FREQUENCY MODULATION

Practical 9= Vireless

A Multi-circuit Switch for \ln z corporation in a Valve Tester Constructional Details Are Given in This issue

-ANODE SCREEN $\&$ GRID ICAHODE

(10)

Regd. Trade Mark

THE meters illustrated are two of a useful range of " AVO " electrical testing instruments which are maintaining on active service and in industry the "Avo" reputation for an unexcelled standard of accuracy and dependability -in fact, a standard by which other instruments are judged.

THE UNIVERSAL AVOMINOR
Electrical Measuring Instrument.
A 22-range A.C.ID.C. moving coil precislon meter providing direct readings of A.C. voltage. D.C. voltage, current and resistance. Supplied with leads, test prods and crocodile clifs.

THE D.C. AVOMINOR
Electrical Measuring Instrument.
A high-grade 13 -range. D.C. meter providing direct readings of voltage, cucrent and resistance. Supplied in case, with leads, test prods and crocodile elips.

[^0]
PREMIER
 RADIO

NEW PREMIER S.W. COILS

4- and 6-pin types now have octal pin spacing and will fit Infermational Oetal valve-holders.

4 -pin Tyце

Type	Range	Price	Type	Range	Price
04	9.15 m 2/6	06	9-15 m.	
04A	$12-26 \mathrm{~m}$.	... 216	06 A	12.26 m .	2
04 B	22-47 m.	... 216	068	$22-47 \mathrm{~m}$.	. 2
04 C	41-94 m.	... 2/6	06 C	41-94 m.	.. $2 / 6$
04D	$76-170 \mathrm{~m}$.	... $2 / 6$	06 D	. $76-170 \mathrm{~m}$	
04E	150-350 m.	... 3/-			
04F	255-550 m. 3/-		sis Moun	ting
04 G	490-1,000 m	... 4/-		tat Fold	

$04 \mathrm{G} \quad 490-1,000 \mathrm{~m} . . . \mathrm{s} / \mathrm{m}$
$04 \mathrm{H} 1,000-2,00 \mathrm{~m} . . .4 / \mathrm{m}$ 101d. each.
New Premier'.3-Rand S.WV. Coll, 11-25, 25-38, 38-86 m., $4 / 9$.

Rotary Wave Change to suit above, 1/6.

SHORT-WAVE CONDENSERS

Trolitul insulation. Certified superior to ceramic. All brass construction. Easily ganged.
$15 \mathrm{~m} . \mathrm{mfd} \quad \quad \ldots 2 / 11 \quad 100 \mathrm{~m} . \mathrm{mfd} . \quad . \quad 3 / 11$
$25 \mathrm{~m} . \mathrm{mfd} \quad \quad . .3 / 3 \quad 160 \mathrm{~m} . \mathrm{mfd} \quad . . . \quad 4 / 8$
$\begin{array}{llll}40 \mathrm{~m} . \mathrm{mfd} & \text {... } 3 / 3 \quad 250 \mathrm{~m} . \mathrm{mfd} \text {. } & 5 / 8 \\ 2-\text { gang } .0005 \mathrm{~m} . \mathrm{f} . \text { Condensers with trimmers, } & 5 / 6 \text {. }\end{array}$
2-gang $.0005 \mathrm{~m} . \mathrm{f}$. Condensers with trimmers, $5 / 6$.
Brass Siaft Couplers, fin, bore, $7 / 4 \mathrm{l}$, each.

MOVING-COIL SPEAKERS

Celestion 8-in. P.M. Speaker. 25/-.
Above Speaker is complete with output transformer.
Rola 51a. P.M. Speaker, 3 ohms Voice Coll, 21/Rola $6^{1 \mathrm{in}}$. P.M. Speaker, 3 ohms Volce Coll. 25/tola 8 in . P.M. Speaker, 3 ohms Voice. Coll, 25%

TRANSFORMERS

 Tron - cored $\quad 150=470$ ke/s, phain and with flyting lead, 5/6 eakh.BAKELITE DIELECTRIC REACTION CONDENSERS
. 0001 mf ., 1/8.
$.0003 \mathrm{mi}, 2 / 8$.
.0005 mi , $2 / 9$ eath
0003 mf . Differential 2/11.
H.F. CHOKES
S.W. H.F. $10 \cdot 100 \mathrm{~m}$, , $101 d$.
Standard F.F., 1/-. Binocular H.F., $1 / 6$.
"LEARNING" MORSE?"
Then purchase one of the new practice Oscillators. Supplied complete. with valves on $27 / 6$ steel chasis TX Key, $5 / 9$. Super Model, on Wooden Base, 11/6.
Brown's Headphones, 19/6 pair.
3 Eienry Chokes, 10/-
Good Quality Bazzer, 3/-

PREMIER 1 VALVE DE LUXE

Battery Model .S.W. Recelver, complete with 2-volt Valve, 4 Coils. Covering 12-170 metres. Built on steel chassis and Panel, 55/- including tax.

PREMIER MICROPHONES

Transverse Current Mike. Figh-grade large output unit. Response 45-7.500 cycles. Low hiss Level. $23 /$-.
Premier Super-Moving Coll Mife. Permanent Magnet model requiring no enengising. Sensitivity $56 d b$. Impedance 15 ohms. Excellent reproduction of speech and music. \&5/5/-.
Merophone Transformers, $10 / 6$ each.
Chrontiun Collapsible. Type Mierophone Stand, 52,6 .

4-volt A.C. type, 5 -pin ACHL, $5 / 6$ each.
Mains. Resistances, 660 ohms .3A, tapped $360+$ $180+60+60$ ohms, $5 ; 6$. 1,000 ohms, .2A. tapped at 900. 800, 700. $600,500 \mathrm{ohms}, 5 / 6.1$ ohm ± 1 per cent., suitable for Bridges, 5/- eash. watt all values, 5rl. each. 1 watt all values, 7al. each. 4 watt from 50 to 2,500 ohms, $1 /$ - each, 8 watt from 100 to $2,500 \mathrm{ohms}, 1 / 6$ each. 15 wate from 100 to 10,000 100 to 2,500 ohms, $1 / 6$ each. 15 watt from 100 to 10,000
ohms, $2 /-$ each. 25 watt from 100 to 20,000 nhms, ohms, 2/-
Valve Scree
Vaive Sereens, for International and U.S.A. types, 1/2 each.
Resin-eored Solder, 71d. per coll.
Systoflex Sleeving, 2 mm . $2 / 6$, per doz. yards. Screened Bralded Cable. Single. $1 / 3$ per yard ; twin, $1 / 6$ per yard.
خ-pin Ceramic. Chassis Mtg. English tspe Valveholder's, 1/6 each.

Send for details of our Morse Send for details of our Morse
equipment. Valves and other radio accessories available. All enguiries must be accompanied by a 2装d. stamp.

ALL POST ORDERS TO: JUBILEE WORKS, 167, LOWER CLAPTON ROAD, LONDON, E.5, (Amherst 4723)
CALLERS TO: Jubilee Works, or 169, Flet Street, E.C.4. (Central 2893)

Lease-lend Sets

A^{s}S we go to press the President of the Board of Trade has informed the Housc of Commons that American sets may be imported in the near future, but that we should not have utility sets until next year. This was in reply to Mr. De La Bere, who asked whether any information could be released as to progress.in the manufacture and design of utility radio sets.

Mr. Dalton, President of the Board of Trade, said that 90,000 domestic wireless sets were in process of manufacture, and they would be completed and released during this year. In addition to this, arrangements have been made to import supplies from the United States for early dehivery. He has decided that after the sets in process of manufacture have been completed any new domestic sets made here shall be of simple standard designs. Discussions on this are now proceeding with the trade, but no sets of this type could be available until next year.

Mr. De La Bere also asked the Government whether they were in a position to make an announcement in connection with a policy to safeguard the interests of the small trader after the cessation of hostilities. - In his reply, Mr. Dalton said that on the subject of whether or not, and if so, subject to what modifications, the present arrangements for the licensing of shops shall continue after the war, he had imvited the views of the principal organisations concerned, and other problems affecting the future of retail trade are also being considered in relation, to the Government post-war policy as a whole. Mr. De La Bere thought that protective legislation to safeguard the businesses of small shopkeepers will have to be introduced when the war is over, and the matter of the small shopkecper cannot be lightly dismissed.

Radio Research

MEMBERS of Parliament are alive to the need for keeping this country ahead in wireless and television research. Rear-Admiral Beamish recently asked the Minister of Production how radio research and expenditure in this country compared with that of America, and whether he proposed to initiate comparative developments in this country. Mr. Garro Jones, replying for the Government, said that ro details are available of comparable American expenditure, and it would not be in the national interests to give particulars of the scope of our research in the radio field, nor of the expenditure upon it. A vast amount of work has been done, and is being done, in this ficld by Government Departments, by the B.B.C. and industry, and close eontact has been maintained with America. It was stated that America is
spending $£ 5,000,000$ per yrear on research, but we are assured that we are not behind America in achievement.

In this connertion it should be recorded that the Institution of Flectrical Enginecrs has just issuer a report which contains a suggestion for the establishment of a British Electrical Research Board, in order to obtain rapid progress in the application of scientific rescarch in industry after the war. The report goes on to say that, as post-war industry is expected to be on the same competitive basis as before this war, there appears small scope for beneficial reorganisation of research, and it envisages post-war industry being established on co-operative lines. The report nakes it clear that they have not in mind Government conten of thie radio and electrical industry. They consider that a co-ordinating body should be formed which should not, itself, conduct research work. One of the duties of the Board, the report suggests, slould be to train personnel in universities and in individual laboratories.

We need, however, to be a little cautious before we approve any of these so-called co-operative schemes. We want to avoid anything in the nature of a cartel, and we certainly do not wish to see the trustification of the radio industry, for trusts seldom operate for the benefit of the consumer.

Refresher Course in Mathematics

0R readers will remember the series of articles recently published in this journal entitled "Refresher Course in Mathematies." This series has now been published in book form at 8 s . 6 d ., or thy post gs . from the offices of this journal.

Much matter additional to the series of articles has been included in this 2 -10-page trook, which contains an ix-page index. The chapters are: Mathematical Terms and Signs ; Fractions; Continued Fractions: Approximations; Decimals; Duodecimals; Square Root and Củbe Root; Sorne Short Cuts ; Logarithms ; The IIetric System ; Progression: Arithmetical; Geometrical, and Harmonical: Averages-Ratio and Proportion -Percentages; Interest Discount - Present Value-Annuities; Algebra; Simple Equations; Simultaneous Equations: Permutations and Combinations; The Binomial Theorem; Algebraic Factors: Indices; Algebraic Fractions, H.C.F. and L.C.M.; Quadratic and Cubic Equations; Graphs : Mensuration-Trigonometry Areas of Circle, Triangles and and Quadrilaterals; Volume-Weight-Mass-Density Solids; The Infinitesimal Calculus: Differentiation; Integration; Mathematical and General Constants; Trigonometrical Tables; and Logarithms.

ROUND THE WO OF WIRELESS

Utility Sets

WITH references to the reports which have appeared in the daily press forecasting the eariy appearance of utility wireless sets on the market, the Board of Trade lave issued a statement to the effect that there is no likelihood of utility radio sets being put on the market in the near future. There has been no decision yet to make utility sets, and 'wireless equipment is so vital a necessity for the Services that material and labour cannot be spared to make civilian sets in any quantity

Radio Artificers for Canadian Navy

ITis reported that the Royal Canarian Navy has recently introcluced the rating of radio artificer-a branch of the Service in which men will be engaged on the maintenance of radio apparatus and directionfinding equipment ashore and afloat.

New-laid News

IN one number of Colin Wills's "Australian Nerrsletter," broadcast , weekly from the B.B.C., he told of a queer happening at Babinda, Qucensland. Somebody presented a newsagent there with an egg. Aiter leaving it on ice for twenty-four hours, he put it in his shop window. Next morning he found the window space had becone the happy bunting gronnd of a lively young crocodile.

New Belgian Radio Station Opened

NEW broadcasting station, installed by the Belgian Governnent at leopoldville, in the Belgian Cougo, was inaugurated on May rath.
The putting into operation of this station by one of the United Nations whose territory is orcupied by the enemy and whose Government is in exile, is a striking

Rainbow Censorship "THE best example of

 Press censorshipis to be seen in Czechoslovakia," A. J. van Velden said recently, when reviewing the book " The Goebbels Experiment," in a B.B.C. overseas talk. This is why he thought so: "Goebbels can't trust the journalists there, so that Press conferences and directives are not enough. . . . There are Press offices in every small town in Czechoslovakia. In 1939 a circilar was sent round to all Czech journalists. It ended with these-words : - The censors of the Central Pres's Bureau use brown pencils ; the Gernan military, censors use red and green pencils ; and tlie censors in the. local Press offices use blue and purple pencils.' The itenss ieft uncoloured by the viewsand : the pencils-of the censor, presưmably appeared in the newspapers."
B.I.R.E. Paper

A^{T} a menibers' meeting of the British Institution of Radio Engineers (North-Eastern Section), held at Rutherford Technical Coliege, Bath Lane, Newcastle-on-Tyne, on June $4^{\text {th. Mr. L. C. Pocock, A.M.I.E.E;; }}$ read a paper on "Mierophones and Receivers," with special. refereuce to specch communication.

No Retailers Supplied

IN accordance with instructions which have reached Messrs. J. Bull and Sons, of 246 , High Street, Harlesden, London N.IW.ro, they will in future not be permitted to supply other retailers. They are therefore confining their sales strictly to the general public and nembers of H.M. Forces.

Imperial Greatness

CHRISTINA FOYI.E, broadcasting in the B.I.C. overseas series, "Speaking Personally," mentioned some of the quecr mistakes made by people over book titles. One order she had received recently was for a copy of "The Decline and-Fall of the Holborn Empire."

After five months of Axis occupation the people of Tunis heor the trush. Army broadcasting vans tour the streets giving the neus bulletins in French, Arabic and English. Our illustration shows one of the vans in the main street of Tunis, Avenue Jules Ferry. In the background part of the cathedral can be seen.
event. Though the station is installed in the Congo it is, nevertheless, on Belgian territory, whence programmes directed to the Belgian homeland will henceforth be broadcast, thus creating yet another link between Belgians at home and overseas.
At the opening ceremony addresses were broadcast by the Belgian Premicr, M. Hubert Pierlot; the Minister of Justice and Information, M. Antoine Delfosse; the Minister for the Colonies, M. Albert de Vleaschauwer; and the Governor-General of the Congo, M. Pierre Ryckmans. Mr. Antliony Eden, British Porcign Secretary, also broadcast a message dirceted to the Prelgian pecple.
The new station will operate on two short wavelengths - 25.70 and $\mathbf{2 6 . 5 8}$ metres - and will transmit intermittently for 8 l lours daily, the programmes leing presented under the following three beadings:

Les Belges vous parlent de Londres.
Jies Beiges vous parlent de New. Vork.
Les Belges vous parlent du Congo.

They will include relays of the French and Flemish programmes emanating from the B.B.C. at 7.15 p.m. and 8.30 p.m., respectively.

Austerity of Other Days

MARG.ARET RAWIINGS, London stage star, talked the other day in the B.B.C. overseas service about the early days of touring repertory companies. Each actor or artress, she said, was engaged under a specific heading-" Leading Lady," "Juvenile," and so forth. At the bottom of the list came one who was known as the "Utility Gentleman."

A.T.S. Signals School

THE luxury hotels in a village in the Scottish Highlands are still filled to capacity-but. what was once a centre for holidaymakers and tourists is now a training centre for A.T.S. girls who are going into the Signals as teleprinter operators, switchboard operators and O.W.L.s (Service name for operators, wireless and line). Four training Signals offices set up In different parts of the village are in communication with each other by wireless, teleprinter and telephone, and orierate as if they were hundreds of miles apart, Most of the students come to the school direct from their three weeks' course at a basic training centre. Teleprinters take an eight weeks' course and O.W.L.s take a 14 weeks' course. There is a course for A.T.S. officers, who learn to take charge of Signal offices. In seven weeks they acquire a thorough working knowledge of the routine and instruments of a Signals office, telephone switchboard, teleprinters, and wireless receiving and transmitting sets.

"Transatlantic Call"

$\mathbf{R}^{\text {I }}$EPORTS from the United States indicate that "Transatlantic Call," which has now been running for 20 weeks, and is heard over there by listeners to the Columbia Broadcasting System, as well as by listeners in this country, is the most successful Anglo-American radio series to date. Columbia's station managers have sent in highly complimentary letters, singling out the B.B.C. contributions for special praise.

A report from Columbus, Georgia, states that: "The programme has proven to be a bigh-light in our Sunday morning schedule, offering the people in this area a clearer insight into the friendly relations which exist between the people of Britain and the United States."

And from Charleston, West Virginia: "The, general reaction, especially among university and professional people, is that 'Transatlantic Call' is an excellent way for us to better understand our English Allies."
From Ithaca, New York: "More interest has been evinced by the broadcasts coming from England. It does seem that the British portion of the broadcast has been more successful in presenting a colourful picture of the folks on the other side of the water."

From Syracuse, New York " The, British proyrammes give an intimate and authentic picture of wartime England."

And so on, from Florida,
and Iowa, and Minnesota and Arizona. All over the Wnited States they are listening to these programmes and learning something of the reai Britain. Meanwhile, listeners in this country, much as they seem to enjoy the British contributions, are learning in the same way about the United States. Listener research reports show that the vastness and variety of America and her peoples are being vividly brought home to the British public.

Expansion in Overseas Service

BRITISH fighting forces now suread over the greater part of the globe will, however remote they may, be, he kept in minute-to-minute touch with the homeland by a big expansion of the B.B.C.'s Overseas Service which came inte operation on June 13th.

For their benefit the B.B.C. has nlanned a world-wide service of home news and light entertainment, to be known from this date as the General Overscas Service, specially designed to provide the best type of listening material for the conditions under which men and women on active service live. No matter where they may be -with the R.A.F. in China, in the jungles of Malaya, in the deserts of Iraq and North Africa, in training camps of Canada, or in the tropical heat of West Africa-London will call them for $12 \frac{3}{4}$ hours a day, bringing them tuneful music, the nostalgic chimes of Big Ben, news from home, and favourites of the Home Service, such as "Shipmates Ashore," B.B.C. Dancing Club, "Happidrome," "Marching On," and "The Stage Presents."

Link with Home News

THIS service, which extends the previous Overseas Forces service, will be available, of course for civilians also and all who in thase regions look for an especially close link with home news of Great Britain.

With the introduction of this General Overseas Service, the Overscas Services of the B.B.C. (excluding the European Service) will now number seven. This will allow greater specialisation in the broadcasts directed to individual regions, especially in the Eastern Service.

Pupils at a tcleprinting class at the A.T.S. Signals School in the Scollish Highlands.

Selectivity in S.W. Receivers

Some Suggestions on How to Improve the Seleclivily of Simple Sets

By WILLIAM NIMMONS

THE simple, single-circuit short-wave receiver usually suffers from a lack of sclectivity. It is often thought that, because the tuning appears to be sharp, this class of receiver is inherently selective. Nothing could be farther from the truth. A combination of weak signals and the crowding of many kilocycles into the band covered by the average condenser may suggest a spurious selectivity. When conditions are good, and the powerful European transmissions come in at good strength, the true sclectivity of such sets is revealed. It is no uncommon thing to find that a signal spreads up to 50 kilocycles on either side of its proper tuning point, thus blotting out the weaker transmissions within its spread.
The reasons for, this state of affairs are rather complicated. The main one is that, with a plain coil and
wavetrap may be employed to cut out the interfcring station, as shown in Fig. I. The coil L_{1} should be of the same dimensions and the same number of turns as the coil L_{3}, and tuned by an air-spaced condenser. It is best to put the wavetrap in a metal box to prevent interaction between it and the coil in the set.

Band-pass Circuits

Band-pass operation provides a way out of some of the difficultics encountered. Figs. 2 and 3 give two band-pass circuits which are suitable for short-wave work. Fig. 2 uses standard plug-in coils, but the second coil must have three windings, viz., the grid winding, the reaction winding, and the winding which is one component of the band-pass coupler. The latter may be the aerial winding of the conventional six-pin coil.

Fig. 1.-A wavelrap is included in the aerial lead. Co:ls $L 2$ and L3 are loosely coupled.
condenser the optimum selectivity is obtained at resonance with weal signals only; with strong signals the resonant point is not sharply defined. You have only to compare the results given on the medium waves with a plain coil, with the aerial connected to the top of the coil through a .0005 mfd. fixed condenser, to realise how unselective a similar arrangement is on the short waves. True, we employ a condenser mueh smaller in the latter case-something in the region of 50 mmfd . but the higher frequency makes the smaller condenser just as efficient in transferring energy from the aerial, so that we are no better off in the end.

The remedy for this state of affairs depends upon how much time, skill and money you are prepared to expend. I know that, with a variable aerial cotidenser and/or a variable aerial coil, much can be done to combat the nuisance. But the fact remains that the plain coil and condenser is inherently unselcetive, but it should be mentioned that the aerial has a profound effect upon the selectivity of the simple set, but is of much less importance in those casess where a pre-selector or other form of H.F. amplification is employed.

First; as regards the simple detector, a

L_{1} is similar to the grid coil, L_{4}, and L_{2} and L_{3} are also similar. It is desirable, to put up a screen between the two sets of coils if best results are to be obtained. Fig. 3 is suitable for operation from a di-pole acrial with twisted feeders. In both cases the variable condensers, C_{1} and C_{2}, can be ganged for ease of operation, but it is as well to have a small trimmer on at least one of them

Fig. 3.-Showing the arrangement for a- di-pole aerial.
to balance out stray capacities. This can take the form of a small is mmfd. variable condenser, which is manipulated to bring the signal up to strength after tuning with the main condenser. As the reaction setting alters the tuning, some form of padding condenser is an essential item when ganged condensers are used. If two separate tuning condensers are used then, of course, no padding condenser is needed.

A well-designed H.F. amplifier, however, will be found to give better results. This should be tuned, and it need not be a passenger if the proper precautions are taken; in fact, with a well-designed amplifier a gain of from io to 20 times can be expected, and it will increase the selectivity.
The secret of success in an amplifier of this kind is short wiring, low-loss ceramics foil the coil former, coil holder and the valve holder. An H.F. pentode is better than a screen-grid valve at high frequencies. There can be little doubt, also, that a certain amount of regeneration helps matters-it nót only sharpens the tuning, but increases the amplification as well. The valve should never bc allowed to oscillate, of course, but a discriminate use of reaction in the H.F. amplifier makes a wonderful improvement.

E.F. Amplification

Either one or two stages of H.F. amplification can be employed. The ideal solution is to make up a unit complete in a screened box; this does away at once with all chances of interaction between the H.F. amplifier and the rest of the set. The circuit for such an !amplifier is shown in Fig. 4 ; this is a Itwo-stage affair, but one stage is often sufficient. In the latter case, a short-wave H.F. choke is inserted in the anode lead to the first valve, and the output to the set taken from the anode through a . 0001 mfd . condenser. Note also, how regeneration is obtained by means of a neutralising condenser from the screen of the pentode. This condenser can have a maximum capacity of $15-25 \mathrm{mmfd}$., and nced not be mounted on the panel. A fixed amount of regeneration, so arranged that the valve does not oscillate at any setting of the main tuning controls, is all that is required. Four-pin or six-pin coils can be
used, but the aerial coil must have three windings. A pre-amplifier of this kind-also called a pre-selector when associated with image suppression in a short-wave superheterodyne-is also useful for short-wave work when conditions are not too good, and, paradoxically enough, when conditions are too good.

The latter statement may seem strange to many, but there is little doubt that conditions can be too good from the selectivity point of view with simple sets, for reasons already explained. With such a pre-amplifier as shown in Fig. 4 one can readily adjust the input to the set proper by means of the volume control VR_{1} on such occasions,

Fig. 5. - The shori-wave converter is an ideal solution of the selectivity problem.

and, at the same time, the selectivity is ample for all requirements.

S.W. Converter

Another solution is the short-wave converter, a circuit of which is shown in Fig. 5. This makes use of a heptode frequency-changer valve, and also utilises all the valves in the set proper, the whole combination forming a superheterodyne receiver. A few words in explanation of Fig. 5 may be helpful to those who have never built or operated such a converter.

The circuit shows very simply how the converter works. The aerial is fed via a .0002 mfd. condenser to the primary of the aerial coil, the secondary of which is in the grid circuit of the detector portion of the heptode. The oscillator section of the heptode valve includes another coil which has its secondary used as the grid winding and the primary as the anode (reaction) winding. Both these secondaries are tuned by a .00016 mfd. ganged condenser, with a .00004 mfd. (40 mmfd .) trimmer across the first section to obtain the necessary frequency shift. Mixing is done in the electron stream inside the valve, and what emerges at the anode is a heterodyne of the short-wave signals, which is passed on the receiver by a . 001 mid. condenser. The short-wave signals are converted into a long-wave heterodyne, ready to be amplified by the HF . valve of the broadcast receiver.

Frequency Modulation-2

Advantages and Disadvantages ; FM Transmitter and Modulation Systems

By F. E. SCALES, Assoc.Brit.I.R.E.
(Continued from page 328, July issue.)

