CedingMagazine For the radio gonstauctor

 PRACHCACO

THE TELEGRAPH CONDENSER CO. LTD

 expert's (including F. J. Camm, John Gilbert, P. Wilson, H. J. Barton-Chapple and L. Ormond Sparkes). It provides instant matching of the speech coil impedance at 3 ohms, 7.5 ohms and I5 ohms, and is available on the models marked with an asterisk. This development has added immeasurably to the great popularity already achieved among $\mathrm{Hi}-\mathrm{Fi}$ enthusiasts. Your dealer can show you these new units, or they may be heard at our London Office, 109 Kingsway, any Saturday between 9 a.m. and noon.

BASS REFLEX CONSOLE CABINET

Easily assembled polished walnut veneer cabiner, designed to give maximum reproduction from either the $10^{\prime \prime}$ or 12 Cambric Cone unit. Packed flat, with screws, ready tor assembly. Size $32^{\prime \prime} \times 22^{\prime \prime} \times 16^{\prime \prime}$.

Price $\mathcal{C 1 0 - 1 0 - 0}$
Corner Console Cabinet (8" unit). E5.10.0 WHITELEY ELECTRICAL RADIO CO. LTD MANSFIELD • NOTTS

AT REMARKABLY LOW COST Model HF510 ... 5" Steel Unit ... $£ 1.17 .6$
.. HF510 ... 5" Die cast Unit ... $£ 1.19 .6$
., HF610 ... 6° Steel Unit ... $£ 2.10 .6$
., HF610 ... $6^{\prime \prime}$ Die cast Unit ... $£ 2.12 .6$
., HF810 ... 8" Steel Unit ... £3. 0.6
.. HF812* ... 8* Die cast Unit ... E3. 5.6
.. HF912* ... 9" Die cast Unit ... £3. 9.6
., HFIO12*... $\mathbf{1 0}^{*}$ Die cast Unit ... £3.17.6
. HFI214 ...12" Die cast Unit ... £9.15.6
(Tax paid)

IN RESBPONSE TO NUMEROUS REQUESTS FOR THE INCLUSION OF THE TRAWLER BAND ON OUR PRESENT RANGE OF SEVEN MINIATURE COIL PACKS WE NOW INCREASE THE RANGE TO EIGHT AND PRESENT THE FOUR WAVEBAND CP.3/F FOR 500pF. TUNING CONDENSER.

This Coil Pack is for use with a 500 pF 2 Gang Condenser and covers the standard Long, Medium and Short Wavebands with the addition of the Band $50 / 160$ metres, $1.85 / 6 \mathrm{Mc} / \mathrm{s}$. This covers the Trawler Band, 105/160 metres, Shipping, 68/74 metres, Aeronautical $52 / 55$ and $95 / 105$ metres, and the 80 and 160 metre Amateur Bands.
The CP. $3 / F$ comprises of Aerial and Oscillator coils wound on
"Neosid" formers complete with iron dust tuning cores, Wavechange Switch and Mica Compression Trimmers mounted on an aluminium plate. Fixing is effected by an additional nut on the Wavechange Switch. The I.F. is $465 \mathrm{kc} / \mathrm{s}$. For use with any standard frequency changer.
Retail Price: 49/- plus 16/4 P.T.-.Total 65/4.
The following Coil Packs are also available :
CP. $3 / 370$ and 500 pFF . Three Waveband Coil Packs for use with either 370 or 500 pF tuning condensers.
Retail Price: 32/- plus 10/8 P.T.-Total 42/8.
CP.3/G. Three Waveband Coil Pack for 500 pF tuning condensers with provision on the Wavechange switch for gramophone position. Retail Price: 39/-plus 13/-P.T.-Total $52 /$-.
CP. $4 / \mathrm{L}$ and CP. $4 / \mathrm{M}$. These compact 4 station Coil Packs are availahle for either-I Long and 3 Medium wave stations, (CP.4/L) or 4 Medium wave stations (CP.4/M). Retail Price: 25/-plus $8 / 4$ P.T.-Total $33 / 4$.
CP. $4 \mathrm{~L} / \mathrm{G}$ and CP. $4 \mathrm{M} / \mathrm{G}$. As above but with provision for gramophone pick-up on the Wavechange switch. Retail Price 31/- plus 10/4 P.T.-Total 41/4.- See Technical Bulletin DTB.9 for derails of all coil packs, 1/6.

Send 1/-for General Catalogue. Obtainable from all reputable stockists or in case of diffimuly direct from :

DENCO (CLACTON) LTD : 357/9 OLD ROAD • CLACTON-ON-SEA

STOP PRESS : " Osram 912" and " Mullard 5-10" Amplifier Chassis and Bronze finished Front Panel-Price 21/- each. The "P.W. Fury Four" uses the "Maxi-Q" Yellow (3/11) and Green Chassis Mounting Coils (4/9) (please state frequency range when ordering). Also available are the " Fury Four" Chassis and Paxolin Front Panel, 19/6. Long and Medium Wave T.R.F. Coils, wound on Polystyrene Formers, 9/- per pair.

WEYRAD SIGNAL GENERATORS

Improved versions are now in large-scale production. A number of modifications have been introduced in the circuit which provide superior pefformance and higher efficiency.
Fundamental coverage $100 \mathrm{Kc} / \mathrm{s}-70 \mathrm{Mc} / \mathrm{s}$. Calibration accuracy $\pm 2 \%$ on all bands. R.F. output C.W. or M.C.W. to co-ax. cable. Separate fixed A.F. output. Controls on front panel-range switch, attenuator, tuning, modulation on/off and mains on/off.
Fitted in stout metal case finished cream with leather handle. Front panel black with natural lettering.
S.G.M.I.-Mains operated with double-wound impregnated transformer.
S.G.B. I.-All-dry battery operated.

> Illustroted Leoflet, 2d.

WEYMOUTH RADIO MFG. CO. LTD. CRESCENT ST., WEYMOUTH, DORSET

Finest Soldering?'Always specify ERSIN MULTICORE to be precise

Wherever precision soldering is essential, manufacturers, engineers and handymen rely on multicore. There's a multicore solder just made for the job you have in hand. Here ate some of them.

SIZE 1 CARTON
4 specifications for radio cnthusiasts.

HANDYMAN'S
CARTON
Sufficient for
200 averane
jomess $6 d$.
BIB WIRE STRIPPER AND CUTTER
The 3 im 1 tool. For stripping insulation whhout nicking wire, cutting without leaving rough edges and spliting 3/6 EACH extruded flex.

MANUI ACTURERS ARE INVITED 10
WRITE FOR DETAILS OF BULK PACKS AT BULK PRICES
MULTICORE SOLDERS LTD.
MULTICORE WORKS, hemel hempstead, herts (bOXMOOR 3636)

||
 CONF $26^{* *}$ F.H. 88100 Mば

We can now offer this selfcontained Unit comprising t salves : 2-6BA6. EB91. VR137, EFOA, EF54. Two local stages and separate head Graduated Vernier Drive ensuring easy tivino
(onimononta ofreved to
Complerer F...I. lisit
ew RF $\quad 26^{\prime \prime}$ Unit
with 3 valves
VR137, EFOM
EF54. Chassis
stamped out for
easy conversion £1.15.0
omplete set of all
components for
ing 2-6BA6 and
EB91. tuning con-
denser' I.F.T's and Ose, coils. resistors and fixed
condensers, plugs
wire and tag
astruction Bool
with technical
cjrcuit and com. plete lay-out dia grams
Special offer of all
RFn lioludin
rircuit postare
circuit, postage
Charge for align ment when completed
Assembled. aligned and ready for use $£ 8.10 .0$ Al! Jtems sold separately.

(RADIO LTD.)

Ideal for tape recording orid amplifers. No matehing tresis ampliners, no former required.

HACKAIRD ISEILL Brand new complet Brand new complete witl 28 D7 and 6 SL7GT and instruction book
P. \& P. 2/-.

5, HARROW ROAD, PADDINGTON, LONDON, W. 2
TEL.: PADDINGTON 1008/9, 0401.

ALPHA - FOR ALL YOUR RADIO NEEDS

EXIDE (CANADA) HYDROMETERS complete with foat, etc., in woolen storage touse. 66 ench.

LOUDSPEAKER CABINETS
This attraction wallut limishal chlinet is
 Hetal su, aker let esmplete with lamek and rubber ieet.
61 in . type

 Sin. trpe
 $20 / 6$ equh. Portace is Paking is

MAINS FLEX. Plastic Twin fat 3d F
BAKELITE CASED EAND MICROPHONE3. switeh it hamile complete n ith learl. $7 / 6$ each. OOLDTONE BUZZERS in hakelite case, $2 / 6$ each. PENTODE OUTPUT TRANSFORMERS, 2/9 ewch HIGH TO LOW RESISTANCE HEADPHONE, matching units (inser In lead), $3 / 6$ each.
COLVERN WIRE WOUND POTENTIOMETERS,

BLACK 1 mm . SLEEVING. $1 /-\mathrm{toz} . \mathrm{g} \mathrm{ds}$.
BLACK 4 mm . SLEEVING. 4d. sd.
WEARITE 501-502 IF TRANSFORMERS, 10 - puir. PHILIPS ROUND CAN IF TRANSFORMERS, 471 Kc s. 8 - pair.
EX-GOVERNMENT PREAMPLIFIER, uses EFJ, 8/6 earh.
20-WAY JUNCTION BOXES, 1.4 cach.
BELLING LEE_̛-PIN PLUG AND SOCKET, $1 / 6$ etch. TWIN FUSE HOLDERS manel or baseloaril mourting. state trle remilital whitable fur $1 \frac{1}{d i n}$. iutes, 1/9 each,
AMPLIFIER OR CHARGER CASE. Proun HEAVY DUTY OUTPUTTRANSFORMER fuitable for ${ }^{P} \mathrm{~S}_{4}$ or cilds valvem in push[m11. 12 - each.

CHOKE. Wasox choke, mas. एurtent
MICROPRONE STAND. Fulling Mut.
ICROPHONE morenth be finur
"DEFIANE" EXTENSION SPEAKERS, Wvtw•••n fobigpeaker it attrictive pale green "akintt, TABLE MICROPHOHE M coil miterophume un table stand. , omplece uith lead add juck plug. E4. 10.0 each. NODS \& BOLTS. Bov ni muta, bolts and wathere 4 BA comintersurik amd lumf bearl, over lut eman. 1:- bu
WESTINGROUSE 1 m A Rectiner wire ent . 9d. einh PERSPEX IMPLOSION GUARDS. incurpuratinn hroun escutchenti and arey alter slribled readr tu EX-MINISTRY BAKELITE SENGLE POLE DOUBLE TEROW TOGGLE SWITCH, single hole H wing, 1/6 \&: is Volt VIBRATOR PACK conmplete sith sit vihrator. 146 em h ELAC to 10 low

GOOD QUALITY, marent cothon corered ionde. TCC +rue wort. 19 earb.

TERMS : Cash with order or C.O.D. Postage to be cdded to orders as follows: 9d. wp to $10 /=$; $1 /=$ up to 20/m: 1,6 up to 40/=;2/m up to E5. MAIL ORDER ONLY: Send Gd. in stomps for illus, catclogue.

WHEN ORDERING PLEASE QUOTE "DEPT. F.W."

Bavierviyss imatio

We can supply all the parts (includ ing ralves, 5in. moving coil speakcr. cabinet. chassis, and everything down to the last nut and bolt) to enable you to build a protessionallooking radio. .illed reedy to mount punched and drine There ts a motin of components. There is a choice 121 n . long. 5in. wide by 6 in , high, as

follows: elther ivory or brown bakelite. or wooden, finished in walnut, Complete and easy-to-follow point-to-point and circuit wiring diagrains supplied.

MODEL I. T.R.F. RECEIVER

This is a 3 valve plus metal rectifier T.R.F: eceiver with a vaive me-up as follows Gk (lif), 6J7 (Det) and 6v6 (output. Medium and Lons Wave bands. Operates Medium and Long wave bands. Operates n $200 / 250$ volts A.C. Mains. A.C.'D.C. Plus 2/6 Packing,
Carriage, Insur
Rece. RECEIVER We can supply this '6 packing. carrlage

MODEL 2, SUPERHET RECEIVER
This is a powerful midget 4 valve plus metal rectiffer Superhet Receiver with a ralve line-up as follows: $6 \mathrm{~K} 8,6 \mathrm{~K} 7,6 \mathrm{kr}$, 6V6. The dial is illuminated and coverage is for the Short Wave bands between 16-50 metres, the Medium Wave bands between 190-450 metres, and the Long Wave bands between $1,000-2,000$ metres. Operates on 2001250 volts A.C. mains.
Plus $2 / 6$ Packing,
Carriage, Insur. 57.19 .5 Carriage, Insur.
MODEL
THE NEW T.R.F. MODEL I PLUS.
THE RECEIVER WITIITHE SENSATIONAL PERFOIRMANCE:
This is a completely new design 4 VALVE. 2 Wave Band radio. incorporating the LATEST MINIATURE HIGH GAIN VALVES and the most modern design HIGH "Q ${ }^{\text {" }}$ IRON CORED COILS, ensuring greatiy increased sensitivity and selectivity over the whole of the Medium Band and providing outstanding performance on the Long Wave band. 4 VALVES. 6BJ6 R.F. Amp., 6BH6 Anode Bend Det., 6AQ5 Output. 6.
carriage, \& insur.
This Receiver can be supplied Ready Bullt at $\mathbf{2 8} \mathbf{5 s}$. Oll., plus $3 / 6$ packins, carriage and insurance.
Instruction Booklet and priced Parts List for any of the above available separately at 1 :- This money will be refunded if circuit diagran is returned as NEW within 7 days When ordering please state Model No.

-watt AMPLIFIER KIT

This is a 3 valve 3 stage Amplifier for use with Gramophone, Microphone or Radio.
Valve line-up is as follots: 6SL7, 6V6, 5 valve ine-up is as follous : 0 . Voltage adjustment panel incorporated. i watts out put. For operation on A.C. Mains 200 '250 voits.
The complete Kit includes every item down to the last nut and bolt, arilled and punched chassis, and comprehensice point-to-point wiring circuit darram Chassis dimens.: 8in, x 6in. $x 21 \mathrm{in}$.

PRICE

£4.5.0
Plus 2/6
Pkg., Carr.
\& Ins.

Transformer supplied
is for use with a loudspeaker of 3 otms. Circuit Diagram only, available separately at 1 i- To those who require this Amplifier ready-built we can supply it at 55.1 .0 plus 3/6 pkg., carr., ins.

RADIO TUNER UNIT

A new T.R.F. Tuner Unit designed for High Quality local station reception 2 Valves- 6 K 7 and 6 J 7 . Controls-Volume Tuning and Wavechange. Waveband coverage-Medium and Long. Dimonsions -L. 6 in. H. 51 in . D. 44 in . Power require-ments- 6.3 voltsat 0.6 Amps . $250-300$ yoits 15 mA . (This supply is already avaliable in the Amplifier illustrated above.) All the parts to build this Unit can oe suppiled at \&2 15s. od.. plus $2 ; 6$ p. \& c. keady Built \&3 15s. Od., plus 2/6 p. \& c .

Works and Despatchibept.: 44. Tottenhana Street, London, Wi. Tci. :Langham 1151. Open 9 to 6 p.nı. Daily, Saturdays 1 p.m. TERMS OF BUSINESS : Cash with order (or'C.O.D. Post items). All orders over $\dot{\text { E }}$ post free unless otherwise stated.

RADIO SUPPLY CO. (Leeds) LTD.

32, THECALLS LEEDS, 2

Terms C.W.O. or C.O.D. No C.O.D. under f1. Postage $1 /-$ extra under $10^{\prime}-1^{\prime} 6$ extra under 21 . 2 - extra under $£ 2,2 / 6$ extra under $£ 3$. Open 9 to 5.30 , Sats. until 1 p.m.

CilAssis (Undrilled Aluminium)
18 s.w.g. amplifier (4-sided)
$14 \mathrm{in} . \times 10 \mathrm{in} . \times 3 \mathrm{in} .711114 \mathrm{in}$, $9 \mathrm{in} \times 2 \frac{\mathrm{in}}{} \mathbf{i n} .611$ $16 \mathrm{in} . \times 10 \mathrm{in} . \times 3 \mathrm{in} .8 / 3$
$18 \mathrm{~s} . \mathrm{w}$.g. receiver type
$6 \mathrm{in} .3 \mathrm{in} . \times 1 \mathrm{in} .1 / 1110 \mathrm{in} . \times 5$ in. 2 in .33 $7 \mathrm{in} . \times 43 \mathrm{in}, \times 2 \mathrm{hn}, 2 / 911 \mathrm{in}, \times 6 \mathrm{in}, \times 21 \mathrm{in}, 3 / 11$ $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. receiver type.
$12 \mathrm{in}, \times 8 \mathrm{in}, \times 24 \mathrm{in} \ldots . .5 / 316 \mathrm{in}, \times 8 \mathrm{in} . \times 2 \underline{1 \mathrm{in} .7 / 6}$ 20 in . $\times 8 \mathrm{in}$. $\times 2 \frac{1 \mathrm{in}}{}$
16 s.w.f. amplifier type, 4 -sided. ... $8 / 11$
$12 \ln . \times \sin , \times 2 \operatorname{lin} \ldots$
$16 \mathrm{in} . \times 8 \mathrm{in} . \times 2 \operatorname{in} \ldots$.
$20 \mathrm{in} . \times 8 \mathrm{in} . \times 2 \mathrm{in} .$.
$14 \mathrm{in} \times 10 \mathrm{in} . \times 3 \mathrm{in} \quad \ldots \quad \cdots \quad . . .13 .6$
EX-GOVT, TRANSFS, 230 v. 50 c/es. Following suitable for chargers, etc.:
 $0-16-18-20$ V. 35 a., 79/6
4 times. 25/日. Carr. 5/-
Mise. Types
${ }^{4}$ v. 2.5 a.. $4 / 9 ; 4$ v. 6 a. High Ins., 79: 48 v. 1 a. $8 / 9$. Carr. 5/-extra on following types: 460 v. 200 mA .6 .3 v 5 a., 279 : 400 v. C.T. $150 \mathrm{~mA}, 4$ v. 6 a., 6.3 v. 6 a.. 6.3 v.0.6a.. $4 \mathrm{v}, 6 \mathrm{a}, 4 \mathrm{v}, 3 \mathrm{a}, 4 \mathrm{v} .3 \mathrm{a} .4 \mathrm{v}, 3$ a.. 5 v. 2 a., $22 / 8: 1,220$ v. $550 \mathrm{~mA}, 610-0-610$
 $865-775-690-0-690-775-865$ v. $500 \mathrm{~mA}, 296$
$250-0-250 \mathrm{v} .200 \mathrm{~mA} .6 .3 \mathrm{v} .8 \mathrm{a}, 5 \mathrm{v} .3 \mathrm{a} .229$

AMMITEERS Moving Coil (EX-GONT.) G.E.C. 0-5 amps, 2 in. scale. $11!9$.

SILEER MICA CONDENSERS. 5.10 , $15,20,25,30,35,40,50,100,120,150,200$. (. 002 mfd), 80 d . each ; 3.9 doz. One type.

MIDGET MAINS TRANSFORMEIK. Manufacturer's Surplus. Primary 220240 only $11 / 9$.

EX-GOVT. ALTO TRANGFOE MEIES Double Wound, 50 e/es.
10-0-200-220-240 v. to 10-0-275-295-315 v. $1,00 \mathrm{~J}$ watts, $69 / 8^{\circ}$; $0-230 \mathrm{v}$ to $0-230$ v. tapped every 11 Yolts: from $57.5 \mathrm{v} .5,000$ watts (21 amps.), £6/15'. Carriage on above 5 - extra.

EX-GOVF. SMOOTIING CHOKES.
50 mA .10 H 50 ohms 14:8
250 mA .10 H 100 ohms
$150 \mathrm{~mA}, 10 \mathrm{H} 100 \mathrm{ohms}$
$14: 9$
149
$150 \mathrm{~mA}, 6-10 \mathrm{H} 150$ ohms Tr .
$100 \mathrm{~mA}, 10 \mathrm{H} 150$ ohms Trop.
$50 \mathrm{~mA} .5-10 \mathrm{H} 200 \mathrm{ohms}$..
…
CN-GOVT. NETML BLOCK (PAPER)
CONDENSEITS 4 mfd 1.500 v 4 4 mfd .500 V. $2 / 9 ; 4 \mathrm{mid} .1 .500$ v.. 4.9 $8-8 \mathrm{mfd} .500 \mathrm{v} ., 18 / 11 \mathrm{l}, 4 \mathrm{mfd} .400$ v., plus ${ }_{2} \mathrm{mfd} .250$ v., $1 / 11$; $8 \mathrm{mfd} .500 \mathrm{v}. ., 5 \cdot 9$; 15 mfd .500 v., $8 / 9$.

EX-(G0VT. E.H.T. SMOOTILERS .02 mfd .8 .000 v . cans, $111 ; .25 \mathrm{mfd}$ 4,000 v. Blocks, 4/9 ; . 5 mfd . 2,500 V. Blocks, $3 / 9: 5 \mathrm{mfd} .3,500{ }^{5}$ cans, 3.3 plus .1 mfd. large Blocks, $8,000{ }^{\prime}{ }^{\circ} \mathrm{F} . \mathrm{m}^{\prime} \mathrm{B}$.

EX-GOVT. ACCUMCLATORS
With Non-Splll Vents. Unused and guaranteed 2 v .16 A.H., 5'g. CIITHELIMINATOR AND TRICKLE: Output 120 v .40 mA , fully smoothed. and rectiffed supply to charge $2 v$ acc. Price with steel case and circuit. 296 . Or weady for use. $8 / 9$ extra.

R.S.C. 4-5 WATT HIGH GAIN AMPLIFIER TYPE A6

A highy sensitive 4-ialbe rualits amplifier for the home, small ciub, ete. Oniy 50 millvolts input in required for full output so that it is suitable for use with the lutest high-fidelity pick-up huada, in addition to all other types of plek-upa and practiculty atl nukes. spparate Bans and Treble controls are provided. These aive full iong-playing record equalisation. Hum level is neglixible being 71 D. B. fown. 15 D. B. of negatlve feedback is used. H.T. of 300 v .25 miA . and L.T. of 8.3 F .1 .5 g . is available for the supply of a Railio Fecter tinit, or Tape Deck preampilfier, For A.C. mains input of $200-230-$ 250 v .50 c/es. Chassis is not alive Kit fully puncherd erery detat andineludes fully punched chassis (with baseplate). With kreen crackle finish, and woint-to-point wiring dingrams and instructions. Exceptional value at
only ext onse $25 /$ - extra. plus $3 / 6$ earr.
TV. PREAMPLIFIEIR (Plesnes) For Fringe Areas. Brand New. Complete For Fringe Areas. Brand Ne
with 6 FL3 vaive. Only 22 ' 8 .
RF28 CNTRS BRAND NEW, (AIITONED. Only 39'6. CaIr. $2^{\prime 6}$.

EN-GONT. V.ALTES (NEW)

	Each		Each		
IT4	719	6SN7C	811	AC	
IR5	719				
IS5	7/9	6V6GT	78	EF3S	9
3 S 4	719	6X5GT	8/9	EB. 91	
5Y3G	8/9	8D2	$2 \cdot 11$	EF91	
5 4 4 C	10/6	807	7/11	EL33	
57.4G	916	1246	7/9	MU14	
6F6G	$7 / 9$	12K7GT	10,6	MS ${ }^{\text {P P }}$ ¢	
6J7G	$8 / 6$	15D2	$4 / 9$	SP4	
$6 \mathrm{K7}$ G	$5 / 11$	25Z4G	$9 / 8$	SP41	
6K8G	8111	$35 \mathrm{Z4GT}$	$10 / 6$	SP61	
6SK7	et $7 / 8$	EBC33	$7 / 9$	VT123	$2 / 11$
SPECIALC OFFEIR, Ex-Equip, Goodmans 3 in. P.M. Speaker with Battery pentode trans.. 12 '9.					

PREMIER RADIO COMPANY

B. H MORRIS \& CO., (RADIO) LTO

OPE THL,
6 P.N. SATEISD.AYS

BUILD THFSE NEW PREMIER DESIGNS

3-BAND SUPERHET RECEIVER

 MAY BE OT 10 \& Plus $2 / 6 \mathrm{Pk}$. BULLTFOR d 19.6 Latest type Superhet Circuit using \& valves and metal rectifiers for operation on 2001250 volts A.C. mains. Waveband coverage - short 16-50 metres, medium 180-550 metres, and long $900-2.000$ metres. Valve line-up 6 K 8 frea. changer. $6 \mathrm{K7}$ IF, $6 \mathrm{Q7}$ Detector AVC and first AF, cve output. The attractive cabinet to house the Receiver size $12 i n$, long. 6in. high, 5 tin. deep can be supplied in eitherWALNUT or IVORY BAKELITE Or WOOD.
INSTRECTION BOOKS 1;- mall, fpost

CABINETS—PORTABLE

Model PC/1

Brown Rexine covered, 1511.
Overall dimensions 55 in . x i3Lin. x 5 in . Clearance under lid when closed 2 kin . Model PC/2
Grey Lizard Rexine covered. 45/-
Overall dimensions 15 in . x 13in. x fin. Clearance under lid when closej 3in.
Model IPC/3
Hexine type covering in various colou: 69/8.
Overall dimensions 163 in . x 141 in . x 103 i , Clearance under lid when closed $61 i n$. All the above Cabinets are supplied with Panel, Carrying Handle and Clips. Packing and Postage $2 / 6$.
Send for details of the Premier Wide angle Televisor desion which may be bullt for E 30 .

MAY BE BULLT FOR 25.15 .0 \& Carr.

TRF RECEIVER

 The circuit is the latest type TRF using 3 valves and Metal Rectifiers for operation on 202:250 A.C. mains. Wave band coverage is 1801550 metres on medjum wave and 200,2,000 metres on long wave. The dial is illuminated and the valve line-up is 6 K 7 IIF . Pentode 6 J 7 Detectol and 6Vb-Output. List of priced eomponents.
DECCA MODEL 37A

DRTAL SPEED IRECORD PLAYERK Includes turnover crystal pick-up with capphire stylus and a light-weight plastic spring-balanced arm. Heavy gauge pressed steel case with brown enamel finish in good quality for operation on A.c. mains $200 / 250$ v. 50 c.p.s. Supplied

GARRARD S5

G. 1 RRAKD Rim Drive 78 r.p.m.. complete with magnetic plak-up and turnlable, 24.19 .6 , plus 26 pkg . and carr.

SEND 2Id. STAMP FOR OUR

 1955 CATALOGUE.
4-WATT AMPLIFIER

 MAF BE 0410 Plus $2 / 6 \mathrm{Pk}$. BULLT FOR \&4.10.0 \& Carr. Valve line-up 6SL7. 6V6 and 6X5, FOR A.C. MAINS $200 \cdot 250$ VOLTS. The output Valve is of the beam type and feeds specially de. slgned output Transformerwhich is suitable for either 3 -ohm or ${ }_{15}$-ohm Speakers. Negative feedback is applied from the secondary of the output Transformer over the whole Amplifier to the input stage giving an excellent fer to the input stage giving an excellent gain and wide range tone controls any lype of pick-up may be used. Overall size $9 \times 7 \times 5 i n$. Price of Ampifier complete. tested and ready for use, $85 / 5 /-$, plus $3 / 6 \mathrm{pkg}$. and carr.
INSTRECTIGN BOOK 1/- (post free) which includes Assembly and wiling diakrams, also a detailed Stock List of prieed compments.

C. R. TUBES

VR 517 C 6in. picture. This tube is a replacement for the VCR97 and VCF517. Guaranteed tull size picture. IIRICE, 35: Plus $2 / 6$ pkg, carr. ins. VC1R 5169 in . Blue plature. Heater Volts 4, Anode 4 Kv . in 5:- pkg., carr.. ins. PRICE, E1.19.6.

EXEW EXPERIMENTAL KITS NEW/ in Radio. T.V. etc.

learn the Practical way

Specially prepared sets of radio parts (which you receive upon enrolment) with which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business - these Practical Courses are intended for YOU-and may be yours at very moderate cost.

EASY TERMS FROM 15:- A MONTH

All lessons and equipment supplied immediately and become your own property.

POST THIS COUPON TODAY

Please send me your FREE book on Practical Courses: To: E.M.I. INSTITUTES, Deps. 32X, Grove Park Road, London, W. 4.

```
NAME
ADDRESS
```

SUBJECT(S)
 Receiver.
TELEVISION - Instruction and equipment for building a Television Receiver.
Also for Mechanics, Electricity, Chemistry, Photogmaphy, Carpentry, Draughtsmanship, Commercial Art, Amateur S.W. Radio, Languages.

$$
\text { C. H.I. Not INTES } \begin{aligned}
& \text { The only Postal College which is part } \\
& \text { of a world-wide Industrial Organisation }
\end{aligned}
$$

Positively the 2 BEST T/Vs yet built for the Home Constructor!

 The STERN'S "TELE-VIEWERS"

 The STERN'S "TELE-VIEWERS"}

\author{
Suitable for any transmitsing channel and for which commercial adaptors will be available.

This is the $12^{\prime \prime}$

TELE-VIEWER

and san be completely

 P1y 28 - 16-4 (Plus cost of C.RT.) specially reduced price of \{12.19.6. (Carr. \& Ins., 15i- extra.)

The complete set of ASSEMBLY INSTRUCTIONS for these T/Vs are available for 5:- each. They include really. detailed PRACTICAL LAYOUTS, WIRING DATA AND COMPONENT PRICE LIST. ALL COMPONENTS ARE AVAILABLE FOR INDIVIDUAL PURCHASE.

109 \& 115, FLEET STREET, E.C.4.
Tel.: CENTRAL 5812-3-4.

Bring your equipment up to date with ©COS. REPLACEMENT PICK-UP HEADS

If you already own a fine radiogram or recors-player you now have the opportunity of rejuvenating it - of bringing it right up io daie for a quite modest sum. Acos Hi-g crystal pick-ups are now available in a range of specially designed " plug-in " models to suit most famous makes of record reproducing equipmenl.

These Acos "Hi-g" pick-ups, you will find, represent a truly phenomenal advance in pick-up design -with regard to both reproduction and tracking characteristics (so important with many of the new microgroove recordings). Ask your Dealer!

A Hi-g pick-up head incorporating the HGP 37-I turnover cartridge with cantilever sapphire styl. Designed for both standard and microgroove records. Will fit Collaro units standard and microgroove records. 532 : AC 534 : $A C 3 / 534: 3 R C \quad 532$ and the Studio pick-up. Available in cream or walnut.
fsk ior Data Shcet No. 4EOO.

A Hi-g pick-up head incorporating the HGP 37-1 turnover cartridge with cantilever sapphire styli. Designed for beth standard and microgroove records. Will fit Garrard units RC 75M: RC 80M: RC 90: RC 111 : Model TA.

$$
\text { Isk for Data Shcet No. }\langle 800 .
$$

Hi-g pick-up heads incorporating, cantilever sapphire styli. Separate heads for standard and microgrove records. Will fit the Acos GP 20 pick-up arm and the Garrard C type adaptor. Used on the following units: RC 72A; RC 75A; RC 80; and the Model Munit. Can be used on any units which at present use the GP 19 heads.

$$
\text { Ask for Data Sheet No. } 4400 .
$$

Separate plug-in type Hi -g heads for standard and microgroove records; firted with cantilever sapphire styli. The crystal unit is identical to that of the HGP $39-1$ above. Can be used on Garrard units RC 75M ; RC 90M; RC 90 ; $2 C 111$; and the TA player.

$$
\text { Ask for Dota Sheet No. } 4000
$$

Separate Hi-g plug-in type heads for standard and microgroove records incorporating the crystal unit as used in the HGP 39 pick-up head. Will fit Collaro units RC 532; AC 534; AC3/ 534; 3RC 532. Available in cream or walnut.

$$
\text { Ask for Data Sheet No. } 4500 .
$$

Separate Hi-g pick-up heads for either standard or microproove records. The crystal unit is identical to that used in the HGP 39-1 head. Will fit Garrard units RC 80; RC 72A; RC 75A ; and the Model M player. Can bc used on any unit which at present uses the Garrard C adaptor with GP 19 heads.

Ask for Dato Sheet No. 4600

PRICE 32/6 (PLUS 10/5 P.T.)

 for all types except HGP 39 models which are 32/-(PLUS 10/3 P.T.)ACOS devices are protcctad by fatents, paten applications and registered designs in Great Britain and abroad.

EVERY MONTH
VOL. XXX1, NO. 582, APRIL, 1955
COMMENTS OF THE MONTH

23 rd YeAR OF ISSUE BY THE EDITOR

ADVANCES IN TAPE RECORDING̈

THE advance of interest in tape recording in this country is shown by the fact that nearly 40 manufacturers are now marketing complete apparatus. In addition, one wellknown recorder is available in kit form.

It is impossible to assess how many amateurs are interested in this subject to-day, but the number is large enough to sustain an association whose only interest is in sound recording, and it is a number which is growing week by week.

Radio, television and recording have allied interests, and it is understandable that large numbers of our readers are interested in all three. This journal and our companion journal, Practical Television, cover the three subjects very fully, from the amateur point of view, and our associated journal, Practical Mechanics, has also described the construction of an efficient tape recorder. These instructions have been reprinted in the Practical Mechanics How-To-Make-It Book (12s. 6d., or 13 s . by post from the publishers of this journal).

At present, however, tape recorders are costly, whether purchased ready made or home built. The tape deck is the costly item, for it must bc purchased as a unit, being outside the skill and workshop facilities of the average amateur. We refer to this matter now because we have received requests for a greater amount of space to be devoted to this subject. We, therefore, invite readers who are interested in the subject to submit their views so that the matter may be given consideration. As a footnote, in addition to firms supplying complete recorders, nearly 30 others supply tape and accessories. There can be little doubt that recording has given rise to another absorbing hobby.

ABOUT CLUBS

A CONTRIBUTOR has, in recent issues. dealt with the subject of clubs and the way in which they are run. His remarks have evoked a large amount of correspondence, mostly from members of particular clubs, some expressing satisfaction with their organisations and the way they are run, whilst others state that they had not given the matter a thought until the spotlight was turned on to the subject in this journal.

We have always encouraged the formation of local radio clubs, which are purely domestic
affairs whose finances are within the knowledge of every member. The membership of such clubs is always comparatively small, the subscription low, and in every case annual general meetings are held at which the officers are elected for the following year. When, however, a club is launched on a national basis the position is vastly different. The members are widespread and for many of them the only contact they have with headquarters and other members is through the club magazine, usually a duplicated affair.

In such cases it is even more important that the club, association or league should be run on accepted lines and account to its members each year for its activities, revenue and expenditure. Also, it is vital that annual general meetings be held to afford members an opportunity, if necessary, of criticism and of appointing fresh officers. If such clubs were run on the lines of the R.S.G.B. no criticism could arise.

When, however, a group of people form a club and become the proprietors of it, it ceases to be a club and becomes an ordinary business undertaking. Some correspondents suggest that an independent audit is unnecessary. Why? It allays any possibility of suspicion that the club is being run for private gain.

A member of a club should have a right to a say in the conduct of its affairs, since every member jointly and severally is responsible in law for any costs and damages awarded against it.

Legal advice should always be sought before founding any club which appeals for subscriptions or donations. Our only interest in this matter is to protect our readers against possible exploitation, and without wishing to impugn any particular organisation.

It is for this reason that we have to reassure ourselves as to the standing of any particular club, and the manner in which it conducts its affairs before we can publish any notices concerning them in this journal.

Readers who join particular clubs as a result of notices we publish are entitled to presume that all clubs are bona fide, and we therefore have a duty to protect them.

We have already published in this journal the details we require before we can publish any club notices herein. We are not, of course, referring to long-established organisations.
-F. J. C.

300 Members

THE Mobile Radio Users' Association now has a membership of about 300 , this number being 75 per cent. of land users of mobile radio.

Broadcast Receiving Licences

THE following statement shows the approximate number of broadcast receiving licences issued during the year ended December, 1954. The grand total of sound and television licences was 13,872,633.

Region
London Postal
Home Counties
Midland
$\begin{array}{lll}\text { North Eastern... } & \text {... } & 1,202,591 \\ \text { North Western }\end{array}$
South Western
Wales and Border Counties \qquad ...
Total England and Wales
Scotland $\quad \cdots$
Nerthern Ireland
Grand Total

Number

... 1,502,332
... 1,436,842
... 1,180,153
... 974,028
... 608,216
... $8,458,099$
.. 1.039 .152
.. 219,393
... $9.716,644$
By "QUESTOR".

Talks Producer
$M^{\text {R. WALTER TAPLIN joined }}$ the temporary staff of the BBC on January 17th as a Talks Producer in Home sound programmes.

BBC Commissions Concerto

D^{R}. EDMUND RUBBRA has accepted a commission from the BBC to write a concerto for piano and orchestra for performance in the BBC Symphony Orchestra's 1955-56 Winter Season of Symphony Concerts.

Export Record

PROVISIONAL figures"issued by the Radio Industry Council reveal that radio equipment exports in 1954 reached a new high level.
The total value of exports last year was $£ 29,100,000,12$ per cent. more than the value for 1953. Britain's best customer was Hol-

The electrical control room in the Newcastle Corporation headquarters. Any electrical faults that occur in the city streets are telephoned to this office. The engineer-in-charge then calls one of the tower wagons G. -. by V.H.F. radio and directs it to the fault.
land-it was Sweden the previous year-and Canada was second best. Sales to the United States were worth more than $£ 580,000$, an increase of $£ 140,000$.

Obituary

I^{T} is with regret that we announce the death of Mr. Eric Dare, general manager of Mullard Australia Proprietary, Lid. He died suddenly at the end of December, at the age of 56 .

Mr. Dare was a well known and popular figure in Australian radio circles. His active interest in radio dates back as far as 1924 when he started a daily wireless newspaper.

Gee System Lectures

A SHORT series of three lectures on the Gee system of navigation was delivered recently to the Derby and District Amateur Radio Society by Mr. G. M. C. Stone, of A. C. Cossor, Ltd.

The lectures covered both ground and airborne Gee and were supplemented by films. Mr. Stone also described its use in wartime.

V.H.F. Radio for Newcastle Cor--poration

FIVE tower wagons and a maintenance van belonging to the Newcastle Corporation have been equipped with mobile V.H.F. twoway radio and a main control station set up at the Corporation headquarters.

The tower wagons are responsible for the maintenance of the street-lighting installations and trolley-bus overhead lines throughout 40 miles of streets in Newcastle.

The radio equipment, which was supplied by The General Electric Co. Lid., was introduced to facilitate repair work.

Princess Royal to Open Show

H.R.H. THE PRINCESS ROYAL has consented to open the North Radio Show, City Hall, Manchester, on Wednesday, May 4th.

