AUGUST 1991

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

 FREE 16-PAGE CATALOGUE

> Servicing the Ferguson FV31R TV Surround SoundeCD-I Latest Salora K/L Chassis Faults List DX-TV•Samsung Service Briefs TV Fault Finding•VCR Clinic

The Largest Database of CD, TV and Video Repair Tips Information In Europe Available On-Line or in Books and NOW.....

NEW Stand Alone PC Version

Purchase the Whole System or just one Manufacturer
It's Fast and Easy to use
There are no Hidden Costs
Updates available
Suitable for any IBM compatible PC
You can even enter all your own Repair tips
"No more Bits of paper"

COPYRIGHT

(C) IPC Magazines Limited, 1991. Copyright in all drawings, photographs and articles published in Television is fully protected and reproducution or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those curent as we go to press.

CORRESPONDENCE

Al
correspondence
regarding advertisements should be addressed to the Advertisement Management, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES AND BINDERS

Indexes to Vols. 37 and 38 are available at £1 each from the Editorial office (address above). Photostats of the indexes to Vols. $31-36$ can be supplied at $£ 1$ each.

Binders that hold twelve issues of Television are available for $\mathbf{£ 4 . 5 0}$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 21.60$ in the UK, £25.50 overseas (by surface mail - ask for airmail quote if required). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them.

this month

709 Leader710 Teletopics712 Letters716 Salora K and L Chassis Faults List Nick Beer and lan BowdenTo complement previous articles on these chassis, a listof faults commonly experienced.
717 Latest Servicing Books
718 Test Report: TV Surround Sound Ian MartinDolby Surround sound encoding. Use of an AV amplifiergives access to this feature and provides a considerableenhancement to TV viewing. A review of the PioneerVSA730 AV amplifier.
719 Next Month in TelevisionJ. LeJeuneA rundown on the servicing requirements with thispopular VCR.George ColeThe CD-Interactive system is to be launched as aconsumer product later this year in the USA and nextyear in Europe. Latest developments in what could turnout to be a major new addition to the TV/video market.
726 TV Fault Finding
Reports from Philip Blundell, AMIEIE, Eugene Trundle, EdRowland, Steve Cannon, Michael Dranfield, K.W. Saxon,Nick Beer, Stephen Leatherbarrow, Roger Burchett andMick Dutton.
728 Servicing the Sovereign CTV6000
Notes on the few problems that arise with these well-builtreceivers.
Modification of a Thorn u.h.f. tuner to act as a
downconverter for feeding u.h.f. signals to v.h.f. sets or
obtaining hi-fi TV sound via an f.m. tuner.
730 Service Briefs - Samsung
Official guidance on CD players, microwave ovens and TV
sets.
732 Programming the Hitachi CPT1476R Series
Corrupt data in the memory of a microcontrolled TV set
can cause many confusing symptoms. How to
reprogramme these popular sets
733 Fifty Years in Radio and TV, Part 8 Harold Peters
Back to the retail side of the industry to experience fresh
developments such as satellite TV.
735 Video Equivalents
738 What a Life! Donald Bullock
All manner of problems, including Oscar's Fidelity and a
Chinese TV set.
740 VCR Clinic
Reports from Philip Blundell, AMIEIE, Joe Cieszynski,
Eugene Trundle, Nick Beer, Ed Rowland, Brian Renforth,
Mike Leach, S.A. Featherstone and lan Bowden.
742 Long-distance Television
Roger Bunney
742 Long-distance Telev
CD Player Casebook
Reports from Mike Leach, Ronald Aranha and Philip
BlundelI, AMIEIE.
745 Cassette Salvage
Stan Jackson
746 Test Case 344

AMSTRad IOLERS	\& PULEYS REP	acements		IDLERS \& PULEYS REPLACEMENTS - Cont.				VIDEO MOTDRS				
	Reference			м matomal				amstrad				
		15028	81.50	N3322, N660, N6688,	10.ER UNT	xpacas	53.00					
axa				N/333 M ${ }^{\text {N }} 88$	IDILE Amm	vx10997	5360	Ferbusons s.ve				
VS1-2, VS4-5, VS15	F-FREW ILLER	M132773	${ }^{\text {c } 4.50}$	N3333. Nv36	idiler unit	vxpeata	E0.75	PU 45979. 3V16, 3v22, HR3330, HR3660	capstan motor	${ }_{21.00}$		
VS1.2.V444.5, V515	${ }_{\text {T.UP IOLER }}^{\text {ID }}$	Ev327815	${ }_{\substack{\text { c6.00 }}}^{\text {c600 }}$	N N333, N N 366	${ }^{\text {PLACY Y ILER }}$	vxpeta3	9_{5050}					
VST125, 126, 155,	1 IDER	Ev3231979	86.00	Nv333, .v3000	ACTION GEAR	vociol6	50.60					
	IDLERASSY	M2366960/2	$\underline{11.00}$	NVIT800								
V5245. 247.248								овum мотон	${ }^{19.50}$			
				N333, nv200, Nv3000,	intemelategear	vxG007	E0.65					
Vs250, 512, 515, 516				No333	Cam gear	UK60158	91.00	PU51381V. VV39, 3V30, 8930. HR7200 HR7300	ReEl motor	${ }_{526} 50$		
feracsom					IDLER ARM [DLER ARM	vx10997	23.60	Pu 56635]. 3v56. 3v99. 3v66. 3v65.	Sstav Mot	${ }^{29.00}$		
				Nv370. N4430, N730,		vxP0521	9.70					
3 U16:22 T.UPIDLER PU47752 E4.50				NV33. NV50. NV870,NVG7 NGG10				(2)				
$33^{3} 23,3229.30$.		$\stackrel{\text { Pluag }}{ }$	${ }_{\text {cke }} 8.30$		camgear	vocre20			EL mot	c18.00		
	ReEl doler	PL48967	5.00				${ }^{1} 1.20$	PU 58636 W 3V58. 3 V 59.3 V 64.3 V 65 8950, 8951. FV108, FV11R, FV12L\qquad	EL MO			
$3{ }^{2} 23$		PU499424	E4.00	NV730, Nv830, N8850								
		51402	¢1.45		DLER UNIT	uxpo581	9.50					
				N NV2200. Nv3000	Coler unt	Uxpe33 ${ }^{\text {und }}$	91.20	нвв0330. HRO530	g motos	¢8.00		
	T-UP CLUTCH	PU51380	${ }^{9.60}$	N N2000 NV3009	camgear	vo60699	51.00					
	T-UP Clisch	(e)	${ }^{2} 2.25$	N2\%200. Nv3300	ACIINN GEAR	vocieic	E0.60					
$3 V 35-36,3 \times 338-39,3 / 49$ 3V35-36, 3V33-39, 3V49							9.00	нво725. HRD755. HPP50. R73af				
	Di:ERARM			NV0000. 7200.7800	CLUTCH	vxp 3 34 Wxp 245	${ }_{\text {c. }}^{\text {¢5. } 20}$	misuibrr				
3442	CLUTCH ASSY	Pu5582	${ }_{123.50}$	Nv8400. Nv8600.				28802800, H5300, $301,302,310$	Motor Rel Lspoling	${ }^{\text {E33,50 }}$		
3v42, 43, 48, 53, 56 $3 \vee 42,43,48,53,56$	CluTCh ASSY	PU57658	${ }^{181.50}$		Play IILER	UxP0243	91.20					
	SUPPDRT Clutch	PU55093.1.4.	22.80	NV8620 NV600 NVG21-25. NVG40-45	cluTch PuILEYUNT	xxpotisis	${ }^{5} 5.50$					
		PUL5604 - 1.5						Yanaw		${ }_{\substack{\text { c13.50 } \\ E 30.00}}$		
								NY366 VEN0212, Nv3ONV770	REEL MDTOR MOTOR REEL GEN			
	EF-REWPuliey	${ }_{\text {H/683321 }}$	${ }^{\text {c1.00 }}$	ORion	IDLER	850R200004	53.50					
	COMP IDLERASSY		${ }_{65.50}$	Vms5s-00, virat-90.				sauro				
	GEAR IDLLER ASSY REEL T.UP ASSY	F114304994040900			10LER	850a200005		Stharp				
			ع6.50	VP220, Y4530			¢6.50					
FVHP905, 906. 908. FVHP910, 916	GGARIDLERASSY	FIT4304990422400	86.20	VH553-630, VY635-640,				RMOTV 10086E2Z. VC200, VC381, VC384,	ReELmotor	83.50		
FHP9975,990, 999,	IDLER	F\|1/430424400700	65.20					vc9100. Vc9300, vc9500, vc9700				
FHHP5000, 5100				VH5910				Rм		E16.5		
calcstar	OLLER	4350384	92.50			5222033440301062	E2.50	RMOTV 1010GEZZ, VC300, VC402, VC47 VC477. VC481. VC482, VC488, VC496 VC500, VC571. VC581, VC582, VC583 VC584, VC5F3, VC8481. VC8581	reel motor	E16.00		
				DV464. VR6662, VR6463,	IOLER							
					IDLER ARM							
MTTACH	FF-REWIDLER PLAYYIDLER cluthass	6886971 V-6861482 6879515	${ }_{\xi 9.20}^{51.50}$				97.50	sawr				
				samyo	DLER	1430662714730	${ }^{55} 500$	Bhe f1000, SLC7	CAPSTAN MOTOR	525.00		
VT11-33. VT63.64, VT14 17. 19,38,57. V186, 88				VHR110, VHR 1300				CASSETTE HOUSIMG				
			${ }_{\text {ع }}^{\text {ع } 7.50}$	VFR 1500 VCS500 VC5150	FF-REWIDLER IDLER FF ROLLER ASSY REEL DRIVE PULEEY IOLER Pulley Pulley	$1430744 T 20001$ 1433547702200 1430662710350 $143-0.6627-01207$ 1430-0.662 -10350		3V38, 3V39, 8943, 8944, 8951, 3V35, 3V36, HRO 110 , HRD120 HRO121, HRO225 3V42. 3V43. 3V44, 3V45, 8945, 8947, HRD140, HRD141, HRO150 HRD455. HRO725 8948, 8950. FV10B, FV12L, FV13H, FV14T, FV20B, FV21R, FV22L, HRO230, HRD430 HRDS30 3V58, 3V59, 3V64, 3V65, FV11R, HRO170, HRD180, HRD370		$E 24.00$ 524.00 E24.00 [24.00		
v1120.220	CLUTCHASSY	$\begin{aligned} & 688624 \\ & 6413633 \end{aligned}$		vtc9100. vc9930								
VT8000.-8300 v18500-8700			${ }^{5} 9.60$	vтс9300								
	Play Ioler	6414227		VICMIO-20								
vT8000-8300, vi8500.8700			53.60	VHR2100, VHR2300								
vт8000-8300	FF.REW PulLEy	${ }^{6385351}$	80.80	VCMM10 PulleySHABP								
V93000.0500	ff.REW:DLER						NPLW010:GEZ2 NPL WOOA4 + Nolomoscezz ,	¢6.15	VIDEO LAMPS			
ทT9300-9500	PLAYIDLER IOLER IDLER FF-REW IDEE	$\begin{aligned} & 8861771 \\ & 688182 \\ & 681505 \\ & 6677043 \\ & 6886971 \end{aligned}$		VC651, VC681, VC685 VC7300, VC7700	IDLER ASSY PLAYIDLERKIT				mW1RES)			
VT930.9500						¢5.00		PANS SONC V YOEO LAMPS		${ }_{\text {ca }}$		
					10.ER	50		SONY FLYBACK TR	ANSFORMERS			
	REEL IDER		${ }^{51.50}$					Parino. Morets	-	Price		
		4000009		vc9700								
vxı3, vx<20				Vc300, vc387, vci81.	DLER	0006	81.50		T. $2704(1)$			
									${ }^{\text {a }}$	30.50 40.00 40,		
				VC780:781, VC785-787.	REELDLER	NPLTV01116:ZI	7.00		7. 2.2556 ECC , 2060isA.			
VR39055, VR3396	FUPIDEER	${ }^{\text {PU55402 }}$	${ }_{5175}^{51.45}$	VC793-VC72					CPS. 14083 3, CPV-1402			
Vr39913, V83943	ReEl		${ }_{500}^{51.85}$	salsho				KTX-1350NF.KTX-4143018				
				VR1100. VR1200,	CluTCH	850420000	¢6.50	${ }_{1}^{1-4393333000} \mathrm{~W}$ W-1882E				
Nc				VR2500. VR3300					C. 162027.1682625 AOM			
HR330, 3660.4100	T.UP DILER SML	PU49280	¢6.00	VR3500, VR3550				kV-29278, 2096U8	,	92.0		
HR2720) HR7600,	T-UP CUTCH		c300	samsulima	OCPwet			HATIOMAL LIME OUTPU	UT TRANSFORMER			
HRR200, HR7600	ReEl IDEER	P448867	c. 00	V611-616, V620-621			91.50	π T 146 - 11 B		590.00		
HR7650. H78655.								Till				
HRTOO	ROLLER ASSY	PU49022A	¢4.00	V511-511, V520-610.	IDLER COMPLEEE	69900250330	¢4,50	TIF 14567 F		[26.00		
HR2330. 3660.4100	T.UP PDLER L RG	PU47752	¢4.50	V611-616, , V620,621.				TLF 147715		[27.00		
HRR200. 7600.7650	T.UP IDEER	Pl54402A	91.45	626				TLFIT17988		m20.00		
HRT655.. HRD 110.				Sour								
HRO110. $\mathrm{HRO} 1212 \cdot 121$.	T.UPCLutch	Pu55373	9.25	${ }^{6}$	IDLER RITASSY	A6706391	83.50	NATIONAL TRAN	SFORMEAS			
HRD225					REWPULLEY		${ }_{\text {ci }} 4.00$	LLF60098		123.0		
	ioleramm	Pu55374.8	2.85	SL-c6	Rew Pul Ley	A.670-39-A. ${ }^{\text {a }}$	83.00	HITACH TRANS	SFORMERS			
					CASSETTE DC MOT	Tors		2234274		$\underline{20.00}$		
Matsul				gymoror			${ }_{\substack{\text { c2, } \\ \text { c200 }}}^{\text {coi }}$	CRANDA	TALTD			
Wx730, 735, 750, 755.	clutch	850000005	¢6.50	(12VCWMOOR			${ }^{2 \times 200}$					
W880, $8820,880,990$				1322 CCW M OTOR 132 CCWMOTOR				FOR ADDRES	\& PHON			
					CASSETE TAPE Hİ	EADS						
SUIB5M1		${ }_{\text {Refernere }}$	${ }_{66} 25$					EASES	HE			
	Gearassy			EOHEA			81.50					
								ETT HAND	PACE			

	TEL 071-323 2107 FAX 071-323 2191 3 -5 WHITFIELD STREET LONDON W1P 5RA
AUGUST SPECIAL CLE825 \& CLE 826 ORIGINAL HITACHI REMOTE CONTROL (SEE PHOTOS IN JUNE ISS IR100R PROGRAMMABLE REMOTE CONTROL 124 COMMANDS POSSIBLE $£ 17.40$ 5458282 ORIGINAL HITACHI VIDEO HEAD VT $4000 / 4200 / 5000 / 5030 / 5500 £ 10.00$ UNIVERSAL CASS MOTORS 6 V \& 9 V CLOCKWISE, 12 V CLOCKWISE \& 12V ANTI-CLO	OFFERS RGUSON AND JVC VCR'S £20.00) WE CARRY A FULL RANGE OF ORIGINAL AND REPLACEMENT VIDEO SPARES FOR MOST BRANDS AT VERY COMPETITIVE PRICES
DEALING WITH LRC IS EASY AND VERY PLEASANT. FILL IN AND SEND THE FORM BELOW FOR AN INSTANT CREDIT ACCOUNT PLEASE ANSWER ALL QUESTIONS IN BLOCK CAPITALS	
1) DAIE $+\square \times \square \times \square$	7) Ful names anv other orectors, patiners, EIC
2) COMPANY NAME TYPE OF COMPANY (EG. LTD, PARTNERSHHP, SOLE TRADER)	
3) Ful Amodess (IXC Posi cooe).	
	3... 8) NAME AND ADDRESS OF COMPANY'S BANKERS (INC. POST CODE)
5) Company has beentaong since	
6) Yourfuluname	
	SORT COOE- ACCOONT NuMEER.
Please attach specimen of letterhead or order form.	
ORDERS BEFORE 4.009 PM - SAME DAY DESPATCH ALL LIST PRICES ARE EX-VAT	

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

 HAMEG OSCILLOSCOPESMAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four supert models. All, with the
 All supplied with 2 PeOBES a COMPGEHENSIVE MAMUAL And 2 YEA
HM203-7 20MHz STANDARD

SPECIFICATION
Bandwidth: DC - 20MHz Sens: Ch.!, Ch. 2, $1 \mathrm{mV} / \mathrm{cm}$ Timebase: $0.18-20 \mathrm{~ns} / \mathrm{cm}$ Triggerlng: DC-40MHz Active TV. Sync-Separator Variable hoid-orf
Callbrator; 1 KHz Squa

- Component tester

Price $£ 338.00$ + £59.15 V.A.T. FREE Specialist Carrier Delivery SPECIFICATIONS
2 Channels
Bandwidth: DC - 60 MHz
Sens: Ch.1, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$
Trmebase : $2.5 \mathrm{~F}-5 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC-80MHz
Active TV-Sync-Separator
After delay trigger
Delay line
Delay line
Callber LED indicator
Component lester
Price $\mathbf{E} 610.00+$ E106.75 V.A.T. FREE Specialist Carrier Delivery
HM1005 100 MHz UNIVERSAL उсHAMNELS. UPTO TRACES SPECIFICATION
*3 Channels
Bandwidth: DC -100 MHz - Sens: Ch.1, Ch.2, Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ - Timebase A: 2.5s-5ns/cm - Trimebase B: 0.2s-5ns/cm - Triggering DC - 130 MHz - After delay

- Delay llne

Trigger LED indicator
Overscan LED indicator
Active TV - Sync-Separator
Price $£ 792.00+£ 138.60$ V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE
SPECIFICATION
Digital Storage
Analogue real time (Same as 203-7)
Bandwidth: DC -20 MHz

- Timebase Digital: $5 \mathrm{~m}-1 \mu \mathrm{~cm} / \mathrm{cm}$
- Triggering DC -40 MHz

Active TV - Sync-Sampling
Max sampling rate: $2 \times 20 \mathrm{MHz}$ Memory: $2 \times 2048 \times 8$ Bit
Dot joiner

- Printer/piotter output

Price E610.00 + E106.75 V.A.T.

B.K.'s CRT TESTER REJUVENATOR
Tests and rejuvenates blue, green and red guns and P.I.L. sockets. Compact size $120 \times 65 \times 60 \mathrm{~mm}$ Supply 240 V AC
Price 532.00 + E5.60 V.A.T.

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex FEATURES
Carrier trequency $100+l-1 \mathrm{MHz}$ (adjustable)

- Output level $0.1 \mathrm{mV}-10 \mathrm{mV}$.
- L \& R separation $19 \mathrm{KHz}+1-2 \mathrm{~Hz}$.
- External Moduh over 50dB.
- Pre-emphasis $50 \mu \mathrm{~s}$, $75 \mu \mathrm{~s}$ \& ofl
- Comprehensive test lead set included.
- Malns powered
*Size: $80 \times 200 \times 250 \mathrm{~mm}$.
Price £299.00 + £52.33 V.A.T.

LEADER HIGH VOLTAGE

 METERED EHT PROBELight weight, easy-to-grip high-impact plastic handle with arc-over protection and no need of extra equipment. An indispensible item in your satety and the greatest of ease. Entirety seffsalety and the greatest of ease. Entirety self probe tip to the check point, read the meter for voltage.
musl for the Health and Safety at Work Acts.
Price E66.00 + £11.55 V.A.T.

E \& K PRECISION CRT ANALYSER-RESTORER
The number one CRT Test Instrument: Over 5000 U.K. Television engineers wouldn't be withour it

All CRT's checked Identically, including all in-line and one gun iypes. Tests al under actual operating conditions (mode 490) "Exciusive multiplex technique (model 490) " Measure true dynamic beam current that actualiy passes through G aperture to screen Measures all shorts and leaks - preserving more CRT's * Testa ocus electrodes lead contlnuity finding powerful restoration method uses mos minimum danger to CRT . Rejuvenated CRT's guaranteed as new for two yoars Obsolescence proof - perpetual sel up chart updated and new adaptors developed" Tests and rejuvenates VDU's and oscilioscope lubes "A range of over protit " Pase adaplors avallable "Increase profit " Pays for itself in months.

Prices
Moded 490 Tri-dynamic three meter instrument inc. 6 common adaptors. Withoul adaplors
$\mathrm{E446.00}+\mathrm{£78.05}$ V.A.T Wodel 480 Single meter instrument inc. 6 common adaptors. $393.00+$ E68. 77 V.A. E281.00 + E49.18 V.A.T.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Maters have been designed to facilitale the dish allignment of satellite TV systems and aerial slignment of VHF/UHF television and radio systems. Signal levels can be accurataly measured on the TC402-C and the TC90, allowing the evaluation of signal conditions for satisfactory operation. Both models have a clear LCD direct frequenc readout, coupled to a multiturn tuning control enabHing precise channel identification.
TC402-C VHF \& UHF
FEATURES

- Three bands:
Low VHF: $\mathbf{4 5 - 1 1 0 M H z}$

High VHF: $: 10-300 \mathrm{MHz}$
UHF $: 470-862 \mathrm{MHz}$
Digital display for direct frequency readout. Built-in monitor loudspeaker AM/FM. Powered by eight 1.5 AA batteries.
Fully portable with sturdy carrying case

Price £470.00 + £82.25 V.A.T.

Price 259.00 + £45.33 V.A.T.
TC90 VHF-UHF-SAT.
FEATURES
Five bands:
Low VHF : $45-110 \mathrm{MHz}$ HIgh VHF: $: 10.300 \mathrm{MHz}$

Hyper VHF: | Hyper VHF: |
| :--- |
| VHF |
| | $\mathbf{3 0 0 - 4 7 0 - 8 6 2 M H z}$ Salellite $\quad 950-1750 \mathrm{MHz}$ Sigital display for direct trequency Signal measurement VHF/UHF 20 HV to 3 V . Signal measurement satellite -70dBm to -10 dBm .

Audible indication of satellite signal level. Bullt-in-monitor loudspeaker AM/FM (not satellitit).
Powered by rechargable balkery
(complete with charger (complete with charger 220/240V AC)
Fully portable wlth sturdy carry case.

BLACK STAR COLOUR PATTERN GENERATOR THE 'ORION' THREE-IN-ONE
 PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.

 The Orion is atruly tow cost.

In addition to a switchable sound carrier facility which allows use with the majority of PAL TV sysiems, the Orion provides highly flexible RGB outputs, ensuring compatiblity with mosi video monitors.

More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifier linearity, colour purity, general colour pertormance, focus etc.

A separate video input to modulate camera signals; fully variable RF and video output levels lacilitating AGC testing; trigger output allowing easy triggering of difticutt oscilloscope ITV sound systemal sound modulation input via DIN connector for frequency response lesting

Just some of the leatures making the Orion Pattern Generator an Indispensible tool in the manufacture, test, and servicing of televisions, and computer and video monitors.

FEATURES
Colour bars, purity, greyscale, crooshatch - dots, locus, etc.

VHF/UHF Channels.
5.5MHz, 6.0MHz,6.5 MHz_{2} Sound Carriers. Internal/External Sound.
External Video Output.
Trigger Output.
Separate A, G, B and sync. O/P's.
RGB@TTL iv.
Green + 0.3V Syncs.
Composite video Output.
Variable RFIVideo Output.
Swlichable Video Polarity.
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$.

Price £209.00 + £36.58 V.A.T.

BRACLIMCARD U.K. POST PAID, expor enquiries welcome. Visa/Access or cheque with order, payable B. K. Electronics. Ohicial Orders welcome from Govt. Depts., colleges. P.L.C. 8 otc. Large (AS) S. A.E. for technical leathets of complate Dellvery normally within seven days.

OMEGA ELECTRONICS

LEADING IMPORTERS OF JAPANESE REPLACEMENT AND GENUINE VIDEO HEADS \& V.C.R SPARES
OUR RANGE OF VIDEO HEADS AND SPARES COVER OVER 1000 MODELS TO INCLUDE ALL THE FOLLOWING MAKES

AIWA	ESSELTE	HITACHI	NORDMENDE	SALORA	TATUNG
AKAI	FIDELITY	ITT	ORION	SAMSUNG	TELEFUNKEN
ALBA	FINLUX	JVC	OSAKI	SANSUI	TENSAI
AMSTRAD	FISHER	LOEWE	PANASONIC	SANYO	THORN
B\&O	FUNAI	LOGIK	PHILIPS	SCHNEIDER	(FERGUSON)
BLAUPUNKT	GEC	LUXOR	PIONEER	SENTRA	THOMSON
BONDSTEC	GOLDSTAR	MARANTZ	PROLINE	SHARP	TOSHIBA
BOSCH	GOODMANS	MATSUI	PYE	SIEMENS	UHER
DAEWOO	GRANADA	MITSUBISHI	QUESTAR	SOLAVOX	UNIVERSUM
DECCA	GRUNDIG	NEC	SABA	SONY	
DUAL	HINARI	NIKKAI	SAISHO	TASHIKO	

ALSO NOW WE STOCK A WIDE RANGE OF IC'S - TRANSISTORS
 RETAIL - MAILORDER - WHOLESALE - TRADE \& EXPORT ENQUIRIES WELCOME

OMEGA ELECTRONICS

UNIT 19, CUMBERLAND BUSINESS PARK, CUMBERLAND AVENUE, PARK ROYAL, LONDON NW10 7RG.

$$
\text { TEL: 081-965 } 5748 \text { FAX: 081-965 } 7813
$$

UNIMERSAL REMGTE	
	The VISION Programmable Universal Remote Control can replace most of the stancard infrared remote controls and Gone are the days when you have to fumble around tor the right remote control once it has been programmed. It will be the only remote The VISION remote control also features a "MACRO" programme mode which allows up to 4 commands to be linked together as one. The features of this remote control is a special Battery-Saver circuit with Auto-Power-Off Capability and it enters a "STAND-BY" Mode immediately after a pressed key is released. In this way, the remote control uses very little battery power. FEATURES: - SIMPLE OPERATION - NO SPECIAL CODES TO PROGRAM - CONTROLS MOST DEVICES WHICH ARE INFRA-RED CONTROLLABLE - OPERATED BY APCS OF 'AAA' SIZE bATEERIES (NOT INCLUDED)
	TO ORDER CALL定 081-965 5748
	UNIT 19, CUMBERLAND BUSINESS PARK, 17 CUMBERLAND AVENUE, PARK ROYAL, LONDON NW10 7RG Fax: 081-965 7813 completely satisfied for full refund

EASTCORNWALLCOMPONENFS
119 HIGHSTREET DEPT TV7 $119 H$
WEM
SHROPSHIRESY4 5TT TEL: 093932689 TELEX:35565 FAX: 093933800
orders received
BY 30 AUGUST

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 697.

ADVERTISEMENT MANAGER

Kevin Attridge
071-261 6671
071-2615546 - fax

SECRETARY

Janet Reeve
071-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
071-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
071-2616035

SUBSCRIPTION ENQUIRIES

(0444440421

PUBLISHER

Philippa Gardner
071-261 6408

COVER PHOTO

This month's cover photograph shows the Ferguson FV31R with the top cover removed. See servicing article on pages 720-3.

CORRECTION

Under the heading Panasonic TUS100 in TV Fault Finding last month (page 651), the measuring ammeter is connected in series with the 90Ω (say 82Ω) resistor across the polariser terminals.

TELEORSDOR

The HD-TV Debate

The European Commission has been making heavy weather over plans for high-definition TV in Europe. This is probably inevitable. There are different ways of going about implementing HD-TV, and those who have already invested in development work are unwilling to see their efforts wasted. More to the point though is the prospect of a huge market opening up during the first decade of the next century. Maximising the potential industrial benefit from this is what it's all about.
The European Commission has now tabled a draft directive on HD-TV. If approved by the EC governments, it would lead to the adoption of HD-MAC as the European standard for HD-TV. EC technology commissioner Filippo Maria Pandolfi hopes that the proposals will be adopted by the Council of Ministers and the European parliament this year, to take effect next year. A parallel memorandum of understanding would bind broadcasters and equipment manufacturers to promote D2-MAC as an intermediary standard prior to full HD-MAC. The directive would require all satellite TV services launched after January Ist 1993 to use the MAC standard and stipulates that all TV sets sold in Europe after that date should incorporate a D2-MAC decoder. The Commission proposes to spend some $£ 350 \mathrm{~m}$ over five years on promoting the use of D2-MAC by broadeasters.

This seems to be a rather heavy-handed approach. There's no doubt that MAC is an excellent TV system, and it has the advantage of being able to advance to wide-screen and high-definition TV in a compatible manner. But why does the Commission seek to impose restrictions and force setmakers to incorporate decoders that many viewers might never use? The aim is clearly to help European manufacturers to take as large a share of the prospective HD-TV market as possible. It would be a repeat of the PAL licensing arrangements of the Sixties and Seventies, making life easier for European setmakers by imposing conditions on the Japanese and other overseas competitors. One has to ask whether this is necessary and in the interests of the viewer?
The proposed directive allows satellite TV broadcasters who use PAL to continue to do so indefinitely, a compromise on earlier proposals that sought to phase PAL out. PAL has turned out to be perfectly adequate for satellite TV, but doesn't offer the evolutionary path that MAC provides towards wide-screen and HD-TV (two separate things, though they tend to get confused). But why try to prevent further use of PAL? The only reason for trying to prevent its further use in satellite TV broadcasting is to force the pace with respect to HD-TV. This seems to be a bit unnecessary, though you can see what lies behind it. We are going to get HD-TV come what may - and a good thing too. The question is in what form? You can pretty well rule out the Japanese NHK/Muse system as, at this point in time, representing obsolete and non-compatible technology. But the extensive work going on in the USA on digital television is another matter entirely. We are already used to digital teletext and sound. The only reason for opposing digital video would be on compatibility grounds. Bandwidth used to be regarded as a major problem, but bit redundancy techniques are enabling digital signals to be squeezed into standard channel bandwidths. Should this be the way to go? There is of course no reason to go digital for the sake of it, especially when MAC meets all possible requirements for development in the immediate future. It also has the advantage of being a fully developed and proven system. Perhaps on these grounds and bearing in mind the investment already made in MAC by European setmakers and broadcasters the decision to back MAC is a reasonable one. BSkyB, the major PAL satellite broadcaster, has agreed to start simulcast wide-screen D2-MAC transmissions from the start of 1994 - provided someone else pays for the simulcasting. In view of BSkyB's financial problems that might be fair enough.

It seems that wide-screen TV will be with us quite soon. The sets have already been developed and are due to go on sale within a matter of months. The main problem is a lack of transmissions. There's also the point, seldom made, that the sets look awful and the $16: 9$ aspect ratio is appropriate with only a very small proportion of broadcast material - westerns and spectaculars. Even with a $4: 3$ aspect ratio attention with most programmes is directed to a relatively small area at the centre of the screen. You don't study what's going on (or usually not going on) in the corners! The $4: 3$ aspect ratio was not adopted at the start of TV broadcasting without good reason. This height-width ratio relates to basic human perception of the world. It was used for theatre prosceniums and in photography long before TV came along. One's field of vision simply isn't $16: 9$, which is a decidely uncomfortable ratio. If it hadn't been for Cinemascope, no one would have dreamt of imposing a 16:9 aspect ratio on TV. It's an abomination! But it seems that we shall have to endure it, in whose interests I'm not at all sure.

HD-TV is another matter altogether and has long been a hoped-for prospect. The only problem is how to go about it. MAC gives us an evolutionary, compatible path that serves the interests of owners of existing equipment. Whether it would be adopted as a natural matter of course without the help of EC directives is something one can't be too sure about. Perhaps Mr. Pandolfi is doing the right thing, but laws about fitting decoders and so on seen to be unnecessary at this stage. And if the debate is about whether or not to go digital. this surely depends on one's timescale. As with most forms of communication, the future of TV will be digital. Right now however MAC seems to be the appropriate choice.

Teletopics

TV DEVELOPMENTS

Philips has announced that it will launch European 1,250line HD-TV sets in 1994, a year ahead of schedule. The company says that this is due to the recent decision by the European Commission's HD-TV Work Group and the 16:9 D2-MAC Promotion Group to adopt HD-MAC as the standard for European HD-TV transmissions and to promote D2-MAC 16:9 broadcasting. Philips has also announced faster than expected progress with the development of second-generation HD-MAC components for HD-TV receivers, and that these will be incorporated in a thousand HD-MAC receivers that will be used for reception of HD-MAC signals from the 1992 Barcelona Olympic Games.
Nokia is to show 16:9 HD-TV sets at this summer's Berlin Radio Fair. The company will be launching four wide-screen sets at prices from $£ 1,000$ to $£ 3,200$ (screen sizes from 28 to 36 in .) in the UK next January. The top-of-the-range 36 in . model will have a digital chassis, a built-in D2-MAC tuner and a Eurocrypt decoder. Users will be able to employ zoom with the 1,250 -line picture in order to cater for the $4: 3$ format. A feature of the range will be a new user-friendly remote control unit with a rolling ball inside: operation is by inclining the handset in the appropriate way for the TV or video function required then pressing the go button.

Toshiba has just launched in the UK three models that feature Nicam plus Dolby Surround sound. The system allows viewers to hear surround sound effects from stereo video tapes and stereo TV broadcasts encoded with Dolby Surround sound. Brackets are supplied to mount the surround sound speakers above and behind the viewer. Other features include Fastext, twin Scart sockets, an S terminal and phono audio input and output sockets. Model 3409 DB has a 34 in . screen and a suggested price of $£ 2,000$. Model 2805DB a 28 in . screen and suggested price of $£ 820$ and Model 2505DB a 25 in . screen and a suggested price of £720.
The latest sets from Ferguson also introduce two new chassis. The 14 in . portable Model A14R is fitted with the TX80 chassis, whose compact design benefits from a chip that carries out just about all the signal processing: the Toshiba M52038SP chip incorporates the vision and sound i.f. strips, the PAL colour decoder and the timebase generators. As in the famed 9000 series chassis, a single transistor drives the chopper and line output transformers. A microcomputer chip carries out the control operations. Features of this sophisticated little set, which has a suggested price of around $£ 210$, include on-screen graphics, child lock, a sleep timer which puts the set into the standby mode half an hour after a button on the handset is pressed, and a menu control system.

Ferguson's latest large-screen models are fitted with the Thomson ICC7 chassis. A new chip here, the TBA8659CN, combines the colour decoder (with PAL/SECAM capability) and timebase generator stages. As in previous Thomson designs, the field output is controlled by a thyristor linked to the line output transformer. Basic model is the A51F at $£ 400$. The A51N at $£ 5(0)$ features $2 \times 20 \mathrm{~W}$ music power with surround sound. The larger screen A59F is fitted with a Super Planar tube, which is said to be twice as flat as a standard FS tube. Suggested price is $£ 460$.

GEC Plessey Semiconductors has announced a singlechip teletext decoder, type MV1815, which can store up to 254 pages in an external memory, giving immediate access to the stored pages. Features include all level-one teletext functions, high-resolution RGB display logic with enhanced graphics, 30 MHz video switching and a colour graphics generator that produces 22 additional colours for use in menu options. GPS developed special software called PLATO (Plessey Advanced Teletext Operating system) for the device. Typical power consumption is 25 mA at 5 V .

VIDEO NEWS

New camcorders include JVC's GR-SX9 "palmcorder" which features S-VHS picture quality, long play, times six zoom and auto head cleaning at a price of around $£(3)$. The larger GR-S505 at around $£ 1,150$ has S-VHS picture quality, hi-fi stereo sound, a times eight zoom and an auto head cleaner. There are two new Philips models, the VKR6870 VHS-C palmcorder and the VKR9010, an S-VHS-C model which is VITC compatible. Suggested price for both models is $£ 800$.

Aiwa has launched a combined TV/VCR called "The Televideo", Model VX-T1000. It has a 14 in . monitor, dual-function remote control handset and a VCR section with several auto features. Suggested price is $£ 420$.

Alba has announced a double-decker VCR, Model VCR2222, at $£ 400$. Maximum playing time is twenty hours, using two five-hour tapes in the LP mode

BROADCASTING AND SATELLITE TV

Oracle faces competitive tendering when its teletext franchise runs out, with the other ITV franchises, at the end of 1992. At present Oracle provides about 1,600 pages of information, including advertising. The latest figures released by the ITC's Cable Division show that during the first quarter of the year there were 23,000 new connections to broadband cable networks, slightly less than the record increase of 32,000 during the last quarter of 1990 . The total number of homes linked to broadband systems is now some 172,000 , an 84 per cent increase during the twelvemonth period.

According to the Financial Times satellite monitor there were 75 ,000 new dish installations in May. Ferguson has reduced the prices of its satellite TV systems by $£ 80-£ 100$. Rights to the Squarial have been bought back by its inventor John Collins for $£ 1$. He intends to launch an Astra version late next year.

News Corporation and its three US partners have decided to abandon plans for the proposed 108 -channel Sky Cable service.

TRADE NEWS

Sentra Electronics Ltd. is now trading as ASJ Technik to whom orders, cheques etc. should be made out. Address and telephone no. remain as before - Mandale Mill, Beacon Road, Wibsey, Bradford BD6 3DQ, telephone 0274690 241, fax 0274602701.

Colin Andrew Ltd., which was the sole distributor of spares for Loewe Opta products, has gone into receivership. Loewe withdrew from the UK market last December. The German company hopes to be able to announce alternative arrangements for UK spares shortly.

HELP FOR THE DEAF

Following a letter in our last issue we have received from P. R. Cox, 59 Hennings Park Road, Poole, Dorset BH 15 3QX (telephone 0202682 795) details of a range of products designed to provide help for the hard of hearing.

GARRETTS GREEN LANE, BIRMINGHAM B33 OUE

The company has ten years' experience in supplying and installing such equipment, for home use and in churches and other public buildings. Church loop amplifiers are custom made to suit each individual church.

STOLEN

During a break-in at Aerial Techniques, 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH (telephone 0202738 232) the following items were stolen: (1) several 7 in . monochrome v.h.f./u.h.f. TV sets, boxed type YTL575, for system $B / G / L$ (i.e. will not resolve sound from UK transmitters, only buzz, as the sets were awaiting modification); (2) several 10in. NordMende Galaxy multistandard TV sets, Model G25, covering systems B/G/I/L; (3) one Wolsey type TES v.h.f./u.h.f. field
strength meter, Model MC661-c; (4) one type 4810 Elmac scope with yellow metal case. If any readers are approached about this specialised equipment they are asked to contact the local police or David Martin at Aerial Techniques.

BLUMLEIN BIOGRAPHY

Following the publication of a letter from F. P. Thomson, O.B.E., C.Eng., M.I.E.E. last month several readers have written to us to point out that Mr. Thomson's biography of Alan Blumlein has been in preparation for some twenty years and that material collected for the purpose has not been made available again. In view of this anyone considering making material available should ensure that suitable arrangements are made for its return.

Letters

A LIFE IN THE TRADE

Having enjoyed reading various articles recalling the good old days l'd like to add my own bit of nostalgia. To begin at the beginning, at the age of seven my dad helped me to make my first radio. It was "the world's smallest wireless", consisting of a coil of wire wrapped around a small starshaped piece of Paxolin plus a crystal diode and a couple of other components - but the large iron headphones weighed about half a ton. A few years later I got to play with my first "real" radio, which was called the "H.A.C.". It was a one-valve, short-wave receiver with plug-in Denco coils. I lost count of the number of HL2 filaments I blew through connecting the batteries the wrong way round!
At sixteen I got an apprenticeship in a small radio shop, being paid the princely sum of $£ 2$ a week. Whilst there I did almost everything, from fitting elements in Morphy Richards irons and suffocating on the fumes while they stood "burning off" on the "temperature-adjustment" machine to nearly killing myself with metal-cone c.r.t.s. Fonder memories relate to fitting ITV converters to 9in. Bush TV sets and swapping all the EF80s for EF184s (they used to have a funny orange glow inside, but you should have seen the gain). And how about the Vaseline you had to scrape off the chassis around HMV line output transformers, and having to use a tin opener to change the EY51s in the oil-filled transformers used in projection sets?
I remember going to one Radio Show and seeing the Malcolm Mitchell trio, Robin Richmond and the latest TV technology, including a shiny Philips set with the new autocontrast photocell at the front and the bomb-shaped KB Royal Star 17 in . sets. Gradually the familiar components, such as those embarrassingly smelly selenium rectifiers, funnily-shaped valves and crumbling Metrosils, disappeared and in came the new wonder components such as the red-spot transistor (from a transistor range of about two!) and the silicon diode. At least there was no smell from the silicon diode, but you could get a loud bang from somewhere in the power supply accompanied by an amazing amount of curly foil stuff wrapped around everything. Does anyone remember that most helpful and persuasive person the Radio Spares man, or the new Baird pocket record-player - or that dammed train on the stereo test record?
After five years 1 left to join a national TV rental company, DER. Twenty six years later came the merger with Radio Rentals and the "new" company considered its local bench technician as surplus to requirements. Armed
with a reasonable amount of redundancy pay, my wife and I decided to visit relations in Melbourne. I thought I'd probably never have the money and the spare time together again! On my return, having found that all those "plenty of jobs for TV engineers" weren't there, I took the plunge and became a sole trader. The Enterprise Allowance Scheme helped, and I had courses on business management. After a slow start things gradually picked up.

We've certainly seen some changes over the years, from trying to get one channel from the transmitter down the road using a 60 cm set-top ring aerial to sixteen satellite TV channels via a disc of the same size. It's been a good life, and I wouldn't have been in any other trade for anything. Chris Plaice,
Swansea.

TESTING IR HANDSETS

There have been a number of references in recent issues to testing the output from infra-red handsets. Some have involved circuits, others the use of a transistor radio. One can also send away for a special mirror which, though effective, is costly. All you need to do however is to connect an infra-red LED from a scrap handset across the probes of your digital multimeter and set it to the 200 mV range. Fire the remote control at the top of this diode and, if the output is good, you should get a reading of 50 200 mV . Those with a digital capacitance meter can insert the diode into the test holes and set the meter to the 2 nF range. A good handset will give a reading of $300-1,200 \mathrm{pF}$. These figures may vary with different meters and handsets, but you will always get a definite reading related to the actual infra-red light output.

You must use a digital meter, not an analogue type, as a high input impedance is required - because of the very small photoelectric charge received from the diode. May one hope that this is the last word on the subject?
L. Mackenzie, T. Eng.,

Stellar TV and Video,
Edinburgh.

SERVICING COMMENTARY

I would like to offer replies to some of the points that John Priest made in his letter in the July issue. First, despite his somewhat jaded view of the current situation regarding the supply of wrong parts and customers inability to work the latest equipment. I would point out that this has been going on for years. It happened even in the simple old days. When the rotary v.h.f. turret tuner gave way to twiddleable u.h.f. buttons, when the contrast control moved to the front of the set, when the colour knob
appeared and so on - all these and many more innovations resulted in customer confusion and unnecessary service calls. Such calls should however be regarded as invested rather than wasted time. The customer who buys his bits and pieces all over the place then has to get someone to graft them all together is likely to remember the help he has received and to return to make hassle-free purchases in future rather than go back to his local electronics supermarket to make box purchases. Foregoing the profit on a $£ 2$ lead is likely to be repaid many times over in terms of future business and recommendations. Customers remember this sort of thing.

The answer to the spread-legged i.c.s is that these are intended for automatic insertion, the inserter head compressing the legs as the item is placed in the PCB When the inserter is withdrawn the i.c.'s legs respring so that the device remains firmly in place until the soldering process. The solution to the problem is to equip your workshop with either a proprietary lead straightener or an insertion tool. A metal insertion tool will pick the i.c. up out of its protective packaging and keep the pins shorted until the device is in the board. A lead straightener is excellent when a device arrives with its legs bent out of shape.

In reply to Mr. Gadsby, who asked about help for the deaf, I remember many years ago fitting a Rediffusion hearing aid loop in a room in a local retirement home. Though Rediffusion has been taken over by Granada, the division that manufactured such items (I think that hotel systems and music and paging systems were handled by the same division) still exists. From what I can recall, the device consisted of a fairly powerful audio amplifier, about 30 W , that drove a full reel of 2 A twin tacked around the skirting board. Connection to a TV set would of course require extreme caution from the safety point of view. A set with an audio output jack would be best.

Finally, a note of hope for everyone in the trade. For a long time Mastercare has been the butt of jokes and often unkind comments. A few weeks ago however I needed a front panel for a badge-job VCR that's no longer made. When I phoned Mastercare a very polite young lady went out of her way to find the part number and price, which was very fair. A well-packed panel arrived within a very few days of sending the order, but there was a slight hiccup here - it wasn't quite the right one, almost but not quite. I returned it with a covering letter and this time received the correct part, also three days later a cheque for six pounds odd as a refund for the difference in price between the wrong and the right panel. Well done Mastercare!
Geoff R. Darby, Proprietor Monitech,
Northampton.

