F.M. RECORD REPRODUCTION

Practical 9: Wireless
 Vol. 19. No. 448
 NEW SERIES.
 OCTOBER, 1943

The D.C. AvoMinor Electrical Measuring Instrument A high-grade 13 -range D.C. meter providing direct readings of voltage, current and resistance. Supplied in case? ? with leads, test prods and crocodile clips.

Universal, AvoMinor Electrical Measuring Instrument A 22 -range A.C.ID.C. moving coil precision meter providing direc: readings of A.C. voltage, DC. voltage, current and resistance. Supplied with leads, test prods and crocodile clips Some delay in delivery of Trade Orders is inevizable, but we shall continue to do our best to fulfil your requirements as promptly os possible.

(10)

PRECISION

 TESTING INSTRUMENTSRegd. Trode Mork.

" Avo " Instruments by their simplicity, extreme versatility and high accuracy, make possible that economy of time which is the essential feature of profitable servicing and maintenance.

Extensively used by radio manufacturers, service engineers and throughout industry, they set a recognised standard of accuracy and fine workmanship by which other instruments are judged.

Sole Proprietors and Manufacturers :-
AUTOMATIC COIL WINDER \& ELECTRICAL EQUIPMENT CO., LTD. Winder House, Douglas Street, London, S.W.I

Phone : VICtoric 3404-7

PREMIER RADIO

NEV PREMIER S.W. COILS

4- and 6-pin types now have octal pin spacing and will fit International Oetal valve-holders.

SHORT-WAVE GONDENSERS

Trolitul insulation. Certified superior to ceramic. All brass construction. Easily ganged.

$15 \mathrm{~m} . \mathrm{mfd}$.	\cdots	$2 / 11$	$100 \mathrm{~m} . \mathrm{mafd}$.	\ldots
25 mmfd	$\cdots / 11$			

Flexible Gouplers, 1 in . bore, 1/2 each.

MOVING-COIL SPEAKERS

Rola 5in. P.M. Speaker, 3 ohms Voice Coil, 21/thola 6ijn. PM. Speaker, 3 ohms Voice Coll, $25 /$. Rola 8 ln . P.M. Speaker, 3 ohms voice Coil, 25:Above speakers are less output transformer.

1.F.

TRANSFORMERS
Iron-cored $40+470$ ke/s. plain and with tiying lead, $5 / 8$ each.

BAKELITE

DIELEGTRIC
REACTION
CONDENSERS
0001 mif ., $1 / 3$.
$000:-1 \mathrm{mt} ., 2 / 6.1$
$0005 \mathrm{mif}, 2 / 9$ cucl.
0003 mf . Differcutial,
$2 / 11$.

'H.F. OHOKES

S.w. H.F. $10-100 \mathrm{~m}$.

Standardi H.F., 1/-
Binoeular M.F., $1 / 6$.

VOLUME

CONTROLS
Carbon 1ype, $\quad 0,000$, $50,400, \frac{1}{2}$ nieg., 1 mey. and 2 Hers, $3 / 9$ each. Carbon type, $\overline{\mathbf{5}, 000}$, $\mathbf{1 0 , 0 0 0}$ and $\frac{1}{2}$ meg. $4 / 6$ euch. Wire wound type, 5,000 anit 10,000 olyms, $5 / 6$ each.

METERS

$0-100$ mar. Moving lron, A.C. or D.C., Bakelite Case flush mounting, 21 in. diameter, price 12/6 each.

PREMIER 1 VALVE DE LUXE

Buttery Model S.W. Receiver, complete with. 2-volt Valve, 4 Coils, Covering $12-170$ metres. Built on steel chassis and Panel, 55/- including tax.

Mains Resisfances, 660 ohms. 3 A , tapped $360+$ $180+60+60$ ohms, $56 . \quad 1,000$ ohms, 2 A , tapped at $900,800,700.600,500$ ohms. $5 / 6$. writt all values. 5 d . each: 1 watt all values, 7d, each, 4 watt from 50 to 2.500 ohms, $1 /-$ each. 8 watt from 100 to 2,500 ohms, $1 / 6$ each. 15 watt from 100 to 10.000 olms, $2 /$ - each. 25 watt from 100 to 20,000 ohms. 2/9 each.

SWITCHES

QMIB, panel mounting, split knob type 2-point on/oft, 2/- each.
Double pole on/off, $3 / 6$ each.
Valve Sereens, for International and U.S.A. types, 1/2 each.
Resin-cored Solder, 7ild. per coil.
Pusti-back Conneeting iVire, 2!d. per-yard.
Systullex sleeving, 2 man., $2 / 6$ per doz. yards. Screened Braded Cable. Single 1/3 per yard. 7 -pin Ceramie Chasils Mty. English 'Rype Valveholters, $1 / 6$ each.
Impltetol Octal Chassis Mounting Vatve holders. International type, 1/3 each. English type, $1 / 3$ each.

Send for details of nar Morse equipment. Hicrophones, Values and other radio accessories available. All enquiries must be accompanied by a $2 \frac{1}{2}$. stama.

ALL POST QRDERS TO
JUBILEE WORKS, 167, LOWER CLAPTON ROAD, LONDON, E.5. (Amherst 4723)
GALLERS TO: Jubilee Works, or 169, Fleet Street, E.6.4. (Central 2833)

Radio Research

MR. GARRO-JONES, M.P., Parliamentary Secretary to the Ministry of Production, had some illuminating things to say in his speech on Radio Research Production at the Radio Industries Club. He remindled his audience that research and production have their roots in university research, for modern science is the product of the wide curiosity which is the life breath of the university. He said that university research is carried to the point of application very frequently by individual enterprise, which may, as in the outstanding case of Marconi, lead to the foundation of an industry which then founds in turn its industrial research and development laboratories. Radio offers many examples of successful co-operation hetween the universities, the independent amateur and the industrial laboratory. The classic example is the valve. After Edison's fundamental contribution development of the valve went back to the university in the hands of Dr. Fleming, of London University, and emerged through industrial research by de Forest in America.

The Ionosphere

Research on the propagation of waves led to research on the ionosphere; research on the signal strengths required to comınunicate through naturally occurring noise led to research on atmospherics. The Marconi research staff carried out a world-wide research on these subjects, but the State had to provide facilities for an ever-cxpanding group of sub-divisions, long-wave short-distance propagation, short-wave long-distance propagation, direction finding and that great field of ionosphericstructure which Appleton made so completely his own.

In future there will come great contributions from the universities, from the laboratories of industry, and from amateur enterprise. But the very general common interest of all users in the results, the need for far-reaching experimental facilities, the need for close cooperation among many workers, the wide geographical spread of the areas over which observations and measurements have to be made, have made and still make, is essential for the State to give a helping hand.

Radio Research Board

In the decade $1925-35$ the State contribution came through the Radio Research Board of the Department of Scientific and Industrial Research in full activity on a programme of work which largely centred on the effects, of atmospheric processes on radio. The Board and the National Physical Laboratory also did great things in an active programnie of measurement and standards work. The constitution of the Board and its committees, and the conduct of
its committecs, and the conduct of parts of the work in university laboratories, maintained the essential linkage between radio rescarch and the universities. But the system, richly productive as it was, becanne, as war approached, too limited in its scope. The imminence of war, and especially the emergence of radiolocation, led to a remarkable transformation in radio research activities. The radio laboratories of the defence services, under-staffed, under-equipped and under-financed, had done solid work, of a development rather than a research kind, on equipment which, like much of the military equipment here and in Germany, was doomed to be obsolete before the great clash camc. Kadiolocation, by far the most important national asset ever to cinerge from the National Physical Laboratory, was a natural but not inevitable synthesis of techniques successfully developed within the Radio Research Board's programme. It revivified the laboratories of the defence services. The wisdom of Sir Edward Appleton and of Sir Henry Tizard and his colleagues of the Tizard Committee, supported as they were by the Government and its highest advisers, not only contributed to save our country, but to the reshaping and enlargement of the radio industry, and we must not be ungrateful to them or to the industrial and other pioneers who did the foundation work before the war.

The Younger Physicists

To-day the radio laboratorics which work for the three great Supply Ministries contain the cream of the country's younger physicists. The country is greatly in their debt, but the universities which have temporarily. lost them will be direct beneficiaries in the end. For these researchers have learnt much that will profoundly affect, for the better, their outlook as university, teachers and workers after the war. They came to us as good physicists, they will leave us as better physicists, but also as good engineers, good organisers, great teann leaders, and wise judges of policy.

The fertility of invention, the ingenuity of application, the apparently inexhaustible range of new tricks and new uses, the battle of wits with the man on the other side, which have characterised the growth of radiolocation in the hands of these young physicist-engincers, and which is still at its height, was reached on the older and slowermoving technique of radio communication. Now the modernisation of this constantly changing art of communication is under way, and the effects on radio in the peace will be very great. Television has not by any means been allowed to remain where it was in 1939.

ROUND THE KOR OF WIRELESS

 Telecommunication Association

 Telecommunication Association
 A Bouquel from India

ANEV association, connected with the telecommunication industry, is one of the recent company registrations. The new company will be known as the Telecommunication Engineering and Manufacturing Association, and is registered as a company limited by guarantee.

Objects of the Association

THE objects of the T.E.M.A. are to promote, encourage and develop the telecommunication engincering and manufacturing industry in the United Kinglom, to co-operate with and make representations to Government Departments, to promote co-operation and collaboration between persons engaged in the industry concerning technical manufacturing and other problems, and to participate in research work.

Electrical Industries Red Cross Appeal

THE Electrical Development Association has just issued the 13 th list of Covenants and Donations in connection with the above fund, which show that the gross annual amount received from covenants is $£ \mathrm{ro},+306 \mathrm{~s}$., and from donations $£ 6,218 \mathrm{~s}$. 3 cl . Funds for this deserving cause are still urgently needed.

B.B.C. Broadcasts to Japan

THE B.B.C. has begun a daily service of broadeasts so that Japanese listeners may have the opportunity of learning the real facts of each new phase of the

A view of ane of the production depar!ments in a General Elcetric Factory in the United States, where" Radar" sets are built for the U.S. Navy. S./Sgt. R.E.MI.E.).

Ocularly on the part of British composers.

WE have received the following interesting letter from an old contributor, now jn the overseas forces: "During the past eight months I have had to travel in Sonth Africa and India, and 1 write this to let you know how agreeably impressed I was to find Practical Wireeess on sale at most bookstalls in the big towns of both these conntries. I had no difficulty in obtaning il copy, which was seldom more than a month overdue. Practical Wireless certainly gets around the world! " I would also add that the contents of Practical Wireless are now of a very high quality; the journal has improved considerably over the past 12 months, despite the increasing wartjme clifticulties. It might also be of interest to you to know that your 'Practical Mechanics Handbook' has been recommended as a text book for concerned R.E. M.E. personnel, by the Military College of Science at Bury."-S. A. Kinigit (Amht.

The Proms: Giving Talent a Hearing

 NE of the great services rendered by the Proms is that of giving composers a clance to have new worlis performed, and already this season there have been some striking examples of creative ability, parti-The outstanding new work so far is undoubtedly Dr. Vanghan Williams's Fifth Symplong. This has Deen hailed by critics and public as a great contribution to English music. V'anghan Willians, who is over jo, shows a remarkable vitality of inspiration in this work. When listeners have an opportunity of hearing it again on the air they will be able to probe further into its beauties and felicities.

New Symphonies

TWO other new symphonies (not vet broadcast) have been performed at the Albert Hall - a first symphony by Eugene Goossens and a first symphony by Lennox Berkeieg. Sir Arnold Bax's Seventh Symphony, which was broadcast on July z2nd, is another outstanding Britisll symphonic creation. It is a notable fact that this country, so long belittled as to its musical achievements by the Continental nations, should to-day produse richer and more significant music than any other country-and so much of it. That such a work as the Yaughan Williams sympbony was producerl in the imiddle of a world war

The B.B.C. Japanese service is transmitted on a number of short wavelengthe designed to cover not only Japan but all Eastern and Sonth-1:astern Asia. The service is in Japanese on Sundays, Tuesdays, Thursdays and Fridays, and in English on Mondays, Wednesdays and Saturdays.
One of the regular speakers will be vajor C. John Mustis, formerly lecturer in İnglish literature at Bunrika Lulversity, Toliyo.
is in itself a testimony to the enduring things of the spirit for which the United Nations are lighting.

Works by composers of the Irnited Nations-American, Russian, French, Belgian, Polish, Czech-were hearcl during the Promenade Season.

The Institution of Electrical Engineers HE scrutincers appointed at the section mecting held on Jlay 5 th, 1943, have reported the result of the
ballot to fill the vacancies which will occur on the section committee on September 3oth next, and the full conmittee for next session will be as follows: Chairman, Mr. T. E. Goldup; vice-chairman, Professor Willis Jackson, D.Sc., D.Phil. ; immediate past chairman, Mr. R. L. Smith-Rose, D.Sc., Ph.D. ; ordinary members of committee, Mr. F. B. Best, M.Sc., B.Eng., Capt. C. F. Booth, Mr. C. W. Cosgrove, B.Sc. (Eng.), Mr. W. T. Gibson, O.B.E., M.A., B.Sc., Mr. H. G. Hughes, M.Sc., Mr. H. L. Kirke, Mr. E. C. S. Mcgaw, M.B.E., B.Sc. (Eng.), Mr. O. S. Puckle, Mr. J. A. Smale, B.Sc., Mr. H. A. Thomas, D.Sc., Mr. T. Wadsworth, M.Sc., Mr. R. C. G. Williams, Ph.D., B.Sc.(Eng:). Together with the following ex-officio members: The president I.E.E., the chairman I.E.E. Papers Committee, representatives of the I.E.E. Council, the Admiralty, the Air Ministry and the Ministry of Aircraft Production, the Post Office and the War Office.

Radiolocation Lead

S^{1}IR JOHN ANDERSON stated at a recent press conference that success in the war against U-boats was very largely due to improved location methods. He also said that Britain was still ahead of the Germans in radiolocation, and had it not been for the development of that technique before the war, the German air attack on Britain might have had very different consequences.
location, the apparatus which sends out ultra-short waves that are reflected back to receivers for revealing the presence of bidden 'planes, ships, etc., and indicates their dircction and speed of travel. The device works efficiently through fog, hail, snow, or the darkest night.

B.B.C. Overseas Service

WHEN the General Overseas Service of the B.B.C. was started in June of this year as an expansion of the work of the Overseas Service, it was hinted that further developments were still to come. An addition recently announced is the daily service to Japan (see paragraph on the previous page).
The Overseas Services took more definite shape, so far as listeners were concerned, when the European Service became a separate organisation in September, 1941. How vast has been the expansion of overseas broadcasting since the war is indicated by the number of languages used, which now totals 48 ; while in September, 1939 , the B.B.C. was broadcasting in 16 .

Itinerary

Home and Forces.-Home and Forces cover the British Isles. Languages: English, Welsh, Gaelic.
European Service-European Service covers Europe and Europeans in Africa and the East.

Flash Lämp Bulbs Order

THE Board of Trade, in consultation with the Central Price Regulation Committee, have made an Order amending the Flash Lamp Bulbs (Maxinum Prices) Order (S.R. \& O.; 1943 No. 247) in the following ways:
I. As the period in which wholesalers and retailers were allowed to clear anystocks of Far Eastern bulbs bought at a higher price has now elapsed, the provisions of the schedule in the original Order which fixed these prices are now deleted.
2. The definition of flash lamp bulbs has been altered (a) to exclude bulbs used in miners' safety lamps and (b) to include only bulbs designed and manufactured for intermittent use.
3. The maximum prices for tested bulbs have not been altered, but when untested bulbs are sold by one trader to another and any defective bulbs are returned within 28 days from the date of consignment, the maximum price is to be reduced by an amount in proportion to the number of defective bulbs.
(4) When a retailer sells untested bulbs to the public, the same provision applies if any defective bulbs are returned the day after the sale.
(5) A defective bulb is defined as one which contains defects which can be discovered by any of the tests normally used in businesses handling bulbs.
This Order, the Flash Lamp Bulbs (Maximum Prices) (No. 2) Order, I943 (S.R. \& O., 1943, No. 1084), came into force on August 16th, 1943. Copies are available, price id., through any newsagent or boolseller or direct from H.M. Stationery Office, Kingsway, W.C.2.

Radar in the Making

I^{N}N a General Electric factory in New England, U.S.A., Sadar sets are in full production for the United

A sergeant of the R.C.O.S. instructing a class of trainces on the working of wireless transmitters.
Languages (daily): English, Albanian, Bulgarian, Czech, Danish, Dutch, Finnish, Flemish, French, German, Greek, Hungarian, Italian, Norwegian, Potish, Portuguese, Rumanian, Serbo-Croat, Slovene, Spanish, Swedish.

In addition, the European Service broadcasts four times a week in Luxembourg Patois, several times a month in Sloval in the Czechoslovak Servize and once a week in Icelandic.

Overseas Service-Languages: English, Afrikaans, Arabic (ineluding Moroccan Arabic), Bengali, Birmese, Chinese (Cantonese), Chinese (Kuoyu), French (for Canada), Greek (for Cyprus), Gujerati, Hinclustani, Holkien, Japanese. Malay, Maltese, Marathi, Persian, Portuguese (for Latin-America), Sinhalese, Spanish (for Latin-America), Tamil. Thai. Turkish.

The Stroboscope

THE stroboscope is a most interesting instrument, possessing, apart from its utility, a source of what one might call "scientific amusement." The word is derived from two Greek words strobos a whirling, and slopeo to view, and means " an instrument for noting velocity by the intermittent lighting of the rotating object." It consists in its simplest form of a disc of paper with a number of light and dark seginents arranged round the peripthery, and it is fixed to some object which has to rotate at a definite speed. A source of intermittent lighting is arranged close to it, and the segments appear to remain stationary at the correct speed.

The Gramophone Turntable

Whether yoll use a clockwork motor or a simple electric motor, it is essential that it should be capable of rotating the turntable at the same speed as was used when the subject of the disc was recorded. This is now, for the majority of records, 78 revolutions per minute (r.p.m.). Most clockwork motors have a small speed indicator which is screwed to the motor-board, and when purchasing a separate notor this is a loose fitting.

Fig. l.-Graphical representation of A.C. current.
1t may, therefore, be screwed into any position, and the ligure 80 on it may actually correspond with a speed of only 65 r.p.m. Some hold that there is no need to play a record at its actual recorded speed, as the relation betwcen notes is the same at any speed. While this is true, the pitch is definitely altered with speed, as is only too apparent when a clockwork motor commences to run down. The gradual fall in tone to an indistinguishable noise, or the fall in pitch of a man's voice, is, no cloubt, well known. If, therefore, the record does not rotate at the same speed as was used for recreding, the pitch of a person's voice, or the correct musical liey of the instrument will not be reproduced. When it is desired to accompany a gramophone singer on an instrument in the home this is most essential. How can we get this accurate speed then? This is where the stroboscope comes in, and the only essential is an alternating current supply. Fron articles which have already appeared in these pages, our readers know that I.C. (alternating current) operates in a

Fig. 2.-A simple stroboscope disc which; with the text, will make the theory clear.

definite wave-form, having the shape shown in Fig. I. This represents one cycle, and the ordinary electric supply mains in our houses are rated at a certain frequency, which neans the number of complete cycles, or alternations, per second.

The Formula

From the sine curve of Fig. r, it is. clear that there are two opposite peaks in one cycle, and if an ordinary clectric lamp is supplied from A.C., it will light at each peak, and as the current falls to zero in the centre it will go out once per cycle. This may scem strange to many, but owing to what is known as "visual persistence," and the sluggishness of the ordinary lamp filament, the lamp appears to glow steadily the whole time. It will be shown later that this is not so, and the

Fig. 3.-A disc prepared for checkins the speed of a gramophone turntable.
lamp actually flickers. As the lamp is thercfore fully illuminated twice per cycle, we can multiply the frequency of our supply (which means the number of cycles per second as stated above) by two, and this will give us the number of times the lamp will light in a second. Now look at Fig. 2. This slows a disc having eight equal segments marked on it, four black and four white. If this were fitted to a shaft and gently turned the segments would appear to go round in the same manner as the spokes of a wheel. If, however, when in the position shown in Jig. 2 the disc was covered from our sight for a fraction of a second, and the disc turned so that seginent A occupied the position now occupied by segment B, and then we were pernitted to view the disc again, provided every segment was identical, we should not realise that there had been any movement, and the same thing could be carried out right round the dise.

This is how the stroboscope works. The disc is rotated and the light which is operated from the A.C. supply is used to illuminate the disc. When the light is on, the disc can be seen, but when the light is out the dise makes a movement, and upon being illuminated again the segments are once more visible. By suitably atranging the number of segments-according to the number of revolutions which have to be made in conjunction with the fickerings of the lamp--the disc will appear to remain stationary, due, as shown above, to the fact that one segment moves round to the position occupied by another segment during the time there is no illumination. The formula, therefore, becomes twice the frequency with which the lamp is illuminated, multiplied by 60 to convert it to minites, and divided by: the number, or revolitions'per minute which are required. As the 60 of our numerator, and the doubling of the frequency will always apply, it is simpler to take the frequency and multiply this by 120 (which is twice 60), and divide this by the revolutions required. In mathematical form this becomes $\frac{F \times 120}{R}$ where F is the frequency of the supply, and R the revolutions per minute

The Gramophone Stroboscope

It was stated that the gramophone turntable must rotate at 7 ? r.p.m. The majority of electric supply
mains have a fréquency of 50 cycles, and, therefore, the formula for this is $\frac{120 \times 50}{78}$ which gives us approximately 77. It is necessary, therefore, to arrange 77 , segments of contrasting colour on our disc, and this is easily cartied out with compasses and a protractor. It must be borne in mind that there must be 77 segments of each colour. Fig. 3. To illuminate this disc, one of the small gramophone lights may be usecl, such as that shown in Fig. 4, or some similar device, and if the lamp in it is operated from the heater winding of an A.C. set, it serves two purposes. It enables the needle to be placed on the first groove easily, and if the stroboscope is cut a little larger than a standard record label, it may be placed over each record in order to ascertain that the record remains constant throughout the whole of its playing time. If an ordinary batteryoperated receiver is in use, an ordinary table-lamp may be held close to the turntable for the purpose, or the normal room lighting may be used if the segments on the disc are sufficiently well defined. If it is desired to get a very marked impression (due to rather poor eyesight or other cause), a neon lamp should be employed. One of the well-known Osglim or beebive night-lights will give a most definite impression owing to the fact that the neon answers so rapidly to the alternating current. The normal electric light will be found quite good enough, however, for ordinary purposes.

Midget One-valver

A Compact Portable Set, Capable of Receiving the Local Station

THE receiver is very simple, and can easily be carried in a coat pocket, as its outside measurements are only $\sin . \times 3$ in $\times 2 \frac{1}{2}$. deep; the case is constructed from plywood, and may be varnished or covered with leatherette paper, as desired.
The battery connections to the receiver are made by means of a valveholder and an old valve-base, as shown in Figs. r and 2. It will be found that this is more convenient than having leads in the usual manner. The batteries-a 9 -volt G.B. battery for H.T., and a large $1 \frac{1}{2}$ volt cell for L.T.-are carried in a separate case. Noon/off switch is fitted to the receiver, as the valve-base

Fig. 1.-The circuit and details of the ballery connecting plas.
carrying the battery conneefions can easily be inserted or witbdrawn to switch the set on or off.

The Coil

The coil is wound on a cardboard tube approximately $2 \frac{1}{2}$. in diameter and $1 \frac{1}{2} \mathrm{in}$. long. The grid winding consists of 50 turns of 26 S.IW.C. D.C.C. Wire ; the reaction windirg is 50 turns of 36 S.IV.G. enamelled wire wound $\frac{1}{8}$ in. from the "earthy" ead of the grid winding. It will be seen that the fop of the value fits inside the coil. The valve: used is of the L.F. pentode type, and will operate efficiently on the small voltages fred, An American Philco 2 roi was used in the original
receiver ; the Cossor 220 HPT is an approximate English equivalent, and will be found satisfactory.

Operation

If the receiver does not oscillate when first tried, the connections to the reaction coil should be reversed. The little set will be found surprisingly sensitive, and a few yards of flex will provide sufficient signal pick-up when used as a "throw-out" aerial. If louder signals are required, the H.T. voltage may be increased to about 20; this was not found necessary in any of the localities where the receiver has been operated, but would give better reception when using the set in areas where conditions are poor.

Fix. 2.-The recciver assembled and wired. Value holder sockets shown in line for clarily.

An

A Unit Which Will Prove Most Valuable to the Constructer and Serviceman

FOR the busy serviceman, a signal tracer is just , the kind of instrument needed for quickly tracing obscure faults, such as hum, motor-boating, clistortion, etc. The following is a description of a convenient type of-sigual tracer; being untuned it permits stage by stage tests without twisting any dials, as in the more conventional kind of tracer.

Circuit

The chrcuit is not in any way elaborate. A vari-mu pentocle is usecl for the R1F-IF stage. I used a KTWG3, but as the circuit is not critical it would probably work as well with other types, although I lave not tried it. Power or grid-leak detection could have been used, but as simplicity was the keynote, I decided to use a cliode detector, as with its method of volume control it makes the simplest circuit, so a DI. 63 was used with the diodes strapped together. The output stage is a standard one, as is the nower supply; a K'Г63 is used for the ouput and a U5o for the rectifier.

For the RF-IF stage, the signal is fed to the grid of the KTVV63 via a .0000x mfd, mica condenser. This condenser is incorporated in the test-prod, and I used, one tag of the conclenser as the prod, but this is optional. Do not make the RF-IF lead any longer than 2 ft ., the shorter the better. Low loss cable should be used for the lead, if it is possible to get in these days of shortage, though ordinary heavy covered cable could be employed. CO-AX is, of course, the best, and the lead should be soldered right into the circuit.

The AF lead is also solclered right into the circuit, a .5 megohm resistor is at the prod end of the lead and feeds through a or mfd, conclenser to one side of the . 5 megolim volume coutrol. A or mfcl. condenser connects the diodes of the DL63 with the AF lead, the grid of the DI. 63 is fed via the .5 megolm volume control.

A . or mfd . condenser feeds the grid of the KT63. from the plate of the DL63, thence to a loudspeaker, a permanent magnet in this case, though an energisedcould be used and so dispense with the cholse in the power supply. A phone jack is incorporated in the plate circuit of the KT63 fed by a . 25 mfd. condenser.

The power supply is a standard one, consisting of a 350-0-350 V. 100 ma . 5 v. 2 a. 6.3 v. 4 a. transformer, a \mathbf{U}_{50} rectifier, an L.F. choke and an 8 X 8 mifcl. condenser. The mains switch is on the volume control, all earths are to the chassis, to which a cable is soldered; this lias an alligator clip soldered to it for attaching to the chassis of the radio under test.

