APRIL 1991
 £1.80

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

FREE TV/VCR SPARES GUIDE

(East Cornwall Components)

Satellite TV Aerial Systems

 Adding NICAM Stereo Sound Service Briefs - Philips•DX-TV Test Report•Camcorder Notebook TV Fault Finding•VCR ClinicNow that'sWhat I call
Value for
Money!
Video, CD, TV Repair Tips
62,000 Tips
Largest Database in Europe
4,000 Models
Available On-Line or in Books
On-Line
Less than 30p per Day
FREE Notice Board
As little as 1p per Tip
For Selected Manufacturers
Prices from $£ 9.95$ to $£ 19.95$
Portable \& Easy to Use
Regular Updated Editions
Also available from SEME Ltd.

FREE Electronic Mailbox
FREE One Month Trial
Updated Daily
180 Brands
Books
Unlimited Access

5ownownow

COPYRIGHT

(C) IPC Magazines Limited, 1991. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES AND BINDERS

Indexes to Vols. 36, 37 and 38 are available at $£ 1$ each from the Editorial Office (address above).

Binders that hold twelve issues of Television are available for $£ 4-50$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 21.60$ in the UK, £25-50 overseas (by surface mail - ask for airmail quote if required). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques'postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them.

this month

405 Leader

406 Letters
409 Next Month in Television
412 Adding NICAM Stereo Sound
Keith Cummins
A NICAM decoder, using the Maplin PCB, for use with sets not originally intended for NICAM operation. The interfacing relates to the Sony Model KVX2521U but the principles are applicable generally.
415 What a Life
Donald Bullock
A particularly trying customer pays daily visits.
416 VCR Clinic
Reports from Philip Blundell, AMIEIE, lan Bowden, Richard Flowerday, Jeff Herbert, Stephen Leatherbarrow, Eugene Trundle, Ed Rowland and Alfred Damp.
418 Teletopics
News, comment and developments.
419 Subscription Offer
421 Test Case 340
422 Satellite TV Aerial Systems, Part 1 Derek Stephenson, B.A., I.Eng. Operating principles of the various types of reflector, flat and lens aerials that can be used for satellite TV reception, with performance characteristics.
427 CD Player Casebook
Reports from Mike Leach and Nick Beer.
428 TV Fault Finding
Reports from Steve Cannon, Ed Rowland, Steve Beeching, Colin Doman, Mick Dutton and S.A. Featherstone.
432 Fifty Years in Radio and TV, Part 4 Harold Peters The advent and spread of ITV.
434 Camcorder Notebook
Nick Beer
Servicing problems with various types of camcorder.
435 The Lower End of the Market
E.G. Kempshall

Servicing is not all camcorders and hi-tech gear. Some of
the problems at the other end of the market.
436 Long-distance Television Roger Bunney DX conditions and reception and news from abroad.
438 Service Briefs - Philips
Notes on Philips TV sets and VCRs collated from Philips Link.
439 US HD-TV Update Geoff Lewis, B.A., M.Sc. The latest proposals for an American HD-TV system.
439 Obituary: John Bardeen
One of the inventors of the transistor in 1947, John Bardeen went on to work on superconductivity and received two Nobel prizes.
440 Test Report: Sadelta TC90 Signal-strength Meter Eugene Trundle A thorough test on the various bands.

$A C$ $A C$ $A C$ $A C$ $A C$
 \section*{}

BER

鳆呂

合䫆

PARTS PROBLEM?

For
Sharp
Sansui
Phone David Allen
0734-876444

Grundig

Phone Stan Perkins
0734-876444

COPS CATCHES THE PARTS THE OTHERS CANNOT REACH AT PRICES THE OTHERS CANNOT MATCH

VIEWDATA PRESTEL PHILIPS MOVIES Willow Vale COPS

14in SCREEN

Philips/Pye
 Whirlpool

Phone Frank Pratt
0734-876444

Ferguson GEC
 Fidelity

Phone Philip Pratt
0734-876444

Amstrad, Akai, Fisher, Mitsubishi, Moulinex, Goldstar, JVC, Nat Panasonic, Pioneer, Matsui, Saisho, Samsung, Salora, Sanyo, Sony, Toshiba, Yamaha and many others.

Phone Mike Curtis
0602-870789

HQW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFEGTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four supert models. All, with the exception of the HM 1005, incorporate a usetul COMPONEHT TESTER. Size \cdot all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm}$ 380 mm . Clear display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. Mains supply: $110 / 2220.240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$
All supplied with 2 PROBES, a COMPREMENSIVE MANUAL and a 2 YEAR WARRANTY
HM203-7 20MHz STANDARD

specification

- 2 Channels

Bandwidth: DC - 20 MHz Sens: Ch.! Ch. $2,1 \mathrm{mV} / \mathrm{cm}$ Trimebase: $0.1 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$
Triggering: DC
-40 MHz Active TV-Sync-Separator Variable hold-oft
Trigger LED indicator
Calibrator: 1 KHz Square wave Plus many features
Price ع338.00 + £50.70 V.A.T. FREE Specialist Carrier Delivery
specifications
HM604 60MHz UNIVERSAL
2 Channels

Sens: Ch $1 \mathrm{Ch}-60 \mathrm{MHz}$
Timebase: $2.5 \mathrm{~S}-\mathbf{S n s} / \mathrm{cm}$
Triggering: $D C-B O M H z$

- Active TV-Sync-Separator

After delay trigger
Sweep dela
Delayline
Trigger LED indicator
Callbrator: $1 \mathrm{KHz} \& 1 \mathrm{MHz} \mathrm{Sq}$. Wave
Component tester
Price $5610.00+891.50$ V.A.T. FREE Specialist Carrier Delivery
HM1005 100MHz UNIVERSAL achannels-uptde traces SPECIFICATION
*3 Channels
Bandwidth: DC - 100 MHz Sens: Ch.1, Ch.2, Ch.3, $1 \mathrm{mV} / \mathrm{cm}$ Timebase A: $2.58-5 \mathrm{~ns} / \mathrm{cm}$ - Triggering DC -130 MHz - After delay trigger

- Delay line
- Trigger LED indicator
- Overscan LED indicator Active TV-Sync-Separator
Price 5792.00 + §118.50 V.A.T. FREE Specialist Carrier Delivery HM205-3 20MHz DIGITAL STORAGE

SPECIFICATION

Digital Storage
Analogue real time (Sar
Band width: DC -20 MHz
Sens: Ch.1, Ch. $2,1 \mathrm{mV} / \mathrm{cm}$
Timebase Digital: $5 \mathbf{s - 1 \mu s} / \mathrm{cm}$
Triggering DC -40 MHz
Active TV-Sync-Sampling
Max sampling rate: $2 \times 20 \mathrm{MHz}$
Memory: $2 \times 2048 \times 8$ Bit
Dot joiner
lotter output
 B.K.'s CRT TESTER DIGITAL CAPACITANCE REJUVENATOR Tests and rejuvenates blue, green and red guns separately. Fitted with delta and P.I.L. sockets. Compact size $120 \times 65 \times 60 \mathrm{~mm}$
Supply 240 V AC
Price ع32.00
ع4.80 V.A.T.
FREE Specialist Carrier Delivery
 METER - High accuracy LCD display
8 ranges.
Accuracy $+1.0 .5 \%$.
Full scale $+1-1$ digit.
Inc. protective case.
Price $\mathbf{E 3 8 . 0 0}+$ ع7.50V.A.T.

LEADER FM STEREO SIGNAL GENERATOR

At last! A generator specifically designed for testing and fault finding on FM stereo and monaural VHF receivers including stereo multiplex circuits.

features

Carrier trequency $100+l-1 \mathrm{MHz}$ (adjustable).
Output level $0.1 \mathrm{mV}-10 \mathrm{mv}$.
Pilot signal $19 \mathrm{KHz}+1.2 \mathrm{~Hz}$.
External Modulation 50 Hz - 15 KHz . Pre-emphasis $50 \mu \mathrm{~s}, 75 \mu \mathrm{~s} \&$ off Comprehensive test tead set included. Mains powered.
Size: $80 \times 200 \times 250 \mathrm{~mm}$.
Price ع299.00 + £48.85V.A.T.

LEADER HIGH VOLTAGE METERED EHT PROBE

Light weight, easy-to-grip high-impact plastic handle with arc-over protection and no need of extra equipment. An indispensible item in your TV service kit. Measures up to 40 kV DC with salety and the greatest of ease. Entirely selfcontalned. Connect the lead clip to chassis and probe tip to the check point, read the meter for voltage.
Price $\mathbf{8 6} 6.00+$ E9.90V A. B \& K PRECISION CRT ANALYSER-RESTORER
The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it

- All CRT's checked identically, Including all in-line and one gun types. Tests all under actual operating conditions (model 490) : Exclusive multiplex technique model 490) Measure true dynamic beam current that actually passes through G1 aperture to screen * Measures all shorts and leaks - preserving more CRT's. Tests focus electrodes lead continuity finding aults that other testers miss "Uses mos minimum danger to CRT : Rejuvenated CRT's guaranteed as new for two years Obsolescence proof - perpetual set up chart updated and new adaptors developed * Tests and rejuvenates VDU's and oscilloscope tubes. A range of over 40 CRT base adaptors available Increase profit * Pays for itself in months

Prices
Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors. Without adaptors. Model 48
 c393.00 + C58.95V.A.T
c33.00 + E50.10V.A.T C33
$. 〔 281.00-$ C50.10V.A.T.
C42.15V.A.T.

SADELTA SIGNAL STRENGTH METERS

The Sadelta Field Strength Meters have been designed to facilitate the dish alignment of satellite TV systems and aerial alignment of VHFIUHF television and radio systems. Signal levels can be accurately measured on the TC402-C and the TC90, allowing the evaluation of signal conditions tor salistactory operation. Both models have a clear LCD direct
readout, coupled to a mutiturn tuning control enabling precise channel identification
TC402-C VHF \& UHF
FEATURES
Three bands
Low VHF: 45 - 110 MHz
High VHF: $110-300 \mathrm{MHz}$
UHF
470.862 MHz
Digital display for direct
Digital display for direct frequency readout Silit-in monitor loudspeaker AM/FM * Powered by eight 1.5 AA batteries.
 Fully portable with sturdy carrying case.

Price $\mathrm{C} 259.00+\mathrm{C38} .85$ V.A.T. TC90 VHF-UHF- SAT.
 FEATURES Low VHF: $: 45-110 \mathrm{MHz}$ High VHF: $110-300 \mathrm{MHz}$ Hyper VHF :
VHF
$: 300-470 \mathrm{MHz}$
$\mathbf{4 7 0}-862 \mathrm{MHz}$ Satellite : $950-1750 \mathrm{MHz}$ Digital display for direct frequency readout. Signal measurement VHF/UHF $20 \mu \mathrm{~V}$ to 3 V -10 dBm .
Audible indication of satellite signal tevel. Buill-in-monitor loudspeaker AM/FM (not satellite).
Price $5470.00+870.50$ V.A.T. (comered by rechargable battery Fully portable with sturdy $220 / 240 \mathrm{VAC}$

BLACK STAR COLOUR PATTERN GENERATOR

 THE 'ORION' THREE-IN-ONEPAL VHF/UHF - PAL VIDEO COMPOSITE - R.G.B.
The Orion is a compact, bench instrument offering a wide range of patterns and facilities at a truly iow cost.
naddition to a switchable sound carrier facility which allows use with the majority of PAL TV video monitors.

More than 50 pattern combinations can be selected, including those for testing static and dynamic divergence, video amplifier linearity, cotour purity, general colour performance, tocus etc.
A separate video input to modulate camera signals; fully variable RF and video output levels facilitating AGC testing; trigger output allowing easy triggering of dificult oscilloscope of TV sound systems; adjustable wide frequency coverage of VHF and UHF TV bands.

Just some of the features making the Orion Pattern Generator an Indispensible tool in the manufacture, test, and servicing of televisions, and computer and video monitors.
features
Colour bars, pur

- VHFIUHF Channets.
* $5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}, 6.5 \mathrm{MHz}$ Sound Carriers
- Internal/External Sound.

External Video Output.
Trigger Output.
PAL B,O,G,H,l,K
Separate R, G, B and sync. O/P's.
RGB @ TTL \& 1V.
Green $+0.3 V$ Syncs.
Composite Video Output
Variable RF/Video Output
Switchable Video Polarity
Mains powered $220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$

Price $£ 209.00+$ £31.35V.A.T. U.K. POST PAID, export enquiries welcome. VisalAccess or cheque with colleges, P.L.C.s etc. Large (A5) S.A.E. for technical leatlets of comptet range. Credit card orders are accepted by 'phone, fax or post. Detivery normally within seven days.

MARCH PRICE BUSTERS
 LIMITED ALLOCATION

JVC/FERG
3HSSV \qquad $£ 4.95$
3HSSVL $£ 4.95$

PANASONIC
3HSSN (VEH0121) .. £4.95
NV366 (VEH0174)............. £16.00
NV430 (VEH0286)£12.00
NVG-7/9 . 12.00

THIS OFFER IS VALID ONLY UNTIL STOCKS LAST AND UP TO 20TH APRIL 91
ALL PRICES EXCLUDE 15% V.A.T. AND $£ 0.50$ P\&P PER ITEM WE STOCK 150 TYPE OF VIDEO HEADS WHICH COVER OVER 2000 VCR MODELS. ASK FOR OUR CATALOGUE OUT SOON.

- ALL SALES AND TECHNICAL ENQUIRIES HANDLED BY QUALIFIED STAFF
- FOR ITEMS NOT LISTED PLEASE CALL US FOR INFORMATION AND PRICES
- ALL EX-STOCK ITEMS DESPATCHED SAME DAY.

LRC SPARES
 TEL 071-323 2107 FAX 071-323 2191 3-5 WHITFIELD STREET LONDON W1P 5RA APRIL SPECIAL OFFERS

ORIGINAL HITACHI VIDEO HEAD V/V23/3V1/3V32 JVC HR7600/HR7650/HR7700 93.60
CARRIAGE ROLLER FERGUSON $\operatorname{REPLACEMENT}$ BATTERY PACK for SONY NP22 $£ 17.50$
REPLACEMENT BATTERY PACK for JVC \& PANASONIC VHS-C CAMCORDERS $£ 22.50$
IC STK5482 SALORA ETC $£ 6.00$
MM2 ORIGINAL SONY REMOTE CONTROL FOR SLC6 56.00

Who stocks all these types of semiconductors?

45	BRIDGE RECTIFIERS	440	DIODES
2370	INTEGRATED CIRCUITS	34	LEDS
92	THYRISTORS	2183	TRANSISTORS
3	TRIACS	38	VOLTAGE REGULATORS
247	ZENER DIODES		

000868LLZO:Xey GLGL68LLZO:101

MICROWAVE MONITORS

Sales Service and calibration

New Instruments from $£ 99.75$
Calibration of all hand held instruments
Microwave Monitors
Multimeters
Insulation Testers
Digital Thermometers Etc.
$£ 18.50$ + P\&P \& VAT
For all your test equipment requirements, contact

Celtek Electronics Ltd.
 A39 Redscar Ind. Estate, Longridge Road, Preston, Lancs. PR2 5NB Tel.Fax. 0772700853

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 393.

ADVERTISEMENT MANAGER
Kevin Attridge
071-261 6671
071-2615546-fax

SECRETARY
Janet Reeve
071-261 667

CLASSIFIED
ADVERTISEMENTS
Pat Bunce
071-261 5942

ADVERTISEMENT COPY AND MAKE-UP
Ron Scorey
071-2616035

SUBSCRIPTION ENQUIRIES
()444440421

PUBLISHER
Philippa Gardner
071-261 6408

COVER PHOTO

This month's cover photograph shows the electronics inside a well-known LNB. A new series on satellite TV aerial systems starts on page 422.

Is Servicing Recession-proof?

The present recession in the UK has some unusual features. It seems for example to be affecting all regions in much the same way. In the past it has been a case of areas with industries that are already in decline suffering worst. And it seems to be affecting every type of economic activity in the UK, from manufacturing to services of all sorts. There was of course excessive growth in many service industries such as banking and property dealing during the Eighties, but that's no comfort for those who are suffering the consequences. Just what has gone on? Mainly we are suffering from the effects of a credit explosion. People in the UK have been all too ready to borrow and when the banks, building societies and stores go overboard lending more and more, with monetary deregulation adding to the excesses, there has sooner or later to come a crunch. People can't take on ever more debt servicing, while shortages begin to stoke up inflation and lead to balance of payments deficits. Asset inflation has been a major contributor to the problem. If house prices go on rising for example there's ever more collateral for loans. Lack of experience begins to play a part when booms continue for an excessive time: lenders and borrowers both tend to forget that conditions can become adverse. It would be nice if all this bother and hassle could be avoided. But it's the price one pays for creditbased economic activity. A planned economy might seem to be a neater way of going about things. But the complex nature of economic activity doesn't lend itself to neat planning, which goes haywire when the unforeseen occurs and can never move fast enough to be able to take advantage of opportunities when they arise. We just have to put up with the boom and bust cycles, though it should be possible to moderate them - there have been some awful miscalculations by the authorities.
A nother feature of the present recession is that servicing has been affected to a greater extent than on previous occasions, a factor highlighted by the difficulties at Serviscope (see page 418) which is now being administered by the receivers. Traditionally servicing has tended to be recession-proof. Whatever else has happened people have had to get their cars, TVs and appliances repaired. Why are things so different this time? One can only guess at the root causes of this sort of thing, but there do seem to be a few pointers that one can identify. One factor in the consumer electronics field could be the sheer quantity of goods in people's homes. If, as is common enough, there are two, three or four TV sets in a house there's no great urgency about getting one of them repaired when it goes wrong. When it does become necessary to get something done you then cone to the repair or replace question. Consumer electronic products have been sold at such competitive, i.e. low, prices in the UK that replacement is often a more sensible course of action. Right now however it's difficult enough trying to sell sets even at knock-down prices. Perhaps some organisations have been a bit too clever. Amstrad for example carried out a major push to clear surplus stocks last year, at little or no profit. Turning inventory into cash is the way it was put. You can't blame Alan Sugar for doing this. It wouldn't be sensible to sit around with warehouses full of equipment that costs a lot simply to store. To try to keep things moving is a part of economic survival. But the consequence has to be faced. How do you once more establish a sound, profitable market after such a give-away period? Well, we know part of Alan's answer, to introduce new, innovative products. But that doesn't help with trying to get a decent return on bread-and-butter lines.
People may also have been put off having repairs done by some of the silly quotations given them. We've received a number of letters on the high repair quotes given by high street outlets. Could some firms have a policy of deliberately inflating repair quotations in order to generate sales instead? It seems quite likely. There's probably nothing that many retailers would like more than a rapid move to a throw-away era. Much easier to make a profit out of a new sale than arrange to have someone's set taken to a service department where fault finding could be quite a time-consuming business ending up with a replaced transistor and a couple of dry-joints made good. What can you charge for that?

It's said that any situation, however bad, offers opportunities for some. The smaller firm able to offer a more personal service with a better technical understanding and appreciation of what can be done should be able to gain business when the larger firms are interested only in sales. But how do you manage to get your services appreciated when the larger organisations have given servicing such a bad name? You can't, as Peter Nutkins pointed out last month, rely on regular customers since the need for servicing is today so infrequent. Meanwhile ever greater costs, driven by high interest rates and business rates, hit firms of all types and sizes.

When one feels despondent about the prospects it's worth recalling that there are a lot of people out there and that they do a lot of viewing. There will always therefore be a need for TV/video repair work. Since even the newest equipment can go wrong, though this is not a common occurrence, service backup has to be maintained. The present recession has hit the servicing industry like all others, but sets will continue to require attention. Another thing that's always worth remembering is that an economic upturn inevitably occurs sooner or later. Just as excessive credit leads to a recession, the savings that are generated during the recession and the debts that are unwound eventually lead to an upswing. In the meantime it's a matter of being able to handle recessionary conditions. Let's hope that most of us manage this trick.

Letters

FORMATS AND STANDARDS

I get the impression from reading Television that the servicing industry simply takes whatever comes along. It's rare to see opinions expressed on the format and standards battles that are so much a part of consumer electronics.
The Beta VCR format wained in the UK because, in part, of the indifference of those involved in sales and service, certainly not for technical reasons - Sony has now ceased manufacture of the SuperBeta machine for the UK market. But I think we would all agree that a Sanyo VTC5150 is a much easier machine to work on than a Panasonic NV333 for example, while giving superior results. Then BSB collapsed and along with it virtually all hopes of a European high-definition TV system in the near future. Relevant to this is the fact that there is now only a very small market for S-VHS video recorders, as there are no high-quality broadcast signals for them to use.
We find a similar indifference to the current camcorder format battle. An article recently described copying VHSC on VHS cassettes using a modulator! I've heard and read so much poor advice given to prospective camcorder buyers from people who should know better that I feel it's time to look at the pros and cons of the formats. It should be remembered that most users will want to edit their camcorder tapes in order to remove the shots of their feet and the sky that are inevitable with home videos.
The Video 8 format gives ninety minutes recording time at full speed (three hours at half speed) on metal tapes that last well. Technically the results compare with Beta in relation to clarity and noise, i.e. the low-band performance is good, and all machines have very good sound quality. Most video manufacturers now market Video 8 equipment, including Ferguson whose latest machine is sourced from Hitachi. All camera manufacturers back this format.

These days VHS is not such a popular camcorder format - the tapes, and hence the machines, are just too bulky. The recording time is good, but after editing the result is relatively poor VHS-VHS copies. Unless hi-fi sound is incorporated the audio quality is very poor, especially after editing. The VHS format is useful for people who know that they will not want to edit the recorded material.

The main competition to Video 8 comes from VHS-C. This does mean a small cassette, but the recording time is short. If this is increased by using half speed, the edited tape will be a half-speed VHS-VHS copy, which is not really acceptable for any but the most uncritical viewer. It suffers from the same poor-quality sound as VHS of course, but has the advantage that the tapes can be played on a normal machine by using an adaptor (or directly with a few machines). If the tape is to be edited however this is in practice of little use.

The same general comments apply with the high-band formats, except that S-VHS is not significantly inferior to Hi 8. The advantage of S-VHS-C being playable on a fullsize machine is lost however since there are almost no S VHS machines in the UK - in part due to the failure of BSB. For this reason it seems that S-VHS-C is going to have a tough battle with Hi 8 , as the latter provides a longer playing time and superior sound.

So I suggest that to the extent we can influence people's purchases we should on the whole be advising selection of the 8 mm formats, except where it's unlikely that editing
will be done. To be brutally honest I feel that the VHS-C format could well be obsolete within a couple of years. With the present boom in camcorder sales, despite the recession, large numbers of Video 8 camcorders are finding their way into people's homes. Sales of domestic Video 8 machines will probably follow. Thus the format could replace VHS, particularly if the running time can be extended. Sony's film interests should help ensure that there will be good Video 8 software availability, and such tapes could always be played on a camcorder.
Colin McCormick,
Plymouth, Devon.

THE HITACHI G8Q CHASSIS

In his article on the Hitachi G8Q chassis (February) John Coombes described the power supply and the faults he has encountered but only touched upon the problems that arise when the posistor TH 902 in the start-up circuit goes faulty. We've had many of these sets, especially the CPT2196/2198, with faults of cataclysmic proportions due to the failure, often intermittent, of TH 902 . If the set comes in with a blasted mains input fuse you have one of two options (I talk from experience!) - either pray or quit.

First, TH902 must be replaced with the new blue type even if it checks o.k. It's then necessary to check most of the silicon in the power supply. I recommend that the following items are checked/replaced: Q901 (BUZ71A or SGSP222), Q902 (SGSIF344), ZD901 (27V zener diode), D902 (BYD33D), D903 (BYD33J), D905 (BYD33D), D907 (BYV10-40) and D908 (BYD33D). The following must be replaced, in addition to TH 902 : IC901 (UC3844), C908 (470 $2 \mathrm{~F}, 25 \mathrm{~V})$ and R910 ($0 \cdot 5 \Omega, 7 \mathrm{~W}$). Next check the print, especially around the chopper transformer: if repairs to the print are required, Hitachi recommend the use of hot-melt (part no. B975476).

If you're sure that everything is now o.k., put in a new fuse, stick your finger in your car and (this is where the prayer may help) switch on. If the fuse goes again it's definitely time to quit, but the power supply should now work normally.

Hitachi recommend that TH 902 is replaced with the new type whenever one of these sets comes in for repair. Now for the good news. The new blue type posistor can also fail with the same disastrous results. Yep, I think it's time to get into double glazing!
Steve Cannon, H. Garlick Ltd.,
Barnoldswick, Lancs.

WARNING - AND A REQUEST

By now many of your readers may have had to service, or bought, Memorex, Hitachi or Panasonic portable CD players. Here's a warning to them. When the batteries begin to run down, replace them! A friend of mine has had experience of what can happen: his player literally burnt holes into the aluminium layer of three discs. What appears to happen is that the disc stops rotating but the laser doesn't switch off. This can happen at any position on the disc, and one or more tracks could be lost. For some reason it happens a lot more often with the makes mentioned. So if you do have a portable CD player make sure that you check and replace the batteries on a regular basis, or serious damage could occur to your favourite disc.

Now for a request. I recently acquired an early Pioneer laser disc player, Model PR8210, of US origin. The remote control unit is missing but I'm assured that it works all right. What I want to do is to convert the machine from

NTSC to PAL, also to 240 V operation. An isolation transformer works but is impractical for normal use. A display was obtained on a Commodore 1081 monitor, but only in monochrome. Attempts to obtain service data have so far been unsuccessful. The discs tried gave poor or no sound, so a fault may be present. Is there anyone out there who can help?
M. Wright, 7 Dundas Street,

Spennymore, Co. Durham DLI6 6AS.

DEAD ALBA/SOLAVOX VCRs

We too have has the trouble Donald Bullock mentions with a completely dead Alba VCR4000X. On carrying out the modification suggested for the Solavox NVCR5000 (same chassis) the machine sprang to life and has worked since. But we are concerned because adding the $4.7 \mathrm{k} \Omega$ resistor in the position specified effectively places a leak across the memory capacitor C821, thereby rendering the memory ineffective. Does anyone have any other ideas for curing this problem, which appears to be quite common?
Roy Robinson, Goodspeed TVS,
Fallowfield, Manchester.
I was interested in Donald Bullock's comments about the Solavox NVCR5000, having had a similar problem with the Alba VCR5000. Replacing the 5.5 V back-up battery brought the display back to life, the clock etc. But the machine, a front loader, wouldn't accept a cassette. I scratched my head for an hour but got no further, so I phoned Technical Information. I was told to load the cassette by hand, then press eject. I felt that they must think I'm stupid, but having had stranger things happen to me I decided to try it. To my surprise, the machine sprang to life! I can only assume that the micro chip must get muddled and is in a lock-up state. Anyway, well done Alba.

C. Bainbridge,

Washington, Tyne and Wear.

TIMER SETTING DIFFICULTY

On the subject of VCRs that are too complex, a couple of weeks ago we sold a new Akai machine to a customer. Since then we have been back four times simply because the customer cannot set the timer correctly. After several one-hour crash courses he still presses the wrong buttons, and on one occasion wiped out the tuning memory when trying to set the timer. Gone are the days when VCRs had two buttons to set the timer - start and stop!

A small point I'd like to make in connection with Sentra and Alba VCRs is that C821, which one of your contributors describes as a "battery", is actually an $0 \cdot 1 \mathrm{~F}$, 5.5 V electrolytic capacitor.

Michael Dranfield,
Buxton, Derbyshire.

ALAN BLUMLEIN

Being a child of the thermionic age myself, I must say how much I am enjoying Harold Peters' recollections. I must however take him to task over Alan Blumlein's death in 1942. Blumlein was indeed an outstanding designer for EMI, pioneering much of the well-known timebase and deflection circuitry of the valve TV era. He was seconded to the RAF but was still an EMI employee. His death was certainly not over enemy territory.
It's inconceivable that such a prominent engineer would
have been allowed to operate in an aircraft over enemy territory with a prototype airborne radar. In fact he was killed in an aircrash at Ross on Wye whilst testing the H2S prototype. Blumlein, other engineers and the complete crew were killed when their Halifax II bomber, serial number V9977, crashed into a field at 1600 on June 7th, 1942. Apparently the aircraft had caught fire at 500 ft then descended into a farmer's field eight miles south west of Ross on Wye. The aircraft was used by the Telecommunication Flight Unit.

At the time TRE had moved from Orford Ness and was operating from Malvern in Worcestershire. I'm reliably informed by a member of our local aircraft preservation group that the crash site still yields Perspex fragments from the original transparent prototype (the production domes were opaque). It seems to me to be only fitting that the correct facts should be made known about an engineer who contributed so much to the evolution of real television.
Colin L. Turner, Maidstone, Kent.

DEVELOPMENT OF RADAR

When the war stopped the World's first TV service there were only a few hundred TV receivers in use. Production lines as we know them today did not exist. So there was no swing over to RDF "at the drop of a hat" as Harold Peters suggested in Part 2 of his interesting series. Radio Direction Finding, as it was first known, started way back in 1935, on February 26th to be exact, when Robert Watson-Watts and Arnold Wilkins "borrowed" the BBC's then most powerful transmitter, operating at 49 m , and with the help of a Hereford bomber (wing span 23m) observed on an early oscilloscope the movement of the blip as the receiver's output, direct from the transmitter, was varied by reflections from the bomber, thus proving the feasibility of RDF. Harry Wimpresse at the Air Ministry then took action. Within five weeks an experimental RDF station was built near Orfordness, and before long an aircraft could be detected at a range of 140 miles and at up to $30,000 \mathrm{ft}$.

By 1937 a chain of RDF stations, called the "Chain Home", was started at a cost of $£ 10 \mathrm{~m}$. By 1940 they were to prove decisive in the Battle of Britain. The Chain Home aerials were mounted on 360 ft towers. When German bombers found that they were largely undetected if they flew in low "under the beam" Chain Home Low was evolved, with aerials much nearer the ground. The transmitters, working at 1.5 m , were housed in metal cabinets that looked like commercial fish and chip fryers and were thus dubbed by their operators. They used silverplated Lecher Bars as tuned circuits, and on a dry day a maximum of 25 kV could be used. In more humid conditions however they would often spark over at 15 kV !

As might be expected, the Americans became involved. They called RDF radar (radio aids for direction and range) and we eventually followed suit. By the end of 1941 1.5m radar was being used in aircraft for the Battle of the Atlantic. It was rather crude and was really successful only in good weather. What was needed was a new radar at a much higher frequency. Scientists suggested that 3 GHz , or 10 cm , would be the best option. The only device capable of oscillation at this frequency was the klystron, but it provided far too little power. At Birmingham University Professor Oliphant and a brilliant team of boffins had been working on this problem. The result was that John Randal (later Sir John) and Harry Boot invented the resonant cavity magnetron. The significance of this brilliant
invention is undenied, but their names have never been given the publicity they deserve.

On February 21st, 1940, using all sorts of bits and pieces including a large electromagnet, they finally switched on their "device" and cranked the e.h.t. up to $10-15 \mathrm{kV}$. As there were no instruments to measure the frequency they resorted to an open pair of transmission lines across which they slid a car light bulb. By measuring when it lit and extinguished they found that the wavelength was 9.8 cm : there was plenty of power, because the bulb eventually burnt out!

By the end of 1941 magnetrons were fitted to corvettes on escort duty in the Atlantic. The 10 cm dipoles were turned by hand and were hidden in a lantern-like structure. This proved decisive, as submarines were detected with far greater accuracy. By 1942 magnetrons were being used in aircraft, with a rotating scanner angled towards the ground, feeding a plan position indicator (PPI). This provided a picture of the ground over which the aircraft was flying. It proved to be a marvellous navigational and bombing aid, especially in ten-tenths cloud. I'm surprised that you fell for the hoary old joke that H2S was so called because "them upstairs" said "it stinks": H2 was the mode in which it worked and S was the frequency band!

By this time the Germans had a 50 cm radar (but no magnetrons). It was vulnerable to "window" -25 cm lengths of aluminium foil showered from an aircraft. Now called "chaff", this is still used today. The only way of countering its effect is to change frequency.

AR3D, our latest radar, called The Martello, has a planar aerial array with 40 elements, each element housing 64 aerials. This adds up to 2,500 aerials which can be combined in various ways to overcome interference. It's equivalent to having 40 separate radars, so that if one breaks down it falls soft, i.e. the other 39 carry on. AR3D can detect the nose cone of a missile travelling at 2,500 m.p.h., and can pass the information to an aircraft or missile battery - it can even fire the weapons on either if required. For the future, solar-powered radars with no moving parts and a range of 300 miles, linked to others around the country, are envisaged. Radar was first switched on in 1938: it's still going strong today.
John S. Yerbury.
Hathersage, Derbyshire.

EARLY ELECTRICAL SUPPLIES

I've been following Harold Peters' series on life in the radio and TV trade with great pleasure. Just one small comment however, on the use of two-pin plugs for radio and TV receivers. This wasn't because 13A plugs hadn't been invented (three-pin plugs with earthing conductors had been in use from the very early days of electricity in the home) but because at one time most of the numerous independent supply undertakings operated two tariffs, one for power circuits and another for lighting. Electricity supplied for power was much cheaper than that for lighting, so strict rules applied as to the minimum wattage that could be used with the former. The figure varied from place to place, but was commonly about 500 W . Hence the widespread use of BC adaptors for small appliances such as smoothing irons, soldering irons, even bowl fires, as well as radio etc. equipment. In the Thirties and Forties it became common practice for electricians wiring new houses to install at least one two-pin socket rated at 5A and connected into the lighting circuit, usually in the living room, to comply with the regulations. My late father-in-

next month in

- SERVICING THE PANASONIC G DECK

A few preliminary comments on this widely used VCR mechanism were published in our September 1988 issue, when it was relatively new. Next month Nick Beer reviews and updates the mechanical fault situation, covers electronic faults to date in Panasonic machines and provides information on setting up. There is a lot to report in this extensive servicing feature. In addition to Panasonic machines the deck has been used in Grundig, Philips, Pioneer, Pye and Sony models.

- SIMPLE TUBE LIFTER

Careful handling of c.r.t.s is important since a damaged tube can be dangerous. The simple lifter described makes tube removal, particularly from compact monitor-style cabinets, easier and safer.

- COMPACT CAMCORDERS

George Cole takes a look at the arrangements used in some of the latest camcorders to reduce their size and weight and give them a more convenient to handle shape. Techniques used by JVC, Sony, Panasonic, Canon, Sanyo and Hitachi are discussed, including Panasonic's EIS (electronic image stabiliser) system.

- RECEIVING EXTRA CHANNELS

Earlier this year Tim Anderson decided to carry out a survey of the channels that were regularly available at his location, with a view to assessing the reliability of non-local reception. The results are presented along with comments on equipment and geographical factors to provide guidance to others contemplating reception of additional channels.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

TO
(Name of Newsagent)
Please reserveldeliver the May issue of TELEVISION ($£ 1.80$), on sale April 17 th, and continue every month until further notice.

ADDRESS
law's house still has one of these - it's connected to a 1940 Marconi radio bought when he moved into the house that year! When the electricity industry was nationalised the two-tariff scheme was gradually scrapped, but a corollary reappeared later when it was forbidden for some time to use anything but storage radiators and water-heaters on cheap off-peak electricity
Chas E. Miller,
Woodseaves, Staffs.

TESTING INFRA-RED HANDSETS

Here's a simple method of testing infra-red handsets that operate at about 450 kHz . A radio receiver placed nearby, tuned to the low-frequency end of the medium-wave band, enables the various pulse train tones to be heard, giving immediate indication of keypad contact or i.c./ceramic resonator faults without the need to take the back off.
G. Cox,

Bexhill-on-Sea, East Sussex.
The simple answer to checking remote-control handsets is to use a cheapo long-wave radio. Sus out where the ferriterod aerial is, get your handset, and press any button. This works best at around 170 kHz , up to four inches from the aerial.
John S., Romers of Rishton, Blackburn, Lancs.

LAMP EFFECT

Quite by accident I recently came across a problem I'd not encountered before. It may be of interest to other readers. Apart from other machines I have a Ferguson 3V32. It started to give slurred sound with music, mostly at the slow speed, so I naturally assumed that a new pinch roller and a clean up were required. I removed the cover, then the metal cover over the mechanism and the cover over the audio-control head and inserted a 180 tape. Apart from slurring, everything worked all right mechanically. For some reason I then inserted a 120 tape. The machine kept rolling in spurts and after a while rejected the tape.
"Blast" I thought, I've found another fault. The same thing happened when another 120 tape was tried. Put in a 180 and everything was o.k. I checked everything, getting nowhere until I accidentally moved the 40 W bulb that hung over the machine. That was the cause of the trouble! There was no problem with a lower wattage bulb. With a higher wattage bulb the light seeped through the tape housing and activated the sensor, creating the "fault".

I wonder how many engineers have had a problem like this and didn't realise that the lamp over the bench was the cause of the trouble?
Monty Alter,
London N15.

STATIC SHOCKS FROM TV SETS

Sandy Hewat (Letters, February) asks for an explanation of the static shocks that can occur with TV sets. The c.r.t. is a large capacitor that can retain its charge for some hours after the set has been switched off, and all electronic people will know about the capacitor left on the bench for fun. Being in electronics rather than the TV trade I don't get this trouble because the monitors I work on have a large encapsulated resistor to earth connected to the e.h.t. lead so that the charge leaks away. I would suggest the use of a special socket with all the pins connected together via
large-value resistors. On disconnecting the set from the mains the plug is inserted in the safety socket straight away. Thus no shock will occur because the circuit has been discharged.
Andrew Stuart,
Devizes, Wilts.

YAMAHA'S REVOLUTIONARY CONCEPT

Just recently while working on a Sansui PC-V100 CD player (Yamaha CDX2 in disguise) I noticed in the CDX2 service manual something that will revolutionise electronics as we know it. It seems that Yamaha can make i.c.s work without electricity! To see what I mean, get hold of a CDX2 service manual and turn to page 28 . Look at the top left-hand corner of this page. There you will see a diagram showing the internal works of IC403. The pin connections are all given, but there's no VCC supply. So the chip works without any power?! The Sansui manual shows the same situation, near the back. Is this the future of electronics? No power supplies!
P.J. Roberts,

Fishponds, Bristol.

HELP WANTED

Can anyone supply a second-hand or new line output transformer for an Amstrad CTV1600, also a circuit diagram for the Waltham W130? All expenses would be met.
Robert Cox, 35 South Vennel,
Lanark, Strathclyde.
Telephone 055565744.
Can anyone supply a circuit diagram for the Advance OS15 oscilloscope?
Gordon Skelhorn, 386 Loughborough Road,
West Bridgford, Nottingham NG2 7FD.
Can anyone sell me a complete i.f./chroma panel for the Sony KV2000 Mk.II? The last owner twiddled the present one so much that it's beyond repair!
Bernard Hunt, 7 Little Hereford Street,
Bromyard, Herefordshire HR7 4DE.
Telephone 0885482702.
Can anyone supply me with a service manual or any technical information on a Dynastar satellite receiver Model DS330EK - it was also marketed as the Orbital OS330EK and was manufactured by the EFA Corporation in Taiwan. If there's a UK distributor this might be a starting point.
Eamonn Galvin, Ballygroman Upper, Ovens, Co. Cork, Ireland.
Telephone 021331208.
Can anyone help with the circuit diagram for a Marantz SD152 cassette machine?
D. Long, 15 Wellholme, Brighouse, Yorks HD6 4AF.

I am trying to obtain an on/off/volume/tone/balance control for a Galileo WE4500 car radio/cassette but have been unable to locate a source of spares. Can any reader help?
Paul Hardy, 43 Sheridan Avenue,
Cavenham, Reading, Berks RG47QB.
Telephone 0734475869.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

$\star 40$ different patterns and variations
\star Fully interlaced sync pulses with correct picture blanking.
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service

* Also available with VHF Modulator.

Price of Kit
£75.00
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{4} 4^{\prime \prime}$) app.
$£ 12.00$
Optional Sound Module (6 MHz or 5.5 MHz)
13.90

Built \& Tested in Case including Sound Module
£119.00
Post/Packing $\mathbf{£ 3 . 0 0}$
Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
Ł In addition to colour bars R-Y, B-Y etc
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
\star Backup service available.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£35.00. CASE £5.80. BATT HOLDERS $£ 4.20$.

MAINS SUPPLY KIT $\mathbf{8 5 . 8 0}$

(Combined P\&P £3.00).
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS £6.80.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

LINE OUTPUT TRANSFORMER TESTER

Battery operated
\star Pocket size.