SATELLITE TV INSTALLATIONS

A number of points have been raised by TV and satellite engineers, by phone and during visits to our trade counter, following our reply to R.N. Baker last month. Most of the comments relate to the poor quality of satellite TV installations and the effect on LNB gain of poor workmanship, most of which seems to be due to lack of training. Two satellite TV trouble-shooters (north and midlands) estimate that about 42 per cent of installations are poor, leaving no margin of error for equipment deterioration. Most of the problems would be bad practice at u.h.f. and are far worse at the output frequencies of an LNB.

We find that at $1,450 \mathrm{MHz}$ fitting a line coupler with two F connectors results in a loss of 5 dB , one over-tight cable
clip introduces a loss of 2 dB , a tight cable bend introduces a loss of 1 dB , a trapped cable results in a loss of $3 \cdot 5 \mathrm{~dB}$ or more and a taped joint in the downlead a loss of 5 dB or more.

With a typical installation using 15 m of good cable and an LNB with a gain of 53 dB , the losses for cable, tape joint and two over-tight cable clips would be $3 \mathrm{~dB}, 5 \mathrm{~dB}$ and 4 dB respectively. This would result in an apparent LNB gain of 41 dB , i.e. a 75 per cent signal loss. With poor cable the cable loss increases to 4.5 dB , the result being an apparent LNB gain of $39 \cdot 5 \mathrm{~dB}$, i.e. a 79 per cent signal loss. Using very poor cable increases the cable loss to 6 dB , the apparent LNB gain falling to 38 dB with an 82.5 per cent signal loss. In view of these figures there's little point in manufacturers bringing out ever higher-gain, lower-noise LNBs if all that happens is that poorer cable is used.

We've noted from faulty LNBs returned for repair, as well as from the results of our tests, that poorer, thinner cables are at best a slack fit in the standard F-type plug, giving rise to poor connections and later to weather problems.

A test installation with 15 m of good cable and an LNB with a gain of 53 dB introduced a cable loss of 3 dB , reducing the apparent LNB gain to 50 dB , a signal loss of 25 per cent. Antiference 5540 Quadair cable was used, with RS crimp F connectors and crimp pliers. No losses were noted during the crimping. When heavy pliers were used instead a 1 dB loss was introduced at each end - the use of pliers also distorts the crimp seal, leading to weather problems. Standard plastic cable clips were used on the downlead. On a ladder it was not easy to avoid overdriving the nails, producing losses. Perhaps someone should produce saddles for this purpose now!

In conclusion, while our examples have been exaggerated to show the losses which can occur it's the small losses here and there that in the end lead to complaints.
J.A. Glenton, MCES Ltd.,

15 Lostock Road, Davyhulme,
Manchester M3I ISU.
Letters in the May and June issues on poor reception due to standing waves prompt me to offer the following theoretical explanation which I hope can be tested in the field. Standing waves occur when there's a mismatch at the receiver and will be made worse when the output impedance at the source is wrong, thus causing rereflection towards the load. A standing wave is the sum of a forward and a backward wave, but when the transmitter and receiver ends are both mismatched to the cable there can be several waves in each direction, each with a different amplitude and phase relationship.

It appears that the Amstrad receiver's input impedance is incorrect, or varies with frequency. causing the first reflection. If in addition the LNB is not correctly matched (this wouldn't matter if the receiver was o.k.) a further out-of-phase forward wave is generated. When a long extension cable is fitted the path length of the reflected wave is quadrupled whereas the forward wave path is doubled. Thus cable attenuation improves the situation. The solution would appear to be to fit an in-line bidirectional 3 dB attenuator. Stub matching is unlikely to be satisfactory because it's very frequency sensitive. Another approach might be to devise a way (difficult!) of shunting or adding in series a resistor to change the Amstrad receiver's input impedance by up to 10Ω until optimum conditions are established.

Incidentally connecting two cables in series doesn't change the impedance looking in at the cable end, but a
mismatch occurs at the junction because the physical change affects the capacitance and inductance per unit length.

```
R.S. Porter, M.Sc., C.Eng., MIEE,
Stourbridge, W. Midlands.
```


COMMENTARY-FREE SOUND

With reference to Gus Cusik's letter in the June issue, my Sanyo VM-D6 camcorder also sees the infra-red output from my TV remote control unit. What puzzles me is how on earth did Mr. Cusik find this out?!

On the subject of commentary-free sound, with the temporary disappearance of Eurosport via satellite (it's back now but not so good) I scanned the skies for any station carrying the Formula 1 Grand Prix from Canada. I have a steerable system with a triple-band LNB and came across two "feeds". The La Cing one via Telecom 1C at $5^{\circ} \mathrm{W}$ provided good coverage but in monochrome (because of SECAM) and a French commentary. The direct one via Intelsat VI F4 at $27.5^{\circ} \mathrm{W}$ had PAL colour but no commentary or captions, just lots of car noise. This was tine for the first few laps but after about an hour, due to constant leaping about by the TV director, I hadn't the slightest idea who was where in the race! I have since watched the Mexican Grand Prix on RTL with a German commentary and found that I was at least able to keep up with the race. I'm sure that there's a case for commentaryfree sound, but I don't think the commentators' jobs are in danger
Kevin D. Davies,
Haverfordwest, Dyfed.

HELP WANTED

Can anyone supply a set of scan coils for an A37-590X 14in. tube (GEC C1405H)? Coils from a scrap tube or set might do.
M. Thomason, 7 Cyprus Strect,

Stretford, Manchester M32 8AX
0618642919.

Can anyone supply a mains transformer and circuit diagram for the Farnel 12-4D oscilloscope?
J.C. Bailey, 29 Peal Road,

Saffron Walden, Essex CBll 3ET.
079924713.

Can anyone supply a Gll RGB text interface panel or a complete non-working text G11?
M.J. Levy, 19 Totternhoe Close,

Kenton, Harrow, Middx HA3 OHS.
081907.3620.

Can anyone supply a working i.f./chroma/RGB panel for a Thorn 8800 chassis - panel no. is PC856.
Bob Netherway, G0PDV, 29 Snowdon Road,
Fishponds, Bristol BSI6 2EJ.
0272654230 .
Can anyone supply any of the following? (1) A 12Ω speaker for the Thorn 1591 chassis (the 14in. not the 12in. model). (2) A LOPT for the Crown TV105. (3) A new tuning potentiometer and centre knob for the Ferguson Model 38030.
Roddy Ballardie, 6 Crofton Avenue,
Timperley, Cheshire WAI5 6DA.
0619628826 (evenings).

Can anyone supply a LOPT for a Walters monitor, a very recent green-screen type with intergrated diode. The LOPT is black with eight pins in a half circle. A complete chassis would be very welcome. Walters say "we send all our monitors away for repair".
David C.J. Tilley, 6 West Down,
Ashtomas, Nr. Tiverton, Devon EXI6 4NR.
0884820765.

Can anyone supply a TDA1104 field output chip for the Panasonic U2 chassis?
A.J. Fairbrass, I6 Hillary Road, Cheltenham, Glos. GL53 9LD.

Can anyone supply a component layout diagram for the Lecson AP1 stereo amplifier, serial no. 3794 ?
R.J. Hartley, 40 Oldbury Road,

Hesters Way, Cheltenham GL51 0HJ
Can anyone supply a circuit diagram for the Fidelity MC6 music centre? The ERT sheets cover only Models MC3 to MC5.
John B. Davis, 218 Redmayne Drive, Chelmsford, Essex CM2 9EX.
071739480()
Can anyone supply any of the following? (1) A volume on/off knob for the Thorn $1580 / 1590$ chassis. (2) The three front lower control knobs for a Pye 176 (Philips TX chassis). (3) A red plastic cross-cut tuning key for the Decea 30 chassis, and possibly the plastic lid for piano-key conversion (TSW kit).
I still have available moderately priced new multi-caps and droppers for the Thorn 1400 chassis.
R. Bailey, 5I Robin Gardens,

Waterlooville, Portsmouth, Hants PO8 9XF
0705241344.

SHARP VIEWDATA

It was gratifying to learn from Roy Baines' review of viewdata systems (June) that the supply of in-stock parts by Sharp "is the fastest amongst the major manufacturers". This supply speed is maintained with over ninety per cent of items ordered, including unusual items such as cosmetic parts and those for old models, and is achieved by using an "on-line" system. This prints the picking note as soon as an order has been received, our Parts Centre staff ensuring that all orders received by $4.45 \mathrm{p} . \mathrm{m}$. are despatched the same day by first-class post (or next-day Securicor delivery for larger itens)
Since the introduction of the Sharp Viewdata system we have continually introduced improvements to meet customers' needs. Two of the most significant are the lookup section to help with parts identification using the model number and parts description and "part number retry". The first was noted by your contributor, who then commented on the need to differentiate between the letter O and zero. In fact this is not necessary as the part number retry facility processes incorrect numbers by crosssubstituting Os and zeros, Is and ones and even such unlikely combinations as Ss and fives until a correct part number can be identified. The system also copes with the ommission of hyphens. But the benefit of this feature will not normally be appreciated by our customers who will not be aware that the system has made the correction.
Kelvin J. Yue, Consumer Products Division,
Sharp Electronics (UK) Lid., Sharp House,
Thorp Road, Manchester M10 9BE.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

```
TEST
demonstrations AT 172 WEST END LANE
```


$\star 40$ different patterns and variations
\star Fully interlaced sync pulses with correct picture blanking
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow， cyan，green，magenta，red，blue and black．
\star Chequerboard．
M Mono outputs with border castellations，cross hatch， grey scale，vertical lines，horizontal lines and dots UHF modulator output plugs straight into receiver derial socket
\star Additional video output for CCTV \＆VCR．
\star Facilities for sound output
\star Easy to build kit，standard parts．Only 2 adjustments No special test equipment required
\star Mains operated with stabilised power supply
All kits fully guaranteed with back－up service． Also available with VHF Modulator
Price of Kit
$£ 75.00$
Case（ $\left.10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}\right)$ app
Optional Sound Module（ 6 MHz or 5.5 MHz ）
Built \＆Tested in Case including Sound Module

Add VAT 17．5\％TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）
\star Output at UHF，applied to receiver aerial socket．
－In addition to colour bars R－Y，B－Y etc．
Cross－hatch．grey scale，peak white and black level．
Push button controls，battery or mains operated．
\star Simple design，only five i．c．s on colour bar P．C．B．
Backup service available．
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £35．0）．CASE $\mathrm{E}^{5} .80$ ．BATT HOLDERS $£ 4.20$ ．
MAINS SUPPLY KIT $£ 5.80$
（Combined P\＆P £3．00）．
VHF MOIUULATOR（CH I to 4）FOR OVERSEAS 86.80 EASILY ADAPTED FOR VIDEO OUTTPU \＆C．C．T．V．
LINE OUTPUT TRANSFORMER TESTER
\star Saves time and money
Checks short turns．
Simple to use
Reliable
Battery operated．
Pocket size．
PRICE £20．00
POST／PACKING $£ 2.50$

KITS AND PROJECTS

SAW IF ANI）TUNER UNIT complete and tested for viden \＆audio Outputs $\mathfrak{£ 2 8 . 5 0}$ p．p．$£ 1.80$
PAI，DECODER KIT（Video to RGB）for Monitors $£ 27.00$ p．p． £1．（）．
PAL ENCODER KIT（RGB to Video）£18．50 p．p．£1．30．
CROSS HATCH UNIT KIT．Aerial Input type，incl．T．V．syne．and
UHF Modulator，Battery Operated，also gives Peak White \＆Black Levels，can be used for any set．$£ \mathbf{1 5 . 0 0}$ p．p． 80 p．（Alum．Case $\mathbf{£ 6 . 0 0}$ p．p．£1．40．）ADIDITIONAI．GREY SCALE Kit £3．50 p．p． 45 p．
UHF SIGNAL STRENGTH METER KIT £30．00 Alum．Case $\mathbf{f 6 . 0 0}$ De Luxe Casc $£ 12.00$（Built \＆Tested $£ 58.000$ ）p．p．$£ 2.50$ ）．
CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $\mathbf{~} 40.00$ p．p． $\mathbf{1 3}^{(1)}$（

TV \＆VIDEO SPARES

TELETEXT PANELS

```
（EEC／HITACHI－PCI74A +1 £10．（N）
GEC－C22x5．C2887．Text Conversion Kit \(\mathbf{1 5 . 0 0}\)
TT－Compact B．D \＆Mono Print 13，14＂－28＇Text Conversion Kit \(\mathbf{f 1 5 . 0 0}\) MHILARI）VMG103 EIO．MI
POST PACKING FOR ABONE，E2．50
PHILIPS SPARES
GII 6 POS wouch tune channel selector（rephaces old typc）\(£ 14.00\) p．p．£1．si
```


K． 30 ， 3 A £4．51 2 A £10．50．P．P．MANUALS EI．RO
BACK IIP BATT． 2.4 V E5．30， 1.2 V £2．60 p．p．Kip
K．3．KT4，CTX－EHI lead £．3．21 p．p． ti （⿵）．

THORN／FERGUSON SPARES

9000 Series IF／Decoder teated £10．011 pp．£2． 81
TXIO Focus control $£ 8.50$ p．p $£ 1.00$

TX9／10 Remete \＆luning $1515 \mathrm{~N} \mathbf{5 5 . 0 0} \mathrm{p} . \mathrm{p}$ ．$£ 1 . \times$（
TX9／10 Remote \＆luning 150）xA（inel．SAA5012）£2．50 p．p $\notin 1.80$
TX9／10 Remote \＆tuning 153 m （incl．SAA5012．SLi7i）£． 5.50 p．p．ti． S 0
TX10 Stcreo Audio Board £． 5.50 p．p．fi．80．
TX90 Mains TX $£ 23.00$ p．p． 22.80
TX90 $14^{\prime \prime}$ Chassis complete if moxed（untested）$£ 20.00$ p．p．$£ 2.80$ TXI00 Chopler TX £14．81 p．p．$£ 2.50$

AN：521	c．e． c_{0}	SAA5431］	（6， 81	Strow	15.80	TD： 2579	43.80	TD 4.3654	c3． 20
A $\mathrm{N} \sin$ ）	$\underline{22.20}$	SAMvit\％	t6．80		4580	Ti） 2 $^{5 \times 1}$	22．20	TD $1+4$ ？	¢6．80
BA623xA	54.80	SAAvi！ 51	\＆ 11.80	TA76x1P	45.80	TDA2982	£2．80	TD $4 \operatorname{tin}$	${ }^{55.80}$
CNX62	（4．8．8）	S \backslash A5231	15.80	TA7，\％sP＇	¢f． 80	1DAD543	¢1． 50	TDAs501	57.80
HA11211	c2．80	SAB3035	86．81）	1BAPal	21． 20	TDA254．	13.80	T1）A4512A	13.50
$11 / 11423$	22． 10	SA33607	E15．80	TBA7Si	22． 20	TDA2505	£4．80	1DAtill	．so
HA513385	£11．80	SA1 11132	c4．51］	TRA924	¢2．20	TDAzmx	46.80	110ヶ大＂15	c6．80
LA＋45	23.00	SAt－1039	12.20	TBM奢	2． 20	TDAzmia	\＄1．90	TDA laxt	33.85
L． 7 7ax	81.80	\＄1 470.471	4.00	16az7！	c1． 0_{0}	TDAztal	¢3．211	Tipe lent	80
1475211	¢7．20	s1，48	c． 20	TCAsiki	ctox ${ }^{\text {a }}$	7Dazas	20	TDA＋610	16.80
｜A7＊	E．3．51	SLi4	C． 1.80	TDAlmist	52.40	11） 20.54	\＄5．70	7DA5510	$\underline{85.80}$
1 А7830	E2．80	S1．14．31	¢1．80	71）A1037	11．90	Tidazsil	28．60	TDAssin	
M2438	¢7．80	SL14．32	11.40	71DAllit	22．91	TDS2076	E3．20	1DAxis	¢7．81
M4413131	¢14．80	SN76226）	（1．${ }^{\text {m }}$	TDAl0w	E．3．80	TDazand	${ }^{6} 3.811$	TDAsixi	． 80
M 2913 Bl	49．80	SN767615	［9．80	TDA1170	$\mathrm{Ez2}^{29}$	TDA2（tix）	43.80	TDAX（M）	c3．80
M 394	E9．80	STK 3325	¢6．80	71DAllsi	£2． 20	TDAz7al	t6． 818	1DAY412	1．4
Miclinm ${ }^{\prime \prime}$	ES．M	STK539	46.80	IDAl｜w	12.20	TDA3｜＊｜	4.20	1 Days 3	c1．80
MDA2M｜	54.40	\＄7K5388	26.80	TDAlizP	¢5．70	7DA3um	tos0	Daysis	¢4．80
MDAZ2062	E3．60	Sik534	c6． 80	TDA1470	$\underline{22.80}$	TDA3：4	57．50	${ }^{11}$ 今｜（1）${ }^{\text {a }}$	E2． 20
ML237	¢3．80		55.80	tdaligaa	± 3.20	TDA33：41	［3．50	TEA1014	${ }_{\text {c }} \times 1.50$
ML？ 3 x	te． 80	Sthste？	Ex． 50	TDA1701	23.80	TDA3FM	t6．80	12N1039	£1．80
	4.880	S7k 5471	${ }_{66} 6.50$	TDA177\％	E3．20	Tba3s 11	${ }^{\text {cy }}$ ． 811	Eavinas	
MN154．5	114．50	STKくtis	¢7．80	TDA 1×74	ct． 80	TDA35410	［2．50	TEA21．5．	
SAAIILS	\＄5．480	STK5482	¢6．80	T1DA M\％	c2． 80	TDA351	E． 3.50	TMSIMMN2	
SAAILRS	55.80	STK7め16	E10．80	IDA1440	63.20	TDAB6A	25．810		
SAAl124	c． 3.51	STk73．4	E10．20）	rDalust	c3． 50	TDABEA	（5．8．${ }^{\text {c }}$	TMP4	
SAAl2sil	E3．80	STR＋11	17．80	iDAzam	¢7．80	TDABish	¢3．80		£13，59
SAAIS ${ }^{\text {S }}$	c8．41	STR＋5\％	¢6．80	Tidazisit	${ }^{6} 3.20$	TDA 356 （	E5．80	TMP4	16
SAAIP2？	［13．20	STR＋51	$\underline{56.80}$	TDA2270	¢2．80	TDA3571	4.80		E16．80
SAAI293．12	c8．80	$5 \mathrm{~T}+54$	${ }_{5} 5.80$	TDA25111	${ }^{56.80}$	TDA： 576	17.00	MP	dis
SAA367	E．5．811	STR＋211	¢6．80	TDA2548	¢5．80	1DABail	c4． 20		115.80
SAAs（m）	¢2．80	STR5412	［5．80	TDA 574	£3．80		88．410	HAPIKK1	48.50
SAAfilit	55.80		¢4． 50	TDA2s77	¢4．80	TIP ${ }^{\text {2 }}$（ 51	\＆ 4.20	UC3n＋in	84.95
SAAtil？	¢5．81）	STR5441	f10．80	TDAㄷ77A	E．+ ．$\times 10$	TD 3 36 ${ }^{\text {a }}$ 3	${ }^{13.80}$	UPC 1 3\％	\＄1．90
SAASHO	55.811	STRSM041	E8．50	TDA297\％	£3．40	1DA3653B	c． 2.20		$\begin{array}{r} 63.80 \\ 6 \times .60 \end{array}$

VARICAP TUNERS：
 U322／U341／N．ELCI（143（equis）．SCt．VHF NSF 203 £ 7.80 p．p． 11.81 ）．UHF VHF UV 411 £10．80．U 343 £ 10.80 p．p．Li．（xi

LINE OUTPUT TRANSFORMERS

Salora K and L Chassis Faults List

Nick Beer and Ian Bowden

A feature of the Salora K and L chassis is the Ipsalo-3 circuit, which was described in the February 1990 issue. The subject of enabling with these sets was covered in the January 1991 issue (though not the Ll chassis). This article lists various fault conditions we've experienced, starting with the K chassis.

K Chassis

(1) Starting difficulties are generally due to the 8.5 V supply reservoir capacitor $\mathrm{CB} 604(1,000 \mu \mathrm{~F}, 16 \mathrm{~V})$. A 25 V version is an improvement where space permits. CB601 can also cause this problem and $1 \mu \mathrm{~F}$ in this position (several different values have been fitted) is best. You may have to replace both these capacitors.
(2) For noise and splashes in the picture suspect CB101 which decouples the tuning voltage.
(3) No sound or picture but two bars present on the display. Check whether TB541 (BC557) is short-circuit.
(4) Height and/or width twitches. The LFO059 hybrid Ipsalo circuit control chip HB 600 is the usual cause. Can also be caused by a noisy height control (RTB543) or line phase control (RTB542).
(5) No sound or vision. Can be caused by a faulty TDA2579 timebase generator chip (ICB500). When faulty this chip can load the 12 V line with the result that the set trips.
(6) Clicking through either or both speakers, sometimes intermittent. First check the enabling (see January 1991). If this is correct suspect ICC230 (MEA2050).
(7) No teletext. Check the enabling. If the display is blank when text is selected and the enabling is o.k. suspect ICG13.
(8) Random channel change and/or other remote control functions. This fault is caused by noise that's interpreted as valid information by the remote control decoder or the control microcomputer chip. Ensure that the Aquadag braiding is securely earthed at the Rimband, on the righthand side not in the centre. Remove any paint in this area to ensure good contact. If necessary fit the later, longer earth braid (part no. UC3016). In circuits that incorporate ICC200, add a 200 pF capacitor between the remote control input and chassis. Try a 220 nF capacitor across RC216 and a $1 \mathrm{M} \Omega$ resistor across the IR detector diode. Extra screening around the remote control receiver PCB can help. If all this fails, order the modified type.
(9) No results. You will probably find that the chopper transistor TB701 is short-circuit and the chopper supply filter resistor RB703 ($22 \Omega, 5 \mathrm{~W}$) is open-circuit. The efficiency diode DB707 (OF799) may also be short-circuit.
(10) Intermittent loss of picture and sound, with the channel display pulsing. Remove the text panel to confirm
that the fault has cleared. The usual cause is the text crystal oscillator: replace all the components here (crystal, transistor, capacitors etc,) then recheck. If the fault is still present suspect the DPU 2540 chip.
(11) If the display stays in the TV mode when the text button is pressed the 17.73 MHz text crystal is probably faulty.
(12) If only the top line of the text display is present and/or there's no text display line lock, check that the text crystal is operating at the correct frequency. If this is all right, suspect the DPU2540 chip.
(13) Dead set with the chopper circuit working but the line output stage heavily loaded: check DB508 (BY133GP) - applies to 90° sets.
(14) Tuning drift is not uncommon. The causes are split 50:50 between the tuner and the microcomputer and memory chips. These two chips should always be replaced as a pair.
(15) Corruption of stored enable data. The symptoms are varied. If they can be cured by re-enabling the set, replace the microcomputer and memory chips as a pair, then carry out the complete enabling procedure. Prior to chip replacement confirm that there's no random noise from the IR receiver and carry out any modifications that may be necessary - sec (8) above.

Large-screen LChassis

Some of the above faults also apply with the large-screen versions of the L chassis, e.g. items (1), (9), (11), (12), (13) and (14). Specific faults experienced with this chassis are as follows.
(1) Dead set, whistling. Check whether the 18 V rectifier DB606 (RGP15) is short-circuit. If it is, the cause could be the TDA1013A audio output chip ICB 103.
(2) Dead set, even in standby. The LF0059 hybrid Ipsalo control chip HB600 is faulty.
(3) No sound or intermittent sound is quite common due to failure of ICB103 (TDA1013A). If it goes short-circuit it will load the 18 V rail - sec (1) above.
(4) Sibilance has been a problem, especially with sets fitted with FS tubes. Later sets have a larger, deeper Mitsubishi type speaker which overcomes the problem. Ordering the later type and fitting it in place of the original silver and black Philips type provides a cure.
(5) Set dead, runs in standby but there are arcing noises when the set is switched on. Check all the capacitors in the line output stage, especially the flyback tuning capacitors CB507 (15.5nF), CB511 (51nF) and CB512 (68nF).
(6) For intermittent loss of tuning memory or intermittent
scrambling of the memory, replace the SAA1293/4 microcomputer chip and the MDA2061/2 memory chip.

Small-screen LChassis

The small-screen L series sets are fitted with 14 and 15 in. tubes. One or two of the faults already listed apply, e.g. (14) and (15) under the K listing and (5) under the largescreen L chassis listing (CN15 and CN18 are the tuning capacitors). Other faults we've had are as follows.
(1) No go. One half of the main switch open-circuit.
(2) No go, whistles in the run and standby modes. Check that the 22 V supply is present - it usually is. The more likely fault is that the osc. start rail is low at about 5 V because the 12 V zener diode DN17 is leaky or shortcircuit.
(3) Start-up problems. As with the other chassis the 8.5 V supply reservoir capacitor goes open-circuit. This time it's CN 10 , again $1,000 \mu \mathrm{~F}, 16 \mathrm{~V}$.
(4) No teletext. Check the enabling (January 1991) - bit 7 should be at one for teletext operation. If this is in order suspect the SAA 1293 microcomputer chip ID01 or the MDA2061 memory chip ID02 - we've had them both go. If bit 7 can't be correctly enabled, these chips may both be at fault.
(5) Intermittent or no sound. Faulty headphone socket. If this socket is used, always fit a Salora supplied jack plug to the lead/phones.
(6) Remote control unit intermittent on some keys. Worn contact mat or PCB in handset.
(7) Front panel controls doing the wrong thing. Replace the SAA1293 microcomputer chip ID01 and the MDA2061 memory chip ID02.
(8) No muting on channel change (plops on sound and vision). The muting bit in the enabling option byte is incorrectly set, possibly because of a faulty microcomputer or memory chip or because of scrambling due to IR noise to cure the latter add a $2,200 \mathrm{pF}$ capacitor between the IR input to the microcomputer chip and chassis.
(9) Intermittent failure to start and cutting out with high beam current on battery operation: change RN06 to $2.7 \mathrm{k} \Omega$ (was $5 \cdot 6 \mathrm{k} \Omega$) and CN 13 to $2 \cdot 2 \mathrm{nF}$ (was 22 nF), and replace RN07 (82Ω) with a 1 S 923 diode (DN20), anode to the 8.5 V rail.
(10) Intermittently scrambles the memory, particularly in a caravan or in areas with strong fluorescent lighting: add a $2,200 \mathrm{pF}$ decoupling capacitor between the IR input to the microcomputer chip (pin 12) and chassis.

Optional Teletext

Optional teletext could be fitted to all these sets except the non-remote control 14in. L chassis model. When text is fitted to 15 L sets the breakout link in the remote control handset must be removed. This is done through the battery compartment. What can happen is that the set comes into the workshop without its own handset and one from a nontext set won't operate it when tried. If the handset is
subsequently used with a non-text set, or text is removed from the set, it's advisable to solder a bridging wire across the two contacts formerly connected by the breakout to prevent accidental text-button use causing channel-change lockout.

Teletext and the $12 / 24 \mathrm{~V}$ battery kit are usually fitted in the optional-feature box, at the bottom of the set. With Luxor sets there's an option to fit the text unit inside the set, supported by two brackets that sit on two of the back fixing ferrules. A kit allows similar fixing in Salora models.

On the teletext circuits in general, the main problem we've encountered is flashing or flickering characters on the text screen due to a faulty TDU2732 chip. Other faults are listed above.

An H Chassis Fault

Finally, while on the subject of Salora sets, here's a fault we've occasionally had with the non-remote control version of the H chassis. Hum occurs when one of the three $33 \mathrm{k} \Omega$ resistors between the 142 V h.t. line and the 33 V supply goes high in value.

Latest Servicing Books

U-View has published the latest work in its series of circuit diagram manuals. The new edition, Video Servicing 198990 , covers some 227 models in two volumes. These books are of the same size as the previous ones, but the circuits are larger, with clearer definition. All the main manufacturers and many of the economy brands are represented. For a general servicing workshop it's a great boon to have to hand information relating to the economy brands such as Orion, Matsui and Saisho. Although one might prefer to deal with only the longer-established manufacturers, I find that over fifty per cent of the VCRs we handle nowadays fall into the economy category. For someone who has yet to start servicing these, the availability of the information in this book might make it a good time to start - the work can be very lucrative.

The circuits in these books are printed on A4 pages that fold out to A3 size. This makes it easier to trace through the circuits. The surface of the paper is glossy, so greasy marks can easily be wiped off. Greater emphasis has this time been placed on exploded views of the mechanics, and some details on mechanical setting up are included. Although the title of the work is "1989-90", it's helpful to have some circuits for models not covered in previous editions. This is part of the reason for the work being in two volumes, each weighing some 5.5 kg .

In comparison with the cost of purchasing separate manuals for all the models covered, these books represent excellent value for money. Presented as they are with a cross-reference index, they provide an invaluable addition to anyone's technical library.

U-View also publish similar servicing manuals covering TV sets, and have in preparation a book that will deal with all the well-known satellite TV receivers. You can obtain the books for $£ 138$ from U-View, 29 Warmsworth Road, Doncaster, South Yorkshire DN4 ORP (telephone 0302 855017 , fax 0302855 267). U-View has a colour leaflet available providing more details. The books can also be obtained from suppliers such as SEME Ltd. and Charles Hyde and Son Ltd.

Mick Dutton

Test Report: TV Surround Sound

Ian Martin

Dolby Stereo, which is not to be confused with the better known Dolby noise reduction technique, is an audio recording/playback system that's used by the motionpicture industry to provide multi-channel sound. This normally consists of conventional stereo, i.e. front left and right channels, plus a centre channel and rear channel(s). The purpose of the centre channel is to "fix" the sound within the picture, something that's especially useful in a cinema where the left- and right-channel speakers are far apart. The rear channels carry ambience and sound-effect information, with a much greater degree of accuracy than a simple surround-sound system can provide. Using information extracted from the two front channels, moving background sounds can be accurately "steered" to the correct position. The result is an audio environment that not only surrounds the viewer but also retains the spatial relationship of the recorded sounds accurately.

Dolby ProLogic is a more sophisticated version of this system, providing an even greater surround-sound effect. It's compatible with Dolby Stereo, and indeed with ordinary stereo and mono signals. Processing is usually available to create pseudo-surround signals if desired when the original signal source does not provide surround sound. Conventional stereo and mono systems simply ignore the Dolby Stereo and ProLogic surround-sound signals.

The good news for viewers and listeners is that Dolby Stereo and ProLogic encoding can be carried by a simple two-track system such as a stereo videotape or a Laserdisc. Furthermore the signals survive the broadcast transmission process, and as a result are available with many terrestrial and satellite TV programmes. It's possible to reproduce Dolby Stereo/ProLogic sound in the home using only four audio channels, a phantom centre channel being created by splitting the centre signal and feeding half to the left and half to the right channel. Space and budget permitting, you can of course go for the full five channels. Fig. 1 shows some possible domestic speaker arrangements.

As a result of the growing interest in obtaining this highquality sound, a number of products aimed at the home user are beginning to appear on the market. Known as "AV amplifiers", these link the TV and audio systems together as a home entertainment system. They should certainly be of interest to Television readers.

The Pioneer VSA730

One such product is the Pioneer VSA730 ProLogic amplifier. This is a powerful five-channel amplifier (three 60 W r.m.s. front channels and two 15 W r.m.s. rear channels) with Dolby ProLogic and several other enhanced-sound modes for creating a studio or stadium ambience. It uses variable reverberation delays and responses, many of which can be customised and stored in a memory. In addition the amplifier provides input selection from five AV and five audio sources and enables different sources to be dubbed and monitored simultaneously. Bass and treble controls are included, along with a complex balance control for all five channels. Should technofear strike, a bypass switch does just that and you are left with good old plain vanilla stereo, with a flat frequency response and no acoustic enhancements. The infra-red remote control system has full control over all
these functions and is also able to learn the functions of other handsets. It might sound rather a nightmare to operate, and I must admit that l've still got a lot to learn, but basic use is straightforward. The biggest problem for the newcomer lies in connecting it all up. This is where it really helps to be an enthusiast.

All ten audio and video inputs are via RCA-phono sockets, as are the two VCR recording and the two audio cassette tape outlets. A phono monitor (video only) socket is also provided. Unfortunately there are no S-VHS connectors. Binding posts are provided for the front and centre channel speaker outlets while snap connectors take care of the lower-power rear channels. A remote control bus output is fitted so that other Pioneer products that use the "SR" bus, such as the CLD1540 Laserdisc player, can be controlled.

Typical Installation

As an example of the VSA730's use, Fig. 2 shows my own installation. In practice connections will vary depending on the combination of equipment used. It's essential to have a TV set with a monitor output, otherwise it will be impossible to feed the TV sound to the AV

Fig. 1: Typical domestic speaker arrangements for stereo and surround sound. (a) Two-channel stereo. (b) Threechannel Dolby Stereo with a true centre channel. (c) Fourchannel Dolby Stereo with a phantom centre channel. (d) Five-channel Dolby Stereo with a true centre channel.

Fig. 2: AV connections to the Pioneer VSA730 AV amplifier used by the author, shown simplified.
amplifier. Likewise it's useful to have a TV set with one or more AV inputs, as it's desirable to be able to feed the selected AV signal from the amplifier back into the TV set, for example when viewing a Laserdisc routed via the AV amplifier.

Since the AV amplifier doesn't have RGB inputs I connected my BSB receiver to the TV set's AV1 input. The VSA730's monitor output was taken to the TV set's AV2 input. The Astra receiver, Laserdisc player and VCR were then connected to the AV amplifier's inputs along with other miscellaneous audio equipment. As a result it's possible to feed the TV and BSB signals, as composite video, through the AV amplifier and, by selecting AV2, to view the outputs from the Astra receiver, Laserdisc player or VCR. It's also now possible to record the Astra receiver's output while for example watching the output from the Laserdisc player. This is not as confusing as it may sound, because the VSA730's large display includes an input and dubbing display that indicates the signal routing.

Remote Control

One of the most convenient features is to be able to sit in your favourite chair and adjust the volume and balance remotely. As an aid to setting up the correct balance an internal pink-noise generator enables each of the speakers to be "shushed" in turn. I found that the remote control handset is a little too large for comfortable use however. Furthermore most of the keys are multi-function ones. It was a little difficult for me to get used to the unit as I already have a Pioneer CU-AV100) learning remote control handset which has a different and possibly more logical key layout and is already pre-programmed for the VSA730. Further the VSA730's handset didn't operate the Pioneer Laserdisc player's chapter search functions correctly, although the older learning remote control unit does. It was possible to learn the correct commands, but not to replace the incorrect ones. As a result of all this, the new remote control unit has not yet had much use.

The amplifier's large fluorescent display is essential for keeping abreast of what's going on. When static it displays the name of the input source, the monitor output source, the surround mode, the tone control settings, the reverberation delay time and the current preset memory selection. When balancing the speakers, left/right balance is indicated by a centre cross that moves accordingly, while front/rear and centre balance are indicated by a -dB display. The default setting will probably be all right unless your room is a peculiar shape. In any case you can store several preset conditions in the memory. Additional features enable you to switch on/off independently the front, rear and centre speakers and also to change the centre speaker mode from normal to "wide" or "phantom" (for when there's no centre speaker).

Results

In use, the Dolby effect is very apparent. During the opening sequence of Back to the Future, ticking clocks can be heard from all round the listening position - left, right, front and rear! When watching movies with a large centrefront dialogue content sudden effects coming from behind can be quite startling. Digital Laserdiscs, Nicam and BSkyB digital audio from the Marco Polo satellite provide very impressive results. The sound quality with Sky Movies varies a lot however, from excellent in Mississippi Burning to very poor with some other features. I had to turn the Dolby sound off with Police Academy 6, as launderette-

next month in

THE B AND 0 39XX SERIES
Bang and Olufsen have a reputation for sophisticated sets full of innovation. The 39XX series is no exception and could be a bit of a mystery without a helping hand to guide your through its operation. Quite complex signal switching is incorporated, and there's microcomputer control. As usual B and O have designed their own chopper power supply. While following conventional practice there's an unusual powerfail loop. system, controlled by the microcomputer chip, to shut the set down in the event of excessive loading. The remote control system involves a transceiver in the set, enabling it to communicate with a master control panel. The deflection system incorporates a TDA8432 picture geometry chip, a still display module to ensure stable menus whether or not the deflection is synchronised, and interlaced/non-interlaced operation. In the non-interlaced mode the odd and even fields are superimposed: this mode is used for stationary displays such as teletext.

- THE MINI DISC

Sony's recently announced mini disc audio format is due for UK launch late next year and is expected to have a considerable impact on the consumer electronics market. The $21 / 2 \mathrm{in}$. optomagnetic discs store up to 74 minutes of digital sound and are erasable so that they can be used like audio tape. George Cole describes the system and the techniques used.

- STETHOSCOPE FAULT FINDER

A high proportion of faults nowadays are of the intermittent type, presenting great problems when it comes to fault diagnosis. P.J. Ratcliffe has found that an "electronic stethoscope" can be a great help. It consists of an audio amplifier, headphones and a d.c. bias.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

TO
(Name of Newsagent)
Please reserve/deliver the September issue of TELEVISION ($£ 1.80$), on sale August 21st, and continue every month until further notice.
NAME... I
ADDRESS ...
1
1
L
type sound "effects" were present throughout the movie. The surround-sound signals with some videotapes and Laserdiscs seem to miss out randomly, though these tend to be the older titles. The general rule appears to be "if it says Dolby Stereo, it is: if it doesn't, it could be".

Conclusion

To sum up, the Dolby Stereo/ProLogic facility is well worth having if you want to hear movies in their original
"cinema" form and to enhance all other musical sources. To this end the Pioneer VSA730 does the job well.

The biggest headaches are in connecting everything up and, especially, in placing the speakers. Most TV sets tend to live in corners, which don't lend themselves to good, open, symmetrical sound. Perhaps the biggest question is whether people will be willing to rearrange their living rooms to get the best from the sound. Getting permission from the missus to spend the money is one thing, getting permission to move the sofa is another problem altogether!

Servicing the Ferguson FV31R

J. LeJeune

When Thomson of France took over Ferguson it was inevitable that Ferguson products would start to reflect the new ownership. This was evident with the FV30B, FV31R and FV32L series of VCRs. Although the introduction of the FV30B was beset with various difficulties, now seemingly resolved, all three machines have given a good account of themselves in the field. The power supply trouble that afflicted the FV30B (see Television July 1990) doesn't seem to have been present to the same extent with the other two models, and apart from two or three fairly common ailments the machines have performed well. Perhaps the biggest problem has been the customers' inability to understand the user's instruction manual. something that's beyond the scope of the present article.

The Power Supply

Let's grasp the nettle and begin with the switch-mode power supply, which shares a PCB with the servo system. My July 1990 article on the FV30 covered its operation in some detail, but for the occasional reader a brief description follows.

Fig. I shows the mains input and chopper circuitry. The power supply provides six outputs and also acts as a mainsisolation barrier. Note that a small spark can sometimes be seen when the recorder is connected to an earthed-braid aerial, and that a slight "sensation" can be experienced when you rub the back of your hand or a bare arm along the machine's metal case. These are quite harmless: they are caused by switching-frequency currents flowing to earth via the capacitance of the transformer. Similar effects can be experienced with most isolated-chassis TV sets that use a high-frequency chopper circuit.
The outputs are at $12 \mathrm{~V}, 6.5 \mathrm{~V}, 16 \mathrm{~V}, 30 \mathrm{~V},-22.5 \mathrm{~V}$ and -25 V , derived from secondary windings on the chopper transformer LP40. We're not this time showing the MC34060 chopper control chip IP60 which contains an oscillator and a comparator circuit, providing a variable mark-space ratio squarewave output to drive the chopper circuit. Its comparator is fed with a potted down sample voltage derived from the 12 V rail and a 5 V reference voltage derived from the 30 V rail. The circuitry was shown in Fig. 2, page 697 of the July 1990 issue. As IP60 obtains its supplies from the secondary side of the chopper transformer, a start-up oscillator is required on the primary side of the circuit. TP16 and TP17 form a relaxation oscillator that serves this purpose, bringing the power supply to life at switch on. The half-wave rectifier DP11 charges CP14 via RP12 to provide the oscillator with a small supply. Similarly CP38 is charged via RP11 to provide a start-up supply for the amplifier transistor TP28 and the complementary-symmetry driver transistors

TP32/3. The start-up oscillator's output is fed to the base of TP28 via CP18 and RP28.

Once the power supply starts up, the 12 V line is established and IP60 comes into operation. pulling the start-up oscillator into synchronisation via CP16. IPGols output is coupled to the primary side of the circuit via transformer LP52, which provides mains isolation. DP38 then increases the voltage across CP38 to around 11 V , this supply taking over from the feed via RP11. TP01 switches on, dumping the supply to the start-up oscillator: DP21 turns on to disable the oscillator itself. The drive via LP52 is now applied to the base of TP28 via CP27. When the output reaches full power the comparator in IP60) receives its sample input from the slider of PP57. This potentiometer should be adjusted slowly while monitoring the 12 V supply at test point BP 08 .

TP24 and TP26 form an excess-current trip.
The d.c. outputs are distributed to the servo circuits, the signal board and the timer/operation board. Some of these supplies are applied directly, others pass via transistors that act as switches controlled by the operation circuit. The switching system used in the FV31R is shown in Fig. 2.

The base of TP77 is biased from the -25 V rail via the network RP93/RP77/DP61. In this state TP77 is nonconductive. When the tuner or E-E mode is selected, pin 7 of connector BPO5 changes from an open-circuit state to 5 V . Thus DP61 turns off and TP77 switches on, in turn switching TP75 and TP73 on to provide $5 \mathrm{~V}, 9 \mathrm{~V}$ and 12 V outputs to the signal board and 12 V to the servo system. When any deck function is required, pin 1 of BP 05 goes high and TP71, TP72 and TP70 switch on, the latter supplying 16 V to the servo system for full operation. Note that TP71's base bias is provided by TP73 via RP80.

Failure to operate should be tackled by first ensuring that the voltages required for full operation are available from the supply. If none of them are present the trouble will be in the chopper circuit. If some are present but others are not, check the switching transistors as appropriate. Check that $\mathrm{BP} 05 / 7$ goes positive in the tuner and E-E modes and that BP05/1 goes high from 0 V when any deck function is selected.

Trouble in the chopper section is likely to be either simple or catastrophic, the latter identified by a blown mains input fuse ($\mathrm{FP}(0)$). In this case the cause could simply be a faulty diode or two in the bridge rectifier, but more often the chopper transistor TP37 goes short-circuit. As this is usually between its collector and base, it's an evens bet that TP32, TP33, TP28, TP26 and TP24 will have been destroyed. It's also worth checking all the associated diodes. The reasons for failure of TP37 are not always clear, but check RP08, DP08 and CP08 and the print around then. Then go to RP26 which should be $2.55 \mathrm{k} \Omega$. If

Fig. 1: The chopper power supply circuit. IP60 (not shown) on the secondary side of the circuit provides a variable mark-space ratio drive that's coupled to the primary side via isolating transformer LP52.

Fig. 2: The power supply switching system.
it's $2 \cdot 87 \mathrm{kS}$, order a $2.55 \mathrm{k} \Omega$ resistor from Ferguson: the lower value increases the sensitivity of the over-current trip, giving better protection to TP37.

Servo Section

In my experience the FV3IR's servo systems operate with almost total reliability. The EF6801 U4 DTD 243 microcomputer ship used here, IT01, also handles the mechacon functions, so there's no separate mechanism control section. Drum rotation is detected by an optical sensor on the lower drum assembly. Fig. 3 shows the arrangement of the light interrupter. No "digital" transistors are used and the design is a straightforward one. There's only one mechanical switch on the deck, the record safety switch, all other sensing being done by optical means.

As with other mechanisms of Japanese origin, the functions are controlled in part by a mode-control assembly that consists of motor-driven cams and a photointerrupter. To check out this system, start with the 16 V and 5 V supplies, then the mode sensor LED and photodiode, and after that the mode motor control chip IT55 and the cassette housing detector inverter transistor TX01.

The right and left reel sensors have given trouble in this machine, the cause being dry-joints. Check for take-up reel sensor signals reaching pin 13 of the 74 HCl 4 parallel-
to-serial converter chip IT68 and supply reel sensor signals reaching pin 11. If these signals are present, check for supply and take-up signals at test points BT13 and BT14 respectively.

Setting the head-switching point is simple. Connect test point BT16 to chassis for about one second while playing back the MH-2 test tape staircase pattern. To confirm that the setting is now correct you can connect a scope to test point BW10, triggering its sync from BW11. The switching point should occur 6.5 lines before the start of the field sync pulse.

