NOVEMBER 1990

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

 FREE 132-PAGE CATALOGUEWorth £1-50. Not available overseas

Inside the Ferguson TX98 Chassis

 Satellite TV Band Scanner Unit Features of the Sharp VCD-805 VCR VCR Clinic•TV Fault Finding Servicing Microwave Ovens

186-200 North Road, Preston, Lancashire, PR1 1YP. England. Phone: Preston (STD 0772) 555034. Telex: 677122. Fax: (0772) 201905.

On sale October 17th

COPYRIGHT

(C) IPC Magazines Limited, 1990. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES AND BINDERS

Indexes to Vols. 36 and 37 are available at 80p each from the Editorial Office (address above).

Binders that hold twelve issues of Television are available for $£ 4.50$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders".

SUBSCRIPTIONS

An annual subscription costs $£ 20$ in the UK, £24 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $£ 1.80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them.

this month

13 Leader

14 Letters
15 Next Month in Television
18 Satellite Band Scanner Unit
Denis Mott
Provides a panoramic display of satellite band signals, indicating relative signal strengths. The unit also incorporates a signal strength meter. An adapted TV chassis, some satellite TV receiver units and extra interfacing circuitry are used - you can adapt whatever's available. By far the best way of seeing what's going on up there.

22 Teletopics

News, comment and developments.

24 VCR Clinic

Reports from Philip Blundell, AMIEIE, Eugene Trundle,
Alfred Damp, Ed Rowland, John C. Priest, Jim Littler, Jeff
Herbert, S. Da Costa, Ian Bowden, Mick Dutton and Nick Beer.
26 Inside the Ferguson TX98 Chassis
J. LeJeune

Remote control, frequency-synthesis tuning, teletext, scart
facilities and other features are all incorporated on a neat main panel of modest dimensions. Some clever chips and signal switching arrangements make it all possible. A look at the techniques used.
30 Long-distance Television
DX conditions and reception and news from abroad. Plus a review of the SatView dish alarm designed to protect satellite $T V$ equipment from theft or tampering.
32 Features of the Sharp VCD-805 VCR
Mick Dutton
Despite its modest price Sharp's top-of-the-range VCR incorporates a number of sophisticated features using digital circuitry. A look at the signal processing in the digital section of the machine.

TV Fault Finding

Reports from Eugene Trundle, Nick Beer, Ed Rowland, Jim Littler, lan Bowden, Paul Hardy, Stephen Leatherbarrow and Hugh MacMullen.
Practical Digital Logic, Part 2
David Botto
Mainly on the new logic symbols and the dependency notation system used with them.
42 CD Player Casebook
Reports from Mike Leach, lan Bowden and Nick Beer.
NICAM Digital Stereo Sound, Part 3
Eugene Trundle
This concluding instalment covers decoder setting up and fault diagnosis plus separates and add-on units and interfacing.

45 Servicing Microwave Ovens

Nick Beer
Microwave ovens are made by brown goods manufacturers and use technology that should be familiar to TV/video technicians. Servicing them is thus a logical extension of TV/video work and can be profitable. There are important safety considerations.
48 Test Case 335
OUR NEXT ISSUE DATED DECEMBER WILL BE PUBLISHED ON NOVEMBER 21

解

video heads－Cont．

mitsubish
HS304HS310HS320HS700
HS3063 HS 710
H 5303
H 5301

NATIONAL PANASONIC

4HSS－3HSSN
NV3000／NV300／NV7200／NV333／NV7500／NV7800 NV7850／NV32ZNV332NV340／NV390／NV2000 NV2010／NV7000／NV8170／NV8200／NV8400／

NATIONAL

NV777NV330
NV430 NV460
NV730NV770
NV366
NV180
NV180
NV370／NV3
NV370～
NV788
Nv810
NV810
NV850
NV870
NV870
NVG15
NVG30
NVG33／nvgatinvga6
NVG40／NVG130
NVG400
NVG 10 NVG 11 NVG12NVG 14
NVG 16／NVG120EM
NVG 18
NVG20NVG2 1 NVG2ZNVG25／NVG2
NVG50
NVG730
NVH70
NVH65／NVD80
NVG7／NVG9
CAM CORDER VEH 0366
CAM CORDER VEH 0292
N．E．C．
N9011／N9012／N9013E／N9014E／N9014G／N9015／ N9016Nsola
N911AN915AN916A917
ORION
H3VH555NH600NH700NH844
H900NH100
617．50
PHILIPS
VRG460NR6520VR6920664VR60 VR6711 4 HEAD
sAISHO
VR100NR605NR705NR805NR905
RR1000NR 1200 VR 1600
VR3300XVR3600XNR3650NR3800
R3200
SAMSUNG
SVX301NB9GoNBB91ONVT51aNT320NT5600 $\times 510 \mathrm{~N} \times 511 \mathrm{~N} \times 520 \mathrm{~N} \times 616 \mathrm{~N} \times 626$
v×627N 6717
6900370097
E22．00
E27．00
SANYO
TC5000 NTC5400NTC600NTC6500NTCM10／ VTCM11NTCM2ONTCM21NTCM25 TC5100NTC5150NTC5300
TC5350NTC5370NTCNX10NTCNX15
TCNX30NTC5500
TC9100NVTG9300NTC9955NTC9500
TC5500
VHR1110NHR1150N
VHR3200NHR3270NHR3100NHR3150／
HR3400（FVH－P15）
VHR 1200
SHARP
レC300NC $381 \mathrm{NC3B3NC386NC387NC388NC482}$
VC483VC486／VC3300 NC83B1／VC9100NC9300
VC582NC583NC651NC681NC750
VC780NC781
VC600NCG300NC7300NC7700
VC7750NCB300
£14．50

SONY
OSR－35R（FOR C2OC3OC4OSLF IUBSLF1E）
2 PIN
DSR－43R（FOR SLC7 RANGE／SL5000／SL5100；
SL30001 1 PII
TOSHIBA
V2N1N31
V55N57
C1NT3N74N75N81N82NB3N84
V85N86V87
$\checkmark 5430 \mathrm{~N} 5480$
TRIUMPH
R9501～R 9511 NR9592

VCR PINCHROLLERS
AKAI
VS9300．VS9500，VS9700，VS9800 VS1，VS2，VS3，VS4，VS5，VS6，VS9，vS10 ${ }_{3200}^{280}$ VS105，VS112，VSI115，VS116，VS126．VS244． VS245，VS247，VS248，VS515，VS516， 2500
VS201，VS30i，vS303，VS304，VS603，VS606， VS201，V5301，VS303，VS304，VS603，VS606，
VS607，VP5SP82
250p VS125．VS155，VS165，VS220，vS240，vS250， VS125．VS5
vS512．VS

AMSTRAD

VCR4500，VCR4600，VCR4600 MKIII．VCR4700250p VCRE5200
VCR7000
FERGUSON
$\begin{aligned} & 3 V 00,3 V 16,3 \vee 22,3 V 23 \\ & 3 V 29, \\ & 3 V 30, ~ 3 V 31,3 V 32\end{aligned}$
3V29，3V30，3V31，3V32，250p
$3 \vee 35, ~ 250 p$
$3 V 355,3 \vee 36,3 \vee 38,3 \times 39,3 \vee 42,3 \vee 43,3 v 44,3 \vee 45$,
3V48，3V53，3V54，3V55，3V56，3V57，3V58，3V59，
3V64，3V65，FV10，FV11．FV12，FV14

fisher

FVHP420，FVHP520，FVHP530 320p
FVHP4565，FVHP710，FVHP715，FVHP716，FVHP722，
FVHP125，FVHP830
$\begin{array}{ll}\text { FVHPP25，} \\ \text { FVHP905，FVHP8970，FVHP980，FVHP990 } & 3200\end{array}$

HITACHI

VT11．VT33
VT61，VT62，VT63，VT64，VT65，VT86，vT88，VT110，
250p
VT61，VT62，VT63，VT64，VT65，VTB6，VT188，VT110，
VT122，VT120，VT128，VT130，VT135，VT 138 ，
VT150，VT168，VT220 250p
VT5000，vT8000，VT9300，vT9500
VR3605，VR3905，VR3935，VR3985，VR3986 VR3605．VR3994，V VR3993，VR3994，VR34，VR3954，VR3963，
VR3913，VR3914，VR394，
VR394，

JvC

hRзоо，нRзззо，нRз360，hR3660，hR4100． HR7700
HR
HR72700
HR7300，HR7600，HR7610，HR7650，
HR7655 HRD111，HRD120，HRD121，250p， HRD 110，HRD111，HRD120．HRD121，HRD140，
HRD 150，

MITSUBSHI

HS200，HS300，HS301，HS302，HS303．HS304． $\begin{array}{lll}\text { HS310，HS320，HS700 } & \text { 2500 }\end{array}$

natomal

NV100，NV180，NV300，NV333，NV340，NV366． NV600，NV688，NV777，NV788 250p NV230，NV370，NV430，NV460，NV730，NV810， NV830，NV850，NV870，NV890，NV2000．NV2010， NV3000．NV7000，NV7200，NV7800，NV8600， NV8610，NV8620．NVG 14
NVG7，NVG 19，NVG12．NV NVG7，NVG 19，NVG12，NVG18
NVG21，NVG25，NVH65

PHILIPS
VR6460
VR2020，VR2021，VR2022，VR2023，VR2024 320p
SANYO
VHR 1100 ，VHR1300，VHR 1500 ，VHR2300 320p VTC5000，VTC5150，VTC5500，VTC9300，VTCM10， vTCMzo

VC381，VC386，VC2300，VC3300，VC7300，VC7700，
VC381，VC386，VC2300，VC3300，VC7300．VC7700． VC387，vC481，vC482 vC483，vC486，vC496 VC581，vC582，vc583，vC585， VCC51，VC681，VC785，VC7750，VC780，VC781，
VC70
VC785，VC787，VC793，VC72 VC785，V

SLC5，SLC6，SLC7
SLC5，SLC6，SLC7
SLC9，SLC20．SLC24，SLC30，
SLC33，
SLC40， SLHF100，SLF1，SLF11，SLF25，SLF30，SLF60， SLF100

VCR BELT KITS
AKA
VP． 7100
VS－1
VS－2EG
160p

VS－2EG VSA VSsec

VS．－5EG
VS． 9300
VS－9300
vS－9500
Vs－9500
vs． 9700
vs 9800
AMSTRAD
TVR－1－2－3
VVR－1－1－3
VCF－4600 \＆MK2
VCR－4600
VCR－4700
VCR－4700
VCR－5200

FERGUSON

VIDEO MOTORS

If you purchase more
than one Servisol
than one Servisol
product postage will

* * UNNVシャ ${ }^{\star}$ *
UNIVERSAL
450p
$\star+$
* * ${ }^{\star}{ }^{\star}{ }^{\star}{ }^{\star}{ }^{\star}{ }^{\star}{ }^{\star}$ *
SONYONOOF
SWITCHES
200p
* * *

SG264A 800p
$\star \star \stackrel{\star}{\star}{ }^{\star}{ }^{\star}{ }^{\star}{ }^{\star}$
SWITCHES
150p

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top seling DUAL TRACE OSCILLOSCOPES. Select rom four superb models. All, with the exception of the HM 1005, incorporates a useful COMPONENT TESTER. Size - all models - $285 \mathrm{~mm} \times$ $145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear display $8 \times 10 \mathrm{~cm}$. Mains supply: $110,125220,240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$.
All supplied with 2 PROBES, a COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY.
HM203-7 20MHz STANDARD

SPECIFCATION

- Bandwidth: DC-20MHz
* Sens: Ch1., Ch2, $2 \mathrm{mV} / \mathrm{cm}$
*Triggering: DC -40 MHz
- Active TV-Sync-Separator
- Vanabte hold-off
* Trigger LED indicator
- Calibrator. 1 KHz Square wave
- Component tester

FREE Securicor Delivery
HM604 60MHz UNIVERSAL
SPECIFICATIO
42 Channels

* Bandwidth: DC-60MHz
* Sens: Ch1. Ch2., $1 \mathrm{mV} / \mathrm{cm}$
*Tmebase: 2.5s-5ns Cm
- Active TV-Sync-Separato
* Atter celay trigge
* Sweep delay * Detay line
- Trigger LED indicator
* Callbrator. 1 KHz \& 1 MHz Sa . Wave
* Component tester

Price $£ 610.00+£ 91.50$ V.A.T.

FREE Securicor Delivery
HM1005 100 MHz UNIVERSAL
 Channels-UP to 6 TRACES SPECIFICATION
Bandwidth: DC. 100 MHz

- Sens: Ch1, Cn2., Cn3, $1 \mathrm{mv} / \mathrm{cm}$ Tmebase A. $2.5 \mathrm{~s}-\mathrm{5ns} / \mathrm{cm}$ *Timebase B. $0.2 \mathrm{~s}-5 \mathrm{~ns} / \mathrm{cm}$ - Atter delay trigger * D * Trigger LED indicator * Overescan LED indicator * Active TV-Sync-Separator * Calbrator 1 KHz \& 1 MHz Sa Wave FREE Securicor Delivery

SPECIFICATHN
HM205-3 20MHz DIGITAL STORAGE

* Digital Storage
* Bandwidit DC-20MHz
- Sens. Ch1., Ch2.. $2 \mathrm{mV} / \mathrm{cm}$
* Timebase Analogue: $0.2 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$
*Triggening DC $\mathrm{DC}-4 \mathrm{OMHz}$
* Active TV-Sync-Separato
- Max sampling rate: $2 \times 5 \mathrm{MHz}$
* Memary $2 \times 1024 \times 8 \mathrm{Bit}$
* Dot joner
* Printer/plotter outpu
* Plus many more usetul feature

Price $£ 610.00+$ £91.50 V.A.T

Tests and rejuvenates blue, green \& red guns separately. Fitted with delta and P.I.L. sockets. Compact size $120 \times 65 \times 60$ mm. Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.

B \& K PRECISION CRT ANALYSER-RESTORER

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it.

- All CRT's checked identically inciuding all in-iine and one gun type * Tests ail three guns of colour CRT's simultaneously under actuai operating conditions (model 490) "Exclusive multiplex technique (model 490) *Measure true dynamic beam current that actually passes through G1 aperature to screen * Measures all shorts and leaks - preserving more CRT's - Tests focus electrodes lead continuity linding faults that other Testers miss 'Uses most powerful restoration method known with minimum danger to CRT Rejuvenated CRT development " Tests and rejuzenates VOU's and Oscilloscope tubes • A range of over 40 CRT base adaptors available - Increase profit * Pays for itself in months
PRICES
Model 490 Tri-dynamic three meter instrument inc. 6 common adaptors................. $8446.00+£ 66.90 \mathrm{~V}$. A.
Without adaptors
Model 480 Single meter instrument Inc. 6 common adaptors
Without adaptors.
Technical leaflets
$446.00+$ E66.90 V.A.T $£ 334.00+£ 50.10$ V.A.T £281.00 + โ42.15V.A.

SADELTA FIELD STRENGTH METER TC-402C THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels delivered by the antenna to a TV or FM receiver, in order to test the performance of the antenna and evaluate the best conditions during installation etc. To faclitate measurements, the

* Covering FM and all TV bands (UHFNHF) including CATV freq * Digital tuning display (3 digits) for direct frequency readout. * Accurate 10 turn tuning potentiometer.
* Built-in loudspeaker enables monitoring of sound in AM/FM.
* Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \mathrm{V})$
* Continuity tester 0-500 ohms
* Fully portable (battery)
* Sturdy carry case.

Price £259.00 + £38.85 V.A.T.
SADELTA COLOUR PATTERN GENERATORS
THE SADELTA RANGE OF HAND MELD COLOUR PATTE RN GENERATORS is intended
for use in production, installation and service of both colour and monochrome TV sets, wideo and computer monitors. In order to control and adjust the various parameters eight switchabie as the Generator has been designed using the latest micro-technology to achieve Iruly pocket size instruments, Internal re-chargeable N-Cd's. Suppled with9V power supply charger Size $131 \mathrm{~mm} \times 81 \mathrm{~mm} \times 23 \mathrm{~mm}$

T.V. PATTERN GENERATOR PAL MC11B UK *Band V $(21-34)$ * O/Put 10 mV into 750 hms *Band lil (5-12) *Sound outpu

- PAL I. Price $£ 124.95+$ £18.74 V.A.T

PAL VIDEO COMPOSITE GENERATOR

* PALB.G.I. Audio O/Put 10 mV Price £124.95 + £18.74 V.A.T
R.G.B. PATTERN GENERATOR

O/Put sigs. Pos RGB
Neg Composite * Blank TUI L5VP. etc. CC Neg. Composite Price £111.95 + £16.79VA.T
B.K.'S REVOLUTIONARY DYNAMIC 'LOPT' TESTER Revolutionary L.O.P.T. tester. Operates in dynamic mode which actually tests the withoi. under high vottage condition size $75 \times 100 \mathrm{de}$ dering or removal. $5 \times 100 \times 40 \mathrm{~mm}$. Supply 240 V AC

Price $£ 25.99+£ 3.90$ V.A.T.

* Full trig. fac. inc. TV frame etc. - Battery or mains adaptor Only $21 / 4^{\prime \prime}$ thick - Fits in a brief case Sens. 10 mV *Bandwidth 10 MHz ACCESSORIES Carry Case $26.25+\Sigma 0.93$ V.A T Probe $£ 7.50+£ 1.30$ V.A.T Mains Adaptor $£ 7.30+£ 1.09 \mathrm{VA}$.

DIGITAL LCR METER

* LCD Display
- 18Ranges
- Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$
* Capacitance 1 pf-200 $\mu \mathrm{f}$
*Resistance $1 \mathrm{ohm}-20 \mathrm{Mohm}$
* High acuracy

Price $£ 95.00$

SULATION TESTER 500V - Electronic battery operated Measuring Votage 500 VDC - Measuring Range $\mathrm{O}-100 \mathrm{Mohm}$ Centre scale 2 Mohm

\star Do you use cathode ray tubes?
\star Can't find a replacement or shocked by the cost?
\star It may well be that a rebuilt tube will solve your problem.

Come to one of the most experienced firms in the business. We have been rebuilding/remanufacturing cathode ray tubes for a wide range of users since the '60's.

Why not telephone Dave Dyson on (0895) 55800 to discuss your requirements?

DISPLAY ELECTRONICS LTD.

UNIT 3, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

MAKE YOUR INTERESTS PAY!
 Train at home for one of these Career. Opportunities

Over the past 100 years more than 9 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the quidance of expert 'personal' tutors. Find out how we under the guidance of expert personal tutors. Find out how we
can help you. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics
Elec. Contracting/ Installation	Computer Programming
CCSE/GCE/SCE over 40 examination subjects to choose from	

Name:

\qquad

P. Code

International Correspondence Schools, Dept. EGSBO 312/314 High Street, Sutton, Surrey SM1 1PR. Tel: 081-643 9568 or 041-221 2926 (both 24 hours

Our very simple offer to craftsmen

- Antex TCS 240V 50W and TCS 24V 50W.
- Temperature Controlled Solder ing Irons for electronic and elec trical applications - especially field maintenance and repair.
- Temperature range 200° to $450^{\circ} \mathrm{C}$. Analogue proportional control $\pm 1 \%$. Max. temperature achieved within 60 seconds. PLUS
- Antex M-12W; CS-17W; and XS-25W. Available in 240 or 24 volt.

Tools specially designed for fine precision soldering.
Ideal for all electronics craftsmen and hobbyists.
For full information on the comprehensive Antex range of soldering irons, power supply units and accessories, please clip the coupon.

Antex (Electronics) Limited, 2 Westbridge Industrial Estate. Tavistock,
Devon PL19 8DE. Tel 0822613565 . Fax: 0822617598 . Telex: 9312110595 AE G. Please send me full details of the full range of Antex soldering products.

Name
Address
Postcode_ \qquad (TV1)

DOUBLE D ARE PLEASED TO ANNOUNCE A NEW RANGE OF PRODUCTS FROM PROFEX OF GERMANY

CTV 5555
55 cm Television
ORDER CODE 96514

PW 90 ORDER CODE 96509

NIKKAI NT 14 14＂Multi System Colour Television

－ 11 Systems （ritomatic Channel Search
－Automatic System Selection Full Automatic Functions－Auto Shut－Off On Screen display unit －MFT manual fine tuning Sound Muting －Microchip tuner 圆 14 in in－line colour picture tube － 16 programme memory Infra－red Remote Control －Dimensions： $374(\mathrm{w}) \times 362(\mathrm{~h}) \times 393$（d） mm ．
ORDER CODE 96294B

ORDER CODE 96294
NIKKAI BABY 10
20＂Multi System Colour Television
with Infra－red Remote Control
Specification as NT14
Dimensions： $500(\mathrm{w}) \times 470(\mathrm{~h}) \times 460(\mathrm{~d}) \mathrm{mm}$ ．

$10^{\prime \prime}$ Colour Television

with Remote Control
Mute 图 32 Station memory capacity 1－99 Channel display on screen Sleep timer（30／60／90 mins．） － 2 Way operation AC／DC \square Power consumption： Mains 55W．Battery 45W．
Dimensions： $295(\mathrm{w}) \times 280(\mathrm{~h}) \times 330(\mathrm{~d}) \mathrm{mm}$
ORDER CODE 96289

VHS VIDEO PLAYER

NIKKAI NVP 89

ORDER CODE 96550
NIKKAI NK10

10＂Mono Television

with AM／FM Radio
AC／DC 12V or Dry Cell（ $10 \times 1.5 \mathrm{~V}$ ）operation
Rechargeable battery operation with recharge facility
－MWNHF Radio Earphone jack
－Built in telescopic aerial
－Dimensions： $245(\mathrm{w}) \times 245(\mathrm{~h}) \times 245(\mathrm{~d}) \mathrm{mm}$ ．
－AC／DC Operation PAL System－Dew Indicator －Up to 4 hours playback（E240 tape）Auto Rewind －Auto Repeat Auto Power on／off
－FF／Rewind／Pause 園 Audio／Video output connectors －Carry handle．Dim．： $290(\mathrm{w}) \times 125(\mathrm{~h}) \times 340(\mathrm{~d}) \mathrm{mm}$ ．

PANASONIC MC－E43N
 MC－E43N

edge cleaning－
Fully variable
power control 6.5 litre dustbag capacity －Bag full indicator Automatic height
adjustment in instant cord release E Integral tool
storage
．
650 watt mot Re－usabie dusthags Electrostatic filter $\quad 11.5$ brush and beater bar Headight Additional
extension hose
BUSH SR 3200 STEREO
Satellite Television
Receiver CW Dish

ORDER CODE 96271C

PARTS PROBLEM?

For
Sharp
Sansui

Phone David Allen 0734-876444

Grundig

Phone Philip Pratt 0734-876444
Fidelity

Phone Mike Curtis
Amstrad, Akai, Fisher, Mitsubishi, Moulinex, Goldstar, JVC, Nat Panasonic, Pioneer, Matsui, Saisho, Samsung, Salora, Sanyo, Sony, Toshiba, Yamaha and many others.

Ferguson GEC

0602-870789

You will not be disappointed, they know what they are talking about

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US		$\begin{aligned} & \text { PO BOX 72, UNIT } \\ & \text { PHONE (0228) } 3969 \end{aligned}$	SOUTH JOHN ST 3/20358 FAX (0228)	REET, CARLISLE, 515127	MBRIA CA2 5AL	BUY WITH
CAPACITORS	INTEGRATED	TYPE PRICE (E)	LINE O/P TRANS	REMOTE CONTROLS	TRANSISTORS	VIDEO HEADS
1UF at 250V. $\quad 20$	CIRCUITS	TVAI770A … $\quad 370$	DECCA 100 8.95	Ferguson 725 14.95	TYPE PRICE	Akai VS1/5...................23.95
4.7UF at $250 \mathrm{~V}-\quad .25$ 10UF at $250 \mathrm{~V}-\quad 35$	TYPE PRICE (£)	TDA1508A 1.95	FERGUSON 1790.1.........7.95	Ferguson TXG U/S 14.50	ВС307 10	Alba 4000................. 22.85
$\begin{aligned} & 10 \mathrm{UF} \text { at } 250 \mathrm{~V}=\begin{array}{l} 35 \\ 22 \mathrm{UF} \text { at } 250 \mathrm{~V}=\ldots \end{array} . . .40 \end{aligned}$	$\text { HA1377 } \quad 295$	T0A2003 $\ldots \ldots \ldots$	FERGUSON TX90(14) 19.75	Ferguson TX9/10	BC327 10	Amstrad 4500 19.95
33 UF at 250 V 55	HA130013.95	TOAZ004..................... 2.50	FERGUSON TX90 (20") 27.50	NText...................... 12.95	BC337.................. 10	Amstrad 4600 19.50
47 UF at $250 \mathrm{~V} \cdots-65$	LA4440		FERGUSON. TX100 900 19.95	Ferguson TX9/10 Text 12.95	BC547/8....................... 10	Amstrad 6000 28.50
100UF at 250V 125	LA4445........................ 245		FERGUSON TX100 110019.95	Ferguson TX Stereo.	BC557/8...... $\quad 10$	Amstrad 7000 21.95
	LA4460 245	T0A	FERGUSON TX100	Text	BC639.......................... 20	Amstrad 9000 19.95
DIODES	LA4461 2.45	TUA2270..................... 2.95	100DFST27.50	Fergus on TX90 Basic..... 14.95	BC640 20	Ferguson 3V00/3911.50
	LA7800 2.95	TOA2530...................... 2.00	FIDELITY ZX2000 14"/20	Ferguson TX 100 Text $\ldots . .14 .95$	B0238 40	Ferguson 3V32
	LA7801 2.95	TA2532 200	(Inc. Mod.).................. 12.50	Ferguson TX100 Stereo 14.95	B0677....................... 65	Ferguson 3V44/55 $\quad . \quad 22.95$
TYPE PRICE	M29381 $\ldots \ldots \ldots \ldots \ldots7 .95$	TDA2540 $\ldots \ldots \ldots \ldots \ldots \ldots1 .95$	FIDELITY ZX3000	Ferguson 3V2314.95	BF337 30	Ferguson 3V4339.95
	MC13002 …............... 4.95	IDA2541 2.95	$14^{\prime \prime} 20^{\prime \prime} \ldots ~ 11.50 ~$	Ferguson $3 \mathrm{~V} 31 . \ldots14 .95$	BF422- 3	Ferguson 3V64/65 29.95
BY127 10 BY179	MC14497P 4.58	TDA2560 1.95	FIDELITY DX $22 / 26^{\prime \prime} \ldots22 .95$	Ferguson 3V35	BF423.......................... 35	Ferguson FV11/12 29.95
	SAA1250.................. 4.95	+	HINARI CT4/5............ 19.95	5	BF458	Fisher PVH Series 19.95
BY227 20	SAA1251...................... 4.95	TDA2577....................... 375	$1 T \mathrm{Compact} 8011019 .95$		BF460 95	Hitachi 8000/9300.........19.95
BY229/800 95	SAA1293 6.95	3.95	5	Granada Universal 13.95	BF757 - - $\quad 70$	Hitachi VT1/33E.......... 19.95
BYX55/600 30	SAA5000A 3.95	TOA2578A 2.95	$1{ }^{1 T}$ CVC8001/23.........23.95	Grundig TP200 13.95	BR103........................ 75	HitachivT17/19E.........39.96
1N4007 10	SAA5010 . $\quad 4.95$	T0A2579 $\quad 3 . \quad 3 . \quad 3$	ITT CVC823P.............. 1255	Grundig TP400 Text13.95	BT151/800 1.35	HitachiVT63E............... 29.95
1N5408	SAA5012....................... 4.95	TDA2581 2.00	ITT CVC830.................. 15.95	Grundig TP630.650......... 14.95	BU126........................ 1.50	Hitachivt120 - 37.50
BZX61C (1.3 Watt)	SL1430......................... 1.95	00	ITT CVC110019.95	HinariCT5............2299	BU208A 1.45	Hitachivt130 32.95
4v7, 5v6, 6v8, 7v5, 8v2, 9v1,	SLI431 1.95	TDA2591/3.................. 200	ITT CVC1150................ 23.95	Hitachi 9300 ….... 14.95	BU208D ….............. 1.95	Mitsubishi $302 \ldots \ldots \ldots . . \quad 29.95$
11v 12v, 15v, 18v, 24v, 27v,		TDA2594 2.95	$17 \mathrm{CVC1200/1}$ …....... 19.95	Hitachi VT64E...............15.95	BU426A 1.35	Mitsubishi 303.............. 29.95
$33 \mathrm{v}, 47 \mathrm{v} 68 \mathrm{v}, 75 \mathrm{v}, 120 \mathrm{v}, 130 \mathrm{v}$	STK5332 ... $\quad 6$.	IDA2595 4.95	ITT CVC1204................1295	ITTFS9/10.....................14.95	BU508A … $1 . \quad 15$	Mitsubishi $307 \ldots \ldots32 .95$
Pkts of 5 pervalue...........1.00	STK5333 1250	TDA2600....................6.35	MATSUIC1410/142026.95	ITT RG305................... 14.50	BU508AF 1.95	Panasonic NV230 27.50
	STK5421 4.95	TDA2611A 1.50	PHILIPS CTX 14*/20"......19.95	ITT RG306............ 14.50	BU508D -	Panasonic NV333 --...... 11.50
E.H.T. TRAYS	\$TK5481 8.95	TDA2653A	PHILIPS KT3...............14.95	ITTVS4 N/Text 14.95	BU508DF 235	
		TDA3190 … $\quad 1 . \quad 195$		ITT VS5 Text _............. 15.95	BU508V …)............... 2.250	
	STK7308 7.95	TDA3330 3.95	PHILIPS K40 $\quad 23.75$	Panasonic TNQ1419..... 16.95	BU705 3	Panasonic N 7370 15.00
DECCA 120130 \ldots -	STK7348 STR441	TDA3540 TDA354	PHILIPS 2A 21.50	Panasonic TNQ1621 19.95	BU8071.30	Panasonic NV68839.95
ITT CVC20/30.............. 6.95	STR4090	TDA3560 4.95	SHARP C1410 $\ldots \ldots \ldots \ldots$	Panasonic TN02611.	BU826A 250	Panasonic NV73027.50
PHILPSKT3 - 7.95	STR4211 4.50	TDA3561A 4.95		Philips G 11 I/R N/Text ... 12.95	BU907 . . 2.95	Panasonic NV771 27.50
RBM T20,224 135	STR40090.................... 7.95	TDA3562A	N/OFF SWITCHES	Philips G11 I/R Text 1295	BU908........................ 1.95	Panasonic NV788 44.95
UNIVERSAL7.70	STR5412	TDA3562A (TFK) \quad -	TX9/10 Standard TX9/10....... 1.00	Philips KT3/30 N/Text.... 1295	BUTIAF $\quad 2.75$	Panasonic NV2000 .-. $\quad 11.50$
	STR50103A …- - - - - - . 6.50	TDA3565........................ 4.95		Philips KT3/30 Text. ${ }^{\text {a }}$.-...12.95	BUT12A 295	Panasonic NV7000 11.50
	STR58041.................... 6.95	TDA3571 B/Q.................. 7.75	1X90/100 Standard 1.50	Philips KT4/CTX Text $\ldots . . .12 .95$	BUT56A 2.85	Panasonic NVG792275
	STR6020 (K\|T) 5.75	TDA3650...................... 5.95	1x90/100 Remote1.15	Philips RC5991.............. 1250	BUX84 $\ldots \ldots \ldots \ldots$	Panasonic NVG10 .-... 27.50
FUSES	TA7193P..................... 4.50	IDA3651 $\ldots \ldots \ldots \ldots275$	Fidelity AVS 1.50		R4050	Panasonic NVG18 - 40.95
20 mm AS: (Pkts of 10)		TDA3651A	Fidelity CTV140,..............1.50	Philips VR6660/668016.75	T9053V 3.50	Panasonic NVG21 -...- 3595
$250 \mathrm{MA}, 315 \mathrm{MA}, 500 \mathrm{MA}$,	TA7227P -	TDA3652._._._.......... 9.95	Fidelity CTV14R	Reditifusion MKIV Text. 13.95	T9054V 3.50	
$630 \mathrm{MA}, 800 \mathrm{MA}, 1 \mathrm{~A}, 1.25 \mathrm{~A}$	TBA120U 1.00	TDA3653A 4.75	Fidelity CTV14S 2.95	Rediftusion MKIVA	T9064V................... 1.95	Philips VCR6462/6560 - 40.05
1.6A, $2 \mathrm{~A}, 2.5 \mathrm{~A}, 3.15 \mathrm{~A}$	TBA820M .-................... 125	TDA3654A 3.95	Grundig CUC731 3.50	Text..........- 14.95	T1P29E (T0168V) IJ 3	2.95
4A.5A	TBA950/2X 225	TDA4500 3.95	Philips G11..................... 1.35	Saisho RC33	TIP41C 45	Samsung VXC510......... 23.50
20 mm Q/B: (Pkts of 10)	TDA440 $\quad . \quad 2.95$	TDA4503.................... 4.50	Philips G11 Remote........1.75	Saisho RC40/44 15.75	TIP42C............................ 45	Sanyo VHP1100/1300..... 23.75
$500 \mathrm{MA}, 630 \mathrm{MA}, 800 \mathrm{MA}, 1 \mathrm{IA}$	TDA1035T	TDA4600/2 $\quad . \quad 2.85$	Philips KT3 Standard1.13	Saisho RC5116.95	TIP112H (T0167V)............. 75	Sanyo VHR1500............34.95
$1.6 \mathrm{~A}, 2 \mathrm{~A}, 2.5 \mathrm{~A}, 3.15 \mathrm{~A} \ldots, \ldots 60$	TDA1037 2.50	TDA4600/2D ……- $\quad . \quad 3.3 .30$		Sanyo E2 Text14.95	15/80H2.95	Sanyo VHR3200 .-........ 24.95
	TDA1044 . . -	TDA4601 3.50		Sony RM604/606 14.95		Sentra 800022.95
	TDA1170S..................... 1.80	TDA8180 (Genuine).........7.50	RBM T2OA Vol. 3K3......... 3.95	Sony RM615/632636 14.95	2SC1942 $\ldots \quad 2.95$	Shatp 9300/381 $\ldots \quad 19.95$
	TDA1180P...................... 2.65	TDA9503....................... 2.95	Sony kVI612 Genuine 3.95	Tashiko 140962 \ldots _- $\quad 15.75$	2SC3156 3.50	Sharp 581/681............... 19.95
IC SOCKETS	TDA1506 4.35	TEA1014 …................ 3.95	Sony KV2022 Genutne3.35	Tatung RC31 16.95	2SD7254.95	Solavox $1000 \ldots \quad . \quad 22.95$
16 Pin Dill-Dil.................. 15	TDA1510 $\ldots-\quad 3.80$	TEA2018A	Sony Universal...............3.75	Tatung RC40/43/45 15.95	2SD1398 235	Sony C5/67 $\quad 18.50$
18 Pin Dil-Dil	TDA1512.................. 3.50	UPC1365C................... 3.95	Tatung 140 Standard1.50	Tatung RC42 14.95	2SD1453 2.95	Sony C9 .-........... 295
24 Pin Dil Dil \ldots............... 25	TDA1515..................... 4.50	UPC1378H	Tatung 160 Remote 1.75	Tatung RC60............... 15.95		
28 Pin Dil-Dil 30	TDA1670A 4.20	UPC1394C.....................2.05	Thorn Universal 1.00	Toshiba CT9117.............. 16.50	$7812 \ldots . . .{ }_{-}$	Toshiba V $73 / 83823 .95$

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 1 .

