THE LEADING UK CONSUMER ELECTRONICS TECHNOL

SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

JUNE $1999 £ 2.70$

CD player repairs

How PC

memories wonk
Serviaing fíc Panasonic Euro-? chassis

A fime-run switching aircuit
Servicing Daewoo V50/V60 VCRs

Fault reports TVs, VCRs, PC Monitors and Satellite

K~MN IIG

 ELECTRロNIC

 ELECTRロNIC}

The Ultimate Source

Insist

the

box

k MNím

CONTENTS

June 1999
Vol. 49, No. 8

Japanese Dilemma

What a Life!
A great start to the day soon comes to an end for Donald Bullock as he faces a day's problems with sets and their owners.

Teletopics
528
Successful start for ONdigital. Satellite and interactive TV update. Latest trade news.

Satellite Workshop

Jack Armstrong's column on satellite receiver servicing and related matters.
Test Case 438 531

Monitors

Satellite Notebook

Solutions to problems with satellite TV equipment and installations. A listing of Astra digital transmission frequencies/polarisations.

Servicing the Panasonic Euro-2 Chassis
 536

Chassis that use digital signal processing present problems that differ from those experienced with standard sets. Brian Storm on how to tackle Panasonic's second chassis to feature this type of circuitry.
CD Player Servicing

John Coombes on what to check for common fault symptoms.

Servicing the Daewoo V50 and V60
 544

J. LeJeune provides a detailed fault-finding guide that covers the deck and the electronics used in these popular budget-price machines.

523 TV Fault Finding
 548

526 Help Wanted 565
VCR Clinic 566

Servicing the Indiana 200 Chassis
 568

Alan Dent on the differences between this and the basic 100 chassis and specific 200 chassis faults.
PC Operation and Repair
570
Part 3 of K.F. Ibrahim's current series tells you everything you need to know about the various types of

memory devices and the way in which computer memory is used.

A Run-on Timer Circuit

 572Keith Cummins presents a delayed switch-off arrangement that could find several uses. The basic aim was low cost with reliability.

DX and Satellite Reception

 574Terrestrial DX and satellite TV reception. News from abroad and about satellite developments. The Bookies TV Channel. And don't miss the coming eclipse, which will affect radio and TV propagation conditions. Roger Bunney reports.

Service Casebook

 577John Edwards on various servicing problems.

Letters

578DTT reception. Follow-ups to previous articles. A mystery TV fault. Digital repairs.

Digital TV Courses

The College of North West London has geared up for the transition to digital TV and is the first to offer C\&G courses on digital TV at Level 3 of the 2240 Electronics Servicing Programme.

Next Month in Television

Editor

John A. Reddihough
Production Editor
Tessa Winford

Consultant Editor

Martin Eccles

Publisher

Mick Ellioft

Advertisement

Sales Manager
Grant Allaway
$0181-6523032$

Advertisement Sales

Executive
Pat Bunce
0181-6528339
Fax 0181-652 8931

Editorial Office

$0181-6528120$
Fax 0181-6528111
Note that we are unable to answer technical queries over the relephone and cannot provide information on spares other than that given in our Spares Guide.

June issue on sale May19th.

Next issue, dated July, on sale June 16th.

Decode and recode car radios \& CD players quickly with the Joule A. 400 radio decoder. Now sold worlawide to service departments and Police Forces.
C.E. Approved - meets all current regulations.

Prices stant from
£ 375.00 + VAT for the Starter Kil covering over
100 models of popular radios.

Call us now for a free information pack and demonstration disk on 01325307442.

The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems
Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN
United Kingdom
Tel: + 44 (0) 1325310278
Fax: + 44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Abstract

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

M.C.E.S.

Specialists in the Service and Recalibration to original manufacturers specification of:All types of:-

TUNER UNITS TO 20 GHZ BOOSTERS \& RF MODULATORS COMBINED TUNER AND IF UNITS

Supply of Upper Drum Assy's for all video recorders including time lapse, marine and aviation requirements, either as new or remanufactured using your original drum and new grade A chip sets.
We are able to service, recalibrate and confirm manufacturers specifications for all low noise blocks.
New LNB's can also be supplied to order.
New price list now available.
15 Lostock Road, Davyhulme
Manchester M41 0ES
Telephone: 01617468037
Fax: 01617468136 $\underset{\text { swrect }}{\square}$

MasterCard Mastercara

Jotrange how situations change. It seems not so long ago that Japan and its industries, particularly electronics, could do no wrong. They taught us how to make cars and TV sets properly. They invested heavily and came up with a seemingly endless stream of desirable, innovative products. Both outsiders and insiders could see no end to this success story. We were told, by more than one leading Japanese electronics industrialist, that the 2 lst century would be the Japanese one, when Japan became predominant industrially and culturally.

For the last couple of years the situation has been somewhat different. Japan is still the world's second largest economy, but the previous confidence has gone. The economy has stalled, and doesn't look like getting going again for some time. Profitability has become appalling, and the talk now is all of restructuring and job losses.

Sony has announced that some 17,000 jobs will be lost worldwide, ten per cent of its workforce, while fifteen of its seventy factories are to be closed. Mighty Hitachi, whose activities span a much wider field and whose turnover is equivalent to over two per cent of Japan's gross domestic product, has launched a detailed review of its businesses. 6,500 of its 66,000 parent company employees are to be made redundant by March next year. On a consolidated basis Hitachi is Japan's largest employer, with 330,000 staff. Businesses are to be dropped or reorganised. The story from Mitsubishi Electric is similar: there is to be a "sweeping restructuring of its portfolio of businesses". In the UK, the latest manifestation of this is the closure of Mitsubishi's VCR plant at Livingston. 14,500 jobs will go (8,400 in Japan) at Mitsubishi Electric,

Dilemma

nearly ten per cent of the workforce. Other manufacturers who have announced poor results and restructuring recently include NEC, Matsushita, Sharp and Toshiba. It's all a long way since the time when, it seemed, all the Japanese had to do was to get the product right and produce more and more of it.

Some of this was foreseeable. Markets reach saturation point; new products are not always a runaway success; if investment in new plant is excessive you end up with too much capacity; and so on. Then there is the fact that Japan is not isolated from economic problems elsewhere: no economy that is heavily dependent on exports can be. But there are also more specific Japanese problems. The banking system is beset by nonperforming loans that Japanese bankers are reluctant to write off. The bubble economy of a few years ago, when asset values rose to unrealistic levels, collapsed. This is part of the cause of the banking system difficulties. Then there is the practice of crossownership, with firms owning substantial stakes in each other. This can work nicely when everything is doing well: when recession looms, it aggravates the problems.

Japan's unemployment rate hit a new high of 4.8 per cent $(3.39 \mathrm{~m})$ in March, partly because of the corporate sector restructuring. Japanese industrialists hope to improve their profitability in the second half of the year, and will be helped by improved conditions in SE Asia. But it will be hard going, particularly to improve domestic market conditions. The Japanese have always had a high propensity to save. This increases when the economic climate is poor, with unemployment a threat. Right now Japanese consumers are saving rather than buying. No one seems to know how to alter their
behaviour. There is also a demographic problem: the Japanese population is ageing.

Japanese interest rates are negligible. So borrowing is not a problem. But conversely all those savings are bringing in little income. In the Western world interest rate changes often have a considerable impact on the economy. This economic tool is not available when interest rates are negligible. The Japanese have been advised to get their banking system sorted out, but that's not the sort of thing that can be done overnight. Right now the best opportunity for Japan seems to be to export its way out of its difficulties, something that shouldn't be too difficult once worldwide expansion has resumed. Bat the high value of the yen is a drawback.

From the economic viewpoint it's an extremely interesting situation, one in which the laws of economics have little to offer. This could be because such laws are, basically, descriptive rather than prescriptive. In the real world you can't always initiate economic activity through monetary or fiscal means. Some commentators have gone so far as to suggest that the Japanese governmenı should spend, spend, spend and print money to kick-start the economy. This is a dangerous course that can go badly wrong. It has already been tried by the Japanese government to a limited extent, with similarly limited success.

The one thing that we do know is that economies are not stable. Change is ever present in one form or another. The problem lies in trying to control it. This is all rather humbling, and certainly something of a comeuppance for the rather arrogant Japanese industrialists who had talked about the century of Japanese economic hegemony.

COPYRIGHT

© Reed Business Information Ltd., 1999. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

. Indexes for Vols. 38 to 48 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eleven-year consolidated index on computer disc. For further details see page 583.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 546.

SUBSCRIPTION ENQUIRIES

Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Credit card orders: 01622778000
Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:

UK	$£ 32.00$ per year
Airmail Eire	$£ 36.00$ per year
Airmail Europe	$£ 46.00$ per year

Airmail Rest of World
£46.00 per year
$£ 59.00$ per year

NEWSTRADE ENQUIRIES

Distributed by MarketForce
Telephone:
01712617704

WEB SITE

For a full list of RBI magazines:
http//www.reedbusiness.com
ISSN 0032-647X

htip://www.telepart.co.uk

You can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message.

 CUR PROMIE
If we can't find the part required immediately, we will HASSLE and HASSLE our suppliers. HASSLE and HASSLE the manufacturer. We
will make phone call after phone call, Fax after Fax on your behalf. WE WILL DO
ALL THIS FOR YOU. We will do it willingly and we will do it for FREE

Economic supply iV \& Video parts every erer feas

Remofe-Comifrols

 2 or mor 50 p- 701 RCPOP1 Universal for Philips Tv's including 14CT4206 20CT4636/21CE4556/22CE2267/24CE2670 etc etc 2 RCPOP2 Fergy $36 K 3 / 51$ K7/51L3/51L7/51P7/A36F/A51F A51R8/59K7/59L7/59M2/59M3/59P7/RH885 etc etc Apollo SR1800/1900 Fergy IRD2000/SVR1 Astra Hitachi SRD1050D Pace PRD 800/900 Panasonic TVSD250 Manhattan 800/900 and many other satellite receivers.
4 RCPOP4 Amstrad SRD510/520/540/550/600
5 RCPOP5 Fergy 20A4/20B4/20C4/22b4/22D4/RCU1652 T722/T762/T731/T738/T741 JVC CT3S/RCU1652 6 RCPOP6 Fergy RHT10/B51ND/B51NX/B59F/C51NX etc etc 7 RCPOP7 MitsubishiCT21A5STX/CT21A5ST/CT25A5ST etc 8 RCPOP8 Decca 8873/DUV9854/170,180 Series/RC70 Tatung 8725/8731/8734/9725/9731/9734/9821 Samsung/Sanyo CBP 2145 etc
9 RCPOP9 Fergy 14C2/14D2/14J2/14L2/16A2/16C2/20A2/20D1 20E2/T725/T740/T745/T750/T770 2256/2282/37101/37141/37311/37371 Logik 4094 10 RCPOP10 Panasonic TX2/TX3/TX3370/TXC78/TX21T1 Granada C16D52/C16D54/D51FK5 etc etc

Just a few of the types stocked - all QUALITY products at KEENEST prices
REMEMBER we can help you with over 34,000 different types
Just a few of the types stocked - all QUALITY products at KEENEST prices
REMEMBER we can help you with over 34,000 different types

...and look at the manam special offers...... BUT11A@CO each BUT11AF each BU508A © © (O) eaeh Fully wired scart lead 9% a slight inconvenience.
you must buy more than one. BU208A $\times 5 £ 3.75$ BU508A $\times 5 \times 3.00$ BU508AF X 5 E 3.00 BU508D $\times 5 £ 4.45$ BUT11A $\times 5 £ 1.45$ BUT11AF X 5 £ 1.90 TDA3654 Philips type 1.2 volt Back up battery $\times 5 \quad £ 3.40$ Philips type 2.4 volt Back up battery $\times 5 \quad £ 6.00$ Scart - Scart lead $1.5 m$ Fully wired X2 1.98 Positor PT37,TH98009 (White) X5 13.75 Thom TX100 Green spot LOPTX each $£ 12.95$ -....cand now gisk for a full price list....i.

 NEW EDITION No. 5

 athicethe pona and a move recolver faut notes and gany hation yout find

No self respecting workshop... ...should be without this guide. atfi9.95yourfirstrepirirwillrefurnthecost!!!
 ST700, Toahib TU-SD200, 8AT99

SaT8600, Finlux SR6700, Thompeon 8RS4
KITs 26.95 Ametrad - SR5 $10,520,540$, SRDR 45, SRD 560 EIT6 26.95 Pace D100,120
KTT9 29.45 Pace MS8200,300, Apollo
KTT12 116.48 Echoetar 8 R 5500 (early PSU with adjuster)
KIT15 27.86 Minntec (Borencon PSU type oniy)
EXT 17 E8.95 BTSV8800
KIT 20 25.98 Maupro ST 6 Gr
ETT\& 29.95 Phllips STU909

KT4 26.95 Amentrad 8RD 600

A great start to the day soon came to an end. Then back to the workshop and a day's problems with sets and their owners. Donald Bullock's servicing commentary

It was a day in a million, warm and balmy. I knew it would be. Last night the sky was peach red in the west, and there'd been not a trace of a breeze. So I'd decided to go after a few tench in Collins waters. That's why I'd got ready and set the alarm for five.

The car hummed nicely as I set out. What's that ahead? Midnight the Milk's van, crawling and weaving across the road as though there's no one else about. Needs waking up. I'll wait till I'm just beside him, then give him a blast on the horn.

Ha, ha. That was good. Boy see him go!

The pool looked good. A carpet of mist in the sun. And the rooting tench sending up clouds of tiny bubbles. What's that sign? No fishing! But I've been fishing here for half a century! Take no notice. I'll fish in this hole, under cover of the rushes. In with a bit of groundbait first. Now set up my rod.

What a lovely bite! See that float ride.

Eh? Who are you? The bailiff!? What club? Who are all these chaps? Fishing contest this morning, here? So I've to clear off?!

Oh well. Might as well get back to the workshop and make an early start.

A Thorn/Philips Portable

It was cold and dark in the workshop. I picked up the first set in the pile, a Thorn PI470R 14in. portable, and saw that it contained a Philips GRI-AX chassis. Philips and Thorn in cahoots?! Times change indeed.

The set was dead with its stand by light flashing. I checked the HT voltage and found it well down at 70 V . So I headed for the line output transistor and hooked it out. It tested OK. Perhaps there was a shorting diode in the stage? I began to work through them, starting with the bulkier ones that live harder lives. Nothing wrong with any of them. I then gave the transformer an unfriendly look.

We didn't have a replacement, but we did have a Philips set with the same chassis. When I tried its transformer in the Thorn receiver everything was OK. So I put it back and ordered a new one.

The phone rang. At half past six! "Who could it possibly?" be I thought as I lifted it.

Featherhough

"Is that Mr Bullock? a voice whined. "I'm Mr Featherhough. Ian Featherhough. Sorry to call you so early, but I can't sleep with the worry of it all. I'm not well, and you've been recommended."
"Mr Featherhough" I said, "I'm not a doctor. I'm a TV engineer - I think."
"I know, yes I know" he moaned, "I want you to come and repair my set. I can't see the picture."
"Why's that?" I asked.
"Because there isn't one" he snivelled.

I booked the call.

A 2lin Panasonic

The next set was a 2 lin. Panasonic, Model TX3 (Alpha 1 chassis). "Only screams" said the card. It
was right. When I switched the set on the channel LED lit but there was nothing on the screen. The set, clearly in distress, was screaming its head off. I disconnected the speaker, reached for the meter and checked the HT voltage. Only 20 V . Out of habit I checked the 2SDI439 line output transistor. It was leaky, not short-circuit. I fitted a replacement, reconnected the loudspeaker and tried the set again, thankful for an easy job. But it was now quite dead, well past the screaming stage.

There was no HT anywhere in the line output stage. What might I have overlooked? Yes, there's a 1 A circuit protector, CP567, in the HT feed. It was open-circuit. A replacement got the set going.

VCR Problem

There was a rattling at the door. It was Henry Hoxton, who sometimes brings our mail. He danced in with a Philips video recorder and placed it on the counter.
"You're up bright and early aren't you, Don?" he breezed.
"No" I replied. "Only early. And I wish I hadn't bothered. What's up with this Philips machine, apart from its chewing-gum pinch wheel? And how's the missus?"
"Stopped dead last night and blew out a puff of smoke" he said.
"That's bad" I replied, "and what's wrong with the recorder?" Laughing at my excellent joke, I waved him through the door.

When I opened the VCR I saw that it contained a jammed cassette. Looking further, I saw that the puff of smoke had signalled the end of

IC7101, which had blown its top. It's the drive chip for the loading motor, and is mounted on a subpanel at the front of the machine. The 0.22Ω fusible resistor in the supply to it had also blown. Once these items had been replaced the machine at least worked.

It was time to open the shop. As I did so a tiny fellow marched in.

Granada Monster

"It's real big, I'm tellin yuh" he boomed, in the deepest voice I've ever heard. "Come and see."

I followed him out to his estate waggon, in which a 28 in . Granada receiver (Model CD66JS) sat.
Between us we managed to get it in and on to the bench. He then departed, leaving me draped over it.

When I'd recovered I switched it on. Field collapse. I took the back off and got into the field timebase circuit. The voltages all seemed to be about right. When I looked about I found that the joints on the scan coil socket were dry. Resoldering them restored the field scanning, but there were horizontal red lines at the top of the picture. It took me a while to find the cause, which turned out to be C703. It sits next to the TDA8170 field output chip. This electrolytic capacitor should have a value of $100 \mu \mathrm{~F}$. The reading I obtained was $30 \mu \mathrm{~F}$.

Grundig Trouble

Paul and Steven then arrived, so I decided to slip out to see Mr Featherhough, whose house is in the posh area of the town. To my surprise I found that he lived in the basement. His wife answered the door. She was pale and distraught.
"He's a great worry my dear" she said, "he's had so many nervous breakdowns I've lost count. Gets very upset when his television set doesn't work properly."

Featherhough, a tall, slender old boy, was sitting in a upright armchair in front of a Grundig T51720. He was trying to follow the picture, but it rolled continuously and was very snowy. He'd occasionally have a go at the controls. "Can't stand it, I can't" he complained, "stop it tumbling Mr Bullock, do please."

I couldn't lock the field scanning and decided I would have to take the set back to the workshop. Mr Featherhough broke down at the news. "But I need it. Can't be without it, Mr Bullock" he cried.

I explained that the set would have to be dismantled and inspect-
ed. I needed test equipment.
Mrs Featherhough came to the door with me. "He's such a trial, Mr Bullock" she said, "needs 24hour attention, but he's my life and I adore him."

As I carried the set into the shop the phone rang. It was Mrs
Featherhough. "Is it done, Mr Bullock? Only Pops is distraught without it . .."

Steven had a go at the set. He hooked up a scope and found that there was no field sync. On further investigation the RF/IF module turned out to be riddled with dryjoints. Once these had been resoldered we had an excellent picture. I hurried back to the Featherhoughs with the set.

Mr Featherhough rubbed his hands and chuckled. He not only paid our bill but gave me the biggest tip I've ever had.

Mrs Featherhough showed me to the door. "You've made him so happy" she said, "I'll call you again if there's any need."

Sharp Problem

When I returned Steven had a 20 in . Sharp receiver, Model DV5103H (Euro DSI chassis), on the bench. "Can't understand this set" he said. "It's dead with a low, varying HT supply $-10-50 \mathrm{~V}$. I've replaced just about everything but it remains the same."

Half an hour later he was still struggling.

Paul looked over. "Have you tried replacing the HT preset? he asked.
"Er, no, not that. Do you think it could be the cause?"

He took out the potentiometer, R755 ($2 \cdot 2 \mathrm{k} \Omega$), and fitted a replacement. The HT supply then came up and was fully adjustable.

Steven examined the old one with a magnifying glass. Although it read correctly, there was a hairline crack in the track. "Should have checked it first" he confessed.
"We're all the same" I commented, "I've done the same thing dozens of times. We never seem to suspect the potentiometer concerned, only the rest of the components. I recall an early Philips valve set with an upright chassis. It had an inaccessible bank of three potentiometers printed on a Paxolin strip. They used to go high in value and it took me ages to find the cause the first time I had the problem."

Went off

Henry Chickworth called in with

The rooting tench sent up clouds of tiny bubbles
his Alba VCR7200. "Just went off" he said. "All I've got is the display flashing a 3 at me."

Paul put it on the bench while Henry waited. "I know of two ways to deal with this fault" he announced, "there's the slow way and the fast one."
"What's the slow way?" Henry asked.
"Put the machine under the bench for three weeks then plug it in. It'll be perfect."
"OK, and the fast way?"
"Disconnect the positive side of the capacitor 'battery' and reconnect it at once."
"Er, I don't wanna wait three weeks" Henry said.

A Philips Portable

Paul had a Philips I4GR2326 14in.

 portable (G90B chassis) on the bench. The screen was blank and there was no sound. The HT was low. This time Steven was able to help."Had one like that the other day" he said. "Try the reservoir capacitor for the 5 V supply. It's $\mathrm{C} 2660,680 \mu \mathrm{~F}, 16 \mathrm{~V}$. I found that the value had fallen to about $90 \mu \mathrm{~F}$.

Paul switched the set off, discharged the capacitor and tested it. The value was down at $80 \mu \mathrm{~F}$. A replacement did the trick.

TELETOPICS Digital Warfare
 n the battle to become predominant in

,the digital pay-TV market, gaining as many subscribers as soon as possible is obviously the number one priority. To this end BSkyB and ONdigital have launched new marketing initiatives, including free set-top decoders. With C\&W Digital, which will start a phased introduction of its service in Manchester and the North West in July, and other cable digital TV providers the decoder will come as part of the monthly subscription and will thus not appear as an 'up-front'cost.

ONdigital is offering a free set-top box during May when a subscription is taken out and a TV set that costs $£ 200$ or more is bought. SkyDigital's offer is quite complex. You get the STB free

CPC has added over fifty products to its range of satellite equipment, including items from Amstrad, Grundig and Philips. The newly stocked products include a selection of universal and digital LNBs, a range of Triax multiswitches, the new BSkyB TV link remote control extender system, and the new BSkyB-approved digital satellite kit which is designed for domestic digital satellite installations and features an elliptical feedhorn. The RC extender system enables satellite and off-air channels to be distributed around the house to sets with an aerial tap. For further details check with CPC on 01772654455 or fax 01772654466.
(no time limit at present) but have to pay a $£ 40$ installation charge plus fees for most channels. There are other possible charges, such as $£ 30$ if you want to keep your existing analogue system or have to replace your downlead with something better. The digital transfer fee is $£ 25$, so SkyDigital can cost $£ 65$ to over $£ 280$ for starters. SkyDigital's channel subscription rates rise by $£ 2$ a month from June 1 st, but will be frozen for existing subscribers till September 2001. BSkyB is providing other incentives however: free internet access (via a PC) - this is called SkyNow; and 40 per cent off phone-call costs for subscribers who use BT (cable subscribers have discounted phone calls). BSkyB expects
to generate substantial revenues from its subscriptions, advertising, and online services to be offered, but at present profits have been substantially reduced. $£ 315 \mathrm{~m}$ has been set aside for promotional expenditure, and dividend payments are being suspended for the foreseeable future.

Right now both SkyDigital and ONdigital see the cost of a set-top box as the biggest deterrent for prospective subscribers, hence the free box offers. The latest figures suggest that SkyDigital is pulling ahead. It claims to have had some 551,000 subscribers on May 3rd. ONdigital is understood to have secured some 160,000 subscribers by end-March. BSkyB analogue transmissions will end in 2002.

Monitor Service Data
M-House Editrice published the first volume in the Monitor Service series in 1996, in paper format. As a result of advances in technology, the publisher decided to issue the second volume, in March 1997, in CD-ROM form. The dedicated software used enables you to display, in the best way possible, the sections and subsections you require in a service manual. Each manual includes alignments, service notes, block diagrams, component details, PCB layouts, circuit diagrams and servicing advice. Amendments can be made to the manuals.

The fourth volume has now been published, again in CD form. The software, with continuous development, has become more user friendly. For further details consult the internet at www.m-house.net

The publisher is M-House Editrice, Di Morselli Luca, Via Ernesto Breda 20, 20126 Milano, Italia. Phone/fax +39022570447.

Satellite News

According to SES one in three homes in the UK is now receiving programmes from the Astra satellites. Year-on-year growth for the year ending December 1998 was 730,000. Europe ONline has taken two Astra transponders (at $19.2^{\circ} \mathrm{E}$) to provide a high-speed internet service aimed at STB and PC owners: the service started on May 15th. NTL has announced that S4C and the BBC are taking capacity in its second shared digital multiplex via Astra 2 A .

Eutelsat's W3 satellite was successfully launched on April 12th. After tests it will replace II F4 at $7^{\circ} \mathrm{E}$. The craft has 24 Ku -band transponders and will carry consumer and professional TV and telecommunications services.

Easynet Ltd. has started a service called EasySat via Eutetsat's Hot Bird 4. It provides internet connection at a flat rate of $£ 49.99+$ VAT a month, or $£ 550+$ VAT a year. The subscription includes a fully-featured internet account with unlimited e-mail addresses, unlimited personal web space, a news service and round-the-clock technical support at local call rates. The data is incorporated in a DVB multiplex that's uplinked by BT Broadcast Services. A 60 cm dish and internal PC card are required for reception - several cards are readily available, offering plug-
and-play operation and features such as reception and display of over sixty free-to-air digital TV channels. The service has been launched following a year of successful trials.

The recently introduced Smart Priority switch, the latest addition to the Philex Select range, is the easy way to connect two receivers to one dish. It determines which receiver controls the LNB. When the digital receiver is turned on, it controls the LNB; when it's turned off, the analogue receiver takes over LNB control. The switch has a frequency range of $950-2,300 \mathrm{MHz}$ and is housed in a zinc diecast box with solder shielding bottom plate. The SLX4 'digital-ready' four-way amplifier, for TV, satellite and FM receivers, is another recent addition to the Philex Select range. It's designed to improve TV and FM reception, with a gain of 10.5 dB at all ports. There are separate UHF/VHF inputs and the isolation between outputs is greater than 22 dB . The UHF socket has provision for line powering at 25 mA . The amplifier is of compact design, is finished in gunmetal grey and is double insulated for safety. For details of these and other Philex products, contact Philex Electronic Ltd., Philex House, 110-124 The Broadway, West Hendon, London NW9 7PP. Phone 0181 2021919.

Trade News

According to market research company GfK, widescreen sets accounted for eleven per cent of TV sales in the UK in January - thirty per cent of the total value. BREMA expects sales to reach 750,000 sets this year: as a result, well over a million UK homes could have a $16: 9$ set. This would make the UK the fastest-growing widescreen TV market in the world. BREMA also forecasts that half of UK homes will have some form of digital TV receiver, either IDTV or STB, by the year 2003.

Willow Vale Electronics has been appointed UK distributor of universal remote control units manufactured by Siel Electronics. The range is being marketed in Europe under the brand name Zapping. Models include the Universal Zapping, Cosmos, Planet and Replay, at trade prices from $£ 4.99$ to $£ 9.99$ each. The range provides a variety of control facilities and has distinctive colouring. For further details contact the Willow Vale Sales Office on 01189876444 . WVE has also been appointed UK distributor to the service trade for Censol aerosol products, which include freezer spray, a solvent degreaser, the Pocket Rocket switch cleaner, a foam cleaner and an air duster.

Sony and JVC have announced the joint development of an IEEE 1394 (FireWire) interface for the D-VHS system. It will enable a D-VHS machine to be connected to a suitably-equipped digital set-top box.

A new firm, Circuit Trace, that sells direct via the world-wide web has introduced the CT100 hand-held connectivity checker. It enables all interconnected points on a PCB, whether legitimate or not, to be located within seconds. You simply connect the checker's clip to the circuit point of interest, say an IC pin where the voltage is incorrect, then wipe the conductive brush over the board surface and listen for an audible tone, which indicates the presence of a connection. The edge of the brush or a separate singlepoint test probe that comes with the unit can then be used to home in on the connection's exact location. The idea is to eliminate lengthy track tracing: the checker is particularly helpful for boards with bus paths or surface-mounted components, where locating short- or open-circuits with ultra-fine tracks can be a frustrating business.

The CT100 costs $£ 93.50$ complete with test probes, circuit marker, carrying case and a comprehensive user manual. Circuit Trace is at PO Box 70, Retford DN22 0SY (phone/fax 01777248 993),
e-mail mrbass@globalnet.co.uk
Circuit Trace's web site (www.toneohm.com) contains much useful information on the CT100, including an application note.

The Citizen ST855 is claimed to be the world's smallest LCD CTV with AM/FM radio. It's comfortable to hold and easy to use.
Technical features include a UHF/VHF tuner; a high-definition, non-glare super twisted nematic screen; and an AV input so that it can be used as a monitor with a camcorder or other video source.

For trade enquiries contact GB Consultancy on 01869233 200, fax 01869232746.

Satellite WORKSHOP

Amstrad SRD510

I sometimes wonder why I bother! This morning I came into the workshop to discover that the receiver I has spent an hour 'repairing' last night now had a rolling picture and no sound. It's fortunate that I had left it on soak test.

The original fault report had been "wavy pictures". When I had first tested the machine there was sound but just a blank screen. Someone had already been inside and replaced C54 (100 nF), which is a common cause of picture faults. They had also lost three screws. I should have given up right then, but I'm a glutton for punishment.

I traced the cause of the initial lack of signal to R9 (470 2), which had suffered from the corrosive effects of black glue. Once this problem had been dealt with there was sufficient signal to provide weak, inverted video. The receiver was well cooked, another reason why I should simply have jumped up and down on it! But I carried on testing and measuring.

More components were replaced
before I got a brief flash of good, strong picture when I touched C54. The cause of the trouble was then clear: whoever had replaced the capacitor had broken a track nearby.

So this morning I'm faced with the choice of still more work or cutting my losses. Do you hear that satisfying sound of crunching? That's size ten Doc Martins improving the shape of a zero-value SRD510. I can use the power supply for another repair.

Scrambled Music

MTV transmissions destined for Europe are not scrambled but carry VideoCrypt data which tells a Sky decoder that it is! As a result a UK satellite receiver which contains a decoder will scramble the picture by routing the unencrypted video signal through the decoder circuit!

I've had lots of requests from those who want to watch this programme. The simplest solution is to disable the sync separator circuit, so that the decoder no longer works. In the Amstrad SRD5 10 for example you can add a switch that short-circuits the $3,300 \mathrm{pF}$ capacitor C292 on the little daughter board. It's connected to pin 5 of the TEA2029C chip.

In most receivers that use a PTV111 sync separator chip, for example Pace MSS variants and the Nokia SAT1700 Mk 2, you can add a switch to disconnect the $1 \mu \mathrm{~F}$ capacitor next to it. In Pace PRDseries receivers, connect one side of a switch to the central test pin labelled TST2 and the other side via a $1 \mathrm{k} \Omega$ resistor to pin 1 of the microcontroller chip U2 (5 V supply). That should do the trick!

Pace Apollo

You may recall Frank from the Lion and Swan, whose PRD800 I repaired recently. No more than a week after I had fixed it and made it reliable he had the urge to "trade it in for a better one" from one of his customers. This turned out to be a Pace Apollo (basically the same as the MSS200/300/500 etc.) which
apparently had a sharply-defined vertical white line on Sky Sports.

It took a long time for the fault to appear. When it did, I discovered that it affected all the decoded channels (including Sky News and Ch. 5) but not the unencrypted ones. The line was 2 mm wide and approximately 100 mm high (on a 14in. screen). It was about a third in from the left-hand edge of the screen and was very intermittent. Although it occurred at a specific temperature, it couldn't be brought on by using a hairdryer and freezer in the vicinity of the PTV-type decoder chips.

By replacing each IC in turn, I eventually traced the cause of the trouble to the PTVI14 graphics inserter chip U9. It was, of course, the very last PTV IC I replaced. It was not possible to narrow the cause to $\mathbf{U} 9$ by heating/freezing, because changing the temperature of any of the PTV chips made the line appear or disappear.

Amstrad SRD520

The complaint with this receiver was "severe lines on the picture". In fact the symptoms were rather like those you get with the Pace SS9000 when the capacitor in the tuner is faulty.

My first move was to fit the capacitors in Relkit 3, but this did not help at all. In fact I now had a blank screen!

I got a weak picture (still with lines) by removing the C-band switch and fitting a wire link in its place. TR7 had glue around it, so I fitted a replacement. I was now back where I had started half an hour previously - with a picture that was heavily obscured by lines.

For good luck I replaced all the electrolytic capacitors in the power supply with low-ESR types. No good. Working blind is not the best of ideas, so I decided to do the job properly. A quick prod with the oscilloscope showed that there was serious HF ripple on the 12 V supply from TR304. This transistor, in combination with the op-amp IC300, is supposed to provide a
smooth output. When the associated resistors were checked I found that R8 (1k) was open-circuit But fitting a new one didn't cure the ripple fault! Nor did replacing TR304. In desperation I replaced the LM392 op-amp (IC30)). Success at last. The picture was clean and stable and the audio was good.

Amstrad SDR510

I don't do many customer call-outs nowadays. Since I started to charge "a pound a minute" the timewasters have stayed away in droves. A little old lady just around the corner tempted me with a cup of tea and a bun however, so I trotted round immediately.

Her receiver worked perfectly. But once it had warmed up the voltage at pin 8 of its TV scart socket wouldn't drop below IV at switch-off. Because of this the TV set stayed in the AV mode. The voltage was 12.2 V when the receiver was switched on, so I felt that the TV set was being rather unreasonable in treating IV as 'high

I soldered a $10 \mathrm{k} \Omega$ resistor between the TV scart pin 8 and chassis. This extra load reduced the
off voltage to 0.85 V and the problem went away. I departed when the teapot was empty.

Pace PRD900

My wife was complaining again she likes to keep in practice. "It won't record. The timer is stupid." I agreed to take our PRD900 to the workshop later to test it. but she wanted it done now. "And if it does record it plays the wrong programme, with a flashing clock, or just a blue screen."

I hate to admit it, but she was right. I tried setting a number of timed events and the results were somewhat random to say the least. Sometimes the receiver remained on the wrong channel but flashed a clock symbol on the screen and a t in the LED display indefinitely, until manually cancelled by pressing F then Standby. Sometimes it seemed to change channel but left a blue screen, as if the desired frequency had been overshot and lay outside the "capture range' of the phase-locked loop system associated with the Nicky chip U9.

I fixed this particular fault by pressing F with the LNB menu displayed, so that the AFC was dis-

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via e-mail. You can reach him via the Internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.
abled. It was then a matter of retuning a few channels manually to remove the sparklies. I measured all the power supply voltages, and checked the ESR of all the electrolytics around the power supply. Everything was perfect. The timer function was still erratic however, so I replaced the microcontroller chip U2. That cured the problem.

I've never known a micro chip develop a fault like this, and doubt whether I'll ever come across the problem again. It's extremely unusual. My wife thinks it's typical.

Test Case 438

Dave Dawson didn't like April showers. Not that they would have made him wet as he sat indoors in front of his telly. The problem was that they spoilt his viewing of the satellite channels, for which he was paying nearly thirty pounds a month. Rain made the interference to his pictures worse. It had been gradually increasing. To start with a sparkly effect had invaded brightly-coloured areas of the screen, now it was present all over the picture. Some channels were worse than others, especially when the weather was poor. Sky One was almost unwatchable during a downpour, while Channel Five for example came through relatively unscathed - at least when the weather was fine. So Dave picked up the phone and called us.

Our first-line service is generally provided by Doc Colin. Having been given details of the symptoms, he felt that his call would be a waste of time without a means of checking the outdoor equipment. He was right! A replacement receiver produced exactly the same symptoms. So Colin called in our Force Two, which actually consists of Cathode Ray, a big white van and a double-extension ladder. If the dish is too high for that, the job is put in the hands of a "proper' aerial rigging firm - expert in the windy and salty seaside conditions here.

Dave Dawson's house is in an exposed and widswept location, but is not tall. It was certainly within reach of our Ray's ladder, so up he went, spanner in one hand, signal strength meter in the other. The most likely cause of the trouble was that the dish had shifted and was in need of realignment. The badly-corroded dish-fixing bolts didn't look as if
they had shifted. In fact they had seized solid, and it took time, effort and penetrating oil to slacken them. This was finally done, and the signal-strength meter was then connected to the LNB's F socket to align the dish. The meter's tone was peaked by panning and tilting the dish, after which it was clamped up again and the downlead was reconnected.

When Cathode Ray went indoors to check the picture he found, to his surprise, that the signal was not noticeably stronger than before. The sparklies were still there, and subsequent adjustment of the angle of the LNB on the boom (polar alignment) didn't help. So it seemed that either the LNB or the downlead was faulty. Our simple satellite signal checker is of little help here because it doesn't, as with most terrestrial field-strength meters, give a quantitative reading. The LNB was the easiest thing to check next. Having been there for some years, it was of the early type with a 10 GHz oscillator. There was a Global channel expander behind the satellite receiver.

Ray fitted a known-good replacement LNB of exactly the same type as the original one. He's got lots of them, made redundant after being replaced by enhanced types or digital gear. Once again the results displayed on the TV screen were no different, exonerating the original LNB and suggesting that the cable was the culprit - cable deterioration often causes this sort of trouble. Could there have been another cause? Ray squinted across the face of the dish to check whether it was bent or distorted. It wasn't. Even so, the cable wasn't the cause on this occasion. Any ideas? Turn to page 583 for the solution.

IBM 8515

The complaint was "screen flooded plus flyback lines, very intermittent". The fatigued solder joint at the A1/focus block's earth pin was attended to as a routine matter during the visual inspection. When the monitor was put on soak test with a peak white display, I noticed that there were horizontal bands of ripple on the brightness. As these drifted vertically, it was difficult to estimate the number per frame - which would have provided a clue of course. I would say about $30-50$.

After checking the various snubber circuits I set about the electrolytics. It was becoming apparent that the fault was temperature-sensitive. Attention should be concentrated on the cluster of electrolytics in the middle of the PCB - don't leave out the strays around the cluster. The electrolytics themselves weren't faulty: their pins had worked loose in the solder fillets. During manufacture, the tall electrolytics are 'steadied' by sticking them together with blobs of silicone sealant. The blobs are applied near the top, and thermal expansion of the PCB produces minute movement: as the capacitors are tall, the leverage is considerable. The small amount of movement pulls the capacitor leads free inside the solder fillets without conspicuous damage. As the leads remain a tight fit, most users will wait for something else to go wrong before having the unit serviced - the onset of symptoms is slow and subtle!

Only the high-voltage, small-

Monitors
value electrolytics usually need to be replaced. The others should be scraped, including removal of silicone sealant, and refitted. If the use of sealant is considered necessary, apply it close to the PCB. I.F.

HIT KT46-4NLR

I had carried out a fair bit of work on shoring up the cracked PCB by the time I realised that this repair was not going to make a profit. The crack had not been visible until the chassis had been completely removed: it ran from the edge of the PCB, between the frame output chip and the front panel controls towards the middle of the board.

Where possible, 22 SWG bracing links were used to give some strength to the repair, but there were many fine tracks. The only suitable repair material was stripped from multi-strand equipment wire.

When the damaged print had been repaired, the monitor powered up with excessive width and the frame output came to an end after a couple of minutes. The cause of the width fault was Q709 (2SD669A), which was short-circuit. The frame fault disappeared after a considerable amount of rework, checking for dry-joints and double-checking the repairs to the copper print.

Once I was convinced that the repair was sound, I gave the monitor a good shake to see if it really was! The result was a new intermittent fault - a jagged yellow picture. The cause turned out to be a massive dry-joint at the CRT's blue cathode pin. I.F.

ICL 15505-002

This elderly VGA monitor appeared under a number of guises, including Apricot and Olivetti. Despite its low specification, it remains popular because of its reliability. Also because its push-button feature of green, amber or blue text screens makes it attractive as a DOS wordprocessor. This one was dead with the power LED on. It had been
dropped, the result being a crack in the PCB next to the LOPT. When the damage had been repaired, it produced a horizontal line.

R320 (4-7 , 1W) was burnt, D302 (RGP15J) gave odd readings and Q301 (TDA1675 - no A suffix!) had failed. I didn't have a ' 1675 but a ' 1675 A worked fine!

Some of these monitors have an electrolytic capacitor connected to the print side of the PCB beneath Q301. As there are no markings on the PCB for this component, it's easy to get the connections mixed up after replacing the frame output chip. The positive lead goes to the IC pin for which no solder pad is provided, while the negative lead goes to the chip's chassis pin (middle of the shorter row of pins). I.F.

AOC CM335

Whistling with no EHT is the symptom when the line output transistor blows. In addition you will sometimes find that D109 on the secondary side of the chopper transformer is short-circuit. Alternatively the line output transformer could be the cause of this fault. R.P.

Crown EM1428

This monitor was dead with a shortcircuit line output transistor and dry-joints at the flyback tuning capacitors. C617 ($47 \mu \mathrm{~F}, 50 \mathrm{~V}$) should also be checked: it can decrease in value to about $1.8 \mu \mathrm{~F}$. You'll find it on the primary side of the line driver transformer. R.P.

GoldStar StudioWorks 76i (CS770)

This monitor was dead. A few checks showed that there was a short-circuit across the 80 V output from the power supply. The cause was quickly narrowed down to the relevant rectifier diode D909 (RGP10J), which was replaced. When the monitor was powered again there was a second when everything seemed to be OK. This was quickly followed by a loud pop
and a flashover around the area where the new diode had been fitted. Checks showed that it had gone short-circuit again, and had blown up a discrete pre-regulator circuit that consists of two 2SC2316 transistors (Q903/4) and an $8 \cdot 2 \mathrm{~V}$,
500 mW zener diode (D918). Once all these items had been replaced there was a perfect display. G.M.

ViewSonic 6E

This dead monitor made a clicking noise. As usual, the cause was a short-circuit BU2508AF line output transistor (Q310). The reason for its demise was not so usual however: someone had turned the HT preset VR601 to maximum. The correct adjustment is for 90 V at pin 2 of connector M301. G.M.

Siemens Nixdorf MCM151V

This monitor produced a vertically expanded, liney, jittery display. The cause turned out to be C619
$(100 \mathrm{nF}, 100 \mathrm{~V})$ in the frame output stage.

If one of these monitors has no green in its display, check L805 $(2.7 \mu \mathrm{H})$ which is in the 63 V feed to the green output transistor. It tends to go open-circuit.

The glue around C838 and R855 (the first anode supply connection on the tube base panel) can cause problems by becoming conductive. The first anode (G2) voltage then falls and there's no picture. Simply scrape the glue away. G.M.

Dell Ultrascan 17FSEN

Two of these Mitsubishi-made monitors came in at the same time. The first one kept blowing the 4AT fuse. The cause was the STRS6308 chopper chip IC901 which was short-circuit between pins 1,2 and 3. A replacement restored normal operation.

