 SERVICING•PROJECTS-VIDEO-DEVELOPMENTS

FREE CASSETTE LABELS

NICAM Stereo Sound
The CD-TV System • DX-TV Using a Vectorscope • Test Reports•TV Fault Finding

A COMPLETELY NEW DIMENSION IN SOUND QUALITY!

DECODER

* Fully tested and aligned * Ready to install into almost any modern colour TV set
The Maplin NICAM 728 Decoder converts the additional digital code present ${ }^{\dagger}$ in the TV signal to a high quality stereo soundtrack with a quality similar to that of Compact Disc.

This fully working system is based upon the Toshiba NICAM chip set, and comes ready assembled.
${ }^{\dagger}$ Curren:ly being transmitted from Crystal Palace, Emiey Moor, "Wenvoz, "Winter Hill, "Mendip and "'Black Hill.

Upgrades almost any modern colour TV set no need to purchase a new TV set or VCR!

- From Aprit, "From May,
"*From June according to IBA schedule.

Features

\star Single +12 V power requirement
\star Automatic audio switching (Mono-Stereo-Bilingual) \star British Design

\star Reverts to FM audio if NICAM is not present

* High Quality Optimum Performance without any additional IC's
\star NICAM mode indicators

British Digtital Stere Sunn Ior Television IS
 The World's most advanced high quality stereo system for landbased television!

TELEVISION ENGINEERS

Initial availability limited - book your orders now!

CREDIT CARD HOTLINE

ALL PRICES INCLUDE VAT.
All items subject to availability, all items will be on sale in our shops in Birmingham, Bristol, Leeds, Hammersmith, Edgware, Manchester, Nottingham, Newcastle-upon-Tyne, Reading, Southampton and Southend-on-Sea.

Vol. 40, No. 11
 Issue 479

On sale August 15th

COPYRIGHT

(C) IPC Magazines Limited, 1990. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

INDEXES AND BINDERS

Indexes to Vols. 36 and 37 are available at 80p each from the Editorial Office (address above).

Binders that hold twelve issues of Television are available for $£ 4.50$ from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques out to "Television Binders"

SUBSCRIPTIONS

An annual subscription costs f 20 in the UK, £24 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Subject to availability, copies of issues published during the last 12 months are available at $\mathbf{£ 1} .80$ each from Television, John Denton Services, Unit 13, Thornham Grove, Stratford, London E15 1DN. Please make cheques/postal orders payable to IPC Magazines Ltd.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.

this month

833 Leader
834 CD Player Casebook
Reports from Mike Leach, Joe Cieszynski and Nick Beer

836 Long-distance Television
Roger Bunney
DX conditions and reception, satellite TV update and news from abroad.
840 TV Fault Finding
Reports from Philip Blundell, AMIEIE, J.S. Ruwala, Joe
Cieszynski, Nick Beer, Mick Dutton, Ray Crockit, Hugh
MacMullen and Stephen Leatherbarrow.
842 Teletopics
News, comment and developments.
844 Grundig CTV Service Notebook
David Botto
Fault reports on various older Grundig colour sets
845 Test Report: The Cirkit TM175 DMM
Nick Beer
846 NICAM Digital Stereo Sound, Part 1 Eugene Trundle
The Nicam sound service is now being extended across the country, providing stereo, dual-language or sound-plus-data options. It's a remarkable system using a separate subcarrier in the TV channel. This initial instalment deals with the basic sound signal processing undertaken at the studio and in the receiver and the method of transmission.
852 VCR Clinic
Reports from Philip Blundell, AMIEIE, B. Ross, Chris Avis, Stephen Leatherbarrow, S. Da Costa and lan Bowden.
854 The Commodore CD-TV System
Commodore's interactive video system comprises an Amiga computer and a CD deck. George Cole tried it out recently. An account of its features and performance.
855 An RGB Interface for BSB Reception
Brian Webb
To get the full benefit of the MAC transmissions RGB connection to the TV set is essential. Most sets don't have provision for RGB signal input, but many use the
TDA3560 series colour decoder chip that accepts RGB inputs. This particular interface was designed for the Philips K30 chassis, edition II, but should provide guidelines for others.
856 Vectorscope use
Steve Beeching, T.Eng.
Use of a vectorscope for camera and camcorder servicing
857 Next Month in Television
858 The ITT Nokia BSB DMAC Receiver
Nick Beer
Features, operation and performance of the ITT Nokia SAT3300/Salora SVR5903.
859 Test Case 333
862 BBC Tuning Signals 1934-1963 Keith Hamer and Garry Smith
The very first BBC TV tuning signals were used with the experimental Baird 30 -line system transmissions in the early Thirties. Their features were later incorporated into the 405 -line test cards. This intriguing historical account describes the tuning signal characteristics and their use from the earliest days to the first 405 -line BBC colour card.
865 Letters
OUR NEXT ISSUE DATED OCTOBER WILL BE PUBLISHED ON SEPTEMBER 19

隹

 190
$215 p$
200 そ そu
 \qquad
\qquad LA． $1130 \quad 24$ 240p $\begin{array}{lll}M-51514 & 1600 \\ M-51515 B L & \text { 220p } & S\end{array}$

VIDEO HEADS - Cont

MITSUBISH

HS
HS306
HSHS 310
HS 303
HS 301
NATIONAL PA
NV3000/NV300/NV7200~NV333/NV7500/NV7800, NV2010/NV722NV332/NV340/NV390/NV2000 NV8600 NV8610NV8520 COSO

NATIONAL

NVV73NV33
NV730NV770
NV366
NV180
Nv370/Nv380
NV788
NV810
NV810
NV850
NVG30
NVG33/NVG45/NVG46
NVG400
NVG10/NVG11/NVG12/NVG14
NVG16/NVG120EM
NVG18
NVG20/NVG21/NVG22INVG25/NVG28
NVG50
NVG500
NVH70
NVG7/NVG9
CAM CORDER VEH 0366
N.E.C.

N9011/N9012 2 N9013E/N9014E/N9014G/N9015J
N9016 N9014
N911AN915AN916A917

ORION

VH3NH555NH600NH700NH844/
VH900NH1000

PHILIPS

VR6460NR6520NR692066aVR60 6920
SAISHO
VR100NR605NR705NRBOSNR905
VR10000NR 12000 NR 1600
VR3300XVR3600XVR3650NR3800
VR3200

SAMSUNG

SUX301NB900NB910NVT510NT320NT5600
$\times 510 \mathrm{~N} \times 511 \mathrm{~N} \times 520 \mathrm{~N} \times 616 \mathrm{~N} \times 626$
$6900 / 370097$
£22.00
$\mathbf{£ 2 7 . 0 0}$
SANYO
VTC5000NTC5400NTC600NTC6500NTCM10/ VTCM 11NTCM2ONTCM21NTCM25 E23.50 TCS510NTCL5 550NTC5300
TCNX30NTC5500
VTC9100NTC9300N
TC9350NTC9355
VTC5500
VHR111ONHR1150NHR1300
HHR1700NHR2300
VHR 3200 NHR3270NHR3100NHR3150, VHR3400 (FVH-P 15)
VHR1200
SHARP
CC300NC381NC383NC386VC387NC388NC482
C483NC486VC3300/VC8381NC9100NC9300 VC9500NC9700
VC582NC583VC651NC681NC750 vC7800 C781
VC600NCG300NC7300NC7700
VC7750NC8300
SONY
DSR-35R IFOR C20/C30/C40/SLF1UB/SLF 1
f16.25
SL3000) 1 PIN
$\mathbf{~} 14.00$

TOSHIBA

V21N31N33N50N51~N3NV9600
V55N57
V71N73N74V75N81N82N83N84
V85NV86N87
V93
V5470N5480
TRIUMPH
VR9501~RR951 1NR9592

VIDEO MOTORS

AMSTRAD	
VCR-7000 REEL MOTOR	1700p
FERGUSON \& JVC	
CAPSTAN MOTOR PU-45979	2100p
CAPSTAN MOTOR	1950p
PU-55371V	
DRUM MOTOR	1950p
PU-46414	
PU-51381V	2650p
NATIONAL	
REEL MOTOR	1350p
MYN.135V5L FOR NV333, NV366	
SANYO	
REEL MOTOR	630p
4-529V-10800	
SHARP	
REEL MOTOR RMTOV 1008 GEZZ	1350p
SONY	
CAPSTAN MOTOR	700p
A-6751131A FOR SLC6	
CAPSTAN MOTOR	2500p
BHF 1100D FOR SLC7	
VIDEO LAMPS	
VIDEO LAMPS UNIVERSAL	30p
12 V 60 mA (300 mm WIRES)	
PANASONIC VIDEO LAMPS	60p

IDLERS \& PULEYS REPLACEMENTS

HITACHI

FF REW IDLER
6886971
CSBGYIDLER
V-6861482
JVC
TDLER ASSEMBL
PU-47752
TAKE UP IDLER
TAKE UP IDLER
PU-51402A
TAKE CLUTCH
IDLER ARM
PU-55373-3-8
$\begin{array}{ll}\text { FAST FORWARD IDLER } & \text { 285p } \\ \text { PU-45896C } & \text { 210p }\end{array}$
NATIONAL
SANYO
REEL PULLEY
143-0-662I-01201
SHARP
IDLER
NIDLOOO5 GEEZ
NIDLOOO6 GEEZ
SONY
REW. PULLEY
A-6706-348-B
REW. PULLEY
A-6706-391-AB
SERVISOL
PRODUCTS
V. HEAD CLEANER
SWITCH CLEANER

SILICONE GREASE
FREEZE IT
FOAM CLEANER
ANTI-STATIC
AEROKLEANE
AERO DUSTER
PLASTIC SEAL
GLASS CLEANER

Hf you purchase more
than one Servisol
product postage will
be $£ 2.00$

PARTS PROBLEM?

For
Sharp
Sansui

Phone David Allen 0734-876444

Phone Stan Perkins
0734-876444

Philips/Pye
Whirlpool

Phone Frank Pratt
0734-876444

Ferguson GEC
Fidelity

Phone Philip Pratt
0734-876444

Amstrad, Akai, Fisher, Mitsubishi, Moulinex, Goldstar, JVC, Nat Panasonic, Pioneer, Matsui, Saisho, Samsung, Salora, Sanyo, Sony, Toshiba, Yamaha and many others.

Phone Mike Curtis 0602-870789

You will not be disappointed, they know what they are talking about who says YES

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top seling DUAL TRACE OSCILLOSCOPES. Select from four superb models. Ah, with the excefli'on of the HM 1005, incorporates a usetul COMPONENT TESTER. Size -all models $-285 \mathrm{~mm} x$ $145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear display $8 \times 10 \mathrm{~cm}$. Mains suply: 110125:220/240V AC 50.60 Hz . All supplied with 2 PROBES, a COMPREHENSIVE MANUAL and a 2 YEAR WARRANTY HM203-7 20MHz STANDARD

SPECIFLCATIO
$\star 2$ Channels

* Bandwidth: DC-20MHz
- Sens: Ch1., Ch2, $2 \mathrm{mV} / \mathrm{cm}$
- Timebase: $0.2 \mathrm{~s}-20 \mathrm{nsicm}$
*Triggering: DC-40 MHz
* Active TV-Sync-Separator
- Variable hold-oft
- Trigger LED indicator - Component tester * Plus many leatures

FREE Securicor Delivery HM604 60MHz UNIVERSAL

SPECIFICATION

- Bandwidth: DC-60MMz * Sens:Ch1. Ch2. $1 \mathrm{mv} / \mathrm{c}$ - Triggering: DC-80 MHz * Active TV-Sync-Separator * Ather delay trigge - Sweep delay * Delay line - Triger LED indicato - Component tester

1

B \& K PRECISION CRT ANALYSER-RESTORER

The number one CRT Test Instrument. Over 5000 U.K. Television engineers wouldn't be without it.
"All CRT's checked identically including all in-line and one gun type. Tests all three guns of colour CRT's simulianeously under actual operating conditions (model 490) - Exclusive multiplex technique (model 490) shorts and leaks - preserving more CRT's. Tests focus electrodes lead continuity finding faults that other Testers miss *Uses most powerful restoration method known with minimum danger to CRI *Reiuvenated CRT's guaranteed as new for two years * Obsolescence proof. Perpetual set up chart up-dated and new adaptors development - Tests and rejuvenates VDU's and Oscilloscope tubes * A range of over 40 CRT base adaptors available * Increase profit * Pays for itselt in months.
PRICES

Model 480 Single meter instrument Inc. 6 common adaptors
£ $393.00+£ 58.95$ V.A. T Without adaptors $5281.00+542.15$ VA.

SADELTA FIELD STRENGTH METER TC-402C

 THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels delivered oy the antenna to a TV or FM receiver, in order to test the performance of the antenna and evaluate the best conditions during installation eic. To facilitate neasurements, the tuning frequency readout is shown on a digital display
FEATURES

* Covering FM and all TV bands (UHFNHF) including CATV freq
Digital tuning display (3 digits) for direct frequency readout.

Price $5610.00+$ £91.50 V.A.T. FREE Securicor Delivery
 potentiometer

* Built-in loudspeaker enables monitoring of sound in AM/FM.
* Meter measurement in voltage and dB from $20 \mu \vee(26 \mathrm{~dB} / \mu \mathrm{V})$
* Continuity tester $0-500$ ohms
* Fully portable (battery).
* Sturdy carry case.

Price $£ 259.00+£ 38.85$ V.A.T.
SÄDELTA COLOUR PATTERN GENERATORS THE SADELTA RANGE OF MANO HELD COLOUR PATTERN GENERATORS S Ior use mproduction, instalation and senice of ooth coluur and monochrome \mathbf{V} sets's. video
 size instinuments Internal fe-chargeable Ni-Cd's. Suoplied with 9 V power suoply charger size nintruments internal 9 -Ch.
Size $131 \mathrm{~mm} \times 81 \mathrm{~mm} \times 23 \mathrm{~mm}$

T.V. PATTERN GENERATOR PAL MC11B UK * Bandiv(21-34) * O/Put 10 mV into 750 hms * Band ll((5-12) * Sound output * Pal

PAL VIDEO COMPOSITE GENERATOR * PAL B.G.I * OPPut 1Vpo. (in 750hms * Switching 12V (it 4K7ohms Price $£ 124.95+£ 18.74$ V.A.T.
R.G.B. PATTERN GENERATOR

O/Put sigs. Pos.RGB * O/Put TTL5VP-P
Neg. Composite *BlankPulse etc. CCIF
Price £111.95 + £16.79VA.T.

DIGITAL THERMOMETER

5	* Pocket Size
[उप	- $1^{\circ} \mathrm{C}$ Resolution
\cdots	* $0.5^{\prime \prime}$ LCD

- Supplied with

200MHz DIG. FREQ. METER

* Pocket Size
-8Dig. LED
Display
* Freq. Range

20 Hz to 200 MHz

- Resolution 0.1 Hz
- Sensitivity 10 mV Price $\mathbf{£ 8 9 . 0 0}+\mathbb{1} 13.35$ V.A.T.

(7]	DIGITAL CAPACITANCE METER		PRICE
	\star High Accuracy * 0.1pf-2,000 $\mu \mathrm{f}$ \star LCD display	* 8 Ranges \star Accuracy $\pm 0.5 \%$ \star Full scale ± 1 digit	$\begin{aligned} & \mathbf{£ 3 8 . 0 0} \\ & +£ 5.70 \text { VAT } \\ & \text { Case Included } \end{aligned}$

DIGITAL LCR METER

* LCD Display
* 18 Ranges
* Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$ * Capacitance 1pf-200 μ ~ * Resistance 1 ohm-20Mohm * High acuracy

Price $£ 95.00+£ 14.25$ V.A.T.

Only $21 / 4^{"}$ thick - Fits in a brief case Sens. 10 mV

- Bandwath 10 MHz

Price £249.00 + £37.35 V.A.T.

+ £3.45V.A.T. damaging sensitive components. Together they can
each

New and rebuilt for most makes of T.V.
including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX, 45AX, F.S.T. Special offer: $14^{\prime \prime}$ Colour Tubes from $£ 39+$ V.A.T.

THRIFTY SPARES (WALES)
 c/o Centrevision, sloper road, leckwith, cardiff cfi bab INCREASE YOUR PROFITS WITH USED SPARES

MANY MAKES OF USED VIDEO AND TV PANELS - GUARANTEED WORKING HUNDREDS NOT LISTED - PHONE OUR HOTLINE

0222344218

VIDEO THORN, HITACH, TOSHIBA, IT, SHARP, AMSTRAO, PANASONIC ETC USED WORKING VIDEO SPARES

MIXED BOOSTER	£12.50	MECH COM	515.00
SERVO PANEL	¢15.00	DRUM ASS	$£ 12.50$
LOADING MOTOR ASS	$\underline{10.00}$	CAPSTAN MOTOR	£15.00
BOTTOM BOARD	$\underline{9} 0.00$	POWER PANEL.	¢15.00
MODULATOR	£15.00	TUNING BOARD	£17.50
	ABOVE P	ices vat inc.	
MANY	TV US	SPARES ALSO IN	
TV TUBES A1 TESTED			\$20.00
POSTAGE	HOURS j £2.00	$\begin{aligned} & \text { am-1pm - } 2 \mathrm{pm} \text { - } 5 \mathrm{pm} \\ & \text { ORDERS OVER £50 } \end{aligned}$	
DON'T DELAY PHON	344218	TODAY 24 HOUR	HONE

MAKE YOUR INTERESTS PAY!
 Train at home for one of these Career opportunities

Over the past 100 years more than 9 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in homestudy courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help You post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics \square	TV, Video \& Hi-Fi Servicing
Basic Electronic Engineering (City \& Guilds)	Refrigeration \& Air Conditioning
Electrical Engineering	Car Mechanics
Elec. Contracting/ installation	Computer Programming
GCSE/GCE/SCE over 40 examination subjects to choose from	

Name:
Address:

P. Code

International Correspondence Schools, Dept. EGS90 312314 High Street, Sutton, Surrey SM1 1PR.
Tel: $081-6439568$ or 041-221 2926 (both 24 hours)

BUT REST ASSURED OUR SALES FORCE ARE WORKING FLAT OUT TO GET YOUR COPY TO YOU A.S.A.P.
HOWEVER IF YOU DONT HAVE A REP CALLING RING 021-789 7575 NOW!!

ONE POUND PACKS
All packs are $£ 1$ each. Note the figure on the extreme ieft is the Al packs are $£ 1$ each. Note the figure on the extreme eft is the
pack ref number and the next figure is the quantity of tems in the pack, finally a short description.

BD2 $\quad 5 \quad 13 \mathrm{~A}$ spurs provide a fused outlet to a ring main where devices such as a clock must not be switched off fixing clamps.
/2in speaker cabinet ideal for extensions, takes
$\begin{array}{lll}\text { BD13 } & \left.12 \begin{array}{l}\text { Our speaker. Ref BD137, } \\ 30 \text { watt reed switches, it's surprising what you can }\end{array}\right]\end{array}$ make with these - burglar alarms, secret swit ches, relay, etc. etc.
BD22 $\quad 225$ watt loudspeaker two unit crossovers
BD30 2 Nicad constant current chargers adapt to charge almost any nicad battery
Humidity switches, as the air becomes damper the membrane stretches and operates a microswitch
BD42 513 A rocker switch three tags so on/ott, or change over with centre oft.
BD45 124 hr time switch, ex-Electricity Board. automatically adjust tor lengthening and shortening day. priginal cost $£ 40$ each
BD49 $\quad 5$ Neon valves, with series resistor, these make Mood night lights.
BD56 Mini selector. one use is for an electric jigsaw puzle, we give circuit diagram for this. One pulse into motor, moves switch through one pole. be operated by any low pressure variation such as water level in water tanks
BD103A $\quad 16 \mathrm{~V} 750 \mathrm{~mA}$ power supply. nicely cased with mains input and 6V output leads.
BD120 2 Stripper boards, each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectufiers as well as dozens of condensers, etc.
BD128 10 very fine drills for pco boards etc. Normal cost about $80 p$ each
$0132-2$ Plastic boxes approx 3 in cube with square hole 10 Motors for model aeroplanes, spin to start so
BD139 6 Microphones inserts - magnetic 400 ohm also act
 coil sets with notes on making coo relays and other gadgets.
301496 Satety cover for 13A sockets - prevent those $60180 \quad 6$ Neon indicators in panel mounting holders with lens. 5 amp 3 pin flush mounting sockets make a low cost disco panel
Mains solenoid, very powerful, has 1 in pull or
BD201 8 Kould push if modified $\begin{aligned} & \text { Keyoard switches - made for computers but have }\end{aligned}$ many other applications
302111 Electric clock, mains operated, put this in a box and you need never be late
BD221 - 12 V alarms, make a noise about as loud as a car hom. Slightly solled but OK
Panosiat, controls output of boiling ring from simmer up boil.
BD259 50 Leads with push-on 1/4n tags - a must for hook-
8D263 2 Oblong push switches for bell or chimes, these can mains up to 5 amps so could be foot switch it fitted into pattress
BD268 $\quad 1$ Mini 1 watt amp for record player. Will also change Speed of record player motor
BD305 1 Tubutar dynamic mic with optional table rest
BD653 2 Miniature driver transformers. Ref. LT44. 20k to
BD548 23.5 V relays each with 2 pairs changeover
$\begin{array}{lll}\text { BD667 } & 2 \begin{array}{l}\text { contacts } \\ 4.7 \\ \text { mounting. }\end{array} \\ & \text { non-polarised block capacitors, } & \text { PCD }\end{array}$

There are over 1,000 items in our Catalogue. If you want a complete copy please request this when ordering.

12-220V INVERTER KIT. This kit will convert 12 V DC 10220 V AC, It will supply up to 130 Watts with a large transtormer. As suppled it will handle about 15 Watts. Heatsink required. Price is $£ 12.00$. Ref. 12P17

PERSONAL STEREOS. Again customer returns but complete and with stereo headphones a bargain at only $£ 3.00$ each. Our ref. 3 P83

MAINS OPERATEO MICROWAVE CONTROL PANEL with touch switches. This unit has a 4 digit display with a buit in clock \& 2 relay outputs - one for power \& 1 for pulsed power level. Could be used for al sorts of timer control applications Only $£ 6.00$. Our ref. 6P18

EQUIPMENT WALL MOUNT. It is a multi-adjustable metal bracket that could be used for mounting flood light, loud speaker, TV camera. even a far and on almost any sort of wall or ceiling even between wall and ceiling. Our price only $£ 3$. Our ref $3 P 72$. Or 2 for $£ 5$. Our ref 5 P152
STABILIZED POWER SUPPLY KIT 2-25V 2A. A kit for a bench or lab power supply containing PCB, transtormer, heatsink and all other compone
20 P 25.

GEIGER COUNTER KIT. Complete with tube, PCB and all components. 9 V operation. Only £39.00. Ref. 39P1

COPPER CLAO PANEL for making PCB. Size approx 12 in long $\times 81 / 2 \mathrm{in}$ wide. Double-sided on fibreglass middle which is quite thick (about $1 / 16$ in) so this would support quite heawy components and could even form
chassis to hold a mains transformer etc. Price $£ 1$ each. Our re $\mathrm{BO68} 3$

POWERFUL IONISER

 Generates approx. 10 times more IONS than the ETI and similar circuits. Will retresh your home, oftice, shop workroom etc.Makes you feel better and work harder - a complete mains operated kit, case included $\$ 18.00$. Our ref 18P2

REAL POWER AMPLIFIER tor your car, it has 150 watts output Frequency response 20 hz to 20 Khz and signal to noise ratio, beter than
$60 \mathrm{~d} / \mathrm{b}$. Has buith in shon circul protection and adjustabte input level to suil your existing car stereo, so needs no pre-amp. Works into speakers. Ret your existing car stereo, so needs no pre-amp. Works into speakers. Rel
30 P 7 described below. A real bargain at only $£ 58.00$. Order rel: $57 \mathrm{P1}$.
REAL POWER CAR SPEAKERS. Stereo pair output 100 w each. 4 Ohm impedence and consisting of $61 / 2^{\prime \prime}$ woofer, $2^{\prime \prime}$ mid range and 1 £30.00. Order ref 30 P 7 .
VIDEO TAPES. These are three hour tapes of superior qualiry, made under licence from the tamous JVC Company Oftered at oniy $£ 3$ each Our ret: 3P63. Or 5 fo
§20. Our ref: 20P20.

ELECTRONIC SPACESHIP
 Sound and impact controlled. responds to claps and shouts and reverses when instructions. Ideal present for budding young electrician. A youngster should
be able to assermble but you may have to thelp with the soldering of the compo nents on the pcb. Complete kit E10. Our
ref 10 P81.

> | 12' HIGH RESOLUTION MONITOR. Amber screen, beauti- |
| :--- |
| tuily cased tor free standing. needs only a 121.5 amp supply. |
| rechncal data is on its way but we understand these are TLi input. |
| Brand new in maker's cartons. Price: $£ 22.00$. Order ret: 22 P2. |

MICROWAVE TURNTABLE MOTOR. Complete with weight sensing electronics that would have varied the cooking time ideal for

MAINS FANS. Snail type con struction approx $5^{\prime \prime} \times 4^{\prime \prime}$
metal plate for easy fixing New, $\mathbb{\Sigma 5 . 0 0}$ each. Ret 5P 166. COMPUTER KEYBOARDS. Brand new uncased. Only $£ 3.00$ each. Ret: 3P89
PANEL METERS. 270 deg movement. New. £300 each. Ret: 3 P89 SURFACE MOUNT KIT. Makes a super high gain snooping ampifier on a PCB less than an inch square! 1700 Ret: 7P15
CB CONVERTERS
E4.00. Ret: 4P48
EHT TRANSFORMER. Television type line output transtormer, good for high voltage experiments. $£ 2.00$ each. Ret 2P277
COMPOSITE VIDEO KITS. These convert composite video into BUSH RADIO MIDI SPEAKERS. Slereo pair BASS reflex system using a full range 4in driver of 4ohms impedance. Mounted in very nicely made black fronted walnut finssh cabinets. Cabinet size approx $81 / 2 \pi$ wide 14 in high and $31 / 2$ in deep. Fitted with a good length of speaker flex and $31 / 2$ in FLOPPY DRIVES. We still have two models in stock: Single sided, 80 track. by Chinon. This is n the manufacturess metal case wit leads and ICD connectors Price $£ 40$, reference 40 P 1 . Also a double sided, 80 track. by NEC. This is uncased. Price $£ 60.00$, reference 60P2
VERY POWERFUL 12 VOLT MOTOR. $1 / 3$ rd Horsepower Made to drive the Sinclair C5 electnc car but adaptable to power a go-kart, a
mower, a sail car, model railway, etc. Brand new. Price $£ 20$ Our ret 20 P 22 .

SINCLAIR C5 WHEELS
INCLUDING INNER TUBES AND TYRES
13" AND $16^{\prime \prime}$ DIAMETER SPOKED POLY CARBONATE
WHEELS
ONLY E6 EACH. 13 Ref 6 6P10, 16" Ref 6P11.

$$
\begin{aligned}
& \text { PHILIPS LASER } \\
& \text { This is helium-neon and has a power rating of } 2 \mathrm{~mW} \text {. } \\
& \text { Completety safe so long as you do not look directly into the } \\
& \text { beam when eye damage could result. Brand new, full spec. } \\
& \text { £35. Mains operated power supply for this tube gives } 8 \mathrm{kv} \\
& \text { striking and } 1.25 \mathrm{kv} \text { at } 5 \mathrm{~mA} \text { running. Complete kit wwith case } \\
& \text { E15, ditto for } 12 \mathrm{v} \text { battery, } £ 25 \text { uncased. Ret } 25 \mathrm{p} 13 \text {. } \\
& \hline
\end{aligned}
$$

ORGAN MASTER. is a three octave musical keyboard. It is beautifully made, has full size (parano size) keys. has gold plated contacts and is
 compute
15 P 15

1990 BULL ELECTRICAL CATALOGUE packed with bargains. Easy to use. Please request with your next order or send bargains. Easy to use. Please request with your next order or send stamped A5 size envelope.

12 VOLT BRUSHLESS FAN. Japanese made. The popular square shape ($4^{1 / 2 i n} \times 4^{1 / 2 i n} \times 1^{3 / 4 i n)}$. The electronically run fans not only consume very ittie current our aiso they do not for cooling computers, etc., or for a caravan. c8 each. Our ret 8P26.
MINI MONO AMP. on p.c.b. size
Fitted volume control The ampilifier
has three transistors and we estimhas three riansistors and we
ate the oulput to be $2 W$ rms. More technical data will be in with the amp. Brand new, perfect condition, offered at the very,

TV SOUND DECODER. hannels. Will drive a smail speaker directly or could be ted into Hi FI

2KV 500 WATT MAINS TRANSFORMERS. Suitabie for high vollage e
10P93.
STC SWITCHED MODE POWER SUPPLY. 220 v or 110 v operation giving 5 v at $2 \mathrm{~A}+24$ at $25 \mathrm{~A}+12$ at .15 A and +90 v at 4 A .
BULL ELECTRICAL

Dept. T.V., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5QT.

MAIL ORDER TERMS: Cash, P.O or cheque with order. Pease add $£ 2.50$ Service

POPULAR ITEMS - MANY NEW THIS MONTH YUASHA LEAD ACID BATTERIES 6V 10A
 Superb value at only $£ 12.00$. Ref 12 P some $12 \mathrm{y} 19 \mathrm{HH} £ 7.00$ Ret 7 P 19 .

