EVERY MONTH
Vol, XIX. No. 447.

# The* "Dangers" of Radio 

WTHIN the past two months two people have been killed while making adjustments to wireless receivers. It followed as a natural corollary that the daily press gave prominence to these two incidents. We do not think it was their intention to frighten people, and the general public can take consolation from the thought that sereral million wireless sets are in use in this country for severat hours every day and therefore the risk of accident is extremely small. However, tivo people have been killed, and these tragedies draw attention to the old adage that a little knowledge is a dangerous thing, especially when that little knowledge is applied to what can be a dangerous thing.
Now, a wireless set is in no sense more dangerous than a mangle, a bicycle, a motor-car, a motor-bicycle, a mincing machine, an electric clock or even a vacuum cleaner. Certain precautions must be taken with every piece of apparatus we use. Millions of men shave every day with a razor, but we have not yet heard of anyone accidentally cutting his throat. So the daily newspapers, applying the principle that man bites dog is news, seizes upon these two isolated cases, inakes scare headlipes of them, and succeeds in creating a mild panic among a certain section of the public.

If you are uncertain of the subject it is unwise to tatnper with a mains receiver, especially receivers of the A.C. 1 D.C. type, where the chassis is often considerably above mains potential and can provide a shock at a pressure of 600 volts or so. Even when the set is switched off quite a nasty shock can be obtained froun the higher capacity fixed condensers unless these are carefully discharged by shorting the terminals with a screwdriver.

In certain circumstances it is necessary to have the set switched on in order to locate a fault, and in such cases insulated pliers, long screwdrivers with insulated handles, and a pair of rubber gloves remove all possibility of shock to the person making the adjustment.
The newspaper reports may possibly have the effeot of deterring a number of people from tampering with that which they do not understand, and this may benefit service engineers. During the war the number of skilled service engineers remaining in business is extremely small, and members of the public who have no wish to service their own receivers, provided that they can place the receiver in tize hands of a reliable man, have -sen compelled to undertake the awn repairs because of the unsa fisfactory position of professional scrviciag. Some, indeed; of those posing as radio engineers (save the mark!) have been found to ofe thoroughly dishonest. In one case recently brought before the Plymquth City Magistrate, a radio repairer was charged with having in the course of


I8 months stolen and sold over 12 radio sets belonging to customers. The police gave evidence that he had sold 81 of his customers' sets valued at $f 1,288$ Ios., component parts valued at $£ 197$ 195., and other poperty entrusted to fim for repair to the value of $\mathrm{f}_{0} \mathrm{r} 7817 \mathrm{~s} .5 \mathrm{~d}$. When enquiries were made by customers or the police, the man concerned rebought some of the sets so that he could satisfy customers that he still had them in his possession. His excuse was that he could not obtain spare parts, and that the set had not been repaired. Only 12 of the 8 r sets were in working order when recovered, as they had been stripped, and certain expensive components were lacking. For his pains he is-now serving a sentence of 12 months-one month on each of the 12 charges.

Those who do not understand radio and in these circumstances are compelled to service their own receivers, should at least study an elementary texthook on radio and fault finding, such as those published from the offices of this journal, and thus ensure not only a satisfactory repair but, that such repair is carried out without risk to themselves.

## Electrical Industrie Red Cross Appeal

$T$ HE donations to date have passed the $£ 6,000$ mark. The following letter has recently been issued: "The Electrical Industries Red Cross "Fxecutive Committee, after careful consideratiort, do not propose to seek a succepsor to the late Lord Hirst as chairman of the combined appeal of the British. Electrical Industries, believing that the chairman would have desired the campaign to continue without interruption.
"In his appeal, dated Tanuary 14th, 1943, Lord Hirst said : 'The object for which these funds are needed must commend itself to all of us.' 'All of us.'
"We must be frand: the appeal was addressed to 5,500 electrical firms and undertakings; 236 responded. 130 liave presented donations totalling $£ 5,886$. 100 have signed the covenant for amounts aggregating $£ 8,8$ or per annum.
"So far so good-but only so far.
"The comunittee is convinced that this great industry will do vastly better. They ask most earnestly-for immediate reconsideration in those cases where response to the first appeal was de-ferred-forimmediate consideration,
"Both the Electrical Industrics Committee and the Red Cross Organisation, will be grateful for any contributions, large or snall, butmuch more important-the sich; the wounded and the lonely prisoners of war will be grateful.
"In our first appeal it was said: 'It is nothing less than our duty to support this great effort '-it might well have been "our privilege."

## ROUND THE पैORID OF WIRELESS <br> Photo facsimile Service <br> Radio in a Wadi

WITH the opening of the new photo-facsimile service between London and Cape Town, cable and wircless now has direct connections with seven cities for this radio-picture service. . They are: Moscow, Melbourne, San Francisco, New York, Buenos-Aires, Cairo and Cape Town. New equipment is also to be installed at Bombay and Montreal.

Television in the U.S.A.

ALTHOUGH television in this country has been at a standstill since 1939, a bulletin rerently received from the Anerican G.E.C. shows that television transmission services for the American public are being continued. The Americans, while still able to maintain their television services, are experimenting with a view to discovering the ideal inaterial for television.

## Spare Parts Shortage

THA T bad distribution was the canse of the shortage of service spares. such as some types of valves and electrolytic condensers, was the opinion expressed at a recent council mecting of the Radio and Television Retailers Association. It was stated that complaints were being received daily from mernbers, and the number of receivers held up for repair, on account of the shortage was increasing. During the chiscussion it was also stated that persons who had no previous radio business appeared to be able to obtain supplies, while the established trade had smaller quantities, or sometimes none. The matter was considered of extreme importance. and varions suggestions were made to enable the secretary to do everything posssible to assist bena fide traders.

## Behind the Lines in Burma

INthe early montis of 19-13, when the frrst "long range penetration group" drove far into the heart of Japanesesccupied Burna, behind the enemy's lines, radio was the only means of communication. The iflustration on this page shows a signal sertion at work.

## Radio Barrage

$W^{E}$ understand that German forces on the Continent arc now being subjected to a nine-hour daily radio barrage be the Allies.

One of the most powerful Allied wireless stations, the "Voice of the United Nations," which is broadcasting from ircently liberated Erench North Africa, has started a new service in German, particulan'y intended for German occupation troops in France.

## New Static Eliminator

ACOMPACT static eliminator, clesigned so that it can be adapted to any radio set, has been perfected in the Gooclyear researcli laboratory at Akron. The new device, it is claimed, subdues static to a point where it no longer interieres with reception, and is expected to find immediate application on aircraft, warships and Aruny vehicles of all kinds.

THE B.B.C. has for some wecks broadcast a series of Salute" programmes to the Fighting Forces in the Middle East. Jach programme is dedicated to a well-known regiment and in many iustances the band of the regiment plays the musical tribates. One such programme was devoted to the Grenadier Guarls. In response to it, the following Ictter was sent to the conductor by an officer of one battalion :

I must take this opportunity of thanking you on behalf of us all for the excellent programme you put over to the Grenadiers in Africa in your recent broadeast.


The sole communication betucen the colhinns which penetrated inio Burma behind the enemy's lines, and nith the hosis, was by radio. Here is the signal section of the R.A.F. aflached to a column, al work.
"There enviromment amid which I am writing this (a rather derp hole in Tunisia), does not make for comfort or happiness, but $I$ shall never forget the expression on the faces of "B" Erhelon as they sat àround a receiver we managed to achieve and listeacd to the band of the regiment. The setting was gool, no battles were in progress and one felt fairly safe in gathering a group ius a little olive grove behind a slopecta a wadi and letting then listen to yon broadeastine frou home.
I made up my mind then I would write ind let you know personally low much it wis enjoyed and what a kick it gave to everyone.
' Life is full of interests and excitements out here now, but as we steadily pushi on we feel we are getting nearer to the day when once again we shall have the honour of marching behind the band which it is your privilege in conduct and direct. . . ."

## Proms. Break Records

THE first fortnight of the forty-ninth season of Promenade concerts broke all attendance recordsr An average of 5,000 people flocked to the Albert Hall nightly, and the sight of the vast audience was one of the most impressive in London. The splash of colour of the women's summer dresses; the floor packed with enthusiasts; eager music-lovers in the high gallery and top balcony; ambassadors and distinguished visitors in the boxes.
On June ${ }^{23 r d}$ the Queen and Princess Elizabeth went to the Bach-Handel concert. At the Russian concert on July ist the Russian Ambassador and Madame Maisky were present.

## Internalional Touch

$\mathbf{E}^{1}$ERY night large numbers of men and women from the Forces, ours and those of our Allies, were drawn to the Albert Hall by the spell of great music, and the variegated uniforms addecl an internationa Itouch to the scene.
Familiar faces are seen night after night ; many old habitués of the Quieen's Hall are still faithful, but there was a growing number of newcomers, for in the mainand certainly in the popular-priced seats and on the "Promenade" proper-the audience was predominantly youthful. This is the source and secret of the vitality of this phenomenal institution. Year after year, retaining the friends of the past, it is renewed by the younger generation, who discover the beauties of the great masters' works and pass on their faith and love to those who follow them.

## B.B.C. Calling the Forces

$\mathbf{M}^{\mathrm{E}}$EN and women on active service whether in China, Burma, Iraq, North and W'est Africa, Canada, or anywhere else, are now able to hear broadcasts from London during $12 \frac{3}{3}$ hours of the day.

The wavelengths of some of the new services are as follow:

North Africa and Gibraltar: $25.15 \mathrm{~m} ., 25.29 \mathrm{~m}$., 42.46 m .

West Africa: $16.84 \mathrm{~m} ., 25.29 \mathrm{~m} ., 3 \mathrm{I} .25 \mathrm{~m}$.
Near East and Eastern Mediterranean : 16.79 m ., 19.82 m ., 31.55 m .

Burma: 19.42 m., 25.53 m. 3 I .55 m .

India; Persia, Iraq: 16.84 m., 19.82 m ., 25.68 m ., 24.92 m ., 19.60 m .

## Radio "Repeats"

$I^{\text {N }}$future, the pick of the B.B.C. programmes will be broadcast twicc. Plays, features, variety, or musical productions "may each be selected for " Repeat Performance," which are now heard on each Tuesday in the Home Service. Items will be chosen for second hearing on the basis of listeners' reactions, coupled with the programme directors' views.

## Change of Address

$\mathrm{A}^{\mathrm{s}}$from July 7th 1943 , the address of the Incorporated Radio Society of Great Britain is changed to New Ruskin House, Little Russell Street, London, W.c.r.

## Localing the Bombed by Radio

$I^{T}$is reported that South Coast town rescue parties are using a novel device for locating bomb victims. The equipment consists of a compact frame, with two batteries, earphones, and a loudspeaker. Two victims were buried 6 ft . under a pile of debris in a bombed street, and with this apparatus they were detected. The first victim tapped lightly with a pencil and was traced immediately; the other, breathing heavily, was found in five minutes.

## Aulomatic SOS Signals

PATrolling aircraft of Coastal Command are now dropping portable' SOS transmitters in buoyant bags to shipwrecked seamen. The apparatus is about the size of a small coffee mill, and transmits a continuous SOS signal when the handle is turned. The apparatus was recently instrumental in locating, after five days, a lifeboat containing 19 survivors, which, due to bad weather, had been lost by the patrolling aircraft.

## New Pacific Station

WE understand that a new international short-wave broadcasting station is being erected near San Francisco. The power will be 50 kW , and the station will operate on the following frequencies, which will be shared with stations WBOS and W KID : 6.06, 7.23, 9.57, II.87, $15.29,17.76$ and $21.61 \mathrm{mc} / \mathrm{s}$.

## Japanese Transmitters

AN article in a German journal of recent date reviewing the expansion of broadcasting in the Far East, stated that Japan now operates more than 50 stations, with a total power of over, 400 kW . Many of these stations are in occupied countries.

## U.S. Radio Black-out

T T is reported that during air-raid alerts on the west coast of America a radio silence is now observed:


Interior of the wirelesscar which kecps in touch with the Taclical Air Force.
A. Medium and Shoriwave Receiver for Those Who Wish to Make Their Own Coils and Reduce Upkeep Costs. By JOHN JAY

THIS battery-operated straight-three receiver is unusual as it has A.V.C., and gives reasonable loudspeaker strength with 60 volts for H.T., the total H.T. consumption being only 4 mAs (approximately) under signal conditions. The measured range of the receiver is $200-515$ metres on the ML.IT. band

## Constructional Details

Figs. 2, 3, 4,5 añ 6 show the general constructional details, position of conujonents, wiring, etr. It will be understood that a certain degree of flexibility exists to enable the eonstructor to suit his own requirements, i.c., whether he requires a "midget" receiver; the
 type of components avail-
able; whether the speaker, power supplies and chassis are to be fitted into a cabinet, etc. For the reasons given, changes in design may be made, but coustiuctors are adrised to adhere to the following points: Place the wavechange switch and coils as close together as possible to reduce the length of connections, and lieen all connentions to the R.F. amplificr anode ind grid circuits, reaction and detector circuits as short as possible.

Note that $\mathrm{C}_{4}$ must be connccted across the points shown in Fig. 1, to prevent the use of a high resistance path for the anode tuned circuit and thus to in
the receiver's stability.
The size of Cr , the series aerial condenser, depends upon several variable factors, such as the proximity of the receiver to broarlcasting and $19-50$ metres on the S.W. section. The circuit diagram is shown in Fig. I.

The use of only one set of coils. and one tuning condenser is made possible by an aperiodic acrial circuit directly coupled to the R.F. amplifier input. The reaction coutrol has proved to be quite smooth over the entire range of the receiver.
The R.F., amplifier is coupled to the detector's input via a 50 mmfd . condenser, which gives a considerable degrec of selectivity.

Leaky or cumulative grid detection is employed, the biasing voltage from the detector being fed via a $2 \mathrm{M} \cap \mathrm{re}-$ sistor to the grid/filament circuit of the R.F. amplifier to give a measure of A.V.C. The anode circuit of the detector is resistance-capacity coupled to the output-beam tetrode, which is tone-compensated by the use of a 150 mmfcl. condenser across its input. Antomatic bias is provided for the ontput valve. * Decoupling of the biasing resistor and the H.T. supply is achieved by the use of a condenser of 2 mfd . minimum capacity; an 8 mfd 150 volt working electrolytic condenser would be quite satisfactory here.

A $0.25 \mathrm{M} \Omega$ resistor for a grid stopper ensures that little R.F., feed to the output valve occurs.


Fig. 2.-Underside of chassis showing wiring, etc.


Fig. 4 (left).-Chassis and pancl dimensions. Fig. 5 (above).Constructional details of the coils and H.F. chake.
the frequency range of the receiver, and is clesigued with this point in view.

If it is possible to obtain suitable commercial coils of the dimensions required, the constructor is advised to do so, in as much that the efficiency of the coils is of extreme importance.
lengith by $\frac{1}{2}$ in. in diameter, each tuning coil having a tuning and reaction winding.
The shortwave coil, Fig. 5 (a), consists of 15 close turns of 24 S.W.G. enamelled wire for the tuning winding, with 9 turns of 38 S.W.G. double-silk-covered (D.S.C.) wire wound close to it for the reaction winding.

## Switching

On-off and wavechange switeling are achieved by the use of an Oak or Yaxley type switch, details of which are shown in Figs. $6(\mathrm{a})$ and (b). It can be seen from the illustration that four single-pole, three-position switches are irequived, if all switching operations are to be achicved with one control.

## Scale Arrangements

A clear, accurate scale may be constructed from a piece of ivorine, ruled with lines by means of a sharp metal point and a steel ruler; if indian ink is rubbed into the grooves formed, clear, permanent markings are produced.
The pointer may be made from a piece of thick celluloid shaped as shown in Fig. 4, and having an indian ink-filled groove down its centre. to act as a reference line.

If a suitable slow-motion drive or $\mathrm{S} / \mathrm{M}$ dial is to hand, it can, of course, be fitted, and thus improve the appearance of the panel and simplify tuning. Provided a

The medium-wave coil, Fig. 5(b), consists of 120 turns of 38 S.W.G. D.S.C. wire for tuning with $15-20$ turns of 38 S.W.G. D.S.C. wire for reaction.

The number of turns for the reaction windings may have to be increased or decreased to allow for slightly different capacities that the reaction circuit may have. The ends of the windings are soldered to pieces of stiff wire fixed to the coil former as shown in Fig. 5(d).

The high-frequency choke (H.F.C.) consists of approximatelv goo turns of 38 S.W.G. D.C.C. wound in three banks upon a wooden former $\sin$. by $\frac{1}{2}$ in. diameter, as shown in Fig. 5(c)

The H.F.C. together with the aerial capacity nust not resonate within

 variable condenser is not substituted for C.I, it will not be a difficult matter to calibrate the tuning dial in wavelengths, or, at least, with the names of the stations most likely to be receivad.


Fig. 3.-Plan oiew of chassis. Note location of coils and switch.

## A Portable Record



MANY designs have been published for amplifiers for use with a piek-up, but these usually entail the use of two or, more often, threc units-(I) pick-up and turntable, (2) amplifier and (3) loudspeaker. This, however, is not aliways convenicut, as it is somewhat cumbersome; thercfore, with a view to combining the three component parts in one unit, the following design was produced.
The amplifier is not pretentious, but it gives enough output to fill quite a large room. The main problems involved were hum and obtaining correct tracking for the pick-up in a spall space.

Considering the amplifier design, it will be seen to be quite orthodox (Fig. I). The first valve is a general-purpose triode, a Nazda $A C_{2} / 4 \mathrm{~L}$, and its input is talsen from the moving arm of a half megoln potentiometer. The anode current of this valve is 2.5 mA , and - it requires a bias of r.2v.-but satisfactory results were obtained with a bias resistor of 1,000 ?, with which a $25 \mu \mathrm{~F}$ electrolytic condenser was used for by-passing. The makers specify an anode load of $50,000 \Omega$, the anode circuit being decoupled by a $0.2 \mu \mathrm{~F}$ condenser and a 20,000 n resistor. This may secm inadequate at first, but these values have proved satisfactory. If, however, instability is experienced, increase the value of the. condenser.

In order to save space ${ }_{2}$ resistance-capacity coupling is used to link the two valves, It has been said that the values of coupling condensers and resistors should be calculated from the following time constant :
$C \times R=.005$,
where the values are expressed in micro-farad's and megohns, but, by experiment, using a . $5 \mathrm{M} . \Omega$ resistor, it was found that a . $05 \mu \mathrm{~F}$ was a most suitable value


Fig. 1.-Theoretical circuil diagram.

The primary of the output transformer gives an inductive load for the output valve. The choice of transformer depends upon two things: (x) the optimum anode load of the output valve; (z) the impedance of the-loudspeaker.

The optimum anocle load for a Pen 45 is $5,200 \Omega$, and the sin. Rola speaker used has a 3 ohin. speech coil, so the output transformer ratio is :-

$$
T=\sqrt{\frac{5200}{3}}=\sqrt{2733.3}=41.62
$$

A ratio of $40: I$ is therefore required, but this would have to be changed if a different valve or speaker is used.

Full wave valve rectification with a transformer is used in the power pack. The transformer has a 230 v . input, with an output of $350-0-350$ volts at 120 mA 's; $4 \mathrm{~V}, \mathrm{IA}$ and 4 V , 2A. With this a Mullard I W4/350 was used. This is an indirectly heated full wave rectifier, giving 120 mA . maximum output.

## Smoothing

Smoothing is carried out by the two electrolytic condensers of $8 \mu \mathrm{~F}$ and $\mathrm{I} 6 \mu \mathrm{~F}$, in conjunction with the energising field of an old speaker which serves the purpose of an L.IF choke. This gives a financial gain, if you have such a component to hand, and, as the D.C. resistance of a speaker field is round about 3,000 2 , it will drop the H.T. supply to a value suitable for the valve anodes.

Owing to the closeness of the components, bad 50 cycle hum was at first encountered. The usual dodges of earthing one side of the heaters, earthing the mains and output transformer chassis, and the motor and turntable were tried. but all without a major success. Evehtually the trouble was overcome by mounting an H.F. choke over the output transformer, with a resistor of 2,000 ? in series, so as not to reduce the volume too much. This feerls back the 50 cycle hum out of phase with that present at the grid of the first valve,

Output Trans. with H.F. Choke above,


Fig. 2.-Plan view of the record amplifier, showing layout of components.


A view of the amplifier with turntable and values removed.
so that one cancels oilt the other. These two components are wired in parallel with the pick-up coil, but keep those grid leads short and don't forget to screen them.

## Mounting Components

The mounting of the components is clearly seen in Fig. 2 and photographs, but variations may be tried to suit your pick-up or cabinet. If the pick-up is mounted in the orthodox way, it will sweep over the amplifier chassis, which is the only area shallow enough to leave housing for the loudspeaker above when the lid of the cabinet is closed. In order to leave this space free, the pick-up is mounted in the front of the cabinet without interfering with the correct tracking of the particular type in use.

Although a 5 in. Rola speaker is used, a larger model would be an improvement if space permits. There is enough spare room for several accessories, such as a smalk wire hook mounted next to the rectifier (see photograph (3)) so that the pick-up can be held in position by a rubber band or spring when the . cabinet is being carried, and a clip for a needle-case, velvet polisher, etc.

## LIST OF COMPONENTS

One gramophone cabinet, motor and turntable.
One gramophone pick-up.
One Mazda AC2/4L.
One Mazda Pen 45.
One Mullard IW4/350.
One potentiometer . 5 megohm.
One fixed resistor $1,000 \Omega$.
One fixed resistor $20,000 \Omega$
One fixed resistor $50,000 \Omega$.
One fixed resistor $0.5 \mathrm{M} \Omega$.
One fixed resistor $250 \Omega$
One fixed resistor $5,000 \Omega$
One fixed resistor $2,000 \Omega$.
Two fixed condensers $25 \mu F$ electrolytic.
One fixed condenser $16 \mu \mathrm{~F} \div 8 / \mu \mathrm{F}$ electrolytic.
One fixed condenser $0.2 \mu \mathrm{~F}$.
One fixed condenser $0.5 \mu F$.
One fixed condenser $0.05 \mu F$.
One speaker field (D.C. resistance $3,000 \Omega$ approx).
One H.F. choke ( $200-2,0 \rho 0$ metres).
One mains transformer.
One five-pin valveholder.
One four-pin valvehoider.
One Mazda octal valveholder.
One 5 in. PM MC Rola speaker.
One Outpat transformer, $40: 1$.
One Chassis cut to fit cabinet.
One reel of tinned copper wire.
Three coils of systoflex.
One length of braided screening cable.
Nuts, bolts, wood screws, brackets, etc.

# Frequency Modulation-3 

FM Reçeiver : The Limiter and the Discriminator are Discussed in this Article

By F. E. SCALES, Assoc.Brit.I.R.E.

(Continued from pagye 359, August issue.)

IT the previous article we have discussed the operation of the "Reactance Modulator," and the method by which it enables FMI transmissions to be produced. The circuit given would need a little modification in actual practice for satisfactory results. In the first place, although it is highly desirable that the frequency should vary, it obviously should only vary when modulating yoltages are applied. There are, unfortunately, other possible causes of frequency variation, and these must be eliminated as far as possible.

The usual precautions must le taken in the design of the components used in the oscillator, so that temperature variations etc., do not cause any appreciable change in the frequency of the oscillations. Also, it is much easier to design a stable oscillator to work on a fairly low frequency, and this is another reason why the oscillator will normally be working on a lower frequency than the final output frequicncy, and will be followed by frequency multiplier stages.
The H.T. supply on any oscillator has a marked effect on the frequency of the oscillations, and any fluctuations in the anode voltage will produce corresponding variations in frequency. Therefore, it is customary to stabilise the H.T. supply as far as possible, and in the simplest transmitters this is accomplished by connecting a neon stabilising valve between H.T. positive and H.T. negative where they are connected to the oscillator. (This is shown in Fig. 1.) In more elaborate transmitters, a separate crystal oscillator is employed in addition to the normal nscillator, and both are mixed together in such a way that if the main oscillatorfrequency drifts away from the crystal oscillator frequency, a bias is produced which is applied to the reactance morlulator valve, and brings the oscillator back on frequency rather in the manner of an antonatic tuning control.
The remaincer of the transmitter will, more or less, follow normal lines, the only provision being that the
response of the amplifier tuned circuits should be flat enough to give equal amplification over the range of frequencies through which the cartier deviates.

In some cases a device is inclurled to prevent any changes in carrier amplitude resulting when modulation is applied, since it is difficult to design a modulator that does not introduce some amplitude variation when the frequency of the oscillator is varied.

