SERVICING•VIDEO-SATELLITE•DEVELOPMENTS
FREE CATALOGUE INSIDE

Servicing the Finlux 3000 Chassis AD Converters for DMMs •DX-TV Servicing the Microvitec Cub CD-I Update Logic Probe Test TV Fault Finding•VCR Clinic

WERE ALMOST

 TFHPPATHIC
SHARP GRUNDIG PHILIPS Ifikdetrauson 63 SANSUI PMATSUI seísho MIrTAM

COPYRIGHT

© Reed Business Publishing Ltd., 1992. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

Correspondence

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television". Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.Editorial correspondence should be addressed to "Television" Editorial Department, Reed Business Publishing, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes to Vol. 39 are available at $£ 2.00$ from the Editorial office (address above) Indexes to Vols. 37 and 38 are available at $£ 1.50$ each. Photostats of the indexes to Vols. 31 - 36 can be supplied at $£ 1.00$ each. Make cheques etc. payable to Reed Business Publishing Ltd.
Binders that hold twelve issues of Television are available for $£ 5$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 23$ in the UK, £28 overseas (by surface mail airmail quote on request). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.
Subscription hotline for 24 -hour ordering with Credit Card number 0789200255.

BACK NUMBERS

Some back issues are available at $£ 2.50$ each from Television Back Issues, Room L333, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Make cheques/postal orders payable to Reed Business Publishing Ltd. Telephone Kathy Lambart on 0816528116 for details of issues available.

this month

705 Leader
706 TV Fault Finding
Reports from Eugene Trundle, John Hepworth, Brian Storm, J. Armagh, Michael Dranfield, Mike Leach, Joe Cieszynski, John Edwards and Roger Burchett

710 Teletopics

712 Next Month in Television

713 Letters

718 Servicing the Microvitec Cub Series 3
Arthur Rumbelow
The Cub was a popular computer monitor catering for linear/TTL RGB or composite video inputs. A look at its circuitry and notes on common faults.

721 Test Report: TestLab TL07 Probe
722 CD-I Update
Eugene Trundle

724 What a Life!
725 Satellite Notebook
726 Long-distance Television
DX conditions and reception. Review of the HS Publications D400 DX tuner.

728 Photostat Service

729 Servicing the Finlux 3000 Chassis
Steve Cannon
Servicing notes on this all-singing,
all-dancing chassis with its digital
control system via an I2C bus, with
details of the service mode and advice
on bus fault finding.
734 VCR Clinic
Reports from Philip Blundell, AMIEIE,
Brian Storm, Stephen Leatherbarrow,
Bob McClenning, Ronnie Boag, Nick Beer,
Mick Dutton and Ed Rowland.
736 The Operation of AD Converter Circuits
David Botto
Mainly on the ADC techniques used in digital multimeters.

739 New Publications

739 CD Player Casebook
Reports from Mike Leach, P.J. Roberts and
Philip Blundell, AMIEIE
740 Test Case 356

Roger Bunney
George Cole
Donald Bullock
Nick Beer

 \qquad

 \qquad

 \qquad

\qquad
\qquad

\qquad
C1177
C1180C
C1183

PRODUCT PROFILE

- D2-MAC/PAL satellite receiver.
- 98 preselections.
- Menu control for user-friendly operation.
- Full remote control.
- Parental lock.
- Eurocrypt scrambling/conditional access system.
- Internal Smart Card reader for conditional access.
- Headphone Connection.
- Dual-band LNC Switching
- D2-MAC processing includes : - Digital Hifi sound processing
- Automatic language selection
- Digital video processing compatible with future High Definition TV broadcasts (HD-MAC)
- Wide Screen picture processing
- TXT reception.
- PAL processing includes :
- 6 mono sound channels (main and multilingual)
- 3 stereo sound channels
- PAL encoding.

Various connection possibilities :

- 2 Euroconnectors for TV and Video.
- S-VHS output.
- 2 Dish antenna inputs.
- Magnetic polarizer control.
- Audio outputs CINCH.
- Terrestrial antenna loop through.
- PAL Baseband output.

HOW TO INGREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's lop selling DUAL TRACE OSCILLOSCOPES. Select from lour superb models. All, with the exception of the HM 1005, incorporate a useful COMPONENT TESTER. Size - all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm}$ 380 mm . Clear display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. Mains supply: $110 / 220,240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
All supplied with 2 PROBES, a COMPREHENSIVE MANUAL and a 2 YEAR WARRANT
HM203-7 20MHz STANDARD

SPECIFICATION

* 2 Channels

Bandwidth: DC - 20MHz
Sens: Ch.!, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Timebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC -40 MHz
Active TV - Sync - Separator
Variable hold-of
Trigger LED indicator
Calibrator: 1 KHz Square wave Component tester
Price $\mathbf{£ 3 3 8 . 0 0}+$ E59.15 V.A.T. FREE Specialist Carrier Delivery
SPECIFICATIONS
HM604 60MHz UNIVERSAL
2 Channels
Bandwidth: DC - 60 MHz Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering: $\mathrm{DC}-80 \mathrm{MHz}$ Triggering: DC - 80 MHz
Active TV-Sync - Separat Atter delay trigger Sweep delay Delay line
Trigger LED indicator
Calibrator: $1 \mathrm{KHz} \& 1 \mathrm{MHz}$ Sq. Wave Component tester Price $\mathbf{1 6 1 0 . 0 0}+\mathbf{£ 1 0 6 . 7 5}$ V.A.T. FREE Specialist Carrier Delivery
HM1005 100 MHz UNIVERSAL 3 channels. upto traces

SPECIFICATION

- Bandwidth:

Bandwldth: DC - 100 MHz Sens: Ch.1, Ch. $2, \mathrm{Ch} .3,1 \mathrm{mV} / \mathrm{cm}$ *Timebase A: $\mathbf{0 . 2 s}-5 \mathrm{~ns} / \mathrm{cm}$ *Triggering DC -130 MHz Atter delay trigger * Delay line

- Trigger LED indicator Overscan LED indicator - Active TV - Sync - Separator

Price $\mathbf{E 7 9 2 . 0 0}+\mathbf{£ 1 3 8 . 6 0 ~ V . A . T . ~ F R E E ~ S p e c i a l i s t ~ C a r r i e r ~ D z ~ S q . ~ W a v e ~}$ HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Analogue real time (Sam
Bandwidth: DC -20 MHz
Sens: Ch.1, Ch.2,1mV/cm
Timebase Digital: $5 \mathrm{~s}-1 \mu \mathrm{~s} / \mathrm{cm}$
Triggering DC - 40 MHz
Active TV-Sync-Sampling Max sampling rate: 2×20 Dot joiner
Dol joiner

Price $£ 610.00+£ 106.75$ V.A.T.
 B.K.'s CRT TESTER DIGITAL CAPACITANCE REJUVENATOR Tesis and rejuvenates blue, green and red guns separately. Fitted with delta and P.I.L. sockets. Compact size $120 \times 65 \times 60 \mathrm{~mm}$
Supply 240 V AC Price $534.00+$ £5.95 V.A.T.

DIGITAL CAPACITANCE METER Migh accuracy.
$0.1 \mathrm{pt}-2,000 \mu \mathrm{~A}$. LCO display - 8 ranges. - Accuracy + 1 . 0.5%. Full scale $+1-1$ digit

* Inc. protective case. Price $£ 39.99+$ £6.99 V.A.T

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multipiex circuits.

FEATURES

Carrier frequency $100+1-1 \mathrm{MHz}$ (adjustable).
Output level $0.1 \mathrm{mV}-10 \mathrm{mV}$.
Pilot signal $19 \mathrm{KHz}+1-2 \mathrm{~Hz}$
$L \& R$ separation over 50 dB
External Modulation $50 \mathrm{~Hz}-15 \mathrm{~K} \mathrm{~Hz}$
Pre-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ \& oft
Comprehensive test lead set included
Mains powered.
Price £299.00 + £52.33 V.A.T.

LEADER HIGH VOLTAGE

 METERED EHT PROBELight welght, easy-to-grip high-impact plastic handle with arc-over protection and no need of extra equipment. An indispensitle item in your TV service kit. Measures up to 40 kV DC with santy and the greatest of ease. Entirely seltprobe tip to the check point, read the meter for voltage.
A must for the Health and Satety al Work Acts.
Price $\mathbf{E 6} 6.00+$ £11.55 V.A.T.

B \& K PRECISION CRT ANALYSER-RESTORER
The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

- All CRT's checked identically, Including atl in-line and one gun types * Tests all under actual operating conditions (modet 490) : Exclusive multiplex technique (model 490) * Measure true dynamic beam current that actually passes through G1 aperture to screen Measures all shorts and leaks - preserving more CRT's *Tests ocus electrodes lead continuity finding faults that other testers miss "Uses most mowertul restoration method known with CRT's guaranteed as new for two years Obsolescence proof perpetual sel up chart updated and new adaptors developed * Tests and rejuvenates vDu's and oscilloscope tubes * A range of over 40 CRT base adaptors available * Increase profit * Pays for itself in months. rices
rices
$£ 509.00+£ 89.08$ V. A.T. Without adaptors..
Model 480 Single meter instrument inc 5 common adaptors £446.00 + โ78.05 V.A.T Moded 480 Single
Without adaptors $5375.00+$ [62.63 VA.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to faclitate the dish alignment of satellite TV systems and aerial alignment of VMF/UHF lelevision and radio systems. Signa levels can be accurately measured on the TC402-C and the TC90, aliowing the evalualion o
signal conditions for satisfactory operation. Both models have a clear LCO direct frequency readout, coupled to a multiturn tuning control enabling precise channel identification.

TC402-C VHF \& UHF

FEATURES
Three bands
Low VHF: $45-110 \mathrm{MHz}$
$\begin{array}{ll}\text { High VHF: }: 10-300 \mathrm{MHz} \\ \text { UHF } & 470-862 \mathrm{MHz}\end{array}$
Oigital display for dire
Digital display for direct frequency readou Built-in monitor loudspeaker AM FM.
Signal measurement from 20μ to 10 Powered by eight 1.5 AA batteries. Fully portable with sturdy carrying case.

TC90 VHF-UHF-SAT.

FEATURES
Five bands: Low VHF: $\mathbf{4 5 - 1 1 0 \mathrm { MHz }}$
$\begin{array}{l:l}\text { High VHF } & 110-300 \mathrm{MHz} \\ \text { Hyper VMF } & 300-470 \mathrm{MMz}\end{array}$

$\begin{array}{l:l}\text { VHF } & : 470-862 \mathrm{MHz} \\ \text { Satellite } & : 950-1750 \mathrm{MHz}\end{array}$
Satellite $\quad 950-1750 \mathrm{MHz}$
Oigital display for direct fre
Oigital display for direct frequency readout
Signal measurement VHF/UHF 20 V to Signal measurement satellite -70 dBm to -10 dBm .
Audible indication of satellite signal lev
Built-in-monitor loudspeaker AM/FM Built-in-monitor loudspeaker AM/FM (not satellite).
Price £ $499.80+£ 87.47$ V.A.T.

$$
\begin{aligned}
& \text { Powered by rechargable battery } \\
& \text { (complele with charger } 220 / 240 \mathrm{~V} \mathrm{AC}
\end{aligned}
$$ (complele with charger $220 / 240 \mathrm{VAC}$

BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE
PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
The Orion is a compact, bench instrument offering a wide range of patterns and facilities at a truly low cost.

In addition to a switchable sound carrier lacility which allows use with the majority of PAL TV systems, the 0
videomitors.
More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence video amplifier linearity, colour purity general colour pertormance focus etc.
A separate video input to modulate camera signals; fully variable RF and video outpu levels facilitating AGC testing; trigger output allowing easy triggering of difficult oscilloscope waverorms; external sound modulation input via DIN connector for frequency response testing

Just some of the features making the Orion Pattern Generator an indispensible tool in the manutacture, test, and servicing of televisions, and computer and video monitors.

FEATURES
Colour bars, pu
dots, focus, etc
dots, tocus, etc.
VHF/UHF Channels.
$5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers Internal/External Sound.
Exiernal Video Output.
Trigger Output.
Separate R, G, B and sync. O/P's
RGB@TTL A'iv.
Green + 0.3V Syncs.

- Composite Video Output

Variable RF/Video Outpul
Swltchable Video Polarity
Mains powered $220 / 240 \mathrm{~V}$
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Price £229.00 $+\mathbf{£ 4 0 . 0 8}$ V.A.T. U.K. POST PAID, export enquiries welcome. Visa/Access or cheque with
order, payable B. K. Electronics. OHicial Orders welcome from Govt. Oepts. cotleges, P.L.C.S etc. Large (AS) S.A.E. for technical leallets of complet range. Credit card orders are accepted by 'phone, lax or posi. range. Credit card orders are acce
Delivery normally within seven days.

 AINRRARED DETECTOR -

IR 1 STANDARD SIZE MIRROR

IR 5 CREDIT CARD SIZE

4zanaw $\rightarrow=$

IR 2 SPATULA MIRROR

IR 6 KEY FOB

ALL ONE PRICE £9.00 inclusive of VAT FREE POST \& PACKING

OR ANY TWO for £16 including VAT OR ANY THREE FOR $£ 20$ including VAT

DISCOUNTS CONSIDERED ON OTHER QUANTITIES. RING FOR DETAILS

Electronic Consultant Services

6 NETHERSOLE STREET, POLESWORTH, TAMWORTH. B78 1EE Phone: (0827) 330392; Fax: (0827) 331041

EXPORT ENQUIRIES INVITED

ONE OF THE LONGEST ESTABLISHED MAIL ORDER SUPPLIERS, WE CONTINUE TO GIVE FAST, FAIR AND EFFICIENT SERVICE. WE HAVE STOCKS OF
\star TELEVISION COMPONENTS
\star VIDEO COMPONENTS
\star REMOTE CONTROLS
\star CABLES, LEADS, PLUGS etc
\star AERIALS AND ACCESSORIES
\star HOME SECURITY PRODUCTS
\star HOME SECURITY PRODUCTS

TRUST US!!
(ASK FOR FULL BROCHURE)
BRAND NEW TV'S + VIDEOS

e.g. 14" REMOTE CONTROL TV	$£ 125$ + VAT
TWIN SPEED R/C VIDEO REC	$£ 174$ + VAT
10" MAINS/BATT CTV R/C	$£ 140$ + VAT
21"MUITISYSTEM R/C TV	$£ 222$ + VAT

AND NOW SATELLITE SYSTEMS

WE HAVE A FULL RANGE OF FIXED AND MOTORISED SYSTEMS. ASK FOR FULL LIST AT TRADE PRICES INCLUDES LNB'S, DISHES, MOUNTS, RECEIVERS, ACTUATORS, POLORISERS etc.

e.g. AMSTRAD SRD 600 (D2 MAC)	£319 + VAT
PACE SS920 (D2 MAC)	£245 + VAT
1.2 db LNB	£45 + VAT
RG6 CABLE (100M)	£24.95 + VAT
CALLERS WELCOME AT TRADE COUNTER	MON.FR19.50m

CALLERS WELCOME AT TRADE COUNTER
ON-FRI $9-5 \mathrm{pm}$
SAT $9-4 \mathrm{pm}$

EDITOR

John A. Reddihough

EDITORIAL ASSISTANT
 Tessa Winford

Please note that the telephone numbers below are for contact with the advertisement departments. Editorial enquiries should be sent to the editor at the address given on page 693 or faxed to 081 6528956.

ADVERTISEMENT MANAGER

Jan Thorpe
0816528114

SALES MANAGER

Shona Finnie
0816528115

CLASSIFIED

SALES EXECUTIVE
Pat Bunce
0816528339
Fax 0816528931

ADVERTISING
 ADMINISTRATION
 Kathy Lambart

081.6528116

ADVERTISING PRODUCTION

Brian Chapman
0816528681
Fax 0816528917

PUBLISHER

Robert Marcus
0816523930
READER HELPLINE
For help if you have difficulty obtaining Television phone 0816528620

SUBSCRIPTION ENQUIRIES
 0444440421

SUBSCRIPTION HOTLINE

24-hour subscription ordering with credit card number phone 0789200255

COVER PHOTO

This month's cover photograph shows the Finlux 3000 chassis: see servicing article on pages 729-731.

『ङ ङङ

A Digital Future

While the European Commission continues with the sorry saga of trying to get agreement over the use of MAC for satellite TV broadcasting in Europe the industry itself seems to be looking and working towards the next generation of TV systems and equipment. The EC effort doesn't seem to be able to make any convincing progress. Apparently some forty major European companies, broadcasters and satellite operators have at last agreed in principle to the wording of a memorandum of understanding. They've got that far after months and months of haggling and discussion. The agreement - to adopt D2-MAC and go on to HDMAC - might be implemented if the Commission is able to provide some $£ 590 \mathrm{~m}$ of funds to help pay for the cost of installing MAC equipment. Its ability to do so depends on achieving the unanimous approval of the EC governments to this expenditure. This seems unlikely to occur. A majority of finance ministers have attacked the proposal while the UK's technology minister Edward Leigh has commented that the figure is "totally unacceptable". One wonders why the EC persists. The industry is half-hearted, and governments are unwilling to agree to the expenditure. But the EC is one of those lumbering, monolithic entities that once set in motion is hard to control let alone stop.
Meanwhile increasing research effort is being put into digital TV systems. Both the BBC and the ITC are progressing along this path. They are two of twenty five partners in the European digital terrestrial television broadcasting (dTTb) consortium. The BBC recently demonstrated compressed digital HDTV transmission via satellite and is playing a leading role in the development of digital communications technology under the RACE programme. Writing in the latest issue of the ITC's quarterly magazine Spectrum Gary Tonge, the ITC's Controller of Engineering, describes the progress being made with the SPECTRE (Special Purpose Extra Chamels for Terrestrial Radiocommunications Enhancements) programme. This project is being carried out by National Transcommunications Ltd. under contract to the ITC. It was started by the IBA in 1988 as an investigation into the possibility of using modern modulation methods to increase the usefulness of the u.h.f. TV spectrum. More recently the objective has changed to proving the feasibility of a digital terrestrial TV broadcasting system.
As always. one major problem is how to move from the present broadcasting standard to a future one in a manner that causes the minimum disruption to viewers. The proposal here is to use simulcasting. The four existing TV channels plus Channel 5 if appropriate would be broadcast simultaneously with current transmissions but using a high-quality, widescreen format. Some frequency planning studies already carried out indicate that the u.h.f. frequencies required for the purpose would be available in most, but not all, parts of the UK. Because the average power levels required for the digital transmissions are significantly lower, while such transmissions can have a high immunity to interference, they can be squeezed in where extra PAL transmissions would be impossible. Viewers would be encouraged to buy a digital receiver or a dual-standard one when they renew their sets. It's estimated that the simulcast period would last for about fifteen years, at the end of which time few PAL sets would remain in use. It worked with the $405 / 625$ changeover, it could with digital TV
In addition to the use of a more efficient technology for terrestrial HDTV transmissions the digital approach offers other advantages. Depending on the resolution required. a u.h.f. frequency slot could be used to carry several channels, while the digital standard could be made compatible with developments in digital VCR and dise technology.
All this remains in the experimental stage at present, but NTL has built and demonstrated modulators and demodulators (this work was completed at the end of last year) and is carrying out field tests of the system at the Stockland Hill and Beacon Hill transmitters. At a conference held in Mexico this April broadcasters from Europe, the USA, Japan and other regions agreed to co-ordinate their studies on digital terrestrial TV with a view to achieving optimum standardisation. The target timescale is for CCIR approval of a standard for the USA in 1995 (the FCC is due to approve a US HDTV standard, which will almost certainly be digital, in 1993 for implementation in 1998) and for Europe in 1998. As Dr. Tong points out, it usually takes five-ten years from the agreement of a standard to its application. Thus European terrestrial digital TV is not likely to be available for a decade or so.
The EC's MAC efforts relate to satellite TV of course, and satellite MAC could coexist with terrestrial digital TV. But since the future obviously lies with digital TV there seems to be little point in investing in MAC. MAC was of course the IBA/ITC's baby: the ITC is now leading the way into the post-MAC era.

TV Fault Finding

 John Edwards, John Hepworth, Brian Storm, Mike Leach, Roger Burchett, Joe Cieszynski and Michael Dranfield
Hitachi C14P216 and C14P218

The following two faults have cropped up several times now For failure to start up (stuck in the standby mode) check R902 and R903 (both $82 \mathrm{k} \Omega$) in the power supply. For loss of on-screen displays check whether $\mathrm{R} 008(470 \mathrm{k} \Omega)$ is open-circuit or dry-jointed.
E.T.

Hitachi G6P Chassis

The on-board controls worked all right but there was no response at all to remote control commands. The handset emitted the right control pulses, and a very convincing pulse train was present at pin 15 of the control microcomputer chip. It took us some time to discover that L1201 in the IR preamplifier circuit was open-circuit. Normal operation was restored when L1201 had been replaced - but there was no discernible difference in the data bursts at pin 15 of the micro!
E.T.

Sanyo CBP2145

For the first ten minutes there were no signals and only channels 3 and 4 could be selected. During the period of the fault there was ripple on the 5 V line. Replacing C395 ($100 \mu \mathrm{~F}$, 16 V) restored the signals but they were noisy with slight lack of height. The fault again cleared after ten minutes. This time replacement of C $397(100 \mu \mathrm{~F}, 16 \mathrm{~V}$) provided a cure. These sets seem to be becoming noted for the failure of $100 \mu \mathrm{~F}, 16 \mathrm{~V}$ capacitors to work from cold.
J.H.

Hitachi NP8CQ Chassis

As there was no sound I replaced the HAl 124A intercarrier sound/audio amplifier chip IC401. But I'd jumped to an overhasty conclusion - there was still no sound. The cause of the fault was dry-joints at pins 7 and 8 of the chopper transformer T901. Note that this is the chassis fitted in the Osaki P60G that E.T. mentioned in the May issue.
J.H.

Murphy CTV3500 etc

In the May issue M.Dr. mentioned coming across a faulty standby transformer in one of these sets. This is in fact one of the model's most notorious faults. It's actually a Cathay chassis, which is also used in the Osaki Model P22G, the Phase Model PH20567 and the Susumu Models FXI4S and FX1400R. Spares can be obtained from Headland Electronics. Water Lane. Eggborough, Goole, North Humberside DNI4 OPN (0977661 223) .
J.H.

Bush 2020

The TDA3562A colour decoder chip used in this set has been mentioned in these pages several times recently. It's the Telefunken version. You can fit other makes such as Philips if R513 is changed from $180 \mathrm{k} \Omega$ to $68 \mathrm{k} \Omega$ and R 515 from $120 \mathrm{k} \Omega$ to $150 \mathrm{k} \Omega$. If you fit a TFK chip later the values of these resistors must be restored to the original ones.

An interesting fault occurs when R419 (470k $2,0.5 \mathrm{~W})$ goes open-circuit: you get a vertical black line on the screen, two inches from the right-hand side. This resistor is in the
line flyback pulse feedback path to the TDA2579 timebase generator chip.

If the set jumps into and out of standby when a channel change or adjustment is being made change the MDA2061 EEPROM chip IC2.
J. \mathbb{H}.

Panasonic TX24A1 (Alpha 2 Chassis)

The allegations against this set were of intermittent flashing and going off. Naturally it worked perfectly until it was returned to the customer's house, whereupon it displayed "speckled" white bands like mains interference, the colour flashed on and off and it finally lapsed into standby. Back at the workshop I removed Q802 to prevent the set switching off. The fault was clearly evident and because of the apparent arcing I changed the line output transformer. This failed to improve matters. Scopes were then hooked up to h.t. lines, l.t. lines and data lines but nothing untoward was detected.

Despair was fast setting in when my workshop colleague came up. Intrigued by the fault he thoughtfully tapped the screen. This cleared the fault. Could the tube be faulty? When the fault next returned I crept up carefully, tapped the screen - and again it cleared! I then had a bit of inspiration. Could one of the tube's fixing bolts be loose? Sure enough the one bolt that held the earthing springs for the tube's Aquadag coating was loose. There were no further problems once it had been tightened.
B.S.

Salora J Chassis (Ipsalo 2)

We've had several cases where the h.t. supply to the Ipsalo circuit has been present and line frequency pulses have been present at the collector of the "lower" switching transistor TB70) but the set hals otherwise been dead. In each case there was a dry-joint or open-circuit between pins 13/14 of the Ipsalo transformer MB500 and the collector of the BU208 line output transistor TB501.

This chassis is also used in the Hitachi CPT2050/2060.

Hitachi CPT1476

The problem with this set was teletext lines over the top third of the raster. I decided to check at the field flyback blanking pulse source, which is pin 7 of the field output chip IC601. Sure enough there was a dry-joint here. Pins 6 and 5 also looked as though they could do with attention. Resoldering put matters right.

Field bounce and similar trouble with these sets has been traced to dry-joints around this chip. It appears that the pins push up through the print due to heat expansion. It's best to melt and resolder all seven pins whilst about it.
J.A.

Hitachi CPT2658

There was a very intermittent fault with this set, loss of the TV picture with the screen going very dark. No amount of kicking, tapping, freezing or frying would bring it on. Luckily it eventually put in an appearance for a decent length of time and I was able to pounce while it wasn't expecting me.

PROFESSIONAL TRAINING IN SATELLITE INSTALLATION

Demand for Satellite Television both in the UK and Europe is increasing at an astonishing rate. In just two years over a million dishes have been installed in the UK alone. By 1996 over six million homes are expected to have a satellite system. THIS MEANS OVER THE NEXT THREE YEARS SOME FIVE MILLION SATELLITE TV INSTALLATIONS ARE EXPECTED IN THE UK.

These installations are now likely to come sooner, rather than later, given the recent coup by BSkyB in obtaining exclusive rights to broadcast live foothall coverage.
If you have a technical background and are interested in becoming a prart of the satellite revolution then why not become a qualified satellite television engineer?
NE:TWORK TR, \INING has trained over 200 engincers to date and can offer the following courses:

- Two day fixed and motorised systems installation and maintenance programme. Practical hands on training and useful business advice to enable you to set up as an independent operator. Recognised qualification on completion.
- Four day City \& Guilds approved training programme covering installation of communal satellite systems for blocks of flats and hotels, known as SMATV. There are close to four million of these installations in the UK. City \& Guilds qualification awarded to successful candidates.

All courses held at the University of London.

For further information

 and a free information pack please contact us on0718373388.

SOUY TUBES he Processed with onicinal sony cuins

HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini (22.5) Neck and FST Tubes.		
	A51231x 11 - 46.600	58.00
	Asis	asele
	Astisex maxd	Asineox sory
		(ex
	(eater	atem
	(my cefoio	
	Soly	AxM55001
$\begin{aligned} & \text { For tube types not listed } \\ & \text { please enquire. } \\ & \text { All Tubes Guaranteed } \\ & 12 \text { Months } \end{aligned}$		
y low Delivery Charge for Deliveries within M25 Area		
bRAND NEW TUBES AT COMPETITIVE PRICES WHiLE STOCKS LAST $\begin{array}{clllllll}\text { AXM37-001 } & \text { A34EACOOX } & 3702 B 22 & \text { 510SKB22 } & 510 U D B 22 & 510 X C B 22 & 510 Y T B 22 & 510 Z C B 22 \\ 370 L H B 22 & 370 K R B 22 & 510 B V B 22 & 510 S L B 22 & 510 \mathrm{VHB} 22 & 510 X T B 22 & 510 Y U B 22 & \text { A56-540X }\end{array}$		
D.I.Y. Television Tube Polishing Kit Worivice Pafiven		
		well viw
		cell

The largest Database of CD, TV and Video Repair Tips information in Europe Available On-Line or in Books and now...

$N E M S A M E$	
PCVERSON	AIWA
	AKAI
	ALBA
	AMSTRAD
Purchase the whole system or just one manufacturer	ARISTON
	ARISTONA
It's fast and easy to use	BAUER
There are no hidden costs	BRANDT
	BLAUPUNKT
Updates available	BUSH
	CANON
Suitable for any IBM compatible PC	CHINON
	DECCA

FERGUSON FIDELITY FISHER FUNAI GEC GRAFTZ GRUNDIG HANSEATIC HITACHI INTERFUNK

ITT

JVC

 KENDO KENWOOD LOEWE MARANTZ MATSUI METZ MITSUBISHI NEC NECKERMAN NOVA NORDMENDE ORIONPANASONIC PHILIPS PIONEER PYE QUELLA QUELLE SABA SAMSUNG SANYO SCHNEIDER SHARP SIEMENS SONY TATUNG TELEFUNKEN THOMSON THORN TENSAI TOSHIBA TELERENT UHER UNIVERSUM

The cause seemed to lie right at the beginning, in the control system, not on the main panel. In the text mode there should be a steady 4 V at pin 9 of IC13. In the mixed mode this voltage should pulse and it should be zero in the TV mode. When the TV picture vanished the 4 V was present. As the 5 V supply was present I suspected the chip and consulted our helpful Hitachi distributor. He pointed out that the chip is expensive and that they'd had a few odd video faults that a new chip didn't cure. He suggested replacing the 17.73 MHz crystal XTG2 - and proved to be dead right!
J.A.

Toshiba 285T8BZ

This Nicam set produced a loud screeching noise from the loudspeakers at switch on. It lasted for about a second then disappeared. We scratched our heads a bit and decided to replace the TDA4601 chopper control chip. This seemed to improve matters but the fault persisted. We isolated various supply lines and used the workshop power supply but were unable to trace the cause of the fault to any particular stage. A check with the circuit then showed that there's a $1,000 \mu \mathrm{~F}$ capacitor connected to the Audio B+ rail. It's mounted close to the audio output chip. Fitting a replacement provided a complete cure. The circuit reference is $\mathrm{C} 638(1,000 \mu \mathrm{~F}, 25 \mathrm{~V})$ M.L.

Hitachi CPT2658

The ticket said "stuck in the video mode". Sure enough there was a blank raster and no sound. The set wasn't actually stuck in the video mode however because a video signal fed in via the scart socket produced a good picture on channel 0 only, proving that the video switching stages were working correctly. A quick check on the tuning voltage line suggested that the SAA 1293 remote control chip was also probably doing its job correctly. As all the voltages around the CD4053 switching chip ICB102 were in order in the video and TV modes we made our way to the TDA4505 chip which contains the i.f. circuitry. A replacement restored good pictures in the TV and video modes but a new problem was present. There was grossly excessive height and the operation of the height control had become very one-ended.

I consulted Hitachi technical who told me of a modification to carry out when this chip is replaced. It can take a good half hour as it involves fourteen components. The changes are as follows: change RB117 to $1.2 \mathrm{M} \Omega$; RB155 to $18 \mathrm{k} \Omega$; CB149 to 2.2 nF ; CB 126 to $33 \mathrm{nF} ; \mathrm{RB} 129$ to $1.8 \mathrm{k} \Omega$; CB127 to $4.7 \mu \mathrm{~F}: \mathrm{RB} 134$ to $2.2 \mathrm{k} \Omega$; RB135 to $470 \mathrm{k} \Omega$; RBI 22 and RB123 to $220 \mathrm{k} \Omega$; RB1 10 to $1.5 \mathrm{M} \Omega$; CB130 to 33 pF ; and RBI28 and RB587 to $3.3 \mathrm{k} \Omega$. When this had been done I switched on and found that the field scanning was now o.k. and well within tolerance.

But yet another problem was present. There was no colour and the line timebase was twitching. Very slight adjustment of the line hold control produced colour, but it kept dropping out and was very unstable. I stared at the circuit and noticed that two of the above modifications were in the line hold circuit. The original values for CB126 and RB129 were 68 nF and $1 \mathrm{k} \Omega$ respectively. When these were fitted the set finally performed correctly, with good pictures, colour and field scanning. Has anyone else had trouble when replacing this chip?
M.L.

Toshiba 217D9B

Recent storms have produced some real problems. This Nicam set had taken a blast and suffered damage to its audio department. There was no sound at all, but the fact that the

Nicam indicator was lit suggested that maybe the damage wasn't so bad after all. While carrying out various d.c. voltage checks we found that the mute line at pin 17 of the TA8720AN audio switching chip QV0l was high at 6 V . When the mute line was earthed the sound came up loud and clear. Following the line back to source we came to Q609 (BC557A) which was short-circuit base-to-emitter, thus applying some 5 V to the mute line and turning QV01 off. Replacing this transistor restored normal sound.
M.L.

Ferguson TX98 Chassis

This set was dead with the mains fuse FSI blown. It was no surprise to find that the chopper transistor TR3 was short-circuit. I replaced it along with the TDA4600-2 control chip and all the usual things that can cause this type of chopper circuit to fail. As there didn't seem to be anything else amiss I switched on. The 115 V line was now present but there were no 12 V and 5 V supplies. Circuit protector ICP1 had gone open-circuit.

I applied 17 V to the TBA8138 1.t. regulator chip IC11 from the bench power supply, with its outputs disconnected. This proved that the regulator was faulty as the 2A bench supply overloaded. Fitting a new TBA8138 restored the supplies but the set was still dead. Scope checks around the TDA4505E-N 1 chip IC2 showed that the line oscillator was working, but there was no line drive output at pin 26 even with the line driver transistor TR7 disconnected. At this point I discovered that TR7 was short-circuit. Replacing IC2 and TR7 restored a stable picture, but the sound didn't appear until the TDA2611A audio output chip IC4 had been replaced. So much for all the overload protection that manufacturers boast about in modern power supplies! J.C.