IN the previous article it has been shown that a FM transmission can be resolved into a carrier and a large number of sidebands-many more, in fact, than are present in the case of an AM transmission. This factor, unfortunately, limits the use of frequency modulation.
When a large number of sidebands are present, in order to get the minimum amount of distortion (which means that most of the sidebands should be received), the receiver circuits will have to be capable of receiving a fairly wide band of frequencies. Thus in order to allow a reasonably large number of stations to be on the air at the same time, transmission must be confined to the very high frequencies, so that there can be sufficient separation between stations. A second reason why transmission must be confined to the very high frequency ranges, is that reception must be via the direct ray only. If the indirect (i.e., reflected) ray were used, signals via different routes would arrive at the receiving aerial,

MOD.
Fig. 1.- Block diagram of a F.M. transmilter in its simplest form.
sometimes in phase, sometimes in antiphase, causing "selective" fading with resultant distortion.
This effect is unpleasant enough when amplitude modulation is used, but in the case of frequency modulation, where so many more sidebands are present, use of the indirect ray is ruled out, since distortionless reception would become almost impossible. This constitutes the greatest disadvantage of a FM system, since confining transmission to the V.H.F. ranges means that only local reception is possible.

Advantages

There are, however, several important advantages. In the first place, only a small amount of audio frequency power is required to modulate a high-powered transmitter, because modulation does not bring about any change in power output.

In a normal AM transmitter, it is not possible to modulate the oscillator stage, because frequency changes would be introduced. In a FM transmitter, frequency changes are required, and modulation can therefore be carried out at the oscillator stage. As will be seen later, they can be carried out with a low-powered oscillator working on a low frequency, subsequent stages amplifying and multiplying the frequency of the oscillator output. The transmitter can also be designed to operate more efficiently, since no provision has to be made in the power amplifying stage for change in carrier amplitude.
The main advantage of frequency modulation is that a greatly increased signal to noise ratio is possible, and, therefore, satisfactory reception can be obtained from weaker transinissions, and portions of a transmission where the modulating voitage is small can be more clearly received. (The noise referred to here is that produced by the receiver and not external noise.)

Noise voltages are produced by conductors and valves and occur at radio and audio frequencies. These. RF yoltages heterodyne each other and the result is detected in the normal way. The FM receiver, however, does not respond to any amplitude variations, and it would therefore appear that no noise would be apparent in the FM receiver. An investigation of the heterodyne process reveals that heterodyning also produces phase changes (equivalent to phase modulation), and since phase modulation produces frequency modulation as a by-product, there will be some noise output in the receiver.
It will be remembered from our previous discussion on phase modulation that $\mathrm{df} / \mathrm{fm}$ is a constant, i.e., the higher the modulation frequency the greater the frequency deviation produced. Tlus noise voltages heterodyning and producing low audio frequency beats will not produce much output, so that the range of frequencies that can produce any noise oufput is small and, therefore, the total noise will be greatly reduced.

Signal/Aoise Ratio

When a signal is received, the results are even better, since if the signal amplitude is large compared with the noise voltages, the noise produced by these voltages heterodyning each other becomes ineffective or "demodulated." This occurs with both AM and FM systems, and may briefly be explained as follows.

If two noise voltages spaced by more than an audio frequency away from the desired signal heterodyne and produce an AF beat note, and are applied to the detector at the same time as the desired signal, then, if the desired signal is large, the only audio freguency component in the output will be that associated with the signal. To develop the noise voltages a second dstector would be necessary, as in a superhet. Thus only noise voltages within audio frequency range of the desired carrier can produce noise output, since they will heterodyne with the carrier itself, It will, therefore, be seen that a wide-deviation FM system can be employed to give a large output using flatly tuned circuits without introducing any additional noise, and a high signal/noise ratio will be achieved. It should be

Fig. 2.-Illustrates how capacity can be used, i.e., a condenser microphone, to produce the desired modulation.
noted that when the input signal is weak (no greater than the noise voltages) the noisc voltages will be able to heterodyne each other and produce AF output, and the advantages are lost.
A somewhat simpler way of regarding the above effect is to disregard the carrier and sideband theory, and to imagine the transmission purely as a carrier varying in frequency. As it sweeps bacliwards and
forwards it will only be within AF range of any single noise voltage for a small period of time and the net effect of the noise voltages will be greatly reduced.

Another important point is the question of adjacent channel selectivity when frequency modulation is employed. Although FM transmissions occupy a wide frequency band (the amplitude of/the nearer sidebands sometimes exceeding that of the carrier), it is possible to operate two stations with a fairly small frequency separation, provided the desired signal is strong compared with the undesired signal.

To sum up, we can say that an FM system employing a wide deviation offers great advantages over an A.M. system in that a much more favourable signal/noise ratio is obtainable, unless the signal strength is very weak, when a narrow deviation system is preferable. It provides an excellent system where local high-quality reception is required, and makes possible a much more efficient transmitter. It also has several commercial applications not connected with communication.

The FM Transmitter

Wc now have to consider the practical aspect of frequency modulation-that is, the methods by which it can be achieved. The main differences between FM and AM transmitters will obviously be in the modulator itself and that portion of the transmitter will be dealt with in some detail.

Fig. 3.- A value used as a pariable reactance to form a
The obvious place where control can be exercised over the frequency transmitted is at the oscillator, and it is here that modulation will be carried out. The oscillator will normally be working at a lower frequency than the final output frequency, and will be followed by frequency multiplier stages, which also serve to increase the final frequency deviation.

In order to ensure linearity when modulating, it will normally only be possible to vary the oscillator frequency by a small amount. A large frequency deviation, however, is required, and as the frequency is increased by multiplying stages, so will the deviation increase.

For example, suppose the oscillator generates a frequency of $10 \mathrm{mc} / \mathrm{s}$, variable $\pm 3 \mathrm{kc} / \mathrm{s}$, when, modulation is applied. The frequency will therefore vary between 10,003 and $9,997 \mathrm{kc} / \mathrm{s}$. Now, if this stage is followed by two frequency multiplier stages giving a multiplication of six times, the final output frequency will be $60 \mathrm{mc} / \mathrm{s}$ $\pm 18 \mathrm{kc} / \mathrm{s}$, and the deviation frequency is now $\pm 18 \mathrm{kc} / \mathrm{s}$.
Fig. I shows a block diagram of the transmitter in its simplest form. The oscillator may be any of the commontypes, with the exception of the crystal-controlled oscillator, and a Hartley will be quite suitable.
Now, the frequency of the voltages produced by an oscillator depends mainly on the components in the oscillatory circuit (i.e., inductance and capacity). Therefore it will be seen that alteration in the value of either of these components will produce a change in the frequency generated, and if the inductance or capacity can be caused to vary in sympathy with the modulating voltages, frequency molulation will have been achieved. The simplest way to do this would be to use a microphone in the form of a condenser, utilising the capacity between the diapliragm and a fixed plate. The capacity so formed could be placed in parallel with the normal tuned circuit capacity, and when sound waves caused the
diaphragm to vibrate, a change of capacity would be produced and therefore a change in the frequency of the oscillation. This method is illustrated in Fig. 2.

Modulation

This simple system, however, would not be very satisfactory. In the first place, the capacity of the microphone (Cm) would be very small, and the changes in the Cm brought about by the operation of the microphone would be so minute that very little change of frequency would result. Also, to obviate difficulties due to stray capacities (in microphone leads, etc.), it would be necessary to design the oscillator and microphone all in one unit, a feature which renders it very undesirable.

Some improvement could be obtained if Cm were a variable condenser operated by a relay controlled by the microphone voltages, the microphone being of the normal type and situated some distance from the oscillator. This system, however, would not prove to be entirely satisfactory since only small changes of frequency would result as before.

A more effective and popular method is to utilise a valve as a variable reactance. This is connected in parallel with the tuned circuit of the oscillator, and will act in a manner similar to a variable capacity or inductance, and will therefore affect the frequency of the oscillator. A typical circuit for this "reactance modulator." is shown in Fig. 3.

A pentagrid valve is used as modulator, and the tuned circuit of the oscillator is connected between anode and cathode of this valve. An additional valve is used for producing the oscillation. In parallel with the oscillatory circuit there is a resistance Rr, and condenser Cr , and the values of these two components must be carefully chosen. It is desirable that the current flowing through $\mathrm{RI} / \mathrm{Cr}_{\text {, }}$ due to the oscillatory voltage, should be, as near as possible, in phase with the oscillatory voltage. To enable this to take place, the circuit $\mathrm{Rz} / \mathrm{Cz}$ must be predominantly resistive, i.e., RI must be large compared with the reactance of $\mathbf{C I}_{I}$ at the particular frequency in use.

It is a property of a pure capacity that the voltage drop across it will lag the current "through " it by 90 deg. (voltage and current will be 90 deg. out of phase). Therefore, in the case of $\mathbf{C r}$, the voltage across it, which is also the voltage applied between grid and filament of the pentagrid, will be 90 deg. out of phase with the current previously mentioned. This grid voltage will cause variations of anode current that are in phase with it. Therefore the RF anode current variations will lag on the current through Rr/CI by 90 deg., and will therefore lag on the oscillatory voltage applied between anode and cathode by 90 deg . This relationship between RF anode voltage and RF anode current makes the valve behave as an inductance; which is placed across the tuned circuit. If the value of the anode current is changed, the value of this apparent inductance will also change.

Hence, if AF voltages are applied between the third grid and cathode of the pentagrid, we have, in effect, an inductance varying at audio frequency connected across the oscillatory circuit, and therefore the frequency of the oscillator will vary at AF The amount by which the frequency varies will be dependent upon the amplitude of the AF voltages applied to the pentagrid.

A tetrode could be used instead of a pentagrid, and the AF and RF voltages both applied to the control grid, but this would introduce undesirable couplings.

NEWNES SHORT-WAVE MANUAL

6/-1 or $6 / 6$ by post from
George Newnes, Led. "Tower House, Southampton St.,
London. W.C. 2.

Saturated Cores

The Function of the "Swinging" Choke

Ia.previous article on "Rectifier Circuits," mention was made of an H.T. supply unit which was designed to give a D.C. output of about izo voits from 230 volt A.C. mains. The point raised at that time was the excessive D.C. voltage due to the capacity of the smoothing condenser. Various methods were considered of correcting this, the first coming to mind being (a) a simple resistance to get the required voltage drop, (b) a volume-control type of resistance connected as a bleeder lacross the second of the two smoothing condensers, with a potentiometer tapping, (c) a clooke similar to (a), and (d) a very much larger smoothing choke. However, none of these were available at the

time, and it was required to get the unit into commission as soon as possible, even if only temporarily. In the circumstances the trouble was corrected by removing some of the laninations which formed the core of the transformer, and as this resort is not widely known, it may be as well to elaborate on this point. It cannot be too strongly emphasised that this is not an alteration to be lightly undertaken, and for reasons which will be made apparent, most stringent temperature tests should be made before the transformer is put into commission.

"Swinging Choke"

Most radio amateurs will be familiar with the "swinging" choke, the inductance of which drops as the current in its coils increases. They are often used in choke-input filters, where they give a fairly constant potential drop whatever the load current may be. These are the most common examples in electrical work of an inductance with an overloaded or saturated core; and form a useful starting-point for an explanation.

It is probably unnecessary to remind the majority
of readers that a choke opposes the passage of an electric current by reason of the counter-E.M.F. set up in its coils by the changiny magnetic flux which cuts them. This counter-E.M.F., and consequently the reactance, is directly proportional to the rate of change of the fux; this is proportional to the frequency of the alternations and the maximum value of the flux; and the maxinum value of the flux is proportional to the current in the coils and the permeability of the core.

The fundamental difference between an ordinary and a swinging choke is that in the former the permeability of the core is practically, constant, while in the latter it is not. This is effected by haviny a core of smaller cross-sectional area for the same length, turns and current than in the former case, the non-linear B / H curve for the iron distorting the wave-form of the flux or current or both. This is illustrated in Figs. 1 and 2.

Applied to problems in this subject, matheniatical calculation is difficult and unreliable, and can be definitely misleading. Firstly, it would be extremely difficult to evolve a formula which would cover a B/H curve, and at the same time be convenient to handle in the various operations of differentiation and integration recessary. Secondly, the ordinary formulæ for inductance and reactarice assume a sinusoidal waveform in all cases, and to convert these for more general use would neressitate further work in evolving the average and R.M.S. values of some very complicated waveforms. Altogether, it simply is not worth while. For this reason the writer proposes to confine his observations to general principles, and to use the method of graphical consiruction to illustrate them.

Magnetising Current

In Figs. I and 2 the B/H curve for the material used is drawn, the lysteresis lag, which does not immediately concern us, being ignored. In Fig. I parts of sine waves of various amplitudes, representing various valucs of magnetising current; are superimposed in such a way that the corresponding values of the fux may be found by projection. The values of the induced E.M.F. are found by plotting to the same time-base abscisso the values of the slope of the flux/time curve.

Fig. 2.-Suinging cloke : Magnetising current from sinusoiddd voltage.

In Fig. a the flux is assumed to be sinusoidal and the corresponding values for the magnetising current are found.

In Fig. 3 the values of the currents in Fig. I are plotted against the reactances, calculated from the R.M.S. currents and the estimated R.M.S. voltages.

In the case which we are considering the iron core of a transformer was reduced in area with the idea of decreasing the output voltage. We are now in a position to understand how this comes about.

The primary winding acts as a choke, and when the core becomes saturated the coil current necessary to counter the constant, sinusoidal applied voltage begins to increase rapidly and also to become very peaky in form, as in Fig. 2. When a load is applied to the secondary winding, the current which flows has a demagnetising effect, and this causes a further increase in the current in the primary.

Voltage Drop

The first result of the rapid increase of the current in the primary is a correspondingly rapid increase in the resistive voltage drop. It must be borne in mind that the applied voltage is opposed by two counter-E.M.F.s, the resistive and the inductive, which have to be added vectorially. Of these, only the inductive has a magnetising effect. Fig. 4 shows how a drop in the inductance of the primary, by causing an increase in the primary current, causes an increase in the resistive voltage drop, a decrease in the reactive voltage drop, and also, though this may not be so apparent, a further deformation of the current waveform.. A better way of expressing this may be to say that the reactive voltage waveform becomes slightly. flattened (Fig. 5), though this does not amount to very much.

Further losses which occur are the hysteresis losses in the iron core. The loss of energy per culic cm . per cycle is proportional to the area of the \mathbf{B} / H loop, and though the volume of iron used is decreased, if the iron is heavily saturated it is by no means impossible for the iron losses to increase. (Fig. 6.)

The E.M.F. induced in the secondary winding is
Fig. 4.-Decrease in reactioe P.D. causes increase in resistive P.D., and vice versa.
proportional to the reactive voltage in the primary and, of course, to the ratio of the number of turns on primary and secondary. On load, the output voltage is lower than this by the usual impedance voltage drop.

The extent to which the core can be reduced in safety is limited by the temperature rise of the windings resulting from the comparatively heavy currents flowing. In the case being considered, the transformer has been wound by an amateur who had chosen his wire by the empirical rule of 1,000

Fig. 6.-Swinging choke: Saturation causes increased iron losses. amperes per square inch cross-section, and his core by the formaula turns-pervolt x area in square inches $=8$. He had thus a conveniently heavy guage of wire and a very low flux density. This proved useful, for the core was reduced to about one-quarter of its original area before a so

Fig. 5.-Peaky current waveform (and resistive P.D.) sives Altlened reactive
P.D.
core with Plasticine, and a maximum temperature increase of 79 deg. C over the ambient was recorded. Resistance measurements taken before and after gave a calculated rise of 83 deg. C. This was considered to be just about within the bounds of safety, and was used thus until a more wotkmanlike modification could be arranged.
It should be added that swinging chokes are wound with sufficiently heavy gauge wire to take the current for whicls they are intended, but in this case the heating represented a serious waste of power, which would not be tolerable permanently.

MASTERING MORSE

By the Editor of PRACTICAL WIRELESS

3rd EDITION

This handbook, written with special regard for serviee requirements, will enable even the beginner rapidly to become proficient in sending and receiving

Of all Bookselfers, or by post $1 / 2$ from GEORGE NEWNES, LTD. (Book Dept.), Tower House, Southampton Street, London, W.G. 2 per cent. drop in was obtained, and a smaller gauge of wire would probably have overheated.
The transformer was givert a heat run of ten hours at full load, with a thermometer a thermometer stuck inside the
 $-$ T
\qquad

The Manufacture and Testing of Valves-2

Grid Winding and Stretching : Cooling Fins and Anodes: General Production Methods and Assembly By L. A. WOODHEAD

(Continued from page 317, July issue.)

WORIKING outwards from the filament or cathode, the next component is the control grid. In triode valves this is the only grid, but there is a wide variety of valves which have several grids and/or screeps, all made in a similar manner but baving different physical dimensions. Originally, the grid turns were individually spot welded to the support wires; a much more secure method of fixing is now in use.

An automatic grid winding machine holds two parallel lengths of nickel or copper wire-called the "backing wires"-and rotates them rapidly. As the wires turn, a sharpened circular disc cuts minute slots at accurately measured intervals. Finc molybdenum wire is wound into the slots, and the ridges at the edges of the slot are then turned down so that the grid wire is

A
Fis, 7.-Three stages in grid winding : (A) Slots cut in backing wire. (B) Winding wire in position. (C) Slots furned in.
securely held. This takes far longer to describe than to accornplish, the operations of slot cutting, wire winding and turning down being done as fast as the eye can follow them. Fig. 7 gives a magnified idea of the three stages. The grids are made in lengths of 30 or 40 ins. and then cut to size with a hand-operated guillotine. To facilitate subsequent operations it is possible during the winding to suspend the final operation, that is, turning in, at fixed distances. As an illustration, if the valve in production called for a grid with 60 turns, the machine can be set to wind and secure that number and then leave io turns loose, followed by 60 turns securely fixed, and so on. The guillotining takes place in the middle of the unsecured turns, which can readily be removed to prepare the girid for welding to. the foot wires. Adjustments are provided on the machine for varying the distance between the nickel backing wires; for altering the pitch of the molybdenum winding wire; and for changing the number and position of loose turns.

Shaping the Grids

As the grids come from the machine they are flat sided, but many forms of modern grids and screens are qval or circular in cross section, and this shaping is done on a grid stretcher. This consists of accurately shaped steel pieces, divided into two, and capable of being expanded with a parallel action by the operation of a lever. This process not only shapes the grids to exact dimensions, but the slight stretching of the motybdenum wire causes it to stiffen and thus obviate the risk of sagging turns: Finished grids
and screens, and examples of cross-sectional shapes, are shown in Fig. 8.

A general requirement in all valves is the necessity of preventing grid emission, and one method of making the grids less emissive is to gold-plate them. They are first cleaned in acid, and then held in clips in a solution of potassium cyanide. Also in the solution is a small block of gold, and a low voltage is passed between the clips and the gold. After a very short period the grids are removed from the bath, washed and dried and can then be used.

Grid Cooling Fins

The chief causc of grid emission is due to the grid becoming hot from the heat radiated by the filament or

Fig. 8. Tupes of grids and sereens with cross-sectional views. heater. To combat this, many valves have grid cooling fins welded either at the top or bottom of the grid. These. fins frequently take the form of a small, stamped nickel box which has been carbonised or blackened in order to draw the heat away from the grid. Fig. 9 shows examples of grid cooling fins. Copper is occasionally used for grid backing wires because of its heat conducting properties, the heat being carried away from the grid wires. Also, the screens in some valves are sprayed with graphite in order that they may absorb heat, thus leaving the grid cool.
In many valves it is absolutely essential to have the turns of a grid precisely lined up, with the turns of a screen, and to do this it is necessary to ensure that the pitch of the turns on the two components is identical. As it is a difficult matter to obtain good lining up when the parts are assembled, means have to

Fig. 9 (above).-Types of cooling fins.

Fig. 10 (right).-Loops welded to sereen backing wires to permit adjustment of screen and srid lining ub.

be taken to adjust the grid and screen laterally after assembly. One way of doing this is to weld the backing wires of the screen to looped extensions to the nickel foot wires. By squeezing the loops with tweezers it is possible to lower the screen with respect to the grid until the turns of each exactly coincide. Fig. so shows the method.

Anodes

Anodes talse a variety of size and shapes, but they are generally stamped from strip nickel, and often made in two halves which are subsequently weided together into box form. Frequently nickel gauze is used, principally when the electrodes are designed to have very: small clearances and it becomes very necessary to keep the grid as cool as possible. Fig. II shows a number of anodes. and it will be seen that most of thens are stamped with ribs to prevent distortion.

In certain values, especially those handing a heavy wattage, the anodes are carbonised, either on the outside only or on both sides. Carbonising is applied to the nickel strip before the anodes are stamped, and is done by passing the strip through an electric furnace in an atmospliere of benzine. According to the general type of valve, the carbonising may have a very finc or coarse grain, the latter generally being associated with a bright nickel interior to the anode. In order to carbonise one side of the nickel only, two strips are spot welded together at the edges before passing through the benzine vapour. When the anodes are stamped the two inner surfaces are not carbonised: The stamping of the various shapes is done by hand operated or power presses, and in many cases there is an automatic feed of the strip so that large quantities can be produced quickiy.

The shields which are used in such valves as beam electrodes and the screening.caps or skirts used in H.F: pentodes are made in a similar manner to anodes and are also frequently carbonised. Examples of shicids are shown in Fig. 12.

De-greasing and De-gassing

It is necessary for stamped metal parts to have a clean surface and this is done in a de-greasing tank. The parts are ptaced in wire baskets and held in a liquid called trichlorethylene, which quickly dissolves all grease.

De-gassing is another process which is very essential with most of the component parts of valves. Metals have a porous nature and it has been found that large volumes of atmospheric gases are absorbed by them. These gases would have a very detrimental effect on the vacuum of the finished valve and although further out-gassing takes place during subscquent pumping

\qquad

operations, it is necessary to remove as much gas as possible before assembly. The parts are placed in sinall nickel containers and passed, in an atmosphere of hydrogen, through an electric de-gassing furnace, the temperature of which is generally around 900 deg . C. Another method of de-gassing is to heat the parts to a similar temperature in a vacuum.

Mica Supports or Bridges

Mica is used for two main purposes in valve mantfacture. Primarily it is a very good insulator, but of almost equal importance is its use as a support for assemblies. It is light in weight, it can be obtained very thin and it can be stamped to shape or pierced with great accuracy. Fig. 13 shows a few of the many forms used, those with serrated edges being employed to fit inside the dome at the top of the bulb) for many modern vaives, thus giving great rigidity to the whole assembly. Owing largely to the laminated nature of mica it is neressary for it to be thoroughly de-gessed in a similar manner to metal parts before use. To provide an increased leakage path micas for high voltage

$$
5
$$

Fig. 17.-Tijoes of anode canstruction.
valves are frequently spraved with masnesium carbonate, which leaves a slightly roughened surface. To facilitate later operations small nickel eyelets are generally inserted in the holes through which will pass main support rods.
There are sundry other small items which must be obtained before assembly can begin, and these include flament support springs, which exert tension on the filament, keeping it taut and clear of the grid; filament hooks, which are minute parts sprayed with alumina, and later welded to the grid supports to prevent vibration of the filament (Fig. 14 shows a filament and grid assembly using these items); various straight and bent lengths of nickel wire to make inter-connections between electrodes; and "getter" holders, which generally consist of a nickel disc or shallow pan on which the getter pellet is held by another disc of nickel or nickel gauze, the two parts being crimped or welded at the edges.

Fig. 14.-Filament and grid assembly showing filament tensioning spring and side hooks.

Welding Component Parts
All the separate metal components of a valve are electrically welded in one or more places and a brief description of the process of welding may be helpful. An electric welder is a bench unit containing a tapped transformer, which is adjusted to pass a heavy current at low voltages between the tips of two copper electrodes when they are brought together by means of a foot-aperated treadle. The electrodes are made from 1 in . copper rod, and the tips are flattened, pointed or bent so that they come together just where they are needed. In operation the parts to be welded are rested on the bottom electrode, and the upper electrode is brougnt down by pressure on the treadle. At the point of contact a heavy current flows momentarily, and securely welds the components together, the process being instantaneous.

To ensure accuracy and consistency in assembly, each type of valve has its own jigs, which are used to hold the parts rigidly in position until they are welded. These jigs are made of steel, copper or brass, and considerable care is devoted to their design and manufacture.

Order of Assembly

The actual work of mounting is generally done in sections called sub-assemblies, and, of course, varies considerably with different types of valves. For instance, the schedule for a simple directly-heated triode would be: Weld the filament on to the appropriate foot wires; fix the grid top and bottom to mica bridges; slip the grid over the filament; weld the eyelets in the micas to the anole support roxls; pass the hook of the filament spring through a hole in the top mica; place the filament on the hook and catch the filament around the insulated hooks welded to the grid backing wires; weld one-half of the anode to the support rods, and then weld the other half. Fig. is shows tho stages.

In more complicated indirectly-heated valves the sub-assembly would consist of two or more grids and screens, each being accurately fixed in holes in the mica bridges, and always starting from the grid nearest to the cathode. Pentagrids and triode-hexodes call for extreme care, because of the number of grids used, but the stamped holes in the micas are accurate to one-thousandth of an inch, and the grids, as previously mentioned, are stretched to definite limits, so that very exact clearances may be maintained. A plan of a typical multi-grid assembly is shown in Fig. 16, together with the top mica bridge. Considerable rigidity is obtained with this method of mounting, thus ensuring that the characteristics of the valve remain constant throughout life.

Fix. 16.-Plan of tupical multi-grid valve.

Fig. 15.-Four stages in mounting simple, triode assembly.
During the process of mounting all the operators are required to wear white cotton gloves, which are changed daily. This is to prevent any contamination by perspiration or grease. Before the mount is finished any necessary inter-connections are welded on. These include connections from shields to cathode, suppressor grid to cathode, screcned grid to screening cap, ctc. Where the valve has an external top cap connection a suitable lead of borated copper wire is welded to the anode or grid according to the type.