Mechanism

The cassette housing assembly is conventional and straightforward. It's secured into the machine by two screws at the front corners, clipping into the chassis at the back. To operate the deck with the housing removed, leave the assembly connected to the machine, load a cassette, cover the end sensor with black tape and ensure that the start sensor is blocked by the cassette. Light from the start and end sensor infra-red illuminating LED is passed into the cassette by a light guide.

The lower drum assembly can be removed complete with the loading-arm guide track ends and V blocks. Take out three screws and the unit will become free: a further three screws will release the guide track and V blocks. A single photo-interrupter produces the drum FG and pulse signals (see Fig. 3): don't interfere with the positioning of the transparent housing. Upper drum replacement is casy: the red and brown terminal feedthroughs match the leadout wires.

The capstan motor assembly is also held in place by three screws, which are spaced around the bearing. The drive circuitry is on a thin-film printed circuit that's mounted on the motor frame along with the FG pickup. If the unit is defective it should be replaced as a complete item: it can't be repaired. As mentioned before, only one mechanical switch, the record safety switch, is used in this deck, all other switching functions being opto-electronic. The operation switches on the front panel are of the buckling-steel membrane, or "oilcan", type.
The deck terminal board is released after removing another three screws. It carries links to the mode control motor and the record safety switch, also the capstan brake solenoid, the feed and take-up reel sensors, the mode

Fig. 3: The drum FG and pulse photo-interrupter.
control sensors and the infra-red LED for the start and end sensors. A 16 V supply is fed to the board via pin 8 of the plug. After removing this board you may find that the capstan brake is free and will possibly come adrift from the assembly. A peg on this brake fits into the curved slot in the board.

Back tension is specified as $30-45 \mathrm{~g} / \mathrm{cm}$. I recommend setting it to the lower rather than the higher figure, adjustment being by means of a black, crosshead peg. Care is essential when handling the tape-tension arm: ideally, cotton gloves should be worn if it has to be touched, as moisture from the fingertips has a bad effect. Careful backtension adjustment will ensure long video head life.

The simplest solution to the problem of retrieving a cassette when you have a dead machine with one fully loaded is to disconnect the mode control motor's supply leads then supply the motor with 6 V from a battery or bench power supply. The machine can in this way be made to unload the tape from the drum. You can wind the cassette housing up to the full eject position by hand: turn the pulley and belt that form a reduction drive from the cassette motor.

In normal use only occasional maintenance will be required. Keep the tape path clean and free of dust and lint. Make sure that all rollers are clean and rotate freely, and that the pinch roller is parallel with the capstan shaft. Ensure that with the tape loaded to the drum the loading arms come to rest in the V blocks tidily.

Fig. 4: The CCD delay line arrangement used in the dropout circuit.

Fig. 5: The modulator and splitter system.
The surfaces of the full erase and audio/control pulse heads should be cleaned using an approved solvent such as isopropyl alcohol. Give the same treatment to the guide rollers, the capstan shaft and the tape-tension arm end that's in contact with the tape. Clean the drum with a chamois leather moistened with a suitable cleaning agent. Scrub the head gently to and fro in the plane of rotation, applying just enough pressure to feel its profile. Try not to touch the drum surfaces that are in contact with the tape as grease and moisture from the skin can attract dirt and are frequently corrosive. Cotton gloves are a wise precaution.

Signal Circuits

The signal board is the large one that covers the deck. It lies across the top of the machine with the copper print uppermost, carrying the tuner, the i.f. section, the head amplifiers, the YC processing circuitry, the audio and bias/erase oscillator and the test-signal generator.

The tuner/i.f. section is conventional, using well-known chips such as the TD6316AP for the tuning loop, the TDA2541 i.f. chip and a TDA120T for the intercarrier sound. The record/playback circuitry is also straightforward, the chips being widely used types. A fair number of transistors are employed in the signals processing sections and there are some interesting innovations. For example a charge-coupled device that's clocked at 8.86 MHz (see Fig. 4) provides the one-line $(1 \mathrm{H})$ delay for the dropout compensator: changeover switching from direct to delayed video is carried out by IQ01 which receives a drive pulse from the dropout detector in the f.m. amplifier chip IQ40. The TA7772P head amplifier chip IQ80 contains individual recording and playback amplifiers. Head switching on playback only is carried out in IQ80, controlled by a drive signal from the drum FF line.
The full erase voltage at the head is 40 V peak-to-peak at 70 kHz , the head being driven directly from a tap on the oscillator transformer. The audio erase head is driven in the same way. Potentiometer PSO6 adjusts the audio bias level: it should be 2.4 mV r.m.s., monitored across BSO4 and BS05 (chassis). The audio record amplifier incorporates A.L.C.

For loss of the E-E signals it's worth checking TT06 (BC558B) and coil LT03.

Timer/display/operation Panel

The 64-pin HD614081S SA 37 microcomputer chip IK60 presides over the timer/display/operation panel. The M8716AB1 chip IK25 provides a real-time clock signal at

128 Hz by division from a 32.768 kHz crystal - the type used in digital watches. Keyboard commands are fed to IK60. which provides drives for the fluorescent display and the operation LED indicators. It supplies the on-off monitor and on-off servo control voltages for the power supply switching transistors at pins 27 and 26 respectively. Communication between IK60 and IT01, the microcomputer chip in the servo section, is via a data bus which also feeds tuning information to the signals board. The output from the SL486 infra-red receiver goes to IK60's interrupt pin 22.

Remote Control Unit

The remote control unit is rather a handful, the presentation being of the landscape variety. It performs well however, handling like a calculator or electronic organiser. Timer programming can be done via the handset, which holds the programming in its memory for subsequent transfer via the IR link to the memory in the recorder. The 80-pin M34201M4 chip IB01 runs at 400 kHz : its full potential is not used in this model. A customised LCD display is used, designed to complement IB01. A second crystal oscillator runs at 32.768 kHz , operating as a real-time handset clock. The pulse output from pin 18 of IB01 drives three LEDs which are powered at 4.5 V , the supply to the rest of the circuit being at 3 V .

Modulator and Splitter

The acrial input is fed to a single-stage preamplifier that uses a grounded-emitter 2SC3608 transistor. This feeds a two-way splitter which drives two further stages, one for each output. The first output is attenuated by 3 dB and is then passed to the tuner. The second output is passed to the r.f. output socket via a transformer in which the machine's r.f. output is combined with the off-air signals. The modulator employs a 2SC2466 transistor arranged in a tuned-line Colpitt's oscillator circuit: the oscillator's output is modulated by the video signal in a diode-bridge system. The audio subcarrier is generated by a BFS54 transistor in an oscillator circuit with a varicap diode for frequency modulation. The 6 MHz f.m. output is filtered by $\mathrm{FH}(0)$ and is then mixed with the video input to the diode bridge. The resultant carrier plus subcarrier go via a low-pass filter to a 2SC2466 ground-base amplifier then to the signal combining transformer. The modulator requires video and audio inputs both at 1 V peak-to-peak. Separate 12 V supplies are fed to the modulator and the amplifier/splitter sections as the machine can be used in the E-E mode or in a tuner mode as a remote controlled channel selector for a non-remote control TV set without the modulator being powered. Fig. 5 shows the general arrangement.

Tailpiece

The circuit diagrams in the manual are clear and well laid out, but there are one or two errors, notably "CRT WRIGHT" at pin 33 of ITO1 - this should be "CTRL WRITE". At video training courses you often hear it said that ninety per cent of VCR faults are mechanical: this certainly seems to be true of the FV31R and its sister machine the FV32L. Their electronic circuitry is uncomplicated and reliable, even taking into account the notorious switch-mode power supply. The main problem presented by the power supply is not the fact that it goes wrong occasionally but that servicing is a stressful experience when this does occur.

CD-I Update

George Cole

The second Compact Disc Interactive (CD-I) conference was held at the Royal Lancaster Hotel, London at the end of May. CD-I is the "Multimedia" version of the audio compact disc: CD-I discs store a mix of sound, video, text, graphics and animation, all under the control of the user (hence "interactive"). It's intended as a consumer product, the CD-I decks looking like ordinary CD players and plugging into existing domestic TV sets and hi-fi systems. Operation is controlled by a remote handset. The CD-I format is supported by Matsushita, Philips and Sony. For details of the system parameters see page 454 of the April 1990 issue of Television.

The news that CD-I is to be launched in the USA this autumn and in Europe next year added an air of excitement to this year's conference. For CD-I to succeed as a mass-market product it will need a good range of attractive software. Philips is well aware of this and has been busy making arrangements with numerous publishers and software developers. For example Philips and Maxwell Communications have formed a joint venture called Maxwell MultiMedia which plans to launch a series of CDI language learning discs next year. The Japanese CD-I consortium now includes some two hundred hardware and software companies. A European CD-I consortium was announced by Philips, consisting of TV companies, software houses, hardware companies and publishers. Members include Maxwell Communications, Central Television, Pearson (publisher of the Financial Times and a member of the BSkyB group), Carlton Communications, Bartelsmann and Elsevier.

Philips Interactive Media Europe has been formed to strengthen CD-I publishing in Europe. With an HQ in London, there will be subsidiary companies in France, Italy, Benclux, Spain, Germany and the UK. A publishing deal has also been signed by Philips with the Japanese games giant Nintendo, the plan being to put games on to discs that can be played by a low-cost CD-ROM XA (CD read-only memory with extended architecture) player or a CD-I deck - see "bridge discs" later.

There was a lot more software around this year, with a definite emphasis on electronic pin-ball games and even a CD-I version of Batleship! There were also analogue Laserdise titles that have been transferred to the CD-I format. One of the best examples was Harvest of the Sun, about the life and works of Van Gogh. The Time-Life

A prototype Philips CD-I player, beneath a monitor.

Photography disc puts a series of ten books on to a single CD-I disc: it contains information about cameras, film and techniques, enabling you to practice taking shots without film while seeing the results instantly on the TV screen.

A number of companies plan to launch "CD-I ready" discs. These will contain a mix of CD audio tracks (called "red tracks" after the colour of the CD digital audio standards book) and CD-I material like pictures, text and lyrics (known as "green tracks"). Users will be able to play the discs in the normal way with an ordinary CD player but will need an additional CD-I player to see the green tracks. Philips' US software firm American Interactive Media (AIM) showed several CD-I ready discs, including titles recorded by Louis Armstrong and Pavarotti.

The first CD-I ready disc in the UK was made for ICI by Epic. It's a promotional disc for doctors, containing CD-I material on a drug used for treating high blood pressure. The disc also contains several conventional $C D$ audio tracks. Philips has produced a professional CD-I golf package for European golf clubs.

Format Extensions

Three CD-I format extensions were announced by Philips. The first is that CD-I players will incorporate a full-motion video (FMV) system approved by the Moving Pictures Expert Group (MPEG), which was set up by the ISOIEE. MPEG represents a world standard for motion video: the approved system uses a video compression algorithm known as discrete cosine transform (DCT). A number of microchip manufacturers are to start producing cheap MPEG chips in large quantities but these won't be available until the year end at the earliest. Thus the first players, to be launched in the USA, will be referred to as "FMV ready": the players will have a small slot at the back for a plug-in module that can be inserted by the user. According to Philips there's no policy on how retailers charge for the FMV chipset - some retailers may include it in the initial purchase price, others may not. It's hoped that FMV chips will be in good supply by the time that CD-I reaches Europe next year.

The second format extension is Photo CD, a format developed by Philips in conjunction with Kodak. It enables users to store up to a hundred 35 mm photographs on a disc and watch them using a TV set as a monitor. All CD-I players will be able to play Photo CD discs. The third extension is that CD-I decks will also be able to play CD-plus-graphics discs which store simple graphics and text on an audio CD.

Hardware

The first consumer CD-I player, Model CDI910, will be sold in the USA by Philips under the brand name Magnavox. The machine displayed at the conference, see the accompanying photograph, looks like a conventional CD player. It can handle 3 and 5 in . audio, $\mathrm{CD}+\mathrm{G}$, Photo CD, CD-ROM XA bridge and CD-I discs. Remote control is employed and optional accessories will include a mouse, children's controller and IR receiver. The suggested retail price is $\$ 1,400$ (about $£ 850$) though the actual selling price is likely to be just under $\$ 1,000$ (around $£ 650$). Initially there will be four categories of software: children's, special interest, music and games. Disc prices are expected to range from $\$ 19.95(£ 12.50)$ to $\$ 59.95(£ 38)$.

The interesting CD-I Discman, of similar size to a conventional portable CD deck, was shown by Sony. Its features include a 4 in . LCD screen and mouse control.

Fig. 1: The basic CD-I chip set at the present stage of development.

Weight without battery is 850 g , and the dimensions are 135 $\times 54 \times 160 \mathrm{~mm}$. Sony plans to launch the Discman in Japan towards the end of the year. Launches in the States and Europe will follow in mid-1992 and end 1992 respectively. The price should be around $£(600$.

Technics demonstrated a portable CD-I player that was about the size of a midi audio system amplifier. Its front has a central disc slot, power and eject buttons, a headphone socket and an IR sensor. Back connections include a scart socket, phono audio, RS232 and RS422 computer interfaces, an S-video connector plus D2B and a.c. power sockets. No launch details were released.

Chips

A very interesting talk was given by Ray Burgess of Motorola, the giant US microchip manufacturer that's producing the CD-I player chips. Development of the CDI chip set is expected to fall into four phases. First is the basic set already developed. The second stage will be the addition of the MPEG chip to provide FMV. Stage three will see a move towards greater functional integration while the final stage should, in 1994-6, see the arrival of the single-chip CD-I player. The aims are to reduce the power requirement, increase the degree of integration, increase the features provided, and decrease the cost and size. This will allow manufacturers to produce small, portable CD-I players and build CD-I decks into desktop computers

Philips and Motorola first announced the CD-I silicon chip set based on Motorola's 68000 microprocessor i.c. in 1989. All the key items are to be made available to CD-I licensees this year.

Fig. 1 shows the basic CD-I chip set as at present.

$\begin{gathered} 68300 \\ C P U \end{gathered}$	R to S EPROM	Direct memory access timers	$\begin{gathered} \text { CD } \\ \text { interface } \\ \text { control } \end{gathered}$
Audio signal processor		Video signal processor with FMV	System input control
			Intelligent peripheral controller

Fig. 2: How a single-chip player is envisaged.

Overall control of the players's operations is undertaken by the MC68340 chip, a dedicated CD-I CPU (central processing unit). It's a 32 -pin microprocessor with twinchannel direct memory access (DMA) able to handle data at a transfer rate of $33 \mathrm{Mbytes} / \mathrm{sec}$. This provides scope for extending the format at a later date. The audio signal processor (ASP) decodes the CD-I audio signal which employs ADPCM (adaptive delta pulse code modulation).
The MC44466 video signal decoder (VSD) decodes the CD-I video data stream, simultaneously handling two video channels in normal and high-resolution modes and sorting out the interleaving of four video planes. Its video output is in the form of a digital RGB signal which is converted to analogue form to feed to a TV set by the MC 44200 DAC .
The MC 68 HC 0518 is an intelligent, programmable peripheral controller that enables the CD-I player to be interfaced with various peripherals such as an IR controller, joystick, disc drive and keyboard.

The final aim, a single CD-I chip, is expected to incorporate around two million transistors using 0.35 micron CMOS technology. Its size should be just over seven square millimetres and the anticipated price is less than $\$ 10$ - under $£ 6$. Fig. 2 shows the block layout.

Also announced at the conference was a licensing deal between Philips and C-Cube Microsystems: C-Cube will produce MPEG video compression and encoding chips to enable software houses to produce CD-I titles with FMV.

Bridge Discs

One of the most impressive demonstrations at the conference was given by Graham Brown-Martin, chairman of the Cambridge multimedia company Next Technology. His company has developed "bridge" software that enables CD-ROM XA discs to be played via a CD-ROM drive fitted with an XA card or a CD-I player. This means that users could play a CD-ROM XA bridge disc using a work or school computer connected to an appropriate CDROM drive or, at home, a CD-I deck.

The production of bridge dises involves some compromises because CD-I has better sound and picture quality than most desk-top computers. In addition it's not possible to include FMV on a bridge disc, though motion video running at 12.5 fields/sec is possible. Despite this, software developers will be attracted by a system that enables discs to be made for two formats. Next Technology plans to sell bridge software libraries by the end of the year.

TV Fault Finding

Philips GR1-AX Chassis

This set was dead with the 95 V supply low at 15 V . Checks in the chopper circuit showed that the BF487 driver transistor 7614 was conducting excessively - its collector voltage was much lower than the correct figure of 82 V . Resistance checks in its base circuit failed to reveal anything amiss, so we decided to try bridging the capacitors here. C2618 (27 nF) was open-circuit: it's of the blue plastic block type.
P. \mathbb{B}.

Philips 2B Chassis (AG06 version)

When this set was switched on it would go to standby immediately and wouldn't come out, either by using the buttons on the set or the remote control unit. As I'd come across this problem before I changed X2402. The set then came on and after tuning in and adjusting the analogue control settings everything was tine. According to the manual you may have to set the tuner options before being able to tune in: it depends on what version of the control microcomputer chip is fitted in the set.
P.B.

Sony KVM16TU

A common affliction with this little set is dry-joints at the base and emitter connections of the line output transistor Q802. The effect is no go of course, either intermittent or permanent.
E.T.

Ferguson TX86 Chassis

We've had several faults with these sets recently, as follows: (1) Dead set. The TIPL791A chopper transistor TR6 and its TEA2018A control chip IC4 had both failed, as did the replacements. The cause of the trouble was eventually traced to the 1 N 4001 diode D8 being shortcircuit. It's in the current sensing network connected to pin 3 of the chip. Presumably failure of D10 or D23, which are in series with D8, would have the same effect.
(2) Set tripping was the result of the TIPL791A line output transistor TR1 3 being short-circuit.
(3) Line collapse was caused by a dry-joint on the 330 nF line scan coupling capacitor C94.
E.R.

Hitachi CPT2198 (G8Q Chassis)

This set was dead and the customer said that the fault had originally been intermittent, i.e. the set would sometimes fail to switch on from cold. Replacing TH902 in the startup circuit restored normal operation. Note Steve Cannon's comments in a letter on page 406 of the April 1991 issue.
$\mathbb{E} . \mathbb{R}$.

Hitachi CPT2176

A problem we've had with a couple of these sets is that the tuning information can't be stored. You can tune the set in, but when you try to store the station by pressing the preset. button the picture goes off. With the memory chips used in modern sets a negative supply is usually obtained from the line output transformer. With this Hitachi model the supply is -30 V and the memory chip is IC1102. We've

Reports from Philip Blundell, AMIEIE, Eugene Trundle, Ed Rowland, Steve Cannon, Michael Dranfield, K.W. Saxon, Nick Beer, Stephen Leatherbarrow, Roger Burchett and Mick Dutton

found that R772 goes open-circuit: it's a $1.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ resistor off the line output transformer.
S.C.

Panasonic TX21T1

The trouble with this set was that the picture would go off intermittently and the screen would go dark. With faults like this one of the first things to do is to check the voltages supplied to the video processing chip by the contrast and brightness controls. In this set the contrast control voltage should be 1.5 V for minimum contrast and 4.3 V for maximum. When the fault developed the voltage was low at IV. Now the chip could have been pulling the line low but we decided to eliminate other possibilities first. The electrolytic C311 seemed a likely suspect and on a recent Panasonic course we were told that it had given trouble. Not this time however: the fault was still present when it had been replaced. Only when C626 was disconnected did the fault disappear. A new $10 \mathrm{nF}, 50 \mathrm{~V}$ ceramic capacitor provided a complete cure.
S.C.

Zanussi BS665.2

Intermittent failure of the BU508A line output transistor T2E was the problem with this 22 in . teletext receiver. The cause was a dry-joint on the line driver transformer TR1E. If you phone Zanussi's technical department about this they will tell you to replace the transformer, but resoldering is usually enough.
M.Dr.

Triumph CTV8209

Although this set appears to be identical to the Fidelity F14 the component reference numbers don't match and a lot of the circuitry is different. One set that came in had no sync at all. A scope check at pin 5 of the TDA4503 chip showed that there was no signal here. Line pulses from the collector of the BU508A line output transistor are fed to this pin via the two $22 \mathrm{k} \Omega$, IW resistors $\mathrm{R} 138 / 9$ and an $R C$ integrating circuit. R139 was open-circuit. If you get the same fault with the F14 check R109 which consists of ten $5 \cdot 6 \mathrm{k} \Omega$ resistors in series. The signal at pin 5 of the TDA4503 chip should consist of a line-frequency sawtooth waveform at approximately 6 V peak-to-peak.

Another Triumph set had loss of memory when cold. The fault was difficult to trace without the correct manual. R160 ($470 \mathrm{k} \Omega$) was open-circuit.
M.Dr.

ITT80 90 ${ }^{\circ}$ Chassis (Panel CVC824)

This was a nasty one. The sereen would flash white, then the power supply would trip momentarily, after which normal operation was resumed for fifteen-twenty minutes. If the set was left running the cycle would be repeated with increasing frequency.

We found that the 122 V h.t. line was high at 128 V , but setting this to the correct voltage had little effect. Subsequently the line output transformer, the tripler, the chopper and line output transistors and many other parts were changed, all to no avail. The fault was due to flashovers in the tube, proved by connecting the set back-
to-back with another one of the same type, whereupon the fault disappeared. I quoted the customer for a replacement tube but he declined and left the set with me for spares.
K.W.S.

Amstrad CTV1400

These very reliable sets are normally strangers to our workshops. When we do see them they generally need the line driver transformer resoldering (intermittent no results) or simply a clean up of the channel push-buttons. This particular set was more of a problem. The power supply would shut down after approximately three to four minutes. I touched the chopper chip IC502 with a finger but quickly (very) withdrew it: I could now read STR451 on the end! After many inconclusive checks and replacements with no real faults being found the chopper transformer T501 was replaced, curing the problem. It's type RB20826.
S.L.

Triumph CTV8209

This Triumph set is actually the Fidelity CTV14 (later ZX3000 chassis version) in disguise. The fault with this one was a bright raster with flyback lines. We quickly traced the cause to the fact that the RGB output transistors were biased hard on. The zener diode that returns the emitters of the output transistors to chassis was short-circuit. Once this was replaced I was rewarded with a picture that was normal apart from the fact that there was no red content. The red output transistor TR11 (BF869) was open-circuit all ways.
S.L.

Sony KV1442

There was no problem with this set until its owner moved. Attempts at retuning were then made but while the set would search it wouldn't stop on reaching a station. Stop is initiated by feeding back a signal from the a.f.c. circuit to pin 35 of the microcomputer chip. We could detect no change here when a station was reached so we moved back to the tuner panel and the a.f.c. circuit, which is in a screened can. When this was opened we found several suspect joints. After resoldering these the set locked perfectly, even with very weak stations. Note that the a.f.c. functions, the intercarrier sound section and volume control are within a single chip.
M.D.

Salora K Chassis

The customer's complaint was that on occasions the set wouldn't switch on from cold. As h.t. was present at the collector of the chopper transistor TB701 in the fault condition we checked for shorted diodes around the power supply and that the 8.5 V rectifier connected to pin 18 of the Ipsalo transformer wasn't open-circuit. A replacement hybrid chopper control chip was then fitted, but still no go. As the 8.5 V supply is very critical we checked the $1,000 \mu \mathrm{~F}$ reservoir capacitor CB604. It had gone low in value, the result being ripple on the 8.5 V line. This was upsetting the hybrid chip.
M.D.

Panasonic U4 Chassis

A severely defocused and overbright picture suggested that there was an internal short in the tube - we've had this before with Panasonic sets fitted with Mullard tubes. This time however the fault was caused by a faulty line output
transformer. There was excessive leakage between the focus and first anode supplies because of spillage which had entered via the rear cover ventilation slots. A new transformer was required.
N.B.

Sanyo Digitouch TV Handsets

I've had a couple of these handsets in which the transmit LED has flashed all the time and the unit didn't work. The cause is dry-joints or broken $\operatorname{leg}(\mathrm{s})$ on the ceramic resonator in the handset.
N.B.

Feedback on Modifications

Faced with teletext interference on an elderly 19in. set fitted with the Rank A823 chassis (single chip decoder and a Co-op logo no less!) I decided to try Colin Doman's modification (January 1989, page 175) to the field flyback blanking circuit as it seemed easier to do than other suggestions. I'm pleased to say that it worked very well. This old faithful is now giving excellent results - original tube too.

Since D.R. Bracknell's suggested soft-start addition to the Philips G8 chassis (September 1985) I've modified a number of these sets without trouble. Recently however an otherwise satisfactory G8 with the BY34 power panel refused to start up at all with soft-start added, although it appeared to be o.k. without the soft-start feature and the h.t. could be set correctly. The component tolerances seemed to be such that the control transistor kept the thyristor turned almost off. A quick think suggested modifying the panel to the GEC version, but a look through my files indicated that an even later version of the G8 power panel existed. Converting to this circuit provided a cure to the problem. The modifications are as follows: change the preset to $22 \mathrm{k} \Omega$, with a $5.6 \mathrm{k} \Omega$ resistor in parallel and the chassis return changed to $10 \mathrm{k} \Omega$; change R1384 to $4.7 \mathrm{k} \Omega$; add a diode in parallel with the charging capacitor C1376, anode to chassis - Philips suggest a BY207 but GEC use a BA154. Interesting that all the G8s I've modified so far have shown no reluctance to start perhaps I've been lucky!
R.B.

Philips K30 Chassis

The basic fault with this set was comparatively easy. Plug MO , where the c.r.t.'s Aquadag coating is connected to the main chassis, had broken the print and was sparking over intermittently. As a result the set would trip. Someone unknown at Granada had changed the line output transistor to a BU326A, which had promptly shorted all round. The next step he seemed to have taken was to change the line coupling capacitor to the wrong value. After that the set had been dumped. It came into my possession via the local wholesaler, along with some CTX-Es with butchered print.
R.B.

Hinari CT6

This fault had beaten Visionhire and everyone else so far but with the help of a gentleman at Alba it proved to be simple. The symptom was alternate vertical dark and light bars that moved across the screen at what appeared to be about four times the line speed, unvarying but not locked. Everything else was normal.

No fault with the power supplies could be found and the decoupling of the feed to the tuner was o.k. The Alba gentleman unwittingly put me on the right track when he
suggested that I check the brightness circuity and its connections to the 12 V line. Whilst ramping the brightness up and down I operated the contrast control and found that the fault disappeared at low contrast. Closer inspection then showed that the intensity of the lines varied as the contrast level changed. Stripping out the selector board - not a job to be attempted without good lighting -
revealed all. $\mathrm{C} 016(0 \cdot 1 \mu \mathrm{~F}, 50 \mathrm{~V})$ which decouples the contrast rail was dry-jointed, or to be precise had never been soldered. Incidentally the waveform that modulated the video signal came from the ramp generator circuit. C015 and C017 could cause the same problem via the colour and brightness rails respectively. Nice to solve a tricky one now and again!
R.B.

Servicing the Sovereign CTV6000

The Sovereign CTV6000 is a 14 in . colour portable that was distributed by Telefusion Ltd., a firm that no longer trades. In the main these sets were marketed through Telefusion's Trident cash and carry outlets during 1980/81. From what I have been told by a friend who was a brown goods buyer for Telefusion the sets sold well. As few of them have come my way until fairly recently it seems that they are reliable. They were imported, the layout and design suggesting that the source was Germany rather than the Far East. Since they are well laid out and uncluttered servicing presents few problems.

There are four PCBs, all supported on metal frames. The bottom and largest panel contains the timebase circuitry, with the tuner/i.f. panel being to its left. Substantial plugs and sockets join these two panels, which are mounted horizontally on a common metal chassis. A short distance to the left of the junction between these two panels there's a row of connectors that carries the colour decoder panel which is mounted upright, aligned front to rear. This panel has its own U-shaped metal frame, whose lower ends are securely screwed to the sides of the base frame. At the other end of the timebase PCB there's another vertical panel. This is the switch-mode power supply panel, which is again carried by a metal U-frame that's screwed to the base frame. The panels are all easy to remove and refit. As already noted the connectors are substantial, and as a result these have never been a source of intermittent problems etc.

Apart from the small c.r.t. base panel the only other module in the set is the control assembly. It has a po-po mains switch plus volume, brightness, contrast and colour potentiometers which are mounted in a vertical line to the right of the c.r.t. A six-button varicap tuning switch and preset assembly is mounted parallel to the other controls. In my experience the tuning assembly is the only part of the set that gives much trouble. Unfortunately I don't know of a source of replacement switch units. but the assembly usually responds to careful application of switch cleaner.

Complementary pairs of BF469/470 transistors are used in the RGB output stages, driven by a TDA2530 matrixing chip. The other colour decoder chips are a TDA2522 and a TDA2560. The only faults I've had with the decoder section have been a faulty TDA2530 chip and intermittent grey-scale potentiometers. I've had no problems with the tuner/i.f./audio panel. The timebase panel has a TDA1180S chip for the sync and line generator functions and a TDA 1170 field timebase chip. This is also trouble free apart from an occasional dirty height control. BD524 and BU208 transistors are used in the line driver and output stages. The line output transformer is coupled to a tripler which has a clipped-on focus control.

The switch-mode power supply is of the conventional Siemens self-oscillating type and is remarkably trouble free. Recently I've had problems with two sets whose
symptoms were low contrast and brightness with some moire patterning on the screen. This patterning varied in step with adjustment of the contrast and brightness controls. In both cases the cause of the trouble was C722, which is the h.t. reservoir capacitor for the 200 V supply to the RGB output stages. It's mounted on the power supply panel and although the circuit gives the vaue as $47 \mu \mathrm{~F}$, 350 V in both cases a 250 V type has been fitted and had almost zero capacitance when tested. The original capacitor is quite squat and is so fitted to the vertical PSU panel that it projects close to the focus control on top of the tripler on the timebase panel.

Original replacements for C722 are not available and standard $47 \mu \mathrm{~F}, 250 \mathrm{~V}$ capacitors are too long, getting in the way of the focus control with the result that the power supply panel cannot be correctly fitted to the timebase panel. After some hunting about I found that the $47 \mu \mathrm{~F}$, 250 V capacitor (C657) used in the Grundig CUC70 chassis is suitable physically and electrically as a replacement. The Grundig capacitor has three peripheral negative tags with a positive centre pin whereas the original Sovereign capacitor has only the usual pair of tags. There's plenty of space on the panel to accommodate the Grundig capacitor however, and two minutes with a mini-drill soon provides the pair of holes needed for the two extra earth tags. When the capacitor is fitted you'll find that there's adequate clearance between it and the focus control when the panels are reassembled.

It may also be worthwhile replacing the h.t. smoothing capacitor C723 at the same time. The value is $10 \mu \mathrm{~F}, 250 \mathrm{~V}$. It's on the timebase panel rather than the power supply panel and this time there is no difficulty about fitting a standard type of capacitor.

When these capacitors have been replaced, check that the h.t. to the line timebase is correct at 105 V . The test point is at R 604 , the 22Ω, 11W wirewound resistor on the timebase panel close to the line output transformer. R709 on the PSU panel provides adjustment: set it with the contrast and brightness controls at minimum. At the same time check the 200 V supply at C 722 . If you have any difficulty getting a full 105 V , or if the 200 V rail is high, check the 105 V reservoir capacitor C718 on the PSU panel. It's a $47 \mu \mathrm{~F}, 150 \mathrm{~V}$ type.

Any tuning problems that can't be resolved by cleaning the varicap switch unit should draw attention to the 32 V supply, which is derived from the 200 V rail via R 328 ($22 \mathrm{k} \Omega$) with the usual TAA550 stabiliser. These items are fitted on the tuneri.i.f. panel. The u.h.f. tuner itself has given no problems.

Finally, if you do get one of these sets in for repair ask the owner whether he or she still has the original instruction book. It came in a strong polythene envelope together with a circuit diagram and setting-up instructions for the decoder and grey scale. It's well worth photocopying if you can lay your hands on one.

Simple Downconverter Unit

The downconverter described in this article converts signals on the u.h.f. channels $21-68$ to the v.h.f. Bands I and II. In use you simply connect it to the Band I/II receiver's aerial input socket: no modifications are required to the receiver itself. This is an ideal way of applying u.h.f. signals to a v.h.f. set and of obtaining hi-fi TV sound via an f.m. tuner.

Tuner and Power Supply

I used a type T21 mechanical tuner - the sort found in the Thorn 1500 chassis. It's sad that these fine sets are generally scrapped these days, but this does mean that obtaining a tuner shouldn't be too difficult. As a u.h.f. tuner the T21 has good gain and fair selectivity. There's no reason why a different type of tuner shouldn't be used, but I found that the type used in the GEC Series 1 chassis wouldn't work.

What I required was good output from $45-108 \mathrm{MHz}$. The modifications described below were adopted after experimenting on a trial-and-error basis. A 12 V supply for the tuner was obtained via an external transformer. Any battery eliminator that provides between $7-12 \mathrm{~V}$ will do,

Fig. 1: Modifications to the Thorn T21 tuner unit to act as a u.h.f./v.h.f. downconverter. The added capacitor is a $22 \mu \mathrm{~F}$, 16 V mini electrolytic - the value is not critical. The negative lead is left open-circuit, insulated using heatshrink and wound around L352; the positive lead, also insulated, is taken to the emitter of VT352 by connecting it to FT351. Glue the capacitor in place once optimum conditions have been established. Fine tune the system at switch-on, using the v.h.f. knobs. Cross-modulation may be experienced with strong local signals appearing in other parts of the band.
though the smoothing is critical: not less than 4,700$) \mu \mathrm{F}$ is required if hum bars are to be avoided.

Tuner Modifications

It's helpful to have the Thom 1500) chassis circuit to hand when carrying out the modifications to the tuner unit. First remove the i.f. plug SKTI: connect the length of coaxial lead to a standard coaxial plug instead. Connect the 12 V lead to the external supply. The lead that goes to the base of the r.f. amplifier transistor should be connected to the slider of a $1 \mathrm{M} \Omega$ potentiometer connected to the tuner's case. Remove the i.f. coil's slug and connect a switch to it so that it can be shorted out for Band II use. Fig. 1 illustrates these points.
To obtain the correct output I fitted a long-leaded $22 \mu \mathrm{~F}$ capacitor as shown, i.e. with one lead sleeved and wrapped around the L352 bar, close to the tuning gang, and the other end connected to the emitter of the mixer transistor VT352 via a short length of insulated wire - solder it to feedthrough capacitor FT35I. Keep these connections well insulated.

Setting Up

When you've carried out these modifications, connect the unit to a TV set switched to ch. 2 or an $88-108 \mathrm{MHz}$ f.m. radio. Tune in a local signal via the tuner in the normal way then peak the gain using the $1 \mathrm{M} \Omega$ potentiometer. This setting can be left. Position the extra capacitor for maximum output. When the overall peak is found, glue it in place. Leave the tuner's cover off. Use PVC tape to cover the top, ensuring that the additional capacitor and lead are well insulated from the case.

Use

For channels 2-4 I use a Thorn 1400 receiver while for Band II an Alba Model 8006D is used. With the tuner set up as just described, the performance throughout the u.h.f. spectrum is about the same as that obtained using the set's own u.h.f. tuner. Reception via the Band II receiver is good.

The tuner will work via an upconverter, which is useful for resolving SpE System B or D audio signals where conditions permit. I've also successfully received Italian Band I stereo f.m. signals.

There's a slight drawback in using a tuner modified in this manner, the possibility that local signals will appear, though weakly, at other parts of the band. This isn't really much of a problem however. In stubborn cases selecting a different channel, 3 or 4, may help.

Conclusion

I'm well pleased with the outcome of adapting this tuner as a dual-purpose unit, especially as the financial cost, using spares from the junk box, was zero. The completed unit can be housed in a box for set-side use, reminiscent of those Band III-I converters that were used in the Fifties for Band I only sets!

Service Briefs -
 Samsung

The following information has been compiled from recent Samsung Service communications.

CD Players

CD-11, SCM7000/7500/8000: If the disc doesn't spin or spins slowly due to one or more of the rubber cushions in the dise tray sticking to the disc try reducing the tension in the two small cushion-lifter arm springs. If this fails, replace the lifter-disc-holder.

For skipping/jumping modify the pick-up traverse by removing the control spring beneath the angle adjust screw.

A revised alignment procedure has been issued.
CD11, SCM-7500: Inability to read the TOC with some discs occurs because some manufacturers place their own coding in the TOC area. The fault shows up as excessive reading time or an ER display. To cure replace the microcomputer chip IC2105 with part no. 12109401590 which has new software.

SCM-6000/6800 (G35 chassis): Improvement of CD leadin. Reduce the value of R2806 from 330Ω to 120Ω, part no. 11018827 121. Note that the circuit diagram shows the value as $1 \mathrm{k} \Omega$.

Microwave Ovens

RE555/610/670/777TC: If random fuse blowing or excessive vibration from the transformer is experienced, especially at lower power levels, suspect first the MCP3020 opto-isolator chip on the control panel, part no. 72179001 162. It seems that many engineers try replacing the transformer, magnetron etc. at great and unnecessary cost.

RE670/777TC: Carry out the following modifications if the temperature probe indicator comes on when no probe is connected, especially when cooking foods with high moisture content or liquids. Reduce the value of R19 from $510 \mathrm{k} \Omega$ to $15 \mathrm{k} \Omega$ (up to $22 \mathrm{k} \Omega$ will do). Increase the value of C 16 from $33 \mu \mathrm{~F}$ to $220 \mu \mathrm{~F}$ (up to $470 \mu \mathrm{~F}$ will do). Add a $56 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ resistor ($68 \mathrm{k} \Omega$ will also do but $56 \mathrm{k} \Omega$ is best) between the base and emitter (chassis) of TR8, i.e. across the probe switch and C16.

RE990CT: If the error display shows ERR1 during combination or convection cooking the oven temperature sensor is likely to be faulty. Display ERR2 is not used. ERR3 indicates that the oven is too hot to operate the auto-defrost mode. Allow it to cool.

No or an intermittent clock display means that the interrupt request line at pin 31 of the microcomputer chip is low or missing because C4, C5 or C13 is short-circuit or leaky. They are $0 \cdot 1 \mu \mathrm{~F}, 50 \mathrm{~V}$ disc ceramic capacitors.

Note that the sectional cut in the top of the door is normal: it's an aid to door opening. Tell the customer this in the event of a query.

If problems are experienced with setting the clock at initial power-on, use the following procedure. Apply power. Press the clock pad twice. Press the clear pad.

Enter the time in the 12 -hour clock. Press the clock pad. The colon should now flash.

TV Receivers

BT309K: For no picture/blank raster from cold or after a short running time replace the video detector can, part no. 32719503010 B .

CI210R: Ensure that the correct battery lead is used with this set, part no. 3Z-DC LEAD. When operating at 13.8 V the standby current should be 73 mA and the full-on current $2 \cdot 3 \mathrm{~A}$; at 24 V the standby current should be 110 mA and the full-on current 1.4 A .

CI330F/Z: If the mains transformer's primary winding is open-circuit, replace the transformer and the line output transistor Q404. Use type 2SD870, not another 2 SCl 893 . A transistor is supplied with the replacement transformer.

CI338/514: A small picture whose size varies with adjustment of the brightness control is the symptom when there's a dry-joint at the E connection (125 V) of Q801 (STR3125).
For low brightness and a washed out picture, with just an increase in the flyback lines when the first anode voltage is adjusted, replace $\mathrm{R} 207(120 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}), \mathrm{R} 208(127 \mathrm{k} \Omega$, $1 / 2 \mathrm{~W})$ and $\mathrm{C} 519(330 \mathrm{pF}, 1 \mathrm{kV})$. The capacitor is on the c.r.t. base panel.

For intermittent channel jumping, particularly to no. 12, remove the control PCB, take the upper and lower screening plates from the IR amplifier and refit the detector diode snugly on to the mounting collar. Then reassemble.

CI338F/GA/XA/Z, CI340ZA, CI347FA, CI515FA/ZA: Random failure of the mains input fuse F801 occurs because of current surges in the degaussing coils. Replace the 800 mA fuse with a 1 AT anti-surge type.

CI338GF/X, CI347FF, CI348ZF, CI517F/Z: For low and unstable h.t., at approximately 100 V , with Q0403 getting hot, replace the 47Ω fusible resistor R806 - part no. 31059 001050.

CI338Z: A channel display stuck on 88, with channel changing o.k., occurs when the 5 V supply at pin 24 of IC4 is low. Check TR805 and DZ809.

CI340XA: For tuning drift or loss of tuning at switch-on, ensure that RC16 on the remote control PCB is of the correct value, i.e. $4 \cdot 7 \mathrm{nF}$, marked 472 . If marked 47 , i.e. 47 pF , replace with the correct value.

CI348/GZ: Fine horizontal lines across the screen or striations on the left-hand side are caused by pickup from the chopper or line output transformer on the lead to the c.r.t. base panel from plug MCT02. Tie the lead to the loom from MCT01 to the c.r.t. base.

CI348ZF: A new microcomputer chip, RIC01, is now supplied. When this is fitted the switch-on sequence is different - the set comes straight on when the power switch is pressed instead of going to standby. To re-establish the previous sequence, fit a $3 \cdot 3 \mathrm{k} \Omega$ resistor in position RR27 and remove the 1N4148 diode RD17. The new chip is type M50431-101SP (the suffix was previously - lo0SP). Part
no. for both chips is 32109101160 .
If the set goes off again five seconds after switch on and works normally when restarted, or otherwise shuts down intermittently, remove CNR05 from the remote control PCB and confirm that the set is now o.k. If so remove the control PCB and spray the cabinet front around the IR lens - ensure that you cover the fixing clips - with RFI/EMI shielding. This is available from RS under part no. 551570. When dry, refit the PCB and CNR 05 , but route its screened lead behind the mains transformer

Cl517F/ZF: New c.r.t. types were introduced (51GGH91X and 5120B22, both part no. 32019255 106). The original tube, type 5106 B 22 part no. 32019270810 , has different fixings, so the tubes are not interchangeable.

CI517FF: Early sets do not have an AV operation facility. In later production models AV operation is obtained by switching to channel 8 .

C1537G/ZG: To improve performance the chopper transistor was changed from type 2 SC 3552 to type BU508AF, part no. 32149401230.

CI537ZG/541ZG: For whistle on sound at low level, altering with the volume control setting and disappearing when the sound is muted, increase the value of RCll from $1 \mu \mathrm{~F}$ to l()$\mu \mathrm{F}$.

Flashes of one colour then no picture can occur when the sandcastle pulse is not clamped to 0V. Remove R407 $(330 \Omega 2)$ and fit a wire link in its place. Then fit a $140 k \Omega$ and a $190 \mathrm{k} \Omega$ resistor in series in place of wire link J 52 .

For field bounce with off-air reception or an unstable VCR playback picture adjust the line hold and a.g.c.
controls. There's no field hold control but with the TDA8305 chip the field sync is affected by the setting of the line hold control!

When replacing the c.r.t. order the exact type as different types that are not all interchangeable have been used.

C1537V: In the event of repeated failure of the 2SC3552 chopper transistor $Q^{9} 01$, check whether R910 $(270 \mathrm{k} \Omega)$ is high in value or open-circuit. It's worth checking this resistor whenever repairs are carried out in the power supply.

For field roll from cold when changing channels, the situation improving when the set has warmed up, replace the $0.47 \mu \mathrm{~F}, 50 \mathrm{~V}$ tantalum capacitor C 307 .

Buzz on sound at low volume settings or when the sound is muted, varying when the remote control is used, occurs when the lead from $\mathrm{CN} 03-\mathrm{PH} 03$ is too near the audio stage. It carries serial clock pulses and data. Redress and tie it clear of the audio stage.

TV Chassis

P36A/P50F chassis: For poor field sync, especially with text or satellite TV reception or between advertisements when at black level, reduce the value of R218 from $560 \mathrm{k} \Omega$ to $390 \mathrm{k} \Omega$ and add a $1 \mathrm{M} \Omega$ resistor between pins 2 and 37 of IC501 (i.e. between the 12 V supply and the input to the sync separator).

VCRs

A forthcoming "service briefs" will deal with Samsung VCRs.

Programming the Hitachi CPT1476R Series

Microcomputer chips are now widely used to control various functions in TV sets. The extent of the control operations varies from just volume and tuning in simpler sets to control of the signal processing and deflection circuitry via master and slave devices and a digital bus in all singing, all dancing models. Unfortunately when problems occur with microcomputer chips the symptoms can be many, depending on what they control. The days when faults like no sound or field collapse were nearly always due to a simple cause in the relevant output stage are passing. Nowadays we may have to deal with new fault conditions where the microcomputer chip or a slave device is the cause. All manner of weird and wonderful faults can be introduced by microcomputer control.