Rank Z718 Chassis

This set was dead although its fuses were intact and the 275 V h.t. supply was present - at 300 V because it was unloaded. I checked all the usual causes of this symptom - dry-joints on the timebase and line output panels, the start-up capacitor C18 being open-circuit and burn-ups around the 12 V regulator transistor VT20 - but they were all o.k. So attention was turned to the trip circuit. The main items here are VT4 and VT5 which are connected between the base of the line driver transistor and chassis to remove the line drive in the event of an overload. Both transistors were o.k., as was the zener diode D7. The cause of the fault was C22 $(220 \mu \mathrm{~F})$ which is at the input to the trip and was open-circuit. Even when tested after removal this capacitor didn't appear to be in any way defective.
J.C.

Philips CTX-E Chassis

The job card said "went bang then dead". Sure enough the mains fuse had blown apart - only the end caps remained in the fuseholder. The bridge rectifier had gone short-circuit, but when this had been replaced and a new fuse had been fitted the set remained lifeless. There was h.t. at the collector of the chopper transistor 7355 but it wasn't being switched on. By chance I noticed that resistor 3317 (100 kS) was discoloured and when tested it turned out to be open-circuit. It provides the BC548 transistor 7322 in the chopper control circuit with base bias. I decided to check this transistor which also proved to be open-circuit. When these two items had been replaced the set at last came to life. Sound blurted out, the e.h.t. rustled up and the tube's heaters glowed, but there was no picture. Turning up the setting of the first anode control on the tube's base panel showed that the cause
of this was field collapse. As the TDA3651A field output chip's 26 V supply was present a replacement i.c. was fitted. At last all was well.
J.E.

JVC 7731R (Ferguson TX9 Chassis)

The complaint was of a very grainy picture on all channels. We eventually found that the cause was the SAW filter on the small plug-in i.f. board. The symptom was very much like that produced by a low-gain tuner.
J.E.

Goodmans CTV2R

This set was dead. The power supply fuses were intact but the $5.6 \Omega, 5 \mathrm{~W}$ surge limiter resistor R81 was open-circuit while the STR5412 power supply regulator IC102 and the R2M protection avalanche diode D141 were short-circuit. No other shorts could be measured with these components out of circuit. Normal operation was restored after replacing them.
J.E.

Hitachi CPT2658

When this set was switched on it remained dead with no channel indicators alight. There was 300 V across C 707 but nothing at the collector of the S2000AF line output transistor T701 because R707 ($22 \Omega, 5 \mathrm{~W}$) was open-circuit. A check then showed that T701 was short-circuit collector-to-emitter. Replacing R707 and T701 brought the set back to life: check the orientation of T701 when fitting it on the PCB as it's very easy to insert it the wrong way round, with disastrous results.

Ferguson TX10 Chassis

This set would trip every half hour or so. There were two causes: dry-joints on the chopper transformer and internal arcing in the degaussing posistor.
J.E.

Decca 130 Chassis

There was field collapse because the TDA1670A field timebase chip IC301 was short-circuit while R438 (1.2) which provides its 23 V feed was open-circuit. Replacing these items restored normal operation.
J.E.

Sony KV1400

There was no colour and the picture was very washed out with little contrast. With any set of this age dried out electrolytic capacitors on the various power supply lines are prime suspects, so our first check was on the 12 V rail. Bingo! The line was low at 8 V . But checks on the relevant capacitors showed that they were all o.k. When the voltages around the 2SD471 12V regulator transistor Q811 were checked we found that its base and collector were at the same voltage while its emitter was low at 8 V . Q811 was short-circuit between its base and collector of course. As we didn't have a 2 SD471 we fitted the better rated 2SD774. When we switched on we got a picture that would put any modern $£ 150$ cheapo CTV to shame.
M.Dr.

Sharp C2072

This set was suffering from lack of height - about two inches were missing at the top and bottom of the screen. I've had this problem before, so I knew exactly where to look. The 15 V line that supplies the height control and the timebase
generator chip comes from regulator transistor Q209 on the tuner/i.f. panel. As the 28 V input to this transistor is derived from the line output stage a start-up supply is required for the line oscillator. This is provided by R606 ($12 \mathrm{k} \Omega$). What was happening was that the set was running off the start-up supply, with the result that the 15 V rail was low at 11 V given away by the fact that Q209 was cold (it normally runs very hot). Checks in the regulator circuit showed that R237 $(15 \mathrm{k} \Omega)$ was open-circuit. This resistor provides Q209's driver transistor Q210 with base bias.

On a previous occasion one of these sets came in because of poor sync, more noticeable on scene changes as pulling to one side. This set was brought in by another dealer who omitted to tell me that he'd turned the height control to maximum to fill the screen. The basic cause was the same, a low 15 V rail, with pin 3 (12 V supply) of 1501 low at 8 V . This time the trouble was due to a dry-joint on Q209.

Another of these sets had no sound. A finger applied to pin 1 of I302 produced a healthy buzz from the speaker, so attention was turned to the intercarrier sound chip I301. Its 12 V supply at pin 5 was missing because R319 (270s) was opencircuit.
M.Dr.

Ferguson 20E2 (TX90 Chassis)

This set worked perfectly except that it wouldn't respond to remote control commands. My tester showed that the handset was transmitting all right so attention was turned to the set. As pin 7 of the T9005N remote control decoder chip IC901 was receiving an input at around 8 V peak-to-peak the IR receiver and buffer stages were assumed to be o.k. This seemed to suggest that IC901 was responsible for the problem, but chips of this sort rarely fail. So the handset was investigated further. The manual gives setting-up instructions for a preset labelled "factory set freq adj" inside the handset. When this adjustment had been carried out everything worked fine. The handset had probably been dropped, causing the potentiometer to shift slightly.
M.IDr.

ITT CVC40 Chassis

No results or intermittent no results with this chassis is usually caused by dry-joints on the line output transformer. Pin 14 is the worst offender but resolder them all. This is now a very common fault.
R.B.

Hitachi NP6 Chassis

There was no sound after the set had received DIY attention. We found that the 12 V supply to the intercarrier sound chip was missing. "Butchers" are often defeated by the main PCB where it slides into moulded runners: the left-hand edge, with its narrow 12 V track, is easily damaged. In this case a chunk had been taken out. The blue phase control had also been damaged. It seems that the original fault had been a dirty blue background control.
R.B.

Some Quickies

Philips CTX-S chassis: There was normal operation when the main board was flexed upwards. Otherwise the set was dead because there was no h.t. The chopper transistor's collector leg had sheared off the body.
Rank T22 chassis: There was h.t. but no line scan as the 36 V supply didn't reach the timebase panel because of a burnt contact in the socket. With no 36 V supply there's no 12 V supply and as a result the line oscillator doesn't start up.
R.B.

Teletopics

MULTIMEDIA DEVICES

As mentioned in last month's leader (page 629) the first of a new generation of multimedia devices that combine computer with other technologies such as video and communications was demonstrated at this year's Chicago Consumer Electronics Show: it's the Apple Newton, which is described as a "digital personal assistant" and has been developed in conjunction with Sharp. Apple has since announced that it's developing a CD-ROM based device in conjunction with Toshiba. The small, portable device will have a display capable of text. graphics and moving video images to interface with the user. Sound will probably also be included. The companies are holding talks with Time Warner, in which Toshiba has a 6.25 per cent stake, about possible CD-ROM programmes. Although the likely market for such a device is far from clear, the companies are talking about annual sales of around five million in three years' time.

Meanwhile further information has been released on the UK-developed microprocessor adopted for use in the Apple Newton. It's a low-power, 32-bit RISC device that Advanced Risc Machines of Cambridge hope to sell to other manufacturers in the consumer electronics, computer games and telecommunications fields. GEC Plessey Semiconductors in the UK and VLSI Technology Incorporated in the USA are at present licensed to manufacture it.

THE MINI DISC

Sony has recently been demonstrating its Mini Disc system worldwide. The European demonstration was held at Salzburg. Of particular interest is the fact that the system's recording capability has now been demonstrated. On previous occasions only the system's playback capability was demonstrated, although it has always been described as a record/playback system. Sony expects to sell a million players worldwide in the first year, a quarter of a million of them in Europe. A catalogue of around 500 titles is promised for the launch towards the end of the year.

According to Sony the MD system now has the support of over 22 consumer electronics companies including Aiwa, GoldStar, Hitachi, JVC, Mitsubishi, Philips, Pioneer, Samsung, Sanyo and Sharp. Ten blank disc manufacturers will include Maxell, Philips, SKC and TDK. Software providers will include Sony Music, JVC and Toshiba EMI. Blank discs are likely to cost about $£ 5$ each.

display technology

JVC and the Hughes Aircraft Company have formed a joint venture to design, manufacture and market a new generation of liquid-crystal light valve (LCLV) projection TV systems capable of providing HDTV displays. Use of an LCLV enables a bright, high-resolution image to be projected on to a screen up to 30 ft wide in normally lit surroundings. The LCLV technology was invented by Hughes and is currently used by US government agencies such as NASA. Both companies will pool patents and technology. The venture, known as Hughes-JVC Technology, plans to launch its first professional system this autumn. Further models will be introduced next year, when sales are expected to reach 5,000 , increasing to 20,000 annually within a few years. The first consumer model will be introduced in 1994.

Thomson is to start producing high-resolution 12in. flat panel displays using gas plasma technology next year. They will conform to the industry-standard VGA specification. Current development work aims at reducing the pixel size from typically 0.8 mm to 0.3 mm . Matsushita recently demonstrated a 26 in . plasma display while Photonics Imaging in the USA has a 19 in . display in production.

Toshiba has developed a new type of colour LCD screen with a much faster response than current LC displays - the image can change in about 17 msec compared to as long as 60 msec with current types. It uses what Toshiba calls leveladjusted operation, and also provides a sharper image. The new display is still in prototype form and development to the production stage is expected to take a further three years.

CD-I

Philips and JVC are to produce a karaoke version of the CDI system - karaoke CDs should be available by the end of the year. When connected to a TV set words and pictures will be shown on the screen.

The first single-chip decoder for full-motion video decompression to the MPEG standard used by the CD-I system has been introduced by the US firm C-Cube Microsystems. The CL450 processor decodes SIF resolution (352×288 pixels at 25 Hz) bit streams at input rates between $1.2-3 \mathrm{Mbits} / \mathrm{sec}$, providing decoded video outputs in either RGB or YUV form.

SATELLITE TV

Europe's largest satellite TV receiver manufacturer Pace Micro Technology has seen its share of the UK market rise sharply over the past three months. This increase, now heading towards a fifty per cent share of the market, is due mainly to supply agreements signed with Comet, Colourvision, Clydesdale, Granada, Visionhire, Tandy and selected John Lewis stores. Further agreements are being negotiated.

The latest Financial Times satellite monitor figures indicate that some 68,000 dish installations were carried out in May. This is the second monthly decline since a peak of 94,000 was reached in March.

In a recent issue of Electrical and Radio Trading Graham Knight mentioned a new use for BSB receivers. A different EPROM can be fitted, replacing the soon to be obsolete BSB D-MAC software with D2-MAC software. This simple modification makes it possible to receive quite a number of European satellite TV channels once the aerial has been realigned.

BUSINESS NEWS

BREMA's final figures for 1991 show that camcorders, CD players and Nicam-equipped goods provided what growth there was in the UK consumer electronics market during this flat year. Trade delivery figures were as follows:

Product	1990	1991
Large-screen CTVs	$1,787,000$	$1,719,000$
Small-screen CTVs	$1,780,000$	$1,791,000$
VCRs	$2,210,000$	$2,110,000$
Camcorders	372,000	555,000
CD systems	$1,876,000$	$2,075,000$

Camcorder deliveries rose 49 per cent year on year, with household penetration approaching ten per cent. Deliveries of Nicam-equipped large-screen CTV sets increased by 46 per cent. Overall, some 33 per cent of CTV sets were Nicam-

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 40$ different patterms and variations．
\star Fully interlaced sync pulses with correct picture banking
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow． cyan，green，magenta，red，blue and black
\star Chequerboard
＊Mono outputs with border castellations，cross hatch，grey scale，vertical lines，horizontal lines and dots．UHF modulator output plugs straght into receiver aerial socket．
\star Additional video output for CCTV \＆VCR．
＊Facilities for sound output．
\star Easy to buidd kit，standard parts．Only 2 adjustments．No special test equipment required．
\star Mains operated with stabilised power supply
\star All kits fully guaranteed with back－up service
\star Also available with VHF Modulator．
Price of Kit
$£ 75.00$
Case（ $10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$ ）app
Optional Sound Module $(6 \mathrm{MHz}$ or 5.5 MHz$)$
£15．00

Built \＆Tested in Case including Sound Module
$£ 3.90$
Post／Packing $£ 4.50$
AddVAT 17.5% TO ALL PRICES
PAL COLOUR BAR GENERATOR（Mk4）
\star Output at UHF，applied to receiver aerial socket．
\star In addition to colour bars R－Y，B－Y etc．
\star Cross－hatch，grey scale，peak white and black level
\star Push button controls，battery or mains operated．
\star Simple design，only five i．c．s on colour bar P．C．B
＊Backup service available．
PRICE OF MK4 COLOUR BAR GENERATOR KIT
£35．00．CASE £5．80．BATT HOLDERS $£ 4.20$
MAINS SUPPIY KIT $\mathbf{5 5 . 8 0}$
（Combined P\＆P £4．50）

EASILY ADAPTED FOR VIDEO OUTPUT \＆C．C．T．

LINE OUTPUT TRANSFORMER TESTER

＊Saves time and money
＊Checks short turns．
＊Simple to use
＊Reliable．
＊Battery operated
＊Pocket size
PRICE $\mathrm{E} 20.00^{0}$
POST／PACKING £2．50
INFRA RED REMOTE CONTROL TESTER

\star Pocket size
＊LED＋audible indication．
\star Simple to use
PRICE $£ 20.00$
POST／PACKING£2．50

KITS AND PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \＆andio outputs £28．50 p．p．£1．8（）．
PAL DECODER KIT（Video to RGB）for Monitors $£ 27.00$ p．p £1．80．
PAL ENCODER KIT（RGB to Video）£18．50 p．p．ti 80.
CRT TESTER \＆REACTIVATOR KIT For Colour \＆MOno complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $\mathbf{£ 4 0 . 0 0}$ p．p． $\mathfrak{£ 4 . 5 0 .}$

TV \＆VIDEO SPARES

REMOTE CONTROLS
Replacentint for：Perguson，Ititachi．Phapos．Patnaxmic Grundig．ITT．Somy．Sansho，Granada．

Phone for mikh and morted
PHILIPS SPARES

K30．KT4，CFX－FHT Lead $\mathbf{E 4} .90$ p．p． 11 （ x ）

THORN／FERGUSON SPARES

TXIO Focus control $£ 8.50$ p．p．$£ 1 . \mathrm{St}$

TX9／10 Remote \＆tuning 150\＆A（incl SAA50！2）t2．50p．p．El． 80

TX10 Stereo Audio Board £3．50 p．p．£2．50．
TX90 Mains TX $£ 23.00 \mathrm{p} . \mathrm{p} . \mathrm{E} 450$

IC SELEC11ON									
AN5521	c． 80	Sative3	55．${ }^{11}$	18，	\＄1．20	TDALS	c．	1 BAt	4580
ANSinx	c2．20	S\13， 413.3	cr．$\times 0$		c2．${ }^{\text {a }}$	7 DA 59	E4． Ku	IDDAFir	（4．80）
babsima	22．80	5AB31137	£15．80		（2．40）		E6． Ko	10.55	¢9．80
（ NXH ）	（4．x）	Satid32	t． 4.54	［13， 185	22．24	TPAzhla	（1．9）	$113 \wedge t\left(\begin{array}{l}\text { a }\end{array}\right.$	4.85
FRGG77	87．20	SA／10303	¢2．21		c1．s0		［3．210		12.80
｜1A11211	［2．${ }^{\text {a }}$	SI $4711+4$	14．00	icasm	ceno		${ }^{5} 3.20$	1D） 1 Hel｜	t6．80
HA！1d3	¢2．10	SL．tst	c． 20	［1） 1113 $^{\text {a }}$	¢2．40	1i） 21a	\＄5．70	113 人5it	so
HAS 13,3	¢11．80	SL＿（4）	［2． m_{1}	119，1137	51.90	1Dazesib	¢x． 60	T11 Sis\％	811
1．A4t45	［3．00	St 14，3010	cle	TDAリH4	（2．94）	（1） ¢－67a $^{\text {a }}$	¢3． 211	1D）AE153	80
1 A $7 \times$（x）	\＆1．80	St．14．3	11.40	TDAltav	［3．80	［10ヘ3asul	¢3． 819	TDAsims	t6． 80
	22．81	S＊762？	［1．80）	71DA142	4． 80	1DA2！（4）	t．	TDASIM	si1
（A7x ${ }^{\text {（1）}}$	c3．50	SN76705	£9．80	TDAlitis	$\underline{22} 20$	TBA7 \％	cr． 80	TDAMH	3．80
1，A783：11	E． 80	sth 5335	cheno	TDAlw	¢2． 20	TDA1（4）	4．201	$1{ }^{1}$ PA	B． 30
M243 ${ }^{\text {a }}$	47．80	sth533	¢6． EHO_{1}	Tidallmiz	¢． 20	TOAㅎan	th． 811	1DAM5 3	． 61
	¢14．84	STK533	（18．41		55．70		（7，50）	TEA liky	210
M＋918｜31	t9． 80	STK53\％	c6． 30	TDA147	2． 20	1D入530	t6． MaI_{1}	TA Atit	3． 510
M ${ }^{\text {H／4，}}$	（9，80	S1h 5334	c6． 80	T1）${ }^{\text {a }}$（1）	t6． 619	Tolism	¢6． 80	［EA1134	． 81
MClianer	55.80	57k 5121	co． 80	11） 11670	E310	T11） 3510	4.410	LEAMm	20
MDA IK $_{121}$	¢7．80	STK5m	E850	［10 11701	c3．80	T1） 15510	t9．80	TEAZIKSA	
MDAこM\％	C3		c6． 50	11） 1	E． 211	F12， 154	［2．51		
ML >37	［3．40）	Sthisit	E5． 10	TDA1＞70	ci． SO_{0}	TDAB4	13.50		${ }^{3} \times 8$
ML．926	E4．80	STK 518 z	¢5．80	FIDAGIS	22．80	T1PA5361a	${ }^{15.80}$	TMP	
M $1215+25$	E15．$\times 10$	sTk7ink	E6． 80	PDAM 41	c．3．20	1b八is6zA	tc．$\times 0$	8184	［13，51）
SAAI624	¢5．80	STK 73.4 K	± 10.40	TDA140	6350	113＾354	ciso	Pr	259
SAALILS	55.80	S7R＋1	［7．80	TDAごはい	¢7．k0	Tinaision	${ }^{\text {t } 5.80}$		
SAAlİ－	E． 5.50	STR 50	¢6．80	11）\ごイ゙1	c．20	T1） 3571	［2．84	TMP47（ +3	
SAAİS	63.80	STR451	17．80	10，	¢2．811	TiDA 3 57\％	¢13．56		$\underline{1580}$
SAAI2I	ck． 41	STRASt	¢5．80	TDA：510	¢6． 60	1OA ir ki	E5． 20	IUA 3 max	8x．sil
SAAIVy	£13．20	S1k＋211	40．80		t5．80	tibabesid	［9．811	LCond	5
SAAEV302	c8．811	STRE412	c6． 80	11）${ }^{\text {a } 576 \mathrm{~A}}$ A	63.80	110×15	$4{ }_{4}^{20}$	19\％98	1190
SAASIM	［2．841	StRalin	ES．xı	Ti）A2577	E4．80	TDAB6ay	ex． 80	1391304	80
S \triangle A 51010	¢5．84	STR T ［143	t10．80	tidasita	［4．8il	11） 1 施ご13	13.20	119120	60
SAASME	¢5．80	StR9atht	En． K 11	T：1257	t3．80			UPC14＊	4.20
SAATEOU	c5．$\times 1$	SRROM	45．${ }^{0} 0$	rua ${ }^{\text {chy }}$	t3．811	F11 $1+47$	to． 08		
	E6． Ka	TA7mend	¢5．40	TDAS5M	¢221	PDAEAK		K p．p．90\％	
SAASILU	co． 80	TM7amp	E5． 80		c2．x4	TDAtst1	77．80		
SaASISU）	${ }^{\text {the }}$	［＾76ysp	Et． H_{0}	TIDA 2543	¢1． 50	TDAdira	f13．50		

 £ 10.80 p．p． tI （x）

LINE OUTPUY TRANSFORMERS P^{p}			
oracalim	± 10.80	PHILIPS ${ }^{\text {cie }}$	cs． K_{1}
Fibriaty $<$ aman（TVIH）	f15．5］	PHILILSAT？	E13．ME
Hidelity eximk	144．50	PHILIISNay	［31．801
	¢24．80	P⿳IIIIN（TA－E．S	27
IHTACHICPT1455．1456．147\％， 1441	［ $2 \times .810$	Plilitips in F －	222．40
HITACHCM1＋4／4n PN 2430\％1．	t 1.1 .81	PHILIMS ${ }^{\text {a }}$ A	［2580
HITACHI（1）121747675．	（Ex．$\times 1$	Philiss $\mathrm{k}+\mathrm{t}$	¢．7．50
hitachll ${ }^{\text {N } 243075}$	¢21．80		f23 xII
ITT（0）	141．811	PHILISECM，	c32．80
ITY Compace siol 110	［17．80	PHILIPS CMA	c2x．50
TrT Compac sat wh	¢22．80	Plilisic Plig	C24，25
1771	¢ 19.80	PHILIPsGRIAx	
ITT（VC）	14．80	Philis ${ }^{\text {a }}$（3）	222．80
	110.80	SAISIICMMTSA11 371HMO2	221．801
万77（v⿺廴	（2． 810		23983
	［24．0．01	Sovikliss？	c34．50
	（15． 51		
ITIC Clisil 1175	c22．x）	sowy heitar	con． 00
ITT C＇VCI30，12m，Mini 2	t 18.51	THORN｜9461，41，1612，13，1712	（c4． 81
ITT CVII2，	c11．so	THORN［f（x） 1 （6）｜	ç． 80
	¢17．80	THOR（xam）	fy 80
ITT Digi 3 1 He	［ 14.81	THORNMAMI	fy． 810
	［19．80）	THORNICCS	E21．00
ITT Cowlluf $\mathrm{FST}^{\text {d }}$	c19．9S	THORVT IIF（Chrper）	216.50
ITT TX33267	［22．80	Thorn tixs	E19．80
ITT IX ${ }^{\text {a }}$ H6	222．80	THORNT T λ M $1{ }^{\text {d }}$	119．80）
ITT Momplint A．	f221．80	Thorn $7 \times$ mizo	¢21．80
ITT Core lim FST	$\underline{19.95}$		［19．80
LOIWE－Clawic Min M M 7	E．33．00		221.80
LOEWE－COnH M 27.	23， 30		225.50
Lotwe－Other（Oume modet $\mathrm{N}_{\text {o }}$ ．）	$\underline{21.80}$	Post Pichingiourls．	f1．80

NOEWE Conlar M
TRIPLERS：UK UNIVERSA1،（Ixest quality） 87.80
CONTINENTA1，TVK \＆BG RANGE，（quote exact mo．）replacemben til． 80 THORN GMOI ES．XIT
（； $2087-6+22-1001 / 10106 \pm 21.80$

TR ANSPARFNT HIDFO SERVICE CASSETTE £6．KO P．p f1．KO
HOW TO ORDER：ADO p\＆p TO ORDER＋VAT 17.5% TO THE TOTAI．
PRICES ARE SUBJECT TOCHANGE WTTHOUT NOTICE
Telephone 071－794 $8751,7947.46$
MANOR SUPPLIES
172 WEST END LANE，LONDON NW6 1SD
equipped, an increase from 28 per cent in 1990. Some 15 per cent of VCRs were fitted with Nicam, an increase from 10 per cent.

Samsung is to start CTV manufacture in the UK at the company's Billingham, Cleveland plant. An investment of $£ 9 \mathrm{~m}$ is being made.

Following a highly successful test during 1991 EMI UK Rental is to offer Sony brand products in its Radio Rentals and Focus branches.

SPARES INFO

We have to apologise for a misleading entry in our 1992 Spares Guide. Zanussi spares are available from METS, 37 Padgetts Lane, South Moons Moat, Redditch, Worcs B98 0RB (0527 510 785). This firm is listed under Dansai who do not deal with Zanussi products.

HRS Electronics, Garretts Green Lane, Birmingham B33 OUE has been appointed exclusive UK distributor for Vogels' comprehensive range of video and audio mounting brackets. This Dutch company's wide variety of ceiling- and wall-mounted brackets enable TV/video screens to be turned to any position. HRS has added genuine Akai video spares to its range and now offers free carriage on all orders and free fax ordering (freefax order line 0800212 179).

NEW PRODUCTS

Toshiba's latest CTV launch in the UK. Model 2927DB, a 29 in . receiver with a recommended price tag of $£ 850$, is the first set to feature a built-in digital sound processor (DSP) as well as Nicam stereo and Dolby Surround sound. The DSP unit introduces digital delay and reverberation in its hall, stadium, disco and theatre modes to create the right acoustic "feel". There is also a pseudo-surround mode. On the vision side the set has a dynamic scan modulation unit for finer picture detail and contrast, dynamic colour accutance improvement circuitry for better colour quality and an Invar-coated shadowmask. The dynamic scene control unit has three preset picture settings for different room conditions. Similar sound arrangements will be used in a 25 in . model and a 33 in . model to be added to the range: the video specification will vary with tube size.

SAI Technologies, Unit 2, P \& O Centre, PO Box 14, Rockware Avenue, Greenford, Middx UB6 0AD has introduced a teletext tuner/decoder module for adding to PCs to enable teletext to be displayed in various forms

Vision 21, 12 Thorkhill Road, Thames Ditton, Surrey KT7 OUE (081 398 3404) has introduced two remote control AV selectors. The VSW42R at $£ 199$ is an infra-red unit with four video inputs and two outputs; the VSW41 at $£ 116.50$ has a single video output.

TRANSMISSION TECHNOLOGY

British Telecom engineers have demonstrated that it's technically feasible to transmit a single TV channel via an ordinary telephone cable. Though the system has only single-channel transmission capability it's likely that customers could be given a choice of channels through the use of computer-controlled switching. The commercial aspects of offering such a service are being assessed by BT.

On June 13th the Austrian broadcasting organisation ORF recorded a performance by the Vienna State Opera in the HD-MAC 1,250 -line format then down-converted it to 625 line PAL. It was the first time that an HDTV production had been used for PAL transmission. The performance was transmitted live by satellite in HD-MAC form and seventy-five
minules later was broadcast in PAL form throughout Austria and other European countries.

At an exhibition last month the BBC demonstrated the transmission of compressed digital HDTV pictures encoded at $140 \mathrm{Mbits} / \mathrm{sec}$ via a satellite TV link.

The USA's first national two-way TV system, pioneered by TV Answer Inc., is expected to become operational in early 1993. It will enable viewers to turn their TV sets into interactive communications tools. The heart of the system will be a Sequoia Series 400 UNIX fault-tolerant computer
Letters

PICTURE GENERATION AND ASPECT RATIOS

I would like to comment on the letters from Geoff Darby and John Dagg in the June issue.

1 have a lot of sympathy with what Geoff Darby says. Electronically generated pictures do have an "artificial look" that can detract from the viewing experience. I remember in particular "A Perfect Hero", shown on ITV about a year ago. It would have looked so much better had it been shot on film. Many people in the TV production industry, particularly in the USA, also feel this way, which is why a lot of TV drama is still shot on 35 mm film. It would be a mistake however to assume that a digital section in an otherwise analogue transmission path will lead to the picture having a "digital look". The broadcast chain already has large numbers of digital boxes, such as timebase correctors and synchronisers, in addition to the well-known digital effects units. It's a rare TV programme that hasn't been through at least one digital process.

When (if?) we get HDTV I suspect that the visual difference between 35 mm film and electronically originated pictures will be even more pronounced. It will make no difference however whether the transmission medium is analogue or digital. Digital signal processing is in any case a fundamental part of all HDTV proposals. It seems somewhat pointless to link the digital signal processor in the studio with that in the receiver via an analogue link. The advantages of digital transmission will be greater robustness in the face of noise and interference, and the ability to cram more channels into a given bandwidth.

I like John Dagg's idea that films should always be transmitted in their original aspect ratio, with the viewer given the choice of whether to view in a letterbox or pan-and-scan mode. Digital transmission will facilitate this without waste of bandwidth. This idea does however require the hang-on-the-wall screen: $16: 9$ c.r.t.s are bad enough, $2.35: 1$ or even $2: 1$ c.r.t.s would be horrendous. I'm well aware of state-of-the-art LCD screens, but in my view they have a long way to go before they can match the "photographic quality" available from a well set-up c.r.t.

The choice of a new TV standard is a major opportunity that doesn't happen very often. We should not be stampeded into making a premature decision for the sake of short-term commercial interest.

John Dagg's cinema experience seems to be somewhat out-of-date, which is probably why he's unaware that use of the 2.35:1 Cinemascope format has declined significantly since the Sixties. According to the Society of Motion Picture and Television Engineers' study group on aspect ratios, by 1985 only 12 per cent of cinema feature films were made using the 2.35:1 aspect ratio. In that year 70 per cent were shot and released in 1.85:1. The study group also noted that
system which is to be installed at TV Answer's National Switching Centre. It will register viewer responses as they pass through the Answer System, recording data such as length, point of origin and destination. The system will also enable viewers to carry out operations such as banking, teleshopping and organising TV programming information. Viewers' TV Answer home units, which are to be made and distributed nationally by Hewlett-Packard, will transmit requests, data etc. to local sites. These will be linked to TV Answer's hub site via satellite.
use of the $2.35: 1$ ratio was continuing to decline, that virtually all releases to continental Europe were in the 1.67:1 ratio and that most cinematographers shoot and protect to permit both $1.85: 1$ and $1.67: 1$ theatrical release and $1.33: 1 \mathrm{TV}$ and video release. This last point means that most films are actually shot in the 1.33 :1 (4:3) ratio, with the action confined to a $1.85: 1$ slice across the centre. During cinema projection the top and bottom of the film are masked off to produce a 1.85:1 or $1.67: 1$ picture. It's in this masked-off area that extraneous objects such as microphones and lighting cables sometimes appear - "Dirty Dancing" even included the sound recordist in one shot! He wouldn't have been seen on the cinema screen of course provided the picture was correctly framed.

I still feel that Cinemascope films look right only on really large screens. I've been involved with the running of the "Electric Palace" cinema in Harwich for the last ten years. We have a $20 \times 12 \mathrm{ft}(1.67: 1)$ screen and we show most modern films with this ratio, filling the entire screen. We used to show Cinemascope films in the $2.35: 1$ ratio, using the full screen width but only 71 per cent of its height. The resulting letterbox picture looked so bad that we now crop the $2.35: 1$ down to $2: 1$. We still use the full screen width but can now use 84 per cent of its height. This looks a lot better, but the visual impact of Cinemascope films is still poor compared to that of other films.

Very wide aspect ratios have always had their enthusiastic supporters, but the general public has not been won over. It's interesting to note that the current "super cinema" system, IMAX, uses a 1.67 : I aspect ratio.
David Looser.
Ipswich.

THE GOLDEN RATIO

Geoff Darby (letters, June) mentions a pleasing and natural way of looking at things. The most pleasing and natural aspect ratio known to mankind is based on a series of numbers known as the Fibonacci series, which runs as follows: 1 $+2=3 ; 2+3=5 ; 3+5=8 ; 5+8=13 ; 8+13=21 ; 13+21$ $=34 ; 21+34=55$ etc., i.e. the number produced by each addition equals the sum of the numbers produced by the two previous additions. Now if one divides any number by the previous one, e.g. 21 divided by 13, the answer is 1.61538 . It is this number, expressed as a ratio to one, that offers the most rewarding vista to the human eye.

This is no coincidence - it occurs throughout nature. Here are just a couple of examples. First the daisy. Its golden pincushion consists of two sets of curved lines that spiral out from the centre: 21 of them spiral in a clockwise direction, the other 34 in an anticlockwise direction. 21 into $34=1.619$. Secondly pine cones. Five scales run clockwise, eight anticlockwise. 5 into $8=1.6$. And so it goes on.

In architecture, the Parthenon's facade fits into a "golden rectangle" whose sides have a ratio of approximately 1.6:1. The same proportions are found in 13th century Cistercian abbeys.

Obviously the higher you go with the sequence the nearer
you get to the golden ratio. But it's always approximately 1.6:1.

So why isn't the TV aspect ratio 3:4.8? Am I correct in thinking that it's $3: 4$ to fit in with the film industry and is historical? If so, why weren't films originally shot on frames that have an aspect ratio that complies with the golden ratio of 1.6:1? Nature had the answer all the time!
Russell W. Barnes,
Penrith, Cumbria.

PATTERN SPARES

A recent letter referred to the use of pattern spares. In my experience pattern parts seem to be o.k. with some makes but not with others. In particular Sharp idlers must be genuine: pattern ones are usually so bad that they won't run from the moment they are fitted, and if you do get one that runs the machine will soon be back for either the idler not running or runningly lumpily. I feel that the same applies to Panasonic types.

I recently fitted some heads, obtained for only a few pounds, in a Ferguson 3V35. To cut a long story short, three sets of heads failed in only a few hours' use. After paying more for Konig heads the machine didn't come back.

