THE LEADING UK CONSUMER ELIGTRONICS TECHNOLOGYMAGAZINE $\square \square \square$
SERVIGING.VIDBO.SATBLLITK.DFVELOP VIENTF

Introducing the new

UNIVBRSAL Remote consrol

Our veny latest unfiversal remote control Nos onliy does is replace the main functions of 3 infro red remore controls it also looks precty good toos Cs mokes operating main entertainment systems easyo

OUR GENIE IS DESIGNED TO GIVE YOU 3 WISHES:

Increased turnover (especially leading up to Christmas).
Superb poine of sale
Easy to use which gives additional customer confidences

PLUS LOOK AT WHAT THE GENIE HAS TO OFFER! WHY YOUR CUSTOMERS NEED THE GENIE!

To operate your TV, VCR and Satellite systems, or any combluation of these 3 devices.

Preprogrammed for easy setup (Alito code search),
Govers 1000 's of popular brands
Customer Helpline. If you need help to moster the Gentes call our heiphine and our trained staff will be pleased to help you
And don't forges our customer Hepmine now operates even longers
Hentque desigas

Free counter top display and promo literature on request with every 50 pieces. Plus dummy Genie.

Also available with smaller orders at a cost of $£ 5.00+\mathbf{P} \& P$

Order code:
Silver RCO12
Blue RCO12 Blue
Green RCO 12 Green
Red RCO12 Red
Yellow RCOI 2 Yellow
Prices are available from our sales hotline!
Call today for the hottest remote this year!

Philex ELECTRONIC LTD. PHILEX HOUSE . 110-124 - THE Tel: 07000 Philex - Fax: 0181 2020015 - Web site: http://www.philex.com - Email: sales@philex.com

The Electronics Slowdown

Test Report:
 Video Alignment Test Tape

842
Eugene Trundle tries out the MB-SWISS 4 video alignment test tape, which is available from SEME at under $£ 30$. A bargain.

Teletopics

844
SkyDigital's offer, Teletest's new range of portable LCD monitors, digital TV equipment developments and other news.

FireWire, the PC and TV

Geoff Lewis, B.A., M.Sc., follows up his recent account of the FireWire digital signal interconnection system with a report on the latest controller chip from

TI and a description of the complementary Universal Serial Bus.

Service Casebook

John Edwards reports on servicing problems and procedures.

The Infernet Set Top Box
Martin Pickering tries out the latest consumer electronics product, which provides access to the

internet and e-mail facilities without the need for a PC. It's foolproof, and is available at a modest price.

Satellite Workshop

Jack Armstrong's column on satellite receiver servicing.

Editor
John A. Reddihough
Production Editor
Tessa Winford
Consultant Editor
Martin Eccles
Publisher
Mick Ellioft
Advertisement
Sales Manager
Grant Allaway
$0181-6523032$
Advertisement Sales
Executive
Pat Bunce
0181-652 8339
Fax 0181-6528931

Editorial Office

$0181-6528120$
Fax 018.1-652 8309
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

DTT Testing 883
Preparation for the start of digital terrestrial TV.
VCR Clinic
884

Servicing the Panasonic

Euro-1 Chassis
886
John Coombes on the faults you may encounter with this chassis, which uses digital signal processing.

Servicing in 1956

Austin Fairchild got his first servicing job in 1956.
Then, as now, it was a time of change.
DX and Satellite Reception
892
Terrestrial DX and satellite TV reception and news. A useful preamplifier for TV use. Roger Bunney reports.

Monitors

Hints and tips on dealing with monitor faults. An update procedure for the KDS KD1700V.
What a Life!
Camcorner
900
Fault reports and a note on the operation of auto-focus lenses.

October issue on sale on September 16th.

Next issue, dated November, on sale on October 21 st.

Decode and recodecas radios \& CD ployers guticky aith che loule As 400 rodiodeccoder

Noweod woidwidero sentice depportmenliculd Police Forces

CE A Aproved omeer alle currentregulaions Pitces siventiom
 Siater lificuratigover 100 modells of popular codios

Call csconvorofee whomoion packand demontration disk 01325307442

The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems
Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN
United Kingdom
Tel: + 44 (0) 1325310278
Fax: +44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

MARAPET ELECTRONIC COMPONENTS Tel: (01452) 532253 Fax: (01452) 549514
QUALITY SPARES for the CONSUMER ELECTRONICS SERVICING TRADE THIS IS JUST A VERY SMALL SAMPLE OF OUR STOCK. We can supply spares for a vast range of Makes \& Modeis. Please contact us with your requirements, we'll be pleased to offer a 'PRICE \& AVAILABILITY'. Many General Components, Tools and Home Computer Spares also available. Telephone or write for a Selected Spares Guide.
 ACORN/DIGITALABM AtC AT2090/08 (ESCOM) CALIBRA AT2LP0/48
COMMODORE 1084P/1084SP COMMODORE 1084ST ELONEX AT2090/33 GOLDSTARJDELL 154-166A OLVETTITFBZOOA OLIVETTI 11720018 PHILIPS CM8833 Mk 1 (popular uSlot type) PHILIPS CM11342 (CM8833 Mk 2)
CONTACT US POR TYPES NOT SHOWN. NB: PIEASC supply all markings loom the original typack. as
some monitore utilise mote than one type number

* Other Computer Spares avaliable **

OCTOBEP SPECIAL OFFERS (Valld to 21/10/98 or W.S.L.) PHILIPS VR422 $437 / 447 / 6485$ GENUINE VIDEO HEAD (DM4) FERGUSON TX 10051 cm Yellow Spot LOPTX FERGUSON TX9 LOPTX
ICP FN CIrcult Protectors - PACK of 10 MIXED ZENER DIODES - PACK of $30 \times 400 \mathrm{~mW}$ (2 each of $2 \mathrm{~V} 7-30 \mathrm{~V}$) Replacement Tresescoplc AERIAL for BT FREEWAY SOLDER PUMP Special - PUMP + FREE SPARE TIP UP TO 5CF OFF - SINCLAIR, COMMODORE and ATARI Spare

解
Our range of Video Spares is now much expanded - wa can supply parts tor over 150 makes. Try us aiso for a wide range of: Remote Controls, TV On-OH Switches, Posistors, Resistors, Capacitors, Fuses, Connectors, Cables, Tools, Domestic Electrical Accessories and much much more

EQUIPMENT MANUALS

Large order of Manufacturers Service \& User Information available.
Original manuals supplled if possible. We only show a few examples here.

 \begin{tabular}{lrlllll}
BANASONIC KXPP-1123 \& $£ 12.41$ \& PANASONIC TX2 \& $£ 9.52$ \& PHILPS CM11342 \& $\mathbf{~} 10.83$

\hline \& \& 7.42

\hline

PHILLPS CM8524 \& $£ 7.42$ \& PHILIPS CM8833 (Mk 1) \& $£ 9.49$ \& TOSHIBA ST-U2 \& $£ 7.49$

\hline
\end{tabular}

Very sorry. we are unable to accept callers - Please order by PHONE or POST. We accept: VISA, ACCESS, MASTERCARD. DELTA. SWITCH. EUROCARD

The Electronics Slowdown

To an old-timer it still seems strange that the electronics industry should be in a state of near slump, though the semiconductor sector has been suffering from falling prices for two and a half years now. It's almost incredible in this respect that until recently semiconductor manufacturers were continuing to pour vast sums of money into new fabrication plants. Korean companies, the main ones contributing to the build up of excessive manufacturing capacity, were of course encouraged by their government to adopt this policy. Didn't it occur to anyone that every large manufacturer can't go on expanding indefinitely, that there is not room for ever more newcomers, and that there must be a point at which production capacity exceeds likely demand?

The problem here is that Far Eastern businessmen have always tended to think in terms of market share rather than profitability, assuming that the former would inevitably lead to the latter. If you are lucky enough to have government backing, there's nothing to loose from adopting this policy. In the same way that MITI in Japan encouraged Japanese consumer electronics firms to achieve world dominance, the Korean government has been playing a dubious role in encouraging the country's semiconductor manufacturers.

There was a time when the electronics industry was relatively immune to basic business cycles. Shipbuilding, steelmaking and other 'rust-bucket' industries might suffer severe declines, but the ever-developing electronics technology and the need to adopt electronic solutions in all spheres of business ensured that the electronics industry thrived regardless. That was the situation until about a decade ago. Since then the
electronics industry has become such a large part of the global business scene that it's no longer decoupled from the general economic situation. The electronics industry supplies everyone: so a general decline affects electronics as well.

The present economic turmoil, which started in Thailand in June 1997 because the banking system had become over-extended, has developed to such an extent that some commentators are talking about a world slump. With gross domestic product contracting 15 per cent in Indonesia, eight per cent in Thailand and seven per cent in Korea this year (Goldman Sachs' forecasts) the situation is pretty grave. This background, taken in conjunction with the fact that electronics markets had already to some extent become saturated, suggests that tough times in our industry will continue for some time to come.

Even if there was plenty of money to spare and a general 'feel-good' situation, there are just so many PCs that people and businesses need. The PC market is a major part of the world's electronics industry: when it takes a breather, the semiconductor industry goes into significant decline. To some extent the PC market has been built up on the basis of continual replacement/ renewal as performance standards have improved. But here again there are limits, set by the physics of semiconductor materials, also the cost increase as firms push manufacturing processes to the limit. It has to be asked whether we really need everfaster processors?

Thie consumer sector could be the one that gets the electronics industry out of its present decline then moving forward again. This assumes that, in the same way that
businesses have been prepared to continue to invest in improved PCs and servers, the public will take to digital equipment - TVs, DVD players, camcorders and other products.

It seems that the Americans, always willing to invest in the latest technology, are already starting to buy HDTV sets - before the system specification has been finalised! HDTV sets are being sold with the digital decoder to follow - at extra cost. It would be nice to have customers like that . . .

Elsewhere, it's likely that the market for new consumer electronics technology will be slow to take off, particularly with consumer confusion over different systems in Europe, the general reluctance at present of Japanese consumers to spend (Matsushita has just announced a 58 per cent decline in after-tax profits in the first quarter of its financial year), and the economic woes throughout Asia and the Pacific rim - not to mention Russia.

One area that does seem to continue to thrive is IT software. According to research carried out by CSSA, the association for software and computing services organisations, nearly 300,000 new jobs have been created in the UK's computer services industry over the last five years. This implies that over ten per cent of the new jobs generated in the UK between 1993 and 1998 were in this sector. The figures include jobs in corporate IT departments. Here, the year 2000 compliance problem and work on preparation for entry into the European economic and monetary union have increased employment. But the research suggests that independent software and computer services firms have grown even faster. So, if you fancy a change from that smelly old soldering iron, the IT field beckons.

COPYRIGHT

© Reed Business Information Ltd., 1998. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

NDEXES AND BINDERS

Indexes for Vols. 38 to 47 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eight-year consolidated index on computer disc. For further details see page 901.
Binders that hold twelve issues of Television are available for f 6.50 each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 843.

SUBSCRIPTION ENQUIRIES

Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Credit card orders: 01622778000
Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:
UK $£ 32.00$ per year
Airmail Eire $£ 36.00$ per year
Airmail Europe $£ 46.00$ per year
Airmail Rest of World
$£ 59.00$ per year
NEWSTRADE ENQUIRIES
Distributed by MarketForce
Telephone:
01712617704

WEB SITE

For a full list of RBI magazines: http//www.reedbusiness.com

REED BUSINESS INFORMATION

noll TRADE GUIDE to ECONOMY Remote Contoos

 Contains over 5000 references to model numbers for which we can supply an economy remote control. The range has been well tested over a number of years and the majority are available at £6.95. Send now for your FREE guide and you will be well on the way to increasing your profits. All are normal stock items - phone today-with you tomorrow Mey ves ney only

Satellite division - Send for FREE price list - LNB's - decoders - receivers etc.

KIT1 86.95 Pace - PRD800,PRD900;PSR800,PSR900, Ferguson SRD5,SRD16,Grindig STR1, Maspro SRE250S/1,350S/1, Philips STU802/05M, Manhattan 850,950 Goodmans ST700, Toshiba TU-SD200,SAT99 KIT2 86.85 Pace - SS900,9200,9210,MRD920, Ferguson SRV1, Grundig GIRD2000,3000, Philips STU801, Network 900,9200 , Bush IRD150, Nokia SAT1500, Maspro SRE250S,350S,450S,Alba SAT6600, Fintux SR5700, Thompson SRS4

 XIT7 86.95 Churchill D2MAC decoder ETT8 E5.95 Pace MSS 100 IIT9 E9,45 Pace MSS200,300,Apollo KTT10 \&18.11 Pace MSS500, 1000

XT11 25.05 Fergueon SRD4
ITT13 E29.71 Echostar SR6500,7700,8700 IIT1S 87.96 Mitmtec (Sorenson PSUtype only)

EIT12 16.45 Echostar SR5500(earty PSU with adjuster) KT14 23.95 Amstrad SRD600

 Recoup fhecest wifhyour firstrepuir Repacir Mánual

hftp://www.teleparf.co.uk

Possibly a FIRST AGAIN, you can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message. All at the cost of a local call. If you don't have the gear to access the internet get straight in touch with your local computer supplier or ask us for a fact sheet.

nave you
 massulit* Economic supply iV \& Video parts ueres verer Fast

 If we cant find it immediately, we will HASSLE \&EHASSYE our supp Her, HASSLE the manufacturer We wil mate phone callafter phone call, and Fax after Fax on your behalf. WE: WII DOALI TFITS FORYOU. We do it willingly and for EREE

1N4001	0.03	2 SC 2274	0.35	AAII9	0.36	BC557	0.09	BT151500R	1.12	BZX6122	0.19	MAX 232 CPE	4.70	TA7281P	3.20	TDA3654Q	2.82
1 14002	0.04	2 SC 2335	1.12	ACl27	0.71	BC5578	0.18	BT151800R	1.15	BZX612V4	0.07	MC13002P	7.69	TA7698AP	5.97	TDA4500	4.66
1N4003	0.03	2 SC 2458	0.84	AD162	0.96	BC5588	0.18	BU208A	1.46	BLX6133	0.19	MC7812CT	0.77	TA7778P	5.11	TDA4501 H	9.57
1N4004	0.11	2 SC 2482	0.35	AF127	2.48	BC558C	0.09	BU208D	1.61	BZX6136	0.19	MJ15003	2.23	TA8205AH	4.50	TOA4503	4.00
1N4005	0.06	2SC2570A	0.38	AN5265	1.76	BC559B	0.14	BU2508AF	1.58	BZX613V9	0.14	MJ2955	0.77	TA8210AH	0.00	TOA4505E	7.35
1N4006	0.06	2 SC2655	0.31	AN5512	1.76	BC560C	0.11	BU2508DF	1.58	B2X615V6	0.11	M 1802	2.91	TA8210H	4.79	TDA4505M	11.97
1N4007	0.04	2SC2705	0.35	AN5515	2.79	BC635	0.23	BU326A	1.36	BZX6168	0.11	MJE13005	0.86	TA8215H	4.96	TDA4510.	2.74
1N4148	0.06	2 SC 2785	0.36	AN5521	1.66	BC636	0.14	BU406	0.69	B2X616V2	0.11	MJE18004	2.05	TA8216H	8.01	TDA4580	10.05
1N5062	0.14	2 SC3225	0.60	AN5601K	9.74	BC637	0.11	BU426A	0.86	B2X616V8	0.19	MJE3055T	0.45	TA8221H	0.00	TDA4600	2.14
1N5401	0.14	2 SC3330	0.52	AN7171K	5.56	BC639	0.21	BU500	1.41	BZX617V5	0.09	MJE340	0.45	TA8403K	2.31	TDA4600/2/3	2.82
1N5402	0.14	$2 \mathrm{SC3400}$	0.17	AN7190K	11.11	BC640	0.11	BU500S	2.05	B2X618V2	0.19	MJF 18004	2.05	TA8427K	3.76	TDA4601	1.46
1N5404	0.13	2 SC3423	0.60	BA157	0.09	BC846B	0.52	BU508A	1.29	BZX619v1	0.09	MJF18204	6.07	TAB718N	7.69	TDA4601D	1.46
1 N5408	0.09	2SC369	0.06	BA158	0.07	BC8488	0.35	BU508AF	1.32	BZX61C22V	0.11	MN650	1.71	TA8739P	6.01	TDA4605	4.10
1N6263	0.20	2 SC3807	0.91	BA159	0.11	BC848C	0.41	BU508APH	1.99	BZX7910	0.30	MPSA06	0.35	TAA550B	0.31	TDA46052	1.97
1 N 914	0.02	2 SC3953	0.72	BA3910B	6.99	BC856B	0.21	BU508D	1.56	B2X7912	0.11	MPSAI3	0.18	TBAI20S	0.89	TDA4950	1.76
1544	0.11	2SC4517A	3.14	BA5406	2.14	BC858C	0.19	BU508DF	1.88	BZX7936	0.10	MPSA63	0.18	TBAI20U	0.47	TDA7240A	2.57
2N2222A	0.23	$2 \mathrm{SC458}$	0.18	BA5412	2.48	BC875	0.33	BU508V	2.40	B2X793v9	0.09	MPSA93	0.11	TBA820M	0.35	TDA81 38	3.59
2N3055	0.50	2SC4742	5.11	BA6209	1.18	BD131	0.26	BU536	1.65	BZX795v6	0.09	MR856	0.11	TDAIO13A	1.56	TDA8140	4.62
2N3055H	1.29	2SC4769	4.02	BA6209N	1.27	BD132	0.26	BU806	1.03	BZX796V2	0.08	NE555	1.03	TDA1015	1.37	TDA8145	1.97
2N3773	1.52	2SC536	0.30	BA6219B	1.76	BD137	0.46	BU908	1.68	B2×79C33	0.11	NE555N	0.43	TDAI035T	4.27	TDA8170	4.70
2N3904	0.32	2SC945	0.11	BA6222	1.70	BD139	0.31	BUH515D	2.14	BZ×79C5V1	0.11	P600A	0.33	TDA1044	1.43	TDA8172	2.65
2 N 4401	0.11	2SD1207	0.57	BA6247	1.95	BD140	0.24	BUK444500B	2.40	BZX853V9	0.11	PGKE130A	2.55	TDAL060	1.08	TDA8175	6.41
2N555	0.12	2SD1246	0.30	BAT43	0.52	BD233	0.23	BUL54AR	1.27	B7Y8812	0.09	P6KE180A	4.65	TDA1085C	2.74	TDA8178FS	5.95
2SA1013	0.35	2SD1275	1.41	BAI85	0.96	BD234	0.36	BUT11	0.65	B7V882V7	0.23	PIC16C8404	4.4.50	TDA1170	1.82	TDA8180	4.87
2SA1015	0.11	2SD1276	1.39	BAV21	0.21	BD237	0.31	BUT11A	0.95	BZY883V0	0.11	R2KL	0.77	TDA1170N	2.57	TDA8190	3.59
2SA1020	0.44	2SD1292	0.64	BAX14	0.17	BD238	0.24	BUT11AF	1.18	B7Y884V7	0.09	R2M	0.84	TDA1170S	2.05	TDA83500	5.56
2SA1029	0.26	2SD1330	0.31	BC107B	0.20	BD243	0.45	BUT12A	1.17	B7Y885V1	0.13	R4050	3.04	TDA1180P	2.48	TDA8380	2.53
2SA1048	0.19	2SD1397	2.31	BC108	0.24	BD243A	0.60	BUT12AF	1.87	BZY88C12V	0.09	REGBABY10	13.00	TDA15160	3.59	TDA9503	2.13
2SA1145	0.36	2SD1398	2.14	BC109A	0.00	BD243C	0.44	BUT18AF	1.37	CD4001	0.24	RG2	0.64	TDA1518Q	4.27	TEA1039	2.11
2SA1286	0.60	2SD1426	3.51	BC141	0.36	BD244A	0.34	BUT56A	1.19	CD4017	0.47	RGP10G	0.26	TDA1519A	2.74	TEA2018A	2.29
2SA1 370	0.43	2SD1427	2.91	BC147A	0.24	BD244C	0.43	BUN48A	1.97	CO4049	0.35	RGP15G	0.33	TDA1520B	4.50	TEA2029C	7.04
2SA1706	0.50	2SD1432	5.04	BC148A	0.35	BD245C	0.94	BLWIIA	1.32	C04052	0.29	RGP15J	0.17	TDA1524A	7.52	TEA2031A	4.26
2SA733	0.18	2SD1439	5.86	BC148B	0.11	BD433	0.29	BUW41B	1.39	CD4053	0.61	RGP15M	0.44	TDA1553Q	4.79	TEA2164	3.40
2 24872A	6.10	2SD1441	5.98	BC158B	0.12	BD434	0.31	BUW84	1.03	CNX62A	1.29	RGP30M	0.30	TDA1554Q	8.12	TEA2260	2.48
254933	0.36	2SD1453	3.85	BC168	0.04	BD436	0.52	BUX84	1.03	CNX82A	2.10	S2000A		TDA15570	4.23	TEA2261	3.68
2 SA940	0.82	2SD1497	4.74	BC182	0.14	BD437	0.52	BUZ71A	1.03	CNX83A	2.55	S2000A3	2.57 3.59	TDA15580	7.69	TEA5101A	6.48
2SA950	0.18	2SD1541	4.96	BC182L	0.14	BD438	0.38	BUZ80	3.52	CNY75B	0.52	S2000AF	3.59 1.46	TDA1670A	2.98	TC106D	0.82
2SA966	0.41	2SD1548	5.95	BC184A	0.12	BD681	0.47	BUZ80A	4.15	DTA114ES	0.31	S2055AF	1.46 3.74	TDA1675A	3.85	TIC246D	1.54
2 SA992	0.31	2SD1554	3.25	BC184L	0.06	BD826	0.43	BUZ90A	3.40	DTC124ES	0.77	SAA129302	10.37	TDA1904	1.63	TICP106D	0.60
2SB1010	0.35	2SD1555	2.65	BC187	0.47	B0839	0.57	BUZ90AF	3.30	DTC144ES	0.19	SAB3035	1.71	TDA1908A	5.61	TP110	0.35
2SB1066	0.82	2SD1556	5.11	BC212	0.09	BD901	0.52	BY127	0.18	FR605	1.90	SG264A	12.88	TDA2002	1.12	TP112H	0.77
2581143	0.77	2SD1651	2.38	BC2128	0.19	B0902	0.60	BY133	0.08	FXT749	0.43	SGSIF344	12.88	TDA2005	1.83	TPP120	0.40
2SB1243	0.60	2SD1858	0.43	BC212L	0.18	B0911	0.52	BY206	0.20	HA13001	3.85	SLI430	10.70 1.92	TDA2006	1.06	TP122	0.40
258560	0.43	2SD1877	2.14	BC237	0.12	BDT64C	1.18	BY227	0.13	HA13119	2.05	SL1431	2.82	TDA2030H	0.91	T1P2955	0.89
2 S8643	0.29	2501878	2.63	BC237B	0.19	B0T65C	1.68	BY228	0.26	HA13151	13.20	SN74141N	2.82 0.17	TDA2030V	1.46	TPP29E	0.77
2SB647	0.57	2501879	3.16	BC238	0.11	BF194	0.22	BY2291000	1.31	HA51338SP3	7.69		10.00	TDA2050	4.56	TIP3055	1.08
2SB649A	0.77	2SD1884	3.35	BC2388	0.16	BF195	0.07	BY255	0.14	HM6251	14.32	STK414111	10.23	TDA2270	12.08	TIP31A	0.36
$2 \mathrm{SB688}$	1.61	2SD1887	3.56	BC307	0.06	BF197	0.18	BY299	0.18	ICH281	+ 0.26	STK414211	10.23 9.40	TDA2540	1.29	TP32C	0.40
2SB698	0.35	250288	0.85	BC307B	0.15	BF199	0.18	BY397	0.20	IR9594	15.79	STK4152II	9.40 10.95	TDA2541	1.12	TP35C	1.82
2SB716	0.43	2SD350A	1.97	BC308	0.09	BF258	0.04	BY398	0.16	IRFBC40	15.79 5.98	STK4192II	14.64	TDA2577A	3.45	TP41C	0.65
2 SB772	0.50	2 SD381	1.66	BC308A	0.09	BF420	0.21	BY399	0.12	KIA6210AH	6.15	STK5332	14.64	TDA2578A	3.20	T1P42C	0.52
2SB774	1.61	250400	0.34	BC308C	0.26	BF421	0.24	BY448	0.30	L44270	2.73	STK5342	2.82 4.07	TDA2579A	4.91	HPL761A	1.85
2SB891	0.60	2SD401A	0.77	BC309B	0.10	BF422	0.19	BYC14J	0.35	L44280	3.12	STK5372H	4.07 6.84	TDA2581Q	2.57	IIPL791A	1.25
2 SB892	0.35	2SD468	0.28	BC327	0.10	BF423	0.14	BYD 33 D	0.12	L44282	5.11	STK5421	6.84	TDA2582	3.85	TL072CP	1.03
2SC1008	0.24	250667	0.38	BC328	0.14	BF459	0.43	BYD33J	0.16	144445	3.45	STK5481	8.52	TDA2593	1.12	TMP47C432AP8189	
2 SCl 24	0.48	2SD569A	0.64	BC337	0.14	BF471	0.37	BYD33M	0.26	144450	2.50	STK7253	8.12	TDA2600	7.69		15.19
$2 \mathrm{SC1} 318$	0.19	2SD718	1.90	BC338	0.06	BF487	0.57	BYV10-40	2.55	La4700	4.27	STK7308	7.69 6.41	TDA2611A	0.64	TMP47C434N3537	
2SC1473	0.21	2S0756	0.47	BC368	0.18	BF491	0.41	BW958	0.21	L46324	2.05	STK7348	6.41 5	TDA2611AQ	1.32		15.22
2 SCl 573	0.52	2SD837B	1.12	BC369	0.18	BF494	0.12	BW95C	0.28	LA6510	2.94	STR11006	7.37	TDA2653A	4.70		
2SC1675	0.14	2SD856	0.79	BC372	0.53	BF759	0.38	BY96D	0.27	LA7830	1.88	STR4211	9.40	TDA3190	2.05	TMP47C434N3555	
2SC1685	0.21	2SD882	0.43	BC546A	0.11	BF869	0.38	BY96E	0.53	LA7832	2.40	STR50020	9.38	TDA3330	14.21	TFU2732	10.05
2SC1740	0.16	2SD898B	6.41	BC546B	0.12	BF871	0.41	BYW56	0.31	La7835	2.99	STR50103	4.48	TDA3505	2.40	U2829B	3.40
2SC1815Y	0.11	2SD965	0.67	BC547	0.11	Br959	0.18	BW95C	0.21	LA7837	4.19	STR50103A	5.56	TDA3560	6.13	UC3842	1.46
2SC2001	0.23	2S0965R	1.05	BC547A	0.04	BF960	0.30	BW96E	0.50	LC7132	4.70	STR54041	5.15	TDA3561A	3.85	UC3844	1.20
$2 \mathrm{SC2023}$	3.18	2SK1117	3.40	BC547B	0.11	BF970	0.43	BYX55600	0.23	LED3G	0.10	STR5412	4.02	TDA3562A	4.62	UC3844N	1.91
2SC2073	1.03	2SK1118	3.40	BC548	0.11	BFR90A	0.68	BzV10	1.34	LED3R	0.10	STR58041	3.42	TDA3565	2.74	UPCl 3184 V	3.85
2SC2078	1.00	2SK30A	0.35	BC548A	0.11	BFY51	0.39	BZV85C5V1	0.15	LED3Y	0.10	STR59041	8.11	TDA3566	6.41	UPC1365C	1.70
2SC2120	0.23	7407	0.69	BC5488	0.06	BR100	0.18	BZX6110	0.16	LM317T	1.29	STR6020	6.07	DA3576B	10.31	UPC1378H	1.71
2SC2229	0.31	74HCO4	0.88	BC548C	0.14	BR103	0.62	B2X6111	0.10	LM324N	1.48	STRD1816	7.69	TDA3592A	4.60	UPC1394C	1.92
2SC2230	0.55	7805	0.78	BC5498	0.11	BRX44	1.02	BZX6112	0.13	LM339N	0.50	STRD4420	10.64	TDA3640	5.98	UPC1488	2.99
2SC2235	0.36	7806	0.60	BC550B	0.16	BRX49	0.43	BZX61120	0.28	M49481	11.85	T9053V	1.35	TDA3650	11.04	UPC1498H	2.31
2SC2236	0.36	7809	0.69	BC550C	0.09	BRY55	0.28	B2X6113	0.11	M5218L	0.69	T9064V	1.87	TDA3653B	1.54	UPC574J	0.86
2SC2240	0.21	7812	0.52	BC556A	0.11	BSX20	0.35	B7X6116	0.19	M54544	2.04	TA7120P	0.66	TDA3653C	2.82	$\times 2402 \mathrm{P}$	5.78
2 SC 2271	0.67	78L05	0.35	BC556B	0.14	BT139600	1.29	BZ×6120	0.19	M58655P	4.96	TA7280P	2.74	TDA3653CP	2.57	2TK33B	0.28
														TDA3654	1.44	2TX650	0.51

Test Report

At under $\mathbf{£ 3 0}$ this VCR test tape from SEME is a worthwhile buy for any service organisation

Video Test

Video alignment test tapes have traditionally been very expensive. So the price tag with this one, $£ 27.98$, came as a surprise. The MBSWISS 4, made by Nedis BV of the Netherlands, is a PAL-VHS standard-play test tape that has a wide range of features for electrical and mechanical checks and alignment. It's recorded on high-quality Panasonic tape and has a running time of thirty minutes.

Features

The test image produced by the tape, see Fig. 1, has many of the features provided by a conventional testcard pattern - grey-scale step-wedges, colour bars, frequency gratings and white-black-white transitions. In addition there are several 'special' features: a head-switch point that's well inside the main display, with associated pattern features; and some head-test

Fig. 1: The playback test pattern produced by the tape. The headswitching point is the 'kink' about a third of the way down the screen. The bottom third of the picture consists of standard (WYCGMRBB) colour bars. The VCR that was used to take this photograph had somewhat worn video heads, indicated by the reproduction of the blocks below the centre line of the picture.
blocks to give an indication of wear, balance, resonance and video head damping.
The first minute of the tape is recorded with a reversed PAL chroma field sequence, to check for an incorrectly fitted (180° out) head drum. Thereafter the pattern and sound remain steady. The audio signal is a 1 kHz sinewave that's recorded on both hi-fi/helical and mono/longitudinal tracks.

On Test

My first test of this tape was for tracking-centre, in comparison with the industry-standard JVC MH-2. It was spot-on, coming in at exactly the same tracking setting. After this I used the new tape for all my workshop needs for many weeks.
The most common uses of a test tape are for checking guide alignment and for setting the X position of the audio/control/erase head. No problems here. For azimuth setting of the audio head the 1 kHz tone was adequate - not as good as the 5 or 6 kHz tone that some other tapes provide.
The main features of this alignment tape spring from the fact that its field sync pulse is recorded about 13 msec before the head switching point, rather than $416 \mu \mathrm{sec}$. The only effect of this on the picture, which synchronises all right, is a 'glass-bar' or tear effect about a third of the way down the picture, because of the head switchover. You adjust the head-switching point to coincide with a horizontal line in the pattern, see Fig. 2. This corresponds with the exact 6.5 H point required. An oscilloscope check proved that it was right.
The second virtue of the offset head-switching point is that you can easily see the skew error (corresponding with longitudinal tape tension) at the start and end of a head scan - above and below the switching pulse. The idea is to get the vertical black bar at the centre of the picture (see Figs. 1 and 2) as close as possible to the centre arrow above, by adjusting the back tension. Tolerance limits are indicated by the outer markers, one of which can be seen in Fig. 2. It worked well for me,
compared with a torque-gauge cassette. The latter and the tentelometer will now lie undisturbed in their drawer - and I won't have to keep replacing the damaged tape in the torque-checking cassette!
The three head-test boxes just below the centre line of the test pattern, see Fig. 1, contain specially-recorded signals to check for dropout compensation, head wear and video FM preamplifier gain, bandwidth and tuning/resonance. I found that it was easy, with some practice and experience, to judge the condition and state of wear of a video head without the need to take off the machine's cover or use an oscilloscope.
Indeed saving on the need to use expensive and specialised test equipment is what this tape is all about. Traditional alignment tapes contain frequency sweeps with markers for adjustment of the peaking and damping of tuned head amplifiers during playback. But these adjustments disappeared from domestic VCRs years ago. Even so, the instructions that come with the tape explain how, if necessary, to set them up.
The frequency gratings/multiburst at the top, left-hand side of the pattern puzzled me somewhat: virtually all the machines I tried were able to reproduce the 3 MHz grating, but none of them managed the $3 \cdot 2 \mathrm{MHz}$ grating. Yet with a 52 sec picture-scan period 3 MHz equates with 312 lines, which is way above the oft-quoted $260-$ line ceiling for standard-VHS machines.

Verdict

This is an excellent product: a terrific bargain that I can recommend to any technician. I would like to see further versions, in the VHS-C and Video-8/Hi-8 formats.

BACK ISSUES

We have available a limited stock of the following back issues of Television:

January, February, May, June, July, August, September, October, November and December

January, April, May, June, July, August, September and December

1996
January to September inclusive, November and December

1997
January to December inclusive
1998
January, February, March, April, May, June and September

Copies are available at $\mathbf{£ 3 . 0 0}$ each including postage. Send orders to:

Reed Business Information Ltd., Television Back Issues,
Room L302, Quadrant House,
The Quadrant,
Sutton, Surrey
SM2 5AS.
Make cheques/postal orders payable to Reed Business Information Ltd.

Fig. 2: Close-up of a section of Fig. 1. This shows that the headswitching point is in need of adjustment: it's two-three lines early, shown by the twinkling white dots above the grey horizontal line. The back tension is fine with this machine, indicated by the vertical pointer on the left-hand side.

If a Mark 2 version of the tape is contemplated, it would be nice to have a 6 kHz audio tone somewhere. Also perhaps a better instruction sheet with a specification table.
The MB-SWISS 4 video test tape is available from SEME Ltd., Unit 2, Saxby Road Industrial Estate, Melton Mowbray, Leics LE13 1BS. Phone 01664481 818, fax 01664563976.

EARN EXTRA MONEY
Repair PC Monitors, TVs \& Videos: ..Faster! ...with Confidence!
PC/TV Test Pattern, Audio \& RF Signal Generators

TELETOPICS

BSkyB's Digital Offer

BSkyB has announced further plans for its digital satellite TV service. The company is offering a subsidised set-top box to new subscribers for $£ 199$, and to those who already subscribe for $£ 159$. To buy the subsidised set-top box, customers have to take out a Sky Digital package or register with British Interactive Broadcasting (BIB). The latter involves agreeing to have the set-top box connected to an existing phone line for at least one year.
The subsidy is provided by BIB, which is a joint venture whose members are BSkyB, British Telecom, Matsushita (Panasonic) and the Midland Bank (part of HSBC Holdings). According to an

EC ruling, the subsidy must be available to those who wish to watch only free-to-air transmissions as well as those who subscribe to pay-TV packages. This ruling forms part of the European Commission's approval of BIB's plans.

In addition a free dish, with free installation, is part of the offer, also if required a telephone extension cable (but not an extra line) where the TV set is more than two meters from a phone point.

BSkyB is offering various subscription packages, starting at $£ 6.99$ a month for six channels. For £29.99 a month you get the complete 140 -channel service. A choice of four different 15-channel packages is offered at $£ 8.99$ a month.

There's a "family" selection of 40 channels for $£ 11.99$ a month.

BSkyB's digital TV service will start on October 1st.

The new oval mesh dishes for the digital service are 40 cm high and 53 cm wide. They are being made in the UK by Channelmaster and have a rounded edge and durable darkgrey finish. Other companies are developing similar designs which are expected to be approved and available shortly. The LNB, whose characteristics match the dish, is being produced by Cambridge initially. It has high gain and a noise figure of typically 0.7 dB .

BSkyB has dropped its legal action against ONdigital over settop box compatibility.

Digital TV Equipment

BSkyB has reached agreement with Amstrad, Grundig, LG, Panasonic, Samsung, Sharp and Toshiba on the development of TV sets that incorporate Sky's set-top box technology (IDTVs). Discussions with other manufacturers, including Philips and Sony, are at an advanced stage. Pace has agreed to work with a number of setmakers on the development of plug-in pay-TV modules for IDTVs, to support the Sky Digital services.

IDTVs for the Sky services should
be in production by the end of the year. The first models to be introduced are expected to cost around $£ 1,000$. This could drop to around £500 by the middle of 1999 .

Pace is working with LG Electronics and Toshiba on the development of IDTVs for both the Sky Digital and the ONdigital services.

Pace has also signed a deal with Cable and Wireless Communications (CWC) to supply 100,000 set-top boxes for the latter's digital cable TV

Teletest has laúnched a range of highquality portable colour LCD monitors. Designed for use with a camcorder, the 2.9in. and 3.8 in . models (at $£ 120$ and £190 respectively) are ideal for checking the video outputs from VCRs and satellite STBs in a customer's home when the TV set is suspect.
There are larger, stand-alone versions, a 6.4in model at $\mathbf{£ 9 0 0}$ and a 10.4 in .
model at $£ 2,000$. These are ideal replacements for the bulky, fragile monitors currently used by film crews etc.
For further information contact Nick Rose of Teletest, phone no. 01202877 270, fax 01202877 271, e-mail nick@teletest.co.uk There's also a web site www.telefest.co.uk
networks. The boxes will use the USdeveloped multimedia cable network system (MCNS) rather than the expected European DAVIC standard. CWC is expected to run trial services at the end of the year, with commercial services starting next year.

CWC is to call its interactive system, which will offer home shopping, banking, ticket booking and other services, TV Mall. The system is based on internet technology. CWC is working with Barclays Bank, British Airways, Littlewoods Home Shopping/Granada Media Group, Associated New Media and ITN on the project.

Motorola has developed what is claimed to be the world's first sin-gle-chip front-end solution for terrestrial digital TV receivers. The MC92314DH can demodulate and decode the DVB-T 2 k -carrier signals to be used by BDB. It's output is an MPEG-2 data stream for further processing. Volume production is expected to start in December, with the chips selling for below $£ 15$ in volume quantities.

A summary of BREMA members' forecasts for digital TV and set-top boxes suggests sales of 12,000 widescreen IDTVs, 4,000 4:3 aspect ratio IDTVs, 92,000 terrestrial STBs and 230,000 satellite STBs during the current year.

Video News

Sony has launched a camcorder that stores the video and sound in a cartridge rather than a video cassette. Model CCD-CR1E is being marketed under the name Ruvi. It's as small as a 35 mm film compact camera, weighing 370 g when loaded with batteries and a cartridge.

The Ruvi is based on Hi-8 technology. The cartridges contain video heads and metal-powder tape. Horizontal resolution is claimed to be about 350 lines. A cartridge can store up to half an hour of moving video or 350 still images and can apparently be used several hundred times before the tape shows any signs of wear. Sony plans to supply replacement cartridges. The Ruvi should sell at about $£ 550$: no cartridge price has been suggested.

The Ruvi has a built-in LCD screen for viewing. It can be linked to a TV set or VCR.

Sony has also developed the Digital Mavicap, which can convert the Ruvi's still images into JPEG files for storing on a floppy disc or other use. This will probably sell at around $£ 125$.

Sharp has introduced a digital camcorder, Model VL-PD1H ViewCam Slim, which for the first time brings touch-screen technology to camcorder use. Just a light tap on the screen enables you to control zooming, fix the point of focus or highlight selected areas of the image (backlight compensation). The VLPD1H has a colour viewfinder and a 4in. flip-out touch-sensitive LCD screen. Fixed focusing enables you to
avoid the problem of focus change in a busy area of view as objects cross the field of vision.

To take full advantage of its digital capabilities, the VL-PDIH complies with the IEEE1394 (FireWire) digital serial data interconnection standard. For additional flexibility when recording, there are five-mode scene adjustments (including sepia), snap-still-strobe functions, six shutter speeds and a fade effect.

Canon's new digital camcorder, Model DM-MV10, has a flip-out screen, optical and digital zoom and two audio modes $-48 \mathrm{kHz}, 16$-bit two channel or $32 \mathrm{kHz}, 12$-bit four channel. It's expected to sell at about £1,400.

JVC has launched its first S-VHS VCR at under $£ 350$ in the UK. Model HR-S7500's specification includes Nicam and a 'Spatializer' system to provide home cinema sound without the need for additional speakers, NTSC playback, and BEST (Biconditional Equalised Signal Tracking) for optimum picture quality with the type of tape in use.

Panasonic has launched a portable colour TV set, the Genus Model TX-G10, that's been designed for use in all European countries. Features include an AC/DC converter for 12 V or 24 V battery or mains power use, PAL/SECAM/NTSC reception in several versions, and an S-video terminal. An owner-identification system enables you to program your name, address and post code into the set's memory. The Genus should sell at about $£ 280$.

Labgear has introduced the Handylink PRO 4+1 domestic TV signal distribution system. It enables terrestrial TV, satellite TV and VCR output signals to be fed to four rooms (expandable up to eight) plus the main TV set, with remote control extension.
The built-in IR remote control extension facility is available at all the additional outlets, using the normal handset. Remote control is via the system, with none of the interference problems that can occur with wireless remote extender systems.
The Handylink PRO complements the Labgear Handylink Remote Control Extender system introduced in 1997. While the latter is intended for retro-fitting to an existing small distribution system, the Handylink PRO is ideal for new or replacement installations.
For further information call Labgear on 01223222090.

News Briefs

Eutelsat has signed a contract with Matra Marconi Space for a new satellite to be called RESSAT. It will guarantee service continuity in the event of a launch failure of one of the W series of satellites, the first of which is due to go into orbit this month (October). It will be equipped with 28 transponders, based on the Hot Bird specification.

Schaffner has redesigned and upgraded its web site to make the company's EMC (electromagnetic compatibility) expertise available to engineers and management all over the world. The site (www.shaffner.com) provides up-to-date listings of the latest EMC standards, links to stan-dards-setting bodies, news and comment on EMC issues and product information.

The annual meeting of the Domestic Appliance Service Association (DASA), plus open forum and social event, is to be held at Huddersfield on October 24th. Members, associate members, guests and anyone with an interest in the electrical and electronic service industry are welcome to attend. For further details check with Chris Hayter on 01920 872464 - fax 01920872 498, e-mail dasa@globalnet.co.uk

Thomson Multimedia plans to enter into partnerships with Alcatel of France, NEC of Japan and Microsoft and DirecTV of the USA. Each of these companies is being offered a 7.5 per cent stake in Thomson Multimedia.

LSI Logic and DSP Center, a Beijing-based consumer electronics design house, have entered into an
agreement to provide engineering and technical support to original equipment manufacturers (OEMs) of DVD players for the consumer market. The agreement will enable OEMs to produce clearly-differentiated players quickly and cost-effectively for the Chinese consumer market and for export.

Plasma Panels

Fujitsu of Japan and Philips are to collaborate on the development and manufacture of plasma display panels (PDPs) for TV receiver use. Fujitsu is the leading manufacturer in this field - last year it produced some 80 per cent of the panels sold globally. The aim is to develop, by the end of the year, a 42in. PDP for sale in the USA, Europe and Japan at a price of about $\$ 6,897$.

Thomson Multimedia and NEC of Japan are also collaborating on the development of PDPs.

FireWire, the PC and TV

The basic FireWire (IEEE 1394) fast, wideband serial data connection system was described in a previous article (July, page 632). Perhaps its most important feature is that it can move packetized data around a system at very high speed. The significance of this is that with the MPEG compression system used for digital TV the data is in packetised form. Just to recap, the MPEG data is arranged in packets so that data from different channels/programmes can be combined as a single data stream then separated and used at the receiving end. Each MPEG-2 packet consists of a sync word followed by 187 bytes of data, including the programme identification, and finally a 16 -byte checksum for error correction purposes.

Data Rates

It has been demonstrated that for studio and production use a bit rate of $50 \mathrm{Mbits} / \mathrm{sec}$ is suitable for MPEG video data with a resolution of ten bits per sample. A bit rate of $6 \mathrm{Mbits} / \mathrm{sec}$ can provide good definition with a broadcast TV receiver. With an MPEG-2 data rate of 2Mbits/sec you get VHS-quality images.
The new North American high-definition (HDTV) format proposed by the Advanced Television System Committee (ASTC) would, for distribution purposes, use a coded data rate of $120 \mathrm{Mbits} / \mathrm{sec}$, for which it is proposed to use the $155 \mathrm{Mbits} / \mathrm{sec}$ Asynchronous Transfer Mode (ATM) telecommunications standard. The final transmission rate enables HD signals to be fitted within the current 6 MHz NTSC channel bandwidth.
These data rates are all well within the capabilities of FireWire.
On the domestic side it's expected that users will want
to be able to edit digital video and audio signals recorded on tape.
Hence the growing interest in the FireWire system, with its ability to handle MPEG-2 video and audio signals.

