JULY 1991

SERVICING•PROJECTS•VIDEO-DEVELOPMENTS

FREE ZENER DIODE PACK

The Mitsubishi Euro-4 Chassis Video Equivalents•Test Report Assessing Satellite TV Reception Hitachi Servicing Briefs \bullet DX-TV TV Fault Finding•VCR Clinic

FLபKE.

+2
 PHILIPS

NICAM testing?

Get the multistandard solution!

Colour TV pattern generators that give you both NICAM and analog sound channels.

If you need NICAM testing facilities in a single, versatile instrument, Philips has a cost-effective solution. Three multistandard generators. PM 5515 TN,
PM 5518 TN and PM 5518 TNI, that give you every video and audio test signal you need - including both NICAM and analog sound channels. The PM 5518 TNI is remote controllable via IEEE interface. On-board audio test functions include mono, stereo and dual signals for digital
and analog sound, with over 55 selectable digital test signals, plus highstability (2 p.p.m.) subcarrier and sound carrier signals.
You also get versatile video test functions - like full RF coverage with synthesized frequency control, over 70 instantly selectable test patterns and combinations, Teletext, storage for up to 10 multi-program test sequences and external video modulation facilities.

So for NICAM testing, choose the generators that give you a one-stop test solution.

Philips Test \& Measurement

Colonial Way, Watford WD2 4TT
Tel: 0923240511 Telex: 934583 PHITMD G Fax: 0923225067
A division of Philips Scientific
Available for hire from
Colp LIVINGSTON HIRE Call 0800886000

(x)
 COPYRIGHT
 (C) IPC Magazines Limited, 1991. Copyright in all drawings, photographs and articles
 this month

published in Television is fully protected and reproducution or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those curent as we go to press.

CORRESPONDENCE

All
correspondence
regarding advertisements should be addressed to the Advertisement Management, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES AND BINDERS

Indexes to Vols. 37 and 38 are available at $£ 1$ each from the Editorial office (address above). Photostats of the indexes to Vols. $31-36$ can be supplied at $£ 1$ each.

Binders that hold twelve issues of Television are available for $\mathbf{£ 4 . 5 0}$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 21.60$ in the UK, £25.50 overseas (by surface mail - ask for airmail quote if required). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them

633 Leader
638 CD Player Casebook
Reports from Mike Leach and E.M. Beddows
640 Teletopics
News, comment and developments.
642 Servicing the Mitsubishi Euro 4 Chassis
John Coombes
Operation of the two chopper power supplies and notes on faults and symptoms
644 TV/VCR Equivalents: Granada
Codes used by Granada for rental, retail and
Tashiko models and the equivalents in the original manufacturers' ranges.
646 Test Report: Beckman DM27XL DMM
David Botto
More than just a DMM, this meter has capacitance and frequency measuring, logic probe and transistor gain check capabilities. Good accuracy and an easy-to-read display are amongst its plus points.
648 Fifty Years in Radio and TV, Part 7
Harold Peters
Final developments at the Pye Lowestoft
plant then a return to servicing
649 Next Month in Television
650 TV Fault Finding
Reports from Philip Blundell, AMIEJE,
Stephen Leatherbarrow, Mick Dutton,
Nick Beer, Ed Rowland and Steve Cannon.
652 Gremlins and Gurus
Steve Cannon
Mikey Guru saved the day with this
troublesome Salora set.
653 What a Life
Donald Bullock
Odd sets and odder customers.
654 Satellite TV Aerial Systems, Part 4
Calculations to enable you to assess the equipment requirements for reception from a particular satellite: the link budget calculation.
658 The Euras Information Database
A workshop try-out on the Euras fault-finding database in its book form.
659 Service Briefs - Hitachi CTV
Some official guidance on faults and servicing plus some hints picked up from courses.
662 Long-distance Television
Roger Bunney
DX conditions and reception and news from abroad.
VCR Clinic
Reports from Philip Blundell, AMIEIE,
Gerald Smith, Nick Beer, Ian Bowden,
Steve Cannon, Mick Dutton and Joe Cieszynski.
666 Tuner Transplant for Hitachi CTVs
Roger Jones
Fitting a varicap tuner in place of the mechanical one used in early Hitachi CTV sets. Circuit details and a standby light modification
668
Book Reviews
669 Test Cast 343
OUR NEXT ISSUE DATED AUGUST WILL BE PUBLISHED ON JULY 17

 タำด

 \&

 8

IDLERS \& PULLEYS REPLACEMENTS				IDCERS \& PULLEYS REPLACEMENTS - Cont.				VIOEO MOTORS						
MMSTRAD VCR7000	Reterence			matomel				amstaid						
VCRTOOO		150280	11.50	NV322 NV600 Nv688,	IDLERUNIT	WP0463	$\mathrm{E}_{2} .00$							
AKM				NVTT7, NV788				VCA7000	REEL MOTOR	£17.00				
VS1-2, VS4-5, VS15	FF-REWIDLER	M132773	94.50	NV333	IDLER ARM	UxL0997	${ }^{15} .60$	FERGUSOM a JVC						
VS1-2, VS4-5. VS15	T-UP IDLER	BV327815	¢6.00	NV333. NV366	IDLER UNIT	WxP0401	${ }^{50.75}$		CAPSTAN MOTORCAPSTAN MOTOR	521.00				
v9700	IDLER ${ }^{\text {a }}$	BV321979	¢6.00	Nv333, NN366	PLAY IDLER	VXPO433	${ }^{£ 3.00}$			£19.50				
VS125, 126, 155,	IDLER ASSY	M236696012	511.00	NV333, NV3000 nv300	Actiongear	V0G0016	$\underline{50.60}$	HRO225						
VS165, 240, 244.				NVI800	Loading gear	UxP0325	12.00							
vs250, 512,515,516				NV333, nv2000, nv3000. INTERMEDIATE GEAR		vXG0017	50.65		REEL MOTOR	89.50				
				NV333	CAM Gear	V600158	\$1.00			¢26.50				
FERGusay				NV366 NV370, NV430, NV730,	IDLER ARM	W×0997	${ }^{3} .60$	HR730	CAPSTAN MOTOR					
				WP0521		17.70	Pt5 58635V. 3V58. 3V59, 3V64. 3V65. 8950, 8951, FV108, FV11R, FV12L.	E29.00						
3V16.22	TUP PDLER	PU47752	£4.50		N N830, Nv650, Nv870,					FVI3H. FV20B, FV21R, FV22L. HRD170				
3V16-22	T.UP IDLEA	PU49280	¢6.30	NVG7, NVG10, NvG12. NVG18										
3223, 3229-30,	REEL IDLER	PU48967	£.00			VDGO200		HRD 180 . HRD230, HRD370. HRD430 PU58636W $3 V 58$ 3V59 3V64 3 V65	reelmotor					
3V31-32,3835				NV370, NV430, Nv870, NV730, Nv830, NV850	Camgear		81.20	8950. 8951, FV10B, FV11R. FV12L.	hetmor					
3 V 23	ROLLER ASSY	PU49042A	¢4.00					FV13H, FV14T, FV20B, FV21R, FV22L						
3V29-30, 3v31-32,	T-UP IDEER	51402	£1.45	NV730	IDLER UNT	XPP0581	9.50	HRD170. HRO180. HRO230. HRD370 HRO430 HRO530						
3V35-36,3v38-39, 3749				NN2000 NV3000	IDLER UNT	VXP0331	$f 1.20$							
3V29-30,3v31-32	I.UP CLuTCH	PU51380	$\underline{\mathrm{E}} .60$	NN2000, Nv3000	IDLERUNIT	VXP0329	¢1.20	3V43, 3V44, 3V45, 3V48, 3v53,	Loading motor	${ }_{\text {¢8.00 }}$				
3V35-36, 3V338-39, 3 V49	REEL DLER	PU55374	$\underline{92} 85$	NV2000, NV3000	CAMGEAR	VDGOO69	${ }^{1} 1.00$	3V54, 3V55, 3V56, 3V57, 8945, 8947						
3V35-36, 3V338-39, 3V49	T.UPClutch	Pu55373	52.25	N2000, N3300	action gear	voG0016	£0.60	8948, HRO140, HRD 150, HRO455. HRO565.						
3V58-59, 3V64-65,	IDLER ARM	Pusf645	$\underline{0.50}$	NV7000, 7200, 7800 Nv7000, 7200, 7800	${ }^{\text {DILERUNUNT}}$	x_{100344} WPO 343	18.00							
FV10-11, F12-13, F14					CLUTCH		${ }^{51.50}$	MITSUBISH						
3 V 42	CLUTCH ASSY	PU55822	¢13.50	NV8400, NV8600, IDLERUNIT		$\begin{aligned} & \text { WPPO43 } \\ & \text { VXPOO245 } \end{aligned}$		288P02801, HS300, 301. 302.310	MOTOR REEL SPOOLING	E33.50				
$3 V 44$	CUUTCH ASSY	Pu57658	511.50	Nv8610, Nv8620				288P02806, HS303. 304, 320, 330, 700 288P03401, HS303. 700	motor reel spooling	E31.50				
3V42, 43, 48, 53, 56 3V42, 43, 48, 53, 56	T-UPCLURCH	PU56043-1-4PU5694-1-5	$\underline{59.80}$	NV8620 NV800, NV8620 PLAY IDEER		$\checkmark \times 0343$ WP0488 い \times P0767			motor reel take-up gen	$\underline{21.00}$				
			92.80			mational								
				NV600 NVG21-25, NVG40-45	PUULER YUNT			MYN 135V5L. NV332. NV333. NV340.						
FISHER				ORIOM			¢5.80	NW366	reel motor motor reel gen	${ }_{c}^{13} 3.50$				
FYHP520, FVHP530	FF-REW PJLLEY COMP. IDLER ASSY GEAR IDLER ASSY REELTUPASSY GEAR IDLERASSY	H163853才F11430204040330	£1.00			850 A 200004	£3.50	VEMO212, NV730NV770						
FVMP615			${ }^{13} 30$	VH200-201 VH555-700, VH844-900	IDLER			Smivo						
FVHP615		F1430490400900 Fli430410400900 Fil430490402400	¢5.50	VH1000-1500, VH1800, VP200 VH530		850A200004		4.529V-10800 (RM11). VTC5000, VTC5150	reel motor	ع6. 30				
FHP840 FVHP905, 906, 908 ,			E6.50			850A200005	¢6.50	STMRP						
			£6.20	VH535.630, VH635-640.	IDLER			RMOTV 10086EZ7, vC200, vC381, vC384,	reel moto	¢13.5				
	IDLER	F1143042040700	¢5.20	VH893-1440, VH2500.				VC385, VC386, vC483, VC3300 , vç381.						
FVHPG75, 990, 999, FVHP5000, 5100				2600. VH2700-4010,				vC9100, vC9300, vC9500, vC9700						
				VH5010				RMOTV 1007GEZ, VC387, VC483, VC486	REEL MOTO	${ }^{16.50}$				
GOLSTAR				PHILPS				RMOTV 1010GEZ VC300 VC402 VC471						
	IDLER	435038A	9.50	DV464, VR6462, VR6463, IDLER VR6660 VR6860		52220334	0.50	VC477, VC481, VC482, VC488, VC496, VC500, VC571, VC581, VC582, VC583, vc584. VC5F3. VC8481, VC8581						
				VA6460. Vf6520. 6920	IDLER ARM	40340162	51.70							
нпаСН				D8532. VR6542. VR6843			97.50	sowy						
	FF-REW IDLER PLAYIDLER CLUTCH ASSY	6886971 V6861482	£1.50	Sanyo		$1430662 T 14730$	55.00	BHF 11000. SLC7	CAPStan motor	¢5.00				
			£3.20	VHR110, VHR1300,	IDLER									
VT11-33, V63.64, V114			ต. 50				830							
17, 19, 38, 57, VT86, 88 VT120-220	CLUTCH ASSY			VTC5000, VTC5150	FF.REW IDLERIDLER	1430741T20001		FERGUSON a JVC CASSETIE HOUSING						
		6886824	E7.50	VCC9100, vic9300VTc9300		1430551101400	${ }_{17} 1.20$							
$\begin{aligned} & \text { VT8000-8300 } \\ & \text { vT8500-8700 } \end{aligned}$		6413663	9.80		10LER FF ROLLER ASSY REEL DRIVE PULLEY	1430547700200		3V38, 3V39. 8943, 8944, 8951, 3V35, 3V36, HRD110. HRO120, HRD121, HRD225		E24.00				
	FF-REW IDLER			VTC9300 VTCM10-20		1433662 T10350		3V42, 3V43, 3v44, 3v45, 8945, 9947, HRO1	0, HRO14T. HRD150,					
V18000-8300,	Playider	6414221	£3.60	VHR2100, VHR2300	IDLER	6130374899		HRD455, HRD725		¢24.0				
V18500-8700				VTC5000, vTC5150	pulley	143-0.662T-0t201		89448, 8950, FV108, FV121, FV13H, FV14T, F	208, FV21R, FV22L.					
V18000-8300	FF-REW PUULEY	6388531	¢0.80	VTCM10	Pulley	143-0.662T-10350		HRD230, HRO430, HRO530		E24.00				
V18500-8700				SHARP				3V58, 3V59, 3V64, 3V65, FV11R, HRO170, H	R0180, HRD370					
V99300-9500	PFPRYYIDLER	8681471 6861482	${ }_{\text {E3 }} \mathrm{E} .30$	VC651, vC689, VC685	IDLERASSY	APLYV0107GEZZ	¢6.15	VIDEO LA	MPS					
V79300-9500	IDLER	681505	$\sum_{£ 3.00}$	VC7300. VC7700	Play idierkit	NPLYV0041+		UNIVERSAL LIDEO LAMPS 12 V 60ma (300 mm	WRES)	50.30				
	IDLER	687043	83.80			NDAIV1007	¢5.00	PANASONIC VIDEO LAMPS		£0. 50				
V11-33, V163-64	FF-REW IOLER	6886977	${ }^{17.50}$	VC8381 VC9100		NidCOOSGEZ	¢1.50	SONY FLYBACK TR	ANSFORMERS					
				VC9300. VC9500.						Price				
HMARN				VC9700				$\begin{array}{ll}\text { 1-439-216-00 } & \text { KV.2002E, 2010E, 2200E, } 20 \\ \text { NV-2012ME 2016ME, 2015 }\end{array}$	15. 1820E, 2010SE,					
vxL3, vxL20	REEL IDLER	40000009	£1.50	VC300, VC387, VC481,	IDEER	NDLOOO6GEZ	£1.50		2704E(A), 2704E	¢14.00				
				VC482, VC483, VCA				1-439-286-21 N-2215UB, 2217UB, 2215E	2215FE, 2212EX, 2215ET	c30.50				
IT									2705E. 2706U8, 2720EC	£40.00				
VR3905, VR3906	T.UP IDEER	PU51402	$\underline{11.45}$	VC780-781, VC785-787. $\mathrm{VC793-VCT} 72$	REEL 1 Ler	NPLTV0111GEZ	57.00		. 2056EC, 2060SA,	¢22.75				
VR39966	REEL IDLER	PU55374	$\underline{92} 8$					1-439-311-00 N-1440AEC, 1440AS MK2.	PS-14CD3, CPV. 44 CDO 2					
VR3913, VR3343	REEL IDLER	PU48967	£3.00	SIISHO				KTX-1350NF. KTX-1430UB		¢27.00				
				VR1100 VR1200,	CLUTCH	850A2000	${ }^{6} .50$		764EC, $275208,2752 \mathrm{~F}$	c33.00				
JVC				VR2500, VR3300.				NV-1882ME3, $1882 \mathrm{HK}, 1882 \mathrm{~A}$, 16TR1, 882EC(PS). 1770R	921.50				
HR330, 3660,4100	T-UP IOLERSML	PU49280	¢6.00	VR3500, VR3600				$\begin{array}{ll}\text { 1-439-363-21 } & \begin{array}{l}\text { KN-19HT1A, 19FX1MT, } \\ \text { KV.2092UB, 2096UB }\end{array} \\ & 18 G 2,\end{array}$	1602M7, 1602GE, ADM-16B	$\underline{22.00}$				
HR7200, HR7600,	T.UP CLUTCH	Pu5462A	£3.00	Samsuma										
HR7650, HR7655				VT510-511, VT520-610, 1	IdLer Wheel.	65224704220	¢1.50	NATIDNAL LINE DUTPU	TRANSFORMER					
HR7200, HR7600	REEL IDLER	PU48967	£3.00	VT611-616. V6 620.621.	(1)	S22		TLF 146-118		ع19.00				
HR76550, HR7655.				626				TLF 15542F		¢25.00				
HR7700	ROLLER ASSY	PU49042A	${ }^{8} 4.00$		10.LPR COMPIETE	69000250330	£4.50	TLF 14568F		[26.00				
HR3300, 3660, 4100	T.UP IDLER LRG	Pu47752	${ }^{4} 4.50$	VT611-616. VT620.621.	İercovplet	a90025035	24.50	TL. 14567 F		${ }^{265.00}$				
HR7200, 7600, 7650	TUP IDLER	PU51402A	£1.45	626				TLF 14715F		827.00				
HR7655, HRD110,				Sowr				TLF 147498						
HRD120-121. HRD225	T-UPCLUTCH	P455373	925	${ }_{C S}$	IDLER KIT ASSY		¢. 50	NATIONAL TRAN	FORMERS					
HRD225				C7	IDLER ASSY	X 36533100	¢3.80	TLF 66098		53				
HRD110, HRD120-121,	idilfatm	PU55374-3-8	92.85	SL-C5, SL-C7	REW PULLEY	A-6706-348-B	£4.00							
HRD225				SL-C6	REW PULLEY	A.6706-391-A-B	£3.00	HITACHI TRAMS	FORMERS					
					CASSETTE DC MOTO	ORS		2434274		20,00				
marsul				9V MOTOR			18.000	BAND	A					
Wx730,735, $750,755$.	CLUTCH	850A00005	${ }_{66.50}$	12VCWMOTOR			9.00							
Vx810, 820, 880, 990				${ }^{13} .2 V C W$ MOTOR			${ }_{97.90}^{97.00}$							
				13.2 VCCW MOTDR			$\underline{0.90}$	RADDR	\& PHO					
					ASSETTE TAPE HE	ADS								
HSS306, 307, 318, 319,	gearassy		¢6. 25	MONO HEAD			£0.90	$A B=S$	HEN					
${ }_{\text {HSA } 40,710} \mathbf{7}$	gearassi			STEREO HEAD			E1.50							
				MIN HEAO AUTO REVERSE HEAD			$\frac{.2 .30}{5.60}$	FT						

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{TRIPLERS} \& \multirow[b]{11}{*}{\begin{tabular}{l}
\(41256 \cdot 10\)
\(41464 \cdot 12\) \\
41464-10 \\
6116 \\
\(6264-15\) \\
\(6264-12\)
\(6264-10\) \\
62256-12 \\
\({ }_{6502} 6\) \\
\(65 \mathrm{CO2}\) \\
6522 \\
6801
6802
\end{tabular}} \& \& \& \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\({ }_{75454}\)}} \& \multirow[t]{2}{*}{} \\
\hline UnIVERSAL \& \({ }^{\text {ca }}\). 50 \& \& \& 8256 \& \(7000^{2}\)

2200 \& \& \&

\hline \& ${ }_{c}^{\text {c7. } 50}$ \& \& ${ }^{2500}$ \& 8871
8279 \& \multirow[t]{2}{*}{3400

34000
4000
400} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{- ${ }_{\text {8T26 }}$}} \&

\hline PHILIPS ${ }_{\text {G8 }}^{69} 520550$ \& 77.50 \& \& ${ }^{1100}$ \& ${ }_{8}^{82793}$ \& \& \& \& 110p

\hline \multirow[t]{2}{*}{DECCA ICOSERIES} \& ${ }_{56.50}$ \& \& ${ }_{2100}^{200 p}$ \& ${ }_{8828}^{828}$ \& ${ }_{2600}^{4400}$ \& \& SIMMS \&

\hline \& ${ }_{66} 60$ \& \& 4500 \& ${ }_{8288}$ \& 6500 \& \& SIMMS \&

\hline ITt crc ${ }^{120 / 3030}$ \& ${ }^{\text {c7. }}$ 5 00 \& \& ${ }_{\substack{3000 \\ 3600}}$ \& 8748
8755 \& ${ }_{\text {coin }}^{7000}$ \& $256 \mathrm{~K} \times 9.80$
$256 \mathrm{~K} \times 9.70$ \& \& ${ }^{15000}$

\hline \multirow[t]{3}{*}{RANK I20A UNIVERSAL To fil: 20AX TUBE

30AX TUBE} \& ${ }_{\text {c }}^{\text {¢ } 8.000}$ \& \& 9330 \& \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 110 p \\
& 200 p \\
& 300 p
\end{aligned}
$$} \& $19 \mathrm{ME} \times 9.80$

$1 \mathrm{ME} \times 9.70$ \& \& ${ }^{38000}$

\hline \& \multirow[b]{2}{*}{${ }_{8}^{\text {¢8.00 }} \mathrm{E800}$} \& \& ${ }_{\substack{2800 \\ 380 p}}$ \& \multirow[t]{7}{*}{} \& \& \& \&

\hline \& \& \& \& \& \& \& SIPS \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DIODE SPLIT TRANSFORMER}} \& \& 5000 \& \& 2008 \& ${ }^{256 k} \times 9.80$ \& \& ${ }^{19000} 18000$

\hline \& \& ${ }_{6809}^{6809}$ \& \& \& \multirow[t]{2}{*}{} \& 1MB $\times 9.80$
1ME $\times 9.70$ \& \& ${ }_{4}^{39000}{ }^{\text {P10 }}$

\hline LEADS TO FIT CHASSIS COOE CTX TYPE
GIT YPE
GT4 TYPE

Kit \& \multirow[t]{2}{*}{$$
\begin{aligned}
& £ 2.50 \\
& \xi 2.50 \\
& \xi 2.50 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { 68010 } \\
& 68818 \\
& 68821 \\
& 682
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{} \& \& \& \& \&

\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{COMPUTER IC's}} \& \& \& \& , \& \& OPTO COUPLERS \&

\hline \& \& ${ }_{6845}^{6840}$ \& ${ }^{2300}$ \& \& \& | $4 N 25$ |
| :---: |
| $4 N 26$ | \& \&

\hline 2114
253 \& ${ }_{1}^{158 p}{ }_{3}$ \& \& 1100
3800

3 \& ${ }_{7}^{7458289}$ \& ${ }^{1800}$ \& | 4×27 |
| :--- |
| 4×28 |
| N | \& \& 年

\hline ${ }^{2532}$ \& ${ }^{3100} 15$ \& ${ }_{\text {80808 }}^{808}$ \& 3800 p
3000 \& \& \& 4N28
4N29 \& \& ${ }_{\text {g0p }}^{500}$

\hline ${ }^{2732}$ \& ${ }^{2500}$ \& ${ }^{8086}$ \& S000p \& 75107
7510 \& ${ }_{750}^{65 p}$ \& 4×30 \& \& ${ }_{\text {gop }}$

\hline ${ }_{2754}^{2738}$ \& ${ }_{\substack{2800 \\ 1800}}$ \& 8088
8156 \& ${ }^{4800}{ }_{300 p}$ \& 75110
7513 \& $\begin{array}{r}\text { 750 } \\ 1000 \\ \hline 100\end{array}$ \& $4 N 31$

4×32 \& \& | 90p |
| :--- |
| 1000 |

\hline 27764
71128 \& ${ }^{4000}$ \& ${ }^{8141596}$ \& 1300
1300
130 \& ${ }_{7}^{75122}$ \& ${ }_{\text {1100 }}^{195}$ \& 4N33 \& \& 1000

\hline ${ }_{272568}^{2728}$ \& ${ }^{1900}$ \& 815959

881498 \& | 130 p |
| :--- |
| 1300 |
| 100 | \& ${ }^{75154}$ \& 1000 \& 4N36 \& \& ¢ 5888

\hline 27512 \& 500p \& 8224

8226 \& (2400 \& | 75162 |
| :--- |
| 75182 | \& ${ }_{\text {900 }}^{\text {900 }}$ \& ${ }_{1 \times 1} \times 8$ \& \& 68р

\hline ${ }_{4}^{4164-15}$ \& -1100 \& ${ }^{82243}$ \& | 2590 |
| :--- |
| 7500 |
| 80 | \& 75183

75188 \& | 95p |
| :--- |
| 55 | \& \& LED DISPLAY \&

\hline ${ }_{4}^{416464.12}$ \& ${ }^{1200}$ \& ${ }_{8251}^{8850}$ \& 2400 \& 75189 \& ${ }_{55}^{555}$ \& man74 \& \& 100 p

\hline $41256-15$

$41256-12$ \& | 130 p |
| :--- |
| 140 p | \& ${ }_{8255}^{825}$ \& | 210p |
| :--- |
| 200 p | \& 75195

7445 \& 1850
400 \& MAN8910 \& \& 200p

\hline
\end{tabular}

VIDEO HEAD TESTER

1. Mechanical Position of Pointer
2. Scale Plate
3. Pointer Adjusting Screw
4. Pointer
5. Measuring Socket
6. Power ONOFF and Battery Check Switch
7. Range Selector Rotary Switch
8. CAL. ADJ (calibration volume)
9. Measuring Clip

*****STOPPRESS*****

PHILIPS PRESSURE

 ROLLER ASSEMBLYfor the following models: DV186, 190, 286, 562, 761, VR6180, VR6185, VR6285, VR6382, VR6367, VR6467, VR6468, VR6870, VR6182. 6290, 6291, 6293, VR6393, VR6468, VR6670, 6760, 6761, VR6970 Part Number: PS 403-40205 Price ...625p

SOLDERING IRONS

Wooden Handle

30 Watt 220/100 Volts Soldering Iron..... 3.50
40 Watt 220/100 Volts Soldering Iron...... 3.50
60 Watt $220 / 100$ Volts Soldering Iron 3.50
PRICE

Video, CD, TV Repair Tips
Largest Database in Europe Available On-Line or in Books

On-Line

Less than 30p per Day
FREE Notice Board
FREE Electronic Mailbox
FREE One Month Trial
Updated Daily

Now that's What I call

Value for Money!

72,000 Tips
5,000 Models 190 Brands

Books
As little as 1p per Tip
For Selected Manufacturers
Prices from $£ 9.95$ to $£ 19.95$
Portable \& Easy to Use
Regular Updated Editions

OMEGA ELECTRONICS

LEADING IMPORTERS OF JAPANESE REPLACEMENT AND GENUINE VIDEO HEADS \& V.C.R SPARES

OUR RANGE OF VIDEO HEADS AND SPARES COVER OVER 1000 MODELS

 TO INCLUDE ALL THE FOLLOWING MAKES| AIWA | ESSELTE | HITACHI | NORDMENDE | SALORA | TATUNG |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AKAI | FIDELITY | ITT | ORION | SAMSUNG | TELEFUNKEN |
| ALBA | FINLUX | JVC | OSAKI | SANSUI | TENSAI |
| AMSTRAD | FISHER | LOEWE | PANASONIC | SANYO | THORN |
| B\&O | FUNAI | LOGIK | PHILIPS | SCHNEIDER | (FERGUSON) |
| BLAUPUNKT | GEC | LUXOR | PIONEER | SENTRA | THOMSON |
| BONDSTEC | GOLDSTAR | MARANTZ | PROLINE | SHARP | TOSHIBA |
| BOSCH | GOODMANS | MATSUI | PYE | SIEMENS | UHER |
| DAEWOO | GRANADA | MITSUBISHI | QUESTAR | SOLAVOX | UNIVERSUM |
| DECCA | GRUNDIG | NEC | SABA | SONY | |
| DUAL | HINARI | NIKKAI | SAISHO | TASHIKO | |

ALSO NOW WE STOCK A WIDE RANGE OF IC'S - TRANSISTORS
RETAIL - MAILORDER - WHOLESALE - TRADE \& EXPORT ENQUIRIES WELCOME

OMEGA ELECTRONICS

UNIT 19, CUMBERLAND BUSINESS PARK, CUMBERLAND AVENUE, PARK ROYAL, LONDON NW10 7RG.
TEL: 081-965 5748 FAX: 081-965 7813

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{VIDEO SERVICE KITS FROM 3V35:3V45 CASSETTE HOUSING VT33NT65 CASSETIE HOUSING VR6467 CASSETTE HOUSING 3 V35 CAPSTAN MOTOR VT11NT33 CAPSTAN MOTOR}

\hline \& \& M29381

\hline AN5111 \& ${ }^{3501}$ \& M51102L

\hline ANS010 \& ${ }^{4751}$ \& M51104L

\hline AN5265 \& 3200 \& M545485

\hline AN5410 \& ${ }^{3509}$ \& M545485

\hline ANS431 \& 250p \& MB3705

\hline ANS435 \& 250p \& M83722

\hline AN5510 \& 275 \& MB3730

\hline AN5620 \& 330p \& MB3731

\hline An5900 \& 150p \& MB3732

\hline AN6341 \& 350 p \& ne555

\hline andisa \& 4 cap \& ne646

\hline AN6350 \& 6100 \& STK433

\hline AN7145 \& 1959 \& STK435

\hline AN7156 \& 2409 \&

\hline AN7161 \& 325p \& STK439
STK460

\hline AN7168 \& 260p \& Stka60

\hline AN7171 \& 4259 \& STK461

\hline AN7172 \& 425p \& STK463

\hline an7178 \& 270p \& STK465

\hline ba532 \& 140p \& STK0029

\hline ${ }^{\text {BaS36 }}$ \& 180 p \& STкоо40

\hline 8a5402 \& 2509 \& STK2029

\hline ${ }^{\text {Ba55406 }}$ \& ${ }^{280}$ \& STK2125

\hline ras4ab \& ${ }^{22000}$ \& STK2129

\hline ${ }^{\text {BA } 6109}$ \& 1850 \& STK2250

\hline BA6208

Ba6209 \& ${ }^{2500}$ \& STK3041

\hline Ba6209
BA6219 \& ${ }_{30} 250$ \& STK3042

\hline 8A6219
$8 А 6238$ \& 3000 \& STK4t2\%

\hline BA6239 \& 2500 \& STK4131

\hline B46304 \& 190p \& STK4141

\hline HA1366 \& 160p \& SIK4142

\hline Hat 3 37 \& 3009 \& STK4151

\hline HA1358 \& 160 p \& STK4152

\hline HA1377 \& 2000 \& SIK4161

\hline ${ }_{\text {HA1 }} 384$ \& 400 p \& STK4162

\hline HA1339 \& 210p \& SIK4 717

\hline Ha:392 \& 230 p \& SITK471

\hline HA1394 \& 2800 \& SIK4772

\hline Ha1396 \& 395p \& STK4191

\hline HA1397 \& 255p \& STK5315

\hline HA1398 \& 2400 \& STK5325

\hline HA11717 \& 600p \& STK5338

\hline ha1122s \& 1700 \& S1K5421

\hline HA11226 \& ${ }^{4169}$ \& STK5481

\hline HA1227 \& ${ }^{2250}$ \& SIK5482

\hline Ha11235 \& 1700 \& STK7308

\hline HA11423 \& 2100 \& SIK7348

\hline HA11724 \& ${ }^{8030}$ \& STR451

\hline HA12413 \& 2750 \& STR4990

\hline HA13001 \& ${ }^{1950}$ \& STR40090

\hline LA4261 \& ${ }_{3000}$ \& STR50103

\hline (4A270 \& $300 p$
1300 \& STR50020

\hline [A4440 \& 2300 \& STA58041

\hline LA445 \& 2500 \& SIR6020

\hline LA4460 \& 1708 \& ta7205

\hline La4661 \& 170 p \& TA7193

\hline LA4665 \& 4259 \& ta7203

\hline La4466 \& 4250 \& TA7222

\hline LA4500 \& ${ }^{2300}$ \& ta7229

\hline LA4505 \& ${ }^{2600}$ \& TA7230

\hline -A4508 \& 2600 \& TA7240

\hline LA4520 \& 230 p \& TA7241

\hline LA4700 \& 4258 \& TA7245

\hline LA5512 \& 130 p \& ta72

\hline
\end{tabular}

\qquad

为

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top seling DUAL TRACE OSCILLOSCOPES. Select lrom tour supert models. All, with the exception of the HM 1005 , :corporate a usetul COMPONENT TESTER Size - all models $=285 \mathrm{~mm} \times 145 \mathrm{~mm}$ 380 mm . Clear dispiay $8 \mathrm{~cm} \pi\{10 \mathrm{~cm}$. Mains supply: $110 / 220.240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

HM203-7 20MHz STANDARD

SPECIFICATION
2 Channels
Bandwidth: DC - 20 MHz - Sens: Ch.l, Ch.2, $1 \mathrm{mV} / \mathrm{cm}$ - Triggering: DC - 40 MHz * Active TV - Sync - Separator - Variable hold-off

* Trigger LED indicator Calibrator: 1 KHz Square wav - Component fester - Plus many features

Price E338.00 + E59.15 V.A.T. FREE Specialist Carrier Delivery
SPECIFICATIONS

- 2 Channels

Bandwidth: DC - 60 MHz
Sens: Ch.1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$
*Timebase : $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$

- Active TV. Sync-Separato

Atter delay trigger
Atter delay trigg
Delay line
Trigger LED indicator
Callbrator: 1 KHz \& 1 MHz Sq. Wave
Component tester
Price E610.00 + E106.75 V.A.T. FREE Specialist Carrier Delivery
MM1005 100 MHz UNIVERSAL 3 chanNELS - UP TO 6 TRACES
SPECIFICATION
${ }^{3} 3$ Channels
Bandwidth: DC - 100 MHz Sens: Ch. 1, Ch. $2, \mathrm{Ch} .3,1 \mathrm{mv} / \mathrm{cm}$
" Timebase A: $2.5 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$

- Triggering DC -130 MHz
- After delay trigger
- Delay line
- Trigger LED indicator
- Overscan LED indicator

Active TV - Sync-Separator
Price 5792.00 + E138.60 V.A.T. FREE Specialist Carrier Deliyery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Analogue real time (Same as 203-7)
Bandwidth: DC -20MHz
Sens: Ch. 1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$
Triggering DC -40 MHz
Active TV - Sync-Sampling
Max sampling rate: $2 \times 20 \mathrm{MH}_{2}$
Memory: $2 \times 2048 \times 8$ Bit
Dol Joiner
Printer/plotter output
Price E610.00 + E106.75 V.A.T.

B.K.'s CRT TESTER REJUYENATOR Tests and rejuvenates blue, green and red guns and PI.L. sockets. Compact size $120 \times 65 \times 60 \mathrm{~mm}$. Supply $240 V$ AC
Price E32.00
£5.60 V.A.T.
FREE Specialist Carrier Delivery

DIGITAL CAPACITANCE METER
 $0.1 \mathrm{pl}-2,000 \mu \mathrm{f}$. - LCD display - 8 ranges.

Accuracy $+1-0.5 \%$.
Full scale Inc. prolective case. Price £38.00 + £6.65 V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.
features
Carrier frequency $100+l-1 \mathrm{MMz}$ (adjustable).
Output level $0.1 \mathrm{mV}-10 \mathrm{mV}$.
Pilot signal $19 \mathrm{KHz}+1.2 \mathrm{~Hz}$.
External Modulation $50 \mathrm{~Hz}-15 \mathrm{KHz}$.
External Modulation 50 Hz - 15 K
Pre-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s}$ \& oth.
Comprehensive fest lead set included
Mains powered.
Size: $80 \times 200 \times 250 \mathrm{~mm}$
Price £299.00 + £52.33 V.A.T

LeADER HIGH VOLTAGE METERED EHT PROBE

Light weight, easy-to-grip high-impact plastic handle with arc-over protection and no need of extra equipment. An indispensible item in your
TV service kit. Measures up to 40 kV DC with salety and the greatest of ease. Entirely selfcontained. Connect the lead clip to chassis and probe tip to the check point, read the meter for voltage.
A must for the Health and Satety at Work Acts
Price $\mathbf{£ 6} .00+\mathbf{E 1 1 . 5 5 V . A . T}$. B \& K PRECISION CRT ANALYSER-RESTORER
The number one CRT Test Instrument. Over 5000 U.K. Tetevision engineers wouldn't be without it

- All CRT's checked ldentically, including all in-ine guns of colour CRT's simultaneously under actual operating conditions (model 490) . Exclusive multiplex technique (model 490) " Measure true dynamic beam current that actually passes through G1 perture to screen "Measures all shorts and leaks - preserving more CRT's "Tests ocus electrodes iead continulty finding faults that other testersmiss "Uses most powerful restoration method known with CRT's guaranteed as new for two years CRI's guaranteed as new for two years up chart updated and new adaptors developed *Tests and rejuvenates VDU's and oscilloscope tubes * A range of over 40 CRT base adaptors avallable * Increase profit * Pays for itself in months.

Prices
Model 490 Tri-dynamic three meler instrument inc. 6 common adaptors. Without adaplors.
£446.00 + 178.05 V.A.T.
$£ 446.00+£ 78.05$ V.A.T
$\varepsilon 393.00+\kappa 68.7$ V.A.T $£ 334.00+£ 58.45$ V.A.T.
$£ 281.00+£ 49.18$ V.A.T.
Model 480 Single
WIthout adaptors

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of sateilite TV systems and aerlal alignment of VHF/UMF television and radio systems. Signal levels can be accurately measured on the TC402-C and the TC90, allowing the evaluation of signal conditions for satisfactory operation. Both models have a ciear LCD direct
readout, coupled to a multiturn tuning control enabling precise channel identification

TC402-C VHF \& UHF

FEATURES
Three bands
Low VHF: $45-110 \mathrm{MHz}$
High VMF: 1 f0-300 MHz
UHF $: 470-862 \mathrm{MHz}$
Digital display for direct frequency readout Built-in monitor loudspeaker AM/FM Powered by eight 1.5 AA batteries. Fully portable with sturdy carrying case.