ADVERTISEMENT MANAGER

Kevin Attridge
071-261 6671

SECRETARY

Janet Reeve
071-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
071-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey

071-261 6035

PUBLISHER

Philippa Gardner
171-261 6408

SUBSCRIPTION ENQUIRIES

0444440421

COVER PHOTO

This month's cover photograph shows the Ferguson TX98 chassis. See article on pages 26-9.

Viewing Habits

The British have long been a nation of TV addicts. Is this about the change? It seems hardly likely that there would be any significant change in such an established pattern of behaviour in the short term. Nevertheless some researchers claim to have detected a change. As so often with these things, it depends on whose figures you look at. According to Cultural Trends 1990 , published by the independent Policy Studies Institute, the average time per person spent viewing the four terrestrial channels fell each year from 1985 to 1989 and is down by seven per cent over the period. The Institute comments that British viewing has declined despite having more channels to watch. Transmission hours for the terrestrial channels have increased by 29 per cent since 1984-5, mainly as a result of more daytime TV and broadcasting into the early morning hours. According to Steven Barnett, director of the Media Futures Group at the Henley Centre for Forecasting, viewing reached a peak of 26 hours a week on average in 1985, then fell steadily to 24 hours 44 minutes in 1989, a drop of nearly five per cent. The Group claims that the decline continued into the first half of the current year, with the exception of June when the World Cup affected viewing time. Looking farther back, the group points out that average viewing time increased from about 13 hours a week in 1960 to the peak reached in 1985. Over at the BBC Peter Menneer, head of broadcasting research, comes up with some more precise figures. These suggest that the average weekly viewing time for the terrestrial TV channels in 1989 was 24 hours and 44 minutes. To this must be added 37 minutes for satellite TV and an estimated 68 minutes for time-shifted viewing using a VCR, giving a total of 25 hours, 53 minutes. According to the BBC this compares with 25 hours, 54 minutes in 1986. The BBC is to introduce an improved audience measurement system next year to assess VCR usage, i.e. whether rented videos or recorded programmes are being watched, and the extent of satellite TV viewing. For the present the BBC's research suggests that total viewing time is static, varying within the total as further options for viewers are added.

A total viewing time of around 26 hours a week has always been a bit of a surprise to this observer. Over a seventh of the total hours available! Take off the hours for sleeping, eating and other essential activities, then working and travelling time, and it gets to look as though viewers' eyes seldom stray from the box. Then again these are average figures. There are many who seldom watch, so that the viewing time of those who do is proportionally greater. There's a difference however between viewing and having the TV set switched on, and one suspects that these research figures tend to relate to the latter rather than the former.

It's interesting that the slight decline in viewing hours detected by some researchers occurred during a period of increasing affluence for most people. This suggests that when people have more to spend they go out more and thus spend less time in front of the box. What small amount of research l've been able to do suggests that people get plain fed up with TV after a time! These factors tend to suggest that though average viewing time is extensive commitment to the box is not so firm. Do people watch more when financially strapped? This would appear to be the case from some of the research quoted above. The Henley Centre for example points out that watching TV costs around 6 p per hour compared to 30 p an hour for gardening and listening to hi-fi, $£ 1.60$ an hour for social drinking and $£ 4.50$ for eating out. It further found that the more affluent social groups spent just under 18 hours a week watching TV in 1988 whilst the least well off spent almost 32 hours. Age is another significant factor. According to Henley those over 65 spent more than twice the anoount of time watching TV as those in the 16-24 age group

If there has indeed been a decline in viewing. satellite TV has come at a difficult time. Could it perhaps be adding to the trend away from viewing, i.e. could more TV mean less watching? Steven Barnett presents some reasons to suggest that this could be the case. He points out that the "conventional wisdom" says that TV viewing in the UK was held back by lack of choice: increase the supply and people will watch more. Some evidence he presents suggests that the opposite is the case however, that channel proliferation breaks viewing habits. The sudden availability of "a surge" of unfamiliar programmes overwhelms the viewer who "resorts to avoidance". The effect of the advent of Channel 4 in 1982 is quoted as confirmation of this view: the 2,00) hours a year of programmes that were added by Channel 4 led to an average fall in total viewing of ten minutes a week in 1983. Viewing in homes with satellite TV on the other hand has been found to be higher than average, though not as high as some had expected. But it has to be said that the signs here are hard to read: the novelty factor and socio-economic considerations make it difficult to form definite conclusions at the present time.

In short, though there does appear to have been a dectine in viewing it has so far been too small to be of any significance. It could easily vary one way or the other as a result of the various factors mentioned above. But it does mean that the additional providers of programmes are going to have a hard time obtaining market share. The satellite broadcasters have tackled this by buying up film rights, though the films are in practice usually available in cassette form first. The prospects for Channel 5 look decidedly dim at present.

Letters

THAT VCR SMPS - A REPLY

G.R. Darby was very kind (letter, September) about my article on the switch-mode power supply used in the Ferguson FV30, but I feel that some sort of reply is needed to the points he raised. He's right in saying that although a SMPS is more efficient the overall saving is in reality very small. There's a school of thought however that considers electronics to be cheaper in comparison with large lumps of iron surrounded by many metres of copper wire, though I must confess my ignorance of the costs in this respect. Certainly when a chopper power supply goes wrong it's as expensive to restore to normal working as it would be to buy a new mains transformer! Even the Ferguson FV 33 H , which is a JVC-built machine, has a SMPS. A recent look as the new FV40 range however reveals a welcome return to a mains transformer, bridge rectifier and static regulator. Maybe my crystal ball is in need of attention.

I've investigated the safety aspect of the power supplies used in the FV30, FV3I and FV32 quite extensively and cannot find any reason for anxiety about leaving them switched on - in fact they could be slightly safer than a transformer-fed supply. Should an electrical overload cause a mains transformer to heat up its mass can store an amazing amount of heat, and it takes a long time to cool down.

Next to the question of satellite TV reception at v.h.f. Experience with the Pace receiver used by Alba, Bush and Ferguson shows that the phase-locked loop f.m. demodulator operates at around 480 MHz . Radiation from it can be picked up by a u.h.f. set tuned to ch. 22. Could it be that other makes of satellite TV receiver use PLL demodulators that operate at lower frequencies, say in the v.h.f. range?
Finally the correspondence about shoddy sets. It seems to me that if the Great British public was willing to pay a fair price for its sets instead of continually forcing prices down by favouring the lowest-priced ones manufacturers could afford to build decent sets. The race to add extra new features that no one uses twice is crazy. One day I'm going to build a set with rotary knob controls, a Yaxley switch to select the channels and a wooden cabinet with a decent speaker - also a stand that doesn't take 45 minutes and three broken fingers to put together, only to look like a Salvador Dali nightmare when it's complete!
J. LeJeune,

Ravenshead, Nottingham.

SONY WIREWOUNDS AND SWITCHES

There was mention of the wirewound resistors in the KV2090/2/6 series of TV sets in your August and September issues. As Nick Beer stated, we do recommend that the wirewound resistors on board B are routinely resoldered using high melting point solder. This should be done as a precautionary measure whenever one of these sets is received for service. Nick Beer is also correct in saying that this procedure was incorporated into the power switch recall modification, but in addition we issued a service bulletin in September 1987 concerning the stand-off resistors. Sony Consumer Products Service operates in conjunction with its trade account holders, so
those without accounts will obviously not have received this resistor service information.

The service information relating to these resistors is as follows. In all models the resistors concerned have the same circuit reference numbers which are R601, R621, R622, R637 and R640. High-temperature solder must be used. Employ a high-wattage iron to ensure that the solder melts completely, otherwise dry-joints may be formed. The centre pins of each resistor must be thoroughly desoldered before resoldering.

On the subject of the switch modification programme, if you know of or receive any TV sets in the list below that have not had their switches changed to the ALPS type contact the Sony Special Operations Department at Thatcham, on 063569500 . On receipt of the set's model and serial number, the customer's name and address and your Sony account number a switch kit will be sent to you together with a special warranty claim form. Note that this applies only to Sony account holders. The switch parts kits are not available via the usual ordering system and are not available to non-account holders. Under no circumstances should a non-ALPS switch be fitted to any of the listed models or a model where an ALPS switch was fitted originally as this could compromise the safety of the set. Here's the switch modification models list:

KV2090UB	KV21XRL	KV27XRU
KV2092UB	KV2215UB	KV27XRTU
KV2092EI	KV2215EI	KV2752UB*
KV2096UB	KV2217UB	KV2756UB*
KV21XRU	KV2252UB*	KV2762UB*
KV21XRTU	KV2256UB *	KV2766UB* *

*RX models only: they can be identified by the RX sticker on the rear cover and a seven-digit serial number. D. Meyer, Technical Support Manager.

Sony Consumer Products Company UK, Thatcham, Newbury, Berks RGI3 4LZ.

RECORDING SECAM

In his TX9 SECAM modification article (August) Richard Edeson mentioned video recording. Very few VCRs will record SECAM properly without modification. With the colour/auto switch in the colour position they will record SECAM but, as Richard Edeson noted, there will be red and blue flashes all over the picture. All VHS machines are designed to be able to record SECAM with simple modification however. Machines sold in Germany, the Middle East and sometimes in the rest of Europe have this modification as standard. It consists of disabling the colour killer, introducing bell and anti-bell filters, stopping the chroma phase rotation on record and playback and switching out the two-line delay on playback. This is all achieved by taking a line high or low depending on the machine and connecting switching diodes or transistors between this line and the relevant circuits. An external switch can be used to take the line high/low, but there's usually an automatic SECAM detector.
The SECAM detector works by gating out the linerate ident signal, using burst gate pulses, and applying it to a ceramic filter that resonates at close to one of the SECAM carriers (4.25 MHz or 4.41 MHz). On early JVC machines a 4.5 MHz US sound ceramic filter was used. When a SECAM signal is present this filter resonates on every other line. An envelope detector is used to apply
this filter's output to a 7.8 kHz tuned circuit whose output is rectified, filtered and amplified to form the signal on the "SECAM high" line. In modern machines this is all done in a chip, but early machines (JVC HR3300 etc.) used discrete components.

To modify a UK machine all that's usually necessary is to solder the components required into the vacant holes in the board. If you can't get the SECAM detector chip, fit a manual switch and perhaps an LED to remind you to switch back to PAL afterwards - otherwise you'll have non-standard PAL recordings. The difference between a modified and a non-modified machine makes it well worth the effort. Details can usually be found in a service manual by comparing the differences between UK and German models. Not Ferguson manuals however - it's necessary to use the JVC equivalent. I've found that some Fisher, Blaupunkt, Olympus and NordMende UK machines already have the SECAM circuitry. The Akai VS2 has a third (SECAM) position which is mechanically stopped on its colour/auto switch: removing the stop works well.

Also note that this is not the VHS SECAM standard. It's provided for the convenience of people who live in dual-standard areas and is now usually called MESECAM (Mid-Europe SECAM or Middle East SECAM). Machines specifically intended for SECAM use are completely different and their tapes will play only in monochrome on modified PAL machines using the MESECAM system and vice versa.

Several Betamax machines l've tried will record SECAM only in monochrome. An exception is the Sony SLC7, which produces the red and blue flashing problem. Unfortunately Beta manuals don't give details of German versions that do have SECAM circuitry.
Gareth Foster,
Whitton, Middx.

VINTAGE RADIO

I have been following the recent correspondence relating to the Bush DAC90A with great interest since this set, its predecessor the DAC90 and associated models such as the DAC10 are great favourites in the vintage radio world. True enthusiasts do of course try to keep their sets as close as possible to the original, which is the main reason why I've disagreed in the past with Dave Porter - bless his little cotton socks - over his suggestion that the UL84 should be used in place of the UL41, especially as the Mazda 10P13 is virtually a plug-in replacement calling for only minor component value changes. This makes it easy to return to the correct valve when one comes to hand. This subject was included in an in-depth study of the DAC90 and the DAC90A in issue 22 of The Radiophile, which is available as a back number for $£ 1.95$ (UK and Eire) including postage - overseas $£ 2.75$ by surface mail. We can also supply copies of the full service manual for $£ 5$ plus postage or just the circuit for $£ 1$ including postage, also 10P13 valves.

I must take issue with Geoff Davies over changing so many components as a matter of course. It takes only minutes to check the few capacitors in the DAC 90 likely, but not at all certain, to be the cause of trouble. It's surely more satisfying to discover any that are faulty than to scrap them all, good or bad. The usual certain candidate for replacement is the coupling capacitor between the anode of the UBC41 and the grid of the UL41, while the capacitor across the mains input is best left out altogether unless modulation hum is apparent. The various

next month in

FREE GIFT!

Next month's issue comes with a cover-mounted pack of five 1N4148 signal diodes.

- SERVICING THE MITSUBISHI CT2227

John Coombes reports on the faults you could encounter with this popular 22in. colour TV set.

* EQUIPMENT REVIEW: SIGNAL GENERATOR FOR S-VHS EQUIPMENT
Running a specialised service department, which is essential for some of today's more complex consumer electronics equipment, naturally calls for specialised test equipment. It can be expensive, so great care is required over its selection. Steve Beeching found that he needed a signal generator for dealing with S-VHS equipment. The answer was the Leader 430P, which provides sweep and multiburst signals and colour patterns.

- INTERCONNECTING VIDEO EQUIPMENT

Mutual interaction has always been a problem when various signal sources are connected to a TV set acting as a monitor. The problem has become even worse now that two satellite TV receivers are in many homes connected to the main TV set. James Slater of the IBA reports on the problem and preferred methods of interconnection.

- LATEST CD FORMATS

The basic CD formats were described in our April issue. R and D work continues apace however, particularly on recordable/erasable discs. George Cole reports on the latest developments.

PLUS ALL THE REGULAR FEATURES of TELEVISION (£1.30), on sale November 21st, and continue every month until further notice.

decoupling capacitors, h.t. and a.g.c., are best checked by disconnecting their earthy ends and using a meter to check how much current flows through them. You may be surprised how well some of them have lasted! Likewise I can see no reason to replace high-value, or indeed any, resistors unless they can be proved to have gone well off value. My experience of servicing these sets goes back to the late Forties, and I agree with Geoff that they have proved to be very durable - so why not leave well alone?! This goes for the valves as well! Neither should it be necessary to modify the smoothing if the existing capacitors are in good order. The most common cause of obtrusive hum in the DAC90A is an internal short in the UL41. By the way the UL46 is also a pentode and is virtually identical apart from the fact that its construction was refined to give it anti-microphonic qualities so that it could be used as a video amplifier in 405 -line TV receivers. Certain Philips sets used two UL4ls (field and sound output) and a UL46 in the video stage, and were therefore a useful source of spares for the DAC90A!
I hate to keep having to cross swords with Geoff, but in forty odd years of servicing I can't ever remember having come across a case of an output transformer going primary-to-secondary short-circuit. By definition the insulation between the windings has to be good since the primary carries h.t. and in many sets one side of the secondary is connected to chassis. Honestly, there's no reason to start worrying about checking the insulation! While it's laudible to consider the possibility of the loudspeaker grill becoming live, the number of accidents caused by radio sets is negligible. The only advisable precaution to take against shocks from a.c./d.c. or other mains-connected chassis receivers is to make sure that the mains lead is wired correctly into the power plug - by checking that there is zero or a very small resistance between the neutral pin and chassis and a fairly high resistance between the live pin and chassis. In the DAC $90 / 90 \mathrm{~A}$ the situation is complicated by the mains supply entering the set via a two-pin male/female connector. The answer here is to mark the connector clearly as to the correct fitting and to warn the customer not to alter it. There must have been millions of a.c./d.c. radio sets in use around 1950, just before TV took off, and I can assure Geoff that customers were not dying like flies from electric shocks. In fact the one accident that I can remember was so unusual and so well reported in the trade press that no engineer could have been unaware of its cause - a very bad bit of work on the part of an unskilled dabbler who had used too long a screw to secure a chassis and thus rendered expes metalwork live. Obviously this same individual hadn't checked the mains polarity when installing the set.
Could I just remind vintage radio enthusiasts that The Radiophile is written especially for them (of course you can Chas! It’s a damn good read -Ed.). It costs just $£ 10$ for six issues (UK and Eire), $£ 15$ overseas by surface mail Chas E. Miller, Editor, The Radiophile,
Larkhill, Newport Road, Woodseaves, Staffs ST20 0NP. Telephone 078574696.

HELP WANTED

Some time ago the local Radio and Television Servicing City and Guilds Course here closed down. No comparable Technical College course is currently available. To help several youngsters who wish to enter this field we've obtained suitable premises and a supply of television and radio sets etc., also help from a long-retired ex-TV
engineer. Unfortunately we lack technical information circuit diagrams, textbooks etc., also circuits for test equipment which we need. If any readers have Television magazines from 1970 onwards or other information they no longer require it would be of great help to us. Manufacturers seem to be unable to help and without such material the scheme is doomed to failure. Without help these youngsters can look forward only to life on the dole.
Leslie Howard, 30 Dylwyn Street,
Llanelli, Dyfed, South Wales.
Can anyone supply a u.h.f tuner for a Schneider Model STV150) (CM114RC chassis)? The tuner type is ET-31, part no. 55-10702-6.
D.R. Webster, 44 Mossmill Park, Mosstodloch, Fochabers, Grampian IV32 7JY.
Telephone 0343820924.
Does anyone have or know where I can obtain a line output transformer for an ITT portable fitted with the CVC40 chassis?
K.C.H. Cattell, 119 Dormington Road, Kingstanding, Birmingham B44 9LE.

Would anyone in this area be willing to provide handson training to a pleasant chap with TV/video certificates, in exchange for voluntary labour?
Paul J. Stephenson, 38 Harwood Drive,
Waterthorpe, Sheffield S19 6LD.
Can anyone supply me with the circuit diagram for the Ferguson satellite TV module type SM01? All expenses paid. A photocopy would do.
Keith Parker, 20 Herbert Road,
London NII 2QN.
Telephone 081 8893779.
Can anyone supply a circuit diagram or service sheet for the Akai VTl 10 portable VCR - a photocopy would do? Due to the age of the recorder (1976) Rank Audio Visual, the agent, is unable to help. Also does anyone have any spares?
S. Carter, 26 Rawlings Road,

Smethwick, Warley, West Midlands B67 5AA.
Can anyone supply a service manual or circuit diagram for the Heathkit IO-103 oscilloscope? I need to replace some burnt resistors.

C. Hall, 7 Jubilee Road,
 Threemilestone, Truro, Cornwall TR3 6BS.

Does anyone know where we can get an M51354AP chip? It's the vision demodulator chip used in a colour TV, Model NE14KQ. We would also like to beg or borrow a user instruction book for the Ferguson 3V31 VCR. This is no longer available.
G.B. Electronics, 171 Leicester Causeway,

Coventry CVI 4HG.
Telephone 0203525769.
Does anyone have or know a source of the AN239 vision/sound demodulator chip used in the National Model TC361GM? Alternatively does anyone have a surplus i.f. board, with or without the tuner?
D.J. Hawley, 3 Ashfield Court,

113 The Grove, London W5 3SN.
Telephone 0815673672.

Satellite Band Scanner Unit

Denis Mott

Once satellite TV became popular with a large section of the public a proliferation of signal-strength meters to help installers to align the dishes correctly came on the market. After trying one of these meters I came to the conclusion that there must be a better way of seeing what was going on up there. Thus Sat Scan 1 was born. It consisted of an Hitachi tunable i.f. block plus the cribbed video amplifier circuit from a commercial satellite TV receiver. A sawtooth waveform was fed to the tuning line and to the X sweep of an oscilloscope. The video output was fed to the scope's Y input. I tried this scanner with a 1.2 m dish equipped with a polar mount to see whether it would assist installers in their work. My conclusions were: (1) that the scope's display wasn't bright enough for outdoor operation, and (2) that two separate units, the scope and scanner, were too many to be carried around on a rooftop. Thus Sat Scan 2, described in this article, was born.

I already had a 5 in . TV monitor covering Bands I and III and the u.h.f. channels, with a builtin signal-strength meter. It could also provide a swept spectrum for display on an oscilloscope. The obvious thing to do was to combine the satellite receiver into the monitor and modify the c.r.t. drive to provide a scan display.

The features I considered to be necessary are: (1) normal video and sound operation; (2) spectrum

Fig. 1: Connections to the Hitachi BSF561B satellite TV tuner module.
analysis with the c.r.t. doubling as the display; (3) a signal strength meter - relative not calibrated; (4) manual and swept tuning; (5) an LNB polarity switch; (6) variable gain; and (7), included though not essential, a Band I/III/u.h.f. tuner. This article describes how these requirements were met. I don't intend to provide constructional details or a PCB layout as anyone attempting to build a scanner of this type should be able to work out his own way of building the unit or modifying an existing piece of equipment. In this article we'll consider the circuitry required and the way in which various items were integrated to form the unit.

Tuner/IF/Video Sections

The tunable i.f. block I used is an Hitachi type BSF561B, which carries out all down-conversions from $950-1,750 \mathrm{MHz}$ to video. It's varicap tuned, has a.g.c., and provides the LNB with its supply and polarity switching voltages. Fig. 1 shows the connections. Modules with similar features are produced by manufacturers such as Alps, Mitsubishi and Astec.

The LNB's i.f. output is fed directly to the F connector on the Hitachi module, which provides a video output with a bandwidth of about 10 MHz . The following video amplifier, see Fig. 2, provides amplification, low-pass filtering and dispersal signal removal. It's a straightforward circuit employing eleven transistors of common types. $\mathrm{Tr} 1-\mathrm{Tr} 7$ provide amplification and, in conjunction with the coils, filtering. $\operatorname{Tr} 8-\operatorname{Tr} 10$ and D1 remove the energy dispersal signal. Trll is simply an output buffer.

Scan Sweep Generator

The original Sat Scan 1 used an independent 30 V sawtooth oscillator that ran at 75 Hz . As this version uses the c.r.t. to display the spectrum the sweep voltage must be synchronised with the field scanning. The TV chassis I used is a Network 1202 H 1 . Its field output stage produces a 1 V peak-to-peak field scan waveform - see Fig. 3(a). Our requirement however is 2 V peak-to-peak, with the bottom of the waveform

Fig. 2: The video amplifier circuit which was adopted from a commercial unit. Tr1, 2, 7, 8, 9 and 11 type BC547; Tr3, 4, 5, and 6 type ZTX314 or BSX20; Tr10 type BC557. All resistors $5 \% 0.25 \mathrm{~W}$. All capacitors 25 V working. Coupling capacitors tantalum bead type, decouplers tubular, C1 polyester, filter capacitors ceramic.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 40$ different patterns and variations．
Fully interlaced sync pulses with correct picture blanking．
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow． cyan，green，magenta，red，blue and black．
\star Chequerboard．
\star Mono outputs with border castellations，cross hatch， grey scale，vertical lines，horizontal lines and dots．
UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR．
\star Facilities for sound output．
\star Easy to build kit，standard parts．Only 2 adjustments． No special test equipment required．
＊Mains operated with stabilised power supply．
\star All kits fully guaranteed with back－up service．
\star Also available with VHF Modulator
Price of Kit
£75．00
Case（ $10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 44^{\prime \prime}}$ ）app．
$£ 12.00$
Optional Sound Module（ 6 MHz or 5.5 MHz ）
$\mathbf{£ 3 . 9 0}$
Built \＆Tested in Case including Sound Module
£119．00

Post／Packing $£ 3.00$
 Add VAT 15\％TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

\star Output at UHF，applied to receiver aerial socket．
\star In addition to colour bars R－Y，B－Y etc．
\star Cross－hatch，grey scale，peak white and black level．
\star Push button controls，battery or mains operated．
\star Simple design，only five i．c．s on colour bar P．C．B．
\star Backup service available
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£35．00．CASE $£ 8.60$ ．BATT HOLDERS $£ 4.20$ ．
MAINS SUPPLY KIT $£ 5.80$
（Combined P\＆P £3．00）．
VHF MODULATOR（CH 1 to 4）FOR OVERSEAS $\mathbf{~ 6 6 . 8 0 .}$
EASILY ADAPTED FOR VIDEO OUTPUT \＆C．C．T．V

LINE OUTPUT TRANSFORMER TESTER

Saves time and money
Checks short turns．
Simple to use．
Reliable．
Battery operated．
Pocket size
PRICE £20．00
POST／PACKING $£ 2.50$

KITS \＆PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \＆audio outputs $£ 28.50$ p．p．$£ 1.80$ ．
PAL DECODER KIT（Video to RGB）for Monitors $\mathbf{~} \mathbf{2 7 . 0 0} \mathrm{p} . \mathrm{p}$ ． $£ 1.00$ ．
PAL ENCODER KIT（RGB to Video）£18．50 p．p．£1．31）
CROSS HATCH UNIT KIT，Aerial Input type，incl．T．V．sync． and UHF Modulator，Battery Operated，also gives Peak White \＆ Black Levels，can be used for any set． $\mathbf{£ 1 3 . 5 0}$ p．p．80p．（Alum． Case $£ 3.20$ p．p． $\mathfrak{£ 1} 1.40$ ．）ADDITIONAL GREY SCALE Kit $£ 2.90$ p．p． 45 p．
UHF SIGNAL STRENGTH METER KIT $\mathbf{£ 3 0 . 0 0}^{3}$ Alum．Case £3．20．De Luxe Case $£ 12.00$（Built \＆Tested $£ 58.00$ ）p．p．£2．50． CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono complete with Case，Panel Meter Indicator－can be adapted for latest CRTs $£ 35.00$ p．p．$£ 3$（）（）．

TV SERVICE SPARES

PHILIPS SPARES

C8 CHANNEL SELECTOR £2．50 p．p．f1．5\％．
KT3．K3 PANELS，tested，exchange，sound，power，bridge rect，frame，RGB $\$ 7.50$ each．Decoder（Non－rexi）$£ 10.00$ p．p．$£ 1.50$.
G116 POS towh tune chamel selector（replaces old type）flt． 00 p．p fI .80
GII PANELS（tested），frame，IF，decode $£ 12.50$ cach．p．p．$£ 2$（（ ）San $£ 15.00$ p．p．$£ 2.80$ ．Power tested exchange $£ 18 .(\mathbf{N O}$ p．p．$£ 2.80$ ．
GII PANELS EX－RENTAL（untested）Scat，Frame $£ 2.50$ p．p．$£ 2$（M）
Gill IF PANEL（new）less Tuner $£ 2.50$ p．p． 11.30
MANUALS 2A．2B．CPO $£ 3.50$ ．KT3 £4．50．（TX－E，CTX－S，CFI £I．50．KT4． $K+10,3 \mathrm{~A} £ 4.50$ p．p．$£ 2.50$.
BACK UP BATT． $2.4 \vee \mathrm{E} 6.00,1.2 У \mathrm{f} 3.20 \mathrm{p} . \mathrm{p} . \mathrm{s} 1 \mathrm{p}$ ．
K30，KT4，CTX－EHT Lead $\mathbf{E 3 . 2 0}$ p．p．$£ 4.1 \mathrm{~N})$
THORN／FERGUSON SPARES
9000 Series IF／Decoder tested $£ 10.00$ p．p．$£ 2.80$
TX9 RFI Choke Lot 86.80 p．p． 80 p ．
TX10 Focus control 88.50 p．p．flow
TX9／TX10 Saw filter If pamel $£ 5.00$ p．p． $8(\mathrm{p}$
TX9 Ultrasonic remote control panci $\& 7.50$ p．p． $\mathbb{L 2} .501$
TX9／10 Remote \＆tuning $1515 \mathrm{~N} £ 5.00$ p．p．$\ddagger 1.81$
TX9／10 Remote \＆tuning $1515 \mathrm{~N} \mathbf{5 5 . 0 0}$ p．p．$\ddagger 1.80$
TX9／10 Remote \＆luning $150 \times \mathrm{A}$（incl．SAA5012）£2．50 p．p．fl． 80.
TX9／10 Remote d tuning 1536 （incl．SA． 5012 ．SL 471 ）E．3．50 pp．fl．x0．
TX10 Stereo Audio Board $£ 3.50$ p．p． $\mathfrak{f l}$ ． K 0 ．
TX9） 2 Ir＇$^{\prime}$ Chassis．Brand new（unlested）$£ 25.00$ p．p． $\mathcal{L} .80$ ．
TX90 Mains TX £ 18.60 p．p．$£ 2.80$ ．
TX90 $14^{\prime \prime}$ Chassis complete \＆boxed（untested）$£ 20.00$ p．p．$t 2.80$
TX90 16＂Dual Standard．New（untesied）tis．（M）p．p．£2．80．

ANS521	13.80	SAAs230	55．ky	｜ATA＊＊AP	¢5．80	TD ${ }^{\text {2574 }}$	¢ 5.80	IDAM651	E4．21）
ANSM（\％）	22．20	SABM135	56.80	Ta7ensap	t6． c_{0}	TDM2581	\＄2．20	TDA M5．3A	¢2．90
（ NXH ？	C4．80）	SAB 1137	£15．89	TB＋120	［1．3）	TDA2582	22.80	TDA 6 5\％	［3．211
HAII2，	¢2．81	SAFICB2	c4．50	TBA7S	c2．20	TD A2593	\＆1．	TDATES	43.20
$11 \mathrm{Al\mid} 123$	12.10	S \times F1634	c2． 20	TBAYy！	22.20	TD			21
HASI33\％${ }^{\text {a }}$	\＄11．80	SL476471	¢ 4.00	78×451	12.20	TD A 2595		TDA＋42	4.21
Lifts	c． 4.00	SLish	20	TCA27\％	51.80	TDAzan		TD $1+42$	ct． 80
LA7xM	11.80	SL＋40）	$¢ 2.80$	TCANM）	66.80	TD	¢6． 619	TDatsin	
LA750	$\begin{aligned} & \qquad 7.211 \\ & £ 3.51 . \end{aligned}$	SLIt 3 （1）	（1．88）	TDAlu35	12.40	TDA		TD． 4 ＋511	77.80
M2y3B	c5．80	SLI 132	¢1．20	TDA1037	［1．90	TDA		TIDATSILA	ह13．50
	¢14．8．	SN7622	$\underline{1.80}$	TDAlib	（2．${ }^{\text {a }}$（1）			TDASVI3	c5．80
	¢6．x0	SN7670		TDAlum	43.80	TD	2.7	7DAsius	c． 8.80
M494	19.80	STK5325	¢6． 80	1DA117\％	¢2．20	TDA－455B	（x．tos）	Tlona（x）	63.45
MC13（1）PP	［5．8il	STK5332	¢¢． 80	TDAItal	22．30	TDA2	c1． 20	TDA $(x) 1$	¢2．80
MD Ax｜c｜	$\underline{4.80}$	STK5421	¢5．80	TDAIINK	¢2．20	IDAzavi	43.80	｜DAdil｜l	t6． 80
MDA ${ }^{\left(k_{1} 2\right.}$	E3．81	STK512？	57.46	TDA14321	¢5．70	TDA20＇0	［3．，¢，	TDAS5if	［5．m）
M1．237	c． 3.80	STK5471	¢6． 50	TDA147\％	c2．m	TD	［3．5）	tidaskir	＊
ML23\％	¢6．84	STK5481	17．8ı1	tDainfua	6.20	1 D	L	1DA	6． 80
ML－426		STK73，	¢10．811	TDAI704	E3．80	TDA3		TDastel	t6．80
SAA 1124 SAAIILS	45.80 $\mathbf{6 5 . 8 0}$	STK73．4 STR	10.80 $\mathbf{5 7 . 8 0}$	TD－1770	E3．211	TDA33a	c． 4.50	TDASIMM	c． 80
SAM1124	£3．51）	Stk＋511	．80	TDA	to． 8	TDA3	ce． Kn_{6}	1DAytis	63.80
SAA1250	E3． 80	STKta！	¢¢．80	ID	22.80	TDA3S	c9．94）	TDA 5183	2． 1.80
SAAI251	¢6． $\mathbf{M O}_{0}$	STR454	Es． 80	TDA1\％4］	c3．20			TDA0313	
SAAI293，${ }^{\text {a }}$	［4．M4	STRtimas	Ex． 80	TDAl950］	63.50			TEAll｜${ }^{\text {P }}$	2．20
SNAMD 7	［5．010	SIREMAS	f10．50	TDA21込	63.21			7FAl（1）4	［3．50）
SAASME1	（2． k 11	STR＋111	86． ka	TDAこ270	${ }^{2} 2.88$	TDABma			f
SAAMHII	£5．811	STRSI2	E5． Ma_{1}	TDA2511	${ }^{\text {E }}$ 6．80	TDABmea	E5．80	TEAmisa	12.21
SAsstil	ES．M1	STRSIU1，	4．540	TDA2548	55.80	TDA3	4.80	TMら｜Mn	L 83.80
SAA50］	£5．80	STRSthal	（6．）M）	T） 25574	E． 3.80	10asso	15.80	TMP47C 42	AP．
Stagma	E5．80	STR594 1	\＄13．50	1DA2577	4． 4.81	1DA 3571	（4．\％ 4	K180	113．50
SAAStu4	¢6．80	STRexica	［5．k）	1DA2577A	4.80	Tba3576	［4．88）	UPC1．378	81.90
SAASGO	£6．80）	TAFrave，${ }^{\text {P }}$	t5．80	TDa2i7	¢3．k）	TDA3650	［8． 41	UPr14ack	Ex．60
IC p．p 50p									
	43 （ 80 p	TUNE iv）．S（4 f1．（X）		$\begin{aligned} & \operatorname{dig} x 63 \\ & F 203 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & \text { ries } \mathrm{f} \\ & \mathrm{D} \cdot \mathrm{p} \end{aligned}$	$.00$		$\begin{aligned} & 21 . \\ & \text { UVill } \\ & \text { E } \end{aligned}$	113．80．

LINE OUTPUT TRANSFORMERS

(a)

passes to the main PCB via S 2 B and S 1 B while the audio output is switçed to the main PCB via S 2 A .