All space in the exhibition has been taken and the exhibitors include the leading manufacturers of radio and television receivers. The
organisers, the Radio Industry Council, are to build a studio within the exhibition from which the BBC will broadcast sound and television programmes. The show closes on Saturday, May 14th.

Change of Address

BRITISH INSULATED CALLENDER'S CABLES, LTD. announce that the new address of their London sales office is $10-14$, White Lion Street, London, N.I. The telephone numbers are TERminus 8696 and 0372.

The company's central administrative offices remain at 21, Bloomsbury Street, London, W.C.I.

British Institution of Radio Engineers

THE following meetings of the Institution will te held during March :

London Section, - Wednesday, March 30th, 6.30 p.m., at the London School of Hygiene and Tropical Medicine, Keppel Street, Gower Street, W.C.1. Discussion meeting on " The Maintainability of Service Equipment."

Nothth-eastern Section.-Wednesday, March 9th, 6 p.m., at Neville Hall, Westgate Road, Newcastle-upon-Tyne. "The Application of Negative Feedback to Electrical Measuring Instruments ${ }^{\prime \prime}$-F. J. U. Ritson.

West Midlands Section. Wednesday, March 9th, 7.15 p.m., at Wolverhampton and Staffordshire Technical College, Wulfruna Street, Wolverhampton. "Electrical Standards in Electronics "P. M. Clifford.

Scottish Section. - Thursday, March 10th, 7 p.m., at the Institution of Engineers and Shipbuilders, Elmbank Crescent, Glasgow. "Computing Circuits in Flight Simulators "-R. A. Marvin, B.A.
North-western Section.-Thursday. March 31st, 7 p.m., at the Reynolds Hall, College of Technology, Sackville Street, Manchester. "Electronic Control of Industrial Production Processes" -J. A. Sargrove. To be followed by the A.G.M.

Singapore's First Radio-taxis
SINGAPORE'S first radiocontrolled taxicabs have recently appeared on its busy streets. A local firm, Radio Taxis Ltd., is installing Marconi mobile V.H.F. sets in its large fleet of vehicles.

About 25 of these taxis have been fitted with two-way radio so far,
and the operating company has already found that the system results in a great saving of time and expense.

E.M.I. Purchase Shares

THE directors of E.M.I., Ltd., have entered into a contract to purchase the majority of the 476,230 common shares of Capitol Records, Inc., of California, at the price of 17.50 dollars per share, and are offering to purchase the balance

Now mobile radio is to be adopted by hospitals in the northern part of Bedfordshire at an approximate cost of $£ 4,011$.

Concern Over W'elsh Reception

IN reply to questions put to him in the House of Commons recently, Mr. L. D. Gammans, Assistant Postmaster-General, has stated that the BBC is well aware of the bad reception of the Home Service by Welsh listeners and is

For corering outside assignments, J. R. (sound) Reproductions of South Croydon, Surrey, have converted this Hillman Husky into a compact mobile recording unit.
of the common shares at the same price.

Treasury consent to the provision of the necessary dollars has been obtained.

Mr. Bernard Moore

M^{R}. BERNARD MOORE has been appointed head of the BBC Colonial Service, the position which was formerly held by the late Mr. Grenfell Williams.

The appointment took effect from January 24th.

ITMA Writer Opens Shop

$M^{\text {R. TED KAVANAGH, who }}$ used to write the scripts for "ITMA," opened a radio shop in Southampton recently.

Ambulance Economy

ATRIAL period of thirteen weeks in Bedfordshire showed that the fitting of two-way radio to ambulances and hospital cars enabled 1,039 more patients to be carried to and from hospitals and that, in doing so, 2,428 fewer miles were covered compared with the same period in 1953.
doing its best to find an answer to the problem.

Most of the interference is caused by a station in the Soviet zone of Germany that operates on the same wavelength and efforts to stop this have had negative results. Welsh Members of Parliament have asked whether Welsh listeners need pay the full licence fee in view of the poor service received.

" Housewives' Choice "
 Anniversary

O^{N} March 4th, " Housewives Choice" celebrated its ninth birthday. When the first programme went out in 1946 it was presented by Robert MacDermot and organised by Pat Osborne.
After some years on other programmes, Pat Osborne is once more working on "Housewives" Choice." Before the first edition was broadcast, she wondered whether there would be enough requests from housewives to keep the series going, but the announcement of the special programme brought in a flood of requests that has shown no sign of drying up.

ALTHOUGH the relay works at relatively high speed (up to approximately 20 words a minute), its contacts travel through a distance of nerirly half-an-inch each time it energises. This large degree of movement enables aerial switching to the transmitter and its associated receiver to be carried out each time the key is pressed or released.

Fig. 7 (a) shows the armature and coils of the relay. It will be noticed that the armature consists of two $*$ leaves" these being inclined to each other. The "leaves" are pivoted at their junction.

The energising circuit of the relay is shown in Fig. 7(b) which illustrates also the position of the armature when the key is raised. This diagram includes one of the relay contacts as well, this contact making when the relay is in the " key-up " position (as it is in Fig. 7(b)). It will be seen also from this diagram that, until an energising voltage is applied to one of the coils, the armature and the contact bar are free to move on their common pivot. When the relay is used, as in the T1154, no energising voltage appears until the transmitter L.T. (6 volis D.C.) is switched on, whereupon coil A becomes energised and the armature takes up the position shown in the diagram. On pressing the key, coil B becomes energised. So also does coil C, the voltage appearing across this coil via the contact of the relay. Coil C is so wound that it sets up a magnetic field opposite in polarity and stronger than that of coil A. This new field causes that leaf of the armature adjacent to coil A immediately to be repulsed; this repulsion is due to the fact that the polarity of the core around which coil C is wound is now the same as that presented to it by

THE SECOND ARTICLE IN A NEW SERIES
 DEALING WITH A MOST USEFUL TYFE OF, RADIO ACCESSORY

By J. R. Davies

in the armature. This repulsion then assists and speeds the armature in swinging over to the already energised coil B. After the armature has swung sufficiently far, the relay contact breaks and coil C becomes de-energised. The armature, however, completes its movement and takes up the position shown in Fig. 7(c). It is, of course, necessary to de-energise coil C as soon as it has completed its task of starting the armature moving, since otherwise it would prevent or delay coil A from pulling the armature back again when the key is raised.
Fig. 6-A simplified diagram showing the armalure and coil arrangement of a non-polarised relay capable of working at fairly high speeds. The lever to which the armature is atlached may be made of any material. Contacts and springs, etc., may be fitted to the lever on either side of
 the pivot.
To prevent too much sparking at the key, resistors are connected in series with coils B and C. These resistors have been omitted from Figs. 7(b) and (c) for purposes of simplicity.

A.C. Relays

It occasionally happens that it is necessary to use relays which must be energised from a source of A.C.
the residual magnetism remaining

Fig. 7.-(a) A simplifed diagram showing the armature and coil construction of the keying relay fitted to the $T 1154$. The moving contacts (not shown here) are fitted to a bar which therns with the armature. (b) The relay energising circuit, illustrating the state of affairs when the key is raised. (c) The circuit obtaining when the key is pressed.

Fig. 9.-(a) A pair of make contacts. (b) Break comtacts. The extension of the second contact bearing against the armature lever passes through a hole in the first comtact. (c) Change-over comtacts. (d) Make-before-break comacts.

As may be appreciated, this gives rise to certain difficulties, since the magnetic attraction holding the armature to the core of such a relay would be continually altering.

A common method of overcoming this trouble is shown in Fig. 8. This diagram illustrates the end of the core which is nearest to the armature, the latter having been omitted for purposes of clarity. What is known as a "shading coil" is fitted to half of the face of the core. The shading coil is simply a single short-circuited turn of heavy copper.

Fig. 8.-Top view showing how the shading-coil is inset into the core of an A.C. relay.

When the energising A.C. voltage applied to the relay core drops to zero at every half-cycle. the shading coil opposes the cessation of the field within the shaded area of the core. This shaded area, therefore, holds the armature down during the time when the rest of the core affords no magnetic attraction. Thus the armature is continually held against the core over the entire A.C. cycle and does not 1

Fig. 11-(a) Connecting a resistor across the coil of a relay to make it exhibit a slow to release characteristic. The resistor should have approximatelv the same value of resistance as that of the

Fig. 10.-(a) A relay fitted with a heary shig at the armature end of the coil. (b) A relay with the slug fitted to the heel end of the core.
"chatter" or vibrate in sympathy with the energising A.C. as would otherwise be the case.
A.C. relays usually employ a laminated, instead of a solid, core.

Contacts

Up to now we have discussed in some detail the construction and design of the more common relays likely to be encountered in radio work. Our next step consists of considering the various types of contact unit which may be used with these relays. (The term contact unit refers to a group, or set of two or three contacts, one of which is moved by the armature. Each unit is similar to a single-pole switch. A single relay may operate as many contact units as can reasonably be fitted to it.)

Fig. 9 shows four contact units, these being the most representative types likely to be met. For convenience, they are illustrated as though they were fitted to the conventional type of relay which was illustrated in Fig. 1.
Fig. 9(a) shows two contacts which are pushed together when the relay energises. These are known as " make " contacts.

Those of Fig. 9(b) carry out the reverse process and are called " break" contacts. Fig. 9(c) shows a set of "change-over" contacts, while Fig. $9(\mathrm{~d})$ illustrates a set of "make-before-break" contacts. Make-before-break contacts are not so common as

coil. (b) Another relay' circuit which gives a slow to release effect. (c) A relay that is quick to operate and release. (d) A relay which is made slow to operate only
ape the other three types, but they are very useful in certain circuits where changeover contacis could not be used. The nomenclature and functions of the various lypes are simple enough to remember: each

Fig. 12.-. 4 relay circuit illustrating the attached method of presentation. Relay A is operated hy anode current and its change-over contacts cause either relay B or relay C to be energised. Relay C. on energising, energises relay D. The contacts of relays B and D are used to switch external circuits sia the terminals 1 to 6 .
name describes the action carried out by the contact unit when the relay energises.

Slugging

When we described the action of the shading coil of an A.C. relay above, we pointed out that this coil tended to oppose the change in magnetic flux given by the alternating energising voltage. This principle is oflen used with D.C. relays as well, its purnose being to slow down the speed with which the relay operates.
This slowing-down process is known as slugging, and instead of a small shading coil relatively large pieces of solid copper are used instead. These pieces of copper, called "slugs," are fitted around the core of the relay.

Fig. 10(a) shows a relay which is fitted with a heary slug at the armature end of the coil. If desired, this sluy could take up as much as half the winding space on the core, the remainder being left for the coil.

To understand the action of the slug let us imagine that a source of supply is about to be connected to the coil of the relay. As soon as this source becones connected the coil immediately sets up a magnetic ficld. This field is opposed by the slug (by reason of the induced currents and consequent opposing field sct up in it) and some time elapses before sulficient magnetic force can be built up to move the armature. When the energising voltage is removed from the coil the slug acts once more, this time opposing the collapse of the magnetic field. Thus, the slug causes the release of the armature to be delayed as well.
A relay constructed in this manner is described as being "slow to operate and release."
The relay of Fig. 10(b) operates in a slighty different manner. This time the slug is fitted to the heel end of the core. It will be found that, in this case, the slug does not delay the process of energising.

This is duc to the fact that, when the relay beconies energised, there is sufficient attraction hetween the top of the core' and the armature for the latter to move to the energised position. When the rclay is de-energised, however, the slug opposes the breakdown of the ficld existing in the magnetic circuit formed when the armature moved over to the core. The de-energising of ithe relay is, therefore, delayed.

A relay of this type is described as being ". slow 10 release." One occasionally hear's the terms" "slow to make-and-break" and "slow to break" used for the relays just deseribed. These terms are incorrect and are liable to lead to confusion.
Alterations in the speed of working of nomal relays can often be obtained by using exiernal components, instead of relying on slugs fitted to the core.
Fig. Il(a), for instance, shows a relay which will exhibit a "slow to release" characteristic. On connecting the energising voltage, the relay encrgises normally, the resistor serving only to draw an additional current from the source of supply. When the cnergising voltage is broken, however, ihe resistor tends to short-circuit the coil, giving it something of the action of a slug. The main disadvantage with this circuit is the extra current needed when the relay is energised.
Fig. 11(b) shows a more eflicient method. The rectifice across the coil is so connected that it does not conduct when the energising voltage is applied. When this voltage is removed, however, the collapsing magnetic ficld induces in the coil a voltage which is opposite in polarity, causing the rectifier to conduct and apply a partial short-circuit. This relay, therefore, exhibits a "slow to release" action also, without the disadvantage of requiting extra energising current.

By using the contacts of the relay itself, further alterations in performance may be obtained. Fig. 11(c) shows a typical example, this illustrating a "elay which is made " quick to operate and relcase." At the instant of applying the energising voltage to the relay its break contacts arc short-circuiting the resistor. Thus the full voltage anpears across the coil and the relay cnergises quickly. However, as soon as it energises, the scries resistor is brought into circuit and the voltage across the coil drops to a value that is just sufficient to hold the armature against the core. Thus, on removing the energising vollage, it is necessary for only a small magnetic field to collapse, and the armature releases more quickly than it would otherwise have done. Incidentally, this circuit allows the initial energising voltage to have a much higher ralue than would normally be required by the relay, thercby speeding up the process of operating still more.

Circuit Diagrans

An interesting and unconventional circuit is shown. in Fig. 11 (d). This time the relay is "slow to operate." When the energising voltage is originatly applied the relay is shunted, via its change-over contact, by a capasitor. Due to the serics resistor, R1, the capacitor takes some time to charge up. and the energising of the relay is correspondingly dclayed. Once energised, the change-over contacts are actuated, causing the capacitor to be disconnected from the relay coil and connected to another resistor, R2, through which it discharges. When the energising voltage is removed, the armature releases normally.
A relay circuit diagram is usually drawn in one of two ways, the choice being made according to the
complexity of the circuit and, to a small extent, with a view to the person who will be using it.
The method chosen for simple relay diagrams uses what is known as the "attached" circuit. An example of the " attached " circuit diagram is given in Fig. 12. As may be seen, this diagram shows all relay contacts as being in line with their energising coil. This type of circuit diagram is often used for simple arrangements, in which form it presents a circuit that is easy to visualise. It is often used in radio diagrams which include only one or two relays.
The other system is known as the "detached " circuit diagram. Using this interpretation, relay coils are represented as solid blocks, and their contact units are inserted in any convenient position in the diagram. In a complicated circuit, a relay contact unit may appear at the opposite end of the diagram from its coil. The detached circuit diagram is, perhaps, a little disconcerting at first to the uninitiated, but one soon gets used to it.
An example of a detached circuit diagram is shown in Fig. 13. It will be seen that each coil is designated with a letter and a figure, such as, for example, $\frac{B}{2}$.
The letter identifies the relay, whilst the figure indicates the number of contact units on that relay. The contact units spread around the diagram are then labelled with the letter of the relay, and their number. Thus $\frac{B}{2}$ relay has two contact units-BI and B2, these appearing in their appropriate places in the diagram. The contact units are usually numbered in the order in which they are mounted on the relay itself, No. 1 contact unit being that nearest the yoke. When two banks of contacts are fitted, contact unit No. 1 is that nearest the yoke on the left, No. 2 that nearest the yoke on the right, No. 3 the next out on the left, and so on. The left and right directions are obtained when looking at the underside of the relay with the core below the contacts.

It is important to remember that contacts illustrated in detached circuit diagrams are always shown in their de-energised positions. In the very occasional cases where this rule is not observed, the energised relays are named in a prominent place in the diagram.
A further simplification shown in Fig. 13 consists of the use of separate " sources of supply " and earth

Fig. 13. - Another relay circuit using the detached interpretarion. (This circuit is the same as that of Fig. 11.)
symbols. Fig. 13 shows two positive sources of supply ("plus" signs enclosed by a circle). and three earth symbols, these being used for two separate relay circuits. In practice, the positive sources of supply are obtained from the same point. Negative sources of supply may also be used.

It. helps considerably, when studying a complex relay circuit, to try to visualise the action of each particular circuit by starting at its " source of supply " end and carrying through to the earth connection.

Up till now we have used the attached method of representation in these articles. Next month, when we show some circuits which are particularly applicable to radio, we shall commence to uise detached circuit diagrams. (To be continued)

G.E.C. Radio Compass

THE G.E.C. radio compass. developed in close collaboration with the Royal Aircraft Establishment to a Ministry of Supply specification, is now available for civil aircraft. Designed especially for modern high speed aircraft and widely used in Service machines, it operates in conjunction with any ground transmitting station of known location operating in the frequency band $150-1.500 \mathrm{kc} / \mathrm{s}$. It is used to determine the aircraft's position and course, and also for homing an aircraft on a transmitting station, the bearings being supplied by the instrument. The instrument also provides normal radio reception facilities in the medium waveband.

The complete equipment comprises a receiver, a loop assembly, a desiccator, two control boxes, a junction box, two indicators and a cathode follower unit. the total weight being about 741 lb . One of the indicators incorporates a compass and is driven by a repeater from the gyro compass, enabling bearings to be related direct to North.

There are four facilities, all controlled from a service switch on the control boxes:

When the switch is tuned to "Nav.," A.V.C. is replaced by full-range manual control on both R.F.
and I.F. amplifiers. This arrangement with the note filter switched in is provided specially for use with medium frequency ranges or track guides which are tone-modulated at approximately $1,000 \mathrm{c} / \mathrm{s}$ with polar diagram keying to give an equi-signal track with interlocking $\mathrm{A}-\mathrm{N}$ off-course signals.

Turning the service switch to "A.D.F." brings into use the electronic loop switching circuits and servo mechanisms for automatic loop positioning. there being no ambiguity as to the sense of the bearings indicated. A.V.C. operates on this facility and a separate A.V.C. line is provided for the loop amplifier while manual volume control operates on the A.F. amplifier only. The compass provides reliable bearings on field strengthis of 50 microvolt/ metre, though in taking bearings on weak signals the receiver should always be carefully monitored by the telephones. A "No Signal" indicator is provided which confirms to the user that the signal on which he is homing is still being transmitted.

When the service switch is turned to "Loop" the sense aerial is eliminated and reception is on loop with full range R.F. manual volume control. Loop rotation is by variable speed reversible manual control and both note filter and heterodyne oscillator will be in use on weak signals.

AMPRIRTER DMSHCN

13.--TUNED AMPLIFIERS

By R. Hindle

(Concluked from pase 146, March issur)

Selectivity

INaddition 10 inincreasing the gain an increase in Q of a tuned circuit improves the selectivity as is shown in Fig. 52. The simplest way in which Q can bc increased to take advantage of the increased gain and selectivity is by introducing positise fcedback deliberately up to very near to the instability level. This is exactly what reaction is, and it is a very useful arrangement for a simple receiver giving quite appreciable R.F. gain, in effect. It will be scen, however, that bandwidth is scverely restricted thereby, and it is hardly the measure to adopl for a quality receiver.

Similar results are achieved by using a number of tuned circuits in cascade, i.e., one after the other. and Fig. 53 gives curves for from one to four such circuits. It is assumed that the coupling used between successive circuits is in one direction only, such as is the case if there is a valve between circuits. Where circuits are coupled logether inducively or by capacitance the operation is modified.

Transformer with Tuned Primary and Secondary

The transformer as dealt with above was luned at the secondary only, but a transformer can aiso be tuned both primary and secondary and on the face of it this could be looked upon as two separate luned circuits in cascade (i.e. one following the other) but a moment's reflection will show that the coupling in the case of a transformer is not unidirectional as is required for circuits to be considered as working in cascade. It is necessary for cascaded luned circuits that the energy be transferted from the first to the second circuits. but not in reverse from the second to the first, and the common method of coupling visualised for this method is via a valve.

Inductive coupling in the transformer, however, is just as effective from second to first tuned circuit as in the forward dircction and the cumulative effect shown in Fig. 53 cannot necessarily be applied.
The evact effect achicved by the luning of both primary and secondary depends on the degree of coupling and where this is of a low order the shape of the secondary response curve is, in fact, very similar to that obtaining with one-way coupling between two such circuits, i.c. the selectivity is increased and the peak of the response narrowed and sharpened. The primary response, on the other hand, is much as though the secondary did not exist and the response is almost identical with that given by a single tuned circuit with similar Q. Curie 1 of Fig. 54 indicates the secondary circuit response for a low coefficient of coupling. As the coupling is increased the scoondary current grows in amplitude and takes on a flattened peak and the degree ot coupling at which the amplitude of current reaches its maximum and exhibits a maximum width of flat top is called the " critical coupling." This condition is given at curve 2 in Fig. 54. A further increase in coupling has no effect on the pak amplitude of the secondary current but is seen 10 result in the breaking up of the response into two separate peaks, and the greater the coupling above the critical value the wider apart are the peaks and the more pronounced the trough between. Curve 3 of Fig. 54 indicates the condition where k slightly excceds the critical value and curve 4 where k is three times the critical coupling and it will be seen that the claim that poak amplitude does not change for over-coupling is verified.

Reason for Double-peaking

This break-up into double paaks is due to the

Fis. 53.-Effect of numed circuits in cascade.
nature of the impedance coupled into the primary from the secondary. At resonance the reflected impedance is a pure resistance and this, being effectively in series with the primary impedance, reduces the Q of the primary and so reduces the response

Curve 1....K=0.5x Critical value
Curve 3. $K=1.5 x$
Fig. 54.-Secondary response curve for various degrees of coupling ($Q p=Q s$).
of the circuit at the exact frequency of resonance. This results also in a reduction in the voltage induced into the secondary at this frequency. The tighter the coupling the more effective is this damping of the primary by the secondary, and consequently the reduction of the secondary voltage at resonance is greater ; hence the trough. To a frequency slightly above 'resonance, however, the secondary circuit capacitance has a reactance lower than that of the secondary inductance and therefore it draws the greater current. The secondary circuit as a whole, therefore, now exhibits the net characteristics of a capacitance, and it is a partially capacitive load that is reflected into the primary. Now in the primary the reflected secondary load appears as though it were in series with the primary components, and so the reflected capacitance appears there in series with the primary capacitance, effectively reducing it (two capacitances in series, the reader will remember,

Fig. 56.—Response for K values centred round the critical talve (Ko).
are less than either capacitance alone). This produces in the secondary a resonance effect to a frequency higher than that to which the primary alone is tuned. Where the shift in frequency of response in this way is equal to the displacement off natural resonance (of the primary alone) of the frequency causing the effect, the primary response is greater, and the signal passed to the secondary is greater, than at the natural resonance of the individual cricuits. This accounts for the displaced peak at a frequency above that to which the circuits are tuned.

By a similar argument the fed-back impedance at a frequency slightly lower than resonance is inductive and this, in series with the primary inductance, increases the effective inductance and lowers the primary frequency of response, causing a peak at the lower frequency.

The above discussion has been in terms of primary current whereas generally a voltage is required to drive the next stage but, of course, the current produces a voltage across the capacitance of the secondary, Ohm's Law determining the amplitude, and this voltage is thus proportional to the current flowing.

Fig. 55.-Alternative coupling methods.

Critical Coupling

The degree of coupling permissible without the break-up into double humps, i.e. the critical coupling, depends on the quality of the tuned circuits and is given by

Critical coupling $(k o)=\frac{1}{\sqrt{\mathrm{QpQs}}}$
where $Q p$ is the Q of the primary circuit, Q : is the Q of the secondary circuit; when the two circuits have the same Q Ko becomes $\frac{1}{Q}$. The similarity of tuned circuits used in the transformer is assumed when stating that double-humping occurs when the coupling exceeds the critical value as previously defined; if the Q's are different a somewhat greater degree of coupling is required to give the double hump.

Staggered Tuning

The frequency band passed by a transformer tuned at both primary and secondary can be increased by staggering the tuning so that one is tuned slightly above and the other slightly below the centre frequency required. The effect of this is, in practice.
equivalent to an increase in the coelficient of coupling and is (assuming equa! Q's) as though k had been increased to a value equal to

$$
\sqrt{k^{2}} \div\left(\frac{\Delta}{f}\right)^{2}
$$

where k is the coefficient of coupling actually used :
f is the wanted middle frequency of the passband and so the frequency midway between the frequencies to which the tuncd circuits are tuned.
and Δ is the difference between the resonant frequencies of the two tuned circuits.
Generally, transformers used by the constructor have fived coupling and so it is useful to know that the effect of tighter coupling can te simulated by staggering.

Methods of Coupling

Throughout the above discussion mutual inductance has been considered as the medium coupling the two circuits, but other methods are practicable. Fig. 55 gives various alternatives, indicating that any impedance common to the two circuits will serve as at
coupling impedance. The larger the impedance (i.e., the larger the resistance or inductance but the smaller the capacitance) the greater is the coupling. An alternative is "top-end" coupling by virtue of at capacitance connected from one cireuit to another as shown in Fig. 55(d). Here, the larger the capacitance the greater the coupling.

Bandpass Filter

A circuit set up so as to give a reasonably level response over a range of frequencies whilst diseriminating against frequencies outside that range is called a band-pass filter, and it has been shown that this condition is not fulfilled in all mutually coupled luned circuits (which are often quite erroncously styled as band-pass circuits), but only in those cases where a suitable degrec of coupling is found between circuits of suitable Q. In general, the band-pass charatteristic is obtained with two circuits of equal Q coupled logether when the Q of calch eireuit is within the range ${ }_{k}^{1} 10 \frac{1.5}{\mathrm{k}}$. The amount of coupling that is permissible to gise a suitably flat chatacteristic also diepends on the associated circuits.

New Electronic Organ

THE organ, which has been described as the most complex of all musical instruments, has tended in the past to be limited in its scope by the attendant expense. Henri Selmer, Lid., of 114-116. Charing Cross Road, London, W.C.2, have recently, however, introduced a new electronically operated organ which markets at a much reduced price.

The Lincoln organ, as it is called, is the latest in a line of electronic musical instruments made by Henri Selmer, Ltd., and the experience derived from thesc is evident in the new instrument. It is silent in action, more responsive in speech than many pipe organs and free from mechanical complexities. Its performance is claimed to be acceptable even to the pipe organ purist and it measures only 4 ft . by 2 ft . 6 in . by 3 ft .

Each note can be tuned individually merely by rotating a knturled knob which varies the inductance in the oscillatory circuit, in which 15 Osram B65 valves are employed. Another B65 valve, in conjunction with an Osram L63 valve, forms the wenitant

Employs Osram Valves

an L63 as a bass oscillator: Two KT66 values are used logether with a Z729, a B65 and an L63 in the amplifier. Altogether 24 Osram valves supplied by the General Electric Co., LId., are employed in the organ circuit.

The organ has 15 stops in all, controlled by rocking-tablets. Six of these provide the main tone colours of the pipe organ which can be mixed to produce further tones. Three select the usual 4 ft. Sft . and 16 ft . pitches, thus providing sub- and supcioctave coupling. The remaining tablets control the bass and tremulant. Where extra volume is required the tremulant can be varied in both speed and depth. A solo stop is also provided which redtuces the accompaniment and brings out the melody

Tho viens of the Lincoln Organ.
Provision has been made for the addition of a tone chamber with its own booster amplifier (incorporating iwo Osram KT66 values).

UsimgTEST INSTRUMENTS

Part 4 of a New Series of Articles Dealing with the Practical Application of Standard Test Equipment

By Gordon J. King, A.M.I.P.R.E.

(Comtinued from page 186 March issue)

Form Factor (8)

CYURIOUSLY, although our multi-range meter READS in R.M.S. values when it is used on A.C., it is not actually measuring R.M.S. voltages ! We must remember, of course, that since a rectifier is used between the A.C. source and the meter. the meter will measure proportionally to the MEAN or average value of the RECTIFIED waveform, 'and not to the R.M.S. value of the source voltage.

Essentially, all universal multimeters employ a fullwave rectifier for A.C. measurements, which means that a sine waveform as in Fig. 12(a) will appear to the meter in the form of Fig. 12(b). It follows, then, that the meter needle will receive a push from zero to maximum when the A.C. is going positive, and a similar push when the A.C. is going negative-this is because the negative half-cycle appears to the meter as a positive pulse due to the action of the full-wave rectifier. Precisely the same effect occurs during the proceeding A.C. cycles; so that for each full cycle of A.C., two positive half-cycles are applied to the meter.

Because each needle deffection due to the rectified A.C. begins gradually, builds up to a maximum, and then diminishes gradually, the meter will measure the mean value of the rectified waveform. Now it can be shown that the mean value of half a sine wave is $2 / \pi$, or 0.6366 times its peak value. Therefore, a

Fig. 12.-By reason of the full-wave rectifier in a fllmiversal multimeter the sine waveform at (a) will - appear to the meter as in form (b). The meter will $\Delta s-$. " thus measure the average value of the rectified waveform.
meter connected throtigh a full-wave rectifier to a sinusoidal A.C. source will measure 0.6366 times the peak value of the A.C., and not the R.M.S. value of the A.C., which, as we have already seen. is 0.707 times the peak valuc. Provided we are dealing with sine waves this discrepancy is of little consequence, for the neter is calibrated to READ the R.M.S. value, even though it is actually MEASURING in proportion to the mean value.

The ratio of the R.M.S. value to the mean value is termed the " form factor," and for SINE waveforms it is $1.11(0.707 / 0.637)$. From this reasoning we can realise that a D.C. voltmeter connected through a full-wave rectifier 10 an A.C. supply would read 11 per cent. less than the R.M.S. value of the supply. This error is automatically catered for in universal multimeters by internal alteration of the circuitry on A.C. ranges-the switch does more than just bring in a full-wave rectifier, it adjusts the meter to READ 11 per cent. higher than the mean value, thereby corresponding to the R.M.S. value.

Although one may fee! that all this theory is superfluous to the "Practical Application of Test Instruments," it is really necessary to understand as much as possible of it if we desire to interpret A.C. meter readings correctly, and if we expect our instruments to yield their utmost assistance.

The most important point to bear in mind is that on their A.C. ranges multi-range meters depend for their accuracy not only upon their initial calibration but also upon the maintenance of a sinusoidal waveform. They, therefore, READ R.M.S. values only on the assumption that the normal sine wave will be encountered. One should always recognise the possibility of some error when using distorted or nonsinusoidal waveforms where the form factor might deviate considerably from 1.11. For instance, squarish wave shapes incite high readings, and peaky ones low readings; a square wave, for example, has a form factor of 1, whilst a half-wave rectified triangular wave corresponds to a form factor of 1.63.

Fig. 13.-Simple full- and half-wave rectifier circuits at (a) and (b) respectively:

Recognise the Effect of Unidirectional A.C. (9)

If we use a D.C. METER to measure the voltage existing across the output of a full-wave rectifler circuit (Fig. 13a), it is clear now, that the meter will measure the average value of the rectified waveform (Fig. 12b). Therefore, provided the rectifier is 100 per cent. efficient, and assuming the 230 volts R.M.S. is being applied to the rectifier, our D.C. meter connected across the rectifier load resistor RL will measure something like 207 volts- $(230 \times 1.414 \times$ 0.637).

Fig. 14.-Showing that the average value of a halfcycle over the time of a whole cycle is half that of a full cycle.
Now let us consider a half-wave rectifier circuit (Fig. 13b). From this we know that the positive halfcycles of sine waveform drive current through the rectifier with little opposition, and thus give rise to half-cycle pulses of voltage across RL. On the negative half-cycles, however, the rectifier appears as a complete open.circuit (assuming a perfect rectifier), so during these periods no output at all appears across RL: this effect is shown in Fig. 14.

We should have a good idea now that if we connect our D.C. voltmeter across RL of Fig. 13b, the rectifier of which also has a 230 volt R.M.S. input, our reading will deviate from that obtained across RL of Fig. 13a. Our meter is still going to measure the average value of the rectified waveform, but the average value of half a cycle over the time of a whole cycle is clearly half of 0.637 , or 0.318 . Thus, as compared with the 207 volts across RL of Fig. 13a, across RL of Fig. 13b will obtain a reading of something like 103.5 volts.

This explains, of course, why we get a remarkably low D.C. reading from the output of a power pack when the electrolytic reservoir capacitor becomes open-circuit.

The Action of the Reservoir Capacitor (10)

As an example, let us consider a full-wave rectifier circuit complete with reservoir capacitor C (Fig. 15a). Reference to Fig. 15b shows that the voltage at C follows the line ABCD , the capacitor charging between A and B but discharging between B and C. The mean level of $A B C D$ is, therefore, the effective direct voltage across C.

It is not here intended to explore deeply into the theory of rectification, though it is desirable to bear in mind that as the current taken by the rectifier circuit
is reduced (as the value of RL is increased), BC becomes more nearly horizontal and its level rises towards the peak value of the waveform until in the extreme case when RL is infinite the direct voltage across C will be is equal to the peak voltage of the waveform.

We shall most likely correctly conclude that the actưal value of the reservoir capacitor has a bearing on the output voltage when the rectifier is passing current. Also, with half-wave circuits, since the

Fig. 15.-(a) A full-wave rectifier circuit complete with reservoir capacitor C. Diagram (b) illustrates how C charges during period $A B$ and discharge's during period $B C$. The average level of $A B C D$ is, therefore, the effective direct soltage across C.
capacitor discharge time is greater and thus a longer time elapses before the capacitor is subjected 10 a recharging pulse, a larger value reservoir capacitor is demanded in order to maintain the required direct voltage output.

It is also interesting to note that the ripple voltage across C is determined by analysis of the shape of ABCD . Clearly, the greater the rate of change of voltage across C during the periods $A B$ and $B C$, the greater will be the magnitude of ripple voltage. It follows, then, that as the circuit loading is increased the magnitude of the ripple voltage will also be increased.

Resistance Measurement (11)

Now that we have successfully (we hope !) broken down the barrier so far as A.C. and our multimeter is

Fig. 16.-A simple whmeter circuit.
concerned, let us consider in some detail a feature of our instrument which is considerably less brain-taxing, namely the Ohmis range.
(To be continued)

A dependably accurate instrument for testing and fault location is indispensable to the amateur who builds or services his own set.

The Universal AvoMinor

(as illustrated) is a highly accurate moving-coil instrument, conveniently compact, for measuring A.C. and D.C. voltage, D.C. current, and also resistance: 22 ranges of readings on a 3 -inch scale. Total resistance 200.000 ohms.

Size: 4 inns. x zigins. x lizins. Complete with leads. interNetl weight: 18 ozs. changeable prods and crocoPrice: $£ 10: 10: 0 \quad$ dile clips, and instruction

The D.C. AVOMINOR

is a $2 t$-inch moving coil meter providing 14 ranges of reading of D.C. voltage, currem and resistance up to 600 volts, 120 milliamps, and 3 megohms respectively. Total resistance 100,000 ohms.

$$
\text { Size : 4kins. } x \text { 3iins. } x 17 \text { ins. Complete as above }
$$

Nett weight : 12 ozs.
Price: 55:5:0
Sole Proprietors and Manufacturers :-
AUTOMATIC COIL WINDER \& ELECTRICAL EGUIPMENT CO., LTD. Avoset House, 92/96, Vauxhall Bridge Rd., London S.W.1. 'Phone : ViCtoria 3404-9

 High Quality Amplifier \& Reproducer

隺
 พwwina

has been hailed with enthusiasm by home constructors and music lovers throughout the country. Designed to do full justice to the best of modern L.P. recordings, the Osram ' 912 ' sets a startlingly new standard of realism in domestic sound reproduction. The versatile tone control system with its variable treble slope also enables old and worn, but often treasured, records to be played with the maximum of musical enjoyment.

How to build the Osram ' 912 '

Osram '912', 9 octaves, 12 watts, ultra-linear output stage, base and treble tone controls, variable treble slope, stage-by-stage wiring instructions.

From your dealer or by post 3 d. extra from Osram Valve \& Electronics Department.

Overoll frequency response of the complete equipment. comprising L.P. record, specified pickup, Osram 912 amplifier ana G.E.C. Metal Cone Loudspeaker in octogonal loaded-por i cabinct.

Sturdy-Versatile-Pocket-size!

TAYLOR

JUNIOR UNIVERSAL METER

Model I20. A
A small 19 -range instrument ideal for the enthusiastic amateur. Sensitivity is 1,000 o.p.v. A.C. and D.C. Accuracy : 2% D.C., 3% A.C.

RANGES

Volts D.C. : c-.25-10-50-250-500-1,000-2,500. Volts A.C. : 0-10-50-250-500-1,000-2,500.
Milliamps D.C : 0-1-10-50-500.
Resistance: $0-2,000$ ohms, $0-200,000$ ohms. Can be extended to 20 megohms.
PRICE £9.10.0. PROMPT DELIVERY hire purchase terms
${ }^{*} 3$ months, £1/5/6 dcposit
3 monthly payments of $£ 3 / 0 / 7$ Io months $19 / 5$ deposit

Io monthly payments of $19 / 1$ Is months 19/5 deposit

IS monthly payments of $13 / 6$
*H.P. interest iefunded if paid within 3 months.
All Taylor instruments are available on 3 months "No interest" H.P. terms. Alternative advantayeous terms for 10 and 15 months.
Write for full H.P. details and Catalogue.

ELECTRICAL INSTRUMENTS LTD
Montrose Avenue, Slough, Bucks
Telephone: Slough 21381 Cables: Taylins, Slough

WE SPECIALISE ONLY in RADIO COMPONENTS-

LET US QUOTE YOU BY RETURN FOR ANY RADIO VALVES OR PARTS YOU REQUIRE

STOP PRESS:-MULLARD TRANSISTORS TYPE OC70 and OC7I, $£ 2$ each ; OC5I $30 /-$ each

Osram "912" and Mullard " 510 " Amplifier Parts in Stock.
NEW CATALOGUE WITH H.P. TERMS 6d. QUOTES S.A.E.

RADIO SERVIIING COMPANY

82 SOUTH EALING ROAD LONDON W. 5

EAL. 5737
HEXTDOOR SOUTHEALINGTUBESTATION (TURNLEFT)

There's a wonderful future for you in-
EBETRONICS
Every day the demand for the expert in electronics grows. Radio, television, radar and the whole field of industrial electronics are rapidly expanding, and the trained specialist in these fields is assured of a well paid career in this quickly developing profession. Here is your opportunity to acquire specialist knowledge. Write for our free Brochure giving details of the following course :

3 YEAR COURSE

in Telecommunication Engineering (including opportunity for nine months' practical attachment in E.M.I. Laboratories and Workshops). Next course commences on 29th August, 1955.

E.M.I. INSTITUTES

Dept. $32 \mathrm{G}, 10$ Pembridge Square, London, w.2. Telephone: Hayswuter 5131/2

[^0]

New Electronic Devices

THE Radio Corporation of America recently demonstrated some startling new electronic devices, including a music "synthesiser." a light amplifier (formerly considered impossible) and a magnetic tape recorder for television and motion pictures.

