THF MEADINC UK CONGUMER ELECTRONICS TECHNOLOGY MAGAZINE LEIESEDOL SERVICING.VIDEO. SATELLITEDEVELOPMENTS MARCH 1999 £2.70

Test Perpori: Meical Smathtieat
solderfing system
Design of an ESR meter

Serviang the Panasonit
NVSD25/30/40/FD100
Repaifing CB radios

Fault reports TVs, VCRs, PC Monitors and Satellite

Why you need the Wizard

The latest universal e note control from Philex is superbly styled and designed for the mecern world. As you can see, it's a break from the norm, and will work w'כders for your sales.

Available in metallic $\mathrm{g}{ }^{\circ} \mathrm{E}$ w with backlit keys, this little piece of magic is waiting to opet new sales cnannals as well as channels on the TV, VCR etc.

Eliminate that need for ssocking too many remotes, the Wizard is a practical clternative to cluttar and mess in any environment, be it the home or office.

The Wizard is simple to tse and is backed up by our superb customer he'fine.

Full learning facility

This enables the Wizara ro reproduce almost cny key function found on infra red remote controls.

Pre-programmed for easy set-up

3 modes of set-up... Lzarring, codeless and manufacturer ID secreh.

The Wizard is pre-prognonmed with are of tha largest code libraries available ccverirg TVs, VCRs, Satelitte receivers, Cable boxes, CD pleyers end Hifi systems.

Replaces 8 infra-red remote controls Replaces lost or brozen remotes or just eliminotes the need for remotes.

So, for the full monty on the Wizard, a shor: spell talking to our fully trained saies staff will help you on your way.

CONTIFNTS

March 1999

The R\&D Problem

What a Life!

A wonderful start to the day, then the troubles start. Donald Bullock's servicing commentary.

Teletopics

Report from the Las Vegas Consumer Electronics Show plus latest news from suppliers and new test equipment.

Repairing CB Radios
The viability of CB radio repair depends on rapid fault diagnosis. Chris Watton provides practical guidance.

Satellite Notebook

Solutions to problems with satellite TV equipment and installations.

Service Casebook
 314

John Edwards on various TV/VCR servicing problems.
Design of an ESR Meter
The subject of an electrolytic capacitor's equivalent series resistance has generated a lot of interest in recent

issues. Alan Willcox now presents a practical ESR meter design that's easy to build and use.

Satellite Workshop

Jack Armstrong's column on satellite receiver servicing.
Test Case 435
323

Servicing the Panasonic NVSD25/30/40/HD 100

Brian Storm describes the changes introduced with these machines, including the K deck, and provides guidance on faults and on the fault codes and service modes.

Monitors

326
Hints and tips on dealing with computer monitor faults.

Letters

328
Initial reactions to digital TV, a possible DTT allocations problem, more on the Hitachi C2118's tuning circuit, video bandwidth specification and other topics.
Help Wanted 345
VCR Clinic
346

The Metcal MX500S Soldering

 Station350
This highly effective soldering/desoldering system is based on RF heating principles. Steve Beeching provides a detailed test report.

DX and Satellite Reception 354
 Terrestrial DX and satellite TV reception reports. News

 from abroad and the satellite belt. Archive material: a remarkable tape of transatlantic reception in 1938 has been released. Review of a handy standards converter. Roger Bunney reports.TV Fault Finding358
Next Month in Television 362

Editor

John A. Reddihough
Production Editor
Tessa Winford

Consultant Editor

Martin Eccles

Publisher

Mick Elliott

Advertisement
 Sales Manager
 Grant Allaway

$0181-6523032$

Advertisement Sales

Executive
Pat Bunce
$0181-6528339$
Fax $0181-6528931$

Editorial Office

$0181-6528120$
Fax 0181-6528111

Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spores Guide.

March issue on sale February 17th.

> Next issue, dated April on sale March17th.

TIMI - Videorecorder Colour Recording \& Playback $£ 10.99$ If you repair videorecorders then this is a must for the colour circuits and how they work, a full technical description with block diagrams.
TIM2 - Digital Camcorder Recording and Playback £12.99 Full description of digital technology for Camcorders and a good grounding for MPEG-2 digital television, digital video compression and 139-4 FireWire.
TIM3 Magnetic Recording Theory for Video Recorders $£ 10.99$ The fundamentals of magnetic tape recording and how pictures are recorded onto tape $N V Q \& C \& G$ learning materials for young service personnel and old ones who think that they know it all!
TIM5 Health \& Safety in Consumer Electronics Servicing $£ 9.99$ 48 pages covering risk assessment, live working protection and antistatic protection. Are you working within acceptable guidelines? Then try this!

TIM6 Soldering and Desoldering Techniques $£ 9.99$
II you are going to purchase a desoldering/soldering station or just a new iron then this is a must for you. A full review of available products and a description of heating technology. Plus tips on how to change the chips!
Service Manual TV1 (£14.99) - Grundig G1000 chassis GT1401 Matsu 14R1,20R1,20T1 and text modets GT2001/3, $21 \mathrm{~T} \mid \& 21 \mathrm{NI}$ (NICAM).
Service Manual TV2 (£18.99) - Onwa chassis. How to run the power supply and test it without blowing up. Plus 50 typical faults! (Uses AN5601K colour IC). Covers JVC, Matsui, Goodmans, Alba/Bush and Akai.
Service Manual TV3 ($\mathbf{(1 2 . 9 9)}$ - Grundig Satellite receivers GRD150, GRD200/300, GRD 100 , JVCTU-C200, Matsui RD600 \& Philips STU3301/3501/3601 ... three Grundig chassis in one manual!!
All publications are written, printed, published by Steve Beeching I.Eng.

Grove Farm Publications,

[^0]Never before has it been possible to offer - CHECK THESE FEATURES at competitive prices - a superior, easy-to- $\begin{gathered}\text { Frequency agile freely selectable } \\ \text { in the VHF or UHF range. }\end{gathered}$ use headend range with high quality channel processing that allows the user to retain perfect vision and sound. WiSl's breakthrough in headend modular design has processors for satellite TV, terrestrial TV and radio. Each individual module ncorporates its own control system enabling quick and easy set up. These channel processors come together in an "all-in-one" base unit which contains all necessary accessories for ease of ordering - no additional items required
U. K. STOCKIST - Adjacent channel capable - B/G, D/K, I. L, M TV standards Modular system for headend stations in SMATV and CATV systems.
Modular for satelife TV terrestrial TV. FM and satellite radio. SAT IF conventers. TV modulators.

- Individually programmable modules High output leval - Wall mounting or $19^{\prime \prime}$ rack mount with lockable cabinet door.

A Breakthrough in Headend Design

The R\&D Problem

It would be interesting to know how much money and effort goes into research that fails to produce viable commercial products. A certain amount of wastage is inevitable, and is part of a healthy, competitive industrial scene. Yet waste is waste: one of the most difficult management tasks is trying to control R\&D budgets, in particular to decide when a programme should be given the chop.

Consider for example display devices for TV pictures. Researchers long sought a flat display to replace the CRT and have, in recent years, been increasingly successful with liquid-crystal and gas-plasma panels. Even within these fields there have been several significantly different approaches. For a time it seemed that the LCD might eventually take over - Japanese manufacturers are reputed to have invested some \$5bn in developing thin-film transistor LCD technology in the Eighties - but plasma panels have since turned out to be more successful for reasonably-sized TV screens. The trouble with plasma displays is their cost and limited life expectancy. They are also rather wasteful when it comes to power consumption. We are not likely to see the demise of the CRT for many a year.

As you would expect with a device that has been around for so long - the CRT actually predates the thermionic amplifying valve - there have been tremendous improvements, many of which have been the result of small but significant technological advances: things like pigment composition, ways of mounting the shadowmask, improvements in electron lens design and so on. And research continues.

Philips has recently announced a development that could provide a smaller spot at
a higher brightness level, and thus crisper pictures: it's called the avalanche cold cathode (ACC). Instead of the conventional heated cathode, the source of electrons is a buried (less than $1 \mu \mathrm{~m}$ beneath the surface) zener diode junction. A bias of 5 V produces an adequate electron flow, with enough electrons per square mm - more in fact than with thermionic emission - to provide a beam. And while the electrons emitted by a thermionic cathode are in effect 'boiled' off, producing a space charge, the electrons produced by an avalanche cold cathode emerge with a degree of acceleration. The bias is varied to control the electron flow, and a first-stage electrostatic lens can be formed on the surface of the cathode. As with a conventional tube, three cathodes are required to provide a colour display. It sounds very promising, but will it turn out to be another false trail? Philips is uncertain: lifetime and reliability have yet to be fully assessed. Even if the technique doesn't prove successful initially, some seemingly minor technological improvement could subsequently make all the difference.

Perhaps something similar could be done to provide a flat-panel display, which brings us to the photocathode display (PCD) being developed by a Californian company, New Logic International. It's similar to the field-emission display (FED), another technology that has been quietly evolving. Both, while being flat panels, have the same optical performance as a CRT. New Logic International first showed a laboratory prototype PCD in 1997. Development samples are now being produced: according to NLI, Korean, Japanese and US manufacturers are interested.

What about the FED? The French technology company PixTech, which demonstrated the first monochrome FED panel in 1991, has just announced the development of a 15 in . full-colour FED panel. It believes that large screens using high-voltage FED technology will be ideal for monitors and TV sets. We shall see.

Work is being carried out on many other display prospects. In our February issue George Cole reported on Pioneer's development of organic electroluminescent displays. Various organisations have been working on light-emitting plastics.

There seems to be no end to all this effort on alternative technologies, and not only in the display field. Take discs as another example. DVD-Audio is being challenged by the Super Audio CD before either have appeared, and there are now three recordable DVD formats -DVD-RW, DVD+RW and DVD-RAM.

And so it goes on. A lot of effort, and one chance discovery at the right time can make all the difference - as with the transistor effect in 1947!

Correction

Our apologies for various errors in Martin Pickering's Pace PRD series receiver modifications article last month. In Fig. 1, page 239, Q2 and the added transistor were shown as npn instead of pnp devices. There is no need to select vertical polarisation for the LNB supply switch-off modification to work - the receiver does this automatically in standby (this was the original reason for carrying out the modification by replacing D17, so ignore the bit about connecting the added transistor in series with L3). Oh, and the cover should have said PRD not RRD. But the modifications do work!

COPYRIGHT

© Reed Business Information Ltd., 1999. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 48 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eleven-year consolidated index on computer disc. For further details see page 362.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 313.

SUBSCRIPTION ENQUIRIES

Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Credit card orders: 01622778000
Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:
UK $£ 32.00$ per year
Airmail Eire $£ 36.00$ per year
Airmail Europe
Airmail Rest of Worid
$£ 46.00$ per year
£59.00 per year
NEWSTRADE ENQUIRIES
Distributed by MarketForce
Telephone:
01712617704

WEB SITE

For a full list of RBI magazines:
http//www.reedbusiness.com
ISSN 0032-647X

REED
BUSINESS
INFORMATION
...and look at the special offers...... BUT11A@ $9{ }^{\circ}$ each BUT11AF@ 80° each BU508A @ (60) each Fully wired scart lead 9° a slight inconvenience....
you must buy more than one. BU208A $\times 5 £ 3.75$ TEA2018A $\times 5$ £5.75 BU508A $\times 5$ £3.00 UC3842 $\times 5 \quad £ 2.95$ $\begin{array}{llll}\text { BU508AF } \times 5 £ 3.00 \quad \text { CNX62A } & \times 5 & £ 3.00 \\ \text { BU508D } \times 54.45 \quad \text { S2000AF } & \times 5 & £ 5.25\end{array}$ BUT11A $\times 5 £ 1.45$ TDA3653B $\times 2$ £1.80 BUT11AF $\times 5$ £1.90 TDA3654 X 2 £1.80 Philips type 1.2 volt Back up battery $\times 5 \times 53.40$ Philips type 2.4 volt Back up battery $\times 5$ £6.00 Scart - Scart lead 1.5 m Fully wired $\times 2$ £1.98 Positor PT37,TH98009 (White) $\times 5$ £3.75 Thom TX100 Green spot LOPTX
.....and now ask for a full price list......
MAJOR STOCKIST
PHOENIX
pSU repair = refurb Luits
Loot for the PHOINIX stamp of approval ${ }_{O}$

 NEW EDITION No. 5

you could say that what Martin Prickerng doesit know doout sotellite reconers isnt worth has become legendary. Howing been at it shice the stan of consumer sateltile N . he has bull up a masstue datobose of on satellite TV recelvers Not ony on meir comman but also on moditications and upgrades Martin brings in-depth expertise to the subject having previously been involved with equipmen relloblility testing and Orblnaly entitec sotel Reporir Monualt this book hos become estabilshed os a bible tor satellite TV repaik

But the sublect doesnt stand still. New modets, new tauts. there is awcys something to add. So here we hove the titth edilion, which has been nas 300 pages and a more atroctive cover. in addition to recelver fauif notes and
 genera information youll find many weftul buttion sequences for reseiting parental lock codes, resetting instathation cholces to factor defauls and ather less well known operations. proctical infiomation on LNB's with ypical cument drains atst of manufocturers and supplers addresses. other useful infomation and a beginners section

No self respecting workshop... should be without this guide. at $£ 19.95$ your first repairwill relurn the cost !!!

hfip://www.telepart.co.uk

You can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message.

will make phone call after phone call, Fax after Fax on your behalf. WE WILL DO ALL THIS FOR YOU. We will do it willingly and we will do it for FREE

What a
 Life!

A wonderful start to the day. Then the difficulties start. But at least the technical problems get sorted out, if not the customer ones. Donald Bullock's servicing commentary

Iwas awakened early by the streaming sun. It was a lovely day. Blue skies, soft breeze, birds singing. I set off for work at peace with the world.

The car purred happily through the sunshafts on the soft-tar road. It had been a good buy. What a morning! Softly bright, quiet, not a cloud in the sky. It was good to be alive.
I reached the shop. Our bit of pavement was wet, and a parked cider flagon rested in front of the window. There was a TV set leaning against the front door. And a scrawled note had been wedged in the door handle.
I smoothed it out. "Still not right" it said, "you'll have to call back." No name, no address.

Letters

I opened the shop door and picked up twenty five letters. Threw twenty rubbish ones in the bin then opened the rest. Tax bill. Can't be right! Electricity bill. What? Never! Gas bill. Heavens! And what's this? Mr Manson's set still has patterning. Call after eight? Oh dear, I'll never get that one right.

And a letter from Mrs Garvil. "Will you come and put a new ECL80 in my TV set?" Field collapse, obviously. Silly old fool. Ever since she saw me fit a new ECL80 in her Ferguson TV back in 1963 she's considered herself to be a technical wizzard...

Ah, I know that writing. Mrs Botulos from Rosebud Avenue.

Nice lady. Decent husband too. Friendly and reliable. I like that type. It'll be her cheque for that tube job, just as she promised. Oh, no cheque. A note to say her picture's gone and it must be the tube. Wasn't right after we delivered it. To give us the benefit of the doubt, they'd waited to see if it would settle down. Husband now hopping mad. Couldn't see the wrestling. Has a mind to come and sort us out. And report us. Her Maisey reckons Gumboils would have done it cheaper.

Nasty old fool Mrs Botulos. And that workshy slob of hers, and her sweaty daughter. Should all be birched. Always loathed 'em.

Oh God! The phone.
"Oh, good morning Mrs Whelp. Nice to hear fro . . . What do you mean, ruined your set? But we don't make the progr . . . Mrs Whelp! Mrs Whelp!! How dare you! Yes they were! St. Marks, if you must know."

It's going to be another filthy, miserable day, I can see that. Wish I was back on that newspaper. Who are these blundering oafs pushing at the door?
"Oh, er, good morning Reverend Goode. Morning curate Blande. Er, ha ha! Yes, lovely day gentlemen.
"Lovely day indeed Donald" said the Reverend, looking upwards. Restores your faith, doesn't it?

I nodded sagely.
He pointed to his ancient car.
"My neighbour Miss Sawnie's set In the car Donald. Head trouble I believe."
"Head trouble" echoed the curate.

An Aiwa Combi

I brought it in. An Aiwa combined TV/video, Model VXTI41K, about four years old.

The symptoms did indeed look like head failure. But there was something wrong with the sound too. A wow that became better as the unit warmed up.

The reverend gentlemen departed, and Paul opened up the unit. He was still working on it an hour later. "TV sound is all right" he commented, "though some of its circuitry is common to the VCR section. Never had this one before."

He eventually discovered that the cause of the trouble was C523 $(100 \mu \mathrm{~F}, 16 \mathrm{~V})$, which had fallen in value to about $32 \mu \mathrm{~F}$. A replacement cleared the symptoms. It's in the centre of the chassis.

A Couple of TVs

Our next caller was Towser Watts, who runs a smallholding in the hills. He brought in a dead Bush 1418. There was no standby light. Paul soon discovered that there was voltage across the mains bridge rectifier's reservoir capacitor but none at the other side of the $330 \mathrm{k} \Omega$ start-up resistor R913, which was open-circuit. A replacement brought the set back to life.

Meanwhile Steven had pulled up the set that had been outside the door. A 25in. Mitsubishi, Model CT25A5STX - Euro 14SF chassis. The fault was field collapse.

We'd had another one in only the other day with the same problem. The AN5521 field output chip IC451 had failed. Probably the same thing.

Sure enough the voltages around it were haywire. So Steven fitted a replacement then switched on again. Still field collapse, and the voltages were still haywire. He took the chip out and rechecked the voltages at the socket. Those that remained were OK. The cause of the trouble turned out to be the flyback boost capacitor C 454 ($100 \mu \mathrm{~F}$, 35 V). It was low in value at about $30 \mu \mathrm{~F}$.
"All we need to know is whose set it is" said Steven.

Interlude

The Phone rang. "Are you there?" a strange voice rasped.
"Sure am" I replied.
"Can you repair tellys?" the voice continued.
"Certainly can. Name and address please."
"Herr Ellis, vith a dubblevoo after the K."
"Ellis with a w after the k ?" I said, "look, never mind that, what's the address?"
"300 Crout Street" rasped the voice.

The penny dropped. It was Ribby Ellis the practical joker. So I said a rude word and slammed the phone down.

Mrs Ruff

At that point Mrs Ruff came in. "Eh? Wassat?!" she bawled. "Look, Mr Billhook, me other set's gone again an' I wan' 'im put right. Really right this time. Can't pay much, and I don't wanna 'ang about for a week neither. If I did I'd go to Snoddy's. If I could stand that thin, tall fellow. Where's
Pukey? 'E's supposed to have the set."

She yanked the door open and Pukey stumbled in with a 24in. Pye set. "I went to the wrong shop" he panted, "they don't mend tellys."

She gave him a sharp look. "If
'e gets wusser I'll 'ave to throw 'im out."

Mrs Ruff's Pye, Model 59KE2706/05R, contained a Philips 2A chassis and was dead. Steven checked the voltage at the collector of the BU508V line out-
put transistor Tr7618. It was correct at 140 V . A scope check at the transistor's base then showed that there was no line drive. Steven traced back to the TDA2579/N5 timebase generator chip IC7635, which was producing neither field nor line drive. As its supply was OK he fitted a replacement. We now had a picture, but there was excessive width with EW bowing. A check on the two transistors in the EW drive circuit showed that $\operatorname{Tr} 7598$ (BC547) had a base-emitter leak. Once it had been replaced there was an excellent picture.

Video Dept

Our next caller breezed in with a video recorder. "My name's Mudd" he announced.
"Been upsetting the missus?" I asked.

He just laughed.
Paul had a look at the machine, which was a Mitsubishi HSM55. There was a tape jammed in it.
"Bet it's the capstan pulley" he said. "It cracks apart and the drive belt comes off. I've had several of these machines with this problem recently."

He was right, and because of his previous encounter we had a couple of pulleys in stock.

Then a chap rushed in with a Canon E60E camcorder. "I'm Mr Thesp, Mr Thesp" he said, waving the camera in the air. "He's six years old but he's a good un. A good un."
"What's the trouble, what's trouble?" I asked.
"No sound, no sound" he replied.

Steven looked at this one. "Probably the miniature electrolytics on the AV board" he commented, "they give a lot of trouble in these camcorders. The board's under the deck, so we'll have to take all the case sections off to get at it."

There was quite a mess when he got to the board. Some of the electrolytics had leaked very badly, destroying several tracks and through-board links. He shook his head.
"It'll have to be a new board" he announced. "We got one recently from Canon UK for $£ 51$ plus postage and VAT." The camcorder worked excellently once the board had been obtained and fitted.

Return Visit

The Reverend was pleased when he returned with his curate. "Ah,

"The symptoms did indeed look like head failure."
this will make her happy again,
Donald" he boomed, "she's worth her weight in gold, Miss Sawnie."
". . . weight in gold, Miss
Sawnie" echoed the curate.
"Really decent old stick" the reverend continued.
". . . decent old stick" the curate smiled, timidly.

Then the telephone rang. Steven answered it, but we could all hear the caller.
"Why haven't you come back to put my set right?" it blared.
"What set?" asked Steven, "who is it?"
"Mr McCruddock" the voice continued, "but you know that perfectly well. I left a note on your door this morning."
"There was no name or address" said Steven, "and I don't know what the set is. You didn't say."
"You know what my set is and all about it. My God, you were here only last night."
"I'll call right away" Steven promised.

He was soon back.
"What was the trouble?" I

asked.

"Aerial lead pulled out. His dog
sleeps across it."

TELETOPICS

CES Las Vegas

Anumber of interesting developments were revealed at this year's Consumer Electronics Show in Las Vegas, held in early January. In particular Sony launched a new camcorder format, Digital 8, which records digital video and sound on analogue $\mathrm{Hi}-8$ tape. The system is backward compatible with Video 8 and $\mathrm{Hi}-8$, and will play tapes recorded in these formats.

Digital 8 's picture quality is claimed to be equivalent to that offered by the MiniDV format, with a horizontal resolution of about 500 lines. The specification includes video sampling at 13.5 MHz with 8 -bit quantisation, a digital component recording system. a chroma bandwidth of approximately 1.5 MHz and a video transfer rate of $25 \mathrm{Mbits} / \mathrm{sec}$. There are two digital PCM audio recording modes: $16-\mathrm{bit} / 48 \mathrm{kHz}$ and $12-$ bit $/ 32 \mathrm{kHz}$.

Digital 8 uses a new recording pattern. Information for one frame is recorded on six tracks by using a dual-head technique to lay down

Samsung's

65in. rear-pro jection HDTV receiver, introduced at CES '99.

two tracks vertically - the MiniDV format records information for one frame on twelve tracks. There's 33 per cent less recording time when Hi-8 tape is used to make a Digital 8 recording - for example a 60 minute $\mathrm{Hi}-8$ tape will store 40 min utes of Digital 8 recording.

The first Digital 8 camcorders are expected to be available in the UK this spring, with entry-level models selling at about $£ 750$. All Digital 8 camcorders will incorporate an IEEE 1394 FireWire output connector.

According to the US Consumer Electronics Manufacturers Association digital TV has had a good start in the USA, with over 13,000 sets sold just weeks after the launch of services on November 1st. Two types of sets are on sale, high- and standard-definition. Industry observers believe that HDTV will account for twothirds of TV sales this year. A number of HDTV sets were on display at CES. Models from Samsung, Sony and Toshiba featured a 65 in . rear-projection display.

Canal+ announced plans to offer a number of interactive applications based on Sun Microsystem's Java programming language. Canal+ and Sun demonstrated several applications including an EPG and games. The advantage of Java is that it enables broadcasters to provide services that work with many different types of set-top box and operating systems.

DirectTV, the leading digital satellite TV company in the USA, outlined its plans for 1999. These include the launch of Wink enhanced interactive broadcasts, which give viewers access to background information and statistics relating to the programme being viewed. The service will be free to subscribers - DirectTV has 4.46 m at present, 1.5 m of whom were added in 1998. Wink-enabled settop boxes will be launched in the second half of the year, with the
service becoming available in the third quarter. DirectTV is working with Philips and TiVo on a Personal TV system (see below). The company plans to launch a fourth high-powered satellite that will add up to twenty more channels.

Philips plans to launch DirectTV set-top boxes that incorporate TiVo's 'push' TV technology, which 'learns' viewers' watching habits then automatically finds and records programmes of interest. TiVo has been developed by a Californian company of the same name. It uses a hard-disc video recorder that's expected to sell for about $£ 300$. The recorder has a hard-disc drive, a real-time MPEG-2 encoder, a microprocessor and a telephone modem. An entry-level model would store up to twenty hours of TV programmes. The system uses on-line TV data services and software, memorises a viewer's preferences then seeks and records programmes. During the night, TiVo downloads programme data for the next fourteen days, enabling the viewer to make manual selections. A subscription to $\mathrm{Ti} V_{o}$ is expected to cost about $£ 6$ a month.

A similar service was demonstrated by another Californian company, Replay Networks. Called ReplayTV, the system uses a harddisc video recorder that can store between 6-28 hours of MPEG-2 video. The service itself is free, the recorders costing about $£ 600$. Their specification includes an MPEG-2 encoder; PowerPC processor; cable-ready tuner; S and composite video inputs; RF, S and two composite video outputs; a telephone socket; and cable-box control. ReplayTV offers a range of compression rates, from $2-6 \mathrm{Mbits} / \mathrm{sec}$ (the lower figure is the default setting). The $4 \mathrm{Mbits} / \mathrm{sec}$ rate is said to approach DVD picture quality.

Satellite TV company Echostar is working with Microsoft to offer its subscribers the WebTV service.

The system will use a receiver with a built-in 8.6 GB hard dise and will enable viewers to mix TV viewing with internet surfing. A new feature will be Video Pause, which enables the viewer to freeze a TV programme for up to thirty minutes for viewing later. Future features will include downloading of MP3 (layer 3) MPEG-1 digital audio at a rate of one full CD every two minutes, with a total capacity of up to 1,000 hours of music. A second upgrade will enable full-length films to be downloaded overnight for future viewing.

Sales of DVD players have passed $1 \cdot 4 \mathrm{~m}$ in the USA: a further two million are expected to be sold this year. Over 2,200 DVD titles are now available. Aiwa plans to launch a portable DVD player with a $5 \cdot 8 \mathrm{in}$. LCD screen. Prototype

DVD players with a record capability were on display. Pioneer demonstrated its DVD-RW player (see page 247 last month) while Philips showed a DVD + RW player. Both companies hope to market machines next year, depending on whether the DVD Forum can resolve remaining copyright problems. The Philips system offers up to four hours of recording time per disc depending on quality level, which varies from VHS to DVD. The discs can be played back by a standard machine. Pioneer's machine records up to one and a half hours of high-resolution video (about 500 lines), but this is to be increased to two hours before launch. Pioneer also expects to overcome the non-compatibility problem with standard DVD players before launch. Both systems
use a 4.7 GB disc.
Divx, the DVD system that uses discs which can be played for 48 hours after which the contents become scrambled, is now backed by four hardware companies. Player sales are claimed to have reached some 87,000 units. DVDAudio was also featured at CES, with Universal Music and Warner supporting the system. The Super Audio CD, an enhanced CD format developed by Sony and Philips, was also being demonstrated. Both systems are expected to be launched in Japan this year. Thomson announced that it is developing an audio system that uses flash memory for storage.

Philips has developed a wireless PC peripheral called Ambi: it enables PC pages to be transmitted to a TV set for display.

News from SEME

SEME is now able to supply customers who do not have a direct Mitsubishi account with original spares for over 500 TV/video/audio models. The company can also supply spares for Beko TV sets and other products. SEME is now stocking original white good spares and accessories for many well known brands including AEG, Electrolux, Tricity Bendix, Zanussi, Parkinson Cowan, Moffat, Hotpoint, Creda, Cannon, Beko, LG/GoldStar, Daewoo and Panasonic. An introductory leaflet, ref LEAFI59, is available. Phone the number given in the next paragraph for a copy.

Most SEME staff have now moved to the company's new 17,000 sq. ft. high-tech head office building directly opposite the existing building at Melton Mowbray. There's a new sales hot line telephone number, 01664484 000 . General enquiries is now 01664484001 . The fax no. is unaltered -01664563976.

New Products from Philex

Philex has introduced a revolutionary flat, amplified indoor TV aerial that can be placed out of sight without affecting performance. It can be used with VHF,

New Test Equipment

Vann Draper has added to its range the high-performance Grundig 4.5 digit autoranging, microprocessor-controlled DM100 bench multimeter. Despite its comprehensive range of features, the meter is extremely user-friendly. Its main functions include AC and DC voltage over five ranges from 200 mV to 1 kV with a resolution of $10 \mu \mathrm{~V}$ and an accuracy of 0.05 per cent; resistance selectable over six ranges from $220 \Omega-20 \mathrm{M} \Omega$ with a resolution of $10 \mathrm{~m} \Omega$ and an accuracy of 0.05 per cent, also a continuity test and acoustic signal; six AC and DC ranges from $200 \mu \mathrm{~A}$ to 10 A with a 10 nA resolution. The menu system enables a fast or slow measurement speed to be selected and provides selection of relative and mathematical modes including a decibel readout. There are just four panel controls plus an on/off switch. A standard RS232C interface enables the instrument to be controlled from a PC or, with optional software, the microcontroller can be used with other instruments to provide an automatic test system. Price is $£ 349$. For further information phone Vann Draper Electronics Ltd. on 01162771400 or fax 01162773945.

Kenwood Electronics has introduced the PAC/PAC-R range of series-regulated CV/CC power supplies to suit most uses, with models providing up to 60 V and 6 A . Further details can be obtained from the Kenwood Test and Measurement Instruments Data Book. For a free copy phone Kenwood on 01923655291 or fax 01923655 297. Kenwood has also introduced a new range of three-channel analogue oscilloscopes with bandwidths of either 50 or 100 MHz . All four models in the CS5300 range have six-trace capability, 1 mV sensitivity and 2 per cent accuracy. For further details see phone details above.

UHF and multi-channel digital systems and comes complete with fittings for fixing to a wall or other surface.

Philex has been appointed sole distributor in the UK and Ireland for the Italian Meliconi range of high-quality stands and brackets for use with TV sets, VCRs, audio systems, speakers, multimedia equipment and microwave ovens. The range also includes storage stands for CDs and CD-ROMs.

For further details of these and other Philex products phone 0181 202 1919, fax 01812020014 , send an e-mail to

More Teletopics on page 364 sales@philex.com or check the web site at http://www.philex.com

The Grundig DM100 bench multimeter.

Something else to keep the service department busy CB radios. They can be worth repair if rapid fault diagnosis is possible. Chris Watton summarises his experiences in this field

|was asked to repair a number of CB radios recently. They are inexpensive to buy, so the viability of repair depends on whether a quick fault diagnosis is possible. If you have to spend hours on a CB radio, repair will not be worthwhile. The following notes are based on experience and will, hopefully, help with rapid fault finding. To repair CB radios you will need a 13.8 V supply at $3-4 \mathrm{~A}$, a scope, a frequency counter, a dummy load for the transmitter and a power meter. A suitable dummy load consists of two parallel-connected $100 \Omega, 2 \mathrm{~W}$ resistors, which must not be of the wirewound type. A signal generator is useful as well.

What's inside?

We'll start with a brief account of what you will find in a CB radio. The circuitry is very similar with most makes and models. Fig. 1 shows a basic block diagram.
The heart of the system is a phase-locked loop (PLL), which maintains the correct frequency and channel spacing. The transmission frequency must be maintained as it's illegal to operate a CB radio outside the allocated frequencies, which are $26 \cdot 965-27.405 \mathrm{MHz}$ and $27.60125-27.99125 \mathrm{MHz}$, with 10 kHz channel spacing. Frequency modulation is used. The PLL chip works in conjunction with two voltage-controlled oscillators (VCOs). Varicap diodes are used to adjust the frequency of the VCOs when the PLL's DC output varies as different channels are selected. There are two frequency dividers within the PLL chip. One is connected to the output of a 10.240 MHz crystal oscillator, which provides the reference signal. The other frequency divider operates in conjunction with the programmable input from the channel switch. The VCOs provide feedback to the PLL: when the signals are in phase, the system is said to be locked.
The receiver section uses two-stage frequency conversion, with a first IF of 10.695 MHz and a second of 455 kHz . This is followed by an IF amplifier/limiter, demodulation and finally an audio amplifier.
The transmitter section is also quite simple. The microphone input is amplified, filtered then used to modulate the transmit VCO. The output from this is frequency-doubled then fed via tuned amplifiers to a power amplifier which provides 4 W into the 50Ω aerial. This section can be easily checked with a scope: a 27 MHz sinewave, increasing in amplitude stage-by-stage, should be seen. You won't see the modulation, as this is very small - only 1 kHz in the 27 MHz signal. The tuned amplifiers are usually adjusted for maximum output, but the receiver should be checked at both ends of the band - it may be high at one end and low at the other. The final stages are often not set for maximum gain - check with the service manual.

What goes wrong?

The circuitry is very reliable. An unfortunate problem is that most CB owners are, naturally, experts. They think nothing
of taking the top off and adjusting those screw things as you can get a lot more power out, or so they believe. Most of the time they just detune the harmonic traps, which makes the signal meter go a little higher as it can't tell a 27 MHz signal from one at 54 MHz .
Other problems include add-ons, such as power-amplifying microphones and echo boxes. These are usually wired or set-up incorrectly.
A particular problem arises when a CB radio is used in a car. Power is often connected the wrong way round. If the fuse is present this is usually not disastrous as a protection diode is incorporated. But you often find that the fuse has been replaced with a piece of wire, the diode has melted, and silicon such as the audio amplifier chip has been destroyed. People just don't appreciate the power of a car battery. In this case the unit is usually not worth repair: the cost of the PLL and the audio chip and a bit for labour is more than the cost of an average CB radio. Nevertheless most CB operators don't mind paying a reasonable amount for a repair and will seek help before they go shopping.
Poor leads to the power supply unit can cause the radio to transmit with a buzz. The display lights usually dim as you speak into the microphone. A poor power supply can add AM to the output: at another receiver this sounds like distortion. The on/off switch contacts can be the cause of no transmission. A dirty microphone switch is often the cause of intermittent or broken audio when transmitting. A signal generator is useful for adjusting the IFs and detector, as with an FM radio. A $100 \mu \mathrm{~V}$ signal fed to the aerial socket should give a reading of S 9 or more on the signal meter with the squelch and RF gain controls at maximum. Adjust the preset squelch control so that the audio mutes when the level at the aerial input is $7 \mu \mathrm{~V}$.
Components and circuit diagrams are available from various sources, including S.J. Tonks, 34 Bradford Street, West Midlands (01922 646 710); Truck King, 320 St. Albans Road, Watford (01923 235 943); and Nevada Communications, 189 London Road, North End, Portsmouth (01705 698 113). Two particularly useful books are Understanding and Repairing CB Radio and CB PLL Data, both by Lou Franklin (USA). A couple of news letters by Martin Pickering, called The Midnight Express I and 2, are a must - some very good information here. These publications are available from S.J. Tonks and, possibly, other sources.

illegal Radios

A number of the radios in use don't meet the legal requirements. They have other modes of operation, such as amplitude modulation and single sideband. These are illegal to operate, and the penalty imposed is confiscation with a heavy fine. But of course some people will use them, won't they? They are certainly better quality radios and are more expensive to buy.

Basic Faults

Faults fall into several categories i.e. dead, no audio, no transmit or no recieve. Remember that many radios require a microphone input to produce an audio output. Also that the radio's case is not connected to the negative side of the supply, as with a car radio - it's isolated from the supply rails. So don't try to read voltages from the case: I usually connect to the negative side of my power supply or the frame of the power input choke.

Dead unit: If the input fuse has blown, the protection diode should be the first item checked. It's usually a IN4002 and is connected across the power supply terminals before the on/off switch. If the diode is OK, suspect the audio output chip or the transmit power output transistor.
Most legal CB radios incorporate a three-pin voltage regulator. The output varies with model but is usually in the 68 V region. If the fuse is OK, check this item. You often find that it is open-circuit of cracked from the PCB. This is simple enough to deal with.
When screws are used to attach the PCB to the frame you will often find that the board is cracked. The radio is taken from car or tractor to the house and dropped on the way!

Radio appears to work but has no audio: If signals are received, this will show on the signal meter. Almost all CB radios have one - a LED, bar or a normal meter. A quick check on transmit operation can be carried out with either another radio, a scope or a simple RF output tester (see Fig. 2). If the output is working, a visual indication can be seen on the signal meter. Check the microphone wiring, the speaker and the extension socket: faults here are more common than in the audio section.

No transmit or, as they say, "I can't git out": If reception is possible, it's fair to assume that the main oscillator is working. So the cause of the problem could be anywhere between the transmit VCO and the aerial socket. Again the microphone, or the push-to-talk (PTT) switch, could be to blame. The most common cause however is failure of the transmit power amplifier transistor.
This transistor can fail for several reasons, e.g. a poor aerial or coaxial lead, loose connections etc. or incorrect aerial setting where the SWR (see later) is too high. The latter is more often in the user's imagination.

A scope check at the collector of the transmit power amplifier transistor should show a 4 V peak-to-peak 27 MHz sinewave. Set the scope to $0.2 \mu \mathrm{sec}, 0.1 \mathrm{~V} / \mathrm{div}$. If this waveform is missing, work back through the driver, pre-driver etc. stages. Note that some radios will stop transmitting if the VCO's frequency is slightly off, even though reception is OK. This is because the PLL lock detector prevents an out-of-tolerance transmit frequency.

No transmit or receive, audio OK, microphone working, all stages have a supply voltage: This will probably mean a PLL or oscillator fault, in most cases the VCO which is encased in wax. The small-value capacitors here can fail. It's not worth testing them as they often read all right with a meter but don't work when in the circuit. If you have to dig the wax out, replace it. It's there to provide temperature stability and prevent microphony. If the components can vibrate, you may get spurious FM. Suitable wax can be obtained from a beekeeper - one sheet from a honey comb will fill fifty or more VCOs. Some people use candle wax, but it doesn't look as nice.

SWR

SWR means standing wave ratio, a term most CB operators think they understand well. The transmitter's output has an impedance of 50Ω. So the aerial and the coaxial cable should also have an impedance of 50Ω, otherwise there will be a mismatch. The result of a mismatch is signal reflection (a standing wave) and thus loss of power.
A small SWR meter can be bought for less than $£ 10$ and will provide a good indication. Usually people hope for a 1:1 match. In practice anything below $3: 1$ is acceptable most CB radios won't 'blow up' even when the reading is 10:1 or higher.
Most home aerials are preset and require no adjustment. When a mobile aerial requires adjustment there are normally guides for setting, adjustment being by alteration of the physical length of the whip.

Fig 1: Basic CB radio block diagram.

Fig. 2: Simple RF voltage tester. The two 100 2, 2W resistors must not be of the wirewound type. Any small-signal germanium diode can be used, e.g. an OAg1.

> Reports from Chrisfopher Holland and Hugh Cocks

Old F Connectors

When carrying out any work on an old dish system, for example using the existing coaxial cable for a new Astra 2 digital installation, I always replace the F connector at the LNB end of the cable. Many early crimpon types now give poor contact between the coaxial cable braid and the body of the plug. The result can be intermittent signals or reception of the vertically-polarised channels only - the horizontally-polarised channels require $17-18 \mathrm{~V}$ from the receiver, and poor contact will drop the LNB's supply voltage to the level for vertical polarisation, about 13 V .

The problem often starts when the old cable and plug have been disturbed. It may not show up until a few days after the work has been done. C.H.

Low Mains Voltage Problem

We supplied and installed a 1 m dish for the owner of an early Cambridge receiver. He had only recently moved to this part of the world (Algarve, Portugal). Despite its age the receiver seemed to be in good condition, no doubt in part because of its solid mains transformer and 'traditional' type power supply circuitry - many models of similar age from rival manufacturers have long since overheated and been consigned to the scrap heap, despite offering far more features. The main drawback with this receiver is the limited tuning range for each of the 99 channels, making it impossible for example to tune in all the BBC radio stations on separate channel numbers.

Once the dish had been set up the receiver produced good pictures with unscrambled channels. But, despite displaying the "please insert card" message, when the card was inserted the only response from the decoder was a rapidly flashing
"please wait" message. This exonerated the card (some defective early-series Sky cards could produce an effect similar to this).

I was about to take the receiver back to the workshop, with visions of selling the customer a new unit, when I noticed that the "please wait" graphics started to produce a distinct rolling hum-bar effect, indicating power supply problems. The mains transformer had 220 V and 240 V mains tappings. Since it had been brought from the UK, it was naturally enough set for 240 V . The receiver was now being used at a remote rural location where the voltage would at best be about 220 V , probably rather less at peak demand periods. There were perfect decoded pictures with the card inserted once the tapping had been changed to 220 V . We won't be seeing many more power supplies like this! H.C.

Pace MSS100

Despite being connected to a known good LNB one of these receivers produced a blue "no signal" message. At the decoder scart socket there was a baseband video output signal that corresponded with the channel selected by the remote control unit, so at least the tuning circuitry was working correctly. This led me to look at U500, the 56 -pin IC that handles virtually all the video processing.

Baseband video from the tuner was present at pin 20, but there was no clamped video output from the chip. The 4 MHz reference signal was present at pin at pin 35 , and the clock and data signals were present at pins 30 and 31 respectively. While the 5 V supplies were present, the 12 V supply at pin 45 was missing.

Heading back to the 12 V regulator U3, I found that there was no input voltage from diode D18. There was voltage at this diode's
cathode, but the print to which it is soldered had fractured. There was normal operation once the supply to the 12 V regulator had been restored. H.C.

Digital Reception Problem

After a week or so of trouble-free operation, the on-screen information from this digibox displayed a helpful message to say that no signal was being received. When I connected my in-line satellite signal and LNB voltage/current detector to the back of the receiver it indicated that there was no power supply to the LNB. I disconnected the mains supply to the digibox and the LNB feed, then reapplied power to the digibox. A normal 13 V reading was obtained (the digibox's digital default/start-up frequency is on a verticallypolarised channel).

When the cable from the dish was connected to the meter, a period of higher than normal current consumption was shown. Then the digibox shut off the LNB's supply. A replacement LNB was tried but made no difference. The cause of the problem turned out to be water: it had got into a very well hidden joint in the cable, which had previously been used for analogue reception only. It's a pity that the digibox doesn't give some sort of on-screen indication of this problem, like its analogue predecessors, bearing in mind the need to disconnect from the mains before the LNB supply is re-established! C.H.

An Unusual SkyDigital Installation

At a SkyDigital installation we carried out recently the owner told us he wanted to keep his existing analogue equipment. The installation was at a large farmhouse, where a cable conduit had been put in by a builder during renovation work some years back. This conduit had
room for only one coaxial feeder, which was already carrying terrestrial FM and UHF signals as well as the analogue satellite ones: combining outside and splitting inside was done by RF/IF diplexers. Installation of a new cable externally was not possible: it would have been visible, and the owner had a great dislike of cables in any shape or form!

Since the SkyDigital transmissions are in the $11.7-12.5 \mathrm{GHz}$ band, the digibox always produces a 22 kHz tone output. Unfortunately it has no DiSEqC dish-switching facilities. In this case the analogue receiver was a Pace MSS 1000 , which also has no DiSEqC output.

The solution (see Fig. 1) was to install a tone switch at the dish end of the system, to switch between the existing analogue and a new digital dish. The switch also passes the tone from the digibox to the universal LNB at the digital dish, in the normal way.

Unfortunately the digibox produces the tone when it's in standby - Sky insists that the box is powered at all times. As a result, the tone switch would have made per-
manent connection to the digital dish. The problem was solved by adding an on/off switch adjacent to the digibox. When analogue reception is required, the owner switches the digibox to standby then removes the power. Fortunately the owner had opted for a non-tele-phone-line installation for his digibox (I leave to your imagination his views about telephone lines being connected to digiboxes along with visible external cables!), so his receiver wouldn't get any over-theair commands to ring up the subscription centre and constant powering was not essential.

When the digibox was initially powered it took a little time to find all the channel listings. As shown in Fig. 1, the video scart is connected to the MSS 1000 's auxiliary input, forcing the receiver to route its video and audio output signals to the hi-fi, TV set and VCR.

In view of the possibility of an over-the-air digibox software upgrade at night, the owner understands that mains power to the digibox should normally be left on, being removed only when analogue viewing/listening is required. C.H.

Fig. 1: Digital/analogue receiving system using a single cable between the aerials and the receivers.

BACK ISSUES

We have available a limited stock of the following back issues of Television:

1994 January, February, May, June, July, September, October, November and December

1995 January, April, May, June, July, August, September, November and December

1996 January to December inclusive
1997 January to December inclusive
1998 January, February, March, April, May, June, September, November and December

1999 January and February
Copies are available at $£ 3.00$ each including postage. Send orders to:

Television Back Issues, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Make cheques/postal orders payable to Reed
Business Information Ltd.

M.C.E.S.