The second one had no blue drive. The video amplifier/output section, on the CRT PCB, is an awesome affair. There are several ICs and transistors, including a dedicated chip (IC201, type 93804S0R), a hybrid chip (IC202, type CP267P042A30) and IC203 (LH2426S). The transistors all seemed to be OK. In theory I could have borrowed the ICs from the first monitor for substitution checking, but instead I decided to replace the LH2426S device. Fortunately my guess was right, especially as it's expensive - over $£ 20$. C.H.

Compaq 460

This monitor blew its mains fuse at
random. Several dry-joints were dealt with, but the real cause of the problem was the slightly overtanned degaussing posistor PTC901 Once it had been removed from the board its rattling sound confirmed the diagnosis. C.H.

Zenith ZM1400/Hyundai HM413

The most common faults with these monochrome monitors occur in the power supply. Replacing the following items should get you going: Q501 (BUT46A, BUTI 1 or BUT56A); Q502 (KN2222, PN2222, 2N2222 or BC639 - note that not all 2222 transistors have the same pin connections); optocoupler IC501 (MCT2102, CNX35
CNX36, TIL114, TILI17 or SL5500); C506 ($33 \mu \mathrm{~F}, 50 \mathrm{~V}$); C501 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$); C502 ($3.3 \mu \mathrm{~F}, 50 \mathrm{~V}$); and R514 (4.7Ω or $6.8 \Omega, 5 \mathrm{~W}$). Note that an IRF740 MOSFET line output transistor is fitted: the IRF840 is a suitable replacement. C.H.

Belinea 104010

This monitor had a very annoying line jitter and phase drift. Each time I attempted to locate the cause, the fault disappeared for a few days. Fortunately several of these monitors were in at the same time, so it was possible to swap components. After changing everything from the LOPT backwards I eventually found that C612 (?) was the culprit. It's a blue, 470 pF capacitor that's connected to pin 2 of U602. A.S.

Opus CM1438T

The green power LED was alight but this monitor was otherwise dead. Checks showed that the supplies were all OK , and the line oscillator was working. But L401 was open-circuit, so there was no line scanning. A.S.

Belinea 104010

There was no display and the green LED was flashing. The monitor does this when it's in the green, standby mode. So, after initially being deceived into thinking that there were no line pulses from the computer, I looked for a possible cause of excess current and found that D152 in the power supply was short-circuit. We don't stock this UF1007 device, but the manufacturer has fortunately allowed for fitting a larger diode with fatter legs. A UF5408 drops in a treat. A.S.

Model 29J56N/JD156N

Another monitor with no brand name - yet two model numbers!

The green LED was blinking because the power supply was in the shut-down mode. I had to spend some time drawing out the power supply circuit from the print layout, and after the repair added important voltages. So if you come across one of these monitors, the following information should be useful.

There are four rectifier diodes on the secondary side of the chopper transformer. The output from D812 should be 83 V , or 0 V with no signal; the main HT rectifier D813 should produce 56 V with no signal, 66 V in the VGA mode and 74 V in the SVGA mode; there should be 15 V at the output from D814 and 8 V at the output from D815.

In this particular monitor there was no HT output from the power supply because FET Q801
(2SK1917) was short-circuit between its drain and source. It acts as a variable resistor across the HT line to alter the voltage depending on the input signal's frequency/ mode. Q801's gate terminal is connected to the output (pin 3) of a 555 timer chip which provides a PWM squarewave drive whose mark/space ratio is set by flyback pulses from the line output transformer - they are fed to pin 2 via Q811.

I didn't have and couldn't find a supplier for the 2SK1917, so I fitted a 2SK 1036 instead. It ran cool and the monitor worked correctly. J.E.

CTX 15695

You very often find that the 25 V regulator Q106 (2SB772) is dryjointed - I now check the soldering here before powering up. In one case recently the symptoms were intermittent failure to start or stopping after a while. The fault could also apply with Model 1565D, which has a similar power supply.

In one 1569S monitor I found that Q106's base and emitter leads were bent over and touched intermittently under the board.

Many of these monitors arrive with the main board jammed half in and half out of the runners. In this event it's quite common to find that the front control panel has snapped in two. Removal of the main board, which is usually undamaged, can be quite a tussle - and you can't reach Q106 otherwise!

Bad soldering on the tube base board is also quite common, particularly at the tube base pins.

One monitor had a very bright display because R726 ($1 \mathrm{M} \Omega$) in the first anode supply network was open-circuit. R.B.

Satellite Notebook

Reports from

 Hugh Cocks Christopher Holland Chris Watton Kevin J. Green and Martyn Davis
Pace SS9000

This elderly receiver had been kept very cool-running during its life. It even had the original Hitachi tuner and black mains transformer, which is far more reliable than its pink successor. But after some lightning it refused to come back on. There were no obvious short-circuits. and HT was present at the mains bridge rectifier's reservoir capacitor. When power was disconnected however the capacitor discharged quite rapidly, which doesn't normally happen with an inactive
chopper transistor.
When I replaced the TDA8380 chopper control chip U23 the receiver came back to life. I'd given it a major electrolytic capacitor refit a year ago, so the pictures were good and no work was required to remove the characteristic power-supply type interference from the picture! H.C.

Astra Digital Frequencies

When there are reception problems with certain digital channels it can be useful to know the frequencies
of the various Astra 2A transmissions - to possibly identify a transponder/frequency problem. Table 1 lists the current channel allocations. Future channels may of course be added, and Sky can move the frequencies around with
receivers automatically tuning them in. C.H.

Amstrad SRD500

There was no reception of the ver-tically-polarised channels. The cause was the LA4960 LNB voltage switch IC501: its togic input

Table 1: Astra Digital channel frequencies.

$\begin{aligned} & \text { Frequency } \\ & (G H z) \end{aligned}$	Pol	Channels
11.720	H	BBC1, BBC2, BBC Choice, BBC News 24, BBC1 NI
11.740	V	Living, Challenge, Trouble, Bravo, TVX, Travel Shop
11.758	H	Ch 4, Ch 5, Film 4, The Box, CNBC, CNE*, Sky Sports News
11.778	V	Music Choice 1946, 1947, 1948* This is also the receiver's default frequency
11.798	v	BBC $/$ /Choice Wales and Scotland, BBC Choice NI
11.817	V	UK Style, Horizons, Arena, UK Gold, UK Play, Screen Shop, UK Gold Classics
11.837	H	Sports 1, Sky 1, Sky Premier, Sky MovieMax, Box Office 1-5
11.856	V	Sports 2, Premier 2, MovieMax 2, N. Geographic, Box Office 6-10
11.876	H	Animal Planet, All Discovery channels
11.895	V	MTV, VH1, M2, Nickelodeon, Paramount Sci Fi
11.914	H	Sports 3, Premier 3, MovieMax 3, Info Channel (999), Box Office 11-15
11.934	V	Premier 4, MovieMax 4, Retail Info Channel (997), Box Office 16-20
12.012	V	Open (was BIB)
12.032	H	Travel*
12.051	V	Travel, CNN, Cartoon Network, Shop!, QVC, CNN Radio*
12.070	H	Sky News, Sky Cinema, Cartoon Network+1HR, Box Office 21-25
12.090	V	Sky Cinema 2, Disney, Box Office 26-30
12.129	V	S4C Wales
12.148	H	BBC Parliament, Bloomberg, Granada Plus, Men \& Motors, Box Office 31-35, Digital Info Channel (999)
12.168	V	Tara, Sky Soap, MUTV, Sky Travel, Guide Info (998), Box Office 36-40, 18+ (Ch 751 in EPG)
12.226	v	Breeze, History, Racing, Dot TV, Playboy, Box Office 41-46
12.246	v	Box Office 47/48/50, Box Office Preview, Sky Premier Widescreen, Fox Kids, Open TV Promo. Box Office 49 does not exist at present but will probably be on this frequency

was OK but its output wouldn't change. C.W.

Amstrad SRD400

This receiver wouldn't tune to any stations. Checks showed that the tuning voltage output at pin 2 of the UAA2001 driver and latch chip IC105 in the microcontroller section was stuck at approximately 4 V . It took a lot more searching to find that $\mathrm{C} 111(0.01 \mu \mathrm{~F})$, which couples the prescaler output from the tuner to pin 11 of the
PLL/microcontroller chip IC101, was almost short-circuit. K.J.G.

Pace MSS500

A large square pattern made up of white dots in neat columns and rows overlaid every picture. The culprit was the graphics generator chip U7. M.D.

Echostar DSB9800

This Dutch digital package receiver was totally dead following recent storms and a series of power cuts.

Some care is required when removing the top of the receiver, because the Irdeto conditional
access module (CAM) slots into the lower side of the case and is held in with a retaining clip which is visible only when looking at the bottom of the box! This is confusing, because the CAM has to be removed before the top will come off.

Once the top had been removed I saw that the receiver consists of the main PCB and a separate power supply PCB. I was not surprised to find that the mains input fuse Fl was open-circuit.
Unfortunately the power supply PCB had totally unfamiliar component numbers and appeared to be of Far Eastern origin.

I checked the chopper device, which appeared to be OK, also the two transistors associated with it. There are several regulators on the secondary side of the chopper transformer, allso an optocoupler. I was hoping there would be no problems there!

As no shorts were evident around the chopper device, which seemed to be similar to the TOP202 used in modern Pace receivers, I replaced the fuse and switched on. The fuse didn't blow,
but the receiver didn't work though there was HT across the mains bridge rectifier's reservoir capacitor. Best to look for a highvalue start-up resistor I thought.

Two large 1.5Ω resistors in series by the chopper device looked slightly the worse for wear, but there was nothing in the region of $100 \mathrm{k} \Omega$. What did the two nearby transistors do I wondered? Then I spotted a smallish $680 \mathrm{k} \Omega$ resistor which, when I traced the track beneath the PCB, I discovered should have fed HT to one of the two transistors. It was virtually open-circuit.

I fitted a replacement with a somewhat higher wattage rating. The receiver then came to life and said, after its digital boot-up sequence, that I might like to check the aerial as it couldn't find a signal. What a helpful receiver, especially as I hadn't connected an aerial!

Good pictures appeared when I connected the workshop Astra $19.2^{\circ} \mathrm{E}$ feed - the Dutch package is transmitted in the digital high band at 19.2° E. H.C.

Servicing

the Panasonic Euro-2 Chassis

Abstract

Chassis that use digital signal processing present their own brand of problems - in addition to the usual power supply and timebase output stage ones. Brian Storm summarises experience with the Euro-2 chassis: several versions have been used in a variety of models

The Panasonic Euro- 2 superseded the Euro- 1 digital TV chassis in 1995. Sets fitted with the Euro-1 chassis first appeared in 1992. There are two main versions of the Euro-2 chassis, the advanced digital chassis which is used in models suffixed AD, and the leader or base versions which have fewer features and are used in models suffixed MD or LD.
With the Euro-2, digital signal processing came to be used in a wider range of TV sets fitted with a greater number of different tube types and sizes. All models have Nicam sound, and the standard range of features includes new on-screen menus, auto intelligence (AI) to extend the contrast range and bring out more detail in dark and light areas of the picture, and an automatic tuning and channel naming system. There are two scart connectors, one of which (AV2) accepts separate Y and C signals. The sets are capable of NTSC 3.58 or 4.43 signal processing via these $A V$ inputs.
AD models also have a separate on-screen volume control for headphones and additional front-input AV jacks. Some are equipped with Dolby Pro-Logic facilities. Models in the extensive Euro-2 range include those listed in Table 1.
There are 'hidden' model changes throughout the earlier ranges, a number of suffix letters indicating a CRT variation. There were at least four versions of the TX25MD1, including the TX25MD1/L, TX25MD1/B and TX $25 \mathrm{MDI} / \mathrm{M}$: from the viewer's point of view they are almost identical, but from the servicing point of view it's important to note that they have chip sets with incompatible software.

Power Supplies

Two entirely different power supplies were used in the Euro- 2 chassis. The base models (LD and MD) have a
chopper power supply based on the TDA4601 control chip. It's very similar to the power supply circuit used in the Euro- 1 chassis. AD models have a completely new TDA4605-based chopper power supply. The TDA4605 IC's output stage is designed to drive a FET chopper transistor. As a FET draws almost no drive current, the control chip has reduced power dissipation and doesn't require an integrated heatsink. In fact the newer TDA4605 comes in a small dual-in-line package.
Fig. 1 shows the TDA4605-based chopper power supply circuit. A start-up feed is provided by R621 and R626, which charge C622. When the voltage at pin 6 of the IC reaches 12 V it becomes active and starts to drive the chopper MOSFET Q624. Initially, drive switch-off is controlled by the input at pin 2 , which is compared with the regulation feedback input at pin 1. When Q624 is switched off, the energy stored in the chopper transformer T639 is released. Rectifier diode D622 then takes over the supply to pin 6 of I611. C623, which is connected to pin 7 of the chip, helps to provide a softstart.
Power supply regulation is controlled by the voltage at pin 1 of I611, while pin 8 is used to control the duty cycle. Increased loading reduces the switching frequency. The power supply provides regulation with load variations between 40 W and 260 W and mains input variations between 180 V and 270 V . Pin 3 of 1611 is monitored internally to provide protection against overloads.
The outputs on the secondary side of the circuit are 150 V (125 V with 2 lin . models) for the line output stage, 29 V for the line driver stage, 42 V for the audio output stage and 12 V and 5 V for the digital and smallsignal circuitry. Q681 and Q682 provide additional regulation for the audio output stage supply, reducing the

Fig. 1: The TDA4605-based power supply circuit used in some versions of the Panasonic Euro-2 chassis. Note that R668 is omitted in later production - see text.
voltage but increasing the current flow as the audio output IC approaches maximum power. This regulation helps to protect the chip from damage while allowing it to run at its maximum rated power.
There are very few common faults with these power supplies. A common cause of a blown mains fuse is the degaussing thermistor, which is either R808 or R619. In later AD type sets R668 in Q667's base circuit is removed to prevent CRT spot burn should relay RL6101 stick when the set is switched to standby.

Standby Operation

The standby power supplies consume typically IW in the standby mode. In fact the standby transformer T6101 is of such low power (90 mA) that assistance from the main power supply's 12 V output is required to sustain the outputs when current is drawn as the set emerges from standby operation. Fig. 2 shows a typical circuit.
Most Euro-2 sets use a relay to control the feed to the

Table 1: Models fitted with the Euro-2 chassis

TX21MD1
TX21MD3
21 in. model with Dolby Pro-Logic but no additional speakers (3D sound)

TX25MD1
TX25MD3
TX25XDP3
TX25AD1
TX25AD2
TX25AD1DP
TX25AD2DP
TX28LD1
TX28MD3
TX28XDP3
TX29AD1
TX29AD1DP
TX29AD2DP
$25 i n$. base model
Replacement for the TX25MD1
25 in . model with 3D sound and wood-panel trim
Advanced 25 in. digital model
Replacement for the TX25AD1
Advanced 25 in . Dolby Pro-Logic model with four additional speakers
Replacement for the TX25AD1DP. Has three additional speakers
28 in . base model
Replacement for the TX28LD1
28 in . model with 3D sound and wood-panel trim Advanced 29in. digital model
Advanced 29in. digital model with Dolby Pro-Logic
Replacement for the TX29AD1DP with three additional speakers

Note: this list is not exhaustive.
main power supply. The relay is activated by the main microcontroller chip, which is IC1801 in AD models, IC1201 in base models. Some sets however, notably the TX21MD1, TX25MD1 and TX28LD1, use a switching

Fig. 2: Typical standby power supply circuit.

Fig. 3: Simplified block diagram of the VDP3108 video/defiection processor chip.

Fig. 4: Simplified block diagram of the MSP3410 sound processor chip. Two different, incompatible versions were used.
transistor, Q801, which is mains-isolated by an optocoupler, D808.

Field Output Stage

The field output stage in the Euro-2 chassis is based on the ubiquitous TDA8 175 chip and is again very similar to that in the Euro- 1 chassis.
With base models the top of the picture is sometimes cramped, showing the CRT black-level sampling lines at the top. The cause is usually leakage in D456. An MA2160 or 0.5 W 16 V zener diode will usually cure the problem.
The most common field fault I've had with AD models has been intermittent black lines near the bottom of the screen. The cause of this has been D508 or D507.
Dry-joints at R464 can cause varying height with base models.
Most early circuit diagrams show an arrow coming from pin 7 of the IC: in fact this is the input.
If the field slowly rises and falls when a set comes on this is almost certainly not a field fault in the normal sense. Suspect the non-volatile memory device, which is IC1941 in AD sets, IC1203 in base sets.

Line Output Stage

The line output stage is entirely conventional but now has a BU2508AX output transistor. This has an internal diode which is not shown in the circuit, though it's hinted at by the dotted line around the component.
Intermittent failure of the line output transistor is often caused by the standby relay sticking. The line driver stage should, as standard practice, be checked for dryjoints though these are rare. It never struck me as a good idea to feed the line drive via a connector so, in AD sets, check the integrity of connector W1511.
The line output transformer occasionally causes problems. When there's an overload in the line output stage the power supply will pulse on and off.

EW Drive

The east/west drive circuitry is also fairly conventional. It uses four transistors in AD models and a TEA2031A chip (IC701) in base models.
Failure of Q593 can be lessened by connecting a 39V zener diode across its collector and emitter - this was done in later production sets. Poor or no EW correction with base models can occur when D556 is leaky.

The Digital Video/Deflection Processor

Video signal processing and generation of the timebase drives was initially carried out by a VDP3108-29 dual-in-line chip, IC601. Fig. 3 shows a simplified block diagram. The main operations carried out by this chip are as follows: PAL/NTSC/Secam colour signal decoding; AI processing (automatic black-level expansion); generation of a line drive output at pin 27; generation of a field drive output at pin 6; generation of an E / W drive output at pin 5; AV switching, composite and Y/C, with inputs at pins $38,40,42$ and 44 ; analogue RGB interfacing, with inputs at pins 61, 63 and 64 ; digital RGB interfacing, with inputs at pins $12,13,19,20$ and 21 ; automatic grey-scale tracking, with the sensing input at pin 53 ; and generation of RGB drive outputs at pins 59,57 and 55.
IC601's working parameters are set at switch on via an $I^{2} \mathrm{C}$ bus, the clock input being at pin 10 and the data input at pin 14. All customer controls and service adjustments are carried out in this way.
For fault finding the important pins are 28 , which should be at 5 V even in standby, the reset pin 31 and the
20.25 MHz oscillator pins 16 and 17. In operation pins $15,45,47$ and 60 are also provided with 5 V supplies.
Automatic grey-scale correction is controlled by a flyback pulse at pin 62: this sets the range of an internal AD converter. Sensing is carried out at pin 53, with reference to the current flowing via resistors connected between pins 50 and 51 . This analogue voltage is converted to digital form and is then passed via the $I^{2} \mathrm{C}$ bus to the main microcontroller chip where the data is compared with data held in memory. Any correction required is calculated and sent back to IC601.
The main microcontroller chip also collects data from IC601 for automatic black-level expansion (AI). The level of AI can be selected from the user menus. The microcontroller chip also monitors data from IC601 to check that the dynamic range of the video signal is within certain limits. If the range is too compressed, the contrast gain within IC601 is increased.
The digital RGB inputs (pins 12, 13, 19, 20 and 21) along with the priority codec inputs at pins 3 and 4 and the main sync signal (MSY) at pin 34 provide digital information about the main picture. This is used by the teletext processor (either IC1701 or IC3502). During text displays IC601 produces interlace suppression pulses at pin 29.
A field flyback pulse is monitored at pin 34. If there is an abnormal condition here the RGB signals are blanked.
Later versions of the Euro-2 chassis use a VDP3108APPA1 processor. This is not compatible with the VDP3108-29.
These digital signal processor chips have been pretty reliable, but some symptoms can be obscure. One of the first I came across was blue flecks that appeared in the background when the set had been working for some hours. Another symptom seen, again when the set has been on for some hours, looks almost like line drift: as the fault gets worse, the set often lapses into standby. This can also be caused by the crystal connected to pins 16 and 17. I change the crystal first (fewer pins!). It can also cause colour loss or drift, usually intermittently. The processor chip can be responsible for faint vertical green lines in the background of the picture.
A video symptom that's usually not caused by IC601 is a completely or partially blanked picture. The cause is nearly always the non-volatile memory chip (the EAROM).
It's always worth checking the voltages around the chip carefully before you condemn it, as the small capacitors connected to various pins are often the cause of faults when they develop leakage, which can be considerable. For example low brightness can be caused by C310 being leaky.
The combined RGB drive chip IC351 on the CRT's base panel can be the cause of a varying grey scale with base models.

Sound Processing

The sound signal processing is likewise highly integrated. In most sets an MSP3410-15TV digital sound processor chip carries out the following main functions: simultaneous processing of Nicam and FM sound; handling three separate left and right channel AV inputs; providing two separate left and right channel AV outputs; digital volume, bass, treble and pseudo-sound control; headphone drive; audio output stage drive.
Fig. 4 shows a simplified block diagram of the main sections used in the Euro-2 chassis. The MSP341015 TV can demodulate a wide range of stereo and mono TV sound signals. In the UK, Nicam and 6 MHz FM
sound are demodulated simultaneously. The selection of standards, features and adjustments is carried out via the $\mathrm{I}^{2} \mathrm{C}$ interface.
The sound processor's clock frequency is set by an 18.432 MHz crystal at pins 62 and 63 . The chip receives 5 V at pins 18 and 57 and 8 V at pin 39 . There is a reset at pin 24. The $I^{2} \mathrm{C}$ bus pins are 10 clock and 9 data.
In later versions of the Euro-2 chassis an MSP3410BPPF7 chip is used for sound signal processing. It's not compatible with the MPS3410-15TV.
The main faults caused by the sound processor chip are distorted or absent Nicam sound. Almost any sound fault can however be caused by either these devices or the associated software chips (control or memory)

Dolby Pro-Logic

The addition of Dolby Pro-Logic with some models introduced a number of problems. At least three different Pro-Logic PCBs have been used. They all have an on-board power supply for the additional power amplifier chips.
Configuration of the Pro-Logic setups varies from model to model. Some have four additional speakers (L , R, Lrear, Rrear), some three (centre, Lr, Rr) and others four again (centre, Lr, Rr and sub-woofer). Some models have 3D sound, which is supposed to simulate the surround-sound ambience.
The wary service engineer should always disconnect the Pro-Logic PCB if the set is dead or tripping - or isolate the $\mathrm{I}^{2} \mathrm{C}$ clock and data lines. Having been run at full bore for most of their lives, one of the output chips is certainly going to fail as Arnold Shwarzenegger repels yet another helicopter attack. When it has gone shortcircuit, the safety resistor in its supply will have gone open-circuit - but not before a very large glitch has had time to wreak havoc throughout the Pro-Logic board. Basically this means that when one of the output chips is faulty you should not expect to have sound after replacing it: instead, check the audio paths through the various processors carefully - usually at least two of them are defective.

Text Processing

Teletext processing is carried out by a TPU3040-18 chip, with an external DRAM chip for additional page and OSD memory. Composite video is fed to pin 3 of the TPU3040-18 chip, which should have 5 V at pins 4 and I 1 , and $\mathrm{I}^{2} \mathrm{C}$ inputs at pins 23 (clock) and 22 (data). The digital RGB connections to IC601 are at pins 6-9 and 12. The teletext chip shares IC601's $20 \cdot 25 \mathrm{MHz}$ clock signal at pin 17, its reset at pin 16 and receives its main sync signal output at pin 20.
No text because of a dry-joint at the video input coupling capacitor C3508 was quite common with earlier base sets. The display cancel and text update facility didn't work with earlier models because of an EEPROM (IC1202 or IC1871) programming error. This was subsequently corrected.
The text processor could be responsible for the intermittently dead symptom with early Euro- 2 sets.

Device Control

Digital processing is under the control of IC1801 (IC1201 in base models). This CCU30001-05 microcontroller chip is connected to all the digital processing ICs, the tuner, the IF and AV switching ICs and the non-volatile memory device (the EAROM) via three $I^{2} \mathrm{C}$ bus systems (1,3 and 4) as follows:

Bus 1 is connected to the video/deflection processor, the
sound processor, the text processor and the non-volatile memory (EAROM).

Bus 3 is used to read and write from/to an external memory pack and some Pro-Logic processors.

Bus 4 is connected to the tuner unit, the IF and AV switching chips and some Pro-Logic processors.

The operating conditions for the digital processor chips have to be loaded at switch on. This is carried out by the CCU chip IC 1801/IC1201 under the control of the operating software, which is stored in the EEPROM (IC1871 or ICl202). The operating levels, customer settings, tuning information and service adjustments are stored in the EAROM (IC1941 or IC1203). These are first sent to the microcontroller chip which then sends them to their correct locations, i.e. the processing chips. This procedure also occurs when the set is switched out of the standby mode.

Service Mode

The Euro-2 chassis has a number of built-in servicing features. Service mode one is used for normal service settings such as picture geometry and grey-scale tracking. To enter this mode, set the bass to maximum and the treble to minimum, then press volume down on the TV set while pressing reveal on the remote control unit. Once in service mode one, use the red and green Fastext buttons to step through the adjustments and the yellow

and blue buttons to alter the settings as required. Press store to retain the settings.

Self-check

The self-check mode can be used to check the communication between the microcontroller chip and the digital signal processor chips. When the self-check mode has been left, the device control system will be reset. This can be important if the CCU, the EEPROM or the EAROM have been changed. One symptom of the need for a reset is when the receiver comes on with the sound at minimum and on channel one.

Memory Problems

The EAROM (IC1941 or IC1203) can be the cause of a number of fault symptoms, including a dead set or an intermittently dead set. This can usually be isolated by running the set with pins 5 and 6 desoldered. One thing to beware of is R558 in the beam limiter circuit going high in value or open-circuit: this can cause a dead or intermittently dead set, with the symptom apparently cured when the EAROM is disconnected. The EAROM has been the cause of some bizarre video faults, and could in theory be the cause of almost any fault in a TV set.
The EEPROM (IC1871 or IC1202) was reprogrammed for several reasons including Macrovision problems, channel naming and sorting, and text page updating in the display cancel mode.
It cannot be sufficiently emphasised that when the EAROM or EEPROM is replaced it must be the correct type for the particular set. For example, the ICs for a Model TX25AD2DP/B are not be suitable for Model TX25AD2DP/M.
After either or both of these memory ICs is/are changed, it is advisable to enter the self-check mode to reset the operating conditions.
It is not always necessary to replace these two ICs as a pair, but this is advisable when the set is an earlier ADI, MD1 or LD1 type as the Macrovision upgrades will cause instability if only the EAROM is changed.
Replacing the EEPROM and EAROM can sometimes cause field jitter. If this happens, the video/deflection processor chip IC601 must also be replaced.

Fault Finding

The main problem with high-level integration, especially with a digital set, is the unseen software content of an IC. If data has been incorrectly loaded into a digital processor virtually anything can happen. If no data is loaded because the EEPROM chip is faulty, nothing will happen and the set will be completely dead. The $I^{2} \mathrm{C}$ bus protocols always check that data has been received: if there is no acknowledgement, the data will be sent again and again. If a digital processor doesn't accept data, the set will usually be dead.
If a faulty device connected to an $\mathrm{I}^{2} \mathrm{C}$ bus is pulling down the bus lines, the set will again usually be dead because data cannot be transmitted along a defective bus line. Devices that can pull down data bus lines include the EAROM and AV switching ICs: the UHF tuner is another common offender. The voltage on the bus lines should be about 5 V . If not, disconnect devices until the 5 V level is restored.
Also remember that a microcontroller chip must have a clean and accurate supply, i.e. with less than a fifth of a volt variation from the specified 5 V . There must also be a reset and a clock feed. It is pointless, though sadly rather common, to replace a microcontroller chip before carrying out these vital checks.

Now you can find and order parts easier

Use A.R.D.'s NEW 600 Page Free user friendly electronic components Trade Catalogue

A.R.D. A. Amonci

Electronic Components Catalogue

Temphone: 01282-8B3000
Traconome
foxe $0121282-683010$

Comprehensive technical information with pictures to help in product identification is included. All products are clearly and logically presented, to make the items easy to find. We offer the most competitive prices in the industry without sacrificing the quality of our products. 'Our aim is your next order' is not a gimmick. We have a highly trained and caring staff and perfect systems to try and make every contact with A.R.D. Electronics a pleasurable and problem free experience.

-28,000 sq. ft. Warehouse

- Same day despatch
- Local Trade Counter

Look at these super offers from our huge range
Coaxial Fly Leads - Plug to Plug

Coaxial plug to coaxial plug. 75Ω Impedance. Moulded end connectors. 3C-2V coaxial cable.

Length	Colour	Order Code	Price Each
1 m	White	$100-00120$	0.18
2 m	White	$100-00122$	0.24
4 m	White	$100-00124$	0.42
10 m	White	$100-00126$	0.90
1 m	Black	$100-00121$	0.18
2 m	Black	$100-00123$	0.24
4 m	Black	$100-00125$	0.42
10 m	Black	$100-00127$	0.90

A.R.D. Electronics stocks the widest range of Konig Electronic components in the UK, at very competitive prices. For all your remote controls, switches, line output transformers, video heads and video components call us today!

Single Output Universal Astra Digital LNB by GRUNDIG

All prices are ex vat. Free delivery on orders over $£ 30$. Phone or Fax us to open an account and we will send you our Catalogue absolutely Free. You will enjoy a $£ 250$ credil limit from day one or alternately you can pay by Credit card or cash. Our sales operators will be happy to help you.

Greencell Batteries by CP.

- Extra life, high performance zinc chloride batteries giving significantly longer life than zinc carbon batteries at roughly half the cost of alkaline batteries.
- Mercury free.
- Suitable for low and medium drain, heavy and continuous use
- Supplied on altractive new blister cards or bulk packed in a box.
Blister Packed

| | Pack
 Type | Quantiy | Order Code |
| :--- | :---: | :--- | :---: | Price/Pack

Bulk Packed

Type	Pack Quantily	Order Code	Price/Pack
AAA	40	$130-00015$	3.95
AA	40	$\mathbf{1 3 0 - 0 0 0 1 7}$	3.70
C	24	$130-00019$	3.95
D	20	$130-00021$	$\mathbf{5 . 5 0}$
PP3	10	$130-00023$	2.40
3R12	1	$130-00024$	0.55

OFFERS END JULY 3rd 1999

A.R.D.

John Coombes presents a quick guide to CD player servicing: a summary of what can go wrong and what to check

CD Player
 Servicing
 perish or wear, can cause jumping or in some cases

Field service calls to deal with CD player faults are not practical nowadays. When a collection has to be arranged, it can help if whoever brings the player in finds out whether problems like jumping or skipping, which may be intermittent, are caused by certain discs. A selection of discs that demonstrate the fault condition can also be a big help to the bench technician.

The Lens

The cause of failure to read the TOC (Table of Contents) can be a soiled lens. A dirty lens can also be responsible for no disc output, failure to display the track number and total music number, failure to play or jumping tracks. If the RF signal and the eye pattern are of low amplitude before the lens has been cleaned, check them again after cleaning to ensure that the laser's output has now returned to specification. If not, replace the pick-up assembly or optical block and carry out alignment. When there is a repeated dust or nicotine contamination problem it may be appropriate to suggest to the customer that the unit is placed in a housing.
On the subject of lens cleaning, Pioneer and Sony both recommend the use of isopropyl alcohol (part nos. GED-008 Pioneer, KK-91 Sony). Wipe the lens with a spiral motion from the centre outwards. If an incorrect lens cleaner is used, the result can be a cracked coating or a dim lens, with premature failure of the laser block.

Laser Checks

If the laser is suspect, check whether it emits light. Note that it is dangerous to view the lens directly. Ensure that the laser power is low (not more than about 0.25 mW), view the lens from the side, at a distance of at least 30 cm , and do not watch for more than ten seconds. If the laser is not alight, check the laser current. This differs between models and manufacturers: with Pioneer players the laser power is generally about 0.13 mW and the current about 30 mA . If the current is lower than this, there may be an open-circuit between the control IC and the laser diode. If the current is much higher, at 60 70 mA , the laser diode is faulty.
If the laser doesn't light and the laser current is correct, check that the focusing operates correctly. If these tests give normal results, suspect the optical block: check it by replacement.
Some optical units have rubber floats which, if they
half-moon shaped scratching on the surface of the disc.

Excessive Disc Speed

If the disc rotates at excessive speed, suspect the optical block. But before replacing it, check the focus error/tracking balance, ensure that the lens is clean and that the disc is OK.

Disc Faults

Faulty discs can cause various symptoms. One of the most common problems is scratches caused by user mishandling. The direction of the scratch line tangent will determine whether the result is jumping or no playback. If the scratch is wide there is bound to be jumping.
On rare occasions you find that the disc centre is misaligned. The result is no playback. Disc damage can also result in light showing through, or the signal surface may peel off. This will distort the signal, again with jumping. A black spot can form on the surface of the disc during manufacture: this can also cause jumping.

Spindle Motor Problems

If the spindle motor is worn, the frequency of the RF eye pattern will fluctuate. As a temporary measure, remove the motor and connect a battery across its terminals. Then reverse the connections so that the motor has rotated in both directions. It will now operate correctly, but only temporarily, enabling the operation of the rest of the player to be checked for reading of the TOC.
Ensure that the disc table is fitted correctly and set at the correct height after replacing a spindle motor. If the height is incorrect, the disc may not play at all or there may be skipping.
If the spindle motor is OK , check the drive circuit.
If, with some players, the spindle motor doesn't operate, use a scope to check that the RF blip is present. If so, suspect a faulty optical block. Recheck the focus and tracking servos. If they don't work correctly, check the laser diode output power. If this is too high, the amplitude of the RF waveform will be excessive because of incorrect reflection from the surface of the disc.

Ribbon Connectors

Many CD players have very thin and sometimes insufficiently flexible ribbon connectors. These can cause
many problems, which may be permanent or very intermittent. Incorrect laser unit operation for example, or no power or no spindle motor power.
With machines that have a multi-play unit or two-three dise turntables a ribbon connector fault may be responsible for no rotation from one disc to another or failure to operate.

The Drawer

A broken or fractured ribbon cable can be the cause of the drawer loading and unloading on its own, or in some cases failing to load at all. The most common cause of the drawer not going in and out is the loading belt when one is used. If the belt is OK, check whether the grease along the runners has hardened. The resistance this introduces will cause incorrect drawer operation. If these points are all OK, remove the belt and see if the motor rotates. If it does, it may have insufficient torque to drive the loading belt and tray. If it doesn't, check whether the DC supply is open-circuit.
Incorrect limit switch operation is another cause of failure of the drawer to open or close. If this is OK, check that the logic signals are correct.
A faulty limit switch may also prevent the pick-up unit returning to the start position.

The Sled Motor

A faulty sled (carriage) motor can cause track jumping or juddering or sticking in one place. It may be necessary to remove the motor and clean its spindle, and the runners or cogs depending on model and make. To pre-

Fig. 1: Basic CD player block diagram. Models fitted with a radial optical assembly have a radial servo instead of separate tracking and sled servos.
vent binding, ensure that the unit is well cleaned and lightly lubricated.

General Points

With modern units the pick-up assembly mechanism and laser power are preset.
It may be necessary to check and adjust the tangential skew to prevent jumping. Bad wear here will prevent player operation. The same effects can be caused by incorrect grating adjusiment.

Servicing

J. LeJeune provides a detailed fault-finding guide for the deck and the electronics used in these popular low-cost machines

the Daewoo V50 and V60

These two VCRs are virtually identical, the main difference being that the V60 has the VideoPlus option enabled. They use the Daewoo FM deck, which is simple and easy to service. On the electronics side the motherboard contains the servos and system control circuitry and the interconnections. There are six modules: power supply, modulator, tuner, pre-rec (Y/C), IF/demodulator and input-output board. There is a second microcontroller chip on the front panel PCB: it's used to drive the fluorescent display and convert key-presses and IR commands into data for the main microcontroller chip on the motherboard.
The Sony SOPS-2021 power supply module gives little trouble.

Dismantling the Machine

The mechanical side is responsible for most faults. Several components age, wear or can be damaged by inconsiderate use. Make sure that the mains supply is disconnected before you remove the deck from the machine. Five securing screws hold the top cover. Remove it then the brace that goes across the cassette platform at the front of the machine. The front panel can then be removed - it snaps into place.
The cassette platform is held by two screws, the deck by a further five. One of these is at the rear edge of the machine, to clamp a sheet-steel bridge plate whose other end is screwed to the deck, close to the audio-control (A/C) head. This bridge plate is useful as a handle when the deck is lifted out. There are two screws at the rear corners of the deck. Another one between them secures part of the pre-rec module. The remaining screw is along the front edge of the deck. Once the screws have been removed the deck can be lifted out, giving relatively easy access to all parts.

Fig. 1: The old (left) and later (right) idler assemblies.

Deck Servicing

First take a look at the idler assembly. If it resembles the type shown on the left in Fig. 1, replace it with the later version shown on the right. Then examine the clutch, which comes out easily when the split washer that secures it has been removed. The thrust plate should be lightly greased: the clutch should feel firm, not slack. If the belt between the capstan motor flywheel and the clutch is very shiny, replace it - most of the ones I've come across in two-three year old mechanisms have been satisfactory. Check the connectors for the motors: the contacts blacken over a period of time and will always benefit from being cleaned.
Index marks for the alignment of the mechanism, in the stop mode, are shown in Figs. 2-5
Failure of the mechanism to load properly and the brakes to operate correctly is frequently the result of relay plate-distortion or a loose pin on it. The plate is shown in Fig. 6. In severe cases there will be no fast forward or rewind operation. The pin is the cam follower, which engages with the cam gear. Replace the plate. To release it, take out the relay gear on the underside of the deck, the pinch roller assembly and the loading motor and cam gear. Reassembly is easy when you have the diagrams to help you or the manual.
If you are happy with the condition of the deck, place it back on the motherboard - watch out for the connectors at the rear of the loading motor assembly: make sure that they actually connect and that there are no bent pins. Once everything has been reconnected the loading platform can be replaced. Make sure that the cassette carriage is fully retracted in the unload position. Refit the front PCB and switch on.
Run a tape past the A / C head in the cue and review modes. If the tape moves up or down, the pinch roller is probably misaligned and due for replacement.
Should rewind, particularly fast rewind, be poor the most likely cause is the small brake dragging on the take-up spool hub - it's the left-hand one of the two brakes on this assembly. A quick cure for this is use the tip of a soldering iron to heat the elbow of the brake arm and ease the shoe away from the hub by about a millimetre. Check that this is enough. It should be. If you overdo it there will be tape spillage and looping when the brakes are applied.
The FM deck is easy to service. Most problems are commonplace and easy to diagnose. Daewoo seems to
have been confused about how much grease to apply to the mechanism during production: a light application of grease is all that's required for satisfactory operation. Some decks have a heavy application, others seem to have barely enough.
The cassette loading platform gives little trouble: it's easy to service and of simple construction. If the tape loads but there is no drum or capstan rotation, check Q861 which is probably open-circuit.
The cause of no full erase in one machine turned out to be a foreign body that prevented full swing of the backtension lever. This held the tape away from the FE head! Daewoo uses foam rubber strip around the machine to prevent drumming noises. A piece of this was the culprit.

The Drum

These machines have no head heater. So many that are brought into the workshop have tape wrapped around the drum. Once you have freed the drum and checked that the mechanics are working correctly you might find that the machine doesn't produce pictures or sound - the screen is dark grey with noise on it, or has a jazzy black-and-white pattern on it. This is a sign that the drum needs cleaning. If at first you don't succeed, don't give up! It may take four or five attempts to get good pictures and sound.
The Blue Diamond or 'titanium' heads are vulnerable to dirt and may require several attempts at cleaning even after only normal use.

The Power Supply

The Sony power supply uses a TOP type chopper chip. It has three connections, for earth, feedback and output, the latter going to the primary winding of the chopper transformer. Pace used one of these devices in the MSS100 analogue satellite receiver. It makes the component count very low and the circuit almost foolproof.
The most common problem is failure to start because the $390 \mathrm{k} \Omega$ start-up resistors R55 and R56 have gone high in value or open-circuit. They are of a very lowwattage type and take up very little space on the PCB. A metal-film type would be better able to withstand the rectified mains voltage. A less common cause of failure to start is diodes D54 and D55, which become leaky.
Sometimes the power supply fails with a blackened fuse, which usually means that the chopper device has gone short-circuit. A replacement will restore operation, but it's worwhile checking the output from the mains bridge rectifier. The reading should be about $290-310 \mathrm{~V}$. If the reading is low, the value of the reservoir capacitor has probably decreased. This can cause failure of the TOP device.
As a check on whether the power supply is providing what it should, Table 1 shows voltage readings to expect. They were measured in the stop mode.
A strange symptom I had with one machine was sequential flashing of the clock digits in the fluorescent display. The cause was traced to the optocoupler that's used for feedback and isolation between the secondary and primary sides of the power supply.
Should the switched 5 V supply be low, check whether Q854 is running hot. The normal cause is that C857 is leaky. A neighbouring capacitor, C859, can cause problems with the switched 12 V supply, including erratic motor speed and hum bars on the picture.

Tuning Problems

One of the most common problems is tuning drift. Leakage in the 33 V regulator D851 is one cause of this.

Fig. 2: Datum positions of the relay plate and cam gear.

Fig. 3: Datum positions of the mode switch and cam gear.

Fig. 4: Datum positions of the main plate and relay gear.

Fig. 5: Datum position of the loading-gear assembly.

Fig. 6: The relay plate.

Fig. 7: Signal flow diagram. 0181 should have oV at its collector, 2.2 V at its base and 3 V at its emitter.

Note that the correct type, as fitted, must be used: an ordinary 33 V zener diode will not do. Another cause is poor earthing of the tuner can to the PCB. Grabbing the can and gently squeezing it will highlight this problem. The cure is to remove the covers and retension the pressed-out lugs by using a screwdriver blade to lever them away from the plate. Only a small amount is required: a millimetre will suffice to re-establish solid contact.
If you forget to connect an aerial to the VCR when auto-tuning you will end of with a blue screen.
To reset the memory, turn off the mains supply and short-circuit C623 (alternatively sort-circuit the anode of D603 to the PSU's screening can). This action may be necessary when a machine has to be retuned to a new set of channels.
Since the arrival of digital services, the auto-tune facility will log these in as well as the analogue ones. This is obviously a nuisance, and means that station deletions have to be made when tuning is complete. A colleague uses a 12 dB attenuator in series with the aerial lead when auto-tuning these machines: the digital signals are then below the machine's acceptance level, but the analogue signal strength is sufficient for channels to be recognised and stored. This calls for a little trial-anderror, and can be done only at a fixed location such as a workshop.
Record and playback do not work during auto-tune, but you can wind the tape fast forward or rewind it.

