \mathrm{v}$ T.C.C Dub. $2 / 9,16 / 350 v \quad 3 / 250 / 25 v$
$1 / 9,25 / 25 v$ T.C.C $\begin{array}{lll}149, & 25 / 25 v & \text { Hunts } 1 / 9,8+16 / 450 v \\ 5 / 4, & 16+16 / 500 v & 8 u b . \\ 350 \text {, } 60+100 /\end{array}$
 $\begin{array}{llllll}6 d ., & 1 & \text { w. } & 8 d . & 2 & w . \\ 10 & w . & 2 / 9 . & 5 & \text { Solder. } & 1 / 9 \\ \text { grade, } & 18 & \text { S.W.g. } & 3 d . & \text { yd. } & 60 / 40 \\ \text { Addres }\end{array}$ $\begin{array}{ll}\text { grade, } \\ \text { orders } & 18 \\ \text { to } & \text { R.E. } 3 \mathrm{~d} \\ \text { RADIO } & \text { Yd. Address } \\ \text { COMPONENT }\end{array}$ SPECIALISTS, 307 Whitehorse Rd., West Croydon. (THO 1665.) Buses 133 or 68 pass door. Post 6d. Open all day Saturday. Lists s.a.e.
MIDDLESBROUGH. Largest stocks on N-East coast, Radio/TV components, Decks, Leak Amplifiers. Valves, etc. Callers only. PALMERS, 106, New' port Road. (Phone: 3096.)
WALNUT Radiogram Cabinets of distinction; stamp details. R. SHAW, 69. Fairlop Rd., E.11.

COUDSPEAKERS repaired promptly MODEL LOUDSPEAKER SERVICE, Bullingdon Rd.. Oxford.
EVERYTHING for Radio Construc-
tors. List from SMITH, 98, West End Road. Morecambe.
SERYICE SHEETS, T.V and Radio, over 2.000 models. sale or hire; Valves and Components. S.A.E. With enquiries. W.J. GILBERT. 24. Frith-
OSMOR for really efficient Coils, Coilpacks and all Radio Components Wireless" circuits. See advert. on page 275 for free circuits offer or send 5d. (stanips) to OSMOR RADIO 418 , Brighton Road. South Croydon. 418, Brighton Road, Sou
(Tel.: Croydon $5148 / 9$.)
AMERICAN RADIO Plans and Devices. Now available. Hundreds of new and startling devices you can make. Only designs of this type available in UK. Receivers, walkie talkles. amplifiers. recorders, magic illustrations Free of stamp. Send loo-day. - A.P.S. (PW). Sedgeford, King's Lynn.
WIRELESS AMATEUR having to sell out very cheap. Send s.ae. for price list. L. HOPPEN, 81, Tavistock
Ave. Perivale. Middx. Ave., Perivale. Middx.

MICROGROOVE RECOROS from

 "Lape, radio (30 minutes), $20 /$. Lane, Auguton. Ormskirk, Lancs.

ELECTROLYTICS, capacity, voltage size, type of mounting. price, post paid, 8. $450 \mathrm{v} .1 \times 2$. clip, 2j-; 50 12 v . $\mathrm{x} 1 \frac{3}{5}, \mathrm{tag}, 1 / 6 ; 150.25 \mathrm{v}$, i x
 $24+24^{-4}+16,375 v, 1 /{ }^{2} \times 2$, clip, $3 / 3$; $4 / 9 ; 4,150 v, 5_{5}^{8} \quad x \quad 1 \frac{1}{4}, ~ c l i p, ~ 1 / 1 ; ~ 500$ $12 \mathrm{v}, \mathrm{f} x 13$ tag. $2 / 3 ; 150,25 \mathrm{v}$, $\mathrm{x}^{2} 2$, clip. $1 / 9 ; 32+32,350 / 425 \mathrm{v}, 1 \frac{1}{} \mathrm{x}$ 2 clip $5 /-8+16,450 / 525 v_{1}, 1 \times 2$, clip. $4 /-i \quad 2,450 / 525$, $\frac{3}{\circ} x$ i $\frac{3}{2}, ~ t a g$, 1/6: 8, 450v, x 2, v-clip. 1/9: $32+$ $32,450 / 525 v .1 \frac{1}{h} \quad x \quad 3, W / E, \quad 5 / 6 ;$
$1,000+1,000,6 v,{ }^{4} \quad x \quad 3, \quad \mathrm{lug}$,
$3 / 3 ;$ s.000 $+1,000,6 v,{ }^{1}$ x 3, lug, 3/3;
sill ans. Some with seeves, all voltages, wkg.. surge where marked, new stock guaranteed. steel. size $14 \times 13 \times 2 \frac{1}{4}$. x . complete with 13 valveholders $19-\mathrm{B9A} \operatorname{Pax}$. 1-B9A Cer.. 2-B7G Cer., 1-Int, Oct. Amph.). 20 various tag strips, cut away for metal rec.. line trans.. etc. $9 / 11$ each, post paid; front and rear tube mounts to fit above chassis, 3/. pair post paid. Mains Trans. $\begin{array}{lll}\text { PRI. } & 0-210-240 & \text { SEC. } 250-0-250 \mathrm{v}, 8 \mathrm{ma}, \\ 6.3 \mathrm{v} . & 2.5 \mathrm{a}: & 6.3 \mathrm{v} .0 .6 \mathrm{a} \quad 12 / .\end{array}$ 6.3v. 2.5a: 6.3 v . 0.6 a , $12 /$ Loud.
speakers 6 in P.M. New boxed $14 / \mathrm{f}$ speakers 6 in. P.M. New, boxed. 14/6 LIMITED, 27, Tottenham Court Road London, W.l. (Telephone: Museum 9188.)