Price $259.00+$ E45.33 V.A.T.
TC90 VHF-UHF- SAT.

FEATURES
Five bands:
Low VHF
:
H5-110
MMz
High VHF $: 110-300 \mathrm{MHz}$
Hyper VHF: $300-470 \mathrm{MHz}$

Satellite | $:$ |
| :---: |
| $:$ |
| $: 950-1750 \mathrm{MHz}$ |

Digital display for direct frequency readout. Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V . Signal measurement satellite -70 dBm to -10 dBm .
Audible indication of sale lilite signal level Built-in-monitor loudspeaker AM/FM (not satellite).
Powered by rechargable battery (complete with charger $220 / 240 \mathrm{~V} \mathrm{AC}$)
Price $\mathbf{8 4 7 0 . 0 0}+\mathbf{E 8 2 . 2 5}$ V.A.T.

PATTERN GENERATOR

THE 'ORION' THREE-IN-ONE

PAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
The Orion is a compact, bench instrument offering a wide range of patterns and facilities at a truly low cost

In addition to a switchable sound carrier lacility which allows use with the majority of PAL TV systems, the Orion provides highly flexible RGB outputs, ensuring compatibility with mos video monitors.

More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifier linearity, colour purity, general colour performance, locus etc.
A separate video input to modulate camera signals; fuliy variable RF and video output levels facilitating AGC testing; trlgger output allowing easy triggering of difficult oscilloscope
wavelorms; external sound modulation input via DIN connector for frequency response testing of TV sound systems; adjustable wide frequency coverage of VHF and UMF TV bands.

Just some of the features making the Orion Pattern Generator an Indispensible tool in the manufacture, test, and servicing of televisions, and computer and video monitors.

features

- Colour bars, pur
dots, focus, elc.
VHF/UMF Channels.
5.5 MHz , 6.0 MHz, 6.5MHz Sound Carriers. Internal/External Sound External Video Output. Prigger Output.
PAL B,D,G,H,1,K.
Separate R, G, B and sync. O/P's.
RGB@TTLs IV.
Green + o. Visyncs.
Variable RF/Video Outpul.
Switchable Video Polarity.
Switchable Video Polarity.
Malns powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$. Price $\mathbf{£ 2 0 9 . 0 0}+\boldsymbol{£} 36.58$ V.A.T.

CARCIMKABD U.K. POST PAID, export enquiries weicome. Vise/Access or cheque whith
VISA order, payable B. K. Electronics. Official Orders welcome from Govt. Depts range. Credit card orders are accepted by 'phone, fax or post Delivery normally whinin seven days.
 BKREFGTRONCS

Tel:o7ae-5z757e Fax.oifoe-aeaeas

PN: N|
COMPLETE SECURITY
We have a compleate range of security products and
sell hems Indlyldually or can tallor make a package to your own requirements. E.G. thls package is basic COST £105.00 PACK INCLUDES
*Two zone keyswitched panel Logic 4 * Polyprop bell boxtack platesticker * Batterytamper switch

* External sounder *Two passive infra red \star External sounder * wo passive infra red $\star 100 \mathrm{~m} 4$ core cable and clips \star Internal sounder * Buzzer for editentry timer * Panic button TELL US YOUR NEEDS - WE DELIVER FAST

REMOTE CONTROLS
 ORALL WO
This remote control can operate 5 remotes (TNWCRSSatellite) à
 rom original remote are instanty avaiable. with all standard Ceatures on a dedicated key. It controls T Teletext and Faster esset a new cone at any time. Lithium back up protects the
the

COMPUTER SPARES

 We have a tull range of both mechankaa wnde eiectronic sparesfor
Sincmiga 500 and
Commodore
membrane abk spectrum MEMBRANE SPRECTRUM PLUS ULA APECTTUMPLUS. ROM SPECTRUM.. Z80A CPP
90614
90614.
5581.
5526
50.27

So1227
POWER SUPD Y Y
POWER SUPPLY UNIT
COMM 64 SERYICE MANUAL:

104 ABBEY STREET ACCRINGTON, LANCS BB51EE
30254 236521/23261V 390936. FAX 0254395361 24 Hr Answering Service Partners: S \& B CUCKNELL FILMNET DECODERS ALFASAT ITRADE PRICE $£ 80.00$ Fully upgradeable. State which receiver you have to
match the correct leads Full technical hack up.

SATELLITE SYSTEMS

 We can supply DISHES. RECEIVERS, LNB, FIXINGBRACKETS, FONNEGTORS CABLE SAT FINDER METERS, CRIMPING TOOLS, TAPE, LEADS. MASTS ETC. FULL RANGE AVAILABLE AS LISTED IN CATALOGUE. PLEASE SEND LARGE SAE.

NEW VAL VES

Extera Sicich Tye Cegaussing coll or
Externais Stick Thy Demagnetrsing

VIDEO RABBIT
SEND VIDEEAUUIO SIGNA TO ANAY OF THE TV SEES IN
YOUR HOUSE LIKE HAVNG A VIDE IN EVEFY ROOM TAANSIMI IER ANO WIIE SO
ALSO WORKS FOR SATELITE.
TRIPLERS
full list in catalogue. Send large sae please.

LOPTX
FULL RANGE OF IT LOPTX NOW AVAILABLE TO ORDER,
AS WELL AS OLD TIMEAS LIKE DECCA 2230 OR PYE 725, WE
HAVE SHAP C141011C3207
FIDELITY 14", 28" with Mod Kit
HINARI CTIS',
HINARICT67.
HINARICTG7 FERGUSON TXO0 00D4-24500201
FEGGUSON TX100004 247.001 white

8603.893 .001
8603.808 .001

BRAND NEW TVs AND VIDEOS
 RANDED MAKE - 12 MONTHS PARTS WARRANTY

 FULL SPARES BACK UP - SERVICE INFORMATION AVAILABLEFULL BROCHURE ON REQUEST 4.5" MONO TV WITH RADIOCLOCK COMBINATION £52.00 $10^{\prime \prime}$ REMOTE CONTROL TV MAINSBATIERY COLOUR TV 4" BASIC COLOUR TV 14" $14^{\text {B }}$ REMOTC COLOUR TV...........
14" REMOTE CONTROL, TEXT, COLOURTV
4^{4} " REMOTE CONTROL, TEXT, COLDUR TV $14^{" M}$ MULIISYSTEM REMOTE CONTROL TV NTSCSE
$28^{\prime \prime}$ FST REMOTE CONTROL TEXT TWIN SPEAKERS 28"
$20^{\prime \prime}$ MUT RULISYSTE CONTROL TEXT TWIN SPEAKERS............ available sodn 21 " ilcam stered and $25^{\prime \prime}$ NICAM Stereo AVAILABLE SOON $21^{\prime \prime}$ REMOTE CONTROL AND $21^{\prime \prime}$ TEXT REMOT CONTROL VHS VIDED RECORDER, TWIN SPEED, REMOTE CONTROL 6 EVENT, 14 DAY TIMER, UP TO 8 HOURS VHS VIDED PLAYER, PLAY ONLY, MAINSBATTERY AVAILABLE AT TRADE COUNTER DPEN 6 DAYS A.... CARRIER NEXT DAY DELIVERY CHARGED AT COSTINCL WEEK DR BY

SPECIAL OFFER WHILE Stocks LAST

MAKE YOUR TNTERESTS PAY!

Train at home for one of these Career Opportunities
Over the past 100 years more than 9 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help You. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 621.

ADVERTISEMENT MANAGER

Kevin Attridge
071-2616671
(071-2615546-fax

SECRETARY

Janet Reeve
071-2616671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
(1)71-261 59) 42

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey

(71-2616035

SUBSCRIPTION ENQUIRIES

(1)444440421

PUBLISHER
Philippa Gardner
071-261 6408

COVER PHOTO

Our cover photograph this month shows the Mitsubishi Model CT2532TX, a Euro 4 chassis receiver with teletext. See servicing article on pages 642-3.

A Better Way?

By the closing date the Independent Television Commission had received forty applications for the new Channel 3 (ITV) franchises that will come into effect on Jamary Ist 1493. Thirty seven were for regional licences and three for the national breakfast time service ($0 \mathrm{a} . \mathrm{m}$. to $9.25 \mathrm{a} . \mathrm{m}$.). The new franchises will last for ten years. Three of the present areas attracted no counter bids, the regions that received most applications, four each. being Wales and the West of England and South and South-East England.

The ITC intends to award the new hranchises by October. Applications are by a process referred to as "competitive tendering". Tender payments for each licence consist of a percentage, set by the ITC, of an annual qualifying revenue (income for advertising. subscriptions and sponsorship) together with a cash bid. representing the annual payable sum, which had to be submitted in a sealed envelope with the application. The cash bid is to be index linked, and both parts of the tender are to be collected by the ITC on behalf of the treasury.

The applications will first be checked by the ITC to see that they conform with the stated requirements. For a bid to be eligible, applicants must first pass a quality threshold assessment. Following this the highest bidder will usually be awarded the lieence. In what are described as "exceptional circumstances" however the ITC is emplowered to award the licence to a lower hidder: this might he if the ITC considers that the quality of the service proposed by a particular applicant is exceptionally high and is substantially better than that groposed by the highest bidder.

Copies of the plans submitted by each applicant, covering ownership, structure and programmes - but not business plans and the amounts of the cash bids - are available for examination at the ITC's Library, Brompton Road, at all ITC national and regional offices and at 275 major UK libraries. Summaries of the applications can also he requested from ITC offices. In addition an ITC guide, New Channel 3 (ITV) Lincences Your Chance to Commem, is available on request. It explains how viewers can comment on the proposals put forward by the licence applicants and outlines the licensing process. A fairly tight deadline has been set - if you want to comment you have to do so in writing by June 26th, which is just seven days after the publication day of this issue of Television. The ITC states that such comments will be taken into account when assessing whether applicants have passed the quality threshold. On awarding the licences later this year the ITC will publish the names of the successtul applicants together with the amounts of their cash bids, also the names of those who passed the quality threshold assessment and, if any licences have been awarded to lower bidders on the basis of exceptional circumstances. the reasons for making such awards.

On the whole it seems to be a fair procedure. There had always been a great deal of disquiet about the way in which franchises were awarded by the previous authority, the IBA, a process described as going into conclave. though it had served us reasonably well for thirty seven years. Certainly the new process is a bit more open, hat some of us may be concerned that the emphasis seems to be rather more on the cash bid than the quality of programming, except under those "exceptional circumstances". But at least the importance of quality, what we are going to get on our screens. was eventually accepted by the government, following a great deal of pressure from the industry

One major factor that still gives rise to concern is that takeovers are allowed. It doesn't seem sensible to go through a process of careful franchisec assessment if the company awarded a licence can be taken over shortly afterwards. We shall have to see how this works out. Could there be a wave of takeovers from unsuccessful bidders following the ITC's awards? If such a situation did arise the whole process would be seen to have been rather pointless. Anyone taking over a licence holder would be under the threat of losing the licence the next time round if the service provided was poor: in the meantime there could be loss of atdience and hence revenue. especially now that there is greater competition from alternative channels. But it has never been suggested that the criterion for quality is simply the ability to hold the largest audience. Balanced programming and the will to try out new ideas are all part of what's involved in quality assessment

One major change stands somewhat apart from the whole licensing business. the move to greater contracting out of programme making. The government's pressure on the broadcasters to move in this direction affects hoth the ITV companies and the BBC Whether it will result in better quality will depend both on the ideas generated by independent programme makers and the ability of the broadeasters to respond to new ideas and generate and commission them themselves. Probably things will go on in much the same way as present, which is reasonably satisfactory in terms of international comparisons. What has still to he seen is the effect of increased satellite TV broadeasting in Europe, with satellite footprints that show little regard for the niceties of national boundaries. At the present stage of the cconomic cycle however the satellite TV broadcasters are struggling to keep going. We shall have to await a general upturn to see how the potential of satellite TV broadcasting develops
Changes always involve danger. The next bit of business on the horizon comes with renewal of the BBC's charter, to cover the years $1990-2006$. Will the government, of whatever variety, decide to interfere with the present arrangements? The BBC and the industry can usually be relied upon to take care of their interests, but public vigilance is a necessity, particularly at a time of change.

Letters

WHY OH WHY?

Why do most replacement chips supplied by setmakers, especially those with forty or more DIL pins, arrive securely packed in foil and conductive foam but with their two rows of pins spaced 5 mm too far apart to fit either the holes in the PCB or the i.c. socket, thus requiring additional undesirable handling to bend the pins to the correct spacing?

Why, when you've forked out $£ 12$ or more for a service manual from an obscure importer of downmarket rubbish, do you receive an almost unreadable photocopy with some pages missing, upside down or duplicated? When you send it back with a letter of complaint the replacement you receive is invariably worse.

Why do fifty per cent of customers who have purchased an item of hi-tech gear immediately lose or throw away the user handbook, while the fifty per cent who do hang on to it either refuse to read it or are incapable of understanding it? A few days ago, after showing a customer (a successful local businessman) that his "fault" was due to wrong understanding/operation, and having demonstrated the correct procedures and pointed out the relevant pages in the manual, I was aggressively told that "when you have a business to run you haven't time to mess about with damned silly books"! I wonder how he manages with a new piece of equipment for his works? He was also peevish about paying for the call!

Why don't manufacturers cater for the elderly, with a few basic CTVs and VCRs with simple controls that are easily seen and used and a minimum of hi-tech gimmicks?

Relevant to the above two items, with the proliferation of teletext and the ever decreasing cost of memory chips wouldn't it be a good idea for CTVs and VCRs to be equipped with a "help" button that, when pressed, would put one or two pages of basic instructions on the screen to help with tuning and the use of the controls? This data could be held in a ROM chip and called up by the central control chip whenever "help" is requested. Such a scheme would be invaluable when a customer has moved to a new area and needs to retune his set, or when someone has pressed a search tuning button by accident and wiped all the channel settings from the memory. Information on the correct channel position for VCR use and how to tune one in would also be necessary. VCRs so equipped should show clock and timer setting in addition to tuning and control details.

Why, when you return a wrongly picked chip to a manutacturer and point out that although you'd specified the circuit reference, type and part numbers correctly you've received say a 48 -pin DIL microcomputer chip instead of an 8 -pin EPROM, are you told that the part number on the invoice is that of an equivalent i.c. and two days later another 48 -pin chip arrives? Does no one ever go to check the contents of the bin until at least four dealers have received wrong goods?

Why is it that customers find out about peculiarities and anomalies in the operation of esoteric functions with new equipment before the dealer does and before the manufacturer's technical section has any advice to offer?
Why will people buy their TV set from one dealer, their $\operatorname{VCR}(\mathrm{s})$ from another and their satellite TV gear from a third, all different makes, then expect the last dealer to sort
out all the intricacies of interconnections, compatibility and functions as part of a normal delivery and setting up, and object to paying for the extra time involved and the various adaptors, scart leads ete that may be required?

Why don't more manufacturers provide VCRs with two buffered scart sockets? The problems with linking a satellite TV receiver, one or two VCRs and a CTV set to provide video and stereo sound from the satellite TV receiver or VCR via scart leads can be daunting. Ordinary paralleled single-to-multiple scart adaptors are rarely of any use as multiple signal paths and the transition times through the various items produce multiple images on the screen at the end of the chain. Most customers are reluctant to abandon their remote controlled convenience to grovel on the floor swapping scart leads about, and the cost of separate buffered single scart to two or more slave adaptors is horrendous.
Johin C. Priest,
Blackpool, Lancs.

VIEWDATA SYSTEMS

Roy Baines' article on viewdata systems (June) was very interesting. I would like to make a couple of points however. First the Panasonic viewdata system does have a local call facility, via the Istel system. Secondly, no mention was made of the JVC Service Desk viewdata system, which has order entry and parts enquiry facilities. Access is at local rates using an 0345 number

I make frequent use of the Willow Vale COPS system, which I find easy and very well designed. Dave Allen at Willow Vale is always willing and able to give help and advice on using the system.

Mike Fletcher,

Great Barr, Birmingham.
We were surprised to find that no mention of Euras International was made in the article on viewdata systems in the June issuc. The Euras system is the largest indepedent computer database, containing technical information and repair tips relating to over 180 manufacturers. At present it has 72,000 items on 5,200 models, including TV receivers, VCRs, CD players and white goods. We also have a free electronic mailbox free notice board and ordering pages for Wizard. In addition the system is available in book form and will shortly be available in a stand-alone PC version
D. Smith, Euras System Administrator, Euras International Litd., Heston House, 7/9 Emery Road, Brislington, Bristol BS4 5PF.
0272724475.

BLUMLEIN BIOGRAPHY

My biography of Britain's most prolific and diverse electronics inventor and patentee, Alan Dower Blumlein (1903-42), will be ready for publication in 1992-93. May 1 appeal to your readers to send me for possible inclusion in appendices (1) copies of papers or articles referring to Blumlein and/or his associates' development of stereophony, telecommunications, cable, television, radar, measuring instruments, military etc. circuits or equipment, and circuits, ideas etc. relating to post-war computer, aerial or electromechanical systems; and (2) particulars of papers, articles, books etc. in any language for inclusion in the bibliography. The IEE, the publishers of The Gramophone and others have given me permission to reproduce papers and articles free, subject to suitable

PARTS PROBLEM?

For
Sharp
Sansui
Phone David Allen 0734-876444

Grundig

Phone Stan Perkins
0734-876444

Philips/Pye
 Whirlpool

Phone Frank Pratt
0734-876444

Ferguson GEC
 Fidelity

Phone Philip Pratt
0734-876444

Amstrad, Akai, Fisher, Mitsubishi, Moulinex, Goldstar, JVC, Nat Panasonic, Pioneer, Matsui, Saisho, Samsung,
Salora, Sanyo, Sony, Toshiba, Yamaha and many others.
Phone Mike Curtis
0602-870789

COPS CATCHES THE PARTS THE OTHERS CANNOT REACH AT PRICES THE OTHERS CANNOT MATCH

VIEWDATA
PRESTEL PHILIPS MOVIES Willow Vale COPS

14in SCREEN
FULL KEYBOARD
BUILT IN MODEM
PRINTER PORT
RS232 PORT
FLOPPY DISC
PORT
TAPE RECORDER
PLAYPORT
SECURITY KEY
SWITCH
BRITISH MADE
BSI APPROVED
BT APPROVED
This business terminal is a unique concept, it exploits the latest technology within a television receiver.

A microprocessor is used to guide you through a wide choice of features simply and quickly. Options are presented on the screen in the form of menus which invite you to select Teletext, Prestel or any
computerised order processing facility for which you have access to, i.e. Willow Vale COPS, Philips MOVIES, Sharp VIEWDATA, National Panasonic, Hitachi, etc.

The system is open ended in that future facilities can be catered for in the programming of the microprocessor, such as cable TV, video disc and in house data systems.

A typewriter style keyboard is supplied and allows you full composition and editing facilities in LOCAL EDIT mode and pages of text can be transferred from the internal memory to cassette tape, to a printer, or downline at will. Clock display and timer, time out, stand by mode, security key with locking key, telephone number memory bank are all standard

ACCESS 24 HOURS A DAY - 7 DAYS A WEEK
acknowledgements, and I hope readers will accord me a similar privilege.

The loan of letters, notes and photographs from the Thirties would also be of great help.

Please post letters to me marked "Blumlein Biography" on the envelope, to arrive here before mid-August.
F.P. Thomson, O.B.E., C. Eng., M.I.E.E.

39 Church Road, Watford, Herts WDI 3PY.

AMSTRAD SATELLITE TV RECEIVERS

With reference to R.N. Baker's letter (May) about Amstrad satellite TV receivers, as a former self-employed satellite TV installer now involved in front-line service problems I'm well aware of the problem he describes. It occurs only with Amstrad receivers: substitute a Ferguson or a Sakura and there are no more problems. It seems that the problem is due to standing waves and, as Mr. Baker has observed, it gets worse the shorter cable run used. The fault always clears if a large extension is added to the cable, but this is not a very neat solution. Another approach is to change the channels affected by shortening the cable an inch at a time. With patience (!) the fault can be made to appear only on the foreign channels, which is satisfactory to most viewers.

As other makes of receiver don't suffer from this fault however I'm sure that someone out there could come up with an inexpensive receiver modification which will cure the problem once and for all. How about it?
S.K. Guy,

Netherton, Dudley.

SATELLITE TV PROBLEM

R.N. Baker's letter (May) on the length of the coaxial cable used with his satellite TV installation prompted some investigation here, using the two sets of Hewlett-Packard equipment in our LNB repair department. They are capable of gain and noise measurements to within 0.1 dB .

Three 20 m lengths of coaxial cable were taken from new, unused drums from different manufacturers. During

Table 1: Results of cable tests.

Length	Ch 1	Ch 16	Ch 32
Antiference 5540, copper with copper screen			
20 m	$-2.2 \mathrm{~dB}$	$-4.3 \mathrm{~dB}$	-4.2dB
15 m	$-0.3 \mathrm{~dB}$	$-3.2 \mathrm{~dB}$	$-3.3 \mathrm{~dB}$
10 m	$+1.7 \mathrm{~dB}$	$-3.3 \mathrm{~dB}$	-0.8dB
5 m	$-0.5 \mathrm{~dB}$	$-1.5 \mathrm{~dB}$	+2.4dB
2.5 m	$-0.2 \mathrm{~dB}$	$-0.5 \mathrm{~dB}$	$+3.1 \mathrm{~dB}$
Altai, copper with aluminium screen			
20m	$-4.7 \mathrm{~dB}$	$-5.3 \mathrm{~dB}$	-6.7dB
15m	$-2.2 \mathrm{~dB}$	$-4.4 \mathrm{~dB}$	-4.6dB
10 m	$-0.5 \mathrm{~dB}$	$-3.3 \mathrm{~dB}$	$-2.6 \mathrm{~dB}$
5 m	$+2.0 \mathrm{~dB}$	$-0.8 \mathrm{~dB}$	$-1.8 \mathrm{~dB}$
2.5 m	$-0.5 \mathrm{~dB}$	$-0.6 \mathrm{~dB}$	$+1.5 \mathrm{~dB}$
Normal RG59BU coaxial cable			
20 m	$-6.7 \mathrm{~dB}$	-8.5dB	$-9.8 \mathrm{~dB}$
15m	$-4.7 \mathrm{~dB}$	$-5.7 \mathrm{~dB}$	$-7.4 \mathrm{~dB}$
10 m	$-2.0 \mathrm{~dB}$	$-3.9 \mathrm{~dB}$	-5.7dB
5 m	$-0.7 \mathrm{~dB}$	$-3.6 \mathrm{~dB}$	$-1.2 \mathrm{~dB}$
2.5 m	$+3.8 \mathrm{~dB}$	$+2 \cdot 1 \mathrm{~dB}$	$+1.1 \mathrm{~dB}$

All measurements taken with reference to 1 m of Antiference 5540 Quadaire cable. Positive readings are a result of standing waves.
the test the lengths were reduced by 5 m each time measurements were made then, from the 5 m critical point described in the letter, to 2.5 m in order to test the validity of Mr. Baker‘s findings. Our results, see Table 1, show that with all three makes of coaxial cable a critical point is reached at around 10 m . At this point the apparent gain of the system starts to rise at some frequencies and fall at others due, as suggested in the letter, to an increase in the SWR or reflections, the frequency at which the variation occurs being dependent on the type and length of coaxial cable used.

To prove that different LNBs didn't unduly affect the measurements we started by checking two Marconi and one Grundig LNB with a standard length of coaxial cable. The equipment was then calibrated with one metre of coaxial cable, using readily available F plugs, providing the reference to which all measurements were referred, both the LNB and F plugs being in effect removed from the circuit under test.

In conclusion, while more samples from different drums would need to be assessed for a definitive result to be obtained, it seems that Mr. Baker has uncovered a little known though readily understandable factor in the satellite TV field, in that no installation should have less than 10 m of coaxial cable between the dish and the receiver if optimum results are to be obtained across the band.
J.A. Glenton, MCES Ltd.,

15 Lostock Road, Davyhulme,
Manchester M3I ISU.
What Mr. R.N. Baker omitted to say in his letter (May) on poor reception with his Amstrad 100 receiver was whether, when he increased the length of the feeder by 20 ft , he added extra cable to the previous length or used a new cable run. If you add 20 ft of cable to an existing length it's like connecting two resistors in series, thus increasing the impedance.

Mr. Baker's fault sounds as though he's feeding his signal into a cable that goes to other sockets instead of straight into the 100 . If this is the case the other sockets' cables are acting as tuning stubs. The way to overcome this is to terminate the other sockets using a coaxial plug fitted with a 75Ω resistor. The best course is to have one cable going straight from the dish to the receiver, not terminated anywhere, without even a wall socket. There could of course be an impedance fault with his Amstrad 100's input circuit.
B.D. Andrew.
Devizes, Wilts.

HELP FOR THE DEAF

Recently our local church installed a loop system to aid the deaf. The results are amazing. My wife, who is deaf, can now hear everything very clearly via her deaf aid. I'm wondering whether the loop system has ever been considered for attachment to a normal TV receiver? Perhaps one of your contributors could provide details of a suitable system. It would be a boon to many, especially older viewers.
W.J. Gadsby, 2 Church Way, Sanderstead, Surrey CR2 OJQ.

VINTAGE RADIO

As a collector and restorer of vintage radio sets, I have read with interest the correspondence in recent issues on the Bush DAC90A. I have one of these in my collection. It
required considerable work to restore it to working condition. Friends thought I was mad splashing out money on a forty year old radio, but their attitide changed when they heard its performance. A set that's well worth restoring! I'd be interested to hear from anyone who has a DAC90A, the original DAC90 (1946) or a DAC10 in nonworking order (cabinet in good condition) and wants to sell it. Also does anyone have spare knob sets for the Marconiphone T90DA Companion? These are for onoff/volume and wavechange - a specimen can be forwarded. The T90DA dates from about 1959.
Mike Horne, 100 Cockshott Lane,
Leeds, West Yorkshire LSII 2RQ.

HINARI SPARES

The price of the Hinari limiter post lever assembly mentioned in a letter in your May issue, page 490 , was incorrect at the time of publication - neither the writer of the letter nor the magazine rang to confirm whether the catalogue price was still applicable. With the demise of Hinari we have had to source the spares ourselves: price increases, sometimes of very large proportions, have had to be incurred. The new price for the limiter post lever assembly however, $£ 1.95$, is still considerably cheaper than the Matsui part and offers good value for money.
Richard Duckett, Sales Director,
CPC ple, 180-200 North Road,
Preston PRI IYP.

TESTING IR HANDSETS

The simple methods of testing infra-red remote control handsets with a radio receiver, as described by G. Cox and John S. in the April issue, are not wholly reliable. In the case of a faulty (dead) transmitting LED in the handset you will still hear audible pulse train tones from the receiver because the tones are generated by the resonator and are not transmitted by the LED. You can thus be misled about the handset's operation. I strongly recommend use of a checker such as the one by Colin Birch described in the February issue.
Joseph M. Borg, I. Eng.,
Mosta, Malta.

FOR DISPOSAL

I have for disposal almost all copies of Television from 1981 to 1990.
P. Hill, 3 Mayfair Avenue,

Sowood, Halifax HX49JH.
0422370338
The following are free to anyone who can collect them: a Bush 22in. Model CTV184S (A823 chassis), working when last tried; two 20 in . ITT sets with the CVC8 chassis, both with a line timebase fault; and a working Sanyo VTC830 (Beta) VCR.
R. Bowsher, 2I Cherwell Gardens,.

Chandler's Ford, Eastleigh, Hant SO5 2NH, 0703267867 (before 9 p.m.).

I have for disposal a Mullard "high-speed" c.r.t. type valve tester complete with data cards. It works, but could probably do with a new set of valves. It tests most types of valves though not the newer types such as the PL509, PFL200 etc. for colour sets. Any dedicated enthusiast is welcome to it, but please write first with s.a.e. Collection
will be necessary.
Brian Renforth, 174 Hemsley Road,
Sandyford, Newcastle-upon-Tyne NE2 IRD.

HELP WANTED

Can anyone supply a mains transformer, part no. 21050, for the Avo universal measuring bridge type 1? Winding details available.
H.M. Mellor, Gatesgarth, Back Lane,

Airton, Skipton, N. Yorks BD23 4AL.
07293417
Can anyone supply a radio/TV changeover switch for the Alba Model TVlo? Alternatively we are willing to purchase a complete working or non-working set.
Leon Electronics, II Woodend Close,
Three Bridges, Crawley, W. Sussex.
0293520536.

Can anyone supply a manual or circuit diagram for the Condor VHS 8120 VCR , made in the UK for export to Germany?
M.B. Wilson, 1 Playwell Court,

Glanton, Alnwick NE $06+B L$
066578437.

Can anyone supply a TA7153P chip for the Toshiba Model C400B?
H.S. Downing, It Mayfield Crescent, Lower Stondon, Henlow, Beds SG16 6LF.

Can anyone supply a left-hand cassette door for the Sharp 6 F 450 radio/cassette?
Susan Melluish. Thundridge Hill,
Ware, Herts SG12 0UF
09202500.

Can anyone supply a 60 mm jockey wheel for a Grundig TK40) reel-to-reel tape recorder, or an old machine for spares?
N. Reay, I2 Northolt Avemue,

Cramlington, Northumberland NE23 9RJ.

Can anyone supply a Signetics 2650 40-pin microprocessor chip, new or used? Will buy several if available. Allan Bone, PO Box 97, Coolangatta, Queensland, 4225, Australia.

Lonely DAC10 radio seeks companionship of a Bush TV22 to share an active retirement.
A. Meade, 48 Mosside Drive,

Portethen, Aberdeen,
0224781496

Can anyone supply a service manual or any technical information for the JVC GX77E colour camera?
D. P. Marsh, 10 Cedric Crescent,

Thurcroft, Rotherham, S. Yorks S60 9PA.
Does anyone know of an ex-UK engineer living in the Alicante area in Spain who would be willing to assist with the conversion of a couple of Solavox colour sets to work there? I can supply manuals for the sets, Models NBI4 and 20 S 19.
John G. Copeland, 48 Cherry Lane,
Alsager, Cheshire ST7 3QF
0270877213.

CD Player Casebook

Reports from Mike Leach and E.M. Beddow

Marantz CV55

This Philips-based CD video player came in with a standard compact disc Sellotaped to the top cover. The customer's complaint was that the machine wouldn't play the outermost tracks on this particular disc. It played all the customer's other compact and video discs all right, and the disc concerned played back o.k. on other, conventional players. Basically, when an attempt was made to play tracks 21 and 22 the machine would skip and jump. Occasionally when these tracks were selected from the stop mode the machine would have difficulty in finding them and a loud screeching noise could be heard coming from the direction of the laser assembly. The machine would eventually revert to the stop mode.

The disc concerned was a compilation by Status Quo. It had a total playing time of 78 minutes, which is quite a lot to pack on to one little compact disc. I tried using the long playing time as an excuse for not fixing the machine but my colleagues would have none of it and the job had to be done. Just to be sure, I tried the dise in two other conventional players, a Technics and a Sony model. They were in good working order and have different types of laser and sled systems.

I eventually found a suitable test point at which to check the r.f. eye pattern. When this waveform was displayed on a scope you could see that it was good at the beginning of the dise and remained all right until the last two tracks. It then deteriorated badly, the level being very low and unstable. Setting up made no difference at all. After much head scratching I found that gentle pressure on the laser CDM assembly produced a much better waveform, the two outer tracks then playing all right. When the pressure was taken off, the machine again played badly. So what was happening was that the laser angle was very much adrift at the outer tracks.

Because the large 30 cm video discs have a tendency to warp and, as we know, the laser lens must be at a constant distance from the dise to maintain accurate focusing right across it, in a CD video player the laser angle is adjusted electronically. The correct distance is maintained by the tilt motor. A tilt sensor is placed in close proximity to the laser lens. It consists of two sensors and an LED. The latter directs two beams of light on to the disc: this light is reflected back on to the two sensors. If the dise is warped, the distances between the sensors and the point of reflection from the disc will differ and an error voltage will be produced. This error voltage is processed, amplified and passed to the tilt motor, which is mounted quite close to the turntable motor. The tilt motor drives the laser up and down to compensate for any warp in the disc. A series of cogs drive the CDM unit on which the laser is mounted.

So I assumed that the tilt motor wasn't doing its job properly at the outer edge of the disc. When tracks 21 and 22 were being played I could see the tilt sensor plainly, because the laser was at the very edge of the disc and the sensor is very close to it. I wondered whether the tilt sensor was actually shining light on to the disc. What I did next was only an experiment, but it cured the problem. I removed the tilt sensor and slightly enlarged its fixing hole so that I could move it backwards a fraction. My hope was that it would then shine a more accurate beam on to the disc. Hey presto - it worked!

The laser had been so close to the edge of the disc that
the LED in the tilt sensor didn't shine enough, if any, light on to the disc. Thus the tilt motor couldn't correct the laser angle sufficiently. What a bodge! The machine has been back with our customer for some weeks now however and hasn't bounced.
M.L.

Technics SLP22A

The fault with this machine was slight distortion on both channels. This distortion increased as the music became louder. I've had similar faults before with other players and as a result I decided to replace the UM6116M-2 RAM chip IC302. This cured the problem.
M.L.

Pioneer PDZ71

Judging by the state of the cabinet and the front escutcheon this machine had obviously seen a lot of use and had possibly had some rough treatment in its time. The tray wouldn't open, and there was something that rattled about inside. After removing the top cover we could see that the clamp assembly had fallen off - it was this that prevented the tray opening

The mechanism was reassembled, but the tray still refused to open properly. It would catch on the clamp and grind to a halt. So everything had to come out - tray, clamp, the lot. Removal of the tray revealed one cause of the problem: the tray slides on a ball bearing that was missing. When the ball bearing was replaced the tray action was much smoother. As the machine now worked I left a disc inside in order to soak test it. I then tried to open the tray. Yes, it wouldn't do so fully - it got half way then stuck. It seemed as though the tray lift mechanism wasn't lifting the disc upwards, so the tray came out yet again. Stripping it down revealed the final cause of the problem. Because of a bad case of spillage between the tray and the tray lift the two stuck together each time a disc was loaded. So I cleaned it all off then reassembled the tray and clamp. This time the machine performed perfectly.
M.L.

CD Power Supplies

We've had a couple of players in with strange faults, i.e. not reading the TOC or reading the TOC but not playing, that could have been due to a faulty laser unit. In both cases however the cause of the problem was incorrect outputs from the power supply. In one case the 9 V line was 2 V down while in the other it was down by 5 V . In both cases this was due to the relevant bridge rectifier being faulty. Because they are so simple, CD player power supplies are often overlooked. But as these two cases show it can pay dividends to check the supply lines carefully before getting more deeply involved.
E.M.B.

