SEPTEMBER 1994

SERVICING.VIDEO.SATELLITE•DEVELOPMENTS
Servicing the
Panasonic
Z 4 Chassis
LNB Supply Tester VCR Fault Reports
Test Report HP54600A
Oscilloscope
Analysis of Fault Types

Long-distance TV
CD PLAYER SERVICING

WILLOW VALE ELECTRONICS LIMITED

Willow Vale gives you more...

Reading (0734) 876444 Manchester (061) 6821415

On Sale
August 17th

774 LNB Supply Tester

Ian Rees
This aid to satellite TV fault finding enables the supply to an LNB and its current consumption to be checked.

776 Recharging Dry Cells

Dave Locke
A timed charging circuit to reactivate $A A$ and C batteries.

777 S Connector Details

783 Book Reviews

784 The Panasonic Z4 Chassis, Part 1

Ray Meadows

An introduction to the techniques used in this sophisticated small-screen chassis, starting with an overview and the operation of the power supply circuitry.

802 What Goes Wrong?
 Ray Porter, M.Sc., C.Eng., MIEE

An analysis of the frequency of common fault conditions in TV sets and VCRs, and the conclusions that can be drawn - in particular for parts stocking.

804 CD Player Servicing
 Les Austin

Mainly on the basic servo setting up adjustments.

807 Test Report: The Hewlett-Packard HP54600A Scope
 David Botto

This leading edge of the technology scope should do for your servicing needs for the foreseeable future. Function selection is mainly by means of on-screen menus.

REGULAR FEATURES

Camcorner 806
Help Wanted 803
Leader 773
Letters 800
Long-distance Television 794
Next Month in Television 809
Teletopics 782
Test Case (381) 781
TV Fault Finding 790
VCR Clinic 778
What a Life! 810

The October issue will be published on September 21st.

COPYRIGHT

© Reed Business Publishing Ltd., 1994 Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 43 are available at $£ 3.50$ each from Video Interface Products Ltd., who can also supply a six-year consolidated index on computer disc. For further details see page 787

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 26$ in the UK, $£ 37$ for Eire/Europe airmail (postage included for all rates). Rest of the world airmail available on request. Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH 16 3DH.
Subscription hotline for 24-hour ordering with Credit Card telephone 0622721666 quoting INJ.

BACK NUMBERS

Some back issues are avallable at $£ 2.75$ each from Television, Room L323, Quadrant Hause, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 796
ISSN 0032-647X

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 10,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES

Please send E1 P\&P and VAT at $171 / 2 \%$. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed.

Prices quoted are subject to stock availability and may be changed without notice.
TV \& video parts sold are replacement parts.

LINEAR LCs/ JAPANESE TRANSISTORS												
Part Price P	Part Price P	Part Price	Part Price	Part Price	Price Pa	Part Price P	Fart Price	rice Pa	Part Price	Part Price	Part	Price

JAPANESE TRANSISTORS

\begin{tabular}{|c|}
\hline \& Price \& Part \& Pric \& Part \& Price \& Part \& Price

\hline \& ${ }_{75 p}^{100 p}$ \& 25 \& 27 \& 2 SCl \& \& 2SC2270 \& \% \& ${ }^{25 C 2750}$ \& 3000 \& 2 Sc \& 280p \& $2 \mathrm{SC3893}$ \& 22 \& 2SD836A \& 60p \& 2SD1279 \& P \& 2S01815 \& 100p

\hline 2SA1381 \& 1000 \& 2SC1010 \& 75 p \& 2SC1735 \& 7000 \& 2SC2271
2SC2274 \& 90 \& 2SC2751 \& 2700 \& 25 C \& 2000 \& $2 \mathrm{CC3895}$ \& 400 p \& 2 SD \& 55p \& 2SD1288 \& 175p \& 2S01825 \& 30 p

\hline 2SA1382 \& 120 \& ${ }_{2 S C 1013}$ \& 1700 \& 2SC1799 \& 800p \& 2SC2274
2SC2275 \& 150
50 \& 2SC2752
2SC2767 \& ${ }^{1400}$ \& 2SC3281
2SC3284 \& ${ }^{2000}$ \& ${ }^{25 C 3897}$ \& $650{ }^{\circ}$ \& ${ }^{250838}$ \& Op \& 2SD1289 \& 0 p \& 2SD1843 \& op

\hline ${ }^{2 S A A} 385$ \& 1200 \& ${ }^{2 S C 1014}$ \& 1400 \& ${ }^{2 S C 1741}$ \& 5 \& 2SC2278 \& ${ }_{700}^{50}$ \& 2SC2767
2SC2769 \& 300p \& 2SC3284 \& ${ }_{8}^{800}{ }^{8}$ \& ${ }_{\text {2SC3907 }}$ \& 5508 \& 2SD841
2SD84 \& ${ }^{1100}$ \& 2SD1291
2SD1292 \& ${ }_{6000}$ \& 2SD1846
2S01849 \& 350,
305
305

\hline 2SA1396
2SA1423 \& ${ }_{3000}$ \& 2SC1030
2Sc1047 \& 150

200 \& ${ }^{25 C 1755}$ \& ${ }^{0}$ \& 2SC2290 \& 18006 \& 2SC2773 \& 700 . \& 25C3298 \& Sp \& 2SC3950 \& 120. \& 2SO845 \& 200p \& 2SD1297 \& $$
\begin{array}{r}
60 p \\
300 p
\end{array}
$$ \& 2SD1859 \& 325

$325 p$
3

\hline ${ }^{\text {2SAA14339 }}$ \& ${ }_{30}^{30}$ \& 2SC1050 \& ${ }_{2}^{200}$ \& ${ }^{\text {2SC1756 }}$ \& ${ }_{30}^{35}$ \& 2SC2291 \& 400 \& $2 \mathrm{SC2774}$ \& 500 F \& 2 SC 3299 \& ${ }^{1200}$ \& 2SC3953 \& ${ }^{\text {sof }}$ \& 2SDas0 \& 170p \& 2SD1302 \& 209 \& 2SD1858 \& ${ }_{40} 0^{\text {P }}$

\hline 2SA7491 \& 300\% \& 2 SCl 1060 \& 70. \& ${ }_{2} \mathrm{SC175}$ \& d \& 2SC2295 \& 600 \& $25 C 2785$ \& ${ }^{60}$ \& 2 SC 3300 \& 400, \& $2 \mathrm{SC3973}$ \& 210p \& 2 20856 \& 480 \& 2SD1308 \& 300 \& $2 \mathrm{SD1877}$ \& 250p

\hline 2SA1493 \& 5009 \& 2SC1061 \& 85F \& 2SC1791 \& 200 \& 2SC22988
2SC2307 \& F \& ${ }^{25} 527896$ \& 20 F \& $22^{\text {SC3303 }}$ \& 1009 \& ${ }^{2 S C} 3987$ \& 2200 \& 2SD858 \& 250p \& 2SD1309 \& 140 \& $2 \mathrm{SD1878}$ \& 230p

\hline 2SA1516 \& 2800 \& ${ }^{2 S C 1070}$ \& 65p \& 2SC1789 \& 1000 \& 2SC2307
2SC2308 \& ${ }_{500}^{500}$ \& 2SC2787
2SC2791 \& 100 \& ${ }^{25 C 3306}$ \& ${ }^{130}$ \& ${ }^{25 C 3996}$ \& 12000 \& ${ }_{2 S D 863}$ \& 23p \& 2 SD 1310 \& 1400 \& $2 \mathrm{SD1879}$ \& 275p

\hline ${ }_{2}^{2 S A 1535}$ \& 1755 \& ${ }^{25 C 1096}$ \& O \& ${ }^{\text {2SCC1809 }}$ \& 400 \& 2SC2308 \& ${ }^{100 \%}$ \& 2SC2791
2Sc2792 \& 5005

2205 \& $$
\begin{aligned}
& \text { 2SC3307 } \\
& \text { 2SC3309 }
\end{aligned}
$$ \& ${ }^{8009}$ \& 2SC4006

2SC4020 \& 1000
2800 \& 2SD864

2SD865 \& $$
200 \mathrm{p}
$$ \& 2SD1313 \& 10009 \& ${ }^{2 \text { SDI } 1834}$ \& 3050

\hline 258324
258546 \& ${ }_{45 p}^{40 p}$ \& 2SC1098 \& ${ }_{\text {130p }}^{120}$ \& ${ }^{2 S C 1810}$ 2SC1815 \& 250

100 \& 2SC2314 \& ${ }^{300}$ \& 2SCc792
2S2793 \& ${ }_{7}^{22009}$ \& 2SC3309
2S3316 \& 1509

2800 \& 2SSC4020 \& $$
\begin{aligned}
& 280 \mathrm{p} \\
& 325 \mathrm{p}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { 2SD866 } \\
& \text { 2SD866A }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 120 \mathrm{p} \\
& 140 \mathrm{p}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { 2SD1326 } \\
& \text { 2SD1328 }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
200 \mathrm{p} \\
\hline 000
\end{array}
$$

\] \& 2SD1886 2SD1887 \& \[

450 \%
\]

\hline 2SB560 \& 25p \& 2SC1114 \& 415p \& ${ }_{2 S C 1819}$ \& 0 \& 2SC2316 \& 1505 \& 2 SC 2808 \& 40 F \& $2 \mathrm{2C} 3317$ \& ${ }^{350} 0^{\circ}$ \& 2SC4056 \& ${ }^{3250}$ \& 2SD8688 \& 240p \& ${ }_{2 S D 1347}$ \& $$
\operatorname{cop}^{00 p}
$$ \& ${ }^{2 S 51887}$ \& 450

280p

\hline 258561 \& 50p \& $2 \mathrm{SC1115}$ \& 280 p \& ${ }^{\text {SCCl }} 1826$ \& 60 p \& ${ }^{25 C 2320}$ \& ${ }^{105}$ \& ${ }^{25 C 2810}$ \& 350 F \& ${ }^{25 C 3323}$ \& 480 F \& ${ }^{25 C 4106}$ \& 200p \& 2 SD870 \& 190p \& 2SD1348 \& 65p \& 2SD1911 \& 3000

\hline ${ }_{2 S 8562}$ \& 25p \& $2 \mathrm{SC1116}$ \& 290p \& ${ }^{2 S C 1827}$ \& op \& 2SC2324 \& ${ }^{120} 5$ \& 2SC2812 \& 40 F \& ${ }^{25 C 3327}$ \& 800 \& $2 \mathrm{SC4123}$ \& 450p \& 2SD871 \& 300p \& 2SD1350 \& 150p \& 2SD1913 \& 50p

\hline 258566 \& ${ }^{\text {sop }}$ \& ${ }^{25 C 1124}$ \& ${ }^{270}$ \& ${ }^{2 S C 1829}$ \& 500p \& 2SC2329 \& 480 \& ${ }^{2 S C 2814}$ \& ${ }^{20} 5$ \& ${ }^{25 C 3331}$ \& 25p \& 2SC4124 \& 250p \& 2S0879 \& 600 \& 2SD1376 \& 125 p \& 2SD1929 \& Op

\hline ${ }_{2 S 8595}$ \& 55p \& ${ }^{25 C 1161}$ \& 110p \& $2 \mathrm{SC1833}$ \& 400 \& ${ }^{25 C 2} 2331$ \& 0° \& 2 SC \& ${ }^{75}$ \& 2 C C3333 \& 120 p \& ${ }^{25 C 4469}$ \& 60p \& 2S0880 \& 40 p \& 2SD1379 \& 1000 \& 2SD1939 \& 75p

\hline ${ }_{2}^{258596}$ \& ${ }^{50 p}$ \& ${ }^{2 S C 1162}$ \& ${ }^{30 p}$ \& $2 \mathrm{SC1834}$ \& 50p \& ${ }_{2 S C 2333}$ \& 200p \& 2 2S2825 \& 900 F \& ${ }^{2 S C 3345}$ \& 100p \& ${ }^{2 S C 1236}$ \& 550 p \& 2SD882 \& 25p \& 2501380 \& 100 \& 2SD1941 \& 500p

\hline 258598
258600 \& ${ }^{30} 0$ \& 2SC1154 \& ${ }^{600}$ \& ${ }^{2 S C 1844}$ \& 500 \& ${ }_{2 S C 2334}^{25}$ \& ${ }^{80 p}$ \& ${ }^{25 C 2825}$ \& 200p \& 2 SC 3352 \& 200p \& ${ }^{25 C 4237}$ \& ${ }^{650}$ \& 250892A \& 100p \& $2 \mathrm{SD1384}$ \& 50p \& 2SD1959 \& 280\%

\hline $2 S 8600$
258646 \& ${ }^{50} 40$ \& ${ }^{25 C 1165}$ \& ${ }^{750}$ \& ${ }^{2 S C 1845}$ \& 15p \& ${ }^{25 C 2335}$ \& 75p \& ${ }^{25 C 2827}$ \& 2000 \& 2 2C3353 \& 280p \& $2 \mathrm{SC4242}$ \& 170p \& 2SD894 \& ${ }^{35 p}$ \& 2SD1390 \& 3500 \& 2SD1961 \& 50p

\hline 288646
2SB647 \& ${ }_{200}^{40}$ \& 2SC1156
2SC1170 \& 1000
1800 \& 2SC1846 \& ${ }^{35}$ \& 2SC2344
2SC2347 \& 150
600 \& 2SC2832
2SC2334 \& ${ }^{300}$ \& ${ }^{2 S C 3355}$ \& 20p \& ${ }^{25 C 4301}$ \& ${ }^{5500}$ \& $2 \mathrm{SD895}$ \& 200p \& $2 \mathrm{SD1391}$ \& 2500 \& $2 \mathrm{SD1978}$ \& 50p

\hline 258649
25849 \& 450 \& ${ }^{2 S C 1172}$ \& 150 p \& 2SC1855 \& ${ }^{85 p}$ \& 2SC2353 \& 1200 \& 2SC2837 \& 250 p \& 2SC3358 \& ${ }^{120 p}$ \& ${ }_{\text {2SC4769 }}$ \& ${ }^{275}$ \& 250896
$2 S 0900$ \& 200p \& 2SD1392
2SD1395 \& 1500
1500 \& 2SD1984
2SD2012 \& 450p

\hline ${ }_{2} 58649$ \& 35p \& ${ }^{2 S C 1173}$ \& 2090 \& ${ }^{2 S C 1856}$ \& 250 \& 2SC2360 \& 120p \& 25C2839 \& 40 p \& 2SC3361 \& 50, \& 2SD198 \& 140p \& 2SD905 \& \& 2SD1396 \& $$
\begin{aligned}
& 150 \mathrm{p} \\
& 120 \mathrm{p}
\end{aligned}
$$ \& (2SD2012 \& 50p

\hline 258688
288703 \& 90 p \& ${ }_{2 \text { 2SCl195 }}$ \& $240 p$
350 \& ${ }^{25 C 1865}$ \& 7000 \& ${ }^{25 C 2361}$ \& ${ }^{150}$ \& ${ }^{2 S C 2853}$ \& 70 p \& 2SC3376 \& 300p \& 250199 \& 195p \& 250916 \& ${ }^{130}$ \& 2SD1397 \& 120p \& 2502333 \& 300 p

\hline 258703
258705 \& 200p \& - ${ }_{\text {2SC1212 }}$ \& 35p \& ${ }^{2 S C 1870}$ \& 700 p \& ${ }^{25 C 2362}$ \& 50p \& 2 2SC2877 \& 120p \& 2SC3377 \& 50 p \& 2SD200 \& 1800 \& 250917 \& 300p \& 2SD1398 \& 120p \& 2 2SJ4 \& 425p

\hline 258707 \& 2000 \& $2 \mathrm{SC1214}$ \& 15p \& 2SC1881 \& 700 \& 2SC2365
2Sc2369 \& 280 p \& ${ }^{25 C 2878}$ \& 200 \& ${ }^{25 C 3378}$ \& ${ }^{120} \mathrm{p}^{\text {P }}$ \& 250201 \& 260 p \& 250921 \& 320p \& 2S01399 \& 3000 \& 2SJ49 \& 425p

\hline 288716 \& 20p \& $2 \mathrm{SC1215}$ \& 25p \& 2SC1890 \& 15p \& le $\begin{aligned} & \text { 2SC2369 } \\ & \text { 2SC2371 }\end{aligned}$ \& $100 p$
250 \& 2SC2883 \& ${ }^{32000}$ \& ${ }^{25 C 3383}$ \& ${ }^{\text {80, }}$ \& ${ }^{250257}$ \& ${ }_{\substack{195 \\ 195}}^{150}$ \& ${ }^{250923}$ \& 3600 \& ${ }^{2 S D 1400}$ \& ${ }^{2800}$ \& 2SJ50 \& 425p

\hline ${ }^{2587718}$ \& sop \& ${ }^{2 S C 1216}$ \& 2000 \& $2 \mathrm{SC1904}$ \& ${ }_{125 p}$ \& ${ }_{2 S C 373}$ \& 210p \& ${ }^{25 C 28898}$ \& 200p \& 2SC3339 \& $560^{\text {p }}$ \& (e) $\begin{aligned} & \text { 2SD313 } \\ & \text { 2SO315 }\end{aligned}$ \& 250 \& 2SD946
2SO947 \& ${ }^{120 p}$ \& 2SD1402 \& ${ }^{150} 0$ \& 2S156 \& 700p

\hline 258727
289754 \& $200 p$
800 \& ${ }_{\text {2SC1222 }}$ \& \& ${ }_{2 S C 1906}^{2 S}$ \& ${ }_{200}$ \& 2SC2383 \& 50 p \& 2SC2899 \& 50 p \& 2SC3399 \& 50 p \& 2S0325 \& 30p \& ${ }_{250950}^{2509}$ \& 1000 \& 2SD1406
2SD1407 \& 60p \& ${ }^{2 S J 14}$ \& 60p

\hline ${ }^{258755}$ \& ${ }^{3100}$ \& ${ }^{\text {2SCl25 }}$ \& 850 \& 2SC1909 \& ${ }_{250}$ \& ${ }^{25 C 2389}$ \& 45 p \& ${ }^{2 S C 2909}$ \& 60p \& $2 \mathrm{SC3400}$ \& 35p \& 250330 \& $85 p$ \& 250951 \& 290 p \& 2SD1408 \& ${ }^{125 p}$ \& 2S.76 \& 2200

\hline 258772 \& 25p \& ${ }^{2 S C 1278}$ \& 110p \& ${ }^{2} \mathrm{SC1913}$ \& 900 \& $2 \mathrm{SCC2407}$ \& 110 p \& 2 SC 2911 \& ${ }^{80 p}$ \& ${ }^{25 C 3401}$ \& 50p \& 2 SD 348 \& 300 p \& 250957A \& 520p \& 2SD1409 \& 170 p \& $2 \mathrm{su7}$ \& 3500

\hline ${ }^{258774}$ \& 500 \& ${ }^{25 C 1279}$ \& 300 \& $2 \mathrm{SC1921}$ \& 15p \& ${ }_{\text {2SC2408 }}^{24}$ \& $120 p$
$50 p$ \& ${ }^{2} 2 \mathrm{SC2912}$ \& 120 p \& $2 \mathrm{SC3402}$ \& 40p \& ${ }^{25 D 357}$ \& ${ }^{40} \mathrm{P}^{\text {P }}$ \& ${ }^{250958}$ \& ${ }^{60 p}$ \& 2SD1412 \& 15p \& 2S.179 \& 225p

\hline ${ }^{258775}$ \& 1000 \& ${ }^{25 C 1306}$ \& 900 \& ${ }^{2 S C 1923}$ \& 10 p \& \& \& ${ }^{25 \mathrm{SC} 2921}$ \& 650p \& ${ }^{2 S C 3} 3409$ \& 400 \& ${ }^{250358}$ \& 40 p \& ${ }^{250965}$ \& 35p \& 2SD1413 \& ${ }_{600}$ \& ${ }^{2 S} 103$ \& 75p

\hline $2 \mathrm{SB791}$ \& 2800 \& ${ }^{2 S C 1308 x}$ \& ${ }^{350}$ \& 2SC1929 \& 1800 \& ${ }_{2 S C 2458}^{2 S C 240}$ \& 200

$10 p$ \& ${ }^{\text {2SC2922 }}$ \& | 480p |
| :--- |
| 550 | \& 2SC3412 \& ${ }^{8000}$ \& ${ }^{250371}$ \& ${ }^{240} 0^{\text {p }}$ \& $2 \mathrm{SD970}$ \& 170p \& 2SD1415 \& 90p \& 2S.108 \& 80p

\hline 258795
288825 \& ${ }^{609}$ \& \& 450 \& ${ }^{25 \mathrm{SC}} 1940$ \& 110p \& ${ }^{2 S C 2459}$ \& 50 p \& ${ }_{\text {2SC2929 }}$ \& ${ }^{500} 0^{\text {p }}$ \& 2SC3416
2Sc3a17 \& 300
$90 p$ \& 2SD380
2SD381 \& 650p
50 p \& 2SD973
2SD973 \& ${ }^{600}$ \& ${ }^{2 S D 14}$ \& 125p \& ${ }^{2 S} 1115$ \& 5250

\hline 258861 \& 110 p \& ${ }_{2 S C 1318}$ \& 150. \& 2SC1942 \& 350p \& 2SC2470 \& 85p \& ${ }^{25 C 2934}$ \& 75p \& ${ }_{2 S C 3419}$ \& 120p \& ${ }^{250388}$ \& 150p \& ${ }^{250985}$ \& 1200 \& ${ }^{2} \mathrm{SS14}$ \& ${ }^{2800}$ \& 2SJ117
2 S 119 \& 7000

\hline ${ }^{258882}$ \& 1800 \& $2 \mathrm{SC1325}$ \& 400p \& $2 \mathrm{SC1944}$ \& 350p \& $2 \mathrm{SC2481}$ \& 120p \& $2 \mathrm{LSC2937}$ \& 250p \& $2 \mathrm{SC3420}$ \& 80 p \& 2SD389 \& ${ }_{60 p}$ \& 250986 \& 120 p \& 2SD142 \& Op \& 2S.161 \& ${ }_{6500}$

\hline ${ }^{254886}$ \& 900 \& ${ }^{25 \mathrm{SC} 1327}$ \& 200 \& ${ }^{25 C 1945}$ \& 350p \& 2SC2482 \& 20 p \& 2SC2938 \& ${ }^{235 p}$ \& ${ }^{2 S C} 5422$ \& 75p \& ${ }^{255100}$ \& 14 p \& 2 SD 1012 \& 40D \& 2SD1428 \& 220p \& 2SJ162 \& 680p

\hline ${ }_{288951}^{25850}$ \& 1800 \& 2SC1328 \& 15p \& 2SC1946
2SC1947 \& 1500p \& 2SC2483
2SC2484 \& 1200 \& 2SC2939 \& 4000 \& $25 C 3423$
$2 S C 3446$ \& 60 p \& 2SD401 \& 50 p \& ${ }^{2 S D 1020}$ \& 40 p \& 2 SD1429 \& 4100 \& 2SK19 \& 45p

\hline 2581009 \& 110p \& ${ }^{2 S C 1345}$ \& 15 p \& ${ }_{\text {2SC1957 }}$ \& 70 p \& ${ }_{2 S C 2491}$ \& 200p \& lele \& 300
$50 p$ \& 2SC3446
2Sc3447 \& 1500p \& ${ }^{25 \mathrm{~S} 402}$ \& ${ }^{120 p}$ \& 2SD1021 \& ${ }^{120 p}$ \& ${ }^{\text {SSD143 }}$ \& 2800 \& 2SK40 \& 50 p

\hline $2 \mathrm{SB107}$ \& 180 \& ${ }^{25 C 1346}$ \& 100p \& $2 \mathrm{SC1959}$ \& 10 p \& 2SC2495 \& 1900p \& 2SC2962 \& 800p \& 2SC3456 \& 2000 \& 25D424 \& \[
$$
\begin{aligned}
& \text { 55p } \\
& 350 p
\end{aligned}
$$

\] \& ${ }^{\text {2SD1022 }}$ \& \[

$$
\begin{aligned}
& \text { 400p } \\
& \text { 130p }
\end{aligned}
$$

\] \& ${ }_{2}^{2 S D 14}$ \& \[

400 \mathrm{p}
\] \& 2SK49

2SK55 \& 500

\hline 2S81109 \& 100p \& $2 \mathrm{SC1358}$ \& 270p \& 2SC1967 \& 1300 p \& 2SC2498 \& 50p \& 2SC2979 \& 1800 \& 2SC3457 \& 125p \& 250426 \& 150p \& 2SD1030 \& 75p \& 2SD1433 \& \& \& ${ }_{1000} 1000$

\hline ${ }_{2}^{2 \mathrm{SC1}} 182$ \& ${ }^{75 p}$ \& ${ }^{25 C 1359}$ \& 7 \& ${ }^{2 S C 1969}$ \& ${ }^{1800}$ \& ${ }^{25 C 2500}$ \& ${ }^{25}$ \& 25 C 2987 \& 250p \& 2SC3459 \& 180 p \& 2SD427 \& ${ }_{350 p}$ \& 2SD1031 \& 70 p \& 2SD1438 \& 1400 \& ${ }^{255673}$ \& ${ }_{75 p}$

\hline \& ${ }_{10}^{25 p}$ \& ${ }_{\text {2SC1360 }}^{25 C 1364}$ \& $70 p$
25 \& 2SC1970
2SC1979 \& 100 p \& 2 2SC2502 \& ${ }^{2000}$ \& ${ }^{2 S C 2988}$ \& 150p \& $2 \mathrm{SC3460}$ \& 180p \& ${ }^{250438}$ \& 35p \& 2SD1045 \& 200p \& 2S01439 \& 165p \& 2SK106 \& 40 p

\hline 2 2C382 \& 50 p \& 2SC1383 \& ${ }_{25 p}$ \& ${ }^{2 S C 1972}$ \& ${ }_{\text {coop }}$ \& -2SC2519 \& ${ }^{809}$ \& (2SC2995 \& 600 \& ${ }^{2} 5$ SC3461 \& 350p
2208 \& 250467
2SDas8 \& 15p \& ${ }_{2 S D 1047}$ \& ${ }^{1800}$ \& ${ }^{25 D 1449}$ \& ${ }^{2800}$ \& 2SK107 \& 40 p

\hline ${ }^{25 C 388}{ }^{\text {SC3 }}$ \& 609 \& ${ }^{25 C 1384}$ \& 200 \& 2 SC 1973 \& ${ }^{150 p}$ \& 2SC2534 \& 150 p \& 2SC3001 \& 1400p \& ${ }_{\text {2SC3468 }}$ \& ${ }_{7}^{2250}$ \& ${ }_{250471}^{25068}$ \& 150 \& 2SD1051
2SD1060 \& 130p
130 p \& 2SD14 \& 200p \& 2SK118
2Sk125 \& 50p

\hline $2 \mathrm{SC454}$ \& 15p \& $2 \mathrm{SC1398}$ \& 55p \& 2SC1985 \& 100 p \& ${ }^{25 C 2538}$ \& 100 p \& ${ }^{25 C 3019}$ \& 3200 \& 2 SC 34 \& ${ }^{275}$ p \& ${ }^{2 S D 526}$ \& 700 \& 2SD1063 \& 200p \& 2SD1452 \& 350 p \& 2SK134 \& 415p

\hline $2 \mathrm{SC458}$ \& 10 p \& 2 SC1400 \& 50p \& 2SC1986 \& 100 p \& 2SC2542 \& ${ }^{19000}$ \& 2SC3025 \& 500 p
5500 \& ${ }_{2 S}^{2 S C 348}$ \& 275 \& ${ }^{2505645}$ \& 18 p \& 2SD1064 \& 2500 \& ${ }^{2501453}$ \& 1400 \& 2SK135 \& $415 p$

\hline ${ }^{25 C 460}$ \& 10 p \& $2 \mathrm{SC1403}$ \& 5000 \& ${ }^{2 S C 2001}$ \& 15 p \& 2SC5545 \& ${ }^{300}$ \& 2SC3026
2Sc3030 \& 550
300 \& 2SC3502 \& ${ }^{1000}$ \& ${ }_{2}^{2 S D 55}$ \& P1 \& $2 \mathrm{SD1065}$ \& ${ }^{1800}$ \& ${ }^{251455}$ \& 250p \& 2SK147 \& 1600

\hline ${ }_{2} 5$ SC461 \& 15 p \& $2 \mathrm{SC1407}$ \& 550 p \& 2SC2002 \& 15 p \& ${ }^{2 S C 2546}$ \& 25p \& 2Sc3037 \& ${ }^{1250}$ \& 2Sc35 \& 120 p \& 250551
250555 \& $300 p$
$500 p$ \& 2SD1069 \& ${ }^{1500}$ \& ${ }^{2501457}$ \& ${ }^{1650}$ \& 2SK150 \& 1500

\hline ${ }_{2}^{25 C 497}$ \& 25p \& ${ }^{2 S C 1429}$ \& 50p \& \& 100 \& 2 2SC2550 \& 50p \& $2 \mathrm{SC3039}$ \& $80 p$ \& 2SC3506 \& 250 p \& 250579 \& 200 \& 2SD1088 \& 150 p \& 2SD1479 \& 200p \& 2SK168
2SK176 \& 409

\hline $2 \mathrm{SC515}$ \& $100{ }^{\text {p }}$ \& 2SC1444 \& ${ }^{275 p}$ \& 2SC2022 \& 1100 \& ${ }^{25 C 2551}$ \& 700 \& $2 \mathrm{2Sc3040}$ \& 260p \& 2 Sc 3507 \& 650p \& 250575 \& 530p \& 2SD1094 \& 5200 \& 2SD1487 \& 2029 \& 2SK192 \& 400p

\hline ${ }^{25 C 535}$ \& \% \& 2SC1446 \& 55p \& 2SC2023 \& 1800 \& ${ }^{25 \mathrm{C} 2552}$ \& ${ }^{80} 9$ \& ${ }^{25 C 3042}$ \& ${ }^{3000}$ \& ${ }^{25 C 3509}$ \& ${ }^{750 p}$ \& ${ }^{250600}$ \& 300 \& 2SD1310 \& 225p \& 2SD1491 \& 100 p \& 2SK195 \& 1509

\hline ${ }^{2 S C 536}$ \& 200 \& 2SC1447 \& 700 \& 2SC2026 \& 30p \& ${ }^{25 C 2553}$ \& ${ }^{2000}$ \& ${ }^{25 C 3057}$ \& 150p \& ${ }^{25 C 3518}$ \& ${ }^{120} \mathrm{p}$ \& 250601 \& 400 \& 25D1111 \& 20 p \& 2SD1494 \& 300 p \& 2SK197 \& 140 p

\hline $2 \mathrm{SC558}$ \& ${ }^{275 p}$ \& 2SC1448 \& ${ }^{1000}$ \& ${ }^{\text {2SC2027 }}$ \& 200p \& ${ }^{\text {2SC2555 }}$ \& ${ }^{120 p}$ \& 2SC3058 \& 25000 \& $2 \mathrm{SC3519}$ \& 250 \& 250602 \& 600 \& 2501113 \& 225p \& 2SD1496 \& 350p \& 2SK214 \& 1700

\hline ${ }_{2}^{25 C 560}$ \& 1200 \& ${ }^{\text {2SC1449 }}$ \& ${ }^{1200}$ \& 2SC2028
2SC2029 \& ${ }_{7} 5_{\text {p }}$ \& 2SC2562
2SC2563 \& ${ }_{200}^{900}$ \& ${ }_{2}^{2 S C 3}$ \& ${ }^{60 p}$ \& ${ }_{\text {2SC3531 }}$ \& ${ }^{2250}$ \& ${ }^{250612}$ \& 50 p \& 2SD1128 \& 2000 \& 2SD1497 \& ${ }^{2300}$ \& ${ }^{\text {SSK216 }}$ \& 2000

\hline ${ }_{25 C 619}$ \& 1000 \& 2SC1454 \& ${ }^{2000}$ \& 2SC202
2SC203 \& ${ }_{\text {cop }}$ \& ${ }_{2 S C 2564}$ \& 200p \& ${ }_{\text {2Sc3074 }}$ \& ${ }_{\text {200p }}^{35}$ \& ${ }_{2}{ }^{\text {2SC354 }}$ \& ${ }^{200 p}$ \& 2S0613
250636 \& 700
100 \& ${ }_{\text {2SD1133 }}$ \& 1000 \& [2SD1497-02 \& ${ }^{3500}$ \& 2SK218 \& 4000

\hline ${ }^{25 C 641}$ \& 80 p \& 2SC1470 \& 120p \& 2SC2053 \& 120p \& 2 zC 2565 \& 260 p \& 2SC3075 \& 150p \& 2SC3568 \& 200 p \& ${ }_{250637}$ \& 15 \& 2SO1138 \& 50p \& ${ }_{2 S 0150}^{2 S 0150}$ \& $$
\begin{array}{r}
120 p \\
80 \mathrm{p}
\end{array}
$$ \& 2Sk2 \& Op

\hline $25 \mathrm{Cb44}$ \& \& ${ }^{25 C 1472}$ \& 40 p \& 25 C 2055 \& 150p \& ${ }^{25 C 2568}$ \& ${ }^{120}{ }^{\text {p }}$ \& 2SC3077 \& 120p \& 2SC3584 \& 200 \& 2SD638 \& 15p \& 2S01140 \& 40 p \& 25D1509 \& 100p \& 2SK315 \& 70 p

\hline ${ }^{25 C 647}$ \& 3000 \& ${ }^{2 S C 1473}$ \& 15p \& 2sC2058 \& 20p \& $2 \mathrm{SC2570}$ \& 30 p \& ${ }^{2 S C 3086}$ \& 150p \& 2SC3595 \& 220, \& 250639 \& 20 p \& 2SD1142 \& $350 p$ \& 2SD1511 \& 100p \& 2SK320 \& 1200

\hline ${ }_{2}^{25 C 681}$ \& 2500 \& ${ }^{25} \mathrm{SC1474}$ \& 45 p \& 2SC2060 \& ${ }^{60 p}$ \& ${ }^{25 C 2571}$ \& ${ }^{350}$ \& 2SC3089 \& 130p \& 2SC3605 \& ${ }^{600}$ \& zSD640 \& 350 p \& 2SD1148 \& 175p \& 2SD1519 \& 2500 \& 2SK323 \& 130p

\hline $25 C 683$
$25 C 708$ \& ${ }_{\text {300p }}^{350}$ \& 2SC1475 \& ${ }_{80 p}^{80 p}$ \& 2SC2061
2SC2068 \& 750 \& ${ }^{25 C 2577}$ 2Sc2578 \& ${ }^{110 p}$ \& 2SC3101
$25 C 3112$ \& 750 p