My business also services domestic appliances. Our experience here is that most pattern parts for washing machines are pure rubbish, though some are perfectly all right and in a couple of cases are preferable to the genuine originals. The pattern spares supplied by one maker don't even fit the applianced for which they are intended.

For TV and VCR servicing genuine spares are usually the only things to use - the exception in our experience being Konig branded parts - if you want your work to stay at the owner's house rather than coming back to the workshop to roost. You should adopt the same policy with your vehicles. Non-genuine spares can vary from poor to dangerous. Poor points give bad starting while poor brake and steering parts could kill you.
Joln Hepworth.
Peterlee, C. Durham.

COST OF SPARES

Whether to use genuine spare parts or pattern spares is a subject that's been discussed in these pages on several occasions. As the cost of replacement parts constantly rises I've been looking at the prices of some of the more run-of-the-mill items that we use daily, such as resistors, capacitors and semiconductor devices. I estimate that the sums we spend could be cut by half if we spent just a few hours going through the plethora of advertisements in this magazine.

Here are a couple of examples. We recently had an Hitachi set fitted with the Salora J chassis in for repair. It required two BUW41B chopper transistors. These were ordered, at $£ 5.20$ each, along with some other items to make the order of sufficient value not to incur post and packing charges. When they arrived two days later we found that MJE13005s had been supplied. No matter, we assumed that they were equivallents and fitted them. The set then worked perfectly and the job was finished. Quite my chance when I was ordering some semiconductor devices from another firm a few days later I noticed that they listed the MJE13005 - at 49p! I was so surprised that I rang the supplier to check and yes the price was correct. So for my $£ 10.40$ (first order) I could have had twenty one of the transistors and still got some change. The second example is the HEF4053 switch chip. In one glossy catalogue the price is shown as $\mathfrak{f 6}$. Amongst the advertisers in this magazine I've seen 19p and 30 p quoted.

Another point is that whereas the larger supply companies insist on minimum orders, anything from $£ 15$ to $£ 30$, otherwise levying a small order charge of up to $£ 3$, most of the small-ad companies charge about $£ 1$ whatever the order, from single items to large orders. I'm sure that the components they supply are in no way sub-standard as we've used many of them for quite some time.

I don't mind paying a little extra for fast service, but twenty times as much seems to be pushing it a bit too far and the service provided by the small firms is usually just as good if you use a credit card or simply write your card number on the back of the cheque.
Chris Watton,
Boston. Lincs.

TANDY SATELLITE TV RECEIVER

Nick Beer mentioned the Tandy satellite TV receiver in his July issue Notebook. It's actually a rebadged AB Wolsey Starlet which can easily be hooked up to a VideoCrypt decoder. The inputs and outputs are all present at an 8 -pin DIN socket, marked Baseband, at the rear. For stand-alone use a linking socket joins the audio and video connections. Feed the baseband output to the decoder and connect the latter's output to the receiver's video input. The audio output and input are linked at the plug as this signal isn't encoded. Connection details are shown below - they may be of help to readers as they are not shown in the receiver's manual. My thanks to AB Wolsey's technical department which kindly supplied them.

> Pin 1: Video output.
> Pin 2: Common earth.
> Pin 3: Audio input (link to pin 7).
> Pin 4: Video output.
> Pin 5: Baseband output to at VideoCrypt decoder.
> Pin 6: Video input (VideoCrypt decoder's output).
> Pin 7: Audio output.
> Pin 8: Remote control.

Paul D. Robertson,

Pontardawe, West Glamorgan.

THE TDA3562 PAL DECODER CHIP

With regard to the Philips and Telefunken versions of this chip, the Philips one can be used to replace the Telefunken version if the $4.7 \mu \mathrm{~F}$ capacitor connected to pin 19 is changed to $1 \mu \mathrm{~F}$ and the $120 \mathrm{k} \Omega$ resistor connected to pin 18 is changed to $82 \mathrm{k} \Omega$. This applies to the Matsui Model 1580, the Saisho CM159 and GoldStar colour TV sets or any sets that use this particular circuit. We" ve been carrying out this modification for a number of years.
A.M. Archer,

Lincoln.

COMMENTS

Thank you for Steve Cannon's interesting article on field faults (June). It reminded me of when I was temporarily teaching at a local college earlier this year. A young member of the staff asked me to look at a hybrid monochrome set (Thorn 1500 chassis) that was suffering from "lack of height". After making the usual quick checks I scoped the h.t. line where a 50 Hz ripple was present. The result was incorrect field frequency and a small picture. These young highflyers can talk about satellite TV, Nicam etc. but when it comes down to the basics they ask us old codgers to sort
things out for them!
Incidentally I agree with Geoff Darby on pure sound being unreal. You only need to listen to an electronic organ set to saxophone, trumpet or flute. It sounds exactly like the instrument - but after a couple of minutes you think that the person "playing" it doesn't breathe. It sounds as if the instrument is being blown by a vacuum cleaner!

As for Mr. Snide (Donald Bullock's column), we take the bill to the door first - all repairs are COD.
Jim Littler
Wigan, Lancs.

MICROCOMPUTER POWER SUPPLIES

I must reply to Geoff R. Darby who commented (Microcomputer Notes, June) on my earlier remarks about microcomputer power supplies. When three-terminal linear regulators go short-circuit, which they often do in certain types of home computer system, they dump the full unregulated transformer power into the equipment (assuming that the transformer or rectifier doesn't burn out first) regardless of having "short-circuit, thermal overload and safe operating area protection"

As for the 30A unit I mentioned, I thought I'd made it clear that it was for my own use and that anyone interested in adopting this approach when faced with the problem of dealing with possibly obsolete equipment might be able to select something smaller and better suited to the requirements of the equipment concerned. In any case even if the foldback current control that's provided as part of the core saturation elimination scheme in all such switch-mode power supplies I've come across sets in at too high a current there's nothing to prevent anyone attempting such an upgrade from including
suitably rated fuses.
Apart from this you've only to look through a couple of PC type magazines to see the range of upgrade switch-mode power supplies (SMPSUs) that are available off the shelf. The original IBM PC was equipped with a SMPSU rated at about 90 W . With subsequent hardware upgrades and additional disc drives this proved to be woefully inadequate (my PC has a 135 W PSU and I use it to the full). Upgrades are now available for PSUs rated at 300 W and more. I've yet to hear of one catching fire

Incidentally my 30A SMPSU will fold back with one strand from 7/0.2 equipment wire across the terminals - this is thinner than the leadout wires of a typical decoupling capacitor or any of the tracks feeding supplies to the PC let alone ground

As mentioned above, short-circuit failure of three-terminal regulators is not uncommon though it does seem to be peculiar to some computer systems. One in particular is the Sinclair series which has a well-documented trail of regulator problems. Early versions had a heatsink of inadequate size (this virtually ensures short-circuit failure of the regulator). A modification was to fit a larger heatsink, but this tended to work loose and thus failed to make adequate thermal contact, giving rise to similar consequences. A very common cause of failure is when the user connects or disconnects peripherals with the system powered up. This often destroys the ULA chip which then usually acts like a one-shot crowbar. As a result the regulator goes short-circuit. You will then almost certainly find that the mains transformer fuse has gone opencircuit. Since these units are usually sealed, repair should not be attempted unless it's your own system and you are aware of the dangers and willing to accept the risk!

I'm well aware that many of the larger SMPSUs use three-

terminal linear regulators for auxiliary rails. Many of the smaller units are tightly designed with low-impedance windings and tight inductive coupling: the turns ratios are cleverly arranged so that when the 5 V supply is correct so are all the other rails. Many TV sets provide an example of this - those that use a TDA 4600 series chopper control chip and an off-the-shelf Siemens chopper transformer. Use of a three-terminal regulator in such a system gives the designer some extra lattitude: the windings needn't be so tightly coupled or so accurately wound. Within specified limits this makes relative loading per rail a less important consideration. I've no objection to the use of three-terminal regulators in this type of circuit: when they go short-circuit (which in this application is rare) they generally activate foldback limiting.

The point about h.f. noise with an incorrectly loaded SMPSU is noted. But l've used a wide range of such units in a wide range of systems and have not had a problem so far. Fortunately the higher the frequency of the supply ripple the more easily it's filtered.

Television is no kiddies comic, so one would expect readers of my original comments to be able to select a suitable SMPSU and carry out the modification in a safe and responsible manner. I described how I overcame a particular problem. So far the score is: manufacturers two potentially dangerous burnouts, my SMPSU modification nil. I rest my case.

I. Field,

Letchworth, Herts.

VALVE RADIO RECEIVERS

I have been following with interest recent correspondence on servicing valve radio receivers. There's an ever-increasing number of valve radio devotees whose interests are catered for by my own magazine, The Radiophile. In addition to providing our subscribers with lively and informative articles we maintain a very large library of technical information and can supply service data for thousands of receivers from the Twenties to the Sixties at sensible prices. We sell radio books too, among them the Newnes' Radio and Television Servicing volumes referred to by Eric Kempshall (May). We also organise regular meetings of valve radio enthusiasts throughout the year.

I wonder how long ago were the "old days" when Eric Kempshall practised the empirical trimming techniques he described? I started professional radio servicing in 1948 but even in those far-off days the various workshops in which I was employed all had a signal generator of sorts! But I agree that unless there was unmistakeable evidence to the contrary we tended to assume that the i.f.s would be pretty well on tune, while using actual stations for the r.f. alignment was likely to result in far more accurate dial readings than the use of a not-too-clever generator. Athlone provided the test frequency for the low end of the MW band and the local Third Programme relays for the top end. Bandpass tuning systems were brought into line with the aid of the 261 m Light Programme transmitter. On the LW band we used Paris International at the low end and either Luxembourg ($1,293 \mathrm{~m}$) or Airmet $(800 \mathrm{~m})$ at the top end. Incidentally only last week I repaired a war-time Utility set made by Cossor. It needed replacement of the smoothing and several other capacitors. When this had been done it performed extraordinarily well, so much so that it easily beat the opposition at a competition for best electrical performance at our recent Shifnal, Shropshire meeting. Yet the trimmers had never been altered from the day the set had been made back in 1944, as shown by the original paint seals remaining undisturbed. Not bad for 48 years!

The Radiophile magazine also holds "workshops" at which enthusiasts at all levels from absolute beginners are given practical help in repairing receivers they bring along. Anyone wanting further details of our magazine and activities should write to me at the address below. A subscription currently costs $£ 15$ for six issues (UK), or $£ 21$ abroad (surface mail). Specimen copies are available at $£ 2.50$ and $£ 3.50$ respectively.
Chas E. Miller, Editor, The Radiophile,
Larkhill, Newport Road, Woodseaves,
Stafford ST20 ONP.

POLARISER MODIFICATION

I decided to purchase from Sendz Components one of their professional satellite TV receivers plus a dish and an LNB with feedhorn. A Luxor 9570 with remote control and handbook duly arrived and with the help of articles in past magazines I mounted the dish and LNB without any difficulty.

No doubt others who have purchased this unit will have encountered the following problem. It will happily receive all the even, vertical channels but the feedhorn a requires 5 V , 80 mA supply to switch to the odd, horizontal channels. Now although there are many outputs at the rear of the unit there isn't a switched 5 V output. There is however a 5 V output that will power the feedhorn to enable the odd channels to be received, so I decided to fit a switch that would operate via the remote control.

On removing the cover I found that the polar switch (yellow feed wire from the junction of RA182 and the collector of TA12) switches between $0-5 \mathrm{~V}$ when the odd/even button on the remote control unit is operated. But it won't pass the required 80 mA . so a simple transistor switch was required, see Fig. 1 used a BC441 transistor connected as fol-

Fig. 1: Adding a transistor polariser supply switch to the Luxor 9570 satellite TV receiver.
lows. Remove the wire from the screw terminal that has a positive-going pulsed output marking. Connect the transistor's collector to this terminal, its emitter to chassis and its base via a 180Ω resistor to the yellow wire on the polar switch. The feedhorn is now connected between 5 V and the old positive-going pulse terminal. The circuit works well and has been used for several weeks with no problems.
K.D. Bunting,

Hartford, Cambs.

SERVICING VINTAGE RADIOS

Stanley Jackson's article on servicing vintage radios (March) was very welcome. I'd like to add a few points. First I can't recall ever coming across an open-circuit mains transformer of the drop-through $6.3 \mathrm{~V}, 250-()-250 \mathrm{~V}$ variety. Was this luck or is it bad memory on my part, or were they really that reliable? Secondly I'm finding that distortion is often caused by a loudspeaker cone's fixing collar having come unstuck from the frame when a radio receiver has been stored in a cold or damp place. If you're lucky the collar can, with extreme care, be reglued. Sometimes however the speech-coil former will have become distorted. The loudspeaker is then usually a

write-off. I've been known to hide a miniature modern speaker inside the original one but this isn't really satisfactory.

Changing a valve base when the correct valve isn"t available tends to destroy the equipment's historical value and will need to be changed back should the correct valve come along or the diagnosis prove to be incorrect. Valves are extremely adaptable creatures. Humble audio output bottles for example would often be found used as r.f. output devices! It would seem to be far better to make up an adaptor from old valve bases etc. to enable other valves to be used. This was common practice, by me anyway, due to shortages, obsolescence or the sheer price of some valves.

Finally anyone who puts resin or varnish on Bakelite will have an almighty mess after a while when it starts to flake off. I read once in Television that T-cut is the thing to use and, along with some elbow grease, have found that there's nothing better to bring the shine back to Bakelite, leaving no residue whatsoever
David C.J. Tilley,
Ashthomas, Devon.

HELP WANTED

I'm trying to obtain a down-converter, from u.h.f. to v.h.f. Several companies I've tried say that they are no longer available. Can anyone help? J.E. West, 302 Drumbeg North, Craigavon, Co. Armagh BT65 5AF

Can anyone supply a circuit diagram for a Saba C67 S77 colour set and/or the PC layout in the vicinity of the line scan coil socket near the LOPT - about two square inches of the PCB around this socket are totally burnt out? D.A. Ferriday,

Rowlands Radio, 56 Redhill Road, Rowlands Castle, Hants PO9 6DF (0705 412 464).

Can anyone supply, new or secondhand, an MC1305 stereo decoder chip? An equivalent would do (LM1305, SN76105, ULM2122). Paul Hardy, 43 Sheridan Avenue, Caversham, Reading, Berks RG4 7QB (0734 475 869)

Can anyone tell me what the DIN sockets on the back of a Granada Finlandia TV rental receiver are for? I presume they're for AV but I need pin details. I've no model number but the set is a 2 lin . (approximately) model with teletext and stereo sound. A free bag of mixed components to all replies! Also can anyone explain how to use the timer record function on the Osume VCR3000 without employing the remote control system? Same incentive. S. Yousaf, 137 The Crescent, Slough, Berks SLI 2LF.

Wanted - work shop manual covering the early Ferguson/Akai/JVC VCRs in the $3 \mathrm{~V} 22 / 9800 / 3 \mathrm{~V} 16$ etc. series - the piano-key models with the small clutch. These models have extra idlers, one driving the take-up reel (part no. PU49281) and the other the rewind reel (part no. PU49283). Good price paid. David H. Syddall, Set Gate Farm, 1070 Bury Road, Breightmet, Bolton, Lancs BL2 6QA (06। 234 4036).

I'm anxious to borrow for copying the circuit and any other data for the following amplifiers: Armstrong 401; Trio KA2000; Rotel RA350; Leak Stereo 30 Plus. As a retired technician I still have quite a lot of valve information and some valves. On receipt of an s.a.e. I'll be pleased to pass on information or my regrets as the case may be. J. Gibson, 4 Cotswold Drive, Garforth, Leeds, W. Yorkshire LS25 2DA.

Servicing the Microvitec Cub Series 3

The Microvitec Cub, Model 1431, is a popular UK-manufactured linear/TTL RGB compatible computer monitor. Its RGB inputs are link selectable for either positive- or nega-tive-going video at $1.5 \mathrm{k} \Omega$. The following notes are also applicable to Models 1432, 1441, 1442. 2031 and 2032. There's a good circuit description in the service manual, which is still available from Microvitec at the address given later, and also a general fault-finding guide. The present article, which is based on the author's workshop experience, lists specific faults and their cures

Circuit Notes

The circuitry is straightforward. A Siemens discrete-component chopper power supply (see Fig. 1) provides a 200 V line for the RGB output stages, a 124 V line which is used mainly by the line output stage and an 18 V output which feeds a 78 M 12 voltage regulator. There's also a 78 L 05 regulator which takes its feed from the 12 V line. The RGB output stages are of the class AB type using BF787 (later BF869)/BF392 pairs of transistors, with a common chassis return via the 7.5 V zener diode D907 and transistor TR907 (2 N 4123) which is used for flyback blanking. The field timebase consists of a TDA1170S chip (IC301) while sync processing and the line generator are within a TDAl180P chip (IC201). There are conventional line driver (TR201, BF460) and line output (TR202, BU500) stages, with an e.h.t. tripler. The line output transformer provides the 24 V supply for the field timebase. A transductor (T202) is used for EW correction: it's driven by TR301 (BC337), see Fig. 2.

Many readers may be unfamiliar with the Siemens selfoscillating chopper circuit. Its basic operation, see Fig. 1, is as follows. The mains bridge rectifier D1-4 produces about 340 V across its reservoir capacitor C11. D5, R8 and C10 provide a start-up drive for the BUW81A chopper transistor TR2. Once the circuit is brought into operation, feedback from winding 3-4 on the transformer switches the chopper transistor on. It's switched off when thyristor TYI switches on, placing a short across TR2's base-emitter circuit. The gate of TYI is biased by the circuit consisting of TR1, D18 and the associated components which receive the feedback supply generated by D6 and C12 from winding 2-3 on the transformer. This is the regulating action, set by VR4. TY1 is triggered on when the sawtooth waveform at its gate reaches sufficient amplitude. This sawtooth waveform is produced across R15, which is in series with the chopper transistor and transformer. The link to TY1's gate is via D12-14 and R14. Over-voltage protection is provided by D20 and TY2. Should the voltage developed across C23 by D21 rise sufficiently zener diode D20 will conduct, firing TY2. This removes the drive to TR2. The chopper transformer also provides mains isolation. Later versions of these sets used a different chopper transistor and this calls for certain modifications. Most of these monitors have probably been updated in this respect by now.

Access

When installed in the casing the underside of the main PCB is not accessible. Workshops use a wire-frame jig which consists of a c.r.t. assembly and user controls to which a faulty panel can be taken for testing. An alternative approach
is to cut a large hatch in the underside of the casing and use an aluminium plate held in position with self-tapping screws to cover the hatch.

Power Supply Modification

The chopper transistor in early versions of these monitors was a BUW81A, which is a Darlington device. Because supplies became scarce, a TIPL753A or R3213 was adopted as a replacement. This calls for the use of a different chopper transformer, type PC5287 or PC5307, and the following component value changes: R8 $3.3 \mathrm{k} \Omega, 1 \mathrm{~W}: \mathrm{R} 1122 \Omega$; R16 470Ω, $11 \mathrm{~W} ; \mathrm{C} 1056 \mathrm{nF}, 400 \mathrm{~V}$; L2 $10 \mu \mathrm{H}$.

Fault Finding

A useful cold check on the power supply is to take resistance readings from the cathodes of the output supply rectifiers D22, D23 and D24 to chassis. You should get a reading of approximately $1 \mathrm{k} \Omega$ in each case.

It's worth noting that when a monitor is operating normally the emitter and base of the R3213 chopper transistor sit at between approximately -125 V and -130 V d.e. High peak voltages which are not measurable are present at its collector. If the emitter and base voltages are about right but the collector voltage is low, say around 200 V , suspect a fault on the secondary side of T2. D22 going short-circuit is the most likely event.

If the IA d.c. fuse F3 has blown check the chopper transistor, also TY1 and TY2, for shorts. Note that R15 goes open-circuit when the chopper transistor fails. It's also worth checking C18 ($1 \mu \mathrm{~F}, 25 \mathrm{~V}$) , especially in older monitors. If this capacitor is faulty the power supply can become unstable. The result is ripple on the outputs and destruction of the chopper transistor. Whilst carrying out tests in this area the $3.3 \mathrm{k} \Omega$ wirewound resistor R16 should be checked for dryjoints as these can lead to other component failures. This is the tall resistor which is easily disturbed when the PCB is removed or replaced - it catches the c.r.t.

If the d.c. outputs tend to creep up, turn the set-h.t. potentiometer VR4 to minimum and monitor them. If the voltages still creep up check D18, TR1 and D20: also check C12 and C23. If the fault persists the chopper transformer T2 could be faulty.

Manufacturers of BR 103 thyristors have been making them switch faster. This can result in the over-voltage protection circuit being too sensitive. The symptom is a display that shrinks in size: switching the monitor off and on again can clear the problem for hours. One's suspicion is that the symptoms are being produced by mains-borne spikes. Where a fast version of the BR103 has been fitted in the TY2 position ensure that R23 has been changed from $10 \mathrm{k} \Omega$ to $4.7 \mathrm{k} \Omega$.

Failure of the mains fuses should lead to a check on DI-4, also the 470 pF protection capacitors C5 and C7. The dualposistor Th 1 in the degaussing circuit can also be responsible however - disconnect the degaussing coils to prove the point.

The following symptoms are caused by power supply faults:

F3 blows intermittently - can take several hours. T2 has a faulty primary winding.

No raster, very low e.h.t., the 124 V rail low at 60 V : D7 short-circuit.

Fig. 1: The self-oscillating switch-mode power supply circuit

Non-linear field scan with the 124 V line sitting at 100 V : Do short-circuit with R7 burnt up. This can also cause line instability.

A fauth that looked just like line instability, with some field bounce present, was caused by the 78 L 055 V regulator ICIO2 being leaky. Switching the monitor off then on would clear the fault for some time. With the set in the fault condition we found that there was a high ripple, about 5 V peak-topeak, at pin 14 of the syne chip IC201

Brightness/Contrast Faults

Several brightness and contrast faults have been experienced with these sets.

For uncontrollable brightness, first disconnect link TL901 on the c.r.t. panel to remove the c.r.t.'s heater supply then

Fig. 2: The transductor EW correction circuit.
measure the c.r.t.'s cathode voltages (pin 6 green, pin 8 red, pin 11 blue). A low voltage reading at one of these pins indicates that the relevant gun is hard on. Check the output transistors as appropriate.

The cause of the brightness pulsing when the monitor had warmed up was traced to the 7.5 V zener diode $\mathrm{D} 9(07$. Several cases of varying brightness levels have been caused by poor soldering on the c.r.t. base socket: remove the old solder and clean the pins before resoldering. Monitors that have a c.r.t. base socket marked with a black paint blob are prone to corrosion - later types are marked with a red pain blob. Varying brightness faults can be caused by the following resistors which tend to increase in value: R933 ($150 \mathrm{k} \Omega$, IW), R934 (180k) and R236 (150k $\Omega, 1 \mathrm{~W}$). They are all in the first anode supply network.

No raster was traced to the blanking transistor TR907 being short-circuit. Intermittent loss of green was traced to a dry-joint on TR104 (2 N 4125) in the green input circuit.

The cause of varying contrast was traced to the 12 V zener diode D117 in the beam-limiter circuit (see Fig. 3) being leaky. With this fault present the beam limiter comes into action via the emitter of TR 106. biasing back the RGB input transistors TR103, TR104 and TR105. If the voltage at the junction of D117-8 is negative the beam limiter is in operation.

The signals at the RGB inputs on the c.r.t. base panel should be at 4 V peak-to-peak, sitting on a 6.2 V d.c. level, when the contrast control is set to maximum.

Fault Miscellany

For no field scan check the 24 V supply rectifier diode D201 (BA157) which goes short-circuit. The associated surge

Fig. 3: The beam limiter circuit. TR106 is normally forward biased from the 124 V line, producing across its emitter resistor R135 a 12 V supply that's applied to the video input circuitry (see fig. 4). Beam current is sensed across C913/R928. With excessive beam current the voltage at the junction of R937 and R928 swings negatively. This negative voltage is applied to the base of TR106 via D117, cutting it off and thus removing the 12 V supply to the video input circuitry.
limiter resistor R235 ($10 \Omega, 0.5 \mathrm{~W}$) fails at the same time. If the fault persists, the TDA 1170 S i.c. is faulty.

Poor line lock - looks like line instability - occurs when C204 (220 nF) goes open-circuit. If the TDA1180P sync/line generator chip IC201 keeps failing replace C210 (4.7nF).

Intermittent pincushioning - the sides of the raster coming in half an inch or so - has been experienced on occasion. The
fault tends to clear after a time - in one case this took an hour. The cure is to replace the EW transductor driver transistor TR301 (BC337). Also check C312 (220رF, 25V) and R325 (180S, 1W) in its emitter circuit.

Line Noise

There are often complaints of excessive "line" noise with these monitors. It can be most annoying to users and can be intermittent - moving the cabinet will quite often slop it. The cause is that the width (L202) and line linearity (L203) coils tend to take off at a sub-harmonic of the line frequency because of inadequate tension. The cure is to remove the coils and coat the windings with quick-set Araldite (epoxy adhesive).

The Tripler

The e.h.t. tripler is reliable but the focus potentiometer mounted on it is prone to failure - the trach hurns up.

Spares

Spares can be obtained from Microvitec PLC, Service Department, Futures Way, Bolling Road, Bradford, West Yorkshire B04 7TU (0274 390011)

Fig. 4: The video/sync input circuitry. Links TL103R/G/B, shown in the TTL position, provide selection for either linear or TTL RGB inputs. Link TL101 provides inversion to cater for either positive-or negative-going TTL inputs. The contrast control operates in the TTL mode. TL102 and TL106 provide sync pulse inversion. Tr103/4/5 and zener diodes D108/10/11 provide level-shifting and temperature compensation. Their 12 V supply is controlled by the beam limiter circuit - see Fig. 3.

Test Report: TestLab TL07 Probe

A logic probe is the digital equivalent of the old-style signal tracer. Touched on any point in a circuit it indicates. by light and sound, the status there: high, low, intermediate/open or pulse train present. It thus provides a quick and simple method of digital circuit trouble-shooting in computers, the control systems of domestic audio/video/TV equipment, and items such as CD players and Nicam decoders where there are high-speed data streams.

Description

The TestLab Model TL07 that's the subject of this report is a typical modern logic probe. It's about the size of the very largest cigar - and not necessarily more expensive! There's a 3 cm probe at the front for contact with the point, usually an i.c. pin, where the test is being carried out while three LEDs mounted on the body provide visual indication of the conditions at the test point: red means high, green low, yellow indicates pulse activity and is brought into operation by means of a push-button. Fig. 1 shows the threshold points for these indications. Each one is accompanied by its own characteristic sound output - a squeal for high, a squawk for low and a warble for pulsed data.

The probe is powered from the equipment under test via a flying lead with red- and black-sleeved crocodile clips. It will work with supplies between 4 V and 16 V , which takes in all systems in current use. All logic families - TTL, LS, CMOS, etc. - can be tested without the need for any switching. The probe draws 7 mA from a 5 V supply in the quiescent state and 21 mA when it's flashing and squawking. Operation is up to 20 MHz and pulses down to 25 nsec width can be detected. The input impedance is $1 \mathrm{M} \Omega$ and there's overload protection up to +250 V . Inside I found a long, thin SRBP board that had over fifty components, including eleven transistors, mounted on it.

On Test

I started off by carrying out tests in various types of VCRs, old and new. One of the first things that I discovered - I don't need to use a logic probe every day - is the convenience of being able to use the instrument to trace the continuity to earth and the supply lines, and its readiness to show such things as a microcontroller chip's reset pulse at the moment of switch on and the presence of the clock oscillator signal at the connections to a crystal or a ceramic resonator.

The fact that the probe is powered from the gear under test is a mixed blessing. It usually involves finding a $5 \mathrm{~V}, 12 \mathrm{~V}$ line or whatever then soldering little connection stubs to the PCB. Having done this you're ready to go hunting amongst the pulses, ports and processors. The instrument showed me clearly what was going on in the system control section of all the VCRs I tried, also in the servo section of modern VCRs that use digital techniques here. The best sound-and-light

Fig. 1: Threshold levels for the LED and sound indicators of the TestLab TLO7 probe. Supply voltage range is 416 V d.c.
show was obtained at pin 38 of the syscon chip in a JVC HR7300/Ferguson 3V30 where there are pulses from the PWM reel sensor!

The relative brightness of the red and green LEDs gives an idea of the duty-cycle (pulse width) of the waveform under investigation. With a $50: 50$ pulse train such as a head flipflop or a CD player L/R word select pulse waveform both LEDs give the same brightness output. With very short dutycycles ("needle pulses") it's best to switch to the pulse mode which gives reliable indication of 25 nsec pulses one second apart. I found that the address and data lines to and from portexpansion chips and in operation-keyscan systems could all be easily checked with the TL07, though care is sometimes called for in interpreting the results. It was whilst playing with VCRs that I made some accidental then intentional reverse-polarity tests at up to 15 V . These did the instrument no harm.

I next tried a CD player, probing amongst its decoder and DA converter chips. Here I found that, especially with a sixty-pin, surface-mounted flatpack decoder chip, the rather large probe tip can too easily short between adjacent pins: if the probe was mine I'd file the tip to a sharp point and sleeve it. Apart from this the instrument performed well, showing EFM data, memory address data, input/output data, syscon pulses and fluorescent tube drive pulses with equal ease.

Several TV chassis were next investigated. One had a Nicam decoder whose busy little chip produced results as good as those obtained from the CD player's decoder. I found most satisfactory 1.5 sec bursts of data on the SDA and SCL bus lines of a computer-controlled set when a remote command was keyed, and even traced line and field drive pulses, though it wouldn't do to get too close to the line output stage for fear of damaging the probe - this is not its purpose, after all.

With TV sets however this particular design of probe has what I feel is a considerable disadvantage: whenever it's within a few inches of the line output stage it picks up pulse radiation. As a result it squawks, squeals and flashes at random. This limits its usefulness in TV servicing, to say the least. Another make of logic probe was hastily tried and proved to be quite immune to the radiation fields around line output and chopper transformers.

Conclusion

Apart from the TV radiation problem I was impressed with the performance of this inexpensive test instrument. The at-a-glance or eyes-off (tone) status indication is much more convenient than the use of a scope, and though the latter can show much more - hash, jitter, stuck-together data lines and poor pulse shape for example - for most diagnostic work the probe is far quicker and more convenient. Particularly convenient when you're working in a jungle of data lines is the pulse setting, which ignores static levels and perks up only if pulse activity is present.

If your work doesn't include TV sets buy this probe without hesitation. If you want to go probing in TV sets however you'd do better to audition another type that has less sensitivity to line pulse radiation.

The TestLab TL07 costs $£ 10.50$ plus $£ 2.25$ post and packing from Marco Trading, The Maltings, High Street, Wem, Shropshire SY4 5EN (0939 232 763).

CD-I Update

George Cole

The third Compact Disc Interactive (CD-I) conference was held in London at the end of April. Now that the system has been launched in the USA and the UK the slogan for this year's meeting was "CD-I, a market reality".

UK Launch

The official UK launch of CD-I was on April 27th, the day before the conference. CD-I's co-developer Philips showed its CDI205 player and explained that CD-I was going on sale at 25 retail outlets across London. including Harrods. Selfridges, Covent Garden Records and selected Dixons and Comet branches. The aim is to introduce CD-I at around a hundred new outlets a month with the players in 500 shops across Britain by the autumn. The CDI205 has a recommended price of $£ 599$ and there were 32 CD-I titles at the launch, including childrens' programmes. games, music and special interest discs, at prices ranging from $£ 14.95$ to $£ 39.95$. Philips is also selling a roller controller for children at $£ 50$.

The CDI205 Player

The CDI205 player is the same model that was introduced in the USA in October 1991. It plays CD-I, audio CD, Photo CD and CD plus graphics discs. The front panel has a headphone socket and an 8-pin DIN-type input socket for a pointing device such as a mouse, a joystick or a tracker ball. Rear connections include another 8 -pin socket for a pointing device, CD-I keyboard or other RS232 standard (computer) connection. Other sockets include an aerial input, r.f. output, phono video (CVBS) output, scart video and RGB, phono audio output and a jack for a wired remote control unit. There's also a large space for an extension socket known as the 22ER9141 digital audio/video module.

The first CD-I machines can display partial motion video (also referred to as base case video). Later this year CD-I will be upgraded to full-motion video (FMV). Existing player owners will be able to buy an upgrade cartridge for around $£ 10$.

CD-I Chip Technology

Fig. I shows a block diagram of the initial CD-I player. A brief description of the chip set was given in the August 1991 issue of Television. The CD-I chips have been developed by Philips and Motorola. Ray Burgess, Motorola's business segment director, gave news of the latest developments.

The two companies have produced two CMOS VLSI chips to provide the CD-I base case video and full-motion video. A video decoder/system controller (VDSC) chip will replace three chips previously used, saving board space and power and reducing the cost. It provides a 24 -bit digital RGB output with sync and control pulses. It's also capable of providing four times the current CD-I screen resolution and will thus be suitable for HDTV software when this finally appears. The VDSC chip also generates 50 Hz and 60 Hz scan rates for PAL and NTSC displays and has two independent video channels for displaying various video files such as delta YUV (used for high-quality photographic images) or Colour Look-up Table (CLUT - a highly compressed graphics file).

The FMV chip will expand "MPEG" video. MPEG stands for the Moving Pictures Expert Group of the International Standards Organisation (ISO), which has established a world standard for compressing and expanding digital video. It uses a system called discrete cosine transform (DCT). The compression ratio is $30: 1$: two types of compression are used to achieve this. Intra-frame compression reduces spatial redundancy within the frames: there's no need for example to encode all the information denoting a large expanse of blue sky. Motion compensation uses inter-frame compression and is concerned with temporal redundancy between frames - in many cases there are only small differences between a series of frames, thus only these differences need to be encoded.