A New Link Controller

The latest FireWire development from Texas Instruments is the highly-integrated link controller chip type TSB12LV41, or MPEG-2 Lynx, which is encapsulated in a 100 -pin plastic quad flat pack. It acts as a bus interface controller that transmits and receives FireWire-formatted serial data packets via the associated physical link chip. It detects lost cycle-start packets, generates and tests the 32-bit cyclic redundancy check (CRC) data, and can act as a cycle master (CM), isochronous (real-time) resource manager (IRM) and bus manager (BM).
The Lynx IC accepts decoded MPEG-2 data, inserts a time stamp, and reformats the data packets. Its first-in-first-out (FIFO) memory is large enough to provide bidirectional transmission and reception of either MPEG2 or digital satellite system (DSS) data. In fact the Lynx acts as a system core, handling the data protocols that control interoperability: it sits between the system application software and the hardware.
The MPEG-2 Lynx can handle audio, video and data applications running at up to $200 \mathrm{Mbits} / \mathrm{sec}$. It can be used for set-top box (STB), multimedia, tape and disc drive applications that work with MPEG-2 formatted isochronous data. Because of the wide range of data inputs it can handle - MPEG-2, DSS, isochronous or asynchronous, in serial or byte formats - these are referred to generically as bulky data (BD).

Fig. 1: Simplified block diagram of the Texas Instruments MPEG-2 Lynx FireWire controller chip.

Operation

Fig. 1 shows a simplified block diagram of the chip. At the top left the BDIF (bulky data interface) connects the input/output data to the chip's FIFO memory. Connection is controlled by the logic conditions at four status lines: these set the link for MPEG-2 or DSS data reception or transmission.
Partitioning within the FIFO creates six queues, which buffer the data stream in four quadlet groups. There are separate memory buffers for MPEG-2/DSS transmit and receive data, isochronous transmit/receive data, and asynchronous transmit/receive data.
The local time register acts as the system cycle timer (CT). It time stamps data packets and controls the transmission/reception of what are called common isochronous packets (CIPs). An ageing function invalidates packets that are out-of-date.
The microcontroller interface (bottom left) has provision for 8 - and 16-bit data: it enables the Lynx chip to be connected to most common microcontroller and microprocessor chips, such as the Texas TMS320AV700, the Motorola 68XXX and Intel 80XX series. A couple of external control lines (MCSELO and MCSEL1, see Fig. 2) provide device selection while logic within the chip automatically converts between data in big-endian or little-endian formats (most significant byte first or last respectively) to suit the actual processor chip - with the Motorola processors' 16-bit data bus only the lower-end byte carries actual data, the upper end byte being padded out with zeros.
Three more FIFO memories are incorporated for system control. These are shown as ACX, ACR and BWR. The data held in ACX and ACR is used to control asyn-

chronous transmission and reception respectively. The BWR FIFO is used for reception of asynchronous transmission write/request packets - basically low-speed control data.
The data held in the configuration registers controls the various modes of operation. Access to this is via the external microcontroller chip.
The physical layer interface is connected to the physical link chip, which provides the actual connection to the FireWire bus as described in the previous article (July). This includes access to the bus, sending and receiving data and control packets and receiving acknowledgement packets.

External Connections

Fig. 2 shows a typical Lynx chip/microcontroller chip

Fig. 2: Typical external connections to the MPEG-2 Lynx chip.

Fig. 3: Asynchronous connections between the MPEG-2 Lynx and settop box circuitry.

Fig. 4: The USB packet/frame arrangement. PID = packet identity; $A D D R=$ address; $C R C=$ cyclic redundancy check.
interconnection arrangement. At the present stage of development the TSB12LV41 can be used with TMS320AV700, 680X0 and 8051 microcontrollers. The logic states at the two lines MCSEL0 and MCSEL1 establish which device is actually present. Once this has been determined at power-up, the microcontroller input/output lines are all mapped to correspond with the external device's pin functions. When used with the Texas microcontroller, this interface is synchronised by the Lynx block clock (BClk). With the Motorola and Intel microcontrollers the interface is synchronised to the SClk provided by the physical link chip.
The CS1 and R/W lines perform conventional functions, as do the address and data buses. The BDIR/W line controls the direction of the MPEG-2/DSS data transfers. Bulky data input or output is via the eight parallel BDI (0-7) or BDO (0-7) lines, with each mode driven by the appropriate clock signal. Two groups of three lines, BDIF ($0-2$) and BDOF ($0-2$), perform the control functions listed in Table 1.
Fig. 3 shows how time-stamped (TS) asynchronous data is passed between the Lynx chip and the set-top box control circuitry, together with error-control checks and timing signals.

Fault-finding

Much basic information about the action of this complex chip can be obtained using a DC voltmeter and an oscilloscope. Of the hundred pins, eight ($10,23,44,48$, $60,72,87$ and 97$)$ are connected to ground, four $(15,41$, 65 and 90) are connected to the +5 V supply and eight (5 , $17,32,43,57,67,81$ and 92) to the +3.3 V supply.
Clock signals appear at pins 66 (bus clock), 16 (bulky data output clock), 91 (bulky data input clock), 42 (system clock) and 14 (test clock). Pins 13 and 18 are provided for test data input and output data signals respectively. Pins 45, 46, 47 and 98, 99, 100 are for the BDIF
and BDOF ($0-2$) indicators. Bulky data uses pins 1-9 and 19-22/24-27 for input and output respectively.
Apart from sixteen address bus and eight data bus lines, most of the remaining pins are used for status and system control.

The Universal Serial Bus

PC connectivity has been further enhanced by the development of the Universal Serial Bus (USB) which provides communication at data rates ranging from $1.5 \mathrm{Mbits} / \mathrm{sec}$ to $1.5 \mathrm{Mbytes} / \mathrm{sec}$ via a four-wire, lowcapacitance cable with a maximum length of five metres. The cable contains two pairs of wires, one for power and one for signalling purposes, and is terminated by standard connectors. As with the FireWire system, USB interconnected devices are all 'hot-pluggable'.
The USB enables devices to be added in a daisy-chain fashion to provide an addressable local area network (LAN) of 127 different interconnected units, operating in a Windows-compatible fashion (the all-zero address is excluded). A USB interface can contain multiple outputs (often four), connections to these forming a ministar network. The USB enables any device ranging from a mouse to a monitor, including serial printers, fax machines and telephones, to be connected to a PC. Since each of the external devices must contain its own USB interface, there is no longer a need to add interface cards to the PC.
Unlike the FireWire link, USB uses differential non-return-to-zero inverted (NRZI) coding. By the use of differential coding, with each line at opposite-polarity voltage, the signal amplitude is effectively doubled. This gives the system an improved signal-to-noise ratio of about 6 dB in comparison with a single-ended signalling system. The coding is also more robust under noisy conditions than some other signalling codes.
The basic power supply has to provide 5 V DC, with the signalling interface driven from 3.3 V . The twistedpair signal cable has a nominal line impedance of 90Ω.

Data Transfer Types

The four basic types of signal data transfer are as follows:
(1) Isochronous, for the transfer of real-time data such as voice. To avoid reproduction errors the data stream has to be delivered at a constant rate.
(2) Bulk format, used for devices that need to move large amounts of data but not necessarily in real time, the output from a scanner or printer for example. The data is transferred in bursts as and when sufficient signal bandwidth is available.
(3) Interrupt signals are used for requests for service and the delivery of data from slow devices such as a mouse or pointer.
(4) Control signals are used for bus management, initialisation and set-up. Again this involves the movement of only small amounts of data.

Packetized Format

Communication between a host PC and a USB interface can be either unidirectional or bidirectional, the data stream being organised into packets of 1 msec frames as outlined in Fig. 4. Each packet is preceded by an identity code (PID). Except for the handshake byte, which carries its own error correction, each ends with a cyclic redundancy check (CRC) of appropriate length.

Fig. 5: Block diagram of a USB bus-powered hub interface.

The token packet can be issued only by the host PC. It consists of a PID byte, a seven-bit address group ($27=$ 128), a four-bit end-of-packet (ENDP) nibble and five bits of CRC. The PID byte specifies either in, out or setup. In PIDs identify a data transfer from the addressed terminal to the host: the out and set-up groups operate in the reverse direction.
The data packets can carry an integer number of bytes from 0 to 1,023 . The data in each byte leaves with the least significant bit (LSB) first.
The handshake PID is used to indicate the status of a data transfer, ready or received.
The start-of-frame (SOF) packet is issued by the host PC at 1 ms intervals. The eleven bits allow up to 2,048 frames to be enumerated.

The USB Interface

Texas Instruments has developed two specialised chips, which are bus-powered, to carry out the majority of the interface operations. These are the TUSB2040 and TUSB2070, which can be used with either four or seven down-stream ports from a single up-stream port.
The general circuit arrangement is shown in Fig. 5, which shows how the chips can be combined with power management and electrostatic discharge (ESD) protection devices to provide a mini-star distribution hub.
Power is supplied at 5 V via the up-stream port and is converted to 3.3 V by the TPS 7133 low drop-out voltage regulator for use by the signalling-control circuits. This IC provides up to 100 mA at each output port and generates a power-good (PG) signal that produces the reset action at power-up.
The set of SN75240 chips provide ESD protection while hot-plugging. They act as transient suppressors to reduce inrush current and voltage spikes that might damage the interface and also pass through the hub and damage any terminal devices connected to the output ports.
The TPS2015 chip provides multi-port power management. It checks the supply voltage and for an excess current situation, and provides short-circuit protection for the down-stream ports.
The USB standard has provision for the connection of battery- or self-powered terminal devices. Excess-current protection for these is often provided by positive-

Table 1: BDIF and BDOF control.

Line status	Meaning
001	MPEG-2 cell
010	Isochronous packet byte
011	Asynchronous packet byte
100	BDIF reset receiver, BDOF no output
	data available
101	First byte of an MPEG-2 cell
110	Last byte of an isochronous packet
111	Last byte of an asynchronous packet

temperature coefficient (PTC) resettable fuses, for example those in the Raychem polyswitch series. Any excess current through one of these creates a sudden rise in temperature and a corresponding large resistance increase, lowering the current. When the overload condition has passed the thermal fuse reverts to its initial low-resistance value.

What's Ahead?

The possibility of connecting to the FireWire system optical-fibre links with data rates as high as $3 \cdot 2 \mathrm{Gbits} / \mathrm{sec}$ means that, with the addition of USB to handle computer communications at up to $24 \mathrm{Mbits} / \mathrm{sec}$, there's the prospect of full convergence between the PC and other equipment. It has been suggested that the PC could, within the next five years, be a sealed box with just two ports, IEEE 1394 (FireWire) and USB. The end of the need for plug-in cards with their attendant driver software problems would be a boon to many home-based computer users.

References and Acknowledgement

TSB12LV41 (MPEG-2 Lynx) Link Layer Controller, Product Preview Information, Texas Instruments Inc.
Data Transmission Design Seminar 1997, Texas Instruments Inc.
I would like to acknowledge the help provided by Colin Davies of Texas Instruments Inc. in the preparation of this article.

Hinari VXL35

There were no deck functions and the red power-on LED went out a couple of seconds after switch-on. As with normal operation, the selected channel's green indicator LED remained on. There was the usual cracked print around the legs of Q 02 in the power supply, but repair made no difference. Checks on the STK5332 regulator then showed that the switched output at pin 5 was at only 6 V instead of 13 V . A new regulator restored normal operation.

Sony KV1421

The complaint was no colour after about half an hour. I found that there was a dry-joint at the $4 \cdot 43 \mathrm{MHz}$ crystal X352 in the colour decoder circuit.

Ferguson TX100 Chassis

The customer said that this set was dead. In fact the power supply was working but there was no line drive. It didn't take long to discover that the BC372 Darlington line driver transistor TR8 was short-circuit and its 15Ω feed resistor R143 open-circuit (note that the value of R143 varies with the type of tube fitted). I replaced these two components and, with great confidence, switched on. But there was still no line output stage operation, only the smell of R143 cooking.
I switched off and allowed the transistor and resistor to cool down. Then I disconnected the driver transformer's secondary winding and switched on again. This time there was a healthy drive waveform at the collector of TR8 and no overheating. So I concluded that the BU508A line output transistor was overloading the stage. When it was checked with a meter it claimed to be innocent. But I've been caught out before, so I checked it again with the scope component tester. Hey presto, the base-emitter waveform was that of a zener diode. In went a new BU508A, and confidence returned. My only doubt was whether the condition of the tube would have warranted the repair. Fortunately the picture was good.

Mitsubishi CT25A5STX (Euro 14SF Chassis)

Sound was OK but the picture was blanked out. When the setting of the first anode preset on the LOPT was advanced I saw that there was field collapse. It didn't take long to establish that there was no LOPT-derived 27 V supply at the cathode of D553. In fact the reading from this point to chassis was just 3Ω and, not surprisingly, circuit protector Z551 (315 mA) had failed.
When the small, vertically-mounted PCB that holds
the TEA2031A EW correction chip IC5E1 and a few other components was removed the short-circuit had gone. So far there hadn't been any real surprises. I replaced IC5E1, refitted the small PCB and switched on. Up came the sound followed by a picture - with severe EW distortion. Adjustment of the three presets had no effect, and the new IC was very hot. I unplugged its PCB again and looked closely under the main board. There was a beauty of a dry-joint at one leg of the line scan coupling capacitor C557. I resoldered this, confident that I'd found the cause of the fault. In fact I got a bit carried away and resoldered most of the joints in the line output stage and the surrounding areas. Feeling perhaps too confident, I refitted the PCB and tried again. Once more there was sound and a picture, with EW distortion and a cooking IC.
I checked the EW modulator diodes, then every component on the EW board, but everything was OK. The only likely suspects that remained were the two coils L554/5. They didn't show any signs of distress, but I decided to order replacements. At least I'd have a couple of days' break from it!
A few days later the coils arrived. As I placed the set on the bench my mind was already wondering about other possibilities. How's that for confidence? Anyway once the coils had been fitted I obtained an almost perfect raster. A slight tweak of the three presets, which I'd disturbed, produced really excellent geometry.

Goodmans C1401R

The chap who brought this set in said it produced a lousy picture on all channels and had to be tuned in each time he switched on. In fact the tuner had very low gain: a picture could just be seen amongst the snow. In addition, when the tuner was gently tapped the picture broke up, a symptom you get with those Sony sets which have a VIF module that's prone to dry-joints. The customer's comment about the need for retuning was simply because the gain was so low he thought the set wasn't tuned to anything.
While booking the job in I was reminded by the customer how cheap tellys are to buy. So I wasn't to get "carried away" while repairing the set. From this it was obvious that the job would bring in very little money. I decided that there was no point in buying a tuner, which would leave no money for my efforts. It would have to be a labour-only job if it was to show a small profit. If I couldn't fix the tuner, or the cause of the trouble was something else, I would have to suggest that the set was beyond economic repair.

When I removed and opened up the tuner I saw that the solder joints around the edge of the PCB - they include the metal case for earthing - looked crusty. So I resoldered them, also a few suspicious joints within the tuner's circuitry. There were first-class pictures on all channels when the tuner had been refitted, and the display remained rock-steady when the tuner was tapped.

GoldStar RQ121

This mid-mount machine was dead with no power-on LED illumination or display. The customer said that "the bloke down the road" wanted $£ 90$ to fix it - "if you can do it cheaper the job's yours". The figure of $£ 89.99$ came to mind, but I said nothing. Instead, I agreed to have a look.
I didn't have the circuit diagram but, when I removed the top cover, I was delighted to see that the power supply is readily accessible. Within seconds I had removed the three securing screws and had the power supply lying alongside the machine, still linked to the main board via its 12 -pin connector PL101. To provide further help, the voltages are printed alongside the connector.
The 12 V and 5 V supplies were missing at the relevant pins. So I followed the tracks back and came to a shortcircuit 13V zener diode, ZD102. When this had been replaced the 12 V supply was present. The 5 V supply is produced by a three-pin 7805 regulator, IC101. It had 13 V at its input pin but no output. Once a replacement had been fitted the machine was back in service. The customer was delighted to pay far less than $£ 90$.

Ferguson TX99 Chassis

There was nothing but a snowy raster. R334 (4.7 Ω) in the feed between the chopper power supply and the 5 V regulator on the control board was open-circuit. I've been told that this is quite a common fault, so jot it down in your book.

Hitachi CPT2178 (G6 Chassis)

The jovial chap who brought this set in explained that he was late for work. Could I have a quick look at it? He would like, if possible, to collect it on his way home that evening. He went on to explain that switch-on would sometimes require several attempts - apart from this it was a good set and he didn't want the bother of having to buy a new one.
I wasn't too concerned, because the two $82 \mathrm{k} \Omega$ startup resistors R902/3 cause this problem. I whipped them out and checked them. One measured over $300 \mathrm{k} \Omega$. "As I thought" I said, "it won't take long."
"Fine" he replied, "I'll pick it up tonight. I'm really grateful. You've come highly recommended." Then he was gone.
What a nice guy I thought as I reached for two replacement resistors. After fitting them I switched on and waited for the rustle of EHT. I was about to fill in the repair ticket when the power supply emitted a familiar high-pitched whistle, indicating line output transformer trouble. Sure enough the transformer was faulty, but at least the transistor was OK. A feeling of relief came over me when I discovered that I had a good second-hand transformer in stock.
Seeing that it wasn't a new one, I thought, I won't make a song and dance. I'll fit it free of charge for this nice young man and put it down to a public relations job. After fitting the transformer I switched on and was greeted by the crackle of EHT, followed by audio hash
and a raster. Feeling much happier, I connected the aerial cable. The picture verticals were corrugated and the high-pitched squeal returned. Oh dear! It was probably only capacitor trouble, but I was getting a bit fed up. What could I charge, after giving the customer the impression that it was a simple repair taking only a few minutes to do? I gritted my teeth and started to check the electrolytics in the power supply. C905 and C910, both $4.7 \mu \mathrm{~F}, 160 \mathrm{~V}$, were leaky and virtually open-circuit.
Once replacements had been fitted the job was at last complete. When he called to collect his set I told the nice young man that what had started out as an apparently simple job had in fact taken longer than expected.
"I know how you feel" he replied, still smiling, "I've had a day like that too". He then looked at the set, which I'd left on the soak-test bench. "Ah, I see you've managed to get rid of those wiggly lines around the edges of people, and that horrible squealing noise well done!" As he spoke he withdrew a $£ 10$ note from his wallet.
Suddenly I thought this wasn't a nice young man at all. "That'll be fifty quid" I said.
He stopped smiling.

Ferguson FV30B

The customer's complaint was that this machine wouldn't timer record. Instead when the timer button was pressed, after the programming sequence had been entered, the machine went straight into the record mode - as if instant record had been selected.
I would have been baffled to know where to start without being given the additional information that no clock settings or channel information were retained when the machine was disconnected from the mains supply. Back-up battery I thought, and was correct. The 2.4 V battery, mounted on the front panel assembly, was virtually flat. Once a new battery had been fitted the machine accepted and retained the clock and channel information and a timer recording was successful.
When I returned the machine to its owner I was told that it was disconnected from the mains supply every night for safety. I explained that it's designed to be left plugged in. But I had a feeling that the nods of agreement I received on leaving the house were more of courtesy than intention.

JVC AV28FIEK (JX Chassis)

The cause of intermittently reverting to standby is usually dry-joints at the pins of the L7812ABV regulator IC521. To prevent other intermittent problems developing, the L7805ABV regulator IC522, which is mounted on the same heatsink, should also be resoldered.

Monitor Repairs

Here are a couple of recent monitor repairs I've had:
Viglen MT1428LE: Intermittent frame collapse was the complaint with this one, the cause being dry-joints at the frame deflection coil plug/socket. Resoldering put this right.

Digital PCXBV-BC: The power supply had shut down because the BU2525A line output transistor 7617 had gone short-circuit collec-tor-to-emitter. The cause was dry-joints in and around the line driver circuitry.

Martin Pickering describes the latest consumer electronics innovation, the internet set-top box. It provides PC-less internet access with an e-mail facility

There are times when it would be helpful to be able to see into the future. Consumer electronics dealers would find it particularly helpful to know what families will want next. In this respect however you don't need to be able to look into the future: it's here now, in the form of the internet set-top box (ISTB) that's available from Satellite Scene.
The ISTB provides internet access and an e-mail facility without the need to use a computer. You simply connect it to your TV set and to a telephone line and the display comes up on the screen. It's a family-friendly system that's totally foolproof. You get your own e-mail address, and the cordless, infra-red keyboard that comes with the ISTB enables you to send e-mail messages anywhere in the world from your armchair.

Problems?

For many people the internet is an off-putting technical matter. If they have a PC they may feel that it would take hours or weeks to get the settings correct. Or maybe a new computer might be required. The ISTB is a simple solution that avoids all this hassle. It's no more difficult to use than teletext. In addition it's relatively inexpensive. The system we had for review sells at just $£ 399$, which includes a year’s free internet subscription. How difficult is it to set up?

Installation

In fact it's easy. We opened the box and removed the ISTB, the keyboard, the remote-control handset, the bat-
teries, cables and mains power supply. The batteries are fitted into the handset and the keyboard. We connected the ISTB to our TV set, using the scart cable provided, and to a telephone extension socket via the nice long lead supplied. The mains unit looks like an ordinary plug-top charger, with a thin wire to plug into the back of the ISTB.
When we switched on, the front panel lights flashed then a picture appeared on the screen. Press enter on the handset and the box dials out, connects to the internet and displays the "dialTV" home page on the screen.
From opening the box to browsing the web took less than five minutes - and there wasn't a computer technician in sight!

Comparison

How does the ISTB compare with internet access via a computer? In fact it's like using teletext rather than a computer. The handset has a nice, solid feel to it and enables you to move a pointer around the screen to select what you want to do. All very easy. Select internet and the unit dials out and makes the connection, all the while displaying little screen messages to tell you what's happening. You can use the keyboard to type in the name of any subject under the sun: the search engines will then find the information for you somewhere in the world.
The unit makes typewriter clicking noises each time a key is pressed. This feedback is reasuring. If you are sitting in your armchair ten feet from the TV set with the
keyboard on your knees it's nice to be sure that the box has recognised each key press.
You can return to the main menu by pressing quit, and can disconnect the telephone call at any time by pressing the off key.

E-mail

Apart from searching for information on the world wide web you can send and receive e-mail messages to/from almost anywhere in the world. Simply select e-mail and the ISTB will dial out, connect to the internet and wait for you to send your message. Select "new" and you will see a blank message screen. Type your message, enter a title and the e-mail address of the recipient then press "send".
You can see a list of incoming messages and replies, which you can read on the screen. No paper is involved. It's a great way to keep in touch with relatives who live far away, or for schools to contact other schools for projects or information exchange, or even for businesses that don't want to tie up expensive computer systems just for e-mail.
If you need a hard copy, you can connect a standard computer printer to the socket provided. If you find that the TV set doesn't provide sufficiently good quality, you can connect a monitor to the VGA socket provided.

What's inside?

Inside the ISTB's plastic housing there's a fully-shielded PCB assembly attached to an internal modem board. The quality of the workmanship is superb. It's nothing less than a very fast computer with a user-friendly interface. On-board memory is limited because all incoming e-mail messages remain on the ISP server until you delete them.
The internal running software can be upgraded directly from the internet. The implications of this are interesting. If you find a feature that's missing, or if some change to the internet makes the unit outdated, you simply "flash upgrade" by connecting to the internet home page. Then you have an up-to-date model once more. Don't you wish you could upgrade your car as easily?

Recording

An interesting feature is the ability to use a VCR to record everything on screen. This could be used as a crude form or parental monitoring of what the children are browsing, or simply to record interesting web pages for future reference. From the retailer's point of view, it enables demonstration videos to be made to impress potential customers who want to know "what this internet thing is all about?"
We even used a VCR to capture a password that flashed on the screen for just a single frame. It consisted of about eleven numerals and letters and would have been impossible to read otherwise.

A marketing opportunity

If you are a retailer, the potential of this unit should be immediately apparent. Apart from the domestic market, hundreds of schools are buying PCs at in excess of $£ 1,300$ each. They could buy three ISTBs from you for the same price: if only internet and e-mail access are required, they will be fine for the job.
Then there's the office equipment market. A secretary/PA could send and receive e-mails without the need to tie up the main computer or a PC, leaving access to customer records, wages, databases etc. free. Those emails could be kept confidential if required. The unit is

Inferior view of the ISTB.
small enough to sit on a desk without wires trailing everywhere. It's hard to beat for the small office that doesn't have an e-mail facility yet (yes, they do still exist!).
But probably the biggest market will be all those families out there who want internet and e-mail for interactive TV.
There is endless potential, especially if you take into consideration the ISP (internet service provider) renewal at the end of twelve months and the decent mark-up offered to bona fide dealers.

Where to get it

So it's about time you had a talk with the importers, Satellite Scene. You can phone the company on 01332 812588 (fax 01332850 300), write to it at PO Box 5070, Derby DE74 2ZU, or send an e-mail to
satscene@netcentral.co.uk
The company has a very informative web site at
www.netcentral.co.uk/satscene

Brief specification

Hardware

32-bit RISC multimedia processor
4 Mb RAM expandable to 32 Mb
1 Mb flash ROM, expandable to 8 Mb
Anti-flickering hardware for improved TV picture
$33.6 \mathrm{kbits} / \mathrm{sec}$ standard data/fax modem
Parallel port for printer connection

Software

Native HTML-3 compliant browser
Netscape and HMTL-3 extensions
Full frames support
Native IMAP and POP3 e-mail with up to four accounts PAP, CHAP, TCP/IP and PPP support for password authentication

Ferguson SRD6

Nigel, our local hairdresser, brought his receiver in for repair. "Blue screen" he said, flapping his hands and looking flustered.

I suggested that this was a pigment of his imagination, because the receiver was completely dead. Maybe he'd been drinking the blue rinse?

Nigel appeared to be disgusted by my frivolity. He looked back as he went towards the door. "I need it by five. Don't want to miss Captain Kirk!"

Only the BUT11AF chopper transistor, the 1.8Ω fusible resistor and the fuse had failed. I fitted a $2 \cdot 2 \Omega$ fusible resistor because that's what the circuit diagram says it is and I had this value in stock. The receiver worked perfectly.

Nokia SATI700

The original version of the SAT 1700 had a 400 mAT fuse soldered into the board to protect the power supply against mains surges. It seems that Nokia bowed to public concern about the "unreliability" of this fuse, because the Mk 2 version is fitted with a 1.25 AT fuse. I've never known one of

WORKSHOP

these to fail - the surface-mounted items in the power supply go off like firecrackers in their haste to protect the fuse! The customers no longer complain, and seem to be happy paying me lots of money to fit "Satkit 23".

The complaint I had recently with a Mk 2 SAT1700 was not "went bang with lots of smoke" but "won't decode Sky channels". The customer was quite right, as there were no decoder messages on the screen.

I had visions of having to replace expensive (or unavailable) PTV type ICs in the decoder. But I decided to replace the $1 \mu \mathrm{~F}$ electrolytic next to the PTV111 sync separator chip first, since it's known to cause problems in other models. To my delight, the replacement restored normal operation.

For my own peace of mind I replaced the fuse with one rated at 500 mAT . This is an excellent compromise between the original
400 mAT type and the 1.25 AT fuse fitted in the 'improved' version.

Remote Control Problems

I had an interesting e-mail from David Needham recently. All was well when he installed a Pace MSS500IP until, for no apparent reason, the display went haywire and the receiver locked up - he couldn't do anything except switch off to reset. A Multilink remote control extender was in use - it worked perfectly with his old Nokia receiver.

When he asked Pace Technical about the problem he was told that this type of extender doesn't work with their receivers, which are too sensitive and pick up the extender's inherent radiation. A Handylink coaxial type extender worked satisfactorily.

Subsequently Patrick Hannon came up with the solution. There's a little potentiometer at the back of the Multilink transmitter. Turn it down until the red light at the front goes out. This cures the problem.

Tony Daly sent me an e-mail on a similar problem with an Echostar

LT8700. Because of interference from an uniterruptable power supply (UPS) which he was using to protect his video/audio equipment from power surges/outrages etc., the Echostar receiver didn't respond to commands from its UHF remote control unit. When the UPS was disconnected the UHF remote control system worked normally. The LT8700 responds to an infra-red remote control unit only when the little UHF aerial that's screwed into the back is removed. He decided to use infra-red remote control instead, so that he could continue to use his UPS.

Pace PRD800

A repairer brought me this one. His customer had said it was "whistling then dead'". He'd replaced C5, C7 and C 8 . This had got the receiver working, but there were horizontal lines across the picture on most but not all channels. Some horizontal and some vertical channels were not obviously affected. He had then spent hours replacing every other capacitor in the unit. Finally, in desperation, he brought it to me.
"Heat and cold don't affect the fault" he volunteered, "I've used a whole can of freezer."

I removed the PCB assembly and looked underneath.
"Where's the RF modulator's screening cover?" I asked.

Write me an Essay

I receive quite a few letters and email communications. Provided an address is given, I reply to them all. Some are interesting and amusing - I like those - but some are simply frustrating. I have to force myself to reply to these politely.

There are the one-liners. This sort of thing: "My BTXXX123 must have a faulty crystal because it won't tune in. All I get is snow and squiggles. Thanks. J. Bloggs."

I prefer something with a friendly, informal style that tells me something about the person. It's also helpful to know of any tests that have been carried out and
the writer's level of expertise. I am hardly inspired to write a technical essay if J. Bloggs has no soldering skills or electronics knowledge. He might as well go to his local repair shop!

If you want a useful reply, tell me a little about yourself so that I can judge your level of expertise. For instance, what equipment do you have? Tell me whether the LNB supply voltage is correct, and what happens when the receiver is swapped over with a known good one.

Finally, the best way to contact me is by e-mail. "No computer" is no longer an excuse - you don't need one. You can obtain from Satellite Scene in Derby (01332 812 588) a simple internet box that plugs into your TV set and offers free internet for just $£ 399$.

Matsui RD600

Window cleaners seem to chuck in their jobs in favour of doing dish installations. A case of "have ladder, will climb" I think. I've seen some of their work, and am not impressed. Harry, my local glass polisher, has kept his business going however. I let him clean my
windows more out of pity than because they need it. Anyway, last week he brought me his Matsui RD600 "to have a look at".

It's based on a Grundig chassis. Occasionally sets that use these chassis seem to kill off their special STV type chip, or damage it so that it won't pass the video from the decoder section. I thought this was the problem in the RD600 receiver, because there were no decoder messages.

The channel names were "hopping" sideways every second or so however. It looked like a sync problem, so I chased my tail for half an hour before replacing the PTV1 15 chip. This cured the fault. Note that it's more common for the decoder's PTV110 chip to fail. If you can't get one from a scrap panel, try Wilf at Calder Components (01924 411 089).

Harry was so happy with his receiver that he volunteered to clean my gutters - something he'd previously refused to do, even for money!

Caller Dismay

In common with many people, some months ago I bought one of

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via email. You can reach him via the internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.
those "caller display" units that show the telephone number of the person calling. I subsequently kept a mental note of the time wasters. Nearly all of them withheld their telephone numbers. So now I ignore the call whenever the display says "withheld". This saves me about half an hour a day.

Here's my definition of a time waster: someone who calls you for expert advice then spends the next twenty minutes telling you why you are wrong.

Test Case 430

At one time a lightning storm would have relatively little effect on TV sets. If there was a direct strike that reached the aerial or the mains wiring, then yes you may have had to replace the fuse and a few other bits. The situation is now so different that the consequence of a storm in the district is a whole crop of damaged equipment, with faults that are often obscure and difficult to diagnose.

The most recent storm around here produced a dozen or so assorted casualties. A relatively modern JVC set, Model C21ET1EK, was amongst them. It didn't work at all, and its mains fuse F901 was very black inside. An ohmmeter test showed that the 2SD1545 chopper transistor Q904 was shortcircuit. Not only that, it had a little burn hole in it. In addition R914 (0.33 Ω), which is in series with its emitter, was open-circuit. The mains bridge rectifier BR901 seemed to have held out. It had obviously been overloaded however, so we added this and its 4.7Ω surge limiter $R 901$ to the spare-parts order. There were no discernible problems elsewhere in the power supply or the line output stage. The rectifier diodes connected to the chopper transformer's secondary windings and the line output transistor seemed to be OK when checked with an ohmmeter.

We fitted the replacement parts carefully when they arrived. Two resistors, the bridge rectifier, the fuse and the chopper transistor. At switch-on the set worked perfectly well, though there was a little hesitation about powering up. The technicians involved didn't know this chassis particularly well, and assumed that this was a characteristic of its design. After a bit of setting up with the test-card pattern the picture
was nicely centred with correct colouring. So it was sent on its way. Then we realised that while all the other storm-damaged gear had come from the Westmere and St. Peter's districts, the JVC set lived in the village of Crowdown, out of the path of the storm on that dramatic night a week before. But funny things can happen with rural electricity distribution systems, can't they?

An indication that lightning might not have been the cause of the breakdown came a week or two later, when the JVC set bounced back into the workshop. It had once again died. We were told that the failure occurred a second or two after switch-on. There had been a "grumbling" noise that culminated in a bang and a flash from within the set. This took place on a calm, sunny evening. So Zeus and his thunderbolts could not be blamed this time. Neither could the village electricity supply.

When we checked inside we found that the mains fuse had once more failed in a big way, while the new chopper transistor had suffered the same fate as its predecessor. Its series resistor R914 still functioned, but had gone a very funny colour. The mains bridge rectifier and its surge-limiter resistor had survived. But this time one of the transistors in the chopper transistor's switch-off circuit, Q902 (2SB744), was found to be leaky. The failed items were all re-ordered, but a question mark hung over the job which, this time, had to be done free of charge. What was really wrong with the set? If only the workshop wallies had known! For the solution, turn to page 901.

A Porrable Service

 Database
Michael Maurice devised this portable PC/printer system for use when carrying out repairs at customers' homes

For some time I had been thinking about updating my business, in particular to keep accurate records. I have to admit that administration has not been my strong point in the past.
Most of the servicing I do is carried out at customers' premises, either homes or offices. So what I needed was a portable computer system with a portable printer. The software selected would include a dedicated program which would serve as a database.

Hardware

The hardware I chose was a Compaq Pentium laptop computer and an Olivetti JP90 printer. The computer was purchased second-hand. Laptop computers of this quality cost around $£ 2,000$ new but, like all electronic equipment, they are coming down in price. The printer was chosen after much searching and many phone calls: it's a truly portable one that can run on ten AA batteries (a holder is included), metal hydride rechargeable batteries or a nicad battery.
Batteries are not included with the printer - they are available as an optional extra. The mains adaptor that comes with it can be used to recharge the batteries. The printer is colour compatible, though a colour cartridge will have to be obtained. Something else that will have to be obtained is a centronics-to-D connector.

Software

With any computer system the most important part is the software. My laptop came preloaded with Windows 95 and Office 97 . The latter is a powerful wordprocessor, spreadsheet database etc. I find the wordprocessor useful for writing reports, e.g. for insurance purposes, away from the office.
The Compaq computer has a modem that plugs into it. I have also installed Eaziview, which when used with the modem turns the computer into a Viewdata terminal. In this way suppliers' computers can be accessed to check on prices and availability, and you can order
spares on the spot. But take care not to reveal your account numbers and passwords. I also suggest you keep your buying price to yourself. If you intend to return a few days later to fit the parts, it's best to ask the customer for a deposit - parts ordered can seldom be cancelled.

The Service Program

The dedicated service program is by far the most important feature of my set-up. After some searching I decided on Servicebase Lite from PC Control Systems. David Botto reported on what is now known as Servicebase Professional in the April 1994 issue of Television. While this program is ideal for the busy retail/rental outlet, it would not suit most small repair businesses. And it isn't cheap at about $£ 399+$ VAT.
To overcome the problem PC Control Systems devised Servicebase Lite. It doesn't have retail or rental modules, and doesn't include mail merge.
Servicebase Lite assigns to each job a new job number, and enables you to enter the customer and equipment details. It lists spares, provides an initial fault report and allows for engineer's and invoice notes. From this it will produce an invoice for you.
The program enables you to set up and manage trade accounts. It has powerful search routines: you can type in a job or invoice number, a customer's name and address, a manufacturer and product type, or a serial number.

Demo Version

A demonstration version of Servicebase Lite is available from PC Control Systems. For thirty days you can try the program out to see whether it fulfils your requirements. After thirty days it locks out and you have to purchase the full program if you want to continue using it. The demo program also locks out when thirty jobs have been logged in, though there was no mention of this in the letter that came with it. As a result I was involved in
an unexpected dash up the M1 to Nottingham on a Friday afternoon! Servicebase Lite is at the time of writing on special offer at $£ 49$ plus VAT.
Installing the demonstration version of Servicebase Lite is easy. Read the installation notes before you attempt to load it. You will have to adjust your config.sys to FILES=255, otherwise the program will not run. You may have to alter your printer configuration if you wish to be able to print. The demo version does not come with an instruction book, but the full program does. There's an excellent technical back-up department to deal with any problems you may encounter. My queries and problems (mainly to do with the printer) were sorted out quickly and efficiently.
Working with the demo version allows you to see for yourself how easy it is to use Servicebase Lite and book jobs into the system. You can keep a check on how the job is progressing, from booking it in to ordering and receiving parts then completing the work, compiling an engineer's report for the customer (if required) and producing an invoice together with collection/delivery and payment notes. You can see at a glance which jobs have been completed, which jobs have been delivered/ received and any that haven't been paid for.

The Full Program

If the program impresses you - it certainly impressed me - you will want to purchase the full version. Either phone PC Control Systems or return the slip together with your payment. You will then be sent the full program discs together with an instruction book. You will also be given a serial/licence number.
If you want to keep the data on jobs booked in on the demo version, you will have to make a back-up copy before you install the full package. If you don't, this data will be lost.
After successfully installing the program you will be asked to register with PC Control Systems Ltd. by entering your details and the serial/licence number. Once this has been done you can customise the program to suit your requirements.
Servicebase Lite is a DOS program that runs either through Windows 95 or MS-DOS 3.1. Because it's a DOS program you can't use a computer mouse. This is no hardship: simply use the four arrow-keys to move around the menu.

Printing

The fact that Servicebase Lite is a DOS program can cause problems with printers and the printer set-up. The program has been designed to suit four different types of printer: dot matrix, generic, laser and Panasonic. There's also a facility to turn the line feed on or off.
If you are using an inkjet printer, set the default printer to 'laser' and the LF to ON. The system works best with HP emulation printers. Other emulations such as Epson and Canon may require the parameters to be changed or may not work at all. Guess how I found out!
You can print out a receipt for a customer when taking equipment away for service, and you can print out an invoice. Your name and address head the invoice. It will show customer and product details and the method of payment, also a fault description, a list of all parts used, labour charges, a sub-total, the VAT and the final total. The result is very professional. Customers who have seen the print-out from my Olivetti JP90 have commented on this.
The VAT rate can be altered - Servicebase Lite comes with the rate set at 17.5 per cent. If you are not registered for VAT, set the rate at zero.

General Observations

One feature that I would have liked is a search by model/chassis number. This would enable you to refer to previous repairs, providing a fault database, without having to know the job number, customer name or serial number. Let's face it, you can't remember all the faults you've had!
It's worth mentioning that the software is year 2000 compliant.
The printer is used by British Gas engineers. As the ink cartridge is small, it can be used only thirty-forty times. So it's worth carrying a spare. The part no. is 278 2078 (pack of six).
Remember that under the Data Protection Act you will have to register the fact that you are using a database of this type - the Act covers any computer system that holds names and addresses. Taken literally, anyone who uses a computer with a wordprocessing package that stores names and addresses is required to register.

Acknowledgements

May thanks to Joseph Berry, sales manager, and his technical support team at PC Control Systems for their invaluable help while setting up and generally running the program, and to Lisa White, sales manager at Olivetti, who supplied me with essential information on the JP90 printer.

Sources

Servicebase Lite can be obtained from:

PC Control Systems Ltd., Hamilton House,
66 Palmerston Road,
Northampton NN1 5EX.
Telephone: 01604601 677,
fax: 01604601676.
E-mail: pcccontrol@msn.com
The Olivetti JP90 can be obtained from computer retailers or direct from:

Olivetti Lexicon,
Featherstone Road,
Wolverton Mill,
Milton Keynes MK12 5RF.
Telephone: 01908220 111,
fax: 01908203483.
Please mention Television when ordering from either PC Control Systems Ltd. or Olivetti Lexicon.

Purity

Despite many years' experience as a TLO it still surprises me how many sets are returned under the 30-day warranty period because of purity problems. Manufacturers are surely shooting themselves in the foot by not stressing to the user the importance of turning a TV set off at the mains switch or disconnecting it from the mains supply completely.

Instead, the customer gets the impression that the standby mode can be used permanently, without ever switching the TV set off. Obviously the degausing circuit then never comes into operation, and an increasing degree of screen impurity develops.

The EU is now making the point to manufacturers that power consumption in the standby mode should be reduced. This will compound the problem, as users will get the idea that the mains switch is totally unnecessary.

Mini neck (22 mm) CRTs are much more susceptible to purity errors than standard neck (29 mm) tubes.

Every effort should be made to tell customers to switch off the mains supply to a set whenever it's to be out of use for more than a quarter of an hour. Otherwise colour purity will not be maintained.
Denis G. Mott,
NEI, Leeds.

The Grundig G1000 Chassis

I very much enjoy reading Don Bullock's What a Life! column. In

Letters
the August issue he mentions finding that the efficiency diode (D304) in a set fitted with the Grundig G1000 chassis was short-circuit. To get the set going he fitted a BY127 as a replacement, but he didn't tell us whether he left the diode there or replaced it with the correct BY133. A BY127 is a standard mains rectifier, not the fast-recovery type normally used in this position. The set might work for a while with a BY127, but the diode is almost certain to fail prematurely.
E.M. Beddow, Milton Keynes.

Tap Changers

What a delight it was to read Pete Roberts' comprehensive article on the power supply system (July issue). In the section on tap changing however he says that to avoid short-circuiting the windings the contacts must be of the break-before-make type. This is only partly true.

Automatic tap changers have a contact arrangement that works as follows. The main contact breaks from the old tap, leaving a minor contact with a series resistor still carrying the load. A second minor contact with series resistor then connects the new tap. At this point the load is supplied by both minor contacts: the windings between the two taps are to some extent shortcircuited, but the two resistors limit the current. The first minor contact next breaks, and the main contact makes with the new tap. This sequence takes about fifty milliseconds, or two and a half cycles, to complete.

I have obtained this information from the ABB Components web site. There are many variations on the theme: some use non-linear resistors, others use additional windings.

Of interest to TV enthusiasts is a new electronic tap changer design rated at $16.5 \mathrm{kV}, 50 \mathrm{MVA}$. It uses thyristors that are triggered by infra-red pulses supplied via optical cables. These units can respond to
either under- or over-voltage conditions within one cycle, and control each phase separately.
Alan C. Pickwick, M.Sc., FRAS., Sale, Cheshire.

South African Scene

I found Colin Knight's article (June issue) on servicing in South Africa most interesting. In the paragraph relating to a Tedelex set however he mentions a " 2 SC5028" line output transistor, and says there would be "no chance" of obtaining a replacement. I have to point out that this transistor type is not listed for any of our model ranges.

Tedelex has been in the audio, TV, VCR, microwave and appliance industry in South Africa for over fifty years, supporting Blaupunkt, Sony and other major brands. The company's Cape Town factory has been in operation since the start of TV transmissions here in 1975.

Spares are not a problem. We aim to give excellent customer service!
Jack Osher,
Tedelex Service Division.
Fax no. 27116833004.

Radio Hams

It's always a pleasure when a camel train arrives with my copy of Television. The last one brought me the June-August issues. In this rather remote part of the Middle East, with the nearest tarmac road 100 km away, terrestrial television is not an option. TV has been available only since satellite transmissions started. But you need a mansized dish rather than the puny dustbin-lid type used in the UK.

So I go to the Satellite Notebook and Satellite Workshop columns first. Imagine my shock when Jack Armstrong jumped out of his column in the June issue to kick me where it hurts - in his reference to "dabblers".

I'm a dabbler and admit it. From being a TV engineer/technician in the UK I now dabble in fibre optics, microwaves, VHF/UHF repeaters, PMR, digital telephone
switching, data, solar power, battery plant and whatever else it needs to keep the job going. Now, with the advent of SDH technology, I'm having to get to grips with using a laptop computer for servicing rather than the Avo/Simpson multimeter of the past. But I'm still a dabbler.