Brigadier-General Sarnoff, chairman of the R.C.A. who described the devices, declared that they opened up great promise for the future and explained that they were being revealed now in their experimental stage tefore they were ready commercially because he believed competition could be as stimulating in research as in manufacturing and merchandising.

Among the devices the magnetic tape recorder (first demonstrated in December, 1953, at the R.C.A. laboratories at Princeton, New Jersey) was of particular interest. According to General Sarnoff this can produce quickly and economically without any photographic developing or processing motion pictures in colour as well as in black and white, and an unlimited number of these tape recordings can be made.

The R.A.I.B.C.
I HAVE received the following letter from Mr. J Comber (E.I.S.L.), hon. treasure: of R.A.I.B.C. :
-With reference to correspondence between the secretary of the above club and yourself re balance sheet and your. desire to have certified accounts, arranyements have been made for the accounts to be audited by Messrs. Ormsby \& Rhodes, chartered accountants, 12, College Green, Dublin.
" The W.F.S.R.A. had a club from'about the middle of 1951 to November, 1952, when it ceased to operate. On February 21st, 1953, the council of the society decided to close down that club. In May of that year I was asked to become treasurer.
"Owing to the differences that have arisen in W.F.S.R.A., I was not able to negotiate with the members now on our panel. R.A.I.B.C. was eventually formed on February 8th, 1954, and the balance in hand, as published in 'Skywire ' (Jan.-Feb., 1954), is $£ 64 \mathrm{~s}$. Id., which may only be expended on the purposes for which it was donated."

The I.S.W.L,

M^{Y}
Y comments on the International Short Wave League have brought forth a number of letters from members who state that they are entirely satisfied with the way in which the league is conducted. The following extracts from one received from Mr. J. D. Pearson, of Barrow-on-Humber, summarise the points made in many of the letters:
." ' It is said by some members that all they receive is a membership card and copies of a duplicated journa!. That is all that the member of any radio society receives. The usefulness of any society is in the services it renders to members. The I.S.W.L. operates a Q.S.L. burcau. This service is genuine, as I have only to-day received a Q.S.L. card from CKCS, Sackville,

Canada, for a report which 1 forwarded through the I.S.W.L. broadcast bureau some time ago. There are also departments dealing with radio astronomy, broadcast, commercial and amateur station identification (this, too, is a very useful service), translation of foreign signal reception, and several others which I cannot remember without reference to membership data which are not to hand."

And here is another letter from Mr. J. E. Alban (G3JEA), of Bayswater :
"I was given to understand by the past organisers that the production of balance sheets was unnecessary. However, I lost no time in informing the present committee of the points you mentioned, and feel sure they will do something to rectify this error as soon as they are able.
"Annual general meetings have never been held. I agree with you that members should be notified even if the attendance is nil. If our national society can muster only 89 members out of some 10,000 odd at their A.G.M. it seems extremely doubtful that the I.S.W.L. could muster more than 10 !
" The production of an annual balance sheet has also been the subject of discussion at many committee meetings, but, as stated above, was always waived by the secretary on the information quoted above. Having been a member of the R.S.G.B. for the past 10 years and received an annual balance sheet, I thought such a sheet was a necessity.
"Committee members, treasurer and secretary have never been put up for re-election each year. The secretary has always accepted the task of collecting membership fees, keeping the books, countersigning the cheques, and the complete running of the Q.S.L. bureau. He also handles most of the league's expenditure."

And, finally, here is a letter from Mr. J. H. Burrows, of Data Publications :
"The I.S.W.L. was formed in October, 1946, and sponsored by our short-wave journal. The founder members were: A. C. Gee (G2UK), C. W. C. Overland (G2ATV), and W. N. Stevens (G3AKA). In 1950 a committee of interested nembers was appointed by Amalgamated Short Wave Press, Ltd., to assist in the conduct and running of the League. The committee expressed the desire to run the League independently of any commercial organisation, and the League affairs were handed over to this committee as from December 1st, 1951. (There was no question of A.S.W.P., Ltd., being unable to afford to carry it on.) Announcements of all the above facts were prominently made in the sponsoring journal, no complaints were received, and the arrangements appeared to be popular with the League members. At no time up to December 1st, 1951, was there any association with the British Short Wave League. The British Short Wave League, a pre-war organisation, subsequent to the formation of the I.S.W.L., became associated with another periodical. We have not heard of any B.S.W.L. activity since the journal ceased publication.

TRANSMLTTINETOBPCS
 TOPBAND AERIAL SYSTEMS
 By O. J. Russell, B.Sc.(Hons.), G3BHJ

WHILE Topband activity is popular, and while many start their transmitting career on this band, it must not be thought that it is an
"easy" band. While simple equipment may give first-class results, and while technical problems of the kind encountered upon higher frequencies, or the V.H.F. bands -are not met with, yet the Topband has its own technical problems. These technical problems are not unconnected with obtaining excellent results, for DX upon 160 metres is definitely a very difficult feat. However, for some people obtaining other than purely local contacts, it may be difficult.

The question of aerial radiation is the secret of Topband operation, and it is not generally realised that the technical aspects are not as straightforward as might at first be supposed. Some of these aspects are well worth study, as it will be revealed that they give the clue to obtaining greatly improved efficiency.

Naturally, the fortunate few who are able to erect half-wave aerials at a height of 60 or more feet have little to worry about. However, only a few can crect a clear 250 odd feet span of wire, so that the majority are faced with the erection of the best possible compromise in the space at their disposal. City dwellers are, of course, particularly badly placed in this respect. Before considering aerial variations, however, there is one aspect generally overlooked in Topband working, and that is the great importance of the earth system. The earth system is important in all cases where a " Marconi against ground " aerial - system is used. Naturally, the Marconi_system is popular, as it enables short aerials to be loaded up for Topband use. One such system is shown in Fig. 1.

An Example

In such systems, due to the relatively low impedance when series-tuned against ground, the aerial current is high. The ability to produce a given current in the aerial is not a very good indication by itself of efficiency. In fact, a high-impedance radiator drawing a much lower current would be considerably more efficient. To determine how various factors influence efficiency, Fig. 2 shows the "equivalent circuit" of a Marconi system aerial, that is, a length of wire shorter than a quarter wavelength. It is a capacity in series with a resistance. The resistance represents the radiation resistance, that is the value of resistance necessary to account for the power radiated. If the radiation resistance is 5 ohms, then an aerial current of 1 amp . corresponds to the radiation of 5 watts of R.F. The current is that measured at the base of the aerial, so the radiation resistance Rrad is referred to as the "base radiation resistance." it should be noted that in the Marconi tuning system, the aerial loading coil and condenser merely resonate the aerial capacity, so that the effective impedance becomes that of the aerial base resistance as shown in Fig. 3. This state of affairs would apply only if the earth
return were of zero resistance, and if the loading coil were of zero resistance. In practice, therefore, the radiation resistance has to compete with the earth resistance and with the coil resistance, so that efficiency is lowered. The real state of affairs is shown in Fig. 4, where only the radiation resistance does any useful work. Here, again, if the resistance representing coil losses were low, and if the earth resistance were low, no serious loss would result.

Unfortunately, this is generally not the case, as earth and coil losses may be much larger than the aerial resistance. Fig. 5 gives the Base Resistance curves for vertical wire aerials operated on Topband, and it will be seen that short wires have very low resistances. Thus the " 8 ft . whip" acrial employed for mobile Topband work has a radiation resistance of around one-tenth of an ohm! When it is considered that earth losses, even with a good earth, may be 10 ohms or more, it is clear that only 1 per cent. of the R.F. fed into such a system will be radiated. A loading coil to load up such a short aerial, even if of high Q construction, will itself have a resistance of over 10 ohms, so that as against the tenth of an ohm of the aerial we have some 20 ohms minimum

loss in the earth and coil circuits. Accordingly, less than a half per cent. of the R.F. supplied to the aerial circuit will be radiated. Under these conditions it seems pointless to consume 10 watts in the transmitter to produce the radiation that would be given by a transistor coupled to a fully efficient aerial system!

Earth Efficiency

This example serves to illustrate the extreme importance of the earth and loading coil efficiency. While an 8 ft . vertical whip aerial is generally only used for mobile working, many amateurs in restricted locations are forced to use a short aerial for Topband. The curve of Fig. 5 shows that with short aerials even a few extra feet are worth having. Thus, a 16 ft . vertical aerial has some four times the radiation efficiency under the same conditions as the 8 ft . whip. Practically, the 16 ft . aerial is even more
efficient, as a"smaller coil is needed to resonate it as its capacity is higher. Consequently, coil resistance is lowered, and coil losses will be less. It is clear, however, that every foot of height counts on Topband, so that any possible extension in height is to be secured.

The "L " Aerial

In this connection the so-called " L " aerial as in Fig. 6, is used in order to get "as much wire "out as possible. Here again height is important. The effective height of the horizontal top portion is the

Fig. 3.-The effect of the usual Marconi series ttuning circuit is to cancel the capacity of the aerial, so that the effective aerial resistance can be fed with R.F.
deciding factor. In the general case, where a resonant overall length of wire is not possible, the "L" aerial is actually operating as a " capacity top-loaded vertical." That is to say, the aerial is to be regarded as a vertical, loaded at the top by the effective capacity of the horizontal top portion. It will be found that a 30 ft . high " L " aerial with only a short length of top is actually of higher base resistance than a 20ft. high " L " with a long top. This again illustrates the vital importance of height in securing an efficient radiator on the Topband. In fact, "top capacity loading " is one way of improving aerial efficiency, so that after attaching the aerial to the highest possible point, an additional horizontal length adds to the attainable efficiency. In commercial practice, capacity top loading may be effected by flat metallic or mesh discs at the top of the radiator. This is

Fig. 5.-Radiation resistance of short vertical aerials on Topband.
generally beyond the possibility of amateur practice, as discs of some feet diameter are necessary. However, a fan top of several wires may be used where feasible. The practice of using the feeders and top of a centrefed dipole cut for an H.F. band, as in Fig. 7, is one method of achieving a capacity-top-loaded aerial. In fact, a two-metre beam array, propped at the top of a high mast, could be used in the same way by tying the feeders together and using it as a " capacityloaded vertical" for Topband use!

In this respect, one rather unusual family of centre-fed aerials may be employed for Topband use. These are operated like conventional dipole systems, although the top lengths may be considerably shorter than an 80 -metre dipole. It should be noted that the feeders are tapped on to either side of the centre of a parallel-tuned circuit for Topband use. The advantage of these aerials is that the top is symmetrical and does not have to rely upon a ground system. Thus the difficulty of providing a lowresistance ground is avoided. While the effect of the earth below the aerial will still have some bearing on efficiency, this will not be as marked as when a physical earth is part of the R.F. circulating system. As will be seen, the shorter the top is made the longer become the feeders, as the feeders are an integral part of the system. This feature enables the use of an earth to be replaced by a feeder of low resistance. It may be regarded either as an abbre-

Fig. 4.-In a practical Marconi system, the radiation resistance has to compete with the effective earth resistance and the resistance losses in the tuning coil. Unless great care is taken, earth and coil losses may very greatly recluce the radiated R.F.

viated dipole, or as a radiator with an elevated counterpoise. It should be noted that these aerials may be used on higher frequency bands as well as on Topband, so that a single aerial gives an efficient " all-band " aerial system. It should be noted that height is still important, even though the effect of earth losses are reduced.

Aerial Radiation

One important effect of aerial height lies in the radiation from the aerial. The vertical Marconi systems radiated a vertically polarised wave at low angle, as shown in Fig. 8. If the ground were of perfect conductivity, the maximum radiation would be at zero angle. However, the effect of ground resistance is to reduce the radiation at extreme low angles, so that Fig. 8 gives a good idea of the radiation pattern at average locations. In effect the vertical aerial radiates a strong "ground wave," with very little radiation at the higher angles. The practical result of this is that a strong local signal up to some hundred miles or so will be radiated.

In contrast to this type of radiation pattern, the horizontal aerial will radiate most of its energy upwards, unless extreme height, say two hundred feet or so, is available for supporting the aerial wire. In most amateur cases the aerial is supported much nearer the earth, so that the available radiation is largely skywards. In fact, the coverage on Topband is almost all due to the skywave being reflected down-
wards again, and so covering all distances by single or multiple hops. Except under extreme conditions enough ionisation exists for the reflection of Topband frequencies, so that generally night working over all distances is possible by skywave. In daylight ranges may be greatly restricted under some conditions.

In practice therefore, the user of a vertically polarised aerial system therefore can expect consistent operation without marked fading over perhaps one hundred miles, and perhaps good results on extreme DX, but with rather inconsistent results on ranges of a few hundred miles on Topband. The user of a horizontally polarised system will similarly obtain results perhaps a little worse over the first hundred miles than with a vertical aerial. Over longer distances of up to three hundred miles or so, considerable night fading will often be experienced, but signal strengths will often be higher than with a vertical aerial system.

Needless to say, unless losses have been reduced by attention to aerial efficiency, long ranges will not be achieved easily, despite the fact that even lowpower transistor transmitters have achieved considerable ranges, well over the hundred mile mark. As pointed out carlier, the losses of a makeshift aerial system may be so large as to put the 10 -watt station on a par with a transistor station as regards actual radiated R.F. power. In this case the power limit upon Topband operation does not enable the

Fig. 8.-With the usual heights obtainable on Topband, the vertical aerial will radiate mainly horizontally, while the horizontal aerials will radiate mainly upwarts.
operator to step-up power in order to overcome the limitations of the aerial system. Conversely, where results have been disappointing on Topband operation, the attention to both aerial and earth system efficiency may make a startling improvement in results. While an illegal increase of power to, say, 100 watts would seem an extreme step, it is possible than an equivalent increase in signal strength might arise by retaining 10 watts input and improving the aerial efficiency.

Aerial Loading Coil

While a tenfold increase in radiation efficiency may seem exaggerated, this can be seen to be quite a Seasible state of affairs when Marconi systems are used. A glance at Fig. 5 will show that unless a very high aerial is in use, and unless a very efficient low-loss earth system and a low-loss acrial loading coil are in use, the aerial efficiency may be only a few per cent. Thus, for example, a singlè earth driven into the garden soil will seldom be below some 20 ohms resistance, even if a 10 ft . earth rod is driven down into the soil. In fact, for the user of a Marconi tuned aerial, one earth connection should never be relied upon. At least three earth rods should be driven into the soil at widely spaced intervals, and the three rods paratleled with heavy cable brought to the shack. It should be noted that the effect of adding extra earth connections in the Marconi system can te observed as an increase in the aerial current
meter, and also by a corresponding increase in signal strength as reported by local stations. Therefore, if additional earth connections can be arranged, their efficiency can be gauged by checks on aerial current and on signal strength reports. In all cases where a single earth or a makeshift earth has been employed, an improvement will be noted by using efficient earths, and multiple earth connections.

Finally, it is useless to improve aerial and earth efficiency if the aerial loading coil is inefficient. While a Topband loading coil may need a sizeable

Fig. 6 (left).-Adding a horizontal top section increases the efficiency of a vertical radiator. The effect is to increase the radiation resistance so that a greater fraction of R.F. is radiated. However, length of the top portion is not a substitute for height, so that a high aerial with a short top is hetter than a low aerial with a long top. Fig. 7 (right).-A dipole aerial used for the higher frequency bands may be "sed as a capacity top-loaded Marconi sistem by paralleling the feeders and loading against ground in the usual Marconi fashion.
amount of inductance, it is a poor policy to wind many turns of thin wire on a cardboard former and expect good results. Such a coil may be useful in deciding the size of coil required, but is no suitable for efficient operation. The permanent loading coil should be wound with thick wire on low-loss ceramic formers, or air-spaced. An efficient low-loss aerial tuning coil will make a further contribution to overall aerial system efficiency for topband operation.

While the above features apply with special force to Topband operation, they also apply to other bands as well. Whilst, generally, it is possible to

Table of feeder lengths and top lengths for centre-fed Topband aerials, using spaced twin feeders. For every 2 ft . reduction in overall top length, increase feeders by 1 lt .
Fill top, length in feet. Feeder, length in feet.

100	38
98	39
96	40
94	41
	42
	40
88	43
	45

obtain efficient radiation on the higher frequency bands without difficulty, many people are in such restricted spaces, that even 80 -metre or 40 -metre operation presents a problem. Where only short aerials are possible, therefore, application of Marconi or similar loaded systems may enable efficient operation to be carried out.

Relay-controlled Directional Aerial

A SIMPLE INDOOR SHORT.WAVE IDEA FOR ALL-ROUND USE
By A. W. Mann

ONE hears but little nowadays concerning the transposed doublet type of receiving aerial once so popular with the short-wave fraternity. No doubt quite a number are still in use throughout the world, but on the whole it may be regarded as out of favour so far as the majority are concerned.

To ercet an aerial of this type to textbook recommendations requires a considerable amount of space. That in many instances entirely rules out this type of aerial, especially in industrial areas.

Like other types the transposed doublet possesses certain advantages, but also certain disadvantages.

When one cannot follow conventional methods outdoors, it is sometimes possible to adopt unconventional ones indoors, and use roof space to full advantage in order to achieve the desired results.

In this instance the result is an efficient aerial system which will prove to be an asset to the DX enthusiast.

The design of a relay-controlied doublet aerial, using twisted wire feeders to be described, if carefully matched to the receiver which is to be used in conjunction with it, will provide world-wide coverage, with a really good signal-to-noise ratio.

The author is fully aware as to the functioning of this type of aerial, in relation to resonant frequency and theoretical considerations.

Early Tests

The first tests were carried out with two $10-\mathrm{ft}$. flat tops, separated with a two-terminal spacing insulator. Plastic-covered lighting flex was used as the feeders. Candidly this was only a test to gauge the possibilities. Not much was expected, but the results aven when the feeders were directly coupled to the aerial and earth terminals of a R1116A

Fig. 1.-General arrangement of indoor doublet

were sufficiently promising to warrant going ahead.
In order to increase aerial signal pick up, 10 ft . of wire was added to each flat top section, and the run of wiring arranged as shown at Fig. 1, which we will discuss in detail later. The second test proved even more satisfactory, and the second aerial was made up in a like manner and the feeders run down to the receiver position.

A six-terminal strip was screwed into position along the edge of a shelf about 3 ft . above the receiver. The twisted feeders were fitted to the two outside pairs of terminals, and the common feeder pair to the centre pair of terminals. Thus, in order to use the $\mathrm{N}-\mathrm{S}$ aerial the bridging wires were switched over from the E-W terminals. A double-pole doublethrow switch would have been better, but we had other ideas, and the arrangement outlined served during the test period which covered some weeks.

General Arrangement

Fig. I shows the general arrangement. Here we have two divided aerials. For example, the N-S acrial from L to K to J is one continuous wire, G to H to 1 being likewise. The same applies exactly to the E-W aerial. Thus, our bent, flat tops are each 20ft. long. The dividing insulators can be cut from spare insulating material, plastic or the like, and the terminals should be 2 in . apart. If desired they could be made in one piece. Separate insulators, however, enable the height of the aerials to be adjusted to suit local circumstances. In my case the E-W one is Ift. higher than the other. This enables the bent arms A-B, etc., to be arranged one above the other, Ift. apart.

Materials

Fig. 2 shows the dimensions of the dividing insulator, two of which are required. The total length of wire required is 80 ft . Any good make of insulated aerial wire will be suitable. The twin feeder used for the original aerials is plastic-covered, twin-lighting flex, at 4 d. per yard. The lengths required will ${ }^{\text {. }}$

Fig. 2

Figs. 2, 3 and 4.--Details of construction and connections.
depend on the distance between the aerial spans and the receiver location. Providing that insulated aerial wire is used the reader may use other methods than stand-off insulators to support the spans.

Matching

Assuming the receiver to be an R1116 double superhet, a 400 ohms resistor in series with each feeder

Fig. 5. -Wiring of the complete aerial arrangement.
and the acrial and earth terminals of the set will provide a good match. A resistance of the same value placed in series with the feeder going to the earth terminal of the set will, in certain instances, give a better match and a little extra gain.

An alternative method is to wind a coupler on an inch diameter paxolin former, consisting of 14 turns copper enamelled wire, cover with a strip of copper foil, leaving a $\frac{1}{4} \mathrm{in}$. space between foil ends, and then cover the foil with a paper strip. Follow this by very carefully winding another 14 turns coil over the insulating paper. The latter is a precaution against shorted turns to foil in case of wire insulation defects.

Note: an earth connection (i.e., earthing of chassis) should not be used. The coupler may be used with the foil screen earthed or without. Try both. This electrostatic form of coupler provides a very good match and a good signal-to-noise ratio. See Fig. 3 and Fig. 4. This coupler is somewhat different from anti-electrical-interference types, and is simpiy a matching device. Use 26 s.w.g. enamelled wire.

Changeover Relay

Fig. 5 shows how by the use of a magnetic relay which require but two volts to operate it, the doublets can be switched. This is the type 10A/10480 as used in the ex-R.A.F. TR9 transmitters and obtainable from advertisers in this journal. The switch used should be of the push-pull type, which allows an almost instantaneous comparison by a fractional movement. Once checked, the switch should be fully engaged or disengaged. A QMB switch can, of course, be used if preferred. At the end of listening periods always leave the switch in open position with no current flowing in relay coil.

Always check that relay is working correctly at the start of a listening period, and that both spiing contacts are engaging properly with their opposite numbers. Relays sometimes stick and in this case the result is apt to be misleading.

Directional Properties

While the writer has been able to cover the world
with a rotary aerial, and thus obtain maximum signal strength on all signals according to prevailing reception conditions, the blind spot with other aerials has. always been South Africa. This does not mean that South African transmissions were not receivable on end-fed aerials, but that due to location difficulties, such aerials could not be erected so that full advantage could be taken of their directional properties.

The broadside directivity of N -S aerial main span, plus the SE-SW directivity of the legs, resulted in the reception of VQ7DT on twenty metres phone at 6.30 p.m. B.S.T. The broadside directivity of the E-W aerial is equally effective in those directions. This aerial system is not effective so far as the reduction of electrical interference is concerned, because the flat top sections must perforce come within the interference zone at my location.

Details have been given in this article concerning the use of this aerial system in conjunction with the R1116A double superhet recciver. It can, of course, be used with T.R.F. receivers as shown at Fig. 6, and with straight regenerative types in "which six-pin plug-in coils are used, by coupling the feeders directly to the aperiodic coil. I would be most interested to hear of the results obtained by users of modern

Fig. 6.-Details of the aerial input arrangement for T.R.F. receivers.
communication receivers in which provision is made for doublet coupling.

The sole idea behind these experiments was to utilise doublet principles to the best advantage indoors and within a very limited space. Due to the fact that the R1116A has a most excellent AVC system the signal strength and noise ratio compare more than favourably with other aerials which have been used with this receiver. The coupler, like the acrial system, may appear unusual, but the results have been such that they will remain in constant use for some time to come.

To obtain full advantage of relay change-over. the relay switch should be mounted on the table edge as close to the receiver as possible.

Operating Procedure

It sometimes happens, and especially on the 20 metre amateur band, that nothing is to be heard. I have found this so when tuning for American amateur phones using the E-W aerial. Changing over to the N-S aerial, however, has brought in transmissions from other parts of the world when the band appeared to be entirely closed.

To me this is not surprising, as when using the rotary aerial one only needs to rotate the full circle to hear some amateur, somewhere, unless receiving conditions are extremely bad. Therefore, when tuning, make full use of the change-over switch, always making sure that the relay is working, and enter in the log which aerial was in use against each entry. Within a few months you will have a good idea as to coverage, and in all probability \log quite a number of countries from which you had rever received either amateur or broadcast transmissions before, and a greater interest in DX.

LASKYS PAGE OF MONFYSAVING OFFERS

THE SCOPHONY-BAIRD CINE "SOUNDMASTER" New \& Unused

LIST PRICE 72 GNS.

 DIEIVE. (AN ALNO BE CNED AS A STRAIAKIT AMPI.IFIHER
Originalls designed for connecting to a rin? projector for synchronising sound tosilent films. this superb equipment with the addition of a 5 motor becomes a Complete Tape Recorder of 5 watts undistorted output. Can also be used as a straight Amplifier. Two Inputs for use with Crystal Mike and radio or gram. P.M. Erase.
Amplifier uses five valves ! 2 -SSN7. 2 - 3 V 0. Amphifier uses five valves : 2-SSN7. 2-3Vo.
$1-5 Z 4$. For 200240 A.C. Mains. Full instructions and circuit with each Recorder.

LASKY'S PRICE £17.13.0

(Carriage 7,6 extra)

Comprising the 'SOUNDMASTER" complete with 5 valves, Cover incorponating sln. Loud Speaker With 24ft. of cable. Spare Input Plug. Dimensions : $131 \times 16 \times 11 i n$. Net weight 321 bs
IBO'IIISRM.NI, CRVSTV.M. HIKF: complete wit! lead and plug. 25/extra (Islsted at 5 gns.). ABIE Price ORIE NO AVAIL ABLE. Price on request.

MIU'AI. IRLC"IFIITR
6 or 12 v. F.W. Bridge. $12 m \mathrm{~m} .6$. 2 amp. $11 / 3.4 \mathrm{amp} 15$ Garnp. 23, 8.10 amp. 32.6. 1 amp.. 6 v.2'6. 1 amp. 12 к.3/11
3 amp. 12 v. 12/6
1.F. TRANKFOURMEIRS MLNLATURE.
WEARITE TYPE PR WEART「E TYPE 500
kcs. $8 / 6$ per pair.
(I? YST.II, DJODIS
Wire ends. Glass
${ }_{1 / 8}^{1 / 6}$
Tyne WX.6. Wire ends
"1BLIVIRON" sumbit
INDCtroit comis
Full range, including the new "Ferrite" rod frame aerials. 5ivin. diam. gin., medium wave. gin., n:ed. \& long wave

NETECNAL IPCTRCHINE 16in. C.IE. 'ITISk
Famods make offered at nearly Half Price. Metal cone. 3 amp. heater, of.h.t. required $10-14 \mathrm{kv}$. Carr. \& ins.. 22/6 extra.

18in: EIITEIT NANK NK CTIllin to suit above

1PI.ASHIC HENCNTC'11HON
With dark screen filter
12in..............12/6 15in..............25/
SEDPHRIINT COIL. IPCKN With Circuit.
Cir, 1. L.M.S.G. Size: 4tx $5 \times$ 2tins. With in. spindle........19.8 Wir. 2. M.S.S. Size : $4 \times 4 \times 3 i n s$. With in. spindle................16/-
Both for use with $465 \mathrm{kc} / \mathrm{s} . \mathrm{I}$.

IAT1BNIPLAKIIIt First Quality. All 3 ohms speech coil. Less output trans.

ERIMINIGIRS
Type C7.1. 16 each
Type CZ̈.3. 64. each or $5 \mathrm{~J}=$ doz.

COMPLETE 5 VALVE RADIO CHASSIS
Brand New and Unused. A.C. D.C. Mains. $200 / 250$ ${ }_{\star}$ I.F. $465 \mathrm{kc} / \mathrm{s}$. A.V.C. * 4 Watts output. * 3 Station Pre Set. * Frame aerial.

* Fhassis aligned.
* Chassis size only loins. * K 5!ins. Max. height Completely wired and ready for use, with the ad-
dition of a speaker and output transformer. Two controls-Volume and Station switch. Valves used: 10C1. 10F9 or UF41, 10LD11, 10P14, U404 or Uy゙41
LASK's I'IRICLE, 69/6, less Valves. Postage $3 / 2$ extra. PRICE COMPLETE, 25.19 .6 .
L.ASKY'S IR.ADIO CONSTIECCTOR PAIRCELA

No. 1. A.C. SUPERHET.- 1 valves plus metal rectlfier. Long. medium and short wavebands. In very attractive cabinet. either Wall components ivory or walnut Dlastic. For 2001250 v . 50 c .p.s. metalwork isky iplis tansormer, cabinet. dial and VO. 2, A.C. T.R.F. - 3 valves plus metal. rectifier. L. \& M. wavebands. For construction in attractive wood or plastic cabinet. walnut or ivory finish. For 2001250 y. 50 c.p.s. All components, mains transtormer, cabinet, dial and metalwork
I.ASKI'S JPIC'L, $£ 5.10 .0$. Post \& pkg. $2 / 6$ extra. N(). 3. 4-WATT A.C. AMPLIFIER.-Uses 1 each 6SL7, 6 V6 and $5 Z 4$. All components, chassis, valves, output trans., mains trans. 1.1NK M'S Pitic', £4.5.0. Post \& pkg. $2 / 6$ extra. Instruction Books for the above, price 1/- each. All component.s available separately

EN-N.M. IRECEIVER TYIP: 18.1155

Frequency ranges 18.5-7.5 Mc/s ; $7.5-3.0 \mathrm{Mc} / \mathrm{s}$; $1.500-600$ $\mathrm{kc} / \mathrm{s}: 500-200 \mathrm{kc} / \mathrm{s}: 200-75 \mathrm{kc} / \mathrm{s}$. Supplied in maker's original
wood transit case. wood transit case.
H.AKI'S PIRICH:

BRAND NEW. £11.19. 3.
Secondhand. Grade $1, \ldots 9.19 .8$ Secondhand. Grade 2, Ez19.8 10/-returmable on packing case.

NWHEMISILIS IPOWEIR

For use on $200-250 \mathrm{~V}$. A.C. mains. Complete with 2 valves. In IASKN' spisices, 79/6 Carr. 51. extra.
I'owrr lbatk as above. Fitted wiking p.m. speaker. Carrjage 5/- extra.
L. ※ N. HASH: T. IR.F. COILN. With Circuit. $4 / 11$ pair I.. d. M. IHAI. WAVH:Superhet Coils. Aerial and oscillator

AEIRII IROD SECTIONS Steel, heavily copper plated. lins. long. Iin. diameter. Any number may be fitted together. irle (Cr: $2 / 6$ per doz. Post free.

HENORIBIN(T TAPE
1.200ft. reels. kralt base on Cyldon metal spools. Each 1211. Post 1/-extra.
'IEIEVKSION WELENIRM IRJCIIFIERS
Sentercel" S.T.C. range.
\qquad

K3/100. $8.0 \mathrm{kV} .14 / 8$

HANNEY of BATH offers:-

OSIAAM 912 Erie resistor-pot. kit with ceramic tube resistors. very highly recommended. 29/6; Lab resistor kit. $32 / 4$; T.C.C. condensers. $55 /-$ I. AITikIIGGi: Components. with lonse lead terminations. Mains trans., 44/-; Smoothing Choke. 29/6: Output trans., 76/9. Price includes Partridge carriage/packing charge. Printed panel, 14/6. W.B. chassis, 28/6, DFNC0 16 S.W.G. Ali-Chassis with beautiful Bronze Front Panel, 21/-. (Printed.) S.A.E. List,

MELEARD 5 VALVE, 10 WATT AMPITFIER. T.C.C. Condensers. 45:-: Erie resistor-pot kit. $37 / 6$; Elstone Mains tians., 38/-; Elstone Output trans.. 45/- (both types) ; benco chassis, $14 / 6$: Printed bronze panel 14in. x $512 ., 6 / 6$. Small parts as per our list. Matched valves available for both the above designs.

FREOUENCY MIOIDULATION. For Wrotham high fidelity transmissions. DENCO technical bulletin giving circuit and point to point wiring diagram for building an F.M. Feeder unit. 1/9. post free. We have all components avallable. Priced parts list on application.

IHGH FIIELITY SPEAKERS. W.B. HF810, 60/6 : W.B. HF912, 67/-: W.R. HF1012 (3, 7.5 and 15 ohm. coil), 7\%/6. G.E.C. type FR metal cone, £8/15/-. Goodmans "Orif 111,' $£ 9 / 15 /-$.

COILPACKS. DENCO. CP $4 / \mathrm{L}$ and, $\mathrm{CP} 4 / \mathrm{M}$ 33/4: CP $3 / 3 \% 0 \mathrm{pf}$. and CP $3 / 500$ pf. $42 / 8$. OSMOR " Q "' HO, 48/- ; LM, 40/- ; Batt. 501-: TRF. 40/-: HF stage for HO pack. 20/-. We stock COILS

WIDE ANGIE COMPONENTS. ALLEN. Teleking Chassis. 50/- : Coilsets (TK and Super-Visor). 44/6; LO.308. 40/-; FO. 305, 21/-: DC.300C. 39/6; FC302, 31/-: GL. 16 and $18,7 / 6$ each ; SC. 312. Magnaview. $37 / 6$: Chassis, Super-Visor, $51 / 6$: DENCO Chassis view, 41/2; WA/DCA1, 43/-: WA/FCA1, 31/-; WA/LC1 and WC1 7/6 each ; WA/FMA1, 21/-; WA/LOT1, $42 /-$: WA/FBT1, 16/-.

Send 6d, stamps for our General List of components for Viewmaster, Soundmaster, Williamson Amplifier. Teleking, Magnavjew (Brimar and English Electrio large screen TV). Super-Visor, Muladd $1 /$ - postage to orders under silver Micas. eto.. etc. Please add $1 /$-postage to orders under $£ 1$ and $2 /$ - above

L. F. HANNEY
 77, LOWER BRISTOL ROAD, BATH

Tel.: 3811

THE HAM'S SHOP

Cheapest Television and Electrical Shop in Great Britain.

45, WINETAVERN ST., BELFAST,

 NORTHERN IRELAND. Phone : 31849.Receiver.-TR1196, complete with valves, £1-15-0. IRecejwer 1355. £2. Transmitter. TRi196. £1-0-0: without valves, $10 /$ -
 R.F. type 24 and 25 , with valves, 14'-: Type 6 f2-15-0; Type 62 e2-15-0. Horniond Nocakers.-Tannoy for P A. complete with Units, $£ 2-10-0$. Louf Inillers,-Complete with valves, ${ }^{2} 5-0-0$ (cannot be repeated). Morsp Fi-ys, 3/6. Wolderine ironc22/1230, $12 / 6$ (cost price, $25 /-$). Spratiers.-4in., $15 /-: 5$ in., 12/6. Meters.- $50 \mathrm{M} / \mathrm{amp} .8 / 6: 1$ amp., $8 / 6 ; 3.5 \mathrm{kV} . \mathrm{V}^{12} \mathbf{1 2}$ (cannot be repeated). (TR (hassis.-With valves, £1. Dials.-1191, 4/6. l wor Ifells.-(Work off mains). 3/-. Large Rraws Temminals.$7 \leqq$, each, 7/-per doz. Aerials. -Puli out, $7 / 6$ (18in. extends to 9ft.). Cut-0uts.-12v. and 24v.. 8/6. Miniature Moters. - Work off 12 v . or 24 v . A.C., $8 / 6$ each. Tulees.-VR97, 30/- (no cut-offs) : $807.81 \sim:$: 6 V , 7/6. Metal Rectilirus.-250/150 m/amps., $5 / 6$; 6 v . i amp. $8 / \because$ Meval Boxes.-2/- Chassis with (emponents.-5i- (worth si each). Transformers. $-350 / 350,80 \mathrm{~m} / \mathrm{amp}$. 4 v .4 amp . and 4 y .3 amp . 14/- each. (harging Transformers...From 3v. to 30v. at 2 to 3 amp. £1-0-0. Rivers, Aluminiumi- $2 / 6$ per box. Ikesimters.All sizes from 6d. Co-Ax (able-8d. per yd. Battery thassis, with valves. 12/6. Suparhet Chassis. with valves. 25%. If Counters. $1 / 6$ each. Fan Motorn-24v., 15/-. Twin Flex.50 yds., $22 / 6$. Condensers.- 6 mfd. high voltage, $5 /$ - each. PushButton I'nits.-With knobs, 2/6. Control Units, $2 / 6$ each. Pulley Whecls, 6d, each (Rakelite). Speaker Fret. 2/-. (rystals, 2/6 each. Television Viewing Binceulars, $10 /$ - Relay- -2.000 or $5,000 \mathrm{ohms}, 7 / 6$ each ; 620 ohms, $3 / 6$. Bell Transformers, $5 / 6$ each. Pidament Transformers.- 3.5 and 6 v . lamp. $5 / 6$ each. Ctookes.$200 \mathrm{~m} / \mathrm{amp} .10 \mathrm{H} .3 / 6$. ISulhs,-10v. 1.3 amp ., 6 d . each. All sizes of Volume Controls.- $2 / 6$ each, with switch, $3 / 6$ each. Valve iloliter's -All types. from bdt. Aladdin Formers and Cores, Gal, IIydro-meters-3-Ball type, 1/6. Pumps.-E1-0-0 each. Sound Projectors - (2) with Spakier (Price on Application) $35 \mathrm{M} . \mathrm{M}$. Valve Tester and tniversal Meter Combinefl-American. $£ 8-10-0$. Bell Wire, 100 yd . coils, suitable for wiring up, $4^{\prime} 6$. Arrial Wire. -50ft. $1 /$ Micra Transiormers, 2/6. Polished Ebonite Rods, 9d. Coh Formers.- 6×1 and 6 , , $6 d$. each. Morse Key and Buzzer Sets, $5 /$ - Resisiors with sifder Adjustment, 300 hms , 50 watt, I/3. TIOUSANDS OF OTHER BARGAINS.
Packing and Carriage extra. Please enclose S.A.E. with Enquiries.

OSCILLATORS FOR VIBRATO

THE USE OF OSCILLATORS FOR VARYING THE PITCH IN ELECTRONIC

MUSICAL INSTRUMENTS

By W. J. Delaney

TIHE recent series of articles on oscillators dealt with the subject in a general way as applicable to ordinary radio receivers, but there is a further branch of electronics in which the oscillator plays a very important part, and in which circuits different from those which have been described are used.

Most experimenters will be aware of the types of oscillator used in modern television equipmentthyratrons, blocking oscillator, multi-vibrators, etc., and certain of these are used also in some musical instruments, notably the electronic organ. In these instruments the note which is produced is miade to vary slightly to give what is familiarly known as the vibrato or tremolo, an effect produced on ordinary wind-blown organs under the more familiar term of "vox humana." It is an effect which is often overdone by the immature singer and, in fact, by the popular type of cinema organist, but it is a valuable effect exemplified in the better playing of some violin pieces.
In the electronic organ the vibrato is obtained by means of an oscillator operating at an extremely low frequency-usually from 5 to 10 cycles per second, and there are several suitable circuits for this low periodicity, as well as the means of applying it to the remainder of the circuitry.

Circuits

The most popular type of low-frequency oscillator is the multi-vibrator or variations of it (Fig. 1), the ordinary feed-back triode (Fig. 2) and the phase-shift (Fig. 3). These are perfectly standard circuits, the
values of certain components being selected to provide the low periodicity.

