THE LEADING UK CONSUMER ELECTRONICS TECHNOLOGY MAGAZINE

SERVICING.VID.EO STATELLITE.DEVELOPMENTS MAY $1996 £ 2.35$

25\% READER DISCOUNT 30V, 5A BENCH SUPPLY

Servicing the. Sony

 BE3B chassis
VCR audio faults

∞

 Switch-made PSU for the Nikktar baby 10Surfoce-inount cesign guide

Fault Reports TVs, VCRs, Camcorders and Satellite

Leader

471

PSU Module for the Nikkai Baby 10

A common fault with these mains/battery colour portables is failure of the encapsulated power supply regulator. Reliability can be greatly increased by using as a replacement the switch-mode design described by Michael Dranfield. It can be built up on a small PCB as a pin-compatible substitute. Circuit, component and layout details are provided.

Camcorner

Surface-mount Technology:

 Design GuidelinesSurface-mounted PCB assemblies are now widely used in consumer electronic products. It's as well to know the constraints that affect the design of these closely-packed modules. Martin Pickering, B.Eng., summarises good design practice.

Self-diagnostic Systems
 484

The use of microcontrollers and bus systems makes it easy to incorporate self-diagnostic systems in TV and video equipment. John Coombes describes typical arrangements that provide coded displays to indicate the nature of a fault condition.

SPECIAL OFFER

This 30V, 5A highperformance power supply is being offered to Television readers at 25\% discount. Featuring digital displays for both voltage and current is fully adjustable and has a typical ripple figure of just 10 mV . See page 517

Satellite Workshop 486
Test Case 401 487
Long-distance TV 488
Teletopics 492
Servicing the Sony BE3B Chassis 494
Giles Pilbrow on the circuitry used in this chassisand how to go about fault diagnosis. This firstinstalment deals with the power supply anddeflection circuits.
The Problem of Pre-echo 500Bill Wright on precautions to take to avoid directsignal pick-up in a signal distribution system. Alsothe ultimate solution, frequency shifting.
TV Fault Finding 506
VCR Audio Servicing 510
This concluding instalment deals with the rotaryhead systems that have been used with the VHS andVideo- 8 formats.
Satellite Notebook 518
What a Life! 520
VCR Clinic 522
Letters 528

Editor

John A. Reddihough
Production Editor
Tessa Winford
Consultant Editor
Martin Eccles
Publishing Director
Susan Downey
Advertisement Manager
Carol Nobbs
01816528330
Advertisement Sales

Executive

Pat Bunce
01816528339
Fax 01816528931
Editorial Office
01816528120
Fax 01816528956
Note that we are unable to answer technical queries over the telephone and cannot provide information en spares other than given in our Spares Guide.

GRANDATA LTD K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

TRANSISTORS / LINEAR ICs

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 10,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE OUANTITIES

Please send £1 P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities.
Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed.

LINEAR ICS / JAPANESE TRANSISTORS

\begin{tabular}{|c|}
\hline Part \& Price \& Part \& Price \\
\hline 25 \& \& 2 \& \& \({ }^{25 \mathrm{C} 1730}\) \& \& \({ }^{25 C 2270}\) \& O \& 2SC2750 \& 300 p \& \({ }^{25 C 3277}\) \& 200p \& 25 c3893 \& \& 2SD836A \& \%p \& \({ }^{2501279}\) \& 8000 \& 2501815 \& 100p \\
\hline 2SA1380
2SA 1381 \& 5p \& \& \({ }_{75 \mathrm{p}}^{225}\) \& \({ }^{2 S C 1735}\) \& \({ }^{700}\) \& \({ }_{\text {2SC2271 }}^{\text {2S274 }}\) \& P \& 2sc2751 \& \(0^{20}\) \& \& 200 \& \& 2000 \& \& \[
\begin{aligned}
\& 5 s_{0}, p_{p}
\end{aligned}
\] \& 2-3 \& 175 \& 2511825 \& 500 \\
\hline 2SA1382
2SA1385 \& \({ }_{180}^{120}\) \& \({ }^{\text {2SCl1013 }}\) \& 1700 \& \& \& 2sc2275 \& sop \& 2SC2767 \& \[
\begin{aligned}
\& \text { 400p } \\
\& 3000
\end{aligned}
\] \& 25c3284 \& O00p \& 25c3907 \& \[
\begin{aligned}
\& 450 p \\
\& 250 p
\end{aligned}
\] \& 25D838
25041 \& \[
\begin{aligned}
\& 300 p \\
\& 100 p
\end{aligned}
\] \& 2SD1299 \& \[
{ }_{4000}^{2500_{0}}
\] \& 2SD1846 \& Sop \\
\hline \({ }_{254}^{25366}\) \& 4000 \& \({ }_{2511030}\) \& \({ }_{150}\) \& \({ }_{2}{ }^{25 \mathrm{Cl} 7175}\) \& Op \& \& (7000 \& \& \({ }_{7000}^{4000}\) \& (esc3298 \& \[
\begin{gathered}
85 p_{p} \\
50_{p}
\end{gathered}
\] \& \& \({ }_{1250}^{250}\) \& \& 200p \& \& sop \& \& \({ }^{3255}\) \\
\hline \({ }_{\text {2SA1423 }}^{2}\) \& 300
300p \& \& \({ }_{\substack{20 \mathrm{p}}}^{280}\) \& \({ }^{25 C 1756}\) \& 350 \& \& OP \& \& 50p \& \& \[
\begin{gathered}
\text { 50p } \\
120 p_{0}
\end{gathered}
\] \& \& \[
\begin{gathered}
120 p \\
\hline 80 p
\end{gathered}
\] \& \({ }^{250850}\) \& \[
\begin{aligned}
\& 250 p \\
\& 170.0
\end{aligned}
\] \& 2SD1302 \& \[
\begin{aligned}
\& 300 p \\
\& 200 p
\end{aligned}
\] \& 25D1858 \& (100p \\
\hline \({ }^{2541491}\) \& 3000 \& 2 2SC1060 \& 700 \& \({ }_{25 \mathrm{C} 1775}^{25175}\) \& 10 p \& 2SC2295 \& \[
\begin{aligned}
\& 50 \mathrm{p} \\
\& 35 \mathrm{p} \\
\& \hline
\end{aligned}
\] \& 2Sc27896 \& \& \& \[
\begin{gathered}
4000 \\
1000 \\
\hline
\end{gathered}
\] \& \& \({ }_{2200}^{2100}\) \& \& 480 \& \& \({ }_{80} 80\) \& 77 \& 175p \\
\hline - \({ }_{\text {2SAAL516 }}^{2541493}\) \& \begin{tabular}{l}
5000 \\
2800 \\
\hline
\end{tabular} \& \& \({ }_{650}^{85}\) \& \& \({ }^{200}\) \& \(2 \mathrm{SC2307}\) \& 3000 \& 2SC2787 \& \[
\begin{aligned}
\& \text { cop } \\
\& \text { cop } \\
\& \hline
\end{aligned}
\] \& 25 C 3306 \& 130 p \& 25 c3996 \& \({ }^{12000}\) \& 2SD863 \& 23p \& 2SD1310 \& 140 \& 2SD1879 \& \({ }_{275 \mathrm{p}}\) \\
\hline \({ }_{\text {2SASI535 }}\) \& 175 \& \({ }_{25}^{251}\) \& 40 \& \& 40 p \& \({ }_{\text {2SC2308 }}^{2512}\) \& 10 p
300 \& 2Sc2791 \& \[
\begin{gathered}
500 \\
\substack{200} \\
200
\end{gathered}
\] \& 2SC3307
2Sc309 \& \[
\begin{gathered}
8000 \\
1000
\end{gathered}
\] \& \& \({ }_{\text {l }}^{1000}\) \& \begin{tabular}{l}
25D864 \\
2SD866 \\
\hline
\end{tabular} \& 2000 \& \& \({ }^{1000}\) \& \& 3000 \\
\hline \({ }_{258545}\) \& \({ }^{45 \mathrm{p}}\) \& \({ }^{25 C 1106}\) \& \({ }^{1200}\) \& \& 1 \& \({ }_{25}^{25}\) \& Op \& \({ }^{25 \mathrm{SC}}\) \& 700p \& 2Sc3316 \& \[
\begin{aligned}
\& 150 p \\
\& 2880 \\
\& \hline
\end{aligned}
\] \& \& 3250 \& 25S866A \& \[
\begin{gathered}
1200 \\
1400
\end{gathered}
\] \& 2SD1328 \& 60 \& 2511887 \& S0p \\
\hline \({ }_{\substack{285560}}^{258561}\) \& \(\xrightarrow{250}\) \& \({ }^{2 \mathrm{SCl} 11}\) \& \({ }^{4} 150\) \& \({ }_{\substack{\text { 2 }}}^{2 \text { 2SC1819 }}\) \& \({ }_{60 p} 7\) \& 2SC2320 \& 1500
10.
10 \& 2sc2888 \& \[
\begin{gathered}
40 \mathrm{p} \\
360 \mathrm{p}
\end{gathered}
\] \& \({ }^{25 C 3323}\) \& \({ }^{3500}\) \& \({ }_{\text {2SCA106 }}\) \& \({ }^{3500}\) \& \& \[
\begin{gathered}
2600 \\
1900 \\
\hline 100
\end{gathered}
\] \& \& 700 \& \& \\
\hline \({ }_{2}^{258565}\) \& 250 \& \& \(230{ }^{2}\) \& 2 L \& \({ }_{60 \mathrm{p}}\) \& \& \({ }^{1200}\) \& \& 10 p \& \({ }^{25 C 3327}\) \& 50 p \& \& 450 p \& 258871 \& 3000 \& \& 150 \& \& \({ }_{50} 0^{\text {p }}\) \\
\hline \({ }_{25}^{258}\) \& 90p \& \({ }^{\text {2SC112 }}\) \& \({ }_{\substack{270 p \\ 1100}}^{270}\) \& \({ }_{\text {2SCl }}^{\substack{\text { 2S3 }}}\) \& 500p \& 2Sc2331 \& \({ }_{50 \mathrm{p}}\) \& 25c2824 \& \({ }_{4}^{40}\) \& 25c3 \& \({ }_{1250}^{250}\) \& \& \begin{tabular}{l}
250 \\
600 \\
\hline 0
\end{tabular} \& 25 \& 60p \& 2 251379 \& \({ }_{1000}^{1250}\) \& \& \\
\hline \({ }_{\substack{288596 \\ 255598}}\) \& \& \& 30 \& \& 50 p \& \& 2000 \& \({ }_{\text {2Sc2825 }}\) \& 9000 \& \& 1000 \& \& 550 \& \& \({ }^{25 p}\) \& \& 1000 \& \& 5000 \\
\hline \({ }_{258600}\) \& 500 p \& \({ }_{25 \mathrm{Cl} 1}^{2 \mathrm{C}}\) \& \({ }^{6009} 7\) \& \& \({ }_{\text {cop }}^{50}\) \& 2SC2335 \& \({ }_{7}^{80}\) \& 2SC2827 \& \({ }_{200 p}^{200 p}\) \& 2Sc3353 \& \[
\begin{aligned}
\& 2000 \\
\& 2800
\end{aligned}
\] \& 2SC4242 \& \(\xrightarrow{650}\) \& \& 35p \& 2SD1398 \& 350p \& \& (tiop \\
\hline \({ }_{2}^{288646}\) \& \({ }^{40 \mathrm{P}}\) \& \({ }^{25 \mathrm{C}, 11}\) \& 1000 \& \({ }_{2}\) 2SC1846 \(^{2}\) \& 35 p \& \(2 \mathrm{SC2344}\) \& 150 \& 25 C 2832 \& 300p \& 25 C 3355 \& 50 p \& 2 SC 4 \& 550p \& \& 100p \& 2SD1391 \& 250 p \& \& Op \\
\hline \& \({ }^{200 p}\) \& \({ }_{2}^{2 S C}\) \& \begin{tabular}{l}
180 \\
150 \\
100 \\
\hline
\end{tabular} \& \({ }^{2}\) \& \({ }^{45 \mathrm{p}}\) \& \({ }_{25 \mathrm{C}}^{2 \mathrm{C}}\) \& \({ }^{600}\) \& \& \({ }^{4000}\) \& \& \({ }^{1200}\) \& \& \({ }^{2750}\) \& \& 200 D \& \& 150 p \& 2SD1984 \& 4500 \\
\hline \({ }_{2}^{258649}\) \& 35 p \& 2 SC \& 40 P \& \({ }_{25 \mathrm{Cl} \text { 8556 }}\) \& \({ }_{25 p}\) \& 2 Sc 2360 \& \({ }_{120}\) \& 2SC2339 \& 40 p \& \({ }_{2 \text { cc3361 }}\) \& 50p \& 2SD \& cole \& 2 2SD \& \({ }_{4500}^{4000}\) \& \({ }_{\text {2SD }}\) 2539 \& \({ }_{\substack{150 p \\ 1200}}^{\text {120 }}\) \& \({ }_{\text {2SD2125 }}^{\text {2SD212 }}\) \& - 500 \\
\hline \& 90p \& \& \({ }^{2100}\) \& \& \({ }_{7} 700 \mathrm{p}\) \& \& 150 p \& 2562853 \& 70p \& 2 Sc 3 \& 300p \& 2SD \& 195p \& 2 2S9 \& 130 p \& 2SD \& 120p \& \& Sop \\
\hline \({ }_{2}^{258}\) \& 200p \& 2 S \& ¢ \& \& \({ }_{200 p}^{7000}\) \& \({ }^{2} \mathrm{C}\) \& - \({ }_{\text {cop }}^{50 \mathrm{p}}\) \& \& \({ }^{120}\) \& 25C3 \& 50 p \& \& \({ }^{1800}\) \& \({ }^{250}\) \& 3000 \& \& \({ }^{1200}\) \& \({ }^{25.448}\) \& \({ }^{25 p}\) \\
\hline \({ }_{2}^{25}\) \& 2000 \& \({ }_{25}^{251}\) \& \({ }^{15 p}\) \& 2 SC \& 700 \& \({ }_{25 \mathrm{C} 2369}\) \& \(100{ }^{\text {p }}\) \& 2S28879 \& 32000 \& 25c3383 \& 80p \& \({ }_{250257}\) \& \({ }_{\text {cosp }}\) \& \({ }_{\text {2SO923 }}\) \& \& 2 LD 14 \& \({ }^{3000}\) \& 25J49 \& - \\
\hline \& \& \& \({ }_{200} 20\) \& \& 175p \& \& 25 \& \& 500 \& \& 5500 \& 2503 \& \({ }^{25 p}\) \& 2SD \& \({ }^{120}\) \& 2SD1 \& 150 p \& 25, \& 000p \\
\hline 25 \& 2000 \& \({ }^{25 \mathrm{C} 12}\) \& 15 \& \(2 \mathrm{2SC}\) \& 15 p \& 2 SC \& Sop \& \& 500p \& \& \& 25D \& 75p
300
300 \& \& \({ }^{1000}\) \& 2SD \& \({ }_{60 \mathrm{p}}\) \& \({ }^{25,74}\) \& \\
\hline 25 \& \({ }_{\substack{\text { gop } \\ 300 p}}\) \& \({ }_{\text {2SC1252 }}^{2 \mathrm{SCC126}}\) \& \({ }^{7550}\) \& \& 200 \& \& 45 p \& 2sc2309 \& 600 \& \({ }_{25 \mathrm{Sc} 3}\) \& 35 p \& 25D330 \& 65 \& 2Sos \& \({ }_{230}\) \& 2SD 14 \& \({ }_{125}{ }^{\text {cop }}\) \& \({ }_{2 S}{ }^{25776}\) \& \({ }_{\text {200 }}^{2800}\) \\
\hline 25 \& \({ }^{25}\) \& 25 \& 110 p \& \& 900 \& \({ }_{25 \mathrm{l}}^{2 \text { 2SC2207 }}\) \& \({ }_{\substack{110 \mathrm{p} \\ 120 \mathrm{p}}}^{50}\) \& \({ }_{2}^{25 \mathrm{C} 2}\) \& \({ }_{\text {cop }}^{80}\) \& \& 50p \& \({ }_{\text {2S }}^{258}\) \& (300p \& \& \({ }_{5}^{520 p}\) \& \({ }^{25014}\) \& \({ }^{1700}\) \& \& \({ }^{3500}\) \\
\hline \({ }_{288775}\) \& 1000 \& \({ }^{2 S C 1306}\) \& \({ }_{900}^{30 p}\) \& 25 \& \({ }_{10 \mathrm{p}}^{150}\) \& \(2 \mathrm{2SC2412K}\) \& 50 \& 2 SC 2 \& 6500 \& \& 400 p \& 2503 \& \({ }_{40}{ }^{\text {P }}\) \& 2 25D \& \({ }^{35 \mathrm{p}}\) \& 25014 \& 60p \& \({ }_{25}\) 2S1 \& 25p \\
\hline \({ }_{2}^{258}\) \& \({ }_{5}^{2800}\) \& \({ }^{2 \mathrm{SCl} 3}\) \& \({ }^{3500}\) \& \(2 \mathrm{2S}\) \& 1800 \& \& 1 \& \& \({ }_{\text {450p }}^{480}\) \& \({ }_{2 \text { 2SC3 }}^{2 \text { 2 }}\) \& (900p \& \& \({ }_{6500}^{2400}\) \& \({ }_{2}\) 2SD \& \({ }^{170}\) \& \& 1900 \& \& S0p \\
\hline \& \& \& \({ }_{15}{ }^{40}\) \& \& \({ }_{27} 110\) \& \& 5 \& \& , \& \& 900 \& \& 500 \& \& \(1{ }^{1}\) \& \& \(260^{2}\) \& 25,117 \& \\
\hline \({ }^{258866}\) \& 1100 \& 1318 \& 10 p \& \& \({ }^{3500}\) \& \& \({ }^{65 p}\) \& \& \({ }^{5 \text { p }}\) \& \& 120 p \& 2 2D \& 150p \& 2 SO \& \({ }^{120 p}\) \& SD14 \& 1600 \& 25.119 \& roop \\
\hline \({ }_{2 S}^{2 S}\) \& \& \& \({ }_{20 \mathrm{p}}^{400 \mathrm{p}}\) \& \& \(\underset{\substack{350 p \\ 3500}}{\substack{\text { a }}}\) \& \({ }_{25 \mathrm{C}}^{2}\) \& \({ }_{20 p}^{120 p}\) \& \({ }_{25 \mathrm{~S}}^{2 \mathrm{~S}}\) \& \({ }_{\text {235p }}^{250}\) \& \({ }_{2 \mathrm{SC}}^{2 \mathrm{C}}\) \& (800 \& \({ }_{250}^{25 D}\) \& Sop \& \({ }_{\text {2SD }}\) \& \({ }_{40 \mathrm{p}}^{20 \mathrm{p}}\) \& \& \({ }^{1800}\) \& 2SJ \& cisep \\
\hline \({ }_{\substack{258950}}^{25995}\) \& 1800 \& 25 \& 15 \& \& 15500 \& \({ }^{2 \mathrm{zCC}}\) \& \({ }^{1200}\) \& \& 400p \& \& 50p \& 2SD \& 500 \& 2 SD \& 40 p \& 2SD \& 410 p \& 25 K \& 5009 \\
\hline \({ }_{2581009}\) \& \({ }_{110}\) \& 1345 \& 15 \& 25 \& \& \& 2000 \& 2 SC \& Sop \& \({ }_{25}\) \& Op \& 2SD \& ¢ \({ }_{5}\) \& 2SD \& \({ }_{4000}\) \& 2SD1 \& \({ }_{\text {cki }}^{2800}\) \& 2SK49 \& \\
\hline \({ }_{2 S 81097}^{258109}\) \& \begin{tabular}{l}
1800 \\
550 \\
\hline 50
\end{tabular} \& \({ }^{2 S 51346}\) \& 1000 \& 25 \& 10 p \& \& \({ }^{19900}\) \& \& \({ }_{8000}\) \& \& P \& 2 S \& 350 p \& 2SD \& 130 p \& 2SD \& 4000 \& 25k55 \& \(100{ }^{\text {p }}\) \\
\hline \({ }_{2 S \mathrm{Cl} 182}\) \& 75 p \& \({ }^{25}\) \& \({ }_{\text {Pp }}\) \& \& \({ }_{1600} 180\) \& \& 5 \& \& \({ }^{2500}\) \& \& \({ }^{125}\) \& 25 \& S \& \& 750 \& \({ }_{25 \mathrm{~S}}^{251}\) \& 740p \& \({ }^{2556}\) \& cois \\
\hline \& \({ }_{10}^{25 p}\) \& 2SC1 1360
2SC4 13 \& \({ }^{70 \mathrm{P}}\) \& \({ }^{\text {2SCL } 1970}\) \& \({ }^{1000}\) \& \& - \& \& \({ }_{\text {coicl }}^{150}\) \& \& \& \& 35p
\(\substack{35 \\ 150}\)

a \& ${ }_{25}^{25}$ \& 2000 \& ${ }_{25}^{250}$ \& 1655 \& \& 40p

\hline \& ${ }_{50 \mathrm{p}}^{50 \mathrm{p}}$ \& \& 250 \& \& ${ }^{6000}$ \& \& 3000 \& ${ }_{2}^{25 C 2}$ \& 500 \& 2 SC \& 2250 \& ${ }^{25 \mathrm{D}}$ \& 15 p \& 25 D \& 130 p \& ${ }_{2}$ 25D \& $200{ }^{2}$ \& ${ }_{2}^{25 k}$ \& 50p

\hline 2 25c394 \& ${ }_{600} 60$ \& ${ }_{\text {25C1393 }}$ \& ${ }_{20}^{20 p}$ \& \& ${ }^{1500}$ \& ${ }_{25}^{25}$ \& ${ }_{3}^{1500}$ \& \& ${ }^{14000}$ \& \& \% 700 \& \& 200 \& 2SD \& 1300 \& ${ }^{2 \text { 2SD }}$ \& ${ }^{600}$ \& ${ }_{2}^{251}$ \& 1000

\hline ${ }_{25}^{25}$ \& ${ }_{15 \mathrm{p}}^{258}$ \& \& 15p \& \& 150p \& \& 1000 \& 2 SC \& ${ }^{320}$ \& 25 \& ${ }^{2755}$ \& ${ }_{25}^{2503}$ \& 700 \& $2 \mathrm{SD1}$ \& 2000 \& ${ }^{25 \mathrm{SD} 4} 4$ \& ${ }_{350}$ \& $2 \mathrm{2k}$ \& 4150

\hline ${ }_{25}^{25}$ \& 100 \& 2s \& $55^{\text {Sp }}$ \& \& 100 p \& ${ }_{2 \mathrm{SC}}^{2 \mathrm{~S}}$ \& ${ }^{19000}$ \& 2sc \& ${ }_{5000}^{500}$ \& \& ${ }_{1000}^{2750}$ \& \& 18 p
1200
120 \& ${ }_{\text {2SD }}^{2 \text { 2S }}$ \& 2500
1600

1 \& 2sD1 \& 1 | 140 |
| :--- |
| 200 |
| 200 | \& ${ }^{255}$ \& ${ }_{150}^{450}$

\hline 2 S \& 150 \& 2S \& S00p \& \& | $15 p$ |
| :--- |
| 150 |
| 150 |
| 1 | \& ${ }_{2 \text { 2Sc2 }}^{25}$ \& 55p \& \& ${ }^{3000}$ \& \& Sp \& 2S5 \& 300 p \& ${ }^{2551}$ \& 1500 \& ${ }^{25 D}$ \& 1655 \& 25k \& 150

\hline ${ }_{\substack{25 C 495 \\ 25 C 499}}$ \& ${ }_{250}^{45}$ \& ${ }^{2}$ \& ${ }^{1500}$ \& \& 20 p \& ${ }_{25}$ \& ${ }_{65 \mathrm{p}}^{258}$ \& ${ }_{2 \mathrm{SC}}^{2 \mathrm{~S}}$ \& ${ }_{125}^{125}$ \& \& Pop \& ${ }_{\text {2SDS }}^{25}$ \& ${ }_{5000}^{500}$ \& ${ }_{2}^{250}$ \& 4500 \& \& cop \& \& ${ }_{\text {40p }}^{40}$

\hline 25 \& ${ }_{85}{ }^{\text {P }}$ \& 25 \& 50p \& 2 S \& 10 p \& 2 SS \& 50 p \& \& ${ }^{800}$ \& \& \% \& \& 20 p \& 2 2SD \& 150 p \& 2 25 \& 2000 \& 25K \& 800p

\hline ${ }_{2 S}^{25}$ \& - \& \& cisp \& ${ }_{\substack{\text { 2Sc2022 } \\ \text { 2SC2023 }}}^{2}$ \& ${ }^{1100}$ \& 2Sc2e \& 60 p \& $2 \mathrm{CC3042}$ \& ${ }_{3000}^{2600}$ \& ${ }_{25 \mathrm{C}}^{2}$ \& ${ }_{750 p}^{650}$ \& ${ }_{25 \mathrm{~L}}^{2 \text { 205 }}$ \& ${ }_{3}^{530 p}$ \& ${ }_{2 \text { 2SD }}^{251}$ \& ${ }_{\substack{\text { 225p }}}^{520}$ \& ${ }_{\text {2SD }}^{2 \text { 2S }}$ \& ${ }^{2250}$ \& \& - 450

\hline ${ }_{25}^{25}$ \& 275 \& \& 700 \& \& 30p \& ${ }_{2 S}^{2 \mathrm{SC}}$ \& 200 p \& ${ }_{2 \mathrm{LC}}^{25}$ \& ${ }^{1500}$ \& ${ }_{2 \text { 2S }}^{2 \text { c }}$ \& ${ }_{250}^{120}$ \& 251 \& Op \& \& ${ }^{20}$ \& 2S \& 300 p \& \& 140 p

\hline ${ }_{25}$ \& ${ }_{120}$ \& \& ${ }_{1200}^{100}$ \& ${ }^{2 S 5202}$ \& ${ }_{75 \mathrm{p}}^{2000}$ \& 2sc25 \& 990 \& ${ }_{25}^{253068}$ \& ${ }_{600}$ \& ${ }_{2535}$ \& ${ }_{\text {225p }}$ \& ${ }_{\text {2SD }}^{2}$ \& ${ }_{50 \mathrm{p}}^{60 \mathrm{p}}$ \& ${ }_{\text {2SD }}$ \& ${ }^{2200 p}$ \& ${ }_{25 \mathrm{D}}^{251}$ \& 350p \& \&

\hline \& 100 p \& \& 200 p \& 2 2c2029 \& 120 \& ${ }_{\text {2SC25 }}^{2 \text { 2S }}$ \& 200 p \& c307 \& ${ }^{35 p}$ \& ${ }_{2}^{25 C 35499}$ \& 2000 \& 2 SD \& 70 p \& 2501 \& 1000 \& \& 350 p \& \& $400 \mathrm{P}^{\text {P }}$

\hline ${ }_{25} 25$ \& ${ }_{800}$ \& \& 250 \& \& ${ }^{500}$ \& \& ${ }^{2300}$ \& \& 2000 \& ${ }_{25 \mathrm{C}}^{2 \mathrm{C}}$ \& 20 \& ${ }^{\text {2SDE36 }}$ \& 10p \& ${ }_{2 \text { 2S }}^{251}$ \& 50p \& \& OP \& \& ${ }^{1400}$

\hline ${ }_{2 S}{ }^{5}$ \& 10 \& 25 \& 硅 \& \& ${ }^{150}$ \& 25 C 2 \& 120 p \& 2 2ca \& 120 \& ${ }_{25 \mathrm{C} 3}^{25}$ \& 2000 \& ${ }_{2 S 8}$ \& ${ }_{15 p}$ \& 2 2SD \& ${ }^{\text {cop }}$ \& 2 251 \& ${ }^{600}$ \& \& ${ }_{\text {cop }}^{\substack{\text { 70p }}}$

\hline ${ }_{25}^{25}$ \& ${ }_{250 p}^{300}$ \& \& ${ }_{45 \mathrm{p}}^{15 \mathrm{p}}$ \& \& 200 \& ${ }_{2}^{2 S C}$ \& 3500 \& ${ }_{2}^{2 \mathrm{SC}}$ \& \% \& \& ${ }_{\substack{220 p}}^{200}$ \& \& ${ }_{3}^{20 \mathrm{p}}$ \& ${ }_{2 \text { 2SD }}$ \& 350p \& ${ }^{255}$ \& 100 p \& \& Op

\hline ${ }_{2 \text { 2SC6 }}$ \& ${ }^{350}$ \& 2s \& 600 \& \& 75 \& ${ }^{25}$ \& 110 p \& 2 25C3 \& 750 p \& 2 2c3 \& 1000 \& 25D655 \& ${ }_{18 p}$ \& 2 2SD1 \& 90 \& 2 2S1 \& ${ }_{70 \mathrm{P}}^{250}$ \& \&

\hline ${ }_{25 C 710}$ \& 1 \& \& ${ }_{4}^{80 p}$ \& \& ${ }^{609}$ \& ${ }_{2}^{2 S C 2}$ \& $\xrightarrow{1700} 110$ \& ${ }_{2}^{25 \mathrm{Cc}}$ \& 350
400
4 \& ${ }_{2}^{25 c 3}$ \& O20 \& ${ }_{\text {2SDO666 }}$ \& ${ }_{20}^{60 p}$ \& \& 1500 \& \& ${ }^{3500}$ \& \& 4500

\hline ${ }_{25}^{25}$ \& - 150 \& \& | 350 |
| :--- |
| 350 |
| 50 | \& \& ${ }_{4}^{400}$ \& 25 \& 175 \& \& 75p \& 2 25C3 \& 4000 \& 2 2506 \& 20 p \& 2 SD 1 \& ${ }_{75 \mathrm{p}}$ \& ${ }_{2}^{25 D}$ \& 1700 \& ${ }_{\text {2Sk }}$ \& ${ }^{500}$

\hline ${ }_{2}^{25}$ \& 40 p \& \& 60p \& \& $95 p$ \& 2Sc25 \& ${ }_{6} 6000$ \& ${ }_{2 \mathrm{c}}^{2 \mathrm{C}}$ \& ${ }_{50 \mathrm{p}}^{120}$ \& \& cinco \& ${ }_{\text {2SD6 }}^{2 \text { 2Sb }}$ \& 509p \& 25 D \& 2780p \& \& 1700 \& ${ }_{\substack{\text { 25K429 } \\ \text { 2Sk51 }}}$ \& ${ }^{1800}$

\hline ${ }_{25}^{25}$ \& ${ }_{40 \mathrm{p}}^{159}$ \& \& $\begin{array}{r}\text { 450 } \\ 1100 \\ \hline 1\end{array}$ \& 2 LS \& ${ }_{\substack{1009 \\ 600}}^{100}$ \& 25 \& 400 \& \& 1859 \& ${ }_{2}^{2 \mathrm{SC}}$ \& 1000 \& 2 256 \& 350 P \& 2 2SD \& 3500 \& 2 2SD15 \& 100 p \& ${ }_{25 K 513}$ \& ${ }^{3525}$

\hline ${ }_{\substack{255738 \\ 2 \text { 2c739 }}}$ \& 155 \& \& 1200 \& \& 1000 \& 2Sc259 \& ${ }_{200}^{500}$ \& ${ }_{25 \mathrm{C}}^{2}$ \& 1880 \& ${ }_{2 \text { 2c3 }}^{2 \text { 2S3 }}$ \& ${ }_{\substack{200 p}}^{280}$ \& ${ }_{2 \mathrm{~L}}^{25}$ \& ${ }_{\text {k0p }}^{250}$ \& ${ }_{\text {2SD }}^{2 \text { 2S1 }}$ \& ${ }^{40000}$ \& ${ }_{2}^{2551}$ \& 75p \& 2SK531 \& ${ }^{350 \mathrm{p}}$

\hline ${ }_{2 S 5761}$ \& 1100 \& 25 \& 35p \& \& ${ }^{23000}$ \& ${ }_{\substack{2 S 2803 \\ 25 C 2610}}^{2}$ \& \% 100 \& \& 230p \& ${ }_{2 \mathrm{LC}}^{25 \mathrm{C}}$ \& 3800 \& \& ${ }^{1800}$ \& ${ }_{2 \text { 2SD }}^{2 \text { SD }}$ \& ${ }^{2500}$ \& ${ }^{25 \mathrm{~S}}$ \& 100 p \& 2Sk \& ${ }_{\text {goop }}$

\hline ${ }_{\substack{2 S C 762 \\ 2 \mathrm{SC783}}}^{2}$ \& ${ }_{\substack{150 p \\ 850}}$ \& \& ${ }^{555}$ \& \& ${ }^{25000}$ \& 25 Cz \& 30 p \& ${ }_{2 \text { Sc3 }}$ \& ${ }_{175 \mathrm{p}}$ \& ${ }_{2 \text { Sc3 }}^{2}$ \& ${ }_{6000}$ \& ${ }_{25} 25$ \& 85p \& 25 D \& 55p \& \& ${ }_{\text {250p }}^{2500}$ \& ${ }^{25 \mathrm{~K} 538}$ \& ${ }^{3500}$

\hline ${ }_{2 \text { 2S779 }}$ \& 50 P \& 2SC \& 50 p \& \& \% \& \& 700 \& \& ${ }_{300}^{350}$ \& ${ }_{25}^{25}$ \& O \& ${ }^{255725}$ \& 2700 \& ${ }^{255}$ \& ${ }^{1200}$ \& \& 120 p \& 2SK555 \& ${ }_{400 p}$

\hline ${ }_{25}$ \& ${ }_{225}{ }^{20}$ \& \& ${ }_{500}^{250}$ \& \& ${ }_{\text {cop }}^{550}$ \& 25 \& 6000 \& $2 \mathrm{2C3}$ \& 2600 \& ${ }_{25 \mathrm{~S} 3}$ \& 480 p \& 25D \& ${ }^{1200}$ \& 2SD1 \& $150{ }^{150}$ \& $2 \mathrm{SD15}$ \& 100 p \& \& ${ }_{\text {5000 }}$

\hline \& ${ }^{200}$ \& \& ${ }^{250}$ \& \& 400 \& ${ }_{2}^{2 \mathrm{Sc} \text { 2,2 }}$ \& 200
100
100 \& \& ${ }^{200 p}$ \& \& ${ }^{1200}$ \& 2SD7 \& 1300 \& ${ }^{255}$ \& 1500 \& ${ }_{25}^{250}$ \& ${ }^{310 \mathrm{p}}$ \& 2SK5 \& ${ }^{4000}$

\hline ${ }_{25 \mathrm{CC} 39}$ \& 20 p \& \& ${ }^{3400}$ \& \& ${ }^{80} 1200$ \& $2 \mathrm{2C}$ \& 40 p \& 2SC319 \& 1500 \& 25c37 \& 100 p \& 2SD7 \& ${ }_{1200}$ \& 2SD12 \& ${ }_{280}^{480}$ \& 2SD15 \& ${ }_{160 \mathrm{p}}^{1250}$ \& \& 550p

\hline ${ }_{25}^{25}$ \& ${ }^{1000}$ \& \& 500 \& \& ${ }^{700}$ \& ${ }_{2}^{2 S 52639}$ \& ${ }_{18000}^{1200}$ \& \& 1800 \& \& ${ }_{\text {chep }}^{1200}$ \& ${ }_{2 S}^{25076}$ \& ${ }^{1000} 1000$ \& ${ }_{\text {2SD }}^{2 \text { D }}$ \& 边 \& ${ }_{\text {2SD16 }}$ \& 10p \& 2 SK \& ${ }_{\text {coop }}^{3000}$

\hline ${ }_{2}^{25 c 930}$ \& 15 p \& \& 55p \& \& 650p \& ${ }_{25}^{25}$ \& 1000 \& ${ }_{25}^{25}$ \& ${ }^{150}$ \& 2sc37 \& 150 p \& ${ }^{251763}$ \& 1400 \& 25012 \& 750 \& 25016 \& 500 p \& ${ }_{2}^{251}$ \& ${ }^{6000}$

\hline ${ }_{25}^{25}$ \& 1500 \& \& 15p \& ${ }_{25}^{25}$ \& ${ }^{\text {Sop }}$ \& ${ }_{2}^{25 C}$ \& 1800^{185}
7 \& ${ }_{25 \mathrm{C}}^{2 \mathrm{C}}$ \& ${ }^{1750}$ \& 2Sc37 \& ${ }^{3000}$ \& ${ }_{25 \mathrm{~S}}^{2512}$ \& ${ }^{1800}$ \& ${ }_{25012}^{25122}$ \& ${ }^{120}$ \& 2SD163 \& 50 p \& 2SK \& ${ }_{\text {cosp }}^{\text {goop }}$

\hline ${ }_{25}^{25}$ \& ${ }^{140}$ \& \& ${ }^{500}$ \& ${ }_{2}^{25 \mathrm{C}}$ \& ${ }^{800}$ \& ${ }_{2}^{25 C 2}$ \& 5500 \& \& 200 p \& ${ }^{25 \mathrm{c} 3}$ \& 75 p \& \& 20 p \& 25012 \& 2500 \& 2SD1 \& 260 p \& ${ }^{25 \mathrm{~K}}$ \& ${ }^{3009}$

\hline ${ }_{25}^{25}$ \& ${ }^{420}$ \& 2S \& $15 p$ \& ${ }_{2}^{25} 2$ \& ${ }_{\text {cop }}$ \& ${ }_{25 \mathrm{C} 2}^{2}$ \& ${ }_{2000}$ \& ${ }_{25 \mathrm{C}}^{2 \mathrm{C}}$ \& 1200 \& 25c37 \& ${ }^{12750}$ \& ${ }_{\text {2SD }}$ \& ${ }^{300}$ \& 2SD1 \& ${ }^{300}$ \& \& ${ }^{1880}$ \& ${ }_{25}^{25}$ \& 900

\hline ${ }_{2}^{25 C}$ \& ${ }^{2250} 4$ \& ${ }_{2 \mathrm{CS}}^{2 \mathrm{C}}$ \& 800 \& \& ${ }_{50}^{200}$ \& ${ }_{2}^{25 C}$ \& 100 \& ${ }_{2}^{25 \mathrm{C} 2}$ \& 120 p \& \& 220 p \& \& 650 p \& 25012 \& 40 P \& 25 D \& 4500 \& 25K \& ${ }_{650 p}$

\hline \& 1200 \& ${ }_{\text {crect }}^{2 \text { 2S }}$ \& ${ }^{1000}$ \& ${ }_{2}^{25} 2$ \& 45 \& ${ }_{2 \text { 2SC2 }}^{2}$ \& ${ }^{1770}$ \& ${ }^{25}$ \& 250p \& 25c38 \& cop \& 2SD7 \& ${ }_{200}^{1000}$ \& 2S0122 \& ${ }^{2780}$ \& ${ }_{25 \mathrm{~L}}^{251}$ \& 900 \& ${ }_{\text {2Sk }}^{2 \text { 2k }}$ \& ${ }_{\substack{\text { coicp } \\ 6000}}$

\hline (extion \& 120 p \& ${ }_{\text {l }}^{\text {2SC }}$ \& 300 \& \& (130 \& ${ }_{2}^{25 C}$ \& ${ }_{27 \mathrm{p}}^{70 \mathrm{p}}$ \& ${ }_{25 \mathrm{CS}}^{2 \mathrm{C}}$ \& ${ }_{\substack{2600}}^{500}$ \& ${ }_{25}^{25 C 38}$ \& ${ }_{200 p}^{200}$ \& \& ${ }^{20}$ \& ${ }_{25 \mathrm{D}}^{25}$ \&) \& ${ }_{2 \text { 2SD }}^{25}$ \& 1200p \& ${ }^{2 \text { 2Sk }}$ \& ${ }_{\substack{800 p \\ 2500}}$

\hline \& Sop \& \& S000 \& \& \& ${ }_{\text {2SC2690 }}$ \& 60 \& ${ }^{25 c 3249}$ \& ${ }^{509}$ \& ${ }_{25}{ }^{25} 3$ \& ${ }^{2020}$ \& ${ }_{\text {2SD792 }}$ \& 20p \& 2SD12 \& ${ }_{75 p}^{55 p}$ \& ${ }_{25}$ \& ${ }_{3}^{300 p}$ \& ${ }_{2 \mathrm{~K} 11}$ \& ${ }_{\text {225p }}^{2500}$

\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{SEE OTHER PACES}} \& \& 50p \& ${ }_{2}^{2 \mathrm{sc}}$ \& 508 \& ${ }_{25}^{25 C 38}$ \& ${ }_{200}^{2500}$ \& \& P \& ${ }^{255}$ \& 180 \& ${ }_{2501732}^{25173}$ \& 400 p \& 3sk45 \& 100p

\hline \& \& \& \& \& \& \& 20p \& ${ }_{25 \mathrm{C}}^{2}$ \& ${ }^{320 \mathrm{p}}$ \& ${ }_{25 \mathrm{C}}^{2}$ \& \& ${ }^{250819}$ \& ${ }_{4}^{1450 p}$ \& 2S0 \& ${ }_{\substack{55 p \\ 550}}$ \& ${ }_{2}^{25 D}$ \& ${ }_{\text {cki }}^{275 \mathrm{p}}$ \& \& (1000p

\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{FOR MORE}} \& \& $5{ }^{5}$ \& ${ }_{2 \text { 2SC }}^{25}$ \& 230p \& 2SC3358
2Sc3870 \& S \& \& 2000 \& ${ }^{25012714}$ \& 5p \& \& Op \& 35674 \& Sop

\hline \& \& \& \& \& \& \& 120 p \& ${ }_{25 C 3263}$ \& 2800 \& 2 SO \& 280 p \& ${ }_{258821}^{2012}$ \& Sop \& 2 2S \& Sp \& \& ¢ \& \& 50p

\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{GRANDAEA BARTALS}} \& (2SCC2738 \& ${ }_{\text {200p }}^{200}$ \& ${ }_{\text {2SC3269 }}^{2 \text { 2C364 }}$ \& ${ }_{\substack{390 \\ 50 p}}$ \& 25C3884A
2538886 \& ${ }^{3000}$ \& 2SD \& (1) \& 2SD1275 \& $5{ }^{\text {spo }}$ \& ${ }^{2501773}$ \& Sop \& ${ }^{35 \mathrm{~K} 85}$ \& 150p

\hline \& \& \& \& \& \& C2749 \& ${ }^{350}$ \& sc3270 \& 50 p \& ${ }_{25 c 3890}$ \& 150 p \& 25D836 \& 60p \& ${ }_{2 S 01277}$ \& - ${ }_{\text {190p }}$ \& 2SD1796 \& 1000 \& 3SK121 \& 70p

\hline
\end{tabular}

REPLACEMENT VIDEO HEADS

Model	Model	del	Mod	Mod
anmean		cosk	coick	${ }^{2}$
边			coick	cas
	Vabismo		cien	
		come		
		coin		
ust，${ }^{\text {sse }}$				
（ismo				vfrats
				sim
ansmao		Nater		
			and	max
	 1200p	cis		
Ampenvic		0，		Emsis
	边	180		
			200	
（eameme				
\％eamemil			边	Sele
${ }^{20}$	wist wive			（ex
	miximemement		coin	
		cick	为	
	Sosememe	Weik		Seay vin
		Nasco		
			and	
		\％xor		
Remit				
				20．，v30，M10．0．v210，
				mumen
ARSMO				
esch	为		cosmen	18
canco		miss		
Danwoo	dixasion			amo
			，	$\underbrace{35 \%}$
Occea				
				rumems
		7eis		
Keas veaz				
		Na		
			（en	
		Nuersentus		GRANDATA LTD
				Tel：0181－900 2329
	cosem			ax：0181－903 6

PINCH ROLLERS / VCR BELT KITS

TV in Transition

There is so much going on at present that it's hard to see exactly how TV services will be provided in the not too distant future, and whether they will form just one part of a vast telecommunications network. We are seeing not only rapid technological change but also the formation of strategic alliances between service organisers and providers. There was some hard bargaining recently over who is to work with who in providing satellite pay-TV services to Germany. The market is a lucrative one, and whoever gets established first is likely to mop up. Then we have announcements on almost the same day that British Telecommunications and Cable and Wireless are preparing to merge to form a $£ 33$ bn international telecommunications giant while International CableTel, the UK's third largest cable TV operation, is to pay $£ 235 \mathrm{~m}$ for NTL, the former transmission and technical side of the Independent Broadcasting Authority. The latter move will again establish a powerful force in telecommunications, this time on the technical/provision side, by bringing together cable networks and radiocommunications.