The arrangement used in the scan mode is rather different. A 3 V peak-peak unfitered output from the video amplifier is fed via S 1 D and a $1 \mu \mathrm{~F}$ coupling capacitor to the non-inverting input of the other half of the LM393 operational amplifier chip. This operational amplifier is used as a voltage comparator. The d.c. levels at the two inputs are set by VR1 and VR2. A 2 V peak-peak line-frequency sawtooth is fed to the inverting input via $\dot{2} 47 \mathrm{nF}$ coupling capacitor. With the main chassis used here the line-frequency sawtooth was obtained from pin 11 of the sync/timebase generator chip IC601.

If a steady voltage is fed to the amplifier's noninverting input and a sawtooth is fed to its inverting input the output will remain high until the ramp input voltage exceeds the other input. The output will then go low. Since the ramp is at line rate a brightup line will be seen until the ramp voltage exceeds the video input voltage, the length of the bright-up depending on the amplitude of the video signal. The vertical position of the bright-up line depends on the point where the signal 1 s along the tuning sweep sawtooth. The top of the display represents $1,750 \mathrm{MHz}$ and the bottom 950 MHz . Presets VR1 and VR2 are adjusted so that with a known signal, e.g. one from Astra, and the video gain control set at approximately midway the line bright-up covers approximately 75 per cent of the screen's width.

There's one difficulty with this arrangement. The signal fed to the set's video amplifier also drives the sync separator. As the scan-mode signal has no

Fig. 4: The main frame circuits and the interconnections between the various items that comprise Sat Scan 2. S1 is a 4 -pole 2-way switch, S2 a 4-pole 4-way switch and S3 a 1-pole single-throw switch.

Fig. 5: Simplified block diagram of the TV chassis used, showing the interconnections required.
defined sync pulses the operation of the field oscillator becomes erratic. This means that the tuning sweep will also be erratic. A way out of this is to disable the field sync in the scan mode and let the field oscillator run free. This tends to result in a slight display wobble. Bringing the field hold control out to the front panel enables you to stablise the display. In the normal TV mode the sync pulse feed is restored and slight adjustment of the field hold control will stop the picture rolling.

Signal Strength Meter

The a.g.c. output from the Hitachi tunable i.f. block is directly proportional to the input from the LNB. This a.g.c. voltage is accessible but it swings from 3 V with no signal to 1.7 V with a large signal. The problem is how to offset the no-signal standing voltage and ensure that the moving-coil signal-strength meter produces the required movement as the signal level is increased. Once more the use of an operational amplifier provides a solution, this time one section of an LM324 quad operational amplifier chip. It's connected as a differential input amplifier with unbalanced gain. The non-inverting input is fed with a preset voltage tapped from VR3 to back-off the standing nosignal a.g.c. voltage. The inverting input is fed with the a.g.c. voltage: as the input falls, the output voltage will rise. VR4 controls the meter's f.s.d. Its value depends on the meter used.

The signal-strength meter cannot work in the sean mode but operates very well as a relative indicator
with manual tuning. A minor fault with this circuit is a small positive offset on the meter under no-signal conditions. This doesn't detract from the feature's usefulness however.

Audio Circuit

An audio processor - see Fig. 6 - was built on the same board as the video amplifier. I can claim no originality for this circuit since it was borrowed from a commercial design. It works on the PLL principle, with tuning by means of variable d.c. voltage. As I wasn't bothered about other sound channels the tuning was preset. If tuning is required a control could be taken out to the front panel.

Power Requirements

One major problem with the use of a TV chassis as a scan display device is the power requirements. In this case there is the additional problem of supplying power to the Sat Scanner. As a result the final instrument is not light - it weighs in at $12 \mathrm{lb}(5.5 \mathrm{~kg})$. If the instrument is to be used outside, the mains input should be supplied via an isolation transformer or come from an ELCB protected supply. The power requirements are 12 V a.c. at 1.5 A for the display, and 30 V and 20 V d.c. for the scanner.

With a Marconi LNB polarity selection is achieved by feeding either 18 V or 15 V up the coaxial cable. To obtain these two voltages a fixed 15 V regulator is used with a 2.7 V zener diode in series to earth. The zener diode is shorted out for 15 V . With other types of LNB the unit should be used in the 15 V mode, but polarity switching will not take place. I didn't bother with additional circuitry to cater for alternative polarisers as the majority of LNBs encountered are of the Marconi type. Additional outputs for other polarisers could be added if required.

In Conclusion

Sat Scan 2 has been used on the rooftops any number of times. It makes child's play of finding Astra or any of the other observable satellites. I've tried my 80 cm dish and Marconi LNB with various low-power birds. Although some sparklies are visible alignment is simplicity itself: use the scan mode to find the bird then the signal-strength meter to tweek for maximum smoke!

Fig. 6: The sound circuit. Agents for the chip are Microlog Ltd., The Cornerstone, The Broadway, Woking, Surrey.

Teletopics

MATSUSHITA'S SOFTWARE MOVE

Matsushita Electric Industrial, better known to the trade and public through its Panasonic and Technics brand names, has held talks with Music Corporation of America (MCA) over a possible takeover offer. MCA owns Universal Pictures, which has a library of some 3,000 film titles including ET, Jaws and Back to the Future and is a leading TV producer. MCA owns a variety of other US entertainment assets including major record labels. It's considered that Matsushita would have to pay some $\$ 7 \mathrm{bn}(£ 3.7 \mathrm{bn})$ to buy out the existing shareholders. As Matsushita is reputed to have a cash pile of about $£ 5$ bn however this should be no great problem. Matsushita would be following the example set by Sony, which bought Columbia Pictures for $\$ 3 \cdot 4$ bn last year and paid $\$ 2 \cdot 5$ bn for CBS records in 1988. Apart from general corporate expansion, the great advantage to a video/audio manufacturer of owning software houses is that it ensures the availability of programme material for any video/audio systems developed by the manufacturer in the future.

KODAK'S PHOTO CD SYSTEM

Kodak has announced a photographic system called Photo CD that will enable conventionally shot still photographs to be stored on compact discs. It's been developed in conjunction with Philips, using the latter's CD-I system technology. Consumers will be able to have up to a hundred photographs transferred on to a goldcoloured CD which can be played on CD-I players, CD-ROM-XA (compact disc read only memory extended archi tecture) systems and new Photo CD players (which will also be able to play standard audio CDs). Viewers will display their photographs on the domestic TV set. Photo $C D$ discs are expected to cost around $£ 10$ each, with the players selling for about $£ 300$. Exposed 35 mm film would be processed in the normal manner, then scanned, digitised and recorded. A dise could be taken back to the processors for extra films to be recorded until the disc is full. The negatives would remain available for prints. Kodak intends to license the system to other manufacturers with a view to establishing a world wide standard system. Photo CD is expected to be launched in Japan and the USA next year and in Europe the following year.

SATELLITE TV

The UK public appeared to lose interest in satellite TV in August. Only some 31,000 new installations seem to have been carried out, including both Astra and BSB Maybe it was something to do with the fine weather, or maybe the credit squeeze is responsible. In its first four months of operation about $70,000 \mathrm{BSB}$ receivers were installed. BSB hopes to be available in a million homes by Christmas, including those served by cable. Sky is considering adding an arts channel to its services, to be financed by corporate sponsorship. It could be made available when Astra 1B comes into operation early next year - the present plan is to make three of 1B's sixteen transponders available for English-language channels.

Euletsat II F1, the first of the new series of mediumpower Eutelsat craft, has been successfully placed in
orbit at $13^{\circ} \mathrm{E}$ and is now undergoing tests. In the optimum service area the Superbeam e.i.r.p. is 52 dBW while the widebeam has an e.i.r.p. of 45 dBW .

BROADCASTING NEWS

An alternative way of organising the proposed Channel 5 service has been suggested by the IBA. Up to now the idea has been to have a single network covering about 70 per cent of the population using 25 transmitters. The alternative would enable local television to be provided in as many as 35 cities and towns. It would require 63 transmitters, provide a coverage of about 60 per cent of the population and delay the start of the service by eighteen months.
Proposals for implementing an improved PAL specification were presented at the International Broadcasting Convention held at Brighton in September. Improvements could include a $16: 9$ aspect ratio. A demonstration is to be held at next year's Berlin Radio Show but it's expected to be at least five years before transmissions could start in Germany

The Independent Television Commission has decided that the Channel 3 (ITV) franchises to be advertised next January will be for the same areas and times as the present contracts - as now there will be fourteen areas
Nicam sound has come to Cumbria. The Caldbeck transmitter and its dependent relays (excluding Kendal and its relays where further modifications are required) are now providing the service.

NEW FERGUSON CHASSIS

A new TV chassis, type IKC2 (International Kit Chassis Mark 2), has been announced by Ferguson. The first model to use it will be the 4IP3. Like the ICC5 it's a core chassis with provision for plug-in modules to cater for various model specifications. The switch-mode power supply is similar to that in the ICC5 and it also uses the common field/line output transformer arrangement. Of particular interest is a new chip, type TBA 8659 CN , that acts as a colour decoder with PAL/SECAM/NTSC switching and incorporates the sync and timebase generator circuits. The i.f. chip is mounted on a separate subpanel. We shall be returning to this chassis in a later issue.

PYE RELAUNCH

Philips has relaunched the Pye brand and is to pursue a two-brand strategy in the UK with the Philips brand used for upmarket video/audio products and the Pye brand aimed at the volume sector. Senior Philips Consumer Electronics management will control overall sales and marketing policy and there will be a single sales force. Pye is to be given "a more modern, up-dated look". The new Pye range includes a 2 lin. model with teletext and an integrated Astra receiver at a suggested price of $£ 550$.

CHIPPERY

A new Texas Instruments chip, type CF70088, integrates the DQPSK demodulation and demultiplexing operations in a Nicam decoder. Previously two separate chips had been required. It doesn't incorporate the DA converters. Toshiba is understood to be working on a chip that will incorporate the whole Nicam decoder.

SGS-Thomson has announced a three-chip set for PAL TV receivers - the TDA8212 i.f. section, TDA8214 sync/timebase generator chip and the TDA8216 PAL decoder and video processor. The aim has been
simplified design with a 30 per cent reduction in the number of peripheral components required.

Motorola has developed the 68340 microcomputer chip as a central control device for use in CD-I (compact disc interactive) players.

INTERESTED IN BBC NOSTALGIA?

The various articles by Keith Hamer and Garry Smith on test cards and tuning signals published in this magazine over the years have always attracted a lot of interest. The duo have now decided to start their own quarterly TV Graphics Review. Each issue of the A5-size magazine will feature graphics of every description and have around twenty pages. For further details write to Keith Hamer at 7 Epping Close, Derby DE3 4HR (telephone 0332513 399). Keith would particularly like to hear from anyone who has available photographs or tapes containing suitable material.

TV/VIDEO EQUIPMENT NEWS

Panasonic has announced the first TV set, Model TW25 W 2 A , fitted with the new Alpha-3 chassis. It's a 59 cm model with an integrated Astra receiver. There's 88channel tuning with seven audio presets, two for stereo audio mode 7 is programmable. The chassis incorporates a newly developed noise-reduction circuit and a blacklevel expansion circuit that automatically adjusts the contrast. The TW-25W2A has a Nicam decoder, Fastext, on-screen graphies, a stereo amplifier providing 20 W per channel, twin scart sockets for composite video and Y/C signals and a further scart socket for a Sky decoder. The suggested price, including a 60 cm dish, is £1,099.

Sony has launched two satellite systems, Models SAT03/60 and SAT03/80, the last two digits indicating the dish size (cm). There's also a new Hi-8 camcorder, Model CCD-V700E, which has a 440 ,(00)-pixel image sensor and hi-fi stereo sound.

Philips is about to release a new camcorder, Model VKR9550, that acts as both a movie and a stills camera. It has a 700,000 -pixel image sensor and uses the S-VHS system. In the still mode the camcoder records sequentially scanned pictures at a rate of 25 per second, thus avoiding a blurred image. In the movie mode the recording is conventional, with 50 interlaced fields a second.

Ferguson has launched a Fastext adaptor, Model VA354, which is compatible with its FV37H, FV43H, FV46T and FV47S VCRs. The FV45X has the adaptor supplied as standard. With the VA354 plugged into a recorder's scart socket and an eight-pin plug the VCR has a Fastext facility with teletext timer programming. An 8 mm camcorder, Model F801, is being added to the Ferguson range of camcorders. It's ultra-compact, weighing 980 g inclusive. The suggested price is $£ 850$.

NEW WIZARD CATALOGUE

The new Wizard 1990-91 trade catalogue is available free of charge to trade customers from Wizard Distributors, Empress Street Works, Empress Street, Manchester M16 9EN (telephone 061872 5438). It contains details of a wide range of spares and accessories, including some important illustrations, and a section on Schneider for which Wizard is the official distributor of audio/video spares.

Philips DMP Series Deck

On going from rewind search to playback the take-up spool would sometimes cease to rotate and the machine would then stop. When play is selected the brake magnet normally holds the brakes off, but sometimes the magnet let go and the fault would occur. The cause of the problem was a dry-joint on the brake electromagnet.
P.B.

Philips VR6290

If you tried to go to stop after this machine had been playing for a few hours it would get stuck in pause and couldn't be restarted, stopped or put into standby. Scope checks around the keyboard processor chip showed that the SDA2 and SCL2 signals changed from blocks of data to continuous signals. Replacing the keyboard module as an initial check made no difference. The SDA2 and SCL2 lines communicate with the tuner, so a new one was fitted. This cured the problem. It seemed an unlikely cause, but fitting the suspect tuner in a working machine took the fault with it.
P.B.

Philips VR6182

If you have to order a capstan flywheel for later Philips models check whether the tacho head is adjustable from the top of the machine. If so a modified flywheel is needed, part number 482253592909 .
P.B.

Philips VR6760

This machine had the usual jammed rack. So the deck was stripped down and the rack, pinch roller and coupling were replaced. After giving the mechanism a dummy run using a 9 V battery we tried the machine out for the first time for real. This showed that the power supply was dead, the cause being the BD436 transistor 7001 which was open-circuit. After replacing this we made another attempt. This time the deck initialised but a burning smell came from the 5 V section of the power supply. Someone had replaced the BYV10-20 with a 10 V zener diode. As there is normally a 14 V squarewave across this diode it was working rather hard. Everything was o.k. when the correct diode had been fitted.
P.B.

JVC HRD170

If you encounter one of these machines with a channel change fault, be wary! We've now had two in which the channel could not be changed using either the front-panel keys or the remote control unit. Since neither the tuning nor the channel digit display changes you might reasonably suspect the clock/display/key-decoder microcomputer chip on the front panel. Not a bit of it! With both the machines we had in the bug responsible was IC2 on the tuner/i.f. panel. It's type M50440-391SP.
E.T.

Ferguson 3V41

This camcorder came in with the fault report "no eject". In fact no other function worked: the stop LED would blink then the unit would shut down. On inspection we
found that the mode control motor didn't move. Power was being supplied to the motor, which was drawing a heavy current. The problem was that the loading bracket assembly's worm gear was sticking. Normal operation was restored by removing the worm gear and the grease applied to the spindle (similar to the problems you get with the 3 V 44 etc.), cleaning and applying new grease.
A.D.

Amstrad VCR4500

The symptoms with this machine were no clock display and no functions, with the function and pause LEDs permanently lit. Voltage checks around the power supply revealed that the $A / T 12 \mathrm{~V}$ rail at pin 1 (red lead) of plug CL 4 was low, the reading being 2.8 V . Further investigation brought us to R661 (4.7) which was open-circuit. Fitting a replacement cleared up the trouble.
E.R.

JVC HRD170

This machine had been to another dealer with the now familiar "intermittent function" fault. In return for a large sum of money a new set of carriage end-sensors had been fitted. This had failed to cure the trouble of course and the machine's owner, being unable to obtain either satisfaction or a refund, brought the machine to us. As usual we found that the small earthing screw on the motor subpanel was loose.

After putting this right we connected the machine to the mains supply and switched on. It immediately went into the fast-forward mode. When a cassette was loaded the machine acted normally. We noticed however that when the tape was ejected the loading motor at the side of the carriage continued to run for a further five seconds. Also the machine went into fast forward every time it was disconnected then reconnected to the mains supply. A quick look at the end sensors showed that the two-pin plug on the left-hand sensor had been left off. Refitting this restored normal operation.
E.R.

Amstrad VCR6000

The call-out note said "intermittent poor picture and the sound grunts". On playing back a tape in the SP mode it was obvious that the machine was switching randomly between SP and LP. So the tape path was examined and the audio/control head was cleaned and its alignment checked. This didn't clear the fault but I next found that putting the machine into the forward search mode then reverting to play would clear it. After doing this the machine would play normally for several minutes or until stop was pressed. On next pressing play the fault would again be present. I checked the A / C head connections and followed the path back to plug and socket CN-E on the servo board. As this area of the board seemed to be sensitive to pressure some time was spent looking for dry-joints, checking the coupling electrolytics C417 and C419 and bypassing CN-E by wiring a lead direct to the board. As none of this produced a solution the machine was taken back to the workshop.

With the machine on the bench I used a scope to
check the CTL pulses from the A / C head right through to pin 25 of IC402. Everything was o.k. The waveforms at TP401 and TP402 were next checked. RF SW (f) at TP401 was o.k. but the CTL pulses (g) at TP402, although of correct amplitude and in the correct phase relationship with RF SW (f), were accompanied by an awful lot of noise on the base line. Checks on the peripheral components in this area (CTL-Amp) of the chip failed to reveal anything amiss so a new 14DN363 servo chip (IC4(12) was obtained and fitted. Result, a nice clean waveform at TP412 and fault-free performance.

The apparent dry-joint or board sensitivity to pressure had been a red herring, the cause of this being handcapacitance effects. In fact it was possible to trigger the machine into and out of the fault condition by applying a finger tip or the end of a screwdriver to the can of C419. The resulting massive squarewave that showed momentarily at TP402 booted the LP/SP switching into the opposite mode in the same way that selecting forward search would also clear the fault for short periods.
J.C.P.

Samsung VI611

I came across this machine in a friend's shop. It played all right but wouldn't record off air. The E-E display consisted of a blank raster with a murky bar near the top and the tuning was not precise. I suggested scoping the video detector's output but the scope was broken. So I injected a 39.5 MHz signal from a signal generator into the i.f. amplifier. This showed that the i.f. section was all right. The next step was to decouple the various feeds to the tuner. First the a.g.c., then the a.f.c. and finally, using a $22 \mu \mathrm{~F}$ capacitor, the tuning voltage at pin 2 . This last action restored the picture and sound. When the voltage was traced back to source I found that $\mathrm{C} 4(47 \mu \mathrm{~F}, 100 \mathrm{~V})$ in the 52 V part of the power supply was open-circuit. J.L.

Panasonic NV-L20

This machine was dead: after an initial burst at switch-on there was no output from the switch-mode power supply. Diode D1 103 on the primary side of the chopper transformer was leaky.
J. \mathbb{H}.

Logic VR950

Playback of prerecorded tapes was normal but as there were no recorded control pulses servo lock was lost with the machine's own recordings. We found that the inverter transistor Q0214 on the main panel PC6 was faulty. J.H.

Panasonic NV333

After running for just a split second in the rewind or fast forward mode this machine would stop. Playback was o.k. We thought that the fault was a mechanical one but eventually found that Dl003 in the power supply was open-circuit, reducing the relevant voltage to about half. We were surprised by this: since playback was perfect one would have thought that the power supply was o.k. S.DaC.

Panasonic NV780/480/850

The problem was no capstan motor rotation. An external 5 V supply showed that the motor was all right and we then found that the 5 V capstan pulse was missing at pin 38 of the syscon chip IC 6001 . Replacing this chip failed to
resolve the problem which, after much frustration and head-scratching, turned out to be due to the MN1455BVL chip IC7501 on the timer panel.
S.DaC.

Ferguson FV20

The reported fault was no colour. We found that the machine played back prerecorded tapes all right but it wouldn't record any chroma. As a first step we scoped the down-converted chroma output at pin 5 of IC201. There was only a very small signal here, about 10 mV peak-to-peak. This signal is fed to an emitter-follower buffer stage via a low-pass filter, LPF202, so the input to the filter was disconnected to see if the problem was due to excess loading. There was no change in the signal level. All the inputs to the chip were then checked and found to be correct, suggesting that the chip itself was defective. As we had another FV20 in the workshop we borrowed its main converter chip. Still no improvement. After spending some time going round in circles we decided to replace the low-pass filter with the one in the second machine. To our relief a healthy 9000 mV peak-topeak chroma signal then appeared at IC20I's output pin.

Hinari VXL8

This machine's problem was that the capstan wouldn't run. We'd no service information but we had a bit of luck: when we touched the ribbon cable to the capstan PCB the motor started to work. There was no further trouble after stripping this back and resoldering it. M.D.

Tatung VRH8490

The main complaint was no play. In addition the sound had been slurred for some time. When a tape was inserted it threaded all right but when play was selected there was a squealing noise and the machine shut down. The cause of the problem was that the pinch roller had seized solid on the shaft. Freeing is enabled the machine to play but we had to fit a replacement to cure the wow on sound.
M.D.

Panasonic NV-G40

This machine uses the later version of the G mechanism, which is much more reliable. It would refuse to keep a tape in however. The machine would load the tape then begin to lace it but the mechanism didn't click and engage half way through to allow lacing to be completed. An additional point is that the fault was intermittent. Experience of the earlier version suggested that the relay was probably faulty. Sure enough a replacement restored normal operation. The replacements now supplied are like those used in the subsequent L model number machines.
N.B.

Panasonic NV-L20/L25/L28

This range of machines uses a very slightly improved and modified version of the G deck. Noisy rewind was the complaint with an L20B that came in recently. On test it wasn't noticeably noisy but a slight knocking was just discernible. As it causes the problem in the earlier versions I first replaced the main pulley (VXP()917). This time however the cause was the intermediate gear (VDG0546) which transfers the drive from the centre pulley unit.
N.B.

Inside the Ferguson TX98 Chassis

J. LeJeune

Having reached the ton with its TX100 chassis Ferguson then went into reverse, producing the TX99 then the TX98. There were no backwards design steps however. The TX98 is quite obviously a UK design: it looks and feels like a Ferguson. It was possibly the first TV chassis to incorporate Fastext in a single chip on the main PCB, along with remote control, on-screen graphics and scart facilities. The chassis does not have stereo sound capability though. But there's full remote control offering armchair tuning of 49 programmes, a snooze facility that puts the receiver into standby after half an hour, quick recall of the last programme selected, autoswitching to standby after ten minutes with no signals present, and automatic line timebase time-constant compensation on all programme selectors through signal recognition.

The 8.5 by 13 inch chassis is nicely laid out - see our front cover photograph. Components and links are marked on the top side but not on the copper side. There are two smaller PCBs , one for the c.r.t. base, with the RGB output stages on it, and the other for the front panel controls and LED displays.

Block Diagram

Much of the circuitry will be familiar to those who handle Ferguson sets. Basic items such as the power supply, the line and field output stages, the TDA4505
signals processor (i.f. strip plus sync circuits and the timebase generators) and the TDA3301B colour decoder are the same as those in the TX99 chassis, which was described in the August 1988 issue of Television. Fig. 1 shows a block diagram of the TX98. The shunt-mode chopper power supply uses a TDA4600-2 control chip and a TIPL761A chopper transistor, and provides mains isolation. Its start-up thyristor circuit is straight out of the TX100. The field output stage is also familiar, coming from the TX90 via the TX99. The line driver and output stages also come from the TX99: they are simple and economical and have proved to be very reliable.

Control System

There have been two models fitted with the TX98 chassis to date, the 36 K 3 and the 51P7. I had the larger screen model for review and found that it contained another old friend, the SC4 tuner. As in the TX99, this is followed by a single-transistor i.f. preamplifier stage, a SAW filter and then the TDA4505 chip. The differences from the TX99 in this area relate to the tuning system. In this version of the SC4 the local oscillator signal is available at pin 8, which in previous versions was a 12 V input. The output at pin 8 is coupled to an SP4633 prescaler chip IC19 whose division ratio is 64. Fig. 2 provides a simplified block diagram of the frequency-

Fig. 1: Block diagram of the Ferguson TX98 chassis.
synthesis tuning system. The output from the prescaler chip enters the 6805 T 2 microcomputer chip IC7 at pin 11. Commands from the remote control system arrive at pin 2 . The programme tuning data, along with normalised analogue control settings, are stored in the SDA2516 non-volatile memory chip IC13. On receipt of a channel change command the relevant data from the memory enters IC7 at pin 25. A phase-locked loop within IC7 produces a control voltage at pin 7 . This is fed to the UAA2001 tuner control chip IC8 which produces the tuning voltage at pin 2. After filtering to control the rate-of-change this voltage is applied to pin 5 of the tuner. The tuning voltage supply is obtained from the 115 V h.t. line and is stabilised by the 33 V zener diode D33.

IC8 also forms part of the analogue control system for volume, brightness, contrast and colour saturation control. It receives data from IC7 at pin 14 and supplies a data output at pin 4 which is connected to pin 1 of the MCI44111 digital-to-analogue converter chip IC9.

The TDA4505 Chip

The TDA4505 chip IC2 provides composite video, audio, field and line drive and tuner a.g.c. outputs. It incorporates an a.f.c. circuit but this feature is left unused as the receiver has a frequency-synthesised tuning system. Its a.g.c. output is inverted by TR10 for application to the tuner. The a.g.c. crossover point is set by RV1, which is normally adjusted for 3.5 V at pin 1 . It's important that the a.g.c. voltage at pin 2 of the SC4 tuner does not exceed 3.5 V - if it does the video will be noisy. The tuner's a.g.c. voltage should lie in the range $2.5-3 \mathrm{~V}$, set by RV1.

The composite video plus 6 MHz sound output appears at pin 17 of the TDA4505 chip. You can expect $1.75-2 \mathrm{~V}$ peak-to-peak video at this pin, sitting on a d.c. level of 2.25 V . The 6 MHz intercarrier sound is filtered out and re-enters IC2 at pin 15, the audio output appearing at pin 12. Its level is fixed by a $3.3 \mathrm{k} \Omega$ resistor connected to pin 11 since volume control is carried out in the following switching chip IC15.

Signal Switching

The audio and video switching system is shown in Fig. 3 (there's separate switching for the teletext/external RGB signals). Two chips are used for the switching, a TDA5850 (IC14) for the video signals and a TDA8196 (IC15) for the audio signals. They are controlled by the AV output from pin 5 of the tuner control chip IC8.

IC14 receives off-air video at pin 8 and video from pin 20 of the scart socket at pin 4. Its output at pin 5 is filtered to separate the luminance and chrominance signals which are then fed to the TDA3301B colour decoder chip. The output at pin 5 is also fed via emitterfollower TR22 to the teletext decoder/on-screen graphics generator circuitry. Pin 2 provides an output that's taken to pin 19 of the scart socket. The switching control input is at pin 3 , which is connected to the AV line via the inverter TR13.

The arrangements around IC15 in the audio channel are somewhat different. Off-air audio enters this chip at pin 2. This feed is also taken to the emitter-follower TRI whose output is connected to pins 1 and 3 of the scart socket. The audio inputs at pins 2 and 6 of the scart socket are summed and fed to pin 4 of IC15, which receives a d.c. volume control potential from the DA

Fig. 2: The tuning and analogue control system.

Fig. 3: The video and audio signal switching arrangement.
converter chip IC9 at pin 6. The output to the TDA2611A audio chip IC4 is at pin 8.