My change in life's direction came about partly through my hobby of amateur radio. I would guess that a fair proportion of TV engineers have had some interest in amateur radio at some stage in their past. The City and Guilds Radio Amateur exam is no great problem for the average TV engineer. I took mine in 1966. Electronic basics don't change, whatever the subject.

This introduced me to work on transmitters. The era was just arriving when you could buy a transmitter, but for anyone on a TV engineer's wages this was out of the question - you had to build your own. But the experience gives you an invaluable understanding of how things work. It's not only the building but trying, sometimes in great frustration, to persuade the thing to work. The same applied to any test equipment required. Digital electronics had to be learnt the hard way!

The final result of all this was that seventeen years ago, in 1981, I ended up in what had previously been a hobby plus sideline - looking after PMR equipment as a full-time job, overseas.

Jack Armstrong should have thought about it a little more before deriding "Geoff" and his fellow dabblers. In one way Geoff may be generating extra business, though man-made faults are often the worst ones to have to deal with.

My regards to former Rediffusion colleagues who are still around and holding-off from pushing up the daisies.
Bob Wilkinson, TMIIE(elec), MSCTE, G3VVT,

Dhahran.

The Minoka MKI498N

In the August TV Fault Finding column A.J. Roberts mentioned a dead MK1498N, the cause of the fault being on the digital daughter board. Over the past year I've had two of these sets (1498 N and 1498 T types) that presented the same symptoms and readings. In each case a permanent repair was carried out by resoldering pins $27-32$ of IC703 on this board.

Recently another of these sets came along. This time the fault was intermittent field collapse. Again the
cause was dry-joints on the daughter board and resoldering IC703 cured the trouble. It seems that this chip suffers from dry-joints. I intend to resolder it every time one of these sets comes in for repair.

Gerald O'Brien,

Burnley, Lancs.
I've had two of the 21 in . versions of this chassis. They both exhibited exactly the same symptoms described in the August TV Fault Finding section. These sets provide very good picture quality and good sound and teletext at a very good price. They are therefore worth fixing.

Reports on the internet suggest that dry-joints develop on the digital daughter board. My experience confirms this. After much resoldering in the first set, I discovered that there was a faulty earth connection at IC703. Because of this there was approximately 3 V on the reset line. Many functions were inhibited, as there was no line drive - the supplies for the field output and sound stages, the tuner etc. are derived from the line output stage. The cause of the dry-joints appears to be poorly cleaned component leads and jumpers. Some of the jumpers lie under the ICs and provide earthing to ground planes. I used a separate link to earth the IC and adjoining components, and all has been well since.

The rest of the chassis is remarkably robust. It seems to be a case of a good product being spoilt for a 'ha'p' orth of tar'.
Alan Short,
London.
Editorial note: We understand that the Akura technical line mentioned in our original report is no longer available.

The Robens report is dynamite for the TV trade. The danger to your spine cannot be emphasised enough. Harry Todd, 12 Oakhurst Close, Snaresbrook, London E17 3PZ.

Painting Dishes

In the May issue Hugh Allison brought up the subject of painting satellite dishes. I've had some experience of this.

The first occasion was when a black mesh dish had to be fitted on a white-rendered chimney and the owner asked if it could be painted. I tried car primer white and noted no noticeable losses. The customer was advised to coat the dish with matt varnish, but I don't know whether he did.

Another customer had a legal problem about installing a dish and wanted it painted to hide it from view. I decided to check with our local friendly car spares shop, where I was offered a German-made, lead-free matt-finish spray paint called Belton deco-spray. The UK supplier is Auto-k-Paint, Peter Kwasry Ltd., Daventry, Northants NN11 5QJ. It's available in most colours. This paint was tried on a dish which was then tested and found to be OK. But it didn't solve the legal problem!

I have also tried a transparent dish face, which I bought at a rally and fitted to an old Amstrad dish in place of the white-coated face. This worked for four years without any problems. Then the signals became weak. The dish face had focused the sun's rays on to the LNB, whose cover had melted.

I have sprayed a 48 cm dish with car white primer only. It continues to give sparklie-free pictures in the Midlands area.

These have been my dish painting experiences to date. Pete Haylor, Billesley Satellite, - Billesley, Birmingham.

Mesh satellite dish painted white to match a rendered chimney stack. See letter from Pete Haylor.

Back Injury

My previous lawyers are now being sued for negligence regarding my TV trade back injury case against Radio Rentals (Thorn).

The last letter from me published in Television has started the ball rolling again, with letters from those injured, wanting advice and asking for copies of the Robens Institute Report on why you should not lift a TV set unaided. I can supply a copy of this report for $£ 5$ plus a large stamped, addressed envelope.

Thanks to all who have written. Don't be afraid to speak up if you are asked to lift sets alone. The law is on your side if there is any threat of the sack or victimisation.

Testing Polarisers

Pete Haylor, G6DRN, has developed a couple of simple circuits for testing magnetic and mechanical satellite signal polarisers

In an article in the August 1997 issue of Television I presented a portable, battery-operated motoriseddish tester design. It seemed logical to follow up with modules for testing magnetic and mechanical polarisers. These are the subject of the present article. They can be added to the original unit singly or together.
Each module is self-contained, with a separate on/off switch. This saves battery power when the module is not in use.

Magnetic Polariser Module

Fig. 1 shows the circuit of the magnetic polariser test

Fig. 1: Circuit diagram of the magnetic polariser test module.

Fig. 2: Circuit diagram of the mechanical polariser test module.
module. The circuit is very simple and the original was built on Veroboard. It was designed for use with a polariser that takes 50 mA . VR1 provides adjustment if required. SW1 is the on/off switch while SW2 alters the polarisation.
The components required can be obtained as a kit from MODE Components (see later) - ask for kit ref. BILSAT1. If you want to obtain the components individually yourself, you will require access to Farnell or CPC for some of them. The transistor is a general-purpose npn power type - any similar device will do.

Mechanical Polariser Module

Mechanical polarisers, which use a servo motor to rotate the position of the signal pick-up probe, are more troublesome and less common. They require a pulse drive. Fig. 2 shows the circuit of the mechanical polariser test module. IC3 is used to generate the pulses - VR2 sets the pulse width.
The components required can again be obtained from MODE Components (kit ref. BILSAT2). There are two points to note. IC3 must be type LMC555: this is the CMOS type, and is used because of its low current consumption. The on/off switch SW3 is a biased-off switch. It will enable the polariser to stop when you want it to. The original was built on Veroboard.
Development was done using an old Echostar polariser. Movement was a little jerky, but as the module is used for only short periods while testing or setting up a dish this doesn't matter.

General Points

While the original modules were built on Veroboard, the simple circuitry means that production of PCBs would not be difficult. Figs. 3 and 4 show suggested layouts. The switches are not soldered to the board, being connected by short wires instead. This makes installation easier than using a PCB switch, and dry-joints are less
likely to develop. You could fit knobs to the small variable resistors, but this would be only for the sake of appearance.
If the 12 V supply is derived from the original circuit, take it from across battery B2, not across the two batteries - the regulators would get very hot if they had to drop the excess voltage.
MODE Components is moving from the present address at Unit 19, 60 Regent Place, Birmingham B1 3NJ, but post and orders will be forwarded. The company's phone number is 0121551 4191. Kit BILSAT1 costs $£ 5.46$, kit BILSAT2 $£ 6$. These prices include post and packing

Parts list

C1-3	10nF	R1	220Ω
C4	10رFF, 25 V	R2	100Ω
C5-6	10 nF	R3	$1 \mathrm{k} \Omega$
C7	50رF, 25 V	R4	$5.6 \mathrm{k} \Omega$
C8-9	220 nF	R5	$1 \mathrm{k} \Omega$
		R6	120ks
D1-2	1N4148	$\begin{aligned} & \text { R7 } 100 \Omega \\ & \text { All } 0.25 \mathrm{~W} \end{aligned}$	
$\begin{aligned} & \text { IC1 } \\ & \text { IC1 } \end{aligned}$	8V, 1A reg. 5V, 1A reg.		
		Tr1 BD243 or similar	
IC3	LMC555 timer		
VR1-2	25k / linear, Farnell 614-129		
SW1-2	DPDT Farnell 273-363		
SW3	DPDT (biased)	arnel	607-435

Fig. 3: Suggested PCB layout, print side, for the magnetic polariser module - not to scale.

Fig. 4: Suggested PCB layout, print side, for the mechanical polariser module - not to scale.

Servicing Books

Newnes Service Engineer's Pocket Book, by Geoff Lewis and lan Sinclair, published by Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford OX2 8DP at £14.99. 300 pages, $190 \times$ 90 mm .

This is an ambitious project: to cover TV, video, satellite, audio and radio servicing within the confines of a modestly sized pocket book. So the question is how well have the authors succeeded in their task? The answer is surprisingly well. They have the benefit of considerable experience, both practical and in compiling clear technical information.
You won't find specific information on particular models: that's not the intention. What you so often need, with the current complex technology, is explanations of how systems work. The book provides this. It also provides sound guidance on basic fault-finding procedures, workshop practice and so on. Such subjects as safety may appear to be a bit dull, but you could be sorry if you don't have appropriate information to hand.

There's a great deal of handy reference material - basic units and formulae, equations, dB measurements etc. Workshop organisation and test equipment receive appropriate coverage. Information on the operation of most basic circuits is included. In fact there's good general treatment of all relevant topics, going as far as TV distribution systems.
A great deal of useful information has been squeezed into the pages of this book, making it a worthwhile addition to the workshop bookshelf.

Servicing Satellite TV Equipment, by Nick Beer, published by ButterworthHeinemann, Linacre House, Jordan Hill, Oxford OX2 8DP. 224 large (234 x 156 mm) pages, $£ 30$.

This new book fills a gap in the range of servicing publications available. The format is the same as that used by the well-known VCR (Steve Beeching), CD Player (Ken Clements), TV and Video (Eugene Trundle) and Audio/hifi (same author) servicing guides. It's a worthy addition to the series, providing
an expert introduction to all aspects of satellite equipment servicing. The fault-finding coverage includes not only receivers but dishes, depolarisers, actuators and positioners and so on.
Receiver circuitry is dealt with section by section, with well-chosen circuit diagrams to provide practical examples. There's a particularly interesting and helpful section on decoders and descramblers. Digital satellite TV is briefly but adequately covered, since we've yet to get experience of the problems that may arise in practice.
Nick's practical know-how is evident in the section on repair techniques, which amongst other things provides guidance on dealing with dry-joints, liquid spillage and surface-mounted components; on the anti-static precautions necessary with certain types of devices; and on the use of variacs, bulbs and dummy loads.
There's a useful appendix that lists manufacturers and spares/equipment suppliers' addresses. In all it's a helpful, well thought-out and nicely presented publication.

Simple CCTV Monitor Conversion

Keith
 Cummins describes how to go about converting an old monochrome portable for use as a CCTV monitor

Small monochrome portable TV sets that are past their sell-by date can often be easily adapted for monitor use in a CCTV system. The simple modification described in this article involves fitting a switch to select TV or monitor operation and the provision of a 75Ω BNC socket to accept a standard 1 V peak-to-peak positive-going video input.

Power Supply

Most older monochrome portables incorporate a transformer that isolates the chassis from the AC mains supply. This is an essential feature if a set is to be converted to monitor use. So, before you do anything else, check that the set has a mains transformer that provides isolation.
Portable TV sets can often be run from 12 V DC as well as the AC mains supply. Since the small camera modules currently available also require a 12 V supply, this makes it possible to assemble a mobile camera/monitor combination at minimal cost.

The Video Signal

Fig. 1 shows a typical video detector arrangement. The video and intercarrier outputs are developed across the load resistor R, the chassis side of which is biased positively to set the operating point for the following stages, which frequently employ DC coupling. There is usually a buffer stage followed by the output transistor.
As a typical video detector provides about 1 V peak-topeak of positive-going video, it's possible to break the cir-

Fig. 1 (left): Typical video detector arrangement. The output feeds the video, sync and intercarrier sound circuits. Fig. 2 (right): Monitor test

cuit at this point and connect the raw output from a
Fig. 3 (left): Suitable unity-gain inverting amplifier. Fig. 4 (right): Typical practical modification.
video camera here.
The tube is generally driven by a negative-going video signal at its cathode. So the video output transistor will require positive-going video at its base. If you don't have a circuit diagram, find the video output transistor by tracing the circuit back from the tube's cathode lead. Then, using a scope to observe the video polarity, amplitude and DC level, check back from the base of the video output transistor to the earlier stages. Without a circuit diagram, you may find it necessary to remove screening plates to follow the circuit. Note that the break point chosen for insertion of the signal from the camera must precede the take-off to the sync separator stage.
Having broken the circuit, check whether you've upset the biasing. If everything is OK, insert some components - see Fig. 2 - to feed in the camera signal and prove that the modification works. If all is well, a permanent modification can be implemented.
Differences between receiver designs may introduce complications, but the general arrangement outlined above should suit most sets. A circuit diagram is helpful - it will save time and increase confidence - but is not essential: a scope serves as a very effective means of discovering what's going on stage by stage.
There are two main possible snags in the video section, as follows:
(1) In breaking the circuit you may upset the video biasing arrangement. It may be necessary to add a potential divider across the main $11 / 12 \mathrm{~V}$ rail and chassis as a new source of bias.
(2) If the video signal is negative-going at the only suitable break in the circuit, you may need to invert the signal from the camera. A suitable unity-gain inverter stage is shown in Fig. 3.

Practical Implementation

Many small TV sets have a pair of loop-aerial terminals in addition to the usual coaxial aerial feeder socket. You can remove these terminals and enlarge the vacated holes to accommodate the TV/video switch and the BNC socket. It's then just a matter of wiring, after which the job is done. The basic circuit is shown in Fig. 4.
The use of unscreened leads to the switch will minimise the stray capacitance present and any video response degradation. If the set is to be used exclusively as a monitor, the switch can be dispensed with.
Finally, if the set is fitted with a two-core mains lead it's advisable to fit a three-core lead instead, using the third wire to earth the chassis. This will provide solid BNC socket earthing, and safety will no longer depend on the transformer isolation alone.

SEMICONDUCTORS?

Conduct your business on the Web.
We are the all new WWW based semiconductor supplier who can fulfil all your requirements.

- Huge range - over 6000 lines and increasing all the time
- If we don't stock it we'll source it!
- Same day despatch of orders received before 3 pm
- Fast and easy - use your favourite Web browser (Microsoft IE4 or Netscape 4 recommended)
- Secure server - you can be sure that your details will be safe from improper use
- All major credit/debit cards accepted

No Internet access? You can fax us your order or enquiry on 08700558 458*. Remember to include your fax and phone numbers.
Check us out today at http://www.silicongalaxy.com

*The 08700 code is charged at "national rate" by BT. Customers of other telecommunications companies should check with their service provider for their rates.

Is looking for
ICs TRANSISTORs SEMIs an up hill struggle?
A phone call to us could get a result. We stock a very wide range . . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few):
 AD ADC AN AM ALBA BE BD BDC EDV BDW BDX BF

 BUW BUX by BUZ CA CD CX, XA DA DG DM DS DTA DTC d, GM HA HCF HD 氏́
 MC MDA J M PETMK.MM MN MPSTMPSA, IPSH MPSU MRF NJM NE dM OP PAPAL PIC PN RC S SAA SAB SAD SAJ SAS SDA SGMII SL SN 80 STA STK STR STRD STRM STRS SVI T TA TAA FAGIBA TG TCA PDA TDB TEA TIC TIP TIPL TEA TL TL ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others. We can also offer equivalents (at customers' risk). We also stock a full range of other electonic components. Mail, Phone, Fax, Credit Card orders \& callers welcome Cricklewood Electronics Ltd 40-42 CRICKLEWOOD BROADWAY LONDON NW2 3ET TEL $01814520161 \& 4500995$

FAX 01812081441

REPLACEMENT REMOTE CONTROLS FROM $£ 5,99$

ELC EAST LONDON COMPONENTS 63 PLASHET GRÓVE, EAST HAM, LONDON E6 1AD. TEL: 0181-472 4871 two minutes walk from Upton Park Tube Station VISIT OUR SHOP OPEN MON-SAT OAM-GPM 100's OF TOOLS, COMPONENTS InSTRUMENTS, REPAIR KITS, BOOKS \& CABLES TO CHOOSE FROM ADD $\$ 1.50$ P/P $+17.5 \%$ VAT all goods despatched same day PRICES SUBIEGT TO CHANGE WTTHOUT NOTICE VISA ACCESS ACCEPTED. MIN OROER £5.00

Satellite Notebook

Feedhorn Problem

The owner of a Pace MSS100 receiver connected to a 1.2 m prime-focus dish was having problems with sparklies on some channels. In this part of the world (Portugal) there are pronounced differences in the signal levels from the four analogue Astra satellites. 1B's horizontal channels are worst - they include UK Gold and Sky Sports 3. The vertical channels (CNN, Disney, VH1, Sports 1 and History) have always been strong. Later in the evening the horizontal channels become even weaker for a few hours, as the satellite footprint wobbles slightly.
After peaking the dish alignment - it had been fractionally off beam - UK Gold and Sky Sports 3 were on the edge of sparklies during an afternoon with a clear sky. An LNB change didn't help much. What was left?
I noticed that the prime-focus scalar feedhorn was an unusual type, with a relatively wide-bore tube - approximately 25 mm . Most $11-12 \mathrm{GHz}$ feed tubes are less than this, 20 mm being nearer the mark. If the tube is too wide the signal doesn't propagate down it very well and can even start to rotate, causing interference to signals of the opposite polarity.
The fact that the scalar feed rings were flush with the front of the tube, and were non-adjustable, probably made matters worse. With some feedhorns the rings are movable, locked in place with a grub screw. Best results are usually obtained with the rings a few mm back from the front of the tube. I was familiar with the type of dish and its focal point. The feedhorn was in the correct position.

It's usually best for the focal point to be about 5 mm inside the front of the tube, about where the scalar rings normally sit. The scalar rings even out the imbalance between the electrical and magnetic components of the signal as it enters the round feed tube - it's best to consider the rings as a signal matching device.
I replaced the feedhorn with a prime-focus type made by IRTE. This produced a dramatic difference, curing the problem. It usually comes with a plastic polariser device in the tube. Remove this before installation, using a pair of long-nosed pliers. Otherwise strange effects will be seen - it's included to depolarise circularlypolarised signals.
To prevent humidity build-up I make a small hole at the bottom of the plastic cover at the front of the tube. Humidity can lead to the formation of aluminium oxide inside the tube, with a dramatic reduction in signal levels.
A good way to check for signal strength in the living room without recourse to a meter is to go to the receiver's tuning menu and note the higher frequency at which white sparklies appear - this is usually the same point at which the graphics begin to jitter slightly. Repeat the procedure at the lowfrequency side, where black sparklies appear. With a Pace receiver there should be at least 10 MHz where the graphics hold steady and not a sparklie is seen. The centre tuning position is of course the middle between the two frequencies. This is a useful test where dodgy cable is suspected of causing poor reception on some channels and you don't have a spectrum
analyser to hand.
Dish alignment should always be done with a meter. You can do it with a TV set, noting the points where the graphics become jittery, but I'm not recommending this as an installation method. H.C.

LNB Trouble

A recent digital installation gave me a headache. The analogue signals were fine, but the digital ones were very poor - despite the fact that the receiver's installation sig-nal-strength meter said the signal was good. This is normally just an AGC reading however.
The Nokia receiver concerned has a small bar on the front panel display, alongside the name of the received station, to indicate digital signal 'goodness'. The bar was barely elevated, which means very poor incoming signals.
No amount of LNB internal cover tightening (see September issue, pages 772-3) helped. Don't overdo this, as the screws may break! There were good signals once a new LNB had been installed. H.C.

Pace PRD and MSS Series

With these receivers there is always a very tight fit between the UHF modulator's RF output connector and the coaxial lead to the TV set. While this is all to the good from the RF performance point of view, impatient owners who want to disconnect the lead don't always see it that way! Several receivers in which the connector has been wrenched out of the back panel have come our way recently: the socket's PCB connection gets broken off in the process. More often the body of the coaxial lead connector parts company with its
moulding when the owner decides to start a tug-of-war with the unfortunate piece of equipment. We're seeing more of this problem now, as these receivers have been around long enough for owners to move them about when decorating, moving house, etc.
Rather than try to solder a connector back in place, I prefer to fit a coaxial lead through the hole used by the socket and terminate it outside. There is then nothing for the frustrated owner to wrench out. Lead length is not too critical: I use about 30 cm . To reduce strain on the lead's soldered connection to the PCB, I apply a small amount of hot glue where the lead exits from the box.
The aerial input socket isn't quite such a tight fit, and rarely gives way when unplugging the lead. H.C.

Pace PSR800 Plus Sound Problems

This model is a non-decoder PRD800 Plus, with 199 channels. It's quite a rarity in the UK, but the following fault note could apply to any PRD series model: for ease of reference I've used PRD component reference numbers.
The receiver came to us, from a dealer farther down the coast, with a no-sound complaint. Could we fit a new UHF modulator sound coil (L7)? I suspect that the dealer had twiddled the coil and destroyed the ferrite screw slot, but he won't admit to this! The receiver had apparently never been used - the look of the PCB confirmed this.
I fitted a replacement coil from a scrap panel. Care is required when you remove L7 from a panel: the legs are very fragile, and easily part company with the body if excessive heat and force are used. When the coil was adjusted - gently - there was excellent sound and vision from the modulator. I reinstalled the PCB in the receiver's case and put the cover on. Time for a final test.
The picture was OK, but the audio output from either the scart socket or the modulator consisted of hiss. A tap on the case restored the sound briefly. Then all channels suddenly displayed the QVC German home-shopping programme, with just a hiss for sound!
Time to look inside again. At least the PCB's plastic securing rivets came out easily - they'd not suffered from being heated in use. The fault came and went when the board was flexed. But there were
no signs of any hairline cracks. It began to dawn on me why this receiver had never been used!
I carried out a scope check, while bending the board, to see what happenied to the 4 MHz reference signal that should be present at pin 1 of the sound chip U11. Not an easy task! This established that when the fault was present there was no 4 MHz signal here. There was no 4 MHz signal at pin 12 of the Nicky chip U9 either. These inputs both come from Q98. It's connected to pin 2 of the microcontroller chip U2, where the 4 MHz crystal is also connected. Once I'd got to Q98 the cause of the fault was obvious: its base connection had never been soldered to the PCB - the contact area was bare copper, having never been tinned!
Normal operation was obtained when this connection had been soldered. H.C.

Pace MSS200

There was no decoding and no "please insert card" message. The first thing to do is to check the contrast setting, which was OK. So there was clearly a decoder problem. As none of the decoder chips are available, there's not a lot you can do in this situation. I decided to check the sync pulse outputs from IC U302, line sync at pin 12 and field sync at pin 15. These must both be present for the decoder to work. As they were missing I checked at the ceramic resonator X301 (pin 17), which provides the reference signal for the phaselocked loop. This signal was also missing. A replacement resonator restored the decoding. P.G.

Pace SRD800

This receiver wouldn't decode the scrambled channels but was otherwise OK. I checked the AD and DA converters by linking test point TS2 to chassis while a clear channel was being received. If all's well, the picture should remain. It did.
So the cause of the problem was somewhere in the digital section, for which parts are not available. Before giving up I decided to check the supply voltages. Some odd readings around U28 and U25 suggested that a 5 V supply was missing. But it took me ṣome time to find the cause.
The supply was correct at L20, which is at the front of the PCB and sometimes goes open-circuit. It had vanished when I checked at

L24, which supplies the on-screen graphics chip. I eventually discovered that C 257 , a $1,000 \mu \mathrm{~F}$ capacitor at the front of the panel, between LEDs 3 and 4, had leaked a small amount of electrolyte that had rotted away a plated feedthrough (between the top and bottom side of the PCB) for the 5 V supply. P.G.

Pace PRD Series

I've recently had a number of these receivers with complaints such as weak/no signals, whistles (time dependent) and taking ages to come on. The cause of the latter symptom will be well-known to anyone with experience of these receivers - the two $10 \mu \mathrm{~F}$ electrolytic capacitors C 7 and C 8 and the $22 \mu \mathrm{~F}$ one C 5 on the primary side of the power supply. These capacitors are often the cause of power supply failure. They are now causing other symptoms as the voltages on the secondary side of the power supply rise because of poor regulation. For example the 13 V LNB supply can be nearer 18 V : the result is incorrect polarisation! The whistles also come from the primary side of the power supply.
These capacitors are replaced when you fit a repair kit to get a blown-up power supply working. But note that they can also be responsible for these non-destructive faults. I was amazed to come across a number of receivers in which the original electrolytics were still present - I didn't think there could still be any out there!
It's sensible to replace the reservoir electrolytics on the secondary side of the circuit as well when one of these receivers comes in for repair. They are now causing many problems, as several contributors to these pages have mentioned. N.B.

Pace MSS200

The sound and vision and the menus were fine, but the receiver wouldn't decode VideoCrypt transmissions. There were no messages ("please insert card" etc.), and in addition the on-screen graphics present over vision (as opposed to the menus) floated gently from left to right and from top to bottom, i.e. they were not synchronised.
The output from the energy-dispersal clamp seemed to be awry, but no specific fault could be found here. When I bypassed the VideoCrypt section the OSGs were synchronised. The PTV1 10 chip U8 in the decoder was faulty. I was able to obtain a replacement from a scrap machine. N.B.

Reports from
Philip Blundell, AMIIEelec
Maurice Kerry
Giles Pilbrow
Pete Gurney, LCGI
David Smith
C.J. Guy and

Michael Maurice

Philips CP110 Chassis

If the set appears to be dead but the mains fuse and the BUT11AF chopper transistor are both OK, one possibility is that the mains bridge rectifier's reservoir capacitor C2656 ($150 \mu \mathrm{~F}$) is open-circuit. If the voltage across C2656 is in the region of 215 V DC, its capacitance is certainly very low.

For an intermittently dead power supply, the chopper transformer could be going open-circuit intermittently. P.B.

Sharp 37AM12H

Poor picture and sound were the complaints with this colour portable. When I tried the set I got the impression that there was an IF fault - there was a rushing noise on the sound and the colour was noisy. When retuning was tried the tuning menu was found to be locked.

As the only 37AM12 I'd seen previously had an NVM (nonvolatile memory) fault, I selected the service mode and checked the AGC and AFC settings. They were both set to FF. I don't know what the recommended settings are (the manual doesn't say), but maximum didn't seem likely! Setting them at half way improved the results, so a new pre-programmed NVM (part no. CH-IX1463CJHC) was fitted. Once the tuning, the picture geome-

TV Fault Finding

try and grey-scale had been set up all was well. P.B.

Toshiba 140R4B

If one of these sets refuses to come out of standby, check resistors R811 ($100 \mathrm{k} \Omega$) and R812 ($120 \mathrm{k} \Omega$). They tend to go open-circuit. P.B.

Ferguson ICC7 Chassis

If there's a Venetian-blind effect of horizontal lines superimposed on top of the picture, the electrolytic capacitors in the IF module are suspect. In one case recently C123 ($4 \cdot 7 \mu \mathrm{~F}$) produced a low-capacitance reading when it was removed and checked with a bridge. To be sure of a lasting cure I replaced all five electrolytics in the module. P.B.

Bush 2857NTX

The symptoms were no sound then, after a short time, the set shut down - as when there's no signal. A check at pin 29 of IC601 showed that the amplitude of the ident signal was low at 4V. The cause was $\mathrm{C} 135(0.02 \mu \mathrm{~F})$ which had a $130 \mathrm{k} \Omega$ leak. When a replacement capacitor had been fitted the ident signal rose to 8 V and the set worked normally. M.K.

Mitsubishi CT28AV1BD (EE3 Chassis)

After about a minute the picture had crushed whites. When a greyscale from the pattern generator was tuned in only the first few bars up from black could be seen: the rest were white. A scope check showed that the video waveform was clipped above the dark-grey bar. This could be observed at pin 20 of the scart socket.

When I looked at the circuit diagram I saw that this ruled out the CRT drive and colour decoder/ timebase generator ICs, as the video signal first goes to the switching chip IC202: this feeds the
scart socket and the colour decoder chip. IC202's supply was found to be low because the collector of the 8 V regulator transistor Q 952 was dry-jointed. Resoldering this cured the fault. The set used the modified arrangement with a larger transistor in the Q952 position, mounted on a heatsink in the centre of the main board. M.K.

Sharp DV5161H (4BSA Chassis)

When this set had warmed up there was field foldover and a bright raster with flyback lines. After a short while a rattle was heard from the LOPT, followed by collapse of the raster from the sides to a squiggle, then shut-down.

A scope check at pin 12 of the jungle chip IC801 showed that the line drive started to break up when the raster did, suggesting that IC801 might be faulty. But the cause of the trouble was the fact that the 26 V supply was low at 19 V . When the 26 V rectifier D501 (DX0511BM) had been replaced the voltage was correct and the set worked normally. The low supply voltage had obviously upset the operation of IC801. M.K.

Sanyo C25EG95 (EC3-A25 Chassis)

Patterning in the background, similar to cross-modulation, can be caused by interference on the brightness control line. On several occasions I've found that C211 $(0.01 \mu \mathrm{~F})$ wasn't fitted, though there's a position for it on the PCB. This capacitor decouples the brightness control line at pin 17 of the IF /colour decoder/timebase generator chip IC101. M.K.

Onwa K9228

This set wouldn't switch to standby properly: a bright raster was left. The cause was Q903, which failed
to turn off the HT switching transistor Q902. When I get this problem I replace both Q903 (2SA1013) and Q902 (2SD1545).

Another standby fault involves Q904 (2SD1015) and Q906 (2SD804) in the 27 V supply to the sound section. The symptom is hum from the speaker in the standby mode. It's not always noticed in the workshop. M.K.

Sony KVX2562U (AE2 Chassis)

The message "teletext not available" appeared when text was selected. In addition the on-screen displays and menu screens were shifted to the right. Resistor R38 ($750 \mathrm{k} \Omega$) on the text (V) PCB was found to be open-circuit. G.P.

Hitachi C1714T

There was no on-screen display because the field pulse at pin 27 of the microcontroller chip was incorrect. It's derived from the sandcastle pulse, which was found to be of excessive amplitude and wrongly shaped because D703 in the line output stage was open-circuit. G.P.

Sony KVG2915U (AE2B Chassis)

There was an intermittent rushing noise on satellite sound. The cause was traced to a dry-joint at crystal X3001 on the satellite (S) PCB. G.P.

Sharp DV5132H

At switch on a bright white raster appeared. This was followed by shut down. I found that there was no 200V HT supply at the CRT base panel. The cause was traced to a 100 pF ceramic capacitor (C857) which had developed leakage. As a result the safety resistor R632 had gone open-circuit. G.P.

Sony AE2 Chassis

This set would occasionally shut down. Just before it went off, the picture became a broken up mass of lines while the LEDs at the front of the set would flash thirteen times. This indicates that there's a field protection problem. The cause of the trouble was found to be dryjoints at the field output chip IC1501. G.P.

Toshiba 218D9B

The cause of poor field linearity the raster was stretched at the top was capacitor C303 ($2 \cdot 2 \mu \mathrm{~F}$). It's mounted very close to the hot-running field output IC, and had developed leakage despite being a high-
temperature type. I also replaced C313 and C317. G.P.

Hitachi C2114T

At switch on the EHT could be hear to come up. Then the set returned to standby. These sets have field protection that puts the set in standby if a short is detected across the 27 V rail. The cause of the problem was the TA8427K field output chip IC601. G.P.

Philips GRI-AX Chassis

The chopper FET Tr7610 had gone short-circuit. In addition the two 1Ω resistors R3616 and R3680 that are connected in series with it had, as usual, failed. Replacing these items didn't restore the set to life however: the 10 V zener diode D6610 in the FET's drive circuit was leaky, though it read OK. G.P.

Ferguson C5IN (ICC8 Chassis)

The cause of no colour turned out to be a defective switch (SE50) on the text board. It looks like a preset potentiometer, and is accessible through a small hole in the back of the cabinet. G.P.

Toshiba 2140TB (C4 Chassis)

This set appeared to be stuck in standby. The power supply was working, but there was no line drive. A large, 52-pin chip, IC501 (TDA8361), carries out all the video/chroma processing and generates the timebase drive signals. When I checked this chip I found little at any of its pins. There are two supplies. One is derived from the line output stage. The other, at pin 36, comes from the chopper circuit via the 9 V regulator transistor Q870. This obviously has to do its job for the set to get going.

Q870's base voltage is set by the 10 V zener diode D878. There is also a shunt transistor here, Q871, to switch the regulator on and off. The zener diode had failed, with the result that Q870's emitter voltage was just 1.2 V instead of almost 9V. P.G.

JVC C14E1

This 14in. portable, which is fitted with an Onwa chassis, refused to power up. At switch on the relay chattered for a second or two then the set shut down. A check to see if there was a short-circuit across the secondary side of the relay cleared this possibility, but the reading at the input side was 500Ω.

There is not much to check here.

I soon found that C402 $(4 \cdot 7 \mathrm{nF})$ in the snubber network across the HT rectifier D905 had become resistive. It's rated at 500 V . I fitted a more substantial capacitor rated at 2 kV .

When servicing these sets make sure that, in the interests of HT stability and safety, the power supply and over-voltage trip upgrades have been carried out. Refer to the February and September 1998 issues for further details. P.G.

Philips GRI-AX Chassis

"Half a picture" was the complaint with this set, and the effect was indeed quite strange. The scan appeared to start about half way across the screen and wrap round, so that what should have been the centre of the scan just started on the left-hand side.

A few scope checks around the TDA8305 chip IC7020, which contains the timebase generator circuits, showed that the line section of the sandcastle pulse was missing at R3529. The input to this resistor is routed around the outer edge of the PCB. There was a hairline crack in the print at the corner - I suspect that the side of the set had been knocked. A small wire link cured the problem. P.G.

Sanyo CBP2180A (A5 Chassis)

The customer said this set was dead. In fact it reverted to standby about five seconds after switching on. Suspecting a protection fault, I checked the voltage at pin 19 of the main microcontroller chip IC701. My initial thoughts were confirmed by the fact that there was only 2.9 V here instead of 5 V . The voltage at this pin can be pulled down by either over-voltage protection or the absence of any of the numerous supply lines.

Checks in the power supply before the set tripped produced largely correct readings, the HT voltage being spot on. Five seconds is not much time to look for missing voltages so, having proved that the cause of the trouble wasn't excessive voltages, I decided to disconnect the HT feed to the line output transformer (pin 3) and connect a lamp here as a load. This will prevent mishaps in the line output stage and show whether the power supply will run stably under load. To enable the power supply to operate, short-circuit the base of the standby switching transistor Q570 to its emitter.

When this had been done all the
supplies except the 12 V at the front panel assembly were found to be correct. The latter was at only 2.5 V . The source of this is the 78 M 12 regulator IC552 which had failed, producing an output of only 3V. P.G.

Panasonic TX2112 (U5N Chassis)

Intermittent loss of the picture, sound OK was the complaint. It was an extremely intermittent fault - the set would work for days or weeks then fail. The slightest tap would then restore the picture. The fault couldn't be instigated by tapping or freezing: it had to occur spontaneously.

The set had received previous attention for the fault, and virtually the whole of the signal panel had been resoldered to no avail. When the fault occurred, gently removing the back generally cleared it without providing any chance for measurements to be made.

Eventually the fault lasted just long enough for voltage readings to be carried out on the timebase board. This showed that some of the line output transformer-derived LT supplies were very low or missing. Scope checks then revealed that the cause of the trouble was high-resistance joints between the through-board rivets to which the line output transformer's pins are soldered and the print. The soldered joints looked perfect when examined using a magnifying glass, with the rivets soundly fitted in the print. But the scope showed AC at some pins and nothing at the print. The problem was cured by cleaning the print and complete resoldering. P.G.

Granada C51EZ5

This set produced a white raster with flyback lines. Routine checls on the supply line voltages failed to reveal anything amiss. So the CRT base panel was examined with a magnifying glass. I found minute hairline cracks in the print to the first anode connector and in the print that connects R6 to R24. Repairing them restored the picture. D.S.

Nikkai Baby 10

A new type switching regulator was fitted. They are very efficient and produce less heat. But when the set was switched on there was an almighty screeching racket. The cause of the problem was the RF choke in the regulator, with the tin screening plate acting as a diaphragm. All was well when the
choke was relocated away from the plate. D.S.

Waltham 1410

If the picture is dark and lacks width, replace R812 ($150 \mathrm{k} \Omega$, 0.5W). D.S.

ITT CP3 126 (Monoprint B/MN Chassis)

The cause of no sound was eventually traced to the 470μ F Philips electrolytic capacitor C 304 which is connected to pin 5 of the TDA8196 audio control chip IC301. It had gone short-circuit. I was helped by the little LM386 outboard amplifier I use for audio hunting! D.S.

Bush 2059NTX

Although the HT supply was present this set remained dead. The cause was soon traced to R919 ($0 \cdot 68 \Omega$) which was open-circuit, removing the LT supplies. It appeared to be intact, with no burn marks. The usual power supply upgrade to this Onwa chassis was carried out. D.S.

Tatung TN1901 (190 Chassis)

Incorrect operation of the front panel controls with this set, and others I've come across, was cured by replacing the HD401220A02S microcontroller chip IC702. The Tatung part no. is 19-8315-6. D.S.

GoldStar CI14A80

This set reverted to standby a few seconds after being switched on. It seemed that the microcontroller chip was sulking because the EEPROM chip wouldn't talk to it. A new 24C04 EEPROM cured the problem, after retuning and resetting the PP values - this set doesn't -need a preprogrammed EEPROM. C.J.G.

Sharp. DV51083 (D3000 Chassis)

Tripping, which was at first intermittent, was caused by C715 $(2,200 \mu \mathrm{~F}, 16 \mathrm{~V})$. It's one of the LT reservoir capacitors on the secondary side of the chopper power supply. Oddly its ESR was OK. It was just low at about 50μ F. C.J.G.

Ferguson ICC7 Chassis

There was no blue in the display. Unusually, RT66 ($\mathrm{lk} \Omega$) which is in series with the tube's blue cathode had become open-circuit. C.J.G.

Bush 2020 etc (Indiana 100 Chassis)

As these sets age it's becoming
quite common for customers to complain that the picture takes a long time to appear. This is caused by the tube's emission being too low for the auto grey-scale circuit to operate. The cure is to fit a $100 \mathrm{k} \Omega$ resistor between the 'Auto' and 12 V pins on the CRT base panel. The picture is then as good as ever. C.J.G.

Ferguson ICC5 Chassis

Loss of blue drive was caused by failure of the TEA5040 video processor chip IV21. Earlier sets need to be modified when IV21 is replaced. Details of the modification come with chips obtained from Willow Vale. C.J.G.

Sony AE1A Chassis

When I first went to repair this set I got the impression that someone had been playing with it. The EHT cable was not located properly, and other parts of the wiring looms had been left lying about rather than being tied up as they should be. The convergence, width and EW settings were also out.

As none of the controls would adjust the width and EW correction, I replaced the TEA2031A EW driver chip IC1501 (on board J1) and set up the picture.

A couple of weeks later the customer complained that the set went off intermittently. A check on the HT voltage revealed that it was alarmingly high -175 V instead of 135V. The cause was R522 ($100 \mathrm{k} \Omega$) in the HT sensing circuit. It had risen in value to about $140 \mathrm{k} \Omega$. After replacing R5 22 and resetting the picture parameters the set worked normally. M.M.

Philips Anubis A Chassis

There was no audio output from this 17 in . portable. It was in permanent mute because the BC848 transistor $\operatorname{Tr} 7156$ was leaky. A replacement restored the sound. M.M.

Nokia N Chassis

The picture varied in size and the degree of EW distortion depending on picture content. Turning down the contrast and/or brightness had the same effect. As a first step I checked the HT voltage, which was stable and correct at 150 V . I then replaced the MC44000 digital jungle chip IF01. This made no difference. I checked and doublechecked all the relevant outputs from, and feedback lines to, this chip.

Finally I did what I should have done at the beginning: I removed
and checked all the capacitors and diodes in the line output stage. Ch04 (27nF) turned out to be opencircuit. A replacement put things right.

The set was actually a Finlandia Model C51JZ2. M.M.

Matsui 1496

Apart from the buzz from the degaussing coils at switch on this set was dead. The 5 N 90 chopper FET Q101 was leaky source-todrain, and the surge limiter resistor R101 (4.7) was open-circuit. The power supply uses the well-known TDA4605 chopper control chip. It always pays to check the highvalue resistors around this IC. In this case R109 ($330 \mathrm{k} \Omega$) was opencircuit while R108 ($220 \mathrm{k} \Omega$) read $270 \mathrm{k} \Omega$. When R101, R108, R109, IC101 (TDA4605) and Q101 had been replaced the set came back to life. M.M.

Daewoo DMQ2057

This set, which came to me via another dealer, had a bright, smeary picture. He had turned down the
setting of the first anode control but this had made little difference. Pity he hadn't checked the 190 V supply to the RGB output stages on the CRT's base panel - it was low at 46 V . The reservoir capacitor C426 $(3.3 \mu \mathrm{~F}, 250 \mathrm{~V})$ was the culprit there was brown stuff oozing from its legs. A replacement restored normal pictures - after resetting the A1 control. M.M.

ITT ST38767

The customer's first complaint was about field bounce and intermittent loss of colour. I resoldered some dry-joints at the 5 V regulator: this cured the field bounce, but didn't cure the very intermittent loss of colour.

Some time later the customer reported that there was sound but no picture. After some chip swapping (they are mounted in sockets) I discovered that the cause was the TPU2732 teletext processor chip. This item and the 17.734475 MHz crystal were replaced, but there was then no colour.

The service manual explains
how to use the remote control unit to make adjustments, but the original one wasn't available - the customer was using a Philex type. By experimentation I was able to discover which button is used to select the chroma phase and, more importantly, how to store new settings. Once this had been done there were no further problems. M.M.

Sony KV27XRTU (SX Chassis)

A rental engineer doing a bit of work on the side told the customer that there had been a burn-up and that a new power supply was required. A chopper transformer burn-up is not unknown in these sets, but is very uncommon. When I called I found that there had been no burn-up. In fact if the 135 V connector was unplugged the power supply ran with a light bulb as the load. The faulty item was the line output transformer. Once a replacement had been fitted the set came back to life. Incidentally the power supply PCB is not longer available from Sony. M.M.

HELP WANTED

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted/for disposal: Require camcorder viewfinders, colour or black-and-white, working or not, for student project. Have for disposal a large quantity of TTL and memory chips - cal for lists/prices. Mike Goddard, Sarnia, Cemetery Road, Rhos, Wrexham LL14 2BY. 01978 843547.

Manuals for sale: Ferguson FV10, FV11 FV13, FV14, FV21, FV26, FV30, 3V24, 3V29, 3V30, 3V32, $3 \mathrm{~V} 42,3 \mathrm{~V} 44,3 \mathrm{~V} 48$ and 3V59. All complete and in very good condition. Also manuals for the Ferguson TX10, TX100 and TX90 chassis and various Philips manuals. All priced at $£ 3$ each plus postage. David Forfar, 65 Ormskirk Road, Old Skelmersdale, Lancs WN8 8TR. 01695735132.

Wanted/for disposal: Require mains transformer for the Pye 691/693 chassis; power supply for the Saisho VR1600/Hinari VXLA VCR; power supply for the Akai VS5EK VCR; power supply for the JVC HRD750EK VCR; complete loading assembly for the ITT VR3906UK VCR; complete working chassis for the Hitachi Model C2558TN TV with Fastex and Nicam sound, also remote control unit; complete working chassis for the Dynatron 26 7475SK/05T teletext TV, also remote control unit. Have for disposal many Sony C7 and C5 VCRs for parts or repair, some complete; reel-to-reel tape recorders in various states; Philips G8 TV with spares; Decca 140 chassis CTV; box of Thorn 3000 chassis panels; Sony C20 and spare machine working; two NEI PVC744E VCRs; two JVC HR3660 VCRs; three Baird 8922 VCRs; an Hitachi VT33E VCR for spares only; three working VHS VCRs; many late TV panels etc. List available. Offers please. Buyers collect. Many 405 -line LOPTs and old TV valves available. Philip Gay, 80A Milton Brow, Weston-Super-

Mare, North Somerset BS22 8DE. Wanted: Circuit diagram for the Bush Model 1500A with PCV 190-921303-03 - it's completely different from the -01 version shown in the service manual, with 42-pin ICs MN152451GWA and AN5601K and an AN5633 24-pin chip. Alternatively the pin connections for these ICs would help. There's an intermittent colour saturation fault. Laurie Watkinson, Telesonic, Week St. Mary, Holsworthy, Devon EX22 6UJ. 01288341254.
Wanted: Service manual or circuit diagram (photocopy OK) for the Sharp PC6641 notebook computer. A. Neilson, 23 Lydgate Road, Droylsden, Manchester. 0161285 1984.

