

SERVICING.VIDEO.SATELLITE.DEVELOPMENTS

$$
\text { FREE } 1993 \text { YEAR PLANNER }
$$

Modern TV Receiver Techniques
Fault Guide for the BBC B Computer All about Electrolytics Camcorner The Scartbox- DMM Test Report More on the Philips KT3 - DXTV VCR Clinic . TV Fault Finding

ETY WILIOWVAIE ELECTRONVCSTO

ONY PHILIPS SHA
 TPSSHARPFERGUSONGRUNDIGPYESA

SAISHO NIKY \because ?USH ALBA SA
UUBISHI GR" ^ ${ }^{\text {a }}$ A DAEWOO 'RION AKAI SUNY PHII

ERUNDIG PYE SAI

CALL NOW

COPYRIGHT

© Reed Business Publishing Ltd., 1993.
Copyright in all drawings, photographs and articles published in Telovition is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes to Vols. 39 and 40 are available at $£ 2.00$ from the Editorial office (address above) Indexes to Vols. 37 and 38 are available at $£ 1.50$ each. Photostats of the indexes to Vols. $31-36$ can be supplied at $£ 1.00$ each. Make cheques etc. payable to Reed Business Publishing Ltd.

Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 23$ in the UK, £28 overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card. Telephone number 0622 72166 quoting reference INJ.

BACK NUMBERS

Some back issues are available at $£ 2.75$ each from Television Back Issues, Room L323, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. See box on page 214.

Leader

sets.

Letters

Help Wanted

Teletopics

Camcorner

What a Lifol

Beer.
vCR Clinic

The Scartbox
Keith Wevill, B.Sc.

John C. Priest
J. Lajeune

Modern TV Receiver Techniques, Part 1

Eugene Trundle
Start of a new series that will explain the techniques
and operation of the various sections of modern TV
Satellito Notebook
Nick Beer
Next Month in Television
TV Fault Finding
Reports from Philip Blundell, AMIEIE, Steve
Cannon, Chris Watton, Brian Storm, Ed Rowland,
Richard Newman, G. Bakawala, Alan R. Bayly,
Graham Richards, Graham W. Rees, Richard J. Avis,
Alan Damp and John Edwards.

Long-distance Television
Roger Bunney

All About Electrolytic Capacitors Ray Porter, M.Sc., C.Eng., MIEE

Reports from Brian Storm and David C. Woodnott.
Test Report: Fluke Model 12 DMM
David Botto
History of BBC Colour Television Kaith Hamer and Garry Smith
Donald Bullock
The Implications of COSHH
Nick Beor
CD Player Casebook
Reports from Mike Leach, Nick Williams and Nick

Reports from Philip Blundell, AMIEIE, Nick Beer,
Chris Hawkins, Steve Cannon, Graham Rees, Basil
Davidson, Alfred Damp, John Edwards and Michael Dranfield.

BBC Model B Computer Feuft Notes Arthur Rumbelow, G3KKC

Test Case 361

P. IV.| 104 ABBEY STREET | |
| :--- | :---: |
| ACCRINGTON, LANCS | |
| BB5 $1 E E$ | DARK |
| - $0254236521 / 232611$ | NIGHTS |
| FAX 0254395361 | NOW |
| 24 Hr Answering Service | STOCK WITH |
| SEND LARGE S.A.E. FORTRADE CATALOGUE | SECURITY |
| PRODUCTS | |

ONE OF THE LONGEST ESTABLISHED MAIL ORDER SUPPLIERS, WE CONTINUE TO GIVE FAST, FAIR AND
EFFICIENT SERVICE. WE HAVE STOCKS OF

* TELEVISION COMPONENTS
* VIDEO COMPONENTS
* REMOTE CONTROLS
* CABLES, LEADS, PLUGS atc
* AERIALS AND ACCESSORIES
* HOME SECURITY PRODUCTS

FORGED NOTE SCANDAL:
Anyone excepting cash today
must have our forged note detector
£25 pus
READY IN SECONDS

* DEGAUSSING COILS!! EVEN VALVES!! Just Ask

BRAND NEW TV'S + VIDEOS ASK FOR bRochure 21" FST MULTISYSTEM TV - FOR USE OVERSEAS (not SECAM L) II SYSTEMS E 222 + vat
UPGRADE YOUR ASTRA DISH TO RECEIVE EUTELSAT II F1 13° EAST WITH THE LITTLE CANNON KIT
inc. cable/LNB/clips/connectors/tape etc.

+ VAT
AND NOW SATELLITE SYSTEMS
WE HAVE A FULL RANGE OF FIXED AND MOTORISED SYSTEMS. ASK FOR FULL LIST AT TRADE PRICES INCLUDES LNB'S, DISHES, MOUNTS, RECEIVERS, ACTUATORS, POLORISERS etc.
RING FOR DETAILS ON 'RED HOT' DUTCH DECODERS. 10 BAND WORLD RADIO $£ 16.95$ plus VAT
VIDEOCRYPT DECODERS B GRADE
£69 + VAT

CALLERS WELCOME AT TRADE COUNTER | MON.FRRI 9.59 spm |
| :---: |
| SAP 9.4 m |

THETNET

1. OSCHLLOSCOPES -

HP. 1740 A 100MLZ Dual Trace H.P. 1741A 100MH2 Dual Trace Analogue	
Storage	
Storaye	328
H.P. 182C 100MHZ 4 Chansel	
PFIMPS 3211 15MH2 Dual Trace.................... $£ 150$	
PHILIPS 3217 50MHZ Dral Trace.	
PFIIIPS 3826 ISMHEZ Dual Trace.	
PHILPS 3840 SOMHZ Duel Traco.	
PHITIPS 3381 L20MCY Dun Trace	
ID	

TEIEOUTPMENT D34-25MHZ Dual TraceEIB0 TELEQUIPMENT DM64 - 50MHZZ Dual TELEOUTPMENT D75 - 50MHZ DUU race... Chennel -...
TEETRONLE 7313-100MHZ 4 EETRONX $2218-60 \mathrm{MHZ}$ Dual Trace .. 5300 TEITRO
Trace.
scopes
2. DIGRIN RMULTM-METERS + FVO's

FLUEE 8010A	1100	SOLARTRON 7046............................... 580
FLUEE 8080 A	£125	GOULD Ahphe III + Alpha IV.................... 23
FLUEE 8600	¢78	AVO's - Model $7+$ Model 8 's.......... 510 to 540

FLUKE 8600A
$\mathrm{VO}^{\prime} \mathrm{s}$-Modal 7 + Model 8 '........................ 10 : £ 40
3. EREDUNCY COUTYINR RACAL 9003 - 501 MHZ 1
$\ldots 100$
$\ldots .125$
4. POWXR SUPPLIES -

RACAL 9880
ADVANCE TCITA

FARNELS L30-8 (30V-8A)........
Weir 413 Twin 0-30V@1A variable $£ 120$ HIT.PS PE 1514 Twin (30 V - 800 mA).......... 578 Phus TV @ 3A
COUTANT 181000.2(IEV-10A) 57 SOLARTRON RS 1164 Twin (20V-1A)IT
G.E.C. 18V-22V @ $1 A . ~$
E35
FARNELL L3O-1 Single ($30 \mathrm{~V}-1 \mathrm{~A}$) 1120
FARNELL L30F Single ($12 \mathrm{~V}-10$ A) 1100

Fitted with twin 3.15 V at 3 A and.................$~ £ 100$
2.5V, 8 V and 6.3 V at 3 A

RNELS SB3OC10SBB3: 30V-10A
5. VRPIOUS OTH:XR EQURPMIXNTS SUCR HS WEG LEVEL

Meters/Oscillators, Philips 6 Line Pen Recorders, HP RMS Votmeters, Broadband Sampling VM, Lyoos Pulse Canerators, HP Logic Analysers, Marconi - FM/AM Modulation merers TF 2300, Electronic V/M TF 2004, Levell AC Microvainneter TM3B, Level RC Oac. IG 200m ADRET - Cadasyn 301 Synthewser phas meny more.
Send SAE for List and Pricee on Far List Available. Low Cost Delivery can be Arrenged, if required (VAT to be added to Prices and Delivery, All Guarameed 3 Moniths. C Grade Audio Products and 'B' Grade TV/Video Prochucts Availabie. Send for Price Liste.

TELNET8CAVANS WAY BINLEY INDUSTRIAL ESTATE COVENTRY CV3 2SF
(Premises situated close to Eastern By Pass in Coventry With easy access to M1, M6, M40, M69, A45)

Telephone: 0203-650702 Fax: 0203-650773

WE WILL ONLY SUPPLY TOP QUALITY. BRANDED COMPONENTS. REPUTATION COUNTS WITH US		L. COMPONENTS UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL. 39693/20358 Fax: (0228) 515127.			BUY WITH
AL ACCESSORIES			LINE O/P TRANSFORMERS	SERVICE MANU	5
			FERGUSON TX90 14**-_- 23.95		
COAX PLUG		TоАго30....-	ERGGUSON		15
FLY LEAD 2 M	GRUNDIG CUC2410 22.	TDA2170			ATELLITE
AERIAL					
LITE IF			${ }_{\text {EERGGUSON N T } 100 \text { FST }}$	auso	
INLINE 7-11 dB Gain .			FIDELITY ZX 2		0.8
				FERGUSON FV11)	
Y SPLITER.					HALBAND 1.100 (max)..........74.95
${ }^{4}$ War distribution			LUX 1000 S		
8 WAY DISTRIEUTION	250MA. 315 MA .500 MA .630		AAICTA		
AMPLIFIER MAINS ...		TDA2595	HITACHIC		
BA		TDA	HITACH CPT21		Transistors
avo testers isv.		тDA3330	ITT COMPACT $80.1 . \quad 18$.	PANASONIC NV370................14.05	
(${ }^{\text {a }}$ O 4)	ICs		TT		
AAAI(pkt O 4)......................1.15					
USON 3					
NOIG VIIEO					
			102040 - 18.95		
NSIZE (MN9100)85		576	Suc		
PHILIPS MEMOA	MSMS84OMBAAS ...-				
PHiLIPS MEMORY				PANASONIC TX1.....)	
CAPACITORS	SAA12934.03.....).				
			PS 2 A		
Sirs.jv cac			SAISHO CT141R/RA		
	SLi431				
	${ }_{\text {SLI }}^{1 / 432 .-}$				
		TDA4505E.	drens	S For	. 86
	STK5331 \qquad . 4.95	TDA46003 ...-.	*** NEW PANGE ***	LOGIK,MATSUI,NEC,	
220ut at 63v.....					
	STK5421				
,					1526....-
4.7) at 25	STK5467.].-				8u536...-7x
22			PANASONIC TCO	PRICE	25
	${ }^{\text {STK5482 }} \ldots$				
	งTк7308 ...)-				
Iut at 400			Sonic P11		
400 N			PANASONLC TX		
400	STR54 12 \qquad 4.95		PANASONIC TK2034		
		CIRCUIT PROTECTORS N10, N20, N25 (each)	PANASONIC TX		T9066V.…
	STR50020......................................95 STR50103A.............................50.				T1P41C..30
DIODES			Tx		
			ANASONIC T	KTACTX REMOTE	
${ }^{8,133 .}$	STR58041 ...	NSIVE RANGE OF		213	
		W	22..	SOLARA PCB BEMOTE................95	
299800	STR55041-...................................50				
退		NOW AVAILABLE	ONY \& SHARP LOPTS		
181 Cl					
BZX61C (pkl			availa		
5v6, 6v8, 7v5, 12v, 15v, $24 \mathrm{v}, 37 \mathrm{v}, 68 \mathrm{v}, 120 \mathrm{v}, 130 \mathrm{v}$				THORN UNIVEASAL .-...-*)-	
				TXG/1O STANOARD...........1.00	2, ${ }^{\text {a }}$
AKAI VIDEO SPARES	FERGUSON VIDEO SPARES		PANASONIC VIDSPARES	RES	SHARP VIDEO SPARES C9300/381
		V1800087		VR8185/62	
BELT KIT............................1.95	BELT KIT	LTKIT.		BELT KIT	Elt kit
PINCH ROLL	CAPSTAN MOTOR............ 32.50	Stan		CASSETTE HOUSING........... 16.95	5
REEL IDLER UNIT		aew id		PINCH ROLLER ASSY7.50	REEL IDLER GENUINE.........3.95
TAKE UP CLUTCH...................93	LOADING BELTS (5)...-1.	f/REW PULLEY	MODE SWITCH.....................3.95	REPAIR KIT.......................21.50	REEL MOTOR GENUINE12.95
TENSION BAND	PINCH ROLLER -	PINCH ROLLER.....................3.95	ROLLER	TE CONTROL.............29.50	NSION BAND....-.
VIDEO HEAD VS $1 / 5$.	REPAIR KIT........................... 12.95	IDL	L IDLER GEN	O H	VIDEO HEAD ...-
VIDEO HEAD VS4...............34.50		el table	IDEO HE		
	TAKE UP CLUTCH....................95 TAKE UP IDLER...................... 1.95		Nv333/36	BELT KIT...........................2.95	belt kit
			REPAIR KIT GENUINE.........11.50	CASSETTE HOUSING..........16.95	2.50PINCH ROLLER............. 3.95
ALBA VIDEO SPARES		300,97	BELT KIT.-.........................1.05	PINCH ROLL	EL IDLER GENUINE.......... 3.95
A	${ }^{3 V 351 / 39}$	ELT KIT	roile	REMOTE CONTROL............13.25	REEL MOTOR GENUINE......19.95
BELTKIT	CAPSTAN MOTOR...................1.95	APSTAN MOTOR31	PLAY IDLER GENUIN		TENSION BAND.................... 2.95
CAPACITO			REEL IDLER GENUINE		VIDEO HEAD14.75
	CASSETTE HOUSING.............25.95	FF/REW PULLEY	HEAD NV333	VR8460/6520	vC581/582
REEL IDLER.........................05	LOADING BELS (5).-_1.	PINCH ROLLER.......)	EO	BELT KIT	
REEL PULLEY		PLAY IDLER......................3.95			REEL IDLER GENUINE.......... 3.95
Repair kit		REMOTE CONTROL..............16.95	REPAIR KIT GENUINE11.75	REEL IDLER.-- ${ }^{\text {a }}$ -	NCH ROLLER..................... 3.95
TENSIONBA		TENSION BAND	BELT KIT		VIDEO HE
VIDEO HEA		EO HE	MODE SWITC	VIDEO HEAD	
VCrso			PINCH ROLLER	VRe	
ElT KIT.		AUDIO HEAD VT	REEL IDLER GENUINE...........295	REPAIR KIT..................... 12.95	PINCH ROLLER - - - - - - .
PINCH ROLLER......................3.95		AUDIO HEAD VT33E............14.05	VIDEO	CASSETTE HOUSING.........16.95	REEL PULLEY GENUINE........ 7.95
REELIDLER -	3V44/45 ${ }^{\text {a }}$	BELTKIT........................1.95	NV730	PINCH ROLLER.................... 3	VIDEO HEA
REEL PULLEY	BELT KIT........	APSTAN MOTOR	REPAIR Kit genul	REEL IDLER GENUINE..........4.95	VCA140N
TENSION BAND		CAPSTAN MOTOR VT33E....23.95	速	VIDEO HEAD GENUINE.......44.95	BELT KIT 2.95
VIDEO HEAD	PINCH ROLER-..................95	CASSETTE HOUSING..........16.50	MODE SWITCH....................3.0	VR6467	PINCH ROLLER --.).............. 3.95
		CLUTCH ASSEMBLY............7.95	PINCH ROLLER......	REPAIR KIT GENUINE..........21.50	REEL PULLEY GENUINE.......7.95
BELT KIT.....).		FF/REW IDLER Genuine......... 2.50	REEL IDLER GEN	BELT KIT.-.--	TENSION BAND.....................3.50
CLUTCH ASSEMSLY.........-. 4.50	VIDEOHEAD....................19.50	PINCH ROLLER..................3.95	TENSION BAND....-	CASSETTE HOUSING.........17.95	VIDEO HEAD 14.75
PINCH ROLIER..................3.95		REPAIR KIT....).	VIDEO HEAD ..-.)	PINCH ROLLER ARM ASSY ...7.50	
REEL IDLER	BELT KIT..........................1.75	RF CONVERTOR VT11E......29.95		VIDEO HEAD GENUINE.......40.70	SONY VIDEO SPARES
REPAIR KIT.......................12.95	CAPSTAN MOTOR \ldots _-.......27.50	TENSION BAND...........-	RePair kit genulne.........11.05		
			BELT KIT..........................1.05	REPAIR KIT GENUINE......... 21.50	BELT KIT C57 .-...................2.50
	ASSETTE HOUSING...-. ${ }^{\text {a }}$. 29.95		PINCH ROLLER...................3.95		BELT KIT C6 .-.....................1.1.95
		TKIT...........................1.95	REEL IDLER GENUINE	TE HOUSING...........17.95	
		CAPSTAN MOTOR....-.-.-....27.50		PINCH ROLLER ASSY7.50	
Amstrad video spares		CASSETTE HOUS	NV2000/20	VIDEO HEAD GENUINE.	WIND KIT C6......).
S		CLUTCH ASSEMBLY............7.95	REPAIR KIT GENUINE18.95	SANYO VIDEO SPARES	VIDEO HEAD14.25
LTT KIT.....	${ }_{\text {FVH5000 }}^{\text {FISHER VIDEO SPARES }}$	FF/REW IDLER 2.50	BELT KIT1.95	vTC5000	
GEAR ASSEMBLY		PINCH ROLLER....................3.95		BELT KIT.-...- ${ }^{\text {a }}$ - ${ }^{\text {a }}$	VIDEO BELT KITS
MODIFICATION KIT................6.50		REMOTE CONTROL...-.-.-.....13.25		REEL MOTOR GENUINE7.95	HINARI XXL3/20...................1.95
	ELT KIT...........................2.20	SERVICE MANUAL...--	REEL IDLER GENUINE.........1.25	REEL PULLEY GENU	HINARI XXLA/9...-_-
VIDEO HEAD -..............- 14	EELIDLER.......................5.50	tension band	VIDEO HEAD8.95	VIDEO HEAD...	MITSUBISHII HS302............1.95
CR46008ELT KIT1.95		VIDEO HEAD VT63/64E........20.30	NV7000/200	VHR1100/1300	MITSUBISHI HS306..............1.1.95
GEAR ASSEMBLY		VIDEO HEAD VT65...............28.50	REPAIR KIT GENUINE......... 14.95	BELT KIT.-.)--	NEC 9053............................29
MODIFICATION KIT................6.50		VT120/130E	BELTKIT....-	PINCH ROLLER - .-.................3.50	SAMSUNG VX520................. 2.95
PINCH ROLLEE.................. 3.50			PINCH ROLLER	REEL DRIVE ROLLEA............ 5.95	SAMSUNG VX710...............3.50
DEO HEAD	H615720		PLAY Clutch genuine ...-. 4.05	REEL MOTOR --................14.95	
vCriou	UTCH ASSEMBLY..............9.95		REEL IDLER GENUINE.........-1.25	TENSION BAND....................2.60	SHARP $8300 . \ldots$.-_-
BELT KIT......................-		FF/REW IDLER3.75	VIDEO		
LAMP	NCH ROLLER.....................50	PINCH ROLLER3.95	NVa7/10/12		VIDEO LAMPS
PINCH ROLLER.................... 3.95		REMOTE CONTROL VT120E 15.05	REPAIR KIT GENUINE...........9.95		FERGUSON 3VVor22.
REEL IDLER.	5 VIDEO HEAD15.95			PINCH ROLLER	
D............................15.25	CLUTCH ASSEMBLY..............19.95	15.95TENSION BAND...-._-			FHTACHIVTG3E END SNS.....1.95
VCR6000	REEL IDLER....................... 5.95	VIDEO HEAD VTI 30 E24.95		VIDEO HEAD20.50	PANASONIC NV2000 95
BELT KIT.........................1.	VIDEO HEAD FVH90015.95	-	VIDEO HEAD NVG79.............17.30	VEEO HEAD20.50	
HROL					
EO HEAD17.					

F	GUSON TX10		PIONEER 505/52517.50	VIDEO HEADS	PANASONIC NV36619.95
	NO		PROGRAMMABLE	aKAI VS $1 / 5$.	PANASONIC NV370
	FERGUSON TX10 TEXT11.25		PYE DV464/05-.-.-.........13.25	AKAI VS4....-	PANASONIC NV43014.25
	FERGUSON TX 10 STEREO..15.95		PYE DV662/05....-..............14.50	ALBA 4000X.........................16.95	PANASONIC NV688.............27.70
	FERGUSON +X100 TEXT11.85	NEC RB83EGJEP	RANK T26A........................13.95	ALBA 6000X - - - .a................17.95	NASONC NV730
	FERGUSON ICC5.............18,		RANK T524A.....................13.95	AMSTAAD 45099000..........14.85	PANASONIC NV7BB25.955
	FERGUSON 3V3235...........11.03	ORłON VH1204..................... 21.95	RANK TS28A-............ 19.95 REDIFFUSION MKIV -........ 12.95	AMSTRAD $4601 / 4700$........... 14.50	PANASONIC NVE70 -37.30
	FERGUSON 3V43...............14.50	ORION VR2949/2957............21.95	REDIFFUSION MKIVA..........12.95	AMSTRAD 700 ${ }^{\text {a }}$.................15.25	PANASONIC NV200070008.85
	FERGUSONSAA1..............15.45	ORION VSP20..................19.95	SABA FS60211.95	FERGUSON 3 600/39..............8.75	PANASONIC NVG779...........17.30
	FIDELITY CTV14S12.05	ORION VXL20...................21.95	SABA FS603/4...................11.95	FERGUSON 3432...............23.50	PANASONIC NVG10/12.......17.30
	FIDELITY CTV22T14.05	PANASONIC EUR5 $+20014 .95$	SAISHO CT142R....-.-......14.50	FERGUSON 3L42/55..........17.50	PANASONIC NVG18...........28.70
	FIDELITY CTV2210............12.95	PANASONIC EUR5 $114236 .360$	SAISHO CT149TX14.95	FERGUSON 3LG9/FV12........26.95	SONIC NVG20/21 $124 .95$
TOP TEL	FINLUX 1000 SERIES...........22.05	PANASONHC EUR64142.......21.50	SAISHO VR1000/1100..........15.25	FERGUSON 3465/FV1117.95	ONIC NVG30440.........24.50
RE	FINLUX RC3001..................19.85	PANASONIC C71/C74........21.50	SALORA 16.10/20 15	FERGUSON FV12...............34.50	PANASONIC NVG45...........33.5
	FISHER FTS 5610TX.......... 22.95		SALORA 201/20/30/4015.80 150	FERGUSON FV13...............1.50	PANASONVC NVL2
APPLIANCES	FISHER FTS 63100 TX22.05	PANASONIC TNO1419..........13.95		FERGUSON Flab...........28.30	PHILIPS VR6367
TC. 24.95		PANASONIC TNO1621.......... 1	$\text { SALORA SATELLITE............. } 19.95$	FERGUSON FV32...................27.95	PHILIPS 6460/6520...............9.95
	GOLDSTAR OTMF $711017 .95$		SAMSUNG SV716...............15.50	FISHER FVH500024.50	PHILIPS 6462/65
	GOLDSTAR 105-520D..........24.95	PANASONIC TX2200......-.... 21.95	SAMSUNG SV717..............15.50	FISHER FVH615/910 15.95	GENUINE.......44.95
	Go	PANASONIC TX2234........... 21	SAMSUNG VX616/617.........15.50		40.70
	GOLOSTAR GHV-1221........21.95	PANASONLC TX2244	SAMSUNG VX6191626.........15.50	FISHER FVH908/91624.5	(HIPS 6760 GENUINE41.70
	GOODMANS TX110041200....18.95	PANASONIC TX2464	SAMSUNG VX627629..........15.50	GOLDSTAR V1221/1290.......15.95	PYE DV46444.95
	GRANADA UNIVEASAL12.95	GENUINE...] ${ }^{\text {a }}$.	SANYO CPT3144................17.95	GRUNDIGG VS440,500..........17.30	PYE DV468...... ${ }^{\text {a }}$ -
	. 12	PANASONIC TX2470/2.......21	SANYO E2 SERIES17		
	GRUNDIG TP650 TEXT........14.25	PANASONIC TX248282.......21.50	SANYO VHR 1100,120015.95		SAISHO VR705/805.............15.25
	GRUNDIG TP680................21.95	PANASONIC TX3300...........21.95	SANYO VHR 1300/230015.95	HINARI VXLL.	
LIPS UNIVERSAL		PANASONIC NV230			SAISHO VR3500......................................50
MOTE	HINARI CT18......................23.50	GENUINE....._._.	SENTRA VCR8000 $8^{\circ} 0017 .50$	HINARI VXL $100 / 1 / 1 / 917 .95$	SAMSUNG VI730...............23.50
AD SIZE9.88	HINARIVXL-778..................18.95	PANASONIC NV430		HITACH1 ${ }^{\text {H/ }}$	SAMSUNG VX520 $11017 .50$
	HINARI VXL-20................19.4. HITACHICLEB62	GENUINE31.50	SOLAVOX $20719{ }^{\text {a }}$..........14.	HITACHI VT17/9..................24.70	SANYO VHR 1100/130018.93
ASIC FUM	HITACHI CLE862F -..................19.95	PANASONIC	SOLAVOX $2680915 .95 ~$	HITACHI VTE3/54...................20.30	SANYO VHR1110/120021.50
ENGII	E87		SOLAVOX CML14...............15.8	HITACHI VT65................... ${ }^{28}$	SANYO VHR 2300/320023.50
	HITACHI CPT1446................. 17.50		SONY RM604/606...............14.140		SCHNEIDER SVC20 . .-......-21.50
	HITACHI CPT1556.............17.95	GENUINE.........................28.95	SONY RM613 .-.................29.50	HITACH VT13IEF.................24.95	SCHNEIDER SVC24621.95
	HITACHI CPT2038....-......... 14	panason	SONY RM6115/632...............14.50	HITACHI VT15CE.33.95	
		NUINE	SONY RM650/651/852.........17.95	HITACH VTT2CIF................ ${ }^{121.9}$	S
	HITACHI CPT2188...............15.25	PANASONI	SONY RM654/657...............17.95	JVC HRD170.....................17.05	SENTRA 8600....................... 17.95
		GENUINE 31.50	SONY RM662/663 SONY RM664/66	JVC HRD250 23.50	SHARP VC581/68114.75
	HITACHI CPTT2508	GENUINE.........	SONY RM670.....................14.95	JVC HRD54017.0.17	SHARP VC78732.50
NER	HITACHI CPT2596...............17.95	panasonic nvga	TASHIKO 140962................16.95	JVC HRD725...................... 34.	SHARP VCA140...................14.75
	HITACHI CPT2888................15.25	GENUINE.......	TASHIKO 140966................16.95	JVC HRD755	SOAVOX 100016.95
SMIT BY Yo	HITACHI VT8000..................17.50	Panasonic nvgas	TATUNG RC4014514.95	LOGIK VR950	
	HITACHI VT9300.................17.150.				SUSUMI XR518.95
			TATUNG RC90...................14.95	MATSUI VX730	TASHIKO WVE92 $1 / 219 .95 ~$
REMOTE CONTROLS	HITACHIVT120E................13.05	PHILPS G11 IR TEXT [-_...13.85	TELEFUNKEN FB 17027.50	MATSUI VX735A..................17.50	TASHIKO WE932...............18.05
akailvs10.	$1{ }^{1} \mathrm{FS59/10}$ DIGIVISION.........13.	PHILIPS KT3/30 NON TEXT..12.95	TOP TEL........................24.95	MATSU1 V×820...............15.25	TASHIKO VVE934.............22.50
		PHLLPP KT3,30 TEXT...........12.50	TOSHIBA CT995/6..............16.95	MITSUBISHI HS301/302........ 22 MITSUBISHI HS303/30521.	
FERGUSON 7732		PHILIPS RC5991.............12.95	TOSH18A CT9128	MITSUBISHI HS303/30521.50 MITSUBISHI HS306............... 23.95	TOSHIBA V93B 18.95
11.95 FERGUSSON T734........120		PHILIPS 3 A	TOSHIEA TS3AAB.................15.95	MITSUBISHI HS318..............24.50	
FERGUSON T738...............11.95	ITVS4.........................13.95	PHILPP 3A................17.50	TOSHIEATSAAB................15.95	MESUBISHTHS318...............19.50	
FERGUSON 7742 -............13.70	ITTVSSTEXT....................15.05	PHILPP SIMPLE.............10.95		NEC 9034705	
FERGUSON 7785	JVC HRDS40 GENUINE...... 32.95	PHILPS MINATURE..............9.93	ETHE		BRANDED
FAST TEXT.	JVC HRD750 GENUUNE......32.50	PHILIPS VA6362\%..............13.23	MANUFACTURERS OWN		
FERGUSON T789 FAST TEXT	JVC HRD755 GENUINE.........34.50 MASPRO SE-E-90/S.............15.95	$\begin{aligned} & \text { PHILIPS VR6462 } 14.50 \\ & \text { PHILIPS VR6467............. } 13.25 \end{aligned}$		PANASONIC N: 333 8.95	
FAST TEXT.......................13.85					
					NEC P3 3.-..................-2.50
CASSETTE HOUSINGS		0 METPE PAP		E OfFER A Range of	NEC P4 80OMAH 49.50
ERGUSON 3V65/FV11R ...22.50		CUIPY BUTTON TO TAKE		мов11	NOKIA 101 BOOMAH 33.50
FERGUSON FV31/FV31R...36.45		VANTAGE OF CHEAPER			
FERGUSON FV37/FV37H . 17.50		TELEPHONE COSTS.		TECHNOPHONE.	PANASONIC D SERIES 32.50
HITACHI VT 11E.................16.50					PANASONIC EH SERIES ...32.50
HITACHIVT64E.............14.70				FROM NEW \& USED HAND	PANASONIC F1 700 MAH 29.95
PANASONIC NV333366.....18.20					. 50
PANASONIC NV230 .-.......... 32.85 PANASONIC NV730				Moeilles And	TECHNOPHONE TP2 HID...45.00
	SCART SWITCHING			Ransportable	TECHNOPHONE TP305
SERVICE AIDS	KIT16.95		PELL CHECK FACILITY + 16 K		
ALLEN KEYS (8 METRIC)985	SCART LEAD TO 6 PHONO.4.95			RANGE GF BILLING PLANS	BATTERY CHARGERS
ANTEX ITW IRON8.50	SCART COPYING KIT -.........5.95				MOTOROLA Y.PORT........30.50
ANTEX 25W IRON.............8.73	SCART TO 2 SCART SKT.05		15 charact		MOTOROLA 8000/8800X34.95
ANTEXIRON STAND08	SCART TO 5 SCART SKT......85	AUTOMATIC FAX RECEPTION.	10, 12, 15, Charact PITCH	xer	MOTOROLA MICROTAC.....45.95
	VIDEO COPYING KIT8.95	Cowthot	23	CONMECTION	
COLCLENE WIPES) - - . ${ }^{\text {a }}$. 95	,	ODIALS FOR EAS	OK MEMORY.		
FIBRE CLEANING PEN.........985	VIDEO REPAIR KIT	OPY			TECHNOPHONE TP305...... 59.50
HEATSINK COMPOUND......1.55	ALBA 4000.	CANON FAXPYOME...... 5322.00		HAND EQUIPMENT	
NUT \& BOLT KIT 2.5MM .-......335					ATTERY ELIMINATO
ONYX SOLDER PUMP9.85	FERGUSON 3 V23.............15.95				
ONERMABOND ADHESIVE.	FERGUSON 3V29130..........12.95			ANTENNA	RO TAC....14.95
PORTASOL STD15.95				3DB BOOY MOUNT-........14.25	3.............................15.95
RTA	FERGUSON MVA4/45..........14.95			GASSVE ERPEATER 24.50	
PROFFESSIONAL31.95	FERGUSON 3V64/85,.........11.95				PANASONIC D SERIES14.95
PORTASOL TIP..................95				1/4 WAVE ON GLASS \qquad	PANASONIC F SERIES......14.95
SELF AMALGAMATING ${ }_{\text {TAPE..... }}$	FISHER FVH905 12.95			1/4 WAVE SHaRkS FIN.....15.95	TECHNOPHONE TP2........18.50
SILICON GREASE................1.85	GOORMANS VCR1000 -.....12.28			NETIC MOUNT 3DB 22.50	
SOLDA MOP 80	HITACHI VT8000 --............12.95		oro SP	PORT	ARG
SOLOER O.SKG 18SWG.......8.50	HITACHI VT930012.95		PR.	1/4 WAVE.......................15.95	Ponents E1.00
SOLDER 0.5KG 22SWG.........8.75	HITACHI VT11/33E...........14.95		-	MOTOROLA E500X	ORDER UK
SPRING KIT......................50	HITACHIVT120/130E.........15.93	IGH Volume reception	acter	BUTTON.	SERVICE MANUALS E1. 25 EACH
UTLITY KNIFE. .-...................1.15	PANASONIC G DECK90	REPAPER ROLL.	PRINTINE.	. 85	
WELLER GUN TIPS (2)1.25	PANASONIC NV23011.50	IALS FOR EASE OF	- MS dos disk drive for		OFFICE MACHINES 55.00 PE
WATCHMAKERS	PANASONIC NV333..........11.50		UNLIMITED MEMORY.		ITEM
SCREWDRIVERS2.95	PANASONIC NV370 -.-->.....11.73	Hotocopy faclut	HARP PA-W1410 2328.00	PANASONIC H SERIES 24.50	XPORT ORDERS PIT
	PANASONIC NV430 -..........11.50			PANASONIC SERIES23.50	CHARGED AT COST
X 10 PROBE KIT.................14.95	PANASONIC NV73010.93		all machines are covered	NEC P3-.-................. 22.95	
SUNDRIES	PANASONIC NVTT7...e.e...11.95	CANON FAX TSO.......... $\mathbf{4}$ +69.00			
CTX EHT LEAD GENUINE 8.25	PANASONIC NV700014.95			MITSUBISH1 MT4................32.50	
MATSUI LEVER ASSY1.85	PANASONIC NVG10/129.95		UR BUSINESS MACHINES	MITSUBISHIMT............20.50	WHEN ORDERING::
TX10 FOCUS UNIT8.50	PHILIPS VRE460.................11.75		that we sell inc	TECHNOPHONE TP2 $1 / 2 \ldots 22.50$	
${ }^{98003}$ POSITOR1.35	PHILIPS VRG462...............12.50		CULATORS, COMPUT	TECHNOPHONE TP305...... 19.95	
${ }^{988099}$ POSITOR1.35	PHILIPS VR6467............... 21.50		FAX MACHINES.		
98012 POSITOR.	SENTRA $8000{ }^{\text {a }}$.		TOCOPIEAS \& WO	BATTE	TOTAL THEN ADD
TUNERS	SOLAVOX 100011.50			MITSUBISHI MT3.............34.50	17.5\% VAT TO THIS
FERGUSON TX900/100 .-....18.45			ELULAR TELEPHONES	MITSUBISH1 MT5..............35.00	
ASONIC TNV87510F2				MOTOROLA 4500X 45.00	
TC208/TC225/T 2000 /C202			L OFFER	motorola abox stim....27.50	
TC2213TC2284/TC8531.05				.95	
PHILIPS ELC2003...............14.45		CTYPEWRITER		MOTOROLA EBOOX29.95	RETURN ON ALL
		CORRECTION		MOTOROLA FERSONAL	TOCK ITEMS
		ORD DELETION \&			MINIMUM ORDER
U411 (COAX SKT) .-.......... 19.75		BOLD PRINT		hola microta	
		BETWEEN MARGINS			
ACORDER COPYING	5 SHEET AUTOM	NOONES3 -...............c89.00		I350MAH34.50	
SCART LEAD FUULY WIRED4.95	- 10 autodials for ease of				

EDITOR
John A. Reddihough

PRODUCTION EDITOR

Tessa Winford

Please note that the telephone numbers below are for contact with the advertisement departments. Editorial enquiries should be sent to the editor at the address given on page 81 or faxed to 081 6528956.

ADVERTISEMENT MANAGER

Patrick Irwin
0816523732

SALES EXECUTIVE

Pat Bunce
0816528339
Fax 0816528931

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHER

Robert Marcus
0816523930

READER HELPLINE

For help if you have difficulty obtaining Television phone 0816528620

SUBSCRIPTION ENQUIRIES

0444445566

SUBSCRIPTION HOTLINE

24 -hour subscription ordering with credit card number phone 0622721666 and quote reference INJ.