Hitachi has used microcomputer control for some years now. Generally, as with other manufacturers, the systems have been very reliable. There is however a particular problem you get with the CPT1476R/1646R and CPT2196/2198/2578 ranges. When the problem occurs, the microcomputer chip tells its separate memory i.c. to open its memory. The LED display changes from the programme number to the letters " CH ". As a result the customer thinks "what's on?" and starts to press the buttons on the remote control unit in an attempt to restore the programme number display. This doesn't have much effect as far as the viewer can see, but most of the numbered buttons that have been pressed will have set or reset a particular bit in the microcomputer control system's memory. Eventually the customer gets bored with trying to get rid of the erroneous display and then or later switches the set off. When the set is next switched on the display is back to normal and the customer thinks no more about it. Until, that is, the set starts to do odd things because of the corrupted information in its memory, things like going into standby after a couple of minutes, not going into the teletext mode when asked, not tuning in, remaining permanently in the video or RGB mode, or lighting random characters or dots in the LED display.

Reprogramming

The only remedy is to reprogramme the memory, restoring its contents to their correct states. To do this you have to dismantle the remote control unit and add a programming switch between two pins of the chip. With the CPT1476R and CPT1646R pins 15 and 23 of the SAA 1250 chip IC1 should be soldered to a pushbutton switch. With the larger-screen sets the chip is an M5()467: wire pins 12 and 20 to the switch. Fig. 1 shows the switching arrangements.

When the switch is pressed the LED display should show "CH". Press the switch again and the display should change to "OP". Now press number 1 on the handset, producing " Pl " in the display. Press the standby button on the handset and the set will go into the standby mode and enable the memory's contents to be altered.

Press the store button on the set itself and hold it in. While doing this press button number 9 on the handset. The set should now come on with channel number 9. If there's a dot in the display this must be removed before programming can commence. Other channels should also be checked to see if a dot is illuminated. To remove the dot, select a channel which doesn't have an illuminated dot
and press the store button. With the store button still pressed, use the handset to select the channel number with the unwanted dot. The display should then show two flashing bars followed by the channel number which should now be dot free. If the offending dot is still present, repeat the procedure until it's extinguished.

The programming procedure depends on the model.

Small-screen Models

With the small-screen Models CPTI476R/1646R, start by pressing the programming switch three times. The display should then be as shown in Fig. 2(a). The handset numbers correspond with particular segments in the display: pressing the relevant number will light or extinguish, i.e. set or reset, a particular segment of the display and memory location in the i.c., see Fig. 2(b). Press the relevant buttons until the display is as shown in Fig. 2(c), i.e. with byte one segments 1 and 2 of the bit display are lit and segments $3,4,5,6,7$ and 8 are out.

Once this first step is correct, pressing the programming switch again should advance to byte number two as shown in Fig. 2(d): press the appropriate buttons to light segments 1 and 2 of the byte 2 display.

Press the programming switch again to advance to byte three, then press the appropriate buttons to obtain the display shown in Fig. 2(e): with byte three only segments 3 and 5 should be lit.

Once this is correct, press the programming button to

0689 larger-screen models.

Fig. 1: Adding a programming switch to the remote control handset, (a) with the small-screen models, (b) with the

(b)

Fig. 2: Programming displays for Models CPT1476/1646.

Fig. 3: Programming displays for Models CPT2196/2198/2578.
advance to the last byte, number four. With this byte the programming is correct when no bits are lit, as shown in Fig. 2(f).
When all the bytes have been set correctly press the handset's standby button to fill the memory. The set will then go to standby. Programming is now complete and the set can be turned on and tuned in.

Large-screen Models

The procedure with the large-screen Models CPT2196/2198/2578 is as follows. When the programming switch has been pressed three times the display should be as shown in Fig. 3(a). The handset numbers correspond with the same bit segments as with the small-screen models, see Fig. 2(b). Thus with byte one bits 1, 4, 5 and 7 should be lit/set.

Press the programming switch again for byte two and set
the bits as shown in Fig. 3(b). Press the programming switch once more for byte three and set the bits to obtain the display shown in Fig. 3(c). Press the programming switch the final time for byte four and set the bits as shown in Fig. 3(d).

When everything has been set correctly press the handset's standby button to fill the memory. Then turn the set on and tune in the channels.

Recommendation

Once these procedures have been carried out the set should be in good working order. It's probably advisable to check the memory's contents whenever one of these sets comes in for repair of any sort of fault, as the memory could have been corrupted without any obvious symptoms being shown - until a later date, when a callout might be needed.

Fifty Years in Radio and TV

Part 8

Harold Peters

With the closure of Pye's manufacturing activities at Lowestoft, prior to the plant being handed over to Sanyo by Philips, the beginning of 1981 saw me back in the retail side of the business - but in unique surroundings. Roy Snelling's premises, in a field six miles east of Norwich, are enormous. The business has a clientele to match, built up mostly by personal recommendation.

Signal Distribution System

Within the complex the three broadeast signals plus a locally generated crosshatch pattern were distributed to about a hundred points at a level of 1 mW . The ambition at the time was to add the PM5544 professional pattern. I soon began to see where I fitted in, and within three months the ambition was realised. We chose the vacant ch. 65, where we expected Channel Four. True vestigial sideband shaping was provided, and a K rating equal to a broadcaster's main station was achieved. When Channel Four eventually came almost all our rental sets were accurately pretuned and we had no opening day panic.

The Philips K30

I realised that for the first time in fourteen years I was going to have to face the customer directly, but I didn't expect the involvement to be as abrupt as it was. At the time, sets in the Philips range suffered from smeary pictures and sibilance on sound. Angela Rippon read the news, and her voice extended well beyond the upper limits of the system. The design of the K30 chassis originated in Eindhoven, where systems B and G were the main consideration. Travellers abroad amongst you will know how much better our system I is in comparison. Little account had been taken of the need to get the sound deemphasis correct, or to tune the vision detector for a system whose group delay characteristics didn't include any pre-distortion at the transmitting end.

Five minutes in a house with a 22 nF capacitor and a trimmer kit made a world of difference. It wasn't a question of haphazard twiddling: the amount of adjustment required had already been established on the bench, using pulse and bar modulation and a range of models. We
were also troubled by a poor decoding margin with teletext. Here again, judicious adjustment of the vision detector coil or the a.f.c. coil, which had to be phase shifted by exactly 90°, usually provided a cure.

The chips in most sets were dedicated TV types, but we came across our first microcomputer chip. It was the TMS 1000 used in the KT3/K30 teletext models. The circuit description didn't really explain why it was there. It simply acted as an interpreter, translating Eindhoven's RC5 remote control code into the one used by Mullard, Southampton when Mullard designed the teletext chip set.

Summer of '81

The summer of 1981 saw the wedding of Charles and Diana. There was the usual call for all hands to the pumps as more sets than we had the capacity to soak test on the rack went out each day. The overspill was accommodated on repair trolleys. Our policy of next-day delivery allowed us to give each set a seven-hour soak test with the PM5544 pattern before despatch. It paid off handsomely in reducing callbacks, as it does to this day, but nevertheless on the day itself we were all out on house calls.

Events like this bring out the idiot factor amongst viewers. My seven calls included two to people who had taken their new VCRs home with them still boxed - the "my brother knows about these things" approach. Two more were to people who had moved their sets into the front room for the first time in a decade, forgetting that they'd abandoned the aerial extension last time they decorated! I got them all sorted out by lunchtime and was able to rush off in the afternoon to witness a much more interesting spectacle, the start of the Tall Ships Race from Great Yarmouth. The sight of half a dozen huge squareriggers moving out to sea with their crews manning every spar of the rigging is one you never forget.

VCRs and Channel 4

By now VCRs were beginning to catch on. Those from Japan were on meagre allocation and went straight out. We'd tested all three systems in use at the time and had decided to concentrate on VHS. Maybe the Betamax
model we tried wasn't representative, but the results were not so good. We had a number of Philips 2000 system machines: though the controls were user friendly the picture quality and reliability were poor. It was the availability of prerecorded tapes that clinched the dominance of VHS of course, together with the fact that nearly all the bugs had been ironed out before the system was launched.

1982 saw the start of Channel Four, and our test pattern had to be moved to the end of the band. The first Channel Four programme was Countdown: I was impressed by the quick ability at mental arithmetic shown by a young girl called Carol Vorderman.

Into Satellite TV

For us 1982 was "the year of the satellite". Having decided that the Russian Gorizont craft would provide watchable pictures we placed an order for some American equipment from one Graham Lawson, who had just opened a small office under the name Megasat somewhere near St. Pancras station. When the kit arrived we spent happy hours in the pouring rain assembling the dish from four petals and a bag of ironmongery. While the base was hardening we went inside to do the electronics part and convert a 26 in . set to Secam. A week later we moved the dish to its mount, fitted the LNB and went home. "Tomorrow we get the picture" we said. We were wrong. When dawn broke the dish had gone. Thieves had waited till we fitted the LNB then nicked the lot. So we did in a way make history. Not as we intended by being the first in the area with satellite pictures but by being the first victims of a satellite TV robbery.

When a replacement dish arrived a few weeks later we made our first attempt at receiving satellite TV pictures. Megasat had obligingly pretuned the receiver to the Gorizont channels, and we'd worked out roughly where the satellite was. Within five minutes we had a picture of sorts. All that remained for us to do was to optimise it.

This was easier said than done. Articles by Steve Birkill and others had primed us with information about polar mounts, circular polarisation, PTFE wedges and focal points. What they didn't tell us was that there is dish adjustment weather. It's either pouring down, blowing a hurricane, or the sun is right behind the wanted satellite, causing so much dazzle from the white dish that you have to wear sunglasses. Other hazards were passing military aircraft, which can focus their blast on you if you're by the LNB, and the body's presence which has an effect on the dish adjustments. Thank goodness that Gorizont operates in the lower-frequency C band, which is much less critical than Ku band when you are dealing with a dish six foot or more wide. By the time that Ku band TV came we were ready for it. One more snag we found out about the hard way was that Gorizont had developed a wobble. This is seen from Earth as a vertical figure of eight movement: position the dish during the morning and by teatime the pictures were snowy. Happily the interest the satellite TV pictures created made it all worthwhile.

As Eutelsat and Intelsat started to provide regular programming we received more and more pictures. By the time that I retired Roy Snelling had built for himself a "Vidiwall", with nearly thirty different pictures on display. With tongue in cheek we placed our Gorizont monitor next to the one for the American CNN service. Our original Cband receiver still provides a good Russian p cture after nearly six years of continuous use. It has outlived two Secam monitors and three Gorizont satellites!

Visits to the annual Cable and Satellite TV exhibition showed that its purpose is to make money rather than to entertain. No one asked viewers what they wanted from the new TV services, or what they were prepared to pay for them. Maybe satellite TV would have got off to a less shaky start if the cable TV operators had done their homework better. Perhaps then we wouldn't have seen the rise and fall of so many satellite TV channels, such as TEN, Mirrorvision, Europe, Music Box etc. Even Superchannel couldn't make the grade, despite being backed by the best from the BBC and the ITV networks. Like Laservision, they just didn't catch on. By my retirement time in 1988 nothing in space had achieved profitability.

Video Developments

Video did catch on however, initially as a means of watching prerecorded tapes, then later as a means of programme time shifting. It seems that the average viewer prefers to be able to control the timing of the programme he wants to watch rather than to receive extra programmes from space. This might of course change as improvements in programming are introduced.

During its first seven years, VHS progress towards good basic machines resulted in pictures as acceptable as the original transmissions. It looked as though a lot of attention had been paid to group delay and other important parameters, because in the E-E mode, i.e. when monitoring the broadeast signal translated to ch. 36 , it was still possible to see error-free teletext pages on the TV set used as a monitor.

HQ circuitry, often called Dolby for pictures, meant anything from tweaking the white clip to a virtual redesign. Enhancement would perhaps have been a better description, and I feel that it ought to have been made switchable. Very few HQ machines performed well with the above teletext test, so there must have been a group delay impairment. In fact when I looked for a suitable machine with which to create standard test tapes, or use for copying other cassettes, I had some difficulty and eventually opted for a little-used pre-HQ single-speed model. Copying from one HQ machine to another produced a virtually unwatchable result.

Setting the clock, programming the timer and tuning in the stations was a fairly routine business until the arrival of the microcomputer chip. Now no two models are alike, and this applies with TV sets as well. As a result it has become almost impossible to carry out servicing in the home.

Changing Scene

Perhaps I'm getting too detailed, but that's how it is with TV. Look up from your bench to see what's going on in the world outside and you get worried. Japan has moved to Wales, France has captured Ferguson and Philips’ efforts to increase its share of the US market have left it in trouble. At last British Rail has caught up with the recordbreaking Mallard series engines I mentioned in Part 1, but without those line-side signal boxes that enabled trains in trouble to be spotted as they passed. I found all this rather depressing, and the prospect for the Nineties, with MAC, conditional access, the compact video disc and a fifth terrestrial channel to beat with all those VCRs, left me fecling decidedly tired. Fortunately retirement was not far away, and Roy let me phase myself out by working on a part-time basis. With any luck, an interesting and fulfilling working life in TV was about to have a happy ending.

Video Equivalents

As a follow up to last month's Granada TV/VCR equivalents lists, we are this month listing mainly various machines that are JVC clones. Table 1 provides a Ferguson, Thorn Rentals, JVC VCR equivalents listing.

Portable tuner equivalents are as follows:
Ferguson 3V03 $=$ JVC TU41
Ferguson 3V25 $=$ JVC TU22
Ferguson 3V28 $=$ JVC TU24
Ferguson 3V47 $=$ JVC TU510
ivalents are as follows:
Camera equivalents are as follows:
Ferguson 3V04 = JVC GS1000
Ferguson 3V06 = JVC CVG71P
Ferguson 3V20 $=\mathrm{JVC}$ GX88E
Ferguson 3V34 = JVC GZS3E
Camcorder equivalents are as follows:
Ferguson 3C01 $=\mathrm{JVC}$ GZ-S1
Ferguson 3C03 $=$ JVC GR-C7
Ferguson 3V41 = JVC GR-Cl
Ferguson 3V50 $=$ JVC GR-C2
Ferguson FC05 $=$ JVC GR-45
Ferguson FC06 $=$ JVC GR-C9
There are various ITT/JVC clones as follows:
ITT P4833 = JVC HR2200
ITT TR3913 $=$ JVC HR7200
ITT TR3943 $=$ JVC HR7650
ITT VR3605 $=$ JVC HR-DI10
ITT VR3905 = JVC HR-D120
ITT VR3906 $=$ JVC HR-D140
ITT VR3975 = JVC HR-D225
ITT VR3984 = JVC HR7655
The Decca/Tatung 8300 is the HR7200 and the 8400 the HR-D120.

The Toshiba V55/V57 are JVC HR-D110/D120 clones while the V65/V66 equate with the HR-D140/D150.

GEC VCRs are Hitachi clones, as follows:
GEC V4000 $=$ Hitachi VT8000
GEC V4001 = Hitachi VT9300
GEC V4002 $=$ Hitachi VT950)
GEC V4004 $=$ Hitachi VT33
GEC V4005 = Hitachi VT63
GEC V4100 = Hitachi VT11
Popular Salora models have been Mitsubishi or Sanyo clones:

Salora SV6500 $=$ Sanyo VHR1100
Salora SV6600 = Sanyo VHR1300
Salora SV8200 $=$ Mitsubishi HS303
Salora SV8400 $=$ Mitsubishi HS306
Salora SV8500 $=$ Mitsubishi HS304
Salora SV8800 $=$ Mitsubishi HS-B20
Here are one or two B and O equivalents: B and O VHS63 $=$ Philips VR6462
B and O VHS $80=$ Hitachi VT11/17/19 B and $\mathrm{O} \mathrm{VHS} 90=$ Hitachi VT64

Machines that use the Philips" "Charlie" mechanism include the B and O VHS82 and the Pioneer VR505 and VR707.

Table 1: Ferguson, Thorn, JVC VCR Equivalents.
Ferguson

Ferguson	Thorn	$J V C$
3292	8900	HR3300
3V00	8902	HR3330
3V01	-	HR4100
3V16	8904	HR3660
3V22	8922	HR3320
3V23	8924	HR7700
3V24	-	HR2200
3V29	-	HR7200
3V30	8930	HR7300
-	8940	HR7350
3V31	8941	HR7650
3V32	8942	HR7655
3 V 35	8944	HR-D120
3V36	8943	HR-D225
3V38	-	HR-D110
3V39	-	HR-D110
3V42	8945	HR-D455
3V43	-	HR-D725
3 V 44	-	HR-D140
3 V 45	8947	HR-D150
3 V 48	-	HR-D565
3V49	-	HR-D110
3V52	-	HR-S100
3V53	-	HR-D755
3 V 54	-	R73AF
3 V 55	8948	R73AF
3V58	-	HR-D370
3V59	-	HR-D180
FV11R	-	HR-D170
FV12L	SFV12L	HR-D230
FV13H	-	HR-D430
FV14T	SFV14T	HR-D530

[^0]
ECONOMIC DEVICES PO BOX 15，WOLVERHAMPTON，WV2 4AZ

\begin{tabular}{|c|}
\hline 1580 H \& 3.72 \& 2581583 \& 0.34 \& AN2140 \& 2.40 \& BC207 \& 0.19 \& 80x54 \({ }^{\text {a }}\) \& 0.33 \& Bu126 \& 1.10 \& H41196 \& ． 43 \& MC1330 \& 1.98 \& SAS500T \& \& STA1096 \& \& \& \& \& \\
\hline 1585 R \& 3.72 \& \(2 \mathrm{SC16}\) \& 3.89 \& AN235 \& 4.65 \& \({ }^{\text {BC2 } 2128}\) \& 0.26 \& 80×633 \& 2.09 \& вигоя \& 1.58 \& Ha13001 \& 1.63 \& MC135 \& 1.56 \& SAS5 \& 5.42 \& Stra409 \& 12.65 \& T¢a990 \& \({ }_{1} 1.98\) \& Toasat \& 5．14 \\
\hline 17052 \& 4.50 \& \({ }^{25 C 16}\) \& 1.98 \& AN236 \& 3.33 \& \({ }^{\text {BCO23i }}\) \& 0.10 \& 80×63 \({ }^{\text {a }}\) \& 1.96 \& Bu205 \& 1.15 \& hal3 \& 2.26 \& MC1351P \& 1.25 \& SAS570 \& 1.95 \& STR440 \& 6.18 \& TCA270S \& \({ }^{3} 47\) \& TOA4500 \& ．75 \\
\hline 1705 \& 5.61 \& \({ }^{25 C 1}\) \& 0.21 \& AN24 \& 0.99 \& \({ }_{\text {BCO}}\) \& 0.10 \& во才20 \& 1.98 \& \& 1.27 \& Ha13402 \& 7.06 \& MC133 \& 1.40 \& SASS \& 2.85 \& STRA5 \& 5.77 \& tcarosa \& 1.05 \& TDA4600－2 \& 1.92 \\
\hline \& 9.30 \& \({ }_{3}^{2 S C}\) \& 1.75 \& AN241 \& 1.71 \& \({ }_{\text {BC237 }}\) \& 0.10 \& \({ }^{80 Y 81}\) \& 1.18 \& 8u207 \& 1.65 \& HA13403 \& 11.86 \& MC1357P \& 2.15 \& SAS6EED \& 1.33 \& STR454 \& 4.96 \& TCaz80 \& 2.39 \& T0as \& 5．99 \\
\hline 170 \& 3.45 \& \({ }^{25 C 1815}\) \& 0.20 \& AN245 \& 5.48 \& BC2 \& \& \({ }_{\text {BF115 }}\) \& 0.39 \& \& 1.12 \& HA13 \& \({ }^{6.888}\) \& MC135 \& 1.48 \& \& 2.97 \& 13A \& 3.56 \& TCAA20A \& 19 \& toas \& 7.75 \\
\hline \& 2.50 \& \({ }_{2} \mathrm{sc} 18\) \& \({ }^{0.69}\) \& AN253 \& 1.80 \& всС2388 \& 0.08 \& \({ }^{\text {bF17 }}\) \& 0.66 \& Buzos \& 2.35 \& Ha11 \& 12.25 \& NC14493 \& 3.99 \& SAS6 \& 1.33 \& STR \& 6.16 \& Tca4 \& 1.89 \& TDAS5 \& 14.20 \\
\hline 173 \& 1.58 \& \& \({ }_{4.5}{ }_{4}\) \& AN260 \& 3.85 \& \& 0.25 \& \({ }^{\text {Bran }} 18\) \& 0.67 \& \({ }^{\text {Bu }}\) \& \& \& 2.75 \& \& 7.10 \& \& \({ }^{3} 96\) \& T5016 \& 1.09 \& tcasa0 \& 2.25 \& \& 2.75 \\
\hline 1 N \& 0.04 \& \({ }_{25} 25\) \& \({ }_{3}^{4.595}\) \& \& 7.92 \& \& 0.31 \& \({ }^{88121}\) \& 0.25 \& \({ }^{\text {BU2280 }}\) \& 2.06 \& \& 2.45 \& MC14 \& 1．10 \& \& 2.21 \& \& 0.40 \& TCA650 \& 3.05 \& \& \({ }^{6.35}\) \\
\hline \& 0.06 \& \({ }_{2 S 11921}\) \& \({ }_{1}\) \& AN \& \({ }_{2}^{1.65}\) \& \& \({ }^{0.350}\) \& （127 \& \({ }_{0}^{0.13}\) \& \({ }_{\text {ever }}^{\text {Bu29 }}\) \& \(\stackrel{1.75}{2.55}\) \& Hal \& 1．985 \& MC1458988CP \& 5．18 \& \({ }_{\text {scara }}\) \& \({ }_{1}^{1.61}\) \& \({ }_{1}^{180363}\) \& 211 \& \& \({ }_{2}^{2.50}\) \& \& 3．24 \\
\hline \& 0.05 \& 25 C 1923 \& 0.30 \& AN \& 3.99 \& \& 0.34 \& \({ }_{\text {BF137 }}\) \& 0.29 \& 日U326A \& 0.99 \& Ha \& 1.59 \& NC1712 \& \({ }_{3.88}^{2.88}\) \& SOA \& \({ }_{1710}\) \& T6034V \& 0.97 \& TTA750 \& \({ }_{2} 2.25\) \& T0as503 \& \({ }_{1.56}\) \\
\hline \& 0.05 \& \& 2.35 \& \& 8.88 \& \& 0.33 \& \& 0.55 \& ви400 \& 1.24 \& ния 138 \& 1.87 \& \& 1.40 \& SOA2 \& 20.50 \& T60 \& 1.20 \& тCASO \& 1.60 \& TOAS513 \& \({ }_{3.15}\) \\
\hline \& 0.08 \& 2 2C1942 \& 2.17 \& AN315 \& 2.46 \& \& ． 0.4 \& 154 \& 0.26 \& Bu40 \& 1.24 \& \& 2.05 \& \& 19.50 \& \& 1.77 \& T6049 \& 1.45 \& \& 2.38 \& \& 1.22 \\
\hline 1 N, \& 0.06 \& C1959 \& 0.20 \& AN316 \& 4.95 \& \& \& 157 \& 0.33 \& Buat \& 0.5 \& HA138 \& 2.69 \& \& 3.49 \& \& 9.25 \& \& ． 87 \& тCAB9 \& 5.44 \& \& 7.24 \\
\hline 1 ind \& 0.05 \& \({ }^{25 C 1953}\) \& \({ }^{1.93}\) \& \({ }_{\text {AN320 }}^{\text {AN318 }}\) \& \({ }_{\substack{7.16 \\ 5.4 \\ \hline 18}}\) \& \& 0.17 \& \({ }_{\text {BFF } 59}\) \& \({ }_{0.18}^{0.18}\) \& \({ }_{\text {cle }}^{\text {BU4426A }}\) \& 5.29
1.67 \& HAA139 \& \({ }_{3.19}^{2.22}\) \& MCR10 \& \({ }_{1.25}^{1.56}\) \& \({ }_{\text {S6629 }}^{\text {S6613 }}\) \& crem \& \({ }_{\text {T }}^{\text {T60558 }}\) \& 4.95 \& TCAS \& \({ }_{1}^{2.04}\) \& TEA1002 \& －93 \\
\hline 1 NS 5 \& 0.11 \& \({ }^{25 C 1952}\) \& 1.93 \& AN321 \& 2.25 \& \& 0.09 \& 160 \& 0.31 \& Bu500 \& 1.53 \& 1397 \& 2.75 \& \& 0.75 \& 566 \& 9.00 \& T909 \& 1.25 \& TCA \& 0． 82 \& TEA1014 \& \\
\hline 1NS402 \& 0.13 \& C1969 \& 1.79 \& AN322 \& ． 62 \& \& 0.11 \& 167 \& 0.38 \& Bu508A \& 1.50 \& нк1398 \& 2.55 \& ME6002 \& 0.26 \& \& 27.87 \& \& ． 25 \& TCAACOE \& 2.93 \& SP \& \({ }_{4}^{4.93}\) \\
\hline \& 0． 18 \& 9983 \& 1.38 \& An337 \& \({ }^{5.37}\) \& \& 0.09 \& \& 0.35 \& \({ }^{\text {Bu536 }}\) \& 1.53 \& \& 2.07 \& EE6 \& 0.28 \& \& 25 \& \& ． 42 \& 起 \& \({ }^{3} .95\) \& teazolsa \& 2.16 \\
\hline 1 N15 \& 0.10 \& （1985 \& 0． 0.5 \& \({ }^{\text {AN3 }} 300\) \& 1.53 \& \({ }_{8 C 538}\) \& 0.17 \& \& 0.55 \& B 1 \& 154 \& \& 0.85 \& Hes \& \({ }^{0.45}\) \& \& 0.73 \& \& 25 \& To3Fer \& \& \& 0.67 \\
\hline 1 109 \& \({ }_{0}^{0.04}\) \& \({ }^{25 c} 2029\) \& 1.15 \& \({ }_{\text {and }}^{\text {Ans35 }}\) \& 1.50 \& \& 0.69 \& 179 \& \({ }_{0.36}\) \& \({ }_{\text {Bligab }}^{\text {Bl7 }}\) \& \({ }_{0}^{2.98}\) \& \({ }_{\text {H }}\) \& 2．99 \& MeMast \& \({ }_{2.50}^{2.06}\) \& SKEAFTO6 \& \({ }^{0.30}\) \& \& 1.00 \& \({ }_{\text {T }}\) \& \({ }_{5}^{6.37}\) \& गica4 \& 0．75 \\
\hline 10， \& 0.18 \& \({ }^{25 C 20288}\) \& 2.11 \& An370 \& 3.95 \& \& \({ }_{0}^{0.36}\) \& Bfiso \& 0.36 \& \(8 \mathrm{Bla07}\) \& 0.55 \& H038750453 \& 5.77 \& M2501 \& 3.30 \& SKEGF206 \& 0.85 \& \(\mathrm{tapa34V}^{\text {a }}\) \& 1.34 \& TOA1001B \& 2.31 \& TLC \& 0.77 \\
\hline 154 \& 0.10 \& \({ }^{2} 5282063\) \& 0.99 \& ANS \& 3.43 \& \({ }_{8 C 640}\) \& 0.42 \& 8 \& 0.32 \& Bu826A \& 1.95 \& 38750A－7 \& 8.53 \& 000 \& \& SKE \& 0.99 \& 190 \& 49 \& \& 1.47 \& T1P \& 0.55 \\
\hline \& 0.10 \& \& \& \& 4.50 \& \& \& 82 \& 0.34 \& \({ }^{\text {Bumb }}\) \& 0.68 \& \& 14.12 \& \& 0． 84 \& \& 1.36 \& Ton \& 8．07 \& TOA100 \& 2.02 \& \& ． 34 \\
\hline \({ }_{2}^{2} 2 \times 305\) \& 0.25 \& \({ }_{2 S 2} 2 \times 285\) \& 1.65 \& \({ }^{\text {Assl32 }}\) \& 5.08 \& \& \& \& dis \& Bux \& 0.59 \& Ho46019 \& 14． 5 \& \& P15 \& Sket \& 2.54 \& T90 \& 849 \& \& 7．00 \& \& 0.49 \\
\hline \& 0.99 \& 2522091 \& 1.30 \& ANS525 \& 4.40 \& \({ }^{48}\) \& 0.32 \& \({ }_{85195}\) \& 0.39 \& 8Yı3 \& \({ }_{0} 0.13\) \& HSH1002 \& \({ }_{9.50}^{14.00}\) \& Mesto \& 0.49 \& SkL \& \({ }_{314}^{2.15}\) \& \({ }_{\text {Tonct }}\) \& \({ }_{2}\) \& \& 1.14 \& \({ }_{\text {IPP12t }}\) \& \({ }_{0}^{0.95}\) \\
\hline \& 0.75 \& \({ }^{25 C}\) \& 1.30 \& An5612 \& 2.20 \& \({ }^{\text {BC479 }}\) \& 0.41 \& \({ }_{81} 194\) \& 0.14 \& 8Y127 \& 0.99 \& HM62＋1 \& 14.55 \& ML231 \& 0.99 \& SL1430T \& 2.31 \& T9665V \& 3.58 \& TAA101 \& 1.10 \& T1P126 \& 0.38 \\
\hline \(2{ }^{2} 3\) \& 10 \& \({ }_{2}^{25 C 2}\) \& 0.87 \& An56 \& 4.20 \& \({ }_{\text {BC546 }}\) \& \& 195 \& 0.14 \& \({ }^{\text {BYY }} 13\) \& 0.15 \& \& \({ }^{12.30}\) \& M 12338 \& 3.01 \& \& 3.69 \& tapa \& 4.80 \& \& 1.36 \& TIP132 \& 0.75 \\
\hline \(2{ }_{2} 2\) \& ． 110 \& \& 8． 12 \& \& \({ }^{3} .95\) \& \& 0.10 \& \({ }^{\text {sfr } 196}\) \& ． 24 \& \& 0.54 \& \& 7.20 \& \& 1.95 \& \& 3.44 \& \& \& \& 2.45 \& \({ }_{\text {IIP }}^{137}\) \& 0.96 \\
\hline 2 N \& 0.15 \& 28 c 2336 \& 1.69 \& AN6 \& 1.75 \& \({ }^{B C}\) \& 0.28 \& \({ }_{8 F 198}\) \& 0.17 \& 8Y179 \& 0.95 \& \({ }_{\text {H47103 }}\) \& 2.97 \& M \& \({ }_{3} 5.65\) \& S471 \& 4.45 \& Ta705 \& 25 \& \& 2．42 \& TrP995 \& － 0.84 \\
\hline \& 0.14 \& \(25 C 2278\) \& 1.14 \& AN6 \& 4.40 \& \& 0.19 \& 86199 \& 0.17 \& BY182 \& 1.05 \& \& 4.00 \& M1326 \& 3.45 \& SL480 \& 7.24 \& tazo \& 0.71 \& toa \& 2.64 \& \({ }_{11} \mathrm{P}_{298}\) \& 0.46 \\
\hline \& 0.16 \& \& \({ }^{0.87}\) \& An6310 \& 4.54 \& B6556 \& 0.13 \& 8 F 200 \& 0.37 \& BY＇187 \& 0.79 \& 2012 \& 3.22 \& MM5314 \& 8.99 \& SL490 \& 2.37 \& tatoc \& 1.27 \& TDA \& 2.68 \& 11P298 \& 0.63 \\
\hline \({ }_{2}^{2} \times 13\) \& 0.11 \& \({ }^{25 c 23355}\) \& 7.00 \& An6340 \& 5.62 \& \& \& \({ }^{85218}\) \& 0.36 \& \({ }^{\text {Brr }}\) \& 1.76 \& H／aze \& \({ }^{11.99}\) \& M153316 \& \({ }_{3} 3.51\) \& \& 8.32 \& \& 13 \& \& \& ITP29C \& 0．33 \\
\hline \({ }_{2 \times 3}^{2 \times 3}\) \& \& \({ }_{2 S C 2556}^{2053}\) \& \({ }_{4}^{0} 485\) \& AN63 \& 2．22 \& \({ }^{\text {BC559 }}\) \& 0.10 \& 8229 \& 0.17 \& 88927 \& 1.62
0.17
0 \& H1420 \& 2.75 \& \& 2．10 \& \& \({ }_{0}^{9} 80\) \& \& \({ }_{2}^{1.68}\) \& \& 2．19 \& \& 75 \\
\hline 2 N3 \& 1.61 \& \({ }^{25 C 25570}\) \& 0.46 \& AN6 631 \& 1.95 \& \({ }^{3} \mathrm{C}\) \& 0.20 \& \(8 \mathrm{Br24}\) \& 0.19 \& \({ }_{8 \times 208}\) \& ． 1 \& KA2101 \& 1.00 \& MMS5377AN \& 1．20 \& SN16966N \& 10.25 \& TA707 \& \({ }_{1} 1.98\) \& toato \& 0.80 \& \& \({ }_{0.41}^{0.66}\) \\
\hline \(2{ }^{2} 38\) \& 0.40 \& \({ }^{2 S 5 C 257}\) \& 1.34 \& AN655 \& 0.69 \& \& 0.24 \& \& 0.17 \& 827210.4 \& 0.18 \& Kc5s1C \& 7.92 \& MMS \& 6.93 \& SN29 \& 6.04 \& IA707 \& 7.50 \& TOA10 \& 2.60 \& \({ }_{11} 1306\) \& 40 \\
\hline \({ }_{2}^{2 N 38}\) \& 1.17
0.50 \& \({ }_{25828871}^{258576}\) \& \({ }^{6.91}\) \& ANE56510 \& 0．68 \& \({ }_{\text {BCb }}\) \& 0.20 \& \& 0．50 \& \({ }_{8}^{98210}\) \& \({ }_{0}^{0.35}\) \& \& \({ }_{1}^{4.85}\) \& \& \({ }_{\substack{13.20}}^{13.65}\) \& \& \(\underset{3}{7.66}\) \& TA7093 \& \({ }_{3}^{3.10}\) \& \& 4.51
0.95 \& \({ }_{\text {TiP }}\) \& － 0.34 \\
\hline 2 Wa \& 1.33 \& \({ }^{2585888 A}\) \& 1.85 \& ANT11 \& 1.14 \& \({ }^{\text {Bra39 }}\) \& \({ }_{0} 0.24\) \& 872464 \& 2.67 \& \(8 \times 23\) \& 1.68 \& Lal20 \& 0.75 \& MN1 \& 14.04 \& SN227 \& 6.04 \& ta̧0 \& 3.99 \& TDA1 190 \& 127 \& \＃1P31С \& 0.39 \\
\hline 2 N \& 2.68 \& \({ }^{25 C 3153}\) \& 3.20 \& AN3115 \& 2.52 \& \& 0.55 \& \({ }^{35255}\) \& 0.20 \& \& 4.95 \& La：270 \& 1.56 \& MP1 \& 5.07 \& \& 11.95 \& ta＞1 \& 1.61 \& \& 2.46 \& T1P32 \({ }^{\text {a }}\) \& \({ }^{35}\) \\
\hline \({ }_{2 N 4995}\) \& 1.68 \& \({ }_{25}\) \& 1.45 \& （1745 \& － \& \({ }^{80115}\) \& － 0.36 \& \({ }^{182565}\) \& 0.15 \& \({ }^{8 \times 226}\) \& 0.15 \& Latz30 \& 1.18 \& MPP724 \& 4.00 \& SN29723aN \& \({ }^{14.46}\) \& tal109 \& 3.71 \& ToA1200 \& 1.51 \& \({ }_{\text {T1P323 }}\) \& 0．46 \\
\hline 2 N 5293 \& 0.50 \& \({ }^{25 c 333}\) \& \({ }^{1.33}\) \& an＞151 \& 2.37 \& \({ }^{80124}\) \& 1.31 \& \({ }_{\text {Bf2 } 288}\) \& 0.33 \& 8r228 \& 0.60 \& Lat357N \& 3.06 \& mpres6e \& 0.50 \& SN29 \& 4.55 \& 1771228 \& 0.87 \& TDA12 \& 5.52 \& T1P3 \& 0.63 \\
\hline \& 0.50 \& 253388 \& 0.45 \& an7156 \& 2.70 \& \& \& 259 \& 0．30 \& Br2ze6 \& 1.28 \& \({ }^{\text {a } 1333}\) \& 1.05 \& MPS65 \& 0.48 \& \& 4.17 \& TA7724 \& 2.34 \& toat \& 3.76 \& tip 33 A \& 0.89 \\
\hline \({ }_{2}{ }^{2} \times 15\) \& 0.55
0.50 \& \({ }_{2 S 4} 5\) \& \({ }_{0}^{0.60}\) \& \& \({ }_{0.80}^{2.67}\) \& \({ }^{80123}\) \& 0.53 \& \& \({ }_{0}^{0.57}\) \& \& O． 0.90 \& － \& \({ }_{0}^{3.02}\) \& \({ }_{\text {MPSAAS }}\) \& \({ }_{0}^{0.22}\) \& SN297728N \& 5.75
5.59 \& \& \({ }_{1}^{1.97}\) \& TDAAI \& \({ }^{6.93}\) \& \({ }_{\text {ITP33 }}\) \& 0．95 \\
\hline \(2 \times 5\) \& 0.61 \& \({ }^{2544588}\) \& 0.19 \& AN7223 \& 4.99 \& \({ }_{80136}^{8015}\) \& \({ }_{0} .36\) \& \({ }^{\text {BFF271 }}\) \& 0.34 \& 8rzes－6 \& 1.23 \& \({ }^{\text {La }} 1385\) \& 1.53 \& MPSAS6 \& 0.11 \& SN22773 \& 2.58 \& \& 1.89 \& TDA4220 \& 1.52 \& T1P41A \& 0.29 \\
\hline \({ }^{2 N 61}\) \& 1.58 \& \({ }_{2} 2\) Sc495 \& 0.92 \& AU107 \& 7.72 \& \& 0.41 \& 8F273 \& 0.20 \& 8Y298 \& 0.20 \& \({ }^{\text {LA1387 }}\) \& 3.18 \& MPSAP2 \& 0.15 \& SN297 \& 1.67 \& TA7737P \& 1.21 \& TOA1472 \& 2.95 \& \({ }_{\text {IPP }}\) \& 0.31 \\
\hline \& \({ }^{0.95}\) \& \& \({ }^{1.85}\) \& Au110 \& 5.69 \& \& 0.2 \& \({ }^{\text {P27274 }}\) \& 0.36 \& 8Y299 \& 0.20 \& La \& 1.43 \& MPSLOS \& 0.86 \& SN297 \& 5.56 \& 1A77468 \& 5.18 \& TDA14 \& 4.25 \& \& 0.39 \\
\hline 2 N 6 \& 1.20 \& \({ }_{2 S \mathrm{C}}^{2}\) \& 0.54 \& \({ }_{\text {AY }}\) \& 1．880 \& \({ }_{80140}\) \& － 2.23 \& \({ }^{\text {Bra } 24}\) \& \({ }_{0}^{0.33}\) \& 8Y409 \& ． 19 \& － 133391 \& \({ }_{5}^{1.52}\) \& MPSUL5 \& \({ }_{1}^{2.85}\) \& SNTH0N \& \({ }_{0}^{0.61}\) \& \& 3．28 \& \({ }_{\text {Tidal }}\) \& \({ }_{3}^{3.05}\) \& \({ }_{\text {IPP428 }}\) \& 0．29 \\
\hline \& 0.65 \& 250 \& 1.15 \& 8A52 \& \({ }_{8,94}\) \& 801 \& \& 8F337 \& 0.31 \& \({ }_{8 \times 48}\) \& 1.40 \& LAA032P \& 2.35 \& MPSU6 \& 2.21 \& SNiforn \& 0.65 \& TA7761P \& 16.54 \& TPA1512 \& 2.57 \& I1P42C \& 0.50 \\
\hline 25A1 \& \& \& 1.46 \& \({ }^{813} 10\) \& 0.14 \& \({ }^{80} 180\) \& 0 \& 8r338 \& 0.34 \& 87713 \& 1.12 \& La4100 \& 1.25 \& MR818 \& 0.33 \& SNTzacan \& 0.52 \& TAP7162P \& 3.61 \& TDA1515 \& 2.55 \& t1p47 \& 0.65 \\
\hline \& 0.99 \& \({ }_{250}^{250}\) \& 1.54 \& \({ }^{\text {BAA }}\) A130 \& \({ }^{1} .50\) \& 80160 \& \& \& 0.45 \& \({ }_{\text {Bra }}^{8}\) \& \& A40 \& 1.35 \& MR855 \& 0.46 \& SN74iON \& \({ }^{0.27}\) \& TA769 \& 7.80 \& ToA152 \& 1.95 \& \({ }^{\text {n543 }}\) \& 34 \\
\hline \({ }_{25}\) \& 2.44 \& 255669 \& 4.40 \& \({ }_{\text {BA1322 }}\) \& \({ }_{3}^{1} .95\) \& \({ }^{801163}\) \& 0.78 \& \({ }_{\text {BFF63 }}\) \& 0.50 \& 8 8x \& 0.85 \& La4112 \& \({ }_{1.35}\) \& M M F 4 \& 24.77 \& \({ }_{5 N}\) \& 2.65 \& TA177 \& 1.75 \& TDAI \& \({ }_{2} 2.47\) \& \& \(\stackrel{\text { fi．}}{1.85}\) \\
\hline \({ }^{25 A 1006}\) \& ． 50 \& \({ }^{256688}\) \& \({ }^{1.88}\) \& \& 21 \& 80175 \& 0.28 \& \({ }^{85371}\) \& 0.50 \& 9x＞7 \& 2．86 \& a \& 2.25 \& MSMS \& 12.09 \& SNA4151AN \& 1.51 \& taris \& 4.80 \& тDA170 \& \({ }_{2} 2.88\) \& TLa94cN \& 8.7 \\
\hline \({ }_{2 S 4101}^{2}\) \& \({ }_{0}^{0.90}\) \& \& \({ }_{0}^{10.63}\) \& \({ }_{\text {BAA } 188}^{\text {BA14 }}\) \& 0.11 \& B0181 \& \& Bf419 \& \({ }_{0}^{0.65}\) \& zz733 \& \({ }_{1}^{1.65}\) \& \& \({ }^{3} 70\) \& NE542 \& 2，75 \& SNTA1541 \& \& tazzos \& 1.95 \& \({ }_{\text {TOAP }}\) TDA \& \begin{tabular}{l}
1.27 \\
1.55 \\
\hline
\end{tabular} \& \& \({ }_{\text {a }}^{0.505}\) \\
\hline A102 \& 0.36 \& 256710 \& 1.15 \& Bal154 \& 0.40 \& 80 \& \& B4422 \& 0.15 \& \& 1.95 \& La4192 \& 1.23 \& Ne555 \& 0.35 \& SNT7490 \& 1.35 \& ta72 \& 1.58 \& TA1 \& 3.89 \& TMS \& 6.50 \\
\hline \& 0.39 \& \({ }^{25 C 717}\) \& ． 1.25 \& \({ }^{\text {BAA } 55}\) \& 0.12 \& \({ }_{80184}{ }^{80188}\) \& \& \({ }_{8}^{818423}\) \& \({ }_{\text {de }}^{0.33}\) \& \& 0．76 \& Lat220 \& 1.25 \& \({ }^{\text {Ne5s56 }}\) \& \({ }^{0.65}\) \& SNT4201 \& 0.34 \& TA72298 \& \({ }_{2}^{2.15}\) \& TPA 19500 \& \({ }^{2} .56\) \& TVS1025N \& 3．61 \\
\hline \({ }_{2} 52476\) \& 4.95 \& 2 rc \& \({ }^{1.20}\) \& \({ }_{\text {BAP }}\) \& 0.09 \& \({ }_{\text {80187 }}^{80189}\) \& \& \({ }_{\text {BF450 }}^{885}\) \& 0.35 \& \({ }_{\text {casab }}\) \& 1.24 \& La4622 \& 1.28 \& OALO2 \& 0.11 \& SNTIAON \& 0.27 \& TAR214P \& \({ }_{3.63}\) \& TDA2006 \& 1.05 \& TMS3748n \& \({ }^{10.95}\) \\
\hline \({ }_{2}^{25 C 11}\) \& 1.25 \& \({ }^{255783}\) \& \({ }^{3} .985\) \& 3A1 \& \& \({ }_{80190} 818\) \& \& \({ }^{\text {BF4 451 }}\) \& 0.11 \& Ca3300Aa \& \({ }^{3.25}\) \& La4430 \& 1.47 \& 0a47 \& 0.16 \& SN／742 \& 0.74 \& IAP21 \& 2.58 \& roazos \& 1.37 \& TMS3755 \& 9.66 \\
\hline \({ }_{\text {2SCOM }}\) \& \begin{tabular}{l}
1.25 \\
1.35 \\
\hline
\end{tabular} \& 25 C \& 0.28 \& ba302 \& \& \({ }^{802}\) \& \& \({ }_{\substack{\text { Brass }}}^{\text {Bf47 }}\) \& \({ }_{0}^{0.41}\) \& \({ }_{\text {case }}\) \& \({ }_{3}^{1.12}\) \& \(\stackrel{L}{\text { Latase }}\) \& \({ }_{1}^{1.99}\) \& OA91 \& O． 0.14 \& SN747 \& 1．54 \& Taparila \& 1．45 \& Toazooz \& 0.90 \& TMSA034 \& 1．00 \\
\hline \& 3 15 \& \({ }^{2} \mathrm{C}\) \& S 5 \& B43311 \& 0.65 \& \({ }^{802023}\) \& \& B8459 \& 0.66 \& coadot \& \& La460 \& 1.50 \& Oc28 \& 9.07 \& SN／A90AN \& 0.75 \& tarz \& 4.22 \& toaz \& 1.05 \& \& \({ }_{1.76}\) \\
\hline \({ }_{2}^{25}\) \& 5.74 \& \({ }^{258876}\) \& 0.96 \& \({ }^{\text {Ba3312 }}\) \& \({ }^{1.45}\) \& \({ }^{80204}\) \& \& BF450 \& 1.24 \& CDA002 \& 0.27 \& La4661 \& 1.37 \& \(0 C 35\) \& 1.96 \& SN744288N \& 1.45 \& TArz299 \& 4.66 \& TOA2140 \& 5.15 \& TV60108 \& 2.97 \\
\hline 25 A \& 0.40 \& \& \({ }_{1}^{1.59}\) \& \({ }_{\substack{\text { Ba33 } \\ \text { Ba317 }}}^{\text {a }}\) \& \& \({ }_{\substack{80207 \\ 80222}}\) \& \& \& \& \& \& \({ }^{\text {asil12 }}\) \& \({ }_{1}^{1.189}\) \& OC36 \& \({ }_{1} 7.55\) \& SNTG60 \& 1．65 \& Ta72308 \& 1.35 \& TRA22150 \& 4.48 \& \& \\
\hline \& 1.32 \& 256940 \& 4.68 \& BA3718 \& 0.09 \& \({ }_{80225}\) \& \& B6F71 \& 0.25 \& CD04012 \& 0.24 \& La702 \& 11.197 \& OC45 \& \({ }_{0} .19\) \& SN／8023N \& 2.97 \& TA7240 \& 2.20 \& TDA2 \& 4.01 \& \({ }_{4}\) \& \({ }_{1.63}^{2.30}\) \\
\hline \({ }_{\text {2SASA93 }}\) \& 2.25 \& 2858 \& \({ }^{9} .47\) \& 328 \& 2.22 \& \({ }^{802288}\) \& \& Bf472 \& 0.33 \& C040313 \& 0.33 \& L－7702 \& 10.92 \& 0072 \& 0.44 \& SN778023NO \& 3.91 \& TA72458 \& 1.95 \& T0A2161 \& 4.78 \& UPA81C \& 0.61 \\
\hline 2 2SA5 \& \({ }_{0}^{0.97}\) \& \({ }_{280467}^{20505}\) \& \({ }_{0.55}^{0.65}\) \& \(\underset{\substack{\text { BA3 } \\ \text { Ba33 }}}{\text { a }}\) \& \({ }_{6.27}^{1.3}\) \& \({ }_{\text {B0231 }}^{80229}\) \& 0．800 \& \({ }_{\text {BF450 }}^{\text {br49 }}\) \& 0.89 \& \({ }_{\text {Coabl }}\) \& 0．30 \& \& \({ }_{4}^{4.205}\) \& \& \& \& \& \& 0.50 \& Tinaliz \& \& \& \\
\hline \({ }^{25 A 614}\) \& 4.88 \& 258869 \& 3.75 \& B65 1024 \& 1.49 \& 80232 \& 0.49 \& BF491 \& 0.50 \& CDA022 \& 0.75 \& La7600 \& 1.36 \& ON782 \& 1.65 \& SNT6115AN \& 1.61 \& TA7314 \& 3.50 \& toA2520 \& 2.37 \& PCi 102 \& \({ }^{20}\) \\
\hline \({ }_{2}^{2 S 46663898}\) \& 0.37 \& \({ }^{2581128}\) \& \({ }^{0.94}\) \& \({ }^{805411}\) \& 1.98 \& \({ }^{80234}\) \& \& \({ }^{818506}\) \& 0.43 \& C00422 \& 0.39 \& A77801 \& \({ }^{3.21}\) \& \& \begin{tabular}{l}
1.45 \\
3.58 \\
\hline 1.5 \\
\hline
\end{tabular} \& SN776131 \& 1.71 \& \({ }_{\text {Tra7333 }}\) \& \({ }^{3.15}\) \& TDA25 \& 14．78 \& UPC102 \& 2．00 \\
\hline \& 0.49 \& \({ }_{2}^{2501273}\) \& \({ }^{1.48}\) \& \({ }_{\substack{\text { B4as21 }}}^{\text {B4，}}\) \& 1.20 \& \({ }_{80238}^{8023}\) \& \& \({ }_{\substack{85539 \\ 85596}}^{818}\) \& 0．48 \& \& \& \& \({ }_{1}^{2.95}\) \& \& \({ }_{5}^{5} .65\) \& SN762280N \& 2．47 \& TATz393P \& 2．50 \& \({ }_{\text {THAL252 }}\) \& 5.58 \& UPCI 1033 C \& \({ }_{4.29}\) \\
\hline \({ }^{2 S 46673}\) \& 0.28 \& 2201433 \& 1.50 \& \({ }^{84524}\) \& 8． 9.9 \& 80239 \& \& 8F597 \& 0.27 \& C04028 \& 0.84 \& LC7800 \& 9.20 \& R10 \& 2.19 \& SN76228N \& 3.27 \& TA73300 \& 5.95 \& TDA2332 \& 2.50 \& \& \\
\hline \({ }_{\text {2SA6697 }}\) \& 0.80 \& \({ }_{2 S 0}^{250}\) \& \({ }_{3.87}^{2.64}\) \& \({ }_{\text {Pas27 }}^{\text {Pa }}\) \& 7．98 \& \& \& \& \({ }^{0.222}\) \& CO44008 \& \& \({ }_{\text {Le3120 }}^{103150}\) \& \({ }_{2}^{1.13}\) \& \({ }_{\text {R20038 }}\) \& 1.33 \& SNT7242 \& 5.53 \& tatabear \& 1.95
1.25 \& TDR2530 \& 2.78 \& 11616 \& \({ }^{68}\) \\
\hline 25 \& 1.25 \& \({ }_{2}^{250235}\) \& 0.47 \& \({ }_{84532}^{81832}\) \& \({ }_{1}^{1.20}\) \& \({ }_{80242}\) \& 0.37 \& \({ }^{\text {8PF59 }}\) \& 0.23 \& \({ }^{\text {cosacas }}\) \& \({ }_{0}{ }_{0} .24\) \& Lm383 \& 1.10 \& \({ }_{\text {R220108 }}^{\text {R20 }}\) \& 1.98
2.98 \& \({ }_{\text {SNF6396 }}\) \& \({ }_{2} 2.20\) \& \& \({ }_{2.32}^{2.35}\) \& \({ }_{\text {Toder }}\) \& 1.63
0.98 \& \& \begin{tabular}{l}
19 \\
105 \\
\hline 0
\end{tabular} \\
\hline \({ }_{2}^{2547488}\) \& \({ }_{2}^{1.95}\) \& \({ }_{25024}^{25023}\) \& 20．60 \& \({ }_{88662}^{8053}\) \& \({ }_{1}^{1.56}\) \& \& \({ }_{0}^{0.49}\) \& \({ }^{\text {8rF62 }}\) \& 0．7．34 \& cou05
coutab \& \({ }_{0}^{0.35}\) \& LM \& \({ }_{1}^{1.81}\) \& \({ }_{R 20}^{R 20}\) \& \({ }_{1.33}^{1.33}\) \& \({ }_{\substack{\text { SNR } \\ \text { SN765332 }}}\) \& \begin{tabular}{l}
1.75 \\
3.03 \\
\hline 1
\end{tabular} \& \& 8．25 \& TDR254 \& 2．15 \& \({ }^{\text {PPCO } 189 \%}\) \& 95 \\
\hline \({ }_{2}^{2} \times 2 \mathrm{AB}\) \& － 0.4 \& \begin{tabular}{|c}
250257 \\
280313
\end{tabular} \& \begin{tabular}{l}
1.988 \\
0.95 \\
\hline 1
\end{tabular} \& \& \({ }^{1.57}\) \& \({ }_{\substack{4 \\ 80244 \\ 802464}}^{18024}\) \& \& \& 0．4．39 \& \({ }^{\text {co4069 }}\) \& 0.29 \& LM28898 \& \({ }^{1} 9.94\) \& \({ }_{\text {R }}^{\text {R2257 }}\) \& ＋2．38 \& SN76545 \& 4.87 \& TA7688P \& \({ }^{1.73}\) \& TDR257 \& \({ }_{0}^{2.50}\) \& UPCC11 \& \\
\hline \& \({ }_{0}^{0.65}\) \& \({ }_{2}^{2503350}\) \& 2．35 \& \({ }_{\text {848841A }}^{\text {B47100 }}\) \& \(\stackrel{11.35}{9.27}\) \& \({ }_{802}^{802}\) \& \& \({ }_{\text {Bras }}^{\text {B96 }}\) \& \({ }_{0}^{0.47}\) \& \({ }_{\substack{\text { codavi } \\ \text { catob }}}\) \& \({ }_{0}^{0.14}\) \& \& \({ }^{7} .4 .36\) \& \({ }_{\text {R2206 }}^{\text {R20 }}\) \& \({ }^{1} 1.36\) \& \(\underbrace{\text { SN7 }}_{\text {SN76 }}\) \& \({ }_{2}^{2.45}\) \& \({ }_{\text {Ta }}^{\text {Taf623 }}\) \& 2.51
0.95 \& \({ }_{\text {ToR257 }}^{\text {TiOR }}\) \& \& UPC1223H \& 82 \\
\hline \({ }_{2} 2 \mathrm{Sa}\) \& 2.15 \& 250350 \& 2.35 \& B6843 \& 3.96 \& \({ }^{80246}\) \& \& 8fe90 \& \({ }^{0} 0.49\) \& \({ }^{\text {coupa }}\) \& 0.40 \& LM339N \& 0.43 \& \({ }_{\text {R2233 }}^{\text {R232 }}\) \& 0.67
0.75 \& SNT666 \& 2.59 \& tat7640AP \& 1.95 \& \& S \& UPCT \& \({ }^{.88}\) \\
\hline \({ }_{2 S \text { Sa9 }}\) \& \({ }_{2}^{2.93}\) \& \({ }_{25014}^{2584}\) \& \({ }_{1}^{1.98}\) \& \& 5．76
0.06 \& \({ }_{\text {¢ }}^{\text {80253 }}\) \& \& \({ }_{\text {BrR61 }}^{\text {Bras }}\) \& \({ }_{0}^{0.92}\) \& \({ }^{\text {coastr }}\) C04528 \& \& M330¢ \& －11．85 \& R23 \& \({ }^{0.60}\) \& SNT66 \& \& \& \({ }^{2.75}\) \& T002581 \& 1．60 \& PCC12 \& 15 \\
\hline \& 0.50 \& 250471 \& 2.13 \& bavis \& 0.24 \& 80317 \& \& \({ }_{\text {Bfera }}\) \& 0.50 \& coat5 \& 1.47 \& LM380N \& 1.50 \& \({ }_{\text {R241 }}^{\text {R2344 }}\) \& \({ }_{1}^{2} .26\) \& SNTV660N \& 2．48 \& TA7726 \& 10.25 \& TDR2591 \& 2.15 \& UPCO 1350C \& \({ }^{81}\) \\
\hline \& 75 \& 250550 \& \({ }^{1.50}\) \& BAV20 \& 0.36 \& \({ }^{80318}\) \& 2.72 \& \({ }_{\text {Qferb }}\) \& 0.29 \& \({ }^{\text {CRO}}\) \& 1.70 \& LM64 \& 10．15 \& \({ }_{\text {R22401 }}^{\text {R24 }}\) \& \({ }^{0} .955\) \& SNT670 \& 4.86 \& ta332 \& \({ }^{1.27}\) \& TDR259 \& 2.45 \& UPC1353 \& 165 \\
\hline \& 0.75 \& \({ }_{250601 / 2}\) \& 0.65 \& \({ }_{\text {BRING2 }}\) \& 0.11 \& \({ }_{80380}^{80}\) \& \& \& ＋1．63 \& Cxosso \& 3.14 \& LM748 \& \({ }_{1.82}^{1.08}\) \& \({ }_{\text {R25 }}\) \& \({ }_{3}^{1.305}\) \& \& \({ }_{1.23}^{9.63}\) \& TAA550 \& \({ }_{0}^{6.59}\) \& ToR259 \& \({ }^{1} 1.99\) \& UPC13 \& \({ }^{1.80}\) \\
\hline \& 0.40
2.10 \& 250613
250675 \& 0.74 \& \({ }^{\text {bax }} 12\) \& 0.49 \& 818410 \& 0.33 \& \({ }_{\text {Brxas }}\) \& \({ }_{0}^{0.35}\) \& \({ }_{\substack{\text { cxios } \\ \text { cxios }}}\) \& \& ［M8350 \& \({ }^{3.87}\) \& \& －0．67 \& SN／7870 \& 2.97 \& tras70 \& 1.85 \& Totzeod \& 7.00 \& UPC136 \& \({ }^{65}\) \\
\hline \({ }_{\text {258 }}^{258}\) \& 0.44 \& \({ }_{2 \text { 250639 }}^{2081}\) \& \({ }_{0}^{0.24}\) \& \& \({ }_{0}^{0.11}\) \& \({ }_{\text {B0434 }}^{8043}\) \& \({ }_{0}^{0.39}\) \& \({ }_{\text {brex }}^{\text {Brx }}\) \& \({ }_{0}^{0.37}\) \& \({ }_{\text {cxiog }}\) \& 7．20 \& \({ }_{\text {LR33419 }}^{\text {LME361 }}\) \& \({ }_{9.37}^{2.95}\) \& AGP00 1 \& 0.70 \& \& \({ }_{0}^{5.59}\) \& \& \({ }_{8}^{0.95}\) \& \& \({ }_{\text {2．}}^{2.85}\) \& UPC1378 \& 1.75 \\
\hline \& \({ }_{0}^{10.40}\) \& \({ }_{\substack{250655 \\ 25057}}\) \& \({ }^{0}\) \& \({ }^{8 \times 1079}\) \& 0.19 \& \({ }^{800435}\) \& \& \({ }^{366}\) \& \({ }^{0.355}\) \& cx \& \({ }_{7} 8.50\) \& LR3471 \& \({ }^{9} 9.37\) \& \({ }_{\text {RGPa }}^{\text {RGPM }}\) \& 0.29 \& \& 1.35 \& \({ }^{\text {T }}\) \& \({ }^{2.37}\) \& TDN261 \& 1.25 \& UPCi458 \& ＋95 \\
\hline \& \({ }_{0}^{1.093}\) \& \({ }_{25056 \%}^{2507}\) \& \({ }_{0}^{2} 80\) \& \({ }_{\text {ckilice }}^{81098}\) \& 0.14 \& \({ }^{\text {B0437 }}\) \& 1.14
0.29 \& \({ }^{188}\) \& 0.34 \& \({ }_{\text {Cxx }}\) \& 11.49 \& Lu5 \& \({ }_{20.62}\) \& \& 0．85 \& Scos．42 \& 1.83 \& \({ }_{\text {taAS970 }}\) \& 2．38 \& Tox2620 \& － 6.58 \& UPCTI519 \& 295 \\
\hline \& \({ }^{1} 1.39\) \& \begin{tabular}{l}
255731 \\
28073 \\
\hline
\end{tabular} \& \({ }_{0}^{1.950}\) \& \({ }_{\text {BCO }}^{\text {BCI }} 19\) \& 0.14 \& \({ }^{\text {B0038 }}\) \& 0.59 \& \(\underset{\substack{\text { Bras50 } \\ \text { BFI }}}{ }\) \& 0．3．30 \& Cx \(\times 157\) \& \({ }_{5}^{5.55}\) \& \({ }^{1} 45232111\) \& 14.95 \& \({ }^{\text {s1299 }}\) \& 5.34 \& STAAA \& \({ }_{3.13}^{2.75}\) \& Tag62－6an \& 1.32 \& тоя2330 \& 2.50 \& ypcas \& 2.51 \\
\hline \({ }_{2}{ }_{2}^{2885}\) \& －\({ }_{2080}^{0.74}\) \& \({ }_{250811}^{250773}\) \& \({ }_{6}^{0.60}\) \& \({ }^{\text {BCO } 19}\) \& 0.36 \& \({ }_{\text {B }}^{\text {B0241 }}\) \& 0.69 \& 8¢990 \& 1.15 \& \({ }^{\text {cx }} 158\) \& \({ }^{10.45}\) \& L003112 \& 12.37 \& S（2055AF \& \({ }^{3.75}\) \& static \& 8.70 \& TEALI2OAS \& \({ }^{1.45}\) \& TTR2633 \& 2.73 \& UPC324C \& 4.70 \\
\hline \({ }_{2}^{2586}\) \& 5.82