## The Transmitter

The complete circuit of a simple transmitter is shown in Fig. I . $\mathrm{V}_{2}$ is a normal Hartley oscillator operating on a frequency of $13 \mathrm{mc} / \mathrm{s}$. The morlulated output of this stage is applied to a frequency trebler valve $V_{3}$, leak and condenser bias being provided. If the values of these components are chosen correctly, the valve will be biased beyond cut-off when in operation, and the desired harmonics produced. A fixed class $C$ bias

Fis. 2.-Block diagram of a tubical FM receiver.

could be used as an alternative. The anode circuit of this valve $\left(V_{3}\right)$ will be tuned to $39 \mathrm{mc} / \mathrm{s}$, which in this case is the final frequency. A higher frequency could be oblained by the use of additional frequency multiplying stages. The last valve ( $\mathrm{V}_{\mathrm{A}}$ ) is the power output stage and will be conpled to a suitable aerial system.

Nodulation is effected by means of a reactance modulator valve (VI) and the circuit is similar to that already rlescribed. In order to obtain sufficient audio frequency voltage, a carbon microphone will be used in this particular case. Additional A.F. amplification would be required if a crystal or other low-sensitivity microphone were used.


Fig. 1.- The theoretical arrangement of the transmitter showing the voltage stabiliser across the oscillator's H.T. lead.

## The Frequency Modulation Receiver

Having discussed the production of FM signals, it now remains to be seen what type of apparatns is necessary in order to receive these signals. It will be fairly clear that the essential chiference between a FM receiver and an AM receiver will be in the detecting system. The remainder of the receiver wilt more or less follow the same lines as in the All recciver. The first stage of the receiver, which will be of the superhet type, will be the RF a mplifier, frequency changer, and intermediate frequency amplifier stages. Provided that these stages will give equal amplification for all frequencies through which the carrier deviates, they ean follow norinal practice. To ensure sufficient band-pass in the IF stages, the tuned circuits will be damped by means of resistances connected in parallel with them, or by using tightly coupled IF transformers.

It should be noted that when the carrier frequency is reduced tó an intermediate frequency by means of the frequency changer, the frequency deviation remains the sane.

Following the last IF stage, there is an addulional stage not found in AM receivers. It is known as the limiter, and its purpose is to suppress any amplitude variations that may be present on the carrier. These amplitude variations may be caused by heterodynes or external noise or any other type of interference, and it is essential that the signal applied to the "detector" (or "discriminator" as it is called), should be of constant amplitude.


Fig. 5.-Circuit of amplitude discriminator.
Following the limiter is the discriminator stage, and then the AF and output stages, as usual. Fig. 2 illustrates a block diagram of a typical receiver.

## The Linniter

A pentode valve is normally employed in the limiter stage, and the valve is operated with much lower anode and screen voltages than normally. This will so affect the mutual characteristic of the valve that only a small amount of negative bias is sufficient to reach cut-off point and prevent the valve condurting. There is no bias applied to the control grid of the limiter valve, a condenser and leak being used instead, so that the circuit very much resembles a leaky grid detectorin fact, the operation of the limiter is very similar to that of a leaky grid detector. Whatever the amplitude of the input voltage, if the values of the leab and condenser are chosen correctly, the grid voltage will only swing sufficiently positive to allow grid current to flow and charge the condenser. The actual variation in input signal amplitude will vary only the amount by
which the grid voltage goes negative, as in the lealiy grid detector.

However, since only a small negative grid voltage is required to cut the valve off, these variations in amplitude will be past cut-off and will thereforc lave no effect on the amplitude of the anode current variations, which will remain constant.
This limiting will tend to reduce interference due to internal noise, and will also prevent any amplitude variations caused by external noise reaching the discriminator. These noises will, howerer, introduce phase changes, as previously explained, but these will not produce so great an output as they would in an AM reeiver.

Fig. 3 illustrates a simple limiter circuit, R and C being the leak and condenser respectively. Tn both anode and grid circuits there is a tuned circuit tuned to the intermediate frequency.

## The Discriminator

The only remaining stage in the receiver to be


Fig. 6.-The arrangement of a phase diseriminalor circuit.
discussed is the discriminator stage. This is, of course, the most important stage in the receiver, since it has to convert frequency variations into audio frequency (amplitude) variations.

Now it should be clear that if an FM signal were applied to an ordinary detector, no AF output would result, since the detector only responds to amplitude variations, and if a constant amplitude were applied there would be no output even though the carrier frequency might vary considerably.

What is required is a device that responds to changes of frequency, and, furthermore, responds faithfully to these changes of frequency, i.e., no distortion is introduced. We can plot the characteristic that we desire to obtain, showing AF volts output against frequency deviation, and in the ideal case it would appear as in Fig. 4.


A carrier-wave whose frequency varied as shown at A would prorluce an $A F$ output as shown at $B$, which, in this case, is a perfect reproduction.

We now have to lind a device that has a characteristic similar to the one shown. It will be remembered that a tuned circuit has a response curve, a portion of which is similar to the characteristic shown. As the frequency of a voltage applied to a tuned circuit is decreased below the resnnant frequency of the tuned circuit, the response or circuit magnification of the circuit will fall off, until, if the frequency is sufficiently far removed from the resonant frequency, no magnification takes place at all. Thus variation of frequency produces a variation of output.

## Amplitude Discriminator

One practical type of discriminator, known as the amplitude cliscriminator, uses this principle, employing tivo tuned circuits. The atrangement is shown in Fig. 5. C is the primary circuit of an IF transformer, and it will be connected in the anole circuit of the limiter valve, already described, and will be tuned to the $I F$ (i.e., the mean frequency about which the IF deviates). This circuit will have to be flatly tuned, so that when the IF deviates the voltage induced in the secondary circuits remains constant.

There are two secondary circuits ( A and B ), one tuned to a higher frequency than the IF, and the other tuned to a lower frequency than the IF. They must both be mistuned by the same amount.

When the carrier is unmorlulated, the IF will remain constant at a frequency midway between the resonant frequency of the two tuned circuits. Equal voltages will be developed across both tuned circuits. These voltages, when rectified, will produce DC voltages across Rx and $\mathrm{R}_{2}$ which will be equal, and since the output is taken from the extreme ends of these resistances ( X and Y ), no output vollage will result because the two voltages are in opposition.

If, however, the carrier is modulated, a different effect is observed.' Supposing the IF increases, so that
it becomes nearer the resonant frequency of the tuned circuit A-at the same time it will move farther away from the resonant frequency of tuned circuit 13. Hence, more voltage, will be developed across A and less across B. Therefore, the rectified voltage across Rr will be greater thian that across $\mathrm{R}_{2}$, aml some output voltage will result. This output vollage is the differeace between the voltages across RI and R 2 , and in this case it will be positive at $X$ and negative at $\mathcal{Y}$.

The IF will gradually decrease, with consequent fald in output, until it deviates below its normal valué with the result that more voltage is developed across tuned. sircuit B than across tuned circuit A , and therefore a greater voltage across Rz than across R1. The output; which will be the difference between the 1 wo voltages, will now be reversed, i.e., negative at $X$ and positive at Y. Thus, if the In deviates at audio-frequency, $A F$ output will be developed across XI and can be amplified in the normal manner.

It is essential that the IF should not deviate to such an extent that the frequency reaches the resonant frequency of $\mathbf{A}$ or $\mathbf{B}$, or it would introduce distortion. The tuned circuits would normally be designed to handle the largest irequency deviation likely to be received.
Another type of discrininator, known as the phase discriminator, is shown in Fig. 6. A and $B$ are the primary and secondary windings of an IF transformer, both of them being tuned to the normal IF. The inductance $B$ is centre-tapped and connected via an RF choke to the centre-point of $\mathrm{RI}_{\mathrm{I}}$ and $\mathrm{R}_{2}$. In addition to incluctive coupling between the two sircuits there is also capacitive coupling via $\mathrm{C}_{3}$.
The action is too complicated for explanation here, but it may be stated that due to the phase changes produced by inductively coupled circuits, a voltage is prorluced acinss the RF chole, due partly to the voltage across haif the secondary and partly to the condenser $\mathrm{C}_{3}$, giving a response curve very similar to that of the amplitude discriminator. AF voltages will be developed across XY and amplified as usual.
(To be continued.)

## An Unusual Fault

0NE of those least expected faults was experienced the other day, when a commercial A.C. operated receiver was under test. While admitting that the actual trouble was, in itself, quite simple, its nature was such that many valuable minutes were wasted before it was finally located.

When the receiver was switched on, it soon hecame apparent that the mains transfomer was overheating, and as no appreciable H.T: was present at the normal points in the circuit, it was naturally assumed that a short-circuit was present in the high-tension supply. Tests revealed that the rectifier and its circuit was O.K. so far as the inains transformer was concerned.

## Condensers Were Suspected

The smoothing condensers, thercfore, came under suspicion, but, much to the surprise of the tester, after disconnecting all condensers-across H.T. supplies and breaking the supply to the actual receiver circuit, the short was still there.

An examination of the theoretical circuit, as shown in the service manual for the set concerned, did not show any other possible paths for short-circuit ; therefore, it only remained for a further inspection of the set.

The speaker was of the energised type; the speech coil was connected in series with a hurn-bucking. coil which, as readers are aware, is wound on or adjacent to the energising coil.

## Hum-bucking Coil

Further investigation showed that one side of the huin-bucking coil was connected to the common negative earth line by means of a fifth lead to the speaker, but

As the energising coil was being used as the smoothing choke, and as it was in series with the positive H.T. supply, it and the hum-bucking coil were subjected to careful tests. The results revealed the fact that the insulation had broken down between these two winclings, thus allowing the H.T. to be shorted to earth via the h.b. coil and its earthing wire. As mentioned at the start, the actual trouble was not serious so far as it would take to locate normally, but what led the tester off the track was the fact that no sign of such earthing arrangements was shown in the service manual.

## THREE NEW VEST-POCKET BOOKS I

## WIRE AND WIRE,GAUGES <br> By F. J. CAMM <br> $3 / 6$ or by post $3 / 9$

NEWNES ENGINEER'S POCKET BOOK
By F. J. CAMM
$7 / 6$ or by posc $8 /-$
MATHEMATICAL TABLES FORMULE
By F. J. CAMM
$3 / 6$ or by post $3 / 9$
Obtainable from all booksellers, or by post from
George Newnes, Ltd. (Book Dept.), Tower
House, Southampton Street, London, W.C. 2

## EXIDE INDUSTRIAL EXHIBITION



# Radio Examination Papers-22 

A Further Selection of "Test Yourself" Questions, with Suitable Answers by THE EXPERIMENTERS

1. Improving Bass Response

oTE casy method of "bringing out the bass" is by shunting the output circuit with a fixed condenser of fairly low capacity. A similar result, can be obtained by connecting a contlenser between the detector anode and earth.
Unfortunately, this simple method has the objection that it operates by reducing bigh-note response rither than by increasing bass responsc. Thus, the nean volume-level for any given setting of the volume control is reduced by applying this method.
A better result ilay be achieved by including in series with the grid leak, or in scries with the anocte resistor, an oscillatory circuit which resonates at a low trequency. For example, if the circuit comprised by $L$ and $C$ in Fig. a were to resonate at for tune to, in other worts! 500 cycles, the output would tend to rise in the region of that frequency. The effect carn Ge oblained in a worthivaile degtee only when the overall resistanco of R.I and V.I in parallel is high in relation to the resistance of the grid leak, R.2.

In practice R.I would be of sufficient!y high value only when a peutode or tetrode valve were used as Vi.r. When using i pentode, however, R.I would tequire to have a high value in order to provide suitable natching, and the parallel resistance of the valve would be high encugh to have a very marlied effect on the overall resistance.

The effect. of the resonant circuit is to increase the total effective resistance between the grid of $V^{\prime} .2$ and earth at frequencies near the resonant frequency of LC ; at other frequencies LC Ias little effect, and therefore the resistance between grid and earth is comparatively low.

## 2. Radiation Resistance

When a high-frequency oscillation is apnlied to an aerial, electro-maxgetic radiation takes place. The efficiency of an zerial as a radiator depends upon its corrcet matching to the output circuit of the transmitter, and also upon its natural frequency


Fig. 1.-A simple R.C.C. amplifier stage, in which it is yequired to increase bass resoonse.


Fig. 3.-Simplified circuit of a second detector providing delayed and amplified A.V.C.


Fig. 2.-Bass-boost is obrained by connceting an oscillatory circuit in series with the grid leak.
winding of the mains transformer are not suitably screened from one another.

In the case of a midget universal mains, receiver, normally operated from a short "throw-out" aerial and without an earth connection, modulation hum is sometimes in evidence at the higler settings of the volume control if the "throw-out" aerial is attached to a longer aerial.

## 4. Amplified A.V.C.

The chief advantage of amplified A.V.C. is that it provides more effective control of output than can be obtained when using ordinary A.V.C., particularly when the signal voltage applied to the second detector is low: say not more than one volt. This neeans that output from the speaker remains more nearly uniform irrespective of the strength of the received signal.
A.I.C. amplification is generally, combined with a delay system which, in itself, prevents the backing-off of signal strength until the received signal voltage reaches a certain pre-determined figure.

The principle of amplified automatic volume control, as the name indicates, is that the rectified signal voltage is amplified before being passed back to the grids of the controlled valves. How the system works can be followed by reference to Fig. 3, where a touble-diode-triode is shown as second detector and first L.F. amplifier. The diode anode marked D.I is for detection, and that marked D. 2 is for providing A.V.C. Instead of returning the cathöde directly to the earth line, through its bias resistor, it is taken to a point which provides as negative potential relative to the earth line. The values the anode resistor, $R$, and the cathode resistor, R.I, are such that the grid of the triode portion of the valve is at zero potential.

Wher a signal is applied to Dr and rectification takes place the grid becomes negative. As a result, anode current' falls and so reduces the voltage drop across Rr. At the same time the Cathode potential will fall from a positive value to zero, according to the signal voltage and the amplification factor of the valve. Any increase in signal voltage will tend to drive the cathode negative in respert of earth. Should that hapfen, D2 will be positive in respect of the cathode and current will flow from the cathorle to this anode. Thus, there will be, virtually, a conducting path between cathode and $\mathrm{D}_{2}$. As a result, any further rise in signal voltage will make the cathode still more negative. In turn, this will drive $\mathrm{D}_{2}$ more negative, and so increase still further the negative A.V.C. bias.

## 5. Automatic Frequency Correction

The object of automatic frequency correction is to provide that if the signal reaching the second detector is above or below the correct intermediate frequency, an alteration to the oscillator frequency will be brought about automatically. The system is of value principally in a receiver with push-button tuning, especially when remote control is provided and the tuning condenser is rotated by means of an electric motor mounted inside the set.
An automatic frequency correction system consists of two essential parts : a discriminator and a corrector. The former is fed from the output of the I.F. amplifier, and generally consists of a double diode wired as shown in Fig. 4. The two tuned circuits are accurately and sharply tuned to frequencies, one slightly above and the
other slightly below, the intermediate frequency. When a signal of exactly the intermediate frequency is applied to the circuit the two halves are balanced and therefore the potential at the point marked "control" is zero. Should the frequency be slightly higher or lower thân the I.F. the voltage developed across one of the tuned circuits will be greater than that across the other. In consequence, the control voltage will become positive or negative.

This controlling voltage can be used in one of several different ways. Perliaps the simplest is as shown in Fig. 4, where it is fed back to the grid of a valve whose grid and cathode aje connected to the two ends of the oscillator tuned circuit. Due to the Miller Effect (recently briefly explained in this series) the gridcathode capacity is varied by variation in grid voltage. Thus there is, in effect, a fine-tuning device across the oscillator circuit, the resonant frequency of which being thereby varied.

## 6. Inductance Calculation

The inductance of a chole with gapped iron core of


Fig. 4.-Skeleton diagram showing the general arrangement of a simple system af automatic frequency correction.
Stalloy or similar material can be found approsimately by using the formula:

$$
L=\frac{3.2 \times A \times N^{3}}{a \times 10^{8}}
$$

where $L$ is the inductance in Henties, $A$ is the area of cross section of the core in sq. in., $N$ is the number of turns on the choke and $a$ is the length of the air gap in in. It should be pointed out that this formula is only approximately accurate, and should normally be applied only when the air gap is fairly wicle. Incidentally, the wider the gap. the more uniform is the inductance for varying current loads.
Substituting the figures given-in the question in the above formula we have:

$$
L=\frac{3.2 \times \times \times 100,000,000}{.05 \times 10^{8}}
$$

It will be seen that one-hundred million in the numerator is the same as ten-to-the-eighth in the denominator. Therefore, these two will cancel out, leaving as the answer 3.2 divided by o5, or 320 divided by 5 , which is seen to be 64 . The inductance is, therefore, 64 henries.

The formula does not take into account the gauge oi wire used, but that would be chosen according to the D.C. current which it has to carry. The current rating shauld be based on a figure not exceceling $\mathrm{r}, 500$ amps. per sq. in. In turn, the winding area provided by the core stampings must be so chosen that the requisite number of turns for the intended inductance can be accommodated.

# Short-wave Dials 

A Novel Arrangement to Simplify Tuning and Calibration.

By WM. NIMMONS

0NE of the failings of the average short-wave condenser is that the dial provides no indication of the waveband or station that is being received. It is so often graduated in degrees-either 100 deg. or iso deg.-and this does not make tuning too casy, especially with the simple regenerative detector stage.
For those who have experienced the trouble the writer has in mind, and who would like to eliminate the finicky searching for stations, the simple dial system described below will be helpful. It is particulary suitable for the simple s.w. set, though it may be applied in modified fom to a superbet receiver in which there are several s.w. bancls.

The first thing to glo is to calibrate the main tank


Fig. 1.-The concentric circles are calibrated in metres. The numbers 1-10 are where the poinier is placed when the band-soreader is Irought into use
condenser-the band setter. It can be calibrated cither in metres or kilocycles; as the former is generally more familiar to the amateur it should be used, though there is nothing to prevent the dial being calibrated in litocycles if the operator so desires, To do this, a piece of white cardboard or drawing paper is fastened to the panel in such a way that it projects about two or three inches above the old tuning dial. A pointer is then attached to the dial so that it sweeps over the paper as the dial is turned from its minmum to its maximum setting. There are one or two preliminary remarks to be made before beginning the calibrating.

The first concerns the aerial series condenser, if any. If this is adjusted after the dial has been ealibrated, the scale will be thrown out of the true, so it is necessary to see that the aerial series condenser is adjusted for satisfactory oscillation on all bands and then left alone. If a loose-coupled aperiodic acrial winding is usecl without an acrial series condenser, then the above remarks do not, of course, apply. The second remark concerns the reaction condenser. If tbis is of the "straight" pattern, a certain amount of tuning drift may be experienced when it is manipulated, and while this does not matter when the tuning condenser is used with a dial simply marked in degrees and not calibrated, it cannot be tolerated when accurate calibration is desired. The remedy is to use a differential reaction condenser with the moving plates going to the anode of the detector valve, one set of fixed plates to the reaction coil, and the other set of fixad plates to the earth line of the receiver.

Now to begin calibrating, one coil at a time, the different coils being calibrated on concentric circles as
shown ins Fig. I. A wavemeter will be of assistance, but much can be done by assiduous listening to stations of known frequency. If you are uncertain as to the exact minimum and maximum wavelengths, leave them unmarked but fill in the intermediate wavelengths. Wy drawing a graph, using, say, balf a dozen known stations as a guide, you can calibrate the three wavebands perfectly.

## The Band-spreader

Here, too, is needed a pointer to indicate the travel of the condenser. Instead of the scale being fixed, however, it is best to have a separate scale for each band. That is, not merely a scale for each coil, but for each group of stations, of which there are about 10 altogether. Earbwof these scales is brought into position when we are recciving that particular band, the others being folded back into their case when not in use. The entire series can be numbered x to 10 , the same numbers being placed on the band-setter in such a position that when the band-setter pointer is placed to the appropriate number the band-spreader is automatically set for reception on that band. The card scales themselves are provided with a thumb index so that the appropriate one can be selected at a glance. (Fig. 2.)

When the band-spreader scales lhave been fillect in with the stations received, you are no longer working in the dark. . Simply set the band-setter to any number, place the corresponding band-spreader scale in position and tune in, making sure that the right coil is inserted.

To do this it is a simple matter to label the three concentric circles on the band-setter condenser A, B and $\mathbb{C}$, corresponding to the three short-wave coils in use. Thus A would correspond to the $x^{3-27}$ metre coil, $B$ to the $24-51$ metre coil, and C to the 48 -roo metre coil-or whatever the threc ranges arc. The procedure is to select one of these three ranges, see that the correct coil is in position, set the tank condenser pointer very carefully to a pre-arranged position below each band of stations and then note which number this is in the series I to io. The corresponding card is then placed in position on the band-spreader and tuning carried out in the ordinary way. It is necessary always to set the


Fig. 2.-The 49 m . card in position readu for calibrating. Remaining card ssuing back into pocket as shown.


By-THERMION

Raif

$\mathrm{S}^{\circ}$the B.B.C. has decided that Ralph is 10 be pronounced as Raif! There seems to be no end to the stupidity of the B.B.C. No one except a B.B.C. announcer will adopt this effeminate pronunciation of a praenomon associated with all that is tough and caveman : "Sir Ralph the rover tore his hair"! Imagine the twitters in the classroom when our blonde male teachers of the future, with right toe delicately poised and right knee delicately bent, in sylph-like tones and velvet voice instruct the pupils to say "Sir Raif the rover tore his hair," coupled with a suitable roll of their cerulean optics. My advice to the B.B.C. is to drop this nonsense at once. No one in this country is going to call Ralpl, Raif, and the announcers merely make themselves soind stupid by adopting this invented pronunciation. Of course, the Scots have always loved to invent a pronunciation. In Scofland Dalziel must be pronounced De-ell! Why is there all this vanity about Christian names? Why is a man named Smith anxious to let you know that he is of an exceptional brand of Smith, such as Cholmondelay-Smith? Like authors of potboiling novels, they must have their photographs in the Radio Times smoking a pipe, the bowl of which is firmly grasped in the right hand, with the right elbow resting on the desk, whilst they gaze wistfully and dreamily into the future with the evident desire to give an ayl-like, and professorial veneer to an otherwise vapid and vacuous countenance. Surely the B.B.C. can find something better to do than to sit in conference on the pronunciation of Ralph. Raif is alnost as bad as goff for golf. You know the type of man who says that he is going to play a game of goff, with a lazy and bored drop of the lower jaw-the type of man who goes huntin', shootin', fishin', etc. The B.B.C. has a tendency to drawing-room its pronunciations. I hope that none of my readers, blessed with the Christian name of Ralph, will be hailed by his friends as Kaif. I can almost imagine all the Ralphs vomiting at the thought. I must admit, however, that Raif is very ladylike.

## Glossary of Plectrical Terms

TE British Standards Institution has issued Part 7 of the revised edition of B.S. 205-"Glossary of Terms Used in Electrical Engineering," and it concludes the series of definitions and only the alphabetical index remains to be issued. Part 7 contains an entirely new section on surge and lightning phenomena, as well as with impulse voltage testing. Another section contains definitions relating to electric lifts and electric welding. The concluding section deals with X-rays and electromedical practice. Copies of Part I and of all the earlier parts may be obtained from the British Standards Institution, 28, Victoria Street, London, S.W.I, price 25. each. Terms relating- to radio, telegraphy and

## Our Roll of sllserit

Readers on Active Service-Thirtu-third List
F. ${ }^{1}$ Gameson (L.A.C., R.A.F.).
E. Hanson (L/Cpl., R.E.).
M. A. Thompson (Cfn., R.E.M.E.).
J. S. Farmer (Sgl., R.A.F.).
A. West (L.A.C. R.A.F.).
N. Bouchier (A.C./1, R.A.F.).

- Richardson (Sigmn., Royal Corps of Sigals),
R. Taylor (A.C. (1, R.A.F.).
J. A. Gould (Cadet, R.N.R.).
telephony, which were formerly dealt with in B.S. 205, will be included in a revised and much enlarged new edition of B.S. 204, which will be published under the title of "Glossary of Terms Used in Telecommunication."


## B.I.R.E. Lecture

"MODERN Magnetic Materials" was the subject of an informal discussion at a recent meeting of the British Institution of Radio Engineers, held at The Institution of Structural Eingincers' Building, II, Upper Belgrave Street, London, S.W.x.
G. A. V. Sowter, B.Sc., M.I.E.E., M.Brit.I.R.E., and A. J. Tyrrell, A.M.I.E.E., A.M.Brit.I.R.E. opened the discussion, Mr. Sowter representing the "Soft " inagnetic, or high permeability inaterials, and Mr. Tyrrell the
Hard," or permanent magnet types.
Present-day achievements, said Mr. Sowter, when compared with the position 20 years ago, were astounding, modern materials in everyday use now being to times more efficient than was thought possible then. He surprised most of the audience when he described a new alloy, which, while it possessed excellent magnetic properties, was composed entirely of non-magnetic materials.