ALUMINIUM CHASSIS made to your requirements; 16 \& 18 gauge; any quantity, large or small. We will CONTACTS. Buiding 336 , Hura Airport. Christchurch, Hants.
HIGH FIDELITY-Bel FM VHF receivers, from $£ 8$, complete and guaranteed. Full constructional kits. £ $7 / 5 / \%$ coilsets and separate parts. Lists, $1 / \%$ New "Mullard" point four per cent. amplifier. £19. BEL SOUND PRODUCTS CO., Martbolough Yard. Archway. London.
N. $19 . \quad(\mathrm{N} 1$. Archway Northern Line, 25 N.19. (Nr. Archway Northern Line, 35
mins. West End.) Tel. ARC. 5078.
F.M. OUALITY RECEPTION. Amplifiers, Valves, Condensers. Coils, Resistors. Transformers: everything for the amateur. Stamp for lists. Immediate service. C. MICHEL, 88A, Cleveland St. Euston Road, W.1. (EUS 8121.)

SITUATIONS VACANT

The engagement of persons answering these Offce of the Ministry of made through a Lowal Employment Amsincy if the applicant is a man aged 18-64, inclustre, or a voman aged 18-59, inclusite, venless he or she, or the emplovment is excepted from the provisions of the Notificaiion of V'acancies Order, 1952.
BERRY'S (SHORT WAVE) LTD. have vacancies for Sales Assistants with good general radio knowledge; inter. esting work: permanencs. Write giving details of experience, age and salary required, to 25, High Holborn, London, W.C. 1
T/V AND RADIO-A.M.Brit.I.R.E City and Guilds. R.T.E.B. Cert., ete. on " no pass-no fee" terms. Over and home training courses exams branclies of radio and T/V; write for 144-page handbook-free. B.I.E.T Dept. $242 G) .29$, Wright's Lane
A.M.I.Mech.E., A.M.Brit.I.R.E.. City and Guilds, etc." on "no pass-no details of exams. and courses in all branches of engineering. building. etc.. Write for 144 -page handbook. Wright's Lane, London, w.8. 29.

RADIO

month: UNLIMITED Ofter this $\begin{array}{ll} \\ 3 /-; & 0005 \\ \text { Dwin Gangs, } & 5 / 6 ; ~ T . R . F\end{array}$ Coils. 5/- pair, Mini. 0-trans. for $\mathrm{P} /$ port. $4 /-\mathrm{i} \mathrm{V} / \mathrm{controls}$, all values. 10 K to 2 -Meg., $2 / 9 \mathrm{i} \mathrm{SP} / \mathrm{sw}^{\prime}, 4 /-6$ W/W pots, 5K-3 watt. 4/-; Diode Crystal Set. 13/6; Klt. 11 Large range Amplifers and Kits: list. Al!
Teletron and RFP Coils in stock. T.R.F. receiver kits, incl. valves $\begin{array}{lll}\text { and cabinet, } 98 / 6 . & 8 i n . & \text { cner- } \\ \text { gised Spakers } & 1,000 \text { ohms } & \text { 15/6. }\end{array}$ Bakers 12in. P.M.. list £5/5/-, $99 /$. Plessey 12in. P.M., 39/6. Valves, 1T4. 1L4. 1S5, 6/6; 3S4, 3V4 7/9: 6 SN7. 6SL7. $6 \mathrm{~F} 6 \mathrm{G}, 5 \mathrm{U4}$. 6 K 7 M . $6 / 9$ Bumper barg in list now ready. RADIO UNLIMITED, Elm Road Eondon, E.17. (KEY 4813.)
SALE, Murphy Export Radio. wavebands. five bandspread; perfect: £25. 2, Mandrake Rd., London. S.W. 17