Specialists in the Service and Recalibration to original manufacturers specification of:All types of:-

TUNER UNITS TO 20 GHZ BOOSTERS \& RF MODULATORS COMBINED TUNER AND IF UNITS

Supply of Upper Drum Assy's for all video

 recorders including time lapse, marine and aviation requirements, either as new or remanufactured using your original drum and new grade A chip sets.We are able to service, recalibrate and confirm manufacturers specifications for all low noise blocks.
New LNB's can also be supplied to order.

New price list now available.

15 Lostock Road, Davyhulme

Manchester M41 0ES
Telephone: 01617468037
Fax: 01617468136

MasterCara

John Edwards' Casebook

Sony KVM14TU (BE1 chassis)

There was a dark, negative picture with severe line tearing and a loud hiss on the sound. A gurgling-type noise seemed to come from the area of the line output transformer. The symptoms came and went when the PCB was prodded, but a thorough resoldering job made no difference.
A slow, careful prodding exercise then narrowed the source of the problem to the IF module VIF101, which is mounted vertically near the tuner module. To clear the fault I had to remove the IF module and its side screen plate and resolder every joint.

Goodmans 1405R

This portable lived on a swivel wall bracket in the bedroom of a customer's daughter. It had apparently been subjected to a violent push, hitting the wall, after which it had ceased to work. An estimate was required, as the daughter was to pay. The cabinet wasn't damaged in any way.
I removed the back, expecting the innards to fall out on to the bench, but this didn't happen. When the set was switched on it was indeed dead. I unplugged the set and withdrew the large power board that sits in moulded runners, vertically, along the left side of the cabinet. When the board was placed on the bench I saw that a crack ran the entire width of the board and across the chopper transformer's terminals. The two halves were held together by the components soldered to it. It's difficult to guesstimate such a job, and to make matters worse I could see that Q602 (2SC2120) had split in half. So I assumed that a power supply rebuild would be required and hoped that other stages hadn't been damaged.
Because of the convenience of being able to work on the power supply PCB out of the set, I felt that the best policy would be to check every component on it. The whole exercise took a little over a quarter of an hour and provided me with a list of known failed components on which to base my guestimate. R601 (4.7) and R612 (0.56) were open-circuit, Q602 had blown apart and R607 (47) had broken in half. I assumed that the STR58041 chopper chip would be faulty and added it to the list. If I was lucky there wouldn't be any surprises in store. So I phoned with the price, and was given the go-ahead.
After repairing the PCB, using Superglue and joining the broken tracks with stiff wire, I started to fit the replacement parts. I hadn't a 2 SC2120, so I checked its details. The readily available BC639 seemed to be a
suitable replacement, so in one went. The only other item I didn't have was an 0.56Ω resistor: I used two 1Ω resistors in parallel instead. After fitting a new STR58041 the variac was brought into service and slowly wound up. To my delight the set burst into life. After a few minutes I switched off and checked the temperature of Q602 and the chopper chip. Both were cool and clearly working well within their limits.

Sony KV1612

This set drifted off tune about four minutes after being switched on. It would then start a channel search, of its own accord, without stopping at any of them. A few seconds later there would be a display of random channel numbers. As the push-switches (S401-413) on the front control panel all felt spongy I decided to replace them. This cured the problem.

Ferguson 3V39/JVC HRD110

The clock and channel displays were normal, also the deck function LEDs when a function was selected. But the mechanism failed to stir from its sleep. CP1 on the bottom PCB was open-circuit. It's in the middle of the machine, towards the rear.

Philips 24CE3588 (CP110 chassis)

There was no E-W correction. Apparently the set had been like this for months, until the owner's son finally insisted on it being fixed and had promised to pay the bill. How anyone could have put up with it for even an hour I'll never know: the sides almost met at the centre of the screen!
While the EW diode modulator circuit is where you would expect it to be, on the main PCB, the drive circuitry is on the tube base panel. Unusual that. Anyway, investigation here showed that the BF819 driver transistor $\operatorname{Tr} 7600$ was running far too hot. In fact it had baseemitter leakage. Tr7600 is in turn driven by the pnp transistor Tr7601 (BC558), with direct coupling. This transistor was short-circuit collector-to-emitter. Its emitter is biased by R3588 ($15 \mathrm{k} \Omega$) and R3587 ($1.8 \mathrm{k} \Omega$), which were charred. R3599 (47) was also charred. So was the circuit board beneath these resistors. Which of these items had deteriorated first would be hard to guess. At the input to the circuit, the EW parabola coupling capacitor $\mathrm{C} 2589(33 \mu \mathrm{~F})$ was very leaky.
Scraping the burnt area of the board clean and renewing the defective components cured the trouble. The owner and her son were pleased to see a full screen again.

Fully electronic operation Free standing or TV mounted TV plugs directly into meter Completely variable time range £1, £2 or Euro coin operated Auto current sense level detection Simple tool free installation \& operation £150 average coin box capacity Radial pin lock for added security 15 minute audible pre-end warning	Yes, I would like increased income from TV rental - please send me details of Alberice's BG5500 TV meter Name: \qquad Business Name: \qquad Address: \qquad
Suitable for: Home/Hotel TV Rental, Cable, Satellite \& Video etc..	
HOMPCO	Telephone:
Alberice Ltd. Sterte Avenue West, Poole, Dorset BH15 2AW Tel: 444 (0) 1202667044 Fax: +44 (0) 1202682988 e-mail: alberice@globalnet.co. uk	Post this coupon to: Alberice Ltd. FREPOST BH76) Sterte Avenue West, Poole, Dorset, BH15 $2 Z Z$

> The subject of an electrolytic capacitor's ESR has generated a lot of interest in recent issues. Alan Willcox has taken it a stage further in designing a practical ESR meter. This first part deals with the operation of the circuitry used in the meter

Design of an ESR Meter

Alot has appeared in recent issues on the subject of the ESR (equivalent series resistance) of an electrolytic capacitor. The Capacitor Wizard was reviewed by Martin Pickering in June 1998. It's designed to measure a capacitor's ESR in-circuit while ignoring any components that are connected to it. The unit described in this article performs the same task, and a lot of work has been put into achieving the end result. Even if you don't get around to building the meter, this article will give you insight into the design criteria and the way in which the instrument works. But build it if you can: it's effective, very useful and inexpensive.

ESR

In view of Martin's review and also the articles by Ray Porter on a capacitor's ESR (January and April 1993) I won't say a lot about ESR here: it would simply be repetition. To put it in a nutshell, a capacitor's measured ESR (in ohms) is an indication of its 'goodness'. The lower the ohms reading, the better the capacitor. An ESR check can give an early indication of capacitor failure, and is far more useful than a capacitance measurement. Indeed many faulty electrolytics show OK when checked with a conventional capacitance meter.
In recent months I've talked to many people who don't appreciate the importance of ESR and in what sense it differs from capacitance. So I feel it worthwhile including an extract from a technical bulletin on the Capacitor Wizard written by Doug Jones, the President of Independence Electronics Inc. It sums up the question of ESR well.
"ESR is the dynamic pure resistance of a capacitor to an AC signal. High ESR can cause time-constant problems, capacitor heating, circuit loading, total failure etc. A switch-mode power supply may not start reliably - or start at all. Slight hum bars appear in the video of a

VCR or monitor. A TV display may be pulled in from the sides/top/bottom. Diode and transistor failure can occur over a period of time.
These and many other problems are often caused by capacitors with normal capacitance but high ESR, which does not exist as a static quantity and therefore cannot be measured using a conventional capacitance meter or a DC ohmmeter. ESR exists only when alternating current is applied to a capacitor or when a capacitor's dielectric charge is changing state. It can be considered as the total in-phase AC resistance of a capacitor, and includes the DC resistance of the leads, the DC resistance of the connection to the dielectric, the capacitor plate resistance and the in-phase AC resistance of the dielectric material at a particular frequency (my italics) and temperature.
The component combination that constitutes ESR can be thought of as a resistor in series with a capacitor: the resistor does not exist as a physical entity, so a direct measurement across the 'ESR resistor' is not possible. If, however, a method of correcting for the effects of capacitive reactance is provided, and considering that all resistances are in phase, the ESR can be calculated and measured using the basic electronics formula $\mathrm{E}=\mathrm{I}$ $x R$! This is the basis of the design of the Capacitor Wizard."

Design Criteria

Capacitor manufacturers quote ESR values measured at 100 kHz . So this is the test frequency I chose. The impedance of inductors in the microhenries region can be measured at this frequency, enabling the condition of video heads to be gauged - as they wear and the gap deteriorates, their inductance falls.
The Wizard has a buzzer that sounds when the ESR is below 1Ω or so. A capacitor with an ESR of less than about 1Ω is generally considered to be good, so

11000100110110101010

10110010011001010111
 1010 TELEDRSOU 0111
 0001010011001010001
 1101010010101010100

1 year only $£ 32$. Binary prices for the digital age

0101110101011001010
 11000100110110101010

Make the best choice. Subscribe to TELEVISION today!

- FREE POSTAGE
 - PRIORITY DESPATCH
 - SUBSCRIBE FOR 2 OR 3 YEARS AND SAVE!

12 issues (lyr) £32 UK (£46 Europe, £59 Rest of World)
$\square 24$ issues (2yrs) £51 UK (£74 Europe, £94 Rest of World) - SAVE 20\%
$\square 36$ issues (3yrs) £64 UK (£92 Europe, $£ 119$ Rest of World) $\mathbf{- 1}$ year FREE!

IN EVERY ISSUE

- News, equipment reviews, components, servicing solutions, business-building ideas.
- Television, VCR, satellite, CDs, PCs, consumer electronics.
- State of the art reports on digital TV and other developments.

MONEY-BACK GUARANTEE OF SATISFACTION

If you are not completely satisfied with TELEVISION within the first 60
days, we'll refund your money in full - no questions asked.

IF YOU'RE AN ELECTRONICS PROFESSIONAL, YOU NEED TO SEE 'TELEVISION' REGULARLY!

Please allow 28 days for delivery of your first issue.

Please lick here if you do not wish to receive direct morketing promotions from other relevant companies

THREE WAYS TO PAY

1. I enclose a cheque for $£$ \square made payable to TELEVISION
2. Please charge my:
 Visa \square AMEX Mastercard Diners Club \square Switch \square Delta

Account number

RETURN TO: 'TELEVISION' SUBSCRIPTIONS, FREEPOST RCC2619, HAYWARDS HEATH, UK, RH16 3BR. NO STAMP NEEDED IN THE UK. OR CAIL +44(0) 1444445566 . (QUOTING CODE 082) FAX +44(0) 1444445447. E-mail: rbi.subscriptions@rbi.co.uk
this is a very useful feature in situations where you want to check a number of suspect components - it means that you need refer to the meter only when there's no beep. I've incorporated this facility, but you must bear in mind that a lot of the capacitors in which we are interested have ESR values of less than 0.5Ω when good. More on this later.
I'd like to stress this basic point before going any further: as with the Capacitor Wizard, the meter described in this article doesn't measure a capacitor's microfarads. It simply lets you know if the capacitor is or isn't up to the job. After gaining some practical experience with the meter, you will soon get to know what reading to expect from a good capacitor - taking into account its capacitance and voltage rating. But in any case the reading obtained with a faulty capacitor usually leaves little doubt as to its condition.

The Op-Amp

The circuit uses the basic op-amp as an oscillator, amplifier, detector, voltage-follower and comparator. So it's appropriate to devote some space to a description of the op-amp and its associated circuitry. Incidentally the term 'operational amplifier' relates to its use in analogue computers and appeared in a paper by Ragazzini and others in 1947. The first general-purpose op-amp, with differential inputs and using the familiar triangular symbol for circuit representation, was introduced in 1952 (Model K2-W, by George A. Philbrook Researches Inc.). It's sobering to think that almost forty years ago an early op-amp, the P2, cost $\$ 227$ - an eighth of the cost of a VW Beetle at that time: now a superior device can be bought for less than a pound.
The op-amp is a high-gain ($\times 100,000$ or so) amplifier that usually has two inputs, one non-inverting (labelled +) and the other inverting (labelled -). For practical purposes the gain can be considered as infinitely high, with no current flow at the inputs. The op-amp is designed primarily to operate stably with heavy negative feedback. In fact from the historical point of view the op-amp and the concept of negative feedback (the invention of H.S. Black, working for Bell Laboratories, in 1927) are synonymous. Black was working on telephones, his objective being to achieve stable gain independent of the characteristics of a valve (a thermionically-activated FET to youngsters!). When he tried to patent his negative-feedback amplifier in 1928 the idea was ridiculed. Over the years however this concept has become one of the most important in the field of electronics. Marconi had much the same problem. It seems that people often dismiss things they don't understand.

Anyway, I digress. To get back to the point, the opamp usually requires a positive and a negative supply with respect to a common earth. These supplies are often not shown on circuit diagrams, being taken for granted. The common earth (0 V line) serves as a reference point for the voltages that are present in the circuit and as a return path to the power supply for any currents generated by the device's operation.
The main point here is that if the voltage at the + input increases with respect to the voltage at the - input, the output voltage will be positive-going. Conversely if the voltage at the + input decreases with respect to the voltage at the - input the output voltage will be negativegoing. Thus in normal practice the output corresponds to the difference between the inputs.
If the op-amp doesn't have any negative feedback and the + input is at only 0.1 mV above the - input, the output voltage will be close to that of the positive supply rail. If the + input is lower than the - input by the same amount, the output voltage will be close to that of the negative supply rail. Thus the gain is equal to the average slope, which is typically $10 \mathrm{~V} / 0 \cdot 1 \mathrm{mV}=$ 100,000 . This very sensitive property is used in comparator circuits (it's used in the ESR meter's buzzer circuit). But the op-amp is far more useful when the output is restricted to narrower limits.

The Precision Inverting Amplifier

This is one of the most common op-amp applications and is used in the second and third stages of the meter. Circuit operation will hopefully be made clear by the rather unusual representation (due to Tom Hornack) shown in Fig. 1.
At (a) the op-amp is arranged to provide a voltage gain of two. The fact that in this case the output is inverted (the gain is minus two) is not important. The heavy negative feedback via resistor Rf forces the output to be such that the voltage at the - input is equal to that at the + input, which is 0 V . Remember that the opamp responds to the difference between its inputs. As point X is at earth potential, there is IV across Rin ($1 \mathrm{k} \Omega$) and the current flow via Rin, calculated by Ohm's Law, is 1 mA . There is no current flow at the input of the op-amp, so this 1 mA flows via $\operatorname{Rf}(2 \mathrm{k} \Omega$) which thus has 2 V across it.
Notice how Rf and Rin behave like a seesaw as the input goes from a positive to a negative value, with the pivot at the null point X . This point is referred to as a virtual earth. There is no current path between point X and earth, and point X is always at zero voltage with respect to earth.
The concept of a virtual earth is used as a short-cut

Fig. 1: Precision inverting op-amp circuit, (a) with a positive input, (b) with a negative input. Note how Rf and Rin behave like a seesaw as the input goes from positive to negative, with the pivot at the null (virtual earth) point X. The gain of the stage is Rf/Rin, so the output is Vin x Rf/Rin.

Fig. 2: Jim Williams' original circuit, the first attempt at combining an op-amp with a Wien bridge network to form an oscillator.

Fig. 3: An op-amp Wien bridge oscillator arrangement with the output set at 6 V p-p (positive peak shown). At the resonant frequency points a, b and c are in phase and the waveforms at the op-amp's inputs are a third of that at its output. The ratio $R f / R i n=2$.
when the operation of a current-to-voltage converter is analysed. From Fig. 1 you can see that, because of the virtual earth, Rf appears to be in parallel with RL. So the voltage across Rf appears across the load as the output voltage. But although the null point is considered to be at earth potential, at a microvolt level it's very much active.
It can be seen from Fig. 1 that the stage gain, within the limitations of the supply, is determined by the ratio of Rf to Rin. Incidentally there's a frequency limit on the gain: with common types of op-amp we are limited to a gain of about $\times 10$ at 100 kHz . If the resistors in Fig. 1 are transposed the stage gain will be 0.5 - the circuit acts as an attenuator.

Overview

Before we go further, it would be as well to provide a quick introduction to the meter circuit presented here (see Fig. 5). The first stage consists of a 100 kHz oscillator, whose output is fed to the capacitor being tested. Put simply, the current flow through the capacitor is sensed then amplified as a voltage. It's finally detected and measured by the meter movement.
The better the capacitor, the lower its ESR and the higher the meter indication. It's not quite this simple, because the meter must ignore the other components connected to the capacitor being tested. We'll come to the solution to this problem later.

The Oscillator - History

At the heart of the meter there's a Wien bridge network oscillator. This form of oscillator has an interesting history which is worth a few paragraphs.
In 1939 William Redington Hewlett (co-founder of Hewlett-Packard) produced his Stanford thesis A New Type Resistance Capacity Oscillator. It made use of a resonant $R C$ network that had been conceived by Max Wien (pronounced Vene) in 1891. The American inventor Lee DeForest (yes, we can blame him) hadn't started the ball rolling yet with the creation, in 1906, of the triode valve. So there had in 1891 been no means of obtaining electronic amplification and Max couldn't have got his network to oscillate. That wouldn't have troubled him, as he was using the network for AC bridge measurement. Amazing what people got up to over 100 years ago, isn't it? I think it was, once again, something to do with telephones.
But Hewlett had the pentode valve at his disposal. He also had Harold S. Black's pioneering work on negative feedback to assist him. In addition there was Nyquist's Regenerative Theory, which described the conditions necessary for oscillation.
Hewlett showed that the Wien network could be made to oscillate. A crucial problem had to be resolved however, that of stage gain. With a gain of less than unity there would be no oscillation. With a gain of greater than unity there would be distortion. With unity gain there will be what Hewlett wanted, a sinewave. He had a flash of inspiration: the solution was literally staring him in the face - the electric light bulb.
Hewlett's oscillator was a two-valve affair, with a 6 J 7 as the oscillator and a 6 F 6 as the output stage. His solution for gain stability was to wire a tungsten bulb between the cathode of the 657 and earth. The negative feedback was applied between the anode of the output valve back to the cathode of the triode oscillator valve. If the output increases for any reason, so does the current flowing through the bulb. As it warms up, its resistance increases. So does the level of negative feedback, thereby stabilising the oscillator's output. Hewlett's idea of employing a light bulb was brilliant in its simplicity. It survived in the HP200 series audio oscillator during a fifty-year production run - into the mid Eighties.
About fifty years after Hewlett built his oscillator Jim Williams, who was working for Linear Technology Corporation, was sitting in his den one rainy Sunday trying to think of something to do. His old HP200 caught his eye. Peering into the back, he saw the light bulb where it had been placed half a century ago, and wondered how Hewlett's oscillator would perform using a modern op-amp. He went on to knock one up - the original circuit is shown in Fig. 2 - and was pleased to find that it had a distortion figure of only 0.0025 per cent.
Perhaps he could improve on it, by eliminating the bulb? Jim was the first to use a JFET in place of the bulb, but with this device the distortion figure rose to a massive 0.15 per cent. Unfortunately there's not space to explain why the use of a JFET gives such inferior results compared to a bulb. In the event Jim discarded the JFET in favour of an optically-driven CdS photocell. This, in conjunction with five op-amps etc., produced an analyser-limited distortion figure of 0.0003 per cent (three parts per million). At one point during his quest Jim writes (Analogue Circuit Design, Butterworth-Heinemann) "I could almost hear Hewlett's little light bulb, which worked so well,
laughing at me". So no apologies for the use of a light bulb in this design.

Operation of the Oscillator

Fig. 3 shows the Wien bridge network oscillator as you probably won't have seen it drawn before. It illustrates the situation at the peak of the positive-going half cycle. The positive feedback network consists of the series-parallel $R C$ (lead-lag) network: the negative feedback loop consists of the preset Rf and bulb Rin.
We'll consider the $R C$ network first. At very high frequencies the shunt capacitor in the lower arm of the bridge will appear to be a short-circuit and there will be no signal at the op-amp's + input. At very low frequencies the series capacitor will appear to be opencircuit and again there will be no input from the feedback network. At some point in between there will be maximum output from the network. The frequency at which this occurs is equal to $1 /(2 \pi R C)$, which is called the resonant frequency (fr) of the bridge network. At this point there is no phase shift across the bridge, and the upper arm of the network has twice the impedance of the lower arm, giving a transmission loss of $1 / 3$. To overcome this loss and achieve the required stage gain of unity, the closed-loop voltage gain (ACL), which is set by the ratio of Rf to Rin, must be three. The formula for the closed-loop gain of a non-inverting amplifier is ACL $=\mathrm{Rf} / \mathrm{Rin}+\mathrm{I}$, so $\mathrm{Rf} / \mathrm{Rin}$ must be two in order for ACL to equal three.
At power up the negative feedback is low, because the bulb is at its lowest resistance, and the gain is high. As a result oscillation begins immediately, and the bulb is warmed by the current current flow. Within a fraction of a second the resultant increase in its resistance reduces the oscillator's output. It settles at the level at which the bulb's resistance is half that of the feedback resistor Rf. So the value of Rf sets the amplitude of the output. Note that the bulb's thermal delay means that it cannot follow oscillations at relatively high frequencies. It responds to the RMS current only, and thus behaves as an ordinary resistor.

The Bulb

Although the Wien bridge oscillator is the accepted standard at frequencies up to say 1 MHz , the use of a bulb for gain control, popular in the USA, has never found favour on this side of the Atlantic. I think I know the reason for this. In most textbooks things begin to get a bit vague when it comes to the actual type of light bulb to use.
It is often said that any low-voltage, low-current bulb can be used. This is not so. I have seen the following flawed reasoning in some books. Take a 12 V , 50 mA bulb which has a resistance of $12 \mathrm{~V} / 50 \mathrm{~mA}=$ 240Ω. The feedback resistor must be twice this, i.e. 480Ω or a $1 \mathrm{k} \Omega$ preset. There's nothing wrong with this value for the feedback resistor, but it won't work with such a bulb. The point that's been missed is this: the bulb must be operated at a current level that gives a large change of resistance.
This occurs when the current is only a few milliamperes, and nowhere near bulb incandescence. What we require is a bulb that has a resistance of about 200Ω when cold. When the type of bulb normally specified is used, the result is overloading of the op-amp, distortion, heavy current drain and dependence on the supply voltage for regulation rather than correct bulb operation.
I didn't do what Hewlett did, which was to plot the $I V$ characteristics of various bulbs carefully. I simply

Fig. 4: Precision rectifier circuit, (a) with positive input, (b) with negative input. In (a) the op-amp's output goes as low as required to overcome the forward voltage drop across D1 and still satisfy Ohm's law as far as Rf and Rin are concerned. D2 is off as the voltage at its anode is 2.6 V less than that at its cathode. In (b) D1 is off, its cathode voltage being 0.6 V higher than its anode voltage. The conduction of $D 2$ limits the positive output at 0.6 V . This limiting factor speeds up the recovery of the op-amp when the input goes positive again.
measured the resistance of bulbs that I thought might be suitable, and found that the cold resistance of a $28 \mathrm{~V}, 24 \mathrm{~mA}$ bulb is 170Ω. This seemed to be about right. When I tried it - bingo! So when, in this connection, you see "any low-voltage, 50 mA or so bulb" you can in future read "a $28 \mathrm{~V}, 24 \mathrm{~mA}$ bulb". The oscillator will work a treat.

The Precision Rectifier

The final stage of the basic meter uses an op-amp as a precision rectifier. Keeping to the type of representation we've used before, Fig. 4 shows its method of operation.
With a conventional rectifier there's the drawback that the signal must rise above the diode's forwardvoltage drop before conduction begins. This can be overcome by the use of an op-amp in the circuit. At (a) in Fig. 4 the input is positive and the output reduces the voltage at the cathode of D1. This enables the input to carry on via Rf to the amplifier's output. As in the case of the inverting amplifier circuit, the output is again Vin \times Rf/Rin. The diode's forward voltage drop, which is 0.6 V with a silicon diode, is overcome because the op-amp's output goes lower by this amount, satisfying Ohm's law as far as Rf and Rin are concerned.
Point X is still held at earth potential by feedback action from the output. D2 is off at this time, as the voltage at its anode is lower than that at its cathode. When the input goes negative however, as shown at

Fig. 5: The basic meter circuit. VR1 sets the oscillator's output level. Pin 8 of IC1 and IC2 is connected to the +ve supply, pin 4 to the -ve supply.
(b), the op-amp's output rises to the point at which D2 conducts. The current then flows via Rin, point X and D2. D1 is now off and the output is zero.

Basic Meter Circuit

The circuit of the meter itself is shown in Fig. 5. The Wien bridge oscillator, redrawn, is the same except for the inclusion of a 1Ω resistor (R3) between the bulb and the $0 V$ line. Depending on VRI's setting, the bulb's current is typically 3.5 mA RMS. As a result, in the absence of a capacitor under test about 10 mV peak-to-peak at 100 kHz is developed across R3.
VRI sets the amplitude of the oscillator's output. In this case the output is used only for feedback, and is set at 5 V peak-to-peak. There is nothing magical about this figure, and with this application no test equipment is required to set it. It's just that to get a higher level output you would have to use a higher supply voltage. In fact however the higher the output voltage the better.
The ESR of the capacitor being tested forms part of a potential divider with the 2.7Ω resistor R 4 . The voltage waveform across this resistor, as a result of the current in the capacitor, is amplified by the rest of the meter circuit. Bear in mind that with the range of ESR values we are measuring an ideal mid-scale figure would be about 3Ω. With low ESR values (good capacitor) the signal across R4 is high, while with a poor capacitor it will be low - often, in relation to 2.7Ω, there can be an effective open-circuit.
Now if, for example, the ESR is 2.7Ω, half the source voltage across R 3 would be passed to the meter and a half-scale reading would be expected. It doesn't quite work out like this however, because the source voltage is not independent of the load, and we will be setting full-scale deflection with R3 and R4 in parallel (test leads shorted).
If the ESR tends to go below the value of R4, it becomes more effective in increasing the voltage across R4. As the ESR rises above the value of R4, it becomes less effective at increasing the voltage across R4. Hence the non-linear scale, which is ideal with this application. R3 and R4 are of necessity low in value, because they compare with the values of ESR in which we are interested. The bonus here is that because of their low values the effect of associated incircuit components becomes insignificant.
The design of this little network is such that the
waveforms across R3 and R4 are virtually in-phase regardless of the value of the test capacitor. So we are measuring the total in-phase $A C$ resistance to which Doug Jones refers (see quotation earlier).
You might wonder why the test signal amplitude is so small. It isn't because we want to avoid turning on semiconductor devices - we could go up to a couple of hundred millivolts before there would be any worries about that. It's simply a matter of power consumption. Even our little 10 mV requires 3.5 mA , and in this case I have (dare I claim cleverly?) used a current source that's already there. A 100 mV test source would require a hefty 35 mA , quite a drain on resources. If anything the value of the 1Ω resistor could be even lower, so that with respoect to 2.7Ω it would more closely approximate a constant-voltage source.
You may think that to test an electrolytic capacitor effectively a fair old current should be pumped through it. Not so. A healthy $1,000 \mu \mathrm{~F}$ capacitor will still present 0.05Ω or so to a couple of millivolts and thus be produce a reading.
The signal across R4 passes through two stages of amplification each with a gain of ten, and is then detected for the meter movement. There is further amplification in the detector stage. The output is integrated by C 4 to produce a DC output of about 1.3 V with the test leads shorted - this corresponds to zero ESR.
The basic meter circuit uses two dual op-amps. You will see that the signal path from the oscillator in ICl passes to IC2 then back again. This is done to prevent the first, sensitive stage of amplification picking up a strong oscillator signal in the same package.

The Power Supply

There is no need for a regulated supply, because the bulb stabilises the oscillator and the amplification factor of the op-amps is fixed by the ratio of the feedback and input resistors.
The power supply arrangement used is shown in Fig. 6. IC3a generates split rails from a single supply line. The voltage at its output pin 7 is at half the supply voltage, because the voltage at its - input (pin 6) is equal to the half-voltage level set by R12 and R13 at its + input (pin 5). This way of using an op-amp is known as the voltage-follower. There is total negative feedback, and the closed-loop gain is unity.

Fig. 6: The split-rail generator and buzzer comparator circuits.

The meter's total current requirement is only some 10 mA , plus a couple of mA for the on indicator D6. Two PP3 batteries in series are ideal. Long life is assured - if the oscillator's output is set as described later, the meter's accuracy will be maintained until the supply drops to about 5 V per battery.
If the link between the batteries was connected to the 0 V rail this split-rail arrangement would be unnecessary. It's included to enable a DC adaptor to be used as an alternative power source. An adaptor with an output from 12 V to 30 V can be used. A regulated type is best, as ripple on the supply could cause problems.

The Buzzer

IC3b serves as a comparator for buzzer operation. The
output from the meter rectifier circuit, across C4, is applied to the +input (pin 3) for comparison with the voltage at the - input (pin 2). If the voltage at pin 3 exceeds that at pin 2, the output at pin 1 goes high (see comparator circuit description earlier) and the buzzer sounds. About IV is developed across the series-connected diodes D3 and D4. When the ESR value of the capacitor being tested is about 1Ω or less, the voltage across C 4 rises above this 1 V reference.

Next Month

In Part 2 next month we will deal with construction, setting up, use and inductance measurement, and in addition provide a bit more information on ESR. A detailed components list will be included.

Earn More Money Repair PC Monitors, TV's and Videos.... Faster!

Freecall: 0500009070
 For Your Free Info Pack Web: www.teletest.co.uk Teletest Ltd: 29 Beaulieu Rd, FREEPOST, Bournemouth, BH4 8BF, UK

Teletest PC: Like a pocket sized computer!
Teletest 2: RF, Video, S-Video \& audio outputs.
High quality test pattern generators

- Powered from a 9V battery
- 60 day "no-quibble" money back guarantee - 2 years parts \& labour warranty

Satellite WORKSHOP

Interference

I've had numerous calls from professional dish installers who think that I, a bench-bound repair man, should be able to solve their problems. Surprisingly, I often can!

The same symptom has been occurring repeatedly: a noise in the background with Sky Premiere movies or whatever they call it this week. In addition the the complaints include sparkly pictures on channels such as UK Living, MovieMax and Sky Sports.

The cause of the problem is the new Eutelsat W2 satellite at $16^{\circ} \mathrm{E}$. It transmits at up to 135 W per transponder. At least three channels are being transmitted adjacent to Astra ones. Nile TV affects Sky Sports, ESC affects MovieMax while Egypt TV affects UK Living. The answer is to ensure that the dish is not distorted and is accurately aligned. Adjustment is very critical. In some cases a spectrum analyser may be needed. So you will have to charge the customer lots of money - unless it's a crappy installation that you carried out in the first place.

If adjustment doesn't cure the problem, because the dish is twist-
ed or of poor quality, the only solution is a new dish - possibly a slightly larger one to provide a narrower beam width. Another possibility is to try a different type of receiver, as some seem to be better than others at rejecting this type of interference.

Note that Hot Bird 5 also has higher power, and is likely to cause problems with reception from $10^{\circ} \mathrm{E}$.

Another form of interference comes from ONdigital terrestrial transmissions. These can make the satellite pictures very grainy. The answer is to retune the satellite receiver's UHF output to a different channel.

The Pace MSS100

Wossname up Church Street brought me two Pace MSSI00 receivers for repair. "No hurry" he said, "just for stock. Won't cost much will it?"

I told him it wouldn't, provided he wrote the actual fault symptoms on a label attached to each unit. He looked a little put out.
"All right then, I'll just fix every fault I can find and charge you accordingly."

He scribbled some notes furiously, then departed!

The label on the first one said "blew screen no signal." I could tell which school he had attended. The receiver came on with a blue screen that displayed the "no signal" message.

There was no LNB output voltage from the tuner, though the voltage was present at the relevant tuner connection beneath the board. I unsoldered the tuner and found that the F socket's centre pin was disconnected inside.

The second label said "chanle names float leftwards and no pleese insert card message".

I confirmed the symptom and set about trying to find the cause. A few oscilloscope checks indicated that the PTV1 10 chip was not operating correctly. A replacement cured the fault.

Making a Profit

I'm often told that the satellite market is dying, mainly because of low
high-street prices. But there are many things an independent dealer can do that a large store wouldn't even consider - like installing a motorised 2 m dish. You can virtually name your price for this sort of thing. Be sure to check on local council planning requirements, and find out from your wholesaler exactly what's needed.

Here's a simple question: would you rather do twelve jobs a day at $£ 25$ each or six at $£ 45$ each? You get more income with the former, but do you make as much profit? Think about the amount of travelling per job, and the fact that your parts expenditure is doubled when you do twelve instead of six jobs. While your turnover increases your profit is actually lower and you have to spend more hours to produce it. In addition you may be pushed over the VAT limit.

Instead of concentrating on fast, low-cost jobs, concentrate on providing good value for money. You will get more referrals, work fewer hours for a better type of customer and earn more money.

I often hear the complaint that it's impossible to make a profit selling just receivers. This is true of new ones - the trade warehouses are lucky to make ten per cent profit, and their prices are sometimes higher than those of the high-street stores. If all you customer wants is a receiver, why not supply him with a refurbished second-hand model? Thousands are scrapped when people change over to cable or digital TV. You find them advertised for a tenner, while lots end up at car boot sales. You can get a Pace PRD series receiver for a song, and the Amstrad SRD510 and later models have at least 99 channels. If you can buy them cheaply enough, it's worth paying someone like me $£ 25$ a time to refurbish and upgrade them to work with an enhanced LNB. The result is a 99channel enhanced receiver at little more than $£ 35$ and a reasonable sale-on profit.
Pace SS9200
The last occasion this angry farmer's wife visited me was when
her Pace SS9200 receiver had died for the seventh time in as many weeks. The cause of the trouble was traced to surges that occuried on saturdays, when the milking machine was used. The other day she came back to say that it was "dead again". It wasn't, but there was no picture when I connected the receiver up on the bench.

I checked the video output from each scart socket. There was the normal flickering picture from the decoder socket, but no output at all on any channel when I tried the TV and VCR sockets. I then checked for outputs from the TEA2029C sync separator chip U6 to the decoder board connector and found that they were missing. A new chip cured the fault. This is quite unusual. According to The Satellite
Repair Manual, edition 5, the usual cause is Q24 or Q29 (BC547).

A Grundig GSR1 Mk 2

I groaned when Wossname from up Church Street waddled into the workshop with a Grundig receiver. He always arrives when I'm trying to solve a most frustrating problem.
"Nuffin" wrong wiv it" he said, "jus locked menus."

Now I haven't come across a GSR I before, so it's not a model
with which I am familiar. I searched through my notes and various Satellite Repair Manuals, but couldn't find a reset code anywhere.
"OK" I said, "let's try the internet."

Wossname looked puzzled. So I told him to put the kettle on while I entered the search words into Sherlock on my new Apple Mac G3 computer, which took about thirty seconds to find the answer at the SatCure web site. Here it is: to unlock menus. enter the lock menu and 'Reset PIN' - this sets the PIN to 1515 .

Wossname tiptoed back with a cup of tea in his hand.
"Where's mine?" I asked.

Amstrad SRD650

I don't repair D2-MAC decoders nowadays. The type of person who uses them is often the type that doesn't want to spend any money! That, plus the fact that a pirate smart card was required to test them, forced me to give up.

The lady who brought along an SRD650 didn't look like a typical viewer of questionable films however, so I agreed to take a quick look - at the receiver, I mean! She explained that it would turn itself

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via e-mail. You can reach him via the Internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302,
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.
off occasionally. She could turn it on again after a few seconds, with the remote control unit, but it was annoying.

I checked the power plug for poor connections - it's always sensible to start with the obvious. I've had this problem with the SRD5 10 because of a bad low-voltage connector inside, so I looked at the plug that connects the $5 \mathrm{~V} / 12 \mathrm{~V} /$ $27 \mathrm{~V} / 13-17 \mathrm{~V}$ supplies to the main board and cleaned its sockets, using a switch-cleaner aerosol. This seemed to work, so I left the unit on test. It was still on next morning. I reckon my guess was correct.

Test Case 435

Joe Bright used to run a rival TV/video business in this town. Since giving it up he's become a sort of wheeler-dealer, trading in anything that might turn a buck - though he came badly unstuck with those Christmas trees! He bought a job-lot of TV sets and VCRs at auction recently, and here he was in the big JB-reg Mercedes with the only one he couldn't get going himself, a 21 in. Hitachi Model C2114TE.

The problem was that it flipped back to the standby mode as soon as it was turned on. The line timebase seemed to be OK, as a rustle of EHT and 'static' was discernible at the moment of switch-on. TechnoCrat checked the HT supply at the over-voltage avalanche diode ZD952, using a DC-coupled scope, and saw that it hit 130 V in the moment before the set reverted to standby - in this model the HT should stabilise at 110 V . Television Ted had already highlighted in yellow on the circuit diagram in the service manual the two most likely components to be the cause of this problem. TechnoCrat replaced them and adjusted the set-HT control VR951 for 110V at ZD952. This solved the main problem. What were the two components? Not difficult to identify really, even without the benefit of Ted's service manual

But we weren't out of the woods yet! If you made a good guess at the first part of this puzzle, you could maybe solve what turned out to be a bigger problem, at least as far as TechnoCrat was concerned! To his consternation he found that control of the TV set, using the zapper Joe Bright had so thoughtfully brought along, was very limited.

For some reason the set came on from standby on programme 3 , though 1,2, 4 and 5 could be selected thereafter. They were all tuned to the Walmington-on-Sea relay however, while the Test Case workshop's aerials are aligned with the main Heath Hill transmitter. Try as he might, TechnoCrat couldn't get the set into the tuning mode. As his manual contained no user instructions, he got the shop to fax him a copy of the relevant pages in the user's guide. But following the instructions brought him no joy: the set simply didn't want to be tuned!

To permit further investigation, TechnoCrat connected a signal generator to the aerial socket, tuned its output to the Hitachi set's programme 1 vision carrier frequency and modulated it with a Sky News signal. This proved that the set worked correctly from the video point of view. The sound output was very limited however. No matter how long the volume-up key was held down, the sound level soon hit a 'ceiling' and stayed there. Joe Bright had made no mention of this. But he couldn't have been expected to know about it, could he? TechnoCrat had to pursue this fault, if only to be able to provide Joe with a realistic repair estimate.

More tests suggested that the cause of the trouble lay with (or near) the microcontroller chip IC001. Maybe it was faulty, or maybe the EEPROM chip was in trouble. But neither was in stock. Time to phone the excellent Hitachi technical helpline! After a short conversation and receipt of a faxed document the problem was solved.
Any ideas? For the solution, turn to page 362.

Servicing the

-

NVSD25/30/40/HD100

Abstract

Brian Storm describes the changes introduced with these machines, including the K deck, the fault codes and service modes, and some faults you might encounter

Use of the long-serving G mechanism finally came to an end with this range of VCRs, which introduced the K deck. Critics of the G deck had complained about the solenoid's clicking and clunking as the loading motor mechanism engaged with the capstan motor, and by now other VCRs in wide use had quicker response times between modes, with almost instant response to the play and record keys.
The K mechanism was developed to meet these criticisms. It has a conventional loading motor, and stays fully-loaded for all functions. Because of this the mechanism is quieter, while switching between modes is much faster as the mechanism no longer unloads the tape from the drum for fast-forward and rewind. In addition you can go from fast-forward to cue-forward almost instantly, which makes it much easier to find programmes on a tape.
Other changes introduced with these machines include enlarged front illuminated panels with clearer indications, larger main operating controls, and a reduced number of controls on the front panel.
VideoPlus coding is used for the timer operations instead of the bar-code scanner previously employed. There's even an add-on PDC panel that can be fitted internally, part no. VWPDCIE.

Remote Controls

The remote control units are more complex, though they have a simpler external appearance. The main VCR controls are larger and are on top of a flap that conceals the multitude of additional, more complex controls - these include VideoPlus programming, index search, editing features and VCR/TV remote switching. The units can also control basic TV functions: depending on model type, different manufacturers' codes are included as well.

Servicing Features

The servicing facilities were substantially increased, with the machines' internal software able to monitor many processes to assist with fault location.
For access to a stored fault code, you press eject, fastforward and rewind together (or eject and cue-forward with machines that have a jog-and-shuttle dial). The fault-code information is displayed for a minute. Alternatively you can obtain a permanent display by shorting test points TPSERV and TPGND on the main PCB.
The fault codes are as follows:
0 Normal, no problems.
1 Drum motor has stopped.
2 Tape reel has stopped.
3 The mechanism has stopped while loading to the drum.
4 The mechanism has stopped while unloading from the drum.
5 Faulty capstan rotation.
6 The mechanism has stopped during the cassettein or eject mode.

Service Modes

Once the fault code information is displayed you can, by still holding the other control or controls and pressing eject again, step through six more service modes. These are as follows.

Service mode 1: This checks the tape end-sensor circuits. If the light to both sensors is blocked, 00 will be shown. If the supply sensor only is blocked, the indication will be 01.02 indicates that the take-up sensor only is blocked, while 03 indicates that neither sensor is blocked.

Service mode 2: Checks the mode-switching circuit by displaying the mechanism positions as they are reached in operation.

Service mode 3: Checks and confirms the mechanism operations. When a mechanism mode change is achieved in the correct sequence and time, 00 is displayed. This confirms that the operation worked correctly within specification.

Service mode 4: Checks the buttons on the front panel by providing a two-digit indication when any button is pressed. By confirming that the microcontroller chip received a command or didn't receive it, this gives a quick check on whether the buttons work. If a button doesn't work, there may be a key-scan circuit fault or a crack in the front PCB.

Service mode 5: Checks the operation of the capstan motor control circuitry. There is a two-digit indication for the various different drive conditions. This indication can be checked with the service manual.

Service mode 6: Similar to mode 5, but checks the drum motor drive circuitry.

An additional service mode is available by shorting across SW7512, which is a PCB marking on the timer panel for a switch that's not fitted, while at the same time accessing the fault-code display (press eject, fastforward and rewind, or eject and cue-forward). It enables you to control the loading motor by simply holding play to load or stop to unload.
Use of these controls provides manual operation of all the mechanism functions, enabling you to check a mechanism thoroughly without the risk of damage to a good tape.

The Mechanism

The K mechanism is less complex than its predecessors and gave little trouble initially. There are some significant differences.
As there's no longer a mode switch on the cassette carriage, loading is initiated differently. When a tape is inserted, part of the right-side cassette holder is pushed across the tape sensor, blocking it. This tells the loading mechanism to operate.
So one unusual symptom you can get if the centre LED is faulty is the mechanism attempting to load without a tape being inserted, the machine then lapsing into the standby mode.
When a tape is lowered into the mechanism, there is a slight pause before the main loading arms pull the tape around the drum. The capstan motor motates briefly during this time, to prove to the system-control circuitry that it can be relied upon to wind the tape back into the cassette body when the tape is ejected. If the capstan motor doesn't rotate or, more correctly, doesn't generate FG pulses, the tape will be ejected immediately, before the loading arms pull the tape around the drum, thereby preventing possible tape damage. With no capstan rotation the take-up and supply spools can't be driven, so the tape would be left loose and could snag when the tape is ejected.
Arm P5 which, in the G mechanism, can cause tape damage by bending slightly when the tape is tight, was improved by the addition of a housing into which the P5 post is located. It forces arm P5 to be perpendicular
when fully loaded, even if it's actually slightly bent.
The audio/control head was simplified by mounting it on a base that's supported by three sprung screws. All three screws set the height then the azimuth, the zenith being set last by the relevant screw. Lateral adjustment was changed to a sliding plate instead of the more common conical-nut arrangement.

Common Mechanism Faults

Machine accepts then ejects a tape: Capstan stator (part no. VEK5927) is faulty or arm P5 (part no. VXL2306) is badly bent.

Fault 03-04 or 06 occurs intermittently: Check for dry-joints at the loading motor or a split loadingmotor coupling (part no. VDP1434).

Tape path variations, with the picture rolling or jumping: The input guide (part no. VXA4982) is slack.

The drum speed changes in cue and review: Capstan motor top bearing is dry.

Drum speed changes in cue only: Usual cause is a worn drum.

Excessive tape tension across the drum: Brake arm (part no. VXZ0313) is broken.

Electronic Changes

In Models NVSD30 and NVSD40 the system control and servo processor chip IC6001 was upgraded to provide faster wind and rewind times with certain non-standard tapes. The part numbers are MN67434VRSH for Model NVSD30 and MN67434VRSG for Model NVSD40.
The timer and front-panel display driver chip IC7501 was also upgraded, to provide a consistent clock accuracy of ± 15 seconds a month. The new part number is MN187164VZBE.

Tuners

The UHF tuner unit used in these machines can sometimes be less than completely reliable, giving various intermittent problems such as tuning drift from cold, losing some channels when warm and being off tune after a timed recording. The part number is ENV87837H3Y.

Model NVHD100

Some owners of this model complain about no remotecontrol operation. The cause is always switch VCRI/VCR2 being in the wrong position. It's hidden under a flap at the front of the machine.
IC7001 in this model can be responsible for various faults such as no AV or E-E switching, no VU meter operation or no tuning because the UHF tuner is busily trying to scan a VHF band. The part number is M66006FP.