Mode of Operation

A few words on how to operate the instrument would not be out of place. In scrvicing a radio that is " dead," connect the alligator clip to the chassis, and touch the AF lead to the plate of the output valve, meanwhile tuning the receiver for a signal. Proceed on through the stages, testing alternately the plate and the grids;
when you reach the detector stage change to the RFw IF lead. This same procedure can be used for tracing hum, clistortion, or any other fault that the radio might have wrong with it, and besicles simply finding the fault, it can be traced right to its source, but when testing do not confine yourself to merely testing the grid and plate electrodes, but also test the cathode, screen and suppressor grids. In the plate circuit of the KT63, a phone jack is connected; this is very useful when testing on a small signal and also for obscure cases of hum, etc. Using the phones you can operate the set under test at full volume and still hear a signal from any one point in the receiver.-R.L.W.

LIST OF COMPONENTS

One mains transformer, $350-0-350$ v. 100 ma .5 v. 2 a. 6.3 v. 4 a.

One L.F. choke. One chassis.
One permanent magnet loudspeaker
Thirteen condensets: One $8 \times 8 \mathrm{mfd} .500 \mathrm{v} . \mathrm{w} . ;$ four $.01 \mathrm{mfd} .350 \mathrm{v.w}$. ; two . $1 \mathrm{mfd} .350 \mathrm{v} . \mathrm{w}$.; One .25 mfd . $350 \mathrm{v} . \mathrm{w}$. ; one . $001 \mathrm{mfd} .350 \mathrm{v} . \mathrm{w} . ;$ one . 0001 mfd . $350 \mathrm{v} . \mathrm{w} . ;$ one .00001 mfd . mica; two $50 \mathrm{mfd} .25 \mathrm{v} . \mathrm{w}$. Eleven resistances : one .5 megohm volume control with镕,vitch; one $60,000 \mathrm{ohm} \frac{1}{2}-\mathrm{w} . ;$ one $50,000 \mathrm{ohm} 2-\mathrm{w} . ;$ one .5 megohm 1 -w. ; one . 25 megohm 1 -w.; one. 11 megohm t-w.; one 50,000 ohm $1-w$. ; one 25,000 ohm $\frac{1}{2}-w . ;$ one $5,000 \mathrm{ohm}^{-1}-w$. ; one 400 ohm $\frac{1}{2}$. ; one 300 ohta $\frac{1}{2}-\mathrm{w}$.
CO.AX cable, sleeving, connecting wire, etc.
Four valves : one KTW63; one DL63; one KT63 ; one U50. Four octal bases.

F.M. Record Reproducing System

Greater Frequency Response and Absence of Background Noise and Distortion are the High-lights of this Method Which is Reviewed

By D. A. ALDOUS

DURING the past few years an investigation has been conducted at the laboratories of the R.C.A. Manufacturing Company, New Jerses, U.S.A., to determine the prospects of improving materially the overall performance of gramophone record reproducing systems. Part of the investigation was directed toward the possibility of reproducing frequencies up to 10,000 or $12,000 \mathrm{c} / \mathrm{s}$ from standard solid-stock records without introducing excessive surface noise.

The two engineers chiefly responsible for this study, Mr. G. L. Beers and Mr. C. M. Sinnett, have recently published, in the Proccedings of the Institute of Radio Engineers, the results of their work, in the course of which the possibilities of producing a frequency-modulated signal were investigated, as this type of play-back system appeared to show promisc of satisfying certain requirements considered essential to a really high-grade record reproducing system.

It was found that of the many factors that must be considered in the design of a pick-up to reproduce lateralcut records, the following six deterininc the quality of reproduction which will be obtained and also have a direct bearing on the life of the record and playing needle: (1) The vertical force required for satisfactory tracking should be low enough to prevent undue record
wear and minimise record surface-noise. Tests reveal that for lacquer-coated dises, i.e, direct play-back records, the vertical force should not exceed 20 grams, and for shellac, i.e., solid-stock pressings, the maximum figure is 30 grams; (2) The vertical and lateral mechanical impedances presented by the pick-up at the needle should be as low as possible, as the work which is performed by the record is a function of these impedances. Low mechanical impedance is likewrise
desirable to minimise the

Fig. 1.-General construction of at experimental F.M. sick-up. the record groove; the record groove; (6) The sensitivity of the
pick-up should be such that the amplification

Pick-up Design

A survey of the foregoing requirements led to a consideration of the possibility of producing a frequency
modulated signal by means of a special pick-up. It was found that with a simple pick-up a frequency-modulated signal could be produced which had sufficient frequency deviation to provide a relatively higlı audio-frequency voltage output, when applied to a frequency discriminator and rectitier combination. The inductive or the capacitive reactance of a resonant circuit can be varied to produce a desiced frequency shift, but from the standpoint of a gramophone pick-up the control of frequency through a variation in capacity seemed to offer the greater advantage.

The general construction of an experimental FM pick-up is shown in outline in Fig. 1. A metal frame or mounting block is provided as a support for an insulated plate, which is the high-potential side of the pick-up. To this mounting bloek is also attached a thin metal ribbon, fitted in a plane parallel to the insulated plate and spaced from it by a small air-gap, which is placed under tension to increase the natural resonance frequency of the system. The needle supporting wire is anchored to the mounting block at its upper end. It is attached to the ribbon at approximately the mid-point of its length and its free end is bent in a plane essentially parallel to the record groove. The sapphire used as a needle is attached to

Fig. a shows the oscillator and frequency discriminatorrectifier (demodulator) circuits that have given good results. The circuit problem of the oscillator is to provide an arrangement which will have sufficient frequency stability from the standpoint of line-voltage variations, temperature changes, etc., and at the same time enable the pick-up capacity variations to produce the desired frequency change. From the point of view of obtaining the maximum frequency change for a given capacity variation at the pick-up, it is desirable that the pick-up be comected directly across the oscillator tuned circuit. One way of accomplisling this is by mounting the oscillator valve and associated circuit elements at the pick-up end of the carrying-arm. This arrangement has not been found to be particularly satisfactory, because the carrying-arm is macle moluly large and the heat from the oscillator valve causes the end of the carrying-arm, which is handled by the operator, to become uncomfortably hot. The same result, however, can be attained by mounting the oscillator valve on the main instrument chassis and comecting it to the pick-up through a resonant transmission line, which is used as the oscillator tuned circuit. It has been found that by connecting the pick-up previously discussed the end of the wire. The portion of the wire between the ribbon and the sapphire provides sufficient vertical compliance to ninimise mechatical noise and to reduce pinch-cffect distortion. From Fig. r it is apparent that displacement of the needle laterally results in a change in position of the ribbon with respect to the fixed plate and thus produces a change in capacity. The overall length of the mounting block, shown in the jigure, is about o.jin., and the normal spacing between the fixer plate and ribbon is approximately 0.004 in .

Theory indicates that it is necessary in an FM pick-up that the change in capacity with needle displacement inust be such as to produce a linear relationship between frequency change and needle motion, or, in other words, the variable capacitor formed by the elements of the pick-up. should be of the straight-line frequency type.

Circuit Considerations

Fig. 3.-Frequency response curves of F.M. מick-up A Measured and B Calculated.

The major circuit considerations involved in the design of an FM record reproducing system may be stated to be: (I) The carrier irequency to be employed ; (2) A suitable oscillator circuit for use with the pick-up; (3) The type of frequency discriminator-rectifier combination to use. An inquiry into the question of the operating frequency fof use in an FM pick-up system led to the conclusion that carrier frequencies as low as those used in the intermediate-frequency amplifiers of raclio receivers and as high as those employed for: FM broadcasting will give satisfactory results. If the FM pick-up systen is to be used in combination with a radio receiver there may be some advantage in using a carrier frequency that permits the use of one or more of the I.Fo amplifier circuits as a frequency-discriminating network for converting the frequency-niodulated signal into amplitude modulation before demodulation. However, if the FM pick-up system is designed as a separate unit it may be clesirable to employ a frequency around 30 megacycles'sec. The signal level provided at the discriminator by the frequency-modnlated oscillator can be made fairly hioh, so there is no likelihood of diathemy machines or other electrical equipment cansing interference with the FM pick-11p system. (It might lie mentioned here that such an FM record reproducing system woukd radiate, and so adequate screening would be required if its possession and use in Gt. Britain under wartime conditions was not to be regarded by the G.F.O. as infringing the Defence Regulations.)
through a relatively low-capacity line to a conventional oscillator circuit, as depicted in Fig. 2, a sufficient frequency shift is obtained to give the required audiofrequency output. In this case the transmission line is treated as a lumped capacity, and is included as an integral part of the carrying.arm.

Oscillator

- It will be noted that the oscillator valve employed is of the GSA7 type, which permits the use of electronic coupling between the oscillator and discriminator circuits. The oscillator frequency is adjustable by means of an iron core associated with the inductance L_{1} shown in the schematic. A simple resonant circuit is utilised as the means for converting the oscillator frequency variations into changes in the amplitude of the signal applied to the diode portion of the 6R7 valve. A powdered-iron core associated with inductance I_{2} is used to ture this cireuit so that the mean oscillator frequency falls at approximately the 70 per cent. response point on one side of the selectivity characteristic. The rectification (demodulation) of the r.f. signal by the diode develops an audio-frequency potentiat across the resistor R_{5}^{5}, which is then amplified by the triode section of the, 6127 . The output voltage that appears across resistor I_{8} in the anode circuit of the 6R7 is applied to a suitable a.f. anplifier and loudspeaker. An experimental pick-up employed in the Fig. 2 circuit has given an r.mus. potential of 6 to 8 volts across resistor R_{3}
when reproducing a $400 \mathrm{c} / \mathrm{s}$ record cut at a groove amplitude of 0.001 in .

In the course of development of the FM pick-up system the authors derived equations, given in detail and graphical form in the original contribution, for calculating the performance characteristics. "hese characteristics are as follow: (a) Lateral mechanical impedance; (b) Lateral force acling upon needle; '(c) Response characteristic of picli-1tp and carrying-arm ; (d) Tracking weight required to overcone vertical force due to lateral velocity; (c) Tracking weighis and relative outputs to be obtained with different radius needles, and for purposes of comparison measurements were made on an experimental pick-up to ascerlain the last three of these characteristics.

It was found, inter alia, that a ncedle tip radius of 0.003 in. was the best compromise from the standpoint of overall performance, that a tip radius of 0.003 to 0.004 in . required the least tracking weight; and that a tip radius of 0.003 in , was again indicated to maintain high-frequency output with a gixen tracking wright. (The F.M. pick-up normally operates with a tracking weight of only 18 grams.) Fig 3. curve A, shows the overall response characteristic of the pick-up, carryingarm, and discriminator as obtained from a frequency
record having a $500 \mathrm{c} / \mathrm{s}$ crossover point lretween constant amplitude and coustant velocity. The rouncled portion of this curve at the cross-over frequency is clue to tlie jimitations imposed by the electrical network used to provide the recorditig characteristic. Fow comparison the cilculated response characteristic is included as curve B .

It is stated that an experimental FM record reproducing systen, of the 1 tpe deseriber, has been in use for some time; and all the evidence indicates that the srstem is practical and is not adversely affected by temperature changes, humidity or line voltage fuctuations. From the user's viewpoint, this FM pick-up system makes it possible, when playing conventional solid-stock dises, to extend the frequiency range of a record reproducing System 10 Io,000 or $\mathbf{I} 2,000 \mathrm{c} / \mathrm{s}$ with marked freedom from siuface noise, mechaniral noise and distortion. A further reduction in surface noise can be obtained with ordinalry records if they are cut with a high-frequency accentiation characteristic comparable with that used in making transcriptions. Test records of this type have been made and the surface noise obtained from these recordings with the new FM playback system was reduced to the point where it was completely unolbjectionable.

Permanent Magnets-VII

By L. SANDERSON

(Concluded from nage 427, Sentember issüe.)

ANOTHER type of finmeter depends on the c.m.f. generated in a rotating coil driven by a small motor at known speed. This coil links the mag. netic flus to the circuit, and the apparatus has primarily been designed for testirg magneto inagnets.
Another useful instrument is the magnetic petential meter, somewhat similar in principle to the voltmeter, and employed in order 10 determine differences of magnetic potential. The instrument comprises a thin ribbon or strip of flexible insulating non-magnetic material, of uniform cross section, with a uniform helix of wire wound upon it. The terminals of the wire are linked up with those of a Grassot flumneter pr a ballistic galvanometer. The potential clifference of magnetic potential is oltained by reading the fluxmeter and the value of an, where a is the number of sq. ems. the helix is wound, and n the number of turns per cm . length. The results oblained are not affected by the curvature of the strip, a point of partioular usefulness in the type of measurement for which this instrument is designed.

Magnetisation Curves

In determining magnetisation curves for permanent magnets se veral methods are availalzle, and the particular one used is largely governed by the form of the magnet or specimen. Broadly, these methods fall into two main groups, those designed for ring-shaped magnets and those for bar-shaped magnets. The ring method most commonly employed and probably the most advantageous is that known as the ballistic method. A ring of exactly lsnown dimensions has an exciting coil uniformly wound over the whole of its surface, and a search coil. It is essential that the number of turns in both these coils should he exactly known. As a rule it is advisable to wind the search coil as close to the ring surface as is feasible, and to divide it into four equi-spaced sections, each of which has about 20.30 turns. Fig. 7 show's the arrangement of the test, The magnetising force is given by the equation $\mathrm{H}=\frac{\mathrm{x} .26 \mathrm{w}_{1}}{1}$ I gauss. In this, W_{1} is the number of turns in the coil, 1 is the mean length in cm. of the magnetic circiit in the ring, I is the current amps. in the cxciting coil.

It is necessary to ensure that the specimen should be fully demagnetised as a preliminary to the test readings. For every new valne of H it is necessary to reverse the exciting current a few times to make certain that the spocinen loas been brought into a cyclic magnetic state

Fig. 7.-Circuii diagram of connections for the test to determine magnelisation curves.
before the final test reading is taken. A rather altered but substantially similar series of connections enables the hysteresis loop to be established.

PRACTICAL WIRELESS SERVICE MANUAL

By F. J. CAMM
From all Booksellers $8 / 6$ net, or $9 /$ by post direct from the Publishers, George Newnes, Ltd. (Book Dept.) Tower House, Southampton St. Strand. London. W.C. 2

Low Frequency Amplifier Design-1

A Short Series of Articles Dealing with the Practical Aspects of an Inferesting Subjeci

THERE are many seekers of " quality " reproduction who fail to study the simple type of amplifier fully before rushing to assemble an expensive paraphrase or push-pull outfit. The latter types of amplifiers certainly have their merits, but are not always essential. Noreover, they are generally expensive and call for the use of components that are often difficult to olstain ins present conditions. And any attempt at reducing the cost may well result in the aniplifier being less satisfactory than one of simpler and more conventional design.

R.C.C. Advantages

There is no doubt that the resistance-capacitycoupled amplifier is simple in construction, and very inexpensive. Perhaps it is partly becausc of this that it is often regarded as old-fashioned and not very effective. Provided that the valves and components are chosen with care and understanding, this kind of amplifier can be very valuable. For example, by using modern ligh-mu valves with coupling components of correct values, the overall efficiency may well be little less than that to be obtained by using transformer coupling. In addition, it is easier to provicle good reproduction with this type of amplifier than with any other.

The values of components cannot be determined purrely by rule-of-thumb, but it is possible to design a firstclass unit by combining simple rules with a knowledge of the processes involved and of the probable effects of varying the circuit constants. This matter can perhaps best be explained by making reference to the very simplest type of R.C.C. amplifier, as represented by the circuit in Fig. I. Indirectly-heated valves are illustrated, but the general principles are precisely the same when using battery valves.

Voltage Amplification

The first valve is a voltage amplifier, the purpose of which is to amplify the audio-frequency voltages applied between its grid and cathorle before passing thenn along to $V 2$. For the valve to give good quality amplification it must be equally effective over the full range of audio freguencies. Since the load in its anode circuit is purely resistive-and therefore offers the same impedance to currents of all frequencies-this would appear to be automatic. But that is not so, for in parallel with the resistor marked R_{L} there is the anode-cathode impedance of the valve itself, the impedance of the grid condenser C. 2 in series with the grid leak marked R_{g}, and also the grid-cathode inupedance of V2.

" Miller Effect" Capacity

It is not always easy to miderstand that all these impedances are, in fact, in parallel, but it will be seen from Fig. 2 that they are. Even when this is understood it may be remarked that surely the grid-cathode capacity of V_{2} is so small that it cannot possibly have any effect at the low frequency on which the circuit operates. That is another fallacy. The " real "capacity is certainly small, being in the region of 5 m .mfd. for an average mains triode. Due to an effect known as the "Miller Effect," however, the apparent or effective capacity is equal to the actual grid-cathode capacity, plus the grid-anode capacity multiplied by the amplification factor plus one. In simpler terms:
$C=C_{g}+C_{a}(A+1)$
Where C is the total effective capacity, C_{E} is the capacity between grid and cathode, C_{2} is the capacity between grid and anode, and A is the amplification of the valve. The term amplification just referred to
must not be confused with the amplification factor of the valve; it is equal to the valve amplification factor (mu) multiplied by $R / R+R_{a}$, where R is the anode load resistance and R_{a} is the anode impedance of the valve. Provided that the anode load resistance is correctly chosen, as will be explained later, the term A will be equal to about four-fifths of the valve amplification factor.

An cxample will help to clarify the explanation. Suppose we consider a triode valve with an amplification factor of 50 , and whose grid-cathode capacity is $5 \mathrm{~m} . \mathrm{mfl}$., and its anode-grid capacity $6.5 \mathrm{~m} . \mathrm{m} \mathrm{fd}$. Sulustituting in the formula given above we have:

$$
C=5.0+6.5 \times 41
$$

This gives as answer $271.5 \mathrm{~mm} . \mathrm{mfl}$., or nearly .0003 mfd . And the reactance of a capacity of .0003 mfd . at 5,000

Fig. 1.- A simple and typical R.C.C. voltage amplifier feeding Fig. 1.-A simple and typical R.C.C. voltage amplifier feeding
into an output valve. Component values are explained in the texi.
cycles is approximately 100,000 ohms. Such a figure is small by comparison with the value of the grid leak, with which it is in parallel. The effective reactance can be reduced, of course, by employing a valve of lower amplification factor, or with a lower inter-electrode capacity.

Anode Lead Resistance

Having seen some of the relevant points we can turn again to Fig. 1 , and consider the values of the components and the relationships which should hold between the values. A start might well be made with the anode load resistor $R_{1, \text {. }}$ This should have a valne not less than four times the anode impedance of Vr. Thus, if the anode inpedance, sometimes called the internal resistance. of Vi were 25,000 ohms, the anode load resistor should be rated at not less than 100,000 ohms. Such a value would naturally cut down the voltage actually applied to the anode for a given H.T. voltage, but within reasonable limits it is better to do this than to use a laver value of load. In practice, the voltage would not be cut down to the extent first anticipated, since reduced anode voltage would cause a reduction in anode current; a reduction in current througli R_{L} would bring about a reduction in the voltage drop across it.
To reduce the value of the load resistor would result in a loss of amplification, which would be most marked on the lower audio frequencies. On the other hand, increasing the resistance would produce only a very slight increase in amplification, and there would be a
tendency for higher audio frequencies to suffer. Additionally, a pronouncedi increase in resistance would reduce the "handling" capacity of the valve by cutting down the anode current.

Bias Component Values

Now let us examine the cathode-biasing circuit, which consists of $R_{c} I$ and C_{I}. The optimum value of the bias resistor is generally given in the valve maker's instructions, and can be calculated with accuracy only when all circuit details are known. A simple method of deternination, which at least gives a sufficient degree of accuracy for most triodes of "average" type is to divide the anode load resistance by the amplification factor of the valve. For example, a valve with an internal resistance of 3,000 olins and amplifiration factor of 12 would require a bias resistance of 1,000 ohms, assurning that the anode load resistor had a value equal to four times the internal resistance. This is, in fact, the figure given by the makers of one valve having the charactoristics quoted.

In passing, it should be noted that this simple method of determination does not hold for special high-mu triodes, and is guite useless where pentodes are concerned: It must therefore be used with discretion.

Fig. 2.-This modified form of Fig. 1 shows how many resistances and reactances are in parallel with one another.

Bias By-pass Condenser

In gencral the value of the condenser providing an audin-firqueney by-pass across the bias resistor should have as lrigh a value as possible. If its reactance at audio-frequencies is to be extremely low, the capacity should be at least 8 mfd ; 25 mfd . is letter, having a reactance of only about 6.5 olims at $\mathrm{y}, 000$ cycles and less than I. $\overline{5}$ olmms at 5,000 cycles per seconcl. Even this capacity has a reactance of about 300 ohms at 50 cycles per second. There is normaily a suall voltage across the bias resistor, and therefore a condenser of sufficiently high capacity need have oniy small physical dimensions.

It is scarcety possible to use too high a capacity unless there is a tendency toward hum in the output reproduction. If hum is to be reduced (and low notes are similarly affected, unforturately), it is worth while to try a lower capacity in this position. The use of too low a capacity or, in the extreme, the absence of this by-pass condenser, will result in a marked loss of amplification. The reason for this is that negative feedback, or degeneration is produced.

Negative Feedback

This is because audio-frequency voltages are developed across the bias resister. And these are in opposite phase to those applied to the grid, which means that the effective A.E. voltage on the grid is reduced. To understand this explatuation fully it is negessary to visualise exactly what happens when, say; the grid is swung positive by the positive half-cycle. We know that an increase in posilive potential on the grid causes a rise in anode current. As anode current
rises the current through the bias resistor does likewise ; and when this happens the voltage flrop across the resistor, and hence the applied bias voltage, increases. This increase is in a negative direction, and therefore partially cancels out the original positive potential.

When a bias condenser of low reactance is in paralle with the resistor it "smooths out" the aurlio-frequency fluctuations, although not affecting the D.C. voltage drop across the condensee. It is then the D.C. voltage only which is applied in the form of bias.

Grid Condenser and Leak

The values of the grid condenser C_{2} and the grid leak R_{y} must be considered together for, as we have seen, the two in series are in parallel with the anode load resistor and the internal resistance of 11 . In effect, these two components act as a potentiometer feeding the grid of V_{2}, but if the reactance of C_{2} is very low in relation to the resistance of R_{z}. the attenuation caused will be very small. This indicates that C_{2} must have a ligh value, lut to prevent other "shunt" losses the resistance of the leak must then be bigh. In practice, it is nearly always found that optimmin results are to be obtained by making the value of the leak not less than four timos that of the anode load resistance. At the same time, if the value is high in relation to the "Miller Effect" capacity between grid and cathode of \mathbf{V}_{2}, reproduction of the higher andio freguencies will result. In general the lower limit may be set at 150,000 ohms, the upper limit being goverried entirely by the anode Joad resistance of V_{I}.

In some respects the choice of grid-condenser capacity is similar to the choice of capacity for grid-bias by-pass. For example, the higher the valuc, the lower the loss in amplification and the better the reproduction, especialty of transients. But where hum is in any way troublesone, it can be reduced by cutting down the capacity. A value of . 1 mfd, provides a good starting point, but if a little emphasis of high notes is considered desiratule, the value can be reduced to as little as .005 mid. When the capacity is reduced it is a good plan to increase the resistance of the grid leak in order to retain a good balance in the two halves of the "potentimueter " alreadiy referred to. Thus, if the capacity were reduced to, say, or mfd, the grid leak resistance should be doubled.

If the general principles outlined in this article are clearly understoor it will be easy to follow the articles which are to follow, and which will deal with more advanced amplifier circuits.
(To be continuted)

PRIZE PROBLEMS

Problem No. 448.

Abstract

$\mathrm{R}^{\text {OBINSON'S }}$ receiver, which he had build from spare parts, gave very unsatisfactory reproduction. quality being inferior and volume ery poor for a Detector and two L.F. Iype of receiver. Using a voltmeter he tested H.T.. G.B. and L.T. batteries. L.T, was fully up to volts; the Grid battery read 9 volts. and the H.T. also showed the tull voltage of 120 volts. The loudspeaker was a balanced armature type with a resistance- of 2,000 ohns. joined direct in the anode circuit of the output valve. the anode current of which is 18 milliamps. What was the cause of his trouble? Three books will lie awarden! for the first three correct solution. Gearge Sewres, Lidd. Toner House, sontbrimpton street, Strand. Lonlon. W.C.e. Envelopes must, Le narked Probleln Nu. 4.8 to the top left-hind corier, aud must be postend to reach thin wflice nö tater than the first post on Thursday, Septenter 16th, 194it.

Solution to Problem No. 447.

When Thrimas selented the componenta from the jurk box. We did unt take the precaution of texting the condeaser, and it the chue in question, lic was unlucisy as the condenaer had a bliort-cirotit which itnposerl a very ficavy drain on the H.T. supply with a consequent seriots refuction in voltane

The three followinte reaters anccessfally nolved Problem N ,, 446 , and books. have aceorlingly leeen farwarded to themt, A,C.L. McCallum, R, A.F. Shropshire, A. B, Caiztey. 士246 Sunderland Road, wouth sleields? George Jackaon. IF, Poplay Avenue Blacktall, W. Hartlepoot.

YOUR SERVICE WORKSHOP-7

A Valve-testing Unit

Final Constructional Details. By STANLEY BRASIER

(Conlinued from page 421, Septcmber, 1943.)
Operation

ASSUMING now that the instrument is complete, suppose a simple battery triode of the "H.L." type is to be tested. The filament adjustment tap is set to 2 volts. Then by referring to the list of B.V.A. standard valve connections in the Practical Wireless Service Mamual, Radio Fingincers' Vest Pocket Book, etc., it will be seen that pin No. I of a 4 -pin triode connects to anotle, while pin No. 2 connects to grid. Incidentally; the valve data panels appearing in Practicai. Wireless are extremely useful in this connection. To ensure therefore that the connections in the Valve Tester are correct to receive this valve, it is only necessary to set the discs on the electrode selector switch so that No. I'shows in the window of the anode switch and No. 2 in the grid. Screen and cathode-which for this valve are not required-are set to 0 . Thus, the number shown on the switch panel is 1020, which is the code number for any edirectly heated triode and is entered for future reference in the column provided on the valve slieet. S.I is set to "normal" and S. 2 to "M.A./V." or "fnll einission," according to the test required. If the latter, then V.R.I, the anode control, is sint $^{\text {n }}$ about half-way round, and the grid bias potentionneter, V.R.3, to zero. After plugging in the valve the tester is switched on and the H.T. voltage may be adjusted to the desired amount by V.R.I and a voltmeter connected to H.T. negative and the anode (top cap) socket on the valve panel. The emission of the valve is then shown on the panel meter. (Figs. 5, 6 and 7.)