Electronics

The electonic circuitry in V series machines is good, with any problems normally well defined. A good service manual would be a distinct help when troubleshooting. Unfortunately some essential information, such as signal flow diagrams, is not provided in the manual. Fig. 7 may be of help in this respect.
Table 1: Power supply voltages

L803	5.9 V	D851 cathode	32.25 V	D852 cathode	12.75 V	
L804	14.5 V	D853 cathode	12.5 V	D854 cathode	13.75 V	
Transistor	Collector	Base	Emitter			
0851	14.3 V	12.9 V	12.2 V			
O852	14.3 V	12.7 V	12 V			
O853	14.3 V	11.4 V	12.1 V			

One machine I had on the bench recently showed all the signs of an early death. Multimeter checks showed that it was very much alive however. The fluorescent display was extinguished because ZD605 (3.9V) was open-circuit. When this happens the display filament pins both read -22 V with respect to chassis.
Another machine, which was stuck in standby, was on the point of going through the window when I discovered an intermittent section of cabling between P603 and P701, joining the front PCB to the motherboard.
Microcontroller chip failures are rare. The main one can sometimes be the cause of apparent tape-end sensor or tape-motion sensor failure however. Before reaching for the blowlamp, check whether the 16 MHz crystal oscillator is working. I've had one or two 'sticky' crystals. Also check for a reset pulse at pin 37 or, more easily done, at pin 1 of IC604.
Crystal X401 at pins 17 and 18 of IC301 can also be sticky. The symptom is either intermittent colour or no colour at all.

A Warning

As with many other low-cost machines, be wary of pressed metal parts. They can have very sharp edges and can cause deep wounds. The edges of the cabinet top and the strap across the front of the loading platform are particularly dangerous in these machines.

BACK ISSUES

We have available a limited stock of the following back issues of Television:

1994	January, February, May, June, July, September, October, November and December
1995	January, April, May, June, July, August, September, November and December
1996	January to December inclusive
1997	January to December inclusive
1998	January, February, March, April, May, June, September, November and December
1999	January, February, March, April and May

Copies are available at $\mathbf{£ 3 . 0 0}$ each includ-

 ing postage. Send orders to:Reed Business Information Ltd., Television Back Issues, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Make cheques/postal orders payable to
Reed Business Information Ltd.

ECG MACHINES？／6v 10AH BATTS／24V 8A TX Ex government ECG machines। Measures $390 \times 320 \times 120 \mathrm{~mm}$ ，on the
front are controls for scan speed scan delay，scan mode，loads of connections on the rear including video out etc On the front panel are two DIN sockets for connecting the body sensors to Sensors not included，inside $2 \times$ 万v 10AH sealed lead acid batts（generally not in good condition），pcob＇s and a $8 A$ ？ 24 v torrodial transformer（mans in） sold as seen，may have one or two broken knobs etc due to poor
HYDROPONICS DO YOU GROWYOUR OWN？ We have a fullcolour hydroponics catalogue available containing nutrients，pumps，fittings，enviromental control，light fittings， plants，test equipment etc Ring for your free copy．
PC COMBINED UPS AND PSU The unit has a tota power of 292 watts．standard mother board connectors and 12 penipheral power leads for drives etc inside is 312 v 72 aH sealed lead acid
batteries Backuptime is 8 minsat full load or 30 mins at hatfioad Made batteries Backup time is 8 mins at full load or 30 mins at haff load Made in the UK by Magnum， 110 or 240 vac input，+5 vat 35 A ，$-5 \mathrm{vat} 5 \mathrm{~A},+12 \mathrm{v}$ at $9 \mathrm{~A},-12 \mathrm{v}$ at 5 A outputs $170 \times 260 \times 220 \mathrm{~mm}$ ，new and hoxed $£ 2995$ Ref PCUPS2 ${ }^{\text {WINDOWS }} 95$ CD ${ }_{\text {A }}$ CD＇s have all the window files on them and were intended to be used to restore windows on a PC after a crash etc $£ 15$ REF SX06
ALTERNATIVE ENERGY CD．PACKED WITH hundreds of alternative energy RELATED ARTICLES，PLANS AND INFORMATION ETC $£ 14.50$ REF CD56
aerial photography kit this rocket comes with a buitt in cameral it hies up to 500 feet（ 150 m ）tums over，and takes an aerial photograph of the ground below The rocket then retums afely wh itsfifm via its built in paracute．Takes standard 110 Him Suppiled complete with everything inciuding a launch pad and 3 motors（no film）$£ 2998$ ref
SATELLITE MODULATOR MODULES prices from just $9 p$ Surface mount modulators full of components Fitted with an F
type connector and a uhf fype connector Pack of $100 £ 995$ ref SS20 type connector and a uhf type connector Pack of $100 £ 995$ ref SS20 PROJECT BOXES Another bargain for you are these smart ABS project boxes，smart two plece screw together case measuring approx $6^{\prime \prime} \times 5^{"} \times 2$＂complete with panel mounted LED Inside you will find Pack of 20 E 1995 ref MD2
REMOTE HEATING CONTROLLERS WITH 30A MAINS RELAY from just 9Gp These unts were designed to be plugged into a telephone socket You then called the phone and some how it turned the heating on Each box contains lots of bits including a mains 30A relay pack of 20 £20 ref SS34
PIR CAMERABuilt in CCTV camera（composite output）IR strobe light，PIR detector and battery backup Designed to＇squirt pictures down the＇phone line but works well as a standalone unit Bargain price $£ 3995$ ref SS81J．These units are brand new modules
designed to taike pictures＇of intruders and then transmit the pictures down the telephone line The PiR detects the intruder，fires the strobe light this ensures a perfect picture even in total darkness The picture is stored in memory inside the module and then sent by modem（not included）down the telephone line The units atso have a nicad battery pack included presumably to maintain operation in the event of mains pack included presumably to maintain operation in the event of mains 320×240 puxels with a 90×65 degree field of view，the prcture quality is excellent Each PIR also contains a video capture and compression unit The infra red strobe has a range of 15 m The pir has a range of 12 m Power requirements are $12 v \mathrm{dc} 400 \mathrm{~mA}$ ．Power supplies avalable at $£ 5$ ref $\mathrm{S} S 80$ The units are supplied with connection detalls etc but we do not have any information on using the compression and capture unit or interfacing to modems etc The units do have operational P：R＇s． strobes and camera＇s（camera is 12 vdc and gives out standard composite 1vp－p video）how you adapt these to work together is entirely up to youlRetail price for the units was in excess of $£ 200$ each saie price $£ 3995$ ref SS81JPower supplies $£ 5$ ref $\operatorname{SS80}$
TELEPHONES all brand new and boxed Two plece construction with the foliowng
features－Iluminated keypad tone or pulse（swithable）recall redial features－Illuminated keypad．tone or pulse（switchable），recall，redial and pause，highflow and off inger switch and quality construction
finished in a smart of white colour and is supplied with a standard finished in a smart off white colour and is supplied with a standard international lead（same as US or modems）if you wish to have a BT lead supplied to convert the phones these are also avallable at $£ 155$
each ref BTLX Phones $\mathbf{£ 4 . 9 9}$ each ref PH2 10 off $\mathbf{£ 3 0}$ ref SS2 each ref BTX Phones $£ 4.99$ each ref PH2 to of $\mathbf{£ 3 0}$ ref SS2
3HP MAINS MOTORS Single phase 240 N ，brand new． pole． $340 \times 180 \mathrm{~mm}$ ． 2850 rpm ，buttin automatice reset overload pro tector，keyed shaft（ $40 \times 16 \mathrm{~mm}$ ）Made by Leeson $£ 99$ each ref LEE1 BUILD YOU OWN WINDFARM FROM SCRAP Newpubicationgives step by step guide to bulldingwind generators and propellors Armed with this publication and a good local s
could make you self sufficient in electricityl $£ 12$ ref LOT81
CHIEFTAN TANK DOUBLE LASERS 9 WATT＋3
WATT＋LASER OPTICS
long range communications etc Double beam units designed to it inthe gun barrel of a tank，each unit has two semi conductor lasers and motor drive units for alignement 7 mile range，no circurt diagrams due to
MOD，llew price $£ 50,0007$ us？$£ 199$ Each unit has two gallum Arsenide injection lasers， 1×9 watt， 1×3 watt， 900 nm wavelength， $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency The units also contan an electronic recerver to detect reflected signals from targets $£ 199$ Ref LOTA
MAGNETIC CREDIT CARD READERS AND
ENCODING MANUAL $£ 9.95$ Cased with flyleads，designed to read standard credit cards！complete with control elctronics PCB and inanual covering everything you could want to knowabout whats hidden in that magnetic strip on your cardi sust $£ 9.95$ ref BAR31
Hi power 12 v xenon strobe variable rate llasher modules and tubes £6Useful 12 v PCB fitted with control electronics and a powerful Xenon tubel just apply $12 v \mathrm{DC}$ to the input and the tube will flash On the board is a small potenttometer whuch can be used to vary the flash rati PCB measures just $70 \times 55 \mathrm{~mm}$ and could the incorporated

Hydrogen fuel cells now in stock

Our new Hydrogen fuel cells are 1v at up tp 1A output， Hydrogen input，easily driven from a small electrolosis assembly or from a hydrogen source，our demo model uses a solar panel with the output leads in a glass of salt water to produce the hydrogen！Each cell is designed to be completely taken apart，putback together and expanded to what ever capacity you like，（up to 10 watts and 12 v per
We get over 8，000 hits a day．．．．． check us out！ http：／／www．bullnet．co．uk

PHILIPS VP406 LASER DISC PLAYERS， SCART OUTPUT，RS232 CONTROLLED £24．95 REF VP406
SMOKE ALARMS Mains powered made by the famous Gent company，easy fit next to hightfittings，power point Pack of $5 £ 15$ ref SS23，pack of $12 £ 24$ ref SS24
4AH D SIZE NICADS pack of $4 £ 10$ ref 4 AHPK ELECTRIC FENCE KIT Everything you need to buld a SENDER KIT Contains aillcomponentsto build a AN transmitter complete with case E 35 ref VSXX2
10 WATT SOLAR PANEL Amorphous silicon panel fitted in a anodized aluminum frame．Panel measures $3^{\prime \prime}$ by $1^{\prime \prime}$ with screw
terminals for easy connection $3^{\prime} \times \mathbf{1}^{\prime}$ solar panel $\mathrm{f55}$ ref MAG45 terminals for easy connection $3^{\prime} \times \mathbf{1}^{\prime}$ solar panel f 55 ref MAG45 Unframed 4 pack（ $3^{\prime} \times 1^{\prime}$ ）$£ 58.99$ ref SOLX
12V SOLAR POWERED WATER PUMP perfect for many 12 vDC uses．ranging from solar fountains to hydroponics। Small and compact yet powerful works direct from our 10 walt solar panel in bright sun Max hd 17 it Max flow $=8$ Lpmi， 15 A Ref AC8
$£ 1899$
SOLAR ENERGY BANK KIT 50×6＂$\times 12$＂ 6 v solar panels（amorphous）＋50 diodes 599 ref EF112 PINHOLE CAMERA MODULE WITH AUDIO！ Supert board camera wth on board soundl extra smail just 28 man square（including microphone）ideal for covert survellance Can be hidden inside anything，even a matchbox Complete with 15 metre cable，psu and tvacr connnectors $£ 4995$ ref CC6J
SOLAR MOTORS Tiny motors which run quite happity on voltages from3－12vdc Works on our 5 v amorphous $6 "$ panels and you can run them from the sunl 32 mm dia 20 mm thick $£ 150$ each WALKIE TALKIES 1 mile range e37／Pair ref mag30 LIQUID CRYSTAL DISPLAYS Bargain prices， 20 character 2 line， $83 \times 19 \mathrm{~mm} £ 3.99$ ref SMC2024A 16 character 4 line， $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A 40 character 1 line $154 \times 16 \mathrm{~mm} £ 6.00$ ref SMC4011A
Your home could be self sufficent IN ELECTRICITY Comprehensive pians with loads of info an designung systems，panels，control electronics etc $£ 7$ ref PV1 LOW COST CORDLESS MIC 500＇range， $90-105 \mathrm{mhz}$解 ARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode AUG10P3
SOLAR POWER LAB SPECIAL $2 \times 55^{\prime \prime} \times 6^{\prime \prime} 6 \mathrm{v} 130 \mathrm{~mA}$ cells， 4 LED＇s，wre buzzer，switch +1 relay or motor $\mathbf{£ 7 . 9 9 \text { REF }}$
SOLAR NICAD CHARGERS $4 \times$ AA size $£ 999$ lef
5 25＂FLOPPY DISKS

REGISTER FOR OUR
electronic newsietters BULL－ELECTRICAL．COM BULL ELECTRICAL 250 PORTLAND ROAD，HOVE，SUSSEX BN3 5QT．（ESTABLISHED 50 YEARS）． MAIL ORDER TERMS：CASH，POOR CHEQUE WITH ORDER PLUS £4． 10 P\＆P PLUS VAT． 24 HOUR SERVICE 66.50 PLUS VAT． OVFRSEAS ORDERS AT COST PLUS 6350

phone orders ： 01273203500

Sales ${ }^{\mathrm{FAX}}$ bull－electrical．com

30 WATTS OF SOLAR POWER for just $£ 69,4$ panels each one 3 ＇$x 1$＇and producing $8 \mathrm{w}, 13 \mathrm{v}$ ． PACK OF FOUR $£ 69$ ref SOLX
200 WATT INVERTERS plugs straight into your car cigarette highter socket and is fitted with a 13A socket so you can run your mains operated devices from your car battery $£ 4995$ ref $S S 66$
THE TRUTH MACHINE Telis if someone is lying by micro tremors in their voice，batreryoperated，works in general conversation and on the＇phone and TV as well！£42 49 ref TD3
INFRA RED FILM 6 square puece of flextbie infra red film that will only allow IR inght through Perfect for converting ordnary torches， lights，headights etc to infra red output only using standard light bulbs Easily cut to shape $6^{\prime \prime}$ square $£ 15$ ref IRF2
33 KILO LIFT MAGNE TNeodynium， 32 mm diameter with a fixing bolt on the backfor easy mounting Each magnet will int 33 kllos ， 4 magnets bolted to a plate will lift an incredible 132 kilos！$£ 15$ ref MAG33
HYDROGEN FUELCELL PLANSLoads of information onhydrogenstorage and production Practical plans to buld a lyydrogen fuel cell（good workshop faciities required）£8 set ref FCP1
STIRLING ENGINE PLANS STIRLING ENGINE PLANS interesting information pack engines made froman aerosol can running on a candle！$£ 12$ ref $\operatorname{STIR} 2$
ENERGY SAVER PLUGS Saves up to 15% electrcity when used with frndges，motors upto 2A ，ingt bulbs，soldering irons etc £9 ea ref LOT71， 10 pack $£ 69$ ref LOT72
12V OPERATED SMOKE BOMBS trigger and 3 smoke cannisters，each cannister will fitl a room in a very short space of timel £1499 ref SB3 Type 2 is 20 smaller cannisters （suitable for simulated equipment fires etc）and itriger module for $£ 29$ ref SB2 Type 1 is a 12 v trigger and 20 large cannisters $£ 49$ ref SB1
HIP
HIPOWER ZENON VARIABLE STROBESUsefu 12v PCB fitted with hi power strobe tube and control electronics and speed contro potentiometer Perfect for interesting projects etc
$70 \times 55 \mathrm{~mm} 12 \mathrm{vdc}$ operation $£ 6$ earef FLS 1 ．pack of $10 £ 49$ ref FLS2 NEW LASER POINTERS $45 \mathrm{mw}, 75$ metre range，hand held unit runs on two AA batteries（supplied） $670 \mathrm{~nm} £ 29$ ref DEC49」 HOW TO PRODUCE 35 BOTTLESOF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers akl aspects of spurit production from everyday
matenats includes construction details of simple stills $£ 12$ ref MS3 NEW HIGH POWER MINI BUG with a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug＇ less than 1 ＂square and a 10 m voice pickup range $£ 28$ Ref LOT 102 IR LAMP KIT Suitable for cctv cameras，enables the camera to be used in total darkness！$£ 6$ ref EF138
INFRA RED POWERBEAM Handheld tattery powered lamp， 4 inch reflector，gives out powerful pure intrared inght perfect for
SUPERWIDEBAND RADAR DETECTOR ${ }_{\text {Detects }}$ both radarand laser，XK and KA hands，speed cameras，and all known
speed detection systems 360 degree coverage，front\＆ speed detection systems 360 degree coverage front\＆ LOPTX Made by Samsung for colour TV $£ 3$ each ref SS5
LAPTOP LCD SCREENS $240 \times 175 \mathrm{~mm}$ ， 12 ref $5 S 51$
WANT TO MAKE SOME MONEY？STUCK FOR AN IDEA？ give you informatron on setting up different businesses，you peruse these at you leisure using the text editor on your PC．Also included is
the certficate enabung you to reproduce（and sell）the manuals as the certficate enabling you to repr
much as you likel $£ 14$ ref EP74
HIGH POWER DC MOTORS，PERMANENT MAGNET body measures $100 \mathrm{~m} \times 75 \mathrm{~m}$ wh $60 \mathrm{~m} \times 5 \mathrm{mmoutp}$ shaw body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ outputs shaf with a
machned flat on of Fixing is simple using the two threaded bolts pro－ machined nat on π Frxing is simple
truding from the front $£ 22$ ref MOT 4
INFRA RED REMOTE CONTROLS ${ }_{\text {made for }}$ TVs

Online
 web catalogue bull－electrical．com

ELECTRONIC SPEED CONTROLLER KIT FO the above motor is $£ 19$ ref MAG17 Save $£ 5$ if you buy them both
together， 1 motor plus speed controller rrp is $£ 41$ offer price $£ 36$ ref mogether，
SONY STEREO TV CHASSIS assemblies comprising complete TV PCB excluding tube and scan colls Nicam stereo，mains input Appear to be unused but sold＇as seen＇Would probably be good for spares or as a nicam stereo TV sound recever and amplifier
For KV29F1U and KV25F fu（BE3D）PCB no＇s $1-659-827-12$ 1－659－826－14 1－711－800－11 £20 ref STV1
RCB UNITS Inline IEC lead with fitted RC breaker，Installed in seconds．
Pack of 3 £9．98 ref LOT5A
RADIO CONTROLLED CARS etc No remoles but good stripoers for seevn＇s motorsa
mixeed types $£ 3$ each ree R RCC
VOICE CHANGERS
phone mouth peree an you canadust y cur vacce using the controfs on the unnt Battery operated 115 ret CC3

> Reports from
> Philip Blundell,
> AMilfelec
> Michael Dranfield
> Pete Gurney, LCGI
> Chris Watton
> J.S. Ruwala
> Shane Humphrey
> Keith Evans
> Mike Orr and Christopher D. Nunn

Sharp DV5935H/ DV6635H (BCTV-A chassis)

The cause of any of the following symptoms can be that the NV memory needs reprogramming: no or intermittent FM mono, Nicam or scart sound: no Nicam and a whistling noise in the background with mono sound. The data list can be obtained from Sharp Technical or the Willow Vale technical help pages on COPS, and fed to the receiver via remote control or the front keyboard - the NVM data is not included in the service manual Alternatively you can obtain a preprogrammed NVM from Sharp as a spare part. P.B.

Philips 25PT4101/05 (AA5 AB chassis)

In the event of failure of the line output transistor, check for dryjoints at the rear of the connector on the scan coils. P.B.

Tatung B Series Chassis

If the set is dead with the standby LED flashing, check D810
(BY399) for leakage. It's part of an elaborate network associated with the chopper FET Q801. P.B.

Grundig CUC5361 Chassis

The beam limiting system didn't work in this set. So when the picture had a lot of white in it the set

TV
Fault Finding
switched to standby. The beam limiting voltage is fed to pin 12 of the RGB module (29504-165-55). As the beam current increases, the voltage at pin 15 of IC5150 (TDA4658) should fall. It did, but the chip took no notice. A new TDA4685 restored normal operation. P.B.

Sharp 51AT-15H (5BS-A chassis)

A neighbouring engineer had given up on this one - I found out why the hard way. The initial symptom was reduced height with the scan cramped at the top and bottom. The field timebase supplies had a lot of ripple on them, so $\mathrm{C} 712(220 \mu \mathrm{~F})$ and C713 ($1,000 \mu \mathrm{~F}$) were replaced. This removed the ripple - and also the field scan! The ripple must have been producing what little scan there had been.

Cold checks in the field output stage revealed the following faulty items: Q502 (BD825), Q504 (BD828), Q509 (BC635), Q510 (BC338) and D501 (1 N 4148). The field scanning was correct once replacements had been fitted, but the picture was snowy and tap-sensitive in the area of the tuner unit. Resoldering the few suspect joints that could be seen in the tuner had no effect: in fact the cause of the low gain turned out to be a faulty SAWF (SF201). P.B.

JVC AV25SXIEK

This Dolby model would come out of standby but almost immediately shut down again. Although the HT voltage was correct, during the short time the set worked the EHT was over 30 kV . Capacitor C1521 ($3,800 \mathrm{pF}, 1.5 \mathrm{kV}$) had decreased in value. Its part no. is QFZ01 17 3801S). P.B.

Crown CRP21T

These sets seem to suffer from line
driver stage faults. When the set is intermittently dead, the cause is usually the 2 SCl 573 A line driver transistor Q579. It may test OK, but a replacement will cure the intermittent loss of line drive. If the set is permanently dead, the cause is usually the line driver stage feed resistor R599 ($2 \mathrm{k} \Omega$, 5 W). We always replace Q579 as well. M.Dr.

Ferguson B49F (Thomson TX90 chassis)

Loss of the tuning voltage usually means that RH04 ($27 \mathrm{k} \Omega$) has failed. You'll find it in front of the line output transformer. M.Dr.

Matsui 2180TT/Saisho
 FST212T

The complaints with this set were field jitter and intermittent field collapse. When I tested the set I found that the field drive output at pin 23 of the $\mu \mathrm{PC} 1420 \mathrm{CA}$ colour decoder/timebase generator chip IC401 was varying in amplitude, but a new chip made no difference.

Because of the intermittent nature of the fault, a lot of time was spent making scope and voltage checks. I finally discovered that in the fault condition the voltage at the anode of D606 rose to about 1.5 V . This diode is connected to the service switch SW601, which is used to collapse the field scanning. The anode of D606 is normally at 0 V : for field collapse it rises to 12 V . The rogue voltage was coming from SW601, which must have been leaky. A replacement from a scrap set cured the problem. M.Dr.

Sharp. DV5165H (4BS-B chassis)

The line output transistor in this set had blown for no obvious reason. So I fitted a replacement and switched on. The set tripped slowly for a few minutes, then the EHT
suddenly appeared and the new transistor got red hot.

While scoping around I discovered that the line drive frequency was incorrect. The line oscillator is in the MC44007 colour decoder/ timebase generator chip IC2801. Checks here showed that the 5 V supply was low at $3 \cdot 8 \mathrm{~V}$. This supply comes from a three-terminal 5 V regulator, IC75I (KA7805PI). When its output pin was disconnected from the print the voltage returned to normal. This turned out to be a red herring, and resulted in a lot of wasted time. The regulator was faulty, but only under load. M.Dr.

Ferguson T49F (TX91 chassis)

Very low sound was the complaint with this set. The cause was traced to a leaky BC858C surface-mounted transistor, TV02. M.Dr.

Onwa Chassis

The set in question was a JVC Model C14ET1EK, but we've had the same problem with a number of other sets that use these chassis. If you find the surge limiter resistor open-circuit but no obvious shortcircuit is present, check the protection capacitors in the mains bridge rectifier circuit, C904-7 in this case They are small, green disc capacitors marked 472 (4.7nF). A black pinhole in the side of the body is the give-away. M.Dr.

JVC C1480EK

This set was dead. The mains supply was present at lead connector CON3 but had disappeared by the time it should have reached the mains filter choke LF901. A hairline crack was found in the PCB where it slots into runners moulded in the case. The mains supply is routed from CON3 to the choke directly next to the chassis support at the left-hand side. I can only put the cause down to rough handling. P.G.

Goodmans 2180

Intermittent low brightness, mainly from switch-on, was the complaint with this set. I at first suspected a first anode supply fault at the line output transformer. When the set was switched on, the first anode voltage was only 240 V . After some time it rose to the normal 450 V , with correct brightness levels. Further investigation revealed that the cause of the fault was on the tube base panel, where some strange-coloured glue had been
applied around the AI feed wire during manufacture. This glue had become conductive. Its removal cured the fault. P.G.

Bush 2159NTX

There was just a blank raster, with no picture or sound. Quick checks at the tuner unit's 12 V supply pin produced a reading of 0 V , also a short-circuit reading. Not surprisingly, the 2.2Ω safety resistor R327 in the feed to this pin was open-circuit. The short-circuit was found inside the tuner, which I had to remove for examination. A hairline solder splash was present at the BU pin's feedthrough capacitor. Once this had been removed there was normal vision and sound. P.G.

Matsui 209T

Two field faults are quite common with these sets. Failure of C307 $(2 \cdot 2 \mu \mathrm{~F}, 50 \mathrm{~V})$ in the feedback circuit produces crossover distortion, with a bright-up across the centre of the screen. Failure of the bootstrap capacitor $\mathrm{C} 302(10 \mu \mathrm{~F}, 50 \mathrm{~V})$ can upset the blanking circuit, the result being text data visible at the top of the screen. C.W.

Goodmans C2043T

For low HT when the set is cold, replace the $33 \mu \mathrm{~F}, 160 \mathrm{~V}$ capacitor situated close to the power supply transformer. C.W.

Samsung Cl537 (P55 chassis)

Loss of one colour is a fairly common fault with these sets. There are three $33 \mathrm{k} \Omega$, 2 W resistors (R803/ 811/818) on the CRT base panel they provide DC feedback in the RGB output stages. One is usually open-circuit. Replace them all. C.W.

Hitachi CPT1446 (NP84CQ chassis)

The problem was field collapse. The voltages around the field output transistors were correct, but there was no scanning because the $47 \mu \mathrm{~F}, 160 \mathrm{~V}$ field scan coupling capacitor C603 was open-circuit. C.W.

Nokia Euro Stereo 2 Chassis

This was a tricky fault. The S2000AF line output transistor would go short-circuit, and sometimes the line driver transistor would go open-circuit. Various components, including the EW diodes and tuning capacitors, were replaced and a thorough investiga-
tion was carried out for dry-joints, but the problem persisted.
Replacement of the line driver transformer cured the fault. I assume that it would develop short-ed-turns under load, as the DC resistances were correct and its pins were properly soldered. C.W.

Sharp DV5150H (S3B chassis)

There was a very low-contrast picture, with various coloured flashes on the screen. The cause was one of the BF421 transistors on the CRT base panel. I felt it best to replace all three. They are in the auto grey-scale feedback circuit. C.W.

Tafung 180 Chassis

This set would instantly blow its S2000AF line output transistor Q403. Various items were replaced but the set kept eating line output transistors. The cause of the trouble was C433 ($6.8 \mathrm{nF}, 2 \mathrm{kV}$) in the EW diode-modulator network: it was open-circuit. J.S.R.

Ferguson TX100 Chassis

When the relay chatters the cause is usually failure of the line output transformer or transistor. Not this time. The chattering continued when the HT supply to the line output stage had been disconnected and a 100 W lamp was rigged up as a dummy load. The cause of the fault was in the chopper circuit, on the primary side, where the 12 V supply was low at 10 V . The reservoir capacitor $\mathrm{Cl} 19(22 \mu \mathrm{~F})$ had fallen in value. J.S.R.

Panasonic TX21MD1 (Euro-2 chassis)

This set's picture had very severe yellow smearing to the right of objects, much the same as you would expect from a CRT that's seen better days. The tube was blameless however, the cause of the fault being the VDP3108-25 colour processor chip IC601. S.H.

Sharp DV5105H (Deco-4 chassis)

The set was stuck in standby with a main 5 V supply problem. This supply comes from the emitter of regulator transistor Q753. The associated electrolytics were OK, and a replacement transistor made no difference. I eventually found the cause of the fault in the rectifier circuit that feeds Q753: safety resistor R751 had risen in value from 0.33Ω to about 1Ω. A Sharp expert I subsequently spoke to said
it's a fairly common fault. S.H.

Tatung D Chassis

This set produced a very green picture. The cause was loss of the tube's blue drive. The culprit was the feedback/bias resistor R922 ($100 \mathrm{k} \Omega$) in the blue output stage. R932 and R912 are the corresponding resistors in the green and red output stages. S.H.

Goodmans 2575

After switching on, this set would revert to standby within seconds. There were some strange DC readings around the TDA4601 chopper control chip IC14, so the associated electrolytics were checked. The culprit turned out to be C108. C.H.

Samsung CI6844N (SCT12B chassis)

 I've had two problems with these sets recently. The first one was dead: IC801 (STRS6709) and Q805 (Darlington type TIP102) had to be replaced to bring it back to life. The second set wouldn't power up, with the LED flashing in a strange, yellowish colour. If you get this symptom, check that IC901 is receiving its 5 V supply. If it is, check for oscillation at pins 31 and 32. If there is no oscillation, suspect the 32.768 kHz crystal X 90 l . S.H.
Tatung 190 Chassis

This portable took anything from five minutes to five hours to power up after being switched on. The cause of the problem was one of the start-up resistors in the power supply, R803 (16k Ω). It read correctly out of circuit, but went highresistance under load. S.H.

Samsung Cl3312Z (P58SC chassis)

There was a nasty crackle on the sound. A check at pin 12 (audio output) of the TDA8305 IF/timebase generator chip IC101 revealed that the noise was present here. Several capacitors in this area were checked before the culprits were found C603 and C605 (both 22nF). S.H.

Ferguson TX90 Chassis

There was sound but no picture. All voltages at the CRT were low, including the EHT. Checks in the power supply revealed that the 'boost HT' was about twenty per cent low. When I had replaced the boost line smoothing capacitor C191 ($22 \mu \mathrm{~F}, 160 \mathrm{~V}$) the voltage was almost normal and there was a distorted picture that was modulated
by a hum bar. On close inspection of the PCB in the power supply area I found small cracks around the connections to the switching transistor TR 107. Once these had been repaired the boost voltage could be adjusted. I thought that all was now OK, with a good picture, but when the brightness and contrast controls were advanced there was a ripple effect on the picture and a squeal on the sound. A new boost reservoir capacitor (C189$22 \mu \mathrm{~F}, 50 \mathrm{~V}$) completed the repair. K.E.

Goodmans 2875

There were low-resistance readings in the collector circuit of the line output transistor in this dead set. On closer inspection a dry-joint was seen at C134, where arcing had occurred. This had destroyed the EW modulator diodes D45/47 and the pincushion chip IC18.
Replacement restored normal operation. K.E.

Sony KV2705

There were striations on the lefthand side of the picture. A scope check on the 135 V HT supply showed that a lot of ripple was present. The two $33 \mu \mathrm{~F}$ electrolytics in the power supply proved to be OK, but there's another one (C804) on the scan panel. A replacement cured the fault. M.O.

Sanyo CTP7135 (80P chassis)

A slow ripple modulated the verticals and there was foldover at the top inch of the screen. The cause of both these faults was C322 $(470 \mu \mathrm{~F}$, 100 V), which is the reservoir capacitor for the 45 V output from the chopper power supply. This supply is used by the LA7800 timebase generator chip IC401. M.O.

Alba CTV55

There was an overbright picture. When the setting of the first anode control was reduced, the picture had black bars spaced about an inch apart in the background. The cause of the fault was the reservoir capacitor for the HT supply to the RGB output stages, C437($22 \mu \mathrm{~F}, 250 \mathrm{~V}$). M.O.

Mitsubishi CT2101TX

The standby LED was on. That was all. When the standby switch was pressed the LED went out but there was still nothing. A check on the HT supply showed that it was low at only 37 V . The cause of the fault was traced to C910 and C911,
which are both $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytics. M.O.

Sharp DV5105H (Deco-4 chassis)

The MJF 18004C chopper transistor Q702 was short-circuit, also the TEA1039 chopper control chip IC700 between pin $9(\mathrm{Vcc})$ and chassis - as a result R706 and R710 (both 3.3Ω safety) had blown. When the set was switched on after replacing these four items they went up in a puff of smoke. The cause of the trouble was the chopper transformer T700, which had an internal short. I've had to replace it on previous occasions. C.D.N.

Philips Anubis B Chassis
 There was no teletext operation.

 Heat and freezer applied to the text panel soon revealed the cause, which was the 27 MHz crystal. It had become unstable. A replacement restored the text modes.C.D.N.

Toshiba 1400TB

This set produced a very grainy picture. When I removed the tuner unit and opened it I saw that one of the lecher lines had become corroded, though there was no sign of liquid spillage. Part of the corrosion lay across the air gap between this and another lecher line, which it was touching. Gentle cleaning restored normal operation. C.D.N.

Ferguson IKC2 Chassis

This set would sometimes blow its chopper transistor at switch on. At other times the transistor would last for about fifteen minutes. The culprit was CP29 $(2.2 \mathrm{nF})$, which is in the snubber network. It's a box component, and had a very slightly swollen appearance at one terminal - this could be seen only when the capacitor had been removed. It measured OK when checked with two different capacitance meters. C.D.N.

JVC C1480EK

Stations wandering off tune, or failure to memorize after tuning, is quite a common problem with this model. The station select module, type SBX-M903A, is a small PCB that's covered with surface-mounted components. I find that the cost of a replacement puts most customers in a bad mood! Before you condemn it, note that there are four surfacemounted capacitors of the same type used in camcorders. Replacing all four is usually a successful cure for tuning faults. C.D.N.

PLEASE PHONE US FOR TYPES NOT LISTED AS WE HAVE OVER 50,000 ITEMS IN STOCK. QUOTATIONS GIVEN FOR LARGE QUANTITIES

Please add $£ 1$ P\&P and VAT at $\mathbf{1 7 . 5 \%}$ to all orders
All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted) Prices quoted are subject to availability and may be changed without prior notice