COVER PHOTO

This month's cover photograph shows a selection of TV receiver components and modules. A new series on modern TV receiver techniques starts on page 178 .

『ङ

The BBC Green Paper

It is a relief that the government's green paper on the future of the BBC , published on November 24th, is a cautious, open-minded affair rather than a dogmatic effort. Times change. In the Thatcher years one would have expected a radical document full of threats to the the BBC's independence and position in our society - and of course its method of funding. In his introduction to the green paper Peter Brooke, national heritage secretary, writes "the government believes the BBC should continue as a major broadcasting organisation and should have special responsibilities for public service broadcasting". Nevertheless "the BBC cannot continue as if nothing has happened since 1981 , when it was granted its present charter... the role, function and organisation of the BBC was bound to change..." and "we should be ready to contemplate radical changes in the way the $B B C$ operates".

The green paper is intended as the start of a public discussion on the BBC's future. Here's Mr. Brooke again: "we now wish to listen to the arguments before deciding on proposals to bring forward to the House". So that legislation can be enacted in time for the renewal of the BBC's charter, which ends on December 31 st 1996, a time limit on public representations has been imposed. Comments are invited by April 30th 1993. The Department of National Heritage has produced a pocket-sized summary of the green paper: it's free to interested parties, being available from the Department of National Heritage, Room 668, 50 Queen Anne's Gate, London SW1H 9AT. In addition free leaflets are being distributed via public libraries and Citizens' Advice Bureaux. Twenty questions have been formulated by the government on the BBC , as follows:
(1) What should be the objectives of public service broadcasting? (2) Should the BBC continue to broadcast a wide range of services appealing to all tastes and interests or should it concentrate on information, education and minority interests, and programmes unlikely to be provided by other broadcasters? (3) Should the BBC broadcast a high proportion of programmes to reflect the interests of people throughout the UK? (4) Should the number of BBC television and radio services be changed? (5) Should the BBC continue to expand services for audiences overseas? (6) What standards should the BBC be expected to meet in its programmes and services? (7) How many of its present functions should the BBC continue to carry out? (8) How can its organisation be improved to carry out these activities more effectively? (9) Should the BBC be encouraged to develop or expand its activities, and what should be the implications for its structure and organisation? (10) Should the BBC reduce expenditure by cutting the range and quality of programmes and services? (11) Should the $B B C$ continue to be financed by the licence fee? (12) If not, how should the $B B C$ be financed? (13) If so, should any changes be made to present licence fee arrangements? (14) How can the BBC become more efficient? (15) Should changes be made in the way the BBC keeps in touch with its audience? (16) How should the interests of audiences in Scotland, Wales and Northern Ireland be represented? (17) Should changes be made in the functions of the governors and the BBC Board of Management? (18) Should there be a public service broadcasting council either to regulate the BBC or to promote, finance and regulate public service broadcasting by the BBC and other services? (19) Should the BBC have clearly stated objectives and publish results showing how far it has met them? (20) Should there be improved arrangements for regular parliamentary scrutiny of the BBC 's objectives and how far the BBC has gone in meeting them?

Because it is publicly funded, it's right that the BBC should be subjected to scrutiny from time to time. But the basic facts remain that by any standards of comparison the BBC provides an excellent and economic service.

The Scartbox
 Keith Wevill, B.Sc.

The scart connector is now well established as a means of feeding video and audio signals from a VCR, satellite receiver, computer etc. to a TV set. Once the connector is in place however it's not normally possible to monitor any of the signals to check for correct operation. With this in mind the break-in box described below was devised. In addition to allowing video and audio inputs and outputs and control signals to be monitored it enables signals from non-scart equipped sources to be connected and signals from scart equipped sources to be extracted.

Circuit

The circuit, see Fig. 1, is simply a pin-to-pin link between a scart socket, SKI, and a scart plug, PLI. Each of

Fig. 1: Scartbox wiring circuit.

Fig. 2: Scartbox panel layout.
the composite video signals (pins 19 and 20) is connected to a BNC socket and each of the audio signals (pins 1,2,3 and 6) is connected to a phono socket. The control signals (pins 8 and 16) and the RGB signals (pins 15,11 and 7 respectively) are connected to 3 mm sockets. All the signal earths are connected together and taken to a sixth 3 mm socket. Other connectors could be added but those specified were found to be convenient for my own use.

Layout

The connector layout is shown in Fig. 2. A Verobox type 303 is suitable, with a piece of copper-clad board to replace the top - the copper acts as an earth plane, with all the scart socket earths and the BNC and phono sockets connected to it directly, thus minimising the wiring required. The 3 mm sockets should have different colours: red, green and blue for the RGB signals, black for the common earth socket, yellow for RGB status (pin 16) and white for composite video (CVBS) status (pin 8). Use screened cable for the audio and video signals. Feed the cables to the scart plug through a slot at the top of the box, with sleeving to protect them. They shouldn't be too long - about one metre is probably a convenient length. This enables the box to be placed at the front of the TV set or VCR being monitored so that you don't have to struggle with test equipment round the back.

Computer Connections

The scartbox can be used to connect a computer to a scart equipped TV set but with some computers, such as the Amstrad CPC series, a purpose-made cable is more convenient. The Amstrad CPC series of computers have a six-pin DIN connector to link them to the monitor, which may be either a monochrome or colour type. The signal levels are suitable for direct connection to the $75 \Omega \mathrm{RGB}$ inputs of a scart equipped TV set. The connections are as listed in Table I below.

The sync signal isn't used because the luminance signal provides the sync pulses. The TV set will have to be manually switched to the external input as the computer doesn't provide a suitable switching voltage at the monitor socket. Switching to the external composite video input will produce a monochrome display as the signal isn't PAL encoded, whereas switching to the external RGB inputs produces a colour display.

Components Required

Scart plug (Maplin FJ41); scart socket (Maplin JW34), two BNC sockets; four phono sockets; six 3 mm sockets (red, green, blue, black, yellow, white); Verobox 303 (Maplin LH50); copper-clad board; cable sleeving; screened cable; wire.

Table 1: Amstrad computer connections.		
Computer DIN plug	Use	Scart connector
1	Red	15
2	Green	11
3	Blue	7
4	Sync	-
5	Common	$17,13,9,5$
6	Luminance	20

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES Seleci irom lour superb models. All, with the enceplion of the HM 1005 , incorporate a usetul COMPONENT TESTER. Size - all models 255 mm I 145 mm : 380 mm . Clear display ccm a 10 cm . Wans supphy. $10 / 220.240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
All suppiled with 2 PROBES, a COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY
HM203-7 20MHz STANDARD
SPECIFICATION
2 Channeis
Bandwidin: DC - 20 MHz Sens: Ch.! Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Triggering: DC $-40 \mathrm{Ms} / \mathrm{cm}$ Triggering: DC - 40 MHz Actlve TV-Sync-Separato Trloger LED indicator Trlgger LED indicator Component tester Plus many teatures
Price E338.00 + E59.15 V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS

HM604 60MHz UNIVERSAL
2 Channels
Sandwidth: DC -60 MHz
Sens: Ch.1. Ch.2. $1 \mathrm{mV} / \mathrm{cm}$
Timebase $: 2.5 \mathrm{~s} \cdot 5 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC - 80 MHz
Active TV - Sync - Separator
After delay trigger
Sweep delay
Delay line

Trigger LED indicator
Calibrator: $1 \mathrm{KHz} \& 1 \mathrm{MMz}$ Sq. Wave

- Component tester

Price E610.00 + E106.75 V.A.T. FREE Specialist Carrier Delivery
HM1005 100MHz UNIVERSAL зсhannels. up togtaces

SPECIFICATION

Channels Bandwidth: $\quad 100 \mathrm{MHz}$ Sens: Ch.1. Ch.2.Ch.3. $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Timebase B: $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ Triggering DC - 130 MHz Atter delay trigger Trigger LED indicato Trigger LED indicator
Overscan LED indicator Overscan LED indicator
Active TV - Sync - Separato Calibe TV-Sync-Separator
Calibrat 1 KHz 1 MHz . Wave Price $£ 792.00$ + £138.60 V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Analogue real time (Sam
Bandwidth: DC -20 MHz
Sens: Ch.1.Ch.2. $1 \mathrm{mV} / \mathrm{cm}$
Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$ Triggering DC - 40MHz Active TV-Sync - Sampling Memory: $2 \times 2048 \times 8$ Bit Dot joiner er/plotter output Price $\mathbf{E} 610.00+$ E106.75 V.A.T.
B.K.'S CRT TESTER DIGITAL CAPACITANCE REJUVENATOR Tests and rejuvenates blue green and red guns and $P 11$ sockets Compac and P. Sockels. Compact
size $120 \times 65 \times 60 \mathrm{~mm}$. Supply 240 V AC Price 534.00 + E5.95 V.A.T.
 METER
 - High accuracy

$-0.1 \mathrm{pt}-2.000 \mu$ f. | 0.1 pt- $2.000 \mu t$. |
| :--- |
| - LCO display | Branges

Accuracy
Full scale $/-1.1$ digi
Inc. protective case.
Price $\mathbf{2} 39.99+\mathbf{E} 6.99$ V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.

FEATURES

Carrier frequency $100 \cdot 1 \cdot 1 \mathrm{MHz}$ (adjustable).
Output level $0.1 \mathrm{mV}-10 \mathrm{mV}$
Pilot signal 19KHz $\quad=2 \mathrm{~Hz}$
L \& R separation over 50 dB .
External Modulation $50 \mathrm{~Hz}-15 \mathrm{KHz}$
External Modulation 50 Hz . 15 KHz
Pre-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ o ofl.
Comprehensive test lead set included
Mains powered.
Size: $80 \times 200 \times 250 \mathrm{~mm}$
Price £299.00 + £52. 33 V.A.T.
LEADER HIGH VOLTAGE METERED EHT PROBE

Light welght, easy to-grip high-impact plastic extra equipment. An indispeusitle item in your TV service kit. Measures ur, to 40 kV OC with sately and the greatest of ease. Enlirely selt. contained. Connect the lead clip to chassis and probe tip to the check point, read the meter for vollage.

Pe the and Sate Wark Price $\mathbf{\Sigma 6 6 . 0 0}+\mathbf{£ 1 1 . 5 5}$ V.A.T.

Price range. Credit card ordere are accepted by 'phone, fax or post. range. Credit card orders $\begin{aligned} & \text { Delivery normally within seven days }\end{aligned}$

More on the Philips KT3 Chassis

John C. Priest

The well laid out Philips KT3 chassis was used in a number of popular sets that were sold over the years 1980-83. There were Philips and Pye models from 14 in . portables to 20 in . table models in wooden cabinets, with and without teletext.

Chassis Details

The chassis consists of a vertical mother board which is well supported in a metal frame and carries the line and field output stages and the chopper transistor and smoothing components, most of the rest of the circuitry being mounted on daughter boards. There are many similarities with the larger screen K30 chassis, and many of the subpanels are interchangeable. The KT3 has a line output transformer with separate e.h.t. and focus units while the K 30 has a diodesplit line output transformer.

Because of their good reliability these sets are seldom seen in the workshop. Recently however we had a rash of them in.

A 14in Portable

The first one was a 37 KT 3052 , which is a 14 in portable in a white plastic cabinet with simple remote control and incremental channel change. It was completely dead, the culprit being the 4.7Ω surge limiting resistor R6191 associated with the mains bridge rectifier circuit. Note that in some manuals it's shown as R6291 in the components list. This used to be a common fault, but as these sets are now around ten years old I would have thought that all the dodgy 4.7Ω wirewound resistors would have been weeded out by now.

Pye 16in Portable

The next set was a Pye 42KT3157, similar to the first but with a 16 in. tube, full remote control and teletext. This set had partial field collapse, with the top half of the picture compressed down to the middle half inch of the screen and a fairly normal display in the lower half. It seemed that someone else had already had a go: when the back had been removed we saw that just about every component in the field output stage had been resoldered.

As a quick check I fitted the sync/timebase generator subpanel from the first set. This made no difference to the symptoms and voltage checks around the field output transistors and the driver and pre-driver transistors on the main panel indicated that the fault was in this area. The two output transistors had received previous attention but I removed them for checking. Resistive checks gave them an apparently clean bill of health, but when a transistor tester was used the gain of the upper transistor, a BD233, was found to be only 49 as opposed to 155 with a new sample. So a new BD233/BD234 output pair were fitted, restoring the scan and the voltages to normal. Moral: don't rely on resistive checks only when investigating possible transistor faults.

Two Philips Portables

The third set, a Philips 14C925 in a silver cabinet, had a faulty tuner which was packed off to those nice people at MCES for attention. It was an ELC2003, but you also come across the U321 in these sets. The associated i.f. modules
differ, so bear this in mind when you're contemplating component swaps from the graveyard.

Set number four was another 14 C 925 . It had what looked like a small golf ball welded to the aerial socket - in fact a coaxial plug corroded by water from the downlead. Luckily these sets have a separate aerial socket/isolator which is liked to the tuner via a short coaxial lead, so repair was simply a matter of fitting a new aerial socket. A better arrangement than with most modern sets in which, because they have an isolated chassis, the aerial socket is mounted directly on the tuner. With these, water damage can be extensive and expensive, if not fatal.

Line Output Faults

Set five suffered from hour-glass distortion with no control of the width. The BD234 diode modulator driver transistor T1490 and the BC548 pre-driver T1485 were both leaky, replacements solving this little problem.

Set six, a Pye 42KT3157, tripped at infrequent intervals. There was a lot of greasy/sooty deposit around the line output stage, so this was first cleaned up. The e.h.t. tray was then removed and examined: you sometimes find that there's a pinhole through the bottom to chassis, but this one seemed to be o.k. I then noticed that the set cut out momentarily when any contact was made with the focus or the first anode controls. As both of them (T1572 and R1581) were showing their age I replaced them along with $\mathrm{R} 1580(2.7 \mathrm{M} \Omega)$ and R1582 (1M $)$). A good soak test showed that this had done the trick.

Goes Red

The complaint with another 3157 was that the picture "goes red". At switch on there was if anything a lack of red. The picture was a pale cyan, then improved considerably over the first three or four minutes to give a good display. But after about half an hour the green gradually faded, leaving a strongly magenta picture. This reverted to normal when the back was removed. Judicious use of the hairdryer and freezer soon pinpointed the TDA3560 colour decoder chip on the luminance/chroma panel as being the cause of the trouble. Note that the 3157 is a teletext set with the later single-chip decoder - the earlier luminance/chroma module has two chips.

The TDA3560 is fitted in a socket which can also give problems. When this happens the best cure is to remove the socket completely and solder the chip to the panel directly. It's necessary to quil the pins before refitting. With this particular receiver however a new chip and grey-scale setup provided a complete cure.

The main panel socket into which the luminance-chroma module is fitted can also be responsible for intermittent loss of or flooding with different colours. When working on these sets it's worth cleaning and examining all the subpanel connectors.

Monitor Use

The next set, a 16CT3715, was the Philips equivalent of the 3157. It wasn't actually faulty. The owner used it as a monitor for editing video and camcorder tapes and wanted
video compatibility on more than the single channel (12) provided. Video switching in these sets is carried out on the tuning subpanel at the right-hand side of the cabinet, behind the cover over the tuning potentiometers. There are three four-bit decoder chips, IC856/7/8, on this panel. Each switches three of the twelve channels. Pins $10,12,14$ and 16 on each chip can be used for video switching, but only pin 16 of IC858 is so used - it switches to the video mode on channel 12 by taking one end of $\mathrm{R} 868(10 \mathrm{k} \Omega)$ to chassis, thus turning on transistor TS859. This in turn switches pin 10 of the TDA2571Q chip on the sync panel. If you just want to extend the VCR switching to one or two more channels, further $10 \mathrm{k} \Omega, 0.25 \mathrm{~W}$ resistors can be added on the print side of the tuning panel (U856), from pins 12 and 14 of IC858 to the junction of R868/R869. Channels 10 and 11 will then be VCR compatible. A quicker and easier way is to link pins 3 and 5 of plug M on the lower edge of the mother board, immediately below the sync module. This makes all channels VCR compatible.

No Sound

The last KT3 had no sound, a common fault in the early days. The seven-pin DIN headphone socket next to the mains switch has a small slide switch that turns off the loudspeaker when 'phones are in use. It's easy to turn this switch off accidentally when dusting etc. In this case however the
switch was open-circuit, probably because of lack of use. Switch cleaner often provides a cure, but a better solution if the switch is never used is to solder a permanent link across its contacts. When the switch is frequently used a complete replacement headphone-panel assembly can be obtained from Philips under part no. 4822212 20503. It consists of a socket, switch and isolation transformer mounted on a small PCB.

Tube Boosting

A final note. When one of these sets shows signs of c.r.t. fading and a replacement is ruled out because of the age or condition of the set a temporary improvement in picture quality can be achieved by shorting out one of the two chokes L9603/9604 on the c.r.t. base panel. The resultant cathode emission increase provides a dramatic improvement in picture quality, and I know of several instances where doing this has extended the useful life of the set by well over a year. Don't be tempted to increase the boost by shorting out both chokes: this is likely to result in either a cathode-heater short-circuit or an opencircuit heater, both of which make the tube and the set useless. Don't neglect to explain to the customer beforehand what you propose to do and to emphasise that it will provide only a temporary cure, a new tube or set being essential sooner or later.

It was a busy afternoon in the Electric Dreams workshop. Service Manager Sid had the kettle on the boil and an old Ultra Bermuda colour set - Thorn 8500 series chassis - on his bench. Young Gareth was looking at an Hitachi VT220 with no deck functions, noisy r.f. bypass and a general lack of go. He began to take off the cover. Norman had his head in a Ferguson SRAl satellite receiver that seemed to be working perfectly well. The customer had complained that it switched between good clean pictures and no picture or sound at all, just a screenful of noise. It would take about an hour after switch on for this to happen: the receiver would then switch between the two states every fifteen to twenty minutes. Norman decided to leave it on and see what happened, turning his attention to a Toshiba 140R3B that wouldn't come out of standby.

Sid switched on the Ultra set and got a picture. The e.h.t. sizzled a bit at the cap, which was not surprising considering that it was a damp day. He switched the set off, discharged the e.h.t. with his wand and took a look at the area around the tube's bowl. After cleaning it carefully, first with methylated spirit and then with a small drop of industrial alcohol, he found that the underside of the e.h.t. cap had been crazed by corona discharge. So he'd have to replace it. After a gigantic clear out a couple of months previously he'd lost his vast stock of defective triplers, kept for the anode caps only,
but there'd been an improvement since then. He went to rummage amongst his little cache of obsolete spares in an old outhouse.

Norman had found the cause of the Toshiba set's problem: D808 had been short-circuit. He replaced the back cover, put the set on the soak test bench and picked up a Mitsubishi HSB30 with no playback picture. Time to get the scope and settle down for a signal tracing session.

Gareth grunted with satisfaction. The voltage regulator chip in the Hitachi VCR had proved to be faulty. He went to order a replacement, stopping to watch Sid's struggle with the Ultra set's e.h.t. cap. Flashes of lightning penetrated the workshop's grimy windows and thunder boomed at shortening intervals. Sid soldered the cavity connector back in place and pushed it into the recess in the final anode cap, then pushed it into the tube and switched on. There was an almighty flash and an almost instantaneous clap of thunder, followed by darkness as the power was cut. Sid steadied his hand and regretted not having brewed a fresh pot before the power went off.

The power soon returned. Norman scoped the Mitsubishi VCR's playback signal path and found that the f.m. didn't go beyond Q2B2. Fitting a replacement transistor restored the playback picture. He turned to the SRA1. The loss of power had allowed it to cool down. To raise the working temperature quickly he forced hot air from a hairdryer through the ventilation slots. This worked: the signal dissolved instantly into noise. Leaving the unit powered up, Norman removed the cover and began to check voltages. In later versions of this satellite unit R145, the safety resistor in the a.c. supply to BR3, was replaced with a small selfresetting fuse called a polyswitch. This is in the LNB supply. Operation of the polyswitch had produced the fault condition. Norman removed the offending item and went to the stores for a replacenient. When this had been fitted the SRA1 produced a good picture and sound. Norman put it on the soak test rack. It was getting late: the other patients would have to wait till the following day.

Modern TV Receiver Techniques

Part 1

$+4$

Eugene Trundle

The first domestic TV receivers came on the market in 1936. Since then there has been over fifty five years of development in TV receiver circuitry. The product that sits in the corner of the contemporary living room is a very sophisticated one indeed, the culmination of all those years of research and improvement. This new series will look at the circuits and techniques used in modern receiver designs. The idea is to examine each section of the set in turn, see what it does, how it does it and how it interfaces with the rest of the set, with the aim of making everything clear for newcomers to the TV field, those who may have got a bit rusty and practising technicians who never had the time to get to the bottom of such developments as the I2C bus, switch-mode field scanning or colour transient improvement.

With the exception of high-power, high-voltage and stages that handle very high frequencies - and inroads are being made in all three - most TV circuitry is based on integrated circuits that are generally designed and massproduced for domestic TV applications. We shall look inside typical examples including, later in the series, the digital ones that process the vision and sound signals and provide such advanced features as 100 Hz flicker-free displays. To start with however we'll look at basic television to provide a foundation on which to build.

The TV Signal

The signal being received consists of a carrier wave and its sidebands plus extra carriers and their sidebands for the sound signals and the chroma (colour) information. With a terrestrial transmission the carrier is at a frequency between $470-860 \mathrm{MHz}$, in the UK Bands IV and V. The carrier wave is amplitude modulated by the composite video signal, which consists of an analogue voltage proportional to picture brightness, sync pulse trains at line $(15,625 \mathrm{~Hz})$ and field $(50 \mathrm{~Hz})$ rates, the chroma information in the form of a pair of sidebands of a suppressed $4 \cdot 43 \mathrm{MHz}$ subcarrier, and bursts of digital data conveying teletext information. We'll examine each of these in turn as we reach the circuit sections concerned.

Each vision carrier is accompanied by a sound carrier which is at a 6 MHz (UK System I) higher frequency and is frequency modulated by the mono sound signal and, for Nicam sound, a third very low-level carrier at 6.552 MHz (UK) that carries, in the form of phase modulation, a digital pulse stream from which two high-quality sound signals can be recreated. We'll be looking at the processing of these signals later in the series.

The whole bunch of signals described above is handled as a single entity in the early stages of the receiver. After demodulation each signal is separately processed to produce a colour display on the picture tube and high-quality sound from the loudspeaker(s) - not such high quality if the manufacturer has skimpt on this part of the receiver.

Receiver Block Diagram

This brings us to the basic colour TV receiver block diagram shown in Fig. 1. Although it's not part of the set the
first and very important stage is the aerial, which is in effect a broad-band tuned circuit, capturing a group of channels. To reduce possible interference the aerial has a directional characteristic and is mounted so that it responds to signals with either vertical or horizontal polarisation. Its downlead forms a matched transmission line to the aerial socket.

The Front End

The signals picked up by the aerial are applied to the tuner which has three basic functions: to amplify the tiny incoming signal with the minimum addition of noise (since any noise added here will be amplified in subsequent sections of the receiver); to provide selectivity, suppressing out-of-channel signals; and to convert whichever channel is selected by the user to a fixed set of carrier frequencies that remain the same (in the $30-40 \mathrm{MHz}$ region) regardless of the transmitted carriers being received. The new carriers, called i.f.s (intermediate frequencies), make it easier to design the filtering and bandpass circuitry required to select the wanted vision and sound signals and reject any on adjacent channels.

The tuner is followed by the i.f. section which consists of a selectivity filter, an amplifier and a demodulator. In most receivers this handles the vision and sound carriers together. The selectivity filter has a sharply-defined response: it rejects all but the wanted vision and sound signals; balances the energy in the sidebands of the vision signal; establishes the correct ratio of vision and sound carrier level; and provides sharp suppression of the carriers in the adjacent channels. The following amplifier raises the level of the wanted carriers to that required for efficient demodulation. It includes an a.g.c. (automatic gain control) loop to ensure that the level of the signal presented to the vision demodulator remains constant over a very wide range of input signal levels at the aerial socket. A.G.C. is also applied to the tuner to reduce the gain here in the presence of a very strong r.f. input. A second feedback loop to the tuner provides a.f.c. (automatic frequency control) to correct any tendency to deviate from the correct i.f.s.

The vision demodulator samples the level of the vision signal once per carrier cycle: integration of these samples produces a facsimile of the original video modulation. What emerges, after filtering, is the composite video signal complete with the colour subcarrier, the text data and any other items (such as test and programme identification signals) added at the transmitter. Also the sound signals. These items are separated by filters that select particular groups of frequencies which are then passed to their own processing circuitry. We'll consider the mono sound signal first - the added complication of Nicam will be left till another time.

FM Audio

Because, with the UK System I, the transmitted vision and sound carriers are exactly 6 MHz apart the i.f. carriers in the receiver are likewise 6 MHz apart. Non-linearity in the demodulation process gives rise to a beat between them, the result being a 6 MHz intercarrier signal that contains the

MANOR SUPPLIES

MKV PAL, COLOUR TEST GENERATOR
FOR DOMESTIC TV \& VCR.

* 40 different patterns and variations.
* Fully interlaced sync pulses with correct picture blanking
* EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, ycllow cyan, green, magenta, red, blue and black
* Chequerboard
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver acrial socket.
* Additional video output for C(CTV \& VCR.
* Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply
* All kits fully guaranteed with back-up service
* Also available with VHF Modulator

Price of Kit
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{\left.1 / 4^{\prime \prime}\right)}$ app
Optional Sound Module (6 MHz or 5.5 MHz) E15.0 Built \& 'rested in Case including Sound Module Post/Packing t4.50
AddVAT 17.5% TO ALI PRICES

PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF applied to receiver acrial socket
* In addition to colour bars R-Y', B-Y etc
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated
* Simple design, only five i.c.s on colour bar P.C.B.
* Backup service available.

PRICE OF MK4 COLOUR BAR GENERATOR KIT £35.00. CASE £5.80. BATT HOLIDERS £4.20 MAINS SUPPIY KIT $\mathbf{~} 5.80$

(Combined I'\&P £4.50)

LINE OUTPUT TRANSFORMER TESTER

* Saves time and money
* Checks short turns.
- Simple to use

Reliable. Battery operated.

* Pocket size.

PRICE £20.00
POST/PACKING \{2.50
INFRA RED REMOTE CONTROL TESTER

* Pocket size
* LEED + audible indiaation
* Simple to use

PRICE $£ 20.00$

POST/PACKING £2.50

KITS AND PROJECTS

SAW IF ANI TLINER UNIT complete and tested for viden \& audio outputs $\mathbf{£ 2 8 . 5 0}$ p.p. $£ 1.80$.
PAI DECODER KIT (Video to R(il3) for Monitors £27.(X) p.p. £1.80.
PAL ENCODER KITT (RGB to Vidco) £18.50 p.p. $£ 1.80$
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicatos - can be adapted for latest CRTs $£ 40.00$ p.p. $£ 4.50$.

TV \& VIDEO SPARES

REMOTE CONTROLS
Replacement for: Ferguson, Hitachi, Philips, Panasonic. Grundig. ITT. Sony. Saisho, Granada. isho + many others

PHILIPS SPARES
MANUALS CF1. CTX-E, CTX-S, CP90, CP110, GR1AX, G90AE, 2B, 3A. NC3-CR £7.50 p.p. $£ 1.80,2 \mathrm{~A} £ 10.50$ p.p. $£ 1.80, \mathrm{KT} 3 \mathrm{£} 25.00$ p.p. $£ 1.80$
YSIEM 4 K14. K40 222.00 p.p. ± 3.00
K30, KT4, CTX-EHT Lead $£ 4.90$ p. p. f1 م. 9.90 p
THORN/FERGUS
9000 Series IF/Decoder tested $£ 10.00$ p.p. $£ .80$
TX10 Focus control $£ 8.50$ p.p. $£ 1.80$
TX9/10 Remote \& tuning $1515 \mathrm{~N} £ 5.00$ p.p $£ 1.80$
TX10 Stereo Audio Board $£ 3.50$ p.p $£ 2.50$
TX100 Chopper TX $£ 22.80$ p.p. $£ 2.50$

IC SELECTION									
AN5521	c3. 80	SAB3037	88.80	TBali20s	81.20	TDA2594	$\mathrm{Ec}^{8.80}$	IDA4503	80
ANS900	c2. 20	SAF1032	64.50	TBA750	82.20	TDA2595	E4.80	TDA4505	56.80
Ba6238A	c2.80	SAF1039	12.20	TBA920	\$2.80	TDA2600	ع6.80	TDA4555	59.80
CNX62	c4.80	SL470/471	54.00	tBa950	£2.20	TDA2611A	$\underline{51.90}$	TDA 4600	6.85
FRG07	77.21	SL486	c3. 20	TCA27a	£1.80	TDA2640	53.20	TDA4601	¢2.80
HA11211	52.80	SL490	53.80	TCA800	E6.80	TDA2653A	$\underline{53.20}$	TDA 4610	c6.80
HA11423	12.10	SL1430	¢1.80	TDA105ST	¢2.40	TDA2654	E5.70	TDA4950	1.60
HAS13385	E11.80	SL1432	51.40	TDA 1037	[1.90	TDA2655B	88.60	1dassto	$\underline{12.50}$
LA4445	¢3.80	SN762260N	81.80	TDA 1041	¢2.90	TDA2670	53.20	TDAs850	52.80
LA7800	¢1.80	SN76705	£9.80	TDA 1063	63.80	TDA2680	E3.80	TDA8153	\$7.80
LA7520	¢2,80	STK5325	E6.80	TDA1082	54.80	TDA2690	c3.80	TDA\&180 Kı	- 57.50
LA7801	63.50	STK5332	E6.80	TDA1170S	22.20	TDA2780	¢6. 80	TDAB190	c3. 80
LA7830	[2.80	STK5333	$\underline{18.40}$	TDA118i)	$\underline{22.20}$	TDA31\%	44.20	TDA4403	c3.80
M293B1	211.80	STK5338	E6.80	tDAllgicz	c2.20	TDA3301	57.50	TDA9503	$\underline{53.80}$
M4908B1	114.80	STK5337	57.00	TDA14.EPP	5.70	TDA3330	86.90	TDA9513	E4.80
M4918B1	59.80	STK5339	E6.80	TDA147	52.80	TDA3500	56.90	TEA!009	62.20
M494	59.80	STK5421	E6.80	TDA1524	E6.80	TDA3505	c4. 50	TEA1014	63.50
MC13002P	E5.80	STK5422	58.50	TDA1673A	53.20	TDA 3510	59.80	TEA1039	11.80
ML237	53.80	STK5471	86.50	TDA1701	53.80	TDA3540	¢2. 50	TEA2018A	$\underline{52.20}$
ML926	54.80	STK5481	c5.90	TDA177	53.20	TDA3541	c3.50	TEA2029	E5.80
MN15425	¢15.80	STK5482	5.50	TDA1870	66.80	TDA3561A	15.80	TEA2165A	E6.80
SAA1024	¢5.80	STK7308	E6.80	TDA1872	59.80	TDA3562A	¢5.80	TMS1000N21	153.80
SAA1025	55.80	STK7348	£10.80	TDA1903	12.80	TDA3565	53.20	TMP47C432	
SAA1124	[3,50	STR441	67.80	TDA1940	63.20	TDA3566	¢5.80	8189	£13.50
SAA1250	[3.80	STR 450	ع6.80	TDA1950	c3.50	TDA3571	¢2.80	TMP4	
SAA1251	c8.4]	STR451	67.80	TDA2040	57.80	TDA3576	¢10.50	3555	¢16.80
SAA1293.02	28.80	STR454	55.90	TDA2159	83.20	TDA 3640	55.20	TMP47C434	
SAA5000	52.80	STR4211	c6.80	TDA22T0	52.80	TDA3650	¢9.80	3559	$\underline{15.80}$
SAA5010	55.80	STRS412	46.80	TDA2540	¢6.80	TDA3651	¢4.20	TUA2000	28.50
SAA5012	5.80	STR 50020	\$10.80	TDA2548	¢5.80	TDA3653A	£3.80	U4606	¢14.80
SAA5020	55.80	STRS0103	15.80	TDA2575A	87.80	TDA3653B	53.20	UC3849	c4.95
SAA5030	66.80	STR54041	¢6.80	TDA2574	¢4.80	TD A3654	¢3.20	UPC1378	81.90
SAA5040	56.804	STR 58041	¢6. 80	TDA2578	[3.80	TDA 3810	E5.50	UPC1394	$\underline{53.80}$
SAASOS0	E11.84	STR6020	E5. 20	TDA2579	¢3.80	TDA4442	E6.80	UPC1420	E8.60
SAA5231	27.89	TA7680AP	55.80	TDA258.	12.40	TDA4500	£5,80	UPC1488	63.20
SAAS243	[23.54	TA768TP	c5. 80	TDA2589	$\underline{62.80}$	TDA4501	57.80	IC p.p 90p	
SAB3035	. ${ }^{\text {d }}$	TA7698P	£6. 90	TDA2599	51.50	TDA4502A	50		
LINE OUTPUT TRANSFORMERS p.p. £1.8u)									
AMSTRAD 2200.				E21.80 PHEORMERS p.p. £1.80)					£2.80
DECCA 100				E10.80	PHILIPS	KT3			133.80
FIDELITY $\mathrm{ZX2000}$FIDELTTY Z 3000				£15.50	PHILIPS	K K30			c31.80
				¢14.50	PHILIPS	CTX-E/S			£27.50
Hinaricta, CTs				ع24.90	PHILIPS	KT4			c22.40
HTTACHI CPT $1455,1456,1476,1491$				[28.80	PHILIPS	2A			E25.80
HITACHI CPT144646 PN2432981HTTACHI CPT21747678				$\underline{621.80}$	PHILIPS	K40			$\underline{27.50}$
				628.80	PHILIPS	3 ${ }^{\text {a }}$, 2 B			$\underline{23.80}$
HITACHI PN2433752				121.80	Philips	CF1			E32.80
ITT Compact B. 110				¢19.80	PHILIPS	CP90			128.50
ITT Compact 80, 110				117.80	PHILIPS	CP110			124.25
ITT Compact 80. 90.				$\underline{222.80}$	PHILIPS	griax			$\underline{125.90}$
ITT Compact 80, 110 FST				419.80	PHILIPS	NC3			$\underline{22.50}$
ITT CVC 20.				59.80	Salsho	MATSUI 371	14002		¢21.80
ITT CVC 25, 30.32				110.80	SANYO	CTP7132. 80 P	P Chassi		c39.80
ITT CVC 45.				59.80	SONY K	V1882.			c35.00
ITT CVC 800, 801803				£24.00	SONY K	V2092/6			c34.50
ITT CVCL 100, 1206, Pcos				¢18.50	SONY K	V2704			$\underline{60.00}$
ITT CVC1150, 1175				£22.80	SONY K	V2752			c48.00
ITT CVCL200, 1201, Mini 2				¢18.50	THORN	9000			¢9.80
ITT CVC1204				£11.50	THORN	9600			¢9.80
ITT CVC121012/15/17				£17.80	THORN	ICCS			E24.00
ITT Digi 3, 110... ...				¢19.80	THORN	TX9			E21.50
ITT Core 100,90...				E19.80	THORN	TX10(Chopp	per)		£19.80
ITT Core 110 FST				$\underline{19.95}$	THORN	TX85			$\underline{19.80}$
TrT TX33207 ...				$\underline{122.80}$	THORN	TX90 14*			$\underline{19.80}$
ITT TX3446....				$\underline{522.80}$	THORN	TX90 20°			E21.80
ITT Monoprint A . . .				¢21.80	THORN	TX100.110	Green Sp		119.80
ITT Core 110 FST				E19.95	THORN	TX10090 ES	T Yellow	Spot	\$21.80
LOEWE Classic M124, M27 LOEWE Contur M27				¢33.00	THORN	TX100 EST T	T6045L.		E25.50
				$¢ 33.00$	THORN	TX100 Blue	Spot		221.80
LOEWE Other (Quose model No.)				£21.80	POST PA	ACKING LOP	PTS		11.80

TRIPLE
PLIERS
U.K. UNIVERSAL (best quality) ©7. 80

DECCATATUNG BG 200/44 TYPE $£ 7.8$
GRUNDIG BG 2077-642-1001/1002 1003/1004 £21.80
GRUNDIG BG 2087-642-1006 £21.80
THORN 9000 f9.80
MAINS TRANSFORMERS: 6.3 Volts CRT boost $£ 6.80$ p.p. $£ 1.80$
Mains Isolating 500 VA 25 I .25 p .p. 55.25
MISC: 455 CRYSTALS for handsets. 4 for $£ 2.00$ p.p. 80 p
VHF to UHF Converters $£ 35.00$ p.p. $£ 2.80$
DEGAUSSING ROD $£ 33.75$ p $£ 2.8$.
DEGAUSSING ROD $£ 33.75$ p.p. $£ 2.80$
TRANSPARENT VIDEO SERVICE CASSETTE $£ 6.80$ p.p. $£ 1.80$
HOW TO ORDER: ADD p\&p TO ORDER + VAT 17.5\% TO THE TOTAL
PRICES ARE SLBJECT TO CHANGE WITHOUT NOTICE

Telephone 071.79488751/7947346
MANOR SUPPLIES
6 1SD
frequency modulation of the original sound carrier. This can be selected by a sharply-tuned filter, amplified and clipped to remove any amplitude variations, then fed to an f.m. demodulator to recover the sound signal. The demodulated sound is finally equalised, amplified and fed to the loudspeaker.