JOYSTICKS for BBC, Atan, Oragon, Cormmodore, etc. All $£ 5$ each. State which equired.
SUB-MIN PUSH SWITCHES. Not much bigger tian a plastic transistor out AA CELLS. Probably the most popular of the rectrargeable NICAO types. 4 tor 400
2OWATT 400 HM SPEAKER. With burlt-in tweeter. Really well made unit which has the power and the qualiiy for hi-fir eproduction. $61 /$ in diameter. Price $£ 5$.
ref $5 P 155$. It is heavy so please add $£ 1$ to cover postage if not collecting.
MINI RAOIO MOOULE. Only about 2 in square with ferite aenal and solid dia uner with is own knob. It is a superthel and tioperates from PPs battery and would drive a crystal head

MOSFETS FOR POWER AMPLIFIERS ANO HIGH CURRENT OEVICES. 140 V 100 w pair made by the tamous Hitachi Company. Available in H pack. Ref: 2S.a99
and 2SK343. Ref. 4P5t.
TIME AND TEMPERATURE LCD MOOULE. A 12 hour clock a Cetsius and Fahrenheit thermorneter a too hot alarm and a top cold alarm. Approx $50 \times 20 \mathrm{~mm}$ with 12.7 mm digits. Requires 1 AA battery and a tew switches. Comes win lul data
and diagram. Price Eg .00 . Our ret: 9 PS.
REMOTE TEMPERATURE PROBE FOR ABOVE. $\mathfrak{3} .00$ Our ret: 3 P60.
600 WATT AIR OR LIOUIO MAINS HEATER. Smail coil heater made for heating air or liquids. Will not corrode, lasts for years. Coll size 3 in $\times 2$ in mounted on
netal plate for easy fixing 4 in dia. Price $£ 3.00$. Ret: $3 P 78$ or 4 for $£ 10$. 00. Our feff 10 P 76.
EX-EQUIPMENT SWITCHEO MOOE POWER SUPPLIES. Vanous makes and
specs but generally $+-5,+-12 v$ ideal bench supply Onty $£ 800$ Our ref: $B P 36$. specs but generally +-5 . +-12v ideal Dench supply Onty $£ 8.00$ Our ref: $8 P 36$. ACORN DATA RECOROER. Made for the Electron or for others. Inciudes mains adaptor, leads and book. $£ 12.00$. Ret $12 P 15$ PFTE COATED SILVER PLAIED CABLE. 19 strands of. 45 mm copper will cary over $£ 120$ oer reel. Our price only $\sum 20.00$ tor 100 m reel. Ref. 20 P 21 or 1 of each for $£ 35.00$. Rei 35 P 2 . Makes absolutely supert speaker cable ${ }^{\text {' }}$
NEW PIR SENSORS. Infra red movernent sensors will swith up to 1000 w mains. UK made 12 month manutacturers warranty, $15-20 \mathrm{~m}$ range with a 0 10 min timer. adjustable wail bracket. Only £25.00. Ret: 25P16.
10 MEMORY PUSHBUTTON TELEPHONES. These are customer returns and 6 616 or 2 tor $£ 10.00$ Ret: 10P77. BT approved

25 WATT STEREO AMPLIFIER IC STKO43 with the addition of a handtul of components you can build る amplifier. Supplied with circuit diagram. $£ 4.00$. Ret $4 \mathrm{P69}$.

SPECTRUM SOUND BOX. Add sound to your Spectrum with his device. Jus pilug in. Complete with
£4.00. Our ref. 4PS2.
BBC JOYSTICK INTERFACE. Converts a BBC ioystick port to an Alari type port Pice $£ 2.00$. Our ret: 2 P261
TELEPHONE EXTENSION LEAD. 5 mm phone extension lead with plug on one end. socket on the other. White. Price $£ 3.00$. Our ref: $3 P 70$ or 10 leads for only
 CROSS OVER NETWORK. 80 nm 3 way for tweeter midrange and wooter nicely cases with connections marked. On'y $£ 2.00$. Our ret: 2 P255 or 10 for $£ 15.00$. Ref:
15 P32 REVERSING LIGHT ALARM. Fits to
reversing
base station microphone.
mic 600 r mpedence sensitivit 16 - 18 khz quality uni-directional electret condense stand bracket. £15.00. Ret 15P28
MICROPHONE STANO. Very heavy chromed mic stand, magnetic base $4^{"}$ high £3 00 if ordered with above mic. Our ret 3 PBo
SOLAR POWERED NICAD CHARGER 4 Nicad AA battery charger. Charges 4 HIGH RESOLUTION MONITDR. 9in black and white, uses Philips tube M24 306W. Made up in a lacquered frame and has open sides. Made for use with OP1
computer Dut sultable for most others. Brand new, $£ 20.00$. Ous ret: 20 P 26 . MAINS 15 WATT SOLOERING IRON. Price £3.00 Our ref: 3P65.
SOLOERING IRON STAND. Pnce $£ 3.00$. Our ret: $3 P 66$
SHARP PLDTTER PRINTER. New 4 colour printer orginaly intended for Sharp computers but may be adaplable for other machines. Complete with pens, paper conputers purt may be adaplable
etc $£ 16.00$. Our ref 16 P 3 .
CENTRONICS ADAPTER KIT for above plotter printer converts it to Centronics compatibie. Price is $£ 400$ Ref: 4 P 57
CAR IONIZER UNIT. Improve the air in your car
fatigue Case Ien. Price $£ 12.00$ Our ref: $12 P 8$.
NEW FM BUG KIT. New design with PCB embedded coli gv operation. Priced at E5 00
NEW PANEL METERS SOUA. Movement with difterent scaies that are brought into view with a lever. Price only $£ 3.00$. Ref. 3 P8I
STROBE LIGHTS. Fil a standard edison screw light fitting $240 \mathrm{~V} 40 / \mathrm{min}$. flash rate avalabie in yellow and
(state colous required).
ELECTRONIC SPEED CONTROL KIT. Suitable for controlling our poweful 12
motors. Price $£ 17.00$ Rel: 17 P3 (heatsink required).
EXTENSION CABLE WITH A OIFFERENCE. It is flat on one side making it easy
to fix and icok kidy. 4 core, suitable for alarms, phones etc. Our price only $£ 500$ for
METAL PROJECT BOX. Ideal lor battery charger, power supply etc. Sprayed grey YUASHA SEALEO LEAD ACID BATIERIES 6V 10AH ONLY $£ 9.00$ each or 2 lor $\mathbf{~ 1 5 . 0 0 . ~ R e f ~ 1 5 P 3 7 ~}$
PC STYLE CASES $18^{\prime \prime} \times 18^{\prime \prime} \times 6^{\prime \prime}$ Complete with fan and gith illuminated powe
switch and IEC filtered power input plug. Priced at only E15.00. Rel 15 P 18 .
PC POWER SUPPLIES. Brand new with built in fan and power swith on the back $+5-5+12-12 v 150$ wall made by ACTEC $£ 25.00$ each. Ref 25P18
BOSOHERT SWITCHED MODE POWER SUPPLIES. +5 at $15 A+12$ at $3 \mathrm{~A}-12$
 1990 Catalogue now avallable please send

EAST CORNWALL COMPONENTS 119 HIGH STREET DEPT.TV9 WEM
SHROPSHIRE SY4 5TT TEL: 093932689 TELEX: 35565 FAX: 093938800

* \&atest catalogue * * 1990 Catalogue - over 200 pages incl. Credit Tickets (3), Special Offer sheets, Prepaid Envelope \& Order Form - $£ 1$, or free on application with orders of $£ 15$ and over. Prices in Catalogue may vary as material for advert is prepared $6 / 8$ weeks before issue.

22SWG RESIN SOLDER 500gm REEL
£4.99 £4.75
ALSO $18 S W G$ at $£ 4.95500 \mathrm{gm}$.
Orders of 5 or more reels please add a
further 75p P\&P
C.15WIAONTEX IRONS

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 821.

ADVERTISEMENT MANAGER

Kevin Attridge
071-261 6671
SECRETARY
Janet Reeve
071-261 6671
CLASSIFIED ADVERTISEMENTS
Pat Bunce
071-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
071-261 6035

PUBLISHER

Philippa Gardner
071-261 6408

SUBSCRIPTION ENOUIRIES

044440421

COVER PHOTO

This month's cover photograph shows the AVTS retrofit NICAM board, between headphones. A series of articles on NICAM starts on page 846

CORRECTIONS

The Panasonic machine mentioned under the heading "no picture" in VCR Clinic last month, page 768, should have been NV370, not NV730.
The Hitachi prototype dynamic RAM mentioned in last month's leader is a 64Mbit device.
Several readers have queried the $3 \mathrm{k} \Omega$ linear potentiometer VR3 in the de luxe component tester (July issue). This value is no longer generally available. Use a $5 k \Omega$ control. A suitable type is available from RS Components under order code no. 173-221.

TELEORSLOR

Added Value

A couple of letters in our correspondence pages this month raise interesting points about the design of modern consumer electronic equipment. In a particularly trenchant letter G.R. Darby queries the point of using a switch-mode power supply in a VCR. There seem to be no appreciable advantages in terms of efficiency, convenience or cost. As for servicing, the trying fault patterns to which such power supplies are prone make them much less easy to handle than the conventional series regulator

This is all perfectly true and one sympathises with these arguments. Nevertheless one's feeling is that the switch-mode power supply will become the norm in this application come what may, simply because this type of power supply is becoming an electronics industry norm. Once that happens, other approaches come to be regarded as obsolete and designers tend to forget how to use them. The poor old service engincer has to live with the consequences, as usual.

There is in electronics, as in most other fields, a sort of fashion element. Once it becomes the accepted practice to do things in a certain way, e.g. to use a chopper to provide several regulated rails, then that's the approach that will tend to be used without more ado. There's a certain industrial logic in this, even if the use of a particular approach in a particular application may be questionable. The chopper is a brilliant approach to power supply design, efficient and economical. Having come to predominate in so many fields, designers probably don't give a second thought to using it. There's also the point that once you get chips that will take care of most of the design work, e.g. sophisticated chopper control chips at a reasonable price (for the setmaker), it's sensible to make use of them - though the particular switch-mode power supply design that was commented upon uses a discrete component circuit. Then again, it bears a close resemblance to the design used in certain Thomson CTV chassis. Obviously the Thomson engineers are used to it and like it. So it does seem to be a case of a design department adopting the same approach to different applications.

You could possibly regard this use of a chopper power supply as a benefit provided by the general march of progress in electronics. A case of value added derived from advances in electronic technology generally. This brings us to the heart of the matter The success of the Japanese consumer electronics industry in recent years has stemmed largely from its willingness to keep design under continuous review and make optimum use of what becomes available to the industry. That's part of what all their R and D work achieves. You get a series of designs for say VCRs in which novel extras are continually being transformed into the norm. All right, so most owners never use many of these features, and in this respect it's wasteful to have all that extra circuitry sitting there in VCRs across the world, never being used. But that's probably not how a Japanese marketing man would see it. He'd say that if you don't incorporate as many features as you can your competitors will and your product won't sell. The customer can be sold extra gadgetry even if he never uses it. He'll certainly want it if it costs little or nothing extra. So maybe we have Japanese marketing to blame for all this added complication in the design of consumer electronics products. You won't find most users complaining however, and why should they when they're given added value?

This isn't the whole story of course. There are some developments - tuning and control arrangements for example - that are decidely user unfriendly and simply lead to distress and irritation. The great art in successful development and marketing of consumer electronic equipment is in getting this right. And here we have to acknowledge the achievement of Alan Sugar, who built up Amstrad on the basis of looking carefully at what could be offered the customer, selecting the features that would be beneficial and sell, then getting the package right. The story is told in a recent book, Alan Sugar: The Amstrad Story, by David Thomas, published by Centuary at $£ 14 \cdot 99$. It seems that despite having negligible knowledge of electronics he has the knack of understanding systems clearly and being able to exploit their possibilities, giving customers what they want even before they know it. His success has been deserved, in seeking to offer the market easy-to-use, low-cost products that nevertheless contain high-technology features. It's amazing that he was able to leave so much of the rest of the industry standing.

He hasn't of course left the JVCs and Sonys of this world standing, as they power ahead with ever more new and sophisticated technology to offer the consumer. Their success derives from their famed R and D efforts. And therein of course lies the reason for the failure of the UK's consumer electronics industry. Could it have succeeded had the finance been available to fund such activity? - poor profitability was always the bane of the industry. It's hard to know. The one doesn't necessarily follow the other, as the poor financial results recorded by Philips show. Somewhere along the line it seems that there has to be a sort of Alan Sugar touch, provided in the case of Sony by the remarkable Akio Morita and by his less well known contemporaries in other Japanese firms.

The UK has not been short of innovation in TV technology. The IBA led the world in digital video technology through its work on digital standards converters. Other notable achievements have been teletext, MAC and NICAM. But it's interesting that these have all been on the transmission side, provided by the considerable R and D work undertaken by the BBC and the IBA. Over the years there has been a depressing inability of the domestic electronics industry to come up with equivalent advances, to exploit the technology available, or to show initiative on a world-wide scale. Unfortunately this is all now part of past history. For our added value consumer electronics products we shall have to rely on the Far East - and what Alan Sugar comes up with!

CD Player Casebook

Yamaha CDX-630E

This one came in with the usual CD symptom, skipping and jumping on the outside tracks. It played my Philips 5A test disc up to track 17 then jumped forward to track 19 or 20 and so on. Cleaning the lens made very little difference, though it did increase the peak-to-peak amplitude of the r.f. waveform. Setting up also made no difference to the fault symptom, so a new laser unit was ordered. When this was fitted and set up the machine played all discs normally. The original laser unit was a Sony K55-150A (see comments in the July Casebook). This time the replacement supplied was a K55-210A. It came without a modification sheet so I assume that it's a direct replacement.
M.L.

Sanyo CP667

The complaint with this machine was no sound. When I tried it there were all the symptoms of an upset microcomputer control chip (CPU). The drawer wouldn't open. If it was operated manually it immediately closed and the laser came on for just a couple of seconds but the focus search routine didn't take place. These symptoms were intermittent in that the drawer would occasionally open at switch on but when a disc was loaded the TOC would not be read.
I began by checking the reset pulse, then the CPU clock. These were o.k. The scope showed that data reached the CPU when the open/close button was depressed, but the control logic output to the loading motor didn't alter. Finally I checked the logic level at pin 24 of IC301 - this pin is connected to the sled position switch. The voltage at this pin proved to be high when, after the initial switch-on, it should be low. The cause of all this trouble was that the sled assembly didn't quite return to the centre of the disc, due to a tiny piece of solder that was wedged in a tooth in the gear mechanism.
The player now functioned - but with no sound. The front display indicated that the disc was playing correctly, i.e. the time elapsed was being clocked, and the player obeyed track skip commands without difficulty. That chap in the recent $C D$ player servicing series suggested that if this is the case the stages beyond the decoder are suspect. So I moved to the DA converter's input. Data was present, but was clearly not correct. Over to the RAM, IC402. Scope checks on the address lines showed that address data was present, but when I came to check the eight data ports I found that data was missing from one of them - pin 11. The cause of the trouble was a dry-joint at this pin. It's a surface-mounted chip, and the leg was laying on a dry solder bed. Strange: the chap who wrote that series said that RAM faults are usually associated with "rushing water" sounds. Well, you can't win every time!
J.C.

Sony D50

Here's a word of warning for anyone who has to dismantle one of these personal CD players for the first time. Your initial step will be to remove the four screws that secure the cabinet bottom, and this is the correct thing to do. Next you'll probably remove the cabinet bottom itself.

This might be where you make your big mistake. At the rear of the player, inside, there's a piece of flexible print that connects the two-axis device of the laser assembly to the main PCB. As you remove the cabinet bottom this piece of print can get snagged and tear. The sad news is that the print is not replaceable: the only cure is to fit an entire new laser assembly, at considerable expense.

The correct way of removing the case's bottom panel is to lift the front just slightly so that the lip clears the front panel, then gently slide the bottom back a little so that it doesn't snag the print. This method is not outlined clearly in the dismantling instructions given in the service manual.

If you have to remove the main PCB you must first unsolder the flexiprint from the board, otherwise it will certainly tear.

Many engineers have already come unstuck whilst handling these players. Here's an example. A telecom engineer brought me one of these machines. He said that it had worked all right but the control knob had become detached. He'd managed to dismantle the unit and fix the knob himself, but now it didn't seem to work at all. Cutting a long story short, the broken knob cost him over £10).
J.C.

Technics SL-PJ11

The complaint with this machine was of poor playability, notably sticking and skipping. The procedure I use with all the machines in this range is first to check which type of laser unit is fitted. There's a later type, the 6P, that employs a tracking offset compensation PCB. You can identify this unit by the presence of a " 6 P " sticker on the optical flexiprint connector and on the main PCB beside the mechanism. In this case the unit was of the 6P type. I next check the condition of the laser assembly's guide shafts and ensure correct lubrication. I also clean the laser unit's objective lens. In this case I replaced the shafts, which is a quick job. The result was a slight improvement. Next I check all the alignment, notably the tangential and PD balance as these can give a very good idea of the laser unit's condition.

When it was set up correctly the machine performed much better, but it was still not up to specification as the laser was worn. Indications of this had been present throughout the alignment process: the r.f. waveform was low and mucky, the PD balance had to be set at one end for optimum alignment, and so on. As the customer accepted our estimate for a new laser unit I found myself fitting one - on the anti-static bench of course!

When it had been fitted I found that the linear traverse motor banged from one end of its travel to the other at high speed. The "potention unit" was working correctly, a worthwhile check as sometimes the fine contact fins can be bent during laser unit replacement. In fact the new unit was faulty, another one producing smashing results when set up.

In my experience the procedure outlined above works well with this type of fault in Technics players. Alignment may seem to be an unnecessary procedure when experience tells you that the laser unit is usually the basic cause, but experience also enables you to carry it out in just a few minutes - especially when you use the superb servo

P.'V: TVEES

104 ABEEY STREET, ACCRINGTON, LANCS BB5 1EE ซㅏㅏ 0254 36521/32611/390936 Fax No. 0254 395361. Telex 635562 Grition G 24 hr . answering service (For P.V.) Partners: S \& B Cucknell

SECURITY ALARM SYSTEMS

Full range of security
our extensive rang
PACKAGE A £105.00
a) Two zone keyswitched panel Logic
b) Polyprop. bell boxback plate/sticker
c) Battery Tamper switch
d) External Sounder
e) Two passive infra red detectors f) Five pairs window/door contacts g) 100 m 4 core cab
i) Intemar sor exit
i) Buzzer for exit/entry timer
i) Panic button

IDLERS/TAKE UP CLUTCH ASSY.

Our stock of idiers is extensive. We are adding new types all the time. Send us your old one if you are not sure. We'll match it up. New Types are
$\begin{array}{ll}\text { (14201) GOLDSTAR 435038A } & £ 1.85 \\ \text { (14107) JVC FV10/11/12 PU58645 } & £ 2.10\end{array}$ (14085) HITACHI H16876043

We have GENUINE parts for Philips Ferguson, Nat. Pan., NEC, Sony, Hitachi GEC, Fidelity

PACKAGE B $£ 150.00$

(Larger house or shop)

* Commander 5 Zone Digital Panel with buit in internal sounder
* Light and Sound Unit - Sounder in 'Foam Resistant' zinc coated steel box with back and front tamper switch and strobe
* Battery
* Five Parrs Window/Door Contacts
* Three Passive infra red Detectar
* 100 m 6 Core Cable \& Clips

REPLACEMENT VIDEO HEADS

AS well as the FERGUSON 3HSSV NATIONAL PANASONIC 3HSSN $\quad £ 10.50$
We have 1000 's of heads which cover most makes
NEW one are
AINARI VXL800/6110 (10028)
SAMSUNG 6900 (10302 SAMSUNG 6900 (10302)
FUNAI (G) $8059-01-19(0029 G)$ FUNAI (G) 8059-01-19 (10029G)
HITACHI VT61E $62 / 64$ (10083)

COMPUTER SPARES

We now have a full range of both mechanical as weil as Sinclair Spectrums. Please ask
Membrane 48k Spectrum
Membrane SpectrumPlus
ULA Spectrum
ROM Spectrum
Z80A CPU

EXTERNAL LIGHTS/DETECTORS
WE HAVE A FULL RANGE OF UNITS. SELFCONTAINED COURTESY LIGHTS, FLUORESCENT LIGHTS INCL. DETECTOR DETECTORS.

PHANTOM FLOOD £49.00 IS A COMBINED EXTERNAL PASSIVE INFRA RED DET. AND TUNGSTEN HALOGEN
FLOODIGHT 15 RANG WIRE TO MAINS WITH AUTOMATIC SWITCHING DEVICE.

NEW VALVES

Over 2000 types available for domestic radio,
TV. amateur radio and industrial. Send S.A.E. for list.

ELECTRONIC KITS

Por the enthusiast, DIY, or college and school projects.
e.g.

ROBOT VOICE
IC RADIO
USTROBOSCOPE $\quad \mathbf{E 8 . 1 0}$
LIE DETECTOR

ARE YOU ABOUT TO INSTALL A SATELLITE SYSTEM?	
Top of the Range - Recharge Astra/BSB etc. Pretuned Carry	built in
FLUID FILLEO COMPASS	$\underline{7.50}$
TWIST ON F CONNECTOR	¢0. 35
CRIMPON FCONNECTOR	¢0.24
(State cable type for ordering F co	
RG59 C0AX 100m	$£ 19.95$
RG6/TR100 C0AX 100m	£29.95
CRIMPING TOOL	$£ 29.95$
SELF F MAALGAMATNG TAPE	¢0.48
FIXING 8RACKETS WITH U BOLTS	E6.00

LABGEAR BOOSTERS

Amplitier to improve TVNideo Reception (Up to 3 times signal strength)
CM7253 $\mathbf{~ K 7 7 . 0 0}$ Amplifier to operate 2 TVs/Video from one aerial (Doubles Signal) CM7243 $£ 15.84$
GOOD SIGNAL? Use a SET TOP AERIAL. ANTIFERENCE are super sensitive
Silver Sensor Hi-Tech
Power Sensor with built in Amp
Praveller - Ideal for boats/caravans
$\begin{array}{ll}\text { raveller-Ideal for boats/caravans } & \text { I....... } \\ \mathbf{E 2 4 . 9 5}\end{array}$ Simple Loop Aerial
Olympic Set Top - SEE SPECIAL OFFERS

GENUINE SPECIFIC SPARES		
We can obtain original parts for the following makes to order:		
JVC	E.G.	
FERGUSON	GENUINE	
NAT. PAN.	0005GE27 (14275G)	13.30
FIOELITY	0006GE22 (142766)	£3.30
PHILIPS	FERGUSON 3V54 Mains Trans	21.90
NEC	3V35 Cap. Motor	
HITACHI	(15152G)	¢22.29
SONY	FV10 Cap. Motor	30.26
SHARP		30. 26

NEW!
 SURFACE MOUNTED DEVICES

0.25 Watt Resistor Kit
86 Valves from IR to 8 M 2 (10 of each)
0.2 Watt Potentiometer Kit 65DCs - 18 valves trom $100 \mathrm{R}-1 \mathrm{M}$ Ceramic Capacitor Kit
$240 \mathrm{pcs}-24$ valves $10 \mathrm{pF}-100 \mathrm{nF}$ £ 36.50 Semic onductor Kit. 40, BC817-40 BC8 $\quad \mathbf{7 . 4 5}$ 10 of each BC807-40, BC817-40, BC846B, BC850C, BC856B, BC860B

TRADE SALES OF TOP QUALITY USED

TELEVISIONS AND VIDEOS

$14^{\prime \prime}, 16^{\prime \prime}, 20^{\prime \prime}, 22^{\prime \prime}, 26^{\prime \prime}$
Standard/Remotefeletext
First Class Condition \& Appearance
top loadimg videos
front loading videos
SOME REMOTE CONTROLS
Complete with instruction book + leads.
LITLE TWISTER TV BRACKET

DEGAUSS/NG COILS
EXTERNAL STICK TYPE COIL
£27.50
LOADFAST LADDER LOCK
PREVENTS LADDERS SLIPPING $£ 15.99_{\text {PER PAIR }}$
AVAILABLE ALSO - RANGE OF FIXING STRAPS MADE TO ANY REQUIREMENTS We have parts others can't reach!!

EXCELIENT VALUE!
BELT KITS
WE HAVE MANY GENUINE INDIVIDUAL BELTS FOR FERGUSON, SONY, HITACHI ETC. AS WELL AS A
COMPLETE RANGE OF GOOD OUALTY REPLACE. MENT BELT KITS.
COMPLETE VIDEO REPAIR KITS
CONTAIN A TOTAL PACKAGE TO REPAIR VIDEOS. CONTAIN IDLERS, BELTS, TENSION BANDS FOR E.G.
PIMCH ROLLERS
ALL REPLACEMENT MPES
$£ 2.75$

VIDEO TAPES

WATCH OUR SPECIAL OFFERS FOR BEST PRICES ON SKC E180EE240 VHS. BY POPULAR REQUEST WE ARE ABLE TO SUPPLY VIDEO TAPE FOR BETA

MANY OTHERS
TRANSPARENT TEST CASSETTE
hemote controls
JOQ'S OF HAND UNITS IN
TYPES TO ORDER ASKII
NEW TYPES THIS MONTH
HITACHI A518612

PANASONIC 2031/3
MATSUUISAISHO
RC12 RC51 OLI OME
AMSTRAD
IR9119 PRICE
AERIALS READY FOR FITTING
COMPLETE KIT FOR LOFT OR GUTTER FIXING.
COAX CONNECTED.
INCLUDES
10Ele WIOEBAND AERIAL
3H CRANKED MAS
LOFT BRACKET
59.50 COAX PLIS CLIPS
also everything for riggers!! F.M. AERIALS

FM Stereo 108 range $88-108 \mathrm{MHz}$
ALL ROUNDER OMNI Directional
RADIO-ROD OMNI (Vertical)
"MORKSHOP MUSTS
Fine Tip 15w Antex Iron 240v
Stand Tip 25 w Antex Iron 240 v
Cordless Gas Iron Portable Cord less Gas Iron Portable Solder Sucker
Super Wick Desolder Braid $2 \mathrm{~mm} \times 30 \mathrm{~m}$

Solder 18 SWG

Servisol Switch Cleaner/LWB
Video Head Cleaner Servisol
Servisol Foam Cleanser
Freezer Servisol
Servisol Silicone Grease Tube Servisol Heat Sink Compound Silicone Compound Sealant Test Meters HT700 Bench

HT500 Pocket
Digital Bench
Sidecutters 4.5"
Micro Cutters.
Heavy Duty Snips
Wire Stripper Ideal for Coax
Philips Screwdrivers $5 m$
Neon Screwdrivers $1 \mathrm{~g} \ldots$ โ7.99

cit. 00 ci8.00

4
1
$£ 6.20$
$£ 6.50$

£6.50
15.99

5.99

ع11.99 CABLE
CONNECTORS CMOS ICS COMPUTER DISKS ELECTRICAL ACCES INTEGRATED CIRCUIT LOPTX
LEADS LEADS
MANUALS PUSH BUTTON UNITS PHONE ACCES. POTENTIOMETERS RELAYS
SEMICONDUCTO STRIPBO
STYLI
SMOKE DETECTORS
SWITCHES ONOFF
TUNERS
TV WALL STANDS
TOOLS
TUBES
TEST EQUIPMENT
ZENERS/DIODES

ATIFERENCE

CM7298 WIOE BAND ONE UHF + FOR UP TO 6 POINTS ONE FILTERED FM IN- TV/FM. PUT. EIGHT OUTPUTS SINGLE VHF/UHF INPUT.
ALL PLUG IN CONN. FOR PRE-AMP.
$£ 49.12$

\star SPECIAL OFFERS *

100m 75R LOW LOSS COAX 13A PLUG TOPS (British) (10) SKC E180 VHS TAPE (10) SKC AUDIOTAPE 6×90 (3pkt) CASTLE PETITE ALARM PANEL (5 Zone Digital)
detal alanm box
METALCOAX PLUGS (100)
(Olympic)
NEW OFFERS EACH MONTH
$\frac{\text { Batctayctard }}{\text { V/SA }}$
gain adjuster, which is a delight. The benefit of alignment is that you may be able to keep the unit going for a few weeks or months more, giving the customer time to decide what to do next. If not approached in the correct manner however this "basic" repair can cause headaches. N.B.

Technics SLP - 222

This machine, like the SLP202 and the Panasonic SL-PJ24 and SL-PJ26 amongst others, uses the Philips radial arm mechanism interfaced with its own electronics. The result is very good. The only trouble I've had is that after a period of use the machine won't read the TOC or play. Its cause is that the radial arm physically sticks at the turntable end of its travel. This appears to be due to the rubber-type compound at this point becoming tacky when warm. When we first discovered this problem Panasonic was unaware of it. We gave their TLO a demonstration and the only suggestion he could make was to replace the laser assembly, a CMD4 drivative. Serial numbers of machines that subsequently exhibited this fault were sent to Panasonic and a small modification has now been introduced to overcome it. The part no. is RMQ0042.
N.B.

Technics SLP-110

These machines were very popular and are relatively reliable. This one had the usual Technics FF1 affliction of poor playability. I say usual because we see a lot of

Technics machines, really they are amongst the most reliable on the market. The machine was carefully set up and there was certainly no need for a new laser unit. Another dealer appeared to have lubricated the guide shafts but had overdone it - oil was dripping all over the place. This was attended to.
An interesting point was the customer's complaint that the machine would play all discs normally, skipping aside, but that one disc in a Vivaldi pair would not spin or read the TOC. We found that the reason for this was incorrect turntable height - it was appreciably on the low side. Confirmation was provided by the fact that the player wouldn't play when on its end. This is not an essential feature but is quite normal when an engineer is setting the turntable height and tangential adjustments.

My own SLP-310 skipped a few seconds as I was writing this report. The cause turned out to be a bit of dust on the traverse guide shafts.
N.B.

Technics SLP-220

After going through the setting-up procedure with this machine acceptable performance was obtained though it needed a new laser unit to be perfect. I found that it was very sensitive to mechanical shock. As the customer had accepted the machine's condition and had agreed to pay for an hour's labour I resolved the problem by very slightly decreasing the tracking gain to compensate for the laser's performance.
N.B.