Wanted/for sale: Require a LOPT for the Fair T302 computer monitor, part no. TLF052-01-01, 2 Y 25 , or a scrap set. Have for sale or exchange for computer hardware 112 copies of Television 1985-96 plus manuals and books $£ 130$; Muter BMR95 CRT analyzer/reactivator $£ 440$; Hameg HM303-4 scope $£ 240$. David Smith, 12 Rufus Gardens, Totton,
Southampton SO40 8TA. 01703870 051.

Wanted: Apologies to everyone who tried to contact me about a head motor for a Panasonic NVHD100B and a power supply for the Ferguson FV71LV. We have had to change our phone number. Please contact Andrew Osboume on 01777839252. Wanted: Circuit diagram or service manual (photocopy OK) for the AST Vision monitor Model 5LA. M. Sharpley, Hi Tech Services, 4 Leighton Road, Old Trafford, Manchester M16 9NX. 01706621015.
For disposal: We have inherited 25 volumes of Newnes Radio and Television Servicing dating back to 1959 - and a single-standard 405line Decca TV set that works! For sentimental reasons we don't want to throw them out. So they are offered
free to any enthusiast who will collect them from us in Birmingham. Anyone interested should call Richard Flowerday on 0121426 1555 (fax 0121426 4052).
Wanted/for sale: Require complete working power supply for the Panasonic Model NVFS1 VCR, a circuit diagram for the Sony Model KV2096UB and front flaps for the Ferguson FV33H and 14L2 (black). Have for sale or exchange a Gould OS 30020 MHz dual-trace scope with leads and operating instructions, a Farnell LT30 power supply and a Marconi oscillator. Dave Elmer, Duo-Sat Satellite Services, Cliff Drive, Mudeford, Christchurch BH23 4EP. 01202475316 or 01425 274104.

For sale: Television issues from Dec 1969 to Dec 1986, 199 copies total. Offers please. J.M. Ainscoe, 49 Lon Ceredigion, Pwllheli, Gwynedd, N. Wales LL53 5PP. 01758613790. Wanted: MAA4002-3 microcontroller chip for the Salora K chassis. Arthur Hopkinson, 6 Swan Close, Dunholme, Lincoln LN2 3SB. 01673 860990.

Wanted: Circuit diagram and operating instructions for the Sony triplestandard Model KV1434M3. H.S. Jeetley, 75 Hamsteadhall Road, Handsworth Wood, Birmingham B20 1HU. 01215238992.
Wanted: Source of servicing information/spares for the Protech PRO $1010 \mathrm{in} .12 / 240 \mathrm{~V}$ colour TV set. A.D. Spooner, 201 Thetford Road, Brandon, Suffolk IP27 0DG. 01842814160.

Wanted: LCD doe the Avo Model HSN DA116 - it's a 32-pin device with no identification no. Also a meter movement for a Megger insulation tester cat. no. 40050 . A.J. Davenport, Edif. Cazorla, 5C Calle San Pedro, Los Boliches, 29640 Fuengirola, Malaga, Spain. Wanted: Power supply/distribution board for the Panasonic NVMS50B

TRANSISTORS/LINEAR ICs

Please add $£ 1$ P\&P and VAT at $\mathbf{1 7 . 5 \%}$ to all orders All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted)
Prices quoted are subject to availability and may be changed without prior notice

LINEAR ICs／JAPANESE TRANSISTORS

Part	Price																		
				TD		TDA4661	225	TDA8391		UPC 1004 C	130p	2SA771	90 p	${ }^{2 S A 1177}$	5p	$\begin{aligned} & 2 \mathrm{SB561} \\ & 2 \mathrm{SB56} 9 \end{aligned}$	30p	$2 \mathrm{SCl} 7$	号
						TDA46			55										
								TDA8415			200		p						
				222 M									p						
TA8205	220	TDA12	300 p	A2824		TDA4714C		TDA8417		UP	5	${ }_{2 S A}$	25p	2Sal	50		Op		
		tDA 1236	2		200 p	TDA4716C	45					2SA794	50 p		40 P	2S	p		P
						TDA4718A	250			UPC1026	95 p		30 p						225
													15 p						
${ }_{\text {TAB }}^{\text {TAB214 }}$				TD	20	TDA4800	${ }^{300 \mathrm{p}}$	TDA8433		${ }^{\text {UPCL1031／}}$	150p	2SA814	${ }^{70 \mathrm{p}}$	${ }_{2}{ }^{2 S A 1}$	22	${ }^{258632}$	45	2SC839	
				TD		TDA4814		TD		UPC1033			${ }^{20 p}$		25		80 p		
										U			200				120		5p
TA82200				TDA3	1120 p 150 1	TDA4851	${ }_{32}$	TDA8844	32	UPC1161	70p	${ }_{\text {2SA837 }}$	200p	2SA1210	120	2 SB	45 p	${ }_{2 S}{ }^{\text {SC900B }}$	
TA8225H	4	TDA		TDA	200 p	tDA 4860							110		${ }^{60}$		35		
										UPC117			20 p						
						493		TDA8490	225	UPC	120	${ }_{2}{ }^{\text {SAB }}$							
								TDA8540	25	UP	250	2SA854	p						
TA841				TDA3506		TDA4942	200	tDAB702		UPC118	20	2SA861	45 p	2SA	50 P	2 28705	200p	2SC55	P
						tda4944		TD		UP		2SA872	25p	2			P		
taba		TDA 1519 A		tDA3510															
TA86								TDA8		UP	150p	${ }_{2 S}$	${ }^{309}$	2SA		2 L 87	\％op		P
		TDA		TDA35		TDA53		TDA87	${ }_{17} 1$	UPC	30	${ }^{2 S A B}$	${ }^{35}$	${ }_{2 S A 1238}$	3	${ }_{258733}$	75 p	2 SC	Op
TA8611AN	25	TDA1524		TDA35		TDA53		tDa						2 2SA1		2 2887	$35 p$		950
TAB615											200p	（2SA887		2SA1240	80p	${ }_{\text {2SB739 }}$	22 p		
								TDA8808T		${ }^{\text {UPCC12120 }}$		2 SA		${ }^{2 S A A 1244}$		258744			${ }^{2755}$
				tDA3566		TDA56	25	TDAg		UPC1222	13	2 SAB	40 p	2SA1	65 P	$2 \mathrm{SB750}$	Op	$2 \mathrm{SC1013}$	170p
TA864	5	TDA								UPC122						$2 \mathrm{SB753}$	Op	2 SC	
TA8646	375 p	TDA		TD						UPC1227V				2 2SA1	P				
				TDA35	32		27	T0	130\％	UPC1228	45p			${ }_{2} \mathbf{2 S A}$		（ 2587764	O		${ }^{2509}$
TA8659AN		TDA 1553				TD	－85	TDA9		${ }^{\text {UPCC123 }}$	700	2SA9		${ }_{2 S A 1}$	30 p	${ }_{258772}$	25p	$2 \mathrm{2SC}$	288
TA8691N	450	TDA15570	30	TDA35		TDA5820	37	TD		UP	120	2SA9	100 p	2SA1	30 p	258774	P		${ }^{2509}$
TA8	275	TDA 15588		TDA3569	30	TDA	125p			${ }^{\text {PPCCI24i }}$	50p	${ }_{\text {2SA }}$			700	2S87	${ }^{100 p}$	2 SC	
TA8718N	5	TDA ${ }^{\text {TDA } 156}$	${ }_{30}$	TDA35		TDA5850	17			UPC124	50p	2 2SA9	30p	2SA1	150p	${ }_{2}{ }^{\text {Sb }}$	35	2SC1070	35p
TA8739P	45	TDA 1	175 P	TD		tda61		TEA06535		UP							30 p		
	45	TDA1574	125	tDA3550	250	TD				${ }^{4 P \mathrm{PC} 12727}$	240	2SA9	30p	2SA12	280p	${ }_{2}^{2} 8$	${ }_{45 \mathrm{p}}$	${ }_{2}{ }_{2} \mathrm{SC}$	40p
		TDA155		TTA3559		TDA62				UPC				2SA12	200 p	2 SB	5p	2 SC	120 p
TBA	70 p	TDA 1579	${ }^{130}$	tDa360		tDa66								2SA1		88	100 p	2SC1106	p
tBA5	12	TDA1589		TDA3602	225	TDA			10	UPC1	32	2SA9		${ }^{25}$		${ }^{2588817}$			P
TBA	10	TDA15		TDA3611		TDA6612	${ }^{900}$		28	UPC13		${ }_{2 S}$	50	2SA1	50 p	${ }_{2 S B 8}$	0 P	2 SC 1	${ }_{2909}$
TBA5		TDA 1598	${ }_{160}$	TDA3645										2SA1	15	2588	P	2 SC 1	270p
tBag	40	TDA 1600	20	tDa3651	200 p	TDA70201		TE	15	UPC1		2 S	70 p			${ }^{25}$	35p	${ }^{2} \mathrm{SC}$	${ }^{110 \mathrm{p}}$
TBAB10A	40	TDA 1602 A		toa	500	TDA7	20	TE	15	${ }^{\text {UPCC133}}$	3200	2SAA	60 P	${ }^{25 A}$		2S882	2000	2SC1164	800\％
TBA822		TDA167	20							UPC	115p	2 SA	30 p	2SA1	26	2588			
t8A920	10	toa 17	50	TDA365			20							$2{ }^{25}$		${ }^{258829}$	${ }^{200}$	${ }^{25 C 1166}$	
T8A950	10	TDA 177										2	185	${ }^{2 S A}$	110 p	258857	75	2 SC	
		TDA 1870A		TD			2250	TE	25	UPC		2SA9	${ }_{60}$	2 2SA		边	10 P	${ }_{2}$	${ }^{33 \mathrm{p}}$
TC5081AP		TDA1904		tDa3724		TD		仡	15			2SA9	120 p	2SA		${ }^{2} 588$	220 p	2 SC	10 p
	17			tDa3725		tDA7211						2SA		2SA13	1000	${ }^{2} 588882$	${ }_{\text {25P }}$	2SC	
TC5		TD		tDA ${ }^{\text {TDA3 }}$		TdA7220	10	TE	170p		P	2 SA	55p	2 SA		${ }^{2} 58885$	45	2 SC 12	5 P
TC9130	15	TDA19	18	tDa3		tDa7230A		TE	425 p	UPC1	p	2SA9	25p	${ }^{2 S A}$	P	2588	5		
${ }^{\text {TC913 }}$	75	TDA 1941		TDA3	${ }_{35}^{425}$	TDA ${ }^{\text {TDA } 2314}$	${ }_{800}^{809}$	TEA15	150 p	${ }^{\text {UPCC1373 }}$	250	2SA98	36p	2SA	45p	${ }^{2}$	${ }^{250}$	${ }_{2}$	P
${ }^{\text {TC913 }}$	500p	TDA2002		TDA3765V					500	UPC1		2 2SA9		2 2SA	P	2 2889	70p	2 SC 1	
TC913				TPA377		tDa72		TEA2014		${ }^{4} \mathrm{PCC1}$		2SA		2SA		2S8941	${ }^{30 p}$	${ }_{\text {2SC1247a }}$	
TC9142	320	toaze04	150	TDA3780		TDA	22	TEA2	600 p	UPC13	425p	2SA		2SA		边	180	${ }_{\text {2SC1252 }}$	
TC9945	15	TDA2006	70 p	TDA3800	250	TDA7255	400 p	TEA2025B		UPC1387C		2SA9		2SA		2SB9	1900	${ }^{2 \mathrm{LSC1} 278}$	
TC97	20	tda 20	12	TDa3303A	500	TDA7256	${ }^{400}{ }^{\text {p }}$	TEA2028	325	UPC1		${ }_{\text {2SA }}$	30p	2SA	100	2 LSB	1900	${ }^{2} \mathrm{SC1308K}$	
	225	TDA2008	10	TDA3810	20	TDA	1700	TEA2020	65	UPC140	65			2SA	P	${ }_{2 S 8985}$	p		P
TC9151P	${ }_{425 p}^{425}$	TDA2010	${ }_{150 p}$	TDA3827	1	TDA7273		发		UPC140			P			S69	p		P
TC9152	425	TDA2020	12	tDa3840				TEA2031A	125	UPC14		${ }_{2} 25$	1250	2SA	${ }^{300}$	2581	10 P	$2 \mathrm{SCCl}^{325}$	
	30	TD		TDA38		TDA7275		TEA22	200	UP		2SA	${ }_{225}^{200}$	${ }_{\text {2SA }}$	45	2581	65p	$2 \mathrm{SC1328}$	29p
－	${ }^{225 p}$	${ }^{\text {To }}$ TPA2040	140	TDA3845	${ }_{225}$	TDA7284	100p	TEA2	${ }_{450 \mathrm{P}}$	UPC	200	2SA1				2S81	P	2SC1342	
TC9158P		TDA2048		TDA3856		TDA7302			${ }^{350}$	UPC1474HA	75p	2SA				2581	${ }^{300}$	2SC	
TC9162 TC963		TDA205	45	TDA3857	20	TDA7310		TEA2164	160p	UPC148	${ }_{115 p}^{300 p}$	2SA	${ }_{10} 00$	2SA		2 SB	130 p	${ }^{2}$	
TC9164	4700p	TDA2054M		TDA4001		TDA7318	${ }^{550}$	TEA2261	185	UPC1		2 2A1		2 SA		2SB1	20 p	${ }^{25 C 1358}$	
TC9167P		tDA2107		tda4050		TDA73304		TE	27	UPC15	${ }^{400}$	254	${ }^{1000}$			2581	P		150
TC9172P	30	TDA2148	32	TDA4052		TDA7350		TEA	175	UPC15	20	25A		2SA		2SB	100 p	${ }_{2 S C 1364}$	P
${ }_{\text {TC9174 }}^{\text {TC9P }}$	500	TDA2170	13	TDA4092	2	TDA7360		TEA5030		UPC15	25	${ }_{2}$ 2SA1	${ }^{60 p}$	2SA	40	2S8	180p	${ }^{25 C 1368}$	
TC9177P				TDA4100	－${ }^{150}$	TDA73	${ }^{1759}$	TE	65	UPC152	25					2S81	${ }^{809}$		40p
TCA9940	10	TDA2270	25	TDA4 173 Sa		TDA73		TEAS101A	17	UPC15	550	${ }_{2 S} 2$		2SA		${ }_{2}{ }^{2581}$	40 p	${ }_{2}{ }^{\text {SCl}}$	
TCEE P100		TDA2320	38	TDA4190		TDA7770	350 p 140 p	AS5			75	2SA10	50	2SA	50	2581	50 p	2 SC	
TD62382		TDA2502		TDA4200		TDA		TEA5115	${ }_{220}$	${ }_{\text {2SA467 }}$	${ }_{29}^{40}$	${ }_{2 S A 10}^{2 S}$	P	${ }^{2 S A 1}$	5	${ }^{2581}$	${ }^{509}$	${ }_{2}^{25 C}$	15p
${ }^{\text {TD }}$ TD627206	20	A2503		TDA4210		TD			200 p	${ }_{\text {2SA433 }}$	${ }_{90} 9$	2SA1051	300	${ }_{\text {2SA }}$	110	2SE1135	P		
TD6304A	30	TDA 2505		TDA4	320 P	TDA8120B	400	TE	325	2SA48	80	2SA105	15 p	2SA1	110 p	2S81	45 p	2SC	50 p
		TD		TDAA	${ }^{360}$	TDA	25	TEA	22	${ }^{2 S 489}$	5	2SA	${ }_{300} 120$	${ }_{\text {2SA }}$		2S81	75p		
TD6359P	2	TDA250		TD	12	TDAB	225p	TEA5560		2SA493	$25 p$	2SA10	150 p	2SA14	40 p	2S81162	400 p	$2 \mathrm{SC14}$	50 p
	20	tda2510		tiaa	1	tDAB	225	TEA55	$8{ }^{85}$	${ }^{\text {SSA495 }}$	40 p	2 2SA1	${ }^{375}$	${ }^{25 A}$	25 p	$2{ }^{2581}$	370p	2 SC	50 p
TDA 1002	20	TDA2514A		${ }^{\text {TD }}$ TD		TDA8137	${ }^{2009}$	TEA55880		2SA496	－ 120 p	${ }^{\text {2SAA }} 107$	${ }_{300 p}^{230 p}$	2SA		2SB1	40p		p
TD	175	TDA25	35	TDA4426	17	TDAB138A	${ }_{130}$	TEA5591		${ }_{2 S A 509}$	35 p	2 SA10	125 p	${ }_{2}{ }^{\text {SA }} 1488$	150	2SB1	50 p	2 SC	400 p
	${ }^{80 p}$	TDA25	10	TDA4427	20	TDA813	200 p	TEA5620		2SA537	170	2 2SA10	80	2SA1	300	2581	${ }^{45 p}$	$2 \mathrm{2SC}$	${ }^{275 p}$
TDA ${ }^{\text {TDA }}$	200	tDA2	150 p	TDA4433	10	TDA88140	${ }_{200 p}^{200 p}$	TEA5640E		2SA544	650p	${ }^{\text {2SA1083 }}$	${ }_{20 p}$	2SA1491	300	${ }^{2 S 812}$	$45 p$	${ }_{2}{ }^{\text {SCl }}$	p
TDA1013	110 p	tDa	11	TDA4437	12	TDA814	16	TEA5701		2SA55	${ }^{150}$	${ }^{25 A 1}$	100	2SA1			40 p	${ }_{2} 2 \mathrm{SC} 1$	p
TD		tDA2		TDA4		ToA	120 p		450	2SA5	${ }_{\text {30p }}^{30 \mathrm{p}}$	2SA	100	2SA	550	${ }_{2}$	${ }_{40 p}$		${ }_{200}^{1200}$
TD	11	TDA5545	12	俍	248	TDA8160	${ }_{125 p}$	TEA6200	225p	${ }^{\text {2SA57 }}$	${ }_{650}$	2SA10	180	$25 A 15$	280 p	${ }_{2 S 81274}$	P	2 SC	250p
TDA	${ }^{330}$	tDA2546A	200	TDA4443	250 p	TDA8170	170p	TEA630	50	${ }^{2546}$	${ }_{1009}$	${ }^{2 S A 1} 10$	190 p	25A1	${ }^{20 p}$	2581282	00p	2SC1	${ }^{1200}$
tDA	130 p $\mathbf{1 5 0 0}$	TPA ${ }^{\text {TDA548 }}$		TVA4445	${ }_{225}^{220}$	TDA8172	${ }^{200 p}$	TEA6310T	${ }_{425}^{425}$	－	${ }_{150}$	2SA10	${ }_{80 \mathrm{ob}}$	2SA	459	－	${ }_{45 p}$	${ }_{2}$	易
TDA	320 p	tDA2556	175	TDA4452	250 P	tDA8174	200	TEA64158	525p	2SA61	150 p	2SA11	${ }^{130}$	2SA1	55	2 SB 1	50	${ }^{25}$	45 p
	17	TDA2556	230	TDA4453	27	TDA8175	${ }^{300}$	TEA5420	${ }^{360}$	${ }^{25462}$	20 p	2 SA 1	${ }^{130}$	2SA1540	50 p	2581	75		${ }^{709}$
TDA	${ }_{180}^{20}$	tDA2557	225	TDA4480	228		${ }^{\text {750p }}$	TEAB17	${ }^{125 p}$	2SA63	5	2SAA11	140p	2SA1598	220	${ }_{2 S}$	${ }^{75 p}$	${ }^{2}$	P
TDA	500	tDA2574V	35	TDA4452	20	TDAB8185	${ }^{180}$	TL．494	100 p	${ }_{2 \text { 2SA6 }}^{254}$	${ }^{60 p}$	2SA1	${ }^{160 p}$	${ }^{25 A 1600}$	2000	2SC3	109	2SC1	35p $\mathbf{3 5 p}$
TDA	180	TDA2575A	200	TDA4500	28	TDA8190	${ }_{425 \mathrm{p}}^{200}$	$\stackrel{\text { TLO61 }}{\text { TLo64 }}$	${ }_{80 \mathrm{p}}^{40 \mathrm{p}}$	2SA64	${ }_{50 \mathrm{p}}^{60 \%}$	2SA11	150p	2SA1601	${ }_{40 p}$	${ }^{2} 5$ C 3944	60		${ }_{\text {B0p }}$
TDA1	11	tDa 2578a	200p	TDA4502	400	TDA8192	200 p	TLO71	${ }^{38} \mathrm{p}$	2546	${ }^{25}$	${ }^{2 S A} 1$	30	2541	90 p	${ }^{2} 5$	${ }^{25 p}$		${ }^{45 p}$
TDA	200	tDA 2579a	210p	TDAA503	325	TDA8196	120 P	${ }^{\text {T1074 }}$	${ }^{80 p}$	2SA6	${ }^{159}$	${ }_{2 S A}^{2 S A}$	40 p	25A1	${ }_{70} 10 \mathrm{p}$	2S	5		p
－ $\begin{aligned} & \text { TDA } 1048 \\ & \text { TDA1053 }\end{aligned}$		${ }_{\text {TDA2589 }}$	130p 170	TDA4505E	3759	TDA8213	${ }^{1250 p}$	TLi84	${ }_{70 \text { p }}$	${ }_{\text {25A67 }}$	28 p	2SA11	80p	2SA1	175	${ }_{2}$	10 P		p
TDA 1054	18	tDA 2591	110	TDA4505	45	TDA8224B	225	TMPa4C－43an		${ }^{254} 58$	250	${ }_{2 S} 2$ 2111	${ }^{50} 9$	2SA	${ }_{310}^{180}$	${ }_{2}^{25}$	159	$2 \mathrm{2SC}$	
${ }^{\text {TPA }} 1057$	${ }_{40}^{60}$	TDA25910		TDA450		TDA8215	${ }_{225} 3$	TPU2732	800p	${ }_{\text {2SA6 }}$	100p	2SA1	${ }_{130} 120$	2SA	425		25 p		遍
TDA1060	140 P	tDA2594	300p	tDa4532	20	TDA8303	250	UC3524	100 p	${ }^{2 S A 70}$	70 p	2SA1141	${ }^{2000}$	${ }^{2 S}$	4	2 SC	85		$\mathrm{Op}^{\text {p }}$
TDA 1062	140 p	tDa 2595	200	tDas5	275	TDA8304	40	$\mathrm{UC}^{\text {C3842N }}$	${ }^{600}$	2SA70	${ }^{1400}$	${ }^{2 S A 11}$	${ }_{150}^{150}$	2SA	${ }_{45}^{25}$	2SC5	${ }^{\circ}$	2 SC	
TDA1068	75p	TDA2600		TDA4556		TDA8340	500p	UC3844	${ }_{7}^{125 p}$	2SA711	280\％	${ }_{\text {2SA }}$	40p	${ }^{2583}$		2sc	20 p	2 CC	800 p
TDA1074	280 p	tDa 2616	250	tDa4560	270	tDa8341	${ }^{250}$	UPC20C	220 p	2 2SA7	50 p	${ }^{\text {2SAPA146 }}$	200 p	${ }^{258}$	150	25	100		5p
TDA 1077	250 P	TDA2630	30	TDA4565	15	TDA8349A	350	UPC554	${ }^{130}$	2SA7	50 p	${ }_{2 S A}$	30p	${ }^{258}$	250p		80p	2 SC	
TDA 1082	275	TDA2640	350	TDA45668	225p	TDAB351	${ }^{2009}$	UPC5556		2SA725	${ }_{80}$	2SA11		2585		2 S	P	2SC	170 p
TDA 108	170 P	TDA2654	200	tDA 4570	200 p	TDA8360N3	800 p	UPC571	220 p	25A726	20	2 SA 11	22 p	2SB5	${ }_{135}^{65}$	$2{ }^{2}$	${ }_{\substack{300 p}}^{\text {200 }}$	2sc	p
TDA 1087	60p	TDA2658	300	tDa4580	400	TDAB361		UPC574	${ }^{80 p}$	2SA7	15	258	${ }^{90}$	2S85			35p	2 LC	
TOA 1092	${ }^{100 p}$	TDA2670	150\％	tidete	20\％p	to ${ }_{\text {TOAB362 }}$		UPC577	64 p	25A7	450p	${ }_{2 S A 1}$		${ }^{258}$	80		100 p	${ }_{2} \mathrm{LC}$	$15 p$
TDA	40	tDA 271001	400p	tDA4601	120p	TDAB366N2	1500	UPC592	95p	${ }_{25 A}^{254}$	425	2 2SA1	5009	${ }^{258}$	90	${ }^{25}$	15p	2sc	75p
TDA1170		tDa 2721		TDA4605		tDa8372a		UPC595	90p	${ }_{25 A}^{25 A}$						2		2sc	
		－		TDA6450		TDAB3	275	UPC1001	2200	${ }^{2 S A 769}$		25	25			${ }_{2 S C}$		${ }_{2}$ SC1569	
TDA1175	175p	tDA2750	200p	TDA4660	200p	tDab390a	650p	UPC1004C	130p	2SA770	200p	2SA1175	30p	2S8560	25	$2 \mathrm{SC735}$	40 P	$2 \mathrm{CC1674}$	15 p

Pa	Price	Part	rice	Part	ice	Pa	Price												
$2 \mathrm{CC1675}$	${ }^{90 \mathrm{p}}$	$2 \mathrm{SC2261}$	700p	${ }^{25 C 2719}$		25	280p	$2 \mathrm{SC3}$	220p	2 S	195p	2SD880	40 p	2 251327	50p	2SD1763A	Op	2SK312	750p
C1678					12 p	2SC3264	90p	2SC3807	20p	$2 \mathrm{SD287}$	250p	2SD882	25p	2SD1328	60p	2SD1764	Op	2Sk315	p
${ }^{25 C 1683}$	100p	${ }^{25 C 2270}$	30p	2SC2724	15p	$2 \mathrm{SC3269}$	50p	2SC3808	70 p	2SD291	250p	$2 \mathrm{SD889}$	35p		50p		Op	2Sk320	P
2SC1684	30p	2SC2271	p	2SC2738	P	2SC3270	50p	$2 \mathrm{SC38}$	P	2 SD 313	25p	2SD892A	75p	2SD13	70 p	2SD1769	110p	25K320	
${ }^{2 S C 1685}$	${ }^{30}$	${ }^{\text {2SCC2274 }}$	$15 p$			$2 \mathrm{SC3271}$	75p	$2 \mathrm{SC3331}$	250p	2SD315	75p	${ }^{2 S D 894}$	35p	2SD1348	65p	2SD1773	100p	25k323	130p
$2 \mathrm{SC1729}$	${ }^{900}$	2SC2275	50p	2SC2750	300p	2SC3277	280p	2Sc3832	${ }^{2555}$	2SD325	${ }_{30}$	${ }_{2 S D 895}$	${ }^{\text {35p }}$	2SD1350	50p	2SD1776	100p	K332	175p
2SC1730	10p	2SC2278	70p	2SC2751	270p	2SC3279	30p	$25 C 3833$	250p	2SD330	5 p		20	2 SD	0	2SD1783	70 p	2SK359	40p
${ }^{25 C 1735}$	$7{ }^{7}$	${ }^{25 C 2283}$	700p	$2 \mathrm{SC2752}$			200p	2 Sc 3	100 p	2SD348	300p	2SD8988	225p	2SD1378	30p	2SD1785	160p	2SK363	P
${ }^{25 C 1740}$	10 p	${ }^{25 C 2290}$	1800 p	${ }^{2 S 52757}$	300	${ }^{25 C 5381}$	${ }^{2000}$	${ }^{25 C 3352}$	80 p	${ }^{2 \text { 2SD350 }}$	320p	2 2SD900	400p	${ }^{25 D 1379}$	100 p	2SD1789	210p	2 SK 364	Op
${ }^{25 C 1741}$	${ }^{35 p}$	${ }^{25 C 2291}$	40 p	${ }^{2 S} \mathbf{S} 2769$	400 p	25 C 3284	600p	$2 \mathrm{SC3853}$	${ }^{220}$	${ }^{2 \text { SD357 }}$	40 p	${ }^{2 S D 905}$	450	2SD138	100p	2SD1796	120p	2SK367	40 p
${ }^{25 C 1755}$	90 p	2 SC 2298	${ }^{35 p}$	${ }_{2 S C 2773}$	700	25 C 3293		2 SC	22		40p	$2 \mathrm{SD916}$	130p	2SD1382	80p	2SD1802	75p	2Sк369	30p
${ }^{2 S C 1756}$	359 300	2SC2307 2SC 2308	300 p 100	${ }^{\text {2SC2774 }}$	${ }_{400}{ }^{\text {40p }}$	2SC3298 2515999	50p	${ }^{25 C 3857}$	${ }_{5}^{500}$	${ }^{2 S D 359}$	50p	2SD917	${ }^{300}$	2 2S01384	p	${ }^{25 D 1806}$	5p	3	40 p
${ }_{2 S C 1760}^{2 S C}$	70 p	2SC2312	10p 300p	${ }_{\text {2SC2786 }}$	${ }_{20 p}^{40 p}$	2SC32990	$120 p$ $400 p$	${ }_{\text {2Sc3s856 }}$	550p	2SD361				$2 \mathrm{2SD}$	${ }^{350}$	2SD1812	45p	2SK374	45p
$2 \mathrm{SC1775}$		$2 \mathrm{SC2314}$		2 SC 27	10p	25 c3303	100p	2SC3858	${ }_{100}$	2SD371	240p	${ }_{2}$ 2SD946	120	2 LD	250 85		p	2SK386	60
$2 \mathrm{SC1781}$	20p	25 C 2316	150p	2SC2791	500p	2SC3306	130 p	2SC3870	200p	2SD380	650p	2SD947	100	2SD13	${ }_{80}$	2SD1827	p	2SK	115p
${ }_{2 S}^{25 C 1789}$	${ }^{100 p}$	2SC2320	120	${ }^{2 S C 2792}$	${ }^{2200}$	${ }^{25 C 3307}$	${ }^{600}{ }^{\text {p }}$	${ }^{25}$ S 3888 A	25 p	${ }^{25 D 381}$	50 p	${ }^{25 D 950}$	30	2SD	120p	2SD1843	70p	2SK400	
${ }^{2 S C} 1809$		${ }^{25 C 2324}$	120	${ }^{25 C 2793}$		${ }^{25 C 3309}$	150		210p	2SD382	75p	$2 \mathrm{SD951}$	200p	2SD139	100p	2SD1846	350p	2SK405	450p
${ }^{\text {2SCC }} 1810$	${ }^{250}$	${ }^{25 C 2338 A}$		2SC2808	40p	$25 C 3310$	125p	$2 \mathrm{SC3884}$	200p	2 20386	Op	2SD957A	520p	2SD1398	120p	2SD1847	275p	2SK414	
${ }_{2 S C}^{2 S C 1815}$	10	${ }^{25 C 2310}$	25p	${ }^{2 S C 2810}$	\%	${ }^{2 S C 3316}$	280p	${ }^{25 C 3885}$	250p	${ }^{25 D 388}$	${ }^{150}$	${ }^{25 \mathrm{SD958}}$	${ }^{60}$	${ }^{2 S D 1399}$	300p	2SD1849	280p	15	500p
2SCC 1819 2SC 1826	70p	${ }_{\text {2SC2329 }}$	175p	${ }^{2 S C 2812}$	${ }_{40}^{40}$	${ }_{2 S C 3317}$	${ }^{350}$	${ }^{2 S C 3885 A}$	290p	${ }^{2 S D 389}$		2SD	35p	2SD	280	2SD1850	325p	2SK423	75p
2 SC 1	60p	${ }_{2 S c 2230}$	30	${ }_{2 S C 2824}$	${ }^{75 p}$	2 SC3327	G0p	$2 \mathrm{SC3890}$	Op	2SD401	${ }_{50}{ }^{19}$	${ }_{2} \mathbf{2 5 0 9 7 2}$	170p	le $\begin{aligned} & \text { 2SD } 1402 \\ & \text { 2SD1403 }\end{aligned}$	(120p	2 LD	P		59p
2SC1829	500p	2SC2331	50p	2SC2825	900 p	2SC3328	50 p	2SC3892A	250p	2SD402	120 p	${ }_{2 S D 973}$	${ }_{60}{ }^{4}$	2SD1405		2SD1	75	SK430	P
${ }_{2}^{2 S C 1833}$	27p	${ }^{25 c 2333}$	200	${ }_{2 \text { SCC } 2826}$		${ }^{25 C 3330}$	${ }^{20}$	$2 \mathrm{SC38}$	225p	2SD414	5p	2SD973A	70p	2SD14	60 p	2SD1858	40 p	2SK511	450 p
${ }^{25 C 1834}$	50p	$2 \mathrm{SC2334}$	80 p	2SC28	130p	$2 \mathrm{CC3331}$	25p	2SC3895	325p	2SD415	5p	2 2SD982	90 p	2SD1	80p	2SD1863	5 p	2SK513	325p
${ }^{2 S C 1841}$	12 p	${ }^{25} \mathrm{C} 23335$	${ }^{55 p}$	2 2SC2832	300p	$2 \mathrm{SC3333}$	120 p	2SC3896	400p	2SD424	350p	2SD985	120p	2SD1408	125p	2SD1864	5	2SK526	160p
${ }^{2 S C 1844}$	${ }^{50 p}$	${ }^{2 S C 2336 A}$	125	${ }_{2 S C 2834}$		${ }^{2 S C 3345}$	100 p	${ }^{25 C 3897}$	4000	${ }^{2 S D 426}$	150p	2 2SD986	120p	2 SD 1	170p	2SD1877	175p	2SK531	50p
-2SC1845	15p	$2 \mathrm{SC2344}$	150p	283		$2 \mathrm{CC3346}$	${ }^{130} \mathrm{p}$	$2 \mathrm{SC39}$	250 p	2 SO	350p	${ }^{2 S 5998}$	70p	${ }^{2 S D 1411}$	85p	2SD1878	160p	2Sk534	
${ }^{2 S C 1846}{ }^{2 S C 1847}$	35p	${ }^{25 \mathrm{SC2347}}$	35p	2SC28	40p	2 CC 3352	200 p	$2 \mathrm{SC3927}$	${ }^{250}$	${ }^{25 D 438}$	${ }^{35 p}$	2 2SD1010	P	${ }^{2 S D 1412}$	5	2SD1879	275p	2SK537	900p
2SC 1855	-85p	${ }^{25 C 2353}$	120p 120	${ }_{2 S C 2873}^{25 C 853}$	70p 60 p	${ }_{\text {2Sc3355 }}$	280p	${ }_{\text {2SCC3943 }}$	40p	2SD4	$15 p$ $15 p$	2SD1012	${ }_{40}^{40}$	${ }_{\text {2SD14 }}$	190p	2SD	360 p 350	2SK538	${ }^{350}{ }^{\text {p }}$
2SCC1856	${ }^{255}$	${ }^{2 S C 2367}$	${ }^{150}$	${ }^{2 S C 28}$	120p	${ }_{2} \mathrm{SC}_{2} 3356$	120p	2 SC 3944	sop	2SD471	20 p	2SD1021	120p	2SD141	${ }^{\text {190p }}$	2SD1884	3500	2SK539	p
${ }^{2 S C 1865}$	700 p	${ }^{25 C 2362}$	50p	${ }^{2 S C 2878}$	20 p	$2 \mathrm{SC3358}$	50p	2 SC 3950	120p	2SD476	${ }^{100}$	2 2S1022	250p	2SD142	280p	2SD1886	300p	2SK544	p
${ }^{25 C 1870}$	700 p	${ }^{25 C 2365}$	280	${ }^{2 S C 2879}$	3200p	$2 \mathrm{SC3376}$	300p	${ }^{25 C 3953}$	P	${ }^{2 S D 525}$	50 p	2SD1024	850p	2SD14	135p	2SD1887	225p	2SK552	250 p
${ }^{25 C 1871}$	425p	2SC2369	100p	25	60p	$2 \mathrm{CC337}$	S	2SC395	60 p	2SD526	${ }^{70}$	2SD1027	850p	2SD142	160p	2SD1894	300p	2SK553	225p
${ }_{2 S C 188}^{2 S C 1875}$	${ }_{7}^{2209}$	${ }^{2 S \mathrm{C} 2371}$	25 p	${ }^{25 C 2883}$	60	${ }_{2 \text { 2Sc3378 }}$	P	${ }^{25 C 3964}$	100p	${ }^{2 S D 545}$	P	${ }^{2 S D 1030}$	75 p	2SD142	180p	2SD1895	225p	2SK555	320p
${ }_{2 S C} 28980$	75p	- $\begin{aligned} & \text { 2SC2373 } \\ & \text { 2SC233 }\end{aligned}$	P	2SC2898 2SC2899	200p	${ }_{2 S C 3381}^{2 S C 379}$	$1200 p$ 130	2S		2 2SD5	120p	2SD1	70p	2SD1	280	2SD191	175p	2SK556	500p
$2 \mathrm{SC18}$		${ }^{25 C 23}$	515	2SC29	60 P	2Sc3383	0^{2}	2 2C3975	210p	2SD554	225p	${ }_{2 S D 1046}$	200 p	${ }_{2}{ }^{2} \mathrm{SD} 1432$	200p	2SD1913			
${ }^{2 S C 1904}$	125p	${ }^{2 S C 2407}$	110 p	$2 \mathrm{SC2910}$	25p	$2 \mathrm{SC3393}$	P	2 CC 3987	180p	2SD555	500p	2SD1047	180	2SD1433	300p	${ }^{2 S D} 1929$			
${ }^{25 C 19}$		${ }^{2 S C 2408}$	120 p	${ }^{25 C 2911}$	P	${ }^{2 S C 3397}$	20	${ }_{2 S C 3996}^{25}$		2SD	225p	2SD1051	130p	2SD1	60p	2SD1930	50p	2SK660	
		2412	50p	2SC29	120p	${ }^{25 C 3}$	50 p	$2 \mathrm{SC3997}$	1250	2SD5	200p	2SD1055	P	2SD1		2 SO			
${ }_{2}^{2 S C 1909}$	${ }^{250 p}$	${ }^{25 C 2440}$	200p	${ }^{25 C 2921}$	${ }^{6509}$	2SC3400	$35 p$ 50	2 2SC3998		${ }^{2 S D 560}$	${ }^{50}$	2SD1060	${ }^{130} \mathrm{p}$	2SD144	22	${ }^{25 D 1939}$	p	2SK606	
2SC1913 2SC 1914	90p $\mathbf{3 0 p}$	${ }^{\text {2SC2458 }}$	10 p $\mathbf{5 0 p}$	- ${ }_{\text {2SC2923 }}$	${ }^{480 p}$	${ }_{2 S}^{2 S C 3401}$	40 p	2SC4006 2SC4020	100		${ }^{200}$	${ }_{\text {2SD }}$		2SD		2SD			
${ }^{2 S C 1921}$	15p	$2 \mathrm{SC24}$	55	2 SC 29		-	130 p		325p	2SD592	25p	${ }_{2 S D 1064}$	250p	2SD744		2SD1958	${ }^{80 p}$	2SK685	
${ }^{2 \mathrm{SC} 1922}$	175	$2 \mathrm{SC2486}$	275p	2 SC 2929	280p	$2 \mathrm{CC3409}$	400 p	25 C 4029	350p	$2 \mathrm{Sb596}$	25p	2SD1065	160p	2SD145	\%	2SD1959	210	2SK699	
${ }^{25 \mathrm{SC} 1923}$		$2 \mathrm{SC2492}$	65	${ }^{25 C 2934}$	75 p	${ }^{2 S C 3416}$	P	${ }^{25 C 4043}$	5	2SDE600	${ }^{30}$	${ }^{2 S D} 1$	150	2 SD	200p	2SD1978	50p	2SK719	300p
${ }^{25 C 1929}$	180p	${ }^{2 S C 2470}$		2SC29	250	$2 \mathrm{SC34}$	90 p	${ }^{2 S C 4046}$	Pp	2S	40 p	${ }^{2 S D 1073}$	3500	2SD145	275p	2SD1984	P		
${ }^{2 S C 19}$	$110 p$ 27p	${ }^{2 S C 2481}{ }_{\text {2SC2482 }}$	20p	${ }_{2}^{25 C 29}$	P	2SC3419	120p	2SC4056		2SD602	60 p	2SD1088	150p	${ }^{25 D} 1$		2SD1991	50	25	p
${ }_{2} 2 \mathrm{Cl} 1942$	350	${ }_{2}{ }^{\text {SC2483 }}$	120 p	2sc2958	5	${ }_{25 \mathrm{C} 3421}$	${ }_{45 p}$	${ }^{25 C 4064}$		${ }_{2 S}$	p	$2 \mathrm{SD1}$	22	2 S		2 LO	450	2SK	425p
${ }^{25 C 1944}$	350 p	${ }^{25 C 2484}$	185 p	${ }^{25 C 2962}$	800 p	${ }^{2 S C 3422}$	75p	2SC410			300p	2SD1111	,	2sD1		2 SO 20	75p	2SK	47
${ }^{2 S C 19}$	S500	${ }^{2 S C 2485}$	400p	$2 \mathrm{LC2}$	180 p	${ }^{2 \mathrm{SC} 3423}$	60p	$2 \mathrm{SC4107}$	175p	2 25633	70p	2SD1113	225 p	2SD1	60 p	2 SD2010	250p	${ }^{256739}$	400 p
${ }^{25 C 1946}$	1500p	${ }^{2 S C 2491}$	2000	${ }^{25 C 29}$		${ }^{25 C 3425}$	5p	${ }^{2 S C 4123}$		2SD63	10 p	2SD1128	200p	2SD1	p	2SD2011		2Sk758	300p
${ }^{\text {2SC }} 1947$		${ }^{25 C 2498}$		${ }^{25 C 2988}$	p	${ }^{2 S C 3446}$	${ }^{150}$	${ }^{2 S C 4124}$	200 p	250637	15 p	$2 \mathrm{SD1133}$	B5	2SD1	225p	2SD20	50p	2SK769	500p
$2 \mathrm{2SC1953}$	${ }^{45 p}$	2SC2500	25	${ }^{25 \mathrm{C} 2995}$	${ }^{60}$	${ }^{25 C 34}$	130 p	${ }^{25 C 4125}$	${ }^{275 p}$	${ }^{2 S 50}$	15 p	2SD1135	75 p	${ }^{2 S D 14}$	${ }^{150}$	${ }^{2 S D 2018}$	${ }^{\text {5p }}$	2SK786	
${ }^{2 \mathrm{2SC}} \mathbf{2 \mathrm { SC } 9 5 9}$	70p 108	${ }^{2 S} 25$		2					P	2SD639	p	2SD1138	p	${ }^{2 S D} 14$	${ }^{300}$	${ }^{2 S D 2033}$	P	2SK787	80
${ }^{2} 2 \mathrm{C} 1962$	175	2SC2512	${ }_{20} 20$	${ }_{25 C 3019}$	320p	${ }_{2 S C 3459}$	180	${ }_{2 \mathrm{CS} 415}^{2 \mathrm{~S}}$		2 L 655	p	${ }^{2 S D 1142}$	40p 350 p	2SD14				2SK791	22
${ }^{25 C 1967}$	1300p	${ }^{2 S C 2517}$	120 p	${ }^{2 S C 3020}$	145	${ }^{2 S C 3460}$	130 p	2 SC 415	100p	2SD561	60 p	2SD1145	25p	2SD1505	90 p	2SD2125	180	2SK792	300p
${ }^{25 C 1969}$	1	${ }^{25 C 2519}$		${ }^{25 C 30}$		2 2S3461	275p	2 2SC4161	125p	250666	25p	2SD148	175p	2SD15	50 p	${ }^{2 S D 2136}$			
${ }_{2}^{2 S C 1970}$	10	${ }^{2} 2$ SC2527	${ }^{300}$	$2 \mathrm{SC3025}$	50	${ }^{25 C 3466}$	${ }^{225 p}$	${ }^{2 S C 4169}$		${ }^{25 D 667}$	20 p	2SD1153	30p	2SD15		2 2SD2	35p	${ }^{25 K}$	${ }^{315 p}$
${ }_{2}{ }_{2 S C 1972}^{2 S 19}$	${ }_{600 p}$	2SC2534	150 p 300 p	${ }_{2 S C 30}^{2 s c 30}$	${ }_{300 \mathrm{p}}^{450}$	${ }_{2 S}^{25 C}$					${ }^{350}$	2SD1	505	2SD1	100 p	2SD2	175p		
2 SC 19	150 p	2SC25		2 25c3037	125p	2SC3482	275	${ }_{2 S C 4231}$	250	2SD6	250p	2SD1163A	220p	2SD1519	250p	${ }_{\text {2SD2331 }}$	1750p	2Sk812	
${ }^{2 S C 1975}$	120p	2 2SC2540	1900p	${ }^{2 S C 3038}$		${ }^{25 C 3486}$	275p	2 2C4235	300p	$2 \mathrm{SD717}$	180p	2SD1164	75p	2SD1		2SD		2SK8	
${ }^{2 S C 1980}$	${ }_{75}$	${ }^{25 C 2542}$	30	${ }^{25 C 3039}$		${ }^{25 C 3502}$	5	${ }^{2 \mathrm{SC4} 433}$		2SD7	${ }^{35}$	2SD1	270 p	2SD15	450p	2SD23	225p	2	
${ }^{25 C 1983}$	75	$2{ }^{25 C 2555}$	${ }_{55}^{55}$	${ }^{25 C 3040}$	${ }^{260}$	${ }^{25 C 3503}$	50 p	${ }^{25 C 4237}$	${ }^{500}$	${ }^{2 S D 722}$	240 p	2 2SD1169	${ }^{280}{ }^{\text {p }}$	2SD1526	${ }^{100}$	${ }^{2 S} 548$	425	2SK	
${ }^{2 S C}$	150 p	2sc2546	25p	2SC3042	300 p	3504	120 p	${ }^{25 \mathrm{C} 4242}$	120	2	200p	${ }^{2 S D 1173}$	p	2SD154	35	${ }^{2 S} 556$		${ }_{2}^{25 K 875}$	475p
${ }_{2} 2 \mathrm{C} 1986$	100 p	2 SC 5550	50p	${ }_{\text {2SC3057 }}$	150p	2SC3		${ }_{\text {2SC4288A }}$			250	2SD1	400 p	2SD1		${ }_{2 S}^{2 S}$	2200	2SK	50
		${ }^{2 S C 2551}$	70p	$2 \mathrm{SC3068}$	S	2 2C3507	${ }^{650}$ p	2SC4300	200p	2SD732	250	2SD11	55p	2SD15	400p	2 S	35	2SK9	500p
${ }^{2 S C 2002}$	${ }^{15}$	2SC2552		$2 \mathrm{SC3070}$	5p	2 2S3509	750p	2 SC4301	300p	2SD734	15p	2SD1191	120p	2SD1554	170	$2 \mathrm{SJ7}$	225	2SK9	5p
$2 \mathrm{2SC2003}$	$2{ }^{\text {p }}$	${ }^{\text {SSC2553 }}$	200 p	${ }^{2 S C 3071}$	${ }^{25 p}$	$2 \mathrm{SC3514}$	170	2 2SC4304	225 p	2SD741	120 p	2SD1192	P	2SD1	150p	2SJ103	75p	2SK952	275p
${ }_{\text {2SCL2004 }}$	${ }^{20 \mathrm{p}}$	2SC2555	120p	2SC3073	10	${ }_{2 S}^{2 S C 35}$	120p	2sc4	${ }_{600} 6$	$2 \mathrm{2S}$	130 p 120	${ }^{\text {2SD1196 }}$	${ }^{150}{ }^{150}$	${ }^{2 S D 1} 1$	225p	${ }_{2 S 1109}^{2 S 1193}$	$200 p$	硣	
$2 \mathrm{zsC2023}$	180p	2SC2563	200 p	2SC3075	${ }^{200}$	2SC3526	${ }_{45 p}$	${ }_{25 C 4382}$	200p	${ }^{2 S D 76}$	70p	${ }^{\text {2SD1198 }}$		${ }_{2}$ 2SD15	175p			2SK956	${ }^{4000}$
${ }^{25 C 2026}$	pp	${ }^{2 S C 2568}$	120	${ }^{25 C 3077}$	${ }_{120}$	${ }^{2 S C 3528}$	750 P	${ }^{25 C 4386}$	275p	2 257	100	2 2SD1207	40 p	2 SD 15	100p	$2 \mathrm{SJ116}$	120		
${ }_{2 S}^{2 S C 203}$	20	${ }_{2 S C 257}^{2 S C 257}$		${ }_{2 S}^{2 S C 30}$	${ }^{150 \mathrm{p}}$	2sc3	${ }_{200}^{225}$	${ }_{2 S}^{2 S}$	425	$2 \mathrm{2S}$		2SD12	${ }^{280 p}$	${ }_{2}^{2 S D}$	P	${ }_{2 S}^{2 S}$		2SK103	450p
2 2c2037	50p	2 SC 2577	110 p	$2 \mathrm{SC3101}$	750p	${ }_{2}$	270	${ }_{2 S C 4429}$	275	2SD772	${ }_{200 p}$	${ }_{2 S D 1213}$	220p	2SD1	25	2 S		2SK105	600p
$2 \mathrm{2SC2053}$	120 p	${ }^{25 C 2578}$	${ }^{170}$	${ }_{2}^{2 S C 3112}$	35p	${ }^{25 C 3567}$	200p	${ }^{2 S C 4431}$		2 SD 77	${ }^{20} \mathrm{p}$	${ }^{\text {SSD1218 }}$	75p	2SD157	80p	2SJ175	200 p	${ }^{2561058}$	80
${ }_{\text {2SC2055 }}$		${ }_{2 S C 258}^{2 S 5}$	110	${ }_{2 S C 31}^{2 S C 31}$	40p	2SC3577 2 SC3584	${ }_{200 p}^{275 p}$	${ }_{2 S}^{25}$	325p	${ }^{2 S 5774}$	309	${ }_{2 \text { SDD1223 }}$	75p	${ }^{2 S D 1589}$	p	2 S	150 P	Sk	${ }^{\text {700p }}$
2 2SC2060	40 p	${ }^{2 S C 2581}$	225	${ }_{2 S C 3117}$	120p	${ }_{2 S C 3591}$	${ }_{\text {200p }}$	2SC4468	250	2SD777 2SD784	${ }_{6500}^{400}$	2SD1225	70p	2S	100 p 310	2SJ	${ }^{625 p}$	2Sk	450p
$2 \mathrm{SC2061}$	75p	$2 \mathrm{SC2588}$	600p	$2 \mathrm{SC3122}$	50p	$2 \mathrm{SC3595}$	220p	$2 \mathrm{SC4517}$	200p	2SD786	100p	2 SD1229	250p	2SD1593	125p	${ }_{\text {2SK19 }}$	5		
S200	${ }^{60}$	${ }^{2 S C 2590}$	40 p	${ }^{2 S C 3148}$	145p	2 2C3597	75p	2SC4517A	225p	2SD787	20 p	2SD1237	300p	${ }_{2}$ SD1595	70p	2SK33	Op	K1117	250p
${ }_{2 S} \mathrm{SC207}^{\text {c }}$	140 p	${ }^{25 C 2591}$	50 p	${ }^{25 C 3149}$	80p	2SC3599	${ }^{140}$	${ }^{25 C 4531}$	4500	${ }^{2 S 5788}$	${ }^{30} \mathrm{P}$	${ }^{2 S D 1238}$	300 p	2SD16	210p	2SK40	50p	2SK1118 2SK1120	
${ }_{2 S C 2075}^{2 S C}$	${ }_{60 \mathrm{p}}^{40}$	${ }^{2 S C 2593}$	200p	2SC3150	175	2SC3600		2SC4532		2SD77	400p	${ }^{\text {2SD }}$ 2SD 1246	${ }_{20}^{250}$	${ }_{\text {2SD16 }}$	$\begin{array}{r}\text { 45p } \\ 320 \\ \hline\end{array}$	${ }^{25 K}$	100p	2SK1190	
$2 \mathrm{SC2078}$	95 p	$2 \mathrm{SC2610}$	60p	2SC3152	130p	2SC3607	150p	2 SC 4742	275p	2SD794	33p	2SD1247	40 p	2SD163	50	2Sk73	75	2SK1191	800p
${ }_{2 S}^{2 S C 2085}$	${ }_{60}^{100}$	${ }^{2 S C 2617}$	${ }_{70} \mathbf{3 0}$	${ }^{25 C 3153}$	${ }_{350} 175$	${ }^{25 C 3608}$	${ }^{655}$	${ }^{25 C 4744}$	35	${ }^{2 \text { 2SD795A }}$	140 p	${ }^{2 S D 1251}$	180	2SD164	40 p	2Sk9	200p	2Sk1217	
2SC2086	-60p	${ }^{\text {2SC2621 }}$	70 p 190 p	${ }_{\text {2SC3157 }}$	350 p $\mathbf{2 0 0 p}$	${ }_{2 S C 3636}^{2 S C 3616}$	${ }^{\text {285p }}$	${ }^{2 S C 4745}$		2SD7	175 p 150	${ }^{\text {2SD } 1254}$	55p	2SD164 2SD165	${ }_{2}^{260 p}$	${ }_{\text {2SK106 }}^{25107}$	${ }_{40 \mathrm{p}}^{40}$	${ }^{2 \mathrm{SK} 122}$	2
2 SC 2094	1200p	${ }^{25 C 2626}$	P	$2 \mathrm{SC3158}$	280 p	2SC3642	225p	${ }_{2 S C 457}$	200 p	${ }^{25 D 809}$	${ }_{45 \mathrm{p}}$	2SD1264	55p	2SD16	150p	${ }_{\text {2SK109 }}$	40p	2SK12	27
2SC2097	${ }^{2300}{ }^{\text {p }}$	${ }^{25 C 2630}$	1800p	${ }^{25 C 3159}$	200 p	${ }^{25 C 3557}$	400 p	${ }^{2 S C 4762}$	300p	${ }^{258811}$	450	2SD1265	75p	2SD16	250p	2SK117	50p	2SK1	
-	$2500 p$ 1100 p	${ }_{\text {2SC2631 }}$		2SC3164		2SC3659		${ }_{2 S C 4}^{2 S C 4}$	250 p	2SD	${ }^{300}{ }^{\text {250 }}$	${ }_{\text {2SD126 }}$	180p	2SD	350 p 50	${ }_{2 S K 118}^{2 S 18}$	${ }^{50}$	2SK1317	900p
2 SC 2120		$2 \mathrm{SC2634}$	10p	$2 \mathrm{SC3170}$	300p	${ }_{2}$ Sc3675	100p	2 2C4820	225 p	${ }_{\text {2SD821 }}$	550p	${ }^{2 S D 1271}$	55 p	2SD169	120	2Sk133	${ }_{650 p}$	2SK1338	250p
${ }_{2 S}^{2 S C 2122 A}$	${ }_{550}$	${ }^{2 S C 2636}$	$\stackrel{40 \mathrm{p}}{4}$	${ }^{25 C 3173}$	180 p	${ }^{25 C 3678}$	280 p	${ }^{25 C 4826}$	70p	${ }^{258822}$	290p	2SD1271A	225 p	2SD1		2 2SK147	160p	${ }^{25 K 1341}$	${ }^{500} \mathrm{p}$
2SC2131 2SC2141	550p	${ }_{\text {2SC2640 }}$	1800p	${ }_{2 S C 3178}^{2 S C 315}$	150 125	${ }_{2 \mathrm{LC} \text { 236 }}$		${ }_{2 S}^{25}$	${ }^{8000}$	2SD	30p	${ }^{\text {2SD } 1272}$	2000	${ }^{2} 25$	85p	${ }_{2}^{2 S 15151}$	40 p	${ }^{\text {2SK } 1342}$	50
2 2SC2153	40p	$2 \mathrm{SC2653}$	100p	$2 \mathrm{SC3179}$	70 p	$2 \mathrm{SC3685}$	450p	${ }_{25 C 4924}$	250 p	2SD836	50p	${ }_{2 S D 1274}$	${ }_{80} 80$	2SD16	${ }^{225 p}$	${ }_{\text {2SK163 }}$		2SK1356	
${ }^{25 C 2166}$	${ }^{\text {B0 }}$	2sc2654	180 p	2SC3180	175 p	${ }^{25 C 3588}$	${ }^{300 p}$	${ }_{2}^{25 C 4927}$	50	2SD83	50 p	2SD1	50 p	2 2D1	45 p	${ }_{2} 2 \mathrm{~K} 168$	40 p	2SK1357	225p
${ }^{2 S 5 C 2188}$	${ }_{70} 12$	- ${ }_{\text {2SC2655 }}$	550p	${ }_{2 S C 318}^{2 S 518}$	200 p 120 p	${ }_{2 \mathrm{LC}}^{2 \text { 2SC3 }}$		${ }_{\text {2Sc50 }}$	350p	2SD83	-55p	${ }_{\text {2SD1277 }}$	- ${ }_{\text {60p }}$	${ }_{\text {2SD1 }}$	70 p $\mathbf{3 2 5 p}$	2SK170 2SK184	50p 350	2SK1358	400p
$2 \mathrm{SC2200}$	250p	$2 \mathrm{SC2650}$	100p	$2 \mathrm{SC3198}$	30 p	${ }_{2 \mathrm{SC} 3715}$	480p	${ }_{2}$ 2S5502	100p	2SD841	110p	2SD1279	600p	2SD17	${ }^{325 p}$	${ }^{25 \mathrm{Sk} 192}$	35p	2Sk1377	${ }^{150}$
$2 \mathrm{SC2209}$	50	2sc2665	${ }^{200 p}$	$2 \mathrm{SC3199}$	$4{ }^{40}$	${ }_{2 S C 3717}$	${ }^{120} \mathrm{p}$	${ }^{2 S C 504}$	300p	2SD844	200 p	2SD1288	176	2SD1708	375p	2SK193	40 p	2SK1400	250p
${ }_{2 S}^{2 S C 2216}$	650p	2SC2688		${ }_{2 S C 32}^{2 S C 32}$	25 p 120 p	2SC3729 $2 \mathrm{SC3746}$	100p	${ }_{2 S C 508}^{2 S 508}$	250p	2SD850 2SD856	170p	${ }^{2 S D 1289}$	${ }_{280}^{250}$	2 2SD1710	200 p	${ }^{2} \mathbf{2 S k 1 9 5}$	${ }_{150} 5$	2SK1404	290p
${ }^{25 C 2228 A}$	${ }_{60}$	2sc2681	170p	2 2SC3210	550p	${ }_{2 S C 3747}$	120p	${ }_{2 \text { 2SC5129 }}$	300p	${ }_{\text {2SD858 }}$	- 250	${ }_{\text {2SD1292 }}$	280 p	2SD1718			140 p 35 p	2SK1461	
$2 \mathrm{SC2229}$	15 p	${ }^{25 C 2682}$	70p	$2 \mathrm{SC3211}$	${ }^{220}$	${ }_{2 S C 3748}$	20p	$2 \mathrm{SC51}$	300	2SD8	23p	$25 D 1293$	P1	2SD1730	275p	2Sk214	170p	2SK1487	250
${ }_{2 S \mathrm{Sc} 2233}$		2SC2688	27p	${ }_{2 S C 32}^{2 S}$	$\stackrel{260}{50}$	2sc3	50p	${ }_{2 S}^{25}$	300p	${ }^{2515864}$	${ }_{120}^{200}$	${ }_{2}$ 2SD1297	300 p	${ }^{2 \text { 2SD173 }}$	250 p	${ }^{\text {2SK216 }}$	200p	2SK1507	30
${ }^{25 C 2235}$	1	${ }^{\text {2SC2694 }}$	3500p	${ }^{\text {ascla }}$	50p	${ }_{2 S c 3782}^{2 S C 3781}$	150p	${ }^{2 S 5525}$	300 p 350 p	2SD866	120 p 140 p	${ }_{\text {2SDI } 1306}^{\text {2SD132 }}$	${ }^{20 \mathrm{p}}$	2SD173	$180 p$ $125 p$	2SK2	50p	${ }^{2 S K} 1529$	700
${ }^{25 C 2236}$	20	2sc2705	40 p	${ }^{25 C 3244}$	45p	$2 \mathrm{SC3783}$	300p	2SD1	140 p	2SD8	350p	2SD1308	$8 \mathrm{sop}^{\text {P }}$	2SD1748	Op	${ }_{\text {2SK241 }}$	${ }^{30}$	2SK1537	${ }^{400 p}$
${ }_{\text {2SC2237 }}$	54	2 S	${ }_{\text {250p }}$	${ }_{2 S C}^{2 S}$	$0^{\text {p }}$	2sc	${ }^{100 p}$	2SD	195 p	${ }^{25 \mathrm{~S} 868}$	260 p	2SD1309	140 p	2SD1756	27	2SK246	30 p	2SK1544	
$2 \mathrm{SC2240}$	45p	${ }^{\text {2SC2712 }}$	20p	${ }^{2 S C 3260}$	350p	${ }_{\text {2Sc3789 }}$	70p 750	2SD200 2SD201	180 p 280 p	2SD869 2SD870	150 p 140 p	${ }^{\text {2SD }} \mathrm{SD} 1310$	${ }_{65 p}^{140 p}$	${ }_{2}^{2 S D 17}$	${ }_{80 \mathrm{p}}^{\mathbf{6 0 p}}$	$\begin{aligned} & \text { 2SK300 } \\ & \text { 2SK201 } \end{aligned}$	${ }_{40 p}^{25 p}$	${ }_{2 S K 2}$	275p 295p
2SC2258	30p	2SC2714	20 p	$2 \mathrm{SC3261}$	230p	2SC37	120p	2SD213			260p	2SD1313	1000p	2SD1761	60p	2SK303	40 p	2SK2039	750p
2SC2259	60 p	2SC2716	50p	$2 \mathrm{SC3262}$	280	C379	140p	SD234	90 p	2SD879	60p	2SD1326	200p	2SD1762	50p	2SK304	25p		