Part	Price	Part	ice	Part	Price														
$2 \mathrm{SC1675}$	90p	2SC226	700p	2 SC 2719	25p	$2 \mathrm{CC3263}$	280p	$25 C 3798$	220p	2SD257	195p	2SD880	40p	2SD1327	15	2SD1763A	P	（312	750p
$2 \mathrm{SC1678}$	80	2SC226	90 p	2SC2721	120p	2SC3264	390p	$25 C 3807$	120p	2SD28	250p	2SD882	25p	2S	${ }^{60 p}$	2SD1764	p	15	70 p
2SC1683	100p	2SC2270	60 p	2SC	pp	2 S		2s							50p			25k320	120p
$2 \mathrm{SC1684}$	30p	2SC2271	25p	2SC2738	pp	${ }^{25 C 3270}$	${ }^{50}$	2 SC 381	${ }^{80 p}$	2 SD 31	${ }^{25 p}$	2 25D8	75p	2SD1	70 p	2 S	110 p	2SK323	130p
$2 \mathrm{SC1685}$	30p		15p	2SC2749	Op	$2 \mathrm{SC327} 1$	5p	$2 \mathrm{SC3831}$	250p	$2 \mathrm{SD31}$	${ }^{75 p}$	$2 \mathrm{2SD} 8$	35p	2 2SD3	65p	2SD17	${ }^{100 p}$	2SK332	175p
${ }^{25 C 1729}$	900 p	$2 \mathrm{SC22}$	50 p	2 S	300 p	$2 \mathrm{2SC3}$	280 p		135p		30p	${ }_{2} \mathbf{2 S D 8 9 5}$	${ }^{100 p}$	2SD1350	$150 p$ 600	${ }^{\text {2SD1776 }}$	70p	25359	
$2 \mathrm{SC1730}$	10 p	25 C 2278	700	2	${ }^{270 p}$	$2 \mathrm{SC3279}$	30 p	${ }^{2 S C} 188351$	250p 100 p	$\begin{aligned} & \text { 2SD330 } \\ & \text { 2SD348 } \end{aligned}$	65 p $\mathbf{3 0 0 p}$ 30	${ }_{\text {2SD896 }}^{\text {2SD88 }}$	225p	2SD1378	600	${ }_{2 S D 1785}$	160p	2SK363	50p
$2 \mathrm{SC1735}$					$75 p$ $300 p$	2SC3280	2000	${ }^{\text {S }}$ C3852	80p	2SD350		2SD900	400 p	2SD1379	100 p	2SD178	Op	2SK364	p^{p}
2SC1740	10p	25	00 p	${ }^{25 C 2767}$	op		200p	$2 \mathrm{LC3852}$		${ }_{25 \mathrm{~S} 357}$	320 p			2501380	100 p				
2SC174	35p	25	40	2SC2769	400p	$2 \mathrm{SC3284}$	600 p	2SC385	220	25	40 p		450 p		$100 p$				p
$2 \mathrm{SC1755}$		25		2SC2773	p	$2 \mathrm{SC3293}$	${ }^{85 p}$	2SC385	220p	2SD358	40 p	2SC916	130p	2SD1382	60p	2SD1802	$75 p$	2SK369	30p
2SC1756	35	$2 \mathrm{SC2307}$	300p	2 Sc 277		$2 \mathrm{CC329}$									p				p
2SC1758	30	25	10 p	2SC278	${ }^{40 p}$	${ }^{25 C 329}$	${ }^{120} \mathrm{p}$	${ }^{25 C 385}$	550 p	2 25D36	100 p	2SD921	320	25D33	350p	2SD1812	45p	2SK	45p
$2 \mathrm{SC1760}$		$2 \mathrm{SC2312}$		$2 \mathrm{SC2786}$	${ }^{20 p}$	25	400p	$2 \mathrm{SC3866}$	275p	250362	100 p	${ }^{25 \mathrm{D} 923}$	360 p	${ }^{25 D 139}$	250p	2SD1815	50p	2SK386	p
$2 \mathrm{SC1775}$	10 p	2SC23	70p	2SC27		2SC33					2			2SD		2 S	P	25K389	5p
$2 \mathrm{SC1781}$	20p	$2 \mathrm{SC2316}$	150p	2SC279	500 p	2 SC 3306	130 p	${ }_{2 \mathrm{c}}^{2 \mathrm{C} 388}$	200 p	${ }_{25 \mathrm{~L}}^{2}$	650 p	2SD9	100	${ }^{2} 5 \mathrm{D} 13$	－800	2SD1843	700	25 K 400	700p
		2SC232						${ }_{\text {2SC3883 }}$	$25 p$	${ }_{\text {2SD382 }}$	75p	${ }_{2 S 5951}^{251}$	200	2SD1397	100p	2SD184			
$2 \mathrm{SC1809}$	${ }^{40}$	2SC232	120	2SC279					2109 2000	2SD386	\％	${ }_{2}$ 25957	520 p	2SD1398		2SD1847			
${ }^{2 S C 1810}$	250p	2SC2328	50	${ }^{25 C 28}$	40 p	${ }^{25 C 331}$	125p		2009 250	2SD3		2SD95	Op	2SD139	300p	2SD184	280p	2SK	500p
${ }^{2 S C 1815}$		2SC23						2 SC 3885 A	290p	2SD389	$60 p$	2SD965	35p	2SD140	280p	2SD185	325p	2SK423	5p
${ }^{2 S C 1819}$	70p	2SC2315	175p						2750			$2 \mathrm{SD970}$	50，	2SD1402	120				
2SC1826	60	$2 \mathrm{SC2329}$	30p	$2 \mathrm{SC28}$	40p	2 C 332	50	$2 \mathrm{2S3}$	275p		14 p	2S897	\％	2SD1				2SK427	\％p
$2 \mathrm{SC1827}$	60 p	2SC2230	300p	2SC282	75p	2SC3327	60p	2SC389	15	2SD40	50	2SD972	40 p	2 2S1	225p	${ }^{2518556}$	40 p	25K430	200p
$2 \mathrm{SC182}$	p	2SC233				$25 C 3328$	50p	2 SC	250p	2SD	20p	2SD973	${ }^{60 p}$	2SD140	p	2SD1857	$75 p$	2SK511	p
${ }^{2 S C 1833}$	${ }^{27 p}$	${ }^{25} \mathrm{~S} 23$	200 p	$2 \mathrm{SC28}$	200 p	2 S	250	2 S	$225 p$ 3250	${ }_{2 S D}^{2 S D}$	45p	2SD97	00	2SD1	60p	2SD1858 2SD1863	45p $\mathbf{3 5 p}$	2SK513	325p
	50p 12 p	${ }_{\text {2SC2335 }}$	85p	${ }_{\text {2SC2832 }}$	300p	${ }_{25 C 3333}$	120p	2Sc389	400 p	2SD424	350p	2SD985	120p	2SD1	125p	2SD186	5p	26	160p
2 SC	50 p	233	25p	$2 \mathrm{SC283}$		2SC33	100p	2SC389	400	2SD4		2SD986	120p	2SD1	170p	2501877	175p	2SK531	350p
$2 \mathrm{SC1845}$	15p	2 SC 2344	150p	2SC283	25	$2 \mathrm{SC33}$	130	2 Sc 39	250 p	D4		2SD9							
2 SC 184		2SC2347	35p	2SC283	40 p	$2 \mathrm{SC3352}$	0p	$2 \mathrm{SC3927}$	250 p	2SD43	${ }^{35 p}$	2SD10	40 p	2SD	75p	25 D	275p	2Sk537	900 p
184	45p	2SC2353	120p	2SC285		2		$2 \mathrm{SC39}$											
2 2C1855	$85 p$	2SC2360	20p	$2 \mathrm{SC2873}$	${ }^{60 p}$	2SC335		2sc39			15	2SD102				250188		2S	1100p
2 SC 1856		$2 \mathrm{SC2361}$	150p	2 SC 2877	120 p	${ }^{25} 5$	p	2 SC 39	${ }^{80}$	2SD4	20	2 SD 102	${ }^{120}{ }^{20}$	2SD1	75p	2SD1	300 p	2SK544	\％p
2 SC 186		2 S			20p	$2 \mathrm{SC3} 3$			1200		50p	${ }_{\text {2SD } 102}$	${ }_{\text {250p }}$	2SD1425		2SD1887	5p	2SK552	\％
$25 C 1870$	700 p	$2 \mathrm{SC2365}$	280	$2 \mathrm{SC28}$	${ }^{3200 p}$	2SC33	300p	$25 C 39$	50 p 600	2SD5	70p	2SD1027	850p	2SD142	165p	2SD18	300p	2SK553	225p
${ }_{2}^{25 C 18}$		2SC2369	25p	－ $\begin{aligned} & \text { 2SC2882 } \\ & \text { 2SC283 }\end{aligned}$	60 p	2Sc3378	120p	2 C 3964	100p	2SD5	18p	2SD1030	75p	2SD1428	180p	2SD1		2S	
2 SCl 8		$2 \mathrm{SC237}$		2SC28		2SC33	1200p	2 SC	25	SD5		2SD 1031	70p	2SD1430	28	2SD1910	175p	2SK566	500p
2 SC 1890	15 p	2 Sc 238	50p	2 SC 289	50p	2SC33	130p	$2 \mathrm{SC3}$	210p	2SD5		2SD103	60	2SD		2SD1		2SK557	
2 SC 18		（23		C290	609	2SC33	80p	2SC39	210p	25	225p	2SD104	200p	2SD143	40	${ }^{251913}$	50 p	$2 \mathrm{~K} \times 59$	p
2 SC 190	125	$2 \mathrm{SC24}$	110p	2SC29	25p	2S		$25 \mathrm{C3} 3$				2 2SD 104					50 p	2SK560	580p
SC1906	15p	2SC2408	120 p	$2 \mathrm{SC29}$	${ }^{80}{ }^{\text {p }}$	2sc33	20 p	2SC39	S00			25 D 1	130			2501930	50 p	2SK566	5p
$2 \mathrm{SC190}$		C2412		$2 \mathrm{SC2912}$					1250p								65 p	K606	p
SC19		2SC24				$2 \mathrm{SC34}$	$35 p$	25 C 39	800 p	2 L	50p	${ }^{\text {2SD1060 }}$	130 p 150 p	2SD144	220p	2SD1941		K612	p
$\begin{aligned} & \text { 2SC1913 } \\ & \text { 2SC1914 } \end{aligned}$	$90 p$ $30 p$	${ }_{2 S C 245}^{2 S}$	10p	${ }_{2 S C}^{2 S C}$	$480 p$ $75 p$	${ }^{2 \mathrm{SC}}$	50p	${ }_{2 S C 4}^{25 C 4}$	$100 p$ 150	2 S	530p	2 SD	20	2SD	200 p	2SD1944	50 p	${ }^{25 \times 684}$	p
$2 \mathrm{SC1921}$	15p	2SC2	55p	2SC29	50p	$2 \mathrm{SC34}$	130p	$2 \mathrm{SC4023}$	325p	2SD592	25p	2SD1064	250p	2SD144	\％	2SD19	${ }^{80 p}$	2SK685	1150p
2SC 1922	175p	2SC2486	275	2SC29		$2 \mathrm{SC3409}$		S	350 p	5996	25p	2SD1065	180p	2SD145	\％	2SD1959	20p	2SK699	100p
2 SC 1923	10p	2SC2492	50p	2SC2934	75p	$2 \mathrm{SC3416}$	30p	2SC40	$45 p$	2SD	30p	2SD1069	15	2SD1	200p	2SD1	50 p	2SK	300p
2 SC 1929		2SC24		2SC2937	50p	$2 \mathrm{SC3417}$	p	2SC40	p	2 SD	40p	2SD107	35	2 SD 1	27	2SD19	60 p	2S	500p
2SC1940	110 p	2SC24	120	2SC2939		C34		$2 \mathrm{SC4}$				2SD	150 p	2SD	pp	2 SD 1	50 p	2 Sk	55
2SC 1941	27p	2SC248	20 p	2 SC 29	30	2 S		2SC40	40	2 LD		2SD1		${ }_{2 S D}^{2 S D}$	250p	2SD1996		2SK726	425p
$2 \mathrm{SC1942}$	350p	24	200	2SC29		2	45 p	25			300p	2SD1	20 p	2SD14	50p		$75 p$	2SK	475p
$2 \mathrm{SC19}$	350	$2 \mathrm{SC24}$	185	C29	800	2Sc34		${ }_{\text {2SC4107 }}^{2 S 4106}$	175p	${ }^{2 S 5613}$	70 p	2SD1113	225p	2SD1459	60p	2SD2010			
2SC1945	350p	2SC2485	400	2SC297	160p	$2 \mathrm{SC34}$	$65 p$		175p		${ }_{10 \mathrm{p}}$	2SD1128	200p	${ }_{2 S D 1468}$	40 p	2SD2011		Sk	
2SC1946	1500p	2SC249	200	2sc298	250	2 SC 34	65p 50p	${ }_{2}$	230p		${ }^{15 p}$	2 LD		2s	225 p	2SD2012	50 p	Sk	Op
${ }^{2 S C 1953}$	45p	C250				25		${ }_{\text {2SC4137 }}$	275p	2SD639	p	2SD1138	40 p	2SD149	300 p	2SD2033	p	2SK	
2 SC 1957	70 p	2SC250	140p	${ }_{2 S C}^{2 S C} 29$	${ }_{\text {1400p }}$		200p		200	2 S	350p		p	2SD149	230 p	2SD2063			
195		${ }_{\text {2SC2503 }}$		${ }^{\text {2SCC3001 }}$	${ }^{320 p}$	${ }_{2 S C 3459}$	180	$2 \mathrm{SC4157}$	400 p	2SD655	18p	2SD1142	350p	2SD1497	350p		50p		
$2 \mathrm{SC19}$	1300p	$2 \mathrm{SC2517}$	120			2SC34		$2 \mathrm{SC4159}$	100	2SD66	60 p	2SD1145	25p	2SD1505	90p	2SD21	180p	${ }_{2 S k} \mathbf{2} 973$	
$2 \mathrm{SC196}$	160p	2 SC 2519		2SC3022	1850p	$2 \mathrm{SC34}$	275p	2SC416	125p	2SD	25p	2SD1	5p	2 2S1	50 p	${ }^{\text {2SD2 }}$	85p		315p
2SC1970	100p	$2 \mathrm{SC2527}$	300p	2SC3025	500p	2SC34	225p	2SC416	${ }^{60}$	2SD	20 p	2sD1	30p	25 D 1	60 p		35p	96	
	400	2SC25	15	C302	450	硡	70 p	${ }^{25 C 419}$		研	5p	$2 \mathrm{SD11}$	65p	25 D 15	100 p	2 2SD2	175		850 p
2SC1972	600 p	2SC2535	300p	2 SC 30	$300 p$	cas	${ }^{300}{ }^{\text {p }}$	2 SC 4		${ }^{2 S 0}$		2SD11	150	2SD	75p	${ }^{2 S D 2255}$	175p $250 p$		
2SC1973	150	${ }^{2 S C 2538}$	100p	${ }^{2 S C 30}$	125	2 SC 34	$275 p$ 2750	$2 \mathrm{2S}$	250p	2S	${ }_{180 p}^{250 p}$		220p	2SD1	p	2SD233	250p	${ }^{25 K}$	325p
${ }_{2}^{2 S C 19}$	$120 p$ $30 p$	2SC2540	${ }_{3} 19$	${ }_{2 S C 30}^{2 S C 303}$	125p	${ }_{2}{ }^{\text {SC3535}}$	50p	${ }_{2 S C 4235}$	45	${ }_{2 S D 718}^{2 S}$	85 p	2SD1168	270p	2SD1525	450p	$2 \mathrm{SD23}$	225p	${ }_{2} \mathrm{Sk} 8$	550 p
2 SC 1983	75p	2 SC 2545	55p	2SC3040	280	$2 \mathrm{SC3503}$	P	2SC423		2SD7	24	2SD1169		2SD15	p	${ }^{25} 548$	${ }_{7} \mathbf{4 2 5 p}$	2SK872	650 p
2SC1984	150p	2SC2546	25p	2SC3042	300p	2SC350	120p	2SC4242	120 p	2 SD 27	2000	2SD11	3509	2SD15		${ }^{25156}$	00p	25K875	475p
2 SC 19	100	2SC25	65	25 C 30	30 p	${ }^{2} \mathrm{SC} 3505$	240p	${ }^{25 C 4278}$	1750	${ }^{25 D 726}$	275	2SD11	${ }_{400 p}^{280 p}$	2 2SD1	275p		${ }^{80 \mathrm{p}}$	2SK903	500p
$2 \mathrm{SC1986}$	$100 p$	2SC2550	50 p	2SC305	150p	$2 \mathrm{SC35}$	250p	$2 \mathrm{SC4}$	650 p	25	250p	2SD1					320p	25K	00p
$2 \mathrm{SC2001}$	15p	2SC2551	70 p	${ }^{25 C 30}$	${ }^{60 p}$	${ }^{25 C 350}$	${ }^{650 p}$			2 2SD	250p	2SD1	120p	2SD1	170p	${ }_{2 S}$ S779	225p	2SK951	275p
2 SC	15	2SC255	30p	Sc30	5p	${ }_{2 S C 35}^{2 S C 35}$			225 p	2SD74	120 p	2SD1192	90 p	2SD155	150p	2SJ103	75p	2SK9	7p
${ }_{2} \mathrm{SC2003}$	${ }_{20 p}^{20 p}$	${ }^{2 S} 25$	20p	${ }^{2 \mathrm{LSC3}} \mathbf{2}$	25p	2 SC 35	120p	${ }_{2 S C 431}$	6000	2SD74	130 p	${ }^{\text {SSD1196 }}$	150p	2SD155	225p	2SJ109	200p	2SK955	450p
${ }_{2 S C 202}^{25}$	110 p	${ }_{2 S}{ }^{\text {SC2562 }}$	90p	2 SC 3074		2SC3519		25C438	150p	2SD75	120p	2SD119	150p	2SD15	75	2 S	1050p	2SK	400p
$2 \mathrm{SC202}$	$180 p$		200p	$2 \mathrm{SC30}$		2 C 3526	45p	$2 \mathrm{CC4382}$	200p	2SD760	70 p	2SD1198	60 p	2SD15	170 p	2 SJ 114	1150 p	2SK96	700p
$2 \mathrm{SC202}$	30p	2SC2568	120p	${ }^{2 S C 30}$	${ }^{120} \mathrm{p}$	2 SC 35	750	2SC	2755	2 S	100	$2 \mathrm{SD120}$	${ }_{280 \mathrm{p}}^{480}$	2 SD	${ }_{200}^{1000}$	${ }^{2 \mathrm{SJJ116}}$		2SK1	p
$2 \mathrm{SC2027}$	p	${ }^{2 S C 2570}$	30 p	$25 C 3086$	150p	${ }^{25 C 3531}$	225	2 SC	4250 50 50	${ }_{2 S}$	140p 180 p	2SD1	$280 p$ 1200	2SD	150p	${ }_{2 S J 1}^{2 S J 1}$		2SK1036	450p
${ }_{2}^{2 S}$	50 p 500	${ }^{2 S C 257}$	350p	${ }_{2 \mathrm{LSC3}}^{2 \mathrm{SC3}}$	\％	2SC3549	$200 p$ $270 p$	${ }_{\text {2SC4403 }}$	509 2750	${ }_{\text {2SD772 }}$	200p	${ }_{2 S D 1213}$	2200	${ }_{2}$ 2SD157	250p	${ }_{\text {2SJ }} 162$	680p	2 SK 1057	p
$2 \mathrm{SC2053}$	p	2sc2578	170p	$2 \mathrm{SC3112}$	35p	2SC3568	200	${ }^{2 S C 443}$	\％	2SD	\％	2SD12	75 p	${ }^{2 S D 15}$	p	2 S	${ }^{200 p}$	2SK105	p
2SC2055	150p	2SC2579	$110 p$		40 p	${ }^{25} 53577$	2750	${ }^{2 \mathrm{SC} 4466}$	325 p	${ }_{2}^{25 D 77}$	30p	${ }^{25 \mathrm{~S} 122}$	75p	2 SD	100 p	${ }_{2 S}^{2 S}$	1509 6250		450p
$2 \mathrm{SC205}$	20p	2SC2580	175p	$2 \mathrm{SC3116}$	75	2 SC	200 p	${ }_{2 S}^{2 S}$	$175 p$ $250 p$	${ }_{\text {2SD784 }}^{2 S D 77}$	600p	${ }_{2 S D} 1227$	40p	2SD159	310 p	2SJ307	175p		
2SC2060 2SC2061	40p	${ }_{2}$ 2SC2	225p	2 C	120p	${ }_{2 S}$	220p	${ }_{2 S C 4517}^{2 S 448}$	200p	${ }^{2 S D 786}$	${ }^{100 p}$	2SD 122	$250{ }^{\text {2 }}$	2SD1593	$125 p$	2SK19	$45 p$	2Sk	250p
2 SC 2068	60p	2 2SC2590	40 p	$2 \mathrm{SC3148}$	${ }^{145 p}$	2 SC 3597	75p	${ }^{2 S C 4517 A}$	225p	${ }^{2515787}$	${ }^{20 p}$	${ }^{25 D 1237}$	300p	$2 \mathrm{2SD15}$	70 p	2SK33	40 p	2 Kk	225p
2 SC 2071	140p	2SC2591	50p	$2 \mathrm{SC3149}$	$180 p$	$2 \mathrm{SC3}$	140p	${ }^{2 S C 4531}$	450p	2SD788	30p	2SD 1238 2 SD 1244 1	$300 p$ 250	${ }^{2 S D 16}$	${ }^{210 p}$	2SK	50p 1000	2SK1120	$550 p$
C 2073	40 p	${ }^{25 C 2592}$	200	$2 \mathrm{SC3150}$	100 p 1750	${ }_{2 S}^{2 S}$	$175 p$ 1000	${ }_{2}^{2 S C 454}$	10009 400 p	${ }^{\text {2SD78 }}$	200p	2SD12	25p	${ }^{2 S D 16}$	320p		100 p	2Sk1190	350p
SC2075	${ }_{95 p}^{60 p}$	le $\begin{aligned} & \text { 2SC2603 } \\ & \text { 2S2610 }\end{aligned}$	109 $60 p$	${ }_{\text {2SC3151 }}$	$175 p$ $130 p$	${ }^{\text {2SC3606 }}$	10	2SC4742	400p	${ }_{\text {2SD794 }}$	33p	${ }^{2 S D 1247}$	40 p	2SD163	50p	2Sk73	75p	2SK119	$800 p$
C2085	$100 p$	$2 \mathrm{SC2611}$	30p	$2 \mathrm{SC3153}$	$175 p$	2SC3608	$65 p$	2SC474	350p	2SD795	$140 p$	${ }^{25 D 1251}$	${ }^{1800}$	2SD1647	40 p	2S5	200 p	2SK121	7009
2SC2086	p	$2 \mathrm{SC2621}$	p	$2 \mathrm{SC3156}$	350p	${ }^{25 C 3616}$	45p	$2 \mathrm{SC4745}$	550 5	${ }^{2515798}$	175p	2 2D1254	55 p	2SD16	260	2 SK	40 p	2Sk	200p
2SC2092	100p	2SC2625	190p	$2 \mathrm{SC3157}$	2009	${ }^{2 S C 3636}$	${ }^{280 p}$	$25 C 4747$	$375 p$	2SD799	150p	2 25D1263	95	2SD165	${ }^{150 p}$	2Sk10	40p	SK127	275p
$2 \mathrm{SC2094}$	1200p	2SC2626	s00p	$2 \mathrm{SC3158}$	260p	$2 \mathrm{SC3642}$	225p	$25 C 4757$	200p	${ }^{25 D 809}$	$45 p$	${ }^{25 D 1264}$	55p	2SD16	${ }^{150 p}$	$2 \mathrm{2S}$	${ }^{150 p}$	2Sk129	Op
2SC2097	2300p	$2 \mathrm{SC2630}$	1800p	$2 \mathrm{SC3159}$	200p	${ }^{2 \mathrm{SC} 3655}$	400p	$2 \mathrm{SC4762}$	300p	${ }^{2 \mathrm{LSD81}}$	450 p 300 p	${ }^{2 S D 1265}$	759 1800	${ }^{\text {2SDD }}$ 2S 16	250p 350 p	${ }_{2 \mathrm{l}}^{2 \mathrm{SK}}$	${ }_{50}^{50 p}$	2SK1299	50p
2SC2099	2500p	2SC2639	20 p	25 C3164	${ }^{270} \mathrm{p}$	${ }^{25} \mathbf{5} 3659$	600 p	${ }^{25 C 4769}$	220p	2SD819 2SD820	300 p 250 p	2SD126 2SD 126	$180 p$ 550	$2 \mathrm{2S}$	350 $50 p$	2SK	50p 1000	2Sk1	900p
2SC2118	1100p	2 2S2632	$35 p$	${ }^{25 C 3169}$	150 p	${ }^{25 C 3668}$	${ }_{\text {100 }} 120 \mathrm{p}$	${ }^{\text {2SC4770 }}$		2SD820	$250 p$ $550 p$	${ }^{\text {2SD } 1267}$	55p	2SD1667	50p	2SK125 2SK 133	${ }_{650}$	2SK133	50p
${ }_{\text {2SC2 }}{ }_{\text {2SC2122 }}$	10 p 300 p	${ }^{25} 2{ }^{2 S C 2634}$	10p	2SC3170 2Sc3173	300 p 180 p	2SC3675 2Sc3678	100 p $\mathbf{2 8 0}$	2SC4882	$225 p$ 700	${ }_{2 S 8822}^{2 S 827}$	290p	${ }^{2 S D 1271}$	225p	${ }^{2 S D 1668}$	90p	${ }^{25 K 147}$	160 p	2SK134	500p
2SC2131	550p	2SC2637	120 p	2SC3175	150p	2SC3679	140p	2SC4891	воор	2SD826	30 p	2SD1272	200p	2SD166	85p	2SK152	40p	2SK1342	500 p
$2 \mathrm{SC2} 14$	\％	2 SC 2640	1800p	$2 \mathrm{SC3178}$	125p	$2 \mathrm{SC3680}$	3800	2 SC 4923	${ }^{400}$	${ }^{250829}$	375	${ }^{25 D 1273}$	50 p	${ }^{2515167}$	\％p	25 K	30 p	2SK1350	200p
$2 \mathrm{SC2153}$	40 p	2SC2653	$100 p$	${ }_{2 S C 3179}$	700	${ }^{25 C 3685}$	450 p	${ }^{25 C 4924}$	250 p	2SD836	50 p	2SD1274	${ }_{50}^{80 p}$	2SD16	225p	2SK	40 p	2SK1356	225p
$2 \mathrm{SC2166}$	80p	2SC2654	180 p	$2 \mathrm{SC3180}$	$175 p$	${ }^{25 C 3687}$	${ }^{300 p}$	2SC4927	500p 300 p	${ }^{2508364}$	50p 550							2SK135	350p
2SC2168	120p	$2 \mathrm{SC2655}$	50p	2SC3181	200p	2SC3688	550 p	2SC5002	300p	${ }^{250837}$	55p	${ }_{2 S D 1276}^{25072}$	60p	$2 \mathrm{2SD16}$	70p 3250	2SK	p	2SK135	400p
$2 \mathrm{SC2188}$	70p	2SC2656	$550 p$	$2 \mathrm{SC3182}$	${ }^{120}$	${ }^{25 C 3692}$	150 p	2SC5003 2SC5027	350 p 100 p	${ }^{2515838}$	500p 110 p		1909 $600 p$	${ }^{\text {2SD170 }}$	43009	${ }_{2} \mathbf{2 S K 1 9 2}$	$35 p$ $45 p$	2SK137	50p
2SC2200 2Sc2209	$250 p$ $50 p$	${ }_{\text {2SC2660 }}$	100p	2SC3198	$30 p$ $40 p$	${ }^{2 S} \mathbf{2 S C 3 7 1 5}$	480 p 120 p	${ }_{\text {2SC5048 }}$	$100 p$ $300 p$	${ }_{\text {2SD8844 }}$	200p	${ }_{2 S D 1288}^{2501279}$	${ }^{\text {175p }}$	2SD170	375p	2SK193	40 p	2SK1400	50p
C2216	50p	${ }_{\text {2SC2668 }}$	10 p	${ }_{2 S C 3202}$	$25 p$	2SC3729	450 p	2 SC 5044	250p	2SD850	170p	2SD1289	250p	2SD1710	2009	25K195	150p	2SK1404	290p
2SC2221	6509	${ }_{2 S C 2671}$	00p	2SC3209	1200	2SC3746	100p	2SC508	250p	2 25856	48p	2SD1291	280	${ }^{2 S D 1718}$	275	${ }_{\text {2SK197 }}$	1400	2SK1461	220p
2 SC2228A	60p	2 SC 2681	170p	2SC3210	550p	$2 \mathrm{SC3747}$	120p	2SC5129	300p	${ }^{2518558}$	${ }^{250 p}$	$2 \mathrm{SD1292}$	${ }_{70} 6$						
$2 \mathrm{SC2229}$	15p	2SC26	70p	2SC321	220p	2SC3748	100p	2SC5148	300p	${ }^{25 D 863}$	230	2SD1293 2SD1297	$70 p$ 3000	${ }_{\text {2SD }}^{2 \text { 2S } 1730}$	$275 p$ 250	2SK214 2SK216	$170 p$ $200 p$	2SK1487 2Sk1507	3009
${ }_{2 S}^{2 S C 2230}$	80p 1000	${ }_{\text {2SC2688 }}$	${ }_{\text {cop }} \mathbf{2 7}$	${ }_{\text {2SC3212 }}$	260 p 50 p	${ }_{2 \mathrm{LC} 37}^{2 \mathrm{SC3}}$	250p	2SC5149 2SC5250	300 p 300 p	${ }_{2 S D 86}^{25086}$	200p	${ }_{2 S D 1302}$	30pp	${ }_{2 S D 173}$	1880	25k223	50p	2SK1529	300p $700 p$
2235	60p	2SC2694	3500 p	2SC3242	30p	$2 \mathrm{SC3782}$	$75 p$	2SD188	$350 p$	2 25886	140p	2SD1306	45p	${ }^{2 S D 174}$	125	2 Sk 2	40 p	2SK15	400 p
2SC2236	20p	2SC2705	${ }^{0}$	2SC3244	45p	2SC3783	300p	2SD198	140p	2 20867	350	2SD1308	$80 p$	${ }^{2 S D 174}$	${ }^{909}$	2Sk24	30p	2SK154	Op
${ }^{25 C 2237}$	540 p	${ }^{25 C 2706}$	250p	${ }^{2 S C 3246}$	500	${ }^{25 C 3787}$	100p	2SD199	195p		$260 p$ 150	2SD1309		${ }^{2 S 5175}$		2SK2		2SK17	275p
${ }_{2} 2 \mathrm{SC2238}$	5 p			2SC3259 $2 \mathrm{SC3260}$	$350 p$ 2200	2SC3788 2Sc3789	609 $75 p$	2SD200	180 p 260	2SD869	$150 p$ $140 p$	2SD1310	140p	2SD1758 2SD1760	$80 p$	2SK301	25p	2SK2038	295p
$2 \mathrm{SC2240}$	15p	2 SC 2	20 p	${ }_{2} 25$	$220 p$	${ }^{25 C 3790}$	120 p	${ }^{2 S D 213}$	250p	$2 \mathrm{LS871}$	280p	2SD1313	1000p	2SD1761	60 p	2SK303	40p	2Sk2039	750p
C2259		25C2714		${ }_{2 S C 3262}$	2800	${ }_{2 S C 3795}$	140 p	2SD234	硡	析		D1	20	2SD1762	50	2SK304	25p	2SK2134	225p

REPLACEMENT VIDEO HEADS

Pdel Price	Model Price	odel	Model Price	ode
	VHSAN3 ${ }^{\text {a }}$	HRD750, HRD830, HRD860 1900p		
VS:05, 112, 115, 116, 120, 125, 126, 201 202, 205, 220, 240, 244, 245, 247, 248				
	VHSEY1. VHSEY2	HRDP910, FV14T, FV57HGRC1, GRC2, VV41BR9060, HRD $330,337,440,441,637,641$,		
			N911A, 914C, 915A, 916A, 917, 9110,9120	7810,8000 SP, 8801 SP, VHRD 4400,4410, 4500,4600,
	130			200
	נ3.			R53
$765,766,767,768,865,867$,				VHR16, 235, 335E, $4150,4160,4350$, $7250,7260,8250$ $1950 p$ VTC 3000 1400 p SHAP
	VHS			
	DIG			SHA
	VS410, 415, 435, 450, 456, 460, 500, 505,			VC390, VC393, VC496VC488
2, 1	Sel		N9052, N9530, DX	
			PVC2300, 2400, 740, 744, 760	
	SE5100, 6100, 6110, 9100 TVR 4500, 4510, 5510, VS $400,440,4$			VC200, 220, 300, 381, 383, 384, 385, 386,
	VS5180, VS6 190 , 700, 900, 901, 902			
			VH3, VH555, VH600, VH700, VH844,	
				${ }^{\text {VC }} 108.08 .208,382,402,405,408,500,550 \mathrm{p}$
				571, 573, 581, 582, 583, VC5W20E, 600,
	MVS550, 620, VS550, 620, 630, 640,			
				700, 772, 7810, 782, 7822, VC783, 8481, 8581, VCA 10, 100, 102, 103, 1031, 103, 104, 105, 106.
				211, 234, 244, 254, 255, 30, 35, VCA40. VCB311N, 320, VCD801, 802, VCM73, VCT212,310, 410, VCT510, 72, VCT1314.
	6690			
	MVS710, 720, 910, SE7120, 9120, VS710, 716, 720, 800, 810, 910, 920, VS922, 9291,GV210, 211, 220, 2292, MV2 105, 2115, SE2120 1700p			
			VR6760 VR6761, VR6762, VR63SE7	
100EDG H00EM. 110, VSX400 12				
		MITSUBISHI		
	HINARI			
3450			20DV1, 20DV2, 20RW7, 21DV1, 21DV2, 21DV3, 2SB01, 02, 11, 12, 30DV2, 31DVI,	
		HS307 $\mathbf{1 9 0 0 p}$ HS319 $\mathbf{1 9 0 0}$ HS330 $\mathbf{1 9 0 0}$ $H S 300$ $\mathbf{2 0 0 0}$		
				VFH815 ${ }^{\text {2800p }}$
VSG20, 204, 204, 205, 206, 20, 21, 21				VCH82, VCH81, VFH815 ${ }_{\text {VCHO }}$
	HITACHI VT11, 14, 15, 16, 30, 33, 34, 330, 340, 503,	,		VCA33, VCA36, VCA43, VCA44, VCA46.
SG415. VSG415EA, VSG425 2			3219, 322, 3229, 323, 501, 6180, 6182, $6185,6290,6291$, VR6293, 6362,6367,	VCA550
		HSE10, HSE 11, HSE20, HSE21, HSE41, HSB 10 HSB20		SONYDSR-19R FOR SL-T $9 M E$ DSR-21 R FOR SLC 8-C9 $3100 p$$2600 p$ SLF1E2 PIN, SLC24PS, 33E, 34, 44PS
$\begin{aligned} & \text { LBA } \\ & \hline \text { R3 } \end{aligned}$	$125,128,220,225,400,405$. VT $410,413,414,415,416,418,510,515$ $517518,520,525,526$	HS300, HS3801, HS 302, HS310, 1500p	VR601 1800p 49S86, VR66548, VR6648, 2750p	
TV10 CR7000, $7800,8000,8800$	VTM625, 626, 725, 210, 211, 275, 726, 727, 728, 820, 821, 825, 920,			SLF11, 30PF, 35, 60PS, SLK85,
			SAISHO VR100, 605, 705, 805, 905, 1000,1100 , 1200,1600 VR3650X 1200 VR3300X, VR3600X VR3650X VR3800	DSR-43R FOR SLC7 RANGE, SL5000, SL5100 SL3000 1 PIN SLC6E SL36ES
	VT 4000 , VT 4200, VT 5000 , VT $55000,{ }^{\text {V }}$			
TVR1		HS811, HSB2) ${ }^{16}$		
	$V 777,680,6500,6700,6800,7000,8000$, 8030, 8040, 8100, 8300, 8500	HSB52, HSE50, 52G, HSM $36,50,54$,		SL3000, SL8000, SL8080, SLC5E, SLT7ME
			VR2000, VR3300, VR3600 1400p VR2500 VRS5000 2650p VR 6000 A	
				SLV201, SLV202 $\mathbf{1 5 0 0 p}$ SLK95, SLT50ME $\mathbf{2 9 0 0}$
	VT8,9, 56, 57, 570, 575, 576, 580, 585,			
			Salora	
4. VCR8704, VCR8		HSM 40HSM59, HSM68E	SV7300, SVB200, SV8300, 1500,	
	VT438, 535, 536, VTL30, 301, VTM 630,	2010, 3000, 7000, 7200.7500, NV7800,	SV7400, SV8400 $\begin{array}{l}\text { 1800p } \\ \text { SV8100 }\end{array}$ 12000	SLV353UB ${ }^{\text {CCOF340 }}$ CCDF500E, CCDVGOE ${ }^{21000}$
	VT52, VT60, VT61E, VT62E, VT63, VT64. VT640 850p		SV900, SV9900 3450p SV601, SV611, SV69 SV SV80, SV810 1500 p SV6700, SV8710, SV8750 $\mathbf{2 8 0 0 p}$ SV00p	
		NATIONAL PANASONIC		
				${ }^{\text {SLVV335 }}$ SLV210, SLV212, SLV270, SLV273, ${ }^{1}$
	20, 622, 720, 722, ${ }_{13}$			
FVHP7 $21,722,730,830,905,906,907$				SLV285, ${ }^{\text {SLVV300 }}$ (125, 213, 225, 252, 255, 262, 280 ${ }^{\text {950p }}$
		${ }_{\text {AG6840 }}^{\text {NV100, }} \mathrm{NV} 200 . \mathrm{NV} 370, \mathrm{NV} 380 . \quad \mathbf{2 0 0 0}$		
	VTT570, VT575, VT580, VT585, VT588		$\begin{array}{ll}\text { S23N } \\ \text { SV8600, } \\ \text { SV8700 } & \\ \text { SV8420 }\end{array}$	SLV363, SL̇V416, SLVX50,
	VT540, 545, 546, 548, VTD660, 665, VTM, 545, 546, 548,	NV630NVD80,NVH65$\mathbf{6 7 5 p}$ $\mathbf{2 6 0 0}$		SLV $\times 75$, SLVX90, SLVX95 ${ }^{\text {S0000 }}$
			$\begin{array}{ll}\text { SV8820 } \\ \text { SV8620 } & \\ \text { S } & \text { 2400p } \\ \text { 2100p }\end{array}$	
		AG5150, AG5250 NVF65, NVH75, NVH77	SV99300 SV8830	SLV282, SLVX30, SLVX35 2025p
5100 , FVHD720 110		NVF51	SV	SLVE90 ${ }^{\text {a }}$
FVHP98				
	865	NV J30, NVHJ33, NVL 10, 20, NVL21, NVG30, 31, 40, 130, NVJ37, 40, 42,	8500	SLV6 15, SLV625, SLVE600, SLVE700, SLVEB00 $\mathbf{3 4 5 0 p}$
	VTF780, VTF785 $\mathbf{2 0 0 0 p}$ VTF 180, VTF185, VTF280 $\mathbf{4 8 0 0}$ VTF350, VTF351 VTM220. VTM220E, VTM220UK $\mathbf{5 1 5 0}$ VTS3000 VTM $\mathbf{5 1 5 0 p}$			
			SV8500 SV $\times 301$, VB900, 910, VVT510, VT320.	
		NVM 1. NVM3 NVM5 AG2100 AG2200 $\mathbf{4 2 0 0 p}$ N00p	${ }^{56}$	$V 9680$ $V 8600, V 8650, ~ V 8700$ $3400 p$ $V 21, V 31, V 32, V 33, V 50, V 59, V 52, V 53$,
		NV430, NV431, NV433, NVSD2, NVSD	V8, ${ }^{\text {V }}$	
,		NVSD25, NSVO3 ${ }^{\text {NV730 }}$ NV730F NV770		
	J.V.C. \& FERGUSON HR2200, 3300, 3320, 3330, 3350, 3360.	$\stackrel{4}{4} \mathrm{H}$	$900,910$. SVX319, VB770, V1710, 730, 731, 735.	V71, v73, V74, V75, v77, v80, v81, V82,
	$3660,3750,3860,4100$ $3292,8900,8901,8902,8903,8906,8922$.			
		$\begin{array}{ll}\text { NV21HO, NV 180, NVD48 } \\ \text { NV7881, } & \text { 1700p } \\ \text { 1700p }\end{array}$	750, 751,770, VB750, VK8220, V×750, VX7330, VK770, VK8225, VR 1730,1735,	V88 DV90. 96. 97, NM 3 , V. $08,109,1050 p$
	8928, 3V01, 3V06, 3V22 HR3660, $7600,7610,7650,7700$, HRD110.			DV90, 96, 97, NM3, V108, 109, 199, 200, 202, 205, 207, 209, 80,
	111, 120, 121, 220, 225, HRS $100,8904,8923,8924,8925,8929$,	(ll	XR20 V11560, VN $1560, ~ V N 1561, ~ V \times 1530, ~$	
	HRS 100, 8904, 8923, 8924, 8925, 8929, 8935, 8941, 8943, 8944,			V880MS
	3V39, 3 4 49 l	N9, 7000 PX , NVSD20EE,		
	ER1600, HRD $140,141,142,143,150,152$. 156, 157, 158, 160, 5101			
			$321,326,336$$\mathrm{~S} 1230,1240, \mathrm{SV} \times 600, \mathrm{~S} \times 1230,1231$.	V300G, V301, V305, V306. 2900p
	HRS $10,8947,8948,3 V 42,3 V 44,3 V 45$, $3 \mathrm{~V} 46,3 \mathrm{~V} 47,3 \mathrm{~V} 52,3 \mathrm{~V} 54$, 3V55, 3V56, 3V57	$\begin{array}{ll}\text { 450, } 465 & \\ \text { NVG78 } \\ \text { VG72, }\end{array}$		
			1260, 1261, 7120, 7121, 7220, SX7221.	
V ¢ $4320,4321,4325,4326$, $\mathbf{9 0 0}_{\mathbf{p}}$	3vs	NVD48 120	7230, 730	
				V609, V610v610B, v6 10Uk, v611, ${ }^{\text {a }}$
				A
1500p				TEL: 0181-900 2329
		AG7330, AG7350, AG7355, AG7450		

ALL TV \& VIDEO PARTS SOLD ARE REPLACEMENT PARTS

VCR BELT KITS

Model	Price	Model Price	Mode
AKAI VP7100, VS9300, VS9500, VS9700, VS9800		TX3650, VCR3000, VCR3002. VCR9500	406, 407, 4092, 410, GV411, 412, 414, 415, $416,417,4192,4200,420,430,434,435$, GV437, 440, 450, 4592, 460, 464, 470, 500. 501, 5050, 5095, GV5 105, 511, 530, 5395, 540, 560, 5695, MV4005, 4105, SE4100, 4104, $4120,5102$. 5104, 5106 , TVR37001 VXL2 VXL7, VXL8, VKL9, VXL10, VXL11, VXL19, VXL90, VCR34, VTV 100, 200 VXL4, VXL35, VTV300 VXL5, VXL6 VXL3, VXL20 hitachi $V T 11,14,16,17,19,33,330,34,35,350,38$, 39, $88,165,5030$ VT5000, VT5500, VT 18 VT7000, VT8000, VT8030, VT8040, VT8300, VT8500, 8700 VT680, VT6500, VT6800, VT9300, VT9500, VT9700, 9900 VT52, VT57, VT61, VT62, VT63, 64, 65, 85, 86, 64 VT $100,110,119,113,115,118,120,125,128$, \$30, 135, 138, VT145, 150, 168, i70, 175, 220, 225, 250, 255, 258, 260, VTL30 60p 90 p J.V.C. HR3300, HR3330, HR3360, HR3660, HR4 100 HR7200, HA7300 HR7350, HR7600, HR7610, HR7650, HR7655 HR7700 HRD170, 171, 180, 210, 21 1, 217, 230, 300, 320, 321, 330, 337, HRD350, 370, 400, 430. $440,441,500,530,700,750.950$, HRS $5000,5500,8000,9000$, BR9060, BRS600, 605, 920, 925 HRD227, 520, 52 1, 522, 527, 600, 610, 620, 637, 647, 650,830 , HRO840, HROX20, 22, HRJ200, 205, 300, 305, SR330, HRS 10 HRD840, 550, 560, 580, 590, 640, 660, 670 , $720,730,740,770$, HRD820, $860,870,880$ 910, 960, 980, HRDX20, 25, HRJ2 10, HR. $215,315,3: 6,318,400,405,407,410$, 411, 415, 416, 507, HRJ6 10, 615, 715, 97, HRS4700, 5800, SR3200, SRS 368 E MATSUI $V \times 600,730,735,750,755,765,350,6000$, VS888
		FISHER	
v		$\begin{array}{ll}\text { VBS7000 } \\ \text { VBS9000 } & \\ \text { 245p }\end{array}$	
VSK9,		FVHP520. FVHP530, FVHP420 60p FVHP615, 618, 620, 622, 710, 711, 715, 720,	
155, 165, 205, 220, VS $24,240,244,245,247$, 248, 250, 512,515,			
		$721,722,725,730,$	
VS22, VS23, VS25, VS 35 , VS37, VS38, VS		行, 906, 907, 908, 910, 911, 915, 916.	
VS55,			
VS4, VS6, VS8		V8R330, VBS 7500, VBS7600	
SA77	${ }^{120}{ }^{\text {p }}$	VBS9900	
VS	5p	BS	
AL		FVVO140, FVHD40, FVHO55, FVHP1, FVHP10	
vc		FVHD230, 250, 270, 370, FVHP1100, 1200,	
VCR161, VCR22	100 p	1250, 130, 132,	
VCR 3000 X VCR4000,	75p	FVHP 1340, 1400, 1410, 1440, 1500, 2000, 200,$210,250,3,300,$	
VCR7000, VCR7800, VCR8000,VCR			
VTV10	105	310, 320, 2000, 410, 420, 430, 440, 445, 470, 85	
AMSTR		P5000, 5005, 5050, 5075, 5100, 975, 980,	
TVF123 ${ }^{\text {V }}$		FV oo	
VCR $1000,2000,6000,6100,6200,8600,8602$			
		4005 150p $V 4004$ 100 p	
VCR8700, 8704, 8714, 8800, 8804, 9000, 9005, 9244, 9340,			
		V4007 80p	
		GHVI221,1244,1245	
DD8900, OD8904. TVR4TX3650, UF20, 22 24, VCR 3000,3002 , 4000,			
	75p	GHV1246, 1247, 124日, 1250, 1266, 51, 8000	
	5		
blaupun		VCP4100, VCP4130 80p	
RTV100	200p	GHV1290, 1291, 1295, 1296, VCP4000, 4200, $4300,4301$.	
RTV200, RTV222,			
RTV202, RTX200	150 p	VCP4305, 4306, 4310, 4311, 4315, 4320, 4321.,	
RTV 306, 307, 309, 310, 311, 312, 328, 414,		GRANADA	
434,444,707		VHSH1, VHSAH3	
RTV211, RTV214	140p	VHSVH4, VHSWH 1	
RTV324, RTV325		VH	
RTV315, RTV316,		VHSEH 1, VHSCH 1	
RTV3:7	Op	135	
RTV301.		VHSAN3 110	
RTV424	85p	VHSOS2 $\quad 125$	
		VHSAY3 ${ }^{\text {VHSY3 }}$	
		VHSBY3	
3292, 3V00, 3V01, 3V16, 3v22, 8900, 8901, 8902, 8903, 8904,			
8906. 8909, 8912. 8922		GRANADA	
3V23, 8923, 8924, 8929		VHSOP1, VH	
3V29, 3V30, 8930, 8931,		VHSTJ1, VHSTJ2 150	
8940		VHSTJ3 65p	
3V31, 3V32, 8941, 8942		VHSWJ1, VHSWJ2 ${ }^{\text {2 }}$	
$3 \mathrm{~V} 35,3 \mathrm{~V} 36,3 \mathrm{~V} 38,3 \mathrm{~V} 39,3 \mathrm{4} 49,89$		VHSX	
		VHSYJ2 80	
$3 \mathrm{~V} 42,3 \mathrm{4} 43,3$		VH	
3V55. 3V57,			
8945, 8947, 89.18		VHSFG 1, VHSFG2, VHSFG VHSFG4, VHSF63	
$3 V 58,3 \mathrm{~V} 43,3 \mathrm{~V} 44,3 \mathrm{~V} 59$ 895? FV10. FV11, FV12		GRUNDIG	
FV21, FV22, FV26, FV32, FV39, VC141L	45p	MVS 400,440, VS $400,410,415,435,440,44$	
FV31R	110p	450, 456, 460 , 55	
FV61L, FV62, FV67, FV68, FV70, FV71, FV		VSi80, 200, 220, 226, 262, 265, 267, 2X40800	
FV74.F			
FV43H,		MVS200RC 90p	
		VS150 180p	
3V52 FV41R,			
FV41R, FIDELITY	100		
FIDELITY			
HCS200		LC290N, LC295SN, SVS 180, VS 170	
	180p	ARCELONA FLORENZ GV	
VCR100	160p	400	
VTR1000, VTR 100 ?	100	GV4002, 400, 401, 4010, 402, 403, 404, 405,	