Long-distance Television

Roger Bunney

Reception during June was patchy, though the $\mathrm{SpE} \log$ for several days, particularly around the middle of the month, looks dramatic. Unfortunately I'm seldom able to monitor the bands during the day, but this is made up for by several other active DXers so we are able to get a reasonably accurate picture of conditions. On then to the rather extensive $\mathrm{SpE} \log$ for the month:
$\begin{array}{ll}\text { 6/6/90) } & \text { TVE (Spain) chs. E2, 3, 4; TVE-2; RAI (Italy) IA; } \\ \text { TDF (France) Canal Plus L2, 3, 4; JRT (Yugoslavia) } \\ \text { E2; ARD (West Germany) E2; NRK (Norway) E2. }\end{array}$
7/6/90 ARD E2; TVE E2; JRT E2, 3; RAI IA, B; + PTT (Switzerland) E2; CST (Czechoslovakia) R2.
8/6/90 RAI IA, B; TVE E2, 3, 4; + PTT E2; SVT (Sweden) E2, 3, 4; NRK E2, 3, 4; YLE (Finland) E4; RUV (Iceland) E4; CST R2; TSS (USSR) R1, 2, 3, 4, 5; TVP (Poland) R1, 2, 3; MTV (Hungary) R2; JRT E3, 4; ERT (Greece) E3.
9/6/90 + PTT E2; JRT E3, 4; TVE E2, 3, 4; RAI IA, B; ERT E3; TSS R2; SVT E2.
10/6/90 RAI IA.
11/6/90 NRK E2; TSS R1, 2; CST R1; RAI IA, B; +PTT E3; TVE E2, 3; TDF L2, 3; Cyril Willis noted Gwelo (Zimbabwe) ch. E2 at 1805.
12/6/90 TVE E2, 3, 4; TVE-2 E2; + PTT E2; RTP (Portugal) E2, 3; ARD E2; RAI IA; TSS R1, 2, 3; SVT E2, 3, 4; MTV R1.
13/6/90 TVE E2, 3, 4; RAI IA, B

14/6/90 TVE E2, 3, 4; RTP E3; TDF L3; RAI IA.
15/6/90 ARD E2, 3, 4; + PTT E2, 3; ORF (Austria) E2a, 4; RAI IA, B; Italian private 47 MHz ; RTSH (Albania) IC; RUV E3, 4; CST R1, 2, 4; TVP R1, 2, 4; TSS R1, $2,3,4 ;$ MTV R1, 2; JRT E4; NRK E2, 3, 4; YLE E4; TVE E2, 3, 4; TVE-2 E2; TDF L2, 3; RTP E3; DR (Denmark) E3; suspected NTA (Nigeria) E3; RUV E3,4.
16/6/90 TVP R1, 2, 3; CST R1, 2, 4; MTV R1, 2; TSS R1, 2, 3, 4, 5; SVT E2; RAI IA, B; JRT E3, 4; ORF E2a, 4; ARD E2; TDF L2; TVE E2, 3, 4; ERT E3; RTP E3.
17/6/90 TSS R1, 2; TVE E2, 3, 4; TVE-2 E2; RTP E2, 3; RAI IA,B; JRT E3, 4; TDF L2, 3; SVT E2; ARD E2; +PTT E3.
18/6/90 Short SpE skip noted from RTE ch. A (Eire); RTBF (Belgium) E3; NOS (Holland) E4; NRK E2, 3, 4; SVT E2, 3, 4; RUV E3, 4; ARD E2, 3, 4; TDF L2, 3, 4; JRT E3, 4; TVE E2, 3, 4; RAI IA, B; + PTT E2, 3, 4; DR E2; ERT E3; CST R1, 2; TSS R1, 2, 3; JTV (Jordan) E3; RTP E3; unidentified ch. A2 (system M) signal at 2030 BST.
19/6/90 TSS R1, 2, 3; TVP R1, 2, 3; DR E3; CST R1, 2; MTV R1; ERT E3; NRK E2, 3, 4; RUV E4; + PTT E2, 3; ORF E2a, 4; ARD E3, 4; TDF L2, 3; RTP E2, 3; JRT E3, 4; RAI IA, B; TVE E2, 3, 4; TVE-2 E2.
$30 / 6 / 90$ RSS R1; CST R1; NRK E2; SVT E2; YLE E3; RAI IA.B; TVE E2, 3, 4; ARD E3; +PTT E2, 3; TDF L2, 3, 4; RTP E2, 3; JRT E3.
21/6/90 MTV R1, 2; RAI IA, B; TVE E2, 4; +PTT E2, 3, 4: RTP E3; TSS R1, 2, 3; TVP R1, 2, 3; NRK E3.
22/6/90 RTP E2, 3; TVE E2, 3, 4; TVE-2 E2; RUV E3, 4; RAI IA; TDF L2, 4; ORF E2a, 4; DR E3; + PTT E2, 3; TSS R1; NRK E3; SVT E2; NTA (Nigeria) E3.
23/6/90 TSS R1, 2; + PTT E2, 3; SVTE3,4; NRK E4; JRTE3.
24/6/90 TVE E2, 3; ARD E4; RTP E2, 3; RAI IA; MTV R1.
25/6/90 TVE E3.
26/6/90 TSS R1, 2, 3; NRK E2, 3, 4; SVT E2, 3, 4; + PTT E3; TVE E2, 3, 4; RTP E2, 3 ; CST R1.
17/6/90 RAI IA, B; ARD E2; MTV R1, 2; JRT E3, 4; TVE E2, 3, 4; TVE-2, E2; CST R1, 2, 4; TSS R1, 2, 3; TVP R1, 2, 3; JTV E3; TDF L3, 4.

SPECIAL INTRODUCTORY OFFER

Take out an introductory subscription to TELEUISIO\| today and we'll extend your subscription by three issues - and not charge you a penny extra! Just complete and post this card. Please enter my subscription to Television and send me 15 monthly issues for just $£ 20$ (This is the normal price for 12 issues, so 1 receive 3 issues free). Overseas rate $£ 24$.

NAME

ADDRESS

28/6/90) JRT E2, 3, 4; RTSH IC; ORF E2a, 4; ARD E2, 3, 4; RAI IA, B, C; TSS R1, 2; MTV R1, 2; CST R1, 2; unidentified Arabic ch. E3 station at 1835
29/6/90) JRT E3, 4; MTV R2; TVE E2, 3; TSS R1, RAI IA
30/6/9() RAI IA; JRT E3; TVE E2, 3, 4; ARD E2; TSS R1; CST R1.

During recent SpE openings Yugoslavia has been seen with corner logos such as TVZ and TVB. Simon Hamer (Powys) mentions that there was a high m.u.f. on the 3rd, giving him RTA (Algeria) ch. E7 and RTM (Morocco) ch. E4. An unidentified ch. A2 (system M) signal was seen during the same opening. It's interesting that activity seemed to peak towards the middle of the month, dying away gradually towards July.

An aurora was noted in Scotland on the 12th, from 2300 local time.

Tropospheric reception was a little above average from the 9th to the 13th, with signals from the Benelux countries, West Germany and Norway in Band III and at u.h.f. It became more intense over the $16-17$ th, with in addition signals from Denmark and Switzerland, the latter in Band III and at u.h.f.

Tim Anderson is looking into a system of achieving image enhancement with an Amiga computer. With the appropriate software poor quality video frames can be enhanced, with noise reduction. The effect is not unlike that obtained with long-exposure photography where much of the noise cancels out. It's thought that F2 signals, with their characteristic multiple image effect, could also be enhanced. We hope to be able to report further on this.

My thanks to the following for sending in reception reports this month: Simon Hamer (Powys), David Glenday (Arbroath), Roger Fussell (Torpoint), Peter Schubert (Rainham), Tim Anderson (St. Leonards), Cyril Willis (King's Lynn), Bill Cotterill (Tipton) and Iain Menzies (Aberdeen).

For Disposal

Roger Fussell has for disposal a large quantity of TV valves and several Radio and Television Servicing volumes dating from the late Fifties. Anyone interested should write to him at 55 Peacock Avenue, Torpoint, Cornwall including an SAE for details.

BSB Receiver Interference

After installing a Philips BSB receiver recently lain Menzies noticed m.f. interference at each 30 kHz extending from 5 MHz through to the medium wave, e.g. at $3.65 \mathrm{MHz}, 3.68 \mathrm{MHz}$ and so on. The problem came from the LNB socket at the rear of the receiver, with radiation apparently from the outside of the coaxial braid. Ian solved it by winding the coaxial cable around two ferrite toroids, type FX1588 - these are available cheaply from J. Birkett, 25 The Straight, Lincoln LN2 1JF (0522 520 767). The cost was about $£ 1$.

News Items

Algeria: It's hoped that a commercial TV service will open by the end of 1991 , with 100 per cent coverage obtained via a mixture of terrestrial and satellite transmissions.
Iceland: A third service called "TV One" is to start on October 1st in the Reykjavik area. Like "Channel 2" it will be a pay-TV service, requiring a $\$ 70$ deposit for a decoder and a monthly payment of $\$ 30$.

AERIAL TECHNIQUES

Aerial Techniques offer a full aerial/ satellite supply service covering all domestic \& TV/DX installations. We also specialise in supply of Multistandard TV's and Video recorders at very competitive prices. Our 29 page, full illustrated Catalogue is packed with Aerials, Amplifiers, Filters, Rotators and supporting hardware. We can supply Multi-system TV's from $41 / 2^{\prime \prime}$ to $33^{\prime \prime}$ screen. Why not send for your copy today, price only 75p.

NEW low cost TVMonitor with full VHF/UHF coverage, $41 / 2^{\prime \prime}$ screen £79.95

Available now from stock SECAM to PAL Transcoders, also Telecom 1C Signal Decoders for CANAL + and CANAL J (SAE for leaflet).
RAI UNO \& dual CANAL +/RAI UNO decoders now also available
ACCESS \& VISA Maii \& Telephone orders welcome Also American Express (24hr. service) Delivery normally 7-10 days.
11. KENT ROAD. PARKSTONE. POOLE. DORSET BH12 2EH Tel; 0202738232

Hungary: Due to financial problems plans for an MTV-3 service have been dropped. It's possible that an independent network will be established following the success of the breakfast NAP-TV service, which goes out over the MTV-1 network.
Eastern Europe: Garry Smith reports that the OIRT countries are likely to go over to PAL during the next few years, starting with Poland and Czechoslovakia. This will simplify programme exchange. Many receivers made in East Europe now incorporate PAL/SECAM capability.
Radio Amateurs: Use of the 50 and 70 MHz bands is now allowed in Southern Ireland by B as well as A operators.

Modifications to the writer's satellite dish include a dualband Ku/Telecom LNB fitted on the new Chaparrel orthomode transducer/polariser.

Left: The Luxembourg PM5544 test pattern received via the Eutelsat craft at 13°. Centre: A typical news feed, this one via Eutelsat at $7^{\circ} \mathrm{E}$, with 525 lines. Right: The TeleMadrid test pattern seen via Eutelsat at $7^{\circ} \mathrm{E}$.

Poland is likely to allow use of the 50 MHz band for amateur communications, though not in areas served by ch. R1 transmitters. At he Region One conference in early April the IARU pushed the WARC for a worldwide allocation of at least 500 kHz at 50 MHz and for a 1.5 MHz allocation in Region One (Europe). It's likely that at least two operators will be active at 50 MHz in the Falklands by the end of the year. Over 500 West German amateurs have applied for 50 MHz permits.
In brief: A Turkish programme is in operation in Greece on chs. E3 and E4, with the corner logo TV1 except during commercials and news. Turkey has started limited teletext experiments called Telegun. Though still on air, the New Zealand TV3 network is in the hands of the receiver. Launch of the Irish TV3 service in early 1991 is now in doubt. June 8th saw the first Canal Plus Espagne transmissions: full programming is to commence in September. MTV is now available in Kenya on ch. E62. Jordan has started a teletext service for two hours each afternoon. In Yugoslavia RTV Zagreb is to be renamed RTV Hrvatska while TV Ljublijana will become TV Slovenija. A private Yugoslavian station, Kanala, is expected to start transmissions on ch. E55 in November.

Satellite TV

Asiasat has been launched. It uses a modernised Westar 6 US satellite with 24 C-band transponders, providing TV transmission facilties in the Far East and West Pacific regions. Dishes as small as 1.5 cm can be used.

There are plans to launch a USSR DBS craft called Gelikon next year to be followed by a series with three launches per year, each operating in the Ku band with 150W TWTs. They will be available for lease in the West. Another Ku-band craft called Luch is to operate at 53 dBW . These craft will be at 15 and $160^{\circ} \mathrm{W}$ and $55^{\circ} \mathrm{E}$.

Another Scandinavian channel, TV4, is due to start operations this month via Intelsat at $1^{\circ} \mathrm{W}$ and Tele-X at $5^{\circ} \mathrm{E}$.

Tele 5, Discovery Channel, Disney and Super Channel are amongst the operators who have already leased facilities on the Astra 1B craft.

Beware of Filmnet scrambling changes if you are considering purchase of one of the pirate decoders on the market - tests with new encryption have already been carried out. Pirate Sky Movies decoders are on sale on the Continent.

The Spanish channel Antenna 3 is now on air via ECS-1 F2 at $7^{\circ} \mathrm{E}$, at 11.658 GHz .

Intelsat has positioned a new craft, type VI F2, at $24.5^{\circ} \mathrm{W}$, replacing an elderly VA F10 satellite that's now on a drift west to a new position over the Pacific. A
replacement is due to be positioned in the $27.5^{\circ} \mathrm{W}$ slot.
Sky News is being transmitted over the normal terrestrial networks in some parts of Yugoslavia.

The Eutelsat II Fl satellite at $13^{\circ} \mathrm{E}$, due for launch on August 30th, will have a wide beam ($46-48 \mathrm{dBW}$) covering Europe, Turkey and the Canary Islands and two high-gain beams ($50-52 \mathrm{dBW}$) covering Europe, one with vertical and the other with horizontal polarisation. The present transponder plan is as follows:

High-gain beam Horiz.	High-gain beam Vert.
Teleclub $\quad 10.972 \mathrm{GHz}$	Eurosport $\quad 11.616 \mathrm{GHz}$
EBC or other 11.008 GHz	Telecom 1C prog.
3-Sat $\quad 11.055 \mathrm{GHz}$	$12 \cdot 542 \mathrm{GHz}$
NL-PTT, TRT 5	Telecom 1C prog.
$11 \cdot 135 \mathrm{GHz}$	$12 \cdot 584 \mathrm{GHz}$
Middle East service	Telecom 1C prog
11.554 GHz	$12 \cdot 625 \mathrm{GHz}$
Galavision/ECO	Telecom 1C prog.
11.595 GHz	$12 \cdot 708 \mathrm{GHz}$
Nordic channel 11.678 GHz	
BTI $\quad 12.521 \mathrm{GHz}$	Wide beam Vert.
BTI 12.563 GHz	Super Channel $10 \cdot 997 \mathrm{GHz}$ TV5 Europe/Worldnet
	11.070 GHz
	Sat $1 \quad 11 \cdot 153 \mathrm{GHz}$

Czechoslovak Transmitter List

The CT-1 relays used for transmitting the Russian first programme for troops have been redesignated OK-3 relays. The list is as follows: Ruzomberok R 221 kW ; Plezn R27 5kW; Kosice R27 1kW; Prague R41 17kW; Usti n. Lanem R42 1 kW ; Ceske Budejovice R49 28 kW ; Banska Bystrica R49 7kW; Bratislava R50 1kW; Ostrava R51 27kW; Zlin R51 1kW; Cheb R51 1kW; Brno R52 24kW; B. Stiavnica R52 lkW; Hr. Kralove R56 lkW.

UHF Aerials

Jaybeam, which recently ceased aerial manufacture, has licenced another company to continue production of certain models. The Multibeam X-director array is available in grouped versions as the JBX10 (ten bays) and JBX21 (21 bays), with peak gains of 13 and 14 dBd respectively. The high-gain, full-wave system (DY range) is available in DY5/10/20/28 versions. The DY28 is a massive 28 -element array some 4 m long with a peak gain of 18.3 dBd , in group A and W versions only. The other aerials are available in grouped or W versions. Contact your local aerial dealer for details.

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \& VCR.

$\star 40$ different patterns and variations.
\star Fully interlaced sync pulses with correct picture blanking.
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black
\star Chequerboard.

* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
* Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service. \star Also available with VHF Modulator.
Price of Kit
Case ($\left.10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}\right)$ app.
Optional Sound Module (6 MHz or 5.5 MHz)
£12.00
$\mathbf{8 3 . 9 0}$
£119.00
Post/Packing $£ 3.00$
Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
Ł In addition to colour bars R-Y, B-Y etc.

* Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
\star Backup service available.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£35.00. CASE £8.60. BATT HOLDERS $£ 4.20$.
MAINS SUPPLY KIT $\mathbf{E 5 . 8 0}$
(Combined P\&P £3.00).
VHF MODULATOR (CH I to 4) FOR OVERSEAS £6.80.

LINE OUTPUT TRANSFORMER TESTER

\star Saves time and money.
Checks short turns.
Simple to use.
Reliable.
Battery operated.
Pocket size.
PRICE $£ 20.00$
POST/PACKING $£ 2.50$

KITS \& PROJECTS

SAW IF AND TUNER UNIT complete and tested for video \& audio outputs $£ 28.50$ p.p. $£ 1.80$.
PAL DECODER KIT (Video to RGB) for Monitors $\mathbf{£ 2 7 . 0 0}$ p.p. £1.00.
PAL ENCODER KIT (RGB to Video) $\mathbf{£ 1 8 . 5 0}$ p.p. $£ 1.30$
CROSS HATCH UNIT KIT, Acrial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated. also gives Peak White \& Black Levels, can be used for any set. $£ 13.50$ p.p. 80p. (Alum Case $£ 3.20$ p.p. $£ 1.40$.) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p.

UHF SIGNAL STRENGTH METER KIT $£ 30.00$ Alum. Case £3.20. De Luxe Case $£ 12.00$ (Built \& Tested $£ 58.00$) p.p. $£ 2.50$. CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 35.00$ p.p. $£ 3.00$.

TV SERVICE SPARES

PHILIPS SPARES
G8 CHANNEL SELECTOR £2.50 p.p. $£ 1.50$.
KT3, K30 PANELS, tested, exchange, sound, power, bridge rect, frame, RGB $£ 7.50$ each. Decoder (Non-text) $£ 10.00$ p.p. $£ 1.50$.
G11 6 POS touch tune channel seleator (replaces old type) £18.00 p.p $£ 1.80$ G11 PANELS (tested), frame, IF, decoder $£ 12.50$ each. p.p. $£ 2.00$. Scan $£ 15.00$ p.p. $\mathfrak{E 2} .80$. Power tested exchange $\mathbf{£ 1 8 . 0 0}$ p.p. $£ 2.80$.

G11 PANELS EX-RENTAI, (untested) Scan, Frame, Decoder $£ 2.50$ p.p. £2. (0).
G11 IF PANEL (new) less Tuner £2.50 p.p. $£ 1.30$.
MANUALS K35, 2A, 2B, CP90 £3.50. KT3 £4.50, CTX-E, CTX-S, CF1 $£ 1.50$. MANUALS K35, 2A, 2B. CP90
KT4, K40, 3A $£ 4.50$ p.p. $£ 2.50$.
BACK UP BATT, 2.4 V £6.00, $1.2 \mathrm{~V} £ 3.20$ p.p. 80 p
K30, KT4, CTX-EHT Lead £3. 20 p.p. $£ 4.00$.

THORN/FERGUSON SPARES

9000 Series IF/Decoder tested $£ 10.00$ p.p. $£ 2.80$.
TX9 RFI Choke L64 E6.80 p.p. 80p.
TX9/TX10 Facia, control panel incl. infra-red receiver $\mathbf{5 . 0 0}$ p.p. $£ 2.0$
TX10 Focus control 88.50 p p. $£ 1.00$.
TX9/TX10 Saw filter IF panel $£ 5.00$ p.p. 80 p .
TX9 Ultrasonic remote control panel $\mathbf{£ 7 . 5 0}$ p.p. £2.50
TX9/10 Remote \& tuning 1515N £5.00 p.p. £1.80
TX9/10 Remote \& tuning 1508A (ind. SAA5012) £2.50 p.p. £1.80.
TX9/10 Remote \& tuning 1536 (incl. SAA5012. SL471) £3.50 p.p. £1.80
TX10 Stereo Audio Board £3.50 p.p. £1.80.
TX90 $20^{\prime \prime}$ Chassis. Brand new (untested) £25.00 p.p. $\mathfrak{£ 2}$.80
TX90 Mains TX $\mathbf{1 8 . 6 0}$ p.p. $\mathfrak{f 2 . 8 0}$.
TX90 14"Chassis complete \& boxed (untested) $£ 20.00$ p.p. $£ 2.80$
TX90 16" Dual Standard. New (untested) $£ 25.00$ p.p. $£ 2.80$.

IC SELECTION

(1)(0)	62.2	SAB 3037	¢15.81	TA76	${ }^{5} 5.80$	TDA2577	c.	TI	c. 8.80
N62	44.80	SAF 1032	54.50	TA76Y\%A	E6.	TDA257\%	c. 3.80	TDA	ca.se
444	£3.00	SAF1039	52.20	TBAI2	¢1.20	TDA2S79		TDA3	c8. 40
A780	f1.R0	47	E4.00	TBA	£2.20	TDA2581		TDA365:	c. 20
LA7520	57.20	SLi486	¢. 3.20	TB	¢2.20	TDALs81		TDA3653A	12.
LA7	${ }^{2} 3.50$	(4)	52.80	TB	12.20	TDA2S82		TDA3653B	20
2938	E5. ${ }^{10} 0$	SLI 430	¢1.80	TCA270	81.80	TDA2593	c2.M0	TDA 4.54	c3. 20
	¢14.	SLI 1432	81.20	TCAxM,	c6. 80	TDA2544	E.3.80	TDA4420	. 20
M 4918 BB	${ }^{66.80}$		¢1.20 51.80	TDA103	22.80	TDAzs	${ }^{6} 4$.	TDA4421	6.21
M494	E9, M 0	SN767us	11.8	TDAlu3	$\underline{82.40}$	TD	5	TDA+442	c6. 80
MC13021	55.	SN767us	¢9.	TDalor	¢1.90	TDa	11.91	TDA45	[5.80)
MDA2	E3.80	STK5325	26.40)	TDAl04	2.90	TD		TDAAS	[7.84)
MDA	c3.8	STK5332	E6.80	TDA 10 mz	¢			TDA4502A	¢13.50
ML237	E. ${ }^{\text {d }}$	STK	E5. 81	TDAlifo	52.20			TDA4513	65.80
ML23\%	E6.	ST	57.50	TDAliso	$\underline{52}$			TDA45	ct
ML. 926	c4. ${ }^{\text {M }}$ (1)	ST	56.50	TDA11M	¢2			TDA4tax	53.45
SAAIL2 4	¢5.40	STK5481	57.80	TDA1432P	55.70	TDA2670	23.20	TDA4601	12.80
SAA1025	$\underline{56.80}$	STK 7an	110.80		E2.80)	TDAzeku	c.3.8	TDA4610	. 80
Al	E3.50	STK 7	¢10.80	TD		TDazas	E3.80	TDA5510	c.mo
SAAI2SU	E. max_{1}	STR4	E7.80	TDAI7		TDA	[. 5 .51	TDAx15	54.80
A1251	¢6	TR	¢6. $\times 1 /$			TDA3(9)	54.20	TDAxik	c¢. 80
AAI293.12	E4.30	STR451	55.80			TDA3ult	66.80	TDARI	c3. 0_{0}
SAA.3127	55	STR4is	E5.80	TDajk		TDA3	$\underline{53.50}$	TDAY	${ }^{6} 3.80$
SAA	£2.80	STR +ic90A	c8.80	TDAIpre	$\underline{52.80}$			TDays 43	53.80
SAA	$\underline{56.8}$	STR40905	¢10.50	TDAly+	53.20			TDAY513	54.40
SAA	$\underline{5} 5$	STR+2II	c6. 80	TDAlus	£3.50			TEAl(\%)	E2.21)
A A	${ }^{6} 5.80$	STRS412	¢5.89	TDA215	E3.29			TEAl014	c3.50
SAA5630	65.90	STRSU163	5.50	TDA2270	¢2.80		E.5.50	tearioixa	20
AA5040	26.80	STR54041	¢6.80	TDA25 510	c6.80	TDA356ia	55.80	THSIOMN	\ldots
SAA 4650	26. 80	STR 5×41	¢13.50	TDA2548	55.80	IDA3562A	55.	THP474C432	AP-
SAAS230)	55.80	STR6120	65.00	TDA2576A	¢3.80	TDA3565	£3.80	81×9	¢12.00
SAB3135	c6.80	Ta7tiona	¢5.80	TDA2577	E4.81	IDA356\%	¢5.80	UPC137	55.00
IC p.p 50p									
VARICAP TUNERS: Grundig 8630 series $\mathbf{5 . 0 0}$ p.p. $£ 1.00$. U321, U322/									
U341/N. ELCl043 (equiv). SC4, VHF NSF203 £7.80 p.p. £1.80. UHF/VHF									
UV4 11 f	0.80	$343 £ 10$	p	1.00.					

PHILIPS G 9
\&12.80 THORN TX100 SP FST Yellow Spot £21.80
LOPT's p.p. $£ 1.50$
TRIPLERS: THORN 9000 £8. 80 p.p. $£ 1.50$.
UNIVERSAL (best quality) $£ 7.80$ p.p. $£ 1.50$
CONTINENTAL TVK \& BG RANGE (quote exact no.) replacements $\mathbf{£ 1 3 . 8 0}$ DECCA/TATUNG $£ 7.80$ p.p. $£ 1.50$.
6.3V CRT Boost Transformers for Colour \& Mono $£ 5.90$ p.p. £1.40.

455 CRYSTALS for Remote Control Handsets. 4 for $£ 1.00$ p.p. 50 p.
VHF to UHF Converters $£ 29.85$ p.p. $£ 2.50$.
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
Telephone 071-794 8751, 7947346
Fax 071-431 577
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
PLEASE ADD VAT 15\% TO ALL PRICES INCL P+P

TV Fault Finding

Reports from Philip Blundell, AMIEIE, J.S. Ruwala, Joe Cieszynski, Nick Beer, Mick Dutton, Ray Crockit, Hugh MacMullen and Stephen Leatherbarrow

Philips 27CE7593/43R (3A Chassis)

Versions of the 3A chassis with NICAM and PIP can suffer from spurious failure of the Wickman fuse 1624. Change it from an 800 mAT type to one rated at 1.25 AT , part no. 482225310075 . You may be lucky and find that it's in a socket! The fault symptom is no sound or vision: e.h.t. is present and a raster can be seen for a second at switch-off.
P.B.

Mitsubishi CT2117TX

Versions that have the later teletext panel, with an SAA5241 chip, can suffer from faulty crystals. Usually you'll find that the text rolls round the screen horizontally. Adjusting the trimmer VC7701 may cure the problem temporarily: if it recurs, fit a new 6 MHz crystal (X7702).
P.B.

Amstrad CTV1400

This set had two faults, colour flickering and flyback lines at the top side of the screen. I found it difficult to associate these symptoms, but a colleague suggested that I looked for a fault in the field timebase. A check on the voltage at the collector of the field output transistor Q702 produced a reading of only 32 V instead of 62 V . C739 $(100 \mu \mathrm{~F})$ was open-circuit, a replacement curing both faults. J.S.R.

Sony KV2200

This set would loose colour at random. The 12 V supply to the chroma chip was low at 9 V and D201 in the 12 V regulator circuit was getting hot. After fitting a new 12 V regulator transistor the fault had cleared and there was improved picture quality. This is similar to the fault we've all had on the Philips G11 chassis, when the 12 V regulator chip gives low output.
J.S.R.

Telefunken 615 Chassis

We had to replace the line output transformer in this set because of arcing, which had damaged the TBA120T intercarrier sound chip. The same fault occurred on another of these sets but this time replacing the TBA120T chip failed to restore the sound. A check at pin 8 of the sound module indicated that it was in the mute state. This took me back to the TDA1940 timebase generator chip, and when pin 7 was disconnected as a check sound burst from the speaker.
J.S.R.

Grundig 8600 (CUC740 Chassis)

The sound couldn't be turned down and the display indicator was stuck on 88 . When the MC144111 chip IC2335 on the tuning "sitonia" was replaced normal operation was restored.
J.S.R.

Saisho CM145R

This set was dead with no a.c. supply to the main panel as the relay switch didn't operate. There was d.c. at both sides of the relay coil but the switching transistor failed to
conduct because of the lack of drive at its base. The set came to life when the M491BB1 control chip was replaced.

I had a similar fault with an ITT Model TX3447. The relay didn't operate because the CCU-SEL-03C control chip had failed. In this set the BU508A line output transistor also had to be replaced as it had gone short-circuit.
J.S.R.

Philips KT3/K30 Chassis

The trip action in these sets is very sensitive, reacting to the smallest disturbance on the 129 V rail. As a result these sets are prone to momentary tripping when there's a sudden change in the beam current. Such changes may occur because of a sudden change in the picture content from dark to bright or because of a small e.h.t. flashover. The problem is due to negative spikes being generated on the current sensing line when there's an h.t. transition. These spikes appear at the input to the excess-current trip (at pin 6 of the TDA2581/2 chopper control chip) which then operates. As the trip recylces, the receiver comes back on after about a second.

To cure the problem Philips introduced a modification: fit a diode, BY206 or similar, between pin 6 of the chip and chassis, with its cathode to pin 6 . The trip still functions under normal fault conditions. You can check this by touching the line output transistor's collector lead with an insulated screwdriver, when the set should trip once. E.H.T. flashover is a problem that should be dealt with at source, but I've had cases where intermittent tripping has persisted after fitting a new tripler or e.h.t. cable, with the arcing reduced to an undetectable level. In such cases adding the diode has provided a cure.