In the multi-vibrator a double-triode is usually employed although separate triodes may be used. The cathodes are strapped and a common biasing resistor is used for both sections, and one anode has a slightly lower value load resistor than the other. In one form, one grid is strapped to earth, and the anode of this section is coupled to the following grid in the usual manner with R.C. coupling. The second grid is taken to earth through an R.C. combination, and the value chosen for the R.C. components controls the speed of oscillation. Those indicated on the diagram will produce a speed of about 6 or 7 c.p.s. the $1 \mathrm{M} \Omega$ variable enabling the speed to be adjusted over quite a wide range. As is usual with this type of oscillator, either the capacitor or the resistor may be varied to produce variations in speed. In this particular circuit the anode current of each section rises and falls alternately. This feature is made use of in one application of the oscillations to the remainder of the circuit, as will be described later. The ordinary feed-back by means of a low-frequency transformer is shown in Fig. 2. Here the transformer must be connected the right way round, and almost any triode (or one half of a double-triode) may be used. There is the usual anode resistor in series with the transformer, and to this is also connected a resistor to earth. As a result the anode current causes a voltage drop through the resistor and again this is employed to regulate the intensity of the oscillationnot the pitch or frequency. The latter is controlled by the grid components, and in this particular circuit the
vibrato oscillations are vibrato oscillations are
taken out from the grid connection as shown. The remaining circuit to be described is the phase-shift oscillator, and although this also calls for a double-triode it is an extremely reliable oscillator and has many points of similarity with the arrangement shown in Fig. 1. Here again either the capacitors or the resistors in the first grid circuit may be modified for the purposes of controlling the frequency of oscillation.

Applying the Oscillation

Those readers' who remember the circuit of the Practical. Wireless Electronic Organ will recognise in Fig. 1 and Fig. 3 the two main oscillators which were used, the former for the purpose of applying vibrato, and the latter as the standard note
generators. In the latter circuit, however, it is essential to use the type of triode having high gain such as the ECC83 or 12AX7-6SN7's or similar triodes not functioning satisfactorily-even if oscillation can be obtained. The important 'feature in the

Fig. 3.-The phase-shift oscillator.
oscillatory circuit is the H.T. applied to the anode, and as a rule if this varies the frequency of oscillation will also vary. Advantage is taken of this feature to use the oscillator in Fig. 1 to apply the vibrato to the oscillator used to generate the notes as in the Pracnical Wireless Organ. The anode resistor of the first triode in Fig. 3 is then joined to the slider of the $5 \mathrm{k} \Omega$ potentiometer of Fig. 1 and as already mentioned, the fluctuating anode current will result in the H.T. at the slider varying-the amount of variation being dependent upon the value of resistance between H.T. and the slider point. With the oscillator described this will result in several volts variation in the H.T applied to the note generator or oscillator, and as a result the frequency of the latter will vary, resulting in a nice smooth vibrato effect. In the arrangement of Fig. 2 the oscillation is not quite so strong and it may be amplified with a standard triode amplifier and the variation in anode current of the latter may be employed in a similar manner to that already described, or alternatively the oscillations may be injected into the grid circuit of any other form of note generator.

Separate Vibrato

In the circuits so far described, and, in fact, in the majority of vibrato or tremolo arrangements, the oscillations vary those produced by a note generator and thus are not applicable to straightforward amplifiers such as may be used to amplify guitars or other musical instruments in which a microphone or pick-up is used to pick up the sounds and feed them into an ordinary amplifier. Here, a novel circuit is available for adding a tremolo effect, and is depicted in broad outline in Fig. 4. The signals from the pickup are fed into a pre-amplifier as shown at (a), and this is arranged as a normal phase-splitter, outputs being taken from anode and cathode. These are applied to the two grids of a standard double-triode.

- The two parts of the signal are out of phase and reunited at the anodes and taken to the remainder of the amplifier in the usual way. Two separate stages are employed to provide the vibrato effect, one being a
standard low-frequency oscillator such as the phase shift arrangement already mentioned or any other arrangement, and the oscillations are fed into a further phase-splitter. The anode and cathode of this latter stage are joined to the two grids of the double-valve previously mentioned, as shown at A and B, and the effect of these out-of-phase signals is to give the signal'in its passage through the amplifier a fluctuating effect which forms a very pleasing vibrato. It is essential to use certain filters, etc., in the circuits

Fig. 4.-Injecting an oscillator into a normal amplifier arrangement.
according to the particular frequencies which are likely to be covered by the apparatus, and the arrangement calls for a certain amount of experiment in order to obtain the maximum vibrato effect, with a minimum of distortion of the actual signal passing through.

Portuguese Radio Lighthouses

FOR some years past the lighthouse service along the rocky and precipitous coast of Portugal has been augmented by the use of Marconi Radio Beacons, which have proved of particular value in foggy weather.
In compliance with regulations laid down at the 1951 Conference for the Re-organisation of Maritime Radio Beacons, the Portuguese Lighthouse Department are to duplicate their existing radio beacons. To this end they have now placed an order with Marconi's Wireless Telegraph Company, Ltd., for four duplicate equipments of the latest design.
The equipments on order are 20 -watt M.F. beacon transmitters, Type RB.109. They will be installed at the lighthouses at Montedor, on the northern part of the Portuguese coast, Cabo Espichel near Lisbon, Cabo Sines, and Vila Real de Santo Antonio, which lies in the extreme south close to the Spanish frontier. The single Marconi beacons at these points are being moved to other lighthouses along the Portuguese coast to provide duplicate equipments there also.
The Type RB. 109 Radio Beacon is designed for automatic working, and has a normal range of about 50 to 75 miles. The entirely automatic nature of the equipment means that the installation-requires no attention other than for normal periodic servicing and for the adjustment of the time period to meet , local conditions.

- Radio beacons are in many respects equivalent to lighthouses, but instead of a beam of light they transmit wireless signals (generally consisting of a repetitive call sign for station identification followed by a long dash for direction finding purposes).

HLa*iact a coodside Push-Button Foum
 A SImple three-valve plus rectifier t.r.f RECEIVER FOR A.C.ID.C. MAINS OPERATION, WITH PRE-SET OR MANUAL TUNING
 THE use of forms of automatic station-selection seems to be regaining popularity, and such arrangements do have a convenience not found with manual tuning alone, as a number of stations can be selected instantly and accurately.

In order that other stations need not be missed, the receiver described here also has a manual tuning control, used to select stations not provided for by the push-buttons. As a five-button unit is used, four pre-set or " button selected" stations are arranged for, one being on long waves. The unit also acts as wavechange switch, allowing manual tuning on both medium and long waves when required.

Dimensions have been kept down as far as is practicable without using midget components, and the receiver is very compact. The popular series of .3 amp . octal valves has been employed because these are efficient, robust and readily obtainable, both new and ex-service, from almost any valve supplier.

The circuit is shown in Fig. 1, and the method of operation will become apparent from this. When the top button is depressed, the coils are tuned by the 2 -gang condenser in the usual way. As all other buttons are out, none of the pre-set condensers is
in circuit, and the coils are both switched to medium waves. For manual tuning on long wavès, both top and bottom buttons are depressed. If the second button from the top is depressed, Cl and C 2 are brought into circuit, the coils switched to medium waves, and the gang condenser disconnected. This provides for one pre-set medium-wave station. The centre button, with C 3 and C 4 , is for the second M.W. station, and the fourth button, with C5 and C6, for the third M.W. station. When the lower button alone is depressed. C7 and C8 are brought into circuit, the coils switched to long waves. This allows one L.W. station (e.g., Light Programme) to be selected.

The remainder of the circuit is quite straightforward. Volume control is provided by the 100 K . cathode potentiometer. A further potentiometer of 25 K . acts in a simple tone-control circuit. A valve rectifier is employed in preference to the metal type since hum is usually at a much lower level,

Fig. 1.-Theoretical circuit of the recciver.
with a given capacitance of smoothing condenser, with a valve in this position.

Constructional Points

The chassis is "stepped" at the back to reduce the overall height of the cabinet; except for reducing height, this is not essential, and there is no reason why the usual flat chassis should not be used. The

$.0005 \mu \mathrm{~F}$. This capacity is also suitable for stations above about 350 metres in the M.W. band. For stations of lower wavelength, $.0002 \mu \mathrm{~F}$ pre-sets may be used, with small postage-stamp 50 or 100 pF pre-sets, supported directly in the wiring, for stations of very low wavelength. (The large-capacity pre-sets cannot be used to tune low in either waveband, because their minimum capacity is very much greater than the minimum capacity of the usual gang condenser.)

The layout of the larger parts is clear from the illustrations, and they should be positioned carefully before drilling mounting holes, as there is not a great deal of free space.

Wiring Details

Wiring under the chassis is shown in Fig. 5, the four $.1 / \mathrm{F}$ condensers being lifted out of position to show valveholder wiring. When wiring is

complete, these condensers are pushed over the 6 K 7 and 6 J 7 holders.

All connections should be well insulated, and points marked " M.C." are taken to soldering tags bolted to the chassis. Work will be simplified if the coils and push-button switch are left off until all other wiring has been completed. Insulated sleeving should be

AERIAL SECTION

To rear section of

DETECTOR SECTION
 slipped over the wire ends of condensers and resistors, to avoid possible short circuits.

Connections to the pushbutton unit are shown in Fig. 2.

RESISTORS :-

$\left.\left.\begin{array}{l}\begin{array}{l}500 \mathrm{ohm} \\ 5 \mathrm{~K} \Omega \\ 10 \mathrm{~K} \Omega \\ 50 \mathrm{~K} \Omega \\ .25 \text { megohm } \\ .4 \text { megohm } \\ 3.3 \text { megohm } \\ 470 \text { ohm } \\ 100 \mathrm{ohm}\end{array}\end{array}\right\} \begin{array}{l} \\ \hline\end{array}\right\}$ watt.

40 ohm, 2 watts.

$.3 \mathrm{amp}, 600 \mathrm{ohm}$ mains dropper.
$100 \mathrm{~K} \Omega$ pot. with switch.
$25 \mathrm{~K} \Omega$ pot.
Fig. 2.-Details of the push-button commections.

When the switch is mounted, the aerial section lies outside, and is fully visible. The detector section, however, is adjacent to the vertical screen. Leads should therefore be soldered to this side of the switch before the latter is bolted into place. If desired, these leads may be identified by using coloured sleeving. Wires which are required to go to the detector (6J7) or associated circuits pass directly through the vertical screen. They must not be brought round near connections in the R.F. stage, or instability may arise, expecially when the volume control is turned to maximum.

It will be seen that both sides of the switch are wired up in exactly the same way. Leads to the outer, or aerial section, can be put on after the switch is mounted.

Coils

Coil connections are given in Fig.

3, but only apply to the specified coils. If other coils are used, then the maker's instructions must be followed as the tags may be placed differently, or connections from windings to tags, inside the coil, may not be the same. The coils specified have a thick projecting loop, for earth and mounting, and this is bolted to the vertical screen near the top, in the case of the aerial coil, which lies above the 6 K 7 valve. The Astral coils which were used in the original version of this receiver were made by Astral Radio Products of 138, The Ridgeway, Woodingdean, Brighton 7.

PPONENT LIST

y 2 -pole 2 -throw pusthiton switch.
ycle drive. 3 knobs. tal valveholders.
A smaothing choke.
J ohm/2-3 chm mains outt valve transfornier, ratio prox. $45: 1$.
hhm, $3 \frac{1}{2}$ in. P.M. speaker al lamp and holder, etc. es-6K7, 6J7/GT, 25A6G, Pair "Astral" dual-range Z4G.
coils.

Adjustments

The mains dropper should be adjusted so that the valves receive the correct heater voltage6.3 volts for 6 K 7 and 657 , and 25 volts for 25 Ab and 2524. An A.C. meter is best for assuring this is so. If no meter is available, the dropper clip should be so placed that the valves gain full operating temperature in about 45 secs., when switching on from

A rear view which shows the compact layout.
cold. Both excessive and insufficient heater voltage can cause premature deterioration of the valves.

The anode and screen grid voltages of the 25A6 should not exceed 160 and 135 volts respectively. The exact voltage wilf depend on the resistance of the speaker transformer and choke, the condition of the rectifier, and the mains voltage, and will usually be around these figures. But with 250 volts mains, the voltages may be a trifle high. If so, the value of the 100 ohm resistor should be increased, or this resistor taken to a tapping clip on the dropper, instead of directly to the one main lead.

The receiver should perform in the usual way when the manual control is operated, the top button being depressed. If the gang condenser does not have

Fig. 3.-Coil comections.
trimmers, two 50 pF trimmers should be wired from the valve grids to chassis. These should be adjusted for maximum sensitivity, at a point fairly low in the medium wave band. No further trimming is required for manual tuning of the long wave band (top and bottom buttons depressed).

To adjuist the pre-sets, each button should be depressed in turn, and the required station accurately tuned in by using a fully insulated screwdriver. The aerial tuning pre-sets are situated with their tags on
the $6 K 7$ side of the vertical screen, and the detector stage pre-sets with tags at the 6 J 7 side of the screen. This reduces stray coupling between connecting leads.

The receiver should be inserted in an insulated cabinet, as with all A.C./D C. equipment, since the chassis, and everything in contact with it is "alive" to the mains. No direct earth can be employed, for this reason. If an earth is used, the lead should be taken to the chassis via a $.05 \mu \mathrm{~F}$ condenser of 500 750 volts working.

Figs. 4 and 5.-Top and bottom chassis wiring details.

COMPLETELY BUILT SIGNAL GENERATOR

Coverage $120 \mathrm{Kc} / \mathrm{s}-320 \mathrm{Kc} / \mathrm{s} .300 \mathrm{Kc}$'s- $900 \mathrm{Kc} / \mathrm{s} .900 \mathrm{Kc} / \mathrm{s}-2.75 \mathrm{Mc} / \mathrm{s}$. $2.75 \mathrm{Mc} / \mathrm{s}-8.5 \mathrm{Mc} / \mathrm{s}$. $8.5 \mathrm{Mc} / \mathrm{s}-25 \mathrm{Mc}$'s. $17 \mathrm{Mc} / \mathrm{s}-50 \mathrm{Mc} / \mathrm{s}, 25.5 \mathrm{Mc} / \mathrm{s}-75$ Mc/s. Metal case $10 \times 61 \times 4$ in. Size of scale 61×3 in. 2 valves and rectifier. A.C. mains $230-250$ V. Internal modulation of 400 c.p.s. to a depth of 30 per cent, modulated or unmodulated. mod. switch variable A.F. output and moving coil output meter Black crackle finished case and white panel. Accuracy plus or minus 2%. £4/19/6. or 34/- deposit and 3 monthly payments 25i-。P, \& P. 4/-extra.

13rop thro $280-0-280,200 \mathrm{~mA} ., 6$ v. $5 \mathrm{amps} ., 5 \mathrm{v} .3 \mathrm{amps} ., 276$. IIdater Transformer. Prí. 230-250 v. 6 v. $1 \frac{1}{2}$ amp. 6/-: 2 v. 21 amp.. 5/-.
IR.I. M.AINS TIRANSFOIRMEIRS, chassis mounting, feet and voltage panel. Primaries 2001250 .
$350-0-35075 \mathrm{~mA} .6 .3$ v. 3 a. $\operatorname{tap} 4$ v. 6.3 y. 1 a.. 136.
$350-0-35070 \mathrm{~mA} .4$ v. 5 a., 4 v. 2.5 a., C.T., 18 . 6 . P. \& P. on above transformers $2 /-$.
$500-0-500120 \mathrm{~mA} .4$ v. С.T. 4 a. 4 v. С.T.. 4 a. 4 v. С.T. 2.5 a.. $27 / 6$ $500-0-500250 \mathrm{~mA} .4$ v. С.T. 5 a. 4 v. С.T. 5 a. 4 v. С.T. 4 a., $39 / 6$. P. \&P. on the above transformers $3_{i}-$.

PATREIRN GENEIRATOH $40-70 \mathrm{Mc}$'s. direct calibration. checks frame and line time base. frequency and linearity. vision channel alignment, sound channel and sound rejection circuits. and vision channel band width. Silver plated colls, black crackle finished case, $10 \times 64 \times 44 i n$. and white front panel. A.C. mains $200-250$ volts. This instrument will align any TV. receiver Cash price, $£ 3.19 .6$ or $£ 1.9 .0$ deposit and 3 monthly payments of £1. Post and pariking 4/-extra.
TV CONVIERTEIt for the new commercial stations, complete with 2 valves. Frequency :-can be set to any channel within the 186-196 Mc/s. band. I.F. :-will work into any existing TV. recelver, designed to work between $42-68 \mathrm{Mc} / \mathrm{s}$. Sensitivity 10 Mu/v. with any normal TV, set. Input:-arranged for 300 ohm iecder. 80 ohm feeder can be used with slight reduction in R.F. gain. Circuit EF80 as local oscillator. ECC81 as R.F. amplifler and mixer. The gain of the first stage. grounded grid R.F. amplifier. 10 db . Requires power supply of 200 V . D.C. at 25 mA .
6.3 v . A.C. at 0.6 amp . Input filter ensuring complete freedom 6.3 V . A.C. at 0.6 amp. input filter ensuring complete freedom
fromi unwanted signals. 2 stmple adjustments only. \&2.10.0. froni unwanted signal
Volune Control-. Long spindle less switch. $50 \mathrm{~K} ., 500 \mathrm{~K} ., 1 \mathrm{meg}$. \$/6 each. P. \& P. 3d. each.

CONGTRLCTOIE'S PARCEL.

NEDIUN \& IONG-WAVE A.C: HAINS 230,250 2-VALVE IPLC'S METAL IEECTHFIERE, 22/6.
Comprising chassis $101 \times 4!\times 13 i n$., 2 waveband scalc. tuning condenser, wavechange switch. volume-control, heater trans., metal rectifier, 2 valves and v'holders. smoothing and bias condensers. resistors and small condensers. and medium- and longwave coil. litz wound. Circuit and point-to-point. 1'3. Post and packing, $2 / 5$ extra.
Volume Controls. Long spindle and switch. 1.1 and 2 meg . 4/- each : 10 K . and $50 \mathrm{~K} .3 / 6$ each. and 1 meg.', long spindle double pole switch, miniature, 5:-
standard Wave-change, Nwitches. 4 -pole 3 -way. $1 / 9$; 5-pole 3 -way, 1/9. Miniature 3 -pole 4 -way, 4 -pole 3 -way. $\mathbf{2}^{\prime} 6$. 2 -pole 11-wav twin wafer, $5 /-. \quad 1$-pole 12 -way single wafer, $5 \%-$.
R. N1DIOGRAM GIASAIS,-5-valve A.C.'D.C. 3-wRy band superhet. 195255 volts 19-49, 200550 and $1.000-2.000$ metres, fywheel tuning frequency, $470 \mathrm{Kc} / \mathrm{s}$ iron-cored coils and IFs. Size of chassis, $13 \times 6+\times 2$. Complete with valves and 8 in. P. W. speaker, P. \& P. 5/-, \&8.17.6.

Consiructor's pareat, comprising chassis $121 \times 8 \times 2 \frac{1}{2}$.. cad. plated, 18 gauge, v / h. IF and trans, cut-outs, back-plate. 2 supporting brackets, 3 -waveband scaie, new wavelength stations narnes. Size of scale $11 \frac{1}{2} \times 41 \mathrm{in}$.. drive sp.. drum. 2 pulleys. pointer. 2 bulb holders, 5 pax I.0, wh. 4 knobs and pair of 465 IFs. twin gans. 16×16 mid. 350 wkg., mains trans. $250-0-25060 \mathrm{~mA} .6 .3 \mathrm{v}$. 2 amp. $5 v .2 \mathrm{amp}$. and 6 Sin. M.E. speaker with O.P. trans. P. \& P. 3/6. 39/6.

Terms of busine

 cream. ALSO IN POIISHED WALNUT, complete with T.R.F. chassis, 2 waveband scale. station names, new waveband, backplate, drum. pointer, spring. drive spindle, 3 knobs and back, $22 ; 6$. As a 1.36 .
As above with Superhet Chassis. 23/6. P. \& P.. 3/6. As above complete with new 5in. speaker to fit and O.P. trans.,
37/6. P. \& P. 36 . With Superhet Chassis. $39 / 6$. P P. $3 / 6$.

Csed metat rectifier. $230 \mathrm{~V} .50 \mathrm{~mA} ., 3 / 6$: gang with trimmers. $6 / 6: \mathrm{M} . \& \mathrm{~L}$. T.K.F. coils, $5 /-; 3 \mathrm{Govt}$. valves, $3 \mathrm{v} / \mathrm{h}$ and circuit 4/6 : M. heater trans.. 6-: volume control with switeh. $3 / 6$:
 wave-change switch. $2^{\prime}-32 \times 32 \mathrm{~m} /$
resistor kit, $2 /-;$ condenser kit. $4 /$ -
resistor kit, $2 /-$ condenser kit. $4 /-\mathrm{C}$
Complete A.C. Mains 3 Valve plus metal rectifier T.R.S. kit. In the above cabinet. 3 . 15.0 . plus $3 / 6 \mathrm{P}$. \& P .
Used A.c. Mainset. 3 valve 3 wavehands Super Used A. (Mains. 5 valve. 3 wavehands. Superhet chassis, 11 jin.
 control with switch Tone control main transformer. Volume is a completely detachable unit on small chass) variou (rmal is a completely detachabe unt on smain chand condensers and resistors biasing condensers. 19/6. P. \& P. 3/G.
As above 2 wavebands $15-. \quad$ P. \& P, 3,6 . As ab
Valveholders. Paxolin octal, 4ar. Moulded octal. 7d. EFso. 71. Moulded B7G, 7d. Loctal amphenol, 7!. Loctal pax.. 4d. Mazda Amph.. Fil. Mazda pax.. 4d. BBA. B9A amphenol, \%u. B7G with screening can, 1/6. Duodecal paxolin, 9d.
Twin-gang 0005 Tuning Condense' $\mathrm{r} 4,5 /-$ With trimmers, 6/6. Didiget .0003\% dust cover and trimmers. 8/6.
R. \& A. M.E. 6 gin. speaker with O.P. trans., field coll 175 ohme. 9/6. P. \& P. 2/6.
R. \& A. $6 \frac{1 \mathrm{in}}{}$ M. M.E. speaker with O.P. trans. field 440 chms .106. P. \& P. $2 / 6$.

Battery charger input 230250 v., output 6 and 12 v .1 amp. Black crackle finjshed case size $10 \times 16 \times 4 \mathrm{in}$. P. \& P. $3 /-. \quad 21 /-$. Potato d Veretable Prefor, by famous manufacturer, capacity tilbs. complete with water pump. All alumindum construction, white stove-enamel finish. Oribinally intended for adaption on an electric food-mixer, can be easily converted for hand preration. ${ }^{39 / 6 .}$ P. \& P.
$300-0-300100 \mathrm{~mA} .6$ v. $3 \mathrm{amp} ., 5$ v. $2 \mathrm{amp} .22 / 6$.
 1 rep 11 ro $250-0-250 \mathrm{v} .80 \mathrm{~mA} .6 \mathrm{~V} .3$ amp.. 5 v .2 amp., $14 / 6$. 280-0-280. drop through. $80 \mathrm{~mA} .6 \mathrm{v} .3 \mathrm{amp} ., 5 \mathrm{v} .2 \mathrm{amp} ., 14 / 6$. $250-0-250,80 \mathrm{~mA} .6 \mathrm{v}, 4 \mathrm{amp} . \mathrm{14/-}$.
Trol thro $270-0-270.80 \mathrm{~mA} .6 \mathrm{v} .3 \mathrm{amp} ., 4 \mathrm{v} .1 .5 \mathrm{amp}$. . $13 / 6$. Auto Trans. Input $200 / 250$, 6 Y. T 3 amp. $11 / 6$. $6 . v$, Trans. pri. 200 250. Secondary 9.3 amp., $25 /-$ P. \& P. $3 /-$
ri. 200. Secondary 4 v 20 mp . both windings 4.

Hains Transformer. fully impregnated. input 200, 220, 220 and 240 . Sec, $600-0-600275 \mathrm{~mA}$. and 200 v . at 30 mA . complete with 2 amp . three times, $0,4,6.3 \mathrm{v}$, at 3 amp , and 5 v 240 . Sec. 6.3 v \& ${ }^{1}, 5 /=$
Maing Transformor, fully impregnated. Input 210, 220. 250. 240. Sec. $350-0-350.100 \mathrm{~mA}$.. with separate heater transformer: Pri. 210, $220,230,210$. Sec. 6.3 v .2 amp., $6.3 \mathrm{v}, 3 \mathrm{amp} .4 \mathrm{y} .6 \mathrm{amp}$. and 5 v .2 amp .30 - P. \& P. 5

32 mfd .350 wkg .
$16 \times 24350 \mathrm{wkg}$
40 mfd .450 wkg .
16×8 mid. 500 wk g
$16 \times 8 \mathrm{mid.a} .500 \mathrm{wkg}$.
$16 \times 16 \mathrm{mdd} . .500 \mathrm{wg}$.
$8 \times 16 \mathrm{mfd} . .450 \mathrm{wkg}$.
$32 \times 23 \mathrm{mfd} ., 350 \mathrm{wkg}$.
$32 \times 32 \mathrm{mfd} ., 350 \mathrm{Wkg}$. and $25 \mathrm{mfd} .25{ }^{\circ} \mathrm{wkg}$. $25 \mathrm{mfd} ., 25 w \mathrm{~kg}$.
250 mfd ., 12 v . wkg .
$16 \mathrm{mfd} ., 500$ wkg., wire
8 ends... 500 … wkg... wire
8 ends.... $350 \cdots \not \cdots$
8 mfd... 350 v. wkg., tag
50 mfd., 25 v. wkg., wire ends..
100 mfd . 350 wkg .
$100+200 \mathrm{mfd} . .350 \mathrm{wkg}$.
$16+16 \mathrm{mfd} ., 350 \mathrm{wkg}$.

PRECISION BUILT MATCHED COMPONENTS

M.G. GANG CONDENSER

M.G. GANG CONDENSER

Available as 1, 2 or 3 gang, 490 p.F. nominal capacity. matched and standardised to close limits. Supplied with trimmers if required.
Other capacities available-details on request.
Cadmium plated steel frame.
Aluminium Vanes.
Low loss non-hygroscopic. insulation.
Spindle $\frac{1}{\frac{1}{i}} \mathrm{in}$. dia. projects $1 \frac{1}{16} \mathrm{in}$. from front plate. Front area $23 i \mathrm{in} . \times 2 \frac{5}{16} \mathrm{in}$. including sweep of vanes. Length excluding spindle :

Price

$17 \frac{7}{16} \mathrm{in}$.	9/3d.
2 gang - 2 in in .	14/-d.
3 gang - 3 \%in.	18/3d.

S.L. 8 SPIN WHEEL DRIVE

A precision slide rule drive. Complete with 3-band glass scale, $9 \mathrm{in} . \times 4{ }_{4}^{3} \mathrm{in}$.

Printed-short, medium and long wave bands with station names.

Scale length 7 in .
The spin wheel drive gives easy control through a ratio of $24-1$. Fitted with constant velocity coupling. eliminating strain on the Condenser, and providing mechanical and electrical isolation from vibration and noise.

Supplied with florentine bronze escutcheon. Price - 27/6d. complete.

Write for fully illustrated catalogue.

THE OSRAM NINE - ONE - TWO

AMPLIFIER INSTRUCTION BOOK AND HIGHEST QUALITY COMPONENTS

Available from
COVENTRY RADIO
189, Dunstable Road, Luton. 'Phone: 2677
Price, $3 / 6$, plus 3d. postage also
Our 1954/5 COMPONENT CATALOGUE at I/-

TAPE RECORDERS P.W. ond SOUND MASIER

We can supply complete kits or separate components for both the P.W. and Sound Master Tape Recorders.

Sound Master Instructions, 6/6.
fULL HIRE PURCHASE FACILItiES Only 2 /- in the $£$ deposit.

WATTS RADIO,

8, Apple Market, Kingston-on-Thames, Surrey. Phone: KINgston 4099.

- T/V TECHNOLOGY
 - RADIO ENGINEERING
 - ELECTRONICS
 - RADIO SERVICING

There's a big future in $T / /$ and Radio. Act now 1 Increase your knowledge. Back up experience with a sound theoretical background. I.C.S. offer courses of instruction in-.
T/V TECHNOLOGY
ADVANCED SHORT-WAVE RADIO
RADIO ENGINEERING
RADIO SERVICE ENGINEERING RADAR
ELEMENTARY ELECTRONICS
FREQUENCY MODULATION
I.C.S. will also coach you for tha following examinatic.s :-
B.I.R.E. ; P.M.G. Certificate for Wireless Operators : Radio Servicing Certificate (R.T.E.B.) ; C. \& G. Telecommunications, etc., etc.
DON'T DELAY-WRITE TO-DAY for free descriptive booklet. stating which subject or examination interests you. Fees include all books needed. Examination students coached until successful. Reduced terms for H.M. Forces. Dept. I70D, J.C.S., 7I, Kingsway, W.C.2.

DETAILS of the inter-screens are given in Fig. 6. These screens are also bent up from 16 s.w.g. aluminium and should be made exactly as detailed. The switch hole marked "A" should be at a height (shown as " X ") which exactly coincides with the centre control hole " A " on Fig. 4 when the screens are resting on the underchassis floor ; proper alignment of the switch spindle which passes right through the screening is then ensured. The hole marked "Al" should coincide similarly with the hole marked "Al" on Fig. 4, as this allows the volume-control spindle to penetrate across the sereening compartments, the actual control being mounted on the rear screen. The screen positions are shown in Fig. 4, only the rear screen being fixed to the chassis by the two feet provided. The other two screens are clamped between the switch spacers; fuller details of this arrangement will be given later.

Fixing feet and dial supports are fitted when the set is completed; these can be seen in the respective photographs.

The specified J.B. scale can be obtained with either a vertically or horizontally marked glass dial. As is seen from the front view photograph of the receiver, the vertical markings are used, the set being finally housed in a radiogram cabinet with the controls in a line from back to front across the motor board. For an ordinary table type of cabinet, of course, the horizontal scale would be preferable, and the

Fig 2.-Circuit of the power pack

Fig. 4, and that the cross-screens have been made in accordance with Fig. 5 and the notes given in the text. A system of assembly is called for. especiatly in regard to the coils and screens and the tuning condenser, otherwise it will be difficult to mount certain parts.

Switch and Screens

Assemble first of all the switch and the crossscreens as a separate unit. The spacing pieces which fit over the side struts of the Oak switch should be cut to provide two $\frac{3}{4} \mathrm{in}$, eight \ddagger in., and six 1 itin. After ensuring that the positions of the stops in the front plate aliow the wafers to move over their ranges of positions correctly, assemble the switeh and cross-screens as shown in Fig. 6. The main switch spindle passes through the screen $\frac{3}{8} \mathrm{in}$. holes, and the screens are clamped in position finally by the pressure of the spacing pieces biting against them. When the assembly is tightly bolted up, check that the whole line is straight and that there is no twist in either the switch struts or the screens. The latter should now sit squarely on the chassis when placed in position with the front bush locked through the front chassis hole. Now mark out the fixing feet positions on the rear screen so that the assembly can be firmly bolted down to the chassis.
The padders can now be fixed to their bracket and
bolted on the end of the back screen in the position shown.

When the switch and screens are properly positioned and turning properly, the runing condenser and J.B. drive assembly should be marked out. The drive is two-hole fixing to the from side of the chassis, but the exact height must be decided by the height at which the tuning condenser spindle comes when this is resting on its feet on the chassis top, centrally placed. Allow the spindle to enter the coupling on the dial drive, therefore, and then mark off the two necessary fixing holes for the dial, ensuring that the flywheel position coincides approximately with the lin. hole in the chassis front. The flywheel is, of course, removed during this operation, being finally replaced behind the chassis front. The oblong cut-out permits its rotation when it comes a little high.

With the drive assembly fitted, mark off the four fixing holes for the gang condenser. Bolt this down temporarily, and then lock the spindle to the dial coupling by means of the grub screws provided. Check that the drive runs freely and that the gang opens and closes smoothly.

Now remove the gang and solder three flexible leads to its lowermost tags. These should be left fairly long. and they will later pass through the three holes in the chassis into their respective coil compart-
(Continued on page 233)

Fig. 3.-Details of principal components below chassis.

Volume Controls Milget kiliswan type conis spinaltes．Ginuratr teal your．All values 10, ，6ow ohms to 2 Meg－
 shmis，
No Hw 3／－S．P．Aw．L．P．Aw COAX PLUGS $\quad \cdots 1 / 2$ SOCKETS … … $1 /-$ $\begin{array}{lll}\text { LINE CONNECTOR } & 1 / 2 \\ \text { OUTLET BOXES ．．．} & 4 / 6\end{array}$ BALANCED TWIN FEEDER per yd．6d．$\quad 80$
TWIN SCREENED FEEDER per yd．1／－ohms TWIN SCREENED FEEDER per Fd．1／
50 OHM COAX CABLE．8d．per Fi．din．dia． TRIMMERS．Ceramic， 31.71 tif．9d． 100 pf．

RESISTORS．－All values： 10 vhuts to lo mez．
 o 111 Mere．
WIRE－WOUND RESISTORS．－Best Makes Minia
 K．， $2 / g ;$ w．Vitreons． 12 K ．to F K．． $3 /-$.
WIRE－WOND POTS． 3 WATT．FAMOUS MAKE．
 Kiurled sloted Kioh．spindle．High diradle

 O／P TRANSFORMERS．－Itavy duty 70 ma．，4／6． simalt Tabpal mutule．3／9．
 ma．，12／8．5h，：n0 ma．．15／－．In h．Ik han．．10／8 10／6．MAINS TRANS．－Mhile it

 $2515=16250,21 /-$ AMPLIFIER TRANS，25I v． 211 mh
 $30 /-$ Coronet． $30 /-$ ．Nituples， $35 /-$ ．Rewinds and Apecials to repuirempenta．
SOUNDMASTER SPECIALS＿－Maing Trans．． $35 /-$
 Wpecticd Wafer switches，22／6 je 0 set of 2 WOODEN WALNUT CABINET．－IDin．Jin．x jh TRF or superhet．，eemp．punchwi wassis，dial．

 Lomplete with detwehathe turnch statul． $19^{\prime} 6$
NEW SOLON MIDGET IRON，－2．w．，19／6．［IEA］ NEW SOLON MIDGET IRON．－D．
WOR RADIO（ONRTRTGTORS．
WOR RADIO CONATRITMORS． C．R．T．HEATER ISOLATION TRANSFORMER．
 10／6．MAINS PRIMARIES anil specialt to Oriter， CRySTA 10／B＋ach
CRYSTAL DIODE．－Very sensitis．i．E．C．．3／6．

 i－way，4d．；9．or ltoway，6d．．ete
T／V PRE－AMP．Chatrial 1．Easily monlifind fur other（hantuels or Converter use．Midget（＇haskil，
 Surplat．listed $\ddagger: 3$ los．special（＇leatance l＇riec． $27 / 8$
TOGGLE SWITCHES EX－GOVT－－＂OH－Of：＊9d．

 2d．y／l．2K．；w，H．1？，w／н Pots，6／6．11 K．，oj K．， GRID CAPS Rot．Thi．splulse，3／6．SCREENED
 ALADDIN FORMERS and corss，lin．，8d．：Bin．，10d． SLOW MOTION DRIVES，－Wienclice ratio $4: 1,2 / 3$ INT．OCNAL CABLE PLUG（N－pin），with wever，1／3． 200－250 Volt SELECTOR SOCKET（ 2 in ．y ilin．）with Itug，1／－PILOT LANPS．－i．3 V．． 3 a．．8d． SPEAKER FREX．－Expamed anodised metal， 14 in ．
 paralle！maitching．eomplete with plag， $2 /$ MAINS DROPPERS．Bin．x Ifin．Adi．Nliders． LINE CORD．A ：unp，tal ohms per jout． $2 \times$ amp． lou ohms per fuet， 2 way， $1 / 6$ a yand； $3-$ way， $1 / 9$ 100 ohm

ALL WAVE RADIOGRAM CHASSIS THREE WAVEBANDS FIVE VALVES
 M．W．20MI m．－550 m．
 NTS，ש74．
Lradid Naw athl imaranted，bith poin．1P．M．
 hanst switeh．＊hart－Melinim－long－（iran．show Motim Tuning．Spaker and Piek－up connections．

 iordback．Ontfurt 4.2 watts． 3 ohmes outpht tralis－

 avalabla，lit hy ：Pilot Iamps．（bhorer Hlack Ata－ tion hatmes，L．W．（ireen．M．W．Reml．S．W．White Four kinots suppllat．Waltut or lvasy to dhoter alighed am cadihratod．Thassis isolated imom thatibu 1PRICE 210／15／0．Carriage amb Insurames． 46 （Without lifin．Apeaker， $\mathrm{EB} / 15 / 0$ ．Carr．x lis．． 4 ， 0 ）

NEW BOXED $1 R 5$

1 R .7	8：－	6K7\％		1：3417	$5 / 6$	HCQ：	86
15.5		6K		35La	10／6	EF36	76
1×4		VT127）		10\％4	8／6	HF34	$9^{\prime}-$
1 k \％		Pentis ${ }^{\text {a }}$		W07	$10 / 6$	EFWh E	Equip
314		EF＇M	10／6	RCH＋2	12／6		56
304	81－	bili	10／6	6K！	$2 / 6$	British	6
313i	2／6	${ }_{6} \mathrm{P}$	15：－	45：3	12／6	Ayluania	
－14	10／6	＋bu\％	9.81	1tillat	12／B	Fim1	$10^{\prime} 6$
TK4	9／－	tina 7	$8 / 6$	1F41．	11／6	EFM	$8^{\text { }}$
HX 4	$7 / 6$	tiNH7	6／6	HiF＇ll	11／6	B69	96
6 Al 7	$8 / 6$	ちごK7	8／6	（81）3	$81-$	7 CH	9.6
fillis		fisla	9）－1	（V）	3／6	EY Cl	126
6AM $\mathrm{Si}^{\text {i }}$		＋isis	11／－		81－	1196－a	$7^{\prime} 6$
fistro	10／6		3）8－	DF91	$81-$	PYSI	116
${ }_{6} \mathbf{8} \mathbf{B}$	716	－15＋i	81－		81－1	PY8：2	106
iHA4	$8 / 6$	dX ${ }^{\text {a }}$	$9 /-$	1 LCH	9 ／－	PENe5	8.6
til Ef	$10^{\prime} 6$	，5AK．7	$10 / 6$	101.04	81	$9 \mathrm{P}^{(1)} 1$	8 ＇6
fibwif	10／6	T， 7	$8 / 6$	E1］ 4	4／6	1×22	96
8 C 4		1313：	$5 / 6$	FiA．＇t）	2／－1	${ }^{\text {res }}$	126
6iFif	$9 / 6$	｜2A1］		6，AL L_{5}	$7 / 6$	M194	98
tiffich	$3 / 6$	1®． 4×7	10／6	12834	2／6．		12.8
18．5		12AT7	10／6	EFS	12%	I－AHA	108
6.17		$123.41 i$	$8 / 6$	E13：4	$7 / 6$	PL\＆L	126
¢K7 M	8／6	1007	10／6	1－8BC3：3	$9 / 6$		9

Huge Atouk H．V．A．Valves at 1951 low tax jriacs．
SPECIAL PRICE PER SET

SUB MINIATU RE VALVES WIRE ENDS

太 R．F．Pent．（ing v．Fil． Bullaril：Hivac and Anericall Types：－
 5HAX 517 AX 11Fth
1）F゙ロ
$1)$ Letis
7／6
－ sinai
jost iree

VCR97 $£ 2$

TESTED FULL PICTURE

T．R．S．

RADIO COMPONENT SPECIALISTS（THO．2188） Now at 70 BRIGSTOCK ROAD，THORNTON HEATH，SURREY

LYONS RADIO

LTD.