350 \& SC3606
SSC3507 \& 100p \& ${ }_{2 S 0655}^{250651}$ \& ${ }^{180}$ \& ${ }^{2 S D 1159}$ \& 90 p \& 2SD1521 \& 70p \& 2SK3 \& ${ }^{800}$

\hline ${ }_{2}^{25 C 7710}$ \& 15p \& 2 SC1507 \& 45p \& 2SC2071 \& 140 p \& 2SC2579 \& ${ }_{170} 110$ \& ${ }_{\text {2SC3114 }}^{\text {2SC312 }}$ \& ${ }^{35 p}$ \& - SSC3607 \& 150 p
280 p \& ${ }_{\text {2S0666 }}$ \& 600
250 \& 2SD1160
2SD1163A \& 1509
2200 \& 2SD15 \& 350 p
4500 \& 3SK4 \& 4500

\hline $2 \mathrm{SC771}$ \& ${ }^{1550}$ \& ${ }^{2 S C 1509}$ \& 350 \& ${ }^{25 C 2073}$ \& ${ }^{40 p}$ \& 2SC2580 \& 173p \& 2SC3116 \& 75p \& 2SC3657 \& 400 p \& 2S0667 \& 20p \& 2SD1164 \& 75 p \& 2SD1548 \& 170p \& lele \& 5000

\hline ${ }_{2 S} \mathrm{SC732}$ \& 3500
400 \& ${ }^{\text {2SC1514 }}$ \& ${ }^{35}$ \& (e) \& ${ }_{60 p}^{60 p}$ \& ${ }^{25 C 2581}$ \& ${ }^{2259}$ \& ${ }^{\text {SSC3117 }}$ \& 1200 \& 2 SC 3659 \& 600p \& 2S0668 \& 1200 \& 2SD1168 \& 2709 \& 2SD1555 \& 1700 \& $3 \mathrm{Sk4}$ \& Pop

\hline $2 \mathrm{SC733}$ \& 15p \& 2SC1520 \& 450 \& 2SC2085 \& 1000 \& len $\begin{aligned} & \text { 2SC2588 } \\ & \text { 2SC2590 }\end{aligned}$ \& ${ }^{6000}$ \& ${ }^{2 \mathrm{SC} 5122}$ \& 500 \& ${ }_{2}{ }^{25 C 36}$ \& 120 \& ${ }^{250669}$ \& ${ }^{35 p}$ \& ${ }^{2 S 01169}$ \& 2800 \& 2SD1556 \& 400 p \& 2SK511 \& 450p

\hline ${ }^{25 C 735}$ \& ${ }^{40}$ \& ${ }^{2 S C 1541}$ \& 110 P \& ${ }^{2 S C 2086}$ \& 600 \& 2SC2591 \& 50p \& 2SC3149 \& ${ }_{1}^{1805 p}$ \& ${ }_{\text {2SC3678 }}^{\text {2SC36 }}$ \& ${ }_{200}^{180}$ \& 2S0673
$2 S 0676$ \& 350 \& $2 \mathrm{SD1173}$ \& 3500 \& ${ }_{2 S D 15}^{2 S 515}$ \& ${ }^{1009}$ \& ${ }^{2 S K} 513$ \& ${ }^{325 p}$

\hline 2SC738
2SC739 \& 150
150 \& ${ }_{\text {2SC154 }}$ \& ${ }_{400}$ \& 2SC2092 \& ${ }_{12000}^{1000}$ \& 2sC2592 \& 2000 \& asc3150 \& 125p \& ${ }^{2 S C 3679}$ \& 180 \& ${ }_{\text {2S0716 }}$ \& ${ }^{250}$ \& 2S01185 \& 4000 p \& 2SD1565 \& 75p
1700 \& 2SK531 \& 3500

\hline 2SC761 \& 1190 \& ${ }_{2 S C 1568}$ \& 35 p \& 2SC2097 \& 2300p \& ${ }^{25 C 2603}$ \& 100 \& 2SC3151 \& 230 p \& 2SC3680 \& 380p \& 2SD717 \& 1800 \& 2SD1187 \& 250 p \& 2SD1572 \& 100p \& 2SK534 \& 7000

\hline $2 \mathrm{SC762}$ \& 1500 \& 2SC1569 \& 55p \& 2SC2099 \& 2500 p \& ${ }_{\text {2SC2610 }}^{\text {2SC2619 }}$ \& 600
300 \& ${ }^{25 C 3152}$ \& ${ }^{1300}$ \& ${ }_{25 \mathrm{SC3685}}$ \& 4500 \& ${ }^{2 S D 718}$ \& ${ }^{\text {85p }}$ \& 2SD1189 \& 55 p \& 2SD1576 \& 250p \& 2SK538 \& 450p

\hline 25C790
2Sc792 \& 380p \& 2SC1571 \& 50p
25p \& 2SC2120 \& ${ }^{100}$ \& ${ }^{25} \mathbf{2} 2625$ \& 1900 \& 2SC3157 \& 200p \& 2sc3688 \& 550, \& 2SD725
2SD734 \& 270
15 \& 2SD191 \& ${ }^{1200}$ \& 2SD1579 \& 1209 \& 2SK555 \& c000

\hline $2 \mathrm{SC805}$ \& 2250 \& 2SC1573 \& - 250 \& 2SC2141 \& ${ }^{550}$ \& 2SC2626 \& 600. \& 2SC3150 \& 260 p \& 2SC3715 \& 480 p \& 2S0741 \& ${ }^{1200}$ \& 2SD1196 \& 150p \& 3SD1590 \& ${ }^{600}$ \& 2SK556 \& 5000

\hline ${ }^{25 C 828}$ \& 20 p \& 2SC1563 \& 25p \& 2SC2153 \& 40p \& ${ }^{25 C 2631}$ \& 200 \& ${ }^{25 C 3159}$ \& 2000 \& ${ }^{25 C 3717}$ \& 1200 \& 250743 \& ${ }^{130}$ \& 2SD1197 \& 150 p \& 2SD1597 \& ${ }^{10} 100$ \& ${ }^{\text {2SK557 }}$ \& 4000

\hline ${ }^{25 C 829}$ \& 15p \& ${ }^{\text {ascl1586 }}$ \& 540 p \& 2SC2166 \& 80 p \& 2SC2634
2Sc2836 \& 10 p \& 2SC3164 \& 350, \& ${ }^{25 C 3729}$ \& 450 p \& ${ }^{250756}$ \& 100 p \& 2SD1207 \& 40 p \& ESD1593 \& 125p \& 2SK566
iSk 695 \& 4750
5500

\hline 2scas \& ${ }^{2009}$ \& ${ }_{\text {asclicli }}$ \& 340
500 \& 2SC2188
SC2188 \& ${ }_{\substack{120 \\ 700}}$ \& 2SC2836 \& ${ }_{1}^{400}$ \& asc3169 \& 1500
3000 \& le $\begin{aligned} & \text { 2SC3746 } \\ & \text { aSc3747 }\end{aligned}$ \& ${ }^{100}$ \& 2SD757
asD75 \& 120 p
1400 \& 2SD1210
2SD1211 \& 2800 \& -SD1595 \& 1600 \& -skk719 \& 5500

\hline $2 \mathrm{SC898}$ \& 275 \& 7SC1624 \& 60 p \& 2SC2200 \& 250 p \& 2SC2640 \& 1800p \& ${ }^{\text {asc3n73 }}$ \& 1800 \& zSC3752 \& 250p \& ${ }_{250762}^{255758}$ \& 1409
100 p \& 2SD1211 \& ${ }_{1}^{1209}$ \& -sD1 \& ${ }_{\text {2100 }}^{2100}$ \& ask724 \& 6000

\hline $2 \mathrm{SC930}$ \& ${ }^{15}$ \& 2SC1626 \& 55p \& asc2221 \& 850p \& ${ }^{25 C 2653}$ \& 100. \& 2SC3175 \& 1500 \& 2SC3781 \& 150 p \& 2SD763 \& 140 p \& 2SD1223 \& 75p \& 3SD1632 \& 5000 \& 2Sk725 \& 6000

\hline ${ }^{25 C 544}$ \& 159 \& ${ }^{\text {rscl } 1627}$ \& ${ }^{15} 5$ \& asc2228A \& ${ }^{60 p}$ \& ${ }^{25 C 2654}$ \& ${ }^{1800}$ \& ${ }^{\text {2SC3178 }}$ \& ${ }^{1750}$ \& asc3783 \& 600p \& ${ }^{250768}$ \& 1800 \& $2 \mathrm{SD1225}$ \& 120p \& 2 SD1637 \& 500 \& ${ }^{\text {ask727 }}$ \& 12000

\hline 2SC943 \& | 1800 |
| :---: |
| 1400 | \& ${ }^{\text {asclib28 }}$ \& 750 \& 2SC2229 \& 15p \& 2 SC2655 \& 15p \& ${ }^{\text {SSC3179 }}$ \& 700 \& 2SC3787 \& 100p \& aso772 \& 200 p \& zSD1227 \& 40 p \& 2SD1647 \& 40 p \& -sk735 \& 000

\hline $2 \mathrm{SC945}$ \& 100 \& 2SC1669 \& 100\% \& ${ }^{\text {asche }}$ \& ${ }_{100 p}^{800}$ \& zSC2660 \& 350p \& 2SC3182 \& 2000 \& 2SC3789 \& 750
1200 \& asch73
aspl7 \& 200
300 \& 2SD1229 \& 2500 \& 2SD16 \& 2600 \& zSK7 \& O20

\hline $25 \mathrm{Ca50}$ \& 40 p \& 2SC1674 \& 15p \& 2SC2235 \& 600 \& $25 C 2665$ \& 200p \& 2SC3199 \& 400 \& 2SC3795 \& 175p \& asom \& 4000 \& 2SD1237 \& $300 p$
$20 p$ \& -sD1650 \& 1800 \& 2SK794 \& ${ }^{1000}$

\hline 25 C 959 \& 225 \& ${ }^{2 S C 1675}$ \& 900 \& ${ }_{2 S C 2236}$ \& 200 \& zSC2668 \& 100 \& 2SC3209 \& 1200 \& 2SC3798 \& 2200 \& asD7a4 \& 6500 \& 2SD1247 \& 40p \& -SD1663 \& 4500 \& aSk872 \& ${ }^{\text {850p }}$

\hline ${ }_{\text {2SC988 }}$ \& ${ }_{20 p}^{400}$ \& 2SC1678 \& 800p \& - \& 5400 \& 2SC2671 \& 100p \& 2SC3210 \& 550 p \& 2SC3807 \& 120p \& 2SD786 \& 100 p \& 2SD1248 \& 270p \& \%SD1666 \& 90 P \& 2Sk903 \& 590 p

\hline ${ }^{25 C 983}$ \& ${ }^{1200}$ \& 2SC1684 \& 30p \& zSC2240 \& 15p \& - ${ }^{\text {SSC2881 }}$ \& ${ }_{70 \mathrm{p}}$ \& $2 \mathrm{SC3211}$ \& 2200 \& 2SC3811 \& 80p \& 2S0787 \& 200 \& $2 \mathrm{SD1251}$ \& 1800 \& 7801667 \& 1200 \& 2SK1057 \& 6000

\hline 25 Cl 1000 \& 200 \& ${ }^{\text {2SC1585 }}$ \& P \& zSC7258 \& ${ }^{300}$ \& ${ }^{\text {asc2688 }}$ \& \& 25c3225 \& 260
50 \& ${ }^{\text {2SCC3832 }}$ \& ${ }^{200 p}$ \& 2S0788 \& 300 \& 2SD1263 \& 900 \& -sD1688 \& 1200 \& 2SK1058 \& 8000

\hline 2SC1001 \& 950 p \& asc1729 \& 900 p \& zSC2259 \& 600 \& ${ }_{\text {2SC2690 }}$ \& 75p \& zSC3244 \& 45p \& ${ }^{25} 538853$ \& ${ }^{250}$ 20p \& 2SD789
2SO792 \& 2000 \& 2SD 1264
zSD1265 \& 55p \& ESD1677
¿SD1730 \& 3000
3500 \& 2SK1117
zSK1118 \& 250p

\hline \& \& \& \& \& \& $2 \mathrm{SC27}$ \& 50p \& $2 \mathrm{SC3246}$ \& 50p \& 2SC3854 \& 250 p \& 2SD794 \& 33p \& 2SD1266 \& 1800 \& :SD1730 \& ${ }^{3500}$ \& ${ }_{\text {3SK }}$ \& 225p

\hline \& \& \& \& \& \& ESC2710 \& 500 \& $2 \mathrm{SC3259}$ \& 350p \& 2SC3855 \& 220p \& zSD79 \& 140 p \& 2SD1267 \& 55p \& áSD1739 \& 275 p \& 35k51 \& 100 p

\hline \& \& \& \& \& \& $25 C 2712$ \& 20p \& $25 C 3260$ \& 220p \& 2SC3857 \& 5000 \& 2SD811 \& 450 p \& 2501271 \& 55p \& :SD1740 \& 125p \& 3sk59 \& 100 p

\hline \& \& \& \& \& \& 25 C 2716 \& 50 p \& ${ }^{25 C 3261}$ \& ${ }^{230} 0^{0}$ \& 2 C 3858 \& 550 p \& aSD819 \& 200 p \& 2SD1271A \& 225 p \& iSD1748 \& 90 p \& 35K74 \& 50 p

\hline \& \& \& \& \& \& $25 C 2719$
zSC2721 \& ${ }^{200}$ \& 2SC3262
zSC3263 \& 2800
2800 \& z5C3870 \& 2000 \& 2S0820 \& 2500 \& 2SD 1272 \& 2000 \& 2SD1760 \& ${ }^{800}$ \& 3sk77 \& 500

\hline \& \& \& \& \& \& 2sc2721
2Sc2738
20 \& 20 D \& ${ }^{25 C 3263}$ \& 30p \& z \& 280p \& 2 20821 \& 5500 \& 2SO1273 \& 50p \& :SD1762 \& 50 p \& ミ5k81 \& 50p

\hline 1 \& 1 \& \& \& \& \& 2SC2740 \& 450 p \& 2SC32 \& 50p \& 2s \& 3000 \& 822 \& ${ }^{2900}$ \& 2SD \& sop \& =SD1773 \& cop \& 3sk85 \& ${ }^{160 p}$

\hline \& \& \& \& \& \& 2SC2749 \& 350 p \& 2SC3270 \& 50 p \& 2SC3890 \& 150 \& 2SD8 3 \& | 30 p |
| :--- |
| 60 p | \& 2SD12 \& ${ }_{100}^{80}$ \& \[

$$
\begin{aligned}
& \text { 2SD1783 } \\
& \text { aSD1796 }
\end{aligned}
$$
\] \& 1000

180 \& - \& 700
150

\hline
\end{tabular}

REPLACEMENT VIDEO HEADS

PINCH ROLLERS / VCR BELT KITS

VS1, VS2, VS3, VS4, VS5, VS6, VSB, VS9 VSA77, 261, 262, 265, 270, 274, 280, 290, 410,4 599				
	arumdic ARCELONA, MADRID, MVS500, 510 SE5 $110,510,7140,6100,6110,7120,9100$ 9120, TVR $4500,4510,5510$, VERONA, $6500,505,510,520,530,540,560,600$, $610,620,630,640$, VS $650,660,680,700$ 110, $720,740,790,800,810,900,910,920$, 60 400, 440, 400, 410, 440, 441, 450, 45 VS120 $3180,200,220,226,262,26$ $315,320,326,345,380$			
	GOLDSTAR GHV51, 1221, 1232, 1240, 1241, 1242. 1243, 1244, 1245, 1246, 8000, 8200, 8210, 8215, GHVP $240,1249,1247,1248,1290$ 1291, 1295, 1296, VCP4000, 4100,4130 , $4315,4316,4320,4321,4325,4326$ 200p			
Austientic				
BLAUPUNKTRVT 100. 200, 202, 222, 224, 301, 306, 307 309, 311, 312, 315, 316, 317, 319, 320, 328, RTV211, 214, 321, 322, 348, RTX250. 260 ${ }_{200}^{200}$, $235,520,530,535,560,660,670$ $720.730,740,800,810,900,910,920200 \mathrm{p}$				
			THOMSON ${ }_{4200,4210,4230,4240,42000,4300,4340,}$ 3801,4100 $V 333$ $v 330$ $\times \times 30,301,302,305,306,312,3301{ }^{2009}$	
DECCA VR8300 VFHE495DK (Prassura Roller Assembly) PS403-40205			DV55, $57,64,63,65,66,67,71,73,74,75$, $77,81,83,85,86,93,94,80,90,96,97$ $200,202,205,207,300,309,500,509$ 700 $V 5470$. $V 5480$ $\stackrel{2000}{2000}$ V108, V109, V199, V209, V609 200p / 40205, V91, V95 450p	
FERGUSON $12,3,32,3 \vee 23,3 \vee 24$, $370,8900,8901,8902,8903,8904,8906$ 8903, 8912, 8922, 8923, 8924, 8925.	I.T.T. V.33605, $3826,3905,3906,3916,3926$. $3935,3946,3948,3978,3985,3996,3895$,3997,6348	SAMYO VHA1 100, $1150,1200,1300,1500,2400$, 2300, 2500, 2700		
3V29, 3V30,3V31,3V32,3V52, 8930, 8931 8933, 8940, 89				
	3997, 6348 V月3913, 3914, 3943, 3954, 3984, 3993, 200 , 200 p	VTC5000, 5150, 5300,5350, 5400, 5500, 	VCR BELT KITS	
$3 \vee 35,3 \vee 36,3 \vee 36,3 \vee 39,3 V 42,3 V 43$ 			VP7 100, V $\$ 9300$, V $\$ 9500$, V 5700 VS1, VS2. VS4, VS5	
		$5100,5200,5300,5350,5700,7100,7200$ 		
	 721, $3730,3731,3749,3759, ~ v 93751$			
			ARNA AV6 $12 \% p$ AV77 $140 p$ G700 $160 p$ G900 $180 p$	
FIDELTTYHQS200, VCR100,600,6100VTR100				
Firler				
	Loalk VR965	SAISHO VR3800 VR380 200p	N	MTACHIVT11, 14, 17, 19, 33, 34, 35, 38, 39, 88, 165. 330$V T 5000, V T 5500$V77000, vT $8000, V T 8300, v T 8500$$V T 090, V T 590, V T 680, V T 9300, V T 0500$ VT680, VT 6500 , VT6800, VT 9300 , VT 950 VT52, V157, VT61, VT62, VT63, VT64,VT65, VT85, VT86, VT640 VT65.VVT3000 VT100, 110, $128,130,135,138,145,160,168,175,220$, $225,250,255,250,260$, v12 30
			(en	
,	 			
			(er	

VCR BELT KITS / REPLACEMENT VIDEO LAMPS

VIDEO SERVICE KITS

AMSTRAD

VCR700
BELT SEI. PINCH ROLLER. REEL IDLER. VIDEO LAMP
Order Codo: Sul
FERGUSON \& JVC
$3 V 42 / 43$
HRD455/HRD725
Contants CLUTCH MECHANISM. TENSION

Econonty CIC Cantents Economy VCt Contents CLUTCHMECHANISM. TENSION SUPPLYCLUTCH. TAKE UP Order Code: SK3 E17.50 3v58/59/64:65
HRD170/180/210/230/300/320/370/400/430/530/700/750 HRS5000
Contents
BELT SET. PINCH ROLLER. IDELR ARM. TENSIONBAND
Order Code: SH4
3V29/3V30
HR7200/730077350
Contents
BELT SET. PINCH ROLLER. TENSION BAND, IDLER TYRES
Onder Code: SK05
$3 V 35 / 36588 / 39 / 49$
HRD $10 / 1$
Comtents
BELT SET. PINCH ROLLER. TENSION BAND. IDLER TYRES
Order Code: SK04
3V31/3V42
HR7600776107650/7655
Confonts
BELTSET. TU REEE TABLE
Economy Alt Contents
BELT SET. TNREEL TABL
TYRE PINCH ROLLER REEL OERL TNCLUTCH. TAIDLER TENSION BAND. VIDEO LAMP TYRE. PNCH ROLLEA. REEL TNCLUTCH
Order Code: $5 \pi 33 \quad \$ 12.00$ Order Code: 5 R3
3V35/36/38/39/49
HRD110/11//120/121/225
Contents
BELT SET TUREEL TABLE YRE. SUPPLY REEL TABLE YRE PINCHROLLER. TN CUER PA TIOLER. REE orter Codo SN35 rder Coda:
v29r3v30
HR7200i7300/7350
Contents
Economy at Contents YRE. SUPPLYREEL TABE E TYRE PINCH ROLLER. REEL IIER. TN CLUTCH. TNIDLER. ENSION BAND. VIDEO LAMP. BELT SET. TN REEL IDLER TrRE, PINCH ROLIER REE TNCLUTCH IDLER TRRE

3V44/45/48/53/54/55/57
HRP50AHRD140/150/158/160
HRD250/257/565/566/755
BELT SET. PINCH ROLLER.
Economy Nit Contents
BELT SET. PINCH ROLLER.
CLUTCHMECHANISM. TENSION
BELT SET. PINCH ROLLE
BAND
Economy Nit Contents ND

BYRE SUR REEL TABLE TYRE SUPPLY REEL TABLE TYRE. PINCH ROLLER. TA CLUTCH. TんIDLEA TYRE. REEL
IDLEA YRE IDLER TYRE

Order Code: SK39 $£ 15.00 \quad 0$
FISHER
FVHP905/906/907/908/910/911/916:918
Contents
BELT SET. PINCHROLIER Economy Fit Content BELTR BELT SET. PINCH ROLLER TENSION BANDER UNIT. IDLER TYRE
Order Code: SK57 E13.00 Order Cade: SK58 55.00
FVHP615/619/620/622/710/711/715/716720/721/722/725/ 7306301640
Contents
BELT SET PINCH ROLLER. Econony Ni! Contonts
IDLER GEAR IDLER UNIT. BELT SET. PINCH ROLLER
TENSION BAND
£12.50 Order Code: SK59

HITACHI

VT11NT33
Contents
BELT SET. PINCH ROLLER. TENSION BAND. IDLER TYRES
Onder Code: 5KOO

UNIVERSAL TRIPLER

Price: $£ 4.00$ each

SEE OTHER PAGES FOR MORE GRANDATA BARGAINS

$\$ 6.00$

VIDEO SERVICE KITS (Cont.)

VT11NT3 Conteats
 Contents

BELT SET. T/UP REEL TABLE
TYRE. SUPPLY REEL TABLE
YRE. PINCH ROLLER. FFRREW
IDLER. CLUTCH PLATE.
ENSON BAND
T52/61/62/63:64/65/85/86:640 Contents
BELT SEI. PINCH ROLIER FF/REW ARM. CLUTCH PLATE. ENSION BAND £1400

Economy At Contents BELT SEI. PINCH ROLLER FFRREW IDLER TYRE. TTUP REEL TABLE TYRE. SUPPLY REEL. TABLE TYRE

Order Code: SM45
64.50
$£ 9.50$
Order Code: SMA
Economy ift Contant BELT SET. PINCH ROLLER FFREW IDLER
Order Code; 5K50
VT400/405/410/13/14/15/18/420/25/26/28/430/31/3/48/450/498/ 510/520/25/26/530/35/36/540/545/46/48/570/75/576580185/88 Contents
TIMING BELT. PINCH ROLLER. FF/REW ARM. CLUTCH BASE TENSION BAND Order Cote: SK52

VT 100/110/111/1 $13 / 115 / 118 / 120 / 125 / 128 / 130 / 135 / 138 / 145 / 150 /$ 175/220/225/250/255/258/260NTL30
Contents
EELT SET. PINCH ROLLER. FF/REW ARM. CLUTCH PLATE
ENSION BAND

NVZ000NV2010	NV7000NV7200NV7800
Contents	Contents
BELT SET. PINCH ROLLER.	BELT SET, PINCH ROLLER.
TENSION BAND. IDLER TYRES	TENSION BAND, IDLER TYRES
Order Code: SRO3	$\mathbf{E 6 . 2 5}$
	Order Code: SK02

NV300/NV 330 NV 333 NV 340 NV 366
Contents
BELT SET. PINCH ROLLER. TENSION BAND, IDLER TYRE Order Cods: SM01

Economy al Content NV2000NV2010
Contents
BELT SET PINCH ROLLER. FF BELT SET PINCH ROLLER. FF BELT SET. PINCH ROLLER.
IOER. PLAY IDLER. FENSION
IDLER TYRE PULLEY TYRE
BAND. VIDEO LAMP Order Code SE13 IDLER TYRE PULLEY TYRE

Order Code: SK13	SA.00	Order Code: $5 K 14$	$\$ 4.50$

NV7000AN7200ANV7800
Sonomy Wet Contents

Contents	Economy Fit Contents
BELT SET. PANCH ROLLER.	BELT SEE, PINCH ROLIER.
IDLER UNT, PLAY IDLER.	IDLER TYRE. CLUTCH TYRE
TENSION BAND	

NV300NV330 NV $333 / \mathrm{NV} 340$ / N 366

Description	Order Code	Price	Description	Order Code	Price
GRUNDIG			PHILIPS (continued)		
TP160E	RC 107	900 p	RC38	RC 301	875p
TP200, TP300	RC 380	800p	KT3 TEXT	RC 5301	800p
TP400	RC 401	800 p	RC5352	RC 5352	800 p
TP590-600	RC 600	850 p	RC5375	RC 5375	850 p
TP390,TP610	RC610	850 p	RC5 STANDARD	RC 5534	850 p
TP621	RC 621	850 p	RC5901	RC 5901	850 p
TP630, TP650	RC 650	850 p	RC5903	RC 5903	800p
TP660	RC 660	850p	SABA		
TP661	RC 661	850 p	16772	RC 149	900p
HITACHI			TC319-320	RC 328	875 p
CLE800-CLE830	RC 140M	850 p	TC356	RC 356	875 p
A617402/655602	RC 192	$875 p$	TC358	RC 358	850 p
A512120/230	RC 900	800 p	TC360	RC 360	800 p
A514790	RC 901	850 p	TC365	RC 365	800 p
A5088470	RC 902	800 p	SALORA		
A518612	RC903 RC904	900 p	SERIES L	RC 190	875p
C2096	RC 905	850 p:	86173	RC 882	850p
A519940	RC 906	800 p	SANYO		
655602 H	RC 907	850 p	RC218, RC222, RC228, RC238	RC 140M	850 p
ITI			JXGE	RC 878	850 p
IFB13, 14, 15	RC 143	875 F	JXDE	RC 884	850p
FS4	RC 148	850 F	VHR2300	RC 890	850p
RG305	RC 305	825 p	RC628	RC 865	900p
RG306	RC 306	825 F	SHARP		
FS9/1-10/1	RC 307	${ }^{850 p}$	G0121CESA, 123CESA, 204, 251	RC 140M	850p
VS5 RUK VS4-1	RC 308	825 p	SIEMENS		
MULTICONTROL (17C20)	RC 311	800p	FC616	RC 130	850p
KORTING			FC631	RC 132	850p
18279, 18396, 18460, 18521 SE	RC 108	850p	FC742	RC 164	900p
40540 VTS	RC 108	900 p	SONY		
LOEWE			RM604, RM605, RM606	RC 140	850 p
DC11	RC 146	850p	32 CHANNEL	RC 140 M	850 p
MATSUI			RM613	RC 141	$850 p$
010270601	RC 889	850p	RM632, RM636	RC 160	850 p
VX770	RC 892	850 p .	TATUNG		
METZ			FXA	RC 877	850p
JAVA COLOR (6890)	RC 166	850 p	RC70	RC 883	750p
COLOR (7156)	RC 183	850 p	FX70 FASTTEXT	RC 894	850p
JAVA (7180)	RC 184	850 p	TELEFUNKEN		
MITSUBISHI 939P/03607, 939P/03609			FB632	RC 632 ST	850 p
939P/03607, 939P/03609	RC 140M	850 p	FB639	RC 639 ST	850p
NOKIA			THORN/FERGUSON		
SATELLITE NORDMENDE	RC 550	850p	3V35-42	RC 342	850p
TC2336	RC 351N	850 p	3V31-32	RC 344	850p
CMC1, TC3519	RC 356	$875 p$	3V57-58	RC 628	900p
OCEANIC			TX10 STEREO TEXT	RC 732 RC 738	750 p 750 p
390C9500	RC 339	900 p	TX9-90-100	RC740	750 p
ORION			3V55, FV11	RC 783	900 p
RC53	RC 892	850 p	TX100 FASTTEXT	RC785	800p
PANASONIC			TX100 STEREO FASTTEXT	RC 789	800 p
EUR51200	RC 200	850 p	PROFESSIONAL	RC 790	800p
TC2200	RC 201	850 p	TOSHIBA		
VSQ0357/NV730	RC 202	875p	CT937	RC 950	850p
TNQ1621 PHILCO	RC 203	900p	CT9117	RC 951	850p
CARVEL CONCORDE	RC 108	850p	201R48	RC 952	850 p
MERCURY, TELESTAR			UNIVERSAL PROGRAMMABLE REMOTE CONTROL Controls up to 4 different devices which use infra red remote controls including TV, audio, VCR and satellite. (need original remote control TC program)		
TC10	RC 152	900 p			
PHILPS					
RC5002,5154	RC 134	850 p			
KT3 NON TEXT	RC 135	825p	Order code: $\mathbb{R} 100 \mathrm{R}$ Price: 1950 p		
69117032	RC 178	875 p	We stock Remote Controls for over 5000 different models. Ring for further details on 081-900-2329.		
69117194 RC5991-UNIV	RC 180 RC 300	$875 p$ $850 p$			

VCR ALIGNMENT KIT

 CONTAINS:| SET OF 7 HEAD \& TAPE PATH ALIGNERS | | | SET OF 8 ALLENKEYS | |
| :---: | :---: | :---: | :---: | :---: |
| * RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL | | | | |
| | | | * 0.90 m | |
| * RCA ADJUSTMENT TOOL. FOR TAPE GUIDE POSTS | | | - 1.27 mm | |
| | | | * 1.50 | |
| * RCA TYPE BACK TENSION TOOL | | | * 1.60 mm | |
| | | | | |
| * TENSION ADJuStMEnt | | | * 2.00 mm | |
| TOOL FOR VARIOUS USES | | | * 2.40 mm | |
| * VCR ADJUSTMENT TOOL | | | * 3.00 mm | |
| 3 Reversible Screwdrivers
 Spring Hook | | | Circlip Pliers | |
| | | | Micro Screwdriver | |
| VCR Head Extractor | | | | |
| Order Code: TOOL10 | | | Price: 3000 p | |
| FUSES | | | | |
| | TIME LAG (20 mm) | | QUICK BLOW (20 mm) | |
| Value | Order Code | Price | Order Code | Price |
| 160 mA | FUSE01 | 75P | FUSE17 | 60P |
| 250 mA | FUSE02 | 75P | FUSE 18 | 60P |
| 315 mA | FUSE03 | 75P | FUSE19 | 60P |
| 400 mA | FUSE04 | 75P | FUSE20 | 60P |
| 500 mA | FUSE05 | 75P | FUSE21 | 60P |
| 630 mA | FUSE06 | 75P | FUSE22 | 60P |
| 800 mA | FUSE07 | 60P | FUSE23 | 60 P |
| 1A | FUSE08 | 60P | FUSE24 | 60P |
| 1.25A | FUSE09 | 60P | FUSE25 | 60P |
| 1.6A | FUSE10 | 60P | FUSE26 | 60P |
| 2A | FUSE11 | 50P | FUSE27 | 609 |
| 2.5A | FUSE12 | 50P | FUSE28 | 60P |
| 3.15A | FUSE13 | 55P | FUSE29 | 50P |
| 4 A | FUSE14 | 55P | FUSE30 | 50P |
| 5A | FUSE15 | 60P | FUSE31 | 50P |
| 6.3A | FUSE16 | 60P | FUSE32 | 50P |

CERAMIC PLUG TOP

3A	FUSE33	100 P
5A	FUSE34	100 P
13A	FUSE35	100 P

ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES

Order Cowada, Ultravox
Amstrad Original No: 153154
Used on Amstrad 008900, 8904, VCR2000, 6000, 8600, 8602, 8603, VCR8604, 8700, 8704. 8714, 8800, 9005 , 9244
Also fits: Antitech, Boadstec, Casio, Crown, Fidelity, Goldhead, Granada, Hinari, Marguant, Omega, Protex, Schneider, SEG, Sentra, Shiptom, Tashiko, Tatung, Order Code: AH02 Price: $\mathbb{\$ 1 4 . 5 0}$

Established over 35 years ago, Charles Hyde and Son Ltd is the oldest

SANYO
 independent distributor of electronic components
 distributors for Sanyo*, Hitachi*, Ferguson, Phillips
 HITACHI

 PHILIPS and König components, plus a selected range of spares forAmstrad, Samsung,

F. FERGUSON

 Sony, Matsui, Saisho, GEC and Toshiba.For fast, efficient service, call (0759) 303068

Charles Hyde and Son Ltd
Prospect House, Barmby Road, Pocklington, York YO4 2DP
24 Hour answering service (0759) 303068 Fax (0759) 303620
*Sole UK Distributor

TE
 EltEVIS 5 01

Success for the BBC

The government's White Paper on the BBC, entitled "The Future of the BBC Serving the Nation, Competing Worldwide", comes at the end of a threeyear period during which the Corporation has been under detailed scrutiny. From it the BBC has emerged intact and with its traditional purposes underlined. Good. We can rest a while. The wreckers have been shown the door, though the announcement in the House was accompanied by some jeers. A new royal charter will come into effect in 1997 and will run for ten years.

For the vast majority in the UK, the BBC is something that has been there throughout their lives. Yet broadcasting is not that old. Its roots date back to experimental transmissions carried out in early 1920. The British Broadcasting Company was set up in 1922 - with a staff of four! Things had progressed considerably by 1927, when the BBC became a public corporation - its first charter came into effect on January Ist that year. Broadcasting has been with us a mere 72 years, but the BBC has been there from the start.

There have been vast changes since the Twenties of course: massive increases in the bands available for broadcasting and radical changes in the types of service that can be provided. This has led to repeated questioning about the role of the BBC , particularly when the charter has come up for renewal. The BBC is in a difficult position, being funded by the revenue from the broadcasting licence (with increasing contributions from its
commercial activities in recent years). Should the BBC be involved in all aspects of broadcasting and transmission, including research and development? Should it widen its sources of revenue by taking advertising? Should it simply be sold off as something that's outlived its original purpose?