> Reports from Philip Blundell, AMIIEelec Giles Pillbrow
> Chris Hawkins Ian Field
> Gerry Mumford and Adrian Spriddell

Mitac AM4050PD

This monitor would work for about ten minutes then go to line collapse followed by off. A check on the HT (+B) voltage at R924 showed that it was high at 175 V instead of 145V. Further checks revealed that R921 ($68 \mathrm{k} \Omega$) had gone high in value. P.B.

Eizo

Most of the recent Eizo monitors have the option to lock out the picture geometry controls at the front. Depending on the model, the procedure is either to switch on at the mains while holding the autosize button down, or to switch on at the mains while holding the vertical stat button then, while still holding the stat button down, press the side pincushion button for five seconds.

Spares for Eizo monitors can be obtained from Professional Display Systems, Genesis Business Park, Albert Drive, Sheerwater, Woking, Surrey GU21 5RW. Phone 01483 719 500, fax 01483719 560. P.B.

IBM PS/I Model 028002

Frame collapse was the symptom with this monitor. I found that the $3 \cdot 3 \Omega$, IW safety resistor R301 had gone open-circuit. No other components had to be replaced. G.P.

Mitac 1450PD

The owner said he was fed up with not being able to see the beginning and end of each line of text. They were hidden out of sight at the sides of the screen. The user con-

Monitors
trols had no effect. While scanning the board with the aid of a magnifier I noticed a tiny out-of-sorts bipolar capacitor, C509 ($10 \mu \mathrm{~F}$, 50 V), which had literally lost all its electrolyte. A replacement cured the fault.

The chroma output chip in this monitor is an MM1203: an LMI 203 N is a possible replacement. C.H.

Philips 14C

The first of two of these monitors presented a display that looked like a case of magic mirrors at the funfair. It had not been helped by the pot-twiddling owner. Once the potentiometers had all been restored to their normal positions there was a reasonable display with linearity problems. I decided to replace C2403 ($470 \mu \mathrm{~F}, 16 \mathrm{~V}$), C2407 ($47 \mu \mathrm{~F}, 100 \mathrm{~V}$) and C2539 ($47 \mu \mathrm{~F}, 25 \mathrm{~V}$), using components rated at $105^{\circ} \mathrm{C}$ instead of $85^{\circ} \mathrm{C}$. This did the trick.

The second one produced just a horizontal line. A quick check with the Philips data book showed that the TDA4860 frame output chip has two supplies, one from the power supply and the other from the line output stage. The former supply was missing because D6114 (BYD33M) was short-circuit while the associated fusible resistor R3134 (0.22Ω) was open-circuit. I replaced the TDA4860 chip and filter capacitor C2123 (1, 000 $\mu \mathrm{F}$, 35 V) as well for good measure. C.H.

Royal CX1469

The width had decreased to 2 cm . I found that one leg of coil L401 had burnt a hole of about 1 cm diameter around it. Odd how customers sometimes soldier on despite everything, sometimes letting a trivial fault become a major one. C.H.

Compaq 470

This monitor was dead. The

2SD1878 line output transistor Q502 had been removed and was taped to the front. A quick check showed that it was short-circuit all ways. As I seldom enounter this type of monitor I had no spares. A look at the circuit showed that there were no efficiency diodes, so a transistor with an integral diode was obviously required. In a situation like this a 2SC4742 is one of the first choices. It proved to be suitable here.

If you suspect that the transistor has an inadequate maximum collector current rating, a good check is to view a test card. If the transistor cannot cope, the linear forward scan ramp will begin to level out. This will be evident as cramping at the centre of the screen, increasing towards the right-hand side.

The replacement transistor was fine, but judging by the state of the PCB its predecessor hadn't been. When I traced back from the base pin to the driver transformer I found out why. The $47 \mu \mathrm{~F}, 25 \mathrm{~V}$ coupling capacitor C512 was very leaky. I.F.

Compaq 420

Three of these monitors came in together recently. If there's a red cast on the grey scale, check R441. It's directly above the hot CRT neck and seems to be the only one of the three to be affected.

A 420 T in the batch made a sizzling noise though there was no obvious disturbance to the picture. I found that R5 ($220 \Omega, 5 \mathrm{~W}$) in the power supply snubber network was dry-jointed. As usual D1, D15 and R29 were bridged by brown glue. It hadn't produced a power supply blow-up so far, but when it was chipped away I found that the leads affected were significantly corroded.

The final unit was a 420S. I thought that the S might indicate manufacture in Singapore, but the chassis was definitely of European
origin, possibly Nokia. I could neither find nor instigate a fault, though there were some rather dubious-looking connections on the CRT panel. I resoldered these and balanced the grey scale. The result was a happy customer. I.F.

Elonex SV14LR

The chopper power supply had blown up. As the mains rectifier was short-circuit, I suspect that failure had occurred during a thunderstorm. I802 (UC3842), R810 (47 2), R811 ($20 \mathrm{k} \Omega$), D806 (18V zener diode), R825 (0.39』, 2W) and the 2SK794 chopper FET all had to be replaced. As a precaution, I always replace the 4N35 optcoupler when one of these power supplies blows up. 1N5398 diodes are suitable for the mains bridge rectifier circuit.

Once the monitor was up and running there was a flooded screen. The tube's first anode voltage is derived from line flyback pulses, not from the LOPT (though the LOPT has an Al preset, which could be misleading). There's an Al preset on a separate PCB next to the heatsink. Adjustment of this preset had no effect. Right next to it, alongside the heatsink, there's a $2 \mathrm{M} \Omega$ resistor which was open-circuit. A replacement enabled the first anode voltage to be set up. I.F.

AST LR14/NCR 0261

I've mentioned before that C322 tends to fail, destroying the line output transistor. In the AST model its value is usually 6.2 nF , rated at 1.6 kV . In the NCR versions the value has always been 5.6 nF , with the same voltage rating. This lower value capacitor seems to fail more often. In desperation I've sometimes used a 6.8 nF capacitor. This has no obvious effect on performance, and there have been no returns. I upgrade the voltage rating from 1.6 kV to 2 kV , except when using a 6.8 nF capacitor in which case the 1.6 kV rating probably has an adequate safety margin.

A very odd case of field bounce/collapse came along recently. Remaking all the dry-joints I found made no difference. I then noticed that when the chassis was reassembled the odd-shaped subpanel above the row of presets, whose spindles point downwards under the side edge, wasn't seating correctly in the two plastic connectors on the main PCB. The cause was faulty metal brackets, which are clipped to the subpanel with
plastic pop-rivets. They prevented the connectors being pushed fully home. The brackets had to be clamped in a vice and kinked. The monitor worked perfectly once the reshaped brackets enabled the connectors to fit correctly. I.F.

Dell 1528LS

This monitor was tripping because the 2SC5 129 line output transistor had failed. Its connections were all short-circuit, which is unusual. The 2SC5XX9 series of transistors usually pretend to be diacs for cold checks: this one had failed properly! I then saw that the manufacturer's trade mark differed from the one usually seen. The 2SC4742 is a more reliable replacement, but it needs a separate insulating kit. I.F.

Compaq 4205

The European manufactured versions are even more of a pain to dismantle than previous ones. So, if you have an EW fault, try some switch cleaner on preset RT4 before starting on a protracted conflict with the unit. I accidentally picked up the Electrolube DFL200D PTFE spray by mistake this time. In theory it should have made matters worse, because of the insulating properties of PTFE. Instead, all traces of coarseness in the rotation of the preset vanished after a few turns back and forth, and the effect on the raster was just as smooth! As an added bonus, PTFE spray is not as messy as switch cleaner. I.F.

AST LR14

My most recent encounters with this chassis suggest that there has been a redesign. The Welltrend chip on the sync panel has been replaced with a number of LS TTL, HC chips and transistors. At first I though it must be an earlier version, but the date codes on the ICs were 92/93. Some new MOSFETs have appeared in the line output stage. C322 ($6 \cdot 2 \mathrm{nF}$, 1.6 kV) remains a common failure. C 35 and $\mathrm{C} 40(100 \mu \mathrm{~F}$ and $200 \mu \mathrm{~F}$ respectively, both 100 V) often seem to pull from their solder fillets, especially while handling. They should be given a fresh application of solder as a metter of course. I.F.

Dan CX1428LR

Because of a power supply blow up this monitor was dead. The BUZ90A chopper transistor Q101 and the TDA4605 control chip

IC 101 were short-circuit. This had destroyed the mains bridge rectifier D101 and the surge limiter thermistor TH101. In addition, R117 ($150 \mathrm{k} \Omega, 2 \mathrm{~W}$) was open-circuit. This had probably been the original cause of the trouble, as it forms part of an $R C$ time-constant network that determines the end time of the FET's drive pulses. G.M.

Commodore 1084D

This is a good example of the oddball monitors that sometimes come along. It's used with the Amiga computer, and a programmable generator (or an old Amiga of course) is required to drive it. The unit was dead. R106 (1 Ω, 2W fusible) had a large burn mark and was open-circuit.

The power supply is based on the STK 73410 II switching regulator, which had failed along with R $109(68 \Omega, 2 \mathrm{~W})$. As a precaution, $\mathrm{C} 110(10 \mu \mathrm{~F}, 50 \mathrm{~V})$ and $\mathrm{C} 111(1 \mu \mathrm{~F}$, 50 V) were also replaced - they read a little low. With this type of power supply it's usual for lowvalue electrolytics to dry up slightly, causing failure of the STK module. G.M.

Panasonic C1381

This monitor powered up but failed to produce a picture. Inspection showed that the tube's heaters were out. I then saw that there were massive dry-joints at all the CRT base socket connections. This seems to be a common problem with these monitors. G.M.

Tatung TM3401

There was very low width with R465 (4.73) open-circuit. After replacing various items in the EW circuit to no avail I finally found that C423 $(3.3 \mu \mathrm{~F})$ had fallen in value - the reading was 330 nF . A.S.

Opus CM1438T

If there's serious line drift with frame cramping at the top, check for 12 V at P405 (next to the data cable entry at the rear of the main PCB). If the reading is low, it's probable that the 12 V rail is trying to run the monitor unaided. Check Q001 (2SA966) on the secondary side of the power supply. It should have about $18-19 \mathrm{~V}$ at each of its pins. If in doubt, replace it. A.S.

Western Systems HL4850
This monitor was dead: the power supply was in standby with the amber LED alight. The STR 17006 chip U702 had failed. A.S.

We welcome letters from our readers and try to publish as many as we can. You can send them typed, handwritten, or on disc. Address them to the Letfers Edifor, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Digital TV

During my many years as a TV technician (since 1965) I've seen the transition from 405 lines, black and white, with poor recording capabilities, to 625 lines black and white then 625 lines with full colour. Since then there has been a gradual improvement in picture quality, because of technological developments at the studios and in the display. Today we have a 625 line analogue system able to produce full 5.5 MHz bandwidth video. My own Panasonic TV set displays detail and picture quality that was never seen prior to the Nineties. Test card F , when it is on rare occasions seen, has the 5.5 MHz grating clearly visible.

What we have seen with every advance in the technology until now has been an improvement. It may be early days yet to make a decisive judgement, but from what I have seen so far of digital TV I must say that I am very saddened.

The definition of digitally transmitted pictures, especially with the subscription multiplexes, is reduced and I have even noticed peak-white difficulties with some transmissions. I can only assume that the cause is broadcasters using excessive compression for the sake of quantity, thus reducing quality. But the systems are being sold as having improved quality! While this may be so if someone changes from a set-top aerial in a poor signal area - anything would be an improve-

Letters
ment on that - it doesn't seem to me that someone who has spent a little cash on achieving a decent analogue signal input will see any improvement with digital TV.

We appear to be having a system forced on us by bandwidth greed. Even the $16: 9$ promotion is a compromise, with only a portion of the transmitted lines being used, wasting about thirty display lines at the top and bottom of the scan.

I hope my disappointment is premature, and that with time the digital age will produce pictures as crisp as our present analogue ones. If not, it seems that any improvement in display technology will be a waste of time for ordinary viewers.
E.C. Westcott,

Ivybridge, Devon.
Is digital TV a rip-off? This depends on what the public is being led to believe is on offer. The marketing people are trumpeting several 'benefits', one of which is better picture quality. In some cases however digital TV will give viewers pictures that are subjectively of poorer quality than those they can receive at the moment, in particular those viewers who live close to a high-power analogue transmitter and are used to ghost- and noisefree reception. In other cases there will be a dramatic improvement. It really depends on what the viewer is currently getting. The only thing that can be said with certainty is that with digital TV the quality of the pictures will be pretty much the same for everyone, and can be improved or worsened by broadcasters depending on how they wish to use their allocated bandwidth: the more channels they squeeze in, the higher the compression ratio required and the lower the picture quality.

Another of the supposed 'benefits' is widescreen displays. But, unless you are prepared to buy a new set, widescreen pictures are a distinct disadvantage. Which brings me to the point raised by Chris

Plaice (Letters, January) who says that he has yet to see a widescreen set that shows any more picture than a conventional one. I agree! Widescreen sets are invariably displayed showing either squashed or cropped $4: 3$ pictures. In the latter case this means that you see less picture than with a conventional set! In my opinion the way to display and sell a widescreen set is to place it beside a $4: 3$ set with the same picture height, with the widescreen set showing a true widescreen picture and the conventional set showing the same programme. This way the customer can see that there is more picture to be had with a widescreen set. Until recently this was not possible, as there were no sources of widescreen material. This is no longer the case of course, so there is no excuse for retailers not showing off widescreen sets to their full potential.

It seems to me that the move from analogue TV to DTT is simply the next step forward, like the move from 405/VHF to 625/UHF in the Sixties. Then as now there was concern about equipment becoming obsolete, but the eventual shutdown of the 405 -line service was inevitable. John Hopkins (Letters, January) makes the point that having to buy a separate $£ 200$ digital set-top box for each receiver in a house that has a distribution system would be ludicrously expensive. Well, yes, at current prices. But surely what will happen is that digital tuners will start to appear in sets of all sizes and lower and lower prices, so that by the time analogue TV is switched off even 14in. portables will be equipped with built-in digital front-ends producing perfect pictures just about anywhere with a loop aerial - and probably for less than $£ 100$!

Graeme Steer,

Chessington, Surrey.

Warning

What started off as a straightforward mechanism removal with a

Sony SLV-E720 VCR became a rush to the local Casualty Dept. to have a badly scalloped piece of flesh on my little finger refitted and dressed. The cause of the accident was the dangerously sharp upper edge of the rear metal case. In grasping and applying upward pressure to the head amplifier daughter board to remove it, and at the same time spring open its sockets, I was unaware how close my fingers were to this plate. When the board sprang out of its socket, well you know the rest.

I had to bandage the wound rapidly, shut down my service unit and then lose an hour's income.
Am I the first casualty of this knifeedged plate, and would Sony care to reimburse me?

Bob Longhurst,

East Grinstead, West Sussex.

Clanger?

My earlier letter (February issue) on the tuning circuit used in the Hitachi Model 2118 suffered from being edited. I had emphasised that Q003 is a switching and not an integrating transistor. My letter made it clear that the integration in this digital-to-analogue converter is carried out solely by the low-pass filter that follows Q003 in the circuit.

Michael Dranfield originally suggested (Letters, January) that the voltage across the 33 V stabiliser ZD002 can never reach 33 V unless Q003 is cut off. The fact of the matter is that Q003 is indeed cut off for much of the time, that the voltage across ZD002 does reach 33 V , and that the tuning is stabilised. Michael's additional resistor does nothing to alter the circuit operation, which is based on chopping a 33 V supply. The waveform at the collector of Q003 remains a pulse train, and the measured mean DC voltage here is as meaningless as before. The effects of the suggested modification are as follows:
(1) The stabilised 33 V supply can be measured using a conventional meter.
(2) The power dissipated by the stabiliser is increased. This is significant, as this component does tend to run quite hot.
(3) The pulses at the collector of Q003 are less accurately defined. (4) The current through Q003 is reduced. Power dissipation is not affected, as a switching transistor is either off (no current) or saturated (no voltage).
(5) The power dissipated by the feed resistors is marginally reduced.

On the whole the circuit is better without the presence of the resistor. This brings us to the question of why the resistor is usually included in this type of circuit, when it is clearly not required? I would suggest that it is included to satisfy condition (1) above.

I disagree with the editor when he says the original circuit is "not likely to be able to provide effective stabilisation". Far from it. With or without the resistor in question the tuning arrangement, taken in its entirety, is far more stable and tolerant of component changes (ageing) than the traditional method of simply tapping off a tuning voltage from the regulated 33 V supply. In conclusion, there are no shortcomings in the Hitachi circuit, which is fully described in the first-class manual for this model.

My thanks to Colin J. Guy for his reply to my letter regarding the ESR figure expected with a $2,200 \mu \mathrm{~F}$ capacitor. I did indeed miss the meaning of his remarks. The main point I was trying to make is that one can be fooled by an OK from the Capacitor Wizard's buzzer, and that with this sort of capacitance value it is important to watch the meter and confirm that the ESR is less then 0.1Ω. Again, the wording of my letter on this subject had been changed.
Alan Willcox,
Cardiff.

Test Card Music - and Storage Heaters

In his column a few months back Donald Bullock mentioned the subject of test card music. During the Sixties and Seventies I could whistle whole sequences, an achievement that pales into insignificance when compared with the late Gerard Hoffnung's ability to whistle complete symphonies while walking his dog! I believe that a CD of test card music, entitled "The Girl on the Test Card", was produced but don't know where to buy it or if it's still available. If anyone out there has any information on this, I am sure that many people would like to know. Nostalgia becomes more significant as the years go by: even catching sight of a test card is a rare event these days.

Don also mentioned suffering with old-type storage heaters. Modern ones are much improved.

After a recent house move to an area where there is no mains gas I installed a new storage-heater system, running on the Superdeal tariff. The meter records units at three different rates. Contactors for switching hot-water and storageheater supplies are contained within the meter, which consequently has three outputs: the unrestricted supply, which is charged at full rate during the day and half rate at night; the restricted supply for water heating; and the restricted supply for the storage heaters.

Although the water-heating and storage-heating units cost the same, about a third of the full rate, the two restricted supplies can be controlled remotely by the electricity authority to switch separately and at different times of the day, depending on the loading. A radio receiver within the meter decodes control and time transmissions, which are provided by phase modulating the 198 kHz carrier of longwave Radio Four. Unlike the Economy Seven tariff, Superdeal provides an afternoon boost period to top-up the heaters ready for the evening.

Modern storage heaters use bricks with improved thermal capacity, which has enabled their size to be reduced. Control is more elegant: a differential thermostat monitors both the core and ambient temperatures, thereby optimising the heat stored. It's claimed that this saves up to 15 per cent on running costs. An output control sets the working point of a shutter that's operated by a bimetallic spring. This simple device regulates the output in response to changing ambient temperature.

The system works well, and has the added advantage that hot water is inexpensive all year round.
Keith Cummins,
Chale Green, Isle of Wight.

DTT Frequency Allocations

While back in the UK recently I was able to see some of the ONdigital transmissions in Devon. The digital multiplexes transmitted from Stockland Hill have very much reduced power to the south, presumably to avoid interference with group A analogue transmissions from Caradon Hill and also stations in Northern France. I doubt whether relay transmitters could be provided to get round the problem, which is similar to
Channel 5's near the south coast,
because of the lack of frequencies.
What will happen when it's time to switch off the analogue transmissions? The existing highpower analogue frequencies could be used, but won't be available for digital purposes until then. This would free only four UHF channels of course, while six are needed for all the digital channels. People in such locations will have relied on the analogue transmissions and, when the digital changeover is made, could simply get a blank screen.
Hugh Cocks,
Algarsat Ltd., Portugal.

Video Resolution

In his report (October 1998 issue) on the video alignment test tape available from SEME, Eugene Trundle said he was puzzled by the fact that his VHS players reproduced the test tape's 3 MHz grating though their maximum horizontal resolution is specified as being about 260 lines. This inconsistency has for a long time puzzled me as well.

As stated by Eugene, a 3 MHz grating must correspond to a horizontal resolution of 156 line-pairs, i.e. 312 lines. This must be so since at 3 MHz there are 156 electrical cycles, taking $52 \mu \mathrm{secs}$, across the width of the picture, and each cycle represents one line-pair. We therefore have a correspondence between the horizontal picture spatial domain and the videofrequency domain of 104 lines per picture width per MHz (exactly as Eugene implies). To put it another way, if the 3 MHz grating can be resolved and occupies the full width of the screen, one could count the number of vertical black and white bars and there would be 156 black and 156 white ones, making 312 in total. This is surely a 'real-world' resolution of 312 lines, and hence confirms the relationship of 104 lines per picture width per MHz.

But video manufacturers seem to quote horizontal resolutions that equate to about 80 lines per MHz (though, interestingly, they never seem to quote the electrical bandwidth). This applies with S-VHS and $\mathrm{Hi}-8$ as well, where a figure of 400 lines is typically quoted for the horizontal resolution. In fact my Hi-8 and S-VHS machines both easily reproduce the 4.5 MHz bars of test card F, which should correspond to a 468 -line resolution, and indeed the $5 \cdot 25 \mathrm{MHz}$ bars are visible - corresponding to a 546 -line
resolution! (A comb filter is used between the output from the vision demodulator and the VCRs' S video inputs.)

The real mystery is why manufacturers should deliberately choose to understate this important aspect of the performance of their products - by about 30 per cent. This seems highly uncharacteristic of the commercial world!

In a letter in the November issue Andy Barkley suggested that the answer lay in the Kell factor. But this can't be used to justify modifying the relation between a given bandwidth and the corresponding resolution in lines, e.g. changing 104 lines per MHz to 80 lines per MHz . The Kell factor arises as a result of the scanning line structure, which 'samples' the picture in the vertical direction at the source and display. There is no equivalent in the horizontal direction, which is scanned by a continuous beam.

Another suggestion I've come across, but with no rational justification, is that the horizontal resolution is being expressed as the equivalent number of lines of vertical resolution required to give equal vertical and horizontal resolution. At least that's my interpretation of what was written, but I can't find the original to check. In other words, horizontal resolution is being expressed in lines per picture height! This seems to be a bizarre and highly misleading way of expressing horizontal resolution. It means that two systems with genuinely equal horizontal resolution would be stated as having different horizontal resolutions depending on picture aspect ratio. Most significantly, from the commercial point of view, it will always give a lower horizontal resolution value than the true value, since all domestic TV pictures are wider than they are high.

Does anyone have a logical explanation for the original problem brought up by Eugene, or are manufacturers' specifications and magazine test reports etc. just plain wrong in this matter?

J. Alan McKeown,

Wester Ross, Scotland.
I don't recall all these bandwidth problems when we first wanted to display computer-generated characters on a TV broadcast, circa 1965, RCA Divcon. It wasn't long before practical requirements demanded an easy-to-digest explanation. This is how I did it:
(1) A revolving pattern, say a ball with black-and-white lines, will at some distance fit on to the line structure. Unless the video response can match that, the pattern will flicker as it revolves.
(2) There are $52 \mu \mathrm{secs}$ of forward scan during which the video must be able to switch at $4 / 3$ (aspect ratio) $\times 575$ (number of active lines) $=767$. This can be divided by two, as each cycle can do a black/white pair. So 383.5 iterations in $52 \mu \mathrm{sec}$ will do it. To find the frequency, $10^{6} / 52 \times 383.5=$ 7.375 MHz .
(3) Using a computer/logic source to provide the video chequerboard (worst case), this is indeed the very minimum requirement - and in fact it isn't nearly enough! At the bandpass limit the video is reduced to its fundamental sinewave, and the time spent at peak white is very brief. This reduces the perceived brightness of the peak beam, and the vertical white lines appear very much more dim than the horizontal lines. This makes them look narrow too!
Berry Greene,
Chichester, West Sussex.

Digital Quality

When I was in Spain a while back I saw the VHS version of the film Titanic. Despite the impressive opening piece, which declared that the film had been digitally remastered etc., the whole thing was marred by an irritating effect: as long as no one moved, the picture was normal VHS; as soon as some action took place, edges became ragged and the action was jumpy - like a poor NTSC conversion on a bad day. When I saw it at the cinema it was RGB/full definition all the way, so what had been done to it?

Upon my return the digital era had arrived. So far I have seen pictures that appear to be of the same quality as long-play VHS. The captions are great, straight from the chip inside the box, but where has the promise of MAC quality gone? It seems to me that, despite the problems with analogue reception, the choice for the next millennium is a retrograde step.

I can't see a future for something that offers inferior quality to existing technology - just as the rip-off Titanic tape.
D.J. Long,

Cleckheaton, W. Yorks.

TRANSISTORS/LINEAR ICs

PLEASE PHONE US FOR TYPES NOT LISTED AS WE HAVE OVER 50,000 ITEMS IN STOCK. QUOTATIONS GIVEN FOR LARGE QUANTITIES

LINEAR ICs

Part	Price																			
HA13001	${ }^{650}{ }^{\text {p }}$	LA2800	350p	LA7096	200p	LF3	48p	MC	50 p	SAB	525p	ST		STK5478	380p	STR16006	500p	TA7281	200 p	
HA13002	200p	LA3120	200p	LA7113	275p	LF3	60 p	MC34	$45 p$	SAB3035	275p	STK3106	250	STK5479	300 p	STR17006	$500 p$	TA7282	60	
HA13006	400 p	LA3150	200p	LA7116	125p	LF357	70p	MC3423P	100p	SAB3036	725p	STK3122	725p	STK5481	470p	STR20005		TA7	200p	
HA 13007	300p	LA3160	120p	LA7123	1300p	LF398	00p	MC3488A	250 p	SABB037	700p	STK3152 II	9000	STK5482	285p	STR20005	450p	Ta7	200p	
HA13108	280 p	LA3161	40 p	LA7210	p	LH2426	600p	MC34063A	P 300p	SAB3042	825p	STK3156	500p	STK5483	440 \%	STR20015	450 p	TA7283	200	
HA13117	175p	LA3210	65p	LA7212	150p	LM301	26p	MN1220T	600p	SAB3064	130		400%	STK5486	450 p			A7284P	400 p	
HA13118	140 p	LA3226	${ }_{75} \mathbf{p}$	LA7214	150p	LM311	35p	MN1226	450 p	SAB3209	2250		480 p	STK5487	525p	STR30115	$330 p$ $275 p$	TA	220	
HA13119	$140 p$	LA3246	75p	LA7220	$125 p$	LM319	165p	MN1228	600p	SAB3210	250 p	STK 4021	380p	STK5488	480 p	STR30120	400 p	TA7	$200 p$	
HA13127	350 p	La3300	140 p	LA7222	110 p	LM324	$30 p$	MN1276	1300p	SAB6456	125p	STK 4024॥	550p	STK5490	450 p	STR30123	450 p	TA7	325p	
HA13128 HA13130	4009 $450 p$	${ }_{\text {LA3301 }}^{\text {LA3361 }}$	110 p	LA7224	150p	LM335z	120p	MN1280	70p	SAB8	225p	STK4025	530p	STK5632	450 p	STR30125	550p	TA7294P	450p	
HA13135	$500 p$	La3361	700	LA7292	25	LM3	350	MN3004	600 p	Sabrobia	700	STK4026						TA	200p	
HA13139	600p	LA3370	70 p	LA7294	200p	LM358	45p	M M 3 30051	2000p	SDA2003	450 p 3250	STK4028				STR	350	TA7302P	5p	
HA13150A	1150p	LA3373	p	LA7295	160p	LM380	80p	MN3101	110 p	SDA2005	700p	STK4034 X	1050p	STK5730	$450 p$ $300 p$	STR40115	${ }_{3300}$	TA7303	${ }_{\text {P }}$	
HA13151	875p	LA3375	300p	LA7297	120p	LM381	150p	MN3102	110 p	SDA2007	300 p	STK4036	470p	STK6324B	$300 p$ $500 p$	STR41090	330 p $\mathbf{9 5 0 p}$	TA7307	Op	
HA13403	400p	LA3376	p	La	p	LM382	130p	M 3207	375p	SDA2008	400 p	STK 4038	680 p	STK6327	1200p	STR44115	$475 p$	TA7310	100 p	
HA13406	400p	LA3380	300p	LA7308	p	LM386	60p	MN3208	950p	SDA2112	450 p	STK 4040 II	650p	STK6328A	800 p	STR45111	550 p	TA7312	120 p	
HA13408	350 p	LA3390	250p	LA7311	200p	LM387	100p	MN60308	350p	SDA2120	200 p	STK4042 II	800 p	STK6431	850 p	STR50020	3500	TA7313	70 p	
HA13412	${ }^{600 p}$	LA3400	50 p	LA7320	120p	LM389	105p	MN6163A	700p	SDA2131	225p	STK4044	950 p	STK6607	400 p	STR50092	550\%	TA7314	175p	
HA13426	500p	LA3401	$90 p$	LA7323	325p	LM393	45p	MTA001M	600 p	SDA2208	$450 p$	STK4046	950p	STK6722	725p	STR50103A	260p	TA7315	200p	
HA13432	400 p	LA3410	150p	La7330	350p	LM431	50p	NE555	20p	SDA4212	775p	STK4048	1280p	STK6732	1000p	STR50113	5000	TA73	20p	
HA13441	450p	La3430	$35 p$	LA7331	250p	LM710	45p	NE556	40p	SDA5241	725p	STK 4050	1600p	STK6822	900p	STR50115	500 p	TA	200p	
${ }_{\text {HA17524 }}$	250 p 1000	LA3	$60 p$ 1000	LA 7332 LA 730	225 p	LM723	$40 p$	NE558	80p	SDA5243-2	4500	STK4060	510 p	STK6922	1000 p	STR51049	5000	TA7322	130p	
KA2130	150	LA3607	125p	LA7376	300 p 150 p	LM74191L	$18 p$ $45 p$	NE565	10p	SDA5343	1450p		$650 p$	STK6932	525p	STR50213	500p	TA7323	80 p	
KA2131	110p	LA4030	180p	LA7391	550p	LM747	55p	NE571	290 p	SDA5642	450 p	STK4111	500 p	STK6972	4900	STR54041			5p	
KA2206	150p	LA4031	140p	La7520	200p	LM1017	200p	NE592	85p	SGSF444	$500 p$	STK4112	500 p	STK69818	600p	STR55044	$320 p$ 4500	A7325	硡	
KA2209	125p	LA4032	140p	LA7530	200p	LM1035N	350p	NE5532P	140p	SGFS465	$500 p$	STK4121	480 p	STK6982	600 p	STR56041	5500		${ }^{200 p}$	
KA2210	230 p	LA4051	160p		175p	LM1040N	650 p	SAA 1000	350p	SLA4031	750p	STK4122	560p	STK6982H	$600 p$	STR58041	250p	ta7330P	110 p 80 p	
KA2212	65p	LA4100	$85 p$	LA7545	160p	LM1203	225p	SAA 1004	650p	SLA70	450p	STK4131	480p	STK7216	420 p	STR59041	3000	TA7330P	30p	
KA2213	130 p	LA4101	P	LA7550	75p	LM1203A	225p	SAA 1005	$325 p$	Sta301a	200p	STK4132	600p	STK7217	$400 p$	STR60001	525p	TA7331P	p	
KA2214	100p	LA4102	100p	La7555	150p	LM1875T	330 p	SAA 1006	300p	STA341M	180p	STK4133\\|	750p	STK7225	500p	STR80145	475p	33		
KA2224	50p	LA4110	120p	LA7620	500 p	LM1881N	$375 p$	SAA 1008	450p	STA401a	220p	STK4141॥	$420 p$	STK7226	600 p	STRB1945	375p	TA7335	85p	
KA2244	$75 p$ $00 p$	LA4120 LA4138	${ }_{105 p}^{270 p}$	LA7680 LA7681	$675 p$ $650 p$	LM1886	$250 p$	SAA1010	400p	STA403a	270p	STK4142	530p	STK7251	500p	STR90120	425p	TA7336	p	
KA2263	100p	LA4140	60p	LA7710	250p	LM1894N	200 p	SAA 1025	250	Sta431a	280p		680p			STRD		TAT3		
KA2264	100p	LA4142	65p	LA7800	90p	LM1895N	275p	SAA 1026	400p	STA432A	220 p	STK4152	650 p	STK7309	400 p	STRD 1706	3600			
KA2284	75p	La4145	5	LA7801	100 p	LM2901N	35p	SAA 1027	400p	STA434A	270p	STK4161	650p	STK7310	470 p	STRD180	360 p	ta		
KA2309	175p	LA4160	100p	LA7802	300p	LM2902N	40p	SAA 1029	150p	STA435A	270p	STK4162	550p	STK7348	400 p	STRD1816	350 p			
KA2401	1500	LA4162	110p	LA7806	\%	LM2903N	40 p	SAA1042	325p	STA44 ${ }^{\text {C }}$ C	$220 p$	STK4164	1175p	STK7356	425p	STRD1906	550p	TA7347P		
KA2412	$225 p$ $125 p$	LA4178	150p	LA7808	250p	LM3900	40p	SAA1043P	$675 p$	STA45	280 p	STK4771	900p	STK7358	440p	STRD3035	300p	TA7348P		
913	175	LA4182	180p	LA7823	100	-		A1				STK4172	680p	STK7402	$560 p$	STRD4412	$500 p$	TA73	$175 p$	
KA2914A	200p	LA4 190	300p	LA7824	130 p	LM3914	160 p	SAA 1057	375	STA901M	280 p	STK4182	750 p	STK7406	60	TRD4512		A7	65p	
KA22427	100p	Lad 192	140p	LA7830	90 p	LM3915	160p	SAA1058	225p	STK0025	420 p	STK4191	700 p	STK7408	6750	STRD5441	475 p	TA735	340p	
K1A6213S	${ }^{600}$	L44200	130p	LA7831	P	LM3916	270p	SAA1060	375p	STK0029	1000p	STK4192	700p	STK7410	1500p	STRD554	450p	TA7358	850	
K1A6210A KıA6281H	4009	LA4201	${ }^{120}$	LA7832	${ }^{130}$ p	LM8363	320p	SAA 106	250p	STK0039	600p	STK4211 II	1000p	STK74	1250p	STRD6008	575p	IA7359P		
K1A6283K	250 p	LA4260	30p	LA	150 p		175p	SAA1062	250 p	STK0040	520	STK4211 V	$800 p$	STK7554	600 p	STRD6009	450p	TA7361	125p	
K1A6299\%	210 p	LA4265	125p	La783	150	LM13700	150p	SAA1063 SAA 1064	${ }_{2750}^{250}$	STK0049 STK0050	510 p 440 p	STK422111	1200p	STK75	650	STRO6018	450 D	TA7362	150	
K1A7227C	200p	LA4270	300p	La785	225p	LM18293	500p	SAA1070	550,	STK0059	620 p	STK4241	1050p	STK7563	800p	STRD6609	650		175	
K14731	45p	LA4282	350p	LA7851	200 p	M49188	800p	SAA1073	325p	STK0060	820 p	STK4241V	1250p	STK7573	400p	STRM6545	600p			
L149V	300 p	La4420	140p	LA7910	150p	M49481	700p	SAA1075	350p	STK0070	1100p	STK4272	500p	STK75	1500p	STRM6546	900p	TA7373		
L200	250p	LA4422	130p	La7913	90p	M5265P	200p	SAA1086	175	STK0	$1000 p$	STK4273	550p	STK7703	1000p	STRM6549		TA7373F	$150 p$ $175 p$	
-20	20	La4430	O	La7930	350	M5	3200	SAAT089	3250	STK011	330 p	STK4301	500 p	STK8050	$1600 p$	STRS5741	800 p	Ta73		
L272M	110	LA4440	200p	LA7953	200p	M50119P	525p	SAA11124	700 p 2000	STK015	440p	STK431	${ }^{650} \mathbf{p}$	STK82	500p	STR	750p	TA7378P		
L2908	225p	LA	200p	LA9200	300p	M50422P	750p	SAA1130	550p	STK025	650p	STK4352	500	STK8280	1850p	STRS6308	600 p	TA740	$250{ }_{\text {p }}$	
L2918	300 p	LA4446	170 p	LB1205	170p	M50461	350 p	SAA1250	${ }^{280}$	STK050	1600p	STK4362	450\%	STK73405 II	550p	STRS6309	600p	TA74	200p	
${ }_{\text {L2938 }}^{\text {L292 }}$	750 p 225	LA4460	120 p	LB1216	150	M50784	300p	SAA1251	380p	STK077	520	STK 4372	600 p	STK73410	350p	STRS6707	1000p	TA7403	325p	
	325	LA4466	225	L81268	70	M 50790	50	SAA1274	480	STK078	560p	STK4392							150p	
L293D	225p	LA4470	300p	LB1274	85p	M51014L	120 p	SAA1290	750 p	STK082	2000	STK4432	600 p	STK7390	7700	TA7061	190	A7405	20	
L293E	250p	LA4475	225p	LB1290	120p	M51143A	110p	SAA1293	550p	STK084	600p	STK4773	820 p	STK78617	2400p	TA7062	200%	TA7411A	${ }^{150 p}$	
L29	475p	LA4476	225p	LB1292	110p	M51161	300p	SAA1294	800 p	K085		STK4793	800 p	STR370	300	TA7066	${ }_{120}$	TA7415P	350p	
129	450p	LA4480	225p	L81405	70p	M51161P	250 p	SAA1300	200 p	STK086	1000p	STK4803	1000p	STR371	400p	TA7075	300 p	ta>		
12	$525 p$ $400 p$	LA4485	50p	LB1407	130p	M51162P	250 p	SAA1310	${ }_{275 p}^{200 p}$	STK0100	900p	STK4813	800 p	STR380	350 p	T 7	300 p			
L465	525p	LA4496	250 p	L81412	300p	M51166P	300 p	SAA1351	750 p	STK420	400 p	STK4843	720	STR383	390 410	TA7119	500 p 150	TA7608	36	
L482	$400 p$	LA4498	275	L81415	1000	M51182L	110 p	SAA1900S	475p	STK 430	$500 p$	STK 4885	1700 p	STR384	350p	TA7120	55p	TA7609	170	
	$525 p$	LA4500	2200	L81416	${ }^{85 p}$	M51191L	${ }_{200} 8$	SAA3004	400 p	STK433	400 p	STK 4883	700p	STR440	800p	TA7124	250p	TA7611	210p	
L702N	325p	La4508	2009	L81450	110 p	M51308S	550p	SAA3007P	$225 p$ $130 p$	STK43	375 p	STK4873	1100 p	STR441	950p	TA7130	$85 p$	TA7612	300	
L2720	150 p	LA4510	100p	L.81615	270p	M51310A	900p	SAA3008P	200p	STK437	600 p	STK4913	900 p	STR ${ }^{\text {S }}$ S0A	${ }^{\text {700p }}$	TA7140		14		
L2722	175p	La4520	170p	L81620	210 p	M51316P	300p	SAA3010P	300p	STK439	500 p	STK5314	475 p	STR451	80	TA7141	825p	TA7614	170p 300 p	
L4960	325p	LA	200 p	L81622	220p	M51320	200p	SAA3027P	375p	STK441	6800	STK5315	500p	STR452	600p	TA7150	250p	TA7621	300 p 300 p	
	600 250		120		80p	M5135	400 p	SAA3049P	550p	STK443	700 p	STK5322	500p	STR453	500p	TA715	100p	(122		
L6221A	300	LA4558	$125 p$	L81640	${ }_{150 p}$	M51365P	150 p 3500	SAA5000	200p	STK459	470 p 560 p	STK5323	$600 p$ 450	STR454 STR455	5	TA71	${ }^{150} \mathbf{p}$	TA7628	110p	
L6506	300 p	LA4570	130p	L81641	75p	M51366P	360p	SAA5010	220p	STK460	660p	STK5325	370p	STR456	470 p	TA7200	3200	TA7629	220p	
LA1130	240		175p	L.81642	150p	M51381P	200 p	SAA5012	400p	STK461	600 p	STK5326	750p	STR457	6000	TA7205	12000	TA7630	200p	
LA1135 LA1145	120 p	LA4581	175 p	181645	100 p	M51384AP	750p	SAA5020	350 p	STK463	9500	STK533	850p	STR470	400 p	TA7207	150p	TA7632	400 p	
LA1170	90 p	La4630	$325 p$	L83500	1250	M51393AP	350 p	SAA5040	${ }_{400 p}$	STK561	550 p 450	STK5332	${ }^{180} \mathbf{8 5}$	R119	32					
LA1177	130p	LA4700	350p	LC4966	65p	M51395AP	450p	SAA5049	550p	STK563	415p	STK533	350 p	STR2005	4000	TA7217	220p	TA7644	${ }^{480}$	
LA1180	75p	LA4705	400p	LC7011	500p	M51397A	425	SAA5042	425p	STK583	500p	STK5336	350p	STR2012	400 p	TA7220	220 p	TA76545	1000	
LA1185	150	LA5005	90p	LC7060	350	M51436P	350p	SAA5050	${ }^{650}$	STK760	600p	STK5337	500p	STA2013	300 p	TA7222	90 p	TA7659P	100 p $\mathbf{4 0 0 0}$	
$\stackrel{\text { LA1186 }}{\text { LA } 1201}$	359 750	LA5112	200p $\mathbf{5 0 p}$	LC7120 LC7130	350 $300 p$	M51496P	275p $300 p$	SAA5051 SAA5052	400 p 500	STK770 STK772	400 p 6500	STK533 STK533	${ }^{2950}$	STR2015 STR2024	550 p 575 p	TA7223	210 p 300 p	TA7660P	325p	
LA1205	75	La5512	50p	LC7131	260p	M51544	150p	SAA5054	500p	STK772	480 p	STK5340	350p	STR2105	$600 p$	TA7226	290p	TA766	${ }^{1000}$	
LA1207	1200	La5522	45p	LC7132	400 p	M51848	$150 p$	SA45230	850 p	STK780	575p	STK5342	245p	STR2124	675p	TA7227	700 p	TA7668	10	
LA1210	140 p 80 p	La5523	$150 p$ $80 p$	LC7137 LC7181 LC719	450 p $\mathbf{3 5 0 p}$	M54523P	200p	SAA5231	$170 p$ 6000	STK7995 STK1039	${ }_{460 p}^{450}$	STK5343 STK5353	380 p	STR3105	525 p	TA7230	100 p	TA7672		
LA1230	130 p	LA5527	150p	LC7185	350p	M58484	500 p	SAA5243PE	360 p	STK1040	${ }_{640}{ }^{460 p}$	STK5361	${ }^{400 p}$	STR3113 STR3115	$225 p$ 400 p	TA7233	95 p 120	TA7679	475p	
LA1235	130 p	LA5530	$65 p$	LC7191	3009	M51516	260p	SAA5244AP	950p	STK1049	700p	STK5362	400p	STR3123	400 p	TA7237	300p	TA7680A	200p	
LA1240	80 p 1100	La5531	${ }_{450}$	LC7207	2750	M51518	200p	SAA5244	3800	STK7050	650 p	STK5372	260	STR3125	480 p	TA7238	400 p	TA7681AP	425p	
LA1260	75p	LA5655	175p	LC7217	350 p	M51977P	300 p	SAA5250P	750p	STK 1070	700p	-	$375 p$ $375 p$	STR313	500 p 250 p	TA 7240 TA7241	$160 p$ 1850	TA7687	100p	
LA 1261	75p	LA5658	225p	LC7218	250 p	M52307P	900p	SAA5351	375p	STK1080	940p	STK5392	500p	STR3212	$275 p$	TA7242	190 p	TA768		
LA1265	125 p	LA	250p	LC7230	${ }^{700}$	M54646AP	400p	SAA7000	550 p	STK2025	620 p	STK5421	450p	STR3214	275p	TA 7243	320p	TA7698	400 600	
LA1267	150	LA5700	300p	${ }_{\text {LC7354 }}$	550p $\mathbf{2 0 0 p}$	M83708 M 3712	275p	SAA7020	600 1300	STK2028 STK2029	${ }_{4800}$	STK5422 STK5431	$375 p$ 550	STR3215 STR3315	275p	TA	$225 p$	TA7705	300	
LA1354	225p	LA6339	35p	LC7364	200 p	M83713	130p	SAA7220PA	550p	STK2030	1000p	STK5434	570 p	STR4090	${ }_{850}$	TA7248	5750	Ta7709P	150p	
LA1363	90 p	La6355	50p	LC7432	425p	M83714	225p	SAA7274P	800p	STK2038	700p	STK5436	500\%	STR4142	450	TA 7250 B	$325 p$	TA7719P	200p	
LA1364	200p	La6510	150p	LC7522	350p	MB3715	250 p	SAA7280P	1450p	STK2048	950 p	STK5447	400 p	STR4211	315 p	TA72518P	325p	TA7727P	125p	
LA1368	120 p 2200	La651	150p	LC7535	300p	M83722	200p	SAA905	450 p	STK20581V	${ }^{1600}$	STK5443	575p	STR4512	400p	TA7256P	225p	TA7750	200p	
LA1369	200p	La6531	250p	LC7537N	450p	M83731	220 p	SAA9057 SAB060	${ }_{6}^{475 p}$	STK2101	1050p	STK54	350 p	STR5015	$500 p$	TA7259P	225p	TA7757	200p	
LA1385	170p	La7007	400p	LC7560	750 p	M83732	240p	SAB0601	525p	STK2125	580 p	STK5461	500p	STR5214	550p	TA7263P	400 325	TA7769	15	
LA1503	120p	-	220p	LC7565	300p	M83735	400p	SAB0602	625 p	STK2129	750p	STK5462	500 p	STR5315	575	TA7265A	3009			
LA1805	175p	La7016	45p	LC7582E	300p	M83756	160p	SAB10098	225p	STK2139	675p	STK5464	300 p	STR5412	280p	TA7267	220p	TA7792		
LA1810	130 p 3000	LA7018	100 p 1300	LC7800 LC7815	175p	M83759	200 p	SAB1016	600 p	STK2155	900 p	STK5466	500 p	STR6020	270p	TA72678P	120 p	TA7792P	250p 75	
LA2000	150 p	La7033	400p	LC7818	280p	M83773	110 p 110	SABE2045	350 p 5250	STK2230	$470 p$ $740 p$	STK5467 STK5468	400 p 300 p	STR7001	$600 p$ $400 p$	TA7269	260 p 1700	TA8101N	230p	
LA2001	200p	La7042	280p	LC7820	325p	M88719	360p	SAB2016P	150 p	STK2250	650p	STK54	900 p	STR9012	300p	TA7271	220 p	TA8105N	140p	
LA2101	270 p	LA7046	300p	LC7821N	250p	MC1391	${ }^{120}$	SAB2022P	5250	STK3041	370p	STK5472	$375 p$	STR10006	450 p	TA7272	260 p	TA8110ap	$110 p$	
LA2205	150p	La7054	350p	LC7881M	325p	MC1489	5 p	3017	${ }_{320} 200 \mathrm{p}$	STK	950 p 500 p	ST	${ }_{350}{ }^{500}$	STR130	450p	ta727	210 p	(e8122AN	Op	
LA2211	350p	LA7060	15	LF347	110p	MC1496	$65 p$	83021	450 p	STK3082	550p	STK5477	450p	STR1500	500	ta7280	190	A8132	200	