I could mention numerous incidents, like the case where a customer complained that his set tripped only when a particular advertisement was screened. The advertisement concerned was for Kodak cameras and showed a flash photograph being taken. Needless to say I didn't see this particular fault, but the complaints ended when the extra diode was fitted.
J.C.

Ferguson TX10 Chassis

The complaint was of an intermittently dead set, but it was some time before I saw the fault condition. When it did finally appear the cause was traced to a hairline crack in the print next to the solder joint at the input to the 12 V regulator IC621. I'd actually resoldered this joint in an earlier attempt to cure the problem but the crack was so close to the joint that it didn't show up.
J.C.

Toshiba 285T8BZ

I'd been warned that this set intermittently failed to start from standby when hot. On the bench it wouldn't start at all. Checks revealed that there were about 1,000 back securing screws, also that the standby/on switching worked to the extent of the opto-isolator DR01 being turned on, but the power supply wasn't having any of it. The voltage at the collector of the phototransistor in DR01 was negative instead of 7.3 V . A d.c. check at the other end of R814 brought the set to life. It wasn't the meter either, just
the probe was enough to do it. So where's the open-circuit high-value resistor? R810 ($270 \mathrm{k} \Omega$) checked high, a replacement putting matters right.
N.B.

Ferguson 14M2

This brand new stock portable intermittently produced low signals. The fault could be instigated by tapping gently around the tuner. I couldn't find the dry-joint/break so a new tuner had to be fitted.
N.B.

B and O MX3000 (314X Chassis)

Much of this chassis is similar to the Ferguson ICC5, though this one retains a lot of multi-standard capability. The fault was that from cold only the lower stations could be tuned in - up to ITV in fact, which around here is ch. 59. Above this, instability set in - severe hum producing black-and-white bars across the screen, with no sound. After a short while all channels would be affected. Disturbance on the tuning voltage rail seemed a likely explanation. I was going to confirm this by means of a meter check at pin 11 of the tuner, but this also cured the fault as there was a high-resistance connection here because the pin was tarnished. Cleaning and resoldering the pin cleared the fault. A clue to the cause of the fault was the fact that slight drift was also discernible when the fault occurred.
N.B.

Radionette CM6

What am I doing looking at an ancient set like this? Not so: the set gave a sparkling performance before it went dead. Now I was never familiar with these sets but the cause of the problem was not hard to trace - it was the e.h.t. tripler. Nice to have a straightforward, old-fashioned fault for a change.
N.B.

Baird 8233 (Ferguson TX10 Chassis)

This set has search tuning of the single press-button type. The set locks to each station it comes to automatically, until the button is pressed again. In this case however if the set was left switched off for several hours the memory would die on channel one only. My thanks to Roger of SEME for his advice to change D345. Apparently it's a common problem.
M.D.

GEC C4001

This 14 in . colour portable was definitely of ITT origin but we didn't recognise the chassis. The problem was that the line hold was slightly off. We found that the line oscillator is at the top corner of the end panel, were we normally expect to find the power supply. Much time was spent checking components here before we discovered that the line discriminator circuit is on the main board. The cause of the trouble was that R514 and R515, both $2 \cdot 7 \mathrm{M} \Omega$, had gone open-circuit.
M.D.

Sony KX20PSI

This set had come in from another dealer after he'd spent many hours trying to find the cause of a double intermittent fault. The symptoms were intermittent field roll and faulty chroma - similar to a delay line fault. After the set had run for several hours the symptoms appeared, as described. What the other dealer had failed to note was
that this is a multistandard set and that it was going into the NTSC chroma mode, with no PAL switching, while the field timebase was trying to run at 60 Hz . Switching between standards is carried out in the CX7916 chip IC503, which turned out to be the cause of the problem.
M.D.

Philips CP90 Chassis

We've had several of these sets with no picture due to failure of the first anode supply. In every case the cause has been an internal defect in the line output transformer.
M.D.

GEC C2295 (Tatung 160 Chassis)

This set wouldn't start. The power supply was o.k. but there was no line drive. We found that there was no 12 V supply as R508 and R509 (both $12 \mathrm{k} \Omega$) had gone opencircuit, removing the base bias from the 12 V regulator transistor.
M.D.

National Panasonic TC361

This elderly colour portable suffered from intermittent field roll and touchy tuning. A common cause of this problem is $\mathrm{C} 115(15 \mu \mathrm{~F})$ drying out. Changing it didn't work on this occasion but when two other electrolytics in the same area were replaced, $\mathrm{C} 118(1 \mu \mathrm{~F})$ and C 139 $(0.47 \mu \mathrm{~F})$, the problem had been cured.
M.D.

Skantic/Luxor 3781 (180 Chassis)

The problem with this colour portable was slightly reduced width and height with a bright line across the screen about 2.5 cm down from the top. All voltage outputs from the chopper power supply were low. We checked back to the switch-mode section and found that RN28 was open-circuit. Replacing this $560 \mathrm{k} \Omega$ resistor restored the set to normal working order.
R.C.

Triumph CTV8209

This popular 14 in . portable took quite a while to sort out - every now and then it failed to start. If any part of the chopper chip was touched electrically the set would immediately start up. After many days I found that R119, which is connected to pin 4 of the chip, had increased in value from $150 \mathrm{k} \Omega$ to about $270 \mathrm{k} \Omega$. Fitting a replacement cured the problem. Incidentally this set is very difficult to tune with the existing tuning head and fitting a replacement makes very little difference.
H.MacM.

National Panasonic TC430

This set had the no results symptom but the power supply produced the 113 V h.t. The chopper transformer also produces a 16 V supply for the AN5 256 audio output chip, so to be thorough we checked this. No problems here. Our next check was at the collector of the line driver transistor, where the voltage reading was high at 110 V . This suggested that there was no drive, which was soon confirmed. The drive comes directly from pin 6 of the AN5435 chip IC501 whose supply is derived from the 12 V regulator IC802. Since the input to this regulator comes from the line output transformer a start-up supply is required. A study of the circuit diagram revealed a likely candidate in the form of R 512 , a $10 \mathrm{k} \Omega$ resistor that
feeds pin 7 of IC501, where we expected to find around 9 V . The reading was only 1 V and R 512 , which is connected to the 113 V line, was very warm indeed. A resistance check from pin 7 of IC501 to chassis produced a short-circuit reading that disappeared when the pin was lifted. A new AN5435 jungle chip made the set happy again.
S.L.

Teletopics

CABLE TV

The Cable Authority has awarded the final three franchises, for Macclesfield and Wilmslow, Newport and the Wirral, bringing the total up to 135 . On April 1st however only 92,974 homes had been connected to a modern broadband cable system, though such systems were available to 599,737 households. The total number of homes covered by the 135 franchises is over 14.6 m . If all the networks are built the total investment will be of the order of $£ 4 \mathrm{bn}$.
More than twenty cable franchise holders have been given till the end of the year to complete their licensing arrangements - licences have to be obtained from the DTI and the Cable Authority once a franchise has been awarded. Action is being taken by the Director General of Telecommunications against four cable companies, in Coventry, Glasgow, Guildford and Westminster, that have failed to complete their networks though they were amongst the first to receive franchises, in November 1983. Notices setting our completion timetables are being published under the Telecommunications Act. The Cable Authority is to be wound up at the end of the year, when the Independent Television Commission will take over responsibility for all commercial TV.

New TV audience figures published by the Cable Authority, based on a study carried out by Continental Research, show that cable and satellite channels now account for over a third of all viewing in broadband cable homes. Children's viewing of the new channels scores highly: their share of viewing in the early morning and the popularity of channels such as Sky One and Children's Channel take the new media's total at that time to 77 per cent. After BBC-1 and ITV, Sky Movies was the third most watched cable channel amongst adults.

SATELLITE TV

According to viewer research carried out by the Broadcasters' Audience Research Board, Sky Television has a $30 \cdot 8$ per cent share of viewers in homes able to receive the satellite services. The figures given for BBC-1 and ITV are 20.7 and 26.9 per cent respectively. It's rather early to come to firm conclusions about new viewing habits since many figures, based on relatively small samples, are at present being put about. There seems to be no doubt however that Sky Television is doing well.

BSB has got off to a slow start due to shortage of equipment. According to Kleinwort Benson Securities, BSB could make a loss of some $£ 370 \mathrm{~m}$ in its first year. Rupert Murdoch expects Sky Television to have made a $£ 300 \mathrm{~m}$ loss during its first three years. KBS says that Sky’s running costs are half those of BSB. There have been one or two teething troubles with early BSB equipment. In particular a faulty batch of access control modules was supplied to all four manufacturers. There have also been interference problems - an example is quoted in Roger

Bunney's column on a later page. Sky Movies is to transmit for 24 hours a day from September 1st.

The Department of the Environment has issued a consultation document outlining proposals for changes in planning regulations covering satellite TV equipment. Interested parties have until September 7th to comment or put forward suggestions. New guidelines are expected to be issued to local authorities by the end of the year.

The IEEIE, Savoy Hill House, Savoy Hill, London WC2R 0BS (071-836 3357) will hold its third annual conference in a series on DBS at the IBA Conference Hall, Brompton Road, London SW3 on October 18th and 19th. The two-day non-residential conference is intended for those engaged in the design, manufacture, installation and maintenance of satellite TV receiving equipment. Contributions to the programme will include papers on receiver design, aerials, encryption, broadcasting standards and the installation of BSB and Sky receiving equipment. The cost is $£ 210$ for the two days or $£ 105$ for one day only, plus VAT.

DISH PAINT

HRS and SEME have both introduced paint specifically for satellite TV dishes. HRS's version is described as a unique spray paint specially for satellite dishes. At present it's available in brick red or stone, but other shades are to be added. SEME's coating system, called Vellox, is described as a unique coating system that provides improved reception in poor weather conditions. It's a water-repellent coating that was originally developed for the US Air Force's radar equipment in Alaska in order to keep snow and ice away. In doing so it will maintain reception free from sparklies under adverse weather conditions. Surfaces treated with Vellox refuse water to the extent that a visible air layer can be seen between the water and the treated surface. It's a two-component system consisting of a primer and an aerosol topcoat. Other uses include the protection of PCBs - and even cardboard packaging.

SATELLITE TV HARDWARE

The interesting range of BSB support products available from Syntronix Systems, St. Matthews House, Brick Row, Darley Abbey, Derby DE3 1DQ (0332 553 024) includes a BSB monitor/VCR adaptor which enables MAC signals to be viewed in RGB form while at the same time providing an AV feed to a VCR, AV amplifier or video sender. There are various models with different features, e.g. a colour saturation control or a sharpness control. The retail price is $£ 49.95$ plus VAT.

Longreach Marketing Ltd., Riverside Business Park, Lower Bristol Road, Bath, Avon BA2 3DW (0225 444 894) has been appointed distributor for Finlux and NEC satellite TV equipment. The Finlux range includes the new SR3000 receiver whose features include stereo sound, 60 fully-programmable "favourite status" channels, a built-in aerial positioner, two dish inputs, MAC capability and decoder compatibility. There are six different dish packages from 45 to 120 cm , both fixed and motorised. The agreement with NEC allows supplies to go only to Longreach customers who do not infringe on existing NEC dealers' territories. The range includes the up-market 3022 system, with 65 or 80 cm dish packs. Also available is a motorised up-grade kit.

NEC is to introduce an integrated VCR and satellite receiver - it will combine a Nicam stereo VCR and an

Astra-capable receiver. The Model number is NS7000K.
Siemens has developed a SAWF, type Y6901, for use as a bandpass filter in satellite TV receivers. It's intended to define the bandwidth at the second i.f. of 480 MHz , the bandwidth being 27 MHz at the -3 dB points. The insertion loss is typically 17 dB .

T. POWELL

Our regular advertiser T. Powell has had to go into hospital for a major throat operation and as a result his business will be closed for a few months. We wish him every success.

NEW FROM AMSTRAD

Amstrad has announced a couple of particularly intersting products. The latest addition to the 8000 series of VCRs, Model VCR8800, features a Nicam sterco decoder and Hi-Fi recording and playback at a retail price of $£ 369.99$. Due later this year is the Double Decker VCR, which as the name suggests includes two decks. The suggested retail price will be $£ 399.99$. It offers various options not available before, the most important being that recordings can be made on one deck while watching a tape on the other, two different TV programmes can be recorded on different tapes simultaneously, etc.

STEREO SOUND

The Durris IBA transmitter and its relays are now providing a Nicam sound service. On the radio side the IBA has started medium-wave stereo test transmissions from its Foxhall Heath transmitter at Ipswich. They are the first in the UK to use a.m. for stereo. The C-QUAM system being used was developed by Motorola.

A \& R Cambridge and Eldon Technology of Leeds have produced a Nicam tuner, Model Delta 150, that can store up to eight TV channels. There are r.f. and composite video BNC output sockets and scart sockets. The tuner can be controlled by an IR remote control handset. A \& R claims that the tuner offers improved performance through the use of dual SAWFs to separate the sound and vision signals, parallel i.f. circuitry and separate synchronous PLL detectors. The price is $£ 349.90$.

MPEG MEETING

The Moving Picture Experts Group which was set up to develop an international standard for digital video coding recently met in Portugal. Organisations that attended include IBM, Philips, Matsushita, Sony, Thomson, the IBA and British Telecom. The group was formed in May 1988 and began testing fifteen proposed coding systems in October 1989. The front-runner is the discrete cosine transform algorithm used by the CD-I format. A draft proposal is due this month and the findings are expected to be published in the first half of 1991.

MORE VIDEO-8 COMPANIES

Thompson is to market Video-8 camcorders in addition to its VHS and VHS-C models. The Video- 8 machines will be launched in the USA this autumn and will be marketed in Europe in the Saba range by the end of the year. Hitachi is also to introduce 8 mm camcorders. The first models will be launched in Japan and the USA this year, with a European launch in 1991. These announcements follow survey results suggesting that Video-8 is now the leading camcorder format in Europe

D-MM GOOD VALUE!

Cirkit's new range of Digital Multimeters offer a quite unbeatable combination of features and value:

- Ranges include: frequency. capacitance and temperature
- Housed in strong ABS cases
- Overload protection on all ranges
- Full one year warranty
- $31 / 2$ digit. auto zero, auto polarity LCD, plus low batt indication
- $\mathbf{2 0 0}$ hour battery life
- All meters supplied with test leads, battery and manual

TM5315B

- Remarkable value
- 18 ranges
- 10A dc current

Price $£ 19.99$
dc volts: $200 \mathrm{mV}-1 \mathrm{kV}$ ac volts: $200 \mathrm{~V}, 750 \mathrm{~V}$ dc current: 200uA-10A resistance: $200 \Omega-20 \mathrm{M} \Omega$

Continuity and diode test Basic dc accuracy: $\pm 0.8 \%$ Size: $128 \times 72 \times 33 \mathrm{~mm}$

TM5375

- Frequency measure ment to 20 MHz
- ac/dc current to 10A
- 24 ranges
dc voits: $200 \mathrm{mV}-1 \mathrm{kV}$ ac volts: 200 mV -750V dc current: 200uA-10A ac current: 200uA-10A

Resistance: $200 \Omega-20 \mathrm{M} \Omega$ Frequency: $2 \mathrm{kHz}-20 \mathrm{MHz}$ Continuity, diode \& HFE test Basic dc accuracy $\pm 0.5 \%$

Price $£ \mathbf{} \mathbf{3 6 . 7 5}$

TM5365

- 30 ranges
- Frequency 8 capaci tance measurement
- Compact size

Price $£ \mathbf{} \mathbf{3 7 . 9 0}$
de volts: $200 \mathrm{mV}-1 \mathrm{kV}$ ac volts: $200 \mathrm{mV}-750 \mathrm{~V}$ dc current: 200uA-10A ac current: 200uA-10A

Resistance: $200 \Omega-2000 \mathrm{M} \Omega$ Frequency: $2 \mathrm{kHz}-200 \mathrm{kHz}$ Capacitance: 2 nF -2OuF Logic. continuity. diode and HFE test

TM175

- Freq. measurement to 10 MHz
- Capacitance measure ment 1 pF to 20 uF
- 39 ranges

Price $£ 57.49$
dc volts: 200 mV - 1 kV ac volts: 200 mV - 750 V dc current: 200uA-10A ac current: 200uA-10A Resistance: $200 \Omega-2000 \mathrm{M} \Omega$

Capacitance: 2 nF -20uF Frequency: $2 \mathrm{kHz}-10 \mathrm{MHz}$ Continuity, diode. HFE. logic \& LED test.

TM135

Temo. measurement

- Capacitance measurement - 40 ranges
dc volts: $200 \mathrm{mV}-1 \mathrm{kV}$ ac volts: $200 \mathrm{mV}-750 \mathrm{~V}$ dc current: 200uA-10A ac current: 200uA-10A

Resistance: $200 \Omega-2000 \mathrm{M} \Omega$ Temperature: $200^{\circ}-750^{\circ} \mathrm{C}$ Capacitance: $2 \mathrm{nF}-20 \mathrm{uF}$ Diode. HFE \& continuity test

Price $£ 45.95$

TM115

- 0.5% accuracy
- Transistor HFE test
- 26 ranges

Price $£ \mathbf{3 3 . 6 7}$
dc volts: $200 \mathrm{mV}-1 \mathrm{kV}$ ac volts: $200 \mathrm{mV}-750 \mathrm{~V}$ dc current: 200uA-10A ac current: 200uA-10A

Resistance: $200 \Omega-2000 \mathrm{M} \Omega$ Continuity. diode \& HFE test Basic dc accuracy $\pm 0.5 \%$

Prices inc VAT. lease add 1.00 for p\&p

Cirkit Distribution Lfd.
Park Lane, Broxbourne, Herts EN10 7NO. Telephone (0992) 444111.

Grundig CTV Service Notebook

David Botto

Plenty of Grundig TV sets come into our workshop, including many older models. They are well-made, solid sets and it looks as if they will continue to give good service for many years to come. The following notes summarise some of our experience with these sets. I hope that the information will be of help to other readers of Television it's the result of a lot of suffering, frustration and expensive phone calls! To make things easier for you I've included the names of some of the panels in both English and German - this is because they may not be marked in English.

GSC200 Chassis

Symptom: The receiver works well and is faulty only when the remote control handset is used.
Cure: Suspect Telepilot preamplifier 290304-015-01 and tuning module 29502-003-21. You may have to replace both.

Symptom: The e.h.t. voltage is present but no light shows at the front of the TV set and the L, F and H voltages are absent.
Cure: The $47 \mathrm{k} \Omega, 4 \mathrm{~W}$ wire-wound resistor R633 is opencircuit.

CUC220 Chassis

Symptom: It's impossible to obtain correct horizontal centring.
Cure: There's an official modification - reverse diode D521 (BA157). If this fails, remove D521 from the circuit.

CUC720 Chassis

Symptom: Set trips and you can hear a relay shuddering. Cure: Replace diode D2772 on baustein (module) 29504-007-01.

Model 8232
Symptom: Set dead with B+ voltage absent.
Cure: The B+ feed resistor R652 (12 Ω) is suspect. Change it - it's the little, hard to get at one near the tuner.

Symptom: Set dead. The numbers light but there's no e.h.t.

Cure: Remove diode Di505 - with the mains supply unplugged! If the set now comes to life, suspect in the following order R504, R510 and L508. Then check C505 for leakage.

Note that with this model the point labelled C on the line output transformer should record a voltage of 56 V d.c. with respect to chassis. This voltage is critical - the set won't work if it's incorrect. To adjust, use the potentiometer on the Regel Baustein (regulator panel).

Symptom: Set works o.k. then cuts out.
Cure: Change thyristor Ty503. If the fault persists, carry out the following official modification. Connect in parallel an $0 \cdot 1 \mu \mathrm{~F}$ capacitor and a $1 \mathrm{k} \Omega$ resistor between the anodes of D504/5 and chassis.

Model 7150

Symptom: Field collapse and reduced horizontal scan. The
field scan transistor and field timebase module are both o.k.

Cure: Replace diode D1627 in the EW (Ost/West) module.

Symptom: Intermittent start-up.
Cure: this can be due to the diode encapsulated with the 17153 thyristor going open-circuit. Replace the thyristor. This fault will show up on your component tester!

Symptom: East/west fault.
Cure: Replace both SKE4F diodes on the EW (O/W) panel. Only one diode will usually be found open-circuit but both must be replaced.

Model 6232

Symptom: Numbers alight but no picture.
Cure: Suspect the 18Ω resistor connected to the bridge rectifier diodes.

Model 6011

Problem: The red/black wander lead tends to fall off and it's difficult to find out where it should be connected.
Answer: It fits on to connection Z9.

Models 6210/6610

Symptom: Small picture and the width control doesn't work.
Cure: Replace the SKE2E diode Di514 in the Regel Baustein (regulator panel). Unofficial replacement is a Sony SID30: it works well and is very reliable.

Model 6010

Symptom: Cause of wriggling line jitter on verticals and other lines is hard to track down.
Cure: Replace R504 ($39 \Omega 9$ which is open-circuit. It's in parallel with diode Di504 (1N4004). Check this diode too.

Model 4415 (GSC100 chassis)

Symptom: The set goes dead after about half an hour and the wire of fusible resistor R607 is found to be unsoldered. Cure: Replace thyristors 17052, 17053 and 17127. It's important to renew the insulating washers at the same time.

With this model the voltage at connection C on the line output transformer should be 49 V d.c. with respect to chassis. The adjustment potentiometer is on the Regel Baustein (regulator panel).

Model 2230

Symptom: The line oscillator is o.k. but there's no line drive to the output thyristors.
Cure: Replace the corroded screened cable that goes from the oscillator to the output stage.

Model 1645

Symptom: Set cannot be switched on with the remote control unit but is o.k.
Cure: Suspect R607.
Symptom: Remote control apparently faulty.

Cure: Suspect the Telepilot receiver and the Abstim Baustein (tuning module). One or both may need to be replaced.

Component Equivalents

Some of the devices used in Grundig sets can be difficult to obtain. To save you time when this occurs here are a few equivalents.

The GD241 transistor used in the field output stage can be replaced with a BDY81 or a 2 N5296.
The 17053 thyristor can be replaced with a Toshiba SG087AR. Both devices contain an internal diode.

The BSTC1233 can be replaced with a 17127.
The 17089 thyristor can be replaced with type 8309-5070631, but it must be remounted.

Four separate BY127 diodes can be used to replace a mains bridge rectifier.

Test Report: The Cirkit TM175 DMM

Nick Beer

Cirkit Distribution has avilable a comprehensive range of competitively priced digital multimeters. I decided to take a look at an example and was sent the top-of-of-range Model TM175 for review. After a period of use any reservations I might have had have been dispelled.

The range consists of six models, starting with the basic specification Model TM5315B at about $£ 17.38$. The TM175 is priced at $£ 49.99$. VAT has to be added to these prices, but there are generous bulk quantity discounts. With all models the specification is impressive considering the price.

On Test

The TM175 comes well packed in a box that could be used for resale purposes if you sell meters. Its plastic case is bright yellow in colour, and whilst it appears to be very tough it will probably start to look a bit grubby with average workshop use - this has happened to a yellow Pantec meter I've used for some years. Whether this matters or not is largely a matter of personal taste.

Naturally every possibility cannot be assessed during a short bench test. The meter has 39 ranges, i.e. it's not auto-ranging. I'm used to auto-ranging meters, but once you remember that it's not of this type flicking up or down a range becomes automatic. The ranges cover 200 mV to 1 kV d.c. and 750 V a.c., $200 \mu \mathrm{~A}$ to 10 A d.c. and 200 mA to 10 A a.c., 200Ω to $2,000 \mathrm{M} \Omega$ on the resistance ranges, 2 nF to $20 \mu \mathrm{~F}$ with the capacitance ranges and there's a frequency counter that goes up to 10 MHz . The lower values quoted represent the lowest range f.s.d.s. There are also a continuity beeper (under 200 2), an hfe measurement, LED and diode testers and a logic indicator. The latter produces an arrow head either upwards or downwards to indicate logic state: if low it also beeps, allowing "eyes-off" testing. The meter has sockets for connection of capacitors being tested - these must first be discharged of course - also for diodes and transistors as well as the common, low and high current and general test lead connections. The next model down in the range lacks the frequency counter but has two temperature ranges.

Mechanical switches are provided for a.c./d.c. switching, power switching and high/low trigger level switching for the frequency counter. These switches are small and it's possible that with very heavy use they could be damaged. The probes are well made and have welcome sharp points for digging into solder and corroded component legs.

A great deal of thought was obviously given to the design of the meter. The set of ranges is extremely useful for field servicing. Some jobs that couldn't be done previously in the field can be undertaken - by using the frequency counter for example. In this mode it may not be
suitable for all applications because of meter loading with the normal test prods, so a frequency counter with scope-type probe will still be needed.

There are several nice touches. For example the bench stand is held securely against the back when not in use to prevent it flopping about aimlessly: it can be unclipped and fitted farther up the back to provide a hanger to suspend the meter. The battery cover not only clips but is also bolted, which will prevent some slip-ups. I hope that the battery contracts last longer than in my Pantec meter these lasted for about six months before I had to modify them to make them work!
The range indicators are well protected to prevent the information being lost. The range selector knob is plain yellow with the indicator bar running across its diameter. A slot at one end indicates the range. It's difficult to define - a strip of red paint in the slot would help. The display is rather smaller than I've been used to but is perfectly

adequate. As is only to be expected with such a reasonably priced unit, there's no bar graph.

The meter performed beautifully on test. It was very easy to use considering the number of ranges. To start with we were rather dubious about the frequency counter, but when it was checked against our Racal unit we found that it had a faster response and a perfectly acceptable accuracy. Having a capacitor tester is a real boon. Previously the best we could do was to carry out a resistance check to see a capacitor charge. This doesn't tell you much with a
small-value capacitor of course.
I feel that Cirkit has come up with a range of real winners with these meters. For the price the TM175 offers exceptional quality and features. You can't expect the build quality of more expensive machines such as those produced by Fluke, but the test unit gave no cause for concern on this score. I wouldn't hesitate to recommend the unit to anyone in the service industry. My thanks to Cirkit Distribution, Park Lane, Broxbourne, Herts EN10 7 NQ for providing the test unit.

NICAM Digital Stereo Sound

Eugene Trundle

For many years sound was the "poor relation" in television. Most TV sets had a tiny, often side-mounted loudspeaker which was driven by a barely adequate amplifier. The situation remains much the same with many TV designs. But the advent of hi-fi VCRs and the integration of audio and video equipment has in recent years led to a great deal more attention being paid to "with-picture sound". The f.m. TV sound system that came into use with 625 -line transmissions has served us well, providing quality sound to which receiving equipment seldom does justice. But it's incapable of carrying stereo, and various other shortcomings become noticeable when it's processed by high-quality receivers, recorders, amplifiers and loudspeakers.

Stereo TV sound has been available in W. Germany and Japan for some years. The systems used in these countries employ analogue modulation of an audio subcarrier or a second carrier by a stereo-difference signal - the systems are in many ways similar to the technique used for v.h.f.-f.m. radio broadcasting. Encoding and modulation systems of this type don't fit easily alongside a video signal in the tightly packed broadcast bands however, and many compromises are necessary.

Research and development by the BBC led to the publication in 1986 of a specification for a radically different TV sound system for broadcasting. It takes full advantage of modern digital technology and exploits the ability of chip manufacturers to mass-produce very complex digital i.c.s at low unit costs. In short, it represents the current "state of the art". Setmaker Ferguson Ltd. did a great deal of decoder design work, which culminated in the Texas Instruments' single-chip demultiplexer that's currently used in many TV and VCR Nicam designs. The system is officially known as NICAM 728 - Near Instantaneously Companded Audio Multiplex, the 728 referring to the data rate.

Digital Sound

Modern sound systems are based on the use of digital technology. The first example that came along in the domestic electronics field was the compact disc (CD) which was introduced by Philips and Sony in 1982. Pulse-code modulated (PCM) sound was first introduced in the video field with the Video-8 format. We will soon have more record and playback digital audio technology in the forms of VHS-PCM and R-DAT.

Audio signals must start and end in analogue form, i.e.
what goes into the microphone and comes out of the loudspeaker is a sound pressure wave. Conversion to digital form, by quantisation (sampling the audio signal at regular intervals and assigning to each sample a digital value), is done to overcome deficiencies in the intervening systems and equipment. When reproduced, the quality of digital sound, and particularly its signal-to-noise ratio, largely depends on the number of quantisation levels used. The ultimate, as used in the CD and R-DAT systems, is 16 bits, giving over 65,000 values each representing a signal amplitude level. A 16 -bit signal would require a wideband channel for transmission however. As there is not room to accommodate such a signal in the broadcast TV bands the Nicam system uses 10 -bit words. Ordinarily, these would provide a signal-to-nose ratio of about 60 dB . An improvement is achieved by continuously "moving the baseline" as it were. This gets close to the 84 dB signal-to-noise ratio provided by a 14 -bit system. Just how this is done will be explained later.

The 32 kHz sampling rate used by the Nicam system provides a frequency response of $0-15 \mathrm{kHz}$ in two channels for stereo. Separation between the two channels is total, so that dual-language sound tracks can be broadcast without crosstalk. The Nicam system can carry data in one or both channels and is completely separate from and independent of the existing f.m. sound channel at 6 MHz (system I). Before it was adopted the Nicam system had to be tested under many different sets of conditions. It proved to be extremely rugged, providing high-fidelity stereo sound even when the signal is so weak that the picture can hardly be locked.

System Overview

Many of the processes and techniques that the Nicam system uses are common to those employed by the compact disc system. Thus readers who are familiar with the CD system - primed, perhaps, by Joe Cieszynski's excellent series of articles in this magazine (March 1989 July 1990) - will have little trouble in understanding and servicing Nicam equipment. Fig. 1 provides an overall view of the system, which we'll describe in outline before going into detail.