When AV is selected the control line takes pin 19 of the TDA4505 chip IC2 low. This input acts on the a.g.c. circuit, muting the i.f. strip so that the off-air sync pulses are deleted. The composite video input is fed via TR22 to a switch in the teletext chip IC12, emerging at pin 2 of this chip from which it's fed back to the sync separator in the TDA4505 chip at pin 25 . In the RGB mode the switch in IC12 selects pulses generated within this chip for feeding back to IC2 to synchronise the timebase generators.

The Colour Decoder Chip

A Motorola TDA3301B chip (IC3) is used as the PAL decoder. This chip also provides auto grey-scale tracking, beam limiting and switching between off-air and teletext/external RGB inputs. The component count in this area is low and the arrangement deceptively simple - a remarkable amount of cunning went into the design of this 40 -pin chip. The luminance delay line DL14 is a TDK SEL4680: it resembles a thick-film circuit.

There are separate feedback paths from the RGB output stages to IC3 for grey-scale tracking. The chip generates dark-level pulses which are inserted during the field flyback period to enable the "black current" at each gun to be sampled. A switched sampling system within the chip compares the feedback samples with an internal reference. The error voltages produced are stored as clamp voltages on the 10 nF capacitors connected to pins 15,18 and 21 . This system operates at only the low-light drive level of course. RV21 and RV23 on the c.r.t. base panel enable the gain of the green and red output stages respectively to be adjusted for correct highlights. Following current practice, the gain of the blue channel is fixed at close to maximum. Black level is set by selecting aux with no input and using the brightness control on the remote control unit to set the highest of the c.r.t.'s cathode voltages at 160 V . This should be the "normal" setting.

RGB Output Stages

Fig. 4 shows the red output stage. TR25 is a class A amplifier driving the two emitter-followers TR29 and TR26. Under normal drive conditions TR25 forward biases the base of TR26 via D204, the c.r.t.'s red cathode current flowing via R65, R63 (these two resistors are on the main panel), R212, TR26 and the flashover protection resistor R225. The voltage developed across R65 is thus proportional to the cathode current and is used as the feedback. With a sudden transition to black TR25 is cut off and the c.r.t.'s cathode capacitance is discharged via TR29 and D203.
TR20, TR30 and their associated components are common to all three RGB channels. TR20 is a constantcurrent source, providing a stable bias for the RGB amplifiers. When the set is first switched on TR30) is cut off and D209 is forward biased by the 12 V supply. The current drawn through R65 and R63 develops sufficient voltage to bring the beam limiter system in IC3 into operation, overriding the auto grey-scale circuitry. The conduction of TR30 is controlled by the delay circuit R223/R227/C212. At switch on C212 charges via R223. Once TR30's base voltage rises sufficiently it switches on, reverse biasing D209. D210 provides a discharge path for C212 at switch off. The circuit is included to avoid the viewer seeing a peak-white auto grey-scale line during the heater warm-up period.

Beam Limiting

In addition to providing a sample "black current" feedback voltage R65 also enables the TDA3301B chip to provide beam limiting. When the chip senses that the current in any of the three beams has reached the maximum allowable value the beam limiter system within the chip reduces the drive via the contrast control arrangement. The maximum beam current is set at 3 mA by the value of R57.
There's a further beam limiter circuit associated with the e.h.t. system, see Fig. 5. It's a conventional circuit based on a diode that cuts off when the total beam current reaches a certain value. The diode concerned, D27, is forward biased from the 115 V h.t. line via R127 and R128. In normal operation the beam current flows via this diode. Should the current reach the excess level the voltage at the junction of R128 and D27 will swing negatively, cutting the diode off. The beam current path is now via R127/8. The negative-going voltage switches on the

Fig. 4: The red video output stage circuit. The circuitry around stabiliser transistor TR20 and the delay-on transistor TR30 is common to all three RGB output stages.

Fig. 5: The static beam limiter circuit.
emitter-follower TR2 so that diodes D2 and D3 also conduct, pulling down the contrast and brightness control voltages to provide static limitation of beam current.

This double-barrelled beam-limiting arrangement is popular in current designs, affording improved c.r.t. protection against excessive dissipation. Along with the stabilised heater voltage this technique helps prolong c.r.t. life, though there's a little sacrifice in terms of picture "punch". It's nowadays commonplace and is preferred to the "leap out and stun you" pictures of the early and mid-eighties.

Alternative CRT Base Panels

There are two c.r.t. base panels, types PC1311-001 and PC1318-0102. The only difference between them appears to be the value of the c.r.t. heater dropper resistor R222 which is 3.3Ω on the former panel and 6.8Ω on the latter.

Standby Switching

A simple arrangement is used to give standby operation. The 5 V and 12 V 1.t. supplies are derived from the TBA8138 regulator chip IC11, see Fig. 6. In the standby mode a low from the microcomputer chip is applied to pin 4 of IC11, switching off its 12 V output. Since the TDA4505 chip receives its supply from the 12 V rail the i.f. system and the timebase generators are cut off. In this condition the chopper circuit continues to operate in a low-power, high-frequency mode, as in the TX99. The maintained 5 V supply keeps the microcom-
puter chip and the remote controd system in operation.
Otherwise the power supply and the timebase output stages remain as in the TX99.

Remote Control

Signals from the infra-red remote-control handset are detected by a photodiode and then amplified by an SL486 chip, IC984. These components are on the front control panel. The output from 1C984 is fed via a remote-control interface circuif in the teletext chip IC12 to the microcomputer chip IC7 where the commands are decoded and routed in the appropriate directions. IC7 also drives the LED displays. The control system consists of IC 7 , the memory chip $\mathrm{IC13}$, the tuner control chip IC8 and the DA converter chip IC9. Decoded data travels from IC7 to the DAC chip via IC8 which inverts it. IC7's 4 MHz clock crystad is confinected between pins 4 and 5: the clock signat is atso used by IC8 and IC9.

Reset for the microcomputer chip is derived from pin 6 of the $5 / 12 \mathrm{~V}$ regulator cthip IC 11 . At power-up this pin goes low for 20 Onsec. During normal operation it sits at 5 V while in standby the vottage drops to 4.5 V . The reset function selects programme 1 and normalises the user controls.

The reason for passing the remote control data to IC7 via the teletext and graphics processor chip IC12 is that this i.c. checks for text commands. These are not passed on, being diverted to the text/graphics system in the chip. The other commands are passed to IC7.

Teletext

Though the set is described as having a single-chip teletext decoder, the Texas CF70064 teletext decoder chip IC12 works in conjunction with the CF72303 data slicer chip IC16. Video from the switching chip IC14 reaches IC16 via the buffer transistor TR22. Thus teletext signals coming via the scart socket can be decoded. This is useful where a satelite TV receiver is connected to the scart socket. The data slicer chip generates clock, data and sync signals. It has a crystal oscillator that runs at 55.5 MHz , eight times the teletext clock frequency: the crystal is connected between pins 11 and 12 - you should see 6 V peak-to-peak at pin 12.

The inclusion of nearly all the teletext decoding and display generation circuitry within the 28 -pin CF70064 chip is a considerable achiewement: This is not a fullyimplemented Fastext system however. The coloured buttons do not give instant access to the desired page but, in this version, give one-button selection of the page number. After that the decoder looks for the page in the normal way.

IC12 also provides on-screen graphics which are called up whenever a remote-control ommand that necessitates their appearance : is received, This is organised by the chip's internal logic and is one reason for routing the remote-control commands via this chip. The system timing oscillator runs at 22 MHz . It's controlled by the BB531 varicap diode D41 linked to pin 26 - the control voltage comes from pin 28.

RGB Source Switching

The TEA5114A chip 1C17, Fig. 7, provides switching between the RGB and fast blanking signals from the teletext chip and those from the scart socket. Pin 8 (source switching) of the scart socket is not

Fig. 6: The l.t. regulator circuit also provides standby switching. In early production a subpanel with separate 5 V and 12 V regulators was fitted in place of IC11.

Fig. 7: The RGB source switching chip IC17.
connected. An exclusive-or gate in IC17 selects the fast blanking from either source automatically.

Summary

The TX98 chassis should earn for itself a place in engineers' hearts for its straightforward design, ease of servicing and performance. Much has been crammed into the chassis, yet the layout is uncluttered. The receiver works well with mediocre signals, is light on mains power - it could well work with a battery adaptor if one is ever made available - and offers all the features of an expensive model at a moderate price. As the nine in its chassis number suggests it's designed to drive 90° tubes.

The set should not present any serious challenges to the service engineer. Remember that the sync pulses and the remote control commands pass via the CF70)(64 teletext chip, points that could lead to confusion. Failure of the BY500-800 h.t. rectifier D17 can cause damage to the following components: the chopper transistor TR3, its TDA4600-2 control chip IC6, the mains bridge rectifier diodes D6-9 and the degausing thermistor Z2 which also acts as the surge limiter. With any faults in this area use only direct Ferguson replacements. There have been one or two minor modifications. R35 has been changed from $1 \mathrm{k} \Omega$ to 560Ω to overcome loss of colour with high beam current; C74 has been changed from 22 nF to 15 nF to improve the h.f. response with the smaller-screen model; C 40 has been deleted with main board PC1410-006 (Model 36 K 3) to correct a small h.f. video lift because this model doesn't have scart facilities.

Long-distance Television

Roger Bunney

There was a marked fall in Sporadic E reception during August, with perhaps just two excellent days. Few exotic signals have been seen so far this year, though Simon Hamer in Powys received a system M signal, obviously from North America, on ch. A2 at 1920 BST on the 2nd of August. There's been a lack of signals from Arabic stations, and a look at the reception pattern shows a heavy bias towards signals from Spain/Italy and to a lesser extent from Scandinavia, i.e. a North/South line seems to be favourite at present.

The \log for UK SpE reception is as follows:
4/8/90 RTP (Portugal) chs. E2, 3; TVE (Spain) E2, 3; RA1 (Italy) IA, B; C + (Canal Plus, France) L2, 3; +PTT (Switzerland) E2; YLE (Finland) E3; SVT (Sweden) E2, 3, 4; NRK (Norway) E2, 3, 4.
5/8/90 RAI IA, B; TVE E2, 3, 4; +PTT E2, 3; C + L2, 3; ARD (West Germany) E2, 3; NRK E2.
6/8/90 TVE E3, 4; RAI IA; RTP E2, 3; TVE-2 E2; EPT (Greece) E3; Iran E2.
7/8/90 TVE E2, 3, 4; + PTT E2, 3, 4.
8/8/90 TVE E2. 3. 4; RAI IA; RTP E3; TVP (Poland) R1.
9/8/90 JRT (Yugoslavia) E3, 4; RAI IA, B; RTSH (Albania) IC; TSS (USSR) R1, 2, 3; TVP R1, 2; CST (Czechoslovakia) R1, 2; ARD E2, 3, 4; +PTT E2; ORF (Austria) E2a, 4; C + L2, 3, 4; RTP E2, 3; TVE E2, 3, 4; TVE-2 E2. An unidentified ch. IA private station was also received.
10/8/90 TVE E2; RTP E3; JRT E4; RAI IA; TSS R1, 2; CST R1, 2; MTV (Hungary) R1, 2; TVP R1
$11 / 8 / 90$ RAI IA, B; NOS (Holland) E4; TVE E2, 3, 4; C+ L3.
12/8/90 SVT E2, 3, 4; NRK E2, 3; RUV (Iceland) E4; TSS R1, 2, 3; RAI IA, B; TVE E2, 3, 4; C+ L3; JRT E3.
13/8/90 NRK E3; C+ L3.
$14 / 8 / 90$ RAI IA; TVE E $2,3,4$; RTP E3; C+ L4; TSS R2. 15/8/90 TVE E2, 3, 4.
16/8/90 RAI IA, B
21/8/90 TVP R2; DR (Denmark) E3; NRK E2, 3, 4; SVT E2, 3, 4; RUV E4
23/8/90 RAI IA, B; JRT E3; TVE E2, 3, 4; C $+\mathrm{L} 2,3,4$, CST R1, 2; + PTT E2; RTP E2, 3.
24/8/90 MTV R1; TVP R1, 2, 3; TSS R1, 2, 3; CST R1; RTSH IC; ARD E2; RAIIA, B; ORF E2a 4; + PTT E2, 3, 4; TVE E2, 3, 4; TVE-2 E2; RTP E2, 3; JTV (Jordan) E3
25/8/90 TVE E2.
27/8/90 SVT E2, 3; RAI IA, B.
$28 / 8 / 90$ + PTT E3; ARD E2; TVE E2
29/8/90 TVP R1; CST R1; TSS R1; TVE E3.
30/8/90 RAI IA, B; C+ L2; JRT E4; TVP R2.
31/8/90 RAI IA, B; TVE E3; TVP R2; CST R2.
By normal English Summer standards the weather in the UK has been good. As a result tropospheric reception was noted on certain days. On the 4th signals from RTE (Eire) in Band III and at u.h.f. were received in the south west, also similar signals from TVE. There was a lift during the 9-11th with signals from France and the Benelux countries received over much of the UK in Band III and at u.h.f. Signals from TVE in the same bands were received on the $10-11$ th in the south west. A final tropospheric opening on the $25 / 26$ th produced the usual signals in the south east.
There was an excellent auroral event on the 16th, with

Band I signals noted in the UK from Finland, the USSR and from other, unidentified sources. A repeat occurred on the 20th, but this time reception was mainly in Scotland. NRK (Norway) was identified. Further auroral activity on the 22 nd produced unidentified Scandinavian signals in Band I and RTE signals in ch. B and also in Band III.

Tim Anderson has seen a new Italian private station on ch. IA with the identifications "Ale Italia" and "Canal Otto Video". K. Fellingham of Copnor, The Street, Lawshall, Bury St. Edmonds, Suffolk IP29 4QT would like to hear from any nearby DXers. Roger Fussel in Cornwall has obtained several Rank mono TV chassis that he intends to convert to DX use. He would like to hear from anyone with experience of Rank sets. His address is 55 Peacock Avenue, Torpoint, Cornwall.

The present Solar Cycle is now thought to have passed its peak. The fact that the solar spots are drifting towards the solar equator is thought to confirm this. The peak of the Perseids meteor shower occurred at 1130 GMT on August 13th. Apart from some excellent reflections from Scandinavia the shower didn't produce much activity.

My thanks to the following for sending in reception reports this month: Simon Hamer (Powys), Cyril Willis (King's Lynn), Roger Fussell (Torpoint), David Oliver (Birmingham), Iain Menzies (Aberdeen), Peter Schubert (Rainham), Bill Cotterill (Tipton) and Tim Anderson (St. Leonards).

News Items

UK: During the coming autumn the BBC is to allow RTE programmes to be transmitted in scrambled form as a pay-TV service during the BBC-TV network downtime, most likely on BBC-2 channels. A modified form of Discret encryption similar to that used for the British Medical TV transmissions will be used. Initially the broadcasts will take place during one night a week. The programmes will be sponsored. Pulses to start a VCR will be included in the encryption so that the programmes can be recorded and watched next day.
Germany: The East German DDR-TV service will join the West German network on October 14th. DDR is currently equipped mainly for SECAM transmissions and a change to PAL is expected. The Rostok region service will join NDR. A third network is to be installed in the Dresden (Sachsen) region, to be part operational by the end of the year. The first transmitters in this network, all operating with PAL, will be Dresden ch. E59, Lobau ch. E56 and Cottbus ch. E57. DFF-1 and DFF-2 in this region are likely to become ARD-1 and ZDF, with the third network transmitting a mixture of West German and DFF material.
Lebanon: Dalibor Frkovic (Yugoslavia) reports that a service called "The Action Channel" is in operation on ch. E3. It uses a logo (earlier thought to be used by an Egyptian service) with three overlapping pyramids. Programmes start at 1230 CET with an identification slide and the Lebanese flag. The transmitter is thought to be co-sited with the "Middle East TV" operation, either in the Lebanon or Cyprus - some of the programmes carry a "recorded by satellite" logo.
Jordan: The Suwaileh (Amman) ch. E3 transmitter now uses two audio subcarriers.
$\mathbf{5 0 M H z}$ Amateur Radio: Belgian 50 MHz operators are now allowed to operate with both vertical and horizontal polarisation. Swiss amateurs have been heard using the 50 MHz band during TV hours, though the agreed times
are $2300-0400$ till late September then $0000-0500$ from October to March. Transmissions during these hours are permitted only when TV and other transmitters near the borders are off-air.
Equipment: The recently introduced Sony GVM1300 13 in . multi-scan monitor will detect the parameters of incoming signals and lock to them automatically. The line timebase runs from $15-36 \mathrm{kHz}$ and the field timebase from $50-100) \mathrm{Hz}$. Resolution is 600 lines. The US price is quoted as $\$ 1,495$. European availablity has not so far been announced.

Satellite TV

Kopernikus-2 at $28.5^{\circ} \mathrm{E}$ began tests on August 10th. The frequencies used initially were $12.52 \mathrm{GHz}, 12.59 \mathrm{GHz}$ and 12.69 GHz . Various programme feeds are being carried, plus occasional corporate videoconferencing.

On Astra, Filmnet is carrying out teletext tests on pages 800 plus during weekday daytime periods. The Japanese-language service JS-TV that uses the Lifestyle transponder is said to be achieving high viewing figures. Astra 1C may be operational in 1994, with the possibility of HD-TV transmissions. Sky has indicated that at present it does not envisage HD-TV services in the foresecable future. A new service "TV Belgrade" should be available across Europe from November 1st.

Ian Waller (Lincoln) tried using his BSB receiver system recently with signals from SF Succe at $27.5^{\circ} \mathrm{W}$. He successfully locked video but there was no sound.

The main Jodrell Bank dish has been painted white to reduce surface expansion/contraction which is distorting its 250 ft wide surface. Apparently surface movement has been reduced and performance improved. If anyone has some high-gain white paint I could use it!
Motorola has planned a new world-wide communications network that uses low orbiting satellites (at 413 miles above the Earth) operating in the $1-2 \mathrm{GHz}$ band. Known as the Iridium Project, it's intended mainly for mobile communications. Two demonstration craft could be in orbit by 1992. Financial backers are being sought.

Signals from a BAE Starbird SNG vehicle in Amman have been seen via Eutelsat at $7^{\circ} \mathrm{E}$. Israel has used the old RTL transponder on Eutelsat-1 F4 at $13^{\circ} \mathrm{E}$ for outgoing feeds used by CCN/CBS.

A new satellite has been noted here at about $16^{\circ} \mathrm{W}$, with data downlinking via an 11.4 GHz transponder using circular polarisation. No video so far. I've no idea what it is - it's not a Gorizont sidelobe.

The Sat Minder

From time to time one hears of satellite receiving equipment being stolen. A colleague of mine had his 1.8 m spun dish, stand and electronics stolen from a back garden even though the thieves had to scale a 6 ft fence. To help with this problem a Bedfordshire company has produced an alarm to protect both internal and external equipment against theft or tampering.

Its small black metal case ($51 / 4 \times 6 \times 2 \mathrm{in}$.) contains a mains-powered circuit that uses two chips and three transistors mounted on a single-sided PTFE PCB, with input/output connections via chassis-mounted F sockets. The unit is connected in series with the coaxial feeder between the dish and the input socket on the receiver. Ideally the alarm should be fitted midway to be less noticeable. Once installed and activated by the reset switch at the back the unit will emit a very loud 120 dBA noise, not unlike an internal fire alarm, if the LNB is disconnected or shorted. The alarm will also sound if

AERIAL TECHNIQUES

the supply from the receiver to the LNB is removed. The unit has three LEDs, one for "armed", the others for "LNB" and "receiver". The "armed" LED lights when power is applied. The others light when the relevant piece of equipment is removed.

Thought has gone into the design, with a cool running mains transformer which is unusual nowadays. Construction is of a high standard. The alarm comes with a 4 ft length of twin flex and a plugged F jumper.

I'd consider this to be an essential piece of equipment for anyone who has an expensive satellite receiver system. The cost is $£ 35$ plus post (UK) at $£ 2.50$, inclusive of VAT. For further details contact Electron Electronics at Unit 14-16, Singer Way, Woburn Road Industrial Estate. Kempston, Bedford MK42 7AE telephone 0234841174.

Internal view of the SatView alarm.

Features of the Sharp VCD-805

Mick Dutton

Sharp's top of the range VCD-805H VCR has some very impressive features. These include digital picture effects such as nine-picture strobe, frame-by-frame advance, picture-in-picture, variable-speed strobe and a ninechannel picture search that enables the user to scan the broadcast band and sample the programmes available. The digital circuitry also provides a superb still-frame picture. Other features include a comprehensive onscreen display, a linear tape counter and index search. Picture quality is excellent in the normal and the trick modes. The machine follows normal Sharp design practice, with everything accessible and the panels laid out logically. Design is up to the minute all round, including a digital servo system.

The sophisticated on-screen display system provides the user with full timer-control information in an easy to understand form. In the absence of a signal it provides a blue screen with the Sharp logo, which doubles as the initial tuning signal.

A data bus links the system control and timer chips along with the servo and digital circuits. The tuning chip is also responsible for the key scan and processing of the remote control information.

The mechanics are new, but appear to be just as solidly built as in previous machines.

Video System

The digital section is contained in a metal can that's mounted above the other electronices. Fig. 1 shows a simplified block diagram. Incoming off-air, playback or external (from the scart socket) video is applied to selection switches and then follows two paths, called main and sub video. The main video signal is buffered and then passed via a switch and amplifier to the r.f. modulator and the scart socket's video output pin. This switch is used to select either the main or the digitally generated signal. It can switch between the two pictures or one picture can be inserted into the other one.

The sub-video path also starts with a buffer, after which the signal is separated into its luminance and chrominance components. A low-pass filter ensures that there are no luminance signal components above 3 MHz , to avoid interference with the 10 MHz sampling carried out in the following analogue-to-digital converter. The digitised luminance is then fed into two memory chips each of which stores a complete field. A 4.43 MHz bandpass filter selects the chroma signals, $B-Y$ and R - Y, which after demodulation are digitised and stored in a single memory chip.

A sync separator extracts the sync pulses which are passed, as write sync, to the memory control chip to lock its write clock. This chip contains most of the digital signal processing. It provides digital chrominance ($\mathrm{R}-$ Y and $\mathrm{B}-\mathrm{Y}$) and luminance outputs that pass to three separate DA converters. After filtering the analogue signals are fed to the encoder chip where sync from the main signal path is inserted so that both sets of signals are locked.

Let's consider briefly the way in which a digital picture for insertion in the main one is formed, see Fig. 2. Since they are extracted and reinserted later it's not necessary
to digitise the sync signals. With a $51.2 \mu \mathrm{sec}$ length of line sampled at 10 MHz there will be 512 samples per line. In the vertical direction the top 30 lines and the bottom 9.5 aren't sampled, leaving 273 lines that are digitised. After processing, an insertion signal box that's $17 \mu \mathrm{sec}$ wide and 90 lines high is obtained.

The AD converters are conventional. The luminance input is first clamped then fed to 64 -bit comparators whose outputs pass to a $64-10-6$ bit encoder. A data latch and buffer feeds the signal in serial form to the memories. The reference voltages for the comparators come from an integrated ladder network fed from internal reference sources, giving a 2.8 V reference at the bottom of the ladder for black level and 3.5 V at the top.

The chroma AD converter operates on similar principles but in this case the incoming $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-$ Y signals are multiplexed at 2.5 MHz to provide alternate samples. Clamping is somewhat different since the reference position is mid-point, i.e. no chroma means the half-voltage level. Thus the chroma can swing between positive and negative values. This time the sampling rate is 5 MHz , with the output to the memory again in serial form.

The three memory chips, two for luminance information and one for chroma, are identical. They are unusual in having separate inputs and outputs to enable them to be filled at the same time that they are being emptied. This gives perfect transitions between successive digital pictures. Each chip can store 320 lines $\times 270$ columns, and a refresh circuit is built in to ensure that the material doesn't deteriorate with time. The heart of the digital circuitry is the memory control chip, a lo(0-pin monster. Amongst other things it generates all the timing pulses and the sync signals required.

There are two voltage-controlled oscillators, one for writing information into the memories and the other for reading it out. The write clock is synchronised to the sub-video input. It runs at 10 MHz . The 5 MHz chroma sampling pulses and $2.5 \mathrm{MHz} \mathrm{R}-\mathrm{Y} / \mathrm{B}-\mathrm{Y}$ multiplex pulses are derived from it.

The read clock also runs at 10 MHz . It generates sync pulses and pulses for reading the information out of the memories, and is locked to the main video line sync pulses. As a result the digital video is synchronised with the main video source, giving noise-and jitter-free transitions.
In the digital pause mode the information coming from the video heads contains considerable noise. As this signal would be unsatisfactory for locking a VCO the VCO is switched off. The 10 MHz crystal-controlled oscillator is then used instead.

The memory control chip combines the information from the two luminance stores to provide an output to the luminance DA converter. The chroma signals have to be demultiplexed then sent to separate DA converters. DA conversion is simple. The incoming serial data operates a series of swiches that place, in turn, the 5 V supply across different combinations of an internal resistive ladder network. The outputs are buffered then fed through low-pass filters to remove any residual sampling frequency components. For the luminance signal the filtering cuts off signals above 3 MHz . With the

Fig. 1: Simplified block diagram of the digital video processing circuitry.

Fig. 2: Sampled area of the picture and the size of the insert box.
chroma signals the cut-off is at 1 MHz .
The three signals are finally fed to an encoder chip that produces a composite video output complete with reinserted sync and burst, along with the colour subcarrier.

Video Switching

As its name suggests, the main video provides the main picture. The sub video is digitised to provide effects and picture-in-picture. To reverse the presentation of the two pictures seen in the picture-in-picture mode all video sources have to be switched in both channels. This is done by electronic switches which are controlled by high and low signals on the playback-high and digitalon control lines. Fig. 3 shows the relevant circuitry and Table 1 the logic conditions. It's also necessary to switch the initial input to the machine from off-air to scart sourced, which is also done by the switching chip. Digital transistors - see Fig. 4 - control the switching. An

Fig. 3: Main picture selection switching.

Fig. 4: Symbols used to denote digital transistors. (a) NPN type with type number starting DTC. (b) PNP type with type number starting DTA.
interesting point here is that low is represented by a voltage of less than 0.5 V while high is 1.8 V or greater.

Servicing should be fairly straightforward, and if previous Sharp models are anything to go by the reliability should be high.

Table 1: Picture selection logic.

Mode	EE (L) EE (L) Main	Pin 2	Pin 4		
pic	LE or two-picture	L	H	L	L
Play or two- picture	H	L	L	L	L
Two-picture reverse (EE	L	H	H	L	H
sub video)	Two-picture reverse (play sub video)	H	L	H	H

TV Fault Finding

Reports from Eugene Trundle, Nick Beer, Ed Rowland, Jim Littler, lan Bowden, Stephen Leatherbarrow, Hugh MacMullen and Paul Hardy

Toshiba 222T5B

Teletext faults are rare and the one on this set was really nasty. The symptom was intermittent loss of the text display - sometimes to a blank screen, sometimes to garbled characters. There was no clock feed at pin 18 of the SAA5030 VIP chip, though there was activity at the 6.9 MHz tuned circuit connected to pin 21 . The culprit turned out to be the decoupling capacitor connected to pin 20 of the SAA 5030 chip. It was leaky and "grumbling". Many text sets use this chip, so it's possible that this fault could occur with other sets.
$\mathbb{E} . \mathbb{T}$.

Ferguson SRB1 (BSB Receiver)

As many of you will probably know, there was a batch of faulty ACM modules which cannot be authorised by BSB. They have codes E019 8. . Apparently the problem was BSB's. The only solution is to return the receiver to the manufacturer for a replacement module to be fitted.

One of our customers had one of the faulty receivers. A replacement also had a problem. The picture disappeared, leaving a blank raster with only the BSB header at the top. After a while this also disappeared. Calling up the installation details showed that a scrambled signal was being received, and the ACM menu confirmed that the receiver was authorised. There was an input to the D-MAC decoder but the output was corrupt as the descrambler chip ID7 was faulty. It's a 68 pin, four-sided flat-pack device, type DMA2285, fitted in a holder. When replacing one of these chips the interesting thing to note is that pin 1 is half way along one side, denoted by the standard indentation pip. N.B.

Matsui 2180TT/Saisho FST212T

This set was dead. In these circumstances the first thing to check is the wirewound 5.6Ω resistor R502. You quite often find that it's open-circuit because the STR58041 chip IC501 has failed. This time the resistor was o.k., but we replaced the chip as we've known it to go open-circuit. There were still no results. Further checks with the meter revealed that R516 (1.5 Ω) had failed. Replacing this restored normal operation.
E.R.

Matsui/Saisho Regulators

When dealing with power supply faults in Matsui or Saisho sets that use an STR50103 or STR58401 regulator chip it's advisable to check that only one mica insulator has been fitted to the heatsink. We've had several cases where two insulators have been fitted in this position. In each case the chip either failed completely or intermittently due to the reduced efficiency of the heatsink action.

> E.R.

Network NWC1402R

The original fault with this set was no green in the picture. One of the transistors (Q507) on the c.r.t. base panel was open-circuit. Fitting a replacement restored the missing colour and the set was then left on soak.

After about fifteen minutes a high-pitched whistle suddely developed. It took quite a lot of panel probing and flexing before we discovered that the noise was coming from T431. A liberal blob of Araldite applied to the windings provided a cure.
E.R.

Sanyo CTP6132

C440 $(4.7 \mu \mathrm{~F})$ proved to be the cause of field foldover at the top of the picture. If you encounter this problem with one of these sets it's also prudent to change C447 $(10 \mu \mathrm{~F})$ as this component can also cause trouble. E.R.

Ferguson TX100 Chassis

The customer's complaint was that the sound sometimes disappeared completely, a sharp tap on the cabinet bringing it back. Checks showed that R95 (2.2 Ω) was dryjointed at one end - in fact it had never been soldered. It's surprising that the set had worked for several years without giving trouble.
E.R.

Hitachi CPT2288DS

Mr. Kokolay is an old friend of ours. He'd bought this set in Germany and taken it to Spain where he works most of the time. When he brought it back to Blighty he found that it didn't work - the set was dead apart from the red on light. On investigation we found that there was no output from the switch-mode power supply because LLO4 was open-circuit.It's a substantial coil with 24 s.w.g. wire and it's glued, so I didn't see why it should go open-circuit. I removed it by heating the glue with a soldering iron then took off two turns, cleaned and tinned the ends then soldered the coil back, finally glueing it down again. The set is designed for 225 V mains operation but seems happy enough on 240 V . I looked for one of those old Luxor or Kuba mains transformers for it but they've long since gone.
J.L.

Saisho CT1400

The fault with this set was low sound - it was virtually non-existent. We found that R356 ($10 \mathrm{k} \Omega, 0.5 \mathrm{~W}$) was open-circuit. It was a simple fault but was time consuming with no circuit diagram.
J.L.

Luxor 17L67 (L2 Chassis)

This set was dead, or to be more correct there was an overload. We soon found that the S2000AF line output transistor TB503 was short-circuit. Note the F in the type number. This indicates that it has an insulated rear side - the S2000A is uninsulated. The efficiency diode DB508 was also short-circuit. After fitting new components we switched the set on. A very loud arcing sound came from the c.r.t. base area and the 120 V h.t. supply was low at around $60-70 \mathrm{~V}$. The arcing was from the focus lead to a chassis point. As it came from a section of the e.h.t. winding this suggested loss of regulation or some form of runaway, but the h.t. was low instead of high.

The set was quickly switched off, then on again with a scope connected to the line output transistor's collector. The line flyback pulses were over 2 kV ! No wonder the 1.3 kV rated output transistor had failed. We disconnected the scan coils and the collector of the line output transistor then switched on to see whether the h.t. was this time correct. It was still low at around 65 V . There was little left in the circuit apart from DB508 which had already been replaced and the flyback tuning capacitor CB507. The later turned out to be open-circuit. As a point of interest we found that the replacement was rated at 1.6 kV instead of 1.5 kV .
I.B.

B and 08902

When this set was first switched on there was a weak raster with snow. There was muted sound but the onscreen graphics were normal. After a few minutes or so a dim picture whose black level varied with the contrast control setting would appear. We soon found that the common supply feeding the regulators on the chroma drive PCB and the tuner/i.f. PCB was low at 12.5 V instead of 18.5 V . The cause was a cracked and leaking supply reservoir capacitor, $\mathrm{C} 20(220 \mu \mathrm{~F})$, on the power supply control PCB.
I. \mathbb{B}.