REPLACEMENT VIDEO HEADS

PINCH ROLLERS

Model
AKAA
VS10, VS9300, VS9500, VS9700, VS9800
VP7100 VP77

VS $105,112,115,116,120,125$, 126, 155, 165, 205, 220, 240, 244, 245 VSS247,
VSK9
VS201 VSX9
VS201, 301, 303, 304, 603, 606, 607, VSP8, 140p
VSP22, VS VSP82, VP58, VPB2 VSP82,
VST125,
V5512 VS22, 23, 25, 35, 37, 38, 53, 66, 75, 422, 425,
426, 427, 426, 427, 462, 465, 467,
VS $485,765,766,767,768,865,867,965,967$. VSF $10,11,12,15$ VSF $10,11,12,15,180,190,200,210,220$, $21,222,230,240,30,33$
VSF $330,4,500,550$, VSP
V50, 470
VSF260
 2FO, $340,261,262,265,270$,
VSF41, $450,410,420,43 \mathrm{C}$
VSF $441,440,450,455,480,490,497,510$ F60, 580, 590, 599,600
55, 60, 64, $65,70,73,74,75$,
VSP110, VS $\times 560$, VS $\times 580$
VS $17,20,22,23,24,25,26,27,35,37,38,53$, 140 p , 55, VSA77
PINCH ROLL

VS422, 425, 426, 427, 462, 465, 467, 485, 498,

 $765,766,766,768,865$,$867,965,967$, VSA 650, VSF $10,11,12,14,15$, $180,190,200,210,220$
221, 222, 230, 240, 30, 300, 301, 310, 320, 33, $330,4,500,510,600$,

VSR110, VSX $100,400,450,470 \quad 800 \mathrm{p}$ | PINCH R |
| :--- |
| VSS99 |
| ALBA |

VCR3000X, VCR4000

VCR5000, VCR6000
VCR161, VCR222
VCR7000, VCR7800, VCR8000,
VCR8800
VCR8800
VTV10

VIV10

| 140 D |
| :--- | :--- |
| VCR1000, |

$6100,6200,8600$.
VCR8602, $8603,8604,8700, ~ 8704, ~ 8714, ~ 8800, ~$ 8804, 9000, 9005,
VCR9244, 9340, DD8900, 8904,

TVR1, 2, 3, 4 VCR7000

VCR7000
DD8900 DD8
DD8900, DD8904, VCR6000, 6100, 6200, 8600, 140 p
$8602,8603,864$, VCR8700, 8800, $900>9,9140,9244$, ${ }_{9340}^{934}$ PINCH ROLLER ASSEMBLY PART NO: 153148 TX 3650, UF20, VCR $3000, ~ V C R 3002, ~ V C R ~$${ }^{2000,}$ PINCH ROLLER ASSEMBLY PART NO: 2554966
DD9900, 9904, TX3650, UF20, 22, 24, VCR3000, 3002, 9500
VS 1004 VS 1104
FERGUSON
140 p
140p
3V00, 3V01, 3V16, 3V22, 3V23, 3V24, 3292, $8900,8901,8902,8903,8904,8906,8909$,
$8912,8922,8923,8924,8925,8929$ $3 \mathrm{~V} 29,3 \mathrm{VV} 30,3 \mathrm{~V} 31,3 \mathrm{~V} 32,3 \mathrm{~V} 52,8930,8931 \mathrm{mp}$ $8933,8940,8941,8942$
$3 \vee 35,3 \vee 36,3 \vee 38,3 \vee 39,3 \vee 42,3 \vee 43,3 \vee 44$ $3 \mathrm{~V} 45,3 \mathrm{~V} 48,3 \mathrm{~V} 49,3 \mathrm{~V} 53,3 \mathrm{~V} 54,3 \mathrm{~V} 55,3 \mathrm{~V} 56$ 3V57, 3V58, $3 V 59,3 V 65$, FV10, FVII, FV12, FV14, 8943, 8944, 8945, 8947, 8948
$3 \mathrm{VV52}$ 140
$3 V 52$
$8950,8951, \mathrm{FV} 10 \mathrm{~B}, 11 \mathrm{R}, 13 \mathrm{H}, 14 \mathrm{~T}, 20 \mathrm{~B}, 21 \mathrm{R}$,
$22 \mathrm{~L}, 260,31 \mathrm{R}, 32 \mathrm{~L}, \mathrm{FV} 3 \mathrm{HH}, 39 \mathrm{~S}, 41 \mathrm{R}, 42 \mathrm{~L}, 50 \mathrm{~B}$

FV $V 7 \mathrm{H}^{2}$
FV57H

3V35, 3V36, 3V38, 3V39, 3V49, 8943,
PINCH ROLLER ASSEMBLY
$3 \mathrm{~V} 42,3 \mathrm{~V} 43,3 \mathrm{~V} 44,3 \mathrm{~V} 45,3 \mathrm{~V} 48,3 \mathrm{~V} 53,3 \mathrm{~V} 54$, $3 V 55,3 V 56,3 V 57,8945,8947,8948$ 1350p PINCH ROLLER ASSEMBLY
FV37. FV57 FV58 FV37, FV57, FV58
PINCH ROLLER ASSEMBLY FV31R
FV41L, FV42L
PINCH ROLLER ASSEMBLY 925p $3 V 58,3 V 59,3 V 64,3 V 65$, FV10, 11, 12, 13, 14, $20,21,22,26,30,32,33$
FV39, VC141L
PINCH ROLLER ASSEMBLY FV43H, FV44L, FV45X, FV46T PINCH ROLLER ASSEMBLY $\quad 700$ FV61, FV 62, FV67, FV68, FV70, FV71, FV72,
FV74, PINCH ROLLER ASSEMBLY
FVHP 420, 520, 530

| 720, 721, 722, 725, 730, |
| :--- | :--- |

FVHP905, $906,907,908,910,911,915,916,140$ FVHP905, $906,907,908,910,911,915,916$,
$918,970,975,980,990$, FVHP 5000, 5005, 5050, 5075, 5100 VBR 330, VBS $3500,7000,7100,7500,7600$,
9000,9900 FVHDO230, 25 FVHD230, 250, 270, 370, 2000D, FVHP3, 210, 250, 300, 310, 1100
FVHP 1200, 1250, 130, 132, 1340, 1340, 1400,
$1410,1440,1500,200$ FVHP $3204040,420,200$,
FVSP200, $440,445,470,475$, FVSP290S, 495, 2905
FVHD 140, FVHD 40 , FVHD55, FVHPT, FVHP10 140 FVHP20
FVHD140, 40, 55, FVHP1, 10, 25, 30, 40, 4000 FVHS10, 30
PINCH ROLL
GOLDSTAR
GHV51, 1221, 1232, 1233, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 140p
GHV $1247,1248,1250,1260$ GHV 1247, 1248, 1250, 1266, 1290, 1291, 1295
1296, 1296, 1392, 1393,
51, 8000, 8200, GHV820, 3000, 3010, 4400, 4410 , S1, 8000,8200, GHV8210, 8215,8430
GHVP1240, $1241,1247,1248,1290,1291$ GHVP1295, 1296, VCP4000, $4100,4130,4200$ $4300,4301,4305$, VCP4306, 4310, 4311, 4315, 4316, 4320, 4321, 4325, 4326, 4350, GSE 1290 $1291,1295,1296,1297,4891,1910,20005$.
2000 HITACHI
VT7, 11, 14, 16, 17, 18, 19, 33, 34, 35, 350, 38, 39, 88, 330, 680, 4200.
V15000, $5030,5500,6500,6800,7000,8000 . ~$ VM600
V300, 8700, 930, VT9500, 9700, 9900. VT8, 52, 57, 61, 62, 63, 64, 65, 85, 86, 88,1400 110, 111, 113, 115, 118 , VT120, 122, $125,128,130,135,138,145,150$. VT250, 255, 258, 260, 220 415, $416,418,420,425$
VT, 426, 428, 430, 431, 435,
$515,517,518,520,525$
515, 517, 518, 520, 525,
VT526, $530,535,450,498,510$, VT526, 530, 535, 536, 540, 545, 546, 548, 570,
575, $576,580,585,588$
, 575, 576, $580,585,588$
VT640, 830 , 71660,66 780, 785, 860, 861,865, VTL30, 1000, 2000, VTLC
622, 625, 626, 630, 635
VTM $636,640,645,646,720$,
727, 728, 730, $731,735,720,722,725,726$, VTM $736,740,745,746,748,753,754,820$ 821, 822, 825, 830, 831, 8 VTMB35, $830,921,922$ $925,930,931,935$,
VTS80, 85, 890, 895VM200, 2300, 2380, 3200, VTS80, 85, 890, 895VM200, 2300, 2380, 3200,
3280, 500 , VMS 7200 , VT3000
VT 410.
V1410, 420, 428, 430, 450, 498, 518, 520, 522,
$530, T F 77$, 530.VF7770, 780,
VTM598. 622,722 VTM598,622,722, 740,748,753 650p
PINCH ROLER VTF150, 155, 180, 185, 250, 255, 260, 265, 280,
$285,350,351,355$, 285, 350, 351, 355,
VTF360, 365, VTM140, 141, 145, 145, 210, 211 212, 215, 220, 221
212, 215, 22,
VTM230, 231, 235, 284, VTS $390 \quad 140 p$ HINARI
V20H, VXL5, VXL6, VXL7, 8, 9, 10, 11, 99,90, H13V, VIVI00, 200
$V \times 2, V \times 13$
$V X L 4, ~ V X L 20$,
VXL4, VXL20, VXL35
VTV100, VXL10, VXLI?, VLX9,
VXL90
PINCH ROLLER ASSEMBLY

V2OH VXI5 | | |
| :--- | :--- |
| $10 \mathrm{H}, \mathrm{VXL5}, \mathrm{VXL6}$ MOD KIT | 275 p |

HR2200, $3300,3330,3360,3660,4100$ 7700
$H R 2650,7200,7300,7350,7600,7610,7650$ HRD $7655,111,120,121,140,141,142,143$. $150,152,156,157,158$, HRD160, 220, 225, 250, 257, 445, 455, 565,
$566,725,755$, HRP50, BP5000, BR7000, BRS611, 811
HRD520, 540, 550, 560, 580, 600, 610, 620, $637,640,641,650,660$.
HRD $670,72,730,70$.
HRD670, 720, 730, 740, $770,820,830,840$, HRD980, HRDX20, 22, 25, HRJ200, 205, 210, 215, 300, 315, 316, 318
HRJ400, 405, 407,
HRJ J $400,405,407,410,411,415,416,507$. 600. $605,610,615,715,815$ HR J97, HRS $4700,5800,5900,6800,6900$, HRD 170, 171, 180, 210, 211, 217, 230, 300, 320, 321, 330, 337, 350. HRD $370,400,430,440,441,470,500,530$,
$700,750,950$, $700,750,950$,
HRS5000, $5500,8000,9000, ~ B R 7030,7040$.
9060,

HRS 10
BP5000, BP5000
455
PINCH HRD 140, 141, 142, 143, 150, 152, 157, 158, $160,565,566,725,755$, HRP50
PINCH R
PINCH ROLLER ASSEMBLY HRD1520, 510, 520, 521,522, 525, 527, 560, 500, 610, 620, 637,641,
HRS5800
H2, 830, 840, 910, HRJ205,
PINCH ROLLER ASSEMBLY
BR7030, BRS600, HRD160, 170, 171, 180, 190, 210, 211, 217, 227.
HRD230, 271, $300,310,320,321,330,337$.
HRD $470,500,530,700,750,950$, HRS5000 5500,9000 875p PINCH ROLLER ASSEMBLY
HRD540, HRD550, HRD580, HRD660, HRD860, HRD960
PINCH
INCH ROLER ASSEMBLY
HRJ500, HRJ605, HRJ815,
MATSUI
V66000, 730, 735, 750, 755, 765, 800, 850
VS888
V×1000, V×2000, V×2500, VX3000,
VX6000A

MITSUBISHI
HS12, 5300, 542

HS 12, 5300, 5424, 5600, HSB11, 12, 16, 21, 27, $31,32,41,51,52,82$,
HSE $1516,17,21,22$
HSE $12,16,17,21,22,27,31,32,41,51,52$,
82, HSM1000, 110, 120, 15
$0,16,170,190,210,23,25,250,27,33,34,35$,
$36,37,370,380,45,450,5$
$4,55,555,57,58,59,68$, HSMS2 9, HSS 11,
4, 55, 555, 57, 58, 59, 68, HS
14, 15, 17, 19, 25, 5600, HV F125, 150, 303, 85, SVB900, 8930 750p PINCH ROLLE
948 DO20010
HSE11, 12, 16, 17, 21, 22, 27, 31, 32, 41, 51. $52,5300,5424,5600$, HSB11, 12, 16, 21, 27, $31,32,41,51,52,82$, HSM $1000,110,120,150$, SM $16,170,18,190,210,23,25,250,27,30$, $33,34,35,36,37,370,38$, HSM3 $300,40,45$, 450, 50, 54, 55, 555, 57, 58, 59, 60, 68, HSMS2, 9 , HSMX1, 18, 19, 2, HSS11, 12, 14,
5, 17, 19, 21, 25, 5600, HVF125, HVFi50, 303, 85, SV8900, 8930
HS200, HS300, HS301, HS 302, HS303, HS304, HS20, HS300, HS301, HS302, H
HS30, HS320, HS330, HS360, HS700
HS306, HS307, HS318, HS349, HS337, 14S30p HS347, HS349, HS400, HS410, HS4311, HS338, HS347, H349, HS400, HS410, HS411, HS412,
HS21, HS480, HS710, HSB 10, HSB20, 30, HSE 10,20 .
30, 70
NATIONAL PANASONIC
NV100, 180, $300,330 \mathrm{PX}, 332,333,340,366$, $600,688,777,788,3321$,
G6010, 6015, 6100, 6200, 6400, 6800
NV $230,250,260,280,370$,
$450,460,465,470,400,780$,
$450,460,465,470,480 \mathrm{O}, 380,430,431,433$.
NV630, 650, 730, $770,780,810,830,850,870$.
890, 2000, 2010, 3000,
NV7000, $7200,7800,8050,8150,8170,8200$,
$8300,8400,8500,800$ $8300,8400,8500,8600$
V8610, 8620, NVG11, 14, 16, NVG7, 10, 12 AG $1000,1050,1200,1500,2100,2200,6500$. $6810,7500,7510$. NVH70
NVG9, NVG120
NVG9, NVG120
AG6840, 6720,7150, 7330,7350_140p 7355, 7650, NVH65, 75, NVJ30, NVL20, 23, 25, 300, NVG $19,20,25,33,40,50$, NVV8000
$\begin{array}{ll}\text { NVD48, NVD80, NVG21 NVG45 } & \text { 140p }\end{array}$ NV J700PX
NVHD100, NVHD 101, NCHDSO, NVSD20. 140p NVSD40 PINCH ROLLER ASSEMBLY
AG5150, $5250,5700,6024$, NVD38, 48, 80, AG5150, 5250, 5700,
NVF55,65, $70,75,77$,
NVFS1, $100,200,88,90$, NVG 19, 20, 21, 22, 25, 28, 300, $33,40,45,46$,
NVG50, NVH65, 75, 77 , NVJ30, $33,35,37,40$, , N7, NVJ30, 33, 35, 37, 40, NVL20, 23, 25, 28, NVW 1

N.E.C.

N830, 831, 832, 833, 895
PVC2300,
140p
766
DX1000, 1600, 1800, 2000, 3000, N9012, 140p Dx1000, 1600, 1800, 2000, 3000,
$9014,9016,9033$ N9034, 9053, 9054, 9055, 9056, 9066, 9096, 9110, 9120, 9510, 9520.
N9530, 9610, PX 1200
DS $6000 \mathrm{G}, \mathrm{DX} 4000$ N 9077

Price	Model

ORION
VH1, VH2
Price Model

VC150, 180, VH3, 33, 200, 201, 205, 212, 250, $254,288,300,303,312$,
VH404, $555,700,704,72$
$\mathrm{VH} 404,555,700,704,712,770,780,844,900$
$1000,2948,3030,3312$ VHF2A, VP2948
COMB 15000,16000, HVO3, LVH50, NEVH, 140 p NEVHM, NEVHML,
TVP230RC VCP VH TVP230RC, VCP, VH04, 30, 103, 300, 358, 360, $362,400,416,512$,
VH530, 532, 535, 536, 600, 630, 635, 640, 666,
$730,735,744,754,880,83,900,930,940,942$, $730,735,744,774,790$
VH800, $820,850,888$ 974, 1012, 1040, 1050, $190,900,940,942$, VH 1060,1070 , VH7 100 $1500,1660,1800,2004,1120,1204,1440$, VH2151, 2308, 22042400, 2500, 2600, 2700, $\mathrm{VH} 2960,2970,3050$,
VH 3060,

4010, 4012, 4015, 4015
VP 10, 200, 220, 225, 245. VR821, 925, 1032, 2949, 2959, 2957, 2966, 2979, 2980, Vivi 300 , $\frac{\text { VXL20. 25, }}{\text { PHILIPS }}$
VR6460 VR6920
VR2020, VR2021, VR2022, VR2023,
VR2024
VR6714
VR6540
DVB56, 586, VR702, 703, 6485, 6585, 6589 140p 6785, 6888, 6948 VR445, VR6442, VR6542, VR6643, VR6843,
VR69 DV464, 662 VR2220, 2300, 2324, 2330, 2334 2340, 2350, 2414, VR2480, 2485, 2486, 2489,
243, 2490, 2498, 2840, 6462, 6463, 6454, 6560, VR6660, $6860,6861,6862,6863$ $\mathrm{N}-1700$, VR2870
VR2025
VR2025, VR6580, VR6581
49SB6. VR3260, 6349, 6448, 6449, 6548,
PRESSURE ROLLER ASSEMBLY PS403-4020 DV186, 190, VR211, 2115, 212, 213, 223, 286 , 291, 292, 311, 312, 313,
VR3210, 3219, 322, 3229, 323, 535BO, 486, 471, 562, 582,571, 761,
VR201, 202, VR203, 302, 303, 305, 6180, 6182 6185, 6285, 6290
6467, 6468, 6470, 6561
6467, $6468,6470,6561$
VR6570, $6581 \mathrm{VR} 6670,6576$, 6762,6870, 6970, VR6975, 86 BI , 63 SB 7 , 68 SB4 72SB8, $72 \mathrm{SB8}, 92 \mathrm{SB} 31,2001,71 \mathrm{SB4}, 71 \mathrm{SB5}$, $72588,72 S B 8,92 S B 31,20 \mathrm{DV} 1,20 \mathrm{DV} 2$, 2SRB12, 21DVI, 21DV2, 2SB01, 2SB02, 2SB11, 3SB03. $3 S B 05$ 3SB11 3SB12 3SB13 VR231, 232, 332, 422, 4229, 512, 5229, 7220,
7229,723 7229,723
VR501 \qquad
SANYO
VHR1100, $1110,1150,1200,1300,1500,2100$, VHR $1100,1110,1150$
$2300,2370,2500$, VHR2700, 3330, MVR220 VTC $5000,5150,5300.5350 .5400,5500,6000$. 140 . 6010, 6500, 9100,
VTC9300, VTCM $10,20,11,21,30,31,40,50$, VPR5800
VHR3100.
VHR $3100.3300,3310,3400,3500,3700,3400 \mathrm{p}$ VHRD500, 700
VTC3000
 151 20, 130, 14, 141, 143, 14, 150, 151, 153, 154, 15, 16, 171, 194, 22
OVHR23, 235, 240,

22
OVHR23, 235, 240, 244, 250, 251, 274, 27, 297,
310, $330,335,350,290$, $310,330,335,350,390$, VHR4100, 4105,4150 ,
$4200,430,4300,4350,4400,474470,5030$ $4200,430,4300,4350,4400,474,4770,5080$.
VHR5 $100,5200,5300,5350,5600,5700,6850$ $7100,7200,7250, \mathrm{VHR} 7260,7300,7400,7440$. $7500,7520,7530,7540,7700,774,780$, OVHR7810, 8000, 8070, 8100, 8200, 8250 8500,8800, VHRDD4400, $4410,4500,460$
$4610,4710,4890,6700, ~ V H R S 700$, VCR100 $4710,4890,6700$, VHRS 700 VHR120, 135, 150, 190, 4150, 4160, 4350 ${ }^{140}$ $5200,5240,5350,7200,7250,7260,7700$ VHRD $4410,4610,4710,4890,5450$,
VHRS700, VHRS700
PINCH ROLLER ASSEMBLY 975p VHRD500, 7000 ($3300,3310,4000,3700,3800$, PINCH ROLLER ASSEMBLY SHARP
VC200, 381, 383, 384, 385, 386, 388, 390, 393, $800,2300,3300,6000$,
VC6200, $6300,7300,7700,7750,7800,8300$, VC6200, 6300, 7300, 77
$838,9100,9300,9400$ $838,9100,9300,9400$.
VC9500, $9600,9700,9800$
$\begin{array}{r}\text { VC3500, 987, 402, 471, 473, 477, 481, 482, 483 } \\ \hline\end{array}$ 486, 488, 496, 500, 571, $573,581,582,583,584,585,8481, \mathrm{VC5F3}$, VC108, 208, 405, 408, 550, 600, 651, 671 140p VCB361 VCTS313 VR3400
SAMSUNG

681, 682, 684, 685, 693,
VCE- ${ }^{-2}, 700,772,750,779,780,781,7810$. $782,782 \mathrm{MK2}, 7822,783$,
VC785, 786, 787, 793, 800, 7810, 7822, VCT72 VC6F3, VC6V3, VCA 100, 102, 104, 131, 140, 170, 202, 203, 211, 234, 303, 501, 502, 882, VCM73, VCT73, VCT72.