PRICE £20.00

POST/PACKING $£ 2.50$

KITS \& PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \& audio outputs $£ 28.50$ p.p. $£ 1.80$.
PAL DECODER KIT (Video to RGB) for Monitors $\mathbf{£ 2 7 . 0 0}$ p.p. £1.00.
PAL ENCODER KIT (RGB to Video) £18.50 p.p. $£ 1.30$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $£ 13.50$ p.p. 80p. (Alum. Case $£ 3.20$ p.p. $£ 1.40$.) AdDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45p.

UHF SIGNAL STRENGTH METER KIT $\mathbf{e 3 0 . 0 0}$ Alum. Case £3.20. De Luxe Case $£ 12.00$ (Built \& Tested $£ 58.00$) p.p. $£ 2.50$. CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $\mathbf{~} \mathbf{4} 10.00$ p.p. $\mathbf{3}$. (K).

TV \& VIDEO SPARES

TELETEXT PANELS

GEC/HITACHI - PCI7+A+ £ 10.00

TTT - Texdecoder foll 11.61 incl. SAA.524. S2.31 812.00
 MULLARD VIt6103 E10.00
THORN TX $/$ /IU. 1539 EIO. 100
OSI PACKING FOR ABOVE $\mathfrak{t} .51$

PHILIPS SPARES

GK CHANNEL SELECTOR £2.50 p.p \& 1.51
GII 6 POS touch tune channcl selector (replaces old type) E14.00 p.p. E1.sil GII PANELS (tested). frame. IF. decoder $£ 12.50$ cach P.p. £. (x) Scith $£ 15.00$ P.p 2. (R). Power lested exchange ti8.00 p.p. £2.80)

MANUALS 2A. 2B. CPM) £3.51) (IX-E. ('TX-S, CFI £1.50. KTH. KT3 K40. 3 A \& 4.50 P. P. 22.50 .
BACK UP BATT. 2.4 V £6.00), 1.2V E.3.20 p.p. Xip
K30, KT4. CTX-EHT
K30, KT4. CTX-EHT Lead £3.20 p.p. E4.(it).

THORN/FERGUSON SPARES

9000 Series IF/Decoder tested $\pm 10.00 \mathrm{p}$. p. $\mathcal{E} 2.80$)
TX9 RFI Choke 164 \&6. 80 p.p. 81 p p.

TX10 Focus contro 88.50 p p. £. (1)
TX9TX 10 Saw filter IF pancl $\mathbf{x 5 . 0 0}$ p.p. Nipp.
T $9 / 10$ Remote \& tuning $1515 \mathrm{~N} \mathbf{~} \mathbf{5 5 . 0 0}$ p.p. $\mathbf{~} 1.80$.

TX9/10 Remote \& tuning 1536 (incl. SAA
TX 10 Stereo Audio Buard $£ 3.50$ p.p
TX90 Mains TX $£ 23.00$ p.p. 2.80 .
TX90 I $4^{\prime \prime}$ Chassis complete \& touxed (u
TX100 Chopper IX $£ 1480$ Pr 5751

AN5521	E1.40	SAA5040	26.80	STRSSM41	58.50	TDA25	E3.80	TDA3653B	20
AN590n	¢2.20	SAAsiso	ct. 80	STRAREO	¢5.80	TDA2599	£3.80	TDAB64	c. 3.20
BA¢23\%A	¢4.80	SAA53230)	¢5.80	TA70 80AP	${ }^{55.80}$	TDA2581	c2. 20	ntba4442	${ }^{56.80}$
CNX ${ }^{2}$	E4.80	SAB3135	c6. 80	TA76siP	c5.80	TDA2582	£2.80	TDA4509	
HA11211	¢2.80	SAB3037	¢15.80	TA7tryP	${ }^{\text {¢ } 6.80}$	TDA 2593	21.50	TDAtsin	E7.80
HA11/23	c2.10	SAF1032	[4.5]	TBAI20	ع1. 20	TDa254		TDA4sina	
HA5.533\%	¢11.80	SAFI039	¢2.20	TBA750	¢2.20	TDA2995	E4.80	TDA4sil3	¢5.**1
LA4445	E. 1.00	SL4761471	c4.00	TBA9zi	¢2. 20	TDA2540		TDA4515	
LA7*M)	¢1.80	SL 486	c1.20	TBA950	$\underline{22.20}$	tDazalla	¢1.90	TDA4601	E.3.45
LA7530	87.20	SL490	E2.80	TCA270	¢1.80	TDA264	¢ $¢ 1.20$	Ti) A4601!	(2. $\times 10$
LA7801	E3.50	SLIt 41	¢1.80	TCAAMO	${ }_{6}^{6} .80$	TDA2n53A	${ }_{55}^{53.20}$	TDA4690	$\sum_{¢ \leqslant \times 80}$
LA783)	¢2.80	SL143?	CI. 40	TDA 10357	40	TDA2654	E5.70	TDAS516	¢5.80
Mㄴ93B1	¢7.80)	SN762260N	¢1.80	TDA1137	11.90	TDA2659B	E8.60	71DA5549	¢2.80
M490BBI	\&14.80	SN76705	¢9.80	TDAl104	\{2.90	TDA2670	c3. 20	TDA8153	${ }_{5} 87.80$
M4918Bt	¢9.80	STK5325	¢6.80	TDA1082	13.80	TDA2f60	c3.80	TDABIKI	${ }_{\text {ct }}$
M444	¢9,80	STK 5332	c6. 80	TDA170	£2.20	TDA2tic)	${ }_{5}^{81} 8.80$	TDARIM,	E3.80
MCl3002P	55.80	STK5338	¢6.80	TDAliso	$\mathfrak{E L 2}^{20}$	TDA2780	¢6. 8	TDAY413	\%
MDA2061	c4. 40	STK5339	E6.80	TDAlignz	52.20	TDA319)	c. 20	TDAYsib	cisu
mDA 2062	¢3.80	STK 5421	65.80	TDAI432P	85.70	TDA3700	${ }^{\text {E6. }} \mathbf{8 0} 0$	TDAysi3	8. 4.80
ML237	[3.30)	STK5422	${ }^{\text {c7. }} 50$	TDA1470	¢2.80	TDA33014	${ }^{\text {E7. }}$ 50	TEAllary	c2. 20
ML238	¢6. 80	STK5471	66.50	TIJAl67ta	c3. 20	TDA330	E3.50)	TEA1014	50
ML926	ca. 80	STK548!	¢7.80	TDA1701	E3.80	TDA3540	${ }^{\text {chemin }}$	TEA11039	
SAA1024	65.80	STK 5182	¢6.80	TDA1770	$\underline{53.20}$	TDA3510	¢9.80	TEA2018A	¢2.20
SAAling	E5.m0	STK730	£10.80	TDA1×70	E6.80	TDA3s41	${ }^{52.50}$	TEAzISS	
SAAII24	E.3.50	STK7148	£10.80	TDAIMAK	52.80	TDA3541	${ }^{5} 3.50$	TMSIMOUN2I	
SAAI25il	E3.80	STR + +1	17.80	TDA194)	E3.20	TDA3561A	${ }^{\text {E5 } 5.811}$		
SAA1251	E8.40	STR 450	E6.80	TDAlysi	c3. 50	TDA3582A	E5.80	TMP47(432	$\mathrm{AP}^{\text {P }}$
SAA 1292	133.20	STR4S1	c5.80	TDA2i40	¢7.80	TDA3565	${ }_{\text {c }} \mathbf{3} 80$		£13.50
SAA 1293.12	c6.80	STR454	¢5. ${ }^{\text {¢ }}$ (0	TDAZISO	6.3.23	TDA3566	c5.80	TMP47C4.4	N-3659
SAAW27	15.80	STR HMNAA	cx.80	TDA2270	¢2.80	TDA3571	${ }^{\text {cha }} 8.8$		f16.80
SAASMO	¢2.80	STR4MAS	¢ 10.50	TDA2510	${ }^{\text {ct. } 80}$	TDA357\%	17.00	TUAzomo	58.50
SAAStil	55.80	STR4211	E6. 80	TDA2548	¢5.80	TDA364)	ca. 20	UC3kidN	c. 4.95
Sabsil2	c5.80	STR5412	25.80	TDA2576A	E3x	TDA3ssil	Ex. 30	UPC1378	¢1.90
SAASM21	c5.80	STRStlin	E.4.50	TDA2577	E4.80)	TDA3651	c4.20	UPCII.94	c3, 51.80
SAASt30)	E6.80	STR 5.4041	¢10.80	TDA2577A	E4.8]	TDA36930	¢2.90	UPC T421)	60

 U322/U3HIN. ELCI(143 (cquiv). SC4. VHF NSF203 ± 7.80 p.p. 11.80 . LHFNHF UVHII f10.80. U34 E 10.80 p.p. \&1. (\%)
LINE OUTPUT TRANSFORMERS

BESH T2f, T22	¢9.80	ITT Core $110^{\circ} \mathrm{FST}$	19.45
DECCA 80. 100	88.80	PHILISS 30	£2.80
FIDELITY 2×2000. CTV140	E15.50	PHILIPS G*	Ex.80
Fidelity $\bar{Z} \mathbf{X H}$ (0)	[11.50	PHILIPSG9	£12.80
hinarictic. Cts	£24. 80	Phililis $\mathrm{Cl}^{\text {T3}}$	
HITACIII CPT1455, 1456, 1476. 1491	¢28.80	PHIIIIPS K K K	E31.80
HITACHI CPT2174767\%.	£28.80	PHILIPS CTX-F.S	
ITT Compast B. 110	119.80	PHILIPSK ${ }^{\text {P4, }}$ (1)	$\underline{822.40}$
ITT Compatt 80. 110	¢17.80	PHILIPS 2 A	
1 TT Compact 80. 4\%	¢22.80	PHILIPS CFs	
ITT Compact $80.1110^{\circ} \mathrm{FST}$	¢19.80	PYE 731.741	
ITT CVC29.	¢9.80	SANYO (TP7132, 8UP Chasvis	
ITT CVC 25, 30, 32	¢10.80	SONY K L I882	${ }_{5}$
ITTCVC45	£9.80	SONY KV21992\%	
ITT CVC 809. 801.813	$\underline{524.00}$	SONY KV2704,	${ }_{6} 56.00$
ITT CVCl 140.1206 . Picos	¢18.50	THORN (59) , 91, 1612, 13, 1712	
IIT CVClIw, 1175	¢22.80		
ITTCVC12(M). 1201. Mini 2	¢18.50	THORN 37×7 (NORIDMENDE)	${ }_{54} 9.80$
1TT CVC1204	[11.56		
ITT CVC121012 $15 / 17$	¢17.80	THORN TXIO(Chupper)	¢16.50
ITT Dgi $3.110{ }^{\circ}$	119.80	THORN TX8S	c19.80
ITt core $110{ }^{\circ}$. NF°	E19.80)	THORN TXYO $14{ }^{\prime \prime}$	โ19.80
ITT Core $1100^{\circ} \mathrm{FST}$	$\underline{19.95}$	THORN 7×1029	
${ }^{\text {ITT }}$ TX $\times 33266$	¢22.80 $\mathbf{¢ 2 2 . 8 0}$		1511.80 180

TRIPLERS: THORN 9010 e8.80 P.p. E1.So.
UNIVERSAL (hest quality) $\mathbf{5 7 . 8 0}$ p.p. £1.50.
CONTINENTAL TVK \& BG RANGE (quote exact mo.) replacements $£ 13.80$ DECCATATUNG $£ 7.80$ p.p. £1. 50 .
6.3V CRT Boost Transfomers for Colour \& Mono 55.90 p.p. £1.41.

455 CRYSTALS for Remote Control Handsets. 4 for $\mathbf{E 1 . 0 0} \mathrm{p} . \mathrm{p}$. 51 p .
VHF to UHF Converters $£ 35.00$ P. P. $£ 2.50$
TRANSPARENT SERVICE CASSETTE $£ 6.80$ p.p. £1.80
HOW TO ORDER: ADD p\&p TO ORDER + VAT 15\% TO THE TOTAL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE

Telephone 071-794 8751, 7947346
M MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 1SD

Adding NICAM Stereo Sound

Keith Cummins

Inspired by Eugene Trundle's series of articles on Nicam stereo sound, and tempted by Maplin's advertisement, I decided to take the plunge and add Nicam to my own TV receiver. My current set is a Sony KVX2521U, which has dual audio channels and spatial/pseudo-stereo facilities but no Nicam. Before the addition of Nicam I had already connected to the set a pair of separate forward-facing speakers which sound much better than its internal ones.

Planning

A considerable amount of thought and roughing out of ideas was undertaken before I even ordered the parts required. Since I've been out of the TV trade for many years my TV activities are now restricted to hobby interests and fixing the odd set for friends and relations. As a result I was not in the position to have the set out of service for a prolonged period and decided to install the Nicam decoder as a separate add-on unit which would be interfaced with the receiver during a "quick-hit" operation - it actually took one hour from taking the back off to having the pleasure of hearing Nicam sound. But I stress again that this was made possible only as a result of the lengthy initial deliberations in my workshop.
Once the decision to have the decoder as a separate unit is made several potentially difficult problems go away. First you don't have to find a location for the decoder within the set, where it might cause or be subject to interference from other circuits such as the timebases. Secondly there's no need to drill holes in the front of the set to accommodate LEDs. Thirdly if you dispose of the set you can keep the decoder. Fourthly the decoder can have an independent power supply (more on this later). And fifthly the modifications to the receiver can be kept to an absolute minimum and are quick and easy.

Warnings

A warning is necessary at the start. The type of modification outlined in this article is suitable only when the TV set involved has an isolated and earthed chassis. In its literature on the decoder Maplin expresses particular concern about the possibility of people making direct connections, and recommends that qualified TV personnel are consulted before doing so. Maplin also makes the point that certain SAW filters may remove the Nicam carrier. I think one would have to be particularly unlucky for this to happen however, especially as the decoder has an input sensitivity of $100 \mu \mathrm{~V}$ r.m.s. At the output of a typical video demodulator chip the signal amplitude can be 2 V peak-topeak, so the -20 dB Nicam signal can be a further -56 dB down and still be sufficient to drive the decoder. If this problem does arise however a separate decoder can still be used with another set, so you won't have wasted hours building one into an unsuitable receiver. This is another good reason for adopting the "add-on" approach.

Description

The decoder unit is shown in the accompanying photographs. There are three LEDs on its front face: f.m. (i.e. non-Nicam), Nicam and stereo. The stereo one is
green, the others being red. Apart from labelling there's nothing else - there are no controls. The rear of the unit has a mains input lead, a five-pin DIN interfacing socket for the audio and control functions, a BNC connector for the Nicam carrier input and two phono plugs that provide left and right outputs for a separate hi-fi system. The Maplin decoder - I chose to buy mine assembled and tested - is inside the unit along with a small power supply to provide the $12 \mathrm{~V} / 200 \mathrm{~mA}$ required by the decoder. A control line from the TV set switches the power supply on and off. The lot is assembled in an instrument case measuring 200 mm wide, 75 mm high and 150 mm deep. It can sit inconspicuously next to the TV set.

Now for a bit about the decoder. Maplin provide comprehensive information with it - you'll get a good photocopy when you buy the decoder. When presented with a Nicam signal the decoder produces left and right audio outputs. With no Nicam signal present the unit reverts to the normal f.m. sound condition: the audio signal from the TV set's f.m. discriminator is routed through the decoder, emerging as a dual mono signal. The LEDs are provided with drive signals so that the unit's status can be readily observed.

Power Arrangements

You might wonder why I bothered to build a separate power supply when it might by possible to obtain the decoder's power from within the TV set. My reason for doing so was to ensure that the extra 200 mA required by the decoder didn't overload a 12 V supply within the receiver or perhaps damage a switch-mode power supply within the set by imposing an extra load that it wasn't designed to accept. I did however feel that the risk when draining an extra 50 to 60 mA to operate a control relay was minimal. So a 12 V feed within the TV set energises a relay which then turns on the separate power supply.

Interconnections

Fig. 1 shows the interconnecting circuitry within the addon unit. There are two connectors for coupling to the TV set. These are SK1, the Nicam carrier input, and SK2 which provides the control and audio interface. We'll consider SK2 first. Pin 2 is the system earth (chassis connection). When the TV set is switched on 12 V is

The Nicam stereo decoder unit sits inconspicuously beside the main receiver.

Fig. 1: Nicam decoder unit, wiring of instrument case peripherals. Maplin decoder connections on the right: pins not shown aren't connected.

Fig. 2: Basic layout in the instrument case, wiring detail not shown. LEDs are fitted to the front where appropriate.

Fig. 3: Details of the 5-pin interfacing DIN plug and lead.
present at pin 5. Thus current flows through the relay's winding and its contacts close, switching on the separate power supply. Mono audio from the TV set's f.m. discriminator is fed to the decoder via pin 3. Outputs from the decoder to drive left and right audio channels within the TV set are fed via pins 1 and 4. These outputs are also fed to sockets SK3 and SK4 which provide left and right signals for a hi-fi system, tape recorder etc. R1 and R2 are included to prevent accidental shorts from other
equipment loading the decoder's outputs. Note that the decoder's outputs are at a low impedance, terminated by R3 and R4 - this, along with the 1 V r.m.s. output, helps to keep the level of hum and other extraneous noise low. The decoder's output operational amplifiers are used whether the unit is decoding Nicam or has reverted to the f.m. mono mode, so the unit must be powered whether or not Nicam is being received.

The indicators operate on the basis of a simple logic. If it's not Nicam, it must be f.m., i.e./Nicam = f.m. Thus with the power relay energised but no other input the f.m. LED lights.

The Nicam carrier is fed directly to the decoder PCB via the BNC connector SK1.

Power Supply Circuit

The 240 V a.c. mains input is connected via a conventional mains lead. The live side of the supply is taken to fuse F1 which is live whether or not the unit is switched on. When relay RLA is energised the mains input is connected to the primary winding of transformer T1. Its secondary winding supplies $15-0-15 \mathrm{~V}$ at 250 mA to the fullwave rectifier diodes D1/2 which charge the reservoir capacitor C 2 . The output from this simple rectifier circuit is fed to pin 1 of the 781212 V regulator chip. C 1 is included to provide protection against transients and r.f. noise.

Construction

Construction of the unit is straightforward. Fig. 2 shows the layout adopted. All I did was to position the major components on the chassis of the instrument case and mark out the hole positions using the transformer, decoder PCB etc. as their own templates. The relay is mounted on its head, secured to the chassis by double-sided tape. A hole is drilled at either side to enable a cable tie to be passed through the chassis and around the relay. A right-angled screen is mounted between the power supply and the decoder PCB, serving also as a heatsink for IC1. The power supply components on the secondary side of T1 are mounted on a piece of Veroboard which is bolted to, but spaced away from, the chassis plate.

The layout shown gives, I believe, the best arrangement of the connectors on the decoder PCB relative to the peripheral connections, LEDs etc. so that the wiring is neat and straightforward - follow Fig.1. As I consider that this project is one for experienced people only it's not necessary to provide details of every last nut and bolt. It should however be pointed out that to comply with IEC regulations a clearance of 3 mm must be provided between mains connections and other metal parts.

Before starting work on the TV set it's a good idea to make up the leads that connect to SK1 and SK2. Coaxial cable is used for the former and, as shown in Fig.3, screened four-core lead for the latter. Colour coding is a matter of choice - that shown is in accordance with the cable I happened to have.

Receiver Modifications

The following points should be borne in mind when considering the modifications to be made to the TV receiver.

The original mono feed to the left and right channels (assuming that the set has left and right channels with a mono input - if not you'll have to use the left and right phono outputs) has to be disconnected and the two

Fig. 4: Interfacing at board A in the Sony ModeI KVX2521U, including the Nicam take-off buffer stage.
channel inputs split. Where these were previously connected together they have to be connected individually to the interface lead. The braid has to be connected to chassis nearby and a source of 12 V for the mains switching relay has to be found. It's probably a good idea to connect a resistor (I used 33Ω) in series with the 12 V feed to provide a degree of current limiting in the event of a shortcircuit occurring on this line. This is illustrated in Fig. 4. Because of the increased length of the connection, it's useful to take the output from the set's f.m. demodulator via a buffer stage - the Sony KVX2521U already has one (Q112). With this particular set all the modifications are done on the A board. Remove it from the receiver, locate connector CNA11 and remove the wire link connecting the tracks that go to pins 1 and 3 (1 is left and 3 the right channel). Connect the left and right feeds from the interfacing cable to the two vacated holes in CNA11. Disconnect the negative end of C161 from board A and connect it to the interfacing cable's mono feed. Attach a $33 \Omega, 0.3 \mathrm{~W}$ resistor to the relay line and connect its other end to 12 V (the feed in this case comes from L101 via JW108). Tie the braid to chassis by attaching a stiff wire and soldering it into an unused earth track hole.
Extracting the Nicam carrier requires caution. Demodulated luminance and chrominance plus the f.m. and Nicam carriers appear at pin 12 of the TDA3541 chip IC101 in the Sony KVX2521U. From here the video signals and the intercarrier f.m. signal are routed to their

Interior view of the unit, showing the Maplin decoder board and the peripheral components and wiring.
separate circuits. Because filters are incorporated in these feeds it's not possible to tap the Nicam signal from a later point in the circuitry, but direct connection of a coaxial cable for the Nicam signal take-off to this point would upset things due to the cable's capacitance. So an emitterfollower buffer stage is required.

I used a BF173 transistor for this purpose. The circuit, shown in Fig. 4, is wired on the back of board A, immediately adjacent to IC101. PVC tape is laid on the PCB between the transistor and the tracks, and also on the inside of the screening plate which has to be removed to fit these components. The screening plate has holes, which enable the lead from the 1 nF coupling capacitor to be fed through and soldered to the inner coaxial cable conductor - the outer is connected to the screening plate.

When the above work has been carried out, judicious use of cable ties will provide mechanical stability. By enlarging the aerial connector hole in the cabinet the cables can be brought out to the decoder unit.

Adjustments

Some simple decoder setting up has to be done before the job is complete. Monitor TP1 and check the amplitude of the 6.552 MHz carrier. Peak T1 and T2, then adjust RV1 for approximately 200 mV peak-to-peak on a calibrated scope. While receiving a Nicam signal set the volume to a sensible level then unplug the carrier feed at SK1. The decoder will then revert to f.m. Set RV2 (right) and RV3 (left) to obtain the same subjective volume level. You may find that there is a tendency for the Nicam sound to crackle on certain captions. This can be cured by stagger-tuning T1 and T 2 - one turn clockwise with T 1 and one turn anticlockwise with T2. This ensures that there is adequate bandwidth prior to the Nicam bandpass filter.

In Conclusion

While this article has dealt with modifying a specific receiver, I've no doubt that those with adequate experience would have little difficulty in tailoring the interfacing arrangements to suit other sets. Static precautions should be carefully followed, especially when handling the decoder.

Component details

Nicam stereo decoder, Maplin part no. AM00
Mains relay, Maplin part no. YX98
Mains transformer, 15-0-15V, 250mA, Maplin part no. YN17
7812 12V regulator
R1 $2.2 \mathrm{k} \Omega$
C1 $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$
R2 $2.2 \mathrm{k} \Omega$
C2 2,200 $\mathrm{F}, 25 \mathrm{~V}$, radial leads
R3 $1 \mathrm{k} \Omega$
C3 $10 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial leads
R4 $1 \mathrm{k} \Omega$ C4 $1 \mathrm{nF}, 100 \mathrm{~V}$, polystyrene
R5 $1 \mathrm{k} \Omega$ D1 1N4002
R6 33Ω D2 1N4002
R7 47Ω D3 1N4002
R8 470Ω
F1 $200 \mathrm{~mA}, 20 \mathrm{~mm}$, slow
All 0.3 W
LEDs are included as part of the decoder kit, along with a mating plug kit for the connectors Instrument case $200 \times 75 \times 150 \mathrm{~mm}$
$5-$ pin 180° DIN plug and socket
BNC plug and socket
Aluminium for heatsink
20 mm fuse carrier
Grommet for mains lead
Nuts, bolts and washers, M3 size
Screened cable, coaxial cable, mains lead, equipment wire etc. Cable ties, PVC tape, labelling tape etc.

What a Life

Donald Bullock

When I first settled here years ago it was a quiet village. Then houses went up on odd scraps of land we'd scarcely noticed, and a field of grazing cattle gave way to a whole estate. Others followed, and finally the old dog track became a jungle of chimney pots. These extra people have brought trade of course, but it's of a different kind. There's a world of difference between the original villagers and those who now outnumber them.
Recently, as I was settling to my evening meal, there was a knock on the door. A Mr. Trubbel had brought an Hitachi CPT2218 (NP81CQ chassis) along for repair. He said that it had expired with a bang, that he wasn't on the phone and that he'd call next evening for a progress report.

Next day I found that the mains fuse had blown. Also that pin 6 of the chopper transformer was surrounded by a small, carbonised crater. I scraped it clean and reconnected pin 6 , which feeds the h.t. rectifier, using a wire bridge. After replacing the fuse I switched on. It went again and I now found that the STK441 chopper chip, which I'd not encountered before, read oddly. It looks like a BU208, with three legs. An order for one was placed by telephone and credit card and the set was then put to one side.

I next picked up a Sony KV2204. It's a model that frightens me rather less than other Sonys. The set was dead with a blown mains fuse. Checks showed that the bridge rectifier diodes were all right. So were the transistors until I got to the BU500 chopper Q605 which was short-circuit all round. I replaced it and, after checking around a bit, switched on. The transistor and fuse both went. As I couldn't find anything else amiss in the power supply I rang Jim Woods. He works for a firm with the unusual name of Duck, Son and Pinker. They're Sony dealers, and Jim is their technical wizard.
"Try R627 ($0.68 \Omega, 1 \mathrm{~W}$) in the protection circuit" he said. "It sometimes fails and causes the trouble you're having."

So I did. It was open-circuit. I replaced it and the other blown components and switched on. Up they all went again.

I counted my BU500s and thought about it all. Was I being intimidated because it was a Sony - I find these sets inscrutable. What would I be doing if it was any other make of set? I'd check the line output transistor, wouldn't I? It was dead short of course. What a silly goose I'd been!

That evening, just as I'd picked up my knife and fork, Mr. Trubbel presented himself at the door. I told him I'd ordered a replacement STK441 chip and expected it to arrive tomorrow.
"It's taking longer than I'd hoped" he said.
It arrived the next day and I fitted it. Before switching on I checked the nearby transistor Q901 in the overload protection circuit. It had gone short-circuit. As I had one (a 2SD787) I fitted it. I also discovered that R904 ($82 \mathrm{k} \Omega$) in the bias network had gone high in value. So this was also replaced. I then muttered a short prayer and switched on, to be greeted by a bang and a wisp of pretty blue smoke. I pondered on whether to invest in a manual but instead decided to order another chip and some more transistors. Before doing so I had a further look at the circuitry and saw a couple of zener diodes, D901/2. They were both short-circuit. I could see that D 901 was a 2.7 V device but couldn't make out the value of the other one.

When Mr. Trubbel called at the expected time I gave him a progress report. He drew himself up like a Prussian drillmaster and told me that the last people who'd mended it had taken only an hour. I was to understand that he wanted the set the following evening.

Next day the spares arrived and I fitted them. I also discovered that the other zener diode was a 33 V device. I didn't have this value in stock, nor could I make it up precisely. So another order was required. Remembering the Sony set I also checked the line output transistor, which was dead short. After replacing it I put the set aside to await the other spares.

I then put a Tatung VCR on the bench. It had ceased to work when its owner's son had put money in its mouth. It's similar to the Akai VS205EK. A manual would be required. Meanwhile I took a look at the power supply circuit, armed only with prejudice and suspicion. Some fusible resistors, FR309, FR310 and FR323, were all opencircuit. The 33 V zener diode D304 was short-circuit and transistor Tr301 had failed. After replacing these items I switched on and the machine came to life. While it plays back perfectly however it doesn't record or erase - though its display says that it does. I put it aside to await the manual.

That evening Mr. Trubbel called again and I told him that the set was (I thought) ready but for one diode.
"Can you guarantee that once it's been fitted the repair will be finished?"
"No technician can be 100 per cent sure until the spares are fitted and the set actually works" I explained, "but I can't see why not."
"Let me see the set" he demanded, thinking perhaps that I hadn't even started on it. So I walked him to the workshop and showed him his set, which was still on the workbench. He looked it over carefully, taking his time, then left saying he'd call next evening.

Twenty minutes later his wife arrived. She said the set was hers, not her husband's, and that he'd seen a scratch on it. I took her to the workshop where she peered around an area near its top aside. She pointed to a tiny blemish on the cabinet.

The next day the bits arrived and after fitting them the set at last came to life. But there was no sound. I concluded that the TDA1035S sound chip had suffered during the initial arcing and ordered another one.

Mr. Trubbel turned up that evening, heard the news and told me that unlike his former repairman I was both incapable and slow. He asked me how long I'd been mending sets and whether it would definitely be finished next day. I told him for thirty five years and that I hoped so.

Next day the new TDA1035S restored the sound. I reassembled the set, gave it a polish, left it working on the bench and awaited his call.

When he came he looked the set over and said he could still make out the scratch.
"Perhaps you did it whilst bringing the set in your car" I suggested.
"Not me" he replied, "I'm a very careful person. What are you going to do about it?"

I sighed. I'd have done almost anything to see the back of Mr . Trubbel. So I offered to reduce his bill.
"No" he said. "I'll pay the full bill, but I want the cabinet restored. Can't you fit a new one?"
"This set is ten years old" I pointed out. "I'll get a polisher to attend to it."

I did. That was weeks ago. Mr. Trubbel still hasn't returned.

VCR Clinic

Philips VR6180

There was no cassette lift operation. When a cassette was inserted the system controller sensed the switch but the motor wasn't energised. The supply to the control motor was missing as R3002 and R3003 were open-circuit. P.B.

Grundig VS440

The display showed A0 but the customer hadn't set the child lock. Now this is often caused by a flat memory battery with the VS500 range, but the VS 440 doesn't have one. I cleared the child lock and gave the machine a test. It would tune in but wouldn't memorise. There was a faulty RAM in the tuner, so a new tuner was required.
P.B.

Philips VR6180

This machine kept ejecting the cassette when play was selected. The cause of this was that the head drum didn't spin fast enough. When it was rotated by hand it seemed to be slightly stiff and a faint scraping noise could be heard. Someone had disturbed the drum and hadn't used the mylar spacers to set the gap between its upper and lower sections. Normal operation was restored when this was done.

New Philips video heads come with a fitting kit that consists of the following items. (1) A plastic holder so that the head can be fitted without getting finger marks on it. This holder has a plastic rod that locates in the lower drum to align the head position. (2) A plastic spring-loaded rivet that fits through a hole to set the drum motor position with respect to the lower drum. (3) Two transparent mylar shims to set the gap between the upper and lower drums. The fitting kit can be removed when the head fixing screw is secure. Keep it in the workshop so that you can swap heads between machines if necessary.
P.B.

Panasonic NV370

The complaint was that this machine wouldn't do anything except load and eject a tape. The digital tape counter showed a flashing d, indicating the dew condition. There was a high on the dew input pin (23) of the microcomputer chip IC6001, and voltages that would give this result were present around the operational amplifier chip IC6004 that acts as a comparator. The reference signal at the inverting input (pin 6) was 0.375 V while 0.83 V was present at the non-inverting input (pin 5). The dew sensor is connected from pin 5 to chassis and is the lower half of a potential divider. We found that there was 0.83 V at both sensor connections as the earthing screw on the small connection PCB, to which the sensor is connected, was loose. When the screw was tightened the voltage at pin 5 of IC6004 dropped to 0.007 V and the machine worked normally. I.B.

Ferguson 3V59/JVC HRD180

The customer reported that the "time remaining" function didn't work. We found that there were just dashes in the display when the machine was put into play and the function was selected. So we waited for it to calculate from the two reel speeds and display the results, but nothing happened. We knew that the take-up sensor was o.k. otherwise the machine would have cut out. So we checked

Reports from Philip Blundell, AMIEIE, lan Bowden, Richard Flowerday, Jeff Herbert, Stephen Leatherbarrow, Eugene Trundle, Ed Rowland and Alfred Damp

the supply sensor input to the syscon chip IC601 (pin 35). There was no high/low cyclic change, just a steady high level. A check was then made, with the bottom cover removed, at the sensor's output connection. There was a high/low switching output here, and within a few seconds a time remaining display. The cause of the fault was a loose earthing screw - the one that earths the optocoupler's LED and opto-transistor emitter connections. The pressure we'd applied when connecting a meter to its output was enough to re-establish the earth connection.
I.B.

Panasonic NV-MC20

This machine came in with a tape stuck inside it. When it was powered the tape wound for a few seconds then the machine switched off. With the right-hand cover removed we saw that the tape was nearly fully threaded. The outlet guide assembly was slightly back from its end stop while the inlet roller guide was up against its stop. We removed the tape and powered the unit. The loading rings tried to move, but something was jamming them. The cause of this was the inlet guide itself. When the guide assembly moves forward to thread the tape, the slant guide follows the roller guide along the guide runners. As the roller guide reaches its end stop the assembly pivots around and the slant guide moves anticlockwise from behind the roller to alongside it. The problem was that during unloading the slant guide end of the assembly was catching on a rough spot on the aluminium stopper base as it pivoted clockwise, jamming the loading rings. Normal operation was restored when the V-stopper base and the shaft-holder S1 unit (inlet guide base) had been replaced and lubricated with a suitable grease.
I.B.

Pioneer VR727/Philips VR6870

This machine's power supply was tripping. It's apparently a clone of the Philips VR6870. On investigation we found that all the power supply outputs were low but went back to normal when connector M8, the power supply output plug, was removed. Fitting another power supply from a working machine proved that the fault was in the power supply. The cause was eventually traced to C2011 which was open-circuit. It's on the vertically-mounted switchmode power supply control board, within the power supply can. The manual lists the value as $10 \mu \mathrm{~F}$, but $33 \mu \mathrm{~F}$ was fitted in the machine. We've had this fault on several machines now, so beware!
R.F.

Hitachi VT120

The drum motor would start when play or record was selected but as soon as the tape was laced up it would slow down and eventually stop. The machine then unlaced and switched itself to standby. On many VCRs with digital servos the 4.43 MHz chroma subcarrier oscillator signal is used as a servo reference/clock signal. On this machine it was missing. Replacing the HT4539B hybrid chip solved the problem, restoring the 4.43 MHz signal at pin 27 . R.F.

Samsung VI710/711/730

No sound erase or record is a common problem with these machines. The cause of course is failure of the bias
oscillator, which is contained in a can on the top board to the right of the deck. The transistor within the "osc. block" (part no. 62429-014-122) appears to be underrated. Samsung now supply a different transistor, type 2SC1008. The $6.8 \mathrm{k} \Omega$ resistor alongside it is changed to $12 \mathrm{k} \Omega$ with this type of transistor.
S.L.

Samsung VI710

This machine was dead with no d.c. at pin 4 of the STK 5333 regulator chip. The cause was that R102 was open-circuit. We've also had failure of the chip.
S.L.

Ferguson 3V30/JVC HR7300

These machines just go on and on. This particular example came in with F4 (2.5AT) blown and no rewind or fast forward. Q16 turned out to be short-circuit.

Sharp VC381

The E-E signal continued to be displayed in the playback mode and the video light didn't come on as it should. The reason for this was that the PLBK 12V line was not present, the cause being Q806 (2SA950). It's on the bottom syscon/servo board, at front centre.

Saisho VR3700

The E-E picture drifted in and out of tune because the varicap tuning voltage continually varied. Sometimes the tuning line to the tuner would disappear completely for a few seconds. R 6115 , a $33 \mathrm{k} \Omega$ resistor feeding the digital-toanalogue converter transistor, was going open-circuit intermittently.
J.H.

JVC HRD830

The reported fault was no Nicam sound. To our horror this proved to be the case. The f.m. sound was normal, but when the machine switched to Nicam the result was no sound at all. Circuit protector CP1 N10 had failed due to an internal short in the M65109BSP microcomputer chip. Replacing both items restored the Nicam sound. J.H.

JVC HRS5000

The fault with this machine was muted E-E and playback video. When we attempted to tune it the channel display would revert to number one after a few seconds. In all modes pin 13 of IC3 was high at 5 V due to a dry-joint. Putting this right restored the playback video but there were still no $\mathrm{E}-\mathrm{E}$ signals. After tracing the picture mute line back to the tuner control PCB we found that pin 23 of the M50445-398SP tuning and channel change microcomputer chip IC1 remained high at all times. Replacing this chip restored everything to normal.
J.H.

JVC HRD755

Although the symptom with this machine was a common one its cause was very unusual - in our experience anyway. In play or record the machine would run for a few seconds then revert to stop. During the short running period the head drum, capstan and take-up reel all turned. The supply spool didn't! It had a lot of slack tape on it, and before this had been taken up the lack of rotation sensor pulses put the syscon into the shutdown mode.

Why was there this slack tape on the supply spool? During the lace-up phase the left-hand guide hit a tight
spot in its curved slot and momentarily stopped. The guide-pulling spring on the loading ring stretched to its limit, then the guide jerked forward into its locating slot, snatching at the supply spool so that it span clockwise. As a result of this several centimetres of tape lay slack on the reel. The cause of the loading-slot fault was distortion of the plastic loading guide (groove liner) where its fixing screw had been tightened down excessively.

This can happen with any model that uses the same sort of deck. But unless the machine has a supply-spool rotation sensor it will work all right in the record and playback modes, the only symptom being a clunk and a twang during lace-up.
E.T.

Panasonic NV-MS1

This camcorder's auto-focus didn't work, though the lens rotated freely and the motor-driven zoom function was o.k. The AF5V switch transistor Q6012 had an open-circuit collector, as a result of which the 12 V supply to the AF5V regulator IC603 was cut off. I got of lightly this time - have you seen the auto-focus circuit used in this model?! It occupies the best part of a square foot of the tightly packed circuit diagram in the manual.
E.T.

Logic VR950

A hum bar on E-E, record and playback was the result of C6 $(2,200 \mu \mathrm{~F})$ having fallen in value. It's in the power supply.
E.R.

Saisho VR3600Z/Matsui VR755A

The display lit but when the function button was pressed the operate light failed to come on and there were no functions. Voltage checks around the STK5332 regulator chip IC501 showed that the 5 V that should have been present at pin 1 was missing. A replacement i.c. restored normal operation.
E.R.

Ferguson 3V35/JVC HRD120

This machine came in with a tape threaded up and the loading arms in the V blocks. We unlaced the tape manually then inserted another cassette. On pressing play we could see that the loading cycle was not being completed. A new loading belt failed to improve matters however. After a check on the after-load switch we ensured that the gears ran freely then suspected the loading motor. Replacing this cured the fault. Incidentally the motor used in the earlier 3 V 29 is identical to the one used in this model.
E.R.

Ferguson 3V54

This machine's head drum rotated clockwise. As we had a loan machine of the same type to hand the drum and motor drive amplifier were swapped over. This proved that the fault was on the main board, where we found that D408 was short-circuit.
A.D.

Hitachi VT220

This machine wouldn't switch on. The syscon didn't receive data from the timer, though the operate button produced the correct results at the timer chip. Further checks around this chip showed that it wasn't receiving data from the search-tuning board. Replacement of the search-tuning chip brought the machine back from the dead.

Teletopics

THOMSON'S SPACE AGE SET

Although there are no high-definition TV transmissions in Europe at present Thomson Consumer Electronics (TCE) has unveiled a set capable of HD-TV operation. It has a 34in., 16:9 aspect ratio tube and produces a 1,250 -line picture. The current 625 -line transmissions are converted to 1,250 lines. Converted $4: 3$ pictures can be expanded horizontally and vertically to fill the screen, with no noticeable distortion and surprisingly little clipping of the picture, or the $4: 3$ aspect ratio can be retained with the picture to one side of the screen and the remaining section filled with three picture-in-picture displays. Film broadcast in Cinemascope style (with black areas at the top and bottom) can be expanded to fill the screen with only slight loss of picture at the sides.
Thomson calls the set the Space System. It's considered by TCE and its owners, the French government, as being an important ploy in ensuring that the preferred European course towards HD-TV, via the MAC system and compatible transmissions, is followed. The idea is that the set will be upgradable when HD-TV transmissions start in Europe. TCE is understood to have spent some $£ 100 \mathrm{~m}$ on bringing the set into production. It's now on sale in France at the equivalent of about $£ 3,500$, with free installation and a three-year parts and labour guarantee. A D2-MAC decoder costs some $£ 500$ extra - at present only three French stations, Canal Plus, a pop music and a culture channel, use D-MAC. A production capacity of 1,010$)$ sets a week is claimed. The set will be launched in Germany under the Telefunken brand name in late spring and will go on sale in the UK as a Ferguson set in the autumn, at a price of around $£ 3,500$ which will include a built-in Astra receiver and dish.
TCE plans to spend some $£ 900 \mathrm{~m}$ over the next five years on the development of HD-MAC equipment. A third of this will be provided by the French government.
A similar set, using a Thomson tube, is to be shown at the Philips trade shows this spring. It has already been shown to the trade in Holland. The UK launch is expected to be in October, at a price of around $£ 3,000$.