3, GOLDHAWK ROAD, Depl. M.P. SHEPHERDS BUSH, LONDON, W. 12

Telephone: SHEpherds Bush 1723

SIFNKI:IR GIRILIAL* Woven metal, 3 different sizes available : $\because A,-141, x$
 llins. With smart gold sprayed findsh. all sizes. $3^{\prime} 6$ each. post paid.
THNT NITS TIPl: 102. Mains operated. enitting 25 and 50 cps. SYnchronising pulses. ennting 23 and 30 cps. synchronising pulses. Amplitude calibrated from 0.2 to 1.1 watts
for output lamp. Provision is made for cor outpar lison of outputs by means of photomieter type comparator. Fitted with A.C. mains power pack using transformer mains power pack using transformer -wave selenium rectifier. double triode valve type CV18. a 6 J 5 valve, 1 spare lamp. etc. Housed in smart metal instrument cases $11 \times 10 \mathrm{x}$ gins. with hinged lid. In good condition with etreuit diagram PRICE 32'6, carriage $4 / 6$.
 0.02 mfd. 8.000 ID. wkR. 1 ins. dia. x 61 ins . long. PRICE $4 / 6.0 .5$ infit. 7.000 t. D. (. Wky, Overall size 7 x 5 \& 31 ins. PRICE 10/- post 2/6. 4 mird. 3.000 Fibi Wkir. Overall size 6i x 64×5 ins. PRICE
 PRICE $15-$ carriage $5 /-$

AMPIIFHEIR UNITS TVPE A.1134. These are two valve audio amplifiers and can be used without anv modifications as a
mike ore-amp or as a gramophone amplifier. Also for intercom. purposes. Valves fitted are one each VR2l and VR35. Operate from 2 v. L.T. and 90 to 120 v. H.T. and 9 v . grid bias. Housed in neat metal cases 7
4ins. In good condition and with connection details provided. PRICE ONLJ 19'6, fost $2 \cdot 6$.

VALVES

SAME DAY SERVICE

All Guaranteed New and Boxad 1.4 v - miniatures. $1 \mathrm{R} 5,155,1 \mathrm{~T} 4.3 \mathrm{~S} 4.3 \mathrm{~V} 4$, DAF91, DF91. DK91, DLA2, DL94. 7/3: any 4 for $2 \% 6$.

 $1 \mathrm{R} 51_{3}^{16,6 U G T} 17-35 \mathrm{Z5GT}{ }^{8 / 6 / \mathrm{KT} 63}$ \%/6 155 7/36V6G 766

 $3 \mathrm{~S} 4 \mathrm{y} 436 \mathrm{6x5GT} 6980 \quad 8 / 6 \mathrm{PCC} 8411 / 6$

 6 F 12 ㅇ 12.6 ECC81 9^{\prime}-UCH42 $9 / 8$ 6 614 13'6 12K8GT $\quad 11 / 9$ UF 42 13'6 6 F15 106 10 6 ECH 4210 - UL 41 11/6JTGT $7812 \mathrm{Q} \mathrm{GGT}^{10}{ }_{\text {ECL }} 80$ 9,6 UU8 $6 \mathrm{K7G}$ 6' ${ }^{\prime}$
 6K8GT 9/-20F2 11/6 EF91 76 Z77

Postage 4d. per valve extra.

READERS RADIO

24, COLBERG PLACE, STAMFORD HILL, LONDON, N.16. STA. 4587

W. B. SUPPLIES

100, Ofdham St., Manchester, 4. Tirms,-Cash with order. Orders under 20 -add 6d.. over 20 -add 1/-postage. Gt. Britain and Northern Ireland only.
CRINTAB, NE'IKITS.-With circuit, to make simple crystal set. 8 -
FH.AMENT THANSFOHRMFRS. 230 volts. 6.3 volts 2 amps , a real reliable jub, not ex-W.D., 6/11.
 Recfiliers. 250 volts 60 mis. half wave. 5 $5.000!$! wire wound pots. 1 -
 -1 mid. 1.000 volts, $1^{\prime} 6$.
HE.NIDPIIONWS.-4,000!? unused, in ortyinal boxes. 15-pr. : low resistance 'phones, $7 / 6 \mathrm{pr}$.
 solid dialectric for crystal sets, etr... 311 Air speed variables, $50 \mathrm{pl}, 1-; 115 \mathrm{pF} .26$ 500 pF .5
SPBAKEIR FIRET.-Fxpanded metal. gold. $12 \mathrm{in} . x 12 \mathrm{in} ., 46$: $18 \mathrm{in} . \times 12 \mathrm{in} ., 6: 9: 24 \mathrm{~m}$. x 12in., ${ }^{\prime}$ -
MiTIERs.-Dual range. 0-20 volts, 0-200 volts D.C., with leads. 106.

- VINE EdtINALANE Manual. a both commercial and Govt. surplus valves. 60 pages. 5

AININ ronstikerion
 (vidobiAEDIA," latest edition containing more than 18.000 tubes and thelr characteristics, written in 14 languages, includes characteristics of nearly all valves used in the services. Special sections for informe .. powtir ?.ir Manual. a usetul book on power packs. 46.
 way (2 bank), $2 / 3$, q-pole. 2 way, $2 / 3$, 1 pole 5 -way, with switeh. i 3 .
IESISFORE- 25 assorted, 2 - packet. TKANSFORBERES.-Input 11.5 volts. output 6.3 volts $2.5 \mathrm{amps}, 4$ volts $2.5 \mathrm{amps}, 3 / 11$.

FREQUENCY MODULATION TUNERS
This is the NEW radiosuperb quality with freedom from whistles and interference. Build Yours today and be ahead. IDEN(O. All parts availaple from stock. Full constructional detais, wiring diagram, circuit diagram, detaled price list and aerial data. Price 1/6, pust pain.
W. stork ant he componments S.A.E. Yor detalled price hist

HOME RADIO OF MITCHAM
187, I.(WNOON ROAD. MITCHIM, SURERI. Mit. 3282. The quality component specialists.
(Comtinued from page 230)
ments. Grommets are not necessary provided the hole edges are not ragged.

The W'earite coils should now be prepared for mounting. These coils are one-hole fixing and present no difficulty from this point of view, their fixing holes being already drilled in the chassis compartments.

The trimmers are wired directly across the long tags of these coils, these being bent down for the
purpose. A side view of a coil will be shown later to illustrate the best way of doing this. The tag with a red marker is the hot end of the main (secondary) winding, and the fixed plates of the trimmers should be wired to this tag. All the coils have 60 pF trimmers except the long-wave set (PA1, PHFI and PO1) which have 100 pF .

Before bolting the coils down in the positions , indicated in Fig. 3, several other things have to be

Fig. 4.-Details of chassis drilling and bending.
done. The lowermost tags of the switch banks inside the cross-screens should have leads soldered to them, as it is difficult to get to these once the coils are mounted. Then it should be checked to see whether any coil fixing screw head comes under the position of the three-gang condenser ; this coil or coils should be fixed before the gang, using countersunk screws.

Remaining Assembly

The remainder of the assembly is quite simple and there is no particular order in which it need be carried out. The valveholders should be fitted with the pin orientation as shown in Fig. 3, tags being bolted under each fixing nut for earthing points, though all of these may not be used. The tag strip mountings are clearly shown on the diagram, as are the I.F. transformer orientations., In these latter the tag with the red marker is "Grid," and the other tags are then disposed, as shown. A piece of sleeving may be slipped over each tag outlet of these transformers to avoid possible contact with the chassis where they pass through the holes provided.
The first transformer is supplied with a flying lead at the top of the can. This lead is not required in this set as the I.F. amplifier valve is single-ended. The lead should therefore be removed or snipped off very close to the can itself. It is necessary to ensure that the bare end does not short-circuit to the can if it is cut off in this way.

The volume-control (radio) VR1 is mounted on the rear cross-screen so as to be as close to the second detector V4 as possible. A long extension spindle passes through the other two screens and a bush (which can be obtained from an old volume-control) bolted to the front of the chassis. An 8in. length of $\frac{1}{4} \mathrm{in}$. brass or steel rod may be used for this spindle, and it is joined to the control by a normal coupling unit.
The output transformer is mounted above chassis between V6 and V8, 4 B.A. bolts passing through the four holes provided. The tag strip supporting R35 uses one of these bolts for its fixing, as does the fixing of C29 which, being a large condenser, is clipped down to the chassis.

A pair of one-way tags are fixed to the first crossscreen to act as anchors for R1C2 and R4R41 respectively as shown, and a further single tag is fixed to the rear screen as anchor for the junction of R5, R6 and C7.

fig. 5.-Details of the switch screens.

R16 is mounted on the base of the magic-eye indicator itself, not on the chassis.

Wiring

It is best to wire up in 22 s.w.g. tinned copper wire and 1 mm . PVC sleeving, the colour code used being

Fig. 6.-Details of the switch assembly.
left to the individual. The heater run (all valves excepting V8) is best wired first, this being carried out in twisted pair ; the order from the anchor strip input is: V7, then to V6 and V4, from V4 to V3, to V2, to V1, then through the grommet to the dial lamps on the scale. Note very carefully that both poles of these lamps must be insulated from the frame of the dial assembly (chassis), otherwise half the heater winding will be shorted out.

The "trickiest" part of the wiring (if it may be called that) is associated with the coil and switch bank connections inside the screened departments. Basically, each compartment is a duplicate of the other, and a diagram showing in more detail the layout of the R.F. section will be given later. To match the "S.M.L. Gram." markings on the specified knob, the wafers should be wired as drawn here, the "Gram." position being most anti-clockwise looking from the front of the set. It is necessary to ensure that the oscillator coils are properly wired, otherwise there may be no oscillation; the "hot " tags go to the switch contacts in all cases.

The adjustable padders are wired in the earthy ends of the main windings of the medium- and long-wave oscillator coils, the short-wave having a fixed $0.005 \mu \mathrm{~F}$ padder. PI (600 pF) is the medium-wave padder, with P2 (250 pF) for long-waves.
(To be contimued)

OSWID

 radio products ltd. (Dept. P58) 418 BRIGHTON ROAD, SOUTH CROYDON, SURREY. Telephone: Croydon 5/48/9These really powerful units in compact form give, quality and performance right out of proportion to Their midget size and modest cost. Osmor " Q " Collpacks have everything that only the highest degree of technical skill can ensure-extra selectivity, zuprr sansitivity, athaptamity, Size only $1 \frac{1}{2} \times 3!x 24$ with variable iron-dust cores and Polystyrene formers. Built-in trimmers. Tropicalised. Prealignell Receiver-tested and guaranteed. Only 5 connections to make. All types for Mains and Battery Superhets and T.R.F. receivers ldea for the relable corstruction on new sets, also for conversion of the 21 Receiver. Th1193. Type 18, Wartime Utility and others. Send to-day for particulars !

SEPARATE COILS 4/-

A full range is available for all popular wavebands and purposes. Fully descriptive leaflets and connection data available. New simple one-hole fixing. Just note these " 5 Star" Features. * Only 1 in. high. * Packed in damp. proot containers. - Variable iron-dust cores. Fitted tags for easy connection-- Low loss Polysturene fnrmers. L. or M.W.
T.R.F. REACTON COIL TYPE QR 11-12 4/9 A range ol colls for F.M. Receivers shortly available.
Colls now available for reflex circuits.

OSMOR

Station Separator

The Separator may easily be tuned to climinate any one station within the ranges stated and fitting takes only a few seconds. Sharp tuning is effected by adjusting the brass screw provided.

TYPE METRES

FREE!Send 5d. (stamps) for fully descriptive literature including Circuit and Practical Drawings of "The really efficient 5 -valve Superhet." 6 -valve Superhet. 3 -valve (plus roctifier) T.R.F. eircuit. Battery portable Superhet circuit. Coll and Collpack leaflets, Chassis Cutter leaflets. and full radio and component lists. and interesting minlature ctrcuits. etc.

CHASSIS CUTTER

Type Hole Sizes Prices 1in. xlin. 196
$\begin{array}{ll}1 & \text { lin. } x 1 / i n .196 \\ 2 & \text { sin. } x 1 / i n . ~ 18 / 9\end{array}$
3 in. x 1 inn. 22'6
4 1in. x 2 in. 2\%/3 100 ton bolt. H.s. now supplied with No. 2.
Illust. list on request.
1.F.a. $465 \mathrm{k} / \mathrm{c}$. Permeability-tuned with fying leads. Standard size 1 HIn . $x 1 \mathrm{in}$. $x 3!j n$. For use with OSMOR collpatks and others. $14 / 6$ pair. M1dget $1 . \mathrm{S}_{\mathrm{P}}^{465}$ kicuigned. $1 / 6$ extrin both types.

t.

-

1

DIALS - Various Dials Calibrated to Coils
Colls Metal dials, overall size 51 in . square. Cream background. 3colour Type MI, L.M.S. Wav 2 S. waves. Price $3 / 6$ each. Drive. Spring and Cord, $3 / 2$.
Pointer $1 / 6$: Drum. Driver Type A glass dial assembly. measuring 7in. x 7 in . ($9 \frac{1}{2} \times 95$ overali) Mounts in an
P. \& P. $1 / 6$.

WE endeavour to keep abreast of the times by building the various circuits published in g" wireless world." "PRACTICAL WIRELESS." "r RAdIO CONSTRUCTOR." ETC. WE KEEP STOCKS OF THE COMPONENTS SPECIFIED
reflex, ete.
A LIST OF FIXED CAPACITIES AS REQUIRED FOR SWITCH TUNING AVAILABLE ON APPIICATION

"PRACTICAL WIRELESS"
 Coronet Four : Beginners Superhet
 "WIRELESS
 WORLD"

 An Eonomical Quality Recelver. A Portable: R1155 Converter: A.C. Band-Pass 3 : Modern 1-Valver ; A 2Valve Feeder. Fury Four, Standard A.C. Power Pack ; 3-speed Autogram. Modern" No Compromise "TRF Tuner. " Midget 3-Valve A.C. Mains Receiver." Sensitive 2-valve Feceiver Feflex Push-Pull $3-$ valve Receiver Ministure Bedside valve Receiver. Miniature
Receiver. Midget sensitive T.R.F.. etc.

"RADIO CONSTRUCTOR"

Converting the TRIIG recelver to a general purpose s*het receiver simple crystal diode set. Radio feeder units. Economy 8 W.P.P. Amplifier. Whlstle Filter. Cireuit and details avallable for adding push-pull to the $5 / 6$ valve Osmor superhet. SUPER ' Q ' for Jer Max. SELECTIVITY

* TERRIFIC PERFORMANCE
M.W. Q A5I

CUP COILS

\author{

* MAGNETICALLY
}

SCREENED

ONE HOLE FIXING
The NEW Osmor "SWITCH-PACK" now ready 48/- incl. P. tax COMPLETE AND PRE-ALIGNED. FULL CIRCUIT INCLUDED.
(State which three stations required -2 M.W., / L.W. or 3 M.W.)
OUR TECHNICAL DEPT. WILLIBE PLEASED TO ANSWER (BY LETTER ONLY) ANY ENQUIRY RELATING? TO CIRCUITS WHICH OSMOR COILS OR COIL PACKS ARE USED OR ARE INTENDED TO BE USED. Annnennmavininnand 'Trode Enquiries Invited."

Best Buy at Britain＇s

COMMENICATHNS RRECEIVER R1155 －World－wide reception is ensured by the R．F．And two I．F．stages．Five wavebands
（2 L．W．．M．W．and 2 S．W．）．Magic－eye．large dial and vernier make tuning simple．Con－ tained in attractive black crackled cabinet its handsome appearance does justice to its Buperb perlormance，Supplied with FREE of the power pack required for A．C．mains operations．Fully aerial－tested before des patch．Gladly demonstrated to callers． BRAND NEW．＂MINT＂CONDITION．in ORIGLNAL MAKER＇S TRANSIT CASES． £11．19．5． £9．19．6．A tew only used models，£7．19．6． plus 106 carriage．
 ST．i．E．These enable the R1155 to be used on the mains WITHOUT ANY MODI FICATION．Three types available，e4．10．0． \＆5．5．0，and de－luxe model with 8 in ．speaker， \＆6．10．0．Carriage 3＇5．All Power Packs
guaranteed six months．SAVE guaranteed six months．SAVE ££\＆s．DE－ AND POWER PACK TOGETHER AND POWER PACK TOGETHER．Send S．A．E．for fur details of Power Packs and Rewirn
4．5 9 8，－Two ranges 2．4－5．9 and $5.8-13 \mathrm{Mc} / \mathrm{S}$ ．Has EF50 R．F． one I．F stage Built－in 100 Ko ＇s tuned） calibrator．Could make handy stive． $100 \mathrm{Ke}^{\prime} \mathrm{s}$ cral calibrator．．Could make handy Sihet new．Price，less valves and Xtal，11／6． us $2^{\prime} 6$ postage
ARKARD BFIII，PIRI：－IMPI，IFIEIRS． Suitable for conversion to baby alarm，amp－ lete with contains miniature relay．Com Book etc BRAND NEW Circuit，Instruction
 alty Receiver A2074 contains standard A C mains power pack，output $315-0-315 \mathrm{y}, 70 \mathrm{~mA}$ 3.3 v． 2 a，and 5 v． 2 a（Admiralty rating） letal－cased paper smoothing condensers． 10 H ．choke，two .0003 mF variables， 34 re － sistors， 34 condensers and stacks of useful components，including output transformer 6：1 transformer，etc．In grey metal case， slze 11 in ．x Gin．x 1 Bin．Good condition， ONLY 19／6，plus 5／6 carriage．

Every SATRRI．AT IRARGAINS items of which we dispose of various advertise，at REAL CLEARANCE PRICES．Come and get YOUR bargain．
No reasonable offers refused．
MINIATIIE MHIDEL HOTOISN．－2in long x 1lin，diam．． $3 / 16 i n$ ．diam．spindle， welght 5 ozs．Will work from 6－volt dry battery and are reversible，Ball bearings， $10 / 6$ each．With blower． $12 / 6$ each． K．．．© \＆（＇OII，PA（＇Kis．－Superhet， 465 Ke／s I．F．，with circuit diagram and connec－ tions．Gram．position， $14 / 6$ each．
with slow－m．Y＂（oninnsirs， 390 pF ．． with slow－motion drive and anti－backlash es．with trimmers，Brand New，boxed． ＊MI M！＇TpHT
．onsists of MF： consists of a 2 inn． 1 mA ．meter with full wave bridge rectifier．Range $0-509$ milli－ watts and $0-5$ watts．Brand New and Boxed．

Standara primaries．Ty．NFOIR MIFRs．－ Standard primaries．Type（A） 30 volts， 36 amps．．or type（B） 50 volts， 20 amps．Size Gin．X SD NEW，X $81 n$ ．high．Weight 24 lbs． Brand NEW．not ex－Govt．Suitable for soil heating．rectifiers，chargers，etc．55／－each． MtETMLIRECT
ntET LL IRNC＇TIFIEIRS，－Heavy duty，fum－ $12 \mathrm{in} x$ din 2 units required for bridge，size output 5j amps．Suitable 60 volt R．M．s．． （A）above fy． 10.0 per pair，plus $5 /$－carriage， BRAND NE
HEEVY DUTV SILIINEIR RESINTORS．－ 250 watts，rated to carry 25 amps．Reslstance ． 40 hm ．Suitable for physics labs．，chargers． etc．Laboratory type with worm drive．on metal stand，size gin．x in．x 6in．high Mbiter
type Two ranges， 12 and 120 Projection multiplier．Brand New and Boxed， $5 / 9$ each

CHARLES BRITAIN （RADIO）LTD．
II，Upper Saint Martin＇s Lane，London，W．C．2．

TEM 0545
Shop hours， 9.6 p．m．（9－I p．m．Thursday） －OPEN ALL DAY SATURDAY

Benlley Acoustic Coip ．Itd．

38，CHALCOT ROAD，N．W．1．
PRImrose 9090

Special offer of miniatures
CK505AX，（＇K50．5AX，CK5OnAY，C＇K52，AX， XFWI！，XFW゙ね，XFYI！，XF゙Yゆ，XFYッシ，XH1．5． XNGil．），ull at $8 / 6$ each．

All boxed and fully giarsateed．Post 6d．each． monediate despateth．C．W．O．or C．O．I

(Continued from page 153 March issue)

THOUGH the A.V.C. circuit of a communications receiver nay in several respects be similar to that of a standard broadcast band superhet, modilications and improvements are frequently present, especially in equipment of advanced type. In general, the highest possible efficiency will be required from the A.V.C. system, so that weak signals of considerably varying strength may be dealt with, and provide a reasonably stable A.F. output.

The efficiency of the A.V.C. system depends largely on the number of controlled stages. In the usual four-valve superhet circuit, only two controlled stages will be present-the F.C. and I.F. valves. In a communications receiver, four controlled stages are quite usual, due to the addition of one valve in the R.F. position, and a further as 2nd I.F. amplifier. In larger receivers even more stages will be present, and A.V.C. may be introduced into the A.F. amplifier. The degrec of A.V.C. action obtained from such arrangements is very great, compared with that achieved with the simple broadcast band superhet.

Typical A.V.C. Circuit

The circuit in Fig. 1 is the basis of more complex arrangcments, and one largely used. One diode of the double-diod: or D.D.T. valve acts as detector, 100 pF condensers and 50 K resistor providing R.F. filtering for the A.F. output circuit. The A.V.C. diode is fed from the final I.F. anode, or from the secondary of the transformer, as indicated by the dotted line. The 1.F. stage receives a minimum amount of bias from the voltage drop across R1, which will usually be from 250 to 500 ohms.

With no signal present, the stage is operating at minimum bias, or maximum gain. When a signal becomes apparent, rectification at the A.V.C. diode results in the A.V.C. line becoming negative, the negative voltage increasing as the signal strength rises. This negative voltage is applied to the control
grids of the controlled valves (e.g., R.F., F.C. and I.F. stages), thereby reducing gain. As a result amplification is reduced when signal strength is good, and at maximum with low signa! strengths, thereby maintaining a more stable output level from the detector.

With several controlled stages, this circuit can be very satisfactory. It is apparent, however, that the signal reaching the A.V.C. diode cannot be maintained exactly the same in all circumstances, since it is by changes in signal strength here that the A.V.C. operates. The circuit will hold powerful stations down to reasonable volume, however.

A further disadvantage arises from the fact that any signal will cause some A.V.C. voltage to be developed, so that the receiver can never be at maximum gain when a station, however weak, is tuned in. This nlay be overcome by using a delay voltage.

Single Diode

-In compact equipment, or battery-operated receivers, only one diode may be available. This is particularly so in battery equipment where the type

Fig. 1.-A typical A.V.C. circuit.
of valve used has only a single diode. In mains equipment, the second diode normally present may serve some other purpose, such as noise suppression. When a single diode is available, the circuit in Fig. 2 will provide detection and A.V.C. Here, a battery type valve is shown, but the circuit is the

Fig. 2.-Circuit for single diode.
same for mains types. One .5 megohm resistor serves to decouple the A.V.C. line, while the second is the diode load. The potentiometer is for A.F. gain or volume control purposes. The operation of this circuit is basically the same as that in Fig. 1.

Delay Voltage Circuits

When the double diode cathode is at the same potential as the H.T. negative circuit, as in Fig. 1, an A.V.C. voltage will appear when any signal is present, however weak. This may be avoided by applying a positive voltage to the cathode. No A.V.C. action will then commence until the signal strength exceeds the delay voltage.
Fig. 3 shows a circuit of this kind. RI will be the bias resistor for the triode section of the valve, allowing the triode grid to be negative, with respect to the cathode, to the required extent. The diode detector circuit is returned to the cathode, so that no otential difference exists between the cathode and this diode. The A.V.C. diode, however, is returned to the H.T. negative line, and the cathode will thus be positive, relative to it, by the extent of the combined voltage drop across R1 and R2. R1 and R2 will usually be in the neighbourhood of 1 K to 3 K each, according to the type of valve and amount of pre-detector gain.

It will be observed that some delay voltage will always be obtained with a double-diode-triode, when the cathode circuit has a bias resistor to permit proper operation of the triode section. Such a delay voltage will not be present when a diode alone is used, or when the cathode is returned directly to the H.T. negative line.

When the A.V.C. action of a receiver is insufficiently sensitive to deal with very weak signals, due to a small number of A.V.C. operated stages, it is most satisfactory to delay the operation of the A.V.C. in this manner. The receiver will thus be at maximum gain with all signal levels below that provided for, though no A.V.C. action will be obtained with such signals. Only when ample gain, with three or four controlled stages is available does the successful control of very low signal levels become feasible.

Effect of Other Circuits

With a given A.V.C. system, maximum efficiency will only be obtained when each A.V.C. operated stage is suitably arranged. An example of the effects of changes in circuit design will become apparent from Fig. 4. At "A" the screen grid voltage is obtained by means of a dropper resistor. As the valve control grid becomes more negative, due to the A.V.C. action on tuning in a station, the anode and S.G. currents will fall. The voltage drop in RI will thus fall, increasing the S.G. voltage. This will, to some extent, oppose the reduction in gain brought about by the A.V.C. system, thereby reducing its efficiency.

At "B " the S.G. is supplied from a divider network R1 and R2. These resistors are of comparatively low value (10 K to 25 K) and the current passing through them is relatively large, compared with the valve S.G. current. As a result, the S.G. voltage will remain reasonably stable, irrespective of the S.G. current. The A.V.C. system can thus work at full efficiency.

A similar effect arises with cathode resistors, but is small when their value is low. If, however, a variable cathode control is used for manual purposes, the A.V.C. action on the valve will be much reduced especially as gain is diminished by means of the manual control. This is a defect largely inherent in such circuits, but can be somewhat offset by adding a resistor from cathode to H.T. positive so that the voltage drop across the control potentiometer is stabilised.
(Continued on page 241)

Fig. 3.-Delay voltage circuit.

$$
\begin{aligned}
& \text { TERMS: Cash with order or C.O.D. Post- } \\
& \text { age and Packing charges extra, as follows: } \\
& \text { Orders value } 10 / \text { add } 9 \mathrm{~d} \text {. ; } 20 /- \text { add } 1 / \text { - } \\
& 40 /- \text { add } 1 / 6 \text {; } 65 \text { add } 2 / \text { - uniess otherwise } \\
& \text { stated. Minimum C.O.D. fee and post- } \\
& \text { age } 2 / 3 \text {. } \\
& \text { MAIL ORDER ONLY }
\end{aligned}
$$

WHEN ORDERING PLEASE QUOTE＂DEPT．P．W．＂

CONDENSERS

The folloswing la a selaction of our stocks of mamufacturem murplus comiensers，all by well know is makers．

ALUMLNIUM CAN TYPES，CLIP FIXING

$\times 8 \mathrm{mfll} .450 \mathrm{r}4$	4／－ea．
$8 \times 1 \mathrm{~m}^{\text {mfl．}}$ tisl v．．．．．．4／	4／－era．
8×24 mfll．3mur r ．．．．．3／	3／－ta．
$8 \times 32 \mathrm{mfd}$.47 y r．．．．． 3	3／9 ea．
12×4 mfi． $4.3145 . \quad2$	2／－ea．
］f miti．450 \＆．．．．．．．．．．3／	3／－ea．
	4／－Pal．
	3／8 ca－
$16 \times 16 \times 8$ thtas．\＄51\％v． 3	3／6 еа．
20×20 mfl．5tot	$4 / 9$ eat．
24 madd， 450 ¢，．．．．．．．．．．． 2	20 ea．
	$3 / 6$ ея．
32 mfd．－tho s．．．．．．．．．．．	3／－ea．
32×4 mfd，3all w ．．．．． 3	3／6 ear
$32 \times 16 \mathrm{mfd}$ ， $350 \times 1 . .$.	$4 / 6$ ea．
	611 世い．
	$5^{\prime} 6$ és．
mid．2．5 vi．．．．．．．．．．． 5	5／9 e：1．
（it）mint．ther v．．．．．．．．．．．． 2	29 et．
64 mfi． 350 v．．．．．．．．．．．． 2	2，－car．
B．R．RANGE	
B．R．s．o． 8 mfil．hin v． 2	2／9 ea．
v．．．．．．．．．．．．．．．．．．．， 3	3.3 ea
r，．．．．．．．．．．．．．．．．．．．．．．3	3／6 ea．
$Q \backslash 8$ mfit．	4／－Eti．
	1／9＊n．
li lif rufd．	5／－eti．
Itix $\$$ madi ino F ．．．．．． 4	4／9 ea．
MIDGET METAL TYPES	
2 mbl．30］t v．．．．．．．．．．．． 1	$1 ; 8$ ea．
x mfil． 3510 v．．．．．．．．．．． 1	1／1
	$3 .-1+\mathrm{ta}$
8×8 mifl． 4.00 v．．．．．．．．． 4	4／－eat．
11i mfil \％itu v．．．．．．．．．．．． 2	$2 / 8$ en．
14 － 8 mid．4011 v－．．．． 4	4／－ca．
14， 16 mfil 4．w m ．．．．．． 4	46 rit．
	$4 / 9$ eat．
24 infil．300 8．．．．．．．．．．．． 2	29 ea．
32 mfil． 3.60 r，．．．．．．．．．． 1	1.9 eat．
	$4 / 9$ еа．
250 mfil．12 6．．．．．．．．．．． 1	19 ea ．
WIRE ENDED TYPES	
envered ．．．．．．．．．．．．．．．．．1／	1／11 en．
70）mid．450 ¢．．．．．．．．．．．． 3	$3 / 9$ ra．
BIAS CONDENSERS	
Tag ended metal types	
	1／－ea．
2＇s min．号v．．．．．．．．．．．	1／3 ea．
\％f mol．12 v．．．．．．．．．．． 1	1 －ea．
	2／6 cil．
100 mifl．12 x．．．．．．．．．．．．	1.9 eid．
100 mid． Eit v．．．．．．．．．．．． 1	1.9 eth．
WIRE ENDED TYPES	CARD－
BOARD COVERED	
2，mind．	1988
	19 \％\％
	23 em

SILICONE COATED WIRE WOUND RESISTORS
Thlfrance phis or minlly renimtance value allal wactaze A watable in the following values

 5 watl．．．
be watt
IJ watt
1－－
$1 / 3$ eib
$1 / 9$
DOUBLE TRIMMERS
$2 \pi y / 250$ pf．；lafl／f00；100／50．

THE COMPACT TELE－ VISION AERIAL BY ANTIFERENCE LTD．

mppled complete with non sergal molinting abs hackphate hentral brown finth．©verdil come pate sith tuti long．Ciome plete with ind instrictionhe ou／．Our price $12 / 6$ e山uch．

CONDENSERS MOULDED MICA

 （1） 30 PF，シ1 PF．

LOUDSPEAKER UNITS

hin．Kola with onts．ut tratis．

SPRAGUE CONDENSERS

 A $118 \% 1$ Sinn

CHASSHS

Alnminimm Emblilled with Eein－ fored forners．Availatile in the futloumbrestas：

CRYSTAL DIODES

flastic ease，wire enta．\because fur 2.1

IRON ELEMENTS

Stanhard alaptatile ifpe

$2: 31$ צ．． 4,00 ร．．．．．．．．．．．．．．． $1 / 8$ ea． Motphy－Richards replacehtwt
typu ．．．．．．．．．．．．．．．．．．．．．．．．．．．． $3: 8$ ea．
 CRT ISOLATION TRANSFORMERS TYPE NE 9
Ratio 1－1．E．giving ot a per cent
 4 types avalatile to bover mosst tolve hemters．
NH！
 13．3 v．，11，3 eath．With Tag Pand TYPE NR 12

 respestively，this trantiomer is stlitable fir lumat fothoule KH ＇I＇mbes in Medium Dedinitan Peceinera The Most sersitile lath farmeity 1．R．Trithaformer with liniveral Output．Whth Tag Finel antiswler Ti4＊＊． $22 / 6$ emh．
TYPE NR 14
A mase luseinl transformer fir nse

 dentald for thin pophlar low calu－its transiopmer．With Tas Ibaley and Sulder Tass， 296 each．

RADIO AMATEURS' HANDBOOK

by 'A.R.R.L.
30 s . 0 cc . \qquad
Valver for A.F. Amplifiers, by E. Rodenhuis. 10:. 64.. postage $4 d$.
Thay Electronic Masical Instrumment Manual, by A. Douglas. 30s. Od. postage 9d.
Ifofercheo Data for Radio Fingine eror, compiled by W. L. McPherson. 10w.6rl., postage $6 d$.
IVorlet Radio-Tetevision IIandhoos, 195̄5. edited by O. L. Johansen. 9\%. 61., postage 4 d
Fundanuental of Transistors, by L M. Kruzman. 21*. 011.. pestage 6d Tape and Wir. Rucortline: Data Book No. 8. 2-. 64., postage 2d.
Hadio besigners liandmook, by F. Langford-Smith, 42*. Od., postage is. od.
Radio Latooratory liandmook. by M. G. Scrosgie. 25ヶ. Od., postage 1s. od. Hanthosik of Litt Communiteation vol. 1. by the " Royal Signals, 30.0 d, postage 1 s .0 d .

Hadio Value Data 4 4th edn.. compiled by " Wireless World,' 3m. 6ii., postage 3d.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKISTS OF BRITISH AND AMERICAN TECHNICAL BOOKS

19-23, PRAED STREET (Dept. P.4),

LONDON, W. 2
Phone ; PADdington 4185.
Open 6 days $9-5 \mathrm{p} . \mathrm{m}$.
Please write or call for our catalogue.

1-Finger Pianists

Bulld your cwn electronic keyboard and play everything! Send for tree leafot. Guitar, cello. flute and trumpet are all easy. Write now.
C \& S, 10 Euke St., Darlington, Co. Durham

1/4"Black \& Decker ELECTRIC
 DRILL
 200 k OR $250 \mathrm{v.4C}$
 COMDLETELY sumemsteo Foo
 radio and tr intrafetencit
 fully guaranteed
 SENT POST FREE FOR

 CEPOSIT AND NINE FURTHER MONTHLY PAYMENTS OF $12 / 6$. CASH PRICE E5.9.6.

 NOGERS 31, NELSONST. SOUTHPORT.

 TEST METER UNITS Jewelled moving coil in case, with $6 \ln . x 41 n$. scale, 10 to $\mathbf{5 0 , 0 0 0}$ ohms and volt ranges unit with scale and detail sheet. 9 '9.
Rectifiers for instruments.3/9 May we send our list of hundreds of interesting items? $1 \frac{1}{4} d$. stamp, please.

Suita this exeroptionalls sensitive twintriodi radio. Uses unique assembly system and can be built by anyone withoit any radio kinowledge whatrird in 45 minutes. Handsome black-crackle steel case with specially made black and gold dial with stations printed. Size of radio only 6 Inin. x 5in. x 3in. Covers all Medium and Long waves-uses one only alldry battery which costs 7s. 9d. and lasts many months, as H.T. consumption is only 1 to 1.5 mA . Ideal for Bedroom, Garden. Holidays, ete. Many Insonleitind tewtimonials. Mr, Norton, of Oxtad. writem: Yesterday evening on the Medium waveband. I counted 32 separate stationis ; I am very pleased with the set, uhich is wall rorth the money. went lys rixturn. Complete Kit 49s. Bit, post free. with full srt of rilear. fastiondillow plans. or parts sold separately. C.O.D. 1s. 6d. extra. Note : We stock complete range of components and valves. orders despatched C.O.D. by return. Overseas orders uelcomed-
Regret .Vo C.O.D. abroad.

BRIGHTON RADIO CO. (PiNii) 69, 1rieston sirert, Hrighton, 1.

J. B. SERVICE ${ }^{\text {(BEXLEYHEATH) }}$

RADIO COMPONENT SPECIALISTS
5, MAYPLACE ROAD WEST, BEXLEYHEATH, KENT.
Phone: BEXLEYHEATH 1000 Wednesday Half Day. 44, CHURCH ROAD,
UPPER NORWOOD, S.E.19
Phone: LIVINGSTONE 6222 Wednesday Half Day.
All types of Valyes Old or Modern Wanted for Cash. Send Full Particulars for prompt offer. N.B.-Not Secondhand used valves.

ARE YOU SURE?

Only one in a hundred home-built receivers amplifiers and so on give of their best. Remember, just one inaccurate component will ruin performance. Is that $1.000-0 \mathrm{hm}$ resistor 800 ohms or 1.200 ohms-or something in between? With 20 per cent. tolerance it could be any of these values.
Our Res/Cap. Bridge, complete in every detail for only 31/6. will check every resistor and condenser quickly and accurately. Here are other items irom our range of famous test gear kits, at the lowest prices in the world.
Spot Frequency Sig. Gen., 35/-. Tunable I.F. Aligner. 17/6. Inductance Bridge, 42/6 Audio-Frequency Bridge, 38/6. Twin Multi-omer. 25 :

Post and packing $1 / 6$ on all kits. Stamp for illustrated lists.
RADIO MAIL, Dept. G. 6, Raleigh Street, Nottingham.

FIRST-CLASS RADIO COURSES .

GET A CERTIFICATE!

QUALIFY AT HOME-IN SPARE TIME
After brief, intensely interesting scudy -undertaken at-home in your spare time-YOU can secure your pro fessional qualification. Prepare for YOUR share in the post-war boom in Radio. Let us show you how!
-- FREE GUIDE
The New Free Guide contains 132 pages of information of che greatrost importance to those seeking such success-compelling qualifications as A.M.Brit.I.R.E.r City and Guilds Final Radio, P.M.G. Badio Amateurs, Exams., Gen. Cert. of Educ., London B.Sc. (Eng.), A.M.I.P.E., A.M.I.Mech.E., Draughtsmanship (allbranches) ect., rogether with partizulars of our remarkable Guarantee of
SUCCESS OR NO FEE
Write now for your copy of this invaluoble publication. " It may well prove to be the turning point in your career.
FOUNDED 1885-OVER

- - 150,000 SUCCESSES - -

NATIONAL INSTITUTE OF ENGINEERING
(Dept. 461), 148, HOLBORN, LONDON, E.C.I

MORSE CODE Training
 Send for the Candler

BOOK OF FACTS

tt gives detoils of all Courses which include a Special one for acquiring amateur licence. CANDLER SYSTEM CO. Dept. 5 LO 52b, Abingdon Road, London, W.8. Candler System Co., Denver, Colorado, U.S.A.