VC220
VCA10, 30G, 60, 103, 105, 106, 111, 113, 131, 211, 244, 254, 33, 35, 36,
V2, 53, $39,40,42,454,46,47,48,50,505,51$
VCAB0, $54,55,51,58,505$,
VCB311, $32,615,62,63,67,68,1031,41613$, VCH80, $81,865,910$ VCS $1005,806,810,815$ VCH80, B1, 865, 910, VCS 1000, VCT310,
VC780 790, VCA10, 103, 1031, 105, 100, 211
VC780, 790, VCA10, 103, 1031, 105, 106, 211,
$244,254,255,30,35$,
244, 254, 255, 30, 35
VCA340, 43, 47, 50, 60, 605,615, VCD806,
815, VCH80, $81,83,85$
VCH865, 87, 910, VCS 1000, VCT212, 310, 410
510,610, VCT1314,
VCTS 313
PINCH ROLLER ASSEMBLY
SAISHO $3600,3650,3800$, VRS 4400 , VRS5000 140 p

MODE SWITCH
NV2000, 2010, 7000, 7200, 7800 (VS50048) NV230, 260, 430, 810, 870, 2300, 4300 (VSS0110)

NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778 (VSS0060

NVG21, 25, NVH65, NVD80 (VSS0175A)
£3.50
$£ 2.25$
$£ 2.10$
$£ 3.75$
$£ 2.00$

AUDIO CONTROL HEADS

AMSTRAD ORIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2, 3, VCR4600, 4600MKII, 4700, FUNAI VS2, VCR $4600,4800,5200,5600,6600$, VIP3000, 5000 Also fits: FIDELITY. FUNAI, HINARI, PROLINE, SCHNEIDER, TOWADA, UNIVERSUM ORDER CODE: AH01 PRICE: 1350p AMSTRAD ORIGINAL NO; 153134
Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602, 8603, VCR8604, 8700, 8704, 8714, 8800, 9005, 8244
Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FIDELITY, GOLD HAND, GRANADA, HINARI, MARQUANT, OMEGE, PROFEX, SCHNEIDER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG, TOWADA, UNIVERSUM ORDER CODE: AHO2 PRICE: 1450p

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	875p
VBR0050	NV300, NV340 etc	875p
VBR0061	NV777 etc	875p
VBR0103A	NV250, NV450 etc	625p
VBR0125		625p

VIDEO TOOLS

VIDEO CLEANING STICKS

Price 17 p each $15 p$ each pack of 10 pcs 13 p each pack of 25 pcs Order Code: SP14

VIDEO MAINTENANCE TOOLS

Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

VCR ALIGNMENT KIT

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

Thiṣ transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

BACK UP BATTERIES

PHILIIPS

Part Nos: 138-101138, 138 - 10313 1.2v 90mAH Order Code: BB01
Part Nos: $138-10229,2.4 \mathrm{~V} 100 \mathrm{mAH}$ Order Code: BB02

FERGUSON
Part No: 00E6-067-0011.2V 100mAH Order Code: BB03
Part Nos: 00E6-606-8001 2.4V 100mAH
Order Code: BB04
REPAIR KITS

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	600 p
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	$550 p$
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	600 p
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	600 p
PACE D100/150	SATPSU6	$650 p$
CHURCHILL D2MAC	SATPSU7	650 p
PACE MSS100	SATPSU8	1100 p

SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062) ORDER CODE: TUNER01 PRICE: 1400p + VAT
PACE PRD900/MSS1000 2Ghz (221-21770112) ORDER CODE: TUNER02 PRICE: 1400p + VAT

SWITCH MODE TRANSFORMERS

PACE 9000
ORDER CODE: PACE9000 PRICE: 800p
PRD800/PRD900
ORDER CODE: PRD800 PRICE: 550p

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	1230 p
FERGUSON SRD4	SATPSU11	650 p
ECHOSTAR SR5500	SATPSU12	1600 p
ECHOSTAR 6500/7700/8700	SATPSU13	2750 p
AMSTRAD SRD600	SATPSU14	2600 p
MIMTEC (Surensen)	SATPSU15	700 p
AMSTRAD SRD700, SR950, SRX100, 301,501, 502, 1002, 2001, SRD2000 SAT250	SATPSU16	650 p

SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite $R X$ powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signa!! -10 DBM

ORDER CODE: TOOL22
PRICE: 8500 p

REPLACEMENT TV SWITCHES

GRUNDIG	SONY
PART No: 29703, 29102	USED ON:
USED ON:	KV1612, KB1612, KV1614, KV2052, V2056
C7500, C8500. C8502, C8712 . . .ETC	KV2062, KV2067, KV2212. . .ETC
Order Code: SW1 . Price: 100p	Order Code: SW5 Price: 130p
PHILIPS	USED
USED ON:	KV1400, KV1440, KV2040, KV2060
K30, K35, K40, KT3, KT4	(POWER SWITCH 26mm)
Order Code: SW13 Price: 95p	Order Code: SW12 Price: 110p

USED ON:
KV2020
(POWER SWITCH 21mm +Remote)
Order Code: SW6
Price: 130p

SONY 2 PIN FUNCTION SWITCH
Order Code: SW9
Price: 35p

CPIAAMMED		
CURRENT RATING	ORDER CODE	PRICE
3A	FUSE33	100p
5A	FUSE34	100p
13A	FUSE35	100 p
CURRENT RATING	ORDER CODE	PRICE
8A	FUSE44	185p
10A	FUSE45	185p
15A	FUSE46	185p
20A	FUSE47	210p

NB. All fuses are made in the UK and fully meet BS4265 \& BS1362 safety standards and should not be compared with cheap imported types

VOLTAGE TESTER

A terminal screwdriver incorporating continuity \& voltage with Euroslot ORDER CODE: TOOL11

PRICE: 220p

20 mm CERAMIC TIME LAG		
CURRENT TATING	${ }_{\text {ORDER COO }}^{\text {FISE38 }}$	${ }^{\text {PrIC }}$
${ }^{6.3 A}$		
${ }_{10}^{8 A}$	Fussiol	${ }^{1000}$
${ }^{315 A}$		$\underset{\substack{85 p \\ 85 p}}{ }$
5A	fusEa3.	${ }_{85}$

38mm CERAMIC TIME LAG
 CURRENT RATING \quad ORDER CODE \quad PRICE

 **ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES **
SPRING HOOK

Spring Hook, to unlock springs in audio tape recorders \& VCRs
ORDER CODE: TOOL20
PRICE: 265p

FAULT FINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1. Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price $\mathbf{£ 8 . 5 0}$ - No VAT.
Video Recorders Edition 51997
Over 300 pages packed with more than 5500 faults for different brands
Price $\mathbf{£ 1 5 . 0 0}$ - No VAT. Order Code: BOOK01

QEPVICHMS			
DESCRIPTION	VOLUME	CDOE	PRICE
VIDED HEAD CLEANER	75ML	SP01	145p
SWITCH CLEANER	176ML	SP02	155p
SILICONE GREASE	200ML	SP03	180p
FREEZE IT	170ML	SP04	295p
FREEZE IT	400 ML	SP16	580 p
FOAM CLEANER	400 ML	SP05	180p
ANTI-STATIC	200ML	SP06	180p
AEROKLEANE	200 ML	SP07	200p
AERO DUSTER	200ML	SP08	340 p
AERO DUSTER	400 ML	SP17	580p
PLASTIC SEAL	200ML	SP09	250p
GLASS CLEANER	250ML	SP10	170p
COLDKLENE	250ML	SP13	235p
EXCEL POLISH 80	250 ML	SP18	180p
ADHESIVE 120	400 ML	SP19	225 p
LABEL REMOVER 130	200ML	SP20	260 p
REFURB 140	400 ML	SP21	260p
TUBE SILICON GREASE	50 GRAMMES	SP11	225p
TUBE SILICON SEALANT WHITE	75ML	SP22	250p
TUBE SILICON SEALANT CLEAR	75 MLL	SP23	250p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150p
ORIVECLEANER	200ML	SP24	150 p
SCREEN CLEANER	200ML	SP25	145p
COMPUTER CARE KIT	-	SP26	2100p

All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:
300p for $2-5$ cans $\quad 500$ p for more than 5 cans

TELEVISION Edition 6

Lists more than $\mathbf{8 , 4 5 0}$ faults with $\mathbf{4 6 0}$ pages covering 58 different brands
Price: 1600p only - no VAT. Order Code: BOOK02

Satellite Repair Manual Edition 4

A comprehensive guide to receiver reviewing, featuring stock faults and installation tips.
Price $£ 15.00$ Only No VAT Postage 100p Order Code: BOOK03

SOLDERTNG		
ACCRSSORTES		
deSCRIPTION	CODE PRICE	
ANTEX SOLDERING IRONS		
25 WATT 240 VAC ((S25W 240 V)	S101	900p
15 WATT 240 VAC (\times S 15 W 240 V)	S102	900 p
25 WATI SPARE ELEMENT	S103	450p
15 WATT SPARE ELEMENT	S104	450 p
SOLDERING STAND \& SPONGES		
SOLDERING STANO (MADE BY ANTEX)	S108	350 p
SPARE SPONGE	S109	$55 p$
SOLDER		
18 SWG 500 GRAMMES	S110	500p
20 SWG 500 GRAMMES	S111	650p
22 SWG 500 GRAMMES	S112	700p
DESOLDERING AIDS		
SOLDER MOP STANDARD GAUGE 1.2MM X 1.5M	S107	100p
SOLDER MDP $1.2 \mathrm{MM} \times 10 \mathrm{M}$	S113	420p
OESOLDERING PUMP	S105	320 p
SPARE NOZZLE	S106	60p

SEMICONDUCTOR COMPARISONS 1997/8 Listing more than 31,600 Semiconductors with suitable alternative complete with descriptions and base information.
Price: $£ 15.50$ - No VAT. Order Code: B00K04
SEMICONDUCTOR COMPARISONS 1997
The new 1997 Jaeger Semiconductor with 952 pages packed with information on over 80,000 semiconductors in much greater detail plus mar keting data on SMD devices and a separate generic table of all type designations.
Price: $£ 40.00$ only - No VAT (+ £5 Postage). Order Code: BOOK06

I.C. PROTECTORS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38, ICPN50, ICPN75

PRICE: 30p EACH ONLY

CAN'T FIND WHAT YOU'RE
LOOKING FOR?
RING US...AS THIS IS ONLY
A SELECTION OF THE
ITEMS THAT WE STOCK

CASSETTE DC MOTORS

6 V MOTOR	170p
9 V MOTOR	170p
12V CW MOTOR	170p
12 V CCW MOTOR	170p
13.2V MOTOR	290p

CASSETTE TAPE HEADS

$\begin{array}{lr}\text { MONO HEAD } & 90 \mathrm{p} \\ \text { STEREO HEAD } & 110 \mathrm{p} \\ \text { MINI HEAD } & 150 \mathrm{p}\end{array}$
$\begin{array}{lr}\text { MONO HEAD } & 90 \mathrm{p} \\ \text { STEREO HEAD } & 110 \mathrm{p} \\ \text { MINI HEAD } & 150 \mathrm{p}\end{array}$
$\begin{array}{ll}\text { MINI HEAD } & \text { 150p } \\ \text { AUTO REVERSE HEAD } & 200 \mathrm{p}\end{array}$

[^0][^1]| Part No. | Codo | Price | HITACHI | | | 45150119 | LOT169 | 1500p | TLF 14520 F | LOT40 | 1800p | 094-01020/0.7 | 10759 | 1400p | 1-439-303-31 | LOT94 | 1300p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AKAI | | | 2424593 | LOT44 | 1050p | 45150124 | LOT137 | 1800p | TLF 14521 F | LOT39 | 1850p | 094.01021/0.6 | LOT59 | 1400p | 1-439-303-32 | LOT94 | 1300p |
| 45150344 | LOT56 | 1850p | 2432101 | L0T79 | 1600p | 45150146 | LOT136 | 1800p | TLF 14567 F | L0T39 | 1850p | 094-01027/0.0 | LOT186 | 1825p | 1-439-311-00 | LOT95 | 1550p |
| 101-214017-03 | LOT278 | 1300p | 2432461 | LOT169 | 1500p | 45150301 | LOT169 | 1500p | TLF 14568 F | LOT40 | 1500p | 094-01038/0.7 | LOT245 | 1900p | 1-439-311-11 | 10795 | 1550p |
| 101-220005-03A | L0772 | 1600p | 2432611 | LOT80 | 1800p | 45150302 | LOT180 | 1550p | TLF 14584F | LOT4 4 | 2000p | 094-01052/0.8 | LOT186 | 1825p | 1-439-319-13 | LOT95 | 1550p |
| D 050/37 | LOT27 | 1450p | 2432651 | LOT80 | 1800p | 45150304 | LOT169 | 1500p | TLF 14586F | LOT42 | 1800p | 094-01057/. 1 | LOT285 | 1450p | 1-439-311-31 | LOT95 | 1550p |
| D 053/37 | LOT207 | 1550p | 2432761 | LOT169 | 1500p | 45150305 | LOT180 | 1550p | TLF 15606F | LOT256 | 2000p | 610.018 .6620 | LOT 189 | 1650p | 1-439-311-32 | LOT95 | 1550p |
| D 056/37 | LOT56 | 1650p | 2432981 | LOT37 | 1200p | 45150306 | LOT168 | 1550p | TLF 70012 | L0778 | 1500p | 610.018 .6637 | LOT215 | 1800p | 1-439-331-22 | LOT96 | 1550p |
| D 059/37 | LOT200 | 1400p | 2432981 | LOT37 | 1200p | 45150308 | LOT22 | 1250p | TLF 70012F | L0778 | 1500p | SHARP | | | 1-439-331-41 | LOT98 | 1550p |
| D 069/37 | LOT56 | 1650p | 2432982 | LOT37 | 1200p | 45150309 | LOT178 | 1500p | TLF 70012A | L0778 | 1500p | RTRNF 1220 CEZZ | LOT39 | 1850p | 1-439-332-00 | LOT99 | 1600p |
| FCM 2015 AL | L0778 | 1500p | 2433011 | LOT171 | 1650p | 45150310 | LOT168 | 1850p | TLF 70018 | LOT274 | 1550p | RTRNF 1783 BMZZ | LOT202 | 1800p | 1-439-332-1 | LOT9 | 1600p |
| FERGUSON | | | 2433012 | LOT171 | 1650p | 45150313 | LOT30 | 1250p | TLF 70018F | LOT274 | 1550p | RTRNF 1783 CEZZ | LOT202 | 1800p | 1-439-332-21 | LOT99 | 1600p |
| 00 D-3-508-007 | LOT38 | 1250p | 2433014 | LOT171 | 1650p | 45150314 | LOT174 | 1400p | TLF 70161 | LOT278 | 1300p | RTRNF 1786 BMZZ | LOT211 | 1850p | 1-439-332-41 | LOT100 | 1500p |
| 00 D-3-508-002 | LOT38 | 1260p | 2433212 | LOT168 | 1500p | 45150315 | LOT22 | 1250p | TLF 70162 | 10772 | 1600p | RTRNF 1786 CEZZ | LOT211 | 1850p | 1-439-332-42 | LOT101 | 1450p |
| 00 D-3-508-003 | LOT276 | 1400p | 2433291 | LOTi72 | 1350p | 45150318 | LOT192 | 1550p | TLF 70162A | L0772 | 1600p | RTRNF 2000 BMZZ | LOT214 | 1600p | 1-439-332-52 | LOT100 | 1500p |
| 00 D-3-515-001 PL1 | LOT276 | 1400p | 2433301 | LOT246 | 1600p | 45150319 | LOT30 | 1250p | TLF 701628 | L0772 | ${ }^{1600 p}$ | RTRNF 2002 BMZZ | LOT307 | 1450p | 1-439-333-00 | LOT270 | 1550p |
| 00 D-4-208-001 | LOT79 | 1600p | 2433441 | LOT188 | 1900p | 45150320 | LOT190 | 1850p | TLF 70162 G | LOT72 | 1600p 1850 | RTRNF 2002 CEZZ | LOT307 | | 1-439-333-11 | LOT270 | 1550p |
| -00 D-4-208-002 | 10779 | 1800p | 2433442 | LOT81 | 1600p | 45150322 45150324 | LOT196 | 1550p | TLF 77001 B PHIUPS | LOT274 | | RTRNF 2003 BMZZ | LOT307 | 1450p | 1-439-333-12 | LOT270 | 1550p |
| 00 D-4-235-002 | LOT240 | 1250p | 24334551 | LOT82 | 1350p | 45150325 | LOT22 | 1250p | 482214010142 | LOT142 | 1800p | RTRNF 2005 BMZZ | LOT308 | 1360p | 1-439-363-11 | LOT268 | 1400p 1400 p |
| $00 \mathrm{D}-4-235-002 \mathrm{HT}$ | LOT81 | 1350p | ${ }_{2433453}^{243352}$ | LOT82 | 1250p | 45150326 | LOT198 | 1550p | 4822140101145 | LOT134 | 1450p | RTRNF 2006 BMZZ | LOT308 | 1350p | 1-439-363-21 | LOT268 | 1400p |
| 00 D-4-235-00201G | LOT81 | 1350p | 2433455 | LOT234 | 1600p | 45150328 | LOT27 | 1450p | 482214010146 | LOT112 | 1700p | RTRNF 2007 BMZ | LOT307 | 1450p | 1-439-387-21 | LOT311 | |
| $00 \mathrm{D}-4-260-004 \mathrm{HT}$ | LOT38 | 1250p | 2433521 | LOT85 | 1600p | 45150329 | LOT193 | 1550p | 482214010151 | LOT102 | 1700p | RTRNF 2023 BMZ | LOT310 | | 1-439-416-11 | LOT255 | |
| $00 \mathrm{H}-0.701-2400$ | LOT182 | 1450p | 2433581 | LOT22 | 1250p | 45150330 | LOT179 | 1650p | 482214010161 | LOT103 | 1250p | SONY | | | 1.439-416-12 | LOT255 | |
| 06 D-3-083-001 | LOT82 | 1250p | 2433721 | L0T83 | 1400p | 45150331 | LOT207 | 1550p | 482214010171 | LOT104 | 1500p | 3753100 | LOT275 | 1500p | 1-439-416-21 | LOT255 | 1800p |
| $06 \mathrm{D}-3-083-002$ | LOT82 | 1250p | 2433751 | LOTO1 | 1300p | 45150334 | LOT56 | 1650p | 482214010176 | LOT114 | 1150p | 1-439-243-00 | LOT91 | 1600p | 1-439-416-23 | LOT255 | 1600p |
| $\begin{aligned} & 06 \text { D-3.084-001 } \\ & 06 \text { D-3-087-001 } \end{aligned}$ | LOT23 | 1400p | 2433752 | LOT01 | 1300p | 45150335 | LOT193 | 1550p | 482214010194 | LOT105 | 1600p | 1-439-243-11 | LO | 1600p | 1-439-416-41 | LOT255 | 1800p |
| 06 D-3-088-001 | LOT84 | 1450p | 2433752 | LOT250 | 1350p | 45150338 | LOT27 | 1450p | 482214010198 | LOT116 | 1600p | 1-4 | LO | 1600p | 1-439-416-51 | LOT255 | 1800p |
| 06 D-3-093-001 | LOT204 | 1600p | 2433881 | LOT23 | 1400p | 45150340 45150341 | LOT200 | 1400p | 482214010201 482214010236 | LOT104 | 1560 | 1-439-243-31 | LOT229 | 1700p | 1-439-430-21 | LOT271 | 1550p |
| 06 D-3-095-001 | L0187 | 1000p | 2433893 | LOT23 | 1450p $1400 p$ | 45150343 | LOT196 | 1550p | 482214010246 | LOT111 | 1500p | 1-439-243-41 | LOT229 | 1700p | 154125A | LOT275 | |
| 06 D-3-095-002 | L0787 | 1000p | 2433952 | LOT33 | 1000p | 45150344 | LOT56 | 1650p | 482214010247 | LOT105 | 1500p | 1-439-244-00 | LOT48 | 1600p | | | |
| 06 D-333-512-001 | LOT204 | 1600 p | 2434002 | LOT200 | 1400p | 45150346 | LOT201 | 1550p | 482214010254 | LOT107 | 1450p | 1.439-244-11 | LOT48 | 1600p | 37010 37011 | LOT131 | 1450p |
| FEIX 10090 DEG | LOTO4 | 1500p | 2434141 | LOT33 | 1000p | 45150350 | LOT27 | 1450p | 482214010263 | LOT117 | 1550p | 1-439-244-21 | LOT48 | 1600p | 37011 | LOT131 | 1450p |
| FETX 90 WHITE | LOTO6 | 1850p | 2434141 | LOT33 | 1000p | 45150351 | LOT27 | 1450p | 482214010269 | LOT210 | 1350p | 1-439-244-31 | LOT48 | 1600p | 37012 37013 | LOT131 | 1450p |
| FETX 100100 DEG | LOT34 | 1500p | 2434274 | LOT44 | 1050p | 45150375 | LOT56 | 1650p | 482214010271 | LOT208 | 1650p | 1.439-256-00 | LOT45 | 1650p | 37013 37014 | LOT131 | 1450p |
| GRUNDIG | | | 2434274 | LOT44 | 1050p | 45161601 | LOT22 | 1250p | 482214010274 | LOT123 | 1450p | 1-439-256-11 | LOT45 | 1850p | 37014 | LOT131 | |
| 29201.008.01 | LOT153 | 1750p | 2434453 | LOT86 | 1600p | MITSUBISH: | | | 482214010282 | LOT122 | 1300p | 1-439-.256-21 | LOT45 | 1650p | 37015 37016 | LOT131 | |
| 29201.014.01 | LOT140 | 1500p | 2434455 | LOT234 | 1600p | 731003 | L0151 | 1550p | 482214010283 | LOT104 | 1500p | 1-439-256-22 | LOT45 | 1650p | 37016 37017 | LOT131 | 1460p |
| 29201.015.01 | LOT149 | 1400p | 2434593 | LOT44 | 1050p | 276-16399 | LOT49 | 1500p | 482214010294 | LOT125 | 2150p | 1-439-276-21 | LOT230 | 1700p | 37017 37018 | LOT131 | $\begin{aligned} & 1450 \mathrm{p} \\ & 1450 \mathrm{p} \end{aligned}$ |
| 29201.017.01 | LOT60 | 1250p | 2435062 | LOT296 | 1400p | 334807803 | 10750 | 1450p | 482214010306 | LOT110 | 1200p | 1-439-280-00 | LOT92 | 1000p | 37018 | LOT131
 LOT131 | $\begin{aligned} & \text { 1460p } \\ & \text { 1450p } \end{aligned}$ |
| 29201.018 .01 | LOT163 | 1300p | 2435121 | L0T87 | 1000p | 334 B 078030 | LOT50 | 1450p | 482214010325 | LOT132 | | 1-439-280-13 | LOT92 | 1600p | 37019 1810951 | LOT55 | $\begin{aligned} & \text { 1450p } \\ & \text { 1400p } \end{aligned}$ |
| 29201.018.02 | LOT61 | 1700p | 2435131 | LOT251 | 1450p | 334 B 08104 | 10774 | 1600p | 482214010326 | LOT122 | 1300p | 9-439-286-00 | LOT46 | 1300p | 2433751 | LOTo1 | $\begin{aligned} & \text { 1400p } \\ & \text { 1300p } \end{aligned}$ |
| 29201.019.04 | LOT62 | 1250p | 2435141 | LOT282 | 1300p | 334 B 08108 | LOT295 | 1600p | 482214010328 | LOT124 | 1460p | ¢ $-439-286-11$
 $-439-286-12$ | LOT46 | 1300p 1300p | 2433751 | LOT250 | 1350p |
| 29204.019.02 | LOT62 | 1250p 1700p | 2435301 2435671 | LOT88 LOT89 | 1460p 1600p | 334
 334 P 185060
 | LOT51 LOT75 | 1550p 1500p | 482214010349 482214010353 | LOT106 | 1250p 1450p | 1-439-286-12 | LOT46 | 1300p 1300 p | 23336023
 233058 | LOT281 | 1300p |
| 29201.022.02 | LOT166 | 1800p | 2436201 | LOT109 | 1200p | 5908-05008A-AA | LOT70 | 1500p | 482214010356 | LOT284 | 1400p | 1-439-286-21 | LOT46 | 1300p | 23236052 | LOT131 | 1450p |
| 29201.022.03 | LOT165 | 1350p | 2436202 | LOT109 | 1200p | D 108/37 | LOT49 | 1500p | 482214010367 | LOT286 | 1400p | 1-439-288-00 | LOT228 | 1750p | 23236098 | LOT288 | 1400p |
| 29201.022.04 | LOT165 | 1350p | 2432101-2 | L0779 | 1800p | DCF1577 | LOT273 | 1700p | 482214010369 | LOT109 | 1200p | 1-439-288-12 | LOT228 | 1750p | 23236198 | LOT288 | 1400p |
| 29201.022.04A | LOT165 | 1350p | 2433459 H | L0T81 | 1350p | DCF2077A | LOT272 | 1300p | 482214010381 | LOT 128 | 1300p | 1-439-289-00 | LOT47 | 1400p | 23236255 | LOT289 | 1800p |
| 29201.024.01 | LOT65 | 1500p | 2433453 H | LOT82 | 1250p | KFS 60226B | LOT279 | 1550p | 482214010384 | LOT127 | 1550p | 1-439-289-21 | LOT47 | 1400p | 23236424 | LOT129 | |
| 29201.024.04 | LOT | 1400p | 2433899 ${ }^{\text {H }}$ | LOT23 | 1400p | MSH-1FBW08 | 78 | 1500p | 482214010395 | LOT116 | 1600p | 1-439-289-22 | LOT47 | 1400p | | LOT288 | |
| hinari | | | 2433892G | LOT84 | 1450p | NIKKAI | | | 482214010406 | L0773 | 1150p | 1-439-289-31 | LOT47 | 1400p | ${ }^{23236428}{ }^{3122113837011}$ | LOT289 | 1600p |
| 154138 K | LOT24 | 1500p | I.t.T. | | | baby10 | LOT67 | 1450p | 482214010421 | LOT109 | 1200p | $1-439-294-00$ $i-439-294-11$ | LOT93 | 1450p 1450p | 3122113837011 150F6D | LOT131
 LOT131 | $\begin{aligned} & 1450 \mathrm{p} \\ & 1450 \mathrm{p} \end{aligned}$ |
| 51139141 | LOT24 | 1500p | 45950108 | LOT113 | 1400p | ORION | | | 482214017078 SANYO | LOT103 | 1250p | 1-439-294-11 $1-439-294-21$ | LOT93 | 1450p 1550p | 150F6 4039 AD | LOT131 | 1450p |
| 51141841 | LOT24 | 1500p 1500p | 45150115 45150116 | LOT136 | 1800p | 3714002 PANASONIC | LOT02 | 1500p | SANYO 094-000200.9 | LOT113 | 1400p | 1-439-294-21 | LOT269 | 1550p | TFB 4039 AD TF 4048 AD | LOT281 | 1350p |
| HM51-141 1834-1 | LOT24 | 1500p | 45150117 | LOT139 | 1875p | TLF 14512 F | LOT39 | 1850p | 094-00035/0.2 | LOT162 | 1350p | 1-439-303-11 | LOT9 | 1300p | TFB 4048 BD | LOT | 30 op |

Universal Pre-Programmed
 Brand Replacement Remote Controls

- Brand for Brand Replacement
- Codeless setup
- Teletext and Fastext
- Pre-programmed for the latest models
- Replaces broken and lost remotes
- CE Approved

SPECIAL OFFERS!!		
CD PICK UPS		
KSS 210A	WAS	NOW
KSS 240A	$£ 2.00$	$£ 13.00$
KSS 213B	$£ 19.00$	$£ 20.00$
OPTIMA 6S	$£ 20.00$	$£ 16.00$
OPTIMA 5	$£ 3.00$	$£ 16.00$

8 WAY UNIVERSAL REMOTE CONTROL
A single remote control to operate Televisions,
Videos and Satellite Receivers... plus an Auxiliary option

NEWPRICE
£10.00 + vat
SEE BOTTOM OF PAGE 881 FOR MORE DETALLS

GRANDATA LIMITED
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY,
WEMBLEY, MIDDLESEX, ENGLAND. HA9 0HB
Telephone: 0181 900 2329 Fax: 0181 903 6126 E-Mail: grandata.ltd@btinternet.com
OPEN Monday to Friday 09:00-17:30

Help wanted continued from page 870
camcorder. Malcolm Pugh, 25 Lindbergh Close, Gosport, Hants PO13 8EU.
Wanted: 8in. speaker with 400Ω speech coil for the JVC 4TR-99U(M) radiogram. Geoff Davies (Radio), 13 Bowen Road, Rugby CV 22 5LF. 01788574774
Wanted: Sony SLC9UB VCR or an SR11UB power supply module for it. Alan Stubbins, 7 Church Road,
Saxilby, Lincoln LN1 2HH. 01522
583373 days, 01522702601 evenings/weekends.
Wanted: Nicam board for the B\&O 8902 TV. Call Chris on 01707892 842 (Hatfield, Herts).
Wanted: Any field timebase modification details to remove teletext lines in the top half of the screen with a Sony KV1340UB. D.H. Kidston, 102 Fergus Avenue, Livingston, W.
Lothian EH54 6BG. 01506433371.
Wanted: Chopper transformer for the Philips/Pye Model 10CX1120/ 25KX1201. R. Anderson, 33 Broadmanor, North Duffield, Selby, N. Yorkshire YO8 5RZ. 01757288 660.

For disposal: Radio and Television Servicing vols. I, II, III, IV and 19534, 1955-6, 1956-7, 1957-8, 1958-9 and 1963-4. All ten for $£ 30$ plus carriage or to collect. F. Nedza, 40 Brynhyfryd, Glynneath, Neath SA11 5BA. 01639720429.
Wanted: Service manual/circuit diagrams for the B\&O 7102 colour TV. Brian Nield, 21 Sandrock Road, Christleton, Chester CH3 7BH. Phone/fax 01244335298.
Wanted: Has anyone a scrap Tashiko LVF971 and a Pansonic NVG21 VCR. I need them for spares. Sam TV Services, 117 Francis Avenue, Ifford, Essex IG1 1TT.
Wanted: Power supply transformer for the Alba 6700 VCR, part no. TPW4167D. Would also consider complete power supply or VCR. David Holdsworth, 61 Windhill Avenue, Mexborough, S. Yorkshire S64 0DW. 01709590329.
Wanted: Circuit diagram for the BPL Model KLR9402. B. Milne, 22 Aldwych Place, Blackburn, Lancs BB1 9QP. 01254246127 or 0973 510295.

Wanted: Scan coils for a Matsui 14in. portable. Marked DSE1422. Circuit diagram/service manual for the Finlandia CD66JZ5E and Sharp VCT510HM. RC handsets for the Toshiba V423B and Amstrad UF30. Chopper transformer and RC handset for the Mitsubishi CT21A2STX. Advance TV, 88 Newark Road, Lincoln LN5 8QA. 01522513013. Wanted: User instructions, circuit
diagram and service data for the Infotec 6012 fax machine.
Photocopies OK. Douglas Biggar, 27
Audlea Road, Beith KA15 2DA.
01505502118.

Wanted: RC handsets for the Ferguson FV31R/FV32L VCRs. Working or not - required for spares.
Steve Burgess, 2 New Coppice, Woking, Surrey GU21 IUS. 01483 480283.

Wanted: Head drum for the Panasonic NVFS1B VCR or a scrap deck/VCR with working drum. New replacement too costly for economic repair. Ed Cocks, 86 St. John's Road, Hedge End, Southampton, Hants SO30 4DF. 01489782885.
Wanted: Circuit diagram (photocopy OK) for the Technics SU71000K stereo amplifier. T.P. Cook, 27a Riverside, Driffield, E. Yorkshire YO25 6PA. 01377252498.
Wanted: AC adaptor for the Panasonic NV100B VCR or details of the adaptor multipin connector. \mathbf{R}. Hannah, 21 Kilmaurs Road, Knockentiber, Kilmarnock, Ayrshire KA2 0DA. 01563531559.
For disposal: Working vintage Bush BC1122 colour receiver (A823 chassis) in walnut veneer cabinet. Also similar non-working model in white cabinet. Service manual and spare PCBs available. H. Baker, 11 Bluebridge Avenue, Brookmans Park, Herts AL9 7RY. 01707646604. Wanted: Circuit diagram for the Apricot 14in. SVGA monitor Model XJ52178. W.E. Halliwell, 54 Moore Drive, Haydock, St. Helens, Merseyside WA11 0NG.
Wanted: Circuit diagrams for the following computer monitors: Opus CM1438, Samsung CVM4967PL and Qume QM835. Geoff Southern, 27 Eldred Road, Childwall, Liverpool L16 8NZ. 01512812184.
For disposal: Telequipment D54 10 MHz , double-beam scope in good working order (very little use). Offers around $£ 40$. Large selection of TV and VCR manuals at $£ 3$ each plus postage. Phone for details. Television from 1978 to present, 180 copies in all, some issues missing, $£ 30$ the lot plus carriage. David Forfar, 65 Ormskirk Road, Old Skelmersdale, Lancs WN8 8TR. 01695735132.
For sale: Microchannel 486 memory expansion card 5021816-01 B01, with eight 72 -pin SIMM slots, unused $£ 40$. Maxicamera A gamma camera signal processor type $46-406040 \mathrm{G10}$, made by General Electric Nuclear Medical, £50. Eight genuine branded Bernoulli 44 Mb removable discs, at least three unused, $£ 40$. Julian Bohan, 30 Stanley Street, Lincoln LN5 8NG. 01522514 241 or 0958771319.

DTT Testing

The TV Iransmitter Adjustment Programme

Adjustments and changes are being made to some analogue TV transmitters to allow for the introduction of the new digital terrestrial TV (DTT) services.

Test broadcasts from new digital transmitters are also now under way in some parts of the country. To comply with the requirements of the licences issued for DTT, a TV Transmitter Adjustment Programme (TV TAP) has been set up. This will enable any interference to existing analogue reception caused by the digital terrestrial transmissions to be identified and dealt with.

In areas where it has been predicted that existing TV reception might be affected, householders are being informed, before the tests take place, by a mail shot which gives a Freephone number to ring. If digital interference is verified, a technician from the TV TAP will be sent to sort out the problem - at no cost to the householder.

The TV TAP will not be contacting householders in transmitter areas where no interference to existing TV reception is expected. But there is a very small risk that the test broadcasts in these 'low-risk' areas may affect some TV sets. If local TV retailers or service technicians receive reports of digital interference to reception, they should pass the details to the special trade-only Freephone number below. Arrangements will then be made to send out a technician from the TV TAP.

The terms of the Digital Terrestrial Licences do not require the TV Transmitter Adjustment Programme to deal with possible digital interference on the outputs from VCRs and satellite decoders. Thus any householders that experience this particular difficulty will need to arrange for the necessary adjustment to be carried out by a suitable TV retailer or service technician.

Note that the TV Transmitter Adjustment Programme can deal with only TV picture problems caused by the test transmissions, also that the presence of digital interference does not necessarily mean that a householder will be able to receive satisfactory digital TV broadcasts once the set-top decoders become available.

To begin with, test transmissions run typically from 9 a.m. to 7 p.m. daily. The test period will be extended to 24 hours a day later. More details about the TV Transmitter Adjustment Programme are available to the TV retail trade at the TV TAP web site:
www.tvtap.memail.com
Details of the digital TV channel allocations are available at the ITC's web site:
www.itc.org.uk/divisions/eng div/dtt freq plan/
For trade enquiries only, the TV Transmitter Adjustment Programme can be contacted on

Freephone 08000920080.

Reports from
Eugene Trundle
C.J. Guy

Andy Barkley
Ronnie Boag
David A. Chaplin
Paul Hardy
Mike Orr and
Chris Watton

Hitachi VTF645E

The picture was intermittently corrugated, with a whine or squeal that came from within the machine. This could happen in either the record or the play mode, in the former case leaving a permanent record of the fault symptom on the tape. The usual cause of this is a vibrating sleeve on one of the tape guides, but in this case the back-tension pole was responsible. Its part no. is KX11531.E.T.

Daewoo V22

If the cassette intermittently jams while front loading it is likely that the little tension spring has disappeared from the flap-opener trigger in the FL cradle. It's item 11 in the exploded view diagram in the manual, part no. 97S 3001 700. It is vital to ensure that the escaped spring is not lying loose on the PCB, where it could cause havoc - especially in the power supply section! E.T.

Philips VR312

The fault report read "failure to record sound". As the machine worked all right on test we returned it to the customer and asked him to provide us with a tape that showed the fault next time it occurred. In due course the machine came back with a tape whose sound track was completely silent, suggesting failure of the bias/erase oscillator. In addition there was an odd 'hunting' effect on the picture. Our recording

VCR Clinic
over it didn't produce this effect, and the sound was OK.

We then discovered that changing channel produced the fault effect on the E-E picture, while the sound muted until the machine was switched off then on again, after which the fault cleared. The cause of the trouble turned out to be an opencircuit track along the right-hand edge of the PCB. It carries the AFC signal from the IF chip to the processor. C.J.G.

Daewoo V22

There were almost no signs of life except for a brief head spin at power up. Checks showed that the reset pin of the front-panel mounted microcontroller chip was at about 1 V . The cause was $\mathrm{C} 703(0.01 \mu \mathrm{~F})$, which was leaky. It appears to be the same infamous type of capacitor used by Panasonic, so watch for this one! C.J.G.

Matsui VXAl100

This machine appeared to be dead, but there was 3 V on the 5 V line. Where it came from I never fathomed out, since ICP501 in the 5 V feed on the secondary side of the power supply was open-circuit. A replacement restored normal operation. C.J.G.

Amstrad VCR6100

This machine had wowy sound. The phantom 'repairman' had fitted the flywheel belt so that it ran on the wrong part of the motor pulley. C.J.G.

Sharp VCA39

Our customer returned this machine a few days after we'd fitted a new upper drum. He complained that the machine behaved erratically - it would stop at random for example. We had forgotten to replace the small ($5 \mathrm{~mm} \times 2 \mathrm{~mm}$) spring that provides earth continuity to the drum. Replacing it cured the problem. It fits in the untapped hole in the brass bush on the drum assembly. Before
you drop it in, make sure that the equally small carbon brush is already there. A.B.

Sharp F360E

This machine would drop out after a few seconds in the play/record modes. The cause was a layer of grease on the take-up reel optical sensor. As a result, the control system thought the reel wasn't rotating. This particular machine seemed to have been well endowed with grease, either during manufacture or a previous repair. A.B.

Sharp VCM29

There was no E-E picture and the playback picture was in black and white. We found that crystal X501 wasn't oscillating. Resolding it cured the fault. R.B.

Akai VSG745

Tape was intermittently left out of the cassette on eject. There was also intermittently no fast forward or rewind. A new mode switch cured the problem. R.B.

Toshiba V854

This machine wouldn't accept tapes. We found that the cam lever beneath the main cam was broken. A replacement lever and mode switch cured the fault. R.B.

Sharp VCMH64

Playback was marred by intermittent background hiss. The cause was a dry-joint at pin 4 of plug AU on the main PCB. R.B.

Ssangyong SVR101

This VCR is very like the Amstrad VCR6000 etc. The initial fault was no E-E or playback output. On investigation I discovered that the test pattern switch in the RF converter had been mutilated. I removed the RF unit, took out the damaged switch and wired across it to omit the test pattern. Once the RF unit had been refitted there was normal reception most of the time, but the
signals disappeared intermittently.
After much testing I found that a track to the RF unit, on the main PCB, occasionally went open-circuit. This was discovered by using a scope - I couldn't see the break, even with a magnifying glass after narrowing its position down to a half inch of track. D.A.C.

Ferguson 3V35/39 etc

One of these machines wouldn't accept a cassette. On investigation I found that protector CP1 (0.6 A) was open-circuit. So I removed the cassette carriage and tested the loading motor, which drew about 850 mA off load. Under the same conditions a new motor draws about 25 mA .
Once the motor and fuse had been replaced cassettes loaded normally. D.A.C.

Hitachi VTI20E

There was a cassette that couldn't be ejected in this machine, and none of the other deck functions worked. Checks in the power supply showed that the 12 V output at pin 7 of the STK5471 chip IC851 was missing. A replacement chip restored normal operation. D.A.C.

Panasonic NVG40

The cause of severe patterning on the E-E and playback pictures turned out to be C19 $(330 \mu \mathrm{~F}, 10 \mathrm{~V})$ in the power supply. It had fallen in value and in addition had been leaking physically. D.A.C.

JVC HRJ400

When this machine was switched on a slight squeak came from the power supply then it shut down. Zener diode $\mathrm{D} 40(5.1 \mathrm{~V})$ in the power supply was short-circuit. It had failed because Q2 was dry-jointed. After resoldering the transistor and replacing the diode I gave the machine a good soak test. This proved that the fault had been cured. D.A.C.

Sony SLV270UB

This machine failed to work. The customer said that it had been all right until the local electricity company had done some work - he thought this had caused damage. Fortunately this was not the case. All that was necessary was to replace C1325 and C1326 in the power supply. P.H.

Goodmans GVR3450

There was a fully loaded tape in this machine and the loading motor had jammed - it seemed that the motor had failed to stop on completion of the loading sequence. As there was
no obvious break in the gear train and the timing was correct, the mode switch was suspect. This can be obtained from Daewoo, and comes complete with the loading motor, its loading bracket and a connection PCB. Unfortuately the connectors on the PCB were not compatible with the ones in the machine, so I had to transfer the mode switch on its own. This solved the problem. P.H.

Panasonic FS88B

This S-VHS Nicam stereo machine wouldn't accept a cassette. When a cassette was inserted it would immediately be ejected. The mechanism was found to be correctly timed, and worked when driven manually. The cause of the trouble was a sticking eject button on the control door. P.H.

Ferguson FV81LV

This machine was supposed to be dead. In fact if it was left on long enough the display would appear. Then, some time later, the machine would initialise. All this took about half an hour, after which the machine worked normally.
Capacitors CP007 and CP008 in the power supply were both low in value. P.H.

Philips VR6290

This VCR needed a mechanical rebuild, which had been declined by the customer initially as he thought he could do it himself. He made a start then thought better of it. I found that a Philips service kit had been fitted, but at power up the deck immediately tried to take in the cassette housing even though there was no tape present. It accepted a cassette when operated from an external 9V supply, and worked when tried in another machine. So the deck was OK. As the power supply is easy to change I tried another one, but the mechanism continued to misbehave.

I then found that the microcontroller IC7140 was very hot, with only 2.5 V at pin 40 though there was 5 V at the other side of L 5002 . When a replacement chip had been fitted the machine accepted a tape but the threading operation was intermittent and, when the tape was fully loaded, there was only temporary capstan rotation. A scope check at the L293B motor control chip's supply pin revealed that significant hash was present. The cause of the trouble was traced to C2003, which was open-circuit - it decouples the supply to the chip.

This was not the end of the matter. Playback was very snowy, though the machine's recordings played back all right via another one. The playback head amplifier board was faulty. One from a scrap machine completed the repair. P.H.

Hitachi VTF150E

There was a slightly misleading symptom with this machine. The capstan motor was noisy, and the noise could be stopped by touching the motor. But a replacement motor made no difference. Checks on the various rails showed that the 12 V supply dropped to 10 V when the capstan motor was turning. The cause of the problem was C12.

M. 0 .

Toshiba V110B

There was no display and none of the functions worked. This can be caused by a faulty microcontroller chip, but its 5 V supply was missing. It's not easy to find the source of this supply. 12 V is fed to pin 11 of IT46, whose 5.58 V output at pin 10 is fed to the 5 V switch transistor TT52. The cause of the trouble was dry-jointed connections to this transistor. We've had the fault on several occasions, so it could be a common problem. M.O.

Mitsubishi HSB27

There was poor video response, with a jumping picture, in the E-E mode. Playback was OK. The video signal at the PCB output and at pin 8 of IC2A1 was normal. At pin 6 of IC2X1 it was crushed. The cause was C2X2 $(10 \mu \mathrm{~F}, 50 \mathrm{~V})$, a replacement curing the problem. M.O.

JVC HRJ600

The mains supply had been disconnected for a few hours, after which the machine wouldn't start. C12 $(2 \cdot 2 \mu \mathrm{~F})$ in the power supply had deteriorated. C.W.

Matsui VX2000

There was no record colour, though playback colour was fine when a test tape was tried. Fortunately we had a circuit diagram, which made matters easier. A scope check at the head amplifier module pin marked REC-C produced a good waveform. We then traced along to the IC and found that the waveform was lost at the wiper of potentiometer REC-C, which was open-circuit. As we had no electrical adjustment guide we set the replacement by trial and error, ensuring that while the colour locked it didn't overload in heavily saturated areas of the picture. C.W.

Servicing the

Panasonic Euro-1 Chassis

John Coombes on possible fault conditions with this chassis, which was used in the first Panasonic sets to feature digital signal processing

The Panasonic Euro-1 was the first TV chassis from Panasonic to feature digital signal processing. It went into production in 1993. Most of the standard circuitry (power supply, line and field output stages etc.) is arranged on a mother board at the base of the cabinet: the digital signal processing circuitry, which includes generation of the timebase drive signals, is on a separate vertically-mounted panel at the rear of the chassis.
The following Models use this chassis: TX25A3, TX25W3, TX28W3, TX29A3 and TX29W3.

Power Supply Problems

The chassis uses a chopper circuit based on the TDA4601 control chip (IC611). Fig. 1 shows the circuitry on the pri-
maty (non-isolated) side of the chopper transformer T639, Fig. 2 the circuitry on the secondary (isolated) side. If the mains fuse F6101 (3.15AT) has blown or blows intermittently, the degaussing posistor R6102 is suspect. Check it by replacement.
Other causes of a blown mains fuse are a short-circuited bridge rectifier (D613, type RBV408), chopper transistor (Q624, type S2000AF) or control chip (IC611, type TDA4601). Shorted turns in the chopper transformer T639 is another possibility.
If the TDA4601 chopper control chip doesn't start up, check whether one of the start-up feed components R621 $(4.7 \mathrm{k} \Omega, 2 \mathrm{~W})$ or posistor R622 is open-circuit. Alternatively C622 $(100 \mu \mathrm{~F}, 25 \mathrm{~V})$, the reservoir capacitor for the

chip's supply, could be either short- or open-circuit. Another possibility is R628 ($470 \mathrm{k} \Omega$) which can go opencircuit.
The start-up circuit supplies pin 9 of IC611. A low voltage (less than 12V) suggests that C 622 is open-circuit. If the voltage is less than 7.5 V there could be an overload on the secondary side of the circuit. If there are no obvious shorts in the line output stage, disconnect coil L651 and connect a 60 W bulb across the HT reservoir capacitor C651 ($47 \mu \mathrm{~F}, 250 \mathrm{~V}$). If the bulb lights up, the power supply is working correctly. If it doesn't light up, check the over-voltage diode Q651 (TFD312S) which could be short-circuit and the HT rectifier D651 (RU4) which could be open-circuit. If there are no 150 V HT supply faults, check the LT lines on the secondary side of the circuit.
If there's no 12 V supply, check fuse F661. This will blow if C662 $(470 \mu \mathrm{~F})$ is short-circuit. Alternatively, the 12 V supply will be missing if IC666 (TL431A) is shortcircuit. See also the note on standby switching later.
If still in trouble, check for dry-joints at the chopper transformer T639. Poor connections here can cause intermittent cutting out or just no results.
Failure of the TDA8175 field output chip IC561 will also produce the no results symptom.
For a buzzing or whistling power supply Panasonic suggests changing the value of C632 from 100 pF to $1,000 \mathrm{pF}$. This capacitor is between pins 2 and 3 of IC611. In addition, add a $1,000 \mathrm{pF}$ capacitor between pins 3 and 6 .
The cause of failure to start or no results can be in the control circuit or elsewhere on the digital board. Pin 62 of the microcontroller chip IC1801 (CCU3000) should go low when the remote control unit is used to switch from standby. When this happens Q697 (2SA1309ATA) should switch on, in turn switching on Q663 (BUZ71A) via R667. The 12 V supply then appears. If Q663 is faulty or Q697 open-circuit there will be no 12 V supply. If pin 62 of IC1 801 does't go low, check the chip by replacement. This must be done with care, using appropriate equipment.
Loss of the 10 V supply on the digital board will produce the no results condition. This supply is produced by the regulator transistor Q1011 from the 12 V line. Q1011 (2SC3940) could be faulty, its base bias zener diode D1012 (MA8110) could be short-circuit or its feed resistor R1012 (4.7 Ω) open-circuit.
Failure of the multisound processor chip IC1401 (MSP2401) on the digital board can be responsible for no or intermittently no results. This can obviously be a difficult fault to locate. For a clue, monitor the 5 V supply at pins 15 and 39 of this chip. The supply is also used by other chips on the board.
If there's no sound or picture and the set reverts to standby after a few seconds, check whether R561 (1.5 3 , 0.5 W safety) is open-circuit. This resistor is in series with the 27 V supply to the field output chip IC561.

The Line Timebase

As with any chassis, line output stage failure will produce the no results symptom. If the 150 V HT supply is missing, check as described above to find out whether the fault is in the power supply or the line output stage. Ensure that the feed resistor R531 (108, 10W) is intact. If it's open-circuit, the S2000AF line output transistor Q534 could be short-circuit or the line output transformer T531 could have shorted turns.
Low HT could mean that Q534 is leaky or short-circuit. If so, it could have been damaged by dry-joints on the line driver transformer T528 or shorted turns on the line output transformer T531. If the output transistor is OK, check the EW correction diodes D536 (ERB06-15) and

D537 (RU2M) which can go short-circuit.
If there is no line drive at the base of Q534, check for 27 V at the collector of the line driver transistor Q526 (2SC3944RLB). If this voltage is missing, T528 could be dry-jointed or R521 ($3.3 \Omega, 0.25 \mathrm{~W}$ safety) open-circuit. In the latter event check whether C521 $(100 \mu \mathrm{~F})$ is short-circuit.
The next step is to check for drive pulses at the base of Q526. These come from pin 13 of the DPU2553 deflection processor chip IC1501 on the digital panel. If there are no pulses here the chip could be faulty, but first ensure that the 5 V supply is present at pin 14 and the 5 V standby supply at pins $10,17,18$ and 19 . The line drive pulses pass from the digital panel via transistor Q1536 (2SD601)

Fig. 2: The circuitry on the secondary side of the power supply. See Table Ifor semiconductor device types.

Table 1: Power supply semiconductor devices.

D613	RBV408	IC611	TDA4601
D622	BY298	IC666	TL431A
D624	ERC08	IC676	TL431A
D636	BY298	IC691	AN78L05
D651	RU4		
D656	BYW98	Q624	S2000AF
D661	RU3N	Q651	TFD312S
D663	ZDP12	Q663	BUZ71A
D665	MA165TA5	Q674	BUZ71AF
D671	MA750A	Q681	2SA1309A
D681	BA157	Q682	BC638
D686	RU30	Q697	2SA1309ATA
D687	RU30		
D694	EQB6.2V	D491	MA167

which could be open-circuit. If it's necessary to replace IC1501 this must be done with great care.