Ferguson TX10 Chassis (Teletext)

This teletext set had been serviced, including tube replacement. On test an apparent text fault occurred: all blue content was missing, but only in the text mode. As a replacement teletext panel was available this was fitted as a check but failed to provide a cure. A scope check then showed that the blue output from the teletext panel reached the TDA3560 colour decoder chip's data insertion pin. When this chip was replaced normal operation was restored. It's the first time that we've experienced this particular problem with a teletext set.
S.L.

Network NWC1430

This colour portable couldn't be shifted from channel 1 by using the front panel up/down buttons. The μ PD1937C chip IC1301 is responsible for this function so our checks centred around it. The supply was present, the external 455 kHz oscillator connected to pins 10 and 11 was working correctly and there were normal d.c. level changes at pins 2 and 3 when up/down commands were given. Replacing the chip restored normal operation.

Alba CTV14RS

No sound with field collapse should direct attention to the appropriate supplies as these two stages very often share a common rail. In this particular case the 12 V supply derived from the line output transformer was missing. The surge limiter resistor R425 (6.8Ω) was open-circuit because rectifier diode D410 was shortcircuit.
S.L.

ITT TB1250 (CVC824 Power Panel)

The customer's complaint was of colour loss. We found that the colour came and went, with bands of red/green changeover showing occasionally. I'm ashamed to admit that I went straight to the TDA356() colour decoder chip
and replaced it. This didn't do anything for the fault, so a closer look was called for. When the colour was turned off with the front control we saw that the picture had a curious flutter. This was accompanied by a slight pull now and again at the top of the screen. The penny then dropped and attention was turned to the TDA9503 chip IC711 which contains the line oscillator. We soon found that the 12 V supply decoupler $\mathrm{C} 721(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ was faulty. It's of the PC mounting type and when it was removed one leg parted company.
S.L.

Grundig C7400

This one led us a dance because it would go into standby about four times an evening. After very many hours of testing we eventually found that $\mathrm{C} 642(100 \mu \mathrm{~F}, 10 \mathrm{~V})$ went open-circuit intermittently. It decouples the TDA4600 chip's reference voltage.
H. MacM.

Sanyo CTP3101

This set had perfect chrominance but no luminance. Increasing the tube's bias voltage made it possible to see something. Eventually I found that Q342 in the blanking circuit was faulty. When in circuit this transistor produced no voltage reading at its collector and a positive reading at its base instead of $-I V$. It checked all right out of circuit however.
H. MacM.

Philips K30 Chassis

Occasional failure to start was eventually traced to the electrolytic block C1460a/b going open-circuit. It acts as the reservoir/smoothing capacitance for the 140 V h.t. line.
H. MacM.

Philips K30 Chassis Ed II

This set came from another dealer with a note to say that the c.r.t. was suspect - there was no blue luminance. A check showed that the blue luminance output at pin 16 of the TDA 3560 colour decoder chip was very low. The cause was traced to C3044 (22 nF) which is connected to pin 18 - it was open-circuit. This capacitor appears to provide clamping in the blue channel within the chip.
H. MacM.

Saisho CTR5

The problem with this small CTV/radio receiver was no sound on either radio or TV, though the picture was normal. I'd no circuit diagram but checks showed that there was no supply to the radio/audio section. Further checks revealed that the 7808 regulator mounted on the mains transformer under the radio section was opencircuit. This set is not at all easy to work on. The fault will be relevant to other brands that use the same chassis. $\mathbb{P} . \mathbb{H}$.

Solavox 20S09 (ITT CVC1175 Chassis)

This set was dead. Power was present but the power supply didn't work. The cause of this was that D658 was short-circuit. A BZX61C120 got the power supply to work but it took several minutes to stabilise. Replacing C716 ($10 \mu \mathrm{~F}, 350 \mathrm{~V}$) cured this. I suspect that D658 had failed because C716 was allowing spikes into the supply. In the event of the 115 V h.t. line going high D 658 is supposed to short and load the supply.
P.H.

Practical Digital Logic

Part 2: The New Symbols

David Botto

In Part 1 last month we were mainly concerned with the basics of Boolean algebra in relation to digital circuitry. You'll also recall Pete's comment on the new logic symbols - why change the symbols and what was wrong with the old ones? The answer to this is that there's nothing wrong with the conventional symbols which should, strictly speaking, now be referred to as logic diagrams. They will continue to be used. In fact the tendency seems to be to use the old logic symbols to represent simple gates and inverters while, in the same circuit diagram, using the new logic symbols to represent the more complex digital devices. You will of course encounter some digital circuit diagrams that consist entirely of the new logic symbols. However the circuit is presented, it's obviously necessary to understand all these symbols.

Personally I like the shapes of the conventional symbols. As with an analogue watch with hands, you can see the situation at a glance. With the new logic symbols you have, at least to start with, to look hard and think about their meaning. The new symbols are a completely new way of representing logic circuitry - it's not just a case of changing the shapes of the symbols. They are used to reduce the tangle of interconnections that would otherwise be present in a circuit diagram and to give the engineer more information about the devices used in the circuit. To obtain this information with the old symbols you's normally have to consult the relevant data books. In addition there's a powerful aid known as dependency notation. This may appear to be difficult to grasp but is actually quite straightforward. We'll return to it later.

Qualifying Symbols

Before we consider the composite logic symbols themselves it's necessary to understand the meaning of the signs that accompany them. Fig. 1 shows the qualifying symbols that form an integral part of the new logic circuitry. Just to make things a little more interesting, you may find that some manufacturers use their own variations on these symbols!

Logic Gate Symbols

The new logic symbols consist of a block or blocks together with the appropriate qualifying symbols. A number of logic gates and circuits may be enclosed within the same logic symbol block. Normally all inputs feed in from the left, with the output signals taken from the right. Where this is not so the qualifying symbols shown at (39) and (40) in Fig. 1 are used.
Fig. 2 shows the new symbol for a gate with two inputs, A and B. The \& sign indicates that it's an and gate while the little triangle on its side shows that the gate contains a buffer amplifier. The symbol placed near the output C tells us that the device has an opencollector npn output stage. The symbol on the outside of the box at C - see Fig. 1-36 - is an output polarity indicator showing that negative logic applies here, i.e. one is low. The complete diagram thus represents a nand gate. With positive logic (one high) the output polarity indicator shown in Fig. 1-35 would be used.

Fig. 3 shows the internal circuit of the nand gate represented in Fig. 2 - it's one section of an SN7439 quad nand gate. Notice that an external load or "pull-up" resistor is required - this is what's meant by an opencollector output.

Fig. 4 represents the complete SN7439 quad nand gate chip. Notice that the qualifying symbols are used in only the top block. This indicates that each of the three blocks below the top one is identical to it.

Common Outputs

Fig. 5(a) shows two or gates with inputs A, B, C and D driving an and gate, using conventional symbols. Fig. 5(b) shows the same circuit using the new logic symbols. The upper two blocks are identified in the top one as being or gates incorporating buffer amplifiers. The bottom block is identified by the double line as a common-output element, and is further identified as being an and gate. The common output block could have inputs other than those from the two or gates. The dotted lines show two possible additional inputs. These would make the common-output element block a four-input and gate.

Common Control Block

Fig. 6(a) shows, with conventional symbols, four exclusive-or gates. Input A is common to all four. The Boolean equation for an exclusive-or gate with inputs A and B and output C is

$$
C=\bar{A} B+A \bar{B}
$$

which is usually written as $A \oplus B$. Fig. $6(b)$ shows this circuit using the new method, with the top block representing a common input affecting all the blocks below. This shape is always used for a common control section, and it's important to remeber that the input to the common control block represents an input to each block below. The symbol $=$ identifies the four gates as being exclusive-or devices.

Fig. 7(a) shows, with conventional symbols, the contents of an SN54LS366A chip. It has six inverting buffers plus an and gate with an inverter at each input, making it a nand gate. The buffers can't operate unless a binary one signal is present at point Z. Thus two binary zero signals are required at the inputs to the nand gate to enable the buffers. These buffers are referred to as tristate devices: the output is either high or low or, if the buffer is not enabled, is in a high-impedance state with the logic level undefined.

Fig. 7(b) shows the arrangement using the new method. The control block is shown as including an and gate which, with inverters at its inputs, acts as a nand gate. The letters EN denote the enabling action of the control block. The little triangle on its side in the first block beneath the control block indicates a buffer amplifier while the upside-down triangle indicates that the amplifier has a tristate output. Outputs Y1-6 are shown as being inverted for logic one.

1	4	16	π	31	COMP	46	$\left[\begin{array}{ll} 8 & 0 \end{array}\right]$
2	\geq or D	17	Ω	32	ALU	47	p
3	$=1$	18	1Ω	33	$-q$	48	S
4	$D<$	19	Ω	34	Δ	49	Θ
5	Γ	20	$\stackrel{!G}{\boxed{!}}$	35		50	∇
6	$=$	21	G!	36		51	θ
7	2K	22	SGRm	37	$7 \ldots$	52	∇
8	$2 \mathrm{~K}+1$	23	CTRm	38	4	53	D
9	1	24	CTR DIV m	39	+	54	$-[\mathrm{EN}$
10	X / Y	25	FIFO	40		55	71
11	MUX	26	RAM	41	-1	55	"1"-
12	DMUX or DX	27	ROM	42	\cap	57	$\mathrm{Cr}=9 \mathrm{~J}$
13	\sum	28	Φ	43	$\not \#$	58	$-[C T=12$
16	$P-Q$	29	$!=1$	46	$-\infty$	59	$\div]$
15	CPG	30	$1=0$	45	± 5		

Fig. 1: Signs (qualifying symbols) used with the new logic circuit symbols. 1 And gate or function. 2 Or gate or function. 3 Exclusive-or gate. 4 Buffer or driver amplifier arrow indicates direction of signal flow. 5 Schmitt trigger. 6 Logic identity - all inputs must stand at the same state. 7 Even number of signal inputs must be active. 8 Odd number of signal inputs must be active. 9 One input must be active. 10 Code Converter. 11 Multiplexer. 12 Demultiplexer. 13 Adder. 14 Subtractor. 15 Carry pulse generator. 16 Multiplier. 17 Retriggerable monostable. 18 One-shot (non-retriggerable monostable). 19 Astable multivibrator (waveform not always shown). 20 Synchronously starting astable multivibrator. 21 Astable halts when pulse ends. 22 Shift register - m is number of stages. 23 Counter $-m$ is number of stages. 24 Counter with cycle length. 25 First in/first out memory. 26 Random access read/write memory. 27 Read only memory. 28 Gray box. 29 Element powers up and sets to one. 30 Powers up and sets to zero. 31 Comparator. 32 Arithmetic logic unit. 33 Input inverter in chip. 34 Logic one low input (inverter in chip). 35 Output inverted. 36 Logic one low output. 37 Logic one low input with signal movement right to left. 38 Logic one low output with signal movement from right to left. 39 Signal flow right to left (no symbol means flow is left to right). 40 Signal flow in both directions. 41 Nonlogic connection (usually labelled). 42 Analogue signal(s) entering digital circuit. 43 Input for digital signal on an analogue symbol. 44 Binary one produces temporary zero output, positive logic. Inverse with negative logic. 45 as 44, negative logic. 46 Binary zero produces temporary one output, positive logic, inverse with negative logic. 47 Zero in produces temporary one out at right. 48 NPN opencollector output. 49 NPN collector output with internal resistor. 50 NPN open-emitter output. 51 NPN emitter output with internal resistor. 52 Tristate output. 53 Buffer amplifier. 54 Enable input. Binary one enables all outputs. 55 No output until applied input logic signal ceases. 56 Fixed state output remains at one. 57 Output active only when register contains indicated number. 58 When input is active internal register will be as number indicated. 59 Input line grouping - two or more signals are required to implement a single logic input.

Dependency Notation

Dependency notation, or in plain English representing logic functions by means of little signs and figures, is the

Fig. 2: Nand gate symbol with negative logic output.

Fig. 3 (left): Internal circuit of the nand gate shown symbolically in Fig. 2.
Fig. 4 (right): Quad nand gate symbol (negative logic output).

(a)

(b)

Fig. 5: Old and new symbols, two or gates feeding an and output gate.

(a)

(D)

Fig. 6: Old and new symbols, showing a common control block.

(a)

(b)

Fig. 7: Further example of old and new symbols.
thing that makes the new logic symbols completely different from the old system. At first sight these dependency notations may make the long-suffering TV/video engineer turn quite pale, but their use shows the relationship between a device's inputs and outputs
without the need to show all the separate gates and their interconnections.

There are two simple rules to understanding dependency notation. First, the input or output that affects other inputs or outputs is labelled with a recognised letter symbol - see Table 1 - that shows the logic function, also an identification number. Secondly, each input or output that's affected by the labelled input or output is marked with the same identification number.

We'll consider and dependency first, signified by the letter G.

Fig. 8(a) shows part of an SN74LS257B selector/multiplexer chip drawn using conventional symbols. A multiplexer circuit is used to select one from a number of inputs and route it to a single output. For and gate 1 to produce a binary one signal at point L there must be a binary one at input 1 A and a binary zero at input $\overline{\mathrm{A}} \mathrm{B}$. For and gate 2 to produce a binary one at M there must be a binary one at $1 B$ and at $\bar{A} B$. Outputs L and M are fed to an or gate which is of a type that has to be enabled by a binary one at Z (zero at input $\overline{\mathrm{Z}}$). So provided a binary one is present at points Z and either L or M a binary one will be present at output 1 Y .

Let's now look at this in the new system, see Fig. 8(b). Input signal $\overline{\mathrm{A}} \mathrm{B}$ is shown connected to a control block input labelled G1. This indicates that it's anded with inputs IA and $1 B$ to the block below, labelled $\overline{1}$ and 1 respectively. The letters MUX indicate that the block is a multiplexer, the two triangle symbols indicating that the block contains a buffer and a tristate device (the enabled or gate). The blocks below, shown in dashed outline, contain identical circuitry to the one above and all are subject to the common control block at the top. For simplicity the inputs and outputs of the lower block have been omitted.

A point to note in all this is that while the conventional way of drawing a circuit tells us exactly how the circuit works the new system tells us what a device does without showing the circuitry within.

Fig. 9(a) shows an or gate whose output feeds one input of an and gate. The Boolean equations for the conditions at points Y and Z are $A+B$ and $(A+B) C$ respectively. The same circuit can, as part of a complex symbol, be represented as shown in Fig. 9(b). Two inputs labelled with the same letter indicate the inputs to a gate: since the letter used is G this indicates that the gate's output is fed to an and gate whose other input C is also labelled 1 .

Or dependency is signified by the letter V. Fig. 10(a) shows an or gate with a signal from point A fed to one input while a signal from elsewhere in the device is fed to its other input. Using dependency notation we can

Table 1: Dependency notation letter symbols.

Letter symbol
G
V
N
C
EN
M
M
A
R
S
X
Z

Function

And
Or
Negate (exclusive-or) Control Enable Mode Address Reset Set Transmit Interconnect

(b) 0560

Fig 8: Comparison of old and new symbols with the latter illustrating dependency notation.

(a)

(b)

(a)

(b) Disil

Fig. 9 (left): And gate dependency.
Fig. 10 (right): Or gate dependency.

(a)

(b)

D562

Fig. 11 (left): Negate (exclusive-or) dependency.
Fig. 12 (right): Example of transmission (X) dependency.

Fig. 13: Control dependency, (a) old and (b) new system.

Fig. 14 (left): Input mode dependency.
Fig. 15 (right): Output mode dependency.

Fig. 16 (left): Address dependency with a 16×4 RAM.
Fig. 17 (right): Exclusive-or gate symbols.
draw the circuit as shown in Fig. 10(b).
The rule with negate (exclusive-or) dependency, letter N , is that every input or output bearing the same number stands in an exclusive-or relationship with the relevant N numbered input or output. This is illustrated in Fig. 11 where the external input to the exclusive-or gate is labelled N1 and the output 1.

The Z dependency symbol shows that the logic device contains internal logic connections between inputs and
outputs bearing the same number, also internal inputs and outputs. A number such as Zl is used with all the affected inputs and outputs labelled with the same number 1.

X indicates controlled two-way connections between various input and output ports. In Fig. 12 , if $\mathrm{A} \overline{\mathrm{A}}$ is at binary one B is connected internally to C while if $A \bar{A}$ is at binary zero C is connected to D .
The control dependency denoted by C usually indicates enabling or disabling of the inputs to digital storage circuitry such as bistables. Fig. 13(a) shows a simple example. The circuit can work only when control signal A is at binary one. With inputs A and $B \bar{B}$ at one there will be a one at S (set) and a zero at R (reset). The circuit now stores a binary one. With $\mathrm{B} \overline{\mathrm{B}}$ at binary zero R will be at one and S at zero. This time the circuit stores zero. The symbol Cl in Fig. 13(b) indicates a common control point, with all inputs controlled by C standing at binary one when A is at one. When A stands at zero all inputs controlled by Cl will be at zero. With A at binary one $\mathrm{B} \overline{\mathrm{B}}$ must also be at one for the storage device to hold the binary one signal: this is indicated by the symbol ID.
S, R and EN dependency should be easy enough to follow.
M dependency shows that the various inputs and outputs of a device depend on the mode in which it's operating. For example Fig. 14 shows one small section (an input) of a complex digital chip, the SN54LS690, a synchronous counter with output registers and multiplexed tristate counters. When the input shown is low the signal is inverted, appearing as a high at the point labelled MI. In this mode digital information is loaded into the device. When the input goes high M2 is high and M1 low. The chip now operates as a synchronous counter.

Fig. 15 shows how mode dependency can affect outputs. The symbol at the top of the rectangle indicates a buffer amplifier. With a binary one at input A the device has a tristate output. When A is zero the output becomes an nnp open-collector and the tristate symbol doesn't apply. For the buffer amplifier to work at all an enabling signal must be present at input B.

One use of the address dependency symbol A is shown in Fig. 16, which represents a 16×4 RAM chip. The common control block shows the four address lines bracketed together and labelled with an A. 0/15 represents the fact that there are 16 memory storage areas in the chip, each one of which contains a four-bit binary word. Inputs 0 to 3 receive four binary signal values. In the example shown input 0 (the least significant bit) is at zero, input 1 at one, input 2 at zero and input 3 (the most significant bit) at one. The memory location address selected is thus 0101. Any of sixteen locations (0/15) can be selected by using different combinations of binary digits on the address lines.

To write into a memory location input, line C 1 (control 1) must be at binary one. The information appearing on the data input lines D1-4 will then be stored in the memory location selected. To read the contents of this location a binary one is applied to the EN input line and zero to Cl . When this is done the binary values stored at the selected location appear on output lines $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z .

Gray Box Symbol

When the "gray box" sign shown in Fig. 1-28 appears at the top of a logic device symbol this indicates that
some information about the chip is written in words in addition to coding and dependency notation. This is done only in the case of extremely complex logic circuitry. You'll agree that it's an improvement on the blank box outlines that often appear in some skimpy TV/VCR service manuals!

The Exclusive-nor Gate

Fig. 17 shows symbols for the exclusive-nor gate. It operates in the same manner as an exclusive-or gate but with inverted (complemented) output. The Boolean equation is

$$
\mathrm{C}=\overline{\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{A} \overline{\mathrm{~B}}}}
$$

We can simplify this by using the rules of Boolean algebra given last month. First by DeMorgan's theorem we can change it to

$$
(\overline{\overline{\mathrm{A}} \mathrm{~B}}) \overline{(\mathrm{A} \overline{\overline{\mathrm{~B}}})}
$$

then by the law of distribution to

$$
\mathrm{A} \overline{\mathrm{~A}}+\mathrm{AB}+\overline{\mathrm{AB}}+\mathrm{B} \overline{\mathrm{~B}}
$$

By the law of complements

$$
\mathrm{A} \overline{\mathrm{~A}}=0 \text { and } \mathrm{B} \overline{\mathrm{~B}}=0
$$

which leaves

$$
\mathrm{AB}+\overline{\mathrm{AB}}
$$

or, by the law of commutation,

$$
\overline{\mathrm{AB}}+\mathrm{AB}
$$

which is usually shown as

$$
C=\overline{\mathrm{A} \oplus \mathrm{~B}}
$$

Last Month's Problems

Now for the answers to the problems presented last month. When the four inputs to the gates that were shown in Fig. 20 are changed to A, B, C and D

$$
\mathrm{E}=(\mathrm{A}+\overline{\mathrm{B}})(\overline{\mathrm{C}}+\overline{\mathrm{D}})
$$

With the four inputs $\mathrm{A}, \overline{\mathrm{B}}, \mathrm{C}$ and $\overline{\mathrm{D}}$

$$
E=(\overline{\mathrm{A}}+\mathrm{B})(\overline{\mathrm{C}}+\mathrm{D})
$$

Incidentally, as you may by now have realised given only a Boolean equation it's possible to draw the relevant circuit diagram. For example, if $Z=(A+B)$ $(C+D)(E+F)$ it's obvious that the circuit consists of three or gates which feed their outputs into a three-input and gate.

If you want to take this subject further I'd recommend that you obtain a copy of the latest edition of the Texas Instruments' publication The TTL Data Book Volume 1. It contains over a thousand pages of information and shows a good range of the new logic symbols together with their conventional logic diagram counterparts, some of which are extremely complex. The book gives the Boolean expressions for a number of circuits. It's obtainable from RS Components (order from Electromail, PO Box 33, Corby, Northants NN17 9EL) or Texas Intruments Ltd., Manton Lane, Bedford MK41 7PA. The price is $£ 14.95$ plus $£ 2.50$ post and packing.

The aim of these two articles has been to provide readers with a reasonable knowledge of Boolean algebra and to serve as an introduction to the understanding of the new logic symbols. You'll find that a study of these important subjects will pay off in the months to come.
ECONOMIC DEVIGES PO BOX 15, WOLVERHAMPTON, WV2 4AZ

FERGUSON/JVC

Full list available with order or SAE please $9^{\prime \prime} \times 4^{\prime \prime}$ Telephone 0902-712083 (24 hr . answering machine for Access \& Barclaycard users)

DRIVE BELTS

Technics SL-P110

A little experience can tell you when a laser unit is beginning to fail, as I thought it was in this machine. It would read the TOC quite quickly but when a track was selected the machine wouldn't play - it would shut down and go into the stop mode. The r.f. eye pattern was very low and noisy. So I began to suspect the laser unit until I looked at it. The lens was filthy, covered in dust with a thick film of muck all over it. Cleaning the lens restored normal results - perfect in fact. Apart from cleaning and lubrication no other setting up was required. This brings me to another point.
We all know the state a VCR can get into when used in a dusty or dirty environment, and over the years we get to know the common faults that dust causes in various machines. CD players seem to be the same. I've found that Technics machines often need their lenses cleaning, and of course the mechanics associated with the movement of the laser assembly. Philips machines also often need a lens clean. On the other hand I've very rarely had to clean JVC or NAD lasers. Obviously the environment in which a machine is used plays an important part in determining its lifespan, but it seems that some makes suffer more than others from dust. How about some comments on this from other readers?
M.L.

Technics SL-P202A

Skipping was the complaint with this machine, and we were surprised to find that the fault occurred straight away. With the top cover removed the reason could be seen. The whole sprung part of the mechanism was shaking laterally, with variable force, the result being that the radial arm jumped tracks. Investigation showed that the cause was a deep pit worn into the white plastic angled plate on which the ball bearing presses. This plate is clipped to the clamping arm. As the arm isn't part of the sprung mechanism, the bearing was presumably forcing the mechanism to move as it went into and out of the pit. We replaced the plastic plate and fitted an anti-sticking pad to the inner end of the radial arm slot as suggested by Technics.
I.B.

Pioneer PD4100

The reported fault was that this machine wouldn't play any discs. On a training course we'd heard about a fairly common problem that gives this symptom with these machines - it's also been reported in this magazine. So we loaded a disc. When the machine had read the TOC we selected play, expecting the machine not to. Much to our surprise it worked perfectly. We then left it on soak, but when we tried to restart the machine after it had played through the disc the fault appeared. The disc span up to what appeared to be the correct speed but there was no track display and no sound. A scope check on the r.f. waveform then showed that it was expanding and contracting. This reminded us of something else said on the course - "think PLL". We put the machine in the test mode and checked the VCO frequency, which was far too low. With the adjustment potentiometer at nearly fully clockwise the VCO would reach the correct
4.275 MHz and the machine would then play. Just a quick squirt of freezer on IC2 (CX1082AS) which contains the VCO increased the frequency greatly. A new CX1082AS chip put matters right.
I.B.

Pioneer PDM500

This machine had been in a couple of weeks previously with the complaint that while it would load discs it would then eject one and go on to the next until all six had been ejected. It wouldn't read any of them. When we tested the unit it performed without fault. Flexing the laser unit's flexi-PCB didn't provoke the problem, neither did gentle heating and tapping of the laser unit itself. Since the fault failed to appear we left the machine on soak test. A few days later it was collected.

After a few days it returned with the same complaint and this time the fault did occur. The machine would load a disc, achieve FOK and the disc would spin up. But focus was then lost and you could hear the lens tap rather loudly against the disc which was then ejected. The machine ran all right when sequenced through in the test mode, which rather threw some of the theories being put forward in the workshop. A look at the error waveforms and the r.f. however convinced me that the laser unit was a fault, which proved to be the case. The disc motor was also worn but this was not, as is sometimes the case with these symptoms, the cause of the fault.
N.B.

Technics SL-P250

These machines use a mechanism with one guide shaft and one roller. In our experience it has proved to be very reliable. This particular machine was reported to be skipping, but when we tested it the drawer wouldn't close - if closed manually it would open. The machine was very dirty, as were the enclosed discs which were also damaged. This made it necessary to replace the roller, guide shaft and laser unit, which had been affected by the very fine dust. When we'd done all this we investigated the drawer problem. A clue was given by the fact that the laser would come on and the lens would try to focus when the drawer was open. Investigation showed that the drawer-in switch was permanently shortcircuit due to a whisker in the relevant connector to the main PCB.
N.B.

Pioneer PDM500

This system control fault could have occurred with many types of equipment, not just a CD player. When reverse search (not skip) was selected it worked but several erroneous display symbols were illuminated. In this circuit the display and key-scan lines are commoned and a quick look at the circuit diagram suggested that if eject and disc1 were selected a similar effect would occur. It did. The obvious cause was D209 on the relevant line. We found that it had a 17.5Ω leak both ways. This illustrates the importance of checking the symptoms and "commoned possibilities" carefully when dealing with syscon faults. One could easily have accused the system control microcomputer chip as it drives both the keyboard and the display
N.B.

NICAM Digital Stereo Sound

Part 3

Eugene Trundle
In this concluding part we'll deal with Nicam decoder setting up, fault diagnosis, and add-on/separate units.

Setting Up

The TA8662 DQSPK demodulator chip has two clocks. There are three ways of setting up its 6.552 MHz carrier clock. You can connect a frequency counter at pin 7 of the chip and adjust the trimmer connected to pin 6 for $6.55185 \mathrm{MHz} \pm 50 \mathrm{MHz}$ with no signal applied. You can connect a scope to pin 20, with external sync from pin 22, and, with a Nicam signal present, adjust the trimmer for the sharpest eye pattern possible - see Fig. 16(a). Or, if you have a scope capable of believable $\mathrm{X}-\mathrm{Y}$ displays at 6.5 MHz (check its specification!), you can connect the X channel to pin 19 of the chip, the Y channel to pin 20 and, at a setting of $1 \mathrm{~V} /$ division, you then adjust the trimmer for a square, upright, clear and sharp eye pattern like that shown in Fig. 16(b).

There are two choices when it comes to setting the 5.824 MHz data clock frequency. First, with a Nicam signal present, you can adjust the trimmer at pin 22 for a reading of $0 \mathrm{~V} \pm 30 \mathrm{mV}$ on a digital voltmeter connected between pins 12 and 21. Alternatively you can adjust the trimmer for $5.824 \mathrm{MHz} \pm 20 \mathrm{~Hz}$ with a counter connected to pin 26 and no signal input.

The clocks of later demodulator chips such as the Philips TDA8732 are controlled by means of varicap diodes and have no trimmers. It may still be necessary to check the frequencies. With the TDA8732 the carrier clock should read 13.104 MHz at pin 10 while the data clock should read 11.648 MHz at pin 20 .

There's just one clock to adjust in the CF70123C demultiplexer chip. You can connect a counter at pin 11 and adjust the trimmer connected to pin 12 for $16.384 \mathrm{MHz} \pm 50 \mathrm{~Hz}$, or alternatively you can check for 8.192 MHz (I2S bus mode) or 16.384 MHz (S bus mode) at the DA clock output pin 40 . The Toshiba TC6011 and JVC VC5020 chips use the clocks in the QSPK chip and thus have no separate adjustments. Any crystal or ceramic filter oscillator associated with the DAC chip is non-critical and thus non-adjustable.

With one or two decoder designs, notably from Hitachi, there's an adjustable 6.552 MHz bandpass filter in the signal path to the QSPK demodulator. Carry out adjustment for the best eye pattern at pin 20 of the TA8662N chip - follow the manufacturer's setting-up instructions to the letter.

Fault Diagnosis

Virtually all faults in the Nicam section of a receiver produce the same symptom - no Nicam sound at all, with indication by the panel LEDs. It's always this way with digital equipment! If you are faced with this symptom, first ensure that the TV transmitter's output includes Nicam sound then check the voltage at pin 18 of the TA8662N chip. If it's low, either there's no coherent Nicam input (check for a $>150 \mathrm{mV}$ waveform, like an off-video head envelope
pattern, at pin 4) or a PLL isn't locked. In the latter case check the clock frequencies as just described. If the voltage at pin 18 is high, the TA8662N chip is working, happy and locked, the fault being farther downstream.

Before getting too deeply involved with the operation of the demultiplexer chip when dealing with the noNicam symptom, check that the 5 V supply is present and that the data and clock signals are reaching it from the QSPK demodulator chip. Next check the feeds to the DA converter - clock, ident and data. With the Texas CF70123 chip pin 34, mute output, is a useful point to check. With a good Nicam signal the voltage here should be low. If so the chip is working correctly, supplying data to the DA converter chip which, in these circumstances, is the next thing to check. If the voltage at pin 34 is high however the problem is with the demodulator or demultiplexer circuits. The first check in this case should be at pin 9 of the demultiplexer chip, where a rectangular waveform should have a $50: 50$ duty cycle. If it's out, try adjusting the 16.384 MHz clock trimmer at pin 12 - correct setting up (see above) should follow this rough check. If the waveform at pin 9 is correct, check the frequency of the system clock input at pin 28. If it's not spot-on at 5.824 MHz the demodulator chip is not locked and the voltage at its pin 18 will probably be low. Similarly the 728 kHz clock signal at pin 22 of the demultiplexer chip will not be spot on with the demodulator chip unlocked. Incidentally these frequencies can be used to check and calibrate your counter when the decoder is producing Nicam sound. .
There are some other test/switching pins around the Texas demultiplexer chip worth knowing about. Pin 8 goes high as an error flag when data on the S bus is bad. In some decoder designs this output is routed to the DA converter. Test pin 19 (C4 enable) switches the chip to produce unrelated programme sound when forced high. This is indicated by a high output at pin 35 (C4 output). If test pin 20 is forced high the internal mute system is overridden, permitting the chip to talk gibberish!
Other demultiplexer chips have similar test/switching pins that can be identified from the setmaker's service data and used as necessary. Where a separate memory chip is used for de-interleaving, use a logic probe or an oscilloscope to check the address, data, read/write enable and, where applicable, the chip select lines for stuck or opencircuit conditions.

Distorted Nicam sound is rarely due to a fault in the digital sections of the circuit - they tend to mute when not working perfectly. With this fault condition

Fig. 16: Eye patterns associated with decoder setting up.
start at the outputs from the low-pass filters downstream of the DA converter chip(s). Any fault that affects only one of the stereo channels - no or low ouput, distortion, noise etc. - will definitely not be in the digital circuitry since the L and R information is inextricably mixed here. Check at the relevant lowpass filter's output. If the waveform here is bad, concentrate on the DA conversion operation. If all is well at the low-pass filter, check for good operation via the auxiliary and f.m. inputs to narrow down the field of search - these share most of the postconversion circuitry.