At this stage a very thorough inspection of the construction of the mount is made. All the raw materials and inanufactured parts have been examined previously when faults could be rectified, or, at any rate, faulty parts rejected, but with the mount now ready to be sealed into the bulb the last opportunity of adjustment has been reached.
(To be continued.)

THE USE OF RADIO VALVES IN EQUIPMENT

War Emergency British Standard Code of Practice

THIS Code of Practice has been drafted liy the British Radio Yalve MLanufacturers' Association, and las been cudorsed as a War Emergency British' Standard by the Electrical Industry Comnittee of the B.S.I. on the recommentation of the Technical Committee on Wireless Apparatus and Components. It is obtainabie from the British Standards Institution, 28, Victoria Street, I ondon, S.W.x, price 1s. net.

VARLEY MOTOR-CYCLE ACCUMULATORS

THE ncw. motor-cycle type dry accumulator produced by Varley Dry Accumulators, Ltd., By-pass Road, Barking, Essex, is made in 12 -ampere capacity, at the 20 -hour rate. The type number is $M C \frac{7}{72}$, and the list price is 27 . 6d. It is supplied either charged or - uncharged.

The size is inentieal with the orlinary standard motor-cycle accumulator, the advantages of which have already been mentioned in these pages. One of the greatest advantages is their solid construction, which prevents the brealing of the plates. They have been in production for some time, and we understand from Varley Dry Accumulators, Lttl., that the demand has been so great, that they cannot guarantee immediate delivery.

Secondary Batteries-1

Lead Acid and Alkaline : Chemical Action

By G. A. T. BURDETT, A.M.II.A.

THERE are two main types of secondary storage batteries now in general use-lead acid and alkaline.
These can be further sub-divided into two groups under the beadings "wet" and "dry." An outstanding popular example of the latter is the "Fuller" cell.

Lead Acid Batteries

In order to appreciate the procedure adopted in the maintenance of batteries it is first necessary to have

Fig. 2.-(a) "Lead acid" hydrometer for use with a syringe upe (b) For "alkaline" cells.
sulphated to any degree. In practice the visual test cannot be depended upon to determine the state of a battery, for while, if the plates have sulphated immediate attention must be given to the battery, an absence of sulphation does not necessarily indicate that the battery is fully charged, particularly when the battery is new. As batteries are reaching a discharged condition the lead sulphate which appears on the plates and disappears again during periods of charge is known as "normal " sulphation, and is quite harmless. When batteries are left in a discharged condition a hard core of sulphate adheres to the plates and does not disappear when the battery is again charged. The battery has then lost much of its initial capacity, while its cfficiency has also dropped. Mild cases df sulphation may be remedied by special treatment, but when the sulphation has a "firm hold " batteries are usually ruined, and require scrapping. This is one of the main reasons why lead acid batteries must be carefully "nursed" and charged as frequently as possible.

The Electrolyte

The electrolyte in lead acid batteries consists of a solution of sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ diluted to the correct S.G. (specific gravity) by the addition of evaporated, or distilled, water. In some instances, e.g., to reduce bulk in view of transport problems, sulphuric acid having a S.G. of 1.840 is transported, and must be broken down by the consignee. The S.G. of the sulphuric acid when placed in batteries varies according to the make of battery, and is usually printed by the manufacturers on the case of the battery. In British batteries this may be between $\mathbf{I} 225$ S.G. and 1.285 S.G.,. but American batteries are usually filled with electrolyte having a higher S.G. up to about 1.350 . When dealing with American batteries this point must be remembered, otherwise a discharged battery may be confused, when testing the electrolyte, with a charged battery of British
some knowledge of the fundamentals of secondary batteries. Fach cell of a battery, whether lead acid or alkaline, must have three components-the plates, elements or electrodes; the electrolyte, the medium through which the chenical action of the cell takes place.; and the vessel or cell which holds the electrolyte in which the plates are immersed. In lead acid cells the plates consist of two sets, positive and negative, both of which are composed of a proportion of lead. When in a fully charged state the positive plates are formed of lead peroxide (PbO_{2}) Fig. I(a), and are of chocolate brown colour, while the negative plates are of pure lead (Pb) the colour of which. when charged, is slate to purple grey. When discharged, Fig. 1(b), both positive and negative plates change into lead sulphate $\left(\mathrm{PbSO}_{4}\right)$, due to the removal during discharge of a mixture composed of sulphur and oxygen. $\left(\mathrm{SO}_{4}\right)$ from the electrolyte, viz., sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Plates in a discharged condition are easily determined visually by the white appearance of the lead sulphate on the plates. Containers of glass, celluloid or other transparent material allow such visual inspection, but as car, aircraft and many radio batteries have cases of a non-transparent compound it is impossible to determine by the colour, except through the vent hole, whether the plates have

(a)

Fig. I, -Simple" lead acid" cell in a fully charged and discharged staie.
manufacture. In general, under normal working conditions the S.G. of the electrolyte of a fully-charged British battery is r .270 and of a fully-disclarged one I. I5O.

Temperature Correction of Electrolyte

These values are for a typical battery having a glass or 'rubber compound container, and are taken when the temperature of the electrolyte is at 60 deg. F. From the table ra it will be noted that the readings must be corrected for different temperatures. Table ab gives the value of a typical battery having a celluloid base. As celluloid is bighly inflaumable, the operating S.G. is comparatively lower, to cnsure a lower average temperature of the electrolyte during charging. The true state of a battery, whether charged or discharged, may be determined accurately by measuring the S.G. of the electrolyte with a hydrometer, see Fig. 2(a) and (b) and Fig. 3. This, together with the voltuneter "on load" test, are the most usual and the most accurate methods applied in practice.
table 1A.
Ebonite or Giass Gase for Use in Temperate Climate.

State of Cell	40°	50°	60°	70°	80°	90°	100°
Fully charged	1.278	1.274	1.270	1.206	1,262	1.25s	1.254
Three-quarter				1246	1.242	1238	
Half charged	1.218	1.214	1.210	1.208	1.202	1.108	1.104
Quarter charged.	1.188	1.184	1.180	1.176	1.172	1.168	1.16i
Fully discharged	1.15s	1.131	1.150	1.140	1.142	1.138	$1.13!$

TABLE 1B
Celluloid Case for Use in Temperate Climate

State of Cell	40°	50°	60°	70°.	80°	90°	100°
Fully charsed	1.258	1.254	1.250	1.246	42	1.238	1.234
Three-quarter charged	1.20s	1.20					1.184
Half charyed	1.188	1.184	1.180	1.176		1.163	1.164
Quarter charyed	1.158	1.154	1.150	1.146		1.138	1.134
Fully discharged	1.118	1.114	1.110	1.106			

As the sulphation of the plates of the cell during discharge is due to ocrtain chemical actions which remove the SO_{4}, a compound of sulphur and oxygen, from the clectrulyte, the more discharged the cell the greater the quantity of SO_{4} removed and the lower the density of the electrolyte. During charging the compound of sulphur and oxygen is returned to the electrolyte, which again accounts for the bighier S.G. of electrolyte in a charged battery. Altliough batteries are filled initially with electrolyte of 1.250 S.G. to 1.285 S.G. A gradual decrease will take place during the life of the battery. This is due to loss through evaporation during cliarging, particularly during, periods of "over-charging," when excessive "gasing,", takies place. Each time the battery is "toppled up" with distilled water to replace evaporated acid (from spraying during gasing) so is the electrolyte further diluted. When a battery is ill-used and left in a discharged condition, so causing the plates to be coated with permanent sulphate, which is not returned to the electrolyte during the next period of charge, the proportion of the SO_{4} which is permanently "removed" from the eiectrolyte further results in a reduced specific gravity. Under certain conditions batteries may be topped up with sulphuric acid, but this practice must not be resorted to without first ascertaining whether the low density of the electrolyte is due to evaporation or not. A complete inspection and overhaul of the battery and a change of electrolyte is usually indicated io such circumstances.

Alsaline Batteries

In view of the increase in popularity of alkaline batteries for radio work, particularly where long perioxls of stand-ly are essential, a general description of these will not be out of place. The plates of this ispe of
battcry are positive-nickel (Ni), and negative-iron (Fe). The active material of the positive plate is composed of tayers of green nickel hydrate (NiOH_{2}) and metallic flakes of nickel (Ni), while that of the negative plate is composed of rust (oxide of iron- $\mathrm{Fe}_{2} \mathrm{O}_{3}$). A small proportion of oxide of mereury is mixed with the oxide of iron to increase the conductivity of the lattcr: Cadmium oxide has becn introduced into the negative plate and has resulted in ihis type being known as the nickel-cadnuium instead of nickel-iron. The " introduction "" of cadmium has increased the watt-hour efficiency of alkaline batteries. Its voltage duriny discharge is a little lower than the former type, but will stand heavier rates of discharge without appreciable drops in voltage. Electroiyte is alkaline, composed of a solution of potassium hydroxide dilluted to the required S.G. by the addition, if necessary, of distilled water. The container is made of stacl and is "alive," being in direct contact with the negative plates.

The Electrolyte

Unlike that of lead acid batteries, the electrolyte of alkaline batteries does not vary during charge or discharge. The operating specific gravity is also lower and a special hydroneter is used for testing (see Fig. $2(b))$ In some makes of battery the S.G. is at 1.170. The battery should not be operated with the S.G. above I. 190 or below 1.160. The operating S.G. of the electrolyte in other makes of battery may vary a little but the limits are the same. Although when initially filled the S.G. of the elcectrolyte is $\mathrm{I}, \mathrm{I7O}$, this will gradually decrease over a period of 12 months until the minimum limit of I. $\mathbf{1 6 0}$ is reached. Electrolyte is changed after each period of 12 months unless the battery las been used ouly intermittenily, when a period up to two years is permissible.

Voltage and Capacity

The P.D. per cell is approximately 1.2 volts as compared with the 2 volts per cell of the lead acid. The weight of the former in lbs. per amperc-hour capacity is much less than that of the latter and compensates somewhat for the lower voltage. For this reason alkaline batteries are not used where voltage is the primary factor, e.g., radio, H.T. applications, but are used instead where capacity in ampere-hours is of more importance, e.g., electrically-propelled vehicle application where transport of cells is of primary consideration.

Advantages

The chief advantages of alkaline batteries are: They may be discharged completely without damage to the

plates and short-circuits will not damage them; may be overcharged without damage and, in fact, periodic "overcharging " is beneficial ; if they are inadvertently charged the reverse way round, i.e., positive of supply connected to negative of battery, and vice versa, they will suffer no damage ; may be left standing idle in any state of discharge for periods of up to 12 months and will still " hold " most of the charge during such periods; where stored in clean, dry places and the filler caps are closed they will not corrode, nor will they damage, through corrosion, objects stored near them; they will stand considerable rough usage and are therefore particularly adaptable to war conditions, especially in the fighting services. As there is no sulphuric acid content in the electrolyte the plates do not sulphate and generally for this reason the alkaline battery does not have to be " nursed." Charging, too, is facilitated and may be carried out effectively by persons having very little experience. Frequent attention to the charging currents is not necessary, while hydrometer readings need only be taken at infrequent periods, and
then only to determine whether the electrolyte should be changed.

Below is given a short table defining most of the chemical language used in this article :

Vectors Applied to Radio Circuits

This Subject has Been Discussed in Recent Issues, but in View of its Importance We Publish this Article, which Deals with the Matter in a Simple but Concise Manner

By F. E. SCALES, Assoc.Brit.I.R.E.

AVECTOR quantity is a quantity that has magnitude and direction, and since an alternating current is such a quantity, vector diagrams can be usefully applied to A.C. circuits, often giving a clear illustration that could otherwise only be obtained by laborious mathematical or graphical calculations.
For the purpose of this article it is assumed that the reader has some knowledge of elementary A.C. theory, and the following is only intended to assist in the application of that knowledge.
Imagine a line AB (Fig. 1) pivoted at A and rotating in an anti-clockwise direction. At any instant it makes

F:g. 1.-The imaginary line $A B$ rotating in an anti-clockwits, direction.
an angle ϕ with the reference line XY . Now, if a perpendicular BC is dropped from B to XY, it will be seen that when $A B$ is coincident with $X Y$, the length of the perpendicular is zero. A s $A B$ rotates, $B C$ gradually increases in magnitude until, when $A B$ is vertical, BC is a maximum, and is equal to AB . Beyond this point BC gradually decreases again to zero, and the foregoing process is repeated below the line XY, BC now being negative.
If all these values of BC are plotted against corresponding values of ϕ, the graph shown in Fig. 2 will result. It will at once be seen that this graph is similar to the familiar graph of an alternating current. (If $\mathrm{AB}=1$, it is also a graph of $\sin \phi$.)
It should be clear that this diagram (Fig. 1) can be used to represent an alternating current, $A B$ indicating the peak value of the A.C., and BC the instantaneous values. The number of revolutions of AB per second is equal to the frequency of the A.C. and the diagram can be called the vector diagram of the alternating current, since any vector quantity can be represented by a straight
line magnitude being indicated by the length of the line, and the direction by the position of the line.

Henceforth we shall cease to consider the perpendicular BC, remembering that we can always ascertain the instantaneous value if required by dropping this perpendicular. Normally, however, when using these diagrams we are not concerned with instantaneous values.

Addition of Vectors

A vector diagram only becomes of value when two or more quantities are involved. Consider two alternating currents flowing in the same circuit, but 90 deg. out of phase (Fig. 3). The nett effect of these two currents (A and \mathbf{B}) could be obtained by adding the two together graphically, as shown, current C being the result. This, however, is rather a long process if any degree of accuracy is required. Fortunately, the same result can be obtained much more easily by means of a vector diagram. First draw to scale a line OA to represent the peak value of current A. Now draw a vector OB to the same scale to represent the peak value of current B. This is shown in Fig. 4. It will be seen from Fig. 3 that current B lags on current A by 90 deg. This must be shown on the diagram, and the two vectors will therefore be drawn at right angles to one another, and since current B lags, vector OB must be behind OA in the direction of rotation.

Fig. 2. - By oloting the values of BC (Fig. I) the above curo: "

Fig. 3.-Graphical representation of two A.C. currents 90 deg. oul of phase.
It now remains to add the two currents vectorially, and to do this BC is drawn parallel to OA , and AC parallel to OB. The diagonal OC now represents the resultant current in magnitude and phase, i.e., a current proportional in amplitude to the length of $O C$, and leading current B by an angle ϕ, which can be measured.

If figures are used the correctness of this calculation will be apparent. If current A is 3 amperes, and current B is 4 amperes, the resultant (C) is found to be 5 amperes.

Fig. 4 (leff)-Verification of Fis. 3 bu vector.

Fig. 5 (risht).-Series circuit containing inducfance and resistance.

The addition has also been carricd out graphically in Fig. 3, and the value of 5 amperes again obtained, thus proving the vcetor addition. The angle ϕ can also be measured (37 deg. approx.) and agrees with the angle graphically obtained in Fig. 3.

It should clearly be understood that the two currents (or voltages) must be of the same frequency if it is desired to add them vectorially. Also, as shown later, care must be taken not to confuse voltage vectors with current vectors, since it is obviously impossible to add a current to a voltage.

The principles just discussed can now be applied to some practical examples.

Cireuit Containging Inductance and Resistance

The first case to be discussed is that of an alternating voltage applied to a circuit containing inductance and resistance (Fig. 5). Since this is a series circuit the current must be the same in all parts of it, and therefore the current vector is drawn first (OB). The voltage across the inductance will lead the current by 90 deg. and therefore this vector (OA) is drawn 90 deg. ahcad of the current vector. The voltage across the resistance will be in phase with the current, and therefore this vector (OD) will be drawn parallel with the current vector. The two voltage vectors must now be added, and the resultant OC is oltained. This vector represents the total voltage across the circuit, which is, of course, the voltage applicd.

The vector diagram is now complete, and some important information can be obtaincd fron it. In the first place it will be seen that the voltage now lears the current by an angle ϕ, which is less than 90 deg.

The formula for the impedance of the circuit can be also obtained from this diagram. The total voltage across the circuit will be equal to $I Z$ (current \times impedance). The voltage across the inductance will be equal to $I X_{L}$ (current \times inductive reactance), and voltage across the resistance will be equal to $1 R$ (current \times resistance). Using Pythagoras' Theorem it will be seen from the diagram that:

$$
(I Z)^{2}=(I R)^{2}+\left(I X_{L}\right)^{2}, \quad \therefore Z^{2}=R^{3}+\left(X_{L}\right)^{2}
$$

or $Z=\sqrt{R^{2}+\left(X_{L}\right)^{2}}$,
which is the familiar formula for the impedance of a circuit of this nature.

The forcgoing procedure can be applied when'dealing with a circuit containing capacity and resistance in series, with the resultant voltage now lagging on the cuirent by some angle that is less than 90 deg. The reader should be able to work out this diagram for himsclf on the lines already indicated. A more important case is that in which capacity, inductance and resistance. are present, either in series or paralle], and these cases will now be discussed.

Circuits Containing Capacity, Inductance and Resistance

 (a) In series (Fig 6).Once again the current is the same in all parts of the circuit, and so the current vector is again drawn first (OB). The voltage across the inductance $\left(V_{L}\right)$ will be the same as before, and its vector (OA) is drawn at right angles to OB. Similarly, the vector OD will again represent the voltage across the resistance.

We have still to consider the voltage across the

$$
\begin{aligned}
& v_{A}=I R \\
& v_{L}=I X_{L} \\
& v=I Z
\end{aligned}
$$

condenser: Since this will lay on the current by 90 deg., the vector representing this voltage must be drawn at right angles to the current vector OB, and will therefore be drawn at $O C$.

It should be clear that the addition of three vectors must now be carried out, and this can be done in any order. In the diagram shown, $O C$ is first added to $O A$, and the resultant added to $O D$. In adding $O C$ to $O A$ subtraction is necessary, since the two voltages are in antiphase, and as OA is larger than OC, the result of the "addition" will be OX, which, when added to OD, gives the final resultant OY.

Let us see what information can be derived from this - (Continued on pagc 371)

Fis. 6.-Circuits containing inductance, capacily and resistance in series.

YES! BE PREPARED

Times are difficult, but that is no reason why you should not be looking confidently forward to the future. Your future will be what you make it. Use your spare time to increase your earning power, then war or no war your future will be secure.

EARNING POWER IS A SOUND INVESTMENT
DO ANY OF THESE SUBJECTS INTEREST YOU?

Accountancy Examinations
Advertising and Sales Mamikement
Agriculture
Ahriculture E. Examinations
Applied Mechanles
Army Certhicates
Auctioneers and Estate Asents
Aviation Fagheering
Aviation Wireless
Banking
Blue Prints
Boilers
Bonk-keeping. Aceountancy and Modern Bust. ness Methods
13.Sr. (Eng.)

Bullding. Architecture and Clerk of Works
Buildexs' Quantities
Cambridge Senior School Certificate
Clvit Englneering
Civit Service
All Commerela! Subjects Commercial ATt
Common Prelint. E.J.E.B.
Conerete and Struetural
Engineerin:
Draughtsmanship. All melmeerin
Entheering. All branclees sublects and etratina tions
General Fducation
G.P.O. Eng. Dent.

Fenting and Ventiating
Industrial Chemistry
Institute of Filousing
Insturance
Journalism
Languages
Mathematics
Matriculation

Metallurgy
Mining. All sublects Mining. Electrical Engla. eering
Motor Engineerins
Motor Trade
Municipal and County
Engineerg
Naval Architecture
Novel Writine
Pattern Miaking
Play Writins
Police, Specisl Courge
Preceptors, College of Press Tool Worla
Produetion-Engineering Pumps and Pumping Machinery
Radio Communieation
Rndio Service Fingineering
IR.A.F. Spectal Courses Road Makine and Main. tenance
Salesmanship, I.S.M.A.
Sanitation
schomi Attendince onicer Seerctarial Exams.
Sheet Mietal
Shorthand (Pitman's)
Short-story Wiriting
Short-story Writins Spertwave in Publie Sperking in Fubile Survetura
Teachors of Handicmet
Teachors of Handleratta Telephony and reiemraphy Television
Viewers, Inst. Exams, Fewers, Gaugers, Inepec. Weights and Neasures Inspertor
Welding
Whreless Telestaphy and Telephony

- Torks Managers

If you do not see your own requtrements above. urite to us on any subject. Full particulers free.

IF YOU ATIEND TO THIS NOW IT MAY MAKE A WONDERFUL DIFFERENCE TO YOUR FUTURE

COUPON

CUT THIS OUT

To DEPT. 104, THE BENNETT COLLEGE, LTD., SHEFFIELD

Please send me (free of charge)
Particulars of
(Cross out line
Your private advice which does
about................................... . not apply.)
pizase write in block letters
Name

Address

What production modifications IN SOIDERING PROCESSES are nectssary when uging WAR-TIME ALIOVS?

THIS and numerous other queries are answered in reference sheet 2 of "Technical Notes on Soldering;" published by the manufacturers of Ersin Multicore-the A.I.D. approved solder wire with three'cores of non-corrosive Ersin activated flux.
Firms engaged on Government contracts are invited to write for a copy of this reference sheet and samples of Ersin Multicore Solder wire.

The Solder Wire with 3 Cores of Non-Corrosive Ersin Flux. MULTICORE SOLDEAS LTO BUSM HOUSE LONDON. W.C.2. TEMFle Bars5:3/4

Booles are Tools

Radio Receiver Circuits Handbook

By E. M. Squire. A useful guide to circuits for members of the radio industry and radio amateurs. By dealing whth the receivers in stages the author has achieved the utmost clarity and conciseness. The text is liberally Illustrated with circuit drawings and other diagrams. 5s. net. Second Edition.

Wireless Terms Explained

By "Decibel." An invaluable guide to the technical terms used in books and articles on wireless, and in manufacturers ${ }^{\text {² }}$ catalogues. It explains the meaning of every term in the fullest and clearest manner, with numerous Hlustrations, and gives additional information where this may prove usefulo Second Edition. 3s. net:

Radio Simplified

By John Clarricoats. Thls book is a masterpiece of elucidation, compression and Instruction. Members of the junior services will find it invaluable. The author is in the best position to know what the reader wants ; he is a well-known Signals Officer: A.T.C. boys know all about him. 4s. 6d. net.

A First Course in Wireless

By "Decibel." A handy guide to wireless for beginners. It is cleariy and simply written, employs a minimum of mathematics, and forms an excellent introduction to the more technical works on the subject. Joining the R.A.F. ? Then get this book ! 5s. net. Second Edition.
There's no doubt that Pitman's can satisfy your need. You have only to send for their Technical cataloguc, containing details of thirty books on Radio. It comes post fiee from:

7 RAMUE UIIVERSAL TAYLORMETER

Combining a very wide range of measurements with high sensitivity and accuracy.
Self-contained A.C. and D.C. Volt ranges available up to 5,000 volts. \qquad
A.C. and D.C. Curfent ranges from $50 \mu \mathrm{~A}$ to 10 Amperes full scale. :
Resistance measurements from 0.1 ohms to 50 Megohms with internal batterles.
Capacity and Inductance measurements can be made with special adaptor.
Some delay in delivery is unavoidable, but every effort is being made to meet Trade requirements.

Nett Price

diagram. In the first place it will be seen that the voltage still leads the current by an angle $\phi_{\text {, as }}$ in Fig. 5, showing that although capacity is present in the circuit, the circuit is behaving nevertheless as a circuit containing only inductance and resistance.

Secondly, if the voltage across the capacity (Vc) were larger than that across the inductance, the resultant current would lead the applied voltage, and the circuit would behave as a capacity and resistance in series.

Now it should be clear that it is possible, by suitable adjustment of the circuit, to make the voltage across the inductance equal to that across the capacity, in which case the two vectors OA and OC would cancel out, leaving only the voltage across the resistance. This voltage would be the applied voltage, and the circuit would be behaving as a pure resistance. Under such conditions the circuit is said to be at resonance with the frequency of the voltage applied.

Fig. 7.-Inductance capacily and resistance in a parallel circuil.
dealt with in this article, they should not prove to be too difficult.

It was stated early on in this article that only currents or voltages of the same frequency could be added vectorially. There are, however, cases where a vector diagram is of assistance where the quantities are not of the same frequency. In these cases, however, it is necessary to state the instant of time in the cycle of operations that the diagram represents, since a fraction of a second later the phase relationships will of necessity be quite different.
Such a case is that of an amplitude modulated transmission, which is known to be composed of three constant amplitude radio-frequency voltages, whose frequencies are different. These three voltages can be represented by three vectors in the usual manner, but any such diagram will only be true for one instant of tinie. If several of these diagrams are drawn it will be seen that on adding the three vectors together the nett result is that the amplitude of the carrier will rise and fall.

In this conuection it is often useful to imagine certain vectors as travelling in a clockreise direction. For example, if we have two frequency components, one at io mc / s, and the other at ro. $1 \mathrm{mc} / \mathrm{s}$, it may prove helpful to regard' the $10.1 \mathrm{mc} / \mathrm{s}$ vector as stationary and the so inc/s vector as moving at a relative speed $0.3 \mathrm{mc} / \mathrm{s}$ in a clockwise direction. By drawing many vector diagrams at several instants of time, a fairly complete picture of what is happening may be obtained.