WINWOOD FOR VALUE. 3-wave

1. m . and s . Coilpack, 23/6; 2-valve + Rec. AC or AC, DC Amplifier, kit incl. valves, 59/6; T.R.F. Kit, incl. cabinet and valves. $97 / 6$; tresh stock, $25 \mathrm{mi} / 25 \mathrm{v}, 25 \mathrm{mf} / 50 \mathrm{v}, 8 \mathrm{mf} / 450 \mathrm{v}$ $1 / 6$ each: 8×16 and $16 \times 16,450 v$ 4/. each; 32 x 32, 450 v . 4/6; SVL
 T.R.F. Coils. 5/. pair. Stamp full list. WINWOOD 12, Carnarvon Road. London. E.10. (Mail only.)
THE CHEAPEST Multi-range Meter on the Market. measures 0-6v D.C. $0-240 \mathrm{v}$ D.C. $0-30 \mathrm{~mA}$ D.C.. 0.6 V, A.C. $\begin{array}{ll}0-240 v & \text { A.C. } \\ \text { circuit } & 0-30 \mathrm{~mA} \\ \text { testing }\end{array}$ circuit testing scale powered by for testing English 4- and 5-pin valyes; brand new in maker's boxes with instruction leaflet: 29/6 eack, post 1/6. SERVIO RADIO, 156-8. Merton Rd. Wimbledon, S.W. 19. (LIBerty 6525.)
NEON TESTERS, Screwdriver Type, operates from $100-500 \mathrm{v}$ A.C. or D.C., and is a very useful pocket screwdriver, complete with protecting cap and pocket clip. 6/- each. Books ! ! ! The latest book on T.V. Aerials. Practical T.V. Aerial Manual for Bands 1 and 3," 4/6 each; "Transistors and Crystal Diodes, what they are and how to use them," $5 /$ e each: Radio Control of Models," 5/each. Avo All-wave Oscillator, not used since overhaul by Avo's, covers $95 \mathrm{Kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$, one only for caller only. £9/19/6. SERVIO RADIO, $156-8$, Merton Rd. WimbleRADIO, $156-8, ~ M e r t o n ~ R d) ~$.
don, S.W.19. (LIBerty 6525 .)
VALVES, new, tested and guaranteed : Matched pairs, 6V6G and GT. 17/: per pair; EF92, W77, 4/6; EB91 6AL5, 6/6: 6F12, EF91. 6AM6, 6VGG, 6VGGT, 5763 . 7/6; 6BE6, 6BW6, 6BR7, 6K8G, 6SL7GT, 6SN7GT, 6X4,
 EBC41, UL41. UY41. X65. 8/6; PL82 PY82, 10/6; ECH42, UCH42, EF80 EF85. 11/6; ECL80, EY51, $12 / 6$. Coax Cable, 75 ohm . in., stranded 7d. yd.; p. and p. 6d. R. J. COOPER 32, South End, Croydon, Surrey fRO 9186.J

ALL NEW	GOODS.	12 V	4-pin
Vibrator,	$6 / 6 ;$	30 H	175

$4 \mathrm{~W}, 1 / \cdot ; 2.5 \mathrm{~K}, 5 \mathrm{~W} .1 / \cdot ;$
$5 \mathrm{~K}, 6 \mathrm{~W}, 1 / 4:$ Battery Charger, 6 v and $12 \mathrm{v}, 1 \mathrm{amp}$. 35/- GLADSTONE RADIO. Gladstone Place. Newton Abbot, Devon. R.F. UNITS Types 26 at $27 / 6,25$ at 15/., 24 at $11 / \%$ brand new in original cartons. with valves. Postage 2/6. E.W.S. CO.. 69. Church Rd.,
Moseley, Birmingham.