200 \& ${ }_{\substack{2508837 \\ 25084}}^{2081}$ \& | 0.94 |
| :--- |
| 0.37 |
| 1.97 | \& \& 0．14 \& ${ }^{\text {B05 }}$ \& 1.64 \& \& 2．20 \& \& ¢5．06 \& \& 1.98 \& \& ${ }^{2} .0 .90$ \& \& 5．25 \& \& 0.57 \& \& ${ }_{\text {a }}$. \& UPC539C \& 2．95

\hline \& cose \& ${ }_{2}^{250885}$ \& 0． 0.69 \& \& ${ }_{0}^{0.14}$ \& ${ }_{\text {B0519 }}$ \& 1.088
0.78 \& ${ }_{\text {8 }}^{88101}$ \& 0.78 \& ${ }_{\substack{\text { Crxash } \\ \text { C122 }}}$ \& c．i．5 \& ${ }_{\text {M293 }}{ }^{\text {M1928 }}$ \& ${ }_{7.09}^{2.37}$ \& $\xrightarrow{\text { S33725 }}$ \& 5．21 \& Strithoas \& ${ }^{11.196}$ \& TBAT20U \& 2.50
1.05 \& TDR2565 \& ${ }^{5} .173$ \& UPCA558C \& 0．51

\hline ${ }_{2}$ \& ${ }_{3}^{3} .43$ \& ${ }^{2208570}$ \& ${ }^{1.84}$ \& ${ }_{8 C 138}$ \& 0.34 \& 80529 \& 0.93 \& 日8333 \& 1.20 \& ${ }_{\text {E }}^{122224}$ \& ${ }_{0}^{0.28}$ \& M51102L \& 1.75 \& S4080 \& ${ }^{\text {F19．95 }}$ \& STK001 \& 88 \& TBA1440 \& 1.94 \& T0．2670 \& $\underset{\substack{248 \\ 3 \\ 3}}{ }$ \& \&

\hline 2 2S 7 \& 0． 0.55 \& ${ }_{250898}^{2088}$ \& 1.75 \& ${ }_{\text {BCI }}^{80}$ \& 0.33
0.30 \& ${ }_{80533}^{8830}$ \& ${ }_{0}^{0.94}$ \& ${ }_{\text {BRR44 }}^{\text {Brcs }}$ \& ${ }_{0.69}^{2.88}$ \& ${ }_{\text {E5386 }}^{1238}$ \& 0.25 \& ${ }_{\text {M5 }}$ \& ${ }_{3}^{5.24}$ \& SaA \& \& Strosi \& 12．95 \& T8A1441 \& 1.95 \& TDA2740 \& 10.14 \& UPC5 535C2 \& 1.55

\hline \& 1.45 \& \& ${ }^{2} .815$ \& ${ }^{\text {BC141 }}$ \& ${ }^{0.32}$ \& B5534 \& 0.52 \& \& ${ }_{0}^{0.810}$ \& 6758 \& 1．07 \& M51231P \& 1：69 \& SAM1 \& \& \& ${ }_{9}^{13.35}$ \& TBA396 \& 1.20 \& TON27895 \& ${ }_{2} 2.78$ \& \& ${ }_{1.34}$

\hline \& ${ }_{0}^{3.266}$ \& 7805 7022 \& 0.63 \& ${ }_{\text {BCO }}^{8}$ \& ${ }_{0}^{0.24}$ \& ${ }_{80536}^{8035}$ \& ${ }_{0}^{0.50}$ \& \& ${ }_{0}^{0.565}$ \& \& ${ }_{2}^{1.53}$ \& ${ }_{\text {N551303 }}$ \& ${ }_{6.93}^{4.53}$ \& SAA， \& ${ }_{1}^{2} .25$ \& STK058 \& ${ }_{9}^{27.50}$ \& ${ }_{\text {T }}$ TEA4000 \& ${ }_{2}^{2.35}$ \& \& $\begin{array}{r}18181 \\ 13 \\ \hline 1\end{array}$ \& \& | 2.15 |
| :--- |
| 2.95 |

\hline ${ }_{\substack{2 \\ 25 C 1}}^{2(2)}$ \& 50．06 \& ${ }_{7812}^{881}$ \& ${ }^{10.45}$ \& \& ${ }_{0}^{0.15}$ \& 80537 \& 0.50 \& ${ }_{\text {Brich }}$ \& － 0.64 \& ${ }_{\text {H4411229 }}$ \& $\stackrel{4}{4.29}$ \& ${ }_{\text {M }}^{\text {M } 51331819}$ \& ${ }_{5}^{5} 5$ \& SAAA11 \& ${ }_{2}^{7.44}$ \& strio39 \& 5.75 \& тванвоа \& 1.30 \& TOA33008 \& 6.55 \& MPC5 \& ${ }^{1} 1.98$

\hline \& ${ }^{0.565}$ \& ${ }_{7805}^{7815}$ \& ${ }_{0}^{0.64}$ \& ${ }_{\text {BC1／}}^{8}$ \& 0.11 \& ${ }_{\text {80544B }}^{80538}$ \& ${ }_{0}^{0.75}$ \& ${ }_{\text {BSTRO140G }}^{\text {BSS }}$ \& 0． 0.24 \& H412123 \& 3．14 \& M51349P \& 14.50 \& SAAA1 \& $\stackrel{16.99}{177}$ \& STK21 \& ${ }_{13.77}^{11.95}$ \& ${ }_{\text {tieasio }}^{\text {tiab }}$ \& 2.50
1.20
1 \& TTA350 \& ${ }^{4.40}$ \& Upozels \& 4.98

\hline ${ }_{2}$ SCCi \& － \& A0140 \& 1.06 \& \& 0.14 \& ${ }^{80677}$ \& 0.40 \& ${ }_{\text {BSTCOD }}$ \& ${ }_{6}^{6.99}$ \& HA112 2 S \& ${ }_{4}^{2.29}$ \& ${ }_{M 5144}^{\text {M }}$ \& ${ }_{8.25}^{6.65}$ \& SPATI2 \& ${ }^{3} .95$ \& ¢ikn \& | 10.95 |
| :--- |
| 18.95 | \& teas30 \& 1.30 \& TTOA3500 \& ${ }_{7}^{5.58}$ \& UPP559339 \& ${ }_{50}$

\hline \& ${ }_{4}^{3} .295$ \& ${ }_{\text {A0145 }}$ \& 1.190 \& ${ }_{\substack{\text { BCI } \\ \text { BC } \\ \text { S9 }}}$ \& ${ }_{0}^{0.14}$ \& ${ }_{80680}^{8079}$ \& ${ }_{0}^{0.49}$ \& ${ }_{\text {BSTCLI233 }}$ \& ${ }_{4}^{64}$ \& ${ }_{\text {Hat }}^{\text {H41393 }}$ \& | 1.38 |
| :--- |
| 3.75 | \& ${ }_{\text {M }}^{\text {M51515 } 515 L}$ \& ${ }_{2}^{2.75}$ \& SAAII \& ${ }_{8.11} 3.20$ \& STK30 \& ${ }_{6} 6.08$ \& \& 1.72

1.40

1. \& TTA3510 \& 5.95 \& K0022CE \& 5．75

\hline cosc1 \& ${ }_{0}^{1} .1 .65$ \& \& ${ }^{0} 0.84$ \& \& 0．0．40 \& \& ${ }_{2}^{0.45}$ \& \& ${ }_{3.69}^{2.85}$ \& chaliti4 \& 2.25 \& W515221 \& 1.50 \& \& ${ }_{2}^{275}$ \& STK＋0 \& ¢ 1.9 .75 \& tasfico \& ${ }^{1.69}$ \& tTA3540 \& ${ }_{3} .62$ \& \& 6.38

\hline coscl \& \& \& － 1.84 \& \& 0．28 \& ${ }_{\substack{\text { B06969 }}}^{\text {B0699 }}$ \& ${ }_{0.80}^{2.47}$ \& ${ }^{\text {BSWW6 }}$ \& 0.60 \& HAA156 \& 1.16

5.77 \& ${ }_{\text {M }}^{\text {M } 5194248}$ \& | 3.13 |
| :--- |
| 6.27 | \& ${ }_{\text {S4A500 }}$ \& ${ }^{3} 8.55$ \& cicke \& ci．18 \& ${ }_{\text {TPAAF70 }}$ \& 1.71

2.60
1 \& Tidas341 \& ${ }_{5.83}^{2.27}$ \& ${ }_{\text {x }} \times$ \& ¢．520

\hline ${ }_{2}^{2 S C 1}$ \& | 0.55 |
| :--- |
| .022 |
| |
| 2 | \& ${ }_{\text {AF118 }}^{\text {AF1 }}$ \& ${ }_{1}^{5} .296$ \& \& ${ }_{0}^{0.16}$ \& 80700 \& 3.70 \& $\substack{\text { BSx } \\ \text { BSx } 20}$ \& ${ }^{0} 1.34$ \& ${ }_{\text {HA1）}}^{\text {HA1 } 166}$ \& $\underset{\substack{6.73 \\ 6.60}}{6}$ \& \& 1．05 \& SAA501 \& \％5．50 \& ${ }_{5}^{51 K 4353}$ \& ${ }_{3} .95$ \& tabioo \& 1.85 \& ${ }_{\text {TTPA3510 }}$ \& ${ }_{9}^{9.065}$ \& X00 \& －3．79

\hline 2 SS \& ${ }^{2} .0 .09$ \& ${ }^{\text {Afr } 127}$ \& 0.57 \& ${ }^{\text {BCCH1 }}$ \& 0.07 \& ${ }_{8}^{807707}$ \& ${ }_{0.80}^{0.50}$ \& BSY52 \& 0.50

1.18 \& H4117706 \& ${ }_{3}^{6.61}$ \& M54532P \& 1.45 \& SAAs \& 6．33 \& STK4352 \& ${ }_{726}^{1.95}$ \& ${ }_{\text {tabazo }}^{\text {taiz }}$ \& ${ }_{3}^{4.55}$ \& TTA3590 \& 6.79 \& $\times \mathrm{X} 05556 \mathrm{E}$ \& 5.02

\hline \& | 0.30 |
| :--- |
| 1.46 | \& ${ }_{\text {AFFIT }}$ \& 1.45 \& ${ }_{86173}^{8 C 1728}$ \& ${ }^{0.27}$ \& 80710 \& 9.80 \& 8108 \& 1.45 \& \& ${ }_{\text {c }}^{8.05}$ \& ${ }_{\text {M }}^{\text {M } 564444 ¢}$ \& ${ }_{6}^{1.61}$ \& \& ${ }_{5.98}$ \& ${ }_{\text {STK437 }}$ \& 9.50 \& tbaz300 \& 4.12 \& \& 6.45 \& \&

\hline ${ }_{\substack{25 C 1366 \\ 251317}}^{2(1)}$ \& 1．988 \& ${ }_{\text {a }}^{\text {AFT79 }}$ \& ${ }^{0.365}$ \& ${ }^{861748}$ \& ${ }^{0.27}$ \& ${ }_{\text {B }}^{\text {B8809 }}$ \& ${ }_{0}^{0.45}$ \& ${ }^{81819}$ \& 1.17
2.17 \& H81720 \& ${ }^{3.35}$ \& M 584848 P \& 14.43 \& SAB30 \& 1.34 \& STK4372 \& 5.99 \& төAaO \& 1.08 \& toA3 \& 13.01 \& ${ }^{\text {46E }}$ \& 17.14

\hline ${ }_{2}$ \& 0.95 \& ${ }_{\text {AFFIB }}$ \& 0.53 \& ${ }_{8178}$ \& －0．26 \& ${ }_{80879}$ \& \& ${ }_{81}^{18121}$ \& 2.48 \& ${ }_{\text {Hal }}^{\text {Hal } 171713}$ \& 3．2．95 \& MA \& ${ }_{10.108}^{0.182}$ \& SAA3030 \& ${ }_{5.70}$ \& STk \& 9．85
10.10 \& TBAA \& ${ }_{1.61}$ \& ToA \& \& ${ }^{\text {XOOHGE }}$ \&

\hline ${ }_{25}^{25 C}$ \& 2.45 \& ${ }_{\text {A }}^{\text {AF } 2868}$ \& 0.53 \& 日C179 \& 0.0 .17 \& 边 80895 \& ${ }^{2} .18$ \& \& 1.97 \& HA17171 \& 9．909 \& \& \& SAB30 \& ${ }_{6} .36$ \& STK5 \& 6.32 \& ${ }_{\text {TBAB }}$ \& ${ }^{1.75}$ \& TDABE \& $\xrightarrow{2.50}$ \& \&

\hline \& 2.45 \& ${ }_{\text {a }}^{4 \times 27}$ \& ${ }^{10} 888$ \& BC1822．8 \& 0.14 \& ${ }_{\text {bego }} 8099$ \& ${ }_{0}^{0.56}$ \& \& ¢ \& H611774 \& ${ }_{7}$ \& M83713 \& ${ }_{1.69}^{1.85}$ \& ${ }_{\text {S }}^{\text {SAB33209 }}$ \& ${ }_{3}^{5.82}$ \& \& | 7.25 |
| :--- |
| 9.48 | \& TBAB20M \& ${ }_{0} 0.62$ \& T0AP5050 \& ${ }_{3}^{4.95}$ \& So \&

\hline ${ }^{2} \mathrm{SC} 1$ \& ${ }_{207}^{2.27}$ \& ANI \& ${ }_{1}^{1.99}$ \& ${ }^{81183888}$ \& 0.09 \& ${ }^{\text {BOWe3S }}$ \& 1.20 \& 时 \& 2.57 \& HA117 \& ${ }_{18.26}^{6.10}$ \& \& ${ }_{2}^{2.38}$ \& ${ }_{\text {SAFFIR32 }}$ \& 4.27 \& StK¢5333 \& 11.33 \& твая9\％ \& 3.50 \& TTPA2820 \& 7．20 \& X013 \& ${ }_{\substack{9.60}}^{10.31}$

\hline \& ${ }_{1}^{0.50}$ \& ${ }_{\text {AN }}^{\text {AN20 }}$（206 \& ${ }_{3.55}^{2.58}$ \& ${ }_{8 C 188}^{8 C 188}$ \& ${ }^{0.123}$ \& ${ }_{\text {Box }}$ \& $\stackrel{1}{1.65}$ \& ${ }_{\text {BU111 }}^{\text {But }}$ \& ${ }_{1}^{4.168}$ \& HAP1725MP \& ${ }_{\text {coin }}^{16.00}$ \& ${ }^{133002}$ \& 2.99 \& SAF1039 \& ${ }_{8}^{1.95}$ \& ST15730 \& ${ }_{3}^{3.65}$ \& TBAS \& ${ }_{1}^{1.67}$ \& 100 \& ${ }_{2}^{2.27}$ \& र0204c发 \& 11.96

\hline ${ }_{2}$ 2Sc1514 \& 1.76 \& \& ， \& \& ${ }_{0} .28$ \& \& 0.45 \& 8u125 \& 2.48 \& HAB17781 \& ${ }_{2 \text { ¢ }}+15$ \& ${ }_{\text {NCi } 1327}$ \& ${ }_{1}^{1.93}$ \& SAS560S \& 1.91
1.91 \& STKT2 \& ${ }_{3.71}$ \& T3A950 \& 1.55 \& \& ${ }_{8.32}^{2.30}$ \& ${ }_{\text {xozeflce }}^{\text {20Y } 120}$ \& ${ }_{4}^{8.98}$

\hline 2 2S15730 \& 1.10 \& AN211 \& 3.25 \& BC204 \& 0.35 \& B0x538 \& ${ }^{3} 35$ \& \& \& HA1180 \& 5.15 \& \& \& \& \& \& \& \& \& TDA4427S
TDA4431 \& ${ }_{\substack{2.25 \\ 2.27}}$ \& \&

\hline
\end{tabular}

USE YOUR ACCESS OR BARCLAYCARD © TEL 0902712083 \star VIDEO HEADS \star ввом $£ 11.95_{\text {еасн }}$ PLUS + PLUS + PLUS GENEROUS MIXED QTY DISCOUNTS

AKAI

Machine Nos.: VP77 VP88 VP7100 VP7200 VS1 VS2 VS3 VS5 VS10 VS9300 VS9500 VS9700 VS-P1 VS-P5

AMSTRAD

Machine Nos.: VCR4500 VCR5200 VCR9000
Machine Nos.: VCR7000
VCR4600

FERGUSON/JVC

Machine Nos.: 32928903 3V00 3V01 3V06 3V16 3V22 3V23 3V24 3 V 293 V 303 V 313 V 353 V 363 V 383 V 393 V 49

FISHER

Machine Nos.: FVH - D520 D530 D620 D720 P420 P510 P520 P530 P615 P620 P622 P710 P720 P721 P722

GEC

Head Part Nos.: 54581615458165
Machine Nos.: 4000 H 4001 H 4002 H
Head Part Nos.: 5458282545841354584155458992
Machine Nos.: 4001 H 4004 H

HITACHI

Machine Nos.: VI3000
Head Part Nos.: 5458104
Machine Nos.: VT4000 VT4200 VT5000 VT5500
Head Part Nos.: 54581615458165
Machine Nos.: VT6500 VT7000 VT8000 VT8040 VT8100 VT8500 VT8700 VT9000 VT9300 VT9500 VT9700 VT9900
Head Part Nos.: 5458282545841354584155458992
Machine Nos.: VT11 V14 VT33 VT34 VT330 VT340 VT5030 VTP10 VTP30 VHS K
ITT
Machine Nas.: VR3605 VR3033 VR3905 VR3913 VR3914 VR3935 VR3943 VR3963 VR3993 VR3975 VR3985 VR3986 VR3833

JVC (see also Ferguson)
Machine Nos.: HP4000 HR3300 HR3320 HR3330 HR3350 HR3360 HR3750 HR3860 HR4100 HR7200 HR7600

MITSUBISHI

Machine No.: HS200
HS700 HS303 HS304

VHS A

HATIONAL PANASONIC

Head Part Nos: 1430242 T01700 1430242 T22300 Machine No.: VTC5000 VTC5 150 VTC5300 VTC5400 Head Part Nos.: 1430242 T02200 Machine No.: VTC5350 VTC5500 Machine No.: VTC9300 VTC9455 VTC9500 Head Part Nos.: 143072 T02100 Machine No.: VTC9300PS VTC9350

Head Part Nos.: A6762 044A, 044B, 054A, 147A
Head Part Nos: VFH0099 0103011501210131 $\begin{array}{llllll}\text { Machine Nos.: NV300 NV322 NV332 NV333 NV340 NV390 NV2000 } \\ \text { NV3000 } & \text { NV7000 } & \text { NV7200 } & \text { NV7500 } & \text { NV7800 } & \text { NV7850 } \\ \text { NV8170 }\end{array}$ NV8200 NV8400 NV8600 NV8610 NV8620
Head Part Nos: VEH0171 VEH0218
Machine No.: NV370 NV3708
Head Part Nos.: VE3O171
Machine No.: NV33 NV777
Head Part Nos.: VEH0286
Machine No.: NV430
Head Part Nos.: VEH0174

SNARP

Head Part Nos.: DDRMU 0002 HE17/21/27 Machine No.: VC581/2/3 651 681/2/3/5 659699 Head Par Nos.:
Machine No.: $2 C 9$ VC1 10 VC200 VC220 VC300 VC381 VC384 VC386 VC387 VC388 VC477 VC481 VC482 VC930 VC970 VC3300 VC9100 VC9300 VC9400 VC9500 VC9600 VC9700 Head Part Nos.: DDRMU 0001 HE09
Machine No.: VC7300 VC7700 VC7750 Mache No.. Machine No.: VC6300
Head Part Nos:: DDRMU 0001 HEt2
Machine No.: VC 8300
tad Part Nos.: DDRMU 0001 HE14
Machine No.: VC2300

Head Part Nos.: A6762 012A, 038A, 055A. 129A
Head Part Nos.: A6762 072A. 122A, 136A, 139A, $213 A$
Head Part Nos.: A6762 032A. $22 \mathrm{~A}, 13 \mathrm{CA}$.
Machine No.: SLC20, C30, C33. C40, C44
F1, F30, HF72, T20, T30

FERGUSON/JVC

VID1	$01 \times 0-003-381$
VID2	$01 \times 0-018-024$
VID3	$01 \times 0-018-025$
VID4	$01 \times 0-018-729$
VID5	$01 \times 0-040-006$
VID6	$01 \times 0-033-454$
VID7	$01 \times 0-040-007$
VID8	$01 \times 00-040-017$
VID9	$01 \times 0-065-009$
VID10	$01 \times 0-065-016$
GEC/HITACHI	
VID11	V5577355
VID12	V6413663
VID13	V6861471
VID14	V6861482
VID15	V6886971
VID16	V2423461

Tension band T3292/PU545904A
Take up idler T3292P
Rewind ider assembly T3V16/PU49282
Take up idier T3VOO/PU49280
Loading bet T3V2930 P 48941
Roller Assy. (cass. Housing) T3V23PU49042
Take up idler $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 48967 \mathrm{~B}$
Reel motor assembly $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 51381 \mathrm{~V}$
Capston motor $3 \mathrm{~V} 35 / 36 / 38 / 39 /$ PU55371V

$$
\begin{aligned}
& \text { Capston motor } 3 V 35 / 3638 / 39 / 38 / 39 / \text { PU29825 } \\
& \text { Cass. housing Assy } 3 V 35 / 30
\end{aligned}
$$

GEC 4100/Hitachi VT11E capston motor
GEC 4000 /Hitachi VT 33 f/f rewind arm
GEC $4001 / 2 /$ Hitachi $93 / 9500 \mathrm{f/4}$ rewind arm
GEC $4001 / 2 /$ Hitachi $93 / 9500$ play idler assy
GEC 4004 /Hitachi VT33 i/f rewind arm

NEW FAX
NUMBER
0902-29052
2.55
6.73 6.73
6.20

NEW IN STOCK, A LARGE RANGE OF SLIMLINE REMOTES JUST SUPPLY MAKE, MODEL \& PART No. IF POSSIBLE FOR AN IMMEDIATE QUOTE. AVERAGE PRICE £18.00

	HEADS
	Head
	Part No.
	BETA A
VHS B	BETA B
	BETA 0
VHS m	BETA E
	BETA T
VHS N	BETA W
	BETA X
VHS W	VHS VIDED
	VHS A
VHS X	VHS B
	VHS C
	VHS 0
	VHS E
VHS S	VHS F
	VHS H
	VHS I
	VHS K
VHS C	VHS L
	VHS M
VHS D	VHS N
	VHS R
VHS E	VHS S
	VHS T
VHS L	VHS U
	VHS V
VHS F	VHS W
	VHS X
	VHS 2
BETA D	ORIEINAL FERGUSON
	01×0003222
beta 0	01×0027085
	01×0033825
beta X	01×0040002
	01×0056013
beta X	01×0057002
	01×0082001
	01×0083063
	PHILIPS
beta a	31027444
	69120054
beta b	69120098
	69120112
	69120166
beta w	69120178
	69120287

What a Life!

Donald Bullock

As I walked to the workshop the Reverend Goode's battered little Fiat creaked into the drive. Beaming suitably as he got out, he spread his palms towards his cargo. I dived in and got the set out and into the workshop. A Ferguson one with a TX100 chassis.
"It works" the Reverend intoned, "but everyone looks touched by the devil."
"Most of them are" I quipped.
"Shouldn't take you long" he intoned.
"Vicar, the last one I did for you was an absolute bat.." I saw his face cloud. "Er, very bad" I said, struggling.
"Well, it won't cost much I'm sure" he replied, easing his ample form back into the car.

Tackling the TX100

The set had terrible picture geometry plus a three-inch band of line frilling that was reminiscent of the effect you used to get with a faulty stick-type tripler. Being one of the larger screen sets, it had the little scan-correction panel. I adjusted the width potentiometer (RV72) and the E/W control (RV71) whilst observing a crazy crosshatch pattern. When doing this I found that the band of frilling moved as the geometry varied and that one could be improved at the expense of the other. But even at best the picture was totally unacceptable.

Not having another correction panel to try, I worked manfully on the one in the set. But there didn't seem to be anything wrong with it. So I moved back through the line output stage to the driver circuit where I found that a damp finger test at the base of the BC372 transistor TR8 played havoc with the frilling. Further tests showed that the voltages here were a bit odd, but a new transistor did no good. I eventually found that the feed resistor in the supply to the stage, R143, had risen in value from 15Ω to something like 330Ω !

A replacement resistor put matters to rights, and a message was sent to the Reverend to say that all was well.

Oscar's Fidelity CTV14S

Shortly after that little episode Mrs. Gunge came in with her spotty son Oscar. She was carrying a Fidelity colour portable, a CTV14S, which is not the most commonly encountered version of the ZX 2000 chassis.

After handing the set over Mrs. Gunge waved her arm in my direction and nudged Oscar. "See what I mean?" she said to him. "Mr. Bullock's got all the right gear. And he's been at it for years. You need these meters and things. It's no good trying to do it your way."

Then she turned to me. "Oscar's got two of these sets you see. This one's dead and the other has a broken tube. He wanted to try panel swapping but I told him we'd bring it along to you to have it done right."

Off they went and I soon found that the BUX84 chopper transistor was short-circuit. I fitted another one and switched on. The new BUX84 immediately failed. For want of anything better to do I decided to test the line output transistor, though I've never known one to fail in these sets. It was o.k. I suspected the line ouput
transformer, which does fail, but decided to work logically as Mrs. Gunge thought I did. After fitting another BUX84 I disconnected R828 to remove the load from the power supply and switched on. Up came the h.t. I switched off, reconnected R828 and disconnected the rectifier diodes fed from the line output transformer. When I switched on again the BUX84 failed as before. I looked at my dwindling supply of BUX84s and decided to reconsider my policy.

There was another ZX2000) set in the shed, with a defective tube. I fetched it, took out the line output transformer and fitted it in Oscar's set. This restored the brightness and background noise, but there was no vision or sound. After studying the manual I checked the varicap tuning voltage at point A 4 . It read 1.5 V and didn't vary when I changed channels. I looked at the signals panel and decided that it would be quicker to borrow the one from the other set. It made no difference. Perhaps the supply to the tuning system was missing? A check through the feed circuit on the main panel showed that R914 was opencircuit. So I fitted the one from the stock set.

This brought the picture and sound back, but there was no colour and only channels 1,2 and 3 could be selected. Suspecting a fault or two on the control panel, I borrowed the one from the stock set and switched on. It made no difference, and I noticed that the top of the picture was cramped and that I had half a screen-full of bright flyback lines over the picture.

I surveyed the main panel in the stock set, the one from which I'd pirated the line output transformer and R914. There seemed to be only one course open to me. I decided to replace these items and fit the whole panel in Oscar's set. When I switched on everything came right except my equilibrium.

As I put the set back together I reflected that I'd mended Oscar's set by swapping panels from my stock set with its broken tube. Exactly what Mrs. Gunge had stopped Oscar from doing on the basis that it was an unscientific, hit-and-miss approach. So much for sophisticated test equipment.

When they came back to collect the set Mrs. Gunge enthused over the lovely picture. She turned to Oscar and said "See that? Mr. Bullock got it right in no time at all, because he uses his brain and test equipment. Panel swapping indeed!"

But Oscar wasn't listening. He was eyeing a pile of Fidelity panels tucked around a broken tube in the upturned Fidelity cabinet at my feet "Mr. Bullock's got an old Fidelity just like mine" he said.
"Oh yes, so I have. Well wouldn't you know?!" Goodbye Mrs. Gunge, goodbye Oscar" I spluttered while pocketing the money Mrs. Gunge had paid me.

JVC HRD150/Ferguson 3V45

The customer who brought this machine in had already tried two other dealers, both of whom had wisely given it back to him. The problem was that in use the capstan motor would intermittently stop, at which point the drum would spin rapidly as though to compensate.

I soon wished that I'd been the third to hand it back. It seemed to have a built-in perversion: it would work perfectly for days, then go haywire at its own whim: Eventually, after a very long dance indeed. I was reduced to a spate of violence against it while scanning the circuit with my giant magnifying glass.

I found that by concentrating on a small area I could instigate and stop the trouble. It turned out that the $5 \cdot 1 \mathrm{~V}$
zener diode D408 was the cause of the problem: it was neatly cracked at its cathode end.