Mutual Conductance

Mutual conductānce tests are-more or less standardised at 100 volt anode, 100 screeu and grid volts 0 . If, therefore, this test is required, the switch S 2 is turned to that position, the " set zero" control turned clockwise. A nillianmeter-preferably the lowest range suited to the valve's anode current-is joined to "Ex. meter '"; after switching on, high tension is adjusted to roo volts and the current backed off to zero by the control. Depression of the M.A./V. button will then cause the current to rise and the reading will be the $\mathrm{mu} / \mathrm{com}$. of the valve under test in milliamps per volt. Owing to the large range of anode currents met with in testing all types of valves it is not always possiblewhen the current is high-to bring the external meter

Inside edges of panel chamfered

Fig. 5.-Lryout of switch panè. Note chamfer on ton and bottom edses.

needle right back to zero, so in this case the " set zero" control is turned back until the meter reads some definite ligure, say 5 or 10 milliamps. Any increase in the reading (by pressing the M.A./V. button) is then easily calculated, the figure still being M.A. per V.

A 5 -pin triode valve of the indirectly heated type, i.e., a mains valve, would need a cathode connection and in this case it would be to pin No. 5, so that the code number would be 1,025 , and if it were an L.F. type needing negative bias, this is applied by advancing the control V.R.3, which may, if desired, be calibrated. H.T. control of anode and screen cannot be calibrated owing to the varying currents and must therefore be measured from their respective points on the valve panel. The grid bias control is inoperative in the M.A./V, test and the "set zero"; inoperative in the full emission test.
Multi-electrode VaJves Multi-electrode valves are tested in two halves; for instance, take an indirectly heated 7 -pin heptode. The amplifier section could be checked first where the code number would be 7,306 ,
the top cap of the valve being joined to the grid socket on the valve panel, consequently the grid selector switch is set to o. The oscillator section of the valve may then be tested mercly by altering the code number to 1,026 and removing the top cap connection. It is convenient to enter the number on the data sheet as $7,306 / 1,026$ for the complete valve.

Diodes are tested for emission by applying about io volts to the anode and since this low voltage cannot be obtained from the "anode" control, the screen supply is used, because here the voltage nay be reduced to zero. It is of the utmost inportance, however, that the current drawn from this supply, under any circumstances, should not exceed three, or, at the very
for one anode and 2,000 for the other. A nominal load of 25 nilliamps is antomatically applied and this current may be measured from jack I, while the valves D.C. voltage output at this current can be checked from any heater socket on the valve panel and the hightension negative socket, with, of course, a voltmeter. If the valre is indirectly heated its cathode is connected in circuit by setting the "cathode" selector switch -in the case of a 5 -pin base-to 5 , making the number 1 or 2,005 .

With SI returned to "normal" the current measured

- $0 \mathrm{VR} /$ (stoter)

Fig. 6. -Rear of switch panel. Care should be taken with wiring of rotary selector switch.
most, four milliamps. A diode passing I to 4 milliamps with 10 volts on the anode may be considered quite efficient and this may be checked by connecting a milliammeter to jack 2 , the code number for a 5 -pin mains double-diode being oros, and for the other diode, 0205.

Rectifiers

Rectifiers are tested by putting Si to " rec." and under these conditions an A.C. voltage of 250 is applied via the " anode" " selector switch. I'or a 4 -pin full-wave rectifier, therefore, the sclector switch is set to $\mathbf{1 , 0 0 0}$
from jack r is that of the cathode, which therefore shows the total current of any valve, anode plus screen, etc. Before any valve is plugged into the tester it is wise to test for internal electrode short-circuits. This may be done by plugging a pair of test leads into the "Neon test" sockets. The lamp-which normally serves as a pilot-will then go out, but'a dead short across the test leads will cause it to glow to full brilliance. Although no defmite degree of insulation is given by the lamp, some idea of this may be gained by its brilliance or otherwise, particularly if it is compared with some

Standard B.V.A. Valves

TYPE.	BASE.	CODENO.	TYPE.	BASE:	CODE No.	TYPE.	BASE.	CODE No.
Triode D.H.	4	1020	S.D. Tetrode $\quad .$. I.H.	7		D.D. Triode ... I.H.	Oct.	
Triode I.H.	7	1025	Triode-pentode ... D.H.	9		Rectifier. Full-wave I.H.	Oct.	
Triode I.H.	7		Triode-pentode ... I.H.	9		Rectifier, Full-wave I.H.	Oct.	
Tetrode... ... D.H.	4	$01 \% 0$	Triode-hexode ... D.H.	7		Rectifier, Full-wave I.H.	Oct.	
Tetrode I.H.	5	0125	Triode-hexode ... I.H.	7				
H. F. Pentode D.H.	7		Double-pentode ... D.E.	7				
H.F. Pentode... ${ }_{\text {H. }}^{\text {H.H. }}$	5		Double-pentode \ldots D.H.	9		SIDE CONTACTS.		
H.F. Pentode.. I.H.	7		D.D.-H.F. Pentode L.H.	9		Triode	P	
H.F. Pentode ... I.H.	7	2706	D.D. Output Pentode I.H.	7		H.F. Pentode .	P	
Output Pentode D.H. Output Pentode D.H.	4 5		Rectifier. Half-wave D.H. Rectifer, Half-wave I,H.	4	1000	Output Pentode ...	P	
		1095				Octode ...	P	
Outpat Pentode I.H.	$\stackrel{5}{7}$	1025	Rectiner, Ful-wave D.H.	4	1000/2000	Double-diode ...	V	
Heptode ... D.H.	7		Rectifier. Full-wave I.I.	5	1005/2005	Rectifier, Hall-wave ...	p	
Heptode -.. IH.	7	7306/1026	Rectifier, Full-wave I.H.	7		Rectifier, Volt. Doubling	P	
Octode ... ${ }^{\text {Octode }}$... ${ }^{\text {a }}$ I. ${ }^{\text {I.H. }}$	7		OCTAL BASES.			AMERICAN U.X.		
Class B Outout D.H.	7		Triode I.H.	Oct		Triode I.H,	U.X. 5	
Double-diode D.H.	4		Triode \quad... I.H.	Oet		H.F. Pentode $\quad \cdots$ I.H.	U.X. 6	
Double-diode D,D. Triode	5	0105.0205	H.F. Pentode ... I.H.	Oct		Output Pentode ... I.H.	U.X. 6	
D,D. Triode ... D.H.	5		Output Pentode ... I.H.	Oet		Rectifier (Uni) ... I.H.	U.X. 6	

high valne resistors of known value. It will be noticed that in the case of the 9 -pin holder a short flexible lead comnected to pin No. 9 is brought through the valve pane! and terminates in a plug. This is for connection to the anode, screen or grid sockets-it innst be one or the other-and obviated the necessity of

In testing certain types of octal base rectibiers it will be found that the heater is comected to pins different from those provided in the valve tester (which is standard for the rest of the range) and ats there is no switching for heater pins, simple adapters may be used for the fow types which necessitate them. Simitarly,

Fir. 7.--Layout of the control panel on the power unil.

providing a ninth contact on all sections of the selector switela just for this one valve.

The valve tester must be switehed off before attering the selector switeli and the nommalrectifier switela and also when not in usc, otherwise there is a constant current drain on the gricl bias batterics. The grid bias voltage for the full emission test may be increased to any amount
all Mazda octals have a different heater eqnoection; therefore, if it is desired to test these typers frequently an additional octal bolder must be fitted, taking the heater supply to pins Nos. I and 8.

The filament or heater of any valve oun be tested for continuity by test leads plugged into the "Neon test " sockets.

by conpling up 9 -volt units, and these are held on the back of the cabinet.

A valve which is suspected of being " soft" may be tested by noting whether the anode current rises unduly when the button of 54 is presser and is operative on M.A. V. and full emission tests. If the valve is perfect in this respect the current should rise by ouly ad fraction; if at all.

Of the possibilities of valve trouble referred to in the last article, only one has not been provided for. This is loose clectrodes, but since it would evidence itself in no uncertain manner in normal use in the receiver, by tappipg, it is umnecessary to provide any arrangenent tor checking it in the valve tester.

Unsuspected Faults

A Service-man Tells of Two Unusual Faults He Encounlered

An Earth Lead Astray

AiREALLY mysterious incident occurred in a set that worked fairly well through the winter, but with the coming of lighter days the volunc fell off more rapidly than would bave been expected. There was apparently nothing wrong with the sct itself or "ith the batterics. The acrial seemed perfect, and it was therefore susbested that the earth was faulty. This consisted of a good copper plate, with the wire securcly soldered to it. The wire from the set disappeared in a hole in the llourboard behind the set, and passed througit an "air brick" winder. the foor into the garden, and so to the carth plate. There was a thick, insulated wire ennerging from the ventilating brick and dipping underground anong the llowers. A sharp upward tug convinced me that the soldered foint on the earth plate was intact.

An attempt was then made to pull the wire acntly away from the house. Tea feet of wire was pulled out! On going back to the roon where the set was installed, however, it was found that the earth wire was still in position. There was nothing for it but to take up a floorboard, and when this was donc the mystery was solved, for the wire comected to the carth terminal of the set just led into the empty space under the floor and no farther. It appeated that the acrial and earth
had been filted while the house was being built. The earth plate, with wire already soldered 10 it, had beeu buried just outside the wall and the wire fal through the air brick. It had not been possible to manipulate the wire through the hole in the Hoor, so a stout wire had becu pushed down the hole to " iish" for the carth wire, which hatel eventually been hooked and pulled up througle the hole. It will be clear that the hook would have brought up a loop of the cart th wire, and the loop had been cut and the wrong end of it used for the earth connection, alowing what had been inagined to be the spare end (but really the end comncted to the carth plate) to slip out of sight under the floor.

A Loft-aerial Snag

Here is a word of advice to those who intend to use loft acrials. Pay particular attention to their position witl respect to any water pipes which may be installed in the loft. The efficiency of a well litted loft acrial was reduced to a very low value because it was running immediately above a range of water pipes. The "effective" height of that aerial was certainly less than one netre, and the performance of the set comected to it wath very poor until the acrial was taken down and noved to atother part of the loft where it was not shicled by well earthed pipes.

The Manufacture and Testing of Valves-3

Bulbs * Creating the Vacuum : Types of Vacuum Pumps

By LAURENCE ARTHUR
(Continued from page 364, August issue)

THE glass bulbs used for enclosing the electrode. assembly are produced in very large numbers by automatic machines, which inject a definite amount of molten glass into an accurately made mould. They are not actually made in valve factories, but in separate works entirely devoted to glass-ware. Very many shapes and sizes are required for different types of valve, but those with a dome top are probably the most popular. The dome provides a secure holding for a suitably shaped mica bridge,

Fig. 17.-Outline of bulb, showing shirt. which enables the upper part of the assembly to be held rigid. All bulbs, when received from the glass works, have a skirt or cullet which serves a useful purpose when the sealing-in process takes place. A representative shape is shown in Fig. 17. Before use, bulbs are checked for diraensions and examined for flaws. Then they must be thoroughly cleaned internally, and one method of doing this is to swill them out with a dilute solution of hydroftuoric acid. But as this acid eats into glass, the bulbs are. held over powerful jets of water and finally dried in a gasheated oven.

Top Cap Connection

Certain types of valve require an external top connection for grid or anocle, and before the mounts are inserted, the bulbs are top rpipped. This is done on a rotating machine, which gradually heats the top of the bulb against the centre of which is held a short length of narrow glass tube. When the bulb and the tube are almost molten, a jet of hot air is forced through the tube, piercing the bulb, and the two run together.

To prevent the walls of the bulb from becoming electrically claarged when bombarded with high velocity electrons, some valves have an internal coating of graphite which is sprayed on with a compressed air spray gun. This coating is freguently trimmed off at the top or bottom of the bulb and small wedgeshaped "brushes" of thick felt or rubber, using alumina powder as an abrasive, are employed for the purpose. Graplited bulbs must be baked before use.

Fig, 18.-The bottom of a sealed-in mount.

Fig. 19.-Ilustrating scaling-in the top cap wire.

Sealing-in

We now reach the stage when the assembled mount can be sealed into the bulb. The sealing-in machine consists of a series of rotating units, each moving round the circumference of the machine. The stem on the foot of the mount is put into a hole in the unit, and over the mount is placed the bulb, which is held at the correct height by a collar. This is important as the overall length of the finished valve has to be between certain limits. The mount and the bulb rotate while gas jets warm them up at appropriate places. As they move round the machine the glass becomes molten and the weight of the skirt, or cullet, draws the lower part of the bulb down until it is in intimate contact with the edge of the flange. When the flange and bulb run together, the cullet drops clear. Subsequent positions on the machine allow the sealed-in mount to cool down gradually, and when it is taken off it is once again carefully annealed. Fig. I 8 shows the general outline of the bottom of a sealed-in mount.

If the valve is one having on external top connection, the borated copper wire previously welded to the anode or grid is threaded through the thin glass tube, already fixed in the top of the bulb, before the sealing-in of the mount. The borated copper is then scaled in the glass tube by the application of a small gas jet. As the tube becomes molten it is pulled up to a point with tweezers and a vacuum tight joint with the wire is obtained. This operation, called top sealing, is shown in Fig. I9.

Fig. 20.-A simple type of mercury vapour diffusion pump.

Fig. 21. $-A$ liquid air trap in vacuum flask.

Greating the Vacuum

The valve is now ready for exhausting or cyacinating and, althougl any valve in mass production is proctuced on rotary machines, it will be simples to describe the process as if the valves were being handled singly. There are two main types of vaculim pumps in use to-day, one being the mereury vapour diffusion punp and the other the rotary oil punp. An illustration of a simple example of the former is shown in fig. 20. Mercury is heated in a contaner by means of an electric heater, and the vapour is diawn down a wide glass tube by suction from a single-stage oil punp. As the vapour passes down the tube it draws with it air from the side amm which is connected to the valve being exhausted. It is essential to prevent the vapour entering the valve and a lipuid air trap is used to condense it. Liquid air, is intensely cold-low than mints 183 deg. C- -and it rapidly boils away at normal temperatures. In appearance it resenibles water and it is stored in

Figs. 22 and 23-(Lefi) The Goede and (risht) the Hyoae type of rofary oil pumb.
vacuun containers, which must have a narrow, unstoppered opening at the top. Liquid air traps are frenuently made from vacunn flasks, the vacumm between the two glass walls retarding temperature gain. Fig. 21 shows a licpuid air trap.

Rotary Oil Pump

The diffusion lype of pump does not lend itself to rotary antomatic machines. so that the domble-stage oil punt is now very extensively used. Fig. 22 shows the principle of the Gaede type. Inside a cast-iron box filled with oil there is a thick rotating metal dise on a spincle which is encentric relative to the inside of the box. The dise is driven by atr external electrle motor. Dianctrically across the disc are two spring-loaded seraping vanes, and at the top of the box are two ports, one connceted by glass tubing to the valve being punped, and the other, leading out to the open air, being fitted with a non-retum valve. As the disc rotates in the direction shown, air entering the inlet port is trapped by one of the scraping vancs and passed round the chamber, which it leaves at the outlet port. In the meantine the other vane has passed the inlet port and is pushing another lot of air round to the ontlet. The top of the dise runs in close contact with the top of the chamber and, in practice, two of these dises are fitted on a common shaft, one unit acting as a backing punp to the other.

Another type of rotary oil pump, called the Hyvac, is also very largely used : it is shown diagrammatically in lig. 23. This pump, which is also completely filled with oil, has a thick, rotating metal disc mounted eccentrically on a motor-driven shaft in the contre of the chamber. The inlet and outct ports are close together and between themb is a single seraping vane which passes through the outer casing and is held in position by a spring-loaded arm. As the eccentric dise rotates in the direction shown, it revolves around the interior of the chanber. Air drawn in from the valve being pumped, is pushed round until it escapes at the
outlet, the vane ensuring that the inlet and oullet ports ate isolated. This pump, allis ${ }_{2}$ is malde as a double mit, with two discs mounted yo deg. apart on a single connmon shaft. The outict port is closed by means of a leather valve or a spring-loaded ball valve. To prevent oil vapour working back to the valve being pumped a licpuid air trap is inserted in the glass circuit from the риир.

The pressure to which the majority of valves are evaluated is in the region of .oor millimetres of mercury. (Normal atmospheric pressure is 30 in . or 760 millimetres.)

Testing Vaccum

It is occasionally necessary to test the effectiveness of vacuum pumps and this is generally done with a Melseod gange, a sinple type of which is shown in Fig. 24. The gange is connceted by glass tubing to the valve being pumped and the exact pressure can be read on the calibrated scale when the compression of the air in the side tube is achieved by slowly faising the jar of nuercury connected to the rubber tube. Owing to the presence of mercury in the circuit it is necessary to condense the vapour by means of a liquid air trap.

A valve is crachated by having its stem joined to a length of glass tubing ecminected to the inlet of the rotary wil pump and starting the driving motor. The average time of pumping for the majority of valves is 25 to 30 minutes, but quite a number of other things nust also be done during that time. To obtain a lasting high vacumn in a glass bulb it is nceessary during punping to bake the valve to the highest temperature it will stand without the walls collapsing. This is done in a gas- or electrically-heated oven and the temperature reached is 100 dey. C. After 15 minutes' baking the oven is raised and at this stage a check on the clfectiveness of the punping is made ly the application to the outside of the valve of a lead from one side of a Tesla high-freguency coil, the other side being earthed. If the H.F. discharge produces a purple glow iuside the valve, there is an air leak somewhere and it must be found and cured before any further pumping takes place. If there is no purple glow the next process is the heating of the metal parts of the valve to a dull red colour by neans of celdy currents.

Eddy Current Heating

Eday currents are induced by bringing close to the side of the valve a small (3 in . to fin.) water-cooled coil of copper tubing, which is fed with a powerful bighfrequency current irom a giant oscillator. The current) Continued on page 459)

Useful Hooles

CLASSIFIED RADIO RECEIVER DIAGRAMS

By E. M. Squire. This work gives a diagrammatic survey of modern radio receivers, and provides the practical radio man, service engineer, dealer and amateur with a ready reference to a representative selection of the types of circuit likely to be met with in the majority of receivers. 10s. 6d, net.

ACCUMULATOR CHARGING, MAINTENANÇE AND REPAIR

By W. S. Ibbetson, B.Sc. A.M.I.E.E., etc. This book contains descriptive matter on both lead acid and the alkaline types, their construction, maintenance and repair. The text includes the application of Ohms Law to the connection and control of charging from D.C. supplies. Brief descriptions of the types of apparatus ayailable for conversion from A.C. are included in the text. Eighth Edition. 6s. net.

ELEMENTARY HANDBOOK FOR WIRELESS OPERATORS

By W. E. Crook. An up-to-date book presenting a general view of radio communication with an introduction to its technique. It gives all the information necessary for a complete understanding of the subject in a clear and easily understandable manner, with profuse diagrams. Second Edition. 4s. nei.

WIRELESS TERMS EXPLAINED

By "Declbel." An invaluable guide to the technical terms used in books and articles on wireless and in manufacturers' catalogues. It'explains the meaning of every term in the fuliest and clearest manner, with numerous illustrations, and gives additional information where this may prove useful. Second Edition. 3s. net.
 HENGHWA

When they

 have finished their vital war service
DAGENITE

AND

-the dependable BATTERIES will again be available to all

FOR RADIO, CARS, MOTOR CYCLES, COMMERCIAL VEHICLES, AIRCRAFT, Etc.

Sales Concessionaires: HOLSUN BATTERIES LTD. I37, Victoria St., London, S.W.I

Lxide

BATTERIES
FOR

RADIO

are playing their part in the great national effort． They are as indis－ pensable to the purposes of war as to those of peace

THE CHLORIDE ELECTRICAL STORAGE CO．LTD． Grosvenor Gardens House，Grosvenor Gardens，London，S．W．I

LET ME BE YOUR FATHER

You need help，and fatherly advice in difficult times like these．I am in the position to give that to you free．
We teach nearly all the Trades and Professions by post in all parts of the world．Distance makes no difference．
The most progressive and most successful Correspondence College in the world．
OUR FEES ARE STILL PRE－WAR
If you know what you want to study，write for prospectus．If you are undecided，write for my fatherly advice．It is free．

EARRING：POWER IS A SOUÑD INVESTMENT DO ANY OF THESE SUBJECTS INTEREST YOU？

Acconilancy Examinat－
Merlising and Sales
Managenment
Agrienliure
A．H．I．Fire E．Examina－ lions
A mblied Mechanies
Arma Certificates
Anetimneers and Estate
Agells
Viation Fingineening
Lviation Wincless
fitnkimp
HIne Phints
Hoilel：s
Book－kevping，
מok－kenning：Account－ bucy ind Modern Busi－ ness Hicihods
R．Sc．（VIHE゙．
Clenifg．Alrehlereture and
Crenk of Corks
Builiders＇（Quandidies
Cambriadre Senior Selool
Certifeate
Civil
Civil lingineceing
Civil Service
All Comuntrrejal Sulsiects
Commarrial Art
Common I＇relim．E．J．L．B．
Concrele tird Sthorcural
Enginterering
Duatehtsmanship．
bratuchos
Enginerring，All branches， Sblyjects and cxaminal－ lionss
Trmeral catheafion
（r．P．O．Jing．Dept．
Healing and Pendiating
Imdustrial Chemistry
msifute of Imousing
Inshivitce
Joarnitlism
Lancuagres
Mathematies
Matrienlation
If bou do not see your own requirements above，write to us on

Hetallurgy
Hining．All subjects
Minimg，Eleetricit Engin eering
Motor I⿰氵 yincering
Motor Tratie
Inmeipal and County Enrineer＇s
Navil Arehitecture
Vovel Writing
Pactern Making
police titimp
Police，Special Course
Jieeeplors，College uf
Mress Tool IVorli
Production Engincering Lumps and Liamping Machinery
Radio Conmmanication
Radio Service Uenglmering
R．A．N．Special Courses Road Making and Main－ tenance
Nalesmanship，T．S．M．A．
Sanltation
Sehool Attendance Officer
Gecrethrial Lexams．
gheet Metill Work
sbiplowiding
ghortband（Pitman＇s）
Shor－t－story Writing
Short－wave IRadio
Sbeakimg in Pullic
sirtetural linginceriar
SHrveving
Teachers of Handicialits
Celephony and Telegraphy Television
Transpmpt Inst．Cxams．
Vifwers，Giaugers，Insjec－ lors
Veimits and Measures Inspector
Welding
Wincless Telegraping and relens
Welebliony
any subject．Full particulars free．

COUPON－CUT THIS OUT

To DEPT．104，THE BENNETT COLLEGE
LTD．SHEFFI世LD．
Please send me（free of charge）
Particulars of．
（Cross out line
Your private advice which does not apply．）

Plíasi wRire iv Block WRITE IN BLOCK LETTERS

Name．
Address
0

Name．
may vary from 60 to 120 amperes according to the size of the walve being produced. The temperature of the metal at this stage reaches approximately 800 deg. C. The purpose of the baking of the glass bulb and the eddy current heating of the metal is to drive out gases-from the former water vapour and carbon dioxide and from the latter mainly hydrogen and carbon monoxide.
The filament or heater is now connected to a source of supply, generally at double the voltage at which the valve will eventually be rated. This drives off quantities of gas from the coating, some of which settles on the cooler anole and grid so that the next stage is a further application of the eddy current heating, this time to a bright cherry red-approximately 2,000 deg. C. The metal and the glass are now relatively free from gas and the interior of the bulb is roughly exhausted.

Gettering

For the final cleaning up considerable reliance- is placed on the use of "getters" which produce the welllinown silver or black localised patches on most valves. Various materials are used for gettering, but the principal
ones are magnesium fibbon (not much used nowadays) ; powdered magnesium and barium compressed into a tablet; barium powder inside a copper pellet; and a mixture of powdered barium, magnesium and aluminium in a copper pellet. The tablet and pellets are he ld in nickel getter cups or pans, covered with a thin dise of nickel or nickel gauze. The gettering material is volatiliscd by a third application of eddy current heat, the previous applications being accurately positioned to avoid flashing the getter. Magnesium produces a silver patch which remains permanent, but its cleaning-up properties are finished at the time of volatilising. Barium gives a black deposit of a spongy nature which will continue to absorb gases for some considerable time, but the size of the patch shrinks as this process goes on.

The filament or heater is now switched off and the stem of the valve can be sealed off. It is heated by means of a gas blow-pipe until it is molten, when the lower part is pulled down with tweezers until the walls collapse in, securely enclosing the vacuum. Fig. 25 shows an example.
(To be continued.)

A Simple Mixer-oscillator

A Useful Unit Which can be Constructed from Spare Parts. By L. C.

SHORTLY after building the mierophone which, was described in the February issue of Practical Hireless, I obtained a gramophone pick-up. Having these two useful instruments to hand, I decided to build a mixer-oscillator of my own design; from components which will be found among the spare parts in most experimenters' dens.

The mixer has four inputs, and is designed to take the following: speech, output from short-wave receiver, gramophone pick-up and morse. After mixing to obtain
will operate. No. 3 controls voltage to microphone, and if this is turned down, the microphone will not be on while using other channels. Finally, No. 4 is a rheostat which regulates filament voltage to valve in morse oscillator, and as if lias a dead space at the end of the winding, it also acts as a switch. No switch is required in oscillator H.T. lead, as when key is released this breaks the circuit. The wiring should provide no difficulty if cliagram is followed catefully.

The theoretical circuit of the mixer and L.F. oscillator. It allows three inputs to be mixed, and the oscillator section will prove most useful to those learning the morse codc.

the desired effect, they can be reproduced on broadcast receiver. With one exception, you can use three channels at once; the two-way switch selects pick-up or output from short-wave set, so only one of these circuits can be used at a time. The morse oscillator can be used alone for practice purposes, as two terminals are provided for monitoring 'phones.

The whole unit is mounted on a chassis $9 \frac{1}{2}$ in. x in. x r ${ }_{4}^{3}$ in. The three transformers are mounted on the top, volume controls I and 2 and two-way switch are underneath, but controls 3 and 4 are on panel. Most of the wiring is under the chassis, thus making the assembly neat and tidy. The potentiometer No. I controls the pick-up, short-wave input and morse oscillator while No. 2 controls microphone. The latter must fully be turned up before control No. I

LIST OF COMPONENTS

One microphone transformer. B.T.H. ETT300.
One thansformer for isolating set. 3-1.
One morse oscillator 3-1 L.F. transformer. Teisen Radiogrand.
One valve. Mullard P.M.IL:F.
One chassis type four-pin valve holder. Clix.
One $50,000 \Omega$ potentiometer.
One $10,000 \Omega$ potentiometer.
One potentiometer below $10,000 \Omega$.
One filament rheostat, $10-30 \Omega$.
One two-way toggle switch.
Twelve sockets or terminals.
One chassis, 9 inins, x 5ins, $\times 1$ ins.

Practical Hints

A Valve Converter Unit

WHEN experimenting witli battery W receivers of the straight class, I often wanted to replace a triode demodulator by a S.G. type valve. This, of course, meant disconnecting soldered joints, and fixing anode leads, decoupling condensers, eic., so I devised the following unit whereby a change can be made in a few seconds. With this idea no new joints are necessary, and the

THAT DODGE OF YOURS!