Please add £1 P\&P and VAT at $\mathbf{1 7 . 5 \%}$ to all orders
All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted)
Prices quoted are subject to availability and may be changed without prior notice

LINEAR ICs/JAPANESE TRANSISTORS

Part	Price	Part	Pric																
TA8164P						TDA4661	225 p	TDA8391	${ }_{6}^{675 p}$	UPC1004C	$130 \mathrm{p}$	$\begin{aligned} & \text { 2SA771 } \\ & 2 \text { SA } A 73 \end{aligned}$	90p	$\begin{aligned} & \text { 2SA1177 } \\ & 2 \text { SA1179 } \end{aligned}$	${ }_{20}^{25 p}$	$2 \mathrm{SBB}$	Op		15p
TA818	${ }^{350 p}$	TDA1								UPC1098									
TA818	130	tDal											100		120		p		
TA820	325p	TDA 120																	35
21A	300	TDA1220					3500		650p		75p	2SA786	p	2 SA1186	500		\%	${ }^{25 C 790}$	50
TA8207K	2200 1750	A 12													40p		00p		p
210	260	251													40p		0 p		5p
TA8211	00p	tDA1270	150p	tDa3		TD													20p
TA8214K	260 p	tDa 1327	200p	toa							150 p		60 p				45 p		
${ }_{\text {TA8216H }}^{\text {TA8215 }}$	300 p	TDA1405	220 p		20		300				110	2 S	$20 p$	2SA	25	${ }^{258633}$	80 p	$2 \mathrm{SC867}$	900 p
TA8217P	120	TDA1412	,	330	1600p										P		12 p		1008
TA8220A	500	tDA1506	27		12				20				209		1000		50		p
TA8221AH		TDA15	175		150p						P	2SA	${ }_{110}^{200 p}$	${ }_{2}^{2}$	600p	${ }_{258649}$	\%		5p
		TDA		TD	30	TDA4			350 p		15		20p		550p		OOP		300p
TA8227	250	tDa1514A	5	a35											p	2S	85		5
TA822	200	TDA1515A		tDA35									$25 p$		75		90p		p
	200 p			tDA3505	27				250p				45p		50p	${ }^{25 B 705}$		2SC950	p
		TDA517		TDA3507	${ }_{450}$	TD	175		500p		400	2 2S	25 p		25p	2SB	200 p		225p
${ }_{\text {TA8432 }}$	20	TDA159a	2000	TD	20				p		80		50 p		50p	2SB	p		P1
TA8605N	350	tda 1520	275	to ${ }^{\text {a } 3520}$	250p						,		30 p		${ }^{180}$	25			${ }_{120}^{208}$
					25		20		300p				300	2SA1	30 p	2 SB	75		
		TDA			17	TDA53			625p		140 p	${ }_{2}{ }^{2} 4888$	$45 p$		30 p	2SB	${ }^{35 p}$		Op
TA8615N		TDA 1526	5p	tDa35									20 p		45p		20		p
TA8628N	350	TDA1534	2000p	TDA356	,								15 p		80		22 p		25p
TA		TDA 1540		TDA3561A					3500				.	2SA	-	${ }_{2}{ }^{2} 8$	60p		
				5622			200 p		40		2200		45 p	2SA1	p	2 SB 7	100 p	2SC10	140p
${ }_{\text {TA8646 }}$	${ }_{375}$	TD		TDA3563	350	TD	200						p	2SA	35p	25	80p		150 p
TA8653		tDA155	350 p	TDA3564	32	tDA57	275p		${ }^{130}$						${ }^{\text {00p }}$	${ }^{258}$	${ }^{30}$		-
	90	TDA155		TDA3							$200 p$ 700	${ }_{2}^{2 S}$	5009	${ }^{2 S} 2$		${ }_{2 S 8}^{258}$	25p	${ }_{2} \mathrm{SC}$	00
					28		870		2250	UP	120 p	2	1000	2SA	P	2SB	Op	2 SC	250p
TA870		TDA155		TD	-										30p		00		
TA8718	550	tDA 1560	675	TD	375 p	tDa5	175	TDA									${ }^{1010}$	2 SC	5 p
	$525 p$	TDA1571	300p	TDA355	30		22		p	UP	130p		30 p 40 p	2SA	1100	${ }^{258781}$	${ }^{30}$	2 SC	\%
${ }_{\text {TAA }}$	${ }_{4500}^{450 p}$	TDA 157	175 p 1250	TD	75	TDA6	120						25p		p		40 p		25p
TAAS	25	TDA1576	17	tDA35	360p	tDa61	225						30		p	${ }^{258}$	45p		p
	40 p	TDA1578A	21	TDA3592							240 p		30 p		P	2 SB	15	$2 \mathrm{SC1}$	180 p
		TDA 15		A ${ }^{\text {a }} 3601$	5p	TD			120	UPC 1297	325p	2 S	p	${ }_{2 S A 1}$	60 p		175p	2 SC 1	$415 p$
TBA5	120	TDA1591	275	TD	50p	TDA66									60				P
tbas	90	TDA1596	200	TDA	350 p	tDA7000	${ }^{170}$	TEA 1017	280p	UP			p			${ }^{25} 8$	p	${ }^{\text {2SC11 }}$	-
		tDA1	160	TDA3645	400	ToA7010	120		130					2	1509 1100	2SB82	$60 p$ 1350		270p 110 p
tidaboo	40	TDA1600		TDA3651	${ }^{200 p}$	A	175	TEA	150 p	UPC1	80		18p	2 2A	450 p		75p	2SC11	30p
TBA820	450p	TDA1602A	${ }_{200}^{400 p}$	toas	500	TDA	100	TEA	15						500p	2 SB	200p	2 SC 1	600p
tbas	35 p	TDA1675	200	TDA3653		tDa705	1200	TEA1095	300p	UPC	115p		P				2000	${ }_{2} 2 \mathrm{SC} 1$	${ }^{750 p}$
		TDa		A365	80	TDA7053	200p	TEA	${ }_{175 p}$				S0p			${ }_{2}{ }^{\text {SB888}}$	75p	${ }_{2} \mathrm{SC} 1$	
TBA950	100	TDA177	${ }_{2000}^{2000}$	TDA365	300	TDA70570	2250	TEA1066	250	UPC	p		185 p		Op		Op		150 p
TC	200	TDA1872	27	tDa3720	1759	TDA7072	$100 p$	TEA1064	250p	UPC1									33p
	17	TDA190		TDA3724	300	TDA707	175p		150 p $\mathbf{3 5 0}$	UP	3009 3500		120 300		$\xrightarrow{100 p}$		250	${ }^{2 \mathrm{SCCl121}}$	35\%
TC	1709	- TDA1905	800	TDA3725	400	TDA7220	65p	TEA	170 p		250		25p		100p		180p	2 SC	p
TC9125	410	TDA1910	16	tDa37	400 P	tDa7222	$100 p$	TEA1087	40 p	UPC136	130 p		,		p		45 p	2SC	$5{ }^{5}$
		TDA	180	tda37	400 p	TDA7230A	150p	TEA1101	${ }_{4}^{425 p}$	UPC137	${ }^{3000}$								
		TDA1947			4250	TDA7231A	${ }_{60} 80$	TEA1330	${ }_{50} 6$	UPC137	8290	2SA	${ }^{350}$	2	p		609	2 SC	5 p
TC913	125p	TDA1950	175	TDA3760	350	TDa7240	175p	TEA20	500p	+C.							70.		5p
TC9	15	tDa2003	65	TDA3771		TDA7241	2509	TEA2014A	${ }^{800}$	UPC13	170	$2{ }_{2}{ }^{2}$	25 p	${ }_{2}^{2 S}$	${ }_{2}^{130} \mathrm{p}$		309	${ }_{2 S C 1247 A}^{2 S C 1237}$	-35p
TC9	320p	TDA200	$150 p$ 150 p	- $\begin{aligned} & \text { TDA3780 } \\ & \text { IDA3791 }\end{aligned}$	${ }_{200}^{4000}$	TDA72	${ }_{400 p}^{225 p}$	TEA201	600p	UPC	425p		309	25			180p		850
TCS	150	TDA2006	70 p	tDa3800	250	tDa725	400 p	TEA20	$5{ }^{\text {p }}$	UPC1387	2500		50	${ }^{25}$	45p		190p		op
	20	tDa2007	120	tia3803a	500	TDA725	${ }^{4000}$	TEA2028	325p	UPC 1394	1200		\%						
	22	TDA20	10	TDA381	20	TDA ${ }^{\text {TD }}$	${ }^{3255}$	A2	355	UPC140	6550		250		1009		30 p		p
${ }_{\text {IC }}$	4	TDA2009	${ }^{160 p}$	${ }^{\text {TDA332 }}$	150 p 110 p	TDa72	17	teaz202	270p	UPC 1406HA	70 p				659		0		p
TC	425	tda2020	120p	tDa38	200	TDA7274	45 p	TEA2031	125p	UPC1422	4509	2SA	125		${ }^{130} \mathrm{p}$		109		20p
		A2030	100	tDa38	2000	TDA 727	75 p	TEA2	2200	UPCC14220	650p	2SA	${ }_{2250}$.		550		5
TC	2250 3000	TDA2030	1000	TDA38	225p	TDA728	1009	tea2117	450 p	UPC147							0		5p
TO	45	tDA2048	600p	тDA385		IDA73	450 \%	TEA2130	50 p	UPC 1474HA	750	2SA	p		50 p		1309		200p
		tDazo	45	A38		toa7310	800	TEA2164	${ }^{160}$	UPC1484C			100		1000				5p
		tdazos	52	TDA39	22	ida73	${ }_{5}^{65}$	TEA226	${ }^{225 p}$	UPC14	5150	${ }_{2 S A}$	10	2 2S	750	2 SB	1209		70 p
	400	TDA20	11	TDA400	2500 150	IDA7318 TDA 730	${ }^{5500}$	TEA226	275p	UPC1505	400	2SA1	,						5p
	100	TDA	32	TDA405	50	toa 7350	30	TEA3717DP	160 p	UPC1513HA	p		p		120p	2 SB	${ }^{40}$		Op
				A405	50	d735	3000	TEA3718S	175	514CA	200p		359		400		1800		
	22	TDA2170	1200	A409	250p	TDA73	$700 p$ 1759	TEA5504	p	UPC1520CA	250p	2SA1	90p		75 p		809		0p
IT				TTA4173AF		T		TEA5107a	175		1200	25	60 p		25p		,		
TD	10	TD	30	TDA418	18	${ }_{\text {IDA }}$	140	TEA5	P	25 A	75	2SA10	50	2SA	150	2581	50 ¢		
	20		17	tDa4200	300 p	TDAB	2250	TEA5	220	25	40 p		${ }^{40}$		30p	${ }_{2 S}^{2 S 8}$	509		
				TDA421	160p	TDAB11	350	IEA5170	200	${ }_{2 S A 483}$	90p	2 2SA	300		110		60		P
TD6304			22	TDA4280	320 p	TDAB1208	400 p	TEA5500	${ }_{2}^{325 p}$	${ }_{2} 2$	80		159		${ }^{110}$		45		500\%
TD		TDA		TDA4283	450\%	TDAB1	2250	TEA5550	1550	25A490	45	2 2A1	300p			2 SB	75p		50 p
TD	300	TDA2507T	450	TD	125	TDAB	225	TEA5560	1300	${ }_{2} 2$	${ }^{250}$	2SA	150p	2 2	${ }_{25}^{40}$	${ }_{2 S 8}^{258}$	470p	${ }^{2} \mathrm{SC} 1$	50p
	200	TDA2510	4500	TDA4	1759 120 120	TDAB136 TDAB137		TEA5580	1659	${ }_{2}{ }^{\text {SA4 }}$		2SA1	230p	2SA	100p		50 p	2SC1	\%00p
			45	TD	3009	TDA8	${ }^{200}$	TE	2000	${ }^{25}$	350	2S	3009	2SA1	Op		5	2 SC	(50p
TD	1750 80	TDA25	10	TDA4426	300p	TDA81388		TEA562	3000	${ }_{2 S}{ }^{\text {Sa537 }}$	170	${ }_{2}$ 2SA 1	80	2SA	300	25	${ }_{45}{ }^{\text {a }}$	2 LC	2750
Til 10	75p	TDA	${ }^{150}$	TDA	${ }^{1500}$	TD	20	TE	2259	254	${ }_{6}^{208}$	2SA	800	${ }_{2}{ }_{2}$	322	${ }_{2 S 8}^{2 S 8}$	${ }_{45 p}^{45 p}$	${ }_{2 S C 1}$	(55\%
TDA1012		tDA ${ }^{\text {to }}$ S42	110p	TDA4437	1250	TDAB143	160\%	TEA57	650	${ }_{\text {2SA }}$	${ }^{150 p}$	25A1	$100 p$	2SA1	260p	${ }_{2} 25$	40 p	${ }^{2} \mathrm{SC}$ S1	
TD	${ }^{85 p}$	TDA	210 p	TDA4439	2200	TDAB	1200	TEA6000	${ }_{3500}^{400}$	${ }_{2}^{2 S A}$	30p	2S ${ }^{2}$	750 1000	2SA1	450p	${ }_{2 S 8}^{258}$	${ }_{40 \mathrm{p}}$	${ }^{2}$	1200
TDA	110	TDA25	1200	TDA4442	240	toab 160	${ }_{125}$	TEA6200	225	2 S	$650 p$	25 A	180 p		280p		40 p	2 S	250
tDA	330p	tDA2546A		toa443	250p	TDA81	170p	TEA6300	5000	${ }^{25 A 6}$	100p	${ }_{2}^{2}$ SA	1909	25	20 P		300	$2 \mathrm{SC1}$	1200
	130 p	TDA25	200	TDA	2200	TDAB	200 p 1750	TEAB3	${ }_{4255}^{425}$		${ }^{200 p}$	${ }_{2}^{2 S}$	${ }_{\text {300 }}^{3009}$	${ }_{2}{ }^{2}$	${ }_{1759}^{45}$	${ }_{2}^{258}$	${ }_{45 p}^{40 p}$	${ }^{25 C}$	15p
TDA	320p	TDA25		TDA4452	2509	TDAB1	200	TEA64	5250	${ }^{2}$	150	${ }_{2}{ }^{5}$	${ }^{130}{ }^{\text {P }}$	${ }_{2}{ }_{2}$	${ }_{55 p}$	${ }^{258}$	350p	${ }^{25 C}$	45p
TDA1028	175	tdaz	${ }^{2300}$	tDa4453	275	TDA8	300p	TEA6420	360		20 p		130 140	${ }_{2}$	500	${ }_{2 S}^{251}$		2 2S	$70 p$ 55
TDA1029	200 p 160 p	TDA2	${ }_{\text {200p }}^{225}$	TDA4480	280p	TDAB178	650p	TEA	- 45		50p	${ }_{2} 2$	250p	${ }_{2 \text { 2SA }}$	2209	${ }_{2}$	75p $\mathbf{2 5 p}$	${ }_{2 S C}$	${ }_{45}$
TDA 1038	500p	tDa2574	350p	TDA4482	200p	TDA81	180p	TL494	1000	2 S	$60 p$		${ }^{160 p}$	${ }^{25}{ }^{25}$	2500		10 p	${ }_{2} \mathrm{SC}_{2}$	359
TDA ${ }_{\text {TVA }}$	250p	TDA2	100 p 2000	${ }_{\text {TDA }}$ TDA4	300 p 2800	TDA	${ }_{425 p}^{200 p}$	TLO61	40p		${ }_{50}^{60 p}$		1500	${ }^{2 S A 1}$	40\%	${ }_{2 S}{ }^{25}$	${ }_{60 p}^{25 p}$	${ }_{2 S C}$	
TDA10	110	TDA2578A		tDa450	4000	TDA8192	2000	TLO7	38		25p		30 p	25 A	909	2 S	25p	2 SC 1	45p
TDA 1047	20	IdA2579A	2100	TDA4503	3250	TDA8196	120p	TLO74	$8{ }^{80}$		150		40 p	2SA	1009		15p	$2 \mathrm{2S}$	110 p 1200
TDA 1048	200 p	IDA25	1300 1700	TDAA50	300p	TDA8205	1250p	TLO83	750		359 $\mathbf{2 6 p}$		60 p	2SA	1759	2 S	10 p	${ }_{2} \mathrm{SC}$	
TDA	180 p	TDA25	110p	tDA 45	4509	TDA8214B	225p	TM			259		\%		P	${ }_{2} \mathrm{SC}$	${ }^{15 p}$	2 SC	35p
tDA	609	tDa25910	150,	toa4		TDA821		TP	80	${ }^{254683}$	259	${ }_{2 S}^{2 S}$	1200 130		310 p 4250		${ }_{25}^{45 p}$	${ }_{25 C}^{25 C}$	55p
TDA 10598	$\stackrel{40 p}{40 p}$	TDA2593		TDA451	20	to ${ }_{\text {To }}$	225	UPL	500 p 100 p		1009 709		200p	${ }_{2}^{25 A}$	40	2 S	${ }_{85 p}$	2 SC	
TD	\%op	TDA25	2000	toA45	275	tDA8304	400 \%	U	p	${ }^{25}$	140 p		1009	$2 \mathrm{2SA}$	25p		1000	${ }_{2}^{2 S C}$	250
TDA	${ }^{750}$	TDA	4000	TDA45	3709	TDA8305	500p		${ }^{1250}$		280,		159	2SB3	0,	${ }_{2}$	20p		550
ID	288p	tDa2615	250	TDA45	270	TDA8341	250	UP	220	${ }^{25}$	50		000	2 S	150	${ }^{2 S}$	1000	${ }_{2}^{25}$	25p
TDA 1077	27	TDA2630	${ }^{300}$	TDA 45	150p	toab349a	${ }^{350} \mathrm{p}$		$\begin{array}{r}1309 \\ 600 \\ \hline\end{array}$	${ }^{\text {2SA }}$	20\%		350p	2SB	809	2SC	80	${ }_{2 S C}$	340 p
	2759	TDA2	350	toa4	225	TDA	2000	UPC5	80 ¢	2SA	80.		300	2 2SB	5	${ }^{2 S}$	10 p	${ }_{2} \mathrm{2SCl}_{1}$	(170
TDA	${ }_{6}^{1700}$	TDA2654	${ }_{300 \mathrm{p}}^{2000}$	TDA4	200\%	TDA	p	UP	$220 p$ 600	- ${ }_{\text {2SA726 }}^{\text {2SA }}$	${ }_{15}^{20}$		P	${ }_{2} 2$	30p	225		${ }_{2 S}$	
TDA 109	100p	tDA2670	150	IDA	200 p	tDAB362AN		UP	909	${ }_{2}{ }^{2}$	p		${ }_{5}$	${ }^{25}$	${ }^{\text {P }}$		359		55p 150 150
TDA ${ }^{\text {TDA }}$	${ }_{4}^{4759}$	TDA2	100 p 4000	TD	1200p	TD	1200p	UP	${ }_{95 p}^{64}$		456p		15p		30p	${ }^{2 S}$		2SC1	5p
TDA1154	- 500	TDA2721	${ }_{0}$	TD	190	ID	16		p	2 T	600		P	${ }^{258544}$	P	${ }_{2 S C 711}$	159		O
TDA1170	${ }^{85}$	IDA2730	2000	TDA4610	37	TD	200p	${ }^{\text {UPC596 }}$	1900	2SA764 2SA769	p	2 SA 1	650		450 50		40\%		(00 p
Al170N		2740		TDA4650		TDA8390a		1004		${ }_{2 S A 770}$	20	2SA1775	25,	25856	$25 p$	${ }_{2 S C 735}$	409	2SC1674	$15 p$

REPLACEMENT VIDEO HEADS

VCR BELT KITS

REPLACEMENT IDLERS \& PULLEYS

Make	Models
Hítachi	VT11, 14, 17, 19, 33, 34, 35, 38, 39, 52. 57, 61, 62, 63, 64, 65, 85,

FF Rew Idler 6886792 Price 100 p Play Idler 68614826861481 Price: 180p |dler

Make	Models
Ferguson	$3 \vee 39,3 \vee 30,3 \vee 31,3 \vee 32,3 \vee 353 \vee 36,3 \vee 38,3 \vee 39,3 \vee 49,8930$,

Order Code: IDL23

Philips DB532, VR6520, 6843, 644
Sharp VC600,651,681,682,684,685,693,699,700, 783, 6FR, 6V3,
Order Code: IDL88

Philips VR6843, 6943, 44SB9, VR44SB920, 44SB922, 6943	
Sharp	

VC772, 780, 781, 782, 785, 786, VC787, 800, 793, 799, 7810,
7822, VCA $100,102,104$, VCA $131,140,170,202,203,234,501$
VCA602, 5011, VCD801, 802. VCH 851,852 , VCH882, VCM 73 VCA602, 5011, VCD8
VCT72, VC782MK11

Order Code: IDL90

DL90
N $9054,9055,9056,9066,9096$, N9110, $9120,9510,9520,9530$ N9610, DX1000, 1600, 2000, DX3000, PX1200
Order Code: IDL245
diler Arm Assembly
Philips DV186, 190, VR211, 2115, 212, 213, 223, 286, 291, 292,311 Prese: 270p Pressure Roller Assembly $582,571,761,201,202$, VR203, 302, 303, 305, 6180, 6182, 6185 , $6285,6290,6291,6293$, VR6362, 6367, 6390, 6391, 6393, 6467, $6468,6470,6561,6570,6581$ VR6670, $6676,6710,6760,6761$ $72 \mathrm{SB8}, 72 \mathrm{SB} 8$, $92 \mathrm{SB} 31,20 \mathrm{DV} 1$ 20DV2 20RW7 210V1, 21DV 2SB01, 2SB02, 2SB11, 2SB12, 30DV2, 31DV1, 31DV2, 31DV. 33SB02, 3SE03, 3SB05, 3SB11, 3SE12, 3SB13
Toshiba V91 V95

PINCH ROLLERS

Model	Price
AKAl	

HRS 10
BP5000, HRD110, 111, 120, 229, 225, VP7100, VP77
VS1, VS2, VS3, VS4, VS5, VS6, VS8, VS9,
VS VS 12, VS15
VS $105,112,115, ~ 116, ~ 120, ~ 125, ~$ VS105, 112, 115, 116, 120, 125,
$126,155,165,205,220,240,244,245$,
VS247, 248, 250, 512, VS515, 516, VSX9 VSX9,
VS201, 301, 303, 304, 603, 606, 607, VSP8,
VSP82, VP58, VP82,

VS2,	VSP82, VP58, VP92
VS125, VS $155, ~ V S 165, ~ V S 220, ~ V S 240, ~ V S 250, ~$	VS22, 23, 25, 35, 37, 38, 53, 66, 75, 422, 425, VS $22,23,25,35,37,38$

$426,427,462,465,467$ VS $485,765,766,767,768,865,867,965,967$
VSA77 VSA77, VSA650, VSF10, 11, 12, $15,180,190,200,210,220$,
$224,222,230,240,30,33$, $221,222,230,240,30,33$
VSF $330,4,500,550$, VSP8
VSF330, 4, 500, 550, VSP88, VSR100, VSX400,
450,470 450,470
VSF260, VSF260, 261, 262, 265, 270, 274, 275, 280,
290, $340,350,410,42,40,40,497,50$, 290, 340, 350, 410, 420, 43C $\begin{aligned} & \text { VSF } 441,440,450,455,480,490,497,510,\end{aligned}$ $560,580,590,599,600$,
VSG20, VSG20, 21, 23, 24, 25, 30, 33, 34, 35, 51, 54,
$55,60,64,65,70,73,74,75$, $55,60,64,65,70,73,74,75$,
VSP110, VSX560, vS $\times 580$ VSP110, VSX560, VS $\times 580$
VS17, 20, 22. 23, 24, 25, 26, 27, $35,37,140 \mathrm{p}$ VS17, 20, 22. 23, 24, 25, 26, 27, 35, 37, 38, 53,
55, VSA77.
PINCH ROLLER ASSEMBLY PINCH ROLLER ASSEMBLY
VS $422,425,426,427,462,46$ VS 422, 425, 426, 427, 462, 465, 467, 485, 498,
$765,766,767,768,865$, 765, 766, 767, 768, 865,
$867,965,967$, VSA650,
$180,190,200,210,220$, $180,190,200,210,22,30,301,310,320,33$
$221,222,230,240,30,300,30$, $221,222,23,24$,
$330,4,500,510,600$,
VSR110 VS $\mathrm{S} 100,400$ PINCH ROLIER , 400, 450, $470 \quad 800 p$ VINCH9

VCR3000X, VCR4000

VCR5000, VCR6000
VCR161 VCR222
VCR7000, VCR7800, VCR8000
VCR8800

AMSTRAD

VCR 1000, 2000

6100, 6200, 8600
(1)
VCR8602, 8603, $860,460, ~ 4700,5200,6000, ~$ VCR8602, 8603, 80
$8804,9000,9005$,
88C4, 9000,$9005 ;$
VCF9244, 9340, DO8900, 8904
TVA1, 2, 3,
VCR7000
140 p
VCRTOOO DO8900, DD8904,

$8602,8603,8604$, VCR8700, 8800, 900 $29,9140,9244$, | 9340 |
| :--- |
| PINCH ROLLER ASSEMBLY PART NO: 700 p |
| 153190 | PINCH

TX 3650, UF20, VCR 3000 , VCR $3002, ~ V C R 4000 ~$ VCR9500
PINCH ROLLER ASSEMBLY PART NO: 2554966
25D99600, 9904, TX3650, UF20. 22, 24, VCR $3000,3002,9500$

FERGUSON

3VV0, 3V01, 3V16, 3V22, 3V23, 3V24, 3292
$3 V 00,3 V 01,3 V 16,3 V 22,3 V 23,3 V 24,3292$
$8900,8901,8902,8903,8904,8906,8909$,
8912,8922

 $3 \vee 35,3 \vee 36,3 V 38,3 \vee 39,3 V 42,3 V 43,3 V 44$,
$3 V 45,3 V 48,3 V 49,3 \vee 53,3 V 54,3 V 55,3 V 56$ $3 \vee 45,3 \vee 48,3 \vee 49,3 \vee 53,3 \vee 54,3 \vee 55,3 \vee 56$
$3 \vee 57,3 \vee 58,3 \vee 59,3 \vee 65, F \vee 10, F V I I, F V 12$, FV14, 8943, 8944, 8945, 8947, 8948 140p 3 V 52
8950.89
8950, 8951, FV10B, 11R, 13H, 14T, 208, 21 R , 22L, $26 \mathrm{D}, 31 \mathrm{R}, 32 \mathrm{~L}, \mathrm{FV} 33 \mathrm{H}, 39 \mathrm{~S}, 41 \mathrm{R}, 42 \mathrm{~L}, 50 \mathrm{~B}$,
$51 \mathrm{R}, 5 \mathrm{~L}, \mathrm{~V}$,
14 p 141 L FV37H, FV44L, FV46T, FV43H, FV57H
$3 V 353$ 3V36, 3V38, 3V39, 3V49, 8943,
8944, 8944
PINCH \qquad $3 \vee 42,3 \vee 43,3 \vee 44,3 \vee 45,3 V 48,3 V 53,3 V 54$, $3 V 55,3 V 56,3 V 57,8945,8947,8948 \quad 1350$ PVCH ROLLER ASSEMBLY
FV PINCH ROLLER ASSEMBLY FV31R
FV41L, FV42L

PINCH ROLLER ASSEMBLY

 $3 V 58,3 \vee 59,3 V 64,3 V 65$, F
PINCH ROLLER ASSEMBLY FVG3H, FV44L, FV45X, F F46T
PINCH ROLER ASSEMBLY PV61, FV62, FV67, FV68, FV70, FV71, 700 FVG74, FV77
FV1, PINCH ROLLER ASSEMBLY FISHER VHP420, 520, 530
\qquad

FVHP810, 830,840 FVHP905, 906, $907,908,910,911,915,916$ 918, 970, $975,980,990$, FVHP 5000,5005 , 440 p
$5050,5075,5100$ 5050, 5075, 5100
VBR 330, VBS $3500,7000,7100,7500,7600$, 9000,9900
FVHD230, 250, 270, 370, 2000D. FVHP3, 210, $250,300,310,1100$.
FVHP1200, 1250, 130, 132, 1340, 1340, 1400,
$1410,1440,1500,200$, 1410, 1440, 1500, 200, FVHP320410, 420, 430,
FVSP290S, 495,2905 FVSP290S, 495, 2905
FVHD140. FVHD40, FVHO FVHP20 FVHD55, FVHP1, FVHP10, FVHD140, 40
FVHS 10,30
PINCH ROLLER ASSEMBLY
GOLDSTAR
GHV5 $1243,1221,1232,1233,1240,1241,1242$, $1243,1244,1245,1246,140 \mathrm{p}$
$\mathrm{GHV} 1247,1248,1250,1260$, 1296, 1392, 1393, $1266,1290,1291,1295$, GHV 1891, 1900, 2145, 3000, 3010, 4400, 44 10, 51, 8000, 8200 , GHV8210, 8215,8430
GHVP1240, 1241, 1247, 1248, 1290,1291 GHVP 1240, 1241, 1247, 1248, 1290, 1291, GHVP1295, 1296, VCP4000, $4100,4130,4200$,
$4300,4301,4305$, VCP $4306,4310,4311,415$ $4300,4301,4305, V C P 4306,4310,4311,4315$, $439,1,420,4321,4325,4326,4350$, GSE 1290,
$1291,1295,1296,1297,1891,1910,20005$. 2000
HITACH
$\sqrt{77}, 11,14,16,17,18,19,33,34,35,350,38$, 39, $88,330,680,4200$ VT5000, $5030,5500,6500,6800,7000,8000, ~$
$8300,8500,870, ~$ 8300, 8500, 8700, 930, VT9500, 9700, 9900, TR , 52, 57, 61, 62,63, 64, 65, 85, 86, 88, 100 110, 111, 113, 115, 118,
VT120, 122, 125, 128, $130,135,138,145,150$,
$168,170,175,220,225$ $168,170,175,220,225$.
VT250, 255 , 258 260, VT250, 255, 258, 260, 400
$415,416,418,420,425$ VT $426,428,430,431,43$ $515,517,518,520,525$,
$V T 526,530,535,536,5$ 575, 576, 580, 585,588 VT640, 830, VTF660, 665 $780.785,860,861,865$, VTL $30,1000,2000$, VTL $27,728,730,731,735,720,722,725,726$ VTM $736,740,745,746,748,753,754,820$. 821, 822, 825, 830, 831, VIM835, 838, 840, 841, 845, 920, 921, 922 . 925, 930, 931,935 .
VTS80, 85, 890, 895VM $200,2300,2380,3200$,
3280,500, VMS 7200 VT3000
VT410, 420, 428, 430, 450, 498, 518, 520, 522, S30, VTF770, 780 ,
VTM598, 622, 722,
FINCH ROLLER ASSEMPL, 753 650p PINCH ROLLER ASSEMBLV
VTF F150, 155, 180, 185, 250, 255, 260, 265, 280 285, 350, 351, 355,
VF360, 365, VTM
12, 215, 220, 221, $, 141,145,145,210,211$ VTM230, 231, 235, 284, VTS390 140p HINARI
V20H, VXL5, VXL6, VXL7, 8, 9, 10, 11, 19, 90, H13V, VTV100,
VXL2, VXL3
VXL4, VXL20, VXL35
VTV100, VXL10, VXL11, VLX9. VxL90 PINCH ROLLER ASSEMBLY $\frac{\mathrm{V} 2 \mathrm{OH}, \mathrm{VX}}{\mathrm{J} . \mathrm{C} .}$
VR2200, 3300 275p HR2200, 3300, 3330, 3360, 3660, 4100, HR2650, 7200, 7300, 7350, 7600, 7610, 7650, 7655
HRD1 10, 111, 120, 121, 140, 141, 142, 143. 150, 152, 156, 157, 158, HRD160, 220, 225, 250, 257, 445, 455, 565, 566, 725, 755, HRP50, BP5000, BR7000, HRD520, 540 637, 640, $641,650,660$. 637, 640, 641, 650, 660, ,60, 610, 620, $860,870,880,910,960$. HRD980, HRD $\times 20,22,25$, HR, J200, 205, 210 $215,300,315,316,318$ HRJ J $400,405,407,410,411,415,416,507$ HR.J97, HRSA $700,5800,5900,6800,6900$, SR3200, 330,368
HRD170 171 180 HRD170, 171, 180, 210, 211, 217, 230, 300, 320, 321, 330, 337, 350,
KRD $770,400,430,440,441,470,500,530$,
$700,750,950$, HRS5000, 5500, 8000, 9000, BR7030, 7040,

NCH ROLLER ASSEMBLY 1100 $160,565,565,725,755,140,152,157,158$, HRP50. 1350p HRD1520, 510, 520, 521,522, 525, 527, 560 , 600, 610, 620, 637, 641,
HRD650, 720, 830, 840, 910, HRJ205, HRS5800
PINCH ROLLER ASSEMBLY
BR7030, BRS600, HRD $160,170,171,180,190$
HRO230, 271, 300, 310, 320, 321, 330, 337.
$350,400,430,440, \angle 41$,
HRO470, $500,53,70$,
HRO470, 500, 530, 700, 750, 950, HRS5000, 5500, 9000
HRO540, HRD550, HRO580, HRD660, HRDR60
HRO540, HRO550, HRO580, HRD660, HRD860,
HRD960 PINCH ROLLER ASSEMBLY HR.J600, HR.J605, HR.J815,

HRS9200

MATSUI
VX6000, 7

VS888
V1000,
VA V×1000, V×2000, VX2500, V×3000,

MITSUBISHI
HS12, 5300, 5424, 5600, HSB11, 12, 16, 21, 27 31, 32, 41, 51, 52, 82,
HSE12 16, 17, 21, 22, 27,
82, HSMi000, 110, 120,
82, HSM $1000,110,120,15$
$0,16,170,190,210,23,25$
0, 16, 170, 190, 210, 23, 25, $20,27,33,34$.
$36,37,370,380,45,450,5$ $4,55,555,57,58,59,68$, HSMS2, 9, HSS11.
$14,15,17,19,25,5500$, HV F125, $150,303,85$, SV8900, 8930
PINCH ROLLER ASSEMBLY PART NO:
9190p $948 D 020010$
HSE 11, 12, 16, 17, 21, 22, 27, 31, 32, 41, 51, $52,5300,5424,5600$, HSB11, 12, 16, 21, 27,
$31,32,41,51,52,82$ HSM1000 HSM16, 170, 18, 190, 210, 23, 25, 250, 27, 30 $33,34,35,36,37,370,38$, HSM $380,40,45$, 450, 50, 54, 55, 555, 57, 58, 59, 60, 68, HSMS 2,9, HSMX1, 18, 19, 2, HSS $11,12,14$,
$15,17,19,21,25,5600$, HVF125, HVF 150,303, $15,17,19,21,25,5600$, HVF 125, HVF150, 303 ,
85, SV8900, 8930 85, SV8900, 8930
HS200, HS 300 , H HS 310, HS 3300 . HS301, HS 302, HS 303 , HS304, HS700
HS700
HS 306, HS $307, ~ H S 318, ~ H S 319, ~ H S 337, ~ H S 338, ~$ HS347, HS 349, HS 400, HS 410, HS 411, HS 412 HS421, HS480, HS710, HSB 10, HSB20, 30,
HSE 10, 20, HSE 10, 20,
30,70

NATIONAL PANASONIC

NV100 180 PANASONIC NV100, 180, 300, 330PX, 332, 333, 340, 366,
$600,688,777,788,3321$ AG6010, $6015,6100,6200,6400,6800$, 7450
NV230 NV230, 250, 260, 280, 370, 380, 430, 431, 433, $450,460,465,470,480$
NV630, 650, 730, 770, 780, 810, 830, 850, 870 $890,2000,2010,3000$,
NV7000, 7200, 7800, 8050, 8150, 8170, 8200, 8300, 8400, 8500, 8600
NV8610, 8620, NVG11, 14, 16, NVG7, 10, 12, $15,18,30,130,400$
AG $1000,1050,1200$ AG 1000, 1050, 1200, 1500, 2100, 2200, 6500,
$6810,7500,7510$, $6810,7500,7510$,
NVH 70 NVG9, NVG120 140p AG6840, 6720,7150, 7330, 7350, 7355, 7650, NVH65, 75, NVJ30, NVL20, 23, 25, 28. NVG300, NVF65, NVF70, NVFS1 NVFS
100, NVG $19,20,25,33,40,50$, NVV8000
$\begin{array}{ll}\text { NVV8000 } \\ \text { NVD48, NVD80, NVG21 NVG45 } & \mathbf{1 4 0 p} \\ \mathbf{1 4 0 p}\end{array}$ NVJ700PX NVHD 100 NVHD 101 140p NVSD 40

PINCH ROLLER ASSEMBLY

 AG5150,5250,5700 6024 1125 AG5 $150,5250,5700,6024$, NVD $38,48,80$,NVF55, $65,70,75,77$, NVFS1, 100, 200, 88, 90, NVG 19, 20, 21, 22 $25,28,300,33,40,45,46$ NVG50, NVH65, 75, 77, NVJ30. 33, 35, 37, 40, NVL20, 23, 25, 28, NWW 1 PINCH $\begin{array}{ll}\text { N.E.C. } \\ \text { N830, 831, 832, 833, } 895 & 140 \mathrm{p}\end{array}$ | N830, | |
| :--- | :--- |
| PVC23 | |
| 766 | |
| DX100 | |
| | |

DX1000, 1600, 1800, 2000, 3000, N9012, 9013 $9014,9016,9033$
N $9034,9053,9054,9055,9056,9066,9096$, 9110, 9120, 9510,9520,
N 9530,9610, PX 1200, VC150, 180, VH3, 33, 200, 201, 205, 212, 250 , 254, 288, 300, 303, 312. VH $404,555,700,704,712,770,780,844,900$, 1000, 2948, 3030, 3312
VHF 2A VP2948 VHF2A, VP2948
COMB 15000,16000 , HVO3. LVH50, NEVH NEVHM, NEVHML TVP230RC, VCP, VHO4, 30, 103, 300, 358, 360 $362,400,416,512$,
VH530, 532, 535, 536, $600,630,635,640,666$,
$730,735,744,774,790$, $730,735,744,774,790$
VH800, 820, 850, 888, 893, 900, 930, 940, 942 ,
$974,1012,1040,1050$,
VH1060, 1070 VH1100,

1500, 1660, 1800, 2004. $120,1204,1440$, VH2151, 2308, 22042400, 2500, 2600, 2700, | VH2960, 2970, 3050, |
| :--- |
| VH3060 400, |

VH3060, 4000, 4008, 4010, 4012, 4015, 4015, $4020,4300,5020$,
VP $10,200,220$,
VP 10, 200, 220, 225, 245, VR821,925, 1032,
2949, 2959, 2957 2966, 2979, $V \times 120,25,30 \quad 140 \mathrm{p}$ PHILIPS PHiLPS
VR6460 VR6920
VR2020 VR2021 VR2020, VR2021, VR2022, VR2023 VR2024
VR6711
VR6711
VR6540
$\begin{array}{ll}\text { VR6540 } & \text { 40p } \\ \text { 140p } \\ \text { VV856. } 586\end{array}$
DV856, 586, VR702, 703, 6485, 6585, 6589, 140p VR 445, VR6442, VR6542, VR6643, VR6843, 140 VR6943, 445B9
DV464, 662, VR2220, 2300, 2324, 2330, 2334, $2340,2350,2414$, VR2480, 2485, 2486, 248 2490, 2498, 2840, 6462, 6463, 6464, 6560, R6660, 6860, 6861, 6862, 6863 N-1700, VR2870 495B6, VR3260, 6349, 6448, 6449, 6548, 140 6648
PRESSURE ROLLER ASSEMBIY PS403
140 p OV186, 190 VA211 2115 212 213 S03-40205 291, 292, 311, 312, 313, $22,5380,486$ 471,562, 582,571, 761 VR201, 202, VR203, 302, 303, 305, 6180, 6182, 6185, 6285, 6290,
VR6291, 6293, 6362, 6367, 6390, 6391, 6393. $6467,6468,6470,6561$ V67570, 6581VR6670, 6676, 6710, 6760, 6761 VR6975, 86BI, 63SB7, 68SB4, 71SB4, 71 SB 5 72SB8, 72SB8, 92SB31, 200V1, 200V2 20RW7, 210VI, 210V2, 2SB01, 2SB02, 2SB11, $3 \mathrm{SB} 2,30 \mathrm{VV} 2,31 \mathrm{DVI}, 31 \mathrm{DV} 2,31 \mathrm{DV} 33 \mathrm{SB02}$. ${ }^{3 S B 805} 3$
VR231, 232 \quad 280p 7229,723 , 332, 422, 4229, 512, 5229, 722, VR501 PR38 140p SANYO 2300, 2370,2500 ,
VHR2700, 3330 , MVR220
TC5000, 5150, 5300, 5350, 5400, 5500 14000
VTC 9300 , VTCM 10, 20, 11, 21, 30, $31,40,50$ VPR5800
VHF $3100.3300,3310,3400,3500,3700,3800$, VHRD500, $700 \quad 140 \mathrm{p}$ VTC 2000
VHR $120,130,14,141,143,14,150,151,153,140 p$ 154, 15, 16, 171, 194, 22 OVHR23, 235, 240, 244, 250, 251, 274, 27, 297, $310,330,335,350,390$, VHR $4100,4105,4150$ ' $4200,430,4300,4350,4400,474,4770,5080$. VHR5100, $5200,5300,5350,5600,5700,6850$. $7500,7520,7530,7540,7700,774,780$, OVHR7810, 8000, 8070, 8100, 8200, 8250 8500,8800 , VHRD $4400,4410,4500,4600$, 4610, 4710, 4890, 6700, VHRS700 140p VCR100
VHR120, 135, 150, 190, 4150, 4160, 4350, HR120, 135, 150, 190, 4150, 4160, 4350,
$5200,5240,5350,7200,7250,7260,7700$, 5200, 5240, 5350, 7200, 7250, 7260, 77
VHRD $4410,4610,4710,4890,5450$, VHRST00
PINCH ROLLER ASSEMBLY
VHR 3100,3200 ASSEMBLY VHR $3100,3200,3300,3310,3400,3700,3800$, NCH SHARP
C200, 381, 383, 384, 385, 386, 388, 390, 393, VC6200, 6300, $7300,7700,7750,7800,8300$, $838,9100,9300,9400$,
VC9500, 9600, 9700, $9800 \quad 140 \mathrm{p}$
VC $300,387,402,471,473,477,481,482,483$ 486, 488, 496, 500, 571, $573,581,58,583,584,585,8481$, VC5F3,
VC5W20E, VCA1031,

681, 682, 684, 685, 693,
VC699, 700, 772, 750, 779, 780, 781, 7810,
$\mathrm{VC699}, 700,772,750,779$,
$782,782 \mathrm{MK} 2,7822,783$,
VC785, 786, 787, 793, 800, 7810, 7822, VCT72,
VC6F3, VC6V3, VCA 100, 102, 104, 131, 140, VC6F3, VCEV3, VCA 100, 102, 104, 131, 140, $170,202,203,211,234,303,501,502$,
VCA 602,5011, VCD $801,802,851,852,881$ VCÁA02, 5011, VCD801, 802, 851, 852, 881,
$882, ~ V C M 73, ~ V C T 73, ~ V C T 72 . ~$ 882, VCM73, VCT73, VCT72.