Mr. Tyrrell, in presenting the case for permanent magnets, showed that similarly remarkable developments had occurred in that field over the same period. He described the composition and treatment of the alloys then and now, and explained the methods used to magnetise them and to determine their optimum operating points. He, too, presented a surprise in the form of permanent magnets, suitable for domestic loudspeakers, so small that the complete "pot" was little more than an inch in diameter, yet the speaker would handle an output of two watts.

## Radio in Robotland

[Press item,-Mr. Dalton, President of the Board of Trade, says that 90,002 domestic "Utility" radio sets are process of manufacture, and that all new domestic sets made here shall be of simple standard designs.]

He's cut down socks and shortened shirts,
And now with radio Dalton flirts-
Let's hope with some futility !
For radio fans the prospect's bleak
And rightly will they howl and shriek
When all sets are "Utility."
But there it is ; the People's Voice Is vain when asking for a choice"The Minister knows best!"
Ours to submit, and cease all strife,
Theirs to control our daily life
Within this land so blest.
Will thus our fight for freedom endDalton prohibits " anodé bend,"
Or orders back to crystals !
Enforcement officers employed
To see no valve sets are enjoyed, By threatening us with pistols!
$A h!$ Sad the fate of this poor land, When subject to the State's dead band, And endless despots rule us.
Each crying "Liberty" aloud,
They seek to hypnotise the crowdTheir tactics don't befool us.
To win the war we've stood a lot,
And seen our freedom go to pot.
When won, we will disown
Fanatics' fingers on the probe-
Which into fury freeman goad;
They shall leave well alone.

# Elementary Electricity and Radio-8 

## Neutralising <br> A Complete Broadcasting Sysiem

By J. J. WILLIAMSON

(Continued from page 392, August issue)

## Neutralising

REFERENCE to Fig. 26 (a) shows the principle of neutralising. The waveform in Fig. 25 (b) represents the waveform of the oscillatory voitage conveyed by the Cag from the anode tuncd-circuit to the grid tunedcircuit. Voltages are induced (by the magnetic field around $L_{1}$ ) in $L_{3}$, hence, in the circuit $L_{3} C_{3} L_{4}$ oscillatory current is flowing, which, producing a magnetic field in $L_{i}$ causes voltages to be induced in $L_{2}$. Obviously
radio-frequency power-amplifiers in transmitters, when the use of a triode is advantageous.

## The Screen-grid Vaive

Fig. 23 (1) gives the equivalent circuit of an R.F. amplifier using a trionle; the insertion of a screen between anode and grid modifies this circuit to that shown ix1 Fiy. 28 (a). We now have two capacities in series, i.e., Cas and Csg. Now let this screen be con-


Fig. 26.-Neutralising principle, equivalent circtit and graphical form.


Fig. 27.-A typical neulralising ciretuit.

We are deliberately feedjng back energy from anode to nected to the earith (filament or cathode end of the grid tuned-circuits, and if we ensure that these feed-back voltages act against the voltages fed via the Cag, then
tuned circuits). Note that-Fig. 28 (b)-the Cag has now become Cgf and Caf, and our object has beena achieved.

Certain difficulties arise, however, when we attempt to use a screen between anode and grid in a triodc. We cannot place a solid screen in the electron stream, thus a wire mesh is inserted; the screen grid must be given a positive potential, usually about two-thirds that of the anode-voltage; the screeh-grid cannot be connected directly to "earth" from a D.C. point of view, thus a condenser of suitable value has to be inserted.
A complete R.F. amplifier employing a screen-grid valve is shown in Fig. 29.
The effect of coupling between anode and grid circuits has been shown to the two will cancel as shown in Fig. 26 (b), thus preventing the maintenance of oscillation.

It can be seen that the best results occur when the reutralising voltages are 180 deg. out-of-plase with and the same amplitudo-as the "direct-feed" voliages: adjusfment is achieved by means of $C_{3}$.

A typical neutralising circuit is shown in Fig. $2 \%$ The neutralising


Fis. 29.-A complete S.-G. R.F. amplifier. voltages are picked up by $L_{3}$ and fed back to the grid of the triode via $C_{3}$, which, being variable, permits adjustment to be oltained.

Because of the superiority of the screen-grid ralve in overcoming instability; neutralising is rarely used m receivers, but it is employed in
(Corore it is important to ensure gond
(Continued on page 415.)


Fig. 30.-lolVg. curve for-Answer 1, page 415 .


The "Fluxite Quins" at Work
"Where's OI with our FLUXITE ? He's Dumb ; "
Cheer up!" replied EH. "Don't look glum."
Our radio's gone soft,
So l've sent him aloft :
He'll be back in a minute, old chum."

See that FLUXITE is always by you-in the house-marage - workshop - wherever speedy soldering is needed. Used for over 30 years in government works and by the leading engineers and manufacturers. Of all ironmongersuin tins, $8 \mathrm{~d} ., 1 / 4$ and $2 / 8$.

Ask to see the FLUXITE SMALL-SPACE SOLDERING SET-compact but sub-stantial-complete with full instructions, $7 / 6$.

To CYCLISTS : Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings and SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-BU IMPORTANT.

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price 116 , or filled, 216.

## FLUXITE

IT SIMPLIFIES ALL SOLDERING
Write for Book on the ART OF "SOFT", SOLDERING and for Leaflets on CASEhardening steel and tempering TOOLS with FLUXITE, olso on "WIPED Joints." Price Id. each.
FLUXITE LTD. (DEPT. W.P.) BERMONDSEY ST., S.E.I.

## COMMUNICATIONS DEPEND



N countless instances quite intricate pieces of apparatus are wholly dependent on the proved reputation and rellability of their component parts.

All products from the House of Bulgin are preeminent for superior design and workmanship, and every aiticle bearing our Trade Mark has to pass exacting and exhaustive tests during the course of its production.

We ask the kind indule gence of the public on delivery until peaceful conditions return.

## ALWAYS DEPEND ON



REGISTEREDOTRADE. MARK
A. F. BULGIN \& CO ${ }_{\text {os }}$,LTD., BYE-PASS RD., BARKING, ESSEX

TEL, RIPPLEWAY 3474 (4 lines)

## YES! BE PREPARED

Times are difficult, but that is no reason why you should not be looking confidently forward to the future.' Your future will be what you make it. Use your spare time to increase your earning power, then war or no war your future will
be secure.


EARNING POWER IS A SOUND INVESTMENT DO ANY OF THESE SUBJECTS INTEREST YOU?

Aeconstaney Examina-
tions
Advertising and Ster
Manapement Management
A orfculture
A.M.N. Fire E. Examinations
Applied Mechanies
Aimy Certificates
Anetioneers and Estate Agents
Avfation Enginepring
Aviation W'ireless
Bankine
Plue Prints
Boilers
Book-keeping, Acrountancy and Modern Business Jrethods
B.Sc. (inng.)

Buliding, Arehitucture and Clerk of Works
Builders' Quantition
Cambriders Senior School Certifieste
Civil Enginecring
Clvil Sngyiee
All Commercinl
Commercial Art
Common Prelim
Conamon Prelim. E.J.E.B.
Conerete and stigetural
Engineeping crimineerlang
Dranghtsmanship. AB
Engineeres
Engineering. All braneles, Sibjects and exahninations
Greneral Education
G.P.O. Cng. Dept.

Teating and lentilating
Industrial Chenisiry
Institute of Mousing
Insurance
Journalism
Languages
Mathematies
Matriculation

Minime. All subjects Hining. Elcetricat Engineering ${ }^{-1}$
Mintor Engineering
Motor Trade
Municipal and
Engincers and County
Engincers
Nayal Architecture
Novel Hriting
Piat Pum Making
Play Writine
Police, Specini Courso
Preceptors, College of
Press Tool lfork
Proctuetion Engineering Pumps and Pumpinc. Machinery
Radio Communjeation Radio Service Enpineering R.A.F. Specisil Courses Road Naking and Main tenance
Salesnanship, I.S.M.A. Sanitation
Sehool Attendance Officer Seeretarial Exams.
Sheet Me 1 Woik
Shiplbuild ir
Shorthand (Pitman's)
Short-sthry Writins
Short-wave Radio
Speaking in Publie
Sifuctural Engincering Surveying
Teaehers of IIandilenft Telephony and Telegraph: Television
Transport Inst. Exanss.
Vicwers, Gaugcr's, Inspec
lors
Weirhts and Measures lnspeetor WVelding
Wireless Triefraplyy and Welephony
see your own requirements above, write to us on
any subjcct. Full particulars free.
IF YOU ATTEND TO THIS NOW IT MAY MAKE A WONDERFLL DIFFERENCE TO YOUR FUTURE

## COUPON

CUT THIS OUT
TO DEPT. 104, THE BENNETT COLLEGE, LTD., SHEFFIELD.
Please send me (free of charge)
Particulars of
Your private advice
about
(Cross out line which does not apply.)

Please write in block letters
Name.
Address

## Some Usefiul Iboolks

## EXPERIMENTAL RADIO ENGINEERING

By E. T. A. Rapson, assisted by E. G. Ackermann. This book sets out a number of experiments and methods of measurement suitable for a three or four years' course in radio engineering at a technical college. A few of them require rather specialised apparatus but the majority may be carried out with standard laboratory equipment. 8s. 6d. net.

## INTRODUCING RADIO RECEIVER SERVICING

By E. M. Sauire. This book provides a concise introductory guide to the practical operation of a radio receivet, so that new radio service engineers, testers, and dealers' may be able to obtain a working knowledge of receivers and servicing equipment in the briefest time. 6 s . net.

## FRACTICAL MORSE

By John Clarricoats, author'of Radio Simplified. Written by the Secretary of the Radio Society of Great Britain, this book introduces a scientific method of learning the Morse Code, and its application to radlo is well illustrated by many diagrams. Of special appeal to members of the A.T.C. and other pre-Service trainees. Is, 3d, net.

## WIRELESS OPERATING SIMPLY EXPLAINED

By W. E. Crook. This is one of Pitman's famous "Simply Explained" books. This well-known author gives a clear and interesting picture of the wireless operator in actionwhat he has to do and why and how he does it. 9d. net.

## 39, PARKER STREET, KINGSWAY Pitmane


design in order that grid and anode leads are liept as far apart and as sliort as possible.

## General Examples

(r) What is the reactance of a $0.001 \mu \mathrm{E}$ condenser at a frequency of 1,000 cyeles per second?
(2) What value of induetance would have the same value of reactance as the condenser in ( 1 ) at 1,000 cycles per second?

## Answers for Article Six

1. See Fig. 30.
2. (a) $\mu=16.6^{\prime} ; r a=10,000 \Omega ; g m=1.6 \mathrm{~m} /$ a.p.v.
(V) $10,000 \Omega$

## A Complete Broadcasting System

By a "complete broadcast system " we are referring to the system whereby the meohanicat energy of sound waves is converted to electrical energ!, passed through a transmitter, broadcast, received, passed through a receiver and finally uscd to reproduce sound waves. Fig. 3 I is a "block" diagram of the processes involved.

When sound occurs, compressions and rarefactions of the air are caused, these disturbances spreading out, inupinge on the diaphragm of the microphone (A).

The L.F. voltages are then magnified by being fodto, an L.F. amplifict, which, if amplification is distortionless, produces a magnified or amplified copy version of the original signal (C).

We wish to broadcast intelligence, represented by L.F. voltages, but direct use of these voltages would require great power. Raclio or high frequency (R.F. or H.F.) voltages will give us the communication distance we require, for low power, but does not represent the intelligence to be conveyed!

To overcome this apparent dilenıma, we cause soune factor of the R.I. to vary between 25 and 30,000 times per second (at L.F. rates), thus, the R.F. "carries" the intelligence, giving rise to the term "carricr wave."

Obviously, two processes are now required: ( $\mathbf{I}$ ) the production of radio frequency voltages and (2) the "alteration " of the steady R.F. to place the intelligence upon it, i.c., the " modulation" of the wave; (D) and (E) respectively.

Fig. 32 (a) shows the effect of making the amplitude of an R.F. Wave vary at L.F. rates-amplitude modulation. Fig. 32 (b) represents a wave whose frequency has been made to vary about a fixed value at L.F. rates


Fis. 31.-The schematic layout of a transmilting and receiving station.

The rapid vibration of the inierophone's diaphragin causes a voltage, the variation of which is exactly similar to ther variation of air pressure, to appear across the microphone circuit ( $B$ ). The varying voltages produced can be called L.F. (low frequency) or A.F. voltages (audio or audible frequency), their frequency being between 25 and 30,000 cyeles second-L.F. will be used in future when speaking of frequencies in this range.
-frequency modulation. Although frequency modulation is becoming increasing attractive to the radio world, amplitude modulation is still in gencral use.
The amplitude modulated radio frequency voltages from the modulating process are passed to an R.F. power amplifier (P.A.), where they are given energy (F), and then fed to the aerial and ear̃th system; causing alter-


AMPLITUDE MODULATION

(b) FREQUENCY MODULATION:
nating currents therein, thereby producing electromagnetic radiation.

Electro-magnetic waves consist of electric and magnetic fields at right angles to each other, both being propagated outwards at the speed of light (approx. 186,000 miles or $300,000,000$ metres per second). It is to be remembered that if an electric field acts along or if a magnetic line-of-force cuts a conductor, then an E.M.F. is produced across the ends of that conductor; thus, when an electro-magnetic wave strikes the receiving aerial and earth system, minute E.M.F.s are produced (G), which vary in exactly the same way as the currents in the transmitter's aerial and earth system. These E.M.F.s are amplified in an R.F. amplifier-their amplitude only being effected (H)-and passed to a "detector," which utilises the changing strength of the R.F. voltages (intelligence) to produce L.F. voltages (I).

of the carbon button upon the carbon granules, thercby. reduring and increasing the contact area of the instrument.

Now $R=\frac{p l}{A}$ wherc $f(r / o)$ is the specific resistance of the carbon, $l$ is the length of the current's path through the microphone, and $t$ is the cross-sectional area of the path provided for the current through the carbon granules :

Thus, if $A$ varies, $R$ varies also.
Now, the current through the microphone depends upon the voltage applied and the resistance encountered. $I=V / R$. Thus, if $R$ varies, so does the current. Therefore, the current "ripples" according to the vitation of the diaphragm.
In Fig. 33 (c)' the rippling current passes through the primary winding of a transformer, thereby causing alternating voltages to appear across the secondary winding. These voltages can now be fed to an L. F. amplifier as required in Fig. 3 I (B).

There are several types of microphoncs, but they all cause the production of voltages which follow the variation of pressure at their diaplıragms.


Equivalent Circuit for Carbon Microphone

Fig. 33.-Simple microphone, its equivalent circuit and amplifying stage.

The L.F. voltages are now fed to an L.F. amplifier (J), and thence to an output stage, where they gain further energy ( K ). The output stage feeds a loudspeaker or a pair of telephones (L), causing their diaphragins to vibrate and thus reproducing sound waves (M).

Note the following points: (I) the "effects" of the alternating voltages are "passed on" through the various processes; i.e., it is not a single, alternating voltage that is acting; (2) the "blocks" represent processes, and not necessarily separate pieces of apparatus for each purpose ; (3) modulation is defined as the "alteration" of some factor of a steady R.F. wave to place intelligence uponit ; (4) detection is defined as the process whereby the changing amplitude or strength of the amplitude modulated R.F. carrier wave is utilised to give L.F. voltages.

## The Carbon Microphone

A microphone is a device capable of reproducing the variations of air pressure (sound waves) as electrical variations

Fig. 33 (a) shows a simple carbon microphone. Fig. 33 (D) giving the equivalent circuit. As shown, the "microphone acts like a variable resistance controlled by sound waves.

The compression and rarefaction of the air causes the niea diaphragm to vary the pressure

## An Outline of Amplitude Modulation

In Fig. 34 we have a tuned circuit $L_{1} C_{1}$ and the aerial and earth system adjustment to $C_{1}$ enables the frequency to which the circuit responds-its resonant frequencyto be varied. Connected to the tuned-circuit is an R.F. oscillator, the output of which is controlled by an L. F. anmlifier. The L.F. amplifier enables the nicrophone voltages to be amplified.

Tracing through the effects, notice that the sound waves govern the power supplied to the oscillator, therefore the anplitude of the pulses supplicd to the tumed-circuit will vary in accordance with air-pressure upon the microphone's cliaphragm.

Notice that for maximuin results in be obtained the tuned circuit should respond to the oscillator's frequency, i.e., the tuned circuit's resonant frequency should be the same as the frequency poduced by the oscillator.

The simple process described above represents the general method of amplitude modulating. a carricr wave, variations of the method occurring according to the requirements of the transmitter.


Fis. 34. (Left)- Basic arrange-


Fis. 35 (Right). - Detection or
Fig. 35 (Right) - - Delection or
(b)

## The Progress of Detection Discussed

Fig. 35 (a) shows a portion of an amplitude modulated carrier wave. A moment's thought will make it clear that the effect of a, voltage of this type applied to a pair of telephones or a loudspeaker will be equal to the average wiuc of the wave, which is zero at all times, i.e., the "pushes" on the diaphragm are equat to the pulls, and because of the speed and the inertia of the diaphiagm, act, to all intents and purposes, at the same time.

It can be seen that the average value of the wave must be made to vary. This is done by amplifying the positive half-cycles more than the negative or vice-versa. See waveforins below (I) Fig. 31 and Fig. 35 (b)
When detection has been achieved the R.F. "ripple" is filtered out, leaving L.F. voltages only,

## The Heterodyne Principle

Heterodyning is the placing together of two frequencies to form others.

In Fig. 36 (a) and (b) we have two frequencies, $f_{1}$ and $f_{2}$. Fig. 36 (c) shows the effect of placing $f_{1}$ and $f_{2}$

together. We no longer have a steady waveform, the amplitude varying according to the difference in frequener and implitude of $f_{1}$ and $f_{2}$.
The frequency at which the shape of the resiltant waveforin varies (the beat frequency) cquals $f_{1}$ a $f_{2}$.

Thus : $f_{1}=100 \mathrm{kc} / \mathrm{s}$ p.s.
and $f_{2}=110 \mathrm{kc} / \mathrm{s}$ p.s.
then the beat fequency is $f_{1}-f_{2}=10 \mathrm{kc} / \mathrm{s} \mathrm{p} . \mathrm{s}$., therefore two radio frequencies carr produce a low frequency beat which is the result of the two waves falling in and out of step with one another over a period of time. If we "detect" this resultant ivave then we obtain a $10 \mathrm{le} / \mathrm{s}$ p.s. valtage, as in Fig. 36 (d).

The frequency of (c) Fig. 36 is the average frequchcy $f_{1}+f_{2}$, whilst a further frequency, $f_{1}+f_{3}$, is also produced; we are not concerfed with that.
by attained, shutting out interference from nearby: stations.

Fig. 37 is a block diagram with waveforms for a superheterorlyne receiver. The aerial voltages (A), are fed via an R.F. amplifier (B), to a "frequency-changer" (C.) (also linown as a "mixer" or first cletector).

The carrier frequency $f_{1}$ together "with the R.F". ( $f_{2}$ ) provided by the "local oscillator" (D), produces a "beat" in the frequency-changer which also "detects" it, producing the lower frrier frequency (intermediate frequency I.F.) which a pears at (E). Notice (I) that the I.F. still contains the intelligence that was upon the original carrier-wave; and ( 2 ) that, the locad oiscillator's frequency is adjusted at the sanic tiuse as the incoming signal's frequency, in order to maintain a constant difference between thein and hence a constant I.F. The I.F. is fed through a series of amplifiers ( $\mathbf{F}$ ), and thence to a "second detector" (G), which gives us the intelligence in the form of L.F: voltages. An L. F. amplifier $(\mathrm{H})$, output stage ( I , and a loudspeaker or pair of telephones complete the chain (J).

## Continuous Wave (C.W.) Reception

Continuous or unmodulated carrier-waves are generally used for morse communication, because of the greater rangew possible with this type of transmission. By reference to Irigs. 36 and 27 it is obvious, beeause of the constaut amplitude of the wave, that detection will produce no audible note, mercly"a "click" if the wave suddenly stops or starts. To convert the R.F. into an audible frequency in a superheterodyne receiver, a second heterodyne action is required and is provided by the heterodyne oscillator (Ii). The R.F. is thereby stepped down to an audible frequency when heterodyned and detected. 1.F. appears acioss, the output of (G) and a steady whistle is heard in the felephones.

To enable extreme selectivity to be obtained the pitch of the audible note can be adjusted to that frequency which gives the greatest response in the telephones, usually 1,000 cycles per second, and a filtei circuit also connegted, thereby preventing the passage of all frequencies, with the exception of 1,000 c.p.s. (L).

The superlieterodyne receiver possesses the advantages of high selectivity and sensitivity and easy tuning, but because any noise voltages in the aerial and R.F. amplificicircuits axe also heterodyned, there is a tendency towards a "noisy" background. Also, bemhse amplification is mainly at a lower frequency, the stability of the receiveris increased.

## General Examples

I. A signal of $256 \mathrm{kc} / \mathrm{s}$ is received by a superheterodyne receiver with $1 \mathrm{IF}^{\prime}$. amplifiers tuned to $40 \mathrm{lic} / \mathrm{s}$. W'hat must be the frequency generated by the local oscillator?
2. What must be the frequency provided by a hetrodync oscillator, if the I.F. is II2 kc/s and a note of $\mathrm{r}, 000 \mathrm{c} \cdot \mathrm{p} . \mathrm{s}$. is required in the telephones?

Auszers for article seven.
I. 159,200 ohuns.
2. 25.35 H .

The Superheterodyne Receiver
It will be renembered that an amplifier is more efficient at low frequencies than high, therefore if we can change the frequency of the inconning amplitude-modulated R.F. carricr-wave to a lower frequency for anplification: purposes, then greate: efficiency can be obtained, and the "sensitivity" of the receiver increased. Further, if we can grrange the eircuits so that any frequency of carrierwave is converted to one fixed beat frequency then we can design the amplifiers of this beat frequency for maximum response at one position, no tuning controls being required. Greater "selcetivity" is there-


Fig. 37. - The super-heterodyne circuit slage by stage.


The valve tester as made by the author. -

THE circuit diagrain of the valve tester is shown in Tig. I, where it will be noted that II.T. power is derived from A.C. mains via a transformer and half-wave valve rectifier. L.T. is, delivered to the valves by the malti-tapped filament transformer, details of which were given in the August issue. Highteusien and screen are each fed to their respective moving contact on the electrode selector switch, as are gridactually gricd bias and cathode actually high-tension negative. Since each set of fixed contacts are connected in parallel, and to the valve pins in accordance with the B. V.A. standard numbering, it follow's that any source, such as H.T. or grid, may be connected to any piñ of any valie holder.

A switch, Sy, mav loc put to "normal" or "rectifier" and in this latter position rectifying valves may be tested; also, with the switch in this position, an average load is thrown across the valve under test.
$\mathrm{S}_{2}$ is for the purpose of selecting "mutual conductance" test or "full cmission" test and the former is usech in conjunction with $\mathrm{S}_{3}$ and an external meter plugged into sockets, so markod, while full entission is indicated on the panel meter shown in the illustrations. $\mathrm{S}_{4}$ is the "soit", test switel, which, when open-circuited, connects a reslstor in series with the grid circuit.

Of the power controls, VRI varies H.T. positive or anote, VRz controls the screen voltage, $V R_{3}$ the grid bias voltage, and VR 4 is the "set zero" control for use iu the mutual conductance test.

From sockets maried "Neon test " the Neon lamp is brought into use for the purpose of ehecking insulation between electrodes. $\$_{5}$ is the on/off swilch.