An expression for the impedance of the circuit can be derived from Fig. 6, since,

$$
\begin{aligned}
&(O Y)^{2}=(O X)^{2}+(O D)^{2} \\
& \because(I Z)^{2}=\left(I X_{L}-I X X_{C}\right)^{2}+(I R)^{2} \\
& \therefore \cdot Z^{2}= \\
& \therefore\left(X_{L}-X_{C}\right)^{2}+R^{2} \\
& \therefore Z=\sqrt{R^{2}+\left(X_{L}-X_{O}\right)^{2}}
\end{aligned}
$$

which is the impedance of the circuit.
$*$ This becomes $\left(X_{C}-X_{L}\right)^{2}$ if X_{O} is greater than X_{L}.
Under resonance conditions, V_{L} is equal to V_{c}, and, therefore, $X_{\mathcal{L}}=X_{0}$. Thus, the expression for the impedance becomes $Z=R$, and the circuit is purely resistive.

(b) In parallel (Fig. 7)

There is more than one way of dealing with this circuit, but the method shown is considered to be the simplest to understand. The left-hand branch will be dealt with first as a series circuit, and the results obtained will be similar to those obtained in Fig. 5. OB is the vector representing the current through the circuit, and vectors OA, OD and OC follow as before. Vector OC will then. represent the applied voltage, which is also the voltage across the condenser. Tberefore the vector representing the current through the condenser (I_{2}) can be drawn at right angles to OC, since the current will lead by 90 deg. This is theline OX, and to find the total current the two currents, In and 12, must be added vectorially, giving a resultant OY lagging on the applied voltage by an angle ϕ. If current 12 had been much larger the resultant current would have led the applied voltage. Therefore, it will again be possible to adjust the circuit so that the nett current is in phase with the applied voltage and produce the condition of resonance, where the circuit behaves as a resistance. The formula for the impedance in. this case cannot be derived from the vector diagram.

Other Circuits

The foregoing will have given the reader some idea of how the vector diagram can be applied to some common circuits. There are, however, numerous cases where these diagrams can be applied, and will yield usefulinformation. They are frequently met with in such cases as the explanation of the action of an oscillator, and the behaviour of a transformer with varying loads, and although these cases may be more complicated than those

---PRIZE PROBLEMS

Problem No. 446

TONES constructed a fonr-valver several months ago. Its line-up Jas $2-V-1$, and It gave very satisfactory service nnil the slow. motion drive on the ganged condensers started to slip. Jones decided to fit a new drive, but, nnfortunately, when he was in the midile of the change-over he wis interrapted and had to complete the job io a hurry. Rext day be tested the set, and was amazed to find that only one station could be received no matter which way he turned the taning control. Checks revealed that all connections were O.K. What woald you have done if you had been Jones?
Three books will be awarded to the firat three correct solutions opened. Eatries shouki be addressed to The Editor, Practical Virpless, George Newnes, Ltd., Tower Honse, Southamplon Street, Btrand, London, W.C. 2 , Envelopes must be marked Problem No. 440 in the top left-hand corner, and must be ported to reach this oftice not later than the first post on Thursday, July 13th, 1943.

Solution to Problem No. 445.

The damping effect of Parkinson's aerial was excessive. therehy preventing the detector circuit from oscillating. He should use a shorter aeriti or connect a .0001 mfl . variable condenser in series with the lead-la.
The following three readers successfally solved Froblem No. 444, and books have accordingly been forwarded to them. D. E: Street, South Vlesf, East Comer, Worcenter; E. M. Kelsey, Angiesev, Wellington College, Berks; F. S. West, Heatherview, Heyshott, Midhurst, gussex.

The PRACTICAL WIRELESS ENCYCLOPÆDIA

Ninth Edition
By F. J. CAMM .(Editor of "Practical Wireless")
10/6 net
Wireless Construction, Terms and Definitions explained and illustrated in coneise, elear language
From all Booksellers, or by post 11%-from George Newnes, Lid., Tower House, Southamplon St., Strand, London, W.C.2.

Practical Hints

Single-valve Reflex Set

IHAVE: lately been conducting some experinents with a onevalve and crystal reflex set, the circuit diagram of which is given in the accompanying diagram. Plug-in coils were used, and the valve is a P 220 Mazda output triode. •Using an inverted L aerial, joft. long and 3 oft. from the ground, in a residential district, I tried the set with 18 volts anorle voltage. This gave good, strong signals in the 'phones. I then reduced the anode voltage to X. 5 volts and even at this level the Home Service was quite audible. For normal listening an anode voltage of 4.5 volts is quite satisfactory. The set also produced results on

Circuit diagram of a single-valoe reflex set.

the short-wave band, but as I was unable to catibrate the set, I have no check on the stations. A Cossor 210 Det. will work the set with 6 volts on the anode, but the Mazda valve is best.-R. J. Amblin (Bath).

Band-spread Tuning

THE accompanying diagram shows a system of bandspread tuning I have used with success. On the spindle of the S.W. condenser is a springy piece of tin, which is soldered on. In the other end is a roundheaded screw, held by two nuts. On the fixing screw is a piece of ebonite (wood could be used) about $\frac{1}{8}$ in. thick, and holes have been partly drilled in this, so that the screw in the end of the metal just rests in each when turned. If the S.W. condenser is .00016 mfd., ro holes

A simple device for band-spread tuning.

THAT DODGE OF YOURS!

Every Reader of "PRACTICAL WIRE. LEss "must have oricinated some little dodge which woald interest other readers. Why not pass it on to as P We pay $81-10-0$ Sor the best hint sabmitted, and for every other item pablished on this paree wo will pay halt-a-ruinea. Turn that idee of yourt to gecount oy gendlag it in to as addreessed to the Editor, "Practionl WIRELESS,
George Newnes, Lid., Tower House, SoothGeorge Netmes, Lti., Tower House, Sontbname and address on every item. Please note that overy notion segi in mazt be

SPECIAL NOTICE

All bints mnat be accompanied dy the compon eut from page iii of sover.
will be sufficient, and a bandspreading condenser of about 18 mmfd. should be used. The condenser will, of course, have to be mounted on a bracket. If a knob with a pointer on is used, numbers can be marked on and then it is a simple matter to retune a station time after time by using the two settings. F. Crowther (Olton).

Simple Recording Tracker

NOTICING in the April issue that R.F.R. (Southampton) wishes to obtain a simple tracking device for home recording, I subnit the following idea which may help him and other readers.
As shown in the diagram, an old record is made use of for tracking a blank disc. The turntable can be made from wood or an old one can be used from another gramophone. The dummy turntable is driven by friction off the edge of the recording turutable, and a fairly thick wire connects both arms

together, it being looped at both ends to allow movement.-T. A. Thomas (Wrexham).

Rest for Soldering Iron

I
FIND it very handy when soldering to use the magnet off an old P.M. speaker as the rest for the electric soldering iron, as shown in the accompanying sketch. This-idea saves time when wiring up as the iron cannot roll or be knocked off the magnet. It also saves the use of a vice when the iron has to be gripped so that two hands can be used on the job.-R. Lord (Blyth).

Using an old loudspeaker magnet as a stand for a soldering iron.

By THERMION

B.B.C-nunciation

Ithese davs of standardisation the efforts of the B.B.C. to standardisc the pronunciation of words and place names is tall to the igood. They have a Committee which decides these things, and although we may criticise the fact that a Scotsman, a Welshman, and an Irishman are on that Committee we must remember that the great variety of programmes radiated by the B.B.C. necessitates the services of those well versed in the languages spoken in the British Isles. - It would be offensive, for example, for an Irishman to hear in an Irish programme some Irish word anglicised. A Scot would go off his haggis unless you gave the correct Scottish pronunciation of a Scottish word and strongly rerutilate the r. There is, however, still in the B.B.C. anuouncements a great variation, and particularly amongst the announcers, who presumably should know the B.B.C. standard, even thongh we may excuse lapses on the part of artists.

Stuart Hibberd enjoys pronouncing Pantellaria, which he enunciates as Pantell-ah-rear. Otber announcers, however, pronounce it as Pan-tellair-ear. I dn not know which is correct. Another announcer annoys me by referring to the Ukryne, whereas it is quite correctly pronounced as Ukiaine. Which shows that you must be careful in your selection of advisers on pronunciation. The idiomatic is not good enough, and neither is the colloquial. You want the pure language of the country. For example, a Yorkshireman pronoinces book as bonoook. Were he engaged as an adviser on pronunciation to the Russian Government no doubt the Russian propaganda in English would give that proriunciation. Place names, I know, are difficult, but there can only be one way of pronounciny them.

In this connection I do not know why England should become Angleterre to the French. Surely names of countries and place names should be spelt universally. London becomes Londres, and so on. Why ?

Lyric Writers

HAVE received a letter from the Spearman Organisation, of Ashgrove Road, Goodmayes, Essex, which speaks for itself.
"I read with considerable interest your remarks on lyric writers and composers in your January issue. As so often quoted, 'The job seems to be in Tin Pan Alley-not to let a new man in, but to keep him out.' It is estimated that there are about half a million amateur song writers in this country, and a small percentage of them belong to our 'British Songwriter Club.' As chairman of this small but growing organisation, I can testify that some of the work submitted for our competitions is quite up to the standard of songs already in print, and I go so far as to say, a very great deal better in my opinion than much of the tripe emitting from Tin Pan Alley. What happens? A budding song writer tries practically every publisher, but is turned down, one of the reasons being, I suppose, that most of the publishers are themselves song writers, or their

Our Troll of SIDerit

Readers on Active Service-Thirty-second List.
John Rombaut (Sign., Royal Corps of "Signals).
W. Saunders (L.A.C., R.A.F.).

John F. Tatem (Royal Marines).
A. Davies (L.A.C. R.A.F.).

M, Falk (Cpl., R.E.M.E.).
B. H. Pound (L.A.C., R.A.F.).
R. Roberts (Cpl., R.A.F.).
grandmother's uncles band leaders. Then the amateur reads an advertisement in some obscure weekly, inviting him to submit his material to a famous composer (who incidentally collects five guineas from him for a setting and promises to find a publisher). This he certainly does, but the publisher wants up to 20 guineas for pinlication. Vanity Publishers, as we term them, are outside the traffic of usual trade channels, so apart from a few free (?) copies, the song writer gets nothing.
"We are not a philanthropic society, for it is obvious that we have to earn our own living. But we endeavour to run the club on trade union lines. Further, we have just laid the foundations for a new venture, which we call the B.S.C. Portfolio. Realising that it is of no use at all publishing a number unless a circulation is created, any more than publishing a magazine, we invite the public to subscribe five shillings a year, for which they receive one good song every two months. These songs are the work of our members and are published at our expense. Work selected for inclusion is paid for on a fair royalty basis, and the sole requirement for publication, apart from membership, is merit. The first number sent to press under this scheme was a religious song, 'The Giver of all Good Things'; we are keeping off the 'Popular' type, as we are anxious to encourage art and culture. If there are any songwriter readers among your readership, without wishing to gain a cheap advertisement, we shall be glad to advise and help without obligation, providing a stamped addressed envelope is enclosed.
" 1 might add that material selected for publication has to pass an executive of at least five members."

Dance Band Leaders

[Press Item.-One band leader openly admits that he does not know one note of music, has had no musical education or training, and canoot play even the simplest musical instrument ; yet he conducts a famous dance band.]

Too many scarcely know the signs
Denoting flats or sharps,
And all they know of music
Lies in playing on jews' harps!
But, boy! Oh! Can't they wave their arms In manner most superior!
And shake their heads and roll their eyes In manner most D.T.rior.
They leap about upon the stage In manner most athletic,
Though their ignorance of music For us is most pathetic.
Since we have it forced upon us, When, per radio, they plug,
Till we'd love to pour some vitriol, On their nappers from a jug.
Their most inflated vanity
Receives a nasty jolt
If you tell them their ability"s
Not that of Adrian Boult.
Nor that of Thomas Beecham, Or that of Henry Wood.
They say," Pooh! Simply titled guys At jazz they'd be no good!
" Give us a drum to bang upon, An eropty tin for smiting,
An adenoidal crooner,
And you'll think tom-cats are fighting.
"And we train our boys to sway about And grimace as they toot;
So it's most unkind when critics say,
The lot should get the boot."
"Torcri."

The switch assembly mounted on its panel, showing the four disc drives.

YOUR SERVICE WORKSHOP-5

A
 Valven

Preliminary Details of Co

conditions; it may.vary by 20 per cent. or -in extreme cases-by 25 per cent. For example, one valve of, say, the medium power class may show an anode current of 10 mAs , whilst another of the same make and type would show perhaps 7.5 mAs . It is easy to understand, therefore, that if at some later date the valve which previously gave a reading of io mA , then sliows 7.5 mA , it would be quite reasonable-not knowing its previous reading -to assume that it was in good condition, whereas actually its emission would be 25 per cent. down, which proves that the test is very misleading. The

WHEN servicing radio receivers, it frequently happens that valves of all types come under suspicion. It is not always convenient, or possible, to test them in the receiver so that a valve tester of some sort is of a practical necessity in the workshop. Although valve structure is of comparatively delicate and complicated design, it is amazingly robust and its length of life considerable, but a fault may develop due either to its long service or some mishandling. These faults may be summarised mainly as follows: (() burnt-out filament or heater; (2) short circuit or partial breakdown of insulation between electrodes; (3) loose electrodes; (4) development of grid current (softness) ; (5) loss of emission of filament or heater.

A valve may be tested to ensure that these faults do not exist, but in an endeavour to ascertain the state of affairs regarding fault No. 5 , it is not unusual to take a simple measurement of the anode current flowing. The above test-with certain exceptions-is not good enough, for it does not tell us exactly what we want to know. It certainly proves that the valve is not a complete dud and, where the current approaches closely that given by the makers, one can be fairly certain that it will function, but it does not give any proof as to its goodness factor or whether the valve is still operating at full efficiency. It is a well-known fact that two exactly similar types of valves may not give the same reading of anode current when operating under similar above method is quite sound where readings have previously been taken when the valve was new, but obviously this is only possible in the case of one's own valves.

An Essential Test

A positive method of ascertaining the goodness factor of a valve-with certain exceptions-is to measure the change of anode current brought about by a change of

Fig. 2.-Spring, angle bracket and switch shaft.
grid voltage, or, in other words, to check the valve's mutual conductance. A figure for this is always given by the manufacturers, where applicable, and it is
 a simple inatter to compare the test figure with the

Fig. 1.-Details of panel, ebonite dise and contact base.

testing Unit

By S. BRASIER

maker's original one. In spite of the foregoing observations it is often desirable to make full emission tests in a value tester as it is necessary for some purposes.

It will be understood, therefore, that the design of a valve tester is no easy task, especially if provision is to be made for all the tests enumerated, and also if the tester is to be kept down to reasonable proportions. Another problem associated with the design of an instrument of this nature is how best to provide for the connection of the various power supplies to the valve electrodes, bearing in mind the varying types with which one has to deal. A simple method, of course, is to make use of a plug and socket system, but this suffers from the disadvantage that no quick or orderly system of valve checking may be put into use and unless the connections are memorised, one has to look them up every time a valve is tested, except perhaps when dealing with the simple types.

Switching

What is wanted is some method of switching whereby

Fig. 3.-Side elevation of the suritch.
the switch may be set to a particular position for all valves of the same type. This little problem led the writer to design the valve electrode switch illustrated on these pages. It was made for the valve tester to be described next month, and intending constructors may, if they wish, get ahead with the making of the switch, which although not difficult will naturally take a little time to construct. Incidentally, it may be used satisfactorily with any valve tester that the reader may have in mind.

The switch is actually a bank of foursingle-pole 9 -way switches, so arranged that either may be operated independently by a thumb control action from the front of the panel. No special material or parts are required
spaced around the circumference of a in. diameter circle, and it is important that the distance of each contact from the centre is exactly similar, i.e. $\frac{1}{2} i n$. ; likewise the distance from the ball catch to the centre of the ebonite discs. In the model shown the fixed contacts are copper rivets with countersunk heads which fit flush into the holes in the contact bases. In the exact centre of the head of each rivet a hole is drilled of a size that will allow the ball-when pressed home against the rivets-to be a nice snug fit whilst still maintaining pressure, i.e., the ball depressed to just over half its extent. The switch pairs may be tested for their action by slipping them temporarily over the switch shaft and rotating the dise whilst pressing it to the contacts. What is needed is a nice positive snap action which may only be secured by ensuring that the contacts, both fixed and moving, are positioned exactly, and this, like many other things, is not as difficult as one would suppose from the description. In one model the writer made up the contacts consisted of ordinary cheese-head 6 B.A. bolts sunk slightly into the ebonite, but in this case the electrical connection between them and the ball was not very positive, due to the very small area of contact. However, there is no reason why
tinned iron rivets, which are easier to obtain, should not be used. Countersunk 4 B.A. bolts may be utilised, drilling them to receive the ball. Aluminium rivets must be ruled out, as it will be necessary to solder a connection to each of the contacts at a later stage.

Assembly

Having made sure that the four switch pairs are working satisfactorily, the switch panel is prepared as shown in Fig. I. The length of each slot or window will depend upon the thickness of the material used around the edges of the discs (for numbering purposes) so that it is as well to cut them a little short until the setting up of the discs gives the ultimate length required. It is necessary, of course, to chamfer the short underside edges of each slot to allow for the curve of the edge of the disc and to ensure a neat fitting. This will be appreciated upon reference to Fig. 4.
The contact bases B are secured to the panel in the position shown by means of 6 B.A. bolts, for which purpose they are drilled and tapped. If a 6 B.A. tap is not to hand, one can be improvised by using a length of 6 B.A. rod, tapering the end slightly on four sides as in Fig. 5. Alternatively, shoulders may be left on the lower edge of the contact base so that ordinary bolts and nuts may be used for securing. Whatever method is used, it is essential to see that all the bases B are

Metal handle
soldered"po rod

Contact bases 8 securea to panel by 6 B.A. bolts

$$
\begin{aligned}
& \text { Fig. 4.-End view of } \\
& \text { switch. }
\end{aligned}
$$

firmly fixed at right angles to the panel. Pressure of the discs against the contacts is maintained by a short steel spring of a diameter that will allow it to slip freely over the shaft-about $5 / 86 \mathrm{in}$. to $\frac{\mathrm{in}}{\mathrm{in}}$. diameter is right, while the gauge of the actual wire is equivalent to about 18 s.w.g. to 20 s.w.g. A fairly strong one is necessary, of the compression type; the writer made use of a motor-cycle expansion spring, which was stretched out and the required lengths cut off. These springs also provide the electrical connection from the moving contact via the cam-shaped brass washer. Therefore, before assembling the springs a short length of ordinary tinned copper wire is soldered to the end of each, remote from the discs. When all is assembled, each wire (well insulated by sleeving) lies snugly between two of the fixed contacts at the back of the next contact base and is anchored to a boit tapped into the ebonite at some convenient place. The connection from the last spring

WINDING DATA

Primary-Input 200/250 v. A.C.
Turms per volt 6.
Total No. of turns 1,500 (250 v.).
Tapping at 1,380 turns (230 v .).
Tapping at 1,260 turns (200 v.).
Wire- 26 s.w.g. enamelled.
Secondary-Outputs 2, 4, 5, 6. 6.3, 7.5, 13, 14, 20, 24, $25,26,30,35,40$ volts.
Total No. of turns 240.
Tappings at $12,24,30,36,37.8,45,78,84,120,144,150$, 156, 180, 210 turns.
Wire- 20 s.w.g. enamelled.
Secondary current output 2 amps.

is taken to the brass angle bracket used at the end of the assembly. Thus the springs remain stationary whilst the discs are turned and connection with the moving contact is maintained without the necessity of moving or flexible leads.

With the assembly complete the discs may. now be numbered, and since it is difficult for the amateur to angrave ebonite successfully, it is better to fit strips of white ivorine or card round the outside. Four strips tin. wide and long enough to fit exactly round the outside of each disc are required. Using Indian ink, each strip is divided off into nine equal spaces, and in the centre of each space the figures $0-8$ are printed. The discs on the switch are set so that the moving contacts all connect with the same fixed contact of each section-it does not matter which-then the position for the numbered strips may be marked on the discs so that the same number appears centrally in each window. After removal of the discs the strips may be

Fig. 7.-The essertial details are given here for constructing the bobbin used for the universal filament transformer. The dimensions of the slampings are shown on the left.
fitted (with another strip of clear celluloid over them) by little brass pins which are a good push fit into small holes reamed into the edge of the discs. The wiring is easier to do before the final assembly, although clearance of the moving parts must be allowed for. The fixed contacts which connect when o sliows in the windows are left free. The remaining contacts of each section are then joined together, i.e., all number is joined, all number $2 s$ joined, and so on to number 8. The illustrations show the completed switch wired up ready for use. A test may be made by connecting an ohm-meter or similar indicating device between each moving contact connection and the end fixed contacts; turning the appropriate disc to the correct number for each stud. The function of the switch and its connection in the valve tester will be explained in the next issue.

Filament Transformer

An essential component in a valve tester, if it is to bc universal, is a transformer designed to supply the correct voltage from A.C. mains to the heater of any valve. The construction of such a component (Fig. 6) was described in Practical Wireless for August, 1942, but, since this was some time ago, the essential details are again shown in Fig. 7, because the transformer is used in the valve tester to

Impressions on the Wax

A Review of the Latest Gramophone Records Columbia

HEADING the Columbia releases for this month is a first recording of a delightinl work, arranged and scored by the late Sir Hamilton Harty, one of the greatest conductors this country has produced, from unspecified pianoforte pieces bỳ John Field. . It is given the title "A John Field Suite "and it has been performed by Dr. Malcolm Sargent conducting the Liverpool Philharmonic Orchestra, and recórded on Cohumbia DXiri8, DXirle and DXir2o.

It consists of four moveinents : Polka, Nocturne, Slow Waltz and Rondo, and is recorded in five parts; side six of the third record contains "Serious Doll "-Elgar (No. 2 from " Nursery Suite ").

John Field-born in Dublin, 1782-is one of the interesting characters in the musical history of the last century. He had a very varied career, and it was not until be settled in St. Petersburg that he commenced what might be termed serious work as a composerpianist. His output was prolific ; his works were varied and possessed great beauty and undoubtedly exerted great inlluence on the composers who followed.

A John Field Suite as a whole is distinctly outstanding, its charm placing it well to the fore in the recorded music of the last few months, and ncedless to say the Liverpool Philharmonic Orchestra, under the baton of Dr. Malcolm Sargent, make a recording which calls for every recommendation.
Grieg was born at Bergen, Norway, on June 15th, 1843, and his centenary has been marked, in a most fitting manner, by Eileen Joyce by making, what I think to be, one of her best recordings. She selected Ballade Op. 24 -Grieg-a superb work, which she plays in a faultless manner. The composition consists of a set of variations on a grave and characteristic theme, and reveals the mastery of Gricg as a composer of pianoforte music. "Ballade (Op, 24) "-Grieg. Four Parts. Columbia DXiri6-\%.
Another fine pianoforte recording is on Columbia DB2II2. "It is a piano duet by Rawicz and Landauer playing "Prince Igor Dances" (Borodin-arr. Rawicz and Landauer). These two popular artists give a splendid performance, their skill and co-operation being brilliant.

Albert Sandler Trio, on Columbia DE2113, offer "Smoke Gets In Your Eyes" (Kern) and "Lover Come Back To Me" (Romberg) from "The New Moon." Two pleasing pieces of the evergreen variety, played in first-class style as one would expect from this famous Trio.
be described. It will be seen that the output voltages available cover all practical requirements, but additional voltages may bc included, if required. by calculating it from the tums per volt. Transformers are not difficult to construct, but there are snags, particularly in a model of this type with so many tappings, but the component is unprocurable commercially so that it becomes necessary for the constructor to make it himself. The bobbin is of thin plywood in order to provide adequate strength. On the primary side it is advisable to interleave with paper every few layers and the secondary winding at every layer. Tappings-which should be labelled as they are made-must be taken from the exact point on the winding and it is important to sce that the wires, as they lead out across the winding, are well insulated, and cannot short-circuit that portion of the winding which they traverse. Owing to the numerous tappings of thick. wire it is essential to even up the bulk of the winding by leading the tappings out of both ends of the bobbin, but one inust also be sure that these ends of the bobbin will not be fouled by the core which ultimately surrounds it.

The broad principles exhibited in this switch are similar to those of the valve switch selector used in the Valve Tester of the Automatic Coil Winder and Electrical Equipinent Co., Ltd. (Patent number 5roog8).

H.M.V.

HH: Grieg Centenary is also marked in the H.M.V. releases for this month, by their recording of the Budapest String Quartet (Roismann Quartet) playing Grieg's "Quartet in G Minor. Op. 27." The work is in four movements, and embodies all the characteristics which one associates with this great composer. H.M.V. DB3135-3138

During his recent flying visit to this country, Yehudi Menuhin spent one day in the H.M.V. studios, during which he workerl for nearly seven hours with only a few minutes break for light refreshment. For most artists, recording is no rest cure; one has to bc at concert pitch the whole time, and the experience is naturally tiring and exacting. During the aloovo session, Menuhin recorded "Caprice Viennois" (Kreisler) and "Pièce en forme d'Habanera". (Ravel), and it is very evident from the wonderful performance he gave that he nust be tircless as his playing is as beautiful and sure as ever.

Whenever I see the names of Anne Ziegler and Webster Booth announced I take a keen interest, as, as I have stated in these reviews before, these two great and popular artists form the perfect duettists. This month, on H.M.V. B9326, they give us "Without Your Love" from "The Dubarry" and "What is Done" from "The Lilac Domino." Two fine numbers beautifully sung.