CableTel points out that the merger "will create a unique, national full-service telecommunications network, believed to be the first of its kind in the world. By connecting CableTel's local loop fibre-optic systems to NTL's high-capacity national network, the alliance will form the first national competitor in the UK market with end-to-end broadband capabilities covering the full range of voice, video and data services. Business and residential customers will be able to benefit from better, faster and cheaper local and national telecoms services". NTL has created an extremely cost-effective national telecoms network by
installing mictowave radio links between its mast sites and supplementing these with fibre-optic transmission as capacity needs have warranted. Over the five years since the company was privatised, NTL has diversified widely beyond its core broadcast operations in areas such as satellite transmission and mobile radio services. CableTel is installing broadband local networks to deliver telephone, TV and telecommunications services to domestic and commercial customers in a number of regions.

So there are going to be various ways of linking you to the services available - via cable, the Internet, satellite and terrestrial microwave links. You'll probably plug into a network that uses all these technologies as required. The winners will be those who are able to assess the possibilities and offer the most cost-effective solutions. That is not going to be easy for anyone, given the way in which costs can vary dramatically as production runs increase and new materials or devices are introduced.

It is particularly interesting that Panasonic's parent company Matsushita has decided to get into broadcasting by taking a stake in the digital satellite broadcasting company DirecTV Japan. Sony has already made some small investments in broadcasters. Both companies brought huge problems on themselves with earlier moves into the film and recording industries. One has to assume that they learnt from this and are making more astute moves this time round.

The key to all this is a shift to paid-for services. Once, an annual licence fee and a couple of receivers, one for radio and the other for TV, gave you access to the BBC's excellent though limited services. Then ITV came along and introduced advertising as a means of providing the funds to increase the
programming on offer. This worked nicely with traditional analogue communications technology. Change to digital technology and the scope for programme provision increases dramatically - all those hundreds of channels - while encryption makes pay-to-view simple to implement. What we are witnessing is a change to a world in which almost anything will be available to those willing to pay the relevant price.

Viewing costs overall should be reasonable, given the competition likely amongst service providers. But it will be possible to make a lot of money from popular programmes/events, as BSkyB demonstrated with the recent Bruno-Tyson battle. The public is clearly willing to pay good money for what it wants. Further confirmation of this comes from BT's recent video-on-demand experiment that involved 5,000 of its customers in Ipswich and Colchester. The company says that the results bave been "really exciting - well up to expectations". Previous VOD experiments, mainly in the USA, have been disappointing. BT claims however that by providing a wide range of programming and information services and marketing them on screen, encouraging levels of use have been achieved. Of the 5,000 households that took part in the experiment, twenty per cent made use of the service for ten hours a week, with the average use being five hours a week. In a typical week 90 per cent of households made use of the service at least once.

The new broadcasters and service providers will have to bear one thing in mind however. Viewing has declined in recent times, and shows no sign of increasing to any great extent when extra services are provided. There is just so much lime people are prepared to spend in front of a TV or a PC screen.

COPYRIGHT

© Reed Business Publishing Ltd., 1996. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 45 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eight-year consolidated index on computer disc. For further details see page 503
Binders that hold twelve issues of Television are available for $£ 5.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIBER SERVICES

For any enquiries about subscription or newsagent copies, please contact the relevant numbers below:
Subscriber Enquiries

Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Credit card orders:

01622778000

Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Cheques made payable to: Television
Subscription rates:
UK
Overseas $\quad £ 40.00$ (Airmail - Europe)
Overseas $\quad £ 52.00$ (Airmail - Rest of World)
Newsagent Enquiries
Telephone: 01816528171
Fax: 01816528997

a swithtroded Powe Suply for the Nikkai Baby 10

> These popular colour portables suffer from a common fault that greatly affects reliability. You can put an end to the trouble by fitting the module that Michael Dranfield describes in this article

Fig. 1: Block diagram of the LM2576-ADJ switch mode power supply chip. Also pin connections, viewed from the front.

0ver the past year a Nikkai Baby 10 colour portable has been a regular visitor to the workshop. Each time the problem has been the same, failure of the regulator chip IC402. So far we've fitted four new regulators, three of them free of charge as we give a twelve-month parts and labour guarantee with all new components fitted.

Initial Experiments

I remember seeing, some time ago, an article in Television suggesting the use of a fixed 12 V regulator as a replacement for IC402. This seemed worth a go, but IC402's output is 10.9 V , not 12 V . So I experimented with an RS Components $12 \mathrm{~V}, 5 \mathrm{~A}$ regulator, using two 1 N5408 diodes in series to provide a 1.4 V drop. The output would then be 10.6 V , which is near enough. The problem with this was that the two diodes, passing the $2 \cdot 4 \mathrm{~A}$ required to run the set, got too hot.
After some thought I decided to shunt the two diodes with a $1 \Omega, 4 \mathrm{~W}$ wirewound resistor to pass two thirds of the total current, leaving the diodes to pass only 700 mA . I made up a small PCB to carry the resistor and diodes, and fitted it in the space occupied by IC402. The 12 V regulator was mounted above the line output transistor on the set's chassis frame. All was well until the 12 V regulator failed a week or so later as a result of excessive heat dissipation, probably because the chassis, being made of steel, is a poor conductor of heat.
My next idea was to build a linear series regulator on the base of the original regulator's heatsink. A suitable circuit was devised and the top of the heatsink was drilled to take a TO3 transistor. I selected a BUT13

transistor which has a 28A maximum collector current rating. This again worked well, but the heatsink wasn't large enough to dissipate the 60 W odd required. As a result the transistor soon suffered from thermal runaway. Use of a larger heatsink within the set was not possible, so it was back to the drawing board.

The Solution

To reduce the dissipation, I started to think about the possibility of a chopper circuit. After searching through some catalogues I came across a National Semiconductors device, the LM2576-ADJ, which is referred to as a "simple switcher". Its specification is impressive. The case is a TO220, like a TDA2020, and only six external components are required to form a complete switch-mode power supply.
To quote from the manufacturer's data sheet: "The

LM2576-ADJ series offers a high-efficiency replacement for popular, three-terminal adjustable linear regulators. It reduces the size of the heatsink required substantially - in fact in some cases no heatsink is required."
A block diagram of the circuitry within the device is shown in Fig. 1. The oscillator's frequency is 52 kHz , fixed. The unregulated input is fed to pin 1 , while the output is at pin 2 . There is feedback to pin 4 , which is one of the inputs to the error amplifier stage. This compares a potted-down sample of the output voltage with an internal 1.23 V reference. Any difference will vary the pulse width of the output at pin 2.
Pin 5 enables the device to be switched on/off. This feature is not required here. High is off, low on. The device has full thermal shutdown and current limiting, and a maximum switched current capability of 3A.
Fig. 2 shows the complete circuit. Cl decouples the input at pin 1. The chopper transistor within ICl provides a squarewave output at pin 2. It's driven by a pulse-width modulated squarewave at 52 kHz . Feedback is taken from the junction of R1 and R2 to pin 4.
The output at pin 2 is fed to a low-pass filter that consists of L1 and C2. When the chopper transistor is switched on, diode D1 is reverse biased and C2 charges via Ll . When the chopper transistor is off, Dl conducts and the energy stored in L 1 and C2 supplies the load. Our original prototype developed about 10 mV of ripple across C2. If you think that the circuit looks familiar, this is probably because it's the basic series chopper circuit used in several TV chassis from the Thorn 3000/3500 series on.
D1 is a fast-switching Schottky barrier diode. Cl and C2 are of the low ESR (effective series resistance) type, especially suited for switch-mode power supply use. If you try to use components other than those specified in positions $\mathrm{D} 1, \mathrm{C} 1$ and C 2 the result may be poor stability and incorrect regulation. The output voltage is set at 10.9 V by the values of the potential divider resistors R1 and R2, which have a one per cent tolerance. This is the full-load output voltage: off-load the output may rise slightly to 11 V .

Testing

The first regulator I built worked well on the bench, even when it was run at slightly above 3A. But problems were encountered when the module was fitted in the TV set. The original bobbin inductor used generated too much EMI (electromagnetic interference), which was picked up by the scan coils. The interference produced fine horizontal lines that ran up the picture. Use of a toroid inductor solved the EMI problem - this type tends to hold the magnetic flux within the core. The one used was obtained from Maplin - neither Farnell nor RS Components stock a suitable toroid inductor.

Construction

Fig. 3 shows a suitable PCB layout. The board is the same size as the original regulator. Thus the module can be made up as a plug-in, pin-for-pin replacement for IC402. The heatsink specified gives good results in free air but runs on the warm side within the set. A good alternative is to use the original IC's heatsink, turned upside down with a hole drilled to take the LM2576-ADJ - see Fig. 4. Apply heatsink compound to ICl's tab before fitting it to the heatsink. An insulating washer is not required as the tab is connected to the earth line.
The leadout wires trimmed from D1 can be used to

Fig. 2: Circuir diagram of the module.

Fig. 3: PCB
layout, shown with Farnell 179-935 heatsink. (a) Underside, (b) top.

Fig. 4:
Alternative arrangement using the original heatsink mounted upside down on the PCB.

Component details

C1	$100 \mu \mathrm{~F}, 35 \mathrm{~V}$ low ESR
C2	$1,000 \mu \mathrm{~F}, 25 \mathrm{~V}$ Iow ESR
D1	SB340 Schottky diode
R1	$8.06 \mathrm{k} \Omega 1 \%$
R2	$1 \mathrm{k} \Omega 1 \%$
IC1 1%	LM2576-ADJ
L1 $\quad 150 \mu \mathrm{H}, 3 \mathrm{~A}$	
TO220 heatsink	

Farnell 580-533
Farnell 236-767
Farnell SB-340
Farnell 340-042
Farnell 339-179
Farnell LM2576-ADJ
Maplin JL72P
Farnell 179-935
make the three mounting pins. A blob of Araldite can be used to hold Ll against the heatsink.
One advantage of this module is that individual components can be replaced should they fail. This is not possible with the original regulator, which is potted in epoxy resin and is thus non-repairable.

Reports from David C. Woodnott

Sony CCDF450

Intermittent playback colour with one of these machines was cured by replacing the 4.43 MHz crystal X301. D.C.W.

Canon E60, E1 10 etc

Because so many varied faults are now occurring with these models we will now repair them only after replacing the 31 miniature can electroyltic capacitors. It's important to clean up the leaked electrolyte on the PCB thoroughly before fitting the replacements. The larger electrolytics do not usually cause problems.

Care is required when fitting the replacements, as they are very densely packed in groups. In view of the high percentage of capacitor related problems with these models, we are looking into the possibility of obtaining an ultrasonic cleaning tank of the type used by watchmakers. Apart from this problem, these camcorders are remarkably reliable. D.C.W.

Sony CCDTR105

It's not uncommon, when there has been an impact, to find that the E-E pictures are intermittent or flicker, etc. The usual cause is that connectors CN801 and CN901 on the sensor and process PCBs are disconnected from the print and in need of resoldering. D.C.W

Panasonic NVSIB

This unit would power up for about thirty seconds then de-power. Whilst it was in operation the E-E pictures were OK via the AV lead
but the viewfinder remained blank. Eject was the only other working function. We also noticed that only a partial mechanical reset occurred at power-up.
The viewfinder problem was a red herring as its cause was doubtless impact damage: replacing the casemounted viewfinder socket B801 restored operation - at least during the brief period before de-powering. The main fault was cured by replacing R6021 on the main PCB. It's part of a composite assembly of four $1 \mathrm{k} \Omega$ resistors and was opencircuit. D.C.W.

Sanyo VMEX25P

An intermittently sticking autofocus drive has been the problem with several of these camcorders. We now replace the unit, as cleaning rarely provides a lasting cure. Note that if the autofocus motor windings are open-circuit the zoom motor won't work. Also that care is required when fitting a replacement autofocus motor - if the soldered pins to the ribbon cable are overheated the plastic moulding can melt. D.C.W.

Canon E200E

Severe mistracking is common when the slant guides are loose. They become loose in the coaster guide base and work their way out sometimes they fall right out. It's usually possible to refit them and secure them in position with a suitable Loctite product. If they are loose and catch during the loading sequence, the result can be damage to the vee-block assemblies. D.C.W

Sony CCDV30

This old-timer was OK apart from the fact that it had no viewfinder picture. We found that C954 $(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ was short-circuit and PS951 (N15) open-circuit. These items are on the electronic viewfinder PCB. Replacing them restored correct operation. D.C.W.

Sharp VLMX7

This twin-lens wonder had a mechanical problem - it chewed tapes! The mechanism is vaguely
similar to the Sony Q one, and required replacement of the same parts that also fail in the latter, i.e. the TV stopper assembly, the TV guide arm assembly and the arm TV loading. The build quality is below that of the Sony mechanism, but then so is the price of these items.
We must admit to a degree of trouble in getting this one set up: the reason could in part be our lack of familiarity with the Sharp version. In the end however all was well. If you attempt one of these and, like us, you are not familiar with the mechanism it's as well to drive the loading motor very slowly while making alignment checks, as the thin material used for some items tends to bend. D.C.W.

Panasonic NVM40B

Although the chroma content was present there was no luminance in the E-E signal. Playback and all other functions were OK. A look at the circuit diagram showed that pin 4 of the luminance processing chip IC3001 is linked directly to pin 23 of the chroma processing chip IC8001, the line (A6) controlling an input switch (line/cam) in IC3001. Because pin 4 was permanently high, the switch was stuck in the line position. Hence no E-E pictures.
Line A6 is normally held low by a $47 \mathrm{k} \Omega$ resistor to chassis (substrate) in IC8001 (pin 23). We were able to confirm that this resistor was intact. The connection to pin 4 of IC3001 was not intact however. A wire link between IC3001 and IC8001 provided a cure, but despite a close inspection no print break or dry-joint could be found. A puzzle!
What we did discover is even more interesting however. It appears that with later production (?) models the circuit was modified, the link between the two chips being dispensed with. An additional resistor, R3063 ($47 \mathrm{k} \Omega$), is added between pin 4 of IC3001 and chassis. This resistor was opencircuit. It's not shown on the circuit diagram. D.C.W.

VCR BELT KITS / REPLACEMENT VIDEO LAMPS

VIDEO SERVICE KITS

VIDEO SERVICE KITS (Cont.)

AMSTRAD

Contents
BELT SET. PINCH ROLLER. REEL IDLER VIDEO LAMP Order Code: SK41

FERGUSON \& JVC
HRD455/
$\begin{array}{ll}\text { Contents } & \text { Economy Kit Contents } \\ \text { BELTSET PINCH ROLLER } & \text { BELT SET PINCHROLLER } \\ \text { CLUTCHMECHANISM TENSION } & \text { SUPPYYCLUTCH TAKE UP } \\ \text { BAND } & \text { CLUTCH }\end{array}$ Order Code: SK37 $£ 16.00 \quad$ Order Code: SK38 $£ 9.00$

3V58/59/64:65
HRD 170/180/210/230/300/320/370/400/430/530/700/750

contents

BELT SET FINCH ROLLER. IDELR ARM. TENSION BAND Order Code: SK44

3V29/3V30

HR7200/7300,7350
Contents
BELT SET PINCH ROLLER TENSION BAND IDLER TYRES
Order Code: SK05
VT11NT33
Contents
$£ 5.50$

3V35/36.38/39/49

Contents

BELT SET PINCH ROLLER. TENSION BAND. IDLER TYRES

3V31/3V42

Contents
 BELTSET T/UREEL TABLE TYRE PINCHROLLER REE IDERL. TUU CLUTCH TUIDLER TENSION BAND VIDEO LAMP
 Economy Kit Contents BELT SET T/U REEL TABLE TYRE PINCHROLLER, REE IDLER TYRE TJU IDERL TYRE TU CLUTCH
 Order Code: $\$ K 33$ $3 V 35 / 36 ~ 38 / 39 / 49$
 HRD110/1 Contents
 BELT SET. T/U REEL TABLE
 TYRE SUPPLYREEL TABL
 TYRE PINCH ROLLER TEU CLUTCH. THIDLER REEL
 tDLER TENSION BAND
 Order Code: SK35

3V29,3v30
Contents
BELT SET TUREEL TABLE
TYRE SUPPLYREEL TABLE TYRE PANCH ROLLER REEL IDLER TAU CLUTCH. TN IDLER
TENSION BAND VIDEO LAMP

3V44/45/48/53/54/55:57
HRP50/HRD 140/150/158/160
HRD250/2
Contents
Contents BELT SET PINCH ROLLER CLUTCH MECHANISM TENSION
BAN
Order Code: $\mathbf{S K 3 9} \quad £ 15.00 \quad$ Order Code: SK40 $\quad £ 9.50$
FISHER

UNIVERSAL TRIPLER

Price: $£ 4.50$ each
AMSTRAD MODE KIT
Price: $£ 2.75$ each

SEE OTHER PAGES FOR MORE grandata barcains

NV730/NV7

 Content NV777 NV788 Contents Order Code: SK17T

Content

BELT SET PINCH ROLLER.
PLAY IDLER. FF/REW IDLER
TENSION BAND FFIREW TYRE

Economy hit Content BELT SET. PINCH ROLLER TENSION BAND EFIREW TYRE IDL ER TYRE TYRE. FFIREW Order Lode: SK2G 12.00 Order Code: $\$$ K30 AG1200PKJAG1500PK

Contents	
BELT SET. PINCH ROLLER	Economy Kit Contents
IDLER TENSION BAND PINCH ROLLER	
	IDLER TYRE

ER TENSION		IDLER TYRE	
Order Code: SK23	£6. 00	Order Code: Sk24	3.25

NV600 NV688	
Contents	Economy Kit Contents
BELT SET. PINCH ROLLER.	BELT SET. PINCH ROLLER
PLAY IDLER FF/REW IDLER	PLAY IDLER TYRE FF/REW
ENSION BAND	IDLER TYRE

SLOT IN BELT LOADING BEL
PINCH ROLLER. IDLER UNIT TENSION BAND

Ecosomy Kit Content Order Code: SK19 55.00 Order Code SK2O

ELLT SET. PINCH ROLLER. Economy Kit Contents $\begin{array}{lll}\text { OLER TENSION BAND } & \text { IDLER TYRE } \\ \text { Order Code: } \text { SK21 } & \text { I5.00 } & \text { Order Code: } \text { SK22 }\end{array}$

BELT SET PINCH ROLLER DLER UNIT TENSION BAN

Economy Kit Contents BELT SET FINCH ROLLE Order Code: SK1

VIDEO SERVICE KITS (Cont.)

SHARP
路

BELT SET PINCHROLLER
Economy Kit Contents BELT SET PINCHROLLER REEL IDLER. TENSION BAND REEL IDLER TYR
Order Code: $\$ \times 47 \quad$ E8.00 \quad Order Code: $\mathbf{S K 4 8}$
VC500NC571 NC581 NC582NC583NC584NC5F3
Contents Economy Kit Contents

BELT SET PINCHROLLER BELTSET PINCH ROL $\begin{array}{llll}\text { REEL IDLER. TENSION BAND } & \text { REEL IDLER } & \\ \text { Order Code: SK60 } & \text { £9.50 } & \text { Order Code: } \mathbf{S K 6 1} & £ 5.00\end{array}$

VC781NC7810NC7822 NC785NC786NC793NC800 VCA 100 NCA 102 NCA 104 NCA 202 Contents
Contents Economy Kit Contents $\begin{array}{ll}\text { BELT SET PINCH ROLLER } & \text { BELTSET PNCH ROLLER } \\ \text { REEL DRIVE UNIT. TENSION } & \text { REEL DRIVE UNITTYRE }\end{array}$
Order Cade: $\$$ K64 $\quad £ 13.50 \quad$ Order Code: $5 K 65 \quad £ 3.75$

VC681 NC682 NC684NC685 NC693/VC699/NC6F3 VC700 Contents

Economy Kit Contents BELT SET PINCH ROLLER BELT SET PINCHROLLER REEL DRIVE UNIT TENSION REEL DRIVE UNIT TYRE BAND $\begin{array}{llll}\text { Order Code: } \mathbf{S K 6 2} & \text { £13.50 } & \text { Order Code: } \mathbf{S K 6 3} & £ 5.00\end{array}$

FOR MORE DETAILS OF OVER 500 TYPES OF SERVICE KITS.. PLEASE RING US!

BACKUP BATTERIES

REPLACEMENT PHILIPS NI-CAD BACKUP BATTERIES Replaces Ferguson Part No
Replaces Philips Part No's:
138-10138,138-10313.1.2V-90mAh 100p
Replaces Philips Part No's:
REPLACEMENT FERGUSON NI-CAD BACKUP BATTERIES
Replaces Ferguson Part Nos:
00E6-066-001, 2.4 V
Used on: 3V35, 3V56, 3V58, 3V65

REPLACEMENT LINE OUTPUT TRANSFORMERS

JUST ARRIVEDH NEW ITEMS

Satellite PSU Repair Kits

Experience shows that 50% of all receiver power supplies 'bounce' unless the correct precautionary measures are taken when being serviced. A kit of all the recommended parts is supplied for the 4 most popular models, which when fitted should overcome this.

| MAKE \& MODEL | ORDER CODE | PRICE |
| :--- | :--- | :--- | :--- |
| PACE PRD800, PRDD900 | SATPSU1 | 650p |
| PACE SS9000, $9200,9010,9020,9220$ | SATPSU2 | 650p |
| AMSTRAD SRD510, SRD520 | SATPSU3 | 650 p |
| AMSTRAD SRD500 | SATPSU4 | 650 p |

Replacement Video Heads

Muxe	models	PRICE
HITACHI	VT570, VT575, VT576, VT580, VT585 VT588, VTF70	3100p
I.T.T.	VR3761	3100p
JVC \& FERGUSSON	HRD950, HRD960, HRD980, FV46	5000p
LUXOR	VR3761	3100 p
MITSUBISHI	HSE51	3000 p
NATIONAL PANASONIC	NVFS200, NVFS 90 , NVV8000	4600 p
	NVHD100, NVHD101, NVHF100	3100p
	NVSD	1400 p
	AG7330, AG7350, AG7355, AG7450	5000p
	NVFS 100	5000p
N.E.C.	05600	3500p
SANYO	TLS 1000 P . TLS $1001 \mathrm{P}, \mathrm{TLS} 1100$	3100 p
	VHR7800, VHR7810, VHR8000SP. VHR8801SP, VHRD4800	3100p
SHARP	VCH80, VCH81, VFH815	2800p
	VCA33, VCA36, VCA43, VCA44. VCA46, VCA49	1500p
	VCA55, VCA63	2200p
SONY	SLV656, SLV715, SLV757, SLV777. SLV815, SLV825	4600p
	SLv353ub	3200p
	CCDF340E, CCDF500E, CCDV90E, CCDV95E, CCDSP5E	4800p

Original Video Heads

MAKE	models	PRICE
NATIONAL PANASONIC	NVG20, NVG21, NVG22, NVG25 NVG25, NVG28, NVG200, NVD48 PART NO: VEH 0343	3000 p
	NVG33, NVG45, NVG46, NVL23 NVL25, NVL28 PART NO: VEH 0417	2900p
	NVJ30, NVHJ33, NVL20, NVL21. NVG30, NVG31, NVG40, NVG 130 PART NO: VEH 0416	2700p

Audio Control Head

AMSTRAD ORIGINAL NO: 150731

Used on: AMSTRAD TVR1, 2, 3, VCR $4600,4600 \mathrm{MKII}, 4700$, FUNAI VS2, VCR $4600,4800,5200,5600,6600$, VIP 3000,5000 Also fits: FIDELITY. FUNAI, HINARI, PROLINE, SCHNEIDER, AMSTRAD ORIGINAL NO. ORDER COOE: AH01 PRICE: 1350p AMSTRAD ORIGINAL NO: 153134
Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, $6100,8600,8602$,
8603, VCR $8604,8700,8704,8714,8800,9005, ~ 8249$, 8603, VCR8604, 8700, 8704, 8714, 8800, $9005,8,8244$
Also fits: ANITECH, BONDSTEC
Also fits: ANITECH, BONDSTEC, CASIO, CROWN, FIDELITY,
GOLDHAND, GRANADA, HINARI, MARQUANT, OMEGE, PRO GOLDHAND, GRANADA, HINARI, MARQUANT, OME GE, PROFEX
SCHNEDIER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG SCHNEDIER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG,
TOWADA, UNIVERSUM ORDER CODE: AHO2 PRICE: 1450
Replacement Audio Control Video Sound
Head for National Panasonic

PANT NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	875 p
VBR 0050	NV300, NV340 etc	875 p
VBR 0061	NV777 etc	875 p
VBR 0103A	NV250, NV450 etc	625p
VBR 0125		625p

8 way Preprogrammed Universal Remote

 Control[^0]
Replacement Video Cassette Housings

maxe	models	COOE	Price
AKAI	VS35, VS53, VS55, VS56, VS75	CH18	2800p
GRANADA	VHSDP1	CH05	1100p
	VHSYJ2	CH01	2800p
goldstar	GHV1290P, 1291P, 1295P, 9400, 73401, GSE 1295P, GSE1891P, 200010, 20051Q $\mathrm{VCP4200}, 4300,4301,4305, \mathrm{VCP} 4306,4371,4315,4316,4320,4321,4325$	CH25	2000p
	GHV5 ${ }^{\text {, }} 1221,1232,1240,1241,1242,1244,1246,1248$, GHV8000, 8200	CH26	2900p
FERGUSON \& J.V.C.	3V38, 3V39, 8943, 8944, 8951, 3V35, 3V36, 3V49, HRD 110, 111, 120, 121, 225	$\mathrm{CHO1}$	2800p
	$3 \vee 42,3 \vee 43,3 \vee 44,3 \vee 45,3 \vee 48,3 V 53,3 V 54,3 V 55,3 V 57,8945,8947,8948$, HRD 140. 141, 150, 157, 158, 160, 250, HRD257, 455, 565, 566, 725, 755	$\mathrm{CHO2}$	2800p
	8948, 8950, FV10B, 12L, 13H, 44T, 20B, 21R, 22L, 26, 395, HRD230, 430, 530	CH03	2600p
	3V58, 3V59, 3V64, 3V65, FV11R, 8950, 8951, HRD 170, HRD180, HRD370	CH04	2600p
	FV31R	CH19	4300 p
	HRD515, 520, 527, 540, 550, 580, 600, 610. 620, 660, 670, HRD830, 840, 850, 860, 4050, 6600, FV37H	CH2O	2400p
	HRD540, 580, 830, 860, 910, 960, HRD970, HRDX20, FERGUSON FV57H	CH27	2400p
I.T.T	VR3605, VR3905	CH01	2800p
	VR3916, 3926, 3946, 3948, 3976, 3986, 3995, 3997, 6948	CH02	2800p
	VR3916, 3926, 3946, 3948, 3976, 3986, 3995, 3997, 6948	$\mathrm{CH02}$	2800p
NATIONAL PANASONIC	NV730	СН06	4300p
N.E.C.	N830EG, N831EG, N832, N833EG	CH01	2800p
	N895	CH02	2800p
PHILIPS	CASSETTE LIFT ASSEMBLY (69120366) CV186, 190, 286, 471, 562, 761, VR6180, 6182, 6185, 6285, VR6290, 6291, 6293, 6362, 6367, 6393, 6467, 6468, 6470, VR6561, 6670, 6760, 6761,6870,6970	CH05	1100p
	VR6443	CH22	2900p
	VR6448	CH23	2500p
	49SB6	CH_{24}	2500p
SHARP	VCA100, VCH851, VCH852	CH 22	2900p
	VCA103, 103GV, 106, 106GVM, 254GVM	CH23	2500p
	VCS211, 244, 5055, 605, VCB230, VCD806G, 810G, VCT212, 310, 410G, 610	CH24	2500p
TELEFUNKEN	VR2970	CH02	2800p
THOMSON	V320, 321, 323, 326, 4200,4300	CH01	2800 p
	V342, 343, 352, 353, 360, 364, 368, 4210, 4230, 4250, 4400, V5500, 6000, 8540	CH02	2800p
TOSHIBA	V55, v57	CH01	2800p
	V65, v66	CH02	2800p

Service Aids

DESCRIPTION	volume	CODE	Price
VIDEO HEAD CLEANER	75 ML	SP01	140p
SWITCH CLEANER	176 ML	SP02	150p
SUICONE GREASE	200ML	SP03	170 p
FREEZE IT	170 ML	SP04	220p
FREEZEIT	400 ML	SP16	550p
FOAM CLEANER	400 ML	SP05	170p
ANTISTATIC	150ML	SP06	170p
AEROKLEANE	135ML	SP07	2000
AERO DUSTER	150ML	SP08	220 p
AERO DUSTER	400 ML	SP17	550p
PLASTIC SEAL	200 ML	SP09	2000
GLASS CLEANER	250 ML	SP10	160p
COLDKLENE	250ML	SP13	200p
EXCEL POLISH 80	250ML	SP18	150p
ADHESIVE 120	400 ML	SP19	190p
LABEL REMOVER 130	200ML	SP20	240p
REFURB 140	400 ML	SP21	240p
TUBE SILICON GREASE	50 GRAMMES	SP11	200 p
TUBE SILICON SEALANT WHITE	75 ML	SP22	280p
TUBE SILICON SEALANT CLEAR	75 ML	SP23	280 p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150p
DRIVE CLEANER	200ML	SP24	150p
SCREEN CLEANER	200ML	SP25	150p
COMPUTER CARE KIT	-	SP26	2100p

Cassette DC Motors

MOTOR TYPE	Phice
GV MOTOR	170p
9V MOTOR	177 p
12V CW MOTOR	170 p
12 CCW MOTOR	170 p
13.2 CCW MOTOR	290 p

Cassette Tape Heads

HEAD TYPE	PRICE
MONOHEAD	90p
STEREO-HEAD	119
MINI HEAD	150
AUTO REVERSE HEAD	200p

Soldering Accessories

ANTEX SOLDERING IRONS
25 WATT 240 VAC (XS 25 W 240 V
15 WATT 240 VAC (XS $15 W 240 \mathrm{~V}$)
25 WATT SPARE ELEMENT
15 WATT SPARE ELEMENT
SOLDERING STAND \& SPONGES

| SOLDERING STAND (MADE BY ANTEX) | S108 |
| :--- | :--- | :--- |
| SPARE SPONGE | 350, |

SOLOER
18 SWG 500 GRAMMES
20 SWG 500 GRAMMES
22 SWG 500 GRAMMES
DESOLDERING AIDS
SOLDER MOP STAN
SOLDER MOP STANDARD GAUGE $1.2 \mathrm{~mm} \times 1.5 \mathrm{M}$
SOLDER MOP $1.2 \mathrm{~mm} \times 10 \mathrm{M}$
DESOLDERING PUMP

If you purchase more than one Servisol Product, postage \& package will be charged as follows
300 p for 5 cans 450p for more than 5 cans

CD Pick Ups

SONY OPTICAL PICK UP
PART NO: KSS210A SONY CDPC 301M, CDPC 305M 2200p Fits most Sony, Akai \& J.V.C. Portable Hi-Fi and Midi Systems

PART NO: KSS210B
USED ON MODELS
CFD $100,105 \mathrm{~L}, 120,300,440,454,455,50,500,55,58,60$
CFD68, 750, 755, 760, 765, 770, 775, 440S, W100, 100 S
2200p

Transistors \& ICS

BU 508A (PHIL	$80 p$	MJE 13009	100p	2SC 3885 A	350p
BU 810	1100	MJE 18004	125p	2SD 633	70p
BUZ90A	180p	STK 6982H	800 p	2SD 1680	2259
CXA 1044P	550 p	STK 7253	450p	2SK 793	400p
HA 13408	350p	TDA 2030H	100 p	2SK 956	1400p
IRFPC40	$400 p$	IEA 2019	200p	2SK 1023	550p
$\underline{272}$	2000	TMP 47C434N	1250p	2SK 1342	750p
L6210	250p	SAA 1300	200p	2SK 1358	600 p
MC 3423P	100p	2SA 1540	55p	68000	500p
M. 15015	250p	2SC 3788	60p	82S147	450p
M. 15016	350 p	2SC 3885	350p		450,

GRANDATA LTD
Tel: 0181-900 2329
Fax: 0181-903 6126

Surface-mount Technology: Design Guidelines

Martin T. Pickering, B.Eng., discusses the factors that determine the reliability and cost-effectiveness of SMD board assemblies

TThe following notes aim to summarise good design practice for surface-mounted assemblies. The idea is not to lay down hard and fast rules but to highlight what should be done and why. Some points may be regarded as contentious. They are however based on my experience over fifteen years as a designer

Copper Track Width

In general tracks should be 0.5 mm (20 thou) wide wherever space permits. The minimum currently recommended track width is 0.2 mm (8 thou). Tracks of this width should be used only where absolutely necessary, since they can cause a significant number of 'fall outs' during bare board manufacture, thereby increasing the unit price. In addition the increased possibility of fractures in tracks of such small width will affect long-term reliability. Local 'necking' of tracks is often unavoidable however, for example where a track must pass between the legs of an IC. But it will affect reliability and can result in solder shorts during board assembly.
Wider tracks may be required where the current flow is significant. But widths greater than 2.5 mm (100 thou) should be avoided since they can cause problems with bare board manufacture and there is a risk of the solder resist wrinkling and peeling when soldering takes place. Because of this, wider tracks should be divided in the form of a ladder, permitting the solder resist to adhere to the board material between the areas of copper. For the same reason ground planes, where required, should be divided by crosshatching.
A further point is that large areas of copper act as heatsinks during the soldering process and can lower the temperature of a solder wave sufficiently to increase its viscosity - this can result in poor solder joints or even prevent the formation of a joint altogether.

Gaps between Tracks

Inter-track spacing should in general be at least 0.5 mm (20 thou). This will minimise the possibility of short-circuits during bare board manufacture. The spacing may need to be wider with high-voltage or high-impedance circuitry. In addition it may be necessary to include a chassis-potential 'guard rail' to trap possible leakage currents. Where a decrease in spacing is unavoidable, it should be used in as few places as possible. Tracks should be spaced evenly, and not bunched together in localised areas unless correct
electronic functioning specifically requires close spacing. Close track spacing increases the risk of short-circuits, leakage current and inter-track capacitance effects. It also maans that the unit will be prone to failure in humid conditions.

Moisture

Moisture penetrates solder resist. The ingress is usually slow, but can increase in humid air conditions when the temperature is raised and lowered in cycles. This effect is known as 'breathing'. It occurs naturally as the temperature varies between day time and night time, and can be accelerated in a cyclic humidity chamber.
Moisture penetration is fastest at the boundaries and where the resist layer is thin. Once it has penetrated the resist it can be removed only slowly, by long-term exposure to hot, dry air. It might never be removed completely.
The effect of moisture, when combined with atmospheric oxygen, is to react with metal to form salts. Active flux agents (e.g. halides) and any impurities or reagents not cleaned from the board before the application of resist will increase the metal corrosion.
Copper salts are soluble and form an electrolyte that readily conducts current between tracks. Tin is prone to whickering (dendritic growth), which again forms conductive paths. The chemical reactions are accelerated by current flow and temperature increase.