## General Construction

Construction is on rather unique lines, as it allows of a compact assembly and also gives ease of control and viewing. Reference to the illustrations and drafings will show that the tester is built in thriee sections-the valve panel, the switch panel, which also carries a millianmeter, Neor lamp, ete., and the power unit. The yalve panel consists of fin, ebonite and carries io valveholders (sec Fios 3) made up of three Englisli type, four

## YOUR SERVICE WORKSHOP-6

## $A^{\prime}$ Valve-testi

## Constructional Details of the Complete Valve

American type, two side-contact and one nctal. Also in the centre of this panel are thrice sockets for a top cap or side terninal connection to anode; sereen, or grid, while at the end a socket connects to high-tension negative.
The nower unit, which slides into the cabinet from the back, is constructed on a plywood baseboard, a small ebonite control panel measuring 1 zin. $\mathrm{x} \quad 2 \mathrm{in}$. being screved to the front edge and upon which are mounted all the variable resistors and the on,off switch S5. The litter lias to make and break foar separate circuits thus it is convenient to nake use of two 2-pole on/off toggle switches "ganged ;together. This is quite simple ; the switches are mounted close together, one dolly (the little control knob) is drilled 6 B.A. clearance, the other drilled and tapped 6 B.A., and, after fitting a short length of tubing between the two dollies, a piece of 6 B.A. rod is slipped through and tightened up. The idea will be seen from the illustration. The variable resistors VRI to VR4 are all of the wire-wound type. VRI and VR4 must also be capable of carrying a tairly large current, say, 40 inilliamps for valves of the P.X. . type. It would be desirable to increase the value of VRI, but bearing in inind the above remarks it is hardly possible, especially during these times.
The baseboard is covered with metallised papermore for convenience of earthing thay anything eise -for in an instrument of this nature one is at least relieved of the necessity of avoiding troubles due to interaction, unwanted coupling, etc.

Fig. 1.-Complcte circuit of the value .tester. Component values are siven below.

To Vaive Pins
1708 Excep:
17088 Exces
Heater $P$ Pins


ก20

## YOUR SERVICE WORKSHOP-6

# A Valve-testiņ̉ Unit <br> (Continued fram puibeb377, Aug:ist, 1943) 

## Constructional Details of the Complete Valve Tester. By* STANLEY BRASIER

American type, two side-contact and one ootal. . Inso in the centre of this panel are three sockets for a top cap or side terminal connection to anorle-sereen, or grid, while at the end a socket connects to high-tension negative.
The power unit, which slides into the cabinet from the back, is constructed on a plywood baseboard, a small ebonite control panel measuring izin, x 2 in. being screwed to the front edge and upon which are mounted all the variable resistors and the on 'off switch $S_{5}$. The latter has to make and break four separate circuits, thus it is convenient to make use of two 2 -pole on/off toggle switches ganged together. This is quite simple; the switches are mounted close logether, one dolly (the little control knob) is drilled 6 B.A. clearance, the other-drilled and tapped 6 B.A., and, after fitting a short length of tubing between the two dollies, a piece of 6 B.A. rod is slipped through and tightened up. The idea will be seen from the illusiration. The variable resistors VRI to VR4 are all of the wire-wound type. VRI and VR4 must also be capable of carrying a fairly large current, say, 40 milliamps for valves of the P.X. 4 type. It would be desirable to increase the value of VRI, but bearing in mind the above remarks it is hárdly possible, especially during these times.
The baseboard is covered with metallised papermore for convenience of earthing than anything else - for in an instrument of this nature one is at least relieved of the necessity of avoiding troubles due to interaction, unwanted coupling, etc.

## Mains Section

The universal filament transformer has already been referred to, and it will suffice to say that from the secondary tappings, leass are taken to 15 sockets equidistantly spaced round a circle of roughly 3in. diameter on a small ebonite panel. The panel is mounted so that it is accessible from the side of the cabinet, to the inside of which it is screwed after the power unit is in position. The high-tension transformer is designed to deliver approximately 250 volts at 60 milliamps from its seconciary, - together with a 4 V .2 amp. windisy for the rectifying valve. No very high degree of smonthing is required in the instrument, therefore, a half-wave system bas been used, but a normal full wave rectifier with transformer to suit could noviously be used if it happens to be more convenient. Smoothing condensprs CI and C2 are in the form of an $8+4 \mathrm{mfd}$. block 300 v . w., white $\mathrm{C}_{3}$ and $\mathrm{C}_{4}$ each consist of a 2 mfcl. T.C.C. Mansbridge type $300 \mathrm{v} . \mathrm{w}$. It the baseboard is metal covered, it will be necessary to fit a piece of insulating material-cellulnid or'paxolin-under the rectifier value holder Which is of the baseboatd mounting type. The grid battery for the matnal collductance test consists of two 1.5 . volt celts inourted
ster is shown in hat II.T. power a transformer is delivered to ent transformer,
st issue. Higlispective moving h as are griddy high-te nsion ts are connected Hows that any mnected to any
".or "rectifier" valves may be tion, an average est.
"mutual conand the former external meter full emission is the illùstrations. apen-circuited, circuit.
I. positive or $\mathrm{VR}_{3}$ the grid control for use

Neon lamp is king insulation
as it allows of of control aud and drawings ersections-the also carries a iver unit. The urries 10 valveglish type, four

on the baseboard. They are wired in serins, with the centre point to earth, and in the original model a inounting-was devised whereby a thick wire was solclered across the bottom-positive of one and negative of the other - the ends of which were turned into a loop and screwed to the metal-covered baseboard.

## Switch Panel

The switch panel is fixed at an angle so that the electrode selector switch (which was the subject of last month's article) may be viewed and operated with case


The tester with front panel removed and the value holder panel -lifled to show wiring.

This panel is of ebonite and carries switches $\mathrm{Sr}, \mathrm{S}_{2}, \mathrm{~S}_{3}$ and $S_{4}$. Sr-is a D.P.1).T. Q.M.B. toggte switch. $S_{2}$ has to perform various functions and therefore requires two S.R.D.T. and one ordinary make and broak switches operated by one control. For want of a more suitable type; the writer has used a switch of the Yaxley pattern, but since one S:Pd).T. section has to stand up to the H.T. supply from VRI, it remains to be seen how it will. function with time; so the reader is advised to procure soncthing more suited to the job if at all possible.

For instance, two Q.M.B. toggle switches-one D.P.D.T. and one ridinary nn/off-could be ganged together in a way similar to $\mathrm{S}_{5}$. Whatever switch is used it is important to note that it must be vired in sucl a way that when the slider of VRI connects to the positiveside of the inilliammeter, $\mathrm{R}_{2}$ nust be disconnected from the earth line and $\mathrm{R}_{5}$ and $\mathrm{S}_{4}$ must, at the same time, be connected to the slider of $\mathrm{VR}_{3}$ in otder to ensure the correct operation of the-tester
$\mathrm{S}_{3}$ and $\mathrm{S}_{4}$, althongla separate electrically, are constructed as one component-a push switch on these lines has previousiy been suggested in Practicis. Wireless. The drawing is sclf-explanitory, but it is neeessary to explain that in the S.P.D.T. section, $\mathrm{S}_{3}$, the-lower brass contact must be insulated from the next one. it is easily achieved by drilling, a hole of sufficient


Rear view of front panel, showing seleclor swilches and neon tube, ele.
behind a suitable shaped aperture cut in the pancl, the face edges being rounded off to give a neat finish. Other types of lamp-almost any sort may be used-may naturally require a different method, of mounting and the valuc of the resistor $\mathrm{R}_{4}$ may have to be different.

The three ebonite pancls, by the way, are finished in grey enamel, which; tngether with the black controls, gives the tester a suiart and professional appearance. The indicator plates are typewritten on thin card covercd by clear celinloid and secured to the pancl by-small brass pins.

## Wiring

Assuming that all components are mounted, the wiring may be comnenced. Any remarks in previous articles regarding catcful wiring up
clearance so that when clamped between the ebonite collars or spaces it does not make contact with the screw which passes through it.

## The Jacks and Meter

Jacks I and 2 are of the closed circuit variety for mensuring rectifier and screen current respectively. Another little home-made gadget is utilised on the "Neon test"" sockets. One of these is adapted so that when a plug is pushed home into it the fixed condenser-which is normally joined across the sockets-becomes disconnected. The tip of the brass arm which the plug puslies out when it is inserted nust, of course, be insulated. The nilliammeter shown reads 0-Io and the writer intends to add sluunts to increase the range to 25 and 50 milliamps, consequently details of these are not given becanse it is improbable that the constructor will use a meter of the same type. Anyway, the inelusion of a meter in the actual tester is not absolutely essential -it was used in the original because it was serving no other :useful purpose and if onc is not available, sockets marked "external meter full emission". could be used in conjunction with a universal test meter in the sama way as in the .mulcon. test.

The neon tube is of the type nor:mally utsed as a tuning indicator with striking voltage of about 150. It is mounted
of test instruments apply moic than ever in this case, for it is, of necessity, rather complicated in the whole, but if each section is worked on separately it is just a matter of going methodika!ly through it, making sound soldered joints. Connections which require to be made betwcen the various sections are done with good rubber flex and aftersoldering one end to the appropriate point the other is clearly mafked by- affixing a paper tab. This will ensure that, when the final assembly is carried out no confusion exists with all the stray leads. It is necessary that the


Fiss. 2 and 3.-Plan and underside views of the valoc panel.


Fig. 4.-Layjut and wiring of power unit. The L.T. voltage adjustment panel is accessible from side of panel as shown by the inset.
constructor should understand exactly how the valve paniel is wired to the electrofle switch. First, all the heater or filament pins of the valve holders are wired in parallel and joined subsequently to the filament transformer scouddary. There is no switching here except of course, the adjustment for the various heater vortages. A! the remaining pins of the same numbler, from $x$ to 8 , are joined-together except where that number is a hieater or filament pin. For instance, take No. 3 pin; a wire will connect to ali pins of that number rycept on the five-pin (British) and both side-contact holders, which are heater pins. Having made this point clear it will be assumed that the electrode selector switch itself is already wired up according to details given in the last article, so that the remaining connections consist of eight flexible leads from pins 1.8 on the vale panel to the eight fixed contacts at the end of the selector switch. They must, of course, be joined so that No. I on the valve hollers connects with No. I contact on the selector syitch, No. 2 to $\mathcal{N o . ~ 2 , ~} 3$ to 3, elc. For convenience the leads from the selector swiitch are taken to an octal valve holder, while those from the valve panel go to an octal valve base. When assembling, the vathe holder is screwed to the inside of the cabinet (on short eboonite pillars) immediately helow the left-hand end of the valve panel, that is, just above the H.T. mains transformer. In this position the plug from the valve panel may be conveniently inserted into it and does save unsoldering at least eight connections if the panels required to be removed at any time.

Although the photographs give a good idea of the component layont, etc., it was not possible to complete all the wiring at this stage.

## Cabinet

The cabinet is of extremely simple construction and measurements are given of the sideviev, in order to show the correct panel angle, in Fig. 4 . It is covered in black rexine and for this reason, if-plywools is not obtainable, even a stout margarme or similar box, reasonably smooth, niay be adapted ior the purpose. The weight of the whole outfit hoviever, is considerable,
so that a strong construction is necessary so that a strong construction is necessary. It will bo
seen friom the illustration that a valve data is fised to the inside of the lid, which latter
incidentally keeps dust out of the valveholders when closed. A reproduction of the data sheet will be given later when it will be scen to embrace every valveexeept some American ones-that one is likely to test. Against earh valve type is a column headed "code number," and the purpose of this will be referred to later.
(To be continued)

## LIST OF COMPONENTS

One universal filament transformer. (As described in "P. W. " August, 1943.)
One mains transformer output 250 v. at 60 milliamps 4 V at 2 amps.
One 4.volt rectifying valve.
One 4pin base-boord mounting valve holder.
One L.F. choke, 20 henry 50 milliamps.
One electrode selector switch. (As described in "P. W." August. 1943.)
Switches, S1, S2, S3, S4 and S5 (see text).
Ten sockets.
Two closed circuit jacks (or plugs and sockets with shotting link).
One Neon lamp (see text).
One milliammeter if required.
Three ebonite panels (see rext).
One ebonite panel mounted with 15 sockets (for low tension voltage).
One fuse and holder, 100 milliamps.
Two of three (as required) 9 -volt grid bias batteries.
Two 1.5 v , unit cells.
Ten valve holders as shown on valve panel.
One octal yalve base and holder.
Cabinet, wire, screws, hinges for lid, etc.
Resistances: Two potentiometers,' 100,000 ohims (wire wound) ; one potentiometer, 10,000 ohms (wire wound, see text) ; one variable resistor, 50,000 ohms ; two resistors, 7,000 ohms, 3 watt ; one resistor, $10,000 \mathrm{ohm}, 8$ watt; one resistor, 50,000 ohm, 1 watt ; two 1 megohm, $\frac{1}{1}$ watt ; two 1,000 ohm $\frac{1}{1}$ watt, and two $500 \mathrm{ohm}, \frac{1}{2}$ watt.
Condensers : One $8+4$ mfd. electrolytic, cardboard type, 300v.w. ; three 2 mofd. Mansbridge type, 300v.w.; one 0.1 mid., $350 \mathrm{v} . \mathrm{w}$.

# Measuring Resistance with a Voltmeter 

## A Useful Method Which Will Help Many

ANY constructors, these days, find themselves called upon to undertake radio servicing, with little or no equipment; therefore, the following simple method of measuring resistance, with nothing more than a voltmeter, and any ayailable batters, will prove helpful.
If one measures the voltage of a battery; and then puts -a resistance in series with the meter, and measures the same voltage again, it will be found that the second reading is less than the first. This is due to the fact


Fig. 1.-The basic circuit illustrating the principle of the ohm/volt meter.
that all moving-coil and moving-iron meters draw current, and the resistance placert in series with the meter causes a voltage drop, thus making the actual P.D. across the meter (which is what it measures) less than before.

## Voltage Drop

It can be seen that the larger the resjetance in comparison with that of the meter, the greatel will be the drop in voltage across this resistance, and the smaller will be the reading of the meter for any particular battery voltage. A simple application of Ohm's Law will enable us to find the value of this resistanoe, provided we know the resistance of the meter, and the difference in reading between battery P.D. (V in Fig. 1) and "battery + resistance" P.D.

Assume one uses a battery of voltatse $Y$ as measured by the meter (resistance $\mathrm{Rm} \Omega$ ). Then if $\mathbf{R}$, the unlinown resistance, is placed in series, the indicated voltage will drop to Vm (Fig. x$)$ where $\mathrm{Vm}=\mathrm{Rm}$. current I .

Now $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{Rm}} \cdot \mathrm{Vm}=\frac{\mathrm{Rm} \times \mathrm{V}}{\mathrm{R}+\mathrm{Rm}} \quad \mathrm{R}=\frac{\mathrm{Rm}(\mathrm{V}-\mathrm{Vm})}{\mathrm{V} \mathrm{m}}$ or Unknown Resistarice $=$

Meter Resistance $\times$ Drop in reading of meter Final reading of meter
Thus all one has to do is to measure the battery voltage beforc starting, then when any resistance is placed in series one just substitutes the drop in reading into the above formula. As an example: If the meter had a resistance of $10,000 \Omega$ and a I5v. G.B. battery was used as $V$, then if the meter reading with an unknown-resistance in series was, say,3.75v., $\mathrm{R}=\frac{10,000 \times(15-3.75)}{3.75}$ $=30,000$ ohms. 3.75

If, as might easily be the case, the meter's resistance is not known, it can be found witl the aid of a fixed resistance $R$, of a known value as follows. Measure the voltage of a battery, place the resistance in series with the meter, and note the drop in reading of the meter.

## Constructors Who Are Short of Equipment

Then $\mathbf{R m}=\mathbf{R} \times$ Final reading of meter Drop in reading

Thus if placing a resistance of ro,000s? in series with a meter and a 15 v : battery caused the unter's reading to drop from 15 V . to 5 V ,

$$
\mathrm{Rm}=\frac{10,000 \times 5}{10}=5,000.0 \mathrm{hms}
$$

## Estimating Resistance

The writer has been for some time in a part of the world where testing equipment is unobtainable, the only meter on land being one which I believe is well known to members of the R.A.F. It is a small moving coil meter with two ranges, of 3 and 30 volts, and has it resistance of 600 and 6,000 ohms respectively on these ranges. A series of graphs has been drawn for use with a 1.5 volt cell, 2 -volt accumulator, or a 3 -volt battery, depending on which is available at the time. By means of these graphs it is possible, as can be seen by Fig. 2, to obtain reasonably accurate estimates of resistance from 50 to 7,000 ohms. If a 30 -volt battery is obtainable, and the 30 -volt range of the meter used, then the values of resistance shown in Fig. 2 are correspondingly multiplied by io, extending the range to 70,000 ohms.

It must be pointed out that lig. 2 is principally ans illustration and cannot be used for meters of other than $600 \Omega$ resistance. However, readers should find no difficulty in prepacing similar graphs for their own use, and they will find that a small amount of time spent in this way will be amply repaid by the time saved when they are again " caught out "with no proper lequipment.


Fig. 2.- The curves compiled for the meter used by the writer of this article.

## Practical Hints

Detachable Oscillator Arrangement

IRECENTLI constructed a morse key and oscillator, and wanted to be able to connect and disconnect the key from the oscillator frequently, to extend the liey with flex for use over longer distances. Not havirig enough terminals, I employed the following method: Having an old valve holder I unscrewed the sockets and soldered two of them to one-end of the flex and two old valve legs to the other. Next I fastened the remaining sockets on a piece of hard wood and screwed this.on the side of the oscillator base, with the leads for the key soldered to them. The wires froni the key contacts were then soldered to the other two valve legs. These were then glued into small holes drilled in the base of the key. Everything was now easily detachable, and this idea niay be put to a number of uses.-R. K. ADAms (Swindon).

THAT DODGE OF YOURS!
Every Reader of "PRAOTICAL WIRE-
LESS $"$ mest have origimated some ltitio
dodge whioh would mterest otber readers.
Why not pasi it on to aS ? We pay £1-10-0
for the best hind submitted, and for every
other item published on this page we will
pay halt-a-guinea. Turn that idea of yours
to account by sending it in to us addressed
to the Editor, "PRACTMCAL WERELESS,"
George Newnes, Litd.. Tower House, South-
amptor Street, Strand, W.C.2. Put yonr
name and address on every item. Please
uote that every notion sent in must be
original. Mark envelopes'is Practical Einfs.'3
DO NOT enclose Queries with your hints.

## SPECIAL NOTICE

All bints must be accompanied by the coupon eut from page ili of cover

## Testing All-wave Sets

## A Drill Stop

WHEN clrilling amall holes throngh a metal chassis the sudden breaking through of the drill may result in a dented chassis or clamage to a coniponent 1m: eviously mountert on the chassis. A small cork placed on the drill as shown will ohviate this risk. C. F, MAy (Birningham).

WHEN poor results are obtained arith an all-wave set it will often prove of value


A drill stod for use when drilling holes in thin metal. testing the set on that particular rango in order to judge of the performance. This suggestion is made as it is often found that the general results given by the set are below standard due to a fault in a component or a valve which is not up to efficiency, and considerable time may be wasted in trying coil connections and the switch assembly. The set should be tried with the mediumwave coil only, as results will more easily be judged on that band. If satisfactory; the short-wave coil should be wired into position and the performasce checlied in this respect.-R. Ward (Bletchley).

## Multi-phone Morse Circuit

WHEN a buzzer is loing used for morse practice many experimenters are dissatisfied with the volume if 'phones are used. By means of the arrangement illustrated up to ro pairs of 'phones may be used at very good volume. If the impedance of the primary is known the 'phones may
A simplé arrangement for a detachable morse key and oscillolor.

## Fixing Control Knobs

MANY constructors build a good receiver, and when installing it in the cabinet spoil the appearance by scratcling the front by allowing the screw-driver to slip whilst locking grub-screws in the control kiolss. Cinfortunately, these screws are not easily accessible and a small watchmaker's screwdriver is generally needed. If the controil knob is held rigidly by the fingers of one hand whilst the screw is tightened, no difficulty should arise, but a dodge worth passing on is to cut a large disc from tin or aluminium and cut a small hole in the centre to clear the majority of standard fixing lushes or spindles. A slot is then cut from the edge of the disc to the centre hole. The disc slould be pisfled over the spiudie, the knob then placed on and the screw tightencd. Should the driver slip the panel will not be defaced. When the linob is locked up the disc
may lie renoved by opening tlie slot and lifting it over may be renoved by opening tiie slot and lifting it over
the knob.-S. Westov (Cambridge) the knob.-S. Weston (Cambridge).


A method of increasing the volume in 'phones when used for-marse practice.

# Permanent <br> Magnets-VII 

Damping Torque

Ballistic Galvanomeier

Grassot Fluxmeter

## By L. SANDERSON

 must be noted in connection with moving coil permanent magnets that clamping becomes necessary in order to eliminate mechanical ascillations of the moving parts of the instrument. Fermanent magnets are employed-in numerous instruments of this type in order to damp the movement of the moving system, instead of using oil or air dashpot damping.Generally, the damping is achieved with the aid of eddy currents induced in the metallic former about which the moving coil is wound. A vane of aluminium or other light alloy is attached to the movement, and severs the flux in the magnet air gap, thus producing eddy currents in the metal as soon as it moves. These currents have a reacting effect on the flux, with the result that a torque is produced opposing relative motion of the metal vanc and flux in such a way that when properly proportioned the vane may be hindered from swinging about its mean position, and the deflection made "aperiodic" or "clead-beat" as required.

It should be borne in mind that the term" meter
of small dimensions, clectric motors, rotary transformers and similar electrical instruments, is the prevention of recent copper losscs. This has largely been overcome of made from the newest alloy magnet materials. Figs. I, 2 and 3 represent characteristic magnets of this type. The steel columns indicated in Fig. $I$ are rendered necessary by the brevity of the magnet when made from the Alnico alloy. In these instruments it is almost certain that demagnetising forces will be encountered, e.g., armature reaction, and this makes it advisable to aim at as high a $B$ value as can bc achieved, because spe will minimise the change in $B$ corresponding to a
Where generators are concerned estimation of leakage reluctance is so difficult that a leakage coefficient is usually adopted for purposes of calculation.

The Magnets
The next type of modern imstrument in which

damping magnet " is often used when not this type of magnet is meant, but one attached to electric meters in order to furnish the required retarding torque against which the current to be metered does work.

## Calculating Damping Torque

To calculate the damping torque the formula used is $T=4 \mathrm{~B}^{2} \mathrm{r}^{2} 1^{2}$ wtdiro-9. In this equation, T , is the damping $x=6(4 r+21)$ torque, $w$ is the disc's velority in radians per second, $t$ is the thickness of the former, $d$ the width of the $r$ is the dyne-cmst

In estimating the leakage flux of moving coil magnets, the air gaps are usually regarded as straipht, while the areas over which leakage occurs are similarly regarded as being flat, and of identical area. The area itself is assumed to be the mean of the two unequal arcas over which leakage of flux occurs. A point worthy of note is that with these moving coil magnets the flux does not only have to cross an air gap, but nust also pass through the iron cylinder, which means an additional fall in flux represented by the formula $\mathrm{B}_{1} 1_{\mu} \mu$, in which $B_{1}, J_{1}$ and $\mu_{1}$ correspond to the flux density, length and permeability of the iron cylinder. The value thus obtained must, of course, be subjoined to that of the gap leakage in ascertaining the magnet's, correct length.
One of the problems in the design of electric generators
pernianent magnets are a necessity is the magneto. This apparàtus comprises, as a rule, a permanent uagnet field and rotating iron inductor occasioning a sharp alteration of the magnetic flux threading a stationary winding. The winding itself comprises a considerable number of turns of fine wire which is linked up with the automobile sparking plugs by means of a distributor. In essence, then, the magneto constitutes an A.C. generator. Here, again, vigorous demagnetising is1fluences have to be allowed for, and, as a result, designers usually aim at a B ralue higher than the BH (maximum). The type of magnet mostly employed is shown in Fig. 4, and the material employer is Alnico.
A relatively new development is the permanent magnet chuck, for whose introduction we have to thank Messrs. James Neill and Co. (Sheffield), Ltd. The majority of chucks used to-day, and all chucks of magnetic type employed before 1934, wgre of electromagnet type. In the Neill chuck, permanent magnets are employed, and this means that the risk of breakdowns while installation expenses are also cut out and chuck itself is readily transterable from point to and the cequired. Both circular and rectangular chucks ar
res available. The general principle of oporation is ts follows. When the parts being dealt with on a particular mächine are gripped by the chuck, the flux traverses the parts and sets up a powerful magnetic retention force,
(Conlinued on page 427)

##  <br>  <br> RADIO SERVICE MAN, DEALER AND OWNER

The man who enrolls for an I.C. S. Radio Course learns radio thoroughly, completely, practically. When he earns his diploma, he will KNOW radio. We aré not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day, radio service work. We train them to be successful!