BROADCASTING NEWS

Leading advertising agency Saatchi and Saatchi has been taking a look in its crystal ball. The results are summarised in a publication entitled UK Television Forecasts to 2003. It suggests that the share of TV advertising revenue taken by Channel 3, as ITV will be known when the new franchises come into operation, will fall from 79 pericent in 1990 to 50 per cent in 2003 while its share of the commercial TV audience will fall from 74 per cent to 40 per cent. Fifty per cent of UK homes are expected to be able to receive satellite TV channels by 1996 , rising to 70 per cent in 2003. The satellite TV channels are expected to have 40 per cent of commercial advertising revenue and 28 per cent of the audience. Channel 5, due to start in 1994, is expected to account for nine per cent of the commercial television audience with eight per cent of the advertising revenue. Channel 4 and TV-a.m. are expected to lose audience and advertising share. Because of the proliferation of channels, total TV advertising revenue is expected to rise from $£ 2 \cdot 29 \mathrm{bn}$ in 1990 to $£ 7.95 \mathrm{bn}$ in 2003.

Launch of the BBC's Select night-time subscription TV service has been postponed from the autumn to "the first
half of $1992^{\prime \prime}$. Reasons given for this include the recession and difficultly in getting high street retail and rental organisations to stock and supply the decoders that will be required.
Channel 4 is to introduce a programme delivery control (PDG) system for timed VCR recordings later this year. The addition of PDC codes in the teletext signal to identify particular programmes will enable a VCR to know exactly when a selected programme has started, thus avoiding the problems that arise when programmes are delayed or rescheduled. The VCR must of course be able to detect and act upon the PDC codes - Ferguson and Philips have already announced preliminary details of models. PDC differs from the system now in use in Germany. It's based on a recently agreed EBU specification. The BBC and the ITV companies do not at present have plans to adopt the system.

Statistics collected from its cable licensees by the Independent Television Commission show that in the last quarter of 1990 the number of cable subscribers increased by over 50,000 , the largest quarterly increase ever recorded. Some 32,000 of the connections were to broadband systems. Almost 150,000 homes are now connected to broadband systems, a rise of 70 per cent over the previous year.

SERVISCOPE UNDER ADMINISTRATORS

Serviscope Electronics, one of the largest servicing organisations in Europe with 900 employees in 51 depots throughout the UK, has been placed in the hands of administrators Touche Ross who are trying to preserve the business. Until January 1990 Serviscope had been owned by the Electronic Rentals Group Plc, part of the Granada organisation. It had been making a loss for several years. In January 1990 it was bought for a nominal sum by Computec of Doncaster. Unfortunately trading losses during the last year, exacerbated by a continuing dispute between Computec and the previous owners about the value of the net assets at the takeover date and the present economic situation, made the situation unsustainable. Computec is now in receivership and at the time we go to press Touch Ross is seeking a new owner for Serviscope.
Serviscope undertook servicing work for a number of well known high street retail and rental organisations including Argos, Bennetts, Boots, Comet (in Northern Ireland), Granada and House of Fraser. Other clients included mail order firms GUS and Kays. Computec was set up in 1985 as a regional repair service for white goods.

BT'S NEW SERVICE

British Telecom has launched the ISDN2 telecommunications service that features videotelephony and faster fax and data communications. It will be available to businesses throughout the UK within the next eighteen months. ISDN2 uses digital lines: cost of a line is $£ 400$ to install with a quarterly charge of $£ 84$ for two telephone links. Adaptors enabling personal computers to be linked to ISDN are readily available but videotelephones are not yet available in the UK. They are likely to cost around $£ 2,000$ when introduced.

SERVICING AIDS

Soldering and desoldering specialist Ungar has introduced, under the EPA (Electronics Production Aids) banner, a new range of high-performance, high-quality hand tools with a unique shear-cutting action to minimise operator force and component shock. Less than half the operator force of crush cutting is required and the blade design

Subscribe to TELEVISION and receive 3 extra issues FREE!

TEIEUISION

15 ISSUES FOR THE PRICE OF 12

If you want to keep up-to-date with all the latest advances in technology, then take out a subscription to Television Or give a gift subscription to a friend or relative.

Annual subscription rate: UK - $£ 21.60$; Overseas - $£ 25.50$.
Simply complete the order form below and post to:
Television, Freepost 1061, Haywards Heath, RH16 3ZA. (No stamp required)

Yes I would like to take out an annual subscription to Television and receive 15 issues for the price of 12 .

Tick here if you would like to subscribe yourself
Your Name
Address
Post code
\square Tick here if you like to send a gift subscription Name of Recipient
Address

Method of Payment (tick your choice)
My cheque/postal order* for $£$ is enclosed, payable to IPC Magazines Ltd
\square Invoice me later for $£$
Charge my Access/American Express/Nisa/Diners Club Card*
No. \square
Expiry date
*Delete as appropriate
Alternatively, you can order by TELEPHONE: Place your subscription by calling (0444) 441212 between gam and 5pm (Mon - Fri) giving your credit card details. TV4
ensures a neat, square cut with a minimal acceleration. For details apply to Ungar, Eldon Industries UK Ltd., Unit 1, Clifton Road, Shefford, Beds SG17 5AB, telephone 0462 814914.

Philips Consumer Electronics Service, PO Box 97, 420/430 London Road, Croydon CR9 4QS (sales order desk 0816865414) has introduced two new high-quality SMD component kits. Resistor kit SBC7092 comprises 86 snap-together plastic cases each containing ten values in E12 series $(0-10 \mathrm{M} \Omega, 0.25 \mathrm{~W})$ coded for ease of identification. The kit provides 860 resistors suitable for all consumer electronics products. Its price of $£ 44.24$ gives a unit cost of 5 p compared with $22 \mathrm{p} / 40 \mathrm{p}$ when the devices are purchased in smaller quantities. The companion SBC7091 semiconductor kit has 24 snap-together plastic cases containing a total of 240 components. There are five types of general-purpose diodes colour-coded orange and nineteen types of general-purpose transistors colour-coded red. The price of $£ 35.90$ represents a unit cost of around 15 p compared with $44 \mathrm{p} / 45 \mathrm{p}$ when purchased in smaller quantities. Both kits come with a set of tweezers.

Euras has a database of some 72,000 faults with their remedies, covering 5,000 models from 170 manufacturers. More faults are being added daily. You can obtain fault information at less than 30p a day including VAT via a viewdata terminal or a PC with modem and software. If you don't have either Euras can sell or lease you a viewdata terminal at a very competitive price, with full back-up maintenance. The system is available 24 hours a day seven days a week. Free use of the notice board and electronic mail box means that if Euras can't solve a particular problem another customer may be able to help. You can try the system for a month completely free of charge. For details phone 0272724475 or fax 0272723374.

During the recent bad weather there was a particularly large demand for Vellox kits from SEME Ltd. Vellox is a unique satellite dish coating system which provides improved reception in poor weather conditions. Snow and ice are kept away by the water-repellant coating. Vellox is available in kit form and is easy to apply in the workshop prior to on-site installation. For further details apply to SEME Ltd., Unit 2E, Saxby Road Industrial Estate, Melton Mowbray, Leicestershire LE13 1BS (telephone 0664 65392) .

THE VIDEO CASSETTE RENTAL MARKET

Figures released by the British Videogram Association show that nearly a million video tapes a day were rented in the UK last year. But the 374 m rentals were 5.5 per cent down on 1989. The Association attributes this decrease to an increase in the sale of prerecorded cassettes. The value of the rental market in 1990 fell by one per cent to $£ 564 \mathrm{~m}$.

BUSINESS NEWS

Thomson Consumer Electronics' net losses last year quadrupled to FFr680m (approximately $£ 70 \mathrm{~m}$), hit by the low value of the dollar, reduced demand in the USA and a price war in camcorders. TV accounts for 60 per cent of Thomson's sales. Philips announced a record net loss of Fl4-2bn (some $£ 1 \cdot 2 \mathrm{bn}$) for 1990. Consumer electronics was the only sector with a rise in operating income. Amstrad's profit last year rose to $£ 40 \cdot 1$ on turnover down from $£ 373 \mathrm{~m}$ to $£ 327 \mathrm{~m}$. The company reports a collapse of sales during the early weeks of 1991 .

VINTAGE COMPONENTS

The Vintage Wireless Company Ltd., Tudor House, Cossham Street, Mangotsfield, Bristol BS17 3EN
(telephone 0272565 472) has just published a new vintage audio and radio components catalogue that lists, in 67 A4 pages, details of an incredible store of components including grid leaks, coils and transformers, accumulators, Jones plugs for the R1155 and h.t. batteries. It costs $£ 1 \cdot 50$ post paid in the UK and Ireland, $£ 1.95$ overseas by surface mail and $£ 4.50$ overseas by air mail. Also available, free of charge, are a valve catalogue, the 1991 audio catalogue and a books and data catalogue. The company can also supply The Setmakers, the book discussed in our leader last month.

VIDEO NEWS

Sharp has launched an LCD video projector, Model XV100 ZM , that displays images up to 250 cm (100 in .) in size. It can be linked to a VCR, video disc player, camcorder or personal computer (a special converter is required with the latter). The projector consists of three thin-film transistor LCD panels, each with 100,980 red, green or blue pixels. Three dichroic mirrors converge the RGB light to a single beam. The price is $£ 3,995$. Sharp has also launched two budget-priced VCRs, Models VCA30HM and VCA 40 HM , at $£ 250$ and $£ 280$ respectively. Both have digital programme tape search, remote control and trickplay features.
Some interesting products have been released by Canon. The EX1-Hi is the first camcorder to have an interchangeable lens system - the VL lens mount was designed by Canon, Sony, Hitachi and Matsushita. Canon is also marketing an adaptor to allow the EX1-Hi to use EF lenses designed for the company's EOS 35mm SLR film cameras. Other features include Hi-8 picture quality, digital picture effects and seven fast-shutter speeds (top speed is $1 / 10,000 \mathrm{sec}$). The EX1-Hi is priced at $£ 1,300$ without lens.

Canon's second still video camera, Model RC260, includes an interval shooting facility for time-lapse shooting, interval playback, and a preview feature that enables users to see pictures on a TV set as they are being taken. Other features include individual or complete disc erasure, remote control, macro shooting, a back-light compensator, optional date/time recording and the ability to link to popular makes of personal computers. Price is £499.99. A YC/RGB converter, Model RGB-100E, costs £249.99.

Ferguson's second 8 mm camcorder, Model F802, features five fast-shutter speeds, times six zoom and microphone mixing. It weights 980 g and the price is £649.99.

Panasonic has launched two budget camcorders, Models NV-G1 and NV-G2, at $£ 599.95$ and $£ 699.95$ respectively. Both feature a times eight zoom lens and six fast-shutter speeds. In addition the NV-G2 has long-play operation, a detachable video light and a digital superimposer. Panasonic's 95 cm screen TX-37A2G TV set has an integrated 88 -channel Astra receiver, a Nicam decoder, Fastext, a 100 Hz digital field frequency, digital noise reduction and comprehensive socketry. Panasonic claims that picture quality has been further enhanced by the use of new velocity modulation and black-level compensation circuits.

Sony's new Video Walkman, Model GV-300, has a 4in. LCD screen, stereo sound, a PAL B/G/I switchable tuner and trick-play facilities. Price is $£ 699.99$. This summer Sony will launch a component Video Walkman system comprising a compact 8 mm VCR, a 4 in . LCD display and a 60 -channel PAL/SECAM tuner. The complete system will cost $£ 899.99$.

Nokia is offering to license its ASO (active sideband
optimum) system to other VHS VCR manufacturers. The ASO circuit gives improved pictures even with poor quality tapes, replacing circuitry such as the HQ enhancement system.

N BRIEF

The European Electromagnetic Compatibility Directive will come into force on January 1st 1992. Its aim is to ensure that electrical and electronic products made or sold within the EC do not cause excessive interference and are not unduly affected by such interference.
Eutelsat is to launch a DBS satellite at $19^{\circ} \mathrm{W}$ in mid-

1993, with twelve transponders using 100-125W TWT amplifiers. It will provide interim capacity prior to the start of the Europsat service in 1996.

Finlux has reported a potential fire hazard with its 1000 and 2000 series colour TV receivers. The problem arises at the scan coil connector which can suffer from scorching after prolonged use. In some cases the overheating can result in fire unless the set is switched off immediately. Some 80,000 of these sets were sold in the UK. Finlux dealers are being supplied with kits containing two small metal bushes that fit on two pins of the line scan coil connector.

TEST CASE

340

Each month we provide an interesting case of $T V / v i d e o ~ s e r v i c i n g ~ t o ~ e x e r c i s e ~ y o u r ~ i n g e n u i t y . ~$ These are not trick questions but are based on actual practical faults.
It was towards the end of a weary day in the workshop and Dylan was looking for a fast, easy repair to boost his throughput for the day. He thought he'd found it in an old Panasonic Model TC2205 (U2 chassis) whose job card bore the single word "dead". How wrong he was .

The set was soon on the operating table with its rear cover off. Cold resistance checks quickly revealed that the BU208A line output transistor was dead short-circuit between all its electrodes. Dylan noted that certain electrolytic capacitors had been ringed in pen on the circuit diagram in the workshop's copy of the service manual: he was relieved to see that they had been renewed in this particular set. So a new BU208A was fitted and the set was switched on. It burst into life. There was a slight lack of width, which fluctuated somewhat. After switching off Dylan resoldered some doubtful-looking joints under the PCB, squirted the h.t. preset R809 with switch cleaner and adjusted it for the correct picture width. The bill was soon made up and the set was taken off by its owner.

At ten to nine next morning the customer came on the phone. Apparently the set had failed again after about an hour's run. Dylan was sent to collect it as the owner flatly refused to make another twenty-mile round trip. When the set was put back on the bench it soon became clear that the new BU208A had suffered the same fate as its predecessor - it was dead short all ways.

Dylan wished he'd never seen the evil set. But he had to go on with it. After fitting another BU208A he confirmed that the set had once more been restored to life. He let it run for about five minutes, then felt the body of the new transistor with his finger. It was, to borrow a phrase from Colonel Sanders, finger-licking hot. It would obviously soon fail, but why was it running so hot? Some sort of overload perhaps? The transistor's load consists of the line output transformer, the scan coils and the many components associated with them. As a start Dylan replaced the EW modulator diodes D552 and D553, using suitable substitutes. The originals were soon restored when it was found that the line output transistor still ran hot.

The choices that now faced Dylan were vague and various. The presence of a picture, of approximately the correct width, indicated that everything in the line output
stage was working. Perhaps the line output transformer had short-circuit turns? Workshop Sage said that if it did it would probably run warm. It remained cool to the touch after the five-minutes run however - in contrast with its baking, throbbing BU208A neighbour. Even so Dylan removed the e.h.t. connector from the tube and elaborately insulated it, hoping to prove that there was a fault in the diode-split overwinding section of the transformer. But still the transformer ran cool while the transistor was very hot. Not for the first time, Dylan wondered whether he should have taken that job as a test inspector at Aviation Electronics on the industrial estate
Workshop Sage witnessed the struggle with a feeling of déjà vu. Some years before he'd had the same sort if trouble and had ordered a new line output transformer. It hadn't cured the fault but was still in the stores. He got it out and presented it to Dylan who promptly fitted it. The symptom remained totally unchanged. Were they barking up the wrong tree? See next month for the solution and another test case item

ANSWER TO TEST CASE 339 - page 352 last month -

Last month's test case probably sorted readers out into two categories, the old hands who remember first generation i.c. colour decoders and their discrete component predecessors and the newer race of technicians who've dealt mainly with single-chip decoders. Those in the latter category will be well aware of sandcastle pulses and, in the event of a blacked-out screen, would have gone straight to pin 8 of the TDA3561A chip (or pin 7 of the TDA3562) to look for trouble. This was the key to the problem. The sandcastle pulse is crucial to the signal processing in a single-chip decoder: its voltage levels must be spot-on for correct operation.

The sandcastle pulse normally has three levels, corresponding to field blanking at the lowest level, then line blanking and at the top a narrow-width pulse. If the amplitudes of the three levels are incorrect the result is likely to be a blanked out screen. The sandcastle pulse in the Philips CP90 chassis is assembled within the TDA2579 sync/timebase generator chip IC7038 on the sync module. One of its ingredients is a field flyback pulse which arrives at pin 1 of the module and enters the chip at pin 2. It comes from the field output stage. If it falls below 2 V or rises above 6.5 V , indicating a fault - possibly field collapse - in the field timebase, the scan-fail protection feature comes into play to prevent screen burn. Sure enough a field output stage fault had resulted in the conditions at pin 2 of IC7038 being out-of-spec. Thus the source of the fault was twice removed from the area of our technician's investigations! Always remember to check the sandcastle pulse.

Satellite TV Aerial Systems

Part 1

Derek J. Stephenson, B.A., I.Eng.

Many people seem to think that the theory of satellite TV is complicated and involves a lot of mathematics. This is not necessarily so: it's possible to achieve a reasonable understanding of the principles with a minimum of mathematics. To this end we shall in this short series of articles provide a basic introduction to the principles of satellite TV reception. The basic operation and function of a wide variety of aerial and head-end combinations that may be encountered will be described in a simple manner. This first article deals with aerials. There are several species, some of which are much more common than others.

Aerial Basics

The purpose of the aerial is to collect and concentrate the weak microwave signals from a distant satellite, guiding them to a point when they can start to be processed. It follows from this that the aerial has an inherent signal power gain. Various arrangements can be used to achieve this end. The parabolic reflector (dish) is the best known. Others are lenses or arrays of smaller aerial elements (flat aerials).

When describing items such as parabolic reflectors it's often convenient to use optical analogies, since they appear to behave in a similar manner to their optical counterparts. Although this helps to get the basic ideas over, we shall from time to time have to stress that, as with all analogies, the process must not be pushed too far. Microwave wavelengths are several orders of magnitude longer than light.

A factor that can be confusing in explanations of satellite TV reception is the use of terms such as feeds, illumination and radiation patterns. They appear to be more relevant to transmission than reception. Such terminology has its roots in the past - when radar was being developed during the second World War. Since reception is the reverse of transmission, albeit at lower power levels, we can say that what is true of transmission is equally true, in reverse, of reception. Because of this, descriptions of satellite TV reception often tend to switch at whim between the use of transmission and reception terminology. This approach benefits some explanations in that it helps to reduce unnecessary wordiness.

The Parabolic Reflector

Parabolic dishes of various sorts are by far the most common type of satellite TV aerial. Fig. 1(a) shows a twodimensional representation of a parabolic reflector of the basic prime-focus type. It has the unique property of reflecting incident radiation that's parallel to its main axis (or boresight) to a common focal point in such a way that the total path length to the focal point is the same, i.e. in phase, from all parts of the dish. Ideally, any radiation that strikes the dish from axes not parallel to the boresight should miss the focal point altogether, as shown in Fig. 1(b). In reality however this is not wholly possible - see Fig. 2. Radiation or noise can be picked up from many directions, even from behind the dish, due to a pheonomenon known as diffraction, which is equally troublesome with optical apertures.

Some sort of device known as a feed is positioned at the focal point to collect the reflected radiation. A common device is a horn-shaped item known, for obvious reasons, as a feedhorn. Looking at it from the transmission angle, the feed is said to "illuminate" the dish. In practice this illumination (reflection from the reception point of view) is never uniform. It's reduced towards the rim of the dish to decrease pick-up of ground noise from beyond the rim. More about this in a later article.

A perfectly illuminated, or 100 per cent efficient, dish has a gain G given by

$$
\mathrm{G}=10 \log _{10}(\pi \mathrm{D} / \mathrm{W})^{2} \mathrm{dBi}
$$

where π is $3 \cdot 14159$, D is the diameter of the reflector and W is the wavelength. From this formula you can see that gain increases with dish area and decreases with the square of the wavelength.

Fig. 3. shows the basic prime-focus dish arrangement. The feed (head unit) is mounted centrally at the focal point of the dish. Fig. 4(a) shows the offset focus version generally used for Astra reception. It has the advantage that the head unit doesn't obscure the incoming signal. Fig. 4(b) shows the relationship between the offset design and the basic paraboloid.

Polar Response

Ideally the reflector should produce a parallel "pencil" beam with a circular cross-section. At microwave frequencies however the wavelength is comparatively large compared to the reflector's aperture and diffraction effects, surface imperfections and a number of other effects mean that a point source or focal point cannot in practice be precisely positioned. The result is a divergent beam whose polar response, see Fig. 5(a), has a narrow main lobe in the boresight direction accompanied by a number of side lobes. The aim of good aerial and feed design is to minimise the effect of the side lobes in relation to the main lobe, thus reducing off-axis signal pick up and ground noise from beyond the edge of the dish.

The polar response diagram in Fig. 5(a) is, being so narrow, difficult to interpret. So polar response/beamwidth diagrams for particular aerials are more often drawn in the manner shown in Fig. 5(b), using Cartesian co-ordinates and experimental data. The shape of the main lobe is largely a function of wavelength and dish diameter. From it the beamwidth for a range of received signal power levels below maximum can be estimated. I've found that obtaining such diagrams is nearly as difficult as acquiring a breeding pair of dodos. Fortunately a good estimate of the half-power -3 dB) beamwidth in degrees can be calculated from the simple formula $70 \mathrm{~W} / \mathrm{D}$, where W is the wavelength and D the dish diameter.

Beamwidth

Fig. 6 shows how the half-power beamwidth varies with dish diameter at a fixed frequency, in this case 11 GHz . The important point to note is that the smaller the dish the wider the beamwidth (conical view of the sky). Offsetfocus aerials normally have a major diameter vertically and

Fig. 1: The parabolic reflector. (a) Reflection of incoming onaxis signals. (b) Reflection of signals arriving from different angles.

Fig. 2: Some unwanted effects with a parabolic reflector.

Fig. 3: Prime-focus dish arrangement.

Fig. 4: The offset-focus dish. (a) General arrangement, (b) the relationship between the geometry of a prime-focus and an offset-focus dish.
a minor diameter horizontally. Thus the major diameter beamwidth will be narrower than the minor diameter one. The result is an elliptical view of the sky. So it would be reasonable to expect that the elevation adjustment would be slightly more critical than the azimuth adjustment when carrying out alignment for a particular satellite - see Fig. 7.

Dish Size and Satellite Spacing

One might expect that with recent improvements in receiver demodulator threshold figures and LNB noise figures smaller and smaller dishes will come into use. This doesn't necessarily follow however. The minimum

Fig. 5: Polar response. (a) Basic pattern, (b) version drawn using Cartesian co-ordinates.

Fig. 6: Half-power beamwidth for various diameter dishes.

Fig. 7: An offset-focus dish's view of the sky.
acceptable dish diameter is largely dictated by the spacing of the satellites in the geostationary arc directly above the equator. Halving the -3 dB beamwidth gives a rough indication of how likely it is that an accurately aligned dish will pick up signals from an adjacent satellite. If the dish is too small its beamwidth may well be wide enough to pick up signals from more than one satellite. If these satellites happen to be transmitting signals at the same frequency and with the same polarisation sense the result may be intolerable interference. Subjective tests have shown that interference is first detected at the -11 dB level and is
found to be intolerable at the -5 dB level.
If you look at Fig. 5(b) you'll see that the main lobe is noticeably wider at these potential interference points than at the half-power $(-3 \mathrm{~dB})$ level. But because satellite spacings are quoted in relation to the Earth's centre rather than its surface they appear to us to be slightly wider apart than the quoted figures. A full beamwidth diagram for a particular dish/feed system would be required for an accurate and detailed analysis of potential interference problems. There was, incidentally, a bit of flap only recently about the use of 45 cm dishes for the Astra satellite in the south of England.

Causes of Side Lobes

Noise and unwanted signals can coverage at the head unit via the aerial system's side lobes. These are present for a variety of reasons, some of which are as follows:
(1) Microwaves, from whichever angle they enter the aerial's aperture, are diffracted at the edge of the dish, being scattered in all directions. Some of them will be unwanted signals that converge at the focal point, causing interference.
(2) Surface irregularities cause reflection errors, allowing unwanted signals to arrive at the focal point and wanted signals to miss it.
(3) Some wanted signals may be diffracted at the edge of the dish and thus miss the focal point.
(4) The head unit and its support both block and reflect wanted incoming signals.
(5) The head unit, occupying a larger space than the actual focal point, will pick up some off-axis signals.
(6) Ground noise, due to the Earth's temperature, gets diffracted round the edge of the dish and converges at the focal point.
(7) Sky noise, from the atmosphere and space, converges at the focal point (note that most of the sky noise enters via the main lobe).
(8) Wanted signals may be lost through absorption at the surface of the dish.

Many of these effects can be reduced by good design and manufacture. High standards of dish pressing can reduce

Fig. 8: Relationship between aerial noise temperature and dish elevation.
the effect of item (2) in the list. Careful choice of materials will help to reduce the effect of item (8). An offset-focus design can eliminate signal blockage by the head unit and reduce the ground-noise contribution. The use of "illumination tapers", to be described in a later article, significantly reduces some of the other effects.

Aerial Efficiency

Aerial efficiency is a measure of how much of the wanted incoming signal arrives at the head unit. It's determined mainly by items (2), (3), (4) and (8) in the above list. Efficiency is expressed as a percentage, and is used to establish the practical gain of an aerial system in connection with the previously given theoretical gain formula. Aerial efficiency values are usually included in manufacturers' literature. The gain equation becomes as follows:

$$
\mathrm{G}=10 \log _{10}\left(\frac{(\Pi \mathrm{D})^{2} \times \mathrm{P}}{\mathrm{~W}^{2} \times 100}\right) \mathrm{dBi}
$$

where P is the aerial efficiency. Table 1 lists gain figures to be expected for a variety of dish sizes and efficiencies at a fixed frequency of 11 GHz .

Aerial Noise

Any received signal contains some noise that reduces the overall system performance. Satellite TV is no exception to the rule. The following are the major contributors to the noise.
(1) Sky noise. This is wide bandwidth radiation caused by energy conversion in stars and by certain atmospheric activity. This type of noise enters mainly via the main lobe and is more independent of elevation.
(2) Ground noise. Excitation of molecules in the warm earth create wide bandwidth noise called ground noise. Its contribution to aerial noise is greatest with low elevation settings in high latitudes. This is because at lower elevations the aerial is tilted more towards the Earth, thus increasing the likelihood of ground noise being diffracted at the edge of the dish. At lower latitudes, where dish elevation is inclined more skywards, the contribution made by ground noise is much less. It enters mainly via the side lobes and is the major contributor to overall aerial noise.
(3) Man-made noise. Noise from machines and equipment also contributes to aerial noise. Examples are car ignition systems, lawn mowers, and flourescent lights being switched on and off. These all emit wide bandwidth noise due to high transient voltages. This type of noise also enters mainly via the side lobes.

At absolute zero temperature $\left(0^{\circ} \mathrm{K}\right.$ or $\left.-273^{\circ} \mathrm{C}\right)$ all molecular excitation would cease. Thus the higher the temperature the greater the amount of activity and hence noise. Because of this, noise is quoted as an equivalent noise temperature - in degrees Kelvin. The contributions made by sky noise and man-made noise are comparatively low compared with the major noise component, ground noise. Reduction of side lobes to a minimum is thus the main object of good aerial and feed design.

A narrow beamwidth means a narrow main lobe with closer spaced side lobes. It follows from all this that in addition to having a higher gain a larger diameter dish will have a greater immunity to aerial noise than a smaller one. Small dishes, less than 1 m , are more susceptible to noise and are usually of the offset-focus type. With the offset-
focus version the head doesn't block the incoming signal and in addition, as it's inclined away from the Earth and more skywards, the contribution of ground noise is reduced.

Fig. 8 shows the relationship between aerial noise temperature and dish elevation for 1.2 m and 1.8 m dishes. The shape of the graph is similar for other dish sizes, with aerial noise temperature increasing rapidly at elevations lower than about 30°.

Focus:diameter Ratios

The curvature of a parabolic dish can be shallow or deep. The feed will be specifically designed for a particular ratio of focal length to dish diameter (f / D ratio) or a limited f / D range. Using transmission terminology, the feed is said to "illuminate" the dish area. Looking at Fig. 9(a), where the f / D ratio is less than $0 \cdot 25$, you can see that the focal point lies well inside the plane of the aperture. This f / D ratio produces under illumination. In Fig. 9(b) the f/D ratio is 0.25 and the focal point lies exactly in the plane of the aperture. This f / D ratio usually provides maximum gain. Fig. 9(c) shows the effect of a high f / D ratio, greater than $0 \cdot 25$. The result is over illumination, with some of the signal from the source missing the dish.

A deep dish with a low f/D ratio has greater noise immunity than a shallower one since the feed/head unit is more shielded from ground noise. In other words the amplitudes of the side lobes are reduced, with less ground noise from beyond the edge of the dish getting into the system. Shallower dishes are more pleasing to the eye however. In practice f/D ratios commonly lie between 0.35 and 0.5 for prime-focus aerials and between 0.6 and 0.7 for offset-focus aerials. Fine trimming of the illumination pattern is made possible by the design of the feed, as we shall see in a later article.

Swinging the Main Lobe

Lateral movement of the feed in the focal plane of the reflector will to some extent swing the main lobe. If this is pushed too far however serious defocusing of the beam will occur. As Fig. 10 shows, a tilt of n° of the feed relative to the paraboloid axis will produce a beam displacement of about $0 \cdot 8 \mathrm{n}^{\circ}$. This effect can be put to use experimentally when you want to use a fixed dish to receive signals from two closely-spaced satellites, or where dual band reception is required from the same satellite. Provided the spacing of the satellites is not excessive a single reflector with two feeds mounted side by side can be engineered.

Other Types of Aerial

In addition to the basic prime-focus and offset-focus dishes there are many mutant species that have various advantages and disadvantages. They are not at present very common and mainly consist of modifications or refinements to achieve greater efficiency than with the basic versions.

The Cassegrain Aerial

The essential difference between a Cassegrain aerial, see Fig. 11, and a standard prime-focus type is the introduction of a hyperbolic subreflector that intercepts the signals from the main reflector and re-reflects them to a rear-mounted head unit. The advantages of this arrangement are that the head unit has greater protection from the weather while

(a)

(b)

(c) 0634

Fig. 9: Focus:diameter ratio. (a) Less than 0.25 gives under illumination. (b) At 0.25 maximum gain is obtained. (c) Greater than 0.25 gives over illumination.

Fig. 10 (left): Beam displacement due to lateral movement of the feed/head from the focal point F to position F1.

Fig. 11 (right): The Cassegrain aerial.

Fig. 12 (left): The Gregorian aerial, an offset arrangement.
Fig. 13 (right): The backfire aerial.
the subreflector can be made to illuminate the dish more efficiently. The result of over illumination is to increase the sky noise component rather than the ground noise, which is a help. A major disadvantage is that due to its position the subreflector blocks some of the incoming wanted signal.

Gregorian Aerial

The Gregorian aerial arrangement shown in Fig. 12 is similar but overcomes the disadvantage of the previous configuration by employing an offset-focus arrangement. The subreflector is carefully matched and shaped to illuminate the main reflector as efficiently as possible. This particular arrangement is capable of providing the highest aerial efficiency figures.

Backfire Aerial

The simple backfire arrangement shown in Fig. 13 has a subreflector (deflector plate) and a rear-mounted head unit. It has similar advantages and disadvantages to the Cassegrain aerial therefore. The major difference is the use of a length of waveguide ending just short of the subreflector. An advantage claimed for this arrangement is that the electronics of the head unit are shielded from the
hot sun and its additional noise component. The subreflector is usually of the order of five wavelengths in diameter, or approximately ten per cent of dish size. The main disadvantage is signal blocking by the subreflector.

Environmentally-friendly Aerials

Now to the recent tendency towards environmentally friendly dishes. Two recent examples are the use of glass or black-mesh to reduce the visual impact of the dish. At the time of writing only the black-mesh type is available.

A type of glass known as metallised Armourplate glass, manufactured by Pilkington Glass Ltd., is known to be 99 per cent reflective at centimetric wavelengths. This material can be formed into tubes, plates and reflectors which can be assembled to form various aerial systems. One proposed system employs the backfire principle described above. The reflector, waveguide and subreflector plate are all made of Armourplate, which is reputed to be five times stronger than normal window glass, while the wall mount is made of a clear polycarbonate material. Various additional advantages of using Armourplate glass and the backfire principle are claimed. First, this type of glass holds its shape better than a solid metal dish in windy conditions. Secondly less solar radiation is reflected into the feed, thus reducing the risk of damage to the feed assembly at certain times of the day. Finally heating elements similar to those fitted to car rear windows can be fitted to keep the dish clear of ice and snow.

Black-mesh and Dual-view Aerials

Black-mesh dishes look considerably less obtrusive than their solid counterparts. Use of mesh or perforated metal provides considerable weight reduction and reduced wind loading with a minimal effect on the side-lobe pattern. Such perforated surfaces are insensitive to polarisation and can be regarded as short waveguides whose dominant frequency is well beyond cut-off. For example a wire-mesh reflector with square holes should have the sides of the squares less than the wavelength divided by $1 \cdot 414$. Mesh dishes are flimsier than solid metal ones and are consequently more easily damaged. Provided the deviation of the dish from a pure parabola causes changes of less

D639
Fig. 14: Dielectric lens action.

Fig. 15: Dielectric lens focal length.
than about one sixteenth of a wavelength in the path length of the incoming radiation any mild deformations won't matter too much. For minimum side lobes however a much lower figure is required.

Dual-view dishes have been proposed to capture the signals from any two popular satellites in different orbital slots and reflect them on to a single head assembly. These "two-faced" or "kipper" dishes may have provision for mounting two separate LNBs on a common boom. A portion of the available area is angled to receive signals from one satellite while the other portion is angled to receive signals from the second satellite. Twin coaxial cable is needed to feed the down-converted signals to either one receiver, via a combiner or a coaxial switch, or to two separate receivers.

Although these dishes are marginally cheaper than using two separate ones, many mounting positions may be unsuitable because one or the other satellite is blocked by a building or trees. The geometry of the situation should be checked out at the site survey stage before an installation is undertaken. This type of aerial was originally devised for Astra/Marco Polo reception. Recent events may have put an end to the idea.

Flat Aerials

Small, flat aerials (the Squarial) can be used with highpower DBS satellites. Instead of the incoming radiation being focused to a point it's possible to collect it using an array of small aerial elements arranged on a flat surface. The power received by these elements, which are in the form of slots, is added by a rear-mounted conductive transmission network and taken to a common point where the LNB is positioned. The advantages of this type of aerial are light weight with ease of installation and small physical size with no protrusions. Flat aerials are seldom used in sizes greater than about $40 / 50 \mathrm{~cm}$ since their efficiency, compared with more conventional parabolic aerials, falls off as the size increases.

Lens Aerials

Although this is an uncommon arrangement at the present time, a lens which has similar properties in focusing the incoming radiation can be used instead of a parabolic reflector. There are two major classes of telescope for optical frequencies, the reflector and the refractor. The parabolic dish can be thought of as a parabolic mirror (reflector) that concentrates the incoming radiation to a focal point where the eyepiece is positioned. Likewise an optical refracting telescope using an objective lens instead of a mirror has its centimetric equivalent. Lenses used at centimetric wavelengths are often made of dielectric material which has the property of slowing down travelling waves, thus bringing them to a focus. Fig. 14 shows the general dielectric lens action.

Gains and radiation patterns for lenses are similar to those for parabolic reflectors, and an illumination taper is needed for the same reasons. It's not easy to achieve uniform illumination of a lens: those with long focus are more evenly illuminated than those with short focus. Another advantage of long-focus lenses is that they are lighter and thinner, as Fig. 15 shows. Lenses can however be stepped to reduce the weight and bulk without affecting their performance too much.

Feeds for lenses fulfil a similar function to those used with reflectors. In practice the focal length of the lens is chosen to be much the same as the lens aperture

Table 1: Aerial gain in dBi at $\mathbf{1 1 G H z}$.

Dish diameter	55\%	60\%	$\begin{array}{r} \text { Efficiency } \\ 65 \% \end{array}$	70\%	75\%	80\%
0.30 m	28.17	28.55	28.90	29.22	29.52	29.80
0.40 m	30.67	31.05	31.40	31.72	32.02	$32 \cdot 30$
0.50 m	32.61	32.99	33.34	33.66	33.96	34.24
0.60 m	34.20	34.57	34.92	35.24	35.54	35.82
0.65 m	34.89	35.27	$35 \cdot 62$	35.94	36.24	36.52
0.70 m	35.53	35.91	36.26	36.58	36.88	37.16
0.80 m	36.69	37.07	37.42	37.74	38.04	38.32
0.85 m	37.22	37.60	37.95	38.27	38.57	38.85
0.90 m	37.72	38.09	38.44	38.76	39.06	39.34
1.00 m	38.63	39.01	39.36	39.68	39.98	40.26
1.20 m	$40 \cdot 22$	40.59	40.94	41.26	41.56	41.84
1.80 m	43.74	$44 \cdot 12$	44.46	44.78	45.08	45.36
2.20 m	$45 \cdot 48$	45.86	46.21	46.53	46.83	$47 \cdot 11$

dimension. This is greater than that usually associated with a parabolic reflector, and consequently the feed needs to be more directional. Horns are commonly used, and to avoid stray radiation entering the horn its sides may be
conveniently extended right up to the lens. For a given band the lens aperture is generally slightly smaller than its equivalent with a reflector. It often resembles a large cone in appearance.

CD Player Casebook

Reports from Mike Leach and Nick Beer

Pioneer PDZ72T

This popular twin-player came in with the complaint that it would work with only some discs. On test I found that when the fault was present the disc wouldn't reach full speed. A quick resistance check across the turntable motor confirmed my suspicions - the reading was 10Ω instead of the correct 20Ω. Obviously another case of a faulty motor there have been reports previously in these pages.

If you are stripping down one of these machines for the first time you could fall into the same trap that I did, so here's a hint. When removing the twin carriage to gain access to the laser assembly you have to remove the four screws that hold the carriage in, after which you can simply lift it out. You then find that the carriage leads are routed underneath the laser assembly and that there is very little spare lead to keep the carriage well out of the way. When you put the carriage down on the bench it usually falls apart: the two trays come out of their runners and the metal plate mounted beneath the trays falls on to the bench. So make sure that you have a large rubber band handy to put around the carriage when you remove it. This can save a lot of time spent putting the carriage back together again.
M.L.

Philips D8600 Portable

This portable machine came in with a bag of bits taped to the lid. The ticket said it had been dropped and didn't work. Wonderful, I thought.

The bag contained the plastic cap and copper spring that had come off the turntable. They were broken and needed replacement - fortunately a scrap deck provided the parts. Now to power up. The sled assembly made a funny noise and rattled away against its end stop towards the centre of the disc. My tolerance level hadn't been good all day and this made matters worse.

I removed the bottom cover to look for broken print. There wasn't any. Well, I'd got this far so I thought I would remove the board and take a peek at the deck and the laser. To take out the bottom board you have to remove
the front escutcheon and unsolder the earth tag between the front panel and the copper earthing plate. I did this then carefully lifted the complete PCB assembly from the casing. Boing went the spring off the lid, almost landing on a Pioneer which had its top cover removed, exposing the mains transformer that was just waiting for something to land on it. Luckily it didn't.

On inspecting the deck I noticed two microswitches that had been bent, obviously when the machine had been dropped. Replacing these cured the problem and the machine again worked normally (after refitting that spring). It's amazing what customers find to do with their electrical equipment. We've had all sorts. A Ferguson camcorder that went for a swim in the sea; various thirsty VCRs full of Coca Cola (a common one); and a G11 TV set with a pint of Tequila poured inside it.
M.L.

Pioneer PDM435

Having diagnosed a faulty laser unit in this new, stock machine I was somewhat alarmed when, after fitting the replacement and leaving the player on soak test, I found that it had developed a new symptom - it wouldn't play the first track of the disc, after which it was fine. Nasty things like a PLL fault come to mind with this sort of problem. But the fault hadn't been there with the previous laser unit and anyway it looked more like a mechanical fault.

The replacement laser unit had had its protective solder shorting link unsoldered and this had been resoldered very poorly. I reported an occurrence of this type some months ago in these pages, where a new laser unit was faulty and a second replacement had had to be obtained. The same thing had to be done this time.