The case for leaving the BBC much as it is rests on its achievements and the role that it has established for itself. Its output may not be to everyone's taste, but its independence has enabled it to set standards that would not otherwise have been achieved. There can be no doubt that we would be very much worse off without it and now that there is so much competition we need no longer be concerned about its tendency to dictate in matters of taste. We can take it or leave it. The important thing is that it is there. It underpins the whole broadcasting set-up in the UK. Would the ITC be an effective institution if the BBC was not there to show what can and should be achieved?

The case for the BBC's continued involvement in R and D is rather weaker. In the early days this was essential for the development of services. Now that the technology has advanced so far and companies are better able and prepared to invest in broadcasting it's not so evident that the BBC needs to continue in this role. What one can say is that the BBC's considerable success in technological development and setting technical standards does provide a case for its continuing involvement in this aspect of broadcasting. The fact that the ITC has
successfully subcontracted most of its technological work to NTL rather undermines the case for the BBC's continued involvement however. On balance it all depends on costs and what the $3 B C$ can come up with.

Costs are of course at the heart of the debate. Unlike the previous government, which didn't seen to be able to understand the purpose of public service broadcasting, the present one has turned its attention to whether the BBC provides value for money in its activities. Fair enough, as the public pays. The BBC has come out of its cost investigation successfully, though it does seem that staf? morale has suffered considerably in the process. This is all part of the growing conmercialism of the Corporation.

In its White Paper the government gives considerable encouragement to the BBC in developing commercial TV and radio services around the world. The main concern here seems to be that there should be no cross-subsidy between the licence fee and the grant that funds the World Service and the Corporation's commercial activities, both in the UK and world-wide. The Corporation has the expertise and is developing the contacts to be able to make a success of all this. The only cloud on the horizon is the fact that the licence fee will be reviewed, in the light of changing technology and other developments, in the year 2001. Quite a lot could change by then, but there will still be the need for the BBC as a cultural institution. The Corporation should be around for a long time yet.

EDITOR

John A. Reddihough

PRODUCTION EDITOR

Tessa Winford
EDITORIAL OFFICE
0816528120
Fax 0816528956
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

ADVERTISEMENT MANAGER

Carol Nobbs
0816528327

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Bannister

0816528648
Fax 0816528942
PUBLISHING DIRECTOR
Susan Downey

SUBSCRIPTION ENQUIRIES

0444445566

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0622721666 and quote reterence INJ.

COVER PHOTO

This month's cover photograph shows the Panasonic Z4 Chassis. See article on pages 784-787.

LNB Supply Tester

Ian Rees

An Amstrad SRD400 satellite receiver I was called to see recently suffered from the following fault: the horizontallypolarised channels would occasionally be lost.

Normally I'd expect the cause of this fault to be in the receiver. A lot of red herrings later however the cause became clear. In wet weather rain would seep past the rubber sealing ring and collect in the bottom of the LNB's case. Because of this the LNB would draw a higher current than the receiver could supply. The LNB didn't break down as severely in the vertical mode, continuing to work with these channels. Horizontal operation would be regained during dry spells.

To help with the investigation I built the unit described in this article. It enables me to check both the receiver supply and the LNB's power requirement.

Circuit Description

Fig. 1 shows the circuit diagram. The unit was mainly made from odds and ends available in the workshop. I obtained the F connector sockets from CPC: they came complete with their chassis mounting nuts. They were fitted into a small metal diecast screening box. Chokes Chl and Ch 2 consist of ten turns of enamelled wire threaded through a standard ferrite bead. Solder them directly to the F connectors, with as short a lead as possible. Cl is soldered between the connnectors. Apart from this the layout and wiring can take any form.

Function switch Sl provides alternative powering arrangements. The LNB can be supplied by the receiver in the normal way, or alternatively a separate vertical or horizontal supply can be provided by the unit. In the RX position the mains feed to the internal power supply is switched off - a neon provides indication.

Cl maintains the signal feed from the LNB to the receiver whatever the source of the LNB's supply. The two chokes prevent loss of signal as a result of loading by the test circuitry while maintaining d.c. continuity. Fuse FSI is included to protect the supply in the event of a short in the coaxial lead.

The forward-biased silicon diodes D1 and D2 provide the voltage lift required to raise the output from the 12 V regulator ICI for LNB operation in the vertical mode. With SI

Fig. 1: Circuit diagram of the LNB supply tester.
in the H position these diodes are disconnected and the 5.6 V zener diode takes over, increasing the supply for LNB operation in the horizontal mode.

Most recommended circuits for 78 and 79 type regulators show two small $0.1 \mu \mathrm{~F}$ capacitors which should be mounted as closely as possible between the regulator's input and output pins and its centre, chassis-connected leg. Omitting them has not caused me any problems, but I suggest that they should be fitted if instability is experienced.

Switch S2 enables meter M to record the supply voltage or check the current via the calibrated shunt resistor RI. If only standard single LNBs are to be checked the meter can be calibrated for a maximum f.s.d. of 200 mA : twin type LNBs will need an f.s.d. of 300 mA . RV is selected to give an f.s.d. of 20 V . RI and RV will need to be calculated in accordance with the meter's sensitivity. A 1 mA f.s.d. meter or better is o.k.

LNB Only Test

After checking that the tester provides 13.2 V and 17.6 V outputs and that the meter is correctly calibrated, connect a known good working LNB to the unit.

With S 1 in the V position and S 2 in the E position, check that the correct voltage is delivered to the LNB.

Switch S2 to position 1. The meter should produce a reading of not more than 200 mA for a single or 300 mA for a double LNB (Marconi Solo etc. LNBs generally draw about 120 mA).

Set S1 to position H. Although the LNB now receives the higher horizontal mode voltage the current consumption should be the same as in the vertical mode. The horizontal mode voltage supply can be confirmed by setting S 2 to position E.

LNB/Receiver Test

Connect the unit to an installed dish, with a fly-lead from socket RX to the receiver.

Turn Sl to position RX and switch on the receiver. Set

Parts List

C1	$4,700 \mathrm{pF}, 100 \mathrm{~V}$ mica
C2	$1,000 \mu \mathrm{~F}, 35 \mathrm{~V}$ electrolytic
RI/RV	See text
D1/D2	1 N 4148
D3	$5 \cdot 6 \mathrm{~V}, 400 \mathrm{~mW}$ zener diode
D4-7	Four BY127 diodes or a 1A bridge
IC1	78L12
S1	4-pole, 3-way rotary switch
S2	1-pole, 2-way toggle switch
T1.	20V, 500mA transformer
FS1	20 mm 500 mA quick-blow fuse
FS2	20mm 100mA quick-blow fuse
Ch1/2	See text
M	See text
N1	Neon indicator

MANOR SUPPLIES
 MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

* 40 different patterns and variations
* Fully interlaced sync pulses with correct picture blanking
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow. cyan, green, magenta, red, blue and black
* Chequerboard
* Mono outputs with border castellations, cross hatch. grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
* Additional video output for CCTV \& VCR
* Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
* All kits fully guaranteed with back-up service.
* Also available with VHF Modulator.

Price of Kit
£79.00
Case ($100^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$) app
Optional Sound Module (6MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module
$£ 129.00$
Add VAT 17.5% TO ALL PRICES
PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF, applied to receiver acrial socket.
* In addition to colour bars R-Y. B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour bar P.C.B.
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT
£39.00. CASE £5.80. BATT HOLDERS $£ 4.20$
MAINS SUPPLY KIT $£ 5.80$
(Combined P\&P £4.50)
VHF MOIDULATOR (CH (10 4) FOK OVERSFAS E6.RI).
FASIITY ADAPTED FOR VIDFOOOTTPIT \& (C. ©I.V.
LINE OUTPUT TRANSFORMER TESTER
\star Service Aid.

* Saves time and money.
\star Checks short turns.
* Simple to use.

Reliable.

* Battery operated.
* Pocket size.

PRICE £24.00
POST/PACKING $£ 2.50$

INFRA RED REMOTE CONTROL TESTER
 - Pocket size
 * LED + audible indication
 * Simple to use.
 PRICE £20.00
 POST/PACKING £2.50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video $\mathbb{\&}$ aludio outputs $£ 28.50$ p.p. £1. X ().
PAL DECODER KIT (Video (o RGB) for Monitors £27.00 p.p. £1. 8()
PAL ENCODER KIT (RGB to Video) $\mathbf{2 0 . 0 0}$ p.p. fl. $\mathrm{x}(\mathrm{l}$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case. Pancl Meter Indicator - can be adapted for latest CRTs $£ 45.00$ p.p. £4.50.

S2 to the Eposition and step the receiver through its channels. The meter should read between 11.8 V and 13.4 V in the vertical mode, and between 16.4 V and 18 V in the horizontal mode. For quick and easy comparison it's useful to have the meter scale marked with acceptance bands. The current drawn (S 2 in the I position) should be the same in both modes.

Satellite Finding

When my Satellite Finder's battery fails half way through an installation I find it much better to send power up the line from the tester rather than use the receiver's supply. No more surprise shocks from the coaxial cable, and little damage should the line be shorted accidentally because I've
bent the F connector's inner over while trying to prevent myself falling off the ladder.

That Fault

A final note on the repair that sparked off this project. With the LNB connected to the test unit, hot air was blown on to the front of the LNB's casing. There was an almost immediate drop in the current consumption. When the rivets were removed and the case was opened the tell-tale signs of water corrosion could be seen. The inner screen casting was then unscrewed and the PCB was given a blow with the dryer. This brought the LNB back to life.

The LNB was put back into service after resealing with silicone sealant.

Recharging Dry Cells

Dave Locke

Note that recharging dry cells can be dangerous. Read this article carefully and pay particular attention to the warnings given.

While sorting out the workshop I found that I had a large quantity of AA cells which were all too weak for the kid's personal stereo but could not be regarded as totally dead. As they'd been discarded, I had stashed them away in a box. Most of them read 'low' when checked with a commercial battery tester, indicating that they were next to useless for anything.

As this is an environmentally conscious time. I decided to see if these cells could be 'recycled'. The obvious thing to do would be to recharge them. Some investigation showed that this was possible, the result being the circuit described here.

Most cells have a warning on them stating that they cannot be recharged. Now l'm not saying that this is wrong: if you try to recharge an AA cell using a NiCad or a car

Fig. 1: The basic charging circuit.
battery charger you are asking for trouble! If the charge is done very slowly however, so that the cell does not gas or overheat, most cells will will recover their charge - and the charger, the user and the cell will be none the worse for the experience. Most of the cells I had were AA ones, but the circuit presented here will charge both AA and C types (given the right type of holder).

Selecting Suitable Cells

Cell selection is important. Some of the cheaper types of cell may leak or overheat white being recharged. This could result in damage to the charger and, much worse, the user!

It's best to stick to the 'Leakproof' type of cell from a reputable manufacturer.

The cell must not be too flat to start with. One that has a terminal voltage of less than 1.35 V will not recharge very well. Thus it's important that you select cells before they are completely exhausted. A cell with a terminal voltage between about 1.35 V and 1.4 V will recover well and should make a full charge to its original capacity. A cell with a low terminal voltage, say 1.2 V . will recover only in part and will not reach full capacity.

Principles

Slowly does it! The process of charging a dry cell must be carried out over a long period of time at a very slow charge rate. You can forget the twenty-five minute 'zap' charge.

A cell with a terminal voltage of about 1.4 V will take about five hours to reach full charge. Having tried recharging cells from a variety of sources, I've found that cells from different manufacturers recharge at different rates. Cheap, non-leakproof types seem to be the fastest to take a charge, but then have a short shelf life. The more expensive cells from better known (and recognisable!) manufacturers seem to take longer but will retain the new charge to give a longer shelf life.

Circuit Operation

The basic circuit used for the recharging is shown in Fig. 1. It will recharge an AA cell in about five hours at a charging current of 50 mA . There's no protection against overcharging or overloading. The circuit will work, but could be dangerous in use if you forgot to monitor it at regular intervals.

To get around this what's needed is a timer circuit that will run for up to about nine hours, and some sort of overload protection so that the cell doesn't draw excessive current.

In the original prototype the timer I used was a mechanical central-heating switch that happened to be lying around in the junk box. The circuit shown in Fig. 2 uses a timer chip and a relay. It provides a timed period of some three to nine hours, selected by the rotary switch S3. The ZN1034 timer i.c. is versatile and can provide accurate delays over

Fig. 2: Complete circuit of the charger.
long periods. I found that the optimum time is five hours for an AA cell, nine hours for a C cell.

The timer is started by pressing switch S1. The charging LED will then light, transistor TrI will operate the relay and power will be connected to the cells to be recharged. When the selected time period has elapsed, the relay will release and the completed LED will light, indicating the end of the cycle.

To protect the unit and the user a 100 mA fuse is included in series with each cell being recharged. Should something untoward occur the fuse will blow, disconnecting the cell.

1 originally used my bench power supply, which produces a smooth, stabilised output, as the power source, thinking that this would give the best results. But on trying the system out I found that several cells seemed to 'stick' at a terminal voltage just below 1.5 V , refusing to go any further. This did not happen when the supply had some ripple, so a simple half-wave power supply (T1, D7, C3) was built and attached. As a result the number of cells that refused to budge was reduced to about one in ten. Some still refused to respond, but I feel that this is acceptable when you consider that the cells would otherwise have been thrown away.

Construction

I haven't suggested a case for the unit since this will depend on the user's requirements - and what's available! I housed the circuit, with the power supply, in a plastic box that measured $6 \times 4 \times 2$ in., with the LEDs mounted through the lid. The four battery holders were mounted on the top of the lid, the wires being taken down through small holes. If you use a metal case it must be earthed for safety.

The ZN1034 timer chip is available from Maplin and

Electromail. Any other parts required should be available from these sources.

In Conclusion

The cells I've experimented with have all responded well. A cyclic life of about five-eight hours appears to be about the norm.

Do remember that charging dry cells can be dangerous.
Test your charger carefully before you commit it to a five-hour run. Make suie that each cell is in fact drawing about 50 mA . An open-circuit or very flat cell will not light the LED in the relevant position. Such a cell cannot be recharged and should be discarded.

Components list

Resistors:

R1	$39 \mathrm{k} \Omega$	R 8	$1 \mathrm{k} \Omega$
R2	$68 \mathrm{k} \Omega$	R9	$220 \Omega 1 \mathrm{~W}$
R3	$92 \mathrm{k} \Omega$	R 10	$1 \mathrm{k} \Omega$
R4	$120 \mathrm{k} \Omega$	R 11	$220 \Omega 1 \mathrm{~W}$
R5	470Ω	R 12	$1 \mathrm{k} \Omega$
R6	$1 \mathrm{k} \Omega$	R 13	$220 \Omega 1 \mathrm{~W}$
R7	220Ω iW All 0.25 W unless otherwise stated.		

Capacitors:

C1	$0.1 \mu \mathrm{~F}$	C2 $100 \mu \mathrm{~F} 16 \mathrm{~V}$
C3	$1,000 \mu \mathrm{~F} 40 \mathrm{~V}$	

Semiconductor devices:

D1, D3-6	General-purpose red LEDs
D2	General-purpose green LED
D7	1N40C1
IC1	7812 voltage regulator chip
IC2	ZN1034 timer chip
TR1	BC108

Switches:

S2 DPST mains on/off switch
S3 One-pole, four-way rotary switch

Miscellaneous:

T1	SVA mains transformer with 0-12V secondary winding
RL1	SPST relay, 12V d.c. working voltage
BH1-4	AA battery holders
F1-4	100 mA fuses
F5	500 mA fuse

Fuseholders to suit fuses. Case.

S CONNECTOR

The S-video socket is increasingly found on TV sets and VCRs where provision is made for separate luminance (Y) and chroma signal feeds. Fig. 1 shows the pin configuration.

Fig. 1: S socket pin arrangement, viewed from the front. Pin $1 Y$ earth, oin $2 C$ earth, pin $3 Y$ signal, pin 4 chroma signal.

VCR Clinic

Reports from Graham Richards, Mike Leach, Terry Lamoon, Andrew J. Finn, Steve Cannon, Keith Evans, Chris Avis, Chris Watton Michael Dranfield and John Edwards

Amstrad VCR8800 (4 x 8 Nicam)

"Nothing" was the complaint. And that was all it did! The machine was dead because the 5 V regulator IC651 had gone open-circuit. A replacement restored normal operation. G.R.

Akai VSF200

The customer thought that this machine was faulty. In fact it was in the child-lock mode. Nothing then works, with just ' L ' showing in the display. Press the handset's play button for ten seconds to return to normal operation. G.R.

Panasonic NVG21

This machine had come into the workshop on several occasions, each time with a report of a different, niggly fault, none of which were ever really cured. Very rarely could we get the machine to show one of these faults. This time the complaint was of no playback colour and lines on the screen. We confirmed that there was no playback colour and found that the drum speed was varying slightly, as a result of which the picture shifted a little on the screen. The cause was easily found with the aid of a hairdryer and freezer: C23 $(1,000 \mu \mathrm{~F}$, 10 V) in the power supply was leaky. Replacing this cured the latest problem and all the other ones that plagued the customer seem to have gone away.
M.L.

Pioneer VR727/Philips VR6870

This machine had given trouble for some months. The first complaints were of intermittent functions and going into play and rewind by itself. On that occasion we were unable to find anything wrong, and after a long soak test returned the machine to its owner. It came back the following day with the complaint of no results at all. We switched it on and after half an hour it sprang to life and carried on working. So we replaced various components in the start-up circuit and returned it, once more with a nominal charge. It was recently back with the same complaint.

This time there was a tape in the machine, in the stop position. So we plugged in and waited. As the machine sprang to life half an hour later it started to do some strange things. The clock display came on first, then the carriage tried to lift the tape about an inch or so then plonked it down again. It did this several times before going into rewind by itself. Then it was all right for the rest of the day.

We switched it off for a few days and pretended that it wasn't there, like you do. Unfortunately it didn't go away. The next time I switched it on I monitored all the supply lines. Except for the 6 V and $5 \cdot 1 \mathrm{~V}$ supplies they were all correct. The 6 V supply was low at $4 \cdot 2 \mathrm{~V}$ while the $5 \cdot 1 \mathrm{~V}$ supply was down at 4 V . A look at the circuit diagram showed that three $680 \mu \mathrm{~F}$ capacitors smooth the input to the BD434 transistor Q7008. They had dried up. Replacements rated at 25 V rather than 16 V were fitted. After this the machine worked perfectly.
M.L.

Amstrad UF20

When a cassette was loaded this machine would power down with the display flashing erratically. Checks on the
supplies showed that the voltage on the 12 V rail was low. The cause of the trouble was the 12 V regulator IC 01 which was breaking down. A replacement restored normal operation.
T.L.

JVC HRJ205

The customer said that when he inserted a tape and pushed play the machine would stop working and the display would "go peculiar and disappear". I'd seen this one before and went straight to the ICP fuse in the power supply. Sure enough it was open-circuit, a replacement restoring normal operation. This is becoming a common fault. When I phoned JVC Technical for advice I was told that the cause is being looked into. Until they come up with something, keep a good supply of these ICPs handy in your kit.
T.L.

Hitachi VTM770

There was a tape jammed inside this machine. When switched on it powered down within seconds. Investigation showed that the 1.6AT fuse had blown. When this had been replaced and the tape had been wound out manually the machine remained on. A cassette was then loaded, but it was noisy and sluggish because the capstan was stiff. When the shaft had been cleaned and lubricated the machine was as smooth as silk.
T.L.

ITT Nokia VR5720

These machines tend to suffer from a very poorly lit display. The cure is to replace $\mathrm{C} 447(47 \mu \mathrm{~F}, 6 \cdot 3 \mathrm{~V})$ on the main board. It needs to go down by only $9 \mu \mathrm{~F}$ to cause the problem.
A.J.F.

Sharp VC8581H

This may sound silly but it caught one of us out. The machine would accept and eject a cassette but there were no deck functions. Although the lights on the front panel lit up correctly for the operation selected nothing else happened. The cause of the trouble was the small 2.5 A fuse protector IP901 in the power supply - not the wrongly diagnosed microcontroller chip!
A.J.F.

Mitsubishi HSM16

"Warble on music" it said on the ticket. Sure enough this was the case. A look around the servo section showed that one leg of the $1 \mu \mathrm{~F}$ capacitor C4D3 had failed to pass through its hole and was bent back on itself. This had obviously missed quality control.
A.J.F.

Logic VR950/Samsung VI611

This machine worked well for about a quarter of an hour. The drum would then speed up and nearly take off! The capstan motor would run flat out and the machine would shut down. As both motors were affected we decided to check the power supply. In the fault condition pin 6 of plug

F02 (5 V output to the servo) was at $2 \cdot 4 \mathrm{~V}$. When this pin was removed the voltage returned to 5 V . As there were no shorts across this supply a 6 V battery was connected. This restored normal operation, so the 2 SC 10085 V regulator transistor Q5 was replaced. After a long soak test the machine was returned to its owner. A.J.F.

Philips VR6462

This machine appeared to be dead, with no clock display or deck functions. But the customer had noticed that it worked perfectly with remote control. A new TMS1934 clock display/function chip on the front panel put matters right.
A.J.F.

The second machine displayed all the symptoms of a defective video head, but fitting a replacement made no difference. It was beginning to look as though the lower drum may have been the culprit - until we learnt about the machine's history. It had spent a lengthy period at another workshop and had eventually been retrieved by its disgruntled owner who had brought it to us for assessment. We put off changing the lower drum and concentrated on the head amplifier module. When we unplugged the unit to check the rotary transformer connections and continuity we soon realised that the module could easily be reconnected in the wrong position. A sigh of relief was breathed when this proved to be the case. After a clean and service, the machine was returned to its grateful owner.
K.E.

Sharp VC582

The complaint with this elderly machine was that it wouldn't play tapes. When a blank test cassette was inserted we saw that the capstan didn't rotate. After eliminating the motor we turned our attention to the servo and motor drive amplifier section. As the voltages around the motor polarity switching chip IC701 didn't look right we fitted a replacement. It sits on the main PCB, under the deck mechanism, so it's not easy to get at. Lifting the deck is probably better than trying to hinge up the main PCB.

Fortunately the replacement restored capstan rotation, but we then found that there was hum on playback and the recorded sound and picture - the E-E signal didn't seem to be affected. Checks in the power supply showed that the 15 V feed to the 9 V regulator was low at 11 V . A replacement reservoir capacitor ($2,200 \mu \mathrm{~F}$) produced only a marginal improvement, so resistance checks were carried out on the bridge rectifier diodes (be warned - they are buried beneath the mains transformer). They appeared to be normal but as the transformer's secondary winding provides about 12 V a.c. we decided to replace them anyway. This provided a complete cure, restoring all voltages to the correct levels.
K.E.

JVC HRD620

Playback suffered from four equally-spaced horizontal noise bars, and there was poor or no sound. Having had this problem with several of these machines recently we checked the tape wrap alignment around the drum. Sure enough the tape was sitting high near the exit slant post, indicating that the guide roller had moved. The small locking grub screws beneath the guide posts tend to work loose. Then each tape loading turns the roller minutely out of alignment. Adjustment of the roller and tightening the grub screw did the trick. It's worth checking both the entry and exit roller screws.
K.E.

Ferguson FV42L

This machine seemed to be dead but was all right when the top cover was removed. All then seemed to be well - until our trusty PCB whacking tool was brought to bear on the main board. We soon established that the regulated 5 V supply would go missing. This comes from TT64 (BD435), which is fed with a 7V supply. TT64's three legs were all dry-jointed.
K.E.

NEC N9120K

If the drum motor runs very slowly during play and the capstan motor 'chugs' lazily, check the 4.43 MHz subcarrier
signal at pin 1 of the servo chip IC601 - its amplitude should be 3.4 V p-p. If it's present, replace IC601. If it's missing, replace crystal X1401 adjacent to the chroma chip IC1401. The correct crystal, part no. 64004143 from SEME, must be used. A standard 4.43 MHz crystal will oscillate but there will be no colour.
C.A.

Samsung SI1240

The owner complained that recording was very intermittent - just the fault for Monday morning! Fortunately he supplied a sample tape, which showed an apparent loss of signal rather than recording. The suspect tuner was eventually persuaded to go intermittent in the E-E mode by being tapped. So we removed it and wired it back to the PCB temporarily for easier access and checking. The cause of the fault was then found to be a hairline crack around one of the SAWF's pins in the tuner/i.f. section.

Hitachi VTM822

The rewind action was very poor because the rewind gear actuating slide didn't travel far enough to engage with the gear correctly. It took us a while to discover that the mechastate switch was responsible for this. Although this would be an easy part to remove and replace, it's supplied only as part of the whole 'loading block assembly'. Good old Hitachi!
C.A.

Panasonic NVG12

When this machine was brought in the loading arms were out. Then it unloaded, leaving the supply reel turning slowly - all this with no cassette inserted. Replacing the deck mode-control switch restored normal operation.
C.W.

Amstrad VCR6100

When eject was requested a small loop of tape was left outside the cassette. This caught on the lift and broke. Tape reclaim works in two ways in these decks. From the play to the stop mode the tape is drawn back into the cassette by reverse rotation of the supply reel turntable, driven by the rewind drive gear assembly. The drive for the final reclaim is at the take-up reel, operated by the half-loading wind gear. If this is either loose or sticks on the pillar the tape won't be drawn back in: it turns only about twice, and unless it engages instantly a small amount of tape is left hanging out of the cassette. The item to replace is no. 613 in the service manual.
C.W.

Abstract

Akai VS2 There was loss of both the E-E and playback pictures. The on-screen display was working however and the sound was o.k. The cause of the loss was the 2 SC 536 transistor TR15, which had a collector-to-emitter short-circuit. A BC547 with its legs crossed makes a suitable replacement. C.W.

JVC HRD720

This machine was dead with a fully-loaded tape inside. There was no clock display, no nothing, though there were outputs from the power supply. We didn't have the manual, but did find one for the Ferguson FV45X which seems to have the same power supply. Armed with this we soon found that the unswitched 12 V supply was missing because circuit protector CP2 (N20) was open-circuit. A meter check
showed that the maximum current being drawn was 400 mA . A replacement CP cured the fault.
M.Dr.

Samsung SI3240/3260

This machine would load a tape but when play was selected it would unlace, leaving the tape hanging out of the cassette. Fast forward and rewind were o.k. however. Very low capstan motor torque was the cause of the trouble. The torque control circuit consists of Q102, D108, D109 and D110. In the play mode power is fed to the motor via the three diodes. In the fast forward and rewind modes the three diodes are switched out by Q102. The cause of the trouble was D109, which introduced a voltage drop of about 4 V though it tested c.k. on an ohmmeter. All three diodes are type 1 N 4001 , and I suspect that they came from the same bad batch that affects Models SI1240/1260. Replace all three to avoid comebacks.
M.Dr.

GoldStar GSE1290IO

The customer complained about a poor playback picture and tape chewing. We replaced the pinch roller and arm assembly and gave the deck a good clean/service. After a soak test the machine was returned to its owner. A couple of days later it came back, again because the playback picture was poor. After several tries at loading and unloading we found that the back-tension arm sometimes stopped before it reached the play position. As it is mechanically linked to the main cam we decided to replace the mode switch. This cured the fault for good.
M.Dr.

Philips VR201

This machine wouldn't erase the previous sound when a new recording was made. A check on the BC337 erase bias oscillator transistor $\operatorname{Tr} 7252$ showed that it had basecollector leakage, a replacement curing the fault. J.E.

Aiwa G700GPS

This model uses the same deck as the Amstrad VCR4600. The one we had would accept a cassette but nothing else worked because the belt between the capstan motor and the intermediate idler had fallen off. A new belt kit cured that, but while the machine was on test it began to crinkle the tape. So in went the modified clutch/pinch roller kit. When the machine was put back on test there was a reasonable playback picture for about half an hour after which the colour suddenly flickered on and off a few times then disappeared. I didn't panic, honest! Memory took over: the colour was restored when I'd resoldered all the pins of the chroma module HCl201. Unfortunately the customer had been quoted for only a belt. Oh well, what's new!?
J.E.

Hitachi VT33

The complaint with this machine was that it wouldn't eject a tape - there was a cassette in the machine to prove the point. No matter what mode the machine was in, pressing the eject button wouldn't release the cassette. In fact pressing the button would sometimes change the function, for example if the machine was in the play mode pressing eject might put it into the fast forward or some other mode. Usually however pressing the button had no effect at all. The cause of the trouble was the eject switch itself. It measured all right out of circuit when checked with an ohmmeter, but a replacement from a scrap machine cured the fault.
J.E.

Test Case 381

It was a stormy night. Sage tossed and turned in his bed, unable to sleep because of the humidity, the sporadic bangs and rumbles, and the brilliant lightning that lit up the curtained room every few minutes. Tomorrow will be a busy day at the workshop he mused.

Sure enough next day was chaotic. The phone hardly stopped ringing all morning. By nine thirty every available set of wheels and pair of hands was on the road with a bunch of calls. Even Service Manager was afield, with a hastily improvised service kit in the boot of his posh car. Some of the breakdowns could be cured by replacing the mains fuse or resetting a microcontroller chip, but at the end of the day the in bench was overflowing with electrocuted tellies and VCRs.

One, a Samsung VCR, was as dead as a stone. It found its way to Roger's hastily rigged-up bench - he had been drafted in to help cope with the work overload. Quite undaunted by the fact that he d never been in a Samsung VCR before, he got the service manual and set to work. It soon became clear that this machine was in deep trouble. After replacing its shattered fuse and carrying out sundry repairs in the power supply, Roger found that there was still no response from the controls while the display panel failed to light up. Tests proved that the microcomputer control chip had gone to sleep forever. Amazingly, there was a new one in the stores. When he went to fit it Roger found that his soldering iron was stone cold, the primary winding of its mains transformer being open-circuit. More storm damage? Service Manager unearthed an iron from the depths of his
office: when a mains plug had been fitted, and its tip had been filed down to form a point small enough to deal with the chip's pins, it was pressed into service.

The new chip was soon installed - up and running too. It was certainly functioning because there was now a crystal heartbeat and a display on the fluorescent panel. But what was this? At switch on the head drum turned and the supply spool rotated backwards, with no cassette inserted and the deck mechanism in the eject position. Roger decided to check that the deck sensors were producing the right messages: they were. Guided by the manual, he then checked the conditions at the chip's output ports. These were incorrect, hence the strange symptoms produced by the mechanics. Puzzled by this, our hired help checked that the new chip received a reset pulse at switch on, that its clock oscillator was working at the right frequency, and that its d.c. supply was correct and free of hash and ripple. As these conditions were all correct, Roger ordered another microcontroller chip. He should have ordered a new transformer for the bench soldering uron as well, but that could wait.

The new chip didn't take long to arrive. Now experienced at removing and teplacing this device in the Samsung machine, Roger had it installed within minutes. This time all was well - except that the machine shut down after about twenty minutes while being soak tested! It was reset and told to play again, but the wretched thing turned itself off once more - this time after five minutes.

Exhaustive testing indicated that the new microcontroller chip was responsible. Could a faulty one have been sent? It was returned for replacement under guarantee, and a new one was supplied free of charge - but in fact this was an unwitting fraud! Why? The solution will be found on page 811.

Teletopics

CHANNEL 5

The saga of Channel 5 continues with the government's announcement of compromise proposals. These would allow Channel 5 analogue TV transmissions to go ahead on ch. 37 , with ch. 35 reserved for the launch of four digital TV services. Limiting Channel 5's analogue transmissions to ch. 37 would reduce its potential coverage from 74 per cent of the population to around 50 per cent. Unless other frequencies were found, which would involve international agreement, substantial areas that would have had a Channel 5 service under the previous plan would be deprived of it. These areas include Lancashire/Cheshire, most of Ulster, much of Scotland, the South West, parts of the Midlands and Home Counties and the Southampton/Portsmouth area. The ITC is considering whether the plan forms a "basis on which it can proceed to readvertise the licence and, if so, when and on what terms". Channel 5 would be given one of the digital channels for simulcasting, giving it coverage of 95 per cent of the country in digital terms.

BROADCAST NEWS

The European Union has officially terminated development of an analogue HDTV system. Instead, ministers have approved the start of a new research programme to agree upon a digital TV standard. The Eureka 1187 Advanced Digital Television Technologies (ADTT) project is expected to run for two and a half years and is being funded with a 250 m ECU grant (around $£ 190 \mathrm{~m}$). It will cover production, transmission, reception and display equipment. A prototype HDTV system based on specifications devised by the European Digital Video Broadcasting (DVB) group will be developed, tested and demonstrated. Members of Eureka 1187 include Philips, Thomson and Nokia.

The BBC is working on a technical specification for terrestrial digital TV and plans to introduce such services by the autumn of 1997. The government's White Paper on the BBC (see leader) gives the go-ahead for the start of experimental transmissions next year.

The BBC and ITV began a four-
month trial of the Audetel system in July. It uses a digital signal to provide a spoken commentary on what appears on the screen, to help blind people to follow programmes. About three hours of 'described programmes' a week will be broadcast during the trial period. Spare capacity in either the Nicam or teletext signal can be used for the purpose - the tests are making use of the teletext system. A special decoder is required to make the commentary available. Audetel has been developed by a number of companies and organisations including the BBC, the ITC, the ITV Association, Motorola and the RNIB.

DISPLAY TECHNOLOGY

Sharp has produced a prototype 2 lin. TFT (thin-film transistor controlled) colour liquid-crystal display panel. Until now the largest such display panel, also developed by Sharp, was a 17in. one produced in 1992. The new panel increases the prospects for the use of this type of display in TV sets. Sharp claims to have overcome some of the main technical problems that had previously prevented the production of very large TFT LCDs but has not suggested when commercial displays might become available or at what cost. Key technical features of the display include the use of new electrode materials that give it a response rate as fast of that of smaller devices while producing highcontrast images; the interposition of a new film material between the TFT source and drain electrodes and the amorphous silicon substrate, enabling the transistors to operate at high on/off current ratios; and the use of new techniques that produce a uniform liquidcrystal film over a large surface area. To drive it Sharp has developed a 240 W , high-speed digital source driver that uses a new grey-scale drive system. This operates with a single 5 V supply.

Sony is developing a large flat-panel display device but is unwilling to say more than that it uses "non-standard technology". A company official said that a commercial version of the display is expected to be available next year.