Video Feeds

We don't want the 6 MHz intercarrier sound signal in the vision stages of the TV set - it would beat with the vision signal to produce patterning on the screen. So the 6 MHz signal is filtered out by a sharply-tuned rejector circuit. After this the vision signal goes along four paths: luminance, chrominance, teletext (if incorporated) and sync.

Luminance and RGB Signals

The luminance signal carries the brightness information and is all that a monochrome set requires to produce pictures (plus sync pulses of course to synchronise the display). To prevent patterning the accompanying colour subcarrier is stripped from the luminance signal by a narrowband rejection filter tuned to the 4.43 MHz colour subcarrier frequency. The luminance signal is then clamped to restore and maintain the correct black level, amplified and delayed by about $800 \mu \mathrm{sec}$ so that it remains in step with the chroma signal - the latter gets delayed because it passes through relatively narrowband circuits, which have this effect. Finally the luminance signal is added separately to the colour-difference signals produced by the decoder, the result being the three RGB (red, green and blue) signals. These are the primary-colour signals required by the tube to produce a full-colour display. The shadowmask tube's three cathodes require about 70 V peak-to-peak drive. So the RGB signals are boosted by high-voltage transistor amplifiers that are usually mounted on the tube's socket-base board. A very few sets have used an i.c. for this purpose.

Chrominance Signal

The signal that contributes the colour to the display is carried in the sidebands of a 4.43 MHz carrier which is itself suppressed at the transmitter. It's called the chrominance signal, or chroma signal for short, and consists of two colour-difference signals, $R-Y$ and $B-Y$ (red minus luminance and blue minus luminance). Transmitting colourdifference signals instead of primary-colour signals enables the colour to be added to the brightness information in a colour receiver: the technique means that the signal is compatible, i.e. a monochrome receiver can simply ignore the colour signal and produce a monochrome display. The two colour-difference signals transmitted modulate the colour subcarrier in quadrature, i.e. with a 90° phase difference. After demodulation the phase of the signal indicates the hue, i.e. colour, while its amplitude indicates the saturation, i.e. strength. What about green? A G - Y colourdifference signal can be produced in the colour decoder by adding together the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals is certain proportions.

Before the hue and saturation can be detected it's necessary to recreate the missing chroma carrier, i.e. the continuous 4.43 MHz wave that's suppressed at the transmitter to avoid patterning and interference on the picture. This is done by including in the colour decoder a stable, crystalcontrolled oscillator that's locked to the 4.43 MHz colour subcarrier frequency. To enable this phase locking to be carried out a sample 4.43 MHz signal called the colour burst
is transmitted during the sync pulse period - it's included on the back porch of the line sync pulse. More on this when we come to colour decoding.

A high-pass filter extracts the chroma signal from the composite video. It's then set at a constant level by an a.c.c. (automatic chrominance control) loop which samples the colour burst - this is transmitted at a constant level and is thus a reliable indicator of the chroma signal strength. Because the chroma signal is phase (as well as amplitude) modulated, demodulation has to be carried out by timed demodulators. These can be considered as two gates that are opened one after the other at precisely-timed instants during each subcarrier cycle, the timing being controlled by the recreated subcarrier. The outputs from these sample-andhold circuits are the two transmitted colour-difference signals, $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$, whose levels have to be adjusted to compensate for weighting carried out at the transmitter (to prevent the transmitter being over-modulated). Matrixing (adding signals in various proportions) then produces the $G-Y$ signal and finally the RGB signals.

The amplitudes of the colour-difference signals are set by the user's colour/saturation control, the contrast control sets the level of the luminance signal while brightness is set by adjusting the luminance signal clamping level.

The PAL colour-encoding system introduces a modification to the phasing of the chrominance signal ($\mathrm{PAL}=$ phase alternation by line): we'll examine this when we come to consider decoding in greater detail in a later article.

Synchronising the Scans

To ensure that the individual pixels (picture elements) that make up the colour image on the tube's screen occur at the correct positions, the TV set's line and field scanning generators must be held in precise step with those in the studio. This is the purpose of the sync pulses that are inserted in the video waveform. A line sync pulse occurs at the end of each line and a field sync pulse train at the end of each field. In the very early days the line sync pulses were used directly to trigger the TV set's line waveform generator. This is not a very good idea since interference etc. can give rise to misfiring. Instead flywheel sync arrangements of varying degrees of complexity are employed. The incoming sync pulses are used as a reference to control a phase-locked loop of which the line oscillator forms a part. In theory we no longer need to transmit field sync pulses since they can be obtained by counting down from the line sync pulses, something that was unthinkable in the pre-i.c. days. In practice the field sync pulse train is usually integrated and used to trigger the field oscillator.

It's simple to separate the sync pulses from the rest of the video signal: as they are "blacker than black", i.e. below the signal black level, they can be separated by amplitude slicing. The line and field sync pulses can then be sorted out on a frequency-selective basis.

Line Scanning

The duration of each field is 20 msec , during which 312.5 horizontal scanning lines must be traced out on the face of the picture tube. This represents a line scanning frequency of $15,625 \mathrm{~Hz}$. So the line timebase, the section of the set that controls the horizontal deflection of the beams in the tube, starts with an oscillator (more correctly described as a timing pulse generator) that runs at this rate, synchronised as outlined above to the transmitted sync pulses by means of a phase-locked loop. The line oscillator's output consists of drive pulses with a carefully chosen duty cycle (ratio of

Fig. 1: Simple block diagram of a basic colour TV receiver.
"on" to "off" times). They are used to open and close an electronic switch, the line output transistor. once per scanning line. Each time this switch closes, a d.c. voltage is applied to an inductance consisting of a combination of the line output transformer and the line scan coils. The latter are wound on the tube's neck and produce electromagnetic fields to deflect the three beams in the tube.

When the line output switch closes. the d.c. voltage which is then present across the line output transformer's primary winding gives rise to a linearly increasing current flow through the winding. This is turn produces a linearly rising magnetic field in the neck of the picture tube. The scanning beams are thus deflected to the right (viewed from the front of the tube). About 25μ sec later they have reached the right-hand edge of the screen, at which point the line output transistor is switched off. This action results in a rapid collapse of the magnetic fields in the transformer and the deflection yoke (scan coils). Consequently the beams rapidly return ("fly back") to screen centre. By using a capacitor to tune the line output stage, the flyback action is converted to a half cycle of oscillation. This means that the beams pass through screen centre to the left-hand side of the screen. The energy has not yet been dissipated: the flyback is followed by a clamping period which has the effect of returning the beams towards screen centre. At the point where the scanning energy has decayed to zero the line output transistor is switched on again. The process continues at the line scanning rate, while all the time the beams are being more slowly deflected from the top to the bottom of the screen by the field (vertical) deflection system, thus scanning out a series of parallel lines. As the scanning lines are drawn out on the screen, the three superimposed beams are modulated by the RGB signals to build up the full-colour pictures.

The line output stage also produces various supplies for the receiver, in particular the tube's e.h.t. (final anode) supply. The reason for using the line output stage for this purpose is to make optimum use of the energy generated in
the stage, thus reducing the set's overall power consumption. We'll return to this in a moment.

Field Scanning

The efficient switching system used for line deflection is possible because at 15.625 Hz the line output transformer and scan coils are virtually pure inductors able to generate within themselves the required sawtooth current waveforms. The same is not true of the field scan coils which, at 50 Hz . are largely resistive. They therefore have to be fed with a carefully shaped sawtocth waveform.

Again the field timebase starts with an oscillator/timing pulse generator which is locked to the transmitted sync pulses. The precision-timed fulses are used to control the charging and discharging of a capacitor, which thus produces a sawtooth voltage waveform with a rise time of about 19 msec and a flyback time of about 1 msec . This waveform is usually amplified by a class B power amplifier that's not unlike the audio output stage used to drive a loudspeaker. In this case however the load is the vertical scan coils. whose linearly falling and relatively fast rising currents create in the picture tube neck the required alternating magnetic field to deflect the scanning beams vertically. The flyback this time returns the beams to the top of the screen.

We shall look at some alternative field scanning arrangements later in this series.

Power Supplies

A TV set's power requirements are many and various. The signal processing and decoding sections require a stabilised, low-voltage supply. The field and sound output stages are operated at somewhat higher voltages and have a higher current requirement. Logic and control systems call for closely-regulated 5 V and 12 V lines. The RGB output stages need about 200 V . at low current. For tuning a very
closely-stabilised 33 V supply is required. The line output stage has the highest current consumption, not because of its scanning action - this process is highly efficient - but because it generates the operating voltages and currents for the picture tube. The line output transformer, throbbing with magnetic energy, is harnessed for this: secondary windings and an overwinding provide the tube's heater power, its first anode and focus voltages and, in particular, the final beam accelerating voltage (the e.h.t.). With a large tube this voltage requirement is typically 25 kV , with a current drain of 1 mA or more when the picture is bright. This 25 W demand is met by an overwinding and voltage-multiplier arrangement. Until a few years ago the voltage multiplier was a separate unit (the tripler): with the advent of the diode-split transformer the multiplier system is built in, made up of several series-connected cells each consisting of capacitance, inductance and a diode. The transformer also generally provides the supplies for the RGB output stages, the field output stage and the low-voltage supplies - in fact it may provide virtually all the supplies required by the other parts of the set.

The line output stage itself requires a stabilised h.t. supply of typically 140 V . This is provided by a switchmode ("chopper") d.c.-to-d.c. converter that draws power from the domestic mains supply. It acts as an efficient

Satellite Notebook

Nick Beer

Some more modification and fault notes as Television keeps its finger on the pulse of the retail satellite TV world.

Cambridge/Fin/ux/Ferguson Interaction

A letter from lan Radley, Managing Director of Cambridge Computer Ltd., in the September issue commented on the interaction I previously mentioned in this column between the Cambridge manufactured Finlux SR5100 and the Ferguson Model 51P7 (TX98 chassis). With a view to helping readers who encounter the problem I attempted to discover what the modification is that Mr. Radley says Ferguson has devised. Ferguson wasn't able to advise on a specific modification for interaction with the Cambridge/Finlux equipment but pointed out that the well known remote control modification for this chassis cures a very similar problem encountered with an Amstrad satellite TV receiver.

Ferguson Modification

The modification is to use capacitive coupling for the output from the SL486 IR amplifier chip IC984. To do this proceed as follows. (1) Withdraw the chassis and remove the front control panel assembly to gain access to the IR amplifier. (2) Remove the IR amplifier's screening plate. (3) Cut the print close to pin 11 of IC984. (4) Solder an $0 \cdot 1 \mu \mathrm{~F}$ disc ceramic capacitor between pin 11 of IC984 and the adjacent solder pad in the track to pin 2 of PL311 (the capacitor bridges the cut made in the printed track to pin 11 of IC984). (5) Make sure that the value of R195 is $1.5 \mathrm{k} \Omega$ if not, replace it with a resistor of this value. (6) Refit the screening plate, reassemble and test (at various distances from 4 to 24 ft) to confirm that a cure has been achieved.
converter, very often producing some of the other supplies required by the set. In fact in a few designs it generates the e.h.t. Stabilisation is provided by a feedback loop which controls the on/off switching of the circuit, whose main elements are a switching transistor and a transformer - very similar in fact to the line output stage, but generally without the tuning.

Control Systems

We've left ourselves with little room to consider this important aspect of the TV receiver but will have plenty to say later. A simple manually-operated set doesn't need any form of internal "management" system. Those with remote control may have anything from a simple decoder/matrix chip to a full-blown microcontroller i.c. with associated bus lines, data memories and interfacing chips. We'll look at examples of these in a later installment, along with the serial data formats they use.

Next Month

The next installment will start at the beginning again, with a close look at TV tuners, including those used for satellite TV reception.

There's a similar modification for Models 14M2 and 36K2 (TX89 chassis).

Is this the modification to which Ian Radley referred? I tried to obtain confirmation but haven't managed to do so to date. Perhaps he'll reply to this article.

Salora 5902/ITT Nokia SAT1100

This is undoubtedly one of the best Ku band satellite TV receivers around. A review appeared in these pages when it was launched a few years back. Now however, with the main requirement being for IRDs, the 5902/SAT1100 is no longer so popular with customers. As a result some of these receivers are becoming available second-hand and, more to the point, some brand new ones are available from Sendz

Fig. 1: Modification to provide a switched $13 / 18 \mathrm{~V}$ supply from the 5902/SAT1100 receiver.

Fig. 2: Alternative modification to provide polarisation switching with a Marconi LNB.

Components. It's a receiver that is well worth consideration by anyone who wants to play around with satellite TV reception, possibly feeding it from a couple of dishes. As it was marketed for Astra reception it doesn"t have facilities for driving a motorised dish.

One important point is that despite what it says in the instruction book in the box with the units from Sendz nol all of them will, as supplied, control the polariser in a Marconi type LNB, i.e. provide d.c. voltage switching.

The units supplied to the retail trade were designed to drive an electromagnetic polariser via a barrel plug. There was an ahternative version, supplied to Granada, designed to supply a Marconi LNB. I was contacted by someone who had purchased a 5902 from Sendz and, from me, a dish kit with a Marconi compact horn LNB. He said he could receive only the horizontally polarised channels because the receiver permanently delivered 18 V d.c. from the LNB sockets. The instruction book said that selecting P0 or P7 would give 13 V or 18 V . It didn't - why? Because the LNB supply came from a straight 18 V regulator - the switching option wasn't fitted. I contacted Nokia satellite technical who provided detaits of two possible modifications that provide a solution.

The first uses the input select button on the remote control unit for polarity switching. It has the disadvantage that the second LNB input can no longer be used. To carry out the modification proceed as follows. Cut the wire to pin 8 (input select) of the tuner and connect it to chassis (pin 1). Replace the 7818 regulator in position IT02 with a 7812 and the extra components shown in Fig. 1. Mount the regulator on the heatsink using an isolator. Make two cuts in the earth print connected to pin 2 , one at each side, to provide a print land for the connection of the added components. The $0 / 12 \mathrm{~V}$ switching signal required is obtained from the PCB at the back of the receiver. Connect it via a 12 cm length of insulated wire

The second method, which I feel is better, uses P0 and P8 (polariser control) to switch between polarities. Proceed as follows. Remove the 7818 regulator IT(02. Replace it with an LM317 regulator and the circuit shown in Fig. 2. Mount the regulator on the heatsink, using a mica washer - you will have to drill the heatsink. The extra components can be mounted on a small piece of Veroboard which will stand upright in the IT02 position. Note that the pin connections of the LM317 and 78 series regulators differ.

When testing don't be mislead by the fact that the opencircuit voltages, i.e. without an LNB connected, will be higher than $13 / 18 \mathrm{~V}$.

Ferguson SRV1/Pace SS9000

Last month I described a problem with the tuner used in this IRD - the symptom was patterning. Ferguson has now identified the cause, which is failure of C416. It's a very small $2 \cdot 2 \mu \mathrm{~F}$ electrolytic in a green plastic sleeve, towards one corner above a square i.c. Heat from this chip is thought to be the cause of the problem. You can check by applying slight heat to the capacitor - place the tip of a soldering iron close to it. The result is likely to be that the beat pattern lines change from horizontal to vertical. A high thermal stability capacitor with suitably small dimensions is available from RS Components - stock code 116-830) (it's a Panasonic component). In view of the cost of the tuner it's very helpful to know the cause of this fault - well done Ferguson.

Here"s another bit of advice from Ferguson. If the power supply in this unit runs at the wrong speed check that C12 (33 nF) is fitted.

Next Month in TELEVISION

SERVICING THE TATUNG 190 CHASSIS

A feature of this compact chassis is the f.e.t. chopper which is controlled by a TDA4605 chip. Fault finding in this area could cause problems but not after reading Duncan Grant's authoritative guide in next month's issue! Duncan provides a detailed rundown on the faults you may encounter.

TV RECEIVER TECHNOLOGY

In Part 2 of his new series Eugene Trundle takes a detailed look at tuners and the basic business of converting to i.f. Subjects covered include the satellite TV LNB.

NICAM STEREO ON A SHOESTRING

How to use a surplus Nicam decoder panel available from Sendz Components to receive digital stereo sound. Details of the panel modifications required and an audio interfacing circuit to feed an external stereo amplifier, with automatic Nicam/f.m.NCR switching and powering up when a tuner input is present, are provided.

SERVICING THE PHILIPS 2B CHASSIS

Richard Newman follows his recent coverage of the 2A chassis with notes on this stereo sound version.

REPAIRS TO STORM DAMAGE

Steve Cannon lives in an area that's subject to lightning strikes. This has made him something of an authority on the faults caused by lighting and the repairs necessary.

PLUS ALL THE REGULAR FEATURES

I

To.
(Name of Newsagent)
Please reserve/deliver the February issue of TELEVISION (£2-20), on sale January 20th, and continue every month until further notice.
\qquad
\qquad

I \square

TV Fault Finding

Reports from Philip Blundell, AMIEIE, Steve Cannon, Chris Watton, Brian Storm, Ed Rowland, G. Bakawala, Graham W. Rees, Alan R. Bayly, Graham Richards, Alfred Damp, Richard Newman, John Edwards and Richard J. Avis

Alba CTV2

Beware the coffee-coloured resistor! The only snag is that this set is full of them. You may have come across this type of resistor being supplied to the trade by one of the wholesalers over the past few years. They fail if used in highvoltage situations. In this case the set was dead and R81 ($100 \mathrm{k} \Omega$) was open-circuit. It provides a start-up feed for the TEA2018A chopper control chip IC5.
P.B.

Philips GR2.1AA Chassis

This set was dead with the standby light flashing. In fact the power supply was running but the line output stage wasn't. The start-up voltage at pin 16 of the TDA2579 timebase generator chip was low at 5 V because the feed resistor R3455 had risen in value from $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$. It's a safety resistor, part no. 482205110102.

Sony KVA2512 (AE1C Chassis)

A common dry-joint fault with this chassis produces the following intermittent symptoms: the picture rolls, goes black-and-white with a pulsing picture, or line twitching occurs at the top of the screen. The remedy is to resolder the chassis can connection on the digital video panel. Remove the panel from the motherboard and take off the can on the copper side of the panel. The dry-joint occurs at the lower, left can connection, looking at the copper side with the can to the top. The video processing around this part of the board relies on the can as its chassis connection. Sony has issued a modification sheet on this fault.
S.C.

Ferguson TX100 Chassis

The customer's complaint was that the field collapsed when the set had been on for an hour. But it wasn't a field fault, instead a rather curious power supply fault. When I'd had the set on for about half an hour a slight whining noise from the power supply developed. This increased over a period of fifteen minutes, then the field collapsed. Checks showed that something was wrong with the supply to the field output stage - in fact all the secondary outputs from the power supply were quite low.

By this time the power supply sounded like a jumbo jet taking off about thirty yards away, and in an attempt to persuade me to switch the set off gestures were being made and things were being thrown in my direction. The set was duly turned off and, after a bit of thought, I switched on again and went in search of the cause of the offending commotion. Though the sound came from the chopper transformer it seemed unlikely that this was responsible: I could count on one hand the number of faulty chopper transformers I've had in sets of any make. But all fingers pointed at it, so out it came. A larger, black type from a scrap chassis was half-heartedly fitted. This involved a bit of a crush as some redundant pins for a non-existent socket got in the way. I soldered the transformer in at thirty degrees to the PCB just to prove the point, honest, and prove the point it did. Not a squeal was heard and the voltages remained steady for hours.

It was time to order a new transformer from Ferguson.

After all, it's a safety component that has to be the same as the original. When the package arrived and was opened my face fell in despair. The transformer was of the larger, black type that just didn't want to go in. I was about to lob the jiffy bag that had contained it when something fluttered out. Yep, it was the mod. kit. The packet contained a few components that had to be changed, and one sentence in the fitting instructions met with great elation. "Remove the redundant pins, if fitted, near the transformer mounting holes." They were out in a flash, the new transformer was fitted and the mod. kit worked absolutely. Another "top banana" repair had been successfully completed. S.C.

NordMende Prestige 72

This set didn't tune correctly and Band IV couldn't be selected - the channel numbers reached only 23. Any method of programming had no effect. I wondered whether the memory chip was full or faulty but a replacement backup battery restored normal operation.
C.W.

Philips CTX Chassis

This set was dead. There was 320 V at the collector of the BUX84 chopper transistor but the voltage at the collector of the BF422 driver transistor Tr 7353 was only 7 V instead of 100 V . As this transistor was clearly without drive we moved back to the TDA2577 timebase generator chip IC7375 which also controls the chopper. Its supply pin 16 was at only 0.6 V instead of 9 V . A resistance check from this point to chassis produced a reading of about 2Ω. $23395(100 \mu \mathrm{~F})$ was short-circuit.
C.W.

ITT CT3326/TX3326 (Monoprint B Chassis)

If the set is dead check whether there's 115 V at the collector of the BU508D line output transistor. If so, connect a scope to this point via a xl0 probe. Look at the waveform. There should be 1 kV flyback pulses spaced $64 \mu \mathrm{sec}$ apart. If there's a second pulse spaced about $20 \mu \mathrm{sec}$ after the main pulse, whose amplitude is reduced to about 400 V , and the waveform is unstable then in my experience the line output transformer is likely to be defective.

If the 115 V feed to the line output stage is missing check $\mathrm{C} 701(4 \cdot 7 \mu \mathrm{~F})$ in the power supply. This frequently goes open-circuit to give the no results symptom.
C.W.

Panasonic TC21M1R (Z4 Chassis)

This set would come on with field collapse. The field scanning would then open out but the set would shut down at irregular intervals. During these irregularities the field drive from board C remained constant, so attention was turned to the LA7837 field output chip IC451. Suspicious as always of the small yellow capacitors in these sets I checked the ones connected to this i.c. and soon found that C462 was slightly leaky. A 470 pF replacement restored normal operation. B.S.

Panasonic TC21M1R (Z4 Chassis)

This set came in dead, i.e. there was no operation. When the
optocoupler in the power supply was overridden a blank raster appeared, with no sound. The main microcontroller chip was totally inoperative, so our next line of investigation was to check around the oscillator, resets, feeds etc. This eventually led to removal of the ST24C02A EEPROM chip IC1202, which restored normal operation. A replacement was put on order.
B.S.

Hitachi CPT2174 (G6P Chassis)

This set had just run out of an extended warranty when it began to suffer from intermittent loss of colour. As application of slight pressure to any component in the vicinity of the chroma delay line DL501 made the colour come and go we replaced this item, to no avail. We eventually discovered that pin 30 of the HA51338SP timebase generator/colour decoder chip IC501 had never been soldered - the pin was making barely perceptible contact with the print. The amazing thing is that the set had given no previous trouble.
E.R.

Philips 2A Chassis

There was a half-inch gap at the left-hand side of the screen and just the slightest hint of bent verticals. Adjustment of the width control didn't improve matters and we eventually discovered that the cause of the trouble was the "lower" of the two diodes in the EW diode modulator circuit, D6610 (BYW95C).
E.R.

Alba CTV10

Not long after replacing IC402 to cure a dead-set fault we were surprised to receive a call from the owner of this receiver to say that the same thing had happened. Well it wasn't quite the same this time. On the previous occasion the standby light had come on. This time the set was totally dead, with the 650 mAT fuse F 401 blown. Checks in the power supply showed that a section of the bridge rectifier, D404, had gone short-circuit. A new fuse and diode completed the repair. Fortunately the customer didn't take it too badly when he was told that he would have to pay again - probably because we did the job for next to nothing. Incidentally we noticed that the symbols for D403 and D405 are printed the wrong way round on the underside of the panel (at least in the set we had) though they are shown correctly on the component side.
E.R.

Philips CP110 Chassis

This one was unusual. The complaint was that the picture "pulsed on and off". Sure enough the picture blanked out and then returned at roughly one second intervals. The h.t. supply was rock steady at 140 V . Scope checks around the TDA3562A colour decoder chip showed that it was blanking its RGB outputs. Heating the chip cured the fault so a replacement was fitted, but this made no difference. Now this set uses auto grey-scale correction and the circuit for detecting the black level is on the c.r.t. base panel. Checks took me to transistor Tr7413 on this panel where I found that R3415 ($470 \mathrm{k} \Omega$) in its base bias network was open-circuit.
R.N.

Checks around the control panel then showed that the data lines were low and inactive. This is available only as a complete replacement panel, so a new one was ordered. Fitting it restored normal operation. The correct options for UK use have to be programmed in. When this was done as per the manual the set could be tuned. The on-screen diagnostics then revealed that there was a fault in the Nicam decoder which had to be replaced. Further faults were found in the audio stages, and after replacement of three more chips normal sound was obtained. All this because someone had had a go!
R.N.

Decca/Tatung 140 Series Chassis

This set produced a loud hum at switch on. I found that C 808 and C 810 (both $100 \mu \mathrm{~F}, 25 \mathrm{~V}$) in the chopper circuit had dried out. Replacements cured the hum but the verticals were ragged. This was cured by replacing the h.t. reservoir and smoothing capacitors C822 and C826 (both $47 \mu \mathrm{~F}$, 250 V).
R.N.

Saisho CT147R

We get these sets in because the power supply has died. I usually find that R621 and R622 have changed value. Fitting replacements of the correct value completes the repair.
G.B.

Sony KV2022UB

With a dead set check the mains fuse and chopper transistor. If they are faulty fit replacements. But don't switch on: check R513, R514 and R516 first.
G.B.

Ferguson TX90 Chassis

The cause of a dead set that blows fuse FS51 on the secondary side of the mains transformer is usually a leaky line output transistor (TR112): check by removing it. If the set "hums" at switch on when a new line output transistor has been fitted then I'm afraid that the line output transformer also needs to be replaced. If the set trips when a new transformer has been fitted it's because the power supply is at maximum and can't be set. Replace TR107 - I usually use a BD809 here. Note that the secondary fuse is FS 102 in the small-screen models.
G.B.

Toshiba 210T6B

If the set is dead with the standby light permanently on first check that the 5 V (always) supply is present at the collector of QA15 (BC557A). If this supply is present but there's no voltage at the base and emitter of this transistor the M50747-205SP microcontroller chip ICA01 is faulty. G.B.

Decca 120 Chassis

There was a loud low-pitched whistle from the line output stage area with uncontrollable high-level sound not tuned to a station. Rather misleading this. It's a line output stage fault: change the tripler.
G.B.

Ferguson 1790 Chassis

This monochrome portable produced only a white raster whichever channel it was tuned to. But at either side of the tuning point a noisy, unsteady picture could be obtained. The contrast control had no effect. Checks around the

MC13002P multi-function chip IC2 showed that there was no line pulse input at pin 15. The cause was a track break between pin 7 of the line output transformer and diode D8. Absence of the pulses affected the a.g.c., the clue being no voltage at pin 8 or 9 of IC2. This may save someone replacing IC2 unnecessarily, as I did!
A.R.B.

Ferguson TX85 Chassis

This set caught me out! The TIP791A chopper transistor TR6 was short-circuit and both the $2 \cdot 2 \Omega$ surge limiter R88 and the 800 mAT mains fuse FSI were open-circuit. These items and the TEA2018A chopper control chip IC4 were replaced. At switch on everything seemed to be fine, with a good picture etc., though there was a faint whistle from around the power supply. I was then distracted. On my return five minutes later the power supply had selfdestructed again. TR6 felt very hot and because of the low whistle previously mentioned the penny dropped. Check the snubber network I thought. Sure enough R101 (1.2k Ω, 5 W) was open-circuit. When this and the other items had been replaced the set finally worked correctly.
G.R.

Sony KV2704UB

The initial problems with this large set were to do with the channel change and function buttons. This was put right by fitting a new set of user push-switches, but the set would not memorise any newly tuned stations. We soon found that the -25 V line was low at -5 V . The $10 \mu \mathrm{~F}, 63 \mathrm{~V}$ capacitor that smooths this supply, C818, had dried up and gone opencircuit.
G.R.

Matsui 2180T/Saisho FST212

If you have a dead power supply and you've checked R512 (0.47 2), R518 (1 Ω), Q104 (2SC2271) and Q105 (2SC536), check for bias at pin 2 of the STR58041 chopper chip IC501 before condemning this device. One or both of the $150 \mathrm{k} \Omega$ bias resistors R503/4 may be open-circuit - probably R504.
G.R.

Orion 14ARX

Loss of field sync (picture rolling) was the problem with this set. A replacement TA8808N chip (IC40I) provided a cure.
G.W.R.

Hinari CT14

Uncontrollable brightness with flyback lines was the fault condition with this set. We traced the cause to Q301 which was short-circuit collector-to-emitter.
G.W.R.

Indiana 100 Chassis (Perdio/Bush/Alba)

This chassis is used in various Perdio, Bush and Alba models. A Perdio P2101 that came in recently produced a blank raster with lack of height when it was switched on. After trying the tuning I managed to get a picture and sound but there was still lack of height, while a one-inch flyback blanking line occasionally came down the picture. Since all four stations had to be tuned in I decided to check the voltage across the TAA550 33V stabiliser. The reading was 2 IV . As the $15 \mathrm{k} \Omega$ feed resistor was o.k. I replaced the TAA550 stabiliser. Everything now worked correctly, including the height. When you look at the circuit diagram carefully you see that the 33 V line also
feeds, via a couple of resistors, the field ramp generator (pin 2) in the TDA4505 chip.
G.W.R.

Salora K Chassis/Hitachi CPT2188

The problem with this set was that the display and tuning didn't work. Voltage checks around the SAA 1294 control chip led us to CC107 ($220 \mu \mathrm{~F}, 16 \mathrm{~V}$) which was shortcircuit.
R.J.A.

Toshiba C2000B

The customer complained about lack of width. Quick checks showed that the h.t. voltage was low at 93 V instead of 107 V while the h.t. adjustment control R851 had no effect. We subsequently found that the 2 SC 1195 series regulator transistor Q 801 was open-circuit base-to-emitter. In this condition one would have expected the receiver not to work at all.
R.J.A.

Ferguson TX90 Chassis

This set produced a grainy picture, as though the tuner's gain was low. As a new tuner made no difference attention was turned to the SL1432 chip and the SAW filter. These two items weren't responsible either! We eventually found that $\mathrm{Cl} 106(10 \mathrm{nF})$ which couples the output from the tuner to the SL1432 chip was faulty.
A.D.

Saisho CT141/Matsui 1420A

The complaint was of intermittent no results. When the set was checked on the bench however it was dead. After removing the chassis we found that there were various dryjoints around the chopper transformer T501. When these had been resoldered the set came to life, but when the back was refitted it went dead again. Further investigation showed that the h.t. supply rose to only 46 V . When the load was removed it reached 80 V slowly, 30 V less than the correct figure. We eventually found that C504 ($0.047 \mu \mathrm{~F}$) was virtually open-circuit.
A.D.

Hitachi G80 Chassis

This set displayed a bright white raster. We found that the $4.7 \mu \mathrm{~F}$ reservoir capacitor for the supply to the RGB output transistors, C720, was open-circuit.
A.D.

Mitsubishi CT2531BM (Euro 4 Chassis)

There wäs normal sound but no raster. As the tube's heaters were alight we turned up the first anode control and found that the cause of the trouble was field collapse. A quick check showed that the 24 V supply was missing at pin 7 of the AN5521 field output chip IC401. This supply is derived from the line output transformer. We found that the 0.82Ω safety resistor R563 in the relevant rectifier circuit had failed. Somewhat to our surprise a new resistor restored the full field scan. Normally the resistor goes open-circuit when the chip fails. A long test run proved that all was o.k. J.E.

Ferguson ICC5 Chassis

The symptoms were severe EW bowing and line pairing. We found that the TDA4950 EW modulator driver chip was too hot to touch. A replacement cured the fault. Comparison with a new chip showed that the defective one had a short between pins 5 (EW output) and 4 (chassis).
J.E.

Letters

SATELLITE TV INSTALLATIONS

I'd like to make a few points in connection with Derek Stephenson's interesting and informative Satellite TV Installation Guide in the November issue. First the frequency limits quoted for the Ku band ($11.7-12.5 \mathrm{GHz}$) exclude the FSS section of the band ($10.9-11.7 \mathrm{GHz}$): all the Astra transmissions and many others are in the FSS part of the band.

Derek Stephenson's assertion, in relation to satellite TV i.f. signal attenuation in cable, that long cable runs can result in grainy pictures could be misleading. A weak i.f. signal will produce sparkly not grainy pictures - the video is still f.m., though downconverted. The effect of poor carrier-to-noise (C / N) ratio at the receiver is subtly different from that produced by poor C / N ratio at the LNB , but the symptom remains basically that of sparklies rather than graininess. The relationship between C / N ratio at the LNB, LNB gain, cable losses and C / N ratio at the receiver is complex. There is however a quick and easy way of finding out whether a long cable run calls for a line amplifier. Attenuate the i.f. input to the receiver by about 6 dB (with the line power bypassed): if this results in any visible degradation of the picture produced by the signal from the weakest transponder a line amplifier will usually help. I've found that far more line amplifiers are installed than are needed, and have even found them causing cross-modulation.

Satellite TV i.f. signals are in practice a good deal less in need of additional amplification than is generally supposed. This is because modern LNBs have very high gain and thus output while modern receivers operate satisfactorily with very weak signals. A lot of signal can be lost between the LNB and the receiver before any ill effects are noticed.

I've just carried out a simple experiment in my living room to prove the point. My Astra dish is an 80 cm Lenson Heath with an STC LNB. On the Eurosport channel this combination produces $+18 \mathrm{~dB} / \mathrm{mV}$ at the LNB and $+13 \mathrm{~dB} / \mathrm{mV}$ at the end of the downlead. I found that you can attenuate this signal by 33 dB before sparklies begin to appear. The receiver, a Pace clone, appears to have a threshold of about $-20 \mathrm{~dB} / \mathrm{mV}$. This doesn't mean that there's 33 dB to throw away, because allowance must be made for signal degradation, poor propagation in bad weather, transponders on low power etc., but it does mean that i.f. downlead losses of say $15-20 \mathrm{~dB}$ don't necessitate the use of a line amplifier. The figures will of course vary depending on the particular combination of dish, LNB and receiver. Severe downlead losses with a steerable dish might affect reception of the very weakest signals.

The i.f. signal 'surplus' of about 30 dB gives rise to some surprising effects. For instance a screwdriver applied to a receiver's i.f. input socket will often pick up enough signal from a nearby radiating source, e.g. another working receiver, to give a good picture. When the LNB is powered from a source other than the receiver it's possible to cut the i.f. cable and get a good picture when the ends are held half an inch apart. If the braid is trimmed back the i.f. signal will 'jump' much farther than that.

The fact that receivers need much less signal than LNBs provide is exploited by i.f. distribution systems. Even when all allowances have been made, only -15 dB with respect to
the LNB's output is required at each receiver outlet. Where the system uses receivers at the head end it's normal practice for the LNB to feed six-eight receivers via a splitter that might lose 12 dB .