Solder Resist

Most solder resist is epoxy based. The exact type should be chosen with care and specified by the designer on the relevant drawing. If the copper tracks are tinned before the solder resist is applied there will be less chance of bare copper being left exposed, but resist wrinkling can occur on wider tracks. Wrinkling may be the lesser evil however, because bare copper unprotected by tin-lead can cause reliablity problems - it is susceptible to corrosion. Unless the copper is tinned before resist is applied, there will always be unprotected copper at the boundary of the resist - especially when a screen is used to apply the resist.
Non photo-definable solder resist cannot be placed with a guaranteed accuracy of better than 0.25 mm (10 thou). The artwork for the board should allow for this tolerance by making the resist-free areas larger than the corresponding solder or test pads. Resist placement accuracy can be
improved by using photo-definable solder resist, albeit at a cost. Accuracy will inevitably decrease as board size increases.

SM Device Pads

Pads for chip surface-mounted devices (SMDs) should be circular or oval and the width should not exceed 75 per cent of the component width. In fact pads should be made as small as possible in accordance with the placement machine's abilities and the ability of the soldering equipment to produce a good joint. Small, circular or oval pads create less stress in a componant than larger pads do. The small size ensures that the amount of solder used is minimised, reducing the cost, and provides a degree of flexibility in the joint (flexibility is undersirable in military applications however, or where vibration is experienced: in such cases the SMDs will be mounted on ceramic substrates that don't flex).
Lack of sharp corners to the pads reduces the risk of shortcircuits and poor joints, since the solder naturally assumes a curved meniscus. The amount of solder increases considerably with larger pads: the joint becomes rigid, and stress caused by thermal contraction or mechanical bending of the PCB can result in fractures within the component. Such fractures may not become apparent until after the unit has been brought into service (stress fracturing will be discussed in a subsequent article).

Pads for gullwing, J-lead and spear- or butt-lead devices can be circular or oblong, preferably with rounded comers, as dictated by the lead contact area. Leaded components don't suffer from stress problems in the way that chip SMDs do. Pad areas should be minimised however, to avoid the risk of short-circuits between leads. The suggestion that pad areas should be maximised to take component misplacement into account is not valid: soldering will still be satisfactory when a component lead covers only 50 per cent of the pad width. It is more important to maintain adequate gaps between pads.

Where a pad adjoins or forms part of a larger area of copper (for example a power supply track) that's more than Imm (40 thou) wide, the solder pad should be separated from the track for most of its circumference. The connection should be via one or more 'necks' of no more than Imm (40 thou) width. Otherwise heatsink effects during soldering may cause stress and dry-jointing. This requirement also applies to test pads and plated-through holes (vias).
A via should not be placed beneath a component, where inspection is impossible and flux can be trapped. If this requirement cannot be met, provision must be made for testing the integrity of the through connection electrically and the height of the component above the board must be a minimum of 0.25 mm (10 thou) for cleaning, if required, to be feasible.

Infra-red Reflow

Infra-red reflow is not a hot-oven technique. It is a direct radiation method, where any part of a component that's exposed to the radiating elements can become hot enough for solder to melt and any part not not exposed cannot melt solder. Hot air build up is detrimental to component reliability and must not be relied upon to melt solder.
The colour of components and leads is important - black parts can become appreciably hotter than white or reflective parts. Unfortunately we have very little control over colours at present, but bear this in mind because it's a serious drawback with the infra-red method.
Care is required over component selection. Some IC carriers for example have J leads that are out of sight beneath the plastic moulded body and can be reliably soldered only by using a vapour-phase process. Conventional leaded

components such as electrolytic capacitors should not be exposed to infra-red radiation because damage can occur.

Wave Soldering

The orientation of components is important with wave soldering and the spacing between them is generally more critical. High or wide components should not have other components within their 'shadow boundary'. Since this is determined by the direction of travel over the wave, the direction must be decided at the very beginning of the design process and must be stated clearly on the relevant production drawing. While a vibrating-wave technique can greatly reduce both shadowing effects and dry-joints caused by flux vapours being entrafped, the technique should not be adopted to eliminate bad design practice.

Board area is important, because bow and twist effects as the board is heated and cooled put enormous stress on SMDs and tend to increase with board area. Provided the interconnection method is suitable, a number of small boards connected to a mother board after soldering can be more reliable than the same number of components arranged on one large board. The maximum practical board size for optimum reliability is about 100 mm (4in.) square - bear in mind that it will probably be equivalent to a conventional component PCB with an area three to four times as great.

If a large board is essential, the effects of bow and twist can be minimised by predefining the lines along which the bending will occur: put the components into individual clusters separated by milled or punched slots between which the interconnecting tracks run. The lines of greatest weakness thus contain only tracks. To avoid sag during the soldering process, minimise the width of the board or use a supporting structure.
If a number of small daughter boards are to be soldered to it, the mother board should again be narrow or supported to minimise sag, or a rigid palate should be used to carry the daughter boards. Whichever method of supporting the daughter boards is selected, it should be considered during the early design stages since the choice is affected by the soldering machine's requirements, the boarder that's required to be free of components, the supporting structure material (metal can affect wave temperature), the width of the solder

An example of surface-mounted component technology: part of board VC60 in the Sony CCDTR55 camcorder.
machine tracks (has it been standardised for previous boards?), the direction of travel, the amount of sag that can be tolerated and other considerations.

Cleaning

SMD assembly cleaning should be avoided if at all possible, being an extra, costly process. Unfortunately even the 'synthetic' fluxes leave considerable residues unless the soldering process is specifically tailored to meet their requirements. Preheat control is especially important with synthetic fluxes, since the solvent must be evaporated before soldering takes place. Synthetic fluxes can also cause solder 'webbing' when used with certain types of solder resist. The possibility of using such fluxes to avoid the problems and expense involved in washing should be considered most carefully. If the decision is in favour of cleaning, a flux with very low solids content will make the process easier.
Chlorinated fluorocarbon solvents used for cleaning can introduce a health hazard as well as being an environmental risk. The cost of CFC solvents has increased, and there are severe restrictions on their use.
Water-soluble flux provides a reasonable compromise, being cheaper and less environmentally harmful than CFC solvents. In addition, water tends to remove corrosive flux activators that CFC leaves behind.

Inspection

Because of the small size and large number of almost identical components mounted on an SMD board, visual inspection is difficult and often unreliable. Magnification is
necessary, but this reduces the instantaneously visible area while increasing eye fatigue. Automatic assembly or guided manual assembly techniques will, together with carefully written test software, minimise the need for inspection. Since automatic testing is limited in its ability to deal with every type of component, it is important to carry out a comprehensive functional test as well.

Qualification Tests

SMDs are more prone to moisture ingress and the effects of temperature change than their conventional counterparts. A small number of assembly samples should therefore be subjected to environmental conditioning and testing to ensure that the equipment will meet its specification reliably.

Rework

Rework can be difficult, and every effort should be made to avoid the need for it. Rework involves the application of heat to components, introducing the risk of reduced reliability or damage to the PCB and adjacent components.

In Conclusion

It would be impossible to cover all aspects of SMA design in a short article like this. I have concentrated on the considerations that are most often overlooked or unknown to younger engineers. In a previous article, on design reliability, I mentioned that a lot of design knowledge and experience fails to be passed on to younger designers. Because of this, avoidable mistakes continue to be made. Hopefully the advice given here will redress the situation.

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August, September, October, November and December
1993 January, May, June, July, August, September, October and December
1994 January, February, March, April, May, June, July, August, September, October, November and December
1995 January, February, April, May, June, July, August, September, October and December
1996 January, February, March and April
Copies are available at $£ 2.75$ each including postage. Send orders to:
Reed Business Publishing,
Television Back Issues,
Room L302, Quadrant House,
The Quadrant, Sutton,
Surrey SM2 5AS.

Make cheques/postal orders payable to Reed Business Publishing Ltd.

ELECTRONIC TEST EQUIPMENT

Audio - Video - Television - Satellite TV - Telecomunications

The manufacturer who cares about quality \& features rather than being lowest in price!

Television Pattern Generator
Model GV-698/11

32 patterns, 32 internal memories PAL/NTSC/SECAM standards, with I,
B, G, H, M, M, N, D \& K, NICAM, tele-
text all in one instrument.
Optional on screen logotype. (Other pattern generators available from £ 210). £ 1428
Television Pattern Generator Model GV-298

Compact high performance generator. RF and video outputs. Frequency range same as GV$698 / 11,37$ to 865 MHz . Circle pattern included. £ 433

TV \& Satellite Level Meter Model MC-360

Ideal instrument for the professional installer of FM/TV aerials and satellite TV dishes. Covers 48 to 856 MHz and 950 to 2050 MHz Lighweight, compact and rechargeable battery operated. £ 654

Frequency counters

Models FD-250 \& FD-252
FD-250 covers 20 Hz to 160 MHz and FD-252 covers same plus, 100 MHz to 2.4 GHz . Large L.E.D. display. Wide performance at low cost. £ 153 \& £ 206

TV \& Satellite Level Meter Model MC-944
This meter has everything for the top flight instaler of aerials, dishes. CCTV, MATV. SMATV and others systems. Features include TV monitor, spectrum analyser, sync pulse, teletext, printer output, 99 memories, tuneable audio subcarriers, etc. Full autocorrection for superb, unequalled accuracy!. RS-232 as standard. £ 1895

The company has been producing test equipment in Spain for over thirty years, earning a strong reputation for excellent engineering, quality performance at budget prices. The equipment is supported by Alban Electronics from their St Albans facility. These products are suitable for only professional and educational applications.

Functions Generators Models GF-230 \& GF-232

Two versions available: 0.1 z to 1 MHz and 0.2 Hz to 2 MHz . Producing sine, triangular and square waveforms, with variable symmetry Excellent performance. ₹ $153 \& ₹ 206$

CRT Rejuvenator

 Model TA-903

Similar to TA-901, but has three meters to monitor cathode current. Special technique allows repeated rejuvenation of CRT. Supplied in attache style case, for easy field and workshop use. £ 498

CRT Rejuvenator Model TA-901

An essential tool for every TV workshop. Promax have made many thousands. Supplied complete with a set of base adaptors. £ 235

VISA
Prices shown exclude VAT, but includes UK delivery. Most items available for immediate despatch.

ALBAN ELECTRONIC LIMITED

6 Caxton Close - Porters Wood
St Albans - Hertfordshire - AL3 6XT
Tel: 01727832266 - Fax: 01727810546

Self-diagnostic SYSTEMS

The move to using microcomputer control via a data bus has made it possible to incorporate selfdiagnostic systems in many VCRs and TV sets. This can cut down the amount of time spent during a field call. But because of surface mounting and component miniaturisation, with the need for specialist tools to carry out replacements, it can be impractical to complete repairs in the field. As a result we might have to go

Many VCRs and TV sets now incorporate self-diagnostic systems, which have advantages and disadvantages. John Coombes on the new approach to servicing back to the practice of panel swapping, with faulty panels taken back to the workshop for attention. This could in turn lead to decreased reliability, with plugs and sockets giving rise to poor contact and dry-joint problems.
The data bus, which links most of the ICs used in a microcomputer-controlled TV set, enables service adjustments such as height, linearity etc. to be carried out using an 'electronic screwdriver’, i.e. a remote control unit that contains the necessary codes. With this type of arrangement it is usually possible to reprogram the set's EEPROM so that different standards, tuning arrangements etc. can be selected.
Another helpful feature is the ability to enter an ideal set up in the remote control unit. This makes installation very easy. If there is a problem or fault, this can be shown via a remote control unit display. So you can get clues even when there's no tube display.

Philips GFL Series
With the new Philips GFL series receivers, numbers displayed by the dealer service tool (DST - a remote
control unit) provide error codes that indicate the nature of the fault present. There is also a default mode: this tunes the receiver to $475 \cdot 25 \mathrm{MHz}$, with the sound and picture seetings in a predefined state. Two service pins provide an alternative way of entering the default mode. An error memory can store the last ten errors to occur, which is an advantage when dealing with intermittent faults.
DST operation is simple. The relevant circuit diagram has a flow chart which interprets the error code, telling you which area or even component to check or change. I have been pleasantly surprised by the DST. Initially I thought that an experienced engineer should be able to make a diagnosis after a quick look. While this is true, the DST does speed things up and helps you to get to the cause of a fault with the minimum of hassle. It is of particular help with intermittent faults.

Toshiba V3 VCRs

The current Toshiba V3 range of VCRs, which has been the subject of previous articles (see January and March issues), incorporates automatic fault self-diagnosis. When a tape transport or power fault occurs, a special chip detects this and poduces an error code display. With the top-of-the-range Models V804B/V854B the code is shown visually, using the display at the front of the machine.
When the machine powers down or the tape stops running, the fault is noted by the EEPROM for display. The VCR buttons and the remote control unit buttons have to be used to produce the error code display. Code details are as follows.
First two numbers/letters: these indicate the mode in which the fault occurred, as follows:

Our picture shows the Philips Professional dealer service tool.

Standby
Stop
Rewind
Review
Fast forward
Cue
Playback
Still, slow playback
$\times 2$ playback
Stop (moisture detected)
Reverse playback
Reverse playback still/slow
Record
Record pause
Power off eject
Eject
Short FF
Short REW
Audio dub

The centre section of the display indicates the basic fault, as follows:

01 Drum stopped
02
03
04
05
Take-up reel fault
Supply reel fault
Cassette in/out fault
Threading fault
The right-hand numbers/letters indicate the mechanism state when the fault occurred:

01 Front loading out
03 Loading down
05 Tape threading
07 Reverse rotation, pinch roller on
09
0B
0D
Playback, pinch roller off
Stop, main brake on
0D Fast forward/rewind
0 F Position not certain

Panasonic NVSD200B/400B

Panasonic uses delf-diagnostic codes in its NVSD200B and NVSD 400 B VCRs. When the machine detects a fault during installation or normal use it automatically shows an error code on the display screen.
This consists of five digits. The first indicates the area where checks are required (service mode), the second and third indicate the basic nature of the fault (service data) while the fourth and fifth indicate the the circuit that senses the malfunction (service information).
The engineer can obtain service information displays by pressing FF (fast forward), REW (rewind) and eject at the same time or by short-circuiting the service test point (TP SERV) to chassis.
Service mode checks are as follows:
1 Tape protection circuit
2 Tape transport mechanism
3 Mode switch operation
4 Control buttons
5 Capstan motor
6 Drum motor
7 Load/unload operation
8 See below
The mode 8 display occurs only when connecting TP SERV to chassis.

Service data codes are as follows:
$00 \quad$ No problem (operation is normal)

01 Drum has stopped
02
Drum has stopped
Stop other than 04 or 06
Stop during unloading
Capstan rotation fault
Stop during cassette in/eject
Voltage error in record mode
Voltage error except in record mode Data communication error between system control and timer

Mode 1 means check the sensor LED supply and the take-up sensors. The latter can be checked by blocking the light from the LED. If all is well, the service data numbers will show 00 . When the light to an end sensor is blocked the data indication will be 01 , meaning that the drum has

Code	Fault	Check
HOI	Drum stops and doesn't start even after tape unloading.	Drum motor drive circuit.
H02	Tape not wound up during unloading, except eject.	Capstan motor drive circuit.
F03	Mechanism stops during made transition, except eject.	(1) Loading motor drive circuit. (2) Mechanism phase alignment. (3) Mode switch.
F04	Mechanism stops during tape unloading.	(1) Loading motor drive circuit. (2) Mechanism phase alignment.
F05	Tape not wound up during unloading/eject.	(1) Capstan motor drive circuit. (2) Supply/take-up reel pulses.
F06	Mechanism stops after unloading in eject mode.	(1) Loading motor drive circuit. (2) Phase alignment of cassette holder unit.
F07	Record mode supply voltage missing.	Record power supply.
F08	Record supply voltage present but not in record mode.	Record power supply.
F09	No clock pulses between IC6001 and IC7501.	Serial clock data circuit.

stopped. To carry on, press FF, REW and eject together to obtain mode 2.
In this mode the mode switch circuit is checked and the mechanism position indicated. The data numbers provide the indication.
The next mode, 3 , checks that the mode switch circuitry has completed its operations. After each of its mechanism movements has been completed, the data number 00 should be shown if correct.
Mode 4 makes sure that the operation circuit is working correctly. This checks whether system control/servo chip IC6001 is receiving data from the buttons and/or remote control unit.
Mode 5 checks the capstan motor circuitry and whether IC6001 has received information to drive the capstan motor.
Mode 6 does the same for the drum drive.
Mode 7 checks the loading and unloading operation. To check the loading function press the play button. Press the stop button to check the unloading. This mode will be displayed indefiniately until the power button is pressed.
There is some additional service data for mode 4 . This is obtained when an operating button is pressed, giving a service data number shown in the complete service manual for the Panasonic Model NVSD200B.
The self-test display code consists of a single letter and two numbers. Table 1 provides details.

In Conclusion

The developments outlined here show how servicing is changing. Such aids should help us to complete jobs more quickly and increase daily throughput, thus keeping down costs. The problem remains that if the price of new equipment remains low, repairs may still be uneconomical.

Until recently I've been doing only trade repairs. To generate some extra business I decided to run a small advertisement offering "instant satellite repairs". My experience has been that the suggestion of a fast turnaround with a fixed charge attracts more customers than an advertisement that says "repairs from $£ 25$ " or whatever. Certainly Mr Wilkinson thought so, because he phoned and asked me to look at his Amstrad SRD550 which was "flashing red and green".

The Amstrad SRD550 Problem

A quick test at Mr Wilkinson's house confirmed that both LEDs did flash, even with no LNB cable connected. The cause could have been a faulty transistor in the LNB supply, but Mr Wilkinson mentioned that the fault was intermittent. My guess was that the chassis connection to the power supply output plug had gone highresistance, a common fault with this range of receivers.
Nowadays I can't get away with burning holes in the customer's carpet, and I don't like to work in the back of the van. So I took the receiver back to the workshop and

fixed it by adding a wire between the power supply and decoder screening can. As a precaution, I adjusted the low-voltage rail to 4.95 V - with some receivers this voltage has risen as high as 6 V when the earth wire has been added.
When I reinstalled the receiver at Mr Wilkinson's house it worked very well, but the pictures were distinctly grainy. Terrestrial TV pictures were better but not perfect. To ensure lowest possible losses, I made up an RF lead using satellite cable. This was used to link the satellite receiver to the VCR. It produced "the best pictures I've had for years" according to Mr Wilkinson, who paid my fixed charge quite happily and assured me that he would recommend me to his friends.

Tardis Electronics

In a previous report I mentioned Terry Boyd who runs Tardis Electronics. Being desperately in need of an EPROM to replace a defunct one in a D2MAC decoder, I rang Terry - I remembered having seen some in his shop. He was in a bit of a state because three enormous warehouses next door had burnt to the ground the day before. Luckily he'd been there to ensure that the firemen kept his shop roof nice and wet. He was able to send me a used but erased EPROM at a very reasonable cost. His stock ranges from the very old 2708 to the more recent 27C512. Pity he has no Megabit EPROMs, but you can't have everything!
After a further problem Terry moved Tardis to Station House, Hind Heath Road, Sandbach, Cheshire. The phone number remains 01270763029 (8 am to 6 pm except saturdays).

An Impossible

A shop some miles away passes me its 'impossibles'. This week it was a Pace SS9200 which I was told "simply ticked". On first inspection it looked as if the receiver had not been touched. In fact nearly every component on the primary side of the power supply had been replaced - but what a nice, clean job!

The cause of the problem turned out to be an open-circuit, 100Ω surface-mounted resistor beneath the board. Once the receiver was up and running however I noticed that the
characters in the on-screen displays were 'embossed' - instead of the usual stark white, the channel names were outlined in black and were not easy to read.
The 5 V supply was a little low. The 12 V supply also produced a low reading on the d.c. range of my meter. I replaced the usual culprits for ripple, C21 and C25 (both $2,200 \mu \mathrm{~F}$), but this only made the problem worse! The voltage on the 12 V rail had now risen to 13 V , though the 5 V supply was correct. This was clearly an impossible situation, so I replaced the brand new chopper transformer T2 with one from my own stock. Problem solved.

Exploding SRD540s

According to the installer who brought me an Amstrad SRD540 it had gone bang, belched smoke and destroyed the LNB at the dish. I took his account with a good dose of salt until I checked the unit on the test bench and found that the LNB output voltage measured 54 V !
After hurriedly disconnecting the receiver I opened it and discovered that several capacitors had burst. A quick look at the circuit diagram showed that that these were associated with the 12 V supply as well as the LNB supply. I had an awful feeling that repairing the power supply fault would be only the start!
Feedback from the power supply's 5 V output sets all the other outputs. If the 5 V output is low, the power supply will increase all its outputs in an attempt to get that 5 V . I checked the following: C $622(2,200 \mu \mathrm{~F})$, D608 and the optocoupler. In addition I checked for a broken copper track between the 5 V supply and the optocoupler, since this has been known to be the cause of high output voltages. In fact D608 was open-circuit, though it produced quite a sensible reading in circuit. Luckily I knew that 0.7 V was far too high a forward voltage reading for this type of diode.
I replaced D608, C622 and, for good measure, the optocoupler. The capacitors in the 12 V and LNB supplies also had to be replaced, along with TR303 and TR304. Once this had been done the receiver lit up, but produced a blank screen and very distorted sound. A new decoder unit resulted in an excellent picture,
while the cause of the audio fault was traced to IC3. All in all a very expensive repair!
Later that day I had an SRD550 with precisely the same symptom. This time the cause was C622, not D608. Someone had already attempted to repair it, and as a result the power supply contained several incorrect parts that had to be replaced.
When I finally got a picture there were two distinct hum bars that travelled down the screen. I replaced the mains bridge rectifier's $68 \mu \mathrm{~F}$ reservoir capacitor but this made no difference. It took me a time to realise that the cause of the fault lay with the yellow-banded transformer. which must have come from an SRD510. Fitting the correct redbanded transformer restored correct operation.

D2MAC Problems and e-mail

I've received a large number of interesting enquiries since I published my e-mail address in the magazine. Most of them I have been able to answer, but one that comes up regularly is "why does my ABC D2MAC decoder do such and such with my XYZ receiver?" Now if a man goes out to buy a tyre for his car
he invariably takes at least the wheel, if not the car, to make sure that the tyre fits. Unfortunately the same principle is not followed when it comes to D2MAC decoders, and as a result problems arise.
My first question is always "has the decoder ever worked correctly with your receiver?" Some receivers and some decoders are able to accept various kinds of input signal, provided the correct baseband selection is made with the respective menus. Some have no such option, so that choosing a suitable decoder becomes a game of Russian roulette. To make matters worse, the connecting cable will sometimes degrade the input signal and thus prevent the decoder from working reliably.
My advice therefore is to buy the decoder only after you've checked that it works with your receiver. This will add to the expense, but at least it will guarantee that you get one that works. Alternatively, buy a receiver and D2MAC decoder combined, or at least one manufactured by the same company. This way you won't get into arguments, should a problem arise, about which unit is faulty.
Bear in mind that most D2MAC programmes use some form of Eurocrypt encoding, and that the

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via email. You can reach him via the Internet at:

jackarm@netcentral.co.uk

> No letters or phone calls please: he can cope with e-mail requests only. One model per message - state make/model and fault symptoms.
official smart cards are generally not available in this country. This may put you in the hands of pirate card suppliers. With the best will in the world they can't guarantee that their card will work with your decoder and keep on working.

Keep sending the e-mail enquiries. But remember that I answer, on average, ten an evening after a hard day's work! Include all relevant information - make, model, connections, symptoms, fault history, tests carried out, location but keep it short. See box for details. Even if you don't have a question, you can send an e-mail to say hello or exchange information about new faults.

Test Case 401

It's spring! - well almost. On the strength of that thought Resident Workshop Sage decided to abandon his stool in the corner and take himself off in search of his beloved steam trains and coal smoke. As a result Television Ted, burdened with Sage's video repairs as well as his own TV workload, was even more grumpy and contrary than usual. This did little for Cathode Ray's morale, as he struggled against the tide of awaiting-repair TV sets and VCRs.
He staggered into the workshop with a 25 in . Mitsubishi TV set - the accompanying job card suggested that it was one of the few sets that wasn't suffering from an intermittent fault. "Scrambled picture" it said. Sure enough the picture that appeared did look rather like a scrambled satellite display, though more NagraSyster than VideoCrypt. The image had a basket-weave effect, with line tearing and wildly-drawn, sometimes steeply-sloping, scan lines. In the middle of the picture there was a horizontal band, about lin. $/ 3 \mathrm{~cm}$ high, that was less affected. And at the top and bottom there were black gaps that were intersected with odd scanning lines which sloped up and down. There was clearly something very strange about this set's field scanning.

Ray's first action, after removing the back cover, was to check for hash or ripple on the LOPT-derived field output stage supply. There was no significant disturbance at supply pin 7 of the AN5521 field output chip IC401. On transferring the scope's probe to pin 2, the field scan output pin, Ray found a messy, noisy waveform. There was a field-rate ramp of sorts, complete with flyback pulse, but the display was marred by spurious hash and spiky ripple. Some of this interference was found, at a lower level, riding on the field flyback pulse at pin 3 of the chip.

The input to the field output chip is a ramp waveform, at pin 4. There was some evidence of disturbance here. The ramp comes from a jungle chip, via R401 ($3.9 \mathrm{k} \Omega$). Upstream of R401 there seemed to be very little wrong with the waveform.
This all suggested that the root of the problem was in the field output stage, so Ray concentrated on IC401 and its immediate circuitry. The PCC panel attracted his suspicion: a transductor that carries line and field waveforms is mounted on this panel. It was soon proved innocent by fitting a substitute panel from a good working set.
Electrolytics and diodes can do funny things thought Ray as he replaced the flyback voltage generator components C411 and D401. They can indeed, but these hadn't been doing so - as the reappearance of the strange, strangled picture proved.
Replacement of C412 and C567 in the field output chip's 24 V supply made no difference either. Must be the chip then. But it wasn't, a new AN5521 giving exactly the same results. What now?
The minutes ticked by to become hours as Ray puzzled and probed. He finally got Television Ted interested in the problem. With just a single glance at the twisted and torn picture, this worthy went straight to the faulty component. While fitting a replacement he asked Ray if he had ever serviced old Finlux sets. Of course he hadn't!
The cost of the faulty component was a matter of pence. It wasn't far from the field output chip or, electrically, the field scan coils. So what had been the trouble with this TV set, and which two-legged component had been the cause? You'll find the answer on page 490.

Long-distance

Television

DX-TV conditions and reception, news from abroad and on the satellite scene. Roger Bunney reports

AsiaSot-2
($100.5^{\circ} \mathrm{E}$) on test: a 3.905GHz PAL test signal (vertical polarisation) received by Bandula Gunasekera in Sri Lanka on December 29th 1995, of 11.45GMT.

February was another quiet month for terrestrial DXTV reception. The awful weather put paid to any tropospheric openings, while Sporadic E propagation continued to be at minimal levels, which is not surprising at this time of the year.
There was one small SpE opening, on the 3rd, when Ryn Muntjewerff (the Netherlands) received Russian signals on chs. R1-4 during the period $1020-$ 1205GMT, including St. Petersburg R3 and ORT chs. R1 and R3. He also received EestiTV (Estonia) ch. R2, still using the EBU bar pattern.
Apart from that the only SpE signals noted were from TVE (Spain) on the 5th (ch. E2) and an unidentified ch. E4 signal on the 10th. There are signs that an improvement is on the way the mid-winter double-hop transatlantic reception reported last month and the prolonged, good season in the southern hemisphere. In addition we've had the lowest sunspot count in

cycle 22 and cycle 23 is just about to start. New Zealand ch. $1(45 \cdot 25 \mathrm{MHz})$ was received in California on January 17/18th; also during that month Australia ch. A0 $(46 \cdot 25 \mathrm{MHz})$ was received in Port Elizabeth, South Africa

Transatlantic SpE

Six News, the amateur radio bulletin for 50 MHz enthusiasts, has recently published an extensive report on transatlantic SpE reception, reprinted in part from the American magazine $Q S T$. Though the conclusions will be well-known to TVDXers, the findings nevertheless make interesting reading.
The 50 MHz openings on July 5th, 6th and 7th 1995 were the most extensive on record, with UK/Benelux operators in contact with hams as far west as San Antonio, a distance of some $7,800 \mathrm{kms}$. The 1995 tables show that UK-US amateur radio contacts were made on June 13th, 19th, 20th, 21 st and 27th and July 2nd-10th inclusive. Mid-June to mid-July is the peak period for potential transatlantic reception. Graphs show a daily pattern with a first peak at around 1230-1430GMT and a higher, sharper peak at $2000-2230 \mathrm{GMT}$. The latter is certainly borne out by DX-TV results, though few TV signals have been seen during the lunch period in the UK.
From experience, once multiple-hop SpE propagation is established the signal levels can be high. The maximum usable frequency rises from ch. A2 $(55.25 \mathrm{MHz})$ upwards (ch. A3 is
at 61.25 MHz , ch. A4 $67.25 \mathrm{MHz}, \mathrm{A} 577.25 \mathrm{MHz}$ and A $683 \cdot 25 \mathrm{MHz}$ - these are vision carrier frequencies). Chs. A2-5 inclusive have been received in the UK in the past. The signals are often subject to multipath ghosting/smearing.
Really good openings spread along the eastern seaboard of the USA and Canada and have continued until past our midnight. So this year try turning your aerials to the north west (280°) and tune, from June 15 th, to ch. A2. You may receive something startling! Remember that North America uses system M (525 lines, 60 fields), so the pictures may need locking. A scanner is very useful for monitoring the nominal video carriers - listen for the first 60 Hz buzz of incoming video.

Satellite Sightings

Brian Phillips TV Services (Edgware) has provided the answer to the mystery caption shown in the March column (page 340). It is indeed Hebrew, the translation being
"transmission direct from the Synagogue in Jerusalem". Brian wonders whether any Israeli programmes will be available now that signals from most Arabic countries are available across the south-eastern sky. The Israeli AMOS satellite, with Ku-band transponders, was due up in January, but nothing has been seen. Brian reckons that if an Israeli TV service was available he'd have many customers in his area.
The tanker Sea Empress hit the rocks outside Milford Haven
on February 15th. Several SNG vehicles were present during the salvage attempts over the following week. The
12.536 GHz vertical transponder aboard Eutelsat II F3 at $16^{\circ} \mathrm{E}$, a favourite with Sky, was used extensively. An identification variant "TSG 95 " caused some uncertainty: it was later seen with the "UKI 149" identification caption. BBC Network and BBC Wales used transponders aboard the Orion Atlantic satellite at $37.5^{\circ} \mathrm{W}$, both with sound in syncs (SIS) and clear PAL
The IRA bomb at Canary Wharf led to several SNG signals. Roy Carmen (Lake, IW) was sat zapping with his new installation when, at 1950 hours, he came across the first link from Canary Wharf via Eutelsat II F4 at $7^{\circ} \mathrm{E}$. A BBC UKI 118 feed (with SIS) was later seen via Telecom 2C at $3^{\circ} \mathrm{E}$, using the $12 \cdot 606 \mathrm{GHz}$ horizontal transponder. This was followed by a facilities house providing a feed to News at Ten via Eutelsat II F4, using the 11.003 GHz horizontal transponder, then UKI 76 via Eutelsat II F3 at $16^{\circ} \mathrm{E}$ $(12.525 \mathrm{GHz}$ vertical). A further signal from this satellite, at $11 \cdot 161 \mathrm{GHz}$ horizontal, provided very detailed information. Ray was able to follow
developments at Canary Wharf as the news unfolded during the evening.
UKI 149 is a busy little SNG van. It was outside the gates of Kensington Palace on February 29th at 0800, awaiting any news on the Princess Di divorce, then on March 1st it was at Newbury to cover the tree people, both lots of signals being sent via Eutelsat II F3 at $12 \cdot 536 \mathrm{GHz}$.
Paulo Raymundo lives in an 8th floor flat by the sea at Bahia, Brazil. Despite this limitation he has a 1.5 m dish, with 0.8 dB SSM LNB, aimed at Intelsat K at $21.5^{\circ} \mathrm{W}$ for Ku band reception and an 87 cm tracking dish with $18^{\circ} \mathrm{K}$ noise Drake LNB for C band reception. He receives 16 unscrambled channels from BrasilSat Bl at $70^{\circ} \mathrm{W}$, sparkliefree with threshold extension, and five scrambled analogue channels. Twelve digitally compressed channels are also available from this satellite, via just two transponders.

Raymundo reports that GloboSat (Murdoch, News Corporation) opens with 72 compressed channels via eleven transponders aboard Intelsat 707 $\left(50^{\circ} \mathrm{W}\right)$ in May. This satellite is above our horizon.
If your daytime Clarke Belt pictures were a little snowy over the period February 29thMarch 4th, blame Sun outrages which typically affected PAS-4 $\left(68.5^{\circ} \mathrm{E}\right)$ at 0737 , Astra $\left(19.2^{\circ} \mathrm{E}\right)$ at 1046, Intelsat $702\left(1^{\circ} \mathrm{W}\right)$ at 1212 and PAS-1 $\left(45^{\circ} \mathrm{W}\right)$ at 1525, all times GMT. Thanks to John Locker (Wirral) for this information.

Terrestrial TV

Radio-operated car keys:
More information on this subject from RSGB EMC committee member Dave Lauder, following my mention of it in the February column. The keys operate at 433.92 MHz , with the transmitter in theory limited to 10 nW and the local oscillator in the receiver running continuously with a radiation limit of 2 nW e.r.p. Transmitter powers can in practice be as high as ImW. With the greater use of radiocontrolled locks, problems are increasing. A 70 cm radio amateur operating with 5 W into a colinear array can immobilise car locks within a radius of 100 200 yards.

LT communication systems:

Peter Schubert (Rainham) has sent me an article from Buses, dated January 1996, describing London Transport's Countdown communication system. Bus odometer (distance recorder) data is transmitted back to the Wood Green base in Band III, which is also used for LT transceiver voice operation (emergencies only).

The Netherlands: Regional broadcasting via Nederland-2 transmitters is to start this September in thirteen regions. An earlier opening, in April, applies in the Drenthe and Zuid Holland regions. Lopik continues to use ch. E4 although parallel $1,000 \mathrm{~kW}$ e.r.p. transmitters operate in chs. E37/52.

Norway: NRK is already carrying the corner identification 'NRK1'. NRK-2

should come on air this August carrying satellite (Telenor) distributed signals, initially in analogue PAL form.
Thirty regional TV franchises have been awarded by the Media Administration Department, most operating at UHF with relatively low powers. Band III may be used in several remote areas,

A new weather channel has been opened via DF5-3 (Kopernikus) at $23.5^{\circ} \mathrm{E}$.

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tei: 01202-738232 Fax: 01202-716951

The JJB/4 Bilboard highgain wideband bowtie dipole assembly, with grid reflectors and single directors, which is available from HS Publications - see the accompanying text for the address and further details.
such as Finnmark and Svalbard, to extend coverage. The regions are Ostfold, Romerike, VestAgder, Stavanger, Romsdal, Nordmore, Tromso, Oslo, Hedmark/Oppland, Aust-Agder, Bergen, Sunnmore, Helgeland, Ost-Finnmark, Asker and Baerum, Drammen/Numedal, Ovre Telemark, Sogn, NordTrondelag, Bodo, VestFinnmark, Follo, Vestfold, Grenland, Fjordane, SorTrondelag, Harstad, Svalbard. Transmitter power and channel details will follow when known. Our thanks to A.G. in Oslo for this information.

Russia: At least twenty private TV transmitters are in operation in chs. R1-5. Possible SpE 'catches' (powers over 1 kW e.r.p.) are as follows:

Ch. R1 Ulyanovsk
'Provintsiya', 1 kW .
Ch. R2 Krasnodar
'Yekagerinodar' 5 kW and Novozhatkovo (Primorsk kray) 'Gama' 5 kW .
Ch. R4 Novosibirsk 'Region TV' 5 kW .
Ch. R5 Vladivostok 'Gamma' 5 kW and Amursk (Khabarovsk kray) 'AMV' 1 kW .

The last four are located in the Asian part of Russia.

UHF DXing Aerial

The Triax BB wideband bowtie/grid type UHF aerial has been popular with DXers, having a relatively flat response across $470-860 \mathrm{MHz}$ with useful gain at 435 MHz as well $(70 \mathrm{~cm}$ amateur band). HS Publications, 7 Epping Close, Derby DE3 4FS (01332 381 699) has introduced an upgraded version of the four-bay array, Model JJB/4 Bilboard Grid, which has a bolted on strip carrying four directors, one ahead of each dipole. Gain is 13.5 dBd mid band. A single JJB/4 costs $£ 34.96$ (plus $£ 5$ carriage) including the director unit. Stacked versions are also available.

Satellite TV News

The Italian national TV channel

 RAI-3 has joined RAI-1 and -2 via Hot Bird at $13^{\circ} \mathrm{E}$, with a Superbeam footprint. The fulltime unscrambled transmissions are available at 11.530 GHz (vertical).Intelsat 708 was lost when a new-generation Chinese Long March 3B rocket exploded seconds after take-off on February 14th. It was due to take up orbital position at $50^{\circ} \mathrm{W}$, serving Latin America. Instead

Intelsat 707 will take up this position.
The new Spanish satellite channel Canal Sur is now in operation via Hispasat at $30^{\circ} \mathrm{W}$.
RTE (Ireland) is expected to take an Astra 1E transponder to provide a digital TV service once reception hardware becomes available.
Jean-Louis Dubler reports that TMC, M6 and Euronews have joined the digital package available via Eutelsat's Hot Bird at 13° E, along with TF1, France 2 and 3 and France Supervision 16/9, using MPEG in the clear. TMC and LCI are to join the future Canal Plus digital package via Astra. Their analogue transmissions via Telecom 2B will then cease.
The Malayan MEASAT-1 is now in orbit at $91.5^{\circ} \mathrm{E}$. It will provide twenty TV channels from mid-Summer. Apstar-2R is to be launched in late spring at $77.5^{\circ} \mathrm{E}$, with coverage that extends from Australia (just touching) to Eastern Europe. Major broadcasters have taken transponders. Apstar 1A is in orbit at $130^{\circ} \mathrm{E}$ and AsiaSat-2 at $100.5^{\circ} \mathrm{E}$. Alan Smith in Thailand reports reception of several AsiaSat-2 transmissions, including RTP (Portugal) at 3.98 GHz and VideoCrypt type scrambled programming at 3.76 GHz , with audio that sounds like Cantonese.
Global Access Telecommunications Services (GATS) of the UK is now using the Serbian transponder aboard Eutelsat II F4 at $7^{\circ} \mathrm{E}(11 \cdot 175 \mathrm{GHz}$ horizontal) for news feeds and outside broadcasts, having signed a sublease for two years' use.

Answer to Test Case 401

- see page 487 -

It's not only old Finlux TV sets that can suffer from the trouble described in this month's test case. Many models from different manufacturers can display the same symptoms when the equivalent part fails, though this is not a common occurrence. You will get the same effect should the component be dryjointed.
A TV set's field and line scan coils, which are wound on the same ferrite saddle yoke, form a fairly
tightly-coupled pair. As a result, the throbbing linerate magnetic energy in the yoke induces sizeable 15.625 kHz pulses in the field scan coils. If these find their way back into the field timebase they will, at best, upset the interlacing of the scan lines. At worst they will, as in this case, completely upset the operation of an i.c.-based field output stage.
The cause of the trouble was that C413 $(47 \mathrm{nF}$, 100 V) had become open-circuit. It is connected directly across the field scan coils, but is mounted on the main PCB for convenience. Its job is to bypass the line-rate energy while having negligible effect on the much lower-frequency field scan waveform.
A replacement brought back a normal picture once the height and vertical linearity controls, which Ray had twiddled, had been reset.