Are these links unsoldered when the units are tested? If so they are not being resoldered properly and maybe they are being damaged during the process. Or possibly these are units that have been returned as faulty and have been found to be "o.k." on test. Whatever the reason, I don't like doing the same job twice!
N.B.

TV Fault Finding

Reports from Steve Cannon, Ed Rowland, Steve Beeching, Colin Doman, Mick Dutton and S.A. Featherstone

Hitachi CPT1646R

The trouble with this set was that the colour could be seen to be pulsing. It was very faint, but the set belonged to a sports club and apparently the fault was quite noticeable with football. When a colour bar pattern was fed to the set a very faint shimmer was visible in the green and blue bars. It was more noticeable with the colour turned up and the contrast turned down. Several checks were made around the colour decoder chip but we were unable to arrive at a diagnosis. The chip was changed of course but the fault persisted. So more checks were made and various components were replaced, all to no avail. Then, by chance, we noticed that when fine tuning the station the colour seemed to pulsate in sympathy with the flashing LED display. The problem disappeared when the supply to the display was disconnected. But rather than replacing the display we decided to fit a new SAA1293 remote control decoder chip (IC1501). This provided a permanent cure. We've had a few faulty SAA 1293 chips.
S.C.

Finlux 1000/3000 Series Chassis

We, and no doubt many other dealers, have had trouble with the BY299 17 V rectifier in the 1000 and 3000 series chassis (Du20 and Dul8 respectively) going short-circuit. This gives the dead set symptom. We had a brand new 3600 chassis set with this symptom, so I got a new BY299 from stock and fitted it. I was then rather dismayed to find that the set was still dead. After making a few more checks I found that this time the cause of the problem was the main 138V h.t. rectifier Dul6.
S.C.

Sony KV211XMTU (AE1 Chassis)

An extremely common problem with these sets is failure of the rectifier and feed resistor in the tube's first anode supply, D803 and R807 respectively. The result of course is no picture. Evidence that the resistor has failed is clear to see, but the diode can check o.k. If it's taken out however you can see signs of arcing on the under side. It seems that the problem has now been recognised. Sony supply an uprated diode, type RGP(2-17, instead of an ES1F. Part numbers for the diode and resistor are 8-919-300-65 and 1-218-025-51.
S.C.

Salora 1H6

There was a real pearler of a fault on this set. The customer's complaint was of severe patterning on Channel 4 , very nearly obliterating the picture at times. Our first thought was that something was beating with Channel 4, which in our neck of the woods is on ch. 42 and is definitely within the tuning range of a VCR. So we gave the video's channel adjustment potentiometer a quick tweak and of course this made no difference at all. Neither did unplugging and disconnecting the VCR. Trying to fine tune Channel 4 also made no difference, but I noticed that the set had another fault: the Band III and u.h.f. LEDs under the tuning flap were both lit. Probably a microcomputer fault I thought, they're always going wrong. Time to take the set back to the workshop, though I was still sure that something was interfering with it.

Back in the workshop the fault was still present. So it wasn't an interference problem. Several checks were made
on the tuner: something was definitely wrong here as there was an extra 12 V on one of its pins. Then I started to bang my head on the bench and remembered the obvious symptom I'd so hastily disregarded. What was happening was that the tuner was in the Band III and u.h.f. modes at. the same time. Tracing the cause of the fault was now straightforward. After changing the UAA1008A tuning chip ICCl the only patterning to be seen was on Pob's shirt.
S.C.

Sony KV2217 with Teletext

We've had no teletext with several of these sets. In all cases the same component has been the cause. The exact symptoms are no teletext but if mix is selected text can be seen in black with the picture in the background. The culprit is RV3 on the text board. It's the text brightness control and we've found that it goes high in value. Adjusting it provides a temporary cure but a replacement (100Ω preset) will save a call-back.
S.C.

Fidelity CTV140

About ten minutes after switch-on the sound and vision would suddenly disappear. A scope check around IC2 (TDA4503) revealed that in the fault condition the line drive frequency increased to over 1 MHz . The culprit was C31 $(2.7 \mathrm{nF})$ in the line generator circuit - it's connected between pin 23 of IC2 and chassis.
E.R.

Logik $\mathbf{4 0 9 0}$ (Ferguson TX90 Chassis)

No colour with a faint blue cast was the result of Cl 57 (22 nF) having developed a leak - when measured it read about $25 \mathrm{k} \Omega$. It's connected to pin 18 of the $\mu \mathrm{PCl} 365 \mathrm{C}$ colour decoder chip ICl 03 , being part of the a.p.c. detector circuit.

In the past we've also had D103 (BAV20) cause loss of colour with these sets. It's connected to pins 19 and 23 of the colour decoder chip, in the line pulse feed. \mathbb{E}. .

Triumph 8209

This set would sometimes fail to come on, and when running would sometimes go into standby. There were periods when it would work for days at a time without trouble however. The cause of the problem was dry-joints on the pins of the line driver transformer.
E.R.

Hitachi CPT1624

The snowy pictures and poor sound produced by this portable colour set suggested a faulty tuner. The cause of the fault however turned out to be C054 ($22 \mu \mathrm{~F}$) in the a.g.c. circuit. It was leaky.
E.R.

Sanyo CTP7132 (80P Chassis)

My colleague Mark was grappling with a Sanyo CTP7132 whose switch-mode power supply wouldn't start up. He disconnected the feed to the line timebase and checked the power supply with a bulb across its output. The bulb lit and the output voltage was correct. There was no apparent fault in the line output stage in terms of a short-circuit
however - the transistor, transformer etc. were all checked. So I suggested reconnection and trying it out with the bulb still attached. Lo and behold, a fully operational TV set! Well, apart from the idea of fitting a table lamp on top of the set and wiring it to the power supply, what were we to do?

We checked around the switch-mode control circuit and found that the waveforms didn't match those shown in the manual, despite full regulation. We decided to change the two electrolytics C312 ($10 \mu \mathrm{~F}$) and C314 $(47 \mu \mathrm{~F})$ and after that there was no further trouble.

A similar fault with a Hitachi CBP260 (NP9A chassis) produced tripping at switch on, though the set would work normally after a few attempts. We decided to change C918 $(220 \mu \mathrm{~F}), \mathrm{C} 919(22 \mu \mathrm{~F})$ and $\mathrm{C} 909(10 \mu \mathrm{~F})$, which put matters right.
S.B.

Fidelity F14

The problem with this set was unreliable start up sometimes it didn't come on at all. On inspection we found that there was a dry-joint at the centre (collector) leg of the BU508A chopper transistor TR2. This transistor is mounted at the edge of the main PCB. The printed tracks at this point don't totally enclose the holes for the transistor leads, due to the need to keep solder clear of the cabinet guides when the board is slid in. The other two legs had apparently been resoldered by hand during production.

There was still a variable start-up delay at each switch-on after we'd repaired the dry-joint. Eventually R84 ($15 \mathrm{k} \Omega$, 5 W) in the start-up circuit was found to have gone very high in value. Replacing it restored the set to normal operation.
C.D.

Grundig CUC120 Chassis

I like these sets. Although they do go wrong the faults are generally common ones that can be put right quickly. This particular set was the exception. The problem was that the picture's luminance level would very intermittently drop. By substitution we proved that the cause of the problem was on the decoder panel. The luminance delay line and the TDA3561 colour decoder chip were replaced but the fault was still present. It was difficult to take any measurements or use the scope because any such action made the fault disappear. We eventually found that the cause was the luminance coupling capacitor C2527 $(0 \cdot 1 \mu \mathrm{~F})$.
M.D.

Decca/Tatung 140 Series Chassis

The complaint with this set was no results. H.T. was present at the line output transistor (ouch!) but there was no other activity. It didn't take us long to find that there was no 18 V supply. The connection to the rectifier (D811) from the chopper transformer appeared to be perfectly soldered but the diode's cathode lead had never been pushed through the board fully.
M.D.

Rank T24 Chassis

We've recently had two of these sets in for repair. Except for the tubes they've proved to be very reliable over the years. Both sets had intermittent faults. The first one would shut down at random. It was tripping due to the protection circuit coming into operation. We suspected that the h.t. was rising but a check showed that it was steady at 111 V . So checks were made in the trip circuit.

Here we found that R 476 ($1 \mathrm{M} \Omega$) had gone open-circuit, upsetting the bias with the result that the trip operated at random.

The second set would work for days before the fault would put in an appearance. Then the picture would go, leaving a dark screen. The sound remained normal. We were able to see that the tube's heaters remained alight when the fault occurred, and the first anode voltage was correct. The bias to the video stages seemed to be incorrect however and we eventually found that the third video transistor TR203 (BC557) had an intermittently opencircuit base-emitter junction.
M.D.

Ferguson TX9 Chassis

This was one of the early models with a thyristor power supply. The problem was no power supply output. There was h.t. at the anode of the thyristor but its gate drive pulses were missing. Many checks were made and we eventually found that the pulses were getting lost around D73. When this diode was replaced the set worked perfectly. The diode checked all right out of circuit. M.D.

Philips CTX-E Chassis

This set was brought to us in pieces from another dealer. We had to rebuild the power supply because the transistors were short-circuit, having been fitted back-to-front. We sorted all this out and got the 125 V h.t. right with a bulb as the power supply load. When the line output stage was connected however the power supply wouldn't start. After replacing the line output transistor the h.t. pulsed up to 80 V , with a discharge apparent in the line output transformer. We were about to order a new one when we decided to disconnect the focus and e.h.t. leads in case of shorts. When the e.h.t. lead was disconnected the h.t. rose to 125 V and there was e.h.t. from the transformer. A check on the e.h.t. lead showed that it was dead short between the screen and inner conductor. A new lead wasn't all that was required however. We had to replace the field output chip and several safety resistors in the 12 V supply. The set then worked well and we were relieved to see that the tube still had life in it.
M.D.

Ferguson TX85 with Remote Control

The note on the job card said that this set took anywhere from two to ten minutes to come on, then the picture would go big and cut off. With these sets the usual reason for not coming on and cutting off is dry-joints on the remote control board. But this set was still reluctant to come on after the dry-joints, which are mostly at TR901, TR902 and the surrounding components, had been attended to. So the next thing to check was the supply lines. The h.t. and I.t. lines were a little high, but this was to be expected as the line output stage wasn't working. A scope check for line drive pulses was then made at pin 26 of the TDA4501H chip IC2. None to start with then up they came after two-three minutes. The supply to this chip was slightly low at 10 V instead of 10.7 V , so a new chip was tried and the components in the supply were checked. Then the penny dropped.

TR902 on the remote control board is used to switch the l.t. supply for standby operation. So the voltages around TR902 were checked. There was 17 V at the emitter and 14 V at the collector when cold. When the set started up the collector voltage rose to 16 V . Changing TR902 cured the fault. When checked the transistor was found to be leaky base-to-emitter in the cold state.
S.A.F.

ECONOMIC DEVICES POBOX 15，WOLVERHAMPTON，WV2 4AZ

$15.80{ }^{\text {a }}$	3.72	${ }^{25 C 1583}$	0.34	AN2140	2.40	${ }^{\text {BC }}$	0.19	${ }^{\text {B0 }}$ S 548	0.33	${ }^{\text {Bul2 }}$	1.10	${ }^{\text {HA1 } 196}$	1.43	MC	1.98		5.42	096	4.78	iba970	3.60	440	3.18
${ }^{15858}$	3.72	2 SC	3.89	AN235	4.65	${ }^{\text {BC2 } 2128 ~}$	0.26	B0x63	2.09	вU294	1.58	HA13001	1.63	MC135	1.56	SAS	5.42	STA4990	6.43	TBA99	． 98	TDAA442	14
17052	4.50	251678	1.98	AN2	3.33	${ }^{82}$	0.10	80x6	1.96	Bu205	1.15		2.26	MC135	1.25		1.95		6.18				
${ }^{7} 7053$	5.61	2SCI7 2Sc1310	0.21	AN24	0．99		0.48	B0720	1.98	BU206	1.27	H013302	7.06	MC1352P	${ }_{2}^{1.40}$	580	${ }^{2} .83$		5.77		${ }^{1.05}$		2
	9.30		1.75		1.71		0.10		1.18	${ }^{\text {But20 }}$	1.65		11.86		2．15	6660	1.93	STRF54	， 99	TCazzoa	${ }_{2,26}^{2,36}$	Da4660	¢，998 7.75
	3．45		0.69	${ }_{\text {ancer }}$	1．188	${ }^{82} \mathrm{C} 238$	0.10	17	0.29	${ }^{812208}$	235	tal 1364	${ }^{12} 2.08$	MC144	${ }_{3}^{1.75}$	S670	${ }_{1}^{2} .33$		1.16	tcasad	89		7． 2
	1.58	2 SC 1	3.35	260	3.85		${ }^{0.198}$	18	0.67	208	1.12	Ha1366WR	2.88	MC144	7.10	SAS670	3.96	60	1.09	40	2.25		2.75
	0.04		4.50		7.92	51 A	0.31	121	0.25		1.43		2.75	MC145118CP	1.10		2.21		0.40		05		7.99
	0.06		3.85		763	293	0.50	123	0.13	BU209	1.75		2.45		2.91		1.61		0.67		60		4.30
	0.06	${ }_{\substack{25 C 1921}}^{251923}$	1.37	A3301		${ }_{\text {BCz300 }}$	034	${ }_{\text {BFE }}^{\text {BF }} 127$	${ }_{0}^{0.13}$		2.55		${ }_{2}^{1.95}$	MCI54888CP	215	Sc84a	19.35	${ }_{\text {T }}^{56037}$	97	TE	2.75		1.50
	0.05		235	305	888	BC302	0.53	53	0.58		d	${ }^{\text {Hali }} 37$	${ }_{1} 2.4$		1．80			5					
	0.08	2 SC	2.59	A 3	${ }_{2}^{2.46}$	BC3	0.98	${ }_{\text {bF154 }}$	0.26	Bu4060	1.24	HA1338	${ }_{1.87}^{1.89}$	MCS	${ }_{1.90}$	SOA	${ }_{11,77}^{2050}$	${ }^{1} 504949$	${ }_{1.45}$	TCCas30S	${ }_{2}^{1.38}$	16135	${ }_{1} 1.22$
			0.20		4.95	${ }^{\text {BCC3374 }}$	0.11	157	033	8u407	0.54	H11399	2.05	C7724P	3.49	Sc264A	9.25	605	9．87	Cas90			
	003		0.95		7.16		0.17		0.18		5.29		2.39		1.56		37		1.95		04		4.93
	0.05		1.93		5.47	вс317a	0.13	8F159	． 18		1.67	HA1392	2.22		1.25		8.27		4.22		65		165
			1.93		2.25		0.99						． 19		0.75				1.25		0.82		
	${ }^{1} 113$	${ }_{2} \mathrm{SC}$	－1．79	${ }_{\text {AN }}^{\substack{\text { A } \\ \text { N32 }}}$	537		${ }_{0}^{0} 0.09$		${ }^{0.38}$	${ }^{\text {Bu5 }}$	${ }_{5}^{50}$	HA	2.75	Me602	0.28	S1123	7.50	${ }_{\text {coser }}$	4.95		${ }_{95} 93$		${ }_{215}^{4.93}$
	010	${ }_{2 S C}$	0.60	AN340p	1.53	${ }_{\text {BCC338 }}$	012	bF17	0.55	BU608	17	HA1406	2.07	ME9002	0.45	SkE2f104	1.25	T9016	1.02	TD3F8800R	6.51	TIC106m	${ }_{0} 0.65$
	0.16		0.34	An355	1.65	${ }^{8 C 3688}$	0.19	8 F 78	0.40	705	2.67	HA1452	0.85	Mear	2.06	SKE2G	0.73	T90	1.25		6.37	HIC4	${ }_{0} .72$
1 N	0.04		${ }^{1.95}$		1.50		0.39	BFF79	0.36		98		2.23		2.50		0.30		1.00		5.25		0.55
${ }_{\substack{\text { S } 5345 \\ \text { S4 }}}$	0.18	${ }_{25 \mathrm{~S}}^{25}$	2.11 0.99	AN	${ }^{3.95}$	BC454	0.36	${ }_{8 F 181}^{86180}$	${ }^{0.365}$		． 40	H0388702－A2	577		2．3．30		${ }_{0}^{\text {f．07 }}$	－903	${ }_{1}^{134}$		2．37		
1592	0.10	${ }_{2}^{25 C}$	1.10	ANS12	4.50	${ }_{\text {BC461 }}$	${ }^{0} 4.47$	87182	034	Buwb	0.66	но387\％	8.53	M ME2955	1.03	Skeff	1.36	19051	8.07	IDA	2.02	1 P ：	1.65
			273		4.42		0.51	BF183	039	Bux84	0.50	H036	14.12	MJE305	1.15	Ske	1.36	T905	5.98	IoA 1005	700		49
	0.35		1.65		5.94		0.30		0.43	Bux85	0.69		14.07	MJE	0.49		0.54		3.44		． 25		95
${ }^{2}$	0.9		1.30		4.40		－．32	bf185	0.39	Briz	0.13	Hishio	14.60		0.49		2.15		2.40		1.4		40
$2{ }^{2} 3$	0.66		． 30		2.20		－ 28		0.14	BY127	0.09		9.50		0.99		3.14		${ }^{4} 4$		10		38
2 23	1.11	${ }^{2} 522166$	0.87		4.20			8f195	0.14	${ }^{\text {Bry }} 133$	0.15	HM62	14.55	M 12328	3.01	SL	2.31		4.80	TOAIO1 14	1.54		0.99
${ }_{\text {2N3 }}^{2 \text { N3 }}$	010	${ }_{2 S \mathrm{C}}^{2}$	${ }_{1}^{1.20}$	${ }_{\text {and }}$	3.9		0.10		0.17	${ }_{\text {BYY }}^{\text {BY／} 164}$	${ }_{0}^{0.93}$	¢Mм23	$\xrightarrow{12.24}$	ML238	${ }_{5.65}^{1.95}$	${ }_{\text {cta }}$	3.44 3.4	${ }_{\text {tapas }}^{\text {tapes }}$	174		2.45		${ }_{0}^{0.96}$
2 N 37	0.15	2852236	1.69	AN623	1.75		0．28	6F198	0.17	BY79	0.85	НМ6	5.69	M1923	3.30	SL43	2.48	ta7	2.55	［DA1	1.70	IPP295	0.94
2 N 3	0.14		1.14	AN	4.40		0.19	85199	0.17	BY／82	1.05	HM710	2.97	M1926	3.45	SL4	4.45	TAPO6	0.71	10A103E	2.64		0.46
2 L 3	0.16	2scr			4.54		0.13	8120	0.37		0.79		8，		8		7.24		1.21		1.79		1.63
2va	0.11	${ }_{20}^{2525253}$	2．00	Ave340	5.62		0.08	3F218	${ }^{0.36}$	99	1.76	Hmsol	3.22	MMS	${ }^{3.50}$		237		． 13	TDA103	2.05		0.35
2N372	1.55	${ }_{25 \mathrm{C}}^{2}$	${ }_{4.65}$	AN6353	22，00	${ }_{8 \text { cc5 }}$	0.10		${ }_{0}^{0.17}$	${ }_{8}{ }^{\text {bry20 }}$	0.17	${ }_{\text {H20 }}$	${ }_{2}^{11.75}$	MM556	2.01	St9	8.32 9.07	${ }_{\text {tazoz }}$	． 58		210 325	${ }_{\text {T1P3055 }}$	${ }_{0}^{0.66}$
2N37	1.61	${ }^{25 \mathrm{C}}$	0.46	AN	1.95		0．20	${ }^{31240}$	0.19	PYz78	1.86	1 CH 2	1.20	MM 5387	1.20	SNib	0.82	ta＞0	1.98		0.80	119300	0.41
2N3819	${ }^{0.46}$	${ }_{\text {2Sc2578 }}$	${ }_{5}$	ANb	0.69		0.24		0.17	${ }_{\text {Bra }}^{\text {B210 }}$	${ }^{0.18}$	${ }_{\text {kazin }}$	1.00		${ }_{1355}^{6.93}$		10.25	IA7	7.50		2.50	${ }_{\text {T1P30 }}$	${ }^{0.40}$
2 N 39	0.50	$2 \mathrm{SC2}$	0.91	AN66610	1.78		0.20	B82458	0.49	8＞210－80	0.19	Kc582C	485	WN1435）	13.20	SN29	7.19	TA7092P	9.94	joA151	0.95	T1P318	0.38
2 N 4	${ }^{1.33}$		1.85	AN ${ }^{\text {a }}$	1.14		0.24	${ }^{\text {Br } 245}$	${ }^{2} .67$		． 45	$\llcorner 2300$	1.27	MN	${ }^{14.04}$	SN29	3.66		3.99			T1P3	0.39
2Na	2.68	${ }_{25532}$	1.20	Anv	${ }_{217}^{2.52}$				0．20		4.95		－1．15	P27	5.07	${ }^{512}$	6． 195		1.61		${ }^{2.48}$	T1P3	${ }_{0}^{0.35}$
2M9	9.99	2S	1.16	AN7	9.90	8 BOH	0.70	${ }_{8 \text { Pr25 }}$	0.34	${ }_{8}{ }^{\text {82227 }}$	0.20	${ }_{\text {LA1230 }}$	1.18	MPC1	1.98	SN29723an	${ }_{14.46}^{11.45}$	IA7	${ }_{0} 0.64$	iDA1235	3.88	${ }_{1 \text { IP32C }}$	0.60
	0.50	${ }_{\substack{25 C 333}}^{25 C 388}$	1.33	AN	${ }_{2}^{2.37}$	${ }_{\text {80，}}^{8124}$	${ }_{0}^{1.31}$		0.33	${ }_{8}^{81228}$	0．60	LAA23	${ }_{3}^{3.04}$	${ }_{\text {MPF235 }}^{\text {MPS }}$	0.60	${ }_{\text {SN2 }}^{\text {SN2764 }}$	2.65		0．87	TIDA	5.52	${ }_{1 / 2 P}$	${ }^{1.30}$
N55	0.50	25 c 394 V	0.81	AN	${ }_{2.67}$	80132	0.42	${ }_{82562}$	0.57	Br2	0.90	LAA	1.05	MPS	0.22	SN2	4.17	taf	${ }_{1}^{2.90}$	TOA	6.93	tip33C	${ }_{0} 0.95$
2 N 52	0.50		0.60	AN7218	0.80	B0135	0.36	${ }^{85263}$	0.57	Br255	0.13	Lal364	3.02	MPS	0.15	SN297728N	5.75	1A71	1.27		${ }^{108}$		， 75
			－19		4.97			Brat	0.34	${ }^{29}$	1.23	LA 1335	1.45	mpats	0.11		5．59	A713	${ }_{8}^{89}$		1.52	T1P	0.29
N6G1	${ }^{10} 8$	25 Cs 15 A	1.85	AU	5.69	${ }_{80}^{80138}$		8F274	－0．34	8r299	0.20	LA1337	318	mpsuos	0.86	SN2	167	TAT71	5.18	TOA 1770 P	4.25	TIP4 1 C	${ }_{0}^{0.39}$
	1.25		0.13	AU113	${ }_{19.63}$	80139	0.24	BF324	0.32	BY407	0.98	La3350	143	mPSU1	2.84		5.56	TA71	3.26		3.05	IP422	0.29
${ }^{\text {Nab }}$	0.60		0.54				0.35	${ }^{\text {bF336 }}$	0.33		1.49	石	1.00	MPSUS6	0.65	SN7400N	0.61	715	3.16		4.60	${ }_{1 P 2} \mathrm{P}_{28}$	0.79
		${ }_{256520}^{256505}$	1.146	${ }^{\text {BA }}$	${ }_{8}^{8.94}$	80150	0.75	${ }_{\text {bFF38 }}^{\text {br33 }}$	031	${ }_{8}^{8 Y}{ }_{8}$	40		${ }_{5}^{5.52}$	mpsut	${ }_{0}^{2.21}$	SNT70	0．36		－ 16.54		2.57		${ }^{0.50}$
${ }_{2 S}$	0.99	25 C6633A	1.54	BA	1.50	${ }^{\text {B0，} 57}$	0.67	${ }_{\text {Bras }}$	0.45	B7W56	0.29	La41	1.25	MR854	0.46	SN／704N	0.52	TA7 7	${ }_{7.80}$	${ }_{101522}$	5.92	\＃1543	${ }_{1.34}$
［5A7	0.75	256668	0.67	в4， 3	1.30		0.71	B5362	0.99	B7x55．600	0.23	Lat101	1.30	MR914	0.80	SN740N	0.27	TA71	1.41		3.15		0.21
		256882	${ }_{1}^{4.88}$	${ }_{\text {BAP }}^{\text {BAA }}$	3.95 2.75			5371	${ }_{0}^{0.50}$	Brx＞1－	${ }^{0.0 .85}$		${ }^{1.755}$	MSM5890Н	${ }_{12.09}^{24.7}$	SN74111N	1.60 2.65		4.80	TDAI	2． 288	${ }_{\text {HLa }}$	
SAI	0.99		1.65		0.19	80179	${ }_{0.30}$	8F391	0.25	Brysb	1.48	A4125	2.25	MvS46	061	SN74151an	1.51	TA720	1.95			ז10	45
SA101	0.20	${ }^{25 C 693}$	0.63	BA148	0.11	80181	0.99	88419	0.65	BzY93E	1.65	LaA138	4.98	NES542	275		1.27	1A720	100	IDAA9	2．55	TMP43320	9． 50
2SA	${ }_{0}^{0.36} 0$		0.25	${ }_{\text {BA }}{ }_{\text {BA }}$	12	${ }^{80183}$	${ }_{0} .99$	${ }_{\text {BF4 } 423}^{8842}$	0．133	${ }_{\text {cose }}^{\substack{\text { c20 }}}$	1．76		${ }^{0} .23$	NE555	${ }_{0}^{0.65}$	${ }_{\text {SNT }}$	1.52 1.35	tarz	${ }_{2.15}^{1.68}$	TTOA	2． 50	TMS	${ }^{6.501}$
	0.54	256717	1.28	Ba156	0.05	${ }_{\substack{80184 \\ 80187}}$		BF435	2.61	${ }^{\text {ca33036 }}$	1.55	La4220	1.25	Me56sN	1.18	SNT 720 N	0.34	tA7210	1.45		1.56	TMS3720	4.95
	4.95	${ }^{25 C 734}$	0.20	BA159	0.09			S 45	0.35		3.29	La4420	1.72	0atal	0.11	SNuT30	0.19	1a／21	${ }^{3.63}$	IDAFOO	1.05	IMS3748NS	10.95
	125	寿 78	3， 3.98	${ }^{\text {BA }} 182$	0.19	80190	0.55		0.11	Ca3309A	3．25	La4422	1.28	${ }^{\text {OA4 }} 49$	0.16		0.27	tarit	． 45	TOA2004	120	TMS3735	${ }^{9} .66$
${ }_{2}^{25 C 1}$	1.25	25	${ }^{3} 28$	${ }_{\text {Ba302 }}^{88222}$	1.24	80202	${ }_{0}^{0.46}$	${ }_{\text {BFP } 58}$	0.49	Ca3131		La4410	1.99	0a95	0.16	SN71	1.54	TAR222	1.95	toara	1.00	TUA2000	${ }^{198}$
2541	3.45	${ }^{256867}{ }^{\text {che }}$	4.54	8a311	0.65	203		Bras9	1.27	Coasm	0.24	La4445	1.52	${ }^{0028}$	9.07	SN2747N	0.44	tara	4.22		1.05		76
	5.74	${ }_{2 c} 258776$	0.96	312	145	80204	0.45	Bra60	1.63	CO4002	0.27	La4460	1.50	Oc35	1.06	N77909	． 75	A72	4.66		47		2.97
2Sa	0.40		${ }_{1}^{6.54}$	${ }_{\substack{\text { Ba313 } \\ \text { Ba317 }}}^{\text {P12 }}$	0.76	22	${ }_{0}^{1.52}$	$\underbrace{\substack{\text { EF－69 }}}_{\text {BF4 }}$	－ 0.33	${ }_{\text {cos }}$	${ }_{1}^{1.35}$	Lasiliz	． 18	${ }_{\text {OC4 }}^{0}$	1.53	SNT7600	1.45	tarz	${ }_{4} 1.63$	TOA2	4．48	UP132364C	8.50 230 230
2 Sa	1.132	${ }^{2} 5$	16	BA318	0.09	${ }_{80225}$			0.25	C04012	0.24	LA7020	13.86	$0 \mathrm{Ca5}$	0.18	SN760 3 NO	，	TA7240	20				，
	2.25	${ }_{2502995}$	${ }_{0}^{9.47}$				0.63	${ }^{81872}$	${ }^{0.33}$		0.33			${ }_{0} 0$ OC72	0．44		2．97	${ }_{\text {cta }}$	1.95		4.78		0．61
Sas	0.97	250	0.65	${ }_{\text {Ba3 }}$	${ }_{6} 1.27$	${ }_{802}$	${ }_{0}^{0.50}$	${ }_{\text {Bl } 483}$	${ }_{889} 0.69$	${ }_{\text {Casa017 }}$	${ }_{0}^{0.39}$	Lafisto	${ }_{9}^{10.92}$	${ }_{\text {ON236 }}$	0.44 1.06	${ }_{\text {SN7T6033N }}$	3.91 2.68	TAR31	${ }_{0}^{2.159}$		${ }_{2} 2.21$	UPCC1009	${ }_{6}^{5.95}$
			3.75	8asi	2.19	80232	0.49	BFF91	0.50	C54020	0.75	La7042	4.05	ON	1.65	SN	0.90	ta73	3.50		2.37	UPC1025	2.90
2546	0.37	${ }^{2501128}$						BF506					1.36		1.45	SN	1.61	7323	3.15	［0R252		UPC 1028 H	2.00
		${ }_{2 S 012}^{2501}$	${ }^{0} 1.68$	${ }_{\text {日a }}$	－1．00	${ }_{802}^{802}$	0.36	${ }_{\text {B }}^{8-532}$	0.45	COO42	${ }_{0}^{0.28}$	La7801	${ }_{2}^{3.21}$	Pris50	5.65		1.17 2.45	TAA7323	${ }^{1.63}$	ToA	4．50	UPCCIO	${ }^{22}$
${ }_{2 S} 2$	0.28	2501	1.50	${ }_{\text {BAS } 22}$	8.94	${ }_{80239}$	0.45	B6597	0.27	COAS	0.84	LBI2	1.90	${ }_{\substack{\text { R1038 } \\ \text { R1039 }}}^{\text {a }}$	2．19	SV7762260N	2.17	tar34	${ }_{5} \mathrm{c} .95$	toaz	2.50	UPC1156	3.94
		2501	2.64	Ba526	7.98	BD27a	0.57		0.22		0.45		9.20			V76228N	3.27	Ta7607			2.70		68
2SAA	0.80	${ }_{2 \text { 2S }}$	3.8	${ }^{\text {Bass }}$	2.98	802	039	57	${ }^{3} 3$		1.06	［03120	${ }^{1.13}$		1.98	SNTV642	5.23	TAP	${ }_{2}^{2.35}$		1.00		2.19
${ }_{\text {2SA }}^{25}$	1.95	${ }_{25023}$	0.68	${ }_{\text {EAS36 }}^{\text {EA32 }}$	${ }_{0}^{1.20}$		0.62	8 8761	0.43	${ }_{C}$	${ }_{0}^{0.35}$	LM383	1.10	R2020	${ }_{1.33}^{2.98}$	SN76396	${ }^{5.90}$	${ }_{\text {Tar6 }}$	${ }_{5.25}^{25}$	Toazsaso	${ }_{2.15}$	UFC，	－ 0.95
	2.50	${ }^{25024}$	${ }^{2} 298$	B465	1.27	${ }^{\text {B02 }}$	0.50	${ }_{88569}$	${ }_{0.99}^{0.34}$	${ }^{\text {coded }}$	0.29	LM1017	1．81	${ }_{\text {R22 }}^{\text {R2a }}$	${ }_{2}^{1.33}$	SN7763	1.75	TAF62	8.94	T0A2560	2.50		
${ }_{2 S A}$	0.65	${ }_{250313}$	${ }_{0} 1.55$	${ }_{\text {BAF7 }}^{\text {B46 }}$	1.35	${ }_{\text {cose }}^{802844}$	0.58	${ }_{\text {Brabe }} 8$	0．0．30	CO4470	${ }_{0} 2.24$	LM2808	¢ 5.94	${ }_{\text {R22 }}$	1.49		${ }^{4.87}$	${ }_{\text {TATE629P }}$	7.50	Yadz	2.95		0．80
	0.99		${ }_{2}^{225}$	${ }^{\text {Badas }}$／	927	B0224	${ }^{0.83}$	Bf966	0.51	${ }^{\text {ca4083 }}$	0.14	LM2877	7.75	R2322	${ }_{0} .67$	SN76549	2.45	T2064ap	0.95	TDA256A			${ }_{1.88}^{2.82}$
${ }_{2 S A}^{25}$	2.15 0.97	${ }_{2}^{250}$	235 1.10	${ }_{\text {Bas } 54}^{8483}$	3.96 5.76	${ }_{\substack{80276 \\ 8025}}^{886}$	${ }^{0} 0.95$	R39	－0．63		0.44		43		$\stackrel{.0}{0.76}$	SN76611	${ }_{2}{ }^{3} .598$		2.75	toaz581			${ }^{52}$
${ }_{2}^{25 A}$	${ }^{2} .23$	${ }_{\text {250414 }}$	1.98	${ }_{\text {BaVli }}$	${ }^{0.066}$	${ }_{\text {80278 }}^{8027}$	0.70	862	－0．92	${ }^{\text {CODS }}$	0.52	LIM34	${ }^{11.85}$		2.01	SN76	2.55	${ }_{\text {Ta }}$	2.81 1025	TOA	1.98		1．81
	0.50 1.75	${ }_{25}$	${ }^{2} .150$	${ }_{\text {Bavic }}^{\text {Baly }}$	－ 0.38	${ }_{80}^{80}$	2．72	8FRR9	0.20	CRO2AM－8	1.70	LIM380N	1．50	${ }_{\text {R2 }}$	（		${ }_{2}^{2.48}$	taA	${ }_{1}$	TOA2599	${ }_{2.45}^{2.15}$		－1．65
	0.85	${ }^{2} 250600$	2.98	Bav21	0.10	${ }^{80375}$	0.42	Ef	1.63	Cvizf	4.19	${ }^{102}$	10.15		${ }^{55}$	SN76	4.85	ta ${ }^{\text {ab35a }}$	6.59	T022593	1.99		4．20
		2 S	${ }_{0} .74$	${ }_{\text {Bax } 12}^{\text {ba }}$	0.49	${ }_{804}^{803}$	${ }_{0}^{0.63}$	${ }_{\text {erfer }}$	－0．63	${ }^{\text {cx104 }}$	8.7	LM7	${ }_{82}$		0.67		${ }_{23}^{63}$		${ }_{1} 1.85$		7．00		1．65
	2.10	250	0.20	Bax 13	0.11	B0433	0.39	berke	${ }_{0}^{0.34}$	${ }_{\text {cxios }}$	${ }_{7}^{5} 5$	Lm3360	3.87	${ }_{\text {RCO }}^{\text {RCO }}$	2.00	SNT670	2.97	IAAS6	0.95	toaz611a	2.80		$\begin{array}{r}230 \\ 175 \\ \hline\end{array}$
	1.13	5	－ 0.58		． 94	${ }^{80434}$	${ }^{0.37}$	${ }^{8+\times \times 85}$	0.31	Cx130	8.76	LM836	${ }_{2}^{2.95}$		023	SN	5.54	TA469	${ }^{8.59}$	［APz6120	6．58		95
S	－0．40	250	2.80	${ }_{\text {BCi } 1088}$	0.15	${ }_{\text {BD }}$	1.14	${ }_{88 \times 88}$	0.55	${ }^{\text {cxi }} 135$	7.50	LR3471	${ }_{9} .37$	${ }_{\text {Remilic }}^{\text {Reprem }}$	${ }_{0}^{0.36}$	SN768	1.35	taA930	4.36		6.58	UPCC1458	1.85 2.95 1
S8	－098	${ }^{250}$	${ }^{0.80}$	${ }^{\text {BCLIO98 }}$	0.14		0.45		0.34 0.38	${ }_{\text {cx }} \times 139$	${ }_{11} 18$	${ }_{4}^{4} 114$	${ }^{7} 7.27$	RT505A	${ }_{3}{ }_{5}^{288}$	Sp942	4.35 1.83	${ }^{\text {Pagh }}$	${ }_{2}^{283}$	TITAP620	${ }_{1}^{1.95}$	yprczor	${ }^{1.48}$
S	${ }_{0} 0.74$	25	0.60	${ }_{\text {sc }}$	${ }_{0} .36$	B0441	0.62	Brys	${ }_{0}^{0.33}$	${ }_{\text {cx }} \times 158$	50.45 10.45	［u52011	14.95	S2255A	3.75	${ }_{\text {Stand }}$	${ }_{313}^{2.75}$	IBA12	4.4	toa	2.73	पре 324 C	4.70
	－${ }_{5.82}^{280}$	${ }_{208811}^{208037}$	${ }^{6.884}$		${ }^{0.20}$	${ }^{\text {B0442 }}$	${ }^{0.50}$	B1449	2.20	${ }_{\text {cx }} \times 178$	－ 8.8 .80	LVa3112	${ }^{12.37}$	52802	1.50 2.90	${ }_{\text {sitaflic }}$	870	TBAA120	0.40		${ }_{\text {g．}}^{3} \mathrm{si}$	บpecis36	${ }_{2}^{4.94}$
SS8	2.00	250841	1.37	BC135	0.14	B0510	1.08	${ }_{\text {BR101 }}^{\text {Brito }}$	－ 0.78	${ }^{\text {cx }} \times 1555$	12.95	M23C	1.98	${ }_{\substack{52318 \\ 587725}}$	4.05	STK0039	5.25	tbarzou	2.50	Y0a363	${ }_{5} .16$	UPCC4	2．99
	${ }_{3} .96$	${ }_{2508565}^{25085}$	${ }_{1}^{0.64}$	${ }_{\text {BCi }}$	0.18	${ }_{8059} 80$	0.78	${ }_{\text {8R203 }}^{\text {8R23 }}$	0.79	${ }_{\text {E12 }}$	0.40	${ }_{\text {M2938 }}^{\text {M1981 }}$	${ }_{7}^{232}$	S66888	9.98	STKR090	＋177	TBA120A	${ }^{1.05}$	10as360	${ }_{2.48}$	UPC474	5.11
	${ }_{0}^{3} 0.65$	250	0.35	BC139	${ }_{0} .33$	${ }_{80530}$	0.73	${ }_{\text {Brec }}$	2.08	${ }_{\text {E5336 }}^{565}$	0．28	M5	1.75	${ }_{\text {S }}^{54 A 4003006}$	${ }_{1}^{1555}$		5． 51.08	TB	195		${ }_{10.14}$		
2s881	0.60	${ }_{250898}^{250889}$	${ }_{2} 1.37$		0．30	${ }_{80534}^{8053}$	${ }^{0.67}$	$8{ }_{\text {BRX }} \times 5$	${ }_{0} 0.61$	${ }_{6}^{60243}$	1.95	${ }_{\text {M }}^{\text {M } 512038}$	S． 3.15	1025	5．77	STk	12.95		20．66	785	${ }_{278}^{799}$	C587C2	－734
	3.22	25 L	2.15	BCC142	0.25	B05	0.38		0．30	Hal 121	1.75	M51	124	SAA102\％	2.50	${ }_{\text {STK }}$	1234	IBA	239		1.81	UPC592H	15
	${ }_{50}^{1.065}$		0.45	${ }_{80}^{8 C}$	0.14	${ }_{\text {B0537 }}^{\text {B0536 }}$	0.50 0.50	${ }_{\text {BR3 }}^{\text {Br }}$	${ }^{0.355}$		${ }_{4.29}{ }^{2.55}$	${ }_{\text {Ms } 1353 \mathrm{P}}$	${ }^{4.93}$		${ }_{1}^{2} 4.4$	${ }_{\text {STK }}^{\text {STk }}$	（27．50		2.34 1.30 1		${ }_{7} 13.24$	UPC5	998
${ }_{2} 2$ 2SC	0.50 0.55	${ }_{781} 7$	${ }_{0}^{0.64}$	${ }_{\text {BC }}$	${ }_{0}^{0.13}$	B0538	0.67		${ }_{1.19}$		2．15 1．95	$M_{M 513818}$	${ }_{4}^{5.58}$		${ }_{6}^{2} .69$	STK1	5．75	т8a550	1.37		4.62 4.40		4，768
	3.69	7905	0.80	${ }^{\text {BC }}$	0.13		0.75 0.33	${ }_{\text {BS }}^{\text {BS } 1801400}$	${ }_{6}^{4.93}$	HA1	${ }^{2} .29$	M 153398	14.50	${ }_{\text {SAAA }}$	${ }_{3}^{7,77}$		137	${ }_{\text {IBA5 }}$	1.30		5.58	ypps53．16	4.50
${ }_{2 S C 1}^{2561}$	${ }_{3.25}^{0.47}$	A0143	1.93	${ }_{\text {BC15 }}$	0.14	${ }^{8067}$	${ }^{0.43}$	${ }^{\text {BSICO233 }}$	${ }^{6.12}$	${ }_{\text {HAII }}^{\text {HAT }}$	$\stackrel{4}{1.38}$	M554248P	${ }_{8.25}^{6.85}$	${ }_{\text {SAA }}$	3.20	${ }_{\text {STK }}$	${ }_{16}^{16.65}$	${ }^{\text {rPbas }}$ A0	1.72	${ }_{\text {IDA3S510 }}$	7.98 5		750
${ }_{\substack{25 C 1166}}^{25 C 1129}$	4.95	${ }_{\text {AD }}$	${ }_{0}^{1.84}$		${ }_{0}^{0.148}$	${ }_{\text {EL681 }}^{8060}$	1.48 1.48 1	BSTO1003	2.85	${ }_{\text {HAT }}^{\text {Hat }}$	3.75 2.25	${ }_{\text {M } 51555 \mathrm{Sb}}$	2.75		${ }_{2}^{8.71}$	STK304	6.08		1.40 1.60		${ }_{2} 971$		
${ }_{2} 2$ SCL	0.72	${ }_{\text {A }}{ }^{\text {A } 16162}$	${ }^{0} 9.84$	${ }_{\substack{\text { BCI } \\ \mathrm{BCl}, 158}}^{\text {che }}$	${ }^{0.288}$	${ }^{\text {B05969 }}$	2.47	${ }_{\text {BSW }}^{\text {BSY }}$	${ }_{0.60}^{3.69}$	HA1	1.15	M515	1.50	5 SAAS500	3．25	Sikto	${ }^{13.97}$	IBas 704	1.71	IOA3549	2.22	K0035ta	come
${ }_{2} \mathrm{SCC}$	${ }_{0} 0.55$	AFE15	${ }^{2} .980$	${ }^{\text {BCCCFGCO}}$	0.16	${ }_{\text {B07 }}^{\text {B60 }}$	3.80 3.70	${ }_{\text {BSx }}^{\text {B82 }}$	${ }^{0.34}$	HA1	${ }_{6} 5.73$		${ }^{3.173}$	S4A5012	${ }_{5}^{5} 5$	$\underbrace{}_{\substack{\text { STK433 } \\ \text { STK33 }}}$	－6．18		1.85 1.85	OAB35710		KOOT2CE	－
${ }_{2 S c}^{2 S C 1}$	\％${ }_{6.09}^{2.22}$	118	0.57	${ }_{B C}$	0．07 0	${ }^{8070}$	0.60		0.50	HAA	${ }_{\substack{6.60 \\ 3.60}}^{\text {a }}$	${ }_{\text {N5323 }}$	${ }_{1 / 38}^{1.38}$	${ }_{\text {S SaCs5030 }}$	${ }_{6.3}^{5.78}$	SIK435	3.95	ibazzo	4.32		7.48 8.79		5．02
${ }_{2} \mathrm{SCL12}$	${ }^{2} .30$		0.40	${ }^{8101728}$	0.27	${ }_{80710}^{8079}$	${ }_{0.80}^{0.80}$		1.18 1.45	tali 705	8．00	${ }_{454532}$	1.45		${ }_{5}^{4.90}$		195 7.26		${ }_{2.50}^{3.55}$		6.45		6.00
${ }_{2 S}$	${ }^{1.468}$	AFF79	0.36		0.27	B0809	0.45	㫙 19	${ }^{1.77}$	${ }_{\text {Hat }}$	$3{ }^{3.37}$		${ }_{6}^{1.751}$	SAB3011	7.34	stki37	${ }_{9.50}$	tBa	1.08	TOA	6.91	\times K00746E	
c13	0.50	${ }_{\text {AF }}^{\text {AF } 180}$	${ }_{0}^{0.55}$	${ }^{8 C 177}$	${ }_{0}^{0.355}$	${ }_{\substack{80870 \\ \text { R8879 }}}^{\text {che }}$	－0．57		2.48	HAP171	${ }^{3.45}$	5	14.43	SAAB3013	4.69	STK．372	5.99	Tbabior	${ }^{0.98}$		1.89		14.600
$2 \mathrm{ESC13}$	1.20	Af186	1.32	${ }_{8 C 179}$	0.17	B0895	2.18	${ }^{\text {a }}$	1.98	HA 4 ＋7 71	${ }_{9.90}$	Maba	${ }^{11.862}$	SAB3021	${ }_{6}^{3.95}$	${ }_{\text {cke }}^{\substack{\text { SIK460 }}}$	9.85 19.10 10	teabiot	1.75	Ta ${ }^{\text {a }}$ S	25	x00922CE	
	${ }^{2} 2.45$	${ }_{\text {AfF239 }}^{\text {AFP }}$	${ }_{0}^{1.583}$		0.0 .07	${ }^{\text {B09901 }}$	${ }^{0.555}$		＋1．95	HA17 715 HA1714	${ }_{7}^{10.19}$	${ }_{\text {mb373 }}$	1.98	SAB3	${ }_{5.62}$	STK501	6.32	TAAS20	${ }^{0.66}$		－ 4.50		
${ }_{2} \mathbf{2 S 5 1 4}$	2.27		${ }^{3} .198$		0.09	${ }_{\text {B0w33C }}^{\text {B9002 }}$	0.56 1.20	BU	${ }_{1}^{2.358}$	HAA17176	13.10	713	${ }^{1} 1.69$	SABB3210	3.21 5.13		7.25 9.48		${ }_{3.50}^{0.82}$	80	${ }_{7} 720$		\％ 31
	2． 2.07	an	${ }_{2.58}^{1.89}$	${ }_{8 C}$	${ }_{0.13}^{0.09}$	${ }^{\text {B0W84C }}$	0.99	Bulily	4.16	${ }_{\text {Hal }}^{\text {Hali } 1725}$	18.26 16.00	${ }^{331}$	${ }^{2} 125$	SAFI	1.95	StK533	9.72		1.65		${ }_{2}^{1.27}$		． 74
	1.00	AN208	3.55		0.25	${ }^{80}$	${ }_{65}^{65}$		${ }_{2}^{1.488}$	Hal1	${ }^{13.50}$	MC13002	2.99	SAS500	839	5730	3.67	tita90	1．87		2.30	$\times 0261 \mathrm{CE}$	${ }^{8.98}$
－${ }_{\text {2SClis }}$	${ }^{76}$	AN2I	1.56	204	0.28	$\begin{array}{r}\text { ²3A } \\ \times 588 \\ \hline\end{array}$	${ }_{35}$				$\underset{\substack{21.15}}{\substack{15}}$	NC．3102	1．95	Sas560	1.91	（17216	${ }^{14.90}$	Ibasjo	1.55		8.32		1.77
																				TDA4431	2.27		