BUSINESS/TRADE NEWS

Korean manufacturers Samsung and GoldStar are both increasing their UK
production capacity. Samsung is to invest $£ 11 \mathrm{~m}$ over the next three years at its Billingham, Teeside TV manufacturing plant. Production capacity will be increased to a million sets a year. GoldStar is to invest $£ 26 \mathrm{~m}$ in building a new factory for the production of colour TV sets and microwave ovens at Washington, Tyne and Wear. The plant should be operational within a year, and by 1999 should be producing 580,000 colour TV sets and 600,000 microwave ovens annually. The company's microwave oven plant at Jarrow, set up in 1989, will be transferred to the new site. Both developments will receive Regional Selective Assistance from the Department of Trade and lndustry ($£ 2 \mathrm{~m}$ and $£ 4 \mathrm{~m}$ respectively).

If you come across Minoka brand sets and wonder about their origin, they are produced at the Luks plant at Cumbernauld, Scotland. Some have been sold through Makro stores and use a chassis also found in Akura sets.

Nokia is to cease production of picture tubes. Its Esslington plant will be closed at the end of the year.

Following its merger with Electrue, HRS Electronics Ltd. has moved to Electron House, 100 Great Barr Street, Birmingham B9 4BB. Orders/enquiries phone $021 \quad 766 \quad 6668$, customer accounts 021766 2205. Fax 021766 2219.

DISH INSTALLATIONS

Research carried out by marketing services group GfK indicates that 2.632 m UK households had satellite TV installations at the end of May. Growth has slowed down since September 1993, when most of BSkyB's channels became available on subscription only. GfK's research also reveals that there is considerable 'churn' in dish ownership - each year around ten per cent of dish owners return or stop using their dishes.

CONFERENCES AND EXHIBITIONS

The BATC's annual Convention on Amateur Television (CAT 94) is being held at Shuttleworth College, Old Warden, near Biggleswade, Bedfordshire on September 10-11th. The theme of the Convention will be very much the future of Amateur Television. For further details phone 0522 703348 or write to Paul Marshall, G8MJW, BATC CAT 94 Organiser, Fern House, Church Road, Harby, Newark, Notts NG23 7ED.

Our sister magazine ERT is to host a London, Olympia brown goods trade show at the end of March or the beginning of April next year. Further details next month.

Live 94, the consumer electronics show, is being held at Earls Court, London on September 20-25th.

MULTISTANDARD EQUIPMENT

GoldStar has introduced a 28 in . multistandard receiver with Nicam, Model CF28C22F, at a suggested price of £580. It can receive five PAL standards, SECAM and NTSC and has scart, S-video and $\mathrm{Hi}-8$ sockets. Features include a 60 -channel memory, Fastext and on-screen displays.

Grundig's GV469M VCR, at a suggested price of $£ 630$, can record and play back nearly all TV systems in use - PAL, MESECAM, SECAM L and NTSC. It's a six-head, Nicam hi-fi model with a host of features including high-speed drive for fast rewind.

PCTVs

Two computer companies have developed models that can display live TV broadcasts. Packard Bell's Spectra range of Multimedia 486 PCs , launched in the USA earlier this year and due for release in the UK around November, include a built-in monitor and CDROM drive with optional radio, TV, stereo and a fax/telephone answering machine. Prices are expected to range from $£ 850$ to $£ 2,500$. Apple Computer has announced the Macintosh 630 series with optional TV tuner and tele-
text decoder. Models will be launched later this year, a TV-equipped machine costing around $£ 2,000$.

CD-i NEWS

Philips has launched two low-cost CD-i players in the USA, aimed at users in the 16-21 age group. Both are toploading models and come with bundled software. The CD-i450 is priced at $\$ 300$ (about $£ 200$) while the CD-i550, which includes a digital video cartridge, is priced at $\$ 500$ (about £333). The 450 is to be launched in the UK later this year, probably at around £300. Philips also plans to launch a CD-i mini hi-fi system, a CD-i/TV combi and a seven-disc CD-i changer.

GoldStar plans to launch two CD-i players internationally later this year. There are also plans for a CD-i PC card.

CES \& VIDEO GAMES

For twenty five years there has been a summer Consumer Electronics Show (CES) at Chicago. It has seen the launch of many new developments and products, but this year's was the last and was dominated by multimedia and video games displays. Next year there will be the traditional winter CES at Las Vegas followed by CES Interactive at Philadelphia in May.

What about the games then? Virtual reality in the home came a step closer with the introduction of the Forte Technologies VFXI headset, which is to be launched internationally in October at around $\$ 900 / £ 600$. It has independently focusable lenses for each eye, a help to those of us who wear glasses, and
weighs less than 2 lb . In use the headset measures the user's head movements in all three planes to calculate where you are looking.

Nintendo provided details of its 64bit Ultra 64 video games system, previously called Project Reality. While most new games systems use a CD for storage, Ultra 64 will stick with a solidstate memory cartridge which the company points out has a hundred times faster access time than a disc. The cartridge stores images as threedimensional models which are manipulated in position and perspective to suit the game situation. In contrast CDbased systems store pre-processed animation which is retrieved as required. Ultra 64 is expected to be launched in the USA as an arcade system this autumn, with a domestic version that has identical games and graphics becoming available at "under $\$ 250$ " a year later. Prototypes were demonstrated. Nintendo also showed upgraded technology for its current games systems.

CORRECTION

A transcription error occurred in the Astra 1D article last month. Use of a block converter as mentioned in the second paragraph, right-hand column on page 710 should have said that the band $700-950 \mathrm{MHz}$ (not $700-$ $1,800 \mathrm{MHz}$) is moved to the $1,800-$ $2,050 \mathrm{MHz}$ spectrum. The reference to i.f. characteristics under the heading Basics was perhaps less than clear: narrowband receivers have a 950 $1,750 \mathrm{MHz}$ i.f. bandwidth, wideband receivers a $700-1,750 \mathrm{MHz}$ or 950 $2,050 \mathrm{MHz}$ i.f. bandwidth.

Books

Newnes Guide to Satellite TV by Derek J. Stephenson, B.A., I.Eng., 3rd Edition, published by Butterworth-Heinemann Ltd. at £18.95.

The new edition of this book has been substantially revised and updated. With two new chapters and extra appendices, it's significantly larger (372 pages). One of the new chapters is devoted to digital TV. This excellent addition goes into the subject in some detail, explaining all one really needs to know about the techniques involved. The other new chapter covers satellite i.f. distribu-
tion. As elsewhere in the book, there's a wealth of practical information and guidance. The link budget chapter has been completely rewritten. It now includes a far more detailed calculation method that allows for operational losses and digital extensions.

The main aim of the Guide is to provide the knowledge required to specify, install and maintain reliably both fixed and polar-mount dish systems and small i.f. distribution systems for blocks of flats and hotels. In this it succeeds admirably. If you want to get involved with satellite TV you couldn't do better than invest in a copy of the book. It can be ordered from Reed Book Services Ltd., PO Box 5, Rushden NN10 9YX. J.A.R.

Hands-On Guide to Oscilloscopes by Barry Ross, published by McGraw-Hill at £17.95.

If oscilloscopes confuse you, this book will make everything plain and straightforward. It's an essentially practical guide, as the title implies, starting at the simplest level - how a signal waveform is displayed - then going on to describe the various types of oscilloscopes and what you can do with them. Its coverage is up-to-date, including digital storage, sampling systems, cursor measurements and computer interfacing. The author has spent over thirty years in the oscilloscope industry, first as a design engineer and now as a technical manager for Hameg Instruments (UK). J.A.R.

The Panasonic Z4 Chassis

Part 1

Ray Meadows

Back in 1991, at a time when most setmakers were introducing spartan, low-cost chassis for their smaller-screen models, Panasonic introduced the Z 4 chassis. It was designed to form the basis of a range of high-quality, feature-rich smaller-screen models, complementing Panasonic's then current Alpha 3 large-screen chassis. Indeed the Z4's modular construction makes it look like a miniature Alpha 3.

Basic Features

The chassis has some interesting features for a smallscreen TV. These include a fifty-position programme memory, front-mounted composite AV input, a rearmounted scart connector with RGB inputs, extensive onscreen displays that include a calendar, calculator and 'mood light', and a 'top-dome' speaker. From the technical viewpoint the chassis uses modular construction, with mainly Japanese, non-I2C bus devices and an isolated, synchronised power supply. The 15 in . models are fitted with a Philips invar-mask FS tube; 21 in . models have 90° iron-mask tubes from either Philips, Panasonic or Toshiba.

The first models to appear were the TC15M1R and the TC21M1R. Both have all-plastic cabinets with textured paint finishes. The smaller set was available in a black, grey or white finish. It had a very attractive appearance with its monitor styling. The larger set has a similar appearance but is larger and doesn't have the hand-lift recesses. There were also versions with teletext, the models numbers being TX15M1T and TX21M1T. These also have rearmounted S-video input sockets.

When the sets first appeared the on-screen displays (calculator etc.) came in for some criticism as being costly and unnecessary. In fact however from the hardware point of view the displays cost nothing to add as they simply use up spare capacity in the main microcontroller chip's ROM, while the selectable colour-screen 'mood light' provides a handy workshop purity test pattern.

The features and styling should have made these models more popular than they were. But alas they appeared at a time when the main demand was for 'cheap and cheerful'

Fig. 1: Rear view of the Panasonic 24 chassis.
sets. Subsequently various cost-cutting features were introduced: an iron-mask tube was used in 15 in . models, there were various circuit changes and a matte (more hardwearing) paint finish was adopted. These economies are used in the more recent M2 versions.

The chassis has performed well from the reliability point of view, though there have been a few problems with the field sync and the e.h.t. regulation - and of course the usual Panasonic small-capacitor problems. The modular construction makes the sets easy to service however.

Dismantling the Set

The complete cabinet back, including the top-dome speaker, must be removed to gain access to the chassis. This is easily accomplished by removing five screws - two near the top of the cabinet, two near the bottom and one near the aerial socket. It's not necessary to remove the two most obvious screws, those above the rating plate: these provide access only to the speaker.

Don't forget to disconnect the speaker lead when the back cover is withdrawn. If you intend to take the chassis right out you also have to remove the connector from the remote control receiver (panel N) which is mounted inside the cabinet front. There is one more screw to be released. It's fitted in the recess above the front-mounted AV connectors. The chassis can now be withdrawn. Take care when removing the tube's anode cap: I've inadvertently broken the spring clip in at least one of them - it's not as strong as you might expect.

As usual with Panasonic chassis, panel E forms the main part of the chassis. The signals and option panels plug into it. To improve access, a service cable kit (part no. TZS1EM001) is available from Panasonic UK. It enables the set to operate normally with the B, C or H panel removed.

Once the chassis has been removed the main panels can be easily identified, see Fig. 1. Their functions are as follows:

Panel E: Power supply, line and field output stages, RGB switch, main microcontroller chip, audio amplifier, front $A V$ input, rear scart input, user controls.

Panel B: Tuner, vision and sound i.f. sections.
Panel C: Video processing and timebase generators.
Panel H: Sync separator, TV/AV switch.
Panel N: Remote control receiver.
Panel P: Mains filter.
Panel Y: Tube base panel with RGB output stages.
Text-equipped models have a larger H panel that houses the teletext decoder and the S -video connector. Continental variants have a similar E panel but different B and C panelss to provide for a multiband tuner and Secam colour. Top

Fig. 2: Block diagram of the Panasonic Z4 chassis.
text equipped models also have a different H panel
Fig. 2 shows a block diagram of the chassis, indicating the main components. The basic chip complement is as follows:

IC101	M51362SP	Vision and sound i.f. IC251
AN5265	Audio amplifier	
IC451	LA7837	Field output
IC521	AN5650	Sync separator
IC601	AN5603K	Video/chroma processor and timebase generator
		Chopper chip
IC801	STR54041M	Infra-red receiver
IC1131	SBX1610-46	EEPROM
IC1202	ST24C02A	Main microcontroller IC1212
	MN1280R	reset
IC1213	MN1872419TZA	Main microcontroller
IC1301	AN5560	50/60Hz switch
IC2601	LA7222-TV	TV/AV switch
IC3301	AN5860	RGB switch for AV/text (including non-text
		models)
IC3302	AN5862K	RGB switch (IC3301
		output/on-screen display)

Teletext models have the following additional chips:

IC3501	SAA5246P	Teletext decoder
IC3506	MN4464-08	Static RAM
IC3507	MAB8461PW216	Teletext microcontroller

We'll look at each section of the receiver in turn, starting as usual with the power supply.

Power Supply Circuit

The mains a.c. supply goes first to panel E on which the mains switch is mounted. It then goes off to the mains filter on panel P, which sits piggy-back over part of panel E. This enables separate mains filters to be used on both panels to enhance the interference immunity - the arrangement had been used successfully on the Alpha 3 chassis to meet the improved German FTZ test requirements, though the E panel filters were not fitted in UK models. The mains supply returns from panel P to the main panel where it goes three separate ways: to the chopper circuit, to the standby transformer and to the thermistor in the degaussing circuit. All this is conventional, being very similar to the arrangement used in the Alpha 2 chassis. See Fig. 3.

We'll look next at the chopper circuit.
The mains input is applied to bridge rectifier D801, which produces about 300 V across its reservoir capacitor C807. This is applied to one end of the chopper transformer T801's primary winding (P1-2), whose other end is connected to pin 3 of the Sanken STR5404IM chopper chip IC801. The chip provides the chopper action and stabilisation. It operates as follows.

Q3 within the chip is the chopper transistor, which is connected as a blocking oscillator. At switch on Q3 is forward biased by resistors R803 and R804. It thus switches on, and a rising current flows through the primary
winding of the transformer. As a result a voltage is developed across winding B1-F2. This is fed back to Q3's base via R812 and C809. Q3 is thus rapidly driven to saturation. At this point the drive ceases and the charge on C809 reverses, the voltage at pin 2 of IC801 becoming negative. The current flowing in the transformer's primary winding falls, and C809 discharges itself via R812, R803 and R804. When the voltage at pin 2, i.e. Q3's base, is sufficiently positive it switches on again and the cycle is repeated.

Regulation and Stabilisation

Regulation is achieved by adjusting the d.c. conditions at Q3's base. Q1, Q2 and the associated components are used for this purpose. A negative voltage that's proportional to the chopper circuit's output is produced by the rectifier circuit D807, C808. The input is from winding F1-F2, the -42 V or so developed across C808 being applied to pin 1 of the chip where it biases Q1 via the internal zener diode. Q1 drives Q 2 . As the voltage across C808 varies with load variations so the conduction of Q1/Q2 varies, adjusting the voltage at pin 2 of the chip and hence the switch-on time of the chopper transistor to match the load requirement.

There is also automatic stabilisation against mains voltage variations. Should the mains voltage increase, Q3 will conduct more heavily and the voltage across R811 will rise. This adjusts the base bias applied to Q1, which also conducts more heavily. As a result Q2, being a prp device, passes a greater current and the voltage at pin 2 falls. The
opposite occurs when the mains voltage falls.
There is no h.t. preset.

Overload Protection

R811 is also used to provide overload current protection. Under excessive load conditions the voltage across R811 will rise to the point at which Q801 switches on. This earths pin 2 of the chip so that the chopper circuit is shut down.

Over-voltage protection is provided indirectly. If the h.t. generated by the circuit rises to the point at which the protection zener diode D854 (see Fig. 4) conducts, the current overload will shut down the power supply as before.

Synchronous Operation

The circuit operates in synchronism with the line output stage, sync being achieved by feeding pulses from an isolated winding on the line output transformer via R810 and D809 to pin 2 of IC801. Operating the circuits in sync has the advantages of maximising the power output and minimising the interference generated.

Standby Operation

In normal operation the output at the main microcontroller chip's power on/off pin 40 is high. Q1251 is thus forward biased, operating the light-emitting diode in the optocoupler D811. The phototransistor in the optocoupler is

Fig. 3: The chopper power supply circuit.

Fig. 4: Cold side of the power supply circuit.
thus switched on, earthing the base of Q802. When standby operation is requested Q1251 is switched off. pins 3-4 of the optocoupler change to a high-impedance state and Q802 is forward biased via R820 and R821. Q802 thus earths pin 2
of the chip and the chopper supply is held inactive.

The Cold Side

Fig. 4 shows the secondary side of the power supply. Transformer T1201 with bridge rectifier D1208 and regulator IC1204 produce a 5 V supply for the main microcontroller chip which is thus - with the tuning memory and the remote control receiver - operational whenever mains power is applied. The secondary winding taps on the chopper transformer produce the following voltages:
$108.5 \mathrm{~V} / 123.5 \mathrm{~V}(15 / 21 \mathrm{in}$. sets) for the line output stage.
$18.5 \mathrm{~V} / 20 \mathrm{~V}$ (15.21 in . sets) for the audio amplifier.
16 V for a protection circuit operated by Q851.
12 V via regulator $\mathbb{I C} 851$ for the field timebase chip (this device also requires a 25 V supply), the AV switches, the sync and timebase switches, the vision and sound i.f. circuits and the timebase generator/video decoder/processing chip.

The 33 V tuning voltage supply is derived from the h.t. line via R070 and IC070.

A few other supplies are derived from the line output transformer. These include an h.t. line (150 V) for the RGB output stages and a 25 V supply for the field output stage. A regulator on panel H produces a 5 V supply for the teletext decoder in text-equipped sets. We "ll look at all this in more detail next time.

TELEVISION INDEX \& DIRECTORY PLUS REPRINTS SERVICE

INDEX DISC

Version 2 of the computerised index to TELEVISION magazine, covering volumes 38 to 43 (1988-1993), is now available. There are over 5000 references to TV/VCR fault reports and articles, with synopses. A TV/VCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible $\mathbb{P C}$ with 512 K RAM and a hard disc. Price: $£ 30$ (specify $5.25^{\prime \prime}$ or $3.5^{\prime \prime}$) .
Those with version 1 discs can have them upgraded for $£ 12$ each: return the disc quoting its serial number.

FAULT REPORT DISC

Contains the full text for TV, VCR, camcorder, satellite TV and CD fault reports published in Volume 43 of Television (November 1992 to October 1993 issues), giving you easy access to this vital information. Note that the disc cannot be used on its own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc then access it via the Index disc. The Fault Report disc is available at $£ 15$ (specify $5.25^{\prime \prime}$ or $3.5^{\prime \prime}$).

REPRINTS

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for volumes 38 to 43 at $£ 3.50$ each.
All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to Video Interface Products.
Video Interface Products Ltd., 1 Vineries Close, Cheltenham GL53 0NU, UK.

European Consumer Electronics Manufacturing

George Cole

During June I visited Nokia's TV factory at Bochum, Germany and Philips' video plant at Szekesfehervar, Hungary. Both companies had new products to demonstrate and interesting views on the way in which they see the consumer electronics market developing.

Nokia

Nokia's CTV production arrangements have undergone big changes recently, four TV plants having been closed within the past two years. Almost a year ago Nokia moved portable TV manufacture from the Far East to Europe - a pleasant change! TV production is now concentrated at two sites, Bochum and Turku in Finland. In 1993 Turku produced some 300,000 sets and Bochum around 850,000 .

The TV chassis range has been streamlined, just three versions at present being in production. These are Mono Plus, which includes small-screen sets; Stereo Plus for 2128in, models; and Feature Stereo for sets with PALplus, 16:9 screens, 100 Hz field scanning, an integrated satellite tuner and Dolby Surround sound. The latter chassis also has a new on-screen graphics display which looks similar to the Windows system used with many IBM and compatible PCs. A graphics chip called Megatext generates the display: it's also used for the teletext pages. Other new features include a multimedia demonstration mode which uses text, pictures and graphics to describe the various TV functions, and Automatic Programme Search, Sorting and channel identification (APSi) which automatically programs all the channels available in a given area.

PALplus

As mentioned in Teletopics last month, Nokia plans to launch the first PALplus sets in the UK this autumn. The PALplus consortium began in 1988 as an association of mainly German, Austrian and Swiss broadcasters and manufacturers. Other PALplus members include Philips, Sony and the BBC. PALplus is an enhanced version of PAL, offering widescreen, 16:9 aspect ratio pictures, CD-quality

[^0]sound and ColourPlus, a system designed to remove PAL imperfections such as cross-colour and cross-luminance. It works by transmitting 432 active lines and a digital 'helper' signal. Conventional sets simply display a letterbox picture: PALplus sets use the helper signal to display a widescreen picture with 576 active lines.

The PALplus decoder has seven main components, as follows:
(1) The helper-decoder which demodulates the helper signal, converting it to the baseband part of the frequency spectrum.
(2) An AD converter which converts the analogue Y, U and V (luminance and weighted colour-difference) signals to digital form for processing.
(3) A RAM that holds one frame: this is a 6 Mb bit store for the digitised Y, U and V signals.
(4) A Sequential Line Video Processor (SVP). This is a realtime processor that converts the 432 active lines to 576 lines. It works by adding the information provided by the digital helper signal.
(5) A Programmable Timer Controller. This contains programmable timers that generate control signals for the memory and SVP chips.
(6) A Widescreen Signalling Decoder (WSS). This is an 8bit processor that uses a control signal contained on line 23 of the vertical blanking interval. It tells the set whether a $4: 3$ or 16:9 signal is being transmitted, initiating automatic format switching. A freeze-frame facility has been added to the processor. This stops the flow of digital data to the RAM, enabling the set to display a still picture.
(7) A Display Processor. This is a DA converter that changes the Y, U and V signals back to analogue form.

Nokia has not included ColourPlus in its first PALplus set because of cost considerations. ColourPlus requires two SVP chips and a 13Mbit RAM. Nokia argues that improved transmission systems and the use of a digital comb filter will greatly reduce effects like cross-colour.

As things stand, PALplus adds around $£ 300$ to the price of a set. Because the PALplus standard was not finalised until late 1993, Nokia's decoder uses a chip set developed by Texas Instruments (it's called Tl SVP). Nokia says that its first in-house PALplus chips will be produced by the end of the year, with mass production starting in the latter half of 1995 and the first products to use them appearing by 1996.

Germany has already taken to PALplus in a big way. The first PALplus broadcasts began in January, from a Pay-TV channel. By the end of the year there could be six German channels transmitting up to 2,500 hours of PALplus programmes. Switzerland, Portugal and Spain are expected
to begin PALplus transmissions in August, with the UK starting this autumn. At the time of writing the identity of the UK broadcasters is not known, though Channel 4 seems likely. The Netherlands, Austria and Italy are expected to begin broadcasts next year. There are problems with using PALplus in Scandinavia because it interferes with subtitling. France uses SECAM of course.

Interest in PALplus has been stimulated by a 228 million ECU (around $£ 175 \mathrm{~m}$) European grant for the production and broadcasting of PALplus programmes. With around 75 countries that use PAL around the world, there are export prospects for the system.

Nokia's first UK PALplus set, Model 7296, has a 28 in. screen and three picture modes: 4:3 aspect ratio; 14:9 (for expanding $4: 3$ pictures); and 16:9. On the sound side it offers f.m. mono, A2 Stereo (the German stereo TV system), Nicam and Dolby Pro Logic. Other features include digital picture effects such as PIP, still pictures, POP, 99 channels and a lift facility that moves subtitles higher up the screen. The suggested price is expected to be around $£ 1,500$. Nokia plans to launch a 32 in. model next year and a PALplus decoder for the 150,000 widescreen sets currently in use in Europe. Ordinary VHS decks cannot record the helper signal (though some S-VHS decks can): PALplus-compatible VCRs are under development.

PALplus and Digital TV

With digital TV systems due to come into use in the not very distant future some people feel that PALplus will inevitably be an interim format. Not so, says Nokia. The company claims that digital TV will be like satellite TV or video - an additional feature that plugs into existing analogue TV sets. Digital TV will add new channels and services like home shopping. PALplus sets will be used to watch the digital broadcasts.

Nokia points out that there are no immediate plans to start terrestrial digital TV, and adds that PAL is likely to be around for another ten-fifteen years at least. It's a persuasive argument, but one wonders whether viewers will see things this way - and whether broadcasters will continue to support PALplus when the EU funding runs out.

Digital TV

Nokia demonstrated a digital integrated receiver-decoder (IRD) which will be launched at next year's IFA (also known as the Berlin Show) along with the start of some digital TV services. It consists of the following items:
(1) A tuner with a $950-2,050 \mathrm{MHz}$ frequency range.
(2) A demodulator for the QPSK (quadrature phase-shift keying) modulation system that has been adopted by the European Digital Video Broadcasting Group (DVB) for satellite digital TV transmissions.
(3) A channel decoder for transmission rates up to $55 \cdot 3 \mathrm{Mbits} /$ second.
(4) A demultiplexer that complies with the MPEG-2 digital video standard and has a variable bit rate.
(5) Decompression units for MPEG-2 video and twochannel audio (MPEG-2 or Musicam).

The IRD also has slots for two smart cards or for one smart card and one PCMCIA memory card. It has three
scart sockets and connections for a modem, an r.f. modulator, an MPEG-2 transport stream interface, an RS232 port for low-speed data transmission, and an optional SCSI interface for linking to a CD-ROM drive. Set-up is automatic, because the service provider will insert start data in the programme data stream - this will be processed by the IRD automatically.

The IRD's dimensions are $38 \times 24 \times 6.2 \mathrm{~cm}$ (width, depth, height), weight being around 2 kg . Users will be able to select programmes via an on-screen guide, by subject (e.g. sport) or age (children's channels etc.).

By the looks of things, 1995 will be an interesting year for the TV industry.

Philips

Philips is one of the many companies that has set up TV and VCR production plants in Eastern Europe. It owns 65 per cent of a company called iR3 (this stands for Image Reception, Recording and Replay) which has a factory at Szekesfehervar in Hungary. The plant employs around 900 people and covers 22,000 square metres. Production of TV/video combis and VCRs started this year, just two years after the factory was first planned.

A number of companies, including Sharp and Aiwa, have TV/VCR combis in their ranges and Philips is about to jomn them. Combi units aren't new of course, but Philips says that improved quality and reliability, coupled with the increasing number of homes that have a second and third VCR, has led to improved sales. Last year around 1.5 million combi units were sold in the USA: around two million are expected to be sold this year. Seventy per cent of the systems have a 14 in . screen, and they are used mainly in kitchens, bedrooms and holiday homes. In Japan, where combis have screen sizes from 14-26in., they tend to be used in the living room.

Philips showed us two combis. Model 14TVCR240 has a 14 in . screen, a single 60 -channel tuner and a VCR with long play, VISS and NTSC tape playback. Other features include remote control, scart, r.f. and headphone sockets and a one-month, six-event timer. Dimensions are 365 x $402 \times 360 \mathrm{~mm}$ (width, height, depth), the weight being 13 kg . It will go on sale in the UK this September at around $£ 400$. Model 21 PT351A is a 21 in . combi with teletext and two tuners, but Philips has no plans for a UK launch so far.

Philips sees much potential for sales of combi units, and I agree. Though you can buy a 14 in . TV set and a VCR for less than the suggested price of the 14TVCR240, I think that many people will be attracted by its ease of use. Philips demonstrated this clearly by getting two journalists to set up the 14TVCR240 and a separate TV/VCR system to play a video tape. The one with the combi simply plugged it into the mains supply and inserted the tape. The second journalist struggled with two power leads, an r.f. lead and an aerial cable.

Philips also showed several new VCRs. Model VR447 is a four-head LP VCR with VideoPlus, a turbodrive deck mechanism, front-mounted AV connectors, synchro-edit and a one-month, seven-event timer. Model VR747 includes Nicam. hi-fi sound, LP, VideoPlus, a jog-shuttle dial and NTSC playback. No price details for either of these models were announced. Model VR948 is an S-VHS edit deck whose features include Nicam, hi-fi sound, VideoPlus/PDC/Startext programming options, a jogshuttle remote handset, a flying erase head, LANC, new edit and synchro edit connections and microphone and headphone sockets. The suggested price for this model, when released, is $£ 800$.

TVFault Finding

Reports from Philip Blundell, AMIEIE, Chris Watton, Terry Lamoon,
Michael Dranfield, Steve Cannon, John Edwards, Ian Rees and C.W.H. Jones

ITT CT3326 (Monoprint B/NN Chassis)

This set would work normally for about ten minutes then the channel display would flash a few times and the set would go into the standby mode. If the mains switch was operated the set would come back on, but the tuning information for the channel that was being watched before the fault occurred would be lost. A blow with the hairdryer in the direction of the SAA 1296 tuning chip would bring on the fault, so scope tests were carried out around this chip while heat was being applied. We found that when the fault occurred the 5 V supply at pin 40 would pulse in sympathy with the flashes of the channel LED. The TDD 1605 5V regulator (IC1405) for the tuning chip was failing when warm, a replacement putting an end to the trouble. P.B.

Ferguson A36F (TX80 Chassis)

If the set is dead you'll probably find that DP65 (BY397) is short-circuit and fuse FB072 open-circuit.
P.B.

Sharp C1421

If the sound is low, L301 in the i.f. unit could be faulty. When this coil is defective the action of the volume control changes - as you turn the control up above the half-way point the sound actually becomes quieter.
P.B.

Salora J Chassis

Only the top half of the picture was displayed, with the scan stretched at the top. Replacing CB400 ($1,000 \mu \mathrm{~F}, 40 \mathrm{~V}$), the reservoir capacitor for the 25 V supply to the TDA2653A field timebase chip, cured this one.
C.W.

Luxor 18056989

This set would start up, run for a few minutes then trip with a rattle from the chopper transformer. We've had this fault before: it's usually caused by dry-joints in the snubber network connected to the collector of the chopper transistor but can also be caused by a poor connection between the PCB and the transistor's heatsink. You can usually tap the panel to instigate the fault, but you can never knock the set back on again as the action of the crowbar trip can be reset only by switching off and on again.
C.W.

Luxor 18066151

The width and EW shape of the raster varied all the time. The cause of the trouble was a loose core in transformer LH05. Superglue came to the rescue!
C.W.

Saisho 2190

The power supply wouldn't start up unless the on button was pressed and held for some time. This was accompanied by a loud motor-boating from the speakers. When the set
eventually came on the picture-in-picture display was present. A faulty capacitor - C801 ($100 \mu \mathrm{~F}, 25 \mathrm{~V}$) - in the power supply was the culprit. Experience has proved that it's best to replace all four electrolytics in the power supply - C801, C803, C807 (all three $100 \mu \mathrm{~F}$) and C808 ($1 \mu \mathrm{~F}$). They are all rated at 63 V .
C.W.

Matsui 2580

For height variations before the set has warmed up check the 24 V supply. A small fluctuation here will result in height alteration. D804 (ZPY24) is usually responsible.
C.W.

Philips 2A Chassis

The h.t. was low at only 25 V instead of 140 V . When the power supply was unloaded the h.t. rose to 140 V but any load, for example a lamp or leaving the line output stage connected, reduced the reading to 25 V . I changed all the transistors and replaced the optocoupler, but this made no difference. Eventually I found that the 82Ω safety resistor R3690, which links the chopper transistor's switch-off circuit to chassis, was open-circuit.
C.W.

Loewe MS124

The field scan was up at the bottom of the screen, even more at the top with people's heads sticking right out of the top of the set!The culprit was C581 ($47 \mu \mathrm{~F}, 63 \mathrm{~V}$).
C.W.

Goodmans 145TT

This set wouldn't come on, even though the standby light went out and the channel display number lit. There was no 103 V h.t. supply. The STR50103 chopper chip IC501 had 320 V at its input, but there was no voltage at pin 2 . One of the start-up/bias resistors R502/3 was open-circuit. I decided to replace the two of them - they are both $330 \mathrm{k} \Omega$. C.W.

ITT Monoprint B Chassis

There was a switch-on problem with this set. Initially it wouldn't come on although the supplies, including the e.h.t., were present and the heaters were alight - the standby LED was on. After a few minutes the set would get going, after which it worked normally. No reset pulse could be measured at pin 12 of the MDA2061 memory chip IC1403, while the 8 V supply at the cathode of D1429 was low at 7.4 V . Replacing the supply's $470 \mu \mathrm{~F}, 16 \mathrm{~V}$ reservoir capacitor C722 brought it back up to 8.6 V , after which the reset pulse was present al every switch on.
C.W.

Finlux 2000 Chassis

Sets that are dead intermittently can be a trial - this one certainly was. It would come on then go dead; sometimes it

\section*{The smallest \& most comprehensive Test Pattern Generator money can buy! of only
 Limited period only (RRP is 8155). Price ex. 82.50 p \&p \& 817.76 Var.
 Order direct from OZAN 0202877270
 37 Haviland Rd, Ferndown Ind Est Poole, Dorset. BH21 7SA
 Order TELETEST today. If you are not completely satisfied, simply return it within 30 days for a full 'no-quibble' refund.

 Test Patterns
 Colour Bars
 Grey Scale
 Crosshatch
 Red Purity

 Outputs
 Phono socket: Composite Video
 Phono socket:
 Line out Audio
 Co-Axial socket: Video \& Audlo Ch 36 UHF PALI
 Power
 9V PP3 battery (not in: or External PSU included with TELETEST
 | Composite video out:
 Audio output:
 RF output:
 Synehronleation: | PAL 4.433MHz, 95\% chroma (bars), 1Vpp 75Ω 1 KHz sine wave, 1 Vpp 1 KS (nominal)
 UHF Cn 36 PAL I $6 \mathrm{MHz} 75 \Omega$ (or PAL BG 5.5 MHz)
 Fully interlaced, $15,625 \mathrm{~Hz}$ line frequency
 50 Hz field rate, all broadcast spec pulses |
| :---: | :---: |
 THLIESI

Ske: $155 \times 75 \times 40 \mathrm{~mm}$
Wetght: 265 g
Acceasorles Included:
External PSU
Instructions TELETEST from GZAD}
wouldn't start at all: on other occasions it would start up. number 1 would appear in the display, off it would go with the standby segment lit then it would work for days. showing no fault symptoms at all. The cause of the trouble was finatly traced to the BY299 diode D20. one of the power supply's output rectifiers.
C.W.

Hitachi CPT2158

There was a blank raster but no sound or picture, with the supplies all o.k. The cause of the fault was the TDA4505 chip. Make sure you get the right one: some can give no sound or no field sync
C.W.

ITT Pico 1 Chassis

There was good sound and the colour was correctly registered but the picture was very dark. The tube's first anode supply was o.k., and the TDA3561 colour decoder chip's brightness and contrast voltages were correct and controllable. A new TDA3561 chip restored full brightness, though the ageing tube produced a pinkish picture.
C.W.

Philips K40 Chassis

At switch on there was a loud trumpeting and no picture. Checks in the power supply showed that the BY2.99 diode D6154 was open-circuit. A replacement restored the picture and put an end to the fanfare.
C.W.