## INTERNATIONAL CORRESPONDENCE SCHOOLS

Dept. 94, Intermational Buiidings,
Kingsway, London, W.C.2.
Please explain fully about your instruction in the subject marked $X$ :

Complete Radio Engineering
Radio Service Engineers
Elementary Radio Television
If you wish to pass a Radio examination, indicate it below. British Institute of Radio Engineers
P.M.G. Certificate for Wireless Operators

Provisional Certificate in Radio Telephony and Telegraphy for Aircraft
City and Guilds Telecomigunications Wireless Operator, R.A.F. Wireless Mechanic, R.A.F.
Special terms for members of H.M. Forces
Name. $\qquad$ Age...

Address $\qquad$


## 1F IT'S <br> TRAMSFORMERSoOCHOKES

Let, the manufacturers of VARLEY products assist you.

## SEND US YOUR ENQUIRIES

Standard units available up to $\frac{1}{3}$ K.W. or to your specification.


THE CHLORIDE ELECTRICAL STORAGE COMPANY LTD. Grosvenor Gdns. House - Grosvenor Gdns. - London, S.W. I 'Phone: VICtoria 2299. 'Grams : Chloridic, Sowest, London. WMSC48:43

-ADVT. OF A. H. HUNT LTD., LONDON, S.W.I8. EST. I901.


The Solder Wire with 3 Cores of Non-Corrosive Ersin Flux. MULTICORE SOLDERS ITO. BUSH HOUSE EONDON. W.C.2. TEMPle 8ar $5583 / 4$
DAGENITE
AND
PERTRIX
-the dependable BATTERIES FOR
RADIO, GARS MOTOR CYCLES COMMERCIAL VEHICLES ETG. HOLSUN BATTERIES LIMITED
137 Victoria Street, London, S.W.I
serving to hold them securely in position. When the operation is complete, and the parts have to be released, a lever is moved which opetates a can and transfers the magnet system to the rigbt. The result of this is that the flux now passes through the top plate, and the magnetic retaining force excrted diminishes to virtually nil.

Residual magnetism is extracted by the aid of a demagnetising apparatus.


Fig 4-One tupe of P.M. which has a wide field of application.

We must now consicer metlods of magnetising and demagnetising. Magnetising has as basis the passage of an clectric current along a wire coil, but the development of inodern magnetic materials has made necessary considerable alteration in the design and construction of magnetising apparatus. To deal with Nial, Alnico, etc., it is now the practice to employ one or more turns of a copper conductor of beavy section, and to pass through this an electric current of 20,000 amps, the duration of the current being momentary only. The current itself is obtained by passing d.c. current through a transformer primary winding and short-circuiting a single turn secondary winding by giving the magnetising coil one or two turns.
Deınagnetisation is usually achieved by placing the magnets in an alternating magnetic field from which they are gradually withdramn to a point at which the field is of negligible strength. The initial value of the alternating magnetising force is identical with that of the usual magnetising force. When remord; the magnets are non-magnetic. The magnets of smaller dimensions are in most works placed in a solenoidal coil connected to a 50 C.P.S. supply, and grarlually withrdrawn. Where magnets of larger dimensions have to bo demagnetised, it is desirable to use a lower frequency.

## Ballistic Galvanometer

We have referred in earlier articles to flux measurement, but have not as yet indicated how these measurements are obtained. The instrument employed is known as the ballistic galvanometer. Its object is to measure the quantity of electricity passing through a circuit. To enable it to fulfil this function it is essential that it should pnssess a moving system with a considerable inertia


Fig. 5.- Circuil details and connections for the ballistic galuanometer test.
moment, in order that the discharge through the galvanometer may be completed in advance of any considerable deflection of the coil. Secondly, it must not have a moving system with a large amount of damping, as a result of air friction and control suspension friction. If the galvanometer circuit is closed, electromagnetic damping will orcur as a result of the passage of induced currents through the coil. The theory of the instrument is based on the assuinption that the quantity of electricity is caused to pass through the moving coil in an extremely brief period. Thus, because of the considerable incria moment, its, movement from the rest position is virtually negligible by the time the discharge is completed, The discharge energy is afterwards dispelled by electroinagnetic dannping and friction. Fig. 5 shows the comnections for the ballistic galvanometer inagnetic test, used to deternime the ballistic constant.
Because it demands a swift discharge of the quantity of electricity, the instrument cannot be employed as a means of measuring flux in electrical machinery nagnetic circuits, because in these instances the appreciable "time constant" of the circuit prevents the swift growth and dissipation of the flux. For these purposes it is essential to use a different type of instrument termed the Grassot fluxmeter, with which we shall deal later.
The quantity of electricity passing through the ballistic galvanometer is reprosented by the equation $Q=B(\otimes)$, where $b$ is the ballistic constant and © the true or corrected deffection for the undamped swing. There are various ways of determining $b$, and that

## Flexible Suspension

Fig. 6.-The iundamental details of the Crassol fluxmeter. value.

## Grassot Fluxmeter

The fluxmeter is an apparatus by means of which the flux in a inagnetic circuit to which it can be linked is directly measured. The Grassot fluxmeter (see Fig. 6) is essentially a galvanometer of pointer type with a freely suspended coil baving no restriction upon its movement, and a powerful permanent inagnet. A search coil of linown turns is linked up with the galyanometer, and the moment that masnetic flux is led into the coil it (the coil) deflects. The return of the indicator to $O$ is gradual, thus providing ample time for the necessary reading. Catibration of the instrument is with each search coil, and it makes a most effective piece of apparatus for measuring the distribution of flors in a magnet.

The advantage the Grassot fluxmeter has over the ballistic galvanometer is that when measuring magnetic flux changes the time comprised in the change need not be small, and, in fact, the result is identical for changes taking minutes or seconds. It is somewhat less sensitive than the ballistic galvanometer, but highly portable.
(To be continued)

# Alternating Current 

## Circuit Considerations

(Continued from oage 379, August issue)

THE resultant of $V R$ and $V L$ must be equal to the generator e.m.f. $E$ and the angle by which $E$ leads $I$ is called the phase angle $\phi$ (from o deg. to go deg.). The quantity $Z$ which determines the current $\bar{I}$ which flows when an e.m.f. $E$ is applied to the circuit is called the impedance of the eircuit.

Then $E=2 R$.
Now consider the triangles of Fig. 12, the first of which has sides equal to the vector $V_{S_{f}}, V_{I}$ and $E$ respectively. This can be represented by what is known as an impedance triangle (second triangle) whose sides are $K, Z$ and $\omega L$ respectively. Then from this latter we have, by the Theorem of Pythagoras:

$$
\begin{aligned}
& Z^{2}=R^{2}+\omega^{2} L^{2} \\
& Z=\sqrt{R^{2}+\omega^{2} L^{2}} \\
& I=E / \sqrt{R^{2}+\omega^{2} L^{2}}
\end{aligned}
$$

The phase relations between the voltage and current are also obtained from the impedance triangle; and being denoted by $\phi$ :


Fis. 12.-Production of the impedance triangle from which iş ablained the expression $Z^{2}=R^{2}+w^{2} L^{2}$.
In some cases the values of $L$ and $R$ are such that the inductive reactance $\omega L$ is very much greater than the resistance $R$, the impedance of the circuit then being very, nearly equal to $\omega L$. Tan $\phi$ consequently tends to become infinite in value, that is, $\phi$ approaches 90 deg. The circuit is then in effect a-pure inductance. In the case of $R$ being much greater than wL tan $\phi$ approaches a zero value, and the circuit behaves as a pure resistance.

## Resistance and Capacity in Series

This instance is dealt with as in the previous example, the reference vector $I$ being taken, VK being in phase with this while $K C$ lags by go deg. The impedance triangle (Fig. I3) gives us the result in a similar manner to the other case.

$$
\begin{aligned}
Z^{2} & =R^{2}+I / \omega^{2} C^{2} \\
Z & =\sqrt{R^{2}}+I / \omega^{2} C^{2} \\
\therefore \quad I & =E / \sqrt{R^{2}+I / \omega^{2} C^{2}}
\end{aligned}
$$

The phase relations are given thus

$$
\begin{aligned}
& \tan \phi=X / R=1 / \omega C R \\
& \sin \phi=X \mid Z \\
& \cos \phi=R / Z
\end{aligned}
$$

In a mixed circuit of the type just described the power which the generator releases to the circuit is as follows :
(a) That supplied to the reactive component to build up the magnetic or electrostatic field during odd quarter cycles which is returned to the generator during the quarter cycles when the field is collapsing.
(b) That supplied to pass a current $I$ through a resistance which is dissipated as heat and the like
i.e., actual power supplied $=I, V_{R}=I^{2}$.

The product of $E$ and $I$ gives the apparent power that the generator supplies:
i.e., apparent power $=E I=I 2 Z$.

We define Power Factor = actual power/apparent power.

$$
\begin{aligned}
& =I^{2} R / I^{2} Z \\
& =R / Z \\
& =\cos \phi \\
\therefore \text { Power Factor } & =\cos \phi
\end{aligned}
$$

## Resistance, Inductance and Capacity in Series

In the circuit of Fig. I4 the current flowing is the same in every part of the circuit, and a reference vector $I$ can therefore be drawn as the basis for the complete vector representation of the arrangement. The p.d. across the resistance is $I R$ volts and is drawn in phase with the current; the p.d. across the inductance is $w L I$ volts and leading the reference current vector by 90 deg. while the voltage across the capacitance is I/ $\omega C$ volts, this being drawn witla a 90 deg, lag on the current vector.

It will be seen that the quantities $\omega L I$ and $I / \omega C$ are antiphase and the resultant of these will be either capacitive or inductive depending upon which is the greater. The resultant of the three vectors will therefore either lead or lag upon the current, being dependent upon whether $\omega L I$ is greater than, equal to, or less than $x / \omega C$. The three possible coanditions are depicted by the three triangles of the figure. From the first of these the relationship of $E$ and $I$ is oltained in the following way:

$$
\begin{aligned}
E^{2} & =(I R)^{2}+(\omega L I-1 / \omega C)^{2} \\
\therefore E & =I \sqrt{R^{2}+(\omega L-1 / \omega C)^{2}} \\
\therefore I & =E / \sqrt{R^{2}+(\omega L-1 / \omega C)^{2}}
\end{aligned}
$$

This expression $\sqrt{R^{2}+(\omega L-I / \omega C)^{2}}$ is the impedance $Z$ of the circuit, the phase angle $\phi$ bctween the current and the applied voltage being given by:

$$
\tan \phi=(\omega L-1 / \omega C) / R
$$

The relations:

$$
\left\{\begin{array}{l}
I=E / \sqrt{R^{2}+(\omega L-I / \omega C)^{2}} \\
\tan \phi=(\omega L-I / \omega C) / R .
\end{array}\right.
$$

are true whether $I / \omega C$ is smaller than $\omega L$ or not. If $x^{\prime} \omega C$ is greater than $z L$, the expression $\omega L-z / \omega C$ is negative in sign and $\phi$ is negative also. This is simply because the p.d. lags behind the current as in the second triangle of Fig. I4. Similarly when the quantities cole and $I / 00 C$ are equal, the applied p.d. and the current are in phase and the circuit behaves as a purely resistive one.


Fig. 13.-Phase relations of $E$ and $I$ and the impedance triangle for a resistance-capacity arrangement.

## The Series Resonant Circuit

Consider again the series circuit of the previous example. Now, referring to the five vector conditions of Fig. 15, consider the effect of varying the frequency applied to the $L, C$ and $R$ cirćuit.
(a) When $\omega$ is very small:
$\omega L$ is very small; $\tau / \omega C$ is large ; $(I / \omega C-\omega L)$ is very large ; $Z$ is very large; $I$ is small; $\phi$ is large.
(b) When $\omega$ is small:
$\omega L$ is small; $I / \omega C$ is large; $(r / \omega C-\omega L)$ is large; $Z$ is large; $I$ is small; $\phi$ is large.


Fig. 14. - The phase relations and the three possible impedance triangles for a series circuit of $L, C$ and $R$.
(c) When $\omega$ is such that $X_{C}=X_{L}$ :
$\omega L$ is large; $I / \omega C$ is large ; $(x / \omega C-\omega L)$ is zero; $Z$ is equal to $R ; I$ is equal to $E=R$; $\phi$ is zero.
(d) When $s$ is large:
$\omega L$ is large; $I / \omega C$ is small ; $(I / \omega C-\omega L)$ is large ; $Z$ is large; $l$ is small; $\phi$ is large.
(e) When $\omega$ is very large
$\omega L$ is verylarge.; $1 / \omega C$ is very small ; ( $I / \omega C-\omega L$ ) is very large; $\dot{Z}$ is very large; $I$ is very small; o is large.
From this it will be seen that as $\omega$ increases ( E being constant in magnitude) the current increases to a maximum value $E / R$, when the frequency is such that
defined as:
Reactance of one kind Total circuit resistance Thus, the Q factor $=\omega_{0} L / R=\mathrm{r} / \omega_{0} \mathrm{C} R$
Also, since $\omega_{0}=I / \sqrt{L C}$ we liave:-

$$
Q=\omega_{0} L / R=1 / \sqrt{L C} L / R=1 / R \sqrt{L / C}
$$

## Q Factor of a Coil

Consider a coil of inductance $L$ and resistance $R$. If it has no association with the resonant circuit it would appear that the ratio: Reactance/resistance $=$ $\omega L j R$ could take up any value dependant upon frequency.

Fig. 15.-What happens in a series resonant circuit as the frequency is varied, $c$ showing the condition of resonance.

(a)


(c)

(d)

(e)
the incluctive reactance equals the capacitive reactance. As $\omega$ increases further the current aginin decreases.

The condition when the circuit is purely resistive and the current is a maximum is known as the electrical resonance point, and the frequency at which this occurs is called the resonant frequency (fo). The curves of Fig. I6 show this condition graphicilly, the current being plotted againsf the applied frepuency and the inpedance $Z$ respectively.

If $f o$ is the resonant frequency, then:
Frequency at resonance :
$X_{C}=X_{L}$
$\therefore I / \omega C=\omega L$ $\omega 2=1 / L C$ or $\omega=\bar{I} / \sqrt{L C}$
$f 0=I / 2 \pi v \sqrt{L C}$, since $\omega=2 \pi f$
The current at resonance $I_{o}$ is given by:

$$
I_{0}=E \mid Z_{0}=1: K
$$

The voltages present across each of the components at resonance are as follow:

$$
\begin{aligned}
& V_{R}=I_{o} R=E \\
& V_{L}=I_{0}=\omega_{0} L=\omega_{0} L E / R \\
& V_{0}=I_{0} / \omega_{0} C=E / \omega_{0} C R
\end{aligned}
$$

$V_{\ell}$ and $V_{c}$ are cqual at resonance, and in normal radio circuits are much larger than the generator e.mif. The series resonant cricuit is generally referred to as the acceptor circuit.

## Circuit Magnification

Before procceding with the parallel eases of A.C. circuits we will deal with the applications of the series resonant circuit, which we have just examined, to radio circuits. Radio technique is really only a specialised branch of A.C. engineering, and great use is inade of



Fig. 16.-Response curves of the series tuned circuit.

## Relationships of the Q Factors

In a series circuit let the resistance of the coil be $R_{L}$, and the resistance of the condenser $R_{C}$.

Then total circuit resistance $=R_{\ell}+O R_{0}$
$Q$ circuit $=\omega_{0} L_{\psi} / R_{L}+K_{C}$
For thercoil alone at the resonant frequency :
$Q$ coil $=\omega_{0} L R_{1}$

- For the condenser alone, at the resonant frequency:
$Q$ centienser $=1 / \omega_{0} C R_{0}$
Now consider i $/ Q$ coil $+1 / Q$ conclenser

$$
\begin{aligned}
&=R_{L} / \omega_{0} L+\omega_{0} C R_{D} \\
&=R_{L} \omega_{0} L+R_{0} k_{0} L \text { since } \omega_{0} L=I / \omega_{0} O \\
&=R_{L}+R_{\text {r }} / \omega_{0} L \\
& \therefore I / Q \text { circuit }=I / Q \text { coil }+I / Q \text { condenser. }
\end{aligned}
$$



Fig. 17. - The effect of resislance, and the hic ratio of the response curve resjuectively.
In practice, since $Q$ condenser is very much greater than $Q$ coil, to a good approximation $Q$ circuit $=Q$ coil.

## Selectivity of a Tuned Circuit

As readers know. the selectivity of a circuit is its ability to cliseriminate between signals of dificsent foquencios. Clarly the peakiness of the response curye thr arrelt against frequency graph as shown in Jit. 15 is a moastrye of the selectivity; the peakiness of such a wnve denenels mpon the following factors:
(ii) The resistane--the lieight of the peak given by Fil $k$, is inverscly proportional to the resistance and


Fis. 19.-Phase relations in a parallel circuit of resistance_and induciance.
therafore the selectivity varies as $I / R$. ( $\operatorname{Fig}$. I分(a).)
(ii) The J.C. ratio-response at resonance depends upon the resistance only as we have seen; response off resonance depends upon resistance and reactance.

It is found that with a low $I / C$ ratro, the registance increases slowly as fiequency deviates rom resonance.

Thus tho impedance is sentll, givinginselective response curves; $i$ the. selectivity depends on the $L / C$ ratio. (1; ig xy(b).)

Ii is possible to give the selectivity in terms of $Q$. Referring to Fig. 18 , it will be seen that for high sclec:ivity:

$$
f_{0} / f_{2}-f_{1}
$$

shotild be large; Suppose the curve is cut at a recponse lever of $I / \sqrt{2}$; it can be shown that at this response level the resistance of the circuit is equal to the reactance, for?

$$
\begin{aligned}
& Z=\sqrt{R^{2}+X^{2}}=\sqrt{2 R^{2}}=\sqrt{2 R} \\
& \text { Current }=E / Z=E / \sqrt{2 R}=I_{0} / \sqrt{2}
\end{aligned}
$$

Now at $f I$ the capacitance is predominant. $I\left(\omega_{1} C-\omega_{1} L=R\right.$

Multiply equation $(x)$ by $\omega_{1}$ and equation (2) by wis $1 / C-1^{2} L=1 R$ and $\omega_{2}{ }^{2} I \cdot-\mathrm{I} / C=\omega_{2} R$

Fig. 18. -The response curve from which selectivity may be given in terms of $Q$.


Adding these :

$$
\begin{aligned}
& L\left(\omega_{2}-\omega_{2}\right) \\
& L\left(\omega_{2}+\omega_{2} 2 L\right)=R\left(\omega_{1}+\omega_{1} R+\omega_{2}\right) \\
& L\left(\omega_{2}-\omega_{1}\right)=R \\
& \text { siding intly sides hv }
\end{aligned}
$$

Dividing both sides by $\omega_{0}$ :

$$
\begin{aligned}
& \omega_{0}-\omega_{10} \omega_{0} / \omega_{0} \quad R / \omega_{0} \\
& \omega_{0} / \omega_{2}-\omega_{1}=\omega_{L} L / R \\
& n_{1}, \sqrt{2} / \mathrm{r}=\omega_{0} L / R=Q
\end{aligned}
$$

Thus by choosiny a particular response level we have shown that $Q$ is a direct measure of the selectivity. We have already scen that $Q=I / R \sqrt{L / C}$.

## Parallel Circuits

We will now deal with parallel circuits. First a circyit with incluctance and resistance in parallel is shown in lig. 19. Since in this instance the voltage is the same across both components, a vector of the generator e.rm.f. I: is taken as the reference. The current thongh the resistance is drawn in plase with Im, whil' the current through the induetance lags it by 90 deg.


Fig. 20.- Phase relations in a resistance-capacity parallel combinatior.

Now $I_{L}=E / \hbar I_{0} ; I_{n}=P / R: I=E / Z$
Then from the vector diagrani we see that:
$I=I L_{0}+1 / n^{2}$
$\therefore E^{2} / Z^{2}=1(\Omega I)^{2}+E^{2} / R^{2}$
$\because I / Z^{2}=1 / R^{2}+1 /(\omega 7)^{2}$
$\therefore I+Z=\sqrt{I / R \because C-I /(\omega L)^{2}}$
Then $Z=I!\sqrt{I / R^{2}+1 /(\omega L)^{2}}$
The current $I$ is given by:

$$
E \sqrt{1}\left[\mathrm{~K}^{2}+I\right](\cos L)^{2}
$$

(and lags on the applied p.d. by an angle $\phi$. The circuit is incluctive.
Resistance and capacitanre in parallel. This circuit is shown in Vig. 20, togetler with the vector presentation. The current through the resistance $I_{B}$ is again in plase with the applied e.m.f. While the current through the capacitanee leads the e.m.f. by go des.

Then from this we obtain the following:

$$
\begin{aligned}
& I^{2}=I R^{2}+I{\theta^{2}}^{2} \\
& \because \quad E^{2} / Z^{2}=R^{2}+E^{2} \omega^{2} C^{2} \\
& \therefore \\
& I / Z^{2}=1 / R^{2}+\omega^{2} C^{2} \\
& Z=-\sqrt{I} K^{2}+\left(\omega()^{2}\right.
\end{aligned}
$$

The current $I$ is given by

$$
E \mid \sqrt{1 h^{2}}+(\omega C)^{2}
$$

and leads the applied e.in.f, by the argle $\phi$. This time the circuit is capacitive.
(To be continued.)

## NEWNES SHORT-WAVE MANUAL

6/ $=$ or $6 / 6$ by post from
Gearge Newnes, Led., Tower House, Southampton Sc.
Landon, W.C. 2.

# Midget Universal Receiver 

To Assist Those Unable to Obtain the Parts Specified in the January Issue, Instructions are Given About the Use of Alternatives. By STANLEY BRASIER

## Valves

MANY readers constructing the set wish to use valves qther than hose specified, and in this connection there is no reason why other makes should not be used, providing that they are of the same basic type. For instance, Vi must he of the variable mu variety in order that the system of volume control may be worked satisfactorily. Reference should be made to the original article where the importance of the correct value of $\mathrm{R}_{2}$-the fixed wias resistor-was stressed. The value of the volime control Rr may need to be increased if the particular valve used requires a negative bias of greater value than that provided by 5,000 ohns (the value specified). This will be apparent from the fact that the volume cannot be reduced to a low dnough level. Similarly, the screen may require some voltage different from that provided by $\mathrm{R}_{3}$ and here it is best to experiment with the value of this resistor for optimum results.

The detector valve $V_{2}$ difiecs from $V 1$ inasmuch as it is of the "straight" or non-variable mu type and works on the anode hend principle. The resistor $R_{5}$ should be suitable for a! types, but the makers may recommend some other-value of load resistor ( $\mathrm{R}_{7}$ ) for best results. The screen voltage for this valve must be kept low-about 20 volts-and it is convenient to take it from the high potential end of the output valve's bias resistor, as is shown in the original circuit diagram. If this scheme is not convenient a dropping resistor from the high tension line may be employed but a fixed potentiometer system is rather more satisfactory.