Television, Radio, Record CABINETS MADE TO ORDER

ANY SIZE OR FINISH
CALL OR SEND DRAWINGS FOR QUOTATION

72-76 Leather Lane, Holborn, E.C.1. Phone : CH.Ancery 6791/2

TELETRON SUPER INDUCTOR COIL8 Originators of Type HAX. selective Xtal diode coll, as Radio unit in Tape and quality Amplirs. 3 w- ea. Dual wave TRF coils (illustrated), matched pair. 7/FERRITE ROD Aerials, MW
$8 / 9$: Dual wave. 12/9. 1. 0,0 8/9: Dual wave. 129. His, 0 and circuits. The FTeletron and circuits. The Thele gaie Red., London, N.O. HOW. 2527

In home-buill equipment the bias resistors recommended by the valve makers should not be omitted, and will usually be of 250 to 500 ohms. Gain will usually be at maximum with the correct value, as the control grid will then not become positive with

Fig. 4. - These t wo diagrams show the feeding of woltage to the screch grid through a sories resistor and by means (i) a potential divider.
respect to the cathode under nomal circuit conditions, as can arise when no bias is applied. Valve life will also be increased. If such resistors are omitted, the gain of the stage may be increased when a low A.V.C. oftage arises, which is exactly the reverse of the effect desired.

Controlling the A.F. Amplitier

Since a variation in signal strength must always be present at the A.V.C. diode, to control the A.V.C. system itself, complete control by means of predetector stages alone is impossible. To overcome this, one or more valves in the A.F. amplifier may be controlled by the A.V.C. system, a circuit such as that shown in Fig. 5 being employed.

Here, RI provides the nomal operating bias for the valve, while additional negative bias is applied to the control grid. via the .5 megohm resistors, under conditions of increasing signal strength. The gain of the stage is thus reduced when volume is high.

A suitable vaive for this application is the 6B8G, which is an I.F./A.F. pentode with two diodes. The

Fig. 6.-Controlled valve srid circuits.
latter may be used for detector and A.V.C. purpoces, with the pentode section as A.F. amplifier. With a H.T. voltage of 180 to 300 this valve requites an anode load of .25 megohm, with the S.G. retained at 75 to 125 volts, or fed through a 1.2 megohm scrics resistor. For this valve R1 would be 1,800 ohms.

Because of the manner of operation some distortion arises when large A.V.C. voltages are applied to an A.F. stage. In equipment of the type in view this is not such a disadvantage as in broadeast band receivers where high quality is required. If the A.V.C. circuit gives a large $A . V+C$. voltage on maximum signal it may be necessary to feed the A.F. stage from a potential divider so that excessive voltage (with resultant distortion) is avoided here. This may be done by dividing the normal diode load resistor into two components, feeding the A.F. circuit from the junction of the resistors thus used.

Hig. 5.-An A.V.C. operated A.F. stage.
Variable-Mu type valves are required for A.V.C. circuits, and this should not be overlooked when choosing a type for an A.F. amplifier. Low anode voltages should be avoided with such a stage, as increasing the possibility of distortion or overloading.

Grid Circuits

The A.V.C. voltage may be applied to the control grids of R.F., F.C. or I.F. stages by means of the coil or I.F. transformer winding, as shown at "A," in Fig. 6. The by-pass condenser is required to complete the R.F. path to earth and, in conjunction with ihe resistor, prevents coupling through the A.V.C. line, which could otherwise cause instability. The condenser and resistor should be wired near the coil or transformer.

With some coil designs bottom-end coupling is used, the aerial being connected to the point marked " X." With such circuits the condenser formeof the coupling circuit, and the value sr coil maker must be used. This conder be much smaller than that shown, ant .$!\mu \mathrm{F}$ component coupling would be signal strength much reduced.

With some types of switching or coils it is impossible or inconvenient to use the winding in this way, and the circuit at " B" can then be employed. The condenser and leak should be near the grid of the valve in question. If bottom-end or tuned anode coupling is used between R.F. and F.C. stages, the tuning
it is thus necessary to render the A.V.C. system inoperative. This can be done by wiring an on/off; switch between the A.V.C. line and H.T. negative.' When open, the switch will be set for R.T. reception, with the A.V.C. operating. When closed, it will be in the position for I.C.W. reception, with receiver at maximum gain. It is sometimes necessary to use such a switch with R.T. signals, when the proximity of a powerful I.C.W. station renders the A.V.C. system erratic.

To avoid undue time delay in the operation of the A.V.C. system, the time constant of the whole circuit should be kept low. This requires the use of by-pass condensers of moderate value, and the avoidance of extremely high values of load or decoupling resistors. Without attention to this, the A.V.C. system may tecome very sluggish and unable to deal with fading of a rapid nature.

Finally, Fig. 5 also shows how a delay voltage may be introduced with a double diode, the cathode voltage here depending upon the relative values of $\mathbf{R} 2$ and R3.
coil is at the same potential as H.T. positive, and the grid circuit at " B" then becomes essential. In such cases the insulation of the coupling condenser (. 0001 to $.0003 \mu \mathrm{~F}$) must be of high quality, or positive voltages will reach the control grid.

Amplified Circuit

The effectiveness of the A.V.C. system may be further increased by employing a valve to amplify the carrier available from the final I.F. stage. A circuit of this type is shown in Fig. 7. The carrier is applied to the control grid, the pentode section of the valve acting as a straight amplifier, so that the amplitude of the signa! applied to the diodes is much increased. A.V.C. is tak en from the diodes in the normal way.

When a grid detector is used, in the interests of high sensitivity, an A.V.C. stage of this type is very suitable, as no means of obtaining A.V.C. from the detector exist s. With the grid leak type of detector, efficient pre-det ector gain control, either by means of the A.V.C. system or a manual control (or both) is essential, as the advantage of high sensitivity to weak signals is offset by the ease with which such a detector may be overloaded. It is, of course, possible to use a separate valve for amplification, with this circuit.

R.T./I.C.W. Switching

With speech or music, the carrier level does not depend on the audio component, but upon the po wer of the station, and conditions such as distance and fading. which influence the signal strength at the receiver. It is to obtain a stable output under widely arying signal strengths that A.V.C. is employed.
zut with I.C.W. Morse, no carrier is radiated during
silent" periods. To vrevent erratic operation

"Radio" Earphones

'RADIO" earphones which have no trailing wires and are not plugged into a point are manufactured by the Magnetic Broadcasting Co., Ltd., of Suffolk Hall, 1, Upper Richmond Road, S.W.15. Known as Stethophones-since they resemble doctors' stethoscopes-they give the wearer complete freedom of movement.

The "phones are of purely mechanical construction. They have no valves, batteries, wire or cords. There is a volume control at each carpicce. Fach pair weighs less than two ounces.

Hospital-type Stethophones have short extensions which are made to revolve so that the pole pieces may always remain in a vertical position even when the wearer is lying down. This also controls the power of each earpiece. Standard Stethophones have instead a knurled wheel on the back of each earpiece to control the volume.

When they are used in conjunction with a domestic radio the output of the set is fed into a step-down transformer to match a loop of wire (approximately 14 s.w.g.). The wire is laid round a skirting board, picture rail or outside wall. The -loudspeaker can then be fitted with a potentiometer to control the volume without affecting the loop.

This induction radio system was invented by Victor A. Foot, F.Inst.P.I., A.M.Inst.B.E., who for many years has been a manufacturer of hearing aids. Retail price of Stethophones (both standard and hospital types) is $£ 22 \mathrm{~s}$. a pair, and of lorgnette-type 'phones $£ 3$ 3s. each. Matching auto-transformers for domestic radios are 12 s . 6 d . each. Instructions for fitting the 'phones are provided with each pair.

COST UNDER £ 4

 MINI MAINSUses high - efliciency coils. covers long and medium wave bands and fits into the neat white or brown bakelite cabinet -limited quantity only. All the parts, including cabinet valves. in taci. everything. £3 196 plus 2 - post. Con structional data free with the parts. or avalable separately 1,6 .

havent something
costs only
19/6: data availalle separately. prise $1^{\prime} 6$

NOW A.C./D.C.

MULTI-METER KIT
Parts suitable for making a multi-meter to measure A.C. volts as well 88 D.C. voltes milliamps and ohnis. Price for kit containing all the cssential items including mov-ing-coil meter metal
rectificr, resistors.
 rectificre resistors.
range selector. calibi range selector. caliblated scale, ete.. eto.. is 19/6. plus 1 - post and packing. The D.C. only version is 15. -, plus 9d. jost and packing.

COMMUNICATIO	NS RECEIVER RIIS5 communicationrecrivers available to-dav. Irequency rante is 75 ke to $18 \mathrm{Mc} / \mathrm{s}$. It is complete with 10 valves and is fitted in a black metal chase. Made for the R.A.F so obviouslv a robust rocciver whič will give	YOURS FOR $\{1$ guaranteed in perfect working order. Price Grade 2 £z/19/0, Grade 1 E919/6, or new and unused $£ 11 / 19 / 6$. or will be sent on receipt of demosit of $£ 1$. Balance by 12 monthly payments. Carriage and Transil
The R115J is considered to be one of the finest	seard of servjee. Com plitely overhanled and	Case 15/- extra. Guaranteed for 12 months.

Complete furrescent fithin\%. Has built-in ballast and starter; -stove enamelled white and ready to work. Ideal for the kitchen, over the work-bench. and in similar location. It uses two 20 -watt hamps. Prite complete. less tubes. 236 . or with two tubes. 393. Post and insurance 3 G. Extw 20watt lubes 76 each.

THE FINE MODERN RADIO GLEVELAND ORGANTONE

sumerhet with special high fidelity 4-watts output-modern B.V.A. miniature valves and parts-gram, position with plugs for extension speakerideal for modernising existing equipment. Price £11/10/- or £ $316 /$ - deposit. carriage $7 / 6$

CABINETS FOR ALL

We undoubtedly hold the largest stock oi cabinets in the country. All are made of the finest plywond, vencered and polished, and all radio and motor boards are left unratb to suit your ow'n cquipment. The top nne

is The Burean, walnut finished and highly poiished. size approximately soin. high. 32m. wide. and $16 i n$. deep, Price 16 quineas or 32-deposit, carriage $12 / 6$. The centre one is The Empress, our most popular rabinet, size 32 in , higir. $36 i n$. wide, and 161 in
deep, walnut thished. lined sycumore. Frice 15 muincat, or H.P. deposit 32'-, carriage 126. The lower one is The Contemporars, size 29in. high. 30in. wide and 15!in. decp. Oak finished with contransting mouldinrs. Price £8 15:H.P. deposit 19 -. carriage 126.

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to Dept. 7, RUiSLIP.
Personal shoppers, however. can call at

 Phone:RUISLIESTiO Phone: CENtral 2833, Phone: ARChway 1049 Kiliturn. Half day. Wednesday, Hali day, Saturday. Half day. Tharsday. I (Non (herin)

COPPER WIRE				
COTTON COVERED				
s.W.G.	2 ors.	4025.		
16		21-	1/4	${ }^{2 /-}$
17	+1/4	211 212	1/4	$2{ }^{2 / 1}$
19	$1 / 1 / 5$	2/2/3	$1 / 16$	$\stackrel{215}{2 / 5}$
20	1/5	214	$1 / 7$	8
21	1/5	$2 / 5$	1/8	
22	$1 / 16$	2/6	1/9	
24			1100	3/2
25	1/8	219	$1 / 11$	$3 / 4$
26	$1 / 9$	$2 / 11$		$3 / 6$
27	$1 / 10$	$3 / 1$	2/1	3/8
28	$1 / 11$	3/2	$2 / 2$	3/10
29	$1 / 11$	$3 / 4$ $3 / 16$	$2 / 3$	42
31		37	$2 / 5$	$4 / 4$
${ }_{32}$	$2 / 1$			488
-33	$2 / 3$	$3 / 1$	$2 / 10$	5/2
34	2216	$4 / 5$	$3 / 1$	5
36	277	4/8	3/3	$6{ }_{6}$
37	$3 /-$	5/6	3/5	$6 / 4$
${ }^{38}$	3/4	6/2	377	$6 / 8$
40		8/-	4/11	$7 / 8$

CRYSTAL SET

INCORPORATING THE SILICON CRYSTAL VALVE
Adjustable Iron Cored Coil RECEPTION GUARANTEED Polished wood cabinet. 15 /, post $1 /$ POST RADIO SUPPLIES 33 Rourne Eardens, London, E. 4

STAN WILLETTS

43, 8pon Lane, West Bromwich, Staffs.

PACKARD Tel.: WES. 2392.

Brand new boxed. FREMMPLIER.GSL7 new, boxed, complete with valves
 "ACOS" CIRYSTAL PICK-tP" (GP10),p. \& pi $1 /$

MALIGIR VIBRATORS. -12 volr 4 -pin brand new. 日/9, p. \& p. 6d
"'HLDOON."- 5 -channel swirched teletuners, complete with 2 valves. EFB0, ECC81 Brand new, boxed. 28i6. p. \& p. 1
GERMMANIUM XTAI, DIODES,-G.E.C. Brand new. 1/-. $10 / 9$ doz, p. \& p. 3d.
aldes.-Brand new. Every one guaran teed. 6K7G. $4 / 6: 6 \mathrm{~K} 7$ (metal), $5-\mathrm{E}$. EL32,
 6SN7. $6 \mathrm{SL} 7,7 / 6$: 6J5G, 40 : 6 GGF (metal) $4 / 8 ; 6 \mathrm{X} 4,6 / 6 ; 6 \mathrm{~K} 8 \mathrm{G}, 8: 6 ; \mathrm{RK} 34.2 \mathrm{C} 34,1 / 9$ ATP4, 3/6, EA50. $191_{1}^{9} \cdot \mathrm{PCF} 80$ PCC84

WANTED-Valves. IPst price offered.

NEW
 OUR 1955 SUPA-HANDBOOK THE HOME CONSTRUCTOR"* JUST OUT! 20 CIRCUITs 76
 PAGES
 FOR 2/6 ONLY incorporating these star attractions

Sets. Amplifi-Superhets. T.R.F
Test Equjpment. Feeder Units

* tional detai-full
layout and dalls, supa-simstruc-
diagrams for but-to-point wified
*COII, PACK bulding superhets
cional details -Full construc.
* cuperhet coil pack buflaing a
*AR RAMDIO tional details
*Honal details. Full construc-
plete details for GER.
\star HADP CHARGFR bullding
tion Rex-Par.
- Formul Resistance Pages of informa-
* RADIO cond "know-how Code, fornation CONTIROLD-how.
* RADIOG and list. General in-
* list.
*CATALOGLE
of ced catalogue Profusely illus
Wolf Honents, rece price list
ment Home-Conscrvers, books,
YOU etc, etc.
VAL UE! IT'ST BETTER
The most helpful TOPS!

SEND $2 / 6$ FOR Trade.

And, of coursoday ? ${ }^{\text {Th }}$ COPI
dust of course our tamous iron-$75-200$ at $3 /-$ ea. offer outstanding Aerial H.F. 550 or $080-2,000$ met $30-75$.

SUPACOILS (Dept. P.4)

21, Markhouse Road, London, E. 17
(Dept. P.

ANNAKIN

Condenser Bargains. -1 mfd. 2 Kv , Blocks 11 d. : $1 \mathrm{mfd} ., 350 \mathrm{v}$ blocks, 2 d .0 .05 mfd . 1.5 Ky , tubulars, 6 d . 50 mfd .25 v . tubulars. 6fl. 1.2 mfd. 600 v. blocks, $6 d .400$ pf. silver mica, 3 d .30 pf . ceramic. 31.4 .1 mfd .150 V . tubulars. 3 d. .002 mfd or .004 mfd . mica. $2 d$. Hiss Filter Chokes 10 -post free. 0004 mfd . variables $1 / 3$. Please send plenty of postage. surplus is refunded. C.W.O. only. Money Back Guarantee. Free Lists.
25, Ashfield Place, Otiey, Yorks.

- ENSON'S ENSON'S ARGAIN8

BRAND NEW. ORIGINAL CARTONS. R.F. UNITS. TYPES 26 or $27,27 / 6$, 24, 15/=. (Postage 2/6.)
BRAND NEW BENDIX RECEIVERS, RA-1B. Vernier calibrated 6 wavebands, $0.15-15 \mathrm{ke} \mathrm{s}$ continumus, (break $1.5-1.8 \mathrm{Mc} / \mathrm{E}$.). BFO, AVC Valves : B/6K7G, 1/6L7, 1/6R7, 1/6K6. Blecl wrinkle finish : 10 I Y 14in. 215 (del'd mainland). DYNAMOTORs, solled cases. D.((approx. $20 \mathrm{n} \mathbf{\mathrm { v } .} 8 \mathrm{~m} \mathrm{mA.}$. at 6 r.), $8 / 6$. Filters for these 2/6. I.F.T 's, new. canned $10 / 13$ Mc/s. 1/6. POWER UNTT 285. 230 v . 50 c . input.
 6.3 v. 15 a.. 3 valyes. New, 75/-, carr. paid inlant. TRANSFORMERS, new, std. main input ; 600 v. H.W., 6.3 v. 3 a., 4 v. 2 a., $10 / 6$ 230 v. to 6.3 r. 5 a. and 10 a., 17/6: 2 kT $5 \mathrm{~mA}, \stackrel{2}{2}$ r. 2 z a., $25 / \mathrm{F} ; 350-0-350 \mathrm{v}$. 150 mA .

 C. (twice), 30/- (carr. $\overline{6} / \mathrm{H}$) $350-(\mathrm{i}-350$
 each.) METAL RECS. 600 v. $36 \mathrm{~mA} ., 6 /-$

HETERS-BRAND NEW-BOXED FSD Scale Size Type Fit Price
 $500 \mu \mathrm{~A}$ 2v.A.C. 3in. MG: Fl.Rd. 22/6 2mA $\quad 2 \mathrm{n}$. . MC Pr.Rd. 12/6 LinA Lines 2 in. MC Fl.sy. 5/6 10 mA
10 mA
$20 \mathrm{~mA} \quad 200$
$2 \pi m A$
41) $d 120 \mathrm{~mA}$

100 m.
ma a 900 mA
fooma $\stackrel{2 i n}{2} \mathrm{itl}$.
anat and enquiries. N.A.E. please: 5/6 despatch.

Cailers and Post either Branch
W. A. BENSON (PW), S UPERA DIO 308 Rathbone Rd., (W'chapel), LTD., 116 Liverpool 23 $\begin{array}{ll}\text { Whitechapel. } \\ \text { pool } 1 . & \text { ROX } \\ \text { 113: }\end{array}$

FVERYONE-IS TALKING

atwont oir fow-priced high quality WIRE WOUND RESISTORS. Wire ended, they are fow SILICONE COATED, range increased. (0 w . types are smaller and no dearer thin 2 w . carbon.) $25,511,68,1010$
 3. $3 \mathrm{~K}, ~$ ј K. $6.8 \mathrm{~K}, 10 \mathrm{~K}: 5$ w., $1 / 3$; $1 / 1 \mathrm{w} ., 1 / 6$ $15 \mathrm{w}, \mathrm{l}, 1 / 9 ; 15 \mathrm{~K}, 18 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K} .3: 3 \mathrm{~K} ; 5 \mathrm{w}$
 MICAS.-111. $15,20,34,50,70,75, ~ 1211,150.2414$ $220,1,314 \mathrm{pF} ., 3 / 6$ doz. Larger type 4113 , 451, 701 $3.1160 .4,546 \mathrm{pF}$. $2 / 6$ daz. Our assortment, 50 for $8 / 9$. 6 MFD. 2,000 v. TEST.-Metal liock, 3.8, post $1 /$ -COAX.-stranued core, 80, apl. fin., 8d. yd. Coax fttings; untrersat plag 11!d., socket. 1/3, ontlet box, 4/6, line connector (donble socket) $1 / 3$. SPECLAL LOW LOSS COAX.-Air spaced, ideal for fringe areas 80Ω app. $\$ \mathrm{in}$., 9 d . yd. BLGOTROLYTICS.- 40 mfd. 450 . $4 /-; 8+16$ 451 ₹. (small), $4 / 3 ; 16+32,350 ; 4 / 9 ; 32+32$, 351 v., $5 / 3: 32+32,450$ r.,6/-. IVY'covered $+5 p e s$; 16,450 v., $2 / 9 ; 50,50$ v., 2/- ; *25. 25 F.. 1/9.
SPECIAL : 32 mfd. 450 F. (${ }^{*}$.S.A.) 41 in. x in., $1 / 3$.
RFED \& FORD 2A, BURNLEY ROAD. REED \& FORD 2A, BURNLEY ROAD.

RECEIVER R1155

BRAND NEW. AERIAL TEESTED
In maker's original transit case. Nory is the chance to get one from the best delivery we have had from the Ministry.

E11-19-6. Carr. 10/6
Send S.A.E. for further details or $1 / 3$ for Dublication giving circuit diagrams, etc. Others avallable from $\mathbf{£ 9 . 1 0 . 0}$ according to condition.
MEAIDPIIGNES.-High Resistance Type CHR New. $12 / 6$ palr; post $1 / 6$.
MICROAMMETERS.-250 F.S.D. 3inn. Flush Model S37. Specially scaled for test meters. Knife edge pointers, magnetic 45 IIc/sPYEIF SIRIP.
5 nicis Y Lir SIRIP. These vision units re brand new and complete with 6 EF50 alves and EA50. Our price only 65^{\prime}-. Post $2 / 6$. ROTARI CONVERTERA.-Input 12 volts
D.C. output 230 volts A.C. 50 cycles. 100 D.C., output 230 volts A.C. 50 cycles. 100 watt, $82 / 6$ each. Also available with 24 voit input, carr. $7 / 6$.
WILCO ELECTRONICS Demt.P.W:
204. Lower Adaliscombe" Ra. crovion.

News from the Trade

poited Iron-dust Aerial Coils
$\$^{\text {OME newly introduced Osmor iron-core coils }}$. are available in two types: type P.M. for phe medium waveband and P.L. for the long wavefand. They are for use unsereened in normal superhet Lircuits where high gain is required with standard oscillator coils. The pots or cups provide efficient magnetic inductive screen. A range of these aerial coils is available and these standard production coils give the following " Q " readings at the frequency stated (Marconi " Q " metcr).

Frequency (Kc/s)	Capacity	$\cdots \mathrm{Q}{ }^{"}$
1,200	100	160
980	150	185
852	200	198
695	300	205
600	400	205
545	475	200

Price 6s. each (retail). Osmor Radio Products, Lid., 418, Brighton Road, South Croydon.

15in. Permanent Magnet Loudspeakers

ARECENT addition to the Plessey range of loudspeakers is a general purpose 15 in . pernianent magnct unit suitable for use in cinema and public address installations, or as the bass reproducer in dual loudspeaker systems, in which full use can be made of its low fundamental resonance and smooth responsc.

This loudspeaker is notable for its robust construction and the elaborate precautions which have been taken to ensure consistent results under the most adverse climatic conditions.
The chassis, which is cast in aluminium to give great mechanical stability and is finished in an attracfive crackle black chamel, holds a felted cone driven by a 2 in , speech coil. This is wound on an aluminium former and protected against atmospheric action by a baked varnish impregnation. Additional protection is given by the outside suspension and moulded speech-coil dome, which excludes all dust.

The coil moves in a gap having a field stiength of 15,000 gauss, energised by a permanent magnet giving a total flux of 228,000 lines. The bass resonance can be arranged to occur at any frequency between 30 and 60 c. p.s. to suit individual requirements, while the useful high frequency response extends $108 \mathrm{Kc} / \mathrm{s}$.
The speaker can also be supplied, at slight extra cost, with a velour surround to the conc in place of the paper corrugations. This results in reducing the resonance to 25 c.p.s. and a somewhat smoother response chatacteristic.--Plessey Co., Lid., Ilford, Essex.

Heathkits

FOR sonic time now enquiries have bech made concerving the special kits of parts for various types of equipment which are advertised in American, publications under the trade name "Heathkit," These are lest instruments, amplifiers and similar apparatus which have been supplied in complete sets of parts with blueprints, etc., for home construction. and they have hitherto not been available in this country.

With the casing of the dollar restrictions these kits are now being imported against specific orders, and
may be obtained from Rocke International, Lid., of 59. Union Strect, S.E.I.

It should be pointed out that the mains apparatus is for $110 / 120$ volt operation, but a 220 volt stcp-down transformer may be used, and a supply of these at various wattage ratings is supplied by the same firm. In some cases the apparatus may be obtained withoutthe American transformer, and thus a standard English transformer may be litted. Full details of the apparatus available may be obtained on application to the above firm.

Permabit Soldering Iron

A FTER spending a considcrabic amount of time on research and tests, Light Soldering Developments, Lid., have evolved a permanent bit for soldering irons which is registered under the trade mark "Permabit." It is clained that this bit lasts indefinitely, does not become pitted or lose its facc. and requircs no re-shaping, filing or maintenance. They are available in a fixed bit range of instruments and also as bits for replaccable types in all sizes. Complete Spare Bit-Element Unit s.d.

Light Soldering Developments, Lid., 106, George Strect, Croydon, Surrey.

The Philips " Recordergram "

PHILIPS ELECTRICAL LIMITED announce the introduction of their new, lightweight, portable tape recorder Model AG.8105-to be known as the "Recordergran "-at the at tractive price of 35 gns.

The accessories included in this price are a Philips erystal microphone,' a 600ft. reel of high quality tape and a spare 5 in. diameter take-up reel. The instrument is, therefore completely ready for service without the purchase of additional equipment.

The "Recordergram" is housed in a neat grey case measuring $13 \frac{3}{3} \mathrm{in}$. by 10 in . by 7 in . the total weight is only 21 lb . All the accessories are finished in cream and can conveniently be stowed away in the lid of the case when not in use. This compact tape recorder can also be used, in conjunction with the Philips " Disc-Jockey " or other record player, as an ordinary gramophone amplifier.

There is only one main control knob which can be turned to different positions-marked. by clear symbols-to perform the following operations:Recorder off: Amplifier on : Fast Wind : Fast ReWind (80 seconds for 600 ft . tape) : Playback: Record. Philips Electrical Lid., Century House, Shaftesbury Aicnue, W.C.2.

Programme Pointers

This London of Ours

TRIPS round and about London are always pleasant to follow and listen to. There is so much we know and with which we have grown up. They tecall some of our happiest memories and there is often much to be proud of, and feel affection for, the scenes visited and described.
well-conducted tour, as with the "Scrapbooks," is always a weicome item.
"Greenwich Palace" was no exception. Although it is a little off the " beaten track" of most of us, we have nevertheless been there. The historical details given us must either have renewed our interest in this very lovely building and its imperishable story or, if strangers to it, made us resolve to take that trip down the river and see it for ourselves at an early opportunity.

"In All Directions"

A new series of Peter Ustinov"s and Peter Jones's "In All Directions" has started. This very witty and sophisticated commentary on manners and customs, rather than on men and things, is often subtle to a degree. It makes fascinating listening as it chatters along, often skating over thin ice and occasionally running up against a boulder. That its quality varies from time to time is perhaps understandable and excusable. It is none the less a brilliant contribution to recent broadcasting.
"Programme Parade" has long seemed to me a superfluous intrusion into the otherwise even flow of programmes. Apart from being a concession to this very repetitious age we live in, it takes tunes, jokes, opinions, sentiments, etc., right out of their context and presents them to us in their least attractive light. Have we not all got our Radio Times, or our daily paper, at our elbow? Can a snippet from the "Goon Show" or the "Tschaikovsky Concerto" at 8.10 a.m. possibly whet anybody's appetite for the whole thing 12 hours later? It seems hardly possible, even if we remember it all that while.

" Ghastly "Music

Mentioning "The Goon Show," compels me to say it is usually extremely funny if easily the noisiest and most obstreperous show on the air. Its signing-off tune is the second most horrible one in present-day radio. The "musical figure" half way - through " What Do You Know?" is an easy winner. Ghastly and quite inexcusable.
Three interesting and worthwhile programmes were "A Cup To Be Filled," "Gold in the Street" and "The Tragic Clown." The first, written and produced by Eileen Capel and narrated by Duncan

- McIntyre, was all about those over sixty. "Gold in the Street," written and produced by Robert Pocock and narrated by Felix Felton and Frank Duncan, was the storv of Hatton Garden, whilst

Our Critic Maurice
 Reeve, Reviews Some
 Recent Programmes

"The Tragic Clown" that ubiquitous and lovable character, speaks for itself. This was an anthology, excellently compiled and delivered by Richard Findlaker, assisted by James Langham, Eric Philipps and Harold Scott.

Drama

There have been more interesting and entertaining plays. I liked "Waiting for Julia," which was not a play really, but a dramatisation by Peggy Wells of Nigel Balchin's novel "A Way through the Wood." Googie Withers is such a fascinating person that even to only hear her is good enough return for staying home on a Saturday evening. When you can see her as well, then you have had your money's worth. (I essayed a film the other day and saw her for a fleeting moment in an advertisement for a washing soap. I shall always use that soap in future.) John McCalium, Hubert Gregg and others helped to vivify the story of what not to do if you knock someone over when driving your car, especially if that someone is "the other guy."
Sonia Dresdel chose Rattigan's "Love in Idleness", for her contribution to the Stars in their Choices series. This charming actress played the rôle of the woman who chose her son in preference to a stepfather for him-whom he hated for various reasons-with the greatest sympathy and conviction. Whether the subsequent marriage and happy ending make it one of Mr. Rattigan's best plays leaves me in some doubt. For myself, I rather fancy that either the renunciation of the son for a second husband or the sacrifice of him and all his wealth and luxury for the boy should have been the answer, not a hashed-up situation which removes insuperable barriers and makes the harmonious existence of all three under the same roof possible.
Chtistopher Marlowe's massive portrayal of that sinister period in our history, Edward the Second, was strong meat, and made excellent listening. The story of the ineffective King and his infatuation for the impostor and adventurer Gaveston, with consequences so grievious to the nation, was one which no Elizabethan dramatist would be expected to overlook. The adaptation and production of R. D. Smith were admirable, as were Richard Hurndali as Gaveston, Paul Schofield as Edward and a long and radio-ly distinguished cast.
"The Duke in Darkness " and "Marie Lafarge" were fair to average. "The Warberg Wire Job" eloquently recounted the amazing wartime escape. Suitably glowing tributes were paid to that very great Nobel Prize winner, Albert Schweitzer.

R.S.C. A4 HI - FIDELITY 25 WATT AMPLIFIER

A new design for 1955°. Push-Pull"
output. output. Burtern Sensitivity Even amp, stages, Increased sensitivity. Eten further improved performance figures. tncludes 7 valves. specially designed sectionally wound output transformer rellable small condensers of current manufacture. TWO SEPARATE INPUTS CONTROLIED BY SEPARATE VOLUMECONTROLS allow simultaneous use of "Mike" and Gram. or Tape and Radio. etc.. etc. INDIVIDUAL CONTROLS FOR, BASS AND TREBLE ' Lift ' and "Cut," Frequency response $\pm 3 \mathrm{db}, 30-30,000 \mathrm{c} / \mathrm{c}$. Six negalive feedback loops. Hum level
66 db down. ONLY 20 millivolts INPUT 66 db down. ONLY 20 millivolts required for FULL OUTPUT harmonic distortion oniy $0.35^{\circ}{ }^{\circ}$ measured harmonic distortion only 0.30° measured
at 10 watts. Comparable with the very best designs.
ENTIRELY SUITABLE FOR SMALL HOMES OR H MRGE HALLS. CLUBS. GARDEN PARTIES. DANCE HALLS, ttc. etc. For ELEETRONIC ORGAN or GUITAR. FOE STANDARD 9 GNS. FOR ANY ' MIKE' or PIGK-UP.

BATTERY SEV CONVERTER. KIT. All parts for converting any type of Aattery receiver to All Mains. A.C. $200-250$ v, 50 c'es. Kit will supply fully smoothed I.T. of 120 V .90 V , or 60 V , at up 0.4 to 1 a . Price, complete wilh circuit. 0.4 to 1 a. Price, complete wiuh circuit. 48/9. Or ready to use. 8/9 extra.
PDRSONAI SET HATTERY SEPERSEIDER KIT. A complete set of parts for construction of a Unit (housed in metal case) to replace Batteries where A.C. Mains supply is available. Input $290-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. For 4 valve receivers requiring $90 \mathrm{v} .10 / 20 \mathrm{~mA}$. and 1.4 V .250 mA ., fully smoothed. Price complete with' circuit. Only $35^{\prime} 9$. Or ready for use, $42 / 6$. Size of unit, $5 \frac{1}{2} \times 4 \times 1 \mathrm{in}$.
HATTERY CHARGER KITS
For mains $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$.
To charge 6 v . acc. at 2 a.. 25/6. To charge 6 or 12 v . acc. at 2 a., $31 / 6$ To charge 6 or 12 v . acc. at 4 a.. $49 / 9$. Above consist of transformer. full wave rectifier. fuses. fuseholders and steel case.
Any type assembled and tested, $6 / 8$ extra.
THE SKY CHIEF T.R.F. RECTIVER. A design of a 4 -stage, 3-valve $200-250 \mathrm{v}$. A.C. Mains receiver with selenium rectiA.C. Mains receiver with selenium rectiH.F. stage followed by a low distortion H.F. Stage followed by a low distortion grid detector triode. The next stage is a further triode amplifer with wone correcthe output stage consisting of a parallel the output stage consisting of a paramel output at an extraordinarily low level of distortion. Point to point wiring diagrams, instructions, and parts list, $2 / 6$. This receiver can be built for a maximum of $£ 4 / 19 / 6$ including attractive Brown or Cream Bakelive or Walnut veneered wood cabinet $12 \times 6 \frac{1}{2} \times 5$ ín.
VOLLiME CONTHOLS with long ('in.) spindles. all values. less switch, $2 /$. with S.P. switch. 3/9. D.P. sw.. $4 / 9$.

ELBCTROLNIGE Current productionNot ex-Govt.)

Size approx. 12-3-:in. For A.C. mains 200 -$230-250 \mathrm{v} .50 \mathrm{c}$ cs. Outputs for 3 - and $15-\mathrm{ohm}$ speakers. Kit is complete to last nut. Chassis is fully punchod. Full jnstructions and point-to-point wiring diagrams supplied. Unapproachable value at 9 (ins. or ready for use, 50 - extra. If required, cover as illustrated can be supplied for 176. H.P. TERMS AVAILABLE.

R.S.C. 10 WATT "PUSH-PULL" HIGH - FIDELITY AMPLIFIER A3

Ideal for the quality enthusiast in the home or small hall. Two different inputs can be simultaneously applied and controlled by separate volume controls. Any kind of Pich-up is suitable and most microphones. Tone controls give full Long Playing record equalisation. For uncorrected Pick-ups sensitivity is Very high. Only 130 millivolts required for full output. H.T. and L.T. available for Radio Feeder unit.

Complete with integial Pre-amp. Tone control stage as A4 amplifier). using negative feedback. giving humproot individual bass and treble lift and cut tone control. six Negative Feedhach 1.opus. Completely negligible him and distortion. Frequency response $\pm 3 \mathrm{db}$. 30-20.090 c.p.s. Slx valves. A.C. mains 200-230-250 v. input only. Outputs for 3 and $1 \overline{5}$ ohm speakers. Fit of parts cumplete in every detail. 7 Gns. plus $5 /$ - carriage or ready for use, $45 /-$ extra. thustrated leaflet 6d. Cover as for A4 is suitable.
H.M.V. LONG PIMING HPCORI TIRNTABLE WTHICRISTALPIGKIf (Sapphire Stylus). Speed $33 t$ r.p.m. For A.C.mains $200-250$ v. Limited supply. Frand New Cartoned. Perfect. Only £3/19/6. Plus earr. $\mathbf{5}_{1,}$ (Normal price f8 approx.).
A 1PSSII-PLLI, 3-4 watt HIGIl-GAIN A WPIIFUER FOR £3/7/6. For mains input $200-250 \mathrm{v} .50 \mathrm{c}$'s, Complete kit of parts including circuit, point to point wiring diagram. and instructions. Amplifier can be used with any type of Feeder Unit or Pick-up. This is not A.C.iD.C. with " live ". chassis. but A.C. only with 400-0-403 v. trans. (Output is for $2-3 \mathrm{ohm}$ speaker.) suppljed ready for use for $25 /-$ extra. Carr. 2/6. Descriptive leaflet. 71.
FOUTR STAGE RADIO FEBDELR UNIT. Design of a High Fidelity Tuner Unit. L. \& M. Wave. Full decoupling. self-contained heater supply. Detajled wiring diagrams. parts list, and illustra-
P.M. SPEAKIERS, Ali $2-3$ ohms. 6inn Plessey. 16:9. 8in. Plessey, 16/9. 10 in . Plessey 196.10 in . R.A. $26 / 9.10 \mathrm{in}$. Rola with trans.. 29/6. 101n. W.B. "Stentorian' 3 or 15 ohm type HF1012 10 watts. Highly recommended for use with any of our amplifiers, $£ 3 / 13 / 6$.
IIICROPIIONES. Crystal type, good quality. Recommended for use with our ampliflers. Hand type. $50 /-$ Stand type, with adjustable stand. $£ 6 / 19 / 6$.
(CAXIAL, CABLE, 75 ohms, in.. 7al. yard. Twin Screened Feeder, Bd. sard. Nar. spleAKERS. All $2-3$ ohms. Bin. R.A Field 600 ohms. $12 / 9.10 \mathrm{in}$. R.A. Field 1.000 or 1,500 ohms, $23 / 9$.