Fifty Years in Radio and TV

Part 4: The coming of ITV

Harold Peters

Although the ITV transmitter network spread more quickly than the BBC network had done it followed the same pattern, starting in London and the Midlands and spreading outwards. The BBC and ITV transmitters were not co-sited, but in many cases they were close together for topographical reasons. Separate aerials were required, the standard for Band III being a five-element Yagi. The only concession to tidiness was that a common polarisation was used in each area. As with Band I, there was an initial myth that the signals would be strictly "line of sight". This was soon dispelled. The earliest Band I/III receivers had two aerial sockets, but a single socket soon became the rule rather than the exception. We were given two more bits of equipment likely to go wrong: the diplexer, which sat on the aerial cross-arm and combined the two signals for feeding to the TV receiver via a common downlead, and the turret tuner where silver-plated contacts oxidised faster than you could keep them clean.

Mechanics

Setmakers have, over the years, developed the reputation of being lousy mechanics. Any moving parts introduced into a TV set's works stike a chill in the hearts of service engineers. Perhaps the worst ever was a pre-war Philips radio called the Monoknob. Inside was 80 per cent drive cord and bowden cable and 20 per cent electronics. All this to make one knob work the lot. The memory of it could well explain the Philips concern in more recent times to rid its sets of even the smallest knob.
Apart from the turret and one or two other types of thirteen-channel tuner the coming of ITV was followed by almost a decade when there was little technical change in receivers. Many people regard it as television's Golden Age. Despite 405 lines and monochrome pictures, viewing habits that last to the present day were created.

Heaters

There was also a fair degree of stability in set design. Cabinets were approximately square and usually had a flat chassis beneath the c.r.t. Serviceability was generally good. Take off the back and the bottom, turn the set on its side and you had access to almost everything. This speeded up valve fault diagnosis. Remember that the heaters of the valves were connected in a chain, like Christmas tree lights. Also that the chain was not a simple progression but was carefully arranged so that the items most at risk of heater-cathode breakdown, the c.r.t. for example, were at the earthy end. Small silicon rectifiers to serve as droppers were still years away, so the heater chain was topped up at the live end with a tapped, wirewound mains dropping resistor. The whole chain dissipated some 72 W of pure heat. Burnt fingers and scorched hankies were part of our everyday life.

There was another problem with the series heater chain. The resistive value of the heaters varied with their incandescent colour, but that of the mains dropper stayed the same. Thus at switch in the valves received more than their rated current and lit up like lamps for a second or two. To reduce the short life that this caused a thermistor (a resistor with a negative temperature coefficient) was
included in the chain. Its resistance was high when cold, falling to a low value when hot. In fact when running the thermistor got so hot that the dip-soldered leadout wires oxidised and became open-circuit next time the set was switched on.

The Business Angle

So there was plenty to go wrong, and this gave an impetus to the tendency of viewers to rent their sets. Purchasers and dealers had to cope with the dreaded Purchase Tax, which the government used to use as an economic regulator (it was succeeded by VAT). Within reason you could tell whether it would go up or down at the next budget by studying the country's economic situation. If it looked like going up there was a mad panic, but if it looked like going down business would come to a halt. The effects were felt throughout the trade, right back to the manufacturers. It was to some extent responsible for the demise of the autumn radio and TV show at Earl's Court and the beginning of the spring launch of new models from hotel suites we've learnt to endure. The thinking behind this was that the launch of a new range would coincide with Budget tax changes and the public would therefore find it difficult to attribute any price change to either the tax or the setmaker.

Then there was the guinea. We still had pounds shillings and pence. A guinea was one pound and one shilling ($£ 1.05$ decimal). At the time a typical TV receiver would sell at around 79 guineas. That looked far more inviting on the price ticket than $£ 82.19$.)d!

Going Electric

ITV didn't come to East Anglia, where I was now living, until 1959. But we had plenty with which to keep ourselves occupied before that. BBC Tacolneston began by using the reserve London coronation transmitter, housed in a caravan with its feed to a temporary mast on the permanent site. There were ten progressive power increases as parts of the permanent installation were commissioned. Every increase extended the service area, and our business. More important was the supply of poles across fields to outlying communities. As isolated farmhouses "got the electric" these good people, who had saved for decades for the day when they doused the tilley lamp for good, invaded our showrooms and went mad.

It was a prodigious effort to deliver, install and explain the workings of a TV-radiogram, cooker, fridge and washing machine all in one go. When it came to presenting the bill, father would go upstairs and there would be the noise of floorboards being raised. Payment was usually by means of the large, white five pound notes, with the odd change being taken from the "hen on nest" on the mantlepiece.

Practical Television

It was as a result of the heroic struggle made by some of those who lived in farmhouses to watch TV before the poles arrived that I first became involved, in a very small way, with journalism. I had made notes, mostly for my
own benefit, on what they got up to in order to receive TV without the mains. I wrote the notes up and sent them off to Practical Television, as this magazine was known until September 1970, and to my great surprise had them accepted. They appeared in issue 84, dated July 1957, almost 34 years ago. If you read that issue you'll find that Les Lawry-Johns was well into his famed "Servicing Television Receivers" series, dealing with the Etronic ECV1523 that month, and that F.J. Camm himself was continuing with his "Beginners' Guide to TV". On the front cover there was a vectorscope, and the centre-spread was devoted to more about colour TV - including the mathematical proof that the $G-Y$ colour-difference signal can be derived from the other two.

Colour television had already started in the USA. The BBC , having moved its London transmitter to Crystal Palace, installed a working 405 -line NTSC system at the Alexandra Palace site. If you count starting up after the war with 405 lines as one, and the Baird trials as another, this was the third wrong horse that the broadcasters backed: when colour eventually came, a decade later, it was the PAL system that was adopted, catching us relatively unprepared - but more about that another time, as we are jumping ahead a bit.

In that July 1959 issue of Practical Television somebody was advertising - transistors! Admittedly they were germanium types, suitable only for m.w. radio receivers. Henry's Radio was asking 15/- (75p) for each one. There was also a tobacco advertisement in the issue. Perhaps it was there because of the tin container in which the plug came - those containers featured regularly in articles describing small aerial preamplifiers and the like!

The old "Your Problems Solved" feature on the back page was already a favourite, and on the strength of my article I became one of the "agony aunts". As I soon found out, it was not as easy a task as it looked. The editor of the time tried to pass the queries to engineers who regularly handled the range concerned, so we were familiar enough with the sets. The great difficulty came with trying to assess from a short letter the skill, experience and equipment available to the enquirer. Dare you, for example, remind him that the chassis is live, tell him that the problem ought to be tackled with the aid of an oscilloscope, or both!

A Series of Changes

The continuing stability of receiver design kept us in steady work at the bench - and with the typewriter. If there was a fly in the ointment it came with the 110° tube. The c.r.t was not a problem in itself, but it brought with it the craze to make the cabinets as small as possible, and this led to overheating. It was commonplace to have a card back crumble away in your hand as you t:ied to take it off. On the political side we had a "credit squeeze". This made us all money conscious and the setmakers started to produce standard and fringe models, the former selling for about $£ 12$ less while being perfectly adequate for most service areas.

Printed circuits were introduced at about this time and took quite a bit of getting used to. We didn't like having the circuit on one side of the board and the components on the other side. Previously you could trace out a circuit or signal path just by looking at the underside of the chassis. F.M. radio had not caught on, so the setmakers decided to give it a push by putting it on extra turret tuner positions. This involved providing a long, wafer-type TV/f.m. switch linked to the tuner. A splendid source of trouble and income we thought. But it was only the beginning: worse
was to come. In 1960 Mr. Pilkington put his glass-blowing tube down to chair a committee on the future of broadcasting. It came up with a proposal, which was accepted, that made our blood run cold.

The UK was to change over from 405 to 625 lines. This was to take twenty years, during which the two services would run in parallel. The 625 -line programmes were to be transmitted from co-sited transmitters and would eventually be four in number. As an incentive to people to encourage them to use the 625 -line u.h.f. transmissions a completely new service, now known as BBC-2, would be available on 625 lines only. As soon as practicable some of the new programmes would be in colour.

One sage commented at the time that "if you sat down and tried to devise the biggest mess you could get TV into, this is what you'd come up with". What the setmakers did come up with was the notorious dual-standard receiver. Although there are still some of them about, most engineers would now probably prefer neither to think about nor remember them. Freud would say we didn't want to, and he'd be right. But the dual-standard age needs, and will get, an article of its own.

The Single-valve Scope

One feature of Practical Television was that it always provided something for the home constructor. Of the various items I contributed at the time, my own favourite was a single-valve oscilloscope. It was based on the old VCR97, as there were still plenty of redundant ones lying around from the early days. The aim was to try to quell the fear of oscilloscopes amongst the older generation of engineers. So I was very pleased to be confronted by a familiar looking bit of gear on the Careers stand at the Radio Show. It was my single-valve oscilloscope, and it was being used as a standard constructional project for apprentices. The man on the stand told me that "some chap wrote it in one of the magazines, and we've adopted it".

Live Television

By 1962 the age of the permissive society was dawning, The BBC was desperately trying to shake off its "auntie" image. In this respect the most memorable programme was "That was the week that was", a live, late-night topical review. It gained such a large audience that the CEGB at first failed to predict the demand on the grid. Set in a barewalled studio, with minimal "props" and the cameras and microphones constantly in view, David Frost introduced a youthful company with a wit and wisdom you could no longer afford to put together today. There were no holds barred. Politicians were mercilessly lampooned, Bernard Levin spoke as he wrote, Millicent Martin sang topical opening songs composed only minutes before and Lance Percival even made up calypsos as the news came in.

There were some memorable sketches. The Which? report on religion, which gave the C of E as its "best buy". The two Ronnies and John Cleese "I look down on him/I look up to him" skit on class differences. And a young Michael Crawford giving the teenager's view of life from the saddle of a Vespa. It was ahead of its time and died prematurely, killed off by a coming General Election.

If that hadn't done it, something else would. In the USA the Ampex Corporation had succeeded in producing a video recorder with broadcast quality reproduction on reels of tape of a manageable size. The days of live TV were numbered.

Camcorder Notebook

Nick Beer

We've had several Sony CCD-V90 camcorders in recently. They are early Pro-Handycam models, with an impressive specification.

Problems with Sony CCD-V90s

The problem with the first one was that it would load a cassette then shuffle to a ready state, laced up, but it wouldn't carry out any mechanical functions - it wouldn't even give the tape back. The mechanism would move when a mode was selected but it returned to the rest state almost immediately.

When we removed the mechanism and connected our mode selector jig to it we saw that the rest position wasn't stop/ready but fast forward/rewind.

We reconnected the mechanism to the machine and entered the service mode. Mode 5 enables the deck to run, overriding certain errors. You enter it by shorting the two test pins at the corner of the PCB that carries the large LCD to display the required information. This revealed that there was no capstan FG signal at the microcomputer chip IC001, and confirmed that otherwise the mechanism was fine. There was indeed no capstan FG signal from the FG head. We traced the cause to a high-resistance connection in edge connector $\mathrm{CN}(0) 2$, which connects the mechanism to the syscon/servo circuits via a large flexi connector. The faulty connection read $1.5 \mathrm{M} \Omega$. A clean and retension cured the problem.

This fault highlighted the invaluable assistance that the Sony mode selector jig and the in-built error detection system provides.

The recorder section of the second CCD-V90 worked all right but the camera head picture was very weak both in the electronic viewfinder (EVF) and on a monitor, while the auto-focus system didn't work. On dismantling the unit and removing the camera head and recorder sections from the case the cause of the problem was immediately apparent - FP71, the flexi connector between the recorder and the camera sections, was torn across all but one of its lines. A replacement restored full working order.

The third machine would do everything but rewind a tape. When it was asked to do this it struggled for a second or so then gave up, asking for the tape to be ejected. The reason for this was that when the mechanism moved to the rewind position the back-tension arm didn't move out of the way sufficiently. Three repairs were needed to get things right. First the plastic arm that's driven by the main lever to move the back-tension post had to be replaced, secondly the loading/mode motor was worn and needed replacement, and finally the mode-selection mechanism was one tooth out and had to be retimed. Easier said than

Fig. 1: Experience has shown that the best point at which to leave the mechanism is where the mode cam's projection edge just lines up tangentially, as shown here, with the middle of the two loading ring gears.

done, but it all works again now!

The fourth machine's recorder mechanism wouldn't perform any functions. It would move into position, then almost immediately cut out. Checks in the servo/syscon sections revealed that there was a lack of pulses from the supply reel. Dismantling the mechanism into its upper and lower halves enabled us to trace the cause of the problem. The flexi connector (FPC) that links the two reel sensors, the sensor LED and the tape switches on the top half of the PCB to the connectors on the bottom, main half of the mechanism had a broken connection. It's soldered to the board in two rows, and fairly large solder pads are used. As a result the connections are fairly strong, but the FPC had broken at its weakest point behind the joint. The only answer was a new FPC. It's easy to fit but requires the mechanism to be dismantled to a fair degree. The FPC comes with all the switches and sensors fitted and is backed in the appropriate places with self-adhesive tape.

It is important to dismantle the mechanism when it's in the correct state - in the blank area after loading is complete. This can really be achieved only by using the Sony mode selector jig, which needs an adaptor for this mechanism and uses only the mode switch half, not the loading side.

Unless I have a fault with my adaptor or jig this mechanism has a quirk when used with it, in that "loading/unloading" doesn't register, this condition illuminating the "FWD" LED. The blank area after loading, when the FWD LED goes out, is large and although it doesn't make a lot of difference I've found that the best point at which to leave the mechanism is where the mode cam's projection edge just lines up, tangentially, with the middle of the two loading ring gears, as shown in Fig. 1.

A Panasonic NV-MS50

The owner of a Panasonic NV-MS50 complained that the tape sometimes wouldn't load. This should happen only when the unit is switched on and the cursor is over the deck controls, i.e. in the camera mode. The tape should then lace to the record pause mode. This one seemed to work correctly every time, and I began to suspect that the user was getting confused about the cursor or something. Then the showroom chap who'd seen the customer came in to ask about the machine. When I told him that it appeared to be o.k. he was puzzled as it had failed many times for him. Asking to have a go he switched on, inserted a tape and, bingo, it didn't lace. Typical!

As you might expect, when the camcorder was dismantled it returned to the working state - then the battery went flat. When we got it going again it faulted. Checks showed that the cursor switch was working and I then discovered that slight pressure on the operations board would make the fault come and go. The cause of the problem was the record prevent switch.

Two Sony CCD-V100s

The problem with a Sony CCD-V100 was that the tape wouldn't eject and "caution" flashed in the viewfinder. I dismantled it and managed to remove the cassette by connecting the mode selector jig.

The tape had been laced, and the state of the loading switch indicated this correctly. Now before you unlace a tape with the loading switch buttons on the mode selector you should set the mode switch to the load/unload position, otherwise the tape won't be wound back into the cassette. In this case however the mode switch wouldn't move when the buttons on the mode selector jig were pressed. So the cassette had to be removed as things were. I unlaced the tape carefully, then removed the cassette carriage to gain access to the mode switching section. On dismantling and removing the mode select motor I found, after ascertaining that the mechanism wasn't jammed, that the motor was short-circuit. Replacing it and aligning the mechanism got things moving. Fortunately the motor drive wasn't affected. This was another example of the invaluable assistance provided by the mode selector jig.

The complaint with another Sony CCD-V100 was that "caution" flashed in the EVF and the eject symbol flashed in the VTR display. Apparently none of the deck functions worked but the camera was o.k. When I tried it out I found that this was so, but the camera went dead within minutes though the camera-on switch brought the VTR on.

I dismantled the unit and unloaded the cassette. The first thing I found was that the dew sensor was loose. After refixing this I discovered that there was a disconnected spring in the mode switch area. This was reconnected and the cassette unit was then run up with our mechanism control jig. The VTR section was now in order, so over to the camera section. Though the inputs were o.k., there were no outputs from its d.c.-d.c. converter. After fitting a new one then cleaning and resetting the unit it performed well.

The Lower End of the Market

E.G. Kempshall

There must be many readers of this magazine who realise, like myself, that they are never going to be a Steve Beeching but who have nevertheless had the necessary training and have the experience to be able to carry out quality repairs to a wide range of equipment. The following recent experiences should help them feel that they are not alone.

Recently a gentleman, cast in the same mould as Les's Beardy and Non-beardy, came into the shop with a radiocassette player. Had I looked at it first I would probably have immediately declined to accept it. But my wife took it in.

The back was off, and my wife had been told that the power i.c. had been replaced but the set still didn't work. Apparently the original i.c. had been prised out with a screwdriver, but I've no idea how the original solder had been removed as there was no trace of it. There was not much left of the original print either. In fact I've never seen the like of it!

Anyway I'm not proud and have to eat. The thing was there in front of me and it was a JVC model. So, despite not having a circuit diagram, I foolishly decided to have a go. Armed with my trusty soldering iron, a large quantity of fuse wire and an illuminated magnifying glass, I set to. After a considerable period of time, during which there was much foul language mainly relating to my customer's ancestry, I reached the moment of truth and plugged the set into the mains.

Surprisingly enough it burst into life but, woe and despair, with an output from only one speaker. So it was back to the magnifying glass. Peering through this I eventually came to a straight section of print that in one place wasn't quite straight. The deviation was probably less than $1 / 32$ nd of an inch. Inspired, I thought do we need another connection here? So I gambled, put one in and switched on again. Joy oh joy! Sound from both speakers.

I wrapped it up by fitting new screws in the back cover and am now waiting to see whether the customer will pay the bill.

Restoring a Valve Radio

January and February are always a bit quiet, with everyone having had Christmas on credit. So to while
away the time I dug out from the basement a vintage radio I intended to renovate. Many years ago I'd put the set into working order, but I'd not finished the job of realising its full potential. It was the usual story of a few out-oftolerance resistors and a number of leaky capacitors. Some of the latter were not too bad but I decided to replace them for safety reasons, bearing in mind that someone in the future might reverse the polarity of the mains connections.

After a tune up the medium- and long-wave bands were loud and clear. But short-wave reception was appallingly insensitive and produced little volume. While probing around I eventually came across a wire that was disconnected from the wave-change switch. Reconnecting it restored the appropriate oomph. Puzzlement then set in as I tried to trim the short-wave band - the oscillator trimmer had no effect. For once the cause was immediately apparent. The wire between the trimmer and the coil wasn't there. It had been clipped out.

By this time we'd closed the shop. But this was something of a labour of love, so I continued while my better half flopped out in front of the telly, part of the joy she gets from helping me run a family business. I realised that I was getting no significant reception on the 16 and 19 m bands. Time to put the set to one side until the following day.

Propagation was better in the morning and only a tweak on the trimmer was required. I was still left with a nasty hum at one setting of the volume control however. The cure was to use screened cable for the connection to the top cap of the EBC33, something the manufacturer had not seen fit to do.

After carrying out some cosmetic work on the cabinet I installed the set on our sideboard. It now needs only a knob to replace a missing original. A friendly customer who has a lathe and the necessary skill to duplicate the originals has promised to produce this.

You may ask why I troubled with such a restoration. Well, the set is a very rare one, labelled "Southdown". I understand that it was made in 1947 by a small radio firm in Newhaven, Sussex. The date of manufacture is definite at least - the final inspection is dated and recorded in pencil on the underside of the chassis. In addition I'm a sentimental old fool as far as these old valve radios are concerned. And as I indicated earlier, times are hard.

Long-distance Television

Roger Bunney

There were a number of surprises during January. Reception conditions at this time of the year are usually gloomy, matching the weather, but TV-DXers who have been vigilant will have experienced an exciting month.

MS pings and more sustained reflections were produced on a considerable scale by the Quadrantids meteor shower over the $3 \mathrm{rd} / 4$ th. On the evening of the 3rd many Band I signals from the USSR, Denmark, West Germany and France were received. During the more intense activity on the 4th, Irish, Norwegian, Danish and Swedish transmissions in Band III were identified.

Tropospheric propagation was extremely active on certain days, with quite dramatic reception from Finland (Band III) and Austria. The first evidence of enhanced tropospheric conditions was a slow build up of TV signals in Band III and at u.h.f. on the 13th. The usual Benclux/French signals increased in strength then on the 14th we had a full-blown tropospheric opening. High-level signals from Germany, Denmark (both in Band III and at u.h.f.), Norway (ch. E4, all the Band III channels plus chs. 35,36 and 52), Sweden (E4, most Band III and many u.h.f. channels), Ireland from the west, plus the usual Benelux, French and Luxembourg signals were received over much of the UK. Incidentally Luxembourg ch. E27 doesn't seem to carry vertical interval test signals, which can be a helpful point for identification purposes. The excellent conditions continued during the 15 th when a mass of stations were logged with some spectacular reception: YLE (Finland) chs. E7 and 9 were received in North Wales, while other reports were of reception of Austria chs. E8 and 24, Czechoslovakia chs. R6, 10, 26 and 36, the USSR chs. R7 and 9 and Poland chs. R8, 10, $30-$ many of these signals were monitored by Simon Hamer and David Glenday. Then on the 17th there was a decline, with just the closer German and Danish stations being seen. The high-pressure system that hovered over the UK for much of the mid-January period produced this excellent spell - though at the expense of dull, gloomy weather.

A second tropospheric opening started on the 22 nd and died out on the 29th. Compared to mid-January, conditions were only fair, with signals from Denmark, France, Luxembourg, Germany and the Benelux countries
being generally seen. The only exotic reception was on the 27th, when the Swiss channels E31 and 34 were noted.

Sporadic E reception was very active too for the time of year. Here's the collated \log of UK reception:

5/1/91 TVE (Spain) E2, 3; + PTT (Switzerland) E2; RAI (Italy) IA.
6/1/91 TVE E2, 4.
7/1/91 TVE E2, 3, 4.
8/1/91 TVE E2; +PTT E2, 3, 4.
9/1/91 HTV/JRT (Yugoslavia) E3, 4; TVE E2, 3; RAI IA, B; TSS (USSR) R1, 2.
13/1/91 TVE E2, 4 ; + PTT E4.
15/1/91 TVP (Poland) R1, 2; ARD (W. Germany) E3; CST (Czechoslovakia) R2.
16/1/91 RAI IA; TVE E2, 3; TVP R1, 2; ARD E2.
21/1/91 CSTR1; DR (Denmark) E3
22/1/91 NRK (Norway) E2.

Though now slowly falling off there was a welcome increase in sunspot activity, giving world-wide reception in Band I via F2 propagation. On January 3rd Simon Hamer in Powys received an unidentified ch. A2 signal, an Australian ch. A0 signal from station DDQ-0, and New Zealand ch. 1 video $(45.25 \mathrm{MHz})$ with no offset at 1000 hours. Characteristically smeary video was seen on chs. E2, R1 and the Chinese channels C 1 and C2. Lunchtime F2 propagation produced ch. E2 and 3 signals likely to have been from Africa, also a further ch. A2 signal. On the 5th low-level F2 produced a ch. E2 signal from the Gulf, probably Dubai. A Russian R1 signal was received on the 9 th at 0900 . Conditions started to improve on the 11th, with a Russian ch. R1 and a Gulf ch. E2 signal being reported. By the 12th many DXers were logging signals in the lower Band I channels, which became jammed with high-level co-channel activity - chs. E2, E3 and R1 were affected most. At mid-day Tim Anderson logged a Malaysian ch. E2 signal and an African transmitter on ch. E3, most likely Sokoto, Nigeria. On this day Roger Fussell at Torpoint also logged several F2 signals, including some from Nigeria. Signals from Dubai and Iran were also evident, several with no VITS.

The most remarkable day for F2 reception was the 16th. This time Simon Hamer had access to a scanner and was able to measure the incoming vision carriers, decide on any offsets and thus confirm specific channels. Using this method he identified three New Zealand transmitters with carriers at $45 \cdot 24,45 \cdot 26$ and $45 \cdot 25 \mathrm{MHz}$, also two Australian stations, DDQ-0 $(46 \cdot 172 \mathrm{MHz})$ and ABMN-0 $(46 \cdot 24 \mathrm{MHz})$. These signals were received via the scanner during a window that lasted from $0900-0920 \mathrm{GMT}$. Other signals received on the 16th were from Malaysia on ch. E2, from Thailand on ch. E2 with the " 3 " logo, and from the USSR

[^0]on ch. R1. Later in the morning, at 1100 , a Dubai signal was noted in ch. E2 with zero offset and on the same channel an Iranian signal with an 8 kHz plus offset. At 1300 an African signal, thought to be from Zimbabwe (ZTV), was logged with a +10 kHz offset. There was weak F2 reception on the following day, then things died down until January 31st/February 1st when David Glenday in Arbroath noted TSS ch. R1, Dubai ch. E2 with Arabic captions and several other ch. R1 signals. He writes that "the $30-50 \mathrm{MHz}$ band was crammed with Russian and Middle Eastern communications".

Congratulations to all those mentioned. Reports were received from David Glenday (Arbroath), Ryn Muntjewerff (Holland), Brian Williams (Cardiff), Simon Hamer (Powys), Tim Anderson (St. Leonards) and Roger Fussell (Torpoint).

Ryn Muntjewerff mentions that the mystery " 3 " logo seen by many during F2 openings over the last two years originates from a Thailand ch. E2 source. He received this information from an Indian TV-DXer, Major Rana Roy. Garry Smith (Derby) had previously predicted the source.

The good conditions here have been mirrored in Australia. Robert Copeman (Melbourne) logged TSS Vladivostok ch. R1 via transequatorial skip on the 22 nd and Todd Emslie (New South Wales) also reports evening TE reception from China and the USSR.

George Palmer (Queensland) has taken up satellite reception, using a 16 ft C Band dish. This system enables him to see many UK news feeds, though the recent introduction of SAVE encryption on his BBC feed means that he has now lost this channel. George lives about fifty miles south of Brisbane.

On the subject of scanner reception, has anyone heard the following, "this is a test transmission from the East Tower", on a tape loop at 47.645 MHz , narrowband f.m. The signal was present in the London area during the final week of January and was just audible here in South Hampshire.

It is with deep regret that I have to report the death of Bill Cotterill of Tipton, West Midlands, from a heart attack. He was a true enthusiast and sent in an extensive log each month. Though suffering from heart problems recently he had been planning new aerials and equipment modifications. TV enthusiasts who had contact with Bill will all miss him. On behalf of readers I have extended to Bill's wife and family our closest sympathy.

Satellite TV

Eutelsat II F2 is now in position at $10^{\circ} \mathrm{E}$, replacing Eutelsat I F5. The high-gain beam has a 52dBW footprint centre, the wide beam a 49 dBW footprint centre. Transponder details are as follows:

> 10.972 GHz vert. RAI Uno, wide beam. $11 \cdot 095 \mathrm{GHz}$ vert. RAI Due, wide beam. $11 \cdot 158 \mathrm{GHz}$ vert. not allocated, wide beam. $11 \cdot 150 \mathrm{GHz}$ horiz. TVE International, high-gain beam. 10.986 GHz horiz. TVE video feed 1 , high-gain beam. $11 \cdot 080 \mathrm{GHz}$ horiz. TVE video feed 2, high-gain beam. $11 \cdot 575 \mathrm{GHz}$ vert. France video, wide beam. 11.617 GHz vert. Magic Box Star 1 , wide beam. 11.617 GHz horiz. Magic Box Star 2, wide beam. 11.658 GHz vert. TRT (Turkey) TV1, wide beam.
> 12.584 GHz vert. Canal Courses, high-gain beam.

Eutelsat I F5 is to move to $21 \cdot 5^{\circ} \mathrm{E}$. Eutelsat I F4 has moved to $4^{\circ} \mathrm{E}$.

AERIAL TECHNIQUES

AKAI MULTI-STANDARD VCR

- Multi System 10 Standard Compatibility. Playback; PAL; MESECAM; SECAM; NTSC 3.58 \& 4.43 Record \& Reception; PAL B/G: PAL D/K; PAL I; SECAM L; SECAM B/G; SECAM D/K; MESECAM B/G; MESECAM D/K; NTSC 3.58 \& 4.43
- NTSC Playback on PAL TV
- Quick Response System
-Quick Start
-Quick Index Search
-Quick Intro Scan
I.M.S.

DX 4 Head

- Long Play
- Remote Handset
- On Screen Programming
- Dual-made Digital Tracking
- Digital Real Elapsed Time Counter
- Multi Speed Play
- 8 Event, 1 Year Automatic Timer
- Next Function Memory
- Quick/Sleep Timer
- Auto Voltage Selector
- 45 Channel Synthesizer Tuner
- Childlock System
- Various Auto Functions

Dimensions: $425 \mathrm{w} \times 92 \mathrm{~h} \times 315 \mathrm{dmm}$

$£ 599.00$ inclusive of VAT (£8.75 Carriage \& Insurance)

We supply aerial and receiving equipment for ALL types of installation, Satellite, TV-DXing, Amateur, domestic and professional application. We now have a range of SCANNERS in stock, AOR, Bearcat, Regency and ICOM at attractive prices (SAE details). We stock Multi-standard TV's from $5^{\prime \prime}$ to $33^{\prime \prime}$ screen, Multi-standard PAL SECAM/NTSC Video recorders also carried. Please send 75p for a copy of our 29 page comprehensive CATALOGUE carrying the full range of equipment. UK and Overseas orders undertaken both retail and wholesale, ring, write or Fax with your query.
Available also SECAM to PAL and PAL to SECAM Transcoders, also signal Decoders for CANAL PLUS, RAI UNO, RAI DUO, FILMNET \& RTL-V, TECHNISAT D2-MAC/PAL Satellite receivers now ex-stock (SAE details).

ACCESS, VISA \& AMERICAN EXPRESS
Mail \& Telephone orders welcome (24hr service)
11. KENT ROAD. PARKSTONE. POOLE. DORSET BH12 2EH Tel:0202738232 Fax: 0202716951

It seems that the new generation Aussat II series craft will have an Australasian rather than a pan-Pacific beam coverage. Some present Aussat operators are seeking lower-powered transponders in view of advances in receiver technology.

Twelve of the 24 transponders on Asiasat, which is operated by a Hong Kong consortium, have been booked for a Far Eastern package service.

Astra 1C is to have 18 instead of the originally planned 16 transponders

The Premiere channel with Nagravision encryption is to be carried by the DFS-1 Kopernikus satellite at $23 \cdot 5^{\circ} \mathrm{E}$.

News Items

Rwanda: The colour standard is to change from SECAM to PAL. Apparently this is because the incoming material
is generally in PAL form.
Canary Isles: Antenna 3 is now available on ch. E34 in Tenerife and on ch. E36 in Las Palmas. Canal Plus Espagne and Tele 5 should be available soon.
Ghana: GBC is now transmitting CNN live news on a daily basis - the main broadcasting centre at Accra has installed a large dish system for the satellite pick-up.
Europe: More Belgian transmitters are being equipped for Nicam sound. Iceland has delayed the start of STOD-3 transmissions until 1992. The Czechoslovakian OK-3 Liberec transmitter operates on ch. R43, not 51. A new transmitter at Jihlava has opened on ch. R11, at 2 kW e.r.p. Canal Plus encryption is being used for the French Children's Channel J during certain hours. It seems that CLT (Luxembourg) is investing heavily in the Irish TV3 network - the proposed start is this summer, with the Jefferson Smurfit company another investor.
Middle East: The Jordanian JTV-1 transmitters use the PM5534 test pattern. "TV Middle East - the action channel" is thought to be sited in the Lebanon: the test card has seven vertical colour bars covering the top two-thirds of the screen with seven black/white bars at the bottom. The top right hand has a three-pyramids logo. Both Arabic and English language programming is shown, the weather map covering an area from the Lebanon to the Red Sea.

Australia: Illegal use of low-power 49 MHz equipment is causing increasing interference problems. Wenlock Burton (Victoria) mentions that the $88 \cdot 1-107 \cdot 95 \mathrm{MHz}$ f.m. broadcast band can be legally used by radio microphones operating with a maximum bandwidth of 180 kHz and a range of about 100 m . Other radio microphone frequencies are slotted between TV channels.
Amateur radio: Irish B licence holders can now use the 50 MHz band outside TV hours - typically midnight to 0900 .
Germany: ARD-1 is now being broadcast from the following DFF-1 transmitters: Helpterberg ch. 57, Berlin ch. 5, Brocken ch. 6, Leipzig ch. 9, Sonnenberg ch. 12, Marlow ch. 8, Cottbus ch. 53, Chemnitz ch. 8, Lobau ch. 27, Schwerin ch. 11, Dequede ch. 12, Dresden ch. 10, Inselberg ch. 5.

DFF, now called DFF Landerprogramm, is broadcasting from the following ex-DFF-2 transmitters: Helpterberg 22, Berlin 27, Brocken 34, Leipzig 22, Sonnenberg 33, Marlow 34. Cottbus 23, Chemnitz 32, Lobau 39, Schwerin 29, Dequede 31, Dresden 29, Inselberg 31.

ZDF is broadcast from Marlow 43, Cottbus 27, Dresden 46, Leipzig 42 (all at 100 kW e.r.p.), Helpterberg 52 (200kW), Lobau $56(50 \mathrm{~kW})$. The ZDF transmitter powers are to be increased to 500 kW .

Service Briefs -
 Philips

The following items have been collated from various issues of the Philips Service publication Link.

TV Chassis and Monitors

K30 chassis: Reported problem was loss of raster after twenty minutes, the sound remaining o.k. Cause was a dryjoint at pin 1 of the U7 sound panel/mother board connector, as a result of which the 13 V LT3 supply wasn't reaching the U10 RGB panel.