The Field Timebase

The most common problem is field collapse, which can obviously be caused by the TDA8175 field output chip IC561. For replacement purposes there's a modification kit that consists of the chip and an MA2100 diode. This should be fitted in place of link B51, with its cathode to pin 3 of the chip and its anode to pin 5. If the fault is intermittent, IC561 and/or its 27V supply feed resistor R561 (1.5Ω) is suspect. An alternative cause of field collapse is failure of the flyback boost capacitor C563 (220 $\mathrm{F}, 40 \mathrm{~V}$). It tends to go open-circuit.
If the receiver comes on with a blank raster, check whether there is a field flyback pulse at pin 6 of IC1501. The pulse may be missing because of a dry-joint at pin 3 of IC561. This activates the protection circuit in IC1501.
If the receiver is working but the only result is teletext lines at the top of the raster, replace IC561. The chip can also be the cause of top compression.
For intermittent increase in height, check the MCU2600 master clock chip IC651 by replacement. It's on the digital panel.

Digital Chip Faults

Fault finding on the digital panel is not easy. The chips can cause faults for reasons that are not obvious. The following notes summarise experience in this area. Chip replacement should be done with great care to avoid damage to the print and adjacent components.
If dark, shadowy parts of the picture become dotty, the DTI2223 digital transient improvement chip IC1661 is suspect. The fault can be very intermittent. This chip can also be responsible for a blacked out picture with the sound OK, and distorted, noisy colour.
The TPU 2735 teletext chip IC1771 can be responsible for some odd faults. There may be a normal picture that flashes to a white raster; no teletext with just a blue screen; or loss of the on-screen menus with random numbers/characters instead. If the blue screen fault is not caused by the chip, check C1776 ($47 \mu \mathrm{~F}, 16 \mathrm{~V}$) which can go short-circuit.
The SAD2140 analogue-to-digital converter chip IC1601 can be troublesome. Here are some of the symptoms it produces when faulty: a monochrome picture that goes negative; a white raster; a dark picture with weak sync; an intermittently light raster with no sync; a solarised picture; a weak monochrome picture with poor sync.
The DPU 2553 delfection processor chip IC1501 can be responsible for lines on the picture over teletext and a picture that intermittently turns to a white raster.
The ACVP2205 adaptive comb filter/video processor chip IC1631 can be the cause of a dark, blank raster.
In addition to sound problems (see later) the MSP2410 multisound processor chip IC1401 can be responsible for a dark raster with no sound and for the line drive cutting out after a short period of operation.

Sound Faults

Many sound faults are caused by chips on the digital panel. If there's distorted sound and popping, the ACP2371 audio control chip IC1301 is suspect. Alternatively the 10 pF capacitors C1332/3 could be the cause - check them by replacement. IC1301 can cause rustling and crackling on sound, also no sound. For the latter fault, first check that the 5 V supply is present at pins 1 and 44 of IC1301.
The MSP2410 multisound processor chip IC1401 is
suspect for loss of or distorted Nicam sound. Before replacing it, check for dry-joints and that the 5 V supply is present at pin 39. If there is slight distortion with a Nicam transmission, check the 7 pF capacitors $\mathrm{C} 1423 / 4$ by replacement. If the distortion is on one channel only, the relevant capacitor (C1423/4) could be dry-jointed.
Poor Nicam sound can also be caused by the AMU2481 audio multiplex chip IC1431.

Colour Faults

If there's loss of one colour, check for dry-joints at the transistors in the relevant output stage - Q3393/4/7 red, Q3383/4/7 green and Q3373/4/7 blue. The dry-joints could also be at the CRT tube base - pin 8 red, pin 6 green, pin 11 blue. Alternatively the relevant feedback resistor could be open-circuit or high in value. These are R3394 red, R3384 green and R3374 blue. The value varies with model - usually $91 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$.
For intermittent loss of colour check crystal X1656 $(17.7 \mathrm{MHz})$ on the digital board - its connected to pins 12 and 13 of the MCU 2600 master clock chip IC651.

Remote Control

The remote control unit gives very few problems apart from the battery connections, which are a common cause of faults with all remote control units. Check for corrosion and bent connections, i.e. poor contact.
If necessary dismantle the unit and check for sticky button contacts because of grease from fingers.
No operation can be caused by the LED being dry-jointed or incorrectly positioned.

Diagnostic Interface and Memory Pack

The Panasonic LUCI diagnostic interface has been available for a couple of years or so. There are versions for the Euro-1, -2 and -3 chassis. It connects the chassis to a PC to enable adjustment and control to be carried out via the PC using a service remote control unit. The system is particularly helpful when dealing with intermittent faults. The minimum PC requirements are a 286 or higher processor, 4 Mb of RAM, 500 Kb of hard-drive free space and a COM1-4 serial port. The service remote control unit is part no. TZS2EK004.
In the service mode, all TV functions can be set up using the remote control unit and PC menu options. Various diagnostic tests show whether the data bus lines in the TV set are correct and check individual ICs. The most useful type of test is called a cycle test, which helps in the search for the cause of intermittent faults. It monitors the major ICs in the receiver and reports when a failure has occurred, with an elapsed-time indication.
There is also a memory pack, part no. TZS2EK002, that gives access to the set's memory. This facility enables tuning information, customer preferences and service data to be transferred to and from the TV set. The receiver has two 21-pin scart connectors. Use the lower one for copying: plug in the memory pack, then enter the service mode. When feeding data in, the screen will display PROGRAM EXTERNAL >> TV. Press the TV set's store button and the tuning information will be stored in its memory - the screen will display LOADING while this takes place. The process takes about three minutes, after which OK! is displayed. The same basic process can be used in reverse, the screen displays being PROGRAM TV \gg EXTERNAL and STORING. To get out of the service mode, simply switch the receiver off. If a problem occurs the screen will display PROGRAM ERROR! In this event switch the receiver off and try again. If necessary, check the connections between the TV set and the memory pack or check the pack's 9 V battery.

P.V. TUBES

108 ABBEY STREET, ACCRINGTON, LANCS. BB5 1EE Tel: 01254 872500/390936

Fax: 01254872166
Trade Coumter
OPEN MONDAY TO FRIDAY 9-5, SATURDAY 9.30-12.30
The PV1 multi purpose degaussing wand is a compact and cost effective unit intended for use with a 240 volt mains supply. This unit will be of particular interest to TV Service Departments, TV Manufacturers, Rental Companies, TV Broadcasting Authorities, Universities and Colleges, The Armed Forces, Aviation and Computer Companies.

Order by Mail Order today for only $£ 32.50$

> We have literally hundreds of products, here are just a few: Aerials, brackets, batteries, cable, connectors, CMOS capacitors, discs, diodes, fuses, IC's loptx, leads, manuals, push button lights, phones, phone accessories, potentiometers, relays, remote controls, satellite systems, scanners, semiconductors, strip board, switches, tuners, tools and test equipment, valves and all you need for video repairs - heads, idlers, tyres, pinch rollers, cleaners, test cassettes, TV's, video tape.

Daewoo VCR, 6 Head, Twin Speed, Nicam $£ 150$
LG N301 VCR Twin Speed, Remote... $£ 110$
Crown 14" Remote Colour TV...£100
Crown 21" Remote Colour TV.. $£ 152$
Pace MSS 1000 Satellite Receiver....................................... $£ 258$
Standard/Enhanced Cambridge LNB's£24.95
If what you need is not listed - Ask! Ring Andy, Mark or Linda

Please add VAT to all prices. We accept payment by cheque, cash, Access, Visa. Add $£ 2$ pp for all orders up to 1 kilo. Heavier parcels add £4. Next day delivery on Parceline. Consignments POA. Goods will be despatched on the day we receive your order. If we are out of stock we will inform you ASAP. Please allow up to 28 days for delivery.

P.O. BOX 142, NOTTINGHAM, NG9 3RX, ENGLAND
 E-Mail : tony@iche.com WEB SITE : http://www.iche.com

END OF SUMMER SALE!!

UP TO 20\% OFF ALL LISTED SCHEMATICS!

WELTREND ICs DOWN IN PRICE, ALL PART NUMBERS SAME PRICE !!
Qty 1-9 £15.00ea Qty 10-49 £12.75ea
Qty 50+9.75ea
(+V.A.T. \& CARRIAGE)
"ALWAYS THE FRIENDLY PROFESSIONAL SERVICE"

Servicing in

Austin Fairchild got his first job in the radio/TV repair trade in 1956. Then as now, it was a time of change. This account tells you what it was like in that earlier era

With all the microprocessors, digital equipment, computers and the like that surround us today, I thought it would be interesting to wander back to a gentler age, when TV engineers were a revered race. God-like, almost.
The year is 1956, the year I left school. There was no real career training in those days, but there was virtually full employment. In fact there was more likely to be a shortage of manpower then. We were still in the postwar recovery era.

A Start

When I left school I had to find a job for myself. Having an interest in electronics, I naturally made a beeline for the nearest radio and TV repairer. As luck would have it, there was a notice in the window. "Improver required" it said. This meant that whoever got the job was expected to improve! It was a bit like an apprenticeship without the formalities. The training would of course be only as good as the engineer who provided it, and the amount of time he could manage to spend on it. I got the job. The engineer who interviewed me was impressed with my basic knowledge, so that was it. I was taken on at the princely sum of two pounds ten shillings a week ($£ 2.50$ in modern money). I remember giving a pound to my mum, and living for a whole week or more on the rest. I should mention that I was paid cash-in-hand, so there were no deductions for income tax and the like. It was quite common then.

The Sets

An interesting point about the period was that one gained first-hand knowledge of pre-war, 1936-9 vintage sets, many of which were still in use. It was some weeks before I could work without supervision, but I was eventually left to get on with things.
One of the first jobs I had was to replace the tube in a Philips projection TV set. Yes, they had them then! It was an horrendous beast, all valves of course, and produced a 405 -line black-and-white display. Because of the cost of tubes in those far-off days, TV pictures tended to be $9-12 \mathrm{in}$. in size. Anything larger was expensive by the standards of the time.
The Philips set was a back-projection type. It produced, on a prismatic screen, a picture with a diameter of about 16 in . The source was a 3 in . Mullard MW6-2 CRT which ran at an EHT of 25 kV . Viewing had to be in total darkness! It was a noisy set in operation. As it used the 405 -line system the line timebase worked at $10,125 \mathrm{~Hz}$, just within the range of human hearing - and pretty audible if you were youngish. This was true of all the sets of the period. But this projection model had one other annoying feature.
In those days there were a number of ways of generating the EHT - not all sets used flyback EHT, though this was shortly to become standard. The Philips projection set used a 1 kHz oscillator as part of the EHT generator section. With the noise of that, beating against the line oscillator, well you can imagine!
If one of these sets suffered from field or line collapse, there would be a bright horizontal or vertical line respectively. This would immediately burn the tube, which would require replacement. What, no protection? Well, there was a safety circuit of sorts. If I remember correctly, it used an EB91 double diode. The circuit worked, but cowboy engineers invariably removed the valve. This made fault-finding much easier!
Tube replacement was difficult to say the least. It was encased within the optical projection unit, a series of front-aluminised mirrors. There was a glass shroud around the tube's EHT connection. It made the EHT lead difficult to remove. Anyway, having eventually fitted a replacement, it was switch-on time. It took two minutes or more for the set to warm up. I waited expectantly. Then a fuzzy line appeared on the screen. I had a fit of horrors as I realised that in my enthusiasm to fit the tube I'd not dealt with the original fault. The result? Another burnt tube. The boss was not impressed.
I survived this setback, and subsequently had to replace another tube - I became quite good at doing this.

The set was a large, pre-war Marconi one. It had an Emiscope tube with a very long neck - so long that the tube had to be mounted vertically in the cabinet! There was a mirror in the cabinet top, which locked at an angle to enable the picture to be viewed. With Alf's help, I was able to stand on some steps to feed the new tube into the deflection coil assembly. After that it was plain sailing.
Incidentally we were able to replace the tube only because we had another one of these sets in the workshop. It had been damaged during an air raid, and I was told that it had been sitting there since the business resumed fully some time in the early Fifties. Fortunately its tube was intact.
Then there was the Philips Model 520A, a combined radio/TV set. Invariably the drive cord broke, so the radio couldn't be tuned. In those days radios used variable capacitor or, sometimes, variable reactance tuning - definitely not the PLL arrangement employed in today's sets. Readers old enough to remember those beasts will squirm in horror at the thought of that drivecord arrangement! Somehow I muddled through and got my first one working. But it didn't seem to have the orignal smooth tuning action.
Because CRTs were so expensive, the sets had quite small pictures. A way to make them larger was to attach a magnifier to the front of the set. It consisted of a plastic lens that was filled with liquid paraffin. Sometimes, through accident, a customer would lose the liquid paraffin. Guess who had the job of filling up again?!

Band III

One of the reasons why my boss had advertised was the advent of Band III TV. This was the start of commercial television, which became known as ITV. In the London area it used Channel 9. The additional channel per area meant that a lot of converting had to be done to enable older sets to receive a Band III signal as well. The converter units took many forms, and names like Brayhead and Cyldon come to mind. They were manufacturers of turret-type tuners that could be used to convert most types of receiver.
At that time there were still a number of TRF (tuned radio frequency) sets around. As there had originally been only one station (BBC) in each area, it hadn't been necessary to produce superhet TV receivers. With the advent of the new channel we finally said goodbye to the TRF receiver.
The purpose of the Band III converter was to convert the frequency of the ITV signal to that of the local BBC channel. Anyone who wanted to view ITV with an older set would have to have a converter fitted. Our recent experience of Channel 5 beating with the output from VCRs etc. is similar to the sort of trouble technicians experienced in the Fifties with their "front-end" converters.

Odd Devices

There were some rather odd devices around at the time. One was the 'converted oscilloscope'. You could get a kit which converted an early oscilloscope into a 405-line TV set, albeit with a green picture! These devices existed because the price of TV sets was beyond the means of the average person.
Prices were often quoted in guineas. The smallest type of set would be priced at around 59 gns , which was $£ 61-$ $19-0 \mathrm{~d}$ ($£ 61.95$ p). Since wages were around $£ 10$ a week and TV was on only from late afternoon till about 10 p.m., buyers were not exactly beating a path to the door of the shop! But the converted oscilloscope made it pos-

sible for an average working-class family to sample the delights of the BBC-only service.
Oscilloscopes could be bought from the many government surplus shops that sprang up at about this time to offload no longer wanted war-time equipment. Some kits came complete with a scope and all the necessary parts. If you wanted the sound as well you could pick it up via a separate tuner designed for sound only, or from the medium-wave band. But you had to make the tuner yourself!
Another odd device that found its way into our workshop was a wire recorder. This device, which could record sound only of course, was used in some allied aircraft and by some support units, and probably had other uses during the war. It consisted of some very simple electronics, a large bobbin of wire that moved at a hell of a pace, and an electric motor. The wire would sometimes break. If it did, you just tied a reef knot in it and away it went. Maximum response was up to 5 kHz !

Radio Sets

In those days radio sets were of the four- or five-valve superhet type. They were often designed for AC/DC operation - there was still quite a lot of DC around at the time. As the DC varied from area to area, either a dropper resistor, with a series of taps on it to adjust for different input voltages, or a 'line cord' was used. The latter was a mains lead that had a given resistance per unit length. It could thus be cut to provide the required voltage drop to match the mains input to the receiver.
Because the line cord was used to reduce the voltage, it got warm. If hidden beneath a carpet, it could catch fire. Very often the owner would shorten the lead to make it neater. Next time the set was switched on all the valve heaters would blow! The line cord wouldn't pass safety standards today.
Stereo radio had just recently been introduced. But I never saw a receiver until the early Sixties.

Then and Now

Back then we repaired anything and we enjoyed doing it. We were highly regarded as well. Yes, believe it or not, it was a prestige career in those days. Since then almost every aspect of electronics has changed.
The single most important development was the invention, in 1947/8, of the transfer resistor, or transistor as we know it today. It didn't change things immediately: in fact I didn't see a transistorised device until the early Sixties. But it made a tremendous difference, eliminating the power-hungry valve, reducing the size of everything very considerably, and paving the way for the microprocessor, without which there would be no computers.
Looking back, those days were simpler and quieter times. They are now fading into the pages of history.

How TVs looked in the Fifties.

DX and Satellite Reception

Terrestrial DX and satellite TV reception and news. A useful preamplifier design for the TV bands. Roger Bunney reports

Terrestrial DX-TV reception during July hit an all time low.
Those who have written in have all reported a flat month with little by way of encouragement. But, as I bang the keyboard on the evening of August 5th, Sporadic E propagation seems to have returned, with strong though 'muddy' signals from the Adriatic region across channels E3-4. The monthly report is a short read this time:

This year the		(Germany) E2, 3.
	18/7/98	HRT EA
our de France	27/7/98	SVT (Sweden) E2; NRK E3.
started in Cork, Ireland. This	30/7/98	HRT E3, 4; RTL-Klub (Hungary) R2.
signal is via the	4/8/98	TVE E3.
Telecom 2B satellite of $5^{\circ} \mathrm{W}$	5/8/98	RAI IA, B; RTS E4.

RAI (Italy) chs. IA and B; TVE (Spain) chs. E2, 3; NRK (Norway) E2, 3; PTP (Russia) R1; HRT (Croatia) E3; RTS (Serbia) E3.
RAI IA; HRT E4; TVE E3.
RAI IA, B; TVE E3; RTP
(Portugal) E3; ARD
HRT E4
Tour de France started in Cork, Ireland. This signal is via the sarellite at $5^{\circ} \mathrm{W}$.

The late May-June period was very active, with some interesting reports of 50 MHz amateur radio contacts. There was transatlantic reception on May 24th and June 4th, including the Canadian beacon VE8BY. On June 10th at 1800 hours the Cornish beacon GB3MCB was heard for ten minutes by VE1IW.

A reader has sent me a videotape that shows reception of digital TV test material transmitted from Crystal Palace on ch. E28. There's an up-market promotion showing the good life with digital TV, multimedia operation, thousands of channels, interactive TV and so on. For me the best shots were those that showed TV activites at Alexandra Palace in the pre- and post-war 405-line era!

Satellite Sightings

The Orange marches hit the headlines from July 5th. SNG trucks started to roll in at Drumcree from around the 6th - the media had been allocated a road by the military to set up its uplink trucks and scaffold towers. On one side there was a potato field, on the other were the army, ambulances, tents and so on, obviously entrenched for a fair duration. The Orangemen's camp was farther along the road, with banners and, rather incongruously, an ice-cream van in the middle.

There were inserts for national and regional news, the Telecom satellites at $3^{\circ} \mathrm{E}$ and $5^{\circ} \mathrm{W}$ being particularly active with outgoing feeds. The occasional camera shot during a scaffold tower rerig might show the neighbouring SNG truck/tower with reporter, floor manager plus camera and sound
operators clustered together atop the small platform.

The Orange march through Belfast on the morning of July 13th was carried by Intelsat K. UKI120 and UKI76 were both busy with the marches, mainly on the 13th. A new uplink identification, UKI31 (ITN Mobile Edit), was seen via $3^{\circ} \mathrm{E}$ at 12.612 GHz vertical with live two-way coverage from Drumcree.

On the 6th a new SNG truck, BBC-UKI234, was seen feeding a live insert from Aberdeen to the BBC Scottish magazine programme, again via Telecom 2C at $3^{\circ} \mathrm{E}$, this time at 12.650 GHz . The broadcast was to mark the 10th anniversary of the Piper Alpha oil drilling rig disaster.

A spectacular night-time concert from beneath the Eiffel Tower, Paris on July 10th was seen via Intelsat $\mathrm{K}\left(21 \cdot 5^{\circ} \mathrm{W}\right)$, first with a caption that read "test for the three tenors concert". The following performance was magnificent, with Pavaroti and the rest singing on an open-air stage. The lighting effects were fantastic, as were the shots of the Tower after the concert. The feed was to the USA at 11.624 GHz vertical (NTSC). The BBC transmitted the concert some nights later.

Sports predominated as usual during the summer months. There was plenty of golf, from Illinois via PAS-3R and via Telecom 2C with the Standard Life Loch Lomond and the British Open Golf tournaments. Interesting that TV Osaki took the latter from the start of play at 0900 hours via PAS-3R (UKI35) at 12.708 GHz horizontal with NTSC colour.

We also had the traditional July

Tour de France, which this year started in Cork, Ireland on the 13th. UKI294 was used, with transmission via Telecom 2B at $5^{\circ} \mathrm{W}$. The Tour is noted for dramatic $O B$ coverage from the air, from cars and motor-cycles and from the kerbside. As ever the technical quality was excellent, with crisp pictures.

Roy Carmen (Sandown, Isle of Wight) comments on Libyan TV via NileSat-1 at $7^{\circ} \mathrm{W}$. It seems to occupy as much transponder capacity as CNN. Col. Gaddafi is often seen via $7^{\circ} \mathrm{W}, 1^{\circ} \mathrm{W}, 16^{\circ} \mathrm{E}$ and $30.5^{\circ} \mathrm{E}$ fronting the Peoples Revolution TV. That and Saddam Hussein's sabre rattling (early August) provided news for those interested in Middle Eastern politics.

On a personal note I've just brought back into operation my old 1.5 m dish, with a $17^{\circ} \mathrm{K}$ C-band LNB. This gives remarkable noisefree reception from Arabst at $26^{\circ} \mathrm{E}$ and fair mono quality reception of TV Mauritania at $30 \cdot 5^{\circ} \mathrm{E}$, using a 7 dB threshold manually-tuned receiver. It proves that for reasonable band C results you don't need a 20 ft dish and a high-secification, low-threshold receiver. More on this next month.

Terrestrial News

Middle East: The ERP of the Syrian ch. E2 SRT-2 transmitter at Homs is 80 kW . All the Lebanese ch. E2 transmitters are now off air. Careful measurements in the Netherlands suggest that there's a ch. E2 transmitter in operation at Tehran, Iran carrying the IRIB-2 service - at the same location as the ch. E4 IRIB-1 transmitter. During recent SpE openings Ruud Brand measured two Iranian ch. E2 transmitters, at 48.2401 and 48.2606 MHz , using an Icom R7000 receiver.
Equatorial Guinea: The ch. E2 Malabo transmitter has been received recently. Programmes are transmitted from 1445-2300GMT at 1 kW ERP with horizontal polarisation and PAL colour. The transmitter is at 3 km ASL at Pico Basile, south of Malabo town. The vision carrier frequency was measured and found to be 48.2504 MHz A logo, TVGE, is sometimes present at the corner of the picture. Sri Lanka: The commercial Independent Television Network has been transmitting selected English-language programmes from the Deutches Welle satellite service for six hours weekly since

July 14th. The feed comes via AsiaSat-2 as a digital signal. Spain: Terrestrial digital TV test transmissions have started George Gaskin (Gibraltar) has been monitoring the ch. E29 signals, from an unknown transmitter, since early May. There are colour bars with the caption "Emision Experimental Prueba DTT" inlaid - prueba means test.

Australia: The government passed legislation in early July confirming that digital terrestrial TV and datacasting will start in January 2001. From that time all three commercial networks are expected to offer HDTV.
Taiwan: A public service TV channel has come into operation. The UHF transmissions must also be carried by cable services.
Botswana: A national TV service is to start next summer, in competition with the present single commercial station.
Switzerland: A new private, German-language TV channel is to come on air this October, called Tele 24.
Latvia: A majority holding in Station 31 has been bought by a Scandinavian broadcaster. The service is to be relaunched as TV3 Latvija.
UK: The Isle of Wight RSL station TV12 has yet to start its service. Frequency clearance is apparently being held up by the French. The Chillerton Down transmitter is likely to be used.

Satellite News

Eutelsat is still arguing over the $29^{\circ} \mathrm{E}$ slot, pointing out that SES/Astra at $28.2^{\circ} \mathrm{E}$ is also in breach of ITU regulations. A new satellite called RESSAT has been ordered from Matra Marconi Space to guarantee service continuity in the event of a launch failure of one of the new W series satellites - the first of these is to be launched next month (October). It will be delivered in December 1999 for use at $7,10,16$ or $36^{\circ} \mathrm{E}$. Based on the Hot Bird design, it will have 28 transponders.

Good news about AsiaSat-3, which went into incorrect orbit last December, becoming an insurance write-off. Hughes Space, in partnership with the insurance company, first attempted to recapture the HS601HP satellite last May, by firing on-board rockets then using the Moon to adjust its trajectory. The results were so successful that a second attempt was tried in late June. This resulted in the satellite

achieving a satisfactory geostationary orbit. It's now slotted over the central Pacific, awaiting

The BBC digital test sequence from Crystal Palace on ch. E28. clients. It also has a new name, HGS-1 (for Hughes Global Services). A remarkable operation.

Less happy news from Hughes. A 'primary control processor' aboard three different satellites, Galaxy VII (May 13th), Galaxy IV (June 13th) and DBS-1 (July 4th), has failed. Back-up systems have

Aerial Techniques

8M bit memory, two sets of S-VHS inputs \& outputs, NTSC to PAL and PAL to NTSC, 500 lines dynamic \& static resolution, full line \& frame conversion, time base correction
$£ 649.00$

CDM 800
4M bit memory, two inputs \& outputs, NTSC to PAL and PAL to NTSC also SECAM, 500 lines static resolution, dynamic 300 lines, full line \& frame conversion, time base correction, AC operation..........................£449.00

CDM 600
2M bit memory, single input \& output, NTSC to PAL and PAL to NTSC also NTSC to PAL and PAL to NTSC als,
SECAM, 420 lines static resolution, dynamic 250 lines, full line 8 frame conversion, time base correction, $A C$ operation......................... £299.00

THOMSON MULTI-SYSTEM NICAM VCR

Multi-system compatibility. Covers VHF, UHF and cable channels. Records, receives and plays back: PAL system 1 (for UK); PAL system B/G (for Europe); SECAM system L (for France), SECAM system B/G (for Middle East), SECAM system D/K (Eastern Bloc); NTSC 3.58 (via scart)
£499.00

THOMSON 14" MULTI-

SYSTEMTV

Covers VHF/UHF PAL/SECAM L for use in UK France \& Europe.
14" screen multi-standard - PAL/SECAM (NTSC via scart) VHF-UHF hyperband tuner 59-channel memory Fastext feletex S-VHS (via scart) 240 VAC operation
£269.00
FULL CATALOGUE Features Satellite Multi-system TV's + VCR's. Converters Decoders, Amplifiers and Aerials for domestic and TV-Dxing AVAILABLE BY RETURN OF POST FOR ONLY £1. or ring with your credit card

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH [J

(All prices are inciusive of VAT, delivery by courler $£ 10.00$)

An analogue test pattern is required to align dishes for SkyDigital's services.
enabled operations to be maintained. Satellites in production are being modified to overcome suspected causes of the problem.

World Television News (WTN) is likely to disappear as an onscreen \log following WTN's takeover by Reuters, leaving just APTV as a commercial rival. Reuters is increasing its daily news/media service to the West Pacific/Asian market. APTV has signed a deal with NHK Tokyo to supply news until 2001.

The economic problems in SE Asia are delaying satellite deliveries. Delivery of Telenor's Thor-4 satellite ($1^{\circ} \mathrm{W}$) has been put back to 2000 . Thor- 3 , at the same position, has adequate capacity for the present.

A new digital service has been started by Canal+ Polska and Polsat TV, in competition with Entertainment Wizja TV. It will broadcast from $13^{\circ} \mathrm{E}$ initially, with nine channels.

The three French digital TV
services AB Sat, CanalSatellite and Television par Satellite now have over three million subscribers, exceeding the cable networks' customer total. Subscription turnover should exceed \$US250m this year.

Arabsat is to use Hot Bird 4 $\left(13^{\circ} \mathrm{E}\right)$. The organisation's receiving facility at Tunis will accept channels from North Africa/the Middle east and uplink the package to Hot Bird for free delivery to the Arabic community across Europe.

Intelsat 805 is now in operation at $55.5^{\circ} \mathrm{W}$ with three 52 dBW Ku band and 2841.5 dBW C band transponders, giving direct links between Europe and the Americas.

The Howes SPA4 Amplifier

Various aspects of signal phasing to provide co-channel interference reduction have been discussed in recent columns. The Howes SP4A amplifier kit, which is relatively cheap, was used in one phasing system. It's actually an ideal aerialsignal preamplifier design for TV/FM-DX or scanner applications. Provided the instructions are followed, you can't go wrong.

The SPA4 kit consists of two ready-etched PCBs, all the components required and full instructions. One PCB is used for the head-end amplifier, which is powered at 12 V via the coaxial downlead cable from the indoor interface PCB. The latter provides 12 V DC injection, at 20 mA , and switchable $0-10 \mathrm{~dB}$ attenuation: the choice of a box in which to house it is left to the constructor.

The head amplifier PCB is small, just $40 \times 28 \mathrm{~mm}$. Its housing
is also left to the constructor. A section of 1.5 in . PVC water pipe is suggested, though Howes can supply a weatherproof box as an extra.

My own need was for a couple of indoor preamplifiers. I housed them in a diecast box, using traditional Belling-Lee sockets, with switched DC supplies to each amplifier PCB. The accompanying photograph shows it all. I didn't need the interface PCBs, which were discarded. Construction is simple, but take care to avoid splattering the IC amplifier with static.

My interests lie across the TV spectrum, from about 48 MHz upwards. Previous experience has shown that a VHF choke should be fitted across the input to avoid MW/SW breakthrough and overloading from nearby transmitters. In this case I used the RS 1A type as I had access to some, but you could use say twelve turns of 2026 g enamelled wire wound on a ferrite core.

The amplifier design was modified slightly for indoor operation from an external DC power supply but the changes make use of components supplied with the kit. Fig. 1 shows at (a) and (b) the original and modified design, using the Howes kit component reference numbers.

Once built, both amplifiers worked immediately. There were no problems and the results were impressive. Two accompanying photographs show before and after results using a Band I aerial for ch. 66 reception.

The gain figure quoted by Howes is 15 dB minimum over the bandwidth $4-1,300 \mathrm{MHz}$, "with useful results outside this range". The

A weak ch. 66 signal received without the SPA4 preamplifier.

The same signal received with the SPA4 preamplifier in circuit.

Fig. 1: (a) The basic Howes SPA4 preamplifier circuit for masthead use. Powering is via the downlead. (b) Modified circuit for use as an indoor TV preamplifier - component reference numbers are those for the actual kit. R7 could be replaced with $L 1$ from the kit as supplied. See text for details of choke CH.
noise figure quoted is less than 3 dB rising to $3 \cdot 2 \mathrm{~dB}$ at $1,300 \mathrm{MHz}$. I cannot measure noise figures, but the voltage gains checked out OK across the TV bands: 19 dB from $40-60 \mathrm{MHz}, 21 \mathrm{~dB}$ at $80 \mathrm{MHz}, 25 \mathrm{~dB}$ at $100 \mathrm{MHz}, 26 \mathrm{~dB}$ at 150 MHz , 22 dB at $200 \mathrm{MHz}, 25 \mathrm{~dB}$ at $250 \mathrm{MHz}, 18 \mathrm{~dB}$ at $470 \mathrm{MHz}, 21 \mathrm{~dB}$ at 600 and 720 MHz and 20 dB at 860 MHz . The peak over $100-$

250 MHz is interesting: it may have been caused by the VHF choke inserted at the input and the lowervalue coupling capacitor used.

In conclusion it's a simple project that provides worthwhile results. The SPA4 preamplifier kit costs $£ 15.90$ plus $£ 1.50$ post and packing to UK destinations, VAT included. The address is C.M. Howes Communications, Eydon,

Two Howes SPA4 preamplifiers fitted in a diecast box.

Daventry, Northants NN11 3PT, telephone 01327260 178. The company has a 1998 radio kit catalogue that's available on request, but two 26p stamps should be included.

Having used other kits from Howes' quite extensive though radio-orientated range successfully, I can recommend the company's products.

HOW DOES YOUR EQUIPMENT MEASURE UP? AT STEWART OF READING THERE'S ALWAYS SCOPE FOR IMPROVEMENT!

PHILIPS PM3217 - This is really a very
 cover

Only E300
THIS IS THE BEST CHEAP SCOPE YOU WILL EVER BUY!!!

Dual Trace 30 MHz. Delay. Very Bright
Supplied with manual and 2 probes.

TEKTRONIX 2215 - Dual Irace 60MHz
 Sweep Delay,

Includes 2 probes. Only C35D

TEKTRONIX 400 Series

488 Digital Storage Dual trace 100 MHz Delay...... $\mathbf{\Sigma 5 5 0}$ 466 Analogue Storage Dual Trace 100 MHz Delay. E 250 485 Dual Trace 350 MHz Delay Sweep \quad E750 475 Dual Irace 200 MHz Detay Sweep 465 Dual Irace 100 MHz Delay Sweep.......................... 3550

PHILLPS PM3296A Disal Trace 400 MHE DualTB Delay Cursors IEE...22250 FLUE PM3082 2+2Ch 1004Hz Delay TB Cursors........................E950 TEETROHIX 24654 Ch 300 HHz Detay Sweep Cursers etc..............E22000 IERTROHIX $245 / 2451$ a Ch 150 HHz Deiay Sweep Curs etc. from Eloan
 TEETROHIX 2235 Dual Irace 1D04H Delay Cursors........................ 5700

 Pull Ps 3055 Ch 50 HH Hz OUal TB | . .8550 |
| :--- |
| $\cdots2975$ | G00LD 05300 Dual Trace 20:4h2.

MARCOHII 2019 Sym AMFM Sirnal Gen 80KHz-1040MHZ

Can You Believe It - A 1GHz Generator for only £450 H.P. $8640 A$ AMFH Signal Gen 500 MHz - 10224 Hzz - Audio Option \qquad

Classic AVO Meter A Digital AVO DA 1163.5 digit Complete with Batteries \& Leads

NETROHMA 9A - 500V Battery
Megga (a useful back-up for fault finding) Complete with Batteries \& Leads Only 830

SOLRRTROH 7150 DANM 6.5 digitilee 2300
True RHS

MS 3850A Oigital Storage/DMM

Handheld LCD display. 2 Channel $50 \mathrm{Ms} / \mathrm{s}$. Auto range 4 Digit DMM/Capacitance/frequency counter. Battery operation or external 7.5-9.5V DC ie. AC adaptor (not operation or external $7.5-9.5 \mathrm{VDC} \mathrm{ie} .\mathrm{AC} \mathrm{adaptor} \mathrm{(not}$
supplied). RS232 comes in Black Carrying Pouch complete with 2 scope probes; DMM Ieads; Manual. For Only $£ 400$

OTS 40 Digital Storage
Dual trace $40 \mathrm{~Hz} 20 \mathrm{MS} / \mathrm{s}$ Storage. Cursors +0 on screen readout. Sweep Delay; interface etc. etc, Supplied unused in original box complete with 2 probes \& Manual.

Alt Mag TV Trig etc Un-used \& Boxed with 2 probes \&
 Signal Generator
 FARMELL AMM2000
Sophisticated Automatic Modulation Meter 10 Hz
Sophisticated Automatic Moduation Meter
Un-Used C1250

UnUsed ESDO
Dummy Load 'N' Type 50 Ohm 75Watts
Used Equipment - QUARANTEED. Manuals supplled.
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units £16. VAT to be added to Total of Goods and Carriage.

Monitors

screened video output module, which is bolted to one comer of the chassis. A flat cable between the main PCB and this module carries most of the connections to the CRT base panel, as in the AST LR14. The heater supply is at the fifth conductor from the rear of the monitor, working from the opposite end of the flat cable to the 'pin 1' red tracer. The feed from the chopper transformer is via $\mathrm{R} 63(0 \cdot 22 \Omega, 3 \mathrm{~W})$, which was OK, and D64 (30DF) which had pulses at its anode but nothing at its cathode. This diode read OK when out-of-circuit, but was unable to pass sufficient current to light the heaters. A replacement restored the display. I.F.

CTX 1565D

The top few millimetres of the picture were very slightly expanded and liney. When the frame output waveform was checked with a scope, a small pulse burst could be clearly seen on the ramp. The frame output IC, the flyback boost capacitor and diode were replaced, but the cause of the fault was eventually found to be C808 $(0 \cdot 1 \mu \mathrm{~F}$, 25 V), which is part of the usual $R C$ network in the frame scan circuit. It had become leaky. G.M.

Dell D1428HS

There was bad bowing and excessive width, neither of which could be controlled via the on-screen menu system. The cause of the fault was the 2SD1138 pincushion correction output transistor Q335 which was short-circuit. G.M.

Gateway 2000 CSI776LE

If one of these monitors is dead and clicking, check the 2 SC 4747 line output transistor Q109. You will probably find that it has gone shortcircuit because $\mathrm{Cl} 23(1 \mu \mathrm{~F}, 50 \mathrm{~V})$ in its base drive circuit has fallen to about half the correct value. It is also advisable to check the IRF740

FET chopper transistor Q1 16 and its $1 \Omega, 0.5 \mathrm{~W}$ feed resistor R177. In about fifty per cent of cases a shortcircuit line output transistor will destroy these components. G.M.

Dell D1526THS

As there was a virtual short across the HT line, this Sony-based monitor was dead with its power supply tripping. The cause was none of the usual suspects however. It was eventually tracked down to D204/5, two small-signal diodes on the video PCB! They are both unmarked, but two 1 N4148 diodes solved the problem. G.M.

IBM 8512-002

When one of these monitors is dead you will usually find that the 2SD1739 line output transistor Q202 has gone short-circuit because its base drive coupling capacitor C222 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$) has dried up.

For power but no EHT, check $\mathrm{C} 226(1 \mu \mathrm{~F}, 200 \mathrm{~V})$ in the line output stage.

For bad EW bowing check C225 $(22 \mu \mathrm{~F}, 50 \mathrm{~V})$, which is also in the line output stage. G.M.

EMC EM1428

When this monitor had been on for about half an hour line tearing would start. It would then get progressively worse, until the picture would collapse completely. On investigation I found that the 7805 5 V regulator IC502 was running very hot. It's not mounted on a heatsink, so the 400 mA it was supplying was obviously excessive. A few checks revealed that IC601 (74LS86) was drawing 300 mA ! A replacement cured the problem.

Note that this monitor is also badged MTC. G.M.

Samsung CQA4147L
Whenever one of these monitors comes in for repair, C609, C616
and C618 in the power supply should be replaced. They are often the cause of a dead monitor. D407 in the line timebase has also been known to fail.

A word of warning however. Before plunging in and replacing things, take a good look at the green hybrid HV2 (IC402). You may find that there are dark brown patches on it. If so you will need a new IC in addition to anything else that has gone bang.

We know of no source of these ICs other than possibly Samsung. A.S.

Idek MF5315

This monitor's line timebase was out of action because D946, type MTV32-400A, was short-circuit. As we were unable to find a source of an exact replacement we fitted a UF5408, which is available from Farnell. A.S.

Wyse WY50

If one of these terminals is dead, in the over-current mode, check the line output transistor. We've had a
couple of instances of this failure recently. It's a Darlington device with an integrated diode, and is therefore best checked by substitution.

Before powering up, check the non-polarised electrolytic capacitor C206. Its value varies from $3 \cdot 3 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$, and we've come across different working voltages and temperature ratings. In the two cases we've had recently it was open-circuit. A.S.

Mitac M1458

There was very slight raster wobble. C826 on the secondary side of the chopper power supply was eventually found to be faulty, though the original read OK when checked with a capacitance meter. R.P.

IBM 8512-002

There was no line sync - the line timebase in this monitor will still run when there are no line sync pulses from the computer. The cause of the fault was traced to a

74LS86 IC that's used as a shaper/buffer. R.P.

Viglen MT1428LE

There was a very dim display with
no contrast control operation. R475
($200 \mathrm{k} \Omega$) had risen in value to 3.3M Ω. R.P.

AOC 4NIR

If there's flickering in the high-resolution mode, check C422, C419 and C432. It's more liky that the cause will be dry-joints at P401 and Q708 however. R.P.

V-Tech EM1430K

This monitor was reported to be dead, but the fault was actually no vision. Although I didn't have a circuit diagram, the general arrangement was fairly obvious. The power supply was working: there was an HT output, but this didn't reach the collector of the line output transistor or pin 2 of the transformer. L508 in the feed was badly dry-jointed - as was much of the rest of the monitor. N.B.

The KDS KD1700V Monitor

This Korean monitor appears under various guises including the Orchestra Tuba 2 and the Princetown Graphics Ultra $17+$. Here's a recommended rework procedure:
(1) Remove the cover and base. Remove the top and metal cover. Remove the bottom metal chassis and the main board frame. Pull out the main board and disengage it from all the metal frames.
(2) Change the line driver transformer T401 from type KDS2036 to type KDS2036A*.
(3) Remove black-substrate HIC401, R444, Q413, R460 and BC401. R444 and Q413 are removed permanently.
(4) Change HIC402-PT1 to HIC402PT1A* if not already fitted.
(5) Install a $22 \Omega, 0.25 \mathrm{~W}$ resistor in position R460.
(6) Fit an $0.68 \Omega, 1 \mathrm{~W}$ resistor in position BC401 (previously removed).
(7) Change D814 from type 1N4937 to type D2L or UF5406.
(8) Change D420 from type UF4005 to type S2L60 or UF5406.
(9) Change D419 from type UF4007F to type RGP02-16E or NTE5067.
(10) Cut the track to the centre pin of Q416 (2SK2341) and add a $1 \Omega, 0.25 \mathrm{~W}$ fusible resistor across the cut.
(11) Add a $100 \mathrm{k} \Omega, 0.25 \mathrm{~W}$ resistor in parallel with R920, on the solder side of the board.
(12) Add the expansion board (daughter board)* to location HIC401, component side facing the LOPT.
(13) Connect a 27 cm jumper wire between HIC401 L1 and the junction of R420 and J464.
(14) Connect a 25 cm jumper wire between HIC401 L2 and the junction of Q416 and BC401.
(15) Connect a 16 cm jumper wire between the collector of Q413 and the junction of T403 and R416.
(16) Secure each jumper wire to the board with silicone gel. Do the same with the neck PCB. Ensure that the jumper wires don't foul any screws when the board is reinstalled. Reinstall the main board.
(17) Apply power and adjust VR901 for 26 kV . Do this with care. Check the A1
and focus control settings and adjust where necessary.
(18) Reassemble the monitor.

This procedure can also be used to upgrade a working monitor to prevent failure of Q414, Q415, Q416 and T401.

Possible Faults

No video: Check whether ZD402 is fitted. If not, add a $1 \mathrm{k} \Omega$ resistor in this position.

Video jitter: Add a ferrite bead at J402 (use the one removed from location BC401).

Q414 and Q416 short-circuit, D418 and D419 open-circuit: Cause is defective T401. Replace all these items.

Notes

One of the problems with these monitors is that when some SVGA cards change modes they put out a very fast rise-time spike which kills the MJM16212 line output transistor. The cure is to add a ferrite bead at the transistor's base connection.
In some of these monitors the line and field sync signals to IC107 from the 9-pin DIN video input socket at the back are reversed. The monitor will come on then tell you that the video signal is missing.

Acknowledgement

The above information was provided by Bob Yount of MI Technologies Inc.

[^2]
What a Life!

Curious faults and curious customers. Some TV sets and other items that have come Donald Bullock's way this month

IStisve done away with my Very Cruel Shocking Machine - it gave me more Vicious Shocks and dancing lessons that I've had from a lifetime in this trade.
The turning point came when Greeneyes screamed blue murder from the kitchen. I scrambled from my writing hut to help her, got tangled up in the wires yet again and finally tottered in to find her standing on a chair gibbering at a spider.

The dogs nevertheless bring me compensations. Whenever they annoy me and I get stroppy Greeneyes makes me one of her excellent bacon and vegetable pies to sweeten me. To make sure that they work, I reach for my giant wineglass.

I've had a couple of these pies recently. One was presented to me a week or so ago after I'd struggled up our front drive with Father Docherty's TV set and trod in a huge dog-bowl full of water and fallen down. Father Docherty heard me bawl a Very Naughty Word. He crossed himself and clicked his tongue seven times before he scampered off.

An ICC7 Chassis

His set, which was dead, was a Ferguson Model B59F (ICC7 chassis). I soon found that the mains fuse had blown, so I checked for shorts, fitted a replacement and gazed intently at the chassis as I held my breath and switched on. There was a huge and instant EHT flashover between the tube's anode cap and its earthed Aquadag coating.