Ferguson 3V29/JVC HR7200

"Daddy can't seem to repair your video recorder" I heard my wife telling our children. I applied myself with extra vigour. The tape in the Ferguson 3V29 ran erratically, disturbing the vision and making the sound intolerable. So I sent for and fitted a replacement capstan motor, but to my dismay it made no difference. Next I worked on the mechacon board, and eventually bought another one from a graveyard. Still no better. The power supply panel was the last resort, and I eventually found that the 7.5 V zener diode D5 was leaky. Its replacement tamed the runaway capstan and brought the machine up to par, but I'm still working on the rehabilitation of my competence rating.

Philips CTX-E Chassis

"Screen like a rainbow" said the customer. She was right: the purity was hopeless. I put on my Merlin hat and gave the tube a wave of my magic degaussing wand. After that all was well. So something was wrong with the set's degaussing circuit. I took out the posistor and sealed its fate by opening it up, expecting to find it severely indisposed. But it looked fit and well. I then punished the front of the tube whilst viewing a red raster. The set was still o.k. I next used the degausser to aggravate the tube's face by switching it off whilst in close proximity. This left the display slightly impure, and subsequent switching on and off produced no improvement.

A continuity check on the degaussing coils showed that they were open-circuit. The wires are terminated in a crimp-type plug, so I removed this, bared the wire ends and checked again for continuity. As all was well I soldered the wires in place, bidding the set farewell after a final wave of my wand.

Bush 2040

"Bright green screen" said the customer about this Turkish-made set. My first step was to look for the green driver transistor on the tube's base panel. It was Q903, type KTC2068. Meter tests and scope component-tester checks cleared it so I next used the scope to check the inputs from the chroma output panel. The green signal seemed to be distorted, but I got nowhere with tests on this panel. Then an identical set came in with a different fault. I borrowed the chroma module but the fault remained after fitting it. So it was back to the tube base panel, where the main remaining suspect was the BF421 green output transistor Q904. It passed all the tests of course.

After wasting more time I could see no alternative to condemning Q904 despite its performance when checked. So I swapped it over with the red output transistor Q902 and got a bright red screen. Not having a BF42I I fitted a BF423. The result was an excellent picture.

Fisher FVHP905

This machine came in with sluggish tape transport problems. After the usual cleaning I fitted a new idler and then noticed that a tension spring was missing in the loading gear area. I found it in the works. After refitting it fast forward was all right but rewind was still groggy.

A new set of belts was fitted and whilst at it I lubricated
the worm assembly. But rewind remained poor and sluggish. I decided to take out the spool holder for thorough cleaning and then noticed that its retaining clip washer was much thicker than that retaining the other spool holder. After replacing it with one of the proper thickness all was well.

I later learnt that the machine had been brought in on the rebound from an earlier trip to Snoddies, from where it had emerged worse than when taken in. If only customers would tell us these things before we discovered them the hard - and expensive - way.

Huanyu 37C-3

A local hotel has a batch of these Chinese-made sets, and I'm still feeling my way around them. One came in with the mains fuse open-circuit. In addition the bridge rectifier and the $6 \Omega, 6 \mathrm{~W}$ surge limiter resistor R 901 had failed. I indicted the STR4211 chopper chip and replaced it, but the set stubbornly refused to come on though the fuse remained intact.

Checks around the STR4211 showed that the 2.7 V zener diode ZD 907 had perished while R 909 ($270 \mathrm{k} \Omega$) had gone high in value. For good measure I checked the 2SD898B line output transistor Q781 and found that is was shortcircuit. Replacing these items brought the set back to life.

Bush 2321

This was another Turkish mystery. "Bright white screen or jet black screen" was the report. I put the set on the soak-test bench and switched on. The result was uncontrollable brightness. Shortly afterwards I moved the set to the service bench and plugged it in. This time the screen remained dark, though the tube's heaters lit up to the accompaniment of an e.h.t. rustle.

After extensive and fruitless examination of the d.c. brightness and contrast control circuits I turned my attention to the TDA3562A colour decoder chip IC501. As the voltages around it were haywire I fitted a replacement. I was still no further forward however: the set contined to alternate between maximum and no brightness at its own whim, and a detailed examination of both sides of the PCB provided no help. I decided to make some checks in the beam limiter circuit. Two resistors here, R424 (27kS) and R425 ($56 \mathrm{k} \Omega$), are connected to the h.t. line, but where were they? I had to find them because there was no voltage at the junction of R425 and R255. I eventually found them hidden under the line output transformer which had to be taken out to change them. Two new resistors completed the repair.

Ferguson TX100 Chassis

The line output transformer had failed and the replacement to hand was of Konig manufacture. The original transformer had what at first sight looked like a screened lead that went to the tube's base panel. In fact the "screening" is a high-voltage conductor, the lead carrying the tube's focus and first anode voltages. The Konig transformer has an unscreened lead for the focus voltage and a separate green lead for the first anode supply. After sorting all this out the set was still dead. As the power supply was all right I checked back through the line output stage and found that the BC372 Darlington line driver transistor TR8 had failed. A replacement cured the trouble and the set was removed from the bench with a sigh of relief.

VCR Clinic

Philips VR6367

I knew that I had trouble with this one as soon as I tuned it in: there was no test pattern, no E-E output and hum was present on the loop-through signals. A dummy cassette was inserted but the machine wouldn't go into the play mode as the head was rotating slowly. The 13 V supply at the head servo was found to be low at 9 V , but was correct at the power supply. This was due to a break in the earth line between the power supply and module P607: on removing the board a section of print between pin 8 of plug B13 and pin I of plug B 19 was seen to be burnt out. When this was repaired the machine worked, but the servos didn't lock as the control track pulses were missing - there was an internal short between pin 13 of i.c. 8501 and chassis.
I've had this strange fault now with two dealer repairs. The only cause I can think of is that they've accidentally swapped over plugs B13 and B19 at some time. The plugs are of the same size and are close together on the board.
P.B.

Philips VR202

This machine was dead, with the BUT11AF chopper transistor short-circuit and the 3.3Ω surge limiter resistor open-circuit - the fuse was intact. Nothing unusual here, but the replacements again blew, which was unusual. I should have checked the other transistors, shouldn't I? One of the drivers, 7126, was short-circuit. In went a replacement, along with another BUTllAF etc., and the machine was then powered via the variac. It worked and produced the correct voltages, but the BUT11AF was getting very hot and obviously wasn't going to last long. A scope check showed that the drive waveform was low while the frequency was much too high considering that there was no load. Problems like this are usually cured by replacing all five transistors in the chopper circuit, but not this time! Eventually C2127 (330 nF) was found to be opencircuit.
Incidentally, don't worry if you cannot get the BUT11AF's drive waveform to look like the illustration in the manual: it's the correct size but is drawn upside down! Press the invert button if your scope has one.
P.B.

Philips VR202

The deck carried out the command when play was selected but there was no picture or sound and no other deek commands would be accepted until the mains input was interrupted. It seemed that the microcontroller chip was crashing during its program: anyway a new P8052AH JSTD1-1U solved the problem.
P.B.

Sanyo VTC5000

This ancient Betamax machine was still much used by its owner who was keen to have it restored to working order. His complaint was of a cogging effect on the picture, similar to the effect produced by an open-circuit antihunting capacitor in a flywheel line sync filter circuit. A few scope checks around the servo confirmed that the drum was hunting. The next check, on the d.e. supply to the drum motor, revealed the presence of a 60$) \mathrm{Hz}$ ripple.

Reports from Philip Blundell, AMIEIE, Joe Cieszynski, Eugene Trundle, Nick Beer, Ed Rowland, Brian Renforth, Mike Leach, S.A. Featherstone and lan Bowden

To rule out the possibility of the fault being caused by a high impedance in the power supply I disconnected the drum motor and ran it from an external bench supply. The fault persisted.

As this machine uses a direct-drive motor there's little else, other than a worn lower drum assembly, that could cause the fault. A suitable replacement was obtained from a scrapped machine, restoring normal operation. This is not the first time I've had the problem. In fact any machine can produce the symptom when the drum motor runs erratically.
J.C.

Sanyo VHR4350

The playback picture kept drifting into lines and snow recordings were similarly affected. The sound didn't vary, and the capstan speed was correct. The cause of the problem was that the head drum wasn't phase locked, because no PG pulses were being fed back into the servo system. The little PG coil inside the drum motor has a printed link to the motor's connection plug and there was a dry-joint in the circuit. It's not difficult to dismantle the motor and repair it.
$\mathbb{E} . \mathbb{T}$.

Sanyo VHR3300

The problem with this machine was intermittent failure to record: when the fault was present the machine would go straight into play, even when the cassette's safety tab was unbroken. The cause was a broken tab-sensor switch. We often come across this, though the fault is usually more certain. Our man-on-wheels who brought the machine in was puzzled by the three seconds each way wind/rewind cycle performed by the machine each time a tape is loaded. This is programmed into the control microcomputer chip.
E.T.

Ferguson FV10B

This fault could probably apply with any VCR but serves to show that things aren't always what they at first appear to be. Because of regular (one second) drum speed variations a servo fault was suspected. We noticed however that there was quite a tot of graphite around the base of the audio-control head. Closer inspection showed that the head had been screwed down atmost to its limit and was damaging the top edge of the tapes. Head realignment restored normal drum operation and of course improved the sound quality. The customer denied that the machine had been tampered with though he did admit that his son had removed the cover - "he's usually quite good with electrical things". Now where have I heard that before?
E.R.

Panasonic NV-G25B

After replacing the head drum and attending to most of the usual noisy bits I found that the start sensing didn't work. When I selected fast forward I discovered that the end sensing didn't work either - the motor kept running against the clutch when the tape reached either extremity. Shorting either of the relevant pins (18 or 19) of the syscon
microcomputer chip (IC6001) to chassis showed that the circuit beyond this point worked, i.e. the machine cut out/shuffled/went into rewind. In view of this and the fact that failure of both sensors was unlikely, also that a pair of back-to-back infra-red output LEDs are used, it seemed likely that the drive to these LEDs was missing. We've had this on several occasions, but not previously with this model.

The drive consists of a pulse waveform with a variable mark-space ratio for the different modes. It comes from pin 6 of IC6001 and is first inverted by the DTA144EA digital transistor QR60)12 which has been responsible for loss of the signal in the past. Not this time however. Its inverted output passed through the driver transistor Q6019 correctly then through the feed resistor R 6006 to pin 12 of BP6001. This 12-pin connector links the main PCB to the mechanism behind the mode switch. The connector here doesn't solder through the PCB: its leadouts are connected to pads on the same side of the board. Pin 12 had never been soldered, thus depriving the LEDs of their drive. The question is did the machine ever work and if so how stretched are the customer's tapes?!
N.B.

Panasonic NV-J30

After running for three hours this machine would cut out to stop, remaining powered, whatever mode it was in. Restarting it would provide a few more seconds of action before it once more decided to have a rest. We suspected loss of reel tacho pulses from the ON2170 opto-interrupter IC1501 beneath the take-up reel. The pulses were in fact there but were of only 250 mV peak-to-peak amplitude - a rather inefficient use of the 5 V supply! The supply was found to be low at only 2.2 V however. It's developed from a 12 V feed by a regulator in the syscon section on the main PCB and goes to many areas. When the feed to the optointerrupter was disconnected the voltage rose to 5 V . A new ON2170 restored normal action.
N.B.

Samsung SI7220

The complaint was of vertical jitter on playback, the symptom suggesting that the setting of the PG shifter VR201 was incorrect. When VR201 was adjusted the symptom varied but couldn't be cured completely. In fact VR201 couldn't be set correctly. This suggested that the drum motor was the cause of the problem. A replacement proved this to be the case.
N.B.

JVC HR7200/Ferguson 3V29

These fine machines go on and on. A weakness, which has been reported in these pages before, is the coaxial aerial input socket which is directly connected to the booster unit. The socket has a tendency to work loose, resulting in poor contact with the aerial plug or even breakage. If the socket is broken it can be replaced, using a beefy soldering iron, but if it's intact the contacts can be carefully realigned to ensure good contact with the aerial plug, after which a reinforcement ring from a scrap TV coaxial socket should be fitted. I wonder why JVC didn't fit such a ring in the first place?
B.R.

Panasonic NV333

This machine had a fault I've not come across before: there was no record f.m., but playback was o.k. Another company had told the customer that the heads were faulty.

True, they weren't very clever. Reverse search was poor, but normal playback was fine. I started by checking the various record supplies, of which there are several. This revealed that the "except rec high" line was at 5 V in the record mode when it should have been low. Following through the circuit I came to transistor Q3020: it was o.k. but the $220 \mu \mathrm{~F}, 6.3 \mathrm{~V}$ capacitor (C 3094) connected across its emitter and collector was short-circuit. Fitting a replacement restored normal recording.
M.L.

Pye DV468

This machine produced a blank raster in all modes: there was no test signal, no playback and no E-E signals, just a blank white raster. Modulators have given problems with these machines in the past, so I tried a replacement taken from a scrap machine. No difference, so out with the meter. The test signal is generated within IC7451, a TDA3755 chip on board P306. It's fed to the demodulator via the TDA 3760) chip IC7151 on the same board. I decided to start on this board. D.C. checks soon revealed that there was no +12 b supply at plug 5S4. This supply comes from the BC 376 transistor T7607 on the main panel. When removed this transistor proved to be open-circuit, a replacement restoring good pictures in all modes. M.L.

Philips VR6467

Our field engineer brought this machine in with the report "sound faulty, fit rack, suspect pinch roller". Now if you don't know it this deck does tend to produce sound fading problems: the pinch roller hardens, pulling the tape down across the audio head with the result that the audio section is taken below the audio head. So I thought here goes. another rack assembly (though I find I'm not fitting as many now as in the past). But after fitting it the sound still warbled. The capstan motor and associated circuits were then checked and found to be o.k. Back on the deck I released the tension on the arm/bracket 268 . This pushes the pinch roller into place and the warble stopped. So I replaced the bracket, again to no avail. Changing the capstan itself also failed to provide a cure, but slight pressure on the capstan holding assembly did the trick. So 1 took the white cap off the top, revealing the cause of the trouble: the top brass bearing had worn to an oval shape. A replacement cured the fault and occupied the rest of the morning's working time, though I'd learnt a lot more about these decks.
S.A.F.

Panasonic NV-MS1

The complaint was of a knocking noise in play and record. It was soon tracked down to the capstan motor. There was no noise however when the motor was turned by hand via the reel drive pulley. A scope was connected to the three outputs (pins 1, 3 and 23) from the capstan motor driver chip IC2005 to the motor coils. This revealed the presence of spurious spikes on two of the three connections - the third appeared to have none of these spikes. After removing the battery compartment to gain access to the motor the reason for these spikes could be seen: some dark particles clung to the magnetic outside edge of the capstan rotor. This magnetic ring is used to produce the output from the FG head, so every time the particles, which appeared to be ferrous, passed the head a short burst of spurious pulses were passed to the capstan speed servo. The noise was caused by the servo trying to correct the speed.

Long-distance Television

Roger Bunney

The 1991 Sporadic E season which started in early May has to date been rather a flat one. There have been plenty of signals, but apart from a little exotic reception on two days the results have been less than spectacular. The season could be a "late developer" of course, and maybe conditions will have improved by the time that this is read.

There was SpE reception on most days throughout May and into June, and some really intense tropospheric activity during the last week of May. The collated SpE log is as follows:

5/5/91 TVE (Spain) chs. E2, 3; +PTT (Switzerland) E3.
6/5/91 TVE E2; TSS (USSR) R1, 2; NRK (Norway) E2.
7/5/91 TSS R2: CST (Czechoslovakia) R2; TVE E2, 3; RAI (Italy) IA; TVA (Italian private station) IA.
8/5/91 TVE E2, 3, 4; RAI IA; Canal Plus L3.
9/5/91 RAI IA, B; TVA IA; TVE E2, 3; JRT/HTV (Yugoslavia) E3; RTP (Portugal) E3.
10/5/91 TVE E2, 3; +PTT E3.
11/5/91 TVE E2; SVT (Sweden) E2.
12/5/91 TVE E2, 3; RAI IA; JRT/HTV E3.
13/5/91 TVE E2, 3; RAI IA; RTM (Morocco) E4.
14/5/91 TVE E2, 3, 4; TVE-2 E2; RAI IA, B; TVA IA: RTP E3; JTV (Jordan) E3 at 1935 BST.
15/5/91 RTPE3.
16/5/91 RAIIA; TVE E3, 4.
17/5/91 TVE E2, 3; RAI IA. B;TVA IA; a wideband f.m. studio-transmitter link with music etc. was heard at 48.2 MHz .

18/5/91 RAIIA.
1915/91 JRT/HTV E3.
20/5/91 TSS R1, 2; TVE E2, 3; NRK E2.
21/5/91 NRK E2, 3 (Kautokeino), 4; YLE (Finland) E3, 4; SVT E2, 3, 4; DR (Denmark) E3; RUV (Iceland) E4; TVP (Poland) R1, 2; CST R1, 2, 3 .
22/5/91 TSS R 1 , 2 (including (1249 test pattern and Leningrad identification): YLE E3, 4; NRK E2; SVT E2, 3; TVE E2, 3; RTP E3.
24/5/91 TVE E2, 3; RAIIA; RUVE3, 4.
25/5/91 DR E3, 4; SVTE2, 3, 4; NRK E2, 3, 4; TVE E2, 3.
26/5/91 TVE E3.
27/5/91 NRK E2. 3.
28/5/91 TVE E2, 3, 4; + PTT E3; RAIIA.
29/5/91 TVE E2; NRK E2, 3; SVTE3.
30/5/91 RAIIA.

31/5/91 TVE E2,3; RAIIA, B.
1/6/91 TVE E2, 3, 4; RAIIA, B; TSS R2; Canal Plus L2, 3. 2/6/91 Canal Plus L3; TVE E4; TVE-2; RTP E3.

There was a slight tropospheric lift on May 9th, with Benelux signals in Band III and at u.h.f. noted throughout the south/south east. A further minor lift occurred on the 20th when TVE was received on ch.E5 and several u.h.f. channels. This time the opening was restricted to the north and north west. The major tropospheric opening started on the 25th and lasted through to the 31st. On the 25th Denmark, Sweden, many German transmitters, RTL Plus ch. E36 and the SSVC ch. E48 UK Forces transmitter were received. The 28th to the 3 Ist saw sustained Band III/u.h.f. reception from NRK, Denmark DR and TV2, Germany and the Benelux countries. An interesting signal was RTL Plus ch. E59, logged by David Glenday well to the north in Arbroath. The best day was undoubtedly the 31st, with reception from most of the above sources plus SAT-1 relays, RTL and former East German stations. The u.h.f. channels were crammed with signals during much of the four-day period. On June Ist conditions declined dramatically.

My thanks to David Glenday (Arbroath), Roger Fussell (Torpoint), Peter Schubert (Rainham), Simon Hamer (Powys), Cyril Willis (King's Lynn). Tim Anderson (St. Leonards) and Brian Williams (Penarth) for sending in their reception loggings.

Anthony Mann in Perth, Australia writes that during late April he was receiving excellent F2 signals on the EW path, from New Zealand and eastern Australia. Records seem to have been broken on the 28th, with reception from 50 MHz amateurs in South America and San Diego, California. His main catch was a 525 -line system M signal at 55.24 MHz . From its direction the possibilities are Daytonna Beach Florida, Houston Texas, Little Rock Arkansas or Chihuahua Mexico. The spectrum up to 50 MHz was wide open to signals from as far as Namibia, Botswana and Hawaii.

Todd Emslie received many F2 signals in Sydney during the opening, mainly from New Zealand, the USSR, Malaya and Korea/the Philippines (ch. A2 at 55.25005 MHz). Robert Copeman received many of the same signals at Mount Waverley, Victoria. A unique catch here was a 49.75 MHz system M signal with Chinese characters floating over a 625 -line Chinese ch. Cl signal. Can anyone throw any light on this mystery'?

News Items

UK: The ITC is expected to advertise Channel 5 licences this winter. The network will consist of 32 transmitters, 25

Left: Middle East Broadcasting identification, a new satellite service via Eutelsat /I F1 (13 ${ }^{\circ}$ E) at 11.554 GHz horizontal. Centre: The " 3 " logo from Thailand TV, received by Anthony Mann in Perth, Australia. Right: Classic F2 reception, from the USSR with the clock three hours in advance. This ch. R1 signal was received by Ryn Muntjewerff in Holland.
of these being co-sited with BBC/ITC transmitters. The service should be operational some time in 1994.
Czechoslovakia: The first independent TV station, NTVNezavostoa Televize, came into operation in Prague on April 3rd, using channels R21 and R29. The test pattern is transmitted from 1700) to the start of programming at 1830 local time. Output powers are low, intended for local reception in Prague.
Bulgaria: A remarkable situation here. In the Sofia region the secret service is jamming the first and second programmes from Belgrade on chs. E32 and E23. Belgrade had previously ceased ch. 25 transmissions due to heavy jamming. The authorities have also been jamming the Greek first programme in south-west Bulgaria.
Sweden: Tele-2 is to start operations this autumn as a rival to Televerket, offering nationwide video links via satellite uplinks and fibre-optic cables laid alongside railway lines.
Iceland: Teletext tests are to start this autumn, the system being known as Textavarp. Nicam stereo is expected to start carly next year.
Germany: The federal states of Brandenburg, Mecklenburg and Berlin are to form a broadcasting operation known as Nordostdeutscher Rundfunk (NOR), absorbing SFB. A third service is to use the former DFF Landerkette channels. New identifications are being used with the SWF Fubk pattern, SWF/BADN 1 NORD and SWF/BADN SW3/N (SWF-3).
USA: Tests of Super NTSC are being carried out, the system combining digital video processing with noninterlaced 1,050 -line scanning. For conventional receiver use the signal is converted to standard 525 -line NTSC form prior to transmission. For Super NTSC reception a decoder that would add something like $\$ 3(0)$ to the cost of a receiver would be required.

Transmitter News

The BDXC tell us that the following Belgian RBRT TV2 transmitters are now equipped for stereo sound: BrusselsRAC ch. E25, Egem ch. E46, Genk ch. E47 and Schoten ch. E62.

A couple of Bulgarian transmitters. Arbanasi BT-1 ch. R3 50 W and Schumen ch. R5 100 kW are possibles here during an SpE opening. The high-powered ch. R3 transmitter remains unidentified. It might sound unduly optimistic to suggest reception of the 50 W transmitter, but some years ago I received an Icelandic 10W ch. E2 relay in Southampton using crossed dipoles.

Satellite TV

The contract to launch Eutelsat II F5 has been signed. Its orbital position will be $7^{\circ} \mathrm{E}$. The craft will have 16 Ku band transponders for telephony and TV traffic. For test and evaluation purposes the European Cup Final on May 29th was uplinked via Eutelsat II F2 using an HD-TV standard.

During late May Eurosport returned to Astra 1A and Eutelsat II F1, though via different transponders. It seems that the European Sports Network (TESN) is still trying to close the channel down.

AsiaSat-1 is now in operation in Band C on a test basis, controlled from Hong Kong by Hutchvision Ltd. Its southern footprint covers from Egypt to Japan and its northern footprint from Mongolia to Indonesia, taking in some 41 countries with almost fifty per cent of the world's population. The plan is to transmit one Chinese-language and four English-language channels in PAL to the south, with the channels duplicated in NTSC form to the north. Current tests are on transponder N 5 to the north, at

AERIAL TECHNIQUES

 SPECIAL PRODUCTS FOR TV-DXING New 7" Screen Multi-System B\&W TV Band 1/2/3 High Gain TV-DXing Aerial

Full VHF/UHF coverage for System B/G///L UK, Europe \& France. 12v \& Mains operation © $\mathbf{F 1 9 . 0 0}$ inclusive of Vat
Carriage \& Insurance $£ 6.50$ AR300XL Aerial Rotor, Control Unit \& addilional Alignment Bearing.

Vertical load carrying 45kg, takes $2^{\prime \prime}$ main mast, $11 / 2 "$ stub mast. £44.95 inclusive of Vat. Additional Alignment Bearing $£ 18.60$ inclusive of Vat P \&P. on Rotor $£ 3.50$.
(designed by Roger Bunney)

Covers Band 1. (47-70MHz) at 4dB gain, Band $2(75-100 \mathrm{MHz})$ at 3.5 dB gain, Band 3 ($175-230 \mathrm{MHz}$) at 9.5 dB gain
£59.95 inclusive of Va Carriage \& Insurance $£ 6.50$ VHF to UHF Upconverter, Model 3638

Converts input band of $40-230 \mathrm{MHz}$ to equivalent bandwidth at UHF, ideal for TVDXing with a domestic TV. £49.95 inclusive of Vat, post \& packing Aerial Techniques, the company that knows the TV-DXing hobby. We stock a large range of equipment for all types of aerial installation, all detailed in our 29 page Catalogue at 75 p, why not send for your copy today. We also have available Multistandard TV's and Video recorders for all systems, PAL, SECAM \& NTSC. Most makes of Satellite equipment carried, together with decoders for Canal Plus, RAI UNO, RAI DUE, Filmnet \& RTL-V. PAL/D2-MAC Satellite receivers now in stock, also NEW!!! The Satellite Book by John Breeds

ACCESS, VISA \& AMERICAN EXPRESS Mail \& Telephone orders welcome (24hr service)
11. KENT ROAD. PARKSTONE, POOLE, DORSET BH12 2EH Tel: 0202738232 . Fax: 0202716951
3.38 GHz , and S 6 at 3.94 GHz to the south. The satellite has 24 transponders in all.

The Italian state broadcaster RAI has confirmed that it intends to start satellite TV transmissions this year using the D2-MAC standard.

CTL (Luxembourg) plans to introduce a Frenchlanguage RTL-2 service via Astra 1B shortly, bypassing French government regulation.

If you want to tune into Space Shuttle TV, look in at the $2 \cdot 214 \mathrm{GHz}$ Shuttle downlink frequency.

New Zealand Ch 1 Transmitters

Simon Hamer has provided the following details of New Zealand transmitters that use ch. 1, whose nominal vision carrier frequency is 45.25 MHz . Use of a scanner to note the offsets will enable these stations, which could be received in the UK via F2 propagation, to be identified.

Station	Offset	ERP
Hikurangi, Northland	+10.4 kHz	10 kW
Hedgehope, Southland	zero	100 kW
Kaukau, Wellington	zero	100 kW
Mt. Murchison, Nelson	+10 kHz	2 kW
Mt. Studholme, Nelson	-10.4 kHz	10 kW
Te Aroha, Waikato	-10 kHz	100 kW
Whakapinake, E. Coast	$+10 \cdot 4 \mathrm{kHz}$	10 kW

Mt . Studholme carries TV2, the others TV1.

Vintage OB

In these days of live international hookups it's casy to forget that history was made only 41 years ago, on August 27th 1950, when live TV pictures were for the first time transmitted across the Channel from the main square in

Calais. The technology used was significant, a 4 GHz microwave link being employed at a time when Band I TV was just expanding across the UK, with very few transmitters. Earlier tests had proved that s.h.f. links could be used. The Calais-London circuit involved several hops, first from Calais to Dover, then to Lenham, both at s.h.f., next to Wrotham at v.h.f., then a radio link to London University Senate House at Bloomsbury and finally a coaxial cable feed to Alexandra Palace. Pioneering technology was used and recordings of the programme are occasionally shown on BBC-TV. We've come a long way, from Calais Town Hall to seeing live Scud attacks on Riyadh via a single hop from a small SNG dish in the desert to the London Teleport.

Book Review

During a recent holiday I found European Scrambling Systems, Circuits, Tactics and Techniques by John McCormac a fascinating read. It's published by MC2 Publications, Waterford, Eire and is available at $£ 29$ including UK postage from J. Vincent Technical Books, Bayling Publications, 24 River Gardens, Purley, Reading RG8 8BX. Each known and used encryption standard is
included, with a clear description of its operation, the history of its use, the various descrambling methods and notes on possible future modifications to the method of encryption. Those with experience in circuit design and current TV engineering will find that sufficient information is provided to construct decoders. In addition to the various MAC standards the book delves back to cover simpler schemes such as that used with the Premiere film channel (SAVE), the Canal Plus/RAI Discret shuffle and the Filmnet system. The anti-hacking and dirty-trick techniques described are an education in their own right.

Information provided includes circuit designs for the forthcoming Irish microwave distribution system. Tangential subjects such as industrial espionage and reverse engineering (taking a circuit apart to find out how it works) are covered. There's a description of the Sky decoder, which is referred to as a "dumb terminal" - the real work is done by the Smart card which contains within its gold square a microprocessor, ROM, EEPROM and RAM in addition to the shorting links. We read how clone Videocrypt decoders were enabled by a single decoder.

The book is an absorbing account of modern electronic encryption, decoding and piracy. It has a soft glossy card cover, A5 format and runs to several hundred pages.

CD Player Casebook

> Reports from Mike Leach, Philip Blundell, AMIEIE and Ronald Aranha

Pioneer PDX540

I've found that chip failure in modern Pioneer players is a rare occurrence. Generally speaking these machines are quite reliable. This one had a problem however, very slight distortion on both channels, mostly from cold. Once the machine had warmed up the sound was o.k. So a spot of freezer came in handy. The culprit turned out to be the CXD11350Z main decoder/signal processor chip IC3. A similar symptom could have been caused by the RAM chip, but in this case it was all right.
M.L.

Ferguson CD08

This machine wouldn't read discs: when the tray closed. the dise rotated only very slowly. My experience is that this is a common problem with CD players. The sled motor had seized, so the laser unit couldn't return to the centre of the dise to read the TOC. A new motor put matters right.
M.L.

Pioneer LDV200

This machine was a Laservision player with a difference: it was used in conjunction with a special P.A. system for karaoke evenings. The chap who struggled into the shop with it was in a panic. "Can you fix it?" he pleaded. The boss said yes and that it would be ready the following day. Bosses always say yes. Before they become bosses they say no to everything: they get promoted for saying no all the time then start saying yes. However that may be, the problem with the machine was that it spun the 12 in . Lasersdisc extremely fast anticlockwise.
As I didn't have a circuit diagram the obvious first step was to check the circuit protectors in the power supply. Everything seemed to be o.k. so I stripped the machine down and tried to muster some enthusiasm. At one point the machine seemed as if it might work. In view of this I turned the machine over and inserted a disc. The fault
appeared again of course. What to do next? As you can imagine, the disc motor is fairly hefty. A connector on its PCB plugs into the motor drive board. When I wiggled this board about the motor stopped spinning. Basically the plug was loose. Tightening the contacts cured the fault, which was a great relief.

When the boss came back from having his tea we were listening to Strangers in the Night without the words and playing about with the P.A. system's pitch control. These karaoke players are extremely clever: the pitch control on the amplifier alters the pitch, not the speed at which the music is played. This is presumably to compensate for bad singers like myself!
M.L.

Philips CD230

The tray and turntable motors were constantly powered and there was no - 10 V supply at pin 4 of IC7560 - when checked the reading was +10 V ! The 2.2Ω safety resistor in the feed to pin 4 of this chip was open-circuit.
P.B.

Sony CDP-C100

This player is equipped with an automatic disc changer that enables ten discs to be played in a row. You can choose from a large number and wide variety of selcctions. It was installed at a hotel to serve in-house music requirements. The problem was skipping and inability to read certain dises. When test disc YEDS-18 was played the machine read the TOC but started skipping. A scope check was then made on the r.f. output to assess the eye pattern. The r.f. signal's peak-to-peak amplitude was found to be just 0.2 V when it should have been between 1 V and 1.4 V . This suggested that the KSS150A optical unit was at fault. When a replacement was fitted and the relevant adjustments were carried out the machine worked normally, the r.f. output being 1.1V peak-to-peak \mathbb{R}.A.

Cassette Salvage

Stan Jackson

Video cassettes tend to be taken for granted. Too many of them are thrown in the refuse bin when they misfunction. But this is not necessarily how a tape should end its useful life.

Symptoms

Let's start by outlining a few of the symptoms produced by a faulty cassette. Poor and/or intermittent fast forward and rewind is one. Another is a tape that on play or record produces a noisy, intermittent picture, sometimes accompanied by noise bars across the picture. These are an indication that the tape is running at the wrong speed, placing a strain on the motor and transport system. As a result the heads and tape transport path become coated with oxide particles, a clean-up job being required before the machine can be used again. The extreme case is when a tape gets well and truly entangled in the machine.

For some time I pondered over this problem and dismantled many cassettes in an attempt to rectify the faults, always without success. Eventually I arrived at a solution, and I'm pleased to say that the problem is now a thing of the past. The following notes outline the steps to take.

Tangled Tape

If the tape is entangled within the machine, switch off and use a pair of scissors to cut the tape at both sides of the cassette. Great care is called for in clearing the jammed tape from the machine, which usually means opening it up. After clearing the entangled tape, use a known good cassette to test the record and playback operations. If no damage has been done, all well and good: if not, use a cassette cleaning tape and try again - this usually restores normal operation.

Repair Procedure

The following procedure should be adopted to repair the cassette itself. First prepare a clean work surface. Then, after removing the edge label, use a good-quality Phillips screwdriver of the correct size to remove the cassette casing screws. Place these in a saucer or something similar so that you don't have to search around on the floor afterwards to find the odd screw. At this stage hold the cassette firmly to prevent it coming apart. With the cassette in the same position as when inserting it in the machine, right side uppermost, rotate it through 180° so that the front label edge is at the rear. The loading flap should now be towards you, with the hinge at the top edge. With the front edge held so that the loading flap remains in place, lift the top edge of the case from the lower section and put it aside. This gives access to the reels and the tape transport system.

To the rear centre you'll see the reel-stop or braking mechanism, which consists of three levers. The centre lever exerts pressure on the one at each side: when the centre lever is depressed the side levers can be moved away from the reel edges, allowing them to move freely. The centre lever is easily disturbed when the case is open and is
simple to replace as no springs or attachments are connected to it. Slight pressure on the centre lever frees both reels so that the tape ends can be drawn out for splicing. Draw about nine inches from each reel forwards towards you. Hands should be perfectly clean and dry, the work surface likewise.

Tape Splicing

I prefer to splice manually, and draw a line on a piece of paper to assist with the lining-up procedure. Cut the tape ends as square as possible and use a three-quarter inch length of splicing tape, carefully attached to the tape side that faces away from the front and towards the inside of the cassette. Before splicing, ensure that both tape ends are correctly aligned and are not twisted with respect to the tape run from reel to reel. If a tape-splicing kit is available, so much the better. Apply a fractional amount of white chalk powder to the splice, using the tip of your little finger. Then after wiping your hands remove the residue carefully with a duster. This ensures that no adhesive is present around the splice, avoiding complications at a later stage. If the splicing operation is done with a closed cassette and no other work is required, gentle pressure on the reel-brake lever, accessible through a small hole in the centre underside of the cassette, will release the reel brake, allowing the tape to be drawn out. The tip of a ball-point pen is ideal for this purpose.

Cassette Overhaul

Back now to the cassette overhaul procedure. It's a good idea to sketch the tape patch before dismantling the cassette - note that the left-hand threading differs from the right as the tape makes its way past the pins and rollers. A sketch will avoid confusion when you reassemble the mechanism.

Carefully lift the reels, one at a time, from the casing. Then, with the tape clear of its run, place the reels aside. I've found the ideal lubricant for the next stage to be Sainsbury`s Sheen, a cleaner-polisher. You'll find that with time a sticky, greasy substance builds up in the interior of the cassette case and on its mechanism. Deal with this as follows.

First clean and polish the lower plastic casing of the cassette. Do this by applying a small amount of the cleaning fluid to the reel compartment areas. There are two circular areas, each of which must receive attention. Clean the left-hand area with a clockwise motion and the right-hand area with an anticlockwise motion, so as to disturb the braking levers as little as possible. A clean lintfree cloth should be used to apply a few drops of the fluid, after which polish with a light motion until dry. Repeat this operation on both surfaces and check the result with the tip of a finger. The surface should be silkily smooth. Then clean the underside of each reel in the same way, being careful not to touch the tape.
Now for the tape rollers and guide pins. Lift out the chrome rollers, clean them with a drop of the polish on the tip of a duster, then replace them. Do the same with the left-hand nylon roller. Gently prise the steel pins, one at each side, from their sockets. Clean them, replace and press home. Next replace the reels, one at a time, operating the braking levers so that the reels drop into place. Insert the right-hand reel first, guiding the tape carcfully through its path via the rollers and pins. Note that, as previously mentioned, the left-hand path differs slightly from the one at the right.

Before closing the case activate the brake lever, by application of gentle pressure, in order to free the reels. Check that the tape runs correctly by rotating each reel in turn. Finally, with the brake in position, rotate one reel slightly to take up any slackness. Place the top of the casing in position very carefully and, when aligned, press down and secure with the centre screw first followed by the remaining screws. Load the cassette into the VCR and wind fully forward, then fully rewind. This is especially necessary with tapes that have been out of use for a long period.

You may ask whether all this is worthwhile? The satisfaction obtained from reviving a dead tape is great indeed. Best of luck!

344
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Sherlock's coming along well: he seems to learn more about TV servicing during a week at the bench than he could in a year at technical college. As he says, it all comes alive on the bench. On one or two occasions he has himself come alive, to everyone and in particular Sherlock's consternation!
During quiet periods we set Sherlock to work on secondhand stock equipment. One such item was a Sony TV set, Model KV2204, which had come up for a decision on whether to refurbish or scrap it - the decision depends mainly on the condition of the tube and the cabinet. Though old now these sets are good. This one's cabinet was in excellent condition and it was complete with an RM604B remote control unit, a point in its favour. On test all worked well apart from the quality of the picture: the display was ill-defined and had a sickly green hue, especially in areas that should have been red.

Sherlock carefully discharged the tube's bowl capacitance before connecting a tube tester, a precaution based on bitter experience of damage to himself and to the testing machine. The emission indicator needles were slow to rise, and when they had eventually crept up to their final positions the readings for all three guns were low: the red gun was almost "on the floor". Various degrees of reactivation were tried with little success. At the end of it all the Sony set's picture was still poorly and the newsreader still looked as though he'd just crossed the Channel in a force 9 gale.

The Service Manager has to authorise the scrapping of a set. He was about to condemn this one when a gleam came into his eye. He trotted off to the warehouse then staggered back, some moments later, with another 22 in .

Sony set. It had a broken cabinet and a label on which "PSU U/S" was written. He had Sherlock test its tube there was no charge left in it from last October. To their delight the tester/reactivator showed that the emission was very good. So the decision was taken to make one good set from the two then sell the set at the company's retail arm, Tower Road Television. Sherlock set to work.

An hour later the deed was done, but when the reassembled set was switched on there was a bright green picture with no other colour visible at all! The display remained green while the brightness, contrast and colour controls were wound from one end of their travel to the other. It stayed green while all the drive and background presets were twiddled. The brightness and contrast of the green image could be altered, but no other colour could be obtained. Sherlock checked that the newly fitted tube had the same type number as the previous one. It had: 570BE22.

His next move was to check the drives at the tube's cathodes. He found that there were perfectly good waveforms of about 90 V peak-to-peak at each gun. So the tube tester was hooked up once more, this time by the Service Manager himself. The tube again passed the test with flying colours. S.M. replaced the base and e.h.t. connectors and switched on - Sherlock and the others having by now gone out to lunch. Up came a picture with just about every colour of the rainbow. Once the set was converged and set up the display was very good indeed. How do you account for that? See next month for the answer and another test case puzzler.

ANSWER TO TEST CASE 343 - page 669 last month -

As Sherlock continually finds, dealing with electronic equipment faults is seldom straightforward. His struggle last month was with a little TX90) Ferguson set with the two linked symptoms of low brightness and no colour. Checks showed that the cause of the troubles certainly lay within the colour decoder chip IC103. But for the device itself to be responsible it would have had to have developed two separate faults simultaneously. This was unlikely unless there had been a flashover from the tube or a high-voltage section, and there was no reason to suspect that such an event had occurred.

There's one common factor however with the luminance and chroma signal processing carried out within the chip. Television Ted soon latched on to this. It's the line-rate pulse that's fed to the chip, within which it's used for luminance signal clamping, PAL switch phasing and burst gating. In the TX90 chassis it enters the UPC1365C chip at pins 19 and 23, which are linked together externally. The pulse comes from the line output transformer via a network of diodes, resistors and capacitors. There was a good pulse at the transformer but a very peculiar waveform at the chip.

Perhaps the most vulnerable component in the pulse shaping network is the high-value ($270 \mathrm{k} \Omega$) resistor R171. It proved to be virtually open-circuit, a replacement restoring full colour and brightness. Good old Ted!

[^1]| | 104 ABBEY STREET ACCPINGTON, LANCS BB5 1EE
 \% 0254 236521/232611 FAX 0254395361 24 Hr Answering Service Partners: S \& B CUCKNELL | BRAND NEW TVS AND VIDEOS
 BRANDED MAKE - 12 MONTHS PARTS WARRANTY - FULL SPARES BACK UP SERVICE INFORMATION AVAILABLE FULL BROCHURE ON REQUEST | | |
| :---: | :---: | :---: | :---: | :---: |
| | 21"FSTMULTISYSTEM TELEVISION
 Will work on eleven different overseas systems. PALSECAMNTSC etc. Has audio out \& in and video out \& in. Suitable for use as a TV outside UK as a computer monitor, with security cameras, with laser karaoke systems . superb value $£ 204.00$ + VAT Service Manuals available.
 SATELLITE SYSTEMS
 We can supply DISHES, RECEIVERS, LNB, FIXING BRACKETS, F CONNECTORS, CABLE, SAT FINDER METERS, CAIMPING TOOLS, TAPE, LEADS, MASTS ETC. FULL RANGE AVAILABLE AS LISTED in Catal ogue. please send large sae. | | | |
| REMOTE CONTROLS
 onvt know FOR ALI TWO

 Lnike leaming temotes :c3.00
 COMPUTER SPARES | NEW VALVES
 Over 2000 types avaliabe and now an exciting NEW RANGE or speciahist Hi-H, PRE-A
 degausing colls
 Extemal Stick Type Oegaussing Coil for
 Demagnetising
 97.50 | | | |
| | SEND videcaudio signal to anay df the tv sets in YOUR HOUSE. LIKE HAVING A VIDEO IN EVERY ROOM TRANSMITER ANO WIRE SO THIN IT CAN HAROLY BE SEEN. EALSO WORKS FOR SATELLITE.
 TRIPLERS
 full listin catalogue. seno large sae please.
 LOPTX | TV AND FM AERIALS | AEAAALS, BHACKETS, CAPACTOHS, COMPU TRACAL ACCESS. FUSE RELAYS, SEMicoNOU OEEECTORS, SWITCHE brackers. Tools, ts | |
| We have a full range of both mechanical and electronic spares or Amiga 500 and Commodore 64 as well as nrost parts to Sincliai Spectrum Spectium Plus | | (${ }^{\text {a }}$ | | |
| | | | SPECIAL OFFERS | |
| | HINARI CT4S' HINARICTG7 | | | |
| | | | (enter | |
| | | | | |
| | | | | |
| | | END OF LNE STOCK S Sitiococrill | ALSO FOR ONE MONTH ONLY YILY STUPID
 SENSELESS PRICE IN JHSSV VIDED HEAD | |
| | | THERE IS VAT ON $\mathbf{P}+\mathbf{P}$.
 BOOKS \& MANUALS ARE ZERO VAT Goods are despalched on the day we receive your order If for any reason we are oul ol stock we wit try to intorm you as
 some cases we may have to supply an equivalen We need expiry dates tor credif card orders Min DFDIR ES | | |

TV LINE OUTPUT TRANSFORMERS

PHONE 081-948 3702 FAX: 081-332 0583
ALBA AMSTRAD. BUSH. DECCA . DORIC ETRON. FERGUSON FIDELITY GEC. GRUNDIG GRANADA HITACHI HINARI, INDESIT ITI KIMARA NIKKAI MATSUI MURPHY OSAKI NORDMENDE LOEWE-OPTA REDIFFUSION PYE. PIILLIPS SANYO SAISHO SIIARP SONY . SOL OVOX SUSUMU TANDBURG . [ELEFUNKEN THORN IRIUMPH HUANYU GOLDSTAR

LARGE SELECTION: OF VIDEO PARTS REMOTE CONTROLS: ICs TRANSISTORS CALLERS WELCOME AT SHOP

TIDMAN MAIL ORIDER LTD. 236 SANDYCOMBE ROAD RICHMOND SURREY TW9 2EQ. Mon-rri9am to 12.30 pm \& Approx. 1 mile trom Kew Bridge 10 am to 12 noo

㺩 C

2 Holyoake Street, Wellingion, Somerset Tel: 0823667525 Fax: 0823660277 MICROWAVE OVEN COMPONENTS

Microwave Spares Distributors (Magnetrons) (Transformers) (Capacitors)
Distributors for Bussman-Cooper Electronic Fuses and the ECL FUSE SELECTION BOX
Ask for our Catalogue NOW!

MAKE YOUR INTERESTS PAY!
 Train at home for one of these Career Opportunities

Over the past 100 years more than 9 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in homestudy courses and is the targest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics
Elec. Contracting/ Installation	Computer Programming
CCSE/GCE/SCE over 40 examination subjects to choose from	
Name:	
Address:	
	P. Code
1International Cor 312/314 High Str Tel: $081-643956$	espondence Schools, Dept. EGS81 et, Sution, Surrey SM1 1PR. or 041-221 2926 (both 24 hours).