On the subject of r.f. patterning I was surprised that Derek Stephenson regards this as sometimes unavoidable even when there's only one receiver and one VCR. Surely we've progressed beyond that? Even in a domestic installation where the satellite receiver, VCR and TV set are simply daisy-chained at u.h.f. it should be possible to avoid patterning. Choose the channels carefully, and pay attention to the signals coming from the terrestrial TV aerial. The latter signals should be filtered and attenuated as necessary. In an extreme case - and always with distribution systems -daisy-chaining should be abandoned. Instead, all modulatorproduced signals and possibly all terrestrial inputs should pass through channel-pass filters, levellers and combiners.
Bill Wright, Wright's Aerials,
Rotherhant, South Yorkshire.
I would like to clarify a point in my Satellite TV Installation Guide in the November issue. I referred to television satellites that provide a 24 -hour service as being in geosynchronous orbit. Although this is true, it may have been more appropriate to have used the term geostationary. This is the term used where the orbital inclination of the geosynchronous satellite is zero, i.e. equatorial.
Derek Stephenson,
Wirral, Merseyside.

PHILIPS VR6870 VCR

Two reports in the December VCR Clinic relate to power supply trouble with the Philips VR6870 VCR. John Edwards refers to C112 while Mick Dutton refers to C2311. Neither of the capacitors so designated is contained in the power supply module. I think that in both cases the reference should be to C2011, which is always the prime suspect with any power supply trouble in this machine. Although the service manual gives the value of C 2011 as $10 \mu \mathrm{~F}$, voltage not specified, you usually find that a $33 \mu \mathrm{~F}, 40 \mathrm{~V}$ capacitor is fitted. This may have been a modification, with $10 \mu \mathrm{~F}$ used in only early production machines.

Power supply trouble in my own VR6870 was traced to the fact that C 2011 had fallen in value from $33 \mu \mathrm{~F}$ to $1.8 \mu \mathrm{~F}$. A $33 \mu \mathrm{~F}, 63 \mathrm{~V}$ replacement that I happened to have to hand lasted only a week before the trouble returned. A permanent cure was achieved by using a low-impedance h.f. electrolytic capacitor specifically designed for use in switchmode power supplies - they are available from Maplin. I used the lowest value in the range, $47 \mu \mathrm{~F}, 50 \mathrm{~V}$. The critical factor is probably the low impedance rather than the capacitance value.
R.R. Hamilton,

Ashtead. Surrey.

PHILIPS 2A CHASSIS

In reply to L.P. Watkinson's letter (December) on power supply failure with this chassis I would like to suggest that if he's still having trouble he tries replacing the chopper transformer. Since I wrote my article on this chassis (see December issue, page 102) I've had a rogue set that blew the BUT11A chopper transistor about once a fortnight. I suspected that arcing of some sort was the cause. The fault usually seemed to occur when the set was switched on from cold. One morning I was able to see the cause of the problem when I switched on the set before the workshop

Help Wanted

Can anyone supply an M193AB1/M193CB1 chip as used in the Hitachi Model CBP260 (NP9A chassis)? David Paines, 2 Sycamore Crescent, Bawtry, Doncaster DN10 6LE. 0302710797

Can anyone provide a circuit diagram or possibly a manual for the Telequipment Serviscope type S32A? lain Ferguson, 188 Sheepcote Lane, London SWll 5BP.

Can anyone supply a complete manual or a photocopy of it for the NordMende Model 1434 colour portable (Fl0/11 chassis)? H. Mellor, Gatesgarth, Back Lane, Airton, Skipton, North Yorkshire BD23 4AL. 0729830417.

Does anyone have a surplus scope that wouldn't cost a fortune? John R. Taylor, 14 Lastigar, Westray, Orkney KW17 2DJ.

Can anyone supply a LOPT for the Matsui Model MB10 CTV receiver, no. FCA•030/4221051034? H. Pirie, 31 Inver Park, Lochinner, Lairg, Sutherland. 05714372.

Wanted: Video drum and head for a Pye DV464/05 and a complete Pye CFI 14in. chassis for Model 37KFl140/05L. Reasonable prices paid. J.C. Bailey, 29 Peal Road, Saffron Walden, Essex CBll 3ET

Can anyone supply a working mains transformer for the Decca Bradford chassis? Expenses paid. R.W. Archer, 55 High Oaks, St. Albans, Herts AL3 6DS.

Wanted: Play idler or working cassette deck for a Fidelity AVS1600. G.B. Ramsden, 16 Copley Drive, Sunderland, SR3 1PG.

Wanted: The Macdonald servicing books (complete set or odd books): a B\&K or similar CRT tester/rejuvenator, working or not; a circuit, manual or mains transformer for the Russian valve $\mathrm{Cl}-5 \mathrm{Y}$ scope, or a reasonably priced scope, preferably dual-trace. Malcolm Lambert, 1 Dundale Farm Cottages, Dundle Lane, Bells Yew Green, Kent TN3 9AQ (0892 824 657).

Can anyone supply servicing/operating information for the Telequipment/Tektronix S51B and S51E scopes? Photocopies would do. Stephen Shaw, PO Box 1404, Randfontein, 1760, S. Africa.

Wanted: Circuit, kit or module for combining separate line and field sync pulses and video to form a composite signal for a monitor. John A. Slimmon, 30 Buzzacott Lane Furzton, Milton Keynes, Bucks MK4 1JE.

Wanted: 12 V battery leads for the Thorn 1590/1690 monochrome portables and main smoothing blocks for the 1500 chassis. R.E. Bailey, 51 Robin Gardens, Waterlooville, Hants PO8 9XF.

Wanted: Any information on the Cotron 12 in . monitor Bluebest Electronics 12 in . monitor, tapes and information for the Technicolor Video Showcase Model 335E and any Television PCBs from 1976 onwards. Peter Redpath, 47 Corbett Road, Waterlooville, Hants PO7 5TA (0705 253 595).
lights: there was a flash from beneath the chopper transformer. I could see no evidence of arcing when the transformer was removed, but a replacement cured the fault - the set has been back with the customer for some months with no further failures.

Other dealers have since reported this fault, so it may be becoming more common as these sets age.
Richard Newman,
Croydon, Surrey.

TECHNICAL TRAINING

There was quite a lively exchange of points of view when Ferguson's Regional Technical Manager Bernie Hinton called in at our workshop recently. After we'd complained about their out-of-stock spares and he'd complained about our tea, the subject eventually turned to technical training.

We maintained that as the manufacturers make the equipment that we are expected to service and keep in good running order they have a duty to keep the industry up to date as far as technical training is concerned. Bernie thought somewhat differently. He made the point that it's certainly the manufacturers' responsibility to familiarise the trade with the workings of their products, but not to have to provide training on recent developments from first principles. That, he maintained, is the job of the technical colleges and the various trade associations. We responded to this by telling him that any form of basic training on newer technologies is, unless it comes from the manufacturing side of the industry or the pages of Television, virtually non-existent. The discussion continued, and the two points of view were expanded upon until Bernie beat a hasty retreat when threatened with another cup of our tea!

Before leaving he did however tell us about Ferguson's ICC5 chassis Servicing Guide videotape. As we’ve rented and sold many sets that use this chassis the $£ 28$ cost seemed to be a very modest investment. So we ordered the tape from Ferguson. When it arrived a few days later we played it through and found that the contents are entirely technical, with no commercials. The information is meaningful and has proved to be very effective in practice. Although the commentator's accent is difficult to place - it could come from anywhere between Bangkok and the Balls Pond Road - we must say all credit to Ferguson for producing this tape. L. Milner, Service Director.

Lyles (Worthing) Ltd., Tarring, Sussex

MAINS PLUGS

I'm sure you've all read with interest previous letters about sleeved mains plug pins and British Standards, and about who should fit what, when, where and how. But how many of us really look at mains plugs, especially when making home visits?

In recent months engineers I talk to regularly have expressed concern about an associated problem, that of multi-adaptors. Some of these are so poorly made that contact pressure is feather weight. Although the plug seems to be held tightly, most of the pressure comes from the spring on the safety shield at the socket front and the tightness of the plastic moulding. The result of course is arcing, which as we all know sees off fuses and other components, especially in modern TV sets.

Back to mains plugs. Some engineers change the plug if it isn't wearing shorts (sleeved pins) while others just check that the fuse isn't rated at 13A. Some try the connections. It's worth making the following checks: (1) Check for corrosion or bad tarnishing on plug pins, fuse end caps and
the fuseholder. (2) Check the fuseholder tension. If the metal has been getting hot it can deteriorate and become soft. (3) Check that the fuse is correctly rated and is a snap fit or at least held under tension. (4) Ensure that the fuseholder is firmly attached to the live pin and the terminal: these are sometimes riveted and can become loose. (5) Make sure that the conductor is firmly held in the terminal: don't overtighten as the conductor can shear off, especially if it's not tinned or doubled back. (6) Ensure that the screws are gripping metal and not the plastic insulation. (7) Finally, check that the cord grip is doing its job and that there's nothing cracked or missing in the plug.

It takes only a minute or so to do this, in any order that suits you. If you follow this procedure every time and make sure that the customer isn't using dodgy adaptors you could save on silicon and fuses, not to mention hassle, the need to rework jobs, etc.
Mark Thomason,
Stretford, Manchester.

SANYO ED1 CHASSIS WITH NICAM

Steve Cannon had some very interesting information to impart in his article on Nicam reception problems (October), in particular on modifications introduced by various manufacturers. My problems have been with the Sanyo Models 2572 and 2872, but no one seems to have a solution. The symptom is a tone at about 750 Hz superimposed on all received Nicam broadcasts. Both Mastercare and Sanyo investigated the sets concerned.

The EDI chassis uses standard Toshiba Nicam chips (TA8662N QPSK decoder, TC6011 PCM decoder and TD6710 DAC), the only exception being the LC3664 PCM

RAM chip. Toshiba provided a lot of help and made a number of suggestions but had not come across this fault.

Does any reader know of a service sheet or modification note relating to this problem? Perhaps extra screening or an additional earth connection is all that's required. Tony Thomasson, GMOGAT, I Eastside Green, Westhill, Skene, Aberdeenshire AB32 6XY.

SUBSTITUTE REPLACEMENTS

I recently had occasion to use the telephone hotline of a leading UK satellite TV receiver manufacturer. The helpful voice immediately identified the cause of the fault as being Q3, type FXT749, but then went on to point out that there's no suitable substitute. I don't know whether this is a relabelled device but the fact is that it's completely unknown to retailers, wholesalers or the reference books on this side of the channel. Pace did offer to supply one at 16 p. Quite reasonable, but the minimum invoice for foreign orders is $£ 2.50$. This still keeps the cost of the repair within reasonable limits but the paperwork is another matter altogether (pro forma invoice, bank draft etc.), not to mention the resulting delay. Someone at Pace offered to help by slipping an FXT749 into an envelope and sending it off (it does cost less than a stamp). But while waiting I fitted a BC640, which seems to be doing the job

So just when can substitutes be fitted, and what is the position regarding pattern parts? Suppliers of pattern parts all claim 100 per cent compatibility, but when is this really the case and how can we tell other than by trial and error? Maybe other readers or suppliers would like to comment. Sotires Eleftheriou,
Pantin, France.

TRANSI	S	2SA 1020	0.38	ba718	1.65	STK4362	6.10	TDA3560	3.00	VIIEO EELT KITS	
$8 \mathrm{BC1} 1088$	0.07	2SA1106	1.20	8A515	3.15	STK4432	8.80	TDA3561	2.25 2.25	AKAI VS1 ..1.45	
${ }_{\text {BC2 }}{ }^{\text {B } 28}$	${ }_{0}^{0.06}$		1.45 0.60	${ }_{\text {BA }}$ BA3506	2.10 2.30	STK4873	9.300	tDa3592A	.3.10	E. AMSTAAD	
BC327	0.07	${ }^{\text {2SAL }}$ 2SA6	${ }_{0}^{0.78}$	${ }_{\text {BA6109 }}$	2.10	STK5431	8.30	toa3653C	2.75	VCR6100 ..1.95	JJ's IIDLER TYRES. ONLY £1.80 A PACK
BC5488	0.07	2S8173	0.90	BA6209	2.80	STK454	4.80	TDa4i00	3.25	VCR4500 200	
80131	0.25 0.25	2SE407	1.45	BA6219	3.15	STK5481	4.00	tDA4500	3.15	VCR7000 $\quad 1.45$	$\mathrm{M}=3 \mathrm{PACKS}$
B0132 B0204	0.40	2SB434	1.85	Ba6222	3.65	STK5490	5.00	TDA4503	3.05		
B0707	0.45	${ }_{2}^{2 S 85595}$	0.95	HA 1392	2.25	STK5730	5.85	TDA45058	3.00	FERGUSON JVC	
80711	0.48	${ }_{2 S 8588}$	6.89 1.15	HA11235 Hal1244	1.55	STk7217	${ }^{14.80}$	-	5.50	3V00/HR3300 1.68	
80839	0.49	${ }_{2}{ }^{\text {SBB716 }}$	0.28	Hal1714	3.80	STK7226	7.80	TDABi53	3.25	$3 V 23 / 7700$ 0.70 $3 V 24,7200$ 1.10	Wo Wish, A17 Oni
8F420 EF459	0.25 0.18	$2 \mathrm{SB717}$	0.70	HA11720	2.80	STK7251	12.00 4.30	TDAB170	2.80	3V35/HRC110 0.78	
${ }_{\text {EF493 }}$	${ }_{0} .16$	${ }^{2 S 8793}$	0.35	HA13403	5.50 1.45	STK7348 STK8250	4.30 5.60	toabsal.	2.60	3 V 9 Loaciry $^{3} \quad 0.30$	
buioba	1.00	${ }_{2}^{2 S 8856}$	${ }_{0}^{0.42}$	KA2401	0.75	STP 380	4.90	TDA9503	2.20	3V35 Loacrirg $\quad 0.30$	
BU124	1.35	258883 2 SE 1015	0.80		3.65 1.65	STR456 STR1096	5.90 3.70	${ }_{\text {UPC324 }}$	0.70 1.90		
8u205	0.70	${ }^{2 S E 1015}$	3.78	LA4339	1	STR6020	4.40	UPC580	3.00	VT8000 0.50	
BU208 BU208A	0.68 0.70	$2 \mathrm{2SC124}$	0.60	La4440	1.18	STR12005	5.90	${ }^{1} \mathrm{JPC} 1031$	1.60	VT9000 0.45	Morrv Christma
Buzora (t)	${ }_{0}^{0.90}$	${ }_{2}^{2 S C 388}$	${ }_{0}^{0.35}$	L4450日	2.25 4.40	STR20015 STA40090	5.90 5.30	UPC1042	7.50 1.15	VTi1 $\quad 1.10$	Niery cherestmas
BU3264	0.75	${ }_{2 S C 544}$	0.20	La7520	2.20	STR50103	3.25	UPC1178	. 1.05	$\begin{array}{ll}\text { VT52 } & 1.85 \\ \text { VT } 10 & 245\end{array}$	
BU406	0.78	${ }^{2 S C 710}$	0.18	LM318	1.15	STR58004	4.80	UPC1212, UPC12784	1.70 200	VT110 Loading Eelt. ${ }^{245}$	$a n d a$
BU4060 BU407	0.90 0.55	${ }_{2 S C 711}$	-0.35	${ }_{\text {LM384 }}^{\text {LM }}$	1.25	TA7061	6.40 1.00	UPC1363C	2.20	1 Part 0.60	
Bu500	1.00	${ }_{2}^{2 S C 790}$	0.75	LM 1818	2.25	TA7119	1.30	UPC1382	1.10	VT9300 Lcading 0.38	
BU508A BU5080	0.80	${ }_{\text {2SCl047 }}$	0.20 0.50	${ }_{\text {LM64432 }}^{\text {L/4 }}$	5.25 4.80	TA7176	${ }_{\substack{2 \\ 1.75}}$	UPC1470	1.90	PANASONTC	Frosherous New year
${ }^{\text {BU5 }}$ 8U580	${ }^{0.85}$	${ }_{2 S C}$ 2SC96	${ }_{0}^{0.58}$	M5 M 5186	${ }^{4.25}$	TA7208	1.35	THYaIS		NV300- 1.20	
	${ }^{1.78}$	${ }_{2 S C 1162}$	0.30 3	M M 5115	2.50	TA7237 TA7230	1.85	15780H	220 2.20	NV2000 ${ }^{-1} \quad 1.50$	
BUT1:	0.70	2 SCl 1358 2 SC 1413	3.50 2.30	M M 5451182	2.70 2.70	tap237	${ }_{3}^{1.88}$	17088 H	2.00	NV7000 	
BUT11A BUTIIAF	0.70 0.85	2SC1454	3.10	M55544	6.35	TA 7245	4.25	170997	2.00	NV330 1.56	Hl-LOOK...HI-LOOK. . JJJSCHRISTMAS BONANZA
Buiza	${ }_{0}^{0.85}$	${ }_{2 S C 1473}$	0.65	M 183730	9.00 1.60	TA7335	1.75	ER103	0.30 0.28	Emestiny	
But56A	0.80	${ }^{2 S C 1518}$	1.45 1.90	M88851	5.25	TA7358	1.80	$5 \mathrm{S613}$	8.50	VTC500E 0.70	$50 / \bigcirc F H$
T1P31	0.20	${ }^{2 S C} 1881$	2.00	MC1377 MC14493	3.10 8.50	TA7368	1.80 3.50	SG264	5.15	VHR2300 1.85	5/0
${ }_{\text {TIP32A }}$	0.22	$2 \mathrm{SC2660}$	${ }_{1} 1.65$	SAASO10	5.40	TA7611	2.20	TIC116N	0.65	SHARP	
${ }_{\text {TiP32C }}$	${ }_{0}^{0.25}$	${ }^{2 S C 2688}$	0.50 5.30	SAASE12	4.00 3	ta7654	1.05 2.80	nc2260.	${ }^{0.60}$	VC381 ${ }^{\text {S }}$ S 1.15	on all is Products
TIP41C	0.22	${ }_{2 S C}^{2 S C 2792}$	3.10 3	STA441	2.50	TA8214	3.25	7305	0.32	VC481 $\quad 1.35$	
	0.20 0.23	2SC3182	3.40	STKO43	8.75	TA8215	3.45	7306	${ }_{0}^{0.32}$	vC8000 - 1.45	
(Tip42C	0.23 0.45	2SC3883 2S0128	2.80	STKO50 STK080	19.00 5.85	TDA1002	1.85 1.05	7899	0.30	SONY	alid from
T1P122	0.45	250128 250288	2.20 1.05	STK0025	4.00	TDA1035	1.35	7312	0.33 3.21	SLC5/7 $\quad 1.30$	$15 / 12 / 02-1410110$
${ }_{\text {T1P }}^{\text {T\| } 14295}$	0.85	${ }_{2 S D 357}$	0.38	STK039 STKOO49	3.90 5.10	TDA1044 TDA1072	2.80 1.50	7824	3.21 0.35	C6 1.50 S	$15 / 12 / 2-14 / 0119$
${ }_{\text {TIP }}^{\text {TIP } 2955}$	0.40 0.50	2SD387	0.75	STK0050	4.40	TDA1236	2.75	7905	0.35	SLC9 $\quad 2.15$	
MJE340	0.25	${ }^{2 S 0478}$	0.78 3.80	STK433	4.75 5.10	TDA1510 TDA1670	3.70 2.80	${ }_{7918}^{7912}$	0.40 0.40	HITHARI	Place Your Order Now
M E5521	0.35	${ }_{2 S 0768}$	3.85 1.75	STK439	5.50	TOA1870	2.75	${ }_{7924}$	0.40 0.45	$\begin{array}{ll}\mathrm{V} 2 \mathrm{H} \\ \mathrm{VXL3} & 2.55 \\ \mathrm{~V} \times 25\end{array}$	
${ }_{\text {2N3055 }}^{\text {2N373 }}$	0.38 1.00	2SD807	2.25	STK443 STK461	7.40 6.00	TDA1908A	1.00 2.60	78210	0.38	$\begin{array}{ll}V \times L 3 & 1.85 \\ V \times 125 & 1.30\end{array}$	
2 N 492 F	0.60	2SD838 2S0995	3.85 3.65	STK463	7.50	TDA1950	2.50	${ }^{78212}$	0.28	Vx25	Prease phone us for the types not listed. Piease add 60 p post a packing
${ }^{2 S}{ }^{\text {SA }} 114$	${ }^{1.05}$	${ }_{2 S 01273}$	3.85	STK563	1.15	TDA2004	1.10	78215 79205	0.30	GOLESTAR	then add 17.5\% Va TO The fota
2SA 124 2SA473	0.40 0.33	2SD1412	0.90	STK1069	7.75	TDA2009	1.85	79212	0.42	GVF1240 2.05	ALL nems subucct to availabily, and prees can change wrthout notice.
${ }^{\text {2SAS39 }}$	${ }_{0} 0.30$	${ }^{2 S D} 4426$	3.40	STK2025	6.85	TDA2030	1.15	79215	0.40	$\mathrm{VCP}_{400} 8.10$	Govemment, Collezes, Schoois \& instrutes orders accepted All components
2 2SAS64	0.35	$2 S O 1497$ $2 S 07710$	2.50 275	STK2029 STK2129	${ }_{8}^{4.80}$	TOA2521/3	245 7.50	DTOD		PINCH ROLLERS	are brand new. Best quotations given in large quantitios.
2SA579	0.40	2SDT70	275	STK2145	${ }^{9.00}$	TDA2540	1.00	1N4001	0.03	3V29/HR7290 2.50	
2SA608	0.45			STK2155	9.75	TPA2576A	2.95	124002	0.03	3V35/4AP $110 \quad 2.50$	
2SA639 2SAT20	0.56 0.24	${ }_{\text {AN265 }}$	4.50 1.50	STK2230 STK2240	4.75 8.25	TDA2577	1.90 1.90	in ${ }^{1+5003}$	0.03 0.08	HR7700 Rotier VT11/17	
2SA733	0.25	ANSO:11	2.95	STK2250	7.45	TDA25910	2.35	IN5407	0.10	vT8000 - 2.50	
2SA786	0.45	AN5265	1.75	STK 3040	4.50 4.75	tidaz6740	4.85	ins408	0.10	$\begin{array}{ll}\text { VT100:125 } & 2.50\end{array}$	3 THE CHASE. EDGWARE
${ }^{2 S A} A 949$	2.25	AN5612	2.75	STK4026	${ }_{5}^{4.95}$		2.50	A4133	0.10	FVHP615 250	
2SA798 2SA836	0.55 0.38	AN6554 AN6884	1.00 1.50	STK4028/2	8.80 5	TDA3300	4.85 $\substack{\text { a } \\ \\ 3.68}$	Brid Bri	0.06 0.05	$\begin{array}{ll}\text { FVHP990 } & 3.00 \\ \text { VHR2500 } & 2.50\end{array}$	IIDA.HA8 5DN, ENGLA
2SAB93	0.50	AN7115	1.40	STK4060 STK4121/2	5.60 7.00	TDA3301	3.68 3.20	BY179	0.35	VHR3700 $\quad 2.50$	el: 031-952 4641 Fax:081-952 4641
2SA913	1.15	AN7168	2.50	STK4151/2	7.00	TDA3500	6.00	BY399	-0.25	VR6460 $\quad 2.50$	
2SA1012	0.90	AN7362	1.60	STK4161/2	8.50	TDA3506	2.95	BY229	- 1.00	VR6711	Caliers by appontruent only Hold lor teiephone hne to connect due to Faxitink

Long-distance Television

Roger Bunney

October was a very poor month for DX reception. Signal propagation via the F2 layer was considerably less than in October 1991, there was some Sporadic E propagation but tropospheric lifts were lacking. As I write this on November 5th a prevailing high-pressure system is giving enhanced Band III reception from central Europe, and CST (Czechoslovakia) ch. R10 has been logged in South Wales. Meteor scatter (MS) propagation helped with what was otherwise a dull month and there's the promise of the Leonids meteor shower in mid-November, which is usually an active time. Here's the $\mathrm{SpE} \log$ for the period:

5/10/92	TVE (Spain) chs. E2, 3; NRK (Norway) E2; SVT(Sweden) E3; RUV (Iceland) E4.
6/10/92	TVE E3.
7/10/92	TVE E2, 3, 4; RAI (Italy) IA, B; C+ (France)
	L3.
8/10/92	TVE E3.
9/10/92	TVE E3.
10/10/92	DR (Denmark) E3; +PTT (Switzerland) E2,4; RAI IA.
11/10/92	TVE E2; RAIIA.
12/10/92	TVE E2; RAI IA.
15/10/92	TVE E2, 3, 4; CST (Czechoslovakia) R1, 2.
17/10/92	ARD (Germany) E2; TVE E2, 3; JRT/HTV (Yugoslavia) E3.
18/10/92	RTBF (Belgium) E3; DR E3; TVE E2, 3, 4.
19/10/92	TVE E2, 4.
20/10/92	TVEE3.
21/10/92	TVE E2; DR E3.
24/10/92	TVE E2, 3, 4; DR E3.
25/10/92	ARD E2; DR E3; TVE E2, 3, 4.
26/10/92	TVE E3; DR E3.
27/10/92	JRT/HTV E3; TVE E2, 3; DR E3.
28/10/92	RAIIA.
29/10/92	TVE E2, 3.
31/10/92	RAI IA.
3/11/92	RAI IA; JRT/HTV E3.

F2 reception was as follows:

12/10/92	Weak unidentified E2 signal.
$20 / 10 / 92$	Weak R1 signal at 0930.
$27 / 10 / 92$	Unidentified E2 signal.
$29 / 10 / 92$	Unidentified E2 signal.
$2 / 11 / 92$	E2 signal at 0950.
$3 / 11 / 92$	E2 signal at 1045.

There was tropospheric reception on the $7 / 8$ th when Scandinavian Band III/u.h.f. signals and signals from Denmark, Germany and the Benelux countries were received at good strength over much of the South and East, extending along the East Coast into Scotland. Cyril Willis had perhaps the most exciting reception, MTV (Hungary) ch. R10 at 1300 on the 8th. This was suspected tropospheric ducting - there was also an unidentified ch. R12 signal. Confirmation of MTV was by means of a caption seen during the news.

At long last the EBU has listed the French Besancon Lomont 60 kW ch. L3 and Ajaccio, Corsica 8 kW ch. L4 transmitters.

My thanks to Roger Fussell (Torpoint), Cyril Willis (King's Lynn), David Glenday (Arbroath), Tim Anderson (St. Leonards), Peter Schubert (Rainham), Brian Williams (Penarth) and Simon Hamer (Powys) for sending in reception reports.

News Reports

Poland: Our thanks to Stanislaw Pazur for the following information. Top Canal opened on August 1st using ch. E57 with PAL stereo at 5 kW , broadcasting from $1400-0200$ local time. At other times the station transmits the UK Super Channel. It has no licence and is known to cause interference to the Warsaw TVP- 2 channel some 70 km distant. Tele 24 in Lodz is another unlicenced station, supported by the Wrocklas TV Echo group. TVP-I is currently transmitting half an hour of PAL tests a week.

On October 24/25th TVP celebrated its 40th anniversary, with special programmes via Eutelsat II F3 at $16^{\circ} \mathrm{E}$. It's expected that TVP will start regular TV transmissions via this satellite from March, intended for exiles throughout W. Europe and the nearer CSI regions.
Russia: RTR, Moscow now produces and links all programmes from the studio floor to the transmitter site in PAL form, converting to SECAM at the final stage. The former state broadcaster is still using 100 per cent SECAM.
Switzerland: A fourth service is being planned but will be unable to achieve 100 per cent coverage due to channel congestion in the border areas. Telecine Romandie ch. E69 has closed down - it operated from the slopes of Mont Blanc.
Rumania: Up to half an hour of commercials is now being carried daily by TVR-1. The TVR-2 network may be privatised as an independent commercial network called Canal 2. Africa: The Zambian, Tanzanian and Namibian governments have announced that they would welcome the establishment of independent radio and TV networks.
Spain: Increased competition has hit RTVE. There are now 82 radio amateurs licensed to use the 50 MHz band.
Russia: Andrew Emmerson recently returned from Moscow, bringing with him details of a couple of 2 GHz MMDS (microwave distribution) systems in operation there. Kosmos TV uses satellite TV channels such as MTV, Super Channel, MBC, BBCWS and Lifestyle. These transmissions are scrambled - local unscrambled channels are also included in the package. The receiver-decoders have remote control and balcony-mounted 0.5 m panel aerials are used. A similar operation is run by JV Skjyline Greenfield in another part of the city.

Satellite TV

Hughes Aircraft is to build the Astra 1E satellite which is to be launched by Arianespace in 1995.

The Ku band Intelsat K craft at $21.5^{\circ} \mathrm{W}$ is now in operation, providing transatlantic DTH TV transmissions. Scrambled services can be received from Montreal to Santiago using dishes of 90 cm diameter or less. Both NTSC and PAL are used. There are four TV channels, several radio channels, over 3,200 teletext pages and business data circuits. Channels at present being carried are RAI Europlus and the German Teleplus. Intelsat has opened a new tracking control and monitoring station at Beijing.

RTT (Tunisia) is now available via Eutelsat II F3 at $16^{\circ} \mathrm{E}$ on the 11.659 GHz vertical downlink.

ABC (Australia) has signed an agreement to use a Palapa B2 transponder to provide a C band Asian TV service whose coverage will include South China, Cambodia. Vietnam, Burma, Papua New Guinea and Hong Kong. The Australian government has agreed to provide nearly $\$ 6 \mathrm{~m}$ and a further $\$ 4 \mathrm{~m}$ is being sought to cover start-up costs. It's estimated that over 20,000 dishes a month are being installed throughout East Asta to receive the growing number of C band TV services.

The M-Net International pay-TV service has joined with BBCWS TV to provide a 24 -hour scrambled service to the African continent downlinked from Intelsat 601 at $27.5^{\circ} \mathrm{W}$.

Closer to home the BBC has commenced digital audio broadcasting (DAB) tests via the Olympus satellite. The Telecom 2A satellite now has eight SECAM-system channels and four that use D2-MAC - this is a compromise between the French government and Canal Plus.

Books

Peter Schubert has drawn our attention to a book entitled The Languages of the W orld. which he found on a visit to his tocal library. It sells for $£ 5.95$ and provides examples of virtually every language now in use. Peter points out that it should help greatly with the identification of DX signals where only a caption has been seen. The book was compiled by Kenneth Katzner. is published by Routledge and Kegan Paut and has the ISBN (0-71(02-()86t-8.

Meteor Burst Communications is the title of a new work on the theory and practice of meteor shower/ping communications. It covers the basics through to discussion of working systems such as the Alaskan Air Command installation which exploits MS pings to link radar data from the more distant sites. Written by Jacob 7. Schankder it's

Fig. 1: Wideband u.h.f. amplifier circuit using 2SC2570 transistors.

Fig. 2: Layout of the u.h.f. amplifier on copper clad board.

THE SATELLITE ENTHUSIASTS AND DXERS RECEIVER, the ECHOSPHERE SR-50

This is what the TVDX/Satellite enthusiast has been wating for, a fully manually controlled receiver with communizations facilities! I, looping; fully wariable I.F control i $12 \mathrm{MHz}-66 \mathrm{MHz}$) plus a secondary audio I. F bandwidth control - these really elig that signal out of the noise! No less than 8 front panel user controls and a signal level meter! Video and audio output options, $14 / 18 \mathrm{volt}$ LNB options, C/Ku switching! Two standard $55 / 6 \mathrm{MHz}$ System $\mathrm{B} / \mathrm{G} / /$ modulator. Two individual audir subcarrier tuning outputs tor stereo or dual mono: bilingual signals' Plus of course the usual satellite receiver facilities AERIAL TECHNIQUES have enhanced the performance of this brilliant receiver for weak signal working and increased non AFC tuning bandwidth. The customised SR-50 is available in this version only from AERIAL TECHNIGUES
Write in with SAE for a leaflet that shows how a totally manually controlled receiver that YOU control will help you with weak signal reception
The basic Echosphere SR-50 (unmodified) As above + nor AFC tuning + wider IF bandwidth ($840-1880 \mathrm{MHz}$) etc
As option 2 but with switchable threshold extension (All above prices are exclusive of VAT @ 175\%) Overnight delivery ava lable by insured courier. please add $£ 900+$ VAT
AERIAL TECHNIQUES is a total Concept supplier, we offer complete systems, decocers, transverters - NTSC-PAL-SECAM; hardware. cables, filters, multi-standard VCRs and TVs We stock a large range of equipment for all types of aertal and satellite installation. DXing and domestic, it's all listed in our glossy 34 page Catalogue priced at $£ 1$, why not send for your copy today We are a RED NOT DUTCH agenc and we supply Worldwide - AND we are onlis a phone call away

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951

published in hardback by Arftech House (other details not known).

Wideband UHF Amplifier

Bandula Gunasekera of Colombo. Sri Lanka, an experienced DXer, has sent us the details of the wideband u.h.f. amplifier shown in Figs. 1 and 2. He uses it for both TVDXing and domestic reception. Initially the project was based on the use of BFR91 transistors, but the 2SC2570 tinatly adopted has only slightly reduced gain at a fifth of the price. I'm assured that the circuit works very well. offering excellent performance.

It's a two-stage design which Bandula laid out on copperclad board. There should be no problems provided you adhere to the usual u.h.f. constructional technicpues. Note that the collector coils L? and L3 are formed from the leads of the 1.5 kS) resistors. using a meter probe to wind them. No interstage screening was found to be necessary, the circuit being inherently stable. The transistors are mounted an inch apart. If the copper clad board approach is adopted I would suggest the use of the traditional 1 kpF feedthrough capacitor as an input terminal for the 12 V supply, with others as the anchoring points for the 1.5 kS collector feed resistors. I'd personally favour fitting the board inside an aluminium diecast box or other compact metal case. Bandula says that he's unable to measure the gain/noise performance but "excellent results have heen obtained". Our thanks to him for sharing these details with us.

Satellite Finder Computer Program

We`ve previously reviewed John Breeds` Satmaster
satellite finder computer disc, a program that offers all the information required to set up a motorised system anywhere in the World. This sells for $£ 35$. John has now introduced the Sat-Pro, an extensively updated version intended for professional installation engineers worldwide. Particular reference is made to the expanding markets in Africa and the Middle East. There are rainfall statistics, polar and apex angles per town and improved layouts. Rain fade margins
are calculated automatically and the disc can be used with a laser printer. All this in addition to the Satmaster information. Both programs were written by Derek Stephenson. The price of $£ 69$ for the $3 \cdot 5 \mathrm{in}$. disc and manual, plus $£ 1$ UK post, $£ 2$ to Europe and $£ 4$ elsewhere, reflects the fact that Sat-Pro is aimed at the professional market. For further details phone 0793750620 or write to Swift Television Publications, 17 Pittsfield, Cricklade, Swindon SN6 6AN.

Teletopics

TOWARDS TERRESTRIAL DIGITAL TV

BBC Engineering and Thomson-CSF/Laboratories Electroniques de Rennes (TCSF/LER) have demonstrated that it's possible to transmit at least one digital HDTV service in a standard 8 MHz TV channel. The two organisations recently collaborated in a successful experimental digital TV transmission using a novel modulation technique that makes very efficient use of the signal spectrum available. It was part of a major programme which aims to bring digital HDTV to the public via terrestrial transmitter networks.

The tests involved broadcasting standard definition digital TV signals in a conventional 8 MHz TV channel from a low-power transmitter at the BBC's Crystal Palace mast. The signals were successfully received at the BBC's Engineering Research Department at Kingswood Warren and a number of other sites in South London and Surrey. Further tests are expected to use full HDTV sources.

The modulation technique used and the transmitting and receiving equipment (modem) were developed by TCSF/LER to convey about $60 \mathrm{Mbits} / \mathrm{sec}$ in a single 8 MHz u.h.f. channel, i.e. sufficient digital data for two HDTV channels using a combination of signal compression techniques. The achievement of such a high spectral efficiency about 7.5 bits per Hz of signal bandwidth - is a major development. Two separate $30 \mathrm{Mbits} / \mathrm{sec}$ signals are transmitted in the channel, one with horizontal and the other with vertical polarisation. Instead of using a single carrier with its sidebands as in a conventional transmission, each 30Mbits/sec signal employs OFDM - orthogonal frequency division modulation. This involves the use of 512 closely-spaced carriers spaced 90° apart so that their sidebands, whilst overlapping, don't interfere. Each carrier is digitally modulated, using 64 -state QAM (quadrature amplitude modulation), i.e. each carrier cycle can represent one of 64 states, determined by eight amplitude and eight phase values. Use of this modulation system in conjunction with digital compression techniques being worked on will in principle enable two HDTV programmes to be transmitted in a single 8 MHz channel.

The successful tests show that this modulation technique has potential for major improvements in spectral efficiency in a wide range of applications. Other advantages include an inherent immunity to multipath propagation (ghosting): because the delay between the original and a reflected signal is generally much shorter than the gap between the original signal pulses (the data rate for each carrier is relatively low at around $60 \mathrm{kbits} / \mathrm{sec}$) the two cannot be confused.