Model Price	Model Price
N.E.C	V1710, 730, 750, 970, V $\times 710,712,720,730$
N830, N831, N832, N833 100p	970,971,972 100p
N895 80p	V×9880 110p
PVC2300, PVC2400 180p	S×7121 95p
DX1000, 1600, 1800, 2000, 3000, N9012, 9013.	SANYO
9014,9016, N9033, 9034, 9053, 9054, 9055,	VTC5000, 5150, 6000, 6500, VTCM 10, 11, 20,
9056, 9066, 9096, 9110, 9120,	21,30,31,50 65p
N9510,9520,9530,9610 80p	VTC5300, VTC5350, VTC5400.
NATIONAL PANASONIC	VPR5800 80p
NV300, NV330PX, NV332, NV333 NV340,	VTC5500 70p
NV366 100p	VTC9100, VTC9300 140p
NV777, NV788 100p	VTC1 $100,1300,1500$, VHR $1100,1110,1150$,
NV2000, NV2010, NV3000 ${ }^{\text {80p }}$	\{200, 1300.
NV7000, NV7200, NV7800 75p	VHR1500, 2370, MVR220 80
NV8600, NV86 10, NV862 145p	VHR2100, VHR2300, VHR2500,
NV230, 250, 280, 430, 431, 433, 450, 460, 465.	VHR2700 100p
470, 650, 730, NV770, 810, 870, 890, 970, AG	VHR3 $100,3110,3150,3300,3310,3400,3500,3700$,
1000, 1050 85p	3800, VHRO500, 700, TLS 1000, TLS 1001 65p
NV370, NV380, NV480, NV630, NV780,	VHR120, 130, 14, 14t, 143, 14, 150, 151, 153,
NV830, NV850 70p	154, 15, 16, 171, VHR194, 220, 23, 235, 240,
NV600, NV688, AG60 10, AG6015 85p	244, 250, 251, 274, 297, 310, 330,VHR335, 390,
NVG7, 9, 10, 11, 12, 14, 15, 16, 18, 30, 130,	4100, 4105, 4150, 4200, 430, 4300, 4350, 474,
400, NVH70 50p	VHR4770, 5080, 5100, 5200, 5300, 5350, 5700,
NVFV1, NVM 10, 3000, 3300, 40, 7, 9000, 9900.	6850, 7100, VHR7200 7250, 7260, 7300, 7400,
NVMS1,4 70p	7500, 7520, 7530, 7530, VHR7540,7700, 774.
NVM 1, NVM3, NVM5 70p	7800, 7810, 8000, 8100, 8200, 8250,
PHILEPS	85
VR6460, VR6920 170p	4600, VHRDP4610, 4710, 4890,6700 60p
VR6540 100p	VMD66, VMD68P 80p
VR6442, VR6542 70 p	VTR 1000
VR2025, VR2580 100p	VTC6010 75p
DV186, 190, 286, 291, 292, 468, 471, 562, 571,	SHARP
761, VR201, 202, 203, 211, 2115, 212, 213, 223,	VC200, 381, 384, 385, 386, 388, 390, 393, 838,
311, 312, 313, 3210, 3219, 322, 32, 29, 323,	9100, 9300, 9500, VC9700 80p
535, VR200V1, 20DV2, 20RW7, 210V1, 210V2.	VC7300, VC7700. VC7750, VC7800,
210, V3, 25BO1, 25BO2, 11, 12, 302, 303, 305,	VC8000 110p
31DV1, 31DV2, 31D, V3, 3SB11, 3S812, 3SB13,	VC8300 ${ }^{115 \mathrm{D}}$
72SB8, VR300V2, 35BO2, 35803. 635B7,	VC300, 387, 471, 473, 481, 482, 483, 486, 488,
715B4, 71585, 715B8, VR865B2, 915B2.	496, 8481 81 80p
925B3, VR6180, 6182, 6185, 6285,	VC402, 500, 571, 573, 581, 582, 583, 584, 585,
6290VR6291, VR6293, 6362, 6367,	VCSF3, VC858 1 80p
VR6390, 6391, 6393, 6467, 6468, 6470, 5561	VC108, 405, 408, 550, $600,651,674,681,682$.
6570, 6581, 6670, VR5676, 6710, 6760, 6761	682, 684, 685,693
6762,6870, 6970, 6975, VR68SB4, 86SBI,	VC700, 750, 783, VC6F3, VC6V3 70p
92SB3 75p	VC208, 671, 772, 779, 780, 781, 782, 785, 786،
VR445B9, VR4458920, VR4458922, VR6443,	787, 793, 800, VC7810, 7822, VCA 100, 102.
6843, 6843, VR6943 100p	103, 104, 131, 140, 170, 202, 03, VCA234, 501.
VR3260, 6349, 6448, 6449, 6548, 6648,	502, 602, 5011, VCB311, 361, VCD801, 802,
49SB620, 644869S, 49S86 110p	VCH851, 852, 882, VCM73, VCT72 65p
VKA6850, VKR6855 70p	VCA10, 103, 105, 106, 113, 11613, 211, 234,
VR50? 110p	$244,254,30,33,35, ~ V C A 36, ~ 37, ~ 40, ~ 43, ~ 454, ~$
VKR6800, VKR6810, VKR6820 70p	48, 50, 505, 51, 52, 53, 54, 55, 56, 57, 58,
SE4104, VF231, 2310, 2319, 231, 232, 2329.	VCA60, 605, 615, 67, 68, 1031, VCB320,
237, 23, 241, 2410, 2419, 242, 243, 245, 2469,	VCBS97, VCD805, VCD806, 810, 815, VCH80,
247, 2479, 251, 252, 256, 257, 258, 33, 19, 332,	81, 85
3329, 333, 337, 339, 3419, 342, 343, 3469, 347,	VCT2 12, 310, 410, 610, VCT1314, VCTS312.
3479, 35, 1, 352, 357, 358, 422, 4229, 432, 437,	313. VG790ET 80p
442, 4229, 432, 437, 442, 44, 5, 4469, 447,	VCC10 70p
4479, 451, 452, 457, 458, 459, 512, 522, 5229,	SONY
6379, 642, 647, 722, 7229, 723, 7379, 747,	SLC6, SLJ 10, SLTGME $140 p$
8389, 948, 9489 70p	SLC5, SLC7, SLJ7, SLJ9, SLTMME 140p
SAISHO	SLC9, SL8000, SLa080, SLT50 165p
VR2000, VHL3 30 9p	SL8000E, SL8080E, SL8200, SL8600 175p
VR3800, 3200, 3300, 3500, 3600, 3650,	SLV255, 125, 213, 225, 262, SLVX1,
VRS 4400 , 5000 75p	20,3 95p
VR3400 100p	toshial
SAmsung	V55, V57 85p
SV716, 717, V1616, V 621, V1626, VX616,	V33, V31, V32, V51, V52, V53, V9600,
VX617,V×619, X626, V $\times 1427, V \times 629, \quad$ 75p	
VB520, 510, 610, 616, 617, 619, 620, 626, 627,	DV80B, OV800, V71, 73, 74, 75, 77, 81, 83, 85,
629, V1510, 520, V1619, 616, 621, 626, VX510,	
511,520, VT320,5600 80p	V108, 109, 110, 120, 130, 140, 199, 209, 210.
VB900, VB910, V1900, V1910 110p	211, 220, 221, 411, V421, 609, 610, 611, 659,
PX980, 981,982, SE9001, SV9001, SVX307.	660,711,880 120p
319, 322, VB750, 770, 8220, 8225, V1770, 790,	V91 G, V95G 115p
8220, 8225, VK8220, VPX31, VX750, VX770,	V212, 213, 22-2, 312, 322, 403, 412, 413, 610,
90, 8220, 8225, SE9000, 9001 90p	703,813 50p
SVX301, 303, 305, SX7301, VB710, 971,	VCPB1E 110p

REPLACEMENT IDLERS \& PULLEYS

PINCH ROLLERS

Model
$\begin{array}{l}\text { QKAI } \\ \text { VS10, VS9300, VS9500, VS9700, VS980 } \\ \text { VF7100, VP77 }\end{array}$

VS $105,112,115,116,120,125$ 126, 155, 165, 205, 220, 240, 244, 245 VS247,
VSX9 VSX9
VS201, 301, 303, 304, 603, 606, 607, VSP8,
VSP8, VS201, 301, 303, 304, 603, 606, 607, VSP8, 140 p
VSP82, V558, VP82
VS125, VS155, VS165, VS220, VS240, VS250, VS512
VS22, 23, 25, 35, 37, 38, 53, 66, 75, 422, 425,
$\begin{aligned} & \text { 140p } \\ & 426, ~ 427,462,465, ~ 467, ~\end{aligned}$, 426, 427, 462, 465, 467, VS 485, 765, 766, $767,768,865,867,965,967$,
VSA77 VSA55, VSF 10, 11, 12, 15 221, 222, 230, 240, 30, 33, 200, 210, 220, 221, $22,23,240,30,33$
VSF $330,4,500,550$, VSP88, VSR 100, VS $\times 400$
450,470, 450, 470
VSF260,
VSF260, 261, 262, 265, 270, 274, 275, 280, $290,340,350,410,420,43 C$
VSF $441,440,450,455,480,4$
VSFA41, 440, 450, 455, 480, 490, 497, 510,
$560,580,590,599,600$,
VSG20, 21, 23, 24, 25, $30,33,34,35,51,54$,
$55,60,64,65,70,73,74,75$, $55,60,64,65,70,73,74,75$,
VSP110, VSX 560, VS $\times 580$ VSP10, VSX 560, VS X580
VS17, 20, 22, 23, 24, 25, 26, 27, 35, 37, 38, VS $17,20,22,23,24,25,26,27,35,37,38,53$,
55, VSA⒎
775p 55. VSA77
PINCH ROLLER ASSEMBEY
VS VS $422,425,426,427,462,465,467,485,498$, $765,766,767,768,865$,
$867,965,967$, VSA 650, $867,965,967$, VSA 650, VSF $10,11,12,14,15$,
$180,190,200,210,220$, $221,222,230,240,30,300,301,310,320,33$,
$330,4,500,510,600$, VSR110, VSX100, 400, PINCH ROLLER ASSEMBLY
VSS99

VSA | YSSS99 |
| :--- |
| ALBA |

ALBA
VCR 3000 X, VCR4000
VCR5000, VCR6000
VCR161, VCR222
VCR7000, VCR7800, VCR8000,
VCRB800

AMSTRAD

VCR1000, 2000, 4500, 4600, 4700, 5200, 6000 $6100,6200,8600$.
VCR8602, 8603, 8604, 8700, 8704, 8714, 8800, 8804, 9000, 9005.
VCR9244, 9340, DD8900, 8904 TVR1 2,2,
VCR 7000
VCRT000 8602, 8603, 8604
VCR8700, 8800, $900>9,9140,9244$

9340
PINCH ROLLER ASSEMBLY PART NO
1500 p

PNCH ROLLER ASSEMBLY PART NO: 153148
TX3650, UF20, VCR 3000 , VCR 3002, VCR 4000 VCR9500 300 p PINCH RO
2554966
2554966, ${ }^{\text {DD9900, }}$, 9904, TX3650, UF20, 22, 24,
VCR $3000,3002,9500$
140p

FERGUSON

 FERGUS

 FERGUS}3V00, 3V01, 3V16, 3V22, 3V23, 3V24, 3292 $3900,8901,8902,8903,8904,8906,8909$,

$8912, ~ 8922, ~$ | $8912,8922,8923,8924,8925,8929,140 p$ |
| :--- |
| $3 \mathrm{~V} 29,3 \mathrm{a}$ |$|$ $8933,8940,8941,8942$

$3 \vee 35,3 \vee 36,3 V 38,3 \vee 3$, $3 \vee 35,3 \vee 36,3 \vee 38,3 \vee 39,3 \vee 42,3 \vee 43,3 \vee 44$,
$3 \vee 45,3 \vee 48,3 \vee 49,3 \vee 53,3 \vee 54,3 \vee 55,3 \vee 56$, $3 \vee 45,3 \vee 48,3 \vee 49$,
$3 \vee 57,3 \vee 58,3 \vee 59,3 \vee 65, F \vee 10, ~ F V 1, F V 12, ~$ $3 \vee 51$,
FV4, 8
$3 V 52$ FV44,
3 V 52
8950
 $22 \mathrm{~L}, 26 \mathrm{D}, 31 \mathrm{R}, 32 \mathrm{~L}$, FV $33 \mathrm{H}, 39 \mathrm{~S}, 41 \mathrm{R}, 42 \mathrm{~L}, 50 \mathrm{R}$,
$51 \mathrm{R}, 5 \mathrm{~L}$ 51R, 52 L, VC141L
FVI3
FV7H, FV44L, FV46T, FV43H, FV57H
$3 V 35,3 V 36,3 V 38,3 V 39,3 V 49,8943$ ${ }_{\text {PINCH ROLLER ASSEMBLY }}^{89}$ $3 V 42,3 V 43,3 \vee 44,3 \vee 45,3 V 48,3 V 53,3 V 54$,
$3 \vee 55,3 V 56,3 V 57,894$, 3VIN, HV56LER ASSEMBLY
PINCH ROLT FV37, FV57, FV58
PINCH ROLLER ASSEMBLY FV31R
FV41L, FV42L $\begin{array}{ll}\text { FV4 } 1 \text { R } & \text { 140p } \\ \text { PINCH ROLLER ASSEMBLY } & \mathbf{9 2 5 p}\end{array}$ PINCH ROLLER ASSEMBLY
$3 V 58,3 V 59,3 V 64,3 V 65, F V$ $20,21,22,26,30,32,33$
FV/39, VC141L FV43H, FV44L, FV45X FV46T PINCH ROLLER ASSEMBLY
FV61, FV62, FV67, FV68, FV70 FV61, FV62, FV67, FV68, FV70, FV71, FV72, 775 p
FV74, FV77 PINCH ROLLER ASSEMBEY $\left\lvert\, \begin{aligned} & \text { FISHER } \\ & \text { FVHP4 } 20,520,530 ~\end{aligned}\right.$

FVPP810, 830, 840
FVHP905, $906,907,908,910,911,9150 \mathrm{p}$ 918,990, $975,980,900$, FVHP 5000,5005, 5050, 5075,5100
VBR330, VBS $3500,7000,7100,7500,7600$ VBR 330, VBS $3500,7000,7100,7500,7600$,
9000,9900 FVHD 9300 250, 300, $310,1100,370,20000$, FVHP3, 210, FVHP 1200, 1250, 130, 132, 1340, 1340, 1400,
$1410,1440,4500,200$, $1410,1440,1500,200$
FVHP320440, 420, 430, 440, 445, 470, 475,
FVSP290S, 495,2405 FVSP290S, 495, 2905
FVHD140, FVHO40, FVHD55, FVHP1, FVHP10p FVHP20 20 FVHP20 VHS10, 30 1350 PINCH ROLLER ASSEMBLY
GOLDSTAR GOLDSTAR GHV51, 1221, 1232, 1233, 1240, 1241, 1242 , GHV1247, 1248, 1250, 1266, 1290, 1291, 1295, 1296, 1392, 1393, $1260,1290,1291,1295$, GHV1891, $1900,2145,3000,3010,4400,44$ 51, 8000, 8200 , GHV8210, 8215, 8430 GHVP 1240, 1241, 1247, 1248, 1290, 1291, GHVP1295, , 1296, VCP4000, 4100, 4130, 4200,
$4300,4301,4305, V C P 4306,4310,4311,4315$, $4316,4320,4321,4325,4326,4350$, GSE 1290 1291, 1295, 1296, 1297, 1891, 1910, 20005, 2000
VT7, 11, 14, 16, 17, 18, 19, 33, 34, 35, 350, 38, 39, 88, 330, 680, 4200 VT5000, 5030, 5500, 6500, 6800, 7000, 8000, $8300,8500,8700,930$ VT9500, 9700,9900, VM600 18, 52, 57,61, 62,63, 64, 65, 85, 86, 88, 100, VT120, 122, 125, 128, 130, 135, 138, 145, 150, $168,170,175,220,225$. VT250, 255, 258, 260, 400, 405, 410, 413, 414. 15, $46,28,430,425$ V15, $517,518,520,525,435,438,450,498,510$,
$515,54,540,54,50$, VT526, 530, 535, 536, 540, 545, 546, 548, 570, 575,576,580,585,588 VT640, 830, VTF660, 665, 70, 770, 774, 775, $780,785,860,861,865$, C50, VTM598, 620, 622, $625,626,630,635$
VTM $636,640,645,646,720,722,725,726$, $727,728,730,731,735$,
VTM $736,740,745,746,748,753,754,820$, $821,822,825,830,83$?,
VMM835, 838, 840, B4), VTM835, 838, 840, 841, 845, 920, 921, 922, $925,930,931,935$
VSS $80,85,890,89$ 3280, 500, VMS 7200 VM $200,2300,2380,3200$, VT3000
$V T 410,420,428,430,450,498,518,520,522$, 530, VTF770, 780 ,
VTM598, 622,722,740, 748,753 650p VTF150, 155, 180, 185, 250, 255, 260, 265, 280 285, 350, 351, 355, VTF360, 365, VTM
$212,215,220,221$
VIM230, 231, 235, 284, VTS $390 \quad 140 \mathrm{p}$ HINARI
V20H, VXL5, VXL6, VXL7, 8, 9, 10, 11, 19, 90, VXL2, VXL3
VXL4, VXL20, VXL35 VTV100, VXL10, VXL11, VLX9,

VXL90

FNCH ROLLER ASSEMBY
$\mathrm{V} 20 \mathrm{H}, \mathrm{V} \times L 5, \mathrm{~V}$ ASSEMBLY
J.V.C.
HR2200, $3300,3330,3360,3660,4100$

HR2200, 3300, 3330, 3360, 3660, 4100, 7700
HR2650, 7200, 7300, 7350, 7600, 7610, 7650, 7655
HRD110, 111, 120, 121, 140, 141, 142, 143, $150,152,156,157,158$, HRO160, 220, 225, 250, 257, 445, 455, 565, $566,725,755$,
BRS 611,811
HRD520, $540,550,560,580,600,610,620,140$ $637,640,641,650,660$,
HRO $670,720,730,740$,
HRD670, 722, 730, $740,770,820,830,840$,
$860,870,880,910,960$,
$860,870,880,910,960$,
HRO980, HRO $\times 20$,
HRDP980, HRD $\times 20,22,25$, HRJJ200, 205, 210,
$215,300,315,316,318$,
215, 300, 315, 316, 318
600, $605,610,615,715,41,415,416,507$,
$600,605,610,615,715,815$
HRJ97, HRS $4700,5800,5900,6800,6900$,
SR $3200,330,368$, $14100,680,6900$ HRD $170,171,180,210,211$
$320,321,330,337,350$,
$320,321,330,337,350$,
HRD $370,400,430,440,441,470,500,530$, $700,750,950$
HRS5000, 5500, 8000, 9000, BR7030, 7040,

| BRS600, $605,747,777,920,925$ | Price | Model |
| :--- | ---: | :--- | :--- |

HRS 10,
BP5000, HRD1 10, 111, 120, 220, 225, 455
PiNCH ROLLER ASSEMBIY 1100 p PINCH ROLLER ASSEMBLY
HROTH0, 141, 142, 143, 150, $152,157,158$, HROT40, 141, 142, 143, 150, 152, 157, 158,
$160,565,565,725,755$,
HRP50, PINCH ROLLER ASSEMBLY
HRD1520, $510,520,521,522,525,527,560$, $600,610,620,637,641$,
HRD650, 720, 830, 840, 910 , HRJ.J205,
HRS580, HRS5800
P:NCH ROLI ER ASSEMBLY ER7030, BRS 600
HRD230, 271, $300,310,320,321,330,337, ~$
350, $350,400,430,440,4$ HRD470, 500, 530, 700, 750,950 , HRS 5000 , 5500,9000
PINCH ROLLER ASSEMBLY
HRO540, HRD550, HRD580, HRD660, HRD860, HRDD960
HRD550, PINCH ROLLER ASSEMBLY HRJ600, HRJJ605, HRJJ15.

HRS9200

MATSUI
X6000,730,735,750,755,765 VS888
V $\times 1000$, V $\times 2000$ V $\times 2500, ~ 140$
VX6000A 140 p
MITSUBISHI $31,32,41,51,52,82$,
HSE12, 16 17,
HSE $12,16,17,21,22,27,31,32,41,51,52$,
82, HSM1000, $110,120,15$, 82, HSM1000, 110, 120, 15
$0,16,170,190,210,23,25,250,27,33,34,35$ $0,16,170,190,210,23,25,250,27,33,34,35$,
$36,37,370,380,45,450,5$ 4, 55, 555, 57, 58, 59, 68, HSMS2, 9, HSS 11 , $14,15,17,19,25,5600$, HV
F125, 150, 303, 85, SV8900, 8930 F125, $150,303,85$, SV8900, 8930
PINCH ROLLER ASSEMBLY PART NO 9480020010
HSE11, 12, 16, 17, 21, 22, 27, 31, 32, 41, 51, $52,5300,5424,5600$, HSB11, 12, 16, 21, 27,
$31,32,41,51,52,82$, HSM $1000,110,120,150$, $31,32,41,51,52,82$, , $S M 1000,110,120,150$,
HSM $16,170,18,190,210,23,25,250,27,30$, $33,34,35,36,37,370,38$, HSM $380,40,45$, 44, 50, 54, 55, 555, 57, 58, 59, 60, 68,
HSMS 9 HSMX1 18, HSMS2, 9, HSMX1, 18, 19, 2, HSS 111, 12, 14,
15, 17, 19, 21,25, 5600, HVF 125 , HVF150, 303 15, 17, 19, $21,25,5600$, HVF125, HVF150, 303,
85, SV8900, 8930 HS 200, HS $300, H S 301, H S 302, H S 303, H S 304$, HS310, HS 320 , HS 330 , HS 360 ,

HS700

HS306, HS 307, HS 318, HS319, HS337, HS338 HS 347, HS349, HS 400, HS 410, HS 411, HS 412
HS 421, HS 480, HS710, HSB 10, HSB20, 30 HS 421, HS480, HS710, HSE 10, HSB20, 30, HSE 10, 20
30,70
NATIONAL PANASONIC NV100, $180,300,330 \mathrm{PX}, 332,333,340,366$, 600,688, 7777,788, 3321.
AG6010, $6015,6100,6200,6400,6800$
$\begin{aligned} & 7450 \\ & \text { NV } 230,250,260,280,370,380,430,431,433\end{aligned}$ $450,460,465,470,480$ NV $630,650,730,770$, 890, 2000, 2010, 3000 ,
NV7000, $7200,7800,8050,8150,8170,8200$, $8300,8400,8500,8600$
NV8610, 8620, , NVG11, 14, 16, NVG7, 10, 12.
$15,18,30,130,400$,
$A G 1000,1050,1200,1500,2100,2200,6500$
6810, 7500, 7510.
NVH70

NVG9, NVG120
AG6840, 6720, 7150, 7330, 7350
7355, 7650 , NVH65, 75, NV 30 , NVL20, 23, 25,
100, NVG 19, 20, 25, 33, 40,50,
NVV8000
NVD48, NVD80, NVG21 NVG45 140p
NV 1700 NX
NVHD 100 NVHD101, NCHD90, NVSD30 140p NVSD40

> NVSDAO PINCH ROLLER ASSEMBLY

AG5150, 5250, 5700, 6024, NVD38, 48, 80 . NVF55, $65,70,75$,
NVFS $1,100,200,88,90$, NVG 19, 20, 21, 22, 25, 28, 300, 33, 40, 45, 46,
NVG50, NVH65, 75, 77, NVJ $30,33,35,37,40$, 42, 45, 47.
NVL20, 23, 25, 28, NWW $1 \quad 300 p$ NVL20, $23,25,28$, NUW 1
PINCH ROLLER ASSEMBLY

N.E.C N 830 .

N830, 831, 832, 833, 895
PVC2300, 2400,
140p
PVC2300, 2400, 740, 744, 746, 760, 764, 140p
$76661000,1600,1800,2000,3000, N 9012,9013$

9014, 9016, 9033

9110, $9120,9510,9520$

N9530, 9610 , PX 1200

$\frac{\text { NS7000 }}{\text { ORION }}$
 ORION VH1, VH2 VC150

VH1, VH2
VC150, $180, ~ V H 3, ~ 33,200, ~ 201, ~ 205, ~ 212, ~ 250, ~$
254, 254, 288, 300, 303, $312,201,205,212,250$,
VH $404,555,700,704,712,770,780,844$, VH404, 555, 700, 704, 712, 770, 780, 844, 900,
$1000,2948,3030,3312$ $1000,2948,3030,3312$
VHF2A, VP2948
COMB 15000, 16000, HV03, LVH50, NEVH COMB 15000, 16000 VP230RC, VCP, VH04, 30, 103, 300, 358, 360 $362,400,416,512$.
VH530, $532,535,536,600,630,635,640,666$, $730,735,744,774,790$
H800, 820, 850, 888, 893, 900, 930, 940, 942 $974,1012,1040,1050$
$500,1660,1800,2004$, 1120, 1204, 1440,
VH2151, 2308, 22042400, 2500, 2600, 2700, VH2960, $2970,3050$.
VH3060, 4000, 4008, 4010, 4012, 4015, 4015

$$
\begin{aligned}
& 4020,430,5020 \\
& \text { VP } 10,200,220,
\end{aligned}
$$

VP 10, 200, 220, 225, 245, VR821, 925, 1032,
$2949,2959,2957,2966,2979,2980$, VTV300
VXL20, 25, 30
140p
PHILIPS
VR6460 VR6920
VR2020, VR2021, VR2022, VR2023 VR2024
VR6711
$\begin{array}{ll}140 \mathrm{p} \\ \text { R6540 } & 140 \mathrm{p} \\ \text { OV85 } & 140 \mathrm{p}\end{array}$
DV856, 586, VR702, 703, 6485, 6585, 6589, 6785,6880, 6948 140p VR6943, 44SES
DV464, 662 VR2220, 2300, 140p 2340, 2350, 2414, VR2480, 2485, 2486, 2489, $2490,2498,2840,6462,6463,6464,6560$ VR6660, $6860,6861,6862,6863$ N-1700, VR2870
VR2025, VR6580, VR6581 $\begin{array}{cc}\text { VR2025, VR6580, VR6581 } & \mathbf{1 4 0 p} \\ \text { 4SB6, VR3260, } 6349,64140 p\end{array}$ 49SB6, VR3260, 6349, 6448, 6449, 6548, CRESSURE ROLLER ASSEMBLY PS 403 - 40205 OV186, 190 VR211, 2115, 212. 213, 223, 286 . 291, 292, 311, 312, 313, 21, , 223, VR $3210,3219,322,3229,323,53580,486$, 471, 562, 582, 571, 761,
VR201, 202, VR203, 302, 303, 305, 6180, 6182 , 6185, 6285, 6290 ,
VR6291, 6293, 6362, 6367, 6390, 6391, 6393 , VR6570, 6581 VR $66670,6676,6710,6760,6761$, 6762,6870, 6970,
VR6975, 86BI, $633 \mathrm{SB7}, 68 \mathrm{SB} 4,71 \mathrm{SE} 4,71 \mathrm{SBE}$,
 20RW7, 21DV1, 210V2, 2SB01, 2S802, 2SB!1
2SB12 30DV2, 31DV, $310 \mathrm{~V} 2,31 \mathrm{VV} 3 \mathrm{SB} 02$ 2SB12, 30
$3 S B 03$,
3SB05 3SB11 3SB12 3SB13 VR231, 232, 332, 422, 4229, 512 7229,723
VA501
VHR $1100,1110,1150,1200,1300,1500,2100$, 2300, 2370, 2500

MVR220
$5300,5350,5$ VTC5000, 5150, 5
$6010,6500,9100$,
6010, 6500, 9100,
VC 9300, VPR5800
VHR $3100,3300,3310,340,300,310,140 \mathrm{p}$
V VHR 3100.3300,
VHRD500, 700
VFRE
VRRD500, 700 140p
VTC3000
VHR120, 140p
154, 15, 160, 14, 141, 143, 14, 150, 151, 153,
OVHR23, $235,240,244,250,251,274,27,297$, $310,330,335,350,390$, VHR $410,4105,4150$, $4200,430,4300,4350,4400,474,4770,5080$, VHR5100, 5200, 5300, 5350, 5600, 5700, 6850 $7100,7200,7250$,VHR $7260,7300,7400,7440$, OVHR $7810,8000,8070,8100,874,780$, 8500,8800 VHP $8040,8100,8200,8250$ 4610, 4710, 4890, 6700, VHRS $700 \quad 140 \mathrm{p}$
VHR120, 135, 150, 190, 4150, 4160, 4350 ${ }^{\text {140p }}$ $5200,5240,5350,7200,7250,7260,7700$. VHRO4410, 4610, 4710, 4890, 5450 , VHRS700
FINCH ROL
PINCH ROLLER ASSEMBLY VHR $3100,3200,3300,3310,3400,3700,3800$,
VHRD500, 7000 PINCH ROLLER ASSEMBLY SHARP
VC200, 381, 383, 384, 385, 386, 388, 390, 393, 800, 2300, 3300,6000 ,
VC $6200,6300,7300,7700,7750,7800,8300$, $838,9100,9300,9400$,
VC9500, $9600,9700,9800$
VC $300,387,402,471,473,477,481,482,483$,
48
486, 488, 496, 500, 571,
$573,581,582,583,584,585,8481$, VC5F3,
VC5W20E, VCA1031,
VC108, 208, 405, 408, 550, 600, 651, 671, 140 p

VCA340, 43, 47, 50, 60, 605, 615, VCD806
VCA $340,43,47,50,60$,
$815, ~ V C H 80,81,83,85$,
VCH865, 87, 910, VCS 1000, VCT212, 310,410
510,610, VCT1314, VCTS313
PINCH ROL
SAISHO
VHL3, VR1000, 2000, $2500,3200,3300,3500$
VHL3, VR1000, 2000, 2500, 3200, 3300, 3500,
$3600,3650,3800$, VRS 4400, VRS $5000 \quad 140 \mathrm{p}$

$\frac{\text { VR3400 }}{\text { SAMSUN }}$

SAMSUNG

SV716, 717, VB510, $520,610,616,617,619$
$620,626,627,52,611,616,621,626,900$,
V20, 626, 627, 629, 900,

MODE SWITCH

NV2000, 2010, 7000, 7200, 7800 (VS50048) NV230, 260, 430, 810, 870, 2300, 4300 (VSS0110)
NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778
(VSS0060
NVG21, 25, NVH65, NVD80 (VSS0175A)
$£ 2.00$

AUDIO CONTROL HEADS

AMSTRAD ORIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2,3, VCR4600, $4600 \mathrm{MKII}, 4700$, FUNAI VS2, VCR4600, 4800, 5200,5600, 6600, VIP3000, 5000 Also fits: FIDELITY, FUNAI, HINARI, PROLINE, SCHNEIDER, TOWADA, UNIVERSUM ORDER CODE: AH01 PRICE: 1350p

AMSTRAD ORIGINAL NO: 153134 Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602 8603, VCR8604, 8700, 8704, 8714, 8800, 9005, 8244 Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FIDELITY, GOLD. HAND, GRANADA, HINARI, MARQUANT, OMEGE, PROFEX, SCHNEI UNIVERSUM SA, SHINTOM, TASHIKO, TATUNG, TOWADA, UNIVERSUM ORDER CODE: AH02 PRICE: 1450p

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR OO91	NVG7 etc	875 p
VBR0050	NV300, NV340 etc	875 p
VBR0061	NV77 etc	875 p
VBR0103A	NV250, NV450 etc	625 p
VBR0125		625 p

VIDEO TOOLS

VIDEO CLEANING STICKS
Price 17p each 15p each pack of 10pcs 13p each pack of 25pcs Order Code: SP14

VIDEO MAINTENANCE TOOLS
Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads Order code: TOOL 8, Price 600p

VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

SET OF 8 ALLEN KEVS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL - RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS
$0.77 \mathrm{~mm} \quad 0.90 \mathrm{~mm}$
- RCA TYPE BACK TENSION TOOL
$1.27 \mathrm{~mm} \quad 1.50 \mathrm{~mm}$
- TENSION ADJUSTMENT TOOL FOR VARIOUS USES - VCR ADJUSTMENT TOOL

3 REVERSIBLE SCREWDRIVERS CIRCLIP PLIERS
SPRING HOOK MICRO SCREWDRIVER
VCR HEAD EXTRACTOR
Order code: TOOL 10, Price 2900p

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

BACK UP BATTERIES

PHILIPS

Part Nos: 138-101138, 138-10313 1.2v 90mAH Order Code: BB01
Part Nos: 138 - $10229,2.4 \mathrm{v} 100 \mathrm{mAH}$
Order Code: BB02

Price: 70p
Price: 135 p

FERGUSON
Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Part Nos: 00E6-606-80012.4V 100 mAH
Order Code: BB04

Price: $90 p$
Price: 150 p

SATEL LITE PSU REPAIR KITS

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	600 p
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	550 p
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	600 p
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	600 p
PACE D100/150	SATPSU6	650 p
CHURCHILL D2MAC	SATPSU7	650 p
PACE MSS100	SATPSU8	1100 p

SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062) ORDER CODE: TUNER01 PRICE: $1400 \mathrm{p}+$ VAT PACE PRD900/MSS1000 2Ghz (221-21770112) ORDER CODE: TUNER02 PRICE: 1400p + VAT

SWITCH MODE TRANSFORMERS
PACE 9000
ORDER CODE: PACE9000 PRICE: 800p PRD800/PRD900
ORDER CODE: PRD800 PRICE: 550p

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	1230 p
FERGUSON SRD4	SATPSU11	650 p
ECHOSTAR SR5500	SATPSU12	1600 p
ECHOSTAR 6500/7700/8700	SATPSU13	2750 p
AMSTRAD SRD600	SATPSU14	2600 p
MIMTEC (Surensen)	SATPSU15	700 p
AMSTRAD SRD700, SR950, SRX100, 301, 501, 502, 1002, 2001, SRD2000 SAT250	SATPSU16	650 p

SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite $R X$ powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: $18 \mathrm{db} \quad$ *Detection Range: -60 to -10 DBM
* Max. input signal: -10 DBM

ORDER CODE: TOOL22
PRICE: 8500 p

REPLACEMENT TV SWITCHES

GRUNDIG
PART No: 29703, 29102
USED ON:
C7500, C8500. C8502, C8712 . . ETC
Order Code: SW1

PHILIPS

USED ON:

K30, K35, K40, KT3, KT4
Order Code: SW13

SONY

USED ON:

KV1612, KB1612, KV1614, KV2052, V2056
KV2062, KV2067, KV2212 . . ETC
Order Code: SW5
Price: 130p

USED ON:
KV1400, KV1440, KV2040, KV2060
(POWER SWITCH 26mm)
Order Code: SW12
Price: 110p

SONY

USED ON:

KV2020
(POWER SWITCH 21 mm +Remote) Order Code: SW6

Price: 130p

SONY 2 PIN FUNCTION SWITCH

	TIME LAG	
CURRENT RATING	ORDER CODE	
100 mA	FUSE36	
160 mA	FUSE01	
250 mA	FUSE02	
315 mA	FUSE03	
400 mA	FUSE04	
500 mA	FUSE05	
630 mA	FUSE06	
800 mA	FUSE07	
1A	FUSE08	
1,25A	FUSE09	
1.6A	FUSE10	
2A	FUSE11	
2.5A	FUSE12	
3.15A	FUSE 13	
4A	FUSE14	
5A	FUSE15	
6.3 A	FUSE16	
CERAMIC PLUG TOP		
CURRENT RATING	ORDER CODE	PRICE
3A	FUSE33	100p
5A	FUSE34	100 p
13A	FUSE35	100p
32 mm CERAMIC SLOW BLOW		
CURRENT RATING	ORDER CODE	PRICE
8A	FUSE44	185p
10A	FUSE45	185p
15A	FUSE46	185p
20A	FUSE47	210p

NB. All fuses are made in the UK and fully meet BS 4265 \& BSI 362 safety standards and should not be compared with cheap imported types

VOLTAGE TESTER

A terminal screwdriver incorporating continuity \& voltage with Euroslot ORDER CODE: TOOL11 PRICE: 220p

20 mm CERAMIC TIMIE LAG

CURIENTT RATING
ORIDER CODE
PRICE

FUSE38
FUSE40
FUSE4I
FUSE42
FUSE43
100 p
100 p
8 A
10 A

38 mm CERAMIC TIMI LAG
CURRENT RATING
ORDER CODE
PRICE

** ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES **

SPRING HOOK

Spring Hook, to unlock springs in audio tape recorders \& VCRs ORDER CODE: TOOL20

PRICE: 265p

FAULT IINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1 Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price $\mathbf{£ 8 . 5 0}$ - No VAT.

Video Recorders Edition 51997
Over 300 pages packed with more than 5500 faults for different brands
Price $£ 15.00$ - No VAT. Order Code: BOOK01

DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75ML	SP01	145p
SWITCH CLEANER	176ML	SP02	155p
SILICONE GREASE	200ML	SP03	180p
FREEZEIT	170ML	SP04	295p
FREEZE IT	400 ML	SP16	580p
FOAM CLEANER	400ML	SP05	180p
ANT-STATIC	200ML	SP06	180p
AEROKLEANE	200ML	SP07	200 p
AERO DUSTER	200ML	SP08	340p
AERO DUSTER	400 ML	SP17	580p
PLASTIC SEAL	200 ML	SP09	250p
GLASS CLEANER	200ML	SP10	160p
COLDKLENE	200 ML	SP13	220p
EXCEL POLISH 80	200ML	SP18	160 p
ADHESIVE 120	500 ML	SP19	250p
LABEL REMOVER 130	200 ML	SP20	260p
REFURB 140	400 ML	SP21	260p
TUBE SILICON GREASE	50 GRAMMES	SPI1	225p
TUBE SILICON SEALANT WHITE	75ML	SP22	250p
TUBE SILICON SEALANT CLEAR	75ML	SP23	250p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150 ${ }^{\circ}$
DRIVE CLEANER	200ML	SP24	150p
SCREEN CLEANER	200 ML	SP25	145
COMPUTER CARE KIT		SP26	2100p

All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows
$\mathbf{3 0 0 p}$ for $2-5$ cans $\quad \mathbf{5 0 0}$ por more than 5 cans

TELEVISION

 Edition 7This new A5 size guide lists more than 9600 faults and to approx. 474 pages in size. Price: 1650 p only - no VAT (+ £2 Postage) Order Code: BOOK02

Satellite Repair Manual Edition 5

346 pages of receiver faults plus notes and general information such as many useful button sequences for resetting parental lock codes, resetting installation choice to factory defaults.
Price $£ 16.00$ - No VAT plus Postage $£ 1$ Order Code: BOOKO3

SOLDERING ACCESSORIES

DESCRIPTION

ANTEX SOLDERING IRONS 25 WATT 240 VAC (XS25W 240 V)
15 WATT 240 VAC (XS15W 240 V$)$ 25 WATT SPARE ELEMENT 15 WATT SPARE ELEMENT SOLDERING STAND \& SPONGES SOLDERING STAND (MADE BY ANTEX) SPARE SPONGE SOLDER 20 SWG 500 GRAMMES $\quad \$ 110 \quad 500 \mathrm{p}$ 22 SWG 500 GRAMMES DESOLDERING AIDS SOLDER MOP STANDARD GAUGE $1.2 \mathrm{MM} \times 1.5 \mathrm{M}$ SOLDER MOP 1.2MM X 10M DESOLDERING PUMP SPARE NOZZLE

SEMICONDUCTOR COMPARISONS 1999
With over 650 pages listing more than 34,200 Semiconductors with suitable alternatives complete with descriptions and base information Price: 1900 p only - No VAT (+ £2 Postage). Order Code: BOOK04
SEMICONDUCTOR COMPARISONS 1999 The new 1998 Jaeger Semiconductor comparison with 1100 pages packed with information on over 95,000 semiconductors in much greater detail plus marketing data on SMD devices and a separate generic table of all the type designations.
Price: $£ 47.00$ only $-\mathrm{N}_{\mathrm{o}}$ VAT ($+\mathrm{E5}$ Postage). Order Code: B00K06

I.C. PROTECTOBS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38, ICPN50, ICPN75

PRICE: 30p EACH ONLY

CAN'T FIND WHAT YOU'RE LOOKING FOR?