2A chassis: Problem was repeated field collapse every three or four days. Replacement of the TDA3654 field output chip, $\mathrm{C} 2571(100 \mu \mathrm{~F})$ in the flyback generator circuit and the 26 V supply components D6646 (BYD33G) and C2646(1,000 $\mu \mathrm{F})$ provided a cure.
Low brightness with severe Hanover blinds was cured by replacing the TDA3561A colour decoder chip.
3A chassis: F.M. sound o.k., no Nicam sound. Replace IC7201 on the Nicam panel.

CF1 chassis: Problem was low contrast and brightness. R3600 ($18 \mathrm{k} \Omega$) in the beam limiter circuit was open-circuit.

CP90 chassis: Symptoms were low contrast after flashover with no voltage at pin 7 of the line output transformer and reduced voltage at pin 7 of the TDA3561A colour decoder chip. C2495 (33nF) in the beam limiting circuit was shortcircuit.

For loud buzz in the standby mode replace the standby thyristor D6726.
CP110 chassis: Symptoms were lack of width and no EW correction with R3599 overheating. C2613 (300 nF) in the scan coupling network was open-circuit.

For flickering text and apparent tuning drift try replacing the 9 V supply rectifier D6673 (BYV95A).

GR1-AX chassis: There was no output from the chopper power supply, which uses a junction f.e.t. whose gate and source were at 12 V while 300 V was present at the drain. Replacing zener diode D6610 (BZX79C10) restored normal operation. The 5 V supply was present.

For tuning drift replace the ZTK33B voltage stabiliser.
$9 \mathrm{CM0}$ and 90 CM monitors: Picture flickering can be caused by discharge between the c.r.t. and the clamping ring. To cure, add PVC tape under the multipole unit clamping ring on the c.r.t. neck.

VCRs

VR6180: Distorted and reduced level E-E sound has been traced to the switching chip IC7550-3C on in/out board P90-4A.

VR6180, VR6290 and derivatives: To clear coloured stripes at the top of the picture with prerecorded tapes and camcorder recordings increase the value of R3130 from 680Ω to $1.5 \mathrm{k} \Omega$.

VR6290/6291/6293: Intermittent shutdown after a play or record function has been selected can be caused by excessive brake pressure and insufficient motor current for start-up. Reduce the value of C 2040 from 100 nF to 10 nF .

VR6485: No E-E, playback or test signals was caused by the 5 V supply to pin 6 of ICl 301 being absent. F 1501 was open-circuit.
VR6485 and VR6585: Failure of timed recordings to occur can be caused by corrupted microcomputer data as a result of mains-borne interference. To cure, fit 150 pF tubular capacitors between pins 46 and 32 and between pins 47 and 32 of IC7101.

VR6548: Effects similar to a tracking error were caused by the drum pulse magnet on the lower drum assembly being missing. It must be replaced with correct polarity.
VR6291: For intermittent or missing sound check C2203 and C2213.

US HD-TV Update

Geoff Lewis, B.A., M.Sc.

My last report (October 1990) on progress in the search for a North American high-definition TV standard was made in the belief that the situation there had at last stabilised, with only six of the original twenty two proposals still being actively persued. These six were to be thoroughly tested under the same conditions so that the FCC could select what it considered to be the best system to place before the next Plenary Session of the CCIR in 1994. It looked, when I wrote about them, that the six proposals were set in concrete.
The announcement by Zenith Electronics and American Telephone and Telegraph just before Christmas, mentioned in February's Teletopics column, indicates that the goal posts have however moved somewhat. The five remaining systems in the contest, Faroudja Laboratories having withdrawn, now show a heavy bias towards all-digital signal processing.

Technical information on the new Zenith/ATT system is still rather sparse, but the following can be gleaned from various press releases. The basic picture format of 787.5 lines per field (1,575 lines per frame) and 60 fields per second of the Spectrum Compatible HD-TV System has been retained, with progressive or sequential scanning. The digital processing that allows the HD signal to be contained within a 6 MHz bandwidth is the result of combining Zenith's work on system development and
transmission technology with Bell Laboratories' work on a video compression algorithm, motion compensation and filtering, all of which take into consideration the attributes of human vision. The semiconductor technology and know-how of the high-speed digital signal processor (DSP) chips are being provided by ATT Microelectronics.
It's claimed that many of the new concepts employed have already been tested separately in videoconferencing and digital television research work. Although this has not been stated, it seems likely that the sampling quantisation filters will be of the recently developed Quadrature Mirror Filter type. They allow for frequency fold-over and aliasing to occur in the coding chain since these become selfcancelling as a result of the use of complimentary filters in the decoder. This technique allows perfect reconstruction of the original signal even under noisy conditions. Furthermore the three-dimensional filters required for TV image processing can be designed simply by cascading onedimensional filters.
At about the time that Zenith/ATT made their latest announcement one industry observer commented that the Japanese NHK-Muse system, which is still one of the contestants and is the only HD-TV system currently in operation, was based on the technology of the Seventies. One must now wonder how MAC technology is being viewed outside Europe.

Obituary: John Bardeen

While last month's issue was going to press the death was announced of John Bardeen, the world-famous US physicist who in collaboration with others was responsible for the invention of the transistor and the development of the science of superconductivity.

It's true to say that Bardeen's influence in the phenomenal advancement of electronics during the second half of this century has been approached only by that of John Ambrose Fleming who in 1904 patented the thermionic diode - indeed there are those who maintain that had Fleming not done so the development of solidstate electronics would have occurred earlier.

The idea of mass communication "over the air" had become an exciting prospect following the theoretical recognition of electromagnetic waves by James Clerk Maxwell in 1864, their practical realisation in the laboratory by Heinrich Hertz in 1888, and their exploitation in the field by Guglielmo Marconi in 1895. Fleming's valve, used as a detector, made radio transmission and reception a practical and viable proposition, and broadcasting as we know it today was soon to follow. But it was the announcement of the transistor in 1948, by John Bardeen and Walter Brattain, that revolutionised electronics by removing the disadvantages and limitations associated with valves.

John Bardeen was born on May 23rd, 1908 at Madison, Wisconsin, the son of the dean of that University's medical school. He studied electrical engineering at Wisconsin University and afterwards studied at Harvard. In 1945 he joined William Shockley and Walter Brattain at the Bell

Telephone Laboratory in New Jersey. Shockley was convinced that there had to be an alternative to the cumbersome valve, which he regarded as being clumsy, bulky, wasteful of energy and fragile. Other disadvantages that concerned him were its steadily declining emission and proneness to sudden failure. He experimented at length with various semiconductor materials, but never achieved successful control over the movement of electrons within them.

He shared his problems with Bardeen, who applied his mind to the theory of electron behaviour in a variety of substances. Whilst working with germanium, he decided to investigate the significance of skin effect on the subject. It was widely recognised that electron movement within a conductor is at its most efficient at the surface, a practical application of this being the use at the time of litze wire, especially for r.f. circuits where high Q was of paramount importance. He passed the results of his research to Walter Brattain who carried out the practical experiments.

Keeping to germanium as their basic material, they produced the first successful device in 1947. They called it a transistor, combining the words transfer (of electrons) and resistor (the semiconductor material). The invention brought Bardeen a Nobel Prize.

Bardeen subsequently addressed himself to the theory of superconductivity - the science of cooling conductive material towards absolute zero to reduce its resistance to the passage of electrons. Working in conjunction with Leon Cooper and John Schrieffer, he evolved the BCS theory (called after the initials of their surnames), which laid the foundations for all subsequent work in this field. It brought him a second Nobel Prize, an achievment previously matched by only Frederick Sanger and Marie Curie.

Test Report: Sadelta TC90 SS Meter

Eugene Trundle

An accurate means of measuring signal strength is vital for those who install and maintain aerials of any sort, also for cable TV technicians and sometimes for field TV service engineers. Now that the network is nearly complete the proliferation of transmitters in the u.h.f. bands means that good signals are easier to find than they once were. On the other hand we find that there's an increasing demand for reception from the growing number of local radio transmitters in the now extended v.h.f. broadcast band. And of course satellite TV dishes, with their more exacting alignment requirements, remain the staple diet for most riggers at present.

Types of Meter Available

Instruments for measuring signal strength have evolved steadily to meet new requirements. Their design has taken advantage of new receiver technology, particularly with crystal-controlled synthesis tuning. At the top end of the price and facilities range there are spectrum-analyser type instruments like the Rover model I examined in the July 1989 issue. At the other extreme there are "dish peaker" boxes which are untuned and without a quantitative readout.

The Sadelta meter that's the subject of this review falls squarely in the middle of the available range. It could be described as a high-class "straight" signal-strength meter with wide coverage, accurate frequency control and quantitative indication of signal level. I would regard it as being the minimum requirement for a reference test set in a small to medium sized company that deals with aerials and r.f. distribution systems.

Description of the TC90

The instrument is made in Spain, its UK price at the time of writing this being $£ 470$ plus VAT. It's portable, battery-powered and able to read signal strengths from $20 \mu \mathrm{~V}$ to 3 V . at v.h.f. and u.h.f. and from $39 \mathrm{~dB} / \mu \mathrm{V}$ $(-70 \mathrm{dBm})$ to $99 \mathrm{~dB} / \mu \mathrm{V}(-10 \mathrm{dBm})$ in the satellite bands. Frequency coverage is continuous from $45-862 \mathrm{MHz}$ and from $950-1,750 \mathrm{MHz}$, the latter being the standard range of

The Sadelta TC90 signal-strength meter in its carrying case, with the correction chart in the lid.
the first i.f. signals from a satellite TV head end.
There's a facility for powering (at 15 V) satellite LNBs, whose current consumption $(0-600 \mathrm{~mA})$ can be read on the same calibrated moving-coil meter as the signal level. For the latter purpose the scale is ruled $0-3,0-10,-2$ to $10 \mathrm{~dB} / \mu \mathrm{V}$ and -10 to 1 dBm . To assist with cable and connection checks an ohms range (centre scale 50Ω) is provided, with separate test prods.

An audio demodulator and amplifier are incorporated, driving a small internal loudspeaker. This gives station identification at v.h.f. and u.h.f. The same speaker gives an "eyes off" tone indication of relative signal strength on the satellite bands for spot-on dish alignment by ear.

The attenuation factor is selected by a bank of pushbuttons. There are likewise five push-buttons to select the band. The frequency of interest within each band is tuned by means of a ten-turn potentiometer associated with a 4 digit LCD readout of the frequency. For further details see the accompanying specification table.

On Test

During extensive tests I was impressed with the accuracy of the digital frequency readout, which is absolutely spoton from 45 MHz to 1.7 GHz . Frequency-synthesis tuning systems and very accurate crystals have done a lot for fieldstrength meters, as they have for radio and TV tuners. The exact correspondence between the actual signal frequency and that displayed rendered the sound f.m. demodulator and speaker system, whose output is not adjustable, almost redundant - it works excellently however.

Radio f.m. carriers have a constant amplitude and give a steady reading. The peak-level detector used for a.m. TV transmissions in the v.h.f. and u.h.f. bands works on the basis of detecting the sync pulses, which of course represent maximum signal amplitude. It gives a rocksteady reading regardless of picture content.

The satellite range coverage matches the output range of LNB converters, including those that work on the FSS (Astra etc.) and DBS bands. But to my disappointment I found that the meter was unable to distinguish between the separate Astra transponders, whose outputs all merged together to give a virtually constant reading from $1 \cdot 2 \mathrm{GHz}$ to 1.45 GHz . This robbed the instrument of the advantages it has in the lower-frequency bands. It's not possible to adjust polarising systems for maximum gain on alternate channels, because they cannot be distinguished. Neither is it possible to compare the signal strengths of the four different footprints which Astra presents to Europe on interleaved channels. On the satellite bands therefore the usefulness of the instrument is confined to a dish-peaker function, in which the audio tone varies in pitch with signal strength to facilitate exact dish alignment. This worked well enough for me, with a sufficiently wide range to permit alignment without need to leave the dish to switch ranges - but hardly justifies a price tag of over $£ 500$!

Even with the Marco Polo channels, which are spaced 77 MHz apart (Astra's channel separation is 15 MHz), I got only a small dip between the channels, whose first i.f.s ranged between 1 GHz and 1.3 GHz , though I was able to see that transponder one (The Movie Channel) was stronger than the other four.

The reason for this limitation is the wide bandwidth of the satellite TV i.f. amplifier within the instrument. Its specified bandwidth is 27 MHz but in practice it may be much more. Without the benefit of the f.m. capture effect, which applies with real audio and video signals, the discrimination is poor, falling far short of what's required with a signal-strength meter. For meter use a relatively narrow passband is appropriate.

Neither was I happy with the arrangements for powering the LNB. At the press of a button 15 V is provided at the SAT (F type) input socket. If required the LNB's current consumption can then be read, which is a useful feature. I found that the Matsushita Squarial, which is rated at 20 V , worked happily with 15 V , but I wonder how much its gain and noise were affected by the reduced voltage? A very large proportion of Astra installations use the Marconi LNB, which requires 13 V for vertical polarisation and 17 V for horizontal polarisation. Its switching threshold is about 15 V , the very voltage provided by this unit! This is again a serious handicap for the practical user. I would like to have seen a variable or switchable LNB supply system plus a separate, variable polariser supply (for those systems that need it) of $\pm 50 \mathrm{~mA}$ to make possible full, certain and safe testing of all types of installation.

The v.h.f./u.h.f. input socket is a BNC type, which is ill matched to the Belling-Lee coaxial type that's almost always used in the UK. No adaptor comes with the instrument, so my first job was to make or buy one. Another useful adaptor that should be supplied but isn't is a 300Ω to 75Ω balun with a suitable input socket for correct matching to some types of f.m. aerials. The F type satellite input socket is more appropriate for its purpose but, curiously enough - and I can't blame Sadelta for this! - my Tatung BSB box has a Belling-Lee coaxial input socket.

I've no reason to disbelieve the accuracy of the readout in terms of $\mu \mathrm{V}, \mathrm{mV}, \mathrm{dBm}$, and $\mathrm{dB} / \mu \mathrm{V}$. The customprinted correction chart supplied, covering all bands, suggests that the makers have paid close attention to this. Even so the manual warns that because of the detection system used the reading obtained is that of peak carrier strength and may not correspond with readings obtained from other types of measuring instrument.

The built-in ohmmeter is a useful feature which helped with general fault-finding in acrial and distribution systems. The accuracy is better than 5 per cent at the centre-scale reading (50Ω), which is perfectly adequate for the purpose.

Conclusion

The instrument is better suited to outdoor work than some I've tried. Its internal battery weighs it down somewhat, but it comes in a tough case with a strong carrying strap which I found hung comfortably from my neck for hands-free rooftop and outside work as required.

Although this instrument seems to be of relatively recent design some current trends in satellite TV receiving hardware, like electronic polarisation systems, have overtaken it. The inability to pick out individual transponders is hard to forgive in an instrument costing

Abridged specification for the Sadelta TC90.

Frequency range: $45-862 \mathrm{MHz}$ in four bands; $950-1,750 \mathrm{MHz}$ for satellite use.

Frequency display: 4 digit LCD, accuracy ± 1 per cent, ± 1 digit.

Resolution: 100 kHz v.h.f. and u.h.f., 1 MHz for satellite use.
Tuning: Precision 10-turn potentiometer.
Inputs: BNC for v.h.f. and u.h.f., F type for satellite use. Both 75Ω.

Indication range: $20 \mu \mathrm{~V}$ to 3 V v.h.f./u.h.f.; -70 dBm to -10 dBm satellite.

Measurement accuracy: $\pm 2 \mathrm{~dB}$ v.h.f. and satellite, $\pm 3 \mathrm{~dB}$ u.h.f., using the correction chart.

Calibration: $\mu \mathrm{V}, \mathrm{mV}, \mathrm{V}, \mathrm{dB} / \mu \mathrm{V}, \mathrm{dBm}$.
Scale length: 10 dB .
Audio: For v.h.f./u.h.f. a.m. and f.m. detected. Variable tone for satellite use. Output 200 mW .

Bandwidth: 600 kHz v.h.f./u.h.f.; 27 MHz satellite channels.
LNB supply: $15 \mathrm{~V} / 600 \mathrm{~mA} .0-600 \mathrm{~mA}$ meter indication.
Ohmmeter: 0-500 Ω. 50Ω centre scale.
Power: Internal rechargeable battery 12V/2.6Ah. 9 hours running time for v.h.f./u.h.f. use, 4 hours for satellite use with 150 mA LNB drain. Charging time 8 hours.

Size and weight: $220 \times 105 \times 235 \mathrm{~mm}, 3 \cdot 4 \mathrm{~kg}$ including battery.

Accessories supplied: Carrying case, battery charger, ohmmeter test prods, correction diagram.

Price: $£ 540.50$ including VAT.
well over $£ 500$ when most buyers will want to use it for satellite installations. On the credit side it's robust, well built and accurate.

I would not regard the Sadelta TC90 as the best possible investment for those who want a clear indication of reception at s.h.f., especially since simple meter or tone type dish peakers can be bought for less than a quarter of the price and will in many cases answer as well. If we leave to one side the satellite aspect, we have a very good and credible signal-strength meter for v.h.f. and u.h.f. use at a price that's no less than it should be.

Availability

The Sadelta TC90 is available from B.K. Electronics, Unit 5, Comet Way, Southend-on-Sea, Essex SS2 6TR, telephone 0702527572 .

[^1]

Place your order using Access or Visa by phoning 0203471241.
For details of other offers and of delivery charges, please phone 0203471241.

AN32＋	¢ 4.50	AN7172K	¢2．95	HA）1713	23． 50	La41	¢2．75	PLLO2A	¢5．00	STK	¢6 75	TA7628P	¢1．95	BFR90	${ }^{1}$	
AN331	$\underline{\$} .95$	AN7173K	£3．50	HA＋1714	53.50	L44180	\＄1．95			STK5332	23.50	TA7640AP	¢ +30	BER91	¢1．20	
AN3320K	¢ 4.95	AN7178	［2．50	HA17715	¢． 50	LA4182	1.95	SAA1124	12.50	STK5337	c7． 25			BFY99	${ }^{1} 0.50$	
AN3792	$\underline{2} .95$	AN7420	¢1．95	HA11716	¢4．75	LA4183	¢2．20	SAA5030	£3．50	STK5338	${ }^{\text {c4．}} 50$	TC91068P	¢ 4.95	BRY56	¢0．20	
AN3821K	55.95	AN7470	$\underline{[2.20}$	HA11717	¢4．75	LAA190	5175	SAA5042	88.00	STK5421	${ }^{\text {c6．}} 50$	TOAF010A	¢1．40			16PADDNETONTRESN
AN3822K	¢6．95	8A1335	${ }^{〔 2.50}$	HA11718	$¢^{24.75}$	La4192	$\mathrm{Cl}_{51} 75$			STK5422	${ }^{265} 50$	TOA1011	${ }^{\text {¢1 }} 140$	BU208A	¢1．00	
AN5010	$\ldots 3.95$	8A1355	［2．20	HA11724	${ }^{58} 80$	La4201	11.60	STA301A	${ }^{1} 3.95$	STK5451	¢5． 30	TDAL015	$\underline{1} 1.50$	BU2080	${ }_{81.20}$	
AN5011	¢3．95	BA5102A	${ }^{2} 2.50$	HA11727	$\underline{8.50}$	La4260	£2．30	STA401A	¢4．50	STK5471	${ }_{5}^{55} 50$		¢1．50	BU326A BU406	E1．20	
AN5030	¢4．50	BAS115 BA5204	${ }^{〔 2250}$	HA11736 HA11744	56.50 55.95	LA4261	2.30 ¢2． 75	STA44IC	¢2．75	STK5481	${ }_{\text {¢5 }}^{55.95}$	$\begin{aligned} & \text { TDA1170S } \\ & \hline T D A 1506 \end{aligned}$	¢1．50 $\$ 4.35$	$\begin{aligned} & 8 \cup 406 \\ & B U 407 \end{aligned}$	c0．95 c0．70	el： $071-7239246$
AN5071	E1． 28	BA5042A	52.50	HA11745	¢7． 50	Las280	¢2．95	STK0029	£4．75	STK5720	¢4． 25	TDA1510	${ }^{1} 3.60$	BU408	${ }^{0} 0.95$	
AN5135K	\｛3．95	BA5406	¢1．50	HA11745NT	¢7．50	LA4420	$\underline{1.50}$	STK0039	¢4．75	STK5725	${ }^{1} .25$	TOA1510S1	¢3．95	BU426A	¢0．80	x：071－2020591
AN5150	¢5．50	BA5408	${ }^{2} 2.28$	HAHA11747A	c7． 50	LA4422	11.50	STK0040	${ }^{26.25}$	STK5730	¢4． 25	TDA1515A	$\underline{52} 50$	BU426E	c0．70	
AN5151N	$¢_{6.50}$	BA6104	£2．20	HA1747ANT	¢7．50	La4440	$\underline{2} .50$	STK0049	26.50	STK6732	$\underline{511.75}$	TDA1522	${ }^{\text {¢ }} 1.95$	BU500 $8 \cup 5089$	$\begin{aligned} & \text { £1.50 } \\ & \text { £1.00 } \end{aligned}$	VIDEO
AN5256	¢ 2.20	BA6109	${ }^{〔 1.60}$	HA11749	54.25	LA4445	¢2． 20	STK433	¢5．25	STK7308	${ }_{56} 50.95$		50．80	Bu508A	51.80	
AN5265	${ }_{6}^{51.75}$	BA6122 BA6124	${ }_{5}^{92.20}$	HA1 1750 HA12002	${ }_{51.95}{ }_{5}^{5}$	LA4446 LA4460	${ }_{21.80} 8.20$	STK435 STK437	${ }_{57.50}$	STK7309	［76．50	TDA2002	10.80 10.95	BU508D	¢1．80	$\begin{array}{ll}\text { AMSTRAD } 450015200 / 9000 & £ 18.00 \\ \text { AMSTRAD VCR } 7000 & £ 21.00\end{array}$
AN5435	$\underline{\$ 20}$	BA6208	¢1．95	HÁ12003	¢2． 20	LA4461	¢1．80	STK443	¢8．95	STK7404	c6． 95	TOA2004	［1．95	2N3055	$¢^{10.50}$	HITACHI VT11／14／33 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
AN5436	$\underline{2} 20$	BA6209	¢1．95	Hal 2045	¢3． 25	La4465	£2．30	STK457	¢7．50	STK8050	59.50	TDA2005	${ }^{〔} 1.95$	2N3773		HITACHI VT8000／9000 ．．．．．．．．．．．．．．．．．．．．．$£ 16.00$
ANS510	$\underline{2} .75$	BA6218	¢1．95	HA12016	£3．75	LA4466	¢2． 30	SIK459	$\underline{C 9} 5$	STK8250	¢8．95	10ACO6	f1．50			HITACHI VT7／17／19 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 36.00$
AN5512	$\underline{2} .95$	BA6219	¢2．20	HA13001	51.90	LA4500	¢2． 50	STK463	¢9．50	STK8260i	［12．50	TDA2020	¢1．50		12.75	HITACHI VT35／39．．$£ 36.00$
AN5515	$\underline{2} .20$	BA6229	$\underline{2.20}$	HA13007	¢4．50	L44505	¢2．80	STK465	${ }^{\text {c9，}} 9.95$			TOA2530	${ }^{1} 1.50$		${ }^{81.95}$	JVC／FERGUSONPV 31332G ．．．．．．．．．．．．．．．$£ 8.50$
AN5521	¢ 2.20	¢A6238A	¢1．95	HA13008	¢4．95	LA4507	£2．50	STK10500i	¢7． 25	STR370	${ }_{\text {c5 }}{ }^{5} 20$	TDA2510	${ }_{\text {¢ }}{ }^{1} 3.95$	${ }^{2}$ 2SA1264	$\underline{21.95}$	JVC／FERGUSON PV 31332L－¢8．50
AN5610N	¢4．50	BA6239a	$£ 2.20$	HA13118	$\underline{525}$	La4508	¢2．50	STK1060	［7． 975	STR380	${ }_{65} 20$	TDARBMO	£1．30	2SA1516		JVC／FERGUSON HRD 180／230 3 V59 …．．．．．．．$£ 34.50$
AN561	${ }^{5} 2.95$	BA6302A	¢1．80	Hal3403V	55.50	La4510	11.75 $\$ 1.50$	STK1070ii	${ }^{197.55}$	STR380 STR 381	${ }_{55}{ }_{5} 5.20$	toancila	${ }_{¢}^{〔 1.30}$	2SA1516	$\underline{2} .50$	
AN5622	${ }_{\text {¢3．} 20}$	${ }_{\text {BAG }}$	81.95	KA2101	51.95	LA4570	12.75	STK2029	26.50	STR 440	55.20	toa3500	¢5．50	2SB528	£0．60	JVC／FERGUSON HRD 250 ．．．．．．．．．．．．．．．．．．．．．．．£35．00
AN5635N	¢3．75	BA6328	¢2．20	KA2206	¢1．75	LA6358D	91.20	STK2038］	$\underline{59.50}$	STR441	¢5． 20	toa3501	¢4．50	2SB631	${ }^{1} 0.60$	JVC／FERGUSON HRD 7655／3V32／8942 ．．．．．．．．．．．£28．00
AN5700	${ }^{1} 175$	ba6411	¢2．20	KA2212	${ }_{51} 120$	LA7031	［2． 60	STK2048i	¢9．75	STR450	${ }^{5} 5.20$	ToA3505	¢4．20	2SB775	¢1．80	MITSUBISHI HS 303／304／310／320／700 ．．．．．．．．．．．．．£28．00
AN570	14.20	8A7005	£2．20	KA2261	51.20	LA7032	£2．95	STK2125	¢6．75	STR451	${ }^{55} 20$	TOA3S 10	［4．50		95	
AN5750	${ }^{\text {¢3．75 }}$	BA7023L	5.50	KA2284	51.20	La7042	¢2．80	STK2129	［6．95	STR453	${ }_{5} 5.20$	TDA3560	¢3．90			PANASONIC VEH 0218．．－．．．．．．．．．．$£ 15.00$
AN5753	${ }^{〔} 1.95$	BA7751AL	£1．95			LA7520	${ }_{5}{ }^{2} .25$	STK2139 STK2155		STR454 STR455	${ }_{55} 55.20$	TDA3561A TDA3562A	${ }^{£ 3} 9.95$	$\begin{aligned} & \text { 2SC1403A } \\ & 2 S C 1413 A \end{aligned}$	$\begin{aligned} & 〔 4.50 \\ & 52.60 \end{aligned}$	PANASONIC VEH 0287 …．．．．．．．．．．．．．．．． $\mathbf{£ 2 4 . 2 5}$
${ }_{\text {AN }}$ AN5900 130 N	${ }_{1}^{18.40}$	EX8341	¢4．50	LA1130 LA1135	$¢ 2.50$ $£ 2.50$	La7530 La7800	$\underline{¢ 275}$	STK2155	${ }_{6}^{19.50}$	STR455	${ }_{555} 59$	TOA4500	${ }_{53}{ }^{1} .95$	${ }_{\text {2SC1815 }}$	50.10	PANASONIC VEH 0286．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 21.75$
AN6136	$¢ 1.95$			La1140	12.20	LA7801	11.50	STK2240	99.50	STR1096	¢4．95	TDA4501	£4．50	2SC1913	$\uparrow 1.20$	PANASONIC VEH 0177．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 23.00$
AN6247	¢1．75	HA1196	¢1．75	La1150	19.75	LA7806	［2．50	STK2250	99.50	STR2005	55.95	TDA4503	¢4． 50	2SC1969	¢1．75	
AN6250	¢1．50	HA1197	¢7．80	LA1170	1.75	La7808	［2．75	STK3041	¢6．50	STR2010	¢6． 20	TDA4505	¢3．95	2 2C2166	57.00	PANASONIC VEH 0174 （original）．．．．．．．．．．．．．．．．．$¢ 41.00$
AN6310	¢5．50	HA1199	¢1．50	LA1185	¢1．60	LA7820	$\underline{2} .75$	STK3042	£6． 50	STR2013	${ }_{5} 5.20$	TDA4510	¢3． 95	2SC2235	50.40	PANASONIC VEH $0267 \ldots \ldots$
AN6326N	${ }^{5} 3.50$	HA1338	52.95	La1230	11.50	LA7830	12.20	STK3044	${ }^{5} 5.75$	STR3115	¢5．95	TDA4600	$\underline{52.75}$	${ }_{2}{ }^{\text {SC2}} 2335$	¢1．20	PANASONIC VEH 0267 （original）．－．．．．．．．．．$£ 41.00$
AN6327	${ }^{\text {¢3．} 50}$	HA1339A	¢3．50	LA1231N	$\underline{5} 200$	La7831	£2．50	STK3062	${ }^{2} 8.75$	STR3125	${ }_{5} 5^{6}$ ． 20	TOA4600－2	［2． 50	${ }^{2 S C 2570}$	50.50	PANASONIC VEH 0210 ．
AN6328	${ }^{\text {c3．} 50}$	HA1367	¢3． 50	LA1363	¢1．20			STK3082ii	${ }^{2} 8.95$	STR4090	$¢^{56.20}$	TDA4600－20	£2．50	$2 \mathrm{2SC2580}$		PANASONIC VEH 0252 ．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 25.00$
An6330	$\underline{2} .95$	HA1372	$\underline{3} 50$	LA1365	$¢_{11.50}$	LB1403	1.50	STK3102iii	${ }_{59}{ }_{5} 5.75$	STR421］	${ }_{56}{ }_{5} 5^{5} 50$	roaz250	¢4．95	${ }^{2 S C 2681}$	${ }^{2} 2.85$	PANSONIC VEH 0252 （original）．．．．．．．．．．．．．．．．．．$£ 41.00$
AN6332	¢4．75	HA1377 Ha1388	${ }_{5}^{2} 2.20$	LA1385	${ }_{\$ 1} 1.95$	L81405	¢1．50	STK3152iil Sika017	${ }_{55} 59.50$	STR5015	${ }_{55}^{26.20}$			${ }^{2 S C 2681}$	¢3． 20	SAMSUNG Most Models ．$\quad . \quad$ ． 122.50
AN6340	${ }_{¢ 2} ¢$	HA1388 HAT392	${ }_{52}^{29} 9$	LA14600	${ }_{¢ 1}{ }^{1} .75$	L81416 LB1640	¢1．50	STK4017	${ }_{56} 585$	STR6020	${ }_{5} 5.20$	UPC 1025H	${ }_{¢ 2} 1.30$	${ }_{2 S c}{ }^{2 S 156}$	¢． 70	SANYO VHR 1100 －$£ 22.00$
AN6344	¢4．75	HA＋394	$\underline{5} 50$	LA2100	$\underline{2} .95$	881649	£2．50	STK4121ii	¢6．95	STR50020	¢6． 20	UPC1185H	¢2．50	2SC3281	2.95	SANYO VHR $3100 / 3200$（ ${ }^{\text {a }}$
An6346N	${ }^{2} 3.75$	HA＋396	$\mathfrak{m} 75$	Lazzoo	¢1．50			STK4122ii	25.95	STR50103A	¢4．50	UPC11884	$¢ 2.75$	2SC3300	22.95	SHARP VC 6300／7300 original（BRASS）．．．．－．．．$£ 32.00$
AN6356N	¢3．85	HA1397	52.50	LA2400	¢1．50			STK4131ii	56.75	STRS4041	${ }^{\text {c．}} .20$	UPC1191V	${ }^{1} 1.20$	${ }_{2} 2 \mathrm{C} 3409$		SONY DSR 35 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$£ 17.50$
AN6357N	¢4．50	HA1398	$¢ 2.50$	La3101	¢1．75	［C7363	$\underline{53.75}$	STK4132ii	£6．75	STR5804T	£6． 20	UPC1197C	¢1．60	2SC3466	52.95	
AN6359	¢5．50	HA11122 W	52.95	La3160	${ }_{50.95}$	LC7800	\｛2．75	STK414111	${ }^{17750}$			UPC1230H	โ2．50			TOSHIBA V31／33／9600 ．．．${ }^{\text {a }}$
AN6360	2.50	HA11211	$¢ 2.30$	LA3161	${ }_{¢}^{1} 1.20$	LC7815	¢2．95	STK4141V	¢7．95		${ }^{\text {c1 }} 400$	UPC1237H	¢1． 20	2S0358		TOSHIBA V71／87 ．．．．．．．．．$£ 21.50$
${ }_{\text {a }}$ ANG362	${ }_{53}{ }^{\text {c／} 25}$	HAA 12125 HAl12＋9	${ }_{91} 2$	LA3210	20.95 $£ 0.85$			STK4151\＃	c7．50	TA7217AP	${ }_{51.60}$	UPC1263C	$\underline{5} .30$	${ }^{2}$ SD424	£． 95	ECIAL OFFER－TOShiba transistors
AN6387	25.59	HA11221	52.20	La3220	¢1．50	LM1303N	¢1．50	STK4152\＃	¢7． 85	TA7222AP	${ }^{1} 1.30$	UPC1277H	$\underline{22.50}$	2 2SD476	¢1．00	－
AN6562	¢1．50	HA11223W	$\underline{22.50}$	LA3300	£1．65	LM3914N	52.75	STK4161ii	¢7．95	TA7229P	${ }^{5} 3.25$	UPC1278H	${ }^{\text {¢2 }}$ ． 50	${ }_{2} 2$ SD525		
AN6610	¢1．80	HA11225	［1．95	La3301	¢1．30	－M3915N	2.75	STK4162ı	¢7．95	TA7230P	11.50	UPC1288V	［2．75	2 2S060	$\mathrm{c}^{2} .70$	CASSETTE MOTORS
An6671K	¢4．95	HA11226	¢4．50	La3310	$\underline{2} .75$			STK4171॥	58.95	TA7232P	¢1．95	UPC1318AV	¢2．75	250768	c7． 20	6－9－12－13．2 Volts C．W ．．．．．．．．．．．．．．．．．．．．．．．$£ 2.95$
AN6676	E5．50	HA11227	$\underline{52} 20$	LA3350	¢1．30	M5218L	［1．95	STK4172ii	58.95	TA7233P	2.50	UPC1335V	52.75	2S0811	$\underline{5.95}$	12－132 Volts C．C．W．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.95
AN6677	¢4．95	HA11235	¢1．95	LA3361	18.20	M5218P	$\underline{0.95}$	STK4181H	¢8．95	TA7240AP	£2．95	UPC1353C	$¢ 2.75$	2 2SD845		
AN6876	¢1．50	HA11244	$\underline{12} 95$	La3370	E．50	M51102L	$\underline{12.95}$	STK419114	c9． 50	TA7241AP	£2．95	UPC 1364 C	¢4． 20	${ }_{2}^{2508988}$	$\underline{9} .95$	ASSETTE HEADS
AN7062	$\underline{92} 75$	HAP1251	¢2．50	LA3376	$\underline{2} .20$	M51104L	［3．20	STK4192ii	¢9．50	IA7243P	¢2．95	UPCt355C	E2．95	${ }_{2} 2$ S01207	${ }_{50} 0.60$	
AN7106K	52.50	HA1401	¢2．80	LA3600	¢1．50	MS1358P	$\underline{51.75}$	STK4332	［4．50	TA72508P	${ }_{2} 2.95$	UPC1373H	¢1． 20	2 2SO1275	¢1．00	Stereo ．．$£ 1.80$
AN7143	C2． 50	HA1423	¢2． 20	La4030	［2．50	M51393AP	¢4．50	STK4352	${ }^{〔} 5.90$	TA7251BP	£2．95	UPP1387C	¢1．95	${ }^{2 S D} 1276$	11.20	Auto Rev ．－$£ 2.75$
AN7147	52.50	HA11440	${ }_{5}^{52} 95$	La4031P	¢1．95	MS1397AP	${ }_{51} 5.50$	STK4803	${ }_{68} 9.50$	TA72721	${ }_{52} 2.50$	UPC1397n UPC1403CA	${ }_{\text {che }}$	2 201398	${ }_{51} 50$	TEMS DISPATCHED WITHIN 48 HOURS
AN7148 AN71491	c2． 50	Hal 1580 HAl 701	${ }_{53} 5$		${ }_{\text {¢ } 2.90}$	M51522L	¢1．90 ¢1	STK4833	${ }_{59} 580$	TA7280P	£2．95	UPC1420CA	55.20	2SD1406	11.50	add 800 post and packing and then add 15\％
AN7156N	52.50	HA11703	¢4．50	LA4101	¢1．00	M54543L	¢1．75	STK4843	${ }^{\text {c }} 8.95$	TA7281P	£2．75	BC516	¢0． 20	2 2SD 1407	11.95	
AN7161	¢3． 50	Hal1704	¢5，20	LAA102	¢1．40	M54544L	$\underline{2} .75$	STK4853	59.50	TA7299P	£2．95	BC517	c0．20	$2 \mathrm{SO1426}$	$\underline{0} .95$	llers by appointme
AN	¢3． 70	HA11705	¢5．95	LA4110	¢1．75	MB3712	$\underline{51.50}$	STK5211	¢6．75	IA7317P	¢1．50	BC639	¢0．22	1427	30	Opening tumes 10am－5pm Mon－Fri．9－12 Sats．
AN	52.7	HA1	¢3．75	LA4145	${ }^{1} 1.70$	MB3730	¢2． 20	STK5314	${ }^{26} 675$	TA7607ap	¢2． 20	BC640	${ }_{50} \mathrm{E}_{0} .22$		${ }_{51} 1.85$	
AN717\％${ }^{\text {a }}$	¢3．50	HA11711	${ }_{56.50}$	LA4170	11.75	M88841	$\begin{aligned} & £ 2.75 \\ & £ 5.75 \end{aligned}$	STK5324	$\begin{aligned} & \text { ¢6.75 } \\ & .75 \end{aligned}$	TA76	\＄2．20	B0244C	¢0．	2SD1455	$\underline{2}$	HACGESS ACGEPTEO MIN．－TELEPHONE ORDERS S5．

MAKE YOUR INTERESTS PAY！
 Train at home for one of these Cáreer opportunities

Over the past 100 years more than 9 million students throughout the world have found it worth their while！An ICS home－study course can help you get a better job，make more money and have more fun out of life！ICS has over 90 years experience in home－ study courses and is the largest correspondence school in the world．You learn at your own pace，when and where you want under the quidance of expert＇personal＇tutors．Find out how we can help YOU．Post or phone today for your FREE INFORMATION PACK on the course of your choice．（Tick one box only！）

Electronics \square	TV，Video \＆ Hi－Fi Servicing	\square
Basic Electronic Engineering （City \＆Guilds）	Refrigeration \＆ Air Conditioning	\square
Electrical Engineering $\quad \square$	Car Mechanics	
Elec．Contracting／ Installation	Computer Programming	\square
CCSE／GCE／SCE over 40 examination subjects to choose from		

Name

Address：
P．Code
International Correspondence Schools，Dept．EGS41， $312 / 314$ High Street，Sutton，Surrey SM1 1PR． Tel：081－643 9568 or 041－221 2926 （both 24 hours）

N
Where can you buy all these service aids from?

AMBERSIL	COLCLENE
DUCKHAMS OIL	ELECTROLUBE
EVO STIK	FRYS SOLDER
PERMABOND	SERVISOL

Who carries all these items for SMD equipment?