MPEG-1 video generates $1.5 \mathrm{Mbits} / \mathrm{sec}$ and gives VHS picture quality. At the conference Philips showed a short video clip taken from a CD-I disc. The sound and picture quality were good. Up to 72 minutes of FMV with stereo sound can be stored on a CD-I disc. The MPEG committee is working on an upgraded system called, naturally. MPEG-2 which will have a bit rate of $6 \mathrm{Mbits} / \mathrm{sec}$, giving much enhanced picture quality. The first CD-1 FMV software is expected in late 1992/early 1993.

Philips points out that it's five times cheaper to press a CD

Fig. 1: CD-I player block diagram, early version.
than to duplicate a VHS tape - the company clearly sees CDI movies as a potentially large market. The sticking point at present is CD-l's short video playing time (you'd need two or three discs for a full-length movie). Playing time could be increased by the use of better compression techniques or a new generation of blue lasers that would have a shorter light wavelength and thus be able to read smaller pits on the disc.

Motorola has produced the CD-I Development System, a board-based system that allows developers to produce CD-I systems in a modular form. This means that boards can be developed for specific CD-I functions, such as base case video, MPEG video or the central control system. During his talk Ray Burgess revealed some possible future CD-I developments, including a microphone input for Karaoke software and a video input for recording pictures from a camcorder. There's no doubt that Philips' long-term plan is to attack the VCR market with CD-I discs that will play FMV video software and record video signals.

Interactive TV

Philips and GTE ImagiTrek revealed another future CD-I development, Interactive TV. This is an "intelligent teletext" system that includes a CD-I player. A demonstration tape showed how the system might work in practice. Someone watching a live baseball match could at any time call up the latest score on their TV screen or pull information off a CDI disc. The disc might be able to provide information such as the players' biographical details or the team's score record. Users could also play games or quizzes while the match was being shown in a small portion of the screen.

Neither company gave much technical information, but it seems that data is inserted into the video signal. The data bits trigger parts of the CD-I disc and the information from the disc is displayed on the screen. A trial of the system is to be undertaken later this year in the USA, involving around 50100 homes. Philips and GTE ImagiTrek say that Interactive TV can be used with terrestrial, satellite or cable TV systems. In addition both companies are working on a system that uses telephone lines.

The Japanese Connection

It's easy to overlook that fact that Sony and Matsushita are co-developers of CD-I since both companies have maintained a low CD-I profile in Europe. But both companies have been busy in Japan, as Koji Yada of the Japanese CD-I Consortium revealed. CD-I was launched in Japan in April. Sony, Matsushita (Panasonic/Technics), Kyocera, JVC, Yamaha and Pioneer are all producing players. The consortium has developed a CD-I test disc and agreed on a standardised disc packaging that uses the familiar CD jewel case.

Mr. Yada revealed some future CD-I software including Artifical Intelligence Karaoke which works by converting the digital music into a MIDI (musical instrument digital interface) signal, enabling over 3,000 pieces of music to be stored on a CD-I disc. The disc is also designed to help users who can't sing, adjusting the pitch of the music to suit the user's voice. Another system generates applause when you sing well - Mr. Yada didn't reveal what happens if you sing badly.

A number of CD-I players were present in the "Japan Corner" of the exhibition. Several of these were portable units. Kyocera's prototype portable weighed 1 kg and had composite video, Y/C and RS232 interfacing sockets. The unit is controlled by a wired handset. Sanyo's CDX1 looked like a small lap-top computer, with a 4 in . colour LCD screen. Yamaha showed a table-top unit while Matsushita displayed

Philips' CDI205 compact disc interactive system.
a midi-sized player.
Sony showed its Intelligent Discman, which looks like the company's portable CD player. The intelligent Discman has a 4 in . LCD screen, weighs 1.2 kg and has a continuous playing time of around 90 minutes with battery operation. A video output socket enables its pictures to be displayed on a large screen. Sony's deputy president Nobuo Kanoi surprised many people by saying that Sony plans to launch CD-I in the business market - this is because Sony already sells its Data Discman, a portable player that uses 8 cm CD-ROM discs, in this market. Some people wondered how two similar products could survive in the same market, but Sony is already making plans to integrate Data Discman with CD-I. At present the software required to search for information on a Data Discman disc is stored in the player - CD-I's search software is stored on the disc. To overcome the problem Sony is developing a bridge disc that will contain Data Discman data and CD-I software and can thus be used with both types of player.

Summary

The final conference speech was given by Gaston Bastiaens, director of Philips Consumer Electronics Interactive Media. It was upbeat, and Philips is clearly convinced that the system will be a success.

During the question and answer session Mr. Bastiaens was asked how CD-I titles could be protected from piracy, a timely point now that recordable $\mathrm{CD}(\mathrm{CD}-\mathrm{R})$ systems are appearing in professional markets. It appears that the standards manual for recordable discs and players (the Orange Book) has provision for an anti-copy flag to be inserted in the TOC. A CD-R player would see this flag and refuse to record. This sounds like a sensible move until you realise that the audio CD system has a similar provision, though few if any disc manufacturers bother to insert the flag during production. It would be interesting to know if anyone from Philips can confirm that existing CD-I titles have this anti-copy flag.

Finally Mr. Bastiaens revealed that interactive movies films that allow you to control how the plot develops - will be available in the USA towards the end of the year. He also hinted that there were many more CD-I developments in the pipeline.

Philips' CD-I roller controller for the young at heart.

What a Life!

Donald Bullock

Quiet Norman Glutton hauled himself in the other day with a JVC video (an HRD230E) and an Amstrad TVR3 TV-VCR combination.
"The recorder's from Clarence, governor of The Horsefly" he said. "Do you know that he charges nearly a pound for his home-made pasties?" Out came a pastie and a pocket knife and the demolition began.
"And who's the Amstrad from, Norman?" I asked.
"Ah, that's mine" he said. "The colour goes, but not for hours and hours. Expensive these pasties, but good."

Initial Checks

I plugged the Amstrad in and threw a blanket over it before getting on with the recorder, which was dead. After perusing the manual and checking around I eventually found that the M50965-628 microcomputer control chip was at fault. Meanwhile all that remained of the pastie was a few crumbs. Fitting a replacement chip restored the HRD230E to normal operation and, glancing at the price of it, I thought of the pies that Clarence would have to sell to pay for the repair. Quiet Norman would help him there.

The Amstrad TVR3

The Amstrad was temperamental, but after some hours the colour faded away. So I took it from under its blanket and opened it up. When I switched it on again the colour was all right. The obvious thing to do was to reach for the hairdryer and direct the heat on the area of the 48 -pin UPC1420CA colour processor chip IC10. After a while the colour faded away, so I gave it a blast of freezer. The colour returned at once. The chances were that the chip was the cause of the trouble, but to make certain I masked off everything else with a thick duster and tried again. This proved the point. A new chip put matters right and after cruelly twisting its legs I consigned the old one to the bin.

How did we cope with such faults before the advent of freezer? Not so badly, I suppose, because we didn't have i.c.s for all that long before before freezer came on to the scene. A case of necessity being the mother of invention no doubt.

More HRD230E Problems

I pulled the HRD230E on to the bench again. Its clock was alight but there were no channel numbers on nor was there any sign of a beacon light. I moved over to the power supply circuit and found that there were no 5 V and 12 V outputs from the STK548 I chip. Replacing this restored the voltages, but there were still no results - and the M50965-628 micro was running hot. As its voltages were wrong I took it out and made some comparison tests with a new one. It was dud all right, but another replacement made no difference. So I pulled the machine towards me and settled down to it.

Before removing the chip I examined each of its pins through my giant magnifier. When I got to pins 27 and 28 I thought I saw the finest imaginable silver strand between them. By moving the light around and examining the chip from different angles I was able to confirm that the pins were indeed shorted. Use of a small, fine iron enabled me to isolate
the strand: it was almost too tiny to see. Once it had been removed the machine burst into life. I was never more relieved to get a job off the bench.

Shortly after, Quiet Norman called in again. This time he was tackling a pickled egg.
"Glad they were both quick and easy" he said. "Easy means cheap, and there are other calls on my money."
"You'll have to uncurl a few browns, Norman. Pay up. They'll do me more good than they will you."

The Sony KV1442

The next set was a 14 in . Sony colour portable, Model KV1442, with excellent sound but no brightness. I'd had one in with the same symptoms a few months back and sure enough this one was suffering from the same trouble - the 800 V first anode supply was missing. The rectifier for this supply is D852. It takes its feed from the collector of the line output transistor via a $1 \mathrm{k} \Omega, 1 \mathrm{~W}$ resistor (R852). As in the previous set it seemed that the diode had tracked along its length on the underside, close to the panel. The result was that R852 had blown open. It's wise to fit the replacement diode well clear of the panel. After carrying out the repair I was rewarded with a really excellent picture.

Walter's Ferguson TX90

Then nervous Walter called in with his 20 in . Ferguson set (TX90 chassis). After the usual trying interview he departed. I plugged the set into the mains and switched it on. Everything seemed to be all right but after a few minutes the set started to whine loudly and the picture frilled. Turning up the brightness made matters worse. I checked the h.t. and found that it was at 115 V instead of 120 V . In addition the set-h.t. potentiometer RV224 would only reduce the voltage, and it would do this by only about 2 V . The voltages around the BD839 transistor TR107 in the regulator circuit were haywire, but the transistor tested o.k. I then found that its driver TR108 (BC338C) was open-circuit. A replacement failed to restore normal conditions and after making a few more tests I found that R267 ($12 \mathrm{k} \Omega$, 1W) had gone very high in value. A new one enabled the circuit to be set up correctly, clearing the fault symptoms.

An Odd Visitor

My next visitor was a decidedly odd, wild-looking character.
"I'm speaking to you with the name of O'Sharp" he announced, "and I'm asking you to look at my Akai."
"Certainly" I said, wishing he'd called at Snoddies, "if you'd care to bring it in." I didn't like the look of him at all.
"You get it out of the car" he continued, "I've got a bad back."

He looked to me to be in the prime of life. The people that pull this one on me! Anyway I struggled in with it and picked up a pen.
"It's the on-off switch" he barked. "This will be the third time it's failed. I want you to take it out, examine it and write me a report on it, saying why it failed. Then I want you to examine the set and say what you think of the servicing so far, what damage it suffered at the hands of the last engineer and how much its value has fallen as a result. I'll pay you well for your trouble."
"No can do" I replied, wishing the set would run back into his car. "I can check the on-off switch and if necessary replace it. That would cost you $£ 25$."
"Twenty five pounds!" he screamed. "You're no better
than the others." Then, bad back or not, he seized the set and flew.

Mr Blunt's Panasonic

The last set of the day was brought in by a real rustic. It was a Panasonic TC2061. The problem was sound but no brightness. I removed the back and turned up the first anode preset on the line output transformer. This produced chroma but no luminance. Looking around I saw a TDA3562A colour decoder chip. It seemed sensible to change it, but I didn't have any stock left.

I looked around the workshop which was getting full.

People don't seem to collect their sets so quickly these days. If I could get this one done quickly, I thought, he'd probably take it away. These country people like to get their sets back. So I popped into town and bought a chip retail. The price frightened me, but once it was fitted I had a good picture. I gave Mr. Blunt a ring.
"Is it better now?" he asked.
"Sure is" I replied, "now when would you like to collect it?"
"Oh, anytimes like. I comes your way twice a year, sometimes three times. The year before last I came to town four times in all. But that was when I wanted another horse. I'll be along, don't you worry."

Satellite Notebook

Nick Beer

An impending visit to Pace at its Shipley, West Yorkshire headquarters should be interesting: the company is reputed to be the largest manufacturer of satellite receivers in Europe. The invitation came from Service Manager Bill Marshall who was able, during a recent telephone conversation, to answer several questions I had about Ferguson badged equipment questions about which I'd not been able to get a satisfactory answer from Ferguson.

VideoCrypt Connector

One question related to the VideoCrypt connector used in the SRV ${ }^{1 /} / \mathrm{SS} 9000$ and the problems with this. Bill explained that a metallurgic reaction between the connector and the pins could result in poor contact. To get to the bottom of the problem Pace consulted independent metallurgists. The outcome of this is the use of a different socket, grey/white in colour instead of red/brown, in the latest Model 9200 . Pace retrofit this socket in any receivers that come into their workshop suffering from the problem.

The success of this change is evident. We've sold and rented out many 9200 IRDs and have not had the trouble with this model. In the past we've tried cleaning faulty connectors but the problem has returned. We now remove the old type of connector and link over.

We informed Ferguson of the problem many months ago and have submitted many guarantee claims for cleaning. Initially this type of failure was disputed. Subsequently the only solution that has been offered is cleaning. It seems that Ferguson is unaware of the modified connector.

Pace Spares

I encountered a bit of a problem recently when I attempted to order Pace spares from HRS. Many of you will no doubt recall having seen in the trade press some months ago that HRS Electronics of Birmingham had been appointed trade distributor of spares for Pace MicroTechnology Ltd. We required a remote control handset for a 9200 IRD - during a burglary at a customer's home the TV set, VCR and satellite receiver handsets had been stolen but not the actual equipment! A look in the HRS catalogue showed Pace models detailed up to the SS9000 but not the 9200 . This didn't surprise me as the 9200 is the current model and the catalogue was a few months old. What did surprise me was the out-
come when I phoned HRS for details of the handset's price and availability.

The lady who answered the phone first suggested that there was no such make as Pace then, on being assured that there was, came back with the reply that they didn't do it. I contacted Pace direct and was immediately told by the gentleman in the spares department what the price and availability were. I took the opportunity to check whether HRS was still the spares distributor and was assured that this was so. Back to HRS to see what was going on. The lady I spoke to this time seemed unsure as to whether they were Pace distributors but eventually confirmed that they were. Ordering the required handset seemed to be a bit of a problem however - 10-14 days I was told. I decided to order direct.

Correction

Well, we all make mistakes, don't we? Wouldn't be human otherwise. Right at the end of the April 1992 Satellite Notebook I referred to the Pace SS9000/Ferguson SRA1. The Ferguson equivalent should have been given as the SRVI the SRA1 is not an IRD.

Communal Distribution

You may recall my mention in the June issue of a local hotel which has an industrial satellite TV system I tentatively agreed to look after - the one where the orthomode transducer sprang a leak. They've recently had a VideoCrypt decoder (Thomson SVA1) installed but the decoded channel, Sky Movies +, was not too hot. This is where I came in once more.

The scenes were fine if they were dark, but anything approaching a highlight just whited out the screen. It seemed that the video level from the unnamed receiver, one of four in a rack, was too high for the decoder's input. I attenuated it by adding a $100 \Omega, 0.25 \mathrm{~W}$ resistor in the scart plug. This seems to have cured the problem.

New Channels

I note that CNN has made a low-key launch on Astra 1 B. It doesn't seem to be the same service as that via the Intelsat craft at $27.5^{\circ} \mathrm{W}$ and was initially on the amateurish side crash edits etc. Many customers still don't know that it's there - most of those who do discover it by flicking through the spare, pretuned channels on their receivers.

One recent discovery of mine, as yet unexplained, is the duplication of MTV via an Astra IB vertical transponder. It's still at 11.421 GHz via 1 A , but maybe a change is being considered for single-polarisation Sky SMATV systems. The offset with this transponder is much wider than the very narrow angle at 11.42 IGHz , which is traditionally used along with Screensport for i.f. offset adjustment.

Long-distance Television

Roger Bunney

May is traditionally the start of the Sporadic E season. This year has proved to be no exception, with many openings logged and reported by our readers. Spice was added by enhanced tropospheric conditions during the middle of the month. One unusual logging occurred on May 6th when Roger Fussell (Torpoint) received a ch. E21/R21 TVP (Poland) test card for nearly five seconds. It's likely that the transmitter was Katowice at 400 kW e.r.p. while the propagation mode was probably aircraft scatter. It was an extremely unusual catch.

An extensive aurora during the afternoon of the 10 th produced the usual garbled and distorted pictures. Signals were present in Band I through to Band III but no definite identifications were possible.

The weather in the UK during much of May was excellent, with long hot days and clear skies. These are the classic signs of good tropospheric propagation and there were openings from the 13th through to the 21st and from the 25th to the 28 th. The earlier opening produced the usual Band III/u.h.f. signals from Germany, France and the Benelux countries during the evenings/early mornings. A peak was reached on the $16 / 17$ th when signals were received across an arc extending from France in the south to Denmark, Norway and Sweden in the north. The 17th was perhaps the best day when AFRTS ch. E70 and several 435 MHz amateur TV operators including G4YTU and PE1HXD (Holland) were received. For those in good positions Band III and the u.h.f. channels were jammed with signals while evidence of Scandinavian Band I stations provided a bonus. Further inland, Band III/u.h.f. signals from RTE (Ireland) were received. Spanish Band III/u.h.f. signals predominated on the 19th-22nd (check on ch. E35 if conditions seem to be favourable). The opening on the 25-28th was less significant, featuring the usual Band III/u.h.f. German/Danish/Benelux transmitters.

But in May young men's thoughts turn to SpE. There was some reception on most days, though few exotic signals put in an appearance. We shall have to keep our fingers crossed. Anyway, this is the SpE log for the month:

[^0]18/5/92 YLE E3, 4; NRK E2-4; SVT E2-4: DR E3,
4; CIS R1, 2; RTP E2; TVE E2-4; RAI IA, B: RUV
(Iceland) E4.
19/5/92 TVE E3.
20/5/92 TVE E3, 4.
21/5/92 RAI IA, B; HTV E3; TVE E2-4.
22/5/92 RAIIA; TVE E2, 3.
23/5/92 TVE E2-4; RTP E2; RAI IA, B; ARD E2; +PTT E2, 3; C+ L2-4; DR E3; NRK E2-4; SVT E2, 3; CIS R1, 2; ORF E2a, CST R1; HTV E3.
24/5/92 NRK E2, 3; SVT E2, 3; DR E3, 4; TVP (Poland) R2; +PTT E2, 3; MTV-1 R1; RAI IB; C+ L3; TVE E3.
25/5/92 CIS R1, 2, 4; CST R2; TVP R2; ARD E2, TVE E2-4; RTP E2, 3; DR E3; MTV-1 R1; RAI IA, B; ARD E2.
26/5/92 SVT E2-4; NRK E2, 4; TVR R2; CST R1;TVE E2, 3.
27/5/92 TVE E3; SVT E3.
29/5/92 RTT (Tunisia) E4; RAI IA, B; TVA IA; C+ L2-4; TVE E2-4; RTP E3.
30/5/92 RUV E4; RAI IA, B; TVA IA; RTP E2, 3; TVE E2-4: HTV E3.
31/5/92 TVE E2-4; RAIIA, B; C+ L2-4; +PTT E2.3; CIS R1. 2: ARD E2, 4; HTV E3.
1/6/92 HTV E3, 4; RAI IA; C+ L3; unidentified Arabic E3 signal.
2/6/92 RAIIA; TVE E2-4.
3/6/92 TVE E2-4; C+ L3, 4.
On the 29th at 1850 Cyril Willis logged a suspected lateseason TE (transequatorial skip) signal on ch. E2, a smeary test card that faded and returned at 2005 with programme material and large white letters or a logo at the lower left corner. The signal is unidentified to date.

Tim Anderson reports that the sea air at St. Leonards is now full of 49 MHz baby alarms and other radio devices, making reception of ch. RI impossible despite the use of various filtering devices. He's constructing a new five-element Band I array based on a Tonna design and hopes that its very sharp polar response will combat the 49 MHz menace. Unfortunately phase-cancelling systems just don't work when there are several sources of 49 MHz interference in the vicinity.

More information has come to hand on identification of signals received from Equatorial Guinea: the station uses Spanish and has a carrier at $48.245 / 48.250 \mathrm{MHz}$, with VITS, closing down at around 2250 GMT. There's a problem with the main RTP Lisbon ch. E6 transmitter, a ghost on the output caused by feeder/aerial problems at the site. All local relays that take the signal suffer from the problem. Teletext is not used.

My thanks to the following for sending in reception reports and logs: Tim Anderson (St. Leonards), Roger Fussell (Torpoint), David Oliver (Birmingham), David Glenday (Arbroath), Simon Hamer (Powys), Peter Schubert (Rainham), Brian Williams (Penarth) and Cyril Willis (King's Lynn).

News Items

USSR/CIS: DXers will be familiar with the Tablica 0249 monochrome test card used for many years and still seen occasionally. A new card, Tablica 0286, was introduced in 1986. We've been sent a photocopy of the design, which has not been seen via SpE - yet!
Sri Lanka: The independent company MTV has started broacasting on ch. E25, covering the country's Western Province. Transmissions are mainly in English and the PM5544 test pattern is used.
India: Russia has leased to PTI-TV a transponder on the

Ekran satellite at $99^{\circ} \mathrm{E}$ for u.h.f. TV broadcasting to India and the surrounding countries. It's understood that the service, scheduled to start in August, will be on ch. 54 (754 MHz).
Iceland: A new station. "SYN". is operating at Reykjavik on ch. E6. Transmissions are at present restricted to the weekends.
USA: At last autumn's Las Vegas COMDEX computer trade fair the FCC issued over a hundred summonses to firms offering computer equipment that wasn't suppressed to statutory emission levels. The FCC has a policy of dealing firmly with those who don't comply with its suppression standards. Tunisia: Canal Plus is to start a terrestrial service later this year called Canal Horizon.
In brief: Zuid Holland TV (ZHTV) is to start broadcasting shortly in the Rotterdam area, probably on ch. E37... MDRGermany has started a teletext service of its own. The BFBS is slowly closing down its radio/TV network: final closure is expected in 1995... The Petrin Hill Prague City TV transmitter that used chs. R7/24 has been replaced by a new transmitter at Zizkov. The R10 company that runs the R10 f.m. radio service on 87.8 MHz hopes to be allocated the vacated ch. R24.

Obituary

It is with deep regret that we heard of Chandra de Silva's death from a heart condition. He was a true enthusiast and despite the shortage of components and equipment in Sri Lanka enjoyed TV-DXing to the full. Chandra designed and built a 714 MHz helical aerial, featured in the $T V$-DXer's Handbook, for reception of the 714 MHz transmissions from the Ekran satellite. The news came from a colleague, Bandula Gunasekeva, who is continuing with DX work and experimentation at Colombo.

Satellite TV

Intelsat VI F3, saved by the shuttle Endeavour, has been moved to its correct orbital position at $34.5^{\circ} \mathrm{W}$ in time for the summer Olympics traffic. Transponders on the Intelsat craft at $27.5^{\circ} \mathrm{W}, 18^{\circ} \mathrm{W}, 57^{\circ} \mathrm{E}, 63^{\circ} \mathrm{E}$ and $66^{\circ} \mathrm{E}$ have been leased for the games. Launch of Intelsat K, an all Ku band satellite which will cover North and South America and Europe from $21.5^{\circ} \mathrm{W}$, has been delayed.

A new earth station, Malmoe International Teleport, has just opened in south Sweden. In an attempt to reduce communication costs and the problems of high-speed data flow in non-X25 terrestrial networks the EBU is installing a series of VSATs (very small aperture terminals) for its members across Europe. Data will be passed to broadcasting members via a leased facility using Eutelsat I F4 at $7^{\circ} \mathrm{E}$.

Mercury Paging has launched a new satellite paging service. The uplink is from Mercury's London station to a Eutelsat satellite, the downlink being received at over 200 VSAT terminals around the UK adjacent to the company's v.h.f. paging bases.

The Indonesian government is to provide up to four small satellites in a series called Indostar. Each will have two analogue and eight digitally compressed TV channels in the S band $(2.5-2.6 \mathrm{GHz})$ and up to eight broadcast digital audio (DAB) channels in the L band ($1.45-1.49 \mathrm{GHz}$). Indostar-1's orbital position will be at $105-115^{\circ} \mathrm{E}$: it should be operational by the spring of 1995. The analogue TV services are intended for inexpensive receiving systems throughout Indonesia. Two types of receiver are being developed, a low-cost one for the analogue transmissions and a second to resolve the digitallly compressed TV transmissions. It's thought that such Broadcast Satellite Services (BSS) will revolutionise international

11 Kent Road, Parkstone, Poole Dorset BH12 2EH Tel: 0202738232 Fax: 0202716951
broadcasting and could result in a dramatic decrease in shortwave broadcasting within the next decade.

RTP (Portugal) has started transmitting via Eutelsat II F3 at $16^{\circ} \mathrm{E}$, on 11.56 GHz .

The French "Satellite TV Club" has invited membership from French-speaking UK enthusiasts. The cost is 120 francs a year. For further details write to the Satellite TV Club, Place de Mons, 33360 Cenac, France.

Book Note

A third, updated edition of John Breeds’ Satellite Television Installation Guide (ISBN 187256703 7) has just been published at $£ 12$ plus $£ 1$ post in the UK, $£ 2$ in Europe or $£ 8$ by air to the rest of the world. This very popular book provides a clear guide to installation work from fixed to tracking systems. It's all there, from satellite orbital theory, footprints, how each component part of the receiving system works (with large clear drawings and photographs) to elevations, sighting lines and site surveys, polar mounts, planning permission, the radio/TV transmissions from each satellite, the scart connector and much more. The CAI has adopted the book as the approved study guide for City and Guilds satellite courses. It's available from Swift Television Publications, 17 Pittsfield, Cricklade, Swindon SN6 6AN (telephone/fax 0793750620).

Test Report: HS D400 DX Tuner

The use of an outboard tuning system for DX-TV reception has several advantages. As well as flexibility and
improved signal working, the tuner used in an outboard system is likely to have better performance and coverage than one fitted in a standard TV set. For DX-TV purposes we need to cover Bands I, II, III and the u.h.f. spectrum, while reduced i.f. bandwidth working is a considerable advantage with weak signals or where there's a high level of interference. An outboard system consists of a wideband tuner, i.f. processing and an upconverter which provides an output for feeding to a conventional receiver.

Some years ago HS Publications introduced the DIOO DXTV tuning system which is still extremely popular. It has switched selectivity. down to 2 MHz in three steps, and facilities for tuning in the audio subcarrier despite reduced bandwidth video working. Building on this success, Keith Hamer and Garry Smith have introduced the HS D400 budget TV tuning system. One of the units was supplied to us for testing

PHOTOSTATS SERVICE

Newer readers may have missed important servicing features that have appeared in Television over the past few years. We have therefore in operation a photostat service to make this information readily available. Photostats of the following servicing features, listed in alphabeticd order, can be supplied at the prices shown. Please send requests to. Television Editofial Department, Room L323. Quadrant House, The Quadrant, Sutton. Surrey SM2 5AS. ChequestPOs should be Inode payable to Fieed Business Fublishing Litd. There are two standard prices, see befow.

and its performance has proved to be very interesting
The D400 package in fact consists of two units, the tuner proper and a 13 V power supply. The latter is a modified Sinclair ZX computer unit with a 20 m fuse, a mains lead and a 1.7 m d.c. lead for connection to the tuner via a 3.5 mm mono plug. Unlike so many Taiwanese offerings that run hot with even minimal loading this one runs cold.

The tuner is housed in a gloss black ABS box measuring $120 \times 100 \times 45 \mathrm{~mm}$ excluding knob projections. There are three controls, a Band $I / I I I / 4 . h . f$. selector at the top left, a large tuning knob marked $1-10$ to the right and, at bottom centre, the variable bandwidth/gain control. Two large dots, blue and yellow, are stuck at the top around the perimeter of the tuning knob. These are channel calibration markers, blue for Band I and yellow for Band III. They correspond with the numbers around the edge of the knob as CCIR channels. A small chart in the instruction leaflet indicates the Band I/II calibration reference points (coverage extends to ch. R4).

The clever adjustment is the variable bandwidth/gain control. When this is turned clockwise the i.f. bandwidth is progressively reduced while anticlockwise rotation increases the bandwidth. The range is from 3 MHz narrow to 6 MHz wide. When the bandwidth is increased the gain falls: this is a feature of the tuner.

A bright red LED indicates that the tuner is powered. The 3.5 mm supply socket, a standard (recessed) Belling-Lee aerial input socket and a 90 cm u.h.f. output lead with coaxial plug termination are all located at the back of the unit.

Band I coverage is $45-87 \mathrm{MHz}$, Band III $170-230 \mathrm{MHz}$. The u.h.f. coverage is less than the full TV spectrum at $455-$ 710 MHz (chs. E21-51). I suspect that the tuner was designed primarily for v.h.f. The output is on ch. E35, though this can be varied over chs. E30-40 (there's an access hole for this adjustment).

Setting up is simple. Connect the unit to your u.h.f. receiver, switch it on and select the reduced bandwidth. Tune the receiver upwards progressively from ch. 30. There will be several peaks of noise and blanked screens. Look for the lowest noise peak and tune the receiver to this peak. probably around ch. $35 / 6$. Now switch the D400 to u.h.f. Tune around for evidence of local signals. If nothing is seen you're on the wrong peak. Try again! Once the correct peak has been found DX hunting can commence.

On Test

On test I found that weak Band III signals (Belgium chs. E8/10) could be located in the reduced bandwidth mode. Tests at u.h.f. with non-local signals proved that the performance was satisfactory. Band I SpE signals romped in. It's when your receiver is confronted with several strong adja-cent-channel SpE signals, e.g. chs. E3/IA, that the value of the i.f. bandwidth selectivity can be seen. This is also the case with weak tropospheric signals in Band III. No more floating E3/IA pictures: each channel can be tuned in separately.

The overall performance is impressive, particularly the action of the continuously variable bandwidth control. In a fast-moving SpE opening you'd leave the control set for reduced bandwidth to save repeated adjustment. My only negative comments are that I'd have preferred to see legends relating to each knob and perhaps smaller channel calibration marker dots - they are one channel wide!

This is an interesting and practical unit for the DX-TV enthusiast. It costs $£ 49.95$ including UK postage and is available from HS Publications, 7 Epping Close, Mackworth Estate, Derby DE3 4FS (0332 38 169). If you write for information or a leaflet, please include a stamped, addressed envelope.

Servicing the Finlux 3000 Chassis

Steve Cannon

The innards of TV sets are becoming quite different as the technology advances. Some things such as the c.r.t. and the line output transformer are unlikely to change much in the immediate future, but signal processing has altered dramatically over the last ten years. Some modern chassis use digital processing, with digital techniques employed for everything from remote control to field deflection. Many adjustments can nowadays be carried out using the remote-control handset rather than having to remove the back and turn the relevant preset. Now I know that there's nothing like a good twiddle, but it does look as though this will become a thing of the past. As electronic integration has increased and more and more custom-made chips are being used, it's as easy and cheap to have each stage controlled as a slave under the overall control of a master microcomputer chip. One thing is for sure: noisy presets will and in fact are becoming extinct.

Which brings us to Finlux's all-singing, all-dancing 3000 series chassis that has, as you may have guessed by now, a digital data bus (I2C bus) as its central nervous system. It controls programme memory, tuning, signal processing and deflection waveform processing. The set is also a multistandard one, with automatic selection between NTSC, PAL or SECAM colour decoding, 50 or 60 Hz field scanning and 525 or 625 lines. There are two tuners, one for u.h.f. and one for v.h.f. The set will work almost anywhere, probably everywhere in Europe.

Internal Layout

After removing the back cover you are greeted by two side panels rather than the flat panel for the power supply and deflection circuits as in the 1000 series chassis. The left-hand panel houses the signal processing and field deflection departments while the right-hand pannel is for the power stages. In between the two there's the connector board. which differs depending on whether the set has one or two scart sockets.

The Power Panel

The right-hand panel contains the power supply and the line output stage, which are not all that different from those in the 1000 series chassis. The chopper circuit is controlled by the ever-popular TDA4601 chip. On the output side the rectifier diodes, mostly BY299s, suffer from the same affliction as in the previous chassis - they go short-circuit, usually shutting down the power supply. The chopper transformer is quite hefty and the connections to its pins can suffer, so it's worth checking these.

There's an official modification for the line output stage relating, as in the $1000 / 2000$ chassis, to the scan coil connections. It involves soldering two rivets to the copper side of the line scan coil PCB connections to prevent the solder from cracking and arcing. A detailed modification sheet is available from Finlux.

Four supplies are produced on the secondary side of the chopper transformer as follows: 138 V for the line output stage; 25 V for the audio output stages; a 17 V feed that goes to the 12 V regulators whose outputs supply the l.t. circuitry; and a 7 V feed for the 5 V regulator that supplies the microcomputer control chip and the teletext department. Secondary
windings on the line output transformer provide the following supplies: the usual 200 V for the RGB output stages; 26 V for the field output stage; and various supplies for the c.r.t.

The Signal Panel

The signal panel has a few plug-in boards, some of which are options. The sound and colour decoder boards are obviously standard: the optional ones are for Nicam and teletext.

There are different audio panels that depend on the country for which the set is intended: the DD311 panel is the one for UK use. A TBAI20U chip, ICd6, demodulates the f.m. sound, which leaves the panel via the buffer transistor Tdl. When it reaches the motherboard it's fed to identical left and right channels. There are a couple of links that have to be cut when a Nicam panel is fitted. The mono "left" and "right" signals then return to the audio board, going to the TDA8420 chip ICdl and the connector board. ICdl controls the scant audio switching, the pseudo stereo sound switching (panorama effect), balance, volume, bass and treble. It aiso has separate volume and balance controls for headphones. These functions are all controlled by the microcomputer chip via the I2C bus.