B00KS

I:P.R.E. TECHNICAL PUBLIGATIONS. 6,500 Alignment Peaks for Superhaterodynes, $5 / 9$, post free. Data for, constructing TV Aerial strength Weter $7 / 6$. Sample copy. The $\underset{\text { Practical Radio Engineer quarterly }}{ }$ publication of the Institute $2 /-$; membership and examination ada, 1/-; Secretary. I.P.R.E., 20, Fairfield Rd. London. N. 8 .
AMERIGAN MAGAZINES.-One-year ": Audio Engineering," 35/-, Specimen copy, 3/6; "Poputar Science," 31/6; copy, 4/G. Free booklet quoting others. WILLEN LTD.. Dept. 40, 101. Fleet street. London. E.C.4.
MAKING YOUR .OWN? Telescopes, Enlargers, Binoculars, Microscopes, Projectors or in fact anything that Projectors, or in fact, anything that nceds lenses. Then get our bookiets $\ddot{\text { Prisins ." }}$. Nos use Ex-Gov. Lenses $\$$ Prisms," Nos. $1 \& 2$ price $2 / 6$ each also our, stereo book, ' 3 3-D Without Viewers," price 7/6. Comprehensive list.s of lenses, optical, radio and scientific gear, free for s.a.e. H. W. ENGLISH, Ravleigh Road, Hutton, Brentwood, Essex.

VALVES

VALVES, 6 months' guarantee; discount on orders of $£ 1$; wellknown maker. Send 5d. for list of over 70 types, including operating "gen," pin comections, prices. etc. BLANCHARD'S (PW1). 13, Gainford Gardens, Manchester. 10.
VALVE BARGAINS. 1R5, 1S5, 3V4, GALVET4 5/3; ECL80, 8/6; Misc. Bargains, Germanium Diode, $1 / 3$; ex-W.D. Selenium M/Rect.; 250 v , ex-W.D. 30 ma Selenum Cabinet, brand new, walnut veneered cab. approx. int walnut veneered cabity finish, suitdim. 12×6 x 6 , quality forming, with chassis and dial, 24/-, post paid. All items post paid, money back guarantee. A. BLACKBURN. Central House, Bury Wharf, Bury St., Ruislip, Middlesex.
ALL TYPES of Valves required for cash State quantity and condition. RADIO FACILITIES LTD., 38. Chalcot Road. N.W.1. (PRImiose 9090.1
VALVES WANTED, all types. state Gatyed condition and prices asked. R.H.S. LTD., 155, Swan Arcade, R.Hadford. 1.

COVENTRY RADIO

189, DUNSTABLE RD., LUTON, BEDS.

Phone : Luton 2677

The Quality Componént Specialists offer you Kits of Parts for the following :-

		Manual		
Osram " 912 "Amplifier	\ldots	\ldots	$3 / 6$	
Mulfard 10 -watt Amplifier	\ldots	\ldots	$3 / 6$	
The Coventry		\ldots		
2-watt Amplifier	\ldots	\ldots		$1 /-$
4-watt Amplifier \ldots Amplifier	\ldots			
6watt Quality Am				
The Coventry A.M. Tuner Unit	\ldots	$1 /-$		
Denco F.M. Tuner Unit	\ldots	\ldots	$1 / 6$	

Complete Component Price Lists will be supplied with each Monual.

Have you had a copy of our 1954/5 60-page illustrated Component Catalogue, price 1/plus 3d. postage?

EDUCATIONAL

THE INSTITUTE of Practical Radio Engineers Home Study Courses are suitable coaching text for I.P.R.E. and other qualifying examinations. Fees are moderate. Syllabus of seven modern courses post free from SECRETARY. I.P.R.E., 20, Fairfield Road. London. N.8.
MERCHANT NAYY Wireless School. Overseas House. Brooks' Bar. M/cr 16.
SCHOOL OF MARINE Radio and Radar (A.S.T.)* Hamble, Southamp. Radar approved by Ministry of Education, offers courses for Merchant tion. offers courses for Merchant certs. Marconi scholarships available. Apply COMMANDANT, quoting A12.
SEE THE WORLD as a Radio. Oflicer. Short training: low fees; scholarships; boarding/day students Stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay
WIRELESS.-Day and Evening Class instruction for P.M.G. Certificate of Proficiency and Amateur Wireless Licence. Morse instruction only if required. also postal courses. Apply B.S.T. LTD., 179, Clapham Rd., London. S.W.g.
MERCHANT NAVY and Air Radio.Here is an opportunity to train as Radio Officer. The big liners are open to you. but you must qualify for the P.M.G. Certificate. Day, Evening and "Radiocerts" postal courses. Estd 30 years; s.a.e. for prospectus from Director, THE WIRELESS SCHOOL 21, Manor Gardens, London. N.7. ' ${ }^{21}$ Tel.: ARC. 3694.)
FREE: Brochure giving details of Home Study Training in Radio. Television. and all branches of Electronics. Courses for the Hobby Enthusiast or for those aiming at the A.M.Brit.I.R.E. City and Guilds R.T.E.B. and other Professional examinations. Train with the college operated by Britain's largest Electronics orranisation: moderate fees. Write to E MoI. INSTITUTES. Dept. PW.28. London. W.4.
CITY AND GUILDS IElectrical, etc.) on ". no pass-no fee" terms. Over 95% successes. For full details of modern courses in all branches of Eiectrical Technology send for our 144-page handbook-free and post free. B.I.E.T. (Dept. 242 A)
Wright's Lane. London. W.8.