SATELITE - BOOKS, VIDEOS, SOFTWARE

SATELLITE TELEVISION - INSTALLATION GUIDE (ISBN 187256709 6)
John Breeds. Install your own satellita system! Written in clear non-mathematical terms on large A4 format. Lavish use of diagrams throughout. The official study manual used in City \& Guilds courses. New updated 5 th edition. Acclaimed by the Press and Trade as the best work of its kind. EUROPEAN SCRAMBLING SYSTEMS 5
John McCormac. Diṣcover how to construct commercial descrambling systems that work! Gain a hacker's insight into piracy and counter-piracy. Explicit circuit diagrams given. Offered to enthusiasts for educational purposes only.
THE SATELLITE BOOK A Complete Guide to Satellite TV Theory and Practice
John Breeds. Generally acclaimed as the 'Bible' to the satellite industry. Written in easy-to-read style with over 300 illustrations on more than 300 large format A4, 26 chapters. New edition 4 completely updated for 1996. Unconditionally recommended. (ISBN 187256708 8) WORLD SATELLITE TV \& SCRAMBLIMG METHODS
R Maddox, J McCormac \& F Baylin. A thorough text for technicians and curious do-it-yourselfers. More than 300 pages provide an in depth study of many commercial scrambling methods. Many circuits and block diagrams.
THE SATELLITE VIOEO (Plus free bookiet)
Professional quality video presented by BBC Tomorrow's World Peter McCann. Includes dish setup, site survey equipment etc. Ideal companion to the Installation Guide. A 50 min video which gives sound practical advice. Please note postage:- UK £1.50; Europe £3.00; RoW£8. MPEG - DIGITAL TELEVISION FOR ALL (ISBN 187256707 X)
An authoratitive guide from NTL on leading edge techniques for future television. Cescribes compression and bit rate reduction techniques. Analyses Quantisation techniques and compressed audio in MPEG. Piease note postage:- UK £1.50; Europe $£ 3$; Rest of World $£ 6$

KU-BAND SATELLITE TV

Theory, Installation and Repair. Frank Baylin \& Brent Gale. Completely revised and updated edition More than 400 pages provide a comprehansive introduction to satelite television. Highly recommended.
SATELLITE SERVICING 1987-90 SATELLITE SERVICING 1991-92
 SATELLITE SERVICING 1993-94 Circuft diagrams, oscilloscope readings, voltage tables, essential part numbers, troubleshooting guides, alignments, etc; in fact everything for serious service technicians. Top qua ity-produced hardback manuals in large format. Please note postage:- UK £5; Europe £15; R of W£35.
home satellite Tv installation
$\&$ TROUBLESHOOTING MANUAL
B Gale, F Baylin \& Ron Long. This could be described as the C-Band companion ta its Ku-Band book by the same authors. Approx 500 pages cover how to install large dishes and troubleshoot many faults.
WIRELESS CABLE \& SMATV
Steve Berkoff \& Frank Baylin. Wireless Cable \& SMATV covers MMDS, cable system design, Yagi stacking, dishes, programming, system operation, project bidding and contracts.

1996/97 WORLD SATELLITE YEARLY
Dr Frank Baylin. Latest edition, 850 page reference book that provides essential information about the characteristics and footprints of all the world's broadcast satellites; plus most recent details about compressed digital video and audio methods. Divided by easy-to-use tabs into five sections: Technology, New Developments, Satellites, Programming and Companies. Excellent value. Please note postage:- UK £5; Europe £10; Rest of Wortd £16.
SATELLITE COMMUNICATION SYSTEMS
$\{33$
G Maral \& M Bousquet. This mammoth 688 page tome exhaustively deals with radiowave
propagation, satellite instailation and launchers, antennas and signal processing. Fully illustrated throughout. Unreservedly recommended for serious students of satellite technology. WORLD of SATELLITE TV - EUROPE, AFRICA and THE MIDDLE EAST
Mark Long \& Jeffrey Keating. Written in a 'down-to-earth' style, thirteen chapters cover areas such as installation, feedhorns, LNBs, polarisers, receivers, scrambling, digital video compression HDTV and most of the satellite footprints covering the titled areas. Recommended reading.
VSAT NETWORKS G Maral. VSAT (Very Small Aperture Termina
teiecommunications. An authoratitive tome.
HEWNES GUIDE TO SATELLITE TELEVISION
DJ Stephenson. This new 3rd adition is practical guide, without excessive theory or mathematics, to the installation and servicing of sateltite TV receiving equipment. Excellent value SATMASTER FOR WINDOWS (new version 3.4 with dightal up and down linking)
DJ Stephenson. Calculates full link budget iecluding dish size required. Gives set up angles, solar outages. polar and apex elevation for motorised systems, elevation, azimuth, polarisation offset, from any location in the World for any geo-satelline now and in the future. The program includes a 20,000 word tectrical helpine with many graphics and footprints. Exsily the Dest work of th kind in the world, and is unresenvedly recommended. Post UK £1.00; Europe £2.00; RoW 56

POSTAGE (oxcept where shown):- UK £3, Europe $£ 5$, Rest of World $£ 16$
Send stamped, addressed envelope for complete list of satelitit books, videos and soffwore

JOULE A-400
 ADVANCED CAR RADIO CODE READER CE

The A-400 and associated computer software is a factory produced system designed and manufactured by our own team of experienced technicians.
Covering the majority of models including the latest Blaupunkt RDS radios, the A-400 decoding system is a must for any repair workshop. Ongoing research and development means new makes and models are being added regularly.
We offer full technical assistance via a telephone helpline to all registered users which even includes help with repairs and can make supply spares for a larger number of makes and models.
Decoding a radio is simple - remove the base plate, place the probe on the PCB, press a key and the code is instantly displayed. Changing the code or fully re-programming is just as easy.
On screen help and PCB layouts showing probe location and information on how to enter the code once the set has been decoded.
Works on any IBM or compatible pc from an Amstrad 1512 to a 486.
As well as its ability to decode and recode, the advanced design of the A. 400 permits total re-programming of eeproms, lending itself for use in the servicing of television receivers etc.

Place the probe on the PCB and the code is instantly displayed

There are now three options available to you in ordering your A-400 decoding system.
Option 1: Purchase the A-400 decoding system outright, price for full starter package (now covers over 100 models): £375.00 + VAT. Additional software modules available separately
Option 2: Take advantage of the new INDEX system where for a $£ 100$ refundable deposit you will be supplied with ALL of the available eeprom based software plus the Grundig processor based software.
Decodes are charged at $£ 5+$ VAT each. There is no rentaj charge.
required, the Blaupunkt processor based software can be added to the index system. Please ask for details.
Option 3: You may have the best of both worlds by purchasing any of the software and taking the remainder on the index system, therefore obtaining a very cost effective solution to your decoding requirements.
The index system was pioneered by Electronic Sound Systems and we do not know of any other company offering a similar product.
The A-400 has recently been tested for electromagnetic compatibility (EMC) and conforms to the stringent tests that were imposed. As a result, the product now bears the CE mark of conformity. This regulation came into force on the 1st January 1996 and it should be borne date, it is illegal to supply or use any electrical or electronic equipment that does not carry the CE mark.

The A-400 is manufactured by a company that has been involved in the servicing of car audio and TV/video for over 20 years and is a service agency for Philips, Grundig and Blaupunkt.
Phone now for a free brochure and demonstration disk

ELECTRONIC SOUND SYSTEMS
 Hilton Road, Aycliffe Industrial Estate, Co. Durham DL5 6EN
 Tel: 01325301007 or 307442 Fax: 01325300189

Disc Marketing Plans

Widely different plans to enter the digital video disc (DVD) market have been announced by major consumer electronics firms in Europe. Thomson Multimedia plans to be first, with Matsushita-sourced players being made available this October. Toshiba has pencilled in a UK launch next spring. Philips seems to be taking a more realistic view: the firm has postponed its DVD launch until
the second half of next year, pointing out that the DVD standard itself has not yet been finalised while software support is not, on present plans, going to become available in any great hurry. All three firms showed prototype DVD players at the Electrical Retailing Show in Birmingham last month (March).
GoldStar has announced that it will be launching CDi players in

Europe, though no further details have been released.
Philips has forecast that the number of CD-ROM drives installed worldwide will rise from a 1995 level of 70 m to 120 m by the end of this year. The company also expects ten million PCs to have MPEG-1 video capability by the end of the year, and thinks that sales of Video CDs in 1996 will reach five million.

Trade Shows

CETI '96, the Consumer Electronics Trade Interface, is being held on April 27-29th at four hotels in Harrogate. The event will consist of training seminars and workshops and a trade exhibition. It is backed by the British Federation of Audio, the British Audio Dealers Association and the Custom Electronic Design and Installation Association (CEDIA UK). For further details, phone 0181954 6645.

Service ' 96 is being held at the

Hertfordshire Conference Centre, Stevenage, on May 17-18th. The aim, with seminars and an exhibition, is to bring together all sectors of the service industry, both white and brown goods, to enable those involved to assess developments in this rapidly changing field. For further details phone 01462480024 . The white goods side is represented by DASA (the Domestic Appliance Service Association) while the brown goods side is represented by the recently

WVE's Log-periodic

Willow Vale Electronics (11 Arkwright Road, Reading, Berks RG2 0LU, phone 01734876 444, fax 01734867 188) has been appointed main distributor of the Telecam log-periodic indoor TV aerial to the independent retail market. This sophisticated aerial, with its elements aligned in straight strips of reducing thickness, is claimed to provide a signal power
increase of as much as 3 dB in comparison with standard designs using wire or pressed metal in triangular form. The elements are printed in silver a malgam on a plastic sheet that provides electrical separation. Efficient dielectric loading has enabled the overall size of the aerial to be scaled down with no loss of performance.
WVE is also distributing the Telecam range of TV signal amplifiers.
established CESA (Consumer Electronics Service Association). A joint code of practice is currently being drawn up by the two associations. Steve Beeching will be giving a workshop seminar on Software Servicing at 11 a.m. on the 17th.
There will be a stand for the Consumer Electronics Service magazine at Service ' 96 . This new magazine is to be made available on subscription only to those in the industry. Steve Beeching will be responsible for the technical editorial and also, presumably, the "bit of fun and nonsense" we are promised.
The CAI (Confederation of Aerial Industries) Trade Fair '96 is to be held at the Heathrow Park Hotel, Bath Road, Longford, West Drayton, Middx on June 18-20th. There will be seminars and workshops on motorised dish installations, fitting a dual-LNB and the Internet, a Channel 5 conference and a retail symposium. The seminars and training sessions are free. For further details phone 0181 9028998.

The Telecam log-periodic aerial being distributed by WVE.

DAB Developments

NTL is launching a Digital Audio Broadcasting service in the London area. Programme material will consist of a multiplex of seven currently available analogue transmissions - Classic FM, Heart, Kiss FM, Melody, Sunrise, Talk Radio and Virgin. In addition experimental sound and data formats are to be tried.
Manufacturers who are developing DAB products include Philips, Sony, Panasonic, Pioneer, Bosch and Grundig. DAB trials are being conducted in Sweden, Denmark, Norway, Germany, Switzerland and the Netherlands. The BBC launched its DAB service, in the south, in September 1995.

SURVEILLANCE TELESCOPE Supert Russian zoom telescope adjustable from $15 x$ to $60 x$ l complete with metal tnpod (imposible to use without this on the higher settings) 66 mm lense leather carrying case $£ 149$ ref BARE
RADLATION DETECTOR SYSTEM Designed to be wall mounted and connected into a PC, Ideal for remote montioning, whole building coverage etc. Complete with detector, cable and sottware £19.95 ref BAR75
WIRELESS VIDEO BUG KIT Transmits video and audio signals from a minature CCTV camera (included) to any standard television All the components including a PP3 battery will it into a cigarette packet with the lens requinng a hole about 3 mm diameter. Supplied with telescopic aerial but a piece of wire about 4° long will still give a range of up to 100 metres. A single PP3 will probably give less than 1 hours use. 699 REF EP79. (probably not licensable!) CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100 mA . auto electronic shutter, 3.6 mm F2 lens. CCIR, 512×492 pixels, video output is $1 \mathrm{v} \mathrm{p}-\mathrm{p}(75 \mathrm{chm})$. Works directly into a scart o video input on a tv or video. IR sensitive $£ 79.95$ ref EF137
IR LAMP KIT Sutable for the above camera enables the camera to be used in total darkness! £5. 99 ref EF138.
REMOTE CONTROLTANDATA TD1400 MODEM/ VIENDATA Complete system comprising $1200 / 75$ modem, auto dialler, infra red remote keyboard, (could be adapted for PC use?) dialler, infra red remote keyboard. (could be adapted for compsest output. Absolute bargain for parts alone! ! 9.95 ref BAR33.

9 WATT CHIEFTAN TANK LASERS

Double beam units designed toft in the gun barrel of a tank, each unit
has two semi conductor lasers and motor drive units for alignement 7 mile range full circuit diagrams, new dnive units for alignement Each unit has two gallium Arsenide injection lasers, 1×9 watt, $1 \times$ 3 watt. 900 nm wavelength. $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency. The units also contain an electronic receiver to detect refiected signals from targets. five or more units $£ 299$ ea. $£ 349$ for one. Ref LOT4.

TWO WAY MIRROR KIT Indudes special adhesive film to make two way mirrorts) up to $60^{\circ} \times 20^{\circ}$. (glass not included) includes full two way mirror(s) up to 60
instructions. $£ 12$ ref TW1.
instructions. £12 ref TW1.
NEW HIGH POWER RF TRANSMITTERS
AMPLIFIERSAssembled PCB transmitters, 4 types available 12.6 vdc 90 watt $1.5-30 \mathrm{mhz} 75 \mathrm{ohm}$ infout FM/AM $£ 75$ ref RF 1 12.6 vdc 40 watt $50-200 \mathrm{mhz} 50 \mathrm{ohm}$ inhout FM/AM $£ 65$ ref RF2 28 vdc 125 watt $1.5-30 \mathrm{mhz} 75 \mathrm{ohm}$ in/out FM/AM $£ 85$ ref RF3 28 vdc 100 watt $50-200 \mathrm{mhz} 50$ ohm in/out $\mathrm{FM} / \mathrm{AM} £ 75$ ref A heat sink will be required. ning for price and availability.
If you intend using these as audio transmitters you will need If you intend using these as audio transmitters you will need
need a preamp. Complex module availabie at $£ 40$ ref RFS. COMPUTERMORKSHOP/HIFI RCB UNTS Complete protection from fauity equipment for everybody! Intine unit fits in standard IEC lead (extends it by 750 mm). fitted in less than 10 seconds. resethest button, 10A rating. £9 each Ref MM5.

RADIO CONTROLLED CARS FROM £6 EACH!!!! All returns from famous manufacturer, 3 types available, single channel (leff, right, forwards, backwards) £6 ref LOT1. Two channel with more features $£ 12$ ref LOT2. Two channel proportional (plug in crystals etc) $£ 35$ ref LOT3.

THOUSANDS AVAILABLE RING/FAX FOR DETAILS!

 MAGNETIC CARD READERS (Swipes) £9.95 Cased with flyleads. designed to read standard credit cards! they have 3 wires coming out of the head so they may wnte as well? complete with control elctronics PCB. just $£ 9.95$ ref BAR31WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these a
your leisure using the leat editor on your PC. Also included is the your le sure using the lext edrtor on your PC. Also inciuded is the
certificate enabling you to reproduce (and sell) the manuals as much as you like! £14 ref EP74
PANORAMIC CAMERA OFFER Takes double width photographs using standard 35 mm film. Use in horizontal or vertcal mode. Complete with strap $£ 799$ ref BAR
COIN OPERATED TIMER KTT Complete with coinslo mechanism, adjustable time delay, relay outul, put a coinsiot on
anything you like! TV.s. videos. fridges. dnnks cupboards. HIFI anything you like! $\mathrm{N} . \mathrm{s}$. videos. fridges. dnnks cupboards. HIFI
takes 50p's and E1 coins. DC operated. price justE7.99 ref BAR27. takes 50 p's and $£ 1$ coins. DC operated. price justic 7.99 ref BAR27.
ZENITH $900 \times$ MAGNIFICATION MICROSCOPE Zoom, metal construction, built in light, shrimp farm, group viewing screen, lots of accessones. E29 ref ANAYLT
AA NICAD PACK Pack of 4 tagged AA nicads E2.99 ref BAR34
 BAR67
NIGHTSIGHTS Model TZS4 with infra red illuminator. views up to 75 metres in full darkness in infrared mode. 150 m range. 45 mm lens, 13 deg angle of view, focussing range 1.5 m to infinity. 2 AA batteries LRUUD CRYSTAL DISPLAYS Rargain warranty LIQUID CRYSTAL DISPLAYS Bargain prioes,
16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A
20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SM2020A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1 110 MW NENTONAN REFLECTORTELESCOPE Russian. Supert astronomical 'scope, everything you need for some serious star gazingl up to 169x magnification. Send or fax for furthe details £249 ref TAL
GOT AN EXPENSIVE BIKE? You need one of our bottle alarms they look like a standard water bottle, but open the top. Insert a key to activate a motoon sensor alarm built inside. Fits all standard bottl camiers, supplied with two keys SALE PRCE $£ 7.99$ REF SA32
GOT AN EXPENSNE ANYTHING? You need one of our GOT AN EXPENSIVE ANYTHING? You need one of our
cased vibration alarms, keyswitch operated, fully cased just fit it to

WOL WERHAMPTON BRANCH NOW OREN AT WORCESTERST
 WHAMPTON IHE 0190222039

PP3 battery. UK made. SALE PRTCE E4.99 REF SA33.
DAMAGED ANSWER PHONES These are probably beyond epar so just $£ 4.99$ each. BT response 200 machines. REF SA30. COMPUTER DISC CLEAROUT We are left with a lot of sofware packs that neec clearing so we are selling at disc value only! 50 discs or $\mathrm{E4}$. thats fust 8 p eachl((our choice of discs) $\mathrm{E4}$ ref EP66 IBM PS2 MODEL 1602 CASE AND IPOWER SUPPLY Complete with fan etc and 200 watt power supply. $\mathbf{£ 2 . 0 5 \text { ref EP57 }}$ DELL PC POWER SUPPLIES 145 watt, $+5,-5,+12,-12$, $150 \times 150 \times 85 \mathrm{~mm}$ complete with switch, flyleads and IEC socket SALE PRTICE E8.99 ref EP55
1.44 DISC DRIVES Standard PC 3.5° drives but retums so they will need attenton SALE PRICE E4.99 ref EP6B
1.2 DISC DRNES Standard 5.25° drives but retums so they wil heed attention SALE PRICE NOW ONLY $£ 3.50$ ref EP69
PP3 NICADS Unused but some storage marks. $£ 4.99$ ref EP52 DELL PC POWER SUPPLIES (Customer retums) Standard PC psu's completewith fly leads, case and fan. $+12 \mathrm{v} .-12 \mathrm{v} .+5 \mathrm{v} .-5 \mathrm{v}$ SALE PRICE 1.99 EACH worth if for the bits alone! refDL1. TRADE PACIK OF 20 E 29.95 Ref DL 2.
GAS HOBS AND OVENS Brand new gas appliances, perfect for small fats etc. Basic 3 burner hob SALE PRICE £24.99 ref EP72. small fats etc. Basic 3 burner hoo \$ALE PRICE $£ 2$
Basic smal bult in oven \$ALE PRUCE E78 ref EP73
RED EYE SECURIY PROTECTOR 1.000 watt outdoor PIR witch SALE PRUCE E6.99 ref EP57
ENERGY BANK KT $1006^{\circ} \times 6^{\circ} 6 \mathrm{v} 100 \mathrm{~mA}$ panels. 100 diodes. connection details etc. $£ 69.95$ rel EF112
PASTEL ACCOUNTS SOFTWARE, does everything for all siz es ó businesses, indudes wordprocessor, reportwnter, windowing. networkable up to 10 stations, muttiple cash books etc. 200 page comprehensive manual. 90 days free techrical support (0345-3260c9 ry before you tuy!) Current retail price is $£ 129$, SALE PRICE $£ 9.96$ Of SA12. SAVE E 120 !!!
COMPLETE PC 200 WATT UPS SYSTEM Top of the range UPS system providing protecton for your computer system and valuable software against mains power flucluations and cuts. New and boxed, UK made Provides up to 5 mins running time in the event of complete power failure to allow you to run your system down correcty. LAST FEW TO CLEAR AT £49 SAVE E30 ref LOT61 BIG BROTHER PSUCased PSU, $6 v 2 A$ out ut. 2 m ople

http://www.pavillon.co.uk/bull-electrical RACALMODEM BONANZAI 1 Racal MPS 1223 120075modem, elephone lead, mains lead, manual and comms sotware, the cheapest way onto the netl all this for just $£ 13$ ref DEC13
4.6 mw LASER POINTER. BRAND NEW MODEL NOW IN STOCKI, supplied in fully built form (looks like a nice pen) complete with handy pocket olip (which also acts as the onloit switch.) About 60 metres range! Runs on 2 MA batteries. Produoes thin red beam ideal for levels, gun sights, experiments etc. just £39.96 ref DEC49 TRADE PRICE 28 MIN 10 PIECES

BULL TENS UNTT Fully built and tested TENS (Transcutaneous Electrical Nerse Stimulation) unit. complete with electrodes and full instructions. TENS is used for the relief of pain etc in up to 70\% of sufferers. Drug free pain relief. safe and easy to use, can be used in
conjunction with analgesics etc. $£ 49$ Ref TEN/4
RUSSIAN MONOCULARS Amazing 20 times magnificaben, coated lenses, carryng case and shoulder strap $£ 29.95$ REF BARJ3 PC PAL VGA TO TV CONVERTER Converts a colour TVinto abasic VGA screen. Complete with buittinpsu, lead and sware.. Ideal
for laptops or a cheap upgrade. Supplied in kit form for home or laptops or a cheap upgrade. Supplied in kit form for home assembly. SALE PRICE E25 REF SA34
EMERGENCY LIGHTING UNTT Complete unit with 2 double bulb floodights, built in charger and auto swith Fully cased. 6v 8MH ead acid req'd. (secondhand) $£ 4$ ref MAGAF11.
YUASHA SEALED LEAD ACID BATTERIES Two sizes currently available this month. 12 v 15 AH ats 18 ref LOT 8 and 6 v 10 AH (suitable for emergency lights above) at just $\Sigma 6$ ref LOT7
ELECTRIC CAR WINDOW DE-ICERS Complete with cable. plug etc \$ALE PRICE JUST E4.99 REF SAZ8
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fithed with a cigar plug. 12 v 2watt $\mathbf{E 8 . 9 9}$ REF SAZ5. ECLATROM FLASH TUBE As used in folice car flashing lights etc. full spec supplied, 60-100 flashes a min E6.99 REF SA15B.

- BoIge of our products mat be unlicenalable in the ue

BULL ELECTRICAL
 BN SOG ESTMBHISIED SO YEARS, MAM ORDERMEHAS:ABM, PO OH CHIOH

FAN 01233 323077
L-mat balloparitionco.uk

24v AC 96WATT Cased power supply New £9.99 REF SA40 MICRODRIVE STRPPERS Small cased tape drives ideal fo stripping, lots of useful goodies including a smart case, and lots of components. SALE PRICE JUST $£ 4.99$ FOR FIVE REF SA26 SOLAR POWER LA B SPECUA You get TWO $6^{\circ} \times 6^{\circ}$ ov 130 mA solar cells, 4 LED's, wire, buzzer. switch plus 1 relay or motor. Superb value lot SALE PRTCE JUST E4.99 REF SA27
RGBNCGAEGATTL COLOUR MONTTORS 12° in 900 d concition. Back anocised metal case. SALE PRICE $£ 49$ REF SA 16B PLUJG IN ACORN PSU 19V AC 14w . £2.99 REF MAG3P 10 13.8V 1.9A PSU cased with leads. Just £9.99 REF MAG10P3 UNHERSAL SPEED CONTROL LER KTT Designed by us fo the C.5 motor but ok for any 12 v motor up to 30A. Complete with PCB etc. 4 heat sink may be required. $£ 17.00$ REF: WAG 17
PHDNE CABLE AND CONP UTER COMMUNICATIONS PACK Kit contains 100 m of 6 core cable, 100 cable clips, 2 line drivers with RS232 interfaces and all connectors etc. Ideal low cos method of communicating between PCs over a long distance utilizing the serial ports. Complete kit $£ 8.99$. Ref comp 1 .
VIENDATA SYSTEMS made by Phillips, complete with intemal $120 \mathrm{w} / 75$ modem, keyboard, psu etc RGB and composite oulputs, menu diven, autodialier etc. SALE PRICE $£ 12.99$ REF SA 18
AIR RIFLES. 22 As used by the Chinese amy for training puposes
so there is a lot about! $£ 39.95$ Ref EF78. 500 pellets $£ 4.50$ ref EF80 so there is a lot about! $£ 39.95$ Rel EF78. 500 pellets $£ 4.50$ ref EF80 PLUG IN POWER SUPPLY SALE FROM \&1.60 Plugs in to 13A socket with outputlead. three types avalable, gvac 150 mAE 1.50 ref $\subseteq A 19.9 \mathrm{vdc} 200 \mathrm{~mA} £ 2.00$ ref SA20. $6.5 \mathrm{vdc} 500 \mathrm{~mA} £ 2$ ref SA21 VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, videorecorder. TV or Computer etc to any standard TV set in a 100 range! (tune TV to a spare channel) 12 v DC op. Price is $£ 15$ REF: MAG15 12 V psu is $£ 5$ extra REF: MAG5P2 *MNATURE RADIO TRANSCENERS A pair of walkie talkies witha range up to 2 kmin open country. Units measure $22 \times 52 \times 155 \mathrm{~mm}$ Induding cases and earp'ces. $2 \times$ PP3 req'd. $£ 30.00$ pr.REF: MAG30 -FN TRANSMTTER KIT housed in a standard working 13A adaster!! the bug runs directly off the mains solasts forever! whypay £700? or price is $£ 15$ REF: EF62 (kit) Transmits to any FM radio. *FN BUG BUILT AND TESTED superior design to kit. Supplied o detective agencies. $9 v$ battery req'd. $£ 14$ REF: MAG14
TALKING COINBOX STRIPPER COMPLETE WTH COANSLOT MECHANISMS originally made to retail at£79 each these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometimes broken hinges. How ever they can beadapted for their onginal use or used fo something else?? SALE PRCE JUST E2.50 REF SA23
GAT AIR PISTOL PACK complete with pistol. darts and pellets $£ 1295$ Ref EF82B extra pellets (500) $£ 4.50$ rel EF80.
$6^{\prime \prime \prime}$ K12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA . SALE PRICE 64.99 REF SA 24
FIBRE OPTIC CABLE BUNPER PACK 10 metres for $£ 4.99$ ef MAG5P 13 ideal for experimentersi 30 m for $£ 12.99$ ref MAG13P

MDED GOODIES BOX OF
 MIXED COMPONENTS WEIGHING 2 KILOS YOURS FOR JUST E5.99

4X 28 TELESCOPIC SIGHTS Suitable for all air nifes, ground lenses. good light gathering properties. $£ 19.95$ ref R/7
RATTLE BACKS Interesting things these, small piece of solld perspex like material that it you try to spmin it on the desk it only spins one way! in fact if you spin it the 'wrong' way it stops of its own accord and go's back the other way! $£ 1.99$ ref GI/JO1
GYROSCOPES Rememberthese? well we have found a company that still manufactures these popular scientific toys, perfect gift or for educational use etc. £6 ref EP70

HYPOTHERMA SPACE BLANKET $215 \times 150 \mathrm{~cm}$ aluminise

 foll blanket, reflects more than 90% of body heat. Also suitable for theconstruction of two way mirrors! $£ 3.99$ each ref $0 / L 041$
LENSTATIC RANGER COMPASS oil filled capsule, strong metal case. large luminous points. Sight line with magnifyng viewe 50 mm dia, 86 gm . £ 10.99 ref O/K604.
RECHARGE ORDINARY BATTERIES UP TO 10 THES! Wim the Battery Wizard! Uses the latest pulse wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D, four at a time! Led system shows when batteries arecharged. automatically ata time! Led system shows when bateres arecharged. automarically rejects unsutable cells, \mathbf{c}
Prise is $£ 21.96$ ref $E P 31$.
Prise is $£ 21.96$ ref EP3
TALKING WATCH
TALKING WATCH Yes, it actually tells you the time at the press of a buthon. Also features a vorce alam that wakes you up and tells you
what the time is! Lithium cell induded. $£ 7.99$ ref EP26. what the ime is! Lithium cell induc

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsible of drivers from losing their licence! Adustable audible alarm with 8 fashing leds gives instant warning of racar zones. Detects X. K, and Ka bands. 3 mile range, 'over the hill around bends' and 'reartrap facillites. micro size just $4.25^{\circ} \times 2.5^{\circ} \times .75^{\prime \prime}$ Can pay for itseff in just one dayl $£ 79.95$ ref EP3.
SANYO NICAD PACKS 120 mmx 14 mm 48 V 270 maH suitable for cordess phones etc. Pack of 2 just $£ 5$ rel EP78.
3" DISCS As used on older Amstrad machines, Spectrum plus3's etc $£ 3$ each ref BAR400.
STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, filters etc etc very comprehensive mitroscope hat would normally be around the $£ 700$ mark. our price is just $£ 29$
$95: 300$.

WE BUY SURPLUS STOCK FOR CASH
 BUYERS DIRECT LINE 0860425692 FREECATALOGUE 100 PAGE CATALOGUE NOW AVAILABLE. 50P STAMP OR FREE ON REGUEST WITH ORDER.

Servicing the

Sony BE3B Chassis

The Sony BE3B is a full-specification chassis designed for use in lowcost sets with 21-29in. fube sizes. Circuit operation and servicing are described in this two-part series by Giles Pilbrow

The Sony BE3B chassis was introduced in 1994. It was designed for use in low-cost sets but nevertheless has a full specification that includes teletext, Nicam and remote control. It can drive 1 R (conventional), 2R (very flat) and widescreen Trinitron tubes with screen sizes in the range 21-29in. In this two-part article we will be looking at the operation of some of the less usual circuit features and provide guidance on servicing. We'll look first at the organisation of the chassis.
The bulk of the circuitry is arranged on three PCBs. As with other Sony chassis, each board is identified by a letter. The main PCBs are as follows:

PCB A: This double-sided fibreglass board houses the signals and control circuitry, including the tuner, the microcontroller chip and the teletext and Nicam chips. The bus-controlled TDA8366 jungle chip (IC301) contains the colour decoder, the sync and timebase generator circuits and other circuitry.

PCB C: This is the tube base panel which houses the RGB output amplifiers.

PCB D: This is the main board at the base of the set. It houses the power supply, the deflection circuits and the
audio output chip. Board A plugs into it at the rear, right-hand side looking in from the back.

Four small PCBs are used for the local control switches, the mains switch, the remote control receiver and the front-mounted input/output sockets.
In contrast with some previous Sony sets that used surface-mounted components throughout, only PCB A uses this technology. It can be easily removed to assist with component replacement. In addition an extender PCB is available to provide better access during servicing.
We will start with PCB D.

The Power Supply

The chopper power supply is based on the Sanken STRS6708 chip (IC600) which contains much of the circuitry on the primary side of the circuit including the chopper transistor. Feedback for voltage regulation is from the secondary side of the circuit via an optocoupler (IC601). The error voltage detector is thus on the secondary side: it consists of IC602.
Power consumption is up to 180 W with the set in normal operation, less than 5 W in the standby mode. Fig. 1 shows in block diagram form the arrangements within IC600.

MANOR SUPPLIES

QUALITY TV \& VIDEO SPARES SUPPLIED FOR ENGINEERS BY ENGINEERS

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR p.p. 55.00

\star Fully interlaced syne pulses with correct picture blanking.
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 79.00$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$) app $£ 19.00$
Optional Sound Module (6 MHz or 5.5 MHz) $£ 5.90$
Built \& Tested in Case including Sound Module $£ 139.00$ Post/Packing $£ 4.50$ Add VAT 17.5% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)
\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
\star Backup service available.
PRICE OF Mk4 COLOUR BAR GENERATOR KIT £39.00. CASE $\mathrm{f}^{6.90}$. BATT HOLDERS $\mathbf{£ 4 . 2 0}$
MAINS SUPPLY KIT $\mathbf{£ 5 . 8 0}$
(Combined P\&P 55.00)
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS 56.80
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.R.V
LINE OUTPUT TRANSFORMER TESTER

\star Service Aid.

* Saves time and Money.
\star Checks short turns.
\star Simple to use.
\star Reliable.
* Battery operated. * Pockel size

PRICE $£ 24.00$

POST/PACKING $£ 2.50$
VIDEO (PAL) TO R.G.B. CONVERTER

\star Ready built \& tested \star R.G.B. + Sync Out -Scart \star Incl. Power Supply \star Colour/Brightness/ \star Video In - Phono

Colou Contrast Control
Size $5^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime}$
PRICE $£ 99.00$ POST/PACKING $£ 3.50$

CRT TESTER \& REACTIVATOR KIT

\star For Colour \& Mono complete with Case. Panel Meter Indicator - can be adapted for latest CRTs
£55.00 P.P. $£ 4.50$

KITS AND PROJECTS

SAW IF AND TURNER UNIT complete and tested for video \& audio outputs £28.50 p.p. $£ 1.80$.
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ p.p. $£ 1.80$.
PAL ENCODER KIT (RGB to Video) $£ 20.00$ p.p. $£ 1.80$.
INFRA RED REMOTE CONTROL TESTER Infra Red Remote Control Tester £10.00 P.P. $£ 2.50$.

TV \& VIDEO SPARES
REMOTE CONTROLS
Replacement for: Ferguson, Hitachi, Philips, Panasonic, Grundig, ITT, Sony, Saisho, Granada, Saisho + many others Phone for make and model no.

IC SELECTION P.p. 90p

MANY OTHER LOPTS IN STOCK PLEASE PHONE WITH MAKE AND MODEL NUMBER
TRIPLERS EHT MULTIPLIERS p.p. 11.80

GRUNDIG BG 2077-642-1003/1004 \& 14.80 GRUNDIG BG 2087-642-1001/1002/1006 $£ 14.80$
GRUNDIG BG 2000-61 £13.80 THORN 9000 ¢9,
U.K. UNIVERSAL (best quality) $\mathbb{7} 7.80$

MISCELLANEOUS p.p. $£ 1.80$
VHFUHF upconnvertor $£ 40.00$ p.P. $£ 3.50$
 DEGAUSSING ROD E33.75 PR. E4.70 TV FRURTT FINDING GUIDE 18.50

VCR FAULT FINDING GUIDE $£ 18.50$
HTACHI FRAME MODULE HM 6251
£9.80.
 FERGUSONTX10 FOCUS UNTI E8.50 p.p. 11.80
 $12 \mathrm{~V} 5.00 \mathrm{p} . \mathrm{p} .90 \mathrm{p}$
HOW TO ORDER: AD* p\&p TO ORDER + VAT 17.5\% TO THE TOTAL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE
Telephone 0171-79.4 8751/794 7346 Fax 0171-431 5778 172 WEST END LANE, LONDON NW6 1SD

CALLERS WELCOME AT SHOP
Mon-Fri $9.30-6 \mathrm{pm}$ - Thurs $9.30-1 \mathrm{pm}$ - Sat $9.30-5 \mathrm{pm}$

Fig. 2: The
power supply circuit used in the Sony BE3B chassis. The mains switch 5601 and fuse F601 (5A) are on board F1.

Start Up

Fig. 2 shows the complete power supply circuit. To get the circuit started, R600 and D601 provide a feed from the mains side of bridge rectifier D600. This feed charges C604, providing a ramp voltage at pin 9 (the voltage supply pin) of IC600. When the voltage at pin 9 reaches 8 V , the IC starts up and produces chopper drive pulses at pins 4 and 5. These are fed back in to the base of the integrated chopper transistor at pin 3. When the chopper transistor switches on it links pin 6 of the chopper transformer (T601) to chassis, via the current sensing resistor R605. As a result current flows in the transformer's primary winding (pins 6-8) and a magnetic flux builds up.
At a point determined by the timing circuitry within IC600 the chopper transistor will be switched off. The magnetic field established in T601 then collapses and energy is transferred to its secondary windings. Diodes D606 and D609-D614 conduct, charging their reservoir capacitors.
After the initial start-up the supply for lC600 is provided by D606, with C604 now acting as its reservoir capacitor. The voltage at pin 9 will be around 7.7 V .

Transistor Q601 is active during the start-up period and in the standby mode. During the start-up period the ramp voltage at pin 9 of IC600 could fall below the minimum permissible level of 6 V . As a result the power supply would start up and shut down at the same
rate as the ramp. Q601 prevents this by switching on to supplement the voltage at pin 9 - it receives a supply at its collector from rectifier circuit D604/C605. Once the circuit is running normally the 7.7 V across C604 reverse biases Q601.

Regulation

Voltage regulation is achieved by feedback to pin 7 of IC600 via optocoupler IC601, which is driven by the SE135N error sensing chip IC602. Fig. 3 shows the circuitry within this chip. Pin 1 is connected to the 135V HT line. It feeds zener diode D1 via R3 to produce a reference voltage at the emitter of Q 1 , also Q1's base via the potential divider network R1/2. Thus Q1 senses any HT variations at its base, producing a correction voltage at its collector (pin 2). This varies the current flowing via the LED in optocoupler IC601 and its light output, which is detected by the phototransistor on the output side of IC601.
The voltage at feedback pin 7 of IC600 is thus varied, altering the mark-space ratio of the drive pulses produced at pins 4 and 5 and the on/off timing of the chopper transistor.

Standby Operation

To minimise the power consumption in the standby mode lC600 produces very narrow pulses to drive its chopper transistor. As a result, the power supply produces sufficient energy to supply the
microcontroller chip and the infra-red receiver only.
When the standby command is received, pin 2 of the microcontroller chip IC001 goes high. This pin is linked to the base of Q604 via R632 and Q4 (on board A). Q4 switches on, Q604 switches off and Q603 switches on. As a result the current that flows through the LED in IC601 is increased. IC600 reduces its output pulse width (it assumes that the HT is high) and the HT voltage falls to 29 V . All the other power supply output voltages fall in proportion.
Reducing the output voltages in the standby mode creates two problems. The voltage developed across C604 by D606 to power IC600 is no longer sufficient, while the voltage developed across C617 by D610 is too low to operate the regulator (IC604) for the standby 5 V supply.
The first problem is overcome by the operation of Q601 and its associated components. We have already seen how this circuit contributes to the start-up operation. When the set is running normally the voltage developed across C605 is around 70 V . In the standby mode it falls to 9.5 V and zener diode D603 switches off. This enables Q601 to switch on and supplement the supply at pin 9 of IC600.
To boost the input to IC604 in the standby mode Q602 switches on, adding the voltage developed by D608 across C612.