The audio signals for the headphones go to the headphone audio output amplifier chip 1 Cd 3 . The other audio signal feeds go to the TDA4935 speaker audio output chip ICp! on the motherboard. This delivers about 15 W per channel into a 4Ω load.

Adding Nicam is easy. The panel is inserted into the sockets (usually fitted) on the signals panel then a couple of links on the analogue audio board are snipped, also the previously mentioned links.

Colour Signal Processing

The colour decoder panel has been tried and tested in the 1000 and 2000 series CTI chassis. CTI stands for colour transient improvement: what it does basically is to reduce the time taken to get from one colour-difference voltage to another, e.g. from green to magenta on colour bars - colour smearing is most noticeable between these two colours. The transition time is reduced from about 800 nsec to about 150 nsec .

The actual colour decoder chip is ICbl, type TDA4555, which can process PAL. SECAM or NTSC $4.43 / 3.58 \mathrm{MHz}$ colour signals. Composite video is fed to the colour decoder panel where the PAL chroma signal is selected by the acceptor circuit $\mathrm{Lb} 6 / \mathrm{Cb} 28$. It's then fed via the BC557B emitterfollower Tbl to pin 15 of ICbl which processes the information and determines which colour standard is being used. The crystal reference oscillator runs at 8.86 MHz . It can be adjusted by earthing pin 17 of ICl . The reference oscillator will then free-run and its frequency can be set by adjusting Cb 36 . Demodulated colour-difference signals leave ICb 1 at pins 1 and 3, passing to pins 1 and 2 of the TDA4565 CTI chip ICb2 which also delays the luminance signal so that it coincides with the sharpened colour-difference signals. The luminance and colour-difference signals then leave the colour decoder panel and pass to the TDA8443A chip ICel on the motherboard.

Now this is a curious chip. It switches, under the control of
the I2C bus, between the $Y / B-Y / R-Y$ signals and $R G B$ inputs coming via the scart socket. Passage of the Y/B - Y/R - Y signals is straightforward: they enter at pins 11, 12 and 10 respectively and leave at pins 20,19 and 21 . The chip has a clamp pulse generator which is used to clamp the inputs to the black level: timing information for this operation is obtained from the sandcastle pulses which enter the chip at pin 24 . Things are rather more complicated when it comes to the RGB signals which enter at pins 4,5 and 6 . These are clamped then matrixed to obtain $\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ signals. Colour-difference and luminance signals can be fed in via the scart socket and when this is done the matrixing within ICel can be bypassed. If this is required, external Y is connected via pin 11 (green) of the scart socket, external B - Y via pin 7 (blue) and external $\mathrm{R}-\mathrm{Y}$ via pin 15 (red).

ICel's Y, B - Y and R - Y outputs pass to pins 15, 18 and 17 respectively of the TDA3505 chip ICe3. This is the RGB processor: it carries out matrixing, colour etc. control, beam limiting, black-level stabilisation and switches between the inputs just mentioned and teletext RGB inputs at pins 14, 13 and 12 respectively, with pin 4 for blanking/switching. The text signals are switched through when the voltage at this pin rises above 0.9 V : below 0.4 V the inputs from ICel are selected. As ICe3 doesn't incorporate an I2C bus interface a TDA8444 digital-to-analogue converter chip ICe2 has to be used to enable it to receive the control potentials for hue (not applicable with UK sets), contrast, saturation, brightness and, lastly, red and green gain. ICe 2 also provides a switching output to control the 4053 chip ICal that switches between internal and external (scart) composite video and sync inputs. ICe3's control pins are 19 for contrast, 16 for saturation, 20 for brightness and beam limiting, 22 for green gain and 23 for red gain. Its RGB outputs appear at pins 1,3 and 5 respectively and are then fed to the c.r.t. base board.

Timebase Circuitry

The left-hand signals panel also houses some of the timebase circuitry. A TDA2579 chip, ICh 1, contains the sync circuitry and the timebase generators while a TDA3654 chip, ICk1, provides the field output. Between these two chips there's a TDA8432 chip, ICh2, which contains the field drive and EW correction circuitry. It's connected to the I2C bus and as a result there's a distinct lack of potentiometers in the EW correction and field output stages. The adjustments are all carried out via the remote control system.

The Microcomputer Control System

The set's brain is the 40 -pin SDA2080 microcomputer chip ICf2. The I2C bus lines are connected to pins 21 (SDA serial data) and 22 (SCL - serial clock). These provide links to a number of slave devices, one of which is the SDA2526 non-volatile memory chip ICfI. This stores channel information, customer control settings and the I2C bus programming parameter values - more on the latter shortly. Up to 39 channels can be preset and there's the facility for connecting up to three external devices via scart connectors. On two-scart socket sets the scart-1 socket has just a composite video input while the scart- 2 socket accepts RGB and composite video inputs. There's also a copy facility that enables the scart-2 composite video input to be looped through to the scart-1 composite video output. Stereo audio signals are looped through in the same way. This facility does away with the need for the usual snake pit of wires when copying tapes. You can monitor on the screen if you want to, but this isn't compulsory.

The SDA and SCL lines from the control panel go to
many slave devices, as follows:
$\mathrm{ICl1}$ on the one-scart connector panel
ICl 1 and ICl 2 on the two-scart connector panel
ICil the tuner PLL/prescaler chip
ICdl the audio control chip
ICe 1 the RGB switching chip
ICe 2 the DAC for brightness, contrast etc. control
ICh2 for deflection control

In addition the I2C bus controls the Nicam and teletext panels. Thus via these two lines the microcomputer control chip monitors and controls much of the processing carried out in the set.

I2C stands for inter integrated circuit: it's a two-lead (data and clock lines) system that enables the slave devices connected to the lines to be controlled by the master device, in this case ICf2. In addition to controlling the slave devices the microcomputer chip can give the user, or service engineer, an indication as to which if any of the items connected to the bus has developed a fault. What a good do!

The service mode has to be entered to gain access to these facilities. To do this you press one of the normal buttons (NI, N 2 or N 3) on the set. The service switch, which is located in the hole next to button N3, then has to be pressed within eight seconds. A strong piece of wire will usually do to operate this switch. Once the service mode has been entered the LED display will be blank apart from one dot which will be lit. Press the service switch again to get back to the TV mode.

Keying 04 on the remote control handset when in the service mode will result in ICf2 checking all the chips connected to the I2C bus. The operation is as follows. ICf2 sends out address data that corresponds with one of the slave chips. The latter responds by acknowledging its presence, and an appropriate hexadecimal number is then displayed by the LEDs. Each slave chip/section of the receiver has a separate number, as follows (the display codes are listed in the order in which ICf2 carries out its checks):

06	satellite processor
04	teletext processor (high feature)
22	CCT basic teletext (ICt2)
d2	RGB switch (ICe1)
94	extra video switch (in monitor only)
92	copy switch (ICl2)
90	scart switch (ICII)
80	audio adjustment (ICdI)
84	stereo identification (ICd2)
48	colour decoder DAC (ICe2)
8C	geometry control (ICh2)
C2	tuning PLL (ICi1)
A2	teletext NVM (ICt5)
A0	control NVM (ICf1)
Pn	picture memory n Kbyte
An	Antiope (French teletext).

Thus if a set has CCT text and a single-scart panel and no obvious fault is apparent the following sequence of numbers will appear: $22, \mathrm{~d} 2,90,80,48,8 \mathrm{C}, \mathrm{C} 2, \mathrm{~A} 2$, A 0 . If a code that was expected is missing, e.g. the CCT text code 22 , this means that ICf2 didn't get a reply from the device concerned. In this particular example if the teletext panel is fitted correctly there is obviously either a fault on it or a break in the links back to ICf2. Use this procedure when adding satellite TV, removing or changing the teletext panel or changing the scart panel. This will reconfigure the system and the codes will be modified depending on what's been added or removed. The set's configuration is stored in the NVM by
pressing $-/-$ - on the handset. Then switch the set off at the mains to reset ICf2.

Adjustment Codes

Many adjustments are carried out by entering the service mode then using the relevant two-digit code with the handset. These codes are as follows:

25	line frequency
30	vertical shift at 50 Hz
38	vertical shift at 60 Hz
27	height
31	vertical compensation
28	vertical linearity
26	horizontl phase shift
32	width
36	horizontal compensation
35	trapezium correction
29	S-correction
34	EW corner correction
33	EW raster correction
22	red gain
23	green gain.

After entering the required code you carry out adjustment by pressing STEP + or STEP - on the handset. The LED display number will alter, either incrementing or decrementing depanding on which button is pressed. The range of each function is $00-31$ for the vertical and horizontal adjustments, $00-63$ for the rest. If a new value is to be stored, press the -/- button as before. Each adjusted value must be stored before another code is selected for adjustment. No dramatic value changes should be necessary, but as a set ages and component tolerances drift it's a real boon to be able to leave the set in place and do the tweaking via the handset. But beware: there's no normalisation setting for the service mode adjustments. Once a value has been stored there's no way of getting back to the previous setting unless you can remember its displayed value.

Bus System Fault Finding

It can be difficult to pin down the exact location of a suspected fault on the I2C bus: the data changes so quickly that checks can't be made with normal servicing equipment to see whether the data is correct and that the microcomputer chip and its slaves are talking to each other. As a general rule of thumb if data can be seen on a scope on both the data and clock lines and can be seen to be altering things are o.k. Check the amplitude of the pulse trains, which must be 5 V peak-to-peak.

If no clock or data information is apparent check the d.c. voltage on the relevant line(s). Because of the presence of pull-up resistors the lines should be at 5 V d.c. when no data is being transmitted. Thus if one or both of the lines is at 5 V no information is present. This usually means that there's a fault at the microcomputer end of the bus. If no pulse train is present and the d.c. voltage is at 0 V or very low, there's a short or low resistance on the line. In this event the cause of the fault could be literally anywhere on the bus. The only thing to do is to check the SDA and SCK lines and see which of the two, at which chip, reads low-resistance to chassis. If no shorts can be found, disconnect the line in turn at each chip until the d.c. voltage returns to the correct level and the data and clock information are restored. If you are still in trouble the microcomputer chip is probably defective. Remember however that for the I2C bus to operate the micro-
computer chip must be working correctly. Carry out the usual checks - supply, presence of the 8.8 MHz clock signal, reset pulse etc. - before replacing any chips.

Remote Control

The RC3010 remote control system used with these sets will operate a VCR. What some people don't seem to know is that the handset can be programmed for use with many different kinds of VCRs. It can be in any of nine modes. The following list shows which mode corresponds with which model/manufacturer:

```
Mode Model/manufacturer
0 Finlux VR2008, Schneider 266.
1 Finlux VR 1010/1012/1030/2010/2030/2040; Asa
    VR2019,VR6000; Philips VR6443/6543/6462/
    6467/6660/6760/6862.
2 Sharp VC100/102/501/781/783/785/801/851.
3 Sharp VC682/683/684/685/693/6F3.
4 JVC HRD 120/170/180/210/230/300/310/530EH/
    470/755.
D DER models.
6 Finlux VR3400, Hitachi models.
7 Blaupunkt RTV320, Panasonic models.
8 Asa VR2017.
```

If you can't find a particular model select the most suitable mode and try. For example a Sharp model not listed above will probably work in mode 2 or 3.

To programme the handset, use the point of a pencil to press the programming switch at the bottom back then key in the number of the required mode. Note that the VCR setting will have to be re-entered when the batteries are replaced.

Fault List

(1) If the set is dead check the four rectifiers Du16/18/21 (BY299) and Du17 (BY399) connected to the chopper transformer's secondary winding. No doubt one or other will be short-circuit. If Du18 or DU21 is faulty its associlated feed resistor Ru38 or Ru39 will have popped. Replace it with a 2A PCB fuse as recommended by Finlux.
(2) No picture with no e.h.t. This is usually caused by the iresistor in the h.t. feed to the line output stage, Rz28 (1.5 Ω), having burnt out. Fit a $1 \Omega 0.5 \mathrm{~W}$ replacement. Also replace the associated $470 \mathrm{nF}, 250 \mathrm{~V}$ capacitors Cz 14 and Cz 16 .
(3) Horizontal black lines and line pairing across the picture. Replace Ck8 $(100 \mathrm{nF}, 63 \mathrm{~V})$ in the field output stage.
(4) Blank picture and no sound, may be intermittent. If the text button is pressed only the text page number appears but the sound comes back. Suspect the BC557 composite video buffer transistor Ta3.
(5) Snowy picture. Remove the v.h.f. tuner as it develops a fault. Pin 11 where the tuner was must now be shorted to chassis.
(6) A 750 Hz tone is audible during Nicam reception. Remove the screening can from ICr 9 . Connect pin 2 of this chip to the chassis print at the top of the Nicam module. Refit the can and connect the negative side of Cr54 on the Nicam board to the same chassis point.

ECONOMIC DEVICES 32 TEMPLE STREET, WOLVERHAMPTON. WV2 4AN

USE YOUR ACCESS OR VISA io TEL 0902 712083/773122

Toshiba V110B

There was no E-to-E output, just a blank raster in play and the clock display showed wrong characters. An initial check around the power supplies revealed that the U8 (5 V) line was high at 8.8 V . We found that the ZPD2.7V zener diode DT53 was open-circuit. When a replacement was fitted the U8 supply was back at 5 V (check it at the collector of TT53) and the faults had cleared.
P.B.

ITT VR3918

I expected this machine to be a JVC clone but as soon as I removed the covers I saw that I was wrong (I found out later that it's of Sanyo manufacture). There was a cassette lift fault - the machine was reluctant to accept a cassette. It could take four attempts before a cassette would be taken in, and would only partly eject the cassette once it had been taken down. The cassette lift is operated by a gear off the capstan flywheel, so I wound a cassette in manually and pressed play. The machine threaded up but the capstan didn't turn. Luckily I was able to obtain a manual: then battle commenced!

The capstan motor wasn't being turned on in the play mode, and on the rare occasions when the capstan did turn to operate the lift the syscon didn't seem to be able to read the lift's position, even though the limit switches were all o.k. and the signals were reaching the syscon chip. A study of the block diagram showed that a signal should go to the syscon chip from the capstan FG. It was missing. A new LC74128017 chip brought it back and restored normal operation.P.B.

Philips VR203

This machine had unlocked servos in play - the symptom was a noise bar running across the screen. The audio/control/erase head was clean but there was no control signal at pin 16 of IC7040. The supplies and control signals to this chip were all found to be o.k. A new SAA1310 chip put matters right.
P.B.

Panasonic NVL25

A sullen refusal to power up and the legend "write erase" displayed above the flashing timer display were new symptoms to me. The machine would accept a cassette but wouldn't return it. In fact the only control that operated was the timer on/off button. This persuaded me that the systems and servo chip IC2001 and the operation and timer chip IC7501 were working. Checks on the serial data line showed that the amplitude of the serial data was low at about IV. Even with all the serial data ports disconnected and only a pull-up resistor and a 270 pF decoupling capacitor left in circuit the data line sat at about 1.5 V . Sure enough the capacitor (C 6012) which is a surface-mounted type was leaky, a replacement providing a complete cure.
B.S.

Panasonic NVG21

This machine buzzed and hummed alarmingly when it played back a good tape. The dealer concerned had replaced the audio/control head and the audio chip (IC4001). Nothing was revealed by carrying out careful voltage checks, but the audio input to IC4001 seemed to be abnormally sensitive.

There's a fairly severe input filter between the audio head and IC4001. Resistor R4021, which is a 47Ω surfacemounted device, is part of this filter and was open-circuit. An ordinary $0.25 \mathrm{~W} 47 \Omega$ resistor fitted neatly on the board and cured the trouble.
B.S.

Panasonic NVMS95

We've had a few of these top-of-the-range camcorders in with no titling or ability to set the clock. In every case the surface-mounted connector P6502 on the operations PCB was dry-jointed. In later versions the plug is glued in place, presumably to stop this happening!
B.S.

Panasonic NV850

There were no signals in the E-E mode. The 30V tuning supply is derived from Q7507/8, feeding pin 4 of the AN5033 chip IC7505. The voltage at this point was very low due to leakage: the cause was $\mathrm{C} 7524(0.01 \mu \mathrm{~F}$ disc) which read $8 \mathrm{k} \Omega$.
S.L.

Fisher FVHP710

Although rewind and fast forward were normal, when play was tried the loading arms began to move forwards then stopped, returning almost at once to rest. A check on the supply lines showed that the 5 V rail to the micro/syscon departments was high at 8 V . This supply comes from the STK5431ST multiregulator chip in the PSU. As the other sections of the chip were clearly all right I decided to carry out a modification. Pin 1 of the chip was disconnected from the print and taken to the input of a standard three-pin 5 V regulator whose output was connected to pin 1 of PV904, the 5 V line. The regulator was then screwed to the flat pad at the top of the power supply heatsink. This course was adopted because the customer required the machine in a hurry. I recall being told in my training days that "a bodge is only a bodge if it can be considered unreliable and/or unsafe - otherwise it becomes a modification"!
S.L.

Philips VR6460

This machine came in dead and we found that the 10.2 V supply was missing. It comes from the L4811 regulator 7110. As this device had no 12 V input we moved back to the LM317 regulator 7105 which proved to be open-circuit. Do others find these Philips manuals almost impossible to follow or is it just me?!
S.L.

Samsung VI710

No rewind or fast forward was found to be due to absence of the 15V supply at pin 8 of IC206. R244 (3.3 , IW) which feeds this supply to the BA6209 capstan drive chip was opencircuit. After replacing this resistor the machine went into permanent search when play was selected. An open-circuit between the print and pin 3 of CN204 was the cause. This is the "cap drive" input and the fault could conceivably have occurred during the earlier replacement. A final check showed that normal deck operation had been restored but the

E-E signal suffered from a.g.c. overload. The cause of this final fault was a defective tuner.

Akai VS5

This machine was in good condition despite its age. But on switching from channel to channel a popping on sound, bars over the picture and loss of colour indicated that the a.f.c. was hopping about. When the sweep tuning was tried we found that it wouldn't rest on located programmes but swept on. The cause of the fault was tracked down to the AN6362 chip IC8, whose output is evidence to the tuning microcomputer chip that a legitimate signal has been found. B.McC.

Sharp VCA105HM

If you find that the back-tension arm has jammed the mechanism it's probably because the arm has missed the tape when loading, due to slackness. There's no underlying problem. But remember that if you load a transparent service cassette without tape you'll jam the machine as it depends on the tape to control the position of the back-tension arm. B.McC.

Fisher FVHP5000/5100

There was no playback picture with the machine's own recordings, E-E and playback of prerecorded tapes being o.k. Replacing IC201 cured the fault.
R.B.

Philips VR6462/Finlux VR1010

No functions and no clock were cured by replacing the MAB8420 chip IC7091 on the back panel. R.B.

Salora SV6800

This machine is a Sanyo clone that uses the P90 mechanism. The original complaint was of intermittent operation and poor compatibility with prerecorded tapes. We removed the cassette lift to examine the brakes and the back-tension assembly, but when we'd reassembled the machine it wouldn't accept a cassette. After a lot of mechanical hassle we discovered that it's necessary to pull the toothed slide bar that operates the cassette lift until the last tooth engages in the white nylon cog. If this isn't done the mechanism goes out of sequence. Unfortunately the explanation in the manual is not at all clear. Back to the original fault. We found that the brakes didn't always release correctly because the "act brake lever" tended to stick. A modified part is supplied.
M.D.

Philips VR6520/Panasonic NV370

This machine came in because of no functions or clock display. On many occasions we've had problems with the small safety resistors on the power supply panel going open-circuit for no apparent reason, but this time the power supply was working normally. A look at the circuit showed that there's a further regulator on the main panel. Checks here revealed that the fusible resistor R1001 was open-circuit, hence no regulated 5 V supply.
M.D.

NEC N9033K

This machine came in because it chewed tapes. Rewind was very poor, and on investigation we found that the idler rubber was well worn. The idler and the clutch assembly were both replaced but both wind and rewind were still weak. Closer
inspection revealed that the brakes were not being released properly because the brake solenoid didn't operate fully. Its driver transistor TR102 had been overheating badly, the board was scorched and the solenoid's coil had become distorted through overheating. We ordered a new solenoid and fitted it along with three new transistors, TR101/2/3, in the driver circuit. A note came with the solenoid recommending a modification to prevent a recurrence of the problem: this consists of fitting a 1SS133 diode between pins 12 and 55 of IC101, with its anode to pin 55.
M.D.

NordMende V1021

This machine wouldn't accept a tape, the reason for this being the absence of the 17 V unregulated supply. The cause was immediately apparent when we removed the power supply panel. At some time the machine had suffered from liquid spillage, as a result of which wire links B30 and B31 had rotted through. Fortunately there was no other damage. M.D.

Sanyo VHR1300

We'd only recently fitted a new set of heads in this machine, so we were somewhat put out to receive a call from the customer who said that the machine was still not right. When he made recordings the pictures were very poor. What in fact was happening was that the tuner was drifting. As we had a tuner in stock we fitted it. But the problem persisted. The cause was eventually traced to the LA7913 tuner control chip IC3, a replacement restoring normal quality recordings. The repair was not quite as difficult as trying to extract more money from the customer, who was under the impression that having had new heads fitted entitled him to a life-time guarantee of everything!
E.R.

Ferguson FV43/4/5/6

A noise best described as a squeal in rewind is caused by incorrect meshing of the drive gears. This can be cured by adding spacer PQX45716. The idler can also jam, causing no drive. I've also experienced this problem in the later FV5 1.
N.B.

Panasonic G Mechanism

A problem that's becoming very common with earlier versions of this mechanism is noisy rewind/fast forward and a tape loop being left when ejecting from the half-lace, stop-1 position. The cause is wear of the VXL1490 play gear's teeth. It's beneath the centre pulley. Removing the latter and undoing the screw that secures the kick/limit arm assembly allows the arm/gear to be replaced.
N.B.

Akai VS427

This VCR was dead. Checks in the power supply revealed that the safety fusible resistor FRI was open-circuit while the associated 1N4007 rectifier diode was short-circuit. Replacing these components, using a new resistor obtained from Akai, completed the repair. This power supply circuit looks a lot more friendly than that in the VS22 series.
N.B.

Samsung SI7220

Calls to a completely dead machine - no clock or anything are becoming common with this model. The cause is a locked-up microcomputer chip. Remove the mains supply for a few seconds then reconnect it and all will be well.

The Operation of AD Converter Circuits

David Botto

The function of an analogue-to-digital converter (ADC) circuit is to produce from an analogue input waveform a corresponding digital pulse output. This has to be done continuously of course: as the analogue signal waveform changes, so the digital signal changes. ADC circuits are nowadays widely used in TV sets, video equipment, computers and test gear. The long-suffering service engineer is expected to understand and be able to repair them - usually without the benefit of any extra pay! This article is intended as an introduction to the basics for those who are not too sure how an ADC circuit works.

A typical application is the use of ADCs in digital multimeters. From an analogue d.c. input voltage the ADC produces a pulse output that can be counted to give a readout on the display. The ADC circuitry replaces the moving-coil meter movement used in the older analogue type of multimeter. Almost all modern DMMs use a dual-slope ADC. Earlier relatively low-cost meters often used a single-slope ADC however. So to make things easy we'll start by analysing the working principles of single-slope ADCs, from which the dual-slope type was developed.

The Single-slope ADC

The basic principle of the single-slope DMM ADC is simplicity itself. If the unknown input voltage is converted into a ramp, the time taken for the ramp to reach its maximum amplitude will be proportional to the input voltage. A clock oscillator and a digital counter can be used to check the time taken, the count being used to produce a digital readout.

Converting voltage to time is not difficult. The unknown voltage can be used to charge a capacitor via a resistor. Fig. 1 (a) shows capacitor Cl being charged via resistor R 1 from an accurately regulated d.c. voltage source. Fig. 1(b) shows the curve produced when a precision voltage source is used in this way. The voltage across the capacitor increases with time until its charge is equal to the applied charging voltage. Unfortunately this charging rate is exponential rather than linear. To overcome this problem the capacitor can be charged by a constant-current source, see Fig. 2. The voltage then rises linearly and time is proportional to the input.

Fig. 3, which has been greatly simplified for ease of explanation, shows the basic elements of a single-slope ADC DMM system. Charging capacitor CI is connected between the inverting input of an operational amplifier and chassis. The voltage to be measured is applied to the operational amplifier's non-inverting (+) input. The operational amplifier is being used as a comparator, i.e. its output depends on the difference between the two inputs. An advantage of using an operational amplifier here is its high input impedance, which is usually in excess of $1 \mathrm{M} \Omega$ (its output impedance is quite low, perhaps 100Ω or less). C1 must be discharged and the counter circuit set to zero before a measurement is made.

When a voltage measurement is made, Cl starts to charge. Thus a positive-going ramp is present at the operational amplifier's inverting input. When the ramp voltage exceeds the voltage at the operational amplifier's non-inverting input, i.e. the voltage being measured, the operational amplifier's output changes state - it falls to zero since the variable (ramp) input is applied to the inverting input. Thus the amplifier's output starts high and falls to zero after a period of time depending on the voltage being measured. Voltage has been
converted to time in a linear manner.
Fig. 4 shows the relevant waveforms. At time $1 / \mathrm{Cl}$ starts to charge. At time t2, which depends on the voltage being measured, the output from the operational amplifier falls to zero. The duration of the squarewave output from the operational amplifier depends on the voltage being measured: the higher the unknown voltage, the longer the duration of the positive-going squarewave output.

The following and gate receives positive-going clock pulses at one input and the operational amplifier's output at the other. When the operational amplifier`s output is high, at the beginning of the voltage measurement, the clock pulses pass through the and gate to the counter. When the operational amplifier's output falls to zero the and gate can no longer pass on clock pulses. Thus the number of clock pulses received by the counter depends on the voltage being measured. This simple arrangement has converted a d.c. input to a series of pulses whose total is directly proportional to the measured input. The clock oscillator has to be a close-tolerance device of course: its frequency is in the kilohertz range.

To keep the reading updated, the count is reset at the completion of each measurement cycle. At the same time a reset pulse is applied to Tr l , switching it on to discharge C1. The measurement process is then repeated. If the input voltage has changed, the display will show a different figure.

This simple circuit might be used to measure voltages in the range $0-200 \mathrm{mV}$. By adding buffer amplifiers, series resistors, switches, shunts and additional circuitry it's possible to use the arrangement for a wide range of a.c./d.c. voltage, current, resistance and other measurements. How this can be accomplished was shown in my earlier article on choosing a digital multimeter (October 1991). There are of course many variations on this type of circuit, but the basic principle remains the same.

Unfortunately the single-slope ADC has a number of drawbacks. It is badly affected by clock oscillator frequency drift and noise at its input. The long-term stability of Cl is critical to accuracy. And the slightest leakage in the DMM's PCB will upset its performance - for this reason an expensive glass-epoxy PCB is generally used in a DMM that employs a single-slope ADC .

Fig. 1: Charging a capacitor via a resistor (a) produces an exponential ramp (b)

(a)
(b)
[0882]
Fig. 2: Charging a capacitor from a constant-current source (a) produces a linear ramp (b).

Fig. 3: Digital multimeter arrangement using a singleslope analogue-to-digital converter.

Fig. 4: Waveforms relating to Fig. 3.

Fig. 5: Simple digital multimeter arrangement using a dual-slope analogue-to-digital converter.

Fig. 6: Waveforms relating to Fig. 5.
Nevertheless a number of earlier DMMs used this arrangement. An example is my Heathkit Model IM-1202 which still works well. The simplicity of the single-slope system made it ideal for use with the two and a half and three digit readouts found in earlier DMMs.

Dual-slope ADC DMMs

The need for greater accuracy led to the development of the dual-slope converter. As with the single-slope system, it's based on a capacitor being linearly charged by a constant-current source. The improved dual-slope design provides an
accuracy of 0.05-0.1 per cent or better however.
Dual-slope ADCs do not call for the same critical accuracy and stability of components and parts as in a singleslope design because such circuits are, to a certain degree, self-compensating. Nevertheless good-quality components remain a prime requirement.

Fig. 5 shows the basic dual-slope system. It's called a dual-slope arrangement because the capacitor (C1) first charges (the up ramp) and then gradually discharges (the down ramp) at a controlled rate during the course of each measurement cycle. It largely eliminates the problem of accuracy deterioration due to tiny changes in the electrical characteristics of components over a period of time. Fig. 6 shows relevant waveforms.

The voltage to be measured is fed to the first operational amplifier which is connected as an integrator. The values of C 1 and R1 must be carefully selected. At the beginning of each measurement cycle the first operational amplifier's output is negative with respect to chassis. This is the noninverting input to the second operational amplifier, which is connected as a comparator. Thus at this point in the cycle its output is at zero.

A negative input voltage applied to the first operational amplifier's inverting input means that C 1 will have a negative voltage at one terminal with respect to its other terminal. It begins to charge. This circuit arrangement, with the charging capacitor connected in a negative-feedback loop, acts as a linear integrator and thus functions as a constant-current charging source for C 1 . At the beginning of the measurement the comparator's non-inverting input moves positively. Its output switches to the positive state and the and gate allows clock pulses through to the counter.

When C1 has charged, all the flip-flops in the counter will have been set or reset. The counter is said to be full. At this point the counter produces an over-range signal which is used to operate the electronic switch. This applies a positive reference voltage to the integrating circuit's inverting input. The reference voltage is usually obtained from a temperaturecompensated zener diode of a type that will not easily change its characteristics over a long period of time. C 1 now begins to discharge, producing the down ramp at the integrating circuit's output. At the end of the discharge period the circuit

Fig. 7: Dual-slope ADC DMM catering for positive and negative d.c. voltage inputs, with autopolarity selection.
reverts to its initial state. The higher the voltage to be-measured, the greater the angles a and b in Fig. 6 and the longer the length of the up and down ramp waveforms.

Dual-polarity Version

The circuit we've been considering is hardly practical since it responds to only negative d.c. voltages. What we require is autopolarity, that is the measurement of both positive and negative d.c. voltages with the display readout of the DMM indicating both the amplitude and the polarity of the measured voltage.

Fig. 7 shows a much simplified dual-slope ADC circuit that does this. It requires positive and negative 9 V supplies with respect to chassis. The integrator circuit is identical to that shown in Fig. 5 but its output is fed to the non-inverting input of one comparator operational amplifier and the inverting input of the other one. Diodes D1 and D2 provide isolation between the outputs of the two comparators. And gates two and three along with transistors Tr 1 and Tr 2 control the switching of the discharge supplies. The outputs from the two comparators also go to the PO- and PO+ inputs of the timer/counter section where they trigger as appropriate a latch flip-flop to switch the minus/plus voltage indicator on.

Fig. 8: Simple parallel ADC that detects seven different input voltage states and converts these into a three-bit word $(000,001$ etc. to 111). The lowest input voltage produces the least significant bit (LSB), the highest input voltage the most significant bit (MSB).

When there's zero input voltage the outputs from the two comparators are at zero and the counter readout consists of zeros. In practice preset balance adjustments may be provided for the comparator operational amplifiers, also offset voltages to provide greater accuracy with very low input voltages.

Most of the circuitry in a modern DMM, including the counter/decoder/over-range circuits, reference voltage generators and electronic switching, is usually contained within one or two i.c.s.

The dual-slope ADC DMM has the advantage of excellent conversion stability, but this is at the expense of conversion speed due to the time taken to charge/discharge C 1 and i.c. propagation delay. This is hardly a problem however since by the time the engineer's test prod has been connected to a test point and he turns to look at the readout the measured value will already be displayed.

Other ADC Techniques

For the sake of completeness a couple of other ADC methods are worth mentioning. They are not commonly used in DMMs but are employed in TV/VCR/computer circuitry.

The sample-and-hold converter samples the analogue input signal at regular intervals then converts the samples to digital form. The higher the sampling frequency the greater the accuracy of the conversion. This is the technique used with CD discs etc.

The parallel converter, also known as the flash converter, uses simple circuitry and has the advantages of reliability and high-speed operation (measured in microseconds). Its main disadvantage is the number of operational amplifiers required to achieve a high degree of resolution. Fig. 8 shows a simple flash converter circuit in which seven operational amplifiers are connected as parallel comparators. Each operational amplifier compares the input to a separate, fixed reference level. When the input to one of the operational amplifiers exceeds its fixed input its output changes state. These changes are fed to a matrix network that produces a binary word output.

Summary

The ADC circuitry we've been looking at in this article is in practice contained in just a few chips. This could be the reason why so little detailed information on its operation is available, at least so far as I've been able to find. Some of the circuitry described had to be breadboarded in order to check and analyse its mode of operation.

New Publications

How TV/video technology advances. The first edition of Newnes Television and Video Engineer's Pocket Book, which superseded the Television Engineer's Pocket Book, appeared in 1987. The new second edition, which is to be published on July 31 st, has called for substantial revision and addition. Separate chapters have had to be added on satellite television and Nicam stereo sound. There's also a new chapter on components and assemblies. All the other sections have been updated.

This is a helpful reference book that's designed to cater for the needs of practising service engineers. There's much that one wants to be able to refer to or look up on occasion when dealing with something that takes one just a little away from routine matters. It's unlikely that you'll find this book wanting as a reference guide. In addition to much data there are helpful descriptions of the basic systems and circuits used in
the domestic TV/video field.
The latest edition is in a slightly different format, bringing it into line with other Newnes Pocket Books (Computer, Electronics, Radio and Electronics). Paul Richards Books has a special pre-publication offer of $£ 2$ off the official published price of $£ 12.95$: it applies to orders received before July 31 st - see advertisement elesewhere in this issue. Recommended as a useful, practical handbook for the service department.