Before I get on to the dance records, there are two which I would like to mention. "The first is by " Hutch" singing "Where's My Love" and "A Letter From Home" on H.M.V. BDro42, and the-second is another recording by Pelix Mendelssohn and his Hawaiian Serenaders. They have recorded "Hawaiian Memories No. $2^{\prime \prime}$ on H.M.V. FB2925, and I am pleased to note (or hear) that they have included tunes which I think are more suitod to the title and instruments than, say, some of the inodern dance numbers.

Now for the dance music. "Fats" Waller and his Rhythm tempt those who like their music " hot" with "Up Jumped You With Love" and "Romance à la Mode," both being foxtrots, on H.M.V. BDIO45.

Joe Loss and his Orchestra give us two slow foxtrots, namely, "There's A Harbour Of Dreamboats" and "Wherc's My Love," H.M.V. BD 5 j99. "Time on My Hands" and "On The Sunny Side Of The Street" have been selected by The R.A.O.C. Blue Rorkets Dance Orchestra, and they have made a fine recording of both pieces. The number is H.M.V. BD 5803.

Carrol Gibbons and the Savoy Hotel Orpheans give a fine performance of "The Lady Who Didn't Believe in Love" and "I've Heard That Song Before"-both foxtrots on H.M.V. FB2926.

Alternatinz Current

Application of A.C. to Circuil' Arrangements

(Continued from page 296, June issue)

IN practical A.C. calculations, where several vectors are involved, it is general to select one of the quantities and refer to this as the reference vector. The other quantities then lead or lag on the selected vector, and are drawn accordingly. In the figure, if the arm A for instance was chosen as the reference vector, then we should say that the arm C lags on A and that the arm B lags on A also. Again, if C was chosen as the reference vector, then A would lead C, while B would lag C. In actual problems, it is simply a matter of practice in deciding which quantity to chonse as the reference vector. and difficulty is seldom experienced in this direction

Resislance Only

In a purely resistive circuit, having no reactive elements of any kind, the current rises and falls in step with the applied p.d.; it will be zero when the p.d. is zero and a niaximum when the p.d. is maximum.

Fis. 6.-How the quantity di/dt gives the rate of change of the current curoe in an inductige circuit.
will be seen that during each of these small sections of time the sine curve is continually changing, and consequently the value of the current i also is changing. Now, as we move along the time scale 1, 2, 3, etc., we sce thet the amount by which the current changes is a variable quantity $a b, b c, c d$ and so on, each of these small increments of current di getting smaller and smaller as the sine curve approaches its peak. The quantity $d i / d t$ is therefore the rate of change of the current, and this rate of change gradually decreases as the current curve increases; when the current is'at its maximum possible value the rate of change of current is then a zero, the curve being momentarily "steady" as it passes over the crest.

If this process is followed out over the complete cycle a result will be obtained as shown in the figure, where the rate of change of the current will be seen to be a sine wave of the same frequency as the current curve, leading it by an angle of 90 deg. It is fairly obvious that the rate of change of the curve depends on the frequency; the amplitude of the rate of change curve is given by:

$$
\omega \hat{i}=2 \pi f \hat{i}
$$

where f is the frequency of the current curve. It can be shown, employing the calculus, that the quantity di/de is represented by the expression:

$$
\begin{aligned}
d i \mid d t & =\omega i \cos \omega t \\
& =\operatorname{\omega i} \sin \left(\omega t+90^{\circ}\right)
\end{aligned}
$$

Referring back again to the circuit containing inductance only, consider the curves of Fig. 7, the first being a current curve where $i=\hat{i} \sin$ wt. The second curve depicts the quantity $d i / d l=\sin \left(i+90^{\circ}\right)$, which leads the current curve by 90 deg, as we have already seen; the third curve shows the back e.m.f. given by

This condition is shown in Fig. 5, and the waves are said to be in phase.

> Let $e=\hat{i} \sin \omega t$
> But $i=e / r$.
$\therefore i=\varepsilon / r . \sin \omega t$.

Inductance Only

The effect of inductance is to oppose the rise and fall of the current due to the back e.m.f. effect. Any change of current in an inductive circuit is accompanied by a back e.m.f, which opposes the current ${ }^{s}$ producing it; the applied p.d. must therefore be such that the effect of this back e.m.f. is overcome and current can be driven against the opposition. Consequently the p.d. must at every instant be exactly equal and opposite to the back e.m.f.

In circuits containing inductance we are interested in the quantity didt, or the rate of change of the sine curve over a complete cycle. In Fig. 6, where one cycle of A.C. current is drawn in a full line, we may divide the time or horizontal seale up into very small sections, each of these being a small increment of time dt. It
\square

Fig. 8.-Vector representation of \boldsymbol{I} lagging E by 90 degrees.

Fig. 9.-Capacily in an A.C. Fig. 9.-Capacily in an A.C. circuil.

circuif.

Fig. 7.-Curves depicting how the generator e.m.f. leads the current by 90 desrees in an inductance.
$-L$. di/dt, which is equal and opposite to the e.m.f. of the supply $E b$.

Thus it is simple to see from the fourth curve which is that of the applied p.d. (since this is 180 deg.-or antiphase-to the back e.m f. at any instant), that the generator e.m.f. leuds the current curve by an angle of 90 deg., and that during a complete half cycle the generator does not give up any energy.

Vector Representation

Consider Fig. 8, and let the vector E represent the R.M.S. value of the generator e.m.f. Vector. I is then drawn in the position shown, its magnitude being equal to the R.M.S. value of the current and having a lag of 90 deg, on the vector E.

Now we have :

$$
i=\hat{i} \sin \omega t
$$

But $e=L \quad d i / d t=I .2 \omega \sin \left(\omega t+90^{\circ}\right)$
Crest value of current $=\hat{\imath}$
Crest value of e.m.f. $=L \omega \hat{\imath}$

$$
\begin{aligned}
& =L \omega \hat{a} \mid \hat{\mathrm{t}} \\
& =\omega L
\end{aligned}
$$

$$
\text { But } \ell=\dot{E} \sqrt{2} \text { and } \hat{i}=I \sqrt{2}
$$

$$
\therefore E / I=\omega L
$$

The quantity ωL (or $2 \pi / L$) is an important one in A.C. theory, since it determines the R.M.S. current which flows through an inductance when an R.M.S. voltage is applied. This quantity is known as the reactance X of the inductance, being measured in ohms. Reactance can be likened to pure resistance in some ways, since it has a limiting effect on the current which may, flow for a given potential, but it must be noticed that, whereas resistance is a constant quantity, reactance in an inductance increases' as the frequency increases.

Fig. 10.-Vecior and graphical repre. sentations of the relations between e and it in a capacilive circuit.

$d q / d t$ will represent the current in the circuit. This will be found to be a sine curve of the same frequency as the applied p.d, but leading the charge curve by an angle of 90 deg. This is the samc as saying that the current leads the applied p.d. by 90 deg., since the charge curve and the applied p.d. curve are in phase with each other.

Fig. 11.-The phase ansle ϕ existing between e and in a resistanceinductance combination.
The result is the opposite to that existing in an inductive circuit.

The magnitude of the current flowing depends not only on the magnitude of the applied p.d. but also upon the capacity of the condenser. As we have seen, the charge on the condenser is a maximum when the applied p.d. is a maximum, therefore, as most readers are aware:

$$
\begin{aligned}
Q & \text { max. }=\ell C . \\
c & =\varepsilon \sin \omega t \\
q & =C e \sin \omega t \\
i & =d q d d t=d / d t(C e \cdot \sin \omega t) \\
& =\omega C e \cos \omega t
\end{aligned}
$$

$\therefore i=\omega C \hat{e} \sin \left(\omega t+90^{\circ}\right)$
From what has gone before:

$$
\begin{aligned}
& \text { When } t=0, \hat{\imath}=\omega C \hat{e} \\
& \therefore \hat{l} / \hat{\imath}=\mathbf{I} / \omega C=E / I
\end{aligned}
$$

The quantity $I / \omega C$ or $I / 2 \pi / C$ determines the R.M.S. current which flows when an R.M.S. voltage is applied and is called the reactance X of the capacitance. This reactance, again, is dependant upon frequency, though, unlike the inductive effect, its value decreases as the frequency increases. X is measured in olims.

Mixed Circuits

We have now dealt with the effect of resistance, inductance and capacitance when each is separately connected in an A.C. circuit. We have seen in the case of a pure resistance that the current and voltage are in phase with each other, in a pure inductauce that the voltage leads the current by 90 deg., and in a pure capacitance that the current leads the voltage by the same amount.

We will now consider cases where two or more of the above are present in one circuit, and later on how the results we shall obtain are used in radio circuits.

Circuit Containing Inductance and Resistance in Series

Since no coil is ever perfect, it must possess some resistance and an inductance is more correctly drawn as shown in Fig. II, where it is represented as being in series with a pure resistance. When the circuit is connected as shown a certain current I will flow through the combination, and it is required to determine the exact relation which exists between this current and the applied p.d. Suppose we let the current flowing be represented by a reference vector 1 . We know that the voltage across the resistance $V R$ will be in phase with this current, while the voltage across the inductance $V L$ will lead it by go deg. These are drawn as shown, and the resultant of these two voltages is obtained by completing the parallelogram (a rectangle), taking the diagonal to represent this resultant in magnitude and direction.
(To be continued)

Permanent Magnets-VI

Flux Values

: Magnetic Flux Leakage
: Metal Magnets and Moving-coil Magnets
By L. SANDERSON
(Continued from page 345, July issue.)

AFORMULA that will sometimes serve to determine the permeability of a magnet, so long as only the normal curve of magnetisation is being dealt with, is the following: $\mu=F\left(B_{8}-B\right)$. In this equation, B_{s} corresponds to the saturation density of the material; B represents the induction value corresponding to $\mu_{\text {, }}$ and F is a constant.

There is, however, a point to be noted, which is that this equation does not hold good close to the starting point of the magnetisation curve, i.e., before the known inflection point of a normal magnetisation curve begins. (See Fig. 1.)

we may obtain the value of \mathbf{B} that will give the BH (max.), and it is this value that is the most effective for producing a given flux density, while it is, as already stated, an indication of the maximum energy a particular magnet will produce.

There is, however, another method, this time of geometrical type. In this, use is made of the formula $B / H=-B_{r} / H_{c}$. A BH curve of the type shown in Fig. 2 is plotted, and a diagonal $\mathrm{X}-\mathrm{O}$ is drawn: This intersects the curve at the $\mathbf{B H}$ (max.) co-ordinates, and gives the requisite B value.

Flux Values

We must now consider how to establish the flux in any specific portion of the magnetic circuit. It is not necessary to inflict upon the reader the mathematical steps by which this is achieved. Given a BH curve of the type shown in Fig. 2, the problem is to find curves that, intersecting with it, will give the value of \mathbf{B} in the magnet and, as a result, the value of the flux in any portion of the magnetic circuit. These intersecting curves may be obtained by means of Spreadbury's equation:

$$
\mathbf{H}=\frac{\mathrm{ab}}{1}\left(\frac{l_{g}}{a_{g}}+\frac{l_{1}}{a_{1} \mu}+\frac{1_{2}}{\mathrm{a}_{2}}+\text { etc. }\right)
$$

In this equation, a_{g} represents the air gap of the magnet, I_{g} is the length of the gap, μ is

Magnet Dimensions

In designing magnets, it is essentail to know what size of magnet embodying the least possible volume of magnetic alloy will give a specified flux in a specified circuit. There are two ways in which this can be ascertained. The first is to find the BH (max.) value by graphical means. Before we deal with this method, it may be as well to state clearly what B and H respectively represent. B is the total number of magnetic lines of force passing through a substance. These lines of force are produced in two ways, by the magnetising force (H) and by the intensity of magnetisation. If, therefore, we draw a graph showing the relation of B (total lines of force) to H (magnetising force), we shall obtain a BH curve. (See Fig. 2.)

If, then, we take the products of the co-ordinates of the BH curve and plot them against B, the result will be a curve of the type shown in Fig. 3, by means of which

Fis. 2.-(Left) BH masnetisation curve, and B value diogonal.

Fig. 3--(Right) Flax derisitg
determination curve.

Fig, 4.-Flux value curve.
pass through an air space between the magnetic ends of the circuit, it is first necessary to know of what size the magnet must be in order to produce a specified flux valuc. In calculating this, it is essential to make allowance for magnetic flux leakages, and this can be done in two difierent ways.

Magnetic Flux Leakage

The first method assumes a certain amount of previous experience with the proposed form of permanent magnet, cnabling a value to be assigned for leakave. This leakage coefficient is then employed in the calculation of magnet size. On the other hand, if the reluctance oi the total number of magnetic leakage paths is calculated, it then becomes possible to estimate the leakage and make use of this in the later computations. Actually, it is quite common for both methods to be used.
The second methorl, however, will not be of much help to the reader unless he is familiar with the way in which the reluctance of the leakage path is calculated. To indicate the principles on which this calculation is based, Fig. 5 should be studied. Here a bar magnet is shown and is assumed to have been brought into contact with a mass of iron filings. The result, as any reader may test for himself, will be that the filings will cluster for the most part over two localised areas. These areas constitute the "polcs" of the magnet. If these two areas of major concentration of the filings arc linked together by a theoretical straight line, this line will constitute the "magnetic axis" of the magnet. It is assumed that between the two poles of the magnet run "lines of force" by means of which the magnetic force is sent from one magnet to another. These lines are, of course, merely a polite fiction, serving only to facilitate understanding of magnetic action.

Lines of Force

The lines of force are supposed to pass through the magnet, thus constituting an unbroken ring or circuit. In Fig. 5 these circuits made up of lines of force are roughly represented by actual lines of printers' ink, but, of course, we repeat, they have no real existence as lincs. The point to bear in mind in regard to this illustration is that the lines correspond in reality to directions of magnctic force at any particular point in the magnetic circuit.
'It will be observed that these magnetic circuits are not true circles or even true ellipses. To estimate leakage path reluctance it is necessary, however, to know the form of the lines of force constituting the boundary of the leakage path. Since these forins are not true geometrically, it is customary to replace them for purposes of computation by simpler geometrical curves. This is because knowledge of the leakage path boundaries cannot in any event be exáct, and must be dependent on calculations based on observation and experiment.

Leakage, incidentally, is that portion of the magnetic flux that follows a path ineffective for the purpose of the magnet. It occurs in a horseshoe magnet and polepieces by reason of the fact that about 40 per cent. of the inagnetic flux will not pass over the air gap; about 17 per cent. will be lost between the legs of the magnet and set up marginal fluses on the sides of the pole-shoes; while frow 2 to 3 per cent, will leak round the curved portion of the inagnet. Obviously, these leakages must be established before the necessary designa calculations can be made. In practice, however, the leakage round the curved portion of the maguet is often ignored because of its relatively small extent.

Reluctance, it must be remembered, is the property possessed by a magnetic circuit that renders neccssary a magneto-motive force to produce a magnetic flux in the circuit. The reluctance is given by the formula 1 $\frac{1}{\mu} \times A, 1$ being the length of the magnet, and μ the peimeability, A being the area.

Magnetic Fringe Effect

The marginal flux or spread, often known as the magnetic fringe effect, is allowed for by using a gap coefficient. The path of the magnetic flux through the air gap is such as to ninimise the reluctance, i.e., to give the greatest possible total flux and energy stored up in the maguetic circuit. The flux is evenly distributed when the air gap is long in proportion to the slot opening; but when the air gap is short, the greater part of the flux is conccutrated in the gap opposite the teeth. F. IV. Carter's method of calculating the effective air gap area is to average olt the number of tecth within the maguetic field of the polc, and from this to compute the lop surface area of the teeth, adding a proportion governed by the ratio of slot width to gap length. Thus, air gap area is then determined by the equation $A=T \times(I$ plus $k)$. Here, A is the air gap arca, T the tooth area, and k is Carter's gap coefficient, according to the values given in Table 1 .

TABLE 1

$\frac{\text { Slut-width }}{\text { Gap-length }}$	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Gap-cocfficient $k==$	0.9	0.82	0.76	0.7210 .67	0.625	0.58	0.55	

If the permeability of the gap is 1.0 so that $B=H \Rightarrow$ (amp. turus/cms.) $4 \pi / \mathrm{ro}$, the excitation (M.M.F. in amp. turns) needed to maintain a specific flux density can be computed after allowance has becn made for the fringe flux effect.

Fig. 5.-Lines of force.

Flux Density

To produce' a specified flux in a given air gap a magnet of a certain length is required. Flux density being the magnetic flux. per unit area is, as we have seen, normally represented by the letter B. In the air gap of a permanent magnet, flux densities usually have lower values than those obtaining in electro-magnets, being between three-quarters and one-half of the lafter. The magnet length is, as a rule, in proportion to the gap flux density, and is determined from the equation $l=\frac{\Phi_{g} l_{g}}{A_{g} H}$, Φ being the total magnetic flux and A_{g} the air gap. H is, of course, the magnetising force, usually as established by the economic flux density of the magnet alloy.
priate gearing the number of revolutions is registered on the meter dial.

The driving torque of the motor will be proportional to the product VI, V being the supply pressure and I the consumer's current. The braking torque exerted by the eddy currents induced in the brake dise is in proportion to the speed. This speed is represented by the equation $S=k V I t$, where S is the total number of revolutions in time t, and k a typical constant of the meter, ascertainable by calculation. Consequently, the revolutions made by the disc in a specific pertod of time will be a measure of the quantity of electrical energy, i.e., VIt watt-seconds, with which the consumer is supplied.

Magnets of this type are never provided
with pole shoes.

Fig. 6.-Electric meter brake masnet.

Fig. 7.-Moving coil magnen. with pole shoes.

Moving Coil Magnets

Another vital function of permanent magnets is in moving coil loudspeakers and similar instruments. A typical, though not necessarily current, moving coil magnet is shown in Fig. 7. In this the air gap is of ring form, and appears in the upper portion of the construction. The magnet material is employed for two supporting pedestals, which are housed in a surrounding cover to give a neater appearance. The top and bottom plates are of mild steel, as is the central pole. This steel is low in carbon content.
Characteristic figures for a moving coil magnet of this type are as follow: Induction in the air gap, 7,000 lines per

Electric Meter Magnets

A most important function for permanent magnets is in connection with electric supply meters, watt-meters, induction type ammeters, voltmeters, etc. Here they act. as brake magnets for the driving magnetism that records the consumption of current. A typical brake magnet is shown in Fig. 6. The air gap is approximately $2-3 \mathrm{~mm}$., and a brake disc of aluminium or copper is so mounted on the moving system that it projects into the air gap of the magnet, in which it rotates, being driven by a motor caused to function by part of the energy to be measured. The centre of the magnet pole faces is approximately 80 per cent. of the radius of the disc distant from the axis of rotation. By means of appro-
sq.cm. ; central pole diameter at the air gap, ${ }^{\text {rin. }}$; radial length of air gap, 0.045 in . depth of air gap, $3 / 1 \mathrm{in}^{\mathrm{in}}$. The moving coil supported in the gap comprises approximately 80 turns of No. 38 s.w.e. enamelled copper wire, coil resistance being approximately 2 ohms.
In mbving coil instruments it is usual to achieve damping by means of eddy currents induced in the metal former on which the moving coil is wound. The damping torque is in proportion to the square of the air gap flux density.
With magnets of this type the annular form of the gap makes estimation of the leakage much more difficult.
(To be continued.)

Solder and Soldering

A Multicored Self-fluxing Solder Which Eliminates the Chief Snags in Soldering and Ensures Perfect Joints

PERFECT contacts are essential before satisfactory operation can be olitained with any radio circuit. This point has been stressed in these pages many times, and the constructor has always been advised to make soldered joints wherever possible.

Many articles which have appeared in past issues have shown how to make a perfect soldered joinf, but little mention is ever imade of the materials without which soldering would be impossible.

Flix

Before any tinning, and consequently soldering, can be undertaken, some agent must be provided to prevent oxidation of the material, and, what is not so widely known among amateurs, to ensure an intimate contact and penetration between the materials lecing soldered and the solder. The latter is known as "wetting," and the desired conditions are obtained by the use of a flux, such as rosin and certain pastes put up uniler various trade names. Rosin approarhes the ideal, and it is used most extensively for all work of an electrical nature, as it is acid free, cannot harm the most delicate wires, and is clean, i.e., non-greasy, in use.

The correct application of the flux has always heen a snag with some amateurs, and, shall we say, inconvenient
to the more professional users of the soldering iron. To secure the correct proportions and application of solder and rosin, a rosin-coted solder was made available several years ago which contributed greatly to better and easier soldering. Unfortunately, however, single cored rosin-solder has an inherent defect ; it is practically impossible to guarantee that rosin will be present throughout the whole length of the solder tube.
An outstaraing British invention and production has made one of the greatest contributions to soldering. It is known as Ersin Multicore solder, and it takes the form of a high-grade solder wire having three cores of noncorrosive Ersin activated flux. Ersin flux is a pure high quality rosin which has been subjected to a complex chemical process to increase its finxing action to the highest possible degree without impairing in any way the well-known non-corrosive and protective properties of the original rosin. By virtue of its three cores and the special flux, Ersin Multicore solder provides a selffluxing wire solder which ensures a guaranteed continuity and salisfactory proportion of flux to solder, and it can be used with complete safety on the most delicate work. More complete information can be obtained from Messrs. Multicore Solders, Ltd., Bush House, London, W.C.2.

Condensers are at work

Perfect communication by radio is essential in all modern war operations, from grand strategy down to the smallest tactical manœuvre. Nothing but the very best of apparatus is good enough.

The
Home of Condensers

FOR THE RADIO SERVICE MAN, DEALER AND OWNER

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day, radio service work. We train them to be successful!

INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 94, international Buldings,
Kingsway, London, W.C.2.
Please explain fully about your instruction in the subject marked X.

Complete Radio Engineering

Radio Service Engineers
Elementary Radio
Television
If you wish to pass a Radio examination, indicate it below. British Institute of Radio Engineers
P.M.G. Certificate for Wireless Operators

Provisional Certificate in Radio Telephony and Telegraphy for Aircraft
City and Guilds Telecommunications Wireless Operator, R.A.F. Wireless Mechanic, R.A.F.
Special terms for members of H.M. Forces.
Name.
Age............
Address (Use penny stamp on unsealed envelope.)

DAGENITE
 AND

the debendable BATTERIES

HOLSUN BATTERIES LIMITED

See that FLUXITE is always by you-in the house-garage - workshop - wherever speedy soldering is needed. Used for over 30 years in government works and by the leading engineers and manufacturers. Of all ironmongers-intins. 8d., $1 / 4$ and $2 / 8$.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET-compact but sub-stantial-complete with full instructions, $7 / 6$.

To CYCLISTS: Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings and SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-bUt IMPORTANT.

The FLUXITE GUN:
puts FLUXITE where you want it by a simple pressure. Price II6, or filled, $2 / 6$.
FLUXITE
If SIMPLIFIES ALL SOLDERING
Write for Book on the ART OF "SOFT" SOLDERING and for Leaflets on CASE. HARDENING STEEL and TEMPERING TOOLS with FLUXITE, also on "WIPED JINTS.". Price Id. each.

FLUXITE LTD. (DEPT. W.P.) BERMONDSEY ST., S.E.I.

COMMUNICATIONS DEPEND

N countless instances quite intricate pieces of apparatus are wholly dependent on the proved reputation and reliability of their component parts.

All products from the House of Bulgin are preeminent for superior design and workmanship, and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

We ask the kind indulgence of the public on delivery until peaceful conditions return.

BULGIN FOR SWITCHES

T
HE best Radio and small Electrical Switches in the world. Every one is the fines: of its class, and the best for any job. Snap-action, low and constant contact resistance, reliable performance for tens of thousands o operations: all these are permanent charateristics.

ALWAYS DEPEND ON

BULGIN

REGISTERED.TRADE:MARK
A. F. BULGIN \& CO., LTD., BYE~PASS RD.,BARKING, ESSEX TEL. RIPPLEYAY 3474 (4 lines).

Radio Examination Papers-21

A Furiher Selection of "Test Yourself" Questions, with Suitable Answers by THE EXPERIMENTERS

1. Corroded Accumulator Terminals

MOST of the corrosive deposit or verdigris is found on the positive terminal, and if an accumulator has been badly neglected this deposit may have the effect of locking the nut solidly on to the terminal shank. It is dangerous to apply force to a terminal so corroded, because either the shank will shear off, or the whole terminal will break away from the plate asscmbly. What is required, then, is a means of dissolving, or at least softening, the deposit.

Hot water is generally effective if allowed to soak well into the verdigris. When the deposit is not very heavy it is often sufficient to soak a piece of rag in very hot water and then to bind it round the terminal. It should be allowed to remain for an hour or more. If the deposit is very thick, it may be better to start by carefully scraping and chipping some of it away. After that, a "cup" should be made from Plasticine or clay and placed round the terminal. A small amount of boiling water can then be poured into this receptacle; if necessary, this treatment may be repeated a few times, pouring out the water when it becomes cold.

If the water is made alkaline by the addition of a few drops of ammonia, it will prove rather more effective. When the deposit has been softened, a good deal of it can be wiped off with an old rag. After that, it should be safe to apply a pair of pliers to the nut and unscrew it. Force must not be used, however.
When then, nut has been removed, apply a smear of Vaseline or grease to the terminal shank, and put a rather more liberal quantity around the base of the terminal. If the nut is then put on and screwed backward and forward a number of times it will be found to be quite free.
Occasional application of Vaseline or grease will prevent the formation of the deposit-" prevention is better than cure!"