VCB36

140 p
140 p
VCA10, 306, 60, 103, 105, 106, 111, 113, 131, 211, 244, 254, 33, 35, 36,

VCA37, 39, 40, 42, 454, 46, $52,53,54,55,57,58,505$,

$52,53,54,55,57,58,505$,
VCA60, $05,515,50,505,5$
VCA60, 605, $615,62,63,67,68,1031,11613$,
VCB 311,320, VCBS 97 VCO $805,806,810$,
VCH $80,81,865,910$, VCS 1000 , VCT 310 ,
VCT4 10,610 , VCT 1314, 5313 , VC790 140 p
VC780, 790, VCA 10, 103, 1031, 105, 106, 211, $244,254,255,30,35$,
VCA340, 43, 47, 50, 60, 605, 615, VCD806,
815, VCH $80,81,83,85$,
815, VCH80, 81, 83, 85,
VCH865, 87, 910, VCS 1000, VCT212, 310, 410,
510,610, VCT1314.
VCTS313
PINCH ROLLER ASSEMBLY
SAISHO
VHL 3, VR $1000,2000,2500,3200,3300,3500$. $3600,3650,3800$. VRS 4400, VRS5000 140p SAMSUNG

VIDEO SERVICE KITS

AMSTRAD	
VCR700	
Contents	
BELT SET. PINCH ROLLER. REEL IDLER. VIDEO LAMP	
Order Code: SK41	
FERGUSON \& JVC	
3V42/43	
HRD455/HRD725	
Contants	Economy Kit Contents
BELT SET, PINCH ROLLER,	belt Set, PINCH ROLLER
CLUTCH MECHANISM, TENSION	SUPPLY CLUTCH, TAKE UP
BAND	CLUTCH
Order Code: SK37 $\quad \mathbf{1 6 . 0 0}$	Order Code: SK38
3V58/59/64/65	
HRO170/180/210/230/300/320/370/400/430/530/700/750	
HRS5000	
Contents	
BELT SET, PINCH ROLLER, IDLER ARM	M, TENSION BAND
Order Code: SK44	
3V29/3V30	
HR7200/73007350	
Contants	
belt set, PINCH ROLLER, tension band, idler tyres	
Order Code: SK05	
3V75/36, 38/39/49	
HRD110/111/120/225	
Contents	
belt Set, PINCH ROLIER, tension band, idler traes	
Order Code: SK04	
3V31/3V42	
HR7600/7610/76507655	
Contents	Economy Kit Contents
BELT SET, TJU REEL TABLE	BELT SET, t/u reel table
TYRE. PINCH ROLIER. REEL	TYRE. PINCH ROLLER. REEL
IDLER. T/U CLUTCH. T/U IOLER.	IDLER TYRE. T/U IDLER TYRE
TENSION BAND VIDEO LAMP	T/UCLUTCH
Order Code: SK33 \quad 11.00	Order Code: SK34
3V35/36/38/39/49	
HRD 110/111/120/121/225	
Contents	Economy Kit Contents
BELT SET. T/U REEL TABLE	BELI SET. TJU REEL TABLE
TYRE. SUPPLY REEL TABLE	TYRE. SUPPLY REEL TABLE
TYRE. PINCHROLLER. T/U	TYRE. PINCH ROLLER T/U
CLUTCH. T/U IDLER. REEL	CLUTCH. T/U IDLER TYRE. REEL
IDLER TENSION BAND	IDLER TYRE
Order Code: SK35 f10.00	Ordar Code: Sk36
3V29/3V30	
HRD72007300/7350	
Contents	Economy Kit Contents
beet set t/u reel table	BEET SET. T/U REEL IDIER
TYRE. SUPPLY REEL TABLE	tYRE SUPPLY REEL TABLE
TYRE PINCH ROLLER REEL	TYRE PINCH ROLLER REEL
IDLER T/U CIUTCH. T/U IDLER.	IDLE TYRE. T/I IDEER TYRE.
TENSION BAND. VIDEO LAMP	T/U Clutich
Order Code: SK31 \quad ¢ 70.00	Order Code: SK32
3V44/45/48/53/54/55/57	
HRP50/HR0140/150/158/60	
HRO250/257/565/566/755	
Contents	Economy Kit Contents
BELI SET PINCH ROLLER	BELT SET. PINCH ROLIER
CLUTCH MECHANISM. TENSION	
BAND	
Order Code: SK39 $\quad \mathbf{E 1 5 . 0 0}$	Order Code: SK40
FISHER	
FVHP905/906/907/908/910/911/916/918	
Contents	Economy Kit Contents
BELT SET. PINCH ROLLER.	BELT SET. PINCH ROLLER.
IDLER GEAR IDLER UNIT.	IDLER TYRE
tension band	
Order Code: SK57 £13.00	Order Code: SK58
FVHP6 15/618/620/622/710/71/715/716/720/721/722/725/730:830/840	
Contents Economy Kit Contents	
BELT SET. PINCH ROLLER.	BELT SET. PINCH ROLLER.
IDIER GEAR IDLER UNIT.	IDLER TYRE
tension band	
Order Code: SK68 $\quad 10$	Order Code: Sk69

HITACHI
VTiN3
Contients
BET. PINCH ROLLER. TENSION BAND. IDLER TYRES

VT11NTis3
Contents
Contents
BELT SET. T/UP REEL TABLE
TYRE SUPPIY RELLTABE TYRE. SUPPLY REEL TABLE TYRE. PINCH ROLLER. FF/REW idLER. Clutch Plate. TENSION BAND 9.00

TT52/61/6

Contents
BEIT SET, PINCH ROLLER
FF/REW ARM. CLUTCH PLATE.
TENSION BAND
Order Code: SK49
VT $480 / 405 / 410 / 13 / 14 / 15 / 18 / 420 / 25 / 26 / 28 / 430 / 31 / 35 / 48 / 450 / 498$ i 510/520/25/26/530/35/36/540/545/46/48/570/75/576/580/85/88
Contents
IMING Belt pinch roller fffrew arm. clutch base TENSION BAND
f5.00
VT 100/110/111/113/115/118/120/125/128/130/135/138/145/150/ 175/200/225/250/255/258/260NVLL30
Contents
BELT SET. PI
BELT SET. PINCH ROLLER: FF/REW ARM. CLUTCH PLATE.
Order Code: SK51
PANASONIC
NV2000/NV2010NV7000/NV7200/NV7800
Contents \quad Economy Kit Contents BEL SET. PINCH ROLLER BELT SET. PINCH ROLLER $\begin{array}{lll}\text { IENSION BAND IDLER TYRES } & \text { TENSION BAND. } 10 \text { LELER TYRES } \\ \text { Order Code: SKO3 } & \text { e5.00 } \\ \text { Order Code: SKO2 }\end{array}$ Order Code: SK03
NV300/NV330/NV333/NV340:NV366
Contents
BELT SET. PINCH ROLLER. TENSION BAND. IDLER TYRE Order Code: SK01
NV2000/NV2010
Contents
BELT SET PINCH ROLLER. FF
IDLER. PLAY IDLER TENSION
IDLER. PLAY IDLER TE
BAND. VIDEO LAMP

Col
BELT SET, PINCH ROLIER,
1OLER UNITT. PLAY IOLER IOLER UNIT. PLAY IOL
TENSION BAND
Order Cade: SK15
ENSION BAND
rder Code: SK15
f7.00 Order Code: SK16
NVG7/NVG9/NVG19/NVG11/NVG12/NVG14/NVG15/NVG16/ NVG18/NVG30/NVG!20/NVG130/NVG400/NVH65 (PXVAC)/ ${ }_{\text {AG1810 (P/K) }}^{\text {Contants }}$
Contants BELT. PINCH ROLLER. IOLER
TENSION BAND

NV332

Contents Economy Kit Contants $\begin{array}{ll}\text { BELT SET, PINCH ROLLER, } & \text { BELT SET, PINCH ROLLER } \\ \text { PLAY IDLER. FF/REWIOLER. } & \text { PLAY IDLER TYRE. FF/REW }\end{array}$ Order Code: SK29 $\quad 12.00$ Order Code: SK30

NV230/250/260/280/430/458/460/470/650/810/890
AG1200PK/AG1500PK
$\begin{array}{ll}\text { Economy Kit Contents } \\ \text { Contents } \\ \text { BELT SET, PINCH ROLLER } & \text { BELT SET, PINCH ROLLER }\end{array}$
Order Code: SKZZ

Order Code: SK24

Ecanomy Kir Contents
BELT SET. PINCH ROLLER

Economy Nit Contamts BELT SET, PINLH ROLLEA

Economy Kit Contents LOADING BELT CAPSTAN BELT PINCH ROLLER IOLER. f6.00 Drder Code: SK28 IDLER TYRE. PULLEY TYRE
f6.00 Order Code: SK14

Economy Kit Contents BELT SET, PINCH RDLLER IDLER TYAE CUTCU TYRE

Order Code: SK12

belt set pinc ollea
53.25

SERVICE KIT \& UPGRADE FOR

 ONWA TV CHASSISFAILURE OF ZD401 (ZD40| ON THE 20/21 CHASSIS) IS NOT UNCOMMON.
THIS KIT HAS BEEN ASSEMBLED AS A REPAIR KIT FOR COMPONENT FAILURES AND AS AN UPGRADE FOR THE POWER SUPPLY.
THE KIT CONSISTS OF ALL THE REQUIRED COMPONENTS AND COMES COMPLETE WITH FULL INSTRUCTIONS AND CIRCLITT DIAGRAM.
THE KIT IS DESIGNED TO FIT THE FOLLOWING MAKES AND MODELS

* ALBA/BUSH	*AKAI
*GOODMANS	*IINARI
*.JVC	*MATSUI

ORDER CODE : ONWAKIT
PRICE: 1200p

MODE SWITCH

NV2000, 2010, 7000, 7200, 7800 (VS50048) NV230, 260, 430, 810, 870, 2300, 4300 (VSS0110)
NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778
(VSS0060
NVG21, 25, NVH65, NVD80 (VSS0175A)
$£ 3.50$
£2.25
£2. 10
£2.00

AMSTRAD ORIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2, 3, VCR4600, $4600 \mathrm{MKII}, 4700$, FUNAI VS2, VCR4600, 4800, 5200, 5600, 6600, VIP3000, 5000 Also fits: FIDE LITY, FUNAI, HINARI, PROLINE, SCHNEIDER, TOWADA, UNIVERSUM ORDER CODE: AH01 PRICE: 1350p AMSTRAD ORIGINAL NO: 153134 Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602, 8603. VCR8604, 8700, 8704, 8714, 8800, 90c5, 8244 Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FIDELITY, GOLDHAND, GRANADA, HINARI, MARQUANT, OMEGE, PROFEX, SCHNEIDER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG, TOWADA, UNIVERSUM ORDER CODE: AH02 PRICE: 1450p

AUDIO CONTROL HEADS

VIDEO TOOLS

VIDEO CLEANING STICKS

Price 17p each 15p each pack of 10pcs 3p each pack of 25 pcs Order Code: SP14
VIDEO MAINTENANCE TOOLS
Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL - RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS - RCA TYPE BACK TENSION TOOL - TENSION ADJUSTMENT TOOL FOR VARIOUS USES - VCR ADJUSTMENT TOOL

3 REVERSIBLE SCREWDRIVERS SPRING HOOK

VCR HEAD EXTRACTOR
Order code: TOOL 10, Price 2900p

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

SET OF 8 ALLEN KEYS

BACK UP BATTERIES

PHILIPS

Part Nos: $138-101138,138-103131.2 \mathrm{v} 90 \mathrm{mAH}$ Order Code: BB01
Part Nos: 138 - 10229, 2.4v 100 mAH
Order Code: BB02

Price: 70p
Price: 135 p

FERGUSON
Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Part Nos: 00E6-606-8001 2.4V 100mAH
Order Code: BB04
Price: 90p
Price: 150p

SATELLITE PSU REPAIR KITS

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	600 p
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	550 p
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	600 p
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	600 p
PACE D100/150	SATPSU6	650 p
CHURCHILL D2MAC	SATPSU7	650 p
PACE MSS100	SATPSU8	1100 p

SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062) ORDER CODE: TUNER01 PRICE: 1400 p + VAT
PACE PRD900/MSS 1000 2Ghz (221-21770112) ORDER CODE: TUNER02 PRICE: 1400 p + VAT

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	$1230 p$
FERGUSON SRD4	SATPSU11	650 p
ECHOSTAR SR5500	SATPSU12	$1600 p$
ECHOSTAR 6500/7700/8700	SATPSU13	$2750 p$
AMSTRAD SRD600	SATPSU14	$2600 p$
MIMTEC (Surensen)	SATPSU15	700 p
AMSTRAD SRD700, SR950, SRX100,301,501, 502, 1002, 2001, SRD2000 SAT250	SATPSU16	650 p

[^1]
SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite $R X$ powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signal: -10 DBM

ORDER CODE: TOOL22
PRICE: 8500 p

REPLACEMDNT TV SWITCHES

GRUNDIG
PART No: 29703, 29102

29703, 29102
USED ON:
C7500, C8500. C8502, C8712 . . ETC
Order Code: SW1
Price: 100 p

PHILIPS

USED ON:
K30, K35, K40, KT3, KT4
Order Code: SW13

USED ON:

KV1612, KB1612, KV1614, KV2052, V2056
KV2062, KV2067, KV2212 . . .ETC
Order Code: SW5
Price: 130p

USED ON:
KV1400, KV1440, KV2040, KV2060
(POWER SWITCH 26 mm)
Order Code: SW12
Price: 110p

	TIME IAG		QUICK BLOW	
CURRENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100 mA	FUSE36	75p	FUSE37	6010
160 mA	FUSE01	75p	FUSEI7	60 p
250 mA	FUSE02	75p	FUSE18	60 p
315 mA	FUSE03	75p	FUSE19	(6)p
400 mA	FUSE04	75p	FUSE20	60 p
500 mA	FUSE05	75p	FUSE21	60 p
630 mA	FUSE06	75p	FUSE22	60)p
800 mA	FUSE07	60p	FUSE23	60p
IA	FUSE08	60 p	FUSE24	60 p
1,25A	FUSE09	60p	FUSE25	60 p
1.6 A	FUSE10	60 p	FUSE26	60 p
2A	FUSEI!	50p	FUSE27	60 p
2.5A	FUSE1?	50p	FUSE28	60 p
3.15A	FUSE13	55p	FUSE29	50 p
4A	FUSEI4	55p	FUSE30	50p
5A	FUSE15	60 p	FUSE31	50p
6.3 A	FUSE16	${ }^{60} \mathrm{p}$	FUSE32	50 p

CERAMIC PLUG TOP

CURRENT RATING 3 A
5 A
13 A 5 A
13 A

ORDER CODE
FUSE33
USE 34
FUSE35

32 mm CERAMIC SLOW BLOW

CURRENT RATING:
ORDER CODE PRICE

CURRENT RATING	ORDER CODE	PRICE
8 A	FUSE44	185 p
10 A	FUSE45	185 p
15 A	FUSE46	185 p
20 A	FUSE47	210 p

NB. All fuses are made in the UK and fully meet BS4265 \& BS1362 safety standards and should not be compared with cheap imported types

20 mm CERAMIC TIME LAG

VOLTAGE TESTER
A terminal screwdriver incorporating continuity \& voltage with Euroslot ORDER CODE: TOOL11

ORDER CODE

FUSE38

FUSE39
FUSE40
FUSE41
FUSE42
FUSE43
PRICE
100 p
100 p
100 p
85 p
85 p
85 p

38mm CERAMIC TIME LAG
 CURRENT RATING
 ORDER CODE
 PRICE

** ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES **

SPRING HOOK

Spring Hook, to unlock springs in audio tape recorders \& VCRs ORDER CODE: TOOL20

PRICE: 265p

FAULT FINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1. Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price $£ 8.50$ - No VAT.

Video Recorders Edition 51997
Over 300 pages packed with more than 5500 faults for different brands

Price $£ 15.00$ - No VAT. Order Code: BOOK01

All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:
300p for $2-5$ cans \quad 500p for more than 5 cans

TELEVISION Edition 7

This new A5 size guide lists more than 9600 faults and to approx. 474 pages in size. Price: 1650 p only - no VAT ($+£ 2$ Postage) Order Code: BOOK02

Satellite Repair Manual Edition 4

A comprehensive guide to receiver reviewing, featuring stock faults and installation tips.
Price $£ 15.00$ Only No VAT Postage 100p Order Code: BOOK03

SOLDERING ACCESSORIES

DESCRIPTION	COOE PRICE	
ANTEX SOLDERING IRONS		
25 WATT 240 VAC (\times S25W 240 V)	S101	900p
15 WATT 240 VAC (XS15W 24VV)	S102	900p
25 WATT SPARE ELEMENT	S103	450p
15 WAT SPARE ELEMENT	S104	450p
SOLDERING STAND \& SPONGES		
SOLDERING STAND (MAOE BY ANTEX)	S108	350p
SPARE SPONGE	S109	55p
SOLDER		
18 SWG 500 GRAMMES	\$110	500p
20 SWG 500 GRAMMES	S111	650p
22 SWG 500 GRAMMES	S112	700p
OESOLOERING AIDS		
SOLDER MOP STANDARD GAUGE 1.2MM $\times 1.5 \mathrm{M}$		100 p
SOLDER MOP 1.2 MM X 10 M	S113	420p
oesoldering pump	S105	320 p
SPARE NOZZLE	S106	60 p

SEMICONDUCTOR COMPARISONS 1999 With over 650 pages listing more than 34,200 Semiconductors with suitable alternatives complete with descriptions and base information. Price: $\mathbf{1 9 0 0}$ p only - No VAT (+ £2 Postage). Order Code: BOOKO4
SEMICONDUCTOR COMPARISONS 1999
The new 1998 Jaeger Semiconductor comparison with 1100 pages packed with information on over 95,000 semiconductors in much greater detail plus marketing data on SMD devices and a separate generic table of all the type designations.
Price: $£ 47.00$ only - No VAT (+ E5 Postage). Order Code: B00K06

I.C. PROTECTORS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38, ICPN50, ICPN75

PRICE: 30p EACH ONLY

CAN'T FIND WHAT YOU'RE
LOOKING FOR?
RING US...AS THIS IS ONLY
A SELECTION OF THE
ITEMS THAT WE STOCK

CASSETTE DC MOTORS

6 V MOTOR

170p

9 V MOTOR
12V CW MOTOR
12 V CCW MOTOR
13.2V MOTOR

CASSETTE TAPE HEADS
$\begin{array}{lr}\text { MONO HEAD } & 90 \mathrm{p} \\ \text { STEREO HEAD } & 110 \mathrm{p} \\ \text { MINI HEAD } & 150 \mathrm{p}\end{array}$
AUTO REVERSE HEAD - 200p

	CD PI	
Models \& Doscription	Order Code	Price
AUWA		
\times X 007	KSSS151A	1900 p
CXL60, CXL66G, CXL80, CXN3100, CXN320, CXN3300, CXN360, CXN400, CXN430, CXN540, CXN550G, CXN990, CXN999, CXNV20, CXSL70, DXZ9100M, FDNE36, FDN6636, FDN939,		
LCX60, LCX66G, LCX70M, LCX80, M7400, M75, NSX 320, NSX 350 , NSX400, NSX 430 , NX5990, NSX992, NSX999, NSXD636, NSXD939, NSXV20, SXFN550.SXFN520, XC300,		
CXAP1, CXL7, CXL8G, CXLC50P, CXZ58, DXM740, DXM75, DXM76, DXM 77, LCX50, LCX7,		
	KSS2108	2000p
XP31, XP33, XP55, XP80G	KS220A	2500p
XP6.XP7	KSS331A	34000
AKAI		
C073, $\mathrm{DC93}$	KSS151A	1900p
CD25, CO26, CD27, C032, CD36, CD37, CO52, C055, CD55, CD650, CD670, CD69, CD750, CD79,		
CDM480, CDM 600, COM670, CDEM 770, CDM 959, MX550, MX577, MX650, MX670, MX750, MX950	KSS210A	1300p
DENON		
DCD150011, DCD1520, OCDE3520	KSS151A	1900 p
OCD1400, DCD600, OCD800	KS152A	1600p
	KSS210A	1300 P
OCD 1015, DCD 1290, DCD2060, DCD2060G, DCO315, DCD480, DCD580, DCD615, DCD715,OCO825, OCO990, DCO895, ON200F		
	KSS240A	2000p
CD952A, CD952AJ, CD952LJ, CD952SJ, FFH101KL, FFH 101WL, FFH222AL, FFH272L.		
FFH333L, FFH373K, FJ606, FR606L	KSS210A	1300p
CO320AL, CD630SA, FFH212AL.FFH212E	KSS2108	${ }^{2000}{ }^{\text {p }}$
Grundig		
CD350, CO435	HOPM3	2150p
CCD300, CD101MCD904, MC10, NEW OPLEANS CD	KSS210A	${ }^{1300}{ }^{\text {p }}$
KRCD 100 , RR1900CD, RR3100CO, RR4000CD, RR6110CD, RR700CD	KSS2108	2000p
COP60, CDP90	KSS220A	2500 p
CDP65	KSS331A	3400 p
CD905	OPTIMA5	1600p
HITACHI		
DAW560	HOPM3	2150p
FX-10	KSS210A	1300p
AXC10	KSS210B	2000 p
J.V.C.		
1990-1992, LATE 1987-1988 - XLE300BK, XLE31BK, XLE51BK, XLE900BK, XLME91BK, XLV101BK, 	OPTIMA3	4000p
CDRADIO CASSETTE, MIN SYSTEMS - MODELS $1990-1992$	OPTIMAAS	5000p
CA-C33, CA-MX30BK, CA-MX33BK, UX-A5, UX-A6, XL-M309, XL-M4038K, XL-M408, XL-M409, XL-M504BK, XL-M505TN, XL-M508, XL-M509, XL-M705TN XL-V131BK XL-V151TN, XL-V221BK,		
1994 ONWARDS - CAE 488 K, CAMCG7, CAMX 99 , CAS20BK, CAS $30 B K$, VAS50, CAS60RBK, MXS20, MXS30, MXS60, PCX105, PCX130, PCX95, RCX230, RCX320, RCX520, RCX620. ACX720, UXA4, UXA5, UXA55, UXC7, UXT1, UXT3, XLF915, XLF 116, XLF2 15, XLF216, XLMC100M, XLMXG7, XLMXG9, XIV163TN, XLV164BK, XIV174, XLV263TN, XLV2648K, XLV274BK, XLZ463TN, XL2464BK, XL7574, XLZ674, XTMXG7, XTMXG9, XTS60		
KENWOOD		
DP47, DP6605G, DP8020, DP87, L1000	KSS152A	16000
DP1030, DP 15 10, DP2010, DP2030, DP3010, DP3030, DP3050, DP4030, DP491, DP5010, DP5030, DP5040, DP520, DP7030, DP7040, DP7050, DP730, DP920, DP930, DP950, DPM650,0PM6630 DPM7730, DPM850, DPM991, DX6620, M225, M25, M450, M850, PD3030, PDM991, RD $\times 25$.		
RXDC3, RXDC3L, U0202, U0302	KSS210A	$1300 p$
OP		
U0502, UD70, UD701, U090, XE5	KSS240A	2000 ${ }^{\text {e }}$
DPC321, DPC521, DPC531, DPC631k, DPC721, DPC731	KSS331A	34009
DP1060, DP2060. PAAFT No: RCTRH8136AFZZ	RH8136A	4500p
PANASONIC SLP177A, SLP202A, SLP212A, SLP222A, SLP277A, SLP377A, SLPA77AK, SLP477A, SLPG100A, SLPG200A, SLPG400A, SLPG500AK, SLPG500AS, SLPJ24A, SLPJ26A,		
SLPJ27A, SLPJ28A, SLPJ325A, SLPJ325A, SLPJ37A, SLPJ38A, SLPJ46A	691-30209	5500p

PIONEER

PDM400, PDM4 10, PDM 500 , PDM510, PDM600, PDM610, PDM700, PDM 710 , PDM730,

PO284M, PO2970M, PXA1349, S125CDT, S135CDT, S303CDM, S303CDT, S505DM, S505DT, S707DM.

POT303, POT403, POT503, POX940M, POX950M, PO2560T, POZ22T, PDZ73T, POZ81M,
POZ82M, POZ83M, POZ260M, XOZ53T, XDZ54T, XOZ55T, XOZ62, XOZ62M, XOZ630, XRZ82
 SANYO
DCFS3,
 DCX1000MD, DCX1003, DCX900MD, DCX903, DCX915
DCD10, DCD11U, OCD20, DCD30, DCD30AT, DCD6, DCD8U, DCMS1, DCX110, DCX120,
DCX210, DCX220, DCX993, DCX994, MCDMS40L, MCDMS501, MCDMS6601. MCDZIL. DCX210. DCX220, DCX993, DCX994. MCDMS40L, MCDMS50L, MCDMS660L. MCDZ1L. MCOZ2L MCD Z3L. PART N No. 6142391303 \qquad 614239
645005

DX-460, DX-461, DX-650, DX-660, DX-999, DX-A3, DX-N45, DX-R554, DX-R7, DX-R75. DX-R750,
DX-R77. DX-R770, DX-R820, DX-R840, DX-Z100, DX-Z1000, DX-Z 1500 , GFCD55, OT-30CD, OT-33CD
OT-350CD, OT-37CD, OT-38CD, OT-CD20, OT-CD33, RS95, SC. 77 CD. SC-99CD. SC-RS95, SG-A1,

$\xrightarrow{\text { PARIN }}$

TECHNICS
SLP200, SLP230, SLP250, SLP333, SLP555, SLP777, SLP999, SLPA10, SLPC20, SLPJ25
SLPJ45, SLPS700, SLPS900
REMOTE CONTROLS

Description	Code	Price									
AKAI			A512120/230	RC900	650 p	PANASONIC			SONY		
RC.V10A	RC876	650 p	A514790	RC901	650 p	EUR51200	RC200	650 p	RM604, RM605, RM606	RC140	650 p
RCV 37 B	RC891	650p	A5088470	RC902	650p	TC2200	RC204	650p	32 CHANNEL	RC140	650 p
V25A	RC896	650p	A518612	RC903	650p	VS00357/NV730	RC202	650p	RM613	RC141	650 p
decca			SCL002	RC904	650p	TN01621	RC203	650 p	RM632, RM636	RC160	600 p
RC70	RC894	650 p	${ }^{\text {C2096 }}$	RC905	650 p	PHLLPS			TATUNG		60 p
FISHER			A511940 655602 H	RC906 RC1920	650 p 650 p	RC5002,5154 KT3 NON TEXT	RC134	650 p	FXA	RC877	650 p
RCsosb	RC879	650p		RC1920	650p	KT3 NON TEXT 69117032	$\mathrm{RC135}$	650 p 650 p	RC70	RC883	650 p
GRANADA			IFB13, 14, 15	RC143		69117194	RC180	650p	FX70 FASTTEXT	RC894	650 p
UNIVERSAL TEXT	RC309	650p	FS4	RC148	650 p 650 p	RC5991-UNIV	RC300	550p	TELEFUNKEN		
MK4 TEXT, 70155G, 70115G, 70133G	RC880	650p	RG305	RC305	6500	RC38	RC301	650p	FB632	RC632S	650p
95288 E	RC882	650p	RG306	RC306	650 p	KT3 TEXT	RC5301	650p	FB639	RC639	650 p
944900	RC884	650p	FS9/1-10/1	RC307	650 p	RC5352	RC5352	650 p	THORN/FERGUSON		
GRUNDIG			VS5 RUK	RC308	650 p	RC5375	RC5375	${ }^{650}$	3V35-42	RC342	600p
TP160E	RC107	650p	VS4-1	RC308	650 p	RC5 STANDARD RC5903	RC300	550p 650 p	$3 \mathrm{~V} 31-32$	RC344	650 p
TP200, TP300	RC380	650p	MULTICONTROL (17C20)	RC311	650 p	RC5903	RC5903	650p	3V57-58	RC628	650 p
TP400	RC401	${ }^{600} \mathrm{p}$	LDEWE			SALORA			TX10 TEXT	RC732	575
TP590-600	RC600 RC610	${ }^{650} \mathrm{p}$	DC11	RC146	650p	${ }_{86173}$	$\begin{aligned} & \text { RC190 } \\ & \text { RC882 } \end{aligned}$	650p 650 p	TX10 STEREO TEXT	RC738	575 p
TP390, TP610	RC610 RC612	${ }^{650 p}$	MATSUI			SANYO			TC9-90-100	RC740	600 p
TP630, TP650	RC650	650 p	010270601	RC889	650p	RC218, RC222, RC228, RC238	RC140	650p	TX100 FAS TTEXT	RC789	650 p
TP666	RC660	650p	VX770	RC892	650p	JXGE	RC878	650 p	TX 100 ST, FASTIEXT	RC789	650p
TP661	RC661	650p	NOKIA			VHR2300	RC8890	650 p 650 p	PROFESSIONAL	RC790	650p
HITACHI			SATELLITE	RC550	650p	RC628	RC865	650 p	TOSHIBA		
CLE800-CLE830	RC140	650p	ORION			SHARP			CT937	RC950	650p
A617402/655602	RC1920	650p	RC53	RC892	650p	G0121CESA, 123CESA, 204, 251	RC140	650p	CT9117	RC951	650p

WE STOCK REMOTE CONTROLS FOR OVER 5,000 DIFFERENT MODELS RING FOR MODELS NOT LISTED ABOVE ON 01819002329

2 way Preprogrammed Universal Remote

- Replaces up to 2 remotes (TV/Satellite)
- Simple key arrangement

Order Code: 2 Way
Order Code: 2 WAY
PRICE: 925p

[^2]REPLACEMENT LINE OUTPUT TRANSFORMERS

Part No.	Code	Price	HITACHI			45150119	LOT169	1500p	TLF 14520 F	LOT40	1500p	094010200.7	LOT59	1400p	1-439-303.31	L0T94	1300p
AKAI			2424593	LOT44	1050p	45150124	LOT137	1800p	TLF 14521 F	L0T39	1850p	094-0102 1/0.6	LOT59	1400p	1-439-303-32	LOT94	300p
45150344	10756	1850p	2432101	L079	1600p	45150146	LOT136	1800p	TLF 14567 F	LOT39	1850p	094.0102710 .0	LOT186	1825p	1-439-311-00	LOT95	1550p
101-214017-03	LOT278	1300p	2432461	LOT169	1500p	45150301	LOT169	1500p	TLF 14568 F	LOT40	1500p	$094.01038 \% .7$	LOT245	1900p	1-439-311-11	LOT95	1550p
101-220005-03A	L07\% 2	1600p	2432619	LOT80	1800p	45950302	LOT180	1550p	TLF 14584 F	LOT41	1700p	094-01052/0.8	LOT 186	1825p	1-439-311-13	LOT95	1550p
D 050/37	LOT27	1450p	2432651	LOT80	1800p	45150304	LOT169	1500p	TLF 14586 F	LOT42	1700p	094-01057/1.1	LOT285	1450p	1-439-311-31	LOT95	1550p
D 053/37	LOT207	1550p	2432761	LOT169	1500p	45150305	LOT180	1550p	TLF 15606F	LOT256	2000p	610.018 .6620	LOT189	1650p	1-439-311-32	LOT95	1550p
D 056/37	LOT56	1650p	2432981	LOT37	1200p	45150306	LOT168	1500p	TLF 70012	1078	1500p	610.018 .6637	LOT215	1800p	1-439-331-22	LOT96	1550p
D059/37	LOT200	1400p	2432981	LOT37	1200p	45150308	LOT22	1250p	TLF 700:2 F	1078	1500p	SHARP			1-439-331-41	LOT98	1550p
D 069/37	LOT56	1650p	2432982	LOT37	1200p	45150309	LOT178	1500p	TLF 70012A	1078	1500p	RTRNF 1220 CEEZ	LOT39	1850p	1-439.332-00	LOT99	1600p
FCM 2015 AL	LOT7	1500p	2433011	LOT17	1600p	45150310	LOT168	1500p	TLF 70018	LOT274	1550p	RTRNF 1783 BMZ	LOT202	1800p	1-439-332-11	LOT99	1600p
FERGUSON			2433012	LOT171	1800p	45150313	LOT30	1250p	TLF 70018 F	LOT274	1550p	RTRNF 1783 CEZZ	LOT202	1800p	1-439-332-21	LOT99	1600p
00 D-3-508-001	LOT38	1250p	2433014	LOT171	1600p	45150314	LOT174	1400p	TLF 70161	LOT278	1300p	RTRNF 1786 BMZZ	LOT211	1850p	1-439-332-41	LOT100	1500p
00 D-3-508-002	L0T38	1250p	2433212	LOT168	1500p	45150315	LOT22	1250p	TLF 70162	LOT2	1600p	RTRNF 1786 CEZZ	LOT21	1850p	1-439-332-4	LOT101	1450p
$00 \mathrm{D}-3 \cdot 508-003$	LOT276	1400p	2433291 2433301	LOT172 LOT246	1350p 1600 p	45150318 45150319	LOT192	1550p	TLF 70162A	LOT72	1600p	RTRNF 2000 BMEZ	LOT307	1600p	- $\begin{aligned} & 1.439-332-52 \\ & 1.439-333-00\end{aligned}$	LOT100 LOT270	1500p
00 D-3-515-001 PL1	LOT276	1400p	2433301 243441	LOT188	1900p	45150320	LOT190	1650p	TLF 70162 G	L072	1600p	RTRNF 2002 CEZZ	LOT307	1450p	1.439-333-11	L0T270	1550p
00 D-4-208-001	1077	1600p	2433442	LOT191	1800p	45150322	LOT196	1550p	TLF 770018	LOT274	1550p	RTRNF 2003 BMZZ	LOT308	1350p	1.439-333-12	LOT270	1550p
$00 \mathrm{D} .4-208-002$ $00 \mathrm{D}-4.235-002$	1079	1600p	2433451	LOT81	1350p	45150324	LOT194	1550p	PHIUPS			RTRNF 2004 BMZ	Lотз07	1450p	1-439-363-11	LOT268	1400p
$000 \mathrm{D}-4.235-235-002 \mathrm{HTI}$	LOT240	1250p	2433452	LOT82	1250p	45150325	LOT22	1250p	482214010142	LOT142	1800p	RTRNF 2005 BMZZ	Lотз08	1350p	1-439-363-21	LOT268	1400 p
$00 \mathrm{D}-4-235-002 \mathrm{HTI}$	LOT81	$\begin{aligned} & \text { 1350p } \\ & \text { 1350p } \end{aligned}$	2433453	10782	1250p	45150326	LOT198	1550p	4822140101145	LOT134	1450p	RTRNF 2006 BMZZ	LOT308	1350p	1-439-387-11	LOT311	1450p
$00 \mathrm{D}-4-260-004 \mathrm{HTI}$	L0T38	1250p	2433455	LOT234	1800p	45150328	LOT27	1450p	482214010146	LOT112	1700p	RTRNF 2007 BMZZ	Lотз07	1450p	1-439-387-21	LOT311	145cp
$00 \mathrm{H}-0.701-2400$	LOT182	1450p	2433521	$\underline{L T 85}$	1600p	45150329	LOT193	1550p	482214010151	LOT102	1700p	RTRNF 2023 BMZ			1-439-416-1	LOT255	1600p
06 D-3.083-001	10782	1250p	2433581	LOT22	1250p	45150330	LOT179	1350p	482214010	LOT103		So			1-439-416-12	LOT25	1600p
06 D-3-083-002	LOT82	1250p	1	10783	1400p	45150331	LOT207	1550p	482214010171	LOT114	11500p	1.439-243-00	LOT91	1500p	1-439-416-21	LOT255	1800p
06 D-3-084-001	LOT23	1400p	2433751	L0101	1300p	45150334	${ }_{\text {LOT193 }}$	1550p	482214010194	LOT105	1500p	${ }^{1-439-243-11}$	LOT91	1600p	1-439-416-23	LOT255	1800p
$06 \mathrm{D}-3-087-001$	LOT23	1400p	${ }_{2433752}$	LOT250	1350p	45150338	LOT27	1450p	482214010198	LOT116	1600p	1-439-243-12	LOT91	1600p	1-439-416-41	LOT255	1600p
06 D.3-088-001	10784	1450p	2433891	LOT23	1400p	45150340	LOT200	1400p	482214010201	LOT104	1500p	1-439-243-31	LOT229	1700p	439-416-51	LOT255	1600p
06 D-3-093-001	LOT204	1600p	2433892	LOT84	1450p	45150341	LOT56	1650p	482214010236	LOT118	1550p	1-439-243-32	LOT229	1700p	21	LOT271	p
06 D-3.095-001	LOT87	1000p	2433893	LOT23	1400p	45150343	LOT196	1550p	482214010246	LOT111	1500p	1-439-243-41	LOT229	1700p	BA	LOT275	p
06 D-3-095-002	LOT87	1000p	2433952	L0т33	1000p	45150344	LOT56	1650p	482214010247	LOT105	1500p	1-439-244-00	LOT48	1600p	A		
06 D-333-512-001	LOT204	1600p	2434002	LOT200	1400p	45150346	LOT201	1550p	482214010254	LOT107	1450p	1-439-244-11	LOT48	1800p	37010	LOT131	1450p
FETX 10090 DEG	LOT04	1500p	2434141	Lот33	1000p	45150350	LOT27	1450p	482214010263	LOT117	1550p	1-439-244-21	LOT48	1600p	37011	LOT131	
FETX 90 WHITE	L0T06	1850p	2434141	Lотзз	1000p	45150351	LOT27	1450p	482214010269	LOT210	1350p	1-439-244-31	10748	1600p	37012 37013	LOT131	
FETX 100100 DEG	LOT34	1500p	2434274	LOT44	1050p	45150375	10756	1650p	482214010271	LOT208	1650p	1-439-256-00	LOT45	1650p	37013 37014	LOT131	
GRUNDIG			2434274	LOT44	1050p	45161601	LOT22	1250p	482214010274	LOT123	1450p	1-439-256-11	LOT45	1650p	370	LOT131 LOT131	1450p
29201.008.01	LOT153	1750p	2434453	L0T86	1600p	MITSUBISHI			482214010282	LOT 122	1300p	1-439-256-21	LOT45	1650p	37015 37016	LOT131 LOT131	1450p
29201.014 .01	LOT140	1500p	2434455	LOT234	1600p	731003	LOT51	1550p	482214010283	LOT 104	1500p	1-439-256-22	LOT45	1650p	37016 37017	LOT131 LOT131	1450p
29201.015 .01	LOT149	1400p	2434593	LOT44	1050p	276-16399	LOT49	1500p	482214010294	LOT125	2150p	1-439-276-21	LOT230	1700p	37017 37018	LOT131	1450p
${ }_{2} 29201.017 .01$	LOT60	1250p	2435062	LOT296	950 p	334 B 07803	LOT50	1450p	488214010306	LOT110	1200p	$1-439 \cdot 280.00$ $1-439-280-13$	LOT92	1600p	37018 37019	LOT131	1450p
29201.018 .01 29201.018 .02	LOT163	1300p	2435121	LOT87	1000p	334 B 078030	LOT50	1450p	482214010325 482214010326	LOT132	1500p 1300p	- $\begin{aligned} & 1-439-280-13 \\ & 1-439-286-00\end{aligned}$	LOT92	1800 p 1300 p	1810951	LOT55	1400p
29201.018 .02 29201.019 .01	Lot61	1700p 1250p	2435131 2435141	LOT251 LOT282	1450p 1300p	334 334 3308104 108108	LOT74 LOT295	1600p 1600p	482214010326 482214010328	LOT 122	1300p	1-439-286-00	LOT46	1300p 1300p	2433751	LOTO1	1300p
29201.019.02	LOT62	1250p	2435301	L0T88	1450p	334 P 18506	L0T51	1550p	482214010349	LOT 106	1250p	1-439-286-12	LOT46	1300p	2433752	LOT250	1350p
29201.022.01	LOT63	1700p	2435671	L0189	1600p	334 P 8507	L0T75	1500p	482214010353	LOT284	1400p	1-439-286-13	LOT46	1300p	23236023	LOT281	1300p
29201.022.02	LOT166	1600p	2436201	LOT109	1200p	5908-05008A-AA	L0T0	1500p	482214010356	LOT284	1400p	1-439-286-21	LOT46	1300p	23236052	LOT131	1450p
29201.022.03	LOT165	1350p	2436202	LOT109	1200p	D 108/37	LOT49	1500p	482214010367	LOT286	1400p	1-439-288-00	LOT228	1750p	23236098	LO	1400p
29201.022.04	LOT165	1350p	2432101-2	LOT9	1600p	DCF 1577	L0T273	1700p	482214010369	LOT109	1200p	1-439-288-12	LOT228	1750p	23236198	LOT288	1400p
29201.022.04A	LOT165	1350p	2433451 H	LOT81	1350p	DCF2077A	LOT272	1300p	482214010381	LOT128	1300p	1-439-289-00	LOT47	1400p	23236255	LOT289	1500p
29201.024.01	LOT65	1500p	2433453H	10782	1250p	KFS 60226 B	LOT279	1550p	482214010384	LOT127	1550p	1-439-289-21	LOT47	1400p	23236424	LOT129	1400p
29201.024 .04	LOT164	1400p	2433891H	LOT23	1400p	MSH-1FBW08	1078	1500p	482214010395	LOT116	1600p	1-439-289.22	LOT47	1400p	23236425	LOT288	1400p
hinari			2433892G	L0184	1450p	NIKKAI			482214010406	LOT3	1150p	1-439-289-31	LOT47	1400p	23236428	LOT289	1500p
154138 K	LOT24	1500p	I.r.T.			BABY10	LOT67	1450p	482214010421	LOT109	1200p	1-439-294-00	LOT93	1450p	3122113837011	LOT131	1450p
59139141	LOT24	1500p	45150108	LOT113	1400p	ORION			482214017078	LOT103	1250p	1-439-294-11	LOT93	1450p	15056 D	101131	1450p
5114184 ;	LOT24	1500p	45150115	Loti36	1600p	3714002	LOT02	1500p	SANYO			1-439-294-21	LOT269	1550p	TFB 4039 AD	107293	1550p
CF 44 A	LOT24	1500p	45150116	LOT139	1675p	PANASONIC			094-00020/0.9	LOT113	1400p	1-439-303-00	LOT94	1300p	TFB 4048 AD	LOT281	1300p
HM51.1411834.1	LOT24	1500p	45150117	LOT139	1675p	TLF 14512 F	LOT39	1850p	094.00035/0.2	LOT162	1350p	1-439-303-11	LOT94	1300p	TFB 4048 BD	LOT281	1300p

 NIKKAI BABY 10 REGULATOR ORDER CODE : BABY 10 PRICE: $£ 10.00$

Universal Pre-Programmed
 Brand Replacement Remote Controls

- Brand for Brand Replacement
- Codeless setup
- Teletext and Fastext
- Pre-programmed for the latest models
- Replaces broken and lost remotes
- CE Approved

BRAND	CODE		
PRANAND	CODE		
Panasonic	RCUN101	NRakia	RCUN106
Sony	RCUN102	Samsung	RCUN107
Philips	RCUN103	Toshiba	RCUN108
Hitachi	RCUNI04	Ferguson	RCUN109
Mitsubishi	RCUNI05	Grundig	RCUN110

Normal Price: $£ \approx .5 f+$ VAT Special Offer: $£ 7.50$ + VAT NEW ARRIVAL!!!!
UNIVERSAL REPLACEMENT SATELLITE REMOTE CONTROL This unique remote control covers 11 brands including Pace MSS series, Nokia, Echostar

SPECIAL OFFERS!!			
CD PICK UPS			
KSS 152A	WAS	NOW	
KSS 210A	$£ 18.00$	$£ 13.00$	
KSS 210B	$£ 20.00$	$£ 13.00$	
KSS 240A	$£ 25.00$	$£ 20.00$	
KSS 213B	$£ 19.00$	$£ 15.00$	
KSS 213C	$£ 19.00$	$£ 15.00$	
OPTIMA 6S	$£ 20.00$	$£ 16.00$	
OPTIMA 5	$£ 30.00$	$£ 16.00$	
RCTRH 8151	$£ 44.00$	$£ 20.00$	
RCTRH 8112	$£ 57.00$	$£ 20.00$	

Order Code: RCUN117 Price: $\mathbf{£ 7 . 5 0}+$ VAT

$\star \star \star$ PLEASE NOTE THAT ALL THE ABOVE CAPACITOR PRICES ARE FOR A PACKET OF 5 (FIVE) $\star \star \star$

[^3]

SUITABLE FOR MITSUBISHI 29" \& 33" TVs

To replace the TDA8178S fitted to the following
MITSUBISHI 29" \& 33" TV's:
CT29AS1, CT29B4, CT29A4, CT29A6, СT29B2, CT29B3 CT33B3
It comes with clear and concise instruction on how to carry out the work.
ORDER CODE: MITSKIT2
PRICE: 1500p

POWER SUPPLY \& UPGRADE KIT FOR SAMSUNG

Suitable for Samsung Winner 1 Chassis

(VIK310, VIK350, V1375, V1395)

This kit contains the components required to upgrade the power supply for all the above mentioned models. It comes with clear and concise instructions on how to carry out the work ORDER CODE: SAMSUNGKIT PRICE: 1600p

GENUINE PHOENIX KITS SUPPLIED

Grandata Ltd

 distributor of electronic components
COMING SOON !!!