SELHNICM RECTIFIERS

I..T. Types	H.'T. Types II.
$6 / 12$ V. $\frac{1}{\text { a }}$, H.W. $2 / 9$	150 v. $40 \mathrm{~mA} \quad 3$
FW. Briage Tyme	250 v. 50 mA
$6 / 12$ v. 1 a. 4/9	$250 \mathrm{~V} .80 \mathrm{~mA} \quad 7 / 9$
6/12 v.1.5 a. $7 / 6$	RM4 250 v . 250 mA
$6 / 12$ v. 2 a . 8/9	11/9

R.S.C. MAINS TRANSFORMERS (GUALNTHED)

Interleaved and impregnated. Hrimaries 200-230-250 v. 50 efs Gereened TOP SIIROU'DED, DROP THROVGII $250-0-250$ v. 70 mA .6 .3 v. 2.5 a ... 1211 $260-0-260$ v. 70 mA .6 .3 v. $2 \mathrm{a}, 5 \mathrm{v} .2 \mathrm{a} . . .16 / 9$ $350-0-350$ v. 80 mA .6 .3 v. 2 a. 5 v. 2 a.... 1819 $250-0-250$ v. $100 \mathrm{~mA}, 6.3$ v. 4 a. $5 v .3$ a 2219 $300-0-300$ v. 100 mA .6 .3 v. 4 a. 5 v. 3 a $22 / 9$ $350-0-350$ v. 100 mlA 6.3 v. 4 a, 5 v. 3 a 22/8 $350-0-350$ v. $100 \mathrm{~mA}, 6.3$ v, $4 \mathrm{a}, \mathrm{C} . \mathrm{T}$. $0-1-5$ v. 3 a $\ldots \quad \cdots \quad \cdots \quad \ldots 23 / 9$ $350-0-350$ v. 150 mA .6 .3 v. 4 a. -5 v. 3 a $29 / 9$
$350-0-350$ v. $150 \mathrm{~mA}, 6.3$ v. 2 a 6.3 v. 2 a $350-0-350$ v. $150 \mathrm{~mA}, 6.3$ v. $2 \mathrm{a}, 6.3$ v. $2 \mathrm{a} \mathrm{a} ~$
5 v .3 a 31/6
 250-0-250 v. 60 mA. 6.3 v. 2 a. 5 v. 2 a. Midget type 21-3-3in. 350-0-350 v. $70 \mathrm{~mA}, 6.3$ צ. 2 a.' 5 v. 2a, 18/9 250-0-250 v. 100 mA .6 .3 v. 4 v. 4 a. C.T. 0-4 5 v. 3 a
$250-0-250$ v. $100 \mathrm{~mA}, 6.3$ v. 6 a, $\overline{5}$ v. 3 ă for R1355 conversion
$300-0-300$ v. 100 m.A. 6.3 v. 4 v. 4 a
C.T. $0-4-5$ v. 3 a
$350-0-350$ v. 100 m. 6.3 v. 4 a. .5 v. 3 a $27 / 9$
$350-0-350$ v. $100 \mathrm{~mA}, 6.3$ v. -4 v. 4 a,
C.T. 0-4-5 v. 3 a

350-0-350 v. $150 \mathrm{~mA},{ }^{6} 6.3$ v. 4 ä. 0-4-5 v. 3 a
425-0-425 v. $200 \mathrm{~m} . \quad$. 6.3 v. 4 a c'r.
6.3 v. 4 a. C.T. 5 v. 3 a. Suitable

Williamson Amplifier, etc.
450-0-450v. $250 \mathrm{~m} .4,6.3$ v. 6а, 6.3 v. 6 ä,
ELIBINATOLR TIEAVGEQIRMERS
Primaries $200-250$ v. 50 c's. 120 v. $40 \mathrm{~mA} 7 / 9$
$130 \mathrm{v} .50 \mathrm{~mA}, 6 \mathrm{~V} .3 \mathrm{a}$

II A MFNT TR ANSFOHMEIRS
FII. AMFNG IRANSFOHMEIRS
All with $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ primarjes 6.3 v All with $200-250 \mathrm{v}$. 50 c/s primarjes 6.3 v
$1.5 \mathrm{a}, 5 / \mathrm{g}: 6.3 \mathrm{v}, 2 \mathrm{a}, 7 / 6 ; 0-4-6.3 \mathrm{v} .2 \mathrm{a} .7 / \mathrm{g}$ 12 v .1 a, $711 ; 6.3 \mathrm{v}, 3 \mathrm{a}, 8 / 11 ; 6.3$ v. 6 a $17 / 6 ; 12$ v. 3 a or 2.4 v. 1.5 a, $1 \%, 6$

 All with 200-230-250 V. $50 \mathrm{c} / \mathrm{s}$ Primaries | $0-9-15$ | v. | 1 | a, $11 / 9: 0-9-15$ | v. 3 a. $16 / 9$ |
| :--- | :--- | :--- | :--- | :--- |
| $0-9-15$ | v. | 5 | a, $19 / 9: 0-9-15$ | v. 6 | 0-9-15 v. 5 a. 19/9; 0-9-15 v. 6 a, $22^{\prime} 8$ S1IOOTH1N((HOKTS

$250 \mathrm{~mA} 3-5 \mathrm{H} 1000 \mathrm{hms}$ 1119
150 mA
100 mA 10 H 175 ohms Potted
$80 \mathrm{~mA} 10 \mathrm{H} 350 \mathrm{ohms} . .$. 119 L.11.T. TIRANSFOIRMEIES
2.500 v. $5 \mathrm{~mA} .2-0-2$ V. 1.1 a, $2-0-2$ v.
1.1 it for V CR 97 , VCR517, etc. ... $36 / 6$

ORIPETV TR.ANSFOHSIERS
Nidget Battery Pentode $66: 1$ for
Small Pentode $5,000 \Omega$ to $3 \dddot{\Omega}$
Standard Pentode. 5.000Ω to 3Ω Standard Pentode, $7 / 8.000 \Omega$ to 3Ω MuIti-ratio $40 \mathrm{~mA} .30: 1,45: 1$, 6n: $1.60: 1$. Class B Push-Pull ... 5/6 Push-Pull 10-12 watts 6V6 to 3Ω or Push-Pull 150 -12 watts to match $6 \dddot{V} 6$ to $3-5-8$ or 15Ω
Push-Pull 20 watts. .. sectionaliy $16 / 9$ wound 6I. 6 . KT66. etc., to 3 or $15 \Omega 48 / 9$
Willamson type exact to spec.

CABINETS

any Cabinet to YOUR OWN SPECIFICATION. The one illustrated can be obtained Wannut, Oak or Mahogany for £18/15/0 or as a COMPLETE RADIOGRAM incorporating: 5 Valve Superhet Auto-changer and 10in. Speaker for $548 / 174$. 8 Valve Armstrong F.C. 48 Autochanger and 101n. Speaker for £62/14.4. 10 Valve Armstrong R. F. 41 Autochanger and 10in. Speaker for frol6/0. 10 Vave Armstrong 125 (C Autochanger and 101n. Speaker for es8/6/4.
Send 1-for complete Catalogue of Cabinets, Chassls. Autochangers and Speakers (refunded on receipt of order).
LEWIS RADIO CO.
120, GREEN LANES, PALMIRS GREEV LONDON. N.13. BOWes Park 6064

PULLIN

 test meter acloc 10,000 siv 21 ranges 100 Pa to 1000 V COMDLETE IN DIE-CAST CASE NITM TEST LEADS fulv guaranteed sent post faee for $£ 2.10_{\text {s. }}$ Deposit and ten fuyther monthly paryments of fl . cash price llons

SPARKS DATA SHEETS

Guaranteed and Tested Ratio Desigas. Hattery operated.
LO/31. 2-V. Portable. M/L. Waves. Compact. LO/30. 2-V. M/L Waves Speaker sisk. $\begin{array}{lll}\mathrm{LO} / 35 . & 4-V . T . R . F . ~ M / L \\ \mathrm{LO} & 27 . & 4-\mathrm{V} . \text { Allwaves. Good range. }\end{array}$ SIIORT=W'AVES. LO/43. 2-V. S.W. Receiver. Latest Plug-in Coils, Widely Praised. Data Sheets, $2 / 6$ each, plus $2 l$ d. Stam!. PORTABLI: Superhet 4-V. ML Raves. Range and tone. D/Sheet, 3 . plus 2 .

MULILIKIV 10 W, ADHLEFIEIK The Sparks version of a Tested practical
layout of this noted circult, with separate layout of this noted circuit, with separate
control Unit. $3 / 9$, Post Free. Control Unit. 3/9, Post Free.
SEND $2 \frac{1}{2}$. STAMA FOR LIST OF 34 Chassis and Componemts Supplicil. L. ORMOND SPARKS (P), 8, COURT ROAD. SWANAGE. DORSET

COMMCNICATIONS IRECEIVFR
R.1155. Another purchase from the Air Ministry enables us to once again ofter this superlative communications Receiver at prices to sult every pocket. A World Station Getter. this covers 5 wave ranges: $18.5-7.5 \mathrm{mc} / \mathrm{s} ., ~ 7.5-3.0$ mc / s., $1.500-600^{\circ} \mathrm{kc} / \mathrm{s} ., 500200 \mathrm{kc} / \mathrm{s}$. $200-75$ ke/s., and is easilly and simply adapted for mains use, full detalls. with eircuits of recelver being supplied. New in Maker's Cases and aerial tested,
Ditto but slightly used for demonstration purposes. £9.19.6.
Used. good condition, aerial tested, £7.19.6.
A.C. MAINS POWER PACK OLT1UT STAGE:-In black metal case enabling the recelver to be operated
immedately without any modification. immediately without any modification. can be supplied as follows:-Less Speaker. f5/10 ${ }^{\circ}$ IT DEDUCT 10 I- IT PURCHASING GETHER.
Please add carriage costs of $10 / 6$ for
Receiver and $5 /-$ for Receiver and 5/- for Power Pack.
THANSFOIRMEIRS.-Manufactured our specifications and fully guaranteed Normal primarles. $425 \mathrm{v},-0-425$, 250 ma. 4.3 v. 4 a.. 6.3 v. 4 a.. 5 v. 3 a. OVi. $50=$
350 v. $-0-350$ v. 160 ma. 6.3 v. 6 a. 6.3 v. 3 a. 350 v. $0-350$ v. 160 ma.. 6.3 v. 6 a., 6.3 v. 3 a.. 5 v. 3 a. (NLI 426 ; 250 v. 0 - 250 v. 100 ma.. 6.3 v. 6 a. 5 v. 3 a. ONL 32.6 . 350 v. 0 -
350 v. 150 m. a.. 6.3 v. 5 a. $0-4-5$ v. 3 a. (32/6. The above are fully shrouded upright mounting, 5.5 kV . E.H.T. with 2 windings of $2 \mathrm{v}, 1$ a., ONL, $22 / 6: 7 \mathrm{kV}$. E.H.T., with 4 V. a. ONI. 82/6. PLEASE ADD 2/COSTAGE FOR EACH TRANSFORMER. CRYSTALS.-British Standard 2-pin 500 $\mathrm{kc} / \mathrm{s}, 15 / \mathrm{F}$. Miniature $200 \mathrm{kc} / \mathrm{s}$ and $465 \mathrm{kc} / \mathrm{s}$. 100WEA.
the R IR CNTTTVPE 3.-Made for use with the R. I132A. this is a standard rack mounting job to match the receiver and is for
$200 / 250$ v. 50 -cycle mains with outputs of 250 v . D.C. 100 mA . and 6.3 v .4 amps. Fitted Wth H.T. current meter and voltmeter. this is a first-class unit, and can be used for a variety of receivers. Used, but tested work-
ing before despatoh. ing before despatch. ONi. 90 - (carringe. etc. $5 /-$. Connecting Cable with Jones Plugs for recelver and power unit. $10 /-$
AMEIKICAN IROTARI TRANSFOM-EiRS.- 12 v. D.C. input. output 255 v. 65 ma . Uiks. 12 v. D.C. input. output 255 v. 65 ma.. shaver from car battery, etc, ONLY $22 / 6$. rotary vane tyon and are ideal ex-R.A.F rotary vane type, and are ideal for hands men and model makers, etc. New and MODULATOR THIE (postage, etc. $27-$ - Contains fully smoothed normal A.C. Mains Power Pack, smoothed normal A. C Mains Pow'er Pack, 6.3 v. 5 a.. 6.3 v .250 mA . 5 v .2 a.. 6 valves SP61. 3 of EA50, 2 of EB34, and 1 of 5 Z 4 . BRAND NEW IN MAKER'S CASES. ONLY 47/6 (carrlage 7/6).
 time of equipment up to 9.999 hours. OperNEW IN MAKER'S CAR'TONS ONL Y 396 NEW IN MAKERS CARTONS. ONLY $39 / 6$. R.F. R 1355 or any receiver witha 6.3 v. supply These are the variable tuning units which use 2 valves EF54, and 1 of EC52. Type 26 covers 65-50 Mes. ($5-6$ metres) and Type 27 plete with valves and BRAND NEW IN MAKER'S CARTONS. ONLE 35/- each. long and isin. dlameter with ing. long spindle. Reversible poles. Will operate on 4. 6. 12 or 24 yolts D.C. ONLY 106,
CIIOKES. $10 H$ 60 $\mathrm{mA} . .4 / \mathrm{FH} 200 \mathrm{~mA}$. 7/6. 20 H 120 mA . 106 (post 1 - ea.)
F.S.D. SIZE AND TYPE

PRICE
$\begin{array}{lll}5 \mathrm{~m} . a . & \text { D.C. } 2 \mathrm{in} \text {. Flush square......... } \\ 100 & 76 \\ 12 / 6\end{array}$ $\frac{150}{500}$.. \quad D.C. $2 i n$. Flush square 500 ,. thermo 2in. Proj. circular 20 amps D.C. 2in. Proj. circular 40 amps D.C. $2 i n$. Proj. circular 30-0-30 amp. D.C. Car type moving iron 15 volis A.C. 24 in. Flush circ. mos. Iron $8 / 6$ All meters Brand New in Bahire's Cartons Amounts given for carriage refer to inland only.

U.E.I. CORPORATION,

138, Gray's tnn Road, London, W.C.I (Phone: 'TERwinus 7937 (Open imtil 1 pim. Situritass. We are 2
mins. from mins. from Ifigh IIOHBorti (Chaneery Lane Station)
जing's Cross.)

Working in the Dark? Use the 66 TTMANA SEARCHLIGHT INSTANT HEAT
 SOLDERINGIEON

Pat. No. 65715%.

- POWERFUL LIGHT incorporated in the
iron and stielded rom the ope rator - INDIVIDUAL SWITCH FOR THE Ling the ligh entirely independent of the soldering unit.
- READY FOR SOLDER-

ING IN 3 SECONDS

- SAFELY COOL IMMEDI TELY

SOLDERING IS COMPLETED

- SLENDER BIT can be beat to shape to reach corners, and with
o SILVER ALLOY TIP which never reeds furing or tinning. (3 supplied.)
-HIGE-POWERED SOLDER-
ING-capable of soldering 14 swg copper wire and making joints on to 20 sheet steel. - FLOW OF SOLDER TO THE WORK by maynetic

TEMPERATURE CONTROL at the Enger tips.

- ROBUST CONSTRUCTION.
- EASY TO EANDLE.

The ideal service engineer's soldering instrament. TP 60.90% of electricity.
TIME in rapid heatup and casy visibilit.
Mark.

KEVIROL LTD.

152, Upper St., London, N.1. CANonbury 4905.

TELEKIT SUPPLY

Chantry Lane, bromiey, Kient.
Please mention P.W. and enclose 6d, postage VALVES, NEW \& SURPLUS, GUARANTEED

OZ4	4:-	6RE6	6/-	12A6 1299	
IL4	5/6	6BR7	8/6	soile	
ILNu	led)	6B37	7/-	15 D 2	4.
	$31-$	6BW6	6/6	19 AQ 5	10/.
ISS	61-	6CH6	6/6	EF50	5/-
IT4	6/6	6 J 5	5/-	W77	$5 \cdot$
IU5	61.	6V6	7/-	1 B 24	35.
3 V 4	6/6	6x4	$6 / 6$	6AK6	6/6
5763	$8 /$	6X5	$7 /$	6AQ5	81.
6A8	8/-	705	6\%	6.SLT	\%/6
6AL5	6)-	7D8	6\%-	6 U 5	61.
6AMG	6/-	$7 \mathrm{H7}$	6/-	14 S 7	$7 /$
EAT6	7/6	9D2	$5 /-$	12AT3	$8 / 6$
6B8	61-	11D3	6/-	1301	$7 /$
tB.46	8/-	12BE6	6/6	50 C 5	8 -

BECKENITAM, KENT
THE SHOL' FOR THE CONSTIRUCTOR
NOW OPEN AT 104, CIIGH STREET.

H.A.C.
 SHORT WAVE EQUIPMENT

Noted for over 18 years for
S.W. Receivers and Kits of Quallty.

Improved designs with Denco colls : Onc-valve kit, Model "C", Price, $2 \overline{\mathrm{~s} / *}$
Two "

All Kits complete with all components, accossorles, and full instructions.
Before ordering call and inspect a demonstration receiver, or sead stamped, addressed envelope for descriptive catalogue.
"H.A.C." SHORT-WAYE PRODUCTS (Dept. TH), 11. Oli, Bond Street,

(4) 0 (503 5 (0)

f
Economy Quality Receiver
$S^{I R},-1$ don't think much . of Mr. Stevens's idea of connecting the screen directly to the oscillator anode in his "Economical Quality Receiver." The screen is floating at R.F. and at the oscillator frequency, and it is unlikely that the circuit will perform at its best under these conditions.

I should think it would be better to feed the oscillator anode in series with the coupling L3, taking the screen from the earthy and decoupled end of this coil. This simply means the use of a $0.1 \mu \mathrm{~F}$ condenser (or thereabouts), and with CI3 not now required, no change in the number of components is necessary.-S. A. Knight (Chelmsford).

Ex-R.A.F. Receivers

S

IR,-Here is some data about certain exR.A.F. receivers which may be of interest to readers:
R1132A.-I.F. $12 \mathrm{Mc} / \mathrm{s}$ (about), not $22 \mathrm{Mc} / \mathrm{s}$ as is popularly believed. The 6 J 5 output valve will operate a 5 in . speaker connected to the 'phone jack. In many sets the $25 \mu \mathrm{~F}$ electrolytic capacitor is dry and useless.
The A.G.C. delay voltage is large and a very strong signal is necessary to make the needle of the tuning meter move back.

If the set be converted for " 144 " or some frequency higher than about $130 \mathrm{Mc} / \mathrm{s}$, the mica 0.00 I $\mu \mathrm{F}$ condensers in the R.F. unit should be replaced by ceramics.

R1147A \& B.-The 1147A has acorn valves both in the R.F. unit and the two I.F. stages. They are foul of 954 and one of 955 . The 1147B has in the R.F. unit two EF54's (VR136) and one EC52 (VR137) as in the R.F. 26 and 27 units. The I.F. valves are EF50's. The I.F. is about $70 \mathrm{Mc} / \mathrm{s}$. The BFO is an audio-oscillator because a stable $70 \mathrm{Mc} / \mathrm{s}$ single-valve oscillator is extremely difficult to construct.

Both sets tune around $200 \mathrm{Mc} / \mathrm{s}$ and will therefore convert to Band III if required ($170 \mathrm{Mc} / \mathrm{s}$ to 216 Mc / s). The fibre insulation in the R.F. unit is very fragile in most sets due to age.
Type $25 / 73$ set (from TR1196).-1.F. $460 \mathrm{kc} / \mathrm{s}$.
The two 2 K resistors in the I.F. cans are R13 and RI6. and are anode stoppers. On conversion these resistors need not be removed. The socket board on the R.F. unit is for crystals (quartz, not germanium).
The BFO is permanently "on," and cannot be disconnected unless the A.G.C. coupling to the second diode of the EBC 33 is reconnected to the anode of the EF39 I.F. amplifier. This may, however, give too low an A.G.C. voltage (about 25 volts is required) and some other means must then be devised. R18 is very useful as an R.F. gain control. The EBC33 will not work a loudspeaker satisfactorily.-T. Woodgate (Chistehurst).

IF. Adjustment

$S^{I R}$,-I was recently in. formed that the latest practice is to "peak" I.F. at $470 \mathrm{kc} / \mathrm{s}$ instead of the more usual $465 \mathrm{kc} / \mathrm{s}$, this being done to help overcome the increasing interference on the M.W. I would be interested to hear any Practical Wireless readers comments on this. -R. Bayly (Edgware).

Universal Push-bulton 4

$S^{I R}$, -I was very interested in the design published in the August issue as it appeared to offer scope for what I had in mind. At the risk of boring you, I would like to say that I studied the circuit and then proceeded to adapt it to my needs. At once you will say that I did wrong and that one should never try and make a new design from an old one, but what I thought was that I did not need to buy a push-button unit, and I had four valves on hand. In place of the buttons I used three on/off switches, a line cord which I had available, and with trimmers and other parts from my spares box I built the set. Total cost was 5s. for two resistors and a new valveholder, plus a small sheet of plywood. When I switched on the set was perfectly stable and the local was soon tuned in. I have a job to know what setting to use for the selector switches as I get so many stations, but have settled on three to give me adequate reception.

I might mention that 1 am over sixty and that this was the first set I have constructed since prewar days.
Thanks again for a good design.-G. Franks (Edgware).

Licence Legality

$S^{1 R}$, -In " Comments of the Month" in your February issue, you state that " thousands of people have been fined and their convictions recorded for the non-payment of wireless licence fees which, as it now turns out, were illegally demanded. The proposed retrospective legislation should contain a clause ordering these convictions to be expunged from the records and the fines refunded."
In fact, the people to whom you refer were convicted and fined for operating a wireless receiver without a licence. The Attorney General stated in the House of Commons on December 10th, 1954 (Hansard Col. 1256), that "the (Validation of Charges) Bill relates to charges for licences. It does not relate to the necessity to hold a licence for a wireless receiving set. No question arises as to convictions, of those who have had wireless sets without licences." -T. A. O’Brien, Public Relations Officer, G.P.O., E.C.1.
"A New Formula?"
SIR,-I was interested in H. Dobson's letter on a new formula he had discovered (March issue). Although I have never seen it written in a text book, 1 have used it a lot at the technical college. In actual fact, it is just the numerical part of the standard equation: $x_{c}=\frac{10^{6}}{\omega \mathrm{C}}$ after it has been equated.
From $x_{c}=\frac{10^{8}}{\omega c}$ where C is in $\mu \mathrm{F}$ we get
$x_{c}=\frac{10^{6}}{2 \pi} \times \frac{1}{\mathrm{FC}}$
Equating $\frac{10^{6}}{2 x}=159,200 \simeq 160,000$
\therefore it can be said that

$$
\frac{160,000}{C F} \bumpeq \dot{x}_{c}
$$

which Mr. H. Dobson says is well within 1 per cent.
As a matter of fact, when using this equation to solve various problems I usually set my slide rule to just below 160,000, which cuts down errors later on in the problems.-Michael J. S. Peak (Willerby).
$S^{I R}$,-In reply to Mr. Dobson's query in connection with the equation $\mathrm{X}^{\mathrm{c}}=\frac{160,000}{\mathrm{fC}}$ for calculating, j^{2} capacitative reactance, the explanation relies upon assuming a value of 6.25 or $\frac{25}{4}$ for $2 x$ in place of the more accurate value of 6.28 .
The normal equation for deternining the reactance of a capacitor is written $X^{c}=\frac{10^{6}}{2 \pi \mathrm{fC}}$ where X^{c} is expressed in ohms, f in c / s and C in microfarads. This equation can be rewritten $\mathrm{X}^{\mathrm{c}}=\frac{10^{2}}{2 . x} \times \frac{10^{4}}{\mathrm{fC}}$ Substituting $\frac{25}{4}$ for 2π we immediately reach the form $\mathrm{X}^{c}=\frac{4 \times 100}{25} \times \frac{10^{4}}{\mathrm{fC}}=\frac{16 \times 10^{4}}{\mathrm{fC}}=\frac{160,000}{\mathrm{fC}}$ ohms.

The percentage error incurred in approximating $2 x$ as 6.25 in place of 6.28 is calculated as follows :

$$
\frac{6.28-6.25}{6.28} \times 100=\frac{.03 \times 100}{6.28}=\frac{3}{6.28}
$$

or less than .5 per cent.
It is indeed a useful mathematical "dodge." N. Craig (West Cumberland).

News from the Clubs

AMATEUR TAPE RECORDING SOCIETY
Hon. Sec. : P. N. Hollis, 143, Lymington Avenue, Leigh-on-Sea, Essex.
A LL correspondence concerning membership of the above A Society should be addressed to the assistant secretary, Mr. G. A. Widdup, 92, Halifax Road, Rochdale.
The Society was founded in 1952, the idea being to personally contact other members through the medium of recording tape. Members usuatly use the small 600 ft . reels, double track, and at a speed of $7 \underline{l n} \mathrm{in}$. per second; this gives a half-hour's recording. This type of reel usually costs 4 d . or 5 d . through the post and as one can realise, all manner of subjects can be recorded to each other, musical items, etc. There is no subscription, the only rules being as follows :

1. Members are requested to handle with particular care other members' tape and to return same, with recorded reply, within 10 dars.
2. Members are asked to carefully pack tape reels and always secure parcel with string.
3. Members should first contact other members by letter. advising tape speed, size of reel to be used, and whether single or double track recording contemplated.
We have at the moment only 12 active members, but, as many more people are either consiructing. recorders or purchasing commercial ones, no doubs membership will increase.
SOUTHEND \& DISTRICT RADIO SOCIETY
Hon. Sec. : J. H. Barrance, M.B.E., 49, Swanage Road, Southend-on-Sea, Essex.
INSTEAD of the ordinary meeting on Friday, February 4th, a visit to the power station at Barking was arranged for members of the Society through the good offices of Mr. E. V. C. Habgood, a committee member, and organised by the newly appointed social secretary, Mr. C. G. Collop.
The party was met at the entrance by Mr. R. M. Sephton, one of the station engineers. After signing the visitors book, the party was conducted over this gigantic steam generating station, the largest in Europe.

HAWICK RADIO SOCIETY'
Hon. Sec. : Geo. Shankie, 17, Ettrick Terrace, Hawick.
A^{T} the last two fortnighty meetings Mr. Vinnicombe, GM8Ry, gave a talk on "Ohms Law in Radio" and Mr. Horne"a talk on "Capacitance and Inductance in Radio."

The Club paid a visit to the meeting of Berwick Radio Society on 6th February. On 27th March Berwick Radio Society are visiting the above Sociery and any visitors will be made very welcome.

READING RADIO SOCIETY

Hon. Sec.: L. A. Hensford (G2BHIS), 30, Boston Avenue, Reading, Berks.
O^{N} Saturday, 2 , inh March, a representative from the Engineer-in-Chief's department of the G.P.O. will give a lecture on radio interference. The Society's Annual General Meeting is taking place on 12th March and their annual dinner is being held at the White Hart Hotel on the previous evening.

ROMFORD AND DISTRICT AMATEUR RADIO SOCIETY

 (G4KF-P)Hon Sec. : N. Miller, 55, Kingston Road, Romford.
AT the recent A.G.M. the officers elected were : Chairman, F. A Simmons (G2FWJ) : Treasurer, E. Boxcer (G3AUG): Hon. Sec.. N. Miller ; and a committee consisting of G3EBF: G2BVN and G. Creevy.
Future lectures inc'ude : "Transistors," by J. Missen. B.Sc., of the G.E.C. Research Laboratories, on March 22nd : and " TVI Suppression," by Louis Varney, A.M.I.E.E. (G5RV) on April 12th.
Work has commenced on NFD gear and a workshop is being fitted up at the Club H.Q.
New members and visitors will be welcomed at the weehly meetings held on Tuesdays at 8.15 p.m. at R.A.F.A. House, 18. Carlton Road, Romford.

COVENTRY AMATEUR RADIO SOCIETY

Hon. Sec.: J. H. Whitby, II, St. Patrick's Road, Coventry. FORTHCOMING programme at 9, Queen's Road: 14th F March, "Radio Aids to Navigation-Part I", by G3RF: 28th March, "Radio Aids to Navigation-Part II," by G3RF ; 11 th April, no meeting ; 7 th April, Night on the Air ; 25 th April, "Civil Communications," by G5BJ. Sth May, Night on the Air: 9th May " Receiver Servicing"" by G3HDP : 23rd May, "Frequency Modulation," by G6WH : 2nd June, Night on the Air : 6th June, Junk Sale : 20th June, "V.H.F." by G3BAK : 4th July, Lecture ; 7th July. Night on the Air.

The Editor will be pleased to consider articles of a practical nature suitable for publication in "t Practical Wireless." Such articles should oe wortten on one side of the paper only. and should contain the name and address of the sender. Whilst the Editor does not hold himself responstble for manuscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed. The Editor. "Practical Wireless," George Neures, Led.. Touer House. Southampton Street. Strand. W'. C.2. Owe oive no warranty that apparatus described in our columns is not the stubject of keep our readers in touch with the latest developments, we Dive no warranty that apparatus described in out columns is not the subject of letters patent.
Copyright in alt drawings, photographs and grticles published in "Practical Wireless" is specifically reatved throughout the countries slgnatory, to the Berne Convention and the "C.S.A. Redroductions or imitations of any of these are therefore expressiy forbtdden. "Amatevr Wiretess." Practical

RECEIVERS \& COMPONENTS
RADIO COMPONENT SPECIALISTS New boxed Valves all guaranteed
 $\begin{array}{cccccc}9 /-; & 6 A M 6 . & 9 /-; & 6 A T 6 ; 10 / G ; 6 J 5 . & 7 / 6 ; \\ 6 K 8, & 9 /-; & 6 B G 6 . & 12 / 6 ; & 6 P 25 . & 15 /: \\ 6 Q 7,\end{array}$ 9/6; GSL7, $9 /-:$ 6SN7, $11 /-; 6 U 5(Y 63)$ $8 /-; 6 \mathrm{~V} 6,8 /-; 6 \times 5,9 /-; 12 \mathrm{AT7}, 10 / 6$ U25. 12/6; 6AC7. 8/6; 6C9. 12/6 $\begin{array}{lll}35 L 6, & 10 / 6 ; 80.9 /: ; & \text { EA50, 2/:; EB91, } \\ 7 / 6 ; & \text { EBC33. 9/6; EF39, 9/: } \\ \text { EF50 }\end{array}$ Equip. 5/6; Syl. Red 10/6; EF91,
g/a EY51. 12/G; PY82 10/6; SP61. 8/6; U22, 9/6; ECL80. 12/6; EF80 10/6; 12AX7. 10/6; ECH42, 12/6; MU14. 9/6; EFō5. 12/6; huge stock B.V.A. Valves at i951. low tax prices. Brand new Plessey 3-sjeed Autochanger Mixer Unit for 7,10 and $12 i n$. records. Twin Hi-Fi Xtal Head with Duopoint sapphire stylus; plays 4,000 records: sprung mounting: superb quality: bargain price $9 \frac{1}{2}$ gns., post free. VCR97 Tube, tested full picture. e2. Coax Cable. 80 olim standard tin, dianl.. 8d, ya.; semiair spaced, 9d, ydide. long spindle. all values, 12 m. guar. less sw^{*} 3/\%, S.P. sw. $4 /-1$ D.P. sw, 4/9; 10 olmn w / u pot. $3 / \cdot$, B.E.C. $2 / 3,16 / 450 v$ B.E.C. $3 / 6,16+$ 16/450v B.E.C. 5/6, 8+8/500v Dub. 4/6, 8+16 B.E.C. $5 /=25 / 25 v$ Hunts
 2/6. Solder, M'core, $60 / 40$ grade, 16 g. $4 d$. yd. All-wave Radiogram Chassis. 3 wavebands, 5 valves.
ECH42. EF41. EBC41, EL41. EZ40, brand new and guaranteed, with 10in. P.M. Speaker, A.C. $200 / 250 v$. short-medium-iong-gram.. output 4.2 watts, chassis $13 \frac{1}{2} 5 \frac{1}{2} \times 2 \frac{1}{4} i n .$. 10ln. x 4itn. horizontal or vertical. aligned and calibrated. Chassis isolated from mains. Price \&10/15/-; carriage and insurance, 4/6 (without
loin. speaker, $\operatorname{si/15/-;}$ carr. and $\begin{array}{lll}\text { loin. speaker, } & \text { e9/15/-; carr. and } \\ 4 / 6) . & \text { Whitehorse Rd. }\end{array}$ West Croydon. ¡THO 1665.1 Buses 133 or 68 pass door. Post free. Open all day Saturday. Lists free.
MIDDLESBROUGH. Largest stocks on N.-East coast. Radio/TV components. FMI Kits. Gram. Cabluets. Tape Decks. Leak Amplifiers. Valves. etc.
Callers only. PALMERS. 106. NewCallers only. PALMERS. 106. New-
port Road. IPhone: 309 s .1 port Road. IPhone: 3093
SPEAKERS, $8 \mathrm{~m} . .12 / 9$ P.M. Standard, $3-5$ olims or with O.P. Transormer. 15/9; used. but guaranteed: Baffle Board od, extra. Extension Speaker Cabinets, $9 / 9$, to fit $8 i n$, speakers. repolished, baffe board $\begin{array}{lll}\text { fitted. post } 1 / 9 . & \text { DUKE \& CO. } 621 . \\ \text { Romford } & \text { Road, } & \text { London. } \\ \text { E.12. }\end{array}$ (GRAford 667%)
R.F. UNITS Types 26 at $27 / 6,25$ at 15/-, 24 at 11/-i brand new in origi-
 Moseiey, Blrmingham.
RADIO UNLIMITED, offer new boxed valve Sets. 6 b6. 6K7. EEC33. 6K8, 524, 3St. $28 /$ se set. Spectal this 1S5, 1R5, 3St, 28/- set. Spectal this 6BE6. 6V6. 6F6, $7 / 3$ each. EF36, EL33. EF36. EBC33, 1 T4. 155 . all at $6 / 6$ each: full list available. Coll-
packs. $3-w a v e . ~ L . ~ M, ~ a n d ~ S . ~$
$23 / 6$: packs. $3-w a v e, ~ L . ~ M, ~ a n d ~ S . ~$
T.r.f. Coils. Med. and L.. 41 pair: all R.E.P and Teletron Colls in
 $450 \mathrm{VW} .$.
$8 \mathrm{mf}, 2 / 9 ; 16 \times 16 \mathrm{mf} .4 / 6 ; 32 \mathrm{mf}$
 doz.: 3-stage Amplifier AC or $A C /$ DC. c/plete kit. incl. valves, 59/6; $\begin{array}{llll}\text { Wired/tested. } 75 /-. & R A D I O & U N- \\ \text { LIMITED, Elm Rd.. London, E. }\end{array}$ (KFY 4813.)
EVERYTHING for Radio Construc tors List from SMITH. 98. West tors List from SMI
End Road. Morecambe.

SERVICE SHEETS, T.V. and Radio, over 2.000 models, sale or hire; Valves and Components. S.A.E. with enquiries. W. J. GILBERT. 24, Frithville Gardens. London. W. 12.
OSMOR for really efficient Coils. Coilpacks and all Radio Components as spectfied for many "Practical Wireless" circuits. See advert. on page 235 for free circuits offer or send 5d. (stamps) to OSMOR RADIO PRODUCTS LTD. IDept. PC4 P1341 418. Brighton Road, South Crovdon. (Tel.: Croydon 5148/9.)
WINWOOD FOR VALUE-Baker 12in. P.M.. list 5 gns., 82/G; Elac 8in. P.M. list 29/- 23/6: Collpacks, L. M. aind S. 23/G; Fil/trans, 20) $240 \mathrm{v}, 6.3 \mathrm{v}$ at $1.5 \mathrm{~A} .5 / 9$; O/trans. M14get. $4 / 3$. Minlature. $4 / 6$; Sind Pent 4/9; M/ratio-P/pull, 6/-; Card/tub $8 \mathrm{mf}-500 \mathrm{v} .2 / 3 ; 500 \mathrm{~K}$ V/Cntrls. 1/-; X/tal Diodes, 1/6; Circuit and data for 3-stage Amplifier, AC or AC/DC, 1/3: 5-valve $P /$ pull Amplifier. 16. $1 \frac{1}{2}$ d. stamp for full list. WINWOOD. 12, Carnarion Rd.. Leyton, E. 10. SEND FOR. LIST Auto-record Changers, brand new, now a a ailable; Metal-cased Power Suppiy, 200 vdc 30 ria and $6.3 v^{1} 1 \mathrm{amp}$ fully smoothed with metal rectifier. 25/-i Battery Charger. 6 v 1 amp $25 /-$ or ditto 6 v and 12 v . $30 /-$ Filament Trans. RADIO. Gladstone Place. Newton Abbot. Devon
LOUDSPEAKEAS repaired promiptly Bullingdon Rd.. Oxford.

SITUATIONS VACANT

The engagement of persons answering these advertisements must be made through a Local Office of the Minisiry of Labour or a Scheduled aped $18-64$. inclusize or apphicamt is a minciusive. unless he or she. or the employment. is ercepled from the provisions of the Notificalion of Vacancles Order. 1952.
BERRY'S (SHORT WAVE) LTD. have vacancies for Sales Assistants with good general radio knowledge; interesting work: permanency. Write giving details of experience. age and salary required, to 25 , High Holbort, London, W.C.1.
T/V AND RADIO A.M.Brit.I.K.E. City and Guilds. R.T.E.B. Cert.. etc 9 " "no pass-no fee" terms Over 95% successes. Details of exams. and lome training T / V : write for 144-page handbook-free. B.I.E.T (Dept. 242G). 29, Wright's Lane London, W. 8 .
SKILLED GRAFTSMEN required by Government Department (Eastcote area) for construction or wiring in electronics laboratory; interest in. and some experience of radio or audio frequency equipment essential. Opportunities exist for permanent and pensionable posts. Basic pay $£ 7 / 10 / 4$ plus merit pay up to $£ 2 / 10 /$ per week, according to skill and
experience
Grite: Government experience. Write Government
Communications Headquarters. Room 2/0805. Eastcote Road, Ruislip.

Mictdlesex.

A.M.I.Mech.E., A.M.Brit.I.R.E., City and Gullds. etc on no pass-no fee" terms; over 95% successes. Fot details of exams. and courses in all branches of engineering building. fyee. W.I.E.T. (Dept 242B). 29, Wright's Lane, London, W.8.

BUILD A DENCO F.M. Feeder Unit. F'ul! point to point wiring diagrams available separately, price $1 / 6$. All components can be had separately, price of a complete set of components. less valves. \&t/10.. SERVIO
RADIO. $156 / 8$, Merton Ra. Wimbledon.SW.19. ILIBerty 6525.)
ELECTROLYTICS, capacity, voltage size. type of mounting, price. post paid. 8. 450 v .1 X 2. clip. $2 / \cdot ; \mathrm{E} 0$. 12 v . ${ }^{\frac{3}{5}} \mathrm{x} \frac{15}{5}$, tag, $1 / 6 ; 150$. 25 v , wit x $2 / 3 ; 40+40.275 \mathrm{v} .1 \mathrm{x}$. 2 . clip. $3 / 3$: $24+24+16350425 v$. 18 x 2 . cip.

 clip. $4 /-12,450 / 525$. x is. tag.
 $1.000+1.000$. $6 \mathrm{v} .1 \mathrm{x} 3 . \operatorname{Lug} 33 ;$ all vilicans. Some with sleeves mar*ed ages stock surge wanere mat of 3 Components conprising ine Set of 3 Components ine output wans. With E.H.T. Winding to give 7 KV . using EY51 Cheater Kinding for EY5l also inciudedl. and fitted with width control. Scanning coils. low impedance line and frame. focus coil high (10.0?0 ohms). Set of 3. 42/. plus 2/- postage. Diagram of line trans. supplied Mains Trans. PRI 0-210-240. SEC. $250-0 \cdot 250 \mathrm{v}$, 80 ma : $6.3 \mathrm{v} .25 \mathrm{a}: 6.3 \mathrm{z} .6 .6 \mathrm{~N} .12 / \%$ Loudpost paid. RADIO CLEARANCE LIMITED. 27. Tottenham Court Road. London. W.1. ITelephone: Museun 9188.)