SIZZLING SUMMER SENSATIONS FROM A.M. COMPONENTS LTD

OUR ENTIRE RANGE OF VIDEOHEADS REDUCED BY 30\%

eg VIDEOHEAD 15 (Hitachi VT8000) only £12.56, VIDEOHEAD 2 (Pan VEHO121) only £ 9.06

PHONE 0203471241 OR FAX 0203465298 FOR DEIAILS

This month's offers include 25% reductions on selected Hitachi and Thorn remote controls.
Save money on genuine Mitsubishi and Panasonic idlers and Akai and Orion replacements.
All offers are listed in the current Tradelink - phone 0203471241 for your FREE copy!

LEADS, POTENTIOMETERS AND SKELETON PRESETS REDUCED TO CLEAR phone 0203471241 for a copy of the current Tradelink

Please note our carriage charges:	
Up to 500 g	$£ 1.00$ (list Class Post)
501 g to 1.25 kg	$£ 2.50$ (lst Class Post)
Over 1.25 kg	$£ 3.50$ (Carrier)

The 1991 A.M. Components Catalogue
is available priced $£ 1.00$ (including $P+P$)

Call the Credit Card Hotline on 0203471241 (24 hours) to place your order.

Please note these prices are exclusive of VAT and delivery charges.

A:M:Components lid, Beechwood House, Falkland Close, Coventry CV4 8HQ	Sales: (0203) 471241 Admin: (0203) 466277	Fax: (0203) 465298 Telex: 31492

[CHITMOVIC

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR

DALBANI (UK) LTD.

JAPANESE COMPONENTS SPECIALISTS ELECTRONIC COMP. DISTRIBUTORS (Imp. Exp.; EX-STOCK DELIVERY 6,000 DIFFERENT PARTS

TRANSISTORS			INTEGRATED CIRCUITS			
$2 S A$	BD	BUY	AN	LM	SAB	TC
$2 S B$	BDW	DTA	BA	M	SI	TCA
$2 S C$	BDX	DTC	CX	MB	SLA	TD
$2 S D$	BF	MJ	HA	MC	STA	TDA
$2 S J$	BT	MJE	KA	MDA	STK	TEA
$2 S K ~$	BU	$1 N$	KIA	MEA	STR	TTL
$3 S K ~$	BUT	$2 N$	LA	MN	STRD	UPC
AD	BUW	$1 S$	LB	NE	TA	UPD
BC	BUX	TIP	LC	SAA	TBA	CMOS

STOCKISTS OF IC's \& TRANSISTORS, AUDIO AND VIDEO HEADS, MOTORS, IDLERS, PULLEYS, ROLLERS, BELTS AND TYRES FOR RADIO CASSETTE, VIDEO AND TV'S. (ORIGINAL AND COPY REPLACEMENT PARTS AVAILABLE)

[^2]

AN	［4．50	AN7172K	5	HA	\ldots	A4978	$\underline{5} .75$	PLLO2A	¢5，00	STK5325	${ }^{56} 75$	TA7628P	${ }^{1} 1.95$	${ }^{\text {Bra } 90}$	$¢_{00.70}$	
An3312	\＄2．95	AN7173K	E3．50	HA11714	53.50	80	£1．95			${ }_{\text {STK }}$ S332	${ }^{20} 50$	TA76404P	¢1	BfR91	${ }^{〔} 1.20$	
AN3320K	\＄4．95	AN7178	$\underline{\$ 2.50}$	HA17175	93.50	La4182	${ }^{\text {¢1．}}$（25	SAAP124	［2．50	STK5337	97.25			BFY99	c0．50	
AN3792	¢2．95	AN7420	$¢ 1.95$	HAY1716	£4．75	La4183	¢2． 20	SAA5030	${ }^{23.50}$	SIK5338	${ }^{54.50}$	TC9106BP	¢4．95	BRY56	c0． 20	
AN3821K	¢5．95	AN7470	¢7． 20	HA11717	£4．75	LAA190	¢1．75	SAA5042	88.00	SIK5421	${ }^{66} 50$	TDA1010A	¢1．40			6 PADDINGTDN GREE
AN3822K	¢5． 95	BA1335	¢2．50	HA11718	£4．75	LA4192	$\oint 1.75$			${ }^{\text {STK }}$ S422	${ }^{26.50}$	TDA1011	¢1．40	buz08A	¢1． 00	－PADDINGIDN
AN5010	${ }^{53.95}$	BA1355	¢2． 20	HA11724	${ }^{\text {c8．00 }}$	la4z01	${ }_{51} 160$	STA301A		${ }_{\text {STK }}$ STK5451	${ }_{65} 55$	TDA1015	11.50 $\$ 1.50$	BU208D BU326A	${ }_{¢ 1.20}$	NW21．G
AN5011	9.95	BA5102A	£2．50	Hat1727	¢8．50	LA4260	$¢ 2.30$	STA401A STA441C		STK5471 STK5481	55 59 59	TDA1170S	${ }^{1} 1.50$	$\begin{aligned} & \text { BU326A } \\ & 8 \cup 406 \end{aligned}$	${ }_{\text {cos }}$	1212
AN5030	${ }^{\text {¢ } 4.50}$	BA5115	$\underline{9} .50$	HA11736	${ }^{\text {ct }}$ 5 50	La4261	$\underline{12} 30$	STA441C	2.75	STK5481	${ }_{5} 5$	T0A1506	${ }^{\text {¢ }}$ ． 35	$8 \mathrm{Bl407}$	${ }_{50} 0.70$	Tel：071－723 9246
ANS033	${ }_{\text {c1 }} 5.20$	ba5402a	$\underline{5} 20$	HA11745	${ }_{¢} 9.50$	LA4280	$\underline{12.95}$	STK0029	［4． 75	STK5720	［4． 25	TDA1510	$\ldots 3.60$	BU408	¢0．95	
ANS 135	53.95	BA5	E1．50	HAl1745NT	¢7．50	La4420	51.50	SIK003	［4．75	STK5725	［4． 25	TOA1510S1	c3． 95	BU426A	¢0． 80	ax：071－202059
	¢5．		F2． 20	hatalita	¢7． 50	La4422	¢1．50	STK0040	c6． 25	STK5730	14.25	TOA15				
AN5151	£6．50	BA6104	¢2．20	HAt1747ANT	¢7．50	LA4440	$\underline{\mathrm{m}} \mathrm{F}$ ． 50	${ }_{\text {STK }}$	［56， 50	${ }^{\text {STK6732 }}$	¢11．75	TDA1522	${ }^{\text {¢ }}$ ¢1．95	BU500	¢1．00	VIDEO HEADS
AN5256	$\underline{22} 20$	BA6109	91.60	HA11749	¢4．25	LA4445	$\underline{52} 20$	STK433	${ }^{1} 5.25$	STK7308	${ }_{\text {c6．}}^{60} 5$	TDA2002	${ }_{50} 80$	BU508D	¢1．00	AMSTRAD 4500／5200／9000 £18．00
AN5265	81.75	8 86122	¢2． 20	HA11750	¢5．00	La4446	$\underline{9}$	SIK435	${ }_{\text {c7 }} 5.50$	STK7348	E4．95	T0A2003	ع0．95			AMSTRAD VCR 7000×1
AN5440	${ }_{51} 5.95$	EAAL24	${ }_{\text {c1 }}$	HA12003	$\mathrm{E}_{12} 1.90$	L44461	¢1．80	STK443	${ }_{88.95}$	STK7404	${ }_{66} 95$	TDA2004	¢1． 95	2N3055	50.50	HITACHI VT11／14／33 ．．．
AN5436	52.20	BA6209	$\underline{51.95}$	HA12045	E3． 25	La4465	$\underline{29} 30$	STK457	¢7．50	STK8050	¢9．50	toaz005	E1． 95	2N3773	¢1．50	
A	$\underline{\$ 2.75}$	BA6218	¢1．95	HA12016	93.75	La446E	${ }^{20} 30$	STK459	c7．75	STK8250	$\underline{68} 95$	TDA2006	¢1． 50			HITACHI VT7／17／19 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 32.00$
AN5512	¢2．95	BA6219	¢2． 20	HA13001	E1．90	LA450，	$\underline{2.50}$	STK463	${ }_{5} 9.50$	SIK8260i	112．50	TDA2020		$\begin{aligned} & \text { 2SAI1 } \\ & 2 \text { SAIt } \end{aligned}$		HITACHI VT35／39
AN5515	$\underline{29} 20$	BA6229	¢2．20	HA13007	£4．50	La4505	$\underline{\%} 80$	STK465	${ }_{5} 97.95$			TDA2510	${ }_{¢}^{\text {¢1．}}$ ¢ 95	${ }_{\text {2SA1254 }}$		JVC／FERGUSON PV 31332G \quad－\quad ¢8．50
AN5521	2． 20	BA6238A	¢1．95	HA13119	${ }_{52} 2.50$	144507	5.50	STK1050	${ }_{5} 57.25$	STA370	E5． 20	TDA2600	c6．00	$2 \mathrm{SA1489}$	5.95	JVC／FERGUSON PV 31332L …．．．．．．．．．．．．．．．．．．．8．50
AN5610N	${ }^{2} .50$	BA62394	$\underline{2} .20$	HA13118	$¢_{5.50}$	La4508	${ }_{91} 8.50$	${ }_{\text {STK1070 }}$	${ }_{c} 97.75$	STA371	¢5．20	TDA2611A	¢1． 30	2SA1516		JVC／FERGUSON HRD 180／230／3V59 ．．．．．．．．．．．．．．$£ 33.00$
ANS615	c2． 95	BA6302A	¢1．80	HA13403V	55.50	Latsio	${ }_{c 1} 1.75$	STK2028	${ }^{17} 9$		${ }_{5} 5.20$	TDA2653A	E． 50			JVC／FERGUSON HRD $725 / 755 / 3 \mathrm{~V} 43 / 3 \mathrm{~V} 53 \ldots \ldots . . .{ }^{\text {a }}$［ 39.00
	${ }^{83.50}$	${ }_{\text {BA64305 }}$	81.95	KA2101	$¢ 1.95$	LA4570	$\underline{2} 75$	STK2029	c6．50	STR381	${ }_{55} 5$	toa3500	£5．50	2 SB528	¢0．60	JVC／FERGUSON HRD 250．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 35.00$
An563	¢3．75	8A6328	$\underline{22} 20$	KA2206	$\underline{\$ 1.75}$	LA63580	51.20	STK2038i	${ }^{\text {c．}} 50$	STR441	${ }_{55} 20$	T0A3501	$¢^{\text {¢ }}$ ． 50	2 SB631	50.60	JVC／FERGUSON HRD 7655／3V32／8942 ．．．．．．．．．．．．．$£ 27.00$
	51.75	BA6411	52.20	kaz212	¢1．20	LA7031	$\underline{2} .60$	STK2048i	$¢ 9.75$	STA450	5 20	TDA3505	${ }^{£ 4.20}$	2 288775	¢1．80	MITSUBISHI HS 303／304／310／320／700 ．．．．．．．．．．．．£28．00
AN5701	11.20	BA7005	52.20	KA2261	£1．20	La7032	［2． 95	STK2125	${ }_{6} \mathrm{c} .75$	STR451	55.20	T0A351	${ }^{54.50}$	2SB8	2.95	PANASONIC VEH 0121 ．
50	E3．75	BA7023L	52.50	KA2284	¢1．20	LA7042	28.80	STK2129	6.95	STR453	552	T0A356				PANASONIC VEH 0218 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 14.00$
AN5753	¢1．95	BA775才AL	£1．95			La7520	${ }_{c c}^{\text {c．}} 25$	SIK2139	${ }^{28.00}$	STR454	55.20	TDA35562A	${ }_{64} 5$			PANASONIC VEH 0287 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 21.00$
$\begin{array}{\|l\|} \mathrm{AN} \\ \mathrm{AN} \end{array}$	${ }_{51.50}$	EX8341	£4．50	LA1135	${ }_{\square}^{2} .50$	LA780：	${ }_{11} 1.50$	STk2230	${ }_{56.50}$	${ }_{\text {STR455 }}$	${ }_{55}^{55} 20$	tDA4500	${ }_{5} 8.95$	${ }_{2 S C}{ }^{\text {S }} 1815$	${ }^{2} 0.10$	PANASONIC VEH 0286．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 21.75$
AN	¢1．95			LA1140	$\underline{\%} 20$	LA7806	$\underline{2} 50$	STK2240	$¢ 9.50$	STR457	55.20	TDA4501	¢4．50	2SC1913	51.20	PANASONIC VEH 0177．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 21.50$
AN6247	51.75	HA1196	75	LA1150	［1．75	LA7808	$\underline{52} 75$	STK2250	${ }_{59.50}$	STR2005	55.95	TDA4503	¢． 4.50	2SC1969	$\underline{1.75}$	
AN6250	¢1．50	HA1197	51.80	LA1170	51.75	LA7820	\＄2．75	STK3041	¢6．50			TDA4505	¢3． 95	$2 \mathrm{SC2166}$	－ 11.00	PANASONIC VEH 0174 （original）．．．．．．．．．．．．．．．．．．．$£ 32.00$
AN6310	［5．5	HA1199	$\$ 1.50$	LA1185	$¢ 1.60$	LA7830	$\underline{92} 20$	STK3042	${ }^{56.50}$	STR2013	5520	TDA4510	¢3． 95	$2 \mathrm{SC2235}$	${ }^{5} 0.49$	PANASONIC VEH $0267 . \ldots \ldots$
AN6326	${ }^{2} 5.5$	HA1338	$\underline{52.95}$	LA1230	${ }^{51.50}$	LA7831	¢2．50	STK3044	¢5．75	STR3115	¢5．95	1044600	$\underline{3}$	$2 \mathrm{SC2335}$	¢1． 20	PANASONIC VEH 0267 （original）$\quad £ 37.00$
AN6327	E3．50	hal 339 A	$\ldots 3.50$	La1231N	9.00			STK3062	E6．75	STR3125	${ }_{56} 20$	TDA4600－2	${ }_{5}^{2} .50$	$2 \mathrm{SC2570}$	50．50	PANASONIC VEH 0210 \quad－$¢ 35.00$
	23． 50	Ha1367	¢． 50	$\underline{L 11363}$	${ }^{c} 1.20$	LB1403	¢1．50	STK3082	${ }^{\text {E5 }}$ ¢ 75	STR4211	5450	T0A4250－2D	${ }_{84} 9$	${ }^{2 S C 2581}$	52.95	PANASONIC VEH 0252．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 29.50$
AA	12.	HA1	¢3． 50	LA	${ }^{\text {c1．}}$ ． 50	LB1405	11.50	STK3152	${ }_{5}^{15.50}$	STR5015	¢6． 20			2SC2681	${ }_{2}{ }^{2} 80$	
AN6340	${ }_{63} 8.75$	HA1388	$\underline{\$ 2.95}$	LA1460	$\$_{2} .75$	L81416	\％1． 50	STK4017	¢5．75	STR5412	$5_{5}^{5} 5.20$	UPC57	51.00	2SC3153	5.20	SAMSUNG Most Models ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 19.50$
AN6342N	£2．50	HA1392	$\underline{5.20}$	lazo00	51.75		${ }_{5} 50$	STK4025	¢6．50	¢	${ }_{56.20}$	UPC1025	$\underline{52} 30$	2SC3156	${ }^{2} 3.70$	SANYO VHR 1100．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 22.00$
AN6344	¢4．75	hat 1394	$\underline{52.50}$	La2100	$\underline{2} .95$			STK4121	¢6． 95	STP50103A	54.50	UPC1185H	［2． 50	$2 \mathrm{2SC32}$	c． 2.95	SHARP VC 630017300 original（BRASS）$\quad £ 3200$
AN	${ }^{\text {c］．}}$	HA1396	13.75	laz200	${ }^{1} 1.50$			Tk412	¢55．95	STR54041	¢5． 20	UPC11981V	2.75	${ }_{2 S}$	${ }_{5}{ }^{2} .75$	
	E． 85	HA1397	$\underline{52} 50$	L42400	${ }^{1} 1.50$	LC7363	\％3．75	STK413111	${ }_{66.75}$	STR58041	¢5．20	UPC1197C	${ }_{¢ 1.60}$	2SC3466	5.95	SONY DSR 36
AN635	${ }_{5}$	Hat 398 HA1112 d	${ }_{52}$	L43360	${ }_{\text {cos }}$	LC7800	¢2．75	STK414111	¢7．50			UPC 1230 H	$\underline{5} .50$			TOSHIBA V31／33／9600 ．．．．．．．．．．．．．．．．．．$£ 18.00$
	12	HA＋1211	52.30	LA3161	¢1．20	LC7815	95	STK4141V	¢7．95	TA793P	¢4．00	UPC1237H	${ }^{1} 1.20$	2 2S355	r0． 60	TOSHIBA V71／87
AN	¢4．5	HA11215A	¢2． 20	LA3201	${ }^{\text {¢0 }}$ ． 95			STK4142i	¢7．30	TA7205AP	18.10	UPC1241H	¢1．95	2 SO 371	$\underline{5} .50$	
AN6371	${ }^{2} .25$	HA1219	$\mathrm{fl}^{1} 75$	La3210	c0．85	LM 1303 N	$¢ 1.50$	STK415111	¢7．50	taz27AP	1.60	UPC1263C	5.30	${ }_{2} 2 \mathrm{SO} 424$	${ }^{2} .95$	FER－TOSHIBA TRANSISTORS
AN6387	${ }^{2} 5.59$	HA1 1221	$\underline{5} 20$	LA3220	\％1．50	LM3914N	$\underline{2} .75$	STK415211	¢7．85	TA7229P	${ }_{¢}^{¢ 1.30}$	UPCC1278H	${ }_{2}^{2} .50$	2SD525	${ }_{50}{ }^{\text {c／．}} 900$	
AN6610	\＄1．80	HA11225	$\underline{51.95}$	LA3301	¢1．30	LM3915N	$¢ 2.75$	STK4162	¢7．95	TA7230P	11．50	UPC1288V	$\underline{\$ 2} 75$	2 S0600	50.70	CASSETTE MOTORS
AN6671K	¢4．9	HA11226	£4．50	LA3310	$\underline{9} .75$			STK4171ii	¢8．95	TA7232P	$¢ 1.95$	UPC1318AV	$\underline{\$ 75}$	${ }^{2 S 0768}$	${ }^{1} 1.20$	6－9－12－C．W
AN	¢5．50	HA11227	$\underline{\mathrm{T} .20}$	LA3350	¢1．30	M5218L	$¢ 1.95$	STK4172ii	¢8．95	TA7233P	¢2．50	UPC1335V	C .75	2 S0811	$\underline{6.95}$	12－C．C．W 2.95
AN6677	［4．95	HA11235	18.95	LA3361	£1．20	M5218P	¢0． 95	STK4181i	¢8．95	TA7240AP	¢295	UPC1363C	${ }^{\text {c．}} 75$	$2 \mathrm{SDD845}$	E． 95	
AN6876	¢1．50	HA11244	9.95	LA3370	92.50	M51 102 L	$\underline{5} .95$	STK41971	99.50	TA7241AP	$\underline{12.95}$	UPCL1364C	${ }^{4} 4.20$	2 SO 898	$\underline{2}$	assefteheads
AN7062	$\underline{5}$	HA1251	$\underline{\mathrm{F}} .50$	La3376	$\underline{20}$	M 51104 L	2.20	STK4932	¢4．50	TA7250BP	5.95	UPC1373H	51.20	$2 S 01275$	¢1．00	Mono ．．．1．20
${ }^{\text {ANP7106K }}$	${ }_{62} 2.50$	HA11401 HA11423	${ }_{5}^{51}$	LA4030	c1． C 20 150	M51393	${ }_{54.50}$	STK4352	55.90	TA72518P	$\underline{2} .95$	UPC 1387C	1.195	2S01276	11.20	Stereo ．．$£ 1.80$
AN7147	$\underline{22.50}$	HA11440	$\underline{5} .95$	LA4031P	¢1．95	M51397AP	［5．50	STK4793TV	99.50	TA7270P	$\underline{525}$	UPC139tH	$\$ 1.50$	2SD1397	¢2．00	Auio Rev．． 22.75
AN7148	52.30	HA1580	¢5．25	LA4032P	$¢ 1.90$	M51521L	£1．90	STK4803	¢8．50	TA27271P	［2． 50	UPCC1403CA	¢¢． 75	2 SO 13	${ }^{〔 1.50}$	EMS OISPATCHEO WITHIN 48 HOURS
AN	12.50	HA11701	13.50	LA4100	12.20	M51522L	$¢ 1.50$	STK4833	$¢ 9.50$	TA7280P	$\underline{2} .95$	UPC1420CA	¢5． 20	2 2SD1406	¢1．50	e add 80p post and packing and then add 1712\％
156 N	12.50	HA11703	£4．50	La4101	$¢ 1.00$	M54543L	1.75	STK4843	£8．95	TA7281P	1275	$8 \mathrm{BC516}$	50.25	2 SD1407	¢1．95	
	c3．50	HA11704	¢5． 20	LA4102	¢1．40	M54544L	$\underline{2} .75$	STK4853	19.50	TA7299P	$\underline{51} 95$	BC517	${ }_{50}{ }^{2} 25$	$2 \mathrm{SOH426}$	\％． 35	Callers by appointment
A	\mathfrak{m}	HA11705	${ }_{5} 5$	L44110	${ }_{51} 1.75$	MB3712	${ }_{51} 1.50$	STK5211	${ }^{\text {¢6 }} 6.75$	ta7317P	${ }_{51} 1.50$	8C639 BC640	$\begin{aligned} & 50.22 \\ & \mathbf{y O}_{0}^{22} \end{aligned}$		${ }_{\text {c．} 20}$	pening times 10am－5pm Mon－Fri．9－12 Sats．
AN7 AN7168	［2．75	HA11710	${ }_{¢ 3}{ }^{1} .75$	LA4460	$\underline{\$ 20}$	M B 3731	$\underline{2.75}$	STK5315	¢6．75	TA7609P	5270	BD243C	$¢_{0.50}$	2SD1453	¢1．85	VISAACCESS ACCEPTED MIN．－TELEPHONE DRDERS $£ 5.00$
AN	53.50	HA117	¢6． 50	LAA	51.75	M8884	¢5．75	STK5324	¢5．75	TA7611AP	¢2．20	BD244C	${ }^{0} 0.50$	2S01455	5.95	

AUGUST SPECIALS		

	(30)

Used Equipment - With 30 days guarantee, Manuals supplied il possible.
This is a VERY SMALL SAMPl. OF STOCK SAE Or Teepphone for lists Please check availibilify before ordering CARRIAGE
STEWART of READING 110 WYKEHAM ROAD, READING, BERKS RG6 $1 P L$ Telephone: 0734 268041 Fax 10734) 351696
Callers Welcorne 9am-5.30pm Mon-Fri (until 8pm Thurs)

TRADE ONLY

MICROWAVE OVEN PARTS

MAGNETRONS • DIODES • TRANSFORMERS LAMPS • FUSES•MICROSWITCHES PHONE NOW FOR PRICE LIST A.W.I. MICROWAVE OVEN COMPONERTS

Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP Telephone: 0983296121

Fax: 0983296122

RELAY

DO YOU RENT TELEVISIONS?

DO YOU STILL USE A CARD SYSTEM?

DO YOU FIND IT OIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME? pack age include

* automatic updating of each customer's record
\star alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available

WEW HIRE PURCHASE PROGRANME NON AVALLABIE AS WEL.
These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration
WILLIAM J THOMPSON Donaghanie Post Office Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)

Stock items despatched by return

VIDEO HEADS

3HSSR-VCR7000 (Saisho/Orion) PSFF-VCR4500, 5200,9000
PSF2-VCR 46004700 PSF2-VCR4600,470
PSF3-VCR 6000
FERGUSON
3HSSV-2 Head universal
3HSSUVB-3V32 HR7655
3HSS4VC-3V48'HRD565
3 V48, 58.59 .65 , F 10.11
$12,1314,20,21,26$
And most other Fergusons
HITACHI
3HSSHA-VT8000,9000 series
3HSSHB-VT11, 33 etc
10082 -VT 120.220
10081 -VT 130.135
10081 -VT 130.
PANASONIC
3HSSN-2 Head universal
3HSSUIN-NV $100,370,380$ Philips VR6460
3 HSSU2N-NV230,470,480,69, 10.
11.15PX

3HSSU3N-NV430, 460
3HSS3N-NV777,330
3HSS4NB-NV730
3HSS4NA-NV 366
NVG30,33.40,45,46.130, \& most other Panasonics
SANYO
3HSSSY-VHR1100.1110,1300
3HSS3SY-VHR1500
3HSS3SY-VHR1500
SHARP
HSSSSP-VC9300, $9500,9700,381,48$
482,483,486 etc
3HSSSPB-VC581.583,651,670 etc
$\mathrm{VC7000}, 8000$ series (Brass)
VCTHER MAKES
OTHER
Alba 4000, Goldstar 8000, Sentra 8000 .
Fisher FVHP510.520,530,615,710 etc
Fisher VB57000.9000 etc
Hinarı VXL2, 4, 3,20,25
Hinari VXL5, 6,20H
Mitsubishi HS306,710
rion Vela, $80,1 \mathrm{H1}, 2,3 \mathrm{etc}$
Saisho VR100, 605,705,805,90
Toshiba
V71,73,74,75,81,82,83,84,85,87. Toshiba v93.

ASK FOR VIOEO HEAOS NOT LISTEO
The above heads are new and replacements.
 GRUNDEG VS 400/410/440/450
460 VS180:200:220/262 $265 \cdot 267$

Many other bell kits in slock. Examples are Alba, Funai, GEC, Goldstar, Granada, Grundig, Hinari, ITI. Mitsubishi, NEC, Orion, Saisho. Samsung, Schneider, Sony, Tensai etc.

NEW LINES

Universal Video Head Puler Video Idler Spring Kit....... deo Washer and E Clip Kit

LINE

Decca 100

TT CVC25 30/32
T Compact 80 Series 110
TT Compact 80 Series 90
IT CVC45
518.00
$\$ 15.00$ ¢15.00 IT CVC800 IT CVC800/1/3 IT CVC1 100
ITT CVC1150/17 TT CVC111
IT 6325 ITT 3546 ITT 12001

Other IIT transformers available
Fidelity all models up to 20" ZX 3000
Fidelity Panel for $\mathbf{Z X} 2000$ Fidelity $22^{\prime \prime}$ ZX3000 517.00 Hinari CT $4 / 5$ \& TVA 1 Philips KT3
Rank Bush T20A
Thorn T) 100 Green Spot 110
Thorn TX 90 Mains Trans

517.50

Ferguson TX90 LOPT
Ferguson 3V35 36 Mans Transformer
Ferguson 3V44/44/45 Mains Transforme
Sony - Please state model for price
Universal Tripler
Universal Tripler with focus unit
Decca 120/130 series tripler
Thorn TX 10 Focus Unit Kit
VIDEO MOTORS

CTO 000 $\mathbf{C 3 4} .00$

REEL MOTORS
Ferguson 3V29/30
Ferguson 3V58,59,65,FV10,11,12,13
14, 20,21,22
$\$ 17.00$
52.00
Ferguson FV260
Hitachi 8000,8300,8500
Sanyo VTC5000,5150,5400,5300,6500
Sharp VC9300, 9500 etc, Original
Panasonic NV333,366 Original
All other Panasonics
DRUM MOTORS
Ferguson'JVC (Mectianical models)
Sharp 7000 series Original
All Panasonic Original
CAPSTAN MOTORS
Ferguson 3V35,36 Original Eerguson/JVC (Mechanical models) Hitachi VT11 Original

S310. 315.320380	
385	2.40
Ask for models nol tisled.	
HITACH	
VT11/14/47/19/33/34/35	
38/39:88	1.30
V18000 8500	1.00
V19300 9500.9700	1.00
Ask for models not listed PANASDNIC	
NV230 250 280/370,380	
NV 300 , $330 / 332.333 / 430$	
366	1.60
NV7000 72002000	
2010	1.50

PHiLIPS VR6367 6467/6561/6751/
$6760 \quad 1$ VR6460.69206520
$\begin{array}{r}2.25 \\ 2.40\end{array}$ sanyo
SANYO VHR1100 13001500 . 1.60 Ask tor modets nol listed. Sharp
CF3 VCHO2/500/571/58 582:583/584;585 vC9300/9500 9700 VC8000/8300 A

5.00 $\$ 5.00$

S

$£ 2.00$

$\$ 17.25$

Access \& Visa Accepted

Hitachi VT33 Original Hitachi VT64 Original Hitachi VT8000 series Original Hitachi VT9000 series Origina Sharp VC7000 series Origina
MOOE CONTROL MOTORS
Ferguson 3V42.43,44,45, 48, 49,52.53
Ferguson 3V58,59,65,FV10,11,12,13,14 20,21,22,26
Sharp Reel Motor Pultey only
Replacement of plastic pulley on a number of Sharp Reel Motors with the above metal pulley gives better re-
150 w

FISHER
FVHP615,905,910, Ider Assembly Original FVHP615 Gear Idier Assembly FVHP905,910 Gear Idler Assembly FVHP520,530 Idler
FVHP520,530 Pulley

HITACHI

11.50 VR6542,6843 Reel Idier
21.50 VR6542 Reet Drive Pulley
16.50 VR6843 Reel Drive Pulley
20.00

PANASONIC (All Original)

NV370 Ider Arm Unit VXP0521 Gen
NV8600,86 10 Play ider VXP0243
NV332, 777,788 Idler Unit VXP0463 NV600,688 Ider VXP0515 NV333,365 Idler Arm 2 Unit VXL0997 NV8400,8600,8610 etc. VXP0245 NV333,366 etc. Id ler VXPO401-NV700,7200. 7800 Idier VXP0344
NV2000,3000 Play Idler VXP0331
NV2000, 3000 idler U'init VXP0329
Back Tension Bands
All Panasonic Maintenance Kits
QUOTE PANASONIC PART NO
FOR PARTS NOT LISTED

SANYO

4.75 Ider VHR1100,1300,1500
9.50 ider VHR2100,2300,2500,2700
. 00 Ree Drive Pulley Unit VTC5000,5150,6500
tder Rofler Assembly VTC5000,5150,6500
SHARP
der VC9300,9500 etc

〔14.50 | Ider Assembly (original) VC65sembly (onginal) VC780, $781,785,787$, |
| :---: |

〔8.50 793, VCT72
17.50 AMSTRAD

E15.00 4500,4600 MOD KIT INCLUDES PINCH
POA ROLLER AND IDLER CLUTCH
Limiter Post Assembly
Makes \& Modets: Hinari VXL4
[23.00 Matsui VX730,735,735A, 755,770
1.63 B00A,810,820,880,990. Saisho

POA VR1100,1200,1200HQ,1600,2500, $3200,3300,3300 \mathrm{X}, 3500$.
3600,3700
IOLERS FOR AKAI, SAMSUNG,
MITSUBISH, NEC, ETC. IN STOCK

REMOTE CONTROLS
E32.00
roguson, Grundig. ITT Philips, Pye, Sony Hitach Matsui, Logik, Panasonic, Saisho, Salora, 34.50 Massu, Logik, Panasonic, Saisno, Salora, 34.50 mols TV \& Vido MANY HITACHI TV REMOTE CONTROLS NOW IN STOCK
£6.00 SONY REMOTE CONTROL RUBBER PADS STATE MODEL FOR PRICE

New Additions

Universal Remote Control
Sony type RC670 RM67................25.00 Sony type RC670, RM670, RM673.
Sony type RC661, RM652. RM654, RM657.
RM663, RM664, RM651.
RM663, RM664, RMO51, $22, \quad$ I
Panasonic Modeis TC2110. 2255, 2655, 2680
TX1752, 2251, 2656, 5500
Panasonic Models TC1632 $1642 \quad 2232$ TX2034. 1
$2044,2200,2234,2244,2636,3300, \quad \$ 14.50$
TV ON/OFF SWITCHES
ITT, Philips, Decca, Thorn, Fidelity, Grundig, Sony
and Hitachi. State model for price.
PINCH ROLLERS
A range of Pinch Roilers is in stock, most of them (ut) $£ 2.80$. Makes include Akai, Amstrad, Ferguson, Fisher, Funai, GEC, Goldstar, Grundig, Hinari 14.00 Hitachi ITT JVC Marantz Mitsubishn, NEC ¢14.00 Nordmende, Orion. Panasonic. Philips, Samsung,

Sanyo, Schneider, Sharp. Sony, Tensai, Thomson
Toshiba etc. Please state model and make
Philips Pinch Roller tor models
VR6180, 6185, 6285, 6362, 6367
6467, 6468, 6470, 6561,6670,
6760,6761
OTHER SPARES
¢2.50 Universal Video Copying Kit
£1.75 Universal Copying Kit (Scart)
£3.65 Universal Camcorder Kit
$\mathbf{E} .95$ Video Cassette Lamps from
£2.95 CRT Anode Caps
$\mathbf{9 2 . 9 5}$ Video Tape Splicing Kit
53.00 Hitachi TV Frame Module HM6251
£0.70 Hitachi TV Frame Module HM6232
58.00 Cassette Housing Assembly Ferguson 3V $35,36,38,39,42,43,44$
c3 00 Cassette Loading Roller Assembly 3 V 23.3 V 31
53.00 Casser
$\mathbf{5 6 . 5 0}$ Philips 1.2 V Back up Battery
Philings 2.4V Back up Battery
5.5V Back Up Cap.

Degaussing Positor Blue
Degaussing Positor White
£3.00 Cassette Housing Assembly Hitachi VT1t
$\mathbf{5 0 . 9 5}$ End Sensor for Hitachı VT63,64,65 (Pair)
53.00 Casseite LED Sensor for Panasonic etc
53.00 I.C. Circuit Protectors
50.95 Clear Service Cassette

Push Button Unit Thorn TX90
Matsui/Saisho Limiter Post
$\mathfrak{6} .90$

Cassette Housing Modification Kit for Sharp VCA113HM Series. Includes cassette switch and | star sensor PCB. Fault symptom No eject $\& 8$ |
| :--- |
| intermittent load/unioad |
| |
| 6.50 | Cassette Housing assemblies for Philips available

MANY OTHER VIDEO AND
TV SPARES IN STOCK
NIKKAI AND FIDELITY
SPARES AVAILABLE
Back Tension Bands in Stock for Akai, Fisher, Hitachi, Ferguson, JVC. Mitsubishi, Panasonic, Sanyo and Sharp.
Maintenance Kits available for Alba, Amstrad,
£1.75 Ferguson, Fisher, Goldstar, Goodmans $£ 1.95$
$\mathbf{~} 50$
Granada, Hinari, Hitachi, JVC, Matsui £6.50 Mitsubishi, Nikkai, Panasonic, Philips 56.50 Saisho, Salora, Schneider, Sentra, Sharp Sony, Tashiko, Toshiba.

RESISTORS, ELECTROLYTIC CAPACITORS, FUSES ETC. NOW IN STOCK.

SEND FOR PRICE LIST.

Trade Counter now open Monday-
Friday $9.00-5.30$. Saturday $9.00-$ 4.00. Nearest Underground Station Southfields Northern Line.
－SUPERB RANGE OF TV＇S \＆VCR＇S －THORN \＆GRANADA
－DIRECT LOADS AVAILABLE FROM SOURCE EXPORT ENQUIRIES WELCOME

B CRADE
TV＇S • VIDEOS • AUDIO MICROWAVES • HIFI PORTABLES • FSTS • NICAM＊FASTEXT
动动的 STOP PRES 却的 NOW IN STOCK QUANTITY OF BRANDED TWIN SPEED VHS VIDEO＇S
CENTRAL TV WHOLESALE DISTRIBUTION LTD
－ 369 Strattord Road，Sparkhill
Birmingham B11
TEL 021－772 1591
FAX 021－766 6383
SATELLITE
CTV LONDON
Eley Estate，Nobel Road
Edmonton N18
TEL 081－807 4090
FAX 081－884 1314

Ferquson 3CO1 UIDEO CAMERA

- Low Light Camera - Low Light Camera - Batteries - 3 Hour VHS Tape Complete-in-Case
- Motorised Zoom - Auto Focus

EX-RENTAL TUs Workers from £15 Text from £45

 EX-RENTAL UCRs Workers from £45 Front Loaders from $£ 60$ Lond Players from $£ 85$
SPARES, EQUIPMENT, MANUALS, COMPONENTS, SPARES, EQUIPMENT, MANUALS, COMPONENTS, SPARES

SERVICEMLTVALS	
Ferg./Thorn 3V31/8941	$£ 7.75$
Ferg./Thorn 3V32/8942	£7.75
Ferg. Thorn 3V35-6/8943-44	£7.75
Ferg. Thom 3V42/8945	$\underline{\mathrm{E}} .75$
Ferg./Thorn 3V64/3V65/8951	. 17.75
Ferg. 3V58	£7.75
Ferg./JVC 3V04/GS1000EK	£4.00
$1 T \mathrm{CVC25/30}$	£4.00
ITT Digivision Mu Hicontrol MC3896	¢6.00
1 IT Digivision Mu Hicontrol 3896	£6.00
Ferg. 3V43	E7.75
Ferg. 3V48	£7.75
Ferg. 3V53	E7.75
Ferg. 3V59	17.75
Loewe P17 Cir. Diag.	E2.00
Loewe C8500 Mono Cir. Diag.	£2.00
TX10 (1550/4551 Series) Cir. Diag.	£2.00
TX100/PC1150 Cir. Diag.	£2.00
TX100 Cir Diag.	¢6.00
TX912/913 Cir. Diag	. 22.00
Thorn 8290 Cir. Oiag,	E2.00
Toshiba 211T4BA Cir. Diag.	¢2.00
JVC Technical Books from	£2.00

Write, Phone or Fax for a listing of
over 500 different circuits and manuals

LOPS	
Decca 100	88.50
Ferguson TX100 Green Spot	£16.75
Ferguson TX90 Series	. 116.75
Fidelity 14"-20" FC-2015BE	£9.50
Grundig 7100 FAT3761	¢12.75
Grundig 6100 FAT3759	£12.75
Hinari CT4-5 Lopt with PCB	¢16.75
Hitachi CPT2176 (2434274)	¢18.75
ITT CVC20	£7.50
IT CVC1203 4515-01-61	¢10.25
$17 \mathrm{CVC801}$ 4515-03-01	£19.50
$17 \mathrm{Digivision} \mathrm{4515-03-19}$	£16.75
ITT CT3835 4515-03-24	£16.50
ITT 4515-03-22	£18.50

COME and SAVE with DAVE

The main MAN in BIRMINGHAM

0

VISIONS • LONDON

Suppliers of THORN ex-rental TVs and Videos Working or Off-the-pile

 Unit 4, Rainstar Ind. Estate,Eley Estate, Nobel Rd,
Edmonton N18 OAA
(just off the A406)

 Main Distributor in London

Phone now!! 081-807 7476/7579 EXPORT ENQUIRIES: Fax 081-345 6597

UNBEATABLE PRICE OFFERS ON VIDEO \& TV SPARES

REMOTE CONTROLS • TRANSFORMERS • VIDEO HEADS SERVICE KITS • SERVICE AIDS • REFURB MATERIALS PHONE NOW FOR FREE CATALOGUE!!

$$
\begin{gathered}
\text { THE NATION'S BIGGEST SUPPLIER } \\
\text { OF THE BEST EX-RENTAL T.V.'s \& } \\
\text { VIDEO RECORDERS }
\end{gathered}
$$

WAREHOUSE

COLIN GORDON 0252540814
7／8 KINGSGROVE INDUSTRIAL EST． INVINCIBLE ROAD FARNBOROUGH HANTS．GU14 70S

SUNDERLAND WAREHOUSE

㗊 0 BRIAN CADE
9A／B
94 CARRMERE ROAD LEECHMERE INDUSTRIAL EST． SUNDERLAND SR2 9TE

AINTREE WAREHOUSE
 最每
 IAN McCLELLAND 0515301285

UNIT 2，RACECOURSE IND．EST．
ORMSKIRK ROAD
AINTREE
LIVERPOOL L9 5AL

LeEDS

WAREHOUSE
E엉 LES CORKE
0532422774
UNIT 2，COPLEY HILL
TRADING ESTATE
WHITEHALL ROAD
LEEDS LS12 1HS

WAREHOUSE
K오 KARLA REALE 0272235093

5 PORTVIEW ROAD AVONMOUT－
BRISTOL BS11 7La

GLASGOW WAREHOUSE

IAN DORAN 0418832610

9，COLQUHOUN
HILLINGTOM INDUSTRIAL EST． GLASGOW G52

NOTTINGHAM WAREHOUSE

FTo JOHN JEYS 0602491385

REAR ENTRANCE，UNIT 7 ORCHARD EUSINESS PARK
SANDIACRE
NOTTINGHAM NG10 5BP

MAIDSTONE WAREHOUSE
 ETB JANET SNOOK 0622756590

UNIT 10，PARKWOOD IND．EST． HERONDEN ROAD MAIDSTONE
KENT ME1 5YR

Huge selections. Complete range. All makes and models available.
\star New Stocks Every Day \star VHS Video from £30 Television from £3
Washers, Fridges, Vax, Microwaves Now Available
Working Ex-Equipment Panels

IF	Converger	Decoder	Line Scan	Power	Frame
T20//22X	5	14	18	17	14
T26X	5	16	20	17	X
Philips G11	14.505	12	20	20	11.50

All prices include Postage \& Packing. But + VAT
\star IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK *

BRADFORD

Springmill St
Manchester Rd, BD5 7RL
Ring Tony (0274) 308186

MANCHESTER

Unit 3, Mersey Rd. North Ind Est., Failsworth Ring David (061) 6834612

DEVON TV

'Serving the South West'

 * OPENING 12th AUGUST * EX-RENTAL CTV, VIDEO \& AUDIO Philips, Grundig, ITT, Thorn and Japanese Working or 'OFF THE PILE'
BEST PRICES, RING FOR QUOTES

Direct access, 500 yards off Main A38
Road. Ample, easy parking.
OPEN 9.30-5.30 Monday to Friday
Liverton
\bigcirc

DEVONTV

UNIT 2, ANCHOR BUILDINGS, BATTLE ROAD,
HEATHFIELD INDUSTRIAL ESTATE, NEWTON ABBOTT
Telephone: 0626835249

CREWE

 WHOLESALE
TVLTD.

OFFER OF TWO OPTIONS OPTION 1
A GOOD RANGE OF MIXED TVS AND VIDEOS UNTESTED BY OURSELVES TELEPHONE FOR DELIVERY DAYS and buy stralght off the wagon

TEL: 025464489
SCHOOL LANE GUIDE, LANCS

OPTION 2

A GOOD RANGE OF GENUINE MIXED WORKING TVS AND VIDEOS AT COMPETATVVE PRICES ALSO A RANGE OF TESTED NON WORKING TVS AND VIDEOS
PLUS A GOOD SELECTION OF
UNTESTED TVS \& VIDEOS RING FOR CURRENT STOCK \& PRICES

TEL: 0270582924 WILLIAM STREET CREWE, CHESHIRE

QUALITY USED T.V. \& VIDEO COMPLETE RANGE OF T.V's AND VIDEOS MOST MAKES AND MODELS AVAILABLE STOCK ARRIVING DAILY T.V's from £3.00 Videos from $£ 30.00$ Prices Ex-VAT Free Delivery Service to most areas of the U.K. UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worc's North

USTA ARMVED

i.e. 51 cm FAST TEXT WITH NICAM BOX FROM E240.00
FERGUSON VIDEOS BOXED, i.e. FV30B FROM E150.00
(Too many to list)

+ BRAND NEW 21 F.S.T TVs BOXED FROM $£ 155.00$ CROWN 14"PORTABLES BRAND NEW
Full remote control Digital Display on Screen OHFNHF Tuner - 32 Function Remote 0
only $£ 115.00$ SAMSUNG 14" PORTABLES Full remote control Digital Display on Screen from $\mathrm{E130}$
EX-RENTAL TVs

9.0	12	WORKING STOCK
9.6	¢16	
TX220" Full Remote	${ }^{885}$	Brand New Handsets
TX9 9 ext $20^{\prime \prime}$ TX10 Text $22^{\prime \prime}$	$\begin{array}{r}850 \\ 8.85 \\ \hline\end{array}$	2ind TVs \& Videos
TX10 Text $26^{\prime \prime}$	¢50	from only $\mathbf{4 7 . 5 0}$

NON-THORN TVs (OFF PILE) FROM E3. 00
3V29, 3V30... 855
QUANTITY... 550
8941 Remote... 5758942 Remote L.P..... 885
NON-THORN VCRs FROM $£ 35.00$
Fi EsH STOCK abRiving oaily - RING FOR UPDATE ON STOCK

* SPECIAL OFFER STEREO TEXT... 555.00
TX̊9TX10 BASICS...From £25.00

* A.L PRICES ARE SUBJECT TO VAT * (OFFERS APPLY WHILE STOCKS LAST) * OPEN MON.FRI. 9 a m. $-5.30 \mathrm{p} . \mathrm{m}$. SAT. 9 a.m. $-1.00 \mathrm{p} . \mathrm{m}$.
WHY TRAVEL THE WHOLE COUNTRY?
RWG SID NOW OW DREGT LIWE TO TV WAREYOUSE

LFEDS (0532) 44200 FAXf (0532) 425777

EXPORT ENQUIRIES WELCOME

supaivision

UNIT 16, TOWER WORKS, 2 GLOBE ROAD, LEEDS LS11 50G off water lane, NeRr hilton hotel. EasY aceess from m1 \& mge (2mins)

OPEN NOW	NEW CONCEPT	AMAZING OPENING OFFERS		OPEN NOW
TX 9-10	TX TEX	ST TXT	MK III \quad £12	
			MKIV	
£18	£45	E5	GII	40
WORKING	WORKING	WORKING	STARLINE £18	WORKING

TEL: 021-505 2619

NATIONAL TV DISTRIBUTORS

NEW WHOLESALERS OPEN NOW
IN WEST MIDLANDS

19 LOWER HIGH STREET, WEDNESBURY WS10 7JX

DON'T MISS OUR OPENING OFFERS - WE CAN EASILY BE FOUND

3V30 £45 WORKING	3V35 £65 WORKING	ANY TOP LOADERS £45 WORKING	ANY FRONT LOADERS $£ 65$ WORKING	MIDI SYSTEM R/0 £40 Basic £30
ALL PRICES ARE SUBJECT TO 17½\% V.A.T. AND AVAILABILITY OF STOCK				

[^3]

TELEUNSIONCLIFS5IFIED
No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cm). Classified advertisements 70 p per word (minimum $£ 12$), box number $£ 4.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS.