PLAYSTATION ${ }^{[10}$ COMPATIBLE CD MECHANISM

KSM 440ACM - For model AP1120
(PUB Laser - Earlier Models)
Order Code: KSM440ACM Price: $£ 22.00+$ VAT *Available end of Jan 99

KSM 440AAM - For model AP1115
(PU18 Laser - Later Models)
Order Code: KSM440AAM Price: t.b.a. *Available end of Feb 99

PINCH ROLLER ASSEMBLIES:

PRESSURE ROLLER ASSEMBLY PS403-40205 SUITABLE FOR B \& O, DECCA, GEC, GRANADA, ITT, PHILIPS, PIONEER, PYE, TOSHIBA ORDER CODE: PR232 PRICE: 280p

PINCH ROLLER ASSEMBLY X37277701
SUITABLE FOR: SONY
SLV215, SLV216EE, SLV275, SLV282, SLV315,

SLV325 etc
ORDER CODE: PR207 PRICE: 550p

PINCH ROLLER ASSEMBLY 948D020010
SUITABLE FOR: AIWA MITSUBISHI

ORDER CODE: PR205 PRICE: 750p

PINCH ROLLER ASSEMBLY VXL 1858
SUITABLE FOR: BLAUPUNKT, GRUNDIG, PANASONIC, PHILIPS, PIONEER, SIEMENS, SONY

ORDER CODE: PR219 PRICE: 300p

PREPROGRAMMED TO COVER ALL MAJOR BRANDS OF TVS, VIDEOS, SATELLITES AND CD PLAYERS.

REPLACES UPTO 8 DIFFERENT REMOTE CONTROLS.

WITH TELETEXT \& FASTEXT FUNCTIONS.

 $\mathrm{£} 10+$ vat

CM3900A DIGITAL MULTMETER

FEATURES:

LARGE LCD DISPLAY HEIGHT 18 mm MAXIMUM READING 1999 + UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 min) DIODE TEST FUNCTION all ranges overlood protected SUPPLIED WITH TEST PROBES DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ ACCURACY * 0.5\%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ DC CURRENT A: $200 \mu \mathrm{~A} 20 \mathrm{~mA} / 200 \mathrm{~mA} 2 \mathrm{~A} / 20 \mathrm{~A}$ AC CURRENT A: $200 \mu \mathrm{~A} / 20 \mathrm{~mA} / 200 \mathrm{~mA} 2 \mathrm{~A} / 20 \mathrm{~A}$ RESISTANCE $32: 200 \Omega 2 / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{M} \Omega / 20 \mathrm{Ms} 2$ ORDER CODE: CM3900A PRICE: 2900p

CM3920 DIGITALMETER WITH TEMPERATURE MEASUREMENT

FEATURES:
TEMPERATURE MEASUREMENT
DIODE \& TRANSISTOR HFE TEST LARGE LCD DISPLAY HEIGHT 18 mm MAXIMUM READING 1999 + UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION FUNCTION AND RANGE OPERATION
AUTO POWER OFF (APPROX 15 min) AUTO POWER OFF (APP
DIODE TEST FUNCTION
DIODE TEST FUNCTION
ALL RANGES OVERLOAD PROTECTED ALL RANGES OVERLOAD PROT
SUPPLIED WITH TEST PROBES SUPPLIED WITH TEST PROBES
DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 1000 \mathrm{~V}$ DC VOLTAGE: 200 m
ACCURACY * 0.5%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ - DC CURRRENT A; 2 mA 20 mA 200 mA 20 A AC CURRENT A: 200 mA 20 A
RESISTANCE $5: 200 \mathrm{~s} 2 / 2 \mathrm{ks} / 200 \mathrm{ks} 2 / 2 \mathrm{M} \Omega / 20 \mathrm{M} \Omega$ 200Ms 2
CAPACITANCE: $2 \mathrm{nF} / 20 \mathrm{nF} / 200 \mathrm{nF} / 2^{*} \mathrm{~F} / 20^{\circ} \mathrm{F}$

ORDER CODE: CM3920
PRICE: 4100p

[^4]
HELP WANTED

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature

Wanted: Teletext panel for the

 Beko 19321N TV series (AT-3 Siesta chassis). Need not be working but must be a complete PCB, preferably with plastic caddy and ribbon cable. Julian Salt. Phone 0958559 970.Wanted: Audio/control head and circuit diagram for the Fisher FVHP716 VCR. Reg Oliver, 18B Rostrevor Road, Fulham, London SW6 5AD. 01717315673.
Wanted: Power supply circuit diagram (photocopy OK) for the Panasonic NVJ30B VCR, with IC1 102 type STK5392. Also need a power supply (switching unit) for the Ferguson FV33H VCR. Arthur Tomkinson, 10 Lodge Court, Station Grove, Wembley, Middx HA0 4AP. 01819035574.

Wanted: Scan coils for the Philips KT3 chassis. Robert J. Evans, Cemlyn, Nefyn, Pwllheli, Gwynedd LL53 6EG. 01758720748.
Wanted: LOPT type TBC70III for the Rigonda Fiesta 5.5 in . mono portable. L. Symons, 14 Maidenwell Road, Plymouth, Devon PL7 IRB. 01752343074.

For disposal: Free low-band U-matics. Two JVCs with edit controller, one Sony with a few tapes. Probably working. Can deliver within a reasonable distance of Epsom. K.G. Palmer, 127 Ewell Bypass, Ewell, Surrey KT17 2PX. 0181 3937442. Wanted: Various parts for the reconstruction of a vandalised B\&O 3802 TV set (3500 chassis): signals panels for left-hand 'door', 22 in . tube (Mullard A56-510X?) and an ultrasonic RC handset. Also require Y-gain knob for the Tektronix T912 scope. David Barfoot, 65 Nortoft Road, Bournemouth BH8 8QB. 01202291698 , fax 01202467327. E-mail david@einstein.demon.co.uk Wanted: Service manuals for the Panasonic NV688 and Hitachi VT8300 VCRs, and for the Tatung 165 and Hitachi NP84 II TV chassis.

Would copy and return by recorded delivery, or buy if inexpensive. Also Television back issues from 197585. Nicholas Arnold, 5 Vidler's Court, The Strand, Rye, E. Sussex TN31 7DB. 01797225747. Wanted: Philips V2000 series VCRs, any model, preferably working but anything considered. Also N1500 or N1700 VCRs, dead or alive. Graham Bisset, 68 Ashwood Crescent, Bridge of Don, Aberdeen AB22 8XF. 01224703312.
Wanted: Connector WP01 with attached ribbon cable (on head preamplifier PCB), or complete PCB, for the Akai VS765EK. Also a capstan motor and BAA6871S drive/servo IC for the Panasonic NVHD90 (K mechanism). Kenneth G. Cargill, 1 Stradowen Drive, Strathfoyle, Londonderry BT47 6XN. 01504861268.
Wanted: Replacement or working original remote control unit (ultrasonic) for the Philips Model 674 (G11 chassis with teletext). V. Browning, 142 White Dirt Lane, Catherington, Portsmouth, Hants PO8 0TT. 01705594952.
Wanted: Scrap Sony SLV315UB
VCR for spares, in particular the head motor. B.A. Wheler, BAW Electronic Services, 17 Highbury Terrace, Halstead, Essex CO9 2FB. 01787474820.

Wanted: Any service information (photocopy service manual/instruction sheet etc.) for the Orion SP/LP D 1100 VCR. D. Lee, 16 Devonshire Place, Claughton, Birkenhead, Merseyside L43 1TUl6.
Wanted: Circuit diagram/servicing information for the Philips D2-MAC decoder Model CTU900. A.
Edwards, 20 Mulgrave Road, Whitby, N. Yorks YO21 3JS. 01947 603729.

Wanted: Complete deck for the Amstrad VCR6000. Also instruction book for the Philips VR2020/21 VCR. Ron Bruce, 11 New Zealand

Way, Rainham, Essex RM13 8JP. Wanted: Complete working power supply for the Akai VS66EK, or would consider purchase of a faulty machine. John Martin, 161 Francis Close, Ewell, Epsom, Surrey KT19 0JT. 01812248401.
Wanted: SD187R CRT, secondhand if possible, for the Sony VPH1031QM video projector, or any information on a possible source. K. Clark, 147 The Queensway, Hall Road, Hull, E. Yorks. 01482801822.
For disposal: Promax TA901 CRT rejuvenator with eight adaptors and all books/leads, little use, £200. Ten boxes and bags of TV spares, all very cheap because of close of business workshop clearout. For list phone 01752670803 (Plymouth) and leave message or e-mail either of the following:
vinceboo@yahoo.vom vinceboo@freeserve.co.uk For disposal: Coherent call port noise-cancelling full-duplex audio unit (16-bit RISC-based audio unit for videoconferencing). Use with BT VC8000, IBM Screencall, ICL Teamvision, Olivetti PCC etc. Unused/boxed $£ 50$. Also National portable TV Model TR505GB, AC/DC, for spares/repair. £5. Julian Bohan, 01522514241 or mobile 0958771319.

Wanted: Main circuit board and service manual (photocopy will do) for the Hitachi Model C2114T. James Lowrey, 29 Scarborough Court, Byker, Newcastle-upon-Tyne NE6 2TG. 01912653314. Wanted/for disposal: Require late Sony Betamax VCRs and manuals (C9 onwards). Have for disposal the following VHS models: Philips VR6463, Samsung VI710 and Saisho VR3400 for parts/spares. Alan Stubbings, 7 Church Road, Saxilby, Lincoln LN1 2HH. 01522 583373 (daytime), 01522702601 (evenings).

Reports from Philip Blundell, AMIIEelec
Stephen Leatherbarrow
Eugene Trundle
Gerald Smith
Ronnie Boag
Brian Storm
Kevin J. Green, TMIIE
David A. Chaplin
Roger Burchett and
Pete Gurney, LCGI

Philips VR6490

This machine was dead. The power supply output voltages at plug J104 should be as follows: pin $4-21.8 \mathrm{~V}$; pin 50 V (chassis); pin 65.5 V ; pin 914.8 V ; pin 1033.8 V . In this case the voltage at pin 6 was low. C1 19 and $\mathrm{C} 120\left(1,000 \mu \mathrm{~F}, 16 \mathrm{~V}, 105^{\circ} \mathrm{C}\right)$ had dried up. P.B.

Daewoo V50

Failure to accept tapes was the complaint with this machine. I found that the deck was out of alignment because of a dirty mode switch. The cog that operates on both the supply and take-up loading arms was also damaged.

After attending to this the machine still refused to accept a tape. This time the cause was electronic: the 14 V supply was missing because D62 was open-circuit. It provides the supply for the loading drive chip IC602. S.L.

Philips VR231

This Turbo-deck machine wouldn't load. The loading arms would cycle back and forth to the half-load position several times, then the tape would be ejected. Unfortunately the on-board diagnostic display only indicated that there was a loading fault - I was already painfully aware of that!

After much searching I discovered that one of the vanes (there are four) on the worm shaft was missing. This deck doesn't have a mode switch: the four vanes interrupt an

VCR Clinic

optical link, which the microcontroller chip detects to get an indication of deck position. With one vane missing the chip was uncertain about the situation. S.L.

Sanyo VHR287

Powering down in the record mode only seems to be becoming a common fault with these machines. It happens when the 5 V supply momentarily dips below its correct value. The cause is the relevant 'fuse' in the power supply - it goes high-resistance. The device is labelled 1A C/P and that's what we fit.

The same mechanism and power supply is used in many Sony models, with which you get the same fault.

The circuit reference no. is PR512. S.L.

Daewoo V435

We've now had this problem with two of these machines: intermittent recording in black-and-white, with E-E and playback of a good recording OK. In both cases the cause was the record chroma-signal coupling capacitor C402 ($0 \cdot 022 \mu \mathrm{~F}$). It was going open-circuit intermittently because of a crack at one end. E.T.

Akai VS204G

Like all the best ones, this fault was intermittent: on rare occasions there would be a 'hiccup' in record or play, with a momentary change of sound pitch and the picture moving fractionally sideways. The capstan motor was the cause. Presumably this could happen with other Akai models that use the same deck and motor. E.T.

Sony SLV6UV

We have now had two of these machines with the same fault. The symptoms are no E-E signals with just a blue screen, possibly intermittent. In both cases the cause was
a dry-joint at the 9 V feed choke L 2 inside the IF module. E.T.

JVC HRJ410

This machine would intermittently return to standby in playback or record. The fault would occur more often the longer the machine had been on. I checked the usual circuit protectors, which were OK, then turned my attention to the reel FG pulses. The supply reel pulses were missing - replacing PS1 cured the fault. G.S.

Tatung TVR933

This machine wouldn't eject tapes. If you pressed stop while the machine was in the fast-forward mode tape would spill out as the supply reel continued to run. Checks showed that the reel brakes weren't triggering. A replacement mode switch cured both faults. G.S.

Sanyo VHR287

One row of segments in this machine's front display remained lit all the time. A replacement display made no difference. The cure was to replace D3120 in the display drive area. It was leaky. G.S.

JVC HRJ610

This machine was dead. The cure was to replace $\mathrm{Cl} 2(2 \cdot 2 \mu \mathrm{~F}, 50 \mathrm{~V})$ in the start circuit. R.B.

Nikkai J2

The E-E display was marred by a hum bar. This one was cured by replacing C803 ($100 \mu \mathrm{~F}, 50 \mathrm{~V}$). R.B.

Nokia VR3716

This machine left tape out of the spool when it ejected a cassette. A replacement back-tension band cured the problem. R.B.

Panasonic NVFS90

This machine's playback picture was unusual: there were just black horizontal lines displayed on a white
background: The fault is actually quite common with these machines, the cause being the 1 H delay pack on the sub-luminance board. Inside this metal can you will find a CCD delay IC that likes to cook some of the adjacent capacitors slowly. It's usually C3501, C3506 and C3516 that give trouble, but this time the culprit was C3510, a miniature
$3 \cdot 3 \mu \mathrm{~F}$ electrolytic capacitor. B.S.

Panasonic NVHD410

When a tape was presented to it the machine would revert to standby and display H 01 . This fault code usually means that the cause of the trouble is failure of the drum to rotate. When I removed the top I found that this was the case.

In many of these types of Panasonic VCR a stator PCB is mounted above the video head. It carries the drive coils for the drum and a magnetic resistor, part no. HW-300A-CF. A replacement resistor usually cures the fault. This item can also be the cause of drum servo instability if the output is slightly lower than normal. B.S.

Panasonic NVFS100

This machine's E-E picture was badly distorted. In fact it consisted of ragged verticals and bad smearing. The cause of the fault was traced to the Y-C separation board, where C3807 had gone low in value. B.S.

Toshiba V854B

The customer complained that there was no E-E or playback sound. This was confirmed, and we also found that there was no sound recording and the bar-graph on the front wouldn't work. The cause of the trouble was traced to C964 $(330 \mu \mathrm{~F}, 16 \mathrm{~V})$ in the audio section of the main PCB. It was leaky. K.J.G.

Hinari VXL6

E-E operation was OK but in the playback mode there was just a blank raster. I eventually found that the mute pin (26) of IC303 didn't drop to 0 V . The cause of the problem was IC101. Pin II was static at 5 V : it should produce a 5 V vertical dummy pulse output. K.J.G.

Hinari VXL4

From the playback picture it looked as if this machine had one dirty video head. I cleaned the heads and obtained a good picture, but a few seconds later it was back to its initial state. This time cleaning made no difference. After a few seconds the picture cleared and was $O K$ again.

The symptom came and went when the preamplifier can, which is mounted just behind the drum assembly, was waggled. When I looked inside the can I saw that there were dry-joints at the bottom plug assembly, which plugs into the main PCB socket. A good clean and resolder cleared the fault D.A.C.

Philips VR6291

There had been a local thunderstorm while this machine was recording. It was then found to be dead. Checks in the power supply failed to reveal any faulty components. When the machine was reconnected to the mains supply it worked normally but a strange, fizzing noise came from the power supply.

All functions worked correctly until a timed recording was attempted. At the preset start time the mechanism began to load then the machine went dead again. I decided to replace the CNX83A optocoupler. After that the machine ran quietly with no other problems. D.A.C.

Saisho VR705

There was no take-up as the reel idler was well past its 'sell-by' date. I fitted a new idler and replaced the nylon reel-motor pulley with the brass type, which provides a more positive drive. Then, after replacing the drive belts and cleaning the heads and tape path, I tested the machine.

Take-up was now good, but the capstan servo didn't lock. As the motor itself ran freely, I adjusted the capstan FR. A long soak test proved that everything was now in order. Maybe someone had had a twiddle!

The Amstrad Model VCR7000 is similar. D.A.C.

Akai VSFII

This machine usually played all right but if cue or review was selected it would shut down with dashes in the display. It occasionally shut down when fast forward or rewind was selected. The cause of the trouble was $\mathrm{C} 3(2,200 \mu \mathrm{~F}, 35 \mathrm{~V})$ in the power supply. The microcontroller chip was reacting to spurious power-down commands. R.Bu.

NEC N9077

In any mode except pause this machine would shut down almost immediately. So there was obviously a reel-rotation sensing fault. In fact there were no black segments on the reel, just reflective ones hence a steady DC output from the sensor. As replacement reels are
not available I painted the segments back in. R.Bu.

Orion D1094

The customer complained that this VCR had refused to eject the tape. He had then removed it himself. Fortunately the mechanism had not been damaged, and a quick set-up restored correct alignment. But at power up the machine did little: it refused to take a tape, and shut down after ten seconds or so.

A check on the outputs from the power supply showed that they were all OK. I felt that the basic problem was probably a loading fault, and found that the loading motor's supply was missing. The drive chip is mounted on the main PCB: as this is a centre-deck machine, the mechanism had to be removed to gain access. Once this had been done the cause of the fault was obvious. The BA6886 drive chip ICl004 had a small but visible crack in its case, and there was evidence that it had been running hot.

A replacement restored the drive voltage, but before refitting the deck I checked the loading motor's DC resistance. It was low at 8.5Ω a check with a new one produced a reading of about 14Ω. So the motor had to be replaced as well.

This machine is electrically similar to the Matsui VX1100. P.G.

Toshiba VIIOB

Erratic behaviour was the problem with this machine. It might load a tape, refuse to give it back and shut down. I noticed that whatever deck function was selected it was carried out very slowly.

A check on the switched 12 V output from the power supply showed that it was low at $1.5-6 \mathrm{~V}$ depending on load. There were two causes. The crowbar zener diode DP08 was leaky, pulling down the supply. But the primary cause was the 6.8 V zener diode DP07 in the 12 V regulator circuit. Although it seemed to be OK when tested, it was the cause of the 12 V supply being high at nearer 17 V . Hence the failure of DP08.

I've had trouble with DP07 in a number of these machines. Even when this zener diode is working correctly the $12 / 14 \mathrm{~V}$ supply tends to be high at about 15 V , which is not far from the crowbar voltage (15.6V). The crowbar diode often presents evidence of having run hot. I usually fit a 6.2 V zener diode in position DP07, as it produces an output that's closer to the specified 13.5-14V. P.G.

The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems

Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN United Kingdom
Tel: + 44 (0) 1325310278
Fax: + 44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

Steve Beeching describes and tries out a novel soldering station that's based on RF heating. It is ideal for use with current electronic assemblies that use surfacemounted technology

The Metcal MX500S Soldering Station he Metcal MX500S soldering station is made by
 trical resistance, and a ferromagnetic alloy outer layer

Our heading photograph shows the Metcal MX500 soldering pencil with quad flatpack tip.

TOK International and is available in the UK from SEME Ltd. It's just one of a wide range of products that OK International manufactures. They include fume extraction, rework and sophisticated production equipment. So the MX500S comes with a good pedigree. Its main feature is an RF heating/temperature control system called SmartHeat.
The soldering cartridge tip is of bimetallic construction. It consists of an inner core that's made of a material which has high thermal conductivity and low elec-
which at normal temperatures has a high electrical resistance. To appreciate the significance of this, we must consider what is called the skin effect.
Consider a length of copper wire used as an electrical conductor. When a low-frequency AC voltage is applied, a current that's proportional to the electrical resistance of the wire flows. It passes through the whole cross-section of the wire, with even distribution. When a very high frequency voltage is applied however the current flow is concentrated in the outer layer of the wire. This is the skin effect.

SmartHeat Technology

The Metcal soldering system has a constant-current power supply that operates at a frequency of $13 \cdot 5 \mathrm{MHz}$. Its output is fed to the soldering pencil via a coaxial waveguide cable. To heat the tip, the current flows through its outer layer of high-resistance magnetic material. You thus get heating by means of the skin effect. Heat reaches the inner core of the tip by thermal conduction.
Once the outer layer of the tip has heated up, the material reaches its Curie Point, which means that the material ceases to be magnetic. At this point the material's resistance to the constant RF current falls, and in addition current starts to flow via the low-resistance inner core. As less power is being dissipated, the heating effect decreases.
As the tip's temperature falls, the outer-layer material returns to the state below its Curie Point. It becomes high-resistance again, and the heating effect increases.

Thus the tip's temperature is set by the Curie Point of the outer-layer material. As the Curie Point is well defined, temperature control is close - within $1^{\circ} \mathrm{C}$. This is the Metcal SmartHeat technology
Its advantages are: constant tip temperature; no need for calibration of temperature setting; high output at lower temperatures; easy to use; dual-port power supply.

In Use

It takes about fifteen-twenty seconds, depending on size, for a tip to heat up from cold. Thereafter the temperature remains stable. The iron is suitable for continuous or occasional use, heating up much more quickly than a conventional soldering iron. This was found to be an advantage in use.
As the reheat time is so quick, it's not necessary to leave the iron on all day. Switching it off doesn't cause any undue delays.
During the twenty-second heating period very high power, almost 40 W , is applied to the tip. The power falls rapidly as, in the last few seconds, the Curie Point is reached. This was demonstrated to me by OK Industries, using an in-line power meter.
A small Allan key screw at the right-hand side of the power unit can be tightened to activate an idle timer, which turns the power off after an idle time of 25-30 minutes. This reduces the chance of a microfine tip being overheated and burnt.

Tips

The cartridge tip type sets the soldering temperature. With 500 series tips the temperature is $270^{\circ} \mathrm{C}$ (20W); with the 600 series it's $330^{\circ} \mathrm{C}(20 \mathrm{~W})$; and with the 700 series it's $395^{\circ} \mathrm{C}(30 \mathrm{~W})$. Tip types are identified by the first of the last three digits in the code. For example an STTC537 is a 500 series tip. A 0 in this position indicates a 600 series tip, 1 indicates a 700 series tip.
Tips can be changed 'on-the-fly' by using a heat-proof pad that's supplied. Once the cartridge tip has been removed from the pencil its lower stem will be very cool and can be handled. Insert the new tip in the pencil: it's safe to do this as the power supply will have shut off. Simply switch the power supply off and on again and you can continue after the brief heat-up time.
There are many tip shapes and sizes: surface-mounted component removal tips with different-sized slots for different-sized components; twin-sided, tunnel-shaped tips for dual in-line ICs; quad tips for PLCC, SQFP and PQFP surface-mounted ICs - in fact there are some 7080 different tip sizes in each temperature range.
Standard soldering pencil tips range from 0.2 mm to 1.6 mm conical and 0.4 mm to 5.2 mm chisel plus various bevel- and bent-shaped tips, again in each temperature range. In addition there's a blade tip which can be used with DIL ICs or, more readily, to heat desoldering braid when cleaning a PCB up.
The microfine tips worked well, with imperceptible temperature changes, when used to resolder surfacemounted connectors and ICs in positions where leg-byleg soldering was required because of high component density - in this respect the Metcal is similar to the JBC Advanced soldering iron (see pages 16-17, November 1998). I used slightly larger tips to wipe-solder surfacemounted ICs. Care is required to prevent burning when using microfine tips at $330^{\circ} \mathrm{C}$, and as a precaution the unit was switched off between jobs rather than leaving it to the idle timer.
The 600 series is suitable for most surface-mount working with a microfine tip. Series 700 tips would be

better for general TV/VCR work with through-hole components.
Because of their thermal capacity, larger tips are better for some tasks such as soldering tuner tags: you can change quickly to a smaller tip for the tuner connections, to prevent print damage due to overheating.

The Talon

tweezers (left), Metcal soldering pencil (centre) and a selection of cartridge tips.

Talon Tweezers

A considerable benefit is the Talon handpiece that can be used with the system. This is in effect a pair of heated tweezers whose matched tips are controlled by the SmartHeat system. Tip temperature is regulated to within a few degrees in the idle mode, ready for use. As the correct temperature is reached within a few seconds, once again the power doesn't have to be left on.
For test purposes two sample tips came with the Talon handpiece, one 0.4 mm wide and the other a 15.8 mm width blade with small chamfers at each corner. There are blade tips 6.4 mm wide, but not a more usable 10 mm wide (I was quoted a vast sum of money to make a 10 mm pair). Talon tips can be mounted either way round in the handpiece, giving three ways to grip a component (see Fig. 1).

I've always found one particular component in a digital camcorder, a small, soft flexible surface-mounted fuse on large PCB lands, to be difficult to remove, even with Pace tweezers. The Talon tweezers made its removal an easy matter, without any component damage, because of the rapid heat regulation.
As with most desoldering equipment, if it's good I have to have it. After using the OK Industries sample Metcal MX500S system for a month or so I found that I couldn't live without it. Nor can you if you are serious about replacing surface-mounted components.

Availability

The Metcal MX500S soldering station is available from SEME Ltd., Unit 2, Saxby Road Industrial Estate, Melton Mowbray, Leics LE13 1BS (phone 01664481 818, fax 01664 563 976) at $£ 475$. Tips cost between $£ 15.95$ and $£ 36.25$. The Talon tweezers cost $£ 232.50$. Talon tips come at $£ 72.60$ a pair. These are trade prices, exclusive of VAT. Check them before ordering.
Metcal products have a four-year warranty.
SEME can supply the Metcal brochure and price list to customers who are interested in the range. All you have to do is to phone the new sales hot line on 01664484 000 and quote order code LEAF 116 for a free copy.
SEME is willing to visit a customer's premises and demonstrate the product or, if preferred, a demostration can be arranged in-house at SEME. To make arrangements, phone 01664484000 .
P.O. BOX 142, NOTTINGHAM, NG9 3RX, ENGLAND Tel: +44 (ø)115932 Ø152 Fax : +44 (ø)1159444øø4 E-Mail : tony@iche.com WEB SITE : http://www.iche.com

DON'T LET THOSE FAULTY ELECTROLYTIC CAPACITORS GET YOU MAD!! GET EVEN...!! FIND THEM FAST WITH THE FAMOUS "CAPACITOR WIZARD"

(ALWAYS IN STOCK........ALONG WITH MONITOR SCHEMATICS. WELTREND ICs, MONITOR WIZARDS. MONITOR uPROCESSORS. LOPTs......)
£135.00 + VAT \& Carriage. 1 Years warranty.

HYDROPONICS DO YOU GROW YOUR OWN?
We have a full colour hydroponics catalogue available WINDOWS 95 CD
As supplied with Hewlett Packard PC's these CD's have an the window files on them and were intended to be used to restore windows on a PC after a crash etc. $£ 15$ REF SX06 SATELLITE MODULATOR MODULES. Prices from just $9 p$ Surface mount modulators full of components. Fitted with
an F type connector and a uhf connector. Pack of $100 £ 9.95$ REF SS20
PROJECT BOXES
Another bargain for you are these smart ABS project boxes, smart two piece screw together case measuring approx
$6^{\prime \prime} \times 5^{\prime \prime} \times 2^{n}$ complete with panel mounted LED. Inside you will find loads of free bits, tape heads, motors, chips resistors, transistors etc. Pack of $20 £ 19.95$ REF MD2
REMOTE HEATING CONTROLLERS
These units were designed to be plugged into a telephone socket. You then called the phone and some how it turned the heating on. Each box contains lots of bits including a mains 30A relay. Pack of 20 E20 REF SS 34
TALKING COINBOXES. Prices from just 95 p
These units were made to convert standard telephones into pay phones, complete with coin slot assemblies and switches etc. OFFEDES SPACE! Pack of 10 f 19 REF SS29 AC MOTOR BONANZA!. Prices from just 59 p
Again we have piles and piles of these brand new mixed motors which we need to clear in bulk at ridiculous prices ${ }^{1}$ Pack of 50 for E 30 REF SS 13
PIR CAMERA
Built in CCTV camera (composite output) IR strobe light, PIR detector and battery backup. Designed to 'squirt' pictures Bargain price £39.95 REF SS81J. These units are brand new modules designed to take 'pictures' of intruders and then transmit the pictures down the telephone line. The PIR detects the intruder, fires the strobe light, this ensures a perfect picture even in total darkness. The picture is stored in memory inside the module and then sent by modem (not included) down the telephone line. The units also have a nicad battery pack included presumably to maintain 90×65 degree field of view, the picture quality is excellent, Each PIR also contains a video capture and compression unit. The infra red strobe has a range of 15 m . The PIR has a range of 12 m . Power requirements are $12 v \mathrm{dc} 400 \mathrm{~mA}$. Power supplies available at £5 REF SS80. The units are supplied with connection detalis etc but we do not have any interfacing to modems etc. The units do have operational PIR's, strobes and camera's (camera is 12 vdc and gives out standard composite 1 vp p-p video) how you adapt these to work together is entirely up to you! Retail price for the units
was in excess of $£ 200$ each sale price $£ 39.95$ REF SS81J. was in excess of $£ 200$ each
Power supolies $£ 5$ REF SS80.

TELEPHONES

Just in this week is a huge delivery of telephones, all brand new and boxed. Two piece construction with the following recall, redial and pause, high/low and off ringer switch and quality construction, finished in a smart off white colour and is supplied with a standard international lead (same as US or modems) if you wish to have a BT lead supplied to REF BTLX Phones $f 4.99$ each REF PH2. 10 off $£ 30$ REF SS 2 3HP MAINS MOTORS
Single phase 240 v , brand new, 2 pole, $340 \times 180 \mathrm{~mm}$,
2,850rpm, built-in automatic reset overload protector, keyed shaft ($40 \times 16 \mathrm{~mm}$). Made by Leeson. 999 each, R
BUILD YOUR OWN WINDFARM FROM SCRAP
New publication gives step by step guide to building wind a good local scrap yard could make you self sufficient in electricity! £12 ref LOT81
CHIEFTAIN TANK DOUBLE LASERS 9 WATT +3 WATT + LASER OPTICS
Could be adapted for laser listener, long range communications etc. Double beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor
lasers and motor drive units for alignment. 7 mile range, no lasers and motor drive units for alignment. 7 mile range, no
circuit diagrams due to MoD, new price $£ 50,000$? Us? 199. Each unit has two gallium Arsenide injection lasers, 1×9
watt 1×3 watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse tach unit has watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse
watt, 1×3.
frequency. The units also contain an electronic receiver to frequency. The signals from targets. f199. REF LOT4
detect reflected sid
MAGNETIC CREDIT CARD READERS AND ENCODING MAGNETIC CR
MANUAL $£ 9.95$
Cased with flyleads, designed to read standard credit cards! Complete with control electronics PCB and manual covering, everything you could want to know about what's hidden in that magnetic strip on your card! Jusi f9.95 REF BAR31 HIPOWER ZENON VARIABLE STROBES
Useful 12 V PCB fitted with hi power strobe tube and contro electronics and speed control potentiometer. Perfect for
interesting projects etc. $70 \times 55 \mathrm{~mm} 12 \mathrm{vdc}$ operation. $£ 6$ each REF FLS 1, pack of 10 E49 REF FLS2
CENTRAL POINT PC TOOLS
Award winning software, 1,300 virus checker, memory optimiser, discoptimiser, file compression, low level
formatting, backup scheduler, disk defragmenter, undelete, 4 formatting, backup scheduler, disk defragmenter, undelete, 4
calculators, D base, disc editor, over 40 viewers, remote calculators, D base, disc editor, over
computing, password protection, encryption, disks $£ 10$. REF LOT97
VIDEO PROCESSOR UNITS $7 / 6 \mathrm{~V}$ 10AH BATTs/24V 8A TX
Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$ on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. Inside $2 \times 6 \mathrm{~V}$ 10AH
sealed lead acid batts, pcb's and a 8 A ? 24 V torroidial sealed ead acid batts, pcb's and a 8A? 24 V torroidia broken knobs etc due to poor storage. £ 15.99. REF VP2 DIFFERENTIAL THERMOSTAT KIT
Perfect for heat recovery, solar systems, boiler efficiency etc Two sensors will operate a relay when a temp difference ladjustable) is detected. All components and pcb E29 RE OT93

SOLAR WATER HEATER PLANS £6 REF SOLP PC POWER SUPPLIES PACK OF 8 E9.95
That's right! 8 power supplies for $£ 9,95$! These are all fan seen. But worth it for the fans alone! REF XX 17

COLOUR CCTV VIDEO CAMERAS FROT $£ 99$
Morks with most modern video's, TV's, Composite monitors, video grabber cards. Pal, 1 v P-P, composite, $75 \mathrm{ohm}, 1 / 3^{\prime \prime}$
CCD 4 mm F2.8, $500 \times 582,12 \mathrm{vdc}$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price f 119 REF XEF150, 10 or more 999 each $100+589$

We get over 5,000 hits a day check us out! http://www.bullnet.co.uk

Mains A LARMS made by the famous Gent company, easy fit next to light tittings, power point. Packet of 5 f 15 REF SS23. pack of 12 f24 REF SS24
4AH D SIZE NICADS. Pack of $4 £ 10$ REF 4 AHPK
ELECTRIC FENCE KIT
Everything you need to build a 12 vdc electric fence, SENDER KIT

Contains all components to build a AV transmitter complete with case €35 REF VSXX2
33 KILO LIFT MAGNET
Neodynium, 32MM 15 REF MAG33
10 WATT SOLAR PANEL
Amorphous silicon panel fitted in an anodised aluminium frame. Panel measures 3^{\prime} by 1^{\prime} with screw terminals for easy Unframed 4 pack ($3^{\prime} \times 1^{\prime}$) $£ 58.99$ REF SOLX
12 V SOLAR POWERED WATER PUMP
Perfect for many 12v DC uses, ranging from solar fountains to hydroponics! Small and compact yet powerful works direct from our 10 watt solar panel in bright sun. Max hd: 17 ft Max flow $=8$ Lpm, 1.5A. REF AC8 $£ 18.99$
SOLAR ENERGY BANK KIT 50 " $\times 6^{\prime \prime} \times 12^{\prime \prime} 6 \mathrm{v}$ solar panels PINHOLE GAMERA MODULE WITH AUDIOI
PINHOLE CAMERA MODULE WITH AUDIOI extra small just 28 mm square (including microphone) ideal for covert surveillance. Can be hidden inside anything, even a matchbox! Complete with 15 metre cable, psu and tv/cr connectors. £49.95 REF CC6J
SOLAR MOTORS
Tiny motors which run quite happily on voltages from 3 12 vdc . Works on our 6 v amorphous 6^{*} panels and you can run them from the sun! 32 mm dia 20 mm thick. $£ 1.50$ each LIOUID CRYSTAL DISPLAYS Bargain prices
20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ REF SMC2024A 16 character 4 line, $62 \times 25 \mathrm{~mm}$ £5.99 REF SMC 16404 40 character 1 line, $154 \times 16 \mathrm{~mm}$ E6.00 REF SMC4011A LM255X HITACHI LAPTOP SCREENS $240 \times 100 \mathrm{~mm}$
640×200 dots. New with data f 15 REF LM2

SEALED LEAD ACID BATTERIES
12V 7AH, S/HAND PACK OF $4 £ 10$ REF XX1

YOUR HOME COULD BE SELF SUFFICIENT IN ELECTRICITY Comprehensive plans with loads of info on designing systems, panels, control electronics etc $£ 7$ REF PVI
200 WATT INVERTERS

Register for our

ELECTRONIC NEWSLETTERS

 BULL-ELECTRICAL.COM
BULL
 ELECTRICAL

250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT (Established 50 Years)
MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS \& P\&P PLUS VAT
24 HOUR SERVICE 66.50 PLUS VAT
OVERSEAS ORDERS AT COST PLUS $£ 3.50$ (ACCESS, VISA, SWITCH, AMERICAN EXPRESS)

Phone Orders:
01273203500
FAX: 01273323077
sales@bull-electrical.com

Plugs straight into your car cigarette lighter socket and is fitted with a 13A socket so you can run your ma devices from your car
THE TRUTH MACHINE
Tells if someone is lying by micro tremors in their voice battery operated, works in general conversation and on the 'phone and TV as well! E42.49 REF TD3

INFRA RED FILM

6° square piece of flexible infra red film that will only allow tR light through. Perfect for converting ordinary torches, lights, headlights etc to infra red output only using standard HYDROGEN FUEL CELL PLANS
Loads of information on hydrogen storage and production. Practical plans to build a Hydrogen
facilities required) E8 set REF FCP1
facilities required) $\mathrm{C8}$ set R
STIRLING ENGINE PLANS
 engines, pictures of home made engines mad

ENERGY SAVER PLUGS

Saves up to 15% electricity when used with fridges, motors up to 2A, light bulbs, solder
12V OPERATED SMOKE BOMBS
Type 3 is a 12 v trigger and 3 smoke canisters, each canister will fill a room in a very short space of timel $\ddagger 14.99$ REF SB3. Type 2 is 20 smaller canisters (suitable for simulated equipment fires etc) and 1 trigger module for $£ 29$ REF SB2. HIPOWER ZENON VARIABLE STROBES
Useful 12v PCB fitted with hi power strobe tube and control electronics and speed control potentiometer. Perfect for interesting projects etc $70 \times 55 \mathrm{~mm} 12 \mathrm{vdc}$ operation. £6 each REF FLS1, pack of 10 f 49 REF FLS2
NEW LASER POINTERS
$4.5 \mathrm{mw}, 75$ metre range, hand held unit runs on two AA batteries (supplied) 670 mm . f29 REF DEC49J

Y FROM A SACK OF POTATOES
Comprehensive 270 page book covers all aspects of spirit production from everyday materials. Includes construction details of simple stills. E12 REF MS3
NEW HIGH POWER MINI BUG
With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! Less than 1" square and a IR Voice pickup range. E28

IR LAMP KIT

total darkness! £6 REF EF138

INFRA RED POWERBEAM
Handheld battery powered lamp, 4 inch reflector, gives out
powerful pure infrared light! Perfect for CCTV use, nightsights etc. £29 REF PB 1
SUPER WIDEBAND RADAR DETECTOR
Detects both radar and laser, XK and KA bands, speed cameras, and all known speed detection systems. 360 degree coverage, front \& rear ear wave guides, LOPTX
Made by Samsung for colour TV $£ 3$ each REF SS52

LAPTOP LCD SCREENS

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA?
We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at youd is the certificate enabling you to reproduce (and sell! the manuals as much as you like! E14 REF EP74 HIGH POWER DC MOTORS, PERMANENT MAGNET
$12-24 \mathrm{v}$ operation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shaft with a machined flat on it. Fixing is simple using the two threaded bolts protruding from th
INFRA RED REMOTE CONTROLS
Made for TV's but may have other uses. Pack of $100 £ 39$ REF

ELECTRONIC SPEED CONTROLLER KIT
For the above motor is $£ 19$ REF MAG 17. Save $£ 5$ if you buy them both together, 1 motor plus speed controller rrp is E41, offer price $£ 36$ REF MOT5A
SONY STEREO TV CHASSIS
SONY STEREO TV CHASSIS
Assemblies comprising complete TVPCB excluding tube and Assemblies comprising complete TVPCB excluding tube and
scan coils. Nicam stereo, mains input. Appear to be unused but sold 'as seen'. Would probably be good for spares or as a nicam stereo TV sound receiver and amplifier. For KV29F1U and KV25F1U(BE3O) PCB no's 1-659-827-12 1-659-826-14 1-711-800-11 E20 REF STV1
RCB UNITS Inline IEC lead with fitted RC breaker. Installed in seconds. Pack of $3 £ 9.98$ REF
RADIO CONTROLLED CARS etc
No remotes but good strippers for servos' motors and No remotes but
receivers. Sold as is, no returns, mixed types. $£ 3$ each REF RCC2
Hold one of these units over your phone mouth piece and you can adjust your voice using the controls on the unit' Battery operated fis REF CC3
LOW COST CORDLESS MIC
500^{\prime} range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}, 193 \times 26 \times 39 \mathrm{~mm} .9 \mathrm{v}$ PP3 battery 500 range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}$
required. fil REF MAG15P1 AUTO SUNCHARGER
$155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. $12 v 2$ watt. E12.99 REF AUG 10 P3
SOLAR POWER LAB SPECIAL
SOLAR POWER LAB SPECIAL
$2 \times 6^{\prime \prime} \times 6^{\prime \prime} 6 \mathrm{v} 130 \mathrm{~mA}$ cells, 4 LED's, wire, buzzer, switch + 1
SOLAR NICAD CHARGERS
$4 \times$ AA size $£ 9.99$ REF 6 P $476,2 \times$ C size $£ 9.99$ REF 6 P477
5.25" FLOPPY DISKS

Pack of 500 disks $£ 25$ REF FDj

Terrestrial DX and satellite TV reception. News from abroad and from the satellite belt. Archive material - a remarkable tape of transatlantic TV reception in 1938 has recently been made available. Review of a handy standards converter that provides excellent results. Roger Bunney reports

A recent test

 pattern received from the Canadian TeleGlobe network via Intelsat K digital.December produced little by way of terrestrial DX-TV reception, with the Geminids meteor shower early in the month a rather unexciting event. During the 16th/17th there was a minor Troposhperic lift, which provided Band III/UHF reception from the Benelux countries and France across eastern and southern areas of the UK. Here in south Hampshire signals from the Dutch ch. E4 transmitter at Lopik were fluttering about all day above the noise level, and there were also French Band III signals. There have still been no reports of DX reception of the Isle of Wight TV 12 RSL station on ch. 54 (horizontal)!

The ITC has released details of more RSL-TV stations that have been awarded transmitting licenses in areas where there were several applicants. They include Solent

City TV (Southampton), Grimsby/ Cleethorpes and Birmingham. There is also to be an RSL station in Bournemouth, though there is at present no channel/power/polarision information.

Solar Cycle 23

We are now on the ascending slope towards the next sunspot maximum - in solar cycle 23. Check out the LF end of Band I for signs of any increasing activity, in the hope that something might be seen - or possibly a 50 Hz video buzz heard on your scanner. The MUF might rise to the New Zealand channel 1 (45.25 MHz video) or the Australian channel $0(46 \cdot 25 \mathrm{MHz}$ video). In the UK, the best time for Australasian reception via the F2 layer is 0830 1000 GMT.

If you are lucky enough to have ch. E2/R1 clear at your location, check at such times for distant TV from the NE/E (this is quite common at sunspot peaks). You need solar noon half way along the signal path for the MUF to provide long single-/multiple-hop reception. If the signal produces "ghosty" reception, it's F2!

During the late afternoon through to 1930 GMT check towards the south for TE (transequatorial) signals from Africa. If you have a scanner or a VHF radio that tunes above 30 MHz , check for distant communications signals taxis, military, police etc. - which can be heard well into the 40 MHz region. When the band is open, you will find that there are many inter-
esting signals. It has been open during the past two months.

I might, say at around 0815, tune to ch. R1 (49.75 MHz video) and suddenly, over a period of a minute or less, signals would just appear out of the noise, becoming very strong as the en-route MUF lifted to reflect them to the UK. Such reception is very height-conscious: a four-element Band I array at 17 m would pick up such signals first, followed a minute or so later by reception using an array at 10 m .

During past sunspot peaks I've received New Zealand ch. I and the Australian ch. 0 (several signals) here at my valley location at Romsey, using just crossed wideband dipoles mounted only 12 m high - next to a main road! So it's definitely worth a try.