Every Reader of "PRACTICAL WIRE. LESS" must have originated some little Wodge which wonld interest other readers. Why not pass it on to us P We pay £1-10-0 for the best hint sobmitted, and for every other item published on this page we will pay half-a-guinea. Torn that ides of yours to account by sending it in to us addressed to the Editor, "PRACTICAL WLRELESS," George Newres, Itd.. Tower Hoose, Southampton Street, Strand, W.C.2. Pat your name and address on every item. Please original Mery notion sont in masi be DO NOT enclose Queries with your hinti.

SPECIAL NOTICE

All hints must be accompanied by the coupon cut from page iii of cover.

A simple valve converter unil.

Original circuit of the set is untonched; also, if the results are not consistent with the S.G. detcetor being made permanent, the triode can casily be replaced.

The two main articles needed in the construction of the unit are an old triode valve base, and a chassis mounting valve holder to take the f-pin -S.G. valve. The construction can be seen from the diagram.
The following connections are first made with short lengthis of wire from the old valve base to the holder:

The grid of the base to the grid of the holder; also both the positive L.T. filament legs are joined, as well as the negatives.

A short length of fex is taken from the S.G. pin of the holder, for connection to the H.T. battery. A decoupling condenser (.or mifl.) is also taken from this socket to the L,T.-leg for earthing purposes; the condenser being mounted on the outside of the base.

A novel device for sharpening fibre needles.

The braided screened anode lead is taken from the anode pin on the old base and through a hole cut in the side. The screening is carthed to the L.T.- pin, After the above connections have been nade the holder is supported on top of the old base by means of two metal brackets (as shown), and the S.G. valve is placed in the holder and the anode fead connected.

The unit is then ready for use, and a conversion is simply made as iollows:

The triode detector is removed from set (current off) and the unit placed in the holder. The only connection remaining to be made is the S.G. voltage, whicl is done simply by plugging the lead finto the H.T. battery at approx. 7o volts.-G. 'I. Edwards (Halifax).

Improved Aerial Clip

WhVE recently been cxperimenting with shortwave acrials, and as this required frequent readjustments of the lead-in tap, soldering was not a practical

Adanting a terminal as an acrial clip.
proposition. I therefore devised the clip, shown in the sketch, from a 'phone terminal of the usual type. A slot was cut in the side of the terminal and the clip was then slipped over the aerial and secured by the clasiping screw. I secured the lead-in to the clip by the fixing nut, but this could be soldered if desired. With this clip the lead-in may be removed or replaced in a iew seconds.-L. R. Hormins (Loughborough).

Fibre Needle Sharpener

IN view of the high price of fibre needle sharpeners, I devised the following sharpener. The sletch is self-explanatory, the whole thing being made out of an archinnedean drill. The drill is mounted, as shown, after fitting a rubber wheel from a child's toy, and gluing grade-O glasspaper on the base.

When the device is in operation the handle on the drill stock is moved sideways, and up and down the twisted stock at the same tine.

The necelle moves over the glasspaper whilst rotating, ensuring uniform sharpening. When complete, the sharpener costs under a quarter of the price of its commercial equivalent.-G. Maund (Minehead).

Statistic

NARLY nine out of every ten people in this country own wireless sets. The remainder, of course, merely open their winclows !

Pre-war Position of Radio

N pre-war days the annual turnover of the British radio industry was about $£ 25,000,000$. About 80 specialist firms were engaged, most of whom were producers of radio broadcasting receivers-the output of which was about $1,250,000$ sets a year-and about 80 per cent. of the industry was devoted to this class of work. The remaining zo per cent., mainly centred in a few firms, was devoted principally to the production of broadcasting transmitters, and communications equipment for narine use and for long-distance commercial radio services. In general, it can be said that nearly the whole of the effort was directed towards meeting civilian needs. There were some signs that the output of broadcasting receivers had approached, or liad even passed, its peak (practically every home-actually $8,800,000$-had a recciver and new models were therefore only required for replacements, or to provide additional refinements). A television service had been opened in London and there wete signs of growing developments in this field; but the application of this service was stil! in its infancy.
The ratio of skilled to unskilled labour in firms. producing radio broadcasting sets was of the order of 1 to 30 , and the firms producing communications equipment was about I to 10 . Radio production was almost entirely in the hands of private enterprise and Government control was confined to such matters as the allocation of wavelengths and the general rules governing the use of the ether.

Libel Case Result

PUBLISH the following without comment
The appeal of the Daily, Telcgraph against the judgment in the libel action brouglit by Ben Lyon and his wife, Bebe Danicls, who were awarded damages 65 and costs, came before the Appeal Court recently. It was heard by Lord Justices Scott, Goddard and MacKinnon. After hearing the arguments of counsel, their Lordships reserved judgment.

Serjeant Sullivan, for the appellants, stated that the libel appeared in a letter published in the Daily Telegraph, under the heading "Flabby Amusement," which criticised the radio broadcast "Hi-Gang," in which the plaintiffs take principal parts.

The letter read:
"Every Sunday evening at church time there is put on the air a costly production which is an insult to the British intelligence. The type of comment consists of a libellous exchange of abuse, one comedian alludes to the other as a 'louse,' and his contribution is to say: ' I'm laughing me blooming head off.'

The woman artist sings a good song, but for the most part she
indulges in vulgar wisecracks. We must be a nation of lunatics to permit such a waste of money for such a very sordid show."

The letter was signed: "A. Winslow, 'The Vicarage," Wallington Roarl, Winchester,'
Lord Justice Mac Kinnon: "In my papers I have four copies of what I presume is called script. Do you mean to tell me that the B.B.C. insults their public with that sort of stuff? I have no wirelcss set."
Serjeant Sullivan: "Your Lordship spealis on a privileged occasion."

When counsel began to refer to the script, Lord Justice Mackinnon remarked: "Gocl forbid that we should have to read much of it. I have glanced at it, and yout can use any epithet about it that you wish."

Serjeant Sullivan pointed out that at one stage Mr. Justice Hilbery said there was'a mis-statement of fact, because the letter described the entertainment as costly

Lord Justice Goddard: "That is not a libellous statement."
Mr. G. O. Slade, K.C., saic that the letter was anonymons, and privilege was claimed against its production.

Lord Justice Scott: "I suggest that if the comment is fair there is no clefamation:"

Mr. Slade remarked that thronghout the Dairy Telegraph had behaved with perfect propriety.

Lord Justice Scott: "You are bound to admit that the Daily Telegraph acted fairly in publishing this letter."

Serjeant Sullivan ended, submitting that there was not an atom of evidence of malice on the part of anybody, so that nobody went outside the limits of fair criticism so as to raise any presentiment for evidence of malice.

Radio Rejects for A.T.C. Training

S
QUADRON-LEADER A. F, BULGIN has issued an appeal for old radio apparatus not wanted for salvage for the use of members of the A.T.C. Parts rejected by manufacturers are particularly welcome, He not only welcomes gifts of apparatus that the trade may care to make, but offers of assistance from retailers and others. Gifts may be sent to Squadron-Leader Bulgin at By-Pass Road, Barking. Those offering personal assistance should, of course, have a good knowledge of rarlio.

More B.B.C. "REFANEMENT"

[Press Hem--There is no end 10 the stupidiby of the R.B.C. It has now decided that the Christian natme of $R-A \cdot L-P-I I$ is to be pronounced as R-A-I-F.]

The vulgar herd still calls it Ralph,
Pronounced as if it rhymes with Balfe.
The B.B.C. with culture naif,
And more "refaned," insists on Raif.
Oh! how they work this "culshaw" stunt,
Which gives the low-brow such affront
And makes him constantly deride
The way announcers put on side.
The low-hrow listener is no ass
And simply loa! hes this " bettah ciass "?
Pronunciation they invent,
Knowing that's how his money's spent
On "culshaw" which gives him affright,
Instead of programmes which delight.
This weird "New Euglish" of their own
Suggests they run a "Ladies' Home,"
Where goorl sound English is well minced.
But leaves some people unconvinced.
So R-A-L-P-H it was and R-A-L-P-H shall be,
Defying high-brow B.B.C.
"T"овсн,"

THE "Odd-Moment" Portable has been desigined to meet the present need for a small set to take to camp or on holiday. The following points were considered in the design: (x) The components must be fairly easy to obtain, or home-nade.
(2) Easy construction and flexible design, i.e., capable of a certain amount of alteration in small details withont greatly affecting results. (3) Compactness and balance. A set that fee's lopsided, as many portables do, is very unpleasant to carry about. (4) Expense. This sloould not greatly exceed f_{5} tos., including everything. Aiter

The

"
 Odd-mc

Constructional Details of a

By A. W. LI

experimenting with varions circuits, it was finally docided to use a straight T.R.F., and to cover only the waveband from 200 metres ($1,500 \mathrm{kcs}$.) to 550 metres (545 kes .) as being sufficient for the purposes for which the set was intended. The high tension current is supplied froin two 45 -volt units, and grid bias is provided for in the design, that for the output peintode from the high tension supply and that for the H.F.. pentote (2 volts) by the order in which the low tension current is supplied to the valve filaments. This low tension is normally supplied by three unit cells, which will suffice to rum the set for from seven to ten days on a light load, i.e., short intermittent periods of listening. Iwo terminals can be included on the side of the pow tension battery box, however, and when the sct is weguired to be used for longer periods the internal batteries can be removed and wires connected from the terininals to three large cells of the bell type, which should last for some two inonths' heavy use, or to two 2 -volt accumulators in series. Two small type accumulators

Fig. 2.-The construction and winding diagram of the frame cerial.

should give If to 28 days' heavy use. The low tension cousumption of the set is about.? amperes at 4 volts, and the high tension current should approximate $6 \frac{1}{2}$ to 7 milliampercs at 90 volts provided the low tension supply is connected the correct way round.

The Circuit
Referring to the circuit diagrann, Fig. I, it will be seen that the (R.F.) circuit consists of a frame acrial (LI) tuned by VCI across the grid/ cathode of VI. In the plate circuit of Vr is a coil (L2) tuned by VCz , and feeding V_{2}, a leaky grid detector of standard type. \mathbf{R}_{3} is the plate

ment" Portable

Useful and Compact Receiver.

ES, A.M.(Brit.)I.R.E.
oad of V_{2}, and the radio frequency component a this plate is fed through VC_{3} and L_{3} to obtain reaction, the amount of reaction being controlled by VC_{3}, while the low frequency component passes via C_{7} to an anto-transformer (tapped L.F. choke), by which it is stepped up and fed to the grid of V3. Grid bias for $\sqrt{ } 3$ is derived from the volts dropped across R_{5} in the hight tension minus lead, the minus side of R5 being connected to the lowe end of the auto-transformer. C8 is to prevent the development of audio irecuency voltages across $1 \mathrm{~K}_{5}$. The output from V_{3} is supplied to a sin. P.M. speaker, and the reproduction, while not as good as a laryer set, should be fully up to that of the average portable. The volume, on a strong signal, shonld be sufficient for a small mom without use of reaction when the batteries are in e'ond order.
©i) th regard to construction, many of the component parts can be varied somewhat in value without greatly affecting results, and i_{n} view of present difficulties,

Fig. 7.-Plan view of underside of chassis, showing wiring.
and also to enable constructors to use up any suitable components they may have in stock, the somewhat unusual course is being taken of stating against eqch component (see list) the tolerances, that is to say, ${ }^{\text {ET }}$ the limits within which that particular component might be varied, but do not coinclude that all can safely be varied to the extreme limits given. As far as possible adhere to the values first given, or to very approximate ones.
The frame aerial, $l^{1 i g}$. 2 , is wound basket fashion on a piece of stout cardboard round the edge of which slots have been cut, one at each corner, three in each longer side, two one end and one the other end (13 slots in all). Nincteen turns of cnamelled or cotton-covered wire, 26 gauge, should be wound in the slots, and the ends are taken to two bolts, centrally placed, which bolt the aerial to the back of the cabinet. On each bolt is fixed a soldering tag, to which is connceted one end of the frame aerial. These tags are used for connecting the frame to the set by means of ilexible wire, which should be long enough to allow the back of the cabinct and frame aerial to lie on the top of the set, out of the way, when changing batteries.
The coil in the plate circuit of VI (L2) and the reaction coil (L_{3}) are wound side by side on a piece of dry wood, $\frac{1}{2} i n$. dianeter by in. long (Fig. 3). To one end is screwed a romd piece of paxolin or waxed card-

Fig. 3.-This is how the coils L2 and L3 are constructed.
board, ${ }^{\text {tin }}$ in. diameter, in the edge of which four equally spaced holes have been drilled. Through each hole is passed a short piece of tinned copper wire, about 20 gauge; doubled over and the ends twisted together to form soldering tags. For the coils use D.C.C. or D.S.C. wire of approximately 36 gauge, winding on 100 turns for L2 and 40 for L3. It may here be mentioned that C_{4} serves the important purpose of "earthing" one end of the coil in the plate circuit of VI (L2). It mast be in good order, otherwise Lz will not tune properly, and the set will give practically no results.

Chassis

The next part to construct is the chassis; which consists of a three-ply panel, to which is fixed a small baseboard of the same material, supported on two side pieces, rim. deep, raising the baseboard that distance from the bottom of the set. The various dimensions can be gathered from Figs. 4 and 5. Cut all holes in pancl and baseboard before assembling. The panel brackets should be made from small pieces of sheet nuetal--stout tin would serve if nothing else is available-in fact, if the side supports are of good hard wood, the brackets might be rlispensed with altogether. A simple method of constructing the box (Fig. 6) for the three unit cells is as

Fig. 5. Details of parel:
follows: First make a shallow wooden box, the sides and ends of wood at least 3 in . thick, and the bottom of three-ply, the iuside measurements being $4^{1 / 10} \mathrm{in}$. long, $2 \frac{1}{2} \mathrm{in}$. wide, and rin in. dcep, and cut and fit in place the brass strips which connect the cells in series. The box completed, screw it to the baseboard in the correct position by two screws from underneath the chassis, into one end. Mark a plus sign on the strip as the plus end of the box (the end connected in the wiring to one side of the filaments of V_{1} and V_{2}, as it is important that the low tension batteries should aheays be inserted or comnected the right zar round. The negative low tension wire runs from the strip at the other end of the box to one point of the three-point switch. A threepoint switcl is essential, because, with a two-point switch it would not be possible entirely to isolate the high-tension batteries from the electrolytic condensers. Those who wish also to use external batteries will mount
two terminals for these on the battery box, connected to the appropriate brass strips. Do not connect more than three Leclanche cells (4.2 yolts) or two accumulators (4 volts) in series to the terminals.
(T_{0} be continued)

LIST OF COMPONENTS

Three Mullard Valves: V1 VP2B (equivalents, Ever Ready K50N) ; V2 PM1HL (equivalents, Fver Ready K 30 C , Cossor 210 HL , Marconi HL2, Mazda H 210); V3 PM22A, or can use KT2 Marconi or 220 H PT Cossor (if using either of these omit the 40 ohm resistor).
Six Resistances: R1 Anode V1 2.800 ohms ($\mathbf{2 , 0 0 0}$ to 5,000 ohrns) ; R2 Screen V1 20,000 ohms (15,000 to 30,000 ohms) ; R3 Anode V2 56,000 ohms $(35,000$ to 65,000 ohms): R4 Gridleak V2 2 megohms (110 3 megohms); RS Grid bias V3 400 ohms (390 to 410 ohms); R6 Filament bypass V3 40 ohms (40 ohms only).
Condensers: $\mathrm{C} 1, \mathrm{C} 2$, solid dielectric tuning condensers, .0005 mfd . only: C 3 , solid dielectric differential type reaction condenser,, 0003 mfd only; $\mathrm{C} 4, \mathrm{C} 9$, electrolytic condensers 4 mfd . (2 mfd . to 8 mfd .) (at least 150 volts working); C5, Screen V1, . 01 mfd . (.005 to .1 volts.) :C6, Grid V2,.0001 mid. (.00005 $50,0003 \mathrm{mfd}$.) C7, Grid V3 (Autofeed) 25 mid. (. 25 to 1 mfd .)) ; C8, Bypass, grid hias resistor, .01 mfd . (. 01 to .5 mfd .).
Other Components: Three knobs, one 3 -point on-of switch, two 5 .pin valveholders, one 7 -pin valveholder, screws, brass strip, bolts and nuts, wire, etc., one 5 in . Permanent Magnet speaker, one Franklin intervalve anto-transformer, three unit celis (Ever Ready U2, etc.). two 45 volt high tension units (Ever Ready Alldry No. 2, etc.).
Cabinet. chassis, frame aerial, and coils-home-made, see text.

Fig. 4.-Layout of components on back of panel, ponents on back of panel, Note position of valve halders and how the conlainer for the L.T. batteries is located on chassis.

Secondary Batteries-2

Testing Electrolyte \& Capacily : Quantity Efficiency and Plates

By G. A. T. BURDETT

(Continued from page 367, August isste

THE efficient maintenance and servicing of batteries, particularly those of the lead acid type, is essential for prolonging their useful life. Batteries should be charged at regular intervals, and where they are in nonnal use, the length of the period between each charge will depend upon their rate of discharge. All batteries should, however, be given a refresher charge at least once every three wecks, whether in use or not, to prevent sulphation of the plates.

Fig. 1.-Vent cap of the unspillable type.

Testing Electrolyte (Lead

 Acid Type)The two chief tests which should be periodically carried out are measuring the S.G. of the electrolyte and its heiglit above the plates of the cell. For this purpose the syringe type of hydrometer, as described last month, should be utilised. Some batteries incorporate in their manufacture a number of colonred balls immersed in the liquid and enclosed in a small agrid-fike compartment. These balls Hoat at different heights according to the specific gravity of the liquid, and are an inctication of the state of the cell. As the success of this method depends upon whether electrolyte of the correct S.G. has been used in the cell, its perfomance is not always reliable, and the hydrometer should in any case be used for checking. When receiving a battery for charge the S.G. of each cell should be measured, and sloould there be any appreciable variation obviously something is radically wrong with the cell where the deviation is shown. If a low reading, it is obvious that cither the cell is shorted or the electrolyte has been spillecterd subseruently topped up with distilled water. An abnormally higl readint will indicate that the cell has been topped up with aeid upon evaporation of the water. Inmediate action is advisable.

Frequent tests of the electiolyte of alkaline batteries are not necessary. About one every two months will give the rate of decrease of the S.G. The rate of decrease should be constant over a period of 12 months. Should the minimum figure of 1.600 be reached before the I2 nonths is expired, or should a sudden drop be shown; the electrolyte should be changed and the cell inspected for faults. In normal circunstances there should be no sudden drop, and certainly no rise in the S.G. of alkaline electrolyte. Cases sometimes occur, however, where inexperienced staff at a service station have upset the alkaline batteries during charge, spilled the electrolyte and have topped them up with distilled water or with strong electrolyte. Where possible a charging log of all batteries received for charge should be made, of which Table I is a typical example. From this the history of an accumulator may be compiled, and greatly assists in diagnosing subserpuent faults.

TABLE 1.
Typical Entry in Battery charging Log Book.

Measuring Level of Electrolyte

The electrolyte slould be periodically measured to ensure that it covers the plates, otherwise the plates will be damaged, and the efficioncy and capacity of the cell decreases. Not only is that part of the plate exposed to the air damaged, but extra strain is placed on the immersed portion of the plates, which cxpedites their buckling and disintegration. Normally the clectrolyte level should be $/ 1 / 1$ in. to in. above the top of the plates, although, with the larger M.T. type of battery, this level is sometimes increased provided it is clear of the ends of the vent stoppers. Great care must be taken of the height of the acid in batterics having unspillable vent caps, of which Fig. x is a typical example. Should the level of the electiolyte be above the slots, siphoning of electrolyte will take place and probably will cause some damage. The level of the electrolyte in glass and

Fig. 2.-A slass tube can be used-as shown here-lo check leve! of electrolyte.
celluloid ceils is easily checked, but with non-transparent containers it can only/ be carried out effectively by inserting in the vent of the cell a glass tube having a bore of approximately $\frac{1}{4} \mathrm{in}$., see Fig. 2(a). To-measure the height push this firmly on to the plates, place the thumb over the top and withdraw the tube," Fig. 2(b). The level of the electrolyte in the cell under test will correspond with the height of the electrolyte in the tube. The electrolyte will then return to the cell by releasing the thumb, and the next cell is tested in a similar manner. These glass tubes for testing the level of the electrolyte are contained in most hydrometer sets, or they may be purchased separately. They are flanged at the top to facilitate holding, while the lower end is graduated with one or more levels, enabling a very accurate measurement to be obtained.

Fig. 3.-Typical cell capacity fest circuit.

Practical Tests of Batteries

Capacity Test.-The initial capacity in amp-hours of a battery is usually stated on the label supplied by the manufacturers. The initial capacity of the cell depends upon the quality of the active material in the plates, and the number of plates. The theoretical capacity may be determined from the formula, but these figures will vary between different makes of battery. The capacity in amp-hours also varies according to the rate of clischarge. For instance, a battery discharged over a period of 20 hours, termed the 20 -hour rate, will give a higher effective capacity than one discharged in two hours, while the intermittent capacity of the battery is a very high one. It is the former, viz, the actual capacity, and not the intermittent one, with which we are concerned here, as the higher figure applies only when the battery is used on work of an intermittent nature demanding a low rate of clischarge, e.g., morse signalling, coil ignition, etc. This figure cannot be measured and is usually calculated from the actual capacity. The maker's figures apply only when the battery is in perfect condition and subsequent tests are necessary for deternuining the capacity at the time of the test. When carrying out this test, batteries should be charged and clischarged a number of times at constant current, the rates of which should be as specified by the manufacturers. Such tests are usually made at the ro-hour rate. For example, we will take a standard 90 amp-hour (actual) two-volt coil. At the ro-hour rate the discharge current will be 9 amps. The cell should first be fully charged until it gases freely. The voltage should be taken just prior to removal from charge. A suitable resistance, viz., load, should then be placed across the cells with an ammeter in series (see Fig. 3). Taking the average voltage of the cell at 2 volts, to obtain a discharge rate of 9 amps., applying Ohm's Law and ignoring the internal resistance of the battery; the resistance of the load will be 0.22 ohms. A variable resistance of 0.5 ohms to zero is most suitable, so that at the commence. ment of the test the resistance may be set to give a discharge of exactly 9 amps . The time the test is started should then be regarded and subsequent half-hourly readings taken (see Table II). An efficient cell should give a constant discharge of six hours (60 per cent. of
the time) at a ro-hour discharge rate. In the exampe (viz., Table II) the average clischarge throughout the test of 10 hours is 8.24 anıs. The capacity is therefore $8.24 \times 10=82.4 \mathrm{amp}$-hours. This procedure should be repeated a number of times, when the voltage of the cell at the commencement and the end of the charge should carefully be noted. The final calculation should be taken from the figures where the voltage was identical in the majority of cases; this to avoid errors from tests made through the cell not being fully charged.

Quantity Efficiency

This is eqnivalent to the ratio of the output to the input, and in practice this efficiency should be as high as 95 per cent. In the above example the quantity efficiency is
Amp-hours clischarged $=\frac{82.4}{90} \times \frac{100}{I}=91.5$ per cent.

Energy Efficiency Test.

This is taken in watt-hours, e.g., the ratio of the input in watts during the perion of charge and the output in watts during the period of discharge, which is equal to

$$
\frac{\text { Watt-hours discharged }}{\text { Watt-hours charged }} \times \frac{x 00}{I} \text {. }
$$

In practice the value is approximately 75 per cent. The reason for this lower value compared with the capacity figures is due to the waste of energy dining the gassing period, which may be in the order of thre hours. To carry out the test a discharged battery is first put on charge, the charge being maintained lintil the cell gases freely, and there are no further rises in its voltage and in the S.G. of the electrolyte. The times of the commencement and of the completion of the charge are noted. The ammeter must be placed in the charging circuit to ensure that the charging rate is constant for the duration of the charge. Frequent readings of the potential difference (P.D.) of the cell are taken and are recorded and tabulated as in the table. For the discharged part of the test, a load is connected to the battery, preferably consisting of a variable resistance (see Fig. 4), in order that a constant discharge current may be maintained, otherwise the average cuecent cannot be calculated as in the capacity test. For example, the 20 amp-hour (actual) 2 -volt cell is selected, and charged and discharged at the ro-honr rate, viz., the 2 amps. Before putting on charge it is assumed to be fully dischargec. After about 13 hours all plates should be well gassing and

TABLE 11.
Tabulated Readings for Capacity Test of 90 amp./hr. 2.0 Vols Cell at $\mathbf{1 0}$-hour Discharge Rate.

Time of Reading	Discharge Current (amps.)	Remarks
${ }_{12.30}^{12.0}$	9.0 9.0	Commencement of test
1.0	9.0	
1.30 2.0	9.0 9.0	
2.30	9.0	
3.0	9.0	
3.30 4.0	9.0	
4.30	9.0	
5.0 5.30	9.0	
6.0	9.0	
6.30	8.8	Tate of diecharge
7.0	8.5	decreasiug
7.30	8.3	" \quad
88.30	7.2	", ",
9.0	6.5	\cdots
9.30	5.0	"
10.0	4.5	" "
	$8.24=$	Average value of current

the P.D. and S. $C_{\text {. }}$ of the cell both constant. The amp-hours of charge is equivalent to $13 \times 2=26$ amphours. Tell hours for the theoretic charge plas three hours for gassing. From the figures in Table III we get energy effieiency in watt-hours=

Amp-hours of discharge \times Avernge volts on discharge
Amp-hours on charge \times Average volts on charge
$X 100=\frac{19}{26} \times \frac{2.09}{2.23} \times \frac{100}{I}=78$ per cent:

Testing Condition of Plates

For this purpose the cadminm test is applied. Both positive and regative plates may be tested, but for the ordinary type of cell having small vents the test is restricted to one positive and one negative plate, so that the true condition of the complete cell cannot be ascertained. The tester consists of a stick of cadmium (Fig. 5) connected to the negative and positive terminals of a moving-coil voltméter, when testing a cell during charge or discharge respectively. The cadmium stick is then placed in the electrolyte in the centre of the cell between the plates. The positive lead of the voltineter is connected alternately to the positive and negative terminals of the cell during a charge test. During the discharge test the negative lead from the voltmeter is diternately connected to the positive and the negative of the cell under test.

Resuits of Tests

(a) During charge. -When fully charged, the cadmiam to the positive of the cell

Fig. 5.-Cadmium test charse. Reverse conneclion of cadmium stick for test. on discharge.
should read 2.15 volts, while the cadmiun to the negative 0.25 volts. The voltage of the cell is obtained in this case by adding tie readings, i.e., $2.45+0.25=$ 2.70 volts. If the former reading is lower than 2.15 the positive plate is not fully charged, while if the latter reading is less than 0.25 volts or in the reversc airection the plate is not fully charged.
(b) During Discharge.-When fully discharged, the cadnuium to the negative plate should not give a deflection. on the voituneter of more than 0.2 volts, while for the cadmium to the positive of the cell, not less than I. 95 volts, or the plates are practically exhausted. Both readings should be on the same side of the zero reading of the voltmeter. The voltage of such a cell is obtained by subtracting the negative reading from the positive reading. For example, if the positive and negative readings are $I .95$ and 0.2 respectively, the cell voltage is $1.95-0.2=1.75$ volts.