CAN YOU

measure any condenser up to 50 mfd . any resistor up to 5 megohms?

IF NOT

it's our guess that you have is worth ol good components of unknown value lying icle

DO YOU

check all your components before building new gear?

IF NOT
we'll bet you often get some disappointing results.

The Answer

is, of course a Res./Cap. Bridge to
measure each part quickiy. For only
$31 / 6$.
5 megohms $-50.000 \mathrm{ohms} 50 \mathrm{mfd} .-.2 \mathrm{mfd}$. $100.000 \mathrm{hms}-1.000 \mathrm{ohms} 1 \mathrm{mfd}$. .01 mld 1.000 ohms-10 ohms. 01 mfd . -0005 mfd. (500 pF .)
No CALIBRATING. An accurately calibrated panel with eact kit.
EASILY ASSEMBLED. Instructions, circuit and diagrams.
OTHER KITS INCLUDE
Spot Frequency Sig. Gen.. 35/-. Tumable I.F. Aligner. 1 \%/6. Inductance Bridge. 42/6. Audio-Frequency Bridge, 38/6 Twin Multi-omer. 25/-

Post and packing $1 / 6$ on all kits. Stamp for illustruted lists.
A1)[0 Mul
6. HMEEGIH STO, NOTHINGILAM

FIRST-CLASS RADIO COURSES

GET A CERTIFICATE! QUALIFY AT HOME-IN SPARE TIME
After brief, intensely interesting study -undertaken at home in your spare time-YOU can secure your professional qualification. Prepare for YOUR share in the post-war boom in Radio. Let us show you how !

The New Free Guide contains 132 pages of information of the greatcost mportance to those seeking such success-compelling qualificatio:as as A.M.Brit.I.R.E., City and Guilds Final Radio, P.M.G. Radio Amateurs, Exams., Gen. Cert. of Educ., London B.Sc. (Eng.),
A.M.I.P.E.. A.M.I.Mech.E.,

Draughtsmanship (all branches), etc., together with particulars of our remarkable Guarantee of
SUCCESS OR NO FEE
Write now for your copy of this invaluable publication. It may well prove to be the turning point in your career.
FOUNDED 1885—OVER
ـ 150,000 SUCCESSES - NATIONAL INSTITUTE OF ENGINEERING
(Dept. 461), 148, HOLBORN, LONDON, E.C.I

1-Finger Pianists

Build your own electronic keyboard and play everything! Send for free jeaflet. Guitar, cello, flute and trumpet are all easy. Write now...

C \& S, 10 Duke St., Dariington, Co. Durham

TAPE RECORDERS P.W. and SOUND MASTER

We can supply complete kits or separate components for both the P.W. and Sound Master Tape Recorders.
Sound Master Instructions, 6/6.
FULL HIRE PURCHASE FACILITIES
$3 /-$ in the $£$ deposit.

WATTS RADIO,

8, Apple Market, Kingston-on-Thames, Surrey.
Phone : 'KINgston 4099.

NO RADIO KNOWLEDGE NECESSARY, Easy-to-read diagram (and we MEAN EASY-TO-READ !) makes construction a simple job with Screwdriver, Pliers and Soldering Iron. ALL parts in stock NOW and TOTAL 97/6, plus $2 / 6$ for postage and packing,
SATISFACTION or WE REFUND CASH: NORMAN H. FIELD
Mail Orders : 97, Stratford Rd., Birmingham, 11. Callers : 68, Hurst St., Birmingham, 5 (almost opposite Hippodrome)
Inspect our stocks of T.V., Radio Cabinets and Components for Home Constructors.

There's a wonderful future for you in -
 CILCTRONGS

Every: day the demand for the expert in electronics grous. Radio, television, radar and the whole field of industrial electronics are rapidly expanding, and the trained specialist in these fields is assured of a well paid career in this quickly developing profession. Here is your opportunity to acquire specialist knowledge. Write for our free Brochure giving details of the following courses :

THREE-YEAR COURSE

in Telecommunication Engineefing (including opportunity for nine months' practical attaclıment in E.M.I, Laboratories and Workshops). Next course commences on 14th September, 1955.

FOUR-YEAR COURSE

in Electronic Engineering. Intended for outstanding Science sixth-formers who are capable of training into future team leaders in scientific applications. Final qualifications are B.Sc. and City and Guilds Full Technological Certificate in Telecommunication Engineering. Next course commences on 4 th October, 1955.