## Output Pentode

Practically any universal ontput pentode may be used for $V_{3}$ as the optimum loarl for these valves is much abont the same, and the only thing one need worry about is the value of the bias resistor, as this may vary between 150 and 1,000 ohms, according to the type of valve, so it is important to select the correct value. This is easily found, however, from the formula : $\mathrm{R}=$ Grid bias volts
$\mathrm{R}==\frac{\text { Grid bias volts }}{\text { anode current }} \times 1,000$. For example, a valve taking an anode current of 45 milliamps and requiring a bias of 9 volts would develop this voltage across a resistor of $R=\frac{9}{45} \times \frac{1,000}{T}=200$ ohms. This, and other simple formulx, is continually cropping up in set construction and to those readers who are unfamiliar with them it is most useful to record the data in a note-lionk. kept especially for the purpose, together with any other information which might prove useful in the future. This would do much to save time and trouble as well as perhaps avoiding the necessity of asling the same question in the form of an inquiry to the Query Department

For instance, the calculation of the value for a mains dropping resistor seems to cause some readers a great deal of worry, yet the arithmetic involved is extremely simple. The voltage of the various heaters, since they are joinect in series, does not matter, becanse the value of the dropping resistor is adjusted to suit. The current, however, does matter, becausc, in a series circuit it remains constant and one has to decide at the outset what this current will be, i.e., whether 0.3 amps or 0.2 amps, according to the valves in use, as the value of the mains
resistor will depend upon this also. To calculate the resistance required, it is first necessary to add together the heater voltages of all valves including pilot lamps, and this figure is subtracted from the mains voltage. The remaining figure represents the voltage to be absorbed by the dropping resistor, the value of which may then be found by applying one form of Ohm's Law, i.e., $R=\frac{E}{C}$ where $E=$ voltage (E.M.F.) to be dropped and $C=$ the current taken by the valve heaters. When considering this little problem, it is easier to visualise the heater and pilot lamp chain as onc piece of apparatus. This is shown in Fig. I, where it is supposed that 0.3 amp valves are being used. At the voltages taken by the valves-within. the dotted lines-the "appatatus" draws 108 volts at 0.3 amps from the 230 volt mains. A resistor, therefore, is required to absorb the surplus voltage in much the same way as an ordinary dropping resistor between high-tension positive and a valve anode, only that the current is very much heavier, thus necessitating a large wattage rating. Applying Ohm's Law to Fig. r, we sce that R has to absorb 230 vi. minus 108 v. or I 22 v . at 0.3 amps (the current of the valves), therefore $R=\frac{122}{0.3}=406.6$ ohms. A still simpler way is to bring the current to milliamps and multiply by 1,000 ; i.e., $\frac{122}{30 \phi} \times \frac{1,0 \phi \phi}{I}=\frac{1,220}{3}=406.6$ ohms. Actually 400 ohmis would be near conough in practice. Incidentally, the above is another handy formula for the note-book. Although it is the same as the bias resistor calculation shown earlier it could be expressed as: mains dropping resistance $=$
$\frac{\text { mains voltage minus total voltage of heaters }}{\text { heater current of valves in milliamps }} \times \frac{I, 000}{I}$

## Mixed Heater Currents

Where the valves are mixed, i.e., some requiting 0.2 and some 0.3 amps for their heaters, it is obvious that the mains resistance must be calculated at the

higher eurrent, and shunts provided for those valves taking the lower current. An example of this is shown in the original circuit diagram of the " Midget Universal Receiver," where 0.2 amp . valves were used, except for $\mathrm{V}_{3}$, the output pentode, which consumies o. 18 amp. Thus, the fifference of 0.02 amps. (or 20 milliamps) has to be by-passed by a shunt resistor at 20 volts-the voltage of $\mathrm{V} 3^{\prime}$ 's heater. Therefore, resistance of shunt

$$
=\frac{20}{20} \times \frac{1,000}{I}=1,000 \text { ohms. }
$$

## Condensers

Soule readers have been uṇable to obtain the $8+8$ mid. can type electrolytic smoothing condenser, and ask if the cardboard block tyme will be suitable: The answer is ycs, providing its working voltage is 350 or over and, of, course, the capacity is as specified ; but even here, if, say, a $4+4 \mathrm{mfd}$. is on hand it is well worth trsing, for mains supplies vary so much that this capacity may be enongh to provide sufficient smoathing. For instance, when the "Midget Universal Receiver " was undergoing its tests, there was absolute silence from the speaker on D.C., whereas on A.C. a slight buzz was usually discernible.
The Mansbridge type block condensers are also suitable, but in this case their bulk usually excludes the possibility of inclusion in a midget set. Regarding the small condensers, any of the advertised non-induct ive tubular type with a working voltage of 350 or so are suitable.

## Coils

The coils used in the original receiver are, unfortunately, not obtainable, that is why details were given in the article for home-constructed types. Any commercial midget coils that the reader mas be able to secure will be suitable, providing they have a prinary winding, which, in the case of the H.F. transformer, nust be entirely separate (electrically) from the grid winding. If no primary winding is available, use can usually be made of a portion of the long-wave section-which in this case is not required-and was actually done in the original.

## Loudspeaker

This is of the mains energised type laving a field resistance of 1,000 ohms, but fields of higher or lower resistance, within reason, may be employed if one remembers that the former will reduce the available high tension to the valive anodes. The lower resistance will inerease it; but most universal valves take up to 250 volts on the anode, so that some advantage may be gained providing the screen voltages are correctly adjuster. When using a high resistance unit, one must expect some slight reduction in all-round efficiency, due to the inevitably lower voltage, and it would not be wise to go above a 2,500 ohm field. On the other hand, if a speaker is available having a very high resistance ifield of about 8,000 ohms or more, it would be worth trying it in parallel with the H.T. supply, that is between cathode of the rectifier and high tension negative. It would then be necessary to. include a sinoothing choke connected in place of the speaker field shown in the circuit diagram in the original articleThe size of the speaker unit has also come under discussion, since various readers wish to use one of 4 in . or sin. dianneter. Obvionsly this would be quite satisfactory, although the output will naturally be reduced. It xias suggested that an extra L.F. stage be introduced to compensate for this lack of output, but such an expedient would only tend to complicate matters for the receiver, as originally designed, would fully load a speaker of the truly midget type.
No mention has so far been made of the rectifying valve, $V_{4}$. This may be of any half-wave universal type, bearing in mind the leater current, but where an American Octal or U.X. type is used (these are usually full-wave), the anodes should be strapped togetlier, likewise the cathodes.

## Chassis

It is unliljely that a chassis of the size specified is obtainable commercially, therefore it has to be nade at home, if metal construction is required, but a simple framework of wood, if covercd with some metal foil or metallised paper, will be suitable.

## A.C. Ripple on the S.W.'s HE output from the smoothing choke is generally

Treferred to as "D.C.," but it should be borne in mind that although, a rectifier has been used the output will bear a ripple, the degrec of this deperiding upon many factors. This ripple is not of great importance in broadcast apparatus, but on the short waves it is possible for this to be modulated, thus giving rise to audible hum in the output circuit. Feed-back between rarious stages is also possible as the choke is common to all stages, and it is these factors which concern the short-wave listener. A simple mains unit or battery eliminator will not, of course, employ such a high inductance smoothing choke as a speaker field and thus the trouble is even more pronounced.

The first step in removing those troubles is to isolate the detector stage, as it will be found that this is most prone to troubles from outside sources. Simple decoupling may prove effective, but where experimental work is to be avoided it may be prcferable to adopt the following procedure right away. As we have stated that the detector stage is most likely ta be the root of the trouble, this should be fed with a separate H.T. supply, and the easiest way of doing this is to take a separate lead from the D.C. point of the rectifier, i.e., before the smoothing choke, and connect in series a reliable make of L.F. choke. Two additional smoothing condensers will, of course, be required and connected in the usual manner. This now provides two H.T. circuits, each with their own smoothing arrangements, and one can be used for the H.F. and L.F. stages, and the other for the detector stage alone.

# PRIZE PROBLEMS 

## Problem No. 447

THOMAS had a receiver of the $0 . V-1$ tyge which gave very good results when operated of batteries. Owing to the diffculty of obtaining new R.T.s, he decided to make up an eliminator to operate off his A.C. mains.

On test the unit was quite satisfactory, but when he tried it with the receiver. the performance of the latter was spoilt by pronounced "motorboating." Thomas decided that anode decoupling was called for so he found a suitable resistor and a 1 mfd. condenser in his junk box and connected the resistor betwecn the E.T. yositive line and the B.T. terminal of the L.F. transtormer. The condenser was then joined between the latter and the earth line. When he switched on, no signals could be obtained; thinking that the resistor might be daulty or too high in value. he short-circulted it, but still no signals or reaction. What was wrong ?

Three books will be awarded for the first three correct solutions ppened. Futries must be addressed to The Editor, Prachrical Wrawhass teorre Newnes, Itd., Tower Honse, Southampton Street, Strathl, therge TV. feft-hand coriber, and mast be poated to reach this office oot later than the first post on Monday, August $16 t^{2}, 1940$.

## Solution to Problem No. 446.

Jones, througlt being interrupted, did not secure the slow-motion arive to the spladile of the ganged condenser, therefore, when he rotated the tunizg bnob the condenser vanes did not mowe. The fuct that lie was able to necelve one atation, was dhe to the ganged conderaer rematning at the same getting, l.e., thenel to the lorit station, as thien he switched off prior to makior the alteration anded to the local station, as when he switched or prior thre readers stacesstuly solven Problem 445 , and books have The following three readery strecesstuiy soiven Wels, 3h Coonhe Wood Hizh Pocorder, Bumey : R, Johmeon, 87, Bulk Roadt, Lancaster: B; Dann, s8, High Strect, Cotteuham, Camus.

# Impressions on the Wax 

## Review of the Latest Gramophone Records

H.M.V

HI. ${ }^{7}$. have this month released the third of the series of important British works recorded by them under the iuspices of the British Council. The recording is of "Concerto for Pianoforte and Orchestra," by Arthur Bliss, and it is performed by Solomon (pianoforte) and the Liverpool Philhammonic Orchestra, conducted by Sir Adrian Boult. The concerto, which is on a grand scale, and superb and powerful in conception and execution, was commissioned by the British Council for the British wrek at the New York World's Fair, and it was first performed on June roth, ig39, at the Carnegic Hall by Solomon and the New York Philharmonic Orchestra under Sir Adrian Boult. It is particularly interesting to note that the work is dedicated to The People of the United States of Annerica. The recording consists of five records, H.M.V. $\mathrm{C}_{3} 348-52$.

Maggie Teyte, soprano, with Gerald Ifoore at the piano, has made two beautiful recordings in French, on H.M.V. D.41833. She has selected, this month, Bizet's "Chanson d'Avril" (Song of April) and "Lee Colibri," Op. 2, No. 7 , de I.Isle-Chausson. Maggie Tevte, an Englishwoman of Scots extraction, born in Wolverhampton, has renclered great artistic service to the Fighting French, and thismas recognised by General de Gaulle, early in June, when he presented her with the Croix de Lorraine.

Ronald Irankall, with, of course, Monty Crick at the piano, aslis "Or is it Just Wisttul Thinking ?" and then gives us "Post-war Mirlnight News," on H.M.V. B932I. These two pieces are typically FrankanCrick, and, needless to say, original, subtle and very entertaining
Glenn Miller and his Orchestra have made a gond ecord, H.M.V. BD5808, with their presentation of "Serenade in Blue ", and "Kalanazoo," both foxtrots. Joe Loss and his Orchestra offer "Why Say Goodbye," Waltz, and "I've Heard that Song Before," foxtrot," which is featured in the film, "Youth on Para de." These are good numbers, and they are recorded on H.M.J'. BD5807.

## Columbia

"THE Children's Corner" (Suite for Pianoforte) is one of the few masterpieces of music written for children. It was written by Debussy for his daugliter, who was a gifted pianist, and the suite is, undloubtedly, one of the most perfoct examples of his genius. It ronsists of (I) Doctor Gradus and Parnassum ; (2) Jimbo's Lullaby ; (3) Serenade for the Doll; (4) The Snow is Falling ; (5) The Little Shepherd, and (6) The Golliwog's Cake Walk. On the remaining side of the second record is "Traumerci" (Dreaming), from" Scenes from Childhood," Op. 15, No. 7, by Schumann, another masterpiece written for children of all ages.

Louis Kienther (pianoforte) gives us a wonderful solo interpretation of these works, which I think will appeal to all lovers of Debussy and Schumann. The recordings are on Columbia DXIIzI and DXIIzz.

In the $D B$ series, Nelson Eddy, baritone, has recorded two fine ballads, "To-morrow," from "Salt Water Ballads," and "The Blind Ploughnan," on Columbia DBrir4. Nelson Eddy has, a fine, pleasing voice, the frue qualities of which are revealed in these two enjoyable recordings.
"Chanson Hindoue" and "Kashmiri Song" are. the two ever-popular compositions which the Albere Sandler Trio has selected for its recording on Columbia DB2II5.

Victor Silvester and his Ballroom Orchestra have two records this month. is, They are Columbia FB2037 and $F B_{293} 8$. On the former, they have recorded "Kieep
an Eye on Your Heart " and "Sentimental Feeling," quickstep and slow foxtrot respectively. For the second record they selected "You'd be so Nice to Come Home To," quickstep, and "Why Say Goodbye," waltz. Two good records for those who like their dance music in strict dance tempo.

You and the Waltz and I," coupled witit " When You Wore a Tulip"" featured in the films "Seven Sweethearts " and "For Me and My Girl," respectively, are two good numbers performed by Carrall Gibbons and the Savoy Orpheans on Columbia Farrall Gibbons

Ifmmy Leach and the "New Organolians," Dudlcy Beaven at the Hammond organ, on Colirmbia FB2933, have made a fine recording of "The Sheik of Araby", and "Star Dust."
"Polar Star," waltz, and "Monte Christo," also a waltz, are the two numbers selected by The Bohemians, a light orchestra of most pleasing composition and style. A very enjoyable record.

## Parlophone

$\mathrm{M}^{\text { }}$first record from the Parlophone list is that on which is reproduced the latestrecording by Richard Tauber. The number is Parloplione RO20532, and I advise you to make a note of it, as Tauber is outstandingly good and the songs he sings give his magnificent roice and technique full scope. "Dearly Beloved," fcatured in the filin "You were Never Lovelier," and "My Heart and I," from "Old Chelsea," are the two compositions he renders with such good effect.
On Parlophone $R \quad 2876$, Duke Ellington and his Orchestra have recorded, in the 1943 Super RhythinStyle Series, No. 89, "Drop Me at Harlem" and "Clatinet Lament.", This record should have wicle appeal among Duke's fans, but personally; I like nyy mnsic several degrees conler.
"Tin Pan Alley Medley, No. 56," which introduces "Whispering Grass," "Three Dreams," "S Therces i Harbour of Dreamboats," "Where's My Love," "The Lady Who Didn't Believe in Love," and "Jieep an Fye on Your Heart," is on Parlophone Fig83. The medley is played, as usual, by Ivor Moreton and Dave Kiaye, on two pianos, with string bass and drums.
Geraldo and his Orehestra offer two very gond numbers, "Moonlight Mood" fostrot, and "Pavanne," also foxtrot, on Parlophone Frg8ı, I recominend this to all dance enthusiasts.

## Regal

HAVE only two Regal selections this month, but both are good in their individual classes. The first is one which will be welcomed by all supporters of Hary Roy and his Band; it is numbered Regal MR3699, and on it Harry has recorded "Don't Get Around Wracle Anymore" and "Best Wishes," both foxtrots. The other recording is by Reginald Dixon at the organ playing, in first-class style, "Rustle of Spring" and" "Autonne ${ }_{2}$ ". two fine numbers played in a masterly manner.

## A REMINDER

$P$LEASE take at least one old record with you wher purchasing new ones.
The need for materials for making new records is most urgent. Ask your dealer for full details about the allowance given on certain old records, even if they are chipped, scratched or cracked.

The supply of new records depends upon the return of old and unwanted ones.
Sheets

| SCREEN－GRID VALVE |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tres | Nounloal mating |  |  | ${ }^{\text {Tspical }}$ Operating Conditions |  |  |  |  |  |  |  | base | $\begin{aligned} & \text { Base } \\ & \text { Index } \\ & \text { Nolo. } \end{aligned}$ |
|  | $\begin{array}{lll} \text { Fil or Heater } \\ \text { 申pits } \mid \text { Ampas } \\ \hline \end{array}$ | $\begin{aligned} & \text { Mar } \\ & \text { Anode } \\ & \text { Andits } \end{aligned}$ |  | 等咢品 | 劈 | $\begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{\text { Brias } \\ \text { Holts }} \end{array}$ |  |  |  | $\begin{gathered} \text { Impe } \\ \text { donioe } \\ \text { (Oums }) \end{gathered}$ |  |  |  |
|  |  | $\overline{\substack{150 \\ 1500 \\ 150 \\ 150 \\ 150}}$ | $-\begin{aligned} & 67.5 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$ | $\begin{aligned} & 125 \\ & \begin{array}{l} 120 \\ 120 \\ 120 \\ 120 \\ 120 \end{array} \end{aligned}$ |  | $\left\|\begin{array}{c} 1 \\ \frac{1}{1} \\ 2.5 \\ 2.5 \end{array}\right\|$ | $\left\|\begin{array}{c} 1.7 \\ 1.25 \\ 1.4 \\ 1.25 \\ 1.0 \end{array}\right\|$ |  |  |  | $\begin{aligned} & 610 \\ & 300 \\ & 3020 \\ & 320 \end{aligned}$ |  | 74 4 4 4 4 4 |
| MAINS TYPES |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $\left\|\begin{array}{l}90 \\ 100 \\ 80 \\ 100 \\ 1000 \\ 900 \\ 100\end{array}\right\|$ |  | 90 <br> 80 <br> 60 <br> 80 <br> 80 <br> 90 <br> 90 <br> 80 | $\left\|\begin{array}{l} \mathbf{3}, .5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 3.5 \end{array}\right\|$ | $\left\|\begin{array}{l} 4.0 \\ 2 ., 1 \\ 0.8 \\ 5.8 \\ 7.8 \\ 7.1 \\ 7.1 \end{array}\right\|$ | $\left.\left\|\frac{1.7}{\frac{1.75}{-}}\right\| \frac{0.75}{0.75} \right\rvert\,$ |  |  |  |  | 81 <br> 17 <br> 17 <br> 17 <br> 17 <br> 81 <br> 17 <br> 17 |



|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYPE | Nominal Rating |  |  |  | Typlcal Operating Conditions |  |  |  |  |  |  | BASE | $\begin{aligned} & \text { Base } \\ & \text { Inder } \\ & \text { No. } \end{aligned}$ |
|  | Fil，or Heater |  | Max． <br> Anode Volts |  |  | $\begin{aligned} & \text { 昆品 } \\ & 50 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Grdd } \\ & \text { Bins } \\ & \text { Volts } \end{aligned}$ | Anode Cat－ rept mas． | Screen Cur－ rent mA． | Hutual Cond． $\mathrm{mA} / \mathrm{v}$ | Impe－ dance （Ohnts） |  |  |
|  | Volts | Amps． |  |  |  |  |  |  |  |  |  |  |  |
| 1N3¢ 1－3\％G |  |  |  |  | 90 | ${ }^{90}$ | $\theta$ | 1.2 | 0.3 | ． 75 | 1，500，000 | OctalOetal | 59 59 |
| －1A＋E | 1.4 | ．05 | 41） 150 | ${ }_{6}^{90} 8$ | 901 | ${ }^{90} 9$ | 0 | 1,0 <br> $\mathbf{1}, 3$ <br> 1.8 | 0.3 0.8 | ． 68. | $1,000,000$ $1,000,000$ |  | 59 74 |
| 348 <br> 210 <br> 10. | 4 | ${ }^{\sigma} .06$ | 150 | 67.6 | 135 | 67.5 | ${ }^{3}$ | 2.8 | 1.0 | ． 6 | R00，000 | ${ }^{4}$－pin UX P | 74 |
| 210 V．P．T． |  | ， 1 | 150 |  | 150 |  | 1.5 | 1.5 | 0.7 | 1.1 | fin0，000 ${ }^{\text {a }}$ | $\left\{\begin{array}{l}\text { d－pin } \\ \end{array}\right.$ | 5 |
| 210 V．P．A． | 2 | ． | $\bigcirc 180$ |  |  |  |  | 2.2 | 1.0 | 1.1 |  | $\left\{\begin{array}{c}\text { c／pin } \\ 7 \cdot \mathrm{phin}\end{array}\right.$ | 32 32 |
| 210 S．P．T． |  | 1 | 150 |  |  |  | 1.5 | 1．2 | 0.7 | 1.8 | 800，000 | $\left\{\begin{array}{l}\text { d－pin } \\ \text { den }\end{array}\right.$ | \％ |
| ${ }^{220}$ I．P．T．t＊ |  | ． 3 | 150 | 80 |  |  | 1.5 | 2.5 | 0.8 |  |  | $\underset{i-p i n}{ }$ | 33 |
| 15＊ | $\stackrel{1}{2}$ | ． 22 | 1.35 | \％7． 5 | 135 | 67.3 | 1.6 | 1.85 | 0.3 | ． 70 | 800,000 | 5 pin Ux | 83 |
| －Indirectly Heated．$\quad+$ Detector Pentonde． |  |  |  |  |  |  |  |  |  |  |  |  |  |



## ELECTRADIX BARGAINS

B

## HANDCOMS.

Aovernment allmetal Field Handcoms, Miero-
telephones or Transceivers, for
portabie or fixed telephnges, The portable or fixed telephomes. The famous. No. If Handcom nged in
Army field sets. All metal, with Army field sets. All metal, with
mlike finger switch, with 4 -way cord, $15 \cdot$ Simblar Handcom, leas switeli, TELEPRONES house type, $9 / 6$ All tझpes. - Tred new, $85 / \mathrm{m}$, or with cradle, $80 \%$
 15/- G.P.O. pedestal transmitter and phone, $10 /$. Ottice phones from 2\%/6.
BUZZERS, etc. A.O. Maing Buzzers for 6 volts, 4/- A.C. Tronse Bell,
$f_{i}$ to 8 volts,
niln to 8 Voltr, 2 iln.
gons, $4 / 6$. Combination A.O. Bell nad Maing Trans former, 10, 6 , 3/6. Square brass case, 5/6. \&eavy-type bakelite ciae, $5 / 6$. The famows Tiny Towisend htgh-note Bnazer, the snunllest made, tised by Government on jvaremeters, has ample platinum contactsc Ideal for key work (as illugtrated), $10 \%$
LOW RESISTANCE DICTAPHONE SOUND AMPLIFIERA and horn ior loud sigs., with buzzer, 7,6 . FIERS and horn ior loud sigs., with buzzer, $/ 8$.
Momes. Broadcaster on adjustable table stand, 25/-. G.P.O. candiestiek type. 7/6. Armoured mike unit, $5 /$. Sensitive G.P.O. mike huttons, $2 / 6$. mike unit, $5 /$, gengive G.P.O, hake huttont, 276 .
RELAYS. Teleqhone Bype No. 6 twip bolisin, polarised S.R. chatngeover, 6 volts $2.5 \mathrm{~m}, \mathrm{a}, 8,6$. No. 4A on of 8.P., 2 volts, 5 l- lielaz movements leas blade, 1,000 ohm coil, C.T. $2,6$.
LIGET AND RAY CELLS, Felenima Raycrait, 21/.. Raycraft outnt with relay, $42 / \%$. 10,000 ohm Relay, 22/6.
DIMMER REEOSTAT-SWTTCHES. I ohro to 0 and 0 ff , mp to 3 amps, for rexulation on 6 to 12 Yolis, bunks of batiery charge Morlel Control
A.O.ID.O., ets. Hollow beds A.O. D.O., efo. Hollow bnob has centre contact
init. lamp. New Aetn O \& Init. lamp. New Aetna D.B.A, in carton, $2 / 6$ only.
Worth 5s. Extra Bulb, 6d. Very Large henvy Worth gs. Extra Bulb, 64 . Very Large heavy 10 -atud Switch for 220 volts to 4.5 molis siafn. x 1 fin $\pi$ 14in.. $\frac{e 5 f 10 /-, ~}{110}$ volt ditto, 18 in . x 1 Itin. $\times 14 \mathrm{in} .$, es/10/.
FOOT SWITCEES Strong medinm size heavy emrrent spring-of, ironclad, $10 /$. Mentor Baitery Charge Panal Indicntors, Thermal type, $G$ or 12 volts, 5/-.
LIQDID LeVEL INDICATORS with hall float geared to watchorlial papel gange for range of Sin. rise or fall, $7 / 6$.
A.P.O. for amoothing. $2 / 8$. H.T. Mloub Pixed Contlensers, L-4 mid., 4,000 volts. 10/-. Larre I mid., 2.000 ralts, $10,6$. 1 mud., B,000 volts, oilfilied B1 condensers, $85 /$. $2 \mathrm{mfd}, 4,0 \mathrm{O}$ volts, easerk. 45/, INBIULATORS. All shapes and mizes from aetinl egy or sheh at 2d. to big. Nayy fin, trpe. Clents and periestal Insulators, No list ready. Please specity wants. SMALL MOTORS with defective armatire necting repair, $1 / 2 \mathrm{Jth}$ h.p., gond bearing, mo briaht gear sound, $10 / 6$ ench; $\ddagger$ h.p. A.C. Motor, 230 volte, 50 cyoles, 2,800 revs., split phase, Iaunence, Scott,
 SPLCLAC DYYAMO Birgathe. Rotax, Iq volts,
 cost fio, numsed, $15 / \mathrm{F}$, postage $2 f-$; G.E.C. Donlule cost £10, nnused, $15 /$-, postage $2 /-;$ G. D.C. Donlblecurrent Dymamos, 6 volts ayd 600 volts, bhll-
bearines, $161 \mathrm{~h} .$. ns new; $27 / 6$. Gitrifage Padd Cngland amporar
KOTOR GENERATORS. D.C.ID.C. 3 h.p. 220 volt motor on bedplate conpled to 8 volt 250 Dsnamo With massive coinmantatnr, J. H. Holmes, $23510 \%$, 220 volte to 9 wolts 10 amps., Hobart, \&18. 220 volts to 1 fi volts 6 amps., 97110 i
AIR COMPRESSORS. Small Fertical trpe thflatnrs for belt irive, worth it fleer, 83/10/-. Portable Electric on wheels for paint apray, 216.
PUMPS, Stuart motor pumps, eentrifigal, C.D. Shelter, 19 volts D.C. or $2: 0$ volte A.C. in stack,
Twin+pist on pumps with or withent mators, ios suis or water.
NEW SEOWROOMS AT NEW ADDRESS Come ami see us at 214, Queenstown Ril. Buttersea. Convenient from anywhere by No. 137 Bus from Oriord Et, Marble Areh or Oiapham Common Tuise to our donf. We are nest to Oueen's Doad Station. tro statlons from Waterloo. Kindly ald posiage cost on mail onders and send stamped envelope all answers to enguifies.
ELECTRADIX RADIOS,
214. Queeastown Road. Battersea, London. S.W. 8

## Trained men get <br> GOOD JOBS

- Now is the time to prepare yourself for the future. There will
be splendid opportunities for technically trained men to secure well-paid employment, or start radio businesses of their own.
Even if you know nothing about radio, we can train you. Our speclalised method of Home-Study
Tuition is a proved success. Hundreds of our students now doing important work owe the ir progress solely to our training.
Post coupon now for free details of our Home-Study Courses in Radio Reception, Transmission Servicing, Television, Radio Calculations, Mathematics, (Elementary and Advanced)


## T. \& C. RADIO COLLECE,

## 2, THE MALL, EALING, W. 5

(Post in unsealed envelope, 1d. stamp.
Please send me free details of your Home-Study Mathematics and Radio - Courses

1 NAME
ADDRESS
1 P. 43

## RELAYS

TWO STEP RELAY LF/FS Silver Contacts First impulse impulse "Off." A.C. and D.C. ALSO AERIAL CHANGE - OYER Ask ROLAYS.