> (Töbe conlinued)

Practical Pars

Using Old Coils
COILS designed over five years ago are seldoin suitable for use in modern receivers, except in the very sinuplest types of set. This is especially true of superlhet coils. The old type coil was designed for use in conjunction with a separate oscillator valve and cannot be relied upon to work satisfactorily with a pentagrid or triodè-liexode frequency changer. Even if the recciver is of the straight type having one or two H.F. stages, the high efficiency of modern H.F. pentode valves would cause instability. WitI this type of valve very effective screening of the H.F. components is essential if optimum results are to be olbtained. In the old type S.G. receivers the coils were often of the unscreened type, screening being effected by inserting a metal sheet between the aerial and H.F. coils. This method of screening is not always satisfactory with nodern H.F. valves, therefore, unless the screening is made really effective, new coils of modern design should be incorporated.

Extension Speakers

WE receive numerous inquiries from readers concerning the addition of extension speakers to mainsoperated receivers. Many of these quetists are under the impression that if the receiver is mains-operated the extension spealier sloould also be of the mains energised type. This is quite incorrect, however-a permanent magnet nodel is more suitable than the mains energised 1ype for extension purposes. If an energised type is used it must be separately energised from the mains, and if the mains are A.C., rectifying cquipment must be added, of course. When a permanent magnet model is used it is only necessary to ascertain that it bas the correct impedance for matching the receiver output valve. In some cases the extension sockets are joined to the speech coil on the set speaker, and therefore the extension speaker shoukd be of the low impedance type -approximately 2 obms.

$$
\text { * * * } \quad *
$$

Terminals

ALL terminal shanks should be inspected to see whether they are perfectly secure in their component befrue bolting it down, otherwise, when tightening up the termiual head there will be the possibility of the shank rotating, with the result that an imperfect connection will be fommed and, when a metal chassis is used, the shank being unscrewerl sufficiently to cause it to touch the chassis and producc a short-circuit to earth.

Remember that all terminals used for radio work have a right-hand thread, so sce that the wire loop forming the comection is placed under the head in the mamer which will cause the head, on being screwed down, to close the loop and not open it and tend to force the wire off the terminal collar.

Mains Transformer Design

An Interesting Paper Deaking with the Construction and Winding of Transformers

By P. G. HEATH

THE design of mains transformers of the type used for supplying power to conmercial forms of radio receivers can be simply outlined by reference to a somewhat standard or average one operating from an A.C. mains supply of 230 volts, at a frequency of $50 \mathrm{c} / \mathrm{s}$, with a H.T. secondary winding, for full-wave redification, 350 volts centre-tapped 350 volts and- a current load not excceding 80 milliamperes. For heating the rectifying filament of the valve the usual 5 -volt, 2 -ampere winding is included; and for the heaters of the operating valves a 6.3 -volt winding of 1.6 amperes is to be used.

Outpat or Load Extent

The initial consideration is the extent of the output laad, a factor influencing the transformer size, for if voltage and amperage are high, the use of heavy gauge wire and the number of winding turns add to overall dimensions. Watts, as the product of volts and amperes, must be first derived for all windings, then an allowance made for efficiency, which, though often quoted as 80 per cent. for this type of transformer, is, for this form of design, best placed at 75 per cent., necessitating a 25 per cent. compensation, a factor to be considered when selecting core sizes-and performance. The entire energy circulating (except that dissipated as resistauce loss in the primary) must be transformed from primary winding electrical energy to magnetic core energy, and then reconverted to secondary electrical energy, so that the amount of the core material utilised.must determine the amount of power the design can safely take. Hence under these conditions, and by the aid of the simplest of arithmetic, to connect the agencies, the wattage can be first derived from: $350 \mathrm{~V} \times 80 \mathrm{~mA}+5 \mathrm{~V} \times 2 \mathrm{~A}$ $+6.3 \mathrm{~V} \times I .6 \mathrm{~A}=28 \mathrm{~W}+10 \mathrm{~W}+10.1 \mathrm{~W}=48 . \mathrm{IW}+$ $25 \%(12.25 \mathrm{~W})=60.35 \mathrm{~W}$ or 60.5 watts for the purpose of computation.

Core Stampings

The output factor derived, it is to be regarded as a contributing one to size'and to the amount of wire used for the windings. Window-space area of the assembled laminations of suitable dimensions to contain the vindings is conveniently found from published tables, extracts from one being appended, that of standard Stalloy stampings, suitable for 50 -cycle electrical mains.

Output in watt: Wanted	$\begin{gathered} \text { Stamp- } \\ \text { ing } \\ \text { No. } \\ \text { (Stalloy) } \end{gathered}$	Length	Width (Core cross-see ins.)	Area	Stampings (No. Pairs)	Window Area (Sq.ins.)
10	100	0.5	$5 / 8$	0.3	35	0.54
20	100	. 8	$5 / 8$	0.5	57	0.54
25	05	0.8	13/16	0.6	57	1.00
50	4	13/16	15/16	1.0	67	2.00
75	4	1. 25	15/16	1.2	89	2.00
100	28	1.23	1.22	1.5	88	3.00

Stamping No. 4, suitable for a 75 -watt output transformer, is thus sclected, 89 pairs being required. Should the design wattage not be quoted in tables, use the next highest value listed.

Turns-per-volt

This factor, abbreviated to TPV, is dependent upon the magnetisation extent of the core material expressed in lines of force per square centimetre of cross-sectional core area. The flux density of Stalloy is fixed at ro,000 lines per $s q$. cn_{1}. of core or at 65,000 lines per sq. in.

From this, giving some precision to the statement, has been derived the following equation:
Mains Volts
$\frac{\text { Mains Volts }}{\text { Turns }}=$ Cross-sec. area of core in sq. in.

$$
\times \frac{10,000 \times f \text { (mains) }}{3.5 \times 10^{6}}
$$

The cross-sectional area is then got from the table and, in this instance, seen to be r.2in. (column 5), permitting the resolving to show as :
$\frac{\text { Mains Volts }}{\text { Turns }}=\frac{1.2 \times 10,000 \times 50}{3.5 \times 1,000,000}=\frac{1.2}{7.0}=5.83$ TPV or $5.9+\mathrm{I}$ $=6.9 \mathrm{TPV}$.
The " +1 " or extra TPV is added as a safety factorthis being customary. Progressing : the TPV must be now multiplied by the supply A.C. voltage in order to learn the number of primary turns required; the designcalling for 230 volts, it is obvious that $6.9 \times 230=1,587$ primary turns. The current drawn as $\mathrm{W} / \mathrm{E}=64.5 / 230$ $=0.28$ amp., a factor determining what gauge of wire to use for the winding.

Gauge Constants of Suitable Wire

Copper wire of I sq. in. sec, area is ratect to carry with safety 1,200 amperes of current, enabling this figure, as a constant, to be divided into the 0.28 amp . for the purpose of finding the cross-sectional area of a suitable gauge of wire to use. This resolves as $0.28 / \mathrm{r}, 200$ $=0.00023 \mathrm{sq}$. in. But again reference to a table is necessary, this time one of S.W.G. wires, excerpts -following :

[^0]| S：W，g． | 1ヵa． | Sec－area | $\begin{gathered} \text { Wge. } \\ \text { Per } \\ 1,000 \\ \text { yds. } \\ \text { in } 10 \mathrm{~s} . \end{gathered}$ | Resistunce inOlms | | Tures | $\begin{gathered} \text { Current } \\ 1.200 \\ \text { cin. in. } \\ \text { amps. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\begin{aligned} & \text { Per } \\ & 1,090 \\ & \text { ydst } \end{aligned}$ | Pertio． | | |
| 15. | $0.0+8$ | 10．016183 | 20.93 | 13． $3+7$ | 0.634 | | 25 |
| 20 | 0.1018 | $0.010025+5$ | 2.943 | 94， 35 | 32.106 | 50.6 | 5.32 |
| $3+$ | 0.1799 | 0．000060 | 0.77 | 361.01 | 471.0 | 38.4 | 0.08 |

The newest figures approaching the o．00023 sq．in． are seen in column 3 and opposite No． 26 S．IV．G．，a wange to be used without the risk of overtheating the winding．

Length and Weight of Wire

The lagth of wite rerpuired for the winding may be found from the expression：turn numbers multij）lied by mean circumierche，which for the No． 4 stanpings （in square section equalling circumference）is $2 \times$ $(1.25+0.935)=4.37 \mathrm{in}$ ．The maximmen circumference equals $2 \times(2.7+3)=11.4 \mathrm{in}$ ．So that $4.37+$ In． $4 \div 2=7.9$ inn．per thrin， 1,587 of which are wated．So that $1,587 \times 7.9$ gives the total length in inches which divited by 36 totals the length in yards， or $(1,587 \times 7.9) / 36=\log 3.20059+0.89763-1.5 .5630$
$\log 2.54 \mathrm{I} 89$ ，autilog $=3.8 y d \mathrm{l}$ ．of wire．Reference 10 the wire tables now permits the computing of the weight，this equaling（348 $\times 2.8+3$ ）／1，000 $=10 g$ $2.54158+0.40879=\log 0.01037=$ antilog 1.02411 B. of wire．

Resistance Considerations

If the output voltige is to meet requirements a small percentage of turns musi be added to the secondary wiudings so as to overcome the resistance of the relatively small gauge wire used，this to compensate for the voltage drop．Again referring to the wire table， the resistance， R ，can equal $(348 \times 94.35) / 1,000=\log$ $2.5+158+1.97474-3.0=\log 1.51632=$ antilog 32.9 ohms，and as the current is 0.28 amp ．the voltage drop value in the prinary winding can be shown as efualling $0.28 \times 32.9=9.2$ volts．

It is also necessary to understand that illowance has to be made to compensate for secondary winding resistance as well，the voltage drop being computed from the expression：Primary VD \times Secondary voltage \div Mains voltage．That is，the secondary VD is found and looth values added for multiplication by the TPV ratio in order to learn what number of turis must be added to the secoudary windings to compensate for the resistance present in the two windings．

Secondary Characteristics

As can be noted，the arithmetic for this type of calculation is quite simple and made more so by recourse to logarithmic tables．Therefore the designs of the secondary and other windings can be，if the foregoing is studied，revieved without comment ：

Number of H．T．secondary turns $=700 \mathrm{~V} \times 6.9$ 2,415 c．t． 2,415 plus compensating turns．
The gauge of wire required $=0.08 / 1,200=0.000066$ $\mathrm{sq} . \mathrm{in}$＝No． $3+\mathrm{S} . \mathrm{W} . \mathrm{G}$ ．

The length of wire $=(4,830 \times 7.9) / 36=\log$ ． $3.68395+0.89763-1.55630=\log 3.02528=$ antilog $=1$ ，o60yds．

The resistance $=(\mathbf{r}, 060 \times 36 \mathrm{r} .7) / \mathrm{r}, 000=\log$ $3.02528+2.55834-3=\log 2.58362=$ antilog \Rightarrow 383.36 ohms．

The voltage drop in the secondary winding $=383.36$ $\times 0.08=30.67$ volts；that of the primary winding $=(9.2 \times 700) / 230=\log 0.96379+2.84510-2.36173$ $=\log 1.44716=$ antilog $=28$ volts． $30.67 \mathrm{~V}+28 \mathrm{~V}$ $=58.67$ total voltage irop．

Compensating turns $=58.67 \times 6.9=405$ ．Therefore the total H．T．secondary turns $=4,830+405=5,235$ or $2,6 \pm 7$ c．t． 2,617 ．

The wire weight required is（ $1,060 \times 0.7686$ ）／ $1,000=$
$\log 3.02528+\overline{\mathrm{I}} .88570-3.0=\overline{\mathbf{I}} .91092=$ antilog $=$ 0.8 亿 468 lb ．

Rectifier Winding

Repreating the reasoming for the design of the rectifier heater winding：The mumber of fums $=5 \mathrm{~V} \times 6.9=$ 34.5 plus compensating turns．

The gatuge of wire required equals $2 / x, 200=0.0016$ $\mathrm{sq} . \mathrm{in} .=\lambda \% .18$ silg

The length of wire $=(34.5 \times 7.9) / 36=\log \mathrm{I} .53782$ $0.89763-1.55630=\log 0.87915=$ antiloy $=$ 7.57 rards．

The risistance $=17.57 \times 13.7 .47 / 1,000=0.87157$
 The voltage clrop is $0.128 \times 2=0.256$ volts，That of the primary is $(0.2 \times 5) / 230=46 / 230=0.2$ ； s 0 that the total voltare drop is $0.256+0.2=0.456$ ．
Compensating turns $=0 .+56 \times 6.9=3$ ．Therefore， the total of the lieater windiug tums is $34.5+3=37.5$ The wire weight required $=(7.57 \times 20.93) / x, 000=$ $\log 0.87915+1.32070-3=\log \overline{\mathrm{I}} .090 t=$ antilog $=$ － $155^{8}+5 \mathrm{lb}$ ．

The Winding for the Valve Heaters

Computing for the heater winding to apply to the operational valves may be similarly undertaken as ： The mmber of tums $=6.3 \times 6.9=43.5$ plus compensating turns．

The gatge of wire reguived $=1.6 / 1,200=0.0013$ $\mathrm{sq} . \mathrm{in}=\mathrm{No}$. IS S．W．G．

The leng1l．of wire $=(43.5 \times 7.9) / 36=109 \mathrm{I} .63849$千 $0.89763-1.55630=1020.97982=$ antilog $=$ 9.55 yairls．

The resistance $=(9.55 \times 13.747) / 1,000=0.97982$ $+1.13820-3.0=\log \overline{\mathrm{J}} .11802=$ antilog $=0.13$ obnes．

The vollage drop is $0.13 \times 1.6=0.2$ ．That of the primary $=(0.2 \times 6.3) / 2.30=58 / 230=0.25$ volts． Therefore， $0.2 \pm 0.25=0 .+5$ volts total VD．

To？al tuas $=0.4 .5 \times 6.3=0.3+43.5$.
Weight $=(9.55 \times 20.93) / 1,000=\log 6.97082+$ ${ }^{1} \cdot 32079-3.0=\log$ 1．3006：$=$ antilog $=0.19986 \mathrm{lb}$ ． of wire．

Turns Per Layer and Spacing

Considerations of spacing and turns per layer lend themselves to similar eisy computing，figures relative to the design in hand being vi＂tually self－explanatory．

The space for the primary winding equals the rlianeter of the No． $26 \mathrm{SIV.G}=0,0$ sin．，so that the number of turns per laver will be $2.06 / 0$ ．018 $=$ IIt per layer． The number of layers will be thus $1,587 / 114=13.8+$ 0.002 ，the 0.002 being an allowance for insulation on the wire，the total equalling 13.802 layers．
The space fow the H．T．scondazy equals the diameter of the No． 34 S． $\bar{y} . \mathrm{G}=0.0092 \mathrm{in}$ ．The number of tums per layer being $2.06 / 0.0092=223$ ．The number of layers equal $5,235 \div 22.3=\log 3.71892-2.34830=$ 1． $37062=$ antilog $=23.476$ which with the insulation allowance of 0.002 approximates 23.5 lavers．

The rectifier heater winding＇space $=18$ S．IV．G．diameter $=0.0$, Sin．The turns per layer $=2.06 / 0.0 \neq 8=42$ ， the mumber of layers being $37.5 / 42=0.89$ ，which， with the insulation allowance is near enough to I layer of wire．
The receiver valve heaters winding $\leftrightharpoons 18$ S．W．G． diameter $=0.048 \mathrm{in}$ ．The turns per layer $=2.06 / 0.048$ $=42$ ，the number of layers being $46.5 / 42=1.1$ layer， but as the diameter of the wire is larger two layers should be allowed for．

The number of turus per layer as given，leaves a space of 1 in．at either cud，and allowances are made for width of coil former；insulation between windings， and for outside cover insulation．
With tiansfomers of this type the primary is usually wound first on the coil former，over which is placed an electrostatic screen to prevent capacitative coupling of the secondary with the electrical mains and thus lessen modulation hum．
（By contesy of The Institute of Practical Radio Engineers．）
（To be continued）

Impressions on the Wax

Review of the Latest Gramophone Records

H.M.V.

TE second movement from Bach's Suite No. 3 in D Major is now generally known as "Air on the G String," but it is perhaps not so widely known that it was not Bach's idea that the air should be played on that string of a selo violin. The noted violinist and arranger Wilhelmy was responsible for the arrangement, which has become exceedingly popular, but Yehudi Menuhin, in his recording of "Air" (from Suite No. 3 in D Major), on H.M.V. DB6r56, ignores the latter arrangement and keeps to Bach's original melodic line.
On the other side of DB6i56 Menuhin records "Præludium" (from Violin Sonata No. 6 in C Major, Bach), thus providing us with some of the finest Bach music, enhanced by the unblemished technique and playing of Yehudi Menuhin.

On H.M.V. C3347 the Indianapolis Symphony Orchestra-conducted by Fabien Sevitzky-have recorded two outstanding performances of works by Glinka and Rimsky-Korsaliov, namely, "Overtur Kusslan and Ludmilla "and "Dubinushlia."

The "Spitfire Prelude" and the "Spitfire Fugue," in original form, formed part of the incidental musiccomposed by William Walton-for Leslie Howard's film "First of the Few." On H.M.V. C3359 the Halle Orchestra-conducted by the composer himself-has made a wonderful recording of these brilliantly orchestrated works.

Gwen Catley, the charming possessor of a superb soprano voice, has recorded-with the Hallé Orchestra under the baton of Warwick Braithwaite - " What Folly" (Follie Follie) and Recit. " "Tis Wondrous" (E Strano) and Aria. "Ah, Was It He ?" (Ah Fors E Lui), from "La Traviata."

Two fine compositions by Johann Strauss, "Indigo March, Op. 349," and "March from "The Gypsy Baron" have been recorded on H.M.V. B9335 by the Boston Promenade Orchestra, conducted by Arthur Fielder.

Noel Coward has selected two numbers "featured in the films " You Were Never Lovelier" and "Something to Shout About" for his recordings on H.M.V.B9337. The songs are " I'm Old Fashioned " and " You'd Be So Nice To Come Home To," and he sings them in his own inimitable" style.
Reginald Foort has made a fine record of "Dreaming " and "Vision of Salome"-both waltzes of the good old style. These are melodious tunes and Reg makes the most of them on his Giant Moller Organ. The record is H.M.V. BDio5o; make a note of it.

Joe Loss and his Orchestra give us two good tunes on H.M.V. BD5809. They are "I'm Thinking Tonight of My Blue Eyes" and "Silver Wings in the Moonlight " both slow foxtrots.

Glenn Miller and his Orchestra have selected "s At Last" and "That Old Black Magic"-foxtrots--for their recording on $H . M . V . B D 58 \mathrm{r}$, and a very fine recording they make.

Columbia

GNAZ LEUTGEB; the hornist of the Salzburg Orchestra, was a great friend of Mozart; between 1782 and 1786 Mozart wrote four horn concertos for him, one in D and three in E flat, and it is No. 4 in E Flat which Dennis Brain (Horn); with the Hallé Orchestra, has recorded for us on Columbia DX1123-24. This young artist of outstanding ability is the son of Aubrey Brain, the first horn in the B.B.C. Symphony Orchestra, and it is very evident that he has inherited his father's technique and skill.

The Albert Sandler Trio always provides good entertainment, and I have every confidence in recommending their latest recording, which is outstanding in many respects. The record is Columbia DB2xi6, and
the composition is "The Vagabond King-Selection," two parts, which introduces " Valse Huguette"; "Song of the Vagabonds" ; "Some Dạy" and "Only a Rose."
"Phyllis Has Such Charming Graces" and "Is She Not Passing Fair?" are the two' batlads recorded by David Lloyd, with Gerald Moore at the piano, on Columbia DB2II7. David Lloyd has a tenor voice of exceptional quality, and he makes a perfect recording of two pleasing ballads.

Victor Silvester and his Ballroom Orchestra give us "in strict dance tempo-" Just A While," waltz, and "A Fool With a Dream," slow foxtrot, on Coluhbia FB2948. Recommended for dancing enthusiasts. "Hawaiian Love," linked with "Mui Waltz"-the latter an original Hawaiian air-are the names of the two numbers which Felix Mendelssohn and his Hawaiian Serenaders have recorded on Columbia FB2942.

Turner Layton sings, in that pleasing easy manner, "The Old Curiosity Shop" and "I'd Like to Set You to Music," on Columbia F B2941.

Carroll Gibbons and the Savoy Hotel Orpheans have made a fine record out of "Better Not Roll Those Blue Blue Eyes," foxtrot, and "Silver Wings in the Moonlight," also a foxtrot. The record is Cohimbia FlB2945.

Parlophone

THE Organ, The Dance Band and Me are with us again on Pavlophone FIg84, on which they have recorded "Seven Days of Heaven""-a fine waltz-and, on the other side of the disc, "Four Buddies," which tempts one to foxtrot. Good tunes well presented.

Geraldo and his Orchestra put up a good performance on Parlophone Fig85 when they play "You'll Never Know," foxtrot, and "Don't Get Around Much Any More" a slow foxtrot.

For the super rhythm enthusiasts I recommend Parlophone R2879 On this record Harry Parry and his Radio Sextet have recorded "Body and Soul" and "St. Louis Blues."

LIBRARY OF STANDARD WORKS
 BY F.J. САмм

REFRESHER COURSE IN MATHEMATICS $8 / 6$, by post $9 /$-. SCREW TEREAD MARUAL $6 /$-, or $6^{\prime 6}$ by post.
sorew thread tables (Vest Pocke: Boak) $5 /$, by post $5 / 3$. MASTERING MORSE $1 /-$, by post $1 / 2$.
GEARS AND GEAR CUTTING 6/-, by post $8 / 6$.
WATCHES : ADJUSTMENT AND REPAIR 6/-, by post $6 / 8$. NEWNES' ENGINEERS' MANOAL 10/6, by post. 11/-. PRACTICAL MOTORISTS' ENCYCLOPEDIA 10/6, by post 11/-. MOTOR CAR PRINCIPLES AND PRACTICE 6/-. by post 6/6. PRACTICAL WIRELESS ENCYCLOP EDIA $10 / 6$, by post $11 /$. RADIO TRAINING MANUAL $6 /-$, by post $6 / 6$, EVERYMAN'S WIRELESS BOOK 6f-, by post $0 / 6$. Practical wireless circuits $8 /-$, by post 6/6. COLLS, CHOKES and TRANSFORMERS $6 /$, by post $6 / 6$. Practical wireless service manual, $8 / 6$, by post $9 /=$ WORKSHOP CALCULATIONS, TABLES \& FORMUL⿸厂 $6 /-$. by post 6/6. NEWNES' SHORT-WAVE MANUAL $6 / \mathrm{m}$, by post $6 / 6$.
WIRELESS TRANSMISSION $6 /$, by post $6 / 6$.
DICTIONARY OF METALS AND ALLOYS 7/6, by post $8 / \%$
THE SUPERHET MANUAL, 6/-, by post 6/6.
PRACLICAL MECHANICS HANDBOOK $12 / 6$, by post $18 /$-. RADIO ENGREERS' VEST POCKET BOOK $3 / 6_{3}$ by post $3 / 9$. WIRE AND WIRE GAUGES (Vest Pocket Book) 3/6, by post $3 / 9$. DIESEL VEHICLES : OPERATION, MAINTENANCE AND REPAIR $5 /-$, by post 5,6 .
NEWNES' ENGINEERS' POCKET BOOK \%/6, by post $8 /-$.
MATHEMATICAL TABLES \& FORMULIE (Vest Pocket Book) 3/6, by post $3 / 9$
All oblainable from or through Neusagents or from George Nezeres, Lld., Tower Houre, Sowhamptor Street, Strand, W.C.E.

CATHODE RAY OSCJLLOGRAPH TUBES－Continued								
Cat．No．	Final Anode Max．	$\begin{aligned} & \text { Negative } \\ & \text { Grid } \\ & \text { Volts } \\ & \text { Normal } \end{aligned}$	Sens：－tivityY Axis Y．AxisMM．／V．	Overall Dimensions			Fluorescence	$\begin{aligned} & \text { 3ase } \\ & \text { Typpe } \end{aligned}$
				Bulb Dia．mm	$\begin{aligned} & \text { Tube } \\ & \text { Longth } \\ & \text { mm. } \end{aligned}$	Tube Neck Dia．mm		
3237	1.500	V／10	$300 / \mathrm{V}$	114	$34 \overline{5}$	41	Blue or Alterglow	a．
3232	1.500	V／10	375／V	135	409	41	Blue	b．
${ }^{3236}$	1，500	V／10	375／V	135	409	$4)$.	Blue or Afterglow	b．
3226	2，000	V＇80	390／V	114	375	41	Green	d．
3209	2，000	V／80	400／V	114	375	41	Green	d．
3222	10，000	V＇／360	750／V	135	490	52	－Blue	g．
3239	5，000	V／360	650／V	160	455	60	Blue	e．
3279	5，000	V／360	600／V	228	525	70	Blue or Afterglow	£．
3259	5.000	V／360	$650 / \mathrm{V}$	228	525	70	Blue or Afterglow	f．

TELEVISION TUBES												
Cat．No．	$\begin{aligned} & \text { Size } \\ & \text { Ins. } \end{aligned}$	Class	Focus	Deflection		Type		Heater		$\begin{aligned} & \text { Base } \\ & \text { 「Уype } \end{aligned}$		
						Volts	Amps．					
3241	$6{ }^{2}$	$\begin{aligned} & \text { High } \\ & \text { Vacuum } \end{aligned}$	Electrostatic	Electrostatic				Non Travezium		4.0	1.0	e．
3241	11	$\begin{aligned} & \text { High } \\ & \text { Vacuum } \end{aligned}$	Electrostatic	Electrostatic		Standard		${ }^{4.0}$	1.0	1.		
3265	15	$\underset{\text { Vacuum }}{\mathrm{High}}$	Magnetic	Magnetic		－Long		$4.0 \quad 1.0$		c．		
	FinalAnodeVoitsMax．	Negative volts Normal	Sensi－ y MM．／V．	Overall Dimensions				Fluorescence		BaseType		
Cat．No．				Buib Tube Dia． Leng mm． mm.			Tube Neck Dia．mm					
3244	5，000	V／360	980／V	160	507		60	White		e．		
3241	5，000	V／360	600／V	295	580		64	White，		f．		
＊Scanning Angle tan $=0.76$ ．								White		c．		

$\begin{aligned} & \bar{Z} \\ & \frac{\bar{Z}}{1} \\ & \underset{T}{2} \end{aligned}$	0 0 097 007 06		प⿹勹巳 0. 0. 0. 9.8 9.6 9.	5 0 0 0 0	Monvat	रT702．！pur anzM JIbH ดАв 9.18 M if n ases In	${ }^{009 L Z} \cdot \pi ' S$ $\cdot \mathrm{n}$＇I sp ก＇g got
48	$\stackrel{94}{90}$	${ }_{0}^{096}$	${ }_{8}^{8}$		uyd－s	алем Јfer	n＇s 05
99	0z\％	093	$\frac{8}{8}$	98．		ग¢dymiv	＊itye
28	48	092	8	ci		araginw	${ }_{-1 \text { WZS }}$
48	09	UGZ	8	${ }^{96}$	X ${ }^{\text {utd－9 }}$	Odipmon	
$\stackrel{1}{64}$	99	Og\％	$\stackrel{4}{8}$	89	$\chi^{\text {xn uta－s }}$	oresimint	－5ciza
I2	09%	cos	08	\％			＋58＜289
OS 0 S	${ }_{0}^{093}$	${ }^{100}$	$0^{\circ} \mathrm{E}$	9	［ T 700	asem lim	DFAS
－ 12	08 L	${ }_{\text {OSg }}$	$0 \cdot 8$	$\stackrel{9}{9}$			
${ }_{6}$	OzI	${ }^{009}$	9%	b	x）uta－b		－ 21.108
${ }_{1}^{\text {I }}$	${ }_{0}^{08 \mathrm{I}}$	${ }^{098}$	${ }_{9}^{9} \%$	\％	－ $\begin{gathered}\text { uiclo } \\ \text { uidit } \\ \text { und }\end{gathered}$	өrem ying	$\cdots{ }^{\circ} \mathrm{C}$
T．	$\begin{aligned} & 061 \\ & 0.21 \\ & 09 \end{aligned}$	－ 0 Oge	9		－uldid		
${ }_{92}$	$\begin{aligned} & 09 \\ & 02 \end{aligned}$	$\begin{aligned} & 092 \\ & 092 \\ & 092 \end{aligned}$	${ }^{0} \mathrm{C}$	$\stackrel{\square}{2}$	$\underset{\text { uid }}{\text { und }}$	จabM ing	A＇t 909
							－ 1 ¢z
$\stackrel{\text { ON }}{\text { ¢орut }}$	－Vu firmo	apoutr dad S 2 IO A	sfuy	S？10 ${ }^{\text {a }}$			
aseg	umulxew	munumen	тวueth	．2атеә	${ }^{\text {aspg }}$		${ }_{\text {adx }}$
			S4	ILILD	गप		

32

The "Fluxite Quins" at Work "Now, don't lark about !" hollered EE. " This aerial's mixed up with the tree:

There'll be work for FLUXITE
When this wire is fixed right, But for goodness' sake-leggo of me $/$ '"

4.