CD Gears

Machines that use the Sony KSS150 laser unit can suffer from a sticking sled. The usual cause is that the last gear in the train has stripped its teeth on the part that fits on the shaft. The machines with which we've had this happen have been only a few months old. We've not found any stiffiness in the train to account for the problem. E.M.B.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 40$ different patterns and variations．
\star Fully interlaced sync pulses with correct picture blanking．
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow． cyan，green，magenta，red，blue and black．
\star Chequerboard．
\star Mono outputs with border castellations，cross hatch， grey scale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR．
\star Facilities for sound output．
\star Easy to build kit，standard parts．Only 2 adjustments No special test equipment required
\star Mains operated with stabilised power supply． All kits fully guaranteed with back－up service Also available with VHF Modulator．
Price of Kit
Case（ $\left.10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}\right)$ app．
Optional Sound Module（ 6 MHz or 5.5 MHz ）
£75．00
$£ 12.00$
Built \＆Tested in Case including Sound Module
$£ 119.00$

Post／Packing $£ 3.00$ Add VAT 17．5\％TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

\star Output at UHF，applied to receiver aerial socket．
\star In addition to colour bars R－Y，B－Y etc．
\star Cross－hatch，grey scale，peak white and black level．
\star Push button controls，battery or mains operated．
\star Simple design，only five i．c．s on colour bar P．C．B
\star Backup service available．
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£35．00．CASE £5．80．BATT HOLDERS $£ 4.20$ ．
MAINS SUPPLY KIT $\mathbf{5 5 . 8 0}$
（Combined P\＆P $\mathbf{~ 1 3 . 0 0) . ~}^{\text {．}}$
VHF MODULATOR（CH 1 to 4）FOR OVERSEAS 86.80
EASILY ADAPTED FOR VIDEO OUTPUT \＆C．C．T．V．
LINE OUTPUT TRANSFORMER TESTER

Saves time and money．
Checks short turns．
Simple to use．
Reliable．

Battery operated．
Pocket size．

PRICE $£ 20.00$

POST／PACKING $£ 2.50$

KITS AND PROJECTS

SAW IF AND TUNER UNIT completc and tested for video \＆audio outputs $£ 28.50$ p．p．$£ 1.80$ ．
Pal decoder Kit（Video to RGB）for Monitors $\mathbf{£ 2 7 . 0 0}^{\mathrm{p}} \mathrm{p}$ p． £1．（0）．
PAL ENCODER KIT（RGB to Video） $\mathbf{£ 1 8 . 5 0}$ p．p． fI .30 ．
CROSS HATCH UNIT KIT，Aerial Input type，incl．T．V．sync．and UHF Modulator．Battery Operated，also gives Peak White \＆Black Levels，can be used for any set． $\mathbf{£ 1 5 . 0 0}$ p．p．SOp．（Alum．Case $\mathbf{£ 6 . 0 0}$ p．p．£1．40．）ADDITIONAL GREY SCALE Kit $£ 3.50$ p．p． 45 p．
UHF SIGNAL STRENGTH METER KIT $£ \mathbf{~} \mathbf{3 0} 0.00$ Alum．Case $£ 6.00$ De Luxe Case $£ 12.00$（Built \＆Tested $£ 58.00$ ）p．p．$£ 2.50$ ．
CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $£ 40.00$ p．p．$£ 3$ ．（\％）．

TV \＆VIDEO SPARES

TELETEXT PANELS

GEC／HITACH－PC174A 4 E10．00
GEC－C2285．C2287，Text Conversion Kit $\mathbf{£ 1 5 . 0 0}$
ITT－Textdecoder 6911.11 .61 incl．SAA5243， $5231 £ 12.00$
MT－Compact B，D \＆Mono Print 13，14 $22 \mathbf{y}^{\prime}$ Text Conversion Kit $\mathbf{£ 1 5 . 0 0}$ MULLARD VM6103 E10．00
THORN TX9／10，I539 £10．00
POST PACKING FOR ABOVE 22.50
PHILIPS SPARES
 GII PANELS（tesied），iratme．IF．decoder f15．00 cach．p．p．£2．（x）．Scam $£ 15.00$ p．p．$£ 2.10$ ．Power tested exchange $£ 18.00$ p．p．$£ 2.80$ ．
MANUALS 2B．CP 4 ）$£ 3.50$ ．（TX－E．（＇TX．S．CFI £2．50）KT4．KT3
$K 4(0), 3 \mathrm{~A} £ 4.50$ 2A $£ 10.50$ ．
BACK UP BATT．2．4V $\mathbf{~ 5 . m 0 , 1 . 2 V} \mathbf{~} 2.60 \mathrm{p} . \mathrm{p}$ ，X p
K．Mo．KT4，CTX－EHT Lead $\mathbf{\& 3} .20$ p．p．f4．（K）．

THORN／FERGUSON SPARES

$\mathbf{9 0 0 0}$ Series IF／Decoder tested $£ 10.00$ p．p．$£ 2.80$ ．
TX10 Focus control $\mathbf{5 8 . 5 0} \mathrm{p} . \mathrm{p}$ ．$£ 1.00$ ．
TX9／TX10 Saw filter IF panel $\mathbf{5 . 0 0}$ p．p．80p．
TX9／60 Remotc \＆tuning $1515 \mathrm{~N} \mathbf{~} 5.00$ p．p．$£ 1.80$
TX9／10 Remote \＆tuning 1508A（incl．SAA5012）£2．50 p．p．£1． KO
TX9／10 Remote \＆tuning 1536 （incl．SAA5012．SL471） $\mathbf{2} .3 .50$ p．p．$£ 1$.
TX10 Stereo Audio Board £3．50 p．p．£1．80
$\mathbf{T X 9 0}$ Mains TX $£ 23.00$ p．p．$£ 2.80$ ．
TX9 44 Chassis complete \＆boxed（untested） $\mathbf{£ 2 0 . 0 0}$ p．p．$£ 2.8$
TX100 Chopper TX $£ 14.80$ p．p．$£ 2.50$ ．
IC SELECTION

AN592	E． 80	SAAstra	¢6．801	STR	c5．80	TDA3574	¢3．40	［1）${ }^{3} \mathbf{6} 54$	c3． 20
	22．21	satsin）	¢6．\％）	ТА7\％＊：AP	c5．81	TDA ${ }^{\text {Sast }}$	c2． 20	［1） dita $^{\text {a }}$	c6． mu
BARSIANA	［4．81）	Sactisa	（6． $\mathrm{SN}_{\mathbf{n}}$ ）	Ta7bsip	E5． $\mathrm{ml}^{\text {d }}$	TDA ${ }^{\text {a }}$－	［2．81）	TDAtam	［5．44］
CNX6？	4．8．80	SA， 5231	15．80			TDA 254.	61.50	［11） 4 an	67．41
11A1313	22．80	SA137139	［6．\％）	T13＾12	E1．20	Tibas5yd	4.80	TDA＋ 10 A	E13．50
HA1142，	¢2．10	SAB3，117	¢15．80）	TBA754	12．20	TDA 2.545	c4．81）	TDA 4 ［913	45．80
HASti3ze	II．kg	Safilizz	t4．50	tbayzin	［2．21	TDAzam	48．8．81	TDAtsis	6.80
LA444，	E． cos^{1}	SAFH179	¢2．20	TBAM50	［2．211	tidaz611A	［t．en）	T＇DAtax）	E3．45
－A7xix	E1．80	SL．471647	（4．00	TCAこクロ	［1．841	Ti） 2 20木1	C． 211	Tibat（0）	［2．4．4
－LA7520	17．20	SLust	［3．20	TCAmy	£6．M）	TDAA 253 A	¢3．20	TIDAth10	c6．80
1． 17×11	63.50	SL．4M1	23．80	tidalibst	¢2．40	TDAB64t	E 5.70	TDAssill	\＄5．80
LA7xMJ	E2．（\％）	SLIt．31	E1．80	TIDA11137	\＆1．90）	TDA 20.5513	［8．（1）	TDA5x 51	［2，＊＊）
M29381	67．811	SL． $1+3.3$	\＄1．40	TDA：04	¢2．901	Tidazh7U	23．211	TDasis3	67.80
M＋9，${ }^{\text {chai }}$	E14．80	SN7622hDN	t1．${ }^{\text {and }}$	TDA10x2	E3．811	TDA 2 ama	［3．8．${ }^{\text {c／}}$	TDaximi	t6．8\％
M441831	¢9．80	SN7670．5	¢9．8w	Tidalizi	¢2．20	TDAzom	E．3．80	TDAximi	［3．21）
M 494	¢9．M ${ }^{\text {d }}$	STK5325	Et． Kl_{1}	TDA1年1	c2．20	TDA27x	En． 81	＇TDA44，	［3．811
MC13002P	E5．811	STK．533	to． kO	TDA1wnz	£2．20	TDA3｜M1	\＆4．20	tDaysil3	（3．3．80
MDAzimi	44.40	STh 533 s	E6．$\times 1$	TDA 1132 P	55.70	TDA3m速	¢6．80	TDAツ513	（4．81）
	c3．${ }^{\text {c }}$（1）	STK¢3，	t6． 80	TDM：470	12．80	TDA331！	17．5．91	TEAILKM	\＄2．20
M1． 237	［3． MaI_{1}		25．80	TIDA1570a	ع．3．21	（1DA33，	［3．34）	TEA1014	［．3．54
ML23x	Ef． Kl	Siki422	57．50	TDA1741	£3．60	TDAisix）	¢6． 80	TEA103 3	E1．841
MLuy	（4．4．80	STK 4.47	26．50	TiDM174	83.20	TDA3510	E9．R0	TEA2ma	¢2．20
MNIS425	114.50	STK94x	［7．814	TDA1A70	£5．80	TDA3541	¢2．50	TEAInsa	
SAAIIR24	Es．80	STK5482	E6．$\%$ ）	TDAlmis	¢2．401	10A3541	83．50	7MSIHKNN？	
SaAlizs	55.80	STh7303	¢ 10.80	TDAI¢\＃）	23.20	IDM356iA	\＄5．80		
SAAliza	E3．50	SIK 7.4×1	¢10．\％）	TDAl4si	E3．50	Tida3562	ES． M 1	TMP 474.32 AP ．	
SAA1250	C3，80	STR44：	¢7．81	TDAzu\％	67.80	toalsms	c． 8.80	$\begin{aligned} & 8130,50 \\ & \text { TMP } 47(+3 N-255 \end{aligned}$	
SAA12si	EX． 40	Strasis	c6． $\mathbf{x O}_{0}$	TDAIs．	［3．219	TDA356，	E5．80		
SAAİ9？	¢13．20	STR451	55.80	TDA2？7，	¢2．411	TIDA3571	E4．4）		
SAAI293．02	66． KNI_{1}	STR4．54	$55 . \mathrm{ml}$	1DAこ5111	66．80	TIDA35\％	67．00		
SAA．3127	c5．80	S1R4211	c¢．${ }^{\text {a }}$	1DA254	¢5．80	TDA ${ }^{3 / 4}$	\＆ 4.20		
SAASIXN1		STRSd 12	15.40	DA－57na	¢3．80	TDA ${ }^{\text {anain }}$	¢¢． $\mathbf{3} 1$	TUAz（x）	ck． 50
SAAS010	c5．m0	STR．611113	［4．51］	TDA2579	¢4．941		c4． 21	UC3m4n	E4．95
SAXS61？	45.80	STRS 4141	¢14．80	TDA2577A	¢4．80	TDA：3653A	23.80	UPC 1.37 x	c1．911
sac．ing	c5．40	STRSM（1） 1	¢ 8.51	TDA257x	6．3．80	1DA， $36 \leq 13$	${ }_{2} 3.20$	UPr 13.4	¢3．89
								UPC（49）	¢6．60

VARICAP TUNERS：Grundig 8630 series $\mathbf{5 5 . 5 0}$ p．p．$£ 1.00$ ．U32 £10．80．U343 $£ 10.8043$（equiv）．SC4，VHF NSF203 $£ 7.80$ p．p．£1．80）．UHF／VHF UV411

LINE OUTPUT TRANSFORMERS

bush 120．T2？	19．80	LOPT＇s p．p．fisul	
	［x．8（1）	ITT Cure 1104 FS	¢14．45
FIDEIITY $2 \times$ OMN．CTVIH1．	E15．50	PHILJPS 321．	（2． 2 析
FIDELITY ZX （M以	． 114.51	PHILIPS G＊	Ex．x1
hinarictaciss		PHHISXG ${ }^{\text {P }}$	E12．m1
HiTACHI（PTILS5．14．5．1476．1491．	［28．80）	PiHILPS CT 3	\＆13．30
HITACHI CPT21747675	［28．81）	PHILIST K．ul	（3）．4
HITACHI P／N2－13752	（ 29.80	Philime（IX－i．S	［24．x1
ITT Compact B．ilit	［19．81	PHHIISMKT4． 24	． 222.41
1 TrT Compact mid 16	¢17．80	PHIIIIPS 2 A	¢23．xı1
T1T C Compuce	［22．811	Priliph CrI	［132．x｜
	t19．80）	PYE 731741	49.20
ITT CVC	（4．（M）	SANYOC－TP7132．KIP Chiowis	［24．x｜］
ITICVC35．31．32	¢10．80］	mony Kliskz	C．4． 51
ITTCVC45．		SONY R＇ご（ 2 ／h	C4．51
ITT CVC Mo．xnt N（13	c24．04	SONY K 3774	（t10．（0）
ITT CVClion 12.6 ．Picos	［18．51］	THOKN 1590，91，I612． 13.1712	t． 4.80
ITT CVCl150．1175．	（122．81）		
	（18．50）	THORN 37M7（NORIDMINDE）	¢9．80
ITTCCCISM	\＆11．51	THORN MMOI．Whill	¢9．80
ITT CVCl？	E17．8．10	THORNTXIO（Chepot）	\＄16．50
Her Digi 3． 116	¢19．80	THORN TXNS	（19．811
1 Tr Cine llip un	［19．8．${ }^{\text {I }}$		¢ $14 . \times 1{ }^{\text {kin }}$
1 TT Cors 114 FSS	\＆19．95		\＆21．410
ITT TX 3326／7	¢22．ki）		C14．R0
FTT 1x34，	£22．40	THORNTXICNMPFST Yellum Spu	¢21．x1
FTT Monepritt A	122． 80	Pent pachingi ioprs．．．．．．．．．．．．	E1． Ki

TRIPLERS：THORN $9000 £ 8.80$ P．P．$£ 1.50$ ．
CONTINENTAL TVK \＆BG RANGE（quote exaci no．）replacements fi3．80 DECCATATUNG $\mathbf{\$ 7 . 8 0}$ p．p．$£ 1.50$ ．
6．3V CRT Boost Transformers for Colour \＆Mono $\mathbf{5 5 . 9} \mathbf{9}$ p．p．£1．40 455 CRYSTALS for Remote Control Handsets． 4 for $£ 1.00$ p．p． 50 p．
VHF to UHF Converters $\mathbf{1 3 5 . 0 0}$ P．p．$£ 2.50$ ．
DEGAUSSING ROD $£ 33.75$ P．
DEGAUSSING ROD £33．75 p．p．£2．8
10.80 p．p．£1．80

HOW TO ORDER：ADD p\＆p TO ORDER＋VAT 17．5\％TO THE TOTAL PRICES ARE SUBJECT TO CHANGE WTTHOUT NOTICE

Telephone $071.7948751,7947346$
0 ，manot supules ${ }^{\text {PI }}$
172 WEST END LANE，LONDON NW6 1SD

Teletopics

SONY ANNOUNCES THE MINI DISC

Sony has announced a major new audio system, the Mini Disc (MD), which gives record and playback of highquality sound on a 64 mm (2.5 inch) magneto-optical disc. The MD disc is housed in a small cartridge, similar to a computer diskette, measuring $68 \times 72 \times 5 \mathrm{~mm}$. MD offers two-channel stereo sound with a frequency response of 5 Hz to 20 kHz and a dynamic range of 105 dB . Use of a digital compression system called ATRAC (adaptive transform acoustic coding) compresses a CD or DAT signal by a factor of five, enabling the disc to store up to 74 minutes of audio, the same as with a compact disc. ATRAC is similar to the PASC system used with DCC tapes. Other techniques used include eight-to-fourteen modulation and cross-interleaved Reed-Solomon error correction.

A new terbium-ferrite-cobalt magnetic coating enables the magnetic polarity to be reversed using a third of the power required with previous, computer MO discs. As a result, erasure and recording can be carried out in a single cycle, i.e. re-recording can be done simply by overwriting the previous recording. The pickup can read both MO and compact discs as it incorporates two different sensors. Because the format is aimed initially at the portable audio market an anti-jolt system is included. The off-disc audio is stored in a lMbit RAM so that, provided the pickup returns to its correct position within three seconds, the user doesn't hear any interruption to the music.

Sony plans to incorporate a serial copy management system (SCMS) to prevent multiple digital recording. The MD system is due to be launched late next year. No price details have been suggested so far.

NTL DEVELOPMENTS

Some interesting TV developments are being worked on by National Transcommunications Ltd. (NTL), formerly the IBA's transmitting section. One of these is a Eureka 625 project called VADIS (video-audio digital interactive system) that uses digital video at bit rates of around $10 \mathrm{Mbit} / \mathrm{s}$. The work is being coordinated with the development of audio-visual coding standards within the ISO/IEC Moving Pictures Expert Group (MPEG). VADIS is designed to strengthen European participation within the MPEG. It could put into question the future of the Eureka 95 group, which is working on an analogue HD-TV system using MAC technology. An EC statement on its future is expected this summer.

NTL is also working on SPECTRE (special purpose extra channel for terrestrial radiocommunications enhancements), which permits some "taboo" u.h.f. channels to be used for digital TV transmission (taboo channels are ones not used because of the likelihood of interference effects). The technique uses a digital video redundancyreduction coding system and a modulation system called orthogonal frequency division multiplexing that's extremely efficient in bandwidth use, allowing the signal spectrum to be shaped to minimise interference with existing PAL transmissions. OFDM can convey at least $13.5 \mathrm{Mbit} / \mathrm{s}$ using a standard 8 MHz TV channel - the bit rate includes provision for wide-screen pictures, teletext and over-air subscriber addressing. Picture resolution is said to be equivalent to MAC and the aspect ratio can be $4: 3$ or $16: 9$. Teletext page updating and subscriber addressing are done
by the packet data system during scenes that contain little activity. SPECTRE's audio system has two-channel stereo sound compressed to $256 \mathrm{kbit} / \mathrm{s}$.

NTL has developed an upconverter, Model NTL1000, for large-screen, extended-definition TV (EDTV) systems. It's designed to improve the picture quality with interlaced broadcast signals. The technique is to convert from interlaced to sequential scanning or to retain the interlacing but double the number of lines per field. 625/50 and $525 / 60$ signals can be handled by the NTL1O()O. Advantages are the removal of inter-line flicker, reduced line visibility and improved vertical resolution. In addition a digital processing system uses motion-adaptive interpolation to improve the quality of static and moving pictures. The NTLIOOO is housed in a 19 in . case and weighs 7.5 kg .

SATELLITE TV

According to the Financial Times Satellite Monitor the number of domestic satellite TV installations at the end of April 1991 had risen to 1.48 million from 653,000 on the same date in 1990. About seven per cent of homes now have access to BSkyB programmes. During April there were a further 71,000 installations.
W.H. Smith is selling its TV business for a reported $£ 65 \mathrm{~m}$ to a consortium that includes Canal Plus, the US communications group Capital Cities/ABC and Compagnie Generale des Eaux. The business includes the Screensport, Lifestyle and Cable Juke Box channels, the TV services group Molinare and a 19.5 per cent stake in Yorkshire TV. It's understood that some $£ 80 \mathrm{~m}$ has been spent on building up the business, which is said to be two years from breaking even.

The Eurosport channel was closed down on May 6th following an EC decision on the contractual relationship between its owners, a consortium of seventeen EBU members and Sky Television/News International.

BSkyB has arranged financing to fund its development during the next eighteen months. Since the merging of Sky Television and BSB losses have fallen from $£ 9.7 \mathrm{~m}$ a week to $£ 6 \mathrm{~m}$ a week, half in operating costs and half in financing charges. City analysts estimate that a further $£ 100-400 \mathrm{~m}$ will be required before BSkyB reaches the break-even point at some time between 1993 and 1995.

BSkyB has granted a national UK agency franchise to Homevision Direct Ltd. for the sale of subscriptions to BSkyB's two movie channels. Homevision will also acquire and market satellite receiving equipment on a direct sales to consumer basis. It will pay BSkyB a fee of up to $£ 3 \mathrm{~m}$ over a five-year period.

VIDEO NEWS

Panasonic has just launched in Japan what is claimed to be the world's lightest camcorder, Model NV-S5, which weighs just 680 g . Features include a digital $\times 12$ zoom, digital image stabilisation and a digital focus system. There's also a "mirror effect" which splits the screen into two halves and displays a mirror image on the right, while the battery tells users how much charge remains. Panasonic says that the weight reduction has been made possible by use of the new 170 g DL mechanism, which is 100 g lighter than the one used in previous models. There are no details of launch dates or prices in Europe.

Automatic head cleaning is a feature of the latest VCRs from Hitachi and Sony. Hitachi’s VT-M822 at $£ 330$ includes long play and an on-screen display while the VTM830 at $£ 370$ adds four heads to the specification. Sony’s SLV315 at $£ 350$ is a three-head machine with a real-time counter and tape remaining indicator and automatic
tracking. Using the shuttle enables you to freeze the picture cleanly and advance frame by frame or variably in slow motion. The SLV415 at $£ 400$ is a four-head machine with long play, editing functions and front-mounted AV inputs in addition to the SLV315's features. Both models have greatly simplified controls with a quick-start switch for recording.

Mitsubishi's latest camcorder, Model HCS50 at £900, weighs $1 \cdot 18 \mathrm{~kg}$, a considerable reduction compared with the 1.9 kg of its predecessor Model HCS35. A feature of this S-VHS-C hi-fi machine is the interchangeable lens mount. In addition to the basic $\times 6$ zoom lens there are optional $\times 6$ wide-angle and telephoto lenses at $£ 70$ each.

The Commodore interactive CD-TV system has now been launched in the UK. The player comes with three discs at $£ 600$. Additional discs cost around $£ 25$ each. About thirty titles are available so far.

SONY'S UK EXPANSION

Sony is to build a $£ 147 \mathrm{~m}$ TV factory and R and D centre at Pencoed, Mid-Glamorgan, South Wales. The existing Bridgend plant will concentrate on c.r.t. manufacture, with annual output increased to two million from the present 1.4 million by 1993 . Production capacity at the new Pencoed plant will be 1.5 million sets a year compared to the present one million at the Bridgend factory, which is now 18 years old. Employment at Pencoed is expected to rise to 2,300 by 1995 , when the two plants should employ 3,600 between them. The research and development activities at Pencoed will concentrate on colour TV sets, computer displays and broadcasting equipment.

TV NOTES

JVC is to launch a 36 in . 16:9 aspect ratio TV receiver, Model AV-36W1, in Japan this September. The set will be able to receive standard NTSC and HD-TV transmissions. A Muse/NTSC converter, Model HV-MC1000, is also being launched: this will allow HD-TV pictures to be watched on NTSC sets and recorded by NTSC VCRs. Prices will be the equivalent of $£ 3,125$ and $£ 1,040$ respectively. Japan's BS-3a satellite currently transmits an hour of HD-TV programmes a day. A second satellite, the BS-3b, due to be launched in August, will be used exclusively for HD-TV. JVC has also announced a number of professional HD-TV products.

The new Philips TDA4670 picture signal improvement (PSI) chip is a successor to the TDA4565 colour transient improvement (CTI) chip. It incorporates the CTI circuitry together with a luminance section that gives signal peaking and noise reduction. In addition to improving the colour definition and luminance/colour fit, the contrast is enhanced. The chip's operation can be controlled via an I2C bus. Philips has also introduced a new series of chips for World System Teletext.

The Black Line series of Philips 45AX tubes incorporate a low-expansion invar shadowmask, enabling them to be driven at higher beam current than with an iron mask. This means that lower-transmission faceplate glass can be used, giving a darker screen and improved contrast. A new black matrix system is used: this will also be incorporated in standard 45AX tubes.

Sharp is to launch colour TV sets with 8.6in. flat-panel LC displays to hang on the wall in Japan this summer. Initial production is planned at 1,000 sets a month and the price will be the equivalent of about $£ 2,500$. This high price is due to the wastage involved at present in the production of large colour LC displays - understood to be as high as 90 per cent. Sharp is investing in a new $£ 450 \mathrm{~m}$ plant however
and hopes that this will enable prices to be brought down. The displays are of the thin-film transistor, active matrix type, with 437,760 pixels arranged in 456 rows and 960 columns.

Motorola and IBM have collaborated in the design of a chip set that enables video signals to be fed into a personal computer for manipulation and display.

The EC has extended the provisional anti-dumping duties imposed on small-screen colour TV sets imported from China and Hong Kong.

CATALOGUES/PUBLICATIONS

HRS Electronics Plc, Garretts Green Lane, Birmingham B33 OUE, has published at $£ 6.95$ (or $£ 6.50$ in quantities of five) a TV Fault Finding Guide. This useful work has 150 pages of fault information: the 2,000 fault/remedy entries relate to over 400 models $/$ chassis. Its handy $6 \times 4 \mathrm{in}$. size enables it to be slipped into the pocket. Further volumes will include fault finding guides for video, audio and satellite TV equipment.

A new illustrated catalogue is available from HS Publications, 7 Epping Close, Derby DE3 4HR. Publications in the catalogue relate to long-distance TV, station identification, amateur radio, short-wave listening, aerials, propagation and TV and video theory. Equipment listed covers a wide range including aerials, masthead and distribution amplifiers, filters, accessories and the D100 upconverter system. The compact VF100 v.h.f./TV array covers all Band I/II/III channels with a boom length of less than six feet. The catalogue is available for 66p (or send three first class stamps).

Blue Rose Electronics, which specialises in the supply of surface-mount components, has published a 76 -page mail order catalogue covering a vast array of s.m. devices - just about every electronic component in s.m. form. Ancillary equipment (soldering irons, chemicals, PCB production equipment, project boxes, workstations etc.) is also listed and there are a number of project kits. Well worth investigating. BRE's address is 538 Liverpool Road, Great Sankey, Warrington, Cheshire WA5 3LU; telephone 0925 727848.

The Modern Book Company, 19-21 Praed Street, London W2 1NP, has published a new catalogue listing electronics, radio, TV and communications books. The company has also issued its computer catalogue update for 1991. Copies of these catalogues are available free of charge: they are certainly the best way of finding out what books are available in these fields.

IN BRIEF

The Cable Television Association has moved to the Fifth Floor, Artillery House, Artillery Row, London SW1P 1RT, telephone 071222 2900, fax 071799 1471. . . HRS Electronics Plc., Garretts Green Lane, Birmingham B33 ()UE has been appointed official distributor of Pace satellite TV receiver spares by Pace Micro Technology of Shipley, W. Yorks. . . The Leader LCG412C hand-held battery-portable colour pattern generator for TV receiver and VCR testing is available from Thurlby-Thandar Ltd., 2 Glebe Road, Huntingdon, Cambs. PE18 7DX at $£ 253$ plus VAT. The price includes a carrying case and r.f. and video leads. Patterns available are full-field colour bars; crosshatch and dot patterns with corner markers for convergence and linearity adjustment; plus white, red, green and blue rasters. Selection is by soft keys. A 1 kHz signal is superimposed on the 6 MHz intercarrier sound output. The extremely compact unit weighs just 390 g . measuring $80 \times 172 \times 35 \mathrm{~mm}$.

Servicing the Mitsubishi Euro 4 Chassis

John Coombes

The Mitsubishi Euro 4 chassis was used in models released during 1988-90, including the CT2131, CT2132, CT2141, CT2142, CT2144, CT2154, CT2531, CT2532, CT2534 and CT2964. Our experiences have been mainly with the initial CT2131BM/CT2531BM - suffixes are used to indicate the facilities included with particular models.
The power supply section of the chassis is of interest in that there are two separate chopper circuits. This is done for standby operation purposes, the secondary chopper circuit providing -30 V and 5 V outputs that are used for the EAROM and microcontroller circuits respectively.

Fig. 1 shows the main chopper circuit and Fig. 2 the secondary one. Both circuits are of the self-oscillating type. The chopper transistor in Fig. 1 is contained within IC901. Base bias is provided by R906 and R972 to get the circuit started. Once the chopper transistor starts to conduct, positive feedback from winding 3-4 on the transformer is applied to the chopper transistor's base via R917 and C911. This drives the primary circuit to saturation, at which point the chopper transistor switches off. The rectifier diodes on the secondary side of the circuit then conduct, charging their respective reservoir capacitors. When current in the secondary windings ceases, a small voltage is induced in winding 3-4 and the chopper transistor again switches on. The circuit operates at approximately 30 kHz .

Regulation is achieved by adjusting the chopper transistor's base bias. A negative voltage that's proportional to the other output voltages is generated across C908. This appears across the resistor network R905/VR901/R904. As a result the voltage at pin 5 of IC901 shifts and the base bias is adjusted via the drive control circuit within IC901.

Should the chopper transistor pass excessive current, due for example to a short-circuit in the secondary side of the supply, the voltage developed across R903 will be sufficient to switch Q901 on. This reduces the chopper transistor's drive, limiting the current.
Power on/off control for standby operation works in a similar way: for standby Q955 and Q954 conduct, shorting out the drive to the chopper. For mains isolation purposes, the on/off control is applied to the chopper circuit via the optocoupler PC951. When the microcontroller chip requests power on, the voltage at pin 10 goes high, Q953 conducts and the optocoupler short-circuits the base of Q955. As a result Q955/Q954 switch off.

Q912 and its associated circuit provide protection in the event of an open-circuit on the secondary side of the supply. This would increase the chopper transistor's base drive current. $\mathrm{Q} 9(12$ senses this condition, turning on to short out the drive circuit.

The secondary chopper circuit operates on the same principles but, since the load is assumed to be constant, load regulation is not incorporated. D957 and IC951 regulate the output voltages. D954/C956/D953 provide open-circuit protection/limiting. The circuit operates at about 19 kHz .

No Sound or Picture

While the no sound or picture symptom may be due to a fault in the power supply, the most common cause is a short-circuit line output transistor. This is Q552, type

2SD1877. Q552 can fail of its own accord or because of shorted turns in the line output transformer T553. The usual cause of Q552's failure however is dry-joints at the pins of the line driver transformer T551. If you have to replace Q552, always check T551.

A smell of burning is generally due to breakdown of the insulation in the line output transformer. This will of course lead to the no sound/picture condition. A smell of burning can also be due to arcing at the tube's e.h.t. cap because of excessive damp. Replace the cap or the whole transformer assembly.
No sound/picture with the standby light out should lead to a check on the 5 V output from IC951, at pin 2. If missing the chip could be faulty or the input at pin 1 might be missing - check whether R957 or D956 is open-circuit.

No sound/picture with the standby light on could also be caused by loss of the 5 V supply from IC951. If this is present, check whether R958 is open-circuit or the optocoupler PC951 is faulty.

For the dead set symptom check whether fuse F901 is open-circuit. If it has simply died, fit a replacement. If it has blown, check for shorts in the mains bridge rectifier D901-4 and the associated protection capacitors $\mathrm{C} 901 / 2 / 5 / 6$, also the reservoir capacitor C 907 . If fuse F 901 is all right, check whether the surge limiter resistor R901 is open-circuit.

For no sound or picture with the set operational (onscreen indications present) and the standby light on, check that the regulated 5 V supply is present at pin 2 of IC903. If there's no input at pin 1 of this regulator check D914, C922 and circuit protector Z902. Check IC903 (by replacement) and C923 if about 7.2 V is present at the input but there's no output.

No sound or picture with a loud screeching noise coming from the receiver and LEDs $\mathrm{M} 1 / \mathrm{M} 2$ on the front of the receiver alight should lead to a check on the regulated 12 V supply, at pin 2 of IC902. There should be an input of about 15 V at pin 1 of this regulator. If this is absent check D913, Z901 and C920. If the input is present but there's no output check IC902, C925 and C580.

No sound or picture with a loud whistle occurs when the line output transistor Q552 goes short-circuit. If a replacement fails, check D909 and R911 in the power supply - one or the other or both may be open-circuit. If D909 is open-circuit IC901 and Q552 can be ruined.

No sound or picture or very intermittent loss of the sound and picture can be caused by dry-joints on the pins of the line driver transformer T551. If the fault is very intermittent however suspect the chopper chip IC901. A replacement will be supplied with a small packet of a different heatsink compound: remove all the old compound, fit the new chip and reassemble.

No Picture and Bright Raster Faults

For no picture with the sound all right check whether the 0.82Ω fusible resistor R 563 is open-circuit. This is the surge limiting resistor in the rectifier circuit that produces the 24 V supply for the field output chip. Its input comes from pin 3 of the line output transformer. If necessary go on to check the 2 W fusible resistor R 671 on the tube base panel. Its value (e.g. 1.8Ω or $2 \cdot 2 \Omega$) depends on the type of tube

Fig. 1: The mains input and main, regulating chopper circuitry used in the Mitsubishi Euro 4 chassis.

Fig. 2: The standby chopper circuit.
fitted. It's the heater supply ballast resistor.
For a bright raster with the sound all right check whether the $2 \cdot 2 \Omega$ fusible resistor R559 is open-circuit. This is the surge limiter in the rectifier circuit that produces the h.t. supply for the RGB output transistors. Its input comes from pin 6 of the line output transformer. If necessary go on to check the reservoir capacitor C565 ($33 \mu \mathrm{~F}, 250 \mathrm{~V}$) and the decoupling capacitor C654 ($1 \mu \mathrm{~F}, 250 \mathrm{~V}$) on the tube base panel.

Field Collapse

In the event of field collapse check that there's 25 V at pin 3 of the field output chip IC401. If this voltage is absent the boost diode D401 (1 N 4003 G) is open-circuit. If the
voltage at pin 3 is low, the chip is probably faulty - it may be a $\mu \mathrm{PC} 1378 \mathrm{H}$ or AN 5521 depending on tube type. If necessary check that the field drive output is present at pin 1 of the TDA2579 timebase generator chip IC501. If this output doesn't reach pin 4 of IC401 check whether R401 $(3 \cdot 9 \mathrm{k} \Omega)$ is open-circuit or $\mathrm{C} 409(0 \cdot 01 \mu \mathrm{~F}$ or $0 \cdot 022 \mu \mathrm{~F}$ depending on chip type) is short-circuit. If necessary check IC501 by replacement.

Loss of Sync

For loss of sync check the d.c. conditions at the pins of IC501 and that sync pulses are reaching pin 5. If they are missing check back via pin 7 of connector TX1 on the Fastext panel. Items to check on this panel are the JC501QR sync output transistor Q7706 and the SAA5231 video processor chip IC7705. Check the d.c. conditions at the pins of this chip and if necessary check it by replacement.

No Sound

For no sound check the voltages at the pins of the AN5265 audio output chip IC3A3 on the AV-M panel. There should be 11 V at pin 1 and 24 V at pin 9 . If either supply is missing, check back to source. The 24 V supply is provided by R912/D911/Z903/C915 in the power supply circuit. The 11V supply is derived from this via R304 ($390 \Omega, 1 \mathrm{~W}$) and the 11 V zener diode D3A3. If the supplies are all right, check whether the $4 \cdot 7 \Omega$ resistor R387 in the Zobel network connected to pin 8 (output) of the chip is open-circuit. If necessary check the chip by replacement and the $470 \mu \mathrm{~F}, 25 \mathrm{~V}$ output coupling electrolytic C 3 C 3 .

TV/VCR Equivalents: Granada

Vast quantities of ex-rental sets and VCRs are in use. They can be a bit of a problem when they arrive in the workshop and you don't know the manufacturer/model, maybe just a rental company code number being present. Many of these sets have come from Granada: the following details should help with the identification of makes and models.

Rental Models

A typical ex-Granada rental TV set will have a number such as C20XA1. The first digit (C) is the designation, the second and third digits (20) give the screen size, the fourth digit (X) is the year code, the fifth digit (A) indicates the manufacturer while the sixth digit (1) indicates the set's features. We'll take these in turn.

Table 1: Popular Granada rental VCRs.

Granada code
VHSFG2
VHSFG4
VHSTJ1
VHSTJ2
VHSTJ3
VHSWJ1
VHSWJ3
VHSXJ3
VHSYJ2
VHSFS1
VHSFS2
VHSFH6
VHSVH4
VHSWH1
VHSWH3
VHSXH1
VHSXH3
VHSYH2
VHSAH1
VHSAH3
VHSBH1
VHSCH1
VHSEH2
VHSFJ4
VHSVN1
VHSNV3
VHSWN2
VHSXN2
VHSAN3
VHSBP1
VHSDP1
VHSDP7
VHSFP2
VHSXY2
VHSAY3
VHSBY3
VHSFY2
VHSFY3
VBXAS1
VHSDS2
VHSES2
VHSES5
VHSCC 1
VBXVB1
VBXWB2
VBXXB1
VBXYB3
VHSFB5

Manufacturer	Model
Amstrad	6000
Amstrad	6100
Ferguson	3 V22
Ferguson	3 V16
Ferguson	3 V23
Ferguson	3 V29
Ferguson	3 V30
Ferguson	3 V31
Ferguson	3 V35/6
Fisher	F5000
Fisher	F5100
Hinari	VXL10
Hitachi	VT7000
Hitachi	VT8300
Hitachi	VT8700
Hitachi	VT8000/8300
Hitachi	VT8700
Hitachi	VT9300/9500
Hitachi	VT14NT19
Hitachi	VT17NT19
Hitachi	VT63
Hitachi	VT63
Hitachi	VT420
JVC	HRD750
Panasonic	NV2000
Panasonic	NV7000
Panasonic	NV2010
Panasonic	NV333
Panasonic	NV370
Philips	VR6460/6542
Philips	VR6467
Philips	VR6067
Philips	VR6285
Sharp	VC9500
Sharp	VC386H
Sharp	VC486H
Sharp	VCA140
Sharp	VCR5011
Sanyo	VTC5000
Sanyo	VHR2300
Sanyo	VHR3300
Sanyo	HRD500
Samsung	V1510T
Sony	SLC5
Sony	SLC7
Sony	SLC6
Sony	SLC9
Toshiba	V500B

With designation $\mathrm{C}=$ colour, $\mathrm{M}=$ mono and $\mathrm{P}=$ Prestel. With VCRs VHS is obvious while VBX indicates a Betamax machine.
The year code is as follows:

G up to 1969	R 1977	A 1984
H 1970	S 1978	B 1985
J 1971	T 1979	C 1986
K 1972	V 1980	D 1987
L 1973	W 1981	E 1988
M 1974	X 1982	F 1989
N 1975	Y 1983	G 1990

P 1976
The manufacturer code is as follows:
$A=$ GEC
$B=$ Sony
$P=$ Philips, Pye
D = Decca
R = Rank
$\mathrm{H}=$ Hitachi
$\mathrm{S}=$ Sanyo
$\mathrm{J}=\mathrm{JVC}$
$\mathrm{K}=\mathrm{ITT}$
$\mathrm{M}=$ Miscellancous
$\mathrm{T}=$ Thorn
$\mathrm{N}=$ Panasonic
$V=$ Tandberg
$\mathrm{X}=$ Miscellaneous
$\mathrm{Y}=$ Rediffusion, Sharp
$\mathrm{Z}=$ Salora

Set feature coding depends on year of manufacture, as follows:

Up to 1983	After 1983
$1=$ basic model	$1=$ basic model
$2=$ VHF/UHF or	$2=$ Granadacolour
\quad cable/aerial	basic/remote
$3=$ remote control	$3=$ Finlandia basic/remote
$4=$ acquisition	$4=$ Granadacolour teletext
$5=$ teletext	$5=$ Finlandia teletext
$\mathrm{W}=$ wired	$6=$ Granadacolour
	stereo/text
	$7=$ Finlandia stereo/text
	W $=$ wired

Table 2: Popular Granada rental TV sets.
Code*

RYW
RY1
RY2
RY3
SY1
SY2
SY3
TY1
TY3
TY5
VA1
WY1
WY2
WY3
WY5
XA1
XK1
AS1
AY1
AY2
BS1
BY4
CD4
DS4

* Last three digits

Manufacturer	Model/chassis
Rediffusion	Mk3
Rediffusion	Mk3
Rediffusion	Mk3
Rediffusion	Mk3
Rediffusion	Mk3
Redffusion	Mk3
Rediffusion	Mk3
GEC	C2233H
Rediffusion	Mk4
Rediffusion	Mk4
Rediffusion	Mk4
Rediffusion	Mk4
Hitachi	CPT2026
ITT	211
Sanyo	CPT3131
Sharp	-
Sharp	CPT3131
Sanyo	CPT313
Rediffusion	Mk4A
Tantung	$145 X$
Sanyo	CPT3141

Table 3: Granada retail TV sets.