Steve Beeching is to introduce a series of "Technical Information Modules" which will cover various aspects of video recording and playback. The idea is that each one will provide a technical explanation that can be kept as a reference source. As Steve points out, early VCR manuals used to contain technical descriptions of the circuitry and systems used. Modern ones don't, so where do you go? You get a Beeching Module! Each will consist of 30 or so A4 sheets, printed on both sides, with diagrams included in the text. The first one, covering colour recording and playback systems (VHS, Betamax and 8 mm), is now available at $£ 6.95$ including post and packing in the UK from Newark Video Services, Grove Farm, Long Lane, Barnby in the Willows, Newark, Notts NG24 2SG.

CD Player Casebook

Reports from Mike Leach, P.J. Roberts and Philip Blundell, AMIEIE

Crown CDK2300

Should you come across one of these midi systems that's suffering from possible laser trouble it's worth carrying out a few initial checks. The cause could be a poor printed circuit or dry-joints on the main board. I've had cases recently where the cause of skipping or failure to read a disc has been due to dry-joints around the two regulator transistors. A good solder up and some print tidying cured the problem. M.L.

Sharp WOCD15

Failure to read the TOC was the symptom with this player. The disc would spin backwards very fast and not shut down we had to disconnect the power supply to remove the disc without damaging it. After stripping the player down (the usual pain - leads not long enough etc.) I found that the safety resistors R835 and R836 in the plus and minus 9 V supplies to the focus and tracking driver transistors were opencircuit. I replaced them and carried out a good solder up in the power supply. The player then performed normally. When it was tried the following day however nothing happened - there was no display and no TOC reading. Checks in the power supply produced some rather abnormal results then, suddenly, the machine sprang to life and worked all right. The d.c.-d.c. converter in the power supply was suspected and after further checks replaced. There were no further problems after doing this.
M.L.

Pioneer PDM70

This player wouldn't read discs, not even the TOC. As you probably know the spindle motor is a common cause of this problem, but not with the type used in this machine. After checking the power supplies and finding everything in order I engaged the test mode and ran through the test sequence. When track forward was pressed disc one was loaded but focus wasn't found. After removing the pick-up I found that the objective lens was badly soiled - to the extent that I couldn't see any laser light when I pressed the track forward
key, though the lens moved up and down (note that the pickup must be held lens down).

I cleaned the lens and refitted the pickup. When track forward was pressed disc one loaded, focus was found, the tracking servo closed and sound was present at the phono sockets. But the machine wouldn't play tracks 8 and 15 of the test disc without skipping and jumping. A full mechanical and electronic alignment failed to cure the problem so the pick-up (PWYO06) was replaced and alignment was carried out. The machine now played tracks 8 and 15 without difficulty.
P.J.R.

Pioneer CLD 1080

A customer brought this CDV player into the shop, placed it on the counter and explained that he had broken off the modulator's output sockets. Thus a new modulator would be required. Whilst I was taking down the repair details I noticed that it was a US model, for NTSC video, and that the modulator was a v.h.f. type. As we didn't have the manual I gave Pioneer spares a ring, in particular to see if a modulator could be supplied. It could, but would take about a month because it had to come from the states. The customer needed his unit in three days' time, not a month! So I had to devise a way of setting up his equipment so that he could carry on using it while we waited for the spares to arrive.

Use of a Sharp VC681 VCR enabled this to be achieved. We fed the CDV player's video output (CVBS) into the VCR's video input. With the VCR switched to the aux input the NTSC signal was modulated on to a u.h.f. carrier. This was fed to the customer's TV sets. When all three sets had been retuned to u.h.f. (they are multistandard models) each one displayed a crisp (for NTSC) clear picture. Being satisfied with this I gave the customer a call. He took his equipment away and said he'd bring it back when the spares came in.

Subsequently the modulator arrived (well done, Pioneer!). It was fitted and the unit was given a short test before being returned to the customer. A few days later he came back and
complained that only two of his TV sets would work at one time. He wanted to use all three.

The customer brought in all his equipment and we set it up in the workshop. As the customer had said, only two sets would work at one time. The other one would tune up the band, find the v.h.f. signal then instead of memorising the frequency would carry on tuning. It worked all right at u.h.f., but apparently not on v.h.f. channel 4 . I was about to give up for the day but thought that I would try one more thing retune the output from the modulator and retune the TV sets. It worked. I reset the modulator's output to v.h.f. channel 3 and, once they had been retuned, all three TV receivers then worked perfectly. Could the problem have been caused by standing waves in the coax? After a short test during which it worked without difficulty the customer's equipment was sent back.
P.J.R.

Binatone 01/7270

The compact disc player in this midi hi-fi system was faulty. It would read the TOC but wouldn't play. When play was tried the radial arm skated across the track then ERR was displayed. As the player read the TOC it seemed unlikely that the CDM unit was faulty - the dealer had already tried fitting another one. Substitution proved that the MAB8441P-T107 microcontroller chip was the culprit.
P.B.

Test Case 356

"It's got like curtains down the side of the picture" puffed the man who staggered into the workshop with a 25 in . TV set in his arms. Our receptionist Pam thought, but didn't say, that judging by his purple face it would be curtains for him if he went on like that. She made out the job card, relieved the gasping man of our $£ 15$ initial charge, and suggested to him that we would deliver the set when it had been repaired -a bargain at $£ 6$ extra.

The set was a Tatung Model TYV9821M, which uses the 180 chassis. It was soon on the bench in the charge of Roger, a temporary stand-in who helps us out when we're busy. His name has a certain unfortunate rhyming connotation, which is not wholly true of him... Anyway he hooked up the set, tuned a spare button to the local transmitter and looked for the curtains. There weren't any. He next tried the set on the raw mains supply. Still no curtains. So he rang the customer for clarification as he couldn't see them. "Ah no, you won't" the man told our bemused locum. It emerged that the curtains were visible only on low-key scenes, night shots and when the screen was momentarily blank between programmes. They were also confined to the left-hand side of the screen.

Roger fed a plain grey raster from a pattern generator to the set. He then saw the symptom. There were striations down the left-hand side of the display, alternate light and dark stripes. They faded out about a third of the way across the screen. Use of the brightness and contrast controls enabled the curtains to be seen quite clearly and, hopefully, their cause diagnosed.

The symptom was common in the sets of yesteryear. In fact two decades or more ago it was a feature of some of the
cheaper models. Design of the line output stage has remained basically the same over all these years and in earlier times a common cause of vertical striations at the left-hand side was poor damping of the line linearity coil. Not all modern sets use this time-honoured arrangement, but the Tatung 180 chassis does. The line linearity coil is L408: it's damped by two series-connected 470Ω resistors, R434 and R439. Roger confidently disconnected their junction point and measured their resistances. Each read 430Ω, a change that was likely to increase the damping rather than reduce it.

Our valiant temp, seeing no other obvious possible causes for the symptom when he studied the circuit diagram, next went hunting with his oscilloscope to ascertain whether the striations were being produced by velocity- or intensity-modulation of the electron beam. He examined the waveforms at the tube's cathodes and grid, using a.c. coupling and a highgain scope setting, but could detect no significant oscillation at the beginning of each line. Whatever there might have been was lost in the noise, minimal though this was. His conclusion was that the electron beam was not being intensitymodulated. So it was back to the line deflection circuit.

Things went steadily downhill after this sensible and scientific start. All sorts of components in the line output/scanning department were checked by substitution in an increasingly desparate and irrational attempt to get to the bottom of the problem - the efficiency and EW modulator diodes, the scan-correction and yoke-coupling network components, the line flyback tuning capacitor and goodness knows what else. All this while the real culprit, up on the tube base panel, remained unsuspected and inviolable. On the tube base panel? That's where it was as Television Ted, brought in for consultation, found. So what was it? For the solution and another item in the test case series, see next month's issue.

ANSWER TO TEST CASE 355 - page 664 last month -

Last month we related the sorry tale of Easthurst School's Hitachi VT410. It had come in for attention because of physical problems in the cassette loading department, then stayed in because of a strange recording fault - only one head was operational in the record mode. During playback of its own recordings only alternate fields appeared. Between them were noisy 20 msec gaps. As a result the playback picture flickered badly and was overlaid with white spots and interference.

The cause of the problem lay in the head switching. There are two sorts of head switching in a two-head VCR. During playback each head is selected in turn. This switching is controlled by the drum flip-flop waveform. In the record mode the outer ends of the head windings are earthed alternately while the inner ends receive the record current. Each head has its own earthing switch which consists of a transistor, in either discrete component or i.c. form. If one of these switches fails to close there's no earth return path for the recording current, so a magnetic field isn't generated.

In the VT410 the switching is done by Q1 and Q3 which are on the preamplifier PCB. Investigation here showed that Q1 had an open-circuit collector. There was no effect in the playback mode because the transistor is then off anyway. The repair was carried out by using Q4 as a replacement for Q1. Q4 is present on the PCB but isn't used in the two-head version of these machines.

[^1]

During the last few weeks, HRS has sent two customers on Luxury Weekends for two at Euro Disney.
And we've also sent highly acceptable SURPRISE GITS to hundreds of all corred entrants in our
:00K IEAF Foi
DSME MORIL
COMPETIIONS.

Need a catalogue? phone our
SALES DESK on 0217897575 (recognised trode only)

There are two more competitions before the end of August. So your
 catalogue can still book you into...

DISNEY WORID, FLORIDA

A fabulous family holiday for four at DISNEY WORLD, FLORIDA.

2 EURO DISNEY WEFKENDS

One of two
EURO DISNEY WEEKENDS Plus for two

MYSIERY PRIZES
Lots of
MYSTERY PRIZES
and there are hundreds still to be won!

FOR ALL YOUR SPARES-AND MOST OF YOUR OVER THE COUNTER LINES INTO THE BARGAIN! OVER 25,000 LINES!

WHEN YOU CAN GET SO MUCH FROM HRS, WHY GO ANYWHERE ELSE?

GET INTO THE HRS CATALOGUE-AND BOOK YOURSELF A BONANZA!
SALES DESK © 0217897575 FREE FAX 0800212179 ORDER NOW!

WE HAVETH T WIDETT CHOIGE OFUS		
,		
为	WA YNE KERR LCR Meter 4210 Accuracy 0.1% WAYNE KERR LCRMeter 4225 AcCuracy 0.25% AYO AC/DC Breakdown Leakage a lonisation Tester RM2 $51 / 2$	
	$\underset{\sim}{\text { AMI LLII }}$	
ECTRON MICROSCO		
E.I. Corinth 500 - Transmission		
EARNEU MARCONI TF 2015 AM/FM $10-520 M_{H Z}$ Sig Ger with TF2171		
	NEW EQUIPMENT	
	Same 为 	
SPECTRUM ANALYSERS		
	APOLLO $100 \sim 100 \mathrm{MHz}$ (As above with more functions)METEOR 100 FREQUENCY COUNTER 100 MHz METEOR 100 FREQUENCY COUNTER $100 \mathrm{MHz} .$.METEOR 600 FREQUENCY COUNTER $600 \mathrm{MHz} .$. METEOR 1000 FREQUENCY COUNTER IGHzjUPITOR 500 FUNCTION GEN 0.1 Hz -SOOkHz Sine/S ψ Tri............................ 229 All other Black Star Equipment available OSCILLOSCOPE PROBES 5 writhable $\times 1 \times 10$ (P\&P (3) $C I I$	
Used Equipment - With 30 days guarantee. Manuals supplied if posalble.This is a VERY SMALL SAMPLE OF STOCK SAE or Telephone for lists Piease check availabilicy before orderingCARRIAGE all units C16. VAT to be added to Total of Goods and Carriage.		
STEWART of READING OWYKEHAM ROAD, READING, BERKS RGG IPL Telephone: (0734) 268041. Fax: (0734) 351696 Caliers Welcome 9am-5. 30 pm Mon-Fri (until 8 pm Thurs)		

AMSTRAD PORTABLE PC'S FROM 149 (PPC1512SD) £179 (PPC1512DD). [179 (PPC1640SD). £209 PPC1640DD. MODEMS $\{30$ EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Steroopair ounput TOOMeach. 40 hm mpedance and consisting, el $61 / 2^{\prime \prime}$ woofer 2" mid range and "Tweeter Idealitworkwith the amoliter descnbed above Price per parr $£ 30.00$ Order ret 30P7R.
2KV 500 WATT TRANSFORMERS Suitabie for high voltage experiments or as a spare for a microwave oven etc. 250y AGimput oiv only $£ 4.00$ ref 4 P 157
IICROW CONTROL PANEL Mains operated, with touch switches Complete with 4 digit display, digital clock, and 2 relay ditputs one for power and one for pulsed power (programmable. 4P151
FIBRE OPTIC CABLE. Stranded optcal fibres sheathed in black PVC Five metre length $£ 700$ ref 7P29R
12 V SOLAR CELL. 200 mA output ideal for trickle
charging
15 P 42 R
PASSIVE INFRA-RED MOTION SENSOR.
Complete with daylight sensor, adjustable ights antiriei (8 secs - -15 mins). 50 range with a 90 piete with wall brackels, bult hoiders etc Brand new and guaranteed. Now only $£ 19.00$ re $19 P 29$
Pack of two PAR38 butbs for above unit $£ 12.00$ ref 12P43R VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, video recorder or computer to any $12 \vee$ DC op $£ 15.00$ ret $15 P 39 R$ Suitable mains adaptor $£ 500$ re SP191R
FM TRANSMITTER housed in a standard working 13A adapter (bug is mains driven) $£ 26.00$ ret 26 P 2 R
IINATURE RADIO TRANSCEIVERS A
waikie takies with a range of up to 2 kilometres. Units 3 , measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases $£ 30.00$
FM CORDLESS MICROPHONE.Small hand held unit with a 500 range' 2 transmit power 'evels reqs PP3 battery. Tunnable to any FM eceiver Our price £15 ref 15P42AR
12 BAND COMMUNICATIONS RECEIVER. 9 shor bands, FM. AM and LW DXIOCal switch, tuning 'eye' mans
or battery. Complete with shoulder strap and mains lead
NOW ONLY E19.001! REF 19P14R.
CAR STEREO AND FM RADIOLow cost stereo sys giving
5 watts per channel. Signal to noise ratio better than 45 db wow and futter less than 35%. Neg earth $£ 19.00$ ef $19 P 30$
LOW COST WALIKIE TALKIES. Pair of battery op erated units with
a pair reat $8 P 50 R$
7 CHANNEL GRAPHIC EQUALIZERolus a 60 watt power amp 20-21KHZ 4-8R 12-14vDC negative earth. Cased $£ 25$ ret 25P14R NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ re 4 P44R. $2 \times$ C's $£ 4.00$ rel 4 P73R, $4 \times$ D's $£ 9.00$ ref 9P12R, $1 \times$ PP3 TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book Latest edition $\varepsilon 20.00$-e 20932 R
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 £ 3.00$ ref 3P104R Bumper pack of 1.000 ries $£ 14.00$ ret 14 P6R

NEW 80 PAGE FULL COLOUR LEISURE GATA! OCIUE 2,500 NEW LINES FREE WITH ORDER ON GEQUEST OR SEND $£ 1.00$
GEIGER COUNTER KIT.Complete with tube, PCB and all compo nents to build a battery operated geiger counter. $£ 3900$ ref 39 P1R FM BUG KIT. New design with PCE embedded coil. Transmits to any FM radio $9 v$ bathery teq'd. $£ 5.00$ ref SP158R
FM BUG Buil and tested superior $9 v$ operation
M BUG Buil and tested superior $9 v$ operation $£ 1400$ rel 14P3R COMPOSITE VIDEO KITS. These convert composite vidso into separate H sync. V sync and video. 12 DC DC. 8.00 ref 8 P 39 P SINCLAIR C5 MOTORS i2v 29 A (full load) 3300 pm 6 "x4" $1 / 4$ $0 / P$ shatt. Now. $£ 20.00$ ref 20 P 22 R
As above but with hitted 4101 inine reduction box (800 rpm) and loothed nylon belt drive cog $£ 40,00$ ret $40 P 8 R$
SINGLAIR C5 WHEELS $13^{\prime \prime}$ or 16° dia includ
SINCLAIR C5 WHEELS $13^{\prime \prime}$ or 16° dia including treaded tyre and inner tube. Wheels are black, spoked one piece poly carbonate. 13^{\prime} ELECTRONIC SPEED CONTROL KIT
ELECTRONIC SPEED CONTROL KITior C5 motor PCB and all components to build a speed controller ($0-95 \%$ of speed). Uses pulse widith modulation .21, 00 ref 1 P3
SOLAR POWERED NICAD CHARGER.Charges 4 AA nica
6 P3R 6 P 3 R .
12 VO
2 VOLT BRUSHLESS FANk $1 / z^{2}$ square brand new ideal for boal. car. caravan etc. $£ 5.00$ ref 5 P206
ACORN DATA RECORDER ALF503 Made for BEC computer but suitable for others. Includes mains adapter, leads and bock 15.00 ref 15P 43

VIDEO TAPES. Three hour superior quality tapes made under icence from the famous JVC company. Pack of 5 tapes New low
price $£ 8.00$ ref 8 PP 161 PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC $£ 40.00$ REF 40P10R. MAINS POWER SUPPLY KIT $£ 20.00$ REF 20P33R READY BUIL AND TESTED LASER IN ONE CASE 575.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but w th a larger trans formerit will handle 80 watts. Basic Kit £12.00 ref 12P 17R. Larger transtormer $£ 12.00$ ref 12 P419 VERO EASI WIRE PROTOTYPING SYSTEMideal for designing projects on etc. Complete with tools, wire and rousable board. Now low bargaln price only E 2.00 ref B2P1
HIGH RESOLUTION 12" AMBER MONITOR12v 1.5 A Hercu-
les compatible (TTL input) new and cased $£ 22.00$ ref 22P2R

VGA PAPER WHITE MONO monitors new and cased 240 v AC. 559.00 ref 59P4R
25 WATT STEREO AMPLIFIERc. STKO43. With the addition of a handful of components you can build a 25 watt ampifier. $£ 4.00$ ret 4P69R (Cirouil dia included)
BARGAIN NICADS AAA SIZE 200 MAH 1.2 V PACK CF E4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BD827R ALARM TRANSMITTERS. No data avaliable but nicely made complex radio transmilters 9 v operation. $£ 4.00$ each ref 4 P 81 R . 12V 19A TR
GX4000 COMPUTERS. Customer returned games machines complete with pug in game, joysticks and power supply. Retal price is almost $£ 100$. Ours is $£ 12.00$ ref B12P1
ULTRASONIC ALARM SYSTEM. Once agan in stock these units consist of a detectot that plugs into a 13 A socket in the area to protect. The receiver plugs into a 13 socket anywhere else on the same supply. Ideal for protecting garages, sheds elc. Complete
system $£ 25.00$ ret B25P1 additional detectors $£ 11.00$ ret B B1TP1 IBM XT KEYBOARDS. Brand new 86 key keyboards $£ 5.00$ rel 5P612
IBM AT KEYBOARDSErand new 86 key keyboards $£ 15.00$ ret 15P612
386 MOTHER BOARDS. Customer returned units without a cpu filted £22.00 ref A22P1
> bSB SATELLITE SYSTEMS bRAND NEW REMOTE CONTROL ع49.00 REF F49P1

286 MOTHER BOARDS. Brand new but customer returns so may need attention. Complete with technical manual $£ 20.00$ ret A2OP2 286 MOTHER BOARDS. Brand new and tested complete with technical manual. $£ 49.00$ ret A49P1
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and PP3 nicads Holds up to 5 batteries at once. Now and cased, mains PP3 nicads holds up to 5 batteries at once. Now and cased, mains
operated 66.00 ref 6 P36R. IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3,4,6,7,5,9$ and 2 V वupurs 800 mA Compl unversal RESISTOR PACK 10×50
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal fitm E5 00 ref 5P470R

MIRACOM WS 4000 MODEMS
V21/23

AT COMANDSET

AUTODIAL/AUTOANSWER
FULL SOFTWARE CONTROL
TONE AND PULSE DIALLING

£29

IBM PRINTER LEAD. (D25 to centronics plug) 2 metra parallial E5.00 ;ef 5P186R
COPPER CLAD STRIP BOARD 17 " $\times 4$ " of 1 " pitch "vera" board £4.00 a shest ref 4P62R or 2 sheets for $\$ 7.00$ ret 7P22R STMP BOARD CUTTING TOOL.S2 00 ref 2 P352R. 50 METRES OF MAINS CABLE $£ 3.002$ core black precut in
convenient 2 m lingths. Ideal for repairs and proiects rof 3 P918 4 CORE SCREENED AUDIO CABLE 24 METRES $\$ 2.00$ Precut into convenient 1.2 m lengths. Ret 2P365R TWEE TERS $21 / 4^{" D I A} 8$ ohm mounted on a smart metal plate for easy tixing $£ 2.00$ ref 2 P36F!
easy
COMPUTER MICE Originally made for Future PC's but can bo adapted for other machines Swiss made $£ 8.00$ ref $8 P 57 \mathrm{R}$. Atari S conversion kit $£ 2.00$ ret 2 P 362 R

5P205R

WINDUP SOLAR POWERED RADIOI FMAM radio takes re-
chargeable batteries complete with hand charger and solar panel 14P200R

PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 v input. $+5 @ 15 A,+12 @ 5 A .12 @ .5 A .5 @$. 3 A . Fully cased with ian. ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels. $£ 16.00$ ref 16 P 200 ALARM PANELS 2 zone cased keypad entry, entry exit time delay

BULL ELECTRICAL
250 PORTLANO ROAD HOVE SUSSEX EN3 $50 T$ TELEPHONE 0273203500 MAIL ORDER TERMS: CASH PO OR CHEQUE WITHORDER PLUS E3 OO POST PLUS VAT. PLEASE ALLOW $\geqslant-10$ OAYS FOR DELIVERY

NEYT DAY DELTVERY FA: 0
FA) 027323077
etc. $E 18.00$ ref 18 P 200
MODEMS FOR THREE POUNDS! I
Fully cased UK modems designed i
or info but only $£ 3.00$ ref 3 P1 $45 R$
TELEPHONE HANDSETS
Bargain pack of 10 brand new handsets with mic and speaker only

£300 ref 3P 146 F

BARGAIN STRIPPERS
Computer keyboards. Loads of switches and components excellent
value at $£ 1.00$ ret CD4OR
DATA RECORDERS
Customer returned mains battery units bult in mic ideal for Computer
or general purpose audio use. Price is $£ 4.00$ ref 4 P 100 R
SPECTRUM JOYSTICK INTERFACE
SPECTRUM JOYSTICK INTERFACE
Plugs into 48 K Spectrum to provide a standard Atan type joystick
port Our price £4.00 ref 4P101R
ATARI JOVSTICKS
Ok tor use with the above intentace our price $£ 400$ rel 4 PMozR
日ENCHPOWER SUPPUES
PENCHPOWER SUPPLES
Superbly made fully cased (metal) giving 12 V at 2 A plus a 6 V sugply
used arid short a ccuit protected For sain
case! Our price is £4.00 rel 4P103R
SPEAKER WRRE
Brown twin core insulated cabie 100 for $£ 2.00$ REF 2P79R
MAINS FANS
Brand new $5^{\prime \prime} \times 3^{\prime \prime}$ complete with mounting plate quite powertull and quite. Our price $£ 1.00$ ref CD4iR
DISC DRIVES
DISC DRIVES
Customer retumed units mixed capacities (up to 1.44M) We have not sorted these so you just get the next one on the shelf. Price is only £7.00 ref 7P1R (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R PRONECT BOX
$51 / 2^{\prime \prime} \times 312^{\prime \prime} \times 1$ "black ABS with screw on lid. $£ 1.00$ ref CD43R SCART TO SCART LEADS
Bargain price leads at 2 for $£ 3.00$ ref 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end, Mi density D type on the other. Pack of ten leads only $\mathrm{E7} 00$ ref 7P29
OZONE FRIENDLY LATEX
250 ml bottie of liquid nubber sets in 2 hours id eal for mounting PCB's
xing wires etc. $£ 2 . \infty$ each ref 2P379R
OUICK SHOTS
Gtandard Atari compatible hand controlier (same as joysticks) our profe is 2 for $£ 200$ rof 2P380f
VIEWDATA SYSTEMS
Brand new units made by TANDATA complete with 1200/75 buitt in modem infra red remote controlled qwerty keyboard BT appproved Prestel compatible, Centronics printer port RGB coiour and compos ite output (works with ordinary television) complete with power supoly and fully cased. Our price is only $£ 20.00$ ref 20P1R AC STEPDOWN CONVERTOR
Cased units that convert 240 v to $110 \mathrm{v} 3^{\prime \prime} \times 2^{\prime \prime}$ with mains input lead and 2 pin American ouput socket (suitable for resistive loads only) our price $£ 2.00$ ref 2 P 381 R
SPECTRUM +2 UGHT GUN PACK
complete with sof ware and instructions $\$ 8.00$ ref 8P58R/2 CURLY CABLE
Extendstrom 8"106 teat! D connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each rel CD44R COMPUTER JOYSTICK BARGAIN
Pack of 2 joysticks only $£ 200$ ref 2P382R
BUGGING TAPE RECORDER
Smatl hand heid casselte recorders that only operate when there is sound then turn off 6 sec onds after so you could leave it in a room all day and μ st record any thing that was said Prictis $£ 2000$ ref 20P3R
IEC MAINS LEADS IEC MAINS LEADS
Complete with $13 A$ phug our price is only $£ 3.00$ for TWO ref 3 P148R
NEW SOL AR ENERGY KIT NEW SOLAR ENERGY KIT
Contains 8 solar celis, motor. tools, fan etc plus educational booklet.
ideal for the budding enthusiast P Price is $\Sigma 1200$ ret 12P2R

286 AT PC

286 MOTHER BOARD WITH G40K RAM FULL SIZE METAL CASE TECMNICAL MANUAL, KEYBOARD AND POWER SUP. PLY \&139 REF 139P1 (no \%o cards or drives included) Som
metal work req'd phone for detalls.
35MM CAMERAS Customer returned units with built in flash and
28 mm lans 2 forch on ret 8 P 200
STEAM ENGINE Standard Mamour 232 ,
engine complete with boller piston etc $£ 30$

ret 30P200

TALKING CLOCK
LCD disptay, alack batren operal
Clock will announce the tme at

push of a button and when the

alarm is due. The alarm is switcha
from vaice to a cock crowing! 14.
HANDHELD TONE DIALLERS
Small units that are designed to hold over the mouth piece of a telephone to send MF diailing tones. Ideal for the remote control of answer machines $\{500$ rof 5P209R
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new dives with cartridge and sotware 10 times faster than tape machines works with any Commodore 64 setup. The orginal price for these was $£ 49.00$ but we can offer them sotup. The orginal price for these w
ATARI 2600 GAMES COMPUTER Brand new with joystick and
32 game cartridge (plugs into TV) S 2900 ref F 29 P 1 also some with 32 game cartridge (plugs into
1 game at $£ 19.00$ ret F19P2.
BEER PUMPS Mains operated with fluid detector and electronic umer standard connections. Ex equipment. $£ 18.00$ ef F18P1 90 WATT MAINS MOTORS Ex equipment but ok (as fited to above pump) Good general pupose unit $£ 9.00$ ref F9P1
HI FI SPEAKER BARGAIN Originally made for TV sets they consist of a 4" 10 watt4R speaker and a 2" 140 R tweeter If you want
two of each plus 2 of our crossovers you can have the iof for $£ 5.00$ two of each phis 2 of our crossovers you can have the iot for $£ 5.00$ ret F5P2.
VIDEO TAPES E180 FIFTY TAPES FOR 570.00 REF F70P1
360K 5 1/4"Brand new drives white front. 52000 Ret F20Py
IN SUSSEX? CALL IN ANO SEE US!

SOME OF OUR PFIODUCTS MAY BE UNLICENSABLE IN THE UK

A new menu for Windows Users

Windows User is the new practical magazine to help you get the most out of your Windows environment.

Every month you'll enjoy a varied menu of news updates, features and reviews, making Windows User the essential reference for the computing environment of the 90's.

Make sure of your copy by ordering from your local newsagent NOW. To subscribe call our Credit Card Hotline on 0789200255

THIS MONTH'S SPECIAL OFFERS

EXPORT ENQUIRIES WELCOMED

MAKE YOUR INTERESTS PAY!
Train at home for one of these Career Opportunities
Over the past 100 years more than 10 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 100 vears experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help You. Post or phone today for FREE INFORMATION on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	TV, Video \& Hi-Fi Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
CCSE/CCE/SCE over 40 examination subjects to choose from		
Name:		
Address:		
P. Code		
International Correspondence Schools, Dept.EGS82 312/314 High Street, Sutton, Surrey SM1 1PR. or 041-221 7373 (24 hours).		

\square PRDMAX

ELECTRONIC

TEST EQUIPMENT
TV PATTERN GENERATORS GV-310 / GV-498

- Up to 32 selectable patterns
*Video and RF output. Tunable from 37 to 860 MHz
* $31 / 2$ digits frequency counter
- Text and logotypes (only GV-498)
- SCART connector

For television signal engineers

ALBAN EIGECTRONICS LIMIMEID

4U St Albans Enterprise Centre, Long Spring Ponters Wood, St Albans, Herts, AL3 GEN Tel: 0727832266 - Faxc 0727810546

FIIL IN THE

Due to the huge demand from readers for back issues of TELEVISION magazine we have run out ! To overcome this we will shortly be publishing a hardback book of the first three issues of TELEVISION from 1991 (January - March).

The book will contain 92 pages of pure editorial from these three issues, so all the TV Fault Finding and VCR clinics will be complete and uninterrupted.

The availability of the books is strictly limited and they are only available on a first come first serve basis so if you want to fill any gaps in your back issues or if you would simply prefer to keep concise hardback copies of Television for reference please register now for a priority copy.

You do not need to send any money yet you are simply registering to avoid disappointment.

Please return the form below to: Kathy Lambert, TELEVISION (Back Issues), Room L332, Quadrant House , The Quadrant, Sutton, Surrey SM2 5AS.

only £19.95

Please register me for priority copy of the TEEEVISION Back Issue Book January-March 1991

Name:
Address:

Postcode:
Telephone No :

Please return this form to: Kathy Lambert, TFLEVIIION (Back Issues),
Room L332, Quadront House, The Quadrant, Sutton, Surrey SM2 5AS.

RADIO CODEREADER/REPROCRAMMER

Here is an opportunity to turn your IBM or compatible PC into a highly profitable tool. Our code-reader, connected to your PC, will read the security codes on leading makes of car stereo's. You can also re-program new codes or restore corrupted data. There is no need to spend thousands of pounds on a decoder that will decode everything. With our system, you only pay for ONE decoder and whatever software modules you require, currently PHILIPS, FORD, GRUNDIG, BLAUPUNKT, with more on the way. You will have access to our lifetime telephone support service and we will keep you fully informed of all developments.
The cost of the code-reader is $£ 200.00+$ vat and the software is $£ 195.00$ per module + vat, with discounts available if you purchase more than one module.

> All enquires to: ELECTRONIC SOUND SYSTEMS 62 High Northgate, Darlington, Co. Durham. Tel: 0325484089 or Fax: 0325465921 Mobile: 0860221099 .

- FM radio, TV and satellite all in one instrument
* Frequency counter for setting satellite channel
* Autocorrected level reading across all bands
- High accuracy without the use of correction charts
- Stable 12,15 \& 18 volt LNB supply
* Many system fault finding functions

For TV/FM, SAT TV, SMATV and Cable TV installers
ALBAN ELECCTRONICS LIMITED
4U St Albans Enterprise Centre, Long Spring Porters Wood, St Albans, Herts., AL3 GEN Tel: 0727832266 - Fax 0727810546
Sum The ORIGINAL SURPLUS WONDERLAND!

COMPUTER SCOOPS

PC-AT 386 20-DX FULLY LOADED FOR $£ 499$!

20 Mhz DX processor
2 megs RAM. Exp 10 meg
40 meg hard drive
1.2 meg 5-1/4" floppy
32K cache exp. 64K
Installed VGA card
Enhanced 102 key k/board
Complete with MS-DOS 3.3
2 serial 1 parallel ports
8 free slots- 6 off 16 bit!
the MP386 quality made by Miltsublshl to last a lifetimel Brand new with all manuals and sof liahtnina disk access.

A COMPLETE IBM PC COMPAT SYSTEM FOR ONLY £99!!