Philips CP110 Chassis

Although there was e.h.t. and the tube's heaters were alight
there was no raster. The cause of the fault was in the field output stage, the tube blanking system being in operation. R3570 ($8.2 \mathrm{k} \Omega$), the field output stage biasing resistor, was open-circuit.
C.W.

Toshiba 175T9B

There was a good picture when this set was switched on, so I left it running. After a few hours there was field collapse: not the normal straight line but a nice wavy one, a clue that even Inspector Clouseau couldn't miss. I went straight to the field scan section and found a perfect dry-joint on the scan coil plug connector. After some surgery the set was given a lengthy test and proved to be o.k.
T.L.

Matsui 1455

When this 14 in . portable was powered up it displayed a rather strange pattern: if you turned the brightness and contrast down the pattern disappeared and you could see a rather nasty hum bar. Taking a look at the inside I noticed that the mains bridge rectifier"s $100 \mu \mathrm{~F} .400 \mathrm{~V}$ reservoir capacitor C604 had put on weight: when touched, with the set switched off of course, it was extremely hot. As it measured strangely when removed from the circuit I decided to replace the BA10G bridge rectifier BR601 as well. At switch on there was a perfect picture.
T.L.

JVC C140

The customer complained that the set would switch off occasionally, go off tune or change its volume level without being asked. A likely tale: probably the horrible kids
playing with the remote control unit. But after being on test for a couple of hours the set started to do all those things. So I took a look inside and spied a little subpanel with a microcontroller chip and a crystal on it. When this was examined with a magnifying glass the crystal was seen to be dryjointed - wiggling it made the set go crazy, with LEDs flashing etc. After resoldering the crystal the set was put on soak test again. There was not a flicker of trouble. Sometimes the gods seem to smile on us.
T.L.

Matsui 1420

If field cramp develops with one of these sets after it has run for two-three hours, replace $\mathrm{C} 412(1 \mu \mathrm{~F}, 25 \mathrm{~V})$ in the linearity feedback circuit. It's one of those nasty tantalum capacitors.
T.L.

Boots CTV14

If the sound is very low and distorted, don't rush in and replace the audio output chip. We found that R 613 ($100 \mathrm{k} \Omega$) was open-circuit.
M.Dr.

Hitachi CPT2176 (G6P Chassis)

There was no station memory. Before condemning the memory chip ICl 102 we decided to check its supplies and found that the -30 V rail was low at only -2 V . Tracing the source back brought us to $\mathrm{R} 772(1 \cdot 2 \mathrm{k} \Omega)$ which had risen in value to over $900 \mathrm{k} \Omega$. A replacement put matters right. M.Dr.

Tatung TUV9734 (170 Series Chassis)

When this set was switched on from cold there was a very poor picture with a yellow tint. Attempts at setting the greyscale were fruitless. It looked as though the c.r.t.'s heater voltage was low, but it wasn't. Maybe the tube's emission was low, but after about a quarter of an hour the picture righted itself. This was a red herring however. After wasting much time we decided to replace the tube. This cured the fault - good thing that the set still had four months of its four-year guarantee to run.

The set uses auto grey-scale correction. A good test is to measure the voltage at clamp capacitor pins 10,20 and 21 of the TDA3562A colour decoder chip. A difference of more than 0.2 V from the specified figure $(7.5-7.6 \mathrm{~V})$ means that the chip is compensating very heavily for a worn electron gun.
M.Dr.

Hitachi CPT1444 (NP84CO Chassis)

There was no audio output. We found that the audio output stage was working when we touched the input with a finger. Most of the sound circuitry is contained within the big TDA4503 multi-function chip IC203 however. We decided not to replace it immediately, as we've done in the past for many different faults only to find that the chip was not the cause. After various checks we applied 12 V to pin 11, the d.c. volume control pin. This brought the sound up, but turned out to be a red herring. The sound was restored by fitting a new TDA4503 chip.
M.Dr.

Cascade TV511

When we switched the set on we found that it was tripping. After many other checks we stopped this by disconnecting the scan coils. Quite by chance we noticed a tiny spark between two of the copper wires on the scan coil yoke - the
insulation betwen them had broken down. One carried the line scan current, the other the field scan current. When they were separated the set worked, though with field collapse: the AN5521 field output chip was running red hot. New scan coils and a replacement AN5521 chip put matters right.
M.Dr.

Samsung CI5322T

Be careful when replacing the width coil L401. The service manual gives the part no. for the 14 in . version of the chassis. If you fit this in the 2 lin . model you get a tuning/i.f./a.g.c. fault - very strange! The correct part numbers are 32449-412-603 for the 14 in . model and 32449 -412-650 for the 2 lin . model.
M.Dr.

Panasonic TC21M1R (Z4 Chassis)

At switch on his set would kick up for a second then become lifeless. We monitored the h.t. voltage and found that this appeared for an instant at switch on. There's some quite complex protection circuitry which includes transistors Q558, Q541 and Q542. It monitors the conditions in the line output stage and other sections of the circuitry. We established that the trip action occurred even with the h.t. feed to the line output stage disconnected, so it seemed likely that there was a fault in the protection circuit. Q558 is a pnp device that monitors the h.t. voltage at its emitter. Its collector should be at some 0.2 V but a check here showed that the voltage rose to about 50 V , though its base and emitter voltages were correct. At this point we switched off. It seemed that Q558, which is type 2SA879, was leaky but it tested all right out of circuit. Nevertheless we decided to try a substitution test. When a new 2 SA879 had been fitted the set worked perfectly.
S.C.

Sony KVM2140

The contrast level was very low and would hardly adjust. I checked the voltages around the video chip IC302 and found that pin 19, which controls the contrast, was stuck at 1.5 V . It should vary between $1-4 \mathrm{~V}$ as the contrast is adjusted. The beam limiting circuit is also connected to this pin, so I checked back to the beam sensing point in the line output stage. The voltage at the junction of R817 and R818 was -6 V . It should be negative only when there's an awful lot of beam current, which of course there wasn't. R816, which is connected to the h.t. line, prevents this point going negative under normal conditions. It was open-circuit. A new $150 \mathrm{k} \Omega$ resistor put matters right.
S.C.

Philips G90AE Chassis

This set had been looked at by a dealer who, the fault being intermittent fuse blowing, had replaced many semiconductor devices - repeatedly by the look of the enclosed packet of defunct components. He hadn't fitted a Philips G90 SOPS repair kit however. So the first job was to fit one. It consists of a chopper transistor and most of the other semiconductor devices on the primary side of the power supply, some of them surface mounted. This done I used a variac to wind up the input, with a dummy load connected across the 95 V h.t. line. The set regulated beautifully.

I then reconnected the line output stage, switched on and to my horror witnessed a flash from the mains fuse. A quick check across the BUT11AF chopper transistor showed that it had gone to a better place. After fitting another BUT11AF and checking other components on the primary side of the
power supply I again disconnected the line output stage and wound the set up. Perfect! Full h.t. Rather than look for a fault in the line output stage I thought that it would be an idea to switch on the set with the full mains voltage applied. Whammo! Another BUTlIAF was needed. So the set would operate when wound up, but certainly didn't like full mains voltage at switch on.

A fault on the secondary side of the power supply was now suspected. D6649, D6615 and D6616 were all replaced as we've had trouble with them before. In fact I checked most if not all the semiconductor devices on both the primary and secondary sides of the power supply, a wise move with a fault condition like this. But nothing was amiss.

Quite by accident I then discovered that D6645's anode didn't go anywhere. Sometimes empiricism succeeds where theory fails! It should be connected to pin 18 on the secondary side of the chopper transformer. But a check from this pin to the diode confirmed that there was an opencircuit. The print was checked and was fine. The only other item is a surface-mounted jumper link in position 3645 . Out it came and when checked was confirmed as being opencircuit. A replacement was fitted, also another SOPS kit in case the malfunctions had upset anything. The line output stage was reconnected and the set was then switched on. No bangs or flashes this time, just a full raster and sound. The set was finally soak tested, switched on and off repeatedly and pronounced fit.
S.C.

Sony KVX2532U (AE-1B Chassis)

There was poor field linearity: the top third of the screen displayed alternate scanning lines, the centre section had an almost normal display while the bottom third was blanked. We found that the field scan coupling capacitor C531 had fallen in value from $680 \mu \mathrm{~F}$ to only $2 \mu \mathrm{~F}$.

Philips CTX-E Chassis

The on/off switch arced and spluttered but the set remained dead after fitting a new switch. We found that the BU508A line output transistor had failed. When we switched on again after fitting a replacement the fault was field collapse. A new TDA2577 chip put that right.
J.E.

Hitachi C2509T (G7PSL Chassis)

There was just snow: the channels couldn't be tuned in even though the on-screen graphics indicated that search tuning was taking place. A check at pin VT of the tuner showed that the tuning voltage was missing. The usual cause of this is failure of the 33 V regulator (ZD002), but this time R044 ($12 \mathrm{k} \Omega$) in the tuning voltage integrator network was opencircuit. We discovered this when we found that Q003 had no collector voltage.
J.E.

Goodmans CTV20XRT

This set was dead because the $2 \cdot 2 \Omega$ surge limiter resistor R313 was open-circuit. As there didn't seem to be any other fault we fitted a replacement and switched on. Fortunately the set sprang to life. After a two-day soak test we decided that all was well.

Ferguson A59F (ICC7 Chassis)

If the line driver transistor TL17 dies as soon as the line output stage gets going, replace DF16 (BA157) in the field output stage. You will find that it's short-circuit.
I.R.

Bush 2720 (11AK03 Chassis)

We've had the foilowing faults recently with this model.
Brightness control not working though the on-screen display says that it is: Transistor TR901 (BC558) on the tube base panel short-circuit.

Lack of height: Zener diode D2801 (33V) short-circuit.
Uncontrollable brightness with flyback lines: R901 (220Ω) on the tube base panel open-circuit. I.R.

Ferguson TX85 Chassis

This set would intermittently go into the standby mode or appear dead. We found that the BD385 9V regulator transistor TR901 on the remote control and sweep-tune board was dry-jointed.
I.R.

Hitachi CPT2016 (NP81CQ Chassis)

Intermittent loss of height can be caused by a break in the print to the upper transistor on the thick-film field output module. You can sometimes repair the module.
I.R.

Bush 2321T

There was no picture or sound and the standby colons faded a few seconds after switching on. The chopper transistor's base drive coupling capacitot $\mathrm{C} 802(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ was faulty. I.R.

Philips K35 Chassis

This set would intermittently go off or into standby when lightly tapped anywhere. The degaussing thermistor had a broken disc loose inside its cover.
I.R.

Sony KVX2521U

There was intermittent loss of picture and sound, the 12 V supply being lost when the chassis was flexed. Q608 at the front, centre of the chassis was dry-jointed.
I.R.

Sanyo CEP7100

For field foldover at the top replace C440 ($4 \cdot 7 \mu \mathrm{~F}, 250 \mathrm{~V}$) which tends to go low in value.

Philips BM7502 (Green monitor)

Loss of field scan is usually caused by TS431 and/or TS432 having failed with R434 going open-circuit. For reduced height check $\mathrm{C} 521(47 \mu \mathrm{~F}, 25 \mathrm{~V})$ which can be leaky. I.R.

Some Quickies

Philips KT4/K40 1001 with later SOPS power supply: If the picture is distorted, with hum bars, for about two minutes after switch on replace C2128 (100 $\mu \mathrm{F}, 50 \mathrm{~V}$).

GEC 20AX Mk. 2 chassis: If there's no width control or EW correction check the d.c. resistance of L601. Replace if below 3Ω.

GEC Model C2067H. also Philips G11 chassis: For no red or no colour, check/replace the thermistor in the degaussing circuit.
C.W.H.J.

Long-distance Television

Roger Bunney

At last some good news: DX conditions during June were extremely active. There has been plenty of Sporadic E (SpE) reception - not so many exotic signals, but lots within a skip distance of 1,000 miles.

Tropospheric conditions have also been active, with intense openings across the UK. June 26-28th was the most active period, with signals from Germany, France, Denmark and the Benelux countries being received in southern and eastern England, Band III and u.h.f. signals from RTE (Ireland) being received in the west and Spanish signals being received in the south. On the 28th NOS (Holland) was received to the west of Plymouth and there was some reception from Scandinavia along the east coast. Two minor tropospheric peaks, on the 12th and 17 th, produced Band III and u.h.f. signals from the Benelux countries in favourable locations and TVE (Spain) in the south west along with some signals from Ireland.

Though neither wonderful nor intense there were many SpE openings and a just few excitements. A collated log of SpE reception is given below. Because of the confused conditions in the region I'll use YUG to refer to the old Yugoslavian area, also CIS to refer to the old USSR unless a more definite identification can be made.

6/6/94 Russia ch. R2; RTP (Portugal) E3; TVE (Spain) E2, 3.
7/6/94 RAI (Italy) IA.
9/6/94 RAI IA; TVE E3, 4; RTM (Morocco) E4; C+ (Canal Plus) L4; TVP (Poland) R2;
Czechoslovakia R2; YUG E3; YLE (Finland) E3; SVT
(Sweden) E2, 3, 4; NRK (Norway) E3; CIS R1, 2.
10/6/94 TVE E2, 3, 4; TVE-2 E2; RTP E2, 3; DR (Denmark) E3.
11/6/94 TVE E3.
12/6/94 RAI IA.
15/6/94 TVE E2, 4; CIS R2.
16/6/94 ETV (Estonia) R2; SVT E2, 3; TVP R2; DR E3; NRK E2; Czechoslovakia R2; ORF
(Austria) E2a; C+ L2; RAI IA, B; YUG E3, 4.
17/6/94 ARD (Germany) E2; TVE E2, 3, 4; TVE-2 E2; RAI IA, B; YUG E3; TVA (Italy) IA; ORF E4; NRK E2, 3; SVT E2, 3.
18/6/94

19/6/94
20/6/94

21/6/94
22/6/94 TVE E2, 3.4; RTP E3; TVP R2; C+ L4; SVT E 2 . Also chs. A2, 3 see later.
23/6/94 TVE E2, 3, 4; Canary Is. E3; YUG E3; NRK E2, 3, 4; RAI IA; DR E4; RUV (Iceland) E4.
24/6/94 RTM E4; C+L3; TVE E2, 3, 4; RTP E3.
25/6/94 TVE E2, 3, 4; RTP E2, 3; MTV R2; SVT E2, 3; RAI IA; C+ L2; Chs. A2, 3, 4 (see later).
26/6/94 TVE E3, 4: RAI IA, B; YUG E3; C+L2.
27/6/94 TVE E2, 3. 4.
28/6/94 TVE E2, 3, 4.
29/6/94 TVE E2.
30/6/94 TVE E4.
1/7/94 RAIIA.
3/7/94 RAI IA, B.
On the 22nd and 25th Cyril Willis (King's Lynn) received $525-$ line NTSC signals from the west. There were weak ch. A2 and 3 signals at 2245 on the 22 nd. The 25th however, from 2057, produced the following on ch. A2: a male announcer over classical music with a documentary about 17th century life, buildings etc., followed at 2145 by a female presenter and a weather forecast that mentioned Chicago. Unidentified ch. A3 and A4 vision signals were also present. The signals are likely to have come from Canada - we hope to be able to identify the source of the ch. A2 programme. They faded by 2200 .

An alternative TVE offering, i.e. not a Spanish mainland broadcast, was seen by Tim Anderson (St. Leonards) on the 23rd. The transmitter must be Izana ch. E3 on the Canary Islands, with 350 kW e.r.p. On the 18th an intense short-skip opening produced Canal Plus at high levels on all channels: the fact that two ch. E2 transmitters were received confirmed by scanner offset measurement - suggests that some low-power relays were being received.

All in all then an excellent month. My thanks to the following for sending in reception reports: Tim Anderson (St. Leonards), Dave Oliver (Birmingham), Peter Schubert (Rainham), Roger Fussell (Torpoint), Cyril Willis (King's

Left: Teletext from Gort, Ireland (ch. IB) via short-skip SpE propagation. Received by Tim Anderson in East Sussex. Centre: A shaky sound-in-syncs news feed test from Cape Town during the South African elections. Seen from Eutelsat II F4 at $7^{\circ} \mathrm{E}$. Right: A one-way news feed from the USA to the UK via Intelsat K at $21.5^{\circ} \mathrm{W}$-and John Locker's dish at Wirral.

Lynn) and lan Beckett (Buckingham) who has heen DXing for nearly 36 years.

Satellite Sightings

There were three main satellite links during June into early July. Most craft in the satellite belt, even PAS-1 at 45°, were involved in the D Day remembrance events. All the Eutelsat craft carried feeds, Eutelsat I F4 at 25.5° E being particularly active with cross-Channel circuits. From about June 2nd the US networks were transmitting back to the States information such as old newsreel footage, using Ku band for the uplink and C band for the downlink. The circuits were too numerous to mention here. Most UK activity occurred on the 5th at Portsmouth, with French participation on the 6th.

World Cup football was present everywhere, with many American Teleport identifications being seen. As football arrived from the west, so Wimbledon was linked back to the west. Sports enthusiasts must have had a field day.

A very moving broadcast was logged on June 5 th, relating to a little-remarked event at Ben Gurion Airport, Israel when a mercy flight landed carrying children from Chernobyl with radiation contamination. It was carried by Eutelsat Il F3 $\left(16^{\circ} \mathrm{E}\right)$ in the telecom band.

A new channel appeared on test on the 10 th, at $16^{\circ} \mathrm{E}$: GSTV is an Asian channel transmitted at $11 \cdot 16 \mathrm{GHz}$ with horizontal polarisation. Late June saw the start of a new shopping channel, La Chaine Info. This French service (SECAM of course, though the test transmissions were also in PAL) started on the 24th via Telecom 2 B at $5^{\circ} \mathrm{W}$, the carrier frequency being 12.584 GHz .

On July 1st we saw Palestinian leader Yasser Arafat enter Israel and the Gaza Strip after 27 years in exile. There were scenes of chaotic celebration from Gaza City. with CBS using Eutelsat II F3 ($16^{\circ} \mathrm{E}$) to link back to the States.

Intelsat 702 should be in service at $1^{\circ} \mathrm{W}$ from late August. Test transmissions have been seen from a parking slot at $37.5^{\circ} \mathrm{E}$ - this is a favourite position for testing newlylaunched Intelsat craft.

News Items

Egypt: The BDXC reports that there are two transmitters in operation at Dumyat, using channels E2 and E4 with 900W e.r.p. Ch. E2 is used for ERTU-2, with an 8P vision offset. English-language programming is shown, with Arabic subtitles. Programme start is at 0700 local time, preceded with text pages and the PM5544 pattern (EGYPT at the top. ETV at the bottom). A corner identification, "TV2". is present in the evenings only. The ch. E4 (zero offset) ERTU-1 service is in Arabic. As with the ERTU-2 channel, text pages are shown between close down and the following day's opening.
Iran: The BDXC reports that there are two ch. E2 IRIB transmitters that carry the TVI service, both with 8 P offsets. while two ch. E4 transmitters are used for TV1 and TV2 with 8 P and zero offsets respectively.
Israel: Canal Plus is to be made available throughout the country.
France: Canal Plus plans to start digital transmissions via satellite by the end of 1995. Decoder manufacture could start this autumn.
Poland: 117 regional radio station licences have been awarded and there are plans for four regional commercial TV networks, each with up to forty transmitters.
Vietnam: A trial third network is in operation. with afternoon programmes to test audience and advertiser reactions.
Czechoslovakia: There have been moves to privatise the remaining state broadcaster Ceske Televize, which currently

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951
transmits as CT2 on the channels previously used by the Russian forces to transmit Moscow TV. Ceske is upgrading and expanding the network, and hopes for 77 per cent coverage by the end of the year.
UK: The Civil Land Mobile Radio Committee is seeking more spectrum space in the $30-960 \mathrm{MHz}$ region. It suggests that up to 100 MHz will be required to cater for increasing demand.

The DSS has signed a contract with Kenwood for 2,500 vehicle and 2,500 handsets for use by the fraud investigation department over nearly 200 regional communication systems.

Satellite TV

The Czech cable service Cable Plus, which previously used the Gorizont satellite at $11^{\circ} \mathrm{W}$, appeared briefly via Eutelsat II F4 at $7^{\circ} \mathrm{E}$, amongst the EBU news feeds, before moving to the Gorizont craft at $40^{\circ} \mathrm{E}(11.525 \mathrm{GHz})$. The Reuters Moscow bureau news feed has moved from $14^{\circ} \mathrm{W}$ to the old Cable Plus transponder at $11^{\circ} \mathrm{W}$.

CBC (the Canadian Broadcasting Corporation) is considering an international satellite-delivered news service to rival CNN and BBC-WSTV. A start will be made in September with a US service. If successful it will be extended to Europe, the Far East and Australasia.

The BBC is to offer Orbit International, a digitally compressed Arabic version of BBC-WSTV, in the Middle East. Test transmissions were carried out in late June to Rome via Eutelsat 1 F4 at $25.5^{\circ} \mathrm{E}(11.660 \mathrm{GHz}$ horizontal), the plan being to retransmit via the Arabsat craft at $30^{\circ} \mathrm{E}$. Digital decoders could cost around $£ 6,000$ each. Following the ban on domestic dishes in Saudi Arabia however there
are doubts about the viability of the service.
Both Malaysia and Intelsat have applied to use the orbital slot at $91.5^{\circ} \mathrm{E}$. Malaysia has a dish ban at present. Vietnam TV (VTV) has booked Ku band transponder facilities aboard the Thaicom 2 craft which is due for launch this August. The sateliite's footprint will extend well into Europe, covering east and south-east Asia and points between.

Echostar, perhaps best known for satellite receiving equipment, intends to launch two DBS craft via a Chinese Long March rocket by the end of next year. Orbital position will be $119^{\circ} \mathrm{W}$. By using a $3: 1$ compression ratio Echostar hopes to be able to transmit over ninety channels for reception using 18 in . dishes. By that time DirectTV plans to be on air with up to 150 channels.

The Japanese PTT is developing digital compression/transmission technology, the aim being to transmit fifty channels via Jsat in early 1996 with terrestrial services starting by the year 2000 .

Colin Grellis (Bridport) tells us that NASA runs a daily TV service, with live space coverage when applicable, via Spacenet 2 at $69^{\circ} \mathrm{W}$. The vision carrier is at $3 \cdot 880 \mathrm{GHz}$ with the audio subcarrier at 6.8 MHz . Though the position is very low in the sky in the UK, readers in the west country and Ireland could stand a chance of reception. Signal amplitude would be very low however as Spacenet 2's footprint covers North America.

The Sri Lankan government has been pressing the German authorities to end the World Tamil Television uplink from Berlin via Eutelsat II F3 at $16^{\circ} \mathrm{E}$: it's thought that the service is used for anti-government propaganda amongst Tamils in Europe.

In the May issue (page 503) we featured Bandula Gunasekera's simple u.h.f. satellite receiver circuit for use with the $714 / 754 \mathrm{MHz}$ transmissions from the Ekran craft. It has proved to be very popular in Sri Lanka and India. If any other readers have made simple satellite receiving equipment we'd be pleased to include the details in this column with the aim of inspiring other potentional sat-zappers.

The Super D100

HS Publications, 7 Epping Close, Mackworth Estate, Derby DE3 4HR (telephone 0332513 399) tells us that a super version of the D100 DX converter is now available. It's based on the well-established D100 but has in addition an integral a.g.c. circuit to avoid overloading with strong signals and give freedom from manual gain control operation, and an auto bandwidth circuit that reduces the bandwidth with weak signals, widening it with strong ones. The u.h.f. output is now at ch. E65 instead of around ch. E35. The units are hand-built to order, at about $£ 125$ inclusive.

The Squashed Quad Aerial

In the July issue we provided details (page 665) of the squashed quad aerial that Brian Williams uses. He has pointed out that we didn't show the feeder connections correctly - see Fig. I this month for further elaboration. The loft-mounted aerial provides a gain of typically $1 \cdot 5 \mathrm{dBd}$. He has also provided details of an improved design with the feed point at the upper corner. At a centre frequency of 52 MHz 19 ft 4 in . of wire is required. proportioned at approximately $2 \cdot 5: 1$ (side to end dimensions). The feed is taken via a quarter-wave section of 75Ω balanced feeder to a 75Ω downlead which can be balanced or coaxial. Brian prefers the performance of balanced feeder. To connect this to a 75Ω unbalanced aerial socket or preamplifier input a balanced-to-unbalanced transformer or cable conversion is required. This design provides omnidirec-

Fig. 1: The squashed quad aerial. (a) Original version, showing correct connection details. (b) Improved version with feeder connection at the corner.
tional pick-up in the vertical plane and is ideally suited to SpE reception in Band I. Use the formula $1,005 / \mathrm{f}(\mathrm{MHz})$ to calculate squashed quad dimensions (in feet) for other frequencies.

Canary Wharf

Residents in the East End of London took property developer Canary Wharf Ltd. to the High Court on July 25th to claim damages for "public nuisance" following the loss of good-quality TV signals after the construction of the 242 m high, stainless-steel clad block - the claim includes compensation for dirt and noise during the construction period. Ghosting is severe in the area and the BBC has installed a relay transmitter to help overcome the problem. South Poplar and Limehouse are the areas most affected by the office block.

Previous court action in the UK (Bridlington Relay v Yorkshire Electricity, 1965) ruled against the right to good-quality TV reception following loss by building works, though Canadian law (1978) has upheld the right to quality reception. Arsenal Football Club paid for viewers who lost good signals following construction of its new North Bank all-seater stand to have new aerials pointing at another transmitter installed.

BACK COPIES

We have available a limited stock of the following back issues of Television:

1992 February, April, May, July, August, September, October, November and December

1993 January, February, April, May, June , July, August, September, October, November and December

1994 January, February, March April, May, June, July and August

Copies are available at $£ 2.75$ each including postage. Send orders to: Reed Business Publishing, Television Back Issues, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Make cheques/postal orders payable to Reed Business Publishing Ltd.

Video technology is changing fast. New models get introduced with alarming regularity, each with the latest enhancement. So it's not surprising to find models and faults you've not encountered before

The problem is you can spend costly, unchargeable time searching for elusive faults, which is where Euras System can help. The Euras System is Europe's largest repair tips database for Video, Television and CD.

With over 140,000 repair tips for 15,000 models from 270 manufacturers you are sure to find the solution quickly. And because it is frequently updated, it always covers the latest models.

For a FREE demonstration diskette to run on your PC or details of Euras System in manual form, clip the coupon or phone 0272860900.

EURAS INTERNATIONAL LTD EURAS HOUSE, 51 BRISTOL ROAD, KEYNSHAM, BRISTOL, BS18 2BA

Solutions at your fingertips
please send me a free demonstration diskette \square PLEASE SEND ME DETAILS OF EURAS SYSTEM IN MANUAL FORM \square NAME
title

COMPANY

adDRESS

POSTCODE \qquad TEL

TUBES TUBES

This month's SPECIAL

14" narrow neck tube ONLY £35

WANTED - CASH PAID

for 66 and 68 cm
used F.S.T. glass
(must not be broken or have faulty shadow mask).

ALSO any quantity of new surplus tubes (boxed or in cabinets)

1000's of C.R.T's in stock

Ring Irene or Jane for price and availability

Carriage and VAT extra

EXPRESS TV
The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 0889-577600 Fax: 0889-575600

FOUR－IN－ONE INSTRUMENT
 MODEL MX－9000

All in one bench test instrument with frequency counter autoranging digital imultimeter．З D．C．power supplies le fixed \＆， variablel and function generator，integrated into one compact and lightweight unit with full overload protection one compact In laboratories，education，production lines or research and development environments with its simple and easy operation

FREQUENCY COUNTER Range： $1 \mathrm{~Hz}-10 \mathrm{MH}$

FUNCTION GENERATOR
Square，Rulse．Triangle，
Skewed Fulse．Sine
Tkewed pulse．Sine
TTLLevel Square
$0.02 \mathrm{~Hz}-2 \mathrm{MHz}$
Frequency：0．12Hz－2ワVp
Pleese Note：－
st all of this instrument＇s functions and
specifications above A detailed leatlet is
Price：
E353．00＋EG1．78 V．A．T．

DIGITAL MULTIMETER
Auto Manual Ranging
Measurement
DCV
DCA：

Resistance：hoa Max
POWER SUPPLY
riple Dutputisplay
O－50V Variable，0．5AMax
SV，こA（F｜xed）

Multifunction Meter

The Metex M3850 is excellent value for money and is packed with so many features that only a few can be included here but also includes a frequenging DMM but also includes a frequency counter thermometer，capacitance meter，logic probe，diode check and transistor hfE Also，the M3850 can communicate with a PC using the software and leads provided The M3850 is suppied complete with a carry case，test leads and a manual．
DCVolts
$A C$ Volts
DC Current
ACCurrent
Resistance
Capacitance
Frequency
－－1000V

Temperature

OTHER HAND HELDS

CAPACITANCEMETER DMSOE3
GRanges Off（with set zerol）to $20,000 \mathrm{~F}$＊Large． 3.5 Digit Price：E57．90 E10．13V．A．T
LCRMETERLCR195

Price：E57．90＋E10．13V．A．t．
FREGUENCY COUNTER CSAGEJSC13O
＊Freq－Period－Count－RPM－Min－Max－Average－Difference
＊OataHold＊High Accuracy．
MICHOWAVEOVEN LEAKAGE DETECTDR DY－13
omilete withisobe \＃Detects microwave leakage around

KENWOOD

TEST \＆MEASURING INSTRUMENTS

FM－AM Signal Generators＊Colour Pattern Generators＊Video Signal Analyser＊ Video Timing Analyser \star Video Noise Meter ．Distortion Meter＊WaveformMonitors ＊Vectorscopes＊Audio Generators＊Wow and Flutter Meters \＃Electronic

The following is just part of the vast range of Kenwood equipment，all of which is available from B．K．Electronics．A full catalogue and price list is available on

DSCILLOSCOPES
CS $13055 \mathrm{MHz}, 1$ Ehannel，Low Lost AUDIOGENERATORS（Cont．）
Cs 4025 こロMHz，2 Channel，Genera AGese $10 H z$ to 1 MHz Ultra Low
CS 403540 MHz ，2Channel，High Purgose ELECTRONICMILLIVOLTMETERS CS 403540 MHz ，2 Chamnel，High CS 5260 GOMHz 3 Channel， 8 Trace
figh Performance with Eursors VT 171 AL Millivolt Meter， 1 mV － GENERAL PUPPOSE OL 7113.5 Digit Auto Eench／Portable FG 273 Sweep Function Generator， 0 ． 2 Hz － 2 MHz unction Generator． O .2 Hz －2MH POWER SUPPLIES PD35－10 to 35 Vo pR 19－3A D to 1 位 Volts． 0 to 10 Amps pS 20－54 1 to 20 volts， 0 to 54 Amps

KENWOOD PRICE LIST

CO1305	Eㄹ10．00	E3G．76V．A．T．
C54025	E359．00	еве．83 V．A．t．
54035	2565．00	E98．8BV．A．T．
Cs5em0	E1，195．00	е209．13 V．A．t．
cs6040	£2，395．00	E419．13 V．A．t．
cs 8200	ع2，499．00	£437．33V．A．t．
CV1255	E2，249．00＋	E393．58V．A．T．
CV1245	E1，599．00	E279．B3 V．A．t．
565110	£1，825．00	モ319．38V．A．T．
cos3e	E735．00	E129．63VAT
cG928	E445．00	E77．88V．A．t．
AGE03A	E195．00	£З4．13 V．A．т．
AG252	E399．00	E69．83 V．A．t．
VT171	E235．00	E41．13 V．A．t．
VT176	ع475．00	E83．13 V．A．t．
－ 711	E149．00	EPG．0日 V．A．t．
F0e73	E450．00	E78．76 V．A．t．
FC75日	E555．00	E9フ．13 V．A．T．
PD 35－10	E645．00	E172．8BV．A．T．
ค月18－3A	ع236．00	Ea．1．13 V．A．T．
ps 20－54	610．00	281．75 V．A．t．

U．K．POST PAID．Export enquiries welcome．Visa／Mastercard or cheque with order，payable B．K．Electronics．Dfficial Drders welcome form Govt．Depts．，Colleges，PLCs etc．Technical leaflets andpricelist for the complete range are available on request．Credit card orders are accepted by

INFRA RED REMOTE CHECK CARDS

$\star \star \star$
Both same price $£ 7.66$ each plus VAT No minimum order

IR 5 CREDIT CARD SIZE charge No P\&P!

IR 6 KEY FOB

BULK BUYERS BARGAINS NO P\&P!

$10 \times$ BU 508A	$£ 11.00$	$10 \times$ BU 526	$£ 9.00$	A
$10 \times$ BU 508AF	$£ 12.00$	$25 \times$ BYV 960	$£ 5.00$	L
$10 \times$ BU 508DF	$£ 18.00$	$10 \times$ BYW 96E	$£ 8.00$	L
$10 \times$ BU 508V	$£ 15.00$	$25 \times$ BY 228	$£ 10.00$	
$10 \times$ BUT 11A	$£ 12.00$	$25 \times$ BY 299	$£ 5.00$	P
$10 \times$ BUT 11AF	$£ 9.00$	$5 \times$ CNX 62A	$£ 8.00$	L
$10 \times$ BU 326A	$£ 9.00$	$5 \times$ TDA 3654	$£ 8.00$	U
$10 \times$ BU 407	$£ 9.00$	$5 \times$ TEA 1039	$£ 7.50$	S
$10 \times$ BU 426A	$£ 10.00$	$5 \times$ X2402P	$£ 7.50$	
$3 \times$ TDA 3562A	$£ 11.10$	$3 \times$ TDA 8180	$£ 15.00$	V
$3 \times$ Mirrors any type $£ 18.00$	$3 \times$ STR 54041	$£ 11.10$	A	
$3 \times$ MDA 2062 Clear	$£ 9.00$	$3 \times$ SAA 1293A03	$£ 21.00$	T
$3 \times$ SAA 129303	$£ 15.00$	$3 \times$ STR 6020	$£ 19.00$	
$5 \times$ S2000AF	$£ 13.00$	$10 \times$ S2000A2	$£ 12.00$	

Send cheque or postal order to E.C.S. Dept. P 6 NETHERSOLE STREET, POLESWORTH, TAMWORTH B78 1EE No post and packing charges. Please add VAT Phone: (0827) 330392 Fax: (0827) 331041

BUSINESS PROSPECTS

In answer to the reader (letters, August) who is thinking of starting his own business, my advice is not to be put off by the doom and despair merchants. So long as TV sets, VCRs etc. break down there will be a requirement from the public to have them repaired. Similarly there is still a market for second-hand equipment: while the demand may not be as great as some years ago, it can nonetheless provide a supplementary source of income.