Because the signal is always on tap fault diagnosis, testing and setting up are much easier with a Nicam decoder than with the signal-processing stages of a CD player. You don't need to have servos up and running, a laser throbbing or the vital TOC as a turnkey. It's unlikely that Nicam decoders will prove to be troublesome since the circuitry operates at low power levels, there are no moving or wearing parts and the decoder lives a quiet life. Once operating perhaps the only things that could cause damage are flashovers within the set or overvoltage due to the failure of a supply-line regulator. Soldered joint reliability and plug/socket performance with modern equipment is very good - it wasn't always so!

Add-ons and Separates

Some manufacturers produce retro-fit Nicam decoders for their more recent stereo TV models. In many cases however manufacturer's don't supply kits - they seem to look upon the advent of Nicam as a good opportunity to sell a new TV set or VCR. There are a couple of sources of "universal" Nicam decoders for plumbing in yourself. If this is not practical or possible you can buy a complete stand-alone Nicam receiver with aerial input, audio output and remote control. When the TV set has a "live" chassis this latter approach, in conjunction with separate amplifiers and loudspeakers, is the only possible choice.
The AVTS retrofit unit is $160 \times 100 \times 36 \mathrm{~mm}$ and comes with a mounting kit plus fitting and wiring instructions for the most popular sets. It uses the Texas demultiplexer chip and requires two supply lines $-8 \mathrm{~V} / 250 \mathrm{~mA}$ unregulated and $12 \mathrm{~V} / 100 \mathrm{~mA}$ regulated. While it's best to use it with a set that has a parallel i.f. system it will in most cases operate with an intercarrier feed, the sensitivity being $70 \mu \mathrm{~V}$. Optional extras are four times oversampling and "personality modules" for various TV/VCR models. At the time of writing the one-off price was $\mathfrak{£ 7 8}$ plus VAT - there are progressive quantity discounts. AVTS is at Shelson House, 67A Shelson Avenue, Feltham, Middx TW13 4SQ (081 890 3010).
Maplin Electronics has a Nicam decoder that can be used in most modern colour TV sets. It uses the Toshiba demultiplexer chip and requires a single 12 V supply at 200 mA . Otherwise it has similar features and capabilities to the AVTS decoder. It's available in kit form for $£ 99.95$ (order no. LP02C) or fully assembled and tested for $£ 129.95$ (order no. AMOOA). These are retail prices including VAT. The assembled decoders are available at trade prices with discounts depending on quantity.
Maplin also markets a tuner kit which, together with the Nicam decoder, gives complete independence of the TV set. This is useful where the set employs a
live-chassis design or doesn't have the capacity to supply the operating power for a retrofit kit. The tuner kit is available for $£ 44.95$ including VAT (order no. LP(09K).

More details can be obtained from Maplin Electronics, PO Box 3, Rayleigh, Essex SS6 8LR (0702 554 161).

At the time of writing there are two separate Nicam tuners. The cheaper one is the Motion Electronics Monitor Mk. III. It has FSS tuning with remote control, takes a standard 75Ω coaxial u.h.f. aerial feed and supplies L and R audio outputs at 250 mV and 300 mV levels. It also provides a composite 1 V peak-to-peak video output for feeding to a TV monitor. Prices range from $£ 140$ plus VAT for the basic version without remote control to $£ 152.20$ plus VAT for the model with the highest specification including remote control and two 6 W power amplifiers that provide direct drive to a pair of 4Ω loudspeakers. The address for Motion Electronics is Wisteria House, Tonbridge Road, Wateringbury, Maidstone, Kent ME18 5PU (0622 812 814).

The Arcam Delta 150 from A and R Cambridge Ltd. provides a IV composite video output and two very high quality audio signals via scart or phono output sockets. These audio signals are obtained from four times oversampled digital filtering and twin 16-bit DA converters, one for each stereo channel. This arrangement gives optimum results. The recommended retail price is $£ 349.90$ including VAT and an IR remote-control handset.

Interfacing and Hook-ups

Regardless of the size and quality of any stereo speakers built into the TV set, if it's suitably placed in relation to external speakers (and it deserves to be!) the best option by far is to ally the Nicam receiver with a good hi-fi system. All Nicam TV sets and VCRs have audio outputs for this purpose, and the hook up to the auxiliary sockets of a hi-fi amplifier is not difficult - it works for both live and replayed stereo programmes. The performance of the sort of cheapie stacker system that can't afford an auxiliary input socket is an insult to Nicam sound! Most Nicam TV sets have external speaker sockets that can be used as an alternative to connection to a separate amplifier, but in this case beware of blowing up the sometimes hard-pushed internal audio amplifiers by using too low an external speaker impedance or parallelled speaker connections.
By now it must be obvious that to get stereo sound from a VCR into a TV set you must have a baseband AV cable link. VCRs don't incorporate a built-in Nicam encoder so that the stereo sound can be squeezed through an aerial link! A scart-to-scart lead between the TV set and the VCR is all that's required. In practice so long as a VCR fitted with a Nicam decoder is well connected it's not essential for the TV set to be of the Nicam, or even stereo, type. For off-air viewing select the same channel on both the TV set and the VCR, switch the hi-fi amplifier to aux and the VCR to stop. It will then all happen.

It's not widely known, especially amongst retail sales staff, that you can record broadcast stereo sound from a Nicam TV set on a non-Nicam VCR with hifi sound facilities. The L and R signals are available at the TV set's scart socket, pins 3 and 1 respectively, and can be fed into a VCR via a suitably wired scart
lead. This is not such a practical arrangement as the previous one since the TV set has to be on to capture the stereo broadcast, something that may not be easy to arrange for an unattended or time-shift recording. There's an increasing trend however for hifi VCRs to be fitted with Nicam stereo decoders.
If you use a separate Nicam tuner/decoder in conjunction with a VCR or TV set it's safe to leave it on permanently - as we already do with satellite TV receivers.

Nicam Broadcast Schedules

The BBC has long been carrying out experimental Nicam broadcasts from the Crystal Palace transmitter:
its full scheduled service is due to begin in the Autumn of 1991. At that time six main transmitters with their relays will come on stream simultaneously, covering about 80 per cent of the population of the UK. The IBA has been following a more gradual programme. At the time of writing the following transmitters and their relays are providing the service: Crystal Palace, Emley Moor, Wenvoe, Mendip, Winter Hill, Caradon Hill, Durris, Belmont, Rowridge, Sandy Heath and Black Hill (but not the Torosay group relays). Bilsdale, Caldbeck, Divis, Dover, Pontop Pike and Sutton Coldfield are due to be in operation by the end of the year, when 75 per cent of the population should be covered. Complete coverage is expected within five years.

Servicing Microwave Ovens

Nick Beer

Microwave ovens are becoming a familiar sight on the benches of TV/VCR engineers. There are a couple of reasons for this. First, they are produced by traditional brown goods manufacturers such as Sanyo, Panasonic, Sharp and Hitachi. As a result, non-white goods dealers sell them. Secondly the technology employed in the control and "consumer interface" circuits is similar to that used in TV sets and VCRs. Thus fault-finding is put out of reach of the average white goods engineer - unless the company concerned follows the undesirable practice of simply panel swapping. Servicing is best done by brown goods engineers who can do it more effectively, efficiently and profitably.

Ever willing to keep engineers informed, we're presenting this short introduction to the delights of servicing microwave ovens. The main emphasis is on servicing practice. If there's sufficient interest we can go into the subject in greater detail at a later stage - and also arrange to pass on those ever-helpful fault reports on particular models.

Safety

Before getting involved with microwave ovens it's vital to understand that they can be dangerous and that there are important safety requirements.

There are very high voltages in a working microwave oven. Since the capacitor used in the h.v. circuit can hold a hefty charge for some time after the unit is switched off it should be discharged safely with a bleed resistor before an unpowered unit is tested. With the unit on, avoid contact with the h.v. areas. Don't discharge the capacitor by shorting it to produce a big bang and arc. This is very bad practice, especially in units that employ a microcomputer chip in the control circuitry. When there seems to be a fault in the h.v. circuit it's advisable, wherever possible, to make cold checks on components. We all know that measuring e.h.t. voltages is not desirable and is usually unnecessary as cold checks will prove the point. For h.v. checks connect the meter before powering the unit: this will prevent arcs. The h.v. used in a microwave oven may be only $10-20$ per cent of the e.h.t. voltage in a colour TV set, but the current is higher and shocks can be fatal.

The second major danger is the microwave energy
itself. With a correctly working machine door interlock switches prevent radiation emission when the oven door is open. With the units I've handled I have found that there is no detectable emission from around the cavity and h.v. components with the top/side covers removed. Nevertheless common sense should tell you not to tempt fate. For your own protection, check for leakage before carrying out any repair work. Use a recognised quality leakage meter that's regularly checked and calibrated. A good example is the Apollo XI. The recommended test specification is for a reading of less than 5 mW when the

meter is moved along the seals around the cabinet and door. Retest the oven before returning it to the customer. In practice with a safe oven the needle rarely moves.

The main causes of excessive leakage are a build up of dirt around the door seals as a result of which they don't close properly, damage and wear of the seals and damage to the door. If the unit is dropped or someone walks into the door while it's open the result could well be door damage and leakage.

It should go without saying that you mustn't even consider testing the magnetron outside the unit. Correct assembly of the door is vital, also correct adjustment of the interlock switches and correct operation of the interlock switch monitoring circuitry. There are mandatory Health and Safety at Work regulations regarding warnings and cautions with respect to the h.v. and the microwave energy. Because of the built-in safety features microwave ovens should not be tackled by anyone who is unfamiliar with them.

User Problems

Misuse causes many faults. Cleanliness is important. Leakage and arcing can occur with a dirty oven - and we all know that for some customers cleanliness doesn't come easily!
There's a definite knack to microwave cooking, and the customer must get used to it. In addition to the instruction manuals the leading brands usually have available good cookery books.

Basic Operation

The basic circuitry used in a microwave oven is comparatively simple. Fig. 1 shows a typical example. Obviously there are many different designs, the differences relating mainly to the control arrangements. Things tend to get a bit more complicated when the microwave oven is combined with a conventional grill/oven, as in the very popular Panasonic Dimension Four series. Virtually all modern units incorporate digital control circuitry.

As you can see from Fig. 1 the incoming mains supply enters via a fuse and filter circuit. Depending on design, the fuse is rated at around $6-10 \mathrm{~A}$. The mains voltage is applied to a transformer which energises the magnetron. It's also used to supply the oven lamp and such items as the fan/blower motor, the timer motor and the turntable motor. The oven lamp is usually a pygmy bulb: the mains fuse can blow when it fails, a possibility that's often overlooked. You will notice that there are several switches in series with the mains supply. There are usually two door interlock safety switches that close only
when the oven door is closed, preventing operation of the unit with the door open.

These interlock switches are usually situated by and operated by the door's hooks. Fig. 2 shows an example. A degree of adjustment is usually possible with the switches or the hook receptacles. If the owner continually slams the door it may shift to the extent that the oven doesn't work. Correct adjustment is obviously important to maintain the safety of the unit. The switches usually fail-safe, i.e. open-circuit. Both switches would have to go short-circuit to allow the unit to operate with the door open - except that there's another switch operated by the door. The shorting switch SW6 is connected across the transformer's primary winding to a point after safety switch 1 . It closes when the door opens, which in normal operation means that the safety switches are open and thus the mains supply is removed before SW6 closes. If the interlock switches SW4/5 did go shortcircuit SW6 would place a short across the mains supply, blowing the fuse - a real crowbar. Failure or misalignment of all three switches could result not only in no go but fuse blowing. A common fault is "it went bang when I slammed the door".
The other switches in the primary feed, SW1 and SW2, are thermal overload cutouts of the type used in many domestic appliances. They are usually found on the surface of the oven cavity and the body of the magnetron. Overheating leads to their failure.

The mains transformer is a pretty hefty affair, usually bolted to the floor of the unit. One secondary winding provides the magnetron's filament (heater-cathode assembly) supply. This is a low-voltage a.c. supply, with high current flow. The main secondary winding produces the h.v. supply in conjunction with the diode and capacitor. This is a negative supply which is fed to the magnetron's cathode, its anode being connected to the chassis line. About 2 kV is fed to the capacitor, which with the diode and magnetron form in effect a half-wave voltage doubler circuit producing a pulsed d.c. voltage of about 4 kV .

Fig. 3 shows the internal construction of a typical microwave oven magnetron. It could be considered as a rather special form of diode, having an anode, a cathode and a vacuum. So physical shock can cause damage: internal arcing is a common result. The really special bit is the anode, which is at chassis potential and consists of several cavities. Due to the action of the magnetron there are -4 kV pulses at its cathode. A strong d.c. field exists between the cathode and anode. Permanent magnets within the magnetron produce a magnetic field at right angles to the electric field. This crossed-field affects the electrons given off by the cathode - they follow a spiral path. The resultant oscillations are tuned

Fig. 1: Typical microwave oven circuit.

Fig. 2 (left): Interlock switches operated by the oven door.
Fig. 3 (right): Construction of a typical magnetron.
by the resonant cavities that form the anode. Microwave energy is picked up by a probe that's inserted in one of the cavities. It acts as a small aerial whose output is fed to the oven via a waveguide.

Fault Patterns

Disregarding electronic control system faults, the faults that occur in a microwave oven can be split into two groups - low-voltage (mains) faults and high-voltage ones. The former include defective door switches, motors etc. These are easy to find when their purpose in the scheme of things is understood. High-voltage faults usually result in a blown fuse. In many units, as shown in Fig. 1, there's a protection diode across the h.v. capacitor. Its failure will blow the fuse. The h.v. rectifier and capacitor often have a common encapsulation. They can be checked fairly quickly, and the fault will often be found to be here. The magnetron's filament and the transformer's windings are easily checked with an ohmmeter.
Overheating of the magnetron is usually caused by an internal fault. There will generally be other symptoms such as low output or arcing. Another cause of overheating is a faulty fan motor, the result here being that the case fins are not cooled.
Transformers can arc, burn up and go open-circuit nothing here that a TV engineer isn't used to.

Low output or slow cooking complaints can be checked by placing two 500 ml beakers of cold water in the oven and heating them at full power for a fixed time, say two minutes. Record the temperatures of both beakers of water before you start and when you've completed the heating. Then calculate the magnetron's power output (W) from the formula $t \times 70$ where t is the temperature rise. Two beakers are used to avoid freak happenings and provide some form of control.

When testing a microwave oven, whether for leakage prior to or after repair or for output power, use beakers of water as a load. Ovens shouldn't be run empty, i.e. with no load.

In Conclusion

The purpose of this article has been to provide an introduction to the subject. No one should assume that after reading these brief notes they are fully competent to repair microwave ovens. The article should prompt TV/VCR engineers to consider the possibility of taking on such work. For the average engineer microwave
ovens will present few problems and money can be made - even under guarantee!

Typical Faults

To wet your interest, here are one or two typical faults.

Fuse blowing with a Tricity 2013 oven was due to shorted turns in the mains transformer's secondary winding. On several occasions we've had no-go due to open-circuit door switches.

The no-go symptom with a Panasonic NE671 gave the impression that the lower door switch didn't close. In fact the door hook moulding was deformed and failed to activate the switch.

Early Panasonic NE691 ovens suffered from autosensor clements that upset the autosensor functions. The microcomputer chip also causes this fault.

The Panasonic NE651/661/662/671/691 use the basic switch arrangement shown in Fig. 1. Failure to operate or mains fuse blowing should lead to a check on the three microswitches activated by the door. We've had several instances where the shorting switch has failed to open when the oven door is closed.

A problem we've had on a number of occasions with the Panasonic NE992/993 is that the display reads "h" when autosensor programs are selected. This suggests that the oven is hot, upsetting the autosensor which works on the humidistat principle, though the oven may well have been just switched on. The cause is usually the microcomputer chip in the digital programming circuit, but on one occasion the oven temperature sensor was corroded, causing the fault in conjunction with the chip.

Panasonic

NEC
FIDELITY
PHILIPS
gec
THORN
and many others
min

TEST CASE

Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

The test case workshop handles a very wide range of makes and models, as previous items in these pages have shown. Every so often however we're confronted with a stranger bearing a badge such as Osaki, Sakura, Contec, Hinari or whatever. All very fine makes no doubt, but with no service data on file and no spares sitting on the shelf such items can be regarded as a challenge or a pain in the rear, depending on the workload at the time and the temperament of the man who gets landed with the job.

What we had this time was a GoldStar VCR, Model GHV1232I no less. The job seemed to be a simple one - perhaps one that could be dealt with despite not having the service manual. The problem was that the machine would shut down within three seconds of selecting any mode in which the tape moved. It couldn't be a loading problem, because the fault occurred in the fast-forward and rewind modes. Probably a broken reel drive belt or something like that.

In order not to damage any tape we started off with a dummy cassette. When this was inserted the head ran up to speed, the take-up spool turned all right, then the machine shut down. During the unlacing process the supply spool turned backwards, indicating that it was safe to load a genuine cassette. When we did this we got a brief glimpse of a picture during the few seconds before the machine once more returned to stop.

The classic opening move in a situation like this is to key in pause and see what happens. If the machine still shuts down, failure of the head-drum PG pulses to reach the syscon is likely. If, as happened in this case, the VCR remains happily in pause for several minutes the thing to check is the reel-rotation sensor pulse output, which may be weak or missing. We were beginning to miss the service manual! Fortunately there are only four wires to the deck-top mounted reel-sensor PCB. These are clearly marked - VCC, GND, LED and PULSE. Who needs a manual? We found that there was 5 V on the VCC line, zero volts on the GND line, a small voltage appropriate to a LED on the LED line and that pulses were present on the PULSE line. Now we do need a manual!
Putting the machine into fast-forward give us two
or three seconds of faster pulses from the reel sensor, but the machine then shut down just as surely. All we could do was to trace the reel-sensor pulses through the various plugs and sockets to their final, secret destination on the large PCB. They got there intact. In checking the progress of the pulses we noticed that they were misshapen - varying in height and noise content. We also saw, and this was the key to the solution of the problem, that the peak-to-peak pulse amplitude averaged about 2 V . We couldn't be sure, with nothing to guide us, but this didn't seem to be quite enough. What to do? The only thing for it, we thought, was to order a replacement optocoupler, the heart of the reel-sensor system. So the order went in and the GoldStar VCR joined the row of partially-dismantled machines in the waiting-spares rack.

When the little, four-legged black bit arrived we were gratified to find that the take-up spool turntable could be lifted up and clear of its shaft once the retaining ring had been removed - there's no need to remove the front-loading cradle. Once we'd removed the turntable there followed a moment's silence then a roar of exasperation. The new optocoupler wasn't needed after all! What was the cause of the trouble, and how could it have been caused by previous less than professional attention? See next month for the answer and another test case item.

ANSWER TO TEST CASE 334 - page 948 last month -

Our video enthusiast customer last month was convinced that his VCR's heads were faulty. As tests proceeded the workshop staff also began to believe this. The symptoms with the Ferguson FV14T were just like those you get with lack of drum earthing: there were white spots and blips all over the picture, present in the playback mode only, but no amount of experimentation with the upper drum carthing arrangements made the slightest difference - and most of the other possibilities were ruled out when we discovered that the spots want away like magic with the machine in the pause mode.

This suggested that the interference was coming from either the capstan or the reel motor. In this design both are of the brush type. With the machine in the playback mode we disconnected each in turn electrically and watched the picture closely during the moment or two before the syscon brought about shutdown. When the reel motor was disconnected the interference on the picture cleared as the tape started to spill on to the deck.

Our first step was to check the decoupling capacitors associated with the feed to the motor. As these appeared to be in order we decided that the motor itself must be faulty. A replacement completely cured the trouble, proving that the interference was being produced by some form of sparking or poor contact at the commutator. It's an unusual fault with this type of deck, which is used in several JVC, Ferguson and other makes/models.

[^0]
CGH/CAI - AZ/EL SATELHTTE INSTALLATION COURSES

2 DAY COURSES INCLUDING CITY \& GUILDS EXAMINATION

BOOK NOW TO AVOID DISAPPOINTMENT

FOR FURTHER INFORMATION PLEASE CONTACT

A.L.S. BUSINESS CENTRE, SUITES 303/304 FIELD HOUSE,

 15 WELHINGTON ROAD, DEWSBURY WFI3 IHF. TELEPHONE: (0924) 467331CITY \& GUILDS
of London Institute

Paul Richards Books
 28 Boscobel Road North, St. Leonards on Sea, V/SA

East Sussex TN38 ONZ Tel: 0424434874
[NEWHEWNTES CUID TOSAIEMITETV
D.J. Stephenson

216 PAGE HARDBACK, 80 ILLUSTRAIIONS. Rapidly becoming a best seller, this book brings together practice and theory: "Leaves no stone unturned ..." What Satellite." "Worthwhile publication - recommended Television.: "Set to become the training standard for the industry Electronic Informer.* "Commended for its breadth of coverage . . ." Journal of the C.A.I.
$£ 14.95$
SEBVICTMGTV \& VIDEOEQUTRWENT
Eugene Trundle
209 PAGE LARGE HARDBACK, 225 ILLUSTRATIONS. "Provided you can read a circuit diagram this book takes you in one jump into the field of expert servicing" Television. A 100,000-word treasurehouse of practical repair advice E25. 10
 A breakthrough in terms of vaiue-for-money technical information. 21 chapters, 250 illustrations and 432 pages: an inch thick!

E10.00
TELEVISIOM \& VIDEO ENHINEERS POEKET BOOKM Eugene Trundle 323 PAGE REFERENCE HARDBACK PACKED WITH INFORMATION AND DATA. "Thoroughly up to date... will not stay far from the workbench" Television. "A gem of a book... can be used by service engineers throughout the world." Elector Electronics. "Copiously illustrated . . a well turned-out book. "Electronic Technology $\mathbf{£ 1 1 . 0 0}$
SEIVICITH PERSUIME COMPUVEIS Michael Tooley 240 PAGE HARDBACK WITH 250 ILLUSTRATIONS. "A real gem. magic references section" Computers in Schools. "Exhaustive but easy to use... goes a long way to overcoming the awtul problem of equipment faults" Laboratory Equipment Digest. "Very worthwhile publications"
Television, ..E25.00
VIDEOCASSETTE RECORDERS - A Servicing Guide Steve Beeching 220 PAGE LARGE HARDBACK WITH 210 ILLUSTRATIONS. Now in its third edition, this established work describes the principles and practice of video machines. Complete with 'fault patterns' index to specific models. $£ 20.00$ SAIELUETV WSTALEIDN HUDE John Breeds This large-format paperback, crammed with practical and reference information, has deservedly become an industry standard. 2nd edition.....£12.00 DIHIAL AUOIO\& CDMPACTDISG TEGTIOLOGY Sony Staff Definitive book on up-to-date sound systems, majoring on CD. Keep abreast of new technologies and techniques ... POST FREE IN UK AIRMAIL EUROPE: ADD 20\%. BEYOND: ADD 60\%.

OF USED OSGILLOSCOPES IN THE COUNTRY	MARCONI TF2700 Unyerssal LCR Bndge, Batiey trom 4AOCHZ:KHZ MARCDNI MOD Meters TF2300; TF23008:TF2303 trom. ${ }^{5} 100$
Hz Deara Sw	MARCONI TP833 AF Power Meter 20Hz-35kHz
RONIX 455 Dual Trae 100 MH H. Deay S	
${ }^{228}$	
Cision	
	100 V SOLARTRON 7045 Multimeter $41 / 2$ digit 30 ranges fas Autaman Large ranqe of yen 3 PO POWER SUPP LIES avalablie from $X \cdot Y$ plotters vanous models trom $225-$ E400
0 OS3000 Dua Trace 40 OHHZ Deay 5 weep TV Tro	
Soll	
\cdots	
Samplig fate As New	MOME BRUEL \& KJOER EQUIPMENT
	ALWAYS AVAILABLE PLEASE ENQUIRE.
IS UST A SAMPIE - MAMY OTHERS AVALLABIE	
	LEVEL TM3B AC Mkrovolmeter 1HZ 3MHZ 5 UV. 500 V LEVELL TM3A AC Microvelimeter 1 HZ-3MHZ. 5 SV -5004 from NEW EOTIPMENT
ONI TF2016 wiltou Sylutrallser TF21	
	TimetaseHAMEG OSCllLOSCOPE HMGOA Dual Trace fomiz DebayE6it STMEPG OSC:LLOSCOPE HM2O3 7 Oual Trace 201 Hz . Componemt Tester 2338 MAMGGROMTEsiterStorage
11 Hz -100ktz	
enat	
LOUR BAR GENERATOR-KG1	
$500 V A$ Cased wintead 13 A Anp Sockel [PPP E	
	MEIE
US BECEH PSUS - Pease Enauire.	
ELEPHONES	JUPITOR 500 FUNCTION GENERATOR O. $1 \mathrm{~Hz}-500 \mathrm{KHZ}$ Sine Squin.
YES! REAL DIAL TYPE TELEPHONES that don't slide aro the desk. Type no 746 supplied weth standidrd B.T. plug ius Ounatiy Oisconat	ORION CDLOUR BAR GENERAIOR PAITVNIDeo All other Black Star Equipment available
	OSCCLLOSCOPE PROBES S WMChable $\times 1 \times 10$ (pap C3) _ 11
Used Equipment - With 30 days guarantee. Manuals supplied if possible. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage.	

$\boxed{0}$

STEWART of READING
110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: (0734) 68041 Fax: (0734) 351696 Callers Welcome 9am-5.30pm Mon-Fri (until 8pm Thurs)

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702

ALBA AMSTRAD BUSH DECCA DORIC ETRON FERGUSON FIDELITY GEC GRUNDIG GRANADA HITAACHI HINARI INDESIT ITI KIMARI NIKKAI MATSUI MURPHY OSAKI NORDMENDE REDIFFUSION
. PYE. PHILIPS SANYO SAISHO. SHARP SONY SOLOVOX. SUSUMU TANDBURG TELEFUNKEN THORN TRIUMPH.
We also supply: TRANSISTORS . EHT TRAYS . VIDEO HEADS FROM $£ 1+25$. BELT KITS PINCH ROLLERS . IDLERS FUSES. IC
Callers welcome at our self service shop
We also manutacture TOROIDAL TRANSFORMERS
TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD
RICHMOND. SURREY. TW9 2EQ. Mon.Fri 9 am to 12.30 pm
Approx. 1 mile from Kew Bridge.
Sat 10 am to 12 noon

THRIFTY SPARES (WALES)

coo centrevision, sloper road, leckwith, cardiff cf1 bab INCREASE YOUR PROFITS WITH USED SPARES

MANY MAKES OF USED VIDEO AND TV PANELS - GUARANTEED WORKING HUNDREDS NOT LISTED - PHONE OUR HOTLINE

0222344218

VIDEO THORN, HITACHI, TOSHIBA, ITT, SHARP, AMSTRAD, PANASONIC ETC USED WORKING VIDEO SPARES
MIXED BOOSTER
SERVV PANEL
LOADING MOTOR ASS LOADINGMOTOR
BOTOM BOARD BOTOM BOARD
MODULATOR.

E12.50 MECHCOM
£15.00 DRUM ASS........
E10.00
COASTAN MOTO
POWER PANEL.
£15.00 TUNING BOARD.
ALL ABOVE PRICES VAT INC.
MANY MAKES OF TV USED SPARES ALSO IN STOCK
OPENING HOURS 9am-1pm - $2 \mathrm{pm}-5 \mathrm{pm}$
POSTAGE \& PACKING $£ 2.00$ ORDERS OVER £50 P\&P FREE DON'T DELAY PHONE 0222344218 TODAY 24 HOUR ANSWER PHONE

	UNIT 10 DELPH TNDUSTRIAL ESTATE DELPH ROAD, BRIERLEY HILL, WEST MIDLANDS DY5 2TW. TEL: (0384) 70632 (DAY). TEL: (0384) 75194 (EVE)				
HANDSETS	$3^{3} \mathrm{~V} 23$ Handsef.			PHILPSSPE	
THORNFERGUSON		Trumine Srs, Non Text.	${ }_{-}^{1} 11.50$	G11 Tex H Handsel	
		Tremine Ser Text.	... 811.50	$\xrightarrow{\text { KT3 Non Text }}$	cilli.00
TX9TX10 Slerro- TexI_		HITACHIGRANADA		6460 Upwarts (Videos).	¢11.75
		(Presestate mooel of TVor Videoc) From.	\cdots	PANASONIC	
TX9TX10 Tex VHS110.00	GRUNDIG				50
		SV1612UB16T4E/2204E/KV2704ue		TC20002216202422845	
		${ }^{2750555020}$	${ }_{\substack{\text { c13000 } \\ 18300}}$	REDIFFUSHON	
${ }^{\text {3V31/3v32 Handsel }}$.... 511.50	TP6306650 TC650 VT ${ }_{12} 12.50$	KV2210222027302740			
AND MANY MORE TYPES .. ASK FOR LISTS					
VIDEO HEADS		17		SANYO	
AKAI		VR3605959-3HSSVL.	${ }^{1} 12.75$	VHR1100 elc. 3 HSSSYY	\ldots
		VR3a3z3906-3HSSVV. 112.75		
	3V435332773HSS6VA.....)			C. PSAESF	c31.30
AMSTRAD	3 V 48 -3HSS4VC				
	HITACHI			SHARP	
		HRO140-160-3HSSVA	${ }_{233.00}$	VCozs elc. HHSSSPB	${ }_{\text {c18.00 }}^{\text {c1.00 }}$
		HRD725755-3HSS6VA... 548.55		
FERGUSON		PANASONIC			
		P30an3323000...		SLS000 enc. PS3BS 1	
${ }_{\text {3V16123243HSS }-\mathrm{VL}}$	VT85008700-3HSSHA	$366 \ldots \ldots$	¢24.00	SL88000 ect, PS3BS2	
					$\stackrel{\text { c20.00 }}{\text { c3, }}$
AMS1 7000 3 Bents 50.65	HIT. 50007 Bells 11.20	SANYO 53005 Belts		Sowy Sic6 6 Belts	
FERG 3V22 7 Bells 81.15	HIT 98003 Bents.... ${ }^{\text {c. }}$ c0.46	SANYO 55003 Beths		SONY SLC76 6 Bells.	
	N.PAN 3006 Betls...)	SANYO 933005 Sents.		Sowr sic9 6 Beth	
		SHARP 73007 780lls		SONY SLL0000 6 Belts	.1.62
		SHARP 83805 B Bits		TOSH V55-574 Aeth	
HiT VT116 ${ }_{\text {ents }}$		SHARP S3005 Belts	- . ${ }^{\text {co. }}$ - 1.18		
We Deliver U.K. \& Worldwide. . .FAST. . QUANTITY DISCOUNTS ... PLEASE ASK FOR OUR FULL LISTS					
Please Add $£ 1.00 \mathrm{p}$ ¢ for Single Items + VAT. Please Add $£ 1.50 \mathrm{p}$ ¢ p for Multiple Requirements + VAT					

REBUILT
 COLOUR TUBES
 First Independent Rebuilder with B.S.I. Certification PIL - In Line - FST N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL
 PHONE: 081-771 3535 Britain's Oldest Established TV Tube Rebuilder

ALL PRICES

55 SLATEFORD ROAD, EDINBURGH EH11 1PB. Tel: 031337 6950/031 346 7497. Fax: 031337 2446. Telex: 72165
SPECIAL VIDEO HEAD PRICES: VHS-A, VHS-Z, VHS-B, ONLY 27.50 + VAT

VIDEOHEADS			STK \& STR ICS	
FERG/JVC 3V16 etc.	VHSA	¢8.95	STK0029	5.63
FERG/JVC 3V29 etc.	VHSZ	£8.95	STK4141 Mk2.	£8.48
PANASONIC NV333	VHSB	¢8.95	STK4141 Mk5	
PANASONIC NV366 original.	VHSX	£42.00	STK4151 Mk2	ع10.08
PANASONIC NV370.	VHSM	£14.50	STK5481	E4.43
PANASONIC NV430.	VHSW	£21.75	STK5481	£4.70
PANASONIC NV730 original.	VHSY	£42.00	STK5482	£4.29
PANASONIC NV777	VHSN	£26.75	STK7308	£5.09
PANASONIC NVG10 original	VEH 0287	£42.00	STK7309	£5.81
PANASONIC NVG21 original	VEH 0343	£42.00	STK7348	£4.74
HITACHIVT11.	VHSK	£17.25	STR441	£6.79
HITACHIVT9300	VHS	¢17.25	STR451.	¢6.12
SHARP VC9300	VHSC	£18.00	STR50020	E6.15
SHARP VC581.	VHSS	¢18.00	STR50103	£5.45
AMSTRAD 7000	VHS R	¢18.00	STR54041	¢5.91
AMSTRAD 4500/9000	VHST	£18.00		
FISHER FVHP615 etc	VHSU	£19.25	STR5804	6.15
SANYO 5000	BETAD	£27.25	AT TIME OF	WE
SONY C5/6/7	BETAB	£16.75	HAVE 214 DI	ICs,
SAMSUNG	BETAW	219.85	PLEASE	

VIDEO BELT KITS	
JVC HR3300C/3V16(7)	£1.75
JVCHR7200/3V29 (5)	c1.13
JVCHR7700/3V22(3)	
JVC HRD140 genuine	
PANASONICNV333	
PANASON CNV33	. 1.52
PANASONCN3730	
PANASONI	
PANASONCNV200	
PANASONIC NV7000	
PANASONENV600	
HITACHIVT11	. 1.28
HITACHIVT5000	
HITACHIVT7000	ع0.83
HITACHIVT8000	
HITACHIVT9300	c0.75
SANYO VTC5000	c1.31
SANYO VTC9300	
SHARP VC381	
SHARP VC6300	ع1.38
SHARP VC7300	
SHARP VC8300	
SHARP VC9300	£1.24
SONYC5/C7	ع1.54
SONYC6	ع1.66
AKAIVS2NS5.	E1.24
FISHERFVHP615	£1.38

THIS IS JUST A SMALL SELECTION OF THE WIDE RANGE OF PRODUCTS IN THE VIDEO AND
SEMI-CONDUCTOR FIELD WHICH WE CAN NOW SUPPLY.
SMJ ELECTRONICS, inc. IBC, is the sole Scottish distributor for Ross consumer electronics and Kewmode products, and have a wide range of portable audio, televisions, headphones, leads, camcorder batteries and accessories available.