2. Aerial Arrays

For most requirements, a half-wave aerial is most

Fig. 1.-This diagram shows why a half-wave aerial is most efficient for the majority of purooses.
effective, because the maximum voltage can be developed between its ends. This maximum voltage appears between the peak of the positive half-cycle and the pat of the negative balf-cycle, as shown in Fig. 1.

The "Hertz" aerial-more frequently referred to as a dipole-is one-half a wavelength long, and consists of two arms, each of which is one-quarter wavelength in length. So that the effective length is not altered by the down-lead, a special form of lead-in must be employed. This may take the form of two twisted wires, a co-axial feeder or other corresponding device. The general arrangement is shown in Fig. 2.

Despite what has just been. written, the "Marconi" aerial is only one-quarter wavelength long ; and yet it acts as a half-wave aerial. This is explained by the fact that by using. an earth connection (which is not employed with the strict "Hertz" aerial) the effect is obtained of another quarter-wave aerial running vertically into the ground. This is referred to as an "image" aerial. Fig. 3 helps to explain this.
It may be argued that the "Marconi" aerial is not always just a vertical wire as indicated, but actually consists of a horizontal wire with a more or less vertical lead-in. But it is the vertical portion which should be considered, the horizontal member being regarded simply as a bent-over portion of the vertical aerial.
Both types of aerial referred to are equally suitable for most purposes, although it is obvious that a "Hertz" aerial would be very cumbersome on medium and long waves. On very short waves it is inclined to be rather more satisfactory than the "Marconi." It should be mentioned in passing that it is not customary to cut aerials for particular wavelengths when they are for use with receivers, although it is an advantage to make the length right for the middle of the band to be covered, especially when dealing with short waves.
The "Beveridge" aerial is seldom, if ever, used to-day, It consists of a wire four to six wavelengths in length, running parallel to the ground and only a few feet

above it. The end remote from the recciver is carthed through a resistance. In the earlier days of wirciess it was often used as an "anti-static" pick-up device, and for directional reception. Some of the "Beveridge" aerlals used were a few miles in length.

3. Mains Transformer Problems

The immediate effect of connecting the primary winding of a rio-volt transformer to 230 -volt A.C. mains would normally be pronounced over-heating. With a really well-made transformer, however, this may not be serious provided that the secondary load was small in relation to that for which the transformer was designed.

Another, effect which would inevitably be present is that the voltage provided by the secondary windings would be just over twice that for which the component was intended.

It is not necessary to stress the fact that it would be most unwise in any event to use a transformer in this manner. Care must therefore be taken when buying secondhand transformers, especially those taker from American wireless equipment, since 1 ra-volt A.C. supplies are not unusual in America and Canada.

At first sight it would seem that by connecting two ro-volt windings in series across 220 -volt mains the two transformers could be used in a normal manner, or that the secondary winding of one only could be employed. But this is not true, because the primary current is determined by the load on the secondary. And if both primary currents were not the same, the transformer requiring the heavier current could not operate. In practice, therefore, it is satisfactory to use the series: primary connection only when both transformers are similar, and both are supplying the same output. Even then, the arrangement is seldom satisfactory, because any variation in load on either will affect the functioning of the other.

4. Speaker-transformer Replacement

The normal loudspeaker transformer has a ratio between about $20: 1$ and $60: r$, depending upon the optimum load of the output stage and the impedance of the speaker speech coil. It will be remembered that the correct ratio may be found by dividing the optimum load of the output stage by the speech coil impedance and taking the square root of the result. For example, if the power output valve had an optimum load of 4,000 ohms and the speech coil had an impedance of 10 ohms, the correct matching ratio would be the square root. of 4,000 divided by 10 , which is $20: 1$.

An average mains pentode or tetrode output valve has an optimum load in the region of 8,000 ohms, while the average speech coil impedance is ro ohms. It can be seen, thereforc, that the correct ratio to provide matching between the two is about $27: \mathrm{x}$.

What transformer, other than a speaker transformer, has a ratio approximating to this, and has at the same time, a low-resistance secondary? There are several mains transformers which would serve: For example, a transformer with 200 volt primary and 6.3 volt secondary provides a ratio of rather more than $30: 1$; that would serve our purpose fairly well. Alternatively, a transformer with rio volt secondary and a 4 volt secondaty could be employed by using the H.T. secondary as a primary winding. Other alternatives will suggest themselves to readers.

5. Detection Methods

The anode-bend detector is less sensitive than the leaky-grid, but rather more sensitive than the diode. Additionally, reaction can easily be applied when using this form of detector. At the same time, it will handle only small signal voltages, and its only real advantage is its high input impedance, which means that it offers less damping to the preceding tuned circuit. Its use is nowadays mainly confined to valve voltmeters and certain types of wavemeter.

The grid-leak detector is very sensitive, can readily be used with a reaction circuit, and has a moderate
" handling " capacity. It introduces only a very small amount of distortion; and is employed almost universally in "straight " circuits.

Diode detection is generally most suitable in a superhet. Reasons are that it will handle very large signal voltages; such as are provided after frequency-changing and intermediate-frequency amplification, and it provides a ready means of A.V.C. It is virtually. distortiontess, and is ideal in a receiver with ample pre-detector amplification and when good-quality reproduction is required.

6. Superhet Instability

Occasionally, the type of instability referred to in the question is due to a defective I.F. valve, but more often lack of decoupling is responsible. This may occur, even in a projperly designedreceiver, if one of the by-pass condensers becomes open-circuited. One condenser

Fig. 3.-How the "" Marconi" aerial, althoush one-quarter wavelength longs, acts as a half-waoe device. Inset show: the aerial and earth connections to the receiver.
which is important in this respect is that connected between the screens of the frequency-changer and earth. In simple receivers, the same condenser is sometimes used to by-pass H.F. from the screens of both the frequency-changer and the I.F. amplifier; it is then even more important that it should be in good condition.

If the trimming of the I.F. transformers has been done by rough-and-ready methods (that is, without using a signal generator) it might be found that incipient oscillation cannot be prevented. In some commercial receivers it is actually necessary slightly to detune one of the I.F. transformers to maintain stable operation.

Another possible cause of instability is poor earthing of the coil and I.F. transformer screening cans. In battery sets, a run-down battery may produce similar symptoms, particularly if it is not shunted by a highcapacity condenser; an $8-\mathrm{mfd}$. clectrolytic is often desirable.

7. Frequency and Aerial Length

This question will be better understood after reading the answer to question number two. It is obvious that a quarter-wave aerial is one whose length is one-quarter of the wavelength on which it is to be used. It is therefore necessary to convert the frequency in megacycles per second into wavelength in metres before going any further. Since a wavelength of 300 metres is equivalent to a frequency of one megacycle per second, the simplest method of conversion is by dividing the frequency in megacycles, into 300 . If we divide 7.5 into 300 we get 40 as the answer. The wavelength is therefore 40 metres. A quarter-wave aerial should thus be 10 metres in length. We can convert this to feet if it is remembered that one metre is approximately 3 ft . 3 in. Thus, our aerial should have a length of 32 ft . 6 in .

Using the same method of calculation as before, we find that the wavelength corresponding to 4 megacycles per second is 75 metres. If the whole aerial is to have a length of one-half the wavelength it will be 37.5 metres. Each arm of the doublet will therefore require to have a length of 18.75 metres. By calculation it will be found that this is approximately equivalent to 6 Ift .

Elementary Electricity and Radio-7

The Valve as an Amplifier : Oscillators and Neutralising

By J. J. WILLIAMSON

(Continued from page 341, July issue)

The Anode Load

sO far we have considered the properties of the valve itself without reference to its use in practice, i.e., we have been usinig the " static" instead of the "s dynamic" characteristic curves.

Having caused large changes of anode current for small changes of grid voltage (amplificd the grid voltage effects), we must reproduce voltages in the anode circuit in order to be able to use the rippling or changing anode current.

As $V=I R, I Z$ or $I X_{L}$ then the insertion of a resistance, impedance or reactance (inductive) in the anode circuit will cause the required voltage to appear. The opposition placed in the anode circuit is known as the anode load. Figs. I9 (a), (b), (c) and (d) show several types of anode load, the type used depending upon circuit requirements. Obviously a condenser could not be used because it would block the path of the D.C. through the valve.

The alternating voltage proluced across the anode load can now be fed to another valve-or pair of telephones, ctc., the mode of doing this being termed the coupling of the circuit. Methods of coupling will be discussed in a later article.

The Triode as an Amplifier

By usc of the Iu/Vg characteristic curve of a triode we can deduce just what voltages must be applied to the valve in order that its amplitication shall be as distortionless as possible.

Reference to a typical Ia/F.g curve (Fig. 20 (A)) shows how, the anode current would vary with changes of grid voltage. Obviously, if the waveform of the variations of the anode current is to be the same as the waveform of the voltage applied to grid and filament, then the variations of anode current must take place over the straight or lincar part of the characteristic curve.

For the curve shown the alternating voltage applied to grid and filament would cause the anode current to vary in such a way that distortion occurs -indicated by the difference between the shapes of the two waveforms.

In order to make the alternating grid/filament voltages act from the centre of the straight portion of the characteristic curve (greatest possible linear variation obtainable) a steady voltage, known as the "grid-bias," must be applied to the grid and filanient. Fig. 20 (B) represents a simple low-frequency amplifier with suitable grid-bias applied by the battery "A."

The point on the characteristic curve about which variation occurs is known as the operating point: the variation of grid-bias causes the operating point to move. The dotted lines of Fig, 20 (A) indicate the correct condition for amplification.

Class A, B and C

To denote the operating conditions for various purposes three main conditions are chosen, namely, A, B and C.

Fig. 19.- Rebresentative anode load.

Class A occurs when anode current varies at all times for an alternating voltage applied to grid and filament: This condition has been discussed under "The Triode as an Amplifier."

Class B is obtained when a yalve is biased approximately to cut-off point, X in Fig. 20 (A). Anode current flows mainly during the positive half-cycles of the alternating voltage applied to grid and filament.

Class C occurs when only' a portion of the positive half-cycles of the alternating grid/filament voltages causes anode current to flow, i.e., the valve is biased: beyond cut-off.
In Figs. 2I (A) and (B) an alternating voltage together with a biasing voltage has been applied to grid and filament of a valve. Notice that in Fig. 2I (A) only positive half-cycles affect the anode current, i.e., Class \mathbf{B} operation. In Fig. 21 (B) the "peaks" of the positive half-cycles cause a flow of anode current, i.e., Class C operation.

The Triode as an Oscillator

In the fifth article of this series the closed and open oscillatory circuits were discussed, and their action cxplained in sone detail by means of the "flywheel and spring analogy." It is to be remembered that the oscillatory current in these circuits would rapidly die away owing to the energy-loss, thus if continuous oscillation is to be maintained, timed pulses of energy must be supplied in order to replace the losses, even as

Fig. 20 (above)-Ia/Vg curve of a triode, and a simple amplifier with applied bias.

Fig. 21 (Right).-Class "B" and "C" aperaling curves.
a swing has to be pushed at definite intervals if it is to be kept in motion.

From whence shall the "timing" of the pulses be supplied? Obviously there can be no better source than the oscillatory circuit itself. Again if we take energy from the oscillatory circuit for "timing" purposes then we shall have to give extra energy back to the circuit. if we wish to make up for losses. The triode valve, because it can amplify the timing pulses, will enable us to do this.

The Hartley Osciliator

Fig. 22 (A) shows a Hartley oscillator, wherein the col is tapped, voltages from one section are fed to grid and filament of the triode (timing pulses) whilst the anode current of the valve flows through the other part of the coil, thus supplying energy as this current varies under the influence of the grie/filament voltages.

The Colpitts Oscillator

- Instead of "splitting". the coil, the condenser is "tapped" by usingtwo condensers of a suitable value in series. One half of the condenser combination supplies the timing pulses which are fed to grid and flament; the valve's anode current once again flows through the coil, thereby enabling energy pulses to be supplied to the oscillatory circuit (Fig. 22 (B)).

The radio-frequency choke (R.F.C.) is placed in the circuit to prevent the supply from causing an R.F. short-circuit across grid and filament. Notice that no grid-bias battery is included, biasing being obtained automatically by the action of C_{3} and R_{1}; also, if the energy applied to grid and filament is in the incorrect
phase, then no oscillation will occur-a condition analagous to pulling a swing when it should be pushed and vice versa. - (Grid and anode changes of potential should be 180 deg. out-of-phase.)

The Tuned-anode Tuned-grid Oscillator

The T.A.T.G. oscillator employs a slightly different method of providing the grid/filament timing voltages. Fig. 23 (A).

The anode circuit $L_{1} C_{1}$ is the circuit to be maintained in oscillation, whilst the grid circuit $L_{2} C_{2}$ is the "timing" circuit.

On switching on the oscillator, C_{1} charges up, causing oscillations to occur in the anode tuned-circuit, energy from this circuit is supplied via the capacity existing between the anode and grid of the valve, i.e., Cag (interelectrode-capacity), to the grid circult, causing it to oscillate. The alternating voltage across the grid circuit being applied to grid and filament of the valve, thus maintaining the anode circuit's oscillation because of the periodic variation of anode current through $L_{\text {. }} 1$

Fig. 23 (B) shows the equivalent circuit of a T.A.T.G. oscillator; the mode of energy transference from anode to grid circuits, via the Cag of the valve can clearly be seen.

Crystals and Their Use

All the above-mentioned oscillators suffer from the disadvantage that their frequency will vary with least change of the values of inductance or capacity in their circuits, due to temperature variation, vibration, lumidity and the effect of near-by objects.

If an oseillator could be controlled by a stable fre: quency source, this instability would greatly be reduced (Continued on page 392.)

Fig. 22.-(A) Hartley oscillator. (B) the Colpitls circuit.

GALPINS
 ELECTRICAL STORES

"FAIRVIEW,"
LONDON RD., WROTHAM, KENT.
TERMS CASH with ORDER. No C.O.D.

Regret no Orders can be accepted from Eire or Northern Ireland.
ELECTRIC LIGHT CHECK NETERS well-known makers, first-class condition electrically guaranteed. for A.C. mains $200 / 250$ volts 50 cy . 1 phase 5 amp . load, 10/- each ; 10 amp , load, 12;6, carrlage $1 /$. 1 K,W. TRANSFORMER, input 100 volts at 100 cycles, single phase, output 10.500 volts, centre tapped to earth. Price 24/10\%, carriage forward.
HEAVY DUTY CABLE. V.I.R.. and braided, in first-class condition, size $37 / 13$, lengths 30 to 40 yards. Price by the length. $5 /$ - per yard, carriage forward, or $7 /-$ per yard for short lengths, carriage paid. 1 K.W. ELECTRIC FIRE Element, size loin. $x i z i n . x$ lin., for 2200 V mains A.C. or D.C., as new. $6 /$ - each. post free.
ROTARY CONVERTER, D.C. to D.C., input 48 volts; output 2.500 volts at 1 kW ., condition as new. Price £10, carriage paid.
WWATT WIRE END Resistances, new and unused, assorted sizes (our assortment). 5/6 per doz.' $;$ post free.
SOLID BRASS LAMPS (wing type), onehole mounting. fitted double contact small B.C. holder and 12 -volt 16 watt bulb, $3 / 6$ each, post free, or $30 /$ per doz., carriage paid.
HEADPHONES, 120 ohm, secondhand, complete with headband and cords, in perfect working order. Price 7/6 per pair. post free.
INSTRUMENT METAL RECTIFIERS, by famous maker, $10 \mathrm{~m} / \mathrm{s}$ full load, convert your D.C. meter to A.C. working. Price 15/- each. post free.
TUNGSTEN CONTACTS, 3/igin. dia., a pair mounted on spring blades, also two high quality pure silver contacts $3 / 16 \mathrm{in}$. dia., also mounted on spring blades, fit for heavy duty, new and unused: there is enough base to remove for other work. Price the set of four contacts. $5 /-$, post free. 220 VOLT DYNAMO 9 AMP, output by Lancaster Dynamo Co.. shunt wound. speed 1.500 R.P.M. condition as new, Price E10. carriage paid.
VoLTMETERS, 21 n . dia., panel mounting, moving-coll, modern-type by famous makers, range $0-120$ volts. F.S.D. very low. Price 32 6, post free.
AMPMETEiks, description as above, range $0-11$ amps. Price $25 /-$, post free. KLAXON MOTORS, 220 จ., D.C., $1 / 10$ H.P. shunt wound, ball-bearing, fitted reduction gear giving speed of 700 r.p.m., high-grade gear giving speed of
job, condition as new. p.m., high-grade
Price. $50 /-$ each. job, condition
carriage paid. shunt wound, condition as new, high grade, ball-hearing, + H.P.. can be supplied in 110 or 220 volts, as ordered. Price, elther voltage, $40 /$ carriage paid. MoviNG COIL movements, needing slight repair. modern. type, famous makers. deflection 5 to 10 m .a. Price 15 ier post free, RIGFT ANGLE DRIVE, mounted in gunmetal box, all ball bearing. as new. 12/- each, carriage paid. KLAXON MOTORS, as above, with right angle drive, but need slight repair, mostly fields open circuit, not guaranteed. laminated fields, 20/- each, carıjage paid. AUTO TRANSFORMER, Rating 2,000 watts, tapped 0-110-200-220-240 volts, as new. Price 89, carriage paid.
ZENITH Vitreous resistances, size 5 in. by 1 in.. 5.000 ohms to carry 100 or $150 \mathrm{~m} / \mathrm{a}$., two sizes. Price $4 /-$, each, post free. RESISTANCE MATS, size $8 i n$. by $6 i n$. set of four, 80-80-150 and 690 ohms, to carry it to amp . Price, set of four, $5 /$, post free. LARGE TRANSFORMER, input 230 v .. 50 cycle. andput, $2,000-0-2,000$ volts at E3/15/0, carriage pald.
MOVING COIL Ampmeter, 2 in dia., panel mounting, reading $0-20$ amps. F.S.D. $15 \mathrm{~m} / \mathrm{A}$. Price $301-$, post free.

SPECIALISED RADIO

 COMPONENTS available from STOCK for Government work :Micrometers $0 / 50$ 0/100.
Milliammeters 0/I upwards
Many readings. List available.
Polystyrene rod, tube and sheet.
Crystals and holders, oscillator and I.F. resonator.
Concentric UHF Cable, Polystyrene bead insulators:
We give below a few items from our GENERAL STOCK:
Tuning Coils. Wearite " p ", Coils, full range available ...Price $2 / 3$ and $2 / 6$ each. Pick-ups, Rothermel S8, Bakclite moulded tone arm $\quad \ldots \quad22 \quad 5 \quad 0$ (Plus Tax. f1 1399)
Condensers. Aierovox 40 mfd .200 v working, wet electrolytic can
type
T.C.C. type, F.W $\because \ddot{8}$ mid. $\ddot{500}$ v. \dddot{C} ardboard type (supply limited to two per customer for urgent repair work) 30
Eddystone. 1027 Pointer Knobs and Dials
1044 Ditto
1013 Midget Condensers

1066 H.F. Chokes 1012,000 metres | 1 |
| :--- |

Valveholders. Baseboard short-wave skeleton, low-loss construction on pillars-
British 4-, 5- and 7-pin
all I 0
British 4- and 5-pin Bakelite... 10 7-pin Bakelite.
Shaft Couplers. "Solid "Brass "in. bore with grub serews
Ceramic Formers and Insulators. Heavy stand off for rod aerial sup port, ${ }_{2}{ }^{3} \mathrm{in}$. high, metal clamp for 3 in . rod 26 Heavy stand off 3 in . high 2 in . base Eddystone 1090 Former 5 in . by $2 \frac{1}{2} \mathrm{in}$. Eddystone 916 Beehive stand off Eddystone 1019 Midget stand off
Coil Formers, $13 / 10 \mathrm{in}$. long, $\$ \mathrm{in}$. dia.,
4 ribs, grooved 10 turns, winding length ${ }_{4}^{8}$ in.
Coil Formers, ish. long, in. dia., grooved 14 curns, winding length
Fuses. All values of standard $\begin{aligned} & \text { type } \\ & 1 \frac{1}{4} \mathrm{in} \text {. }\end{aligned}$
cartridge fuses
Potentiometers. Wire wound, 400 ohms.
I.F. Transformers. 465 kels Wearite I.F. Transformers
Valves, Comprehensive stocks of British and U.S.A. types available for replacement purposes.
Additional charge of $1 /$ - for postage and packing on orders below 101 .
WEBB'S RADIO, 14, Soho St., Oxford St., Lendon, W.1. Telephone : Gerrard 2089
We are available 9 a.m. till 6 p.m. for OFFICIAL business, but please note our SHOP HOURS-10 a.m. to 4 p.m. (Saturdays, $10 \mathrm{a} . \mathrm{m}$. to 12 noon.)

EIECTRADIX BARGAINS
LIGET RAY CELLS, Selenium Brige, in bakelite case, Raycraft Model, 21/-. Raycraft Ray Set, with relay, 42/-. Relay enclosed 10,000 ohm tele-type, $22 / 6$. For other. Relays see special leaflet, $2 d$. WAVEMETERS AND RADIOGONOMETERS. We have aome ex. W.D. Wavemeters. Buzzer and Ieterodyne, less calibraWavemeters. Buzzer and Heterodyne, less calibra-
ticn chart, $45 /$ and 70/. Radio Direction-Finders Lien chart, 45/- and 70/-
In mahog. cases, 90
USEFUL PRECISION-MADE SPARE PARTS, NEW. Chart Drum and clips, $5 / 6$, Magnetic Clutch, 6 volt., compiete, $25 / \mathrm{m}$. Sin. Traverse Shart, 4in. Threaded 120 to inch, with bearings, $12 / 6$. Stylus, with carriage, rois and bracketa, $7 / 6$. $\overline{5}$-pin plugs, with panel socket and cords, midget type, $4 / 6$ pair. 14-way Plug and Socket, with cord, 7/6. Bin. Aluminium Panel, drilled 13in. x $\mathrm{G}_{\mathrm{i}}^{\mathrm{i}} \mathrm{in} ., 31$. Bakelite difto, 7 in x Giln., 2/3.
TURNTABLES. Ball-benring, for table sets, model railways, eto., bakclite body, 4 in. dia., 2/- earh.
LOCTRIC SOLDERING
1RONS. 60 watts, $200 / 250$ rolt, with flex, A.C./D.O.; 12/6.
VEE PULLEYS for $\frac{1 \mathrm{th} \text {. bclt, thrned steel, } 4 \mathrm{in} \text {. and }}{4 / 6}$ tin. oatside bore, 4 2 in . oatside bore, $4 / 6$ each.
CIRCUTT BREAKERS, 25/- MOTOR STARTERS 220 v. D.C., $\frac{1}{2}$ h.p. to ${ }^{\frac{1}{4} \text { h.p., with no-volt and overload }}$ release. Iron-clad, $13 i n$, x 12in. x 7 in., 45%.
FOOT SWITCHES: 8 -way Livens-Rotax walnut switch-boxes with brass top, 8 levers and fusea, 12/50 volts. 3/6. 6-way ditto, $3 /$. fi-way Pueli Button 1R.A.F. Switches, 2/9. Knife Switehes. 100 amp ., open type on sinte ganel 24 in . x 18 in .; with porcelain handle fuses, $42 / 6$ pair. Tluree D.P. Knife Switcbes, 2000° amps, and Fuges, and one $\$ 0$ amps., all on one pinel. \&8. Automatle Thlp $\$ 0$ amps., 10 on one panel, 88 . Automatio Trip
Switches, 10 ampe., $25 /-250 \mathrm{amp}$ on 1 inin. $x 12 \mathrm{in}$.
 panel, \&4. 1.000 amp., \&6. 8-stud 100 ansp,
Bittery. Suitches on panel. \&4. 10.point Instrument Bittery Suitches on panel, \&4. 10.point Instrument
Switches, $4 / 6$. R.I.7 Stud Switch Boxes, $10 / 6$. Switches, $4 / 6$ R.I. 7 Stad Switeh Buxes, $10 / 6$.
High current enclosed "os:oft" for motor control, High current en
$\longrightarrow \quad 12 / 6$ 12/6.
MAGNETS.
permanent Magsive tnrse-shoo permanent steel magnets. Various mizes, $2 / 6$ nulk 4,6 each. Wonder midget 2 ozs. Disc I'M. Magnets as last adrert. $2 / 8$ ench.
A.C./D.C. MAINS MAGNETS, - -pole, 110 voltm or $2,2 \pi$ volts, $5 / 6$. Small 12 - volt nolenolds with 2 in . x tin. plunger, $6 / 6$.
CABINETS. Anltable for test set apparatus, mike amplifier, oscillator, portables, etc. Min. x Gin. 6 fin. with double doorn. A rery fine ex. W.D. job in wahoguny, canvas covereu. Chassis, panel, transfonmers, a 5-tapswitch and rheostat is imeluicu. A11-in' price, $45 /=$.
PLUGS AND SOCEETS. Radio a-pin eocket and plug, 9 d . puir. Bockete mounted on janel, $4 / 6 \mathrm{doz}$. palns. 5 pair socket atrip jancl and one plug. 2/-. Model 5 -pin pluge with panel socket and co:ds. compact type, $4 / 6$ pair. 14-way plus and socket with cord, $7 / 6$.
MORE RADIO SUNDRIES. Headphones, $12 / 6$. Headbands. Bteel, double Browns trpe, 2/6. Single Receivens, 4/6. Cryatal catwlisker detectors, $2 / 6$. Recerven, Crystal. 1/ tin. Perikon permanent, 2/6. Bpare Crystal, $1 / 6$ tin. Petikon Permanent, 2/6.
Carborundum, $7 / 6$. Inter-ralve Trumsformers, Rricason type, 5%. Telsen Telenor Dials, 4 control, $.5 / \mathrm{m}$. 1 control, $2 / 6$. Slow Motion Dials, $4 / 6$, Panel low res. switeli Rhenitats, $2^{\prime} B$. Ferranti 50,000 low res. switel Rhentats, $2^{\prime} B$. Ferran
wire-wound resistorm, $3 / 6$. Holders, $2 / /$.