The pessimists will tell you that equipment is more reliable these days and that when things do go wrong diagnosis is more difficult. True, but there are more TV sets and VCRs per household, and it's more interesting to see two or three different items from the same household than the same item three times. The fact that fault-finding is not so straightforward means that the 'swift-buck' cowboys are diminishing in number with each new model. Other engineers are retiring early or declining certain work. Add to this the number of people who now own rather than rent, and the shops that no longer employ their own engineer, and you have a large customer base - which of course is the first ingredient to success.

The ultimate aim of your new business is to make a reasonable profit. The greatest influence on how much the customer will contribute to this profit is the cost of a replacement for a defective piece of equipment. A TV set today costs much the same as it did twenty five years ago. Repair bills have to reflect this negative inflation. Thus to survive your overheads must be kept to a minimum and your turnaround of repairs must be swift.

Your reader appears to be contemplating the rent or lease of a shop outlet. Be warned: this will be the largest drain on profits. It's better to consider an industrial unit or suchlike one engineer I know runs a successful operation from farm buildings. Once the public learns that you offer a reliable service, charge reasonable rates and guarantee your repairs they will travel from miles around.

You will also find it beneficial to liaise with other engineers in your area - for the purpose of swapping manuals, advice, etc. I started my own business just six years ago and appreciate the help given to me by others in the trade. I've also experienced at first hand the power of the public voice. Do a good job for Joe Bloggs and soon you'll have the Bloggs family, his friends, workmakes and neighbours treading a path to your door - no matter where you are. These are the best customers you can get.

I hope that this optimistic viewpoint will counterbalance those that appear to be so bleak. Go for it, I'd say. If not you'll look back in years to come and think "if only..." Paul S. Smith,
Vision-On Repairs and Service, Newtownabbey.

CLEANING LASER LENSES

In his article on CD Player Repairs in the July issue Les Austin mentioned a method of cleaning the optical block lens. He stated that Sony recommends the use of isopropyl alcohol for the purpose. This is a gross error. As far as I am aware Sony has never suggested the use of isopropyl alcohol, which
can result in irrepairable damage to the lens.
We recommend the use of only a special fluid, Sony part no. J-250-100-0A. This is mentioned in a publication entitled "CD Optical Block Checking Procedures", part no. S-795-202-11. We also recommend the use of a special swab, part no. J-250-102-3A, specifically produced for the purpose. Those with authorised Sony service accounts can obtain these items through the normal spare parts ordering systems.

If readers have any further queries on this subject they can contact me on 0635875348.
David Meyer,
Technical Training and Technical Information Manager, Sony Consumer Products Company UK, Newbury, Berks.

LASER POWER ADJUSTMENT

In his article on CD laser power adjustment (July, page 630) Les Austin omitted to mention that all consumer CD players are Class 1 laser products. As such, the laser unit must meet the Accessible Emission Level (AEL) requirements for a Class I device.

It's possible for the AEL to be exceeded when laser output power adjustments are made without sticking to manufacturers' recommended procedures and without the necessary test equipment or full technical information relating to the lasser unit and associated components. The laser diode in the Philips CDM4 pick-up for example is capable of producing an output power of 5 mW . Always follow the advice given in the service documentation - it's there for a reason. Restoring the CD player to it's original condition gives the service engineer some degree of protection even if it does mean the need for a new pick-up assembly.

On the subject of laser power meters, we've found from experience that no two meters give identical readings, even when they are correctly calibrated. Most laser power meter manufacturers, including Advantest, Leader and Anritsu, give the accuracy of their meters as ± 5 per cent. So an error of ten per cent is possible between two meters. This means that with an output of say 0.250 mW readings of between 0.225 mW and 0.275 mW could be obtained when comparing meters. Add to this a factor for human error when attempting to position the optical sensor directly over the lens of the pick-up assembly (a couple of millimetres either way can make a big difference) and you see that there is no way in which a laser power meter can be described as an accurate measuring device.

I would agree with the manufacturer's engineer, mentioned by Les Austin, who said that laser power meters have limited use. Philips Industrial in Hasselt, Belgium rarely use a laser power meter when checking laser output power. Measuring the current through the pick-up diodes is a much more accurate technique. When the characteristics and electrical specification of the laser diode are known, it's simply a matter of mathematics to calculate the laser output power.

Les mentions the laser power adjustment with Philips RAFOC units and the different measured values with different discs. The safest way to do this is to play track 1 of Philips Test Disc 5 or 5A (available from Willow Vale) as this has a standard surface reflectivity. Scratches and damage to the transparent coating will obviously make a difference. so handle it with care. Incidentally the upper surface of the disc (label side) is more susceptical to damage than the lower surface (track side). The protective coating on the upper surface is much thinner and, when scratched down to the reflective surface, serious errors will occur during playback. Hands up all service engineers and hi-fi aficionados who still
place the label side down to prevent damage when changing discs etc.!

One further safety point. Most service manuals tell engineers not to look at the laser beam directly (always examine it at an obtuse angle). The reason for this is simple. Under normal operating conditions the focal length of the beam is fairly short, usually up to 1 cm , around where the disc would sit. The beam then diverges (defocuses) the farther it travels. The more defocused it becomes, the less energy it possesses per given area.

Under certain fault conditions involving the focus servo and laser driver circuitry however the focal length of the laser beam can alter to several centimetres from the lens - up to 10 cm has been quoted. If this focal point coincides with the retina of the eye the total laser energy available will be enough to cause severe damage to the service engineer's vision. It's also worth considering the effect of wearing glasses while examining a laser pick-up in operation.

I feel that it's worth mentioning these important safety points as service personnel rarely enjoy the benefits of the training facilities available at large manufacturing organisations - and after all you can never have enough service information, can you?! Marcus Jones, VCR/CD Production Engineering Dept., Sharp Manufacturing Company of UK Lid., Wrexham, Clwyd.

GOODMANS MODEL 147TT

M. Stansfield correctly diagnosed the fault with one of these sets (TV Fault Finding, August) but there is something to add. I've also had the problem. As I had the service manual however I was able to discover that C911 $(47 \mu \mathrm{~F}, 50 \mathrm{~V})$ had been inserted the wrong way round. My findings have been confirmed by Goodmans' technical department: a limited production run had the incorrect polarity marked on the main PCB. The capacitor will work for a period of time, perhaps eighteen months, but being under stress will eventually break down.

Goodmans has no record of the batch serial numbers. But if you find that ZD402 (12V, 1W zener diode) and R425 $(5 \cdot 6 \Omega, 3 \mathrm{~W})$ have failed it's highly likely that the polarity of C911 is incorrect.
M. Regan. Techtronics Southport.

Southport, Merseyside.

WHAT A DIGIRIDO!

1 haven't had much to do with ITT Digi 3 TV sets, and as those 1 have encountered have had routine faults I've not needed a service manual. Until now, that is. One came in with no green in the display. The fault was cleared by replacing the storage chip IC1402, but the picture dropped by about two inches. Now to adjust the vertical shift you use the remote control handset with an overlay placed over the buttons. How this little piece of plastic converts it to a Service Processor I don't know, but it does. Normally, that is, if you have the original handset. Most sets I've seen are on to a replacement. I tried the overlay panel upside down and sideways, but no way would it fit the Konig handset. So I half-heartedly consulted my very expensive international fault-finding system. Once again it proved its usefulness - for reaching things on high shelves. Instead I found a picture of the original FS9/1 handset in an old SEME catalogue and was able to cross-reference:

Prg. 1 selects vertical shift, Prg. 2 amplitude and Prg. 3
geometry. Use the volume + and - buttons to adjust, and the 'Restore Pic from Text' button to load the new values. This is all done with the switch at the top of the digi board in the service position.

The next set in was an Akura portable with a very similar circuit. Good job it didn't need adjusting!
Phil Barry, Teletechs TV and Video.
Bedale. North Yorkshire.

IR INTERFERENCE FROM BULBS

I was interested in the letter from D.J. Maxfield (July) on IR interference experienced with an energy-saving lamp since I have experienced r.f. interference over a wide spectrum from this source. I'd taken the matter up with GE Lighting, being concerned that increased use of such lighting could wipe out medium- and long-wave radio reception as well as reception in the lower-frequency amateur bands, i.e. 160 m and 80 m .

The RSGB EMC committee is now collecting data on such interference and would welcome any information from users. Anyone able to help should write to R.M. Page-Jones, G3JW1, via the RSGB, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE.
J.F. Greenwood. G3ZJY.

Milford on Sea, Hants.

tale of a video repair

The story of the repair of my Panasonic NV430 VCR reflects badly, to say the least, on the trade. As the loading mechanism had been increasingly rejecting attempts to load a cassette we took the machine to an apparently respectable high street shop for repair. After some delays, running to a few weeks, we collected it and paid. The fault was still present despite alleged inspection, testing, replacement of the mode switch, belts and jockey wheel kit, and lubrication. When we returned to complain we found that the firm had gone into official receivership. I have strong reason to believe that nothing had been done to the VCR.

So we took it to another apparently respectable high street shop. When it came back it was still rejecting cassettes.

Fed up with this, I decided to look at it myself. To be fair it took me some time. I had the whole cassette loading mechanism out and checked its, action minutely. I tried adjusting the mode switch position through its entire range before concluding that it was not responsible. Finally I came to suspect the drive. Perhaps the motor was weak, or it was some other aspect of the drive? By this time I had discovered that pressing the upper surface of the cassette just before it seated increased the chances of it loading correctly - this 'helped' the drive to dc its job. Then for some reason I had the inspiration that fixed it. Could the loading drive belt be slipping? It shouldn't of course, as it was allegedly new. But any lubricant on it could cause slippage. So I took a small child's paint brush, dipped it in methylated spirit and wetted the belt while it was running. The meths was centrifuged off at the pulleys, cleaning them and the belt. Result: instant, lasting success. Not a single tape has been rejected for months, and the machine is a pleasure to use again.

Isn't it a disgrace to the trade that two firms couldn't between them come up with a single drop of meths, judiciously placed? I feel that I could be forgiven for not recognising the cause of this simple fault, as I've no training or experience with these machines. But proper repair shops?
Andrew Churchley, B.Sc: (Tech.). Ph.D., C.Eng.
Appleton. Cheshire.

What Goes Wrong?

Ray Porter, M.Sc., C.Eng., MIEE

Engineers tend to form their own opinions about the faults that occur most frequently in the equipment which comes into their workshops. It's good management practice however to maintain an accurate analysis of the nature of the faults in the work throughput. This helps with stock control, investment in test equipment and with employee training.

In order to determine the relative frequency of various types of fault, I carried out an analysis of the reports published in the TV Fault Finding and VCR Clinic sections of Television during the first quarter of 1993. A total of 117 VCR Clinic and 124 TV Fault Finding reports were analysed. The results are presented in this article. Although the sample is not a large one, it was nevertheless sufficient to provide useful information.

VCR Faults

Table 1 shows that most VCR faults reported consisted of power supply failures (21 per cent), and that all the mechanical faults combined didn't quite equal the power supply faults. It should be remembered however that much mechanical servicing with VCRs is of a routine nature and thus doesn't get into the fault reports. The faults that are

Table 1: VCR fault percentages.

Fault area	Percentage
Power supply	21
Mechanical	20
R.F.	11
Syscon	10
Record circuitry	9
Playback circuitry	9
Drum (electrical)	6
Loading (electrical)	4
Capstan (electrical)	3
Audio (electrical)	3
Reel (electrical)	3

reported however are the ones which cause the most workshop disruption and the greatest customer charges if they aren't handled efficiently.

A look at Table 2 shows that the reel mechanics caused the largest proportion (39 per cent) of mechanical faults.

Table 2: VCR fault percentages - mechanical.

Fault area	Percentage
Reel system	39
Capstan	26
Loading	17
Audio	13
Drum	4

This section of a VCR also seems to be responsible for the largest proportion of routine problems. Capstan and pinch roller troubles came second (26 per cent). Poor drum performance was more likely to require an electrical repair, but loading problems were as likely to be caused by a mechanical as an electrical failure. It's worth noting that only reel and capstan faults are more likely to be solved by mechanical rather than electrical repair: intermittent faults in this area are similarly most likely to have a mechanical cause.

TV Faults

Table 3 shows that power supply faults are also the most common ones with TV sets (35 per cent). Perhaps manufacturers need to devote more design attention to this area. It's not surprising that line timebase faults are the next most common ones, at 29 per cent. The highly-stressed e.h.t. generating system must be a contributory factor here.

Table 3: TV fault percentages.

Fault area	Percentage
Power supply	35
Line timebase	29
Field timebase	13
Tuning	9
Chroma	6
Tube/base PCB	3
I.F.	2
Audio	2
Luminance	2
Remote control	1

Chroma circuits are complex, but as they run at low power and use large-scale integration their reliability is good. The complexity of modern tuning systems could be the reason for their occupying the fourth place. Many customers may finc it frustrating that their sets almost work but won't tune in a station! They'd probably prefer to have a completely dead set.

Conclusions

The above information enables the significant problem areas to be identified. With TV sets about half the faults are in the power supply or line timebase (surely, in practice, 80 per cent or more? - editor): with VCRs the majority of the faults relate to the power supply and the mechanism, with reel and capstan/tape pinch problems predominating on the mechanical side. You can learn a lot, economically, about power supply topics by reading articles in Television. Training courses run by manufacturers can provide even experienced engineers with extra knowledge.

Investing in servicing equipment that's relevant to the most common tasks makes sense. Some of it may be essential anyway for safe working. An hour a week is easily
saved by having the right equipment to hand: over a couple of years, several hundreds of pounds in labour costs can be saved. To deal with TV faults you'll need a mains isolating transformer, a variac, a line output transformer tester and an e.h.t. meter (as well as the standard multimeter and scope). For VCR work you will need in addition a means of measuring reel torque and tape tension, and a variable power supply with adjustable current limiting. The latter will enable you to provide a substitute source for a dead or suspect section in a multiple power supply and run motors out of circuit.

TV spares to keep in stock include power supply electrolytics, line output stage high-voltage capacitors, fuses,
rectifiers, regulator chips, power transistors, zener diodes and optocouplers: line output transformers and mains switches are worth stocking when you handle models in which these commonly fail. With VCRs, belts and sensors are obvious things to stock. Reel drive and control items and capstan/tape pinch parts will be required: these are often specific to particular decks/models, though some parts can be used with a number of machines. Stocking motors is advisable only when regular failures are known and come your way.

Remember that it's often quicker to find a faulty component by substitution - and that when you do this you will have cured the fault at the same time!

Help Wanted

The aim of the Help Wanted column is to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted: Complete working tuner and vision/sound i.f. board (A board, part no. TNP65132AZ) for the National Panasonic Model TC361GM. S.J.M. Sharpe, 3 Limetree Way, Apley Park, Wellington, Telford, Shropshire TFI 3PJ. 0952256235 after 6 p.m., 0952244986 daytime (leaving message only).
Wanted: I.C. part no. GB19001 for the Hioki Model 3208 Calcu Hi Tester - or advice on where it can be obtained (with price) or any equivalent. Norman Donnelly, PO Box 1113, Strand 7140, South Africa. 0248548337.
Wanted: Operating instructions (or photocopy of them) for the De Graaf Model WHSJSl video recorder. Also source for the remote control handset. W. Lenton, St. Judes, Hackensall Road, Knott-End, Fleetwood, Lancs FY6 0AY. 0253 810870.

Wanted: Capstan motor for the Nokia ITT VR3731UK VCR. M.B. Wilson, 1 Playwell Court, Glanton, Alnwick NE66 4BL. 0665578437.
Wanted: MCl552 wideband amplifier i.c. for the RCS counter-timer Model 801A. B. Little, 87 Kenn Moor Drive, Clevedon, Avon BS21 5AY.
Wanted: Sony a.c. adaptor type CMA100CE as used with the HVC2000P camera etc. R. McGrath, 41 Belvedere Place, Dublin 1, Ireland.
Wanted: LOPT and circuit diagram for the Contec Model KTN3732. Also alphanumeric keyboard for an Ace Telecom Viewdata/Prestel terminal - the one that fits in the 'keyboard 2' 5-pin DIN socket at the rear. A. Tebbutt, 34 Coronation Road, Loftus, Saltburn by sea, Cleveland TSI3 4SL. 0287643614 (after 8 p.m.).
Wanted: Handsets for the JVC HR7700/Ferguson 3V23 VCR and the Salora 190-9570 satellite receiver. A. Clifford, 9 Broadfield Avenue, Blackpool FY4 3RA.
Wanted: Service sheet for the Alba Model CTVI0RC. H.S. Downing, 16 Mayfield Crescent, Lower Stondon, Henlow, Beds SG16 6LF. 0462850244.
Wanted: Kit to convert 18 Superjack HARL-3018 from reed switch to pot type control, or details of an adaptor. Also service manual or circuit for the Connexions CX8520R receiver/positioner. C. Thorne, 27 Edgcumbe Green, St. Austell, Cornwall PL25 5EE. 072667585.
Wanted: LOPT for a 26in. Decca set fitted with the 30 series chassis. R.A. Bashford, 3 Venn Crescent, Hartley, Plymouth PL3 5PJ. 0752771520.

Wanted: Grundig SVR4004/4004EL or Philips N1700/1702, working or not. Adrian Bird, Timbertops, Longdown, Nr. Exeter, Devon EX6 7SR. 0392811735.
Wanted: Service manuals for Panasonic Models NV8170, NV8150, NV8200,8400/8600. Cabinet parts (scrap machine would do) for the Akai VS9700. Service manual for the Sony SLC6. T. Martini, 6 Levant House, Mile End Road, London El 4RB. 0717906807.
Wanted: Service manual or circuit diagram (copy would do) for the Cossor CDU110 oscilloscope. Ray Palmer, 5 Hawkley Close, Leigh Park, Havant, Hants PO9 5EL. 0705 451544.

Wanted: SECAM-to-PAL converter circuit diagram. H.S. Jeetley, 75 Hamsteadhall Road, Handsworthwood, Birmingham B20 1HU. 0215238992.
Wanted: TDA 1470 field timebase chip. John Moir, Manna House, 50 Parliament Hill, London NW3 2TL. 071431 1225.

Wanted: VU meter for the Goodmans Module 90 tuneramplifier. Brian Francis, Bob Francis and Sons, Colebrook Road, Plympton, Plymouth PL7 4AA. 0752336988.
Wanted: Manual/circuit diagram for the Philips PM5320 signal generator and Eagle PA400 PA amplifier. Could copy and return. S. Cox, 35 Lansdowne Way, Hailsham, East Sussex BN27 ILU. 0323846167.
Wanted: Manual for the Amstrad FX9600 series fax machines, with or without phone facilities. Particularly need the circuit diagram and the scanning element setting up details. Copy would do. David Willoughby, Barcaldine, Pell Green, Wadhurst, East Sussex TN5 6EF. 0892783859.
Wanted: Circuit diagram for the ITT TV Model FRA5/l, serial no. 7245. E.H.B. Williams, 60a Birmingham Road, Alcester, Warks B49 SEG. 0789763455.
Wanted: Type AN239 chip (IC102) or i.f. panel from a scrap receiver, National Panasonic Model TC361GM. John R. Langley, 125 Station Road, Burton Latimer, Kettering, Northants NN15 5PA. 0536723411.
Wanted: Teletext board for the Finlux 1000 series TV (early version). Robert Philpot, 36 Kingsley Close, St. Leonards-on-Sea, East Sussex TN37 7BX. 0424850539.
Wanted: Ferranti ZN4C1E chip and circuit diagram for the Sinclair Microvision TV. M. Levers, Waverley, Independent Hill, Alfreton, Derbyshire DE55 7DG.
Wanted: Video head for the Sony Model SLV401 VCR, also Sony a.c. adaptor Model CMA100CE for Betamax camera. I.A. Comisky, 33D North Clarence Street, Dublin I, Ireland.
Wanted: Circuit diagram/service manual for the Welson Globetrotter electronic organ. Nigel Burton, 63 Salcombe Drive, Glenfield, Leicester LE3 8AG.
Wanted: LOPT type LCE CF82 for the Binatone Model 01/9014. G. Cash, 9 Northbank Road, Walthamstow, London E17 4JY. 0815315051.

CD Player Repairs

A dealer friend of mine, Richard, has recently started to repair the occasional CD player. He had a couple of Sony machines on his bench but had not yet got the manuals. He had however read my bit in the May issue on setting up the Aiwa CX800E and rang me for some clarification. If he hadn't made complete sense of it, perhaps I should go into the matter in greater detail.

The Scope

In the first of these articles I discussed scope specifications and mentioned that for the past couple of years I've been using a Telequipment D67. This has a bandwidth of 25 MHz , a vertical sensitivity of $10 \mathrm{mV} /$ division and a maximum timebase speed of $200 \mathrm{nsec} /$ division. Richard has a D67 so, assuming that you've all now acquired such a scope, how do you use it?

When I'm in the 'CD Player Mode' the scope is always switched on and ready for use. The settings are as follows: Y amplifier d.c. coupled, trace centred, sensitivity $10 \mathrm{mV} /$ division; probe setting $10: 1$; timebase speed $2 \mathrm{msec} /$ division; trigger input switches at normal and internal, trigger mode 'auto'.

Typical Setting Up

I've mentioned some setting up procedures before. This time I'll include more detail and, to avoid problems, we'll assume that the players are all in working order. Once again we'll consider players that use a typical Sony chip set: the CXA1081M r.f. chip, the CXA1082 analogue servo processor chip, the CXD1130 digital servo processor chip and the CXDI 140 digital-toanalogue converter (DAC) chip. The Samsung RCD1000 ghetto blaster is an example: you'll find the identical deck in this company's SCM7700 midi system and in some versions of the SCM6000, while at least one Goodmans ghetto blaster, obviously manufactured by Samsung, uses it. The same set of chips is used, with more or less identical circuitry, in many other makes of player, though I've found that the Sanyo LC7880

DAC chip seems to be more common than the Sony one.

Focus Servo Adjustment

Right, so we have a Samsung RSD1000 on the bench. Clip the probe's common lead to TP4 (V ref., pin 14 of the CXA1081 chip). Since this model has only a positive supply voltage (8.5 V) V ref. is not at chassis potential but at approximately 2.5 V . Connect the probe tip to TP3 (FE, pin 19 of the CXA 1081 chip). Switch the player on, with a disc loaded but without pressing play. Observe the position of the trace: if necessary, adjust VR1102 (focus bias) to position the trace two divisions above the centre line, thereby setting the d.c. level at +200 mV .

Transfer the probe to TP2 (r.f., pin 2 of the CXA1081 chip) and switch the scope's input coupling to a.c., with a vertical sensitivity of $20 \mathrm{mV} /$ division and a sweep speed of $500 \mathrm{nsec} /$ division. Press play. This particular player will read the table of contents (TOC) and immediately begin to play the first recording. The scope's trace will display the familiar 'eye pattern'. If necessary, readjust the focus bias preset RV1102 to optimise the display. What this means in practice is adjust for the maximum possible trace amplitude, though strictly speaking you should adjust for the clearest looking result where the crossovers occur in the central part of the display. These two conditions should coincide, being the point of minimum 'jitter'. If you are fortunate enough to have access to a jitter counter you probably don't need to be reading this.

Transfer the probe back to TP3 (FE), set the vertical sensitivity to $10 \mathrm{mV} /$ division with d.c. coupling and the sweep speed to $2 \mathrm{msec} / \mathrm{division}$. The focus error servo trace will now be seen: it can be used to adjust the focus servo gain. VR1103 is the focus gain control, its effect being as follows. Rotation of the control to increase the gain will 'sharpen' the trace, its mean d.c. level falling. This will be accompanied by an increase in the amount of noise generated by the optical pickup. Rotation of the control in the opposite direction, to
reduce the gain, will initially reduce the trace sharpness after which it will develop a slight but definite lowfrequency wobble. At the same time the d.c. level will rise and the pickup noise will lessen. The correct gain control setting is the point where the wobble is just evident. It normally occurs at a d.c. level of about +100 mV . If this doesn't sound too clear, a few minutes spent playing about with a working deck - after noting all the control positions for your peace of mind - will soon give you an understanding of the method. Once you have this you'll find that adjustment is very quick and reliable.

Tracking Servo Adjustment

Having set the focus servo correctly we can move on to the tracking servo. Note that with this particular deck there's no tracking offset adjustment. Transfer the probe to TP5 (TE, pin 20 of the CXA1081 chip) and change the vertical sensitivity to $100 \mathrm{mV} /$ division. With the disc still being played you will now see the tracking error servo waveform. The display should be more or less centred vertically, with most of the action occurring within a IV peak-to-peak envelope, the larger individual excursions generally not exceeding about 2 V p-p. Rotation of the tracking gain control VR1104 will vary this amplitude: adjustment to obtain the conditions just described is all that's required. Too low a setting will result in loss of tracking: the audio will either skip or disappear altogether. With too high a setting there will in addition be increased noise from the pickup.

Finally we come to the most difficult but probably the most important adjustment, the EF (tracking) balance. Leave the probe connected to TP5 and the vertical sensitivity and sweep speed as before. Alter the triggering however: rotate the trigger control from auto to a setting where the trace remains on the screen as before, then a little farther until the sweep just stops, with the screen remaining blank. Press the fastforward button and hold it in. A fresh trace should be seen, with a higheramplitude section at the left-hand
side and the rest of the trace the same as the previously displayed tracking error servo waveform.

If the EF balance adjustment is correct, the higher-amplitude portion of the waveform at the left will be symmetrical above and below the central zero axis. If this is not so, careful adjustment of the EF balance control VR1101 will be required to achieve the correct condition. This is a simple and elegant adjustment. Any difficulty experienced with it will almost certainly be because the trigger control has been incorrectly set. If the trace is not displayed or if, instead of being located at the lefthand side, the higher-amplitude portion of the trace dances about all along the screen, readjustment of the trigger level will produce the required result. This EF balance adjustment method will usually work with any three-beam laser player and is much easier to carry out than some of the methods described in manufacturers' service manuals.

Fault Finding

This concludes the static and dynamic optical servo adjustment, using simple scope techniques. Had any fault finding been required, in the power supply for example, use of the scope with d.c. coupling and a vertical sensitivity of $200 \mathrm{mV} /$ division would give readings as quickly as a DVM but with more information and the extra bonus of going straight on to digital waveforms if necessary without having to connect more leads or equipment. If you are not sure about scope techniques remember this: use the scope all the time and it will have few secrets.

Abbreviations

In this and previous articles I've referred to r.f., FE, TE and EF balance. One of the problems with CD player servicing is to know what these and the many other alternative abbreviations mean. To list all the abbreviations in use would call for rather a lot of space. I'll restrict myself to clarifying those listed above. But it's important to appreciate that there is little common ground in this area between different chip manufacturers. Indeed sometimes a manufacturer seems to use two different abbreviations to mean the same thing. Thus in some players that use the Sanyo chip set JP (jump pulse, I think) becomes KP (kick pulse) when it reaches its destination!

The abbreviations used by Sony are also used by Samsung with its own chips. Some of the abbreviations are also used with the Yamaha chip set, and a few of them are used by Sanyo. Toshiba mostly uses its own terminology and abbreviations, while as usual Philips differs totally from everyone else.

What then about those used here? FE is Focus servo Error. It relates to the focus servo amplifier's output to the optical unit's focus coil, the output that keeps the light beam focused exactly on the plane of the reflective disc.

TE is the Tracking servo Error. It relates to the tracking servo amplifier's output to the optical unit's tracking coils, the output that keeps the laser beam centred on the spiral line of pits and lands, enabling these to be read to provide the off-disc data.
R.f., also commonly known as h.f., is the signal produced by the laser beam after reflection frorn the disc layer that contains the pits and lands. At the appropriate test point where you can view it on your scope it will have been amplified by the r.f. chip. The display you should see is the well-known 'eye pattern'. It may be referred to as the EFM, though this abbreviation, which stands for Eight to Fourteen Modulation, is usually reserved for the digital output obtained from the r.f. signal after further amplification and limiting.

Finally, EF balance. The correct conditions with a three-beam laser unit are as follows: the main, central beam must be centred on the spiral track of pits and lands, as mentioned above; the two side beams must be centred on the edges of spiral track, thereby ensuring that the main beam is in the correct position.

Within the optical unit there are pickup diodes that are referred to as A, B, C, D, E and F. The outputs from diodes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are used, after comparison and addition, to correct the focusing and thus the data recovery. Diodes E and F are the ones that receive their inputs from the side beams. After amplification their outputs, when the side beams are correctly positioned, must be equal. The EF balance adjustment provides this equalisation. Alternative names for the adjustment are Tracking Balance (TB) and Radial Balance (RB).

The Soap, Episode 3

Well. with the help of an excellent article by Andy Denham in a 1976
issue of this magazine I did learn to repair those Grundig sets with thyristor line output stages. In fact I was able to build up a small but successful business that concentrated on these sets. Until, after nearly ten years, I was fool enough to sell it.

This brings us to 1988 when various friends suggested that my home of nearly twenty years was a valuable asset, something that I'd never previously thought about. Easily swayed by such goodsounding promises of riches, the lure of that pleasant little island in the middle of the Irish Sea was awakened. Assuming that I could easily sell my home/valuable asset I sold my business, borrowed more from a willing Bank Manager, bought a cottage a hundred yards from the sea on the west coast of the Isle of Man and waited for the rich buyer of my valuable asset to appear. I am still waiting.

I should of course have known that the property market would collapse, that interest rates would climb through the roof and that I would end up owing Loadsamoney to the Bank Manager in his expensive suit.

After the first six months of waiting I applied for a job vacancy on the island. During the interview Alan asked me if I understood how CD players worked. Joe Cieszynski had started his series of articles on CD player servicing in the magazine, and since I didn't understand any of it \mathbb{I} assumed that no one else would. Also it seemed that Alan didn't read Television. On the basis of these assumptions I said "no, does anyone understand them?" "Well" said Alan, "I think I do." I had always been an expert at putting my foot in it, and here I was at it again!

It seemed that the other candidates had even less to offer, since a few days later I found myself employed as an audio engineer. More next time!

Correction

It seems that no one spotted my deliberate (!) mistake in the May issue. For the first of the two Aiwa players, the DXM740 that uses the Sanyo chip set, I quoted the focus bias setting as +200 mV . Not so, the correct figure is zero. For the second player, Model CX800E, I again gave the figure of +200 mV for the focus bias setting. This time I was not trying to catch you out: it's the correct figure.

Camcorner
Reports from Simon Bodgett, Keith T. Keeton and David C. Woodnott

Panasonic NVG1

The complaint was of intermittent loss of colour. According to the owner the loss would occur after filming for ten minutes. Inspection on the bench revealed two significant factors. First the loss didn't affect the burst vectors. Secondly the luminance had a high contrast level and was clipped. If the camera PCB was moved the fault came and went. Then it stayed.

During the period when the fault was intermittent, I noticed that the luminance level at pin 11 of IC314 dropped when the fault occurred. The output at pin 5 was overloaded and clipped: there was no overloading at pins 7 and 3. I couldn't verify these changes now however as the fault was permanent. There was only one thing to do, to follow the colour signal path. IC314 had a colour signal at output pin 33, but the following buffer transistor Q311 didn't produce an output. In fact it seemed to be cut off. Q311 feeds a hybrid delay line chip, IC318, so it seemed that this was loading down Q311. But the fault did once respond to PCB movement. When I checked around IC318 I found that it has more than one supply line - in fact it has four! Pin 18 was without any voltage because L303 was dry-jointed. Phew!
S.B.

Sony CCDF250

This camcorder is very similar to the F335, which I covered in the July issue (page 667), but doesn't have a digital titler. The auto-focus is sometimes slow. Otherwise, these camcorders are very sturdy and reliable. They use the easy-to-repair U mechanism. We've had the following faults.

Black E-E picture, playback o.k.: DT73, which is a hybrid i.c. on board CV9, was faulty. A replacement (part no. A7068150A) restored normal operation.

No zoom. Focus and E-E operation o.k.: IC801 (TK10500M) on board CV9 can cause this fault. Part no. 875923123. We've also had to replace the zoom motor. Part no. 370756201 .

Interference at bottom edge of playback picture: C161 $(47 \mu \mathrm{~F})$ on board CO2P was faulty. Part no. 112620411.

Playback picture jumps: IC501 (CXP80116099Q) on board CO2P was faulty. Part no. 875280908 .

E-E o.k., playback produces white screen: The usual cause is dirty or worn heads - the picture is blanked when the signal is very poor. Part no. A7049215A.

The E-E and playback pictures were very dark though the EVF display was o.k.: A check at IC201 on board CV9 showed that the output (pin 8) was clipped. C214 was faulty.
K.T.K.

Sanyo VMD9P

The record and playback pictures were fine but the playback sound was intermittent. The effect was random sound cutout for a fraction of a second at a time. We found that the
problem was worse with some tapes than others, and was most noticeable where picture dropouts were visible. The audio chip is IC201, on the main board. C2001 $(0.01 \mu \mathrm{~F})$ is connected between pin 2 and chassis: it forms part of the mute detect system and was open-circuit. Because of this the mute threshold operated incorrectly. A replacement cured the fault.
D.C.W.

Sony CCDF380E

The cause of no camera picture with playback o.k. was traced to IC3651 on board CK19P being faulty. A camera picture was available with the back-up battery removed. When it was fitted the picture remained until the camera was de-powered. On power-up the fault returned. D.C.W.

Sony CCDTR105E

This camcorder had two faults: it wouldn't accept a tape, and the picture disappeared intermittently. The cause of the tape problem was incorrect positioning of the back-tension guide pole - the pole was in the play position when the cassette housing was fully open. Normal operation was restored when cam and guide arm TGl were replaced. A dry-joint at connector CN801 on the camera PCB was the cause of the intermittent picture.
D.C.W.

Sanyo VMD6P

Poor battery contacts seem to be a problem with this model. Recent experience suggests that when you have the case off for servicing it's worthwhile checking the soldering to the main PCB - saves having to remove it all again later! D.C.W.

Sony CCDF500E

There was a noise band across the bottom of the playback picture. Tape path fault we thought, and we were right. On examination we found that the supply side roller guide (TG2) was missing! A replacement cured the fault of course, but where had it gone?
D.C.W.

JVC GRC7E

Intermittent playback luminance was the problem with this camcorder. The luminance playback signal path (YC PCB) is via Q3, at the junction of R44 and R45. On investigation we found that one end of R44 had a crack across it. A replacement cured the fault, but unfortunately these components are all under a large blob of JVC goo!
D.C.W.