Protection

The power supply incorporates four protection circuits, as follows:
(1) Overvoltage. Should the output voltages developed by the power supply rise excessively this fact will be apparent at pin 9 of IC600. Once the voltage at this pin exceeds 10 V the over-voltage circuit within the chip will operate, shutting IC600 down. The circuit latches in this state until the mains input is interrupted.
(2) Primary side excess current. The emitter of the chopper transistor within IC600 is connected to chassis via the low-value resistor R605. During normal operation the voltage developed across this resistor is negligible. Should an excess-current condition arise, the voltage across R 605 will increase. This voltage is detected at pin 6 , the result being that the over-current circuit within the chip operates. The mark-space ratio of the chopper drive pulses is then reduced. The circuit works on a pulse-by-pulse basis, producing what can be described as self-limiting. When an overload brings this circuit into operation an audible 'tripping' sound may be heard coming from T601.
(3) Secondary side excess current. Should an overload that is not sufficient to trigger the primary side excesscurrent circuit occur, a secondary side circuit will come into operation to prevent excessive HT current. The HT current is monitored by R608. If the current is excessive, the voltage across R608 will fall and Q605 will switch on. Q606 in turn conducts, producing a high at pin 38, the protection line, of the microcontroller chip $1 \mathrm{COO1}$ (PCB A). This puts the set in the standby mode.

To prevent the set being brought out of standby, the collector of Q606 is linked to the base of Q605 via D625 and R638. Thus once triggered the circuit latches on.
As an additional safeguard, the line drive is removed by Q805 which puts a short-circuit across the input to the line driver transistor Q803.

(4) Thermal. IC600 is designed to shut down should its internal temperature exceed $150^{\circ} \mathrm{C}$. When this occurs IC600 will remain in the shut-down state until it has cooled and the mains supply has been interrupted.

Servicing

First a precaution: before carrying out any cold checks in the power supply or replacing components, ensure that the mains rectifier's reservoir capacitor C603 is discharged. It bites!

Fig. 3 (left): The circuitry within the SE135N volfage error detector chip IC602.
Fig. 4: The waveforms that should be obtained when IC600 is tested in circuit using a 9 V battery to provide the power. Connect the positive side of the battery to pin 9 and the negative side to pin 2.

If the set is dead, the first step should be to find out whether the power supply is working by checking the output voltages produced by T601. Remember that very low voltages could simply mean that the power supply is in the standby mode.
If there are no outputs from T801's secondary windings, carry out checks in the primary side of the circuit. There should be around 300 V at pin 1 of IC600. If this voltage is absent, check resistors R631, R642 and R647. If any of them are open-circuit, the chopper transistor in IC 600 could be faulty. It is easy to check this since the terminals are all accessible - the collector at pin 1, the emitter at pin 2 and the base at pin 3. If you find that the chopper transistor has failed, the following components should be checked: Q601, R606, R607, D607 and C607. Ensure that the connections to C608 are sound, and replace R605 even a slight increase in the value of this resistor can cause random tripping problems.
If there is 300 V at pin 1 but IC600 is not working, check that the start-up voltage is present at pin 9 . This is best checked with a scope, which should display a ramp waveform that peaks at about 8 V . If this is low or missing, check R600, D601 and D606, and ensure that C604 is not leaky or low in value.
It is simple to check IC600 if you suspect it. This can be done either in circuit (with the mains supply disconnected!) or out of circuit by connecting a 9 V battery between pins 9 (positive terminal) and 2 (negative terminal). A working chip should produce waveforms similar to those shown in Fig. 4, at a frequency of around 12 kHz . Current consumption, with the device in circuit, should be around 105 mA .
If the start-up and 300 V supplies are both present and IC600 tests OK with a battery, it could be that the overvoltage circuit is in operation, suggesting a regulation loop problem. Once this circuit has triggered, it will prevent IC600 from operating until the mains supply has been disconnected. The overvoltage circuit fires very rapidly. To check whether it has, use a scope to see if the supply to pin 9 exceeds 10 V . This will happen only once after the mains supply has been switched on. If this is the case, check the circuitry associated with the optocoupler IC601 and the error detector chip IC602.

Field Output

The field output stage employs an STV9376 chip (IC500) which requires $\pm 15 \mathrm{~V}$ supplies. These are derived from the line output transformer T803. The stage is unusual in that the scan coils are DC coupled to the output. This means that there is increased risk of damage to the tube, the scan coils and the output stage should a fault develop. Protection circuitry is therefore incorporated.
The field ramp waveform fed to the scan coils is monitored to ensure that it is symmetrical about chassis potential. Should the picture be shifted excessively or the height be set too low, the protection circuit will come into operation.
Transistors Q501 and Q502 monitor the output from IC500, charging capacitors C521 and C522. Should the voltage across either of these capacitors exceed a threshold value, the protection line (pin 38 of the microcontroller chip IC001) will go high and the set will revert to standby. The software in IC001 incorporates a short delay, allowing 1.5 seconds for the circuitry to stabilise before the set shuts down.
The protection circuit can be disabled for test purposes by removing diode D505. Caution is required
however to prevent damage to the tube or the output stage.
Since the supplies for the field output chip are derived from the line output transformer T803, any fault here that results in a low or missing supply to IC500 will trigger the protection.
The prorection input to IC 001 is shared with the over-current protection circuit in the secondary side of the power supply (mentioned earlier). A permanent high on this line indicates that the latter circuit has been triggered, a brief high suggesting a field output stage problem.
It's normal practice for sets with an on-screen display to use a sample of the field flyback waveform for sync purposes. The BE3B chassis is no exception, a 5 V peak-to-peak field pulse being applied to pin 60 of IC001. This is also used for protection purposes: should no field pulse reach IC001 within approximately 15 seconds after switching on, IC00I will put the set into the standby mode. Thus even with D505 disconnected the set can be operated for only 15 seconds at a time when fault finding.

Line Output Stage

The line output stage follows conventional practice and is very reliable. Those not familiar with Sony designs should note that the tube's G2 (first anode/screen) supply is obtained by rectifying the flyback pulses at the collector of the line output transistor. The rectifier circuit consists of R830, D809 and C821. In previous sets failure of this diode would result in a very dark, flaring picture.

EW Modulator

All versions of the chassis, including sets fitted with a 90° (21in.) tube, incorporate EW correction. EW modulator driver transistor Q801 controls the picture width by varying the potential across the lower modulator diode in D812. When Q801 is switched on, the lower section of D812 is shorted out and the energy applied to the scan coils is increased, the result being greater width. Q801 receives its base drive from IC800, via Q800.
IC800 (LM393P) is a comparator which is fed with a fixed line-frequency ramp waveform at pin 5 and, at pin 6 , a variable parabolic waveform that comes from pin 63 of the jungle chip IC301. The latter waveform can be adjusted by the microcontroller chip. The result, at pin 7 of IC800, is a pulse-width modulated linefrequency squarewave whose duty cycle is proportional to the amplitude of the waveform at pin 6 .
The point to note is that the longer the on-time of Q801, the greater the picture width.
This circuit adjusts the width and pincushion correction, the settings being electronically controlled via the service mode.

NS Correction

Large-screen sets fitted with 2R tubes, for eaxmple the KVX2982U, require additional correction to prevent bowing at the top and bottom of the picture. The NS correction circuitry is on PCB D2.

Dynamic Focusing

Some sets incorporate dynamic focusing circuitry to maintain optimum focusing over the entire screen area. A line-rate parabolic waveform, derived from pin 6 $(+15 \mathrm{~V}$ supply) of the line output transformer, is fed via T802, with AC coupling, to the focus voltage output from the line output transformer.

Velocity Modulation

Velocity modulation is used in 29 in . models to enhance the picture sharpness by emphasising black-white and white-black transitions. This is done via a coil that's mounted on the neck of the CRT. It's used to speed up the scanning spot during these transitions, after which the spot is slowed down briefly to compensate. The
entire velocity modulation circuitry is housed on PCB VM which is also mounted on the neck of the tube.

Part 2

In part 2 next month we'll look at the circuitry on the other panels in the chassis and provide further advice on fault finding.

Help Wanted

Wanted: Connecting cable and details of its pin connections for linking the Akai VC90 camera and VP77EG/EK VCR. Does anyone have any BPN77 batteries for sale? Malcolm S. Simpson, 64 Britannia Road, Milnsbridge, Huddersfield, W. Yorks HD3 4QF. 01484658684. Wanted: Circuit diagrams and/or user manual (photocopies would do) for the Iwatsu SS-5705 oscilloscope. C. Bennett, 43 Penybryn Avenue, Cefn Fforest, Blackwood, Gwent NP2 IJS. 01433835614.

Wanted: SN75439NE stepper motor driver chips and carriage stepper motor for the XL2700 Smith-Corona electronic typewriter, also any circuit diagrams/manuals (photocopies would do). Also require a keyboard membrane and a tape deck for the ZX Spectrum + (the black one with a heatsink running down its side). Owen O Reilly, Belfield, Gaybrook, Mullingar, Co. Westmeath, Ireland. Wanted: YC board from a scrap Saisho VRS 4400 /Matsui VS888 VCR (PCB101 VV0134). Also a scrap Sanyo Sanfax 100 fax machine, for the modem. David Smith, Tyddyn Bach, Bethel, Caemarfon, Gwynedd LL55 1YD. 01248670952.
Wanted: LOPTs for the ITT Model CP340 (CVC40 chassis) and National Model TC 381 G (M6A chassis). Also still seeking documentation for the Unaohm EP684R pattern generator. David Barfoot, 48 Wellington Road, Bournemouth, Dorset BH8 8JW. 01202553350.

Wanted: Instruction book, service manual or any other information for the Taylor 45C valve tester. Even if you only know how to drive it, please call. Also require a circuit diagram for the Advance voltmeter Model VM78. Henry Dulat, Garden House, St. Nicholas Avenue, Great Bookham, Surrey KT23 4AY. 01372456921. Wanted: Any information on the Intercept N7118 colour bar generator - circuit diagram etc. H.L. Smith,1

Tremont Gardens, Leasowe Road, Leeds LS 10 2EP. 01132703199.

Wanted: Sony Betamax SLC30UB VCR for spares, also a service manual for this model. Alan Stubbings, 7 Church Road, Saxilby, Lincoln LN1 2HH. 01522702601.
Wanted: Microcontroller panel for the B\&O 5502/7702/8802 etc. Would consider a complete set. Also service manuals for the B\&O LS5000 and MX2000. I have for disposal some new B\&O teletext boards for the 5502 etc. Stuart Adamson, 48 Crosshill Road, Strathaven, Lanarkshire ML10 6DS. 01357520 049.

Wanted: Outer casing to suit the Amstrad VS1000/VS1 140 or Orion/Matsui VSR1500 video satellite receiver. Patrick Gallagher, No. 2 Collins Flats, Castle Street, Castlebar, Co. Mayo, Ireland. Wanted: CD7609 CP chip for the Huanyu Model 37 C 3 , or posibly a complete board. Also diode type ER26-06 for the Hinari CT16. C. Ingrey, 14 Andrews Walk, Bury St. Edmonds, Suffolk IP32 6SJ. 01284 752291.

Wanted: U-View Servicing Guide for 1987-88 VCRs. Justin Smith, ATV, 4 Shenstone Road, Sheffield S6 ISQ. 01142854254.
Wanted: An A66EAS00X02 tube. We have accidentally damaged one in the workshop. TV Service, 18 Benfleet Road, Hadleigh, Essex. 01702558444.

Wanted: Type A48KLD90X CRT for the Akura Model CX25, also a circuit diagram for this model. Ken Cargill, 1 Stradowen Drive, Strathfoyle, Londonderry BT47 1XN. 01504861268.

Wanted: Murphy V600/V700 series TV with VHF radio. Heathkit MM1U multimeter. LOPT for the Bush TV113/115/118 series. Volume (or tone) control knob and mains power unit for the Grundig Yacht Boy 210 radio. $405 / 625 \mathrm{knob}$ (beige) for the Thom 850 chassis. Drive belts for the Philips EL3576/00 open-reel tape recorder. Remote control gun for the Network NW2044R (or equivalent).

Dave Hazell, 126 Sevenfields, Highworth, Wilts SN6 7NQ. 01793 765390.

Wanted: Instruction manual for the RCA WT524A transistor tester. Michael J. Frey, 18 Rushington Avenue, Maidenhead, Berks SL6 1BZ. 0162827350.
Wanted: Circuit diagram for the Leak Stereo 70 amplifier, also circuit diagram and power on/off/overdrive switch for the Mini Marshall guitar practice amplifier (photocopies will do). Andrew Tebbutt, 34 Coronation Road, Loftus, Saltburn by sea,
Cleveland TS 13 4SL. 01287642820.
For disposal: Mid-Fifties vintage Decca Model 1000 projection TV set, not in good condition. Free but buyer to collect. Bill Wright, 43 Greaves Sike Lane. Micklebring, Rotherham S66 7RR. 01709813419.
Wanted: Circuit diagram (photocopy OK) for the CTV 14 made in Korea for Boots. F. Nezda, 40 Brynhyfryd, Glynneath, Neath SAll 5BA. 01639720429.
Wanted: Front channel up/down and volume buttons for the Ferguson 51 L 7 and a front cover/flap for the Ferguson 59B4. Stuart Fletcher, 131 Walsh Avenue, Hengrove, Bristol BS 14 9SQ. 01275891893.
Wanted: Front panel unit for the
JVC HRD337MS VCR and a back pull-out box for the Goodmans GEC230 car radio-cassette player. V. Smith, 175 Lyon Park Avenue, Wembley, Middx HA0 4HD. 0181 9025447.

Wanted: Circuit diagram
(photocopy OK) for the CM1448M
14in. VGA colour monitor marketed by Lite-On Technology Corporation, Taiwan, and manufactured in Singapore. Ray Stansby, Tatton House, Woodseaves, Stafford ST20 ONU. 01785284505.
Wanted: Service sheet for the Saisho Model CT147R, or component values for R116/7 and types for Q605/6. B.J. Powell, Suncot, Chapel Street, Taliesin, Machynlleth, Powys SY20 8JH.
The Help Wanted column is intended to assist readers who require a part, circuit etc. that's not generally available.

Requests are

 published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.
The Problem of Pre-echo

Abstract

This concluding instalment deals with ways of reducing direct signal pick-up in a distribution system. Bill Wright on the precautions to take and also the ultimate answer - frequency shifting

In Part 1 (March) the basic pre-echo effect and its causes were described and illustrated. The way to overcome the problem is to improve the signal-to-noise ratio. There are two aspects to this: to increase the distribution system signal levels, as discussed in Part 1; and to reduce the amount of signal that finds its way, by whatever route, to a TV set's tuner without passing through the system. The present article deals with this aspect. First however an apology to readers. Because of a computer problem at the printers, Fig. 13 on page 362 of the March issue was omitted. There were also some typeface inconsistencies. Fig. 13 is reproduced below.
Since the signal level at the head amplifier output and along the trunk cable is high, any direct signal pick-up here will normally have no effect. The potential for harmful direct pick-up starts at the downlead terminals of the tap-off unit. Each possible direct signal entry point will be considered in turn.

The Tap-off Unit

Because a tap-off unit is likely to be mounted in a position where the field strength is relatively high - in the loft or high up on an outside wall - direct signal reception at this point is a distinct possibility. If you suspect the tap-off unit, move the TV set and the flylead about a bit. If this has no effect on the phase or intensity of the secondary image, the tap-off unit is probably the cause of the problem.
Tap-off screening is all important. The worst offenders are the plastic-cased units that were popular about twenty years ago. The metal-cased ones with skimpy push-on lids are also suspect. For outdoor use the type housed in a
diecast box, with a cover that screws on firmly, is best. An example is the Teleste CM9000 series. For indoor use the small F connector taps are excellent, being 100 per cent screened. Some don't have a power throughpass however - this is essential when line-powered repeaters are in use.
If the outer conductor of either the trunk cable or the downlead isn't making good contact at the tap-off unit, pre-echo will be one likely symptom. If the tap-off unit's lid or cover is missing, pre-echo may occur.

The Downlead

A good-quality, copper-foil wrapped cable such as Raydex CT100 or Ace QC100 should be used as a matter of course with new system, pre-echo or not. Where a cheap 'low-loss' cable is used in an existing system, it might be worth replacing one or two downleads with CT100 as an experiment. A type of downlead cable widely used in the Sixties and often still found had a foam dielectric and two copper screens separated by insulation. This sounds good, but unfortunately the cable is very lossy at UHF. Replacing it with CT100 cable can give as much as a 6 dB increase in the signal at the outlet, with proportional easing of any pre-echo problem.

The Outlet Plate

Check that the braid is properly connected to the outlet. If not, pre-echo and other unwanted signal pick-up is likely. Unless the system carries satellite IF signals as well as terrestrial UHF ones, the wallplate should be an isolating type. An examination of isolating outlets of different makes will show that some are better than others, both in

Fig. 13: The diagram that should have appeared on page 362 of the March issue. For the full :aption and relevant text see Part 1.

terms of direct signal pick-up and through loss. Both of these are relevant to the avoidance of pre-echo.
Avoid outlets with large, untidy, unscreened connectors and capacitors. There is in particular one type, imported from the Far East, that's popping up all over the place. Although it is supposed to be a simple, straightforward isolated outlet, the PCB is obviously a multi-purpose design, with a large printed inductor and various short lengths of track, all connected to the inner of the coaxial cable. The other end of the inductor isn't connected to anything. I'm surprised that this item isn't sold as "the outlet that doesn't need an aerial", because I think they'd get away with it in strong signal areas. To make matters worse, the through loss is awful (-4 to -10 dB , varying with frequency).
The connection to the outlet should be made as neatly as possible, with the minimum amount of bared inner conductor. Some electricians seem to think that they should separate the braid from the inner, twist the former into a pigtail, and leave about three inches of unscreened inner coiled up inside the back box.
I was once called out to a system in a large new private house, which had line-of-sight reception from a nearby relay transmitter. The electricians had fitted the outlets, back boxes and downleads. The local rigger had then installed (or, rather, slung) a cheap aerial and amplifier in the loft. Reception was most peculiar. The cause of the trouble was the type of outlet fitted by the electricians, with a long inner terminal that protrudes backwards. In every case this terminal was in contact with the shallow steel back box, which was receiving quite a good signal. The signal from the aerial and the amplifier wasn't up to much. As there was virtually no delay with the signal from the aerial, the effect was of pure phase cancellation: at its worst it was as if a pair of stacked aerials were pointed with the null towards the transmitter.

Flyleads

The short leads that link the wallplate, the VCR, the satellite receiver and the TV set are a prime cause of preecho. Quite often this is simply because the braid hasn't been connected within the plugs.

If pre-echo is a problem at an outlet where it's not expected and there isn't such an obvious cause, the first step to take is to unplug the aerial lead at the wallplate. The chances are that this will leave a snowy picture, or at least some evidence of a transmission, on the screen. You could plug the lead back in and mess about with it, making the pre-echo come and go, but why bother? You'll never get it right this way. Make up new flyleads using CT100 cable, all-metal plugs and all-metal line connectors. Ensure that the plugs and sockets all fit tightly. There should, with everything reassembled but the flylead still disconnected from the wallplate, be nothing but snow on the screen.
If you find one of those cheap, ready-made flyleads with moulded plugs, throw it away without hesitation. As we all now know, these are responsible for a lot of the channel group A patterning problems associated with satellite receivers. They are also quite remarkably bad for causing pre-echo.
I've carried out a few simple tests. Standing in my backyard, where the Emley Moor transmitter is visible twenty miles away, I found that a two metre flylead produced around $0 \mathrm{~dB} / \mathrm{mV}$ - this is only about 15 dB less than a reference half-wave dipole! The signal obtained from a similar length of CT100 flylead was about $-25 \mathrm{~dB} / \mathrm{mV}$. These figures are only approximate, as the signal level jumps all over the place as the flylead is moved, but a difference of 25 dB is unmistakable. The
figures are the maximum that could be obtained from each flylead. It made little difference whether the other ends of the leads were terminated or unterminated.
Why these cheap leads pick up so much signal is a mystery. The way the braid is connected to the plugs tends to be a bit hit and miss, but replacing the plugs with properly fitted metal ones seems to reduce the signal pickup only slightly. With the leads I've used for these experiments the cable is of quite reasonable quality. It has a very thin aluminium foil wrap under the braid. This is 100 per cent screening, so theoretically there should be minimal pick-up. Can anyone suggest why this form of cable construction performs so badly?
Sometimes an architect's idea of the best position for a TV set doesn't concur with that of the occupier. A long coaxial cable may be the result, going along two sides of the living room. Take nothing that disappears under a carpet for granted. These cables often have joints made with a blunt table knife and Sellotape wrapping. The cable may have been extended using $50 \Omega \mathrm{CB}$ coax connected to a beer-sodden 30A joint box. Do you think I'm kidding? Believe me, I've found thirgs that would make your hair curl under carpets. Before you do anything else, bypass the sub-carpet enigma with a length of CT 100 .
When you approach a system after being asked to cure pre-echo, budget for new CT100 flyleads at every dwelling. Replace all the flyleads, even where pre-echo is not visible at the moment when you make your call.

The Occupier's Equipment

A TV set with nothing connected to the aerial socket should not receive RF signals. If, as a TV distribution system repairer looking for the cause of pre-echo, you come across a set that shows a picture with no aerial connected, the problem passes to the occupier's TV dealer (sorry, lads!). The only thing that the communal aerial repairer can do is to use another TV set to test reception at the outlet concerned.
It's a nuisance, but the occupier will probably need a bit of convincing and this is a good way to go about it. Such a situation often arises when someone moves from their own house to sheltered accommodation. The TV set will have performed perfectly until the move. "Now we've got double vision, and this impudent fellow from the coucil says it's our telly that's faulty."
VCRs and satellite receivers don't seem to cause preecho. Game switches and plastic splitters do. Where the occupier has fitted a cheap plug-in splitter at the wallplate, everything that's connected is about 6 dB worse off from the pre-echo point of view. In addition, the splitter itself could be receiving direct signals.
In houses with several bedrooms, you might well find a splitter feeding more splitters, with the signal at the living room TV set 12 dB down. The only thing that you can do is to demonstrate the improved reception when the TV set is connected directly to the wallplate and advise the occupier accordingly. I usually suggest that a screened distribution amplifier is used to replace the splitters.

Silly Causes of Pre-echo

I've occasionally found pre-echo in areas of relatively low signal strength, where it just shouldn't be a problem. In one case the occupier had fitted a Labgear indoor aerial and amplifier in the loft to receive an alternative ITV station. In order to get the signal down to his living room, he'd connected the output to the trunk terminals of the tap-off unit, which was also in the loft. The house was only six back from the end of the trunk, so the system signal level wasn't high at that point. The alternative ITV station came in a treat, and the silly person wasn't
bothered by the faint outline produced by the four normal channels. The neighbours were, though.
To make matters worse, our man had wired his amplifier to his immersion heater circuit, which was switched on only during the evenings. The neighbours had to make a video recording of the fault before I could believe them. Even then it took several visits before the cause of the fault was pinpointed. I'm not normally malicious but I made sure that the cause of the problem was clearly stated on the invoice, in the hope that the tamperer would have the cost added to his rent.
I once had to visit a most unpleasant and aggressive young man who was threatening hell and high water if the council couldn't get rid of the 'ghosting' displayed by his living room TV set. He met me on the street as I got out of the van, shouting about "my solicitor" and "my rights". Like many of this sort, he was well versed about his rights but not about his responsibilities. There were three very young children in the flat with their rather clueless young mother. The place was in a dreadful state. Anyway, my concern was with the TV reception.
A VCR supplied signals to TV sets in the living room and the bedroom, via a taped joint. For reasons that escape me, the bedroom TV set had this feed and its loop aerial connected via a resistive splitter. The loop was producing enough signal to cause pre-echo with both TV sets.
The pre-echo at a block of eight flats occupied by elderly people was horrendous, the two signals being of roughly the same strength. This was in an area where preecho is a major problem. For years I'd been dealing with complaints from the surrounding blocks, and one by one new systems had been installed. But no one from this block had ever complained and the original system, installed primarily for 405 -line reception, was still intact. If the pre-echo was this bad, and it had to be with such an antiquated system, how come no one had ever complained before?
It turned out that the door entry system repairers had been at work. Their intercom and electric door locking system is connected to the landlord's electricity supply, to which the TV system is also connected. They had turned off the supply when they started work, and had turned it on again when they had finished. But when turning it back on they had also turned on a switch labelled "TV system - dop not switch off'. This had in fact been switched off for years, with the tenants happly watching TV on a system with no electricity supply! With the supply off, reception was snowy. With it on, TV was unwatchable because of the pre-echo. It's my guess that
someone had discovered many years previously that reception was better with the system off than on. I bet he got paid as well!

Use of a Different Transmitter

Faced with the pre-echo problem, you might be tempted to redirect the system's aerial towards a different transmitter and distribute these signals instead. This might seem like a good idea. But it isn't, and I think I can justifiably say "don't do it". The idea is that very strong local signals would not be used, the more distant and less strong signals taking their place. This will cause problems.
It's unlikely that the signals from the more distant transmitter will be as reliable as those from the nearby station. Even when the second-choice transmitter is providing good-quality reception, which is unlikely in an area swamped with signal from a close by transmitter, there are drawbacks. Occupiers will persist in tuning in the weak signals from the local transmitter - these will inevitably still be present at the outlets.

The Ultimate Answer: Frequency Shifting

There is an assured, cast-iron solution to the problem of pre-echo. If each incoming signal is frequency shifted ('translated') before being distributed, it won't matter how much direct signal gets into the TV set. In a location where the field strength is exceptionally high, there may be no alternative to this course. As frequency shifting is quite a large subject, I'll consider it here only from the point of view of pre-echo.
The main disadvantage of frequency shifting is its cost. The addition of channel converters to an existing system will cost a minimum of around $£ 750$, including labour, for four channels. This figure would pay for simple direct converters.
One notch up the scale of cost and quality is double conversion: the incoming signals are converted to an IF of 38.9 MHz and then to the final output frequency. An even more expensive option is to demodulate and then remodulate each channel. If good quality equipment is used, the cost would be about $£ 3,000$ for four channels.
In some circumstances such costs would be of little consequence. If pre-echo has been a major problem with a system that serves say 600 dwellings, the cost per dwelling of $£ 5$ will not raise eyebrows, particularly when the technicalities can be explained to the purchasing authority. A more typical set of circumstances however would be as follows.

Maths

If the distance between two images on the screen is measured, the total delay time between the two signals can be calculated. Although it's not possible to distinguish between the free space and cable contributions to the delay with this method, an approximation of the overall extra, path length can be obtained.

To calculate the signal delay for a given screen image displacement, and hence the signal path extension, the delay factor is given by D1/D2, where D1 is the distance between the
screen images and D2 is the total scan width.

Where all the extension is in free space, the signal path extension $\mathrm{E}=$ the delay factor x the distance. The calculation is E (space) $=(\mathrm{D} 1 / \mathrm{D} 2) \times$ 19,200 metres the distance a signal travels in free space in the time taken to scan one line - about twelve miles).
Where all the extension is in a cable run and the cable has a velocity factor of 0.8 , the signal path extension E (cable) $=(\mathrm{DI} / \mathrm{D} 2) \times 15,360$ meters
(the distance a signal travels along a cable with a velocity factor of 0.8 in the time taken to scan one line).
For example, the long-delay screen shots shown in Part 1 had preecho images 3 mm to the left of the main image. The line scan, including the sync and overscan, is about 190 mm (estimated from the screen width). The cerial and the TV set are about the same distance from the transmitter, so all the delay is within the system. Thus $(3 / 190) \times 15,360=$ a path extension of 242 metres.

The installer is quoting on a competitive tender basis for a system to serve forty bungalows. His quotation is to go to an electrical firm, which has the TV system included in its work schedule. This firm is in turn putting together a tender for the main contractor, who is himself in competition with other builders. No one wants to know about an obscure problem called 'pre-echo'. One thing is certain if the installer allows for the cost of channel changers: he won't get the job.

When finances do allow the use of channel changing, the technical aspects require careful consideration. The first question is which channels to use? Since signal attenuation in a cable is less at lower frequencies, use of lower-frequency channels is always an advantage. Channels that have other signals of significant strength in the area should not be used. Where possible, a standard set of four channels should be used. These sets are $n, n+$ $3, n+6$ and $n+10$, or $n, n+4, n+7$ and $n+10$. Channels $34-38$ should not be used.

When channel changers have been installed, the original unchanged channels will still be present at each outlet where pre-echo had previously been a problem. Anyone arriving with a TV set to install will assume, not unreasonably, that it should be tuned to the local transmitter. A glance at the aerial will appear to confirm this. Tuning may have been carried out in advance at the shop. We are often called out shortly afterwards, to find the TV set carefully tuned to these weak signals while the strong, translated signals have been ignored.

We maintain one system where this has become a serious problem. Explanatory labels have been stuck to every outlet plate with little or no effect. I'm considering the extreme measure of adding a 'spoiler' signal at the head-end to make it impossible to tune in the untranslated channels.
Another approach to this problem is for the system to carry both translated and untranslated channels. Those who are troubled by the pre-echo can retune to the translated channels while those who aren't need not bother. The main disadvantage is that the system must carry eight instead of four channels, which implies extra cost if the head-end is channelised or reduced output levels if it's broadband. But it simply isn't worth the trouble, because call-outs still arise. Those with pre-echo usually don't think to retune, even when an explanatory leaflet has been distributed.

Despite all this, channel changing is sometimes the only answer. Typical of an installation where frequency shifting had to be used was a high-rise hospital building half a mile from a 5 kW transmitter. Some wards had floor-to-ceiling glass at the side facing the transmitter, with the TV set standing just in front. There was nothing wrong with the TV sets, the flyleads or anything else, but pre-echo was an annoying niggle with an otherwise excellent system, and eventually something had to be done.

Why, you might reasonably ask, should anything be done? If there's so much signal, why not just connect all the sets to set-top aerials? In fact the hospital technicians had fitted set-top aerials in some of the wards that faced the transmitter, but this meant that the satellite channels, which were being distributed at UHF, were lost. It's not acceptable to have patients and staff fiddling about behind the TV sets changing aerial connections all the time. There will soon be aerial socket damage.
A more serious disadvantage of using set-top aerials arose in the wards that faced away from the transmitter. The field strength was less here, but still enough to cause direct signal pick-up. But most of the direct signal was not in fact so direct, having been bounced off a nearby tower
block. As a result the set-top aerials were useless because of ghosting.
Where responsibility for all the TV sets at a site rests in one place, incorrect tuning (to the untranslated channels) is less likely. Patients and nursing staff are less likely to tamper than people in their own homes.

In Conculsion

Pre-echo is often an unexpected problem that spoils the results obtained from a well planned and executed communal TV system. Even when the installer is aware of the possibility of pre-echo, the constraints of cost and competitive tendering may lead to chances being taken. In such circumstances assessing the possibility of pre-echo is very difficult.
I hope that the facts presented in this article will help contractors to take into account the likelihood of pre-echo problems and thus be able to tender more competitively.

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS REPRINTS SERVICE

INDEX DISC

Version 4 of the computerised index to TELEVISION magazine covers Volumes 38 to 45 (1988-1995). It has thousands of references to TVNCR fault reports and articles, with synopses. A TVNCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible PC with 512K RAM and a hard disc.

Price $£ 30$ (3.5 " HD , alternatively 3.5 DD"or $5.25^{\prime \prime}$ if required)

Those with previous versions can obtain an upgraded version for $£ 15$. Please quote serial number of original disc.

FAULT REPORT DISCS

Each disc contains the full text for TV, VCR, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc then access it via the Index disc. Fault Report discs are now available for:

Volume 41 (November 1990 - October 1991)
Volume 42 (November 1991 - October 1992)
Volume 43 (November 1992 - October 1993)
Volume 44 (November 1993 - October 1994)
Volume 45 (November 1994 - October 1995)
Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime} \mathrm{DD}$ or $5.25^{\prime \prime}$ if required)

REPRINTS

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 45 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC orders, or $£ 5$ for nonEC overseas orders. Cheques should be made payable to SoftCopy Ltd. Allow 28 days for delivery (UK).

> SoftCopy Limited, 1 Vineries Close, Cheltenham GL53 ONU, UK. Telephone 01242241455

Thousands of semiconductors I.C's etc. of video parts, heads, belt kits etc. of remote controls. etc. etc. over 80,000 database records to thelp find the difficult video parts quickly. Stock availability \& price in seconds

We compete on QUALITY - We compete on SERVICE We will not compromise and yet our prices are often less.

Sutellite PSU Repair / Refurb kits

 reatmert with not only tre obvoualt tevily sents being replaced thit a number of others aive changed to enaure a atseciciory repal expalence shome that up bo 30 or all power supply repairs proced ure and the correat

At last 4 repalr idts are avalable to cover be malpity of al Ansstrad end Pace recetvens each with a stmple to understand instruction sheet to givie you trough the correct way of reparing ard reforitheng matellite rectiver

	MANUFACTURER	MODEL NO.		PRICE
SATKKTT	PACE	PRD800	PREO00	28.95
SATKKT2	PACE	S\$9000	S.59200	c6.95
		SS9010	SS9210	
		S59020	SS9220	
SATKETT3	AMSTRAD	3RD510	SRDE20	E8.95
SATKIT 4	AMSTRAD	SRD500		88.95

*eEconomic supply TV \& Video parts. VERY FAST *Our experienced staff WANT to help you !! *-We can give you an instant answer from our database that contains over 80,000 items and we can give that answer IN SECONDS *If we cannot find it immediately *We will 'SEARCH THE HEAVENS' *We will hassle our suppliers *We will hassle the manufacturer *We will make phone call after phone call *We will send Fax after Fax on your behalf *WE WILL DO ALL THIS FOR YOU * We do ityilingy yax forfrex-YOUNEED ECONOMC!!

Fconomic Deyces
 PHONE (01902) Z 23122 HAN (01802) 20052

32 Temple Street, Wolverhampton
WV2 4 AN, United Kingdom. Intemational Phone + + 441902773122 Fax ++44190229052 Also available - D2mac Decoders - RTL Decoders - Secam/PAL Transcoders - A/B Switches

Tone Switches - Multiswitches - Please phone for current prices. Larger Quantity Trade enquiries welcomed.

TV Fault Finding

Reports from Philip Blundell, AMIEEIE, Glyn Dickinson,
Mike Orr, Stephen Leatherbarrow, G.M. Colebourne, Brian
Storm, Nick Beer, Terry Lamoon and Chris Watton

Hitachi CPT 1454 (NP84CQ Chassis)

This set would come on for a split second then go dead. The overvoltage thyristor was firing. If the set was started up gradually by using a variac, it would keep working and the 103 V and 200 V supplies would be established correctly - the overvoltage circuit monitors the 200 V supply.
Resistance checks in the protection circuit showed that R909 ($180 \mathrm{k} \Omega$) had fallen in value. As a result the set tripped early. P.B.

Grundig P17/649/12 (CUC5200 Chassis)

There was no sound or vision, just a blank white screen. Voltage checks showed that the $12 \mathrm{~V}+\mathrm{B}$ supply was low at 8 V . Tests in the 12 V regulator circuit showed that the voltage at the base of transistor T672 was also low. It's connected to the U/standby control line, which is used to switch off the +B supply for standby operation. Transistor T835 (BC548) turned out to be leaky. P.B.

Hitachi CPT2078 (NP83CQ 2 Chassis)
 There was a strange picture with no

colour: the verticals were bent and smeared. The teletext panel was not to blame, but the picture was restored to normal when the AV panel was bypassed. The cause of the trouble was the HEF4066 chip IC1201. G.D.

Philips GR1-AX Chassis

This portable wouldn't start up, though the HT was present and a slight grunt could be heard. The start-up pulse was present at the volume input of the TDA8305 chip, which contains the line oscillator, but the set wouldn't kick off. The chip wasn't to blame however. Much investigation brought us to L5524 (1.5 mH) in the start-up feed to the line driver stage. It had gone high-resistance, a replacement restoring the line drive. We've since had a second set with the identical fault. G.D.

Blaupunkt FM120

This is a chassis that will not be familiar to most readers. The sets are very reliable, the main trouble being caused by the line output transformer which, when faulty, causes tripping at switch on (arcing can usually be seen through the casing). The focus control usually has to be replaced at the same time.
After we'd carried out these repairs to one particular set the customer complained that it took progressively longer to come on. There's no mains switch on this model, as a relay powered from the standby transformer switches the main power supply on. The relay clicked as usual, but the power supply remained dead. Replacing the three electrolytics $\mathrm{C} 420(1 \mu \mathrm{~F}$, 63 V), C426 and C429 (both $100 \mu \mathrm{~F}$, 25 V) and the TDA4600 chopper control chip restored normal operation. G.D.

Mitsubishi CT25A2STX

This set had an intermittent fault with rather obscure symptoms. A
wavy dot pattern was superimposed on the picture. The luminance response was also affected, and at times the picture blanked out completely. Teletext was OK.
Tests showed that the luminance signal was present wherever it should be. In the fault condition the feedback pin of the VCJ chip was at 1.5 V instead of 3.5 V . Freezing this chip cured the fault - but replacing it didn't! When we checked the blanking voltage from the teletext board we found that it was at 0.6 V instead of 0 V . The culprit turned out to be the JC501Q transistor Q7705 on the text board. M.O.

Panasonic TX21V1 (Alpha 2 Chassis)

Most of the Nicam faults we get are caused by incorrect adjustment or a faulty IF unit. This set failed to produce Nicam sound and the display showed neither the Nicam symbol nor the mono one. On investigation we found that the $6 \cdot 55 \mathrm{MHz}$ oscillator wasn't running. The cause of this was eventually traced to the $0.01 \mu \mathrm{~F}$ capacitor C 2549 which is connected to pin 9 of IC2502, the carrier APC detect pin. After replacing this capacitor and carrying out 6.55 MHz adjustment the set worked correctly. M.O.

Toshiba 2 10T6B

This set produced a pale, indistinct raster whose brightness didn't alter when the brightness control was adjusted. I suspected that a sort of reflected brightness within the tube was the cause of the trouble, as a result of the raster being deflected off the viewing area. This proved to be the case, the culprit being the field scan coupling capacitor C316 $(4,700 \mu \mathrm{~F}, 25 \mathrm{~V})$. This fault can also cook up R327, which is in the supply to the field output chip. M.O.

Mitsubishi CT29B2STX

This set had a rare fault these days, north/south distortion. With the

29in. tube, the symptom looked pretty bad. There's a 2SA950 30V switch transistor (Q4009) on the NS correction panel. It was supplying only $2 \cdot 3 \mathrm{~V}$. A replacement cured the fault. M.O.

Panasonic TX25A2X (Alpha 3 Chassis)

The picture had no colour. Checks around the colour decoder chip IC601 showed that the reference oscillator wasn't working. Instead, there was a pulsating line pulse at this pin (21). In addition the chroma input at pin 15 was going from zero to maximum amplitude.
This is a multi-standard colour decoder chip, with an NTSC as well as a PAL crystal. Removing the NTSC crystal stopped the pulsating waveforms, but replacing the crystals and oscillator components didn't help. The culprit turned out to be the $0.01 \mu \mathrm{~F}$ ceramic capacitor connected to pin 14 (labelled DC feedback) of the chip. Well, you would know by now that these ceramic capacitors in Panasonic receivers have a bad reputation. M.O.

Philips CP90 Chassis

There was intermittent tripping, also patterning on the screen. It was difficult to narrow down the cause of the patterning to a particular section of the set, because there was both a dot pattern of the sort caused by arcing and the more usual herringbone effect. The latter also varied wildly, being reminiscent of sound-on-vision. These effects were all caused by C2691 in the power supply. This $330 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic had gone low in value. S.L.

Goodmans 2575

This 25 in. Nicam set produced no red output from the TEA5181A RGB output chip, which is mounted on the tube's base panel. We soon traced the cause to the $68 \mathrm{k} \Omega$ resistor R 26 , which was opencircuit. We replaced the corresponding resistors in the G and B channels as well, R28 and R29 respectively, as their values had drifted somewhat. S.L.