HANDCOMS. foremment all-
metal Fleld Handeoms, Mierometal Fleld Handeoms, Miero*
telephones or Transceivers, for portable or fixed telephones. The famous No. 16 Handeom used in so many field sets. Sturdily built with mulke finger awitch, as new but no cord, 12/6. Liunted number available. stmilar Handeom, lews switch and no cord, 7/8. Magneto hand generators 12/6. May bells in wahut case $15 / \mathrm{F}$. Field cable for service use.

For other bargains. see our

 ADVERTISEMENTS IN ALL PREVIOUS ISSUES.Please add pasiage for ell mail ardero. Send. stamned merelope for replies to all engwiries.
NOTE NEW ADDRESS. CALI AND SEE US.
ELECTRADIX RADIOS,
214. Queenstown Road, Battersea, London, S.W.8.
-a very important consideration. Such a source lies in a correctly cut crystal, quartz being generally employed.

A natural quartz crystal is shown in Fig. 24, but very few perfect quartz crystals are to be found; specially selected specimens being used for radio purposes.

A slice of crystal, correctly cut, has the property of vibrating mechanically if a P.D. is applied to it. Conversely, a sudden tension across the crystal slice will cause a P.D. to appear, oscillations occurring until the energy supplied is lost, i.e., a damped wave-train is produced: Thus, a P.D. applied to a crystal will cause both mechanical and electrical vibrations, the frequency of which depend mainly on the physical dimensions of the crystal.

The Tuned-anode Crystal-grid Oscillator

In the T.A.X.G. (Xtal) oscillator, Fig. 25, the voltage pulse produced across the crystal by the anode current at the instant of switching on the oscillator, will cause the crystal to produce alternating voltages which act across grid and filament, which, in turn, making the anode current "ripple," will set the anode tuned-circuit oscillating. The oscillatory voltage across the anode

Fis. 24.-Simplified structure of natural quartz crystal.
circuit maintains the crystal's oscillation in the same way as described in the T.A.T.G. oscillator, e.g. via the Cag of the valve.

The frequency generated by the T.A.T.G. and the T.A.X.G. is not quite the same as the resonant frequency of the grid circuit or crystal, due to certain factors which are beyond the scope of these articles.

Radio-frequency Amplification

As soon as we attempt to use the triode as a radio-

Fis. 25.-Crustal-grid tuned anode oscillator.
frequency amplifier, we discover that the amplification is lower than would be expected, and that instability occurss.

The amplification is lower because of the "shortcircuiting ${ }^{\text {n }}$ effect of the capacity between grid and filament (Cgf); this effect increases with the frequency; i.e., the reactance of a condenser gets smaller as the frequency is increased.

We rarely require a radio-frequency amplifier that can amplify evenly all frequencies; a narrow band of frequencies or one particular frequency being the usual requircment.

High amplification from such an amplifier can be obtained by the use of grid and anode tuned-circuits, when it becomes possible to tune or pick out the band of frequencies or single frequency-according to the circuit design-that it is desired to amplify.

Let us investigate the cause of the instability ex-

Equivalent circurt of T.A.-T.S..
Fig. 23.-The tuned anode tuned-grid oscillator.
perienced when using a triode with grid and anode tuned-circuits as an R.F. amplifier. Referring to Fig. 23, it can be seen that there is little difference between a T.A.T.G. oscillator and the tuned radio-frequency amplifier using a triode, thus it becomes apparent that our R.F: amplifier can osciliate, thereby causing instability. Now, the prime factor of a T.A.T.G. oscillator's ability to oscillate is the coupling together of grid and anode tuned-circuits by the Cag of the triode, therefore, if we could, in some way, overcome or neutralise the effects of this interelectrode-capacity, then the oscillatory action would not occur. There are two ways of achieving this: (x) by neutralising; (2) by the use of a tetrode (four-electrode) or screen-grid valve.
(To be continued.)

A COMPLETE LIBRARY OF STANDARD WORKS

ву F. J. Camm

SCREW THREAD MANUAL $8 /-$, of $8 / 6$ by post.
MASTERING MORSE 1 /-, by poat $1 / 2.9$
gears amd gear cutting 6/-, by post 8/6.
WATCEES : ADJUSTMENT AND REPAIR $6 /-$, by post $6 / 6$.
NEWNES' ENGINEERS' MANUAL 10/6, by pont 11/-.
PRACTICAL MOTORISTB' ENCYCLOPZDIA 10/6, by post 11 -.
motor car principles and Practice $6 /$-, by post o/b.
practical wireless encyclopadia 10/8, by post 11/-. radio traning mantal $0 /=$, by poet evo.
bveryman's wireless boos $8 / \mathrm{f}$, ty posi $8 / 6$.
PRACTICAL WIRELESS chrcuits $8 / \mathrm{F}$, by post $8 / 6$.
COLLS, CHOKES and TRANSFORMERS $6 /$-, by Dost 6/6.
Practical wireless service mantual $8 / 6$, by post $9 /$ -
WORKSHOP CALCULATIONS, TABLES \& FORMULE $6 /$, by post $8 / 6$
NEWNES' SHORT-WAVE mANUAL $6 /$-, by post $6 / 6$.
WIRELESS TRANSMISSION 6/, by post $8 / 6$.
dictionary of metals and bluoys 7/8, by pont $8 /$.
the superiet manual $8 /-$, by post $6 / 6$.
PRACTICAL MECEANICS RANDBOOX 12/8, by Dost $13 /$-.
RADIO ENGINEER'S VEST-POCKET BOOK $3 / 8$, by post $3 / 9$.
WIRE AND WIRE GAUGES (Vest Pocket Book) 3/6, by post $3 / 9$.
deesel vehicles : operation, mantenance and repair 57-, by post 5/6.
NEWNES' ENGINEERS' POCKET BOOK 7/6, by post $8 / 6$
mathematical tables Formule (Vest Pooket Book) $3 / 6$, or $3 / 9$ by post.
 Tower House, Southampton Nireed, Btrand, F.e.2.

The Editor does not necessarily agree with the opinions expressed by his correspondents. All letters must be accompatied by the name and address of the sender (not necessarily for publication).

An Efficient Two-valve Mains Receiver

SIR,-The accompanying circuit diagram is of a very efficient two-valve mains receiver which I have recently constructed and which may be of interest to other readers. There is nothing new in the design, but very little use seems to be made of the triode-pentode valve other than in superbet work. This set, which is quite easily constructed, is equal to some commercial three-valve sets which I have had for repair, and it also gives plenty of scope for experiments. The 2,000 ohms volume control was the only wire-wound component I had. but one of - io,000 ohms would be much better. The mains transformer is of the "Stal" eliminator type with H.T. sccondary and full wave rectifier filament winding, but the extra load on the filament winding, l.y using it for two valves, does not affect it in any way. The Westinghouse rectifier is of thè H.T. 10 or 17 type, and H.T. output is 150 volts at about 25 milliamps, so that anyone with a suitable mains transformer could get still better results. The coils are Telsen iron-core type (W.349), and I used two sections of a three-gang condenser for tuning. All the parts, except valves, are out of my " junk box." The output pentode is a little over-biased by the potentiometer arrangement across the speaker field, but is not noticeable in the reproduction, which is quite good for a small set. Reaction is not required for any but forcign stations, and there is no instability at full volume, although the strength of stations kelow 2.50 metres suggests that a little instability would be present if a higher voltage wasd used. To conclude, I might add that selectivity is very good and, on the .00005 mid. aerial tapping, using reaction for volume, is nearly up to superhet standard.

I think an improved model of this circuit would be irleal for the "Utility" sets which we have heard about, but not seen yet.John R. Leeming
(Blackburn).

S

31.2 metres, an American was reading the news. He announced at the end: "This is Allied Forces H.Q., North Africa." When I heard him on the following day he was reading the news again, and he said: "This is Martin for Reuter, Jondon." Then, after reading the same news again, he said: "This is T. Brown for" Reuter's, London." He read out some news avain and said: "This is for Associated Press, New York and London." But I missed the call sign. On June 7th, at 23.05 hrs., I heard an American station on 23 metres. The dialogue was: "This is the Voice of America, one of the United Nations, Station WKRB."-A. J. Newman (London).

ELEMENTARY ELECTRICTTY AND RADIO: A CORRECIION.

IN the article under the above heading which appears in the June issue (page 284), the formula at the foot of the left-hand colunm should read:

$$
X c=\frac{1}{2 \pi f c} \text { not } X c=\frac{1}{2 \pi \sqrt{L}!}
$$

Station Ídentification

 IR, -In the June issue of Practical Wireless I noticed a letter from Thos. Wilson, of Kirkconnel, mentioning a list of Prcss stations. Being a Morse enthusiast, I woniter if he would oblige me by letting me have a list. I have one or two Eng!ish Press stations. I' copy Morse crery night in Italian, French, German and English, just to speed up my receiving, which is about 18 w.p.m. Also, can any reader supply any information concerning one or two stations which I have lieard recently but cannot identify? On June 5th, I picked up a station on the 29 -metre band, and in French the announcer said: "Here is Radio France." He then spoke some numbers like this: $10,9,8,7,6$, $5,4,3,2, x$, zero, all in Frencls. This was at 23.35 hrs. D.B.S.T. Then on June 6th, at oo.07 hrs., onImmediately below this the formula should read

$$
\begin{aligned}
2 \pi f L & =\frac{I}{2 \pi / C} \\
f^{2} & =\frac{1}{2^{2} \pi^{2} L C} \\
f & =\frac{I}{2 \pi \sqrt{L C}}
\end{aligned}
$$

Also under the paragraph headed "Capacity and Inductance in Parallel" the formula should read:

$$
f=\frac{\pi}{2 \pi \sqrt{\overline{L C}}}
$$

Replies to Queries

P.U. With an A.C./D.C. Set

"I would like to use a pick-up with my radio, but am told that this is not possibie as the set is the A.C./D.C. or Universal type. If it is possible to use a pick-11p, could vou please state what condensers, etc., are needed, also where to connect the negative side of the pick-up, as I would very much like to use the set on the gram. until it is possible to obtain parts for a radiogram." J. R. (Leicester).

P
ARTICULAR care has to be taken when connecting a pick-up to A.C./D.C. receivers, owing to the fact that one side of the mairs is common with the chassic.

The component is connected to the grid of the defector and chassis but, to protect the operator from shocks at mains voltage, each connection must be made through a small mica dielectric fixed condenser. Suitable values come between $0,0005 \mathrm{mfd}$. and . 01 mfd .

It is essential to see that the grid of the valve is still provided with its normal grid-leak connection to cathode or common negative line, as the condensers prevent the flow of any D.C., therefore, if the leak is removed, the grid will not raceive its correct bias.

U. 31 Connections

-I have here an Osram $\mathrm{U}_{\mathbf{0}} 31$ rectifier valve. It has five pins. Two are lor filaments and two for plates. What is the other for? Where would the fifth pin be connected on a transformer? Iam drawing a diagratn of the valve pins, which I hope you will identify for me. As 1 only require 150 volts, should the H.T. winding be stepped down, or could I use resistors for my purpose?"H. K. (Benwell).

THE U. 3 I is designed for use in A.C./D.C. circuits, and is of the half-wave type. If, however, you wish to use it with a mains transformer you must make sute that the secondary supplying the heater is designed to give 26 volts at 0.3 amps ., and the H.T. secondary 250 volts at $100 \mathrm{~mA} . \mathrm{s}$.

The connection about which vou are not too clear is the cathode. This tepresents the D.C. outpnt of the rectifier, and must, therefore, be connected to one side of the smoothing circuit, in place of the usual centre tap of the heater winding. If you do not require a full 250 volts, a suitable resistor should be connected in series with the D.C. H.T. line to produce the required yoltage drop.

S.W. Converter Two

" am seriously thinking of building the "S.W. Converter Two, described in your July, 1942, issue, for use in conjunction with a $1-v-1$ set based on your *Three Valve Emergency Receiver" described in an earlier issue. The three-valver does not cover long waves, the coils being wound for medium waves only. Would it be possible to use the converter unit in conjunction with such a set?
"Also, would the efficiency of the converter unit be greatly enhanced by the use of an H.E. Pen. in place of the S.G. valve specified ? "-S. E. (Surrey).

T${ }^{4}$ HE converter can be uset with the receiver, provided the latter tunes to, say, 500 metres. Better results will be obtained if the maximum wavelength of the two tuned circuits can be increased to 650 metres; assuming 500 metres to be their maxinum, the approximate results could be obtained by connecting across each tuning condenser in the receiver, trimmers or pre-sets having a capacity of, say, .oool mid. each. It is essential that the tuning of the two circuits is itlen tical.

We do not think any great increase in efficiency would be experienced by using an H.F. Pen.

H.F. Losses

"I have built a short-wave receiver as shown on the diagram accompanying this letter, but find it very difficult to get down to the very low wavelengths. Just above $\mathbf{2 5}$ metres things are all right, but then the set refuses to oscillate below that. have tried different H.T. voltages, changed the aerial and earth, and put various condensers in the aerial lead. I even bought a variable grid leak to see if the value of that would help matters, but I am unable to get the low waves. Is it possible to suggest from the sketch how I can improve matters? "-G. B. (Boscombe).

THE diagram shows that the receiver is built upon a metallised or foil-covered chassis, and that a large number of earth returns are taken to this chassis. There is a possibility that the junction between the connecting wires and the chassis is badly made or that corrosion hasiset in and thus certain points are separated by a resistance set up by the poor connection. We therefore suggest that you connect. together each of the earthing points, using good heavy tinned copper wire, and soldering

RULES

We wish to draw the reader's attention to the tact that the Queries Service is intended only for the solution of probiems or dificaltics artaing from the construction of recelvers deseribed in our pages, from articles appearing in our pages or on general wireless matters. Wo regret that we cannot, for obvious reasons:-
(1) Supuly circult diagranis of complete multi-valve receivers.
(2) Suggest alterations or modiffeations of receivers described in our contemporaries.
(3) Suggeat alterations or modifications to commercial receivers.
(4) Answer queries over the telephone.
(5) Grant interviews to querista,

A etamped, addressed envelope must be enclosed for the replg. Al sketchea and drawings which are sent to as ahould bear the name and address of the seader.

Requests for Blueprints mast not the cnclosed with queries, as they are dealt with by-a geparate department.
Send your queries to the Editor, PRACTICAL WIRELESS, George
Newnes, Lte. Tower Fouse, Sonthampton Street, Strand, London, W.C.Z.
Tho coupon on page iti of cover must be enelosed with every query.
the wire to the earthing serews or bolts. This is probably the only fault present in the receiver.

Condenser Breakdown

${ }^{4}$ I am always getting trouble with my A.C. set which seems impossible to avoid. The set is a five-valve with push-pull output, and the trouble concerns certain condensers. These are always breaking down, and I have tried all sorts of voltage ratings, even up to three times the working voltage. Is there any way in which I can avoid this trouble, without going to a lot of expense?"H. O. (Ladywell).

$\mathrm{I}^{\text {T}}$the working voltage rating of the condenser is correctly chosen the trouble should not arise, and we therefore assume that there is some peculiar feature in the design of the mains section which results in a very heavy sarge when switching on.

Delayed Action

"I have a battery-operated three-valve receiver, and on switching on I have to wait a few seconds before I hear any sound, and there is a corresponding delay when switching off. Also, I have a pentode output valve about which I am anxious. During operation, the filament glows red and the plate glows green. Is anything wrong? I would add that reception is perfect."- R. P. (Thornton Heath).

THE delay is due to the fact that the output valve has a rather thick filament and takes a moment or so to obtain in: candescence. Similärly, when switching off, it does not cool instantly. The red glow from the filament is in order, but the green colour you refer to is probably due to the fact that the valve is slightly soft, or you are applying too much H.T. or too little G.B. Generally the colour is a rich blue, but as it is probably rather faint, it appears green. Examine the H.T. and G.B. circuits-and cbeck up with the valve-maker's instructions. If they are O.K. it would probably be advisable to have the valve tested.

Lack of Power

"I have built a 3-valve battery set. I think it is capable of getting a fair number of stations, but 1 can only get them very faintly, and then only when the set is on the oscillation point. Can you advise me how to bring them out ?"-J. F. (Bexley).

THERE may be many causes for the lack of volume. Obviously, the signal strength is very low if two L.F. stages are insufficient to provide good signals. Look to the aerial and earth system; the H.T, applied to the detector; test the valves; examine the batteries, and generally make quite certain that the receiver is correctly desighed. If you care to send a circuit diagram, with all details clearly marked, we will check it over for yout.

Radio Engineer's Vest Pocket Book

$3 / 6$ or $3 / 9$ by post, from
GEORGE NEWNES LTD., Tower House, Southampton Street, Strand, London, W.C. 2

VALVES

（RETAILERS NOT SUPPLIED） Mullard numbers generally quoted，but we may send B．V．A．equivalents．Prices quoted are current retail．PM12．11／＝： PM12M， $11 /=$ SP2．11／：：YP2，11／－ VP2B， $11 /$－FC2， $12 / 10$ ：FC2A， $12 / 10$ PM1HL 5／10；PN2HL；5／10；PM2A， 7／4：PN22A，11／－：PM122D，11／－ TDD2． $9 / 2$ ；also Marconl Osram P2． 12／3；LP2．7／4．

4－VOLT A．C．MAINS TYPES ACPP．T14A，TH4B，FC4，14／－ VP4，SP4．VP4B，SP41，W42，IC5 Pen， 1210：TDD4，MHD4，11／7；H42， 354V：FIL4，9／2；PM24．A．FW4，500， 18／3：Pen 134，i4 8 ：Pen4DD．15／3 Pen 428，30／6；also Cossor MisPen， MVSPen，MSPenB，MVSPenB， 1210 ．

A．C．ID．C．TYPES
C1．C1C，10／6；FC13，FC13C．TH21C， TH30C，15D2，14／：：VP13C，SP13C， 9D2，8D2，12／10；11L13C．2D13C， 2D13A， $9 / 2$ ：TDD13C， 117 ：CL．33， 12／10：CBL1，1513：КТW63．KT61， KT63．12h10：also Cossor．VP13A， SP13A． 1210 ：VP20 and SP20，equiva－ lent， 15,3 ．

MAZDA DCTALS
TH41．14／－：VP41，12／10：SP41，12／10； D1D41， $11 /-$ UUG $11 i^{\circ}:$ HIM1DD， 11／7：IIL42DD， $11 / 7$ ：Pen 45，12＇10 ？ Pen 45DD，15／3；UU7，11／－：TH233． 14／－：FL133DD，11／7：\P133，12／10： Pen 25，11／－：HL23．5／10：＇QP25．， 15／3：VP23，11／－．

MULLARD E TYPES

EB4． 1210 EBC3，1177：EBC33， 11／7；EBF2，15／3；EBL1，15／3 ；EBL31； 15／3：ECH2，14／－：ECH3．14／－ECH33， 14／－WCH35， $14 /-:$ EF5， $14 /$ it EF6， 14／－EF8， $12 / 10$ ：EF8， 12110 ：EF39， $12 / 10$ ：EK2， $14 /-:$ EK3， $15 / 3$ ：EL2，
$14 /-:$ EL32， $14 /$ ：ELS． 1210 ：EL33， 12／10；AZ1，11／：：EM4，11／－：CBL1， 15／3．

SPARES－
ELECTROLYTLC CONDENSERS， T．C．C．． 570 volt， 32 and 32 and 16 mfd ． separate leads，24／－ROLA P． 17／6．8－inch，24／a SOLDERING IRONs－Solon． 166 ：Stanelco，21／－． CEMENT for，valve and speaker cone repairs， $5 /$－tin．SERVISOL－more than repairs， $5 / \operatorname{lin}$ ． a switch cleaner， $5 /-1-p i n t$ tin．MAN
DROPPERS， 3 or ． 2 amp．Working． adjustable to suit any receiver or as adjustable to suit any receiver or as line cord replacement total ohms
900 ．FLUX CORED SOLDER，I． 900 ．FLUX CORED SOLDERR，1／－
per coil or $5 / 6 \mathrm{lb}$ ．TINNED COPPEIR per coil or $5 / 6 \mathrm{lb}$ ．TINNED COPPER
WIRE， 22 gauge， $1 / 6$ reel．SLFEVING， WIRE， 22 gauge， $1 / 6$ reel．SLDEMING，
36 doz．yds．VALVE HOLDEIRS， all types，Pax．1／－each．
COMPLETE LIST OF SPARES，1d． POST FREE，When making inquiries enclose stamp for reply，also ask us to send the items if in stock C．O．D．（pay the postman）．
POSTAGE MUST RE ADDED ON ORDERS UNDER 83.
d．BULL \＆SONS
246：HIGH \＆T．，IHARLESDEN，N．IV． 10

Plan your future NOW

Big developments in radio and television have been forecast．There will be splendid opportunities for technically trained men to secure well－paid positions．
Hundreds of our students now doing important work owe their progress solely to our tralning．Our specialised method of Home－Study tuition is a proved success．
Now is the time to p$r e p a r e ~ y o u r s e l f ~ f o r ~$ well－paid employment or profitable spare－ time work．Posz coupon for free details of our Home－Study Courses in Radio Reception，Transmission，Servicing，Radio Caiculations，Television and Mathematics．

YOU MUST KNOW MATHS＊

If you wish to make progress in any type of eechnical work，you muse＇know maths． Our method of tuition makes maths really Interesting and easy to understand．

T．\＆C．RADIO COLLEGE，

 2，THE MALL，EALING，W． 5（Post in unsealed envelope．1d，stamp． ｜Please send me free details of your 1 Home－study Mathematics and Radio ｜Courses．
I NAME
ADDRESS
P． 42

HE LEARNED CODE
 THE CANDLER WAY：

If，as a result of reading this advertisement you send for a copy of the Candler＂Book of Facts，＂you will also receive in the form of ＂extracts from letters＂convincing proof of the excellence of Candler Morse Code training．
Here is．an extract from a letter sent in by Ref．No，3171．－R．G．S．
＂NOW IT＇S THANKS TO CANDLEV
SYSTEM．THAT PM WORKING
WITH THE GREATEST OF EASE
AND CONFHFNCE WITH SOML OF
BRITAIN＇S CRACK OPERATORS，
AND I FEEL＇RIGHT AT MOME＇
AMONG THEM．
This Candler student has secured a Government post as a Wireless Telegraphy Operator
In the＂BOOK OF FACTS．＂which will be sent FREE on request，full information is given concerning the subjects covered．by all Candler Courses
JUNIOR Scientific Code Course for beginners．Teaches all the necessary code fundamentals scientifically．
ADVANCED High－speed Telegraphing for operators who want to incrase their w．p．m．speed and improve their technique， TELEGRAPH Touch－Typewriting Course for W／T operators who wish to become expert in using a typewriter for recording messages．
Code Courses on Oash ov Monthly Paymert cermo．
COUPON－ーーーーーーーーーーーー
I Please send me a Free Copy of Candler 1＂Book of Facts．＂
I NAME
ADDRESS
I post Coupon in id unsealed envelone to I THE CANDLER SYSTLE CO． （ 5 L .0 ）． 121 KIngsway London，W．C． 2 Candter Syucm Coo，Denver，Coloudo．U．s．A．

CONSTRUCTORS＇KITS

When assembled these Kits give excel－ lent reproduction on Medium and Long Waves．Supplied complete with chassis sin．x Gin．x 23^{3} in．，Valver，M．C． Speaker，and wiring diagram．（Regret no cabinets．） 3 controls．A．C． $3-V$ ． （ + RECTIFIER）KIT．V．M．H．F．Pen， Triole，I．F．Pen．，Rectitler，M．C． Speaker．Price $£ 9$ 9s．Post $1 / 1$ ， plus $3 / 6$ packing（returnable）．
BATTERY 3－V．KIT．V．M．H．f．Pen．， Triode Detector and Output Tetrode， P．M．Speaker．Price 86 10s．Post $1 / 1$ ， plus $3 / 0$ packing（returnable）．

SWITCHES．New，Yaxley trpe single bank，slumle jole，4／－．Single hank， 3－pole， 3 －way，4／－． 2 bank， 2 －pole， 3 －way， $5 / 5$ ． 3 bank， 2 pole， 4 way， screened．7／6． 10 Contact，not Yaxley type，suitable for 3 dual range coil and P．U．， $1 / 6$ ．
VARIABLE CONDENSERS．Single OU00 mfd．， 0 －speed drive with nointer， knob and dlal， 10 escutcheon required， single hole fitting for portables，crystal sets，ete．， $6 /-.0003 \mathrm{mfi}$ ．reactron condensers， $2 / 6$ each． 2 －qang .0005 infi．with trimmer ceramic insulation， 8，6．3－gang ． 0005 wfd．with trimmers， mounting lracket．New，10／－．
colls．A．and H．F．Transformer with reaction，colour coded connec－ tions， $8 / 6$ per pair．Midget Medium Wave，only $1 / 6$ ．
CHASSIS． 8 in ．x Bin ．$\times 2_{3}^{2} \mathrm{in}$ ．stcel painted，new，drilled 3 vilves， $5 / 6$ ．
H．F．CHOKES．Amplion，2／6．Parallel Feel Transformers，midget，colour conle clrcuit，6／－．
VALVE，HOLDERS． paxolin，6d．each．

4．，5－，6－， $7-$ gin Octai，moulded bakelite，9d．earh．
PADDERS．Twinceramic ． 0003 mmfd ． and（000）mmfd．（max．）， $1 / 6$ each． T．C．C．Condeusers，air spaced， 0.35 muff．，1／－each．
CONDENSERS．Tulular 0005 mfl to .005 ．mid．，6d．each． 02 mird to $1 \mathrm{mfd}, 9 \mathrm{~d}$ ．each．Miea .01 mfd ．， .001 mfd．， $2,200 \mathrm{v}$ ．test， $1 / 6$ ．Silyer mich，． $00015 \mathrm{mfd} ., .0002 \mathrm{mfd} ., ~ .0005$ mfd．， 00005 mifd．，9d．each
MAINS DROPPING RESISTORS．． 3 amp． 1,000 ohms， 2 variable sliders， 4／6． 3 amp． 750 ohith． 1 variable silider， 6% ． 10 watt wiro wound resistors， $2,000,500,150$ ohms， $2 / 6$ $e^{\text {ach．}}$
PAXOLIN，Polished，flat．，strong 36 in ． $\mathrm{x}^{3} \mathrm{in}$ ．$\times 3 / 32 \mathrm{~m}$ ．approx．， $2 / 6$ each，Soldering Tags，3d．per doz Terutinal strips， 3 to 9 eyelets， $1 / 2$ to 1／6 gross．5－way battery leads， $2 / 2$ each，Resistors，$\%$ watt， $6 d ., 1$ watt， $1 /$－ Most values available．
WESTECTORS．Type W $B_{3}, s_{j} \cdot$
Licence to export to Northern Ireland and Jrish Free State．Please add nostage for inquirics and manil orders．

5）－52 CHANCERY LANE．

Classified Advertisements

LITERATURE, MAPS, etc.