See that FLUXITE is always by yoy-in the house--garage - workshop - wherever speedy soldering is needed. Used for over 30 years in government works and by the leading engineers and manufacturers. Of all ironmongersmintins, $8 \mathrm{~d} ., 1 / 4$ and $2 / 8$.

Ask to see the FLUXITE SMALL-SPACE SOLDER-
ING SET-compact but sub-
stantial-complete with full instructions, $7 / 6$.

To CYCLISTS: Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings and SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-DUL IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price Il6, or filled, 216.
ALL MECHANICS WIIL WAVE

IT SIMPLIFIES ALL SOLDERING
Write for Book on the ART OF "SOFT" SOLDERING ond for Leaflets on CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE, also on "WIPED JOINTS." Price Id. each.

FLUXITE LTD. (DEPT. W.P.) BERMONDSEY ST., S.E.I.

N countless instances quite intricate pieces of apparatus are wholly dependent on the proved reputation and reliability of their component parts.

All products from the House of Bulgin are preeminent for superior design and workmanship, and every article bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

We ask the kind indulgence of the public on delivery until peaceful conditions return.

ALWAYS DEPEND ON

A. F. BULGIN \& CO., LTD., BYE-PASS RD., BARKING, ESSEX TEL. RIPPLEWAY 3474 (4 lines)

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his diploma, he will KNOW radio. We are not content merely. to teach the principles of radio, we want to show our .students how to apply that training in practical, every-day, radio service work. We train them to be successful!

INTERTATIONAL COREESPONOENCE SCHOGLS
Dept. 94, International Buildings,
Kingsway, London, w.c.2.
Please explain fully about your instruction in the subject marked X.

Complete Radio Engineering
Radio Service Engineers
Elementary Radio Television
If you wish to pass a Radio examination, indicate it below.
British Institute of Radio Engineers
P.M.G. Certificate for Wireless Operators

Proyisional Certificate in Radio Telephony and Telegraphy for Aircraft
City and Guilds Telecommunications Wireless Operator. R.A.F. Wireless Mechanic, R.A.F. Special terms for members of H,M. Forces.

This and numerous other queries are answered in reference sheet 2 of "Technical Notes on Soldering," published by the manufacturers of Ersin Multicore-the A.I.D. approved iolder wire with three cores of noncorrosive Ersin activated flux.
Firms engaged on Government contraces are invited to write for a copy of this reference sheet and samples of Ersin Multicore Solder Wire.

Ensicy Mutmucons

The Solder Wire with 3 cores of non-corrosive Ersin Flux

YAXLEY TYPE WAVECHANGE SWITCHES

approx. $6 \underline{2} \mathrm{in}$, spindle 2 m . lost ete. ard each.

6/6
Oak Switches, 2tin. spinale. comp. with knely, t-way, 2 -hank with connecting blow

419

Post, etc., (ful. extra.
$3 / 9$

SPEAKERS

CELESTION 8ini 1P.M. Perllote 25/6 Post, etc., on a a have, 2/- extra.

VOLUME CONTROLS

Volume Controls, brand dew, from famons manulicturer Spinille. 1 meyolura Postage 3 d extras

MORSE KEYS

Brand new, well-mate Morse Keve on back hakelite base. Adjusting screws and temminals, ideat for trainees. Postage 6d. extra. Price
$4 \%=$

MAKE AND BREAK UNITS

Dx fanous manufacturer brand newelectro-magnet ic make and break relays to operate on $1 \frac{1}{2}$ volts at 15 min .a. Postage 4 dt . $5 / 6$ extra. Price $5 / 0$

MILLIAMMETERS

Ferrimiti moving coil milliammeters. $0-5$ milliamps. Panel mounting size $2 / 310 \times 2 \% / 16$. A line instrument, brand new, and packed in original cartons

62/6

MORSE BUZZERS

wine quality brand new hlack bakelite Morse buzzers. fleal for use with key above.
Postage " 4 d . extra.
Price . . 3/9

$$
\begin{aligned}
& \text { Bquioy centrain } \\
& \text { RABDO siotise }
\end{aligned}
$$

23, LISLE STREET, GER, 2969 LONDON, W.C. 2

Radio Examination Papers-23

Colour Codes, Units of Sound Measurement, Cross Modulation, Sfatic, Variation in Range of S.W. Transmissions and the Choice of Line-cord Resistance. Form the Subjects of this Month's Questions, to which Answers are Given by THE EXPERIMENTERS

1. Colour-coding

THE object of colout-coding is to simplify the indication and recognition of component values and connections. Although used with a large number of components, the sustem is of chief value in connection with resistors and condensers whose physical dimensions in many cases make other means of marking virtuallyiınpossible. Colourcoding was first introduced by the Radio Manufacturers' Association, and is now universally employed.

Colour-code charts are available, but with a little practise the code can easily be memorised if its general form is understoorl. The molerlying principle is that colours are used to indicate the cligits from a to 9 , and also a number of noughts from none to nime. The colours used are as follow:

Black = zero.
Brown \Rightarrow I or a single nought (o).
Red 2 or two noughts (oo).
Orange $=3$ or three noughts (ooo).
Yellow $=4$ or four noughts (0,000).
Green $=5$ or five noughts (00,000).
Blue $=6$ or six noughts (000,000).
Violet $=7$ or seven noughts ($0,000,000$).
Grey $=8$ or eight noughts ($00,000,000$).
White $=9$ or nine noughts ($000,000,000$).
In the case of resistors, the three colours used are those of the body, tip and spot respectively (see Fig. x). The first two colours represent digits, while the third indicates the number of noughts following the digits The answer is in ohms. Thus, the value of the resistance inentioned in the question can be determined in the following manner:

$$
\begin{aligned}
& \text { Brown body }=1 \\
& \text { Black tip }=0 \\
& \text { Blue spot }=\underline{000,000}
\end{aligned}
$$

Fig. 1.-The method of colour-coding as apolied to fixed resistors, The colours indicated ânote a wa're of 10 merehms,

With condensers, the three colours are all in the form of spots, as shown in Fig. 2. The value is shown in muntd. (millionths of a microfarad). . Taking as example the condenser referred to in the question, we can obtain the value as follows:

QUESTIONS

1. Briefly explain the R,M.A. colow-code system as applied to fixed resistors and fixed condensers. What toold be the value of (a) a resistor having a browell body, black tip and blue spot, and (b) a condenser with red, green and orange spots, in that order?
2. Fxplain simply the difference in meaning between the decibel and the phon.
3. What do you muderstand by the term "cross" modulation," and how can this form of interference be prevented?
+. How can the effect of atmospherics be distinguished from so-called man-made static?
4. If you atere using a receiver cowering the wavelength range of 13 to 50 metres, at zehat times of the day, or in ishut other conditions, zoould you expect to obfann best reception on the different wavelength bands?
5. Calculate the resistance requird in a line cord for use with a threc-zalve-plus-rectifier A.C./D.C. peceiver fitted with . 4 merican . 15 A valves, the heaters of tehich are rated at 12, 12, 50 and 35 zolts respectively. It may be assumed that the rectifier requires an input of 120 volts at $60 \mathrm{~mL} . \mathrm{A}$, and that the supply voltage is 230 .

$$
\begin{aligned}
& \text { Red spot }=2 \\
& \text { Creen spot }=5 \\
& \text { Orange spot }=\frac{000}{25,000} \mathrm{mmfd} ., \\
& \frac{0 r}{0.025} \mathrm{mfd} .
\end{aligned}
$$

2. Sound Level and Amplifier Ontput
 Although both names-

 decibel and phon-are often used to indicate the volume level of various sounds, their precise meanings are by no means iclentical. Whereas a phon is a unit of loudness, the clecibel is not a unit at all except in so far as it is used to indicate the ratio between two power levels.The loudness of a sound is determined loy the effect of that sound on the human ear, at an average audio frequency. Thus, a sound which is just verging on audibility has a loudness of zero phons; on the other hand, the loudness of the noise heard by a mechanic
standing close to a rumning aeroplane engine is about I20 phons. The sound level in phons of any sound is measured in terms of the pressure (in dynes per sq. cm.) produced on a surface such as a microploone diapliragm or the drum of the ear. The zero reference level is taken as .0002 dyne/sq.cm., or 10-16 waits/sq.cm. In determining volums level in phons, comparison is made with a a,ooo cycle note.

As previously stated, the decibel (one-tenth of a bel) is used to slow the ratio between two power levels such as, for example, the output and input of an amplifier. The human car is by no means as sensitive to clanges in volume level, if volume be interpreted in terms of power, as one may expect. For example, if the output of an amplifier were reduced from 3 watts to 2 watts by means of a switch, the difference would scarcely be noticeable. Similarly, there would hardly be any perceptible difference if the output were increased from

Fis: 2--Colour-coding on a small fixed condenser. Its value is .0002 mfd .

3 to $4 \frac{2}{2}$ watts. But if àn output of $\frac{1}{3}$ watt were increased to watt the change would be readily detected.

It has been found that if a logarithmic scatle of notation is employed, the increase or decrease in the number of decibels is proportional to the increase or decrease in volume as cletected by the ear. For example, an increase of 4 decibels has the same effect on the ear whether the iucrease represents a change from, say, 3 to . 75 watts, or from 3 to 7.5 watts.

The number of decibels, up or down, can be found from the formula:

$$
\text { Decibels }=10 \log 10^{\circ} \frac{\mathrm{V}_{2}}{\mathrm{~W}_{1}}
$$

where W_{2} is the second power output and W_{1} is the first. Thus, if the output of an amplifier were increased from 2104 watts, we could say that the output had been raised by 3 db . If it-were reduced from 8 to 4 watts, the output would be 3 dls. "down." Similarly, if an amplifier gave an output of 5 . watts when the input was .o5 watt, the rise would be 20 clb ., or the output would be 20 db . "up" on the input.

3. Cross-modulation

Cross-modulation is a form of interference experienced when the modulation of a powerful nearby transmitter is superimposed on the carrier wave of a weaker signal on a nearby frequency to which the receiver is tuned. It is due to the fact that the powerful signals "spread " to a certain extent and, being of comparatively high voltäge, cause the first valve of the receiver to detect or rectify.

This form of interference can occur in a recciver which is highly selective, in that there are several tuncd circuits. But if there is only one of those tumed circuits between the aerial and the first valve there may
ascertained that it does not arise within the receiver itself, due to a bad contact' or faulty romponent. This can normally be checked by the simple process of disconnecting the aerial; if the noise continues at the same strength as before, a search for the cause sloould be made within the set.

5. Short-wave Radiation

The radiation of short-ware signals is a complex subject, and the range of radiation is governed by mimerous factors. Anong these are the time of year, degree of ionisation of the upper reflecting lavers in the atmosphere (this, in turn, is largely dependent upon conditious of daylight or darkness), the frequency in use, and various periodic changes extending over a number of years and connected with astronomical and meteorological plenomena.

All this is getting rather away from the main point of the givery, which is concerned simply with the guestion of frequency and hour of day. Since we have to formulate a gencral answer, it can be stated that wavelengths toward the bottom of the range mentioned can be received over the greeatest distances when daylight prevails at both the transmitting and receiving stations. During hours of darkness wavelengths toward the upper end of the range are more reliable for long-distance communication. Between the two, reliability for long-distance working can be graduated from the lower to the upper extreme, between broad daylight and darkness.

The reason for the variations referred to is that these short waves are reflected from ionised layers in the upper atmosphere; the direct transmission by ground. wave is practically negligible. We have, therefore, a "skipdistance "between the radiation leaving the transmitting

Fig. 3.-This simplified diagram shows the method of wiring the heaters and line-cord resistance in a lupical three-value-plus: rectifier receiver of the "midget" $A C / D C$ type.
be a fairly ligh input from the local fransmitter when the set is tuned to a frequency as much as $50 \mathrm{kc} / \mathrm{s}$ separated from it. Because of the process of rectification, the interference is passed on, without filtration, to subsequent tuning circuits and valve stages.

The remedy consists either of applying variable-mu volume control (manual or A.V.C.) to the first valve, or of inserting a band-pass filter between the aerial and the first valve stage. The former will prevent the valve from acting as a detector, and the tatter will obviate the transfer of the interfering signal.

4. Static

Both forms of static referred to in the questionatmospheric and man-made or artificial-result in interference. It is impossible to eliminate the former, lut the latter can be prevented or cured if its source is determined.

In gencral, both forms of interference are noticed in the form of "crackling" or "rustling" noises as a background to the sound reproduction. But whereas atmospherics are generally heard at varying intervals of time, man-made static normally occurs at more or less regular intervals. Atmospheric, noises generally start at fairly low intensity, build up to a crescendo and then stop, the whole sequence occupving two or three seconds. The single disturbance is similar, in some respects, to the breaking of a wave on the shore.

Man-made static, on the other hand, is observed cither as a constant " crackling" noise, as a low pitched unnusical noise, or as a series of crackles, depending upon whether it is due to electrical sparking at the brushes of a motor, for instance, an electric discharge through a neon tube, on the making and breaking of contacts in in electrical circuit. Before searching caternally for the cause of trouble it should be
dimension of the skip-distance is dependent upon the angle at which the radiation leares the transmitting aerial, and the height of the particular ionised layer which reflects it.

6. Line-cord Resistance

The valve heaters are witcd in series, and therefore the voltage required to supply them is equal to the sum of the voltage ratings of the individual values. This can be seen to be rog volts. Since the inains supply voltage is 230, we thereforc have to "drop" 121 volts. In the case of the A.C. supply to the rectifier valve we require 120 volts, which means that only 1 ro volts have to be "clropped."

To see cxactly what factors have to be considered it will be best to look at the simple diageam shown in Fig. 3. It will be seen from this that one lead is of plain copper-wite flex, while the other is the usual spiral of resistance wire on an asiosstos-cord core. The supply voltage to the set at the remote end of the line cord is ron, so to obtain our 120 volts for the rectifier, a tapping must be taken.
A slight complication arises now. Whereas the total curtent to be passed by the resistance as far as the tapping point is 21 amp. (.15 I.T. phis . 06 H.T.), whilst only. . 15 amps is passed by the remainder. Our little probleni therefore resolves itself into two parts : to find the resistance of the portion of the line cord marked A in Fig. 3; and to find the resistance of the part marked \bar{B}. 'The voltage to be dropped by A is rro, and since the current passed is 21 amp. the resistance required will be 1 to divided by 21 , or approximately 524 ohms. The voltage to be lost across B is II, and the current passed is $.15^{\circ} \mathrm{amp}$. ; the resistance must, therefore, be If divided by. I5, or just over 73 ohms.

Elementary Electricity and Radio-9

The "Straight" Receiver Analysed

By J. J. WILLIAMSON,
(Continued from page 417, September issue.)

A"STRAIGHT" receiver is one wherein all R.F. (radio frequency) amplification is performed at signal frequency; thus superheterodyne receivers, which have R.F. amplification at I.F. (intermediate frequency), are not included.

Tuning

Tuning circuits enable one frequency or a band of frequencies to be selected whilst rejecting unwanted signals; this property is known as "selectivity."

An ordinary radio telephonic signal is composed of

Fig. 39.-Resistance-capacity coupling.
several frequencies equally distributed above and below the carrier frequency, i.e., upper and lower sidebands.

For the reception of continuous waves (C.W.) as used for morse signals, the tuned circuit may be made far more selective without causing a loss of intelligibility.

Fig. 38 gives typical response ,curves for a " bandpass" (full line) and a "peaked " tuned circuit.

As we must be able to "tune" the circuit, i.e., adjust it to different frequencies, its resonant frequency must be capable of variation; this is achieved by making either the inductance or capacity variable. Receivers usually employ a variable condenser and transmitters a variable inductance, with which to adjust the " tuning."

Radio-frequency Amplification

Certain points have to be taken into account when considering R.F. amplification.

Using a resistance as an anole lnarl is undesirable, owing to the "shunting" or "short-circuiting" effect of the resistor's self-capacity at high frequencies, and the consequent falling-oft of the R.F. voltage developed
across the load. A tuned circuit is normally used and greater selectivity thereby attained.

The amount of R.F, amplification possibie is limited by certain factors. As the number of R.F. amplifiers is increased, the prevention of feed-back and consequent oscillation lecomes more difficult, because of the larger R.F. potentials devcloped and the additional stray capacities caused by the components involved.

Couplings

The feeding of the voltages (alternating) developed across the anode load to the grid and filament of the next valve is known as coupling. A coupling should pass all frequencies within the working range of the particular stage to which it is attached evenly, i.e., its opposition shouldremain constant over a given frequency range.

Resistance-capacity Coupling (R.C.C.)

A pure resistance has a constant opposition to all irequencies, and would therefore fulfil the given requirements. Unfortunately, it is impossible to make a pure resistance, its self-capacity being unavoidable. As stated in the paragraph dealing with R.F. amplifiers, the "shmuting" effect of the resistor's self-capacity restricts the use of R.C. coupling in R.F. amplifiers, but when L.F. amplification is to be obtainecl, this "shunting" is less serious. R.C. coupling possesses the disadvantage that a resistance placed in the anode

Fig. 40.-A choke-cabacity system.

Fig. 41.-Tuned-unode-capacity circuit.
circuit will cause a reduction of potential upon the anode of the valve. Fig. 39.

Notice that C in Fig. 39 is necessary to prevent the application of the supply voltage (H.T.) to grid and filament of V_{2}, but it is capable of passing on the alternating P.D's.

The "grid-leak" R_{2} permits the charge that accumnt lates in C to leak away, otherwise the valve's operation would become intermittent. This is one source of "motor-boating" and other noises heard when the grid leak or bias circuit is broken.

Choke-capacity Coupling (C.C.C.)

The remarks applied to R.C.C. with respect. to self-capacity effects are also true for C.C. coupling. Also, the opposition of a choke increases with frequency, thus P.D's (R.F.) dereloped across the choke would increase with frequency until the choke's self-capacity became predominant, when they would decrease. Fig. 40.

The choke does not cause such a reduction in anode volt ge as in the case of R.C.C., as it can be made to have a high reactance with a low D.C. resistance. An L.F. choke (iron-cored) is usually used in output stages where the anode voltage must be kept as high as-possible.
Tuned-anode-capacity Coupling (T.A.-C.C.)
T.A.-C.C. is mainly used in R.F. anplifiers when added selectivity is desired. Fig. 4i.

Fig. 42,-A simnle $L . F$, transformer coupling.
Transformer Coupling
Added magnification can be obtained by the use of a step-up transformer; unfortunately, distortion can be introduced. The remarks concerning self-capacity, etc., under C.C.C. also apply to the transfogmer. Fig. 42.

Anode-bend Detection

As the name implies the anode or lower bend of the triode's characteristic curve is used. Fig. 43 shows how the positive half-cycles cause a greater change of anode-current than the negative half-cycles, thus causing the mean value of the anode-current to vary. The necessary circuit is shown in Fig. 44. Notice the small battery A, which provides the necessary grid-bias voltage to pernit the signal voltage applied to grid and filament to vary upon the "bend."
The anode-bend detector is insensitive, but introduces little distortion.

Cumulative Grid Detection

The use of correct values for C and R in Fig. 45 will produce detection.
The signal voltage applied to the grid and flament via C will cause grid-current to flow upon its positive half-cycles, charging up C in "pulses" at R.F. C will discharge via R (the grid-leak)-providing a complete circuit exists-causing a P.D. to be developerl across the grid-leak ; this P.D. will be varying at L.F. because of the "storing-up"-or "reservoir" effect of C and thus the anode current will fluctuate at L.F. as well as R.F., and elctection takes place.

A cumulative grid detector is very sensitive but, because of grid-current flow, introduces distortion.

Reaction

Reaction is the process whereby energy is fed back from anode to grid circuits in such a waj that energy losses in those circuits are reduced, and the magnification obtained is greater (the effective resistance of the gridcircuits is reduced).

Too much feed-back will cause oscillation, i.e., negative resistance exists.

Fig. 46 is a typical reaction circuit; R.F. potentials developed across R in the cletector's anode circuit are fed via $C_{1} L_{1}$ to the detector's grid circuit (also anode circuit of V_{1}) C_{1}, being variable, permits control of the reaction.

Low-frequency Amplification

The purpose of an L.F. amplifier is to amplify all frequencies in the L.E. range equally and without distortion. Fig. 47 shows a typical L.F. amplifier with transformer coupling.

The type of coupling used, operating conditions of the valve, etc., are details that must be carefully selecterd if a L.F. amplifier is to give good quality amplification.

Voltage and Power Amplification designed to give a large signal voltage across their anode loads, i.c., they are voltage amplifiers

Grid Volts
(Input)
R.F. and L.F. amplifiers are

Fig. 43.-Lefi : Grid volisfla curves of anode-bend detector.

Fig. 44.-Above, right : Basic circuit.