E.M.I. INSTITUTES

Dept. 32K. 10. Pembridge Square, London, W.2.
Telephone: Bayswater 5131/2.
The Collcge associated with a world-wide electronics industry including." His Moster's Voice.".. Marconiphone, Columbia, etc.

COMPLETE RADIO/RADIOGRAM CHASSIS A.C. MAINS 200-250 VOLTS THREE WAVEBANDS DIRECT FROM THE MANUFACTURER NEW AND FULLY GUARANTEED BUILT FOR THE CONNOISSEUR OF QUALITY MUSIC REPRODUCTION
Latest type components and B.V.A. miniature valves. Built on steel chassis. Plugin sockets for pick-up. speaker, gram motor. Gram switching on wavechange switch. Negative feedback applied from output transformer secondary.

Horizontal or
Horizontal or
Vertical Dial

NEW MODELS-WITH FERRITE ROD AERIAL
MODEL F3. 5 valves, 4 watt output. Wide-range tone control. £13/18/3
MODEL F3 Push Pull, 7 values, 6 watt out-
put. Separate bass and treble tone controls.
TRADE ENQUIRIES INVITED. Particulirs from
THEDULCICO. LTD.,
99, VILLIERS RD., LONDON, N.W.2. Telephone : Willesden 6678

HANNEY of BATH offers:-

OSIRAM 912 Erie resistor-pot, kit with ceramic tube resistors. very highly recommended. $29 / 6$: Lab resistor kit. $32 / 4$; T.C.C. condensers, 55'. IP.ABTit IDG ai: Components, with lopse lead terminations, Mains trans.. 44/-: Smoothing Choke, 29\%6; Output trans.i 76'9. Price fncludes Partridge carriage/packing charge. Printed panel, 14/6. W.B. chassis, 28/6. DWi.co 16 S.W.G. Ali-Chassis with beautiful Bronze Front Paneb 2l:- (Printed.) S.A.E. List.

MULLARD 5 VALVE, 10 WATT AMPLIFIER. T.C.C. Condensers, 45^{\prime} : Erie resistor-pot kit, 37/6 ; Elstone Mains trans. $36 /-$; Fistone Output trans., 45 - (both types) : Denco chassis. 146 ; Printed bronze panel 14 in. x 5 in.. 6/6. Small parts as per our list. Matched valves available for both the above designs.
FREQUENCY MODULATION. For Wrotham high fidelity transmissions. DENCO technical bulletin giving circuit and point to point wiring diagram for building an F.M. Feeder unit, 1/9. post free. We have all components available. Priced parts list on application.

JIGH FIDELITY SPFAKERE. W.B. HF810, 60/6; W.B. HF912 67/- : W.B. HF1012 (3, 7.5 and 15 ohm. coil), 776 . G.E.C. type FR metal cone. e8/15t., Goodmans "Orlin 111." £9/15/-.
COILPACKS. DENCO, CP $4 / \mathrm{L}$ and $\mathrm{CP} 4 / \mathrm{M}, 33 / 4$: CP $3 / 370 \mathrm{pf}$. and CP 3/500 pf., 42'8. OSMOR "Q " HO. 48/- LM. 40/- Batt. 50, - TRF, $40 /$: HF stage for HO pack, 20/-. We stock COILS by Weymouth, Osmor, Wearite, Denco, R.E.P.
WIDF ANGLE COMPONENTS. ALLEN. Teleking Chassis. $50 /-$ Coilsets (TK and Super-Visor), 44/6; LO. $308.40 /-$; FO. 305 . 21/-: DC.300c., 39/6; FC302. 31/-: GL. 16 and $18,7 / 6$ each ; SC. 312 . Magnaview, $37 / 6 ;$ Chassis, Super-Visor, $51 / 6$: Collsets Magnaview. 41/2 WA/DCA1, 43i- WA/FCA1. $31 /-$ WAlLCl and WC1, 7/6 each ; WA/FMA1, 21:- ; WA/LOT1. 42/- ; WA/FBT1, 16/-.

Send 6d. stamps for our General List of components for Viewmaster, Soundmaster, Wilifamson Amplifier, Teleking, Magnaview (Brimar and English Electric largo screen TV), Super-Visor, Mullard Universal, Close tolerance Silver Micas, etc., etc. Please add $1 /-$ postage to orders under $£ 1$ and $2 /-$ above.