RING US...AS THIS IS ONLY A SELECTION OF THE ITEMS THAT WE STOCK

CASSETTE DC MOTORS

6 V MOTOR
9 V MOTOR
170p
12 V CW MOTOR
12 V CCW MOTOR
13.2V MOTOR

CASSETTE TAPE HEADS
MONO HEAD 90p
STEREO
110p
MINI HEAD 150p
AUTO REVERSE HEAD 200p

Description	Code	Price									
AKAI			A512120/230	RC900	650 p	PANASONIC			SONY		
RC-V10A	RC876	650 p	A514790	RC901	650p	EUR51200	RC200	650 p	RM604, RM605, RM606	RC140	650p
RCV 37 B	RC891	650p	A5088470	RC902	650 p	TC2200	RC204	650 p	32 CHANNEL	RC140	650p
V25A	RC896	650p	A518612	RC903	650 p	VS00357/NV730	$\mathrm{RCL202}^{\text {R }}$	650 650	RM613	RC141	650p
decca			SCL002	RC904	650 p	TNQ1621		6500	RM632, RM636	RC160	600p
RC70	RC894	650p	${ }^{\text {C2096 }}$ A511940	RC905	650 p 650 p	$\begin{aligned} & \text { PHILIPS } \\ & \text { RC5002,5154 } \end{aligned}$	RC134	650 p	$\underset{\text { TATUNG }}{\text { FXA }}$		
FISHER RC905B	RC879	650p	655602 H	RC1920	650p	KT3 NON TEXT 69117032	RC135 RC178	650 p 650 p	RC70 FX 70 FASTTEXT	RC883 RC894	650p 650 p
GRANADA			${ }_{\text {\|FB13, 14, } 15}$	RC143	650p	69117194	RC180	650p	FX70 FASTIEXT		650p
UNIVERSAL TEXT	RC309	650p	FS4 ${ }^{\text {a }}$	RC148	650 p	RC5991-UNIV	RC300 RC301	550p	FB632	RC632S	650p
MK4 TEXT, 70155G, 70115G, 70133G	RC880	650p	RG305	RC305	650p	KT3 TEXT	RC5301	650p	FB639	RC639	650p
95288 E	RC882	650 p	RG306	RC306	650p	RC5352	RC5352	650p	THORN/FERGUSON		
94490 D	RC884	650 p	FS9/1-10/1	RC307	650 p	RC5375	RC5375	650p	3V35-42	RC342	600p
GRUNDIG			VS5 RUK	RC308	650 p	RC5 STANDARD	RC300	550p	3V31-32	RC344	650p
TP160E	RC107	650p	VS4-1	RC308	650 p	RC5903	RC5903	650p	3V57-58	RC628	650p
TP200, TP300	RC380	650 p	MULTICONTRDL (17C20)	RC311	650 p	SALORA			TX10 TEXT	RC732	575p
TP400	RC401	600 p	LOEWE			SERIES L	RC190	650p	TX10 STERED TEXT	RC738	575p
TP590-600	RC600	650 p	DC11	RC146	650p	86173	RC882	650p	TC9-90-100	RC740	600 p
TP390, TP610	RC610	650 p	MATSUI			SANYO			$3 \mathrm{~V} 55, \mathrm{FV} 11$	RC783	650p
TP621 ${ }_{\text {TP630, TP650 }}$	RC612	650 p 650 p	010270601	RC889	650 p	RC218, RC222, RC228, RC238	RC140 RC878		TX100 FASTTEXT	AC789	650p
TP630, TP650 TP666	RC650 RC660	650p	VX770	RC892	650 p	${ }^{\text {J }}$ J \times GE	RC878	650 p 650 p	TX 100 ST, FASTTEXT	RC789	650 p
TP661	RC661	650p	NOKIA			VHR2300	RC890	650 p	PROFESSIONAL	RC790	650 p
HITACHI			SATELLITE	RC550	650p	RC628	RC865	650 p	TOSHIBA		
CLE800-CLE830	RC140	650 p	ORION			SHARP			CT937	RC950	650 p
A617402/655602	RC1920	650p	RC53	RC892	650p	G0121CESA, 123CESA, 204, 251	RC140	650p	CT9117	RC951	650 p

WE STOCK REMOTE CONTROLS FOR OVER 5,000 DIFFERENT MODELS RING FOR MODELS NOT LISTED ABOVE ON 01819002329

[^0]2 way Preprogrammed Universal Remote

- Replaces up to 2 remotes (TV/Satellite)
- Simple key arrangement
- Set-up by library revie

Order Code: 2 WAV
PRICE: 925p

REPLACEMENT LINE OUTPUT TRANSFORMERS

Part No.	Code	Price	HITACHI			45150119	LOT169	1500p	TLF 14520 F	LOT40	1500p	094-010200.7	LOT59	1400p	1-439-303-31	LOT94	p
AKAI			2424593	LOT44	1050p	45150124	LOT137	1600p	TLF 14521 F	LOT39	1850p	094-01021/0.6	LOT59	1400p	1-439-303-32	LOT94	1300p
45150344	LOT56	1650p	2432101	LOTT9	1600p	45150146	LOT136	1600p	TLF 14567 F	LOT39	1850p	094-01027/0.0	LOT186	1825p	1.439-311-00	LOT95	1550p
101-214017-03	LOT278	1300p	2432461	LOT169	1500p	45150301	LOT 169	1500p	TLF 14568 F	LOT40	1500p	094-01038/0.7	LOT245	1900p	1.439-311-11	LOT95	1550p
101-220005-03A	LOT72	1800p	2432611	LOT80	1800p	45150302	LOT180	1550p	TLF 14584 F	LOT41	1700p	094-01052/0.8	LOT186	1825p	1-439-311-13	LOT95	1550p
005037	LOT27	1450p	2432651	LOT80	1800p	45150304	LOT169	1500p	TLF 14586 F	LOT42	1700p	094-01057/1. 1	LOT285	1450p	1-439-311-31	LOT95	1550p
D 053/37	LOT207	1550p	2432761	LOT169	1500p	45150305	LOT180	1550p	TLF 15606 F	LOT256	2000p	610.018.6620	LOT189	1650p	1-439-311-32	LOT95	1550p
D 056/37	LOT56	1650p	2432981	LOT37	1200p	45150306	LOT168	1500p	TLF 70012	LOT78	1500p	610.018.6637	LOT215	1800p	1-439-331-22	LOT96	1550p
D 059/37	LOT200	1400p	2432981	LOT37	1200p	45150308	LOT22	1250p	TLF 70012 F	LOTT8	1500p	SHARP			1-439.331-41	LOT98	1550p
D 069/37	LOT56	1650p	2432982	LOT37	1200p	45150309	LOT178	1500p	TLF 70012A	LOT78	1500p	RTRNF 1220 CEZZ	LOT39	1850p	1-439-332-00	LOT99	1600p
FCM 2015 AL	LOT78	1500p	2433011	LOT171	1600p	45150310	LOT168	1500p	TLF 70018	LOT274	1850p	RTRNF 1783 BMZZ	LOT202	1800p	1-439-332-11	LOT99	1600p
FERGUSON			2433012	LOT171	1800p	45150313	LOT30	1250p	TLF 70018 F	LOT274	1550p	RTRNF 1783 CEZZ	LOT202	1800p	1.439.332-21	LOT99	1000p
00 D-3-508-001	LOT38	1250p	2433014	LOT171	1600p	45150314	LOT174	1400p	TLF 70161	LOT278	1300p	RTRNF 1786 BMZZ	LOT211	1850p	1-439.332-41	LOT100	1500p
00 D-3-508-002	LOT38	1250p	2433212	LOT168	1500p	45150315	LOT22	1250p	TLF 70162	LOT72	1600p	RTRNF 1786 CEZZ	LOT211	1850p	1.439-332-42	LOT101	1450p
00 D-3-508-003	LOT276	1400p	2433291	LOT 172	1350p	45150318	LOT 192	1550p	TLF 70162A	LOT72	1600p	RTRNF 2000 BMZZ	LOT214	1800p	1-439.332.52	LOT100	1500p
00 D-3-515-001 PL1	LOT276	1400p	2433301	LOT246	1800p	45150319	LOT30	1250p	TLF 70162B	LOT72	1000p	RTRNF 2002 BMZZ	LOT307	1450p	1-439-333-00	LOT270	1550p
00 D-4-208-001	LOT79	1600p	333441	LOT188	1900p	45150320	LOT190	1650p	TLF 70162 G	LOT72	1000p	RTRNF 2002 CEZZ	LOT307	1450p	1.439.333-11	LOT270	1560p
$00 \mathrm{D}-4.208-002$	LOT79	1600p	42	LOT191	1600p	45150322	LOT 196	1550p	TLF 77001 B	LOT274	1550p	RTRNF 2003 BMZZ	LOT308	1350p	1-439-333-12	LOT270	1550p
$00 \mathrm{D}-4.235-002$	LOT240	1250p	2433451	L0781	1350p	45150324	LOT 194	1550p	PHILIPS			RTRNF 2004 BMZZ	LOT307	1480p	1-439-363-11	LOT268	1400p
$00 \mathrm{D}-4.235-002 \mathrm{HTI}$	LOT81	1350p	2433452	LOT82	${ }^{\text {1250p }}$ 1250p.	45150325	LOT22	1250p	482214010142	LOT142	1800p	RTRNF 2005 8MZZ	LOT308	1350p	1-439-363-21	LOT268	1400p
00 D-4-235-02201G	LOT81	1350p	2433453	LOT82	1250p	45150326	LOT198	1550p	4822140101145	LOT134	1450p	RTRNF 2006 BMZZ	LOT308	4350p	1-439-387-11	LOT311	1450p
$00 \mathrm{D}-4.260-004 \mathrm{HTI}$	LOT38	1250p	433455	LOT234	1600p	45150328	LOT27	1450p	482214010146	LOT112	1700p	RTRNF 2007 BMZZ	LOT307	1450p	1-439-387-21	LOT311	1450p
$00 \mathrm{H}-0.701-2400$	LOT 182	1450p	2433521	LOT85	1600p	45150329 451503	LOT193	1550p	482214010151	LOT102	1700p	RTRNF 2023 BMZZ	LOT310	1500p	1-439-416-11	LOT255	1600p
06 D-3-083-001	LOT82	1250p	2433381 243721	LOT23	1250p	45150330	LOT179	1350p 1550p	482214010161 482214010171	LOT103	1250p	SONY 3753100			1-439-416-12	LOT255	1600p
06 D-3.083-002	LOT82	1250p	2433751	LOTO1	1300p	45150334	LOT56	1650p	482214010176	LOT114	1150p	1.439.243-00	LOT91	1600p	1.439-416-21	LOT255	1600p
06 D-3.084-001	LOT23	1400p	2433752	LOT01	1300p	45150335	LOT193	1550p	482214010194	LOT105	1500p	1.439-243-11	LOT91	1600p	1-439-4 16-23	LOT255	1000p
06 D-3-087-001	LOT23	1400p	2433752	LOT250	1350p	45150338	L0T27	1450p	482214010198	LOT116	1600p	1-439-243-12	LOT91	1600p	1.439-446-41	LOT255	1600p
06 D-3-093-001	LOT204	1600p	2433891	LOT23	1400p	45150340	LOT200	1400p	482214010209	LOT104	1500p	1.439-243-31	LOT229	1700p	$\begin{aligned} & \text { 1-439.476-51 } \\ & \hline \text { 1.439. } 430-21 \end{aligned}$	LOT255	
06 D-3-095-001	LOT87	1000p	2433892	LOT84	1450p	45150341	LOT56	1850p	482214010236	LOT118	1550p	1-439-243-32	LOT229	1700p	$154125 A$	LOT275	
06 D-3-095-002	L0T87	1000p	2433893 243952	LOT23 LOT33	1400p 1000p	45150343 45150344	LOT 196	1550p 1650p	482214010246 482214010247	LOT111	1500p	$1-439-243-41$ $1-439-24400$	LOT229	1700p 1600	toshiba		
$06 \mathrm{D}-333-512-001$	LOT204	9000p	${ }_{2434002}$	LOT200	14000p	45150346	LOT201	1550p	4822140102470254	LOT105	1500p	1-439-2444-00	LOT48	1600 p 1600 p	37010	LOT131	1450p
FETX 10090 DEG	LOT04	1500p	2434141	L0т33	1000p	45150350	LOT27	1450p	482214010263	LOT117	1550p	1-439-244-21	LOT48	1600p	37011	LOT131	1450p
FETX 90 WHITE	LOT06	1850p	2434141	L0т33	1000p	45150351	LOT27	1450p	482214010269	LOT210	1350p	1-439-244-31	LOT48	1600p	37012	LOT131	1460p
FETX 100100 DEG	LOT34	1500p	2434274	Lota	1050p	45150375	LOT56	1650p	482214010271	LOT208	1650p	1.439.256-00	LOT45	1650p	37013	LOT131	1450p
GRUNDIG			2434274	LOT44	1050p	45161601	LOT22	1250p	482214010274	LOT123	1450p	1-439-256-11	LOT45	1650p	37014	LOT131	1480p
29201.008 .01	LOT153	1750p	2434453	LOT86	1600p	MITSUBISHI			482214010282	LOT122	1300p	1.439--256-21	LOT45	1650p	37015	LOT 131	1450p
29201.014 .01	LOT140	1500p	2434455	LOT234	1600p	731003	LOT51	1550p	482214010283	LOT104	1500p	1-439-256-22	LOT45	1650p	37016	LOT131	1450p
29201.015 .01	LOT149	1400p	2434593	LOT44	1050p	276-16399	LOT49	1500p	482214010294	LOT125	2150p	1-439-276-21	LOT230	1700p	37017	LOT131	1450p
29201.017 .01	LOT60	1250p	2435062	LOT296	950p	334807803	LOT50	1450p	482214010306	LOT110	1200p	1-439-280-00	LOT92	1600p	37018	LOT131	1450p
29201.078 .01	LOT163	1300p	2435121	LOT87	1000p	334 B 078030	LOT50	1450p	482214010325	LOT132	1500p	1-439-280-13	LOT92	1800 p	37019	LOT131	1450p
29201.01	LOT61	1700p	2435131	LOT251	1450p	334 B 08104	LOT74	1600p	482214010326	LOT122	1300p	1-439-286-00	LOT46	1300p	1810951	LOT55	1400p
29201.022.01	LOT63	1700p	2435671	L0T89	1800p	334 P 18507	LOT75	1550p	4822140100349	LOT284	1400p	1-439-286-12	LOT46 LOT46	1300p 1300 p	23236023	LOT281	1350p
29201.022.02	LOT166	1600p	2436201	LOT109	1200p	5908-05008A-AA	LOT70	1500p	482214010356	LOT284	1400p	1-439-286-21	LOT46	1300p	23236052	LOT131	1450p
29201.022 .03	LOT165	1350p	2436202	LOT109	1200p	D 108/37	LOT49	1500p	482214010367	LOT286	1400p	1-439.288-00	LOT228	1750p	23236098	LOT288	1400p
29201.022.04	LOT165	1350p	2432101-2	LOT79	1600p	DCF 1577	LOT273	1700p	482214010369	LOT109	1200p	1-439-288-12	LOT228	1750p	23236198	LOT288	1400p
29201.022.04A	LOT165	1350p	2433451H	LOT81	1350p	DCF2077A	LOT272	1300p	482214010381	LOT128	1300p	1-439-289-00	LOT47	1400p	23236255	LOT289	1500p
29201.024.01	LOT65	1500p	2433453 H	LOT82	1250p	KFS 60226B	LOT279	1550p	482214010384	LOT127	1550p	1-439-289-21	LOT47	1400p	23236424	LOT129	1400p
29201.024 .04	LOT164	1400p	2433891H	LOT23	1400p	MSH-1FBW08	10778	1500p	482214010395	LOT116	1800p	1-439-289-22	LOT47	1400p	23236425	LOT288	1400p
HINARI			2433892 G	LOT84	1450p	NIKKAI			482214010406	LOT73	1150p	1-439-289-31	LOT47	1400p	23236428	LOT289	1500p
154138 K	LOT24	1500p	I.T.T.			BABYto	LOT67	1450p	482214010421	LOT109	1200p	1-439-294-00	LOT93	1450p	3122113837011	LOT131	1450p
51139141	LOT24	1500p	45150108	LOT113	1400p	ORION			482214017078	LOT103	1250p	1-439-294-11	LOT93	1450p	150F6D	LOT131	1450p
51141841	LOT24	1500p	45150115	LOT136	1000p	3714002	LOT02	1500p	SANYO			1-439-294-21	LOT269	1550p	TFB 4039 AD	LOT293	1550p
CF 44 A	LOT24	1500p	45150116	LOT139	1675p	PANASONAC			094-00020/0.9	LOT113	1400p	1-439-303.00	LOT94	1300p	TFB 4048 AD	LOT281	1300p
HM51-1411834-1	LOT24	1500p	45150117	LOT139	1675p	TLF 14512 F	LOT39	1850p	094-00035/0.2	LOT162	1350p	1-439-303-11	LOT94	1300p	TFB 4048	LOT2	1300

炎 NIKKAI BABY 10 REGULATOR ORDER CODE : BABY 10 PRICE: $£ 10.00$

Universal Pre-Programmed Brand Replacement Remote Controls

- Brand for Brand Replacement
- Codeless setup
- Teletext and Fastext
- Pre-programmed for the latest models
- Replaces broken and lost remotes
- CE Approved

BRAND	CODE	BRAND	CODE
Panasonic	RCUNI01	Nokia	RCUNI06
Sony	RCUNI02	Samsung	RCUNI07
Philips	RCUNI03	Toshiba	RCUNI08
Hitachi	RCUNI04	Ferguson	RCUNI09
Mitsubishi	RCUNI05	Grundig	RCUNI10

Normal Price: $£ \bar{\Sigma} .5 \mathrm{f}+\mathrm{VAT}$ Special Offer: $£ 7.50$ + VAT NEW ARRIVAL!!!!
UNIVERSAL REPLACEMENT SATELLITE REMOTE CONTROL
This unique remote control covers 11 brands including
Pace MSS series, Nokia, Echostar.
Order Code: RCUN117
Price: $£ 7.50+$ VAT

SPECIAL OFFERS!!		
CD PICK UPS		
KSS 152A	WAS	NOW
KSS 210A	$£ 18.00$	$£ 13.00$
KSS 210B	$£ 20.00$	$£ 13.00$
KSS 240A	$£ 25.00$	$£ 20.00$
KSS 213B	$£ 19.00$	$£ 15.00$
KSS 213C	$£ 19.00$	$£ 15.00$
OPTIMA 6S	$£ 20.00$	$£ 16.00$
OPTIMA 5	$£ 30.00$	$£ 16.00$
RCTRH 8151	$£ 44.00$	$£ 20.00$
RCTRH 8112	$£ 57.00$	$£ 20.00$

[^1]
Grandata Ltd
 distributor of electronic components

K.P. HOUSE, UNTT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 01819002329 Fax: 01819036126 E Mail: GRANDATA.LTD@BTINTERNET.COM Web Site: http://www.grandata.co.uk

	AST:3L0				H0M:	
RATING	ORDER CODE	PRICE		RATING	ORDER CODE	PRICE
0.04A	FUSE53	60p		0.05A	FUSE74	65p
0.05 A	FUSE54	35p		0.063A	FUSE75	65p
0.063 A	FUSE55	35p		0.08A	FUSE76	65p
0.08A	FUSE56	35p	-	0.1 A	FUSE77	35p
0.1 A	FUSE57	30p		0.125A	FUSE78	35p
0.125A	FUSE58	30p		0.16 A	FUSE79	35p
0.16 A	FUSE59	30p		0.2A	FUSE80	30p
0.2A	FUSE60	30p		0.25 A	FUSE81	30p
0.25A	FUSE61	30p		0.315 A	FUSE82	30p
0.315 A	FUSE62	30p	WICKMANFUSES	0.4 A	FUSE83	30p
0.4 A	FUSE63	30p	This Kit consists of	0.5A	FUSE84	30p
0.5A	FUSE64	30p	Assorted Wickman	0.63 A	FUSE85	30p
0.63A	FUSE65	30p	Fuses	0.8 A	FUSE86	30p
0.8A	FUSE66	30p	both Slow \& Fast Blow: 17 Different Types	1A	FUSE87	30p
1A	FUSE67	30p	17 Different Types 10 of Each Type	1.25 A	FUSE88	30p
1.25 A	FUSE68	30 p	170 Fuses in Total	1.6 A 2 A	FUSE89	$30 p$ $30 p$
1.6 A	FUSE69	30p	Packed in a Plastic	$2 A$ $2.5 A$	FUSE90	$\begin{aligned} & 30 p \\ & 30 p \end{aligned}$
2 A 2	FUSE70	30 p	Storage Box Order Code: Wickmankit	$2.5 A$ $3.15 A$	FUSE92	30 p
3.15 A	FUSE72	30 p	Price	4 A	FUSE93	30p
4A	FUSE73	30 p	E40.00	5 A	FUSE94	30 p

$\star \star \star$ PLEASE NOTE THAT ALL WICKMAN FUSE PRICES ARE FOR A QUANTITY OF 1 (ONE) - (EXCEPT FOR KIT) $\star \star \star$

VALUE	VOLTAGE	ORDER CODE	PRICE	VALUE	VOLTAGE	ORDER CODE	PRICE
220 pF	2000 V	CAP01	90p	1200 pF	3000 v	CAP08	225p
330 pF	2000 v	CAP02	90p	1500 pF	2000 v	CAP09	130p
470 pF	2000 v	CAP03	90p	1500 pF	3000 v	CAP10	225p
680 pF	2000 v	CAP04	95p	2200 pF	2000 v	CAP11	130p
820 pF	3000 v	CAP05	150p	3300 pF	2000v	CAP12	145p
1000 pF	2000v	CAP06	110p	4700 pF	2000v	CAP13	180p
1000 pF	3000 v	CAP07	225p				

SMD ELEOTROMYO 05° CAPAOTORS

VALUE	VOLTAGE	ORDER CODE	PRICE	VALUE	VOLTAGE	ORDER CODE	PRICE
$22 \mu \mathrm{~F}$	6.3 v	CAP14	110 p	$100 \mu \mathrm{~F}$	25 v	CAP22	300 p
$47 \mu \mathrm{~F}$	6.3 v	CAP15	110 p	$1 \mu \mathrm{~F}$	50 v	CAP23	110 p
$100 \mu \mathrm{~F}$	6.3 v	CAP16	130 p	$2.2 \mu \mathrm{~F}$	50 v	CAP24	110 p
$10 \mu \mathrm{~F}$	16 v	CAP17	110 p	$4.7 \mu \mathrm{~F}$	50 v	CAP25	110 p
$22 \mu \mathrm{~F}$	16 v	CAP18	110 p	$10 \mu \mathrm{~F}$	50 v	CAP26	130 p
$47 \mu \mathrm{~F}$	16 v	CAP19	130 p	$22 \mu \mathrm{~F}$	50 v	CAP27	180 p
$470 \mu \mathrm{~F}$	16 v	CAP20	320 p	$47 \mu \mathrm{~F}$	50 v	CAP28	300 p
$33 \mu \mathrm{~F}$	25 v	CAP21	130 p				

$\star \star \star$ PLEASE NOTE THAT ALL THE ABOVE CAPACITOR PRICES ARE FOR A PACKET OF 5 (FIVE) $\star \star \star$

POWER SUPPLY \& UPGRADE KIT FOR SAMSUNG

Suitable for Samsung Winner 1 Chassis
(VIK310, VIK350, V1375, V1395
This kit contains the components required to upgrade the power supply for all the above mentioned models. It comes with clear and concise instructions on how to carry out the work ORDER CODE: SAMSUNGKIT PRICE: 1600p

GENUINE PHOENIX KITS SUPPLIED

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 01819002329 Fax: 01819036126 E Mail: GRANDATA.LTD@BTINTERNET.COM Web Site: http://www.grandata.co.uk

NEW ARRIVAL!!!

JVC Field Output Repair Kit
For the following models:
AV-295X1EK, AV-29SX1EN, AV29X1EN1, AV-295SX1PF, AV-29TS1EN
ORDER CODE: GENUINE PHOENIX KITS JVCKIT1 PRICE: £11

+ VAT Cevine weory

PREPROGRAMMED TO COVER ALL MAJOR BRANDS OF TVS, VIDEOS, SATELLITES AND CD PLAYERS.

REPLACES UPTO 8 DIFFERENT REMOTE CONTROLS

WITH TELETEXT \& FASTEXT FUNCTIONS.

Satellite Repair Manual Edition 5

```
346 pages of receiver faults plus notes and general information such as many useful button sequences for resetting parental lock codes, resetting installation choices to factory defaults, practical information on LNB's with typical current drains.
```


CM3900A DIGITAL MULTIMETER

FEATURES:

LARGE LCD DISPLAY HEIGHT 18 mm MAXIMUM READING 1999 + UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 min) DIODE TEST FUNCTION
ALL RANGES OVERLOAD PROTECTED SUPPLIED WITH TEST PROBES
DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ ACCURACY * 0.5\%

AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ DC CURRENT A: $200 \mu \mathrm{~A} / 20 \mathrm{~mA} / 200 \mathrm{~mA} / 2 \mathrm{~A} / 20 \mathrm{~A}$ AC CURRENT A: $200 \mu \mathrm{~A} / 20 \mathrm{~mA} / 200 \mathrm{~mA} / 2 \mathrm{~A} / 20 \mathrm{~A}$ RESISTANCE S:: $200 \Omega / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{M} \Omega / 20 \mathrm{MS} 2$ ORDER CODE: CM3900A PRICE: 2900p

CM3920 DIGITALMETER WITH TEMPERATURE MEASUREMENT

FEATURES

TEMPERATURE MEASUREMENT DIODE \& TRANSISTOR HFE TEST - LARGE LCD DISPLAY HEIGHT 18 mm MAXIMUM READING $1999+$ UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 min DIODE TEST FUNCTION ALL RANGES OVERLOAD PROTECTED SUPPLIED WITH TEST PROBES
DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 1000 \mathrm{~V}$ ACCURACY* 0.5\%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} 700 \mathrm{~V}$ DC CURRRENT A; $2 \mathrm{~mA} / 20 \mathrm{~mA} / 200 \mathrm{~mA} 20 \mathrm{~A}$ AC CURRENT A: $200 \mathrm{~mA} / 20 \mathrm{~A}$
RESISTANCE $32: 200 \Omega / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{M} \Omega / 20 \mathrm{MS} 2$ 200MS
CAPACITANCE: $2 n \mathrm{n} / 20 \mathrm{nF} / 200 \mathrm{nF} / 2^{*} \mathrm{~F} / 20^{*} \mathrm{~F}$
ORDER CODE: CM3920 PRICE: 4100p
$\star \star \star$ PLEASE NOTE THAT POSTAGE ON ALLTHE ABOVE METERS IS CHARGED AT $£ \star \star \star$

HELP WANTED

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted: The following in any condition for spares: Panasonic NVWI and NVV8000, Sony SLHF950 Super Beta. Also require Pro-X Beta tapes. Phone Graham on 01604843536.
Wanted: Circuit diagram for the Amstrad fax Model FX7000. Does anyone know about a dead machine fault that blows the input circuit protector? Laurie Watkinson, Telesonic, Week St. Mary, Holsworthy, Devon EX22 6UJ. 01288341254.
Wanted: A LOPT for the Nikkai Tara 10 portable, also a circuit diagram. A second-hand LOPT would be OK and a photostat circuit. R.J. Long, 70 Bonfields Crescent, Havant, Hants PO9 5ER. 01705479678.
Wanted: LOPT part no. TLF700-24A for the Nikkai Model TLG010 and LOPT part no. BSC-24-10A for the Huanyu Model 37-C3. John McCallan, 72 Mullinslin Road, Omagh, County Tyrone, N. Ireland BT79 9PQ.
Wanted: Mechanical channel selector for the Grundig CUC42 (series 816). D. John, Central Electronics, 6 Queen Street, Stirling FK8 1HN. 01786451 230, fax 01786949830.
Wanted: Any Thorn/Ferguson 3000 series chassis PCBs, especially working. Also LOPTs for the GEC dualand single-standard hybrid colour chassis (Models 2038 and 2040) and an external teletext converter. Pat Hildred, 56 Theydon Street, Walthamstow, London E17 8EL. 0181 9880310.

Wanted: Philips car record player, circa 1960. Any parts, service information or complete units, working or faulty. Martin Randall, 3 Ashcroft Road, Cirencester, Glos. 01285658 715.

Wanted: Service manual and circuit diagram for the Pace MSS200 satellite decoder, photocopies OK. Also a PTV113 chip for this machine, secondhand OK. Wayne Brill, 31 Parnell Road, Ipswich, Suffolk IP1 6SP. 01473742568.

Wanted: Used electronic test equip-
ment such as an oscilloscope with component tester, Fluke digital meter and used service manuals for TV sets, VCRs etc. Allah Rak ha, New Diamond Electronics, 21 Bell Street, London NWl 5BY.
Wanted: Line output transformer for the Decca 30 series (Bradford) chassis, or complete set. D. Newman, phone 01202730935 or e-mail
Newdave07@aol.com
Wanted: LC display for the AVO DAll6 test meter. Also any service information on the Farnell DM131 digital meter. B. Senior, I Bedale Close, Coalville, Leicester LE67 3BA. 01530 832088 or 01530810962.
Wanted: Remote control handsets for the Grundig Model GT1402 and Osaki Model P145R. Also start-up disks for the Amiga A1200 computer. M. Payne, 66 Nevinson Avenue, South Shields, Tyne and Wear NE34 8WP. 01915363744.

Wanted: Panasonic NV430B VCR in working order or not. P. Ward, Petgra Forest Corner, Ringwood, Hants BH24 3JW. 01425475445.
For sale: Many back issues of Television, 490 in all, from the years 1950-1997. Phone or send for details. B.A. Milne, 149 Pleckgate Road, Blackburn, Lancs BB1 8QR. 01254 240315 or 0973510295.
Wanted: Remote control unit for the Proline Model 3200. Also help with no sound after a power supply blow up. H. Foyne, 7 Ennerdale, Tanhouse, Skelmersdale, Lancs WN8 6AG.
For sale: Finlandia 25 in . stereo Nicam model (Salora M chassis) with field scan fault. Also working Philips G11 chassis panels. R. Berwick, 493 Romsey Road, Maybush, Southampton SO16 9GN. 01703787033.
Wanted: Following copies of Television: Aug 1988, July 1989, Oct 1989, Jan 1993, Sept 1995, Oct 1995, May 1998, Aug 1998. Have one surplus Sept 1993 copy. L.C. Dilke, 106 Coldbath Road, Kings Heath, Birmingham B13 0AH.

Wanted: Any service information for a Philips projection TV/radio Model 799 dating from the Fifties, or any details of Philips projection TVs using EF50s. Steve Taylor, 11 Charnborough Road, Coalville LE67 4SF. 01530832695 or 07977805308 .
For disposal: Over 700 valves from AC/VP1 to X65. Please write for details to R.W. Noake, 69 Hazelhurst Road, Kings Heath, Birmingham B14 6AB.
Wanted: Diagrams for building a scratch filter circuit for use when playing worn vinyl or 78 r.p.m. records. A working unit at a reasonable price would be considered. David Evans, 70 Dallow Street, Burton-on-Trent, Staffs DE14 2PQ. 01283573177.
Wanted: Teletext PCB for the Ferguson Model D5IND. W. Simmons, 24 Standhill Crescent, New Lodge, Barnsley S7I ISU. 01226238204.
Wanted: 1 would like to build the Test Card Generator featured in the May/June 1979 issues of Television. Does anyone have the PCBs (D062/3 I think) or any part-built or faulty ones? C. Williams, 32 Aylesborough Close, Kings Hedges, Cambridge CB4 2HH. 01908568745 daytime.
Wanted: Decade resistance and capacitance box. Peter Antcliff, 63 Chester Road, Stevenage, Herts SGl 4JY. 01438225602.

Wanted: Circuit diagram for the Protech 3743 14in. CTV (photocopy OK). C. Rayner, 39 Northway, Lymm, Cheshire WA13 9AT. 01925822673 after 6 p.m.
For disposal: Service department clearance. Large quantity of service manuals, modern types, Sony, Panasonic, Technics, JVC etc. Test gear (scope, signal generators etc.). Large assortment of serviceable CTV sets, VCRs, audio equipment and spares. All very cheap as space is needed for other things. Jolly's Radio Ltd., 128-130 Hawthorn Road, Kingstanding, Birmingham B44 8QA. 01213821312.

VCR Clinic

Reports from Philip Blundell, AMIIE Chris Watton Gerald Smith Ken Rigby Martyn Davis, MIIE Pete Gurney, LCGI Graham M. Colebourn and Colin J. Guy

Grundig GV420

If the drum motor is noisy, don't immediately order a new one. Take a few minutes to remove the cover at the base of the motor and check whether the grease on the spindle thrust pad has hardened. Regreasing the pad sometimes cures the noise. P.B.

Mitsubishi HSB12

If the picture obtained via the RF and scart sockets is poor, i.e. with weak contrast and poor sync, check $\mathrm{C} 2 \mathrm{~B} 4(10 \mu \mathrm{~F}, 50 \mathrm{~V})$ which tends to go low in value. P.B.

JVC HRDX22

This machine had no control track operation, no playback colour and the tape counter ran very fast. It was all the result of power supply problems. The cure was to replace C24, C25 (both $680 \mu \mathrm{~F}$) and C32 $(470 \mu \mathrm{~F})$. C.W.

Hitachi VTF350

A long list of fault symptoms was attached to this not too old machine: intermittent stops in record, intermittent lines on the picture, picture pauses during playback, sound distorts, mains fuse blows every two months. I suspected the power supply, because of the tell-tale sign of a change in luminance level during eject - this is when the power supply is most heavily loaded and the voltages
drop. Many of the electrolytic capacitors read low when checked with our tester. So I decided to replace the lot: nine on the secondary side of the power supply, two on the primary side. After that the machine worked correctly. C.W.

Amstrad VCR400F

There was no sound with this machine's recordings. E-E and playback of prerecorded tapes were good, and the erase bias was OK. A check at pin 21 of IC201 showed that the audio was lost here even though rec H at pin 24 was present. A replacement chip restored normal sound. C.W.

Sanyo VHR251

There were various intermittent faults - speed changes and failure to eject were the most the most frequent. The cause was a row of dryjoints in the power supply. C.W.

GoldStar T16I

This machine was dead with no clock and no functions. Checks in the power supply showed that the primary side was not running or even trying to start. I replaced the start-up resistor and the $33 \mu \mathrm{~F}$ electrolytic capacitor but the situation was no better. The diodes on both sides of the circuit were OK, also ICP01 and FEP01. The cause of the trouble turned out to be optocoupler ICP02. G.S.

Ferguson FV62L

This machine was dead with the mains fuse blown and the chopper transistor TP08 short-circuit. After fitting a power supply repair kit the machine loaded but there was no display and no front-key operation. There was also no -25 V output from the power supply, at pin 1 of socket BP02. The negative supply rectifier DP51 was open-circuit.

Once this diode had been replaced the display requested the code to be entered. Everything then functioned correctly. K.R.

Akai VSG470

This machine would load and play tapes only when the lid was off and light fell on the left-hand tape sensor. It's usually the other way round I thought. The central lighthouse assembly had of course been knocked, possibly because a cassette had been inserted backwards. Resoldering it cured the fault. M.D.

Samsung SII260

According to its owner this machine had made a whirring noise all night, followed by a burning smell. Why did he leave it on all night? Needless to say there was a tape (nothing interesting!) jammed inside. The KA8301 motor drive chip IC206 had died. A BA6209 from a scrap deck cured the fault. M.D.

Aiwa HVFX2800

The head-switching point was misadjusted, the result being an unsightly line at the bottom of the playback picture. To set it up in this machine you play back an alignment (or good quality) tape, centre the tracking by pressing the auto-tracking button for more than two seconds, then set the switching point by holding down the play button for more than three seconds. Quite simple really - as long as you know which buttons to press! M.D.

Amstrad DD8900

The complaint was no play with one deck, fortunately the top one of the pair for a change. While checking I found that fast forward/rewind worked correctly but in play the
take-up reel refused to rotate. The belts were obviously intact, as the only function that didn't work was play, and I initially suspected a drive clutch problem.

Closer examination after inserting a transparent dummy cassette revealed the cause of the trouble: the felt pad on the soft damper to the take-up reel had fallen off. This left only the remnants of the glue that had held it in place on the damper arm. Because direct drive is applied in fast forward/rewind, there was little effect on these operations. But in play the drive is applied via a clutch. This was enough to stall the take-up reel.

A replacement pad, made from a suitable back-tension band, cured the problem when securely glued. P.G.

Matsui VXII05

This budget centre-deck VCR intermittently failed to load a cassette: either the cassette would be rejected or the machine would fail to complete loading then shut down. In every one of these machines I've come across the cause of this fault is a dirty mode switch. The switches seem to have some sort of lubricant in them from manufacture. After a time it becomes quite viscous. In each case stripping the switch down and cleaning has cured the trouble.

Before you dismantle the switch and deck, make a careful note of the timing marks. They are quite prominent and easy to spot.

While the deck is out, clean the switch/deck edge connectors and their corresponding contacts on the main board. They rely on pressure to make contact and tend to suffer from oxidisation problems. Doing this will improve reliability. P.G.

Amstrad VCR6000

This old timer was apparently dead. It had no clock display and refused to accept a tape. A check at the power supply output connector produced correct readings however, but the voltages around the main microcontroller chip were low. Further investigation brought me to the nearby 78 L 055 V regulator IC651. Its input was correct, but its output was low at 3.5 V . As I didn't have a replacement in stock I decided to fit the higher-rated 78M05. This restored the display and normal operation. P.G.

Bush VCR177

This 1996 machine was extremely slow to load or eject a cassette and
play, record or spool a tape. A check at the capstan motor connector showed that the 12 V supply was weak - the voltage fell perilously whenever there was a load. The main items in the 12 V regulator are a zener diode and an npn emitter-follower transistor, Q802. They are on a little heatsink near the front. The transistor was too busy oscillating at HF to attend to its proper job. Its emitter decoupling capacitor $\mathrm{C} 806(47 \mu \mathrm{~F}, 16 \mathrm{~V})$ was in a poor state.

The heatsink is wrapped neatly around the components and gets nice and hot. So all the $85^{\circ} \mathrm{C}$-rated electrolytics can be expected to fail sooner or later. G.M.C.

Panasonic NVG40/NVG45

There was no front panel fluorescent display because Cl 020 $(330 \mu \mathrm{~F}, 6 \mathrm{~V})$ on the power supply PCB had leaked. It's the reservoir capacitor for the display's heater supply. A $220 \mu \mathrm{~F}$ replacement will suffice, as it's an HF supply, but the rating should be $105^{\circ} \mathrm{C}$.

I was not sure but wondered whether the original had been fitted back-to-front. The leakage from C1020 had corroded the track between DI009 and the -29 V supply's reservoir capacitor Cl 018 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$). It's worth checking this capacitor as well. G.M.C.

Mitsubishi HSB82

There was poor E-E picture quality and recordings tended to improve as the machine warmed up. At its worst the picture was very blurred, frizzy and in black-and-white only. "Out of tune!" we declared, but it wasn't. "Dried up surface-mounted electronytics" we roared. Not so. The cause of the problem was cracked solder joints at the vision IF SAW filter inside the IF can. G.M.C.

Hifachi VTM740/VTF770

The playback pictures were fractured, with horizontal bands of noise. Fortunately the machine's owner had declined a quote to replace the heads, because they were perfectly OK.

Repeated tests revealed that the bands of noise and the headswitching point moved to new positions whenever the drum was stopped between tests, indicating loss of the drum-phase signal. The culprit was Cl $656(10 \mu \mathrm{~F}, 25 \mathrm{~V})$, which passes on the drum-phase pulses at pin 11 of the 15 -pin connector PG1643 on the main PCB. G.M.C.

Samsung VIK320

The power supply was pulsing gently because of a short across the PC12 output. This rail follows a long and tortuous route all over the PCB. I eventually found that the cause of the trouble was C502, a $100 \mu \mathrm{~F}$ electrolytic which is mounted next to the audio chip IC501.

C.J.G.

Goodmans VP2350

This Philips clone wouldn't record in colour. The expensive LA7437A luminance/chrominance processing chip was the cause of the fault. C.J.G.

Panasonic NVL20

The picture would break up into lines in forward search only. In these machines the cause is often lower drum wear. Not this time however. In fact there was more or less normal operation when the control head pins were shorted together. The culprit was the servo/syscon chip IC2001. C.J.G.

Philips VR6185

This Charlie deck machine slammed the tape against the endstop on rewind, as often as not breaking the tape. The infra-red LED in the centre of the deck was open-circuit. There is obviously no safety circuit as there used to be when bulbs were used for this job. C.J.G.

Samsung VI710

These old machines can still give a good account of themselves when in good order, and are therefore worth repairing. This one worked all right in the E-E and playback modes, but when record was selected the E-E picture disappeared. The record 9 V line was found to be low, in turn because the PC12V line went low when record was selected. The cause of the trouble was Q105 (2SB772) which was open-circuit base-tocollector. C.J.G.

Mitsubishi HSB12

The carriage continued to try to eject when fully out, followed by shut down. If a tape was wound in manually it would be played normally. The cause of the trouble became obvious when I rewound the tape: it hit the endstop then broke. The infra-red LED at the centre of the deck was faulty. It was conductive and wasn't shortcircuit, but didn't emit any IR radiation. A replacement cured the carriage problem. C.J.G.

As a follow-up to last month's article on the Indiana 100/200 chassis, Alan Dent provides fault notes on the different tuning/control PCB used in the $\mathbf{2 0 0}$ version

the Indiana 200 chassis

This chassis is very similar to the Indiana 100 , which was covered in detail last month. The exception is the TCR (tuning control) panel, which also contains the colour decoder and, where incorporated, the teletext decoder chips - some models don't have teletext. The remote control handsets are also different. Some versions made in Romania have an electronicallyswitched AV board.
For fault conditions not covered below, refer to the Indiana 100 chassis.

TCR Panel

This panel houses the PCA84C640/030 microcontroller chip IC300, which has $\mathrm{I}^{2} \mathrm{C}$ bus connection. It provides the following functions: key panel control; tuning and analogue memory control; AFC; on-screen display (OSD) generation; and teletext control. The device has proved to be fairly rugged - unless there's a serious CRT flashover.
Tuner band switching is used in Irish and continental models only. The OSD displays the band selected and auto-switches at the end of each sweep. The bandswitching components are deleted in UK models - a 12 V supply is hardwired via link Jl to the tuner and the OSD band switching is disabled by fitting link $\mathbf{J} 2$.
Fault conditions experienced with this panel have been as follows.

No tuning but the OSD progresses: Check the output at pin I of IC 300 . There should be a 5 V peak-to-peak squarewave whose mark/space ratio changes as the tuning progresses. Check the 33 V tuning voltage supply: if low replace D001 (ZTK33) and C001 (the CRT may have flashed over). Q300 could be faulty or R312 opencircuit.

Tuning drift outside AFC: The gain of Q300 could be changing; the value of R312, R313, R314 or R364 could be varying; C304, C306 or C322 could be leaky; the connector pins of K300 or the PCB tracks to the tuner could be intermittent. The mark/space ratio of the squarewave output at pin 1 of IC300 could be changing: this is unlikely, but if so check X300 and IC300.

AFC drift: Check whether the tuning voltage is changing ($1 \mathrm{~V}=15 \mathrm{MHz}$). If the voltage is stable, set up the AFC - follow the method laid down in the manual. If drift is still experienced, check R327/8, Q307 and C309 which could be leaky.

Will not stop sweep tuning: Ident at pin 29 of IC300 missing when a video signal is passed. Cause may be pin 6 of K300 open-circuit or any components associated with Q310/1.

Slow tuning and slow function operation: Scope the SDA and SCA lines. If there are bursts of pulses, not continuous, IC900's 12 V supply is missing (text only models). This upsets the data and clock lines. Check where the tracks go via the small interface PCB: the 12 V line is likely to be broken here.

Keyboard matrix faulty: The cause is usually K301 or the ribbon wire broken at the control PCB. If, with Turkish produced models, only one button is faulty it can be removed, rotated through 180°, and refitted. With Romanian produced models the button must be replaced if cleaning does not cure the fault.

No OSD or wrong colours: The outputs at pins 22/23/ 24 of IC300 are fed to IC500 via a resistive network and IC302. If one of the colours is/are missing, check IC302 and the resistor matrix. Check the V synch or sandcastle inputs at pins 26/27 of IC300 if there is no OSD.

OSD display cramped: R362 sets the OSD timing oscillator. C315 is the timing capacitor.

OSD jittering: The V sync signal is missing.
The microcontroller won't come out of standby unless the mains button is held in: IC300 has been damaged by a CRT flashover. For protection, fit a 100 nF capacitor between pins 36 and 41.

TV starts up without start-up contacts: D308 is shortcircuit.

Memory will not store and fast sweep on first pass: R391 is open-circuit.

Memory will not store: Check whether R390, R369 or R370 is open-circuit. IC302 could be faulty.

Fusible resistor R1329 (33 2) open-circuit: This can occur with non-text sets. Some batches of IC1300 with date codes 5 W or 5 WX can cause large currents to flow when C1323, which is fitted to protect IC1300 in the event of a CRT flashover, is 100 nF . Reduce the value of Cl 323 to 4.7 nF - it will still provide protection.

Teletext

The text chip set is totally different from that used in the 100 chassis. It's controlled by IC300 via an $\mathrm{I}^{2} \mathrm{C}$ bus. While various options could be fitted, i.e. Fastext, Tops Text or different languages, in production the chassis was fitted with only a standard four-page text option.
The text contrast is not set by the microcontroller chip: it's set by a resistor network around IC302.
Text faults are as follows.
No text, bar at top left of screen when text is selected: The SCL line to IC901 travels around three-quarters of the PCB at the edge. In some cases this track may have been broken or badly etched around the corner, where there is a mounting hole.

No text, blank raster: Check the RGB outputs from IC901. Check the sandcastle pulse input at pin 11 of IC901. Check the I ${ }^{2} \mathrm{C}$ clock and data lines to IC901.

Corrupt text: Check the alignment of the video detector coil L102 on the main PCB: try turning its core a quarter of a turn each way to correct. IC900 could be faulty; C917/1917 (1nF) could be leaky; C916/1916 (470pF), C914/1914 (270pF) or C913/1913 (100pF) could be open-circuit.
The problem can also be caused by RAM (IC902) address or data failure: the display will be random, i.e. the symptoms may change each time text is selected.

No text, headers and page no. OK: C915/1915 (22nF) is open-circuit.

No text, page no. only: X901/1901 (13.875MHz) could be faulty. Any of the following could be open-circuit: C909/1909 (27 pF), C912/1912 (15 pF), L900/1900 $(15 \mu \mathrm{H})$.

Text not synchronised: No video input via K900 or X900/C908 misaligned.

Striations

In its unmodified form this chassis can show unacceptable striations because of excessive radiation from the line output transformer and the long leads that connect the main PCB to the TCR panel. Several modifications, as follows, are required to cure the problem:
(1) Fit a screening can around the LOPT.
(2) Remove connector K501 from the main PCB. If it has not been modified, remove the ribbon wires to pins 8 and 9 and make the same disconnection at the connector on the TCR panel. Fit a small DIMS screened lead to the connector at the TCR end: connect the other end to a hole adjacent to R508 and the luminance delay
line (only the centre wire is connected at this end).
(3) Change the value of C 009 from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ or replace the Telefunken 3010 tuner with a Philips type U910.

Flashovers

Quite a number of 20 in , sets were fitted with an Orion 22 mm mini neck tube. This is prone to flashover, which can destroy IC300 (PCA84C640/030), D00I (ZTK33) and IC500 (TDA3561). These components can be protected, without need to replace the tube, by carrying out the following modifications:
(1) To protect IC300, add a 100 nF capacitor between pins 36 and 41 , on the rear of the PCB.
(2) To protect D001, increase the value of C 001 from 1 nF to 100 nF .
(3) To protect IC500, add a $100 \mathrm{nF}, 250 \mathrm{~V}$ capacitor across C709 on the tube base panel.