The studio sound feeds for the left and right channels are first pre-emphasised and passed to an analogue-to-digital converter which produces 14 -bit audio samples ("words") at a sampling rate of 32 kHz . These samples are then fed to a compressor which reduces the bit rate to 10 per word, effectively extracting the ten most useful bits and discard-

Fig. 1: Block diagram of the Nicam system, (a) at the studio/transmitter end, (b) at the receiver end.
ing the rest. At this stage an error bit is added for error checking and correction in the receiver. In the following interleaver stage the bits are shuffled like a pack of cards. This is done to distribute the effects of propagation errors or interference when the original order is restored at the receiving end. Scrambling is then done by adding to the interleaved data an effectively random data stream, so that the sidebands of the transmitted Nicam signal have no strong, fixed-frequency components that could cause interference.
Modulation comes next. For system I the Nicam subcarrier is at 6.552 MHz . It's phase modulated by the data pulses, using the DQPSK system that we'll describe later. With digital signals phase modulation is economical of bandwidth, a factor that's a key to being able to squeeze yet another signal into the tightly-packed 8 MHz slot available for a system I TV channel. The Nicam carrier is added to the 6 MHz f.m. sound carrier fed to the transmitter, where it joins the vision carrier (at a level of -20 dB relative to the peak vision carrier level) on its way to the transmitting aerial.

At the receiver the tuner converts the Nicam carrier to an i.f. of 32.95 MHz . This is demodulated and selected by a filter for application to the first section of the Nicam decoder, the DQPSK demodulator. The Nicam signal emerges from this as a data stream. It then undergoes a series of processes that reverse those carried out at the broadcasting end. First comes a descrambler which subtracts from the data stream the random data added at the transmitter to smooth out the sidebands. De-interleaving, in accordance with a simple codebook held in memory, then takes place. As a result the order of the original $10+$ 1 bit words is restored. The words are next expanded to 14-bit form in accordance with a scale factor transmitted with the data. Error correction on the basis of the parity bits is then undertaken. At the end of this decoding process we have a real-time data stream of 14 -bit words, containing information for both the left and right sound channels.

It remains to convert the data back to analogue form, using a DA convertor, then to filter the result to obtain the original sound signals. User controls are incorporated into the audio amplifiers, whose design is critical if the low distortion and high signal-to-noise ratio of the transmitted signal are to be maintained. The performance, rating and positioning of the loudspeakers are also crucial to the realisation of the full potential of Nicam sound.

An Incongruity

The incongruity with many types of programme of having this wide, high and full-bodied sound alongside the necessarily limited picture area is something we won't dwell upon here. The system comes into its own with concerts of any type, and with any Nicam programme the larger the screen the better. In one jump the TV sound system has got itself several strides ahead of the picture transmission and display capabilities.

System in Detail

Although it's not essential from the servicing point of view to understand what goes on in the studio and the encoding and even the decoding processes, a reasonable knowledge of how the system works does help with fault diagnosis and Nicam decoder setting up. Nicam decoders are now becoming a common feature in top-of-the-range TV sets and VCRs.

Pre-emphasis

First, pre-emphasis. No sound or vision transmission or recording system is complete without a pre-emphasis system, which gives a boost to the high-frequency components of the signal. During reproduction the balance is restored by reducing the amplitude of the higher frequencies: noise is reduced in proportion. The pre-emphasis/deemphasis characteristic follows the CCITT J17 recommendation, with a boost of 6.5 dB at 800 Hz . Fig. 2 shows the characteristic curves.

Sampling and Quantisation

The sampling rate for DA conversion is 32 kHz , which means that digitised samples of the original analogue sound waveform occur at $31.25 \mu \mathrm{sec}$ intervals. To prevent aliasing (this occurs when the lower sidebands of the

$1 L$ - Bits removed in compression process
$X=$ irrelevant bits
Fig. 3: The digital compression system -14 to 10 bits. The bits in the shaded areas are deleted during transmmission: those in the wedge on the left can be reconstituted at the receiving end.
sampling frequency overlap with the upper end of the audio frequency spectrum), and the distortion to which this gives rise, the upper frequency limit of the audio signal must be held at or below half the sampling frequency, i.e. at or below 16 kHz . For this purpose a filter with a very sharp cut-off at 15 kHz is inserted in the L and R channel feeds prior to the sampling gates.

The 14 bits per sample used give a total of 16,238 possible sound signal levels. L and R signal sampling is carried out simultaneously. A samples carry L signals and the B samples carry R signals.

Digital Compression

The 14 -bit rate is reduced to 10 bits to conserve bandwidth. The significance of each bit in a word depends very much on the sound level represented by that particular word. The least significant bit in a word can influence the final signal by only one part in 16,000 odd. While this may be important in a delicate, quiet passage, it matters not one jot when the sample represents a very loud sound or a rapid transition between two widely-different levels.

So we come to Fig. 3, where the possible combinations that could go to make up a 14-bit word are laid out. The shaded areas show the coding scheme. The most significant bit (MSB), the 14th (on the left), passes through the compression system unchanged. The 13th bit is discarded if it's the same as the 14th; the 12th bit is likewise discarded if it's the same as the 13th and 14th, and so on with the 12th, 11th and 10th bits. When this has been done we are left with words that have between 10 and 14 bits. If a particular word has more than 10 bits a sufficient number of bits is removed at the least significant bit (LSB) end to reduce the word to 10 bits. The digital signal has thus been compressed, and as long as the decoder knows what the compressor is up to it can expand the signal back to 14 -bit length at the receiver.

Protection and Scale Factor

It's necessary to add to each digital word some protection against the possibility of transmission/reception errors. For this purpose a parity bit is added to the end of

Table 1: Scale-factor signalling.
Coding range Protection range Scale-factor code

1	1	111
2	2	110
3	3	101
4	4	011
5	5	100
5	6	010
5	7	001
5	7	000

each word. It's used in the decoder as a truth check on the word's six most significant bits. The system used is referred to as even parity.

We now have a protected 11-bit word. We must next send the decoder a scale factor to indicate which bits have been deleted during the compression process. If the missing bits are on the left-hand side in Fig. 3 the scale factor will enable them to be recreated: if they are on the right-hand side they are lost forever, but this is of no great moment since the words of which they form a part are not crucial ones from the noise point of view.

A careful look at Fig. 3 shows that 10 -bit resolution is given to large signals (coding range 1), 11-bit resolution applies in range 2, 12-bit in range 3 and so through to the 14-bit range 5 which represents the quietest and most vulnerable sounds. This "progressive coding" system is very effective, giving bandwidth economy while losing little in comparison to a linear coding system.

For scale-factor signalling purposes the 11-bit ($10+1$ parity bit) words are grouped together in blocks of 32 , each block lasting for 1 msec . With each block a 3 -bit code word is sent to indicate the scale factor. You will at once see that there's a degree of inaccuracy in this. Since only one scale-factor massage is sent for 32 consecutive words, some words will not receive optimum expansion. In fact what the scale factor tells the decoder is the magnitude of the largest sample in each block. This approximation increases the quantisation noise in the final audio signal, but this noise always occurs where the busyness of the signal disguises or masks it. The scale-factor data occurs sufficiently frequently for the fastest perceptible loudness transitions to be tracked - this is the key to subjective noise reduction. It's this "running approximation" characteristic of the scalefactor signalling that gives the system the first two words of its name, near-instantaneous. The average error is in practice very small and is imperceptible to the listener.
So far we've discussed two of the fiddle-factors involved in Nicam coding, bit reduction for compression and the 1 -in- 32 scale-factor signalling. Now we come to the biggest fiddle-factor, the way in which the scale-factor data is sent. In effect it's included for nothing, using the parity bits in the data words. The scaling factor is sent by modifying the polarity bits in accordance with a complex table that's held in memory in the transmitter and receiver. The receiver's decoder extracts the 3-bit scale-factor words by using what's called majority-decision logic - this process also restores the original parity pattern.

Fig. 4: The Nicam interleaving system. For protection, bits that are initially adjacent are scattered.

Fig. 5: The Nicam frame format, showing the arrangement of digital data for a stereo sound signal before interleaving. Diagram reproduced by courtesy of the BBC.

The scale-factor code words are shown to the right in Fig. 3. There are five different compression patterns, each being assigned a range figure from 1 to 5 . Table 1 shows how the three-bit code words convey scale factor and protection data. The three scale-factor bits can give eight combinations. As shown, some of the "spares" are used to signal to the decoder the amount of error-protection required by each sample. This can be used in the receiver to give extra protection to the most significant bits of the samples.

Interleaving

The parity system gives significant protection to the data words. But impulsive interference and similar corruptive influences could blow large holes in the data stream. So further protective measures are required. The degree of protection called for depends on the likelihood of and probable pattern of data corruption. Nicam data, coming off-air, doesn't require the massive error protection used with the CD, V8-PCM and DAT systems. So far from the intricacies of CIRC, the interleaving system used with the Nicam system is simple.

It's achieved by writing the data into memory and then reading it out non-sequentially, as shown in Fig. 4. The readout order, which is held in a ROM address-sequencer, ensures that bits which were originally adjacent are separated by at least fifteen other bits. An error burst in the transmission path can corrupt several consecutive bits in the broadcast data stream. But as the error is distributed

Table 2: Control bit functions.

Control bits			Contents of 704-bit sound/data block
C1	C2	C3	
0	0	0	Stereo signal with alternate L and R samples
0	1	0	Two independent mono signals in alternate frames, e.g. dual-language sound
1	0	0	One mono sound signal and one data channel sent in alternate frames
1	1	0	One data channel

amongst several words the damage to each is minor. It can be repaired by parity correction and/or error concealment as necessary, techniques that are universally used with PCM sound systems.

Housekeeping

The digital signal now has enough protection to enable it to withstand the rigours of transmission. "Housekeeping" data has to be added next so that the sections of data can be identified and synchronised and the decoding process can be controlled.
Fig. 5 shows the composition of a broadcast data frame the transmitted data is arranged in 728 -bit frames. The "housekeeping" data comes first, rather like the field sync pulse in the video waveform. As the duration of a frame is 1 msec , the data rate is $728 \mathrm{Kbits} / \mathrm{sec}$. There are of course no gaps between frames.
The frame alignment word (FAW) synchronises and sets up the decoding process in the receiver. It consists of eight bits and is always 01001110 . Next come the five bits C 0 to C 4 , which are used for decoder control and switching. Their functions are as follows. The frame flag bit C 0 is set at 1 for eight successive frames and to 0 for the next eight frames. This unchanging pattern defines a 16 -frame sequence and is used to synchronise changes in the type of information being carried. Bits $\mathrm{C} 1, \mathrm{C} 2$ and C3 provide application control information - see Table 2. Note that C3 remains unchanged throughout these options. It's at present spare but is assigned to future sound and data coding options. The reserve sound switching flag C4 caused decoder design problems at one stage. It's set to 1 when the Nicam channel carries the same sound as the main (f.m.) sound carrier and to 0 otherwise. This permits fall-back switching should the Nicam carrier fail or shutdown when a data transmission is in use.

The next data block, AD 0 to AD 10 , is at present unused - it's reserved for "additional data" and it will be interesting to see what this will be.

The Sound/data Block

This initial section of the frame accounts for 24 bits. The remaining 704 convey stereo/dual-channel sound data. There are sixty four 11-bit words, the A channel (stereo
left) and B channel (stereo right) samples being sent alternately throughout the period - 32 of each. Since two sound channels, plus the initial data, are being transmitted as a single serial data stream the bit rate of each channel is approximately doubled. This form of time-compression is a common technique known as time division multiplex (TDM). It's easy to put into effect by writing the data into a RAM in real time and reading it out at approximately twice the rate at suitable intervals. TDM is used in many data storage and transmission systems to match signal density to channel bandwidth.

The order of A and B samples shown in Fig. 5 represents the sequence before bit interleaving (see above). Only the 704 bits of sound data are interleaved, which is why Fig. 4 starts with bit 25 and ends at bit 728 . With monaural sound the data block is arranged slightly differently, see Fig. 6. In this case two 32 -word blocks (n and $\mathrm{n}+1$) are placed end-to-end in a single frame, carrying the complete mono signal. Since the data rate is unchanged, the next frame is available for other forms of data if required. Odd numbered frames carry the mono sound data and even numbered ones the "information" data. To indicate this condition control bits C1-3 change to 100 , switching the decoder to the mono mode.

If two independent mono signals M1 and M2 (e.g. dual-language sound) are being transmitted, M1 is carried in the odd-numbered frames as just described while the M2 signal is carried in the same manner in even-numbered frames. The control bits C1-3 change to 010 to switch the decoder sound routing.

Data information can take many forms. Computer programs or software are perhaps the most likely. If conditional or restricted access is required by the broadcaster or his agent, perhaps the spare bits C 3 and $\mathrm{AD} 0-10$ will be used to provide this feature. No data information format for this purpose has to date been published.

Scrambling

Now that we've considered the composition of the Nicam data stream in detail it should be obvious that there are certain fixed patterns. Since the data stream modulates a carrier whose sideband structure depends on the characteristics of the modulation, the energy in the sidebands can be evened out by scrambling the data at random. This is a form of energy dispersal. Total random scattering of the bits is not possible because there's no way of descrambling such information at the receiver. A simple circuit that generates binary digits in what appears to be a random way but whose output is predictable and repeatable is available however. It's called a pseudo-random sequence generator (PRSG) and consists of a clocked shift-register with one or more taps that feed back to its input. Fig. 7 shows the one used with the Nicam system. It consists of nine stages, with a tap between the fifth and sixth feeding one input of an exclusive-or gate whose other input comes from the final stage. If you work it out, the sequence starts 000001111011 etc. Once it gets going the

Table 3: Nicam carrier phase changes for each possible combination of 2-bit data pairs.

Input data	Phase of Nicam carrier
00	0°
01	-90°
10	-270°
11	-180°

output sequence lasts for $511\left(2^{y}-1\right)$ bits and thus runs through almost one and a half times during the frame period.

One of these PRSGs is used at each end of the system, i.e. at the transmitter and the receiver. Each is reset to 111111111 at the end of the last bit of the frame alignment word, which is not scrambled, so that the PRSGs run in synchronism throughout the rest of the frame. The PRSG sequence is added "modulo-two" to the data bit stream on its way to the modulator - modulo-two addition is the action of an exclusive-or gate, whose behaviour is shown in Fig. 8. Fig 9(a) shows the action of the scrambler at the transmitter end, working on a data stream that consists of 010101010 for the purposes of illustration. Fig.9(b) shows the reciprocal process at the receiver end, after which the original data sequence is restored.

Modulation and Transmission

There are various ways of modulating a carrier wave with information. The best known are amplitude modulation, as used for terrestrial vision broadcasting, m.f. radio, etc., and frequency modulation as used for satellite vision, TV sound and f.m. radio. A digital signal has only two states, 1 and 0 . In terms of bandwidth the most economical method of modulation for use with such a signal is phase modulation: the carrier frequency remains constant but its phase is altered by the modulating data. The simplest phase modulation system is a two-phase one, with for example ones setting the carrier phase at 0° and zeros setting it at 180°. This is easy to detect at the receiver. Bandwidth saving is possible by using four-phase modulation, in which the carrier has four possible states $-0^{\circ}, 90^{\circ}$, 180° and 270°. Even more complex phase-shift systems have been devised, with eight phases, but the smaller the phase shift the more difficult reliable detection becomes.
The quadrature phase-shift keying system used for Nicam has four carrier phase states. At the transmitter a serial to two-bit parallel converter changes the serial data into a series of two-bit pairs. These pairs can take one of four forms - $00,01,10$ or 11 . Each of these moves the carrier phase by a different amount, as shown in Table 3. Thus the carrier phase has four possible states and is moved from one to another depending on the composition of each two-bit pair. Note that with a 00 bit pair the carrier remains at its 0° shift, i.e. its rest, state. Fig. 10 represents these conditions.
Since each phase change occurs at two-bit intervals instead of once per bit and the maximum shift is half a cycle of carrier (either way, in effect), the use of DQPSK greatly reduces the sideband spread. The sudden phase jumps depicted in Fig. 10 can be smoothed out to reduce the sidebands further. With a 2 -bit data rate of $346 \mathrm{Kbits} / \mathrm{sec}$ and a carrier frequency of 6.552 MHz , there's a minimum of eighteen carrier cycles between each phase change. By feeding the data to the DQPSK modulator via a low-pass filter we can change it from a square wave to a triangular one. This has the effect of "smearing our" the carrier phase changes in time so that they are more evenly distributed along the eighteen cycle periods available.
With the broadcast system I as used in the UK the normal f.m. sound carrier is at 6 MHz above the vision carrier at a relative level of -7 dB . For use with Nicam transmissions it's reduced to -10 dB . The Nicam carrier is at 6.552 MHz (exactly nine times the bit rate) and is transmitted at a level of -20 dB with respect to the vision carrier. It's important to appreciate that these levels are quoted as voltages, so that the power ratio of the peak

Fig. 6: Nicam frame format for two monaural signal transmissions. Compare with Fig. 5. The n and $n+1$ channels may carry different language sound tracks. Diagram reproduced by courtesy of the BBC.

Fig. 7: A PRBS generator using a shift register and two exclusive-or gates, with a tap between the fifth and sixth stages of the shift register.

Fig. 8: Modulo-two addition binary data.

Fig. 9: Action of the scrambler, (a) at the transmitter end, (b) the reciprocal process in the receiver.
vision carrier to the Nicam carrier is 100:1. Fig. 11 shows the spectrum of a system I TV channel with Nicam sound.

At a main transmitter the Nicam carrier is fed to the klystron power amplifier used for the f.m. sound signal. For optimum efficiency this normally operates in a very non-linear mode and is very sharply tuned to the relevant channel frequency. For correct operation with Nicam signals its conditions have to be re-tweaked for more linear operation and for greater bandwidth to allow for the extra phase-modulated carrier. A great deal of trouble is taken, as we've seen, to keep the Nicam carrier's sidebands low and quiet. There's no interference to the other carriers in the channel or to the adjacent sound and vision channels -

Fig. 10: Changing the phase of a carrier to convey data. In this case there's a phase change with different bit-pairs in the transmitted data. A graphical presentation is shown at (a) while (b) shows the phase shift conditions.

Fig. 11: Frequency spectrum of a system I TV channel with Nicam carrier. The total spread of the Nicam signal is about 700 kHz .
or, with co-channel reception conditions, to French system L transmissions which have an amplitude-modulated sound carrier at 6.5 MHz .

The Nicam system has been adopted by some European countries and many others have expressed interest. For the Continental system B/G, with the f.m. sound carrier at 5.5 MHz , the Nicam carrier frequency is set at 5.85 MHz . This is rather close to the f.m. sound carrier, but can be accommodated with critical modification of the datashaping sideband filter. The Nicam signal bandwidth is reduced from 700 to 500 kHz with system B / G.

The Nicam format is compatible with the sound and data transmission arrangements used with the MAC/packet system that's been adopted for the BSB satellite TV transmissions. Thus the chip sets developed for one can be used for the other, which is useful for both set designers and chip manufacturers. These chip sets have to sort out the rather complex Nicam transmissions at minimal cost, which is no mean task. Next month we'll be considering the receiver and decoder.

Philips VR6290/6291/6390

If you encounter one of these machines that intermittently doesn't play or record check the error memory. You'll need the remote control handset for this. I know the manual says otherwise, but where's the set clock button gone? If the last two digits are E6 (head blocked) the following modification is probably needed. Find C2040 on the family board. If its value is $0 \cdot 1 \mu \mathrm{~F}$, replace it with an $0 \cdot 01 \mu \mathrm{~F}$ capacitor (part no. 482212151304). The circuit shows it as being $0.01 \mu \mathrm{~F}$.
P.B.

Philips VR6720

This machine produced no sound from the speakers, though the headphones worked all right - it's the one with the $2 \times 15 \mathrm{~W}$ stereo amplifier. The supplies and input signals were present, but the signals got lost at the driver chips IC101/2. The delay muting transistor TS120 was leaky.
P.B.

Grundig VS200/220

This machine would intermittently stop playing. When this happened it would unthread and show F2 in the display. It would also sometimes stop during wind or rewind, but the display would then show F6. Both of these fault codes indicate that the microcomputer chip thinks one of the spools has stopped. As there was no tape spillage scope checks were made on the spool optocouplers. With the machine playing or winding the optocouplers' output should consist of a signal of about 9 V peak-to-peak. The output from one of them was only 2V pk-pk. A new supply optocoupler was required. P.B.

Grundig VS310

We've had two of these machines in recently. The problem with the first one was wow on sound. On inspection we found that the capstan belt was hard and covered with cracks. Fit a Grundig replacement if you have the same problem.

The second one was dead - no clock, no booster, nothing at all from the power supply. The chopper transistor was o.k., with 30 V across it, but there was no drive. D425 was short-circuit.
P.B.

Ferguson 3V36/JVC HRD225

In the play mode the sound was o.k. but the screen showed nothing but dark grey with occasional flashes of picture content in the background. On tracing the video signal through I discovered that it became a little distorted in the luminance amplifiers $(\mathrm{Q} 106 / 7)$ that follow the f.m. demodulator filters. It disappeared completely at the output of amplifier transistor Q103. Meter checks showed that the pre-playback 9 V supply was low at only $2 \cdot 5 \mathrm{~V}$. Switching transistor Q501 was the cause of the problem.

> J.C.

Grundig 2×4 Super

This machine would play back, search and wind/rewind but wouldn't record. It wouldn't initiate record or thread

Reports from Philip Blundell, AMIEIE, B. Ross, Chris Avis, Stephen Leatherbarrow, S. Da Costa and Ian Bowden
in. The problem was that the left-hand keyboard didn't respond as button 1 was permanently "on". In fact the push-buttons jammed in when pressed - buttons 4 and 7 exhibited this to a lesser extent. The keyboard is part of a large board that's secured to the front panel by plastic blobs and contains all the other front panel push-buttons. Grundig Service told us that a repair kit is available but that relieving the front panel cutouts around the buttons is usually adequate. This provided a perfectly acceptable cure.
B.R.

Panasonic NV688

Here's an example of confusion caused by an incorrect symbol on the circuit diagram. The problem was no playback, recording or signals - just a buzz and noise bar in the E-E mode. We soon found that the regulated 5 V rail was low at only 2 V . No excessive load was apparent and transistors Q1003/4 and zener diode D1006 in the regulator circuit all checked out correctly when cold resistance tests were carried out. We decided to check the 2SD1275 series regulator transistor by replacement. It's listed as a Darlington device, though the circuit shows it as a straight npn transistor - which it seemed to be from our meter check. In fact the Darlington bit had shorted out. A replacement solved the mystery, with no thanks to Panasonic's circuit diagram.
C.A.

Hitachi VT8000

This machine would load up and play. It then refused to unload and eject the tape, though the left-hand reel was driven normally to retract it. If the tape was unloaded manually and a fast wind command was given the machine would respond initially but the loading arms would also move forwards slightly. This disturbed the loading switch, thus preventing acceptance of further commands until the loading arms were wound back again manually. The microcomputer's voltages were all correct and the right instructions reached the loading motor control chip IC905. Replacing this TA4194A device did the trick. C.A.

Saisho VR1200HO

When we find "HQ" appended to this breed of VCRs we're inclined to take it as meaning highly questionable. "It won't stay on" said the owner, the reason being that fuse F502 had blown. When our adapted Thorn 3500 cutout was connected temporarily the machine wouldn't accept a tape and the BA6239A loading motor chip quickly reached fried egg temperature. After using an external supply to check the loading motor we replaced the chip, fitted the correct fuse, and another Saisho limped off into the sunset.
C.A.

Panasonic NV730

I owe this one to regular reading of Television articles! The problem was intermittent stopping in the play mode. The machine had come to us as another local firm had unsuccessfully tried to sort it out. It was obvious that previous work had been done on the deck - the guides
had been cleaned and the take-up idler roughened up. After a long soak test the fault showed up as no take up, with tape spillage into the machine before the system control came to the rescue. Q1504 at the rear right of the machine (from the front) was found to have dry-joints.
S.L.

Saisho VR1200HQ

This machine would very intermittently go to stop while in use. It didn't matter which particular function was asked of it, i.e. rewind, FF, play etc. Although we didn't really suspect the deck sensors they were replaced as strange things do happen. The supply lines were all checked, the mode switch was cleaned and aligned, and a thorough search for dry-joints was carried out. On test however the fault was still present. Eventually we found that the BU2716S (IC01) was the cause. Other Saisho models such as the VR1600 etc. could equally be affected by this problem as similar circuitry is used.
S.L.

Sharp VC651HM

This was another intermittent nasty - tape chewing. After a very long on/off cycling test the fault showed up as intermittent no take-up. The machine had been serviced recently and the reel drum unit had been replaced, so this was assumed to be all right. With the carriage out and the machine on its side it was possible to observe the operation. The fault showed up on about one in every ten or fifteen tries. We noticed that the brake on the take-up reel lagged now and then: the brake driver lever didn't move far enough to disengage this brake and didn't latch on to the little electromagnet. We deduced that the cam switch (mode switch to you and me) must be faulty. The problem was cured by stripping this switch out and cleaning it. As a precaution we also replaced the loading belt.
S.L.

Ferguson 3V44/JVC HRD140

There were several problems with this machine. The clock couldn't be set, there was no tuning and the timer couldn't be set being amongst the most obvious ones. A case of a very large brain failure. After perusal of the circuit diagram we suspected the microcomputer chip IC601. As its 5 V supply and clock were o.k. we tried a replacement. This cured all the symptoms. It's type M50730-607. S.L.

Samsung V510T

The basic problem with this machine was failure to switch on. The take-up reel rotated backwards and the capstan motor intermittently ran slowly. This was all without a tape in. The power supply at the rear of the machine, with an i.c. of the STK variety, produces several rails. There's an always 13 V supply from the chip and switched 12 V , 50 V and -24 V supplies from a transformer-fed series regulator. The basic problem was that the switched 12 V supply was missing. A check was made on the power-on command from pin 15 of ICl and this was found to be present, but instead of a nice positive d.c. charge when the operate button was used there were several pulses see Fig. 1.

We then found that the machine operated normally

Fig. 1: Incorrect power-on signal discovered in a Samsung V510T.
when the error detector transistors were temporarily shorted across, to simulate full conduction. As soon as power was removed however the machine would of course fail to respond. If nothing else this removed the possibility of a d.c. fault in the 12 V series regulator. The power-on command was then checked with the line disconnected from the power supply. Since the pulses disappeared the fault appeared to be generated in the few components in the first transistor's base circuit. So it was, with C6 being open-circuit. We found that an $0 \cdot 22 \mu \mathrm{~F}$ capacitor gave reliable operation. Since then we've had another of these machines with the same problem. S.L.

Sentra VX8400/Questar V300R

This one caused us some problems due to the random nature of the fault. Basically the machine would occasionally fail to store ch. 2 only, after correctly searching for the channel. Alternatively ch. 2 would search and store but on selecting channels sequentially, both up and down, ch. 2 would be missed in the down direction. Unusual I think you'll agree, and we stored each channel several times before we actually believed what the machine was doing. The culprit turned out to be the M58659P EPROM IC7(02 on the front panel.
S.L.

JVC HR7700/Ferguson 3V23

Rewind and fast forward were o.k. but when play was selected the machine loaded the tape half way then stopped - the drum also stopped. To unlace the tape you had to use the on/off button. All the sensors and switches were tried, then all the panels, but still no success. We finally tried a new drum assembly, after which the machine worked perfectly. The rotor base unit in this assembly has two magnets opposite each other at the bottom. One of them was missing, so there was no pick-up pulse.
S.DaC.

Panasonic NV-L20

The fault report was that the on/off button didn't work. When the machine was connected to the mains supply the clock display flashed as usual. Key scanning is carried out by IC7501 which is also the timer/display driver chip. It appeared to be working all right since pressing the timer button produced a warning that the clock wasn't set and that there was no tape, i.e. there were beeps and the timer and tape symbols in the display flashed. On a couple of occasions we found that the machine seemed to be on when connected to the mains supply since a channel number appeared in the display it could be changed up and down with the front keys. A check was made on the serial clock and data lines between IC7501 and the system control chip IC2001 (pins 44 and 45). Both were high (5V) with no pulses. Since IC2001 produces the serial clock signal its reset and clock inputs were checked. There was no clock input from the osc pack CBA, a small PCB beneath the main panel. The single transistor on this PCB was at fault. It's Q6101, type 2SC2206.
I.B.

Panasonic NV-G45

The reason for no play or record with this machine was that the drum didn't start up. It just kicked backwards and forwards. Experience has shown that with the type of motor used here the cause of this condition is usually
something to do with the rotor position sensing, since this controls the current that's switched to the three pairs of drive coils. A single Hall-effect device is used with these drums. The connections are to pins 2 and 6 of plug/socket P2001. With this particular unit we got a reading of $2.7 \mathrm{k} \Omega$ between these pins. When we checked a G40 drum the reading was 400Ω.

Unfortunately the Hall device is not available as a separate item. You have to order a complete motor assembly which costs around $£ 60$. We had a scrapped rental NV430 in the workshop however - it had been written off due to liquid spillage. It's drum motor has two Hall-effect devices, one of which was removed. Before removing the cup-shaped rotor of the G45's motor we marked on it the positions of the centres of the two securing screws in the two adjusting slots. The Hall-effect device was then removed and the replacement from the NV430 was carefully fitted in exactly the same place. The rotor was then refitted, with the two securing screws just tight enough to allow adjustment of the rotor's phase, and the drum was secured back in the
machine. A standard tape was played and the head switching point was adjusted visually before tightening the rotor screws fully and carrying out fine electronic adjustment of the head switching point.
I.B.