JVC GRS77E

When record or play was selected the machine would lace up normally until tape transport began: the capstan motor would then take off at full speed! The cause of the problem was a faulty Hall effect chip on the motor assembly - it produced a capstan FG signal of reduced amplitude. The motor has to be replaced as the chip is not available separately.
D.C.W.

Test Report: HewlettPackard HP54600A Scope

David Botto

Hewlett-Packard's Model HP54600A is a high-tech, 100 MHz dual-trace storage oscilloscope that is capable of providing a vast range of measurements. Advanced computer circuitry has helped to produce a powerful instrument that's claimed to be unrivalled for general fault finding power and value.

Two custom-made chips ensure fast display updating while a dedicated central microprocessor chip executes measurement and control tasks at impressive speeds.

The attractive control panel (see photograph) has clearly labelled push-buttons and menu softkeys (beneath the screen), making function selection simple. The time/division sweep (horizontal timebase) control knob doesn't require calibration markings on the panel as the sweep speed is clearly shown in figures at the top of the c.r.t. display. Sweep speeds cover the range 2 nsec to 5 sec in a $1-2-5$ step sequence.

Use of the HP54600A gives you the comfortable feeling of analogue equipment with the power of digital processing. The 'analogue feel' means that you have a familiar front panel layout, with the knobs you'd expect to find for all the major functions and a real-time display. Added to this there's the measurement power of a digital scope combined with accurate automatic measurements and waveform storage.

As we have to test an increasing proportion of digital circuits, the older types of scope may fail to keep up with our needs. The HP54600A enables you to carry out more accurate timing measurements and view low-repetition rate signals and events ahead of the trigger pulse.

The operator's manual is comprehensive and easy to

The Hewlett-Packard HP54602A oscilloscope. This is the top-of-the-range model. The HP54600A tested in this report has a similar layout. Note the 'keyboard' of softkeys beneath the screen, for selection from menu displays.
follow - one of the best I've come across in fact. A quickstart guide provides a brief overview of the scope. A series of exercises then gently guide you through its operation.

There's a section especially for the service engineer: it describes performance checks, adjustments, trouble shooting and the replacement of assemblies in the scope. A handy glossary of oscilloscope terms in included.

Although the HP54600A is sturdily built, its total weight is only $6.2 \mathrm{~kg}(14 \mathrm{lb})$. This is good news for the field service engineer who often needs to climb up long flights of stairs and may occasionally have to park his vehicle a fair distance from the customer's location. Measurements are 172 mm ($6 \cdot 8 \mathrm{in}$.) high, 322 mm (12.7 in .) wide, 317 mm ($12 \cdot 5 \mathrm{in}$.) deep. The solidly-made carrying handle doubles as a multi-angle tilt stand.

The heart of an oscilloscope is its display. The HP54600A has a 7 in . (raster size) c.r.t. with a resolution of 255 vertical by 500 horizontal points. You can select either an electronically-generated eight by ten graticule grid or a frame display. Crisp, easily-viewed bright green waveforms and readout figures are produced by the tube.

Connecting a Signal

There's no need to fumble with an attenuator slide when a Hewlett-Packard scope probe is attached. The attenuation ratio can be keyed in by means of a softkey that enables you to select a ratio of $1: 1,10: 1$ or $100: 1$. When the autoscale button is then pressed the scope's major parameters are all set automatically to produce an immediate, stable display. A front panel test point enables you to adjust each probe to match the scope's characteristics.

To avoid damage the input voltage signal must be no greater than 400 V : this is the d.c. level plus the peak a.c. voltage signal. When d.c. coupling is used, the signal's d.c. component is shown by its distance from an on-screen earth symbol.

Trigger Facilities

This scope's trigger facilities are exceptionally good, making it extremely user-friendly. Turn the trigger level knob and the trigger level voltage is shown on the screen. To change the trigger set-up, press the source button and a menu appears on the screen for softkey selection. The choice of trigger sources is channel 1 , channel 2 , external and line.

Press the mode button and another softkey menu appears, offering you a choice of five trigger modes: autolevel, auto, normal, single and TV. There's also a holdoff knob that enables you to stabilise exceptionally complex waveforms over a range of 200 nsecs to about $13 \cdot 5 \mathrm{secs}$. The value is shown briefly, in inverse video, near the bottom of the screen.

Roll Mode

The roll mode moves data across the screen continuously, from right to left. It's advantage is that you can see dynamic

Fig. 1: A typical delayed sweep display. The lawer sweep is a horizontally enlarged section of the upper waveform, between the delayed-sweep markers. Time reference set to left.
changes, for example when adjusting a potentiometer, on low-frequency signals. This is excellent when checking power supply circuitry.

Delayed Sweep

The delayed sweep is a magnified portion of the main sweep. You use it to find and to expand horizontally part of the main sweep so that a more detailed, high-resolution examination of the signal is possible. There's a time reference function that can be set to the left or to the right. See Fig. 1. This function is useful for VCR servicing. Rotating video head signals can for example be given an accurate examination to determine the state of the heads.

$X-Y$ and Z Axes

The X-Y presentation displays a graph of two signals: you can for example observe the phase shift between two signals at the same frequency. Z axis operation enables an external signal to control the intensity of the beam.

Storage Operation

Once a stable display has been obtained you can press the autostore button. The word "store" then appears on the status line at the top of the screen, with the stored waveform displayed at half brightness and the most recent trace at normal brightness. This mode is used to display extremes of varying waveforms, to capture and store a waveform, to measure noise and jitter and to capture events that occur infrequently. To clear the display you simply press the erase button.

The one criticism I have of the HP54600)A is that it

Fig. 2: Use of cursors to measure the ringing on a pulse.
dosen't have a component tester. The De Luxe component tester (see the July and August 1990 issues of Television) works well with the HP54600A however. When you switch the scope to the storage mode you can see the waveforms produced by several different components simultaneously. This is particularly useful when checking a number of transistors or i.c.s.

Save or Recall

The HP54600A has sixteen memory locations for storing front-panel set-ups. This saves time when several set-ups are frequently used. You just press the set-up button, then select the desired memory location by using a softkey or panel knob. Press the save softkey to save a front-panel set-up, and the recall softkey to recall it.

Frequency and Time Measurements

It's simple to measure a signal's frequency. Display the signal then press the time buton. Yet another softkey menu appears. You can now read off in figures the frequency, time period and duty cycle. Press the voltage button and you can measure the peak-to-peak, average and r.m.s. a.c. voltage.

When I held the scope's probe a few inches away from the mains lead I got the following readings: frequency $50 \cdot 00 \mathrm{~Hz}$, period $20 \cdot 00 \mathrm{~m}$ secs, duty cycle 50.5%, voltage 368.7 mV p-p, average voltage $2.8 \mu \mathrm{~V}$ and peak voltage 127.0 mV .

Use of the delayed timebase facility with the frequency mode makes it possible to isolate an event for a frequency measurement.

Cursor Measurements

These are horizontal and vertical markers that appear on the display so that custom voltage and time measurements can be made. Press the cursors button and another softkey menu, with six choices, appears. Now check the signal's time or voltage. Fig. 2 shows how the cursors' function can be used to measure the frequency of the ringing on a pulse.

Print/Utility

An interface socket at the rear of the scope can be used with Hewlett-Packard's parallel interface module to print out what you see on the screen.

ScopeLink Software

The ScopeLink Software package brings the power of your PC to the scope. You can use it to transfer scope traces to a PC for viewing, storage or printing - it's simple to do. The traces can be combined into reports, technical papers and service data. and everything can be stored on a standard computer disc. Computer stored set-ups can be loaded back into the scope to restore a previous set-up.

Test and Interface Modules

For design and other advanced work several interface modules are available. They plug into the scope's interface socket. Module HP54651A is an RS232 interface, module HP54650A an HB-1B interface and module HP54652A a parallel interface. The HP54657A and HP54656A are test automation modules.

Power Requirements

There's no mains input voltage adjustment: the scope adjusts itself automatically to suit any a.c. input between 100 V and 240 V and any mains frequency between 45 Hz and 440 Hz .

Reliability and Safety

As service engineers know only too well, any piece of electronic test equipment can fail. The HP54600A has been designed with high reliability in mind however: it passes the rugged environmental requirements of the US military MIL-T-28800D specification, which includes EM1 levels. There's a standard three-year warranty that can be extended to an optional five years, and in addition you can self test all the functions and calibration on your own bench.

Press the SelfTest and keyboard softkeys and a pictorial diagram of the front panel appears on the screen. Press each key in turn and if all is well a corresponding block on the screen turns dark green. Rotate each knob and an arrow on the screen points in the direction you rotated the knob. There's also a SelfTest function to check the RAM and ROM.

Safety standards conform to the following design and product specifications: IEC $348 / \mathrm{HD} 401$. UL1244. CSAC22.2 No. 231 (Series M-89). These are tough-to-meet US standards. The instrument also meets the requirements of the EU's EMC directive 89/336/ECC. During operation a barely audible built-in fan keeps the scope cool, as with a PC.

The Range

There are two other models in the HP54600 range. The HP54601A is a four-channel, 100 MHz version while the HP54602A has a 150 MHz bandwidth with channels 1 and 2 and 250 MHz with channels 3 and 4 . The accompanying photograph shows the HP54602A, but all three models are similar in appearance. Unless you want the scope for some highly specialised purpose, the HP54600A will fully satisfy the needs of the service engineer.

Conclusion

These scopes are not cheap, but they are good value for money. They are beautifully constructed and without exaggeration represent the leading edge in advanced technology. The user can expect many years of satisfactory service. Another advantage is the built-in computer circuitry that enables you to check quickly or adjust the calibration of each range.

The HP54600A is perhaps the most powerful oscilloscope I've ever handled. It was a real wrench when I had to return it to Hewlett-Packard. It's suitable for all types of TV, VCR, digital and computer servicing work, and is especially useful when seeking the cause of intermittent faults. The 100 MHz bandwidth enables it to check virtually every signal section of a TV set, a VCR or a high-tech computer.

The HP54600A is priced at $£ 2,054$, the Model HP54601A at $£ 2,469$ and Model HP54602A at $£ 2,801$ (all plus VAT). Many thanks to Debbie Scope who arranged for the loan of the HP54600A for this test. Any enquiries should be sent to Hewlett-Packard Ltd., Cain Road, Bracknell, Berkshire RG12 1HN (telephone 0344362 764).

Next Month in TELEVISION

TV/VIDEO SPARES GUIDE

Free with next month's issue of Television, the latest updated edition of our Spares Guide, listing brands, manufacturers' spares departments and spares suppliers.

INSIDE THE FERGUSON ICC6 CHASSIS Although the ICC6 chassis is intended as a 'simple' one aimed at the 'popular' section of the market it's loaded with features and employs state-of-the-art technology. Next month Mark Paul takes a look at the techniques used in this recent chassis from the Thomson stable.

IMPROVED CARRIER TAKE-OFF FOR NICAM The use of a separate Nicam decoder can cause problems when the receiver that provides its input has a standard i.f. strip. Keith Cummins discovered that the only way of avoiding interference from vision harmonics, and intermodulation, was to convert the receiver to parallel i.f. operation, i.e. use a SAWF with separate sound and vision autputs to drive separate i.f. circuits. Fortunately his Sony receiver was suitable for this modification, but the added sound i.f. module devised for the purpose might well be adaptable for use with other chassis.

JVC GR45 FAULT NOTES

Keith T. Keeton provides a fault run-down on this camcorder.

MICROVITEC GAMES MONITOR

Peter Hubbard describes servicing experiences with the Microvitec LCCD02/03 games monitor (a version of the Cub).

A SATELLITE TV MODIFICATION

Brian Ewan describes a modification to the Uniden $\mathbf{7 0 0 7}$ satellite receiver to enable it to be used with the standard- or bullet-type Marconi LNB.

ORDER FORM
To.

(Name of Newsagent)

Please reserve/deliver the October issue of TELEVISION (£2-20), on sale September 21 st, and continue every month until further notice.

Name.
\qquad

Donald Bullock

The bell went early one morning, as I was taking a shower. It kept on ringing. I half dried myself, scampered into some things and ran to the front door. There I met Mr. Sickener for the first time.
"It's my Sharp microwave" he said. "I know what's wrong with it, and it isn't much. I've opened it of course. There's a D-shaped plastic thing under the turntable and it's cracked. How long would it take you to get the spares and do it?"
"A couple of days" I said.
On hearing this he clasped his hand to his bald pate and spun round on his heels. "How will I manage without it for that length of time? Give me your card and I'll decide. There are a few other dealers keen to do it."

So I had to find my keys, walk to the workshop and open it to get a card for him. I didn't like the look of him, and hoped that it showed. I mentioned that Snoddies does microwaves, and that Crubbs Foodstore doesn't but sells new ones very cheaply. At that he left.

He was back with the machine a few minutes later, and I had to go out to the workshop again and unlock it to book the oven in.
"Can we try it?" he asked, picking up the plug and looking around for a socket.
"No" I said, "we aren't open yet."
So he opened its door and began to dismantle the turntable assembly. "Oh, by the way, there's a burning smell when you switch it on." He gazed at my shirt, then my feet. "I. . . er, I'll be going now" he said.

I went back to the house and looked in the mirror. My shirt was on backwards. Then I looked at my feet - I was wearing sandals: there were odd socks, one dark grey, the other maroon.

A little later I took a look at his microwave. It was ancient. On the side, near the back, there was a Snoddies' sticker. "Not worth repairing" it said. Cripes, if they'd passed up the chance of a fast quid, there must be something wrong. We soon found that the machine had been badly pulled about, and that the nasty smell when it was switched on was because it was filthy inside.

When Mr. Sickener returned we told him the bad news and placed the
machine on the counter in front of him.
His reaction was fast. "I suppose you want another fifteen quid, just to tell me to clear off?"
"Eh?" I said.
"That's what Snoddies just did."
"No charge" I said. He grabbed the machine and fled.

Mr Runty's Sony

The next caller was Mr. Runty. He's tiny, and apparently to compensate for this he indulges in circumlocution.
"Ah, Mr. Bullock, my - ah - Sony televisor has I fear developed a malady. I have it in my vehicle. It has shrugged off its mortal coil."

I had to struggle to get it out and on to the bench - it was a KV2090 series receiver (XE4 chassis). As he left I checked and smelt the mains switch, which was all right. So, having had several of these sets in before, I studied the underside of the main panel. Sure enough there were some dry-joints. There are five 10W wirewound resistors in two batches. The first batch consists of R621 and R622. They both stand upright and the centre lead of each one was dryjointed. The same applied to the other batch - R637, R640 and R601. I removed them all in turn, cleaned and tinned the leads and resoldered them in. The set then worked a treat. When Mr. Runty returned he was delighted.
"Ah, Mr. Bullock, my gratitude is unbounded. How can I indicate my indebtedness to you?"

I tapped my finger on the bill. "By remunerating me and perhaps adding an honorarium." Then I added "I got that little lot off a sauce bottle".

Warder Phil

Warder Phil was our next caller. He had brought along a Toshiba set. "Belongs to old Mrs. Downe" he said. "She's bedridden. Her stupid son looked after her until he got himself put into our place for a month for kicking up a rumpus after a night out. I'd like to get his ma's set fixed though."

Typical of Phil. The Toshiba set's beacon light came on when the on-off switch was pressed, but went out when
standby was touched. We didn't have the circuit but opened it up and turned the chassis on its side to examine the print around the line timebase. I soon found transformer T401 so dry-jointed that I was able to lift it off the panel. Cleaning the pins and resoldering the transformer into the panel restored normal results, though the tube was a bit low.
"How much do I owe you?" Phil asked when he called back.
"What do you get for doing the running about?" I asked.
"Well, nowt" he grinned.
"And that's our charge too."

A Radio-cassette Player

Then Mrs. Suet rolled in and plonked a Pye 9014 radio-cassette player on the bench. She opened her mouth and a noise like a saw on a sheet of tin emerged.
"Can you mend these?" she asked.
"When we do, it's sheer luck" I replied. "What's up with it?"
"The radio is all right, but when I play my Shirley Bassey tape there's a loud whining noise followed by a sharp tapping. What does that tell you?"
"That there's a midget in there with taste" I said. We later found that the 'knocking' was a harsh crackling caused by the cheap two-pin mains plug not gripping the socket properly while the 'whining' was caused by an up-ended resistor lead that rubbed against the capstan.
"I've let the little fellow out, Mrs. Suet" I said when she called back. "And boy did he go. If I were you I'd swap that cassette of yours for a Bing one."

Amstrad PCWs

I was telling Steven that there's something up with my Amstrad PCW8512 monitor - the one I keep in Spain. I'm not sure whether the tube has become muzzy or whether the main board that provides its supply voltages is in trouble. I could do with a redundant one for spares - say one with a useless disc drive. One that's perhaps not worth mending.

Just then Mrs. Scribe came in. She's a housewife who does some writing and was carrying her Amstrad PCW82512.
"I know you use Amstrads" she said. "Can you repair mine? The second disc drive won't boot up when I put a disc in. If the drive's finished you can keep the machine for spares I'll get another." And off she went.

When I slipped a disc in nothing happened. So I pressed the little disc release button and the machine didn't give it back. I opened the monitor, took the second disc drive out and opened it. The release mechanism was dry. So I cleaned and lubricated it, floating a spot of thin oil on a drop of water and using a fine screwdriver to apply, sparingly, a film of oil to it. After that the release mechanism worked well. While we were at it we treated the other moving parts, including the worm drive.

The disc drive now worked, but the screen remained blank. I saw that although the drive motor was running the disc didn't revolve. There's a spring lever with a felt pressure pad that presses on the surface of the disc. When I gently lifted it to reduce the pressure the disc spun and the machine booted up. Was the pressure too great then? I checked and it wasn't.

Perhaps the drive was weak? I unplugged and swung open the PCB that hides the mechanism: the thin belt that couples the drive motor to the disc drive hub was perished and no longer supple. We found an identical one and fitted it. The machine then worked well.

When I'd reassembled it and set it up I typed a four-word sentence. Steven glanced over as I printed it to test the printer. "This was nearly mine" it read.

Mrs. Scribe was delighted that her Amstrad had been so easily and cheaply repairable. "By the way" she said, "my hubby reads me all your tales of woe about telly servicing. Is it true that the local BBC was after you
to talk about your funny experiences in the trade?"

I nodded.
"Why not write a proper book about them? You ought to, you know."
"I've a mind to do just that" I replied.

A Samsung Portable

Our next caller was Councillor Glorie. He's bulky and scruffy and winks every time he speaks, as though it's only just him and you. He brought along his 10 in . Samsung set, a CI212R, which you also come across as the Nikkai Tara 10. The manual, which refers to the set as the 3ZSMC1 210 R , can be obtained from either firm. Take my tip and get it from Samsung - it'll cost you a lot less than from Nikkai.

It's a complex little set. This one was dead though the Councillor reckoned that sometimes, after it had been switched on and left for an hour, it would burst into life for a minute. He had taken it to Snoddies and, to give them their due, they had tried, having added a pound of solder to the print and replaced a number of 2 SC 1685 transistors in the power switching circuit with 2 SC 945 s, which have a better specification.

There should have been 15 V or so across C516, the $10,000 \mu \mathrm{~F}$ reservoir capacitor for the bridge rectifier D213, but the voltage here was very low. Disconnecting the series regulator transistor Q131 and its driver Q130 promptly restored the voltage and I spent a long time, as Snoddies had, looking for a switching circuit
fault without success. I replaced C516, which made no difference, then suspected the TMP47C433AN microcontroller chip ICl05. One had to be ordered of course. When it arrived and was fitted there was again no difference.

I stared at the chassis and thought hard. What could be pulling the voltage down? And if disconnecting Q130 and Q131 restored the voltage, why couldn't I find a nice hefty short? And why did the set sometimes come to life for a minute after being switched on for an hour?

And another question. Why was I a TV engineer when all around me other chaps were doing much better at less wearisome jobs? Too late to remedy that I reflected. Then I thought even harder about the Samsung set and got an idea. Rather than being pulled down by a short, the low voltage could be caused by lack of charge. I'd cleared the reservoir capacitor, but suppose that the bridge rectifier was providing an only niggardly current flow? Enough to charge the capacitor but not enough to keep it charged when the regulator circuit was connected. This would also explain why the set could spring to life briefly after being left switched on for an hour: there could be enough charge in the various capacitors down stream for a quick burst of operation. Enough of theory I decided. Time to check it out, by replacing the bridge rectifier. It's type RS602. When this had been done the set sprang to life every time. So there's one for the records: a delinquent bridge rectifier.

And another satisfied customer.

Answer to Test Case 381
 - see page 781 -

Even as this is being written casualties from that electrical storm are still lying in the workshop - waiting parts, waiting decisions and waiting diagnoses. The poor old Samsung video is not among them however: it's back at home, functioning perfectly well with its third microcomputer chip firmly in
control so that all the right things are done. The chip was fitted at one of the regular repair benches, using a lowvoltage soldering iron and a conductive wrist strap, both earthed. And that is the key to the whole story!

You'll remember that Roger was working at a temporary work bench with no static-charge precautions, using an ancient mains-powered soldering iron. Either of these, or his rushing to and fro across the lino-clad floor, could have been responsible for the demise of the sensitive CMOS
microcontroller chips, which had come carefully packed in conductive foil and special anti-static bags. It really does pay to follow the recommended precautions against punchthrough by a static charge when replacing a chip of this type. The effect of static damage is not always immediately obvious: trouble can develop days, weeks or months after carrying out a careless replacement.

The old soldering iron has been chucked out. A gleaming new soldering station has taken its place!

[^1]
ELECTRONIC TEST EQUIPMENT

Audio - Video- Television - Satellite TV - Telecommunications
The manufacturer who cares about quality \& features rather than being lowest in price !

Audio Analyser

Model AA-930
Multi-function meter. Measures distortion, wow \& flutter, stereo power, signal levels in out; penerates audio test signals. Features include large clearly
marked analogue meters. Performs marked analogue meters. Periorms instruments. $£ 490$

Television Pattern
 \section*{Generator}

Model GV-698/11
32 patterns, 32 internal memories. PAL/NTSC/SECAM standards, with I, B, G, H, M1 N, D \& K, NICAM, teletext all

Optional on screen logotype. (Other pattern generators available from £ 210). £ 1428

Television Pattem Generator Model GV-298

Compact high performance generator, RF and video outputs. Frequency range same as $\mathrm{GV}-688 / 11$, 37 to 865 MHz . Circle pattern included. £ 433

TV \& Satellite Level Meter Model MC-360
 compact and rechargeable battery
operated. $£ 654$

Frequency counters

FD-250 covers 20 Hz to 160 MHz and FD-252 covers same, plus 100 MHz to 2.4 GHz . Large L.E.D. display. Wide performance at low cost. $£ 153 \& £ 206$

TV \& Satellite Level Meter Model MC-944

This meter has everything for the top flight installer of aerials, dishes, CCTV MATV, SMATV and other systems. Features include TV monitor, spectrum analyser, sync pulse, teletext, printer output, 99 memories, tuneable audio subcarriers, etc. Full autocorrection for superb, unequalled accuracyl. RS-232 as standard. £ 1895

PRDMAX

The company has been producing test equipment in Spain for over thitty years, earning a strong reputation for excellent engineering, quality performance at budget prices. The equipment is supported by Alban Electronics from their St Albans facility. These products are suitable for only proiessional and educational applications and enquiries.

$\begin{array}{ll}\text { Low Distortion Low Frequency } \\ \text { Generator } & \text { Model GB- } 212\end{array}$
20 Hz to 200 kHz , harmonic distortion 0.02% maximum over audio band. Frequency counter resolution as high as 0.1 Hz . 600 ohms impedance. Output level attenuation range 60 dB , with analogue meter for setting accuracy. Excellent output level flatness. £219

Function Generators Models GF-230 \& GF-232

Two versions available: 0.1 Hz to 1 MHz and 0.2 Hz to 2 MHz . Producing sine, triangular and square waveforms, with variable symmetry. Excellent performance. $£ 1534$ \& 206

CRT Rejuvenator
Model TA-903
Similar to TA-901, but has three meters to montior cathode current. Special technique allows repeated rejuvenation of CRT. Supplied in attache style case, for easy field and workshop use. \& 498

R.F. Spectrum Analyser Model AE-566
1 to 1000 MHz , with 950 to 1750 MHz option. Built-in tracking generator. Offers spanwidths from 1 MHz to 1000 MHz . Includes normalizer. This analyser is ideal for production and educational applications, as well as R+D. £ 2800

CRT Rejuvenator Model RT-501 B

An assential tool for every TV workshop. Promax have made many thousands. Supplied complete with a set of base adaptors. £235

TV/FM Level Meter Model MC-160 B
The aerial installers best friend. Calibrated for accurate signal level measurements. Digital frequency display ensures correct signal

Buit-in demodulator for easy station ident, and light in weight, but has outstanding technical

We are able to supply a complete range of oscilloscopes. These include both analog and digital types, covering bandwidths of 20 MHz to 100 MHz . quantity.

Prices shown exclude VAT, but includes UK delivery. Most items available for immediate despatch.

[^2]AMSTRAD HANDSETS
VCR4600, 4600MkII
VCR4700 (Not long play)
VCR5200
VCR6100 (Indexer)
VCR6100 (Barcode Indexer)
VCR6200 Barcode
VCR9000 (Old type)
TVR 2
TVR 3
SDR400 (Equivalent)
SRD500
SRD510/520
TS90/99 Tower System GOODMANS VCR102 PROLINE 5100TX

AMSTRAD LOPTS

CTV1000 FB182K
CTV2000 FB171 CTV2000 FB171K CTV2200 3722002 CTV2210 3722002
TVR 3181297
PC12-HRCD/D MSH1FCT31 PCW9512,8256,8512

FERGUSON LOPT
MM06 00D4242001
AMSTRAD TUNERS
UE33-B01 VCR4600/4700 UE2-B31F CTV2200/2210
1810829 VCR5200
ENV87358F2 VCR7000
ENV87509F2 CTV1400

Harrison Electronics

CENTURY WAY, MARCH, CAMBS PE15 80W
FAX: (0354) 51416. TEL: (0354) 51289

AMSTRAD IF UNITS
11.75 TPS7:B0006 VCR4600/4700
17.63 TPS7-L0002
11.751813766
29.85 AMSTRAD
32.44 MODULATORS
11.7518196221 VCR5200
8.46 ENP-E730-2 VCR7000
4.10 VCR4600Mkll,4700
11.05 SRD100/200/400
1.75 AMSTRAD PCB
13.81 HYBRID-LUMINANCE
11.75 AMSTRAD VCR
17.63 MECHANISMS

4500,9000 (Old model)
CASSETTE HOUSING ASSY.
11.75 CYLINDER ASSY. (incl. Video
9.40 heads)
9.40 CYLINDER LOWER DRUM ASS
14.10 (Excl Motor)
13.51 4600, 4700, TVR1,2,3
14.10 MECHANISM DECK (Excl Cass.
7.05 housing \& Cylinder assy.)

CYLINDER ASSY. (incl.
Video heads)
4.70 CYLINDER ASSY. (excluding Video heads)
9.40 CYLINDER LOWER DRUM ASSY
5.88 (Excluding Motor)
7.05 HEAD BASE ASSY. (Audio)
7.05 VMC 100 - Various parts available,
5.88 please phone for prices

AMSTRAD MOTORS
Loading Motor MCB9B02
Drum Motor E20EL05
Capstan Motor LLN4B21
Capstan Motor JLN4BO2
Tape Loading MCF9B02
Cassette Housing RF280R

AMSTRAD PCB's

9.40 (Complete, fully populated)
14.104500 Timer
14.104500 Systems Control 4600 Systems Control/Servo Display \& Control PCB's 4600 Display
7.054600 Control
5.884600 Video \& Audio
5.884600 Power Supply
5.88 4600Mkll Main PCB Assy 4600 Mk II Timer 4600 Mk II Control
9.40 4600Mkl| Head Amp 4600MkII Power Supply 4700 Main PCB Assy 4700 Timer 4700 Control
15.284700 Head Amp Assy. 4700 Power Supply
25.265200 Timer \& Channel Disp.

5200 Video
9.995200 Switch!Panel

6000 Power Supply
6100 Mains PCB
6100 Audio FCB
18.806100 Power Supply

6100 Hybrid, Chrominance
25.266100 Hybrid, Luminance

7000 Switch PCB no: 7
20.56 CTV1400 Switches, Presets \& Tun (ENV87358F2)
9.99 CTV1400 Switches, Presets \& Tuner

58 (ENV87509F2)
CTV2200 PCB no:3
53
CTV2200 PCB no: 4
TVR 2 Main TV PCB
TVR 3 Main TV PCB
TVR3TV Power Supply
10.58 TVR 3 Head Amp Assy.
9.99 TVR 3 Video Power Supply
9.99 10.95-11.7GHz LNB
9.99 2.3dB NF. 'N’ CONNECTOR
9.99 (DRAKE, NO FEED HORN)

53

AMSTRAD SERVICE

MANUALS

11.75 VCR4600 9.00
$\begin{array}{ll}9.40 \text { VCR4600MkII,4700 } & 9.00 \\ 9.00\end{array}$
$\begin{array}{lr}\text { VCR6000/6100 } & 9.00 \\ & 11.50\end{array}$
VCR7000
VCR8700
VCR8800
VCR9000/9004
VMC 100
SRX100/200
AMSTRAD COMPUTER
OPERATORS MANUAL
PC1640 1175
PC2286/2386 11.75
AMSTRAD PC12MD
VGA MONO MONITORSuitable for use with 2000/3000series and any other VGA compatible
PC 64.63

05 AMSTRAD SOFTWARE
29.38 ACCOUNTSMASTER 17.63
7.05 (Full accounts program for running
7.05 small business on any PC)
9.40 LINKMASTER
11.75

Many AMSTRAD COMPUTER \& PRINTER SPARES available, please phone for price.

PRICES INCLUDE VAT.

 all items are brano mew and guaranteed * * SAME DAY DESPATCH * Write or Phone for FULL LIST.**POST \& PACKING** **EXTRA** 四

J.W.HARD7 YOUR ONESTOPSHOP

FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE

W민든 SMATV
DIAMOND AERIALS UHFFFM

commumicanoms
FIRST IF, SMATV
191.1 communications UHF AERIALS UHF AMPLIFIERS
Labgear Coblevision SMATV

TH
 LENSON HEATH SATELLITE ANTENNA

SATELLITE
PACE
RECEIVERS
SATELLITE DECODERS
 RECEIVERS

A PROMAX
TEST EQUIPMEN

mungo
BOLTS
PLUGS
Tellester SMATV
TRIAX U.K. UHFNHF
TOWER clips
UNICIFIX CLIPS VOLEX
RAYDEX COAXCABLES

- WE PROVIDE FULL TECHNICAL ASSISTANCE AND SERVICE BACK UP

ON ALL OUR PRODUCTS
SMATV - DISH SHARING - DESIGN CONSULTANT

RENTAL FINANCE

Expand your CTV and VCR rental business with no capital outlay and increase your profitability.

Broughfame has the solution and their rental finance plan will provide facilities from £2,500 upwards.

For further details ring or write to Bob Wickham at the address below:

BROUGHFAME LIMITED
115A ST JOHN'S HILL SEVENOAKS

KENT TN13 3PE
Telephone: (0732) 743400
Fax: (0732) 743335
GUIDED MISSILE CONTROL CABLE 4,200 MTRS

only £14.99

UNBELIEVABLE CABLE BARGAN

SUITABLE FOR UP TO THE MINUTE ELECTRONICS ENTHUSIASTS

 this top quality, government standard exceptionally thin 4 core cable.This cable is almost Impossible to detect with the naked eye when used for domestic applications.

A mega 4,200 metres on each reel, very thin four core cable, originally manufactured for the SWINGFIRE and other missile systems. 4 insulated wires 0.12 mm dia copper plated high tensile steel overall dia approximately 0.5 mm . Each core is insulated with Lewmex \mathbf{T} Enamel and overall the four cores are lapped with count cotton and wax impregnated. Supplied on a plastic reel 6.25" $\times 5.5^{\prime \prime}$ and weighs only 2.75 kg .

Almost too many suggested uses, security wiring, communications, remote control, binding, garden, farm, invisible securlty wiring, plant support, bird scaring, wire rope for models and school mechanics, site layouts, fabric and plastic reinforcement, alarm wiring for whole walls, and of course for fishing with its substantial 281b breaking strain.!!!

MODELS

Wired remotes for boats and planes
COMMUNICATIONS
Field phones/Buzzers and telephones

GARDEN

Bird scaring, trip wires and plant support

FARM

Fence binding, Crop support, alarms

ALARMS

Connect up systems and conceal under wallpaper, carpet, etc

SCHOOL
Physics and Science Lab, Art Department
REINFORCEMENT
For fabric, plastic and window displays
FISHING
Illuminate floats with multi colour LED's

WIRING
Give Models a realistic look with working mini bulbs. Cars with flashing lights, aeroplanes, dolls houses with room lights, etc.

BULL ELECTRICAL
T/AS "WALTONS"
55a Worcester Street
Wolverhampton
Tel: 090222039
Monday - Saturday
9.00am-5.30pm
(SORRY NO MAIL ORDER SERVICE AVAILABLE FROM THIS OUTLET)

DO YOU KNOW?

A COMPANY WHO CAN REPAIR/REALIGN ANY UHF TUNER.
A COMPANY WHO CAN REPAIR ALMOST ANY BOOSTER/MODULATOR BE IT VIDEO OR SATELLITE.
A COMPANY WHO CAN REMANUFACTURE ALMOST ANY VHS VIDEO HEAD.
A COMPANY WHO CAN REMANUFACTURE ALMOST ALL POPULAR LNB'S ON THE MARKET.
A COMPANY WHO CAN REPAIR AND TURN ROUND 90\% OF GOODS RECEIVED THE SAME DAY BY 1ST POST.
A COMPANY THAT CAN CONSISTENTLY CUT YOUR SERVICING COSTS
PHONE OR FAX THE NUMBERS BELOW FOR YOUR FREE WALL CHARTS/PRICE LIST.