CAPACITORS	RESISTORS $1 / 4$ WATT
PRE SETS	SOLDERING BITS
SOLDERING IRONS	SOLDER PASTE

TV LINE OUTPUT TRANSFORMERS
PHONE 081-948 3702 FAX: 081-332 0583
ALIBA. AMSTRAD. BUSH DECCA DORIC. ETRON. FERGUSON. FIDELITY GEC GRUNDIG. GRANADA HITACHI. HINARI INDESIT ITT KIMARA . NIKKAI MATSUI MURPHY OSAKI NORDMENDE
REDIFFUSION PYE. PHILIPS. SANYO SAISHO SHARP SONY. SOLOVOX SUSUMU TANDIBURG TELEFUNKEN . THORN TRIUMPH HUANYU. GOI.DSTAR

COMPUTER MONITOR TRANSFORMERS STOCKED

TIDMAN MAIL ORDER ITD . 236 SANDYCOMBE ROAD
RICHMOND. SURREY, TW9 2EQ.
Approx. 1 mile from Kew Bridge.
Mon-Fri 9 am to 12.30 pm \& Sat $1030-4.30 \mathrm{pm}$ Sat 10 am to 12 noon

wregrat		8A3704	$\underline{22.75}$	$17808 \quad$ ¢0． 80	11.8	$\underline{1} .50$	ST	¢8．00	TA	．$£ 2.50$	TDA1022P	¢4．50	TOA2593 ¢1．50	U410B $\quad 81.60$	2SC2631	0.30
CIRCUIT		8A4210	$\underline{7.50}$	L7812 ．．．．．．．．． 11.00	LMT4aCN 6 PIN	MM55108 $\quad . \quad . \quad$ 22．65	STK4352	$£ 5.80$	tap24iA	$\underline{53.00}$	TDA10	O	TDA2594 \quad ¢3．00	U416B $\quad \begin{aligned} & 1.60\end{aligned}$	2SC2632	¢0．30
AN103	57.60	BA4220	$\underline{7} .00$	$17815 \quad 50.80$	¢1．25	MM7317	STK437	¢10．00	TA7243	¢3．30	TDA1035T	¢1．90	TDA2600 ¢6．80	UA767PC $\quad 1.20$		
AN2140	2.50	8A4236	¢2．75	17818 －．－．．．． 50.30	LM748N ．．．．．．．．	MM74C901 ．．．．E1．10	STK4392	£7．00	ta7245	． 54.50	TDA1037	$\underline{2} .90$	TDA2611A． 81.00	UA78：10 \quad 1000	2SC29	£2．50
AN240P	．c1． 30	8A4402	1.90	$17824 \quad 10.95$	M104 $\quad 77.00$	MPD4011C \quad P\％ 00	STK441	¢10．50	ta7267P	$\underline{12.80}$	TDA1044	$\underline{2} .50$	TDA26400 $\quad 13.50$	UAi8M15 ．．．¢2．00		¢3．00
AN253P	． 11.80	BA4403	$\underline{12} 75$	L7905．．．．．． 50.80	M29381 ．．．．．．$£ 11.00$	MP04069C ．．．¢1． 10	STK459	¢11．00	TA7270P．	$\underline{9} 50$	TDA1044	¢1．50	TDA2653A \quad ¢2．75	UAA1008DP \quad E2．00	$2 \mathrm{SC3153}$	¢3．40
AN382＇K	¢6．75	BA5102	$\underline{4}$	17912 ［ 0.80	M4908B1 $\quad 12.50$	MP04081［ 11.10	STK46］	¢10．50	TA7271P	¢3． 25	TDA1057	$\underline{2} .00$	T0A2822 \quad M．00	UC38445 $\quad 55.00$	2SC3402	¢0． 40
AN3822	． 17.50	BA5204	$\underline{\square}$	L7915 ．．．．．．．． 50.80	M4918／8B1 $\quad 111,50$	MP04514BC ¢5．00	STK463	c14．50	ta7274	12.60	TDA1082	$\underline{3.50}$	TDA3190 $\quad 50.95$	UPC1185 $\mathrm{H2}$ ¢ 2.50	2SC3519	¢4，60
AN5015	c3． 30	BAS24	¢3．00	17918 －¢0．80	M50127AP \quad ¢6．00	MP05521066 111.00	STK 465	112.00	TA7280	£3．00	TDA	E1．70	TDA3303 ¢ 15.00	UPC1225H	2SC3678	． 1.25
AN5033	． 55.00	BA5402	12.40	L7924．．．．．．E0．80	M50431－101SP	MSL9378RS ． 3.50	STK5315	E6．50	TA7280P	． 23.00	TDA1151	81.50	TDA3330－． 55.50	UPC1230 \quad E3．00	2SC3715	¢4．80
ANS 132	23.95	Ba5406	$\underline{2} .50$		¢6．50	MSM5840H－8ARS	STK5322	E6．50	TA7281	12.75	TDA1154	$\underline{2} .70$	TDA3540 \quad ¢4．00	UPC：238V	$2 \mathrm{SC458}$	${ }^{2} 0.20$
ANS265	． 11.35	BA6104	$\underline{[2.50}$	LA1185 … \quad \％ 60	M50453－012P ¢6．20	¢14．50	STK5325	¢5．50	TA7281P．	¢2．75	TOA1170S	$¢ 1.20$	TDA3541 $\quad \mathbf{2} .25$	UPC1263－¢2．20	2S6789	¢2． 50
AN5510	． 54.50	BA6109	E1．80	LA1201 $\quad 10.95$	M50560－01P \quad £2．70	SAA1006 \quad O． 50	STK533	¢6．00	TA7299P	$\underline{53.00}$	TOA1180	ع1．80	TDA3560 E3．40	UPC1288V \quad £2．95	2501047	$\underline{\square} .75$
AN5512	$\underline{11.95}$	BA6124	$\underline{2} .75$	LA1235 ．．．$¢ 2.50$	MS1014L ．．¢1．95	SAA1025 ．	STK5332	¢3．50	ta7302	． 1.30	TOA1180P	£3．00	TOA3561 ．\quad \％ 50	UPC1361C £3．90	2 SD1051	． CO .85
ANS521	［25．50	BA6154	$\underline{2} .50$	LA1260 ． 51.75	M51164 $\quad 1.40$	SAA1124 E3．95	STK5333	¢12．00	TA7303	£1．10	TDA1190	c1．90	TDA3562A $\quad ¢ 5.00$	UPC1362C［4．50	2501128	． 51.50
AN5730	c3． 20	BA6208	$\underline{2} .75$	LA1403＿．．．．£3．75	M51356P $\quad . \quad 55.00$	SAA1174 $\quad 56.50$	STK5338	¢6．00	：A7310	1.175	TDA1270M	${ }^{4} 4.10$	T0A3565 $\quad 53.00$	UPC1363 ¢	2501138	． 50.85
AN5750	． 2.50	BA6209	53.20	LA3160－$\quad 1.90$	M51381P $\quad 81.50$	SAA1250 \＃\quad O6	STK536	$¢_{6.25}$	TA7312	£1．75	TDA1365	¢4．90	TDA3571BO $\quad 85.50$	UPC1365－£3．50	25011	． 50.75
AN5760	$\underline{5.00}$	BA62 19	¢1．95	LA3210 …．．．\quad ¢1．90	M51393 ．．．． 44.25	SAA1251［ $\quad 88.50$	SIK542	¢6．50	IA7313	¢0．90	TDA1412	81.00	T043590 E3．00	UPC1377C E E2． 20	2501207	． 50.75
AN5900	c1． 50	BA6222	¢3．10	LA3220 $\quad 1.00$	M51513 $\quad 10$	SAA1276 ．－． 54.50	STK5422	¢5．00	TA7313AP	¢1．40	TOA1470	${ }^{55} .00$	TDA365 \quad ¢ 3.00	UPC1378H \quad ¢． 20	2501273	． 11.00
AN6326	［ 14.00	BA6229	£1．85	LA3350 ．．．．．$¢ 1.50$	M51515L $\quad 53.10$	SAA1290－02 1010.70	SIK5434	¢6．50	IA7314	$\underline{\mathrm{m} .00}$	TDA1501A	¢3． 20	10A3651A0 ¢6．50	UPC1379－．£2．20	2501275	． 11.30
AN6332	$\underline{\$ 4.40}$	BA6238A	¢1．95	LA3361－¢1．50	M51516 \quad ¢4．00	SAAI293－¢7．00	STK5451	$¢ 5.30$	TA7323	£3．25	TDA1506	c8．50	TDA3652 $\quad 7.50$	UPC1382－¢1．50	2501288	c1．70
AN6341	． 2.75	BA6239	¢3．75		M51903L ．．．．．$¢ 3.50$	SAA1293－02［．E9．75	STK5471	¢5．25	TA732	$\underline{9} 200$	TOA 4510	3.20	TDA3653 ¢1．50	UPC1394 $\quad 11.70$	$2 \mathrm{SO13}$	¢0．85
AN6344	¢6．50	EA6259	¢3．00	LA3700－	MS213L $\quad 53.10$	SAA3027 $\quad 56.00$	STK5476	66.00	TAT32	£1．50	TDA 510 A	53.20	TDA3654 \quad M 80	UPC1420A－$\quad 87.00$	${ }^{2 S D 1397}$	¢4． 20
AN6346	． 4.50	BA6301	$\underline{2} .00$	LA4100［ E1．90	M52184 \quad ¢1．00	SAA5000－\quad E3． 00	STK5481	¢5．00	IAT32	$\underline{-1.00}$	TDA151	¢1．00．	TDA3810 £2．90	UPC1458－£1．95	SOC1397	${ }^{\text {¢ }}$［ 75
AN6346	． 54.50	BA6302A	£1．80	La4102－ 51.20	M52314 $\quad 11.10$	SAA5010－$\quad 55.80$	STK5482	55.20	TA7335	¢1．50	TDA1515A	¢2．50	TDA3950 £3．00	UPC1513HA ¢2．00	2501398	$\underline{3.25}$
AN6359	¢5．50	BA6304	$¢ 1.70$		M54599 P．．．． 11.00	SAA5012 ．．．．．e56．60	STK5720	¢7．00	IA7335P	¢4．20	TOA1520	53.95	TDA440 ．¢2．00	UPC1520CA £2．48	2 SO 1426	¢ 54.50
AN6360	． 2.75	BA6305	$\underline{11.75}$	LA4140［ ¢0．70	M54543－ 81.75	SAA5020－$\quad 55.80$	STK5730	${ }_{5} 5.25$	TA7342	$¢ 2.10$	TOA670A	${ }^{2} 2.60$	TOA4420	UPC339C ¢0．70	$2 \mathrm{SO1453}$	¢1．60
AN6362	［ 54.25	BA681	50.90	LA4160 …．E1．25＇	M54544L ．．．．£1．85	SAA5030－¢9．00	STK6962	¢3．20	ta7343	¢1．75	TOA1701	53.00	TDA4422［ ¢3．95	UPD4011 ¢1．75	2SD1455；	1730
AN6387	． 55.50	BA7001	£1．90	La4182 ¢ ¢2．10	M54548L $\quad 14.50$	SAA5040A 55.00	STK6972	c6．00	TA7350	¢2．10	TDATPOA	${ }^{3} 3.00$	TDA4500 E3．80	UPD4066 ．－． 11.95		
AN6612	$\underline{9} 20$	BA718	¢1．80	L44183－． 2.75	M58478P	SAA5040B－ 59.90	STK7216	¢6．10	TA7358	c1．50	TDA1870A	5.60	TDA4501 ¢4．00	TRANSISTORS	2 SO 14	［8． 60
AN6655	． 50.60	BA728	¢1．10	L44192－ 51.70	M58655P－ 56.50	SAA5041	STK7308	¢5．75	TA7607	${ }_{53} 53.50$	TOA 1908 A	¢1． 75	TOA4503	2N3773，$\quad ¢ 1.90$	$2 S 01497$	
AN6671K	¢5．50	BA7767S	¢5．00	LA4422 ．．．$£ 1.30$	M58839－¢8．00	SAA5050 ．．$\quad 114.00$	STK7309	¢7．00	IA7607AP	¢2．40	TOA ${ }^{\text {TOA } 908 \text { A }}$	ع1．75	TDA4505－¢3．95	2SA1095－¢5．50	2S01497－02	${ }_{\text {¢5 }}^{5} .95$
AN6677	． 55.25	876018	${ }^{23.50}$		M708 $\quad ¢ 5.50$	SAA5231－¢9．00	STK7348	¢5．00	TA7609P	．£2．70	TDA1940	${ }_{5}^{18} 50$	TOA4510 ¢4．40 TDA4600 ¢2 60	2SA1102． $\begin{aligned} & \text { ¢1．90 }\end{aligned}$	${ }_{2 S 01650}$	${ }_{53} 5.50$
AN6884	¢2．75	HA11245A	E3．50	LA4445 ．$\quad 2.50$	M709－ 54.75	SAB3013［4．50	SIK7356	$¢^{56.50}$	TA7614	${ }_{5}^{52} 40$	T0A2002	¢1．40	TOA4600 \quad C2． 60	2SA1112	${ }_{2 S 0167}$	${ }_{5}^{15} 30$
AN69112	$\underline{.100}$	HAF1223	${ }_{5} 3.75$	LA4460 ．E1．70	MA150－E E．$\quad .20$	SAB3037．． 111.00	STK7358．	${ }_{6} 5^{5} .50$	TA7629	14.00	TDA2003		TOA4600－2	2SA1124	${ }_{250639}$	
AN7111	c1．50	－HA1 1225	$\underline{2} .10$	LA4461 ．．¢1．80	MB3106 ¢1．00 MB3730 \square	SAF1032P SAF1039P C6．00 1	SIK7728 STP1096	\＄4．75	${ }_{\text {TA7629P }}$	${ }_{\text {c }} \mathrm{E} 2.75$	T0A2004	11.70		2SA1220 2SA1386 $¢ 1.10$ 1.70	${ }_{250667}$	¢1．00
AN7112	¢3． 00	HAL1226	${ }^{3} .75$	LA4500－¢2．70	MB3730 E． M 3731 1.25		STR3125	${ }_{55} 5.60$	TA7630P	${ }^{2} .00$	TOA2005	11．70	TOASIO10	${ }_{\text {2SAL }}$ 2SA1386	${ }_{250725}$	${ }^{18} 30$
AN7143	${ }_{¢ 1.65}$	HA1235	${ }_{18} 8.10$	LA45570 ，－E2． 2.20	MC13002P ．．．．． $\mathrm{ESO}^{25.00}$	SAS570 ．．．．．．．$£ 3.00$	STR40090	¢8．00	ta7640	$\underline{12.00}$	TOAzOOSS	¢2． 95	TDA7250－¢5．50	$2 \mathrm{SA673} \quad 10.20$	250787E	¢0． 30
AN7148	¢1．70	HA11414	$\underline{120}$	La5522 …E． 20	MC1310－¢ ¢1．25	SAS580［33．50	STR4211	15.95	TA7658	$\ldots 2.00$	TOA2006V	£1．95	TDA7270 ¢6．00	2SA942 \quad ¢0．35	250811	$\underline{\$ 2.95}$
AN7158	¢4．00	HA11701	93.10	LA5527－¢1．95	MC1330P $\quad 12.95$	SAS590－$¢ 3.50$	STR440	$¢_{5.00}$	IA7668	¢2．00	toazozo	5.50	TDA7607AP \quad ¢2．40	2SA985 ¢0．95	250836	¢1．10
AN7160	¢6．00	HA11713	58.90	LA6358 \quad¢ 1.00		SL1430 ¢2．80	STP441	¢5．00	TA7680	¢4．80	TDA2030	¢1．10	TDA8150 $\quad \begin{array}{r}10.00\end{array}$	2 SB1016 $\quad 11.50$	${ }_{2} 250337$.	¢0．80
AN7169	¢3．50	HA11714	${ }^{23.50}$	LA7016－ 52.50	MC14093B ．．．．$¢ 1.50$	SL1431－${ }^{\text {a }}$ ¢2．80	SIR451	¢ 4.95	IA7681AP	¢5．75	TaA2030H	$\underline{5100}$	TOAB180 ¢6．00	2 SB772 $\quad 10.40$	250845	¢2．70
AN7171K	¢8．00	HA11715	$\ldots 3.20$	LA7096－¢4．00	MC14426P－¢ ． 20	SL1432 $\quad ¢ 1.10$	STR454	¢4．85	TA7687	$\underline{2} .00$	TDA2030V	${ }^{1} 1.75$	TDA8190 \quad ¢3．80	2SB775 $\quad 11.60$	250868	¢3．50
AN7205	¢1．95	hiA11747A	512.75	LA7210 $\quad 53.10$	MC1429P－ 2.20	SL4710P \quad E2．20	STR50020	£7．90	TA7698A	E6． 85	TDAR2040	$\underline{2} .00$	TDA8341 $\quad 53.00$	2 SB819 $\quad ⿺ 𠃊 ⿴ 囗 ⿱ 一 一 \$$	250869	¢3．00
AN7213	¢1．10	HA11749	． 57.00	LA7305 \quad E6．90	MC14497P ${ }^{\text {P }}$［5．50	SL480 $\quad 53.30$	SIR50103	¢5．50	TA7698AP	¢7．50	TOA2151	23．00	TDA9503 \％	2 2SB965 \quad－¢2．30	250870	． 53.50
AN7218	¢1．20	HA11750	¢5．10	LA7309 ．．．．．E3．75	MC145118CP	SL490 E3．00	SIR5412	${ }_{5}^{5} .95$	IA7705P	${ }^{51.50}$	TDA2161	${ }^{1} .75$		2SC1413A $\quad ¢ 2.50$	250871	¢4． 50
AN7220	£1．60	HA12005	53.80	LA7507 ．．．．．．¢4．00	MC145168CP © ®．00 1	SL901B E3．00	STR5804	¢6．75	TA7709	£2．50	TOA2270	\％3．00	TEA1009［2．00	2SC1826 ．．．¢1．80	250895	
AN7222	$\ldots 2.10$	HA12017	92.00	LA7520 …．． 53.25	UPC1458	SL9178 \quad ¢ 2.50	SIRG020	¢ 54.90	TAF738	¢2．50	TDA ${ }^{\text {Ti } 270}$	${ }^{\text {¢10．00 }}$		2SC1942［2．10		
AN7223	¢7．60	HA12026	¢2．00	LA7800 …．．．E1．50	$¢ 1.95$	SN76670N $\quad 1.25$	STR8050	$¢ 14.15$	TA78L010P	¢1．75	TDA2270	$\underline{120}$	TEA1039 ¢2． 00	${ }^{25 C 1983} \quad 101.30$	25089	
AN7224	¢1．40	HA2413	$¢_{120} 120$	LA7801 ．．． 51.25	MC3359 ．．．． 51.10	SSA1075 ．．．．． 55.90	SVM993C	${ }^{2} 2.00$	TA8f01N	¢4．25	TDA2320 TDA2510		TEA2018 E4．40	2SC2003－$\quad 10.25$		
AN7225	¢1．90	HA13001	£1．80	LA7820－¢1．90	MCU2632－ 11.90	SSA1250 E3．50	TA4i80	¢3．00	TA8102P	${ }_{55}{ }^{4} .50$	TDA2521／3	－ 9.75	TEA2018A ¢4． 10		${ }_{\text {BC }}$ BC88	10．10
AN7273	12.00	Hal 3402	58.20	LA7830 \quad ¢2．51	MDA2061 ．．．¢7．00	ST082 ．¢12．00	TA4493	$¢ 5.00$	TA8644	¢5．50	TDA2521／3		TEA5101－¢6．00	2SC2230 $\quad 10.50$	${ }^{\text {BC }} 108$	${ }_{50} \mathrm{c}_{0} 10$
AN7310	¢1．10	HA13403	¢4．00	LA7913＿．．． 51.30		ST1195［5．50	TAA194	¢5．50	TAA310A	12.00	T0A25220	¢10．75	TLO11CP ¢2．00	2SC2238－¢0．75	BCTO8B	${ }^{\text {cou }} 10$
AN7311	$\{1.75$	Hal350	¢9．00	LM1011N ．－¢3．00	MEA2050 ．．． 54.60	STA401A \ldots	TA4301	¢4．50	TAA550	$\underline{12.10}$	T0A2530	${ }^{54.75}$	TLO72CP $\quad £ 2.00$	2SC2331 $\quad 1.00$	BC115	¢0． 16
AN7315	¢1．75	HA 1368 R	$\underline{5} 5$	LM1077／M192B1	MEA2901 \quad S3．00	STA441C E．E3．00	TA4345	$¢^{1} .40$	TBA120S	co． 50	TDA25300	54.25	TMM2114AP 55.75	2SC2335 $\quad 11.50$	BC118	£0．12
AN7324	［4．50	HA1374	¢5．00	$\underline{2} .30$	MH27316 ．．． 23.00	STK0029 ．．．．．£4．30	TA4350	¢6． 00	tBA530	£1．00	TDA2532	$\bigcirc 3.00$	TMS1944AN2L $£ 2.00$	2SC2531 $\quad 10.26$	BC147A	¢0． 07
AN7410	$\underline{2} .10$	HA1377	$¢ 2.00$	LM1035 ．．．．．．．．¢5．75	ML232B $\quad 54.50$	STK043 ．\quad ¢10．00	TA7120	¢1．25	TBA560	¢1．00	T0A25320	¢3．00	TMS1952［2．50	$2 S C 2564 \quad$ E3．04	BC159	¢0． 09
AN7415	51.40	HA：388	E4．00	LM1036N $\quad 53.70$	ML237（BT6018）	STK082 \quad ¢12．00	TA7137	£1．25	tBA7500	£4．20	TDA2540	$\underline{5} 75$	TMS1956．$\quad \begin{aligned} & \text { 22．30 }\end{aligned}$	2SC2570 $\quad 10.55$	BC171	¢0．09
AN7420	¢3．20	HA1392	E3．00，	LM1112CN ．§3．30	${ }^{〔} 3.50$	STK2029［．¢8．50	147176	£2．50	TBAB00	¢0． 85	TDA2541	$\underline{5} .00$	TMS1965NL E2．00	2 SC2577 $\quad 11.50$	BC172	£0．09
AN7818F	¢1．60	HA1394	¢4．00	LM13600－［5．00		STK2125 ．．． 112.00	TA7176AP	¢2．40	TBAB2OM	E0．45	TOA2543	${ }_{5}^{5} .25$	TMS3450 \quad ¢2．10	2SC2592 ¢0．95	BC172C	
814	¢1．00	hat 397	¢5． 40	LM1868N \quad E1．50	M293 r4，	STK2250 \quad¢9． 20	TA7193AP	${ }_{5} 4.00$	TRAQZOS	¢1． 000	TDA2560．	${ }_{51} 9.75$	$¢ 1.75$	2SC2621 ．．．．¢1．25	${ }_{8 C 183}^{8 C 182}$	
	c1． 50	HA1398	£3．50	LM1894N－$\quad 55.75$	M． 923 ．．．${ }^{\text {¢ }} 4.50$	STK3041 ．\quad ¢5．70	TA7193P	¢6．00	TCA640	£3．75	10a 25600	${ }_{5} 1.10$			BC183	
BA1332	¢1．00	HA1406	$\underline{2} .00$	LM3171 ．．．．．．$£ 1.00$	ML9230P \quad ¢4．50	STK40090 \quad C8．00	TA7205	11.75	TCA650	¢3．95		${ }^{3} .90$				
BA318．	$\begin{array}{r}1.50 \\ \square \\ \hline 1.50\end{array}$	HA1457 HA4219	$\sum_{\S 2.10}$	LM324 LM339 c0．80 1			TA7222．	${ }_{12} 1.25$	TDA1005	12.50	TDA2578	53.00				
BA328	£1．10	HD14081	¢0．25	LM339N …．．．E0．75	MM53108N $\quad 17.25$	STK4142 $11 \ldots$ ．．．$£ 10.00$	TA7223	โ2．50	TDA1010A	¢1． 10	TDA2578A	${ }^{\text {c2 }}$ 80 80				
BA3308	$\underline{2} .10$	H04539	c0．70	M384 ${ }^{\text {c }}$［1．20	MM5387 \quad ¢2．90	STK4151 $\quad \mathbf{1 1 1 . 5 0}$	TA7227P	¢2．30	TDA1011	E1．20	JOA2579	${ }^{23.50}$				
8A333	$¢ 1.40$	KA2210	¢2． 30	LM $3866 \mathrm{~N} \quad$ E0．80	MM5402 $\quad 17.50$		TA8230P	¢1．65	TOA1013	$\underline{4} 75$	TDA25810	$\begin{aligned} & \frac{52}{52} .50 \\ & \hline \end{aligned}$		RESS	A	
BA34 161 BA343	12.75	${ }_{17806}^{\text {L7805 }}$	${ }^{\text {c }}$ co． 80		MM5405N MM5456 1	STK430 STK4311 $\mathbf{8 6 . 0 0}$ 10.20	TA7233P		toalo15	1.20	TDA2590	［2． 00				
BA3505F	52.75			¢10．00	MM5457N $\quad ¢ 2.50$	STK433．．．．．．．¢7．50	TA7240	§2．50	TDA1020	$\underline{4} 2.50$	TDA2591	5.70				

User Friendly SOFTWARE

FOR IBM COMPATIBLE PC＇S RUNNING ON MSDOS FOR THE BUSY TV／VCR SHOP／SERVICE DEPT
RECEIPT／INVOICE PROGRAM $£ 89+$ VAT＋P\＆P
OUR TVNCR RENTAL PROGRAMME IS NOW AVAILABLE
Demonstration disc available． （1）C fun 369 Chepstow Road Newport，Gwent．NP9 8HJ Tel． 0633282556

Q

Where can you buy：－

Complete CCTV systems Monitors
Video switches Camera selectors
Video door entry systems Phone intercom systems

Co observation cameras Dummy cameras Vidicon cameras Camera power supplies Loudspeaker intercom systems $050868 L$ LZ0：Xe」 GLSL 68L LZO：101
 Old

A.Z. ELECTRICS

Stock items despatched by return

BC				
8 BC	¢0.09	${ }^{\text {BD2 }}$ 84	${ }_{\text {co }}$	
	T09	B224C		
BC214A	${ }_{50} 07$	BD243		
BC214B	${ }^{\text {ci. }} 0.07$	8050	\%0.90	
	20.09	BFI95		
	¢0.07	8f196		
	${ }^{\text {c. }} 0.07$	BF197	¢0.15	
		BF198		
8с3088	50.07	BF199	14	
BC327.25	. 50.07	BF244		
BC	¢0.05	Bf259	${ }^{50.22}$	
	. 07	Bf42		
	¢0. 95	BF458		
	1.150		22	
		BF4	1	
	${ }^{1} 0.25$			
47	c0.07	BF471	¢0.25	
	¢0.07		${ }^{2} 0.25$	
	${ }^{\text {¢ } 0.07}$	BF870	2	
	${ }^{1} 0.30$		¢0.25	
8С5598	E0.07	BU108	50.75	
	co. 18	BU1	¢0.70	
	co. 30	BU208	81.00	
	. 50.50	8t208A	¢1.00	IPP20
8080132	F0.40	8U2080	${ }_{\text {f1.00 }}$	
	E0.35	BU2081		
	${ }_{\text {cin }}$	${ }^{\text {Bu20 }}$		2×650
E82338	20.22	coshl		
B	,	[13264	00	
diodes	AND	Hypistors		
8 A157	ع0.07	BY206	396)	
BR100	. 5.20		0.55	
8 R1	. 11.40	BY210		
	E0.75	c0.55		
${ }_{\text {BR }}$	1	8r22		
BT	50	82	K0.50	
P	E4.50	8r299	£0.50	
81	. 50	$8 \mathrm{Pr96}$	c0. 30	
51,00		Erv960	55	
	2, 2	,		
${ }_{8 Y} 127$	\%08	Brx	\%0.50	SkB2.02
	£0.20	BYX	ع0.55	
	0.90		\$1.50	
64/Sk		1N4001	20.06	
	90	[14002		
	9.10	N4004	¢0.10	SKE
79:SK2		N4005		
BY	50.65	iN4007	co. 08	SKE5F3/10
	2.00	N4148	¢0.10	
90	$\underline{2.00}$	N5408		
22	[2.00	k8L08	51.95	
	for SE	miconouct	,	LISTED

VIDEO HEADS

 AMSTRAD3HSSR-VCR7000 (Saish0/Orion) PSF1-VCR4500, 5200.9000
PSF2-VCR 4600 PSF2-VCR4600,
PSF3-VCR6000

FERGUSON

3HSSV-2 Head universal
3HSSVA-3V42,44,45,46 etc
3HSS4VB-3V32/HR7655
3HSS4VC-3V48/HRD565
3 V48.58.59 65 F 10
12,13,14,202126
And most other Ferguson
HITACHI
3HSSHA-VT 8000,9000 series
10082-VI 120,220
10081-VT130, 135
PANASONIC
3HSSN-2 Head universal 3HSSU2N-NV230,470,480,G9, 10 11.15PX

3HSSU3N-NV430,460
3HSS3N-NV777, 330
3HSS4NB-NV730
3HSSANA-NV 366
NVG30,33.40, 45, 46, 130, \& most
SANYO
3HSSSY-VHR1100,1110,1300
3HSS3SY-VHR1500
SHARP
482. 483 -VC9300 $9500,9700,381,48$ 3HSSSPB-VC581,583,651,670 et VC7000,8000 senes (Brass)

OTHER MAKES

1000.

Fisher FVHP5 $10,520,530,615,710$ et
Fisher VBS7000,9000 etc
Hinari VXL2, 4, 3, 20,25
Hinari VXLL5,6,20H
Mitsubishi HS306,710
Saisho VR100 605 705,3 etc Samsung Universal 2 Head
Toshiba Toshiba v93

ASK FOR VIDEO HEADS NOT LISTED
The above heads are new and replacements.
£17.0
$\underset{ }{29} 9.0$
$\$ 18.00 \quad 89$
915.00

$\$ 15.00$ 75.00
21.50

29.95 52500

POA
$17.0068 S B 4$
30.50

¢ 9.95

$£ 21.00$
$\$ 16.00$

POA
$£ 20.00$
$£ 34.00$

NV230/250/280/370/380/430/450/
$460 / 465 / 485 / 630 / 810 / 830 / 850 / 870$

POA VR63676467/6561/6751/6760/
18.50 VTC5300/5350
24.00 VHR1100/1300/1500

SHARP
VCF3NC402/500/571/581/582
,
684/685/693/700/7832.10 210 VC200/381/384/385/386/390
217.00 9300/9500/9700
£ 17.00 V
VC300/387/388/481/483/486 488/496
VC7300/7700/7750 VC8000/8300

toshiba
V8700/9600
V5/5
1.10 V66/67
1.60 V31/33

V73/81/83/85
2.00 V8600
1.90
2.00
1.60
1.00
1.20
0.35
1.00
1.10

1.00

VI9300/9500/9700

PANASONIC

NV600/777/788
NV2000/3000
1.60
1.50
1.50

200 $7200 / 7500 / 7800$ …......... 1.40
2.20
0.60

Reel motap
Ferguson $3 V 2 \mathrm{Z}$
Ferguson 3V58,59, 6
FV10,11, 12.13,14,20.21,22 Ferguson
2.25
2.40
2.50
2.25
2.00
0.65
1.00
1.00
2.90

Sanyo VTC5000. $5150,5400,5300,6500$
Stial VCC9300,9500 etc. Original
Panasonic Nv333, 366 Original
DRUM MOTORS
Ferguson/JVC (Mechanical models)
Sharp 7000 series Origina
All Panasonic Original
capstan motors
Ferguson 3V355.36 Origina
Hitrauchivvic (Mechanical models)
Hitachiv 133 Oigina
Hitachi V65 Origina
Hiliachiv 78000 Series Original
Sharp VC7000 series Originnal
MODE CONTROL MOTORS
Ferguson 3V42.,43.44.45.48, 49,52,53
Ferguson $3 V 58,59,65$
FVi0, 11,12,13,14,20

IDLER ASSEMBLIES

1.95
1.20
1.95

FERGUSON Take up Clutch (Mechanical models) 3V29/30 Take up Clutch 3V29/30 Reel Idter 3V $35,36,38,39$ rake up ciutch 3V58,59,64,65,FV10,11,12, 13, 14 Idier Arm
Clutch Assembiy
$3 V 44,45,48,49,52,53,54,55$
Clutch Assembly 3v42,43.
FISHER
FVHP615,905،910, Idler Assembly Original
FVHP615,905,910, Ider Asse
FVHP615Gear Idler Assembly
FVHP905.910 Gear Ider Assembly
FVHP520.530 Idier
FVHP520 530 Pulley
FVHP520,530 Pulley
HITACHI
VT11,33 etc. Original Idler Arm

Access \& Visa Accepted
T9300,9500 etc. Idfer Ider
1.05
1.10
2.80
2.80

30

0

464,6462,6463,650 etc. Idler Mod. Ki

R6542, Reed Reel hiler
R6843 Reel Drive Pulley
PANASONIC (AII Original
V370 Id ler Arm Unit VXPO521 Gen
NV8600, 8610 Play Idler VXP0243.
NV332,777,788 Idler Unit VXP0463
NV600,688 Idier VXP0515
NV333,366 |dler Arm 2 Unit VxL0997 NV8400,8600,8610 etc. VXPO245
333 365 etc lder WXP0401 Nv700 7200. 80.95
$\begin{array}{r}10.90 \\ \hline\end{array}$
ler Unit VXP Play Idler VXP033t-NV2000,3000
 All Panasonic Mant QUOTE PANASONIC PART NO
Idler VHR1 100, 1300, 1500
Idier VHRR2 100, 2300,2500,2700
Reel Orive Pulley Unii VT 5000 上150......... $£ 55.50$
Reel Onive Paley Unil VTC5000,5150,6500 £5.00
dier Rolier
Ideler VC9300,9500 etc
Ider VC481,581 etc.
Idler (originai) VC9300, 481,581 etc.
Ider Assembly (originall vc651 etc 81.95
Idier 781 Assmbly
4500,4600 MOD KIT INCLUDES PINCH ROLLER
REMOTE CONTROLS
Ferguson, Grundig, iTT, Phulips. Pye, Sony, Hitachi, Matsui, Logik, Panasonic. Saisho, Salora, Samsung. Tashiko, Tatung, Toshiba. Various models TV \& Video

Many Hitachi N remote controls now in Stock.
SONY REMOTE CONTROL RUBBER PADS
STATE MODEL FOR PRICE.

TV ON/OFF SWITCHES

ITT, Philips, Decca, Thom, Fidelity, Grundig, Sony and Hitachi. State model for price

PINCH ROLLERS

Pinch Rollers for Akai, Amstrad, Ferguson, Fisher, Furai, Goldstar, Grundig, Hinari, Hitachi, JVC, Mitsubishi, Orion, Panasonic, Philips, Samsung, Sanyo, Sharp, Sony, Toshiba available. Prices start from £2 80.

OTHER SPARES

Universal Video Copying Kit
Universal Copying Kit (Scart)
Video Cassette Lamps from
CRT Anode Caps.
Video Tape-Splicing Kit
Hitachi TV Frame Module HM6251
Hitachi TV Frame Module HM6232.
Cassette Housing Assembly Ferguson 3V35, 36 , 38, 39, 42, 43, 44 $\mathbf{\Sigma 2 5} .25$
Cassette Loading Roller Assembly 3V23, $3 \vee 31$ 3V32.
Philips 1.2V Back up Battery
Philips 2.4V Back up Battery
5.5V Back Up Cap

Degaussing Positor Blue
Degaussing Positor White
£4.25

Cassette Housing Assembly Hitachi VT11 \quad| | $\ldots 1.30$ |
| :--- | :--- |
| 19.50 | |

End Sensor for Hitachi VT63, 64, 65 (Pair)
Cassette LED Sensor for Panasonic etc
I.C. Circuit Protectors

Clear Service Cassette
Push Button Unit Thorn TX90
$£ 5.90$
Cassette Housing assemblies Ior Philips available.安 के के
RESISTORS, ELECTROLYTIC
CAPACITORS, FUSES ETC.
NOW IN STOCK.
को के
SEND FOR PRICE LIST.

All prices include post, packaging but exclude VAT Stock items despatched within 48 hours VISTA ELECTRONICS
Unit 1B, Wingate Grange Industrial Estate, County Durham, TS28 5AH

Fax: 0429837101

REBUILT COLOUR TUBES

First Independent Rebuilder with B.S.I. Certification PIL - In Line - FST
N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 081-771 3535
Britain's Oldest Established TV Tube Rebuilder

RELAY

OMAGH LTD COMPUTER SOFTWARE

DO YOU RENT TELEVISIONS?

DO YOU STHL USE A CARD SYSTEM?
DO YOU FIND IT DIFFICULT TO KHOW YOUR ARREARS TOTAL AT ANY GIVEN TIME? If you do then we recommend our computer TV and Video Rental package. This package includes

* automatic updating of each customer's record
* alphabelical print-out of each customer's arrears and payments missed
* total arrears immediately avaiable
* easy to use and operate.

NEW HIRE PURCHASE PROGRAMME NOW AVAILABLE AS WEL
These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration discs availiable.

WILLIAM J THOMPSON Donaghanie Post Office Beragh Co. Tyrone Telephone Beragh 58214 (0662 7)

取 C

2 Holyoake Street, Wellington, Somerset Tel: 0823667525 Fax: 0823660277 miCROWAVE OVEN COMPONENTS

Microwave Spares Distributors (Magnetrons) (Transformers) (Capacitors)
Distributors for Bussman-Cooper Electronic Fuses and the
ECL FUSE SELECTION BOX
Ask for our Catalogue NOW!

DALBANI (UK) LTD.

JAPANESE COMPONENTS SPECIALISTS ELECTRONIC COMP DISTRIBUTORS (Imp Exp \mathcal{Z} Now EX-STOCK DELIVERY 6,000 DIFFERENT PARTS

TRANSISTORS			INTEGRATED CIRCUITS			
$2 S A$	BD	BUY	AN	LM	SAB	TC
$2 S B$	BDW	DTA	BA	M	SI	TCA
$2 S C$	BDX	DTC	CX	MB	SLA	TD
$2 S D$	BF	MJ	HA	MC	STA	TDA
$2 S J$	BT	MJE	KA	MDA	STK	TEA
$2 S K ~$	BU	$1 N$	KIA	MEA	STR	TTL
$3 S K ~$	BUT	$2 N$	LA	MN	STRD	UPC
AD	BUW	$1 S$	LB	NE	TA	UPD
BC	BUX	TIP	LC	SAA	TBA	CMOS

STOCKISTS OF IC's \& TRANSISTORS, AUDIO AND VIDEO HEADS, MOTORS, IDLERS, PULLEYS, ROLLERS, BELTS AND TYRES FOR RADIO CASSETTE, VIDEO AND TV'S. (ORIGINAL AND COPY REPLACEMENT PARTS AVAILABLE)
DALBANI (UK) LTD
587 A KINGSTON ROAD, RAYNES PARK, LONDON SW2O 8SA, ENGLAND. Tel: 081-543 1971 O Fax: 0815422082 O TIX 914040

TV WHOLESALER'S

THE WORKING SET WHOLESALER YOU CANRELY ON

We specialize in supplying trade customers with top quality working ex-rental TVs \& videos. We offer good product, friendly service \& keen prices.

Portable TV from
Portable Text from £50£70
Bush T20/22/26. £15
Philips KT3/30 £30
Philips KT3/30 Text. £50
Thorn TX9/10 Text E30
Thorn TX9/10 Text $£ 55$
Thorn TX100 Text 160
Thorn Stereo Text $£ 70$
FSTs from

BRAND NEW HANDSETS TV STANDS TV/VCR STANDS and Video Heads for sale 0533 555519
Numerous other manufacturers names stocked: Sony, Sanyo, Toshiba, Hitachi and Panaso. NEW STOCK ARRIVING EVERY WEEK.
SPECIAL DISCOUNTS \& DELIVERY ON LARGE QUANTITIES Prices: All prices subject to VAT but include handsets (where appropriate)
£60
£95
Thorn 3V29/30. £60
Thorn $3 \vee 3+135$ £85
Thorn 3V44/48. £110
Hitachi 8500/9300. £55
Hitachi VT11 £60
E70Sharp 9300/381
Amstrad 7000ع65
Pans from.. £50

BESCO LIMITED T/A

NORTH WEST ELECTRONICS

 ENTIRE RANGE OF EX-RENTAL TVS \& VIDEOSNEW STOCKS EVERY DAY, WORKING OR OFF THE PILE makes include:- Sharp, Hitachi, Ferguson, Pye, NAT PAN, ITT etc. Working VHS video from £35.00. Late models always available.

KNOCKOUT PRICES ON COLOUR TVs
FERGUSON, PYE, HITACHI, PHILIPS, BUSH, ITT, etc.
TELETEXT BARGAINS FROM E30.00 (WORKING).
FERGUSON TX TELETEXT ONLY £55.00. PHILIPS/PYE TEXT ALWAYS AVAILABLE.
OVER 1000 COLOUR TV AND VIDEOS AVAILABLE.
RING OUR HOTLINE NOW FOR PRICES OR CALL IN YOU WILL BE DELIGHTED.
Working Ex-Equipment Panels
F Converger Decoder Line scan

Power	Frame
17	14
17	X
20.	11.50

All prices include Postage \& Packing. But + VAT
\star IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK *

ESAADFORD		WANCHISSTER
SPRINGMILL STREET		UNIT 3, MERSEY RD. NORTH IND EST.,
MANCHESTER ROAD, BD5 7RL.	Prices are plus VAT	FAILSWORTH
RING: TONY (0274) 308186	\& based on quantity	RING: DAVID (061) 683 4612
OPEN 6 DAYS 9am-5pm.		OPEN 6 DAYS 9am-5pm.