Just plug In and go - fully expandable - the Display PC-991 System supplied complete with $12^{\prime \prime}$ mono monitor, 84 key keyboand, 360k 5-1/4" floppy disk drive Include 7 slot backplane. all metal case, 150 watt PSU and US made motherboard. In very good used condition with 90 day guarantee. At the unique price of: Optional FITTED extras: 256K RAM $£ 15$; 640K RAM $£ 39$.
$12^{\prime \prime}$ CGA colour monitor with card $£ 89.2$ nd $5-1 / 4^{*} 720 \mathrm{~K}$ floppy
(or 360 K if preterred) $£ 29.95 .20$ mbyle hard drive $£ 99$.
 There has never been a deal like this one Brand spanking new \& boxed monitors from NEC, normally selling at about 140 These are over-engineered for ultra eliabllity. 9^{*} green screen composite Input with etched non-glare screen plus
switchable highow impedance Inout and output tor dalsy-chaining. 3 romt controls and 6 at rear. Standard BNC sockets. Beautitul high contrast screen and altractive case with carrying ledge. Pertect as a maln or backup monitor and for quantity usersl $£ 39.95$ each (D) or 5 for $£ 185_{(G)}$
CALL FOR OUSCOUNTS ON HIGHER QUANTITES! COLOUR MONITORS
HLDEFINITION COLOUR MONITORS JUSTARRIVED! mulnsinc 14° Philips Model CM8873 VGA multisync ali the way up 34 Khz with 640×480 resolution. This one has everythingl Two switches enable you to select CGA, EGA or VGA and digital/analog. Unusual for a prolessional monitor, sound is also provided, with a volume control. There is also a special Text" switch for word processing, spreadsheets and the like. Compatible with virtually all computers Inducing IBM PC's, Aniga, Atari, BBC, Archimedes elc. Good used condition (possible minor screen bums) 90 day guarantee. $15^{\prime \prime} \times 14^{\prime \prime} \times 12^{\prime \prime} . £ 158(\mathrm{E})$ Brand new $12^{\prime \prime}$ mutlilnput high definition colour montors by KME. Nice uight 0.28" do plastic styling. Operates from morn two tone plastic styling. Operates from any 15.625 khz sync RGB video source, with either individual H \& V syncs such as CGA 1 HM PC's or RGB
analog with composite sync such as Atar,
Commodore Amiga, Acorn Archimedes \& BBC. Measures only $13.5^{\prime \prime} \times 12^{\prime \prime} \times 11^{\prime \prime}$. Also functions as quality TV with our RGB Telebox. Excellent used condition with 90 day guarantee. In nice two tone beige and brown case. Only
 Brand new Centronic 14" monitor for IBM PC and compatibles Mitsubishi han ever proel Complelely 07 plxels. Big 28 Mhz bancwidth .42 dor pich giving 90 day guarantee. Only 8129 (E) NEC CGA IBM-PC compatible. High quality guarantee grey plastic case measuring $15 \% \times 13 \mathrm{~W}$ 12 H . The from cosmetic bezel has been removed for contractual reasons.
20", 22" and $26^{\prime \prime}$ AV SPECIALS Superbly made UK manufacture. PIL all solid state collour montors, complete with composite video \& sound inpuls. Attrac in EXCELLENT little used condition with full 90 day quarantee 20"....£135 22"....£155 26"....£185 (F) CALL FOR PRICING ON NTSC VERSIONS! Superb Quality 6 foot 40u

19" Rack Cabinets

Massive Reductions Virtually New, Ultra Smart! Less Than Half Price!
Top qually $19^{\prime \prime}$ rack cabinets made in UK by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable fromt door, full height lockable hall louvered back door and removabie side panels. Fully adjustable internal flxing struts, ready punched tor any contiguration of equipment mounting plus ready nounted Integral 12 way 13 amp socket switched mains distribution strip make these racks some of the most versatile we have ever sold. Racks may be stacked side by slde and therefore equire only two side panels or stand singly. Overal dimensions are $77-1 / 2^{\prime \prime} \mathrm{H} \times 32-1 / 2^{2} \mathrm{D} \times 22^{2} \mathrm{~W}$. Order as:
Rack 1 Complete with removable side panets...... $\mathbf{E 2 7 5 . 0 0}$ (G)
COOLING FANS
$32 \mathrm{~mm} A C 230 \mathrm{v}$. 18 mm thick
$3 \mathrm{~V} 2 \mathrm{lnch} A C$ ETRI silmillne. Only
"thick. \qquad
3 V 2 inch $A C 230 \vee 8$ watts. Only $3 / 4^{\prime \prime}$ thick
4 inch AC $110 / 240 \mathrm{v} 11 \mathrm{~s}$. thick
ERAND NEW PRINTERS
BRAND NEW PRINTERS
from Densei. Model MUk 0565-AUAF is 0.5 kva and MUO Microline 183. NLQ 17×17 dot matrix. Full width. E139 (D) $1085-\mathrm{AHBH}$ Is 1 kva . Both have sealed lead acld batteries. MUK Hyundal HDP-920. NLQ 24×18 dot matrix full width. E149 (D) are intemal, MUD has them In a matching case. Times from Oume LetterPro 20 dalsy. Qume QS-3 Interface. E39.95 (D)

SCOOP I/

LIMITED
QUANTITY

HP Double Beam 100mhz Scopes

 company enabies us to offer you uality plece of test equlpment the HP1740A in HARDLY USED CONDITION at a price as yet unheard ofll Although exceptionally simple to $5.25^{\prime \prime}$ Teac FD-55(36). 360K halt height
SS cable included in price.
Shugari 800/801 SS refurbished \& tested hugart 851 double sided refurbished \& tested Mitsublshi N2894-63 double sided switchable E275.00(E
E250.00(E) Dual $8^{\prime \prime}$ drives with 2 mbyte capacity housed In a smart case
with bull in power supplyl Ideal as exterior drives। $£ 499.00(F)$ End of IIne purchase scoop! Brand new NEC D2246 8" 85 megabyle of hard disk sloragel Full CPU control and industry standard SMD interiace. Ultra hi speed transter and access time eaves the good old ST506 Interface standing. In mint condition

THE AMAZING TELEBOX!
 Converts your colour mónitor inio a

The TELEBOX consists of an attractive fully cased maln powered unit, contalning all electrontcs ready to pluginto a host MICROVITEC. ATARI, SANYO, SONY, COMMODORE PHILIPS, TATUNG, AMSTRAD and many more. The composit adlowing receptlon of TV channels not normally receivable on most television recelvers (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable 'off alr UHF lually all television frequencles VHF and UHF Including the HYPERBAND as used by most cable TV operators. Composite and RGB video outputs are located on the rear panel for direct connection to most makes of monitor. For complete compatibility ampllifer and low level H FI audo output are proviched as standard
Telebox ST for composite video Input monltors Telebox STL as ST but with integral speaker
$E 32.95$ as ST with Multiband tuner VHF-UHF-Cable. \& hyperband For overseas PAL versions state 5.5 or 6 mhz sound speciflcation $\mathbf{2 0 9 . 9 5}$ Telebox RGB for analogue RGB monltors (15 khz Shipping code on all Teleboxes is (B)
RGB Telebox also suitable for IBM multisync monitors with RGB

No Break Uninterruptable PSU's

operation manuals
 E145.00 (G)
0 mach - As above but 230 yols
60 mm DC Y thtck.No. 812 for 6/12v.81424v. \quad £15.95(A) 80 mm OC 5 v. Papst 8105G 4w. 38mm. RFE.
92 mm DC 12 v .18 mm thick.
4 inch DC $12 \mathrm{v} .12 \mathrm{w} 11 / 2^{\prime \prime}$ thich
E14.95(A)
E1250(B)
E12.50(B)
ع14.50(B)
LARGE OUANTITIES OF OSCILLOSCOPES AND TEST GEAR ALWAYS AVAILABLE - CALL NOWI

UGPLT!
ELECTRONILS:

[10: TUBES

14" Portable Tubes
20" GEC/Hitachi
22" 20AX
20" KT3
14" narrow-neck portable tubes
from only £19 only £29 only £25 only £39 only £39

12", 14", 20" mono
18", 19", 20" Delta
20", 22", $26^{\prime \prime}$ Redif. Mk III
22", 26" Thorn 9.6
26" Finlandia (670ALB22)
only £5
only £5
only £5
only £5

Offers on quantities

Carriage and VAT extra

Ring Irene or Jane, giving tube number, for price and availability

TRADE TV and VIDEO
SERVICE AVAILABLE IN THE MIDLANDS AREA

EXPRESS TV The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 0889-577600 Fax: 0889-575600

YOU'VE SEEN SCART SPLITTER BOXES

They add the signals together putting one on top of the other, alter input and output signal levels and result in very poor quality.
YOU'VE SEEN MECHANICAL PUSH BUTTON SCART BOXES
You have to walk to them every time to use them (not so good if all your other equipment is remote controlled !), they don't allow you to view and record the same signal (if they claim to, the signals are added together like the SCART splitters) and mechanica! switches become 'noisy' when the contacts start to tarnish, resulting in poor quality.
NOW SEE THE ONLY REAL SOLUTION!

periswitch

automatic audio/visual switching system
A fully automatic, electrontic switching, active video and audio central SCART comnector system requining NO remote control and NO mechanical switches. Fit it, forget it and stay seated! all signals perfectly preserved and routed according to your choice.

DON'T WASTE YOUR MONEY ON 'SCART BOXES' WHICH CAN'T DO THE JOB FORGET THE REST - FIT THE BEST HOOPWELL LTD. UNIT B9, LARKFIELD TRADING ESTATE, LARKFIELD, MAIDSTONE, KENT. ME20 6SW

$$
0622-882285
$$

PHONE TODAY

RENTAL FINANCE
TVs, VCRs, Satellite
STOCKING FINANCE

0503

821020

TVs, VCRs, Satellite
0903
821020
Written Quotations Available On Request

Broughfame Limited 39A South Street Tarring WORTHING
West Sussex BN14 7LG Fax: 0903821194

Design your own satellite system!

You can with the belp of this brilliant new' program by DJ Stephenson

SATMASTER Version 4 Only $£ 35$ (pllus posit) Allows you to design a system and test its performance hefore you install it!
Provides essential dish setup angles polar and apex elevation for motorised systems. elevation, acimuth, polarisation offset. from any location in the World for any geo-satellite - now and in the future
Includes magnetic map and footprints for all popular satellites across Europe
Easy-to-use fop-up menu interface makes redious tasks simple for everyone!

- Complete with User Instruction Manual!

Contains 20,000 word on-screen technical context-sensitive helpline. with fault
finding, cable specs and site survey guide
Calculates full link budget including dish size optimisation to ensure the best quality picture!
Avoid guessuork ... order SATMASTER V4 or SATMASTER PRO today! Swift Television Publications
17 Pittsfield, Cricklade, Swindon SN6 6AN Tel or Fax 0793750620

molsule

Expiririlis ives

IFW ETGDME
 Maudi Digunc cTIGN GIIITEGI/G DIII Y

Secondmand Guaranteed TV, Video Spares now available REOT POCOIR F DRINE 1)

NOWINLARGER PREIISESAT:
2ORASHISGEEEN WDESTATE DEREHAM, NORFOLK

TELEPHONE (0362)601611

CREWE WHOLESALE TV LTD.

WE HAVE SLASHED OUR PRICES. WORKING TV'S FROM £15.00. WORKING TEXT TV'S FROM £45.00 TAKE $5 £ 45.00$ - TEXT ONLY £200.00. LARGE SELECTION OF WORKING AND UNTESTED STOCK.
WORKING TOP LOADING VIDEOS FROM £40.00.
WORKING FRONT LOADING VIDEOS FROM £50.00
WORKING LONG PLAYING STEREO VIDEOS ONLY £70.00
AT LEAST 1 DELIVERY, TO EACH UNIT, PER WEEK.
CALL NOW FOR NEW PRICE LIST.
CREWE-OPEN 9.30 TO 5.30 MONDAY-FRIDAY
TEL: 0270582924.

* UNTESTED STOCK ONLY *

BLACKBURN - OPEN 10.00 TO 4.00 WEDNESDAY-FRIDAY
TEL: 0254264489

 QUALITY USED T.V. \& VIDEO
 COMPLETE RANGE OF T.V.'s AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY
T.V.'s from $£ 3.00$

Videos from $\mathbf{E 3 0 . 0 0}$
Prices Ex-VAT
Free Delivery Service to most areas of the U.K. UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9ab

Just 10 Mins from M5 Junct. 6 Worc's North

For your export

 requirements contact us.
0299-8796420 r 879643

 FAX:029987984
CENTRAL TV \square
 EX-RENTAL
 - SUPERB RANGE OF TV'S \& VCR'S - THORN \& GRANADA
 DIRECT LOADS AVALLABLE FROM SOURGE

EXPORT ENQUIRIES WELCOME B' GRADE SWITCH ON TO TOP QUALITY BRANDS OF
PHONE
TODAY
FOR BEST
RESULTS
ALL SIZES OF SCREEN TV AVAILABLE,
BOTH IN FAST TEXT \& DIGITAL NICAM STEREO VIDEOS: CURRENT MODEL Single, Twin Speed, Nicam S-VHS

CAMCORDER
C FORMAT, FULL SIZE, 8 mm
MICROWAVES PORTABLE HIFI

- SATELLITE VIDEOCRYPT -

PORTABLE E90

FULL REMOTE, BOXED

CTV LONDON

Eley Estate, Nobel Road
Edmonton N18
TEL: 081-807 4090
FAX: 081-884 1314
CENTRAL TV WHOLESALE DISTRIBUTION LTD
369 Stratford Road, Sparkhill
Birmingham B11
TEL: 021-772 1591
FAX: 021-766 6383

BITEL SOUTH WALES

NEW DELIVERIES EVERY WEEK
COLOURTV
PIL...................... FROM £15 WORKING R/CFROM £28 WORKING TEXT ……...........FROM £40 WORKING PORTABLE …….... FROM £50 WORKING

VIDEO'S

FROM £45 UNTESTED
JVC HEADS £15 RANGE OF NEW HANDSETS

ALL PRICES INCLUSIVE OF VAT

Units 11 \& 12, Taverner Estate, Caerleon, Newport, Gwent.
(3 miles from M4, Junction 25)
Ring BOB on 0633430040

AERIALS

FOR TV \& FM RADIO, PLUS 1000's OF MASTS, BRACKETS, LASHING KITS, CLAMPS, PLUGS, CABLES, OUTLETS, DIPLEXERS ETC.

AMPLIFIERS
FOR DISTRIBUTION SYSTEMS AND DOMESTIC, MAST HEAD OR SET BACK. WE HAVE ONE OF THE LARGEST RANGES, AVAILABLE FROM STOCK
MAIN DISTRIBUTORS
FOR ANTIFERENCE,
LABGEAR, WOLSEY FRINGE, TRIAX, TELEVES, VOLEX-RAYDEX, KUBLER + MANY MORE

NO MINIMUM ORDER VALUE NEXT DAY DELIVERY ACROSS UK NEXT DAY DELVERY ACROSS UK
CARRIAGE FREE ON ORDERS $£ 100++$

PAYSUUT.V.

SUPPLIERS OF WORKING NEW + USED TV'S, VIDEOS, MICROWAVES + FRIDGE FREEZERS.

THL:
 NOTTINGHAMO602.500002 LONDON091.5688182

WE DELIVER ALL AREAS!

PHONE VISA
FOR DETAILS

SUPPLIERS OF EX-RENTAL TV \& VIDEO'S THORN \& NON THORN
REMOTE TEXT \& VIDEO HAND UNITS SUPPLIED WHERE NECESSARY ALL PRICES SUBJECT TO VAT

DELIVERIES THROUGHOUT DEVON CORNWALL TWICE WEEKLY

GIVE US A RING OR CALL IN

2A BARTON HILL ROAD, TORQUAY, DEVON

TEL: 0803312222 FAX: 326767

PRESTON
439 Oakshott Place, Walton Summit Ind. Estate Preston (M6 Junc. 29)

Tel: 0772-312101

TV \& VIDEO WHOLESALERS
$\star \star \star \star \star \star \star \star \star$ STOCK CLEARANCE SALE AT OUR LONDON BRANCH ONLY

For details contact our manager on 081-961 5005

BIRMINGHAM

208 BROMFORD LANE ERDINGTON
BIRMINGHAM B248DL Tel: :021-3273273
Fax: 021-322 2011

CARDIFF
Unit J7,
Colchester Trading Estate Colchester Avenue Cardiff CF3 7AP
Tel: 0222-471485

‘B' GRADE AVAILABLE (BOXED)

TELEVISIONS
A51F
59M5
68M5
78M5

VIDEOS
FV42L FV41R FV32L FV31R

The Royal London Estate, Unit 2, 29-35 North Acton Rd London NWIO Tel: 081-961 5005

BESCO LTD EX-RENTAL TV'S $\&$ VIDEOS

NEW 'B' GRADE MAJOR BRANDS TV - VIDEO-HI-FI

PORTABLES FST'S NICAM FASTEXT SONY HITACHI PANASONIC ETC

Huge selections. Complete range.
All makes and models available.
\star New Stocks Every Day \star
VHS Video from £30
Television from £3
PICK YOUR OWN VHS VIDEOS Lots of $10 £ 20.00$ each

Working Ex-Equipment Panels

IF	Converger	Decoder	Line Scan	Power	Frame
T20/22X	5	14	18	17	14
T26X	5	16	20	17	X
Philips G11 14.50	5	12	20	20	11.50

All prices include Postage \& Packing. But + VAT
\star IF THE PANEL YOUREQUIRE IS NOT LISTED PLEASE ASK \star

Special Summer Package Deals on Returned TV \& Videos
$10 \times$ Panasonic 21-24" FST £425
$17 \times$ Ferguson 21-24" FST £725
$10 \times$ ITT $25-28^{\prime \prime}$ FST £595
$6 \times$ ITT $21^{\prime \prime}$ FST £305
$30 \times$ Toshiba 21-28" FST £1275
$13 \times$ Sanyo 21-28" FST. £555
$27 \times$ Mitsubishi 21-28" FST £1150
$14 \times$ Goodmans 21" FST £475
$11 \times$ Mitsubishi VHS Videos £625
$18 \times$ Hitachi VHS Videos £1000
$20 \times$ Akai VHS Videos £1190
PLUS MANY MORE BARGAINS TOO MANY TO MENTION
B GRADESTOCK RETURNED GOODS
$14^{\prime \prime}$ Portables from £70 $14^{\prime \prime \prime}$ Portables from £25
20" Remote CTV from ..£105 Front load VHS from. $20^{\prime \prime}$ Fastext from£140 Midi Hi-Fi's from $\begin{array}{r}£ 50 \\ £ 20 \\ \hline\end{array}$
LP VHS from £120 21"CTVs from £40
$10^{\prime \prime}$ Mains/bat from £90 Radio Cassettes from. £15
ADR P Y TEL:LEEDS
discount elehtical warehouse 0532-310359 ASK FOR ROBERT
ALL ABOVE PRICES PLUS VAT AT 17.5\%
TOP CLASS PANASONIC WORKING TV \& VIDEO$+$
GOOD CHEAP STOCK
"OFF THE VAN"Good Selection of Makes
Tom Poole or Brian Ricketts 061-273 2854/274 3409 Fax: 061-273 4486

DAISY WORKS,
345 STOCKPORT ROAD,
LONGSIGHT,
MANCHESTER
(A6 Between Stockport \& Manchester almost opposite police headquarters $3 / 4$ mile from Apollo Theatre)

NIKKAIMULTISYSTEM TVIN STOCK $20^{*}, 21^{\prime \prime}$ FST (VHF/UHF) PAL, SECAM, NTSC

NEW (B) GRADED

 PORTABLES + LATE FST TOP BRANOS ALL BOXED

IN STOGK - TOO MANY TO LST:
EXCELLENT RANGE OF
EX-RENTAL TVs \& VCRS THORN REPAR TAKEN OU SATELLIL REGENERS AIY MAKE - TRADE OR RETAL WELCOME WHY TRAVEL THE WHOLE COUNTRY? RIWG AFF OB AMIW NOW ON DIREGT LIWE TO IV Warehouse
LESDS (0532) 444200 FIX: (0532) 425777 MOBLE PHONE - 0850326866 - 24 HRS EXPORT ENQUIRIES WELCOME

UNIT 16, TOWER WORKS, 2 GLOBE ROAD, LEEDS LSI1 5QG OFF WATER LANE NEAR HLTON HOTELL EASY ACCESS FROMMI a MGz (2 Mins)

COLOURTRADE
ESTABLISHED 1973 - WHOLESALE ONLY

Phone 021-359 7020 FAX 021-359 6344

 221-222 BRIDGE ST WEST, HOCKLEY, BIRMINGHAM B19 2HU

Suppliers of Surplus TVs \& Videos to the Trade CENTREVISION HOUSE•SLOPER ROAD • LECKWITH • CARDIFF • CF1 8AB
Centrevision is shining through this summer with unbeatable deals, we will endeavour to make your visit as pleasant as possible.
All wallet emptying will be performed with great precision with caffeine at hand and should be pain free.
We have excellent bench facilities so you may test all working stock before you buy, and if you have any problems ask our engineers who have a limited number of FREE fix it magic wands (only just past the sell-buy date).
Why waste your profits on new spares when we have plenty of second-hand spares available, Thrifty spares our mail order company can always save you money (that's if they get it right!).
If you're a professional then deal with the professionals with over 20 years experience of taking all your money in style.

Call in today and make a shining example PHONE OUR WARMLINE NUMBER 0222344754 PRICE LIST AVAILABLE ON REQUEST LARGE AMOUNTS OF FST JUST ARRIVED FRONT LOADER HITACHI VIDEO £35.00 + VAT

TV WHOLESALE

\star QUALITY EX RENTAL TV's \& VIDEOS *
REGULAR SUPPLIES OF BRANDED NAMES OF VIDEO'S \& COLOUR TV'S AT VERY COMPETITIVE PRICES

WORKING VIDEO'S TOP LOADERS FROM $£ 35.00$
FRONT LOADERS FROM $£ 45.00$ WORKING TV'S FROM £20.00 PORTABLES FROM $£ 40.00$

UNTESTED/NON WORKING PRICES ON REQUEST

QTY DISCOUNTS AVAILABLE EXPORT ENQUIRIES WELCOME

DIRECT LOADS CAN BE ARRANGED

5 minutes from Spaghetti Junction 2 minutes from City Centre

ALL PRICES + V.A.T.

TELEPRICE LIMITED

LLASSIFIED LLASSIFIED CLASSIFIED CLASSIFIED CLASSIFIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 12.00$ per single column centimetre (minimum 3 cm). Classified advertisements $£ 12.00$ per line, box number $£ 22.00$ extra All prices plus $17 \frac{1}{2} \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Publishing. Advertisements, together with remittance, should be sent to the Television Classified Room L327, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

PHONE 081-652 8339 FAX 081-652 8931

SPARES \& COMPONENTS

INTEGRATED CIRCUITS

TV \& VIDEO I	I.C.s	LA7033	3.29
AN262	1.12	LA7210	1.47
AN304	2.96	LA7505	2.06
AN5015K	2.94	LA7910	1.23
AN5612	1.81	LU11417A	4.23
AN5620X	3.11	LU52511A	4.23
AN6306	6.46	LVA508	1.65
AN6320N	2.47	LM1889N	3.29
AN6326N	2.88		
AN6328	2.88	M51393AP	2.94
AN6346N	3.08	MC1408P8	1.18
AN6347	2.47	MN15823FVG	12.69
AN6350	5.02	OEC0001B	5.23
AN6360	2.14	OEC0005	5.23
AN6362	3.47	OEC2001	3.35
AN6881	2.70	SONY CX134A	4.99
BA618	1.35	TD62105P	1.18
BA6301	1.65	ULA1H035E2	1.82
BA7001	1.23	UPA53C	4.05
BA7004	1.65	UPC1382C	. 90
BA8500	11.69	UPC1397C	3.70
HA17458PS	82	14DN156	5.29
LA7031	2.06	14DN157	5.29
LA7032	2.42	14DN244C	5.70
HANDSETS			
VCR4600/4600	Mkl1		£11.75
VCR4700			£17.63
VCR5200			£11.75
VCR6100 Barco			£29.38
TS90/99 Tower	System		£11.75
VCR9000 (Old T	Type) Han		£11.75
L.O.P.T.			
CTV1000	FB182K		£11.75
CTV1400	FB165KA		£11.75
CTV2000	FB171		$\underline{89.40}$
CTV2000	FB171K		£9.40
TVR2	1810951		£13.51
TVR3	181297		£13.51
PC12-HRCDO	MSH1F	T31 £	£14.10
CONVERTERS			
4700 RF CONVE	ERTER		$£ 5.88$
5200 RF CONVE	ERTER		£7.05
SATELLITE EQUIPMENT			
DISHES, FEEDS, LNB'S ETC.AVAILABLE. PHONE FOR LIST.			

CENTURY WAY, MARCH, CAMBS PE 1580
FAX:(0354) 51416. TEL:(0354)51289
AMSTRAD
PRICES InClude vat, post and packing extra. P.C.B's
4600 Video and Audio PCB 4600 Systems Controi/Serva PCB, Display and Control PCBS
4600 Mkll Video and
Audio/Timer/Control PCB Assy 4700 Video and Audio/ Timer/Control PCB Assy VCR100 Video and Audio/Timer/ Control PCB Assy
5200 Timer and Channel Display PCB Assy.
5200 Audio Tuner PCB
5200 Video PCB
5200 Syscon. Servo Power PCB 4600 Mk 11/4700 Power Supply CTV 1400 Main PCB
CTV2200 PCB No:3 (Part 270087) CTV2200 PCB No:4 (Part 270088) TVR1 Control Pane//Preset PCB TVR2 Main TV PCB TVR3 Main TV PCB MECHANISMS
4600 Video Cassette complete mechanism (no drum or video heads)
4600 Video Cassette complete mechanism (with drum no video heads)
9000 Cassette Housing Assy MOTORS
6000/4700 Capstan Motor 7000 Loading Motor MCB2B01 9000 Loading Motor MCB9B02 TUNERS
5200 Varicap Tuner Type 1810829 7000 Tuner ENV87358C2
CTV200 Tuner ENv87509F2
PARTS OFF PCB's AND MECHANISM PHONE FOR PRICING
all items are brand mew and guaranteed * * SAME DAY DESPATCH * *
Write or Phone for FULL catalogue.

THRIFTY SPARES (WALES)
 COO CENTREVISION, SLOPER ROAD, LECKWITH, CARDIFF CF1 BAB

 WE KNOW YOUR MONEY DOESN'T GROW ON TREES SO LET SECOND-HAND SPARES HELP YOUR BUSINESS BLOSSOM AMSTRAD, FERGUSON, HITACHI, ITT, PANASONIC, SHARP, TOSHIBA ETC.
0222344218

EXAMPLE VIDEO PRICES

$£ 12.80$	MK3A LINE SCAN (STATE TUBE)
\$15.50	MK3A POWEA PANEL
£10.50	MK3A IF VIDEO ETC
. 220.50	MK4 POWER PANEL 90 OR 110
. $\$ 15.50$	MK4 IF PANEL
£15.50	MK4 VIDEO
	K4 MANUAL TUNER HEAD ASS
\$12.80	MK4 REMOTE BOARD
£15.50	MK4 TEXT BOARDS
£15.50	MK4 FRONT ASSEMBLY
. $\$ 18.00$	MK4 TRIPLERS.

OPENING HOUAS: 9 a.m. 6 p.m. Please check availability MINIMUN ORDEA $£ 10.00$ VAT $2 \% \%$ (export VAT free) Vat 24% (export Vat free) Video er T.V.Ltd. before ordering We accept VISA only.

SAMSUNG MICROWAVE SPARES	AMSTRAD SATELLIT SPARES
CS.7SA Thermal Fuse Magnatron 2.00	SRD-400 Mains Transformers 240
242/43 Thermal Fuse Magnatron 10/250V 2.00	
HV Capacitor Microwave 2100WV AC 0.91UF	SRD-400 Mains Transformers 220 \& Europe)
Microwave Bulb 240 v 20 w 15 mm Screw In 1.00	
Microwave Bulb 240 v 20 w 12 mm Screw In 1.00	TRANSISTORS/DIOD
Microwave Buib 240 v 15 w 15 mm Screw In 1.00 Microwave Bulb 240v 15 w 5 mm Push On Tags	$B C 313$
Micowave Bub	2N3055 BCA Type
Microwave Timer Unit SE-35MF-2401 10.00	MJ10011 Motorola
Microwave Power Level Control, DF 30V24A	2SC 940 NEC
5.00	2SC1507 Transistor
Microwave Rotisary Motor GM-6 24LI 12.00	2SD 73 Samsung
Microwave Rotisary Motor GM-6 24L 12.00	$\begin{aligned} & \text { 2SD } 382 \text { NEC } \\ & \text { 2SD } 401 \mathrm{~A} \end{aligned}$
	2SA 614 Samsung
	BY 213 A 700 R Stud Diode
SAMSUNG/REYNOLDS/	I.C.S
FERGUSON B/W PORTABLE	AN 5512
SPARES	- 8039 Microcomputer IC NEC
200k Vert Hold Pot PCB Mount 0.20	D 8243 Multiplexer NEC
Rotary On/Oft Volume Control 5K Double Pote	DTS02P-A4 Servo IC DAEWOO GL 3201
Rotary On/Off Vol 5K Single Pole	GL 3401
500 K Brightness Pot B W Samsung 0.50	K 1005 IC Sony
500 Ohm Brightness Pot 24 mm Diameter 8 mm	
Nut 0.50	
100 K Pot as above 0.50	$\text { LA } 1261$
1 K Pot as above 0.50	M 491 BB1
500 K Pot as above 0.50	M 708 LB1 Remote Control IC
OnJOff Knobs 6 mm (0.10	CAA 1290-02 ITT
500 k Preset 10 mm Vertical Mounting 0.10	STR 30125 Samsung
VHF Fine Tuning Knobs Samsung/Reynotds	TA 8611
BW VHE 0.50	TA 8605 AN
Rotary VHF Tuner VBM 5720AL 10.00	TA 8644 N
B/W Line Output Transtormer FBA 1245 CL	TA 8606 N
BWW Line Out Tranformer 334P0064. ${ }^{10.00}$	TA 7256
B,W Line Output Transformer 334P006A ${ }^{\text {a }} 5$	TA 7681 ap
	TA 8607
	TBA 2800
MSUNG VIDEO SPARES	TDA 1054 M
MSUNG VIDEO SPARES	UAA 2001
Drum Motor with IC M517215L 1500	UPD 1937C NEC
Drum Motor IC BA6411 15.00	UPC 1366 C

ALLPARTS DISTRIBUTORS

N \& YDEO SPARES FOR THE TRADE AMO PUBLIC BELT KITS, TRANSISTORS, ICS, REMOTES FERGUSON, PANASONIC, SHARP, GRUNDIG SONY, KONIG, PHILEX, ANSTRAD
ALLPARTS DISTAIEUTORS 101 AOCKY LANE, TUEBROOK. LIVERPOOL $648 B$ 051-260 4825

> For further information on classified contact PAT on 081-652 8339

CLASSIFIEDCLASSIFIED CLASSIFIED CLASSIFIED CLRSSIFIED

CLA55IFIEDCLA5SIFIED CLR5SIFIED CLAS5IFIED CLAS5IFIED

WIZARID DISTRIBUTORS MANCHESTER TV VIDEO \& SATELLITE SPARES LOEWE, SCHNEIDER, FERGUSON, HITACHI
and many other always in stock-
Video Heads for over 500 models Service Manuals for over 200 models Handsets for over 200 models Spares for over 20 manufacturers
Plus huge range of IC's, Semiconductors and Service Aids, etc. etc.

WIZARD OFFER A GREAT DEAL

Counter open Mondey-Friday 9am-4.45pm TRADE ONLY EMPRESS STREET WORKS, EMPRESS STREET. MANCHESTER M16 9EN. Tel: 061-872 5438: 061-848 0060.

ADMIN TELEVISION

PHILIPS KT3/K30, ITT, MK4, GEC, TX 9/10, TOSHIBA, HITACHI, PANASONIC BASICS $£ 15+$ VAT (INTENS)

MK3, GEC 21/10, DECCA 80/100 BASICS $£ 10+$ VAT (INTENS)

GIIIBASIC $£ 12$ TEXT £20 + VAT
ALL REMOTES $£ 25$ + VAT
ALL TEXT £35 + VAT
VIDEOS £20 AND $£ 25$ + VAT
ALL REMOTES WORKING £35
ALL TEXT WORKING $£ 45$
ALL BASICS WORKING £25
PHONE: 051-548 4414 UNIT 'J’', ADMIN BUILDINGS, KIRKBY, LIVERPOOL L337JX

FOR SALE

CMICRO-LAB portable instruments
Don't waste time hunting down shorts. Our SHORT LOCATOR will lead you right to it in seconds! Easy to use with meter display and tone to guide you. Send just $£ 99.95+£ 3$ p\&p + VAT: Total $£ 120.96$ each, quoting P28, to
COLEBOURN ELECTRONICS Dept TV, 20 Folly Lane, Telephone St Albans, AL3 5JT 072744785

VIDEO RECORDERS

 LOWEST PRICES EVER
Phone for Details Bill Eades

 081-543-5437
GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thousinds of different sheets a manuals in slock. For any enquiries.
DÖNBERG ELECTRONICS Schoolmasters House, Rannafast, Co. Donegal, Republic of Ireland. Phone: 07548275

SATELLITE TV RECEPTION

ORAKE Receiver Positioners from $£ 299$ Wideband Magnetic Polarisers from 29 Etkm to 3 m Antennas, polar mounts 11/1244Gh2 LNBS - feeds, accessones SAE for Leaflets
KESH ELECTRICS LTD Main Street Kesh, Co Fermanagh B 933 ITF Tel. 0365631449 Fax. 39250 Tlx 747412

MISC

CAR RADIO

 CASSETTESDo you turn away work on car radio cassettes because they have security codes.
Most radio cassettes can be decoded just by replacing the eeprom (memory IC) with that of a known code, or sending the original for re-coding.
All popular makes including Philips, Ford, Pioneer, Clarion, Grundig, Blaupunkt, Fisher, JVC, Alpine, Volvo, etc
Send now for introductory offer, one of each of most popular eeproms + comprehensive eeprom/radio decoding list. Offer includes Philips X2402P: Ford MNO10: Blaupunkt Boston CC20 9346
$£ 17.63$
Original eeprom re-coding service
Radio's sent for decoding from £20.00
Inc. of VAT and p\&p 25% Discount to all account holders (conditional)

RADIO DECODING EQUIPMENT

We will beat any genuine written quotation for supplying a computer or software to decode radio cassettes, ring us first.