PHONE 071-261 5942 FAX 071-261 5546

Ducumend

 V/SA
LINEAGE

VINTAGE TELEEVISION, Radio \& Audio enthusiasts: contact us for componerts, valves, vintage CRTs service sheets. radios and amplifiers. Mail Order to anywhere - over the counter retail Saturday only. Send ± 1.50 for 1991 catalogue and sample newsheet: The Vintage Wircless Company, Tulor Honse, Cossham Street, Mangotsfick BS17 3EN. Tel. 1272-565472 or Fix (1272-575442. All major credit cards accepted by letter, phone or fax.
business for sale. TV. Video/Satellite/Hi-Fi Sales/repairs 42% G.P.. 21 year lease. Rnt 55.7 KN . £29.5(K) o.n.n. + S.A.V. (0327) 705524.

WANTED EX RENTAL Colour T. 1 's cash on collection, yuick service. (1742-312832.

AMSIRAD SATELLITE OWNERS. Convert to tuneable audio, more stations, free leaflets. E.M.O.. Raunstwottom, Lancashire BL0 9AG. Tel. (170 (k-82:3036

AVO MULTIMETER Modet R \& $£(0$. $5(h)$ volt mergers £30. Prices plus VAT. Send S. A E. for lists of surplus instruments \& scopes etc. A.C. Electronics. 17 Apleton Growe Leds LSy 9EN Tel. 10532 49(0)4s.

The Vintage wireliess and ty book listING. Puhlished regularly, containing hundreds of out of print old and collectable wireless and TV books. magazines etc. Send 4 first class stamps for list, or $\$ 2.25$ for nat four lists. WANTED pre 1975 wireless or TV hooks, magazines or any related material. Dept T. Chevet Books, 1.57 Dickson Roadd, Blackpool, FYI 2EU. Tel 751858.

VIDEO \& TV BUSINESS FOR SAIJ: Repairs/sales $\ddagger 140$.(OK) plus 2 hedroomed bungalow \& workshop. Dorset. Tel. 1305-7701345.

METERS RECONDITIONED. $10 \mathrm{p} / 51 \mathrm{p}$ availatk from stock. Contact The Meter Co. (Poole). Lid. Tel. 1212 $6 \$ 3498$.

OCIIRE MILI. TECHNICAL SERVICES. Grundig TV spares for most models to 1985 Fast, friendly. helpful, sensilte prices. Gt. I ype Farm. Chartom, Nr Marlmesbury. Wilts. SNI6 9DR. Tel. (k666 823228.

METERS RECONDITI(ONED, ti stot meters for TV rental 65.95 .50 p slot $£ 2.95$. Tel. Audiotech (179013-245.

OSCILI, OSCOIPE BK 467 REACTIVATOR TV/Audio manuals in cabinet. Newnes TV Radio servicing 12 volumes. 179277128%
bUSINESS FOR SALE. FAST DEVON. TV video repairs sales 50% cross profit. Rnt $£ 3,0 \times k$ per annum. owner emigrating. $£ 16.80)$ wiwo. Tel. (14(4) 815265 anytime.

SPARES \& COMPONENTS

P \& E SERVICES

SUPPLIERS OF ALL MUTER REPAIR AND TEST EQUIPMENT.
BMR 95 TUBE REGENERATOR
BMR 700 TUBE REGENERATOR
CBE DEGAUSSER
RTI 2 VARIABLE ISOLATING TRANSFORMER
CSG 4 PATTERN GENERATOR
AT 2 AUDIO SERVICING UNIT
ION 2 IONISER
ASK FOR FREE BROCHURE
34 GLAN-Y-MOR ROAD, PENRHYN BAY, LLANDUDNO, GWYNEDD LL30 3PF.
TEL: 0492549246 FAX: 0492547880

USED VIDED SPARES
VHS - BETA - 2000
PANELS, MOTORS, CABINETS, TUNERS LOADING MECHANISMS, ETC. SAVE EE£S
PHONE US WE MAY HAVE IT Mail Order and S.A.E. for Enquiries GENERAL FACTORS
Unit 28, Car Grange Works, Hyde Park, Doncaster. Tel: 0302323834

TOP CLASS PANASONIC WORKING TV \& VIDEO

GOOD CHEAP STOCK

 "OFF THE VAN' Good Selection of Makes Tom Poole or Brian Ricketts 061-273 2854/274 3409REPO
DAISY WORKS 345 STOCKPORT ROAD, LONGSIGHT, MANCHESTER
(A6 Between Stockport \& Manchester)

 a cheque made payable to Television 'crossed "Lloyds Bank". Television Classified Room 2331, Kings Reach Tower, Stamford Street, London SE1 9LS. The charge per word is 70 p plus $171 / 2 \%$ (minimum $£ 12.00+$ VAT.)| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

SPARES \& COMPONENTS

ELECTRONIC \& SATELLITE COMPONENTS

TV \& VIDEOI.C.S		LA7033	2.80
AN262	. 95	LA7210	1.25
AN304	2.52	LA7505	1.75
AN5015K	2.50	La7910	1.05
AN5612	1.54	LU11417A	3.60
AN5620X	2.65	LU52511A	3.60
AN6306	5.50	LVA508	1.40
AN6320N	2.10	LM1889N	280
ANG326N	2.45	LM1889N	2.80
AN6328	2.45	M51393AP	2.50
AN6346N	2.62	MC1408P8	1.00
AN6347	2.10	MN15823FV	10.80
AN6350	4.27	OEC0001B	4.45
AN6360	1.82	OECOOO5	4.45
AN6362	2.95	OEC2001	2.85
AN6881	2.30	SONY CX134A	4.25
BA618	1.15	TD62105P	1.00
BA6301	1.40	ULA1H035E2	1.55
BA7001	1.05	UPA53C	3.45
BA7004	1.40	UPC1382C	. 77
BAB500	9.95	UPC1397C	3.15
HA17458PS	70	14DN156	4.50
LA7031	1.75	14DN157	4.50
LA7032	2.06	14DN244C	4.85
ELECTRONIC COMPONENTS: ADD 17.5\% VAT and £1.18 POSTAGE TO TOTAL List available.			
AUDIO PARTS			
CDX500 Mains Transformer			$£ 7.05$
TS33/TS35 Mains Transtormer			¢5.88
TS37/TS86 Cassette Mechanism with Keys			£5.88
TS80/TS88 Cassette Mechanism (A) with Head, Motor and Keys			£5.88
TS80/TS88 Cassette Mechanism (B) with Head, Motor and Keys			15.88
TS90/TS99 Cassette Mechanism with Head, Motor and Keys			¢5.88
TS90,TS99 Mkl\|ICD1000/CD2000			
Cartridge			55.88
Styius			£3.53
TS90/TS99 Mkll Tone Arm with			
Cartidge and Stylus			£10.58

AMSTRAD

4600 Video and Audio PCB
4600 Systems Control/Servo PCB
$\$ 11.75$ Display and Control PCBS

4600 MkII Video and
Audio:Timer/Control PCB Assy
4700 Video and Audio
Timer/Control PCB Assy. VCR100 Video and Audio/Timer/ Control PCB Assy.
5200 Timer and Channel Display PCB Assy.
5200 Audio Tuner PCB
5200 Video PCB
5200 Syscon. Servo Power PCB 5200 Varicap Tuner Type 1810829 4600 video Cassette complete mechanism (no drum or video mechani
4600 Video Cassette complete
mechanism (with drum no video heads)
4600 Mkl|/4700 Power Supply 4600/4700 Capstan Motor 7000 Loading Motor MCB2B01 9000 Loading Motor MCB9B02 9000 Cassette Housing Assy.
handsets
CR4600/4600Mkll
VCR4700
VCR5200
VCR6000 Easy Programme
CR6100 Barcode
TS90/99 Tower System VCR9000 Handset

CTV2000 Line Output
Transtormer FB17
CTV2200 PCB No:3 (Part 270087)
TV2200 PCB No:4 (Part 270088)
VR1 Control Panel/Preset PCB
$£ 29.38$ $£ 40.82$ $£ 40.82$ $\{40.82$
17.63
15.28
14.10 £23.50 $£ 7.05$
29.38
$£ 35.25$
£4.70
$\boxed{3} .53$
$\boxed{ } 3.53$
โ15.28
11.75
$£ 17.63$
$\Upsilon 11.75$
-25.85
$\bigcirc 29.38$
$\lceil 11.75$
$£ 11.75$
$£ 9.40$
$£ 3.53$
$£ 4.70$
§7.05

ALI TTEMS ARE BRAND MEW AND GUARAMTEED

* $*$ SAME DAY DESPATCH $* *$

AMSTRAD SPAPES: PPICES IMCLUDE VAT POST AND PACKIMG EXTRA

Harrison
 Electronics

FRENCH 4600MkII Spares
Video and Audio/Timer/Control PCB Assy (Secam)
Handset (French)
Power Supply (220v)
Front Panel (French)
£40.82
$£ 11.75$
£4.70
$£ 9.40$

PALCOM RECEIVERS

SL600 Sophisticated, 100 Channel, remote ontrol, stereo, on-screen graphics, receiver.
55000RP High quality 200 Chan.9 remote control, on-screen graphics, stereo receiver/positioner. $£ 510.83$ GS-4 Highly sophisticated, professional, 200 Channel, remote control, Hi-fi stereo, on-screen graphics, receiver and separate positioner
$£ 702.09$

(Full data sheets available)

ISHES
Aluminium Unpainted Spinnings
$60 \mathrm{~cm} 11^{\prime \prime}$ Focal Length
$90 \mathrm{~cm} 11^{\prime \prime}$ Focal Length $1.2 \mathrm{M} 22^{\prime \prime}$ Focal Length 5789 $1.8 \mathrm{M} 22^{\prime \prime}$ Focal Length Aluminium Painted Spinnings $60 \mathrm{~cm} 11^{\prime \prime}$ Focai Length $90 \mathrm{~cm} 11^{\prime \prime}$ Focal Length 1.2M $22^{\prime \prime}$ Focal Length $1.5 \mathrm{M} 22^{\prime \prime}$ Focal Length Aluminium Perforated Spinnings
$93 \mathrm{~cm} 11^{\prime \prime}$ Focal Length 5M 22" Focal Length 1.8M $22^{\prime \prime}$ Focal Length $\quad £ 151.27$ Fixed Wall Mount to suit $11^{\prime \prime}$ Focal Length Dishes Horizon Horizon Drive Mount to Focal Length Dishes Galvanised Polar Mount to suit $22^{\prime \prime}$ Focal ength Dishes
£101.35
$12^{\prime \prime}$ Actuator Arm, Pulse type

CCTV TELEPHOTO CAMERA LENS
Price: (incl. postage and VAT)
$£ 22.99$
MGT5-20B GOULD POWER SUPPLY
5v@20A, 12v or 15v@1.75A
12v or15v@175A
Price: (incl. postage and VAT) £24.52
Price: (incl. postage and VAT) $£ 24.52$

LNB's	
$10.95-11.7 \mathrm{GHz}$	
2.3dB max.	$£ 30.65$
1.4 dB max	$£ 79.39$
1.3 dB max.	$£ 84.45$
1.2 dB max.	$£ 89.50$
1.1 dB max.	$£ 110.15$
Telecom $12.5-12.75 \mathrm{GHz}$	$£ 110.15$
DBS $11.7-12.5 \mathrm{GHz}$	$£ 128.53$

C Band $3.7-4.2 \mathrm{GHz}$	
60 Deg. LNB	
55 Deg. LNB	$£ 143.05$
45 Deg. LNB	$£ 170.94$

50-54 Deg. LNA $£ 116.90$
C Band Blockdownconverters
20B Gain E51.09Racal Magnetic Polariser£42.75
Adaptor (Interface) Card $£ 22.84$
Ortho-Mode Transducer $£ 63.40$
Prime-Focus Feeds Ku-Band Feed Horn £26.50
C Band Feed Horn $£ 42.25$
Dielectric Plate $£ 12.20$
Global Accessories Line Amplifier$£ 23.19$
2 way Splitter 19.21
4 way Splitte $£ 49.45$All Satellite equipment prices in
clude VAT; Post and Packing Extra.Write or Phone for FULL catalogue.

WIZARD DISTRIBUTORS MANCHESTER
 TV \& VIDEO SPARES

We stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, HINARI \& DECCA
And also THORN \& ITT
FIDELITY SPARES MAIN DISTRIBUTOR
Main Distributor for Schneider non account customers
Always in stock-
Video Heads for over 500 models
Service Manuals tor over 200 models Spares for over 20 manulacturers
Plus huge range of IC's. Semiconductors and Service Aids, etc. etc SATELLITE SPARES NOW AVAILABLE ASK FOR CATALOGUE SUPPLEMENT WIZARD OFFER A GREAT DEAL Counter open Monday-Friday 9 pam-4.45pm
Mail Order-Access Nisa TRADEONLY
EMPRESS STREET WORKS, EMPRESS STREET, MANCHESTER M16 SEN.
Tel: 061-872 5438: 061-8480060.

IDLER TYRES

PRICE BREAKTHROUGH
Due to massive bul £1 each, £4.50 per $5, £ 8$ per 10

ADD 81 .D. Height)
ostal orders only post \& packing
Stellar Supplies, 53 St Leonards St.
Edinturgh. EH8 9aN. Tel: 031-668-1948.

ALLPARTS DISTRIBUTORS

SATELLITE SPARES
TV \& VIDEO SPARES FOR THE TRADE AND PUBLIC BELT KITS, TRANSISTORS, ICs, REMOTES, FERGUSON, PANASONIC, SHARP, GRUNDIG, SONY, KONIG, PHILEX, AMSTRAD
ALLPARTS DISTRIEUTORS
101 ROCKY LANE, TUEBROOK, LNERPOOL $648 B$ 051-260 4825

SURPLUS/REDUNDANT ELECTRONIC

 COMPONENTS WANTEDI/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

LOST COST

REPLACEMENT L.O.P.T. for Fidelity $\mathbf{3 0 0 0}$ chassis £8.50 each + £1 P\&P + VAT Send large SAE for list of bargain priced spares. A.G.S. ELECTRONICS Unit 2, Haxter Close, Belliver Ind Est. Plymouth, PL6 7DD. Tel: 0752767738

West Wales Wholesale TV

Working TVs from $£ 18$.
Videos from $£ 60$.
Discount for quantity.

8 CILLEFWR IND. EST JOHNSTOWN CARMARTHEN (0267) 222047

Come to one of the most experienced firms in the business. We have been rebuilding/remanufacturing cathode ray tubes for a vide range of users since the '60's.

Why not telephone Dave Dyson on (0895) 55800 to discuss your requirements?

DISPLAY ELECTRONICS LTD.
UXBRIDGE MIDDLESEX UBO 2RA

Technical Information Services

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE

Remember, not only do we have EVERY service sheet ever produced, but we also have

THE WORLDS LARGEST COLLECTION OF SERVICE MANUALS
\& WE ARE SOLE SUPPLIERS OF VARIOUS FAULT-FINDING GUIDES REPAIR MANUALS \& TECHNICAL MANUALS

DATA REFERENCE MANUAL ".....essential for the serious electrician" FREE updating and a 10% discount voucher only $£ 5.95$ Incorporates Unique Model Identification and Chassis Data

©SERVICE MANUALS

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances etc.
Equipment from the 1930's to the present and beyond. Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders.

MAURITRON TECHNICAL SERVICES (TV), 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 4QY. Tel: (0844) 51694. Fax: (0844) 52554

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German. European and Japanese service sheet or manual. Thousands of different sheets and shect or mantsals in stock. For any enquiries:

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast.
Co. Donegal, Republic of Ireland.
Phone: 07548275

SERVICE MANUALS

THOUSANDS OF DIFFERENT MODELS HELDIN STOCK PRICES: VCR from 10.000 , CTV from 5.50 , MTV from 3.50 ALL UK ORDERS SUBJECT TO 1.00 P\&P. NO VAT. AUDIO, SATELLITE, MICROWAVE ALSO AVAILABLE. WRITE FOR EXACT QUOTE TO-
D-TEC, PO BOX 1171, FERNDOWN, DORSET, BH22 9YG. 'phone 0202870656.

THE SATELLITE BOOK

 THE DEFINITIVE GUIDE! John BreedsFollowing the phenomenal success of his book 'Satellite TV Installation Guide', Europe's best and most authoritative author for the satellite industry has put together the most comprehensive and informative book ever published on satellite television.
Every possible technical and practical related subject is covered - right from simple dish installations through to how to wire up a block of flats or even a large town!
There are also detailed analyses of customer care, how to work sately on ladders, and how to kit out a van with all the toots of the trade. Scrambling/descrambling techniques are also included. You will get real practical help from this 280 A4 page definitive

WORLD SATELLITE TV \& SCRAMBLING METHODS guide. Supplemented by more than 300 illustrations and invaluable tips and tricks of the trade

Only £27.95 (Postage FREE UK)
 - all in the familiar easy-to-read style of John Breeds' books.

Easily the best value satellite book today! (Total satisfaction or your money back!)

Swift Television Publications

17 Pittsfield, Cricklade, Swindon, SN6 6AN. Tel or FAX 0793750620

 VIDEO SERVICING 1989-90| AIWA | GSE1296i | ITT | PANASONIC |
| :---: | :---: | :---: | :---: |
| HVG-55 | VCP4300i | VR-3619 | NV-L20 |
| AKAI | GOODMANS | VR-3719 | NV-L28 |
| VS-422 | VTV300 | VR-3749 VR-3769 | NV-J30 |
| VS-425 | VCP500 | VR-3769 | NV-J35 |
| VS-427 | VCP550 | VR-3908 | PHILIPS |
| VS-467 | TX1101 | VR-5720 | VR-6180 |
| VS-485 | ${ }^{\text {PXX }} 11101$ | VR-5730 | VR-6182 |
| VS-765 | ${ }^{\text {PXX2200 }}$ | VR-5740 | VR-6185 |
| ALBA | VCR2500 | JVC | VR-6470 |
| VCR-4000 XI | DX3300 | JVC | VR-6490 |
| VCR-7000 | GRANADA | HR-D320 HR-D700EK | VR-6548 |
| VCR-8000 | VHS-FY1 | HR-D750 | VR-6670 |
| AMSTRAD | VHS-GY2 | HR-D830 | VR-6870 |
| VCR8600 | VHS-FS 4 | LOGIK | PIONEER |
| VCR8700 | GRUNDIG | VR945 | VR-525 |
| BAIRD | VS-500 | VR950 | VR-727 |
| VC141L | VS-520 | VR955 | PYE |
| BUSH | VS-540 | VR960A | DV186 |
| VCR3401 | VS-550 | VR96A | DV190 |
| VCR3451 | TVR-4510 | MATSUI | DV286 |
| DE-GRAF | TVR-5510 | VCP100 | |
| WHS -FS4 | HINARI | VX730 | $\underset{\text { VR-6420 }}{\text { SABA }}$ |
| FERGUSON | VXL-8,9,11,19 | VX735A | VR-6640 |
| FV20B | VXL-10 | VX750 | SAISH |
| FV21R | VXL-12 | VX755 | SAISH |
| FV22L | VCRL-90 | VX765 | VXL12 ${ }^{\text {V }}$ |
| FV30B | VTV-100,200 | VX850 | VP3000 |
| FV31R | VTV-300 | VX866 | VRS3200 |
| FV32L | HITACHI | VX877 | VR3300X |
| ${ }_{\text {FV }} \mathrm{FV} 37 \mathrm{H}$ | F70 | VX8888 | VR3400 |
| VC141L | VT-S80E | VX6000 | V3500 |
| FIDELITY | VT-520 | VX6000A | NEC |
| VR900 | VT-530E | VX6600 | PX-1200K |
| | VT-580 | MITSUBUSHI | DX-1800K |
| FINLUX | VT-M622 | HS-B11 | NIKKAI |
| VR3300 | VT-M630 | HS-B21 | |
| VR3400 | VT-M640E | MURPHY | NORDMENDE |
| GOLDSTAR | INGERSOL | VCR-7101 | V1005M |
| GHV1296i | VR9995 | | V1005MI |

The following makes:- Hinari, Logik, Matsui, Orion, Saisho \& Sony
were not in our previous Video Book. Therefore we have included some earlier models from each manufacturer as can be seen below:
11 Hinari models
5 Logik models

16 Matsui models 14 Orion models

16 Saisho models 3 Sony models

Interest Free Credit

On Video Servicing 1989/90. Send $£ 69$ with a $£ 75$ Post Dated Cheque for the following month \& we will send you the Video Servicing 1989/90 set of books on receipt of your order. If ordering a FULL set of books, please ring for credit details. OR SEND FOR FREE COLOUR LENFLET LISTNG MODELS ANO PHOTOGATAS

RADIO \& TELEVISION SERVICING

1976-1977, 1977-1978 and 1985-1986 $\mathbf{1 1 0 . 0 0}$ each including delivery.

V1805K SANYO

V1805U VHR-4150

V4000 UNIC VHR-4350

ORION VHR-D4610

VCR-LA1 VHR-5200
VCR-L1 VHR-5240
VR-MDTT1 VHR-5350
VCR-X1 VHR-D5450
VCR-M2
VCR-L2
VR-MDTTST2
VX8600LP
VR-LDST2 SHARP
VR-LD2 VC-A100
VR-LD3 VC-A105
VCR-M3 VC-A111
VCR-LD3 VC-A131
VCR-MD3 VC-A140
VXL12 VC-A170
VTV300 VC-T310
D1200
OSAKI VC-A502
VCR-34H VC-793
SAISHO VC-D801
VR3650 D805
VR3700 VC-A5011

VR3800 SONY
VRS4000 SLV-201
VRS4200 SLV-301
VRS4400
VRS5000X TATUNG
VRS5500 TVP-1311
SALORA TELEFUNKEN
SV-6800
SV-6900
SV-6910
SAM-9900
VI-710
VI-711
VI-730
VI-750
VI-770
VI-790
VI-970

VR-4935
VR-4945

THOMPSON

V-610
V-630
TOSHIBA
V-109B
V-209B
V-300B V-509B
V-309B V-700B
V-500B V-700H

TELEVISION SERVICING 1989-90 $\mathbf{6 6 5 . 0 0}$ ISBN 0951389718 Covers 749 models VIDEO SERVICING 1987-88
$£ 65.00$ ISBN 0951389734 Covers 150 models (While Stocks last)
VIDEO SERVICING 1989-90 £138.00 ISBN 0951389726 TWO 336 page volumes
covering 230 models.
Post, Packing and Insurance

1 Book £4

2 or more Books £7
VISA NOTE:

Video Servicing 1989-90 is a TWO volume purchase and is therefore $£ 7$ delivery.
For Airmail delivery to Europe add $£ 5$ per book. For Austrailia, New Zealand \& the rest of the world add $£ 10$ per book.
No VAT on books.
The above publications are also available from Charles Hyde \&

Seme.

VIDEO AND HANDBOOK TRAINING IN SATELLITE TELEVISION

位 very very good!

A 55 minute video with a lavishly illustrated supporting 46 page A 4 handbook aimed at the practical sales person and installer. All you need to know to become conversant with the subject. A brand new course written and produced by experis in the industry. Send for ull details
Microforge Lid., 339 Clifton Drive South, St. Annes, Lancashire FY8 1LP. Tel:0253 725499

SATELLITE TV RECEPTION
DRAKE Receiver/Positioners from £299 RACAL Magnetic Polarisers from $£ 29$ 60 cm to 3 m Antennas, polar mounts 11/12/4Ghz LNBS - feeds, accessories SAE for Leaflets
KESH ELECTRICS LTD
Main Street, Kesh, Co Fermanagh BT931TF Tel. 0365631449 Fax. 39250 TIX 747412

SERVICE DATA

Ever wondered what happened to McDonalds TV \& Radio Yearbook?
The TIS best selling original Yearbook MORE DATA, MORE PAGES LARGEST CIRCUITS (up to A2) \& NEW MODELS

TV-AUDIO-RADIO

 Complete Service \& Repair Data Volume 1
CTV

Our CTV section features all DECCA / TATUNG from 1980 to 1989, PHILIPS KT-4/K-40, ALBA $10 / 1 / 1 / 2214$, CONIC, ETRON. LLOYTRON. HINARI CT-4 to CTV-8, ITT $1100 / 1200$ \& digitised to

AUDIO \& RADIO

Over 50 different audio \& radio manufactured from 1987 to 1989 teaturing AKAl, AMSTRAD, BINATONE, BUSH, COMET, DECCA, FERGUSON FISHER, GOODMANS, GRUNDIG, HITACHi, JVC. MARANTZ, MITSUBISHI, PANASONIC, PHILIPS, PIONEER. SANSUI, SANYO, SHARP, SOLAVOX, SONY, TECHNICS, TOSHIBA.

PLUS - Special feature on COMPACT DISCS.
Complete data on big name makes like ALBA, FERGUSON, HITACHI, JVC, PHILIPS, SONY and others from 1983 onwards, PLUS full description of the principals \& operations of compact discs.
Vol.1a - This book is packed with over 170 large pages giving all required data, plus circuit and operational descriptions together with full FAULT-FINDING DATA including all the known STOCK FAULTS as well as the standard and possible faults with their cures.
Vol.1b - This is a HUGE binder packed with every CIRCUIT. LAY-OUT \& WAVEFORM for every modification ever published. Most pages are a massive AS in sizel Nothing smaller than A3 in sizel
Diagrams can be up to $24^{\circ} \times 165^{\prime \prime}$. ${ }^{\text {mich }}$ is the largest diagrams Diagrams can be up to $24^{\circ} \times 16.5^{\prime \prime}$, which is the largest diagrams ever produced as standard in
ANy yearbook.

> vOLUME IA on its own is f16.95 VOLUME IB on its own is $£ 36.95$
> VOLUME 1 (COMPLETE) is only $£ 49.95$ VOLUME 2 is only f39.50 when you buy VOLUME 1

INFOTECH

76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE Tel. (0698) 884585 Mon-Fri 8.30am - 5.00pm Tel. (0698) 883334 Outwith business hours FAX faciliuy available all day, Monsat, on either line

Send a large SAE for your FREE catalogue of our other publications

[^4]
NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:

$£ 7.50$ for Television Faults $\mathbf{£ 7 . 5 0}$ for Video Faults

or $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:

$$
\begin{aligned}
& \text { E.C.S. } \\
& \text { 31 Prenton Road West, } \\
& \text { Prenton, Birkenhead, } \\
& \text { Merseyside L42 9PY. } \\
& \text { Please add E1.50 per order for P\&P } \\
& \hline
\end{aligned}
$$

FED-UP
of badly copied \& unreadable circuits

FRUSTRATED

at diagrams being spread over several pages
LOSING MONEY \& CUSTOM
due to slow response from suppliers
YOU ARE NOT USING TIS / INFOTECH

We offer :-
REPLACEMENTS \& REFUNDS if anything is unreadable

DIAGRAMS ON A2 pages
TWICE the size of A3 diagrams $\&$ unavailable from any other Technical Information Supplier

ORDERS BY RETURN
just pick up the phone and order by ACCESS or VISA or send a cheque for same day posting

Technical Information Services SERVICE MANUALS
76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE Tel. (0698) 884585 Mon-Fri 8.30am - 5.00pm Tel. (0698) 883334 Outwith business hours

[LASSIFIED CLASSIFIED CLRSSIFIED CLASSIFIED CLDSSIFIED

Lins Coost Town
 TV, VIDEO, REPAIR and
 RENTAL BUSINESS FOR SALE

Well fitted spacious shop.
Popular trading area. Existing clientele. Same owner for 27 years. Accommodation: luxury 4 bedroomed self-contained flat with separate entrance.

SAV Business $£ 15,000$
Property $£ 140,000$
Reply to Box Number 259

FOR SALE

TVNideo Electronic Servicing
Business on South Coast (Just Off M27)
Established 17 Years
Fully fitted workshop under house suit hustand and wife. Complete with 4 hedroom detached housc on latge tree-lined plot (non-estate). Parking tor 6 cars.
Ensuite shower room to master bedroom.
Fully fitted kitchen. lounge. dining room, study, and modern fitted bathroom

$$
\mathfrak{£ 1 3 5 , 0 0 0}
$$

Telephone (0489) 575030

TEST EQUIPMENT

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY
 Lae
 DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING
 Electronic Service Unit PRINCIPAL TECHNICAL OFFICER (VIDEO AND TELEVISION SPECIALIST)

Applications are invited for this challenging position which will complement the other specialists in this highly regarded unit. The unit primarily provides electronics workshop repair facilities to all University departments. It also makes its expertise and services (which are almost unique within the country) available commercially to many outside organisations. Consequently the range of equipment supported is very broad indeed. Duties will include the bench repair of a wide range of video equipment comprised of professional and domestic VCRs, monitors, cameras and televisions; and the supervision and training of Technical Officers both at the bench and through the provision of in-house short courses. Applicants should be qualified to HNC Electronics level or equivalent, have sound theoretical knowledge and substantial experience in the repair of the equipment listed above. It is essential that applicants be versatile and able to pass on their knowledge.

Salary per annum: K22,055-K23,095. (Level of appointment will depend upon qualifications and experience.)
Initial contract period is normally for three years but shorter periods can be negotiated. Other benefits include a gratuity of 25% taxed at 2%, support for approved research, appointment and repatriation fares, leave fares for staff member and family after 18 months of service, settling-in and settling-out allowances, six weeks paid leave per year, education fares and assistance towards school fees; free housing, salary protection plan and medical benefit schemes are available. Staff members are also permitted to earn from consultancy up to 50% of earnings annually.

Detailed applications (two copies) with curriculum vitae and the names and addresses of three referees including telephone numbers and indication of earliest availability to take up appointment should be received by: The Registrar, Papua New Guinea University of Technology, Private Mail Bag, Lae, Papua New Guinea by 15 August 1991
Applicants resident in the UK should also send one copy to Appointments (39527), Association of Commonwealth Universities, 36 Gordon Square, London WC1H OPF, from whom further information may be obtained

car radios. CD-players; measurment of millivolt, drift. watt, performance; with generator, radio, signal tracer/injector. 13 volt supply etc.

Regenerating Computers \& Measurers for CRT's with cathode protection, gas clean-up aid, short repair; exhausted CRT's becomes bright and sharp again even ifall other machines do not succeed
United Kingdom: P \& E Services, Llandudno, Tel. (0492) 5492 46, Fax 578880 . Ireland: Dönberg Electronics, Ranafast, Co. Donegal, Tel./Fax (075) 48275 New Zealand: TDON Ltd., Onehunga, Auckland, Tel. 668-9 07, Fax 668-4 99 Germany: Ulrich Müter, Oer-Erkenschwick, Fax (02368) 57017

I INFOTECH
 VISA
 76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE Tel. (0698) 884585 Mon-Fri 8.30am - 5.00pm Tel. (0698) 883334 Outwith business hours
 FAX facility available all day, Mon-Sat, on either line

OVER 200 titles available, from CTV's to Satellites

CTV \& VIDEO

practical tV repairs by tunbridge
COLOUR TV SERVICING by G.KING
TV \& VDEO ENGINEERS POCKET BOOK
NEWNES GUIDE TO TV \& VIDEO TECHNOLOGY VCR SERVICING 3rd ed by BEECHING

AUDIO

PRACTICAL RADIO by TUNBRIDGE
SERVICING AUDIO \& HI-FI EQUIP' by N.BEER HI-FI SERVICING by COOMBES

DOMESTIC, SATELLITE, COMPUTER \& TEST EQUIPMENT

MICROWAVE SERVICING by COOMBES
WIRING SYS'\& FAULT-FINDING for the INSTALLATION ELECTRICIAN
SERVICING PERSONAL COMPUTERS by TOOLEY
SERVICING PERSONAL COMPUTERS by TOOL
SPECTRUM REPAIR GUIDE by TUNBRIDGE
OSCILLOSCOPES, HOW USEWORK
EUROPEAN SCRAMBLING SYSTEM
SECURITY SYS' \& INTRUDER ALARMS
$\begin{array}{r} \\ 514.95 \\ \hline\end{array}$
£25.00
WRITE NOW WITH AN SAE FOR YOUR FREE CATALOGUE \& VOUCHERS

INTEGRATED SYSTEMS from TIS
 Enough to stant up your own business \&
 can save existing busineses fl000's on circuits \& manuals

ALL 10 CTV BINDERS of CIRCUITS plus
ALL 10 CTV BINDERS of CIRCRITS plus
OVER 20 CTV BOOKS \& THORNS PAL SYSTEM plus MUCH MORE
£399.00

30 matching FAULT-FINDING GUIDES \& MANY OTHER GOODS $£ 230.00$
ALL OF THE ABOVE PLUS AUDIO INFORMATION E599.00
FOR MORE INFORMATION ON ANY OF THE ABOVE, WRITE OR PHONE NOW!

SUMMER BARGAIIS FOR THE SERVICE ENGINEER

WORKING PANASONIC (ETC) TVs AND VIDEOS
Make extra profit from sales of superb stock at summer prices
Phone Tom Poole or Brian Ricketts - 061-274 3409
Repo
Repossessed TV Centres Limited. Daisy Works, 345 Stockport Road, Longsight, Manchester M13 OLF.

HITACHI 5000 (new) VIDEO HEADS
1-10@ $£ 5.00$ each $+\Sigma 1.00$ p.p. + V.A.T. $10-50 @ £ 3.00$ each $+£ 1.50$ p.p. + V.A.T $50+$ (a) $£ 2.00$ each $+£ 1.50$ p.p. + V.A.T. Remittance with order to:-

C.R.T. SERVICES

Unit 10, Delph Industrial Estate, Delph Road, Brierly Hill, West Midlands DY5 2TW. (0384 70632/038475194 Eve)

UNIVERSAL CASS. MOTORS $6 \mathrm{~V} \& 9 \mathrm{~V}$ MANY MAKES OF USED VIDEO AND TV PANELS GUARANTEEO WORKING HUINDREDS NOT LISTED PHONE OUR HOTLINE

Large package of
Rediffusion Mk 3/4/Granada Finlandia/ITT

HANDSET SPARES

Consisting of:Keypads/top/bottom cases/P.C.B.s etc etc. Offers invited for the whole or will divide. PHONE 038470632 day 038475194 eve.

THRIFTY SPARES (WALES) C/O CENTREVISION, SLOPER ROAD, LECKWITH, CARDIFF CF1 8 AB INCREASE YOUR PROFITS WITH USED SPARES

0222344218
VIDEO THORN, HITACHI, TOSHIBA, ITT, SHARP, AMSTRAD, PANASONIC, ETC.

USED WORKING VIDEO SPARES

MIXED BOOSTER SERVO PANEL LOADING MOTOR ASS BOTTOM BOARD MODULATOR. MECH COM DRUM ASS CAPSTAN MOTOR POWER PANEL TUNING BOARD
. $£ 12.80$
£15.50
£10.50
£20.50
£15.50
\&15.50
£12.80
£15.50
£15.50
£18.00MK3A LINE SCAN (STATE TUBE)

MK3A POWER PANEL
MK4 LINE SCAN
MK4 LINE SCAN MK4 IF PANEL
MK4 MANUEL TUNER HEAD ASS
MK4 REMOTE BOARD.
MK4 TEXT BOARDS
MK4 FRONT ASSEMBLY
MK4 TRIPLERS .
MK4 CRT TUBE CALLERS ONLY
MK4 TEXT HANDSET..
MK4A TEXT HANDSET

Subscribe to TELEVISION and receive 3 extra issues FREE!

TELEVIIION
15 ISSUES FOR THE PRICE OF 12
If you want to keep up-to-date with all the latest advances in technology, then take out a subscription to Television Or give a gift subscription to a friend or relative.

Annual subscription rate: UK - £21.60; Overseas - £25.50. Simply complete the order form below and post to: Television, Freepost 1061, Haywards Heath, RH16 3ZA. (No stamp required)

Yes I would like to take out an annual subscription to Television and receive 15 issues for the price of 12 .

Tick here if you would like to subscribe yourself Your Name
Address

Method of Payment (tick your choice)
My cheque/postal order* for £.......................... is enclosed, payable to IPC Magazines Ltd.
Invoice me later for $£$
Charge my Access/American Express/Nisa/Diners Club Card* No.

Expiry date

*Delete as appropriate
Alternatively, you can order by TELEPHONE: Place your subscription by calling (0444) 441212 between 9am and 5pm (Mon - Fri) giving your credit card details. TV8

PAL SECAM DECODER £12.50. ITT TYPE WITH DATA.
 LNB's WITH FEED HORN AND POLARIZER 10GHz TO 12.75GHz 1.5 db s.n. £35. SEND FOR DATA.

SATELLITE RECEIVERS
19 C.H. with Hand Set 32 C.H. $£ 50$

6 TUCH Gll Replacement Draw Unit $£ 10$

Gas Soldering Irons
Varsely Nicke! Cadmiun Batteries from Telcphone Type to
Suh.C 50 pper cell Mainly in pachs of f to A
AUTORANGE
DC and AC' and Resistance Pochef 3k(x) Philifs Gll x Touch Butwon with Lamps. Non-temot Philips New Hand Set Digital RC5091 lit all Tew Sets atter G11

STEREOHEADPIONES	f1.(1)
$\begin{aligned} & \text { THORN RECEIAER } \\ & \text { PANEI. IXHO } \end{aligned}$	t6.(1)
STEREOKHI SOUNDO.P. PANELS	(2.51)
PIILIPS DUAL TRACE ose Illos	1165
CAR ADAPTOR iused 3Amp Lome lead with phag for TVetc	

$25 \mathrm{p} \quad 5(\mathrm{~N})$ oft. 15p Each

TEI.EPHONEI.EADS Witi Plug. 4 Wire \& 6 Wire Plag and Sinchel	Wi
TELEPIONE ENT. LEA MeIte	FAl
All lin Long	- . . ${ }^{\text {E2 }}$.50
ISRIIXIFS REATIFIER Mixed BR 3110.3 2 Amplos Amp	$8 \mathrm{ff}$
TXNNOD 3714B The Swerp Tuning System TX9139/(0)I	48
T6070V TX9 Tranvisior Tx9 coD $4-16 K_{1}-124$ Chopper Tramsformer 	
VHEOSCART TOSCARI AIL PIN, LONGI.EAD £3.00	
TX90 TX925 TXIM Mains Switeh with Stand-by and lean!	
INI SERSAL VIDEO-RECORD KIT STEREO	

SPLIT-DIODE

 TOSHIRA

${ }_{2 \times 2101-2}^{\text {TX9 L. }}$ 2.P.T.
ITT TUNER CAN ITT TUNER CAN
 TTT PANEL

CAR 80 Pamors Supply Sulth Moxte
OHCCA—OEC-ITT

BURGLAR
ALARM
£2.50
with siren
9 VOLT
RELAYS 35p
$5 \mathrm{~V}-12 \mathrm{~V}-24 \mathrm{~V}-48 \mathrm{~V}$
Large and Small
BUZZER
6 VOLT. Small
10P EACH

\qquad

V.H.S. VIDEO HEADS from $£ 8.20$ to $£ 60$. SEND FOR PRICE LIST. V3HSS V, V3HSSV-L $£ 8.20$ SEND FOR LIST O F VIDEO SPARES. VIDEO LEAD ANO BELTS 12V/ AMP POWER SUPPLY WITH MAINS PLUG £4
PHILIPS HALOGEN LIGHT. NEW. NO ON/OFF SWITCH. NO HANDLE WITH CORO. BLACK IN COLDUR £ 5

PHLIPS HALOGEN LIGHT. NEW. NO ON OFF SWITCH. NO HANDLE WITH CORO. BL				
PHILIPS HAND SET G11 TEXT ULTRASONIC $£ 10$	G11 TEXI IN RED HAND SET £12.50	G11 HAND SET ULTRASONIC $£ 10$	PHILIPS RC5 EASY CONTROL $£ 10$	LATEST TYPE OF TELEPHONEDESK TYPE-COST 539.0055.50 EACH

SEND 2 COMPONENTS, 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 $8 A F$.

SAME DAY SERVICE
 All items subject to avallability. No accounts: No Credit Cards. Postal Order/Cheque with order

Callers: To shop at Add
Open 9-122.30-6. GVMT + school orders accepted on official headings. Add 10% handling charge

[^0]: Ever wondered what happened to McDonalds TV \& Radio Yearbook?
 Now a superior yearbook is available! MORE DATA, MORE PAGES
 LARGER CIRCUITS (A2) \& NEW MODELS
 TV-AUDIO-RADIO
 Complete Service \& Repair Data Volume 2

 CTV
 Our CTV section features the complete FERGUSON range TX-85/86/89/90/98/99/100 with EVERY modification \& amandment known PLUS all versions of the ICC5 chassis used in FERGUSON, NORDMENDE \& TELEFUNKEN. PLUS PHILIPS 2A \& 3A and SHARP chassis.

 SATELLITE
 We have pages of general data as well as full coverage of the AMSTRAD/FIDELITY SRX-100/200, SRD-400 and the FERGUSON SRX-1/1S, SRB-1, SRD-2, SRV-1 and ALL OF PACE

 VCR
 For the first time anywhere, we have compiled general repair/servicing data for VHS camera recorders and VHS-C camcorders, featuring full data for the PHILLIPS VKR-6800. AMSTRAD VMC. 100 and FERGUSON FC-06.

 > PLUS - Special feature on the Atari ST-520/1040 all versions

 Vol.2a - This book is packed with almost 150 large pages giving all required data, plus circuit and operational descriptions together with full FAULT-FINDING DATA including all the known STOCK FAULTS as well as the standard and possible faults with their cures.

 Vol.2b - This is a HUGE binder packed with every CIRCUIT, LAY-OUT \& WAVEFORM for every modification ever published. All pages are A2 or A3 in size! Diagrams can be up to $24^{\circ} \times 16.5^{\circ}$ In size, which is the largest diagrams ever produced as standard in ANY yearbook
 VOLUME 2A on its own is $\mathbf{1 1 6 . 9 5}$ VOLUME $2 B$ on its own is $\mathbf{x 3 6 . 9 5}$ VOLUME 2 (COMPLETE) is only f49.95 VOLUME 1 is only $\ddagger 39.50$ when you buy VOLUME 2

 76 CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 1HE Tel. (0698) 884585 Mon-Fri 8.30am - 5.00pm Tel. (0698) 883334 Outwith business hours faX facility available all day, Mon-Sa, on either line
 Send a large SAE for your FREE catalogue of our other publications

[^1]: Published on the third Wednesday of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmserting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the Riverside Press Lid., St Ives plc. Distributed by IPC Marketforce, King's Reach Tower, Stamford Street, London SE1 9LS (071 2615000). Sole Agents for Australia and New Zealand - Gordon and Gotch (Avia) Ltd; South Africa - Central News Agency Ltd. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: DALEANI (UK) LTD
 587A KINGSTON ROAD, RAYNES PARK, LONDON SW20 8SA, ENGLAND Tel: 081-543 1971 Q Fax: 0815422082 O TIX 914040

[^3]:

[^4]: MICRO-LAB
 Save TIME and MONEY
 by speeding up fault diagnosis.
 Our MICRO-LAB instruments will help you find faults faster.
 The improvements can be dramatic. We know! We use them! Write or phone for a free brochure COLEBOURN ELECTRONICS Dept TV, 20 Folly Lane, Telephone St Albans, AL35JT 072744785