Remote Control Units

The handset contains an SAA3010 chip with a matrixstyle keyboard and a pair of IR diodes. If there's no operation, check the output from the IR detector. If there's no output, check the battery voltage, the battery contacts, the ceramic resonator and the IC.

Make sure you get your copy of TELEVISION

It can be difficult finding a copy of Television at local newsagents. The number of magazines being published keeps on increasing, which means that newsagents have less shelf space for the display of different publications. Specialist magazines in particular get crowded out.

There's a solution to the problem. Most newsagents provide "shop-save" and/or homedelivery services. There's no charge for a shop save. You simply ask your newsagent to order a copy for you: it will be kept on one side each month ready for you to collect. Home-delivered copies are ordered in the same way, but often incur a delivery charge.

A newsagent can order any magazine for you, whether or not the shop normally stocks it.

If you buy your copies of Television from a newsagent and want to make sure you get every issue, just ask at the counter.

Part 3 of K.F. Ibrahim's series tells you everything you need to know about the various types of memory devices and the way in which computer memory is used

Operation
 \& Repair

Acomputer requires memory devices to store programs and routines. These consist of sequences of instructions and related data. Memory is also used to store temporary or permanent data that's used or created by the program. When a program is being run, the CPU will need access to the memory store at a rate of $10-50 \mathrm{MHz}$.
In theory any type of memory store can be used, including a disk drive, provided it's large enough to store the program instructions and associated data. But because disk drives are extremely slow in comparison with the speed at which the CPU operates, use of them as the main processor memory is impractical - the processor would spend more of its time waiting for access to the disk drive than carrying out program instructions. Thus the main memory, where application and other support programs are loaded, must operate at a speed comparable to that of the CPU. This means a memory store that consists of integrated circuits. A small amount of memory is also provided in the processor itself.

Memory chips

Two main properties determine the use of particular types of memory chip: these are the storage capacity

Table 1: Memory chip comparison.

Property	DRAM	SRAM	ROM	EPROM	EEPROM	Flash
Capacity	MB	KB	KB	KB	KB	KB
Speed (ns)	$60-120$	$20-40$	200	400	400	100
Life span	Long	Long	Long	Short	Short	Short

(size) and access time (speed).
A memory chip contains a number of locations, each of which stores one or more bits of data (the bit width). Storage capacity is the product of the number of locations multiplied by the bit width. For example a chip with 512 locations and a 2-bit data width has a memory size of $512 \times 2=1,024$ bits. Since the standard unit of computer data is a Byte (8 bits), this storage capacity is normally expressed as $1,024 \div 8=128$ Bytes.
The number of locations depends on the chip's address width. For example a 2 -bit data width chip with 10 address lines has $2^{10}=1,024$ locations. This is referred to as 1 K locations. Given an 8 -bit data width, a 10 address width chip has a memory size of $1,024 \times 8=1 \mathrm{~K}$ $\times 1$ Byte $=1 \mathrm{KByte}$ or 1 KB .
In practice a number of chips are usually connected in parallel to form what is known as a memory bank.
Access time is the speed at which a location within a memory chip can be made available to the data bus to which the chip is connected. It's defined as the time interval between the instant when an address is sent to a memory chip and the instant when the data stored at the address location appears on the data bus. Access time is specified in nanoseconds (ns). It varies between 20 ns and the relatively slow 200 ns. Table 1 compares the characteristics of various types of memory chip.

Chip markings

The marking on a memory chip indicates its size and speed. A typical configuration is

XXXYZZZ-S
where XXX is the manufacturer's identity, Y the bit
(data) width, ZZZ the number of locations in K and S the speed in ns. A speed indication of - 60 means a speed of 60 ns . Sometimes the last digit is missing, e.g. - 10 . This indicates a speed of 100 ns , since the fastest access time is 20 ns . The number of locations (two or three figures) is a standard size, e.g. $64 \mathrm{~K}, 128 \mathrm{~K}, 256 \mathrm{~K}$ and 512 K . One Mega Byte (MB) is usually indicated by $1000,1024,100$ or $10,4 \mathrm{MB}$ by 4000 or 400 . The number to the left of the location specification is the data width, in bits. Hence TMS 841 128-7 indicates a chip with 128 K I-bit locations and an access time of 70 ns .

RAM

The Random Access Memory (RAM) is a volatile memory chip that can be used to read data from or write it into - it's also known as a read/write memory. Data is held in the device for as long as DC continues to be applied to it. There is random access to locations by putting the selected location address on the chip's address lines. Fig. 1 shows RAM chip connections. In addition to the address lines and the data input/output connections there are three control lines, which are all active low: write enable ($\overline{\mathrm{WE}}$) goes low when the CPU wishes to write (insert) new data at the selected location; output enable ($\overline{\mathrm{OE}}$) goes low when the CPU wishes to read (extract) data from the selected location; chip select ($\overline{\mathrm{CS}}$) goes low when the selected location is within the address range allocated to that particular chip.
There are two main types of RAM, dynamic (DRAM) and static (SRAM). DRAMs store information in the form of a charge on a MOS capacitor. Because of leakage, the charge is lost and thus has to be restored at frequent intervals - between $2-4 \mathrm{~ms}$. This process is known as refreshing the memory cells. The advantages of a DRAM are high storage density and very low power consumption. SRAMs use flip-flops as the basic storage cell and require no refreshing. They are very fast: the access time is 20 ns or less, compared with a DRAM's 60 ns . But they are more expensive than the dynamic variety. This inhibits their use as the main memory store in a computer system.

Multiplexing

Because of their low cost and high storage capacity DRAM devices provide the bulk of computer memory a few Mega Bytes. As the number of address pins that would be required to accommodate this memory size is physically inhibitive for manufacturing purposes, address multiplexing is used. Fig. 2 illustrates this.
A multiplexer chip receives the full complement of twenty address lines from the address bus. The address is then fed to the memory chip in two stages, first A0A9 then A10-A19 - to the same memory chip pins. Two memory chip control pins, /CAS (Column Address Strobe) and /RAS (Row Address Strobe), route the two address sets to two internal latches. The full address is then held within the memory chip for long enough to give access to data at the selected location.

NV-RAM

The data stored in a RAM chip can be preserved when the mains supply is disconnected by using a back-up battery to maintain the DC supply. To avoid the need for back-up batteries the non-volatile RAM (NV-RAM) can be used. In an NV-RAM chip each memory cell has a shadow non-volatile storage transistor. Data is fed to the cells in the normal way, but can be transferred to nonvolatile storage cells when an enable signal is applied. The main disadvantage of this type of device is its reduced component density - about five times the chip

Fig. 1: Connections to a RAM chip.

Fig. 2: Principle of multiplexing.
area of a normal RAM is required to provide the same storage capacity. Another disadvantage of the NV-RAM is its relatively long access time.

ROM

Although computer memory consists mainly of RAMs, ROM (Read Only Memory) devices are also required. They store the start-up program, configuration details, input/output routines and conversion tables. Compared with RAMs, ROM devices are slow, with a typical access time in excess of 200ns. This makes them unsuitable for applications, such as video graphics, where fast memory access is required. There are several types of ROM device.
Mask ROM is a non-volatile memory that stores data permanently. The stored data can only be read: new data cannot be written into the device. A ROM of this type is programmed by the manufacturer in accordance with a preset specification, and once entered the data cannot be altered.
PROMs (Programmable Read Only Memories) fulfil the same basic function as a ROM device but can be programmed by the user, a process known as 'blowing' the chip. Once it has been programmed, a PROM cannot be altered.
The EPROM (Erasable Programmable Read Only Memory) overcomes this limitation, enabling the user to delete or erase the stored data and thus change the program. The program stored in an EPROM can be erased by exposing the memory cells to ultra-violet light via a 'window' in the IC package. This process takes 20-30 minutes, after which the IC is in a 'blank' state ready to be reprogrammed.
The EEPROM (Electrically Erasable Programmable Read Only Memory), which is also known as an EAROM (Electrically Alterable Read Only Memory), can be programmed and erased while still in circuit by the application of suitable electrical signals.

A Run-on Timer Circuit

This delayed switch-off arrangement, devised by Keith Cummins, could find several uses. The basic aim was low cost with reliability

There are situations where something needs to be switched off, but not immediately. My problem arose with an extractor fan that vented steam from the shower: it was a nuisance to have to get up and switch it off after going to bed. Hence this run-on timer, which had to be inexpensive but reliable.

Design Considerations

The power supply is often the most costly part of a piece of equipment, so I decided to investigate the feasibility of a design that didn't require a mains transformer. As the idea developed, it became clear that the unit could be used to replace a switch connected by a two-core cable. This opened up a further application: it could be retro-fitted to control lighting.
The delay time often needs to be quite lengthy, up to say fifteen minutes. While a 555 timer chip can provide such a delay, the time-constant has to be correspondingly long, involving high resistance and large capacitance values. I've always tried to avoid this, believing it preferable to use a binary divider to count down clock pulses generated at a higher frequency. This is the technique used in the design presented here.
Use of a counter is also helpful in that it can provide an output to drive a flashing LED. The unit employs two industry-standard CMOS ICs that are readily available and cost a matter of pence.
Fig. 1 shows the basic switching and power supply arrangement. It operates by 'stealing' voltage from the load. In the 'off' state the switch is open. Mains voltage is fed via the load, in my case the fan motor, to a bridge rectifier which produces an output that consists of unidirectional peaks. As a result capacitor C is charged via resistor R, the potential thus developed being held at 12 V by zener diode D. The CMOS circuit used requires only a small current, so the value of R can be high. The small current $(2 \mathrm{~mA})$ is insufficient to affect the load.
In the 'on' state the switch is closed, shorting out R. The output from the bridge rectifier is clamped at 12 V by the zener diode, and the rest of the mains voltage appears across the load.

In the circuit to be described, the switch in the basic circuit is replaced by a set of relay contacts.

Full Circuit

Fig. 2 shows the complete circuit. In this practical arrangement a fuse is included and a VDR provides protection when an inductive load is being switched. The relay contacts are arranged as two sets in series to provide adequate voltage-handling capability.
IC1, a 4001 device, contains four two-input NOR gates. Two are used as a LF oscillator to provide clock pulses for the 4020 counter IC2. The other two NOR gates are used as a latch.
In the load-off state, rectified mains pulses, attenuated by R2 and clamped by D2, are applied to the latch (pin 1), which is thus held in its reset mode. Pin 4 is high, so Trl is off. Thus no voltage is applied to the relay coil or $\operatorname{Tr} 2$ and the relay contacts are open.
When SWl is closed, 12 V is applied to pin 6 of IC1. Pin 4 goes low and Trl turns on. Although the current via R1 is insufficient to energise the relay, C 1 has sufficient charge to pull it in, closing its contacts. When the contacts close, the much larger current flow provides enough energy to keep Cl charged and the relay energised.
Closing SW1 also resets IC2 (pin 11). Its outputs, including the ones which we are using here (Q4 pin 7 and Q14 pin 3), are low. As Tr 2 now has voltage at its emitter and Q4 is low, $\operatorname{Tr} 2$ switches on and D4 lights up.
When SW1 is open-circuited, the supply to pin 6 of ICl (set) and pin 11 of IC2 (reset) is removed. The latch does not reset, because Q14 is still low and there are no attenuated mains pulses via R2 - as the relay contacts are closed, the input end of R 2 is at 12 V instead of receiving 340 V peaks.
IC2 now starts to count each input from the clock oscillator, which runs at about 5 Hz . Output Q4 pulses high and low, switching Tr 2 off and on. The LED thus flashes to indicate that the unit is timing out. This is especially useful if a pull-cord switch is used.
Once IC2 has counted 8,192 transitions, output Q14 goes high. This resets the latch. Trl switches off, the relay and consequently the load are de-energised, and the LED goes out. The mains-derived reset pulses ensure that the latch cannot set 'by accident', and the unit awaits the next 'on' instruction.

Delay Time

The clock oscillator frequency determines the delay time. It can be adjusted by altering the value of R5. The frequency of a complete cycle, i.e. two transitions, is given by

$$
f=1 /(2.2 \times \mathrm{R} 5 \times \mathrm{C} 2)
$$

With the values used here, this works out at 4.54 Hz . When I checked this I found that the actual frequency with the prototype unit was 5.2 Hz , presumably because of component tolerances. The number of transitions per second is thus 10.4 and the total delay is $8,192 /(10.4 \times 60)$ $=13$ minutes.
If you want a different time, just change the clock frequency. For example, if R5 is $470 \mathrm{k} \Omega$ instead of $1 \mathrm{M} \Omega$ the delay time will be about 6.5 minutes. Increasing the value of R 5 to $2 \cdot 2 \mathrm{M} \Omega$ will provide a delay of nearly half an hour.

Design Detail

If you need to be able to cancel the run-on, simply connect a push-to-make switch in parallel with D2. The latch can then be reset manually.
I would like to be able to claim that the circuit worked perfectly first time. It didn't! At the end of the time-out the sequence would sometimes immediately restart. The cause was a transient induced on the latch set line when the switch was off and the opening relay contacts interrupted the inductive load. The problem was cured by adding C3.

Construction and Testing

Stripboard is suitable for constructing the unit. A point to watch is the clearance between the high-voltage part and the rest of the circuit. It's best to cut away unused strips and provide a clearance of at least 3 mm . The stripboard panel can be housed in a small plastic box: I used a small Maplin project box that cost about $£ 1.50$.
Because of the lack of mains isolation, you need to be careful when testing the unit. I used a mains isolating transformer and, as the load, a 15 W bulb. You can then connect the scope's ground to the notional 0 V line with relative safety - though you still don't want to place a finger across the open relay contacts!
The current switching capacity of the unit is determined by the ratings of the bridge rectifier, the relay and D1, which is a 5 W device permitting approximately 400 mA . The quiescent dissipation is about 500 mW , mostly in R1, costing possibly 30 p a year. I see no reason why these components shouldn't be 'beefed up', except perhaps that the energy 'stolen' from the load and dissipated in a large zener diode could be considered excessive.

Lastly, beware: C 1 has to charge via R 1 before the circuit will work. So, when power is initially applied, allow about twenty seconds to elapse before switching on. Should the power fail while SW1 is closed, i.e. in the per-manent-run state, switch off to enable Cl to charge fully when power is restored. Under normal conditions, with power constantly applied, the switch can be operated without any limitations.
If the unit is to work in the run-on mode only, without the permanent-run facility, replace the switch with a push-to-make button or a biased-toggle type.

Fig. 2: Circuit diagram of the complete unit.

Parts list

C1	2,200 $\mu \mathrm{F}, 16 \mathrm{~V}$ electrolytic		
C2	$0.1 \mu \mathrm{~F}, 63 \mathrm{~V}$ polyester		
C3	10 nF , 63V ceramic		
BR1	KBPC104	400	1A
D1	1N5349B	12 V	
D2, 3	1N4148		
D4	LED not critical		
IC1	4001B		
IC2	4020B		
Tr1, 2	ZTX550		
VDR	275V AC transient voltage suppressor		
R1	120k Ω, 1W 5\%		carbo
R2	$2.2 \mathrm{M} \Omega, 0.5 \mathrm{~W} 5 \%$		high-
R3/6/7/9	10 k ת		
R4	$100 \mathrm{k} \Omega$		
R5	$1 \mathrm{M} \Omega$		
R8/10	$3.3 \mathrm{k} \Omega$		
R11	$1 \mathrm{k} \Omega$		
All 0.25W 5% metal film unless otherwise stated			
F1	500 mA quick fuse		
SW1	Switch as required		
RL	Maplin BT47/6 relay, $12 \mathrm{~V} 750 \Omega$		

PX1 (Maplin) ABS box ($49.5 \times 99.5 \times 40 \mathrm{~mm}$)
IC sockets, stripboard, sleeving, interconnecting wire etc.

DX and

Satellite Reception

Terrestrial DX and satellite TV reception. UK transmissions update
and latest satellite TV news. Eclipse '99. The bookies TV channel.
Roger Bunney reports

The Maharishi Open University, received as a digital signal from Eutelsat II $F 3$ at $36^{\circ} E$.

Prior to the start of the 1999 Sporadic E season in this hemisphere the first SpE signals were received by Ryn Muntjewerff in the Netherlands on March 13th. He logged RAI (Italy) ch. IA for over half an hour, in the morning. RTS (Serbia) ch. E2 was also present during this period. Two Czech Republic transmitters, operated by TV Nova, are possible SpE catches: Cukrak ch. R1 at 25 kW and Ceske Budejovice-Klet ch. R2 at 10 kW - these are transmitter powers, so the ERPs should be several times greater. There has not been any F2 activity to date, and I don't expect reception of this type until the autumn. Tropospheric propagation at UHF lifted slightly in mid-March, but produced only Benelux signals in SE England.

A letter from Todd Emslie

(Ryde, NSW, Australia) mentions late-season SpE reception from New Zealand during February/ March. His TE (transequatorial) skip reception of signals from China and other Asian sources was perhaps more dramatic. Late afternoon/evening TE reception appears in his log from March 7th onwards. It includes Chinese reception in chs. $\mathrm{C} 1(49.75 \mathrm{MHz})$ and C 2 (57.75 MHz), with video and audio carriers plus offsets. Other TE reception includes Thailand and Malaya ch. E2.

It's interesting that Todd heard the 'Russian Woodpecker' at $43 \cdot 65 \mathrm{MHz}$ on several occasions. This is a mega high-power jammer. I thought that it had long since ceased to operate - it was the curse of short-wave listening!

Most of these signals were picked up by Todd's Icom R7000 scanner rather than a TV set, but it does show that the maximum usable frequency (MUF) is on the way up. In a final comment Todd says that he is not too happy about the move from analogue to digital TV. He asks whether there is a chance of digital DX?

Enthusiasts have in general been cautious about the advent of digital satellite TV. It has been somewhat painful, with most of us experiencing a sharp learning curve. The ideal digital satellite receiver for 'DXing' has still to appear: most models seem to have odd quirks and operating problems. But we are slowly coming to grips with digital
sat zapping. Perhaps we will be successful with digital terrestrial DX-TV, though I suspect that this will be a much more frustrating matter, and that terrestrial DX-TV will largely come to an end with the cessation of analogue TV. Maybe I'll be proved wrong.

Satellite Sightings

There has been much about the Kosovo crisis from the Clarke belt. Unlike earlier conflicts (Bosnia, Baghdad) when satellite uplinks continued to operate in the war area, the Serbs quickly kicked out most journalists/TV crews who departed to Italian air bases or neighbouring countries. Lack of coverage initially concealed the full extent of the ethnic cleansing horror, but the refugees who appeared at the borders soon confirmed what was going on. As I write this at 2100 on 30/3/99, the APTN feed (11.684 GHz H, SR 5632 , FEC 3/4) is uplinking from Skopje with depressingly familiar pictures of the refugees. The UK Sislink 29/UKI148 , with ident flagging as ' 9 MHz 2PAL', is at Gioa Del Colle ($11.580 \mathrm{GHz} \mathrm{H}, \mathrm{SR}$ and FEC same as APTN).

Jim Scofield (Lake, IW) has provided an update of Yugosaly zone uplinks via Eutelsat II F3, which is now at $36^{\circ} \mathrm{E}$. CNN has moved its uplink to the Italian airfield at Monte Negro, though the flag indicates that a Newsforce (Farnham) uplink unit (NewsforceCNN) is being used. Jim mentions an RTV

Moscow feed that carries BBC newslinks at 11.6 GHz H , again $5632,3 / 4$. Other sightings include Belgacom digital at $11 \cdot 173 \mathrm{GHz} \mathrm{H}$, and a weaker feed at 11.096 GHz H that causes digital breakup with ITV and Channel 4 inserts (both 5632, 3/4). Amongst all these Jim noted a Russian programme, suspected as being Armenian, at 12.578 GHz H and the unusual 4338 SR, 1/2 FEC.

Most of these were present when I checked with my RSD ODM300, though several of the signals were dancing tantalisingly at half strength on the signal-strength scale, with the FEC etc. in lock but picture sync refused. It's clear that in times of conflict 'emergency' news feeds will be digital, the advantages being lower power, smaller dishes etc. Satellite enthusiasts will have to make the move to digital sooner rather than later. I've seen no analogue feeds from the Yugoslav conflict region yet.

It was interesting to monitor the RTS satellite programme from Belgrade via Eutelsat II F2 at $10^{\circ} \mathrm{E}$ (11.596 GHz H in clear PAL): the bombing has been reported with no mention of the plight of the Albanians. Programming included many repeated video inserts that feature a montage of Serb jets in a clear sky, army personnel running and firing weaponry, the navy patrolling empty seas etc., all for morale boosting.

A couple of readers report seeing Yugoslav news/war material via Intelsat 801 at $31.5^{\circ} \mathrm{W}$, so it's worth checking across the Clarke belt. Eutelsat W2 at $16^{\circ} \mathrm{E}$ is another news bird: it operates in the Telecom band - check the 12.5 $12 \cdot 6 \mathrm{GHz} \mathrm{H}$ spectrum. Hugh Cocks (Algarve) has sent a long listing of Yugoslav feeds - all digital!

Eutelsat II F3 at $36^{\circ} \mathrm{E}$ is a busy craft. Most mornings feature live inserts for the Channel 4 Big Breakfast programme (try 11.674 GHz H , analogue) while the BBC's SNG unit UKI-234 starts early with Scottish input. On the 30 th , at 11.010 GHz H PAL with 6.6 MHz sound, there was coverage of Alexander Ferguson, MBE, being given the freedom of Aberdeen. This was from 1800 onwards and included a trip around the town in an open-deck bus. Tesco's car park at Northampton was the scene of an event on the 28th, with CITV uplinking live material for a children's programme at about $0900(11.636 \mathrm{GHz}$
H); then, at 1110, SIS 18 UKI-45 came up (on the same frequency) with It's Your Shout live from Winson Green prison.

A test transmission for Kurdish TV. appeared earlier in the month via Eutelsat W2 at 16° E. The smudgy VHS-quality pictures relating to hostilities were in clear PAL from $1700-1900$ at $11 \cdot 163 \mathrm{GHz} \mathrm{H}$.

In all a busy month. Perhaps the most unusual sighting was via PAS-3R/6 ($43^{\circ} \mathrm{W}$) on March 12th at 12.698 GHz V PAL when extracts from the American Robin Byrd Show, produced in "midtown Manhattan", presented several min-imally-clad ladies doing remarkable things, then with equally minimal-ly-clad males participating - hard porn in fact, with music and in clear PAL. The Sound of Music was never like this! Uplinked by the SITN facility in New York, the transponder's carrier was subsequently cut and the screen went to noise .

The Bookies TV Channel

 Several trade readers have queried whether domestic customers can subscribe to the SIS TV racing feeder service that can be seen in high street bookie shops. The SIS coverage is clearly marked in the horse-racing sports pages of daily newspapers.I checked with Gordon Smith of SIS who confirmed that the service is for licensed bookie shops only and is not available to domestic viewers, even if they consider themselves to be professional gamblers and are prepared to pay the subscription fee and for the installation (via $27.5^{\circ} \mathrm{W}$), decoder etc. The bookie SIS service includes other sports such as greyhound racing. SIS also produces the Racing Channel via Astra. This is intended for the viewing/gambling public.

Terrestrial Matters - UK

NTL has recently signed contracts with the ITV companies, including Channel 4, to maintain analogue transmissions throughout the UK until 2012, in effect confirming that the present analogue system will remain in operation for the next decade at least. But there are optout clauses should the government of the day decide on an earlier close down in favour of total digital terrestrial transmission. The total contract is worth over $£ 500 \mathrm{~m}$.

The use of SRBR (Short Range Business Radio) equipment in the

49 MHz and 461 MHz bands for paging is to be discontinued from December 31st 2003. The issue of SRBR licences will end in Seplember. Eight new channels for speech/paging will be provided between $446 \cdot 00625-446.09375 \mathrm{MHz}$, with 500 mW maximum ERP, under the PMR446 authorisation code.

There have been murmurings
Aerial Techniques

UNIVERSAL DIGITAL VIDEO FORMAT CONYERTER

(All prices are inclusive of VAT, delivery by courier $\mathbf{£ 1 0 . 0 0}$)

Jordan TV test pattern via the Eutelsat Hot Bird slot at $13^{\circ} \mathrm{E}$.
about digital transmissions causing interference to established analogue transmissions. My domestic terrestrial TV reception is from

Rowridge, IW (group A). BBC-I on ch. 31 has digital transmissions on the adjacent chs. 30 and 32 . As a result my previous noise-free (Sky News quality) picture has become grainy, the effect being similar to that produced by a weak signal. An ex-TVS colleague near Eastleigh has been suffering from Nicam noise problems with BBC-1 since the start of the digital transmissions from Rowridge. The digital transmissions seem to ignore the normal channel guard spacing for minimal adjacent channel interference. Have other readers been experiencing interference to their local signals? Perhaps someone from the broadcasting side would like to comment.

Eclipse '99

On August 11th there will be a total eclipse of the Sun across the South West (Cornwall, S. Devon, Portland and part of the Channel Islands) between 1012-1018 GMT. The path of darkness will then track south east to Le Havre (1020), Munich (1038) and the Hungarian/Austrian border (1053). When the sun's radiation is removed, partial night-time propagation conditions will be present. For example E-layer reflection will occur in the MW band because of loss of the absorbent daytime D layer. Unusual fading effects will occur along the path of the eclipse.

In theory August will still be within the ' 99 SpE season, so unusual sitings may occur in Band I. Unfortunately it will be a
working day for most of us, but if you are at home that morning I hope you will take advantage of this once-in-a-lifetime opportunity - the next total eclipse will be in 2090 . 1 suggest you start monitoring about half an hour before the eclipse, to be able to assess 'normal' conditions. Monitor Band I (ch. E2/Rl if clear of interference) and, for interest, perhaps a MW frequency. Please let me know of any unusual signal propagation. Don't sit indoors throughout the event, and pray for clear skies!

The Antipodes

Wenlock Burton (Victoria) reports that during the HSV-7 digital test transmissions on ch. A6 he lost his reception of VTV-6 Ballarat under digital white noise. The digital test transmissions were subsequently suspended because of concern, from the Epworth hospital, over possible interference to heart monitors. The suspension was announced by GTV-9 and has been confirmed by Robert Copeman.

This solar cycle may present the last opportunity for us in the northern hemisphere to receive low-VHF TV transmissions from Australia and New Zealand via F2 reflection. So let's hope for good conditions this autumn.

A few Australian ch. A0 $(45 \cdot 25 \mathrm{MHz})$ and New Zealand ch. 1 (46.25 MHz) transmitters are still on air. In Australia there are just ABNM-0 Wagga Wagga, New South Wales, and RTQ-0, Northern Queensland. In New Zealand there are TV-1 transmitters at Invercargill (South Island), Wellington and Hamilton (both North Island). In addition there's a ch. 1 transmitter in the Cook Islands, 2,000 miles to the NE of New Zealand (for Cook Islands Television).

Satellite News

New slot: Eutelsat has established $12.5^{\circ} \mathrm{W}$ as its "Atlantic Gate" for transatlantic operation, with TV, data and internet carriage. It will use Tele-Globe's teleport and terrestrial fibre-optic cable in North America. The old Eutelsat I F5 and TV-SAT-2 craft have been positioned at $12 \cdot 5^{\circ} \mathrm{W}$ and are in operation - downlinks have been monitored in the UK. It's possible that these old craft may be subject to a degree of inclined orbit movement as their on-board sta-
tion-keeping fuel stocks dwindle. Launches: AsiaSat-3S should be in orbit by the time this is read: it's to be slotted in at $105 \cdot 5^{\circ} \mathrm{E}$. Orion-3 will shortly be at $139^{\circ} \mathrm{E}$, carrying the usual Ku -band load and transponders that give extended C -band coverage of $3 \cdot 4$ $4 \cdot 2 \mathrm{GHz}$ with linear polarisation. New channels: BBC Worldwide Pay-TV recently launched an expanded service to North/Central Africa as part of a major expansion of its MultiChoice digital package, offering eighteen hours of programming daily. Next stop in the expansion of regional coverage will be the Middle East. Summer 2000 should see BBC Worldwide extended to India/S. Asia.

A new digital satellite news service from the German PRO-7 group, called N 24 , is due to commence next January, providing financial coverage. Canal Plus plans to launch a rolling news service in November to rival TFl's La Chain Info.

Zone Vision, a Polish entertainment channel, started on April lst. It plans to extend to Romania and Russia. A version of The History Channel to cover Japan will be launched later this year. Music channel MTV Networks Europe is to open three new round-the-clock digital music channels by September for the UK/Ireland - VHl Classic, MTV Base and MTV Extra.
News gathering: NTL has merged with the Swedish Teracom AB SNG group, forming one of Europe's largest newsgathering operations. The move will provide access to over twenty SNG/OB units and to teleports in the UK, Sweden and the USA. France: The TPS digital service now includes several terrestrial channels, TF1, France 2, France 3 and M6. Rival Canal Satellite Digital already carries these channels as part of a ten-year agreement.
Nasty story: It seems that while PAS-8 ($166^{\circ} \mathrm{E}$) was being prepared for launch by a Russian Proton rocket a faulty Ku-band PCB was discovered. A replacement was fitted, but an error was made when the aerial feeds were reconnected. As a result the footprints are far from correct: the expected west spot beams look east while the east spots point west. Ooops. Information from SatFACTS, NZ, March 1999.

John Edwards' Casebook

Matsui 209R

The owner of this set was a formidable woman. "Look" she said, pointing at the set. I obeyed immediately. "Those twinkling dots are ruining the picture". Teletext lines extended from the top of the picture to half way down. I told here what they were. "Well, I don't know about that" she said, "but in case you hadn't noticed it, this is not a teletext set." I decided to say no more and just fix it.
In any set the cause of this problem is usually a capacitor in the field timebase drying up or changing value. I got out my 'useful capacitor box', which contains a couple of each type of electrolytic ranging from $10 \mu \mathrm{~F}$ to $470 \mu \mathrm{~F}$ and from 63 V to 400 V working. Once the PCB had been slid out from its retaining grooves, I had easy access to all parts. The field output circuit was easy to identify - there are two Lshaped heatsinks attached to the output transistors Q302 and Q303. All the electrolytic capacitors in this area looked tired. I decided to replace a few and check the results.
I ended up with a perfect picture When I got back to the workshop I used my scope's built-in component tester to check the capacitors I had removed from the set. Over the years the tester has proved to be a really useful tool, especially with transistors and diodes that appear to be OK when checked with a meter but prove to be faulty when checked with a tester/scope display.
The results were quite interesting. In fact I was surprised that the only symptom was teletext interference. C301 $(100 \mu \mathrm{~F})$, the reservoir capacitor for the supply to the field output stage, was very leaky and measured $12 \mu \mathrm{~F}$. The bootstrap capacitor C302 ($10 \mu \mathrm{~F}$), and C303 $(4.7 \mu \mathrm{~F}, 160 \mathrm{~V})$ which is connected between the collector of Q302 and
chassis, were both open-circuit. And $\mathrm{C} 316(10 \mu \mathrm{~F}, 100 \mathrm{~V})$, which is actually the reservoir capacitor for the supply to the RGB output stages, measured about $2 \mu \mathrm{~F}$.

Matsui 1465

This was a classic case of multiple failure. The set's owner, an old boy, said "it's working of sorts: I can hear fizzing inside, but no matter how long I waits it don't do nuthin' else." I removed the back cover and, in view of his description of the fault, was not surprised to find a puncture hole in the line output transformer's case, adjacent to the focus control. So I took the set back to the workshop and ordered a new transformer.
When it arrived I set about removing the original one. While doing so I noticed, towards the front right-hand side of the PCB, the remains of a small electrolytic that had once occupied position C240. The now empty case, which I found in the corner of the cabinet, was marked $2 \cdot 2 \mu \mathrm{~F}, 50 \mathrm{~V}$. So it seemed that there was an excessive voltage problem. As further proof, R416 and R328 were burnt to a cinder. Time to investigate the power supply.
An external winding (three turns) on the LOPT feeds pulses back to the power supply. Would the power supply work without this feedback? I guessed that it should still provide an HT output and connected a 100 W bulb as a dummy load. With a meter to monitor the HT voltage, I slowly wound up the mains input via a variac. At about 150 V AC the power supply shrieked and howled in a most frightening manner. The meter read 140 V and rising!
There are only a few components in the power supply, so I disconnected and examined each of them. The cases of the two $4,700 \mathrm{pF}, 1 \mathrm{kV}$ pulse capacitors C808 and C811 were split, but
everything else seemed to be in order So I took a chance, left the STR5412 chip alone and simply replaced the two capacitors. The power supply then rewarded me with a silent 103 V HT supply. But what surprises lay in store for me when 1 fitted the new LOPT?
I installed the transformer and its overwinding, and replaced R416 ($7.5 \mathrm{k} \Omega$), R328 ($10 \mathrm{k} \Omega$) and C240. When I switched on there was field collapse. The cause turned out to be no 12 V supply at pin 2 of the TA7698AP colour decoder/timebase generator chip IC501 because D406 was shortcircuit and R435 (2Ω) open-circuit. When these items had been replaced there was still field collapse, plus a very loud, high-pitched whistle. The voltages around IC501 were all over the place and it felt warm. To restore the field scanning I had to replace IC501 and D242 (1N4148), which was short-circuit - it's in parallel with the previously replaced C240. There was now a normal snowy raster and sound.
When I tuned in a station there was a good picture and sound - but the set wouldn't store! Checks around the M58655P memory chip IV02 failed to reveal anything amiss. The all-important -31 V supply was present, the CS pin went low and so on. A new memory chip finally restored normal operation. As you will have guessed, this was another break-even/no-profit job.

Philips K30 Chassis

There was no field scanning and no 32 V supply. I soon found that the surge-limiter resistor R1590 (1-2 2) was open-circuit, but a replacement immediately failed. Further checks showed that the field scan coupling capacitor $\mathrm{Cl} 521(1,500 \mu \mathrm{~F})$ was shortcircuit. Once this had been replaced there was a superb picture. Relief all round!

We welkome letiers from our readers and try to publish as many as we can. You can send them typed, handwritten, or on disc. Address them to the Letfers Edifior, Room 1302,
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

DTT Reception

There were several references to digital terrestrial TV reception problems in the May issue. The cause of most problems is the quality of the installation, in particular the feeder, rather than the signal. A very high-quality screened cable is required.

As in the rest of our industry, the tendency over the past twenty years has been to achieve an acceptable picture and that's it! All too many people have ignored the need for quality aerial equipment. It's only in the UK that you find cheap contract aerials without a balun to maintain the 75Ω impedance. The attitude has been that if the picture is OK with a cheap aerial and cheap cable, why pay more?

We are now finding out why. The problem is not only with flats where mains and aerial cables are run close together. You get just as much trouble at individual houses from any electrical appliance within 50 yards. Even next door's lawnmower firing up on Saturday just as the match starts!

The causes of these problems are:
(1) Cheap imported cable with very poor screening properties, even though the loss per foot meets the required specification.
(2) Cheap contract aerials that have a wide acceptance angle and poor

Letters
front-to-back ratio
(3) Cheap or poorly fitted coaxial plugs.

In our experience the most common remedial work required at an ONdigital installation is to fit a quality aerial head with a balun, Volex CT100 screened cable and a high-quality plug that must be crimped or soldered to the cable where practical we use a one-piece crimp-on plug.
Dave Cooper,
www.bud-1.demon.co.uk

Hitachi 46TN Series

In connection with the article on servicing these sets (May issue) it is important to note that the HT should be 110 V with 21 in . sets and 146 V with 25 and 28 in . models. ZD950 is not a 10 V zener diode, it's a voltage reference diode (see comments on page 499, April issue, editor). If a 10 V zener diode is fitted in this position the HT will be very high (about 180 V) and the set will go into the protection mode. If the protection is then disabled, as many engineers tend to do in desperation, the result is damage in the power supply and line output stage.

With issue 5 and later PCBs Q902 and Q951 are type 2SA1390 and Q953 is type 2SC3413. The pin leadouts are different, and the print layout was changed accordingly. BC series transistors cannot be used as replacements.

B.S. Rahelu,

Hitachi Spare Parts.

PC Operation and Repair

A few points are worth making in connection with Part 1 of this series. At the bottom of page 389 it says three or four five-way connectors: Fig. 4 above shows, correctly, four-way connectors. There have been other types of disk drives and expansion slots. The PCI type expansion slot has now become predominant. Table 4 is correct, the text under Modern Motherboards
incorrect (female and male serial and parallel port connectors). Many PC manufacturers, not just IBM, use six-pin keyboard connectors. Alan Knight,
The Open University, Oxford.

Taxan

I note a request for information on a Taxan monitor in the May help wanted page and would like to take the opportunity to draw readers' attention to our web site address, which is
http://www.taxan.co.uk
There is much useful information here. Technical assistance is available at our e-mail address, taxan@taxan.co.uk Keith Caley, Engineering Supervisor, Taxan Engineering, Bracknell.

Anyone know the answer?

I had two problems with an Osaki P1420R portable. First, there was a raster but no picture or sound, as if the set was in the external-input or AV mode with no signal input. Secondly, the on-screen display corresponded with all the remote-control selections but, when the set's up/down buttons were used for channel change, there was always default to channel ' 32 '. Thereafter the buttons had no further effect. The channel OSD could be changed by remote control only.

I didn't have a circuit diagram, and it was made clear to me that the set had been bought cheaply and the owner wasn't prepared to spend much on it. But I decided, out of curiosity, to attempt repair. The nopicture symptom seemed to be a logical place to start.
I noticed that the set uses a TA7698AP colour decoder/timebase generator chip (IC201). I've had to replace this type of chip on many occasions, in various sets, for a wide variety of timebase and video faults. Fortunately I had a second-hand one in stock. So in it went. When I switched the set on again there was a good picture and sound. I confidently pressed the
front-panel channel button, then sank back into depression - the screen filled with snow and the onscreen channel number flashed 32 at me. Selecting channels by remote control restored normal operation.

I decided that the cause of the problem must be to do with the microcontroller chip's input scanning circuit, or possibly the chip itself. When I scoped the control buttons I found that there were scanning pulses across each one: they altered when the button was pressed. After checking a number of 1 N4148 diodes that seemed to be part of the channel-change circuit I came to the conclusion that the TMP47C434N3147 microcontroller chip was probably the cause of the trouble. Repair was rapidly becoming uneconomic, but I just had to know.

I ordered a new chip from SEME and, true to form, it arrived next day. I fitted it, then had to admit that I was beaten. The fault was still present. There was little more I could do, and after all the owner had said that it didn't matter - he only used
remote control. But I still want to know the answer. Does anyone out there know?
John Edwards,
30 Wendoyer Way,
Welling, Kent DÄl6 2BN.

Digital Repairs

People are beginning to ask me about digital receivers, which I don't repair. There are several reasons for this. First, most of them are still under warranty. Secondly, although Pace provides training courses for repairing its Sky digiboxes the investment in equipment required is quite high for a one-man business such as mine. In addition, I understand that the diagnostic software copyright belongs to BSkyB and cannot be released. Thirdly the other manufacturers of digiboxes don't at present offer training courses. Fourthly the digibox is so heavily subsidised that customers regard it as a $£ 50$ rather than a $£ 300$ product. As a result they expect very cheap repairs - despite the fact that a single memory chip can cost up to $£ 40$!

Fifthly some digital receivers are "grey imports" for which no service information or parts are available.

I could of course plunge in without a circuit diagram, as I have in the past. But although power supply repairs would be feasible, very little else would. The basic problem with a digital receiver is that there's no video or audio path to follow. The signal from the tuner disappears inside a very fast computer board with bus signal paths, then reappears as video and audio after digi-tal-to-analogue conversion. No one repairs PCs at component level nowaday - it's not cost-effective when a complete motherboard can be bought for $£ 50$ or less.

It's my view that digital receivers will, for the next couple of years at least, be dealt with like phones: a faulty unit is returned to a local dealer who sends it to a central repair depot. Very few small businesses will find repair work
worthwhile.
Jack Armstrong.
Middlesbrough.

> IS YOUR RENTAL BUSINESS EXPANDING?

Broughfame Ltd.
can help to expand your television/video rental business and increase your profitability. Our rental Finance Plan offers you financial facilities from £1,500 upwards.
Block Discounting finance also available.

For further details ring or write to: Broughfame Ltd.
115A St John's Hill, Sevenoaks, Kent TN13 3PE Tel: (01732) 743400 Fax: (01732) 743335
E-mail: R@Broughfame.TelMe.com http://www.elated.com/broughfame

Is looking for . .

ICs TRANSISTORs SEMIs an

 up hill struggle?A phone call to us could get a result. We stock a very wide range . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 1740 AD ADC AN AM AY BA Be BD BDT BDV BDW BDX BF BFR BFS BFT BFW BEX BFY BLY*BEXBS BR BRX BRY BS BSS BSV BSY BS̉̃ BUW BUX BUY BUZ CA CD CX CXA DÅ DG DM DS DTA DTC GL GM HA HCF HD H́GF IOL ICM IRF J KA KIA L LA LBLC LD LF LM M M5M MA MAB MAX MB MC MDA J MIEE MAF MM MN MPSTPSA MPSH MPSU MRF NJM NE OM OP PAPAL PIC PN RC S SAA SAB SAD SAJ SAS SDA SG SI SL SN 80 STA STK STR STRD STRM STRS SVI T TA TAA YAGTBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers' risk). We also stock a full range of other electonic components. Mail, Phone, Fax, Credit Card orders \& callers welcome

Fig. 3: The real and protected modes.

Furthermore individual locations can be erased and programmed without affecting the rest of the data pattern. As a result of location over-writing, the EEPROM has a comparatively short life span.

Flash RAM

The Flash RAM is an advance on the EEPROM. Once again all locations can be erased and reprogrammmed, this time using normal voltages that are available in the PC. Flash RAM also suffers from a short life span, and has a long access time of $60-150 \mathrm{~ns}$.

Real and protected modes

The original XT PC used an Intel 8086 microprocessor and had a total RAM space of 1MB. DOS was therefore designed to work within a 1 MB limit. When AT PCs were introduced with the Intel 80286 microprocessor, 16 MB of memory was provided for the processor to address. But to ensure backwards compatibility, i.e. ensure that adaptors and application programs designed to work with the XT could continue to be used with the AT system, the IMB limit was retained. A computer that operated within the 1MB limit was said to be operating in the real mode. See Fig. 3.
In order to address memory locations beyond the IMB boundary a special device driver (or program) was required. A PC was then said to be operating in the protected mode. The commercial need for backwards compatibility assumed by MS-DOS designers perpetuated
this unhelpful dual mode of operation. Other operating systems, such as $O S / 2$, were designed without this $1 M B$ limit. Windows incorporates a memory manager to cope with protected-mode operation.