The carriers can be spaced across the channel bandwidth in a way that minimises interference from PAL TV transmissions: those that would be close to the PAL luminance, chroma and sound carriers are not used, leaving notches in the OFDM spectrum. The BBC tests showed that the system could tolerate a PAL signal at -12 dB power with respect to the digital signal (i.e. about a sixteenth as strong) in the
same channel without any effect on picture quality. A PAL transmission would suffer from considerable intereference under these conditions.

The OFDM technique was first tested by the BBC in 1990 and proved highly successful for experimental digital audio broadcasting (DAB) with both fixed and mobile receivers. The original bit rate used was about $11 \mathrm{Mbits} / \mathrm{sec}$ in an 8 MHz channel - the DAB system using the OFDM technique has now been successfully developed under the auspices of Eureka Project 147/DAB, transmitting about $2.5 \mathrm{Mbits} / \mathrm{sec}$ in a 1.5 MHz bandwidth. The much higher bit rate and spectral efficiency of the system developed by TCSF/LER represents a further technological breakthrough in the application of OFDM, making the technique attractive for HDTV use. There is pressure for the u.h.f. channels 35 and 37 to be reserved for digital TV using these techniques should Channel 5 not go ahead.

SONY MINI DISC LAUNCHED

Sony has now launched its Mini Disc audio system, which can both record and play back high-quality digital sound on $2 \cdot 5$ in. magneto-optical discs. There are three models initially. Model MZI at $£ 500$ is a record-capable Walkman which includes a two-line, 24 -character LC display to show the title, artist and time information. A title function enables users to add artist and track information on recordable blank discs. Other features include shuffle play and a stereo microphone input. The SCMS anti-copy system is used. A nicad battery that comes with the MZ1 provides a playing time of around 75 minutes. Model MZ2P at $£ 400$ is a play-back-only Walkman. Model MDXUIRDS at $£ 850$ is a player/CD autochanger controller. All models incorporate a new 4Mbit RAM as part of an anti-shock system: if the player is jolted it continues to provide an output while the laser tracking system realigns itself - the RAM stores ten seconds of music. A 60 -minute blank recordable disc costs £9: 74-minute discs are promised for later in 1993. There are at present around 250 prerecorded discs at CD prices. Sony promises a 1,500 -title catalogue by Christmas 1993.

SATELLITE TV

According to the Financial Times satellite TV monitor there were some 71,000 receiver installations in October, an increase on September but well down on October 1991 when 100,000 dishes were sold or rented. According to manufacturers the equipment supply shortage that has been affecting sales is now over.

Cambridge Computer (1 Crompton Way, North Newmoor Industrial Estate, Irvine, Scotland KAll 4HU 0294222 100) has launched a new version of its Gemini LNB, designed for SMATV applications. The new Gemini dual LNB has separate outputs for horizontally and vertically polarised signals. The LNB is Astra and Eutelsat compatible, has a minimum conversion gain of 50 dB , a typical noise figure of 1.2 dB and a typical cross-polar rejection figure of 20 dB .

Philips has expressed concern that versions of its BSB
receivers with unauthorised modifications for PAL reception have been on sale. The company points out that such modifications could affect BEAB approval.

PORTABLE TV SYSTEM

A Hampshire inventor and the physics department of Loughborough University have patented a new portable TV system that can produce 3-D pictures with stereo sound. The Goggle Vox uses two miniature LCD screens which are worn as a pair of goggles. Its weight is 400 g . A development called Microsharp, which can magnify pixels without reducing picture quality, is incorporated. Goggle Vox can be used to display video pictures or computer graphics. Sharp and Nintendo are amogst the companies said to be interested in the system.

NEW SONY TAPE SYSTEM

Sony has launched a new digital audio tape system that's known as the Non-Tracking (NT) format. It can store up to two hours of digital stereo sound on a cassette the size of a postage stamp ($30 \times 21.5 \times 5 \mathrm{~mm}$). The cassette weighs 2.3 g and uses metal-evaporated tape. Helical tape scanning is used, but the tape isn't wrapped around the head drum: instead, when the cassette is inserted the drum slots into its top. The NT cassette has built-in guides and pinch rollers.

The sampling frequency is 32 kHz and the frequency response $10-14,500 \mathrm{~Hz}$. Quantisation is 12 -bit non-linear. There's no tracking system during recording or playback. The player has a three-head drum that reads the recorded data twice and processes it in a RAM.

The first NT machine, the Scoopman Model NTI at $£ 545$, is aimed at the dictation market. Cost of a 90 -minute cassette is $£ 10$.

hong kong to tyneside

Hong Kong's largest TV manufacturer Kong Wah is to set up a plant at South Shields, Tyneside capable of producing 1,000 wide-screen, Nicam TV sets a day. Production is expected to start in September and the company is already engaged in discussions on UK component sourcing. When fully operational the plant will create 280 jobs. The company's decision to set up production facilities in Europe is based on fears that EC quotas may be tightened: European sales account for half the company's turnover, about $£ 1 \cdot 6$ bn in 1991.

HSE REGULATIONS

Two new sets of health and safety Regulations, which will implement European Community directives in the UK, have been laid before Parliament. They come into force on January 1st. One affects manual handling of loads at work and the other work with display-screen equipment. The Health and Safety Executive (HSE) has published guidance booklets on the two sets of Regulations. Copies of the Health and Safety (Display Screen Equipment) Regulations 1992, SIl992 No. 2792 (ISBN 0-11-025919-X), at £1.90, and of the Manual Handling Operations Regulations 1992, SI1992 No. 2793 (ISBN 0-11-025920-3), at $£ 1 \cdot 50$, are available from HMSO or booksellers.

MORE DATA DISCMEN

Sony has launched three more Data Discman units. Model DD-DR1 is an electronic drive unit, without an LC display,
that links up with IBM and compatible computers. Price is $£ 300$. The DD-8 at $£ 280$ has a fixed 4 in . LC display, an auto-scroll facility and bookmark. It weighs 450 g . Model DD-10EX at $£ 380$ has a $3 \cdot 5$ in. flip-up LCD.

SOLDERING IRON FUME-EXTRACTION KITS

Antex has introduced a fume-extraction upgrade kit for its range of yellow soldering irons. The kit fits Models CS, XS, XSD, CTSC and XSTC. It consists of an extractor tube, 1.8 m of flexible tubing, cable clips and a cleaning brush. Used with a pump and filtration system, fume-extraction soldering irons are the most effective way of removing harmful soldering gases as required by COSHH regulations.

CD-I OUTDATED?

US computer games publisher Electronic Arts claims that the CD-I system, which is based on 8 -bit technology, is out of date. It recently demonstrated a 32 -bit multimedia player which is to be displayed at the January Consumer Electronics Show and is expected to be on sale in the USA by Christmas 1993. It has been developed by 3DO, a consortium that includes Electronic Arts and Time Warner. The player is being made by Matsushita.

VIDEO NEWS

The latest camcorder from Mitsubishi, Model HS-CX6 at $\mathfrak{£} 900$, includes a novel feature - it uses a monochrome c.r.t. in the viewfinder to display colour pictures. The system works as follows. The composite video signal is split into its RGB components and processed. Each signal is then applied to the c.r.t. sequentially, at a 150 Hz rate. A fast-switching RGB filter in front of the c.r.t. produces the colour image. Mitsubishi says that the colour 'truefinder' gives better resolution than a colour LC display.

The forthcoming Super Nintendo game King Arthur's World will be the first to feature Dolby Surround Sound. It is expected to be released in Europe this spring.

Philips has introduced a four-head LP VCR with Nicam at $£ 400$: other features of the VR7225 include automatic 16:9/4:3 switching and NTSC playback.

Hitachi Denshi has introduced a high-sensitivity threetube colour camera, Model Z-MLI. High sensitivity is achieved by the use of the new $2 / 3 \mathrm{in}$. MS Hiselvicon pickup tube which has a photoconductive film target with avalanche multiplication - this was jointly developed by NHK and Hitachi. The tube is thirty times more sensitive than a standard Saticon tube. Its low output capacitance, used with a low-noise preamplifier, enable high-quality pictures to be produced even in high-gain modes (+9 or +18 dB). The tube uses twist-field technology to maximise resolution in the centre and corners - a resolution of 700 lines is achieved. Other significant features include iris automatic close, Peltier-effect cooling to prevent condensation and masking to facilitate colour adjustment.

IN BRIEF

The Live ' 93 consumer electronics show is to be held at Olympia on September 16-20th. . . Fujitsu has developed an LCD screen that provides a six times wider viewing angle than conventional LCD screens. The improvement is achieved by using spherical instead of rectangular liquidcrystal cells. . . Philips has introduced an aerial-plus-amplifier, Model AE100 at $£ 42$, for use with pocket LCD or portable TV sets.

All About Electrolytic Capacitors
 Ray Porter, M.Sc., C. Eng., MIEE

Aluminium electrolytic capacitors are widely used where high capacitance values are required. Regular Television readers will have noticed that a significant number of equipment faults are caused by their failure. This article provides a historical background then goes on to describe the construction, limitations and failure mechanisms of these components in their miniature PCB-mounted form. With this information electronic project constructors and service engineers will be able to choose the component best suited for a particular purpose - where this is not dictated by physical size or the pitch of the leadout wires.

A Century of Electrolytics

The electrolytic capacitor, or condenser as it was then known, was invented a hundred years ago in Germany. It was first used as a filtering element in battery eliminators during the Twenties, when electronic engineering was almost totally concerned with radio broadcast and receiving equipment. These early versions had a "wet" electrolyte and had to be vertically mounted. This limitation was lifted in 1928 when "dry" electrolyte, i.e. impregnated paper, started to be used.

As a result of enhancements in both design and the manufacturing processes used there have been improvements in performance, size and reliability over the last ten years. Compact, modern consumer electronic products continue to require the most that components can give by way of performance however. Thus component failures do occur.

Construction

Fig. I shows the general form of construction. The aluminium electrolytic capacitor consists of two layers of aluminium foil which are separated by paper that's impregnated with an electrolyte gel - the capacitor derives its name from this. The foil and paper sandwich is spirally wound and then enclosed in an aluminium or plastic tube.

Only one of the foil layers is an actual electrode of the capacitor - the positive plate or anode. By etching its surface the effective area of the anode is increased one hundredfold, thus increasing the capacitance value obtained

Fig. 1: Basic construction of an aluminium electrolytic capacitor.
in comparison to that achievable using plain foil. The second electrode, the negative plate, is the electrolyte which is in contact with the anode foil. The second foil serves only to provide a contact with the electrolyte. Aluminium oxide, which is formed on the capacitor's anode electrochemically during manufacture, serves as the dielectric. The relative permittivity of the aluminium oxide is about eight: its thickness, which depends on the forming voltage applied during manufacture, is about 1.5 nanometres per volt. It's because of the dielectric strength of about 1 MV per mm and the moderate relative permittivity that the aluminium electrolytic achieves the highest CV product within a particular volume of any form of capacitor.

Equivalent Circuit

The equivalent circuit, which explains the major features of the electrolytic capacitor, is shown in Fig. 2. Shunt resistance R represents the effect of d.c. leakage. A very small amount of power is dissipated in R , but this causes negligible heating compared to that dissipated in the equivalent series resistance ESR. Ripple or a.c. passing through the capacitor produces a power loss in the ESR. This results in heating within the capacitor. The ESR also explains why the capacitor can't behave as a short-circuit at high frequencies. The very wide use of switch-mode power supplies has increased the demand for low-impedance, high-frequency capacitors with high ripple current ratings. Suitable types always have a low ESR, for reasons that will be explained later. L is the self-inductance, which is the result of the physical geometry of the capacitor and its terminations. The magnitude of L is such that electrolytics are ineffective as capacitors at radio frequencies. At these frequencies the inductive reactance is large.

Variations of Characteristics in Use

Fig. 3 shows show the characteristics of aluminium electrolytics vary with applied frequency, changes of internal temperature, increases in applied d.c. voltage and the passage of time. This information can be used as a guide in assessing the suitability of an electrolytic capacitor for use under arduous environmental and electrical conditions.

Effect of Temperature Increase

Increased temperature within an electrolytic capacitor produces a capacitance change that may make it unsuitable for use in a timing circuit. But the most important long-term effect of increased temperature is that the capacitor's life is reduced. This occurs because the electrolyte evaporates, its vapour passing through the end seal which is usually a rubber plug. The loss of electrolyte reduces the capacitance and increases the ESR, since less plate area is then in use. These changes in electrical effectiveness result in equipment failures because filtering and coupling deteriorate. The deterioration reaches the point where correct circuit operating conditions are no longer maintained.

Increased ambient temperature also leads to increased internal temperature. It has been found that because the electrolyte evaporates more rapidly at high temperature the
life expectancy of an electrolytic capacitor at $60^{\circ} \mathrm{C}$ is twice that at $75^{\circ} \mathrm{C}$, while at $85^{\circ} \mathrm{C}$ life is again halved. Extreme increase in internal temperature produces increased internal pressure. This is relieved by a controlled thickness vent in the can, a diaphragm in large cans or by expulsion of the rubber end plug in miniature electrolytics.

Ripple Current Rating

The permissible ripple current is limited by the capacitor's internal temperature which rises because of dissipation due to the ESR. It has been found that temperature rise in ${ }^{\circ} \mathrm{C}$ is equal to:

$$
\left(I^{2} \times \text { ESR } \times 1 \cdot 1 \times 10^{5}\right) / \text { can area in sq. } \mathrm{mm}
$$

Thus a larger can and/or a lower ESR results in a higher ripple current rating.

Forward Voltage Rating

The forward voltage rating is related to the voltage used while forming the dielectric during manufacture and is the maker's recommended maximum value. At one time the use

Fig. 2: Simplified equivalent circuit of an electrolytic capacitor. A and B are the terminals, C is the effective capacitance, R is the shunt resistance (insulation resistance) through which d.c. leakage current flows, ESR is the equivalent series resistance and L the capacitor's self-inductance due to its terminals, electrodes and geometry.

Fig. 3: How the characteristics of an aluminium electrolytic capacitor vary with temperature, frequency, time and applied voltage.
of an electrolytic capacitor at less than its rated value resulted in deterioration of the dielectric. Use of high purity aluminium foil has solved this problem, and now the effect of using an electrolytic capacitor at less than its rated value is to increase the dielectric's reliability in accordance with a fifth power law, e.g. failure rate at 80 per cent of the rated voltage $=0.8^{5}=0.33$ times the failure rate at 100 per cent. Thus the life expectarcy of the dielectric is increased three times by a 20 per cent reduction in the applied voltage.

Reverse Voltage

Up to 1.5 V is an acceptable reverse voltage for aluminium electrolytics. Non-polarised types often have seals at both ends of the can. Because of this the electrolyte vapour leakage is twice that with a single-ended type. So it's worth considering the use of a polarised type even where no bias voltage is normally present in the circuit concerned.

Application of a higher reverse voltage for a long time will result in a loss of capacitance. But application of a significantly higher reverse voltage for a short period of time won't cause failure either in the reverse direction or when the capacitor is subsequently used with the correct forward voltage. Be careful about applying incorrect d.c. voltages to electrolytics: their failure mode can be explosively dangerous when internal pressure is released after an excessive temperature rise.

Expected Life

Manufacturers seem to regard the life of components used in consumer electronic products as being a minimum of three-five years. This is checked by testing at maximum temperature for up to 10, , 00 hours. But degradation limits with bottom-of-the-range electrolytics are specified for only 500 hours - see Table 1. This means that significant deterio-

ANSWER TO TEST CASE 361

-SEE PAGE 214 -

You probably worked out the solutions to George's problems, but here they are. First, although the nominal operating voltage of a camcorder may be say 6 V , as in this case, the conditions are not as simple as those for a torch bulb or a transistor radio! Operation of the control circuitry is closely geared to the characteristics of the on-board battery provided: at the point where the camcorder cuts out there has to be enough energy left in the battery to operate the unlace and tape-eject mechanisms.

By the time that George's 6 V supply had worked its way via a fuse, four plug-socket connections and several metres of thin flex it was, on its arrival at the voltage-sensor within the machine, somewhat depleted. This was especially the case at certain stages of the camcorder's operation, when it was taking almost 1 A from its supply. We replaced the flex with a thicker type and suggested to George that he added one more cell to his battery to boost the supply to 7.2 V . This did the trick.

The cause of the hum problem was stray pick-up of 50 Hz radiation from the mains supply. This can occur when a camcorder is electrically floating because it's fed from a mains-isolated power supply. The solution was simple: to earth the camcorder's chassis line. George's customers' Magic Memories were flowing again the very next day.

Table 1: Typical electrolytic capacitor characteristics.

ration will occur after say a year if the capacitor is operated with a high internal temperature.

In the UK, ambient temperatures for consumer equipment are normally $20-30^{\circ} \mathrm{C}$. The ambient summertime temperature in China is around $40^{\circ} \mathrm{C}$, which must shorten the life of electrolytics used there. Long-haul travellers are advised to keep their camcorders cool!

Manufacturers consider the end of an electrolytic capacitor's useful life to be when 40 per cent of the electrolyte has evaporated and escaped through the end seal, but catastrophic failure as described below may occur before this point is reached.

Failure Modes

The most common cause of failure when electrolytic capacitors are being tested for useful life expectancy is a short-circuit through the dielectric because of voltage stress. Open-circuits occur because of mechanical failure of the joint between the foil and capacitor terminals and are much less common. In field servicing the most common cause of failure is the absorption of hydrogenated hydrocarbon cleaners, which attack the aluminium foil, through the end seal. Current "green" practices in industry are to use nowash or water-washable fluxes while soldering, which should reduce this type of field failure.

Typical Characteristics

Table 1 lists typical electrolytic capacitor characteristics in relation to voltage rating. This shows that capacitors with the same voltage rating and type of construction have the same dissipation factor. A capacitor that will provide better reliability can thus be chosen, since use of one with a higher voltage rating will result in longer dielectric life because of the voltage derating factor while the drying-up process will
be slower because the internal temperature will be lower. Internal temperature is reduced because high-voltage capacitors have a larger case size and a lower ESR value. Because of the heat-handling capability of higher-voltage capacitors their ripple current rating increases with voltage rating for a given capacitance value.

Acknowledgement

My thanks to Sprague Electric and Rubycon for supplying performance and life data for their ranges of miniature aluminium electrolytic capacitors.

GLOSSARY OF TERMS

Dissipation Factor (DF): The ratio of the effective series resistance (ESR) of a capacitor to its reactance at a specified frequency.

Effective Series Resistance (ESR): This is the "lumped" element that's used for purposes of calculation to explain the power loss within a capacitor when it passes a.c.

Etching: An electrochemical process that roughens the surface of the aluminium foil, thereby increasing its surface area in comparison with unetched foil.

Quality Factor (QF): The ratio of capacitive reactance to ESR at a specified frequency. It's the inverse of DF.

Working Voltage: The maximum d.c. voltage that can be applied to a capacitor for continuous duty at the maximum rated temperature.

Camcorner

Panasonic NVM7

Intermittent flashing was the complaint with this camcorder. Sure enough after about twenty minutes the colour content of the camera picture started to flash and break up. Scope checks around the camera process board, after first removing multiple screening cans etc., showed that the $\mathrm{R}-$ Y and B - Y signal outputs from the Y and C processor chip IC304 were fluctuating severely. Farther back in the signal chain, at the other side of the 1 H and 2 H delay CCD chip (VCR200), things settled down a bit. Replacing this item cured the fault.
B.S.

Panasonic NVM7

This M7 was dead: the power supply wouldn't stay on because the 16 V and -8 V camera supplies were missing, their absence activating a power-off circuit. The root of the problem seemed to be a badly scorched chopper transistor, Q1003, for the 16 V and -8 V supplies. After fitting a replacement 2 SD1293M there was a wisp of smoke from the camera section. Fortunately I was able to switch off before Q1003 expired again. The cause of this latest problem was a charred luminance 1 H delay CCD chip (VCR0199) on the camera process board - it had gone short-circuit to chassis.
B.S.

Philips VKR6820

This is an earlyish Panasonic clone. The report was of no playback sound though I couldn't find anything amiss. A call to the customer provided the answer. There was no sound on holiday in Sweden! He'd not tried it back home. Unfortunately this is one of the very few machines in which the 5.5 MHz sound carrier is not a switchable option on the r.f. unit.
D.C.W.

JVC GRC7E/Ferguson 3C03

The reported fault was no focus: the lens unit was well and truly jammed. It's quite a common fault with these camcorders. As a replacement optical block is expensive it's worth having a go at carrying out a repair, though repair is probably not the right word as the action required is to strip the optical assembly from the camera head and "unscrew" the primary lens. This involves removal of a piece of "sticky tape" that locates the mating edges of the separate lens parts. Mark both surfaces to help with reassembly,

If it's now possible to unscrew the primary lens all is well. If not, apply a minimum of force to the primary lens by holding the camera body and pressing the lens hood against a firm surface. If you're lucky a click will be heard (and felt) as the lens assembly assumes its new position.

Once the primary lens is free, remove it from the rest of the assembly. Check whether the multiturn threads of the lens and its housing are damaged (cracked). If all is well, reassemble the primary lens to the main assembly, noting that the correct threading of these parts will allow full rotation of the assembly. Refit the "sticky tape", align the lens sections and check the zoom and focus rings for freedom of operation. Set up as required - back focus, A/F tracking and focal distance.

This procedure can be carried out with certain other JVC

Reports from Brian Storm and David C. Woodnott
models - indeed with most early models from most manufacturers, including the latest full-size machines with manually adjustable focus and zoom lenses.
D.C.W.

Panasonic NVMS 1

The report said auto-focus sticking. Investigation showed that this full-size camcorder had been dropped on its optical block end. In fact the primary lens was coming away from the rest of the unit, the result being that it jammed in certain positions. Now a new optical unit for one of these machines costs around $£ 200$ trade. When you add the labour charge, this repair for what is really not too serious a problem can be quite expensive, at least from the customer's point of view. Can it be done more cheaply? - how often do we hear these words! Well yes it can, but only by dismantling the primary lens and drilling a small (0.8 mm !) hole to accommodate a securing screw. Result, a satisfied customer.

But don't do this sort of thing if you have anything better to do! An interest in model building means that I've assembled a range of small hand tools that are occasionally pressed into service for jobs like this. If you do wish to attempt the odd mechanical repair you will need very small drills, taps etc. model making suppliers are a good source.
D.C.W.

Sony CCDV88

The fault report with this handycam was of odd coloured lines and patches floating up the picture. The cause was a dirty flying erase head. Nearly fooled me - the video heads were o.k.
D.C.W.

JVC GRC1

I expect everyone has had the no colour fault with one of these early camcorders. This one was no exception - the culprit was the MCM1068A chip IC8. Good results were obtained after setting up the chroma circuits. D.C.W.

Panasonic NVMS70

If the problem with one of these camcorders is intermittent operation and/or intermittent viewfinder and LCD displays replace both clock oscillators on the operation PCB. One runs at 32 kHz , the other at 4 MHz . This can save much searching and time.
D.C.W.

Amstrad VMC100

These record-only camcorders can be difficult to service without the special jig that allows a playback mode to be entered. This one reportedly left loops of tape and ejected the cassette at random. It certainly lived up to its reputation! It would run for a while, stop, eject the cassette (complete with a loop of tape) then refuse to do anything.

When I removed the case to see what was going on I discovered that the capstan stopped intermittently, producing the fault symptoms. If pause was selected in the record mode the machine would sit there with the capstan running until record was again selected, when the capstan would cease to rotate. The cause of the problem was a faulty BA6431F capstan drive chip.
D.C.W.

Test Report: Fluke Model 12 DMM

David Botto

The Fluke Model 12 digital multimeter can fairly be described as being at the leading edge of DMM technology. It's a brand new design packed with an impressive range of facilities. The dimensions $-3.46 \times 7.05 \times 14.23 \mathrm{~cm}$, or 1.35 $\times 2.75 \times 5.55$ in. if you prefer it that way - are such that it fits easily in one hand. On my scales the weight reading, including battery, was a fraction under 10 oz .

To replace the battery (a standard 9V NEDA 1604/IEC 6F22/PP3) you remove four screws from the back after which the front of the instrument can be lifted off. Battery life is specified as 650 continuous hours with an alkeline battery, 450 hours with a carbon-zinc battery. To economise on battery life, if the meter is left switched on but is unused for more than 45 minutes it goes into the standby mode and the display blanks.

Battery replacement gives you an opportunity to inspect the innards of the Fluke 12. You'll find that the meter is well made from top-quality materials. The case is formed from grey, high-impact plastic that looks as though it will stand up to life in the service department. A slight upwards tilt when the meter is placed on the bench makes it easier to read the display. An anti-skid pad on the lower part of the base ensures a good grip on the work surface.

The liquid-crystal readout is of the $33 / 4$ digit $(4,000$ count) type, updating four times a second. I found that the thick, solid, jet-black, $15 / 32 \mathrm{in}$. high digits are easy to read at distances of up to three feet. The two test prods are wellbuilt with finger guards, Hard Point tips and extra-long connectors that plug into recessed, well-insulated sockets at the front edge of the meter. For range and function selection there are a stout three-position slide switch and four toughlooking push-buttons. These are labelled with an equals sign, an M , a circle/square dot symbol and a capacitor respectively.

Resistance and Continuity Checks

For continuity and resistance checks you push the slide switch to its far right position. A diode symbol appears in the display. To change from resistance to the diode range you press the button with the equals sign. According to Fluke the open-circuit voltage across the test probes is less than 1.5 V in the resistance mode, $2.4-3 \mathrm{~V}$ in the diode mode. I found that this is so, getting readings of 0.693 V in the former mode and 2.6 V in the latter. A small-signal diode registered $1.704 \mathrm{M} \Omega$ one way and infinity the other in the ohms range. Thus the majority of components can be checked in-circuit in this mode.

Provided the resistance is less than 25Ω the beeper keeps operating while making continuity and resistance checks. I found this particularly useful when checking PCB tracks.

The resistance ranges cover from $0 \cdot 1 \Omega$ to $40 \mathrm{M} \Omega$.
Short-to-open and open-to-short transitions can be captured and visually displayed. After connecting the test probes to the circuit you press the M button. M then appears in the display, which shows either an open- or a short-circuit condition - see Fig. 1. When a transition is detected the meter gives out a beep and the transition is captured in the display. With further changes the meter beeps but the display doesn't alter - to reset the display and return to the capture mode you press the M button again.

There's also an effective diode and semiconductor junc-
tion test. A good junction shows about 0.6 V one way and OL the other.

V-Chek Mode

When I first started servicing a senior engineer who knew his business told me that "after measuring resistance a multimeter should be immediately switched to its highest d.c. voltage range - your next check could be an h.t. line measurement". This proved to be good advice: the one time I ignored it the result was a cloud of black smoke and a written-off analogue meter. Thanks to advanced microprocessor technology however you can ignore this rule when the Fluke 12 is in its V-Chek mode.

Whenever the meter detects a voltage greater than about 4.5 V while you are carrying out continuity or resistance checks and the meter is not in the manual range the V-Chek symbol appears: the meter then switches automatically to fast-autoranging a.c. or d.c. voltage, the readout indicates the a.c. or d.c. voltage present and the symbol LoZ (low impedance) appears as a reminder. A beeper momentarily sounds as each measurement is made, though you can disable the beeper by pressing the equals button when you switch the meter on. It's quite an experience to measure 0.5Ω then immediately connect the probes to the mains supply and read off 250 V a.c.!

In the V-Chek mode you can carry out all the basic a.c. and d.c. voltage and resistance/continuity checks required provided you are working on circuits, such as power supplies and other sources, with a low output impedance. The reason for this is that in the V-Chek mode the meter's input impedance is only $2 \mathrm{k} \Omega$. So this facility shouldn't be used for voltage measurements where a $2 \mathrm{k} \Omega$ load could damage the circuit.

I found that the V-Chek setting was the only one needed for the majority of trouble-shooting tests. It saved me much time and frustration.

V-Chek can be disabled by pressing the button with the circle/square dot symbol: this symbol then appears in the display and the meter is locked to the selected manual setting function. But in practice I never found it necessary to do this.

Voltage Measurements

The basic voltage ranges are selected by setting the slide switch to its centre position. For a.c. press the equals button. There are a.c. and d.c. voltage ranges from 4 V to 600 V , the input impedance being $10 \mathrm{M} \Omega$ on the d.c. ranges and $5 \mathrm{M} \Omega$ on the a.c. ranges. When you switch the meter on it switches automatically to autorange - and the autorange is fast. You can lock the ranges for manual operation by pressing the button with the circle/square dot symbol which then appears in the display.

There are also $4,000 \mathrm{mV}$ ranges which can be entered only in the manual range mode. These are for convenience when using certain accessories.

Current measuring ranges are not included. So far as I'm concerned this is not a serious disadvantage as I rarely use DMM current ranges. I do what most service engineers do measure the voltage across a handy resistor and mentally calculate the current using Mr. Ohm's well-known law. This
saves a lot of unnecessary and often destructive component desoldering and resoldering.

Min/Max Operation

Many DMMs have a min/max function. The Fluke 12 goes a big step farther. You set the meter to the required voltage or resistance range and conned it to the circuit. Then press the M button. This symbol is now displayed and autorange is disabled.

When the reading changes by more than about 50 digits the meter beeps a brief input "change alent" signal. When a new minimum or maximum reading is recorded the meter emits a longer beep. You can then press button M and the meter will cycle through the maximum. minimum and present reading. To exit min/max and erase the stored readings press button M for two seconds or change the measurement function.

But this isn't the end of the story. You can also measure the elapsed time between the minimum and maximum readings, something that's a real boon when there is an intermittent fault and you don't know how often it occurs. It works as follows.

First you enable the min/max elapsed clock by holding down button M and moving the slide switch from off to either the voltage or the resistance/continuity position. Then connect the leads to the circuit. All that's now required is to press button M . The M symbol appears in the display and the time is set to (O), (0). By continuing to press button M the DMM steps through the min/max/present reading sequence.

The meter doesn't go into standby after 4.5 minutes in the min/max mode.

Capacitance Measurement

The Fluke 12 has the best DMM capacitance measurement range I've yet come across. With most DMMs $20 \mu \mathrm{~F}$ is the maximum value that can be measured. With the Fluke 12 you can check capacitance values from $0 \cdot(0) 01 \mu \mathrm{~F}$ to virtually $10,000 \mu \mathrm{~F}$. This wide. fully-atoranging coverage removes the need for a separate capacitance meter. I do however feel it's a pity that small capacitance values in the pF range can't be checked.

The red lead must be connected to the capacitor"s positive lead when checking electrolytics. If a capacitor retains a slight charge. due to dielectric absorption, the letters dISC appear in the display until the capacitor is completely discharged. It's important that capacitors are discharged before making checks.

In the capacitance ranges the meter has a full four-digit 9999 readout.

Safety and Overload Protection

The meter is designed to Protection Class II requirement of LLL244, ANSI/ISA-S 22. CSA C22.2 No. 231 and VDE 0411 plus IEC 1010 overvoltage category III. All inputs are overload protected up to 600 V .

Ranges and Accuracy

A brief specification for the Fluke 12 is shown in Table 1. The manufacturer states that the meter is calibrated using standards and instruments whose aceuracy is traceable to the US National Institute of Standards or to nationally accepted measuring systems. Accuracy is guaranted for a year after calibration provided temperature recommendations are observed. The meter has a two year guarantee.

(a)

(c)

(b)

(d)

Fig. 1: Displays for the short-circuit condition (a), a short-to-open transition (b), the open-circuit condition (c) and an open-to-short transition (d).

I found that the ranges are well within the clamed accuracy limits. For example, 5 V d.c. applied to the meter could. in accordance with the stated tolerance of $\pm(0) \cdot 9$ per cent. produce a reading of anything between $4.955-5.045 \mathrm{~V}$. My measurement with a 5 V precision source produced a reading of 5.01 V . which is pretty good. As another example -12 V d.c. from a precision source produced a reading of -12.01 V . an excellent result.

Conclusion

The 12 doesin have a frequency-measuring function but. considering its extremely reasonable cost. that would have been expecting rather too much. In view of its advanced specification I expected the price to be right up in the top bracket. It's only $£ 66.95$ plus VAT. A well-written. detailed, user-friendly manual comes with it. An optional yellow rubber holster with tilt stand is available at $\mathfrak{f}^{1} 10$ plus VAT. This is well worth having to protect the meter.

The Fluke 12 is available from Philips Test and Measurement. Colonial Way, Watford. Herts WD2 4TT - telephone ()923 240511 .

My thanks to Raj Sondi for arranging to lend me the meter for review. Sadly I now have to return it to Philips.

Table 1: Brief electrical specification.

Range	Resolution	Accuracy
$4,000 \mathrm{mV}$ a.c.	1 mV	$\pm 1.9 \%+3$
4 V a.c.	0.001 V	$\pm 1.9 \%+3$
40 V a.c.	0.01 V	$\pm 1.9 \%+3$
400 V a.c.	0.1 V	$\pm 1.9 \%+3$
600 V a.c.	1 V	$\pm 1.9 \%+3$
$4,000 \mathrm{mV}$ d.c.	1 mV	$\pm 0.9 \%+2$
4 V d.c.	0.001 V	$\pm 0.9 \%+2$
40 V d.c.	0.01 V	$\pm 0.9 \%+1$
400 V d.c.	0.1 V	$\pm 0.9 \%+1$
600 V d.c.	1 V	$\pm 0.9 \%+1$
$400 \Omega 2$	$0.1 \Omega 2$	$\pm 0.9 \%+1$
$4 \mathrm{k} \Omega$	$1 \Omega 2$	$\pm 0.9 \%+1$
$40 \mathrm{k} \Omega$	10Ω	$\pm 0.9 \%+1$
$400 \mathrm{k} \Omega$	100Ω	$\pm 0.9 \%+1$
$4 \mathrm{M} \Omega$	$1 \mathrm{k} \Omega$	$\pm 0.9 \%+1$
$40 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$	
$1 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	
$10 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	
$100 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$1.9 \%+3$
$1,000 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	$\pm 1.9 \%+2$
$10.000 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	
		$\pm 1.9 \%+2$
		$\pm 1.9 \%+2$
		$($ typical)

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON, WV2 4AN

0.37
0.59
0.59
0.46
0.51
0.84
0.32
0.31
0.33
0.13
0.95
0.37
1.07
0.99
0.41
0.69
1.24
3.16
0.92
0.78
1.11
1.03
1.12
0.82
0.85
0.63
0.99
0.51
0.99
0.87
2.06
1.03
0.92
1.20
1.23
0.92
113
1.36
1.59
1.54
1.56
0.79
0.78
0.79
1.53
0.97
2.04
0.66

SPECIAL OFFERS
BU508A $\times 5$ BU208A $\times 5$ BU426A×5 BY127× 25 IN4148×50
CO AXIAL AERIAL PLUG $\times 25$
'F' CONNECTOR (SCREW TYPE) $\times 25$

- ENDS 31/01/93 OR WHILE STOCKS LAST

3.60	TDA 2594×2		3.60
3.50	TDA 3654×2	2.20	
3.50	TBA $120 S \times 5$		1.55
1.00	TDA 4601×2	2.50	
0.40	STK 5481×2	9.00	
3.75	TDA 2595×2	1.50	
3.00	KBLO8 800V 2A BRIDGE/R $\times 5$	1.00	

$\begin{array}{lllll}\text { 2SA1208 } & 0.25 & \text { 2SC388A } & 0.57 & \text { AN5265 } \\ \text { 2SA1265 } & 1.89 & \text { 2SC458 } & 0.09 & \text { AN5435 }\end{array}$

偪

A8205
TA8210H

 \qquad

USE YOUR ACCESS OR VISA © TEL $0902712083 / 773122$ (24HOURS)

History of BBC Colour Television

Keith Hamer and Garry Smith

Our article last month described some of the experimental work on colour TV carried out by the BBC in the years before the start of the Corporation's colour service, the first in Europe, on December 2nd, 1967. In this complementary article we'll look at some of the experimental colour test transmissions radiated in the late Fifties and early Sixties.

Colour Test Charts

A black grille on a white background was originally used to check registration. Beam pulling occurred with the RCA 6474 camera tubes however, the result being poor registration. To help counteract this, a grille of white lines on a black background was adopted for adjusting the studio cameras, see the accompanying photograph. Since registration at the centre of the screen is more important a finer grille was incorporated in this area of the chart.