EXPRESS TV
 The Mill, MHII Lane, RUGELEY, Staffs WS15 2JW

Limited quantity of Mullard 30AX Tubes

New
Re-built
'B' grade

TUBES 0889-577600 9-6 Mon-Sat helpful technical assistance

SOUTH-WEST A.J.C. 0395-266210

BRISTOL (AGENT) 0454-316285

(0)								
	Description	Price Each	Order Code	Description	Price Each	Order Code	Description	Price Each
VIC 20	Descriplon		${ }^{\mathrm{C} 644564 \mathrm{C}}$ -	Continued $4 \times 2 \mathrm{inp}$ Muipxr 16 Dil		${ }_{32498050}^{\mathrm{C}+4}$ - Continued		2.62
90145301	IC 2114 LS -RAM	4.41	74LS257	1 C 3 State $4 \times 2 \mathrm{lnp}$. Mulpxr 16 Dil	0.97 1.40	MANC +4	Users Manual tor $\mathrm{C}+4$	1.13
32550202	IIC 2017/6116 S-RAM	6.16 1.15	90450001 90610002	Power Swich ${ }^{\text {Expansion Sockel } 44 \text { Pin }}$	4.60	31705401	IC Funclion ROM High	13.68
25146801	ILine Filter Assembly	1.15 3.45	90610002 32557301		0.59	31705301	C 8005.021 Function ROM Low	13.68
90143501 90143701	IIC 6502 LI	3.45 2.59	90612801	$1 \mathrm{CMC4044CP}$	4.72	SWMANC + 4	integrated Sothware Manual	
${ }_{9} 901523323$	IC 7402	1.03	90046241	Capacitor 150 PF 50 V	0.23			
90148601	Ic 2364-063 Kemal	5.43	90046245	Capacitor 220 PF 50 V	0.62	AMIGA A500		1.05
90146003	IC 2332-177A Char ROM	4.37	74.5258	IC 3 State 4×2 Mutpx 16 Dil	0.97 2.39	${ }_{\text {FBI }} 74.4$	Coctal 3 State Buther 20 Din Fernte Bead $6 \times 3 \mathrm{~mm}$	0.03
90046128	Capachior Axial 01 mld 50 V	0.14 6.53	$74 L S 629 N$ 90610601	${ }_{\text {Crystal }} 17.734 \mathrm{MHz}$	4.03	74LS373N	$1 C 33$ State Octal Latch 20 Dil	1.36
90189601 90143601	CC6561 VIC	6.53 2.97	74.15373 N	IC3 State Octal Latch 20 DI	1.36	25234401	Oscillator 28.37516 MHz	-84
90143601 90613001		${ }_{0.56}^{2.97}$	100104191	Senal Number 4/Pack	0.27	38013303	Logo Nameplate	0.07 0.07
90613001	7 Pindin Power Socket		32616001	LED Plate	0.54	3160001	Reminder/Disk Protector	0.07 1.61
C 16			32629901	Power Connector Panel	0.41	31033901	Mouse Ball	
25126301	DC Power Jack Sockel	0.58	25169701	RF Modulator (C64)	23.50 0.18			
25161601	Socket 7-Pin Mini Din	0.88 0.97	25230401 25191602	Log Modulator (C64C)	10.39	${ }_{60801054}$	Transtormer Sub-Power	1.10
74LS257 25153502		16.57	32616101	Logo Nameplaie	0.63	2510404	1 C ROM	9.66
25184201	Filler Emi	0.13	T258C	Sotware For Paragon	7.95	32550202	1 C 201616116 S RAM	6.16
31800601	IC 23128 ROM Ted Basic	13.29				32530301	${ }_{\text {IC }}$ 2564 2364.131	23.24
MSM4416P-15	IC D RAM Memory 18-Dil	2.95 1.68	${ }_{32550202}$	IC 2016/6116 S RAM	6.16			
25158701	On'OHf Swich Rocker	1.68 0.19	32550202 31503501	Connector 9 Pin D RGB1	3.31	MPS801		
32557001 25125901	Joystick Socket 8-Pin Mini Din	0.92	25184203	Filter	0.02	60101345	IC 2732 EPROM	30.33
${ }_{\text {FB3 }}$	Ferrite Bead $4 \times 3 \mathrm{~mm}$	0.03	31501201	1 C 8721 R3 PLA	9.03	${ }_{6}^{60101116}$	Lamp BCO4ni-2300A	8.48 0.95
90610601	Crystal 17.734 MHz	4.03	31038901 CBM128SGD	IC 8722 MMU User Manual/System Guide	10.34 5.78	6010117	Lamp BC044 -2300A	0.95
			31040001	Logo Nameplate	0.12	MPS802		
74LS74	IC 74LS74	0.56				32550202	IC 2016/6116 S RAM	${ }_{5}^{6.16}$
74LS24S	1 C 74 LS 24 S	0.89	C+4			60120001	Ribbon Assembly	5.06
90145301	1 C 2114 LS -RAM	4.41	25153502	IC 83360 -	${ }_{13}^{16.57}$	MPS803		
7406	IC 7406	1.05	31800601 25164003	1 C 6529 SPl (${ }^{\text {ched }}$	2.28	60102005	T Belt MM3ı0	3.31
90244229	Resistor Pack 3 K 38 Pin	0.49	25125901	Joysick Socket 8 Pin Mini Din	0.92	60102097	Washer	0.05

OMEGA ELECTRONICS

IRRESISTIBLE RESISTOR PACK PRICES

200 MIXED I WATT RESISTORS FOR £2.50. Order Code: IWT MIX

Pack contains 10 of each of the following values
1R2. 18R, 33R, 150R, 390R, 560R, 1K, 3K3. 5K6, 10K, 22K, 47K, 56K, 100K, 330K, 390K, 560K, 2M2, 4M7, 8M2

200 MIXED 0.5 WATT RESISTORS FOR £ 2.25. Order Code: 0.5WT MIX

Pack contains 10 of each of the following values:
10R, 68R. 150R, 220R, 470R, 680R. 1K8, 3K3, 18K, 47K, 56K, 100K, 180K, 220K, 560K, 680K, 1M2, 2M7, 3M3, 5M6
200 MIXED 0.25 WATT RESISTORS FOR £ 1.99. Order Code: 0.25WT MIX
Pack contains 10 of each of the following values
2R2, $10 \mathrm{R}, 47 \mathrm{R}, 68 \mathrm{R}, 120 \mathrm{R}, 560 \mathrm{R}, 680 \mathrm{R}, 820 \mathrm{R}, 1 \mathrm{~K} 2,3 \mathrm{~K} 3,6 \mathrm{~K}, 12 \mathrm{~K}, 33 \mathrm{~K}, 47 \mathrm{~K}, 82 \mathrm{~K}, 100 \mathrm{~K}, 120 \mathrm{~K}, 270 \mathrm{~K}, 560 \mathrm{~K}, 820 \mathrm{~K}$
Certain values may be substituted if stocks run out

VIDEO BELT KITS					VIDEO PINCH ROLLERS			
$\begin{array}{\|l\|} \hline \text { Order } \\ \text { Code } \\ \hline \end{array}$	Manuf	Model Nos	$\begin{gathered} \hline \text { No Beits } \\ \text { in Kit } \\ \hline \end{gathered}$	$\begin{gathered} \text { Price per } \\ \mathrm{Kit} \end{gathered}$	Order Code	Manuf	Model Nos	PricePach
VBKIT 1	AKAI	VP7100. VS9300/9500/9800	7	0.99	VRG6	$\begin{aligned} & \text { AKAI } \\ & \text { AKAI } \end{aligned}$	$\begin{aligned} & \text { VS9700 } \\ & \text { VS2EG-5EG } \end{aligned}$	2.25 2.25
VBKIT 36	AMSTRAD	VCR4600/4700/5200. TVR123	5	0.99	VRJ7	HIIACHI	VIll 33 5000 8000	225
VBKII 19	HITACHI	8000	7	0.45				
VBKII 20 VBKIT 21	HITACH HITACHI	VT11/33 95005	7 3	0.75 0.49	VRP 12	JVC	HRDI 10, 120, 225	2.25
VBKII 1	HITACHi/ITT	VT3000, VR3912	7	0.99	VRX20	MIISUBISHI	$\begin{aligned} & \text { HS306, 307, } 400,710 \\ & \text { Part No } 522 \mathrm{C} 05502 \end{aligned}$	2.25
VBKIT 16	ITI	3913	5	0.59	SANYO 006 VRC2	SANYO SANYO	Various VIC9300. VBS7000	2.25 2.25
VBkIt 1	JVC/THORN	HR3320/3330/3360/3060/4100. 3292. 3V00/01/10/22. 8902/3/4/6/22	. 7	0.99	VRF5	SHARP	VC6300. 6500	2.25
VBKIT 15 VBKIT 16	JVC/THORN JVC/THORN	HR7050 HR7200. 3V29/30	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.59 \end{aligned}$	VRAI VRA2	$\begin{aligned} & \text { SONY } \\ & \text { SONY } \end{aligned}$	C20, C30 with bracket 120.50, 2300 with bracket	$\begin{array}{r} 2.25 \\ 2.25 \end{array}$
VBKIT 8 VBKIT 9	PANASONIC PANASONIC	NV2000B NV8600B/8610B. V011	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 0.89 \end{aligned}$	Tel	ohor	AMPMACE	
VBKIT 13 VBKIT 14 VEKI	SANYO	VTC5000 VTC5300 V300P	2	0.29 0.47		On	03471241	
VBKIT 7	SANYO	9300P	4	1.39		ce	ur order usin	
$\begin{aligned} & \text { VBKIT } 11 \\ & \text { SHARPOO25 } \end{aligned}$	$\begin{aligned} & \text { SHARP } \\ & \text { SHARP } \end{aligned}$	VC7300 VC9700	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.49 \end{aligned}$		ace	ur order usin	
VBKIT 3	SONY	SLC5, 5EC, 5CH, 5E1, 5E, 5SA SLC5UB. SLC7. 7E, 7UB, 7EC. 7F. SLJ5. SLJT. SLTYMER	${ }^{6}$	0.89		by	30 pm for	
VBKIT 4	SONY	SL8000AS. SL8000E. SL8000SA SL8000UB, SL8080AN. SL8500 SL8600, SL8600A, SL5400/5800	6	1.39		ME	AYDESPATC	
VBKIT 5	SONY	SL3000U8	7	0.69	All item	listed	subjectte 15\%	
VBKIT 10 VBKIT 29 VBKIT 30	ioshiba TOSHIBA IOSHIBA	V8500 V5470 V5475	$\begin{aligned} & 0 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.95 \\ & 0.99 \end{aligned}$	$\begin{aligned} & \text { Nenum } \\ & \text { Add £2 } \end{aligned}$	oring ch 50 han	ge for orders ove ing for orders under	$\begin{aligned} & \mathrm{z} 20 . \\ & \mathrm{r} £ 20 . \end{aligned}$
Ampmace Ltd, Beechwood House. Falkland Close. Coventry CV4 8HQ								

Did you know that the faults and remedies for video, CD and TV in the
 ASWO VIDEOTEXT INFORMATION SYSTEM

are from hundreds of technicians all over Europe $\overline{\mathrm{AS}} \boldsymbol{0}_{(\text {UK }) ~ L \tau D ~}^{(1)}$

VIDEOTEXT INFORMATION SERVICE
For more information write, phone or fax: ASWO (UK) LTD Heston House, 7/9 Emery Road, Brislington, Bristol BS4 6PF

A．Z．ELECTRICS

Stock items despatched by return

シ88元	ఝ్రీ

VIDEO HEADS

AMSTRAD	
3HSSR－VCR7000（Saisho／Orion）	¢ 21.50
PSF 1 －VCR $4500,5200,9000$.	918.00
PSF2－VCR4600， 4700	£18．50
PSF3－VCR6000	927.00
FERGUSON	
3HSSV－2 Head universal	19.95
3HSSVA－3V42，44，45，46 etc	¢22．00
3HSS4VB－3V32／HR7655	£33．00
3HSS4VC－3V48 HRD565	537.00
3V48，58，59，65，FV10，11．	
12，13，14，20，21，26	
And most other Ferguson．	POA
HITACHI	
3HSSHA－VT8000，9000 series	£19．00
3 HSSHB－VT 11,33 etc	£19．00
10082－VT120，220	£41．00
10081－VI130，135	¢33．50
Panasonic	
3HSSN－2 Head universal	99.95
3HSSUIN－NV 100， $370,380 /$ Philips VR6460	$¢ 16.00$
3HSSU2N－NV230．470，480．G9， 10 ，	
11，15PX	$\underline{50.60}$
3HSSU3N－NV430，460	E21．50
3HSS3N－NV777，330	E21．50
3HSS4NB－NV730	530.80
3HSS4NA－NV366	530.80
NVG30，33，40，45，46，130 \＆most	
Others Panasonics	POA
SANYO	
3HSSSY－VHR1100，1110，1300	E26．50
3HSS3SY－VHR1500	¢30．80
SHARP	
3HSSSP－VC9300， $9500,9700,381,481$	
482，483，486 etc	¢21．00
3HSSSPB－VC581，583，651，670 etc	E21．00
VC7000，8000 seies（Brass）	£42．00
OTHER MAKES	
Alhd 4000，Goidstar 8000，Sentra 8000，	Solavox
1400	E25．50
Fisher FVHP510，520，530，615，710 etc	¢21．00
Fisher VBS 7000.9000 etc	$\underline{53.75}$
Hinarı VXL2，4，3，20，25	E21．50
Hinari VXL5， $6,20 \mathrm{H}$	§18．50
Mitsubishi HS306，710	537.00
Orion VC150，180，VH1，2，3 etc	E23．00
Saisho VR100，605，705，805，905	E23．00
Samsung Universal 2 Head	E24．25
Toshiba	
V71，73，74，75，81，82，83，84，85，85，87	\＄25．50
Toshiba V93	$\underline{5} 5.50$
ASK FOR VIDEO HEADS NOT LIS	

The above heads are new and replacements．
890

NV8600
NV730．
PHILIPS
530.60

POA
${ }^{2} 30.80$
21.00
242.00

20 apox

488／496

AKAIVS1,2,5	
VS4，6，9，15	
VS9300，9500，9800	
AMSTRAD 7000	
FERGUSON／JVC 3V00／16／22 Mechanical Models	
3V23	
3V29／30	
3V29／30 Loading Beit	
3V31／32	
3V35／36／38／39	
3V42／43／44／45／48／54／55	
3V58／59／64／65／8950／51／FV10／	
11／12／13／14 ．．．．．．．．．．．．．．．．．．．．．．．． 1	
FISHER FVHP520／530	
FVHP615／710／715／716／722／725／	
830	
FVHP905／906／907／908／910／	
911／915／916 ．．．．．．．．．．．．．．．．．．．．．．．． 1	
HITACHI VT11／14／17／19／33／34／35／38／39 88	

VT52／61／62／63／64／65／85／86＿．．．． 2.10
VT100／110／111／113／115／118／120
125／130／135／145／150／175 …．．．． 2.50
VT8000／8500
VT9300／9500／9700
PANASONIC
NV230／250／280／370／380／430／450／
460／465／485／630／810／830／850／870／
NV300／333／340／366
NV600／777／788
NV2000／3000
${ }^{\varepsilon 19.00}$ NV7000／7200／7500／7800

VR63676467／6561／6751／6760／

VTC5000／6500
VTC5300／5350

583／584／585
VC6F3／6V3 VC600／651／681／682／683／
684／685／693／700／7832．10 ．．．．．．． 2.10
VC200／381／384／385／386／390
9300／9500／9700
VC300／387／388／481／483／486／
VC7300 7700／7750
VC8000／8300

TOSHIBA
V8600／8700／9600
V55／57
V66／67
V31／33
／73／81／83／85
0 Belt kits for Funai，GEC，Goldstar， Grundig，Hinari，ITT，Mitsubishi， NEC，Orion，Saisho，Samsung， Schneider，Sony and Tensai also available．

LINE OUTPUT TRANSFORMERS
Decca 100
IT CVCzo
IT CVC25 30.32 ．
ITT Compact 80 Series 110
ITT Compact 80 Series 90
T1 109F
1π CvC120
$17 \mathrm{CVC800} 1 / 3$
IT CVC1150／1175
$1 T \pi 6325$
IT 3546
Other ITT fransformers available
Fide ify all modets up to $20^{\prime \prime} \mathrm{ZX} 3000$
Fide ity Panei tor ZX 2000
Fidelity 2 Z＇ 2×3000
Hinari CT4／5 \＆TVA1
Philips KT3
Rank Bush T20
Thorn 1615
Thorn 1615
Thorn TX100 Green Spot 110
Thorn TX90 Mains Trans
Ferguson 3 V35 36 Mains Transformer
Ferguson 3V44／44／45 Mains Transtormer
Sony－Please state model for price
Universal Tripler
Universal Tripler with focus unit
Decca 120／130 series tripier
Thorn TX10 Focus Unii Kit

VIDEO MOTORS

REEL MOTORS
Ferguson $3 V 2930$
Ferguson 3V29 30
Ferguson 3V58．59，65．
FVio．11，12，13．14，20．21，22

Sanyo VTC 5f00 $5150,5400,5300,6500$
Stharp VC9300．9500 etc．Ongivial
Panasonic NV333，366 Original．
ORUM MOTORS
Ferguson／JVC（Mechanical models）
Sharp 7000 series Original
All Panasonic Orignal
CAPSTAN MOTORS
Ferguson 3V35，36 Originai
Ferguson／JVC（Mechanical models）
HitachivTit Original
HitachivT3 3 Original
HitachivT 64 Origial
HitachivT64 Original
Hitachiv 80000 series Original
Hitachiv 9000 series Original
Shari VC7000 series Orignal
Sharp CONT Sertes Origna
Ferguson $3 V 42,43,44,45,48,49,52,53$
Ferguson $3 V 58,5,45$
Ferguson 3 V588．59，65．
FV $10.11 .12,13,14,20,2$
IDLER ASSEMBLIES
FERGUSON Take up Clutch（Mechanical models）
$3 \mathrm{VV930}$ Take up ldler
329300 ake up Clutch
$3 V 2930$ Ree ldole
$3 V 2930$ Reel Idoler
3V35．36， 38.39 Take up Clutch
3V58．

Clutch Assembly
$3 V 44,45,48,49,52,53,54,55$
$3 V 44,45,48.49,52,53,54,55$
Clutch Assemb｜y 3 V 42.43
Clutch ASS
FISHER
FVHP615，905，910．Idler Assembly Original
FVHP615 Gear idler Assembly．
FVHP950，910 Gear Idiler Assembly
FVHP520．530 Id Ier
FVHP520．
Hitachi
VIT1，33etc．Original ioler Arm
Vi11，33 etc．Idier Arm Replacemen
VT9300， 9500 etc．Pay lder

Access \＆Visa Accepted
V9300，9500 etc．FA Idler
T $9300,95500 \mathrm{etc}$ ．Ider
$\sqrt{18000,8500}$ etc FF FRew Idier
V 80000,8500 etc．Play Idler Assembly
18000,8500 etc．FF／Rew Pulley
PHILIPS
VR6460．6920 Idler Arm（original）
VR6460，6920 Idler Arm（original）
DV464，6462，6463，650 etc ．（dler Mod kit
DV464， $6462,6463,650$ etc
VR6542，6843 Reel Idler．．．
VR6542，6843 Ree Ider
VR6542 Reel Drive Pulley．
VR6843 Reel Drive Pulley
ANASONIC（All Original
NV370 Idler Arm Unit VXPOS521 Gen．
NV8600．8610 Pray Idler VXP0243．
VV332，777，788 Ider Unit VXP0463
V600， 688 Idier VXP0515
NV8400， 8600,8610 etc V XPO 245
NV 333,366 etc Ider VXP0401－NV700 \quad I0．80

Ider VXP0344
NV Play
I0．80

NV2000，3000 Play Idler VXP0331－NV2000． 3000
Idler Unit VXP0329
$\mathbf{E 0 . 9 5}$ Back Tension Bands Frome1．50 All Panasonic Maintenance Kits ．．．．．．．．．．．．．．．．．．．．．．OA

QUOTE PANASONIC PART No
FOR PARTS NOT LISTED

samyo

SANYO

$\begin{array}{ll}\text { id leer VHR } 2100, & 2300,1500 \\ 2500 \\ 2700\end{array}$

Reel Drive Pulley Unit VTC5000 $5150.6500 \quad$| 50 |
| :---: |
| 500 |

Ider Rolier Assembly VTC5000．5150．6500 $\ldots \ldots .25$
SHARP
diler VC9300，9500 etc
Ider（orginal）VC9300，481，581 etc

AMSTRAD
4500,4600 MOD KIT INCLUDES PINCH ROLLER
AND IDLER CIUTCH

REMOTE CONTROLS

Ferguson，Grundig，IT，Philips，Pye．Sony and
Hitachi．Varlous models TV \＆Video ．．．．．From $£ 14.50$
Many Hitachi TV remote controls now in Stock．
SONY REMOTE CONTROL RUBBER PADS
STATE MODEL FOR PRICE

TV ON／OFF SWITCHES

IT，Philips，Decca，Thom，Fidelity，Grundig，Son
and Hitachi．State model for price

PINCH ROLLERS

Pinch Rollers tor Akai，Amstrad，Ferguson．Fisher
Furai，Goldstar，Grundig，Hinari，Hitachı，JVC，Mit subishi，Orion，Panasonic，Philips，Samsung，Sanyo Sharp，Sony，Toshiba available．Prices start from $\Sigma 2.80$ ．

OTHER SPARES

Universal Video Copying Kit ．
53.60

Universal Video Copying Kit（Scart）．．．．．．．．．．．．．$£ 5.20$
Video Cassette Lamp Ferguson with without
plug．Cassette Lamp Sharp．Panasonic Amstra
Hitachi
Video Cassette Lamp Sharp 9300 etc ．with plastic，
mouiding ．．．．．．．．．．．
CRT Anode Caps
Video Tape Splicing Kit
Hitachi TV Frame Module HM6251 \quad ¢5．50
Cassette Housing Assembly Ferguson 3V35，36， 38
39，42，43，44 ．．．．．．．．．．．．．．．．．．．．．．．．$£ 25.25$
Cassette Loading Roller Assembly $3 \mathrm{~V} 23,3 \mathrm{~V} 31$ ，
3 V32
Philips 1．2V Back up Batteny
Philips 2．4V Back up Battery
5．5V Back Up Cap
Degaussing Positor Blue
－£1．55
egsette Housing Assembly Hitachiv／ $11 \quad$ £1．30
End Sensor for Hitachi VT63，64，65（Pair）
Cassette LED Sensor for Panasonic etc
C Circuit Protectors
52.75
$\mathbf{~} 1.60$

Cassette Housing assemblies for Philips avalable
$\hat{\star} \hat{\star} \hat{*}$

RESISTORS，ELECTROLYTIC

CAPACITORS，FUSES ETC．
NOW IN STOCK．
领 मे
SEND FOR PRICE LIST．
动之
MAIL ORDER ONLY

CUSTOMER

CARE

DISTRIBUTION

EXPORT ENQUIRIES WELCOME

* SONY B, GRADE STOCK FOR

EXPORT ONLY *

BIRMINGHAM

D.S.D. DISTRIBUTION UNIT 3, ARMOURY ROAD, SMALL HEATH TRADING ESTATE, SPARKHILL, BIRMINGHAM B11 2PP.

OR TRY

LEICESTER DATA DISTRIBUTION

 No. 2 ASCOT ROAD, OFF MELTON ROAD, LEICESTER.TEL: 021-772 2743 (FAX No. SAME) TEL: 0533-663766

GRADE B STOCK ALL BOXED AS NEW

SAVE EEEE's

Video Recorder, HQ Remote Control, 14 Day Event 1130 Video Recorder, LCD Prog, HQ 14 Day 8 Event......... $£ 140$ Video Recorder, HQ, LP/SP with LCD Remote $£ \mathbf{£ 1 6 0}$ Microwave Ovens from ... £55

Here is our

choice selection
of spares. 100's
of others not listed.
Telephone for Price.

AN316	[1.00
BA5406	51.50
BA853	$¢ 2.50$
BA7007	$\underline{17.00}$
HA11107	$\underline{51.50}$
HA12072	$\underline{11.50}$
LA4440	$\underline{21.00}$
LA4520	11.50
MB88401-206M	$¢ 2.50$
ML237B	10.50
MC5192	1.1 .00
MC1451	$\underline{51.50}$
MC1453BCP	11.00
SAA5020	$\underline{.200}$
SAA5040B	$¢ 2.00$
SN75498N	\$1.00
SN76131N	\$1.00
SN7417N	51.00
STK5421	$\Sigma 5.75$
STK5332	$\underline{2.75}$
STK5481	¢6.85
STK5314	$¢ 5.75$
STK4121 MK.II	c6. 25
STR440	£4.95
STR4090	£5.75
STR4211	£4.50
STR5412	¢4.75
STR50103A	¢4.50
TDA2576A	151.00
TDA2540	[1.00
TDA3654	$¢ 2.00$
TDA4600	$\underline{¢ 2.75}$
TDA4505B	$\underline{51.50}$
UPC1365C	$\underline{11.00}$
UPA2004C	¢1.00
UAA1008A	[1.00

Remote Contro Hand Units	
IR 8331 KT3/K30 Non Tex	
\|R 8420 KT3/30 Text	510.50
IR 8432 Toshiba (2295 2695)	275.50
IR 8435 Philips G11 Text	570.00
IR 8443 Ferg. TX9/10/100 Text	510.00
IR 8613Grundig Text	\$11.50
IR8614 Grundig Non Text	511.50
IR 8649 IT 385 (with Mute)	
IR 8650 ITTCT1511	
(with Fine Tune)	\$11.50
IR 8689 Ferg. Stereo TX9/10/100	110.00
IR 8838 Granada/Rediftusion	\$11.00
IR 8850 Rediftusion Mk4 Text	£10.50
IR8861 Panasonic TNQ	¢14.50
IR 8876 Sony KV22/2	£14.50
IR 8876 Fidelity CTV 14R/20R/22R	\$13.50
IR 8952 Ferg. $9 / 10 / 100 \mathrm{R} / \mathrm{C}$	\$10.00
IR 8956 Ferg. TX10/100/2235	E11.50
IR 8957 Ferg. TX100 Text	511.50
IR 8982 ITT Digivision FS9/1	\$13.00
IR 8983 Fidelity Text 09193	£14.50
IR8991 Grundig TP600/T	£14.58
IR 9052 Decca RC40/43/45	¢14.58
IR 9058 Loewe Opta M124	115.50
IR 9100 Ferg. 3 V35 (8944)	E11.50
IR 9101 Ferg. 3V32 (8941/2)	\$11.50
IR 8947 Ferg. 3 V43	510.50
RCV 7604 Akai VS4	f10.0
tity discount	

Original
Replacement

Video Heads

Amstrad 7000. Amstrad 960D MK2 Fisher FVM510-722 Hitachi VT11/33 Ferg/JVC 3HSS Ferg 3V35 Ferg 3V43 …........ $\mathbf{£ 8 . 5 0}$ Panasonic NV2000/333 88.00 Panasonic NV 366 $£ 24.00$ Akai VS4 Amstrad 4600 $£ 17.50$ Fisher FVH516/520/530/615 622/710/715/720 …... £16.00 Ferg. 3V29/30/35/31 PU31332 G10/PU31332L … $\mathbf{E 8 . 5 0}$ Ferg. 3V32 4 Heads..... £27.00. Ferg. 3V42/44/45

MANY MORE
 New Uideo Boards

Ferg 3V29 Audio Y/C Board $\mathbf{1 1 5 . 0 0}$ Ferg 3V29 MDA $£ 10.00$ Ferg 3V29/30 Top Cover $£ 5.00$ Ferg 3V23 T/T Board £15.00 Ferg 3V23 Mechan Board £15.00 Ferg 3V23 Front Facia Board $£ 15.00$

Cassette Housinds

Akai VS4
10.00

Akai VS2.................. $\mathbf{£ 1 0 . 0 0}$
Mitsubishi HS304 £10.00
Ferg. 3V35
C19.50
Ferg. 3V42/4
E19.50

Sharp Reel Motors

Sharp VC 9100/9300 ... £12.50
Sharp VC 481/482 £13.50

LOPTS

Ferguson TX100 Green Spot	£14.75
Ferguson 7×90 Series	£19.75
Decca 100	£8.50
Hinari CT4-5 Lopt with PCB	£21.00
ITT 4515-01-61	£10.25
IT 4515-03-01	${ }^{1} 19.50$
IT 4515-03-19	£13.50
17 4515-03-24	£16.50
1TT 4515-03-22	£18.50
Grundig 7100 FAT 3761	

Midi Systems $\begin{array}{lr}\text { New Condition } & \text { From } \\ \text { Working } \\ \text { Double Tape Deck } & £ 40\end{array}$ Double Tape Deck £40

ALL WORKING STOCK
Doric Mk3 Basic
$£ 15$
Doric Mk4 Basic
Rediffusion Mk4 Text.
Japanese Panasonic, Toshiba from
Thorn TX9/TX10 Text.
Thorn TX9/TX10 Stereo Teletext
Portables Various makes from

Ex Rental Uideos

ALL WORIING STOCK

Amstrad VCR/7000
 Ferguson 3V29/30 Thorn 8930

Ferguson 3V31 Thorn 8941
Ferguson 3V32 Thorn 8942
Ferguson 3V35 Thorn 8944
Ferguson 3V43 Long Play HiFi Hitachi 8000/8300/8500 Orion VXL3
MANY MORE
ITEMS IN STOCK
PHONE

Capstan Motors	
Ferguson 3V35/8944/HRD120	£16.50
HitachiVT11/17	£26.50
Hitachi VT33	£26.75
Hitachi VT61/62	£29.50
Hitachi 5000	£15.00
Akai VS4.	£15.00
Akai VS2	£15.00

Postage and Packing Extra
All prices exclude remote controls and VAT. Stock subject to availability.