## LONDEX LTD.

Anerley Works, $20 \%$ Anerley Road,

## TESTOSCOP

Makes 30
important tests.
everywhere by Electricians,
Wiremen, and $S$ ervice
Engineers. Interesting booklet "A 24 on on
testing, free. From all wholesalersor direct.
RUNBAKEN - MIANCHESTER .-I

BOOKSELLERS TOTHE WORLD * F (1) YLES

FOR BOOKS ON WIRELESS AND EVERY OTHER SUBJECT

119-125, CHARING CROSS ROAD, LONDON, W.C. 2
Oben 9 a.m.-6 p.m. including Saturday Tel.: Gerrard 5660 (16 lines)

## GALPINS <br> ELECTRICAL STORES <br> 'FAIRYIEW, <br> LONDON RD., WROTHAM, KENT. <br> TERMS CASH with ORDER. No C.O.D.

Regret no Orders can be accepted from Eire or Northern Ireland.

ELECTRIC LICHT CRECK METERS, well-known makers, first-class condition, electrically guaranteed. for A.C. mains 10,250 volts 50 cy . 1 phase 5 amp. and 10/- each : 10 amp . load, 12/6, carriage $1 / \mathrm{m}$ I K.W. TRANSEORMER, input 100 volts at 100 cycies, single phase, output 10.500 volts, ceatre tapped to earth. Price £4/10/-, carriage forward.
HEAVY DUTY CABLE, Y.I.R., and bralded in first-class condition, size $37 / 13$, lengths 30 to 40 yards. Price by the Iength. 5/- per yard. carriage forward, or 7/= pex yard for short lengths. carriage pald.
1 K.IV. ELECTRIC FIRE Element, size 16in. X iina, x $1 i n$. , for 220 V , mains A.C or D.C., as new, 6/- each post free.
ROTARY CONVERTER, D.C. to D.O. input 48 volts, output $2 ; 500$ volts at 1 kW .. condition as new. Price flo carriage paid.

+ WATT WMRE END Resistances, new and unused, assorted sizes (our assortment),
56 per coz., post free.
SOLID BRASS LAMPS (wing type), onehole mounting, fitted dauble contact small B.C. holder and 12 -volt 18 watt bulb, $13 / 6$ each. post free, or $30 /$ per doz. carriage paid. INSTRUMENT METAT, RECTIEIERS. by famous maker, $10 \mathrm{~m} / \mathrm{a}$ full load. convert your D.C. meter to A.O. working. Price 15/- each, post free.
TUNGSTEN CONTACIS, 3/16in, dia. a pain mounted on spring olades, also two high mounted on spring olades, aiso two high quality pure siver contacts $3 / 16 i n$, dia, also mounted on spring blades, flt for heavy base to remove for other work. Priee the base to remove for other work,
set of four contacts. $5 /$ post free.
set of four contacts. $5 /-$ post frec.
220 VILT DYNAMO 9 AMP. output by Lancaster Dynamo Co., shunt wound speed 1.500 R.P.M. condition as new. Price 110 , carriage paid.
A-1HPMETERS, description as above, range 0-1 K amps. Price $25 /$-, post free.
KLUAXON MOTRFS. 220 v., D.C., $1 / 10 \mathrm{H}, \mathrm{P}$. shunt wound, ball-bearing, fitted reduction gear giving speed of 700 r.p.m., high-grade job, condition as new. Price 50:- each, carriage paid.
D.C. MOTOR, shunt wound condition as new, high srade, ball-bearing, 1 H . P. can be supplied in 110 volts, D.C. only. Price $40 /$ - carriage paid.
MoVING COIf movements, needing slight deflection modern type, famous makers IRIGBT ANGLE DRIVF, mounted in sunmetal box, all ball-bearing, gin. dia. shafts, as new, $12 /$ each, carriage paid KLAXON MOTORS, as above, with right angle drive, but need slight repair, mostly felds open circuit, not guaranteed. laminated flelds, 20 :- each, carriage patd. AUTO TRANSFORMER, Rating 2,00 . watts. tapped $0-110-200-220-240$ volts0 as new. Price e9, carriage paid. ZENITil Vitreous resistances, size 5 in. by lin., 5,000 ohms to carry 100 or 150 m/a two sizes. Price $4 /$ each, post free RESISTANCE MATS siza 81 n . by 6 in . set of four, $80-80-150$ and 690 olhms to carry
51 post free.
Mo VING COIL amp. meter, 2 inn. diameter. panel mounting, reading $0-20$ amps., CROMPTON DYN $30 /$, post free. CROMPTON DYNAMO shunt wound, output $50 / 75$ volts 25 amps., 4 pole, speed 1.750 r.p.m., massive construction, in perfect working order. Price 29, carriage MOTOR DRIVEX PUMP; 100 . D.O. motor. "Keith Blackman," th.p., gin. inlet and, outlet, gear type pump, in perfect working order. Price e5, carringe paid: ditto 220 V. D.C. motor iln. inlet and

21

| BATTERY TYPES |  |  |  | OUTPUT |  | PENTODES AND |  |  |  |  | TETRODES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 03 | AL 1 | rin |  |  |  | COND | $\begin{aligned} & \text { OPERA } \\ & \text { OTITO } \end{aligned}$ | ${ }^{\text {ATIVG }}$ |  |  |  |
| TYPE | $\begin{gathered} \text { tode } \\ \text { tode } \\ \text { Oef. } \\ \text { Tede } \\ \text { rode } \end{gathered}$ | $\frac{\text { Fil. of Htr. }}{\text { Volits A Amps } \mid}$ | $\begin{gathered} \text { Max. } \\ \text { Anode } \\ \text { Volts: } \end{gathered}$ | $\begin{aligned} & \text { Max. } \\ & \text { Screen } \\ & \text { V Volts } \end{aligned}$ | $\left\{\begin{array}{l} \text { Mut. } \\ \text { Cond. } \\ \text { mA } \widetilde{V} . \end{array}\right.$ | $\left\|\begin{array}{c} \mathrm{An} . \\ \text { ode } \\ \text { Yolts } \end{array}\right\|$ | $\left\{\begin{array}{l} \text { Sern } \\ \text { Volte } \end{array}\right.$ | $\begin{aligned} & \text { Grid } \\ & \text { Bins } \\ & \text { Bolts } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { Anode } \\ & \mathrm{cmir} \\ & \mathrm{mpnt} \\ & \mathrm{~m} / \mathrm{A} . \end{aligned}\right.$ | $\left.\begin{aligned} & \mathrm{e}\left\|\begin{array}{l} \text { screen } \\ \text { Ore- } \\ \text { rent } \\ \text { m } / \mathrm{A} \end{array}\right\| \end{aligned} \right\rvert\,$ |  | Base | Index |
|  | P P P P T P | $\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \frac{2}{3} \end{aligned}$ | $\begin{aligned} & 100 \\ & 100 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$ | $\begin{gathered} 40 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \\ 150 \end{gathered}$ | 2.351 1.8 2.5 2.5 2.5 2.5 3.0 | 100 120 120 120 120 150 | 190 <br> 130 <br> 120 <br> 120 <br> 120 <br> 100 | 7.5 4.5 7.5 4.5 4.5 15 | (8.3 8 8.0 | 1.6 2.6 3.0 1.0 1.0 3.0 | 8,000 15,000 8,000 20,000 20,000 10,000 | $\begin{aligned} & 0 c t a 1 \\ & 5-\operatorname{pin} U x \\ & 4 / 5 \cdot \operatorname{pin} \\ & 4 / 5-\operatorname{pin} \\ & 5-\operatorname{pin} \\ & 4 / 5 \cdot \operatorname{pin} \end{aligned}$ | $\begin{gathered} 60 \\ 82 \\ 6-19 \\ 6-19 \\ 6-18 \\ 6-19 \end{gathered}$ |
| MAINS TYPES |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |
| P.T. $41^{*}$ P.T. 41 B | P | 4 1.0 <br> 4 1.0 | 2501 400 | 200 300 | $\stackrel{3}{3} 8$ | 230 400 | ${ }^{200}$ | ${ }_{40}^{12.5}$ | 30.0 | $\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$ | 8,000 8,000 | ${ }^{\text {a }}$ | 19 19 |
| $\xrightarrow{\text { P.T. }}$ M. 4 Pen ${ }^{\text {a }}$ | P | $4{ }_{4}^{4} 1.0$ | ${ }_{200}^{40}$ | ${ }_{250}^{30}$ | 3.5 | ${ }^{250}$ | 200 | ${ }_{36}^{40}$ | 30.0 | 6.0 | $1 \mathrm{~B}, 0 \times 0$ | ${ }_{\text {sin }}$ | 20-36 |
| 42 M.P.Pe | ${ }_{P}$ | 4 | ${ }^{250}$ | 250. | 7.0 | ${ }^{251}$ | 50 | 5.5 | 32.0 | ${ }^{6.0}$ | ${ }^{8,0009}$ |  | 36 |
| P.T. 10 | $\underset{T}{\text { P }}$ | 4  <br> 4 2.0 <br> 2.0  | ${ }_{250}^{250}$ | 250 250 | 9.0. | 250 | 250 | 7.5 | 40.0 $3+6$ | 88 | 6,6,, 000 |  | -39 |
| 420.T.D.D. 4 | T | 4.2 .0 | 250 | 250 | 7.0 | 250 | 286 | 5.5 | 34.0 | 7.0 | 6,500 |  | sis |
|  | P | ${ }_{6.3}^{6.3} \quad \stackrel{2}{3}$ | 250 2000 | 250 250 | 3.8 1.2 | ${ }_{250}^{250}$ | ${ }_{205}^{250}$ | ${ }_{25}^{18}$ | 32.0 22.0 | 5.0 3.8 | - ${ }_{10,000}$ | ${ }_{i} \mathrm{O}-\mathrm{pin}$ in | 63 88 88 |
| ${ }_{6 \times \mathrm{K} 6 \mathrm{E}}$ | P | 7.: 4 | 250 | 250 | 2.2 | ${ }_{250}^{250}$ | -2811 |  | 92.0 | 5.5 | 7,600 | Octal | 62 |
| +1E | P | ¢. 3.3 | ${ }^{250}$ | ${ }^{250}$ | 2.2 | 180 | 180 | 13.5 | 18.5 | 3.0 | 8,00 | (i-p | $\stackrel{93}{93}$ |
| ${ }_{6 \mathrm{P} 6 \mathrm{EG}}^{42 \mathrm{E}}$ | P | f.3  <br> $\mathrm{f}, 3$ .8 |  |  |  | 250 <br> 250 <br> 50 | 250 | 16.5 | 34.01 | ${ }^{6.5}$ | ${ }_{7}^{7,00}$ |  |  |






The Editor does nor necessarily agree with the opinions expressed by his correspondents. All letters must
bo accompanied by the name and address of the sender (not necessarily for publication).
be accompanied by the name and address of the sender (not necessarily for publication).

## Station Identification

$S^{11}$IR,-In answer to Mr. A. J. Newinian, who asked in informationgust issue of Practical. Wireless for Afformation eoncerning stations Allied Force H.Q., North Africa, and American stations on the 23 metre band, I have reeceived these transmissions regularly.
Al ied Force H.Q..North Africa, has no cal. sign, but just annnuuces as A.F.H.O., and sends cispateches to news agencies in Ncw York and London. It also calls the N.B.C. and C.B.S. in New York. The time of transinissions of the clispatches varies, but is usually hetween 23.00 and midnight.
The American station IIr. Newman mentions I take to be WKRD, not JVKRB as he suggests. It does not announce the location of the transmitter.
Both these stations I received on a 3 -valve homemade battery set (det., 2 L.F.) at a strength of $\mathrm{R}_{5-6}$.
Here are particulars of ne or two other stations that may interest some reaclers:
Quito, lichador, on 25.08 metres, English linguage programme, or.oo-o2.oo hours; Ankara, Turkey, on $3^{1.20}$ metres; calling C.B.S., New York, or. 25 hours; and Brazzaville, F.f. Africa, on 25.06 nietres, news in English at 20.45 hours and 22.45 hours, times B.D.S.T. N. W. Hoare (Southampton).

## Simple S.W. One-valver

SIR, - Being at present without a RX, and wanting
one as soon as possille, 1 luwilt the o-t-o described one as soon as possille, 1 built the o-t-o described in the October, I9+2, issue of Practical Wireless. Results have been pretty good, using. a 25 ft inverted-I,
aerial. I have lagged a good number of stations in two aerial. I have logged a good number of stations in two davs, including ,WRUL, WRCA, WCBX, PRII 8 , "Voice of Free Inclia,", Radio, Metropole, Vatican City. PRL. 8 is situated at-Rio de Janeiro and is announced as Radio Nationale and uses a directional beam directed on Griat Britain. The wavelength is $25: 6 \mathrm{I}$ metres, time received 22.30. "Voice of free India" was heard on 26.1 metres, giving talks in Hindustani and Bengali. II would be very grateful if any reader could help me to identify the following stations. Radio Nationale and a station on the 25 metre band which closes down with "Bon jour, Madame, Bon jour, Monsicur, Bon jour, mademoiselle," then the French National Anthem was played.G. RERVE (Norton-on-Tees).
[Wz have reccived mumerons reporls coiffirming the efficiency of this set. The design is arailable in blueprint
form. P.IV.88-ED.]

## Logged on an O.V. 1 Receiver

$\mathrm{S}^{\mathrm{t}}$IR, I recently constructect an o.v. I Rx similar to F. G. Raycr's, but while waiting for the correct parts to arrive, I built it ast follows: Det. witha pentorle output, a 4 -pin coil, . 0001 tank, .0003 reaction, a 5 meg. leak on output, 3 meg. leali on det., a 60,000 ohm resistor, i meg. on the negative bias, and a or condenser on the chokes. I never had a smoother working R. Four days later the specified parts drrived, and now the recciver is built exactly as $F$. G. Rayer's diagram, except for the tanls (.ooor) and the $A$-pin coil. Two dets. are used, a Mazda H.I. 2 and Ivultard PMITHF for output. If I reverse these valves, the set will not work. FZI cones in twice as loud, and very clear now, and recently 1 logged a B.C. calling itself Radio Cameroon on approximately 25.85 metres. Only once, the first time I I uned it in accifentally,
did I hear it announcerd in linelist did $I$ hear it announced in English. They are on the air
from I8.15 to 19.15 G.M1.T., mostly in French, with a musical item for the last ro minutes.
Other stations I have logged are: Berne, Swiss B. Corp., 5 min. news at 21 hours G.M.T. on 48.66 metres; Radio Andorra, 49 nuetres approximately; United Nations Radio, French N. Africa, 33 metres approximately, and lastly, XGOY in chungking calling K.K. W. in San Francisco for time check, 25 netre hand. To those who use a proper reaction condenser for this Rx, and the set doos not work, here is a tip
put a wire across both fixed terninals.-A. Robinson put a wire aeross both fixed terninals.-A. Robinson
(Biggleswade).

## Harkness Reflex Circuit

$\mathrm{S}^{\text {IR,-I }}$ I was very interested to see the "Harkness March, $n=13$ issue of Peribed by Mr. N. A. Welh, in the March, 1943, issue of Practical Wireless, but, being busy at that time, I did not try it out. Now, having a spare afternoon, 1 made it up and found it cxcellent. I used a plywood chassis, with two separate tuned circuits (spaced alout bins, alapitt). The coils are a pair of standard R.F. transformers in metal cans, but I did not earth the cans. The detector is an ordinary crystal and catswhiskler type. The bypass condenisors are smaller values than those in Mr. Webb's circuit, being . 0005 and . oooz 5 mfd. (instead of oor midd.).
The valve is an American type 19 battery tetrode, and with this 6 volts H:T. is sufficient.
The results were excellent and I endorse Mr.' W. JE. Bodell's opinion of the circuit (in the April, iq43. Prsctical. Wirelesss. The volunle is as good as that which a 2 -valver with reaction could give. I have no cloult that with a well-designed set of coils (mine are not a good quality) the results would be even better.
When the catswhislier is lifted off the crystal, there is a tendency to oscillate; however, a little Attention to screening and general layout should eliminate this, while the use of a permanent detector "ould also cure the trouble. Apart from this, there is no instadility at ali. Without an earth, the results are still very pleasing; both the Home and Forces programmes are a little too loud for comfort with heaclphones.--P. D. Thovas
$(A y r)$.

## Schwerzenburg on 31.45 Metres

S IR,-As it may be of general juterest to readers I report that the Swiss English Service from Schwer2cmburg (which transinits on the 48 and 25 metre bands) was cliange:l from 25.28 metres to 31.45 metres as from June zoth. The previous wavelength of 48.66 metres is unchanged.-A. McGucan (Agbeston).

## MASTERING MORSE

## By the Editor of PRACTICAL WIRELESS 3rd EDITION

This handbook, written with speclal re gard for service
$\begin{aligned} & \text { requirements, will en ente even the beginner rapidly } \\ & \text { to becomee proficiest }\end{aligned}$
to become proficient in sending and receiving.

$$
1 /
$$

Of oll Booksellers, or by post $1 / 2$ from net Tower House, Southamptoon Street, Londor, W.C. 2

# Replies to Queries 

## Changing Over to Variable-mu

"Would you be good enough to inform me what changes are necessary when replacing an ordinary S.G. stage with variable-mu valves? "-P. S. (Cheltenham).
F a potentiometer is at present employed for obtaining the nade up of separate resistances used values will depend upon the voltage existing acrass the positive and and negative sides of the supply and the volage renured by the particular valves in use. A grid-bias battery should be joined across a $50,000-0 h m$ potentiometer, and a switch fitted to cut out the potentiometer, or a third contact fitted to the present two-point on/off switch. The lower end of the tuning coils should then be removed from the earth line and connecter? to the amn of the potentiometer. To ensure stability this connection may be made through a mo,000-ohm fixed resistance, aud a ir or mid. condenser joined between earth and the lower end of the tuning coil.

## Removing Eum

"I had a commercial superhet which was assembled on two chassis, and as I have obtained a new, smaller cabinet, I split the wo sections and have the mains pack now in the bottom of the cabinet and the set in the top. There was a 7 -way comnecting cable between the two chassis, and I have replaced this with a longer cable, but otherwise have made no alterations. There is a very bad hum now on the set, and I should be glad if you could suggest how this has arisen and how it may be corrected."-B. C. (Letchworth).

$A^{\text {s }}$SUMING that nothing has become damaged during your modification, there is only one probability which can answer for the hum trouble. The heater supply for A.C. valves is centre-tapped, and the centre-tap is joined to earth. An alternative to this scherne is to use a centre-tapped potentiometer or two pilot lights across the heater wiring, and we imagine that in your set the potentiometer device was employed. The lengths of the heater leads were such that the adjustment of the pos of the hor that lontment of the potentiometer removen the hum, are employed the beater winding bas become unbalanced, and the potentiometers need adjusting. Alternatively, it may be desirable to remove them from the mains pack and place them near the valves, then adjusting the centre tap to halance out the hum. We assume that you have so placed the loudspeaker that there is no possibility of interaction between the speaker transformer and the main's transformer or smoothing choke.

## A.V.C. Distortion

My set has developed a fault which is puzzling me. On the long-distance stations there is now perfectly good quality, much better than it has ever been since I bought the set. The volume is un on those stations, too. On the locals, however, there is bad distortion, even when I turn the volurse right down. I have tried a new output valve but cannot cure the trouble, and two or three of $m y$ friends have suggested different things which have been unsuccessful. I should be glad if you could help."-P. R. (Weymouth)

${ }^{\top} \mathrm{H}$HF. most likely cause of a trouble of this nature is a defect in the A.V.C. system. This is borne out by the fact that you state that distant signais are now louder, which indicates that the bias applied by the A.V.C. sustem is lower than previously. A powerful signal no doubt applies too much bias, and this zives the distortion ss no doult the frequency-changer and I.F. stages are controlled together from the A.V.C. 'line. We advise you to obtain a good meter and measure the values of the various resistors in the A.V.C. circuit, and check all condensers which are joined to it, when no daubt vou will locate the faulty component which bas introduced this trouble.

## Accumulator Drain

${ }^{4}$ I had a Fury Four which I built when it first came out, and I modernised this recently. At the same time I made a change of my own, fitting new condensers and dials, and the only circuit alteration which I made at this time was to fit indicating lights for medium and long waves, as in a recent reader's wrinkle: I am finding, however, that the accumulator now does not last nearly as long, and I wonder if the lights are responsible. If this is so, how can I overcome it without buying a larger accumulator?" T. B. (Cligpham).

F you have used the correct type of lamp for your dials there should not be any unctue increase in the I.T. consumption, hut it rou have used the ordinary type of Bash-lamp bulb there would be an increase. If you are still using two separate condensers and have fitted lamps to both, it would be desirable to fit an

## RULES

We'wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or difficulties arising from the construction of receivers described in our pages, from articles appearing in our pages, or on reneral wircless maters. regret that we cannot, for obvious reasons:-
(1) supply circuit diagrams of complete multi-valve recelrers.
(2) Surgest alterations or modifications of reteivers deseribed in our contemporaries.
(3) Suggest alterations or modifications to commercial receirers.
(4) Answer gueries over the telephone.
(5) Grant interviews to querists.

A starmped, addresged envelope must be cuclosed for the repls: Als gketches and drawings which are sent to us should bear the name and aduress of the sender.

Requests for Blueprints must not be enclosed with queries, as they are dealt with by a 日eparate department
Send your queries to the Editar, PRACTICAL WIRELESS, George Newnes, Ltd., Tower Eouse. Southampton Street, Strand, London, W.C.2 The conpon on page iti of cover must be enclosed with every query.
ordinary on/off switch in the leads to the laraps so that they may be switched off after you have tuned to a station and thus avoid the additional current drain. Special low-consumption bulbs are, however, normally obtainable and will avond the difficulty of additional consumption.

## Switch Troubles

I am experiencing a peculiar fault with my set which, rightly or wrongly, I attribute to the switch. This is of the wafer type with seven sections, and when turned to the medium waves I sometimes cannot obtain a signal. By turning the switch backwards and forwards once or twice there is a plop in the speaker and signals can be obtained. Do you agree with my suggestion and, if so, what would be the best way of curing the frouble ?"-S. L. (York).
TF your switch is of the type having a bent-over finger which rums across small contact points there is a possibility that owing to excessive solder or a connecting wirc which has become bent, the moving arm has caught and been twisted. Thus, in one position the drag would cause this to fold back, and although in the remaining sections correct contact would be made, on that particular section the arm may rest between two-adjacent contacts. These may be short-circuited or no contact may be obtained, depending upon the make of the switch and we advise you to look carefully at the various sections, and if vou cannot locate the faulty one, perhaps it would be advisable to have the set examined by a local service engineer.