The only other test chart that was regularly used in the studio was a logarithmic grey scale. It consisted of a 20 by 16 in . opaque chart that had two rows of ten steps, graduated in equal brightness level changes from white to black. The white in one row was immediately above/below black in the other row. This enabled allowance to be made for the effect of shading across the picture. The chart had to be evenly illuminated at the same lighting level as the studio set, with light of the same colour temperature. Two "scoops" mounted at each side of the chart provided light at an angle of incidence of 45°. A similar grey-scale test chart is still in use for colour camera alignment, though the method of lighting it has been modified.

Once the cameras had been lined up they were panned on to a live model sitting in the studio set, with correct illumination and make up. This enabled the accuracy of the camera line-up to be assessed. A live model was used because successful reproduction of facial tones is the most critical task of any colour system.

This was expensive, since the model had to be paid. The use of colour photographs as an alternative was tried, but this was not very successful. Photographic techniques for this purpose weren't good enough prior to the BBC's Test Card F, which was introduced in July 1967. It has a large flesh-tone area in the centre circle.

A special colour tuning signal was devised to let the viewers of the late Fifties know that an experimental transmission was about to take place. The central photograph, thought to be of Sylvia Peters, was included to show as much flesh tone as possible so that those with colour sets could adjust them as required - despite the inherent limitations of the photograph.

Mobile Colour TV

A great deal of knowledge had been gained by the time that the series of experimental colour transmissions ended in April 1958. Most of the programmes had originated in the studio however, and experience with outside broadcasts was minimal. It was therefore decided that before finally packing the cameras away some outside broadcast trials would be a good idea. The two colour cameras and associated equipment were transferred to a huge pantechnicon
that, before the war, had housed one of the mobile Band I OB transmitters.

The first use of this mobile control room was at the Festival Hall on June 25th 1958, when a small interviewing studio was set up in the foyer on the occasion of an IEE soirée. Guests were invited to appear in front of the colour cameras. The interview style of production was relatively easy to do, but an attempt to get pictures of dancers on the floor was a complete disaster - the lack of camera sensitivity was all too obvious.

The Military Tattoo at the White City, West London from August 11th-13th 1958 provided an opportunity to probe the performance of the colour cameras. There was plenty of colour, movement and, at times, a mass of fine detail. One of the cameras was fitted with a zoom lens that had a focal length of $2 \cdot 25-8 \mathrm{in}$. The signal was linked by cable to Broadcasting House where a large audience of mainly BBC engineers viewed the Tattoo. During the three days the English climate contributed everything it could to the proceedings, causing many problems with lighting. As a result of these tests it was concluded that scenes shot outside in colour using the equipment then available would be unacceptable to viewers, mainly because of the widely varying levels of natural light. But a lot of valuable experience had been gained.

Later Developments

A regular series of experimental colour transmissions was radiated from the Crystal Palace transmitter from October 1958 till the early Sixties. Its main purpose was to provide a high-quality signal for the benefit of those in the industry engaged in colour TV research and development. The nature of the transmissions was agreed with BREMA, which had been consulted at the very beginning of test transmissions back in 1955. The first transmission of colour between Paris and London took place on March 27th 1960 , and was demonstrated at the IEE.

Until the autumn of 1960 the colour test transmissions took place in both the morning and the afternoon. Morning transmissions had to be discontinued from September 19th 1960 because of the start of extended schools' programmes. The morning transmissions, from Mondays to Fridays inclusive, had consisted of colour slides and Test Card C during alternate fifteen-minute periods. The afternoon colour transmissions took place on Tuesdays, Wednesdays and Thursdays and consisted of a thirty-minute programme with pictures from 3.5 mm film. Subject to programme commitments, the transmissions began at approximately 4 p.m.

At this stage it seemed that the NTSC colour system would be adopted in the UK. PAL had still to be developed. By 1960 the NTSC system had been in use in the USA for some seven years, but it didn't seem to be making much progress there. One of the main problems was that colour TV called for highly skilled service engineers to repair the sets. They were in short supply. The BBC's research work from 1955 suggested that the NTSC system was a sound standard, though there were many problems to overcome. It could provide a sturdy signal and excellent picture quality. The main problems were with the colour camera.

Left: This white grille test chart was used in the Fifties to check colour camera registration. Centre: A special colour tuning signal that was transmitted in the late Fifties to enable viewers to adjust the extremely rare colour sets. Right: This very colourful artist's palette was radiated at the start of experimental colour transmissions in the late Fifties and early Sixties.

Left: One of the many colour slides that were used by the BBC to evaluate experimental NTSC, SECAM and PAL transmissions in the early Sixties. This one was also used during special test transmissions in the early Eighties. Centre: The original BBC colour Test Card F, which first appeared in 1967. Right: A frame from the BBC Colour Receiver Installation film that was transmitted well over a thousand times after its first showing in 1967.

Colour TV was demonstrated to the general public by the BBC for the first time at the Earl's Court Radio Show between August 22nd and September 2nd 1961, using the 405 -line system. In the following year the BBC for the first time demonstrated, at the same venue, 625 -line colour TV.

The first colour TV transmissions via the Telstar satellite took place on July 16th 1962. On September 3rd 1962 the BBC began field trials of 625 -line monochrome TV from Crystal Palace using the u.h.f. bands. This was part of the long-term plans for the commencement of BBC-2.

Between July 8-16th 1963 the BBC demonstrated to representatives of the EBU and the East European OIRT three alternative colour TV systems, NTSC, SECAM and PAL.

The BBC-2 service began on April 20th, 1964, using 625 lines and u.h.f. channels. Just over a year later, on May 24th 1965, PAL replaced NTSC in the experimental colour test transmissions.

Start of Regular Colour Broadcasting

On March 3rd 1966 the Post Master General authorised the introduction of regular colour TV on BBC-2, to start towards the end of 1967 using the PAL system. In the same year the BBC provided facilities for colour TV coverage of the British General Election results programme for the North American networks. Transatlantic colour TV signals were transmitted via the Early Bird communications satellite. Studios 6 and 8 at the Television Centre were quickly transformed from being mere carcasses to being fully equipped for colour working. Arrangements were made for the News Operations departments, at Alexandra Palace, to switch to colour.

In 1966 preparations were made for all existing BBC-2 transmitters to carry programmes in colour. The BBC plan was to have 18 main transmitters and a number of relay stations in service by the end of 1967 so that about 70 per cent of the population would be able to receive colour transmissions. A further ten high-power transmitters were planned for 1968.

Two large colour $O B$ units were ordered by the BBC for delivery in 1967 to give live colour coverage of various sports events, in particular Wimbledon. The installation of colour telecines and colour VTRs at the Television Centre and Alexandra Palace enabled the BBC to produce two hours of colour programmes each night from the start of the BBC colour TV service on July 7th 1967. The first transatlantic colour programme, using the BBC's field-store standards converter, was shown on August 31st. The full colour service began on December 2nd.

Apart from the extremely interesting trade test colour films, the colour receiver installation film (does anyone still have a copy?) and of course Test Card F, accompanied by some marvellous music, the first programme to appear in colour on saturday December 2nd was Billy Smart's Circus. This was at 6.30 p.m. Except for the news bulletins all the programmes on the first day of the full colour service were in glorious technicolour.

By December 1967 over 200 engineers and operators had been through intensive colour TV training. Around 200 producers, directors, designers, make-up and wardrobe staff also received special training. An experimental studio was set up purely to train staff and familiarise them with the techniques required

The first use of the BEC's advanced standards converter was on October 12th 1968, to relay the Olympic Games
from Mexico to Europe in colour. On July 22nd 1969 the BBC was presented with the Queen's Award to Industry for this converter.

Cameras

For its colour cameras the BBC chose to use a relatively new pick-up tube called the Plumbicon. It had been invented and developed by physicists and engineers at Philips, measured about 9 in . long by an inch in diameter, and was considered to be sensitive, stable and capable of producing high-quality pictures.

The BBC Research Department had been testing two prototype Plumbicon cameras for several months prior to the start of its colour service. One camera employed three tubes, the other four. In each camera three tubes produced red, green and blue signals, the luminance (brightness) signal in the three-tube camera being derived from the three colour signals. The extra tube in the four-tube camera produced the luminance signal directly. Both cameras provided good-quality colour pictures.

Extension of Colour TV

On May 16th 1969 the Post Master General announced that colour was to start on the other two networks. These
services commenced on November 15th, when BBC-1 and ITV were duplicated at u.h.f. with 625 lines. Initially the transmissions were available only in London, parts of the South East, the Midlands and North but they soon spread to most of the other regions. By $1969 \mathrm{BBC}-2$ was transmitting approximately thirty hours of colour programmes a week and BBC-1 planned to show almost 100 per cent of its peak-time programmes in colour. Viewers could select over a hundred hours of colour programmes a week from the three networks. These lucky people had to pay an extra $£ 5$ for a colour licence from January Ist 1968, making the total cost of the combined TV and radio licence £11.

Trade Test Colour Films - Can You Help?

Many short films (known as trade test colour films) were transmitted during the test periods when the BBC-2 colour service began in 1967. In fact well over one hundred films were shown. Some of them, such as The Home-Made Car which was originally made for British Petroleum, still survive. But many have long since disappeared. The authors would like to hear from anyone who may have such films available on video. If you can help, please write to Keith Hamer, 7 Epping Close, Derby DE3 4HR (0332 513 399).

What a Life!

Donald Bullock

I wish that I could repair TV sets as easily and rapidly as I could thirty years ago. A dozen a day was easy in those days. Now some of them take me ages, and I can no longer buy mựch with the money that comes in. The trouble is that today's sets are not only more complicated, they're also far too cheap.

When broadcasting in colour started we decided to get into colour servicing. We swatted up on the theory, and bought a new Commer van which we had brightly painted to proclaim our new service. The same week I bought myself a new Philips G6 from our wholesaler. The cost was the same as the van. We were very successful, and it wasn't long before I bought our property, The Chestnuts. Soon after that my Rolls Royce Silver Cloud sat in the drive.

But as the cost of everything else gradually rose, the price of TV sets fell - and fell. If things were the same today a new colour set would cost the same as a new van several thousand pounds. They're cheaper than ever though, so we can't charge an economical price for repairing them.

Some day, when I feel up to it, I'll telephone the garage and ask them to call and collect my car for a repair estimate. Later, when I phone for the estimate - 'cos they won't phone me, the customer, only television repairmen do that and they tell me it'll be hundreds of pounds I'll tell them that I'm not going to bother and could they drop it back? All at no charge of course. It'll be part of the service they offer. Some day.. .

Tim's Colour Portable

Earlier this week Tim Tapeworm danced in with an Hitachi colour portable, a CPT1644. "I want two opinions"
he declared.
I looked behind me. "There's only one of me here at present" I said.
"A certain firm told me that the tube in this set has gone" he continued. "I want you to look at it too. There's no red at all in the picture."
"It might well be the tube" I said, "red guns lead a hard life."

The set turned out to be dead, though the tube's heaters were alight. When I advanced the setting of the first anode control I found that there was field collapse. But why no sound? A scope check at the tube base showed that there was no video either. As voltage checks indicated that the tuner was o.k. I decided to check the fusible resistors. A well-hidden one, R714 (1 Ω), was open-circuit - it's tucked in between the line output transformer and its screening can. When this had been replaced sound and vision were restored. But there was no red.

I swapped over the red (Q851) and green output transistors on the tube base panel. As this made no difference I brought the scope back into action. Starting at the collector of Q851 I traced back through the connections and eventually found the red signal: there was a hairline crack in the print. When this had been bridged a good picture was displayed.

When Tapeworm returned he paid the bill with glee. "I'll give 'em 'it's the tube'" he said as he left, "Snoddies here I come."
"Oh dear" I muttered.

Another Colour Portable

Son Steven helps in the workshop these days. He finds the customers quaint and amusing. As I said to him, so did I - for the first twenty years. Then it began to wear a bit thin.

The other day Mrs. Midge danced in with her 14 in . Decca colour portable (Tatung 120 series chassis). "It's dead Mr. Boll, er Mr. Bullock" she trilled. "We don't want to spend anything much on it 'cos it's only the one the cat
watches. See what it is and let us know. Then we'll decide."
I looked at Mrs. Midge carefully. She wasn't a wicked woman, nor even a bad one. Just normal. What caused the problem was that I'm a television engineer instead of an ordinary trader.

When she'd gone I put the set on the bench and opened it up. As the IAT d.c. fuse had died a violent death I made for the BU426A chopper transistor. It was dead short. After replacing these two items I switched on and the fuse went to heaven. I then found that the chopper transistor had accompanied it. An hour later, when I'd fitted new replacements and also changed the start-up resistors R808 and R810 which had both gone high in value, the set sprang to life. Mrs. Midge came back as I was boxing the set up.
"Twenty pounds" I said in response to her raised chin.
"Hmmm. That's more than we'd thought" she said thoughtfully. "Did it need expensive parts? I'll have to see what my husband thinks."

She phoned up later. "If we let you do it, will it last for a few more years?" she asked.
"Dunno Mrs. Midge" I said. "And whilst on the subject I don't feel too good myself."

A Bush 2114

Mrs. Grewsome came through the door with a huge dog that was almost as tall as her. "Come on in, Fletcher" she said. I looked behind her for her friend, but Fletcher was the dog. He was turning about wagging his tail with gusto. Down went my pen-tidy, then the telephone handset.
"Come come Fletcher, Mr. Butler doesn't want your antics I'm sure." I scooped up my pens and put the phone back on the hook as Mrs. Grewsome placed a Bush 2114 colour portable on the bench. "We don't know whether to have it fixed or get one of those okeydokeys from Crudds Foodstore. They're remote control and only $£ 99$. We’ve had this one for only three years. 'Ow long do the tubes last? My husband says it can't be much, probably the coil or a valve. 'E'd do it hisself, but his meter thing isn't working. Anyway, see what it is."

Later I pulled the set on to the bench. It was dead. I soon decided that a circuit was necessary, so I ordered one from Bush. When it came it was for a completely different set, a large table model. A phone call to Bush produced the information that two of their chassis share the Model number 2114. I could have the right one if I tried again. I did and the right manual came, so I'd bought two.

It soon became clear that the TDA4600 chopper control chip had failed. My experience with this chip led me to check a number of the associated components carefully. C820 (100 pF) had decreased in value, as had C817 ($10 \mu \mathrm{~F}$, $16 \mathrm{~V})$ and $\mathrm{C} 802(100 \mu \mathrm{~F}, 16 \mathrm{~V})$. I then changed C810 $(220 \mu \mathrm{~F}$, 160 V) on the grounds of its appearance alone. This is the reservoir capacitor for the 110 V h.t. supply: when it loses value there's general instability. Next I turned my attention to R801 ($0 \cdot 68 \Omega$). It measured correctly but I changed it anyway.

Time to start the set up via the variac. Up came the h.t. voltage, as sweetly as I'd hoped. But there was no sound and no raster. After switching the Hameg scope on I made for the line timebase. The KTC2229 line driver transistor Q401 was delivering a healthy spike to the line output transistor, which was warm. I felt the line output transformer which also felt warm and healthy. But when I looked carefully at the tube neck I saw that the heaters were out. As the heaters themselves were all right I followed the wiring back towards pin 5 of the line output transformer and came to
the low-value resistor R421. It was open-circuit. A new one restored the raster, but there was still no sound and vision and the controls for the electronic tuning didn't work while the display was very dull indeed.

The vertically mounted control panel, on the right-hand side of the main chassis, had a hairline crack across it. I fitted jumpers carefully. There was now life on the screen and the set was trying to tune but couldn't make it. Then I noticed that the LA7520 signals chip (i.f. etc.) IC101 had been fitted back-to-front in its socket. Turning it around made everything work normally - except that there was no colour. Crystal X501 had been got at. It was a 4.43 MHz one instead of 8.86 MHz . I looked one out and fitted it. Back came the colour. The set now worked perfectly and the results were excellent.

When Mrs Grewsome and Fletcher returned I showed them the results, told them that the set had been got at and that the bill would be $£ 40$. Fletcher leapt up, licked my face and knocked my pen-tidy and phone off the bench. Mrs Grewsome was less enthusiastic as she peeled four browns out of her purse. "Forty pounds to have a telly mended! Used to be no more than seventeen and sixpence."

Sales Pitch

The phone then rang. Steven answered it. "Bullock's Television" he said. Then he turned to me. "There's someone asking for Mr. Bullock."
"Well that's you" I snapped. "You're Mr. Bullock as well, aren't you?" But he got me to take the call.
"Is that Donald Bullock himself?" purred a soft, low voice.
"Sure is" I said.
"Then I've got good news for you" the purr continued. "We're Hill Samuel and we'd like to advise you on investing your money."
"I haven't got any. Perhaps you could advise me how to get some?"

She hung up.

A Sharp Video

Son Steven prefers repairing VCRs to TV sets and he's not doing too badly. I went out with Greeneyes the other day, leaving him to unravel a fault on a Sharp VCD801 that was on the bench. It would fail to record and erase sound intermittently. By the time that we returned he'd cured the problem. I asked him what had been the cause.
"As the machine laces, the erase head slides back. It's powered as soon as recorc is selected. The constant movement because of successive lacing and unlacing can put a strain on the feed wires, and in this case they'd fractured within their sleeving but sometimes came together as the head moved during lacing. Hence the intermittency."
"So how did you find that out?" I asked.
"Studied the circuit. As the leads go open, the audio and erase heads switch off. So no new sound is recorded, nor is the original sound erased. Technically speaking the vision isn't erased either, but it gets erased as the new pictures are recorded. I've soldered the leads directly to the small PCB on the erase head and the machine now works all right."
"Well done" exclaimed Greeneyes, "I bet your dad wouldn't have discov. . ."
"Wondered how long it would take you to suss out that little fault" I said brightly. Then, my memory not being what it was, I reached for my pen to write it down.
"Time you retired dear" said Greeneyes.

The purpose of this short article is to alert those who may be unaware of it of the requirements of an Act known as COSHH - the Control of Substances Hazardous to Health (1988).

The Principle

The purpose of the Act is to provide protection against the hazards introduced by substances that may be encountered in the workplace. The most likely causes of hazards in our industry are the various aerosol sprays we use and solder/flux. Such hazards can easily be overlooked and can be quite surprising. When you do as the Act requires, stand back and take a look at each substance used and the processes employed, you begin to see that some things are more risky than they need be.

Requirements

The Act requires you to make a policy statement that you work to comply with it and that you document all the hazardous substances you use and the precautions to be taken - these are the two halves of the process of compliance. Obviously this is all useless unless you actually implement the requirements. This means that all staff must be given adequate instruction. Remember that the effects of hazardous substances may not be immediately apparent. The development over a long period of illnesses of the respiratory system and skin ailments are two of the most likely problems in our industry.

Around the Workshop

One major aid to compliance is that all suppliers of substances, such as freezer, foam cleaner, etc., must supply a health and safety data sheet detailing hazards and precautions. My suggestion is that you make a list of all the chemicals you use and where you obtain them then ask the suppliers to provide data sheets for all of them. These sheets can be placed in a file with your other COSHH information for reference and training. Make sure that everyone reads them first - some can be a real eye-opener.

For example how many of you would know what to do if you accidentally sprayed freezer in your eye? If an hour's reading means the difference between saving your health or not it has to be worthwhile - whether prompted by legislation or not.

So one letter or fax, with a list, is all that's required for this part of compliance. I note that CPC advertises the availability of such sheets in its 1993 catalogue.

Hazards

There can be numerous hazards and fire is a real possibility. In addition to explosive aerosols with their flammable propellants - how many of you have workshops where smoking is prohibited? - you are likely to find methylated spirit and isopropyl alcohol in fair quantities in the work-
shop. If you look at it sensibly, all workshops should have a smoking ban. The interesting point here is that COSHH doesn't relate to flammable hazards, but this is the first hazard that most of us see when we consider health and safety in the workshop.

Toxicity is the other main worry. Common sense is the main saviour here - good personal hygiene will prevent many problems caused by oral ingestion. We need to consider other possible modes of poisoning however. Skin contact should be avoided with some chemicals, particularly the foam cleaner types that can cause dermatological complaints. Use of gloves or barrier creams is suggested.

Inhalation is another problem in the workshop. Sprays are one concern, but the main one has to be solder fumes. The content of these does you no good at all. As an indicator of the extent of the problem, which many may otherwise regard as scaremongering, have you never felt nauseous with headaches etc. after a day in the workshop? And I mean headaches and malaise other than those caused by nasty faults and general ill health. How about fumes getting into your eyes when you lean over something you are soldering? Your eyes can sting and water for ages, and you can be temporarily blinded - I certainly have been. Most of the nasties come from the flux, but remember that solder contains lead (though COSHH doesn't mention lead specifically as it's subject to its own regulations) before you eat sandwiches that have been resting on top of the roll! On this point one should, wherever possible, try to eat and drink in a clean environment.

The answers to the fume problem? As a first step do as you were taught to do at college: don't lean over the job when soldering, aim the iron so that the fumes go away from you - and don't breathe them in. The true compliance answer however is fume extraction. There are two possibilities, local or tip.

Control Measures

In addition to identifying hazardous substances one has, if suitable and sensible control measures are to be implemented, to assess the risks that they present. The risk with a room full of tins of foam cleaner is greater than if you have one tin on each of three benches. The hazard itself is the same, the foam cleaner (specifically some of its ingredients), but its extent can vary. A delightful analogy was provided by Trevor J. Allen of the Health and Safety Executive when he said that "a tiger is hazardous: if we put him in a cage the risk has been reduced but remains the same he's still a tiger!" The cage is the control measure you can apply.

I advise the use of common sense in implementing control measures. You can if you wish obtain the MEL (maximum exposure limit) and OEL (occupation exposure limit), determine the exposure level in your environment and then assess from these the risk provided by each substance. The problem with this procedure is determining your exposure rate. If you use common sense, provide
adequate control measures and take care, you should comply with COSHH requirements and secure the good health of yourself and your colleagues.

What to Do

The first way of dealing with a risk is to remove it totally: find and use a less hazardous alternative. Where this isn't possible risk limiting control measures must be adopted. In the workshop these may include the following:
(1) Gloves and face masks are available at little cost in both long-life and disposable form from companies such as RS. Use them where a risk is present.
(2) One effective way of reducing the risk with chemicals is to reduce the quantities held in any one work area. For example, do you keep a 500 ml bottle of isopropyl alcohol on your bench for head cleaning and dispense it by dipping a swab into it? This is an unnecessarily high risk: the potential for spillage and the escape of fumes from the bottle is greatly reduced by using a liquid dispenser of the type marketed by CPC and Seton. With these a measured amount is dispensed from a small container. This is a simple and reasonably cheap step to take.
(3) Solder fumes can present a dilemma. Fume extraction can be a costly business, but in any workshop is something that will have to be considered. A single iron can be vented by using a stand-alone unit - extractors built into bench lights are available from RS. The alternative approach, which is far more effective and practical where
there are a number of users, is the tip extraction arrangement: tubes whose ends are mounted close to the tips of the irons are connected to a central pump and the fumes are exhausted via a filter. These systems, for up to ten stations, can cost around $£ 1,000$. RS can supply them and CPC lists one in its 1993 catalogue. The extraction systems use a special and rather expensive filter. This needs to be changed regularly, so there are running costs for the system.
(4) Display a copy of COSHH and employee responsibilities prominently on the workshop wall. Label all hazards and risks throughout the workshop effectively. A wall poster, "Hazardous Substances on these Premises", is widely available. Suitable warning signs are available from RS and CPC. The most complete range however is available from Seton, PO Box 77, Banbury, Oxon OX16 7LS (0295 269 955). Seton offers computer software for the management of COSHH data, and will provide a free "COSHH demo" disc if you ring 0800585501 (freephone) and state whether you want it in the 3.5 or $5 \cdot 25 \mathrm{in}$. size.

In Conclusion

As with all such regulations there are those who will consider it clever to ignore them. But we are compelled to comply with them. It's perfectly feasible, with thought and often at modest cost, to do so. Without such legislation it's more than likely that we would not employ the safety measures required. So it's a good thing that we are forced to consider how we can work more safely.

CD Player Casebook

Reports from Mike Leach, Nick Williams and Nick Beer

Yamaha YSTC11

This compact midi system came in because of no CD operation. When we ran the set in the workshop the CD player section seemed to work all right. Then after about an hour or so it stopped and wouldn't read another disc. Stripping the machine down didn't help us - it started to work again and wouldn't go off for another hour!

We noticed, by using the laser power meter, that in the fault condition no laser light was being emitted. The focus circuit seemed to be working, since the focus coil moved up and down in the normal way. A small spray of freezer on the microcontroller chip IC851 seemed to produce light from the laser and the player started to work again. Eventually it went off completely, and although laser light was present the disc didn't spin and the TOC couldn't be read. We changed IC851 but this made no difference. A quick word with Yamaha then threw some light on the subject no pun intended!

If one of these machines suffers from a turntable motor problem, i.e. the disc rotates backwards or there's no rotation at all, or the machine stops while playing normally or won't read a disc even when it's rotating at the correct speed, the first item to check should be plug CNW1. The lead is usually brown in colour and is connected between the main panel and the laser assembly. The usual problem
here is poor crimping of the leads. The plug and lead must be replaced, part no. MX 601220 .

Unfortunately this didn't cure our problem. We eventually decided to replace the laser assembly, and this did the trick.
M.L.

Philips CD150

If the spindle motor runs at maximum speed and there's no TOC reading check whether the LA7905 -5 V regulator is short-circuit.
N.W.

Pioneer PDZ81M-PDZ84M

If one of these multiplayers searches all discs in the order 1-2-3-4-5-6, doesn't read the TOC and doesn't play, i.e. the fault mode is engaged, switch the unit off and put it in the test mode. Press TRK FWD-PLAY-PAUSE and use a frequency counter to check the VCO at test point PLCK. If the oscillator doesn't lock, or hunts up and down, the spindle motor is faulty. Part no. is PXM1001 - it's available from SEME. Note that a spindle height jig is mounted at the left-hand side of the laser assembly to help when fitting a new motor. Be careful with the flexi PCB - it's easy to break this - and place a paper clip over the two solder tags on it befote removal to avoid damage to the laser.
N.W.

Technics CDX50

The remote control handset worked intermittently. When we opened the unit up we found that the base of the IR driver transistor Q1 had never been soldered.
N.B.

VCR Clinic

Philips VR6490

When one of these machines comes in dead check whether R102 ($330 \mathrm{k} \Omega$) in the power supply is open-circuit. It's a safety component, part no. 482211652272.
P.B.

Ferguson 3V39/JVC HRD110

I had quite a succession of VCRs and TV sets with damaged tuners and aerial amplifiers after the succession of thunderstorms last summer. This one was different however. When operating with its internal tuner the gain was so low that the signal could hardly be seen. A new tuner was fitted but this made no difference. As the voltages around the tuner were correct attention was turned to the SLI432 SAWF driver chip. Voltage checks at pins 3 and 4 produced 10 V instead of 5.3 V readings. A new SL1432 restored normal gain. P.B.

Sharp VCT310H

The problem was a hum ripple on the recorded picture. You could see the tipple on the AT9V supply. The value of the $2,200 \mu \mathrm{~F}$ reservoir capacitor C905 was low.
P.B.

Alba VCR6000X

This machine was dead with an open-circuit mains fuse. After replacing this with the correct semi-delay type we tested the unit and found that the tuning was very erratic running at high speed through and about the correct point. The tuning voltage was varying of course, the cause of the trouble being leakage between print tracks. We cured this by cutting out the VT line and hardwiring it instead. On test we discovered that after a few hours' use the tuning on all channels would shift by a tiny amount. Use of freezer proved that $\mathrm{C} 134(0 \cdot 1 \mu \mathrm{~F})$, which decouples the tuning line, was the cause of the trouble. As C133 and C135 are identical components that perform the same task at various stages of the d.c. line these were also replaced.
N.B.

Ferguson FV52L

This machine was dead though the power supply worked, producing all its outputs. The machine started up when the flat lead from the power supply to the main servo-signals PCB was flexed. We soon found that the cause of the trouble was dry-joints on all the legs of TT64, which is mounted on the large, flat heatsink at the right-hand edge of this PCB.
N.B.

Panasonic NV730B

This machine had an intermittent fault. Initially a perfect horizontal line would appear exactly two-thirds of the way down the screen during playback. It would then disappear, to be replaced by a line exactly a third of the way down the screen. Then both lines would appear simultaneously, with varying intensity. There was no noise near the lines, which were very fine - only about one or two TV lines deep. They looked like fine switching lines.

The tapes were not being marked, but to prove that the tape path was not responsible we checked and cleaned it

Reports from Philip Blundell AMIEIE, Nick Beer, Chris Hawkins, Steve Cannon, Graham Rees, Basil Davidson, Alfred Damp, John Edwards, and Michael Dranfield

thoroughly. Eventually we traced the cause of the trouble to an intermittently high-resistance connection between the centre of the drum and the discharge angle, which is at the bottom of the mechanism in this model.
N.B.

Samsung SI1240/1260

The drum in these full-lace machines should spin as soon as a tape is inserted. This one just pulsed back and forth, making no headway towards achieving 1,500 r.p.m. The lack of drive was caused by the motor connector CN207 - it had tarnished pins all along its length.
N.B.

Pioneer VR707/Philips VR6760

This machine was dead with no 5 V output from the 5 V regulator/reset generator IC7502. Its input was low at 3.8 V , so no surprise that there was nothing coming out. The input comes from the collector of the BD136 transistor TR7004, which had a base-emitter leak. When a replacement was fitted IC7502 received its correct 6 V or so input. But there were still no other voltages around IC7502, so the machine remained dead. Cold checks soon showed that there was a short to chassis at IC7502's output pin 5 . Guess what had shorted - a little blue electrolytic, C2013 ($150 \mu \mathrm{~F}, 10 \mathrm{~V}$). There's a change! N.B.

Orion VCRL3

If rewind and fast forward are o.k. but the tape binds in play and/or the drum doesn't turn or turns intermittently, check the edge connector on the direct-drive drum motor and for dry-joints near the connector.
C.H.

Daewo 3300FR

For no channels and/or no playback picture check for hairline cracks around the tuner/i.f. PCB. For poor reception or bad colours check IC105/6/7 by substitution.
C.H.

Orion VD800

For intermittent jamming of the mechanism on this quickstart model, with the cassette having been extracted by force by the customer, check whether the left-hand loading arm guide roller is fouling the tape tension arm as well as the state of the three loading belts.

For painfully slow rewind and fast forward, remove, clean and lubricate the spool axles before condemning the capstan motor.
C.H.

Akai VS18/19/21/22/35

We've repaired over a hundred of these machines and have found that a BD238 is a viable alternative to the 2 SB 1010 , 2SB891 and 2SB1185 while a BD237 works all right in place of a 2 SD1292. In three years we've had only two comebacks where the BD237/8 have blown. It's advisable to change C 4 and C 20 from $47 \mu \mathrm{~F}, 25 \mathrm{~V}$ to $100 \mu \mathrm{~F}, 35 \mathrm{~V}$. For improved reliability change C 6 from $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ to $220 \mu \mathrm{~F}$,

35 V at the same time. Before returning a machine check that the current flowing via fusible resistor FR1 doesn't exceed $250-500 \mathrm{~mA}$ and that via FR2 $150-500 \mathrm{~mA}$ depending on function. We run these machines for at least three-four days before releasing them.
C.H.

Sony SLV373

This fault caused an immense amount of head scratching until we made a call to Sony technical in Cumbernauld. Even though I sometimes struggle to understand their broad Scottish accents, "see you Jimmy!" and all that, they certainly came up trumps with this one. The symptom was diagonal dark bands on recordings only: the picture was perfect with E-E operation and playback of a prerecorded tape. Curiously, the fault clears when the top, right-hand PCB is hinged up. The offending component is L252. Apparently an incorrect type that radiates to the erase circuitry was fitted. Part no. for the replacement is 1-412-092-11.
S.C.

Hitachi VTM822

There was severe warbling on record only, more noticeable in the LP mode. Surprisingly a new pinch roller and capstan motor failed to cure the fault, whose cause was eventually traced to the reel clutch assembly underneath. This item has been responsible for a number of faults we've had - usually no play, chewed tapes, no rewind or no eject. On this occasion however one of its cogs was vibrating. The vibration was travelling along the drive belt, affecting the capstan. That's our theory, anyway, and we're sticking to it!
S.C.

Hitachi VTS80

The reported fault with this stock machine was no colour through the scart connector. Sure enough the symptom was as reported. To cut a long and embarrassing story short, the SVHS Euroconnector setting can be altered via the on-screen display menu. This selects whether composite video or separate luminance and chroma signals pass via the scart socket. The latter option is provided for TV sets capable of SVHS operation. As you may have guessed, someone had selected it - hence no colour on our non-SVHS receiver.
S.C.

Akura VX100

We've had a couple of interesting faults recently with this model. Very weak video was cured by replacing Q318. Lines on the playback picture were cured by replacing the TL8819P dropout compensator chip IC304.
G.R.

Hinari VXL8

No fast forward/rewind though you can hear the motors running was mentioned on page 566 in the June issue, in the servicing article on this model. Another cause is distortion of the rubber grommet on the stop lever. It sits upright next to the slide bars/operating levers which rest against it in the eject mode. Where this is the case a replacement grommet provides a complete cure.
B.D.

Ferguson 3V44/JVC HRD140

This VCR came in with a jammed cassette, a bent cassette housing and the tape still partially wrapped around the drum, but the machine did its best to eject the cassette. To start with we straightened and retimed the cassette housing, then reset the deck timing. As we didn't trust the VCR
completely we inserted a dummy cassette and watched the operation of the deck very closely. Everything worked well until eject was selected, when it was obvious that the cassette was ejected much too early - had it been a proper cassette the tape would still have been partially wrapped around the drum. My first thought was to replace the mode control switch. This machine uses a LED and sensor assembly however, with the light shining through holes in the cam gear. When this item was replaced the deck mechanics worked correctly.
A.D.

Hitachi VT530

There appeared to be three separate faults in this machine. First no playback - the condition was described as "dirty heads". Secondly the E-E picture appeared to suffer from a.g.c. overloading. And thirdly the search tuning system didn't stop when a channel was found. All these symptoms were caused by one component however, CP205 (LC delay) on the YC board.
A.D.

Ferguson 3V35/JVC HRD120

This VCR had developed an expensive taste for prerecorded tapes: because the bias oscillator ran in the playback mode it erased them as they were being watched. The cause of the fault was traced to Q503 on the video PCB. As it was leaky it held the Rec Start Low line at 3 V instead of 9 V in playback.
A.D.

Sharp VC381H

Because the carriage left-hand microswitch was broken this machine would accept a cassette only half way. A new switch cured the problem.

Hitachi VT63

There were screaming and clanging noises when the tape was ejected. The machine then switched off. When we checked out the deck functions we noticed that there was no auto-stop at the end of fast forward. Both problems were caused by the fact that the left-hand tape sensor wasn't working. When the voltage at the EST pin on the carriage PCB was checked it hovered at around 4 V instead of 9 V , but the slightest movement of the carriage produced the correct 9 V and normal operation. Careful positioning of the end sensor holder monitoring the EST voltage and securing it with a drop of Superglue solved the problem.
J.E.

Sharp VC9300

There were no deck functions and the dew indicator was blinking. Pin 19 (dew sensor input) of the microcontroller chip IC801 was high because the sensor was open-circuit. It's mounted on the cassette flap opener bracket, near the pinch wheel.
J.E.

JVC HRD540

This machine would play, rewind and wind fast forwards for a few seconds then stop, though the tape counter was working. Pressing pause cured the stopping. All was revealed when we consulted the service manual. The supply and take-up reels both have a rotation sensor. One supplies a pulse, the other only a 5 V d.c. voltage. A call to our suppliers revealed that this part is in demand and was out of stock. Has it suddenly become a common fault? M.Dr.

BBC Model B Computer Fault Notes

Arthur Rumbelow, G3KKC

We'll start with some general notes then provide a list of faults we've encountered. many of them stock faults.

General Notes

Random long-term problems, especially with early machines, are mainly caused by degradation of socket connections. Faults of this type cannot be diagnosed. If the following procedure is adopted however many of these intermittent faults can be dealt with, thus saving hours of fault-finding time.

All mechanical connections should be cleaned and disturbed, i.e. clean i.c. pins with a fibre-tipped tool and check i.c. sockets for broken pins etc.