VIDEO TAPES
from £1.20
Box 50
TV VYNAL
COVERING
$15 \mathrm{~m} \times 45 \mathrm{~cm} £ 14.50$

Cabinets

ALI £6.00 EACH
CB4658 21" Ferg 51A3 TX100 Series CB4667 59cm Ferg 59B3 TX100 Series
CB4638 Thorn Model 6003 CB4655 20 " Thorn Model 2323 TX100 Series CB4686 59cm Ferg 59B4 TX100 Series CB4666 20" Ferg Model 20E1/ E2
CB4687 20" Cabinet 20G1

YORKSHIRES PREMIER EX-RENTAL WHOLESALER

A LARGE SELECTION OF THORN/ NON THORN TVSNCRS, WORKING OR NON WORKING

Visit the largest display of Satellite TV in the North DISTRIBUTORS OF

YOU COLLECT OR WE DELIVER

WHY TRAVEL THE WHOLE COUNTRY?
OPEN MON-FRI 9.00am-5.30pm SAT 9.00am-1.00pm RING SID OR SAFF NOW ON LEEDS (0532) 444195 supervision
UNIT 16, TOWER WORKS, GLOBE ROAD, HOLBECK, LEEDS LS11 $50 G$ OFF WATER LANE, NEAR HILTON HOTEL. EASY ACCESS FROM M1 \& M62 (2 Mins)

FAX (0532) 425777
WE OFFER A FULL
RANGE OF EX-RENTAL
TV'S \& VIDEO'S.
SPECIAL OFFERS
FOR THIS MONTH

* PORTABLE COLOUR TV'S

ARE AVAILABLE
\star CAN DELIVER ANY DISTANCE

SWITCH ON NOW WITH WEST MIDLANDS TV \& VIDEO

West Midlands T.V. \& Video Wholesale 2 mins from Junction 9 - M6. Warehouse in Passage off, Little London, CaIdmore, Walsall.

 Sat. 9 am-2pm.

W TREE *TADE: WAREHOUSE
 Don't be disappointed at Christmas Buy now while stocks last WHITE GOODS AVAILABLE IN BULK WASHERS, FRIDGES, FRIDGE FREEZERS, DISHWASHERS

BULK QUANTITIES OF
COMPUTERS AVAILABLE

EX-DISPLAY CAMCORDERS SONY, JVC, PANASONIC, MINOLTA

NO ORDER TOO LARGE OR SMALL

LARGE QUANTITY OF EX-RENTAL CTVs in working order from only £10!!!

Mixed loads of TVs and VCRs by the container. Telephone NOW for details

SUPPLIERS OF HIGH QUALITY THORN/GRANADA EX RENTAL STOCK

Contact: NEIL
081-8077476/7579

UNIT 4,
RAINSTARIND. ESTATE ELEY ESTATE NOBEL ROAD EDMONTON N18OAA

APPROVED THORN DISTRIBUTOR VISIONS BRING YOU A BETTER VIEW

THE ONLY APPROVED THORN TELEPRICE DISTRIBUTOR FOR E. ENGLAND
SIMPLY
THE BEST

BEST PRICES

BEST QUALITY

IN EX-RENTAL TV \& VIDEO EQUIPMENT

RING TONY ON
0553766766 FOR YOUR BEST DEAL YET!

SEMPLE SERVICE

59 HALL RD
CLENCHWARTON
KINGS LYNN NORFOLK

TUNE INTO THE UK＇S LARGEST WHOLESALERS fUSAIN CENTRAL TV ぶ ぶ ふ ふ

CARDIFF

TEL： 0222471485

FOR EXPORT ENQUIRIES，FAX US NOW ON： 021－322 2011

PRESTON

 NOW OPEN SATURDAYS TEL： 0772312101BIRMINGHAM HEAD OFFICE TEL： 0213273273
FAX： 0213222011

LONDON

TEL：081－961 5005
TOP VALUE

SOUTHAMPTON

TEL： 0703777254

\star BUY DIRECT FROM SOURCE \star THORN EX RENTAL TV \& VIDEO

From the co-ordinator of the ONLY independent buying group approved by

$$
\star \text { TELEPRICE }
$$

Why buy second source junk this Christmas?
NO shortages NO silly prices at:-

T. E. S. D. LTD.

UNIT 6, 68 BAYTON ROAD, EXHALL, COVENTRY CV7

- Trade Only -

RING GARY ON 0203368437

OFF THE PILE TO FULLY REFURBISHED AVAILABLE

EX-RENTAL TV \& VCR WAREHOUSE

* VCR TOPLOADERS/FRONT LOADERS
* TV's - FERGUSON, TX STEREO, NATIONAL PANASONIC GRUNDIG, DECCA, TOSHIBA, JVC, SAMSUNG and a lot more PHONE PAUL ON GRAB SOME ACTION NOW 0375640800 (2 lines) Strictly Trade Only

CLEARVISION

SOUTHSIDE TV

UNIT 8, APPLE IND. ESTATE, WHITTLE AVE.,
SEGENSWORTH WEST, FAREHAM, HANTS. OFF JUNCTION 9, M27
Telephone: LOCKSHEATH (0489) 577251. 24 Hours

> SIMPLY THE WHOLESALE SUPPLIER OF THE BEST WORKING EX-RENTAL
> TVs AND VIDEO RECORDERS.

Opening times: Mon-Fri 10am-5.30pm.
Sat Mornings 10am-1pm.

TV WHOLESALER'S

C. T. V.

2 NORTON ROAD, STOURBRIDGE, WEST MIDLANDS TELEPHONE: 0384-390706 / 0836-585829 (24 HR)

$$
\begin{aligned}
& \text { LARGE SELECTION THORN TV + VIDEOS } \\
& \text { QUANTITY OF NON THORN TV + VIDEOS } \\
& \text { QUANTITY OF PORTABLES AVAILABLE } \\
& \text { ALL AT COMPETTIVE PRIIES } \\
& \text { OPEN: MON-FRI - } 9.30-5.30
\end{aligned}
$$

ᄃ- $=$ - 0384-390706 0836-585829 (24HR) Fax: 0384-441360

CORIGROVE LTD T/A

Basford Wholesale

APPROVED THORN DISTRIBUTOR

$\star \quad \star \quad \star$

Humberside Premier ex-rental Wholesaler
Large stocks of Thorn/non-Thorn TVs/VCRs, working, non-working, untested.

TEST FACILITIES AVAILABLE
No order too large or small

Ring Jim on

 0482-215215 (2 lines) for a guaranteed square deal.Units 67
Brighton Street Industrial Estate, Hessle Road, Hull HU3 4UW.

Under the A63 (Clive Sullivan Way) exit ring road. Left at roundabout past Salvesons, left at next roundabout onto industrial estate.

VHF/UHFCTV
 from £30

VHF/UHF F/L VHS Videos from £150
All Serviced to a High Standard
FOR EXPORT CALL

T.V. TRADE SALES

E.D.I. House, Kylemore Park West DUBLIN 10
Telephone: 6264139/6263517

RELAY
 OMAGH LTO COMPUTER SOFTWARE

DO YOU RENT TELEVISIONS?
DO YOU STILL USE A CARD SYSTEM?
DO YOU FIND IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT AHY GIVEN TIME? If you do then we recommend our computer TV and Video Rental package. This package includes
\star automatic updating of each customer's record

* alphabetical print-out of each customer's arrears and payments missed
* total arrears immediately available
* easy to use and operate.

NEW HIRE PURCHASE PROGRAMME NOW AVAULABLE AS WEL.
These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration disCS availabie.

WILLIAM J THOMPSON
Beragh Co. Tyrone
Telephone Beragh 58214 (0662 7)

EXPAND YOUR TV RENTAL BUSINESS

with
LEASING: We will buy the sets (new or reconditioned) of your choice and lease them to you to put out on rent.
or
BLOCK
DISCOUNTING: We will buy your current rental agreements. You collect direct from your customers and repay us over 24 months.
For details and quotations please contact:

business credit
Golonnade House, High Street, Worthing, Sussex BNi1 1NZ
Tel: (0903) 821020
Fax: (0903) 821194
A Division of Broughfame Ltd

TELEVISIONS - VIDEOS-TELEVISIONS
 VIEW-tel
 CO DURHAM
 A NEW NAME IN

 TRADE SURPLUS TVs

 TRADE SURPLUS TVs}

Large selection mainly
THORN - GRANADA STOCK

Discount ten or over

ALL SIZES AVAILABLE
Thousands in stock. Good quality. Fresh stock every week.
Portables, Teletext, VHS Videos, STD 20", $22^{\prime \prime}, 26^{\prime \prime}$

Complete loads at discount prices

All stock collected from source by our transport and handled with care.

[^1]
DISCOUNT TRADE WAREHOUSE

Ex-rental Thorn and Granada T.V.'s. Sold as it arrives - untouched - direct from the depots.
$\star \star \star \star \star \star$

LARGE SELECTION OF VIDEOS

Buy them as you please!! -

No order too Large or Small

Ring Bill Parry Now on:- 0733320193 or call in at

UNIT 21, BENEDICT SQ., WERRINGTON, PETERBOROUGH.

Working - Untested - or Non-working

$$
\star \star \star \star \star \star
$$

B'Grade F.S.T.'s and other modern TV's Working - At Discount Prices

$$
\star \star \star \star \star \star
$$

THORN TX TEXT FROM £25

C.T.V. BOLTON Nile St, Unit 1 , Bolton, Lancs. 0204384868

ALL PLUS VAT
HEAD OFFICE C.T.V. BIRMINGHAM
369 Strattord R

Sparkhill B11
 BIRMHEHAM BOLTOH

FOR UK \& EXPORT

 Teletext from $\mathbf{£ 2 5}$ 100's of VCR's T/L from £ 45 and $£ 50$ F/L 0217721591 Fax: 0217666383
TVs - COLOUR - TVs

Fully working TVs, all with EXCELLENT CABINETS. Fully soak tested for immediate sale and all on working display.

Always a good mix of K-73 - K-30 Mark 3 and 4 Grundig and many others. Basic to text. Changes daily.

Off the pile stock available from around $£ 5$ upwards. Direct loads available to suit you - Phone us.

MALL ORDER USED VGR SPARES

3-V29-30-35 etc. Panasonic 2000, 2010, 7000, 7200, 777, 370 and others. Akai, Hitachi, Sharp, Pye, Philips, Samsung changing daily. Phone for details and prices. S.A.E. by post.

GENERAL FACTORS - Open 10am-5pm Mon-Fri Union St., off Sepulchre Gate West. Doncaster South Yorks DN1 3AE Tel 0302-349583 Fax 0302-349510 $21 / 2$ miles from A1M for M18 - M1

UNIT 13A
GORTRUSH IND.
ESTATE
DERRY ROAD,
OMAGH, CO. TYRONE.

N.Ireland T.V. trade

TELE-VIDEO SERVICES (N.I)

Tel: 0232-617222 Fax: 0232621631
Unit 6, Kilwee Industrial Estate, Dunmurray, Belfast BT17 OHQ.
NEW AND USED SPARE PARTS FOR A WIDE RANGE OF TV AND VIDEO PANELS, MOTORS,

HEADS ETC AT VERY GOOD PRICES.
HANDSETS, FLAPS + DOORS, IC'S,
CLEANING FOAM, PAINT, VINYL COVERING AND MUCH MORE.

All at competitive prices

We also wholesale ex-rental TV and video to the trade.
Mon to Fri: 9.00am-5.30pm Saturday: 9.00am-5.00pm

QeV AN BEAT THE PRICE INCREASE BUY AT LAST WINTER PRICES OFF THE PILE

TV's	
C11/C8/BUSH	£15
KTC/K30/FERG 9/10	£20
TEXT FROM	$£ 35$
TESTED	
KT3/K30/FERG 9/10	£35
REMOTE'S FROM	£40
TEXT FROM	£69

V. LATE MODEL, AS NEW
TATUNG/DECCA/GEC/ITT MODEL No'S TV 1630/9499/8499/8702/9702 DT8497/ ATX 6325/ CTE000 STANDARD

COMPLETE WITH VIDEO STAND

VIDEO'S
TESTED EX RENTALS
TOP LOADER'S
£65
FRONT LOADER'S
FROM £85

AS NEW BOXED
TATUNG/GEC/FINLUX/SANTRA
VIDEO'S - £100
COMPLETE WITH NEW
REMOTES AND INSTRUCTIONS
ALL OUR PRICES ARE
PLUS VAT
PHOENW
WV
WNIT 3A SANDALL LANE,
KIRK SANDALL IND EST
Telephone CHERYL On
0302 890117

We are not moving to a new warehouse, due to a failure to complete contracts. We will be staying at Williams Street, Crewe.

We shall however still be offering the same high quality working and untouched Televisions and Videos. We also stock new and used Remote Control Hand Units, Slot Meters, Tapes and Shop Fittings. T.V. Stands, new and still boxed, only 75p each.

CREWE

Wholesale TV Ltd
Williams Street, Crewe
Tel: 0270582924 (3 Lines)
Fax: 0270505470

QUALITY USED T.V. \& VIDEO
COMPLETE RANGE OF T.V's AND VIDEOS MOST MAKES AND MODELS AVAILABLE

STOCK ARRIVING DAILY
T.V’s from $£ 3.00$

Videos from $£ 30.00$
Free Delivery Service to most areas of the U.K.

UNIT 80, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worc's North 79643

TELEUTSIONCLA55IFIED

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cms). Classified advertisements 70 p per word (minimum £12), box number $£ 4.00$ extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS.
© 8 PHONE 071-261 5942
FAX 071-261 5546

LINEAGE

WANTED VALVES EL37. KT66. KT77, KT88, PX4, PX25. Complete collections. Shop clearance considered. Also transistors and I.Cs. Send written list. We reply within 24 hours. Billington Valves, Oakdene Industrial Estate. Boiney Road. Cowfold. New Horsham, Sussex RHH13 8AZ. Phone 14113 $\$ 65105$, Fax 14433 865106. Telex 87271.

EXPERIENCEI) TV VIDEO BENCH ENGINEER required to work on most makes. full or part time also suitable retired personnel. Excellent pay. London East area. Tel. Aervision 081-539 5513.

AUDIO/VIDEO/MULTI-PURPOSE self adhesive labels, $10-10.0100$ blank or computer printet from Ip5p. SAE for details/samples S.B.K. (T), 7 Atherton House. Harewerd Road. S. Croydon CR2 7AL.

TONER ELECTRONICS 4 Victoria Strect. Keady, Co. Armagh. N Ireland. Working VCR's from E50.(0). Tel. (0)661) 538604. Trade only.

EX-EQUIPMENT TV PANELS and Spares available tor Ferguson, P'ye, Philips, GEC. Deccal. ITT etc. SCR $1243 \times 2 \times 3010$.

EUROPEAN SCRAMBLING BOOK and Haker Circuits $£ 29.001$. 1991 Satellite Annual $£ 34$. (K) UK post included. Europe $+£ 3.00$. Access $/ V i$ isa/COD Vincent Technical Books, 24 River Gardens. Purley. Reading. 1734414468 (Fax \& Answerphone).

COMPAN NAME FOR SALE. Offers invited for company name, Highland TV Ltd. Ring 04995291 ather 6.31 pm .

EX DEMO TESTGEAR. C.R.T. 1ester reactivators type CED 7A. Almost new $£ 140$ each. New range triple meter type $£ 250$. SEMAHT UHF signal strength meters. rechargealle f120. SEMAHT satellite signal strength meters (top range) rechargeable £220. Capener Electronics, Tel. Ayleshury (1296) $2818+$

TELEVISION MAGAZINES going back to 1983. Single magazines or complete libraries purchased. Call Lucien on (0323) 411655 anytime.

METERS. Reconditionel $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

OCIIRE MILL TECHNICAL SERVICES. Are now on (K666) (Malmbesbury) 823228 . Grundig TV spares. all models to 1943. Fast, friendly, helpful, sensible prices. Gt Lype Farme, Chartion. Ni Malmeshury. Wilts SNIG 91)R.

VALVE WHOLESALE AND EXPORT. Audio, Industrial, Receiving. Television. Transmitting. One million valves in stock. Billington Valves, Oakdene Industrial Estate, Cowfold, Near Horshamr. Sussex RH13 8AZ. UK phone 0403865105 , Fax 04113 865106. Telex 87271. Special retail offer PL519 $£ 4.95+$ VAT post paid. NB. Our minimum order is always $£ 20$ + VAT.
SEMICONI)UCTORS, VALVES, COMPONENTS, hardware Unbeatable prices. For new 1990 catalogue and free hagful of components, send $£ 1$ plus large S.A.E. Kenzen (TV). Unit 9, 16/20 Gcorge Street, Birmingham R129RG.
EX-RENTAL TV \& VIDEOS wanted in any quantity. Top prices paid. Tel. Cheryl, 030289017.

SPARES \& COMPONENTS

USED VIDEO SPARES VHS - BETA - 2000
 PANELS, MOTORS, CABINETS, TUNERS, LOADING MECHANISMS, ETC. SAVE EEES
 PHONE US WE MAY HAVE IT. Mail Order and S.A.E. for Enquiries GENERAL FACTORS
 Union Street, Doncaster, Yorks DN1 3AE
 Tel. 0302349583 Fax 0302349510

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

 a cheque made payable to Television 'crossed "Lloyds Bank". Television Classified Room 2331, Kings Reach Tower, Stamford Street, London SE1 9LS. The charge per word is 70p plus 15\% VAT (minimum £12.00).

SPARES \&

 COMPONENTSWIZARD DISTRIBUTORS MANCHESTER
TV \& VIDEO SPARES
We stock spares for PHILIPS, PYE,
RANK, GEC, SHARP, SONY, HITACHI,
HINARI \& DECCA
And also THORN \& ITT
FIDELITY SPARES MAIN DISTRIBUTOR. Main Distributor for Schneider non account customers

Always in stock-
Video Heads for over 500 models
Crice Manuals tor over 200 models
Handsets for over 200 models Handsets for over 200 models
Spares for over 20 manulacturers
Plus thuge range of K 's. Sermiconductors and Service Ands. etc. etc. Technical Assistance and Friendly Service always available
WIZARD OFFER A GREAT DEAL
Counter open Monday-Friday 9 Sam-4.45pm
Mail Order-AccessVisa
EMPRESS STREST WORKS, EMPRESS STREET, MANCHESTER M16 GÉN.
Tel: 061-872 5438; $061-848$ 0060.

TEST EQUIPMENT

DIGIMETER 732
Automatic Multimeter \& 125 MHz Frequency Counter
4 DIGIT AUTORANGE MULTIMETER

- TOUCH AND HOLD FACILITY BUILTTIN, SIMPIY SELECT (DCV) - RELATIVE MEASURING (DCV)

PEAK MINMAX RECORDING
INDESTRUCTIBLE AGAINST ANY VOLTAGE IN COLOUR TELEVIIIONS UP TO 50 DOO VOLT!!!
7 DIGIT 125MHz FREQUENCY COUNTER WITH 2 GATE TIMES
SENSTITIT PE-MMPLIAER 5HZ
125 MHz

"50 000 Volt leave me cold' BRIGHT 7 olgit vacuum fluorescent oisplay (Green) HEIGHT 13 mm DIMENSIONS W274, D 172 , H64 WEGGHT 2.7 KG ACCESSORIES HT PROBE 30kV
made in Germany
2 years guarantee sole agency for the Republic of Ireland, N.-Ireland \& U.K.

DÖNBERG-ELECTRONCS LTD.
OÖNBERG-ELECTRONICS SCHOOLMASTERS HOUSE RANAFAST CO. OONEGAL EEIRE TELL. $075-48275$ - FAX 075 -48775

television MAGAZNE
 ADVERTISER'S ANNOUNCEMENT

Advertisement copy for the December and January issues should reach this office by -
23/10/90 - December
20/11/90 - January
For further details telephone
Q71-261 5942
RCS VARIABIE VOLTAGE D.C. BENCH POWER SUPPLY
 and curfent readings. Sverioad protection

NEW MODEL Up to 38 volts DC at 6 amp .10 amps
peak. Fully variable. Twin panel meters.
Size $14^{1} / 2^{\prime \prime} \times 11^{\prime \prime} \times 4^{1 / 2^{\prime \prime}}$. $£ 96$ inc VAT. Car $£ 6$
RADIO COMPONENT SPECIALISTS
ACCESS 337 WHITEHORSE ROAD, CROYDON ACCESS SURREY, U.K. Tel: 0816841665 VISA List Large S.A.E. Delivery 7 days Callers Welcome Closed Wednesday

TEST EQUIPMENT

ש MÜTER BMR 95

Regenerating Computer with unique Müter-CRPU@; brings the brightness back to diffuse and dark CRT's; unrivalled worldwide; removes all shorts G2-G1-C-F; measures with 700 volts;
 FLASH-EX®; cathode protection; 140 adaptors available; 12 heating voltages; pays itself within 4 weeks; $£ 466.00+$ VAT incl. 7 sockets

ク Müter-AT 2, Audio-Test-Equipment for all audio sets from microphones to cassette recorders: for adjusting azimuth and speed measuring of distortion. 2 meters for outpui up to 100 watts with dummies, 2 meters for millivolts; AF-Osc. $10 \mathrm{~Hz}-20 \mathrm{KHz}$; frequency counter: 2 loudspeaker: display; FM-radio; signal tracer/injector: 13 V supply: 27 sockets of all standards: tests boosters, earphones. phono sets, tape machines cd players. receivers. tuners, amplifiers; £ 447.00 - VAT	श Müter-RTT 2 , Satety Isolated Variable Transformer Input: $220-230 \mathrm{~V}$ AC. Output: $0-270 \mathrm{~V}$ AC. 4 amp .1100 watts: soft start: £281.00 + VAT
	2 Müter-CBE, Screen-Degausser, extreme powerful field for screens up to 110 cm diam. $12 \mathrm{KA} / \mathrm{m}, 2.7 \mathrm{amp} .220$ volts: $£ 45.90$ - VAT
	Please, ask for calalogue United Kingdom: P \& E Services Llandudno. Tel. (0492) 49246, Fax 478
	A. G.S.-Electronics Plymouth, Tel. (0752) 767738, Fax 768693
	New Zeeland: TDON Ltd. Onehunga. Auckland. Tel. 668-907, Fax 668-499
	Ireland: Dönberg Electronics Ranafast. Co Donegal. Tel./Fax (075) 48275
\% Müter-ION 2, Air-Ionizer-Cleaner $£ \mathbf{4 9 . 0 0}+$ VAT	Germany (FRG): Ulich Müter 4353 Oer-Erkenschwick. Fax 10236

SERVICE DATA

SERVICE MANUALS

VCR - CTV - MTV - CAMERA etc UK, European, Japanese \& Korean Makes VCR - Full manuals
Orion/Otake ($=$ Saisho/Matsul/Hinari etc), Daewoo (= Alba/Sentra etc), Funai, Akai, Samsung, General, Sharp -
Hitachi, Toshiba. Casio from Hitachi, Toshiba, C
CTV - Full manuals
CTV - Full manuals
OrionOtake, NEC
Orion/Otake, NEC, Korting, Metz, Goldstar, Contec, Thomson, Bush

- some less! Many other makes availabte well known or obscure - some unobtainable elsewhere. For cataIogue send $£ 2.50$ no SAE required, or telephone for exact quotation.
DATA-GO 112 AMEYSFORD RD., FERNDOWN, DORSET BH22 9QE. Tel: 0202894207 10 am - 5 pm Mon-Fri (fax after hours)

ESERVICE MANUALS =ix

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems,

Computers, Kitchen Appliances etc.
Equipment from the 1930's to the present and beyond. Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders. MAURITRON TECHNICAL SERVICES (TV),
8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.
Tel:- (0844) 51694. Fax:- (0844) 52554

If you keep back issues of Television then read on. The Fast Fix fault card filing systems list the symptoms of either television faults or Videorecorder, camcorder and camera faults found in Television Magazine under IV Fault Fiding, VCR Clinic and Service Bureau from 1981-1989 inclusive. Each card file contains thousands of taults which are coliated and indexed under manufacturers name and then chassis or model. An example is a Philips k 30 with a blank raster, look on p744/Aug '88. The Fast Fix card tiles will provide you with a speedy means of locating faults published in this magazine saving you time and money. Ready boxed, quick to use and easily updatable. Fast Fix could pay tor itself with just one successtul repair. Fast Fix Television £35.00 inclusive.

Fast Fix Video $£ 30.00$ inclusive.
Send cheque/P.O. payable to: A. G. Humphreys,

13 Manstield Avenue St John's Park, Hawarden, Deeside, Clwyd. For further details telephone 0244532961

TUBE SERVICES

NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:
$£ 7.50$ for Television Faults $£ 7.50$ for Video Faults or $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:
E.C.S.

31 Prenton Road West, Prenton, Birkenhead, Merseyside L42 9PY.
Please add $£ 1.50$ per order for $P \& P$
SERVICE DATA

SPECIAL OFFERS

 from
INFOTECH (T)

76 CHURCH STREET LARKHALL, LANARKSHIRE ML9 1HE
ACCESS or VISA by return post or
Phone (0698) 884585/883334 NOW HURRY WHILE OFFER LASTS
T.V. - AUDIO - RADIO

REPAIR \& SERVICING VOL. 1 a \& VOL. 1 b
VOL. 1a: Over 160 large pages giving all servicing, alignment, stock faults, faultinding etc. for CTV (including Philips System 4, Decca \& ITT for 1980-89, plus a host of others); Over 50 popular audio sets from radios to full hi-fi systems from 1987-89; plus over 20 C0 players and systems up to 1989.
VOL. 10: Giant diagrams, each page over 2 feet by nearty 1.5 feet - includes the full size circuits for all the equipment in 'VDL. 1a' plus waveforms, layouts and other data. Not the tiny near-useless sizes supplied by all the other publishers.
VOL. 1a: £16.95; VOL. 1b: $£ 29.50 ; \quad$ BOTH: $£ 45.00$

$$
\begin{aligned}
& \text { MICROWAVE } \\
& \text { SERVICING } \\
& \text { MANUAL } \\
& \text { by jon Coombes fSTREE } \\
& \text { Normal PrIce is } £ 14.95 \\
& \text { Now Only £6.95 } \\
& \text { "LIMITED PERIOD" }
\end{aligned}
$$

HI FI SERVICING MANUAL by John Coombos FSTREE PRE-PUBLISHING OFFER Only $£ 7.50$

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any
kind of German, European and Japanese service kind of German, European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries: DÖNBERG ELECTRONICS Schoolmasters House, Rannafast, Phone: 07548275

D.I.Y. SCRATCHREMOVAL + TUBE POLISHNG NIT	
First class results can be obtained every time with this kt. The kit, which comes with full instructions is especially usefut on ex-rental work for those sets with excellent cabinets and good but scratched tubes which may be	
had at very much reduced prices. The kit could pay for itself with your first job! SPECIAL PRICE $£ 35.00+£ 2.50$ P\&P Electric drill required	
Pe TVSERVICES	
8 ORCHARD CLOSE Tel. 0920871474 Stanstead Abbolls, Herts SG12 8 AH	* MAIL OROEA * * CALLEAS STRICTI 日Y APPOINTMENT

Canvey Coloun Tubs

Registered Office: 'Fairlands', Beckney Avenue, Hockley, Essex SS5 5NR. Telephone: Southend on Sea (0702) 201108

ESTABLISHED 10 YEARS

C.R.T.'s REPROCESSED TO ORIGINAL MANUFACTURER'S SPECIFICATION.

PHILIPS, SONY, HITACHI, etc.
POLISHING SERVICE AVAILABLE

SATELITE

SATELLITE TV

 RECEPTION EQUIPMENTLNB's, Receiv
accessories. accessories.
IRTE $60 \mathrm{~cm} \mathrm{c/w} \mathrm{feed/polanser}$ Telecom LNB $1.2 d B$ max Puise lype polanisert C band LNB $3.7-4.2 \mathrm{GHz}$ Prices excl. VAT - Send SAE for leatiets.
KESH ELECTRICS LTD.
Main St.. Kesh. Co. Fermanagh. N.I.
Tel: 0365631449 TIx: 747412

WORLD SATELLITE TV \& SCRAMBLING METHODS

F. Baylin, R. Maddox and J. McCormac.

BUILD YOUR OWN FILMNET DECODER!
This thorough text is a must-buy for technicians, satelitite yourselfers. The 340 page book yourseliers. The 340 page book
provides an in-depth study of provides an in-depth study of scrambling methods and broad formats, including Fimnet, D2-
MAC, Teleclub, VideoCypher II Orion, Sky Channel, BSB and EuroCypher. Circuit and block diagrams of all components ar presented and clearly explained throughout the handbook Only 529 (We pay the postage)
Pay by Cheque
VIDEO SCRAMBLING \& DESCRAMBLING. By R. Graf, W Sheets Advanced theory and circuits
KU BAND SATEШTE TV. 3rd Edition. By Baylin \& Gale Completely revised. The 400 page manual covers theory,
 HOME SATEUTE TV INSTALLATION VIDEOTAPE, VHS PAL format. 40 mins . Includes how to install large, motorised dishes
 HIDDEN SIGNALS ON SATEUTE TV. By T Harrington, B Cooper Teletext, telephone channels, teletype, audio sub-carriers
 SATEUTE, OFF-AIR \& SMATV. By S. Berkoff. Private Cable,

WORLD SATELITE ALMANAC. 2nd Edition. By M Long. 650
1990 WORLD SATELITE ANNUAL By M Long. The official Supplement of the World Satelite Almanac. Contains detailed

SATELITE TELEVISION INSTAILATION GUIDE 2n an.....ES」 Breeds. Full of essentia Allanon Gulde. 2nd edition. B Number SATEUTE AND CABLE SCRAMBLING AND dESCRAMBUNG By B. Gale. 2nd Edition. 280 pages. Basic theory. Explores the

ACCESS

0

 MASTERCARD VISA pages. All footprints and detail descriptions of most satellites. new technology, in clear language Send SAE for Satellite Booklist

SWIFT TELEVISION PUBLICATIONS
17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN. Tel: 0793750620

A wide-ranging management role within the 'brown goods' servicing industry...

EXCELLENT SALARY + SALOON CAR - HEMEL HEMPSTEAD - EXETER ■ CARDIFF

Mastercare is the specialist electronic servicing company of the Dixons Group, with some 1,500 employees in 23 locations across the country. We have a long-established reputation for delivering quality service to our customers nationwide.
We now have several career opportunities for Field Service Managers at our Hemel Hempstead, Exeter and Cardiff Service Centres. Providing the link between field and central operations, you will enjoy the challenge of an autonomous role with genuine scope for innovation. With key responsibility for a team of Field Service Engineers (between 15-30 people), your primary objective will be to ensure that optimum performance and operational standards
are achieved by your team. You will be involved in everything from liaison with customers, retail outlets and internal departments to engineer accompaniments and identification of training needs both technical and customer care related. As well as an engineering background, including some hands-on servicing experience of 'brown goods', you will need to be commercially aware and an outstanding communicator with proven man-management skills. Experience in a similar role would be an advantage but is not essential, as we will provide comprehensive training. A competitive salary and benefits package will be backed by a quality company car and extensive opportunities for career progression in a successful and dynamic organisation. Please write with brief career details to: Jill Wareham, Regional Personnel and Training Manager, Mastercare Limited, Maylands Court, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7DE. Alternatively, telephone the Personnel Department on (0442) 232000 for an application form.

MASTERCARE

A Member of the Dixons Group of Companies

TV WHOLESALER'S

ADMMN TELEVISION			
KT3 BASIC	£20	PORTABLES	From $£ 40$
GEC 26 CHASSIS	£20	PYE G11	£14
ITT TRIMLINE IN 10'S	£15	TX9s/10s	$\Sigma 20$
K30 BASIC	£15	PHILIPS G11 BASIC	£12
MK 4 DORICS BASIC	£15	JAPS	From £10
ALL TEXT From	£35		
VIDEOS FROM E25.00 NC			
ALL PRICES PLUS V.A.t. @ 15\%			
PHONE 051-548 4414			
UNIT J, ADMIN BUILDINGS, KIRKBY, LIVERPOOL L33 7JX			

TOP CLASS PANASONIC
WORKING TV \& VIDEO
+
GOOD CHEAP STOCK
''OFF THE VAN'"
Good Selection of Makes
Tom Poole or Brian Ricketts
061-273 2854/274 3409
REPO
DAISY WORKS,
345 STOCKPORT ROAD,
LONGSIGHT, MANCHESTER
(A6 Between Stockport \& Manchester)

 $\stackrel{9}{\infty}$ 			 	
気 会 				

[^0]: Published on the third Wednesday of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the Riverside Press Ltd., St Ives plc. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd; South Africa - Central News Agency Lid. Subscriptions: Inland £20, overseas (surface mail) £24 per annum, payable to Quadrant Subscription Services Ltd.; Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold .subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and thatit shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: 置 View-tel TELEVISIONS (0388)

 SWAN STREET, EVENWOOD,
 832832 Nr. BISHOP AUCKLAND, CO. DURHAM.