Salora J Chassis

This receiver would at random produce the dead set symptom. In fact it produced the sort of half working/low output state that's characteristic of one of these sets in trouble. DB720, a 15 V zener diode connected to pin 5 of the LF0041 chopper control chip HB1, was found to be intermittently leaky.

The cause of a recent case of a dead set with no 15 V input to the 12 V regulator chip ICB500 was traced to rectifier diode DB507 (EGP20D) being open-circuit. S.L.

Philips CP90 Chassis

This seems to be something of a stock fault with these sets. D6665 (1N4148) becomes leaky, producing the dead set symptom. It's connected to pin 5 of the CNX62 optocoupler in the power supply, via R6665 (4.7). S.L.

ITT Monoprint B Chassis

This set would go to standby very intermittently. We found that as the temperature rose the TDD1605S 5 V regulator chip IC405 became leaky between its input pin and chassis. S.L.

Salora 1G3A

An alarming set of symptoms had a very simple cause. The symptoms were a bright, blank raster, no sound and lack of width. All were caused by a dry-joint at the base of transistor TB18. S.L.

Goodmans 5160

At switch on this set produced a flooded white raster in both the TV and text modes. If the set was left to run in the TV mode a picture would gradually emerge from the fog. The text display remained white and blank. When we checked the supplies to the text board (there are 12 V and 5 V rails) with a scope, large line-rate pulses were seen on the 12 V supply. $\mathrm{C} 629(100 \mu \mathrm{~F}, 25 \mathrm{~V})$ was found to be partially opencircuit. S.L.

Philips 2A Chassis

This set came to us dead with a leaky BU508V line output transistor. A replacement quickly failed, accompanied by squealing. By unloading the line output transformer's secondary windings in turn, we found that the set operated with a blank raster when D6644 was lifted. We eventually discovered that the TDA2579/N5 timebase generator chip IC7535 was faulty. S.L.

Tafung 160 Chassis

Intermittent loss of signals is a fault you sometimes get with these sets. While the tuner can be responsible, on several occasions we've found that the resistors which supply the 33 V regulator are the cause. In a recent case one of these $3.9 \mathrm{k} \Omega$ resistors (R 007) had a burn mark around it. The symptoms were
normal pictures following a slight drift/sudden signal loss etc. S.L.

Hitachi CPT2478 (G6P Chassis)

There was sometimes no text and very occasionally jumbled text. It didn't take us long to discover that the 12 V input at pin 2 of PL1204 on the text board measured only 10.5 V . R761 had risen in value from the correct 1Ω to 5Ω. S.L.

Panasonic TX29ADIDP (Euro 2 Chassis)

Excessive width plus parabolic distortion was the problem with this set. When the EW diode modulator driver transistor was removed the width came back in, but a replacement still gave excessive width. The parabolic waveform from the digital pack looked good when checked with a scope, and all the transistors in the EW drive circuit checked all right when out of circuit. Despite this, a new BC547B transistor in position Q593 - this is the emitter-follower at the base of the EW driver transistor - restored normal scanning. B.S.

Panasonic TX25X1DP (Alpha 4 Chassis)

This Dolby Pro-Logic set had no output from the front speakers. The reason for this became obvious when the back had been removed: C81 and C83 on the sound processor board had exploded. They are the output coupling capacitors associated with the two-channel audio amplifier chip U11 which was short-circuit, placing 35 V across C 81 and C83. The fact that they are rated at 25 V explains their distress. A replacement LA4280 audio chip and two new $2,200 \mu \mathrm{~F}$ capacitors restored the sound. B.S.

Panasonic TX29AD1 (Euro 2 Chassis)

This set displayed dark vertical lines down magenta or purple parts of its picture. As the luminance and chroma signal processing is carried out digitally, in I1601 on board A, it seemed sensible to replace this VDP3108-25 chip. Fortunately this cleared the fault. B.S.

Panasonic TX2 (Alpha 1 Chassis)

Dark, defocused bars would move slowly down the screen when this set was switched on from cold. Increasing the brightness made the effect worse, but the symptom cleared after a few minutes to leave a good picture. The cause of the
trouble was an ageing picture tube. We were able to minimise the effect by careful adjustment of the tube's drive and first anode voltages. B.S.

JVC C210EKY

The owner of this set complained of intermittently excessive red adding that the aerial socket seemed to be the cause because he could clear the fault by moving the aerial plug. Tuner-mounted aerial sockets make a wonderful handle with which to disturb a set's inner workings! The cause of the fault turned out to be intermittent loss of the luminance signal, which we traced all round the set from its source at pin 9 of the IF module to an invisibly cracked joint at pin 18 of the colour decoder chip IC201. There should be an 0.6 V peak-topeak luminance signal at this pin. G.M.C.

Goodmans 1410

Two of these portables were completely dead when they arrived. In both cases there was no power supply start up because one of the three series-connected $68 \mathrm{k} \Omega$ resistors was open-circuit. One of them, RP44, is rated at only 0.25 W . It hides beneath two large, green power resistors. The other two $68 \mathrm{k} \Omega$ resistors are rated at 0.5 W . We replaced them all with 1 W resistors to ensure a long and happy life. G.M.C.

Philips 2A Chassis

No results with a low HT output from the power supply, recovering to 140 V when the H -scan drive plug M17 is removed, can be caused by a faulty line output transformer. Richard Newman reported no faulty LOPTs back in December 1992, when he wrote an excellent article on the chassis. But I've had three cases of LOPT failure recently. G.M.C.

Samsung CI5030AN

This six-month old set had been taking an hour to produce a picture - and the time was getting longer! "No picture" turned out to be no line lock. Restoring the H sync preset to the centre of its lock-in range, about 20° clockwise, was all that was needed. The set has been OK for over four months now. G.M.C.

JVC AV21F1 (JX Chassis)

The cause of intermittent shut down was quickly traced to faulty line output transformer connections, especially pin 18 which is
connected to the collector of the line output transistor. To prevent these joints cracking the pins are soldered into board eyelets, as in Panasonic sets. As a result the joint doesn't crack around the pin, it cracks around the eyelet instead.
The 5 V regulator IC522 in this chassis also suffers from cracked joints. But my favourite one is intermittent loss of signals because of a crack at the 4 MHz crystal inside the synthesis tuner. G.M.C.

Hikona RM2002

The fault with this 14 in . portable led me a dance for a while. The symptom was a very intermittent crackle, which was fairly loud, over the sound. I was able to establish quite quickly that the symptom occurred even with the volume control at minimum - in fact the volume control setting had no effect on it - and also that the cause was not associated with the output stage - disconnecting the input to the TDA820 audio output chip silenced the crackle.
The cause of the noise had to come after the volume control, which I discovered (I had no circuit diagram) is in the TA7608AM IF chip - the volume control connection is at pin 3 . When this pin was disconnected the fault cleared - but the noise wasn't coming out of this chip!
There are various coupling and decoupling capacitors between these two ICs, also a screened lead across the top of the PCB. The cause of the problem turned out to be a $47 \mu \mathrm{~F}$ tantalum coupling capacitor - under the screening can. When hooking it out and thinking about the fault I couldn't help remembering Les - even though it wasn't a blue tant! N.B.

Panasonic TX2IV2 (Alpha 4 Chassis)

There was an interesting problem with this delightful set: all the onscreen displays, i.e. the channel numbers, the control bars etc., were black. In other words the blanking was correct but there were no onscreen display RGB drives. Teletext was OK .
The RGB drives for the features affected come from pins 42, 43 and 44 of the microcontroller chip, with the blanking coming from pin 41. The signals were all present and correct at these pins. They should have arrived at pins 11, 12 and 13 of IC3302, but were very low here.
The signals are buffered by
transistors Q3330/1/2, where the

DC conditions were correct. They were not correct at regulator Q3301 however. In fact the circuit voltages here were the wrong way round, with Q3301's base voltage being very low. Cold checks in this area failed to reveal any faults, but this is a Panasonic set and C3304 is an $0.01 \mu \mathrm{~F}$ ceramic capacitor! A replacement put matters right. N.B.

B \& O 7100

The height was very slightly down, the customer complaining that it varied as well. It's not unknown in this chassis. The field linearity control, a vertically-mounted miniature preset on the bottom deflection PCB, had poor wiper contact. The metal of the wiper assembly tends to crack. As a result the wiper contact becomes poor or open-circuit. N.B.

Sony KV1462

This little portable had been working fine until someone tried to retune channel 4 after some aerial work. The set searched, and the stations could be seen, but it didn't stop at any station - the AFT LED never came on. This set contains an infamous IF can. Sure enough there were dry-joints at the AFT and vision demodulator transformers. The usual symptom is loss of vision, because the vision demodulator transformer becomes dry-jointed first. N.B.

Matsui 1436

Field collapse was the symptom with this set. The supply to the field output stage was OK, and I was beginning to suspect the chip. But I decided to check the service switch to make sure that it was in the correct position - I've been caught out by this before. It didn't work, but I did notice that when the switch was moved the field tried to expand. Investigating this further brought me to Q601 where the voltage was low. Its feed resistor R608, a safety type, was open-circuit. Replacing this resistor and Q601 restored full field scanning. T.L.

Alba CTVIO

This is one of those 10 in . portables that can be powered by a 12 V car battery and are thus very popular with lorry drivers and carvanners. You get a lot of them in during the summer months. This model is the same as the Akura CX10, and suffers from the same problem.
The usual complaint is that the set goes off after a while. I tested this one for several days but the fault
wouldn't show up, even when I tapped the set. I knew the fault was there however, so I eventually tried some heating with the hairdryer, concentrating on the regulator. Sure enough the set shut down. A check then showed that there was no output voltage from this chip. After replacing it there were no more problems. The chip is prone to break down when hot. When fitting the replacement, remember to put on heatsink cream and tighten it together well. T.L.

Matsui 2091

This set showed no signs of life, though the power supply was working all right. On closer inspection of the power supply outputs I noticed that there was a dry-joint at D803S. Resoldering this restored the sound and picture. As a precaution some other poor connections, in the line output stage, were resoldered as well. T.L.

Philips CP 110 Chassis

Poor start up was the complaint with this set, which had been a real pain. Now on its third visit to the workshop in five days, it worked perfectly no matter whether it was
hot or cold. By now we had changed various bits in the power supply, read up on all the stock faults, been there, done that. I took it back to the customer and assured him that it would be OK - I must stop doing this. Much red-faced embarrassment when, after fixing the set to its stand and switching it on, there was trip, trip, trip.
If only to try to lay the blame at someone else's door, I decided to check the mains supply voltage. It was 244 V . I knew that our workshop mains supply voltage is only 235 V , so I connected the set via a variac and tried various input voltages. This proved that it wouldn't work above 240 V . The culprit turned out to be C2690 ($100 \mu \mathrm{~F}, 50 \mathrm{~V}$) on the mains overvoltage subpanel. It read only a few microfarads. After fitting a replacement the set worked fine, starting perfectly at all inputs between 200 - 265 V from our variac. C.W.

Sanyo CBP3024

This set was slightly off tune all the time, had a kink in the verticals and slight background grain on some pictures. Attempts at adjusting the AFC and vision detector circuits
only made matters worse. The cause of the fault was eventually traced to C115, an $0.47 \mu \mathrm{~F}, 63 \mathrm{~V}$ electrolytic. C.W.

Salora L50 Chassis

This set's power supply wouldn't start up. Experience has shown us that electrolytics are suspect in these sets. The culprit turned out to be C601 ($10 \mu \mathrm{~F}, 63 \mathrm{~V}$). C.W.

Sony KV1412

If the set is dead and the mains supply components are OK, check whether R602 $(2 \cdot 2 \mathrm{M} \Omega)$ is opencircuit or high in value. This seems to be a fairly common fault with these sets. C.W.

Ferguson ICC5 Chassis

The tuning mode could be entered and the correct channel number could be set. But there was no variable tuning voltage at the input to the tuner and thus no signals. The voltage just stuck at 20 V . There was plenty of activity at pin 9 of the phase-locked loop chip IT20, but because TT12 (BC547) was opencircuit it couldn't affect the tuner unit. A new transistor restored all stations. C.W.

This concluding instalment in Eugene Trundle's series describes audio fault diagnosis with rotary-head systems

The first VHS Hi-Fi VCR to appear on shop shelves in the UK, in 1983, was the Panasonic NV850. The sound system it employed, one that's still with us today in scores of models from different manufacturers, uses a clever technique called depthmultiplex recording. There are two separate layers of magnetic patterns in the tape, at different depths, one for the vision and the other for the sound signal. The advantage is that the sound signal gets the benefit of the same very high record/playback rotary-head/tape speed as the vision signal, banishing the noise, bandwidth and 'mechanical' problems of the longitudinal recording technique considered last month. Other sound recording systems based on rotary heads are used in Video-8 machines: we'll consider them later.

The Depth-multiplex Concept

In-depth descriptions of the principles of $\mathrm{Hi}-\mathrm{Fi}$ sound recording in VCRs are to be found in a number of books. We'll give only a brief account here, the aim being to provide a context for the fault-finding and

Fig. 1: How the separate audio and video magnetic layers are recorded in the tape, using different head-gap widths. The 1μ audio head gap records to a depth of 4μ while the 0.3μ video head gap records to a depth of 0.7μ. The Hi-Fi track is 26μ wide, head azimuth being -30°. The video track is 49μ wide, with $+6^{\circ}$ head azimuth.
alignment advice to follow.
VHS Hi-Fi VCRs have two pairs of heads mounted in the upper drum, one pair for video and the other for the sound. Each Hi-Fi head leads its video counterpart on to the tape, using a comparatively wide (one micron) head gap to write a track that's about 26 microns wide. The magnetic pattern produced penetrates the tape relatively deeply (about four microns), and has an azimuth angle of $\pm 30^{\circ}$ to minimise crosstalk with the video signal during playback.
About 4.5 msec after the passage of the audio head, the partnering video head follows across the same path (see Fig. 1). Its narrower but but longer head gap erases the upper region of the sound recording, replacing this with shallower 'pools' of video information. The track recorded by the video head is twice as wide (49 microns) as the audio track it partly replaces - and in effect burries.
The signal fed to the audio heads, only one of which is in contact with the tape at any one time, consists of two FM carriers. Each is deviated to a maximum of 150 kHz . One carrier, at 1.4 MHz , is used for the left-hand stereo channel; the other, at 1.8 MHz , is used for the right-hand stereo channel. It's important to note that both carriers are recorded and played back by both heads, i.e. the audio head that's in contact with the tape handles both carriers simultaneously.
During playback the audio head again leads the partnering video head. The large azimuth difference between the audio and video head gaps ensures that there is very little crosstalk, so that the presence of the audio track has a negligible effect on the video picked up from the tape. The layer of video information in the tape does however impede pick up of the audio information - to the tune of about 12 dB . As a result, audio playback is much more critical than video playback, especially with regard to tracking and head wear.
In addition dropouts affect audio reproduction more than video - a small speckle on the picture is less noticeable than a crackle on the sound. The analogue

FM modulation this system uses does not permit the sorts of interleaving, redundancy and error-correction techniques that digital recording and transmission systems use. With no suits of armour, and just a fig leaf (so to speak) in the form of dropout compensator and level-hold circuits, these audio carriers are vulnerable ones indeed.

Signal Processing

On their way to their separate FM modulators, the leftand right-hand audio signals pass through compressors that reduce their dynamic range to limit the FM carrier deviation to the permitted $\pm 150 \mathrm{kHz}$. The degree of logarithmic compression depends on the amplitude of the signal, as shown on the left-hand side in Fig. 2: a range of 80 dB is reduced to about 45 dB for recording. During playback an equal and opposite expansion factor is applied. This pushes the noise floor way down and restores the full audio signal amplitude - see the righthand side of Fig. 2.

This processing is carried out, for both channels, inside a single chip in the VCR's electronics section. During playback the left and right signals are separated by bandpass filters downstream from the audio carrier preamplifier. These filters are centred on 1.4 MHz (left channel) and 1.8 MHz (right channel) of course.

Hi-Fi Audio Performance

The depth-multiplex and dynamic companding systems, together with the relatively high tape/head speed, result in excellent VHS Hi-Fi sound performance. A signal-tonoise ratio approaching 80 dB is achieved over a bandwidth of 20 Hz to 20 kHz by a typical VCR, with a distortion figure of less than one per cent and channel separation of greater than 55 dB . Wow and flutter variations are virtually unmeasurable at less than 0.005 per cent. And there is no performance degradation in the LP mode.

All this is many orders better than the conventional longitudinal sound system. This is the upside of $\mathrm{Hi}-\mathrm{Fi}$ audio. Now let's look at the downside.

Hi-Fi Sound Faults

Most VHS $\mathrm{Hi}-\mathrm{Fi}$ sound reproduction problems are caused by poor signal recovery from the tape, either because the signal wasn't properly recorded in the first place or because of signal transfer problems in the playback process. As a result you'll seldom hear hissing or fading, and you certainly won't hear any sort of wow. Any amplitude flutter will be caused by threshold effects in the muting circuit.

When things do go wrong, the usual symptoms are crackling, buzz or intermittent or permanent dropout of one or both sound signals. If the audio FM carriers go missing for more than a second or so, the machine defaults to longitudinal 'lo-fi' mono sound.
One of the few exceptions to this, a rare one, is distortion in one or both channels, especially on sound peaks. This indicates that the FM carrier is running out of space as it were. If it occurs when the signal is being recorded, either the carrier frequency is wrong or the deviation is excessive. If the cause of the problem is a playback fault the relevant bandpass filter ($1 \cdot 4 / 1 \cdot 8 \mathrm{MHz}$) is suspect.
Distortion can be caused by a processing circuit fault, but this is unusual. Any imbalance in the left/right record/playback levels will be caused by an electrical fault - but ensure, during playback, that the problem is not just unbalance of any level indicators present. Unbalanced recorded signal levels should lead to a

Fig. 2: The action of the compander used with rotaryhead sound recording systems.

Fig. 3:(left) The rounded shoulders of this off-tape waveform can give rise to severe Hi-Fi sound crackling and dropouts.
Fig. 4:(right) Loss of signal from one of the audio heads produces on envelope waveform like this. The result is complete loss of the Hi-Fi sound.
check on the record deviation ranges, though adjustments for these are provided on older models only. Excessive deviation in one channel can, in addition to distorting its own playback, result in 'birdie' effects in the other channel.
Perhaps the most common Hi-Fi sound problem is poor reproduction (snap/crackle/buzz/dropout) of commercially-recorded tapes that customers buy or rent. The first thing to do is to try the effect of tracking control adjustment: if this fails to cure the trouble, the cause of the problem is the recording of the tape itself or a playback tape path fault.
Clean the drum heads and check the back tension. Then, while monitoring the off-tape signal envelope, align the drum entry and exit guides - for the flattest and 'meatiest' carrier signal. Do this ideally with the $\mathrm{Hi}-\mathrm{Fi}$ sound carrier output of an alignment or test tape. It should work just as well when observing a test tape's video carrier signal however. If, with a known good recording, the sound and vision carriers peak at different points there's something wrong with the drum's factorysealed head height settings. Fig. 3 shows an FM playback envelope that could have little effect on the video signal but may completely blow the audio one.
Some VCRs have a useful front-panel indication of Hi-Fi tracking in the form of a switch-selectable LED or fluorescent display. This shows the off-tape carrier amplitude: don't confuse it with the audio level indicators commonly provided for the left and right channels.
A buzz or hum effect with tapes recorded elsewhere may also be caused by an incorrect Hi-Fi head switching point - this will result in a gap or glitch in the off-tape carrier signal. Adjust the head switching point in accordance with the manufacturer's instructions. In some designs this is done by software: call up a service menu then manipulate front panel or remote control unit keys.
Close examination of the off-tape Hi-Fi FM envelope waveform, using an oscilloscope triggered by the head
flip-flop (SW25) pulses, will reveal any head switching problems.
When a VCR is correctly aligned with respect to tape path and tension, its head switching point is correctly adjusted, and it can produce good audio with an alignment or similar tape, it should be able to cope with any properly recorded commercial cassette. Any tapes that give trouble once these conditions have been met are likely to be out-of-tolerance recordings. Get them back to the distributors and, hopefully, the duplicating houses!

Worn Heads

If a machine provides good $\mathrm{Hi}-\mathrm{Fi}$ audio playback from an alignment or a known-good prerecorded tape but suffers, during playback of its own recordings, from the symptoms described above, the likelihood is that its heads are worn or faulty and that the upper drum is in need of replacement. Before condemning it however, check the tape's back-tension setting, the FM audio record current, and the luminance record current which, if excessive, can swamp the tape's audio carrier tracks.
If one head is not working (see Fig. 4) the result will be no Hi-Fi sound at all, with reversion to longitudinal (mono) playback sound.
In my experience head wear is the most common cause of sound problems with machines that are over five or six years old. Because its carrier frequency is higher, the right-hand channel may be affected first, spasmodically. Most service manuals quote an off-tape audio FM signal level that provides a useful indication of head wear.
Reducing the audio and/or luminance record current can sometimes temporarily restore the performance with a worn head, but the problem will return as the wear progresses. Thus drum replacement is the best course.
When a recording is out of specification, it may well be that a worn playback head cannot cope but a new one can.
A tape that will provide a useful guide to head wear is a commercially-recorded one with borderline $\mathrm{Hi}-\mathrm{Fi}$ playback performance. I found such a tape by chance. It will play all right, just, with a good machine when the tracking bar graph is taken about three-quarters of the way up. With a worn or out-of-specification VCR the sound splatters or mutes. This is a useful and quick gauge: I don't even have to remove the machine's top cover!

Record Faults

Apart from the faults already described, a record-only fault that can cause borderline playback is insufficient audio carrier record current. There is no adjustment for this with most VCRs, but if you are lucky the service manual will provide a calibrated oscilloscope reading against which it can be checked.
Excessive audio FM record current has a greater effect on the picture than the playback sound: it can cause noise, patterning and interference effects.

Fig. 5:
Positions of the sound carriers in the signal spectrum recorded by
the video
heads in an
8 mm
camcorder or
VCR.

If a machine's recordings of Nicam transmissions are crackly or suffer from intermittent dropout be sure, by switching to mono FM sound reception or by careful monitoring in the E-E mode, that the cause is not a reception or Nicam decoder problem. The latter have been considered in previous issues of Television.

If you get a complaint about no sound recording with TV broadcasts, check whether any simulcast (SC) switch provided is correctly set.
Many reported recording faults with Hi -Fi-equipped camcorders are caused by their characteristics rather than the equipment. Possibilities are auto-level control and the pick up of wind, handling and motor noise, particularly under quiet conditions. Air currents can cause strange muting effects out of doors without necessarily being heard as 'wind noise'.

Playback Faults

Most of the troubles that affect playback only, i.e. the machine's recordings play back all right via other machines, have already been dealt with above. A very common one, caused by misuse, is a strange, distortedecho and 'phasing' effect when the $\mathrm{Hi}-\mathrm{Fi} /$ normal/mix switch has been left in the mix mode. In older machines this switch is mounted on the front panel. With newer ones switching is done via a remote-control key menu selection in software.
The only other odd playback-only faults we've encountered, both in older models, have been incorrect dropout compensation and incorrect $\mathrm{Hi}-\mathrm{Fi}$ muting circuit operating level. The former gives rise to crackles and interference, while the latter results in reversion to longitudinal (mono) playback at points other than where the off-tape audio FM signal falls just below the threshold of the playback amplitude limiter.

Upper Drum Replacement

Hi -Fi head drums are more expensive than video-only ones and, especially with older models, need more care and time in setting up after replacement. The number of electrical presets in the $\mathrm{Hi}-\mathrm{Fi}$ section of a machine can vary from six or more to none at all. Follow the manufacturer's instructions closely and, where necessary, convert RMS to peak-to-peak readings by multiplication by 2.828 .
Correct tape path adjustment is critical for $\mathrm{Hi}-\mathrm{Fi}$ operation. The tracking must be spot on. Because of the narrower tracks used when monitoring its off-tape audio carriers, a $\mathrm{Hi}-\mathrm{Fi}$ alignment tape gives more precise adjustment than a standard alignment tape.
Take particular care, where provision is made for manual adjustment, in setting the head-switching point after drum replacement.

Electrical Faults

Electrical circuit faults are rare in comparison with 'physical' ones. Note that electrical modifications have been issued by manufacturers for various models, notably the Sony SLV625-825 and E7-80 ranges.
Incorrect audio levels or one channel missing will certainly be the result of an electrical fault, but the causes of such faults are not difficult to locate using a scope and multimeter, aided by the fact that with one working channel you have a complete check system that provides voltages and waveforms for comparison. In practice we've found that bandpass filters, connections/joints and electrolytic capacitors (in the sound or even the power supply section) are more likely to cause trouble than signal processing chips - these lead quiet lives.

Frequency-multiplex Audio System

So far we've considered only the depth-multiplex system used in VHS and S-VHS decks and camcorders. Video-8 equipment, in both low- and high-band form, uses a different arrangement, AFM (Audio Frequency Multiplex). The tape has only one signal layer, reducing the drum head count and helping no end with signal recovery, but the system doesn't perform quite as well as VHS Hi-Fi in terms of dynamic range, frequency response and signal-to-noise ratio.
The AFM system uses FM carriers and the same type of record/playback compander action previously described (see Fig. 2). The big difference is that the mono audio carrier, at 1.5 MHz , is slotted into a gap in the video recording spectrum and is recorded/played back by the video head pair, see Fig. 5. The original plan provided only a mono carrier with a deviation/sideband spread of about 300 kHz . A second carrier, for stereo use, was soon squeezed in at 1.7 MHz however.
When servicing, the important thing to bear in mind is that the 1.5 MHz carrier signal contains mono ($\mathrm{L}+\mathrm{R}$) information, for compatibility with mono equipment, while the 1.7 MHz carrier signal contains difference (L - R) information. This is rather like the stereo subcarrier arrangement used with VHF-FM radio transmissions. Thus loss of the 1.5 MHz off-tape signal mutes the sound completely (no fall-back longitudinalmono track here) while loss of the 1.7 MHz signal deletes the stereo effect, with reversion to mono sound Loss of one signal with the AFM system is more likely to be the result of an electrical fault, possibly a filter, than a head/tape problem.
In fact AFM playback is for several reasons more reliable than depth-multiplex playback: there's no magnetic barrier for the off-tape sound signal to penetrate; the ATF system used provides better tracking; and there are few prerecorded tapes to cause trouble! Where they arise from tape/head signal transfer problems, most audio faults are accompanied by more obvious vision ones. The relatively low sound FM carrier recording level (18 dB below the luminance level) makes sound recovery more difficult in borderline situations however, for example where the heads or tapes are worn.
As with VHS Hi-Fi the main factors in getting the sound right are to ensure that the heads are clean, not excessively worn, and correctly aligned to sweep across the narrow tape.

PCM Sound

Apart from the new Digivision camcorders, which are too new for servicing information to be available, PCM (Pulse Code Modulation) sound is currently obsolete in the consumer/domestic market. It was used with some Hi-8, high-end camcorders and deck machines a few

years ago - and has been promised for years in domestic VHS machines without ever appearing! Because of its relative rarity, the technique does not justify much space here. So we'll do a quick nutshell job.
In its Video-8 form PCM recording involves sampling and quantising the L and R channel signals and storing the resulting data in 8 -bit form in a 32 K RAM, see Fig. 6 . Once during each TV field - the time slot is 3 msec (approximately $7: 1$ compression) - the L and R data is extracted from the memory and tone-modulated at 2.9 MHz and 5.8 MHz for recording on the tape as a 'helical extension' to each video track, as shown in Fig. 7. During playback the tones are converted back to binary data, time-stretched in the RAM, then D-A converted to form analogue L and R signals. The AFM recording system is used as well, for compatibility and back-up.
If a PCM machine reverts to AFM sound, either intermittently or permanently, the thing to do is to check the tape path and the off-tape carrier signal at the beginning of each head sweep, where the PCM sound signal is read off. As with all such problems, use a known-good tape, this time with a PCM recording. More often than not the cause of the trouble will be found here, with the usual tension, mechanical, alignment or head wear/pollution problems being responsible.
If the off-tape signal envelope looks good, and assuming that the picture and AFM sound are OK , the cause of the trouble will be faulty connections or defective filters etc. Such problems are quite rare. Ensure that the carrier tones reach the demodulator, and that the binary data from its slicers gets to the RAM. Also that the clock is running, and that the address and data lines are active.
As Fig. 6 shows, virtually all the signal processing circuitry is common to the record and playback modes. Thus most faults can be diagnosed during playback. Much of the digital circuitry is eliminated from the search when a fault is confined to record or playback operation.
We are going to have to become better acquainted with PCM systems in the near future, for vision as well as sound.

Fig. 6: Block diagram showing the basic arrangement of the PCM audio record/playback system used in some Video-8 equipment. The 8 10 and $10-8$ bit conversion process is a selective one, similar to that used for Nicam sound.

Fig. 7: The timecompressed PCM data is recorded as a 'forward extension' of the video fracks on the tape: an extra 30° of head rotation is reserved for this purpose.

Desoldering and soldering of SMDs by hot air and without contact is the fast and efficient way for the modern repair workshop. And now, Welwyn Tool can offer the complete package - a range of hot air tools, SMD Rework Stations, nozzles to suit all SMD requirements, free demonstrations and free colour instructional brochure all available from Distributors nation-wide.
For further information, please ask for Reference No. TSM WELWYN TOOL COMPANY LIMITED
4 SOUTH MUNDELLS, WELWYN GARDEN CITY, HERTS AL7 1EH TEL: WELWYN GARDEN (01707) 331111. FAX: (01707) 372175.

PCBs

TV TUBES

VIDEOCOLOR HITACHI TOMPSON TOSHIBA PANASONIC SHARP BEON
 ITT

PHILIPS
SONY NOKIA SAMSUNG ORION MITSUBISHI CHUNGHWA ETC

The largest manufacturer of re-gunned tubes in the UK

Thousands of new and re-gunned tubes in stock covering over 200 types

Suppliers to major users in the UK and Overseas

First class reputation for quality and service

Fast Delivery
BSI Approved

VISTA - THE TUBE EXPERTS

FOR CUSTOMER CARE AND SERVICE CALL
TUBES: 01429837100
COMPONENTS: 01429838057
FAX: 01429837101

Vista Electronics Ltd
Unit IB, Wingate Grange Industrial Estate, Wingate, Co.Durham, TS28 5AH.

Expand your CTV and VCR rental business with no capital outlay and increase your profitability.

Broughfame has the solution and their rental finance plan will provide facilities from £2,500 upwards.
Block Discounting also available.
For further details ring or write to Bob Wickham at the address below:

BROUGHFAME LIMITED
115A ST JOHN'S HILL SEVENOAKS KENT TN13 3PE

Telephone: (01732) 743400
Fax: (01732) 743335

A 2 ELECTRICS
 18 BROOKWOOD ROAD, SOUTHFIELDS, DISTRICT LINE, LONDON, SW18 5BP Telephone: (0181) 8773492 Fax: (0181) 8773518

Stock items despatched by return

 VIDEO HEADSAmstrad
TVR1, 2, 3, 4, VCR $4500,5200,4600,4700,6000,6100$ 81600,9000 , DC8900, $8904 \mathrm{OtC}$. Ferguson/NVC
Unguson/JVC 2 Head many models $\mathbf{~} 7.50$
8950, 8951, 3V64, 3V65, FV10, 11, 20, 21, 22. 26, 30 etc

F V31, 14, HRD210, 211, 520, 540, 550 etc $\quad . . . \quad$| |
| :--- |
| $£ 14.50$ |

Hirachi
VT130, 135, 250, 420, 425, 430, 530,630 etc $£ 22.00$
VTVTico $110,120,220,400$ etc
-
VTVT100, 110, $120,220,400$ etc $£ 19.00$
$\sqrt{ } 52,60,61,63,640$ etc
£16.00
VT11, 33, 6500, 8000, 9300 otc
£14.00
Marsui/Saisho
V $730,750,735,755,990$, VR $2000,3200,3300,3500$
3600
Panasonic
Universal 2 Head many models
£18.00
f7. 50
NVG130, 30, 40, NVJ30, NVL20 etc …................ $£ 17.50$
Sharp
E22.50
Sharp
VC0300
$381,481,500,571,600,682,772, ~ V C A 100 ~$
105, 106, 202, VCD801, VCM $73,772 \ldots \ldots \ldots € 14.50$ Not all modets are shown for asch make. A vast range of other makes \& modets i.e. Akei, Atha, Aiws, Fiositity Fisher, Funai, GEC, Gokistar, Granadh, Grundig. Hinan Orion, Phitips, Sarryo, Sentre, Proline, Salora, Sony, Samsung, Toshibe \& Mitsubishi are available

IDLER ASSEMBLIES

Akai
Clutch Assemb. VS $112,105,125,165,205 \ldots \ldots \mathbf{£ 1 0 . 0 0}$ Cesset

Amstrad
Tape Creasing Kit VCR $4500, ~ 4600, ~ T V R 1 ~ ~$
5.00

Forguson
Id ler Arm 3V58, 59, 65, FV10, 11, 13 etc
Cam Control Gear FV37, 43, 44, 46
Cap Motor Cog Repair Kit FV37 etc
Fisher
er Assembly FVHP615, 715, 905 eicE5.00

NEAREST TUBE STA
Gear Idler Assembly for above models $\mathbf{£ 4 . 5 0}$

Hitachi
FF/Rew
 Clutch Assambly VT11, 14, 33, 64, 88 otc $\mathbf{E 8 . 5 0}$ Iders for earier models in stock blso Panasonic
Idler Arm Unit NV370, 430, 830, G7, $10 \ldots E 3.50$ Idler Unit NV332,777,78000 All G Mechanism Parts \& Kits available G Mechanism Training Tapa
.. $£ 15.00$
Sanyo
Id ler VHR1100, 1300, 1500, 2100, 2500 55.50 Sharp
 Ider Assembly VC651, 751, 781 etc $\mathbf{6 . 5 0}$ Master Cam VC651, 772, VCA100 Atc $\mathbf{£ 1 . 5 0}$ Not all the modets are given under each make. Please ask for models \& makes not listed

PINCH ROLLERS \& BELT KITS

A large seiection of pinch rollers and beft kits for most models are in stock. Belt kit prices start from 40 p and most of the pinch rollers are priced @ $\mathbf{2 2} .80$. Please ask for list.
TRIPLERS
URivLERS Tripler ...56.50
Universal Tripler with Focus Unit $£ 10.50$
Decca $120 / 130$ Serires
Decca 120/130 Serires .. 58.50
Thorn TX10 Focus Unit ..50
Grundig Triplers.
REPAIR KITS - TVISATELLITENIDEO
Akai-Power Board VS22. 23 otc Amstrad-PSUKit PRD500,510 Satolito 53.00
 $\ddagger 7.00$ IT-Pico 1/1A Chassis 7.00 Philips - PSUKit Anubis "A" Kit 88.50 PSU Kit G110 Chassis00 PSU Kit GYOAE/G90B Chassis $£ 11.00$

Pace - PSU Kit 800, 900, 8000, 900
Panasonic - G Deck genuine kits in stock............ $\mathbf{f 1 2 . 0 0}$ A wide range of maintenance kits also in stock
BACK UP BATTERIES
Philips $1.2 V$ Back Up Battery
Philips 2.4V Back Up Battery
Ferguson TX101.2V
Ferguson TX10 2.4V....

E2.10
2.105

Stur. .-.............. $£ 1.85$ and video mode switches

OTHER SPARES

Hitachi TV Frame Module HM625
Hitachi TV Frame Module HM6232
Degausing Positor White
Degausing Positor Blue
Degausing Positor Philips.
Degausing Positor Hitachi.
IC Circuilt Protectors Most Values
Matsui Limiter Post.
Clear Service Cassette
Panasoric G Mechanism
Panasonic G Mechanism Kit
1995 TV Fault Guide
1995 TV Fault Guide....
1995 video Fault Guide
S959 Video Fauli Guid
Satelifte Favit Guid
High Volage Caps used in Phipe $\mathbf{5 2 4 . 0 0}$ High Voltage Caps used in Philips and other makes.
Values available $3 \mathrm{ng} 92 \mathrm{KV}, 9 \mathrm{n} 11.5 \mathrm{KV}, 3 \mathrm{n} 32 \mathrm{KV}, 1 \mathrm{n} 2 \mathrm{KV}$. in $52 \mathrm{KV}, 8 \mathrm{n} 22 \mathrm{KV}, 100 \mathrm{pf} 200 \mathrm{pf} 47 \mathrm{apf} 2 \mathrm{n} 24 \mathrm{n} 7$ at 2 KV in5 $2 \mathrm{KV}, 8 \mathrm{n} 2 \mathrm{KV}, 100 \mathrm{pf} 200 \mathrm{pl} 47 \mathrm{apf} 2 \mathrm{n} 24 \mathrm{n} 7$ at 2 KV
etc. Prices
MOBILE PHONE BATtERIES NOW AVAILABLE a Large selecton of semiconductorts in A LARGE
STOCK

VIDEO MOTORS

Audio Motors $12 \mathrm{v}, 9 \mathrm{~g} \mathrm{cw}$
Mitachi Capstan Motors
Mitachi Capstan
VTM935 series
Mavailable.

REMOTE CONTROLS

A VAST RANGE OF REMOTE CONTROLS FOR TVS \& SATELLITES FOR E8.00. SOME OF THE MODELS COVERED ARE
AMSTRAD: SRD400, $510,520,550$ ETC AMSTRAD: SRD400, $510,520,550$ ETC.
BUSH: 151 RD $, 2020,2114,2714,2820$ ETC BUSH: $151 \mathrm{RD}, 2020,2114,2714,2820$ ETC.
HITACHI: C2057. CPT $2036,2246,2598$, ETC. MTACH: C2057. CPT2036, 2246, 2598, ETC
MATSUI: 12050, 2190, 2580, 2890, ETC. MATSUI: $12050,2190,2580,2890$, ETC
PACE: PRD800, $900,9000,9200$, ETC SONY: KV2212, 2705, 27XRTU, KVDX27 KVM2511 atc.
hundreds of other models for a Number of makes also available!