Maker/ model

Ferguson
37023
37140
37141
37493
37801
38030
38050
20C4
22B5
51A3
51G3
14 C 2
14 J 2

Fidelity 1405 S
 1405R
 GEC
 1658

Grundig
512201
512406
562201

TVA1

Hitachi
2074
2076
2158
2276
2278
2476
2478
2568
2044
2888
2176
1556
2174
1476
1474
ITT
CT3315M
CT3326
CP3120
Mitsubishi CP1424B
CT1501BM
CT2224B
CT2227BM 22C112
CT2101TX
$\left.\begin{array}{lll}\text { Network } & & \begin{array}{l}210 R 6 B \\ 145 E 7 B\end{array} \\ \text { NE14CD } & 14 E 191 & \begin{array}{l}14 E 7 B \\ \text { Panasonic }\end{array} \\ \text { TC430G } & & 258 \mathrm{~T}\end{array}\right)$

Granada code 51C061 51D061 51D062 51D031 78E061 16E061

14C051
16C051
20C051
14C052
16 C 052
51C051
22 C 051
36C051
22D051
51D051
22C053
51E051
59E051
59E052

14C021
20C021
20C022
22C021
22C022
22 C 023
14 C 022
51E021
$14 \mathrm{C041}$
14D041
14E041
14C071
20C071
22C071
66 E 071
14E071
14 E 072
51 E 073
51 E 072

20 C 091	Toshiba	
26C091	140E4B	$14 \mathrm{C031}$
20 E 091	159R4B	36C031
14 E 091	211E4B	51C031
	212T4B	51C032
	222E5B	22 C 031
14C111	222R5B	22 C 032
36 C 111	261 T	26C031
22 C 111	140R4B	14C032
22 C 112	212R4B	51C033
51 D 111	202R5B	20D031
51 D 112	210R6B	51D031
	145E7B	14D032
14E191	14E7B	14D031
	258 T	59E031
14 C 061	Zanussi	
14 C 062	20ZA374	20E221
26C061	24ZM366	59 E 222
22C061	24ZM360	59 E 221
14C063	28ZM360	69 E 221
41 C 061	16ZB32	16E221
20C061	24ZS366	59 E 223

There were one or two exceptions: Model C20RAI has remote control, Model C20RA3 has manual control, Models C26NZI and C26NZ3 both have remote control.

Table 1 lists some popular VCRs and Table 2 some common TV sets.

Retail Models

Granada retail equipment is coded slightly differently. A typical TV set might bear the number 22 C 151 . The first and second digits (22) indicate the screen size, the third digit (C) indicates the year, the fourth and fifth digits (15) indicate the manufacturer while the sixth digit (1) is used by Granada for internal purposes.

The year code is as follows:
C August 1985 to July 1986
D August 1986 to July 1987
E August 1987 to July 1988
F August 1988 to July 1989
G August 1989 to July 1990
The manufacturer code is:

$17=$ Amstrad	$25=$ Hinari	$06=$ Panasonic
$01=$ Ferguson	$12=$ Hitachi	$05=$ Philips
$21=$ Fidelity	$09=$ ITT	$02=$ Sanyo
$10=$ Fisher	$18=$ JVC	$04=$ Sharp
$15=$ GEC	$11=$ Mitsubishi	$07=$ Sony
$20=$ GoldStar	$14=$ NEC	$03=$ Toshiba
$08=$ Grundig	$19=$ Network	$22=$ Zanussi

Table 3 lists TV sets, Table 4 VCRs and Table 5 cameras. Table 6 lists Granada Tashiko branded TV sets and VCRs.

We shall be following up with information on JVC/Ferguson/Thorn equivalents.

Table 4: Granada retail VCRs.
Maker/
model
Amstrad
VCR460Mk2
VCR4700
TVR2
TVR3
Ferguson
3V44
3V52
Fisher
FVHP10
FVHP716
FVHP905
FVHP910
GoldStar
GHV12401
Grundig
VS180
Hitachi
VT410
VT430E
ITT
VR3906
VR3916
VR3995
JVC
HRD230EK
HRD330
HRD210
NEC
N9033K
N9034K

Granada code	Maker/ model	Granada code
	Panasonic	
VVD171	NV430B	VVC061
VVD172	NV730B	VVC062
VVD173	NV870	VVC063
VVD174	NVG7G	VVD061
	NVG18B	VVD062
VVC011	NVG12	VVE061
VPC011	NVG21	VVE062
	Philips	
VVC101	VR6462	VVC051
VVC102	VR6462R	VVC051
VVD101	VR6467	VVD051
VVD102	Sanyo	
	VHR1100E	VVC021
VVE201	VHR3100	VVE021
	VHR3300	VVE022
VVC081	Sharp	
	VC5F3H	VVC043
VVE122	VC585	VVC042
VVE121	VC8581	VVC041
VVE12	VC651	VVC044
	VC681	VVD041
VVC091	VC685	VVD042
VVC092	VC6F3H	VVD043
VVC093	VCT 72 H	VVE041
	VC780HM	VVE042
VVE182	Toshiba	
VVE183	V65B	VVC031
VVE181	V83B	VVD031

VVD141
VVD142

Test Report: Beckman DM27XL DMM

David Botto

The Beckman Industrial DM27XL Circuitmate is a handheld DMM measuring just $168 \times 81 \times 35 \mathrm{~mm}$. It's housed in a tough white plastic case with a tilt stand for casy viewing. Anti-slip pads ensure that it won't slide all over or off - the bench. On the kitchen scales it weighed in at 375 g (130z) including its PP3 battery. Despite its small size

The Beckman DM27XL digital multimeter.
it's solidly built to stand up to regular use on the test bench.
The meter's many features and functions make it especially uscful for trouble shooting in a wide variety of circuits. In addition to the usual a.c. and d.c. voltage, current and resistance ranges it measures frequency from 10 Hz to 20 MHz , capacitance from 1 pF to $20 \mu \mathrm{~F}$, has a built in 20 MHz logic probe and tests diodes, LEDs and transistor junctions, also measuring transistor hFE (d.c. current gain). If you've ever had to puff up several flights of stairs loaded with bulky instruments you'll appreciate the all-in-one, pocket-sized DM27XL.
The display is a lin., 3.5 digit LCD readout. Some DMMs I've seen have readouts that are dark grey rather than black. The DM27XL's large, 17 mm digits are jet black, so you don't have to strain your eyes when taking a reading.

The DM27XL has a full set of function indicators, including over-range, logic and low-battery symbols. It also has a useful auto-off feature which turns the meter off if it's left unattended for 45 minutes. Range selection is manual, by means of a single rotary switch. Will this stand up to repeated workshop use? I think so: it appears to be sturdy and has a positive click.
The lack of auto-ranging might be considered a drawback, but I don't think so. With TV sets and VCRs the majority of d.c. voltage tests are carried out on the 2 V , 20 V and 200 V ranges, which doesn't involve excessive range switching. It might however have been better to have had the ohms ranges adjacent to the voltage ranges since these are the most frequently used ones.

Ranges and Tests

There are five auto-polarity d.c. voltage ranges covering 200 mV to 1 kV . Accuracy is ± 0.5 per cent, with the resolution on the lowest d.c. voltage range being $100 \mu \mathrm{~V}$.

The five a.c. voltage ranges cover 200 mV to 750 V , with an accuracy of ± 1.2 per cent. The input impedance on the a.c. and d.c. voltage ranges is $10 \mathrm{M} \Omega$.

Not all the DMMs I've encountered live up to the claimed d.c. accuracy. The DM27XL does even better. When it was confronted with a precision 5 V d.c. source it gave a spot-on reading of 5.00 V . Further tests using a precision Heathkit experimenter's breadboard and a DMM of known accuracy revealed that the ± 0.5 per accuracy claim is valid.

The five a.c. and d.c. current ranges cover $200 \mu \mathrm{~A}$ to 10 A , the lowest resolution being 10 nA . D.C. current accuracy is ± 1.8 cent except on the 10 A range when it's ± 3 per cent. With the a.c. ranges the accuracy is ± 1.2 per cent on all but the 10 A range where the accuracy is ± 2 per cent.

The seven resistance ranges cover 200$) \Omega$ to $2,000 \mathrm{M} \Omega$, the lowest resolution being $0 \cdot 1 \Omega$. Accuracy is ± 1.2 per cent on the $2000 \Omega-200 \mathrm{k} \Omega$ ranges, ± 3 per cent on the $20 \mathrm{M} \Omega$ range and ± 5 per cent on the $200 \mathrm{M} \Omega$ and $2,000 \mathrm{M} \Omega 2$ ranges. A fixed count of ten must be subtracted from the meter's reading on the $2,0(0) \mathrm{M} \Omega$ range: for example if the display says $210 \mathrm{M} \Omega$ ten must be subtracted to give the correct reading of $200 \mathrm{M} \Omega$.

The open-circuit test voltage on the $2 \mathrm{k} \Omega$ to $20 \mathrm{M} \Omega$ ranges did not exceed a measured 0.28 V d.c. Thus in-circuit resistance measurements are possible without having to remove diodes, transistors and i.c.s. On the 200Ω range the open-circuit test voltage was found to be 2.92 V . This range also operates as a continuity tester, using a beeper whose note changes as resistance varies between ($0-1000$.

Capacitance can be measured between IpF and $20 \mu \mathrm{~F}$ in five ranges. This is a handy feature, especially for smallvalue capacitors. The capacitor under test is plugged into two slotted test sockets on the face of the meter. Accuracy is given as ± 3 per cent: checks with a range of closetolerance capacitors proved that this claim is justified.

As no input protection is provided it's vital that a capacitor being tested is discharged before it's connected to the meter.
Where the DM27XL really scores is with its wide frequency coverage. The five ranges cover from 10 Hz with a sinewave input (20 Hz for TTL signals) to a surprising 20 MHz . There's a trigger sensitivity switch: in the "trigger lo" position the minimum sensitivity is 100 mV while in the "trigger hi" position it's 1.6 V .

I used an r.f./a.f. signal generator and a precision Heath quartz crystal-controlled frequency meter to check the accuracy of the DM27XL's frequency ranges. Table 1 shows some of the readings obtained.

The effective diode function test allows relative measurement of the forward voltage across a diode or bipolar transistor junction. Nothing can beat a component tester for showing up the slightest leak when good/bad

Table 1: Frequency checks

Signal generator output DM27XL reading

22 Hz	22 Hz
35 Hz	35 Hz
102 Hz	100 Hz
400 Hz	401 Hz
600 Hz	601 Hz
2.004 kHz	2.00 kHz
5.000 kHz	5.04 kHz
25.180 kHz	25.0 kHz
0.603 MHz	0.610 MHz
1.000 MHz	1.005 MHz
10.000 MHz	10.00 MHz.

junction testing of course, but one thing a component tester can't do is to measure a transistor's d.c. current gain. The DM27XL can: when a transistor is plugged into the test sockets the hFE value is shown in the display.

Overload Protection

Overload protection is provided for all functions except capacitance measurement. Voltage ranges have protection up to 1.2 kV d.c. 8850 V a.c. except for the lowest, 200 mV range where the protection is 500 V d.c. 350 V a.c. Apart from the 10 A range there's fuse protection to 800 mA on the current ranges. The protection on the resistance and logic ranges is at $500 \mathrm{Va} . \mathrm{c} . / \mathrm{d} . \mathrm{c}$. On the frequency ranges the protection is at 500 V d.c./a.c. r.m.s.

In Use

The DM27XL's 4 mm test sockets are recessed for safety. Its test prods are fitted with finger-protecting guards and are light and easy to use in dense circuitry.

The $200 \Omega 2$ continuity range with its nicely toned beeper proved to be handy for no-look checking through printed circuitry and for finding those hard-to-spot breaks in tracks. It's also excellent for checking for continuity between i.c. sockets and the print.

The logic measurement system is designed for use with TTL circuitry. I found that it worked well with C-MOS circuitry as well however. A logic high shows in the display as an upward-pointing symbol: a logic low shows as a downward pointing symbol accompanied by a soft beep.

The DM27XL's logic probe function does not draw power from the circuit under test, which is a big advantage and a useful feature when servicing VCRs with system control problems. Logic highs and lows with microcomputer/microprocessor chips are easily measured. With a microprocessor clock signal the meter's logic symbols fluctuate and a high-toned beep is emitted. This tells you that the clock oscillator is working. Logic gates are checked in the same way as with a standard logic probe.

The frequency check is invaluable when you have line drive problems. On the 20 kHz range the display should fluctuate between $15 \cdot 62-15 \cdot 63 \mathrm{kHz}$ when a $15,625 \mathrm{~Hz}$ line signal is present - but don't connect the probe to the windings of a line output transformer. A test prod applied to the 4.43361875 MHz crystal in a colour decoder gave a reading of $4 \cdot 33-4 \cdot 34 \mathrm{MHz}$: this could be useful with colour problems. Application of the probes didn't affect the colour with the set used to make the check.

I found that the DM27XL can be used for effective incircuit resistor checks. This is better than some DMMs which don't have quite enough voltage on the ohms ranges for proper diode checks but have too much voltage for reliable in-circuit tests.

I would have preferred to have had a $32 / 3$ rather than a 3.5 display readout, but the extensive ranges greatly compensate for this lack and I'd recommend the DM27XL as a good buy.

Availability

The Beckman Industrial DM27XL comes with test leads, battery and a well-written manual. The price is $£ 79$ plus VAT, including a one year warranty. To me this seems to be pretty good value. The meter is available from Beckman Industrial, Astec Building, High Street, Wollaston, W. Midlands DY8 4PG (telephone 0384442 394).

Fifty Years in Radio and TV

Part 7: Teletext and Chips

Harold Peters

When the Isaac Shoenberg/Alan Blumlein team invented our modern TV system in the early Thirties they built in a video pause of a couple of dozen lines between the field sync pulse train and the start of the next picture. The reason for having this field blanking interval was to enable the spot to return to the start of the next scan, at the top of the screen, at a reasonably leisurely rate. This would avoid the high back-e.m.f.s that might otherwise jump the insulation of the scan coils and pierce little holes in the tube's glass neck.

VITS

Something they couldn't have foreseen was that forty years later groups of bright young men with no respect for history would eye these blank lines and say "what a waste". It happened of course. The first of these lines to be made use of were the penultimate ones before the start of the picture. Increased programme hours, duplication and Eurovision links led to the need for some sort of test signal that was present all the time, so that alignment and equalisation could be carried out during programme hours.

Originally just a pulse and bar were added. They were used for assessment of the quality of the h.f. and l.f. responses and were known as the vertical interval test signal (VITS). With the coming of colour an extended colour burst superimposed on a luminance staircase was added. Next came ICE on the line above the pulse and bar. This is a train of digital pulses that's used for network control and can provide messages such as "engineer on site at Reigate relay" etc.

Teletext

Finally, with a flourish that occupied the whole of one edition of BBC Engineering, came Ceefax, with the IBA's Oracle close on its heels. At first the two systems were incompatible, but once tests had proved that they were a practical proposition a common standard was agreed upon, also a common name - Teletext.

At first we could get only Cecfax on BBC-2 at the Lowestoft factory, as the IBA's tests were confined to the London area. Then the "Save it" campaign hit us, and apart from "Play School" BBC-2 was off the air for much of the working day. We persuaded the BBC to move its tests to BBC-1, and at the same time felt that improved liaison with the local transmitter people would be useful. Through the Service Committee a series of exchange visits were arranged. They helped us all quite a lot, clearing up amongst other things some early problems about eyeheight measurements.
Teletext had us looking very closely at field blanking across the whole range of our sets, especially as some earlier models had very slow flybacks indeed. In fact until Mullard at Southampton came up with its first four-chip teletext decoder that was about all we were able to do.

Remote Control

In comparison with valves and transistors, i.c.s evolved at an alarming rate. It was chips with everything: colour
decoders, timebases, sound and of course cordless remote control. The first cordless remote control systems used ultrasonic techniques and were a bit of a disaster. With hindsight we would have served the public better if we'd waited for the full development of infra-red systems, but the sales people were pressing us with a view to maintaining or increasing our share of the market. Ultrasonic remote control was all right in theory. But in practice when a command was squirted across the room the system behaved like a ship's sonar, bouncing spurious reflections towards the set from the family portrait, the Ming vase and the can of coke on the table. Servicemen spent happy hours moving the receiving transducer in and out of its slot, trombone style, to get the best range.

It wasn't only ourselves who were in trouble. On all manner of sets jangling a bunch of keys would change channels, and I well recall a field service call to the home of an associate director who lived close to Brookman's Park m.f. station. His set had to be lined with baking foil and required extra decoupling to reduce the effects produced by radio programmes. Over lunch I was told about the system they had for raising the garage door on a command from within the car. The device had to be disabled because whenever the adjacent transmitters radiated the Greenwich time signal the door would go up as well. Children would gather outside the house on the hour to watch the event!

Tuned Synchronous Demodulators

Chips eventually took over the i.f. section and in so doing introduced us to the tuned synchronous demodulator. We already knew about synchronous demodulators from their use in colour decoders, but these i.f. ones were not, and are still not, true synchronous demodulators. They are more correctly known as "exalted carrier demodulators". The switching waveforms that open and close the long-tailed pair detectors are derived from the incoming signal by limiting to remove the vision modulation then amplifying and phase-shifting the residual carrier. How to get the phase shift exactly right has never been satisfactorily documented, mainly because the correct method of tuning - for minimum video output amplitude holds good only under laboratory conditions. Put the i.f. circuit in a set and much better results are obtained by slight capacitive detuning.

Dallas

Teletext i.f.s also need more careful detector alignment than we'd been used to, but these were things of which dealers and viewers were blissfully unaware. They were enjoying Faulty Towers, Steptoe and, with the extension of broadcasting hours, many imported US series. One, Dallas, arrived in 1978 and lapsed into obscurity once we'd established that it was not connected with the death of President Kennedy. There it would have remained but for Terry Wogan who, in his early morning stint on Radio-2, observed that Bobby Ewing's new house grew with every instalment while Petrocelli's construction in a rival series never budged. "Bobby is pinching Petrocelli's bricks"
observed Terry, and soon everyone was following the series. Dallas owed much to Wogan.

Pye's Finale

Back at the factory we noted that the ten years of Pye's guaranteed independence from its owners, Philips, had expired. Our design department was the first to go, since the factory's next large-screen set was to be the Croydondesigned G11 - a very successful chassis. Sales of CTV sets had by now reached saturation level, so production had to be rationalised. Factory employment was reduced in two bouts of voluntary redundancies. Our three outside feeder factories were also closed. We were still performing efficiently however, otherwise we would not have been given the KT3 CTV chassis to produce, as well as the 12 in . monochrome TX range. These were both Dutch designs: the G11 was to be the last truly UK chassis to be turned out by us and our Croydon "rivals".
Have you ever noticed that, although management expects its technical employees to be of the highest possible calibre, when it comes to staff matters they are credited with having mediocre mentality? But you don't stop putting two and two together when you leave the workbench. You have to be as caring for yourself as you are for the products you nurture. So when some of us noted the presence of Japanese visitors touring the factory during the summer shut down, and when shipping agents started to survey our quayside, we knew that something was afoot. Then it was noticed that the Xerox had been used overnight to run off as many copies as there were staff. So when the management handed us all a note telling us that the factory was to close they were taken aback to find that some of us were not in the least bit surprised. But we were surprised to learn later that the factory was to be handed over, as a complete working unit, to an apparent rival-Sanyo.
That wasn't what was uppermost in our minds however. What would happen to me, we asked ourselves? I was no exception. At 57, the most likely prospect was that I would spend the time until pension age staring vacantly out to sea. I did myself a CV, and because I had a works typewriter and the CV looked convincing I had to do several more for the lads around me. They all bore fruit except mine, so I resigned myself to providing assistance in leaving the place clean and tidy.

Final Move

There were some items that we had on loan from our friendly dealer at Blofield, the one mentioned last month. I returned these personally so as to be able to thank him for his past co-operation. To my great surprise, over coffee, Roy Snelling offered me a servicing job - provided I could start fairly soon. Knowing how much finishing off there still was to do at the Lowestoft site, I approached my departmental head in some trepidation. "That's a relief" he said. "I've just been told to make two more people redundant next month, so you can be one of them."
So began the final seventh of my life with pliers and screwdriver in the radio and TV field, back in servicing again. They were to become seven and a half of the busiest, and happiest, years of my working life. They deserve an article of their own. As I left the factory, the lads were beavering away trying to find out why some of our sets buzzed when they were used with the new VHS video recorders. I could have told them, but they wouldn't have taken the word of an outsider.

next month in

TELEOTSUOL

FREE CATALOGUE

Greenwell's latest 16-page catalogue comes free with the August issue of Television.

- THE FERGUSON FV31R

Servicing notes on this popular Thomson designed VCR, with full details of the rather troublesome power supply.

- SURROUND SOUND FOR TV

Ian Martin on the Pioneer VSA730 Dolby ProLogic AV amplifier. The Dolby Stereo and ProLogic systems were originally devised for use by the motion-picture industry to give multi-channel sound, in its simplest form left and right audio plus a centre channel to fix the sound within the picture. The good news for viewers is that Dolby Stereo and ProLogic coding can be carried on a simple two-track system such as a stereo videotape or Laserdisc. In addition, the signals survive broadcasting and are thus available on many terrestrial and satellite TV programmes. The Pioneer amplifier enables these signals to be sorted out, with three front 60 W r.m.s. and two rear 15 W r.m.s. outputs, giving you surround sound in the home. lan Martin finds it well worth having to hear movies in the original cinema form and to enhance other musical sources.

SALORA K AND L CHASSIS

A run-down on faults experienced with the Salora K and large- and small-screen versions of the L chassis.

SERVICE BRIEFS
This time some official notes and guidance on Samsung models.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

TO
(Name of Newsagent)
Please reserve/deliver the August issue of TELEVISION (£1.80), on sale July 17th, and continue every month until further notice.

NAME
ADDRESS ...

TV Fault Finding

Reports from Philip Blundell, AMIEIE, Stephen Leatherbarrow, Mick Dutton, Nick Beer, Ed Rowland and Steve Cannon

Grundig P37-440

This model can change channel or turn the volume up by itself due to spurious signals being produced by the TFMS3300 infra-red receiver chip. The cure is to fit a replacement - Grundig may send you a TFMS43(0). Later production have the TFMS 4300 with a metal screen fitted over it.
P.B.

Philips GR1-AX Chassis

This set was dead with no 95 V output from the power supply. As no shorts could be found across the power supply outputs the set was fired up gradually via the variac. Everything was fine until the 95 V line reached 50 V , then the over-voltage thyristor fired. One of the sensing zener diodes, D6638 (BZX79-B36), was short-circuit.
P.B.

Grundig CUC2401 Chassis

This set was dead with no output at all from the power supply. The dealer who brought it in had changed the TDA3640 chopper control chip IC655 and the associated electrolytics without success. A scope check at pin 18 of IC655 showed that the voltage here was varying between 7 V and 10 V every second or so. This indicated that the power supply was trying to start, but as the running supply at pin 2 didn't rise the chip would shut down again. The drive to the chopper transistor pulsed in sympathy with the start-up supply. Although the scope couldn't detect anything at the over-current sensing pin 7 , everything pointed to the chip sensing a fault. Resistance checks at the outputs of the chopper transformer showed that nothing was amiss here and I was beginning to suspect the transformer itself. On a hunch I checked D666, which is one of the diodes in the chopper transistor's snubber network. It was short-circuit.
P.B.

Philips G90 Chassis

The complaint was field collapse - the Wickman fuse in the supply to the field output transistors had gone open-circuit. When a replacement was fitted the set worked but the 22Ω resistors R3503 and R3507 in series with the two transistors were overheating. Resistance checks on the transistors showed that they were o.k. but R3501 (390)) in the upper transistor's base drive network was open-circuit. Replacing this restored normal operation.
P.B.

Philips CP90 Chassis

This set had field collapse with a small amount of scan below it. A quick check showed that there was no 95 V supply to the field output stage. The cause was a crack in the print by R3275.
P.B.

Ferguson TX90 Chassis with RC

This 14 in . colour portable was doing some bizarre things. Although the h.t. supply was correct there was no 12 V supply. The 18 V feed to the regulator leaves the main panel to go to the remote control board, which lives under the tube. It's then supposed to return via TR $9(2 / 3 / 4$. This wasn't happening as TR904 was open-circuit. TR904 acts
as a switch, controlled by the pulse-on (standby) output from pin 3 of IC901. What was curious was the way the set behaved. If it was switched on in the normal way you could change channels. If the set was switched on using the mains switch at the socket the channels would sequence through in the normal numerical order. Puzzling.
S.L.

GEC C1407/8H

I have owned one of these nice sets (line output transformer failure accepted) for some time now. One annoying feature relates to the sound muting circuit which gets very confused during search with a VCR. I found that replacing R 702 , the $68 \mathrm{k} \Omega$ resistor connected to pin 28 of the TDA4503 chip IC 201 , with a $100 \mathrm{k} \Omega$ potentiometer and carefully adjusting this improved matters no end - no more noisy gurgling and spluttering.

While on the subject of these sets, a common affliction is failure of the sandcastle pulse shaping circuit. The TDA3562A colour decoder chip is very sensitive to distortion in this waveform. Any of the following can be responsible: C724 (10nF), Q704, Q705, D705 and D603. There are also a couple of likely looking 13 V zener diodes (ZD702 and ZD504) in the circuit but we've never had either of them fail.
S.L.

Matsui 1420

A case of failure to start when cold was traced to C508 in the power supply. It's a $4.7 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic.
S.L.

Philips 2A Chassis

We've had a number of these sets that suffer from severe patterning because of a missing capacitor. It's C2565 $(39() \mathrm{pF})$, which should be mounted between pins 1 and 5 of the field output chip IC7570. In each case it has been clear that the chip has been changed recently. This device (TDA3562/4) overheats and can quickly fail if C2565 is missing. Presumably engineers are failing to refit this capacitor following chip replacement. A possible reason is that it's not shown on the provisional circuit though it does appear in later ones.
S.L.

Grundig CUC2401 Chassis

A case of very intermittent failure of the power supply was caused by a defective set h.t. control. It's R637, $1 \mathrm{k} \Omega$. In a further set with the same fault we couldn't find anything wrong with R637 but replacing it provided a complete cure.
S.L.

Saisho FST212

This set came in with the usual fault - dead because the STR58041 chopper chip IC501 was short-circuit and the $5 \cdot 6 \Omega$, 7W surge limiter resistor R502 was open-circuit. Replacing these items produced peculiar results however. A normal raster appeared (no signal) but if the channel was changed or the aerial was connected the raster blanked out briefly, leaving a reduced-size picture. Both the height and the width were affected as the h.t. dropped to around

80 V. R518 ($1 \Omega, 1 \mathrm{~W}$) behind the heatsink had gone high in value and R512 (0.47, , 1W) was faulty. The two nearby 2SD863 transistors Q501/2 and R505 (47 , 1/4W) should always be checked when you encounter a faulty STR58041 chip in these sets. BC337 transistors make good replacements despite the apparent size difference. S.L.

Philips KT3 Chassis with RC

There were no remote control functions. There was no response from the front panel buttons either, though the LED winked in acknowledgement. The cause of the trouble was the SAF1032P chip on the remote control panel - it produced no outputs when requests were made to it.
S.L.

Panasonic TX21T1 (Alpha 2 Chassis)

We've had a couple of these sets with a very poor picture, the contrast being very low irrespective of the customer control setting. The reason for this is that the beam current limiter (or ABL as Panasonic prefer to call it) is working overtime, limiting the contrast control voltage applied to the colour decoder chip. The culprit is R562 which goes open-circuit. It's a very small $0.25 \mathrm{~W}, 130 \mathrm{k} \Omega$ resistor: the replacement supplied is a fair amount larger than the original.
N.B.

Panasonic TUS100

This unit had no polarisation control: there was virtually no current through the coil from the receiver. So the unit was in effect stuck on one polarisation. Polarisation drive comes from an npn/pnp pair of transistors which are in turn driven by an operational amplifier chip. The pnp transistor Q9810 was short-circuit. To set up the circuit connect a $9(0 \Omega$ resistor across the polariser terminals, then adjust R9828 so that when the current is reversed (polarity changed) the reading is the same. Finally set R9829 for a current reading of 34.9 mA .
N.B.

Sony KV1420

This brand new portable displayed a bright blue raster with a barely visible picture when taken from its box and put on display. The cause was very slight misadjustment of the G2 (first anode supply) control on the tube base. The focus setting was also a bit off. After resetting these adjustments we ran the set for a time in case it had an intermittent tube but this proved to be o.k.
N.B.

Decca/Tatung 140 Chassis

The aerial rigger brought this one in because there was no tuning. Checks showed that there was no tuning voltage at pin 4 of the tuner. This set has voltage-synthesised tuning. An i.c. produces a variable mark-space ratio squarewave which is fed to a transistor to produce the appropriate proportion of the regulated 33 V supply. There was 33 V at the collector of this transistor but nothing at its base and emitter because the bias resistor RR70 ($33 \mathrm{k} \Omega$) was opencircuit.
M.D.

Ferguson TX9 Chassis

The customer complained that the picture would intermittently go, but during several field calls and a workshop soak test the problem had never been seen. This
time the message was that the picture had permanently gone. On the bench we found that it was possible to change channels and that the sound was o.k. But there was no 115 V supply because L104, which is in series with the rectifier, was dry-jointed.
M.D.

ITT CVC45 Chassis

The symptoms were sound but no picture. As the e.h.t. was present we advanced the setting of the first anode control, revealing a blank, noise-free raster. Investigation showed that R12, which is in the line pulse feed to the decoder panel, had risen in value from 560Ω to $39 \mathrm{k} \Omega$. Replacing this cured the fault and the set was returned to the customer. Unfortunately this wasn't the end of the story. A few days later the same fault was reported, but this time the cause was an interelectrode short in the tube. This short removed the first anode voltage and resulted in a rather tricky situation since it was hardly worth fitting a new tube.
E.R.

Ferguson ICC5 Chassis

The problem with this set was intermittent loss of colour. It got worse the longer the set was left on. After a couple of hours the fault was almost permanent so, armed with the trusty freezer, we delved into the colour decoder subpanel. Unfortunately no amount of freezing revealed anything, so out came the meter and scope. As the supply and the chrominance input to IV01 were o.k., a check was made on pins 12 and 13 of this chip - this is the reference oscillator section. There was no problem here. We next checked for line pulses at pin 15. They were missing. Tracing the circuit then brought us to DV21, which separates the line pulse from the sandcastle waveform. There was a perfect waveform at its anode but nothing at its cathode. A replacement 1 N4148 diode provided a complete cure.
S.C.

Hitachi G7P Chassis

This set went dead intermittently and occasionally blew its chopper transistor. After replacing the 2SC3679 a few times we found that the cause of the fault was R932, which is connected to pin 4 of IC901 (TDA4601). It had increased in value to about $220 \mathrm{k} \Omega$. Many sets use this type of power supply and it seems to be quite common for these high-value resistors to cause problems.
S.C.

Hitachi G6P Chassis

The fault here was that the set started up but a couple of seconds later the power supply shut down. We found that the crowbar thyristor Q902 was being fired. After disconnecting its gate we wound the mains supply up with a variac. As the set operated perfectly it seemed that the fault was in the protection circuit itself. After checking various components we found that the 24 V zener diode ZD752 in the e.h.t. sensing circuit was leaky, a replacement curing the problem.
S.C.

Panasonic TX2234 (U4W Chassis)

We've had a number of these sets in with no sound or picture and 00 shown in the LED display. What happens is that the line oscillator shuts down because the h.t. is too high. The cause, in all cases, has been C808 ($47 \mu \mathrm{~F}, 25 \mathrm{~V}$) in the power supply.
S.C.

Gremlins and Gurus

Steve Cannon

Do you believe in fate? Now I don't mean fate like the guy who was late and missed catching his reserved seat on the Titanic. No, I’m talking about real fate. Like picking up a faulty item that's in for repair and thinking it will be a noddy fault when in most cases it turns out to be a stinker that will require a mind-numbing amount of time spent head scratching and uttering expletives before the cure is found.

It was while I was working on a dead Salora TV set of this type - one fitted with the J chassis (Ipsalo-2 circuit) that MC Mikey Guru walked in. Now Mike is a very sound guy, a shop manager at one of our branches, but he's also an affiliated member of FESTER, the Frustrated Engineers Society of Tinkery, Empiricism and Reputation. Apparently he was at one time a proper engineer, but he had a nasty experience with a cat, a budgie and the top cap of a PL509. I don't think that any explanation is called for here, but needless to say Mike came off the worst. Unfortunately his accident severely impaired many of his faculties, so our boss had to make a big decision concerning his future. Now what you do with someone who's left as a gibbering wreck? There's only one solution, make him a shop manager. Thankfully, Mike has since made a complete recovery.

So there I was with this extremely dead Salora set, and it soon became apparent that it was going to be a lot more involved than I first thought it would be. The 28 V line was o.k. at pin 1 of the hybrid chopper control chip, and the Vstart line from the hybrid chip to the line oscillator chip was also o.k. A quick scope check at pin 4 of the chip showed the presence of an extremely welcome line pulse which was in all respects correct. Could the hybrid chip be faulty? With the line pulse going into it and from checks on the various relevant voltages this was the only conclusion I could come to. So out it came, but hefore I could do anything else Mike came over.

Now since his accident he's acquired what can only be described as strange powers. He put the suspect part on the bench and placed his hand over it. "Nah, put it back in" he said, in a confident sort of way.
"What do you mean?" I asked.
"There's nothing wrong with it - it's o.k." he replied.
Now I'm no mug, so I looked at him rather sceptically. "Are you sure?" I asked.
"Well order one if you think differently and we'll see."
I looked at him, looked at the chip and then looked blank. I disagreed with him.
"Well order one then" he said and went on his way.
It took a couple of days for the part to come, but it was fitted in seconds after being unpacked. The set was switched on and, of course, it was as dead as ever. At this point I could sense Mike's laughter, as if he was behind me, but unfortunately he calls only on Thursdays and so wasn't going to be able to help out further for the present.

A new line of thinking was required. Maybe there was a heavy load on one of the secondary lines from the Ipsalo transformer? A scope check at the collector of TB701, the lower chopper transistor, seemed to confirm this idea. I was comparing the waveform trace with the guide waveforms in the trouble-shooting section of the service
manual. After following the fault-finding tree, the conclusion was to "suspect an effective short-circuit in the line output stage". So I'm getting somewhere at last I thought.

After checking transistors, bridging capacitors, measuring resistors and disconnecting various parts of the set's anatomy my head was throbbing again. I was sure that this was where the fault would be. Oh to be like Nick Beer: I'd been through his article on the J chassis over and over again to sce whether l'd missed anything, but it seemed that I was on my own. Was I barking up the wrong tree? Slowly but surely I was coming to this conclusion, and with not much left to check in the line timebase my thoughts went back to the power supply. Maybe the primary side of the circuit wasn't delivering the goods for some reason. I was getting pretty desperate at this stage I can tell you, and I still had ideas about shorts in the line output stage nagging away in the back of my mind.

But something had to be done. I decided to find the model number of an Hitachi set that uses the chassis and give them a ring on the technical line.
"Have you replaced the $4.7 \mu \mathrm{~F}$ chopper coupling electrolytics in the power supply?" asked Mr. Hitachi. I had.
"What about the chopper transistors" We"ve had a few problems with those".

Now I hadn't checked or replaced them.
"Try replacements. BUW41 or MJE13005 will do" the voice said. "If that doesn't cure it, replace the hybrid chip."

I would rather that Mr. Hitachi had come up with a miraculous cure that was one hundred per cent certain, but in all fairness the technical lines are generally very helpful. In this case however I seemed to be covering old ground.

Inspiration

I decided to give the transistors a try, just in case. The original ones were taken out. They compared perfectly with new ones, but what the heck. I was just about to insert and solder the new ones when suddenly, from about an inch gap in the blind, a flash of brilliant sunlight caught me straight in my left eye. I felt as if this was a message from some higher form of intelligence and suddenly felt the presence of Guru Mike in the room with me. I looked around but couldn't see him. Nevertheless my hands had the urge to check other components in the power supply. As if guided by some invisible force, my meter probes instinctively led me to DB712, which is connected between the base and emitter of the lower chopper transistor TB701. I measured it one way, then the other way round. Open-circuit both ways. I checked it again and then finally unsoldered it and rechecked it. No doubt about it, opencircuit it was. A new 1 N 4148 was fitted, along with the new chopper transistors. I made sure that the rest of the set was operational, then switched on.

There are a few things in life that give immense pleasure and a feeling of well-being. One of these is the sound of e.h.t. rustling up in a set where previously there wasn't even the slightest crackle. And this was it!

I put the back on and quickly phoned MC Mikey to tell him the good news.
"Is it fixed then?" he asked.
"Yes. It took a long time, but we got to it in the end. Have you any more divine inspiration to come my way, Guru?"
"Guru? What's that?"
Now that's what I call modesty.

What a Life: the Sets and the Customers

Greeneyes greeted me on my return from a house call, something I don't often do nowadays.
"There's a Sharp video on your bench" she said, "never been right since you mended it eight months ago. Keeps flying from play into fast forward."
"Wish they'd taken it to Snoddy"s" I said.
There was a cassette inside the machine. Its case was flexible to the touch. "High flyer, first quality, made in Hong Kong" screamed its shiny red label. When I'd got it out I sealed its mouth with a label on which I wrote "do not use." The machine was full of oxide dust. I cleaned it up, especially the heads, then tried it with a different tape. It behaved itself right through. Too clever for their own good some of these machines.

Mr Pearshape

Meanwhile a pear-shaped man had driven up in a Jaguar XJ10, smoking a huge cigar. Pearshape motioned me to the boot and flicked a podgy finger at a Pye KT30 colour set.
"Pink picture. Snoddy's say it's the tube. I think it's the valve" he said with authority.

I took it in and tried it. "It's the tube" I said, masterfully.
"If you fit a tube, will the condenser fail?" Pearshape asked.
"The tripler might" I said, "nothing more."
"No more than a hundred altogether" he commanded as he plopped back into his car.