Satellite Sightings

The Operation Desert Fox Iraq bombing campaign started on December 16th. As with the earlier Desert Storm conflict, the satellite waves came alive with news feeds and reports. The difference this time was digital transmission, the majority of Baghdad terminals using MPEG - though in the clear. I ran into difficulties with the primary hop via Eutelsat W2 ($16^{\circ} \mathrm{E}$). Fortunately several live feeds were carried via New Skies (see later)/ Intelsat K at $21.5^{\circ} \mathrm{W}$, a secondary hop: on the first night's bombing there were five simultaneous analogue feeds and three digital ones. Most were scrambled, but the Reuters feed went clear and the full
scale of the bombing could be seen as the signals were fed to the US networks.

Jim Scofield, using his Nokia 9600 for reception via Eutelsat W2, noted eleven different digital frequencies in use between 12.505 12.558 GHz , all with horizontal polarisation. Some operated intermittently, but about six were continuously on air. The most consistent feed was the CBS one at 12.558 GHz , fronted by Mark Phillips. An Arabic-crew manned uplink for Jazeera Channel at $12 \cdot 534 \mathrm{GHz}$, in operation on the banks of the River Tigris, was always first on the spot with damage reports - the BBC's pictures were taken an hour later. Jim comments that the digital news feeds usually provide pin-sharp quality pictures - it's either good quality or no signal.

The evening of the 25th brought reports of the end of Richard Branson's balloon flight. Live pictures from KHNL-Hawaii, at the Barbers Point air terminal, were seen from about 2000 hours via the regular Intelsat K 11.566 GHz vertical digital feed (5632 SR; FEC 3/4) as helicopters brought the balloon crew back after being snatched from the rough Pacific sea. A CBS reporter at the airstrip eventually obtained an interview with Richard himself. This and other interviews were seen via CNNI.

Christmas has usually produced a varied selection of seasonal graphics via the regular news bureau circuits. Very few displayed the Christmas spirit this year PanAm 3R/6 at $43^{\circ} \mathrm{W}$ provided a basic greeting on colour bars and that seemed to be it. The EBU and its members have in the past offered a variety of greetings from $7^{\circ} \mathrm{E}$: this year the offerings were in MPEG 4:2:2 digital and were invisible to analogue and most digital operators. A great loss. The Landscape Channel via Orion at $37.5^{\circ} \mathrm{W}$ (11.622 GHz vertical, 18900 SR, FEC 7/8) provided a moving picture of a burning log fire with appropriate music, which was at least soothing.

The BBC UKI-234 SNG truck was seen reporting on the floods and high winds across Scotland: there were live news inserts via Telecom $2 \mathrm{C}\left(3^{\circ} \mathrm{E}\right)$ at $12 \cdot 604 \mathrm{GHz}$ vertical. This was on December 28th. Three days later UKI-234 was at Edinburgh for the New Year celebrations, with live interviews and spectacular shots of the fireworks. Just up the dial, Reuters provided
video inserts of Paris street celebrations and German financial suits toasting the Euro!

I was surprised to see an Italian OB feed via 2C on New Year's morning - the ITA-57 Napoli truck provided a live analogue insert from the streets of Naples (Italian OB circuits usually come via $18^{\circ} \mathrm{W}$).

If you missed the original and repeats of Treasure Hunt, check Saudi Channel-2 via Arabsat 2A ($26^{\circ} \mathrm{E}$): the programme is being shown on Sundays from 2200 hours GMT with the original English sound track, using the 3.968 GHz (C band) RHC-polarised transponder.

Bob French has found many clear MPEG-2 channels in Band C via the new Intelsat 806 bird at $40 \cdot 5^{\circ} \mathrm{W}$, using a Nokia 9600 receiver. They include transmissions from Argentina, Chile, Bolivia, Brazil and Florida. Hugh Cocks has noted a digital channel (6110 SR , FEC 3/4), International MPI, via the $4 \cdot 187 \mathrm{GHz}$ transponder aboard PAS $3 R / 6\left(43^{\circ} \mathrm{W}\right)$: it's a private Nigerian-Minaj broadcaster that uses Band C for regional feeds and transmitter links. Other new sightings are Jordan TV via the Arabsat package from Hot Bird ($13^{\circ} \mathrm{E}$) and Palestine Satellite Channel on test card via Nilesat ($7^{\circ} \mathrm{W}$) - check the Horas-2 digital frequency at 11.823 GHz (vertical).

Though there's not much by way of terrestrial DX-TV at present, there's lots happening in the skies!

Terrestrial News

This time it's all digital TV! Denmark: A listing of future DTT transmitter allocations has been published. All but one are in the UHF bands. The exception is Thisted ch. E3. I wonder what digital TV via SpE looks like?! USA: On November lst 199842 TV stations transmitted their first digital TV programming, ahead of the FCC's timetable for a May lst 1999 start up. US broadcasters seem to be enthusiastic about DTT: several transmitters are operating at the maximum authorised ERP of 1MW. Stations are anxious to be first in their area, to gain early digital viewers and prestige.

Because of lack of mast space, several main stations in New York, Detroit and Chicago were unable to start digital transmissions on November 1st as hoped. They are expected to be on-air by May 1 st. Commercial stations have to apply for a digital licence by this date, RFIITERS : :

Normal transmission
 may be interrupted for Irag flashes. Monitor caption
 Helpdesk +44 $1715422244 \begin{aligned} & \text { 22:37 GMT } \\ & \text { December }\end{aligned}$

and should be on-air dual-casting with digital/analogue transmissions within three years. Non-commercial stations have a one-year extension.

The FCC is to start selling off the present analogue TV spectrum to communications and data servicing groups by mid-2002. By May

A digital feed from the Reuters Washington news bureau. The black bar is caused by incorrect camera shutter speed (1/60th instead of 1/15th sec.).
lst 2003 all stations should be dual-

> NEW 1999 CATALOGUE Available by return of post for only $£ 1.50$ or ring with your credit card (fully refundable on first purchase over $£ 20$) converters NTSC/PAL/SECAM

We are appointed agents for Sky Digital Satellite TV and ON digital terrestrial broadcasts

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH

 50 vis Tel: (01202) 738232 Fax: (01202) 716951 E-mail: atech@dircon.co.uk(All prices are inclusive of VAT, delivery by courier $£ 10.00$)

The SISLink satellite news gathering (SNG) truck of Poole Quay, Dorsef.
casting (analogue/digital). The planned date for the end of analogue NTSC transmissions is May 1 st 2005.
Sweden: Terracom AB has been on-air with experimental digital TV for six years. A full DTT service came into operation on January lst, running in parallel with analogue TV and including various data and interactive services and facilities. Two further networks are to start this spring. Each network will carry four channels. All the main terrestrial TV broadcasters are involved, plus several local stations. A fourth network should be in operation by the end of the year. The long-term plan is for six networks. Analogue services are to be phased out some time around 2010.

Satellite News

A number of satellite launches are due, the most important being W3, the new Eutelsat bird at $7^{\circ} \mathrm{E}$. It will replace Eutelsat II F4, and the EBU has confirmed that it will lease four 72 MHz transponders for European/ African/Middle Eastern coverage. At present the EBU uses twenty channels in a four leased-transponder package at $7^{\circ} \mathrm{E}$ for digital distribution of TV and radio services.

Arabsat 3 A is due to join 2A at 26° E after its February 16 th launch, providing coverage from the Middle East through Europe with a total Ku-band payload of some twenty transponders. Using digital compression, it will be possible to downlink eight TV channels via each transponder. 26° E could become another programme hot spot, with the advantage of easy reception using a second LNB on a dish aligned for Astra reception from $28.2^{\circ} \mathrm{E}$

AsiaSat-3S is to be launched in

March as a replacement for the ageing AsiaSat-l at $105.5^{\circ} \mathrm{E}$. The new satellite will carry sixteen 54 MHz transponders, doubling AsiaSat's Ku-band transponder count. Because of the financial problems in SE Asia, the launch of AsiaSat-4 has been postoned until 2000 or after. Television Corporation of Singapore is about to open a satellite news service called Channel News Asia.

Several Intelsat craft have been transferred to a new independent company, New Skies Satellites NV, based in Amsterdam. New Skies currently has Intelsat 513 at $177^{\circ} \mathrm{W}$, Intelsat 806 at $41.5^{\circ} \mathrm{W}$, Intelsat 803 and K at $21.5^{\circ} \mathrm{W}$ and Intelsat 703 at $57^{\circ} \mathrm{E}$. The all Ku-band satellite KTV, now being built, will go into orbit at $95^{\circ} \mathrm{E}$ and be added to the New Skies fleet. Intelsat has confirmed its order for a new satellite, 905 , to be launched in spring 2002 for location either over the Atlantic or the Indian Ocean.

BT Broadcast Services has installed a new satellite uplink for the BBC at its Moscow site

Rupert Murdoch has signed up with TFI (France) to provide a new children's channel, TFX, to be launched in 2001 for digital transmission as part of the Television par Satellite service. This has upset channel M6, which is threatening to pull out of TPS if TFX goes ahead as part of the package.

American Echostar, which operates the Digital Satellite TV (DST) service, has bought News Corporation/MCI's American Sky Broadcasting (ASkyB), including the programming, two satellites and the Arizona uplink centre. As part of the deal DST will broadcast several Fox Network programme feeds for various local stations, plus the Fox News channel, as part of its DST service until 2002. News Corporation/ MCl will receive shares that give them 37 per cent ownership of DST. Echostar will now offer over 500 channels of programming, also various data/internet services

There will be more regional feeds in the UK now that ITN has expanded its SNG fleet to collect news for regional TV, Channel 4 and 5. ITN ordered ten new trucks last March. Five became operational in December, two in January and the other three are to go into service in March

After considerable debate, RAI (Italy) has taken a ten per cent interest in the Canal+ digital service Telepiu

From the Archives

""Twas the night before Christmas and nothing stirred, not even a mouse." As I opened a jiffy bag the night before Christmas, something fell out. Not a mouse but a VHS tape, with the compliments of Andy Emmerson! Its contents are quite dramatic in TV terms

Some sixty years ago, in the autumn of 1938, the F2 layer was riding high with the MUF reaching into the low VHF band. Engineers at the RCA research establishment. River Head, Staten Island, New York were excited. They had installed a 405 -line system A receiver tuned to the UK's then only TV channel, from Alexandra Palace with the vision carrier at 45 MHz , and had calculated that flickering images might appear from across the Atlantic - programmes and test patterns from the only regular TV service then operational in the World, BBC ch. Bl

Images duly appeared, and the pictures taken of them were the first ever of DX-TV with an allelectronic transmission (several years earlier there were reports of Baird mechanically-scanned pictures being received at distant locations, but these were transmitted in the medium-wave band - the late Charles Rafarel, who wrote this column from 1963-1971, received 30-line transmissions at Leeds in 1933, some 300 miles from London).

Andy Emmerson's VHS tape shows a copy of the only surviving film of live, pre-war TV. The RCA engineers filmed the TV screen displaying BBC reception over four minutes. Picture quality is naturally poor - typical F2, with smeary, multipath images and deep fading. But those with long memories will recognise announcer Jasmine Bligh and see a Disney cartoon.

A copy of the tape sent to the National Film and Television Archive produced the comment that it is "the most significant find of "lost" TV yet made". A couple of stills from the video are reproduced nearby, showing the general quality of the 60-year old DX-TV reception. Andy includes some RCA Victor filmed commercials on the tape, showing several post-war domestic receivers - one is a small, bedroom set that's displaying the RETMA test card.

Andrew Emmerson can supply copies of this historial video. Any reader interested should write to him, enclosing an SAE, at 7 Falcutt Way, Northampton NN2

DON'T MISS NEXT MONTH'S 5
 43

the best choice. cubscribe to TELEVISION today!

- FREE POSTAGE
- PRIORITY DESPATCH
- SUBSCRIBE FOR 2 OR 3 YEARS AND SAVE!12 issues (1yr) £32 UK (£46 Europe, $£ 59$ Rest of World)24 issues (2yrs) $£ 51$ UK ($£ 74$ Europe, $£ 94$ Rest of World) - SAVE 20\%36 issues (3yrs) £64 UK $£ 92$ Europe, $£ 119$ Rest of Worlc) - 1 year FREE!

IN EVERY ISSUE

- News, equipment reviews, components, servicing solutions, business-building ideas.
- Television, VCR, satellite, CDs, PCs, consumer electronics.
- State of the art reports on digital TV and other developments

MONEY-BACK GUARANTEE OF SATISFACTION

If you are not completely satisfied with TELEVISION within the first 60
days, we'll refund your money in full - no questions asked.

IF YOU'RE AN ELECTRONICS PROFESSIONAL, YOU NEED TO SEE 'TELEVISION’ REGULARLY!

Please allow 28 days for delivery of your first issue.
three ways to pay

3. Please invoice me/my company

Purchase order number:
Name:
Company name
Address:

Postcode:
Telephone No:

A BBC TV tuning caption received by RCA in New York in 1938. The smudgy, multiple images are the result of the reception mode - F2 layer reflection.

Another still from the RCA film recorded on Andrew Emerson's VHS tape. The 1/60th bar is the result of my camera setting error.

8PH. Remember that this is a prewar film of multipath $F 2$ reception, so the quality is poor.

Equipment Review - the Universal Video Format Converter Model CDM630

 Back in the Sixties I worked at Southern Television, based at the converted Plaza Cinema, Northam, Southampton. This was in the precolour, pre-625-line era. Eventually Southern went out from Rowridge with 625 lines, but all Plaza programming originated with 405 lines and had to be standards-converted to 625 for UHF transmission - the 405-line material continued to be transmitted at VHF (ch. 11) from Chillerton Down. Several 19 in. racks of equipment some 6ft high carried out the $405-625$ conversion magic. Later, when a colour studio centre was built alongside the Plaza, all programming originated as 625 -line PAL - Chillerton then down-converted to 405 -lines mono. The studio centre was taken over by TVS in the early Eighties, and is now Meridian.Two years ago Aerial Techniques lent me a systems converter that would convert from 525 to 625 and vice versa, also converting between PAL, NTSC and SECAM as required. I checked the converter with an incoming 525line NTSC sports feed for CNN via Intelsat K , converting to 625 -line PAL. The results were startling. Apart from a slight "sticking" with fast-moving objects, e.g. a football, the quality was excellent - both the colour and the frequency response. with no smearing. A display of LEDS indicated the incoming signal standard, the user selecting the output standard. The converter was
housed in a small plastic box that could be held in the palm of your hand, and took about 200 mA at 12 V . Compare with the massive 19 in . racks previously mentioned!

Aerial Techniques has recently taken delivery of a much more up-to-date version that should be of interest to enthusiasts who are into satellite feeds, and also to dealers who get those awkward "aunty brought this VHS back from her holiday in America but it won't play on our video" laments. The new unit. Model CDM630, provides manual or auto selection of the following input standards: NTSC 3.58 or $4.43 \mathrm{MHz} ;$ PAL B/D/G/I/K; PAL-M and $-N$: SECAM. The output standards available are similar, except that SECAM is not available.

All input/output standards can be preset, or can be set to auto. A front-panel LED display provides confirmation of the input/output settings. Line conversion 525/625 or $625 / 525$ and field conversion $60 / 50$ or $50 / 60$ is done digitally, a built-in timebase corrector providing correct line and field pulse shaping and syncing. This, coupled with the 4 Mbits field memory, ensures a smooth video transition without sticking when fast-moving objects are present.

An AGC system maintains the output at IV peak-to-peak with inputs varying from 0.5 V to 2 V peak-to-peak. If there is no signal present or the input signal fails, the converter produces a colour-bar video output.

Input standard selection can be either left on auto or manually preset by means of a row of small buttons. The output standard is similarly selected.

The unit draws 450 mA at 15 V . It uses a sampling frequency of 13.5 MHz for the luminance signal and 6.75 MHz for the two colourdifference signals $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$. For these parameters the signal is 8-bit coded.

The unit weighs only 1 kg and measures $145 \times 95 \times 34 \mathrm{~mm}$. Apart from the video-standard setting buttons there are only input and output video phono sockets and the 15 V power input socket. A separate 230 V mains unit and various cables are supplied with the converter.

The performance of this unit is very impressive, especially when you consider the amount of technology in such a small plastic box. I'm told that the Universal Video Format Converter is available at £399 including VAT. For more information phone Aerial Techniques on 01202738232 or write with an SAE to Aerial Techniques. 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH.

The Universal Video Format Converter Model CDM630, which is available from Aerial Techniques.

Reports from Philip Blundell, AMIIEelec Pere Gurney, LCGI Chris Watton
Michael Dranfield
Stephen Corcoran Denis Foley Jim Kirkman
Colin J. Guy and Michael Maurice

Philips 32PW9631/25 (5GFL2.30 E AA chassis)

This widescreen was dead with a whistling noise that came from the power supply. Checks revealed that the line switch FET was short-circuit and that there was a low resistance across the line output transistor C2433 (510 nF in this model) was short-circuit. Normal results were obtained once a new FET and capacitor had been fitted. P.B.

Sharp DV5131H (S3B chassis)

The fault report said "dead". But I had a surprise when I switched the set on. Although there was no picture, a rushing noise came from the speaker! Voltage checks on the outputs from the power supply showed that the 9.5 V supply was missing. The cause was R745 (0.33Ω, part no. VRN-V V3ABR33J), which was open-circuit. When a replacement was fitted the set came on but the picture was flickering. This time the 9.5 V supply proved to be low and varying. The BY299 rectifier diode for the supply, D713, had developed high forward resistance. P.B.

Philips 28ML8800/05B (FLI. 6 chassis)

The FL range of TV sets has an onboard diagnostic mode that can be very helpful when tracing the cause

TV Fault Finding

of some faults but a distraction with others. After half an hour this particular set would shut down and flash its mute, stereo and standby LEDs. This, along with the error code 99 stored in the memory, showed that the protection line was in operation. Other fault codes were logged after 99 but turned out to be distractions.

I used the magnifier to check the large signal panel and found a few suspect solder joints, but after attending to these the fault was still present. On one occasion I happened to be looking at the screen just as the set shut down and saw that the vertical lines in the picture appeared to go ragged just before the switch off. The blue 'box' capacitors are suspect if you think that there is arcing in the line output or line scan coil feed circuits. The cause of the trouble was C2523 (8.2nF, 2 kV) which was arcing internally. P.B.

Grundig CUC7350 Chassis

If the mains fuse Si 60001 has blown, check whether the BUZ90 chopper transistor T60020 is short-circuit. If so look for a dry-joint at C60029 ($470 \mathrm{pF}, 1.6 \mathrm{kV}$): this could well be the cause of the transistor's failure. Before powering the set, check the mains rectifier diodes D60011-14 and D60023-24 which are in series with T60020. P.B.

Ferguson 59M5 (ICC5 IMC chassis)

"Smoked then went off" it said on the job card. A dry-joint had damaged CL48 (12.4 nF) in the EW diode modulator circuit and the TDA4950 EW correction chip IG01, but when these items had been replaced the set tripped three times then died. Voltage checks around the BC548B protection transistor TL17 produced some very odd readings. All became
clear when the transistor was checked out of circuit - it was opencircuit base-to-emitter. P.B.

Dynatron 256289IR/25R (Philips G110-SVHS + Black line chassis)

This set has been the workshop hobby for the past twelve months. First the power supply blew up, so a kit had to be fitted. Then the teletext panel developed dry-joints. After this the line output transformer failed.

We now had a sync fault - the set kept losing line lock and the video input at pin 5 of the TDA2579A timebase generator chip was low. This led us to transistor $\operatorname{Tr} 7364$ (BC858), which was open-circuit base-to-emitter. A replacement lasted for only about five minutes. As the output from $\operatorname{Tr} 7364$ goes to the teletext panel, which had given trouble before, we fitted another transistor then tried the set with the teletext panel removed. This time the transistor didn't fail. A few minutes spent with the continuity tester revealed the cause of the trouble. The video input track on the teletext panel runs round the outside and comes very close to the hole where the screening can fits. The track was intermittently shorting to the screening can's fixing leg. A piece of heatshrink sleeving ensured that they didn't short again. P.B.

Grundig CUC2000/3000 Chassis

With conventional TV sets line collapse when hot is usually a straightforward dry-joint type of fault. With this range of chassis however one possibility is an intermittently opencircuit winding on the combi (Ipsalo) transformer. When the winding between connections N and L of the
transformer is open-circuit the symptom is line collapse with the EHT still present. P.B.

Ferguson ICC7 Chassis

The complaint with one of these sets was intermittent black-and-white lines, usually at switch on or when the set was very hot. The fault would sometimes occur daily, then not for weeks. Severe patterning that originated in the IF module was eventually found to be the cause. Most of the soldered connections to the non sur-face-mounted components showed signs of breakdown. This was particularly the case with $\operatorname{CS} 25(1 \mu \mathrm{~F})$, which had nearly departed from the board. Resoldering cured the problem.

Note that the fault was not sensitive to vibration. Only removal of the unit and close visual inspection revealed the cause, P.G.

Grundig GT2103 (G1000 chassis)

I've had several of these sets in which R316 (10Ω) in the HT supply to the RGB output stages has failed for no apparent reason. The symptoms are a bright raster with the sound OK. In all cases I replaced the associated rectifier diode and reservoir capacitor to be on the safe side. P.G.

Matsui 209T

There was severe field foldover at the top of the screen. The chassis uses a fairly conventional discrete transistor field output stage, and in this case the cause of the fault was C303 ($3 \cdot 3 \mu \mathrm{~F}, 160 \mathrm{~V}$) which is connected to the collector of the upper transistor Q302.

With this chassis I normally replace the chopper transistor's base drive coupling capacitor C607 and resolder the line driver transformer as a matter of course. P.G.

Mitsubishi CT25A5STX
 (Euro 14SF chassis)

The job card said that this set was dead. On test it seemed to function, but after several minutes the HT became unstable. Problems with this power supply are usually caused by the electrolytic capacitors. The chopper transistor's base drive coupling capacitor C914 ($47 \mu \mathrm{~F}, 35 \mathrm{~V}$) was replaced as a matter of course, using a high-temperature type. The culprit was C905 ($470 \mu \mathrm{~F}, 25 \mathrm{~V}$) however. It's the reservoir capacitor for the LT supply on the primary side of the circuit. When it had been removed there were signs of electrolyte leakage on the board.

As a precaution I usually replace the electrolytics on the secondary side of the circuit. They too can give troubles because of leakage. P.G.

Philips 28ML8770/05 (FLI.IAB chassis)

This set was dead with a blackened mains fuse and the chopper transistor short-circuit. In cases like this the recommended procedure is to fit the Philips kit 4822310 31919, which includes all the items required for a reliable repair and a new power supply subpanel.

After fitting the kit components I checked the two line output switching transistors $\operatorname{Tr} 9544 / 9545$ (both type ON4673) before switching on. They were both short-circuit. When this has happened I check the tuning capacitor C2504 ($1.5 \mathrm{nF}, 2 \mathrm{kV}$), which on this occasion was leaky with a crack across its surface. I fitted a replacement rated at 3 kV and replaced the ON4673 transistors. At switch on everything worked normally. P.G.

Toshiba 2102TB

The field scanning was extremely distorted, with the top half virtually missing. As the condition improved when the set had been running for several minutes I assumed that the cause was dried up electrolytics. Correct scanning was obtained when the $100 \mu \mathrm{~F}, 35 \mathrm{~V}$ flyback boost capacitor C313 and the $2 \cdot 2 \mu \mathrm{~F}$ feedback capacitor C317 had been replaced. P.G.

Hitachi C2514T

If the power supply has blown up, with the BUT12AF chopper transistor and ZD952 short-circuit and the optocoupler IC901 faulty, also the line output transistor short-circuit, make sure that you check the value of R951 ($82 \mathrm{k} \Omega, 0.5 \mathrm{~W}$) in the HT sensing circuit. Otherwise you may have to replace them all again. C.W.

Philips G90AE Chassis

This set would start to trip a few minutes after coming on. The tripping would gradually speed up until the set popped about twice a second. The culprit was $\operatorname{Tr} 7652$ (BC557C) on the secondary side of the power supply. C.W.

Hitachi CPT2158

This set came on with a blank raster and maximum sound that couldn't be turned down. Nor would it go into standby when plugged in and switched on. There was no 5 V supply to the microcontroller chip as

D911 in the power supply was dryjointed. C.W.

Finlux 1000 Series

This set would go into standby intermittently. Simple this time: on investigation I found that there was a tiny hole in the line output transformer. C.W.

Nikkai Baby 10

If the problem you have is tuning drift when changing channels, don't immediately suspect the tuner. The cause of the trouble is more likely to be the integrator capacitors in the tuning voltage generator circuit C103, C104 (both $0 \cdot 22 \mu \mathrm{~F}$) and C105 $(0.47 \mu \mathrm{~F})$. Don't replace them with ordinary capacitors. Only high-stability tantalum ones are suitable. M.Dr.

Matsui 1482

This set would intermittently return to standby after about ten minutes. Someone else had resoldered many joints. A few weeks later the set went dead completely, with the standby LED out. This time there was no output from the standby transformer, whose primary winding was opencircuit. An ideal substitute is available from Farnell Electronic Components, part no. 926-280, at less than $£ 4$ - the original type costs about $£ 14$. M.Dr.

Goodmans 2575

The complaint with this set was no results. When I switched it on the 10Ω, 5 W resistor that feeds the line output stage became red hot. The cause of this was the line output transistor, which was leaky. As no obvious dry-joints could be seen in the area I fitted a replacement. At switch on the EHT went sky high and the new transistor failed. The line flyback tuning capacitor C134 had fallen in value from 10 nF to $3 \cdot 3 \mathrm{nF}$. M.Dr.

Ferguson D14R (TX805 chassis)

This set had a bright white picture with flyback lines. The obvious thing to check was the 150 V supply for the RGB output transistors. I found that the 10Ω safety resistor was open-circuit while the $22 \mu \mathrm{~F}$, 100 V reservoir capacitor CP22 had dried up. In case you are wondering about the capacitor's voltage rating, its negative plate is connected to the 103V HT line. M.Dr.

Sharp 37AM-23H

The complaint with this newish colour portable was poor picture/
sound and a blue screen. In fact the blue mute was cutting in because the set was slightly off tune. When the set had been retuned I found that the AFC was detuning it. In an older set a slight tweak of the AFC coil would probably have cured the fault, but in this set the AFC is buscontrolled.

The AFC is set by the microcontroller chip, which applies a voltage to the varicap diode at pins 5 and 6 of the IF chip to alter the frequency of the VCO. I cleared the fault by entering the service mode, accessing the non-volatile memory's hex program, going to location OD and changing the data here to 9 F . All that remained to be done was to retune the set again. M.Dr.

Sony SX Chassis

At switch-on the EHT appeared for about half a second then the power supply gave up. There was no overcurrent trip indication (flashing standby LED). When the feed to the 2SD1497 line output transistor Q804 was disconnected the power supply worked normally. The line drive was present and correct. So I replaced the 2SD1497 transistor. This proved to be ineffective, and there was nothing else obviously amiss in the line output stage. The transformer passed a simple resistance check, but was nevertheless faulty. A replacement restored normal operation. S.C.

Sony KV2052

Another engineer had quoted "about $£ 100$ " to fit a a new tube in this set. When I switched it on I found that the set was dead apart from a squealing power supply. HT was present when the feed to the line output stage was disconnected, so I checked the BU208A line output transistor, which was short-circuit. A replacement restored the set to life with a very high-quality picture. S.C.

Mitsubishi EE3 Chassis

This set took a long time to come on: during this time there was a fluttering noise from the speakers and the standby LED showed red. C955, the $2,200 \mu \mathrm{~F}$ reservoir capacitor for the 11.5 V supply, had fallen in value to about $400 \mu \mathrm{~F}$. I fitted a replacement rated at $105^{\circ} \mathrm{C}$. D.F.

Sony AE1 Chassis

The set would work normally for about twenty minutes then shut down with the standby light flickering rapidly. The fault could be instigated earlier by channel changing. In
the fault condition there was no remote control.

This suggested that the cause of the trouble was in the microcontroller chip area, where the 5 V supply was found to be low at 4.3 V . The supply is regulated by transistor Q604, which is type 2SD789-3. When a replacement had been fitted the supply was correct and the problem had been cured. D.F.

GoldStar CF25C22F etc (PC33J chassis)

The cause of field collapse was failure of the TDA8350Q field output chip IC301. LG Electronics' helpful technical department told me to obtain a kit of components from CPC, part no. KITPC 33 J . It contains RU4DS diodes, a TDA8350Q IC, a power transistor and other components, plus full instructions for the factory-approved modification. This was 100 per cent successful. J.K.

Sony KVM2120U (BE1 chassis)

There was a faint, greenish picture with flyback lines. No faults could be found on the tube's base panel, so I moved back to the TDA3505 video control chip IC302 on the colour decoder subpanel. A scope check at pins 1, 3 and 5 showed that the RGB outputs were very low. The inputs at pins 12,13 and 14 were satisfactory. Was it the chip or was it something else? In standby the outputs are taken to chassis via the DTC114ES digital transistor Q308, which was leaky (220Ω) collector-to-emitter. When it was removed the picture reappeared! J.K.

B\&O LX2802 etc

There was no raster. When the setting of the first anode control was advanced the cause of the problem was seen to be field collapse. The supply and drive to the TDA2170 field output chip were OK, so it seemed that a new IC was needed. Problem: the TDA2170 is no longer available! B\&O have a solution however. I was supplied with a TDA8172 chip and an adaptor PCB. Change 4 R 78 to $3.3 \mathrm{k} \Omega$ and 4 R 85 to 0.56Ω (both 0.25 W) and all is well. J.K.

Philips G110 Chassis

This set had no teletext. The cause was found to be a dry-joint at a sur-face-mounted link in the 12 V supply line on the text panel. Resoldering it restored the teletext, but the top of the display wavered from side to side - just as prerecorded VCR pictures do when played back via a non-VCR
channel. The cause of this was C2829 ($47 \mu \mathrm{~F}$) on the text panel. C.J.G.

Beko 16328

This set was dead with a shorted line output transformer. The Termal LOPT's used in these sets don't seem to be very reliable. They often arc from the side, destroying the adjacent BY299 video output stage supply rectifier. This produces the same symptoms as a shorted LOPT. The HR7218 transformer available from SEME and others is a cheaper and probably more reliable replacement. C.J.G.

Sony KVM2131U (BE1 chassis)

There was no line or field sync. When the teletext panel was removed however there was a normal picture. The 12 V and 5 V lines on the teletext panel were both low, the cause being an open-circuit track to the collector of the surface-mounted regulator transistor Q02. This whole area was black: it obviously runs very hot. C.J.G.

Mitsubishi CT2227BM

These old Blue Diamond tube sets seem to go on for ever. This one had field collapse however, with a smell of burning. The smell came from the $330 \mu \mathrm{~F}$ field scan coupling capacitor C412, which was desperately trying to ease itself out of its can - and would have done had I not switched off rapidly. Replacement of this capacitor and its companion C413, which was dead short, restored an excellent picture. C412 and C413 are connected in series. C.J.G.

JVC C14ETIK (Onwa chassis)

Words failed me when I removed the back of this set and found one of those awful Onwa chassis. Another 'repairer' had been at it as well. After rebuilding the primary side of the power supply and replacing the 12 V zener diode ZD402 and its feed resistor R425 (5.6) I had a picture with reduced height and no colour. The 12 V supply was slightly low and varied with picture content. Fusible resistor R434 in this supply had risen in value to about 15Ω instead of 6.8S. C.J.G.

Toshiba 256T9B

"Loses memory" the report said, but when I tried the set all the local stations were tuned in. So on to the test bench it went, remaining there for most of the afternoon and the next morning. Later, while trying to find
something tolerable to watch amongst the dross of what's called daytime TV, I discovered that with repeated channel changing all the stations would be lost. They would come back if the set was left off for a few minutes. So the set was not actually losing its memory.

Close examination in the area of the microcontroller and EEPROM chips, using a magnifier, revealed a multitude of dry-joints. Thorough resoldering cured the fault. C.J.G.

Matsui 1455

The sound was accompanied by a whistle that changed pitch as the volume was adjusted. The cause was traced to the two electrolytic capacitors in the DC volume control circuit, C429 $(2.2 \mu \mathrm{~F})$ which is in the microcontroller department and $\mathrm{C} 130(1 \mu \mathrm{~F})$ which is in the IF section.

Whenever one of these Onwa sets comes in for repair it's prudent to replace the two small electrolytics on the primary side of the chopper power supply circuit. C.J.G.

Philips G90B Chassis
There were two faults with this set.

The first was no text and the sound taking a long time to come on from cold. This was cured by replacing $\mathrm{C} 2846(220 \mu \mathrm{~F})$ on the text panel. The second fault was no text when the set was warm. It was cured by replacing the SAA5243P/E text processing chip. M.M.

Ferguson TX98 Chassis

The fault was partial field collapse. I found that the 50 V supply to the field output stage was very low at only 12 V . The rectifier diode for this supply, D16 (RGP30D), had gone high-resistance. M.M.

Philips G110 Chassis

One of these sets suffered from a very intermittent fault - it would just go dead, with no LED indication at the front. I resoldered a number of suspect dry-joints, and of course with the back off and the chassis in the service position the fault would not show up. Finally, on the third visit and after very close inspection, I spotted what appeared to be a poor connection between the rivet and the PCB land at pin 18 of the LOPT. Observation in darkness then revealed some arcing. Resoldering
provided a complete cure - pin 18 is the connection to the line output transistor. M.M.

Sony AE1C Chassis

There was sound but no raster. Checks showed that the resistor and rectifier diode in the tube's first anode (G2) supply were OK, and when the control was advanced a raster with green channel information appeared. Scope checks confirmed that video was reaching the TDA4580 colour signal processor chip IC301, so I fitted a replacement. Fortunately this cured the fault - after resetting the A1 control. M.M.

Matsui 2050

This old set is a Toshiba clone. The complaint was very poor, distorted sound. Some improvement was obtained by replacing the TDA 1015 audio output chip, but the real cause of the trouble was the loudspeaker, which is no longer available. A friend was able to supply a suitable replacement that came from a Bang and Olufsen set. One could even say that the results obtained were better than new! M.M.

AN240 $=150$	LA4178 $=150$	SAS580 $=250$	STR50115 $=500$	TA8227P $=215$	TDA3562A-PHI $=525$	$\text { TDA4605-3 }=395$	TDA8421 $=500$ TDA8443 = 295
AN316 $=390$	LA4200 $=350$	SDA3002 $=1115$	STR53041 $=400$	TA8238K $=200$	TDA3565 $=220$	$D A 4610=685$	TDA8443 $=295$
AN330tK $=350$	LA4275 $=200$	SDA3206 $=400$	STR5404t = 320	TA8403K $=250$	TDA3566 $=300$		TDA8568Q $=695$
AN5015 = 250	LA4280 $=250$	SDA4212 $=775$	STR56041 $=850$	TA8427K $=350$	TDA3580 $=499$ TDA 4545	TDA6101Q $=215$	TDA8709 $=600$
AN5256 $=150$	LA4282 $=350$	SL. $486=375$	STR58041 $=250$	TA8449P $=375$	TDA3653B $=250$	TDA7000 $=170$	TDA9045 $=1350$
AN5512 $=100$	LA4440 $=200$	SL490 $=220$	STR81159 $=400$	TA8611AN $=025$	TDA3654 $=080$	TDA7056 $=200$	TDA 9102C $=250$
AN5515 $=160$	LA4445 $=200$	SL1454 $=750$	STRD1806 $=360$	TA8690AN $=700$	TDA3654Q $=080$	TDA7222 $=100$	TDA9610H $=1185$
AN5321 $=100$	LA4446 = 170	STA441C $=220$	STRD4412 $=400$	TBA120T $=030$	TDA3827 $=200$	TDA7245 = 350	TDA9860 $=500$
AN5615 $=300$	LA4498 $=275$	STA901M $=310$	STRD4420 $=550$	TBA130-2 $=1299$	TDA3858 $=500$	TDA7250 $=400$	TEA1002 $=650$
AN5701 $=150$	LA4557 $=150$	STK0040 $=795$	STRD544 $=400$	TBA750C $=150$	TDA4050 $=145$	TDA7251 $=400$	TEA1015 = 300
AN5900 $=130$	LA4700 $=350$	STK011 $=895$	STRD6001 $=515$ STRD 108	TBA820M $=035$	TDA4228T $=360$	TDA7255 $=400$	TEA1035 $=200$
AN6612 $=080$	LA5601 $=110$	STK015 $=1440$	STRD6602 $=400$	TBA990Q $=200$	TDA4420 $=120$	TDA7273 $=080$	TEA1061 $=250$
AN7178 $=180$	LA5700 $=300$	STK078 $=1680$	STRD6802 $=375$	TCA650 $=250$	TDA4439 $=220$	TDA7350 $=300$	TEA2014 $=080$
AN8377 $=400$	$L A 6510=150$	STK $433=400$	STRM6545 $=775$	TD6359P $=600$	TDA4442 $=240$	TDA7385 $=900$	TEA2018A $=110$
BA3812 $=080$	LA7223 $=485$	STK441 $=650$	STRM6546 $=795$	TDA1012 $=120$	TDA4427 $=899$	TDA8138 = 200	TEA2019 $=1550$
BA5 BA5402 $=180$	LA7323 $=325$	STK457 $=470$	STRM6549 $=725$	TDA1013A $=110$	TDA4443 = 250	TDA8140 $=200$	TEA2026CV $=650$
BA5406 $=180$	LA7505 $=500$	STK463 $=750$	STRM6559 = 900	TDA1022P $=330$	TDA4480 $=280$	TDA8145 $=120$	0
BA6222 $=100$	LA7696 $=500$	STK561 $=450$	STRS5701 $=1700$	TDA1035 $=799$	TDA4500 $=300$	TDA8171 $=200$	TEA2031A $=125$
BA6235 $=050$	LA7830 $=090$	STK563 $=415$	STRS5717 $=500$	TDA1044 $=110$	TDA4503 $=250$	T	TEA2164 $=160$
BA6247 $=130$	LA7832 $=130$	STK583 $=500$	STRS5741 $=600$	TDA1054 $=180$	TDA4505A $=300$	TDA8177 $=215$	$2260=225$
BA6248 $=150$	LA7835 $=150$	STK2125 $=575$	STRS5942 $=700$	TDA1062 $=140$	1	TDA8190 $=299$	TEA2261 $=345$
BA7258 $=300$	LA7860 $=350$	STK2240 $=700$	STRS6307 $=450$	TDA1085C $=270$	TDA4505	TDA8215B $=225$	TEA2262 $=350$
BA7751 $=125$	LB1234 $=225$	STK3082 $=550$	STRS6309 $=550$	TDA1170N = 135	TDA4556 = 370	TDA8304 $=400$	TEAS170 $=140$
$B A 2751 S=1450$	LB1412 $=300$	STK4017 $=400$	STRS6525 $=1350$	TDA1170N-TFK $=850$	TDA4560 $=270$	TDA8349 = 350	TEA5581 $=200$
CNX62A $=080$	$L C 7011=500$	STK4060 $=1510$	STRS6545 $=725$	TDA $1170 \mathrm{~S}=135$	TDA4568=300	TDA8350Q $=399$	-
CNX82A $=060$	LM317T $=150$	STK4211/2 $=600$	STRS6707 $=800$	TDA1220A $=550$	TDA4600-2 $=160$	TDA8351 $=200$	50
$C N X 83 A=080$	LM348 $=050$	STK4211N $=800$	STRS6708 $=550$	TDA1327 = 200	TDA4600-2D $=260$	TDA8370 $=1125$	600
CNYIT $=225$	LM1035N $=350$	STK4362 $=450$	STRS6909 $=550$	TDA1412 $=085$	TDA4601 $=120$	TDA8376	A8817 $=240$
DPY2540 =	LM1111 = 180	STK4392 $=500$	STRZ2152 $=1000$	TDA1589 $=275$	TDA4605 = 190	TDA8380 $=200$	FMS5300 $=170$
HA1137 $=150$	$\mathrm{M} 105 \mathrm{BI}=300$	STK4773 $=820$	STV2110B $=685$	TDA1771 $=200$ TDA1904 $=199$			TFMS5360 $=170$
HA1199 $=130$	$\mathrm{M490BBI}=1299$	STK4833 $=650$	STV9379 = 400				
HA1377 $=140$	$\mathrm{M} 5106 \mathrm{P}=550$	STK5324 $=450$	STV	TDA1905 $=080$		ECIAL OFFE	
HA11215 = 299	$\mathrm{M} 5218 \mathrm{~L}=285$ $\mathrm{M} 51308 \mathrm{SP}=550$	STK5335 $=750$ STK5337 $=500$	TA7145P $=400$	TDA1950 $=175$	Panasonic Origina	Lopts Ca	ette Housings
HA $11351=765$	M5136S $=350$	STK5361 $=375$	TA7210P $=200$	TDA2004 $=150$	Original P/T No	ce each Make	Original Pt No Price
HA11412 $=600$	$\mathrm{M} 52307 \mathrm{SP}=600$	STK5431 $=1250$	TA7248P $=575$	TDA2008 $=100$	TLF14736F	2400 Goidstar	219-0108 1950
HA11702 $=300$	$\mathrm{M} 58658 \mathrm{P}=699$	STK5441 $=400$	TA7271P $=220$	TDA2161 $=590$	TLF14752	2300 Amstrad	1532341750
HA11720 $=650$	MB3712 $=600$	STK5461 $=500$	TA7299P $=200$	TDA2504 $=200$	TLF15506F	2800 JVC	PUS 29724A 1050
HA11744 $=330$	MB3732 $=240$	STK5466 = 500	TA7318P $=490$	TDA2530 $=300$	TLF 15534 F	2600 Sanyo	613-069-8 30001
HA12005 $=180$	MC1377P $=200$	STK5471 $=630$	TA7324P $=050$			Sharp	HDX3050GE99 1800
HA12411 $=575$	MDA2060 $=350$	STK5478 = 380					
HA13002 $=200$	MDA2061 $=400$	STK5481 $=470$	TA7609AP $=170$	TDA2556 $=230$			
HA13118 $=140$	MDA2062 $=70$	STK5725 $=450$ STK6932	TA7616P $=300$	$\text { TDA2577A }=200$	Please add $£ 1$ p\&p fo	orders over $£ 3$ and $£$	50 for orders under £3
$\begin{aligned} & \text { HA13119 }=140 \\ & \text { HA13151 }=800 \end{aligned}$	$\begin{aligned} & \text { NE545B }=225 \\ & \text { NE645N }=1225 \end{aligned}$	STK $730-060=645$	TA7658P $=100$	TDA2578A $=225$		nd VAT at 17.5\%	e total.
HA13155 $=900$	SAA $1006=300$	STK73907 $=599$	TA7680AP $=275$	TDA2579A $=210$	Rade counter	OPEN	
HA17384 $=200$	SAA1070 $=550$	STR450 $=700$	TA7691P $=165$	TDA2581 $=100$			
K K2206 $=150$	SAA $1294=1000$	STR1195 $=350$	TA7698AP $=400$	TDA2600 $=400$			
K K9257 $=120$	SAA 1293-3 $=515$	STR2105 $=550$	TA7719P $=200$				
KIA6210 $=400$	SAA5010 $=220$	R3215 $=275$	TA7743P $=600$	TDA $2680=350$			
$K \mid A 6281=250$	SAA5231 $=850$	STR6020 $=270$	TA7772 $=140$	TDA2700 $=550$			
LA $1180=075$	SAA5250 $=750$	STR10006 $=450$	TA8200AH $=325$	TDA2790 $=400$	Pear of	1247 Edo	
LA1260 $=075$	SAA7274 $=600$	STR20015 $=450$	TA8210AK $=275$	TDA2820M $=100$			
LA1369 $=200$	SAB3034 $=985$	STR40090 $=350$	TA8205AH $=220$	TDA3190 $=375$			
LA3155 = 175	SAB3035P $=275$	STR44115 $=475$	TA8210AH $=265$	TDA3500 $=525$			
LA3241 $=105$	SAB3037 $=1400$	STR50020 $=350$	TA8211AH $=200$	TDA3505 $=275$	Sales Hotlines:	2059055 - Fax	min: 01812052053
LA3400 $=250$	SAF1032P $=2099$	STR50092 $=260$	TA8215AH $=300$	TDA3530 $=365$ TDA3562 - ST $=525$	Free	x Order Line: 0800	318498
LA4108 = 125	SAF1039 = 699	STR50103A $=260$	TA8220H $=500$	TDA3562A-ST $=525$			

Answer to Test Case 435 - see page 323 -

Two faults for the price of one this month. It's quite a common situation in the service trade these days!
The first fault, no-go, occurred when the HT voltage rose excessively, reaching the breakdown voltage of the 130 V avalanche diode ZD952. At this point the set tripped back to standby. The two faulty components were in the error detector circuit: the $1 \mathrm{k} \Omega$ skeleton potentiometer VR951 (HT preset) and the 6.8 V reference zener diode ZD951. Standard stuff. With earlier Hitachi sets that use this circuit the $39 \mathrm{k} \Omega$ fixed resistor in series with the preset usually causes the trouble, but in this particular version it's the preset itself that causes problems.
The second problem was a quite different kettle of fish, to do with the user software. Perhaps a bit more thought, together with a knowledge of the set's features and its previous location (at a bankrupt bed-and-breakfast in Walmington-on-Sea), might have produced the answer. But it didn't occur to TechnoCrat - nor to Sage, Television Ted, Service Manager or the others. Why would you want to restrict the maximum volume setting and prevent the user messing about with the tuning? In a hotel situation, perhaps?
And that was it: the set was in the hotel mode. The problem was solved once we had the comprehensive servicemode instructions that Hitachi faxed to us.