OPEN 6 DAYS Gam-5pm.
CHEQUES ACCEPTED WITH BANK CARD

500 Portables
to clear from 875
B^{\prime} 'Grade (monitor style)

EX-RENTAL TUs Workers from $£ 15$ Text from £45

EX-RENTAL UCRs Workers from $£ 45$ Front Loaders from $£ 60$ Long Players from £85

Ferguson 3COI UIDEO CAMERA

- Low Light Camera - Ex-Rental
- 3 Hour VHS Tape
- Complete-in-Case
* Batteries - Charger

SPARES, EQUIRMENT, MANUALS, COMPONENTS, SPATES, EQUIPMENT, MANUALS, COMPONENTS, SPAFES

ISERVICEMANUALS

Ferg./Thorn 3V31/8941

 Ferg. Thorn 3V328942 Ferg. JJVC 3V43 HRD725 Ferg. Thorn 3V35-6/8943-44 Ferg. Thorn 3V42/8945 Ferg. Thorn 3V48/3V65/8951 Ferg. $3 V 58$Ferg./JVC 3V04/GS 1000EK ITT CVC25/30
TT Digivision Mu Hicontrol MC3896 ITI Digivision Mu Hicontrol 3896 Ferg. 3 V 43 Cir. Desc
Ferg. 3 V 48 Cir. Desc Ferg. 3 V 53 Cir Desc. Ferg. 3 V59 Cir. Desc. Loewe P17 Cir. Diag. Loewe C8500 Mono Cir. Diag. TX10 ($1550 / 1551$ Series) Cir. Diag. TX100/PC1 150 Cir . Diag
TX100 Cir. Diag. TX912/913 Cir. Diag. Thom 8290 Cir. Diag. Toshiba 211T4BA Cir. Diag JVC Technical Books

£6.00
16.00
£4.00
[4.00
¢6.00
¢4.00
E6.00
¢4.00
¢4.00
£6.00
£6.00
£3.00
£3.00
£3.00
£3.00
$£ 2.00$
¢2.00
¢2.00
12.00
E6.00
C2.00
$\underline{5200}$
¢2.00
from £2.00

REMOTECONTROL

HAND UNITS

IR8331 KT/K30 Non Tex

 1 R8420 KT3/30 Text (R8432 Toshiba (2295/2695)(R8435 Philips G11 Tex IR8443 Ferg. TX9/10/100 Text IR8613 Grundig Tex. IR8649 IT 3 \& 5 (with Mute). IR8650 ITT CT1511 (with Fine Tune) IR8689 Ferg. Stereo TX9/10100 IR8838 Granada/Redifitusion. IR8850 Rediftusion Mk4 Text IR8861 Panasonic TNQ 1633. 1R8867 Sony KV2222 IR8876 Fidelity CTV 14R/20R/22R IR8952 Ferg. T9/10/100 RCC IR8956 Ferg. TX10/ $100 / 2235$ iR8957 Ferg. TX 100 Text. |R8982 ITT Digivision FS9/1

REPLACEMENT VIDEOHEADS
 * * STARBUYS * *

Pergasonic $\mathrm{NV} 20000 / 33 \mathrm{l}$ Find

Ferg. 3V29/30/31/35

Akai VS4

Amstrad 7000
Amstrad 4600 MK2
Ferg. 3V43
Ferg. $3 \vee 324$ heads
Fisher FVM510-722 Fisher FVH516/520/530615/622/710
715720 $715 / 720$
Hitachi
Hitachi VT11/13
Hitachi VT64/65 Osaki/Goldstar VCR $32 /$ GHV1 2321
(413-048A)
Panasonic NV366

COME and SAVE with DAVE

£15.00
ع15.00
\& 16.50
. 175.00
£26.50
ع26.75
£29.50
£ 15.00
£16.50
£19.50

DRUMMOIORS

Sharp VC3800 (Pt No
RMOTP10.9GEZZ).
Sharp VC9100 (RMO
TP1010GEZZ)
LOADINGMOT IRS

Sharp VC9100 (RMO

TM1017GEZZ) $\quad £ 12.00$
Funai VCR4000 (8000-05-305) \quad. \quad 10.00

REJEMOTAS	
Hitachi VT9300 (5577291)	£12.00
Sharp VC9100/9300	£12.50
Sharp VC481/482	£13.95

NEW VIDEOBOARDS	
Ferg. 3V29 Audio Y/C Board	£15.00
Ferg. 3V29 MDA	$\mathbf{5 1 0 . 0 0}$
Ferg. 3V23/T/T Board	E15.00
Ferg. 3V23 Mechan Board	[15.00
Ferg. 3V35 YC Board PU10701	E15.00
CABJNETPARIS	
Thorn 8930/40 Top Covers Brand New Thorn 8930/40 Front Fascia	¢5.00
Brand New	\$14.75
Baird VC121 Front Fascia	
Brand New	¢10.00
Ferg. 3 V23 Front Fascia Brand New	\$75.00
Sharp VC383 Front Fascia	\$12.00
Rediffusion 620 Front Fascia	£12.00
SERVICEEQUITMENT	
Servo Test point Jig PuJ43067	\$19.50
Colour Bar Chart	£19.50
Strip Grey Scale	£19.50

CCAMERA SPARES

Saticon Tube Ferg. 3 V34
Compact Camera
£45.00
Saticon Tube Ferg. 3 V41 Camcorder ... $£ 45.00$

MISCELLANEOUS

Huorescent display for Ferg. Thorn

3V30/8930
$£ 2.00$

AUDIOCONTROL EEADS Ferg. 3V23 Ferg. $3 \vee 35$

Tho
12.00
vIDEO VHF-UHF
rom 95p each TELEVERTERS ${ }_{\text {Require }}$ per box of $50 \quad \mathbf{£ 1 2 . 5 0}$

W TREE + TRADE WAREHOUSE

TUBE REGUNNING PLANT NOW INSTALLED (Ex-SBW of Silsden) Qualified Operator RE-GUNNED TUBES WITH GUARANTEES AVAILABLE NOW!

THIS MONTH'S SPECIAL OFFER Ex-hotel stock. Portable Ferguson TX9's

ALL GOOD TUBES $\mathbf{E 5 5}+$ VAT

EXPORT ENQUIRIES WELCOME ON CONTAINER LOADS OF TVs \& VCRs

MAKE EEEs

IDEAL RENTAL SETS
Philips KT3s or Philips K30s. Working with new regunned tubes. 2 years warrantee on tube £59 EACH
OTHER MODELS AVAILABLE Mixed loads of TVs and VCRs by the container. Telephone NOW for details

TV WHOLESALER'S

PAGKAGE DEAL

10 TEXT SETS WITH HAND SETS £500 ONLY

 2 PANASONIC + 2 TX + 2 IV +2 PHILIPS K30 + 2 OTHERSQUALITY FIRST IS OUR PRIME OBJECTIVE OF 1991

10 JAP TOSHIBA ETC	$£ 250$	10 PHILIPS K SERIES	5220
20 FIN INLINE + VI	$¢ 275$	10 STARLINE + PHILIPS Gll	$£ 150$
20 GEC DELTA + DECCA 80	5200	100 FAULTY SETS MIX OFF TEXT	$£ 1000$

DIRECT LOADS AVAILABLE AT VERY COMPETITIVE PRIGES RING NOW FOR DETALLS

EXPORT ENQUIRIES WELCOME
 ALL PRICES ARE SUBJECT TO 15\% VAT \& BASED ON QUALITY

THE UK'S LARGEST INDEPENDENT WHOLESALERS HUSSAIN CENTRAL TV LTD

HAVE FIVE BRANCHES NATIONWIDE

 Offering the best stock at the best prices with excellent service

\author{

The only independent wholesalers approved by Teleprice and Clyesdale

DON'T DELAY - CALL YOUR LOCAL BRANCH TODAY

PAY LESS MONEY, MAKE MORE PROFIT

 ON NEW RETURNED AND B CRADE STOCK```
COLOUR PORTABLES
```

COLOUR PORTABLES
FROM
FROM
£35.00

```
 £35.00
```

MIDI HI-FI's FROM £20.00

FRONT LOAD VHS VIDEOS FROM $£ 60.00$
C.D. MIDI's

FROM $£ 50.00$
F.S.T. REMOTE

TEXT TV's
FROM $£ 50.00$
C.D. PLAYERS FROM £33.00

RADIO CASSETTE RECORDERS
FROM $£ 15.00$

PERSONAL C.D.'s FROM £23.00

THIS STOCK IS ALL B-GRADE RETURNS OR NEW, NOT EXRENTAL. ALL PRICES NGLUDE vat UULESS STATED.

COMPUTER PARGELS, 23 HOME COMPUIERS, BANGUNG FROM ATARA GAMES COUSOLE TO THE AMIGA 500. ALL FOR £1,425 (inc. VAT)

BRAND NEW TWIN SPEED REMOTE VHS VIDEOS $\mathbf{£ 1 6 0 . 0 0 ~ + ~ V A T ~}$
NOW IN STOCK 14" REMOTE PORTABLES £100 INC VAT (BOXED) 10" MAINS/BATT PORTABLES $£ 100$ + VAT (BOXED)



## CENTRAL TV

LONDON © BIRMINGHAM O BOLTON


NEW 'B' GRADE Portable $51 \mathrm{~cm}, 59 \mathrm{~cm}, 66 \mathrm{~cm}, 68 \mathrm{~cm}$, FST, Nicam, Fastext TVs - VIDEOS AUDIO - MICROWAVES - HIFI Also stocks of Handsets, Video Heads, Aerials, Set-Tops, Selfix-R.F. Leads, A.C. Leads AGENTS REQUIRED FOR UK \& EXPORT

## EXCLUSIVE

TRISTAR SATELLITE SYSTEM DISTRIBUTOR IN BIRMINGHAM


Stereo
Full Remote Control Upgradable

- 60 cm Offset Dish
- Pre-Programmed 01-16 For Astra 1A
- 2 Year Guarantee on Receiver COMPLETE SYSTEMS IN STOCK
- All usual Accessories Available (x) Wan


## £110 + VAT

(minimum quantity 10 for this month only) Sleep Timer, 44 programme non-volatile memon. Function select. On screen display.

OTHER PRODUCTS INCLUDE:
Personal Stereo, Radio Cassettes, Midi's, Radios, Radio Alarms, Video Tapes, Batteries.

UHFNHF $14^{\prime \prime}$ COLOUR TV WITH INFRA RED REMOTE CONTROL

## HEAD OFFICE

## CTV BOLTON

Unit B1
Enterprise Centre Washington Street Off Deane Road, Bolton Tel: 020424262 Extn. 3001

## CTV LONDON

Eley Estate, Noble Road, (Off Angel Road, A406), Edmonton N18. Tel: 081-807 4090 081-884 1314

## BITEL SOUTH WALES

NEW DELIVERIES EVERY WEEK COLOURTV
PIL FROM £15 WORKING
R/C
R/C. FROM £28 WORKING

PORTABLE $\qquad$ FROM £40 WORKING FROM £50 WORKING VIDEO'S
FROM £45 UNTESTED
JVC HEADS £15
RANGE OF NEW HANDSETS
ALL PRICES INCLUSIVE OF VAT
Units 11 \& 12 Taverner Estate, Caerleon, Newport, Gwent (3 miles from M4, Junction 25)

Ring BOB on 0633430040

Q
Where can you buy:-

Intruder alarm panels
Keypads
Bells \& bell modules
Key switches
Magnetic contacts
Buzzers \& sirens
Security \& Floodlights

Fire control panels
Loop alarms
Bell boxes
Pressure mats
Window foil
Door loops
Passive infra red detectors






## VHFIUHF CTV's from $£ 30$ VHF/UHF FLL Videos from $£ 150$

 Fresh Stock Daily
## T.V. TRADE SALES

E.D.I. House, Kylemore Park West DUBLIN 10
Telephone: 01 6264139/6263517
Also at: Unit 11, Galvone Enterprise Centre, Roxboro, Limerick. Telephone: 06147577

UNIT 6, 68 BAYTON ROAD,
EXHALL, COVENTRY CV7

- TRADE ONLY
RING GARY ON 0203368437
 T.E.S.D. LTD.


# SIMPLY THE best prices <br> BEST QUALITY <br>  

## IN EX-RENTAL TV \& VIDEO EQUIPMENT

RING TONY ON
0553766766 FOR YOUR BEST DEAL YET!


TRADE MARK OF QUALITY

## VISIONS • LONDON

## Suppliers of THORN ex-rental TVs and Videos Working or Off-the-pile



Unit 4 Rainstar Ind. Estate Eley Estate Nobel Road Edmonton N18 OAA

## Phone now!!

081-807 7476/7579

## EXPORT ENQUIRIES: Fax 081-345 6597

## $\star$ VISIONS ANNOUNCE A NEW CONCEPT FOR SERVICE ENGINEERS $\boldsymbol{\star} \boldsymbol{*}$

## NOW OPEN

SPARES TRADE COUNTER
Full range of spares for a busy Service Department or TV/Video Trade Refurbish Centre

MAIL ORDER DESPATCH OR CALL AT TRADE COUNTER

## TV WHOLESALER'S



## TV WHOLESALER'S

## INDEX TO ADVERTISERS

## A.A. Electronics

ADM Electronics
464
.463
ADM Electronics.
AGS Electronics.. A.M. Components Audiolink Services
Aviation Video
A-Z Electrics ...................................................................4637

Besco
Bi-Tel
. .450
.456
B.K. Electronics

Campion Wholesale Ltd.......................................... 461
Canvey Colour Tubes .................................................... 467
Celtek Electronics Lto 456
Central T.... 460
Chromavac Ltd $\qquad$
Chromavision..................
Colebourn Electronics... 444 452 Colebourn Electronics............................................ 465 CT.V. W..................................................................................... 455
Dalbani (UK) Ltd ................................................... 449

Data-Go
49
Data-Go..............
467
Display Electronics.
Donberg Electronics .........................................................
Doyle TV
East Cornwall Components...
464

East Cornwall Components.
East London Components...
Economic Devices.
402
Economic Devices
430,431
Electrosmart...............
Euras International Ltd
464
$\qquad$
Express Components Ltd.
Cover II
Express Components Ltd...................................................... 448
Express TV .......
General Factors .......
G.G.L. Components ....................................... 462

Gogglebox .......................................................................... 455
Grandata Ltd. ...................................... 394, 395,396,397
Hardy, J.W.............................................................. 466

Henry's Audio Electronics
HRS 403,443,444446,448456
Hussain Central TV ................................................ 454 J.J. Components Jomill Enterprise

Kesh Electrics
KSA Electrical
Manor Supplies
Mauritron Technical Services............................. 463
Microforge Ltd .......................................................... 465

Muter, Ullich Ltd
465
N.G.T. Electronics Ltd.

Ogdens.
Omega Electronics
\& E Services
Powell T...
P.V. Tubes
............
Relay Omagh Ltd
Renvue CRT Ltd
Semple Service
Sent Compontin
Sherwod Tube Ltd ..........468, Cover III, Cover IV
Sonic TV Distributors.
Stellar Supplies
Stewart of Reading
…............................. 448
TBR Software
Technical Information Service
Teleprice Ltd.
Televideo Services
T.E.S.D. Ltd

Thorn EMI.
Thrifty Spares (Wales
Tidman Mail Order Ltd
Tree, W., Trade TV
TV Trade Sales
Vision Land.
...........



# TELEOUSLOACLAS5FIED 

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cms ). Classified advertisements 70 p per word (minimum £12), box number $£ 4.00$ extra. All prices plus $15 \%$ VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS.


PHONE 071-261 5942 FAX 071-261 5546

## LINEAGE

VINTAGE TELEVISION, Radio \& Audio enthusi asts:- Contact us for components, valves, vintage CRT's, service sheets. radios and amplifiers. Mail Order to anywhere - over the counter retail Saturday only. Send $£ 1.50$ for catalogues and sample newsheet. The Vintage Wireless Company. Tudor House, Cossham Street, Mangotsfield, Bristol, BSI7 3EN. Tel:- 0272565472 or Fax 1272 575442. All major credit cards accepted by letter, phone or fax

201 SONY TUNERS. New ex-cquipment KVX 1-463-882-1। U743. KVM 1-465-135-11 FUF 743. Offers. (18) $659+280$.

WINTED: VALVES, EL 37. KT(6, KT77. KTK8. PXt. PX25. complece collections. Shop deatance considered. Also transistors and IC $\times$ Send written list. We reply within 24 hours. Billington Valves. Oakdene Industrial Entate. Bolney Road. Cowfold. Near Horsham. Susex R1II3 siz. Tel (0403 shitur. Fax (14) 3 865106. Telex 87271

OChRE MILL TECHNICAL SERVICES. Grundig T. V. spares for most models to 1985. Fast friendly, helpful, sensible prices. Gt. Lype Farm, Charlton, Near Malmesbury, Wilts. SN16 9DR. Tel. (0666) 823228.

EX EQUIPMENT working T.V. panels and components. Ferguson, GEC. Philips. P'ye, Decca, ETC S.C.S. 1243828830 .

BUSINESS FOR SALE. T.V. video audio sales/repait plus video library for sale. Very profitable business. Very genuine reason for sale. Lse 12 yrs. Rat $\mathfrak{f o}^{2} 500$. Price $£ 40 .(1) 0$ ) inclusive. S/London. Tel: 071-737 6383 anytime.

METERS RECONDITIONED. $£ 1,00$ slot meters for TV Rental £4.95. Tel. Audiotech: (17013 245.

WANTED USED COLOUR TV'S, working will collect pay cash, also sthellite equipmem. Tel: Bill $171-792$ K177 (1 oncten).

Valde wholesale and export. Audio Industrial. Receiving, television, transmitting, one million valves in stock. Billington Valves. Oakdene Industrial Estate, Cowfold, Near Horsham, Sussex KH13 8AZ. UK Phone ( 0413865105 . Fax 14438865106 Telex 87271. Special retail offer PL519 £4.95 + VAT Post Paid. NB. Our minimum order is always $£ 20+$ VAT.

WANTED MANUAL FOR TEKTRONIX. 453 scopd and E.H.T. transformer if pussible cash available. (1443 685044.

METERS RECONDITIONEID, $10 p / 50$ p available from stock. Contact The Meter Co (Poole) Ltd. (0302) 683498.

LEADER LCT 910A CRT tube rejuvenator 995 inc hases. $5^{\prime \prime}$ single beam oscilloscope 10 meg probe $£ 95$ Easyview 0222 37150) mornings 10-1

## SPARES \& COMPONENTS

## SPARES?

Try us for I.C.'s. Semiconductors, Heads, Remotes Leads, etc., lots of weird and wonderful bits and preces as well as the popular stuff!

If WE HAVEN'T GOT IT WE CAN PROBABL Y GETIT AS WE HAVE ACCESS TO MOST MANUFACTURERS SPARES OGDENS




USED VIDED SPARES
VHS - BETA - 2000PANELS, MOTORS, CABINETS, TUNERS LOADING MECHANISMS, ETC SAVE EEES PHONE US WE MAY HAVE IT Mail Order and S.A.E. for Enquiries GENERAL FACTORS
Unit 28, Car Grange Works, Hyde Park, Doncaster. Tel: 0302323834


# CLASSIFIED CLASSIFIED CLRSSIFIED CLR5SIFIED CLRSSIFIED 

## SPARES \& COMPONENTS

## ELECTRONIC \& SATELLITE COMPONENTS

| TV \& VIDEO I.C.s |  | LINEARS |  |
| :---: | :---: | :---: | :---: |
| AN262 | . 95 | CA270CE | 45 |
| AN304 | 2.52 | CA3045F | 80 |
| AN5015K | 2.50 | CA3089E | 90 |
| AN5612 | 1.54 | CA3127E | 75 |
| AN5620X | 2.65 | LM339D | 25 |
| AN6306 | 5.50 | LM339N | 28 |
| AN6320N | 2.10 | LM348N | 50 |
| AN6326N | 2.45 | LM358N | 30 |
| AN6328 | 2.45 | LM380N-8 | 1.00 |
| AN6346N | 2.62 | LM393DP | 30 |
| AN6347 | 2.10 | LM2901N | 24 |
| AN6350 | 4.27 | MC1455 | 34 |
| AN6360 | 1.82 | MC1488P | 50 |
| AN6362 | 2.95 | MC1747CP2 | 40 |
| AN6881 | 2.30 | NE555N | 15 |
| BA618 | 1.15 | NE556N | 25 |
| BA6301 | 1.40 | SAA661 | 1.00 |
| BA7001 | 1.05 | TA7555P | 60 |
| BA7004 | 1.40 | TBA120S | 40 |
| BAB500 | 9.95 | tbab00 | 50 |
| HA17458PS | 70 | 741 CN | 16 |
| LA7031 | 1.75 | TRANSISTORS |  |
| LA7032 | 2.06 | BC108B | 10 |
| LA7033 | 2.80 | BC109B | 10 |
| LA7210 | 1.25 | BC109C | 10 |
| La7505 | 1.75 | BC119 | 35 |
| LA7910 | 1.05 | BC139 | 15 |
| LU11417A | 3.60 | BC141 | . 18 |
| LU52511A | 3.60 | ${ }^{\text {BCI }} 142$ | - 18 |
| LVA503 | 1.40 | BC153 | 07 |
| LM1889N | 2.80 | BC154 | . 07 |
| M51393AP | 2.50 | BC182L | . 06 |
| MC1408P8 | 1.00 | BC213 | . 06 |
| MN15823FVG | 10.80 | BC214B | 06 |
| OECOOO1B | 4.45 | BC214L | 06 |
| OEC2001 | 2.85 | BC478 | 16 |
| SONY 134A | 4.25 | BC549 | .06 |
| TD62105P | 1.00 | BC557B | 06 |
| ULA1H035E2 | 1.55 | BC558 | 06 |
| UPA53C | 3.45 | BCY71A | 12 |
| UPC1382C | . 77 | ВСү79B | 10 |
| UPC1397C | 3.15 | BCY347A | . 06 |
| 14DN156 | 4.50 | BF137 | 25 |
| 14DN157 14DN244C | 4.50 4.85 | BF161 BF180 | 20 |

ELECTRONIC COMPONENTS: ADD £1.00 POSTAGE, THEN $15 \%$ VAT TO TOTAL List available.

## AMSTRAD

4600 Video and Audio PCB \&1150 4600 Systems Control/Servo PCB, Display and Control PCBs 4600 MkII Video and Audio/Timer/Control PCB Assy 4700 MkII Video and Audio/Timer/Control PCB Assy. VCR100 Video and Audio/Timer Control PCB Assy
5200 Timer and Channel Display PCB Assy.
5200 Audio Tuner PCB 4600 Video Cassette complete mechanism (no drum or video heads)
4600 Video Cassette complete mechanism (with drum no video heads)
4600/4700 Power Supply 4600/4700 Capstan Motor

HANDSETS
VCR4600/4600MkII
VCR4700
VCR5200
VCR6000 Easy Programme VCR6100 Barcode TS90/99 Tower System

CTV2200 PCB No: 3 (Part 270087) TVR1 Control Panel/Preset PCB
£6.90

FRENCH 4600MkII Spares Video and Audio/Timer/Control PCB Assy (Secam)

## Handset (French)

11.50

Power Supply (220v)
$£ 4.60$
Front Panel (French)
AMSTRAD SPARES:
PRICES INCLUDE VAT,
POST AND PACKIMG EXTRA.

## Harrison <br> Electronics

CENTURY WAY, MARCH, CAMBS PE15 8QW. FAX: (0354) 51416. TEL: (0354) 51289

WZARID DISTRIBUTORS MANCHESTER TV \& VIDEO SPARES
We stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, HINARI \& 'DECCA'
And also THORN \& ITT FIDELITY SPARES MAIN DISTRIBUTOR. Main Distributor for Schneider non account customers

$$
\begin{aligned}
& \text { Always in stock- } \\
& \text { Video Heads for over } 500 \text { models } \\
& \text { Service Manuats tor ver } 200 \text { models } \\
& \text { Handsets for over } 200 \text { models }
\end{aligned}
$$ Spares for over 20 manulacturer

Assistance and Frien Service alo and Frie
WIZARD OFFER A GREAT DEAL
counter open Monday-Friday $\begin{gathered}\text { 9am-4.45pm } \\ \text { Mail Order-Accessivisa }\end{gathered}$
EMPRESS STREET WORKS EMPRESS STREET
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

## SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

## STANDARDS CONVERSION

AMERICAN/CANADIAN/CARIB (NTSC) VIDEO rates.
Secam conversions and tape copying also available. Private and company work welcomed
Send material with requirements or Phone/Fax 0444 4000919 a.m. 9 p.m.
AVIATION VIOED (GATWICX) ALEXANDERS
High Street, Handcross, W. Sussex RH17 6BS

| 5200 Video PCB $£ 13.80$ | CCIV TELEPHOTO CAMERA LENS <br> C-Mount, F1.3. 50 mm |
| :---: | :---: |
| CTV2200 PCB 4 ¢ | Price: (incl. postage and VAT) £22.50 |
| $4600 \mathrm{MkII} / 4700$ | MGT5-2OB GOULD POWER SUPPLY <br> 5v@20A, 12v or 15v@1.75A. |
| RF Modulator £5.75 | 12v or 15v@1.75A <br> Price: (incl. postage and VAT) <br> £24.00 |
| PALCOM RECEIVERS | LNB's |
| SL600 Sophisticated, 100 Channel, remote | 10.95-11.7GHz |
| control, stereo, on-screen graphics, | 2.3 dB max. $\quad$ E30.00 |
| receiver. $£ 254.44$ | 1.4 dB max. $\quad$ E77.70 |
| SL5000RP High quality, 200 Channel, | 1.3 dB max. $\quad 882.65$ |
| remote control, on-screen graphics, stereo | 1.2 dB max. $\quad 887.60$ |
| receiver/positioner. $£ 499.96$ | 1.1 dB max. $\quad$ £107.80 |
| GS-4 Highly sophisticated, professional, | Telecom 12.5-12.75GHz £107.80 |
| 200 Channel, remote control, Hi-fi stereo, | DBS 11.7-12.5GHz £125.80 |
| on-screen graphics, receiver and separate | C Band 3.7-4.2GHz |
| positioner. | 60 Deg. LNB $£ 99.80$ |
| DISHES | 55 Deg. LNB $\quad$ £140.00 |
|  | 45 Deg. LNB |
| Aluminium Unpainted Spinnings | 50-54 Deg. LNA £108.70 |
| $90 \mathrm{~cm} 11^{\prime \prime}$ Focal Length $£ 42.40$ | C Band Blockdownconverters |
| $1.2 \mathrm{M} \mathrm{22"} \mathrm{Focal} \mathrm{Length} £ 76.90$ | 12 dB Gain $£ 50.00$ |
| 1.5M 22" Focal Length ¢94.15 | 20 dB Gain £53.25 |
| $1.8 \mathrm{M} 22^{\prime \prime}$ Focal Length $£ 106.40$ | Racal Magnetic Polariser £41.85 |
| Aluminium Painted Spinnings | Adaptor (Interface) Card $£ 22.35$ |
| $90 \mathrm{~cm} \mathrm{11"Focal} \mathrm{Length} £ 48.30$ | Ortho-Mode Transducer £62.05 |
| 1.2M 22"Focal Length $£ 96.60$ |  |
| 1.5M 22" Focal Length $£ 117.85$ | Ku-Band Feed Horn <br> £25.95 |
| 1.8M 22" Focal Length £136.55 | Ku-Band Feed Horn $\quad$ 25.95 |
| Aluminium Periorated Spinnings | C Band Feed Horn £30.36 |
| $93 \mathrm{~cm} \mathrm{11"Focal} \mathrm{Length} £ 66.85$ | Dielectric Plate |
| 1.5M 22" Focal Length $£ 127.95$ | Global Accessories |
| $1.8 \mathrm{M} \mathrm{22} 2^{\prime \prime}$ Focal Length £148.05 | Line Amplifier $£ 22.70$ |
| Fixed Wall Mount to suit $11^{\prime \prime}$ Focal Length | 2 way Splitter $£ 18.80$ |
| Dishes $£ 31.40$ | 4 way Splitter $\quad £ 35.80$ |
| Horizon-Horizon Drive Mount to suit 11" | V/H Switch £48.40 |
| Focal Length Dishes $£ 181.85$ | All Satellite equipment prices include VAT; Post and Packing Extra. |
| Galvanised Polar Mount to suit $22^{\prime \prime}$ Focal |  |
| Length Dishes E99.20 |  |
| 12' Actuator Arm, Pulse type $£ 56.80$ | Write or Phone for FULL catalogue. |

## LOST COST <br> REPLACEMENT L.O.P.T.

 for Fidelity $\mathbf{3 0 0 0}$ chassis £8.50 each + VAT + £1 P\&P. Send large SAE lor ist of bargain priced spares.
## A.G.S. ELECTRONICS

Unit 2, Haxter Close, Belliver Ind Est,
Plymouth, PL6 7DD. Tel: 0752767738

## LASERS

Laser Diodes, Driver I.C.s, Driver Modules, Power Supplies, Optics, Optocouplers, Lasers for Light Shows \& Discos.

## Send S.A.E. (A4).

## ACCESS PACIFIC LTD

## Kymbrook School House,

Kimbolton Road, Keysoe, Bedford MK44 2HH Tel: 023062695 . Fax: 023062795

## SERVICE DATA

## 

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances etc.
Equipment from the 1930's to the present and beyond. Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders.

MAURITRON TECHNICAL SERVICES (TV), 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 4QY.

Tel: (0844) 51694. Fax: (0844) 52554

#  

## TECHNICAL INFORMATION SERVICES (T)

76, CHURCH SIREET, LARKHALL, LANARKSHIRE, ML9 IHE
Phone :(0698) 884585, Mon-Fri, 9am-5pm. OR. Phone:(0698) 883334 any other time.
PHONE OR WRITE NOW FOR FREE GUOTE \& FREE CATALOGUE with every S.A.E
Over 200 separate Tites of Technical booke are alwaye in sack, over $1 / 2$ are excluelve to TIS.
SOME SELECTED TITLES


SERVCE MANUALS 8 SERVICE SHEETS
Remember, not only do we have EVERY Service Sheet ever made, but we also have THE WORLDS LARGEST SELECTION OF SERVICE MANUALS
COVERING: MONOICOLOUR TV. VDEOS, CD'S RADIO, COMPUTLRS STEREOS, TUNERS, ETC..

SPEEDY DIAGNOSTIC INDEX<br>Buy only what you need. Speed up<br>troubleshooting and SAVE<br>TELEVISION's VCR Clinic PLUS (other VCR references) and TV Fault Finding Indexes for 1988, 1989 and 1990 contain 6 A4 pages each.<br>TV and VCR Indexes (covering 1982-1990) are $£ 3.00$ for each and any pair of years nominated and $£ 2.00$ for any single year.<br>Crossed Postal Notes or cheques to-<br>P.O. Box 327, MI. Eliza, Victoria 3930, Australia.

## SERVICE MANUALS <br> VCR-CTV - MTV -SATALLITE

Most makes and models - UK, Japanese, Korean, German, USA etc. types available.
DATA-GO 112 AMEYSFORD RD., FERNDOWN, DORSET BH22 9QE. Tel: 0202894207
Telephone enouries ony betwen 1 Gam-5pm Monday Fin

## FAST FIX <br> TV \& VIDEO INDEX SYSTEM FREE 1990 CD CASEBOOK INDEX WITH EVERY ORDER

If you keep back issues of Television the Fast Fix fault card index system will provide you with a speedy means of locating TV, video/camcorder or CD fautts published in the magazine. Individual cards, arranged alphabetically, list model/chassis and fault symptom. Thousands of faults are listed covering the years 1981-1990 inclusive. Ready boxed, quick to use and easily updatable, Fast Fix could pay for itself with just one successful repair Money back guarantee if not completely satisfied.

FAST FIX TELEVISION ............................. £ $£ 35$ nausuve
FAST FIX VIDEO.
£30 incusive
Send Cheque/Postal Order payable to:
A. G. HUMPHREYS

13 MANSFIELD AVENUE, ST JOHNS PARK.
FOR FURTHER DETALS TELEPHONE

## GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German. European and Japanese service sheet or manual. Thousamels of different sheets and manuals in stock. For any enquiries:

> DÖNBERG ELECTRONICS

Schoolmasters House, Rannafast,
Co. Donegal, Republic of ireland. Phone: 07548275

## NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:

## $£ 7.50$ for Television Faults $£ 7.50$ for Video Faults

 or $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY.
Please add $£ 1.50$ per order for P\&P

## TEST EQUIPMENT

## TEST INSTRUMENTS AS NEW - GUARANTEED

4 to 14 Months Old — all with operation manual

HITACHI 60 Mhz oscilloscope V665 AUTO d/tracer MAPLIN 1 Ghz counter - timer MF-1000
BLACK STAR - ORION - Colour pattern generator BLACK STAR - Jupiter - Function generator 2000 BLACK STAR - True RMS Murtimeter 3210 BLACK STAR - True RMS
HAMEG component tester
ANTEX TCSU-D Temperature controlled soldering
CAPACITANCE meter C.I.E. 7705
CAPACIT ANCE meter C.I.E.
RS High voltage probe 40 KV
RS High voltage probe 40 KV
AVO Meter Mk V recently recalibrated
AVO Meter Mk V re
RS 8 Amps Variac
RS 8 Amps Variac
Over 85 current service manuals -
plus 18 semiconductors data books equivalents $\quad$ £1050.90 $£ 350.00$
Some discount for the complete test instruments package
plus free service manuals-data books and other items worth over $£ 1,400$
P/P - Special Delivery NOT INCLUDED

## A.A. ELECTRONICS

TEL 0217222803
FAX 0217420076


## 

## VIDEO AND HANDBOOK

SUPPLIERS OF ALL MUTER REPAIR AND TEST EQUIPMENT.
BMR 95 TUBE REGENERATOR
BMR 107 TUEE REGENERATOR
CBE DEGAUSSER
$\begin{array}{ll}\text { RTI } 2 & \text { VAAIABLE ISOLATING TRANSFORMER } \\ \text { CSG } 4\end{array}$
CSG 4 PATTERN GENERATOR
AT2 AUDIO SERVICING UNIT
ION2 IONSER
ASK FOR FREE BROCHURE
34 GLAN-Y-MDR ROAD, PENRHYN BAY, LLANDUDND, GWYNEOO LL30 3PF.
TEL: 049249246 FAX: 049247880

## NEW TEST GEAR

Need a handy instrument for checking or testing audio circuits in video's, TVs \& sound equipment? Our NEW Micro-Lab Instruments are GREAT VALUE P37 SIGNAL TRACER inc. probes; Finds Faults Fast! P38 OSCILLATOR 5 Hz -20kHz $0-2 \mathrm{~V}$. 50 ohm. 4 wavetorms P40 DISTORTION ANALYSER for P41. 6 trequencies. P41 MILLIVOLTMETER $10 \mathrm{~Hz}-2 \mathrm{MHz} .1 \mathrm{mV}-100 \mathrm{~V}$. 6 ranges. Prices: P37: $£ 44.50+£ 3 p \& p+V A T=£ 54.62$ $\mathrm{P} 38,40,41: £ 64.95+£ 3 \mathrm{p} \& \mathrm{p}+\mathrm{VAT}=£ 78.14$ each Accessories: PP9 Batteries: $£ 2.90$ inc $p \& p+$ VAT

BNC to Croc-clip cable: $£ 3.50$ inc $p \& p+$ VAT Reg Mains PSU replaces PPg: $£ 18.91$ inc $p \& p+$ VAT

## COLEBOURN ELECTRONICS

Dept TV, 20 Folly Lane, St Albans, Herts. AL3 5JT $9 \times 4$ SAE or Tel. 072744785 for more details

## RECENT

 READER

A 55 minute video with a lavishly illustrated supporting th page At handbook amed at the practical sales person and installer. All you need to know to become conversant with the subject. A brand new course written and produced by experts in the industry. Send for full details.
Microforge Lid., 339 Clifton Drive South, St. Annes, Lancashire FY8 1 LP . Tel:0253 725499

Please send me further information on
SATELLITE TELEVISION SERVICING AND INSTALLATION"
Name
Address.

Post Code


SATELLITE TV
RECEPTION EQUIPMENT
 accessories IRTE 60 cm aw teetidolarsser Telecom LNB 1.28 Za max 1.3 m dish $\&$ feed Pulse type polariserfied
C band LNB $37-42$. C band LNB 3.7.4.2GHZ
Prices excl I vaT - Send


KESH ELECTRICS LTD.
Main St., Kesh. Co. Fermanagh. Nl.
Tel: 0365631449 TIx: 747412

## 

SATELLITE


| No spares for your satellites?? |
| :---: |
| CALL |
| THORN EMI HOME ELECTRONICS |
| THE ONE-STOP STOCKISTS |
| FOR SATELLITE SPARES |
| THORN EMI HOME ELECTRONCSLLASLALE SRIVEBLLBRROUGH NOTTS NG8 4LA |

## RECRUITMENT



## SENIOR TV \& VIDEO BENCH ENGINEER

With Management ability and good video experience to join our Regional Workshop based in East-Ham.
Marshall's is known for very good customer service and reputation.
Excellent prospects, pay and conditions.
Salary in the region of $£ 15,000$ - negotiable.
Please apply in writing to Mr Dave, Marshall's, 4 High Street North, London E6 2HJ

## 

## TUBE SERVICES

## CANVEY COLOUR TUBES

Registered Office: 'Fairlands', Beckney Avenue, Hockley, Essex SS5 5NR. Telephone: Southend on Sea (0702) 201108 ESTABLISHED 10 YEARS C.R.T.'s REPROCESSED TO ORIGINAL MANUFACTURER'S SPECIFICATION.

PHILIPS, SONY, HITACHI, etc. POLISHING SERVICE AVAILABLE

## REBUILT TV TUBES

 DIRECT FROM THE FACTORY WHERE THE BEST COSTS LESS FINEST QUALITYLOWEST PRICES SPECIAL DISCOUNTS FOR BULK BUYERS

2 YEAR GUARANTEE, 4 YEAR OPTIONAL ALL MAKES INC. SONY NATIONWIDE DELIVERY

## SHERWOOD TUBES LTD

 60A PEVERIL STREET, NOTTINGHAM NG7 4AH. Tel. 0602786896



| SONY TUBES REPROCESSED WITH ORIGINAL SONY GU |  |  |
| :---: | :---: | :---: |
| HIGH TEMPERATURE RE-PROCESSING of Sony, Mullard 45AX, 30AX, In-line, PiL, Mini ( 22.5 mm ) Neck and FST Tubes |  |  |
|  |  |  |
| For tube types not listed please enquire. |  | rs pelco |
| WELL VIEW, 114/134 Midland Road Tel Beds. LU2 0B Tel. 0582-402499 | WELL VIEW, <br> Southampton, Hants. Tel. 0703-449783. | WEST ONE Distributors Ltd. Tel. 0494-778197. |

## WANTED VHF, UHF TV \& VIDEO <br> Regular supplies of fully working TV's \& Video's. Must be VHF, UHF, tuners preferably have 'S' channel (cable) capabilities. High quality tuner conversion from standard UHF would be acceptable. <br> Please phone Dublin 0103531973751 daytime

## A UNIQUE OPPORTUNITY FOR

## HIGH CALIBRE ELECTRONICS ENGINEERS <br> WEST LONDON/MIDDLESEX BORDERS

 Our client is an established Service Company enjoying the confidence of many Japanese'Eufopean suppliers of Domestic Audiovideo Equipment. Wishing build upon and supplement its strengths it now plans ta venture into wider spheres of commerciannershould like to hear from well quatified, experienced engineers who wish to establish their own operation at $50 \%$ of the normal start-up costs. Requirements: * Strong stable background within the electrical brown goods sector.

* Good qualifications and strong hands-on experience; specialisation in any one of these special areas:

* Ability to workimanage independently al departmental and consultant level within a team structure.

For further information please write to Edward Stuart, c/o Businessolve-ESI, 37 The Gateway, Woking, Surrey GU21 5SL or telephone 0483760617.



|  <br>  <br>  |  |  |  |
| :---: | :---: | :---: | :---: |
|  <br> 晏 <br>  |  |  |  |
|  |  |  |  |
|  <br>  <br>  |  |  |  |
|  |  | - mim mome |  |
|  |  | XIL V/d |  |
|  |  <br>  <br>  |  |  |
|  |  |  |  |


[^0]:    Left: Belgian TV is now testing NICAM sound via certain transmitters as this caption across a test pattern indicates. Centre: A Visnews feed via Brightstar, Geneva to an American TV network during the period just before the Gulf war. Right: The current Radio Bremen test pattern.

[^1]:    Published on the third Wednesday of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the Riverside Press Ltd., St Ives plc. Distributed by IPC Marketforce, King's Reach Tower, Stamford Street, London SE1 9LS (071 2615000 ). Sole Agents for Australia and New Zealand - Gordon and Gotch (Avia) Ltd; South Africa - Central News Agency Ltd. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