I fitted a regunned tube and switched on. There was a click and the set started to pulse. I disconnected the tripler and up came the sound. A new tripler produced a good picture. I must be getting clairvoyant.

The New Meter

My Avo 8 has seen too many summers. Finding that it no longer worked on the 250 V a.c. range proved to be an invigorating experience for me the other day - I should be free of rheumatism for keeps. The pointer has become sticky too. So I decided to buy a new meter. Just which one to choose was far from easy after a lifetime with the Avo. Then I recalled that Nick Beer had reviewed and spoken well of the Cirkit TM175 in these pages not long ago. Knowing Nick, as I do, this seemed a good recommendation. So I ordered one from Cirkit Distribution. When it came, next day, it looked so pretty and worked so well that I turfed the old Avo out into the shed next door.

But when I came to test a line output transistor I couldn't see how. I swear that the Avo smiled at me as I brought it back in from the cold. Nick subsequently talked me out of my trouble and wised me up on some of the other newfangled facilities the TM175 provides. I feel more confident now. I've not yet put the Avo back out in the cold though. Truth is, I haven't got the nerve.

A Battered Black Van

A battered black van I recognised drew in. Out jumped John Berryman, rosy-faced and rustic as ever. You might think he's a farmer, fruit grower, market gardner or
something like that. You'd be wrong. He's an undertaker from a distant village.
"How are you Don!" he cried as he clambered into the back of his van. "Kcepin well? Ain't going to get you yet, am I? How's the missus?"
"We're both fine John" I said "you'll have to wait. What have you got in there?"
"Take your pick" said John. I got an old Philips portable telly on 'is last legs or a nice old fella gone 'ome with an 'eart attack."
"I'll settle for the set" I said, "at least I've got a hope with that."

I put John's 14CF1014 (CF1 chassis) on the bench and switched on. It produced a cramped cry then fell silent. John turned his hat in his hands appropriately.
"Death rattle" I said. Then I recalled that I'd had the same symptoms before. I unsoldered the BUT11AF transistor near the line output transformer and slipped another one in. This restored the set to life and John broke into a smile.
"That's how to do it" I said, screwing the back on. "Now lets see you get to work on that fella. It's results that count you know."

The Ferguson TX100

Mr. Parker staggered in with a Ferguson 22D1 - a TX 100 chassis with a 110° tube. He carried it in with the screen farthest from his chest, as they do, and stood mopping his brow and blowing before he started.
"It 'appens after an hour" he said.
I eyed him closely and waited. But that was all.
"I must ask you what it is that happens?" I said.
"The picture turns into a bright line."
"From top to bottom or side to side?"
"Into the middle."
I straightened up and ran my finger across the centre of the screen, from left to right.
"Like that?" I said. He shook his head.
I then ran my finger from the top centre of the scren to the bottom and, nodding in anticipation, said "ah, like this then!"

He looked at me blankly. "It's more sorta in the middle" he said. I waved him out and put the set on soak test, asking myself why I wasn't a lighthouse keeper.

Three hours later the picture was still all right, so I went to get a blanket. When the set had been under the blanket for an hour or so the field rolled and collapsed. By the time I'd got the back off the set it was working normally again, so for want of anything better to do I changed the TDA3652 field output chip. After another hour under the blanket it did the same thing again.

Two Days Later

A couple of days later I'd changed everything likely to be the cause of the trouble twice or more and had got nowhere. Eventually I had a brainwave and decided to use my new Cirkit mett to monitor the h.t. voltage. I connected the meter between pin 5 of the line output transformer and chassis, then returned the set to its blanket, with the meter in my line of sight. The h.t. was
correct.
After the usual delay the field rolled and collapsed and the meter's digital dial raced upwards. With a cry of excitement I yanked off the back, dragged out the chassis and stared at the wicked power supply section. Out came the TDA4600-2 chopper control chip while I checked the associated components. R114 (0.39S) in the drive to the base of the chopper transistor was about twice its correct value. We fitted a replacement, put everything back and
set up the h.t. precisely. I then gave the set a good long soak test under the blanket. It behaved perfectly, so I got Greeneyes to phone Mr. Parker.
"At last!" he said. "Took him long enough. It was only a slight fault. Can't understand what took him so long. What's he charging?"
"Twenty five pounds fifty."
"Cor! Should have done it myself. Had one of them meter things once. Wish I'd kept it."

Satellite TV Aerial Systems

Part 4: Reception Assessment

This time we're going to consider the more fundamental aspects of satellite TV reception, matters that are increasingly important as the skies become more crowded. Although it's unpopular, the "link budget" calculation is nevertheless a useful tool in the installer's armoury. This is particularly so if you prefer to put together your own systems from items obtained from different sources. With the increasing use of small dishes another point to watch is the possibility of interference from adjacent satellites. Calculation of the link budget is done using standard, "off the shelf" equations. These are not particularly complicated to use - it's their derivations that can present difficulties.

The Link Budget Calculation

The string of calculations that form the link budget calculation help in predicting the suitability of a particular dish/LNB combination for reception from a given satellite transponder. An installation in the UK should meet two criteria, which we'll explain in more detail below. (1) The calculated "clear sky" carrier-to-noise (C/N) ratio should exceed the satellite receiver's f.m. demodulator threshold by a margin of at least $3 \cdot 2 \mathrm{~dB}$. This margin is to allow for precipitation effects (rain etc.) and other losses. (2) The final C / N ratio (clear sky C / N minus a loss margin) should be sufficient to provide a post-demodulation signal-tonoise ratio of at least 43 dB . This figure ensures grade 4 on the CCIR scale of picture impairment for 99.5 per cent of the time during an "average year".

C/N and S/N Ratios

C / N ratio applies to the signal prior to demodulation in the receiver while signal-to-noise (S / N) ratio is the relevant factor after demodulation. The final S / N ratio obtained is thus dependent on the C / N ratio and the demodulation characteristics. With a domestic satellite TV system the pictures obtained should be of grade 4 or better on the CCIR grade of impairment scale (see Table 1).

Table 1: CCIR scale of impairment.

Quality	Grade	Impairment	Final S / N
Excellent	5	Imperceptible	$>50 \mathrm{~dB}$
Good	4	Perceptible but not annoying	$>42 \mathrm{~dB}$
Fair	3	Slightly annoying	$>36 \mathrm{~dB}$
Poor	2	Annoying	-
Bad	1	Very annoying	-

Derek J. Stephenson, B.A., I.Eng.

The demodulator $\mathrm{f} . \mathrm{m}$. threshold figure is typically about 7 dB , though advances in what are called thresholdextension techniques have reduced this figure slightly. The threshold is the point where the linear relationship between the input C / N ratio and the output S / N ratio from the demodulator begins to break down. When a system is operating with C / N values near the $\mathrm{f} . \mathrm{m}$. threshold the familiar sparklies and darklies (comet or tear-drop shaped interference spots) will be seen. It follows that for good reception the aerial system has to provide a signal whose C / N value exceeds the threshold figure. Further, the S / N ratio must be at least 43 dB . Various factors, some difficult to predict, tend however to reduce the C / N ratio (and consequently the S / N ratio) from "clear sky" calculated values. When grouped together these losses can be conveniently referred to as the " C / N loss margin", to which we can assign a value.

Link Margins

The clear-sky C / N ratio doesn't take into account precipitation. Rain or, to a lesser extent, snow in the reception area significantly reduces the performance of a system as the microwave signals are attenuated and scattered on their way to the receiving dish. In addition rain has an inherent noise temperature similar to that of earth ($290^{\circ} \mathrm{K}$ average), so noise is increased. Precipitation loss, corresponding with 99.5 per cent of the time in an average year, is based on the mean rainfall over a particular continent or country.

For the UK and Europe, typical contributions to the overall C / N loss margin are as follows: (1) Atmospheric absorption loss, $0 \cdot 3 \mathrm{~dB}$. (2) Noise temperature increase due to precipitation is equivalent to a decrease of 1.2 dB in the C / N ratio. (3) Atmospheric attenuation (99.5 per cent of an average year) is 1 dB . (4) An aerial de-pointing loss of 0.3 dB is assumed. (5) Waveguide losses are taken as a further 0.3 dB .

Thus the overall losses amount to a $3 \cdot 2 \mathrm{~dB}$ margin that must be allowed for in link budget calculations. Since this margin is based on mean rainfall, it is to be expected that heavy bursts of rain will from time to time result in brief interruptions to reception. Systems that operate close to the satellite receiver demodulator threshold are likely to be plagued by sparklies and darklies when any precipitation is present.

Aerial System Specification

We know the dish size required for reception from the Astra cluster, but what if reception is required from other

Table 2: Dish diameter guide.

EIRP	Dish diameter in metres			
(dBW)	$C / N 8 d B$	$C / N 11 d B$	C / N 14dB	C / N 17dB
35	3.45	4.87	6.88	9.72
36	3.07	4.34	6.13	8.66
37	2.74	3.87	5.47	7.72
38	2.44	3.45	4.87	6.88
39	2.18	3.07	4.34	6.13
40	1.94	2.74	3.87	5.47
41	1.73	2.44	3.45	4.87
42	1.54	2.18	3.07	4.34
43	1.37	1.94	2.74	3.87
44	1.22	1.73	2.44	3.45
45	1.09	1.54	2.18	3.07
46	0.97	1.37	1.94	2.74
47	0.87	1.22	1.73	2.44
48	0.77	1.09	1.54	2.18
49	0.69	0.97	1.37	1.94
50	0.61	0.87	1.22	1.73
51	0.55	0.77	1.09	1.54
52	0.49	0.69	0.97	1.37
53	0.43	0.61	0.87	1.22
54	0.39	0.55	0.77	1.09
55	0.34	0.49	0.69	0.97
56	0.31	0.43	0.61	0.87
57	0.27	0.39	0.55	0.77
58	0.24	0.34	0.49	0.69
59	0.22	0.31	0.43	0.61
60	0.19	0.27	0.39	0.55
61	0.17	0.24	0.34	0.49

Based on the following assumptions: free space loss 206dB; aerial efficiency 60 per cent; total noise temperature $240^{\circ} \mathrm{K}$; frequency 11 GHz ; bandwidth 36 MHz .

Ku-band satellites? How is a reasonable dish diameter and LNB combination to be specified without resorting to guesswork? The answer is to calculate what we can and to make some general assumptions, erring on the side of safety when it comes to those awkward, variable characteristics. Start by making an educated guess as to a reasonable dish diameter and LNB noise figure, then carry out the link budget calculation outlined below. Table 2 can be used as a reasonable guide to dish diameter for a specific satellite e.i.r.p., but note the assumptions listed beneath the table. The general equation for the clear-sky C / N ratio is:

$$
C / N=P+g t-b-n b-a
$$

where P is the effective isotropic radiated power in dBW , gt is the figure of merit in $\mathrm{dB}{ }^{\circ} \mathrm{K}, b$ is Boltzmann's constant $\left(-228 \cdot 6 \mathrm{dBW} / \mathrm{Hz}^{\circ} \mathrm{K}\right), \mathrm{nb}$ is the noise bandwidth (dBHz) and a is the free-space loss in dB . The satellite's e.i.r.p. can be obtained from the relevant footprint map provided by the operator.

The final system C / N ratio is simply the clear-sky C / N minus the C / N loss margin (dB).

Figure of Merit

The figure of merit in $\mathrm{dB} /{ }^{\circ} \mathrm{K}$ is given by $10 \log \left(10^{\mathrm{G} / 10} / \mathrm{T}\right)$, where G is the aerial gain (see page 424 , April, under the heading "aerial efficiency") and T is the total noise temperature in ${ }^{\circ} \mathrm{K}$, i.e. the aerial plus the LNB noise. The equation for calculating the LNB noise temperature was given on page 575 last month. As an alternative to calculation, Table 3 provides conversions from noise figure
to noise temperature. A figure for aerial noise is not possible to calculate fully. Values are sometimes quoted by aerial manufacturers for a given elevation angle (usually 30°). In the absence of such information a worst case figure for northern European latitudes can be taken as around $120^{\circ} \mathrm{K}$ (more on this below). Alternatively a worst case total noise figure of $240^{\circ} \mathrm{K}$ is often used. This is easily realised with a 1.5 dB or less LNB and even a small dish, operating at UK elevation angles.

Aerial Noise

Aerial noise (in ${ }^{\circ} \mathrm{K}$) is not always quoted by acrial manufacturers since it's difficult to estimate an accurate figure. Many factors affect aerial noise, some of which are as follows: (1) The smaller the aerial the greater the sky noise, because the wide beamwidth means that a larger portion of the sky is seen. (2) Noise temperature also depends on the amount of water vapour, atmospheric pollution etc. present. (3) Noise temperature also varies

Table 3: Noise figure/temperature conversion.
Noise figure Noise temp. Noise figure Noise temp

$(d B)$	$\left({ }^{\circ} K\right)$	$(d B)$	$\left({ }^{\circ} K\right)$
0.05	3.36	1.55	124.38
0.10	6.75	1.60	129.18
0.15	10.19	1.65	134.03
0.20	13.67	1.70	138.94
0.25	17.18	1.75	143.91
0.30	20.74	1.80	148.93
0.35	24.34	1.85	154.02
0.40	27.98	1.90	159.16
0.45	31.66	1.95	164.36
0.50	35.39	2.00	169.62
0.55	39.15	2.05	174.94
0.60	42.96	2.10	180.32
0.65	46.82	2.15	185.77
0.70	50.72	2.20	191.28
0.75	54.67	2.25	196.85
0.80	58.66	2.30	202.49
0.85	62.69	2.35	208.19
0.90	66.78	2.40	213.96
0.95	70.91	2.45	219.80
1.00	75.09	2.50	225.70
1.05	79.32	2.55	231.67
1.10	83.59	2.60	237.71
1.15	87.92	2.65	243.82
1.20	92.29	2.70	250.01
1.25	96.72	2.75	256.26
1.30	101.20	2.80	262.58
1.35	105.73	2.85	268.98
1.40	110.31	2.90	275.45
1.45	114.95	2.95	282.00
1.50	119.64	3.00	288.63

Calculated at $290^{\circ} \mathrm{K}$ ambient temperature.

Table 4: Estimated aerial noise.

Aerial size (m)	15°	20°	25°	$>30^{\circ}$
3.7	$35^{\circ} \mathrm{K}$	$31^{\circ} \mathrm{K}$	$29^{\circ} \mathrm{K}$	$29^{\circ} \mathrm{K}$
3.0	$36^{\circ} \mathrm{K}$	$32^{\circ} \mathrm{K}$	$31^{\circ} \mathrm{K}$	$30^{\circ} \mathrm{K}$
2.3	$40^{\circ} \mathrm{K}$	$36^{\circ} \mathrm{K}$	$35^{\circ} \mathrm{K}$	$34^{\circ} \mathrm{K}$
1.8	$45^{\circ} \mathrm{K}$	$41^{\circ} \mathrm{K}$	$39^{\circ} \mathrm{K}$	$38^{\circ} \mathrm{K}$
1.2	$51^{\circ} \mathrm{K}$	$45^{\circ} \mathrm{K}$	$42^{\circ} \mathrm{K}$	$41^{\circ} \mathrm{K}$
0.9	$85^{\circ} \mathrm{K}$	$65^{\circ} \mathrm{K}$	$55^{\circ} \mathrm{K}$	$43^{\circ} \mathrm{K}$
0.6	$110^{\circ} \mathrm{K}$	$95^{\circ} \mathrm{K}$	$65^{\circ} \mathrm{K}$	$45^{\circ} \mathrm{K}$

Table 5: Link budget results.

Characteristic

Dish diameter
Satellite e.i.r.p.
Carrier frequency
Path distance
Free space path loss
Aerial efficiency
Aerial gain
LNB noise figure
Aerial noise temp.
Total noise temp.
Figure of merit
Clear sky C/N ratio
Final C/N ratio
Channel bandwidth
Video bandwidth
Video deviation
Clear sky S/N ratio
Final S/N ratio

Astra 1A	Eutelsat $13^{\circ} \mathrm{E}$
65 cm	65 cm
50 dBW	50 dBW
11.347 GHz	11.6 GHz
$39,001 \mathrm{~km}$	38,855km
$205 \cdot 37 \mathrm{~dB}$	205.53dB
60\%	60\%
35.54 dBi	35.74 dBi
1.4 dB	1.4 dB
$65^{\circ} \mathrm{K}$	$65^{\circ} \mathrm{K}$
$175.31^{\circ} \mathrm{K}$	$175.31^{\circ} \mathrm{K}$
$13.11 \mathrm{~dB} / \mathrm{K}$	$13.3 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$
12.19dB	$10.81 \mathrm{~dB} / \mathrm{K}$
8.99 dB	7.61 dB
27 MHz	36 MHz
5 MHz	5 MHz
16 MHzN	25 MHzN
43.73 dB	47.64 dB
40.53 dB	44.44 dB

with the acrial's elevation angle. Low elevation angles, required at higher latitudes, result in increased noise pick up. Not only is the signal path length through our rather grubby atmosphere greater, adding to the sky noise, but more importantly the contribution from ground noise is increased by diffraction effects at the aerial aperture (see Part 1), smaller dishes being affected most. (4) Acrial design itself: a poorly manufactured aerial may pick up excessive noise from directions other than the intended one. (5) Man-made noise.

Since aerial noise is not calculable an estimate is the best we can achieve. Table 4 can be used as a rough guide. Since values tend to vary little at elevations above 30°, aerial noise is often quoted at this elevation.

Noise Bandwidth

Noise bandwidth in dBHz is given by $10 \log$ times the channel bandwidth, which for a particular satellite transponder is typically 27 MHz or 36 MHz .

Free Space Path Loss

The free space path loss of the signal on its way to earth, in dB, can be calculated from the formula:

$$
\mathrm{a}=20 \log [(4 \pi \times \mathrm{pd} \times 1,0(0)) / \mathrm{w}]
$$

where w is the wavelength in metres and pd is the path distance from the satellite to Earth, given in km by (42,164 $\sin \mathrm{C}) / \mathrm{cos}$ elevation. Equations for calculating C and the elevation were given in Part 2 (May, page 498). If the wavelength isn't known it can be calculated from c / f where f is the channel frequency and c is the speed of light ($3 \times$ $10^{8} \mathrm{~m} / \mathrm{s}$). Those not wishing to perform these tedious free space path loss calculations can assume a nominal value of 205.7 dB

Checking C/N and S/N Values

Once you've calculated the clear-sky C / N ratio, to obtain the final C / N value you simply subtract the $3-2 \mathrm{~dB}$ fixed loss margin outlined above. Compare this final value with the proposed receiver's demodulator threshold figure. If the final C/N ratio is above the f.m. threshold, check that a S / N figure of at least 43 dB is obtained after demodulation by performing the following calculations. This checking will
ensure that grade 4 reception is obtained for 99.5 per cent of the average year.

$$
\mathrm{S} / \mathrm{N}=\mathrm{C} / \mathrm{N}+\mathrm{fmi}+\mathrm{pe}+\mathrm{wf}(\mathrm{~dB})
$$

where S / N is the final S / N ratio, C / N is the final C / N ratio, fmi is the f.m. improvement (in dB), pe is the pre-emphasis improvement (typically 2 dB) and wf is the weighting factor, which is typically 11.2 dB for PAL/SECAM or 13 dB for MAC.

The f.m. improvement on demodulation is given, in dB, by:

$$
10 \log [1 \cdot 5(\mathrm{f} / \mathrm{vf})(\mathrm{rf} / \mathrm{vf})]
$$

where f is the deviation $(\mathrm{MHz} / \mathrm{V})$, rf is the transponder bandwidth in MHz and vf is the video bandwidth or highest video frequency (MHz).

Calculation Example

When I calculated the link budget for Astra 1 A at $19 \cdot 2^{\circ} \mathrm{E}$ and Eutelsat II at $13^{\circ} \mathrm{E}$ for a receiving site in Liverpool I obtained the results listed in Table 5. Notice that the Eutelsat II's wider transponder bandwidth results in a higher S / N ratio for a given C / N ratio. At this location both provide clear-sky C/N CCIR grade 4 reception using a 65 cm dish and a $1 \cdot 4 \mathrm{~dB}$ LNB. When the clear-sky C / N and S / N ratios are reduced by taking into account the $3 \cdot 2 \mathrm{~dB}$ link margin the S / N ratio for Astra is slightly below grade 4.

To take into account the $3-2 \mathrm{~dB}$ loss margin, with the dish size and LNB noise figure quoted, the demodulator threshold should be about 9dB for Astra 1A but would need to be less than 7-6ldB with Eutelsat II. Most quality receivers should have demodulator thresholds below these figures in the near future. The main point is that with a 27 MHz transponder bandwidth the aerial size is dictated by the need for a relatively high C / N ratio in order to achieve an adequate S / N level of 43 dB . With a 36 MHz bandwidth the acrial size is dictated more by the need for the C / N ratio to be above the demodulator threshold, since a consistently higher S / N value is achieved for a given C / N ratio. It follows that as threshold extension techniques are further developed and refined, smaller aerials will be acceptable for Eutelsat II reception.

To bring Astra 1 A reception up to standard the solution is to try a slightly larger dish or a lower noise figure LNB and recalculate, rather than risk numerous recalls because of poor reception. I don't know what Astra reception is like outside the Liverpool area, but here constant sparklies on some channels seem to be present with a fair proportion of brand new $60 / 65 \mathrm{~cm}$ packaged systems. It seems to me that $70 / 80 \mathrm{~cm}$ dishes should be specified for reception from the Astra cluster in the northern areas if consistent results are to be achieved with all the transponders.

More on Beamwidth

Since covering beamwidth carlier in this series of articles I've used the computer to calculate and plot theoretical beamwidth/radiation patterns for any dish size/wavelength combination. The diagrams shown in Figs. 24-26 are developed from a reasoning involving Bessel functions and are extremely tedious to produce without the use of a computer. They show the uniformly illuminated beamwidth diagrams/radiation patterns for 45,60 and 90 cm parabolic reflectors at a frequency of 11 GHz

Table 6: Theoretical aerial beamwidth (degrees)
at 11 GHz .

Dish diameter	$-3 d B$	$-6 d B$	$-10 d B$	$-12 d B$	$-17.6 d B$
0.30 m	5.35	7.34	9.07	9.70	10.98
0.40 m	4.01	5.50	6.80	7.28	8.23
0.45 m	3.57	4.89	6.04	6.47	7.31
0.55 m	2.92	4.00	4.94	5.29	5.98
0.60 m	2.68	3.67	4.53	4.85	5.48
0.65 m	2.47	3.39	4.18	4.47	5.06
0.75 m	2.14	2.93	3.62	3.88	4.39
0.80 m	2.01	2.75	3.40	3.64	4.11
0.85 m	1.89	2.59	3.20	3.42	3.87
0.90 m	1.78	2.44	3.02	3.23	3.66
1.00 m	1.61	2.20	2.72	2.91	3.29
1.20 m	1.34	1.83	2.26	2.42	2.74
1.50 m	1.07	1.47	1.81	1.94	2.19
1.80 m	0.89	1.22	1.51	1.62	1.83
2.00 m	0.80	1.10	1.36	1.45	1.64
2.20 m	0.73	1.00	1.24	1.32	1.50
3.00 m	0.54	0.73	0.91	0.97	1.10

Table 7: Theoretical aerial beamwidth (degrees) at 12 GHz .

Dish diameter	$-3 d B$	$-6 d B$	$-10 d B$	$-12 d B$	$-17.6 d B$
0.30 m	4.91	6.73	8.31	8.89	10.06
0.40 m	3.68	5.04	6.23	6.67	7.54
0.45 m	3.27	4.48	5.54	5.93	6.70
0.55 m	2.68	3.67	4.53	4.85	5.48
0.60 m	2.45	3.36	4.15	4.44	5.03
0.65 m	2.26	3.10	3.83	4.10	4.64
0.75 m	1.96	2.69	3.32	3.55	4.02
0.80 m	1.84	2.52	3.11	3.33	3.77
0.85 m	1.73	2.37	2.93	3.14	3.55
0.90 m	1.64	2.24	2.77	2.96	3.35
1.00 m	1.47	2.02	2.49	2.67	3.02
1.20 m	1.23	1.68	2.08	2.22	2.51
1.50 m	0.98	1.34	1.66	1.78	2.01
1.80 m	0.82	1.12	1.38	1.48	1.68
2.00 m	0.74	1.01	1.25	1.33	1.51
2.20 m	0.67	0.92	1.13	1.21	1.37
3.00 m	0.49	0.67	0.83	0.89	1.01

The main lobe and first three side lobes are shown. Notice that in all three diagrams the first side lobe has a theoretical amplitude of 13 per cent with respect to the main lobe, i.e. it's $17 \cdot 6 \mathrm{~dB}$ down. In reality however the actual main lobe amplitude increases with dish size, since field strength depends on aerial gain. We are interested in beamwidth and side lobe formation here however, so the vertical axis is shown as relative field strength.

Besides their general interest and usefulness for reference purposes these diagrams may be helpful in evaluating the possibility of interference from adjacent satellites. As previously mentioned interference is first noticed at about -11 dB . So if you halve the -10 dB beamwidth you get an indication as to the minimum dish size that can be used with adjacent satellites that use the same frequencies and polarisation senses. This effect is relevant with only smaller dishes however. In practice. beamwidths can be up to 20 per cent wider than shown since satellite aerials usually employ an illumination taper towards the outer edge of the dish to reduce ground noise picked up from beyond the rim. This technique tends to reduce the side lobe amplitude in relation to the amplitude of the main lobe, but reduces the effective diameter and gain of the dish.

Fig. 24: Theoretical polar response for a 45 cm parabolic reflector at 11 GHz , with 100 per cent illumination.

Fig. 25: Theoretical polar response for a 60 cm dish at 11 GHz . with 100 per cent illumination.

Fig. 26: Theoretical polar response for a 90 cm dish at 11 GHz , with 100 per cent illumination.

It's worth remembering that a satellite's aerials also have side lobes that transmit power in directions other than the main one. This effect is known as "spill over", and because of it reception of weak signals far outside the official footprint area is sometimes possible.

Finally, for reference purposes Tables 6 and 7 list theoretical beamwidths for a variety of dish sizes at 11 GHz and 12 GHz respectively.

The Euras Information Database

Eugene Trundle

Abstract

The repair and servicing of consumer electronic equipment is not casy. It becomes more difficult as the years pass and more complex systems and techniques are introduced. The key to success is fast and accurate diagnosis: the more quickly a diagnosis is made at component level the faster the repair turn-round. If we are to stay in business, a good throughput is essential. Anything that helps with this is therefore more than welcome.

Providing Help

Over the years there have been several approaches to assisting with the diagnostic process. Television devotes much of its space to fault reports, articles on particular types of circuits and the appropriate servicing techniques, and run-downs on faults common on particular chassis and items of video equipment. A number of very successful books on servicing have been published, such as those in the Butterworth/Heinemann catalogue. Manufacturers produce fault listings and service bulletins, and have technical advice lines manned by engineers who are hopefully - expert in the technical aspects and bad habits of particular products. Some manufacturers hold information in databases that are available to service agents via viewdata terminals. And, at the grass-root level, a great deal of information is stored in the memories of individual engineers - and often in notebooks and as scribbled annotations on circuit diagrams.

The Euras Approach

A new approach has been established by the Bristolbased Euras International Ltd. in the form of a database available in book, on-line or PC disc form. For the purpose of this review a complete set of books was kindly lent to us by SEME Ltd.

In book form the Euras Information System consists of a separate volume for each manufacturer. Inevitably they vary considerably in size and price - from 38 pages at $£ 9.95$ for the Mitsubishi data to 361 pages at $£ 19.95$ for the Philips volume. Each book is in A4 (30) $\times 210 \mathrm{~mm}$) size, with a transparent cover and "comb" spine binding to permit updating. The data for each type of equipment TV, VCR, CD player - is organised under headings like servo, picture, function, radial, colour, deflection and so on. The models covered are listed in alphabetical order in an index at the front of each book.

The system lists thousands of faults reported by participating technicians all over Europe, primarily those who work in service centres where faults that dealers' engincers have failed to diagnose are investigated. The emphasis, as the introductions to the books point out, is thus on rare and unusual problems rather than the simpler stock faults.

An updating service is available so that new information can be disseminated as soon as it's available. This is available on subscription, which for the on-line system currently costs $£ 8$ plus VAT per month. Feedback forms are available for subscribers' contributions to the database.

Twelve books are available at present, covering Akai, Ferguson, Grundig, Hitachi, ITT, JVC, Mitsubishi, NEC, Panasonic, Philips, Sharp and Sony products. Books
covering Sanyo/Fisher, Pioneer, Toshiba and Thorn equipment should be available soon, and there are plans for others in the near future.

In Use

To get a full feel for their usefulness we used these books constantly in the workshop over a period of several weeks. The printing quality is good, though the paper is casily soiled by grubby fingers straight out of TV sets. The binding method enables the books to be laid dead flat, and is just robust enough to stand the onslaught of a busy workshop if care is taken.

There are many spelling mistakes, and some of them really matter. For example we are told in the Hitachi book to change a capacitor from 15 F to $3 \cdot 35 \mathrm{~F}$, we have reference to "sieve electrolytes" and $30 \mu \mathrm{~F}, 1 \mathrm{~W}$ resistors, and there is this passage: "The swing transistors Q206 and Q206 and Q207 operate badly. In order order the trasistors can be dismantled completely. IC201 (HT4207) amplifies differently, can be tested on point $[$ ". This is of course just garbage, suggesting translation problems and/or that the books have never been edited, checked or corrected.
Similarly, some of the questions and answers are meaningless."Colour moire in the picture is missing", "randamly useing all functions" and the "HF-channel is changed" take some figuring out if you can do so at all. Amongst the answers, "longterm line" (just that), "the tape's voltage is too high. The tape guide spring is too short, dismount the cassette" and "filter CP1805 is twisted" are hardly helpful.

Most of the information can be followed however, and a great many faults and cures are given. It's plain that many of the faults listed are one-offs, even extending to the effect of liquid spillage. Some of these faults are, by their nature, very unlikely to occur again. Nevertheless we found that some, but by no means all, the commonly recurring faults are included.

In general the database is much more useful to the VCR serviceman than to his TV or audio colleague. In the Panasonic book for example there are 186 pages on VCRs, 43 on TV sets and three on CD equipment. For Mitsubishi there are 35 pages on VCRs and two on TV sets; the ITT book has 228 pages on video equipment, some duplicated in other books under different brands, 36 pages on TV sets and one on audio; while the Philips book, the largest by far, has 162 pages on VCRs, 125 on CD equipment, 64 on TV sets plus some information on hi-fi, clock radios and incar entertainment - certainly this one seems to be the best bargain of them all. The books have an average of nine faults per page.
The database reaches back quite far enough from our point of view: to the JVC HR3300, Sharp VC2000, Ferguson TX9 and the Sony KV1340 and SL80K0 for example. At the other end of the time scale the coverage of new and newish models is somewhat sparse, with just one and a half pages on Sony VHS equipment for instance. Generally there's little information on products less than about three years old. No doubt the updating system will compensate for this in the fullness of time.
So how much did these repair tips help us with day-today repairs in the workshop? Not as much as we'd hoped,
but useful information was obtained and used on a number of occasions during the several weeks we had the books. I consider that inclusion of the more common faults would have enhanced the books' value.

Conclusion

In conclusion, the concept of these books is excellent, though the compilers and publishers would probably be the first to agree that they are no substitute for technical knowledge and experience. The presentation leaves a lot to be desired, and the spelling and printing errors and the odd and careless reporting of both symptoms and cures are difficult to excuse. If ever books needed the services of a good editor and copy reader these do! Even so they manage to get most of the messages across.

In spite of these criticisms I can recommend the books for this very simple reason: the average labour charge in our industry is around $£ 20$ an hour, so that if each book saves one hour of time, perhaps with just one tip you use out of the hundreds it contains, it will have paid for itself. There is little doubt that each book will achieve this end in the first few days or weeks of use and will continue to do so, with or without updates, in the future. Plainly then the database is a worthwhile investment in whichever form it's purchased.

The information system is available from Euras International Ltd., Heston House, 7-9 Emery Road, Brislington, Bristol BS4 5PF (0272 724 475, fax 0272723 374). The books can also be obtained from SEME Ltd., Units 2E/F, Saxby Industrial Estate, Melton Mowbray, Leicestershire LE13 1BS (0664 65 392, fax 0664 63976).

Service Briefs Hitachi CTVs

The following notes are based on information issued by Hitachi and items noted on recent courses.

C14-P216/218: A bright white screen can be caused by a dry-joint at C711 due to pressure from the back cover. Resolder and cut away part of the back cover to remove the pressure on C711.

A loud buzz on sound was caused by some early TA8691N chips (IC20I) with mask codes 929, 932 and 942. If necessary fit a replacement - part no. TY)(0486.

C21-P226/228, C21-P818/819, C25-P228, C2196/2198/2578/ 2596/2598/2598A (G8Q chassis): The line output transistor Q702 can fail intermittently due to interaction between coils L701 and L703. Ensure that the replacement transistor is an Hitachi supplied type, part no. T636041. Ease L703 away from L701 by moving it towards R707, then secure it with hot melt. Ensure that L703 does not cross the barrier line marked on the PCB. Check C710, C711, C712, L703, R707 and R724 for dry-joints.

If the set trips off intermittently check the value of R910 ($0 \cdot 5 \Omega$). It tends to increase in value.

For no sync replace Q2110 (BC548B) on the teletext panel.

C25-P818/819, C28-P818/819, CPT2138/2508/2808 (G7P chassis): The dead set symptom is commonly caused by failure of the chopper transistor Q901. Replace it with an Hitachi supplied type, part no. T636035, change C914 from $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ and add a 2.7Ω resistor in parallel with R906 and R906A.

If the power supply has "blown up", replace R931 ($150 \mathrm{k} \Omega$, metal oxide) in addition to all the defective components.
For clicking and very poor nicam reception adjust L5 on the panel between the teletext and nicam boards.

C2118R/T: R909 ($39 \mathrm{k} \Omega$) tends to go high in value with the result that the set trips as the h.t. is too high.

CPT1455: The dead set symptom is often due to failure of zener diode ZD901. Failure of IC901 and D901 is another common cause of a dead set. Part numbers are 2911171 and 2335981 respectively. Use two diodes connected in series in the D 901 position.

CPT2046/2048/2246/2248 (NP83CQ MkII chassis): If the set continues to operate in the standby mode replace Q1431 (2SC2610, part no. 2324323) and D912 (EM1A, part no. 2334591). When these are faulty the 110 V line can remain high enough for the set to continue to work.

CPT2078/2158/2278: Teletext faults - no teletext, no page number, page number displayed out of sync or erratic teletext - are usually caused by failure of IC2203 (SAA5030).

CPT2158: Buzz on sound can by caused by an earthing loop associated with the field deflection circuitry. To cure, fit a shorting link on the print side of the PCB between pin 1 (chassis) of IC601 and the negative side of C713.
For corrupt teletext remove L205 and LO07; short-circuit C010; add a 68 pF capacitor (part no. 02486803) and a $10 \mu \mathrm{H}$ coil (part no. L420130) in series across R222; finally adjust the tuner's i.f. core for best text.

CPT2174/2176/2178/2476/2478 (G6P chassis): If there's a light, horizontal bar at the top of the picture, replace the chopper drive chip CPOO).

If the set switches back on after standby has been selected, replace the $1 \mathrm{M} \Omega$ resistor on the scan coils.

If line jitter at the top of the screen is experienced when the set is used with some VCRs, change R706 and R716 to $5.6 \mathrm{k} \Omega$. R706 is not fitted in Model CPT2174 where the tlywheel sync filter circuit is arranged slightly differently.

CPT2188/2568 etc.: If the set is stuck in standby replace capacitor CB604.

CPT2198/2508/2578/2808 using teletext board A519600, issue 4: No teletext reception on one or two channels can be caused by incorrect timing of pulse M1 because of poor stability with C2109. In most cases removing the wire link or resistor fitted in place of VR2107 will restore the pulse to its correct position. If not, replace C2109, using an 820 pF high temperature stability type (part no. C822562). If difficulties are still experienced, fit a $4.7 \mathrm{k} \Omega$ preset (part no. E311055) in position VR21(07.

CPT2218 (NP81CQ chassis): For field cramping replace $\mathrm{C} 608(22 \mu \mathrm{~F}, 160 \mathrm{~V})$ which decouples the supply in the field output stage.

CPT2656/2658: If the set is stuck in standby DB506 is probably leaky.
For lack of contrast change the value of RB166 from 220Ω to 180Ω.