NEXT MONTH IN TELEVISION

PC Operation and Repair

The hundreds of thousands of PCs in offices, homes and elsewhere represent a substantial source of servicing and repair business. You need to know how a computer's hardware and software operate, what can go wrong, and how to go about testing. K.F. Ibrahim starts a new series that provides practical guidance

Short Locator

A short locator is particularly useful when dealing with bussed-IC failure. Adrian Spriddell has devised a simple tester circuit that works well.

Setting up as an ASC

As a manufacturer's Authorised Service Centre you will recieve a steady work flow. This calls for investment and careful planning. Cliff Martin describes what's involved.

Servicing Hitachi 46TN Series TVs

John Coombes provides a fault-finding guide for the Hitachi Models C2146TN, C2546TN and C2846TN, which first appeared in 1995.

Toshiba Service Briefs
More know-how from Toshiba Technical.

Plus all the regular features

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE

INDEX DISC

Version 7 of the computerised Index to TELEVISION magazine covers Volumes 38 to 48 (1988-1998). It has thousands of references to TV, VCR, CD, satellite and monitor fault reports and articles, with synopses. A TV/NCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is quick and easy to use, and runs on any PC with Microsoft Windows or MS-DOS. Price is $£ 35$ (supplied on a $3.5^{\prime \prime} \mathrm{HD}$ disc). Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc. See the CD-ROM offer below.

FAULT REPORT DISCS

Each disc contains the full text for television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc, then access it via the Index disc. Fault Report discs are now available for:

> Vol 38 (Nov 1987 - Oct 1988); Vol 39 (Nov 1988 - Oct 1989); Vol 40 (Nov 1989 - Oct 1990); Vol 41 (Nov 1990 - Oct 1991); Vol 42 (Nov 1991 - Oct 1992); Vol 43 (Nov 1992 - Oct 1993); Vol 44 (Nov 1993 - Oct 1994); Vol 45 (Nov 1994 - Oct 1995); Vol 46 (Nov 1995 - Oct 1996); Vol 47 (Nov 1996 - Oct 1997); Vol 48 (Nov 1997 - Oct 1998).
> Price $£ 15$ each (supplied on $3.5^{\prime \prime}$ HD discs).

FAULT FINDING GUIDE DISCS

These discs are packed with the text of vital fault finding information from TELEVISION - fault finding articles on particular TV chassis, VCRs and camcorders,Test Cases, What a Life! and Service Briefs. There are now two volumes, 1 and 2. They are accessed via the Index disc. Price $£ 15$ each (supplied on $3.5^{\prime \prime}$ HD discs).

NEW - COMPLETE PACKAGE ON CD-ROM

The Index and all the Fault Report and Fault Finding Guide discs are available on one CD-ROM at a price of $£ 195$ (this represents a saving of $£ 35$). An Index to Electronics World (worth $£ 20$) is also included. Customers who have all the previous Fault Report discs can upgrade to CD-ROM for £45. Please quote the serial number of your Index disc.

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the Index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 48 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for non-UK EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

```
SoftCopy Limited, 1 Vineries Close, Cheltenham, GL53
ONU, UK. Telephone O1242 241 455.
Fax O1242 241 }468
e-mail: sales@softcopy.co.uk
Web site: http://www.softcopy.co.uk
```

Published on the third Wednesday of each month by Reed Business Information Lid., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by JJ Typographics Limited, Unit 4, Baron Court, Chandlers Way, Temple Farm Industrial Estate, Southend-on-Sea, Essex SS2 5SE. Printed in England by Polestar (Carlisle) Lid., Newtown Trading Estate, Carlisle, Cumbria CA2 7NR. Distributed by MarketForce (UK) Lid., 247 Tottenham Court Road, London WIP 0AU (0171261 7704). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Plessey Colour Camera with Audio $£ 65$

FERGUSONICC 7 HAANDSET		£3,00	
FERGUSON VIDEO			
FVGOLV HAND SET		\{4,00)	
F'KOLV HAND SET		\&4. 10	
Frrguson			
BATTERY CONVERTER TA606			
24 V DC 240 V AC		115.04	
ADAPTOK-KEYBOARD MAINS 12 V	broma	55.00	
BEVCH LAMP-FLUORESCENT			
WTTHI SIAGNIFIER	P/P ESOMea	E51].00	
BENCH POWER SUPPLY VARIABLE			
0-3IV 3A-TWIN METERS	P/P ¢5.00ea	£511.00	
bridge rectifiers		R 11.107	
BURGLAR AL.ARM KIT full descripti		£7.98)	
BURGLAR ALARM KIT ... send for			
Main Control panel.		¢12.50	
bukglar alarm Siren 12 Volt		50 p	
CAMCORDER UNIVERSAL BATTER	RY 9.6 V		
	HILPS	¢9.50	
CAMCORDER-TRIPGD SHOULDER	POD	¢5.6\%	
CAPACTTORS:			
IIN/2KV. 2NZ/2KV. $4 \mathrm{NZ} / 4 \mathrm{KV}$	EACl	15p	
$5 \mathrm{Nb} / 2 \mathrm{KV} .6 \mathrm{~N} 2 / 2 \mathrm{KV} .9 \mathrm{~N} 1 / 2 \mathrm{KV}$	EACH	15p	
$35 \mathrm{~V}-221 \mathrm{~F}$ SOV-4. 7UF SOV-100UF	EACH	25p	
A 1 BATTERIES 1.5 VOLT STC ALKAI INE		10 p	

CRYSTAL-AMHZ OR GMHZ EACII E1.25 per
CRYSTAL-TV-A.4MHZ OR 8.8 MHZ EA 24 MHZ XTALS
DESOLDER PUMP
digital capacitance meter -cmczeo 200PF-20MF
DIODES.TV-100 MIXED
FOCUS POTS K 40
FRONT PANELS (PLASTIC) FOR AAIITRAD.
PERDIO FIELITY DECCA TATUNG
PERDIO, FIDELTTY, DECCA, TATUNG ALL 1992 MODEL
GASSOLDER IRON-PORTASOL HOBBY IIANDSETS-SEE SEPAR ATE LISTING
INFRARED DET CTON
WIDESHORT ANGIE
WIDESH HORT ANGLE WITH RELAY
IFFRARED RECEITER-MATSUMI MINIATURE LOPTS-SEE SEPARATE LLSTING MAGNHIER -2X AND 4X
MILII VOLTMETER-ELECTRONIC-LEADER LMV-181 AOVACIT-IMVF/S COLOLRTV ATTEERY
CONVERTER IN $24 V$ DC TO 240 VAC
OUT MODULATOR TUNABLE SATELLITE-TV MODULATOR KIT.SV
FOR ALL CAMERAS
MOTORS - SEE SEPARATE LISTING
PANEL-CM201
PANEL-IK2-FM221I STEREO
PANEL-IK2-FM22II STER
PANEL-CVCBO-POWER
PANEL-CV C8O-POW
POSTOR 182 PIN
POSITOR 232265298009
POSTTOR-322 629 98011

POVDC 24 V
POWER SUPPIY-REGULATED 3 -12V S00MA PSUAC I2V 500:MA
PSUACOVIA
QUARTZ HALIGEN-
SOOW 200V FOR OUTDOOR LAMPS
rei ars-st b miniature

SCART TO A PIIONOLEADS 1.5 SM
SCARTTO OPHONOLEADS
SCARTTO DP PLUG
SCART TO SCARTLEADS
ALL PINS CONNECTED-1.5 METRES
SOUND 5 SMHZ MPM IIDOT
SOUND 6.0 OHZ MPM 1040

TRIPIER KT3K30
TRIPLER - INIVERSA
TUNERS - SEE SEPARATE LISTING

AMSTRAD

DISPLAY PANEL-LONG CHASSIS- 1992 /
FRONT PANEL FOR ALL 1992 MODELS READ AND DRUM-6000
TEAL
head and drum - Nicay
PANEL-CLOCK DISPLAY-8.900
 POWER SUPPLY LONG OR SHORT CHASSIS 1991//992 MODELS POWER SUPIPLY-SWIT
SALORA FINLEX SERVICE MANUAL MAINS ADAPTOR 12
NEGATVE CENTRE

Special Offer Sale - 20 Remote Controls $£ 20.00$ (mixed all well known brands)
A $\operatorname{ASTRTRAD}$
EXPORT
ANSTR
EXPOR
4000
4700
4700
6000
6800
GU80
UNERERSAL
DECCA
fer
Neccalicd
FFRGGUSON
BSG

IK2000. $1 k 7000$
SRI2 SRD3
SRDS
$\underset{\text { TVISATELIITE WITII FST }}{\text { T7 }}$

TUNERS

IF TERC8-022A TBIZA-A0ZAA-AL SATELLITTE
SATH BASE b.AND MIN SXT2.0223 small uififhif VHFAHF-TEKE-112A 4944
U321. U341. U342. U343 U344. U411, U412, U944 U743. 4744 Alistrad UE33. BOI ferguson
if2los re IF2 105 RE
MTP2011-AP MTP20I-A VIF-ICCS $\begin{array}{ll}\text { TX85. TX86. TX89. TX90 } & \text { EACH } \\ \text { TX98. T99, TX100 } & \text { EACII }\end{array}$ orion 1500 - UE33 BO9 Pavasomic
Small UlifNH sanyo UIFNHIF TDO I24EB Staki TUNEK AND IF 1810887 Pal UK tatung
UNIVERSAL 205 OR EQUIVALENT withaerial socket

MOTORS

CAPSTAN - ACE G4.B to ACE G40-B
EACH
EACH
H17ACHI
CPTIS8 (NO REPLACEMENT)
VIDEO RMO33E VIDEO PLUS

TV MODEL C25S8 (IR1 1820) CLE883A
Mats
ism
VSN
lisio

VX3000
300/ORION -TV AND VIDEO
RC FPACE MOO. FERGUSON SONY, GRUNDIG
MISLISISI
MTITSLRISHI
RM35-VIDEO
RM4S-VIDEO
RCRO2
ORION
TVAND video
MIDEO WITTILCD-199293 MODELS
PAEASONIC
EURSI142
TC11432. TC1642. TC2232
TX2034. TX2044. TX2200. TX2234 EACH
$\begin{array}{ll}\text { TX2034. TX204. TX2200. TX2234 } & \text { EACH } \\ \text { TX224. T20. } \\ \text { EACH }\end{array}$
RC201-T
RERRINO
PPIN
PV $1: 88$
PHiLIPS
NEWTYPE UNIVERSAL
RCHWOUG
SAMSUVG
HANDSETS TV \& VIDEO- 12 TYPES EACH
HANDSETS. TVA
SANVO
UNVERSAL VIDEO
SNEMERS
TVNIDEO- 1994 MODEL
TVNIDEO - 1994 MODEL
TIIORN

9000.9600. TX9. TX10. TX100 EACH
TEXTAND NON-TEXT

24
24
24
2
2
2
3

TX
TX85
TX89, TX86
TX 98.
1260781
FSTY 260482
LOPT BLUE SPOT
LOPT RED SPOT

$\begin{array}{lll}\text { PANISOVIC } & \text { EACH } & \text { £15.181 } \\ \text { TC203 TLF } \\ \text { TLF1457B. TLF701/6 } & \text { EACH } & \text { £15.00 }\end{array}$

TFB 31890, TFB 4088AD
VIDEO DECKS
AIWA ISOO
MATSUVXA 1100
MATSU 1500
MATSUI 1500
ORION DIO9
ORI
ORION DIO\%

AND HANDSETS
4 HEAD DECK FOR 1500
POSTER EQV 98099 ETC
POSTEREQV 98099ETC EACH 25 p
20 HIGH VOLTAGE CAPS
100 TR ANSISTOR MIXED
 PAI.TVADAPTOR HCR IN DATA PAI.TVADA
MOTOR 12 V

PLEASE ADD 17.5\% VAT TO BOTH THE GOODS TOTAL AND P/P CHARGE

TELETOPICS 2

Digital TV

According to GfK Marketing Services 170,000 digital satellite set-top boxes (SkyDigital and ON digital) were sold through retail outlets during the period October 1st-December 26th. Only 14,000 analogue satellite seceivers were sold during the period. Pace, which has returned to profitability, has announced that it expects to cease production of analogue receivers very shortly. Pace, Amstrad, Grundig and Panasonic are now producing Sky digiboxes while Pace and Philips have ON digital STBs in production.

There is some confusion over the compatibility status of the IDTV sets launched by Hitachi and Sony. It relates to the smart-card reader that will enable the sets to receive ON digital's subscription service. Philips has launched an IDTV receiver with a built-in ON digital smart-card reader, but the Hitachi and Sony sets were launched without the readers, which are not required for free-to-air reception. Card readers are expected to become available mid-year. ON digital says there is no guarantee that when they arrive they will be compatible. Hitachi says they will be.

ON digital has been warned by the ITC about its lack of teletext services. The problem relates to the software required to deliver teletext and is expected to be resolved shortly. SkyDigital transmits teletext alongside the MPEG video and sound, the STB converting it to conventional vertical blanking interval teletext for decoding in the normal way. ON digital's system will provide much higher-quality graphics, but requires a separate dedicated channel.

Interactive TV

NTL has launched its Internet-TV service, which enables viewers to explore the internet via their TV sets. The new $£ 15$ a month service is provided via a rented set-top box manufactured by the Taiwanese computer company Acer. It provides internet access plus e-mail and telephony facilities. The service will subsequently be upgraded to provide digital terrestrial TV channels and interactive operation. Telephone charges are extra. The system is based on the TV Navigator software developed by Network Computer Inc., a Californian company whose investors include Oracle, Netscape Communications, Acer, NEC, Nintendo, Sega and Sony.

Microsoft is to invest some $£ 300 \mathrm{~m}$ in NTL to accelerate the use of high-speed voice, data and video services in the UK. Microsoft has also bought a stake in United Pan-European Communications (UPC), Europe's largest private cable TV operator.

Front Row, the pay-per-view service established by UK cable companies NTL, Telewest and Diamond Communications, has launched a pay-per-view boxing service as a fol-low-up to its PPV movie service. Front Row is available to about 1.5 m cable subscribers.

Berlin Radio Show

This year's Berlin Radio Show, more correctly known as Internationale Funkausstellung '99, will be held at the Berlin Exhibition Grounds from August 28th to September 5th.

THE EURAS DATABASE ON THE INTERNET

- Authorised service workshops can now access the latest EURAS Service information online via the Internet

THE EURAS MONITOR

 DATABASE ON THE INTERNET- Thousands of monitor repair tips are available online with hundreds more added each month

FAX BACK SERVICE NO PC? NO PROBLEM.

- You can have access to the EURAS Database System, including circuit diagram extracts via your fax machine.
- covering all important service information
- for most manufacturers ...more than 510,859 repair tips for 624 manufacturers
...TecTra with more than 83,008 components
...30,087 IC diagrams
...35,175 compatible transistors on ECA

...More than 60,500 extracts of Circuit diagrams

...Diagram Archive Management
...Complete power supply circuit diagrams for 2,812 models

Save YOUR money and call us now on 01179860900 for trial details or visit us on the Internet@ ht tp://www.euras.com

Let us help you with FANTASTIC PRICES on цть BOXED 'B' GRADE STOCK

$T V$: \quad R/C FROM $£ 60 \quad$ FASTEXT FROM $£ 75$
SONY 28in WIDESCREEN $£ 325$ PANASONIC TXW28R3 £295 TOSHIBA 3377DB $£ 550$
MITSUBISHI C28C7B £195 SHARP 66DS03 £195
(ALL PRO-LOGIC TVS ARE COMPLETE WITH ORIGINAL STAND AND SPEAKERS)
VCRs: DAEWOO $£ 45$ FERGUSON Video Plus $£ 60$ PHILIPS Video Plus $£ 60$ AIWA Video Plus $£ 70$ PANASONIC Video Plus $£ 75$ JVC Video Plus $£ 75$ FERGUSON Nicam, $£ 75$ PHILIPS Nicam $£ 85$ AIWA Nicam $£ 85$ PANSASONIC Nicam $£ 85$ JVC Nicam $£ 85$

HI-Fls: AIWA NSX 522 f 65 AIWA ZR300 $£ 80$ SANYO SYS755 $£ 80$ SANYO DCF300 $£ 90$ SHARP DCD470 £90 SHARP DCD570 £95 JVC D301T f80 JVC D60IT £110 PANASONIC SCAK25 £80 SONY MHC RX70 £110 SONY MHC RX90 £155 KENWOOD D500 $£ 135$ KENWOOD D553 £160 TECHNICS SCEH60 £175 TECHNICS SCE600 £ 185

MEGA-DEAL ON VOLUME PURCHASES OF EX-RENTAL STOCK TO CLEAR
 Sanyo, Hitachi, Ferguson, Toshiba, Decca, Tatung, JVC, Mitsubishi, Philips - All Plastic Cabinet Type
 ALL WORKING STOCK £30 IN R/C
 All ex-Rental working stock VCR's, including Nicam. eg: FERGUSON FV57, FV67 £25

Fax Machines to Clear from 토
Multimedia Computer \& Monitors to Clear from 토5
All prices are based on a quantity of 5 units and subject to VAT
AT THESE PRICES WHY BUY EX-RENTAL WHEN YOU CAN HAVE TOP END GRADED STOCK!

Head Office:
BIRMINGHAM
0121-327 3273
Fax: 0121-322 2011

CLEVEDON
01275-341789

LONDON
PRESTON
0181-961 5005

ECTRONIC OMESTIC HOLESALES		
CURRENT MODELS	$\begin{aligned} & \text { EXAMPLES } \\ & \text { 14" R/C............................... } 60 \end{aligned}$	STOCK
		VS
14" R/C	21" NICAM 95	VIDE
1	28" NICAM 165	HI FI
21" F/T	CAMCORDER 150	CAM
	KETTLES 4CORDLESS PHONE	MIC
NICA		R/CASS
25"F/T	CORDLESS PHONE............ 10 MICROWAVES. \qquad 45	PHONES FAXES
25" NIC TOP BRAND		
28"	TOP BRANDS	KETTLES
29		
	AIWA - SONY- TECNICS PIONEER - JVC - PAN	VAC CD/PORT JUGS
PRO		
33"		KETTLES
33		TC
41" WIDE	SONY - TOSH - PAN JVC - PHILIPS - MITS FERG - SANYO - ETC	
		Items
DPL		Available

[^5]We are now supplying
First Class Top Quality Major
Branded Audio \& TVS/Video
to North Wales,
the North West \& Ireland
DIGITAL CAMERAS \quad CAMCORDERS
TELEVISIONS
MUSIC SYSTEMS
PHONES
MICROWAVES
We can HELP you to make MON HES
PHONE FOR TRADE LIST
ALL ITEMS CAN BE WORKED OR UNWORKED
ALLITEMS DIRECT FROM MANUFACTURER
UNIT 39 GAERWEN INDUSTRIAL ESTATE
ANGLESEY LL60 6HR
Tel/Fax: 01248 422123

NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT

$$
\text { Phone 0121-359 } 7020
$$ Expresess

\qquad

COASTAL AERIAL SUPPLIES

Unit X2 Rudford Industrial Estate Ford Arundel BN18 OBD Telephone: 01903723726 Fax: 01903725322 Mobile: 0976241505

wow
 WHayzsane 15D. QUALITY USED TV \& VIDEO COMPLETE RANGE OF TVs VIDEOS AND SATELLITES

Most makes and models available
TVs from $£ 3.00$ - Satellites from $£ 8.00$ Videos from $£ 15.00$

Prices Ex-VAT
Free Delivery Service to most areas of the UK
U.K.s Largest Export Wholesaler

Specialists in conversions to most countries systems

> UNIT 75, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURRORTONN-SEVERN, WORCESTERSHIRE DY13 9QB

Just 10 Mins from M5 Junct. 6 Worcs North

01299-879642 (3 lines) FAX: 01299827984

RADCOM UK

(EASI-SPARES) VIDEO PARTS

TESTED \& GUARANTEED SECOND HAND PARTS

WE HAVE MOVED

MORE STOCK BIGGER PREMISES BETTER SERVICE

Overseas customers welcome
When calling, please quote any numbers on the part itself, as this will help us locate the right part or any equivalents

NEW TELEPHONE \& FAX NUMBERS
TEL 01349854422
FAX 01349854400 (24 hr)
Email on user@wardrop.dial.netmedia.co.uk

Is your tube listed here?

14 KLL	370 HUB	51-457	59EAS
15CAC	370 KRB	51AEZ	59EAU
160DB	370 KSB	51ADG	59ECF
23KQT	370LHB	51 EAK	59EEF
2701B	$37 \mathrm{SX101Y}$	51EAL	59EDN
270AEB	$37 \mathrm{SX107Y}$	51EAT	59ECY
34EAC	$37 \mathrm{SX110Y}$	51 EBD	59 JMZ
34EAD	41 JHP	51 EBV	59KYL
34EDU	4202B	51EBZ	59TMZ
34EFU	42-420	51ECQ	60LCS
34JAE	42-590	51EER	64JKJ
34JAN	420EFB	51EFS	66EAF
34 JBU	42GGA	51GGB	66EAK
34 JFQ	46JNL	51JAR	66EAS
34 JLL	48ACB	51JCC	66ECF
34JRH	48EAC	51JFC	66ECY
34JSG	48EAX	51JKQ	66EDN
34JXV	48ECR	51JRU	66EGW
34 KCP	48EEV	51JSY	66LGY
34 KQV	48JRV	51JUH	68ACC
34KQW	48JSK	51JXH	68EDG
34LEX	48 KCS	51JXS	68EEH
36EAM	48KMW	51KPD	68EES
36JJR	48 KMX	51 KSV	68 EHM
3701B	48 KMY	51LPE	68KCW
3702B	48KTT	510UFB	78JBU
3708B	48LPE	510ZWB	79ECU
37-570	48QAD	510YUB	80AEJ
$370 E F B$	49JHT	54 HGB	80EFF
37GDA	51-441	59EAF	86ECT
370 HFB	51-443	59EAK	86EWS
			89JVU

Ring Irene or Jane for price and availability

Carriage and VAT extra

VISA

 EXPRESS TV
The Mill, Mill Lane,

 RUGELEY, Staffs WS15 2JWTel: 01889-577600
Fax: 01889-575600

Is looking for . . .
ICs TRANSISTORs SEMIs an up hill struggle?
A phone call to us could get a result. We stock a very wide range . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2 N 2 SA 2 SB 2 SC 2 SD 2 P 2 sJ 2 SK 3 N 3 SK 4 N 6 N 1740 AD ADC AN AM HBA Ge BD BDI RDV BDW BDX BF BFR BFS BFT BF\% fux BFY BLY゙B/ a SRR BRX BRY BS
 Buw bux fuy buz ca CD CX © DAS DG DM DS DTA DTC Ch GA HCF HD H́
 MC MDA J M. Mar MM MN MPS MPS MRF NJM NE OOP RAPAL PIC PN RC S AA SAB SAD SAJ SAS SDA SGG SI SE Si go STA STK STR STRD STRM STRS SVI T TA TAA fac Tba TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers'risk). We also stock a full range of other electonic components.
Mail, Phone, Fax, Credit Card orders \& callers welcome

Cricklewood Electronics Ltd
40-42 CRICKLEWOOD BROADWAY LONDON NW2 3ET TEL 01814520161 \& 4500995

FAX 01812081441

NEW WAREHOUSE

G9021" PHILIPS R/C TXT
CP9021" PHILIPS R/C TXT $£ 25$
CP110 PHILIPS 25" FST R/C TXT $£ 35$
FINLANDIA 21" NICAM STEREO $£ 40$ FINLANDIA 28" NICAM STEREO 665
N-CHASSIS FINLANDIA 28" NICAM . 550

ONE \&ONY
GRANADA DEALERS
INBIRMNGHAM

\% CENTRAL TV WHOLESALE DISTRIBUTION LTD

 SPECIAL CLEARANCE ON SA드﹎﹎ㅁㅌㅡㅗ| MAKE | OTY OF | OTY OF |
| :--- | :---: | :---: |
| | 5 AT | 10 AT |
| GRUNDIG 2000 | $£ 25$ | $£ 40$ |
| BT 200 | $£ 30$ | $£ 50$ |
| FIDELITY SR950 | $£ 35$ | $£ 60$ |
| VIDEO CRYPT DECODER | $£ 25$ | $£ 40$ |
| PACE 800 | $£ 40$ | $£ 70$ |
| AMSTRADSRX 400 | - | $£ 30$ |
| AMSTRADSRX 200 | - | $£ 15$ |

AMSTRAD SRD's 510, 540, 545 MIX OF 10's @ £60

EX-RENTAL TV's \& VIDEO's ALWAYS AVAILABLE PHONE NOW FOR BEST PRICES

FOR ALL EXPORT ENQUIRIES CALL OUR BIRMINGHAM OFFICE NOW!!

[^6]LONDON DEPO: JOSHI ELEY ESTATE, NOBEL RD, EDMONTON, LONDON, N18.

[^7]FAX: 01818841314

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

CLASSIFIED

PHONE 0181-652 8339

FAX 0181.652 8931
The prepaid rate for semi display setting is $£ 15.00$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $17 \% \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, I Ith Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Repair Information

IF YOU WISA TO JOIN THOUSANDS OF ENGINEERS WORLDWIDE SAVING TIME AND MONEY DAILY - PLEASE READ ON.

Just released: Ed 21 Fault Indexes in book format OUT NOW Edition 21 of the Television Magazine Index Covers over 14,000 Television, Video, Satellite, Camcorder \& Monitor faults, Large easy to read A4 format The newest addition to a highly acclaimed \& recommended series.
ISBN 1898394253
Edition 21: Complete set $£ 14.75$ Offer Price $£ 9.75$
Brand New: Fault indexes on disk - Version 1.7
Latest faults together with ALL data from ALL previous versions, Covering a MASSIVE 20,500!! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 19 years of Television.

Indexes on Disk Version $1.7 \quad £ 17.50$
Low cost updates are available for all Disk fault indexes - Current price $£ 5.50$
New: Kwik Tips on Disk Version 1.1
Already proving itself a valuable service resource in workshops large \& small, Kwik Tips V1.I is our LARGEST FAULTS \& REMEDIES database EVER, Compiled from over 20,000 !! Entries \& covering 1,435 Chassis \& Models, This concisely Edited TV \& Video repair database will easily pay for itself with just I repair. Kwik Tips on disk Version $1.1 £ 27.95$

Latest release - Equivalents guides - 2nd Edition.
Equivalents \& Models to chassis, TVs, Videos Camcorders \& Satellites, 5 sections, Over $6, \mathbf{3 0 0}$ Entries, Need we say more !!

Edition 2: Equivalent guides book $£ 5.95$
All programs require a PC or compatible \& are supplied with a user manual
E.C.S.

Technical Publishing (Est 1985)

316, Upton Road, Noctorum, Wirral, Merseyside. L43 9RW. Tel/Fax 01515220053
Please add $£ 1.75 \mathrm{P}$ \& P to total (Europe $£ 2.75$, ro. w. please enquire).

Fryerns

Service
$\underset{\text { Information }}{\substack{\text { Service } \\ \text { InS }}} \begin{gathered}\text { Circuil } \\ \text { Diagrams }\end{gathered}$
Circuit TVs, VCRs satellite AUDIO \& $\mathrm{HI}-\mathrm{FI}$
Most models/makes old \& new covered
Also fault guidance service available Prices are from $£ 3.75+£ 2.50 \mathrm{P} / \mathrm{P}$ i.e. 1 item - total $£ 6.25 \mathrm{inc}$ 2 items - total $£ 10.00$ inc 3 items - total £13.75 inc 4 items - total $£ 17.50$ inc Payment by credit card or postal order for next day delivery. Cheques to clear. Tel/Fax 01206211570 Answerphone outside office hours P.O. Box 5830 Basildon, Essex SS13 3RX

SERVICE MANUALS
Have you ever turned away work for want of a Service Manual? Have you ever bought a Service Manual and never used it more than once? Then why not join
THE MANUALS LIBRARY For details and membership application form write, phone or fax:
HARVEY ELECTRONICS 43 Loop Road, Beachley, Chepstow, Gwent NP6 7HE 43 Loop Road, Beachler, Chepstow, Gwent NP6 7HE
Tel: 01291623086 Fax: 01291628786 Visa, Access accepted

To Advertise
in Television Classified
Telephone Pat Bunce on 0181-652 8339 or Fax on 0181-652 8931

SERVICE MANUALS

 AND CIRCUIT DIAGRAMSThousands of different models available
For most U.K. European, Far East \& USA makes

	Service Manual	Circuits
B/W TV	$£ 6.00$	$£ 3.00$
CTV/VCP	$£ 10.00$	$£ 5.00$
VCR	$£ 14.00$	$£ 7.00$

Audio/Satellite/Microwave also available - P.O.A Cheque/PO with order only please.
Add $£ 2.00 \mathrm{P} / \mathrm{P}$ etc. to order total. Do not add any VAT

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Service Manuals

Available for most equipment.
From Valve Wireless to Video Recorders and everything else in between.
Televisions, Computer Monitor, Test Equipment, Satellite, all Audio, Amateur Radio etc etc. If you need a Service Manual give us a call. Originals or Photostats as available. Our entire index of Manuals is now being put on our web site for instant access.

Alternatively complete the coupon below for our Floppy Disc catalogue of Manuals and Technical Books available.

MAURITRON TECHNICAL SERVICES
8 Cherry Tree Road, Chinnor, Oxon OX9 4QY Tel: 01844-351694. Fax: 01844-352554.

Email:- enquiries@mauritron.co.uk
Web site at:- http://www.mauritron.co.uk/mauritron/
Please forward your Catalogue of Technical Books and Service Manuals Index on PC Disc for which I enclose 4 x ist class stamps.
Name
Address

Postcode
Telephone

SERVICE MANUAL LIBRARY

PAY ONLY £5 LOAN FEE FOR ANY SERVICE MANUAL OR KEEP IT FOR $£ 10$
 Lifetime Membership $£ 99$

- FREE Data Reference Manual showing the 1,000 's of manuals available with models cross referenced to correct manufacturer's chassis ($£ 9.95$ on its own). We take other manuals so members can get new manuals for only the cost of postage.

PHONE 01357440280 (Fax: 440384)

for full details or write to: Technical Information Services, Midlinbank Farm, Ryelands, Strathaven, Lanarks ML10 6RD World's largest stock of Service Manuals (TV VCR Combis, Test Eqpt, Audio, CD, Satellite, Dom Eq). Complete repair Data (Not the few faults offered everywhere else) and Technical Literature. ANY ITEMS ASKED - FREE QUOTE

SOME CURRENT POST-FREE OFFERS

Any CTV circuit from stock
Any VCR circ from stock............................ $\mathbf{1 0 . 5 0}$
The NEW European Scrambling Systems (The one they tried to ban)
raci.. $\mathbf{3 7} \mathbf{5 0}$ post free
Practical TV \& VCR Repair Manuals for............................. $\mathbf{£ 3 0}$ the pair
Servicing PC's (Tooley) or VCR's (Beeching) for........................ $\mathbf{£ 2 5}$ each
Microwaves.
£12
Oscilloscopes (How they Work - How to Use Them) . £15
The PAL System
£10
Practical Radio Repairs
£9
A discount of $£ 2$ on every item after the first in your order
PHONE NOW USING MASTERCARD, VISA, EUROCARD FOR IMMEDIATE DESPATCH Send now for our FREE listing of 100 's of offers (many only available from us)
You can also E-Mail s_manuals@hotmail.com

TEST EQUIPMENT

HOW DO YOU CHECK YOUR INFRA RED REMOTE CONTROLS?

the easy way is with these mandy TESTERS - EACH HAS A TRIANGULAR SENSOR WHICH GLOWS ORANGE IN INFRA RED. SPECIFY CREDIT CARD OR HANDY KEY FOB.
Suppliers to most major distributors.

BOTH TYPES
L9.00 EACH INC VAT INC PEP.

- C S PO Box 7455 Tamworth B77 2PJ
ecs@CallnetUK.com Tel: 01827261800 Fax: 01827261900

FOR SALE

Trade Only

Televisions
Teletext
Videos
Twin Speed Stereo
from $£ 5.00$ from $£ 20.00$ from $£ 20.00$ from $£ 25.00$
Minimum quantity - 10 units
Bournemouth Wholesalers 01202470443

SPARES \& COMP0NENTS

CHEAPEST HEADSIN THE UM								
Make id	Model No	Price	Hitachi	VTF70	£25.00	JV	HRD750	\$19.00
Ferguson	3 V 29	¢5.50	Hitachi	VTM598	£21.00	Panasonic	NV370	¢6.9
Ferguson	3V30	55.50	Hitachi	VTM622	£14.00	Panasonic	NV430	ع8.00
Ferguson	3 V 32	£18.00	Hitachi	VTM630	\$15.00	Panasonic	NV730	£12.00
Ferguson	3 V 43	£18.00	Hitachi	VTM640	£21.00	Panasonic	NV850	$\underline{21.00}$
Ferguson	3V46	¢9.50	Hitachi	VTM722	£14.00	Panasonic	NV870	£25.00
Ferguson	FV10B	\$10.00	Hitachi	VTM822	£14.00	Panasonic	NVF55	£30.00
Ferguson	FV12L	£16.00	Hitachi	VTM930	£ 21.00	Panasonic	NVFS90	£36.00
Ferguson	FV14T	£23.00	JVC	HR2200	¢5.50	Panasonic	NVG10	£11.00
Ferguson	FV31R	£12.00	JVC	HRD110	£5.50	Panasonic	NVG17	¢9.00
Ferguson	FV441	£17.00	JVC	HRD140	¢9.50	Panasonic	NVG20	£13.00
Hitachi	VT 100	£11.00	JVG	HRD150	¢9.50	Panasonic	NVG21	£13.00
Hitachi	VT11E	¢8.50	JVC	HRD170E	£10.00	Panasonic	NVG33	£11.00
Hitachi	VT 130	£15.00	JVC	HRD180	£16.00	Panasonic	NVG9	£8.00
Hitachi	VT17E	£16.00	JVC	HRD230	£16.00	Panasonic	NVH70	£25.00
Hitachi	VT33	¢8.50	JVC	HRD330	£17.00	Panasonic	NVH77	£26.00
Hitachi	VT330	¢8.50	JVG	HRD370	£19.00	Panasonic	NVHD100	£23.00
Hitachi	VT425	£15.00	JVC	HRD401	£17.00	Panasonic	NVJ30	£11.00
Hitachi	VT522	£14.00	JVC	HRD440	£17.00	Panasonic	NVJ35	£13.00
Hitachi	VT535	£15.00	JVC	HRD530	£23.00	Panasonic	NVJ47	£11.00
Hitachi	VT540	£21.00	JVC	HRD620	£16.50	Panasonic	NVL25	£11.00
Hitachi	VT570	£25.00	JVG	HRD660	£17.00	Panasonic	NVSD40	£11.00
tod many tolist. please ring fdr a free catalogue. all heads are guaranteed for 12 Months. ALL ORDERS RECEIVED BEFORE 5PM ARE DESPATCHED THE SAME DAY BY FIRST CLASS POST.OPEN MON-FRI 9 SM-5PM SAT $9 A M-Y P M \quad$ FREE P\&								
PLEASE ADD VAT AT 17.5\%. WE ACGEPT VISA, MASTERCARD, SWITCH AND CHEQUES. ACCOUNTS WELCOME. N.A.V, SPARES. Tel: 01274772249 Fax: 01274772247 WEST END BUSINESS CENTRE, 237 THORNTON ROAD, BRADFORD BD1 2JS								

LINEAGE

AVO MULTIMETER Model 8, £45.00. 500 volt megers $£ 30.00$. Prices plus VAT and p \& p. Send SAE for lists of surplus instruments and scopes etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 gEN. Tel: 01132496048.
PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel 01494814317.

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE: 0181-948 3702 FAX: 0181-332 0583

ALBA A AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG • GRANADA HITACHI • HINARI • INDESIT • ITT • KÍMARA • NIKKAI MATSUI • MURPHY OSAKI • NORDMENDE • LOEWE-OPTA PANASONIC PYE P PHILIPS • SANYO • SAISHO • SHARP SONY • SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE

> FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD • 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Mon-Fri 9 am to $\mathbf{1 2 . 3 0} \mathrm{pm}$ \&
Approx. I mile from Kew Bringe
$1.30-4.30 \mathrm{pm}$

REPAIRS

accént
T E C H N I C
CAMCORDER REPAIRS
Collection and delivery anywhere in the UK.

All makes, fast service.
Phone free for details.
Fax: 01905796385 (0800) 281009

> To Advertise in Television Classified Telephone
> Pat Bunce
> on 0181-652 8339
> or Fax on
> 0181-652 8931

SERVICE INFORMATION CIRCUITS and SERVICE MANUALS from 1930s-1990s: Radios, amps, radiograms, tuners. CDs, TVs, vidoos, LARGE QUANTTY CUSED TV and VIDEO SPARES BACK COPIES PW and TV MAG.
DAVE WILLIAMS 16 Church Street, Owston Ferry. Doncaster, S. Yorks DN9 1RG Tel and Fax: 01427728046

Together, we have the power to make things work

FIELD ENGINEERS

ATTRACTIVE SALARY + CAR + BENEFITS MIDLANDS, NORTH WEST \& NORTH EAST

Here at Scottish Power we know a thing or two about customer care. Hopefully, you do too We're growing fast because we put the customer first - a formula that's proven a huge success. This is your chance to expand your skills, working for one of the UK's top 3 electrical retailers.

Right now, we're looking for skilled Engineers, qualified to City \& Guilds 224 or equivalent with experience of repairing brown goods. In this job, it's all about getting it right first time and minimising inconvenience for the customer - and that's where you come in. You'll enjoy solving problems and talking to people, gaining a real sense of achievement at seeing a job well done.
We offer all the training and support you need to help your career advance, including full support from the manufacturers, plus a competitive benefits package and company car. All we ask in return is enthusiasm, a flexible approach and a full driving licence

Please write, with your CV, stating current salary details to: Mark Perrier, Recruitment \& Training Manager Electricity Plus, California Drive, Whitwood Industrial Estate, Castieford, West Yorkshire WF10 5QX E-mail mark.perrier@scottishpower.plc.uk

ScottishPower
 ELECTRICITY PLUS

EXPERIENCED A/V ENGINDER

We are a leading independent retailer based at Pinner in Middlesex and are looking for an experienced engineer to join our busy Service Department. We service a quality range of TV, video and audio products from the major brands which include Bank \& Olufsen, Panasonic, Sony, Philips and others. Full-time position but would consider part-time. Excellent package and manufacturer based training available. For further information contact:

Malcolm Mant or Kevin Enskat

HOMEVISION

30 Bridge Street, Pinner, Middlesex
Tel: 0181868 3220/3233

BUSINESS OPPORTUNITIES

BUSINESS FOR SALE
Est 10 years - Barnet Area
CTV's and VCR's Sales and Repairs
Sales mainly ' B ' Grade and
Ex-Rental, Digital Sat and On Digital Agents Mobile Phones all networks. Ideal Engineer Business

Turnover $£ 150 \mathrm{k}$ includes $£ 20 \mathrm{k}$ on repairs Low overheads rent and rates $£ 200$ pw
Price £50k + Stock Mr Peters 01813688897 after 6.30 MISC

AS NEW 'A' GRADED PRODUCT IN ORIGINAL PKG \& BOX WITH INST BOOK LEADING BRANDS ONLY. FULLY GUARANTEED ALL SOLD AT APPROX HALF USUAL RETALL
MICROWAVE OVENS $£ 39$
14" PORTABLE CTV............. $£ 69$
14" COMBI CT VCR............ $£ 135$
28" LARGE SCREEN from £295
CDR PLAYERS $£ 173$
KG PURCHASING LTD - BRADFORD Tel 01274 660196/665670 Fax 665246

PROPERTY

BE YOUR OWN BOSS
For Sale
Two Units Freehold Business Premises First unit:
Satellite Systems Sales and Repairs. Sky Digital and On Digital contracts potential to expand to TV/Video repairs and mobile phone sales

Second unit:
Sandwich Take Away

* Run by the same family since 1984
* Spacious flat and garden + garage
* Ideal Husband/Wife team
* Near M25 low business rates * Personal reasons force sale

Telephone 01708853360

COMING NEXT MONTH

Television will be publishing its annual 8 page colour TV/VCR spares and component supplement.
This would be an ideal opportunity to promote your company's product/services within this highly profiled section.

To find out more on how you can reserve your space why not give Pat Bunce a call on TEL:0181 6528339 FAX: 01816528931

```
Box Numbers: £22.00 extra
```

Spot Colour: 15% extra
Value Added Tax
All UK advertisement charges are liable to VAT at $171 / 2 \%$

CLASSIFIED ADVERTISEMENT ORDER FORM
To appear under heading:

All UK advertisement charges are liable to VAT at $171 / 2 \%$
Please give details of your advertisement below

- Post

Television Classified Department
11th Floor, Quadrant House, The Quadrant, Sutton,
Surrey SM2 5AS.
I enclose herewith cheque/PO for
E.. VAT)

Lid and crossed or use credit card facilities below.
Please debit my Access, Visa or Switch account as
below:

satilinder...

The NEW \& UNIQUE

Digital S ATELLITE alignment meter

by Premier Electronics (GB) Ltd

Get LOCKED on to DIGITAL TV signals

cost effectively

Key Points

- Align the DISH in minutes.
- 100\% accurate.
- Hand held unit.
- Indicates signal strength by bar graph display.
- Set Vertical \& Horizontal dish alignment.
- Measures bit error ratio for best picture by bar graph.
- LOW cost.
- Size L=205, W=100, D=37mm.
- Weight 650 gms .
- Colour casing orange.

Head Office
Seme Ltd Hudson Road Melton Mowbray LE13 1BS
01664484000
FAX 01664563976Sales HOT LINE

Ist
Willow Vale can now supply genuine spares and accessories for all these leading brands:

- Sharp
- Philips
- Pace
- Nokia
- JVC
- Matsui
- Grundig
- Ferguson
- Tatung
- Goldstar (LG Electronics)
- Panasonic
- Sony
- Toshiba
- Thomson
- Mitsubishi
- Akai
- Aiwa
- Pioneer
- Samsung
- Hitachi
- Amstrad
- Alba
- Bush
- Goodmans

TECHLINE is always available. Should you require any technical help or advice on 0891615915.
(*all calls charged at premium rate).
C.O.P.S. computer ordering parts system via our acclaimed 'viewdata' based order/enquiry system.

[^0]: Grove Farm, Long Lane, Barnby-ln-The-Willows,
 Newark, Notts NG24 2SG. Tel: 01636626895

 For full details send SAE or visit our Web site at: www.grovefarm.force9.co.uk

 Fax: 01636626767
 No Postage. No Vat

[^1]: SWITCH MODE TRANSFORMERS
 PACE 9000
 ORDER CODE: PACE9000 PRICE: 800p
 PRD800/PRD900
 ORDER CODE: PRD800 PRICE: 550p

[^2]: Auto Code Search

 - Customer helplin

 Order Code: GENIE
 GENIE - 3 way Universal Remote Control

 - Replaces 3 infra red remote controls

 Covers 1000's of models
 Controls TV, VCR and Satellite

[^3]: SUITABLE FOR
 MITSUBISHI 21" \& 25" TVs
 To replace the TDA8178S fitted to the following MITSUBISHI $21^{\prime \prime} \& 25^{\prime \prime}$ TV's:
 CT21A2STX, CT213STX, CT25A2STX, CT25A3STX CT25A4STX, CT25A6TX, CT25B2STX, CT25B3STX It comes with clear and concise instruction on how to carry out the work. ORDER CODE: MITSKIT1

 PRICE: 300p

[^4]: $\star \star$ PLEASE NOTE THAT POSTAGE ON ALL THE ABOVE METERS IS CHARGED AT $£ 3 \star \star$

[^5]: Phone 01212364335 Fax: 01212361744 184 Great Hampton Row, Hockley, Birmingham B19 3JP

[^6]: HEAD OFFICE: MICK 369 STRATFORD RD, SPARKHILL, BIRMINGHAM, B11 4JY. TEL: 01217721591 FAX: 01217666383

[^7]: TEL: 01818074090