Panasonic NV-G45

The customer complained of a whine from the machine when it was switched on, and that it wouldn't play back correctly. The reason for these symptoms was that the drum motor ran flat out. When tests were made we found that the voltage at the torque control input pin of the drum driver chip IC2901 (pin 7) was incorrect. In the stop mode (machine on) the voltage at this pin should be 3.8 V . It was low at 1.4 V . With the pin disconnected from the PCB the motor didn't start and the voltage rose to around 3.6 V , indicating that there was some loading on the line. It was due to a leaky capacitor, C2117 ($0.47 \mu \mathrm{~F}$ electrolytic), which filters the speed and phase control voltage from the operational amplifier IC2103.
I.B.

The Commodore CD-TV System

George Cole

Computer company Commodore plans to launch its CD-TV (Commodore Dynamic Total Vision) system in the UK by this coming Christmas. It's a multimedia format that combines computer, compact disc and video technologies. CD-TV puts a mix of sound, video, text and graphics on to a compact disc which is controlled by the user Commodore calls CD-TV "television you can control". The format is clearly aimed at the market targetted by the Philips compact disc interactive (CD-I) system - and you won't be surprised to learn that the two formats are incompatible!

Features

I recently had an opportunity to see prototype CD-TV players and discs in operation at Next Technology, a computer company based in Cambridge. The CD-TV player looks like a small VCR and is designed to be linked up with existing domestic TV sets and hi-fi systems. It consists of a CD-ROM (compact disc read-only memory) drive and an Amiga computer housed in the same case. On the player's front panel there are a disc drawer, a display panel which shows the time, track number, volume level and clock, and controls for power on, headphone level, play/pause, stop, forward/reverse and scan/skip. Most users will operate it via an IR remote control system however.

Various computer peripherals, such as a keyboard, mouse, modem, floppy-disc drive and joystick, can be connected to the player. Video output sockets include provision for analogue and digital RGB, Y/C and r.f,. There's also a pair of phono audio sockets.

At the heart of the player there's a Motorola MC68000 microprocessor chip whose clock speed, in PAL machines, is 7.09329 MHz . The player has a 1 Mbyte RAM, 2 Kbytes of non-volatile RAM for the clock and other functions, and 512 K bytes of ROM. In addition there's a facility for storing up to 64 K bytes on a smart card.

CD-TV players can handle CD-TV and ordinary CD
audio discs, including those encoded with $C D$ graphics. They cannot play Laserdiscs, CD-ROM or CD-I discs.

CD-TV offers full-motion video, though at present this is restricted to a quarter of the screen. Commodore says that full-screen, full-motion video will be incorporated at a later stage. The system has a number of graphics modes, with both sequential and interlaced scanning. The text mode offers 80 or 60 characters per line, and there's a choice of font types, sizes and colours. The audio circuitry operates with times eight oversampling, using dual 16 -bit DA converters. There's an optional sound system that provides up to 14 hours of a.m.-quality sound.

Performance

So much for the basic specifications. How does CD-TV look and sound? CD audio discs sound as good as I've heard with any normal CD deck. I was shown the Next Technology sampler disc which will be supplied with every new CD-TV deck. It offers users six topics to explore, including the life of Bach, sport, and exhibits at the Victoria and Albert Museum.

Operation of the player is simple. You use the IR handset to guide a cursor over the screen, and click on at the appropriate place. With the Bach section I listened to his music, looked at his scores and read a biography to find

Front view of a prototype CD-TV player.
out details of his life. It's fun to use, and quite addictive! The picture quality is roughly that of pre-HQ processing VHS, but to be fair the system I saw was a prototype one and Next Technology says that the performance of full production players will be much better.

Marketing

CD-TV should be on sale in the UK by Christmas, with the players costing around $£ 699$ and disc prices starting at $£ 25$. According to Commodore there will be around a hundred titles available by the launch date, though some industry watchers suggest that the figure is much more likely to be in the region of $30-50$. CD-TV will be aimed at educated 24-49 year olds with families: disc titles will include games, encyclopaedias, atlases and cook books. There are plans to put Shakespeare and the King James bible on the CD-TV!

Rear view of the player showing the plugs and sockets.
The effect CD-TV will have on CD-I is hard to guess. Some suggest that Philips will regret not having put CD-I on the market sooner, while others reckon that CD-TV will stimulate a market that will come to be dominated by CD-I. As ever the Japanese are hedging their bets: Matsushita, a major CD-I supporter, is also making the CD-TV players for Commodore.

An RGB Interface for BSB Reception

Brian Webb

My ITT-Nokia D-MAC receiver for the BSB transmissions provides RGB outputs, a feature that appears to be available with all BSB receivers. Like many TV sets, the Philips receiver I use employs a TDA3560 colour decoder chip which is designed to switch between off-air video and RGB teletext inputs. These RGB inputs are digital of course, but enquiries revealed that analogue RGB inputs could be fed to the chip with a.c. coupling. I decided to convert my Philips K30 chassis set - the Edition II version with the TDA3560 decoder - so that it would accept the RGB outputs from the ITT-Nokia BSB receiver. The conversion proved to be a success and the results are very pleasing.

Many recent TV sets have a mains isolated chassis. This

Fig. 1: Circuit used to interface the composite video output from the BSB receiver and the TV set's sync circuit.

Fig. 2: RGB interface for the TDA3560 colour decoder chip.
is not the case with the K 30 , so a suitably rated double-wound $1: 1$ ratio mains isolating transformer must be used when this modification is adopted. I fitted a toroidal type transformer rated at 400 VA inside the K30's cabinet - there's plenty of room. A chunky wire runs from the set's chassis to the earth pin of the mains plug.

I kept the conversion as simple as possible. A doublepole, double-throw toggle switch is used for manual switching between off-air and external signals. Figs. 1 and 2 show the sync and RGB interfacing circuitry. You'll find that the TDA 3560 and the other members of this family of colour decoder chips were very widely used, making conversion of many older TV sets a simple matter.
The ITT-Nokia receiver's RGB outputs are available at a scart connector. My first problem was that I couldn't find at the connector a sync pulse output to complement the RGB outputs. A phone call to ITT-Nokia confirmed that there isn't one and that the composite PAL signal output would have to do.

The video input to the TDA2571AQ sync/timebase generator chip in the Philips K30 chassis calls for a composite signal of about 3 V peak-to-peak. The composite video output at the ITT-Nokia receiver's scart socket is 1 V pk-pk into 75Ω. So amplification is required. Fig. 1 shows the ciruit I used. Since amplification is necessary, I thought why not bias the first transistor Trl as a sync separator? Thus Trl acts as an amplifier/sync separator. Tr 2 inverts and squares the signal. The emitter-follower Tr 3 provides a relatively low-impedance drive to the K30's timebase circuitry, which also requires a 4 V d.c. offset. The sync pulse amplitude can be adjusted by RV1.

Fig. 2 shows the RGB signal interfacing. RV2/3/4 are included for contrast adjustment. For selection of off-air video or RGB inputs the voltage at pin 9 of the TDA3560 chip has to be altered. SW1b sets the voltage at 0 V for off-air operation and 1.8 V for operation with the external RGB inputs.

Carrying out these simple modifications and viewing clean D-MAC pictures accompanied by digital stereo sound, as provided by BSB, through a hi-fi system gives another dimension to TV entertainment. It's really worth the effort.

Vectorscope Use

Steve Beeching, T.Eng.

In the July issue Nick Beer drew attention in a brief review to the Electronic Visuals Model EV4061 vectorscope/ waveform monitor. The purpose of this follow-up article is to provide details of vectorscope use and outline the circumstances in which such an instrument is helpful.

I first used an Electronic Visuals vectorscope when I worked for a video company in Nottingham back in 1977/8. Electronic Visuals vectorscopes have been used at some time by most broadcast TV companies as an engineering waveform monitor, mounted in a console or an equipment rack. When I wanted a combined oscilloscope and vectorscope two years ago I purchased an EV4061. It's to broadcast standard and is from Electronic Visuals, so it's good enough for me!
As Nick mentioned, the basic vectorscope is a monitoring instrument. So it's not used with wandering probes like an oscilloscope - mainly due to the difficulties of locking to a source of reference.
The set-up shown in Fig. 1 is typical. The camera or camcorder camera head is connected via a suitable interfacing test jig to a video monitor where it's looped through to the vectorscope and then terminated. A T connection is used to link the video waveform to an oscilloscope's external trigger input, which has a high impedance and bridges the line. The whole rig is thus synchronised to the camera's video output. This leaves the oscilloscope's two probes free for measurement at various test points without the hassle of having to keep twiddling with the trigger controls.
My set-up, as shown, was tested with a Grundig VG1000 pattern generator, which is also to broadcast standard, to check for and eliminate phase errors between the source camera and the vectorscope due to odd cable lengths or mismatching. Hence the 75Ω termination at the vectorscope. External sync inputs to the oscilloscope, which is a Philips PM3217, make stable switching between line and field rates possible without loss of lock. The rig allows full monitoring of the camera/camcorder which is to be set up, as the oscilloscope's channels can be connected to the $\mathrm{R}-$ Y and $\mathrm{B}-\mathrm{Y}$ test points in the camera's signal processing circuitry.

The waveforms shown in Fig. 2 illustrate the effects produced by a camera head whose output gives magenta shading at the right-hand side of the screen or picture area when the camera is pointed at a white reference lit at $3500^{\circ} \mathrm{K}$ and is white balanced. The $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ test points are at the output of the camera colour tube's decoder matrix or processing, prior to being sent to the PAL encoder for encoding into a composite colour signal on a 4.33 MHz carrier.
So what do the signals tell us? As can be seen on the monitor, the colour error is magenta. But is it due to too much red and blue or too little green? In the camera one Y signal feed is passed through a low-pass filter to give it the same bandwidth as the red and blue signals. This filtered Y signal is generally referred to as YL. For practical purposes it's equivalent to the green signal. As a result the colour-difference signals are effectively R - YL and B YL.

A vector display on the vectorscope shows the vector
angles and amplitudes of a colour signal. In the example we're considering the magneta error will be shown in the upper right-hand quadrant, see Fig. 2(d). If the vectorscope is switched to its scope mode at line rate you'll now see a single line that thickens at the right-hand side, as shown in Fig. 2(c). This thickening is caused by the chroma signal. The vectorscope tells us what this colour is and how much there is of it.

Trace (a) produced by the oscilloscope probe shows that the R - Y signal level has increased during the line period, forming a slight ramp. Trace (b) also shows a ramp, but this time inverted since $\mathrm{B}-\mathrm{Y}$ is inverted - it's $-(\mathrm{B}-\mathrm{Y})$. The conclusion follows that the error is caused by slight increased in the amplitude of the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals during a line period.
To correct such an error use is first made of the red horizontal sawtooth and red horizontal parabola shading controls to flatten the tilt of the $\mathrm{R}-\mathrm{Y}$ signal (trace a). As this is being done you'll see the colour error on the monitor change from magenta to a bluish tint. On the EV4061 the

Fig. 1: Typical camera/camcorder test set-up using a monitor, an oscilloscope and a vectorscope.

Fig. 2: Waveforms produced by a camera whose output gives magenta shading on the right-hand side when pointed at a white card. (a) Scope $R-Y$ waveform; (b) scope $-(B-Y)$ waveform; (c) vectorscope display in its scope mode; (d) vectorscope display in its vector mode.

Fig 3: The EV4061's PAL graticule markings. The interruptions to the U and V axes represent the magnitude of the colour vectors in these axes.
vector display rotates clockwise slightly towards blue. In the oscilloscope mode it shows a slight reduction in the thickness at the right-hand side of the line. Further correction by means of the blue horizontal sawtooth and blue horizontal parabola controls to flatten the tilt of the B - Y trace (trace b) will finally remove the colour error in the monitor's display, giving two flat traces on the oscilloscope. The colour vector displayed by the vectorscope is reduced to a fuzzy circular patch around the centre of the display, with a single, clean straight line in the oscilloscope mode.
What we have just outlined is an ideal example, assuming that the camera tube is new. It never seems to turn out quite that way in real life, though it's close enough to what actually happens. Four-way monitoring of the signal reduces the setting up time by eliminating doubt and the time that would otherwise be spent disconnecting and reconnecting probes and trying to get the trace to lock.

Another useful feature of the EV4061 is the tight pull-in range of its colour phase-locked loop to a colour signal carrier. If the subcarrier burst is not $4.43361875 \mathrm{MHz} \pm$ 50 Hz the chances are that the EV4061 won't lock up and the burst vectors will spin round like a catherine wheel. When a camera is connected this provides a useful check as to whether its master oscillator is at the correct frequency or is way off. It has helped many times with JVC GXN70, GXN5 and GXN7 cameras, when the problem has been a colour shift towards salmon red on playback of recordings that have seemed to be all right when the owner has monitored them in the E-E mode. In some cases it has proved that the subcarrier frequency is off, even before checking with a counter, when the problem has been intermittent colour dropout with recordings made using a camera and a portable VCR.

The burst level and phases can of course be checked and adjusted, something that's not easy to do with just an oscilloscope. Useful when the phantom twiddler has been at work.

The vectorscope is essential for camcorder repair work, not just when setting up the camera section for correct colour matrixing but also for the range of white balances auto, fluo, indoor and outdoor. This assumes that the correct colour filters have been purchased from the manufacturer (at a cost of about $£ 30$ each for some twenty or more filters).

The ability to watch the replayed burst vectors once helped to solve a perplexing problem with a JVC GRC1 camcorder. It recorded and played back fine in colour, but when its recordings were copied on to a main VCR subsequent playbacks were plagued by dropout to monochrome. As usual the owner had a mate whose similar camcorder didn't exhibit the problem under the same conditions. So he was under some social pressure to have his camcorder brought "up to standard".

We used the vectorscope to monitor the camcorder while it recorded and played back colour bars. This revealed that the burst span round for a short period after playback was selected. When pause was used during playback the time delay before the vectors locked on returning to normal playback was very apparent, showing that there was an a.f.c. problem. I enjoyed charging for that one - the colour processing chip is about $£ 68$ plus VAT!

In conclusion, although my EV4061 cost me about $£ 1,600$ plus VAT when I bought it from Electronic Visuals scme two years ago I can state that it has more than paid its way in terms of time saved. Fig. 3 shows the EV4061's vectorscope graticule markings.

next month in

FREE SCREWDRIVER!

Next month's issue comes with another covermounted gift, this time a handy screwdriver with hardened blade and an integral wire-stripper. It's a neat design - and you can't have too many screwdrivers!

PRACTICAL DIGITAL LOGIC
With so much logic circuitry nowadays used on consumer electronics equipment it's essential to have a thorough grasp of logic circuitry. That doesn't mean being able to design a computer or logic system: it does mean being able to find your way around logic circuitry. The essential steps are to master the old and new circuit symbols, have a reasonable understanding of circuit operation and a basic knowledge of Boolean algebra, which is the basis of digital systems. Once this vital background information is programmed into your mind you'll have no problems when confronted with involved logic circuit faults. In a new series David Botto provides a guide, with the emphasis on practical understanding.

- SCRAPBOX LOGIC PROBE

While you're getting acquainted with all this logic stuff, why not build this low-cost logic probe?! Though making use of items from the scrapbox it doesn't give a logic one indication when a chip's output is tri-state, a common failing with homemade probes. Designed by Derek Boyt.

- NICAM DECODING

The bit that's really essential, the operation of the decoder in a Nicam receiver. Also of course the i.f. strip arrangements.

- TATUNG'S BSB RECEIVER

Rounding off our series on BSB receivers, Eugene Trundle describes his Tatung installation.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

Please reserve/deliver the October issue of TELEVISION (£1-60), on sale September 19th, and continue every month until further notice.

NAME
ADDRESS
1 \qquad
..

The ITT Nokia BSB DMAC Receiver

Nick Beer

Salora has been a leader in satellite TV reception from the start. It's now part of the ITT Nokia group, which is one of the four TV manufacturers that have been contracted by BSB to produce receiving equipment for its satellite TV services. The ITT Nokia BSB receiver is Model SAT3300: it's also available as the Salora SVR5903.

The ITT Nokia system is available with a Marconi 35 cm dish or the famed Squarial - Nokia source the latter from STC. D or S added to the end of the model number indicates the type or aerial supplied. The system I had for test came with a dish, but was also tested with a BSB-supplied Squarial. As the receiver was a preproduction unit, certain minor features may differ in comparison with production units that have new software.

Description

The receiver is reminiscent of the fabulous Salora 5902 which is sold for Astra reception and was reviewed by Ian Bowden last October. Its cabinet is slightly darker in colour but retains the bright orange button at the front right-hand corner - in both cases this is the only front panel control. With this BSB receiver however the button is a non-latching standby TAC switch instead of a power-off switch. There's a mains switch at the rear right-hand side. The standby display is the standard single green bar, but it's preceded by a pretty performance from the sevensegment LEDs - three pairs of horizontal bars light up in sequence from top to bottom!

On test the standby switch was a bit disappointing. If pressed inwards the action was not positive and you could feel the PCB behind it flexing - not sufficiently for the knob to foul the escutcheon, but disconcerting nonetheless and not to the usual Salora standard. A better result was obtained by pressing the switch downwards. Presumably the reason for the different arrangement is to discourage users from powering off and encourage the use of the standby mode - to prevent problems because of the code refresh commands from the satellite being missed. For this reason BSB receivers are still powered in the standby mode, little other than the r.f. converter being switched off.

The i.f. input from the LNB is to a coaxial socket. AV connection to a TV set and/or VCR is via a 21-pin scart connector, with an option switch for RGB or composite video signals - there's no mention of Y/C outputs and there are at present no plans to make this a retrofit option. There's provision for terrestrial r.f. loopthrough. The r.f. output is set at channel 37 . The access control module connectors are mentioned below.

The rear panel has provision for fitting a mains socket, though the test unit had a fixed lead. The power supply seems to be of the switch-mode type as there's no mains transformer and the transformer in the power supply is tiny.

The D-MAC decoder appears to be the same as that in the Ferguson SRB1 receiver that was reviewed by Ian Bowden last month. It seems that the ITT chip set and indeed the PCB construction has been standardised, at least as far as the first generation of BSB receivers is concerned. Much the same can be said of the access control module (ACM), whose unique number is printed on the main chip and on the rear of the unit - this is the
number required when contacting BSB by telephone to get the receiver enabled. Two sockets are provided for future use, such as PPV (pay per view) broadcasting. These consist of a phono ACM and a DIN data socket.
The unit's construction is reasonable, so the urit should be as reliable as its Astra counterpart, though the cabinet doesn't sppear to be as robust.
The handset is the same as that used with the 5902 , so anyone familiar with this receiver or indeed the Salora 15L portable TV series will recognise it. One feature with this unit is the Next button that enables the user to see which programme comes on next and how long there is to go before it starts. With production units that have the new software this function will remain on for about ten seconds as opposed to the five or so with the pre-production unit. There is of course the standard BSB feature of an on-screen display at channel change or when the View button is pressed, giving programme title, remaining time and rating where applicable. This latter is used with the parental lock-out system described last month.

To assist with installation the receiver incorporates an r.f. test signal generator, which is switched on at the rear of the unit. The ten channel presets are pretuned to the present five UK and future Irish DBS allocations. They can of couse be retuned if a different order is wanted. I understand that the ITT Nokia unit is the only BSB receiver with frequency-synthesis tuning.
User access to the various features is via menus, again a common design arrangement. The Menu button gives you the main menu, and from here submenus and individual functions are selected numerically. Other features include an on-screen display of the ACM code, and an installation screen that shows the signal received with a signal-strength DAC bar and the BSB top line header. This is particularly useful as it's easy to align the aerial to the wrong satellite Olympus is very close - though with a little experience you'll soon appreciate that BSB requires slightly less elevation and gives a very different meter indication. The header is the thing to watch for. Operation is easy to follow and carry out but as an aid the Help button on the handset brings up on the screen the various options available at the time.
Outside installation with either a dish or a Squarial is quick and easy. Here in North Devon the results obtained with either type of aerial are absolutely stunning.

The dish is an offset type that sits bolt upright and sometimes even appears to decline slightly. We've installed these dishes in some very discrete places, very low to the ground, with no problems. The Squarial mounts more like a prime-focus dish, with a greater elevation.

As with the 5902 there's an a.g.c. test point accessible through the rear of the unit. Measure the voltage here with

The ITT Nokia SAT3300 BSB receiver.
respect to any chassis point in the unit.
The mount design with both types of aerial makes alignment very easy, unlike some Astra designs where the dish has to be very loose for it to be moved and can well shift quite considerably when tightened up.

Conclusions

Because of the features that BSB receivers have in common there's little to choose between them with regard to the features offered and their performance. So choice is likely to be made on the basis of appearance and reputation. The Nokia unit looks good from a viewing
distance and its finish is better than that of the Ferguson unit. The dish is cheaper than the Squarial. I'd buy the dish but suspect that the Squarial will prove to be more popular, especially if smaller types come along. The manufacturer's policy now is to use the ITT Nokia brand name for sales through independent dealers and the Salora name for sales via the multiples. Suggested retail prices are $£ 380$ for the dish version and $£ 393$ for the Squarial version. After testing this receiving system I'm perfectly happy to recommend it.

My thanks to John Breeds of Nokia Consumer Electronics for making the system available for review and answering my questions.

333
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

For almost the first time in memory those in the Test Case workshop have had a deadly quiet time this summer. So far from a five-day wait the startled customers now get a phone call within hours of bringing their sets in for repair.

So it was that a Tatung TV set went straight on to the bench of TechnoCrat (TC) from the customer's car. It was fitted with the 170 chassis and, in the words of the owner, stood accused of "'orrible colour". 'Orrible it was too. With a test pattern selected the picture had a sickly green overlay. Switching to a monochrome step-wedge display showed that the grey scale was way out. TC removed the rear cover and fetched a service manual. From this he discovered that there are no drive controls and that the set is innocent of any form of automatic grey-scale correction associated with the colour decoder chip. In fact the only provision for gun tracking in this design is a black-level preset in each of the RGB output stages.

TC reset these controls in accordance with the manual's instructions. He found that he could tie the tube's three guns together at the cut-off points to obtain true grey in the low-light parts of the display, but the highlights then had a strong green tint. A compromise setting of the G background potentiometer R216 was tried. This produced a better picture, with the mid-tones reasonably grey, but dark picture areas were purplish while the bright areas were still a bit green. Could the picture tube be faulty? TC was thwarted in his quest to check it because no matching base connector could be found amongst those with the tube-testing machine.

It seemed unlikely that the tube was reponsible. Unless something very peculiar had happened inside, the emission of both the red and blue guns would have had to have deteriorated simultaneously and equally to produce this symptom. If only he could be sure of the tube! It was a Philips type which is normally reliable and well behaved. TC sorely missed the drive controls that are often present with circuits of this type. They normally take the form of preset resistors in series with the bases of the RGB drive transistors. As an experiment, the G-feed resistor R221
(270Ω) was replaced with a 470Ω skeleton preset. It didn't provide a miracle cure. There was some effect on the G drive, but at no setting was a correct grey scale restored. TC refitted the original resistor and scratched his head.

A helpful colleague then came along and cast his eye over the display. He suggested interchanging the green and red video drives as a check that would narrow the field of search. This was done at the point where the drive signals arrive at the c.r.t.'s base panel. There was little effect on the black-and-white display, but on a normal picture the colours were bizarre. This proved that the circuitry on the main panel, including the colour decoder chip, was o.k. TC restored the correct connections.

Maybe the tube was the culprit after all? Another check was made by interchanging the drives at the tube's red and green cathodes. This had a marked effect on the display, which took on a very warm look. Twiddling the G background preset R216 now affected the red part of the display of course: with things at the dark end of the brightness range correct the highlights were now pink rather than green. Within a very few minutes a definite diagnosis was made. What was it? See next month.

ANSWER TO TEST CASE 332 - page 789 last month -

We left our new man Dylan gazing dolefully through borrowed binoculars at Mr. Burnham's chimney and at the two aerials mounted there. Since the 35 cm BSB dish had been installed ITV reception had gone downhill, with grainy and intermittent colour, though reception of the other terrestrial transmissions was fine and the BSB pictures were reproduced perfectly. In fact the trouble was put right by Stick-Em-Up Ltd., though it sprang from the action of the Wild West company in its choice of a mounting position for the space-age hardware. The satellite dish was adequately mounted and perfectly aligned, but it was near enough to the elements of the u.h.f. array to create some sort of standing-wave pattern. As a result there was near cancellation of the Band V signal at one particular wavelength. This corresponded with the colour subcarrier frequency in the ITV channel used by the local transmitter. It was a case of the dreaded suck-out, which one of our engineers used to blame for just about every reception problem he came across.

Neither Stick-Em-Up nor Wild West had a spectrum analyser. If they had, they would have seen that the ITV channel's vision and sound carriers were of much reduced amplitude in comparison with the others. The cure consisted of repositioning the crank arm to increase the spacing between the two aerials. Stick-Em-Up insisted on being paid for the job, but Dylan never got any money for his call-out. The set was under guarantee, wasn't it?

BBC Tuning Signals 1934-1963

Keith Hamer and Garry Smith

The world's first regular public high-definition TV service started at 3 p.m. on Monday November 2nd 1936 from the BBC's 17 kW transmitter at Alexandra Palace, on channel B1 with the vision and sound carriers at 45 MHz and 41.5 MHz respectively. The first fifteen minutes were taken up by the opening ceremony, which included Adele Dixon singing "Magic Rays of Light" - it had the alternative title of "Television is Here". At 4 p.m. the transmission ended, to be resumed five hours later with a programme summary followed by a BBC film called "Television Comes to London". This traced in detail the work that had been done in building and equipping the studios and transmitter at Alexandra Palace. It was subsequently used many times during trade test transmissions to demonstrate TV to prospective viewers. In the early days programmes ended promptly at 10 p.m., which meant that only two hours of programmes were broadcast each day.

Although TV as we know it began in 1936, the first demonstration of true television took place on January 27th 1926 when John Logie Baird showed his apparatus to a less than enthusiastic audience. Baird didn't invent television - a number of experimenters were actively engaged in this field - but he was the first to put all the theories into practice.

Several firsts were notched up during the following three years. An image was transmitted via telephone cable between London and Glasgow in May 1927, and in August 1928 a simple coloured picture was demonstrated. Experimental transmissions of still pictures, using the Fultograph process, were started on October 30th 1928, from the Daventry transmitter.
In September 1929 an experimental broadcast service was jointly inaugurated by the BBC and The Baird

Company. A dual-transmission system was started in March 1930, using a vision wavelength of 261 m with sound at 356 m . These transmissions were radiated for half an hour daily. Although very few people at the top of the BBC took much interest in TV at the time, on August 22nd 1932 the Baird process was taken over by the BBC, using a mirror-drum scanner that was installed at Broadcasting House, London.

The Baird system used only 30 scanning lines which were repeated 12.5 times a second. This restricted the possibilities to close-up shots and bold, contrasty scenes. Experiments were carried out to see whether the picture quality could be improved, but it was realised from the start that Baird's 30 -line system would not be suitable for broadcasting general entertainment programmes.

The First Tuning Signals

The BBC began to radiate simple test transmissions to check on receiver performance towards the end of 1934. Some of the very early tuning signals are shown in this article. We refer to them as tuning signals because they were far too simple to be called test cards, but all the parameter checks included in these 1934 tuning signals were later incorporated into the BBC test cards A to G.

Fig. 1 shows a low-frequency chart which was transmitted to check for low-frequency amplitude attenuation, in the $12 \cdot 5-100 \mathrm{~V}$ range, that would result in the pattern being reproduced with an intensity fall-off of black to white. Phase distortion would produce a brilliant white quarter above the black quarter, with an obvious greying of the right-hand quarter compared with the quarter below it. Well, that's roughly what was said and we can only hope

Fig. 1.

Fig. 4.

Fig. 2.

Fig. 5.

Fig. 3.

Fig. 6.
that Mrs. Average could follow all this as she tuned in. This particular check subsequently appeared as the famous "letter box" in the BBC test card C, which first appeared in January 1948. Note the date - some official BBC documents state that it first appeared in 1949!

Fig. 2 shows the 1934 version of the familiar corner focusing bars and frequency gratings that appeared in BBC test cards C to F. This chart was radiated as an h.f. response check and should, to quote the original, have "appeared on viewers' televisors with a greyish black point as far as the third or fourth line from the point or, conversely, on the fourth or fifth line from the point where the black and white converging line should always have been clearly resolved." Oh dear, why didn't they simply tell Mrs. Average that if her receiver wasn't performing correctly the chart would be out of focus? Although this check was a feature of all subsequent BBC test cards, the pattern shown here was not used as the BBC test card designers preferred a fixed set of frequency bars that gave an exact h.f. response check rather than a step-wedge that could easily mean different things to different people. In Europe however the story was different. Test cards with wedges abounded. The Spanish monoscope test card introduced in the early 70 s for example used two central wedges that were very similar to the 1934 pattern.

The BBC also radiated the pattern shown in Fig. 3 during 1934. Its circle and straight line were used to assess the accuracy of the picture ratio and any angular displacement. If the circle appeared as an ellipse, the $7: 3$ (yes!) picture ratio was out. So far so good for Mrs. Average, but there was more. "If the greatest axis of the ellipse is vertical, the height is too great compared with the width. If the straight line has a slope it shows progressive angular displacement. If the line appears jagged, this indicates irregular angular displacement." Since 1934 every professional test card has included a circle - always in the centre and also occasionally in the four corners - and a set of straight lines.

It's difficult to decide whether the three designs so far shown should be classified as test charts or tuning signals as mentioned earlier, they can hardly be called test cards. The next photograph however, see Fig. 4, can with confidence be called a tuning signal, if only of a very simple type. The "BBC Television Eye" as it was called was frequently transmitted during 1934/5. A photograph we recently unearthed shows this caption mounted on a small carousel which held a total of twelve captions, including two that read "Good Night" and "Finis" (not "Finish"). The caption drum, now housed in the television control room at 16 Portland Place, was the forerunner of the BBC's "noddy" caption scanning system, except that in the 30s the caption moved into position instead of a vidicon camera nodding up and down to find the required symbol or test card.