The wires to the push-on connectors between the switchmode power supply and the main PCB were presoldered prior to being crimped on to the connectors. This has caused all sorts of problems due to high-resistance joints. The problems appear over a period of time as a result of the voltage at the PCB dropping, sometimes to less than 4.7 V . In this condition random problems appear as the unit warms up, because the address multiplexers begin to lose their drive power. The solution to this problem is to solder all these crimped connectors. You can do this by pushing the insulation on the leads back to reveal the crimping, then soldering.

Acorn Computers, manufacturer of the BBC B, doesn't encourage people to repair the switch-mode power supply. Only a circuit diagram is provided in the service manual and spare parts are not available. It's worth checking a dead unit for dry-joints however, especially around the mains input filter T1. Also check the bridge rectifier and the $0.6 \mathrm{~W}, 4.7 \Omega$ metal-film resistor R 12 which provides the feed to the collector of Q2. This TO3 device, which is mounted on a vertical piece of metal, is unmarked. We understand that it's an Hitachi 2SC 1942: the Telefunken BU225 seems to be a suitable equivalent (TVT lists the BU500 as an equivalent).

Faults List

The following faults relate to Issue 2 to 7 versions of the BBC Model B.
(1) Won't start up. Read/write pin 34 of the 6502 A microprocessor chip ICl was shorted to earth due to a fault in IC33 (74LS04).
(2) Won't start up, reset line (RST) incorrect. IC33 (74LS04) faulty.
(3) Machine apparently dead. Port B (in/out) of IC3 (6522) faulty.
(4) Large white blocks on the screen. Dry-joints on the power supply leads - crimping is not always reliable. Solder the leads - see above.
(5) Program crashes. Cause was hash on the supply lines due to a faulty power supply.
(6) No data loading on tape. LM324 chip IC35 faulty.
(7) No data loading on tape. Serial interface chip IC7 faulty.
(8) Machine apparently dead, but corrupted BBC logo occasionally appeared. The clue was that random teletext colours came up. A check on the 16 MHz clock waveform showed that it was badly distorted though the frequency was more or less correct. IC43 (74S04) was faulty. Note that this chip must be a 74 S 04 , not 74 LS 04 , as the latter won't work. Interesting that with the fault present the waveform could be reshaped, and the machine would start up, by damping pin 2 of the chip with the scope probe.
(9) Continuous beep and no input from the keyboard. IC3 (6522) faulty.
(10) No RGB monitor sync. IC48 (74LS86) faulty.
(11) Keyboard generates incorrect characters, e.g. T instead of 9. Fault was caused by the 74LS30 chip on the keyboard.
(12) Corrupt data in Mode 7 after warm-up, e.g. characters wobble. A finger on the 16 MHz crystal Xl made matters worse. IC37 (74LS04) was defective - it had become heat sensitive.
(13) Monitor displays multiple characters. IC3 (6522) faulty.
(14) Intermittent loss of reset. The 555 chip IC16's socket faulty: mount the chip on the board directly.
(15) Intermittent loss of reset. Another cause is a dry-joint on R21 ($1 \mathrm{M} \Omega$), which is connected to pin 6 of the 555 chip IC16, due to poor flow soldering.
(16) Poor quality i.c. sockets with thin pins were used with Issue 4 boards. The pins snap off inside the socket housing - thus when resoldered the broken pins drop out of the PCB.
(17) DFS (disc filing system) faulty - machine comes on with logo and a continuous tone. Defective 8271 chip is generating a continuous IRQ. Fault can be found by removing the DFS ROM. Note that the old 0.90 DFS ROM looks for an 8271. If it doesn't find one it starts to loop and generates a continuous tone. This can be used for fault finding. Later types of DFS ROM move away if they don't find an 8271 .
(18) Won't start up, continuous tone present. No 8 MHz output at pin 7 of the video processor chip IC6. Replace this i.c.
(19) No loading from the cassette port. The 820 pF capacitors C31 and C35 open-circuit.
(20) Incorrect writing from keyboard. 74LS251 chip on keyboard faulty.
(21) Loss of the display when the machine has warmed
up. Faulty 6845 CRTC chip - the sync pulses read incorrectly.
(22) Shift or control keys on keyboard not working. Key F4 permanently on. Replace F4 keyswitch.
(23) IRQ line incorrect after a few hours. Cause was a heat-sensitive 6502A microprocessor chip (ICI).
(24) Noisy display with u.h.f. output. Scope at emitter of Q8 showed that very little luminance was present. Q8 (BC309) was faulty. Its emitter is normally at 1 V , its base at 0.2 V .
(25) Machine slowed down to about 700 kHz instead of 2 MHz . A faulty 6502 A chip (IC1) was dragging the clock pulses down at pin 37. Replacing the i.c. cured the fault.
(26) Intermittent lock-up from keyboard. OS ROM chip IC51 had a faulty socket.
(27) Various weird RAM faults - strange displays, garbage on screen etc. Can be caused by IC14 (74LS245). This chip is provided with a socket on later issue boards.
(28) Mode 7 o.k., all other modes faulty. Input from keyboard prints twice, with two cursors. IC39 (74LS283) faulty - pin 4 low. See also (31).
(29) Faulty display with higher definition modes. IC39 (74LS283) faulty - pin 1 incorrect.
(30) Flickering display in 0 mode. Fault in the video processor chip's palette (IC6). Chip is earlier ULA type and is overheating. Replace with MkIII version.
(31) Mode 7 o.k., all other modes faulty. The disenable input at the video processor chip IC6 was incorrect. Cause of the fault was traced to an open-circuit track between pin 3 of IC38 (74LS86) and pin 9 of IC41 (74LS02). See also (28).
(32) Printer won't work. Pin 40 of IC69's socket opencircuit. Replace socket. See also (38).
(33) Printer won't function. Machine was a Model A with issue 2 board that had been upgraded to Model B specification. Pin 26 of the IDC connector on the old issue 2 board is shorted to earth - printer won't work in this condition. Cut print.
(34) Modes 0, 1 and 2 faulty - top half of display flashing. R10 $(3.3 \mathrm{k} \Omega)$ open-circuit. This resistor is connected to pin 11 of IC27.
(35) Incorrect data being sent and received via RS423. A comparison with a good machine showed that the mark/space ratio of the waveform at the baud rate generator was wrong. IC42 (74LS 163) faulty.
(36) Interrupt request (IRQ) line down. Reading at pin 20 (CS) of the basic ROM IC52 was very low. The 74LS139 ROM select chip IC20 was faulty.
(37) Will not upgrade to DFS. Pin 12 in IC78's socket open-circuit. Replace socket.
(38) Printer not working. Pin 6 of IC27 (7438) low. Replace IC27. See also (32) and (33).
(39) DFS faulty: machine loads corrupted data from disc. IC87 (74LS 123) faulty.
(40) DFS faulty: data is corrupted when saved on disc. IC80 (7438) faulty.
(41) DFS faulty: index header only is displayed, with corrupted figures. IC27 (7438) faulty. See also (49).
(42) DFS faulty: read/write incorrect. IC77 (74LSO0) faulty.
(43) 80-column display at switch on. There are various causes for this fault. Usually the IRQ line goes low because the 8271 chip is faulty. Other possible causes are IC3 (6522) port A (keyboard) and the 6845 CRTC (c.r.t. controller) chip IC2.
(44) The machine ran but gave error messages when programs were loaded into memory, e.g. "error at line 251.45.322.34". Alsu the RAM test gave a "no room" message and the disassembler, when loaded, gave access to only one address at a time. Cause of the fault was the 68B54 Econet chip IC89.
(45) RAM fault. CAS 0) disappeared and the machine became a Model A. IC45 (74 S 139) was the cause.
(46) Poor field sync on monitor. Cause of the fault was IC41 (74LSO2) which provides composite sync from the CRTC chip's separate field and line sync outputs.
(47) Loading problems with cassettes on issue 3 and 4 boards. Change the value of R 75 from $82 \mathrm{k} \Omega$ to $47 \mathrm{k} \Omega$.
(48) Caps lock wouldn't work, i.e. LED didn't light. Cause of the fault was IC32 (74LS259).
(49) DFS fault on issue 4 boards onwards: reads index header only, with corrupted titles. Link S9 not cut with factory fitted DFS.
(50) RS423 fault: the port refused to work properly when a simple acoustic coupler type modem was used. The modem supplies only data out and data in signals but the Model B requires a CTS signal as well. The operator had used the $? 89$ procedure in the Comunitel software to override this requirement. The Model B does however require a physical signal: to operate with a "dumb" modem, link together the CTS and RTS pins on the DIN connector.
(51) No writing from keyboard. IC4 (74LS30) faulty.
(52) Modes 3 and 6 faulty. The effect on the screen was ghost printing under the required text etc. IC36 (74LSIO) faulty, with waveform at pin 8 when it shouldn't be present.
(53) Continuous multi-tone from speaker. IC 18 (76489) was going unstable. This is a four-channel tone generator.
(54) Hangs up for no apparent reason. This may be a production fault - the clock pulse too narrow. Can be cured by adding a 100 pF capacitor from pin 37 of the 6502 A microprocessor chip ICl to chassis. With issue 3 and 4 boards there are, near this chip, two plated holes that can be used.
(55) Hangs up with continuous tone. IRQ line and clock

AZ ELECTRICS

MAKE YOUR INTERESTS PAY!

Train at home for one of these Career Opportunities
Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money ana have more fun out of life! ICS has over 100 years experience in home study courses and is the targest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for FREE INFORMATION on the course of your choice. (Tick one box only!!

Electronics \square	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics
Elec. Contracting/ Installation	Computer Programming
GCSE/GCE/SCE over 40 examination subjects to choose from	

[^0]Address:
P. Code

International Correspondence Schools. Deot EGS13 $312 / 314$ High Street, Sutton. Surrey SM1 1PR or 041-221 7373 (24 hours)

WHERE CAN YOU BUY

 3, ${ }^{9}, 000$ DOMESTIC APPLIANCE SPARES ? GENUINE AND PATTERN AVAILABLE FROM JUST ONE SOURCE !! NOW AVAILABLE 254 PAGE PATTERN SPARES CATALOGUE £4 To Non Account Customers (Refundable On First $£ 50$ Order) TO FIT THE FOLLOWING BRANDS

ALL AVAILABLE FROM

SALES DESK 0217665551
24 HOURS

ELECTRON HOUSE 100 GREAT BARR ST
BIRMINGHAM B9 4BB

FAX FREE 0800373459 24 HOURS

18 BROOKWOOD ROAD, SOUTHFIELDS, LONDON SW18 5BP. TEL: 081-877 3492/877 3518 FAX: 081-877 3518

pulse at pin 37 of IC 1 incorrect. Pin 15 of IC24 (74LSI38) was short-circuit to chassis.
(56) Intermittent crashing. Replace IC51's socket.
(57) Cursor only displayed, flashing at top left-hand side of the screen. The IRQ line was low with incorrect waveforms around IC32 (74LS259) which was defective.
(58) Screen filled with approximately half-inch thick horizontal red bars interspersed with blobs of yellow. Poor chip select signal from IC26 to the video processor chip IC6. IC26 (74LS139) was faulty.
(59) Loud buzz on sound with screen flashing (no data displayed). IRQ line to the 6502A microprocessor incorrect. Pin 20 of basic ROM IC52 read 50Ω to chassis. The ROM decoder chip IC20 (74LS139) was faulty with a leak between pins 8 (chassis) and 12 .

Test Case 361

A few months ago we introduced you to Victor the Video, our camcorder-toting customer with the handy screwdriver and the succession of obscure problems and faults. He's by no means the only one of his kind around here. George (Magic Memories) Green is another local videographer who operates the same sort of service as Victor. In fact the two are deadly rivals - their adverts glower at each other across the pages of the Monday-Ad and the Walmington News.

George is also one of our workshop's customers. But the engineers don't hide under their benches when he appears, as happens with Victor. On his most recent visit he brought with him a plywood box of his own making. It had a voltmeter on top and was festooned with black and red flex. During our discussion it transpired that he's an avid reader of the popular camcorder magazines. As a result of something he'd read in one of them he'd decided to make himself a battery box to free himself from the time limitations imposed by the nicad-type clip-on batteries that normally power his wonder machine, a high-band camcorder that cost him some $£ 1,000$.

The operating voltage for this particular model is 6 V . So George had carefully assembled five high-capacity 1.2 V nicad cells in his box and kitted it up with the previously mentioned voltmeter and flex. A plug at the far end of the flex matched his camcorder. Now five times 1.2 equals six, and that's the reading his little voltmeter gave when the batteries were charged. But the camcorder didn't work properly with his home-made battery box. Where could he have gone wrong? Had he gone wrong?

Even with a full charge George could get only a few minutes running time from his auxiliary power source, as he called it. The low-battery indicator in the viewfinder was on all the time that the box was connected and the camcorder would soon cut out, the exact moment often

BACK COPIES

We have available a limited stock of the following back issues of Television:

1991 November.

1992 February, April, May, June, July August, September October November and December.

Copies are available at $£ 2.75$ each including postage. Send orders to:

Reed Business Publishing,
Television Back Issues,
Room L323,
Quadrant House,
The Quadrant,
Sutton,
Surrey SM2 5AS.

Make cheques/postal orders payable to Reed Business Publishing Ltd.
being when he put the machine into its record-standby mode. George's theory, based on his perusal of Your Camcorder, Video the World and Videography Weekly, was that the camcorder's low-battery cut-off point was set too high. Hadn't the Video Doctor himself, a sort of agony aunt on electro-mechanics in the pages of one of them, said so in his reply to Battery Blues of London NI8? So could we check the cut-off voltage setting? Operation with the regular clip-on battery was o.k.

Certainly we could check his camcorder's cut-off voltage setting. We invited George to leave his battery box, lead, charger and all to help us in the investigation. What do you think came out of it?

This wasn't the end of George's catalogue of woes however. One of his assignments while he was having the trouble with his battery box was to record the Magic Memories of the local football club's seasonal booze-up. GG had decided to revert to mains operation of his camcorder for this occasion: the whole thing was held indoors, and he took care to keep his cable away from stumbling feet. There was no problem when he used the built-in microphone, but when the comedian came on our valiant videographer plugged in his super-directional electret gun microphone - a special offer in Your Camcorder and got hum on the sound track, especially when he handled the microphone or its cable. On hastily reverting to battery operation he found that the hum had cleared. But when another plug-in microphone was used with the camcorder operated from the mains it worked happily without the hum problem. Was the gun microphone faulty? Or maybe the camcorder in some way?

We're sure you'll be able to work out the answers to these problems before checking with the solutions on page 195.

[^1]

TECH OVISION

Television Manufacturing Co. of Manchester INCREASE YOUR SALES 100\%

FST MONITOR STYLE 22" COLOUR, TEXT. MODEL TX2000 FULLY GUARANTEED KONIG REMOTE CONTROL $\mathbf{£ 1 4 0}+$ VAT

Unbeatable value. Call now to ensure Christmas Supply.
Tel: 0618320890 Fax: 0618320892

AUDIO ANALYSER
AA-930

Six measuring instruments in one, to assist in the repair of audio equipment. Contains a LF generator, stereo AC millivoltmeter, stereo wattmeter, azimuth adjustment, distortion meter and wow and flutter meter.

Designed to check such audio items as CD players, cassette recorders, headphones, microphones, loudspeakers and amplifiers. Testing made easier by front panel plug and socket layout.

For Audio service engineers
ALBAN DIECCTRONICS LIMITED 4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 6EN Tel: 0727832266 - Fax 0727810546

MICROWAVE CONTROL PANEL Mains operated, with rouch switches Complete with 4 digit display, digital clock, and 2 relay swithes Complete with 4 digir display, digital clock, and 2 relay
outputs one for power and one for pulsed power (programmabley). outpuls one for power and one for pulsed power (programmabie).
Ideal for all sorts of precision timer applications etc. Now only $£ 4.00$ ref 4 P151. Good experimenters board.
FIBRE OPTIC CABLE.Stranded optical tibres sheathed in black PVC. Five matre length $£ 7.00$ ref $7 P 29 \mathrm{R}$ or $£ 2$ a metre 12 V SOLAR CELL. 200 mA output ideal for trickle charging etc. 300 mm sa
15P42R. Gives up PASSIVE INFRA-RED MOTION SENSOR. Complete with day light sensor, adjustable lights on timer (8 secs - 15 mins). 50 range with a 90 deg
coverage Manual overide facility Complete with wallbrackets, bulb holders etc. Brand new and guaranteed Now only £19.00 ret 19P29
Pack of two PAR 38 bulbs for above unt $£ 1200$ ret $12 P 43 R$
VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, video recorder or computer to any standard
$12 V$ DC op $£ 15.00$ ret $15 P 39 R$ Suitable mains adaptor channell). $£ 5.00$ ref SPI 191R. Turn your camcorder into a cordless cameral FM TRANSMITTER housed in a standard working 13A adapter (bug is mains diven) $£ 26.00$ ret 26 P 2 R . Good range device.
MINATURE RADIO TRANSCEIVERS A pair of walkie
talkies with a range of up to 2 kilomarres takies with a range of up to 2 kilomerres. Units measure
$22 \times 52 \times 155 \mathrm{~mm}$ Complete with cases and earpieces. £30.00 ret 30P 128
FM CORDLESS MICROPHONE. Small hand held unit with a 500 range! 2 transmit power levels. Reqs PP3 battery Tuneabie to any
FM receiver. Our price $£ 15$ ret $15 P 42 A R$ 12 BAND COMMUNICATIONS RECEIVER. 9 shon
 batter. Complete with shoulder strap and mains lead. $£ 19$ ref
$19 P 14 R$. Ideal for listening all over the world. 19P 14 R . Ideal for istening all over the world.
CAR STEREO AND FM RADIO 0 ow cost CAR STEREO AND FM RADIOLOw cost stereo system giving 5 watts per channel. Signal to noise ratio better than 45db.
wow and flutter less than 35% Neg earth. $£ 19.00$ ref 19 P 30 LOW COST WALIKIE TALKIESP Par of battery operated units with a range of about 200 Our price 88.00 ap pair ret
$8 P 50$. Ideal for garden use or as an educational toy 7 CHANNEL GRAPHIC EQUALZER
$20-2$ KHZ 4 -8R 12.14 VDC negative eath Cased watt power ampl NICAD BATTERIES. Brand new top quality $4 \times A A^{\prime}$'s $£ 4.00$ ref 4 P 44 R . $2 \times \mathrm{C}$'s $£ 4.00$ ret $4 \mathrm{P} 73 \mathrm{RR}, 4 \times \mathrm{D}^{\prime} \mathrm{s} £ 9.00$ ref $9 \mathrm{PR} 12 \mathrm{R}, 1 \times \mathrm{PP} 3$ £6.00 ref 6 P $35 R$ Pack of 10 AAA, $£ 400$ ret 4 P92R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE Theultimate equivalents book. New ed $£ 20.00$ ref 20P32R. GEIGER COUNTER KIT.Complete with tube, PCB and all components to buld a battery operated geiger counter. £39.00 rat 39P1R
FM BUG KIT. New design with PCB embedded any FM radio 9 v battery req'd $£ 5.00$ ret 5 P 158R . 35 mm square FM Qug Buil and tested superior $9 v$ operation $£ 14.00$ ref 14 P 3 R COMPOSITE VIDEO KITS. These convert composite video into separato H sync, V sync and video 12 VDC , $£ 8.00$ ret $8 P 39 \mathrm{R}$. SINCLAIR C5 MOTORS 12v $29 A$ (full load) 3300 pm $6^{\prime \prime} \times 4^{4} 1 / 4$ OP shatt Now $£ 20.00$ ref 20P22R. Limited stocks. As above but with fitted 4 to 1 inline reduction box (800 rpm) and toothed nylon bell drive cog $£ 40.00$ ret $40 P 8 \mathrm{R}$. 800 rpm
ELECTRONIC SPEED CONTR ELECTRONIC SPEED CONTROL KITfor c5 molor PCB and all components to build a speed controller (0.95% of speed). Uses
pulse width modulation $£ 1700$ ref 17 P3R Potentiometer control pulss width modulation $£ 17.00$ ref 17 P3R Potentiometer cont
SOLAR POWERED NICAD CHARGER.Charges 4 AA nicads in 8 hours. Brand new and cased $£ 6.00$ ret 6 P3R $2 \times C$
 computer but suitable for others. Includes mains adapter, leads and book. $£ 1500$ ref 15P43R
VIDEO
VIDEO TAPES. Three hour superior quality tapes made under incence from the famous JVC company Pack of 10 tapes New iow
price $£ 15.00$ ref J15P4 price $£ 15.00$ ref J15P4
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC $£ 40.00$ REF 40P10R. MAINS POWER SUPPLY KIT $£ 20.00$ REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE $£ 75.00$ REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handle up to about
 VERO EASI WIRE PROTOTYPING SYSTEMIdeal for design ing projects on etc. Complete with tools. wire and reusable board 25 WAT
a 4 a P69R (Circuit dia included)
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF 10 £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm}$ £ 1.00 ref BD $827 R$ 12V 19A TRANSFORMER Ex equipment $£ 20$ but OK. ULTRASONIC ALARM SYSTEM. Once again in stock thes units consist of a detector that plugs into a 13 A socket in the area to protect The receiver plugs into a 13 socket anywhere else on the
same supply. Ideal for protecting garages, sheds etc Complete system now only $£ 19$!!!
286 MOTHER BOARDS. Brand new and tested complete with technical manual. $£ 34.00$ ref L34P1
UNIVERSAL BATTERY CHARGER.Takes AA's. C's, D's and PP3 nicads. Hoids up to 5 batteries at once. New and cased, mains
operated $£ 6.00$ ref 6 P36R. in CAR POWER SUPP
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $_{3,4.56 .75 .9 \text { and } 12 v \text { outputs at } 800 \mathrm{~mA} \text { Cormper }}$ 3.4.5.6.7.5.9, and $12 v$ outputs a
sioier pligg E5.00 reet 5P167R.
 metal film. 5500 ref 5 S1 70 R.
QUICK CUPPA? 12 vimmersion heater with lead and cigar lighter Plug $£ 300$ ref $3 P 92 R$ ideal for tea on the move!
LED PACK . 50 red, 50 green, 50 yeliow all $5 \mathrm{~mm} £ 8.00$ ref 8 P52 ${ }_{\text {IBM }} 500$ PRINTER LEAD. (D25 to centronics plug) 2 metre parallel £5.00 ret 5P $86 R$. 3 metre version $£ 6.00$ ref 6 P50,
COPPER CLAD STRIP BOARD $17^{\prime \prime} \times 4^{\prime \prime}$ of $1^{\prime \prime}$ pite £4.00 a sheet ref 4P62R or 2 sheets tor $£ 7.00$ ret 7 P22R STRIP BOARD CUTTING TOOL.E2 Do ret 2P352R

WINDUP SOLAR POWERED RADIO! FMAM radio takes rechargeable batteries Complete with hand
$14 P 200 R$ S Sot of 2 AA nicads $£ 2$ ret L2P9 PC STYLE POWER SUPPLY Made by 5A,-12@ 5A,-5@.3A. Fully cased with fan, $5 \mathrm{~A} .12 @ .5 \mathrm{~A},-5 @$. 3A. Fully cased with fan
onloft switch. IEC inter and standard PC fly
 leads. $£ 15.00$ rel F15P4

UHF/VHF TV RECEIVER/CONVERTER CONVERTS COLOUR MONITOR INTO A TVI

TELEPHONE HANDSETS
Yorand new handsets with mic
BENCH POWER SUPPLIES
Superbly made tully cased (metal) giving 12 v at 2 A plus a 6 V suipoly Fused and shor circuit protectad. For sale at iess than the cost ot the case ' Our price is $£ 4.00$ ref 4P103

SPEAKER WIRE

Brown twin cores
DISC DRIVES
Customer retumed units mixed capacitios (up to 1.44M) We have not sorred these so you just get the next one on th
87.00 ret 7P1R (woth it even as a striper)
MICROSCOPE 1200 X MAGNIFICATION
Brand new complete with shimp hatchery, shrimps, prepared slides, light etcc $£ 29.00$ ref J29P4.
LIGHT ALARM SYSTEM
Small cased alarms that monitor a narrow beam area for sucden changes in light level Complete with siren that sounds tor a preset time when unit is triggered $£ 7.00$ rof J7P1
JOYBALLS
Back in stock popular Commodore/Atari equiv (replace standard joystick) $£ 5.00 \mathrm{ref} \mathrm{J} 5 \mathrm{P} 8$

> AMSTRAD 1640DD BASE UNITS BRAND NEW AND CASED

TWO BUILT IN 5 1/4" DRIVES
HOTHER BOARD WITH 640K MEMORY KEYBOARD, MOUSE \& MANUAL OUR PRICE JUST

£79!!!!

CAR BATIERY CHARGER
Brand new units complete with panel meter and leads. 6 or $12 v$
CUSTOMER RETURNED SPECTRUM +2
Complete but sold as seen so may need attention $£ 25.00$ ref J25P1, or 2 for $£ 4000$ ref J40P4
CUSTOMER RETURNED SPECTRUM +3
Complete but sold as seen so may need attention $£ 2500$ ref J25P2 or 2 for $£ 40.00$ ref J40P5
Standard Scart on one end. Hi density D type (standard VGA connector) on the other. Pack of ton leads only $£ 7.00$ ref 7 P2R OZONE FRIENDLY LATEX
250 ml bottle of liquid nubber sets in 2 hours. Ideal for mounting PCB's fixing wires etc. $£ 200$ each ref 2 P 379 R
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with $1200 / 75$ built in modem infra red remote controlled qweny keyboard BT appproved Prestel compatible. Centronics printer port RGB colour and compcsPite output (works with ordinary television) complete with power AC STEPDOWN CONVERTER
Cased units that conver 240v to $110 \mathrm{~V} 3^{\prime \prime} \times 2^{\prime \prime}$ with mans input lead and 2 pin American output socket (suitable for resistive loads only) our price $£ 2.00$ ref 2 P 381 R
CURLY CABLE
Extends from $8^{\prime \prime} 106$ feet! D connector on one end, spade connectors on the other ideal tor joysticks etc (6 core) $£ 1.00$ each ref CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joysticks only $£ 2.00$ ref 2P382R
BUGGING TAPE RECORDER
Small hand hed cassette recorders that only operate when there is sound then turn off 6 seconds after so you could le ave it in a room all
day and just record any thing that was said. Pnce is $£ 20.00$ ref 20 P 32 NEW SOLAR ENERGY KIT
Contains 8 solar cells, motor, tools, fan etc plus educational bookled Ideal for the budding enthusiast Price is $£ 1200$ ref 12P27

286 AT PC

286 MOTHER BOARD WITH 640K RAM FULL SIZE META CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUP. PLY £139 REF 139 P 1 (no $/$ /o cards or drives included) Some
metal work req'd phone for detalis.

> BULL ELECTRICAL
> 250 PORTLAND ROAD HOVE SUSSEX BN3 501 TELEPHONE 0273203500 MAIL ORDER TERMS. CASH PO OR CHEQUE WIHHORDEA PLUS $\$ 300$ POST PLUS VAT.

> PLEASE ALLOW 7 , TO DAYS FOR DELIVERY

FAx 0273 323077

CAMERAS Customer returned units. 3 for $£ 10$ ref L10P2 STEAM ENGINE Standard Mamod 1332

engine com

TALKING CLOCK

LCD display, alarm, battery operated
Clock will announce the time at the
push of a bution and when the
push of a bution and when the
alarm is due. The alarm is switchable

HANDHELD TONE DIALLERS

Small units that are designed to hold over the mouth piece of a telephone to send MF dialing tones. Ideal for the remote control of AMAZING TALKING COINBOXI
AMAZING TALKING CONNBOX!
Fully programmable talking, lockable connbox BT approved, retail price is $£ 79$ ours is ust $£ 29$! ref J29P2
ANSWER PHONES $£ 15$
Customer returned units with 2 faults one we tell you how to fix the other you do your self! $£ 18$ ref J 18 P 2 or 4 for $£ 60$ ref J60P3 BT approved (retail price $£ 79.95!$ each)
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new dives with cartridge and software 10 times faster than tape machines works with any Commodore 64
setup The orginal price for these was $£ 4900$ but we can ofter them setup. The orginal price for these was $£ 4900$ but we can ofter them 90 WATT MAINS MOTORS Ex
pupose unit $£ 9.00$ ref F9P1
HI FI SPEAKER BARGAIN Originally made for TV sets they consist of a 4" 10 watt4R speaker and a 2" 440 R tweeter. If you want two of each plus 2 of our crossovers you can have the lot for $£ 5.00$ EMERGENCY LIGHTING SYSTEM
Fully cased complete with 2 adjustable flood lights. All you need is a standard 6v lead acid battery Our price is just $£ 10$ ref J10P29 AMSTRAD 464 COMPUTERS
Customer returned units complete with a monitor for just £351 These units are sold as faulty and are not returnable
WOLSEY DMAC DECODERS
Made for installation in hotels etc as the main sat receiver no data but rully cased quality unit. £20 ref K20P1 Sultable psu £8 ref K8P3 WITCHED MODE PSU
well made case complete with mains lead $£ 8$ fer K8P3 REMOTE CONTROLS
Brand now intra red CONTROLS originally made for controlifing TELEPHONES
Modern 1 piece phones BT approved, Last no redial. $£ 8$ ref K8P 1 386 TOWER SYSTEMS
Tower case $52 \mathrm{~cm} \times 40 \mathrm{~cm} \times 20 \mathrm{~cm}$. 2 fans, speaker, 275 w psu, iEC IL driver, parallel and senal ports. There are several IC's missing from the m/board plus no data! $£ 79$ ret K79P1. DOS PACKS
Complete set of PC discs with MS DOS 3.2, Locomotive basic, gemdesktop and gempaint. No manuals. $51 / 4^{4}$ discs $£ 10$ ref K10P2 CORDLESS TIE CLIP MICROPHONE
transmits between $88-108 \mathrm{MHZ}$ FM $5.2 \mathrm{~cm} \times 2 \mathrm{~cm}$, uses LR 44 watch battery. Complete with wire aenal 8 battery $£ 16$ ref K 16 P 1
CHASSIS MOUNT TRANSFORMERS
240 v pnmary, 12 v secondary 20 VA £ 2 ref K2P2 240v pnmary. 16 V secondary 10 A (split winding)
100 RED LED PACK (5 MM) 55 REF K5P2 12V STEPPER MOTOR Idealfor models etc $3^{\prime \prime}$ dia. £2 ref J2P14 INFRA RED BEAM SWITCH 24 vDC 5 m range source \& sensor housed in plastic case $£ 12$ ref J12P1.
CAPACITOR BARGAIN PACK 100 CERAMICS $£ 2$ REF J2P2. SPECTRUM JOYSTICKS TWO FOR 55 REF $15 P 2$.
AMSTRAD PC CASE, POWER SUPPLY AND 1.44 MEG
FLOPPY DRIVE ALL THIS FOR $£ 44$ REF L44P1
BUMPER PACK N
choice of contents.
BUMPER PACK NO 225 of our popular £1 packs for just $£ 12$. Our
choice of contents.
LCD 1 X 32 DISPL
of data for a similar display $£ 3$ ref L3P1
USEFUL POWER SUPPLIES. 18 v 900 mA dc output (regulated)
fully cased with mans cable and DC out cable $\mathbf{I 6}$ ref K6Pt
UNCASED PC POWER SUPPLIES. Standard PC PSU without case, tan etc. Good for spare or low cost PC! $£ 4$ ref L4P6.
RADAR DETECTORS. Detects X and K bands (le speed traps).
Not legal In the UK so only available if you intend to 'export't. $£ 59$ ref J59P1.
ref J59P 100 WATT MOSFET PAIR.Same spec as 2 Sk 343 and $2 S J 413$ ($8 \mathrm{~A}, 140 \mathrm{~V}, 100 \mathrm{~W}$) 1 N channel and 1 P channel $£ 3$ a pair ref J3P9. LOW COST CAPS. 1,000 capactors $£ 3$ ($33 \mathrm{ut}, 25 \mathrm{v}$) ref J3P10. VELCRO. 1 metre length 20 mm wide, blue $£ 2$ ref J2P16.
JUG KETTLE ELEMENTS. Good general purpose heating element just $£ 3$ ea rel $£ 3 P 8$ or 5 for $£ 10$ ref J10P3
VERY BIG MOTOR. 200 v induction $1.1 \mathrm{kw} 1410 \mathrm{pm} 10^{\circ} \times 7^{\prime \prime}$ GEC keyed shatt Brand new. £95 ret J95P 1
BIG MOTOR. $220.240 \mathrm{v} 1425 \mathrm{pmm} 2.8 \mathrm{~A} 5 / 8$ th" keyed shaft GEC $6.5^{\prime \prime}$ $\times 8$ " complete with mounting plate $£ 38$ ret J 38 P 1
SMALL MOTOR. Electrolux 160 wath 3,000 rom $220-240 \mathrm{v} 5 / 8 "$ shatt precision built $£ 18$ ret 118 P 1
EPROMS 27C64 PACK OF $10 £ 7$ REF M7P1
EPROMS 27C256 PACK OF $10 £ 9$ REF M9P1
EPROMS 27C512 PACK OF 10 £10 REF M10P
MODEMS FOR £1.25? These modems are suitable for stripping only hence they are only 4 for $£ 5$ ret J5P3
SOLAR POWERED WOODEN MODEL
SOLAR POWERED WOODEN MODELS. Complete with solar panel, motor and full instructions. $£ 9$ ref J9P2. 3 diff $£ 20$ ref J20P3 TV SOUND RECEIVER Fully cased, mains powered, that need a Speaker for stand alone use or could be wired into hif, $£ 12$ ref 12 P22.
SOUND OPERATED LIGHT. Clap your hands and light comes on. Turns ater preser delay (4 AA s req'd. £2 ref J2P3 FERGUSON SRB1 REMOTE CONTROLS. Brand new units

IN SUSSEX? CALL IN AND SEE US!

Design your own satellite system!

You can witb the belp of this brillian neu program by DJ Stepbenson

SATMASTER Version 4 only 2.35 ,th

 fown any lekathon whe theild lor any geo-satellite - man and an lice luture

Includa matznelk map did tootprime for all popular solellite daron Euram Eay-to ax pro up menu mentace maker ledoun lak s:mple for ecersome

 context-sematace helplume. with twalt trading. cable vers and ute sarsc) purite
Calculaten lull limk butger madang dal "re eptamsalton to ensure the ber

quality pretur

 ne"ghtarurme sutelther
 screen or primes'

SATMASTER PRO 0 nty \& 69

Supporla laner pumter

toid guessuork ... order SATMASTER V' or SATMASTER PRO Ioday! Switt Television Publications
17 Pittsfield, Cricklade, Swindon SN6 6AN Tel or Fax 0793750620

mis

 TRAINING DIVISIONMIS have held approved service training courses for industry, local government and health authorities throughout the UK since 1984. The following are designed for all domestic and commercial appliance service technicians. Please contact us for venue dates nationwide including Republic of Ireland.

ELECTRICAL SAFETY TRAINING (All Appliances)

This practical course covers appliance and workshop equipment using Portable Appliance Tester, Earth Loop Impedance Tester, and Earth Insulation. Inc. manual of test charts; regulations and essential documentation

MICROWAVE OVEN SERVICE TRAINING

Covers all commercial/domestic ovens. Inc. MIS publication "Microwave Oven Servicing" ISBN 0.9513783.0.9.

MIS Training Division

1 South Lane, Clanfield, Hants PO8 0RB Tel: 0705596272 Fax: 0705592499

ELECTRONIC TEST EQUIPMENT

TV \& SATELLITE LEVEL METER MC-260

FM radio, TV and satellite all in one instrument
Frequency counter for setting satellite channel
Autocorrected level reading across all bands

* High accuracy without the use of correction charts
- Stable 12,15 \& 18 volt LNB supply

Many system fault finding functions

For TV/FM, SAT TV, SMATV and Cable TV installers

ALBAN DAECTRONICS LIMITED
 4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 6EN Tel: 0727832266 - Fax: 0727810546

Possibly the largest range of television tubes, at the right price, in the UK.