AKA

Machine Mos.: VP77 VP88 VP7100 VP7200 VS1 VS2 VS3 VS5 VS 10 VS9300 VS 9500 VS9700 VS-P1 VS-P5

AMSTRAD Machine Mos.: VCR7000
 VCR4600
 FERPISOW/JVC

Machine Nos.: VCR4500 VCR5200 VCR9000

Machine Hos.: 329289033 V00 3V01 3V06 3V16 3V22 3V23 3V24 3 V 293 V 303 V 313 V 353 V 363 V 383 V 393 V 49

FISHER

Machine Nos.: FVH - D520 D530 D620 D720 P420 P510 P520 P530 P615 P620 P622 P710 P720 P721 P722

GEC

Head Part Mos.: 54581615458165
Machine Mos.: 4000 H 4001 H 4002 H
Head Part Hos.: 5458282545841354584155458992
Head Part Mos.: 54582825458
Machine Nos.: 4001 H 4004 H

НІТаснI

Machine Nos: VT3000
Head Part Nos.: 5458104
Machine Nos.: VT4000 VT4200 VT5000 VT5500
Head Part Mos.: 54581615458165 Machine Nos.: VT6500 VI7000 VT8000 V18040
VT8700 VT9000 VT9300 VT9500 VT9700 VT9900

Head Part Mos.: 5458282545841354584155458992
Machine Nos.: VT11 V14 VT33 VT34 VT330 VT340 VT5030 VTP10 VTP30 VHS K
IT
Machine Nos.: VR3605 VR3033 VR3905 VR3913 VR3914 VR3935 VR3943 VR3963 VR3993 VR3975 VR3985 VR3986 VR3833

JVC (see also Fergusen)
Machine Mos.: HP4000 HR3300 HR3320 HR3330 HR3350 HR3360 HR3750 HR3860 HR4100 HR7200 HR7600

WITSUBEAI

Machine No.: HS200
HS700 HS303 HS304

NATENAL PANASONIC
VHS A

VHS T
9VH4600
Head Pat No.: NV370 NV3708
Head Part Nos.: VEH0171
chine No.: NV330 NV777
Head Parl Nos.: VEH028
Head Part Nos.: VEH0174
Machine Mo.: NV366

SHAPP

Head Pan Mos.: DDRMU 0002 HE17/21/27 Machine No.: VC581/2/3 651 681/23/5 659699
Head Parl Mos.: DDRMU 0001 HEOO 0002 HE02 040506 Machine No.: 2C9 VC1 10 VC200 VC220 VC300 VC381 VC384 $\checkmark 386$ Ve387 VC9100 VC9300 VG9400 VC9500 VC9600 VC9700
Head Patt Nos.: DDRMU 0001 HE09
Head Part Mos. DDRMU 0001 HE10
Machine No.: VC6300
Head Part Nos.: DDRMU 0001 HE12
Machine No.: VC8300
Head Par Nos.: DDRMU 0001 HE14
Machine No.: VC2300

SANYO

Head Part Mos.: $1430242 T 017001430242$ T22300
Machine No.: VTC5000 VTC5150 VTC5300 VTC5400
Head Parl Nos.: 1430242 T02200
machine No.: VTC5350 VTC5500
Head Pari Nos.: 1430762 T02000
Heas R No.. VIC9300 VTC9455 VTC9500
Head Part Nos:: 143072 T02100
Machine No.: VTC9300PS VTC935

sour

Head Part Nos.: A6762 044A. 044B, 054A. 147A
Machine Mo.: SL3000, 8000, B080, SLT 6Me. $7 \mathrm{~F}, 7 \mathrm{ME}$
Machine Mo.: SL3000, 8000, 8080, SLT GMe. 7.
VHS A Machine Mo.: SLL5W. 50005100 SLC5. C6, C7 Head Part Mos.: A6762 072A, 122A, 136A, 139A, 213A
Machine No.: SLC20. C30. C33. C40, C44
HS A SLF1, F30. HF72, T20. T30
VH700 Please see next col. for prices.

FERGUSON/JVC

VID1	$01 \times 0-003-381$
VID2	$01 \times 0-018-024$
VID3	$01 \times 0-018-025$
VID4	$01 \times 0-018-729$
VID5	$01 \times 0-040-006$
VID6	$01 \times 0-033-454$
VID7	$01 \times 0-040-007$
VID8	$01 \times 0-040-017$
VID9	$01 \times 0-065-009$
VID10	$01 \times 0-065-016$

GEC/HITACHI

VID11	V5577355
VID12	V6413663
VID13	V6861471
VID14	V6861482
VID15	V6886971
VID16	V2423461

NATIONAL PANASONIC

Tension band T3292/PU545904A Take up ider T3292/PU47752 Rewind idler assembly T3V16/PU49282 Take up idier T3VOO/PU49280 Loading bett T3V29/30/PU48941-2
Roller Assy. (cass. Housing) T3V23/PU49042 Take цp idier $3 \mathrm{~V} 29 / 30 / \mathrm{PU} 48967 \mathrm{~B}$
Take motor assembly $3 \mathrm{~V} 29 / 30$ PU51381V
Capston motor $3 \mathrm{~V} 35 / 36 / 38 / 39 / \mathrm{PU} 55371 \mathrm{~V}$
Cass. housing Assy. $3 \mathrm{~V} 35 / 36 / 38 / 39 / P U 29825$

GEC 4100 Hitachi VT 11 E capston motor
GEC 4000 /Hitachi VT33 t/ rewind arm
GEC 4001/2/Hitachi $93 / 9500$ t/t rewind arm
GEC $4001 / 2$ Hitachi $93 / 9500$ play idler as
GEC 4004
Fast forward idler NV2000
lder NV7000/200
Tension Band NV7000
Idler NV370
Reel Idier NV777
Pinct Rotler NV333
Idier wheel NV333

Universal lamp with socket 310 mm
Etc. lamp plus plastic shroud.
2.55
6.73

NEW FAX
NUMBER
0902-29052
242

2.55	DRME BEETS					
$\begin{aligned} & 6.73 \\ & 6.20 \end{aligned}$	AKAI			JVC		
		(e)	${ }_{\text {c0. }}^{50.86}$	HR 22000		${ }_{50.68} 8.25$
${ }_{0} 7.26$		-		${ }_{\text {HR }}^{\text {HR }} 333000$	ORE127	[57.65
4.50	VS ${ }_{\text {veg }}$	-	${ }_{7}^{17.75}$	${ }_{H H R} 336000$	${ }^{\text {DRK103 }}$	${ }_{65}{ }^{15.25}$
245			${ }^{1} 76$	HR ${ }^{3} \mathbf{3 6 0 6 0}$	(18k6103	${ }_{5}^{19.42}$
27.95						\%1.20
20.92			${ }_{8}^{81.42}$	HR 76000		${ }_{60.86}$
22.55	(HR 7700	${ }_{\text {DEK }}^{\text {DEK } 1108}$	${ }_{\text {cosem }}$
		FERGUSON		NATIONAL PANASONIC		
26.78 2.10	${ }_{\substack{3 \\ 392 \\ 3 \\ 3 \\ 0}}$	${ }_{\text {O8k }}^{\text {O86103 }}$	${ }_{c}^{1.42}$	${ }_{N \sim}^{N}$	CR10	
2.10 2.07	- $3 \vee 22$		${ }_{90} 1.12$	NV 332383	ViD7521	10
4.20	边					${ }^{.50}$
1.80	${ }_{3} \times 3536$	9BK150	${ }_{8}{ }^{\text {c/25 }}$	Nv 2000	DBK109	¢1. 57
13.50		O8k 150	${ }_{81.25}$	NN N		${ }_{8}^{81.15}$
		Vicrisio	¢ ${ }_{8}^{18.85}$			
0.85	FISHER			SHARP		
0.85	VBS 7000	OBx146 O6k 105	${ }_{5}^{58.15}$			
2.85	VES 7000	${ }^{\text {OBR105 }}$	${ }^{\text {H }}$	vc 32353836	SEA16\%	58.15
1.65 4.30			${ }_{81} 1.96$			51.40
3.50		GEC		YC 7300	D8k⒈8	51.50
${ }_{0} 0.85$		${ }_{\text {DEK12g }}$	${ }_{\text {g1. }}^{\text {g }}$	VC 8300	(e819	${ }_{80}^{8.10}$
		-	${ }_{8}^{7.10}$	vc9700	DB6121	8.26
9.505.49		HITACHI		St 8 8000	SONY	
	${ }^{\text {v/3000 }}$	-	${ }^{81.45}$		${ }^{\text {ORAK115}}$	${ }_{58} 8.00$
2.95 4.50	V5000	ORE125	${ }_{80.75}^{9.15}$	SL ${ }_{\text {St }} 885000$	${ }_{\text {Dek }}$ Dekl15	\% ${ }^{2} .000$
2.95	V7 7000	O8k143	${ }^{80} 9$	SLC SLC Sic	O8k 100 V107519	${ }_{87}^{71.65}$
	(1)	${ }_{\text {DBK }}$		$\stackrel{\text { Slc }}{\substack{\text { Sli }}}$	ORE 100	9.95
	VI 9500	(0xkiz9	${ }_{81.10}$		Oekxion	${ }^{81.95}$
29.95		SANYO			${ }_{\text {ORe }}^{\text {OBKK100 }}$	${ }^{81.95}$
16.14 1.60	VTC 5000.	Vidirbo	${ }^{9} 1.19$			
${ }_{3} \mathbf{3} .50$	$\checkmark 1505300$		\% 7.15	v 55.57 TOSHIBA		
	VTC 55000		${ }_{81}^{71.95}$	$\bigcirc 5657$	Vors 540	
	$\begin{array}{r}\text { VTC } \\ \text { VTL } 9500 \\ \hline 500\end{array}$	Yilisis	${ }_{88.120}$	V 78500		${ }_{81}^{81.79}$
	VIC 9330	D86K145	${ }^{19} 70$	$\checkmark 9600$	V107810	5.
0.350.50	\checkmark Vc mion 120	V107809	${ }_{\text {cos. }}^{\substack{\text { ci }}}$	\checkmark	(8Ek 188	${ }^{2} .65$
		V107809	${ }_{\text {c0. }}^{0.61}$	- 59475	${ }_{\text {ckek }}^{\text {DEk } 128}$	${ }_{81.50}$
$\begin{aligned} & 0.20 \\ & 1.27 \end{aligned}$	Full list available with order			Prices subject to alteration without notice		
	Or SAE please $\mathbf{9}^{\prime \prime} \times 4^{\prime \prime}$			For Stock queries by post only		
	(24hr. answering machine for Access \& Barclaycand users)					
				Oriters trom Gow. Imstintions, Scroois,		
52					oods shouid be	

2.55
6.73

NEW IN STOCX, A LARGE RANGE OF SLIMLINE REMOTES JIST SUPPLY MAKE, MODEI \& PART No. IF POSSBBLE FOR AN IMMEDIATE QUOTE. AVERAGE PRICE E18.00

HEADS

Long-distance Television

Roger Bunney

April was a very quiet month for long-distance reception in Europe. There was unfortunately no hint of a mid-month Sporadic E opening, the usual indication of a good season to come. Even the Lyrids meteor shower produced little by way of signals. There was some SpE reception however, and F2 reception occurred on one day. In Australia the conditions during early April were much better. We'll report on that shortly, meanwhile the $\mathrm{SpE} \log$ for the month is as follows:

5/4/91 TVE (Spain) ch. E2, 3.
6/4/91 TVE E2; TVP (Poland) R2.
10/4/91 TVE E2, 3.
12/4/91 SVT (Sweden) E2.
13/4/91 TVE E2; RAI (Italy) IA.
22/4/91 TVE E2, 3, 4; RTP (Portugal) E3; NRK (Norway) E2.
23/4/91 TVE E2, 3 .
28/4/91 TVE E2; SVT E2.
29/4/91 + PTT (Switzerland) E2; TVE E2.

Three of our regular correspondents reported F2 reception on the 12 th . The morning period through to lunchtime produced ch. E2 signals from Malaysia, Dubai and Iran, a distant ch. R1 signal from the USSR and, the icing on the cake, Australia DDQ-0 Queensland ch. 0 .

There were two spells of tropospheric reception, concurrent with high pressure systems over the UK. Signals from Germany. France and the Benelux countries were received across much of central/south east England over the period 11-15th, the best catch being Poland ch. R8, received in North Wales. The second lift, during the 25-27th, produced signals from Germany, Denmark and the Benelux countries. During both openings there were signals in Band III and at u.h.f. In addition during the second opening German Band I signals were received in East Sussex.

My thanks to Simon Hamer (Powys), Tim Anderson (St. Leonards), Cyril Willis (King's Lynn), Peter Schubert (Rainham) and David Glenday (Arbroath) for sending in reception reports.

CNN on Ch. E2

We've had a report of CNN International being seen on ch. E2. Quite by chance a copy of The Straits Times, dated carly April, arrived recently. The TV page confirms that this programme is transmitted live from $070(0-0830$ and 1830-2000 local time. Though only Band III transmitters are listed for Singapore, there's the possibility that an E2 outlet is operational.

Australian Reception

Meanwhile Robert Copeman (Victoria) and Anthony Mann (Perth) both report excellent reception in Australia during the first eight days of April. Robert comments that it has been the best period for many years, the low v.h.f. spectrum being jammed with signals. His TV reception
report includes West and East Malaysia ch. E2, several ch C1 Chinese stations, Vladivostok and Rostov ch. R1 in the USSR, AFKN-TV ch. A2 from South Korea and Thailand ch. E2.

Anthony Mann reports a very busy period, with the m.u.f. to the north reaching 57.75 MHz on one day. He comments that such activity hasn't been experienced since the peak of the last sunspot cycle in 1979! He has some amendments to our vision channel offset list last month: there's no offset with Thailand ch. E2, but Genting Sempah, West Malaysia uses 48.24 MHz while another Malaysian station uses 48.26 MHz . Anthony suspects that much of the reception in Victoria is via F2 with a second boost given by SpE propagation. Conditions died down by the 15 th, when only New Zealand ch. 1 was received in Perth.

News Items

France: TF1 and Canal Plus are holding discussions on starting a joint all-news channel which could be in operation by next spring. Thomson CSF is to assist in reequipping the Kuwaiti TV service.
USSR: The Russian State TV and World Television News are to co-operate in providing a new TV service. It will initially be a local service using low-powered transmitters and should be in operation next autumn for 24 hours a day. The USSR is planning to start a DBS service using three satellites. The UK music channel MTV is now available over the Leningrad cable network. Incidentally the USSR will not be introducing summertime next year, and in the the autumn the clocks will be put back one hour. The European part of the USSR will therefore be at plus two hours with respect to GMT as the standard winter time the same as Finland.
Poland: The Polish TV authorities have received over 250 franchise applications for private TV - there's to be one national network plus several regional licences for main centres of population. As a result of financial restraints it doesn't look as if TVP-3 will get off the ground and the future of TVP-2 is questionable.
Greece: As a result of the growth in popularity of the private stations the advertising revenues of the national broadcaster ERT fell by fifty per cent last year.
50 MHz Amateur band: Spanish amateurs are now allowed to use the 50 MHz band, though details of power, frequency limits etc. have yet to be released here. Israel is allowing limited activity in the band and Monaco has agreed to those with five years' experience using the band. The Swiss authorities do not allow operation during TV broadcasting hours, which restricts use of the band to 0030 (050).

New EBU Listings

France: Argent-sur-Creuse La 5 ch. E38 18kW; Autun M6 ch. E42 $1,000 \mathrm{~kW}$, La 5 ch . E45 300kW. All with horizontal polarisation.
Germany: Niebuell chs. E40 and E56, both 20 kW horizontal.

Satellite Scene

The Italian satellite TV service Raisat, which broadcasts a package of the best from the three main RAI terrestrial services, is to increase transmission time via the Olympus satellite to over twelve hours a day. It hopes to be able to offer three Europe-wide programmes via the SARIT craft
from mid 1993 - if SARIT doesn't go ahead transponders may be leased on a Eutelsat series Il satellite. Raisat at present transmits in the clear, but if the audience expands D2-MAC and encryption may be adopted.

Coverage of the Philippine PTV-4 Pcoples TV network is to be increased by use of the Palapa II satellite to provide links to terrestrial stations throughout the island state.

Satellite Information Services, the UK group that provides a TV service to betting shops via the Intelsat craft at $27^{\circ} \mathrm{W}$, is to extend its service to the general public, pubs, hotels, etc. - at a price. The full-time encrypted B-MAC service will cost $£ 4,200$ a year, inclusive of installation, a decoder and the subscription fee. A budget package will provide a two-hour evening coverage of the day's events for $£ 75$ a month subscription fee plus $£(6) 0$ for the equipment. The equipment consists of a fixed 90 km dish, a receiver and an addressable B-MAC decoder. B-MAC is to be used shortly for the occasional horse racing transmissions from various sites in the UK via the Intelsat craft at $21^{\circ} \mathrm{W}$ - these have been in the clear to date, though of variable quality because of the satellite's inclined orbit.

The FCC has introduced regulations for mandatory subcarrier identification of each uplink station. Known as ATIS - automatic transmitter identification system - the system came into operation on May 1st.

Brightstar has leased three hours a day channel time via the Gorizont craft at $14^{\circ} \mathrm{W}$ to transmit news from Moscow to Europe and the USA.

Astra 1B is now up and running, though concern has been expressed in Scandinavia and the northern UK about some of the transponders that use vertical polarisation. Measurements in Scandinavia, comparing Astra 1A and 1 B , indicate that with 1 A a carrier-to-noise figure of 14 15 dB is obtained using a 90 cm dish while with 1 B a C / N ratio of only $8-9 \mathrm{~dB}$ is obtained with a 2 m dish.

Governments in Japan's neighbouring countries Korea, the Philippines and Taiwan - are not too happy about footprint spillover from the new BS series of satellites, though viewers have taken to NHK's output. Government complaints have been about "cultural invasion".

Satellites could spell the end of international short-wave broadcasting as we know it today. The International Radio Satellite Corporation, based in Washington, is planning to put into orbit three satellites each capable of transmitting up to 200 L band radio channels to terrestrial receivers. This would give interference-free reception without fading, and of course high-quality sound. The plan is to put the first radio satellite into orbit in 1995. Many international broadcasters, including the BBC, Radio Moscow and the VOA, have expressed interest in direct involvement in the project.

Early DX-TV

Some while ago in this column we described what was at the time thought to be the earliest DX-TV reception on record - when BBC TV from Alexandra Palace was received at the RCA research establishment in New York state in 1938. I recall Charles Rafarel, who pioneered DXTV in the UK and started this column, telling me in the early Fifties about his medium-wave reception of 30 -line TV in Leeds in about 1933. So I was particularly interested to see in the March issue of the British Telecom publication British Telecom World a detailed account of the reception of Baird's 30-line transmissions in the USA during the early morning of Wednesday, February 8th 1928. Baird first demonstrated 30-line TV at his Soho,

London laboratory in 1926, assisted by his engincer Benn Clapp who was well experienced in radio transmission and reception. Benn had been recruited by Baird to carry out experiments in TV transmission. These took place at m.f. Baird had already transmitted TV pictures to Benn's house near Gatwick via Post Office lines, and it was from this house that the 30 -line transmissions, from a $2(0)$-foot high mast, were received in the USA.
On February 8th 1928 Benn Clapp and a number of newspaper reporters gathered at a house in Hartsdale near New York to witness the first transatlantic TV, from Baird's Long Acre, London studio. There was great interest in New York when pictures were received. Though the images were not of high quality they could nevertheless be recognised, and considerable press publicity followed. Benn Clapp even received pictures during his return voyage on the S.S. Berengaria. One result of the publicity was considerable investment interest in Baird's company Baird Television Ltd. This funded the early development of Baird's TV systems, which were eventually to be dropped in favour of EMI's 4()5-line system.

A particularly interesting feature of the article, entitled "Man of Vision", is a reproduction of the front page of the February 9th, 1928 issue of The Auburn Citizen, which carried a long report on the event at the house in Hartsdale. It also described the experience of being a model (victim?) in Baird's mechanical TV studio with its rotating wheels and flashing scanning lights. Readers interested in obtaining a copy of the March issue of British Telecom World should write to the magazine at the British Telecom Centre, 81 Newgate Street, London ECIA 7AJ. The article is on pages 58-61.

VCR Clinic

Philips VR6490

The E-E and record pictures were smeary though playback of a prerecorded tape was fine. Scope checks showed that the video output from the i.f. section was o.k. and remained normal right through the AV switching chip IC43. It was poor after R3A6 because Q3A3 was conducting when it shouldn't have done, placing C3B4 $(0.01 \mu \mathrm{~F})$ across the video signal - hence the smeary picture. There was IV at the collector of Q454 when there should have been (0V. On test Q454 (2SA933) was found to be leaky.
P.B.

Grundig VS300

This machine wouldn't accept a cassette. If one was wound in by turning the loading motor by hand however it would be ejected when asked. We found that the brake switch had a high-resistance contact. It's a two-way switch, so check both ways! When you fit a replacement be careful not to strain the switch pins - they can move if handled roughly and you then end up with the same fault!
P.B.

Philips VR6470

The problem with this machine was wow on the playback sound. This is often due to a faulty capstan motor or belt, but not this time. The speed servo loop includes the SDA 1009 chip, the capstan tacho signal and the L293 drive chip's signals. The mark-space ratio of the drive signals varied, as you would expect, but they were otherwise o.k. Phase control is via the SAB8051 chip, where there were too many control track pulses: instead of one every 40 msec , each correct pulse was followed by another one 20 msec later! The cause of the problem was that the control track pulse processor didn't ignore the negative control track pulses because C2326 (4.7 $\mu \mathrm{F}$) was opencircuit.
P.B.

Toshiba V500B

For poor rewind check that the drum guides rotate freely. In this machine the guides were jammed with dog hairs. This model rewinds threaded up - an E180 tape should rewind in less than six minutes.
P.B.

Sanyo VHR7700

For intermittent loss of colour in the record mode first check that the 4.43 MHz signal is present at pins 18 and 19 of IC111. If o.k., check that an 80 mV peak-to-peak chroma oscillator signal is present at pin 17. If the chroma signal is missing, check at the CCD delay line IC102 where you may find that pin 7 is short-circuit. You can also find that the luminance output at pin 4 is missing. The cure is to replace IC 102 , which is type LC 8992.
G.S.

Panasonic NV7200

The complaint was that when record was selected the clock went out and the channel number went back to one. We found that it did the same if play was selected. It did this as soon as the loading motor came under pressure and the drum started, so we were looking at a supply problem. Checks showed that the unregulated 13 V supply dipped to

Reports from Philip Blundell, AMIEIE, Gerald Smith, Nick Beer, Ian Bowden, Steve Cannon, Mick Dutton and Joe Cieszynski

8 V when the problem arose. Disconnecting the heaviest loads in turn proved their innocence until we tried the DD unit, when the fault cleared. But fitting a replacement didn't help. This confirmed my original suspicion that it was a supply problem. The reservoir capacitor C1005 had been changed and fitting another one didn't help. A new set of bridge rectifier diodes solved the problem. N.B.

Panasonic NV-G45

The customer's complaint was that this machine would sometimes eject a tape during rewind. Our field engineer had tried the solenoid and resoldering the servo pack connections and noted on the job card that he'd not seen the fault. When we tried the machine it worked o.k. but then failed to half lace when a new cassette was inserted. The solenoid wasn't being energised, the most likely reason for this being a faulty mode switch. This would also account for the original complaint. Fitting a new one cured both problems.
N.B.

Ferguson 3V57

When you get one of these machines with the mode timing out of sync, for example the arms are laced, the carriage is up and the pinch roller and post are engaged as if in the play mode, do the usual regreasing/replacement of the mode motor/cam assembly, replace the loading belt and retime the mechanism. Also expect the mode sensor photo-interrupter fitted around the black cam on the underside of the mode cam assembly to be faulty. It's not always the case, but if you want to avoid having to retime the mechanism again replace it as a precaution. The cost is negligible.
N.B.

Ferguson 3V53/5/7, JVC HRD755

After replacing a worn audio/control head and a broken front flap I was rewarded with intermittent loss of capstan lock, the symptom being noise bars rolling through the playback picture. The fault cleared when the main PCB was hinged upwards. Careful checks around the servo circuitry revealed that there were dry-joints at both pins of the control head connector CN 401 .
N.B.

Panasonic Scanner - NV-J30/35 type

This scanner wouldn't read the bar codes, the other functions being fine. After checking the usual, i.e. for dirt in the detector hole, the unit was opened. Voltage checks were then made around the scanner input chip IC2. Pin 3 was at 3 V , i.e. almost the battery supply voltage. From working on these units before I knew that this was very wrong. Pin 3 is connected to chassis via a $30 \mathrm{k} \Omega$ preset, VRI. The manual doesn't tell you anything about the adjustment of this, but we've found that it varies the scanner's sensitivity and that the voltage at pin 3 of the chip should be about 0.2 V . The reason for the incorrect voltage was that a through-the-board link that connects one end of VR1 to chassis was open-circuit. Normal operation was restored by fitting a single strand of wire through the hole and soldering it to the print.

As the manual doesn't give any voltage readings for this
chip, here are the ones we obtained from a working unit, measured using a meter with a $10 \mathrm{M} \Omega$ input resistance. Pin 10 V ; pin 20.668 V ; pin 30.2 V ; pin 40.174 V ; pin 5 l .2 V ; pin 61.44 V ; pin 70.233 V ; pin 80.242 V ; pin 90.44 V ; pin 100.44 V ; pin 110.865 V ; pin 123 V ; pin $130 .(6 \mathrm{~V}$; pin 14 $3 \cdot 13 \mathrm{~V}$; pin 15 l .32 V ; pin $160 \cdot 12 \mathrm{~V}$.

Panasonic NV-G10

I found the use of switched BNC and phono sockets for the external video and audio inputs to my VCR, a Panasonic NV-G10, annoying. In the J30 series of machines the problem was corrected by including a scart socket. In devising a modification (see Fig. 1) it was necessary to find a solution to two problems: how to switch between the internal and external signals and how to drive the switching. To keep things simple and cheap, a relay was used for signal switching. This keeps the circuit modifications to a minimum, as the relay contacts replace the switching contacts in the sockets.

The neatest way that I could think of to drive the relay was to use the tuning voltage. This enables the external inputs to be switched in and out even when in the timer mode, as selection is just like that of a u.h.f. channel. The very simple drive circuit consists of a comparator, using half an AN6914/ μ PC358 operational amplifier chip. An 0.6 V reference voltage is applied to the non-inverting input while the tuning voltage is connected via a $270 \mathrm{k} \Omega$ resistor to the inverting input. Thus when the tuning voltage is below $0 \cdot 6 \mathrm{~V}$ the chip's output (pin 1) is high: conversely the output is low when the tuning voltage is above 0.6 V . This circuit works well, being able to distinguish between an external input and channel 22 . The tuning voltage feed couldn't be taken straight from the tuner's BT terminal as the $10 \mathrm{k} \Omega$ series resistor present resulted in slight tuning drift. It was taken from a point farther back in the circuit therefore.

The components are mounted on a small piece of stripboard. Most of them came from the PCBs in a scrapped NV333. The relay is the capstan motor direction switching one while the chip is half of IC $(0)() 6$. The transistor was found in the reel motor drive area. Diodes

Fig. 1: AV switching circuit for the Panasonic NV-G10.

Fig. 2: Connections to the main $P C B$, at the right rear.
and resistors, also short lengths of screened lead to connect the small piece of stripboard to the main PCB, were also taken from the panels. I insulated the relay board and fitted it below the main PCB , with the connecting leads taken up through the gap around the right-hand edge of the main board for connection to the top.
I.B.

Panasonic NV-L28B

This fault was a real headache - it had been with the machine from new. In cases like this there's always the suspicion that there could have been a production error. These are very rare, but you occasionally find that there's an omitted resistor or a stray jumper lead. The result is some real problems for the poor old service engineer.

The fault was no operation via any of the front panel buttons, though the clock was lit and all the voltage rails were correct. If a prerecorded tape was inserted the machine went into the play mode as it should do, because of the auto-play function, and played perfectly. But the only way in which it could be stopped was by disconnecting the mains supply. Suspicion fell on the microcontroller chip, as the servo system was clearly working correctly, but the fault was still present afier fitting a replacement. The crystal oscillators and the reset line were then checked and found to be o.k. The serial data and clock lines were next scoped. Something was clearly amiss here. Digital data was present, but the pulses were at half the correct amplitude of 5 V peak-to-peak. Well these lines go all over the place, so they were disconnected at various points to try to isolate the source of the fault. The pulses returned to normal amplitude when the disconnection was made at the digital PCB. After dismantling and examining the digital can the fault had cleared permanently. Our conclusion was that the can had been shorting the data and clock lines to deck. Definitely a "one in a million" fault.
S.C.

Toshiba V83

The display was very dimly lit, with all functions showing. We checked at pin 42 of the clock chip ICX 01 - this is called the back-up $+B$ line. It should be at 5 V permanently, but there was no voltage. We traced the line back to the Selector Timer 2 board (the tuning control board to you and me) and checked the ever 12 V line here. This line feeds a 5.6 V zener diode via a 390Ω resistor and was correct. Aha I thought, a short-circuit zener diode. Nine times out of ten it probably would be, but I always seem to get the odd time. The zener diode turned out to be o.k. A PST520C chip (ICL10), the reset generator, is also connected to this line. The resistance between its input and deck read about 20Ω. Fitting a replacement cured the problem.
S.C.

ITT VR3918

This machine came in dead shortly after the guarantee ran out. When we powered it the mains transformer rapidly heated up and produced a terrible smell. A replacement from a stock machine was fitted but when we switched on the mains fuse blew. After disconnecting the secondaries we tried again. This time there were no signs of distress. When the bridge rectifier D5001-4 was reconnected the fuse blew, but there were no measurable shorts. So we changed the STK7226 power supply regulator. This time at switch on there was no fuse blowing but there was still no 13 V line as protection diode D5009 had failed. It seems. strange that there's no fusible protection for the
transformer's secondaries, as the transformer gets very hot under fault conditions before the mains fuse fails. M.D.

Sharp VC8300

The complaint was no record or playback colour. After a number of initial checks I got round to scoping the playback chroma signal and noticed that the channel two chroma was excessively noisy. This made the colour-killer operate. If you looked carefully you could pick out the noise on the channel two f.m. signal, so I carried out checks in the f.m. and head areas, all to no avail.
I then recalled a similar fault with a VC7700, where a d.c.-d.c. converter in the power supply was defective, radiating noise along the chassis lines. But in that instance
the noise had affected both f.m. channels. Nevertheless I followed up the hunch and disconnected the chassis earth lead near the full erase head. Colour was immediately restored.

When the now floating earth lead was scoped a 45 kHz spike waveform at about 2 V peak-to-peak was seen. Comparing this signal with the d.c.-d.c. chopper converter (Q905) signal confirmed that the chopper was indeed the source of the noise. When I scoped the converter's outputs I found that the noise was on the 15 V line. Replacing C929 $(330 \mu \mathrm{~F})$ provided a complete cure.

The lesson is that for no colour with these older Sharp machines, i.e. Models VC7700, VC381 and VC830), the chroma signal should be checked to see whether it's noisy. If it is the chopper circuit is suspect.

Tuner Transplant for Early Hitachi CTVs

Roger Jones

During the early Seventies Hitachi released a number of small-screen colour TV models in the UK. They were competitively priced and proved to be extremely reliable when compared with many other designs around at the time. In fact they were the type of receiver that would virtually guarantee satisfaction to even the most discerning or fussy customer. Some of the models included a tint control, a feature found in KB/ITT models but very few other makes at that time. The receivers also had an isolated chassis, something that UK manufacturers didn't want to know about then.

Service History

The early Hitachi models had an eight-way, turret-style tuning selector coupled to a mechanical tuner. Callouts to these sets were minimal and often for very trivial things. I recall only one case of tripler failure, when a complete transformer assembly had to be ordered. More often than not the problem was that the aerial flylead had become stretched and had ruptured the aerial socket at the back of the receiver. It was easy to repair the socket by soldering the body to its base and then checking that no internal disconnection had occurred. Occasionally the mains fuses would go open-circuit, but this was usually due to tiredness rather than a fault condition.

Horizontal and vertical shift controls were not fitted, and at first it seemed tough luck if a customer produced a pair of callipers to prove that the test card wasn't quite in the
middle of the screen. Fortunately horizontal positioning could be shifted by tweaking the line oscillator coil slightly: the pull-in range of these receivers was excellent and no line-slip problems were ever experienced after making such an adjustment. For vertical shift the purity rings could be moved ever so slightly without any detriment to the purity.

Occasionally C853 ($3 \cdot 3 \mu \mathrm{~F}$) on the convergence panel would go open-circuit, the result being blue misconvergence. Lack of colour was usually due to C535 or C538 (both $22 \mu \mathrm{~F}$) in the ident circuit. Only once did I hear of one of these receivers having to be set-up from scratch. It transpired that this was because of an extremely fussy customer who had no intention of keeping the receiver anyway after its week's free trial - it was commandeered to impress some foreign relatives.

After ten or more years a few of these receivers were coming back off the patch, not because of reliability problems but because of the economic situation at the time and also because of customers wishing to update generally. It was company policy to scrap such receivers, but I managed to rescue a couple from my own patch, knowing their history. One was a CNP190, which had a smart teak cabinet and an 18in. tube. The other was an earlier model, an elegant looking CSP680. Its dark wood cabinet was reminiscent of those you see in American films - nice sturdy solid-wood cabinets with shiny chrome knobs!

Unfortunately the CSP680 developed tuner troubles, not electrical but mechanical. A small piece of metal dropped

Fig. 1: The tuning supply circuit and pin connections for the NSF 47807 multiband tuner.

off in the mechanism, with the result that the selector assembly jammed. The set remained out of use for a year, after which I began to consider the possibility of fitting a varicap tuner and a multiway channel selector switch - in the same position as the original mechanical one to maintain the set's good looks.

Modification Details

I happened to have a spare multiband NSF 47807 tuner to hand. The v.h.f. section was duff but the u.h.f. side worked all right, so I decided to attempt the life-saving modification. The mechanical tuner assembly was removed from the cabinet, noting the various connections. The old tuner had a small i.f. preamplifier mounted inside a can, so this was removed and the input and l.t. feeds were identified. It was eventually soldered to the varicap tuner's body.

To mount the multiway switch in the same position as the original tuner a metal plate with a hole drilled to accept the switch had to be made up. I found that the original tuning selector knob fitted nicely on the end of the switch's
spindle. H.T. for the tuning supply was obtained from the large electrolytic capacitor that's mounted horizontally on the left-hand side at the top of the chassis, when viewed from the rear

Fig. 1 shows the tuning voltage circuit. The regulator D1 and the feed resistors R1/2 were mounted on a piece of tagstrip attached to the tuner's body. The tuner itself was eventually fastened to the inside of the cabinet with the aid of a bracket. To avoid mounting problems, I decided to fit the tuning presets internally. The presets chosen were standard-size horizontal ones which were soldered to a piece of tagstrip. To counteract any slight tuning drift, as there's no a.f.c., a fine tuning control was included. This was fitted above the "instant on-off switch". Conveniently, there's a cutout hole already in the control panel metalwork.

The circuit worked first time and has been in daily use for about four years. Surprisingly, the fine-tuning control rarely needs adjustment as the tuning drift is minimal.
The "instant on" facility does however have one disadvantage when this modification is undertaken. As the main h.t. rails are deprived of voltage until switch-on, the tuning voltage takes a few seconds to build up fully because Cl has to charge. The effect is quite interesting to watch: the stations appear in ascending order before your very eyes as the tuning voltage increases!

Another modification I made was to fit an LED to indicate that the main side-mounted on-off switch is in the standby mode, thus providing a reminder that the receiver isn't fully off. The c.r.t.'s heaters are supplied from a winding on the mains transformer, and it's a simple matter to provide a rectified supply for the LED from this winding, see Fig. 2.

Book Reviews

Servicing Audio and Hi-Fi Equipment, by Nick Beer, published by Newnes, an imprint of ButterworthHeinemann Ltd., Halley Court, Jordan Hill, Oxford OX2 8EJ at $£ 25.210$ pages.

This book has been published as a companion to Eugene Trundle's well known Servicing TV and Video Equipment. Its main concern is therefore with the sorts of things that can go wrong and how to go about fault diagnosis. In addition there's guidance on correct repair procedures and workshop techniques. The audio field today is a surprisingly wide one, and as a result the various items covered in this book are quite diverse. In addition to basic audio amplifiers it covers radio including even the radio data system, portable audio equipment, noise reduction techniques, compact dise players, digital audio tape players, servo systems and microcomputer control arrangements; there's also a short chapter on graphics equalisers. Thus those thinking of getting seriously involved in this sort of work certainly require a guide to the multiplicity of equipment they are likely to encounter. The diagnostic advice given tends to be rather generalised, but this is inevitable considering the vast number of diverse models that have been released by audio manufacturers. A careful selection of circuits illustrates the techniques in use, and some excellent photographs show mechanical arrangements. There's a special pre-publication offer from one of our advertisers: see page 677 .

Modern Television Systems to HDTV and Beyond, by Jim Slater, published by Pitman Publishing, 128 Long Acre, London WC2E 9AN at $£ 39.95 .308$ pages.

PAL and SECAM have served us well for almost a quarter of a century. One consequence of this static situation is that few books on TV systems have been published in recent years. There has nevertheless been a great deal of development work, and the advent of satellite TV broadcasting has opened up all sorts of opportunities. Hence the need for a new book describing the current situation. This one does the job excellently. To provide a complete picture, it starts with the NTSC, PAL and SECAM systems. Having clearly explained their principles and the compromises adopted, it soon goes on to MAC, HDTV and digital TV systems. The system descriptions are clear and well illustrated, with all relevant information on parameters included. The work is surprisingly up-todate, covering the various digital TV proposals at present being assessed by the FCC. A good read and a valuable reference source.

> Wireless, the Crucial Decade, a History of the British Wireless Industry 1924-34, by Gordon Bussey, published by Peter Peregrinus Ltd., on behalf of the Institution of Electrical Engineers, Michael Faraday House, Six Hills Way, Stevenage, Herts SG1 2AY at £ 29.125 pages.

This book was published at about the same time as The Setmakers, a rather larger book that covers from the early Twenties to the present - see review in our March issue leader. It is nevertheless a worthwhile book that provides a deep insight into the subject of radio from 1924-34. In fact
the coverage is somewhat wider than the title suggests, with a good introduction to technical developments from 1888 to 1924 and a chapter on receiver developments in America, Germany and France. In addition the social background is not overlooked. The decade 1924-34 takes us from the era of crystal sets with headphones to quite sophisticated valve designs, i.e. the development of the circuit concepts we still use. Home construction and kits were a major feature of the period and have a chapter to themselves. There are numerous illustrations, mainly period advertisements that show you exactly what was on offer.

Servicing Electronic Systems, Volume 1 and Volume 2 Part 1, by lan R. Sinclair, B.Sc., M.I.E.E. and Geoffrey E. Lewis, B.A., M.Sc, published by Avebury Technical, The Academic Publishing Group, Gower House, Croft Road, Aldershot, Hants GU11 3HR. Vol. 1 £9.95, 225 pages. Vol 2. Part 1 f11.95, 334 pages.