## H.F. Instability

"I had an S.G. Four set, and this had given good results for a long time. I bought two new valves, which I am assured are of identical charactenistics to the original S.G. and detector valves, but there is marked instability, especially on the lower part, of the medium waveband. I find that this may be stopped by holding the valve with the hand (detector), and wonder if this will indicate the trouble to you. It is fairly good on the rest of the band and can be ussd satisfactorily, although 1 cannot turn op the volume too much."-F. G. N. (Brockley).
F the yalves are identical and no changes in wiring or circuit have taken place the most useful suggestion we can make is that the metallising on the valve is not earthed properly. This can occur due to the small seal which is afixed on the inctal surface becoming loose, or the wire connected to it from the filament pin mav have become broken. Examine the point carefully, and if there is a paper label marked "E" stuck over it, remove this and see if the rmetal is sprayed over the wire and seal correctly. If not, a bare wire should be twisted round the metal surface and joined to the appropriate filament pin and we think this, will cure your touble.

## A Correction: The Valve Voltmeter

IF reference is made to Fig. x-page 330, July issueit will be seen that the junction of $\mathrm{R}_{5}$ and VRr is connected to the noving arm of the latter. This should not be so : the only connection made to the moving-arm is that from one side of the L.F. choke in the H.T. smoothing circuit.

## UHIS

## Classiifed Adverlisements

LITERATURE, MAPS, etc.
RADIO SOCLETY OF GREAT BRITAIN invites all keen experimenters to apply
for inembership. Current issue "R.S.G.B. for inembership Current
AMIATEUR Radio Handbook ( 300 pages). paper coyer, $4 /-$ cioth, $6^{\prime} 6$.
Handbook Supplement ( 140 pages). paper cover, 29: cloth, $5 \%-16$, Ashrddge Gardens, London, N. 13.

WhRB'S Radto Map of the World. Lacates any station heard. Size 401 n . by $301 \mathrm{n} . .46$. post 6 d . On linen, 10'6. post 6d.-Webb's Radio, 14, Soho Street, London, W.1

## MORSE \& S.W. EQUIPMENT

FULL range of Transmitting Keys, practice sets and other equipment for Morse training.-Webb's Radio, 14, Soho Street, London, W.1. 'Phone: G\&Rrard 20s. for over ten years. Improved one-valve model now available. Complete kit of momponents, accessories. with full instructions only 16s., postage 6d. Easily assembled in one hour. S.A.E. for free catalogue, -A. L. Bacchus, 109, Hartington Road, London, S.W.8.

## RECEIVERS \& COMPONENTS

AMERICAN LEASE LIGND VALVIES. B.O.T prices For replacement only, 1A5GT, 1C5GT, $5 \mathrm{Y} 3 \mathrm{G}, 5 \mathrm{~F} 4 \mathrm{GT}, 3524 \mathrm{GT}$, 35Z5GT, 11/-. 12F5GT, 12SF5GT, 92 , 6A8GT, 12A8GT 12SA7GT, 6SA7GT, 14\% 6 68GT, $12 \mathrm{K7GT}, 12 J 7 \mathrm{GT} .12 \mathrm{SK} 7 \mathrm{GT} .12 \mathrm{~S} J 7 \mathrm{GT}^{\prime}$ 25L6GT, 35L6GT, 50L6GT, 6K7GT, 36IA7GT 12 10. 12Q7GT. 12SQ7GT, 45, 11/7. 25A7GT 153 , and many others. British and American. for Pye, Lissen, E. R., Halcyon Cos .3 amp , for Vidor, Ferranti, Major Maetro Double Decea yte Ferguson 801 and 802 86. Line cord replacement dropper, . 3 amp . 750 ohms, variable tap, $5 / 6$. Ceranic english 7 pin, 1/3. Amphenol International octal, 1/3; Mazda octal, 1/Paxolin English 7 pin. 9 d . : 5 pin heavy quality, $1 /-$ midget, 2 way, 2 pole (DPDT). 2 way, 1 pole (SPDT), 36
CONDENSGRS. Mica wire ends, 01 mfd. $1 /-.00015,0023 \mathrm{mfd} ., 6 \mathrm{~d}, .5 /-\mathrm{doz}$. Tubulai 1 mfd .01 mfd . 9 dl .1 8 - (ioz. Electrolytic (cardboaid) $50+100 \mathrm{mfd}$, 10 v . wkg., 15 v . surge, 2, 6 .
C'INNECTING WIRE.
Tin
rubber covered, 18 ft ., coil, $1 /$-. PAXOLIN panels. sockets marked A. E. Gramo, 6u, $\operatorname{SCRFENED}$ Ext. L.S., 4d. SCRFENED LILIE CAPS, 8d, each. Spearers, volume controls, slecving, etc. etc. Black Instrument Pointer Knobs at 1.3 each. Stamped envelope with all enquiries please. Postage on all orders. formers, ftted trimmers, medium wave only, no reaction, for TRF midget receivers. 816 pair
(0. GREDNLICK, 34, Banewort Raad, Cambridge Meath Road, London, E.1. (Stepney Green 1334).
FRED'S RADTO CABIN.
FREBPIRE OLR PRICES.
MAINS DROPP1iRS, 0.2 amp ., Pye. 36. PHsil BUTTON. 6 -way, no knobs-a really fine job, 26 each. New. 7-way Push-button Dnits $3 /-$ eaoh.
CONDENSERS.
CONDENSERS, "Plessey" 4-gang screened $63 \ln$. $x$ 33in.. $4^{\prime} 6$. 3-gang, 6! in. $x$
37 in., unscreened, 216. All brand new and 33 in., unscreened, 2/6. All brand new and include trimmers.
"ILENLEY" Electric Soldering Irons, new. Straight bit, 13.6 each, Pencil Bit, 14,6 each. Resin-cored solder, $4 ;-13$. reel. T.C.C. TUBULAIRS, brand new, 25 mfu., DVYAL RANGE COIL. with variometer tuning, fully screened in copper can, 23 SPEAKER GRILLES, 7 in , x 31 in . Cho-mium-plated, cheap to clear. $1 / 6$ each. Ginder, 1 lb . reels, fine all-tin instrument (Continuted on page 440 )

## VALVES <br> AMERICAN VALVES

01, 11, 1/- OZ4, 15/3, 1A4, 15/3: 1A6. 165 : $1 \mathrm{R} 4,15 /-; 1 \mathrm{B5}, 15 /-1 \mathrm{Br}, 1 \mathrm{~A} / \mathrm{-}$ $1 \mathrm{Cn}_{4}, 183 ; 1105,18,3 ; 107,18 / 3 ; 155$,
 $5 /-; 116,18 / 3 ; 1 \mathrm{~J}, 15 /-181 \mathrm{l}, 18 / 3$ : 1P5, 15i- $2 \mathrm{~A} 6,14 /-$, $2 \mathrm{~A} \%, 15 /-, 2 \mathrm{~B}$,

 $6 \mathrm{~K}, 153 ; 6 \mathrm{C8}, 17,6: 6 \mathrm{D} 5,15 / 6 \mathrm{ER}$, 51, $183,9.2,6,6,6110,68,10,1$ $1210: 6 J 8,12110 ; 6 K 6,13 /-: 6 K 7,12110$
 65A\%. 14/\% : 8SCr 1213 . GSF\% 12170 $6 T 5 ; 15.3^{\prime}$ : 6THSG. 14i- ; 6V6. 12110 6N5, 11, - 6Y5, 15j-; 6Y 6, 18/a ; 6Z83,
 $15 /-787 ; 118,7 \mathrm{C}, 15 / 3 ; 10,18 / 3 ; 12 \mathrm{~A}$. $18 / 3: 12,18 /-15 /-15,181 /, 1 \%, 18 /-12 \mathrm{C8}$, $18 i-24,15 /-25 A 6,12 / 10 \cdot 25 L 6,12 / 10$; $2576,11 /-: 26,15 /-; 27,9 / 2: 29,14 /-;$
$30.12,10 ; 31,12 / 10 ; 32,15 /-: 33,14 /-;$ $30.12,10 ; 31,12 / 10 ; 32,15 /-: 33,14 /-$
$34,15 /-35,13 /-36,12110 ; 37,15 /-$ $38,176: 39,12 / 10 ; 40,15 /-: 42,12 / 10$ : $\begin{array}{l:l}46,15 /- & 48,22,8 ; 49,18 / 6 ; 50,25,- \\ 52.23 /- & 53,16 / 6 ; 55,13 / 6 ; 56,15 j-\end{array}$ $\begin{array}{l:l}57,14,-58,15 /-: 59,166, \\ 75,14,6: & , 714,12 / 10, ~ 14 / 6\end{array}$ $80,14 / 6 ; 81,21 /-: 85,14 / 6 ; 89,18 / 3$. Mullard Numbers generally quoted but we may zend B.V.A. equivalents. Prices quoted are current retaj1. PM12, 11/PM12N. 11/- : SP2, 11/- VP2, 11/VP2B, 13:- FC2, $12 / 10$ : PCRA. $12 / 10$ PM11IL, 5/10: PM211L, 5/10, PM2.: TBO2. $9: 2$ : also Marconi Osram P2. 123 : 1 1P2, 7/4.,
G-VOIT A.C. MAINS TYPIS ACTP, TM4B, TH4B, FC4, 14/1P4. SP4, VPAR, SP4H, W42, AC5PPM
 148: Pen 428, 30,6, 18/3: PenB4. uis Peu, MVS ren, MS Pen B, MVS Prn B, $12 / 10: 41 \mathrm{MPG}$. 14 F
C1, C1C, $10 ; 6$ : FC13, JP13C, TH21C, T1130C, 15D2, 14/- ; VP13A, VP13C, SP13C, 9D2, 8D2, 12/10, HL13C, 2LB3, 12/10: C/BLI, 15/3: KTW81. KTV6 63 , KT61, KT63, $12 / 10$; also Cossor.
 Spron, equivalent $15 / 3$

MARDA OCTALS
TH41, $14 /-$ : VP41, $12 / 10$; SP41, $12 / 10$ DD41. 11/-: UU6, 11/-: 111410D
 117 : V133. 12/10 : 11123, 5,$10 ;$ QP25, 15/3: VP23, 11 11L23D1D. 9.2

MULLARD E TYPES
F134, 12/10: EBC3, $11 / 7$; libc $33.11 /-$ ERPF2. 15:3; ERB1, 1, 1.1/3: ERI, 31, 1543 ECH2. 14/- ; ECH3, 14/- : EC1133. 14/FC1135, 14/- : 1F155. 14/- : 1SF'G, $14 /$ 1FF8, 12/10: FF9. 1210 : 161x99. 12410 ${ }_{15 K 2}, 14 /-1 \mathrm{CK} 3,15 / 3$; $\mathrm{HL} 2.14 /-$ A21, 11/ EM4. 11, EIS 1210 TALVES ma convinision ETNJTS are available for the following Unobtainabie ", Valve-Types.
U18, 22 9 ; U403, 18,4 : $:$ TP22, 15, B: TP23 17既; QP230, 199: QP240, 199; TP2620, 18 B ; AC! Pon, 5 pin, $1 T$ ' 6 ; Pear 383,17 is DD40201. 109.
25PE PHILCO and other AMERICAN 2102 , $6 ; 2100,1.3 / 43,1741$; 2101, 1.5 118,$14 ; 2151,17 / 6 ; 76,15.6 ; 523,229$;
119 ; 84'GZ4, 15.6.
These Valiee and Conversian luise will in Uront cascs give as frond a result as the original
 yosured as the lineil practrampes Alld Coudensers and situres sne lint inouth's POSTAGE MUST BE ADDED ON ALL ORDERS

UNDER 83.
J. BULL \& SONS,

246, HIGE STREET, HARLESDEN, N. W. 10

WIRE, Silk-covered. 2 or, reels, 36,38 or 40 gauge, $1 / 3$ reel
CRYSTAL DEMECTOR, New type on ebonite base. $2 / 6$ each. CRYSTAL and Catswhisker in metal box, 6d. each.
METEER Resistances, wire wound, $50-120$,
Silicivinig. 1 each. per yard length. 1 doz. lengths, $3 \%$ Braided sleeving 8 . per yard length $\% /$ doz. lengths.
T.C.C. Tubulars. 0.1 imid., 7 d. each. $6 / 6$ doz. also 01 mfd . at 8 d . each, 8 jm moz . TRiMMERS, 50 m.mfd., 3d, each. Also

250 mimid., 3 G. EXIDLEAK Variable Mica Condensers, .0003 mfd . 2 in . spindlo, new, 19 each. TOLA P.M.SPEAKERK, $22 \%$ Transformer,

THBULARR Wire-end Condensers, assorted
values, new. 3/- doz. values, new. $3 /-$ doz.
TELSEN Hiuminated disc drives, useful for short waves, $2 / 6$ complete.
postare must be included. No c.o.b. GRED'S ILADIO CABIN FOR BARGAINS, 75, Nevington Butits S.E.11. Rodney 2180.

SOUTILERN RADIO'S WIRELESS SCREWS and BARGAINS
SCREWS and Nuts, assorted gross of each (2 gross in all), $10 /-$.
SOLDERING Tags,
64 gross PyILCO 3 -point Car Aerials, excellent for short-wave and home aerials, 7,6 . LIMIT Tone Arms, universal fixing for all
typos of Sound Boxes and Pick-up Heads. Acie, "P.O." Microphones. complete with transformer. Ready for use with any receiver. 7/-.
Meceiver, Panels, undrilled, rigid, 181 in. by Cinicitian Magnets, very powerful, 1 inn. diameter, by in. thick, $1 / 6$ each, $15 /$ per doz, All low value from 8 ohms upwards. A few higher value arc included in each parcel. 3.1 and 2 Watt. 100 resistances for 30 -
MULITICON Master Mica Condensers, 28 capacities in one from . 0001 , etc., etc.., A/SPECIAL ASSORTED PARCEL FOR 100 ERIE, SERIStances (description above), 24 assorted Tubular Condensers: 6 Reaction Condensers, 0001,12 lengths Insution Condensers, 0001 ; 12 lengths Lasuwires Soldering Tags. Screws, Wire, etc., 65/- All brand new.
CRYSTALS (Dr. Cedil), Gd., with catsWhisker. 9d. ; complete crystal deteotors, 2,6:75ft. Wire for aerials, etc., $2 / 6: 25$ yds. -Push-back wire, 5i- : Telsen Reaction dise drives, complete with kriob, otc. (boxed) type W 184, 2/6 each; Insulated sleeving, assorted yard lengthis, $3 / 6$ dozs ; single screened wire, doz. yards, 10j-
LOUD Speaker Units, unshronded, Midget type, 4j-: Motal case condensers, $1+.1+.1$ $2 \nmid 6$ : Many Bargains for Callers.
SOUTHERN RADIO
SGUTHERN RADIO SUPPLY CO.. 46, Liste St., London, W.C. Gierrard $65 \$ 3$.

## RELIANCE RADIO SERVICE.

8, Kennington Park Road, S.E. 11.
BATMERY COND: REL, 2331 . flong, 2/-each. Red and black, 10 amp. $1 /-$ per yd. 3 -way 5 amp. $1 / 4$ yd.
MAINS IEADUS. Twin, suitable for any set. 6rt. lead with 2 -pin piug, $2 / 6$ each. SCREWDRIVEFS. Ift. Iong with 5.000 v . insulated handle. Ideal for servicemen. ${ }^{2 / 6}$ each SOLA SPEAKERS. All permanent magnet. $51 \mathrm{n} .17 / 6.6 \mathrm{in} .19 / 6.8 \mathrm{in} .22 / \mathrm{A} . \mathrm{A} \mid$ less transformers.
RIFSIN COIRE SOLDER. IIb. reels, $4^{\prime} 6$ per reel. 1yd. length. 4d, PALVE MIOL,DELAS. 7 -pin' English, Mazda octal. U.S. Octal. All 94. each.
MAINS DROPPCRS. centre tapped, 3 amp. $6^{6 /}$ each.
TUBUT. $R$ CONDENSERS. 0001,0002, $.0003,0005,005, .001$, all 350 o working, G1, each. it mfd. 350 , working, 8rl, each. 50 mfd., 12 v . working, 25 mid. 25 v . working,
$1 / 3$ each. $50 \mathrm{mfd} ., 25 \mathrm{v}$. working. $1 / 9$ each. $1 / 3$ each. $50 \mathrm{mfd},{ }^{25} \mathrm{v}$. working. $1 / 9$ each.
$.5 \mathrm{mfd} . .400 \mathrm{v}$. Working. W3 each. $8 \mathrm{mfd}$. .5 mfd .. 400 v . working.
125 v . worsing, $3 / 6$ each.
(Conlinued top of column 2)

VALVE REPLACEMENT. We can supply a valve, when used with our conversion unit will replace the following valves: ID6, UR1C, CYI, UR1, V20, U30. Please state
which you require. $15 j$-complete. Another Which you require. $15 /$-complete. Another
valve and unit will replace a 43 or 43 E . $17 i-00 m p i e t e$. Also one with unit to replace $25 Z 5,25 \mathrm{RE}, 25 \mathrm{Y} 5,35 \mathrm{RH}$, valve and onit. $15 \%$. He can supply the following valves: U14, SP13c, Pen. 36 c , CY31. VP4B, ACTPen., ACFI, all at B.O.T. prices.
Regret No. C.O.b. Please add Postage.

8, Kemingtor Park Road, S.E.11.
WANTED. Pifco All in One meter. State price-Lihou, 1, Crosland Hill Road, Crosland Hill, Hudjersfield.

## HFTER THE WHR!

The advance in Radio Technique after the war will offer unlimited opportunitles of high pay and secure posts for those Radio Engineers who have had the foresight to become lechnically quali-
fed. How you can do this quickly and fied. How you can do this quickly and
easily in your spare time is fully explained in our unique handbook.
Full details are given of A.M.E.E.En A, MJirit.I.R.E. City \& Guilds Exams. and particulars of up-to-date courses
in Wireless Enginecring, Radio
En in Wireless Empinecring, Radio Mathematics, etc., etc.
We puarantee "NO PASS-NO FEE." Prepare ior to-morrow's opportunities and post-war competition by sending for tils very informative 112 -page guide
NOW-FREE and without obligation. BRITISIE INSTITUTE OE ENGINEERING THCTHNOLOGY 17. Stratiord Place. London, W.1.

## REQUITREID-

by all branches of the Services, Army, Navy, Air Force and Merchant Marrine.

Skilled W,T Operators.
I DIJ can be thoroughly trained by the Candler System of Morse Code training. Code Courses for Beginners and Operators.

Write now for a copy of the
-FREE "BOOK OF FACTS" It gives full details of the Courses. Terms : Cash or Monthly payments. CANDLER SYSTEM CO. (5 L.O.) 121. Kingsway. London, W.C.2. Condler Systam Coo., Benver, Colorudo, U.S.A

## MATRCILATID. 

> Whatever your age, you can now study for the ali-important Matriculation Examination at home on "NO PASSNO FEE " terms.

> MATRIC" is cise ascepted passport to all careers, and opens up opportunities which would otherwise be completely closed to yous.

> Ensure the success and security of you and yours chrough post-war difficulties by writing for our valuable "Guide to Matriculation" imme-diately-FREE.
> B. T. 1. (Dept. \|!3),

> 356, Oxford Street, London, Wil.

VALVIFS, 12SA7, 6A8, 6A7, TH41, TH4D, AC,TP, FC4, X41, X65, X61, all at $14!$,
KT63, $6 \mathrm{~V} 6,6 \mathrm{~F} 6,78,6 \mathrm{~K} 7,12 \mathrm{K7}, \mathrm{MS} 4 \mathrm{~B} . \mathrm{SP} 13 \mathrm{C}$ VP13C, $50 \mathrm{~L} 6,25 \mathrm{~L} 6,26 \mathrm{~A} 6,42,42 \mathrm{MP}$ Pen. PenA4, 1A7, all at io 10 . ACO44, HLA1DD, HL,42DD $75,6 \mathrm{Q7}, 12 \mathrm{Q7}, 12 \mathrm{SQ7}, 2 \mathrm{P}$, ACHLDD MHL4 all at $11 /$ FBLI, AC5PenDD. Pon45DD at 1513 penB4. KT33C at $14 / 8$. $1 H 5$ at g/2. 6L6, PM24A, FW4,500 at 183 , 35Z4, 25Z6, 2574. 5 Y3, $5 \% 4$, U50. U31, U14, U10. UU6. UU5. 80. SP215, $220 / \mathrm{HPT}, 220, \mathrm{OT}$ 1C5, AZ1, 5V4, $1 \mathrm{~W} 4,350$, all at 11 i - Most types in stock. Postage extra, S.A. 16 with enquiries.-Radio Supply, 27 , IKigh Street, S. Walden, Essex.
MOIRSE made easy using the "Autocode. Designed by Professional. Telegraphist. You make it yourself rrom simple instruc, tions. Drawings and templates supplied. Send 3/- (to include postage, etc.) and
recejve the Autocode Manual.-Hardy BCM/HAFT. London, W.1.
COULPIIONE Radio, New Longton, Nr. Preston. New goods only. Tungsram valves. Mains Transformers, : 350 v. 120 m.a., 4 v. 8 a.; 4 v. $2!$ a., 4 v. $1 \frac{1}{2}$ a., 336. 350 v. $120 \mathrm{~m} . \mathrm{a}$, , 6.3 v .3 a., 5 v. "3a., $32 / 6$. Celestion $\sin$. P.M., with transformer, 24/6. Rola P.M., less transformer, 5tm., $20 /-$ $61 \mathrm{in}, 221 /: 8 \mathrm{i} 0 . \mathrm{F} 24 \mathrm{~L}: 10 \mathrm{in} ., 28 / 6$. Cored solder. $4,6 \mathrm{lb}$. Tinned copper wire, $2 / 3$ in, $\frac{\mathrm{mam}, \text { systofiex, }}{}$ cord replacement resistors, 800 ohm, 2 adjustable tappings, 6/9. Parafeed L. F . Transformer $4: 1,4 / 9$. $50 \mathrm{mfd} .12 \mathrm{v} ., 1 / 9: 25 \mathrm{mfd} .25 \mathrm{v} ., 1 / 9$. Erie resistors, 1 watt, gd, : 1 watt, 60 . : $f$ watt, 4d. Pushback wire, 10 oft., $6 / \mathrm{F}$. Swltch cleaner. 2/3 bottle. Output transformer. $7^{\prime} 6$. Bell transformer, 6'6. Valveholdars. 1d. Bell transformer, Stanelco electric soldering 1r. per pin. Tubular and silver mica conirons. 21-i gubular and silver mica con-
densers, all sizes. Volume controls. with densers, a/l sizes.
switch. $5 / 9$. Less switch. $4 / 9$. S.A.E. for stock list,
MAKE and sell your own WIND CEARGER. Compact. balanced. steel Turntables. "V "dynamo Bod with adjustable " strap" to take ANY car umamo, on sturdy Mast Bearings with Tail post complete, 22/6
each -W. Barhain Hilltop, Bradmore Green. Coulsdon. Surrey.
REWINDS-Mains and Output Transformers, Field Colls, promptly executed. Valves-good selection all types. Brand Now B.V.A. Send S.A.E, for list.-A.D.S.
Co.. 261-3-5. Lichfleld Road, Aston, Birmingham
PERMANENT CRISTAL DETECTORS Tellurium-Zincite combination. Complete on base. Guaranteed efflcient, $2 / 6$ each. Wireless crystals with silver cats-whisker, gross assorted useful sizes, 2/6. Recond1tioned headphones, 4,000 ohms, $12 / 6$ pair. Postage extra. Post Radio Supplies, 67. Kingscourt Road, London, S.W.6.

## SITUATIONS VAGANT

" RNGGINFLRRING OPPORTUNITIES" -FLPEE 112 -page guide to training for A.M.I.Mech.E., A.M.I.E.E., and all branclies of Engineering and Building, Full of advice for expert or novice. Write for free copy, and make your peacetime futire secure,-B.I.E.T. (Dept. 242B), 17, Stratford Place, London, W.1.

## TUITION

LEARN MORSE CODE the Candler way. See advertisement on this page. -

- RADIOLOCATION."-Students of boka sexes trained for important war-time Radio Appointrients. Also for peace-time careers in all branches of Radio and Television. Boarders accepted, Low inclusive fees. College in ideal peaceful surroundings. 2d. stamp for Prospectus.-Wireless College, Colwyn Bay
THE Tuitionary Board of the Institute of Practical Radio Engineers have available Home Study Courses covering elementary, theoretical, mathematical, practical and laboratory tuition in radio and television engineering ' the text is suitable coaching matter fol' I.P.R.E. Service entry and progressive exams.: tuitionary fees-at pre-war rates-are moderate. The Syllabus of Instructional Text may be obtained, post free. from the Secretary, Bush House. Walton Avenue, Henley-on-Thames, Oxon,