L. F. HANNEY

77, LOWER BRISTOL ROAD," BATH

Practical	
BLUEDRIN	
PRACTICAL WIRELESS	
	No. of B/ucprim
CRYSIAL SETS	
1/6d. each	
1937 Crystal keceiver ..	PW71*
$\begin{gathered} \text { lhe Jonior Crysta } \\ \text { sel ... } \end{gathered}$	PW94*
2s. cach	
Dual - Wate Crystal Dionle'	PW95*

STRAIGHT SETS

Battery Operated

(hat - valve: 2s. cach
the "Pyramid" Onevalver (HF Pen)
Modern
Onevalver
I wo-value : 2s. each.
Hie Signet Two (D \& 1.F)
3. cach.

Maderal Ino-vaiver (1wo) hand receiver)
lifee-valve: 2s. cach.
Summit Thee (HF Per. R, Pen)
The "Rapide" Straight
3 (D, 2 LF (RC \&
'Tans)

1. J. Camm's "sprite"

Three (HF, Pen, 1),
ret)
35. Pach.

The All-dry Thace
Jour-valve : 2s. each.
1 ury Four Super (SCi, SG, D, Pen) … ... IW34C*

Mains Operated
I wo-valve : 2s. each.
selcctone A.C. Radiogram Two (D, Pow) ...
Ihree-valve : 3s. 6d. cach.
A.C. Band-lass 3

PW93*
PW96*

PW76*

PW9:*

PW37*

PW82*

PW87*
four-valve: 2s, each.
A.C. Fury Four (SG, SG,
1). $1 \times(1)$
A.C. Halt-Mark (HF Pen, I). Push Pull)

PW20*
PW45*

SUPERHETS

Hathery Sets: 2s. cach.
F. J. Camm's 2 -valve Superhet

PW52*
Mains Operated: 3s. 6d. each.
"Coronet "A.C. 4 PW100*
AC/DC"Coronet "Four PWiol*

Wircless

 SERVICEAr. of
Bheprint

SHORT-WAVE SETS

Battery Operafed
One-valive: 2s. cael.
Simple S.W. One-valver purs*
Two-valve: 2s. cacli.
Midgel Short-wave Tuo
(D. Pell) PW38A*

Iliree-valve: 2s. each.
1 xpermenters Shortwave Three (SG, D, Pow)

PD.30A*
the Prefiel 3 (i), 2 if (RC and Trans)

PW63*
the Band-spread S.W.
Thee diff, Pen, D.
(P C I$), \mathrm{P} \mathrm{col}$)
PW: \boldsymbol{s}^{*}

PORTABLES

19. out.

Hac "Mini-Four" All-
dry (4-valve superhen)

MISCELLANEOUS

2s. cach.
S.W. Comentor-Adapter
(1 vilue) PW48A*
12 sheels), 7s. 6d.
the P.W. 3-speed Auto-
g1ain
The P.W. Flectronic Organ * (2 sheets), 7s. od.

TELEVISION

The Practical Television Receiver,
(3 sheets), $10 / 6$
The "Argus" (6in. C.R. Tube), 2/6*
The " Super-Visor" (3 Sheets) 7/6*
The "Simplex" 3/-*

Th the follfrning biueprints, as well as the PHACTICAL WIIELENS numbers below 34 are pre-war designs, kept ith circulution for those amateurs who wish to wilise old components which then may have it therr spares box. The matotity of the components for these recelners are no longer stoched by retailers.

AMATEUR WIRELESS AND WIRELESS MAGAZINE STRAIGHT SETS

Battery Operated

One-valve: 2s.
B.B.C. Special One-
valver

Mains Operated

Two-valve: 2s. each.
Consoclectric Two (D,
Pen), A.C. AW403

SPECIAL NOTE

THESE Wuemints are drawn full sing. lue issues containing tescrimfons of uhese sets are now out (n) print, bit an asterisk denotes fhat contiductional detatis are araflable free with the blueprint.
The index letters which precede thu: Blumpint Number indicate the period feal in whell the discription appears. Thus I.W. relers to PRACIICAL WIREIESSS. A.W. to Amaterrmathess. W.N. to Hireless Atagusine.

- Send (preferahly) a postad order (is cover the cost of the Blueprth (stamps over (fd. unacceptable) (h) IRACTICAL WIRELIESS, Hlueprint Dept.. George Newnes, Litu.. Tower llonse. Sontbampton street, Strand, 1. C.e.