These books are a completely revised edition of Electronics for the Service Engineer, forming a textbook for the City and Guilds of London Institute Course No. 224 as revised in 1989, also covering the equivalent BTEC course. They have been written with the special needs of those studying at home in mind. Volume 2 Parts 3 and 4, covering television and radio reception and control system technology respectively, are in preparation.

These clearly written and well illustrated books should be of great benefit to those studying for the CGI Course 224 examination. They can also be recommended to those who simply want to go through the basics of electronics in order to obtain a proper understanding of the subject. Little that could be of help seems to have been left out: you are even told how to wire a fuse and use a calculator. By the time you've got through Vol. 2 Part 1 you'll be familiar with such things as chopper power supplies, microprocessors and simple computing systems.

The Maplin Electronic Circuits Handbook, by Michael Tooley, published by Heinemann-Butterworth Ltd., Halley Court, Jordan Hill, Oxford OX2 8EJ at $£ 10.95$. 288 pages.

This book serves as an introduction to electronic circuit design: in fact it's all you need for most circuitry. To start off with the characteristics of the various types of resistors, capacitors etc., are laid out so that the appropriate component for a particular application can be selected. Subsequent chapters deal with the various types of power supplies, amplifiers, filters, logic circuits, timers, etc., all with practical examples. Test equipment, stripboard layout techniques, soldering and desoldering are all covered. An excellent book for anyone who needs to devise circuits for various applications from time to time. It's also a good guide to circuit operation.

Modern Electronic Test Equipment, Second Edition, by Keith Brindley, published by Heinemann Professional Publishing, Halley Court, Jordan Hill, Oxford OX2 8EJ at $£ 12.95 .261$ pages.

The publishers say that this book "describes in a down-toearth manner how the main categories of test equipment work, allowing the reader to compare available instruments, make an informed choice and then use the equipment to best advantage". That sums it up in part, but
there's quite a lot more. For example the chapter on measurands and measurement equipment describes measurement and testing techniques covering a wide range of applications starting with aerials through, in alphabetical order, to transmission lines. Just about every sort of amplifier measurement and measurements of basic electronic parameters are covered. Coverage of digital subjects includes a detailed section on data buses. Some quite sophisticated equipment is described, including logic analysers and time-domain reflectometers. Don't let such long-winded words put you off: the treatment is, as the publishers say, "down to earth".

343

Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

The Test Case workshop has gained a new recruit. We'll call him Sherlock because of his earnest and painstaking efforts at tracking down the causes of faults. Though not yet fully proficient he's learning fast: part of the learning process was provided by a Ferguson set fitted with the TXO chassis.

The TX 90) was amongst the last of the "traditional" British designs: casy to understand and easy to service. So we gave Sherlock the job of repairing one that came in with the complaint "bad picture". When it was tried out in the workshop the set had a bad picture indeed: there was lack of brightness and a total absence of colour. The sound was fine, the picture size correct and the grey scale looked all right. Off with the back then and out with the service manual.
There were several circuit diagrams in the manual, each slightly different to cater for various control options and tube sizes. In sorting out the correct one Sherlock came across a circuit with a pencilled ring around R231 and a little caption that read "dim picture". Good old Television Ted! Since R231 is part of the current sensing network in the beam limiter circuit it would indeed have this effect. Sherlock confidently fitted a replacement and switched on. But he was faced with the same dark, black-and-white picture as before. Oh well!

Most of the post-detector signal processing in this little chassis is carried out by the UPC1365C colour decoder chip. While studying the block diagram for this device Sherlock noticed that colour and brightness are controlled by the voltages applied to pins 4 and 8 respectively. So he used his shiny new digital multimeter to check the voltages and compare them with the figures given on the circuit diagram. They were correct, and responded to operation
of the customer controls as they should. The chip's supply voltage was the next check. It was spot on at 12 V .

If what's coming out of a chip isn't right it's a good idea to check on what's going in. So the oscilloscope was next brought into play to check the luminance and chrominance input waveforms at pins 5 and 11 respectively. With a colour-bar generator used to provide the signals the waveforms were seen to be perfect, text-book style. Why did Sherlock have to get two faults at once? Or were there two faults? He rang the customer to ask whether the brightness and colour problems had occurred simultaneously. Yes he was told: the picture had flickered and "mucked about" for a few minutes, then settled in the fault state permanently. Was it repaired yet? Was it a loose wire? No and no said Sherlock.

Back to the set then. Ideas were beginning to run out, but the tube's first anode voltage was cheeked and the 4.43 MHz crystal was replaced. Neither step helped. Finally Sherlock decided to try a new UPC 1365 C chip and asked Television Ted where one might be found in the stores. But Ted knew that this chip is seldom the cause of such faults. He decided to check the situation for himself and, after a few minutes with the scope, he had a diagnosis that proved to be correct. It wasn't the chip!

Apart from the fact that they are dealt with in the same chip, though by separate sections, what else is common to the processing of the luminance signal and the decoding of the PAL colour? What had Sherlock overlooked in his investigations? The cost of the faulty item is measured in pennies rather than pounds. See next month for the answer and another diagnostic puzzle.

ANSWER TO TEST CASE 342 - page 591 last month -

Tape gobbling is a horrible fault, for both the customer and the technician, especially in the form described last month - a rare and intermittent loss of take-up in the reversesearch mode. The Panasonic NV370 behaved itself impeccably for most of the time, but each time it failed it ruined a tape. The biggest difficulty lay in attempting to diagnose the cause of a fault that occurred once in a blue moon and afford just a few seconds' investigation time before the deck shut down as a result of syscon action.

Following the detailed checks on the reel-drive system. and in view of the fact that the torque on the left-hand spool always measured correctly. Sage became convinced that the cause of the trouble lay elsewhere. If the capstan was reeling out tape and the correctly-powered spool couldn't take it up, there had to be some impediment between them. What's between the two? The head drum of course.

Sage discovered that even when the machine managed to work in the review mode the tape was as taut as a drumskin between the drum and the left-hand spool. The cause was excessive friction at the periphery of the lower section of the drum. It was sufficient almost to balance the torque at the spool. The cost of replacing the lower drum could not be justified in this seven year old machine, so the customer now avoids using the review mode.

Published on the third Wednesday of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the Riverside Press Ltd., St Ives plc. Distributed by IPC Marketforce, King's Reach Tower, Stamford Street, London SE1 9LS (071 2615000). Sole Agents for Australia and New Zealand - Gordon and Gotch (Avsia) Ltd; South Africa - Central News Agency Ltd. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

THE VERY LATEST OFFERS FROM A.M. COMPONENTS LTD

NEW CORDLESS TELEPHONE ONLY E48.95 EACH

The GEEMARC 2000 Cordless Telephone is approved for use as an extension telephone on any business or private (domestic) exchange line.
This model comes complete with 1.8 m mains lead, 2.8 m telephone extension lead and socket and 2.6 m aerial lead. Full instructions for use are enclosed, and the telephone is guaranteed for 12 months.
Order Code: CORDLESS Price Each: $£ 48.95$
For full feature details, ask for a copy of the June Tradelink.

JVCIFERGUSON VIDEO COMPONENTS ON OFFR

OrderCode

JVC TRANS CASS ROLL

CASS HOUS
CASS HOUS 1
Mains transformer for 3 V35, 3 V39.
Normal
Price
Each

Offer

Cassette loading roller assembly for 3V23, HR7700.
£21.49 Price
$£ 3.95$
$£ 19.49$
Part No 01X0-033-454, PU49042A.
Cassette housing assembly for $3 \vee 35,36,38,39,49$.
£23.95
$£ 19.99$
Part No 01 XO-065-016, PUS26805Q. ORIGINAL PART.
$£ 22.95$ £ 19.99
Part No PUS26805U. ORIGINAL PART.
£3.79 £3.39

SAVE UP 1060% ON SCART LEADS

Order Code

SCART 01
SCART 02
SCART 04
SCART 05
SCART 10
SCART 11
SCART 12
SCART 13
SCART 14
SCART 15
SCART 16
SCART 17
SCART 18

Description

Scart plug to $2 \times$ scart sockets
Scart plug to $2 \times$ scart sockets. Switched.
Scart plug to 5 pin din plug and $2 \times$ BNC plugs
Scart plug to 8 pin mini din plug. For use with camcorders.
Scart plug to 6 pin din plug. BBC home computer.
Scart plug to $2 \times$ phono plugs and 1×5 pin din plug
Scart plug to scart plug (9 connections)
Scart plug to scart plug (fully wired)
Scart plug to $2 \times$ BNC plugs and $2 \times$ phono plugs Scart plug to 5 pin din plug (180)
Scart plug to $2 \times$ BNC plugs and $4 \times$ phono plugs
Scart plug to $2 \times$ phono plugs and $4 \times$ phono plugs
Scart plug to $2 \times$ BNC plugs and 1×7 pin din plug
length
0.5 m
1.5 m
1.2 m
1.5 m
7.2 m
1.2 m

Normal
Price Each
£5.95
$£ 8.49$
£3.10
£2.29
$£ 1.49$
£2.50
$£ 3.10$
£4.95
$£ 4.49$
$£ 1.49$
£3.16
£2.05
£3.50

Offer
Price Each
$£ 4.90$
$£ 6.98$
£2.48
$£ 1.88$
$£ 1.30$
$£ 1.98$
$£ 1.95$
$£ 1.95$
£3.54
$£ 1.19$
$£ 2.40$
$£ 1.63$
£2.99

AMBERSIL FREEZER ONLY £1.69 PER CAN

CLEARANCE LINES

TV SWITCHES for Philips. Rediffusion, Sony and Thom VIDEO DRIVE COMPONENTS for GEC/Hitachi, JVC/Ferguson, Panasonic, Sanyo, Sharp, Sony and Toshiba ...
... For a full listing, phone 0203471241 and ask for a copy of the June Tradelink.

3 HOUR VHS VIDEOTAPE FROM ONLY 99p EACH

High Grade Lifetime Guarantee
Order Code: VIDEOTAPE 180
Offer Price: $\quad £ 1.35$ each for 10
£1.19 each for 60
99p each for 180

Call the Credit Card Hotline on 0203471241 (24 hours) to place your order.

The 1991 A.M. Components Catalogue is available priced $£ 1.00$ (including $P+P$)

Please note these prices are exclusive of VAT and delivery charges.

NO SERVICE DEPARTMENT SHOULD BE WITHOUT ONE

EXCLUSVELI From

DALBANI (UK) LTD.

JAPANESE COMPONENTS SPECIALISTS ELECTRONIC COMP. DISTRIBUTORS (Imp. Exp. EX-STOCK DELIVERY 6,000 DIFFERENT PARTS

TRANSISTORS			INTEGRATED CIRCUITS			
$2 S A$	BD	BUY	AN	LM	SAB	TC
$2 S B$	BDW	DTA	BA	M	SI	TCA
$2 S C$	BDX	DTC	CX	MB	SLA	TD
$2 S D$	BF	MJ	HA	MC	STA	TDA
$2 S J$	BT	MJE	KA	MDA	STK	TEA
$2 S K ~$	BU	$1 N$	KIA	MEA	STR	TTL
$3 S K ~$	BUT	$2 N$	LA	MN	STRD	UPC
AD	BUW	$1 S$	LB	NE	TA	UPD
BC	BUX	TIP	LC	SAA	TBA	CMOS

STOCKISTS OF IC's \& TRANSISTORS, AUDIO AND VIDEO HEADS, MOTORS, IDLERS, PULLEYS, ROLLERS, BELTS AND
TYRES FOR RADIO CASSETTE, VIDEO AND TV'S. (ORIGINAL AND COPY REPLACEMENT PARTS AVAILABLE)

[^0]

CONTAINS NEW RANGE OF SM KITS FULL RANGE OF COMPONENTS \& SM HARDWARE 538 Liverpool Rd, Great Sankey, Warrington, Cheshire WA5 3LU Telephone: 0925727848 (Callers by Appointment)

TV LINE OUTPUT TRANSFORMERS

PHONE 081-948 3702 FAX: 081-332 0583
ALBA . AMSTRAD . BUSH . DECCA . DORIC . ETRON. FERGUSON FIDELITY. GEC GRUNIDIG GRANADA HITACHI HINARI. INDESIT . ITT . KIMARA . NIKKAI MATSUI . MURPHY . OSAKI . NORDMENDE
REDIFFUSION PYE PHILIPS SANYO , SAISHO . SHARP SONY. SOLOVOX. SUSUMU TANDBURG TELEFUNKEN THORN . TRIUMPH . HUANYU GOLDSTAR

COMPUTER MONITOR TRANSFORMERS STOCKED

TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD

Soldering Irons for the more sensitive...

Faulty soldering joints are a major cause of circuit failure Antex precision soldering irons provide a solution to this frequent problem

The essence of accurate and reliable soldering is to maintain the bit temperature at the optimum level. Antex irons are designed with the bit surrounding the element, for maximum heat efficiency. This ensures that the bit remains at a constant temperature, reducing the risk of component overheating and circuit failure

Antex soldering irons are available as fixed temperature models for most electronic and light electrical applications, or adjustable temperature models for soldering of more sophisticated components where lower temperatures are necessary.

Antex also supply a range of soldering stations as well as

mamex

COMPEITIIVE RATES All MANOR JAPANESE and EUROPEAN MANUFACTURERS

Choltrec Workshops B96
Cholfont Grove, Norcot Lane,
Chatlont St. Petar, Garronts Cross,
Buckinghomshiris SL9 8TN
Tal: 0240771810 Fox: 024072982 Telex: 837254 SSVC G

New and rebuilt for most makes of T.V. including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX, 45AX, F.S.T. Special offer: 14" Colour Tubes from $£ 39+$ V.A.T.

Two year guarantee with a four year option.
Price list available on request.
$\triangle K P R E S S T . V . S U P P L E S$ THE MILL, MILL LANE, RUGELEY, STAFFS WS15 2JW FAX: 0889575600

HEAD OFFICE	AGENT	AJC	AGENT
RUGELEY	BRISTOL	SOUTH-WEST	LONDON
0889577600	0454316285	0395266210	$071-2639824$

TRADE ONLY
 MICROWAVE OVEN PARTS

MAGNETRONS DIODES TRANSFORMERS LAMPS • FUSES • MICROSWITCHES

PHONE NOW FOR PRICE LIST A.W.I. MICROWAVE OVEN COMPONENTS

Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP

Telephone: 0983296121 Fax: 0983296122

A.Z. ELECTRICS

VIDEO HEADS
 AMSTRAD

3HSSR-VCR7000 (Saisho/Orion) PSF1-VCR4500,5200,9000 PSF3-VCR6000

FERGUSDN

3HSSV-2 Head universal.
3HSSAVB-3V 32 HR 7.46 etc
3HSSAVC-3V48HRD565
3 V48,58,59,65,FV10,11.
12,13,14,20,21,26
And most other Fergusons
HITACHI
3HSSHA-VT 8000,9000 senes
3HSSHB-VT11, 33 etc
10082-VT120,220
10081 -VT130, 135

PANASONIC

3HSSN-2 Head unlversal
3HSSU1N-NV $100,370,380$ Philips VR6460 3HSSU2N-NV230,470,480,69,10, 11.15PX

3HCS3N-NV777 460
3HSS4NB-N 730
3HSSANA-NV366
NVG30,33,40,45,46,130, \& most other Panasonics.
SANYO
3HSSSY-VHR1100,1110,1300 3HSS3SY-VHR 1500
SHARP
3HSSSP-VC9300, $9500,9700,381,481$ 3HSSSPB-VC581,583,651,670 etc VC7000,8000 series (Brass)
OTHER MAKES
Alba 4000, Goldstar 8000 , Sentra 8000
Fisher FVHFS $10,520,530,615,710$ etc Fisher VB $\$ 7000,9000$ etc
Hinari VXLL $2,4,3,20,25$
Hinari VXLL, $6,20 \mathrm{H}$
Mitsubishi $\mathrm{H} 306,710$
Orion VC150, 180, VH1, 2,3 etc. Saisho VR100,605,705,805,905 Samsung Universal 2 Head Toshiba
V7173 7475 71, 73, 7, 75, 81, 82, 83, 84, 85, 87 oshilba V93.

ASK FOR VIDEO HEAOS NOT LISTED
the above heads are new and replacements. 18.00890 51.50
5856.00
986
$\{17.00$
$⿷ 17.00$

ع11.00
$\underset{\sum 34.00}{ }$
${ }^{817.00}$
$\$ 47.00$
$\mathbf{~} 42.00$

Solavox
c27.50

${ }^{5122.50}$

95.00	
.00	

c81.00
815.00

cisi.00
E88.00 crat
ct AKA1 KITS AKAI

VS4,6,9,15
….....

AMSTRAD

7000
VCR4600,5200.
VCR4500,9000.

FERGUSON/JVC

3V00/16/22 Mechanical
3 V 23
3V29/30 Loading Belt 3V31/32
3V35/36/38/39
3V42/43/44/45/48/54/55
3V58/59/64/65/8950/51//V10/

11/12/13/

FISHPE520/530
FVHP520/530
FVHP615/710/15/716/722/725/
830.

FVHP905/906/907/908/910/ 911/915/916
HITACHI
VT11/14/17/19/33/34/35/38/39/
88..../61/62/63/64/65/85/86 VT100/110/111/113/115/118/120/
125/130/135/145/150/175
VT8000/8500
VT9300/9500
PANASONIC
NV230/250/280/370/380/430/450/ 460/465/485/630/810/830/850/870 ${ }^{515000} \mathrm{NV} 300 / 333 / 340 / 366$

NV20003008
NV2000/3000
.... 1.90
57.50 NV7000/7200/7500/7800..

PHILIP̄S

NV730
VR63676467/6561/6751/6760

SANY
${ }_{8151.00}^{515}$ VTC5000/6500
VTC5300/5350
VHR1100/1300/1500
VHR2300/2500/2700
SHARP
VCF3NC402/500/571/581/582
583/584/585
1681/682/683/
684/685/693/700/7832.10 … 2.10
VC200/381/384/385/386/390/
1.20 1.10
2.00
2.90

488/496

VC730077007750
1.95
1.95

NEW LINES

Unive
 20.00 Video Idler Spring Kit 5.95
 E21.00 Video Washer and E Clip Kit
 \qquad
 Universal Video Head Puller

TOSHIBA
V8700/9600

V31/33
V73/81/83/85
Bell kits for Funai, GEC, Goldstar Grundig, Hinari, ITT, Milsubishi, NEC, Orion, Saisho, Samsung,
Schneider, Sony and Tensai also available.

LINE OUTPUT

TRANSFORMERS

Decca 100

iTr Cvc20
IT CVC25/30/32
ITT Compact 80 Series 110
IT1 Compact 80 Series 90
ITT CVC45.
ITT 1109F
ITT CVC1204.
ITT CVC800/1/3
ITT CVC1100..
IT CVC1150/1175
$I T \pi 6325$
$I T 3546$
TT 1200/1
Other $17 T$ translormers avaliable
Fidelity all models up to $20^{\prime \prime} \mathrm{ZX} 3000$
Fidelity Panel for ZX2000
Fidelity 22" ZX3000
Hinan CT4/5
Philips KT3
Rank Bush T20A
Thorn TX 100 Green Spot 110
Thorn TX90 Mains Trans
Ferguson TX90 LOPT
Ferguson 3V35/36 Mains Transtormer
Ferguson 3V44/44/45 Mains Transtormer
Sony - Please state model for price
Universal Tripler
Universal Tripler with focus unit
Decca 120/130 series tripler
Thorn TX10 Focus Unit Kit
VIDEO MOTORS
REEL MOTORS
Ferguson 3V29:30
Ferguson 3V58,59,65,
FVio,11, 12,13,14,20,21,22
Ferguson Fi260́ $1505400,5300,6500$
Sanyo VTC5000, $5150,5400,5300$
Sharp VC9300,9500 etc, Original
Panasonic NV 333,366 Original.
Al other Panasonics
Ferguson/JVC (Mectranical models) Sharp 7000 Series Original All Panasonic Original
CAPSTAN MOTORS
Ferguson 3V35.36 Original
Ferguson JVC (Mechantical models)
HrtachVT111 Original
HitachiVT 33 Original
Hitachi VT64 Orignal
Hitachi VT8000 series Original
HitachivT9000 series Original
Sharp VC7000 series Origal
MODE CONTROL MOTORS
Ferguson 3V42, 43, 44, 45, 48, 49, 52.53 Ferguson 3V58,59,65,

IDLER ASSEMBLIES

fERGUSON
Take up Clutch (Mechanical models)

AN3215K	${ }^{\text {¢ }}$ 4.50	AN7172K	¢2. 95	HA11713	${ }_{5} 3.50$	LA4t78	12.75	PLL02A	${ }^{5} 5.00$	STK 5325	${ }^{56} .75$	TA7628P	${ }_{5}^{51.95}$	${ }^{\text {Bras }}$	${ }^{c} 0.70$	
AN3312	$\underline{2} .95$	AN7173K	${ }_{5} 5.50$	HA11714	${ }^{53} 50$	L44180	¢1.95			STK5332	53.50	TA7640AP	¢1.30	BFP91	${ }_{51.20}$	
AN3320K	¢4. 95	AN7178	9.50	HA11715 HA11716	$\begin{gathered} \xi 3.50 \\ \$ 4.75 \end{gathered}$	LA4182 LA4183	$\begin{aligned} & £ 1.95 \\ & £ 2.20 \end{aligned}$	SAA1124	${ }_{52}^{22.50}$	STK5337	$\begin{aligned} & £ 7.25 \\ & £ 4.50 \end{aligned}$	TC91068P	4.95	BRY56	$\begin{gathered} { }_{80}^{0} 0.50 \end{gathered}$	
AN3792	${ }^{2} 5.95$	An7470	${ }_{5}^{2} .20$	HA1176	${ }^{24.75}$	LA4190	$\frac{£ 2.20}{£ 1.75}$	SAA5042	${ }_{68} 80$	STK542	¢6.50	toal010A	$\$ 1.40$			
AN3822K	¢6.95	BA 1335	$\underline{52} 50$	HA11718	E4.75	La4192	$\underline{11.75}$			STK5422	โ6.50	TDA1011	\$1.40	8U208A	$¢ 1.00$	ON GREE
AN5010	\% 2.95	BA1355	¢2. 20	HA:1724	[8.00	LA4201	£1.60	STA301A	${ }^{5} 3.95$	STK5451	${ }^{〔} 5.30$	TDA1015	¢1.50	8U208	11.00	ONDON W2 11G
AN5011	$\ldots 3.95$	BA5102A	$\underline{0} 50$	Halit27	¢8.50	Lasz60	¢2.30	STA401A	¢4. 50	STK547¢	${ }_{5}^{5} 5.50$	TDA1170N	¢1.50	8U326A	${ }_{51.20}$	
AN5030	${ }^{\text {¢ } 4.50}$	BA5	${ }_{c} 2.50$	HA17736 HA11744	${ }_{[56.50}$	La4261	$\underline{\$ 2} 75$	STA441C	$\underline{2} .75$	STK5482	¢5. 5	TDA1506	¢4.35	BU407	${ }_{c} 0.70$	Tel: 071-723 9246
AN5071	c1. 20	bas402A	$\underline{52.50}$	HA1 7745	¢7.50	LA4280	¢2.95	STK00	¢4.75	STK5720	¢4.25	TDA1510	¢3.60	BU408	¢0.95	
AN5135K	§3.95	BA5406	¢1.50	HA17745NT	87.50	La4420	11.50	STK00	${ }^{54.75}$	STK5725	\$4.25	TDA1510S 1	¢.95	8U426A	${ }^{50} 0.80$	ax: 071-202059
AN5150	[5.		\$2. 20	HAHA11747A	¢7.50	LA4422	£1.50	SIK0040	${ }^{26} 5.25$	STK ${ }^{\text {c }}$	[4.25	TDA1515	12.50		5	
AN5151N	¢6.50	BA6104	${ }_{51} 60$	HA117449 ${ }^{\text {HA }}$	E4. 25	LA4445	${ }_{52} 12.50$	STK433	${ }^{185} 5$	STK7308	¢5.95	TDA1770A	${ }_{1}^{21.95}$	BU508A	19.00	DEO HEAD
AN5265	E1	8A6 122	¢2. 20	HA1 1750	¢5.00	La4446	¢2. 20	STK435	¢5.50	STK7309	¢6.50	TDA2002	¢0.80	BU5080	$¢ 7.00$	AMSTRAD 4500/5200/9000 $£ 18.00$
AN5410	§. 95	BA6124	¢2.50	HA12002	[1.95	La4460	¢1.80	STK437	17.50	STK7348	¢4.95	TDA2003	c0. 95			MSTRAD VCR 7000 $£ 11.00$
AN5435	$\underline{2} 20$	BA6208	¢1.95	HA12	¢2.	La4461	51.80	STK443	c8. 95	STK7404	¢6.95	TDA2004	¢1.95	2N3055	${ }^{\text {co. }} 50$	HITACHIVT11/14/33 $£ 16.00$
AN5436	$\underline{20}$	BA6209	81.95	HA12045	¢3.25	La4465	¢2.30	STK457	¢7.50	STK8050	${ }^{9} 9.50$	TDA2005	¢1.95		. 50	HITACHI VT8000/9000 $£ 16.00$
AN5510	$\underline{2} .75$	8A6218	11.95	HA12	53.75	L44466	¢2.30	STK459	¢7.75	STK8250	${ }_{512.95}$	TDA2006	¢1.			HITACHI VT7/17/19.. $£ 32.00$
AN5512	$\underline{5} .95$	BA6219	£2. 20	HA1300\%	¢1.90	La4500	¢2.50	SIK463	c9. 50	STK82601	¢12.50	TDARO20	${ }_{\text {¢1 }} 1.50$	25A1185		HITACHI VT35/39...................................... $£ 34.00$
AN5515	$\underline{2} 20$	846229	\%2. 20	HA13007	¢4.50	las	$¢_{5.80}$	STK1050i	${ }_{57} 9.95$			TDA2510	$¢_{13.95}$	2541264	1.95	JVC/FERGUSON PV 31332G£8.50
AN5610N	14.50	ba6302A	c1. 80	HA13403V	$\underline{5.50}$	LA4510	¢1.75	STK1070ii	$\underline{9} 9.75$	STH	${ }_{55} 5.20$	TDA2611A	¢1.30	2SA1516	$\underline{2} 50$	JVC/FERGUSON HRD 180/230/3V59 £33.00
AN5620X	¢3. 50	BA6304	11.75			LA4520	¢1.50	STK2028	17.50		55.20					JVC/FERGUSON HRD 725/755/3V43/3V53...... £39.00
AN5622	£3. 20		11		\$1.95	LA4	£2.75	STK2029	${ }^{56} .50$	ST	55.20	toa3500	¢5.50	2SB528	¢0.60	
	£3.75	BA6328	¢2.20		¢1.75	La63580	91.20	STK2038ii	$\underline{59.50}$	STR441	55.20	IDA	\$4.50		$¢_{0} 0.60$	JVC/FERGUSON HRD 7655/3V32/8942 $£ 27.00$
AN5700	51.75	BA6411	¢2.20	KA2212	¢1.20	LA7031	92.60	STK20	¢9.75	STR450	55.20	-				MIT SUBISHI HS 303/304/310/320/700 £28.00
	1.20	BA	¢2		1.20	La	2	S12125	cs	STR451	55.20	TDA3560	3.90			£8.50
AN5750	¢3.75	8A7023L	¢2. 50	KA2284	[1.20		${ }_{53} 2.85$			STR453	$5_{55} 5$	TOA3561A	9. 9.9	2SC1403A	¢4.50	PANASONIC VEH 0218 .
AN5	F1. 40			la	¢2.50	LA7800	¢1.50	STK2155	${ }^{59} .50$	SR454	${ }_{5} 5$	TDA3562A	¢4.50	2SC1413A	¢2.60	PANASONICVEH 0287 - ${ }^{\text {PANASONIC VEH } 0286}$
AN6130	¢2. 50	EX8341	¢4.50	LA1135	52.50	LA7801	¢1.50	STK2230	${ }^{56} 50$	STR457	¢5.20	TDA4500	£3.95	$2 \mathrm{SC}+1$	co. 10	PANASONIC VEH 0177
AN613	1			LA1140	¢2. 20	LA7806	¢2.50	STK2240	${ }_{59}^{59} 50$	STR1096	84.95	toas	¢4.50	${ }_{2 S C 1969}$	81.75	PANASONIC VEH 0174......................................25.00
	81.75	HA1196	¢1.75	La1150	${ }_{¢ 1} 1.75$	14.8808	${ }_{52}^{2} 2.75$	STK3041	${ }_{5}^{59.50}$	STR2005	$¢_{5.95}$	TDAA505	E3.95	2SC2166	1.60	PANASONIC VEH 0174 (original) $£ 32.00$
AN	${ }_{5}^{51.50}$	HA		La1185	${ }_{\text {¢1. }}^{1.75}$	La7830	$\underline{2} 2.20$	STK3042	${ }_{56} 5.50$	STR2010	[6.20	tDa4510	¢3.95	2SC2235	20.40	PANASONIC VEH $0267 . .$.
AN6326n	${ }_{5} 3.50$	HA1338	$\underline{2} .95$	LA1230	\$1.50	LA7831	¢2. 50	STK3044	¢5. 75	STR2	${ }_{5}^{5} 5.29$	TDA4600	£2.75	2SC2335	$\underline{1.20}$	PANASONIC VEH 0267 (original) $£ 337.00$
AN6327	$\ldots 3.50$	HA1339A	¢3. 50	LA1231N	[2.00			STK3062	$¢_{56} .75$	ST	${ }_{\text {¢6\% }} \mathbf{2 0}$	TDA4600. 2	¢2.50	$25 C 25$	${ }^{2} 0.50$	PANASONIC VEH 0210................................. $£ 35.00$
AN6328	$¢_{3} 50$	HA1367	${ }^{53.50}$	LA1363	£1.20	L81403	11.50	STK3082:	${ }_{6} 6.95$	STR42	¢4.50	TDAA600-20	¢2. 50		$\frac{9}{c} .75$	PANASONIC VEH 025229.50
AN6	¢2.95	HA1372	${ }^{2} 3.50$	LA1365	¢1.50	LB1405	\$1.50	STk3102il	${ }_{6}{ }^{5} 5.75$	STA5015	¢6. 20	TDA7250	[4.95	2		PANSONIC VEH 0252 (original) $£ 35.00$
	C4. 75	HA1377	9.20	LA1385	¢1.95		1.50	STK4017	${ }_{6} 5.75$	STR5412	55.20		¢1.00	2503	$\ldots 2$	SAMSUNG Most Models $£ 19.50$
	${ }_{5}$	HAR 3888	9.95	Lar200	12	181640	$¢ 2.20$	STK4025	55.50	STA6020	${ }_{5} 5.20$	UPC 1025 H	£2.30	$2 \mathrm{SC31}$	E. 70	SANYO VHR $1100 . \ldots . \quad$.
AN6344	${ }^{5} 4.75$	HA1394	$\underline{7} .50$	LA2100	$¢ 2.95$	L81649	£2.50	STK4121	¢6.95	STR50020	56.20	UPCC18	¢2.50	$25 \mathrm{C3281}$	¢2. 95	SANYO VHR $3100 / 3200 \ldots . .$.
AN6346N	¢3.75	HA1396	¢3.75	LA2200	£1.50			STK4122i	¢5.95			UPC1188H	9.75	$25 C 3300$	92.95	SHARP VC 6300/7300 original (BRASS) £32.00
AN6356N	¢3. 85	HA1397	¢. 50	LA2400	£1.50	LC7137	¢4.50	STK4131ii	$¢_{6.75}$	STR58041	5.20	UPC1191V	¢1.20		$\underline{52} 75$	
AN6357N	${ }^{4} .50$	HA1398	2. 50	LA3101	£1.75	LC7363	53.75	STK4132il	¢6.75			UPC1197C	$\uparrow 1.60$	2 S	$\underline{2} .95$	SONY DSR 36 ... $£ 17.50$
AN6359	${ }^{\text {c } 5.50}$	HA11122	[2.95	LA3160	¢0.95	107815	${ }_{5}^{2} 295$	Stk41411	¢7.50	TA7193		UP	¢2.50			OSHIBA V31/3
ANE360	${ }_{6} 9.50$	HA11211 HA11215A	${ }_{\square}^{12} 2.30$	LA3201	¢0.95				$\underline{7.30}$	ta 72054 P	1.00	UPC 1241 H	11.95		\% 50	
AN6371	¢. 25	HA11219	$\underline{1.75}$	LA3210	¢0.85			STK41511i	¢7.50	ta7217AP	\$1.60	UPC1263C	$¢ 2.30$	O424	${ }^{23.95}$	PECIAL OFFER - TOSHIBA TRANSISTORS
AN6	¢5. 59	HA11221	9.20	LA3220	¢1.50	LM3014N	2.75	STK4152i	¢7. 85	TA7222AP	$¢ 1.30$	UPC1277H	¢2.50	${ }_{2 S 04}$	${ }_{51} 1$	2SC1815 100 for £3.00
AN6610 AN6671K	${ }^{\text {c1 }}$	HA12	${ }_{64.50}$	LA3310	$\sum .75$			STK41711i	${ }_{68} 8.95$	TA7232P	\$1.95	UPC1318AV	¢2.75	250768	51.20	6.9.12-C.W
AN6676	55.50	HA11227	$\underline{¢ 2.20}$	LA3350	\$1.30	M5218L	¢1.95	STK4172i	[8.95	TA7233P	¢2.50	UPC1335V	¢2.75	$2 \mathrm{SO81}$	$\underline{2} .95$	12-C.C.W
AN6677	¢4.95	HA1	¢1.95		¢1. 20	M5218p	${ }^{2} 0.95$	STK4181	¢8.95	TA7240AP	$\underline{¢ 2.95}$	UP	¢2.75	250845	${ }_{4}{ }^{2} 95$	SSETTE HEA
AN0876	¢1.	HA11244	$\uparrow 2.9$	La	¢2.50	M5102L	2.95	STK49	${ }_{8}$	taza ${ }^{\text {a }}$	${ }^{2} .95$		5.95	2 S	c0.60	Mono
AN7062	\%. 75	HA1125	c2. ${ }_{\text {c }}$	LA3376 LA3600	$¢_{¢ 1.50}$	M51358P	${ }_{\text {¢1 }} 1.75$	STK4332	${ }_{\text {¢ }}$	ta7250BP	$\underline{52.95}$	UPC 1373 H	18.20	2501275	1.100	Stereo $\quad £ 1.80$
AN714	5.50	HA11423	${ }_{52} 12.80$	LA4030	¢2.50	M51393AP	${ }_{44} 4.50$	STK4352	55.90	tA72518P	$\underline{52.95}$	UPC1387C	¢1.95	25	¢1. 20	Auto Rev
AN7147	52.50	HA11440	$\underline{\square} .95$	La4031P	£1.95	M51397AP	¢5.50	STK4793	c9.50	TA7270P	${ }^{〔 2} .50$	UPC1391H	£1.50		¢2	
AN7148	12. 30	H811580	$¢_{5} 5.25$	L44032P	¢1.90	M51521L	¢1.90	STK4803	${ }^{2} 8.50$	TA7271P	c2. 50	UPC14	${ }_{6} 6.75$	${ }_{2}$	${ }_{¢ 1} 1$	ISPATCHED WITHIN 48 Ho
AN7149N AN7156n	${ }_{\text {¢2 }}^{5} \mathrm{~F} .50$	HA11701 HA11703	${ }_{¢ 4.50}$	LA4t00 LA4101	${ }_{¢}^{¢ 2.20}$	M 51522 M 54543 L	¢1. $¢ 1.50$	S STK4833 STK43	$¢ 9.50$ $¢ 8.95$	TA7281P	$\underline{2} 2.75$		£0.25	$\begin{aligned} & 2501406 \\ & 2 S O 407 \end{aligned}$	1.195	
AN716:	53.50	HA11704	¢5. 20	LA4102	11.40	M54544L	¢2.75	STK4853	${ }^{59} .50$	7299P	c\% 95	8C517	¢0. 25	2501426	$\underline{2} .95$	llers by appointment
AN7166	$\underline{\$ 3.70}$	HA11705	¢5.9	La	1	M83712	c1.50	STK5211		$7317 P$	¢1. 1.50	8C639	$¢_{\text {¢0. }}$	14		ng times 10am-5pm Mon-Fri. 9-12 Sats.
68	$\mathfrak{2} .75$	HA	[3.75	La4145	¢1.70	MB373	$\underline{¢} 2.20$	SIK ${ }^{\text {S }}$ S 514	${ }^{26} 975$	TA7609P	52.20	${ }_{80243 C}$	${ }_{¢ 0}$	2501453	17.8	VISAACCESS ACCEPTED MIN - TELEPHONE ORDERS $£ 500$
AN7179K	${ }_{53}{ }^{2} .50$	HA11711	$\begin{aligned} & \{3.75 \\ & \mathbf{5 6 . 5 0} \end{aligned}$	LA4970	${ }_{11.75}$	MB8841	5.75	STK5324	$\xi_{5.75}$	TA7611AP	52.20	B0244C	10.50	2 201455	¢2.95	USAAGGESS AGGEPTED MIN. - TELEPHONE ORDERS 25.00

AT LAST!

A COMPANION TO THE BEST-SELLING 'SERVICIIMG TV AND VIDEO' BOOK...
 SHVEE

Due for publication next month by Butterworth Heinemann is the long awaited Hi-Fi and Audio Servicing book by Nick Beer.
In the same style and format as the hugely successful TV and Video Servicing book, this one covers every aspect of audio servicing: radio, tape, disc, CD and DAT, and the mechanics and control systems associated with them.
Sixteen comprehensive and fully-illustrated chapters in 210 largeformat pages give 'hands-on' servicing advice, sticking to practicalities and passing on the author's long experience on the bench and in the field.