LINE OUTPUT TRANSFORMERS HR LOPTS NOW AVAILABLE (@) $£ 15.00$ OR LESS!!
Makes covered: Akai, Akura, Alba, Amstrad B80, Bush, Commodore, Crown, Daewoo, ferguson, GEC, Goldstar, Goodmans, Granada, Hinar, Hitachi, Ingersol, IT, Logik, Luxor, Matsui, Mitsubishi, NEW, Nikkai, Orion, Osaki, Pardio, Philips, Pioneer, Pye, RBM, Saisho, Salor, Schneider, Seleco, Sentra, Solavox, Sony. Tashiko, TEC, Telefunken, Tansai, Thomson, Toshiba, Triumph etc.
":Aimost 100 models covered" "
SOME EXAMPLES ARE
BUSH: 2020, 2520, 2814, 2102, 2620 ETC HITACHI: CPT1444, 1471, 1474, 1476,1482, 1644, 2024, 2035, 2048, 2076, 2236, 2276, 2476, 2158 ETC
MITSUBISHI: CT2154, 2532, 2534, 2553 ETC PHILIPS: 2A, CP90, G90AE, GR1AX, G110, G2 ETC.
SONY: KVX16MTU, 19MTU, KV21XRT, 2212 2252, 2752, 2704, 2705, 27XRTU ETC TOSHIBA: 1400RBT, 1510RBT, 156T9WB 1440RB, 258T7D ETC
PANASONIC LOPTS START FROM $£ 17.50$

Prices subject to change without notice. Please add $£ 1.25$ per order for p\&p and then add 17.5% VAT
POSTAGE VARIES ON HEAVY ITEMS. SEND A4 SAE FOR LIST
Cheques and Postal Orders should be crossed and made payable to A.Z. Electrics

No. 1 est. 0 ¢0\%		
Aerial\qquad		
Midlands' Leading Supplier		
01217848478 (3 lines) Irade Price List available on request to Bona Fidd TV Merial 4 Satellite Deaiers		
PACE CHANNEL MASTER GLOBAL LENSON HEATH • NOKIA • TRIAX CONTINENTAL MICROWAVE PALCOM • PHILIPS • PROMAX • TELESTE		
- EXTENSIVE RANGE OF QUALITY LINES - EVERYTHING AVAILABLE EX STOCK - EXCELLENT DEMONSTRATION FACILITIES		UHF AERIALSVHF AERIALSLOFT STAND\& BRACKETMASTS
RECEIVERS		
		- CHIMNEY
we stock all that's best im RECEIVERS IWCLUDIMG - PACE/ APOLLO, PALCOM, MOXIA. GRUNDIG, DRAXE	LehSON HEATH CHAMMEL MASTER	
	echostar Chameleon arca SWEEY	- CLAMPS
	-All sizes from 45cm to 3.1 m plus	- coaxial cable
LNBs	DECODERS	- CABLE
continewtal microwave GRUNOIG ECHOSTAR chapparel	Thompsons ral uno oue	ACCESSORIES
	SECAM PAL 02 MAC RTL 4, 5 g VERONICA	- WALL FIXING
MULTI LNB HOLDERS	HOT BIRD/ASTRA	AMPLIFIERS
MULTI EXTRA - LITLE WILARO lenson heath chanmel master 2-6 Way LNB Switches	FULL NO-COMPROMISE	- SPLITTERS
	SPECIFICATIONS. HOT BIR	\& T UNITS
	upgraoe avallable.	
EXTENDERS	MOTORISED SYSTEMS	
adX-PLUS astra 10 frequency extenoer also remote CONTROLLEO EXTENDERS BY POWER LINK \& XTRA LINX	PACE MSS SOIP.MSS 10001P H T H MOUNTS. POLAR MOUWTS	SMATV HOTES, FLIS, HOSPIIALS etc. Full range ex stock. We provide expertise, planning. design and commissioning.
	H to M MOUNTS. POLAR MOMUTS IACK ACUAATORS POSITIONESS	
	tRIPLE/QUATRO BAMO LNBS POLARISERS FEEOS	
J. W. HARDY COMMUNICATIONS		
231 STATION ROAD, STECHFORD, BIRMINGHAM B33 8BB		

Cricklewood Electronics Ltd, 40-42 Cricklewood Broadway, London NW2 3ET. Tel:0181-450 0995 Fax: 0181-208 1441

TALIVISTON reader offer

30V, 5A power supply

For a limited period, Vann Draper is offering over 25\% discount on the 305 LDD - a bench power supply featuring digital display of both voltage and current. Normally, the 305 retails at $£ 159$ excluding VAT and delivery but it is available to $T V$ readers filling in the coupon on the right at the 25% discount price of $£ 139$ - fully inclusive of VAT and delivery. Infinitely variable between 0 and 30 V - with coarse and fine controls and adjustable between 0 and 5A, the 305 LDD has a ripple figure of typically 10 mV . Its load regulation is also excellent, at typically $\pm 0.2 \%$.

Accuracy of the supply's dual 3.5 -digit liquid crystal displays is 0.1 decimal digit. The output can handle a continuous short-circuit, overloading at $5.5 \mathrm{~A} \pm 0.5 \mathrm{~A}$. When the overload circuit is activated, it causes both audible and visual alarms, resettable via a push-button on the front panel.

Dimensions of the 305 LDD are 310 by 260 by 120 mm and its weight is 5.5 kg . Housed in a light-grey steel enclosure, the unit is built to compl, with UL, CSA and TUV safety standards.

Features of the 305 LDD

$0-30 \mathrm{~V}$ fine and coarse adjustments $0-5 \mathrm{~A}$ adiustable
 10 mV ripple
 Digital displays for \mathbf{V} and I Continuous short circuit protection $\pm 0.2 \%$ load regulation

Use this coupon to order your 305 LDD

Please send me 305 LDD(s) at the fully inclusive special offer of $£ 139$

Name
Company (if any)
Address

Phone number/fax
Total amount
£..............
Make cheques payable to Vann Draper Electronics Lid
Or, please debit my Master, Visa or Access card
Card type (Access/Visa)

Card tio
Expiry date
Please mail this coupon to Vann Draper Electronics, together with payment Alternctively tox credir card detaits with, order on 01162773945 or telephone on 01162771400
Address orders and all correspondence relating to this order to Vann Draper Electronics af Unit 5, Premier Works, Canal Street, South Wigston, teicester LE 182 PL .
*Overseas readers can also obtoin this discount but details vary according to country. Please ring, wite or fax to Vann Draper Electronics

Satellite Notebook

Fig. 1: Case
removal, Pace model MSS100.

Pace MSS 100

This brand new receiver, straight from the box, failed to provide LNB polarisation change. When the LNB should have moved to the highvoltage horizontally-polarised channels it stayed stubbornly on the lower-voltage vertically-polarised ones.
A check on the voltage at the receiver's F socket, with no LNB connected and hence no load, showed that the $13 / 17 \mathrm{~V}$ switching was OK. With an LNB connected however the voltage for horizontal polarisation dropped back to around I3V. The vertical-polarisation voltage remained virtually constant, independent of loading. A look at the circuit diagram showed that D10 provides a 20 V supply which is fed via L4 to transistors Q1 and Q2. These adjust the LNB supply voltage. A separate 17 V supply comes from D11.
This latter voltage was spot on, but the voltage at D10 was high at nearly 30 V . Checks at both ends of

L4 didn't produce readings anywhere near 30 V . I found that there was a hairline crack in the print where D10 had been soldered to the PCB. A wire link between D10 and L4/C12 restored normal voltages and polarisation changeover.
Almost the entire switch-mode power supply is contained within IC U1, which is shown as type TOP200 in the circuit diagram but is a TOP202 in all the units I've seen. It runs at around 100 kHz . When the TOP202 is unhappy for any reason the case seems to rupture, producing a loud noise. This happened recently (the noise didn't do much for my nerves!): replacing U1 and the 10Ω chip resistor R 2 restored normal operation.
It may be a good idea to check that $\mathrm{C} 3(47 \mu \mathrm{~F}, 400 \mathrm{~V})$, the reservoir capacitor for the mains bridge rectifier, is in good condition - the Ul may not take kindly to a varying HT supply.
I wonder what would happen if the 100 kHz , modulated at $50 / 100 \mathrm{~Hz}$, reached the IF coaxial cable braid? If the cable acted as a long-wire transmitting aerial, the signal could be received at great distances!
The latest MSSI 100 receivers no longer suffer from low-sensitivity sound, as earlier ones did.
Intermittent remote control operation was a problem I had recently with a brand new MSS 100 . The remote control unit itself and manual receiver operation were OK. A slight tap on the case restored normal RC operation (of course!). Delving into the innards, I found that when the fault returned there was no 5 V supply at the infra-red sensor IR700. This comes via a $100 \Omega, 0.25 \mathrm{~W}$ resistor (R702), one end of which was making poor contact with the PCB.
There's a knack to removing the receiver's lid. Undo the fixing screw at the top rear of the case and the two at the bottom front (underneath). Insert a thin, flat-
bladed tool (minimum blade width 6 mm) in the left and then the right bottom slots at the front of the case, with the blade going between the grey and black areas right at the front of the slot (see Fig.1). Apply gentle force at each slot in turn and the two halves will come apart. The top can then be lifted up from the front: it's hinged at the rear by the two plastic lugs that are readily visible. You may be tempted to try and push in the lugs and pivot up from the front. If you do try this, as likely as not the lugs will break off. You have been warned! H.C.

Pace PRD900

The sound and picture produced by this receiver were OK, but it refused to unscramble signals and lacked on-screen messages to insert the card etc. The cause of the trouble was traced to coil L20. It measured OK, but had broken away from the flimsy print. C.N.

Amstrad SRD5 10

After replacing the usual opencircuit $47 \mathrm{k} \Omega$ resistors and power supply capacitors I was left with sound and streaky white pictures. I dived for the usual cause, R80 ($10 \mathrm{k} \Omega$). But this time I was wrong. The trouble was caused by a faulty mixer/booster unit, which is quite rare with these receivers. C.N.

Pace PRD800

This receiver's power supply worked but whistled very loudly. The cause of the trouble was C5, which was a $22 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic. Odd - my manual says the value is $4.7 \mu \mathrm{~F}$. I fitted a $22 \mu \mathrm{~F}$ replacement, as found in the receiver. C.N.

Pace PRD900 Plus

The video output from the UHF modulator came and went intermittently, reception via the scart connectors being OK. When the PCB was removed from the case the fault became, naturally, more elusive. When it did occur, I found that there was no video at L30 inside the modulator module. The signal
comes from R558(75) in the middle of the PCB. There was no video here either. A PCB disturbance check made the signal come and go. Repair consisted of a long wire from R558 to L30. H.C.

Cambridge LNBs

We've had quite a number of faulty Cambridge LNBs recently. The symptoms have been either no signals, very weak signals or signals of one polarisation poor, the others being OK. The problems have not been caused by water getting in, and the LNBs have been installed for anything from four weeks to nine months.
When signals of one polarisation are OK , the others being poor (coming and going), the trouble seems to be caused by breakthrough of signals of the unwanted polarisation. This can be demonstrated here with Sky News, as we have no opposite polarisation signals from Astra 1A. Sky News is received with vertical polarisation: if you switch to horizontal polarisation with a faulty LNB, Sky News appears with varying strength. The effect with wanted horizontally
polarised signals is varying sparklies.
Older Cambridge LNBs (prior to 1995) seem to be OK, the troublesome LNBs being the Juno II AE6 type. Very strange. H.C.

Mobile Phone Interference

A satellite IF distribution system that we installed in an apartment block a few years ago started to suffer from problems caused by a GSM digital mobile phone transmitter. This has been installed recently, at very close range. Interference was getting into the IF line amplifiers. As a result, RTL-5, UK Living and ZDF all exhibited radar-line type interference to some extent, varying when the cables and line amplifiers were moved.
The problem was resolved by moving the dish to a site atop the building farther away from the GSM transmitter (the distance was originally 30 m) and installing the line amplifiers in metal enclosures. GSM transmitters seem to have very high peak powers. This one can be resolved at a distance of five miles using a scanner with no aerial connected. H.C.

Astra 1D Problem

We've recently encountered two cases of 'reverse' Astra ID interference when using an older type 10 GHz LNB. The problem is caused by a semi-local UHF transmitter. With Superchannel at an IF of around 730 MHz , the picture had a moiré-type beat pattern. Increasing the receiver frequency by 2 MHz or so removed the problem, Superchannel being strong enough not to go into white sparklies with this frequency change.
The transmitter concerned uses ch. 53 , i.e. around 730 MHz . The quality of the coaxial cable was good, and the receivers involved were Pace MSS100s. Probably the IF drive from the old LNB was dropping off. Problems could no doubt be expected at up to $10,847 \mathrm{MHz}$ (ch. 68 is 847 MHz), but in practice the IF level will by this point be increasing in comparison with the lower channel, so less interference is likely. In a stubborn case the answer would be to use a 9.75 GHz type LNB, which would shift the IF out of the UHF band. H.C.

What a life

Satellite dealers, James' first TV repair, chip resistance tables - all in a day's work for Donald Bullock

Senor, you wanna buy a video or maybe discuss some
football, eh?!

The long road that stretches down the east coast of Spain is dotted with satellite TV dealers. They seem to be mainly German or English owned and are generally unpretentious places with little by way of a showroom. You often enter to find a simple counter, a few repaired TV sets and satellite receivers in the middle of the floor, and a sign advertising sound conversions at quite reasonable rates. One or two sets will be showing a very good picture.
The dealers themselves are an assorted bunch, always casually dressed. They are usually quite informal and are happy to sit soaking up the sun that floods through their windows, occasionally sipping at the yellow brew that passes for beer in these parts.
I've got to know one or two of the British ones. They reckon to be just getting by, and are happy enough with that. For most installations they use an 80 cm or 1 m dish with an 0.8 dB LNB.

Competition

Smaller dishes can be seen as you drive about. I assume that they are for reception of transmissions with a narrow footprint. While flicking

through the channels the other day, I was struck by the vast number and great variety of non-scrambled programmes of German or similar sounding origin. This made me wonder why most British-language satellite transmissions are of Murdoch origin, and how it is that the Germans (amongst others) manage to finance and produce so many channels without the need for scrambling.
Since Mr Murdoch went over to his latest card technology, dealers here can only make promises when approached for pirate cards. This means that unless people are prepared to fork out something like $£ 300$ for the privilege of watching rather banal commercial programmes, a proposition that would have seemed to be a nonstarter to me, they have only Sky News - which, to give it its due, could be worse - and the TNT film channel. I wonder how long it will be before Mr Murdoch sees some proper British competition?

First Steps

I go to Spain to write in peace, but it never happens that way. The word has got about that we are the local Mr Fixits, and items keep being brought along. Fortunately son James, who is now fifteen, can step in and work with little help.
The other day someone brought us a 14in. Spanish colour set, a First Line 1433GR. It had a Toshiba tube and a Toshiba look, but I couldn't place it - and we had no circuit diagram. James reported that it was dead, and that the chassis looked sweet and innocent.
"Appearances can be deceptive" I said, glancing at Greeneyes. "Mark the setting of the first anode potentiometer on the line output transformer, then advance it gingerly to see if a bright line appears across the screen. If it does, this will indicate that the cause of the trouble is field collapse." Shortly afterwards

James announced that there was indeed field collapse.
"Is there sound?" I asked. "If there isn't, the cause of the problem could be a power supply that's used by both the audio circuit and the field timebase. The correct course of action would be to check any $18-20 \mathrm{~V}$ lines. If the sound is all right, we have to concentrate on the field timebase."
The sound was all right. "How do I find that field timebase?" he asked.
"Look at the scan coils on the neck of the tube" I replied. "They consist of a pair of line drive windings and a pair of field drive windings. The line windings work hardest, so they are wound on the inside, closest to the tube. They will also have the fattest connecting leads, which will trail off towards the line output transformer. Follow the other pair. They will take you to the field output stage. This could be based on a pair of flat transistors on heatsinks or a flat i.c., again on a heatsink.
James reported that the pair of field output transistors, a 2 SC 2073 and a 2SA940, tested perfectly out of circuit and that their 20 V supply was present and correct.
"Check nearby transistors" I said. "Something has to generate a waveform to drive the output transistors."
He found a 2SA1013 transistor that was dead short-circuit and started to get excited. After lots of searching he discovered a transistor with similar characteristics and fitted it. He then switched on, expectantly. Still no field scanning. His face fell.
"We're winning" I said. "That transistor needs 12 V or so to make it work. Is this supply present?'
It wasn't. "Now check the resistors in its collector circuit. Check back until you find the missing 12 V ." He did. "R256" he said, "it's colour coded 33Ω and has over 12 V at one side, nothing at the other. But it looks all right."
"Looks can be deceptive" I said, as

Greeneyes brought us some tea. She stiffened slightly and gave me a look. "It's open-circuit" James cried, holding the resistor across our meter. He replaced it in no time and switched on. It started to burn.
"Finger on the new transistor" I barked. It was cold. "Switch off and measure the resistance between your new resistor and chassis, both ways round. He got two dead short-circuit readings.
"Something on that line is shorting it to chassis" 1 said, "check for it."
The cause of the trouble turned out to be a 12 V zener diode which was dead short both ways. When he fitted a replacement and switched on the field scan came up. After resetting the first anode potentiometer there was a perfect picture.
"Congratulations Jim" I said, "you've just done your first TV set repair!"

Parts Problems

Obtaining spares for products that are Spanish or made for distribution in Spain can be tricky. They won't have been heard of in the UK, and it's difficult to know where to start. But some of the advertisers in Television are particularly helpful.
We recently needed an on-off switch for a Kneissel TV set and some belts for VCRs that were unknown in the UK. We did a careful drawing of the switch and wrote a note outlining our belt problem and faxed these to JJ Components. Shortly after the machine had grunted to a halt Jay Popat phoned us to say that the switch would be in the post that day, also a handful of various belts. As always with this firm, it all happened. When the package arrived here a few days later we were able to complete our repairs.
Jay also sent us his latest catalogue, which is in A4 format, has a colour cover and runs to 125 pages. The layout is excellent, and Jay commented "I cannot tell you how much midnight oil its production cost me".

Some Toshibas

The gate clanged the other day and Senor Edgie ran into the drive, carrying a Toshiba colour set. "I shall hit him" he cried. "I will. . . and when I do. .."
"What's up?" I asked, "hit who?"
It seemed that Grasperos had quoted him $£ 60$ deposit to look at his set and told him that it could take a year to obtain the spares required. He left the set with us, still foaming like a bull.
It was a 215R8B whose problem
was field collapse. Being familiar with the set we checked plug P570's sockets on the main panel. It provides the scan coil connections and as usual was an oasis of dry-joints. Easy enough and, fearful of a clout from Senor Edgie, we priced it at a tenner.
He was all smiles when he came to collect it. Then Senor Loper sprang in with another Toshiba set - slightly different model number, but the same chassis.
"Dead" said Senor Loper. "Yesterday the cat died. Now this. These things come in threes."
"Better do the set quick" I said to James.
F801, the 2A mains fuse that lives on a little subpanel with the switch, was open-circuit. So we checked the R2M over-voltage avalanche diode D808 which was short-circuit. The 6.2Ω surge limiter resistor $R 801$ would also have failed, wouldn't it? The bin clanged again.
We looked at the STRD4420
chopper chip Q801, but this seems to be a pretty rugged device. So we replaced the items we'd found to be faulty and started the set up with a variac. There was a flash and the 2 A fuse and D808 said goodbye.
We took out the chip and checked it against the figures in our notebook, where amongst other things we keep a pin resistance table for this i.c. The readings didn't tie up. As it was clearly defective we fitted a replacement, then started up again via the variac. When the input reached 100 V the set sprang to life, bringing smiles to our miserable faces. The picture was excellent.

An Hitachi CPT2578

Our next caller brought along a dead Hitachi CPT2578. It's fitted with the

G8Q chassis - the one with the odd power supply that uses two chopper transistors. On test the set didn't even make it to standby. There was HT at the output from the mains bridge rectifier but nothing more. The startup circuit contains a thermistor, TH902, that's given us trouble on previous occasions. We went straight to it and found that it was opencircuit. A replacement restored the set to life.

An Amstrad WP Monitor

The Amstrad PCW8512 wordprocessor monitor we were presented with suffered from field collapse. Most of the field timebase circuitry is contained within an LA 1385 chip, and we didn't have one to hand. Again out little book came in handy. We turned to the appropriate page and read off the resistance readings for a good LA1385. These are shown in the accompanying table, measured using our meter's $20 \mathrm{k} \Omega$ range.
The letter R indicates the pin to which the meter's red probe is connected: connect the black probe to the other pins in sequence. Where no reading is shown, it should be above $20 \mathrm{k} \Omega$. We found that the chip in question was full of shorts. Field scanning was restored after ordering and fitting a new one.
It takes only a minute or two to chart the readings for a good chip, with one of you taking the measurements while the other jots down the readings. The resulting table will save on diagnostic time and can avoid the dreaded business of ordering an expensive chip you find you don't need. With VCR signal processing chips, creating such charts can be positively therapeutic!

LA1385 resistance table										
Pin	1	2	3	4	5	6	7	8	9	10
1	R								1.44	
2		R	0.38					13.3		
3		0.38	R					13.7		
4 5				R						
5 6					R	R				
7							R			
8		1.33	1.37					R		
9	1.44								R	
10										R

Connect the meter's red probe to the pin shown as R and the black probe to the other pins in sequence. A blank space in the table above shows that the reading should exceed $20 \mathrm{k} \Omega$. Measurements carried out using the meter's $20 \mathrm{k} \Omega$ range.

Tables like this can be easily drawn up with a known good chip and will save diagnostic time with suspect chips.

Reports from Eugene Trundle Philip Blundell AMIEEIE
Simon Bodgett John Coombes Brian Storm
Gerald Smith Mike Leach Robert Marshall
Stephen Leatherbarrow Terry Lamoon
Michael Maurice Keith Evans

Daewoo V415 etc

Tuning drift is an increasigly common fault with this series of models. While other things can be responsible, the usual cause lies with the three 100 nF capacitors C140/1/2 in the tuning voltage integrator/filter circuit. E.T.

Finlux VR2030/Philips

If there is no tacho feedback from the capstan FG to the control system the machine will shut down almost instantaneously. This particular VCR would accept and load a cassette but then ejected it as soon as any deck function was selected. Checks showed that there was no +1 la supply to the tacho amplifier on the deck because the decoupling capacitor C2206, at the front of the main PCB, was shortcircuit. E.T.

Panasonic NVG25

The customer may not be aware of this fault unless the machine is, for any reason, disconnected from the mains supply - it generally crops up when the machine is on the repair bench for attention to some other fault. The symptom is complete lack of action, the cause being a dried-up kick-start capacitor in the power supply. Look for C1109 ($1 \mu \mathrm{~F}, 400 \mathrm{~V}$). E.T.

GoldStar GHV 1296 PQ

The playback picture would sometimes roll vertically because of poor head/tape contact at the start of the drum wrap. We found that the back-tension lever was not always moving fully to the left, because of a faulty mode switch. It's much
easier to replace than with many other types of VCR. E.T.

Hitachi VTM822/922 etc

We've had three of these machines in recently with front-loading problems. The trouble starts during eject, when the cassette may jam when half way up or collide with the back of the still closed cassette flap.
The cause is a loose metal side plate at the right of the FL assembly. It's labelled the 'RHS bracket gear 411' in the parts diagram. What happens is that the platic claws that should retain it become fatigued and bent. One cure is to replace bracket 403, but I fit a suitable (that's important!) selftapping screw into the hollow end of FL shaft assembly 424 - in the hole marked F in the drawing of bracket 411 . I then wedge the plastic clickers back into position, and warm the plate with a hairdryer to set them properly. Remove the wedges only when everything has fully cooled (leave the self-tapping screw in place). E.T.

Hitachi VTM720

For low take-up torque (should be $80-170 \mathrm{~g}$) check the clutch base assembly for wear. The gear train in the assembly can become stiff because of wear under the take-up gear. P.B.

JVC HRJ420

This fault note could apply to other models. The problem was intermittent E-E picture blanking/video recording, playback of a known good tape being OK. A
scope check showed that in the E-E mode there was a healthy input at pin 62 of the video processor chip IC201, and that it didn't drop out. The output at pin 64 was being disrupted intermittently however, with compressed sync pulses, or half the signal or no signal. What do you do - replace IC201? Wrong!
The signal is probably being disrupted because Q207/212 in the following stage are being switched on by control line ' P. mute', which is going low at random. Having discovered this, some people have changed the microcontroller chip since there are no other obvious problems. But problems there are! One of its input lines, ‘sync. det.’, is instructing the micro to mute the picture.
The guilty components have been found to be the sync ringing coil T901 and/or the IF module. There should be a distorted sinewave of at least 4 V peak-to-peak amplitude at C 905 , otherwise Q905 will remain off and ' P . mute' is then on. If the sinewave is of lower amplitude and the positive potential above earth is varying by less than 3 V , check Q904's input signal.
Another culprit is IF unit TNR2. The 'sync sep' output should be at a DC level of almost 9 V , with a 3 V negative-going triangular waveform on it. If there is any video signal content here, the IF unit is faulty.
Follow this advice and save JVC the cost of video processing and microcontroller chips. S.B.

GoldStar RF900i

These machins have a fullyenclosed chopper power supply
which is therefore inclined to heat up. Failure of the chopper transistor can be caused by a $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic drying up and thus going low in value. The best way to tackle this is to replace the transistor, the control chip, rectifier, fusible resistor and the two electrolyics in the feedback supplies around the optocoupler. S.B.

Ferguson FV62

This machine wouldn't accept tapes. The cause was simply dust in the timing slots at the bottom of the drum assembly. A thorough clean restored normal operation. J.C.

Toshiba V110B

When the mains supply was switched on this machine went into the stop mode. After a lot of tests we discovered that replacing the end and supply sensors restored normal operation. J.C.

Akai VSF33

The complaint with this machine was that the tape stuck. When we checked it we found that the tape was sticking in the cassette housing. A replacement damper arm restored normal operation. J.C.

Panasonic NVJ30

When this machine was switched on from cold the top half of the E-E picture would show bad distortion. The distortion would gradually decrease until, a few minutes later, the picture was fine. As with all such ephemeral faults, it took many days of soak bench testing to find the culprit, which turned out to be C768. This $10 \mu \mathrm{~F}$ capacitor decouples the 12 V supply on the demodulator board. B.S.

Panasonic NVHD90

Reception was consistently disturbed by a 'glitch' - a transient flash that muted the sound momentarily and made the stereo indicator flicker. Since this looked a bit like tuner flashing we tried fitting a replacement. The glitch returned almost immediately. After much scoping and measuring we traced the cause of the fault to C1130, a leaky $1,000 \mathrm{pF}$ ceramic capacitor in the power supply. A replacement restored the tranquility of the 12 V supply. B.S.

Panasonic NVSD25

This machine played back all right but any attempt to cue forwards or backwards would result in loss of line lock as the machine tried to default to the NTSC mode. A
number of defects. e.g. worn video heads, poor tape path alignment, incorrect back tension etc., can cause this problem. In this case the cause turned out to be the capstan motor's top bearing, which was almost seized because of a build up of dirt. Once the capstan spindle and bearing had been cleaned and lubricated line lock was maintained in all modes. B.S.

Panasonic NVF55

There was no normal sound or Nicam sound in the E-E mode. After making a few voltage checks we found that the audio defeat line to the Nicam pack was permanently high. The audio defeat line is produced by the 166006 FP chip IC7001. A replacement removed the silence. B.S.

Panasonic NVL20

Because the VL and VU lines were wrong we were unable to tune in any channels. These two signals are set by the front panel
microcontroller chip IC7501, determining the tuning bands. A replacement M37422V4AF microcontroller chip produced the correct band. B.S.

Panasonic NVJ45

There was an unusual complaint with this machine. When the record mode was selected, some channels on the TV set were affected by heavy diagonal patterning. On a hunch we checked the luminance and chrominance pack carefully for ageing capacitors. Sure enough when $\mathrm{C} 831(4.7 \mu \mathrm{~F})$ had been turfed out and a replacement fitted the problem had gone. B.S.

Nokia VR3784

This machine had faulty hi-fi sound, the left channel output being very low - in fact virtually missing. Checks carried out around the AN3961NFBP-A hi-fi processing chip IC231 showed that the input side was OK but the left channel output was very low. Replacing this chip cured the fault. G.S.

Samsung VIK3 16

This machine was completely dead, with no functions whatsoever. Checks in the power supply revealed that the always 5.8 V supply at pin 6 of connector CN02 was missing. The rectifier diode in this supply (D34) was OK, but its $470 \mu \mathrm{~F}, 16 \mathrm{~V}$ reservoir capacitor C 35 had dried up.
When a replacement had been fitted the machine sprang to life, but
the display was rather dimly lit. The cause of this was another dried up capacitor, this time C38 $(100 \mu \mathrm{~F}$, 10V). M.L.

Akai VSF310

This machine wouldn't front load a tape. All the usual checks were carried out: the mechanism timing was checked and a new mode select switch was fitted, all to no avail. I have to admit that it took a lot of investigation before the cause of the fault was found - a dry-joint on the machine's bottom board.
Although the machine wouldn't front load, if a tape was wound in by hand to the stop position all functions would work. In the end I assumed that an end sensor problem had to be the cause of my woes. The dry-joint was where the leads from the left-hand end sensor join the panel, near the mode switch. It couldn't be seen with the naked eye. Basically, the logic levels at the microcontroller chip weren't quite right when a tape was pushed into the housing. This is what led me to the end sensors. It's one that I would rather forget! M.L.

Samsung VI7 10

The display produced random flashes and there were no other functions. When one of these machines comes in with the no operation symptom you can usually bet that the STK 5333 regulator chip is faulty. On this occasion it was OK, the cause of the rather unusual symptom being the $3,300 \mu \mathrm{~F}, 16 \mathrm{~V}$ smoothing capacitor C103. M.L.

Matsui VX2500

No picture was the complaint with this machine. When attempts to clean the video heads didn't help we found that there was no drum servo lock. This was put right by replacing IC2001 (OEC6014B).
With the machine running on its side the drum assembly made a noise. We found that the collar under the dome-shaped flywheel was coming loose. If this collar is not in the correct position relative to the video heads the flywheel, which contains the magnet for the PG head to detect, will also be incorrectly positioned. As a result only a part of the picture will be seen on the screen, the rest of the display consisting of noise. R.M.

Ferguson FV31R

Although this VCR was dead the fuse was $O K$ and so were all the transistors in the power supply. The start-up oscillator signal could be
seen at the junction of RP28/29 but not at the base of TP28. The diodes were all OK except for one - DP16 was very leaky! Incidentally, never leave the base of TP28 disconnected when power is applied. R.M.

Ferguson FV4 1

The complaint was rolling pictures with some tapes. A look at the FM waveform at BF14/6 revealed all the switching points were incorrect. Adjustment does not involve presets and an oscilloscope with these machines. You simply play back an alignment tape and press and hold 0 and 8 simultaneously. Then, after about two seconds, press stop. This completes the alignment. A tweak on the left-hand guide to straighten up the FM waveform completed the 'repair'. S.L.

Mitsubishi HSM Series

We still get a lot of these machines with a cracked plastic capstan motor belt pulley. The pulley and belt jump off the motor, with obvious results. A quick cure, with which we've had a 100 per cent success rate, is to use a pulley from a JVC HRD series motor. It's a perfect fit and the replacement takes just a few minutes. S.L.

Ferguson FVIIR/JVC HRDITO

The cause of a recent case of intermittent signals proved to be extremely difficult to track down at component level, because of its irritating habit of clearing itself as soon as fault finding commenced. Tuning seemed to be normal when the fault was present, with ch. 55 (our local BBC-I) appearing on cue during search tune. But no signals were evident, because there was no output from the BC182 transistor TR15. The input to its base comes from IC4 (TD6359N), which receives data for tuning etc. from the front panel.
After an extended period of testing, TR15's emitter capacitor succumbed to an attack with freezer. It's a 22 nF disc capacitor - but the value had fallen to about 3-4nF. S.L.

Mitsubishi HSMS9

This machine was completely dead - there was not even a clock display. With the ever-increasing use of switch-mode power supplies in VCRs we were not surprised to find one here. A recent cold spell led me to suspect the electrolytics in the primary side of the supply. I was quickly rewarded: C $912(220 \mu \mathrm{~F}$, 16 V) had gone low in value. It
seemed as well to replace the other two electrolytics on the primary side of the circuit, C906 ($2 \cdot 2 \mu \mathrm{~F}, 200 \mathrm{~V}$) and C911 $(100 \mu \mathrm{~F}, 50 \mathrm{~V})$. S.L.

Amstrad VCR4600

Sound warble was the complaint with this dual-speed machine, the symptom being more apparent in the LP mode. A previous engineer had replaced the capstan motor, the belts, the pinch roller and the capstan drive chip.
A check showed that the capstan control waveform at TP22 was incorrect, with a couple of extra negative-going pulses present. These drifted and, when coincident with the control pulse, reduced its effective amplitude. The capstan control loop then failed. We eventually found that the extra pulses were being produced by the BA718 dual op-amp chip IC302. S.L.

Matsui VP9501OP

This machine came in with mechanical problems such as not loading correctly. Someone had already fitted the usual replacement mode switch. I checked the alignment, which was OK underneath. When I inspected the top area however I noticed that the idler lever was disengaged from the idler wheel. The machine worked correctly when this item had been put back in its correct position. T.L.

Philips VR712

There was no front display although all the functions worked. The display was receiving data and its main LT supply was present, but there was no heater voltage. When I traced the source of this back to the power supply I found an open-circuil Wickman fuse, 1216. A replacement restored the display. T.L.

Matsui VP9401 etc

A warning about this and similar models: when you put the deck back into position after replacing the mode switch, make sure that you do not crush the central LED tower as you can short the two unprotected leads together, causing strange mechanical symptoms. It's easy to do this, not so easy to find the cause of the resultant faults. T.L.

Sanyo VHR390

Whatever function was selected, the tape would stop after a few seconds. This can be caused by dirt on the take-up spool or its sensor, or a faulty sensor. The first thing to do is to remove the take-up spool and examine the black and silver
sectors. Check whether the black sectors are really black. If in doubt, replace the take-up spool and sensor.

When cleaning the spool use a clean, dry cloth. Don't apply much pressure, otherwise the black paint will come off. M.M.

Ferguson FV33H

This VCR was dead. When it was switched on at the mains, a small arc could be seen near the chopper transistor's heatsink. We cured the problem by cutting the track near the heatsink lug and replacing it with a small length of insulated wire. M.M.

Ferguson FV80L

I'm not sure how this machine, which came from another dealer, came to be so badly misaligned. The carriage was in the eject position, the pinch roller was approximately 3 mm from the capstan shaft and the guides were a quarter of the way into their travel! Fortunately nothing was broken or damaged and deck realignment put matters right. M.M.

Fisher FVHP7 16

This machine would occasionally drop into the timer mode and refuse to come out. During our investigation, the LT fuse F902 failed for no apparent reason - but maybe this was a clue. When the fault finally reappeared, the LT voltages were all very low. The main 22 V feed to the power chip had dropped to just 9 V . On checking back to the transformer we found that there was a dry-joint at connector PV903, which links the 18 V AC supply to the regulator board. K.E.

Sanyo VHR291

This hi-fi stereo machine would occasionally fail to eject the cassette. The problem could usually be cured by briefly disconnecting the mains power, thus resetting the microcontroller chip. This didn't always work however, and was causing the user some frustration. This not uncommon symptom pointed to our old friend the mode select switch. But beware! It's buried under the loading motor block. Thus a service manual is almost essential, to be able to reset the timing marks on the cam gears and sprockets.
It's worth checking the condition of the loading motor belt while the loading block is out and you have easy access to it. K.E.

WILLOW VALE
 ELECTRONICS LIMITED

'The Better Choice'

gives you more...

- More new products and spares
- More commitment to higher stock levels
- More technical know-how
- More choice
- More product support
- More dedication to customer care

Willow Vale supplies parts for all these household names, with over 290,000 different spares available by letter, phone, fax or C.O.P.S. ('viewdata' based order/enquiry system).
Should you require any technical help, advice is available on our 'TECHLINE' 0891615915 ("all calls charged ot premium rote).
Being Willow Vale, we don't just guarantee the quality of our spares. We also pride ourselves on our prices...and our genuinely friendly and knowledgable staff. TATUNG TOSHIBA TAISHO panasonic NOKIA $^{4} / A^{\circ} \div 11$

television set ONLY 228

SUBSCRIBE TODAY AND RECEIVE YOUR OWN COPY EVERY MONTH

SAVE 25\% ON A TWO YEAR SUBSCRIPTION SAVE 30\% ON A THREE YEAR SUBSCRIPTION

SUBSCRIPTION FORM

YES, I WOULD LIKE TO SUBSCRIBE TO TELEVISION

Name	
Job Title	
Company Name	
Address	Country
Postcode	Fax
Telephone	

PAYMENT DETAILS

$\square 1$ year $£ 28 \mathrm{UK} \square_{\text {£40 Europe }} \square \mathrm{E}_{52}$ Rest of World
$\square 2$ years $£ 42$ UK - Save 25%
$\square 3$ years £59 Uk - Save 30\%
\square Please invoice me/my company. Purchase Order №
\square enclose cheque made payable to Television for \%
\square Please charge my Visa/Access/AmexM Mastercard
Expiry date Signature

Genuine Tatung spares at genuine Tatung trade prices. We can now supply the full range of consumer electronics, microwave, fax, P.C. \& monitor spares.

We are proud to be appointed by Tatung (U.K.) Ltd to distribute components to their non-account customers. This further enhances the comprehensive range of spares we can offer for over 20 different manufacturers equipment covering T.V., Video, Satellite, Audio, Computer \& Microwave products.

Our comprehensive catalogue is available, free of charge, to trade customers on request.

EMPRESS MILL, EMPRESS STREET, MANCHESTER, M16 9EN.
Tel: 01618725438.01618480060.
Fax: 01618737365

COMPUTRADE

The ultimate source of Computer Components

IF YOU REQUIRE ANY OF THE FOLLOWING

MONITOR COMPONENTS
FLYBACK TRANSFORMERS
CATHODE RAY TUBES
SIGNAL CABLES
SCHEMATICS
SEMICONDUCTORS
INTEGRATED CIRCUITS SOURCING AND BROKERING ******
Also redundant stock purchased ******
PLEASE CALL OR FAX YOUR ENQUIRY
定+44(0)1203307874
$+44(0) 1203305260$
All parts supplied depend on availabllitity and minimum orders may be applied

New Products - 1996
MTAMIUTN Soldering Equipment

Features of the 1000SP Soldering Iron - Stepless temperature selection between $200 \mathrm{deg} C$ and $420 \mathrm{deg} C$ (392 deg F and 788 deg F)
Proportional control with
thermocouple located inside the tip maintains the temperature within or -3%.
Fully electronic triac switching at zero-crossover.

- Operates from any 24V AC 2A power source
-Wide range of tips available
- Earthed from the tip to centre pin of power plug.
Temperature is selected by adjusting the pointer on the handle
In the rare event of failure the modular control board can be un plugged and replaced without the use of a soldering iron
All MAGNUM soldering irons are fitted with highly flexible "burn proof" silicon cord.
The 1000 SP Soldering Iron and 2000 Station
The 1000 SP has been designed to operate with the 2000 station Features of the 2000 Station
This is a general purpose 24V AC 50W transiormer station.
The 2000 station is supplied with spring safely holder, cleaning sponge, spare tip storage and potential balance socket. Megnum Irons, use the E.C. range of tips.

To Order	One Off Price
Quote 112000 SP	E79-95

TELEPHONE/FAX 01516398076

TRADE CAMCORDER REPAIRS

ACCÉNT TECHNIC offers the fast and efficient answer for camcorder repairs to the trade. We repair all makes to the highest standards in our fully equipped workshops.

For a fixed cost of $£ 32+$ VAT we will collect/deliver and give a full estimate for the repair of any faulty camcorder.

Just call our freephone number, and we will arrange collection anywhere in the UK mainland (Inc.
Northern Ireland, excl. Scottish Highlands, Scilly Isles, Isle of Man and the Channel Islands, which are available at extra cost.)