For technical or general information phone
0543572523 or 0831806574.
C.D.H. ELECTRONICS 3 Common Walk, Huntington Cannock, Staffs WS12 4NB
C.D.H. ELECTRONICS

WANTED

WANTED

Regular Supply of Ex-Rental Colour TVs and Videos Cash on Collection - Quick Service
Tel. 0742312832

SERVICE DATA

E.C.S. INDEXES!

THOUSANDS SOLD WORLDWIDE

Edition 8 of the complete indexes now published containing approx 7,500 Faults listed in 12 Years of Television magazine.
Indexes are alphabetically listed by Make, Model, Fault, Ref and are now available for just:

£8.00 For Television \& Satellite Faults £8.00 For Video, Camcorder \& CD Faults

Or $£ 15.00$ for both sets complete with chassis \& similar model guides. Please add $£ 1.50$ (UK), £3.00 (Overseas) to total order to cover post \& packing.
A LOW COST UPDATE SERVICE IS ALSO AVAILABLE. FULL DETAILS DESPATCHED WITH ORDER.
To secure your copy/s please make Cheques/Postal Orders payable to:

E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY

FINFOTECHE
 76 CHIRCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE

Tel. (0698) 884585 Mon-Fri 8.30am-5.00pm
Tel. (0698) 883334 Out with business hours
FAX available all day, Mon-Sat, on either line
Send a targe SAE for your FREE catalogue of our other publications Please add $£ 1.50$ on all orders under $£ 25.00$.

Post FREE on all orders over 25.00
Now the sole MO distributors for the complete PCP range of inexpensive books, GUARANTEED - More than Value for Money ELECTRONIC TEST EQUIPMENT HANDBOOK
by Steve Money $£ 8.95$
Inc. analog/digital meters, bridges, scopes, sig'Igen's, counters, timers, freq meas. ELECTRONIC POWER SUPPLY HANDBOOK
by Ian R Sinclair $£ 7.95$
Very modern, covers swith mode, IC-IX and all inven/convert
INTRODUCING DIGITAL AUDIO, 2nd edition
by Ian R Sinclair $£ 6.95$
Fabulous cover, with ICC, Mini-Disc, CD, DAT, Bitstream, oversampling, etc.
PRACTICAL DIGITAL ELECTRONICS HANDBOOK
by Mike Tooley $£ 6.95$
Over 200pp of ref data and pract insuruction - Brilliant on chips, logic gates, etc
DIGITAL ELECTRONIC PROJECTS FOR BEGINNERS
by O Bishop $£ 5.95$
12 battery, I power, plus variations: from instrumentation to home security
DIGITAL LOGIC GATES AND FLIP-FLOPS
by Ian R Sinclair $£ 8.95$
What they do, How they work, Simplified Trouble shooting, Full theory and practice
ELECTRONIC PROJECTS FOR HOME SECURITY by OBishop $£ 6.95$
Full instructions - 25 projects; simple alarm to various multi-channel system.
ELECTRONICS BUILD AND LEARN, 2nd edition
by R A Penfold $£ 5.95$
Essential practical construction for oscillators, multivibrators, bistables, iogic circuits
PC MUSIC HANDBOOK
by Heywood \& Evan $£ 8.95$
IBA \& Compatibles; From bavics through sequencing, sampling and notation
ADVANCED MIDI - USER'S GUIDE
by R A Penfold $£ 9.95$
Explains messages, timecodes, non-MIDI sync. Signal routing, Troubleshooting

NEW EDITION OF TELEVISION SERVICING 1991-92
 Iswo 951 3s9777
 $£ 85.00$ 3.5Kg Book

Akai	Boots	Bush
CT 2569	CTV1414	2921
CT 2579N	1414R	2921T
CT 2869	1010	3014
CT 2870N	Beon	3114
CT 2879N	1412	3114 T
CT 2158	Bush	3214 S
CT 2160	Bush	4414
Alba	2214	CTV 100
CTV 52	2514	De Graat
CTV 56	2514	C36152
CTV 57	2515 T	C51HS4
CTV 703	2520	C14HSB
CTV 704T	2520 T	C59JZ5
CTV 711	2512	D41HS4
CTV 712	2521T	D51HS4
CTV 713	2620	D51H25
CTV 741	2714	D59HS4
CTV 743	2720	Fergu-
CTV 744	2721	son
CTV 746	$2814 T$	
CTV 747	2820T	41 P3
CTV 748	2821 T	A 51F
CTV 752	2914	66 M3
Baird		78 M5 $\mathrm{J} 59 \mathrm{P8A}$
RR6890N		Repair Hints

Fidelity CTV 920 Finlandia
$\begin{aligned} & \text { C51HZE } \\ & \text { D59HZ5 } \end{aligned}$
D66HZ5
Finlux
3815
3821
Goldstar
CIT 2168
CIT 2168 F
CIT 2190 F
CIT 2191 F
CiT 4902
CIT 9902F
Goodmans
145 T
2032
CTV 2R
Granada
C 51GV2/4
Grundig
CUC 3840

Grundig	Hitachi	ITT/Nokia	Matsui	Orion
cuc 4400	C 14 P218	6856	1481B	14 ARXG
CUC 4401	C 1709	6887	2180	14AT
CUC 4410	C 2118 F	7161	2180 TTA	14VR
CUC 4500	C 2118 T	JVC	2185	Osakl
CUC 4511	C 2519TG	AV 21F1EK	2899N	3214S
CUC 5300	CPT 2186	AV 25FIEK	NEI	Osume
CUC 5820	CPT 2198	AV N280EKT	1451R	CTV 1474R
CUC 5835	CPT 2578		14517X	CTV 1474R
CUC 5836	CPT 2596	Logic	14517X $+15517 X$	Panason
CUC 5860	CPT 2598A	4698	2131R	TC 21A1
CUC 5880	Indianna	Luxor	2131 TX	Tx 2171
CUC 5891	100MKJ	6392	Nikkal	TX 21 V 1
Harwood	\& MKI	Matsul	NT 14	TX 24A1
90148	ITT/Nokia	219R	NT 14	TX 25W2
Hinarl	26	2197	TLG 200	TX28W2
HIT 10R	29	1420	TLG 601	TX 33A1G
HIT 14	2560	14208	TLG 2121	TX 1100G
HIT 14S	2860	1435	TLG 2122	TX 1485
HIT $14 T$	3570	1435 B	TLG 2800	TX 1785
HIT 14RS	5551	1435 C	2155	TX 1786
HIT 14R	5581	1440	2156 T	Perdio
HIT 20R	5581 UK	14408	Orion	Peraio
HIT 51T	6351	1445		P1408
Hitachi	6361	1455	$14 A R X$	P2004
C14 P216	6387	14808	14ARXS	P2005

Perdio	Philips	S
P2101	9637	C
P2102	9763	CT
STX 400	9765	FS
Philips	9768	S
2070	9772	C
2080	Pioneer	C
1021	SD 21AVI	C
1220	SD 25AVI	C
2331	SD 28AVI	C
2341	Pye	C
2554	1240	S
2752	1242	21
5560	1528	21
5664	2425	25
5668	2525	26
5762	2529	28
5764	Saisho	28
5772	CM 215TS	S
8840	CM 2080 T	CB
8841	CT 141	CB
9668	CT 141B	CB
9762	CT 143	CB
9763	CT $144 B$	CB
9765	CT 144R	CE
9768		CB

Saisho	Sharp	Tatung
CT 146TX	C 1430H	A Series
CT 149TXA	C 1431H	Toshiba
FST 212 TA	C 3720	
Samsung	DV 51083H	$\begin{aligned} & 216 \text { R9B } \\ & 216 \text { R9B2 } \end{aligned}$
C 1210R	DV 59083H	$216 \mathrm{RgB2}$
C 1212R	DV 66083H	216 T982
C 133122	SV 2588H	217 D98
C 150127	Sony	2170982
C 15013T	KV D2512	218098
C 15332T	KV D2912	219 R9B
C 153222	KV X2132	219 T9B
Salora	KV $\times 2532$	256 T98
21061	KV $\times 2932$	329 T78
21081	KV A2112	1400 RgT
25 D 61	KV A2112U	1400 REW
26 A 42	KV 42512	1400 TET
28 D 81	KV 2522	1400 TBW
Sanyo	KV 2922	2100 RGT
CBP 2572	KV D3412U	2100 TET
CBP 2573	Ssang	2500 TBT
CBP 2872	Yong	2505 DBT
CBP 2873	0014	2805 DGT
CBP 2558		2805 Dat
CBP 2559		
CBP 2162		

VIDEO SERVICING 1989-90

Improved Layout, Larger Circuits \& Colour Index
TWO 336 Page Volumes. ISEN 0951389726

Aiwa MVG-55 Akai VS-422 VS-425 VS. 427 VS. 467 VS. 485 VS. 765 VS. 767 Alba VCR-4000 $\times 1$ VCR-7000 VCR- 8000 Amstrad VCR 8600 VCR 8700 Baird VC141L Bush VCR 3401 VCR 3451 De Graaf WHS-FS4 Ferguson FV 208 FV 21 R FV 22 L FV 26 D FV 30 R FV 31 R FV 32 L FV 33H FV 37H VC 141 L	Fidelity VR900 Finilux VR 3300 VR 3400 Goldstar GHV 1290i GHV 1296i GHSE $1296{ }^{\circ}$ VCP 43001 Goodmans VTV 300 VCP 500 VCP 550 TX 1101 PX 1101 PX 2200 PX 2201 VCA 2500 D× 3300 Granada VHS.FY1 VHS-GY2 VHS.GY4 VHS.FS4 Grundig VS-500 VS. 520 VS. 540 VS. 550 TVR-4500 TVR.4510 TVR-5510 Hinari VKL-8,9,11,18	Hinari VXL-10 VXL-12 VXL- 90 VCR-34H VTV-100 VTV-200 VTV-300 Hitachi F70 VT-S80E VT-522E VT-530E VT. 580 VT-M622 VT.M630 VT.M640E Ingersol VR965 VR995 ITT VR. 3619 VR-3719 VR-3749 VR-3769 VR-3908 VR-3929 VR-5720 VR-5730 VR-5740 VR-5760 JVC HR-D320 HR-D700EK HR.D750 HR-D830	Logik VR945 VR950 VR955 VR960 VR960A Matsul VCP 100 VX 730 VX 735 VX735A Vx 750 VX 755 vx 765 VX 770 vx 850 VX 866 VX 877 VX 888 V×3000 VX 6000 VX 6000A VX 6600 Mitsubishi HS-B11 HS-B21 Murphy VCR. 7101 NEC PX-1200K DX-1800K Nikkai J1 Nord- mende V1005M	Nordmende VR.6182 V1005M\| V1405U V1805K V1805U V1905K V4000 UNIC Orion VCR-LA1 VCR-LI VR-MDTT 1 VCR-XI VCR-M2 VCR- 12 VR-MDTTST2 VCR-LADST2 VA-LDST2 VR-LD2 VR-LD3 VCR-M3 VCR-LD3 VCR-AD3 VXL 12 VTV 300 D 1200 Osaki VCR-34H Pana- sonic NV-L20 NV-L28 NV-J30 NV-J34	Philips VR-6182 VR. 6185 VR. 6285 VR. 6470 VR. 6490 VR-6548 VR-6648 VR-6670 VR-6870 Pioneer VR-525 VR. 727 Pye DV186 DV190 DV 286 DC 571 Saba VR-6420 VR-6640 Saisho VXL 12 VXL 12x VP 3000 VRS 3200 VR 3300X VR 3400 VR 3500 VR 3650 VR 3700 VR 3800 VRS 4000 VRS 4200	Saisho VRS 4400 VRS 5000 VRS 5000X VRS 5500 Salora SV-6800 SV-6900 SV-6910 SV-9900 Samsung VI. 710 VI-711 V1.730 V1.750 V1-770 VI-790 VI. 970 Sanyo VHR- 4150 VHR-4350 VHR-D4410 VHR-D4610 VHR- 5200 VHR-5240 VHR-5350 VHR-05450 Sentra VX 8500LP Vx 8600LP Sharp VC-A100 VC-A105 VC-A111	Sharp VC-A131 VC-A140 VC-A170 VC. $\mathbf{T} 310$ VC-A510 VC-A501 VC-A502 VC. 5510 VC-793 VC-D801 VC.A5011 D 805 Sony SLV 201 SLV 301 SLV 401 Tatung TVP1311 Telefunken VR-4935 VR-4945 Thompson V-610 V-630 Toshiba V-1098 V.2098 V-300B V. 3098 V-500B V. 5098 V. 7008 V .700 H

£20.00 off
 Video Servicing 1989-90
 With this Voucher While Stocks Last

 Or

 Or

 Satellite Servicing

 Satellite Servicing at HALF PRICE at HALF PRICE
 When ordered with Video Servicing 1989-90

 Save £27.50

 Save £27.50
 Cut out and return coupon with order. One voucher per set.

VIDEO SERVICING 1987-88
 * Only 25 left *
 £65.00

TELEVISION SERVICING 1989-90
 Covers 749 Models
 £65.00

SATELLITE SERVICING 1987-90 Covers 127 Models. ISNo ossisser 69 $£ 55.00$

All Books Contain:

CIRCUIT DIAGRAMS. SCOPE READINGS. VOLTAGE TABLES ESSENTIAL PART NUMBERS. ALIGNMENTS \& ADJUST-
MENTS. TROUBLE SHOOTING GUIDES

If ordering several books please ring for credit details

POST, PACKING \& INSURANCE

$$
1 \text { Book } \quad £ 4.00
$$

2 or more Books $\$ 7.00$
Note: Video Servicing
1989-90 is a TWO volume set and is therefore $£ 7.00$ delivery.

Television Servicing 1987.88 If you would like a copy of this edition please contact us as we are considering a reprini.

Professionally Produced with the Manufacturers, Full Co-operation

SERVICE MANUALS

Available for most equipment, TV, Video, Audio,

Test, Amateur Radio, Kitchen, Computers etc etc. We have probably the largest range of Service information available anywhere. If you need a manual give us a call.

Originals or photostats supplied as available.

MAURITRON SERVICES (TV)

8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.
Tel:- (0844) 351694. Fax:- (0844) 352554.
TV \& VIDEO TRADE REFERENCE MANUALS

VIDEO RECORDER EQUIVALENTS.

Lists all known models \& their alternatives
Fully Cross referenced for fast and easy use. Order MP143.

TELEVISION CHASSIS GUIDE

Listing thousands of Models (Colour \& Mono) \& their Chassis Designations.
Enables you to identify any chassis for any TV from the model number. Order MP 18.

The above 2 books contain the most COMPREHENSIVE REFERENCE DATA available anywhere for the TV \& Video Trade. Order yours today.
Hundreds of other Technical and Repair books available. Send A5 size SAE for your FREE catalogue today. All orders please add £3.25 post \& packing.

? INFOTECHE

76 CHURCH STREET, LARKHALI, LANARKSHIRE, ML9 IHE Tcl. (16698) 884585 Mon-Fri 8.30am-5.00pm Tel. (0698) 8833.34 Outwith business hours FAX available all day, Mon-Sat, on either line Send a large SAE for your FREE catalogue of our other pullications

HOW WOULD YOU LIKE TO GET ANY SERVICE MANUAL YOU WANTED

FOR ONLY $£ 7.50$?

WELL, NOW YOU CAN!

We are running a very special offer of any 20 manuals for only $£ 150$. No eatches! Order as you need them (no time limit), or as one lot of all those expensive manuals you couldn't previously afford. No hidden expenses like post \& packing (that's included in the price)

And if that isn't enough!

We are giving away our Data Reference Manual FREE with every subscription to this 20 manuals for $£ 150$ offer!

PRACTICAL GUIDE TO BUYING, SELLING, REPAIRING \& SERVICING USED VCRs

Everything from choosing good ex-rentals to containing more stock faults

 for common ex-rentals than elsewhere at many times the cost. Brilliant practical repair and service system.
PRACTICAL GUIDE TO BUYING, SELLING, REPAIRING \& SERVICING USED TVs

More stock faults and servicing advice on TVs. Again containing more data than books at twice the price.
Only $£ 9.95$ each or $£ 16.95$ for both

SERVICE MANUALS

For most U.K. European, Far East \& USA types of CTV - MTV VCR - CAM - SAT - M'WAVE - AUDIO including "Unusuals" and all at reasonable prices
VCR circuits also available separately for most models Some examples from thousands of VCR manuals available. These are all complete at $£ 10$ each
PANASONIC NV-FS100, L20, NV-MC10, MC20, MC30, MS50
ORION D500, D1000/1100, D1200, D1500, D2000, FERGUSON FV11R, FV12L, FV13H, FV14T, FV20B, FV30B MANY OTHER BARGAINS
Write or telephone with your requirements. All U.K. orders subject to £1 P\&P. No VAT

SERVICING DOMESTIC VIDEO CASSETTE RECORDERS

A TEACHING PROGRAMME ON 7 SEPARATE VIDEOS WITH ILLUSTRATED BOOKLETS AND ADDITIONAL INFORMATION FOR THE REPAIR OF VCR'S FOR INFO PACKAGE SEND COUPON TO TELSAT COMMUNICATIONS LTD 16 PARK ROAD, ST ANNES, LANCS FY8 1QX. 0253712011

PLEASE SEND ME INFO PACK ON
SERVICING DOMESTIC VCR'S

SOFTWARE

User Friendly
 SOFTWARE

FOR IBM COMPATIBLE PC'S RUNNING ON MSDOS FOR THE BUSY TV/VCR SHOP/SERVICE DEPT

RECEIPT/INVOICE PROGRAM £89 + VAT + P\&P

OUR TV/VCR RENTAL PROGRAMME IS NOW AVAILABLE

Phone or write for details.

TBR Soturure

369 Chepstow Road
Newport, Gwent. NP9 8HJ
Tel. 0633282556

RELAY

OMAGH LTD COMPUTER SOFTWARE

DO YOU RENT TELEVISIONS?

DO YOU STIL USE A CARD SYSTEM?
dO YOU FIND IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME?
If you do then we recommend our computer TV and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available
- easy to use and operate

NEW HIRE PURCHASE PROGRAMME NOW AVAILABLE AS WELL
These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration discs available.

WILLIAM J THOMPSON Donaghanie Post Office Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)

TEST EQUIPMENT

car radios, CD-play ers; measurment of millivolt, drift, watt, performance: with generator, radio, signal tracer/injector, 13 volt supply etc.

AT2.BMis5.8WR701

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up aid, short repair; exhausted CRT's becomes bright and sharp again even in all other machines do not succeed
United Kingdom: P \& E Services, Llañdudno Tel. (0492) 549246, Fax 547880 Ireland: Dönberg Electronics, Ranafast, Co Donegal, Tel./Fax (075) 48275
New Zealand: TDON Ltd., Onehunga, Auck land, Tel. 668-907, Fax 668-499 Germany: Ulrich Müter, Oer-Erkenschwick Fax (02368) 57017.

P \& E SERVICES

SUPPLIERS OF ALL MUTER REPAIR AND TEST EQUIPMENT. BMR 95 TUBE REGENERATOR £446 + VAT
IINC SIX ADAPTORS
BMR 700 TUEE REGENERATOR C3B67 + VAT
(INC SIX ADAPTORS)
aT2 AUDIO SERVICING UNIT E447 + VAT
ASK FOR FREE BROCHURE
34 GLAN-Y-MOR ROAD, PENRHYN BAY, LLANDUDNO, GWYNEDD LL30 3PF.
TEL: D492 549246 FAX: 0492547880

TRAINING

Looking for a home study course, in the fundamentals of electronics? Whether you are a beginner, or an old hand requiring a refresher, the
DIRECT PERSONAL
LEARNING
course, could be right for you. Contact: K. Sparrow etc... II Claydon Green Whitchurch BRISTOL Avon BSI4 0NG

Telephone: (0275) 835669

[LASSIFIEDCLASSIFIED CLASSIFIED CLASSIFIED CLASSIFIED

ASSORTED VACUUM pumps for sale. 4 leybold 56 P type 2 Gen evec rotary piston. I speedvac mercury diffusion, 3 oil diffusion. Ring 181810 3226. weekend

AVO MULTIMETER Model 8 £45.(9). $5(0)$ volt megers $£ 34 .(0)$. Prices plus VAT and p \& p. Send SAE for lists of Surplus Instruments \& Scopes etc. A. C. Electronics. 17 Apleton Grove. Leeds LS9 9EN Tel: ${ }^{(1532}$ 496048
bUSINESS FOR sale Mersevside established 7 yrs, showroom. large workshop. 2 storerooms. fully modernised. living accom, frechold $\ddagger 75 .(20)+$ S.A.V. enquires to Television Ad P.O. Box 11. Liverpool II7 9RL
EX-EQUIPMENT television and video spares available. Pancls. lopt. tuners handsets etc. J.H. Services. 0243 820311

EX dEMONSTRATION Iestgear C.E.C. 7a CRT tester/reactivators (14) Semaht Satcllite Meters rechargeable type reviewed in Television June 199). f195. UHF/band 2 meters $£ 120$. Satellite receivers from £30. Capener Electronics. $102966 \$ 2030$ anytime.

WANTED: B \& K tube rejuvenator Pref model 490. Also quantity VHI varicap tuners, single sweep thru B1, B3. plus S Band. Also quantity old Grundig turing pot units for B7100 (CUC 120). Simon: 010 353-1-973751. $9-$ pm.

HITACHI MULTISYSTEM (CMT 2(9)1) and Japanese basic Televisions wanted working or "complete" large or small quantities. Telephone Simon (K 922) 694759 (evenings) or Mr Khalifal. Dubai (0109714) 36984s.

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702 FAX: 081-332 0583

$$
\begin{aligned}
& \text { ALBA . AMSTRAD . BUSH . DECCA . DORIC . BLAUPUNKT } \\
& \text { FERGUSON . FIDELITY. GEC . GRUNDIG . GRANADA. } \\
& \text { HITACHI . HINARI. INDESIT. ITT . KIMARA . NIKKAI. } \\
& \text { MATSUI MURPHY. OSAKI . NORDMENDE . LOEWE-OPTA. } \\
& \text { REDIFFUSION PYE . PHILIPS . SANYO. SAISHO. SHARP. } \\
& \text { SONY. SOLOVOX SUSUMU TANIBURG . TELEFUNKEN } \\
& \text { THORN . TRIUMPH . HUANYU . GOLDSTAR . BINATONE. } \\
& \text { FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, } \\
& \text { IDLERS, PINCH ROLLERS, TENSION BANDS. } \\
& \text { LARGE RANGE OF REMOTE CONTROLS IN STOCK }
\end{aligned}
$$

TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD
RICHMOND . SURREY. TW9 2EQ. Mon-Fri 9 am to 12.30 pm \&
Approx. 1 mile from Kew Bridge.
Sat 10 am to 12 noon

AERIALS

HIGH GAN TV AERIALS
Superb 10 element ' X ' antenna. Very rugged construction, 16 dB gain, 6 bar reflector, PCB connector \& heavy duty clamp. £37.95 inci. postage.

Send for spec sheet to:
TVM, 52 St Andrews Street
Northampton NN1 2HY.
Tel: (0604) 37769
ACCESS + VISA WELCOME

BUSINESS FOR sale. Established rofitable. TV, video and audio sales and service business in beautiful Harrogate. North Yorkshire. In busy area. Immaculate shop with excellen modern workshop facilitics. Three year renewable lease. Very low rent. $£ 22 .(0) 0$ plus stock at valuation. Telephone (0423) 521689
BUSINESS KENT coast. Electronics components. accessorics. TV/vidco repairs good earner. Genuine reason for sale. Accommodation. Leasehold $\mathfrak{E 2 0}, \mathbf{0 1 0 0}+\mathrm{S} . \mathrm{A} . \mathrm{V} .13(42120156$.
C.R.T. FOR oscilloscopes. monitors ete. Regret no domestic TV types Possibly higesest stock of scope types in England! Big stocks of DG7-5/6/32 M31-184W etc. Billington Export, Unit F2, Oakendenc Industrial Estate West Sussex. RHI3 8AZ. Callers strictly by appointment only. Phone 1403 \$65105. Fax 04013856106 . Telex 923492 TRAG
IILNESS FORCES sale, television. video sales. rentals. repairs business. Derbyshire. Well established Leasehold premises. Low rental. $£ 15,(0,0)$ o.n.o. S.A.V. optional Telephonc 11773811124
OCHRE MILL. Technical Services. Grundig TV sparcs for most models to 1985, fast, friendly. helpful. sensible prices. Gt Iype Farm. Charlton. Nt Malmesbury. Wilts SNig UDR. Tel. 0785814643
SKY VIDEOCRYPT decoder service sheets with colour decording tricks $£ 15$. Amstrad satellite tuncable audio $£ 18$. EMO. Ramshotom. Lancashire. BLOYAG 0766 82,3130.
SONY CONDUCTORS lim assoned Japanese transmitter chips diodes f5.50 per hay incl Morris. 0782 212695.

STUDY ELECTRONICS on the BBC Micro. An interactive approach to learning. Four program titles available. -Introfuction to Electronics Principles' Electronics Mathematics' Digital Techniques' and now programming for Electronics'. Programs include theory, examples. self test questions, formulac. charts and circuit diagrams. User inputs calculated outputs. $\mathfrak{E 2 9}$. 05 cach $+\mathfrak{2} 2.10) p \& p$. Cheque or postal order to E.P.T. Educational Software Pump House. Lockram Lanc Witham. Essex CM8 2BJ. Please state BBC 'B' or Master serics and dise size.
WANTED: KT66, KT88, PX4 PX25 transmittors ete. If possible sond a written list. Prompt reply and payment Billington Export. Unit F2. Oakdene Industrial Estate. Near Horsham. West Sussex RH13 saZ. Callers stricily by appointment only. Phone. 04013 N65illos. Fax $10403 \times 56 i(6)$. Telex 12.34)2 TRAG

VALVES HUGE stocks credit cards accepted. Full 45 page value catatogue now a a ailable. f2.($\mathbf{(1)}$ post paid VWC. 2hat Cosham Strcet, Mangotsticld. Bristol BSI7 3EN. Telcpholle (12×2 56472 (24 hrs) Fax 0272575442 (24 hrs) TELEVISION BUSINESS \& property with 1 acre land on Orknev Mainland. Detials from G \& M Grieve. Makerhouse. Dounby. Orkney. KW17 2HS Tel $1856772+5$ evenings.
USED BLXE cap Marconi 1.8 db LNB but in working order $\mathfrak{f} 14$ plusp $p \mathbb{P}$. Phone lait 902 5447
PRIVATE RETAILER has excellent pant exchange colour televisions and videos to cicar. Tel 1494 :14317.
METERS RECONDITIONED. ©I. (M) slot meters for TV rentat 66.95 .50 p slot $£ 2.95$ Audiotech Tel 079013245

TETLEOUSIOTACLA5SIFIED LINERTE
advertisements can be submitted on this coupon with a cheque made payable to Reed Business Publishing. Television Classified Room L327, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. The charge is $£ 12.00$ per line plus $171 / 2 \%$ (minimum $£ 24.00+$ VAT.)

Far Issue Dated.
ar next available. Total insertions
Total of Cheque $£$
Name
...Address. \qquad
Tel Num
Signature
Debit my Access/
Visa Card (delete)

Expiry Dote.

TX90 REMOTE PANEL IC TMS1000 AND M293 £12 LNB＇s WITH FEED HORN AND POLARIZER 10GHz TO 12．75GHz 1.5 db s．n．£35．SEND FOR DATA．

GIDEOLAMK．

Hillom Years aheso
THECREDTTCLRD CDICDIAYGR Sular Pinweral
CXIO REC \＆REMOTEPANE：S Wit Main Tim VIGK PROXT PANE：
TMOTHIBEH LSE OV PANIL

保

 RTh Hath
with L．（D）
display $\xrightarrow{\text { display }}$

CAMCORDER SANYO

NP22 6i 1300 mah Rechargeable Rettery Pich f6．（M）

PHILIPS NEW TYPE
U／V HANDSET $£ 10$

SATELLITE RECEIVERS
 19 C．H．with Hand Set $£ 40$ $\mathbf{3 2}$ C．H．Postage $£ 5.00$

SATELLITE Pbseo Panic and Buton
Transmiter lisuMHz GII CAP 250 V .471 M FINDE LNB TESTER

| WITH METER |
| :---: | :---: |
| BOX £25 |\quad| PHILIPS |
| :---: |
| STEREO |
| HEEDPHONE |
| E4，（0） |

NFW IROFESSIONILSTELLITT kECEIVER WITH HAND SET． NETALCISE WITH METER． DOLBY CHANELC WRFH POlarizer sidpriy

POLARIZERSUP年
£50 55 post
SEND FOR DMTA AND I＇HOTO

35 cm DISH and INB

11.7 to 12.7 $\mathbf{f} \mathbf{2 5}$

SEND FOR IDATA D2 MAC
SATELIITE
RECEIVER．INB AND IDISH． AND DI
\＆ 50 （よ10 Post） PHILIPS
STEREO
HEADPHONE 14，（0）

PHLIPSC．D． IFCH． 641 ． $\mathbf{1 0 2 1 2}$ £19． 1×1

Gas Solderng Irons Special Price Ex．O
Variety Nichel Cadmium Batteries from Telephone Type to
Sut－C 5 （pper cell Sainly in paichs of 6 to 8
Videro Out／Audio Out
I．and K Polariser $\pm 35 \mathrm{M} / \mathrm{A}$ and Wecoder Socket $f 15$ in cане

P＇IIILIM Dech Cakcuatur			87．（4）
Phllim universal，battery testek Sbl the			ES．141
			\｛10．ch）
			（220．10）
		Streskt	（5．10）
		CAR ADAPTOR fused 3 Alifp	
WIRE PIPE Cuddelcelor	4.00	long	dad
MICROWA VE Leak detectun	\＆．4．0）	with pheng 25	or TVetc
Wike，\＆I＇liptathector	（4．（M）	$5(0) 0$ oft，	Each

DECODER C－CAN

PHII．IPMADF for K $+\|$ CHASSIS IC No．TDA 354） E5．（M）

FIDELITY NON TEXT IIAND SET
for 3 ano chassis， 8 button
56420A 20N6以N THYRISTOR £1．75

ICD VIDEO AMSTRAD IIANDSET
for models lox tix eath
ITT B B 20132－642A TRIPLER E5．（0）
ITT／NOKIA RF IF MODULE \＆2O
COAX PIUG TO PIONO LEADSEI
SCARTTOSCARTI．EAD £I
TV GAMES AERIAL VIDEO COMIINER SWITCII £1．5！
Minns Swit
and lend

MIXED 20 RRIDCil
RECTIFIFRS（ 1 Smp 105 Amp） $£ 1.50$

24373828	SPLIT－DIODE		
24240110	Time	¢ P （x）E15．	1183以込D E30．00
2.451016	Extar ${ }^{\text {che }}$	＂x 3 mol	
243352 EACH	10 P	C119040	MS11FBWV7 E12．（4）
3．4．493：	TM，（W）	Swn	
－2A2211	Splul）	（15） 12	
	Griwn ${ }^{\text {a }}$ S		
	（ilic 85.0		
h35iome	－2414｜${ }^{\text {a }}$	1 AlH	
hal ${ }^{\text {che }}$	？		Dixale E （0．1m）
24045	－		

[^0]: 5/5/92 SVT (Sweden) chs. E2, 3; NRK (Norway) E2: RAI (Italy) IA; TVE (Spain) E2, 3, 4; RTP (Portugal) E2, 3, 4 (the latter is from Madeira); $\mathrm{C}+$ (France) L3; DR (Denmark) E2, 3; ARD (Germany) E4.
 6/5/92 RAIIA; TVE E2, 3; JRT/HTV (Yugoslavia) E3; NRK E2; YLE (Finland) E3.
 7/5/92 TVE E2, 3; RTP E2, 3; RAI IA; TVA (Italy) IA; ORF (Austria) E2a.
 9/5/92 SVT E2, 3, 4; NRK E2, 3; CIS (formerly the USSR) R1-4 including Estonia R2 and Latvia R3; CST (Czechoslovakia) R1, 2, 3; HTV E4; YLE E3.
 10/5/92 RAIIA; RTP E2; CIS R1, 2; NRK E3; DR E3; RTB (Belgium) E3.
 11/5/92 ORF E2a; CST R1, 2; TVR (Romania) R2; HTV E3.
 12/5/92 CIS R1-4; CST R1; RAIIA, B; TVE E3; C+ L4.
 14/5/92 RAIIA, B; TVE E3, 4.
 15/5/92 RAI IA; TVA IA; HTV E3; TVR R2; DR E3; C+ L2; MTV-1 (Hungary) R1.
 16/5/92 +PTT (Switzerland) E2, 3: DR E3.

[^1]: Published on the third Wednesday of each month by Reed Business Publishing Ltd. Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the Riverside Press Ltd., St Ives plc. Distributed by IPC Marketforce, Kings Reach Tower, Stamford Street, London SE1 9LS (071 261 5000). Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd,; South Africa - Central News Agency Ltd. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall Trade at more than the recommended seling price shown on the cover, excluding Eire where the selling hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, litnot be lent, resold, hired or otherwise disposed of in a
 erary or pictorial matter whatsoever. ISSN $0032-647 \mathrm{X}$.