TO ORDER SEND $£ 21+£ 1.50$ P\&P (TOTAL £22.50) PAUL RICHARDS BOOKS, 28 BOSCOBEL ROAD NORTH,

ST. LEONARDS ON SEA, E. SUSSEX TN38 ONZ
OR USE OUR CREDIT CARD HOTLINE: 0424434874
TO CELEBRATE, WE'RE OFFERING SERVICING TV AND VIDEO EQUIPMENT (TRUNDLE) AT THE SAME LOW PRICE TILL 15 JULY. BUY BOTH TOGETHER (NORMAL PRICE £50 + P\&P) FOR £43 AND WE'LL PAY UK POSTAGE!
STOP PRESS: NEW (2nd) EDITION OF NEWNES GUIDE TO SATELLITE TV ($£ 16.95$ LIST) ON SPECIAL PRE-PUB OFFER OF
£14.95 + 50p p\&p (Total uk £15.45) FOR LIMITED PERIOD.

ALL OFFERS END 15 JULY
LIST PRICES THEREAFTER
AIRMAIL EUROPE: ADD 20\%. BEYOND: ADD 60\%
Batcivec
VISA

MAIL ORDER ADVERTISING British Code of Advertising Practice

 Adventsement in inis pubsication are required to conform to the British Code of Advertising Practice. In respect of mail order advenisements where money is paid in advance, the code requires adventisers to fulfill orders within 28 days, unless a longer delivery period is stated Where gooos are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.Mail Drder Protection Scheme
If you order goods as a private individual from Mail Order advenisements in this magazine and pay by post in advance of delivery, Television will conslder you for compensation if the Advertiser should become bankrupt or go into liquidation provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days
from the official on sale date of the publication and not later than three months from that
date. (Please retain proof of payment) date. (Please retain proof of payment).
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has become subject to bankruptcy proceedings or gone
into liquidation up to a limit of $£ 5,000$ per annum for any one Advertiser so affected and up to $£ 15,000$ per annum in respect of all advertisers.
This guarantee covers only advance payment sent in clrect response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as result of answering such advertisements. All display advertisements are covered but only boxed trader classifled adventisements are included. Advertisements as loose insents are not covered.

User Friendly SOFTWARE

FOR IBM COMPATIBLE PC'S RUNNING ON MSDOS FOR THE BUSY TVNCR SHOP/SERVICE DEPT RECEIPT/NVOICE PROGRAM $£ 89$ + VAT + P\&P

OUR TV/VCR RENTAL PROGRAMME IS NOW AVAILABLE

Phone or write for details.

TBR Sotware369 Chepstow Road
Newport, Gwent. NP9 8HJ Tel. 0633282556

REBUILT COLOUR TUBES

First Independent Rebuilder with B.S.I. Certification PIL - In Line - FST N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 081-771 3535 Britain's Oldest Established TV Tube Rebuilder

耳 C I

2 Holyoake Street, Wellington, Somerset Tel: 0823667525 Fax: 0823660277 MICROWAVE OVEN COMPONENTS

Microwave Spares Distributors (Magnetrons) (Transformers) (Capacitors) Distributors for Bussman-Cooper Electronic Fuses and the ECL FUSE SELECTION BOX Ask for our Catalogue NOW!

Huge selections. Complete range. All makes and models available.
\star New Stocks Every Day \star
VHS Video from £30
Television from £3
Working Ex-Equipment Panels

g. But + VA

- IF THE PANEL YOUREQUIRE IS NOT LISTED PLEASE ASK

BRADFORD

Springmill St
Manchester Rd, BD5 7RL
Ring Tony (0274) 308186

MANCHESTER

Unit 3, Mersey Rd North Ind Est., Failsworth Ring David (061) 6834612

Visa/Access welcome
Prices are Plus VAT \& Based on Quantity OPEN 6 DAYS 9-5

Sonic House
Abberley Street Smethwick West Midlands B66 2QU Tel: 021-565 1727 Fax: 021-555 5367
Telex: 0902333199

Sonic TV Distributors Ltd

COLOUR PORTABLE £45

TEXT SETS FROM £45 (Most Common Types)
 JAP BASIC £25
 GII - MK III FIN ETC £15

DIRECT LOADS ANY DA Y - Just Phone

TOP LOADER VIDEO £50 FRONT LOADER VIDEO £65

EXPORT ENQUIRIES WELCOME Tointregat

THE WORKING SET WHOLESALER YOU CAN RELY ON

We specialize in supplying trade customers with top quality working ex-rental TVs \& videos. We offer good product, friendly service \& keen prices.

THE VERY BEST IN EX-RENTAL TV'S AND VIDEO'S

APPROVED BY TELEPRICE AND CLYDESDALE

THIS MONTH'S STAR BUY BETAMAX VIDEO $£ 10{ }^{\text {+arat }}$ * HUGE STOCK AVAILABLE *
DON'T DELAY - CALL YOUR LOCAL BRANCH TODAY OR RING JOHN HENDERSON - 021-327 3273

Specialists in
Stock Liquidation

17 Princess Row
Birmingham B4 7QU

Tel: 0213334023
Fax: 0213334071

THE UK'S NEWEST TV \& VIDEO WHOLESALER

BACKED BY YEARS OF EXPERIECE WE ARE ABLE TO SUPPLY QUALITY ‘B’ GRADE AND EX-RENTAL CTV'S \& VIDEO'S.

QUALITY \& COMPETITIVE PRICES ASSURED.

LOCATED IN BIRMINGHAM CITY CENTRE CLOSE TO THE MOTORWAY NETWORKS.
> 'PHONE NOW FOR FURTHER INFORMATION. EXPORT ENQUIRIES WELCOME.

NIW (B) GRADED FERHISOM STOCK USTARMVED

i.e. 51 cm FAST TEXT WITH NICAM BOX FROM E240.00
FERGUSON VIDEOS BOXED, i.e. FV30B FROM £150.00
(Too many to list)

+ BRAND NEW 21 F.S.T TVs BOXED FROM £155.00

GROWN 14"PORTABLES

brand new

- Full remole control Digita Display on Screen UHFNHF Tuner - 32 Function Remote -
only $£ 115.00$
SAMSUNG 14" PORTABLES
.Full remote control Digital Display on Screen from © 130
EX-RENTAL TVS

9.0	£12	WORRING STOCK
9.6	${ }^{16}$	Brand Hew Handsets for
TX26"F Full Remote	885	Brand New Handsets for
TX9 Text 20".	${ }^{250}$	TS \& Videos
${ }^{\text {TX10 } 10 ~ T e x t ~}{ }^{\text {Tx10 }}$ Tex $26^{\prime \prime}$	${ }_{850}$	from only $£ 7.50$

NON-THORN TVs (OFF PILE) FROM 23.00

3V29, 3V30...ع55 QUANTITY...E50 8941 Remote... 5758942 Remote L.P.... 585

NON-THORN VCRs FROM £35.00
FRESH STOGK ARRIVING DALIY - RING FOR UPDATE ON STOCK

* SPECIAL OFFER STEREO TEXT... 555.00
TX9TX10 BASICS...From £25.00

COME AND SAVE WITH SID AT

 SUPERVISION* ALL PRICES ARE SUBJECT TO VAT * (OFFERS APPLY WHILE STOCKS LAST) * OPEN MON.-FRI. 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$. \quad SAT. 9 a.m. $-1.00 \mathrm{p} . \mathrm{m}$.
WHY TRAVEL THE WHOLE COUNTRY?
RIWG SID NOW OW DIREGT LIWE TO TV WAREHOUSE
LEEDS (0532) 444200 FAX: (0532) 42577

supaizision

UNIT 16, TOWER WORKS, 2 GLOBE ROAD, LEEDS LS11 5QG OFF WATER LANE, NEAR HILTON HOTEL. EASY ACCESS FROM M1 \& M62 (2 Mins)

VISIONS • LONDON

Suppliers of THORN ex-rental TVs and Videos Working or Off-the-pile Unit 4, Rainstar Ind. Estate,
 APPROVED THOPN TELEPRICE DISTRIBUTOR

Phone now!! 081-807 7476/7579 EXPORTENRUIRIESE Fax 081-3456597

UNBEATABLE PRICE OFFERS ON VIDEO \& TV SPARES

REMOTE CONTROLS • TRANSFORMERS • VIDEO HEADS SERVICE KITS • SERVICE AIDS • REFURB MATERIALS PHONE NOW FOR FREE CATALOGUE!!

\star BUY DIRECT FROM SOURCE \star THORN EX RENTAL TV \& VIDEO

From the co-ordinator of the ONLY independent buying group approved by

$\stackrel{\star}{\star}$ TELEPRICE $\stackrel{\star}{\star}$

Why buy second source junk in 1991 NO shortages NO silly prices at:-

UNIT 6,68 BAYTON ROAD, EXHALL, COVENTRY CV7 - Trade Only -

RING GARY ON 0203368437

OFF THE PILE TO FULLY REFURBLSHED AVAILABLE

SEMPLE S S SERVICE
THE ONLY APPROVED THORN TELEPRICE DISTRIBUTOR FOR E. ENGLAND
SIMPLY

BEST PRICES

IN EX-RENTAL TV \& VIDEO EQUIPMENT

RING TONY ON
0553766766
FOR YOUR BEST DEAL YET!

SEMPLE SERVICE
59 HALL RD CLENCHWARTON KINGS LYNN NORFOLK

TRADE MARK OF QUALITY

DSD
 DISTRIBUTION

Have moved their
EX-RENTALTV \& VIDEO WHOLESALE WAREHOUSE

Unit 1, Eagle Works, Springcroft Road, Tyseley, Birmingham B11 Tel: 0217785825 (Fax number the same)

Our range covers: Working TV's \& VCR's, Non Test TV's \& VCR's off the Pile,
' B ' Grade stock and some smaller electrical items.
CALL DAVE NOW

ELECTRIC AVENUE LTD

Suppliers to the trade
SPECIALISTS IN MANUFACTURERS GRADED PRODUCTS
E.G., BUSH, GOLDSTAR, ALBA, GOODMANS, MOULINEX CROWN etc
TV, HI-FI VIDEO and MICROWAVES
Also large range of small Electrical Appliances, e.g. Toasters,
Kettles, Irons, Hair Care, Telephones
All major brand names
TOP BRAND CORDLESS PHONES TO RETAIL. AT 550 RING NOW FOR DETAILS
KINGSWAY HOUSE, KINGSWAY, FFORESTFACH, SWANSEA Opening hours Mon to Sat $9.30-6 \mathrm{pm}$

TEL: (0792) 589797
FAX: (0792) 589797

THRIFTY SPARES (WALES)

C/O CENTREVISION, SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB
INCREASE YOUR PROFITS WITH USED SPARES
MANY MAKES OF USED VIDEO AND TV PANELS - GUARANTEED WORKING HUNDREDS NOT LISTED - PHONE OUR HOTLINE

0222344218

VIDEO THORN, HITACHI, TOSHIBA, IT, SHARP, AMSTRAD, PANASONIC ETC.

USED WORKING VIDEO SPARES

XED BOOSTER	£12.80	MECH COM	. 115.50
SERVO PANEL	.f15.50	DRUM ASS	.f12.80
LOADING MOTOR ASS	f10.50	CAPSTAN MOTOR	.f15.50
BOTTOM BOARD	¢20.50	POWER PANEL	.f15.50
MODULATOR		TUNING BOARD	f18.00

ALL ABOVE PRICES VAT INC.
MANY MAKES OF TV USED SPARES ALSO IN STOCK
OPENING HOURS 9am-1pm-2pm-5pm
POSTAGE \& PACKING $£ 2.50$. ORDERS OVER $£ 50$ P\&P FREE
DONT DELAY PHONE 0222344218 TODAY 24 HOUR ANSWER PHONE

CENTRALTV

LONDON © BIRMINGHAM © BOLTON

UNIVGCEL UHFNHF 14" COLOUR TV WITH INFRA RED REMOTE CONTROL	$\Sigma 110$ (minimum quantily Sleep Timer, 44 progra Function setect. On scre OTHER PRO Personal Stereo, Redio Radio Alams, Video Tap	VAT for this month only) ne non-volatile memory. display. CTS INCLUDE: assettes. Midis, Radios, Bancries.
	HEAD OFFICE	
CTV BOLTON	CENTRAL TV WHOLESALE DISTRIBUTION LTD.	CTV LOND
Unit B1	369 Stratford Road,	Eley Estate,
Enterprise Centre	Sparkhill.	Noble Road,
Washington Street	Birmingham B11	(Off Angel Road, A406),
Off Deane Road, Bolton	Tel: 021-772 1591	
ICi, 00424202	Fav• 021-755 5292	101-607 4151
Extn. 301	Fax: 021-766 6303	181-8841314

 TELELUTSOOCLISSIFIED
No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cm). Classified advertisements 70 p per word (minimum f12), box number $£ 4.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS.

PHONE 071-261 5942 FAX 071-261 5546

VINTAGE TLLEVISION, Ralio \& Audio enthusiasts: contact us for components. valies. vintage CRT: service sheets. radios and amplifiers. Mail Order to anywhere - over the counter retail Saturday only. Send $\notin 1.50$ for $|(x)|$ catalogue and sample newsheet. The Vintage Wireless Company. Tudor House. Cossham Street. Mangotstield. BS17 3EN. Tel. 1272565772 or Fax 1272 575442. All major credit cards accepted hy letter. phone or fax

B \& K 470 CRT RESTORER/ANALYSER with 4 hase adaptors and instruction hook, hòed, as new. Only £135.19) ono. Tel. 051-733.3165

WANTED. SCAN COILS and magnets for the Decea
 Fax. (N8 8 9756(M).

THE VINTAGE WIRELESS AND TV BOOK LISTING. Published regularly conaining hundreds of out of prim old and collectable wireless and T.V. books. magazines ect. Send 4 lirst class stamps for list. or $£ 2.25$ for nat four lists. WANTED pre 1975 wireless or TV Books. Magazines or any related primted materal. Dept T. Cheve Books. 157 Dickson Roidd. Blackpool FYI 2EU TCl. 0253751 K 5.

WANTED. VALVES: EL37, KT66, KT77. KT88. PX4. PX25. Complete collections. Shop ctcarance considered. Also transistors and I.C.s. Send written list we reply within 24 hours. Billington Vallics. Oakdene Industrial Estate. Near Horsham, Sussex RHI3 8AZ Callers by appointment only. Tel. 0403865105 , fax (2403 865146. relex 87271. We also wholesale and export values and e.r.t. for TV, audio. industrial transmitting.

OCHRE MILL TECHNICAL SERVICES. Grundig T.V. spares for most models to 1985 , fast, friendly helplul. sensible prices. Gi Lype Farm. Chartion. Nr. Malinesthury. Wilts SNIG9DR. Tel. (1966) $\times 2: 322 \mathrm{~S}$.

BUSINESS FOR SALE. TV ideo and satellite rental husiness for sale. Offers around $£ 8 .(K X)$ profitable business. Tel. Paignton (0s03) 522s92.
large manuai library for sai.e. Thousands of Audio plus Video, TV. microwave camera's ete. Offers? Tel. 1486412 272

100MHz TEKTRONICS Model 4 ti5B oscilloscopre. As new condition includes accessory pouch. front cover. full manual. $£ 350$ o.n.o. Phone 173,14891252

FOR SALE. Sony Video 8 cassette recorders. model EVO-1000B PAL. E 125 + VAT. Sony PCM stereo procesoms for use with EVO-1(O)(OB. fl(h) + VAT pair $\mathrm{f} 150+$ VAT. ex-demo. Contact G.V.C. Services. Unit 9. Wookicoch Hill Ind Estate. Harefield Road, Rickmansworth. Hertfordshire. Tel. 0923 896293.

AVO MULTIMETER Model $8 \in \mathfrak{t l})(\mathrm{K})$. $5(\mathrm{~K})$ volt Megers E30.(M) prices VAT. Send S.A.E. for lists of surplus instruments \& scopes etc. A.C. Electronics. 17 Apleton Grove, Leeds LS9 9EN. Tel. 1532496048.

METERS RECONDITIONED El(M), slot meters for TV rental $\mathfrak{5} .95 .50$ p slot $£ 2.95$. Tel. Audiotech 07903 245.

METERS. Reconditioned $10 \mathrm{p} / 51 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD). (12022) $683+48$.

COMPLETE CONTENTS of Television and Video repair business for sale. Including spares. test equipment, stock ete. $0623511+18$.

SPARES \& COMPONENTS

IDLAR TYRES

PRICE BREAKTHROUGH
Due to massive bulk purchase we can now supply tyres a £1 each, £4.50 per 5 , £8 per 10
Please quote make/modelfunction and measurements (I.D. O.D./Height)

ADD \&1 for post \& packing
Posta orders only piease for quick delivery.
Stelar Supplies, 53 St Leonards St,
Edinburgh. EH8 9ON. Tel: 031-668-1948.

LOST COST

REPLACEMENT L.O.P.T. for Fidelity $\mathbf{3 0 0 0}$ chassis £8.50 each + £1 P\&P + VAT Send large SAE for list of bargain priced spares. A.G.S. ELECTRONICS

Unit 2, Haxter Close, Belliver Ind Est, Plymouth, PL6 7DD. Tel: 0752767738

> ATTENTION
> ALL TELEVISION \& VIDEO MANUFACTURING AND SERVICE COMPANIES Are you over run with Surplus Stock? We pay top prices for single line items or job lots Don't waste time with Surplus Stock Companies offering peanuts. We make instant ofters and have cash available now!!! PHONE ALAN SMITH NOW ON (0705) 677264

〕

 a cheque made payable to Television 'crossed "Lloyds Bank". Television Classified Room 2331, Kings Reach Tower, Stamford Street, London SE1 9LS. The charge per word is 70 p plus $171 / 2 \%$ (minimum $£ 12.00+$ VAT.)

ELECTRONIC \& SATELLITE COMPONENTS

TV \& VIDEO I.C.s	LA7033	2.80	
AN262	.95	LA7210	1.25
AN304	2.52	LA7505	1.75
AN5015K	2.50	LA7910	1.05
AN5612	1.54	LU11417A	3.60
AN5620X	2.65	LU52511A	3.60
AN6306	5.50	LVA508	1.40
AN6320N	2.10	LM1889N	2.80
AN6326N	2.45	M51393AP	2.50
AN6328	2.45	MC1408P8	1.00
AN6346N	2.62	MN15823FVG	10.80
AN6347	2.10	MN	
AN6350	4.27	OEC0001B	4.45
AN6360	1.82	OEC0005	4.45
AN6362	2.95	OEC2001	2.85
AN6881	2.30	SONYCX134A	4.25
BA618	1.15	TD62105P	1.00
BA6301	1.40	ULA1H035E2	1.55
BA7001	1.05	UPA53C	3.45
BA7004	1.40	UPC1382C	.77
BAB500	9.95	UPC1397C	3.15
HA17458PS	.70	14DN156	4.50
LA7031	1.75	14DN157	4.50
LA7032	2.06	14DN244C	4.85

ELECTRONIC COMPONENTS: ADD 17.5% VAT and $£ 1.18$ POSTAGE TOTOTAL List available.
AUDHO PARTS
CDX500 Mains Transformer TS33/TS35 Mains Transformer TS37/TS86 Cassette Mechanism with Keys
TS80/TS88 Cassette Mechanism (A) with Head, Motor and Keys
TS80/TS88 Cassette Mechanism (B) with Head, Motor and Keys
TS90/TS99 Cassette Mechanism with Head, Motor and Keys
TS90/TS99 Mkli/CD1000/CD2000 Cartridge
Stylus
TS90/TS99 Mkll Tone Arm with Cartridge and Styius

AMSTRAD

4600 Video and Audio PCB $£ 11.75$
4600 Systems Control Servo PCB Display and Control PCBS 4600 MkII Video and Audio Timer/Control PCB Assy. 4700 Video and Audio? Timer/Control PCB Assy. VCR100 Video and Audio/Timer Control PCB Assy 5200 Timer and Channel Display PCB Assy.
5200 Audio Tuner PCB
5200 Video PCB
5200 Syscon. Servo Power PCB 5200 Varicap Tuner Type 1810829 5200 Varicap Tuner Type 181082
4600 Video Cassette complete 4600 Vidio Cassette complete
mechanism (no drum or video mechanis
heads)
4600 video Cassette complete mechanism (with drum no video heads) 4600 Mkl//4700 Power Supply 4600/4700 Capstan Motor 7000 Loading Motor MCB2B01 9000 Loading Motor MCB9B02 9000 Cassette Housing Assy.
hanosets
VCR4600/4600MkII
VCR4700
VCR4700
VCR5200
VCR6000 Easy Programme
VCR6100 Barcode
TS90 199 Tower System VCR 9000 Handset

CTV2000 Line Output Transtormer FB171 CTV2200 PCB No: 3 (Part 270087 CTV2200 PCB No: 4 (Part 270088) TVR1 Control Panel/Preset PCB£3. 5
$£ 4.70$ §7. 05

Harrison
 Electronics
 CENTURY WAY, MARCH, CAMBS PE15 8OW.

ALL ITEMS ARE BRAMD WEW AND GUARANTEED

* * Same day despatch * *

AMSTRAD SPARES: PRICES IMCLUDE VAT, POST AND PACKIWG EXTRA.
FAX: (0354) 51416. TEL: (0354) 51289

FRENCH 4600MkII Spares Video and Audio/Timer/Control PCB Assy (Secam)
540.82

Handset (French)
Power Supply (220v)
Front Panel (French)
£11.75
$\begin{array}{r}2.70 \\ \\ \hline\end{array}$

PALCOM RECEIVERS
SL600 Sophisticated, 100 Channel, remote control, stereo, on-screen graphics,

eceiver

SL5000RP High quality 200 channe
remote control, on-screen graphics, stereo receiver/positioner.
£510.83
GS-4 Highly sophisticated, professional, 200 Channel, remote control, Hi-fi stereo, on-screen graphics, receiver and separate positioner. $£ 702.09$ (Full data sheets available) DISHES
Aluminium Unpainted Spinnings $60 \mathrm{~cm} 11^{\prime \prime}$ Focal Length $90 \mathrm{~cm} 11^{\prime \prime}$ Focal Length 1.2M 22" Focal Length 1.5M 22" Focal Length 1.8M 22" Focal Length Aluminium Painted Spinnings $60 \mathrm{~cm} 11^{\prime \prime}$ Focal Length $90 \mathrm{~cm} 11^{\prime \prime}$ Focal Length 1.2M 22" Focal Length $1.2 \mathrm{M} 22^{\prime \prime}$ Focal Length
$1.5 \mathrm{M} 22^{\prime \prime}$ Focal Length E120.41 Aluminium Perforated Spinnings 93cm 11" Focal Length $1.5 \mathrm{M} 22^{\prime \prime}$ Focal Length $8 \mathrm{M} 22^{\prime \prime}$ Focal Length $£ 130.73$ Fixed Wall Mount to suit $11^{\prime \prime}$ Focal Length Dishes
Horizon-Horizon Drive Mount to suit $11^{\prime \prime}$ Focal Length Dishes Mount sut Galvanised Polar Mount to suit 22" Focal Length Dishes
12" Actuator Arm, Pulse type

CCTV TELEPHOTO CAMERA LENS
C-Mount, F1.3,50mm
Price: (incl. postage and VAT) £22
MGT5-20B GOULD POWER SUPPLY
5v@20A, 12v or 15v@1.75A.
12v or 15 v @ 1.75 A
Price: (incl. postage and VAT)
$£ 24.52$

LNB'S
$\begin{array}{lr}10.95-11.7 \mathrm{GHz} \\ \text { 2.3dB max. } & £ 30.65\end{array}$

2.3dB max.	$£ 30.65$
1.4dB max.	$£ 79.39$
1.3 dB max.	$£ 84.45$
1.2dB max.	$£ 89.50$
1.1 dB max.	$£ 110.15$
Telecom $12.5-12.75 \mathrm{GHz}$	$£ 110.15$
DBS $11.7-12.5 \mathrm{GHz}$	$£ 128.53$

C Band 3.7-4.2GHz $£ 101.97$

55 Deg. LNB £143.05
45 Deg. LNB $\quad £ 170.94$
50-54 Deg. LNA £116.90

C Band Blockdownconverters
12dB Gain $\quad £ 51.09$

20dB Gain \quad £54.40
Racal Magnetic Polariser $£ 42.75$
Adaptor (Interface) Card £22.84
Ortho-Mode Transducer $£ 63.40$
Prime-Focus Feeds
Ku-Band Feed Horn
$\begin{array}{lr}\text { Ku-Band Feed Horn } & £ 26.50 \\ \text { C Band Feed Horn } & £ 42.25\end{array}$
Dielectric Plate $£ 12.20$

Global Accessories
Line Amplifier
$£ 23.19$
2 way Splitter $£ 19.21$
4 way Splitter $£ 36.58$

V/H Switch
$£ 49.45$
All Satellite equipment prices include VAT; Post and Packing Extra.
Write or Phone for FULL catalogue.

SATELLITE SPARES
WIZARD FISTM:
In response to the demand for Satellite Equipment Spares In response to the demand for Satellite Equipment Spares
and Components WIZARD DISTRIBUTORS can now offer parts for the following makes:

FERGUSON SRASRA15 SRV1

 SRD2/SRD4SDA60/80 DISHES
SDA GOWM DISH
GRUNDIG
IRD 2000
SAT 1000/SRV115
Catalogue Supplement available and Special Satellite Sales Department
WIZARD DISTRIBUTORS EMPRESS STREET WORKS MANCHESTER M16 9EN
TEL: 061-872-5438-061-848-0060 FAX: 061-873-7365

USED VIDEO SPABIK

VHS - BETA - 2000
PANELS, MOTORS, CABINETS, TUNERS,
LOADING MECHANISMS, ETC. SAVE EEES
phone us we may have it.
Mail Order and S.A.E. for Enquiries GENERAL FACTORS
Unit 28, Car Grange Works, Hyde Park, Doncaster. Tel: 0302323834

TOP CLASS PANASONIC
WORKING TV \& VIDEO
GOOD CHEAP STOCK "OFF THE VAN"
Good Selection of Makes
Tom Poole or Brian Ricketts
061-273 2854/274 3409

REPO

DAISY WORKS
345 STOCKPORT ROAD,
LONGSIGHT, MANCHESTER
(A6 Between Stockport \& Manchester)

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
Fax 1827874835

```
West Wales Wholesale TV
Working TVs from £18.
Videos from \(£ 60\).
Discount for quantity.
8 CILLEFWR IND. EST. JOHNSTOWN CARMARTHEN (0267) 222047
```

Advertisers
Information
Did You Know? Stock Avaliability
rated higher than price, quality of service and reputation when readers placed orders from advertisements in Television

SERVICE DATA

TECHNICAL INFORMATION SERVICES (T)

76, CHURCH STREET, LARKHALL, LANARKSHIRE, ML9 JHE

Phone :(0698) 884585, Mon-Fri, 9am-5pm. OR. Phone:(0698) 883334 any other time.
BrICDLATE dispatch on all ACCESS 4 vISA orders
PHONE OR WRITE NOW FOR FREE GUOTE t FREE CATALOOUE with every SA.E.
Over 200 separate Tites of Technical books are always in sock, over $1 / 2$ ere excluaive to TIS.
SOME SELECTED TITLES

PRACTICAL TV REPAIRS by Tunbridge	£14.95 OSCILLOSCOPES, HOW USEWORK 3rd Editon	c14.05
COLOUR TV SERVICING by King	\$14.95 ELECTAONIC DATA 2 REFERENCE GUIDE	5.95
MICROWAVE SERVICING by Coombee	c9.05 MOBILE RADIO SERVICING HANDBOOK	E30.00
SERVICING PERSONAL COMPUTERS by Tooloy	E55.00 REFRIGERATION \& AIR CONDTIONING	C1205
VCR SERVICING QUIDE by Beechings	E25.00 HLFI SERVICING ANO REPAIR	c9.9

814.95 ELECTAONIC DATA \& REFERENCE GUIDE CQ.O5 MOBILE RADIO SERVICING HANDBOOK E25.00 HIFI SERVICING AND REPAIR
c5.95 30.00 812.95

BARGAIN OFFERS

25 Fauh Finding Guldes, Covering mon Viceos from 1979 to Dene. Match Clrculte below 5 Glark Binders contelning Circuits : Leyoute for most Videoe from 1979

$؟ 59.00$

10 Giant Bindera comalning most Circulte \& Layouts for most CTV'e from 1978
Any 3 Video Giumt Binders PLUS the matching feull-finding guides.
All 12 CTV Manuele (Normally $£ 144.00$),
All 5 mono Manuele (Normally $£ 44.75$).
ع139.00
ع285.00

SERVICE MANUALS \& SERVICE SHEETS
 Romember, not only do we have EVERY Sorvice Shoot evor made, but we aleo have THE WORLDS LARGEST SELECTION OF SERVICE MANUALS

COVERING: MONOICOLOUR TV, hDEOS, CD'S, RADIO, COMPITLERS STEREOS, TUNERS, ETC.

OSERVICE MANUALS

 Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances etcEquipment from the 1930's to the present and beyond Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders

MAURITRON TECHNICAL SERVICES (TV), 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 4QY. Tel: (0844) 51694. Fax: (0844) 52554

SERVICE MANUALS

THOUSANDS OF DIFFERENT MODELS HELD IN STOCK. PRICES: VCR from 10.000 , CTV from 5.50 , MTV irom 3.50 ALL UK ORDERS SUBJECT TO 1.00 P\&P NO VA AUDIO. SATELLITE. MICROWAVE ALSO AVAILABLE. WRITE FOR EXACT OUOTE TO-

D-TEC, PO BOX 1171, FERNDOWN, DORSET, BH22 9YG. phone 0202870656.

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German. European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquirics

DÖNBERG ELECTRONICS
Schooimasters House, Rannafast, Co. Donegal, Republic of ireland. Phone: 07548275

SATELITE

THE SATELLITE BOOK
 THE DEFINITIVE GUIDE!
 John Breeds
 Following the phenomenal success of his book Satellite TV Installation Guide', Europe's best and most authoritative author for the satellite industry has put together the most comprehensive and informative book ever published on satellite television.
 Every possible technical and practical related subject is covered - right from simple dish installations through to how to wire up a block of flats or even a large town!
 There are also detailed analyses of customer care, how to work safely on ladders, and how to kit out a van with all the tools of the trade. Scrambling/descrambling techniques are also included. You will get real practical help from this 280 A4 page definitive guide. Supplemented by more than 300 illustrations and invaluable tips and tricks of the trade
 Only £27.95 (Postage fREE UK)

 SCRAMBLING METHODSF Baylin, R Maddox and J McCormac
BUILD YOUR OWN FILMNET DECODER!
This thorough text is a must-buy for technicians, sateilite professionals and curious do-it ourselfers. The 340 page book provides an in-depth study of
scrambling methods and
broadcast formats, including Filmnet. D2-MAC, Teleclub, Videocypher II, Oak Orion, Sky Movies, BSB and Eurocypher Circuit and block diagrams of all components are presented and clearly explained throughout the handbook.

Easily the best value satellite book today! (Total satisfaction or your money back!)

Swift Television Publications

17 Pittsfield, Cricklade, Swindon, SN6 6AN
Tel or FAX 0793750620

OROER FORM

\square The Satellite Book \square World Satellite TV Satellite Booklist FREE Name: Europe add $£ 5$ /book Address ROW add £15/book 28.95 Number

Postcode
£27.95 I enclose choque/PO or please debit my Access $/$ Nisa card

SAMEITE:

Lado Par Products M StOCK
We shall be pleased to offer design help with the installation of
any of the Lab Gear products. Systems planning undertaken. Ring for details.

£60.00
Nctwarh symms
J.W. HARDY, 231 Station Road, Stechford, Birmingham B33 8BB. 021-784 8478

U.H.F. Aerials	Coaxial Cable	Amplifiers
mamen		
	- =	
V.H.F. Aerials		
50		
Chimney Lashing		
Vavame Wall Fixing Caax Onler		
		2

TUBE SERVICES

 We have been rebuidingremanulacturn
for a wide range of users since the ' 60 's

Why not telephone Dave Dyson on (0895) 55800 to discuss your requirements?

DISPLAY ELECTRONICS LTD. UNIT 3. SWAN WHARF, WATERLOO ROAD
UXBRIDGE, MIDDLESEX UBB 2RA.
D.I.Y. SCRATCH REMOVAL + TUBE POLSHING KIT

First class resuits can be obtained every time
with this kit The kit, which comes with full wistructions is especially useful on ex-rental work for those sets with excellent cabinets and good but scratched tubes which may be had at very much re with your first $1 \mathrm{ob}!3.00+£ 2.50 \mathrm{P} \mathrm{\&} . \mathrm{P}$ Electric drill required
SPECIAL PRICE $£ 35.00+$. PC TV SERVCES
8 ORCHARD CLOSE Tel. $0920871474 \quad$ *MAIL DABth * Slanstead Abbotts, Herts SG12 8 AH

RECEPTION EQUIPMENT

 LNB's, Rece
accessories. IRTE 60 an c/w leed/polanser Telecon LNB 1.208 max

SATELLITE TV

ESH ELECTRICS LTD.
Main St.. Kesh. Co. Fermanagh. N.I.
Tel: 0365631449 Tlx: 747412

VIDEO AND HANDBOOK TRAININGIN SATELLITE TELEVISION

依 revy wery good!

A 55 minute video with a lavishly illustrated supporting to page At handbook aimed at the practical salles person and installer All you need to know to hecome conversant with the subject. A brand new course written and produced by experts in the industry. Send for full details.
Microforge Ltd., 339 Clifton Drive South. St. Annes, Lancashire FY8 1LP.
Tel:0253 725499
Please send me further information on SATELLITE TELEVISION SERVICING AND INSTALLATION"
Name
Address.

TECHVICAL TRAINING OFFICER

LEEDS, C $£ 16,000+$ CAR

REWIND

Do you remember when you undertook your training on Video and Audio products? How you were kept abreast of new developments and changing technology? Today, with your experience and technical expertise, you're a credit to those that taught you, and living proof that those who can, also teach.

PAUSE

So pause for a second and think how it would be if it was you that now gave technicians throughout the UK the opportunity to understand Video and Audio to your standard - the latest developments and the right way of doing things. Now you can, with this rare chance for a Technician with both technical and interpersonal skills. For someone who can do, as well as teach, to earn great rewards as well as personal satisfaction.

E FAST FORWARD

Moving on to Comet will give you the recognition and rewards you've been looking for. The status of keeping the UK's number one electrical retailer at the forefront of service technology and influencing the standard of electrical engineers of tomorrow. You'll need a minimum of a city and guilds $224 / \mathrm{TEC}$ or equivalent. To advance your career into instruction, personal qualities are also required including good communication skills, an analytical mind for programme development and a critical one for assessment. This position will entail extensive travel throughout the UK and overnight stays will be required, so flexibility is essential.

PLAY

Consider whether you could teach others - and would you want to? Those with a real passion for their trade will want to keep the future standards high. Of course, a different move should also be a better one, and so to recognise your valuable contribution to our future standards, we have a highly competitive salary on offer together with a fully expensed company car and generous retail benefits.

If you've got what we're looking for, write enclosing a full c.v. to:

Julie Bowling

Recruitment and Staff Manager Comet Group PLC. George House. George Street Hull. HUI 3AU.
Telephone 048220681 ext 2272
for a better career - you know where to come

EXPERIENCED TV \& VIDEO BENCH ENCINEER

Required for immediate start to join busy Ex-Rental Warehouse in MIDLANDS.

Excellent wages and conditions.
Prospects of management for the right applicant.
Telephone 0533551711 or 0850700238 and ask for Amrick

SERVICE DATA

NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:

$£ 7.50$ for Television Faults

 £7.50 for Video Faultsor $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:

E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY.

Please add $£ 1.50$ per order for P\&P

BUSINESS FOR SAIE

TV Video Repair Business FOR SALE.

South London/Surrey border. Good turnover, high profits. Low rent. Shop in busy position.
Offers around £20,000
BOX No. 258

CLRSSIFIED CLAS5IFIED CLRSSIFIED CLASSIFIED CLASSIIFIED

TEST EQUIPMENT

MICRO-LAB
 Save TIME and MONEY

by speeding up fault diagnosis.
Our MICRO-LAB instruments will help you find faults faster.
The improvements can be dramatic. We know! We use them!
Write or phone for a free brochure.
COLEBOURN ELECTRONICS Dept TV, 20 Folly Lane, Telephone St Albans, AL3 5JT 072744785

Advertiser Information Did You Know? 91\%

of Television's readers ordered goods from advertisements in the last year.

Subscribe to TELEVISION and receive 3 extra issues FREE!

TELEUIIION

15 ISSUES FOR THE PRICE OF 12

If you want to keep up-to-date with all the latest advances in technology, then take out a subscription to Television Or give a gift subscription to a friend or relative.

Annual subscription rate: UK - $£ 21.60$; Overseas - $£ 25.50$. Simply complete the order form below and post to: Television, Freepost 1061, Haywards Heath, RH16 3ZA.
(No stamp required)

Yes I would like to take out an annual subscription to Television and receive 15 issues for the price of 12.

Tick here if you would like to subscribe yourself Your Name
Address

Post code

Tick here if you like to send a gift subscription Name of Recipient
Address

Method of Payment (tick your choice)

IPC Magazines Ltd.
\square Invoice me later for E.
\square Charge my Access/American Express/Visa/Diners Club Card *
No.

Expiry date

*Delete as appropriate
Alternatively, you can order by TELEPHONE. Place your subscription by calling (0444) 441212 between 9am and 5pm (Mon - Fri) giving your credit card details. TV7

[^0]: DALBANI (UK) LTD
 587A KINGSTON ROAD, RAYNES PARK, LONDON SW20 8SA, ENGLAND Tel: 081-543 1971 O Fax: 0815422082 O TIX 914040