The Move to Electronic TV

While these 30 -line, low-definition transmissions were taking place a number of companies in the UK, the USA and elsewhere were carrying out experimental work with a view to eliminating the mechanical scanning system. The aim was to produce an all-electronic system capable of transmitting pictures that would compare favourably with cine film. Such a system had been proposed, in theory, by Alan A. Campbell Swinton back in 1908. His idea was to use a photoelectric mosaic screen on to which the image of the scene could be focused, the screen being scanned by cathode rays deflected by a varying magnetic field.

Vladimir K. Zworykin in the USA and the team at Marconi-EMI in the UK turned this theory into reality. Worried by this electronic competition, Baird managed to increase his scanning system from 30 to 240 lines, with 25 frames per second, scanned sequentially.

When high-definition transmissions began in November 1936 Baird just managed to scrape into the "highdefinition" category, as defined by the government, with his new improved system. Unfortunately for him, EMI came up with the famous but now discontinued 405 -line, 50 frames interlaced (giving 25 complete picture frames per second) scanning system. The first public demonstrations of these systems began with the Radiolympia Exhibition in August 1936. There were two one-hour transmissions each day for the duration of the Exhibition, which closed on September 5th. The Baird and Marconi-EMI transmission systems were used on alternate days. When the Exhibition ended, the station closed down and the final preparations were made for the start of the full service. The Baird and Marconi-EMI systems continued to be used alternately when the BBC London Television Station opened in November, to enable the two systems to be fairly assessed. Baird's system was soon dropped, and from February 8th 1937 to January 3rd 1985, with the exception of the war years, the 405 -line system was used.

Baird's Studios

Before we leave Baird, it's worth mentioning how his studios operated. He was provided with two at Alexandra Palace, where Marconi-EMI had just one. Separate methods of producing TV programmes, the intermediatefilm process and the Baird Electron camera system, were available in Baird's main studio, which measured 70ft long, 30 ft wide and 23 ft high. The intermediate-film process used 17.5 mm film which was exposed in the studio and continuously passed in turn through a developing tank, a washing tank, a fixing tank and a second washing tank. The complete process took 65 seconds. While still wet the negative film was scanned by a disc that rotated at 6,000 r.p.m., illumination being obtained from a 30 A arc lamp. The light from the scanning disc fell on a photocell that incorporated an electron multiplier. From this device the vision current was fed to an amplifier chain after which it went to the Baird control room. The recorded sound was passed to the control room after being taken off the film by a pick-up head. Baird's intermediate-film equipment was housed in a room adjacent to his main studio: it had a glass window through which the camera filmed the action.

Baird's Electron camera system was located in a special sub-control room and was used for programmes such as lectures, cartoon films, etc. It made use of the spot-light system, in which the studio was kept mainly in darkness except for a scanning light beam which was projected on to the artist or subject matter. The reflected light was detected by photocells. In the adjoining projection room a large disc rotating at 6,000 r.p.m. was illuminated by a 150 A arc lamp to generate the scanning beam, which entered the small studio via a window. In the studio four photocells with multipliers generated signals that, after amplification, were fed to the control room. A single microphone picked up the sound.
Engineers in the control room could fade between the signals produced by the intermediate-film process and the Electron camera system. Apparently artists hated the prospect of appearing in front of Baird's scanning system, and found all sorts of excuses to put off turning up at the studio until the following week when the Marconi-EMI

Fig. 7.

Fig. 10.

Fig. 8.

Fig. 11.

Fig. 9.

Fig. 12.
system would be in use. From all accounts Baird's systems worked very well. But in addition to the reduced number of scanning lines there was lack of flexibility in the studios and conventional filming would have to be used for outside broadcasts.

Post-war Tuning Signals

Work on radar during the war years led to a great deal of knowledge being acquired about television and cathoderay tubes. Some of this expertise was put into practice when the television service was resumed on June 7th 1946, thus improving the overall quality. A new tuning signal/ identification symbol was designed to cater for the improved picture clarity. It's shown in Fig. 5 and consisted of a very large card, approximately 2 ft by 3 ft , which was placed in front of an Emitron camera. It was transmitted for five minutes before the start of programmes to enable viewers to adjust their receivers. This tuning signal was also used for camera alignment in the studio. Unfortunately our picture cannot resolve the lines in the centre of the circle: they represented a frequency of 2.5 MHz . By the end of October 1946 the number of television receivers in use had rocketed to the dizzy heights of 3,350 while the licence fee had risen to the astronomical figure of ten shillings.

Three years later, on July 24th 1949, the tuning signal was modified to include a clock in the central area, see Fig. 6. At the same time the four different grey-scale steps were labelled - just in case viewers weren't sure what they were supposed to be. With the introduction of this tuning signal/clock caption the monotone, which had previously accompanied the tuning signals, was replaced with some specially composed music. Incidentally TV weather forecasts started on July 29th 1949, with specially prepared charts that seemed quite adequate for the job - no computer-generated graphics in those days.

We're not sure whether the clock in the first-ever TV clock caption actually worked! All the photographs we
have dating from this period show the clock, which didn't have a seconds hand, at exactly $3,8.25$ or 8.30 p.m. We suspect that this clock caption was a forerunner of the one used on "Play School". This theory is supported by the fact that the clock caption/tuning signal showing 3 p.m. was introduced in July 1949 while an identical one showing $8 \cdot 30$ p.m. wasn't officially unveiled until the following month. If the clock actually worked, why use different captions/ tuning signals? Answers on a postcard please.
On December 18th 1949 the tuning signal underwent some slight alterations: the two sets of stepped grey scales were replaced by wavy ones and the style of the identification was changed. The result is shown in Fig. 7, with the clock at 8.25 p.m.
A new BBC Television symbol was introduced in December 1953. Now in case you thought that the tuning signals and identification symbols produced by the BBC graphics department were devoid of deeper significance, think again! Quoting from the official description of the symbol shown in Fig. 8 we learn that "the abstract pattern consists of two intersecting eyes that scan the globe from north to south and east to west, symbolising vision and the power of vision. Flashes of lightning at either side represent electrical forces, and the whole form takes the shape of wings that suggest the creative possibilities of television broadcasting." Incidentally this design, created by Abram Games, seems to have been the first to incorporate the idea of a globe, which was to become a BBC tradition.

As far as we can tell the next tuning signal, shown in Fig. 9, first took to the air on August 19th 1955. It retained the wavy grey-scale used with the 1949/50 clock caption, but the identification was again changed and the clock face was replaced with the familiar wings design. It was followed on June 16th 1956 with the tuning signal shown in Fig. 10, in which the grey-scale and the wing patterns were combined. This photograph is not quite accurate - the grey-scale peak white and black BBC lettering should be at the top. Some specially composed music, called the "Television March",
accompanied this tuning signal at the start of each day's opening sequence.
Fig. 11 shows the penultimate tuning signal, which was used to introduce experimental colour broadcasts. Colour test transmissions originally began from the Alexandra Palace transmitter on October 10th, 1955, after normal programmes had closed down. The first series of experimental colour TV transmissions to include live pictures from the studios at Alexandra Palace, using 405 lines and the NTSC colour system, commenced on November 5th 1956, via the new transmitter at Crystal Palace which went into service on a temporary basis on March 28th that year. This transmitter replaced the one at Alexandra Palace and was completed on December 18th 1957. The colour photograph used in this tuning signal featured television announcer Sylvia Peters. It was included mainly as a test for the all-important flesh tones.

BBC Schools' transmissions began on September 24th
1957. Our last example of a BBC tuning signal, shown in Fig. 12, was transmitted for two minutes before each Schools' programme. It first appeared in 1963, together with some flute and cello music. Although the music changed in 1969, the tuning signal continued in service until 1973. It must have been transmitted well over 8,000 times but despite this vast amount of air time very few people seem to have photographs or video recordings of it. This is a great pity since it was the last tuning signal to be used by the BBC.
In this article we've tried to feature as many BBC tuning signals as possible. No doubt there were others which we don't have in our files. Unfortunately the BBC has kept no records in its archives. So if anyone has photographs or video recordings, please write to us at 7 Epping Close, Derby DE3 4HR (telephone 0332513 399). Similarly we'd be very pleased to hear from any readers who have recordings of BBC Test Card C music.

Letters

COST OF REPLACEMENT TUBES

I would like to draw attention to the current price of replacement c.r.t.s. One of our regular customers recently brought in a nine-month old Philips Model 21CE1251, a 21 in. remote-control set with an FS tube. He'd tripped over a rug, knocked the back off the set and, in refitting it, had knocked the neck off the tube. He was not too bothered however since his insurance company was going to pay for the repair. Could we do an estimate?

I was aware that other things could have been damaged if he'd switched the set on, but he assured be that he hadn't. So I contacted a wholesaler with whom we deal. Several days later I received a card saying that the trade price for a new tube was a little over $£ 240$ including VAT. If one assumes a mark-up on spares of say 25 per cent the cost of the tube, before fitting, works out at $£ 300$ give or take a few bob. We contacted our customer to ask how much he'd paid for the set nine months previously. His reply was $£ 299.99$.

In other words the price for the new tube alone is the same as that of the whole set a few months ago. While appreciating that the tube has always been the dearest component in a TV set, this really is absurd. Are setmakers going to stop supplying any spare parts for their sets soon, so that we can all go out of business and the customer can simply dump a set in the bin if it's damaged or goes wrong? If so, are they going to advertise their sets as being impossible to repair? What would that do for sales? Those who adopt such a stupid pricing policy will find that they have few dealers who will stick with them. L.J. Pitts, South Brent Electronics, Buckfastleigh, Devon.

SWITCH-MODE POWER SUPPLIES IN VCRs

Having just finished reading J. LeJeune's excellent article on the power supply used in the Ferguson FV30 I'd like to make a few comments - prompted by J. LeJeune's suggestion that switch-mode power supplies are about to become the norm in domestic VCRs.
What I'd like to know is the manufacturers' thinking behind this move? Whilst it's true to say that a switchmode power suppy is more efficient than a linear one, this
is purely relative. A 20 per cent saving at 40 W is only 8 W - less than the rating of a car's interior lamp. At 500 W , as is the case with many computer power supplies, the saving is a much more respectable 100 W . In view of the kilowatts being force pumped into a fairly closed-in rack by the rest of the machine, stopping another 100 W from contributing to the temperature is a sensible and valid reason for using a switch-mode power supply.

I cannot therefore believe that power saving/heat is the reason for using this type of supply in a VCR. Weight is the next possibility. From the end user's point of view however this is of no significance at all. After all, we don't keep carting our VCRs around the house, do we? There might be some advantage to the manufacturer in shipping VCRs around the world, but as most of this is done by surface transport I can't see it being a significant factor.

Cost seems to be the other major possibility. But looking at the FV30's power supply circuit I can't believe that it would be cheaper to build than a comparable linear one on a PCB. Any PCB can be machine assembled, and the fewer components that have to be placed the lower the cost.

No. I'm inclined to believe that the reason for using this technology is closer to the "why climb Mount Everest" one - because it's there! This also applies to a lot of the other technology used in today's consumer electronics. It seems that ever more complicated ways of doing jobs are being found to make use of the latest whizz-bang i.c.s.

To return to switch-mode power supplies in VCRs, there's no performance advantage to be gained from using them. I defy anyone to tell the difference in the reproduced picture quality with a VCR that has a linear power supply. This is not the case with equipment such as highperformance monitors and computers that function markedly better for being fitted with switch-mode power supplies and have a distinct advantage in terms of transformer size. The majority of modern VCRs don't employ a large transformer and this is not an expensive item to replace on the rare occasions when it fails. In contrast chopper transformers, which do fail regularly, can be very expensive. Further the main switching device is more often than not critical and cannot be substituted. Again some of these devices are very expensive.

To move to the servicing angle, I feel that the use of switeh-mode power supplies in VCRs is another nail in the coffin of the independents. I've been repairing switchmode power supplies for many years and consider myself to be experienced in the field, but I still feel daunted by
the prospect of changing every semiconductor device only to find that the thing still won't go. It's very easy for the hours spent on a repair to go up and up without the engineer being fully aware of this, and it's in many cases impossible to pass on to the customer the true cost, as has been mentioned many times in your columns. Joe Public just doesn't understand.
As a point of historical interest, I had a smile when I saw that the machine was a Ferguson model. I recall that some twenty years ago Bush brought out the A823 chassis. It employed a "switching" power supply that used one thyristor, three resistors, a couple of lengths of damp string and a piece of chewing gum! Based on a Mullard applications report, it worked fine, being very respectably stable and easy to fix when it went wrong. At the same time Ferguson, then known in the trade as BRC or was it Thorn, brought out the $30(0) / 3500$ chassis. It employed a switch-mode power supply that used half a day's output from the Texas Instruments semiconductor factory.
Those who remember it will probably smile with me whilst looking at that circuit in the FV30.

Finally, on a somewhat more serious note, having seen the catastrophic way in which this type of power supply can fail I personally wouldn't feel inclined to leave one of these things unattended in my house.

I'd be interested in other readers' comments on the points raised above. I must point out that I'm no Luddite, just an honest engineer trying to earn an honest living. One who believes in horses for courses.
G.R. Darby, Proprietor, Monitech,

Earls Barton, Northampton.

SATELLITE TV RECEPTION AT VHF

Here's a possible explanation for D.H. Davies' reception of Sky TV at v.h.f. (Letters, July). I think we can safely say that his reception is not direct from the Astra satellite and would suggest that the clue lies in his address. Would I be right in thinking that Ebbw Vale is wired for cable TV? If so, and if the cable is on or near his property, he's receiving an unscrambled channel at v.h.f. by leakage radiation.

E.I. Cooke,
 Stonehaven, Kincardineshire.

With reference to D.H. Davies' letter regarding satellite TV reception in the v.h.f. band, I think his reception is from one of the illegal video senders that are widely advertised in the satellite TV press. Although these small, low-power transmitters claim to operate at u.h.f. they frequently operate in Band III, relying on their third harmonic for the u.h.f. output. I'm afraid that he's certainly not picking up the satellite direct.
Gareth Foster,
Whitton, Middlesex.
I read with interest D.H. Davies' letter and would like to relate a similar experience of my own regarding satellite TV reception without either a dish or a decoder. After moving to a house that required substantial redecoration one of the first tasks I decided to undertake was to install a TV aerial amplifier and distribution system. When this had been done it was time to tune in the various TV sets throughout the house. The firstane to receive my attention was the Philips Matchline TV and tuner in the main bedroom. While tuning this I found that it managed to lock in on a somewhat snowy but watchable picture from an MTV programme. This came in on ch. 21. I decided to
store this in the set's memory for investigation later on. When I next tried the set ch. 21 was receiving Sky Movies!

On looking at the houses nearby I noted that about a third of them have Astra dishes. The conclusion I came to was that one or more of these systems is pushing out copious amounts of r.f. that my TV set is able to receive. I wonder whether Mr. Davies is experiencing a similar phenomenon?

T. Holland,
 Camberley, Surrey.

Mr. D.H. Davies writes about his puzzling reception of Sky Sport in one of the v.h.f. bands with his Pye Model 99. Obviously this isn't a microwave signal being decoded but a v.h.f. transmission, probably from one of the Irish TV transmitters as Bands I and III are still in use there for domestic TV and particularly as Rupert Murdoch's Sky TV has been given a transmitter to help him sell his receivers in Ireland. So, Mr. Davies, don't be surprised if in a month or so you switch that set on to find MTV, Super Channel or one of the other Sky channels on that particular frequency.

Readers may wonder why Mr. Davies can't receive RTE-1 and -2. The answer to this is that in the midSeventies the British military complained to the Irish government that Irish TV transmissions were interfering with military communications on the mainland. As a result, RTE-1 and -2 now operate under reduced power along Ireland's eastern coast and cannot be received in the UK. A very dubious request indeed.

In the same issue Mr. J.M. Williams asks for a cure for teletext interference with the Thorn 2000 chassis. Maybe a solution could be found from the 3000 series field timebase. In this a capacitor was changed to cure the problem by pushing the start of the field scan farther "up" the screen.
Garry Robinson,
Chorley, Lancs.

BRIGHT VALVES AND OTHER MATTERS

In the August issue Brian Renforth asks about valves that light up brightly at switch-on then fade down to normal brightness. I've noticed that cheap East European valves do this more often than Mullard etc. ones. The effect seems to be caused, with parallel heater arrangements anyway, by the heater coil not being pushed fully into the cathode cylinder during manufacture. The coiled section of the heater has two thick tails attached to its ends, to prevent the heater glowing where it's welded to the pinsinside the valve. If the coiled section projects from the end of the cathode the exposed ends will heat up first, while the rest of the heater remains cold because it dissipates most of its heat to the relatively massive cathode. As the heater has a positive temperature coefficient of resistance, the exposed ends of the heater initially have greater resistance per unit length than the part inside the cathode. The result is that the exposed ends of the heater are subjected to a brief surge of power, until equilibrium

Fig. 1: Extra field blanking circuit for use with the Decca 30 series chassis.
is restored when the cathode reaches its emission temperature.

An additional factor comes into play with series heater chains. The cathodes of the small-signal valves reach emission temperature more quickly than those of the larger line output type valves and initially receive more than their fair share of heater voltage. Some manufacturers included a thermistor in the heater chain to get round this "problem".

Various of your contributors mention teletext interference with older sets. My Decca 30 series set recently suffered from this problem, on ITV only - presumably due to the inclusion of extra teletext lines on this channel. Fig. 1 shows the field blanking circuit I devised to resolve the problem. R287 was changed to $10 \mathrm{k} \Omega$ and the circuit shown was connected between pin 21 on the convergence panel and pin 6 of the IC2 on the decoder panel. The capacitor must be rated at 600 V minimum to block the h.t. that's present on the covergence panel. Most of the components can be tacked on to the back of the decoder panel, with the capacitor fastened to the convergence harness. Sleeve the capacitor's leads to prevent shorting.

Finally, ET's letter about his colleague getting a shock from a TV set's mains plug. Surely there must have been a mains rectifier fault that allowed the reservoir capacitor's charge to lead back to the mains lead? It's possible that a shock, admittedly not so powerful, could have been received from the mains filter capacitor if the plug had been pulled out when the mains input waveform was at its peak.
S. Pearson, Chipping Norton, Oxen.

THE ELECTRIC SHOCK PROBLEM

I was interested to read E. Trundle's electric shock warning last month. Having received many shocks myself when moving TV sets I carried out various experiments and have come to the conclusion that a capacitor is formed by the tube's shadowmask as one plate and the unsuspecting engineer's chest the other plate. Any residual e.h.t. is just waiting to charge this capacitance when the circuit is completed via the pins of the mains plug.
W.R. Hill,

Clifton, Bristol.
With reference to the engineer who received a nasty shock from the pins of the mains plug when he lifted a set fitted with the Luxor SX9 chassis after disconnecting it from the mains supply, readers may be interested to know that there's a simple modification. Adding a $1 \mathrm{M} \Omega$ resistor (0.5 W) across CN 50 reduces the discharge time to 100 msec .
Alan C. Davies,
Crewkerne, Somerset.

BADLY DESIGNED SETS

I agree totally with those who've written previous letters about the shoddy design of current sets. They are not only irritating to us engineers but confusing to customers. For example plastic, single-board sets with no service position and no markings on the panel (Fidelity) make field servicing impossible and bench servicing a pain in the backside. Customers can't understand many modern tuning and control systems. We get lots of calls to Hinari VCRs because the users can't tune them in as the design is too complicated for a non-technical person to follow.

I sadly miss such TV sets as the Philips G8, the ITT hybrids, the Rank/Bush models etc. They were solid and easy to work on, and the owner had no problems in understanding them. The main beauty however was the power supply. Modern ones are a nightmare. The first company to bring back a wooden cabinet with a decent tube and a well thought out chassis, with push-buttons and traditional controls, will have a winner. Finally, who says that the present "monitor" style is modern? Sets were styled like this in the Fifties.
J.R. Hepworth,

Peterlee, Co. Durham.

HELP WANTED

Does anyone know of a firm in the UK that can supply the TBA240 i.c.?
A.I. McLean, Tele-Phil (Pvt) Ltd., PO Box 338, Mutual House, Herbert Chitepo St., Mutare, Zimbabwe.

Does anyone know of a source for the 2SD1887 transistor? It's from a Sony monitor whose model number we don't know. All we know is that the board order number is 1-621-776-11 and the transistor is Q508. SES can't help. Martin Burke, 22 Clark Street,
Bell Green, Coventry CV6 7HF.
0203687615.

Can any reader provide a power supply and a timer circuit diagram for the Mitsubishi HS700 portable VCR? Photostats would do and all expenses would be paid.
Darren Egerton, 42 Beech Avenue,
Greenacres, Oldham, Lancs OL4 2EE.
Has anyone got say five video cassettes for the Technicolor CVC Microvideo VCR type 212E. It was introduced into the UK by Sulkin (UK) Ltd. and was also taken up by Grundig. Let me know the cost which will be sent immediately.
B.J. Lawler (Electronics), 215 Liverpool Road, Birkdale, Southport, Lancs.
070465935.

Can anyone supply an e.h.t. transformer for the Lloytron CTV Model T142C, new or secondhand? All expenses paid.
Mr. Burston, Prism TV, Focus Warehouse,
Teignmouth Road, Clevedon, Avon BS21 7DF.
0272873806.

I'm trying to find the manufacturer or agent for Safgan Ltd. I have one of their 20 MHz dual-beam scopes, Model DT50, with a 4in. Telefunken tube and need to get it repaired.
T.H. Hughes, 51 Standard View,

Ynyshir, Rhondda, Glam CF39 0HR .
Could any reader supply information and/or spares for the Murphy VCR1 video recorder? I've been unable to trace 'the original manufacturer.
Roger W. Scales, 17 High Street,
Bridlington, East Yorks YOI6 4PR.
0262673374.

Could any reader sell me any of the following items? (1) A valve tester capable of testing ECF80 type valves, complete with instruction manual. (2) $0-2,000 \mathrm{~V}$ and 0 -
$4,000 \mathrm{~V}$ multipliers for the Avo Model 7 and $0-10,000 \mathrm{~V}$ for the Avo Electronic Testmeter, including all leads, test prods, etc. (3) Pin connection details for the ETGL-3AZP31 tube used in the Telequipment D31 and D31R scopes, also a service manual. (4) Any radio books by John Scott Taggart exept for "The Book of Practical "Radio".
J. Chatterton, 230 Brownley Road,

Wythenshawe, Manchester, M22 5EB. 0614375085.

SERVICE COMMENTARY

In the June VCR Clinic Jeff Herbert mentioned fast flutter with the Panasonic NV-G40. Our experience is that this fault with a VCR that uses a direct-drive, brushless capstan motor will be due to the electrical rather than the mechanical side, particularly when the fault is discernible and constant. Eugene Trundle mentions this problem in his book Servicing TV and VCR Equipment and provides the very good advice to monitor across the current sampling resistor. The trace will reveal a problem in one stator coil pair or triplet, showing up as a ripple. We've noticed that all models which use this type of motor suffer from stator failure occasionally, though it's not a common fault. It strikes me as an advantage that Panasonic doesn't supply these motors complete, since this enables you to replace only the faulty part, reusing the bearing and rotor. An advantage of such motors is their accessibility for repair and lubrication. With the G mechanism, routine servicing would be extremely expensive if you had to replace the entire motor every time the rotor bearing became noisy.

In the August TV Fault Finding column Roger Burchett mentioned dry-joints on the various wire-wounds used in the Sony KV2096. This problem also occurs with the 2090 and 2092 models in the same series. Sony stress that resoldering should be done with high melting-point solder - the procedure is part of the famous switch modification. Because Sony arrange for all such modifications to be done through their own authorised dealers, others who come across such sets are not always aware of what's needed. It would be best for Sony to publish the details now that most dealer modifications have been done, so that sets which fall through their net can be dealt with. It seems that in a very few cases the end results of unmodified sets developing possible faults are not too nice.
In the same issue Hugh MacMullen refers to equipment renovation. Cabinet cleaning can be done effectively, with somewhat less disruption than the use of soap and water, by using Servisol Foam Cleaner which is available from Willow Vale. This also looks like tea when cleaned off! We find the RS foam cleaner much less effective (unless it has been improved in the past year or so). The RS aerosol demoisturing lubricant (code no. 555-307) however is far less messy than silicone grease. It's also by far the best control track cleaner - try it! I see that Hugh uses the same dry-joint test procedure as myself! It's always advisable to ensure that the fuse in the mains plug is correctly
rated. Hugh's comments on cheap head drums shouldn't be taken to mean the cheapest. This is very false economy, especially considering the advice to give a 12 -month guarantee. I recommend MCES heads and would point out that they supply new ones as well as rebuilds. The same rules apply to belts, particularly belt kits. Many inferior ones are available: use only originals.

One job that can make the world of difference to a VCR's appearance is to replace a low-emission digitron. When you've overhauled a machine's mechanics you know it'll go for a long time, but prospective customers can be deterred by a dull clock display. Finally I'd advise commonsense and caution with respect to uprating regulators. While it was common practice years ago to modify circuits, great care and consideration need to be given to any such actions today. I'd never suggest a modification without reference to the manufacturer - and they invariably dissociate themselves from such changes.

In the August VCR Clinic S. Da Costa mentions the relays in the Panasonic NV366/777. In my experience dirty contacts usually result in severe noise following or whilst in the still mode. The relay invariably still clicks. I would expect a coil or switching fault rather than dirty contacts to cause the relay not to click, though I've never had such a fault - only dirty contacts.

In the June CD Player Casebook Mike Leach mentions the diffraction grating adjustment with the Pioneer PDZ72T. With Pioneer units this adjustment is one of the earliest stages in the alignment process. The adjustment can be fiddly, and yes I'm sure we've all sworn at a few three-beam units when the adjuster slips from one end to the other in one movement. But it becomes easy with experience, especially if you regularly replace the optical unit when of course the complete alignment must be carried out. It's fair to say that unless the player has been dropped or subjected to shock, and has not been got at, grating adjustment is required only when changing the optical unit - it can't drift easily. With Pioncer machines you need to adjust it to check it.
In his series Joe Cieszynski mentioned Ken Clements' advice on this adjustment. It's 100 per cent successful. Monitor the tracking error with the player in the test mode and the focus and disc servos on. Set the adjuster to one end, then gradually move it through to the other end, counting the amplitude peaks in the error waveform. Finally return the setting to the centre peak. If an even number of peaks is encountered (expect ten or eleven normally) try both the middle ones. The test will be that when the tracking servo is closed, in the test mode using the pause key, there will be sound. Thus if only slight misadjustment is suspected, for example where the tracking is poor, check the amplitude of the focus error in the test mode with the servo not closed and ensure that it's peaked with the grating adjuster, as it's more than likely to be on the correct peak. As long as you are careful a smallish jeweller's driver can be used, in a pivot action, for the adjustment - I seem to recall that the proper tool is very expensive. We've found these methods to be very sunccessful, and have also found that with the average Pioneer replacement optical unit the grating is accurately

[^0]set. The thing you usually have to do immediately is the tangential adjustment, which is often right at one end.

Finally on CD players I'd like to thank Joe Cieszynski for performing a mammoth task with the recently concluded CD player servicing series and doing it so well. I think we all learnt a lot from it.

One more point. In the July TV Fault Finding column Chris Avis mentioned the Hitachi CPT2050 which if I recall correctly uses the Salora J chassis. The fault erratic height variations with simultaneous colour changes - was very common but was usually due to the hold potentiometer rather than the chip. The height control also suffers from noisy tracks.
Nick Beer,
Bideford, N. Devon.

SIMPLE PLACEMENT MMV

Because the MMV part of a large i.c. was faulty an elderly JVC VCR wouldn't record. There was a sync pulse input but no divided-by-two squarewave output from the faulty section, i.e. no CTL pulses. The i.c. concerned has 40 pins and, worse, costs over $£ 30$. So I decided to make up a separate MMV on a small piece of board, using the ubiquitous NE555 (20p from Grandata). Its input and output were connected to the respective pins of the faulty chip, 26 and 27. Fig. 2 shows the circuit.

Careful scope adjustment of the mark-space ratio resulted in a thin line across the picture. So the timehonoured trial-and-error approach was adopted. With the potentiometer R fully ariticlockwise and a counter at zero, a recording was made. At each 5 on the counter (from 10 to allow for loading) R was turned one sixth of its

Fig. 2: Separate NE555 MMV circuit used to avoid having to replace a larger, expensive chip.
revolution. On playback a position was noted where there was no line. This position has given stable results for many weeks. The time-constant of $R C$ is o.k. for $\div 1$ or $\div 2$: it might have to be changed for say $\div 15$, depending on the frequency involved with other applications.

I'd like to thank D.R. Bracknell for his G8 blanking modification. Teletext interference has been a problem with these sets from the start, especially with Channel 4. I've fitted the modification to two chroma panels and find that it provides a complete answer.