EDUCATIONAL

MERCHANT NAVY Wireiess School Overseas House. Brooks' Bar. M/cr 16.
THE INSTITUTE of Practical Radio Engineers Home Study Courses are suitable coaching text for I.P.R.E and other qualifying examinations. Fees are moderate. Syllabus of seven modern courses post free from SECRETARY. I.P.R.E., 20, Fairfield Road. London, N. 8.
SCHOOL OF MARINE Radio and Radar' (A.S.'T.), Hainble, Southampton. approved by Ministry of Education. offers courses for Merchant Navy Radio Officers. M. certs. Marconi Scholarships avail abe. Apply COMMANDANT. quoting

SEE THE WORLD as a Radio Ollicer. Short training: low fees: scholarships: boarding/day students Stamp for prospectus. WIRELESS COLIEGE. Colwyn Bay
wireless.-Day and Evening Class instruction for P.M.G. Certificate of Proficiency and Amateur Wireless Licence. Morse instruction only if required. also postal courses. Apply B.S.T. LTD. 179, Clapham Rd. London. S.W 9
MERCHANT NAVY and Air Radio.-
Here is an opportunity to train as Radio officer. The big liners are open to you but you must qualify for the PM.G. Cerlificate. Day, Evening and "Radiocerts" postal courses Estd. 30 vears; s.a.e. for prospectus from Director, THE WIRELESS SCHOOL, 21, Manor Gardens, London, N.7. \{Tel.: ARC. 3694.1
FREE: Brochure giving detaits of Home Study Training in Radio Television, and all branches of Electronics. Courses for the Hobby Enthusiast or for those aiming at the A.M.Brit.I.R.E.. City and Guilds R.T.E.B. and other Professional examinations. Train with the college operated by Britain's largest Elec tronics organisation: moderate fees. Write to E.M.I INSTITUTES, Dept. PW.28, London, W.4.

MULLARD \& OSRAM Amplifiers; Soundmaster" Tape Recorder: all speufied components stocked. Stamp detalls. FRANKLIN \& HALL, 371. Hadant Road. Farlington, Portsmouth.

THE MULLARD AMPLIFIER, ready built and tested. £12 plus $10 /-p$. and p. \quad Rll55 Receivers, as new. aerial tested. $£ 10$ plus 10 - p. and p. D. P. MILLEN, 95, Kingsway, Luton, Beds.

ALUMINIUM CHASSIS made to rour requirements; 16 \& 18 gauge: any quantity. large or small. We will be pleased to quote MACHINE CONTACTS. Building 336. Furm A:rport, Christchurch. Hants.

B00KS

I.P.R.E. TECHNICAL PUBLICATIONS. 6,500-Alignment Peaks for Superheterodynes. $5 / 9$, post free. Data for constructing TV Aerial Strength Meter. 7/6. Sample copy, The Practical Radio Engineer. quarterly publication of the Institute, 2/-; membership and examination data, 1/-; Secretary, I.P.R.E., 20, Fairfield Rd., London, N. 8.

MAKING YOUR OWN? Telescopes,

 Enlargers, Binoculars, Microscopes. Projectors, or, in fact, anything that needs lenses. Then get our booklets, - How to use Ex-Gov. Lenses \& Prisms." Nos. $1 \& 2$. price $2 / 6$ each: also our sterco book, "3-D Without Viewers." price 7/6. Comprehensive lists of lenses, optical, radio and scientific gear, free for s.a.e. H. W. ENGLISH. Rayleigh Road, Hutton. Brentwood, Essex.HIGH FIDELITY-Bel FM VHF receivers, from fs, complete and guaranteed. Full constructional kits. £7/5/-, coilsets and separate parts. Lists, $1 /-$ New . Mullard " point four per cent. anyliffer. \&19. BEL SOUND PRODUCTS CO., Marlborough Yard. Archway. London. N.19. INr. Archway Northern Line, 25 mins. West End.) Tel. ARC. 5078.

VALVES

ALL TYPES of Valves required for cash. State quantity and condition. RADIO FACLLITIES LTD., 38 , Chalcot Road, N.W.1. IPRImrose 9090.)

WANTED, Valves 5Z4, ECL80. EY5l. EF80, KT66, 6U4GT, KT61, and all T.V. types; also P.M. Speaker Units. $3 \frac{1}{2} \mathrm{in} ., 5 \mathrm{in} ., 6 \frac{1}{2} \mathrm{in} . \mathrm{Bin.} .10 \mathrm{in.:}$ prompt cash. WM CARVIS L「D., 103. North St.. Leeds, 7.

VALVES, New, Tested and Guaranteed. Matched Pairs. KT66, 25i6V6G and GT. 17/- per pair; 6 K 8 G . 6Q7G, 6SN7GT. 6SL7GT. 6AT6, 6BE6. 6BR7, 6BS7, 6SA7. 6SJ7GT, 6SK7, 6X4. 6X5GT, 8/-; 1R5. 1T4, 1S5, 3V4 6AM6, 5763. Y63, 6U5, 7/6: EBC33, 5U4G, KT33C, 12 AT 7 , $8 / 6 ;$ PL81, 5U4G. KT33C, 12AT7, 8/6; PL81,
PL82, ECL80. 1H5. 2N5, 10/6; EF92. PL82, ECL80. $1155 . ~ 1 N 5, ~ 10 / 6 ; ~ E F 92 . ~$
W77, $4 / 6 ;$ UL41. EBC41, 9/6; 5U4G. 7/9; p./p.. 6d. Coax cable. stranded. 75 ohms tin. 6d. yd. R. J. COOPER. 32. South End, Croydon, Surrey. (CRO 9186.)

VALVES WANTED, EB91. EF80 ECL80, PL81. EY51, and all TV. types 5Z4G, 6Q7. etc., etc. Brand new only, prompt cash. Send us your ollers, RADIO HAM SHACK LTD.. :55. Swan Arcade, Bradford, 1.

ONE OF THE CHEAPEST S(gua) Genewators available, covers 170Kc/s to $1.600 \mathrm{Kc} / \mathrm{s}$, in 2 ranges. Internaliy to $1.600 \mathrm{Kc} / \mathrm{s}$. in 2 ranges. Internaliy modulated. powered by internal
battery; su:table for aligning all I.F. battery: suitable for aligning all I.F
cets. and trimming and tracking complete with instruction leaflet. in maker's box, 75/., post 1/6. SERVIO RADIO, 156/8, Merton Rd., Wimb:edon. S.W. 19.
T.V. 12in. CHASSIS, 97/6. Complete Chassis by famous manufacturer. easily adapted to Channel 3; R.F. E.H.T unit included; drawing free: easily fitted to table or console mode!. Owing to this Chassis being in three separate units power-sound and separate units power-sound and Chassis is less valves and tube. but see our catalogue for cheap valyes Our $£ 5$ Tube fits this Chassis. List of valves by request: carr. $5 /-$ Per. sonal shoppers can see a demonstra tion model working. DUKE \& CO. 621. Romford Rd., London, E. 12

HOME LAB. Signal Generator. $\overline{\mathbf{E s}}$ unused. 22, Spring Gids., Woodford Essex.
WALNUT Radiogram Cabinets o distinction: stamp details. R. SHAW 69. Fairlop Rd., E.11.

EX-W.D. unused Fluorescent Light ing Sets for 12 and 24 v D.C. input 230v A.C. output: Rotary Converter Choke. P.F. Condenser Leak Trans former, for 85 watt Sodium Lamps the whole, enclosed in metal box e5 to clear PHILPOTT'S Fountain Sq., Fenton, Stoke-on-Trent.

PUBLIC ADDRESS SYSTEM, Control Panel. 21 Speakers, Auto Starter 5 Microphones, Record Player and spares, etc. Offers invited. Ex "Queen Mary," large Electric Fans. 15/., LEWIS, 44, High St., White chapel, E. 1.

ALFRED PADGETT
40 MEADOW LaNE, LEEDS, 11
Established 21 years

600 IIS4.TX.-Brand new, complete with valves and meters. 17/6, carriage 8/-
200 R.A.F. RACK TYPE AMPLIFIERS, -For PX25 valves in push-pull in Class A Less valves and meter, otherwise complete. With 200-230 v. power supply. Bargain Price, 32/-. carriage 8/-
1125 SETS complete with two 8D2 valves 6/6, carriage 2/4
BRAND NEW 62A TUBE UNIT.Complete with EF5Os and picture-tester VCR97 tube. $\mathbf{6 4 . 5 . 0}$, carriage $8 /-$
500 SMALL U.S.A. ELECTRO-MAG. TYPE MIKE.-Complete with on/off switch, $1 \frac{1}{2} \mathrm{in}$. diameter. 2/6, post 8d
2,000 8D2 VALVES, - $/$ /- each, $10 /$ - per dox. Post 6d. - Dozen lots post free.
2,000 954 VALVES.-1/3 each, $12 /$ - per doz. Post 4d. Dozen lots post free. WAR SURPLUS 15 mfd .750 volt working condenser, 1/6, post 1/3.
G.P.O. MULTI-CONTACT KEY SWITCHES.-New. Removed from units. 2/6, post 8 d .
SMALL 5-1 INTER-VALVE TRANS-FORMERS.-9d. each. post $6 d$.
Sinall Wirewound PRE-SET POTS. Ideal for extension speaker, etc. 1/- each post 21 d .
SMALL BAKELITE TOGGLE SWITCHES.-6d., post 2!d. 5'- doz. post free.

ASTIRAL. RADIOPRODUCTS
TRF colls as used in original Models ALL DRY 3.PUSH BUTTON 4, etc. $6 / 6 \mathrm{pr}$., post 6 d . DU' AE, WAVE HF Coil as used in Summer All Dry Portable, Modern 1-valver. Modern 2 -valver. etc., etc. $4 / 3$ each. post 3 d .
K" colls for AC BAND PASS 3, 3/3 each 6 d . postage on set. FRAME Aeriais M.W. litz wound. 5/- each. post 4d.
Hooklet in. 1 Dio fully illustrated 32 page booklet, crystal set, 1. 2, \& 3-valvers, simple wiring instructions, etc. All Dry Receivers. price $2 /$-, post 3d. List 11d, stamp
82, Centurion Road, Mrighton, Sussex.

GRAM-PAK AMPLIFIERS

Fits neatly inside your record player, leaving room for speaker. Dimensions $10 \mathrm{in} . \times 3$! in. $\times 2 \mathrm{in}$. 4 watts quality output. Suitable for all speakers and with standard or L.P. pickups. Built-in power pack, 200-250 v. A.C. De-luxe model has separate bass and treble controls.

6d. stamp brings illustrated details.
GETTING POOR T/V RECEPTION ? If so you must read our display advert in "Practical Television." Our new Mark III cascode signal booster will clear your trouble. Available for all channels complete with built-in power pack 200-250 ч. A.C., in crackled stcel case.

Price 15.5.0 Complete
6d. stamp brings illustrated details.
ELECTRO-ACOUSTIC LABS

UVIVEIESAL SITUNTS 1\% accuracy for any 1 mA . or $500 \mathrm{\mu A}$ meter. Only one simple adjustment to make. no calibrating meter adjustment to make. no tructions. Guaranbeing required. 5505 (mA .) covers 1,525 100 and 500 mA . $\mathrm{S} 51(1 \mathrm{~mA}$. covers 2, $10,50$. 200, mA and 1 amp. Price 15/-.
Shunts for all meters with ranges to your specification. Reasonable prices. Please give meter details, ranges required and accuracy.
D.C. NUITIXIETER KIT For $500 \mu \mathrm{~A}$ meter. Complete kit of sixi\% High Stability Resistors, three other resistors, Shunt S505, Potentiometer and instructions, 26/-. A.C.ID. MLLTIMETERKIT.-As above. but with 4 extra 1% High Stability Resistols and, Westinghouse Meter Rectifier to give 4 AC. volts ranges. $45 / 6$.

18-way, Single Pole, Switch, 7 /-
Wegtinghouse Meter Rectifiers, with 1° multupliers for four A.C. voits ranges and circuit. For $500 \mu \mathrm{~A}$ or 1 mA meter, 19/6,
RESISTANCE BOX STANDARDS.Twelve 0.5\% Wirewound Resistors. 1, 2, 2, $5,10,20,20,50,100,200,200$, and 500 ohms giving i to 1.110 ohms in 1 ohm steps, 301 .
BRIDGE RATIO ARMS.-Nominal 100 ohms. Ratio 1 to 1 . Ratio accuracy 0.01% $5 / 6 ; 0.1 \%, 4,6: 1 \% .3 / 6$.
PIEECISION RESISTORS.-Any value 1 to 1,000 ohms. accuracy 0.5%. Eureka wound on strip. 2/9.
C.ALIHR.ITION SERVICE FOR RESISTANCE CAPAGTTY BRIDGES and sigNaI GENERATORS.-Reasonable Charges.

58, Wakefield Ave., Hull.

CR5O BRIDGE

Measures capacitance from 10 pfd to 100 mFd and resistance from 1 oh m to 10 megohms in four. teen ranges. Neon leakage test for condensers. Operates from 200/250 volt A.C. mains. Indication of balance is given by magic eye. Specially designed for bench use, with case and panel of steel finished black wrinkle. Complete with all valves and instructions. PRICE 66/19/6, plus $4 / 6$ carr./packing. Hire Purchase : 63 deposit and four monthly payments of 22/-.
SIGNAL GENERATOR, $\$$ GSO, covers $100 \mathrm{kc} / \mathrm{s}$ to $80 \mathrm{Mc} / \mathrm{s}$ in six bands on fundamentals, either unmodulated or internally modulated with 400 cps. Uses two type $Z 77$ valves and SenTerCel rectifier and double wound mains transformer, in olive green metat case with carrying handle, size $12 i n . x$ Bin. $x 4 i n$. deep. Front panel of green perspex engraved in white. We claim this to be the best value on the market at only $£ 7 / 19 / 6$, plus $6 /-$ carr.ipacking.
Please send stamped, addressed envelope for illistrated leaflets by return post.
Obtomable from sole London stockist : Charles Britain (Radio), Ltd., II. Upper Saint Martins Lane, W.C.2, or direct from the manufacturers-

GRAYSHAW INSTRUMENTS
 54, Overstone Road, Harpenden, Herts.

Free To Ambitious
 This 144-page Book
 Engineers!

Have you sent for your copy?

- ENGINEERING OPPORTUNITIES '

is a highly informative guide to the best-paid Engineering posts. It tells you how you can quickly prepare at home on "NO PASS-NO FEE " terms for a recognised engineering qualification,outlines the widest range of modern Home-Study Courses in all branches of Engineering and explains the benefits of our Employment Dept. If you're earning less than $£ 15$ a week you cannot afford to miss reading this unique book. Send for your copy to-dayFREE
REE COUPON Please send the your free li4-bage
ENCINEERNG OPPORTUNITIES "

NAME

ADDRESS
Subjeci or Exam.

Britiah Institute of Engineering Technoloey: 4098, College House, 29-31, Wright's Lane, Kensingicn, W.8.

WHICH IS

 YOUR PET SUBJECT?Mechanical Eng. Electrical Eng. Civil Engineering Radio Engineering Automobile Eng. Aeronautical Eng. Production Eng. Building, Plostics, Droughesmanship Television, etc. GET SOME LETTERS
AFTER YOUR NAME! A.M.I.Mech.E. A.M.I.C.E. A.M.I.P.E. A.M.I.M.I. L.I.O.B. A.F.R.Ae.S. B.Sc. A.M.Brit.I.R.E. CITY \& GUILDS GEN. CERT. OF EDUCATION etc., etc.
BIET

The Walk-around Shop

all these fine offers are on display at PROOPS snos.

LANgham 0141
LTD., 52 Tottenham Court Road, W.I.
TEST SET 87, incorporating 200-250 v. 50 cycle Power Pack. Frequency $150-300 \mathrm{Mc} / \mathrm{s}$. Easily altered to T.V. Pattern Generator or Wide range R.C. Audio Oscillator. Size : 23 in . $x 8 \frac{1}{2} \mathrm{in}, x 10 \mathrm{in}$. Complete with 8-VR65s, 5Z4G and RL18. Price
$\mathrm{SF}_{10 \%}^{\mathrm{Crg}}$
HYDROMETERS. Ball type No. I. Cat. No. ZB 11065. Price 1/6 P.P
TAPE SPOOLS, Clear Plastic. 1.200 ft . Price $2 / 6$ post paid. HAND MICROPHONES. Moving coil No. 7. New. complete with lead and plug. 7/6. Post $1 /-$.
TRANSMITTER/RECEIVER. New Zealand Type ZCI, Mark II. Frequency $2-4$ and $4-8 \mathrm{Mc} / \mathrm{s}$. Complete with valves. (7) $6 \cup 7 \mathrm{G}$, (2) 6 V 6 GT , (1) 6 K 8 G ,
55.19 .6 Crg
(1) 6Q7G. Less vibrator pack.
oving coil, 3 mA .
(1) AIR THERM
meter movement
(2) BOOST GAUGE (Barometric Capsule).
(3) TURN AND SLIP INDICATOR. Air operated gyroscope. All three instruments for 9/6 P.P.
WIND FINDING ATTACHMENT for A ir Speed Indicator. Comprising two small counters. Two Desyn-type follower motors. (ideal for an antenna direction indicator.) Size of motors, $\frac{1}{2} i n$. long. lin. diam., 6 -way terminal block. Yaxley type switch. Housed in metal outer case, fitted with plastic 360 -degree dial. PRICE 8/6 post paid.
HEADPHONES. Moving coil. New complete with headband, ear pads, lead and plug. $7 / 6$ per pair. Post $1 /-$
HEADPHONES. High resistance. (4,000 ohms) balanced armature. Ref. : ZA. 29475 . New and boxed, 15/- per pair. Post $1 /-$ VALVES. 713A -V.H.F. Triode. (Door Knob type.) 9/- P.P. GL446A Disc Sealed Triode (Lighthouse Tube). 25/- P.P. 6SQ7 Double Diode Triode 7/- P.P. 6SN7GT, 6SL7GT a 6/9 ea. P.P. 807 (American, boxed), 8/6 P.P.
Note: Orders and enquiries to Dept. "P."
OPEN ALL DAY SATURDAY Shop hours 9 a.m. to 6 p.m

62аK

This Month's Harguins

62aK
METERS. $-2 \frac{1}{2} \mathrm{in}$. Scale Flush Mounting. $0.10 \mathrm{~mA}, 0-30 \mathrm{~mA}$ and $0-100 \mathrm{~mA}^{2}, 12 / 6$ ea. 2 in . Scale Square Flush, $0-50 \mathrm{~mA}$, $0-150 \mathrm{~mA}, 0-3 \mathrm{~A}$ Thermo, $0-20 \mathrm{v}$. d.c., and $20 / 0 / 20 \mathrm{~A}$. d.c., $7 / 6$ ea. 2lin. Scale Proj. Type Thermo, 0-15 A., 7/6 ea. 2 in . Scale Round Flush $0-\frac{1}{2} \mathrm{~A}$. Thermo and $0-350 \mathrm{~mA}$ ditro, $7 / 6$ ea. RACK SIZE CHASSIS.-17in. long $\times 2 \frac{1}{2} \mathrm{in}$. deep $\times 12 \mathrm{in}$. $16 / 6$; \times lOin., 15/-; $\times 8$ in., 14/-. P. \& P. 1/-. All 16 s.w.g. ALl. POCKET VOLTMETERS. Dual range, 0.15 v . and $0-250 \mathrm{v}$. 345 O.P.V. M.C. Worth 50/-. Our price $17 / 6$ post free. HIGH-SPEED KEYING RELAYS (SIEMENS), $1700 \times$ 1700 ohm Coils, $12 / 6$ ea.
VALVES. B7G base, IT4, IS5, IR5, IS4, 3S4, 3 V4, $7 / 6$ ca. or 4 for 27/6. 807 's, 10/- ea. or 2 for 17/6. Most of the 1.4 v $B 7 \mathrm{G}$ range available at $8 / 6$ ea.
HEADPHONES. Low resistance type CLR No. 3, $9 / 6$. DLR No. 2. 13/6. High resistance CHR Mar, 2, 17/6, and the most sensitive of all DHR, No. 5B, 18/6 per pair. P. \& P. 1/- pair. V.H.F. FANS. Air Space Co-axial Cable, 150 ohm , good to $600 \mathrm{Mc} / \mathrm{s}$; normal price, $3 / 11$ per foot. Our Price, 20 yard coil, $\in 1$. Very limited quantity available.
FISK SOLARISCOPES.-Complete with charts. Give World time, light and darkness paths. Invaluable to the DX man. List 21/-, our price 7/6, post free.
PANL Home Crackle. Black, Brown or Green, 3/- tin. P. \& P. 8 d .

CONDENSERS. 8μ F, 600 v. (Trop), 750 v. (Normal). New Ex-W.D. Stock, 5/6 ea., p. \& p. 1/6.
SPECIAL OFFER. DEAF AID CRYSTAL MIKE INSERTS. 10/- ea., or 2 for $17 / 6$.
Postage free on all orders over $\& 1$ except where specifically stated. PLEASE PRINT YOUR NAME AND ADDRESS.

C. H. YOUNG, G2AK

All collers
110, Dale End.
Birmingham 4 (CEN 1635)

Mail Orders to Dept. "P"
102, Holloway Head Birmingham | (MID 3254)

$$
\begin{aligned}
& \text { - " } \\
& 621 \text { ROMFORD RD. LONDON, E.I2. } \\
& \text { GN' 12in. (HINSSIS. 9\% 6.-Complete chassis by famous } \\
& \text { manuacturer London or Bimmingham easiy adapted o } \\
& \text { fitted to Table or Console model. Owing to } \\
& \text { ftted to Table or Console model. Owing to this chassis being } \\
& \text { in three separate units (Power-Sound and Vision-Timebase } \\
& \text { TUBE bue see our } \\
& \text { UBE, but see our catalogue for cheap valves by request. } \\
& \text { AS ABOVE for Spares } 45 \text { - } \\
& \text { As ABOVE for Spares 45.* a bargain. Slight damage. Sound } \\
& \text { and Vision, Power Pack, Timebase Focus unt-approx. } 68 \\
& \text { Condensers, } 106 \text { Resistors }
\end{aligned}
$$

> 11 in. Perspex. Ideal for $12 i n$. or 14 in.
> T. R. Rubler Nanks, 10/6. Suitable for 12 in.. Post 1 '-
been selling for the last 4 years. Picture shown to callers.
Insurance, Carriage, $15 / 6$ extra.
THST TEHES. 30/m.-Most makes and types, all worle perfectly.
but have Cathode to Heater shorts or sllght burn. Ideal for
testing or spares. Insurance. Carriage. 156.
THNING CONDENSEIRS.-Store solled, lested .0005 mfd.
standard size, 2/9. Post 6d.
O.IP. TRANSFORMERS, 2/9.--Salvage. All tested. Fost 6d.
SPOTLIGH'F's, 8:g.-Butler's ex-W.D.. new. 7 !in. dia.. 6য!in.
deep. Pre-focus fitting. Post 1,3 . Bulbs for above, 6 volts. 36 or
48 watt, 12 volt. 30,36 or 48 watt, 46 . Post free.
IREARIIGITTS, I/9.-Infra-redglass. Ideal tail or sicie lamps
When glass is changed. Post 9d.
MOISFKENS, New ex-W.D., 1-, Bargain. P. \& P. 6d.
AMPLIEIERS, \%/G.-Push pull, 7 watts output A.C. or
Universal. 4 valves and 1 rec. Ideal for pick-up or Mile. Post
2/6. Ready to plug in.
A MPI,IFIFRS, $5 \% / 6 .-4$ watts output, 3 valves. A.C. or A.C.
D.C. Ideal for pick-up or Mike. Post 2/6. Ready to plug in.
AMPIIEIERS, 76,-EX W.D., less valve. Complete with
FREE drawings. Post $1 / 6$.
MARGONI HEADPHONB; g/6.-NEW. Not ex-W.D.. light-
weight, very sensitive, very good quallty. P. \&i P.9d. (Less lead.)
100 \& 200 MICRO ABP METERS.-As new, boxed. moving
oll movements, 2in. scale in $2 \frac{1}{2}$ in. square mounting. $12 / 6$.
Post 1/6. FREE drawing
VALVEs from 1/9. Send for complete list. (2yd. stamp.)

SOUTHERN RADIO'S WIRELESS BARGAINS

TRANSRECEIVERS. Type " 38 " Mark \| (Walkie-Talkie). With 5 valves and ready for use. Metal carrying casc. Less externa attachments. 30/- per set.
TELESONIC 4 -Valve Battery Portable. Complece with Hivat Valves, In Metal Carrying Case. Simply converted to Fersonal Portable. $\mathbf{E 2}$ including Conversion Sheet,
TRANSMITTER-RECEIVERS. Type " 18 " Mark IH. COM. PRISING SUPERHET RECEIVER and TRANSMITTER. TWO UNITS CONTAINED IN METAL CARRYING CASE. Complcte 8-Valves. $44 / 10 / 0$.
RECEIVERS TYPE " 109 ". E-VALVES WITH VIBRATOR PACK FOR 6-volts BUILT-IN SPEAKER. 1.8 to $8.5 \mathrm{mc} / \mathrm{s}$. Concained in Metal Case. Perfect. 100 ONLY. $£ 5$.
BOMBSIGHT COMPUTERS. Ex-R.A.F. New. Contain: Gyro Motors, Rev. Counters, Gear Wheels, etc, etc. ideal for Model Makers, etc., $£ 3 / 5 / 0$, plus-10/- carriage.
CRYSTAL MONITORS. Type 2. New in Transit Cisc. Les Crystals, 8/- each.
LUFBRA HOLE CUTTERS. ADJUSTABLE ${ }^{\text {a }}$ in, to $3!\mathrm{in}$. Fo Metal, Wood. Plastic, etc., 6/6.
RESISTANCES. 100 Assorted. Useful Values, Wire End, 12/. per 100.
CONDENSERS. 100 Assorted. Mica, Metal Tub, ecc, 15/- 100 PLASTIC CASES. I4in. by 10 igin. Transparent, Ideal for Maps Photos, Display, etc., 5/6.
STAR IDENTIFIERS. Type I A-N. Covers both Hemispheres in Case, 5/6.
CONTACTOR TIME SWITCHES. Complete in Sound Frool Case. 2 Impulses per sec. Thermostatic Control, II/6.
REMOTECONTACTORS for use with above, $7 / 6$.
MORSE TAPPERS. Standard Type ex-Govt., 3/6. Heavy Ducy Type "D*" 8/6, COMPLETE MORSE PRACTICE SET with BUZZER, 6/9.
MAGNETIC RELAYS SWITCH. Bakelite, 5 c/273, 2/6 each. METERS AND AIRCRAFT INSTRUMENTS. Onty need adjustment or with broken cases. TWELVE INSTRUMENTS (including 3 brand New Aircraft Instruments), 35/- for TWELVE ITEMS.

Fostage or corriage extra. Full List of RADIO BOOKS, $2!$ d.
SOUTHERN RADIO SUPPLY LTD.,
II, LITTLE NEWPORT STREET, LONDON, W.C. 2 GERrard 6653.

COMPLETE RADIO/RADIOGRAM CHASSIS

A.C. MAINS 200-250 VOLTS

THREE WAVEBANDS

DIRECT FROM THE MANUFACTURER

NEW AND FULLY GUARANTEED

NEW MODELS

Latest type components and B.V.A. miniature valves. Built on steel chassis. Plug-
in sockets for pick-up, speaker, gram motor. Gram switching on wavechange switch. Negative feedback applied from output transformer secondary.

Horizontal or Vertical Dial, 79 high
BUILT FOR THECONNOISSEUR OF QUALITY MUSIC REPRODUCTION

MODEL F3. 5 valves, 4 watt output. Wide-range tone control.	613/18/3
MODEL F3. Push Pull, 7 valves, 6 watt output. Separate bass and treble tone controls.	$£ 17 / 17 / 9$

Full particulars and list of matching speakers, autochanger and escutcheon from the manufacturers.

THEDULCICO. LTD., 99, VILLIERS RD., LONDON, N.W.2. Telephone : Willesden 7778

BUILD THIS AMAZING RADIO

POWERFUL! PERSONAL! PORTABLE!

- Seleccive tuning.

Acorn low drain value.
 Loud clear: cone.
Long range.

- No earch.

Short aer'al, 2 ft. Welded steel case. Easy to assemble. All parts for this set are sold separacely.
Ideal for:

- Fishing, Camping
- Cycling, Touring.
- On the beach, etc.

MAIL ORDER ONLY
This little set was de. signed to give you a real personal portable radio that you can enjoy anywhere without disturbing others, Use it on camping trips, in bed, in your offics. or just anywhere. Send 2/- for layout, Wir ing diagram and Componenc Price List.
Details of our $30 /$ - Short Wave Receiver are now ready. Send 2/- for Layou!, Circuits and Component Price List.
R. C. S. PRODUCTS
(RADIO)
LTD.,
11, OLIVER ROAD, LONDON, E. 17

THE "METRIX" MULTIMETER 460 writh 28 ranges. Internal resistance 10.000 ohms per rolt A.C. and D.C. Volts: 3-7.5-30-75-150-300-750 v. A.C. ard D.C. Resistance from 0 to 2 megohms in two ranges. Dimensions: 5 tin . x 4in. x ilin. Weight: 1 1b. 5 ozs. Cash Price $£ 14.6 .4$ or 35 !- - deposit and 8 monthily payments of $35 /-$.
MFTRIK MOIDFL $410 .-19$ ranges with a sensitivity of 100 ohms per volt from $75-7 j 0$ volts. A.C. and D.C. Volts $15-76$. $150-300-750$. Resistance $0-100$ ohms. Weight 1 lb 2 ozs. Cash Price e9.2.11 01 $22 / 5$ deposit and 8 monthly payments of $22 / 5$. Send stamp for leaflets of the Metrix range, whll of thiluch are available on easy terms.
 3, Corbetts Passage, Liotherhithe New Road, Yondint. S.E. 16. Telephone : BERmondsey 4341 Ext. 1

tape THE VESPA
 DECK

2-SPEED3 in. ${ }^{3}$ Thin. TWIN TRACK

MODEL 521. Compact Deck. $7 \frac{1}{2}$ in. x llin., 5 in. reels. Kit, $£ 7.10 .0$. MODEL 721. Standard Deck. 10 in. x llin. 7in. reels. Kit, £8.10.0. Eusy to assemble. precision-machined parts, latest high-fidelity heads, first-class motors, full assembly instructions. Either model fully built and tested, $27 / 6$ extra. Send stamp for full details:
E.W.A., 266, warbreck drive, blackpool.

2 YEARS' GUARANTEE BURGOYNE

8 VALVE Radiogram Chassis

With a push-pull output giving 8 watts of undistorted quality reproduction and using negative feedback, this fine chassis is supplied for those connoisseurs wanting only the best, at a price within their means:
SPECIFICATION
t Illuminated fusl vision coloured tuning . scale * Separate bass and treble con. trols for cut and lift \star Wavebands 16-50; 190-550; 1,000-
2,000 metres * Precision flywheel cuning \star Speech coil impedance 3 or 15 ohms * Extension speaker sockets \star Size 9 ilins. high $\times 13$ ins. wide \times Bins. deep-chassis height 2!ins.

Buy on the M.O.S. PERSONAL CREDIT PLAN Any proprietary brands of equipment advertised in this journal are available from 15 under this plan. 10% deposit. with balance over any period up to 18 months.
E.a g. MAIL ORDER SUPPLY CO. The Ratio cenrre.

33, Tottenham Gcurt Road, Lendon, W.1.
MUSerm 6667.

SUPERIOR RADIO SUPPLIES

37 HILLSIDE STONEBRIDGE LONDON, N.W.IO Tel. : ELGar 3644

A really outstanding portable!

The SUPEREX

55 ATTACHE

BUILDING COST $£ 7.15 .0$ Plus P. \& P.
$\star 4$ valve superhet L.M. wave.
\star 7in. $\times 4$ in. eliptical speaker.

* Latest miniature valves.
* Very attractive cabinet.
* A.B.C. Construction

This is a first-class receiver which we guarantee will give the very best of reception in all parts of the country. No trouble has been spared to ensure simplicity of construction, combined with equality in appearance and performance to any commercial models. All parts available separacely. Send 1/6 for "Superex 55 " construction booklet.
TERM8: Cash with order or C.O.D. Extra charge for C.O.D.
PERSONAL SHOPPERS WELCOME
Shop open 9 a.m. to 6 p.m. Monday to Saturday. I p.m. Thursday.

Practical Wireless BLUEPRINT SERVICE

PRACTICAL WIRELESS
No. of
Blueprim

CRYSTAL SETS

1/6d. each
1937 Cristal keceiver ... PW71*
The "Junior" Crystal PW94*
2s. each
Dual - Wave "Crystal
Diode ${ }^{-}$
PW95*

STRAIGHT SETS

Battery Operated

One - valve : 2s. each
The "Pyramid" One-
valver (HF Pen) ©...
valver
PW93*

Two-valve : 2s. each.
The Signet Two (D \& LI)

PW76*
3s. cach.
Modern Two-valver (two band recener) ... PW98*
Ihrec-vahe: 2s, each.
Summit Three (IIF Pen, D. Pen!

The ". Rapide " Straight 3 (D) 2 LF (RC \&
Trans!
PW37*
J. Camms "Sprite" Three (1it, Pen, D,
Tet PW87*
3s. each.
The All-dry Three ... PW97*
lour-talve : 2s. cach.
I'ury Four Super (SG. S(i, D, Pen) PW. $3+$ C* * Mains Operated
Ino-talve: 2s. each.
Selectone A.C. Radiogram Two (D, Pow) ... PW 19*
Three-valve : 3s. 6d. each.
A.C. Band-Pass 3 ... PW'99*
loor-valve : 2s. each.
A.C. Fury Four (SG. SG, D. Pent
A.C. Hall-Mark (HF Pen, D, Push Pull).

PW20*
PW45*

SUPERHETS

Battery Sets: 2s. each.
F. J. Camm's 2 -valve Superhet

PW52*
Mains Operated : 3s. 6d. each.
"Coronet" A.C. 4 ... PW100*
AC/DC"Coronet "Four PW101*

SHORT-WAVE SETS

Battery Operated
One-valve: 2s. each.
Simple S.W. One-valver pW8s*
Tno-salve : 2s. cach.
Midget Shori-wate Two (1), Peal

Three-value: 2s. each.
Experimenter's ShortWate Three (SG, D, Pow,

PW30A*
The Prefect 3 (D, 2 LF (RC and Trans)) PW63*
The Band-spread S.W.
Three (HIt, Pen, D,
(Pen), Pen) … ... PW68*

PORTABLES

1s. 6d.
The " Mini-Four" All-
dry (4-valve superhet)

MISCELLANEOUS

2s. each.
S.W. Convertor-Adapter
(I valve) PW48A*
(2 sheets), 7s. 6d.
The P.W. 3-speed Auto-
gram
The P.W." Electronic Organ *
(2 sheets), 7s. 6d.

TELEVISION

The Practical Television Receiver,
(3 sheets). 106
The "Argus" (Gin. C.R. Tube), 2/6*
The "Super- Visor" (3 Sheets) 7/6*
The "Simplex" 3/-*

AMATEUR WIRELESS AND WIRELESS MAGAZINE STRAIGHT SETS

Battery Operated

One-valve: 2s.

B.B.C. Special One-
valver $\quad . . \quad$... AW387*
Mains Operated
Two-valve : 2s. each.
Consoelectric Two (D,
Pent. A.C.

SPECIAL NOTE

THESE blueprints are drawn rull size The issues containing descriptions ol these sets are now out of print. but an asterisk denotes that constructional details are avatiable. tree with the blueprint.
The index letters which precede the Blueprint Number finduate the period jcal in which the description appears Thus P.W. refers to PRACTICAL WIRELESS. A.W. to AmatewWireless. W.M. to Hireless Magazime,

Send (preferably) a postal order to cover the cost of the Blueprint (stamps over bd. unacceptable) to PRACIICAL WIRELESS. Blueprint Dept.. George Newnes. Titd., Tower House. Southampton street. Strund, W.C. 2

No. of
Blueprint

SHORT-WAVE SETS

Battery Operated

One-value: 2s. cach.
S.W. One-valver for

American
AW' 429 *
Two-valve: 2s. cach.
Ulira-short Battery Two (SG, det Pen)

W'M O
Jour-valve : 3s. each.
A.W. Short Wave World-
beater (HF Pen D, RC
Trans) AW4 36^{*}
Standard Four - valv Short-waver (SG, D, LF, P) ...

WM383*

Mains Operated

Four-talve: 3s.
Standard Four-valve A.C.
Short-waver (SG, D,
RC, Trans) WM391*

MISCELLANEOUS

Enthusiast's Power Amplifier (10 Watts) (3/-) WM387* Listẻner's 5-watt A.C.
Amplifier (3/-) ... WM39?*
De Luxe Concert A.C.
Electrogram (2/-) ... WM403*

Build this HIGH QUALITY LOW COST AMPLIFIER

\star Circuit designed by

Mullard research engineers.

* Specified components available from most radio dealers.

Here's an entirely new amplifier circuit which brings high quality sound reproduction within the reach of thousands more enthusiasts. It has been designed by Mullard research engineers with special regard for easy construction and low cost.
Full details of the circuit are included in the 2s.6d. book which is obtainable from radio dealers or direct from Mullard Ltd. Valve Sales Department-2s.]0d. post free. Get your copy now.

EASY TO BUILD AT LOW COST	GOOD TRANSIENT RESPONSE	LOW OUTPUT RESISTANCE	LOW HUM AND NOISE
MEGLIGIBLE DISTORTION AT ALL OUTPUT LEVELS	DESIGNED ROUND		
FIVE MULGARD MASTER VALVES			
EF86 ECCE3 $2 \times$ EL84			
GI30 or EZ80			

Mullard

MULLARD LTD., CEtJURY HOUSE, SHAftesbury AVENUE, LONDON, W.C. 2

[^0]: The College associated with a world-wide electranics industry including "His Master's Voice", Marconiphons, Columbia, ete.