MIITO CONSTRUCTORS＇KITS

See August issue for illustration and details of Constructors ${ }^{2}$ A．C．and
Battery 3 －v．Kits．Delivery approxl－ mately one month．
COILS．Aerial and osc．iron core Superhet coil unit， 6 push buttons with 3 position tone control，adjustable permeablifty tuning．complete with button．New．Colour coded circuits supplied，$£ 1 / 10^{\prime}$－
Midget Aerial and．Osc．Sluperhet． $465 \mathrm{k} / \mathrm{cs}$ ．three wave－band coils．mounted on panel，new， 126 per pair．Also Short－Wave Colls on Paxolin Formers $16-50$ metres approx． $1 / 6$ each．Midget Medium Wave Oscillator only． $1 / 6$ each．
IF TRANSFORMEIGS． $450 / 470 \mathrm{kcs}$. if TRANSFORMEIBS． $450 / 470 \mathrm{kcs}$ core permeability tuned，centre iron core permeability tuned，centre
tapped，first class component，new． tapped，first
12／6 per pair．
MAINS VOLT DROPPING RESIS－ TOIRS， 2 amp．1，000 ohms on ceramic formers， 2 varlable sliders， 6 ＇－， .3 amp ． 750 ohms， 1 variable slider， 6 －
10－WATT HIRE－WOUN゙D RIESIS－ Toirs． $2,000,500$ and $150 \mathrm{ohm}, 2^{\prime} 6^{\prime}$ each． PADIDERS．Twin ceramic ． 0003 mfd ． （max．）and ． 0006 mfd （max．）， $1 / 6$ each CHASSIS．Undrilled steel．painted new， 10$\} \times 8 \times 2$ in．， $7 / 6 ; 8 \times 6 \times 2$ in． $4 / 6$ each．Drilled for $3-v, 8 \times 6 \times 2$ in． 5／6．
VESTEFTORS．Type w6， $5 /$－each． Sivitcilfs．New，Yaxley type midget． single bank，single pole，4－way， $2,9$. each．Single bank， 3 －pole． 3 －way， 36 each ： 3 －bank， 2 －pole． 4 －way screened． \％／6 each 4 －pole， 3 －way．midget． 46 each：2－bank，2－pole，3－way， $5:-$ each． FOIRMELESLIFEC Colour coded circuit．6－．H．F．Cholie Amplion． 2／6 each．Short－wave double wire wound Filament Chole for clectronic reaction coupling，2／－each．
VALVE IIOLDPRIRS．4－．5m，6－，7－pin Paxolin．6d．International Ocțal． moulded bakelite，gil．each．Short－wave Ceramic 5 －and 7 －pin，1／6 each．
CONDENGERS．Tubular， 0005 mfd to .005 ，6d．each ；． 02 to 1, ，日fl．each Mica， $01,001 \mathrm{mfd} .2 .200$ volt test 1／6．Silver mitca．．00015，． $0002, .0005$ ． $.00005 \mathrm{mfd} ., 9 \mathrm{~d}$ ．each．
VOLUME CONTIROIS．\ddagger and $\&$ meg． with switch， 68 each． 25,000 and 50,000 olims，less switch，4；－each．
VARIABLE CONDENSERS．Single 0005 mid．， 2 －speed drive with pointer knob and dial．no escutcheon reguired Single hole fitting for portables，crystal sets，ete．，6i－．． 0003 mfd ．reaction con－ densers，2／6 each．Short－wave Tuning Condensers， 30 mmfd．，2／6．
SPEAKEIE OUTPUT TRANS－ FORMEIR．Heavy duty Pentode． 10／－each．
PAXOIIN．Polished，flat strong， $18 \times 27 \times 3 / 32 n d s$ approx． $1 / 6$ each， Soldering Tags，3II．dozen．Terminal Strips，from 3i，to 9il，Eyelets， 1 ＇2 to $1 / 6$ gross．Resistor＇s， 4 －watt． 6 d ．； Spiro Cips，each，most varues ainabe． Joints，large $1 /$ Dial Lamp Holdere Gil each A1 A2 E Panels Gil Gyis． fiex，coloured 4a per yd．leveth． A good selection of shop－soiled and odd components available to callers only．Cheap．
Licence to export to Northern Ireland and Irish Free State．
Please and postage for onquixies and mail orders．C．O．b．Widers accepter．
Owing to present circumstances．prices are subject to increase without notice．
5552 CHANCERY LANE． LONBON．W．C．2．Telephno Hor onery？