We also repair under many manufacturers warranties. Account facilities available Please ring for details.
> accent
> TECHN I C
> (0800) 281009

UNIT 20, HAMPTON LOVETT IND. EST. DROITWICH, WORCESTERSHIRE WR9 0NX

PCs and Mobile Phones
After reading your April leader I would like to make a few comments on the PC scene, also a suggestion about something that could well turn out to be a nice little earner for the brown goods workshop.
Until recently computers, including PCs, were the only items of domestic equipment I serviced. Two factors have queered the computer repair pitch. First, older machines such as the Spectrum and Commodore 64 have long since fallen into disfavour. It is well nigh impossible to obtain the ASICs (Application Specific ICs) used in Amiga machines since Commodore went bust. Dealers who have any Amiga spares naturally hang on to them for their own use. When it comes to games, apart from very simple faults it's impossible to fix Nintendo and Sega games consoles as the importers won't supply spares.
The second factor that affects the PC repair business is the modular construction of the PCs and the low cost of the boards. Even when you have access to spares and service information, the repair of plug-in adaptor boards is not an economic proposition. For example CPC lists a multi I/O board for a little over $£ 7$ plus the dreaded VAT. Just one of the two 8256 UART chips used in this board costs $£ 8.25$ (plus VAT) from Farnell. Catch my drift? What about motherboard failure? I've seen brand new 486 motherboards on offer at under $£ 50$ complete with processor and warranty. At this rate it's not worth attempting to fix the old one. In fact the major expensive item in the latest Pentium machines is the processor chip itself - unless I'm very much mistaken, you won't get much change from half a grand!
In the event of switch-mode power supply failure, a new one will set you back only around $£ 30$ with a year's warranty. Floppy
disc drives are so cheap that they are disposable. Hard discs are rapidly going the same way. In passing if, like me, you use a PC for work, it's quite likely that your software and work are worth more than the machine itself. So make regular backups of the contents of your hard disc on floppy discs or tape streamer and store them in a safe place.
The modular construction of PCs means that even users with limited technical knowledge can repair and upgrade their own machines - it's literally a matter of swopping panels. As long as the sick machine can load DOS and produce a display, there's plenty of diagnostic software that will tell you exactly what is wrong with it. Dead PC? No problem! Check that the power supply is working then plug a diagnostic card into a spare card slot. It's surprising how many faults are caused simply by grubby edge connectors and loose cards or SIMMs. Accessories like CD-ROMs and sound cards are advertised as being "plug in and play" devices. Any schoolboy can fit and configure them.
This leaves the monitor and printer as perhaps the only parts of a PC system that are worth repairing. But with new VGA displays now costing little more than $£ 100$, even monitors may shortly come to be regarded as disposable. The only area that may still offer technicians future scope is system building. This requires software skills, most of which you have to pick up on the way - especially when installing and configuring networks such as Ethernet.
Lack of memory is easy to deal with - if you can, just ditch Windows! It ties up a lot of RAM that your application software could othewise use. I own two PCs, an elderly Tandon 286 that I was given and an Elonex 386 laptop that set me back $£ 100-$ the previous owner suspected that the lead/acid battery pack was on its way out, and I wanted a portable machine so that I could
work out-of-doors in the summer! The Tandon's memory is a mere 1Mb, while the Elonex PC has 2 Mb . Yet in addition to a wordprocessor package I use a full Autodesk CAD package together with No. I System's excellent PCB design and circuit simulation software. All these are DOS programs, and I've never run out of memory while using either machine. I suspect that I may not be the only PC user who finds the DOS command line far easier to use than Windows. Software writers please note: there are still plenty of us DOS dinosaurs out here!
Oops, I nearly forgot that potential nice little earner! One area of consumer electronics is very much in the bandwaggon mode at present: the mobile phone. While jobs such as reprogramming or repairing and lining up the RF sections call for test gear that's not usually found in the average brown goods workshop, much cellphone repair work just involves the replacement of broken aerials, keypads and case parts.
Don't forget that the purchase price (typically $£ 300$ or so) of the " $£ 10$ " phone is heavily subsidised by the air-time provider. So you won't get a replacement on the same terms. Break your phone and you may have to pay the full replacement cost. This makes repair of the old one very much an economic proposition.
All that's needed is for at least one of the trade suppliers to start stocking, or at least offering to obtain. cellular phone spares. This shouldn't be a problem, as most of the mobiles in use in this country carry familiar brown goods brand names or come from the well-known radiocom specialist Motorola. Meanwhile, pattern cellular accessories such as batteries and chargers, car aerials and leather cases are already available from CPC amongst others. To stock these could well bring you extra custom from mobile phone users, who are quite likely to return
when their TV sets and VCRs need to go into dry dock.
Peter Roberts.
Runcorn, Cheshire.

Comments

The following are intended as constructive comments on some of the points raised in the April issue.

Mature markets (page 395): The private car market is also mature, but until over capacity developed recently profits were high at all stages in the distribution chain. The low profitability in the brown goods market in the UK, compared with say Germany, is the result of the low price/low margin policies adopted by the industry's leaders twenty or thirty years ago. The hi-fi sector has found a way out sell mystique and snake oil. Unfortunately, this probably won't work with tellies and videos.

Interference from CFLs (page

 398): This is interesting information. Is Dave Lauder aware of the move to allow some types of energy-saving lamps rather high emission levels (compared to present limits) at around $2 \cdot 3 \mathrm{MHz}$?Test Case 400 (pages 411 and 437): The video enhancer might have been mentioned. Although some of these give quite dire results, others are reasonably effective in 'restoring' what's been lost through previous processing.

Electrolytic problems (page 415): It's unlikely that a change in value from $100 \mu \mathrm{~F}$ to $70 \mu \mathrm{~F}$ would cause quite such drastic symptoms. If the capacitors concerned are at the input side of the regulators, and are in fact the rectifier reservoir capacitors, the DC voltage produced should vary little with decreased capacitance until, at a sufficiently low level (depending on the circuit being
supplied), there is a sudden drop from approximately the peak value of the AC input to approximately (full-wave rectification assumed) the average rectified value of $2 / \pi$ times the peak value, which is about 0.64 times. It seems more likely that the leakage resistance was varying, though this normally falls with increased temperature. This isn't the first time that such an effect has been attributed to a relatively small capacitance decrease in you pages, and could mislead inexperienced readers.
Small changes in the value of coupling, timing and tuning capacitors can have a large effect of course, but $100 \mu \mathrm{~F}$ capacitors are not common in such positions. Even when used as speaker coupling capacitors, a 30 per cent value change will produce effects that only the golden-eared could detect. The following 'yet another' case supports this - a very faint hum bar caused by a fifty per cent fall in capacitance value.

Jitter cancellation (VCR signal processing, pages 434-6): This very good series came slightly unstuck in Figs. I and 3 and the mathematics department. A true phase-retard block introduces a phase shift, not a frequency change; and you can't add frequencies and phase angles. I sympathise with the wish to keep things simple: we don't want to bring in animals like $\cos w t$, but since half a step was taken by introducing the phase error as the differential $d \emptyset$ perhaps we could take the whole step and add to the frequencies the rate of change of the phase error', $\mathrm{d} \varnothing / \mathrm{dt}$, which is a frequency. I mention this only because the better trainees will be more mystified than the weaker ones by the lack of rigour.

Interference (page 449): The EMC Directive, which is what Geoff Darby refers to in his second paragraph, does not apply
to 'radio amateur apparatus not commercially available'. If your home-built gear causes interference the licence regulations and/or the remaining parts of the Wireless Telegraphy Acts can be used to stop it. You would be 'advised' before being prosecuted however.
John Woodgate,
Rayleigh, Essex.

Next Month

June issue - on sale May 15th

Inside the Pace MSS 1000

Start of a new series in which J. LeJeune takes us on a guided tour of the technology in this satellite receiver. Good reading to gain insight into satellite receiver design and prepare for any fault finding that may be required.

Servicing the Hitachi VTM720/722

John Coombes summarises the fault conditions he has experienced with these VCRs to help you sort out any difficulties you may have with them.

Line Output Check Power Supply

This cunning but simple power supply was devised by lan Rees to enable the operation of the line output stage in a dead set to be assessed. It can save you a lot of time when preparing estimates and making initial checks.

Monitor Fault Reports

In response to many requests, further fault-finding notes from our computer monitor experts.

Starting a TV/video Repair Business

So you think you can go it alone? Many succeed despite the trade"s poor reputation. The most important thing is to be aware of the likely problems and how to deal with them. Advice from John PittFrancis, who has made a success of Otter Vision.

Plus all the regular features

[^1]
BESCO LTD YOUR PREMIER SUPPLIER FOR OVER 30 YEARS Have a great '96 with Besco

ENTIRE RANGE OF EX RENTAL TVs, VIDEO, B GRADE HIFI, PORTABLE CD, GHETTO BLASTERS ETC.

F.S.T. remote working
from only $£ 60$
complete with handset, makes inc' Solara, F.S.T. text working
from only $£ 70$
Philips, Sanyo, Hitachi etc.

Over 200 working video recorders in stock from $\mathbf{£ 4 0}$ (slim front loaders) 100s of front loading videos off the pile from £12 - Philips, Hitachi, Sanyo, Sharp, etc.

Good quality working TVs standard only £25 Teletext from $\mathbf{£ 4 0}$ Makes in stock - Hitachi, Ferguson, Pye, Philips, GEC etc, RING OUR HOTLINE NOW!

HIFI SPECIAL

Boxed HiFi with C.D., Twin tape, radio etc. from £35 (MIN 3 UNITS)
Car radio/cass, Personal stereo, Personal C.D., Ghetto Blasters, etc.

BASEMENT CLEARANCE

300 ex rent colour TVs, mixed std and text, makes include Pye/Philips KT3/K30, Hitachi, GEC series 90, Ferguson TX etc. - ONLY £2,400.00 THE LOT! (DELIVERY ARRANGED)

By special request return of our sensational Cabaret, also our new menu FREE Hamburgers, Pizza, soup, sausage/egg, bacon sandwiches etc. All this and rock bottom prices too! Where else? Bring money!

Prices are plus VAT and based on quantity

Walker House, 16 Bottomley Street, Bradford BD5 7LJ Ring Tony 01274308186 - Open 6 days - 9am-5pm

AMSTRAD HANDSETS

VCR4600, 4600 MkII
VCR4700
VCR5200
VCR6100 (Barcode Indexer)
VCR6200 Barcode
TVR 2
TVR 3 (Equivalent)
SRD400
SRD400 (Equivalent)
SRD500
SRD510/520
AMSTRAD TUNERS/IF
UE33-B01 VCR4600/4700 TPS7-B0005 VCR4600/4700 TPS7-L0002
AMSTRAD
MODULATORS
18108221 VCR5200
4600 MkII, 4700
AMSTRAD SERVICE
MANUALS
VCR3000/9500
VCR4600 Mkll, 4700
VCR6000/6100
VCR7000
VCR8700
VCR8800
VCR9000/9004
PRICES INCLUDE VAT. all items are brand new and guaranteed
$\star \star$ SAME DAY DESPATCH $\star \star$
Write or Phone for FULL LIST.
POST \& PACKING

Harrison Electronics
CENTURY WAY, MARCH, CAMBS PE15 8QW. FAX: (01354) 51416. TEL: (01354) 51289

7.05 SRX $100 / 200$

17.63 SRX100/200 SRD400
17.63 SRX100200
11.75 SRD510/520
32.44 SRD550
32.44 SRD600
8.46 PPC512/640
10.70 PC2086
18.15 PC2286
11.05 PC2386
11.75 PC3086
13.81 PC4386

PC5086
PC74865LC
9.40 ALT286
9.40 PC14M28/29
14.10 FX9600 FAX

AMSTRAD COMPUTER

OPERATORS MANUAL
7.05 PC1640
$16.45 \mathrm{PC} 2286 / 2386$
PPC512/640
ZX SPECTRUM +2
PC1512 (Tech. Ret.)
14.85 PC1640 (Tech. Ret.)
9.00
11.50
AMSTRAD SOFTWARE
9.00 ACCOUNTSMASTER
8.00 (Full accounts program for running
9.75 small business on any PC)

AMSTRAD FAX PCB
FX9600 FAX PSU
AMSTRAD VCR 4600
4700, TVR1,2,3
HEAD BASE ASSY. (Audio) FRICTION GEAR 779 TAPE CREASING KIT
AMSTRAD MOTORS
Capstan Motor LLA4B02 Capstan Motor LLN4B21 Tape Loading MCF9B02 9.99

AMSTRAD LOPTS

CTV1400 FB165KA
$\begin{array}{ll}\text { TVR3 } & 181297\end{array}$

6.50 AMSTRAD PCBs

4.70 (Complete, fully populated) 13.25
6.50
4600 Systems Control/Ser.vo ${ }_{3.55}$ Display \& Control PCBs 3.854600 Video \& Audio
20.65 4600 Mkll Head Amp
11.50 4600Mkll Power Supply
12.00 4600Mkll Hybrid, Luminance
19.504700 Main PCB Assy.
15.004700 Head Amp Assy.
11.004700 Power Supply
POA 6100 Main PCB
15.006100 Hybrid, Chrominance
7.006100 Hybrid, Luminance
8.50 CTV1400 Mkl| Main TV PCB
3.25 TVR2 Main TV PCB
20.15 TVR2 Video Front Display ${ }^{\circ} \mathrm{CB}$

TVR3 Head Amp Assy TVR3 Video Power Supply 31.73

19.98 AMSTRAD COMPUTER

5.88 MONITOR/PARTS
9.40 12" HRCD (Daewoo) Monitor PCB 32.32
43.17 PC/ECD Monitor Tube 56.40

叚
6.46 PPC512/640 Modern PCB
31.73 AMSTRAD MOUSE
$9.4051 / 4^{\circ}-31 / 2^{\prime \prime}$ FDD KIT
9.40 PCW9512 Armature
31.73 Many AMSTRAD COMPUTER \&
41.13 PRINTER SPARES available, pleas
41.13 PRINTER SPARES available, please
15.88 phone for price.

Imiko

COMPATIBLEVIDEO HEADS
Highest Quality Components
IMPORTED AND DISTRIBUTED BY:

Harrison
 Electronics

LARGE RANGE AVAILABLE TO FIT MOST MODELS HIGH QUALITY AT COMPETITIVE PRICES WRITE OR PHONE FOR CATALOGUE

C.T.V.

UNIT 5, THE PHOENIX BUILDING, RUSHOCK
TRADING ESTATE, DROITWICH ROAD, DROITWICH WR9 ONR
TELEPHONE: 01299-251522
0589-888021/0850 486147 (24HR)
SUPPLIERS OF HIGH QUALITY GRANADA AND THORN

EX-RENTAL TELEVISIONS AND VIDEOS

LARGE STOCKS ALWAYS AVAILABLE

ALL AT COMPETITIVE PRICES
Satellite Receivers
Complete Range of Hand Sets

EXPORT ENQUIRIES WELCOME

OPEN: MON-FRI - 9.30-5.30

TEL:01209-251522

Fax: 01299-251543

NORTHERN IRELAND

EX RENTAL T.V.s and VIDEO

NOW AVAILABLE : $21^{\prime \prime}-25^{\prime \prime}-28^{\prime \prime}$
Fst Teletext
Grundig, Panasonic, Nordmende, Solora, Pye, Mitsubishi, Sanyo, Tatung, Philips and Ferguson

DISCOUNTS FOR PURCHASES OVER $£ 1000$ NEW REMOTE CONTROLS FROM £5-£7 ALSO WHITE GOODS AVAILABLE EXPORT ENQUIRIES WELCOME

COLOUR SOUND 66 HIGH STREET, BANGOR

TEL/FAX: 01247453000

WHY BUY EX WHEN YOU CAN THESE PRICES (LTD STOCK	X-RENTAL? BUY B GRADE AT First Come First Served
20" Remote£80	20" Text $£ 90$
21" Remote $£ 90$	20' Fastext $£ 100$
20" Nicam........£110	21" Nicam $£ 120$
	$1+\quad 10+$
Twin Speed Videos	.95.......... 90
14" Remote Portables	.85.......... 80
14" Fastext Portables.	...105........... 95
25" Nicam Fastext..235......... 225
28" Nicam Fastext..	. 260250
CD Microsystem....50.......... 45
CD Radio Twin Casse	tte.........45.......... 40

TV \& VIDEO WHOLESALERS

SATELLITE RECEIVERS GRADED STOCK - Also 1D COMPATIBLE AND TOP BRANDED EX-RENTAL STOCK

GRADED DOMESTIC APPLIANCES ALSO IN STOCK

EX-HOTEL TVs TOP BRAND AND IN MINT CONDITION

CALL NOW AND PAY US A VISIT

\author{

- HEAD OFFICE BIRMINGHAM 208 BROMFORD LANE ERDINGTON BIRMINGHAM B24 8DL TEL: 0121-327 3273
 FAX: 0121-322 2011
}

CLEVEDON

UNIT 20
5C BUSINESS CENTRE CONCORDE DRIVE CLEVEDON
AVON BS21 6UH
TEL: 01275341789

LONDON
UNIT 2

THE ROYAL LONDON EST. 29/35 NORTH ACTON ROAD LONDON NW10 6PE
TEL: 0181-961 5005

PRESTON
UNIT 439
OAKSHOTT PLACE
WALTON SUMMIT IND. EST
PRESTON PR5 8AU
TEL: 01772312101

COLOURTRADE
 ESTABLISHED 1973 - WHOLESALE ONLY

NEW 'B' GRADE

Major Brands ONLY TV's - Video - Audio. Microwaves, Satellite Receivers, Decoders COMPLETE BOXED - WITH STAND-HANDSET-BOOK ETC MINT LATEST NICAM FASTEXT F.S.T.
FERGUSON
FULL RANGE - ALL CURRENT MODELS OF TV-VIDEO IN STOCK
No minimum quantity
NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT
Phone 0121-3597020 FAX 0121-359 6344
 221-222 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19 2HU - JUST OFF M6-J6

AERIALS

FOR TV \& FM RADIO, PLUS 1000's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC

AMPLIFIERS

FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE, LABGEAR, WOLSEY, FRINGE, IKUZI,
MAXVIEW, VOLEX-RAYDEX, KUBLER + MANY MORE

CDASTIAL

alelinlall suldidilies
UNIT X2, Rudford Industrial Estate, Ford, Arundel 01903723726

STARVISION

SUPPLIERS OF HIGH QUALITY EX RENTAL - EX DISPLAY TV \& VIDEO

ALL SETS ARE FULLY SERVICED WITH REMOTE CONTROLS AND ARE READY FOR RETAIL SALE

MOST POPULAR MAKES ALWAYS IN STOCK AT PRICES THAT WON'T SHOCK

ALL PRICES INCLUDE V.A.T. NO MINIMUM QUANTITY

RING TODAY FOR LATEST PRICES TELEPHONE
0121502 3016-01215051033

STARVISION

UNIT A, BRUNSWICK PARK ROAD WEDNESBURY, WEST MIDLANDS WS109QR

THORNS RENTAL GRANADA
 CENTRAL TV WHOLESALE DISTRIBUTION LTD

THORN TX9, TX10, TX100 FST please ring now for best prices

FOR BEST LEALS ON DORICS MK4, Mk4a Basics... RING NOW!

GRADED TVs AND VIDEOS: POA

FULL RANGE OF PANASONIC VIDEOs NOW IN STOCK: POA

WORKING VIDEOs NOW FROM ONLY:
£30.00

FOR ALL EXPORT
ENQUIRIES TV AND VIDEOs, CALL OUR BIRMINGHAM OFFICE NOW!

PHILIPS K35, K40
Teletext TVs
from: $£ 40$ Working

ATTENTION ALL BULK BUYERS RING NOW FOR DIRECT LOADS

Finlandia Nicam TV 21'/ $24^{\prime \prime} / 28^{\prime}$ models:
D66J25x8 D66J26x2 C51H26x17 C59HP6x7 C59HZx3 C66H25x8

C66HZ6x5 C59GZ7x4

SATELLITES, VIDEO CRYPT

SRX200, SRD400, PACE 9000/9200 IRD, PACE 800, VIDEOCRYPT, AMSTRAD 510/540 and more: POA

WORKING PORTABLE from only $£ 35$ LARGE SELECTION of FST TVs from $£ 45$

London contact: Joshi Eley Estate, Nobel Road, Edmonton 18
Tel: 0181-807 4090 Fax: 0181-884 1314

Birmingham contact: Mick 369 Startford Road, Sparkhill, Birmingham B121
Tel: 0121-772 1591 Fax: 0121-766 6383

TELEKINGS TVs WHOLESALE

Good supply of ex rental TVs/Videos.

FST TVs

Toshiba, R/C, F/Text, T/T, Nicam.
Ferguson, R/C, F/Text, T/T, Nicam
Tatung, R/C, F/Text, T/T, Nicam.
Sanyo, R/C, F/Text, T/T, Nicam.
Panasonic, R/C, F/Text, T/T, Nicam.
JVC, R/C, F/Text, T/T, Nicam.
PYE, R/C, F/Text
Philips, R/C, F/Text, T/T, Nicam.
Decca, R/C, F/Text, T/T
Grundig, R/C, F/Text, T/T, Nicam.
Portable. All makes.
TX 10's, TX 100's always available, very cheap.
Videos
For FV21R, FV20, BFV100, FV42L, FV41R, 3V55, 3V54, 3665 many more.
ITT
3918, 3619, 3917 etc
Nokia
5720,3620 etc.
Sanyo
7200, 7700, Nicam 190 Lp, 251 Lp, Nicam.
JVC
170, 210.
Toshiba
All stocks very cheap. Phone for prices, small loads or bulk loads
01816898224
Unit 22, Croydon House, 1 Peal Road, Croydon CRO 3EX.

TUBES

THIS MONTH'S SPECIAL OFFERS

59EAK00X01 NEW £109
51EAK01X04 NEW £49
3702B22 NEW £39

34EAC
2701B22
B grade
£39
B grade
£29

> We have a vast range of FIRST CLASS RE-GUNNED TUBES for domestic televisions. (Your original tube may be required in advance).

We stock a huge range of EX-EQUIPMENT TUBES reclaimed from new or used sets

1000's of C.R.T's in stock

Ring Irene or Jane for price and availability

Carriage and VAT extra
EXPRESS TV
The Mill, Mill Lane,
RUGELEY, Staffs WS15 2JW
Tel: 01889-577600 Fax: 01889-575600

Leaders in the supply of:

Ex-rental, End-of-line, Customer returns and Surplus stocks of Televisions, Video and Audio Equipment, and Domestic Washing Machines, Dryers, Refrigerators, etc.

to the Trade

Contact your nearest Area Manager for latest prices:
Area
Contact:
Mobile:
Fax/Tel: South East

Colin Gordon
0374738701
01227741312
South West North/N.I.

Tony Lewis 0374732784 01291425018 Ian McClelland 0831597331 01244400602

Head Office: Baird House, Arlington Business Park, Theale, Reading, Berks RG7 4SA.
Tel: 01734309933 Fax: 01734309934

ATTENTION ALL SATELLITE DEALERS! ALL SPARES AVAILABLE

FOR CAMBRIDGE 200 AND 480. ALBA IRS - 7000. AKAI SX-1000. J.V.C. TU-AD-1000. B.T. SVS 200.

TUNERS, MODULATORS, REGULATORS, ASIC'S, VIDEO CRYPT BOARDS, CARD SLOTS, POWER SUPPLIES, I.C.'S, ETC.

FOR TRADE PRICES CALL
MARCUS
0035314544611

Suppliers of high quality THORNEX-RENTALSTOCK Direct from source PHONE FOR DELIVERY DAYS ON 01818030505

UNIT E2/3, Stonehill Business Park, Lea Valley Trading Estate, ANGEL ROAD, LONDON NIB 3LD

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

CLA S S IF F IED

FAX 0181-6528931
PHONE 0181-652 8339
The prepaid rate for semi display setting is $\mathbf{£ 1 3 . 5 0}$ per single column centimetre (minimum 4 cm). Classified advertisements $\mathbf{£ 2 . 0 0}$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques. postal orders etc., to be made payable to Reed Business publishing. Advertisements, together with remittance, should be sent to Television Classified, 11 th Floor, Quadrant House, The Quadrant, Sulton, Surrey SM2 5AS

SERVICE MANUALS \& TECHNICAL BOOKS

VIDEO RECORDER POWER SECTION CIRCUITS ON PC CD-ROM

The most common electrical faults found in Video Recorders relate to the Power Supply section. Why purchase a full manual just to repair a power supply fault. This new publication, only available on PC CDROM format contains the power supply sections, both circuits and layouts etc for hundreds of assorted Makes and Models of Video Recorder. Just the job if you repair Video's on a regular basis. For use on any reasonably fast PC with CD-ROM and Printer attached. Just view or print out the .PCX image of the model you are working on.

> Normal Price $£ 49.95$ Plus VAT. Special Introductory Price just $£ 44.95$ + VAT \& $£ 2.50$ P/P. Total $£ 55.75$ Order code MP-203

Computer Monitor Compilations Volumes 1 and 2.
Now combined on 1 CD-ROM including FREE Servicing Guide. Order Code MP-333. Just $£ 44.95+$ VAT \& $£ 2.50 \mathrm{P} / \mathrm{P}$. Total $£ 55.75$.

We have the largest range of Service Information and Technical Data obtainable anywhere.
For Televisions, Video Recorders, Test Equipment, Computer Monitor;, Vintage Wireless, Domestic Equipment etc etc. In fact practically anything electronic. Criginals or Photostats as available.
Also available. Our catalogue detaling Hundreds of Technical Books and Repair Guides. Retury coupon for your FREE copy. Also available, our entire Index of Sarvice Manuals available on PC Disc. (Code MP-285) Just $£ 3.50$ + VIT (Total $£ 4.11$) with FREE updates.

MAL゙RITRON TECHNICAL SERVICES (TV)

8 Charry Tree Road, Chinror, Oxfordshire, 0X9 4QY VISA Tel:- 01844-351694. Fax:- 01844352554.
Please forwand your latest catalogue fo which 1 enclose 2×1 st Class Stamps. 1 enclose payment for MP-203 CD-RON ($£ 55.75$). MP-333 CD-ROM (£55.75). Please supply Inder on PC Disc for E 4.11 inclusive. Cfrcle foms regulred NAME \qquad ADDRESS \qquad

POSTCODE \qquad You may pay by Cheque, PO or
Visa, Access, Delta, Electron, JCB, Mastercard, Eurocard etc

EXPIRES \qquad SIGNATURE

SERVICE MANUALS

Thousands of different models available
For most U.K. European, Far East \& USA makes Prices (Stock Items):-

VCR	-	$£ 13.00$
CTV	- 88.00	
MTV	$£ 6.00$	

Other items, prices on request
P/P etc. (any quantity) add $£ 2.00$
Do not add any VAT
Cheque/PO with order only please.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Davenham Satellite Systems
Satellite Receiver upgrades
Pace PRD800/Grundig STR $1 \rightarrow 199$ chans Pace SS9000/Ferguson SRV $1 \rightarrow 90$ chans Pace PRD upgrade for Astra 1D "Satellite Secrets Revealed" £19.95 256 pages of repair \& installation tips We Repair receivers/decoders. Trade enquiries welcome (0589 355411) We specialise in Satellite Accessories Send for free catalogue NOW! Credit Cards welcome
DAVENHAM SATELLITE SYSTEMS, 1 Firths Fields Davenham. Northwich. Cheshire CW9 9JB 0160649085
email: david@davenham.u-net.com

PROFIT BOOSTERS

Efficiency in the busy workshop is more important than ever, Increase your productivity with our latest range of Technical publications.
FAULT INDEXES: Edition 15 now available, Over 11,600 references listed in 12 years of Television. covers Tv, video, camcorder, satellite \& CD Thousands of copies sold woridwide - complete set $£ 14.75$
INDEXES ON DISK: PC version 1.1 Now available Covers 15 Years \& over 14,000 references - Complete Program, Data \& manual, A lot of information £17.50 Requires IBM PC or compatible, 8086 ypwards, Mono, CGA, EGA, VGA Please specity disk size (3.5 or 5.25 inch HD) when placing your order.
OTHER TITLES AVAILABLE INCLUDE:
KWIK TIPS TELEVISION covering a wide range of makes, models \& chassis, Contains over 2500 faults \& solutions. ISBN 1898394008 First edition - £13.95
KWIK TIPS VIDEO an excellent collection of over 2000 video faults \& solutions, Highly recommended. ISBN 1898394016 First edition - $£ 10.95$
Chassis \& equivalent identification made easy with the E.C.S. Television \& video equivalents, TV model to chassis guide \& camcorder equivalents A massive 4500 entries in 1 book. First edition - only $£ 4.95$

$$
\begin{array}{ll}
Z_{\text {Technical publishing }} & \begin{array}{l}
\text { 31, PRENTON ROAD WEST, } \\
\text { PRENTON, BIRKENHEAD, } \\
\text { MERSEYSIDE. L42 9PY. }
\end{array}
\end{array}
$$

Please add $£ 1.75 \mathrm{P}$ \& P to total (europe $£ 2.75$, r.o.w please enquire).

SERVICE INFORMATION

CIRCUITS and SERVICE

MANUALS from 1930s-1990s: radios, amps, radiograms, tuners, CDs, TVs, videos, cassette radios, ICE etc.
LARGE QUANTITY USED TV \& VIDEO PANELS
BACK COPIES PW \& TV MAG Give details of your needs to:

DAVE WILLIAMS

16 Church Street, Owston Ferry, Doncaster, S.Yorks DN9 1RG Tel \& Fax 01427728046
Mail order only. No callers.
FOR SALE

BABY 10 COMPATIBLE REGULATORS
$\mathbf{£ 1 6}$ Each + £1 P\&P + VAT
Cheques with orders to
Mantech Industries Limited, 851 Ashton New Road, Manchester M11 4DA

Tel: 01613704444
Fax: 01613704443 Allow $\mathbf{7}$ to 10 days for delivery

MÜTER, BMR 95 AT2, BMR 700

Best quality test and regenerating equipment at Best prices. P. \& E. Services 34 Glan-y-Mor Road, Penrhyn Bay Llandudno LL30 3PF Tel: 01492549246 Fax: 01492547880

CLEARANCE SALE 30 Nicam TV's Finlandia, Phillips Untested $£ 50.00$ each. Other FST's available

Telephone

 01142311832> For all your classified requirements contact Pat Bunce
> Tel: 0181-652 8339 Fax: 0181-652 8931

!TIMEWARP!

AL VCR \& CTV MANUALS REDUCED TO 1990 PRICES THIS ISN'T A SALE, THIS IS A LONG-TERM REDUCTION

Helping you to fight rising costs

service manuals service sheets circuits fault guides technical books We Have the World's Largest Selection of

...Repair-Manuals-Circuits-Fault Guides Etc... service manuals service sheets circuits fault guides technical books

CTV CIRCUIT COLLECTIONS

A3 SIZE / ALL POPULAR SETS / UPTO 1995

Alba	$£ 22$	Amst'd/Fid	$£ 21$	Baird/Ferg	$£ 45$
Decca	$£ 22$	GEC	$£ 28$	Goldstar	$£ 12$
Grundig	$£ 38$	Hinari	$£ 14$	Hitachi	$£ 45$
IT	$£ 22$	JVC	$£ 30$	Mitsubishi	$£ 38$
Pansic	$£ 30$	Philips	$£ 40$	Sanyo	$£ 28$
Sharp	$£ 14$	Sony	$£ 49$	Toshiba	$£ 38$

Top Selling Titles

PRACTICAL TV / VCR REPAIRS Buy,Sell,Service, Used CD's/VCR'e/CTV's
£16.95 Each / $£ 30.00$ for both
Euro' Scrambiling Syatems/Satellite Book Only $£ 32.00$ Each / $\mathbf{E} 62.00$ for both
Principals of CDNHS Video Heads/CD Jig Only $£ 3.95$ Each
£9.95 Each, or all for $£ 25.00$ MICROWAVES: Energy \& Ovens Still only $£ 12.95$
VCR Servieling by Boeching
Still £25.00

SPECIAL MANUAL OFFERS

ANY 20 MANUALS FOR $£ 200$ (Inc p\&p) All at once, or phone as you need them OR
JOIN THE STREE LIBRARY FOR $£ 75$ (£20 yearly renewal) AND BUY ALL MANUALS FOR £10 EACH, OR SWAP AT (1) 55 A TIME (Add $£ 2.50 \mathrm{p} \& \mathrm{p}$)

PHONE OUR HOTLINES ON:

 (01698) 883334/884585 Fax: 884825Technical Information Services 76 CHURCH ST, LARKHALL, LANARKS, ML9 1HE

SEMD AN SAE FOA YOUR FREF QUOIE \& CAIALDCUE

RECRUITMENT

Tiferonisisedeind titeradulte.

In-store and out in the field, the service and repair of electrical products is one of the many areas where Comet continues to excel.

Motile Stock Service Engineers

Brown.Goods U.K. Wide

£Competitive + Benefits + Expensed Company Vehicle
Experience in the service and repair of electrical retail products will enable you to contribute as a valued member of our newly established Mobile Stock Service Team and ensure that repair quality standards and service excellence are maintained.
Working from home you will support a number of Comet Retail Stores, undertaking repairs on a wide range of consumer products, including some cosmetic repairs to Domestic Appliances.

Responding to the needs of individual Stores - calls for flexibility, technical know how, effective self-management, good communication skills and a team-orientated approach.

Join the best in the field! For an application form, write NOW, enclosing a brief career history, to:
Mark Perrier, Comet Group pic., After Sales Customer Service Headquarters, Unit 5, City Park Industrial Estate, Geiderd Road, Leeds LST2 6DR Interviews will be heid locally
Training may be available for long-term unemployed applicants (6 months plus) with suitable electrical/electronic qualifications.

If you're a good service engineer, we should be talking

c.£18k + benefits

Big companies offer big challenges. And in the field of consumer electronics, none are bigger than Sony. We continue to lead the market with an innovative and exciting range of audio visual, in-car and relecomm products. And to help maintain our superb reputation for quality customer support we now have a new challenge for an experienced Service Engineer

As a Trade Technical Adviser, you'll be part of a highly experienced, busy, yet small team based at our National Operations Centre at Thatcham, Berkshire.

You'll help diagnose and resolve technical service problems over the telephone, from our trade customers, as well as investigating unique product problems in our modern workshops. You'll work across the whole product range, so you'll need a lot of experience of a brown goods service environment. Equally you must be familiar with fault finding to component level. In addition, you will
liaise with product information and quality departments providing feedback and technical input.

Qualified to City and Guilds 224 or equivalent, together with at least 3 years' workshop experience, first-class customer service and effective telephone skills are essential

For the right person, this is an exciting opportunity to work with Sony's leading edge technology, in a modern environment. In addition Sony will invest in the necessary training to keep your knowledge and skills up-to-date. Our benefits package includes 25 days' holiday, private health insurance and discount on Sony products.

To apply, please send your CV or write for an application form, quoting reference 565, to Joanne Beard, Sony United Kingdom Limited, The Heights, Brooklands, Weybridge, Surrey KT13 OXW.

TV LINE OUTPUT TRANSFORMERS

PHONE: 0181-948 3702 FAX: 0181-332 0583
ALBA AMSTRAD • BUSH • DECCA DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG • GRANADA. HITACHI - HINARI INDESIT • ITT • KIMARA • NIKKAI MATSUI - MURPHY OSAKI - NORDMENDE - LOEWE-OPTA PANASONIC• PYE•PHILIPS • SANYO • SAISHO • SHARP SONY - SOLOVOX • SUSUMU TANDBERG • TELEFUNKEN . THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KTIS, IDLERS, PINCH ROLLERS, TENSION BANDS.

 LARGE RANGE OF REMOTE CONTROLS IN STOCKTIDMAN MAIL ORDER LTD - 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Approx. 1 mile from Kew Bridge.
mon- Fr 9 am to 12.30 pm

TEST EOUIPMENT

DO YOU RENT TELEVISIONS?

DO YOU STIL USE A CARD SYSTEM?
DO YOU FIID IT DIFFICUKT TO KNOW YOUR ABREARS TOTAL AT ANY GIVEN TIME? If you do then we recommend our computer TV and Video Rental package This package includes

* automatic updating of each customer's record
* Itotal arrears print-out of each customer's arrears and payments missed * lotal arrears immediately available
and operate
WEW HIRE PURCHASE PROGRAMME NOW AVAMABLE AS WELI
These programmes operate on all IBM compatbles running under MS-DOS Free demonstration

WILLIAM J THOMPSON
Donaghanie Post Office
Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)

RCS WRRIABLE VOITAGE D.C. BENCH POWER SUPPIY
E E

 RADIO COMPONENT SPECIALISTS

(KT88 £48, PX4 £50, PX25 £80, DA100 £90, (KT88 £48, PX4 £50, PX25 £80, DA 100 £90, V34 £10, EL37 £9, CV4004, ECC83 £2.50) to achieve the prices mentioned European always equal any seruine rival ofter on the above valves * WE SUPPLY VALVES, C.R.T., YIDICOWS ETC Visitors, please phone for an appointment, we're a very busy export warehouse Tel: (01403) 784961
Fax: (01403) 78351

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves - Diodes etc. any quantity considered immediate payment.
ADM General Trading Tel: 01827873311 Fax: 01827874835

LINEAGE

THE "HOOKINGS" INDEX More than 10,000 entries from the "TELEVISION" magazine. Bang up to date. Hard cop £9.00. Ring 01766522444 for free sample $\&$ info.
OCHRE MILL Technical Services, Grundi TV spares for most models to 1985, fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton Nr, Malmesbury, Wilts
SN16 9DR Tel: 0666 823228

AVO MULTIMETER Model 8, £45.00. 500 volt megers E 30.00 . Prices plus VAT and p\&p. Send SAE for lists of Surplus InstruApleton Grove, Leeds LS9 9EN. Tel: 0532 496048.

VINTAGE SERVICE DATA - Circuits and manuals - for Hi Fi, Military, Television, Electrical, etc up to 1970s. Free brochures Tudor Gwilliam-Rees, 50 Meddon Street, Bideford, North Devon EX39 2EQ. Te
01237424280 .

DECODER TO COMPUTER Interface card with smart card connectors and diagram E9.00. E.M.O. 62 Bridge Street Ramsbot tom, Lans, BLO 9AG. Tel: 01706823036

PHILPS VIDEOS Model 6290, 6180, $£ 25.00$ each off the pile. Phone Dublin 6269490

GRUNDIG TELEVISIONS always wanted any quantity. 01229582557
FOR THOSE technical calls - record legally for future reference Audio/Magnetic telephone call monitor impeccably amplified to pick up all sounds, $£ 20$. Tel: 01304 205648.

PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel: 0494814317
EXPERIENCED FIELD AND BENCH TECHNICIANS in the Slough and London areas, required by Brown Goods Repair Company, tel: 01753692408

ADVERTISERS' INDEX

Accent Technic............................ 527	HST Distributors London.............. 536
Aerial Techniques........................ 489	
Alban Electric.............................. 483	J.J. Components......................... 509
AZ Electrics.............................. 516	
Autogard................ 514	Manor Supplies........................... 495
	Manzan..................................... 527
Besco.. 530	Marapet Electronic Components.....514
Broughframe.............................. 515	Muter, Ulrich............................... 540
Bull Electrical.......... 493	
	OZAN....................................... 482
Campion Wholesale TV Lud.......... 531	
Central TV Wholesale 534	Philex..IFC
Coastal Aerial Supplies................ 533	
Colour Sound.............................. 531	Red Bank................................... 534
Colour Trade.............................. 533	Repo TV..................................... 535
Computrade............................... 527	
Cricklewood Electronics............... 516	Sendz Components............. IBC \& BC
CTV... 531	Star Vision................................. 533
	Stewart of Reading....................... 515
East London Components............. 519	Swift Television Publications........491
Economic Devices...504-505	
Electronic Sound Systems 491	Technix..................................... 536
Express TV................................ 535	Teleking.................................... 535
	Teleprice Ltd.............................. 536
Gogglehox................................. 531	
Grandata Ltd...........466-470, 475-479	Vista Electronics......................... 515
Hardy, J.W................................ 516	Welwyn Tool.............................. 514
Harrison Electronics..................... 530	Willow Vale Electronics Ltd.......... 525
HCTV....................................... 532	Wizard...................................... 527

[^0]: Receivers. Plus Auxilliary Options

 - Replaces up to 8 remotes with one * Simple 4 digit setup routine - Controls 1000s of models * Teletext functions with Fastext - Clear (lerge key) layout * Code Search Facility
 - Stylish and easy to operate * Replace broken or lost remotes Original Remote not required

 Order Code: a WAY Price 1450p + VAT

[^1]: Published on the third Wednesday of each month by Reed Business Publishing Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Wace Publication Imaging, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by Marketforce (UK) Ltd., 247 Tottenham Court Road, London W1P 0AU (01712615555). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