Software requirements

PCs carry out their operations by following software programs. The main software program is an application program such as a wordprocessor routine, a database or a football or other game. To bring an application program into operation, DOS is instructed to load a file with an .EXE or a .COM extension from a disk drive, CD-ROM or other mass storage device into the system's RAM. Additional program data files may be loaded into RAM to enable the application program to be run, and as long as the application package is running these files must continue to be present in RAM.
In addition to the application program a PC requires a number of other programs so that it can perform tasks such as generating a video display, controlling a mouse, and executing DOS commands. These programs, known as memory-resident software, are loaded into the system memory (RAM) at the boot-up stage.
Utility software includes such routines as system BIOS, the video/graphics display program and other programs that control optional devices such as a mouse, a CD-ROM drive or a sound card.
Where these programs are provided in ROM or PROM packages they still require and must be allocated space within the total system memory.

Memory map

When DOS was designed, with the introduction of the XT PC, it accommodated both application and memoryresident programs within the IMB limit. Furthermore, DOS software requires that application programs must occupy contiguous memory locations, i.e. a memory space without any gaps in the entire range from the beginning to the end.
The original 1 MB of real-mode memory was divided into two parts: a lower 640 KB , known as the conventional or base memory for the application program and the transient programs; and an upper 384 KB , known as the upper memory area (UMA), for utility programs. Backwards compatibility made it necessary for this division to be continued and, until the advent of modern memory-management techniques, DOS applications were limited in size so that they fitted within the 640 KB of contiguous base memory. Memory space above 1MB is known as extended (protected-mode) memory. Fig. 4 shows a basic PC memory map, Fig. 5 an allocation of memory addresses and locations to various programs.
Although in theory 640 KB is available for software applications, in practice a large chunk of conventional memory may be occupied by memory-resident programs such as device drivers and TSRs (Terminate and Stay Resident programs). One way of maximising the memory space available for DOS application programs is by loading device drivers and TSRs into unused upper memory spaces, thus freeing precious base memory space.

Extended Memory System (XMS)

The memory of a system based on a 286 or higher processor can, as previously mentioned, extend beyond the 1MB boundary for processor operation in real mode. With a 286 processor the memory limit is 16 MB : with 386-, 486- and Pentium-based systems the limit is 4GB $(4,096 \mathrm{MB})$.
Such a system enables programs to use any part of the
extended memory area. The result could be that different programs use the same memory space. To prevent this happening Microsoft, Intel, AST Corporation and Lotus developed an Extended Memory System (XMS) specification.
XMS is introduced by loading into the system RAM an extended memory-manager driver such as HIMEM.SYS. As mentioned earlier, such memorymanagement techniques are irrelevant with a system such as OS- 2 because it is a protected-mode operating system that's designed to use extended memory.

Memory packaging

Earlier computer systems used discrete memory chips. An alternative is memory packets or packages with individual chips mounted on a PCB in 16 - or 32 -bit format. There are two versions, the single-in-line memory module (SIMM) and the dual-in-line memory module (DIMM), see Fig. 6.
Because of their large capacity, small size and the ease with which they can be replaced, SIMMs and DIMMs are universally used in modern PCs.

Wait states

When the speed of the processor is faster than the access time of the memory devices, one or more wait states may have to be introduced to slow down the CPU. A wait state causes the processor to suspend its activities for one or more clock cycles to allow slower memory to catch up. The number of wait states required depends on the speed of the memory and the type of CPU in use.
Some computer systems provide automatic wait state detection and settings. Wait states curtail computer performance drastically. With one wait state a PC operates at two-thirds of its potential speed. Two wait states reduce the performance by a half.

Cache memory

The only way to avoid wait states as processor speed is increased is to use faster memory devices. The most straightforward way of increasing the speed of a computer memory is to use fast SRAM devices. But the cost of SRAM chips and their low packing density make extensive use of them prohibitive. Use of SRAM devices has to be more targeted and specific to make economic sense.
To this end the cache memory technique was introduced. Motherboards that can incorporate cache memory have a set of IC sockets, holders or a SRAM module slot available into which SRAM chips or a SRAM module can be inserted, as outlined in the manufacturer's user handbook.
The cache memory technique involves the use of a block of a few $\mathrm{KB}(8-512 \mathrm{~KB})$ of fast SRAM to store the contents of the most frequently accessed RAM locations and the part of the program that the CPU is most likely to call for. Identification of these instructions and data, and loading them into the cache memory block, is carried out by a cache controller that continuously updates the contents of the cache memory as required.
The processor will first attempt to obtain instructions or data from the fast cache memory. If they are not available, wait states will be introduced and the processor will turn to the slower DRAM locations to obtain the information required. With a hit rate, i.e. the likelihood of the processor finding what it wants in the cache, of 95 per cent the net effect is that the system acts as though nearly all its memory consists of very fast SRAM.
The cache controller has to keep a record of the information inserted in the cache and where it is stored. A
small memory known as a tag memory is used for this purpose.
A faster and more effective cache memory was introduced with fourthgeneration processors (486 upwards). These processors have between 816 KB of built-in cache memory known as Level 2 (L2) cache. The result is a very fast access time of $5-10 \mathrm{~ns}$.
Cache memory location reading can be speeded up by using the burst-mode technique introduced with the 486 processor. This technique makes use of the fact that programs usually access locations in sequence, enabling the processor to carry out four sequential data transfers without an intervening address cycle.
The cache technique described above speeds up the process of reading memory locations by going to a cache memory location instead of a main memory location, but writing into memory continues to take place at the slower speed of the DRAM chips in the main memory. This is because of the synchronous operation of a cache memory, to ensure that a cache memory location has the same content as the corresponding location it mirrors in the main memory. Cache and main memory locations must therefore be updated, i.e. written into, simultaneously, with all the waste-

Fig. 5: Allocation of addresses and locations to various programs.

Fig. 6: SIMM (top) and DIMM (bottom) packages.
ful wait states this entails. The process is known as write-through.
A new technique, known as write-back, enables the processor to write changes in cache memory, speeding up the process. The changes made in the cache memory are subsequently transferred to the corresponding main memory locations by the cache memory controller when some spare time becomes available.

Special DRAM chips

Modern computers use special DRAM devices known as extended data out (EDO) to improve the system memory speed. The use of EDO can save one wait state, in comparison with the page-mode technique, at no extra cost.
Another special DRAM chip that provides fast access time is the video RAM (VRAM). VRAM chips have
two independent data paths, for input and output. Memory locations can thus be read and written at the same time. This is essential for fast video/graphics displays.
RDRAM (Rambus DRAM) is a very fast, high-density memory chip that uses a dedicated bus known as a Rambus. Capacities of up to 64 M bits per chip are available, with operation at 100 MHz or more and a data transfer rate of 500 Mbits per second.

Making more memory available

The amount of memory available for a computer to use determines the programs it can operate and how fast they run. More memory can be made available in several ways:
(1) By deleting unnecessary files. This makes more conventional memory available.
(2) By loading MS-DOS into the high-memory area. This again saves conventional memory space. It's carried out by including DOS=HIGH in CONFIG.SYS.
(3) By using memory-management routines. There are two of these, HIMEM.SYS and EMM386.EXE. The former manages the use of extended memory and provides the first chain for DOS to use the upper memory area. The latter provides access for relocating device drivers from conventional memory to the upper memory area. It also simulates expanded memory, by allocating a section of extended memory space for
expanded memory applications.
When expanded memory is not required, NOEMS is added to the device driver. Conversely RAM is added to the driver for expanded-memory operation.
EMM386.EXE works in conjunction with HIMEM.SYS and must be entered into CONFIG.SYS after HIMEM.SYS. A typical entry in CONFIG-SYS for an MS-DOS operating system is:

DEVICE=C:\DOS\HIMEM.SYS DEVICE=C:\DOS\EMM386.EXE

Memory management is essential for Windows 95. The following lines are included in CONFIG.SYS:

DEVICE=C:IWINDOWS\HIMEM.SYS DEVICE=C:IWINDOWSIEMM386.EXE

(4) By relocating TSRs (Terminate and Stay Resident programs) and device drivers from conventional memory to upper memory. This is carried out by the DEVICEHIGH command in CONFIG.SYS and LOADHIGH (LH) in AUTOEXEC.BAT. The number of relocations possible depends on the size of the programs and the free space available in the upper memory. Optimum relocation is achieved with the larger programs located in the larger spaces in upper memory.

Next Month

In the concluding instalment next month we will outline logical procedures for PC fault-finding.

A11 training establishments face the challenge of bridging the gap between old and new technology. When it comes to digital TV. launched last year and now becoming a major consumer product, the College of North West London got off to a flying start. The College is based in Willesden, with other centres at Wembley Park and Kilburn. Last September it invested $£ 20,000$ on twenty fully-equipped digital TV work stations. Each station has a digital storage oscilloscope, a spectrum analyser and a logic probe. The College has digital set-top decoders from various major manufacturees, including Philips, Nokia and Pace. Students are trained to test and fault-find with all

Technical Training for Digital TV

of them, both satellite and terrestrial.
Because the technology is so new, the College of North West London is still the only FE college in the country able to provide digital TV training courses. It attracts lecturers and engineers from employers throughout the UK, including the $B B C$, IBM, the Comet chain and other FE colleges.
One-day courses for the servicing industry are offered either at the college premises or on site. They can be either off-the-shelf or customised for service engineers who need a specific updating or upgrading programme. The aim is to bridge the gap between analogue and digital technology and to familiarise engineers with microproces-sor-based systems.
Three one-day courses are held at the college approximately once a month, leading to a College certificate. They are: (1) Digital TV Broadcasting and Reception; (2) Servicing Digital TV Decoders; and
(3) Microprocessors for TV Service Engineers.
A member of the College staff has special responsibility for industrial liaison and retraining. He is available to visit individual clients to assess their needs and devise appropriate training programmes.
The College has recently gained approval from City \& Guilds to run courses on digital television at Level 3 of the 2240 Electronics Servicing Programme. Students can thus gain a qualification which is recognised throughout the country. The courses are available on a dayrelease or evening basis. The syllabus will be made available to other colleges
Places are currently available. Applicants should contact Ana Boyland on 01812085117 or the course information hotline 0181 2085050.

For more details about the courses, anyone with internet access can call up the College website -
www.cnwl.ac.uk

Answer to Test Case 438 - see page 531 -

Cathode Ray did in fact connect a temporary cable between the dish and the receiver to check whether the existing downlead was the cause of the trouble. But the low-signal symptom was still present as sparkly interference on the picture. This, added to what had already been established, suggested that the dish itself was the cause of the problem - provided it had a clear line-of-sight to the satellite. As there were no visible obstructions, the dish was condemned. Its surface turned out to be badly rusted and corroded. Because of this the reflected signal was being scattered, thus reducing the gain of the dish system.

We've noticed that other rusty and corroded dishes, mainly of the earliest perforated type, tend to produce a lower signal level than a 'clean' dish. It's quite likely that dishes deteriorate faster at our coastal location than in other areas.

Dave Dawson decided to update to SkyDigital, and thus had a completely new dish, LNB and receiver. He then complained about loss of the cheeky late-night German programmes! What concerns us is that the new 46 cm digidish looks to be as vulnerable to rust attack as its predecessor.

NEXT MONTH IN TELEVISION

Servicing the NEI E5 Chassis

Alan Dent continues his series on NEI sets with a detailed fault rundown on the E5 chassis.

DTT Explored

Ian Martin decided to obtain an ONdigital set-top box and find out what could be received - at several locations from different transmitters. He provides a detailed assessment of reception prospects.

Auto Power-off Circuit

This circuit was designed by Alan Willcox as an update for his ESR meter. It's a handy circuit that can be used with other low-power, battery-operated equipment.

Nokia 9600 Blue Menus

The 'blue' menus available with Nokia 9600 series digital satellite receivers are not as well known as the 'red' ones. They enable new satellite signals to be entered into the electronic programme guide directly, while adjustments can be made to receiver settings in more ways than with the standard installation menu. Hugh Cocks explains it all.

Multiple Output Plates for TV

With the increasing complexity of many domestic TV installations there's a need for a neat and tidy multi-pole coaxial wall plate with good electrical performance. Finding nothing suitable on the market, Bill Wright came up with a DIY solution.

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE

INDEX DISC

Version 7 of the computerised Index to TELEVISION magazine covers Volumes 38 to 48 (1988-1998). It has thousands of references to TV, VCR, $C D$, satellite and monitor fault reports and articles, with synopses. A TVNCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is quick and easy to use, and runs on any PC with Microsoft Windows or MS-DOS. Price is $£ 35$ (supplied on a $3.5^{\prime \prime} \mathrm{HD}$ disc). Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc. See the CD-ROM offer below.

FAULT REPORT DISCS

Each disc contains the full text for television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc, then access it via the Index disc. Fault Report discs are now available for:

> Vol 38 (Nov 1987 - Oct 1988); Vol 39 (Nov 1988-Oct 1989);
> Vol 40 (Nov 1989 - Oct 1990); Vol 41 (Nov 1990-Oct 1991);
> Vol 42 (Nov 1991 - Oct 1992); Vol 43 (Nov 1992-Oct 1993);
> Vol 44 (Nov 1993 - Oct 1994); Vol 45 (Nov 1994-Oct 1995);
> Vol 46 (Nov 1995 - Oct 1996); Vol 47 (Nov 1996-Oct 1997);
> Vol 48 (Nov 1997 - Oct 1998).
> Price £15 each (supplied on $3.5^{\prime \prime}$ HD discs).

FAULT FINDING GUIDE DISCS

These discs are packed with the text of vital fault finding information from TELEVISION - fault finding articles on particular TV chassis, VCRs and camcorders, Test Cases, What a Life! and Service Briefs. There are now two volumes, 1 and 2. They are accessed via the Index disc. Price £15 each (supplied on 3.5" HD discs),

NEW - COMPLETE PACKAGE ON CD-ROM

The Index and all the Fault Report and Fault Finding Guide discs are available on one CD-ROM at a price of $£ 195$ (this represents a saving of $£ 35$). An Index to Electronics World (worth $£ 20$) is also included. Customers who have all the previous Fault Report discs can upgrade to CD-ROM for $£ 45$. Please quote the serial number of your Index disc.

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the Index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 48 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for non-UK EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK)

```
SoftCopy Limited, 1 Vineries Close, Cheltenham, GL53 ONU, UK. Telephone 01242241455.
Fax 01242241468.
```

e-mail: sales@softcopy.co.uk
Web site: hitp://www.soficopy.co.uk

[^2]
WILTSGROVE LTD

 28/29 RIVER STREET DIGBETH BIRMINGHAM B5 5SA TEL: 01217722733 FAX: 01217666100 REPLACEMENT REMOTESMAJOR QUANTITY DISCOUNTS AVAILABLE I!.

CDR'S
recordable compact discs CDR-1001 £0. 95
$\mathcal{U} \mathcal{X} \mathcal{E} \mathcal{A} \mathcal{T} \mathcal{B} \mathcal{L} \mathcal{E} \mathcal{R} I C E S!$

SATELLITE REMOTES

RM1340 COVEAS MODELS:
 AT: SVS200,

RM1485 COVEAS MODELS RM1485 COVERS MODELS
BTSVSS3OO,SVS250,SVS260,. MATSUIOP'10
CAMBRIDGE: ROABO AND MANY MORE

IRODA GAS
 SOLDERING IRON

CORDLESS

- SELF-/GNITING - SMPLE AND SAFE TO OPERATE CAN BE USED ANYWHERE - READV TO USE AFTER 15 SECONDS - WINDOW VISUALIZES GAS FILL TANK CONTAINS FUEL FOR 4 HOURS OF OPERATION - No Electrical interference

SCART TO SCART LEAD (21 P PN / /.SM)

SER-5057
£0.95

8 way aerial SPLITTER AMPLIFIER

SER-5030 £16.95

WIDE RANGE OF REMOTES
 AND SPARE COMPONENTS!

L.O.P.T. TESTER

STVDST-01 SIMULATOR
TV SIMULATOR
FOR DIODE SPLIT FL YBACK TRANSFORMER

- REAL SMUULATON OF THE HORRONTAL

DEFLECTON STAGE AT 32KHZ \& LOW VOLTAGE DIFFERED MATT READING

- OSCILLOSCOPE DISPLAY OF THE RETURN PULSE OF ANY WINDING
FAULT CONDITON WABNING LIGHT
DIGITAL READOUT IDENTIFIES THE FAULT CONDITHON
- ANAL YSIS OF THE DKDE SPLIT FL YBACK TAANSFORMER WITHOUT THE MONITOR. inttal diagnosis without removingthe TRANSFORMER FROM THE MONITOR MEASUREMENTS OF THE DKDE SPLIT FL YBACK TRANSFORMER WTTHOUT THE NEED TO APPLY HGGH vOLTAGE.
COMPACT FUNCTIONAL UNIT

ONBY
$£ 59.95$
"OFFICIAL DISTRIBUTORS OF HR L.O.P.T'S"

ЛタPANVESE GRADED STOCR BARGAIDUS! WORKING READY TO SELL (GOOD AS NEW) ALL STOCK IN ORIGINAL BOX WITH R/C \& INSTRUCTION BOOK

$\begin{aligned} & \text { CTV'S } \\ & 14^{\prime \prime} R / C \text { FROM } \end{aligned}$		B - GRADE STOCK !!	MONO VCR'S $£ 65$ NICAM VCR'S £99	
14" TEXT FROM	$£ 62$			S
21" TEXT FROM	£11	[N] O) [5 [/4]	ABLE TV'S	sTock reaor to sel
21" NICAM FROM	¢139	WMDESCRIEN	WITH R/C'S	
$25^{\prime \prime}$ PROLOGIC FR	29	${ }^{4}$	graded stockinthe	
28" NICAM FROM	199			
28" PROLOGIC FRO	£			
descreen from		28" WIDESCAEEN TV E29		
IDESCREEN FROM	£4			
geetruc grrang brat banded white goods in stock!				
			SFN8297 Si WIDESCREEN NICCAM STEREO, PIP ZOOM MODES, UHFNHF TUNER SPEAKERS WITH CABINE	
HOTPOINT			ZANUSSI	CREDA
WASHINGMACHUNES			RS OVEN	MICROWAV
MANOMORE BRADLDS MODELS A $\mathcal{A L L S B L E}$!			RTVNG TOR MOME DETMIES....	
TRADE ONLY FRËEFAX ORDERLINE: 0500550505				

LTD
TV and VIDEO WHOLESALERS
SHARP 21" FASTEXT f55
SHARP 21 " FASTEXT £55
SHARP 25" NICAM £125 28" NICAM £150 MITSUBISHI $25^{\prime \prime}$ DOLBY PRO-LOGIC $£ 125$ MITSUBISHI 28" DOLBY PRO-LOGIC $£ 165$ FERGUSON 51P7 FASTEXT £45 FERGUSON A51F FASTEXT $£ 50$ FERGUSON A51N NICAM $£ 60$ FERGUSON B59F FASTEXT £85 FERGUSON B59N NICAM £95 FERGUSON B68F FASTEXT $£ 125$ FERGUSON B68N NICAM $£ 150$ FERGUSON T25DPL DOLBY PRO-LOGIC £125 FERGUSON T28DPL DOLBY PRO-LOGIC £165 SONY 21" NICAM £95 SONY 25" NICAM £145 SONY 29" NICAM £145 PANASONIC $21^{\prime \prime}$ FASTEXT $£ 85$ PANASONIC $21^{\prime \prime}$ NICAM $£ 95$ PANASONIC $25^{\prime \prime}$ NICAM $£ 135$ PANASONIC $28^{\prime \prime}$ NICAM $£ 175$ PANASONIC 25" PRO-LOGIC £185 PANASONIC 28° DOLBY PRO-LOGIC £225 TOSHIBA25" DOLBY PRO-LOGIC £185 TOSHIBA 28" DOLBY PRO-LOGIC £225

THIS MONTH'S STAR BUYS

$14^{* \prime}$ REMOTE CONTROL PORTABLE WITH R/C \& INSTRUCTIONS £40 20" REMOTE CONTROL TV WITH R/C AND INSTRUCTIONS £ 40 CAMCORDERS FROM £95 HIFI SYSTEMS FROM £55 MICROWAVE OVENS FROM £25 VACUUM CLEANERS FROM £25

PRICES SLASHED ON 'B' GRADED VIDEO'S!

LONG PLAY VCR'S DAEWOO, AKURA, SANYO AND SHARP WITH R/C AND INST. BOOK £35 VIDEO PLUS VCR'S DAEWOO, AKURA, SANYO AND SHARP WITH R/C AND INST. BOOK £ 45 NICAM VCR'S DAEWOO, AKURA, SANYO AND SHARP WITH R/C AND INST. BOOK £55

All prices are based on a quantity of 5 units and subject to VAT

STILL BUYING EX-RENTALS SWITCH TO B GRADE NOW:

14" REMOTE
£60 55

$14^{\prime \prime}$ TEXT
£ZJ 65

20" REMOTE
\& 7665
20" TEXT 88675

20 2" NICAM
E100 85

33" NICAM £350

21" REMOTE
E80 75

21" TEXT 29685

COGGLEBOX	TEL:- LEEDS
175 Town Street, Armley	0113231 0359
5 mins trom m1m62	ASK FOR ROBERT
PRICES BASED ON QTY. OF 10. ALL PRICES + VAT.	

Current Stock 10" adde 14" r/e	Possibly the Largest and Oldest Establishment in the UK			Current Stock Radio Cassettes Car Audio
14" text				CD Port
20" r/e	No shortage of stock			Mi-Fi
20" text				Phones
$21 "$ nicam	Guaranteed to beat anybody's price for a			Faxes
25" text				Kettles
25" nicam	similar product			Irons
25" dpl				Mixers/ Blenders
28" micam 28" dpl	SPPECMALS	FEIBGUSON		Mierowaves
28" wide	Ferguson 14" R/C UHFNHF	REAR PROJECTOR TV'S RP46 £1,200	$00^{60} 5$	Printers
33" micam				Speakers
33" ${ }^{\text {a }}$ dpl	Ferguson VCR VideoPlus¢69	THIS MONTH ONLY 14" R/C Portables from 550		B' Phones
$337 "$ wide 374 nicam	${ }^{25} 5^{\text {" Dolby Pro Logic......e250 }}$	14" Portable Text from. $£ 60$		Fridge/ Freezer
$46^{\prime \prime} \mathrm{rp}$	28" Dolby Pro Logic...... 2300			Cookers
52"	28 " Widescreen............ 2350	Anologue ET Phones from		Hohs
55" rp	32" Widescreen..............8450	A.ele	\%os.	Direct
full ver range	MANY MORE OF	ERS AVAILABLE		Loads

NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT

Phone 0121-359 7020

 VISA Fax 0121-359 6344 PHOENIX HOUSE, 190 BRIDGE ST. WEST, Masterore BIRMINGHAM B19 2YT

- Peak detection
- Built-in loudspeaker for AM and FM reception
- Frequency Indication with 4 digit LCD Display

TC-90

Portable equipment, with many applications. designed to carry out any type of Terrestriad TV, FM Radio, CATV and Satellite TV. installations - Frequency Sweep on Satellite - Peak Detection

- Measurement of terrestrial TV from $20 \mathrm{u} \vee$ to $3 V$ without the need of external attenuators

- Full Band Frequency Sweep - Switchable 14 V or 18 V LNC Power Supply

TC-402D
Due to its weight and size, the TC-402D is the ideal instrument for the installation of FM and Terrestrial TV antenna, as well as CATV systems.

- Multi-turn potentiometer to enable tuning - Weight including batteries: 1.9 Kg
- Rechargeable 12V/2.5 Ah Battery - Weight incuding batteries: 3.5 Kg

TC-80

The TC-80 has been designed for the reception of TV Satellite systems, the installation and testing of domestic and SMATV systems.

- Rechargeable $12 \mathrm{~V} / 2.5$ Ah Battery - Weight including batteries: 3.3 kg .

Available from most wholesale distributors across the UK or direct from

COASTAL AERIAL SUPPLIES

Unit $\times 2$, Rudford Industrial Estate, Ford, Arundel BN 18 OBD Telephone: 01903723726 Fax: 01903725322 Mobile: 0976241505

Most makes and models available
COMPLETE RANGE OF TVs
VIDEOS AND SATELLITES
Videos from £15.00
Prices Ex-VAT
TVs from $£ 3.00$
Free Delivery Service to most areas of the UK
U.K.s Largest Export Wholesaler
Specialists in conversions to most countries systems
UNIT 75, BARRACKS ROAD,
SANDY LANE INDUSTRIAL ESTATE,
STOURPORT-ON-SEVERN,
WORCESTERSHIRE DY13 9QB
Just 10 Mins from M5 Junct. 6 Worcs North
O1299-879642 (3 lines)
FAX: O1299 827984

TV/Monitor	
NEW	Graded
Ex-Equipment	Re-gun
De-Scratching Service Prices on application	
vISA Ring irene	
EXPRESS The Mill, MFI RUGELEY, STAFFS TEL: 018895 FAX: 018895	ane NS15 2JW 600 600

DARTEL
 ELECTRONTCS

8 Heather Park Drive, Alperton Wembley, Middlesex HAO 1SL
Tel: 0181-795-1735 Fax: 0181-795-1736

High quality graded stock from

 manufacturersCamcorders,VCR's, Televisions, Hi-Fi's, Car Stereos, Microwaves etc All popular brands boxed with warranty Tel/Fax for details
Visit by appointment

WANTED

SURPLUS STOCK REQUIRED

Anything considered
TV, VIDEO, HI-FI, MICROWAVE,
SMALL HOUSEHOLD ELECTRICAL ITEMS eg: Kettles, Toasters, Irons, Hoovers, Garden Equipment.

AIWA PRO LOGIC HI-FI SXNAV 704 E158 (New) not graded + VAT

THOMPSON PRO LOGIC WIDE SCREEN 32" + VAT
SUPERSOUND LEEDS LTD

21 Upper Accommodation Road, Richmond Hill, Leeds LS9 8NF Tel: 01132480512 Fax: 01132496990

> No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

CLASSIFIED

PHONE 0181-652 8339
FAX 0181-652 3981
The prepaid rate for semi display setting is $£ 15.00$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $17 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, I2th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

SERVICE MANUAL LIBRARY pay only 55 loan fee for any Service Manual or keep it for $£ 10$. Litetime membership $£ 99$ - FREE Data Reference Manual showing the 1000 's of manuals available with models cross referenced to correct manufacturer's chassis ($£ 9.95$ on its own). We take other manuals so members can get new manuals for only the cost of postage.

Phone 01357440280 (fax 440384) for full details or write to: Technical Information Services, Midlinbank Farm, Ryelands, Strathaven, Lanarks ML10 6RD. World's largest stock of Service Manuals (TV VCR Combis, Test Eqpt, Audio, CD, Satellite, Dom Eq) Complete Repair Data (Not the few faults offered everywhere else) \& Technical Literature. Any items asked - free quote.

Special offer until end of lune 1999

Any 20 full service manuals from stock (1 at a time or in any quantity you wish) only $£ 240$ including 1 st class post. Includes those priced at $£ 50 / £ 60$!!! Includes FREE Data Reference Manual and Practical TV \& VCR Repair Manuals worth $£ 33.90$ alone).

100's of offers and prices FREE on request. Buy any 2 Buy, Sell \& Repair (TV's or VCR or CD) @ $£ 12.95$ each - get 3rd FREE.

European Scrambling Systems (Hackers Black Bible) $£ 35$
Practical Radio Repairs for $£ 2$ (post free with any other order).
Any of the famous McCourt or Tunbridge CTV Repair Manuals for only $£ 5$ each - all 9 for $£ 25$ till end June 1999 or when cleared.

Thorn - 6 training manuals for $£ 9$, PAL system $£ 10$.
The 9 manuals for common CTV's - 1001, 1401, 1403, 1405, 2001, 2003, 2005 plus Text sets covering Beon, Bush, Crown, Murphy, Philips, Taiwan Ind \& multiples only $£ 49$ (Circs $£ 39$)

ACCESS, DELTA, EUROCARD, MASTERCARD, VISA $£ 2.50$ postage any non-free order. e-mails_manuals@hotmail.com

Fryerns

Service Information FES Circuit TVs, VCRs
 Diagrams

AUDIO \& HI-FI
Most models/makes old \& new covered
Also fault guidance service available Prices are from $£ 3.75+£ 2.50 \mathrm{P} / \mathrm{P}$
i.e. I item - total $£ 6.25$ inc

2 items - total £ 10.00 inc 3 items - total $£ 13.75$ inc 4 items - total $£ 17.50$ inc Payment by credit card or postal order for next day delivery. Cheques to clear. Tel/Fax 01206211570
Answerphone outside office hours
P.O. Box 5830 Basildon, Essex SS 13 3RX

SERVICE MANUALS

Thousands of models available For most U.K. European, Far East \& USA makes Service manual prices
B/WTV
£6.00
CTVINCP - $£ 10.00$
VCR - £14.00 Camcord - $£ 16.00$

Service sheets/circuits also available for some models. + data for satellite, audio and microwave.
All the above items include circuit diagrams. Please telephone to check availability. Payment by Cheque/PO only please. Add $£ 2.00 \mathrm{P} / \mathrm{P}$ etc. to order total. Do not add any VAT.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Service Manuals

Available for most equipment.
From Valve Wireless to Video Recorders and everything else in between.
Televisions, Computer Monitor, Test Equipment, Satellite, all Audio, Amateur Radio etc etc. If you need a Service Manual give us a call. Originals or Photostats as available.
Our entire index of Manuals is now being put on our web site for instant access.

Alternatively complete the coupon below for our Floppy Disc catalogue of Manuals and Technical Books available.

MAURITRON TECHNICAL SERVICES

8 Cherry Tree Road, Chinnor, Oxon OX9 4QY Tel: 01844-351694. Fax: 01844-352554.

Email:- enquiries@mauritron.co.uk
Web site at:- http://www.mauritron.co.uk/mauritron/
Please forward your Catalogue of Technical Books and Service Manuals Index on PC Disc for which I enclose 4×1 st class stamps.

Name
Address

Postcode
Telephone

Repair Information

IF YOU WISA TO JOIN THOUSANDS OF ENGINEERS WORLDWIDE SAVING TIME AND MONEY DAILY - PLEASE READ ON.

Just released: Ed 21 Fault Indexes in book format OUT NOW Edition 21 of the Television Magazine Index Covers over 14,000 Television, Video, Satellite, Camcorder \& Monitor faults, Large easy to read A4 format The newest addition to a highly acclaimed \& recommended series.
ISBN 1898394253
Edition 21: Complete set $£ 14.75$ Offer Price $£ 9.75$
Brand New: Fault indexes on disk - Version 1.7
Latest faults together with ALL data from ALL previous versions, Covering a MASSIVE 20,500!! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 19 years of Television.

$$
\text { Indexes on Disk Version } 1.7 \quad 117.50
$$

Low cost updates are available for all Disk fault indexes - Current price $£ 5.50$
New: Kwik Tips on Disk Version 1.1
Already proving itself a valuable service resource in workshops large \& small, Kwik Tips V1.1 is our LARGEST FAULTS \& REMEDIES database EVER, Compiled from over 20,000 !! Entries \& covering 1,435 Chassis \& Models, This concisely Edited TV \& Video repair database will easily pay for itself with just 1 repair.

Kwik Tips on disk Version 1.1 £27.95
Latest release - Equivalents guides - 2nd Edition.
Equivalents \& Models to chassis, TVs, Videos Camcorders \& Satellites, 5 sections, Over 6,300 Entries, Need we say more !!

Edition 2: Equivalent guides book $£ 5.95$
All programs require a PC or compatible \& are supplied with a user manual.

316, Upton Road, Noctorum, Wirral, Merseyside. L43 9RW. Tel/Fax 01515220053
Please add $£ 1.75 \mathrm{P}$ \& P to total (Europe $£ 2.75$, r.o.w. please enquire).

REPAIRS
 TEST EQUIP

accént

T E C H N I C
CAMCORDER REPAIRS
Collection and delivery anywhere in the UK.

All makes, fast service.
Phone free for details.
Fax: 01905796385 (0800) 281009

LINEAGE

AVO MULTIMETER Model $8, £ 45.00 .500$ volt megers E 30.00 . Prices plus VAT and p. \& p. Send SAE for lists of surplus instruments and scopes etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel: 01132496048.
PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel 01494814317.

ATTENTION ENGINEERS
Do you wonder if there is a better way to check a faulty
VCR deck or to check its 1 im ming marks, well now there is "It's a mode Controller" 1. Fingertip 2 button control
2. Ability to control mode motor in slow motion
3. Forward and reverse.
4. Run any mechanism with a de motor from $.5 v$ to
5. Check for damaged gears or poor mechanism with crawler setting.
6. Finai run through of mechanism of speed after repair. 7. Three versions, mains, battery, or bench powered models.
Tce used you will wonder how you ever did without it
FROM E2O-9 $9+3.50 \mathrm{p} / \mathrm{p}$
Tel: 01634684631 Ansaphone

PROPERTY

BUSINESS FOR SALE

TV/VIDEO SALES \& REPAIRS High St Shop N. Kent.

Sale due 11 iliness, reasonable rent Established 12 years, offers invited

01227770129

TV LINE OUTPUT TRANSFORMERS
 PHONE: 0181-948 3702 FAX: 0181-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG - GRANADA HITACHI • HINARI • INDESIT • ITT • KIMARA - NIKKAI MATSUI • MURPHY - OSAKI - NORDMENDE • LOEWE-OPTA PANASONIC • PYE PHILIPS • SANYO - SAISHO - SHARP SONY • SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE •

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD - 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Mon-Fri 9 am to 12.30 pme Approx. 1 mile from Kew Bridge. $1.30-4.30 \mathrm{pm}$

SPARES \& COMPONENTS

CHEAPEST HEADS IN THE UI								
	${ }_{\substack{\text { Moded } \\ 3029}}$	${ }_{\text {Price }}^{\text {Pr.50 }}$		VTF70	cick	JvC	HROT50EK	(1.99
	$\substack{3 \times 30 \\ 3 v 32}$	cis. ${ }_{\text {cise }}$			$\xrightarrow{\text { c14,00 }}$		NV430	${ }_{\text {cke }}^{\text {ci. }}$
	$\substack{3 v 43 \\ 3 V 45}$	${ }_{\text {E18, }}^{\text {E9.50 }}$	$\xrightarrow[\substack{\text { Hitach } \\ \text { hlachi }}]{ }$		${ }_{\text {cle }}^{\text {cili.00 }}$	${ }_{\text {Panasonc }}$	NVE50	
	celo	¢10.00	Htad	VTTE322	cition	Sonic	NVF55	${ }_{\substack{\text { c3a0.00 } \\ \text { c30 }}}$
	\%V10			HR	cisme		NVG1	${ }_{\substack{\text { c1.100 } \\ \text { ci.00 }}}$
$\substack{\text { Ferruson } \\ \text { Ferguson }}$	cver	${ }_{\text {ckin }}^{\text {E17.00 }}$				Panasonc		cile
	$\underset{\sim}{\mathrm{V}}$	¢1.2.50	JV	HR	${ }_{\text {cin }}^{\text {cili.00 }}$	(eanasionc		1.00
		ciseme	JVC			Panasonic	${ }_{\text {NVS }}^{\text {NVH }}$	8.00
		${ }_{\text {cte }}^{\text {cis. } 50}$	JVC			Panaso	NVHO1	
	VT		${ }_{\text {JVC }} \mathrm{JCC}$	HRO40	建	Panasonic Panasonic		
	540	${ }_{\text {citi.job }}^{\text {Exi.00 }}$	Jvc	HRRE620		asonic		
	V 570	25.00	Juc	HR0660	E17.00		NVS540	
too many $0 ~ L I S T$. Please ring for a frie catalogue all heans are guaranted for 12 months. ALL ORDERS RECENED BEFORE SPM ARE DESPATCHED THE SAME DAY BY FIAST CLASS POST. OPEN MON-FRI SAM								

FOR SALE

WANTED

To Advertise

in

TEREVMSHON CLASSIFIED Telephone
Pat Bunce on 01816528339 or Fax on 01816523981

Who's positive they can help?

Field Based
Customer Service Engineers

> Brown Goods (TV Nideo)

Workshop Team Leader

 Workshop Service Engineers
North East London

£Competitive + Benefits

Abstract

Comet's objective of achieving "100\% Customer Satisfaction" in After-Sales Service is a key element of the Company's future strategy. In order to meet this objective, Comet is currently looking to expand its dedicated After-Sales team at their Dartford Customer Service Centre. Opportunities exist both in the workshop and in the field based operation covering South East England. As Workshop Team Leader you will be

 able to bring a positive attitude to the workshop, leading by example in order to deliver our exacting service standards. Workshop and Field Based Engineers will have experience in the service and repair of brown goods electrical retail products, and be keen to contribute as a valued member of our Customer Service Team. If your philosophy is to put the customer first, Comet will give you the technical training and management support needed to succeed. Due to the Company's progressive expansion programme, the potential for career development is unlimited.In addition to an excellent basic salary, Comet provide a host of benefits including bonus, expensed Company Vehicle, pension scheme and, after a qualifying period, share save scheme and free medical insurance. Furthermore, you'll be entitled to staff discounts at other Kingfisher Group companies including - B\&Q, Superdrug and Woolworths.

If you share our commitment to 100\% Customer Satisfaction, write NOW! enclosing a brief career history, to:

Gordon Wooltorton,
COMET Service General Manager, Comet Group plc., Unit 14, Newtons Court, Galleon Boulevard, Darfford DA2 6QL

[^3]Due to continuing expansion, Live TV, Britain's liveliest and most innovative cable station, has a vacancy for an experienced

SENIOR ENGINEER

The successful candidate will have relevant engineering qualifications backed up by at least two years' broadcast television experience. They should be highly motivated, capable of working under pressure, as part of a team and on own initiative.
Specifically, a proficiency in the maintenance of Betacam SP equipment will be required together with familiarity of non-linear editing systems. A working knowledge of digital formats and systems together with Windows NT operating environments would be a distinct advantage, although training may be available to the right candidate.
Please write enclosing a CV to Ron Clark, General Manager, Live TV, 24th Floor, One Canada Square, Canary Wharf, London E14 5DJ or e-mail ron_clark@livetv.co.uk

FIELD ENGINEERS - TV \& VIDEO ATTRACTIVE SALARY + CAR + BENEFITS
 Out in the field with team support

BIRMINGHAM AREA, COVENTRY, CHESHIRE \& TEESSIDE HOME BASED

Here at ScottishPower we know a thing or two about customer care Hopefully, you do too. We're growing fast because we put the customer first a formula that's proven a huge success. This is your chance to expand your skills, working for one of the UK's top 3 electrical retailers.
Right now, we're looking for skilled Engineers, qualified to City \& Guilds 224 or equivalent with experience of repairing brown goods. In this job, it's all about getting it right first time and minimising inconvenience for the customer - and that's where you come in. You'll enjoy solving problems and talkıng to people, gaining a real sense of achievement at seeing a job well done.
We offer all the training and encouragement you need to help your career advance, and if your skills need updating, we offer support there too including full back-up from the manufacturers, plus a competitive benefits package and company car. All we ask in return is enthusiasm, a flexible approach and a full driving licence.
Please write, with your CV, stating current salary details to: Mark Perrier, Recruitment \& Training Manager, Electricity Plus, California Drive, Whitwood Industrial Estate, Castleford, West Yorkshire WF10 5QX Alternatively, telephone 01977605295 or e-mail: mark.perrier@scottishpower plc.uk

\% ScottishPower ELECTRICITY PLUS

EXPERIENCED AUDIO VISUAL ENGINEERS

Required to
Work on complete SONY and PANASONIC range of products.

Excellent salary
Part-time considered
Staff discounts,
latest equipment,
modern workshops
References essential Apply in Writing to:-
A ONE DIGITAL Company Secretary, Unit 2B, Aberconway Road, Morden, Surrey SM4 5LN Tel: 01815438888

To Advertise
in Television
Recruitment
Telephone
Pat Bunce
on 0181-652 8339
or Fax on
$0181-6523981$

r
 (minimum $4 \mathrm{~cm}=£ 80.00+$ VAT)

Classified: $£ 15.00$ per
single column centimetre (minimum $4 \mathrm{~cm}=£ 60.00+$ VAT)
Lineage: $£ 2.00$ per word

Box Numbers: $£ 22.00$ extra
Spot Colour: 15\% extra
Value Added Tax
All UK advertisement charges are liable to VAT at $17 \frac{1}{2} \%$
Post
Television Classified Department
11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

I enclose herewith cheque/PO for
E.. VAT)

Cheques etc payable to Reed Business Information Ltd and crossed or use credit card facilities below. Please debit my Access, Visa or Switch account as
below:

CLASSIFIED ADVERTISEMENT ORDER FORM

No. of insertions
Name

Address

Payment by Credit Card, please state cardholder's name and address card is registered to

Special Offer Sale - 20 Remote Controls $£ 20.00$ (mixed all well known brands)

WILLOW VALE DELIVERS

A World ut Spares

www．willow－vale．co．uk．

SERVICE PROFESSIONALS CHOOSE TO BUY FROM

ELECTRONICS LIMITED
＇The Better Choice＇

NOMINATED FIRST CHOICE SUPPLIER（Source）－Marvyn Hamiyn survey＇Independent Retail \＆Service Engineers＇June 1997

Willow Vete can sumply genuine sprates for the iollowing manmadirers：
－Shatp
－Hhilit！s
－Prete
－IVE
－Mésiset
－Eluncie
－Fergusul
－18ifung
－Nulita
－Seistlu
－Eulustar（Le Eleaintics）
－Penternie
－Sully
－Tostilibe
－iffiemsell
－Mitisubislii
－likai
－Litua
－Fiblleet
－Eビルルルル！
－litiextli
－Ithlusitui
－Alle
－Lustl
－ゼれいいだいと
－Welitulecul

[^0]: GENIE - 3 way Universal Remote Control

 - Replaces 3 infra red remote controls
 - Covers 1000's of models
 - Controls TV, VCR and Satellite
 - Auto Code Search
 - Unique styling
 - Customer helpline
 Order Code: GENIE

 PRICE: $£ 9.00$ + VAT

[^1]: GRANDATA LIMITED
 K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND. HA9 0HB
 Telephone: 01819002329 Fax: 01819036126 E-Mail: grandata.Itd@btinternet.com OPEN Monday to Friday 09:00-17:30 Saturday 09:00-14:00

[^2]: Published on the third Wednesday of each month by Reed Business Information Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by JJ Typographics Limited, Unit 4, Baron Court. Chandlers Way, Temple Farnı Industrial Estate, Southend-on-Sea, Essex SS2 5SE. Printed in England by Polestar (Carlisle) Ltd., Newtown Trading Estate, Carlisle, Cumbria CA2 7NR. Distributed by MarketForce (UK) Lid., 247 Tottenham Court Road, London WIP 0AU (01712617704). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Lid. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever

[^3]: Comet is an equal opportunities employer and welcomes applications from all sections of the community