Ring Irene or Jane
for a quote

EXPRESSTM
 The Mill, Mill Lane,

RUGELEY, Staffs WS15 2JW
Tel: 0889-577600 Fax: 0889-575600

Happy New Tube

CentreVision

Suppliers of Surplus TVs \& Videos to the Trade CENTEUSOON HOUSE SLOPPER ROAD LECCWTH. CABOIFF CFI 8AB
Where quality counts You've tried the rest Now here's the best Price list on application Export enquiries welcome

PHONE OUR HOTLINE NUMBER
0222344754
ALL PRICES + VAT

CONVERT YOUR FERGUSON BSB RECEIVER 10 PAL \& D2MAC
 849

FEATURES

- 60 Fully programmable channels with Remote Control - On Screen Grophics DMAC liansmissions in Selectabie LNB lype Exernal 12 volt switch facility D2MAC
- Superb digital quality sound a Preferred Language faclity - Covers all D2 - Switchable $10: 9$ with optional panning Outputs in RGB. Video Audo. UHF PAL
- Fully Tunable Audio per channe Videocrypt (Sky) decoder interface
- $14 / 18$ volt LNB switching Qutputs in Video. Audio, and UHF ON SCREEN MENUS

INTEGRAIING WITH OTHER EQUIPMEN
The modified recelver can be ted from on existing Astra system / antenno by utiusing on i.f spite.
It is also possible to connect both Astra and DBS antennas with an electronic A/B switch. The receivers external switch feature will allow automatic

PRICES

CONVERSION KIT . C mprisea a 'ully assembled and testoo assembley instrucrions and new user monual upgrade, EXCHANEt CIRC IIT BOARD.. Ferguson SRBI CICUI board 549.00 complete with PAL D2MAC. Ferguson SRAI circuir boor 569.00 COMPLETE RLCEIVER WITH DES ANTENNA... FUlly modified, Brand Now Ferguson SRB 1 Receiver with shruce of new squarial of Marconi compact ontenna. S149.00 DRMAC RFPLAC-ALNit ChiP. Simplo plug in chip to convent grousuri ess Receiver to single channel but fuly tuneabie D2MAC receiver

STEWART of READING WYKEHAM ROAD. READING. BERKS RG6 IPL
Telephone 073426804 Fax $(0734) 351696$
\square PRDMAX

ELECTRONIC
TEST EQUIPMENT
CRT RESTORERS
RT-501B / TA-903

The most popular range of workshop and field service CRT restorers now available in England. Designed for the measurement, analysis and regeneration of all commercial monochrome and colour picture tubes. Nineteen sockets and referrence list available.

For TV service specialists

ALBAN EILDCTRONICS LMITIDD

4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 6EN Tel: 072782266 - Fax 0727810546

$\square \Lambda \Delta$

ELECTRONICS CATALOGUE
A simply outstanding selection of quality electronic components and equipment.

- BEST VALUE BEST SELECTION - BEST QUALITY BEST YET

Essential reading for both amateur and professional. 132 filly illustrated pages with hundreds of special offers and free sifts. NORMALLY 52 $5 \cdot=\leftrightharpoons$ WITH THIS cQUPON

- BOOKS	1 Please send me my FREE copy of Marco 1993 Catalogue
- HOBEY BOXES	${ }^{1}$ Name
- IN-CAR EQUIPMENT	Address
- PLUGS AND SOCKETS	
- CORDLESS MICROPHONES	L
- HOBBY KITS	Please send above coupon to
- TOOLS	Marco Trading, The Maltings,
- IC's AND TRANSISTORS	High St., Wem, Shrewsbury,
- SOLDERING EQUIPMENT	or contact us on 0939232763

FOR THESE FINE BRANDED PRODUCTS - AND SO MUCH MORE . . .
四 W민든 SMATV DIAMOND AERIALS UHF/FM

CIOBAIcommuncatrows FIRST IF, SMATV $5.4,13: 7$ communications UHF AERIALS UHF AMPLIFIERS
Labgear Cablevision SMATV
\qquad LENSON HEATH SATELLITE
ANTENNA

SATELLITE
RECEIVERS
DECODERS

SATELLITE RECEIVERS
\qquad
PROMAX
TEST EQUIPMENT

BOLTS
mung
BOLTS PLUGS
Teleste SMATV TRIAX U.K. UERIALS TOWER clips UNIDFIX CLIPS VOLEX COAXCABLES - we provide full technical assistance and service back up

- ON ALL OUR PRODUCTS - DESIGN CONSULTANT
 on proof of trading

ADVERTISERS’ INDEX

Aerial Techniques 191 Anglian TV Wholesale .. 227 Audio Electronics 217
A-Z Electronics ... 212 \& 213
Beslo Ltd 228
B.K. Electronics 175

Bull Electronics 216
Campion TV 227
Central TV Wholesale ... 223
Centrevision 218
Coastal TV 227
Colourtrade of
Birmingham................ 228
Crewe TV W/Sale......... 227
CTV........................... 226
Datapart Ltd 212
East London Components
168
Economic Devices
$200 \& 201$
Euras International Ltd 222
Express TV Supplies 218
GGL Components
170 \& 171
Gogglebox................... 224
Grandata 162-167
Hardy, J.W. 221
Hoopwell Ltd.............. 218
Hussain Central TV Ltd 229
ICS Intertext Group 212
Intercity Industries Ltd $\mathbf{2 2 4}$

J.J. Components 189
omponents

Manor Supplies........... 179
Marapet 226
Marco Trading............. 220
M.I.S. Training............ 217
M. S. Products 169

Powell, T..................... 215
Promax Instruments
215/217/219 \& 221
P.V. Tubes 168

Sendz Components
235/236/IBC \& OBC
Silverscreen 226
Stewart of Reading 219
Swift TV Publications.... 217
Technovision................ 215
Telecentre 227
Teleprice Ltd................ 225
Telespares Ltd 172
Telnet _ T.T.............. 168
Trac Satelitte Systems ... 219
Vista Electronics 222
Well-View 222
Western Trade Services 224
West-Midlands TV 223
Willow Yale Electronics
Wiltsgrove Ltd $\quad 223$
W. Tree Trade

Wharehouse...
0

68

- Frequency range: $47-860 \mathrm{MHz}$
- Functions: TV, spectrum, analysis, synchronism
- Simultaneous display of picture and measured level
- 39 memory channels, set by user
- Autocorrected meter reading for higher accuracy

For TV/FM, SAT TV, SMATV and Cable TV installers
ALBAN ELECTRONICS LIMITED
4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 6EN Tel: 0727832266 - Fax: 0727810546

PAロMAX
ELECTRONIC
TEST EQUIPMENT
FM \& TV FIELD STRENGTH METER MC-160B

For FM/TV, MATV, CCTV and Cable TV installers

ALBAN ELECTRONICS LIMITED

4U St Albans Enterprise Centre, Long Spring
Porters Wood, St Albans, Herts., Al 3 6EN Tel: 0727832266 - Fax: 0727810546

SONY TUBES be Procerssed with oricinal sony guns

REMOTE CONTROLS
 Ferguson Types

TV - 738, 739, 740 etc
TVNCR - 734, 742, 748 etc
VCR - For 3V35 etc
TV/NCR - Fastext 789, 785 etc
MANY OTHER TYPES AVAILABLE

NEW AND REGUN TUBES VIDEO HEADS - ALL MAKES

TV AND VCR SPARES

CARRIAGE AND VAT NOT INCLUDED

VISTA ELECTRONICS

पूरादातयाए

Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH
Tel: 0429837100
Fax: 0429837101

W.M.T.V.
 THE LARGEST INDEPENDENT WHOLESALEFS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL TVs AND VIDEOS TO THE TRADE AT COMPETITIVE FRICES
 ALSO AVAILABLE: NEW B-GRADE PRODUCTS -
 TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED $1 / 2$ Mile of Junction 10 M6. Easy Parking Facilities
 UNIT 3, BENTLEY LANE BUSINESS PARK
 BENTLEY LANE, WALSALL WS2 8TL Tel: 0922724542 . Fax: 0922722208 Mobile: 0860499495 (24 Hours)
 OPEN:
 MON-FRI,
 9-6pm SAT 9-2pm SUNDAY BY APPOINTMENT DELIVERY SERVICE THROUGOUT THE COUNTRY

WILTSGROVE LTD
NOW IN STOCK BRAND NEW PORTABLE CTV'S
12 MONTHS GUARANTEE
LX-RENTAL PORTABLES REMOTE (TV'S TELETEXTTVS VIDE:O RECORIDERS TWIN SPEED VCR VIDE()TAPESE-INI from fixan (x)
frome Ex) (K)
from tis5.(0)

from to $5 .(0)$
from fe 0.85

AI.I.SIO(K TESTLI) \& WORKING
NI:W STIOCK ARRIVING (DAAII.Y

I:XPORT TENOIIRIIS WI:ICOMI:
FIUGIF RAN(II: OF TV \& VIDI:OSPARIS

AISO IN STOCK

28-29 RIVER STREFT, IDI(BBETH BIRMINGHAM B5 5SA

TEL: 021 772-2733 FAX: 021 766-6100

SUPERB RANGE OF TV'S \& VCR'S - THORN \& GRANADA

DIRECT LOADS AVAILABLE FROM SOURCE

EXPORT ENQUIRIES WELCOME

'B' CBADE SWITCH ON TO TOP QUALITY BRANDS

PHONE
05 TODAY FOR BEST RESULTS
ALL SIZES OF SCREEN TV AVAILABLE, BOTH IN FAST TEXT \& DIGITAL NICAM STEREO

VIDEOS: CURRENT MODEL

Single, Twin Speed, Nicam S-VHS

CAMCORDER

C FORMAT FULL SIZE, 8 mm MICROWAVES - PORTABLE HIFI SATELLITE VIDEOCRYPT PORTABLE £90
FULL REMOTE, BOXED

CTVLONDON	CENTRAL TV WHOLESALE
Eley Estate, Nobel Road	DISTAIBUTION LTD
'Edmonton N18	369 Strattord Road, Sparkhill
TEL: 081-807 4090	Birm ngham 811
FAX: 081-884 1314	TEL: 021-772 1591
	FAX: 021-766 6383

We Wis 1 All Our Customers A Hapov \& Proscerous New Year

MOM

NOW IN STOCK 21" TEXT £145 BRAND NEW 20" REMOTE TVS £125

Proline CD, Midi Hi-Fi's £325
Proline Midi Hi-Fi's £220
Aiwa Midi's \& Separates $£ 980$
JVC Midi's \& Separates £1090
39 Ariston, Dual Turntables £1000
Amstrad Midi Hi-Fi's £375
Sanyo Midis \& Separates £605
Goodmans CD/Midi Hi-Fi's $£ 810$
25 Philips CD Midi's £935
16 Philips Midi-Hi-Fi's. £595
Philips Separates $£ 810$
B GRADE STOCK RETURNED GOODS

14"Portables from £70	14"Portabies from225
20" Remote CTV from....1105	Front load VHS from $£ 50$
20" Fastext from........... $£ 140$	Midi Hi-Fi's from220
LP VHS from............... $£ 120$	$21^{\prime \prime}$ CTV s from $£ 40$
$10^{\prime \prime}$ Mains/bat from $£ 90$	Radio Cassettes from 15

GOGGE 20%

TEL: LEEDS

0532-310359
discountelectrical warehouse ASK FOR ROBERT ALL ABOVE PRICES PLUS VAT AT 17.5\%

Mestern RADE

ERVICES
SUPPLIERS OF EX-RENTAL TV \& VIDEO'S THORN \& NON THORN
REMOTE TEXT \& VIDEO HAND UNITS SUFPLIED WHERE NECESSARY ALL PRICES SUBJECT TO VAT
DELIVERIES THROUGHOUT DEVON CORNWALL TWICE WEEKLY
GIVE US A RING OR CALL IN 2A BARTON HILL ROAD, TORQUAY, DEVON
TEL: 0803312222 FAX: 326767

SIL VERSCREEN NEW MAJOR SUPPLIER

of Thorn \& non Thorn
ex-rental TV \& Videos
in Wales
Call John on

0884256257

or visit the warehouse at Unit 33, Nine Mile Point Ind. Estate, Cwmfelinfach, South Wales.

CREWE WHOLESALE TV LTD.

WE HAVE SLASHED OUR PRICES. WORKING TV'S FROM £15.00.
WORKING TEXT TV'S FROM £45.00 TAKE 5 £ 45.00 - TEXT ONLY £200.00.

LARGE SELECTION OF WORKING AND UNTESTED STOCK.
WORKING TOP LOADING VIDEOS FROM £40.00.
WORKING FRONT LOADING VIDEOS FROM $£ 50.00$
WORKING LONG PLAYING STEREO VIDEOS ONLY £70.00 AT LEAST 1 DELIVERY, TO EACH UNIT, PER WEEK.

CALL NOW FOR NEW PRICE LIST.
CREWE - OPEN 9.30 TO 5.30 MONDAY-FRIDAY TEL: 0270582924.

* UNTESTED STOCK ONLY *

BLACKBURN - OPEN 10.00 TO 4.00 WEDNESDAY-FRIDAY TEL: 0254264489

TEECEENTRE

Distributor of ' B ' grade TVs \& Videos also has for disposal, quantity of ex-rental TVs and Videos.

Ring before

 travelling for availability and prices
0270589392

 79A Coleridge Way, Crewe.10 mins from Junction 16 - M6

CWovin
 QUALITY USED T.V. \& VIDEO
 COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE
 STOCK ARRIVING DAILY
 T.V.'s from £3.00 Videos from $£ 30.00$ Prices Ex-VAT

Free Delivery Service to most areas of the U.K.
UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB

Just 10 Mins from M5 Junct. 6 Worc's North

For your export requirements contact us.

0299.8996420 or 899643 FAX:0299827984

AERIALS

FOR TV \& FM RADIO, PLUS 1000's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC

AMPLIFIERS
FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE.
LABGEAR, WOLSEY
FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE

NEW MAJOR BRANDS COMPLETE MINT AND BOXED

 aporimiles N:MIIE 20 RASH'S GREEN IND ESTATE
DEREHAM, NORFOLK
TELEPHONE
(0362) 691611

PORTABLES FST's NICAM FASTEXT SONY HITACHI PANASONIC ETC

Huge selections. Complete range.
All makes and models available.
\star New Stocks Every Day \star
VHS Video from £30
Television from £3
PICK YOUR OWN VHS VIDEOS Lots of $10 £ 20.00$ each

Working Ex-Equipment Panels

IF Converger Decoder Line Scan Power Frame $\begin{array}{llllll}T 2022 X & 5 & 14 & 18 & 17 & 14\end{array}$ $\begin{array}{llllll}\text { T26X } & 5 & 16 & 20 & 17 & X\end{array}$ $\begin{array}{llllll}\text { Philpg Gi1114.50 } & 5 & 12 & 20 & 20 & 11.50\end{array}$

All prices include Postage \& Packing. But + VAT
\star IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK *

BRADFORD
16Bottomley St
Manchester Rd, BD57JL Ring Tony (0274) 308186

MANGHESTER

Unit 3, Mersey Rd.
North Ind Est., Failsworth Ring David (061) 6834612
Visa/Access welcome
Prices are Plus VAT \& Based on Quantity OPEN 6 DAYS 9-5

W TREE TRADE WAREHOUSE
UNIT I SUNSHINE MILLS WORTLEY RD LEEDS 12
TEL: $0532638804 / 633421$ FAX: 05323101275

LATEST NICAM FASTEXT
F.S.T. MAJOR BRANDS TV - VIDEO - HIFI SATELLITE
COMPLETE BOXED - WITH STAND - HANDSET - BOOK - ETC - MINT

> Phone 021-359 7020 E FAX 021-359 6344 221-222 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19 2HU

Wishes all our customers a Merry Christmas

TV \& VIDEO WHOLESALERS

XMAS SPECIALS New 'B' Grades

BIRMINGHAM
208 BROMFORD LANE, ERDINGTON BIRMINGHAM B24 8DL
Tel: 021-3273273 Fax: 021-3222011

\qquad

LONDON
TEE ROYAL LONDON ESTATE UNIT 2
29-35 NORTH ACTON ROAD, LONDON NWIO
Tel: 081-961 5005

Major brands now in stock, don't miss out this Christmas

- buy now

RING OUR BIRMINGHAM OFFICE ON 021-3273273 for details

CALL IN AT YOUR LOCAL BRANCH TODAY AND SEE OUR RANGE OF EX-RENTAL AND B GRADE STOCK

[LASSIFIED CLASSIFIED CLASSIFIED CLRSSIFIED CLASSIFIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 8.40$ per line, box number $£ 22.00$ extra. All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to The Television Classified, 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

11BES

REBUILT CRTS VDU - MONITOR - TV

Image Burn-In Removed From Screen Phosphers B.S.I. Certification
N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL
PHONE: 081-771 3535
Britain's Oldest Established Tube Rebuilder

TEST EQUIPMENT

[^2]
E.C.S. INDEXES!

THOUSANDS SOLD WORLDWIDE

Edition 9 of the complete indexes now published containing approx 8,000 Faults listed in 12 Years of Television magazine.
Indexes are alphabetically listed by Make, Model, Fault, Ref and are now available for just:
$£ 8.00$ For Television \& Satellite Faults
£8.00 For Video, Camcorder \& CD Faults
Or $£ 15.00$ for both sets complete with chassis \& similar model guides. Please add $£ 1.50$ (UK), $£ 3.00$ (Overseas) to total order to cover post \& packing.

A LOW COST UPDATE SERVICE IS ALSO AVAILABLE. FULL DETAILS DESPATCHED WITH ORDER.

To secure your copy/s please make Cheques/Postal Orders payable to:

E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY

SERVICE MANUALS

FOR MOST J.K., EUROPEAN, FAR-EAST \& USA TYPES OF CTV MTV - VCR - CAM - SAT - MWAVE - AUDIO INCLUDING "UNUSUALS" - AND ALL AT REASONABLE PRICES. VCR CIRCUITS ALSO AVAILABLE SEPARATELY FOR MOST MODELS.
PANASONIC NV-FS100, L20, NV-MC10, MC20, MC30 £10.00 each. ORION - any VCR or VCP after 1985-£10.00 each. NEC P: $<1200 \mathrm{~K} £ 12 / 50$, any other U.K. NEC VCR - $£ 15.00$. Other brands available include - Daewoo, Funai, Hinari, Kisho, Loewe, Memorex, RCA, Silver, Toshiba, etc. . . WRITE OR TELEPHONE WITH YOUR REQUIREMENTS. ALL U.K. ORDERS SUBJECT TO £1.00 P\&P. NO VAT.

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG
Tel: 0202870656

SERVICE MANUALS

Available for most equipment, TV, Video, Audio,

Test, Amateur Radio, Kitchen, Computers etc etc. We have probably the largest range of Service Information available anywhere. If you need a manual give us a cali. Originals or photostats supplied as available.

MAURITRON SERVICES (TV)
8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY. Tel:- (0844) 351694. Fax:- (0844) 352554.

A selection from our vast range of Technical Books
Video Recorder Faults - Repair Guide for Beginners. £1.95
VHS Video Recorder Principles. £1.95
Transistor Equivalents and Testing Manual. $£ 2.95$
Transistor Radio Repair Guide. $£ 1.50$
Switch Mode PSU IC Type TDA-4600 Repair Guide. £4.95
Teletext Repair Manual for SAA range of IC's. $£ 5.95$
Citizens Band Radio Circuits Manual. £6.95
Power Supplies, Voltage Regulators \& Stabilisers. £2.95
Telephone Code Reverse STD Location Guide. £3.95
Military Surplus Equipment. Giant 5 Volume Set. $£ 39.95$
Record Player Speed Disc. $£ 0.95$
SCART Euroconnector System. £1.49
Lots more shown in our FREE Catalogue includingValve Data, Military Circuits, Babani Books, Video Fault Guides etc.
SPECIAL OFFERThe Full Set of Books Shown Above for just£49.95. A MASSIVE saving of £25.54over the individual price. Use Order Code MPTVSET.
TV \& VIDEO TRADE REFERENCE MANUALS
VIDEO RECORDER EQUIVALENTS.Lists all known models \& their alternatives.Fully Cross referenced for fast and easy use. Order MP143TELEVISION CHASSIS GUIDEListing thousands of Models (Colour \& Mono) \& their Chassis Designations.Enables you to identify any chassis for any TV from the model number. Order MP18.

The above 2 books contain the most COMPREHENSIVE REFERENCE DATA available anywhere for the TV \& Video Trade. Order yours today.
Hundreds of other Technical Guides and Repair books available. Send A5 size SAE for your FREE catalogue today All orders please add £2.35 post \& packing.

Technical Information Services

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE Tel/Fax (0698) 884585 Mon-Fri 8.30am - 5.00pm or (0698) 883334 Outwith business hours Write now with an SAE for your FREE QUOTE, FREE CATALOGUE \& FREE NEWSLETTERS

We have "THE WORLDS LARGEST COLLECTION" OF

PLUS - We offer complete circuits for any VCR we have for $\mathbf{8 8 . 9 5}$ inc.p\&p \& We are the sole suppliers of most fault-finding guides, repair manuals \& technical manuals

INTEGRATED SYSTEMS from TIS

10 Glant binders of all main CTV Círcuits, PCB's \&
7 Giant binders of most VCR Circuits, PCB's \&
Waveforms to 1991 (Vol. 7 Latest
35 Fault-Finding Guides covering all models in the 7 glant binders
12 CTV Repair Manuals covering all stock \& standard faults to end 1989 , normally $£ 144.40$
All the CTV \& Repair Guides PLUS VCR binders PLUS fault finding, etc.

WE SELL HUNDREDS OF TECHNICAL BOOKS COVERINC EVERYTHING FROM CTV's \& VCR's to SATALLITES \& OSCILLOSCOPES.
Send an SAE for your FREE catalogue of all these titles
(Top name publishers, like Infotech, Newnes \& Heinmann, PC Publishing, Etcin) !!SPECIAL OFFERS!!
Any 20 Full Service Manuals (Just phone when you need one, postage is free)
8150.00

Hundreds of New "Test Equipment" Manuals, Now in Stock. Prikes from $\mathbf{E 2 . 5 0}$ (Phone for your quote - NOW) EPOA.

Some Titles:- CTV Servicing f16.95, Practical TV Repairs f16.95, Euro'Scramb'Sys's 529.00, Data Ref'Guide 6595 , Buy/Sell \& Sen' TV's \& VCR's $\mathbf{5 9 . 9 5}$ each

AMSTRAD, LOGIK,
 MATSUL-SAISHO
 batit hinding getime
 Covers hundreds of faults on a wide range of television and video recorders. Professionally compiled in easy to locate format. SAVES TIME AND MONEY by pin pointing faults in record time
 SEND $£ 9.95+£ 1.00$ p.p. TO
 E. ROWLAND
 438 Poynters Rd, Luton, Beds. LU4 0TW

GERMAN SERVICE SHEET SPECIALISTS

Our connectums are world-wide We furnish an kind of German, Europeat and Juranese serice
sheet or manail Thousands of different sheets and manuals in steck. For any enquific
DONBERG ELECTRONICS
Schoolmasters House, Rannafast,
Co. Donegal, Republic of Ireland
Phone: 07548275

FAST FIX Feanlyturnck

 Now in NEW A4 Book Format, containing over 100 pages. FAST FIX contains several thou sand TV, Video, Camcorder, CD and Satellite fault symptoms from TV Magazine covering the years 1981-1992 inclusive and is arranged aphabetically listing Make, Model and Fault Symptor.Complete FAST FIX incex $£ 16.00$ inclusive Overseas orders please add $£ 3.00$. FAST FIX IS REGULARIY UPDATED AND ALL NEW ORDERS WILL RECEIVE A FREE UPDATE VOUCHER TO COVER THE FIRST UPDATE. Send Cheques/Postal Orders, payable to. A.G. Humphreys
${ }^{13}$ Manstield Avenue
St. Johns Park
Hawarden Clwyd CH5 3SB N. Wales
For Fast
Effective
Advertising

Ring Pat Bunce

 081-652 8839
SPARES \& COMPONENTS

1 to 24 volts μp to $1 / 2$ amp. 1 to 20 volts up to 1 amp. 110,16 volts up to $1 / 2$ amps D.C. Fully stabilsed. Twn parel met for instant voltape and curfent teading. Overload protection fuly varıable Operates from 240V A C $\begin{aligned} & \text { Compact } \\ & \text { sure } 9 \times 5 \\ & 5\end{aligned} / 2 \times 3$ ans WIM Mond. Up 1038 volts DC at 6 amp. 10 amps peak. Fully variable Twin panel meters Size $14^{1} / 2^{\prime \prime} \times 11^{\prime \prime} \times 4^{1} / 2^{\prime \prime}$ E96inc VAT Cart 56 RADIO COMPONENT SPECIALISTS glumeY, U.K. Tel: 0.16841665 Ura, Lapa SAE Delhuory 7 dana. Coliers Welcome Closed Wed

SURPLUSREDUNDANT EECTRONIC COMPONENTS WANTED
I/Cs - Tuners - Transistors - Valves Diodes etc. any quantity considered immediate payment
ADM Electronic Supplies Tel. 0827 873311. Fax 0827874835
 VIDEO PCB's

 VCR4600/4600MkII
 VCR4700
 VCR6100 Barcode
 VCRS000 (Old Type) Handse
 L.O.P.T.
 $\begin{array}{ll}\text { CTV1000 } & \text { FB182K } \\ \text { CTV1401/9 } & 37141902\end{array}$
 $\begin{array}{ll}\text { CTV1401/9 } & 3714002 \\ \text { CTV2000 } & \text { FB171/FB } 17 \text { I }\end{array}$
 $\begin{array}{ll}\text { CTV2200 } & 3722002 \\ \text { CVR2 }\end{array}$
 $\begin{array}{ll}\text { VR2 } & 1810951 \\ \text { VR3 } & 181297\end{array}$
 PC12-HRCD/D MSH1FCT31
 CONVERTERS
 4700 RF CONVERTER
 DISHES, FEEDS, LNB's ETC AVAILABLE. PHONE FOR LIST
 Harrison Electronics

CENTURY WAY, MARCH, CAMBS PE15 80W
FAX: (0354) 51416. TEL: (0354) 51289

```
AMSTRAD
prices include vat, post and packing extra. P.C. \({ }^{8}\) 's
600 Video and Audio PCB 4600 Systems Control/Servo PCB Display and Controi PCBs 600 MkI Video and audio/timer/Control PCB ASSy Timer/Control PCB Assy VCR100 Video and Audio/Timer/ ontrol PCB AsSy Timer and Channel Display
PCB Assy 5200 Audio Tunet PCB 5200 Video PCB 8900 Display PCB 4600 Mk \(11 / 4700\) Power Supply TV2200 PCB No:3 (Patt 270087 CTV2200 PCB No: 4 (Part 270088) VR1 Control Pane/Preset PCB TVR2 MaIn TV PCB
VR3 Main TV PCB
MECHANISMS
4600 Video Cassette complete
mechanism (no drum or video
\({ }_{4600}\) heads)
mechanism (with drum no video
heads)
9000 Cassette Housing Assy.
£35.25
£15.28
MOTORS
4600/4700 Capstan Motor £11.75 \(\begin{array}{lr}7000 \text { Loading Motor MCB2BO1 } & £ 3.53 \\ 9000 \text { Loading Motor MCB9B02 } & £ 3.53\end{array}\) TUNERS 5200 Varicap Tuner Type 1810829 7000 Tuner ENV87358C2
55.88 CTV1400 Tuner ENV87509F2
TV2200 Tuner UE2-831F
\begin{tabular}{l} 
£5.88 \\
\\
\hline 5.8
\end{tabular}
all items are braho new ano guaranteeo
* SAME DAY DESPATCH * *
Write or Phone for FULL catalogue.
```


PARDON MEI

Did you know you don't have to buy junk at top prices?

UNIVERSAL TRADE SURPLUS (UNITRADE)

Offer as owners and sole UK distributor for Amstrad/Fidelity non computer reworked returns and dormant stock.
All reworked, repacked to 'A' stock status. WE DO NOT SELL JUNK!

AMSTRAD VCR9000 Twin speed LCD remote
BUSH 3114 14" remote CTV, non text.
CTV with text
FIDELITY STV20 $20^{\prime \prime}$ CTV with 100 channel satellite system built in. NEW.
FIDELITY DD8900 double decker video $£ 115$ ع95

FIDELITY DD8900 double decker video
AMSTRAD 9340 Nicam VCR centre deck AMSTRAD 91404 head VCR LCD
AMSTRAD 3000 latest 2 speed LCD
BUSH MS765 midi CD system. NEW
CROWN CD2005 remote CD midi. NEW
CROWN MCK40 midi remote, full size
CROWN MCK10 midi. NEW
BUSH MC800 ghetto blaster with surround sound speakers. NEW
AMSTRAD/FIDELITY MICRO 1000 micro CD/music system remote control
FIDELITY mini 2000 stack CD system
PLUS MUCH MUCH MORE!! PHONE FOR LATEST STOCK LIST
Remember, we give better than good service. Sorry no credit, cash on delivery or cash and carry PLEASE NOTE: WE DO NOT SELL UNWORKED PRODUCTS. ALL OUR PRODUCTS ARE WORKED, TESTED. REBOXED AND GUARANTEED TO 'A' STOCK STATUS

UNIVERSAL TRADE SURPLUS (UNITRADE)

UNIVERSAL HOUSE, TERN VALLEY BUSINESS PARK, MARKET DRAYTON, SALOP. Tel: 0630 655797/655801

Open: Monday - Friday $8.00 \mathrm{am}-6.00 \mathrm{pm}$ Saturday $\quad 8.00 \mathrm{am}-1.00 \mathrm{pm}$
Regular deliveries nationwide, or small shipments sent by courier

INCREASE YOUR SALES

OF THORN EX RENTAL GOODS WITH OUR TOP QUALITY REPLACEMENT BADGES. IDEAL FOR TV'S OR VCR'S (REMOVE TX SYMBOL FOR VCR'S).

THIS MONTH ONLY - SPECIAL OFFER PAICE EACH 10 p PER 100 7-50
PRICES ARE FULLY INCLUSIVE OF V.A.T ORDER NOW
SEND CQ/PO PAYABLE TO CHESHIRE TV \& VIDEO SERVICES (ADD £1.50 P\&P IF ORDER LESS THAN £15) OR PHONE NOW FOR IMMEDIATE DESPATCH QUOTING ACCESS/VISA NUMBER ON

CHESHIRE TV AND VIDEO SERVICES 10LYMMINGTON AVENUE
LYMM. CHESHIRE WA13 9NO

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702
 FAX: 081-332 0583

ALBA. AMS゙FRAI) BISH. DECCA .DORIC . BI_AUPUNKT FERGUSON FIDELITY. GEC. (irunidig. GRANADA hiltaclil hinari Indesit . ITT . Kimara nikkal MATSUI MLIRPPY' (OSAKI NORDMENDE LOEWE-OPTA. REEDIFFLSION PYE PHILIPS SANYO SAISHO SHARP SONY. SOLOVOX SUSLMU. TANDBURG. TELEFUNKEN THORN TRILMPH. HUANYU. (BOLDSTAR BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS
 LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTTD . 236 SANDYCOMIBE ROAD . RICHMOND . SURREY . TW9 2EQ.

Mon-Fri 9 am 1012.30 pm Sat 10 am to 12 noom

CAR RADIO CASSETTES

FOR EXPORT GOOD WORKING T.V. s AND VIDEOS VHF/UHF. PAL 1, 11, 60, SECAM, NTSC NTSC 4.43, 3.58, 50 Available. Also white goods are available Contact: Simon Pritchard Intercity Industries Ltd,
Tel: 0902791323
Fax: 0902791123

- MISCELLANEOUS $=$

FERGUSON SV13 HI-FI. £70.00 each $£ 600$ for 10 plus VAT Handsets available. Leatherhead 0372377822

Advertising
 in

Television gets results

Do you turn away work on ca radio cassettes because they have security codes.
Most radio cassettes can be decoded just by replacing the eeprom (memory IC) with that of a known code, or sending the original for re-coding.
All popular makes including Philips. Ford, Pioneer, Clarion Grundig, Blaupunkt, Fisher, JVC Alpine, Volvo, etc
Send now for introductory offer, one of each of most popular eeproms + comprehensive eeprom/radio decoding list. Offer includes Philips X2402P: Ford MN010: Blaupunkt Boston CC20 9346: $£ 17.63$
Original eeprom re-coding service £10.00
Radio's sent for decoding from
£20.00
Inc. of VAT and $p \& p$

RADIO DECODING

 EQUIPMENTWe will beat any genuine written quotation for supplying a computer or software to decode radio cassettes, ring us first.

For technical or general information phone 0543572523 or 0831806574. C.D.H. ELECTRONICS 3 Common Walk, Huntington, Cannock, Staffs WS12 4NB C.D.H. ELECTRONICS

CLASSIFIED CLASSIFIED CLASSIFIED LLA5SIFIED CLRS5IFIED

RADIO CODE RE-PROGRAMMER MK 2

ATTENTION ALL SERVICE DEPARTMENTS.
For those of you who still do not have the equipment to decode radios, give us a call. Plug our decoder into your IBM or compatible computer and decode radios in a few seconds. You can start with basic system for as little as $£ 395.00$ +
VAT. All leads, connectors, layouts and operating instructions supplied. All enquiries to:

Electronic Sound Systems

62 High Northgate, Darlington, Co Durham Tel: 0325 484089, Mobile: 0860221099 or Fax: 0325465921

AVO MULTIMETER. Model $8, £ 45.00 .5 \overline{500}$ WAMTED. KT66, KT88, PX4, PX25, transis volt meters f 30.00 . Prices plus VAT and p\&p. Send SAE for lists of Surplus Instruments \& Scopes etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel. 0532 496048.

OCMRE MILL. Technical Services. Grundig TV spares for most models to 1985 , fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton, Nr. Malmesbury, Wilts SN16 9DR. Tel. 0666823228. PRIVATE RETAILER. has excellent part exchange colour televisions and videos to clear. Tel. 0494 8i4317.
clear. Tel. 0494814317 ,
VIDEOCRYPT DECODER. Service sheet with smartcard contact, details Eurocrypt card Interlace, £12.00. E.M.O., Ramsbottom, Lancs BLO 9AG. Tel. 0706823036.

WANTED. KT $66, \mathrm{KT} 88, \mathrm{PX} 4, \mathrm{P} \times 25$, transis-
tors etc. If possible send a written list, prompt reply and payment. Billington Export, Unit 1E, Gilmans Industrial Estate, Billingshurst, Sussex. RH14 9EY. Callers strictly by appointment only, Phone 0403 784961 Fax 0403783519
TELEQUIPMENT D67A oscilloscope including probes leader LCT 910 C.R.T checker, both perfect condition. £200 0539532984.

WANTED tube rejuvenator prefer B\&K 490 model, cash waiting 0582478448. METERS. reconditioned. $£ 1.00$ slot meters for TV rental $£ 6.95$. Convert 50 p slots to $£ 1$ using coin mechanism £2.95. 50p slot 2.95. Audiotech. Tel. 07903245. EX-EQUIPMENT Television and Video spares available. Panels, Lopt, Tuners, Handsets etc. J.H. Services. 0243820311

TELEEOTSLOR CLASSIFIED LINERTE

advertisements can be submitted on this coupon with a cheque made payable to Reed Business Publishing, Television Classified Room 11th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The charge is $£ 8.40$ per line plus $171 / 2 \%$ (minimum $£ 33.60+$ VAT.)

$\ldots . o r n e x t ~ a v a i l a b l e . ~$
Total insertions
.Total of Cheque $£$. .Address.
Post Code
\qquad
Tel Num
Signature
Debit my Access/ Visa Card (delete)

Expiry Dote

DISH AND LNB SUITABLE FOR D2 MAC £15
 POST £5 + VAT

New Eprom for converting
Ferguson BSB Receivers to D2 MAC and PAL - 99
channel is tunable and each
one can be put into memory

- also has menu. £20

SEND FOR DATA.

[^0]: Name

[^1]: Published on the third Wednesday of each month by Reed Business Publishing Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Marlin Graphics, 2-4 Powerscroft Road, Sidcup, Kent DA14 5DT. Printed in England by BPCC Magazines Division, Carlisle Web Offset, Cumbria. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9 LS 10712615000). Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Ltd., South Africa - Central News Agency Ltd. "Television " is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: WANTED
 WANTED
 Regular Supply of Ex-Rental Colour TVs and Videos. Cash on Collection Quick Service
 Tel. 0742312832

 ## TRAINING

 If you require a home study course in the fundamentals of electronics, either to begin a carecr, pursue a hobby, or refresh your knowledge, a BASIC ELECTRONICS course, from the Direct Personal Learning scheme, could be just what you're looking for. Contact: K. Sparrow etc . . . 11 Claydon Green Whitchurch BRISTOL Avon BSI4 ONG Telephone: (0275) 835669