PHONE: 061-746 8037/8

WHO

 MCES FAX OF COURSE 061-746 8136 15 LOSTOCK ROAD, DAVYHULME, MANCHESTER M31 1SU.
BiOMH\& MHIF GFNDHM= DEOOUNI Pi $-2=5$
 LEADING BRANDS TESTED, BOXED \& COMPLETE
 STOCK ITEMS INC. 14" to 33" CTV VGR ALL MODELS PORTABLE AUDIO - MINI \& MIDI SYSTEMS MICROWAVE OVENS A SPECIALITY HITSMOWTIS SPEHIAL OFFHV
 FilDCES \& FiJ= $24=18$, CAS AND = = न Hin coon =its CNUFIAGHII= CDIs 1043LEEDSRD, KG PLRCHASAMG LTD THORNBURY, BRADFORD B0370B

FREE

TV and VCR

COMPONENTS CATALOGUE
HUGE RANGE OF SPARES
COMPETITIVE PRICES

PLUS

TV TUBES

RE-PROCESSED
NEW
B GRADE

Over 150 Types in Stock VISTA are BSI approved

FAST DELIVERY EFFICIENT SERVICE

FOR CUSTOMER CARE AND SERVICE CALL TUBES: 0429837100 COMPONENTS: 0429838057

FAX: 0429837101

Vista Electronics Ltd
Unit IB, Wingate Grange Industrial Estate, Wingate, Co.Durham, IS28 SAH.

WESTERN TRADE SERVICES
EST 14 YEARS
SUPPLIERS OF EX-RENTAL
TV \& VIDEO
THORN AND NON THORN

SOUTH WEST

2A Barton Hill Road, Torquay,
Devon T02 8JH
Tel: 0803312222
Fax: 0803326767
Delivering throughout Devon and
Cornwall weekly

WALES

Unit 6, Islwyn Workshop, Portymaester Ind Est, Risca, Gwent
Tel: 0633612667

BRITAIN'S LARGEST INDEPENDENT

WE EXPORT

FAX THE BIGGEST WHOLESALER FOR THE BEST DEALS THE LARGEST EX-RENTAL SUPPLIER FOR EXPORT 1993 WE EXPORTED 25,000 UNITS. WE WILL EXCEED THIS IN 1994

THE GREATEST SELECTION OF

- BRAND NEW -

21" FST FASTEXT WITH ON-SCREEN GRAPHICS 12 MONTHS MANUFACTURER'S GUARANTEE - 950 AVAILABLE

PRESTON	BIRMNGHAM	LONDON
139 Oakshott Place	208 Bromford Lane	Unit 2
Walton Summit Ind Est	Erdington	The Royal London Est 29/35 North Acton Road
Preston (M6 Junc 29)	mingham B 24	London NW10
Tel: 0772312101	-3273273	Tel: 081-961 5005

| EAST ANGLIA'S PREMIER WHOLESALER |
| :---: | :---: |
| EX-RENTAL TV \& VCRs |
| TOP QUALITY STOCK |
| BEST POSSIBLE PRICES |
| RING FOR DETAILS (0362) 691611 |
| NEW 'B' GRADE |
| EXPORT ENQUIRIES WELCOME |

CHRISTMAS WILL SOON BE HERE!! DON'T BELEFT SHORT!
 STOCK UP NOW AT SUMMER PRICES LARCE STOCKS AVAILABLE NOW!!

WE^STOCK: HITACHI, PHILIPS, GEC, FERGUSON, GRUNDIG, SHARPS, etc.
Front Loading Video from only £20 F.S.T. Text TV untested from £ $£ 40$
Standard TVs off the pile
from $£ 5$ F.S.T. Text tested
from E 80
Teletext TVs off the pile
from $£ 30$
NICAM Teletext
from $£ 120$ working
Large Quantity of very late model Videos wrapped with Handset and Instructions,
Guaranteed - only £65!!
makes include Hitachi, Solara, Akai, Sanyo, Philips, Ferguson, etc.
"SPECIAL" Slim Modern Front Loading Video working perfectly only $£ 45!$!
New TV/Video Stands $£ 3.00$. Replacement Panels available
Testing Facilities Available, Delivery Arranged (UK)
Open Mon/Fri 9 to 5, Sat 9 to 4, Sunday by appointment
Visa/Access

Few minutes end of Motorway (M62/M606)

Ring our Hotline
0274308186

FREE!! Coffee, Tea, Pop, Bacon/Sausage/Egg Sandwich or Altogether, Loud Music (Cabaret when available)!
Call Today - Bring Money!!

BESCO LTD

Serving the Trade for over 25 years
Walker House, Bottomley Street, Bradford 0274308186

TV WHOLESALE

Leaders in the supply of:

Ex-rental, End-of-line, Customer returns and Surplus stocks of
Televisions, Video and Audio Equipment, and Domestic Washing Machines, Dryers, Refrigerators, etc.
to the Trade
Contact your nearest Area Manager for latest prices:
Area
Contact:
Telephone No:
Facsimile No:

South East South West North Northern Ireland

Colin Gordon
Tony Lewis
Ian McClelland
Graham Jess
$0374738701 \quad 0227741312$ $0374732784 \quad 0291425018$
$0831597331 \quad 0244400602$
0232779818
0232779745

EX.MAIL ORDER TV VCR \& HI-FI

AUDIO HI-FI
PORTABLE RADIO CASSETTE with outostop, 3 band tuner.

PORTABLE RADIO CASSETTE
HI-FI with tutastiop,
OTR, 2 bead tonner: 10.00
PORTABLE RADIO CASSETTE
H1-FI wilh win fape
deck, 2 baind luref E 2.00
MIDI H-FI with record deek,
twin tape deck;
3 band tunat

CD MIDI HI-FI with programmable CD player, twin tope deck, 3 band funer.

TWO PIECE CD HI-FI with programmable CD player, twin tape deck 3 band tuner.

CD MIDI HI-FI with programmable CD player, record deck, 3 band tomer.

CD MAD H H-A with pregramathe CD ployer, record deck 3 band tuner bass boost surround sound

TWO PIECE CD MICRO HIFI with programmable it player. remote, 3 band fluer.

MULTIPLAY CD MDI HIFI wilh 5 disc progzamatile (1) ployer, recofd deck. 3 band funet.

TELEVISIONS
10"PORTABLE TV wiifi moins/ battery operation, on-screen display.

20" REMOTE TV with on-screen display.

20" FASTEXT TV wifi on-5creen display, nulizpage memofy scort sodket.

$21^{\prime \prime}$ FASTEXT N witin on-screen display, multi pafe memory: scart socket. NICAM CONVERTOR [BRAND NEW)
NICAM STEREO RECEIVER. converts any W for nicam steren reception, 60 Wuths PMPO_{3} 2-way speenters, rentote.

14 PAYNE ST,

 PORT DUNDAS, clascow. ga olf TEL: 0413531665 Fat: 0413531124VIDEOS
TWIN SPEED VCR with on-screen proffanming, scart socket.

TWIN SPEED VCR wition of-creen programming, outo trackịg, LCO dispatay,
 stan sacket.

OPENING TIMES: MON-FRI:9.00-5.30 SAT:9.30-5.00

\square VIIION CARE

RECONDITIONED WORKING STOCK

VIDE	1
Top Loading VCR.............. $£ 35.00$	Basic CTVs................ from $£ 15.00$
Front Loaders with R/C....... $\mathbf{£ 4 5 . 0 0}$	Remote CTVs.............from $£$
Twin Speed VCR with R/C $£ 55.00$	Teletext CTV
Ferguson FV11R/3V55......... 665.0	FSTs
"B" GRADE WORKING STOCK	
	Now Available
Remo	
cam	Major Brand
	Latest Nicam, Fastext, Prologic
NEW. $14{ }^{\text {a }}$ Remote Control Portable CTV 12 months (Parts) Guarantee 599.95	
E-180 EXTRA CRADE VIDEO TAPE (min 50) 50.79	
Self adhesive black ash vinyl $15 \mathrm{~m} \times 450 \mathrm{~mm}$ for TV cabinets etc	
SHARP, GOLDSTAR, HITACHI, AKURA, TOSHIBA, etc * \star CAMCORDERS NOW AVAILABLE **	
40 Invincible Road, Farnborough, Hampshire GU1470U (Ex Teleprice Unit)	
Tel: 0252-512161 Fax: 0252-524388	
OPEN MONDAY TO FRIDAY 9 am -5.30 pm EXPORT ENQUIRIES WELCOME	
We will be moving by the end of August into new premises - please ring	

EX PORT ENQUIRIESW ELCOME

Centretrision

CENTREVISION HOUSE • SLOPER ROAD - LECKWITH

LARGE SELECTION OF REFURBISHED STOCK READY FOR DIRECT

RE-SALE
Complete with Instruction Book \& Handset

LARGE DISPLAY OF
FST, TELETEXT, FASTEXT, NICAM STEREO

100s OF VCRs NOW IN STOCK

SPECIAL OFFERS

$5 \times$ BASIC DORIC Mk4 WORKING - £25 each
$5 \times$ BASIC Mk3 WORKING - £11 each All above prices + VAT

PHONE 0222344754 FOR OUR

 UNBEATABLE PRICES Fax No: 0222344218

TELEPLACE SCOTLAND

TV \& VIDEO WHOLESALE.

Working Faulty Refurbished Stock Delivered.

8, Colquhoun Park Hillington Industrial

Estate
Glasgow
G52 1XX

041-883 2610

C.T.V. (NORTH EAST) 9A/B, 94 Carrmere Road

 Leechmere Ind. Est. Sunderland SR2 9TENo. 1 in the North East for all makes and models of high quality ex-rental televisions and video recorders at very competitive prices

For Further Information Please Contact Nick or Brian on 091.5235554

Fax: 091-523 8035
Export Enquiries Welcome.

GREATER MANCHESTER'S NO 1 WHOLESALER

TV WHOLESALE

$\begin{aligned} & \text { CWorv } \\ & \text { Wrovesale !50. } \\ & \text { Wrorss } \end{aligned}$	AERIALS FOR TV \& FM RADIO, PLUS	UA
QUALITY USED TV \& VIDEO	BRACKETS, LASHING KITS CLAMPS. PLUGS, CABLES OUTLETS, DIPLEXERS ETC	TVAMD M D 50
TV's AND VIDEOS MOST MAKES AND MODELS AVAILABLE	AMPLIFIERS FOR DISTRIBUTION SYSTEMS AND DOMESTIC.	E
STOCK ARRIVING DAILY TV's from $£ 3.00$ Videos from $£ \mathbf{3 0 . 0 0}$ Prices Ex-VAT	MAST HEAD OR SET BACK WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK	Working or non working Slimline front loading VCRs from $£ 50$ plus VAT.
Free Delivery Service to most areas of the UK	MAIN DISTRIBUTORS	ext TV (not FST)
UNIT 75, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB	FOR ANTIFERENCE LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE	$\text { from } £ 40+\text { VAT }$
Just 10 Mins from M5 Junct. 6 Worcs North UK's LARGEST EXPORT WHOLESALER. CONVERSIONS TO MOST COUNTRIES	COASTIAL AIEIIIAL SUIDIDILIES	Telephone 0925-411608
0299-879642 (3 lines) FAX: 0299827984	UNIT X2 Rudford Industrial Estate Ford, Arundel 0903723726 NO MINIMUM ORDER VALUE CARTIAGE DELE ON OREROSS UK CARRIAGE FREE ON ORDERS $£ 250+$	Local delivery possible (North West only)

C.T.V. UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROIT WICH ROAD, NEAR KIDDERMINSTER TELEPHONE: 0299-251522 0836-585829:0860-809673 (24HR)	
SUPPLIERS OF HIGH QUALI	
EX-RENTAL TELEVISIONS AND VIDEOS	
LARGE STOCKS ALWAYS AVAILABLE	
ALL AT COMPETITIVE PRICES	
Also available: 'B’ Grade Products,	
Audio, and Complete Range	
of Televisions and Videos	
OPEN: MON-FRI-9.30-5.30	
E	$\begin{gathered} 0299-251522 \\ 0856-585829 / 0860-809673(24 \mathrm{HR}) \end{gathered}$
Fax: 0299-251543	EXPORT ENQUIRIES WELCOME

C.T.V.

UNIT 5, THE PHOENIX BUILDING, RUSHOCK
TRADING ESTATE, DROITWICH ROAD, NEAR KIDDERMINSTER TELEPHONE: 0299-251522 0836-585829:0860-809673 (24HR)
SUPPLIERS OF HIGH QUALITY
EX-RENTAL TELEVISIONS AND VIDEOS

LARGE STOCKS ALWAYS AVAILABLE

ALL AT COMPETITIVE PRICES

Also available: ‘B’ Grade Products,
Audio, and Complete Range
of Televisions and Videos
OPEN: MON-FRI -9.30-5.30
20: Fastext TV's \&125 \& 20" NICAM \&145
WTREE WAREHOUSE
UNIT 1, SUNSHINE MILLS, WORTLEY RD, LEEDS 12
TEL: 0532638804 FAX: 0532310275

ELECTROLUX Builf in ovens Unused and working $£ 99$ Customer returns in block. Example. Untested $3 \times 21^{\prime \prime}$ FST $3 \times 25^{\prime \prime}$ FST $6 \times F / L$ Videos $£ 40$ each. Total $£ 480+$ VAT This price does not include handsets. Some in need of repair. Some working.

> IHIS MONTHS SPECIAL

TELEVISION SEPTEMBER 1994

TELEUTSLOCLIA5SIIIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

SERVICE MANUALS

We have what is probably the largest range of Service Information available anywhere
From the Earliest Valve Wireless to the Latest Video Recorders. Colour Televisions, Test Gear, Audio, Computers, Amateur Radio, in fact practically anything.
Originals or Photostats as available.

Also available. Our FREE catalogue detailing Hundreds of Technical Books PRESS and Repair Guides available.

[^3]
Mauritron Technical Services (5TV),

47A High Street, Chinnor, Oxon OX9 4DJ Tel: 0844351694

Fax: 0844352554.
Please forward your latest catalogue for which I enclose 2 x Ist Class Stamps. or $£ 3.50$ for the Technical Books Catalogue plus Manuals index on PC Disc(s).
NAME
Address

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG • GRANADA HITACHI • HINARI • INDESIT • ITT • KIMARA • NIKKAI MATSUI • MURPHY - OSAKI • NORDMENDE • LOEWE-OPTA PANASONIC• PYE•PHILIPS•SANYO•SAISHO SHARP SONY • SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN THORN • TRIUMPH - THOMSON • GOLDSTAR - BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELTT KIIS, IDLERS, PINCH ROLLERS, TENSION BANDS.
LARGE RANGE OF REMOTE CONTROLS IN STOCK
TIDMAN MAIL ORDER LTD - 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Approx. 1 mide from Mow Bridge.
Mon-Fri 9 am to 12.30 pm t $1.30-4.30 \mathrm{pm}$

TECHNICAL B00KS
A selection from our range of books for the repair trade

FUll cross reference for all modele Full croas reference for all mode
Order MP-18. $\mathbf{8 6 . 0 0}$ TELEVISION EQUIVALENT: Lists models which are the same FAULT LISTS FOR TELLEVISIONS undreds of speciffc faults for dozens of
different makes and models. direrent makee and model
Onder $M P-206$. $\& 7.00$ TELETEXT REPPAR MANUAL Covers SAA range of boands. TELEVISION REMOTE CONTROL Dozons of Diagrame on TV POWER SUPPLY CIRCUITS TV POWER SUPPLY CIRCUITS CART Order MP-219. 510.00 SCART EUROCONNECTOR SXSTEM P.C. HARD DISC DRIVE Comprehenatve Drtve Detalls. C DIAGNORMPPS4. SK.00 P.C. DIAGNOSTICS SOFTWARE Dozens or prograns to ald you in
diagnostics of PC'e and Drtves etc.
 Set 2. Order MP-251. 122.50
VIDEO RECORDER AND CAMCORDER EQUUTVALENTS Full Cross-reference guldes.
Makes A-I. Order MP-218. A6:OO
 FAULT LISTINGS FOR VIDEO Lists Hundreds of Feults for dozens of

VHS VIDEO RECORDER PRINCIPLES Detalled guide on how it works.
Onder MP- $E 8.00$ VIDEO TEST JIO

```
Special cassette lets you oper
``` machine in tast mode. VIDEO HEAD CLEANING KIT Special kit with comprehensive
instructions on how to service heads instructions on how to Bervice h
Ordar VFCK. 55.00
Sis VIDEO RECORDER FAULTS Unique ropat fexde for beginners
Order MP-

WIRE ANTENNAS FOR H.F. OPERATORS THE Aerial book for Amateur REEL TO REEL TAPE REECORDER SERVICING Theory and circuits for repairs.
Onder MP-201. \(£ 4.85\) TRANSISTOR RADIO REPAIK GUIDE Comprehenste servicing chart
Order MP-7. 1.25 RECORDER PLAYER SPEED DISC Get your phonograph up to speed SWTTCH MODE POWER SUPPLY I.C. TYPE TDA-4800 Clrcuitry and operation axplained VOLITAGE REGULATQRS, STABILISERS \& POWER SUPPLIES
Identifcation and apecinc Identification and specincations Ordor MP-E. \(\mathcal{E S . O O}\)
CMOS DATABOOK Pinouts and circuits for 4000 series. Order MP- 10. SL.
TTL DATABCOK Pinouts and circults for 7400 esies TRANSISTOR EQUIVALENTS Includes detalls on teating them. OFFICE EQUUPMPNT EQUIVALENTS Photocoplers \& Fax machines covered TELEPHONE CODE LOCATION QUIDE Find the Town trom the Phone Code.
Order MP-19. S\& 4.00 MANUFACTURERS EQUIVALENT: What makes are the sam
Order MP-22o. Es. 00

The above selection are
The above belection are Hundreds of Unigue Repair and Data Guides shown in our FREE catalogue - Youres for the asking. Sent FREE with all orders or send \(2 \times 1\) sit class stamps for your copy TODAY!

Order TODAY using Access/Visa for immediate despatch. All order plus \(\mathbf{\$ 2 . 9 4}\) Post and Packing. (Overseas \(\mathbf{S 5 . 0 0}\)) MAURITRON TECHNICAL SERVICES (6TVI) 47A High Street, Chinnor, Oxfordshire 0X9 4DJ. Tel: 0844-351694. Fax: 0844352554

\section*{SERVICE MANUALS \\ For most U.K. European, Far East \& USA makes}

Thousands of different models available
Prices (Stock Items):-
VCR, VCP, Camcorder, TVNid - \(£ 13.50\)
CTV, Colour Monitor, Camera - \(£ 8.50\) MTV, Mono Monitor, SAT, MWV - \(£ 6.00\)

Add P/P \(£ 1.50\) for first item then \(50 p\)
for each additional item - no VAT
Cheque/PO with order only please.

\section*{D-TEC}

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 0202870656

\title{
SERVICE MANUALS
}

We Have the worlds Largest Selection of Manuals

\section*{SOME SELECTED TIS TITLES}

\section*{CTV SERVICING BY KING}
G.King's 2nd Edn. Trade Standard *NEW* DATA REF GUIDE 5th Edn. Chassis guide for TV, VCR \& Audio GIANT FAULT-FINDING GUIDE
Covering faults from Amstrad-Zanussi \(£ 9.95\) BUY/SELL \& SERVICING USED

\author{
TV's, VCR's OR CD'S \\ £9.95 each
}

FOR FULL LIST OF TITLES, SEND AN SAE

\section*{DATA LIBRARY \\ HOW IT WORKS IN 3 EASY STEPS:-}

STEP 1: You pay a jaining fee of \(£ 69.95\) (the annual renewal charge is £25), \& tell us what service manual you want. We'll send it to you, usually by return. STEP 2: When you want another manual, just return your current one with £4.95, for excharge \& handling, and teil us what manual you want in exchange STEP 3: Repeat "Step 2" as often as required! Your joining fee of \(\mathbf{£ 6 9 . 9 5 \text { also includes:- }}\)
Your First 12 Months Membership Technical Help Line All STREE Newsletters Data Reference Guide

We also offer any 20 manuals for \(\mathrm{E190}\) Order them as required, there is no time-limit \& postage is included This offer is open to non-Llbrury mombers
COMPLEIE CTV CIRCUIT COLLECTIONS (INCLUDING 1994 MODELSI
\begin{tabular}{|c|c|c|c|}
\hline AImA Group & 229 & AMSTRAD FIDEII. & 25 \\
\hline 840 & 225 & RAIRD-FERGUSON & *60 \\
\hline drcceatatunc & S2\% & GRUNDIG & 4,5 \\
\hline hinari & 220 & HITACH & 43, \\
\hline ITPNOKIA & * & wre & \(\geq 25\) \\
\hline mitsubism & 4, & Panasomic & ¢0 \\
\hline Philits & ss & sony & \% 7 \\
\hline TOSHRA & 4s & zanussi & 200 \\
\hline
\end{tabular}
NEW EUROPEAN SCRAMBLING SYSTEMS 4th Edn. \(£ 32.00\) John McCormac's latest update of his best selling book, showing how to beat the Videocrypt and build your own decoder! PRACTICAL TV REPAIRS 2nd Edn.

FC Tunbridge's update on the most successful general repair guide in the world. Now includes Nicam \& Fastext.

\section*{PLEDGE TO THE BUYER}

SOLEMNLY, WE PLEDGE \& GUARANTEE, THAT WHEN ERE' WE CANNOT, SUPPLY AN ORIGINAL MANUAL, WE SHALL NOT STINT IN OUR EFFORTS, TO SUPPLY A 100\% READABLE COPY, FURTHER: THESE COPEES ARE ON PAPER, STRETCHING UNTO 2 FEET IN LENGTH. SHOULD WE FALTER, AFULL REFUND OR REPLACEMENT, SHALL BE DELNERED UNTO YOU.

\section*{E.C.S. THOUSANDS SOLD WORLDWIDE}

Edition 8 of the complete indexes now published containing approx 7,500 Faults listed in 12 years of Television magazine. Indexes are alphabetically listed by Make, Model.
Fault ref are now available for just
£8.00 FOR TELEVISION \& SATELLITE FAULTS £8.00 FOR VIDEO, CAMCORDER \& CD FAULTS Or \(£ 15.00\) for both sets complete with chassis \& similar model guides. Please add \(£ 1.50\) (UK) \(£ 3.00\) (Overseas) to total order to cover post \& packing

A LOW COST UPDATE SERVICE IS ALSO AVAILABLE. FULL DETAILS DESPATCHED WITH ORDER
To Secure Your copy/s please make Cheques/ Postal Orders payable to:
> E.C.S.

> 31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY

TV Hi-Fi SATELLITE PAILTT GLIDE SERVICE SHEETS FRYERNS
most makes covered old and new. This service offers technical advice and cure plus Schematle ciagram all for the price of \(£ 3.5\) \# Add 21.50 Pose \& Packing for I Item 2 ltems or More Post \& Packing Free Access and Visa Fax Servce
Phone 0268558938 Anytime 4 Pinces Mead, Basildon. Essex Sila 3KW

\section*{TEST EOUIPMENT}

\section*{}

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up and, short reparr; exhausted CRT's becomes bright and sharp again even if all other machines do not succeed.
United Kingdom: P \& E Services, Llandudno, Tel (0492) 549246, Fax 547880 Ireland: Dönberg Electronics, Ranatast, Co. Donegal. Tel: 353. 7548275 and 48532. Fax. 3537571031. Now Zealiand: TDON Lid., Onehunga, Auckland. Tel. 6 68-9 07. Fax 668-4 99 .
Germany: Uulrich Müter, Oer-Erkenschwick, Fax 1023 68) 57017.

\title{

}

\section*{MISCELLANEOUS}

\section*{CAR RADIO SECURITY DECODING SOFTWARE}

\section*{The most comprehensive software package ever from only \(£ \mathbf{2 7 5 + V A T}\)}

This package is fully upgradeable to any model of radio currently on our radio decoding list. Please phone for comprehensive radio decoding list and free demonstration disc (\(3^{1} / 2^{\prime \prime}\))
Upgrades will even cover the latest radio's on the market. We can supply/design a package to decode any radio that you choose Updated software available absolutely free

Package comprises models including:-
Ford, Philips, Blaupunkt, Clarion, Pioneer, Panasonic, Grundig, Hitachi, Volvo, J.V.C. In fact over 50 models covered including Ford RDS V1 \& V2, Grundig SC303
Interface \& all necessary probes for connection to the radios are also
supplied. Installed in seconds, no modification to your computer required
Features:-
Fully IBM or compatible, to run on all computers including lap tops, note books and even palm tops. Requires graphics capability for P.C.B. layouts. Runs from parallel port of LPT1.
1. Full user friendly menu's
2. Help screens with P.C.B. layouts for exact positioning of probes
3. Help screens to show you exactly how to enter the codes after decoding the radio
4. Error messages to advise possible fault occurrences (e.g. incorrectly fitted probe)
5. Adjustable for either b\&w or colour monitors (Useful for notebooks, laptops etc.)
6. Fully reprograms blank or corrupted eeproms (using internal database) 7. Customised with your company details
8. Security coded with your choice of code to stop unauthorised access 9. Runs from C drive
10. Keeps a record of all codes (date, time, make, model) 11. Fully upgradeable Upgrades:-Check this out?
Memphis SQR 88, CDP09, Bremen, Atlanta, Montreux, Symphony, Koln, Philadelphia, Toronto, Montreal, Paris, Peugeot PF3, Vauxhall CD300, SC202, Berlin, Frankfurt, Barcelona, Stockholm, Kingston, Nashville, Woodstock, and many many more. POA
RADIO DECODING SERVICE:-
WE COVER ALL MODELS STARTING FROM \(£ 10.00\) + CARRIAGE \((£ 4.20\) EACH WAY) + VAT. That's only \(£ 16.69\) or \(£ 21.62\). If we arrange collection, all you have to do is make sure its boxed and adequately protected.
Eeprom re-programming service:-
All eeproms are decoded for as little as \(£ 5.00\) including VAT
Please send all eeproms in a padded envelope, to stop damage

CDH ELECTRONICS, leading the way - not following
3 Common Walk, Huntington, Cannock, Staffs. WS12 4NB
Tel: 0543572523 VAT Reg No 636876011

HOW THEY WORK! HOW TO TEST! HOW TO REPLACE!
Designed specifically for Domestic Appliance Engineers who want to enter the fast growing microwave industry Packed full of useful information, presented in a simple yet informative style with comprehensive diagrams and illustrations.
Fault finding procedures are included at the end
of each section.
The book contains easy to
follow electronic control systems

\section*{SWIFTPARK LIMITED}

113 LONDON ROAD. HORNDEAN, WATERLOOVILLE, HANTS. POB OBJ

\section*{Microwave Oven Component Parts}

Guaranteed Quality

Guaranteed Products

Competitiv Price

AWI L.td, 29 Mariners View, Dodnor Ind Estate, Newport, Isle of Wight, PO30 5FA
Tel (0983) 520121 Fax: (0983) 520122

\section*{JOULE A-400 CAR RADIO DECODER/RE-PROGRAMMER \\ features}

Plugs directly into your IBM or compatible computer. Remove the baseplate from the radio, place the probe onto the PCB and the security code is instantly displayed. Changing the code or even fully re-programming is just as easy.

\section*{ABSOLUTELY NO MODIFICATIONS TO YOUR COMPUTER ARE REQUIRED}

The A-400 can use either Comms 1 or Comms 2, connected via the serial lead supplied
Two levels of password protection (user selectable) to prevent unauthorised use.
Each decode is recorded and may be accessed at any time, again, to prevent unauthorised use
Operates from 12 volt supply, either from mains (via any regulated mains adapter) for bench use or, via vehicle cigarette lighter socket, for on site use
Easy to use software includes on-screen PCB layouts for probe location, very detailed help screens and information on how to enter codes into the radio once the set has been decoded
Supplied complete with connecting lead, purpose designed probes and a comprehensive instruction manual.
Technical help Ilne avallable to all reglstered users
PRICE: £375.00 + VAT
Package Includes software for most popular brands of radlo PHONE NOW FOR FREE DEMONSTRATION DISK AND INFORMATION PACK
(Please state either \(3.5^{\prime \prime}\) or 5.25 " disk)
The Joule A-100 is a factory built Hi-Tech design made to a very high standard of workmanship which is set to become the industry standard for car radio decoding equipment and is available from:

ELECTRONIC SOUND SYSTEMS
62 HIgh Northgate, Darlington, Co. Durham DLi 1UW Tel: 0325484089 Fax: 0325465921 Moblle: 0860221099

\title{

}

\section*{RECRUITMENT}

\section*{Teleqnenine} VCR MAINTENANCE ENGINEER
TELE-CINE CELL GROUP, One of the leading post production/facilities companies in W1 Require a
SHIFT MAINTENANCE ENGINEER
To join their expanding engineering team.
The engineer will be experienced in all aspects of repair and alignment of VHS, Video 8, etc.
Applicants should apply in writing enclosing full C.V. to: Bianca Maman,
Video House, 48 Charlotte Street, London W1P 1LX

\section*{DO YOU RENT TELEVISIONS?}

\section*{DO YOU STILL USE A CARD SYSTEM?}

DO YOU FHD IT DFFICULT TO KNOW YOUR ABREARS TOTAL AT ANY GIVEN TIME?
If you do then we recommend our computer TV and Video Rental package This package includes
* automatic updating of each customer's record
* alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available
* easy to use and operate

MEW HRE PURCHASE PROCRAMME NDN AYALABIE AS WEL.
These programmes operate on all \(\mid \mathrm{BM}\) compatibles running under MS-DOS Free demonstration discs available.

WILLIAM J THOMPSON
Donaghanie Post Office
Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)
=SPARES \& COMPS \(=\)
SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED
IVCs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment.

ADM General Trading Tel. \(0827873311 . \quad\) Fax. 0827874835

\section*{RCS VROUADE VOTAEE D.C. BECCH POWER SUPPY}

RECYCLED TV - VIDEO - SAT RECEIVERS \& MICROWAVE SPARES Pinces fiom Lotex Es Anythnog tom a transistor to rext Bards
visteo molers
\(£ 10\)
\(£ 2\) Front panels E5 rou want it We've probably got t: FFiaps, Doors etc \(\mathrm{E}_{1} 0\) or will have in the future. \(\underset{\text { Maghatrons }}{\text { Es }}\) Ubes \(£ 10\) receivers wanted for Breating MEM TRONICS 0304812647 7 Days a week-9am to 9 pm

\section*{_TRAINING}

Looking for a home study course, in the fundamentals of electronics? Whether you are a beginner, ar an old hand requifing a retresher, the
DIRECT PERSONAL LEARNING
course, could be night for you. Cantact: K.Spariow, 11 Claydan Green. Whitchurch, Bristoi, Avon BS14 ONG Telephone: (0275) 835669
```

CLAASSIFIEED
ADNARIMSERS
The Octolber tasue of
Television will clese for
press on Wedmescilay
2분분 Augus훈 9 눈
To reserve your space
telepphome Pant Bumece om
- B1-6ES2 :33
Fanx: $0: 31-6 E 28031$

```


\section*{TV \& VIDEO RENIAL}

Massive Stocks of Graded TV's, Video's \& Hi -Fi's direct from the manufacturers at Unbelievable Prices

MS Products
Tel: 0617730085
Fax: 0617730084

\section*{EXPORT}
```

QUALITY VCR AND CTV. Tel:
0299 251522/091-523 5554 or Fax:
0299 251543/091-523 8035

```
:BUSINESS FOR SALE:

\section*{FOR SALE}

\section*{IN}

GREENWICH AREA
Lock-Up TVNCR SALES REPAIR SHOP
Spacious aluminium fronted shutters Situated on the main road, easy parking Located in parade of shops
Also on main bus routes Long lease, low rent £17,500 o.n.o. SAV Ring Paul on
081-293 3474
Mobil: 0956552368

\section*{W WANTED \\ Ex Rental TV \& Videos, fast collection, fair prices paid. Tel; 0742312832. \\ (\%}

\section*{TV/VCR REPAIR BUSINESS FOR SALE}

Well established LH shop.
Wolverhampton area, SAV, 18K
Box No. A5039

\section*{GRUNDIG TV'S always wanted. Tale- PRIVATE RETAILER has excellent part} phone 0229-582557.
AUDIO/VIDEO/TELEVISION Service clear Tel: 0494814317
manuals for sale \(500+\) from ' 70 's to ' 90 's. BUSINESS FOR SALE TVIVideo Rentals \& Sony-Sanyo, Panasonic, Sharo etc, offers Sales Northumberland. Turnover £ 100,000 please, am retiring soon Tel: 0516401027. OCHRE MILL Technical Services, Grundig TV spares for most models to 1985, fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton, Nr. Malmesbury, Wilts SN16 9DR. Tal: 0666823228.
AVO MULTIMETER Model \(8, £ 45.00 .500\) volt megers \(£ 30\). Prices plus VAT and p\&p. Send SAE for lists of Surplus Instruments \(\$\) Scopes etc. A. C. Electronics, 17 Apleton Sales Northumberland. Turnover \(£ 100,000\) per year. Leasehold, lock up shop \(£ 50,000\), price includes rental contracts S.A.V. Box A5162.
VIDEOCRYPT dECODER Service sheet with smartcard contact details Eurocrypt card interlace \(£ 12.00\). E.M.O., Ramsbottom, Lancs BL09AG. Tel: 0706823036.
OFFERS INVITED NEWENS Publication. Complete Electrical Engineer No's 1 to 48 inclusive dated 1938. Telephone 0272 506655.

\section*{NEW! NEW! NEW!}

\section*{"SECTION 2"}

\section*{from SENDZ}

After years of regular advertising in this magazine SENDZ ANNOUNCE an EXCITING NEW DEVELOPMENT in our mail-order ... "SECTION 2". "SECTION 2" will give you information on many NEW and EXCLUSIVE BARGAINS. "SECTION 2" will give you advance information about SPECIAL PURCHASES and DISCOUNT OFFERS.

In addition "SECTION 2" will keep you up to date with our many standard and rapidly moving ELECTRONIC STOCKS.

\section*{SEND AN S.A.E. now and make sure you don't miss out.}

Whether you are a serviceman, in education or a hobbyist there will always be something of interest in "SECTION 2" . . . and at a price which will not break the bank!

\section*{SENDZ}

214 LONDON ROAD
SOUTHEND, ESSEX SS1 1PJ
Tel: 0702338894```

[^0]: Nokia's PALplus decoder, which uses Texas Instruments chips - the type numbers have been erased!

[^1]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DÁ145DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, King's Reach Tower, Stamford Street, London SE1 9 LS (071 261 5000). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

[^2]: ALBAN ELECTRONICS LIMITED
 4U - St Albans Enterprise Centre - Long Spring Porters Wood - St Albans - Hertfordshire - AL. 6 EN Tel: 0727832266 - Fax: 0727810546

[^3]: Now Available. Our Service Manuals index on P.C. Disc ($3.5^{\prime \prime}$) for use on your Computer. Just $£ 3.50$ with FREE everlasting Updates. Order MP- 285 .