GABPINS
 ELECTRICAL STORES
 ＂FAIRVIEW＂ LONDON RD．，WROTHAM，KENT，
 ```TERMS CASH with ORDER.```
 No G.O.D.

Regret no Orders can be accepted from Eire or Northern Ireland．
FLIECTIRIC HIGHT CIILCK MIETEIKS well－known makers．first－class condition． electrically guaranteed，for A．C．mains 200,250 volts 50 cy ． 1 phase 5 amp．load． 10：－eadh ； 10 amp．load 12／6，carriage $1 /-$ IIEAVY DU＇TY CABLE，V．I．R．．and braided．In first－class condition，size 37／13， leng ths 30 to 40 yards．Price by the length， $5 /-$ per yard，carriage paid，or 7／－per yard for short lengths．carriage paid．
1 K．IV，ELECVRIC FIIRE Element，size 16in．X 1 inn．x 1 in ．，for 220 v．mains A．C． or D．C．as new， $6 /$ each post free．
ROTVIR CONVERTEIR．D．C．to D．C． input 48 volts ；output 2,500 volts at 1 kW ． input 48 volts ；output 2,500 volts at 1 krice $£ 10$ ，carriage
condition as new． condit
paid．WTP WIRE END Resistances，new and unused，assorted sizes（out assontment）， unused，assorted sizes
5＇6 per doz．post free．
 hole mounting．fitted double contact small B．C．holder and 12 －volt 16 watt bulb， 3.6 Bach，post free，or 30／－per doz．carriage paid．
TEVGSTFN CONTACTS， 31 jin ．dia．a pain：mounted on spring blades，also two high quality pure silver contacts 3inin． dia．．also mounted on spring blades．fit for heavy duty．new and unused ：there is enough base to remove for other work． Price the set of four contacts， $5 / \%$ ．post free． 220 VML IBYNANO 9 AMP．output by Lancaster Dymamo Co．shint wound． speed 1.500 R．P．M．，condition as new．＇Plice 10 ．calriage paid．
KI．，X13N IIUTORS． 220 v．．D．C．， $1 / 10$ H．P． shunt wound．ball－bearing，fitted reduction gear glving speed of 700 r．p．m．high－grade job，condition as new．Price 50／－each， carriage paid．
KI．AK才A MOTORS，as above，with right angle drive，but need slight repair．mostly fields open circuit，not guaranteed， laminated fields．20，each，carriage paid． IU＇O TRANSFORMEIR．Rating 2.000 watts．tapped $0-110-200-220-240$ volts，as new．Price \＆9，carriage paid．
REWI．STANCI：MATA．sjze 8in．by $6 i n$. set，of four，80－80－150 and 690 ohms，to carry t to $\$$ amp．Price，set of tour，5／－post firee． LAIRGE TRANSHORMEIR，input 230 V ．， 50 cycle．Output， $2.000-0-2,000$ volts at 200 m A．and 11 volt L．T．winding．Price £3 $15 / 0$ ．carriage paid．
M1介HING：COIL Ampmeter，2tin．dia．， panel mounting，reading $0-20$ amps．，F．S．D． 15 mA ．Price $30 /-$ ，post free．
（：1ROM1JION DVNAMO．shunt wound． output 50,75 volts， 25 amp．， 4 pole，speed 1，750 1．p．ni．，massive construction，in perfect working order．Plice eg，carriare ngict． MOTOIR DIRIVEN PUMP， 100 V．D．C． motor，＂Keith Blackman，＂\＆H．P．：Bin． imlet and outlot，gear type pump，in perrect working order．Price \＆5．carrig．g pact Ditto 220v．D．C．motor，in．inlet and outlet． Price $£^{n-10,}$ ．carliage paid．
IIOVINf COLL movements，needing slight repair，modern type，famous makers， deflection $51010 \mathrm{~m} . \mathrm{a}$ ．Price $15 /-$ post free． HEIGIIT A YGLEDIBIVE，mounted in gum－ metal box，all ball bearing，是in，dia．shafts， as new．I2；－each，carriage paid．

RECORDING AMPMITER．in ironclad case，meter movement wants repair，no pen，clock perfect，
200 calriage paid．KNIF SWITCIIFS，S．P．D．T． in first－class condition．15j－each．
DVNAMO maker C．A．V．output 20 rolts， 10 amps．speed 1,500 r．p．m．，ball learing．f5． ROMARY CONEDIRTEIR D．C．to D．C． input 11 volts，output 1,100 volts， 80 watts， will operate successfully on 6 volts input． Price 50／－
MASGIL GIUNMETAT WHNCII，com－ plete with long handle，for use with in． diameter wire cable，weight $501 \mathrm{bs} .$, condition as new．Price £3，carriage paid．

Anerley Worlis，207．Anerley Ruad， London，S．E．20．＇Phone ；SYD 6258／9．

Murse Conle Troaining

If you wish to become a proficient W T Operator，or，if you are already an Operator and desire to increase your present sending and receiving speeds as well as to improve your technique，then apply for a copy of the Candler＂Book of Facts．＂
Numerous students trained by the Candler system are now W／T Operators in the ARMY，NAVY． AIR FORCE and MERCHANT SERVICE．Many others are on W／T work of national importance．
Full details of the following Coutses are given in the Candler＂Book of Facts．＂
The JUNIOR Scientific Code Course for beginners teaches all the necessary code fundamentals scientifically．
The ADVANCED and High－Speed Telegraphing Course，for oferators who want to increase their w．p．n． speed and improve their technique．
The TELEGRAPH Touch－Typewriting Course．For operators and general conimercial uses．
Fill in the Coupon and learn moce about this highly efficient Candle： method of Morse Code training in your own home．
When you send for a copy of the Candler＂Book of Facts＂you will also receive in the form of＂extracts from students＇letters＂convincing proof of the excellence of the Candler systenı of Morse Code training．
Code Courses on Cash or Monthly Payment terms．

$\mathrm{COUPON}^{-\infty-}-\mathrm{CO}^{-\infty}$

：Please send＂Me a Free Copy，of Candler I
NAME ．．
ADDRESS ．．．
Post Coupon in 1d．unsealed envelope to ：－
THE C INDLER SYSTICN CO．
（5L．．0．） 121 Kinssway，Lonson，W．C．2
Candler System Co．，Denver，Colorado．
Candler System Co．：Denver，Colorado．
U．S．A．
（1043）

Fig. 46,-A lypical form of reaction circuit.
in order that as large an alternating potential as possible is supplied to grid and filament of the next valve.

In the case of the output valve, which has to supply power ($P=I V$) to a reproducer (speaker, 'phones, etc.),
of a receiver have to pass through the supply, thus, owing to the resistance of the supply, "rippling" voltages are produced across it, causing the supply voltage and the potential applied to the valves to fluctuate. This application of "rippling" voltages to the valves will result in spurious oscillation and general instability, therefore the resistance of the supply, to which they are due, must be avoided.

The connection of a suitable condenser across the supply, will give the "ripples" an "asy path past the supply's resistance, thus preventing the procluction of alternating potentials across it. Vatious methods of preventing the "ripples" on the direct current (D.C.) from passing through the supply exist, as in Figs. 39, 40, 42,44 , etc., where "by-passing " or decoupling condensers and resistances are used.

Biasing Methods

Several methorls of producing a grid biasing voltage exist, the most commonly used will be treated :
(I) Fig. 48 shows a typical battery biased circuit.
(2) Fig. 49 gives a circuit using flament biasing.

When using battery valves the insertion of a resistance in the filament circuit will provide us with a biasing voltage. The resistance must be small, otherwise the current heating the filament will be reduced sufficiently

Fit. 47.--A low-frequency amplifer. to impair the valve's operation.

Compared with the other methods about to be described, the filament biasing system is not widely used, but this does not mean that it is without application. In fact, in certain circuits, the system has nuuch to recommend it. When considering biasing arrangenents, which depend on the H.T. supply or current for the production of the required bias voltages, it must be remembered that the total voltage available from the H.T. source is effected to the extent of the bias voltages, or, in other words, the term "free bias" is not strictly correct, as one does not obtain something for nothing.
(3) H.T. (high tension) biasing. A resistance inserted in the main H.T. negative line will cause voltages to be developed which can be fed to grid and filament. Fig. 50.
the circuit has to be arranged to handle large charges of current as well-as voltage.
Decoupling
The "rippling" currents through the various valves
(4) A condenser and grid-leak will produce biasing voltages as explained under cumulative grid detection.

Fig. 49.--Alove: Filamént biasing.

Fig. 48. - Left: A fupical circtit susing battery bias supplies.

The Editor does not necessarily agree with the opinions expressed by his corresoondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

Single-valve Regenerative Receiver

SIR,-In response to several readers' cinquiries I append the details of the coils for the U.S.V. one-valve receiveŕ, which was described in the May issue. The coils were home-made and also the coil. holder. The number of turns, diameter, etc, were as follow:

Wavelength covered approx.	S.W. gange of wire	No. of turns	Winding length	Dianeter of coil
$\mathbf{1 2 - 2 1}$ metres	18 ellamelled	9	lin.	$1.25 i n$.
$18-30$ metres	18 enamelled	15	1.5 in.	1.255 n.
$30-50$ metres	30 enamelled	40	lin.	sin.

The first two coils are self supporting, the last is close wourd on a ${ }_{5}^{5} \mathrm{in}$. diameter former.
Wavelengthis well below 12 metres can be covered and, usirg an L.P. 2 valve, super regeneration was obtained, using a two-turn $\frac{1}{2}$. . diameter coil. The coils aze all centre-tappoce, but for higher efficiency several taps should be made on each coil and the best chosen.

The coil base was made from a thin bakeite strip, foin. by $\frac{1}{2}$ in., and two valve pins securely fixed 3 in. apart. This nuade an excellent coil mount, into which the 18 gauge wire fitted tightly. The $30-50$ mesre coil was drilled through at each end and thick gange wire inserted to wlich the $30 \mathrm{~s} . \mathrm{w} . g$. wire was soldererl.

Since the constructional details were publisticd I have incorporated a $\frac{1}{2} \Omega$ variable resistance as a grid leak and it has improved the operation of the set con iderabiy, elimineting all whistling due to incorrect values of aricl leak. A . Scort (Manchester).

Wireléss Receivers in Cars

S1 R, -On page 309 of the July Practical. Whreress, you state that it is illegal to rarry a wireless recciver in a car. This does not exactly reflect the position. The restriction concerned is Scciion 4 of an Order in Council under the Deience Regulations (Stauntory Rules and Orders, 1010 , No. 828). After prohiliting wireless apparatus installed in a road vehicle, this states:

Any wireless receiving apparatus shall, notwithstanding that it is not fixed in position, be deemed for the purposes of this paragraph to be instailed in a vel: icle, if it is in the velicle ith circumstanaes in which it may be used or readily adapted for use."

It follows from this that a wircless receiver can be carried in a car from one place to another provided it is not in circuunstances in wieich it can be tised or reacily adapted for use. In order to connply with the Order, it is sutficient if the wireless set is "dismantled by the removal of valves or batteries." I quote from a letter from the Home Offise to the National Caravan Council in 194 I . The parts remover can le sent or taken separntely and replaced when the receiver is removed from the car at the furl of the journey.-F. E. Eyre (London, W.C.).
[W'e repset that it is iliegal for aryone to cary a wireless set in a motor-car. Remozal of the vialies or batterics zeothd not comply with the Nefence Remnlation. The objert of this particular Regulation is to aroid illecal Lransmissions and anyoie welo proposed to illesolly transmit wond merely
secrute the batteries and relves. We do not, thotefore, accebt the Hone Office interpretation of this Corder, now do wh thin青 that magistrates zonuld support it--IED. 1

S.W. Broadcasts

SIR,-The frillowing list of S.W. broadeasts which are now available might he pf interest to other S.IV. listeners. The times are G.M.T. and my receiver is a battery det.-L.F.

EAỌ Aranjuez, Spain, 30.43 m ., 6.15 p.m. PRL 8 Rio de Janiero, 25.6 m., S. $30-9.30$ p. mi., English hout. ZNR Aden, $24.76 \mathrm{~m} ., 4$ p.m. HCJB. Quito, 24.08 m ., $7.30-8.30$ p.m., English hour XGOY Chunglking, $48.85 \mathrm{~m} ., 3$ p:m., CR 713 E L. Marques, 30.8 m ., $5 \mathrm{p} . \mathrm{m}$. FZI Brazzavil!e, 25.06 m ., 7.15 p.m. TAP Anlara, $3 \mathrm{r} .7 \mathrm{~m} ., \mathrm{F}^{6.15}$ p.1m., TGIV. Guatema!n, $19.76 \mathrm{~m} ., 6.30$ p.1m. VI.I3. Sydney, Australia, 10.57 m ., 10.30 a.m3. Vatican, $17.19 \mathrm{~m} ., 6.30$ p.m., Tuesday.

I have reccived the "Free Y'ugn-Slay Station," remarked on by a reater, the wavelength being approximately 35.08 m. ; times announced, 2 p.m. Monday and Tuesday. "Allied Forces H.Q., North" Africa," may occasionally be heard at 4 P.m. on approximately 24.9 m . Also, IS. 4 Buenos Aires, It m., at 2.30 p.m. There are, in addition, a great nuniber of U.S.A. broadcasts.

I hope Prictical Wireless will continue to be as successful and interesting as it is at present, and that the time is not far distant when we shall be able to have a weekly edition again.-F. G. Raver (Longdon).

"P.W:" in the Forces

SIR,-For some time before joining up I was a regular reader of Practicat. Wireless, and derived-much useful linowledige from it.

I now have it sent to me eacl: month, and am thereby, able to keep my theory, at any rate, in trim. "P.W." also lightens many browned off liouis.

I write this as I would like you to know how much myself and other niembers of the Forces appreciate "P.W."-Joinn Ronbaut (Putney).

Station WDL

SIR, - With reference to G. A. Lockie's query in a recent issuc, station WDI is Boston, U.S.A. This station broadcasts news in English on 30.77 m . regularly at Io.co and 13.00 hours B.S.T. Volume is usually fair.

I would like to get in tourh with any other radio enthusiast in Scotlind who is interested in S.W. experimental work:-T. PagE (Edin!urgh).

The PRACTICAL WIRELESS ENCYCLOPÆDIA

Ninth Edition
By F. J. CAMM (Editor of "Practica.' Wireless")

10/6 net

Wircless Construction, Terms and Definitions explained and illustrated in concise, clear language
From all Booksellers, or by post 11/- from Gearge Newnes, Lid., Tower House, Southampton St., Strand, London, W.C.2.

Voltage Dropping

"I have a rectifying valve and mains transformer which give an output of 250 volts. I wish to know if I can, by means of resistances or any other methods, reduce both the voltage and the current, which is at present 60 milliamps, so that it could be used fed supplying power to a short wave set free from hum A maximum output of 180 volts at 30 milliamps is required. Could you please tell me the value of the resistances or how to caiculate them? "-J. H. (Manchester).
TH1: output from the rectifying valve, i.e., the D.C. voltage, can be reduced to any required value by means of series resistors. It is not possible for us to give you the values of these compoaents, as they depend on the current ilowing. You can, bowever, calculate them quite easily from the formula

$$
\mathbf{R}=\frac{\mathbf{E} \times 1,000}{}
$$

When $E=$ voltage to be dropped, and $I=$ current tlowing in the circuit in milliamps.

A Resistor Prcblem

"Two 10,000 olm resistors, A and B, are rated at 5 and 10 watts respectively, therefore \mathbf{B} will have a larger current-carrying capacity than \mathbf{A}. According to the formula:

Resistance $=$ Voltage to be dropped $\times 1,000$
Resistance $=$ Current through resistor
The resistance of the resistors depend on the voltage to be dropped or the current passing through them. Therefore, if A and B have different current-carrying capacities, how can they have the same resistance?"-.J. L. (Banstead)
. HE wattage rating of a resistor does not affect its resistance
value. It is solely a factor which limits the current which can be passed through the resistor without produciug over-heating or any breakdown of the resistance element.

The viltage drop produced across a resistor depends upon the current actually flowing through it, and, of course, its resistance, and this value might be much less than the maximum current permissible acconding to its wattage rating. Two or more resistors can have identical resistance values, and yet be of totally different wattage ratings?

Coil Data

"Please will you tell me the correct windings and number 0^{5} coils to cover from 10 metres to 200 metres, on a two and a half inch diameter former."-E. G. (Mottingham).
WE caniot nodertake to provide constructional details of
coils to individual requirements ; therefore, we would recommend our book-" Wireless Coils, Chokes and Transformers," wherein will be found all the information you lequire. The price of the book is 6 s . (6 s . 6 d . post paid).

A.C./D.C. Fault

I am writing to you for advice regarding an A.C./D.C. set which a friend of mine asked me to try and repair. The trouble is this. On switching the set on everything happens quite normally regarding lighting valves, dial lights, ete. When, however, it is warming up, a sound very much like that of a motor bike is lieard in the speaker. This sound grows in intensity until the set is properly warm, when it becomes unbearable. The volume control does not affect it at all, neither does changing the wave band. The voltages seem to be quite normal. Could you advise me as to what procedure to take to find this fault."-H. C. H. (Swansea). WE would advise you to examine the smoothing condensers as it would appear that one, or both; quy be faulty.

1.4. Velt Valves

"I am proposing to build a 1-v-1 battery set, using I.4v-filament valves. It seems thiat the detector will have to be an H.F. pentode, as I cannot find any trace of a triode of the above type being made. Would you please let me know if this is correct and supply me with a suggested circuit for this stage unless, of course, you can let me have a diagram for the whole receiver, for which il would be very much obliged."-M. A. T. (Salop).

N^{0}triodes are produced in the r. 4 volt filament valves; therefore you will have to utilise a pentode in the detector stage. The main circuit connections are the same as for the triode, plus a lead to the screening-grid, which will enable it to obtain a low H.T. voltage in the region of 30 to 36 volts.
H.F. Pen and Bias
"I am still puzzled about the electrical arrangenents for using an H.F. Pentode as a detector and also for use as a feed for piek-up. It is not the switching, but whether grid bias must be

RULES

We wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or diftculties Sarvice is intended only for the solution of probiems or dimcuities articles appearing in our pages, or on general wireless matters. We regret that we cannot, for olvvious reasons:-
(1) Bupply circuit diagrame of complete multi-valve receivere,
(2) Susgest alterations or modifications of receivers described in our coutemporarles.
(3) Suggest alterations or modifications to commereial receivers.
(4) Answer queries over the telephone.
(5) Grant interviews to querists.

A stamped, addressed eavelope nust be enclosed for the reply. All sketches and drawings which are sent to us should bear the Hame and address of the sender.
Requests for Blueprints nust not be enclosed with quexies, as they are dealt with by at seqnate department.
Sead your queries to the Editor, PRACTICAL WIRELESS, George Newnes, Lid, Tower House, Southampton Streat, Strand, London. W.C.2. The coupon oa page iii of cover most be enclosed with every guery.
nsed (a) for both pick-up use and H.F., as stated by the valve makers (Mullard SP4), or (b) wliether the grid bias is only actually applied when switching to pick-up. As the valve ractifies H.F. currents as a detector, and then on pick-up has L.F. currents applied to it, it would seem that the bias is not required for H.F." -E. H. (Blandiord).

Iis not usually nccessary to apply bias to an H.F. Pen. or screen-grid valve when it is used in the detector position, provided leaky-grid rectification is being used. When, however, a pick-up is employed, it is possible that a low value of grid-bias would be beneficial, but this depends on the characteristics of the valve and, if any doubt exists, it is best to try one or two experiments with and without bias. It is usual lo insert a bias resistance in the cathode lead in such instances, and return the earthy-end of the grid-leak to the cathode-end of the eathode bias resistor. The pick-up can then be connected between the grid and the common negative earth-line, and the valve will receive bias when the pick-up is in use, but not when it is acting as a detector.

Converting a Meter

"I would be obliged for your advice re converting a D.C. meter to A.C. I have D.C. Avominor instrument which I should like to use for A.C. readings. Would it be safe to use a rectifier and if so what type would I have to get (if it is possible to get them)? I see in this month's 'Practical Wireless' there is a firm advertising instrument rectifiers. Would these be any good?"H. B. C. (Watford).

METAS rectifier can be used with a D.C. moving-coil instrument to enable A.C. to be measured. The type oi rectifier required depends on the maximum scale reading of the meter as a milliammeter. More complete details of such arrangements can be obtained from Messrs. Westinghouse Brake \& Signal Company, Ltd., Pew Hill House, Chippenham; Wilts.

Condensers in Parallel

I am building a mains unit for a friend which must have an 8 mid. paper type condenser. He is in possession of two 4 mfd . paper type condensets of the right voltage. Can I join these in parallel in the place of the 8 mfd , and will they serve the same purpose as that which is marked in the circuit as a reservoir condenser? '"-J. B. (Claplam).

C^{0}ONDENSERS connected in parallel are additive and, therefore, two 4 mid. condensers in parallel will give a total capacity of 8 mfd . and your idea is, therefore, quite in order.

Substituting a Valve

"Could I use an output friode instead of the outpùt pentode in the "Short-wave A.C. Two-valver" in your issue dated January 13th, 1940 ? If so, what would the connections be? I am going to make this nıy first mains-operated set."-C. H. W. (Hornsey). TRIODE would not give the same amplification as a pentorle and thus you would not gain anything by substituting the valve. If, however, it is a case of economy and you wish to use the triode for the time being, then the screen voltage dropping resistance must be omitted, and the tone control resistance; condenser and switch would also not be needed. The bias resistance value would have to be changed, no doubt to suit the new valve.

Classitied Advertisemenls

LITERATURE, MAPS, etc.

R.ADIO SOCIETY OF GREENT BRI'AIN invites all keen experimenters to apply for membership. Current issue "R.S.G.B. for membership. Current issue
Bulletin " and details. 1/- below: pages), paper cover, 4^{\prime}; cloth, 6,6. Radio Handbook Supplement' (140 pages), paper cover, $2 / 9$: cloth. 5,-R.S.G.B., 28-30, Little Russell Street, London, W.C.1.
WEETB'S Radio Map of the World. Locates any station heard. Size 40 in . by $30 \mathrm{in} ., 4 / 6$. post 6 d . On linen, 10/6. post 6d.-Webb's
 Radio, 14. Soho Street, London, W.1.
GERrard 2089.
MORSE \& S.W. EQUIPMENT Fill range of Transmitting Keys, practice sets and other equipment for Morse training.-Webb's Radio, 14, Soho Street, London, W.1. 'Phone: GERrard 2089. for over ten years. Improved one-valve model now available. Complete kit of components, accessories, with full in-structions-only 16 s -, postage 6 d . Easily assembled in one hour. S.A.E. for free catalogue,-A. L. Bacchus, 109, Hartington
Road. London. S.W. 8 . Road, London. S.W. 8.

RECEIVERS \& COMPONENTS

AMEIRCAN LIEASE J.IND VALVES, B.O.T prices. For reblacement only
 1A5GT 1C5GT. 5Y3G, 5Z4GT, 35Z4GT $3575 \mathrm{GT}, 11$ 12- $12 \mathrm{~F} 5 \mathrm{GT} 12 \mathrm{SF5GT}$ 635GT 12J5GT. 92.6 6ASGT. 12ABGT, 12SA7GT 6SA7GT. 14, 25A7GT, 15,3. 6E6GT 12J7GT, 12S. 17 GT J3SK7GT, 35L6GT, 6K7GT 11/7. and many others. British and American.
HAINS DROPPER RESISTORS. . 2 amp. for Pye, Lissen, E.R.. Haicyon, Cossor, 5i-. .3 amp . for Vidor. Ferranti, Mrjor Maestro. Douhle Decca, 76 . Ferguson 801 and 802, 8.6. Line cord replacement dropper.. 3 amp ., 750 ohms. variable tap, 56 . Heavy duty dropper, on porcelain former, two variable
taps. supexior job, . 2 amp., 950 ohms, .3 amp., 800 ohms. $8 / 6$ each. VALVEHOLIDERS. Chassis mounting. Ceramic English 7 pin, $1 / 3$. Amphenol International octal, 1/3; Mazda octal, 1 iPaxolin English 7 pin, gd.; 5 'pin heavy
quality, 1 I. Rotary wavechange switches. midget, 2 way, 2 pole (DPDT), 2 way 1 pole (SPDT), 3/6.
CONDiNSERS. Mica wire ends, 01 mfd . 1!-: . 00015 , . 0023 mfd .. 661.. $5 /-$ do\%. Tubular 1 mid .. .01 mfd . $90 . .8 /-$ doz. Electrolytic (cardboard) $50+100 \mathrm{mfd} ., 10 \mathrm{v} . \mathrm{wl} \mathrm{g}$., $15 \mathrm{\nabla}$. surge. 26
congerifing WIEE. Tinned copper, rubber rovered, 18 ft. coil 1/-
PANOLIN panels, socket's marked A. E Gramo. 6il. Ext. L.S.. 4l. Gramo. 611: Ext. L.S. 41
STRELNEI VALVE CADS. 8d. each Speakers, volunie controls. sleeving, etc., etc. Black Instrument Pointer Knobs at 1/3 each. Stamped envelope with al enquiries please. Postage on all orders. Cambridge Huath Hoad. London, E. 1. (Stepney Green 1334.)

SOURHERN RUDIO'S WIRELESG

 BAIRGAINSSCIRIEWS and Nuts, assorted gross of each (2 gross in all). 10/.
SOLDERING Tags, including Spade Ends, 6/- gross.
PlIIICO 3 -point Car Aerials, excellent for short-wave and home aerials, $7 ; 6$.
IIINIT Tone Arms, tuiversal fixing for all types of Sound Boxes and Pick-up Heads,
ACi: "P.O." Microphones, complete with transformer Ready for use with any receiver, 7 :- ...
METAL Panels, undrilled, rigid, $18 i \mathrm{in}$. by bin. $2 / 6$. CIRCULAIt Magnets, very powerfu, yin. diametet, by in thick. 1/6 each, 151 -per doz. IIRIE Resistances. Brand new, wire ends. All low value from, 8 ohms upwards. A few higher value are included in each parcel. iÚITICON Master Mica Condensers, 28 muliticon Master Mica condensers, 28 capach.
each.
(Continued in next column.)

SPECRAL ASSOIE'RED PARCEL FOR SEIEVICE MCN
100 EHIE resistances (description above), 24 assorted Tubular Condensers ; 6 Reaction Condensers. . 0001 ; 12 lengths Insulated Sleeving : 75ft. Push-back Connecting wive: Soldering Tags, Screws, Wire, etc. CiR', All brand new.
CIRYSFALS (Dr. Cecil). 6d., with catswhisker. 9d. ; complete crystal detectors. $2 / 6$; 75 ft , wire for 2erials, etc., $2 / 6$: 25 yds . Push-back wire. 5/- ; Telsen Reaction Condensers, $0001,1 / 9$ each ; Telsen large disc drives. complete with knob, etc. (boxed) type W 184, 2,6 each : Insulated sleeving. assorted yard lengths, $3 / 6$ doz, single screened wire. doz. yards. 10/-
LOUD Spealser Units. unshrouded, Midget type, 4/-: Motal case condensers, $1+.1+.1$, 2/6: Many Bargains for Callers
SOUTHERN IRADIO STPPIS CO. 46, I.isle St., Lonton, W.c. Gerrard 6653.

RELIANCE RADIO SELEVICE.
8, kennington lialk 1 Road, S.E.11.
Phone: 1\&E1.. 2331.
FLFFCIRONSTIC CONDENSERSS. T.C.C. and Hunts, etc. Tubular wire-end. 25 mfd . $25 \mathrm{v} . \mathrm{wkg}^{\mathrm{w} .} 16: 50 \mathrm{mfd} .12 \mathrm{v}$. wlkg., 13 omid. 25v. Wkg., 19 : 4 mfd ., 350 v . Wkg. wkg., g 6. Block type, 2mfd., 200v. wkr, $3 /-2 \mathrm{mfd}$. 400 v wkg. 46 . Also .0001 mfd . $.0002 n i f d .,{ }^{0} .0003 \mathrm{mfd} .$. 002 mfd .005 mid .01 mfd .. all at 6 d . each $516 \mathrm{doz}, 1 \mathrm{mfd} .3$ ह̈ov. wkg.. 8 Il . each, $7{ }^{\prime} 6$ doz. $56 \mathrm{doz}:, 1 / n \mathrm{md} .3 \mathrm{nov}. \mathrm{wkg.} 81.$. each. 6.
 3 -ohm speech coil. $5 \mathrm{in} .18 / 6,6 \mathrm{in} .19 \cdot 6$, 8 in 22'6. All less transformers.
IINE CORI) 2-way, 15 -amp.. 70 ohms per foot. 76 per yard.
CONNECIING WIRE: Push back insulation with 22 gange tinned copper core. 2ul. per yard ; any length cut. Also with 8 -strand flex cole at the same price. MUITICOIEE SOIIDIR. With Ersin fux core. 1, ${ }^{2}$ per ilb. Also resin cove solder at 16 per jlb. reel.
Regret no C.O.D. Hease idd Posiame s.A.E. for Enconirle's.

REILANCE JRADIO SEALVICE 8, kénninestun fark Hoad, sie. 11.

THERE IS NOTHING BETTER THAN SEEING THE GOODS
Whilst many readers of this journal have called, inspected and bought just the Radio, Electrical, Mechanical or Laboratory apparatus they desired, there must be hundreds of others who have not yet visited our New Showrooms. All are cordially invited. Come along. The time spent will be well worth while.
ELECTRADIX RADIOS offers exceptional bargairis irt :Morse Keys, Buzzers, Recorders, Relays, Wavemeters, Headphones, House-phones, Handcoms, Rheostats, Condensers, Dials. Transformers, Magnets, Turntables, Plugs, Sockets, Rotaries, Chargers, Mirror Galvos, Wheatstone Bridges, Resistor Boxes, Meggers, Radiogoniometers, Dynanos, Motors, Generators, Pumps, Circuit Breakers. Switches, Meters, Indicators, Engines, Motor Pumps, Perrol Electric Plants, etc., etc. Telephone: MACaulay 2159

Trained men

 get
GOOD JOBS

IF F4

FRED'S RADIO C.IBIN. COMPAIRE OUR PRICES.

MAINS DROPIEIRS, 0.2 amp ., Pye, 36 PUSI HUTTON UNITS. 6-way, $2 / 6$ -way. 2/9, 8-way, $3 /-$: no knobs-a really flne job.
Condenseris. "Plessey" 4-gang
 3ilin., unscreened, 26 . All brand new and nelude trimamers.
HewiswLEY" Electric Soldering Irons, new. Straight bit, 13,6 each. Pencll Blt $14 / 6$ each. Resin-cored solder, 4 - 1b. reel. T.C.C. TUBULARS, brand new, 25 mfd , DVV. $1 / 3: 50 \mathrm{mid} .12 \%$. $1 / 3$.
DUAL RANGE COIL. with variometer tuning, fully screened in copper can, $2^{\prime \prime}$ eace. No circuits.
SPEAKER GRIILES, 7 im . x 3 i in . Chro-mium-plated, cheap to clear, $1 ; 6$ each. SOLDER. 11b. reels, fine all-tin instrument older, $3 / 6 \mathrm{lb}$., or 11 b . reel, 1 -.
WIIRE, Silk-covered, 2 oz, reels, 38 or 40 gaufe, 1/3 reel.
CRISTAL DHTEETOR, New type on honite base, 2.8 each CRISTML and Catswhisker in metal box, 6d. each. METIIR Resistances, wire wound, $50-120$, 500,1 - each
SLEEVINGi, 3!d, per yard length. 1 doz lengths, 3 - Braided sleeving, 80 . per yard length, $7 /$ - doz. lengths T.C.O. Tuhulars, 0.1 mfd . 7d. each, 6/8 doz.. also 01 mid. at 60. each. 6 - doz. GRID LEAKS, 1.5 meg.. 6d. 1.0 meg., $6 \mathbb{d}$ EX F.M. . $0003 \mathrm{mfd} ., 2 \mathrm{in}$. spindle. new. $1 / 9$ each.
TUIBULALI Wire-end Condensers, assorted values, new, $3 /$-doz.
IELSEN Illuminated disc drives, useful for short waves, 2/6 complete.
CLABION slow motion diai, illuminated dise drives, useful for short waves, $2 / 6$ complete.
FX-G.P.O. Telephone Plugs, 1/3. 2 PUSIIPULL. SUVITCIIES. 6थI. each.
TELAEN L.F. intervalves coupling units FORMO. densers, 1 19.

Paper Tubular Con SINGLEE SCIREEN CABLIES. 10d. per yd DOUBLE SCRELEN CABIES, $1 /$ - per yd. FORMO SINGLE GANG 0005 Condensers, complete with mystic dial, $5^{\prime} 6$
TFILEEN 2 -pole speaker units. 3 '- each GBAMAM FARISH . 00015 and .0001 differential re-action condensers. 1/9, AMPLION twin H.F. binocular chokes, I/9 Mains cable leads. 5 ft , 1 -- each.
Rubber
ODID THIN HiF, CHIOKB
EKGO 2 MAIN: DROPRERE each GKCO 2 MAINS DROPDERS, S.L. $2 \cdot 6$ each.
Postage must be inclided. No. C.O.D. FRED'S RADIO CABIN FOR RATEGAINs; 75, Nevingion Butis, S.E.11. Rodnez 2180.

MAKE your own Torch Battery Lighters (Table Model) for Cigarettes, Plpes. Gas Lighting. Kit of Parts, ready to assemble, with clear dlagram and instructions, for easy home construction, 4'6d., post and packing 6d. 3 Elements included. Well tested. Lasts 6-8 months. Very saleabie.W. Barham, "Hilltop," Bradmore Green, Coulsdon, Surrey.

ITMPR ILE TTTT

The advance in Radio Technique after the war will offer unlimited opportunities of high pay and secure posts for those Radio Engineers who have had the foresight to become techaically qumalieasily in your spare time is fully explained" in our unique handbook.
Full details are giveu of A.M.I.E.E. A. M.Irit.I.R.E. Cifvai Gullis Examis. and particulars of up-to-date courses in Wireless Lboinecristrg Ladio sergicing, Short Wises, Television, Mathematles, etc., etc.
Wegunrantee "NO IPASS-NO PLE:"
Prepare for to-morrow's opportumities and post-rat competition by sending for this very informative 112 -page guide NOW-FIREE and without obligation.
BRITIST INSTITUTE OF
HNGINEER-ING TRCIINOLOGE (Deıt. 242),
I\%. Stratford Place, Londom. 靺.1.

Limited stocks available for OFFICIAL ORDERS ONLY of Multi-range meters, such as Taylor Model 90, AvoMeter Model 40, AvoMinor, Avo Test Bridge.

For general sales we have a few single-range meters suitable for constructing test gear. AVAILABLE RANGES :
Taylor 01500 Microamps
Model 301
0150
,, 425
01750
400
012 Milliamps
305
and other higher readings up to " 1 amp .
Potentiometers (Wíre Wound)

30 ohms

416
400
416
I.F. Transformers, $465 \mathrm{kc} / \mathrm{s}$.

Wearite I.F. Transformers 616
Shaft Couplers. Solid Brass $\frac{1 i n}{1}$.
Bore with grub screws
3d.
Condensers. Aerovox $40 \mathrm{mfd} .200 \%$
working, wetelectrolytic can type... 416
(Sorry, FW. 8 mid. as previously advertised -ALL GONE)
Vaiveholders. Baseboard short-wave
skeleton, low-loss construction on pillars-

British

4,5 and 7 pin \ldots all

Ceramic Formers and Insulators.
Heavy standooff for rod aerial support, $2 \neq i n$. high, metal clamp for 3 in . rod
Heavy stand-off, 3in. tigh 2 in . base.
Eddystone 1090 Forme $r, 5 i n$. by 2 zin
Eddystone 916 Bechive stand-off
Eddystone 1019 Midget stand-off
Coil Formers, $1 / / 16 i n$. long ${ }^{\frac{3}{2}}$ in. dia. 4 ribs, grooved 10 turns, winding length 10 .
 grooved 14 turns, winding length :/8in.

216
116
111
al.
116

Additional charge of II. for postage and packing on orders below 101-.

WEBB'S RADIO, 14, Soho St., Oxford St., London, W.1. Telephone: Gerrard 2089 We are available 9 a.m. till 6 p.m. for OFFICIAL business, but please note our SHOP HOURS-10 a.m. to 4 p.m. (Saturdays, 10 a, m. to 12 noon.)

PRRMANEN'T Crystal Detectors Tellurium-zincite combination. Complete on base. Guaranteed efficient, 2'6. Wireless crystal with silver cats-whisker, 6al. B.A. thread screws and nuts, assorted, $2 / 6$ gross. Ditto washers. $1 / 6$ gross. Fibie wheners $1 / 6$ gross. Assorted solder tags, 2'- gross. Single earphone new 750 tags, 2 - gross. made for Air Ministry 5 , Roconditioned meade ron headphones, complete, 4, All postage extra. Post Rado Supplies 67. Kingscourt Road. London, S.W. 16 . formers, Field Coils, promptly executed Valves-good selection all types. Brand New B.V.A. Send S.A.E. for list-A.D.S. Co., 261-3-5. Lichfield Road. Aston, Birmingham 6.
MOBSE made easy using the "Autocode." Designed by Professional. Telegraphist. You make it yourself from simple instruc tions. Drawings and templates supplied. Send 3;- (to include postage, etc.) and receive the Autocode Manual.-Hardy
BCM/HAFT, London, W.L.
FOR SALE. Marconi " 704 " Television Sot. Cost prior to war 45 guineas. Offers.Write Box 101. "Practical Wireless." Towet House, Southampton Street. Strand. W.C.2.

FOIt SALE. 150 P.W.S. Offers.-Jones. 17a, King Street, Ludlow, Salop.

SITUATIONS VAGANT

" ENGINEERING OPPORTUNITIES"

 -Fier 112-page guide to training for A.M.I.Mech.E., A.M.I.E.E., and all branches of Engineering and Building. Full of advice for expert or novice. Write for free copy, and make your peacetime future secure.-B.I.E.T. (Dept. 242B), 17, Stratford Place, London, W.1.MOBFLE Cinema Operators, Men (SubStandard), Required immediately. Able drive car. Free training given where necessary. Knowledge of radio an advantage. Mobile Cinema Services, Surbiton.-Apply Box 100, "Practical Wireless," Tower House, Southamptor Street, Strand, w.C.2.

TUITION

IISAIRN MORSE CODE the Candler way. See advertisement on page 479 .
"IRADIOLOCATION."-Students of both sexes trained for important war-time Radio Appointments. Also for peace-time careers in all branches of Radio and Television. Boarders accented. Low incluslve fees. College in ideal peaceful surroundings. 2d. stamp for Prospectus.-Wireless College, Colwyn Bay.
TIIE Tuitionary Board of the Institute of Practical Radio Engineers have available Home study Courses covering elementary theoretical. mathematical. practical and laboratory tuition in radio and television engineering : the text is suitable coaching matter for I.P.R.E. Service entry and progressive exams. ; tuitionary fees-at pre-war rates-are moderate. The Syllabus of Instructional Text may be obtained, pōst free, from the Secretary. Bush House Waiton Avenue, Henley-on-Thames, Oxon.

Matroulation Grings Cuccass e Peodraity

Whatever your age, you can now stuay for the all-important Matriculation Examination at home on " NO PASSNO FEE" terms.
"MATRIC" is the accepted passport to all caveers, and opens up opportunities which would otherwise be completely closed to you.

Ensure the success and security of you and yours through post-war difficulties by writing for our valuable
"Guide to Matriculation" imme-diately-FREE.
B. T. I. (Dept. 113),

356, Oxford Street, London, W.l.

Practical Wireless BLUEPRINT SERVICE

PRACTICAL WIRELESS CRYSTAL SETS
Blueprintr，6d，each．
1937 Crystal Receiver
The＂Junior Crysial Set

STRAIGHT SETS．Battery Operated．

Onewalve：Blueprints，1s．each．
All－Wave Unipeu（Peatode）
Beginners＇One－valver
The＂Pyramid＂One－vaiver（HF＂ Pen）
Two－valve ：Blueprint is，
Three－valve：Blueprints，1s，each
Three－valve：Blaeprints，1s，each
Selectone Battery Three（D，2LN （Trans））
Susumtt Three（HE Pen．D．Pen） All Pentode
Hall Mark Cadet（ $\dot{\mathrm{D}}, \mathrm{LF}, \dot{\text { Pen（RO}}$ ）
F．J．Camm＇s Silver Souvenir（H） IPen，D（Pen），Yen）（All－Wave Pen，D（Pen），Pen）（Ali－Wave Cameo Mi

（Trans））

1036 Sonotone Three－Four（HiF Pen，IIF Pev，Weatector，Pen Battery All－Vivve Three（ $\mathrm{L}, 2 \mathrm{LI}$ （RC））
The Monitor（H］Pen D, Pen）：－ The Tutor Three（IEFPen，D，Pen）
The Centaur Three（SG，D，P）

The＂Colt＂All－Wave Tiaree（D， 2 La （10 \＆Trans） The＂Rapide＂Stringlit 3 （D） 2 LF （RC \＆Trans））
F．J．Camm＇s Oracle All－Waテe Three（HF，Det，Pen）
1938 ＂＇riband＂All－Wave Three （HF Peb，D，Pez）

The＂Hurricane＂All－Ware Three （SG，D（Pen），Yen）
I．J．Cinm＇s＂：Push－Button＂
Three（HF Pen，D（Yen），Tol）
Four－valve ：Blaeprints，1s，each Bela Univergal Four（BG，D，Lk， CL，B）
Nucleon Class B Four（SG，D （अG）．Lin，CJ．B）
Fury Hour siuper（SG．SO．D，Pen） Battery Hall－Mark 4 （EF Pcn， D，yush－Puli）．．
＂Acme＂All－Wave 4（HFP Pen，\ddot{D} （Pen），LF，CI．B）
The＂A Adairal Four（HE PCn，
HF Pen．D，Pen（RCD）Pen，
Maxis Operated
Two－Frive ：Blueprints，1s．each． A．C．Twin（D（Pen），Pen）
Selectone A．C．Radiogram Two （D．Pow）
Three－valve ：Bloperints，is，cach Donble－Diode－Trlode Thrce（HI Pen，DDT，Pen）
1）．A．Ace（BG，D，Pen
A．C．Three（3G，П，Yen）
A．O．Leader（H1P Pen，D，Pow）
D．O．Premier（HF Pen，D，Pen）．
Unique（HYPen，D（Yen），Pen）${ }_{2}$

F．J．Caman＇s A．C．All－Wave Silver Souvenir Three（ BH Pen， D, Pen） An Ware，＂A．O．Three（D，2 Th（RC）
A．O． 1936 Sonotone（RF Pen，Xï Pen，Westector，Pea）．．．．．． Mains Record All－Wiave 3 （HE Pen，D，Yen）
Foar－valve：Blaeprints；1s．each． A．C．Fury Four（ $\mathrm{N} . \mathrm{S}, \mathrm{SG}, \mathrm{D}, \mathrm{Ped}$ ） A．C．Fiury Four super（SG，SG， D．Pen）
A． 0^{2} Hall－Mark（HF Pen，D． Push－Pulh
Universal Eudl－Mark（HF Pen，D． SUPERHETS．
Battery sets ：Blucprints，is，each． F5 Superhet（Three valve）
F．J．Cunn＇s 2 －valve Superhet ．． Mains Sets ：Plaeprints，1s．each． A．C． 5 superiet（Threevalve）． 3．C． 85 Superhet（Three－valve）

No of Blueprinl．

PW71＊

$-\quad \mathbf{P}$ perated

－
－PW31A PW85＊ PW93＊

PW76＂

PW10
PW3
PW39

PW49
PWol
PWัる
PWOS
PW61
PW64

PW72＊ PW8e
PW7s
PW84

PW89

1W17
Pश्य3
PW340
－PW83
－PW90
\rightarrow PW18＊
$-\quad$ PW19

PW25 PWYy PW35C＊

\therefore PW54

－PW\％
－PW70
－PW34D
－PW45
－PW47 ${ }^{\frac{1}{2}}$
－PW40

PW43
$-\quad$ PW48

F．J．Camm＇s A．O．Superhet 4 ， －J．Ca 4
het 4
－Qunlitone＊Uni＂ersal \qquad
－Four－valve：Doublesided Blueprint，1s．6d
$\left.\begin{array}{l}\text { Puak Button 4，Battery Model．} \\ \text { Push Button 4，A．O．Maius Model }\end{array}\right\}$－ PWO ${ }^{\circ}$

SHORT－WAVE SETS．Battery Operated．

One－valve ：Bluepriat，Is．
Simple S．W．One－valver．
Two－valye ：Blueprints，is．each．－PW88 Midget Short－wave Two（D，Pen）－PW38A The＂Fileet＂Short－wave Two－PW91＊ Three－vnive ：Blneprints，Is，each． Experimenter＇s Short－wave Three （SG，D，Pow）
－PW30A＊
The Prefect 3 （ $\mathrm{D}, \ddot{2} \mathrm{LF}$（iRC and Trans））
The Band－spread B．W．Three
（HW Pen，D（Pen），Pen）PORTABLE
Three－valve ：Blueprints，is．each． Po Cun ：Bre
Parvo Flyweight Milat Portable Parvo D ，Pen
Four－valve：Blueprint． 18
＂2mp＂Portable 4 （D，LLN LF
MISCELLANEOUS
Blaeprint， 1 s ．
8．W．Converter－Admpter（1 valve）
－PW48A

AMATEUR WIRELESS AND WIRELESS MAGAZINE CRYSTAL SETS．
Blueprints 6 d each
Four－station Crystal set $\rightarrow \quad-\quad$ AW427
$\begin{array}{llll}1984 \\ 100-m i l l e & \text { Crystal Set } & \rightarrow & \cdots \\ \quad & - & \Delta V+44^{2}\end{array}$
STRAIGRT SETS．Battery Operated．
One－valve ：Blueprint，ls．
Two－valvc：Blueprints，1s．each．
Melody hanger Two（D，Trans）．．
Full－volunce Two（SG det．Pen）．
A hiodern Troc－valrer
Biveevalve ：Blaeprints，1s，each． si as．S．G． 3 （SG，D，Trang）．．
Lucerne Ranger（SG，D，Frans）．．
L5 5s Three De Luxe Version
Trasportable Thee（SG＊D，Pen）
Trinsportable The（sim，Den） Evonomy Peatode Three（ $\mathrm{BG}_{\mathrm{B}} \mathrm{D}$ ，
Wen）（i93s standurd Three （SG，D，Pen））
3 3e．Threc（SH：
103 c c6 6s．Battery Three（ sG D．Ped）
－\＆W387
AWS88 AW392

AW419 AW420＊

AW ${ }^{4}$ 45＊ WM271 WH．2
－WM337
－WMS51．
WM130
WM371
－wMise
－wh393
WM306＊
WM400
－AW370
－WM331
－WM350．
－WM382＊
H．M384
WM404＊
－WM320
－WM344
－WM340
茫ains＂Operated．
Tho－valve ；Bineprints，15．each．
Consoelectric Two（D，Pen）A．C．
Economy A．C．Two（1，Trans）A．O
Three－valve ：Blucprints，is，each．
Home Lover＇s New All－Electric
Three（SG，D，Trans）A．C．．．．
Mantovayi A．C．Three（H．F．Pen，
Mantovaui A．C．Three（H．F．Pen， D，Pen）
（HF，D，Pea）
Four－valve ：Blaprints，is．6d．each．
All Metal Four（2 sia，D，Pen）．
Hartis Jubilee Radiogram（HP，
l＇en D，LH，P）－
－AW403
－AW383
－WMt374
－WH401
－W\＄320
－TM386

SPECIAL NOTICE

THESE blueprints are drawn full size．The issues containing descriptions of these sets are now out of print．but an asterisk beside the blueprint number denotes that con－ structional details
with the blueprint．
The index letters which precede the Blueprint Number indicates the per－ iodical in which the description appears： Thus P．W．refers to PRACTICAL WIRELESS A．W．to Amateur Wireless， W．M．to Wireless Magazine．
Send（preferably）a postal order to cover the cost of the Blueprint （stamps over 6 d ，unacceptable）to PRACTICAL WIRGLESS Blueprint Dept．，，George Newnes，Ltd．，Trower House，Southampton ．Street，＇Strand， W．c．2．

SUPERHETS

Ballery Sets ：Biueprints，1s．68，caoh．
＂Varsity Four $\quad . \quad \omega \quad$－
W Mร95＊
The Requcst All－Waver ：＂
W 11407
Mains Sets ：Blueprints，1s，cach，－WM0．
HeqLode Super Three A．C．
PORTABLES
Fonr－valve：Blaeprints，1s．6d．each．
Holiday Portable（SG，D，LN，
Clis Portable（सw D，RO，

Tyers Portable（SG，D， 2 Trans）
SHORT-WAVE SETS Battery Operated

One－valve ：Blueprints，18，each．
S．W．One－vulver for America－－AW429＊
Ronge Elort－Waver ．．．－
Two－valve ：Blueprints，ls，each．
ULTra－short Battery Two（SG，det－WM402＊

Threevalve：Blueprints， 1 s ．each，
Experimenter＇s 5－1actre Set（D，
Trans，Super－regen）＊＊（BG，
The Carnier Short－waver（BG，
－Aw 438
D，P．）$\cdots \quad \cdots \quad \cdots \quad \cdots \quad+$
Fonr－valve：Blueprints，Is．Ed，eaoh．
A．Wh．Short－wave Wond－vater
（HF，Pen，D，RC，Trans）\quad AW 436
Standird Four－valver short－waver

Superhet ；Blueprint，1s．6d．
Simplified Short－wave Super ．．－WM387
Mains Operated
Two－valve ：Blueprinis，1s，each．
Two－valve Maina Short－water（D，
Ped）A．C．
－4W453
Three－valve ：Bloeprints， $1 s$.

Four－valve ：Blueprints，1s． 8 d ．
Standad Four－valve A．C．Short． waver（SG，D，RC，Traus）\rightarrow

- WM391＊

MISCELLANEOTS
E．W．One－valye Converier（Price
6d．）
Inthualast＇s Power Anplifer（1／6）
Listencr＇⿴囗－watt A．C．Aruplifier
Radio Unit（2v．）for WM392（ $1 /$－）．－WM392＊
Harris Electrogran battery am－
plifier（lif）
De Luxe Concert A．C．Bleotro＊－WM 403°
New Style Short－wave Adapter

Short－wave Alapter（1／－）－WM388
B．L．D．L．C．Short－wave Converter
$(1 /-)$
$\cdots \quad$－WM40．
Wilson Tone Master（1／－）WM406

The W．M．A．C．Short－wave Con－
verter $(1 / j)$$\rightarrow$ WHwos．

FREE ADUIGE COUPON

This coupon is available uncil October
Ilth，1943，and muse aecompany all
Queries and Hin：s．
PRACTICAL WIRELESS，OCT．，1943．
 \title{

}
 \title{

}

HAVE YOU HAD YOUR COPY OF "EMGMEERMIGO OPPPOTUUNTIIIE"?

Whatever your age or experience-whether you are one of the "old school" or a newcomet to Engineering anxious to hold your position in the more difficult days of peace-you must read this highly informative guide to the best paid Engineering posts.
The Handbook contains among other intensely interesting matter, particulars of B.Sc., A.M.I.C.E., A.M.I.Mech.E., A.M.I.E.E., A.M.I.A.E., A.M.I.P.E., A.M.Brit.I.R.E., CITY \& GUILDS, CIVIL SERVICE, and other iniportant Enginecring Examinations, outlines courses in all branches of CIVIL, MECHANICAL, ELECTRICAL, AUTOMOBILE, RADIO, TELEVISION, AERONAUTICAL and PRODUCTION ENGINEERING, GOVERNMENT EMPLOYMENT, BUILDING (ihe great after-war career), R.A.F. MATHEMATICS, MATRICULATION, etc., and explains the unique advantages of our Employment Department.

WE DEFINTEEY GUARANTEE 'NO PASS - NO FEE'

If you are earning less than $£ 10$ a week you cannot afford to miss reading "ENGINEERINC OPPORTUNITIES"; it tells you everything you want to know to make your future secure and describes many chances you are now missing. In your own interest we advise you to write for your copy of this enlightening guide to well-paid posts NOW-FREE and without obligation.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 409, SHAKESPEARE HOUSE, 17 , $18 \& 19$, STRATFORD PLACE, LONDON, W.I.
THE BIIE.T. IS THE LEADING INSTHUTE OF ITS KIND IN THE WORLD

74 RANGE UNIVERSAL TAYILOMMEEER!

Combining a very wide range of measurements with high sensitivity and accuracy.
Self-contained A.C. and D.C. Voit ranges available up to 5.000 voles.
A.C. and D.C. Current ranges from $50 \mu \mathrm{~A}$ to 10 Amperes full scale.
Resistance measurements from 0.1 ohms to 50 Megohms with internal batteries.
Capacity and Inductance measurements can be made with special adaptor.
Some delay in delivery is unavoidable, but every effort is being made to meet Trade requirements. Nett Price
MODEL 83a (4,000 ohms per wolt A.C. and D.C:) 15 gns. MODEL 83 C - ($20,000 \mathrm{ohms}$ per roit A.C. and D.C.) 19 gas .

TAYLOR ELECTRICAL INSTRUMENTS LIMITED MONTROSE AVENUE SLOUGH: BUCKS

[^0]: A good example of the construction of a ivpical mains transformer.