RADIO SOCIETY OF CRREAT BEITAIN invites all keen experimenters to apply or membership. Current issue of R.S.G.B Bulletin " and details, $1 /$-.
AMATEUR Radio Eandbool (300 pages) paper cover. 4/. cloth. 6/8. Radio Handbook Supplement (140 pages). paper cover. 2/9: cloth 5/=-16, Áshridge Gardens, London. N. 13
WHiPis's Hadio Map of the World, Locates any station heard. Sive 401 n . by 30 in. $4 / 6$, post 6d. On linen, 10/6. post 6d, Webb's post $6 a$. On limen, 10/6. post ${ }^{\text {Radio, Woho Street, London. W. } 14 .}$ GERrand 2089
7,000 Members of the scientic Book Club believe that Knowledge is Power. Are You a member Poad, London. W.C. 2.

MORSE \& S.W. EQUIPMENT

FULE range of Transmitting Kevs, practice sets and other equipment for Morse training. Webb's Radio, 14 , Soho Street London, W.1. "Phone : GERrard 2089. or over ten years. Improved one-valve model now avallable. Complete kit of components, accessories. with full in-structions-only 16s., postage 6d. Easily assembled in one hour. S.A.E. for free catalogue.-A. L. Bacchus, 109. Hartington Road. London, S.W.8.

RECEIVERS AND COMPONENTS

 AMERICAN LEASE LEND VALVESS. B.O.T. prices, For replacement only, 1A5GT, 1C5GT, 5Y3G, 5Z4GT, 35Z4GT 35Z5GT, 11\%, 12F5GT, 12SF5GT, 9/2 6A8GT, 12A8GT 12SA7GT, 6SA7GT, 14/ $25 \mathrm{~L} 6 \mathrm{GT}, 35 \mathrm{~L} 6 \mathrm{GT}, 50 \mathrm{~L} 6 \mathrm{GT}, 6 \mathrm{K7GT}, 36,12 / 10$. 1207GT, 12SQ7GT, 45, 11/\%, and many others. British and American.MAINS DROPPIR RISSISTORS, 2 amp for Pye, Lissen, E.R., Halcyon. Cossor, 5' 3 amp. for Vidor. Ferranti. Major Maestro. Damp. for Vidor. Ferranti. Masor Maestro. 8/6. Line cord replacement dropper. 3 amp. 8/6. Line cord replacement dropper. . 3 amp..
750 ohms, varlable tap, $5 / 6$. Heavy dnty dropper, on porcelain former, two variable dropper, on porcelain former, two variable
taps, superior job. 2 amp.. 950 ohms, 3 amp. taps, superior job.
800 ohms, $8 / 6$ each.
Speakers, volume controls, sleeving, etc, etc. Stamped eavelope with all inquiries please, Postage on all orders.
O. GREFNLICK, 34, Bancroft Rond, Cimbrldere Heath Road. London. Bil. (Stepney Green 1334)

MAINS DTOPPERS, 0.2 amp. Pye. 3/6. PUSH BUTIDN, 6-way, no kiobs-a really fne job, $2 / 6$ each. New.
CONDENSERS, "Plessey" 4 -gang screened bin. x $3 i n . .4 / 6$, 3-gang, $61 \mathrm{in} . \mathrm{x}$ 3itm., unscreened, 2/6. All brand new and include trimmers.
"HiNNL.EY" Electric Solderlng Irons. new. Straight bit.-13/8 each. Pencil Bit, 146 each. Resin-cored solder. $1 /$ - lb, reel mery
sisuthr. Braided sleeving 1 doz lengths, 3/-. Braided sleeving, 8d. per Yard length, ${ }^{\text {ry }}$ /- doz. lengths
T.C.C. Tubulars, 0.1 mid.. 7u, each, $6 / 6$ doz. also 01 mfd, at $6 d$ each, $8 /-$ doz.
CONNECTING Wine. hert resisting tinned copper. as used by Government 64. coll of 12 ft .

TRIMMRRS, $50 \mathrm{~m} . \mathrm{mfd}$. 3d. each. Also $250 \mathrm{~m} . \mathrm{mfd}$. 3d. each.
SOLDERING TAGS, 2 B.A.. 4/- gross. T.C.C. TUBULARS, brand new 25 mid . $25 .{ }^{1 / 3}$: $50 \mathrm{mrd} 12 \mathrm{v} . .1 /$.3 .
DUAL RANGE COIL, with variometer tuning, fully screened in copper can, $2 / 3$ each. No circuits
SPEAKER GRILLES, 7in. $\times 3 i \mathrm{in}$. Chro-mium-plated, cheap to clear, $1 / 6$ each. SOLDER, 11b. reels, fine all-tin instrument solder, $3 / 6 \mathrm{Ib}$., or t1b. reel. $1 /$ -
WIRE, Sllk-covered, 2 oz . reels, 36,38 CRISTAL, DTEC
ebonite bese CRYSTAE, and Catswhisker in metal box, B41. each.
METER Resistances, wire wound. $50-120$.
$500,1 /$ each.
(Continued in nexl column,)

TELSEN Illuminated diso drives, useful for short waves, $2 / 6$ complete.
ROTARY SWITCIIES, double pole, double throw, ebonite, gd. each. COPPER PLATES, 3in. x $81 n$. approx. 16 gauge, $1 /$ per piece. ATED DISC DRIVES, useful for short waves, $2 / 6$. 24 to 40 gauge $2 / 6$ a coll. GRAMOPLONE Suppressors, 1/6 each. Brass Terminals, $1 / \theta$ doz. Insulated Staples $1 / 6100$. Battery Leads, 4 -way. 6d, each. TUBULAR Wire-end Condensers, assorted values, new, $3 /-\mathrm{doz}$.
RFSISTANCES, mixed values, $\}$ and 1 watt. $3 / 6$ doz
EX H.M.V. 0003 mfd Variable Mica Condensers. ROLAP 2 in spindle, new. $1 / 9$ each. . SPEAKERS, less Transformer 5in. 19/F 61 in. $21 /-8 i n ., 221$. mixed, f1-doz. GRID LEAKS, 1.5 meg. $6 \mathrm{~d} .1 .0 \mathrm{meg} ., 6 \mathrm{~d}$.
 $500 \mathrm{v} . .1 / 3: .04 \mathrm{mfd} .500 \mathrm{v} . \mathrm{v} .110: .25 \mathrm{mfd}$. $500 \mathrm{v} ..1 /=1.001 \mathrm{mfd} . .650 \mathrm{v} .1$ T.C.C. Wire $1 / \mathrm{mfd}$. 300 v ., $1 /-$ T.C.C. Wire End Condensers, 0006 mfd ., $4 / 6$ doz. .0003 mfd. 2.000 v .. $6 /$ doz. postage must be included. No C.O.D.
GAINS, 75, Newington Butts, S.E.11. Rodney 2180.

RELIANCE RADIO SEHVICE

8, Kennington Park Road, S.E.11.
ROLA PERMANENT MAGNFT SPFAKERS. All less Transformer, $5 \mathrm{in} ., 21 /-6 \mathrm{in}$. $23 \mathrm{~N} .81 \mathrm{n} .27 / 8$.
INE CORD.

3-way. 350 ohms with 2 -pin plug complete. 12/9: 550 ohms with 2-pin plug complete. $20 /-$
pLex. TWIN. Red and black, heavy duty. 1/- per yard. $10 y d$. lengths. Mains Lead. 1/- per yara, fora, lengths. Mains Lead. twin, sut
plug. $31-$
T.C.C. TUBULAR CONDENSERS. . 0001 mfd., $0002 \mathrm{mfd} ., .003 \mathrm{mfd}$, .0005 mfd ., 005 mfd., $.02 \mathrm{mfd}, .001 \mathrm{mfd}$. all 350 volt working. 6 d. each, $5 / 6 \mathrm{doz}$. 1 mfd ., 350 volt working, 8 d. each, $7 / 6$ doz. 50 mid . 12 volt working. $1 / 3$ each. 50 mfd.. 25 volt working. $1 / 9$ each. 25 mfd .50 volt working. $1 / 9$ each, 8 mfd ., 125 volt working. 316.
ASSORTED TUBULAR CONDENSEISS. Our selection. $2 / 6$ per doz
CELLULLOID TUNING DIAIS. Oval type with fixing bracket. 2 wave-band, 2 colours. 1/- each
quality A.MP. MANS PLUGS. Superior American Plugs. $1 / 6$ each.
RESIN CORE SOLDER. 1 lb . reels, best make, $4 / 8$ reel. In 1 yd. leng ths, 4d, per yd. and 4-bin 7 d, each Enrilish type 7 -pin and Mazda Octal, also International Octal, 84. each.

2-WVATI ERIE RESISTORS. 300 ohms, 600,000 ohms, 500,000 ohms. 5,000 ohms. 700.000 ohms, $1 /$ e each.

PILOT BULBS. Osram gas-filled, 6.3 volt 3 amp .9 d. each, $8 / 6$ per doz.
All Orders should include postage Regret no C.O. Customers in Eire should add 10% to the above prices to cover extra cost of most and packing.
RELIANCE. RADIO SIRVICE,

8, Kennington Park Road, S.E.il.

SOUTHERN READIO'S WIRELISSS

SCREWS and Nuts, assorted gross of each

(2 gross in all)
 SOLDERLNG Tags. including Spade Ends,

PIIILCO 3-point Car Aeriats, excellent for short-wave and home aerials, 7/6.
Limit Tone Arms, universal fixing for all types of Sound Boxes and Pick-up Heads, 107.
trans P.O." Microphones, complete with transformer. Ready for use with any MFTAL Panels. undrilled. rigid, 181 in , by $8 \operatorname{lin}^{2}{ }^{2 / 6}$
 diameter. by im. thick. $1 / 6$ each, $15 /$-per doz FRIE Resistances. Brand new, wire ends. All low value from 8 ohms upwards. A few higher value are included in each parcel.
t. $\ddagger, 1$ and 2 Watt. 100 resistances for $30 /-$.
(Continued in next column.)

MULTICON Master Mica Condensers, 2^{8} capacities in one from .0001 , etc., etc., $4 /$ each.
SPECIAL ASSORTED PARCEL FOR SERVICE MEN
100 ERIF resistances (description above) 24 assorted Tubular Condensers: 6 Reac tion Condensers, . 0001 i 12 lengths Insudated Sleeving wire : Soldering Tags, Screws, Wire, etc. CRYSIALS (DT
whisker. 9d.; complete crysta with cats$2 / 6$; 75 ft complete crystal detectors. Push-back wre for aerials, etc.. $2 / 6$: 25yds. Condensers. $0001,1 / 9$ each; Telsen large disc drives, complete with knob. etc. (boxed) type W 184, 216 each: Insulated sleeving assorted yard lengths, $3 / 6$ doz. : single screened wire, doz. yards, 10/-.
LOUD Speaker Units, unshrouded. Midget type, 4/: : Metal case condensers, $1+.1$ + .1. SOUTHERN Bargains for Callers. CO. 48. Liste St., London, W,C. Gerrurd 6653. S.T. $\%$, working order, blueprint. etc., $30 /$. Peto Scott model 364. I. . M. and S. wave. Short Wave coils only. 8 wiring diasrams working order. 3 new valves, $52 / 6$. Cost $£ 6$ Colvern screened coils, blueprint. 7\%. Few L. F. transformers, $2 / 6$ each. Good radio cabinets, $6 / 6$ to $15 / 6$ each. 49 . Victoria Street, Melton Mowbray, Leicester.
WANTED, for model boat, small motor, $2-3,000$ revs., 6 volts. Max. weight, 3 lbs. T. Craig, 17, Brown Street, Greenock, Scotland
PERMANENT CLYSTAL DETECTORS Tellurium-Zincite combination. Complete on base. Guaranteed efficient, $2 / 8$ each. Wireless crystals with silver cats-whisker, 6il. B.A. thread screws and nuts. One gross assorted useful sizes, $2 / 6$. Reconditioned hoadphones, $4.0000 \mathrm{hms}^{\prime} 12 / 6$ pair. Postage extra. Post Radio Supplies. 57 Kinesconirt, Roan, I.nnonn
OFFERS ? 2 v . Short Wave Set: 150 P.W.S.-Ecclesall Vicarage, Shefficld, 11. FIVE-VALVE short-wave set band-spread 15 to 170 metres with coils and valves. $£ 6$ Igranic moving coil speaker, \&1 5s. Scott Taggarts 400 specifed set with valves as new, £\%. Igranic moving ooll speaker. $£ 15 \mathrm{~s}$ Less cabinets. Carriage forward.-Wm. Lawley, 4, Highlands Road. Runcorn.
IRADIO Valves in stock-D63. 6/9 inc. Tax 6 65G. MH4, 6C5G. HL13C, 354 V., 2D13A -6F5G. MH4, 6C5G. HL13C, 354 V., 2D13A. $9 / 2$ each inc. Tax-VP2B, AK1,
$5 \mathrm{Y} 3 \mathrm{G}, 11 /$ inc. Tax-2P, DDT. TDD13C 6Y3G, $11 /$ - inc. Tax-2P, DDT. TDD13C 6Q7G, $75,6 \mathrm{R7G}$. ACEL /DD, DL63, $11 / 7$ each
inc. Tax-25A6. 42, SP4, VP4, MSPen, 78 inc, Tax-25A6. 42, SP4, VP4, MSPen, 78 ELL, $6 \mathrm{JTG}, 6 \mathrm{~F} 6 \mathrm{G}, 12 / 10$ each inc. Tax- $\mathrm{OP21}$ ER5. ECH35. TH4B EABG. FC13C, ECH3. EL 2. 14/- each inc. Tax. Please send cash with order as these valves are now in stock nclude sufficient to cover postage. Enquiries for other types welcomed.-Radio Department Arding \& Hobbs. Clapham Junction, London. S.W.11.

SITUATIONS VACANT

"FNGINEERING OPPORTUNTTIES"
Free 112 page guide to training for A.M.I.Mech.E.. A.M.I.E.E., and all branches of Engineering and Building. Full of advice for expert or novice. Write for free copy B.I.E.T. (Dept. 242B). 17. Stratford Place. London. W.1.

TUITION

LEARN MORSE CODE the Candler way. See advertiscment on pape 395

RADIOLUCATIUN."-Studeats of both sexes trained for important war-tlme Radio Appointments. Also for peace-timo vision. Boarders aceepted. Low inclusive fees. College in ideal peaceful surroundings. 2d. stamp for Prospectus.-Wireless College. Colwyn Bay
THE Tuitionary Board of the Institute of Practical Radio Engineers have availablo Home Study Courses covering elementary theoretical, mathematical, practical and laboratory tuition in radio and television engineering : the text is suitable coaching matter for I.P.R.E. Service entry and progresslve exams. ; tuitionary foes-at pre-war rates-are moderate. The Syllabus of Instructional Text may be obtained, post free from the Secretary, Bush House.
Walton Avenue, Henley-On-Thames, Oxom.

Practical Wireless BLUEPRINT SERVICE

PRACTICAL WIRELESS CRYSTAL SETS

Blaportints, 8d. each,

straight sets. Battery Operated.
One-valve: Blueprints, Is, each. All-Ware Uulpen (Pentode) aThe "Pyrunid "Ono-vaiver (tiip Pen)
Two-valve: Bireprint, is
The Signet Two ($1 \mathrm{~L} \& \mathrm{I}$ F)
Three-valve: Blupprints, is, each (Trans)) (Trans))
Summit Three (HiF Pen, D. Pen)
All Pentode Three (HF Pen, D (Pen), Pen)
 F. J. Camusin silver Souvenir (HIF Pen, D (Pen), Pen) (All-Wave Three)
Cuneo Midget Thiree ($\ddot{\mathrm{D}}, 2$ L$\dot{\mathrm{T}}$ (Trans))
1236 Sonotone Three-Four (aip Pen, HP Pen, Westector, Pen) Battery All-Wave Three (D, 2 Ls (2. ${ }^{(2)}$

The Monitor (HF Pen, D, Pen) .a The Tutor Three (UP Pen, D, Pen) The Centaur Three (SG, D, P) Three (HF Pen, D, Pen)
The "Colt "All-Wave Three ($\ddot{\mathrm{D}}$, 2 LF (RO A Trans)) \because The 3 (D) F. J. Camm's Oracle

Three (HP, Det, Pen) 1988 "Triband "All-Wave Threc (HF Pen, D, ren)

The "Eurricame" All-Wave Three
 Three (HE Ren, D (Pen), Tet) Feur-valve: Blueprints, 1s. each Beta thlyersal Four (sG, D, LP, Yucleon class B Four "isa id (NG), Lw. Ol. B)
Fury Four Sureer (SG, sö, D, Peà) Battery Rall-Mark \& (HF Pen D, 1usb-Pull)
Acme All-Wave 4 (Hiv Pea, $\ddot{\text { D }}$ (Pen), LF, Cl, B)
The "Adniral, Four (iif Pen, HF Pen. D, Pen (RC))

Two-vanve: Mans Operated A.C. Twin (D (Pen). Pen)

Selectone A.O. Radlogram Two (D, Pow)
Three-valve: Rueprints, is. eseh
Three-ralve: Riveprinta, is. esch.
Double-Dlode-Trlode Three (HF Pen, DD't, Pen)
D.C. Ace ($80, \mathrm{D}, \mathrm{Pen}$)
A.C. Three (so, in. Pen)
A.C. Threader (HF (H. Pen, D, Pow) \cdots
A.C. Leader (HF Yen, D, Pow)

Unlque (HE Pen, D (Pen), Pen):
F. J. Cimimis A.C. All. Wave Silver Souvenir Three (HF Pen, D, Pen) All-Wave, " Ac. Turee ($\mathrm{D}, 2$ LP (RO)
A.C. 1036 Sonotone (HF Pen, HiP Pen, Westector. Pen Pen, D, Pen)
Aur-valve : Blaeprints, 1s. each A.C. Fury Pour (8G, BG, D, Pen)
A.C. Fury Four Super (BG, SG,
A.C. Pen) Hallatk (HF Per, $\ddot{\mathrm{D}}$, Push-Puli)
 ('uab-Pull)

SUPEREETS.

Battery dets : Blueprints, Is. each. Paperhet (Three.valve)
?.J. Caman's 2-valve §uperhet .. Mains Sets: Plueprints, 1s, each. A. © \& Buperbet (Three-valve) ..

No of
Bluepriw.

- Pw31A

= PW31A

- PW93
- PW76 ${ }^{\circ}$
- PW10
- PW30 PW39
PW48

PW49

PW51

PW53
PW\%5
PWGI

PW09*

PW72*

PW82*

F. F F P

One-vaive : Blutprint, 18. Simple S.W. Onevalver.

gEORT- FAVE SETS. Battery Operatod.

- PW88 Midget Short-wave Two (D, Pen) - PW38A (D (HF Pep), Pen) \because PW91. Experimenter's Short-wate Thitee - IF30A.

AMATEUR WIRELESS AND WIRELBSS

MAGAZINE CBYSTAL SETS.

Blaeprints, 6d, each.
Four-tation Crybtal Set
$193 \pm$ Crystil Sot
150 mile Crystal Set

STRATGHT SETS. Battery Operated.

Onc-ralve : Blueprint; ls.
Two-valve: Blueprints, 1s, each.
 Melody langer Two (D, Traps)..
Full-volume Two (EG det. Pen). A Mudern Two-valver
Three-ralve: Blaeprints, is. each.
 Dugerne Ranger (BG, D, Trana).
L 5 Ja . Three De Luxe Version (5G. Tharee De
Transportable Three (SG, D, Pen) Simple-Tune Three (SG, D, Pen)
Fconomy Pentode Three (BG, D,

- Pen)." (íg34 Standitrd Tluree (5s 30. Three (Sh, \dot{D}, Traus)
 1835, Pen).
$-A W 4122^{\circ}$
- AW485
- Watyz
- W14337
- WM351.
- WM35.

Pr P Phree (Pen, $\dot{\text { D }}$, Pen)
Certalnty Three (SO, D, Pen)
Mertainty Three (sa, D, Pen) \propto
PW19 All-wave Winning Thee (8 , ib Pen)
Four-valve : Blueprints, 18. 6 d . eiech. Four-valve : Blueprints, 18, 6d, eac
6S. Four ($\mathrm{SG}, \mathrm{D}, \mathrm{BC}$ Trans) Eeli-contained Four (SG, D, LF Cucerne Strajght ${ }^{\text {Cour }}$ (SG, $\ddot{D_{0}}$ LF, Trang)
\&5 as, Battery Four (HF: B, 2LF' The M.K. Pour (30,80, D, Pen) The Auto Strateht Foar (HF, Pen, HF, Peu, DLT, Pent Super-quality Flte ($2 \mathrm{HY}, \mathrm{D}, \mathrm{RQ}$ Trans)
Class B Quadradyne ($2 \mathrm{E} \dot{G}, D, \dot{L} \dot{\mathrm{~F}}$ Claks B) B Five (2 SG; D, L"F Clas B) $\quad \infty$. ∞

Mains Operated.
Two-valve : Blueprints, 1s. each.
Consoelectric Two (D, Pen) A. ${ }^{\text {a }}$
Economy A.C. Two (D, ITans) A.C.
$\therefore \quad$ AW 403
$-\quad W 288$
Three-vaive : Binepriats, ll, each.
Home Iover' New All-Electric
Three (SO, D. Trans) A.O.
Mantoran A.O. Three (A.F. Pen,
D, Pen)
a15, 158. 1936 A.C Rádogram
Four-valve : Dueprints. 1s, 6d, ench. All Metal Four \& SG, I, Pen)
Harris Jubllee Radlograw (HF,
Pen D, LIF, P) ..

- AW383
- W新374
- WM401
- WM320
- WM386
- WM371

HM393

- WM400
- AW970
- WM331
- WM350
- WM364
- WM404*
- फM320
- WM344
- WM340

SUPERHETS

SHORT-WAVE-8ET8, Battery Operated
One-valve : Blueprints, is, each.
B. Onc-ralver for Aluerta

- $\quad \Delta W+202$

Two-valve : Blueprints, is, each.
Uitra-short Buttery Two (BG , det

Three-valve : Biveprists, 1s, each,
Experimenter's E-metre Sct (D,
Trans, Super-remen)
$-\quad$ WM $+02^{\circ}$
$-\quad$ WW440
rrant, Super-remen) $\quad \cdots \quad$ - \quad W438
The Carser short-waver (SG,
D. P.)
Four-valve : Blueprints, 1s, 8d, each.
A.W, Short-wave World-beater
(L\&, Pem, D, RO, TTans)
Standard Fourralver Short-waver - AW 436
(BG, D, LF, P)..

Superhet : Blaeprint, 18. Bd.
Slmpliged Short-wave Super - - Whant
Mmplieed shors Operated
Two-valve : Blueprints, ls, each,
Two-valve Malus short-waver (D.
Pen) A. $\mathbf{C}^{\text {- }}$...
Three-valve : Blueprints, Is
Emalgrator (SG, D, Pen) ALO ~ - WMJJ2
Fowr-valre : Blueprints, 1s. 6d.
Foor-vair : Biaeprints, 15. 8d,
Staudard Four-vulve ALO. Short
waver (SU, D, RG, Trasis)

verter shar-wave Con-

- WM Ang*

FREE AOVICE COUPON

This coupon is available until August
-14ch, 1943, and must accompany afl Queries and Hincs.
PRACTICAL WIRELESS, AUG., 1943.

THE B.IE:T. IS THE LEADING INSTITUTE OF ITS KIND TN THE WORLD

[^0]: Some delay in delivery of Trade Orders is inevitable, but we sholl continue to do our.best to fulfil your requirements os promptly as possible.