The cause turned out to be one of the tuning capacitors in the line output stage, CL21. Its value is 11.5 nF , with a voltage rating of 1.6 kV . The value varies with different tubes and is critical. Fit only an identical replacement

We've had flashovers before with
this chassis. They sometimes cause IC damage, the TEA5101A RGB drive chip IT01 on the tube's base panel being particularly vulnerable. The usual symptom when this IC fails is loss of one colour.

The Akura Tourer CX10/Nikkai Baby 10

Father Docherty was so pleased with our efforts that he recommended us to a fellow cleric. So a few days later Father O'Sullivan rolled up with an Akura Tourer CX10. This ten inch set is the same as the Nikkai Baby 10, the Alba CTV10 and the Samsung C1210R.
"I'm told that you're a man who likes a good romp with his dogs, Mester Ballock" he said. "Well I likes dogs too. What would we do without them?!"

It was another dead set. After ensuring that the bridge rectifier was developing 16 V at the DC fuse F402, we bridged the relay switch RLY401 to pass the supply to the regulator IC402. The voltage fell to 11V, and IC402 could muster only 9 V at its output.

The line output transistor was running hot but tested all right. Our checks on the supply to the line output stage brought us to the heavyweight FR605 diode D410 which was dead short. It feeds pin 8 of the LOPT. A replacement cured the trouble.

It was the jovial Father O'Malley who came to collect the set. Greeneyes' dogs ran a friendly sortie around him. He spun around a bit then fell down.
"Oh, er - they've never done this to anyone before" I faltered, feeling my thigh and hip as I helped him up.
"Makes no difference t ' me" he said, "personally I hate dogs. Every one of them. Especially those!"

There was a bacon pie for tea.

The NEI 289IFTXN

Mrs Whiner asked me to bring in this monster set (another Nikkai chassis) from her car. She complained that the picture was slightly cramped and sometimes bounced But when I plugged the set in and switched it on, in front of her, it exploded. This made her squeak a bit and dab at her eyes. But I managed to raise a false laugh and said that I'd have it right in no time. She pulled herself together and left.

I was almost afraid to take the back off but, being a stiff upper-lip type, I managed it. The top of the TDA8380 chopper control chip IC100 had blown clean away.

This was back in England, and Steven was hovering behind me. I turned to him. "Feel it's time for a cup of tea" I said, preparing to slink off, "do you?"

While in the kitchen I felt peckish and cut myself a slice from a huge polony-type thing I found in the fridge. It tasted horrible and was gritty. I scanned the label and discovered that it was dog food. My accusations of attempted murder duly brought me another bacon pie.

When I returned to the workshop I found that Steven had replaced the chip. He switched the set on and it blew up again.
"Can't go on like this" he said, "we'll have to ring NEI - they've got a very helpful technical chap."

We were told that this does sometimes happen and that there's a power supply repair/modification kit. It costs about $£ 20$ - and did the trick.

Here's what you get: the
TDA8380 chip IC100; the
TCDT1 101 opto-coupler IC101; the SGSIF344 chopper transistor TR100; the 5.1V zener diode D104; R109 ($13.7 \mathrm{k} \Omega$); R102 (0.22Ω); C107 (10nF, 50V); C108 (33pF, 50V); C122 ($22 \mu \mathrm{~F}, 100 \mathrm{~V}$); also a $3 \cdot 3 \mu \mathrm{~F}$,

50 V capacitor to replace C 109 , which was originally $2 \cdot 2 \mu \mathrm{~F}$.

While Steven was at it he checked and replaced C122 ($220 \mu \mathrm{~F}$, 35 V) which had fallen in value to $200 \mu \mathrm{~F}$, also all the resistors - they are lightweight and look vulnerable.

Having got the power supply working, Steven pulled the scope over to check on the field bounce problem. This took him to the IF strip, where he discovered that there was sync pulse crushing. The cause of the trouble was $\mathrm{C} 9(10 \mu \mathrm{~F}, 50 \mathrm{~V})$. For the slightly reduced height he simply adjusted the vertical amplitude potentiometer.
"Mrs Whiner won't be too amused" he said as he settled down to write out the bill. "Incidentally I feel peckish after all that work. Anything in the fridge?"
"Try a hunk of the polony" I said, "it's tasty".

A Matsui 209T

Just then a chap ambled in carrying a 20in. Matsui set - Model 209T. He plonked it down on my hand. I tried my fingers: they still worked.
"By the way" he said, "the picture's faulty."
"Name?" I asked, drawing over a job card.
"Matsui" he replied. "By the way, the picture's faulty."

I wrote "Mr Prat" on the card. "What's wrong with the picture?' I asked.
"Ah, it's faulty" he said.
I waved him out and pulled the set on to the bench. The picture was cramped, with foldover. The field output stage uses a pair of transistors, and I saw at once that C303 $(3 \cdot 3 \mu \mathrm{~F}, 160)$ was bulging and ready to burst. The circuit diagram says $4.7 \mu \mathrm{~F}$, so I fitted a capacitor of this value, rated at 250 V . It cured the set's trouble.

Another Matsui

Our next caller, a tall, thin woman, also brought in a Matsui set. She strode in as though she owned the place. Although she was a bit dowdy, she had this posh voice.
"Its pictyah gows braight whaite - with laines across it" she pronounced as she placed the set on the counter. I like gentlefolk. So I pulled over a job card and smiled.
"Name?" I asked.
She gave me a toothpaste smile. "Hodder" she sang out.

Then she gave me a sideways look. " 'Odder - Ann 'Odder. Gollit?" she said.

I looked up sharply. "We'll try to get it done by Friday" I said, backing
away a bit.
She looked at me and grinned. "Okey-dokey matey" she said. "I ain't mad, mind."

As I moved the set over she prowled out. The set was a TVR141, which is a combined TV/VCR unit. Steven found that it had a fault in each section.

The screen would intermittently flash to peak white, with flyback lines across it. We traced the cause to a poorly crimped wire at connector CP803 on the tube base panel. It provides an HT feed.

Paul took over to deal with the VCR fault. When a cassette was inserted it went in an inch then the deck reverted to standby. After switching on again the cassette travelled in another inch. If you repeatedly switched the machine back on the cassette would eventually disappear inside and play normally. The cause of this curious behaviour was the mode switch, which was dirty. It's under the deck, and is quite easy to take out and clean.

The Ann Hodder that came to collect it was the back-street one until she'd paid and picked up the set.
"Good-bay and thenk you very much, gentlemen" she sang. "Aim veray grateful."

A Monitor

An Eco Scan 15 VGA monitor, Model AL5064PD, was sent to us by the local solicitors Dewey, Squeezem and Howe. It was made by Mitac International. We were told that the display had gradually become darker and darker over the past year. This was another one for Steven.
"Most monitors are set to work at full contrast to produce a sharp image at low brightness" he commented as he pulled it on to his bench. "Bright screens can cause headaches and migraine. This one's four years old. I reckon the tube might be flat."

But when he switched it on there was no blue in the display. The blue bias preset on the tube base had no effect. A further check showed that it had no connection to chassis. R714, a $51 \mathrm{k} \Omega, 0.25 \mathrm{~W}$ resistor, was opencircuit. Simple fortunately. A replacement put an end to the problem.

Ribby Ellis

Ribby Ellis likes a good laugh - at the expense of others. "Who ran into your car?" he asked, jerking his thumb in the direction of the door. "That'll cost a few quid to put right."

"Father Docherty heard me say a very naughty word."
I ran out, fearing the worst. But the car was perfectly all right. I returned to find Ribby creased up with laughter.
"OK Pratty" I said, "what brings us the pleasure of your company this time?"

He fetched a GoldStar RQ205 VCR from his car. It looked new. "Doesn't play right" he said. "Seems jerky and inconsistent, and switches to standby when it gets warm. Then it won't start again till it cools down."

There's a separate power panel on the left inside this machine. The KLA7806 6V regulator (IC101) on this panel provides the 6 V always supply, which is very critical. When it falls slightly the microcontroller chip shuts the machine down.

We soldered a wire to the 6 V always supply, boxed the machine up and ran it with a DC voltmeter connected between the wire and chassis to monitor the voltage. Sure enough as the machine warmed up the voltage fell and the tape transport faltered in sympathy. After a while the machine switched to standby. A replacement KIA7806 regulator cured the fault.

With manuals at today's prohibitive prices, we don't have the luxury of a comprehensive stock of them. Our suspicion is that in this model the capstan motor depends on the 6 V always supply. Anyway we keep a few of these regulators in stock, as we've had them play up before in these machines.

CamCorner
unless you have the software to set it again. These encoders usually consist of variable resistors, but LED/optical or Hall-effect devices may be used. The latest digital camcorders have a linear focus motor that moves along two shafts: its position is sensed by a Halleffect variable resistor.

- The zoom encoder sends information on the position of the zoom elements to the microcontroller chip, which then adjusts the focusing in accordance with a zoom/ focus tracking curve (see Fig. 1) that's held in the EEPROM.
There's a set-up facility for correct tracking in the manual mode. It has nothing to do with auto-focusing. The set-up involves obtaining correct focus at each end of the zoom/focus curve, wide and tele, plus some adjustment along the curve. The latter (centre tracking) can be adjusted either by moving the focus encoder then readjusting the values at the wide and tele ends, or by storing software data values - by testing the tracking against a reference curve. What all this means is that no two optical blocks are the same, nor is the data stored in the EEPROM.
To check the manual tracking the auto-focus must be turned off. Select an object at infinity, say a tree 20 m or more away, though across the room is OK for test purposes. Zoom in to tele, focus on the object manually, then zoom out. The chosen object should remain in focus throughout the zoom. Small focus corrections can sometimes be

FOCUS Fig. 1: The basic zoom/focus tracking curve.		
	ide	ZOOM

seen as the microcontroller chip adjusts the focusing to correspond with the zoom/focus curve stored in the EEPROM. The curve is much steeper at the tele end, so the errors will be greater here - an error will show up if there is one. At the wide-angle end the back focus may in particular be incorrect, the whole scene going out of focus.

If the auto-focus is on, it will try to correct for tracking errors. If these are present it will work much harder than it should do. You might think that the optical block is OK, as focusing is maintained. But this may not be so. In such a case the zoom/focus tracking errors will cause auto-focus delays - with some scenes the system will struggle and take longer than normal to settle. If the back focus is too far out, the correction may never be right at the extreme wide-angle end of the curve.

As zoom ranges increase (we are not talking about digital zoom of course), alignment becomes more critical, particularly the x10 and x16 ranges. Auto-focus won't cover up for swapped EEPROMs.

Some camcorders are difficult and fiddly to set up. With other models I fit a collimator with an infinity Siemens star, hit the computer's start button and have a cup of coffee while the software sets up the optical block and stores the values in the EEPROM. S.B.

Panasonic NVM7B

This machine would play back only in black-and-white: the E-E camera picture was OK. The cause of the fault was traced to the chroma amplifier transistor Q8006. A replacement and service restored the unit to normal working order. D.C.W.

Sony CCDF450E

One of these popular camcorders arrived with a report that said "poor playback colour; intermittent, weak E-E colour". The cause of the problem was four faulty capacitors, C310, C311 and C263 on board VA46P and C411 on board VS67. Unusually, there were no other faulty capacitors. D.C.W.

Answer to Test Case 430
 - see page 855 -

It wasn't lightning that had killed the JVC TV Model C21ET1EK - the local storm was just a little diversion thrown in by Zeus to confuse the issue. As if our workshop technicians weren't confused enough already by the increasingly difficult problems that come our way and the very taxing matter of trying to reach correct diagnoses.
In fact the cause of the blow-ups and breakdowns with the JVC set arose from problems within the set, specifically failure of the electrolytic capacitors C909 and C911. The former is the reservoir capacitor for the feedback supply on the primary side of the chopper circuit, while the latter is the chopper transistor's drive coupling capacitor. To make our difficulties more embarrassing, it turns out that this is a well-known fault. It is to us as well now. It shows how useful it is to check with the setmaker's technical department, look through technical bulletins - or, of course, pay proper attention to the contents of Television! When these capacitors are defective the power supply regulation is impaired: the output voltages can rise dramatically, stressing the power supply, the line output stage and other parts of the circuitry.
For this specific problem there are parts kits to improve the reliability of the power supply - different kits for the 21 and 14 in . versions of the chassis. They are available from JVC and from component distributors. In addition to the troublesome electrolytics, the kits contain several other components - and a sticker to put on the back of the set once you've fitted them all. It's as well to replace a couple of zener diodes as well, as Cliff Martin pointed out last month. As I write this the sky is darkening over Crowdown . . .

NEXT MONTH IN TELEVISION

Workshop Supplement

When did you last review your workshop needs - service equipment, tools, servicing accessories and aids? Needs keep changing, and there's always something that will make life easier. Next month's guide surveys the latest servicing products and lists suppliers.

Digital TV Servicing

Early days perhaps, but it's never too soon to get to know how to tackle new technology. This introductory article by K.F. Ibrahim outlines the ways of testing the various sections of a digital TV receiver/decoder. Essential reading!

Review: The JBC Advanced Soldering Station

The latest consumer electronics products, especially digital, use high-density PCBs. This means problems with soldering - unless you have the right equipment. The JBC Advanced Soldering Station is a third-generation design that uses a new method of soldering iron tip temperature control, enabling a very small tip to deliver plenty of heat. Steve Beeching explains what's involved and how to use the system.

Portable Appliance Testing

Here's a useful service you can offer local businesses that have to comply with the Electricity at Work Regulations, 1989 and receive periodic Health and Safety Executive visits. According to the regulations, all appliances that are connected to the mains supply via a flexible lead and plug have to be regularly tested by a competent person. Russ Phillips describes what's involved and how to go about it.

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE

INDEX DISC

Version 6 of the computerised index to TELEVISION magazine covers Volumes 38 to 47 (1988-1997). It has thousands of references to TV/NCR fault reports and articles, with synopses. A TV/NCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible PC with 640 K RAM and a hard disc. Price is $£ 35$ (3.5"HD, alternatively $3.5^{\prime \prime}$ DD). Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc.

FAULT REPORT DISCS

Each disc contains the full text for television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc, then access it via the Index disc. Fault Report discs are now available for:

Volume 38 (November 1987 - October 1988);
Volume 39 (November 1988 - October 1989);
Volume 40 (November 1989 - October 1990);
Volume 41 (November 1990 - October 1991);
Volume 42 (November 1991 - October 1992);
Volume 43 (November 1992 - October 1993);
Volume 44 (November 1993 - October 1994);
Volume 45 (November 1994 - October 1995);
Volume 46 (November 1995 - October 1996);
Volume 47 (November 1996 - October 1997).
Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime} \mathrm{DD}$ if required).

NEW - FAULT FINDING GUIDE DISC

This disc is packed with the text of the TELEVISION Test Cases, What a Life!, Service Briefs and other vital fault finding information. It is accessed via the Index disc. Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively 3.5 "DD if required).

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 47 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

SoftCopy Limited, 1 Vineries Close, Cheltenham, GL53 ONU, UK.
Telephone 01242241455.
e-mail: sales@softcopy.co.uk
Web site: http://www.softcopy.co.uk

[^3]
…
Save YOUR money and call us now on 01179860900 for a 30-day Trial or visit us on the Internet@ http://www.euras.com

Largest selection of

MAJOR MANUFACTURERS NEW "B"

GRADE PRODUCTS
T.V. VIDEO AUDIO MICROWAVE OVENS

Contact Fred Bean

BSMART (CRAWLEY) LTD. 10/11 LLOYDS COURT, MANOR ROYAL, CRAWLEY, SUSSEX RH10 2QX Tel (01293) 618000 Fax (01293) 400133

DARTEL

 ELECTRONICS8 Heather Park Drive, Alperton Wembley, Middlesex HAO 1SL
Tel: 0181-795-1735 Fax: 0181-795-1736

High quality graded stock from

 manufacturersCamcorders, VCR's, Televisions, Hi-Fi's, Car Stereos, Microwaves etc All popular brands boxed with warranty

Tel/Fax for details
Visit by appointment

B GRADE

14in RC Text from. $\mathfrak{£ 5 0}$
20in RC Text from. $\mathfrak{£} 70$
$21 i n$ RC Text Nicam from £85
28in RC Text Nicam from. £110
VCR LP/SP from. £55
VCR V/PLUS from £65
AUDIO from. £15

| Access | |
| :---: | :---: | :---: |
| \sim | CONTACT SIMON OR DAVE |

WHOLESALE DISTRRBUTION LTD

ATWA PRODUCTS

NSX-VHS ...PRO-LOGIC MINI HIFI REMOTE NSXV70.MINI HIFI 3 CD SURROUND SOUND Z2300PRO-LOGIC MIDI HIFI REMOTE L/CX100CD MICRO SYSTEM NSXV750MIINI HIFI CD PLAYER NSX640..MINI HIFI 3CD SURROUND SOUND

HSTA153	HSTA223	HSTA253
HSTA353	HSTH423	HSTX356
HSTX646		
HSGS242	HSGS252	HSGS352
HSPX251	HSPX347	HSPX357
HSPX447	HSPX547	HSPX74

PHONE FOR BEST PRICE ON THESE 'A' GRADED STOCK PLUS MANY MORE MODELS AVAILABLE

EX-RENTAL TVS \& VIDEOS ALWAYS AVAILABLE PHONE NOW FOR BEST PRICES

PHILIPS, PANASONIC, SHARP, SANYO, FINLANDIA ETC...

AMSTRAD SRX 100 AT ONLY $£ 2.00$ A PIECE AMSTRAD SRX 200 AT ONLY $£ 10.00$ A PIECE BT 250 AT ONLY $£ 7.00$ A PIECE (QUANTITIES OF 10 + ONLY) PLUS VIDEO CRYPT DECODERS NOW AVAILABLE

TV \& VIDEO WHOLESALERS

CURRENT MODEL

TOP BRAND GRADED STOCK

25" 32 " \& 37" SCREEN SIZES AVAILABLE Sony Panasonic Toshiba Philips JVC Mitsubishi MINT 'A' GRADE CONDITION ORIGINAL PACKAGING Complete with Stands and where appropriate Pro-Logic Speakers

$$
\begin{aligned}
& \text { WHITE GOODS } \\
& \text { Washing Machines } \\
& \text { Tumble Dryers } \\
& \text { Small Fridges } \\
& \text { Midi Fridge/Freezers } \\
& \text { Large Fridge/Freezers } \\
& \text { Giant Fridge/Freezers } \\
& \text { Electric Cookers from } \\
& \pm 65 \\
& \text { Gas Cookers from }
\end{aligned}
$$

Ex-Rental Bargains WORKING STOCK

TX 9/10 TELETEXT £18 TX100 51cm TEXT £30 TX100 59cm TEXT £33 TOP LOADER $£ 15$

3V35 FRONT LOADER $£ 20$ 8947/3V55 £30

STOCK CLEARANCE OF 1,000 GRADED CAMCORDERS PRICES START FROM $\mathbf{f} 5(50 R$ BRANDED MODELS

Brands include: SONY, SHARP, CANON, PANASONIC, JVC \& FERGUSON
GRADED HOME COMPUTER MULTIMEDIA SYSTEMS 486 100MHZ £150 PENTIUM P75 £195

All working with Keyboard Monitor \& Mouse All prices are based on a quantity of 5 units and subject to VAT

Head Office
BIRMINGHAM
208 Bromford Lane
Erdington
Birmingham B24 8DL
0121-327-3273
Fax: 0121-322-2011

CLEVEDON
Unit 20 5C Business Centre Concorde Drive
Clevedon
North Somerset BS21 6AU
01275-341 789

LONDON
Unit 2
The Royal London Estate 29/35 North Acton Road London NW10 6PE 0181-961-5005

whirscrove LTD

28-29 RIVER STREET, DIGEETH, BIRMINGHAM B5 5SA TEL: 0121-772-2733 FAX: 0121-766-6100
NO_{5} सalHSO PANASONIC

REPLACEMENTREMOTE
GONTROLS
HMOMEAM
|linn

\section*{C1541Z}
 CT3482 CX346ZS CX 346 ZS

 OANVS
 VULNES
 OANGS

SENTRA

FERGUSON - SANYO - TATUNG - DECCA - AMSTRAD - BEKO - VARIOUS JAPANESE FULL RANGE - CURRENT MODELS - CONTINUOUS SUPPLY - (Prices subject to vat + Availability)

3BEOQ nT|
 YOUR PREMIER SUPPLIER FOR OVER 30 YEARS NEW STOCKS ARRIVING DAILY

100'S OF EX-RENTAL TV'S NOW IN STOCK - ALL TESTED, SEEN WORKING

Large stocks available A and B grade: makes include: Kenwood, Aiwa, JVC, Sanyo, Akai, Pioneer, Panasonic, Goodmans, Alba etc.
Alba/Bush Ghetto Blasters, CD, Radio, Tape boxed $£ 25$
Alba/Bush CD Micro Systems boxed $£ 35$ c Alba/Bush CD Midi
Systems boxed $£ 40$
Systems boxed £40
Most goods under half price.
HI FI HI FI HI FI 100s OF UNITS IN STOCK!!

VIDEOS/TV's: A and B Grade
Bush/Alba long play boxed $£ 60 \bullet$ Roadstar long play boxed $£ 50$
Akai, Sanyo, JVC, Toshiba, Aiwa less than half price 21" Remote Control Crown/Bush, Alba boxed $£ 60$
EX-RENTAL TV/VIDEO ALL TESTED, SEEN WORKING
Philips complete with remote $£ 45$
Salora all models with remote £65, Grundig from £65 many other makes/models in stock
Cheaper Video/front loading from $£ 25$.
ALL MAKES, MODELS \& SIZES OFTV IN STOCK Brown cabinet working TVs from $£ 12$ - Videos off the pile from $£ 10$

We stock camcorders, car stereo, portable radio/CD
Large quantities jug kettles, coffee makers, mixers, irons etc.
Basement Clearance $\mathbf{3 0 0}$ Ex Rent Colour TVs $£ 1,500$ The Lot
TERMS - CASH ONLY * DISCOUNT ON BULK PURCHASES * Walker House, 16 Bottomley Street Manchester Road, Bradford BD5 7LJ Tel: (01274) 308186 Fax: (01274) 722229

MAJOR MANUFACTURERS NEW 'B' GRADE PRODUCTS READY FOR SALE
T.V. - VIDEO - AUDIO MICROWAVE OVENS

APPROVED DEALERSHIP (TRADE ONLY)

CONTACT PAUL OR MICHAEL (01375) 640800
(ONLY 10 MINS FROM LAKESIDE/M25)

CLEARVISION
30a CORRINGHAM ROAD
STANFORD LE HOPE ESSEX SS17 0AH

STILL BUYING EX-RENTAL? STILL LIVING IN THE PAST? SWITGH TO B-GRADE NOW:
Now in Stock Brand New 14" Twinspeed Televideos with 12 months in-home guarantee

5159

B-GRADE PRICES AT ALL TIME LOW	1+ PRICE	10+ PRICE
14" REMOTE	$£ 65$	$£ 60$
14" TEXT	$£ 75$	$£ 70$
20" REMOTE	$£ 80$	$£ 75$
20" TEXT	$£ 90$	$£ 85$
21" REMOTE	$£ 90$	$£ 85$
21" TEXT	$£ 100$	$£ 95$
21" NICAM	$£ 110$	$£ 105$
25" NICAM	$£ 160$	$£ 150$
28" NICAM	$£ 180$	$£ 170$
33" NICAM	$£ 390$	$£ 370$
TWINSPEED VHS	$£ 65$	$£ 60$
CD MICRO, MIDIS + MINIS	$£ 35$	$£ 30$

NOW IN STOCK SANYO B-GRADE AT PRICES SECOND TO NONE Examples:

25" FASTEXT $£ 179$ - 25" NICAM $\mathbf{\Sigma 2 2 9}$ NICAM VIDEOS $£ 119$ - 28" PROLOGIC $£ 300$ GOGCLEBOX
175 Town Street, Armley, Leeds
5 mins from M1/M62
01132310359
ASK FOR ROBERT

14" Narrow Neck Portable Tube ALL IN PRICE

ie: Includes carriage \& VAT

$$
\begin{aligned}
& \text { NEW TUBES } \\
& \text { AT REGUN PRICES }
\end{aligned}
$$

41 EAM $\mathbf{5 0}$
51 JAR $\mathbf{5 4}$
51 JXH £89
510UFB22.................. £39
59EAK71XII.................£99
59ECF10X01...............£84
66ECF10X01...............£89
66ECF20X05 $£ 99$
EXPRESS TV
The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 01889-577600 Fax: 01889-575600

ROCDAN LIMITED

UNIT 21, 6/F, GOLDFIELD IND. CENTER, 1 SUI WO ROAD, FOTAN,
NEW TERRITORIES, HONG KONG FAX: (852) 26027743

THE FOLLOWING ARE READY FOR EXPORT IN RELIABLE QUALITY \& COMPETITIVE PRICE:
\square A GRADE TV IN FULLY REMOTE.
\square B GRADE TV IN FULLY REMOTE.
\square TV W/QUALITY USED TUBE (IMPORTED FROM JAPAN) IN FULLY REMOTE.

SPECIAL OFFER FOR USED ITEMS
\checkmark TVs FROM SIZE RANGE 14"-37"
SPECIALISTS IN CONVERSIONS TO PAL SYSTEM
\checkmark REFRIGERATOR 2-5 DOORS
\checkmark AIR CONDITION SPLIT TYPE
\checkmark ALL TYPES OF AUDIO APPLIANCE
FOR FURTHER ENQUIRIES PLEASE CONTACT US BY FAX OR E-MAIL: tobyu@netvigator.com

CHEAPEST HEADS IN THE UK

Make ld	Model No	Price	Hitachi	VT540	£17.99	Panasonic	NVG9	£7.99
			Hitachi	VT570	¢24.99	Panasonic	NVH70	$\underline{23.99}$
Akai	VS422	¢11.00	Hitachi	VTF70	£24.99	Panasonic	NVH77	£25.99
Akal	VS425	£11.00	Hitachi	VTM598	£17.99	Panasonic	NVHD100	$\underline{22.99}$
Akai	VSF30	£15.99	Hitachi	VTM622	£12.99	Panasonic	NVJ30	£9.99
Akai	VSF420	£15.99	Hitachi	VTM630	£13.99	Panasonic	NVJ35	¢13.00
Akai	VSF430	E15.99	Hitachi	VTM640	£17.99	Panasonic	NVJ47	£11.99
Akai	VSF455	E15.99	Hitachi	VTM722	£12.99	Panasonic	NVL25	£11.00
Akai	VSG20	$\underline{12.00}$	Hitach	VTM822	£12.99	Panasonic	NVSD40	£15.00
Akai	VSG204	£12.00	Hitach	VTM930	£17.99	Sanyo	VHR150	£17.99
Akai	VSG205	¢12.00	JVC	HR2200	E5.49	Sanyo	VHR2500	£14.99
Akai	VSG206	E12.00	JVC	HRD110	£5.49	Sanyo	VHR3100	£10.99
Akai	VSG20EK	£12.00	JVC	HRD140	£8.99	Sanyo	VHR4100	$\underline{13.00}$
Akai	VSG21	£12.00	JVC	HRD150	¢8.99	Sanyo	VHR474	£17.99
Akai	VSG211	£12.00	JVC	HRD170E	¢8.99	Sanyo	VHR7440	¢17.99
Akai	VSG212	¢12.00	JVC	HRD180	£15.99	Sanyo	VHR8100	¢13.00
Akai	VSG215	¢12.00	JVC	HRD230	£15.99	Sanyo	VHRD4400	c13.00
Akai	VSG217	£12.00	JVC	HRD330	£15.99	Sanyo	VHRD6550	£17.99
Akai	VSG225	£12.00	JVC	HRD370	£17.99	Sharp	VC381	88.49
Akai	VSG24	$\underline{12.00}$	JVC	HRD401	£15.99	Sharp	VC477	88.49
Aka	VSG25	£12.00	JVC	HRD440	£15.99	Sharp	VC581	$\underline{88.49}$
Akal	VSX400	£11.00	JVC	HRD530	£22.99	Sharp	VC699	£8.49
Ferguson	3V29	£5.49	JVC	HRD620	£14.99	Sharp	VCA101	£8.49
Ferguson	3V30	¢5.49	Jvc	HRD660	£15.99	Sharp	vCA501S	£17.99
Ferguson	3V32	$\underline{818.00}$	JVC	HRD750EK	£17.99	Sony	SLV125	£13.00
Ferguson	3V43	£17.99	JVC	HRJ200	£32.00	Sony	SLV225	£13.00
Ferguson	3V46	¢8.99	JVC	HRJ205	£32.00	Sony	SLV282	£20.00
Ferguson	FV10B	¢8.99	Mitsubishi	HS300	¢9.99	Sony	SLV416	E19.99
Ferguson	FV12L	£15.99	Mitsubishi	HS347	¢9.99	Sony	SLV801	£24.99
Ferguson	FV14T	E22.99	Mitsubishi	HSB20	¢14.99	Sony	SLVX10	¢13.00
Ferguson	FV31R	$\underline{11.49}$	Mitsubishi	HSB31	£16.49	Sony	SLVx 30	£20.00
Ferguson	FV44L	£15.99	Mitsubishi	HSE20	£14.99	Sony	SLVX50	\$19.99
Goldstar	GHV1221	¢8.99	Mitsubishl	HSE31	£14.99	Toshiba	DV90	£10.00
Goldstar	GHV1244P	£8.99	Mitsubishi	HSM35	£16.49	Toshiba	V109B	\$12.00
Goldstar	GHV1392P	£12.99	Panasonic	NV370	¢6.74	Tosniba	V110B	¢11.49
Goldstar	GHV1393P	£12.99	Panasonic	NV430	£7.99	Tosniba	V200G	£10.00
Goldstar	GSE1291PQ	£12.99	Panasonic	NV730	£11.49	Toshiba	V210	£11.49
Hitachi	VT100	£10.99	Panasonic	NV850	£19.99	Toshiba	V 300	£20.00
Hitachi	VT11E	¢8.49	Panasonic	NV870	£23.99	Toshiba	V31	\$10.99
Hitachi	VT130	£13.99	Panasonic	NVF55	£27.99	Toshiba	V500	£20.00
Hitachi	VT17E	£15.99	Panasonic	NVFS90	¢35.99	Tostiba	V55	¢5.49
Hitachi	VT33	£8.49	Panasonic	NVG10	ع10.99	Toshiba	V61	£11.00
Hitachi	VT330	$\varepsilon 8.49$	Panasonic	NVG17	¢6.24	Toshiba	V71	£10.00
Hilachi	VT425	£13.99	Panasonic	NVG20	E11.99	Toshiba	V82	£10.00
Hilachi	VT522	£12.99	Panasonic	NVG21	E11.99	Toshiba	v93B	£10.00
Hitachi	VT535	£13.99	Panasonic	NVG33	£11.00			
TOO MANY TO LIST, PLEASE RING FOR A FREE CATALOGUE. ALL HEADS ARE GUARANTEED FOR 12 MONTHS. ALL ORDERS RECEIVED BEFORE 5PM ARE DESPATCHED THE SAME DAY.								
OPEN MON-FRI 9AM-6PM SAT 9AM-1PM								
FREE P\&P - PLEASE ADD VAT AT 17.5\%. WE ACCEPT VISA. MASTERCARD, SWITCH AND.CHEQUES. ACCOUNTS WELCOME.								
N.A.V SPARES Tel: 01274772249 Fax: 01274772247 WEST END BUSINESS CENTRE, 237 THORNTON ROAD, BRADFORD, BD1 2JS								
Telf 01274772249 Fax: 01274772247 WEST END BUSINESS CENTRE, 237 THORNTON ROAD, BRADFORD, BD1 2JS								

TVs from £3.00• Satellites from £8.00 Videos from £15.00 Prices Ex-VAT
Free Delivery Service to most areas of the UK
U.K.s Largest Export Wholesaler

Specialists in conversions to most countries systems

UNIT 75, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Wores North

- Peak detection
- Built-in loudspeaker for AM and FM reception
- Frequency Indication with 4 digiț LCD Display

TC-90

Portable equipment, with many applications, designed to carry out any type of Terrestrial TV FM Radio, CATV and Satellite TV. installations.

- Frequency swe
- Full Band Frequency Sweep \qquad NC Power Supply
- Measurement of terrestrial TV from 20 u V to

Switchable 14V or 18V LNC Power Supply

TC-402D
Due to its weight and size, the TC-402D is the ideal instrument for the installation of FM and Terrestrial TV antenna, as well as CATV systems.

- Multi-turn potentiometer to enable tuning Weight including batteries: 1.9 Kg

TC-80
The TC-80 has been designed for the reception of TV Satellite systems, the installation and testing of domestic and SMATV systems.

- Rechargeable $12 \mathrm{~V} / 2.6$ Ah Battery Weight including batteries: 3.3 Kg .

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

PHONE 0181-652 8339
FAX 0181-652 8931
The prepaid rate for semi display setting is $£ 14.50$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $I 7 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, I Ith Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE: 0181-948 3702 FAX: 0181-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY - GEC • GRUNDIG • GRANADA HITACHI • HINARI • INDESIT • ITT • KIMARA • NIKKAI MATSUI - MURPHY - OSAKI - NORDMENDE - LOEWE-OPTA PANASONIC • PYE • PHILIPS • SANYO - SAISHO - SHARP . SONY • SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE •

FULL RANGE OF KONIG: VIDEO HEADS, BELTT KITS, IDLERS, PINCH ROL工ERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD • 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Approx. 1 mile from Kew Bridge.
Mon-Fri 9 am to 12.30 pm \&
$1.30-4.30 \mathrm{pm}$

TEST EQUIPMENT

BMR 95 unique Regenerating-Computer and Analyser for CTRs, regenerates even better, also if all other machines do not succeed. With CRPU ${ }^{1} 1$ BMR 95 removes shorts F-C, C-G1,G1 G2. FLASH-EX against remaining gasi 165 adapters available! Book with 12.500 CTR-types Pays itself within 4 weeksl Please, ask for more information.

SEME Tel: 01664565392 (UK) Donberg Tel: 07548275 (IRL)
Müter Fax: 0049236857017

LINEAGE

CAR RADIO DE-CODING: Are you decodes costing you $£ 5.00$ or $£ 10.00$ extra? Do you have to phone or fax every time you decode a set? Save time and money by converting index numbers yourself. Phone 01325382325 for details.
PRIVATE RETAILER has excellent par exchange colour televisions and videos to clear. Tel 01494814317.

REPAIRS

accént

T E C H N I C
CAMCORDER REPAIRS
Collection and delivery anywhere in the UK.

All makes, fast service.
Phone free for details.
Fax: 01905796385 (0800) 281009

FOR SALE

TV \& VIDEO	
WAREHOUSE	
All working stock	
R/C TVs	$£ 20.00$
Teletext TVs	$£ 25.00$
Videos R/C	$£ 35.00$
Fastext R/C from	$£ 40.00$
Minimum quantity 10s	
Delivery arranged	
Manchester	
$\mathbf{0 1 6 1 - 7 3 6} 6333$	

RETIREMENT SALE

Hameg HM604, 60 M s/c dual trace oscilloscope £350
100s circuit diagrams varied: 100 s assorted comp including video idlers belts, etc. Dozens of assorted remote controls, most copies of 'Television' from 1989 to date (minus adverts) in files including 1996 fault fix guide All for only $£ 400$
Tel: 01702523858 (Southend) After 6.30 pm

To Advertise in Television Classified Telephone Pat Bunce on 0181-652 8339 or Fax on 0181-652 8931

SERVICE DATA

SERVICE MANUALS AND CIRCUIT DIAGRAMS

Thousands of different models available For most U.K. European, Far East \& USA makes

	Service Manual	Circuits
B/W TV	$£ 6.00$	$£ 3.00$
CTV/VCP	$£ 10.00$	$£ 5.00$
VCR	$£ 14.00$	$£ 7.00$

Audio/Satellite/Microwave also available - P.O.A. Cheque/PO with order only please.
Add $£ 2.00 \mathrm{P} / \mathrm{P}$ etc. to order total. Do not add any VAT
from $£ 5.00$ from $£ 20.00$ from $£ 20.00$ from $£ 25.00$

Minimum quantity - 10 units
Bournemouth
Wholesalers 01202470443

Repair Databases \& Indexes

SERVICE INFORMATION SPECIALISTS New: Kwik Tips on Disk Version 1.1
After many requests for a FAULTS \& REMEDIES database E.C.S has now released Kwik Tips On disk V1.1, Compiled from over 20,000 entries $\&$ covering 1,435 Chassis $\&$ Models, This concisely Edited TV \& Video repair database will prove itself a valuable resource for workshops large or small (and pay for itself with just 1 repair). Kwik Tips V1. I only $£ 27.95$

New: Edition 20 Fault Indexes in book format.

Just released - Edition 20 of the Television Magazine Index Covers over 14,000 Television, Video, Satellite, Camcorder \& Monitor faults, Large easy to read À4 format, The newest addition to a highly acclaimed series. In daily use in workshops across the UK (And beyond).
ISBN 1898394245 Edition 20: Complete set $\mathbf{£ 1 4 . 7 5}$

New: Fault indexes on disk - Version 1.6

Our largest ever fault index database on disk, Covering a massive 19,350 !! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 18 years of Television Magazine.
Version 1.6: Indexes on Disk (price held) 17.50 Low cost updates are available for all fault indexes.
Latest release - Equivalents guides - 2nd Edition.
Now available, Over 6,300 Equivalent entries covers TVs, Video Camcorder \& Satellites plus TV model-chassis guide. This single comprehensive book contains all FIVE guides. Edition 2: Equivalents guides Only $£ 5.95$ All programs require a PC or compatible \& are supplied with a user manual

E.C.S.
Tecfinical Publisfing (Est 1985)
316, Upton Road, Noctorum, Wirral, Merseyside. LA3 9RW.
Tel / Fax 01515220053
Please odd $£ 1.75$ P \& P to total (Europe $£ 2.75$, r.0.w please enquire).

Service Manuals

Available for most equipment. From Valve Wireless to Video Recorders and everything else in between.
Televisions, Computer Monitor, Test Equipment, Satellite, all Audio, Amateur Radio etc etc. If you need a Service Manual give us a call. Originals or Photostats as available. Our entire index of Manuals is now being put on our web site for instant access.

Alternatively complete the coupon below for our Floppy Disc catalogue of Manuals and Technical Books available.

MAURITRON TECHNICAL SERVICES
8 Cherry Tree Road, Chinnor, Oxon OX9 4QY Tel: 01844-351694. Fax: 01844-352554. Email:- enquiries@mauritron.co.uk
Web site at:- http://www.mauritron.co.uk/mauritron/

> Please forward your Catalogue of Technical Books and Service Manuals Index on PC Disc for which I enclose 4×1 st class stamps.
Name
Address

Postcode
Telephone

Fryerns

Service FES Circuit Information FES Diagrams TVs, VCRs SATELLITE AUDIO \& $\mathrm{HI}-\mathrm{FI}$
Most models/makes old \& new covered
Also fault guidance service available Prices are from $£ 3.75+£ 2.50 \mathrm{P} / \mathrm{P}$
i.e. 1 item - total $£ 6.25$ inc

2 items - total $£ 10.00$ inc
3 items - total $£ 13.75$ inc
4 items - total $£ 17.50$ inc
Payment by credit card or postal order for next day delivery. Cheques to clear.
Tel/Fax 01206211570
Answerphone outside office hours
P.O. Box 5830 Basildon, Essex SS13 3RX

THE 'HOOKINGS' INDEX

More than 14,000 entries including remedies where appropriate, from 'TELEVISION' magazine
Bang up to date: Jan '87 to Oct '98 Only $£ 10.00$ inclusive for the set of three books covering TV, VCR, SAT, CD etc
Too good to be true?
Ring 01766522444 for free sample

SERVICE INFORMATION
CIRCUITS and SERVICE MANUALS from 1930s - 1990s
Radios, amps, radiograms, tuners, CDs, TVs, videos, cassette radios, ICE etc.
LARGE OUANTITY USED TV and VIDEO PANELS
BACK COPIES PW and TV MAG.
DAVE WILLIAMS
16 Church Street, Owston Ferry,
Tel and Fax: 01427728046
Mail order only. No callers

COURSES

Digital

Television
2 day courses for service engineers
Call 01812085171 for further details College of North West London Willesden Centre
Dudden Hill Lane
London NW10 2XD

WANTED

BILLINGTON ${ }^{\text {Billingsshurst, Wes }}$

 EIPORT LIATER Sussex RH14 9EZVALVES WANTED FOR CASH
(KT88, PX4, PX25, DA100,
EL34, EL37. CV4004, ECC83)
Valves must be Mullard/GEC/West European to achieve top prices
Ask for our free Wanted List.
WE SUPPLY VALVES, C.R.T., VIDICONS ETC
Visitors, please phone for an appointment we're a very busy export warehouse.

Tel: (01403) 784961
Fax: (01403) 783519
Email: billingtonexportldd@btinternet.com

1 MITSUBISHI ELECTRIC internet services
 Helping
 your business get connected 0800226600

THE FACE OF BUSINESS INTERNEI
http://www. menet.net

To Advertise in Television Classified Telephone Pat Bunce on 0181-652 8339 or Fax on 0181-652 8931

RECRUIIMENT

COLOURVISION of Ilford
Colourvision is a nationally approved service company operating in the domestic market
We service hi-fi, camcorders, televisions, videos, microwaves

Due to recent expansion Colourvision now has a number
of vacancies for experienced

BENCH and FIELD

 ENGINEERSThese positions are well paid and salary and benefits dependent on age and experience
The Customer Services Manager
COLOURVISION
123-125 Ley Street
Ilford, Essex IG1 4BH
Fax 01815147318

Bedfordshire Area BENCH ENGINEER required

Able to repair electronic equipment to component level
Good salary and modern working conditions
Only experienced/adaptable engineers need apply in writing only to:

Mr M Powdrill B.E.S.

6 Titan Court
Laporte Way
Luton, Beds LU4 8EF

METRO

 AUDIO VISUAL ENGINEER COWFOLDMetro South, based just outside Horsham, require someone to take on a responsible and challenging role as part of a small team, providing a varied range of Service and Engineering support.
This position involves maintenance visits on CCTV systems throughout the UK, as well as the service and repair of domestic and industrial equipment.

We are looking for someone with:

- Commercial or domestic equipment servicing experience
- Training to HNC level or equivalent in Electronics
- Confidence and a professional approach
- A flexibility with regard to working hours
- A full clean driving licence

Metro, part of WPP Group plc, is able to offer good career development opportunities to the right candidate, and the salary package will be appropriate to the level of experience. Please apply in writing, enclosing a copy of your CV and an indication of your salary expectations to:
Jane Callow - Corporate Services,
DONT SIGN ON THE DOTTED LINE UNTIL YOU TALK TO TEMPO

Bench Engineers Required

Opportunities are now available at our Tottenham Hale Service Division for a :

Brown Goods Bench Engineer \& a PC Bench Engineer

Due to continued expansion we are looking for experienced engineers to service our wide range of leading brand products. You must be organised and conscientious, with good communication skills. In return we offer a highly competitive package comprising of salary and performance related bonus.

Tempo is already one of the top 5 electrical retailers in the country with huge expansion plans. Secure your future with a company that's going places by sending your CV to:
Chris Cartey, Tempo Ltd, Unit 3, Lockwood Chris Cartey, Tempo Ltd, Unit 3, Lockwood
Industrial Estate, Millmead Road, Tottenham, London NI7 9QP or telephone either Chris or Mahendra Patel on 0181 3651906 for further information.

DON'T SIGN ON THE DOTED UNE LNTL YOU TALK TO TEMPO London, SE1 0DB.
(Fax No: 0171261 0685)
METRO, 53 Great Suffolk Street,

[^0]: 8 way Preprogrammed Universal Remote Control
 A single remote control to operate Televisions, Videos and Satelli
 Plus Auxiliary Options!

 - Replaces up to 8 remotes with one. Simple 4 digit setup routine - Clear (large key) layout - Code Search Facility
 - Stylish and easy to operate. Replace broken or lost remotes - Original remote not required

 Order Code: 8 WAY

[^1]: 2 way Preprogrammed Universal Remote

 - Replaces up to 2 remotes (TV/Satellite)
 - Simple key arrangement

 Set-up by library review
 Order Code: 2 WAY
 PRICE: 925p

[^2]: *These items are available from I.C.H.E., PO Box 142, Nottingham NG9 3RX.
 Telephone no. 0115932 0152, fax 01159444004.

[^3]: Published on the third Wednesday of each month by Reed Business Information Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by JJ Typographics Limited, Unit 4, Baron Court, Chandlers Way, Temple Farm Industrial Estate, Southend-on-Sea, Essex SS2 5SE. Printed in England by BPC Magazines (Carlisle) Ltd., Newtown Trading Estate, Carlisle, Cumbria CA2 7NR. Distributed by MarketForce (UK) Ltd., 247 Tottenham Court Road, London W1P 0AU (0171 261 7704). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