Vor. of
Blueprint

SHORT-WAVE SETS

Bartiery Operated
Ohevalie: 2v. each.
S.W. Onc-valver fill

'I wo-valve: 2. eath.
HHEs-shom Ratlery I wo
(SCi, del l'ent WMat? *
Four-valve : 3s, cach.
A.W. Shor Wave Warld-
beater (HI Pen, D, RC
Trams) Aly 430°
standard 「our - valver
Short-waver (S6i, D,
LI P)
$\mathrm{HM}_{3} 3^{\circ}$
Mains Operated
forr-value: 3s.
Standard Four-valve 1.0
Short-nater (SCi, D,
RC. Tranc) WM391*

misCeLLaneous

Enthusiast's Power Am-
plifier (10 Watts) (3/-) WM387*
Listener's 5-watt A.C.
Amplifier (3/-) ... WM392*
De Luxe Concert A.C.
Electrogran (2/-) ... WM1403*

TUNIEYCOUPON

This coupon is available until May
2nd, 1955 and must accompany all
Queries, sent in accord with the
| notice on page 313.
frACTICAL WIRELESS, May, 1955.

STURDY-VERSATILE— POCKET SIZE!
 See them a!! on STAND 19 R.E.C.M.F. Exhibition April 19th-21st

TAYLOR JUNIOR UNIVERSAL METER. Model I20A.

A small 19 -range instrument ideal for the enthusiastic amateur. Sensitivity is 1,000 o.p.v. A.C. and D.C. Accuracy 3". A.C.: 2". D.C.

RANGES:

Volts D.C. : 0-10-25-50-250-500-1,000-2,500.
Volts A.C. : 0-10-50-250-500-1,000-2.500.
Milliamps D.C. : 0-1-10-50-500.
Resistance: $0-2,000$ ohms. $0-200,000$ ohms. Can be extended to 20 megohms

PRICE 69.10.0. PROMPT DELIVERY HIRE PURCHASE TERMS

3 months 61.8 .6 deposit. $\quad 3$ manthly piyments of E3.0.7 10 months $19 / 5$ deposit. $\quad 10$ montnly payments of 191
15 months 195 deposit. $\quad 15$ monthly payments of 136
H.P. interest refunded if paid within 3 month;

NEW TAYLOR Valve Tester.

Measures mutual conductance ol over 4.00) up-to-1ate valves.

Mod: 45c
PRICE ©27.10.0. PROMPT DELIVERY.
HIRE PURCHASE TERMS
x 3 months $£ 4.13$. 6 deposic. $\quad 3$ monshly paymenis of $£ 7.0 .3$

H.P. interest refunded if paid within 3 monchs.

TAYLOR Multirange Meter (1,00) o.p.v.i.
A.C. and D.C. 5in. scale. Robust. overload protecton.

Model 11A
PRICE 612.10.0. PROMPT DELIVERY.
HIRE PURCHASE TERMS

\%H.P. interest refunded if paid wishin 3 months
TAYLOR Multirange Meter (1.000 o.p.v.),
Firsc-grade accuracy. Overload protection. Most useful ranges.

Model 72A
PRICE £16.0.0. PROMPT DELIVERY.
HIRE PURCHASE TERMS

$$
\text { *H.p. interest refunded if paid within } 3 \text { mönths. }
$$

RICE \&15.0.0. PROMPT DELIVERY. IRE PURCHASE TERMS months £2.11 Odeposit. 3 monchly payments of $\mathbf{E 3 . 1 6 . 6}$. 62.11 .4 .. 10, E1. 2.11 H.P. incerest refinded if paid within 3 mionchs. AYLOR Signal Generator. equency range $100 \mathrm{kc} 5-240$ mes Accuracy 1° Mad il 67A PRICE £22.0.0. PROMPT DELIVERY. IRE PURCHASE TERMS months $\mathbf{6 3 . 1 4}$. Odeposit. 3 monehly payments of $\mathbf{£ 5 . 1 2 . 0}$ £3.14.8 .. 10 £1.13.8 E3.15. 1 HP. inceres? refiunded if paid within 3 months fl. 3. 8 AYLOR Multirange Meter (20,000 o.p.v.). ost versatile for Radio and $T \vee$. and Electrical work. Model 38A RICE E22.0.0. PROMPT DELIVERY. IRE PURCHASE TERMS 									

ALL Tayfor instruments are readily available on H.P. Terms. Alternative advantageous terms for 3,10 and 15 months. Write for full H.P. details and Catalogue.

ELECTRICAL INSTRUMENTS LTD.
MONTROSE AVENUE, SLOUGH, BUCKS. Tel: Slough 21381. Cables: Taylins, Slough.

[^0]:
 ping saleapul uoipusn!i! 24l naf e
 sellers and component stockists.) All parts in stock for 3 versions P.W. "Coronets."

 ## ; DNIH」 OOOD V OL NO 135 NOOS
 $\dot{\square}$
 !