With reference to Geoff Davies' letter, my 1962/3 Mullard Data Book describes the UL46 as a video output pentode. The characteristics are the same as the UL41, which is referred to simply as an output pentode. They are probably the same valve. In my experience, failure of the volume to reduce to zero with a double-diode-triode valve has always been due to the cathode resistor's bypass capacitor drying up.
G. Cox,

Bexhill-on-Sea, East Sussex

A business PART can rely on.

can PARTner you

Limited

GEC Panasonic GEC Panasonic GEC COMPONENTS DISTRIBUTORS TO THE ELECTRONICS SERVICE INDUSTRY General Spares: Tel. (0664) 65392 Fax: (0664) 63976 Panasonic Spares: Tel. (0280) 823523 Fax: (0280) 814916

VIDEO DISPLAY CORPORATION

 ment MOTORS - PINGH ROLLERS - CO-AX \& SCABTS - TOOLS - TRIPLERS etc etc

AT UNBEATABLE PRICES

SPECIAL ‘PICK \& MIX’ QUANTITY DISCOUNTS

HANDSETS

PLEASE ENQUIRE ABOUT TRADE AND QUANTITY DISCOUNTS

BELT KITS

AMST. 70003 Beits FERG. 3V22 Belts FERG 3 V233 Belts. FERG. $3 V 294$ Belts FERG. 3 V31 4 Beits. FERG. 3 V 354 Belts HIT VT116 Belts
$£ 0.65$
$£ 1.15$
$£ 0.40$
$£ 0.70$
$£ 0.70$
$£ 0.62$
1.15 1.15 10.40 20.70
20.70 0.62 £1.10

HIT. 50007 Belts HIT. 93003 Belts N. PAN 3006 Belts N.PAN 7774 Belts N. PAN 70006 Belts N. PAN 86007 Belts SANYO 50004 Belts
£1.20
SANYO 53005 Belts SANY0 55003 Belts SANY0 93005 Belts SHARP 73007 Belts SHARP 83005 Belts SHARP 93005 Belts SONY SLC56 Belts
£0. 72 SONY SLC6 6 Bells
£1.40 SONY SLC7 6 Belts
£1.68 SONY SLC96 Belts
c1. 32
. 1.32
£0. 84 TOSH. V55-57 4 Belts
£1.18 TOSH. 96004 Belts ..
$£ 1.10$
$£ 1.18$
$£ 1.50$
$£ 1.80$
$£ 0.75$
50.58

£0.58

ALL PRICES EXCLUSIVE OF V.A.T. (UNLESS OTHERWISE STATED) MINIMUM ORDER £5.00 PLEASE ADD £1.00 P\&P FOR SINGLE ITEMS (+V.A.T.) OR £1.50 FOR MULTIPLE ORDERS

TV LINE OUTPUT TRANSFORMERS
 PHONE 081-948 3702

ALBA AMSTRAD BUSH DECCA DORIC ETRON FERGUSON FIDELITY GEC. GRUNIIG GRANADA HITACHI HINARI. INDESIT ITT KIMARI NIKKAI MATSUI MURPHY OSAKI NORDMENDE REDIFFUSION PYE. PHILIPS SANYO SAISHO SHARP SONY SOLOVOX, SUSUMU TANDBURG TELEFUNKEN THORN . TRIUMPH
We also supply: TRANSISTORS EHT TRAYS VIDEO HEADS FROM £14.25. BELT KITS. PINCH ROLLERS. IDIERS FUSES IC's celc
Catlers welcome at our self service shop
We also manufacture TOROIDAL TRANSFORMERS
TIDMAN MAIL ORDER LTD . 236 SANDYCOMBE ROAD
RICHMOND. SURREY. TW9 2EQ. Mon-Fri 9 am 1012.30 pm *
Approx. 1 mile from Kew Bridge.
Sat 10 am to 12 noon

RELAY

OMAGH LTD COMPUTER SUFTWARE
DO YOU RENT TELEVISIONS?
DO YOU STIL USE A CARD SYSTEM?
dO YOU FIDD IT DIFFICULT TO KNOW YOUR ARREARS TOTAL AT ANY GIVEN TIME?
If you do then we recommend our computer TV and Video Rental package. This package includes
\star autornatic updating of each customer's record
\# automatic updating of each customer's record

* total arrears immediately available
\star easy to use and operate.
IEW HIRE PURCHASE PROCRRAMME NOW AVALLABLE AS WELI.
These programmes operate on all IBM compatibles running under MS-DOS. Free demonstration discs available.

WILLIAM J THOMPSON Donaghanie Post Office Beragh Co. Tyrone Telephone Beragh 58214 (0662 7)

NOW OPEN

 IN LEEDSTHE LARGEST DISPLAY OF SATELLITE TV IN THE NORTH OF ENGLAND

INTELSAT, EUTELSAT,

D.F.S., KOPERNIKUS,

TELECOM AND OLYMPUS

* AND ACCESSORIES SOLD

A LARGE SELECTION OF EX-RENTAL AND ‘B’ GRADE TV’s IN STOCK INCLUDING A SELECTION OF PORTABLES

WHY TRAVEL THE WHOLE COUNTRY?

 OPEN MON-FRI 9.00am-5.30pm SAT 9.00am-1.00pmRING SID OR SAFF NOW ON
LEEDS (0532) 444195
5UPRR115101
UNIT 16, TOWER WORKS, 2 GLOBE ROAD, LEEDS LS11 50G OFF WATER LANE. NEAR HILTON HOTEL, EASY ACGESS FROM M1 \& M62 (2 Mins)

FAX (0532) 42577

THE ONLY DISTRIBUTOR WITH ALL THE
 HiNARiSPARE PARTS

C.P.C. P.L.C., SOLE AUTHORISED DISTRIBUTORS OF HINARI SPARES

DALBANI (UK) LTD.

JAPANESE COMPONENTS SPECIALISTS ELECTRONIC COMP. DISTRIBUTORS (Imp. Exp.) EX-STOCK DELIVERY 6,000 DIFFERENT PARTS

TRANSISTORS			INTEGRATED CIRCUITS			
$2 S A$	BD	MJ	AN	M	STK	UPC
$2 S B$	BDX	MJE	BA	MB	STR	UPD
$2 S C$	BF	IN	CX	MC	TA	CMOS
$2 S D$	BT	$2 N$	HA	MN	TBA	
$2 S J$	BU	TIP	KA	NE	TC	
$2 S K$	BUT		LA	SAA	TCA	
$3 S K$	BUW		LB	SAB	TD	
AD	BUX		LC	SI	TDA	
BC	BUY		LM	STA	TTL	

STOCKISTS OF IC's \& TRANSISTORS, AUDIO AND VIDEO HEADS, MOTORS, IDLERS, PULLEYS, ROLLERS, BELTS AND TYRES FOR RADIO CASSETTE, VIDEO AND TV'S. (ORIGINAL AND COPY REPLACEMENT PARTS AVAILABLE)
DALBAN (UK) LTD
587 A KINGSTON ROAD, RAYNES PARK, LONDON SW20 8SA, ENGLAND Tel: 081-543 1971 O Fax: 08154220820 TIX 914040

Did you know that the faults and remedies for video, $C D$ and $T V$ in the

ASWO VIDEOTEXT INFORMATION SYSTEM

are from hundreds of technicians all over Europe

For more information write, phone or fax: ASWO (UK) LTD Heston House, 7/9 Emery Road, Brislington, Bristol BS4 6PF

55 SLATEFORD ROAD, EDINBURGH EH11 1PB. Tel: 031337 6950/031 346 7497. Fax: 031337 2446. Telex: 72165
SPECIAL VIDEO HEAD PRICES: VHS-A, VHS-Z, VHS-B, ONLY E8.95 + VAT

ADS	
VHSA	£8.95
VHSZ	88.95
VHSB	£8.95
VHSX	£42.00
VHSM	£14.50
VHSW	£21.75
VHS Y	£42.00
VHSN	£26.75
VEH0287	£42.00
VEH0343	£42.00
VHSK	£17.25
VHSI	$\underline{177.25}$
VHSC	$\underline{18.00}$
VHSS	$\underline{18.00}$
VHSR	18.00
VHST	£18.00
VHS U	£19.25
BETAD	£27.25
BETAB	£16.75
BETAW	£19.85
VHSL	$£ 17.50$

STK \& STR ICS	
STK0029	¢5.63
STK4141 Mk2.	£8.48
STK4141 Mk5	. 10.08
STK4151 Mk2.	£10.43
STK5481	£4.70
STK5482	£4.29
STK7308	£5.09
STK7309	£5.81
STK7348	£4.74
STR441	£6.79
STR451.	£6.12
STR50020	$\underline{6.15}$
STR50103	£5.45
STR54041	$£ 5.91$
STR58041	£6.15
AT TIME OF GOING TO PRESS WE	
HAVE 214 DIFFERENT STK/STR ICs, PLEASE PHONE FOR PRICES	

VIDEO EBLT KITS	
JVCHR3300C/3V16 (7)	$\Sigma 1.75$
JVC HR7200/3V29(5)	ع1.13
JVC HR7700/3V22 (3)	
JVC HRD120 genuine	
JVC HRD140 genuine	ع1.86
PANASONICNV333	$\varepsilon 1.52$
PANASONIC NV37	
PANASONICNV730	
PANASONIC NV777	ع1.010
PANASONICNV2000	
PANASONIC NV7000	
PANASONIC NV8600	ع1.76
HITACHIVT11	ع1. 28
HITACHIVT5000	ع1.79
HITACHIVT7000	ع0. 83
HITACHIVT8000	
HITACHIVT9300	$\underline{80.75}$
SANYO VTC5000	ع1.31
SANYO VTC9300	ع2.89
SHARP VC381	ع1.09
SHARP VC6300	ع1.38
SHARP VC7300	
SHARP VC8300	. 53
SHARPVC9300	ع1.24
SONYC5/C7	ع1.54
SKAY C6.	ع1.24
FISHER FVHP615	1.38

THIS IS JUST A SMALL SELECTION OF THE WIDE RANGE OF PRODUCTS IN THE VIDEO AND SEMI-CONDUCTOR FIELD WHICH WE CAN NOW SUPPLY.

SMJ ELECTRONICS, inc. IBC, is the sole Scottish distributor for Ross consumer electronics and Kewmode products, and have a wide range of portable audio, televisions, headphones, leads, camcorder batteries and accessories available

TV RENTAL FINANCE

for
new or re-conditioned CTVS AND VCRS
for
Details and Quotations contact

business credit
Colonnade House, High Street, Worthing, Sussex BNi11 1NZ Tel: (0903) 821020 Fax: (0903) 821194

A Division of Broughfance Lrd

VHF/UHFCTV from £30 VHF/UHF F/L VHS Videos from £150

All Serviced to a High Standard FOR EXPORT CALL

T.V. TRADE SALES

E.D.I. House, Kylemore Park West DUBLIN 10
 Telephone: 6264139/6263517

TELE-VIDEO SERVICES (N.I)

Tel: 0232-617222 Fax: 0232621631 Unit 6, Kilwee Industrial Estate, Dunmurray, Beliast BT17 OHQ.
NEW AND USED SPARE PARTS FOR A WIDE RANGE OF TV AND VIDEO PANELS, MOTORS, HEADS ETC AT VERY GOOD PRICES. HANDSETS, FLAPS + DOORS, IC'S, CLEANING FOAM, PAINT, VINYL COVERING AND MUCH MORE.

All at competitive prices

We also wholesale ex-rental TV and video to the trade.

Mon to Fri: 9.00am-5.30pm Saturday: 9.00am-5.00pm

IRWIN ELLECITRONICS

 TV \& VIDEO $\mathbb{C O M L P O N E N I T S}$Unit 200, JC Albyn Complex, Burton Road, Sheffield S3 8BX Sheffield (0742) 739622

SPOTTING THE DIFFERENCE SHOULDN'T TYRE YOU!

BUT EVEN IF IT DOES YOU SHOULD READ .. .

Our new stock/price list of video components which is available - to trade engineers only - and now contains some 40 "REFURB" KITS using genuine idlers. In addition there are 16 "A" KITS which include high quality Japanese tyres instead of idlers, showing a large reduction in cost without a reduction in quality.

ONE MONTH ONLY (offer closes 30th September)
Purchase any of the above kits and get a MATCHING HEAD for
. $£ 9.35$

BACK-UP BATTERIES

SINGLE AND DOUBLE CELLS. SUITABLE REPLACEMENT IN MANY

TVs AND VIDEOS
(QUANTITY PRICES AVAILABLE)
1VZ £1.59 each 2V4 £2.75 each

BACK-UP CAPACITOR

 AS USED INALBA - SENTRA - NIKKAI etc 0.1 Farad 5V5

E1.65 each
VIDEO HEADS DIREST FROM THE TMPORIERS

AKAI		SANYO		SHARP	
VS $1-245$. 17.11	VHR 1100	. 22.36	VC-5/6	17.95
VS 105112	19.86	VHR 1150	. 22.22	VC-6000	41.09
AMSTRAD		VHR 1200SP	22.36	VC-651	17.95
TVR1.........	15.41	VHR 1300	22.22	VC-7300	41.09
TVR2/3	15.4	VHR 1500	. 37.84	VC-8300	41.09
VCR 4500	15.41	VHR 1700	. 22.22	VC-9300	17.95
VCR 4600	15.41	VHR 2300	. 22.22	VCASERIES	17.95
VCR 4700	15.41	VHR3100	. 23.21		
VCR 5200	15.41	VHR3200	23.21	1000	23.21
VCR 6000/1	. 21.81	VHR 3300	. 23.21	SONY	
VCR 7000	19.04	VHR3400	. 23.21	SLC5/6/7	14.50
VCR 9000	15.41	VTC 5000	24.14	SLC8/9	31.37
FERGUSON		SENTRA		SLC20................ 16.57	
3 VOO (3HSSV)	9.25	8000	. 23.21	TATUNG	
3 V 32.	27.13	HITACHI		8300/8500 9.25	
3V35/36	9.50	VI7	. 35.83	TOSHIBA	
3V12/44/45	20.53	VT8.9	41.95	V-21/31/32	17.86
$3 \mathrm{~V} 43 / 53$	40.69	VI 11/14/16/9000	. 16.45	V-33/50/51	17.86
3V48	27.13	VT 17/18/19	32.90	V-55/57	9.50
3V54/55/56	20.53	VT 33/34/6500	. 16.45	$\checkmark-63 / 64$	18.80
3 V 58.59	34.96	VT 35/38/39	35.83	V-71/73/74	18.80
3V64/65	23.63	VT 52.	25.68	$\checkmark-75 / 78 / 81$	18.80
FV 10/11	23.63	VT56/57	41.95	V-80.	20.55
FV 121/130	34.96	VT61/62/63	25.68	V-83/85/86	18.80
FV $14 T$	P.O.A.	VT 65	32.90	V-9600 96	17.86
FV 20/21/22.	23.63	VT 100/111	28.72	MITSUBISHI	
FISHER		$V T 112113$	28.22	HS300/301	33.98
FVH P520	17.11	VT 115/118	28.22	HS302/310	. 33.98
FVH P975	34.33	VT 120/125	28.22	HS303/304	. 26.52
GOLDSTAR		VT 128/220/410	28.22	HS318/710	. 35.06
8000	23.21	VI $138 / 450$	31.26	HS700	26.52
GHV 1221	22.28	VT 145/150/498	. 32.51	N.E.C.	
GHV 12321	22.28	VT 220,225/420	. 28.22	N9 SERIES	28.51
GRUNDIG		VT 250/255/430	31.26	N91 SERIES	38.01
VS 400	21.37	VT 522 720/722	36.50	ORION	
VS500	21.37	VT 530	. 36.50	VH SERIES	19.04
HINARI		VT640/740	37.00	PANASONIC	
		J.V.C.		NV 100/200	12.43
VXL 89 $9 \ldots$	21.81	3HSSV	9.25	NV 180	33.98
YXL2/3/4.	19.04	HR 7655	27.13	NV 230/260	21.52
YXL5N20H	. 15.41	HR D10/20	9.50	NV 250/280	21.37
		HRD140/141	20.53	NV 300	9.00
					79
VR 6420	12.43	HR D158/160	2.53	NV 370	12.43
VR 6440	P.O.A.	HR D170/171	. 3	NV 430	21.57
VR 6441	17.95	HR D180/230	34.96	NV 450/460	21.37
VR 6460	12.43	HR D250	34.55	NV 630	42.03
VR6540.	17.95	HR D370/430	34.96	NV 688	43.34
VR 6541	17.95	HR D455	27.13	NV730770	25.79
VR 6642	17.95	HR D470	34.96	NV777	21.84
VR 6920	P.O.A.	HR D530	P.0.A.	NV780	42.03
SAISHO		HR D565/566	27.13	NV788	51.68
		HR D725/755	40.69	NV 810/830	43.01
VH 1200HQ		HRS10	20.53	NV 850/950	P.O.A.
VH $1600 \ldots$	19.80	MATSUI		NV 870/890	51.18
VR 1000/11 VR 1200 16	19.80	VX500E/600A	. 19.04	NV 970	51.18
VR 1200/16	19.80	Vx730/735/A	21.03	NV418	33.98
VR 3200/33	21.85	V $\times 755 / 755 \mathrm{~A}$	21.03	NV 080	47.51
VR 3300 X (21.85	VX765	21.03	NVG7/9	21.57
VR-3500/36	21.85	VX770B/773B	19.04	NVG10/11	21.37
VR-3800	21.85	VX800A/810A	. 19.04	NV G12/120	21.37
VR-605/705.	19.80	V $\times 820 / 880 \mathrm{~A}$. 19.04	NVG130	20.05
VR-8058	19.80	V×850	21.03	NV G11/15	21.37
VR-9058	19.80	SHARP		NVG14/15	21.37
SAMSUNG	.A.)	VC-381-388	. 17.95	NV G20/21	33.98
SVSERIES	24.19	VC-402-481	. 17.95	NV G25/28	33.98
SVP SERIES	24.19	VC 483/486	39.69	NV G30/31	20.05
VB SERIES	24.19	VC-581/582	17.95	NV G33	34.21
VI SERIES	24.19	VC-583/584	17.95	NV G45/46/5	34.71
VXSERIES	24.19	VC-584	39.95	NV H65/70	52.26

For models not listed please ring. All ex-stock orders despatched same day. Please add 15% VAT to all above prices.
 OMEGA ELECTRONICS

CROWN HOUSE,
NORTH CIRCULAR RD, LONDON NW10 7PN.
TEL: 081-965 5748 FAX: 081-965 7813

REBUILT
COLOUR TUBES
First Independent Rebuilder with B.S.I. Certification PIL - In Line - FST N.G.T. ELECTRONICS LTD. 120, Selhurst Road, London SE25 6LL PHONE: 081-771 3535 Britain's Oldest Established TV Tube Rebuilder

This is a VERY SMALL SAMPLE OF STOCK. SAE or Teiephone for lists. Please check availability before ordering. CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage

STEWART of READING
10 WYKEHAM ROAD, READING, BERKS RG6 1P
Telephone: (0734) 68041 Fax: (0734) 351696
allers Welcome 9am-5.30pm Mon-Fri (until 8pm Thurs)
Ta Gens
 ans 2

We do. The Advertising Standards Authority ensures advertisements meet with the strict Code of Advertising Practice So if you question an advertiser, they have to answer to us.

To find out more about the ASA. please write to Advertising Standards Authority. Department X, Brook House forrington Place. London WC1E 7HN

A．Z．ELECTRICS

Stock items despatched by return PLEASE NOTE NEW ADDRESS \＆TELEPHONE NO．

VIDEO HEADS

amstrad PSF1－VCR 7000 （Saisho Orion） PSF2－VCR4600， 4700 PSF3－VCR60

fERGUSON

3 HSSN－2 Head universa 3hssul N－NV 100， 370,380 Philips VF6460 3 3HSUU2N－NV230，470，480， 99,10 11，15PX
3HSSU3N－Nv430，460
$3 H S S 3 N-N V 777.330$
3HSSANB－NV 30
3HSS4NA－NV366
NVG30，33，40，45，
others Panasonics

SANYO
3HSSSY－VHR1 100，1110，1300
3HSS3SY－VHR1500
SHARP
3HSSSP
3HSSSP－VC $9300,9500,9700,381,481$ $482,483,486 \mathrm{etc}$ 3HSSSPB－VC581，583，651，670 etc
VC7000，8000 series OTHER MAKES
OTHER MAKES
Alba 4000 ，Goldstar 8000 ．Sentra 8000
Fisher FVFP $10,520,530,615,710$ etc
Fisher VBS7000，9000 etc
HinariVXL2 $, 4,3,20,2$
Mitsubishi HS306，710
Orion VC150，180，VH1 ，2，3 etc
Saisho VR100， $605,705,805,905$
Samsung Universal 2 Head
To Shiba
V71 73747581
Toshiba vg3
ASK FOR VIDEO HEADS NOT LISTED
The above heads are new and replacements．
TRANSISTORS

BC107B	£0． 10	BU407	c0． 50
BC108B	£0． 10	BU426A	． 20.75
BC147A	¢0． 07	BU500	c0．95
BC172C	c0． 07	BU508A	． 20.90
BC214A	£0．07	BU508D	$\underline{20.95}$
BC214B	c0． 07	BU536	121．75
BC237	¢0． 07	BU806	10.75
BC238	¢0．07	BU807	10.75
BC308B	¢0．07	BUT11	10.75
BC327－25	¢0．07	BUX84	c0．60
BC328	£0．07	TIP29	c0．30
BC337	${ }^{1} 0.07$	TIP31	c0． 30
BC547A	c0． 07	TIP32	c0． 30
BC548	¢0． 07	TIP41	c0． 27
BC549	c0． 07	TIP42	c0． 25
BC559B	10.07	TIP42C	． 50.40
B0137	co． 30	TIP112	． 20.45
B0237	¢0． 22	2SA1102	． 11.90
BD238	c0． 22	2SB1016	¢1．50
BD243C	¢0． 30	2SC1413A	c2． 50
B0244	c0． 30	2SC2027	14.50
B0244C	c0． 30	2SC2331	\＄1．00
BF195	c0． 07	2SC2577	$\underline{\$ 1.40}$
BF196	¢0． 15	2SC2958	12.50
BF197	$\underline{0} 0.15$	2SC3153	c3． 40
BF198	$\underline{50.07}$	2SC3678	¢2． 75
BF259	$\underline{10.22}$	2SD639	c0． 35
BF458	¢0． 22	2SD869	53.00
BF459	co． 22	2SD898B	82.75
BF469	c0． 30	2SD1047	． 22.75
BF471	¢0． 25	2SD1265	11．30
BF472	c0． 25	2SD1275	¢1．30
BU108	¢0． 75	2SD1397	63.75
BU126	50.70	2SD1398	$\ldots 2.25$
BU208	¢0．90	2SD1426	． 14.50
BU208A	10.90	2SD1497	． 2.60
BU208D	$\underline{10.90}$	2SD1497－02	¢5． 95
BU208（Toshiba）	¢0． 85	2SD1497－06	¢5．95
BU326A	c0． 90	Ask for Transis	listed

INTEGRATED CIRCUITS

VIDEO MOTORS

REEL MOTORS

```
Ferguson 3V58,59,65
FV10,11,12,13,14,20,21,22
Ferguson FV260 _...0
Sanyo VTC5000,5150,5400,5300.6500
Sharp VC9300,9500 etc,0,Ominal
Allother Panasonics
Ferguson/JVG(Mechanical models)
Sharp 7000 series Original
All Parasonic Origina
CAPSTAN MOTORS 
Ferguson 3V 35,36 Original ( models)
HitachVT11Onginal
MitachVT\33 Orignal
Hitach VT8000 series Onginal
Sharp VC7000 series Original
Ferguson 3V42,43,44,45,48,49,52,53
Ferguson 3V58,59,65,
            IDLER ASSEMBLIES
```


Ferguson 3V29：30 Ferguson 3V58，59，65

FERGUSON
Take up Clutch (Mechanical models)
Take up Culch Mechan
3V29 30 Take up Idler
3V29/30 Take up Clutch
3V29
3V29
3V29 30 Rake up Idier
3V2930 Reel Idider
3 V35 Reel idier
$3 V 35.36,38,39$ Take up Clutch
$3 \vee 58.59,64,65, F \vee 10,11,12,13,14$ Idier Arm
Cutct Assembly
Clutch Assembly 3V 42,43
FISHER
FHP6 15
FVHP6 15,905,910, Ider Assembly Origina
FVHP615 Gear iderer Assembly
FVHP520,530 Ider
FVHP520.530 Pulle
HITACHI
VT11.33 etc. Original Ider Arm
VT11,33 etc. Idier Arm Replacement
VT9300,9500 etc. Play Idier
VT9300,9500 etc. FFFIdier
VT9300,9500 etc. Idler.
VT8000, 8500 etc. F/FRew Idier.
VT 8000.850 etc. Play Idier Assembly
VT 8000.8500 etc. FF Rew Pulley
VT 8000,8500 etc. FF/Rew Pulley
VT11,33 etc Clutch Assembly
PHILIPS
VR6460,6920 Idler Arm (original)
DV464,6462, 6463,650 etc. Idler Mod Kit
VR6542.6843 Reel Idler
VR6542 Reel Drive Pulley
VR6843 Reel Drive Pulley
NV370 Ider Arm Unit VXPO521 Gen.
NV8600, 8610 Play Idler VXPU243.
N $\vee 332,777,788$ Idler Unit VXP0463
NV332,777,788 I Iler Unit VXPO463.
NV600.688 Idler VXP0515

NV333,366 etc. Idler VXPO401-NV700,7200,7800
Idler VXP0344. $\quad £ 0.80$
NV2000,3000 Play Idier VXP0 $331-\mathrm{NV} 2000,3000$
Idler Unit VXPO 329
Back Tension Bands
All Panasonic Maintenance Kits
UOTE PANASONIC PART No
UOTE PANASONIC PART No
FOR PARTS NOT LISTED
SANYO
Idler VHR1 100, 1300,1500
Idler VHR2100,2300,2500,2700
Reel Drive Pulley Unit VTC5000,5150.6500
idier Roller Assembly VTC $5000,5150,6500$
Idler Roller Assembly VTC5000,5150,6500
idler VC9300,9500 etc
Idier VC481.581 etc.
Idier (orignal) VC9300,481,581 etc.
Idter Assembly (original) VC651, 681,685
Idier
VC $780,781,785,787,793$, VCT72
AMSTAAD
4500,4600 MOD KIT INCLUDES PINCH ROLLER
AND IDLER CLUTCH
IINE OUTPUT/MAINS
TRANSFORMERS
Decca 100
1π CVC20
1π Compact 80 series
Fidelity Ail models up to 20 ZX300
Fidelity Aill models up to 20" ZX300
Fidelity 2" ZX3000
Fidelity Panel for $20^{\prime \prime} Z 202000$
HinariCT4, 5 \& IVA1
HinaricT4 58
PhilipS KT3.
Rank Bush T20A
Thorn 1615 ...
Thorn T1 100
Thom TX 90 Mains Transi
Thom TX90 Mains Transf
Ferguson 3 V35 Mains Transt
Ferguson 3V35 Mains Transt
Ferguson 3V44/45 Mains Trans
ALGUSOn 3V44/45 Mains Transt
ALL SONY LINE OUTPUT TRANSFORMERS
ALL SONY LINE OUTPU
UNVERSAL TRIPLER
UNIVERSAL TRIPLER WITH FO
IHORN TX10 FOCUS UNITKIT
$\$ 20.00$
817.25
$£ 17.25$
814.50
c8．50
814.50
88.50
$\boxed{E 75.50}$
$\mathbf{~} 15.90$

2000 520.00
520.00
530.00
53200

Panasonic Sanyo Sony，Shap and Toshiba Prices． start from EO 55.

PINCH ROLLERS
Pinch Rollers for Akai，Amstrad，Ferguson，Fisher， Furai，Goldstar，Grundig，Hinari，Hitachi，JVC，Mit－ subishi，Orion，Panàsonic，Philips，Samsung，Sanyo， Sharp，Sony，Toshiba available．Prices start from 2． 80.
OTHER SPARES
Universal Video Copying Kit $\quad £ .60$ Universal Video Copying Kit（Scart）．．．．．．．．．．．．．．$£ 5.20$ Video Cassette Lamp Ferguson with without plug
Hitachi ．．．．．．．．．．．．．．．50． 50
moulding
Universal Cassette Lamps 40 mA 60 mA
CRT Anode Caps
Video Tape Splicing K
Hitachi TV Frame Module HM6251
$39,42,43,44 \ldots \ldots \ldots \ldots \ldots$

Cassette Loading Roller Assembly 3 V 23.3 V 31 3V32．
Philips 1.2 V Back up Battery $\quad E 2.55$
Philips 2．4V Back up Battery ．．．．．．．．．．．．．．．．．．．．．．$£ 5.25$
Degaussing Positor Blue ．．．．．．．．．．．．．．．．．．．．．．．
Degaussing Positor White
Cassette Housing Assembly Hitachi VI11
End Sensor for Hitachi V163，64，65（Pair）
Cassette LED Sensor for Panasoniceto
IC．Circuit Protectors
Cassette Housing assemblies for Philips available．
定 云 动
SERVICE AIDS－SWITCH
CLEANERS，HEAD CLEANERS，
SILICON GREASE，
DESOLDERING BRAID
INSULATING TAPE ETC．NOW
AVAILABLE．
动会
RESISTORS，ELECTROLYTIC
CAPACITORS，FUSES ETC．
NOW IN STOCK．
领
FOR SONY AND PANASONIC
SPARES PLEASE QUOTE MANUFACTURERS PART No．

$\hat{*} \hat{*}$

WORKING TV PANELS FOR BUSH，GEC，ITT，PHILIPS， SONY AND THORN ETC AVA／LABLE．MANY MODELS．

OFFICIAL ORDERS ACCEPTED

 FROM GOVT．INSTITUTIONS， SCHOOLS，COLLEGES，ETC． EXPORT ORDER ENQUIRIES WELCOME，POSTAGE AT cost站 $\overrightarrow{\text { OR PRICE LIST．}}$
SEND FOR PRICE LIST．
iे is is
OFDER ONLY

LONDON

```
Tel: 081-807 7476
```

Unit 4, Rainstar Ind. Estate, Eley Estate, Nobel Rd, Edmonton N18 0AA. (Off A406)
 SCOTLAND

Contact Jack Swann Tel: 041-883 2610 Industrial Estate, Glasgow GS2 4BN

APPROVED THORN DISTRIBUTORS - FULL RANGE OF THORN \& GRANADA STOCK

SEMPLE 臬霊 SERVICE

THE ONLY APPROVED THORN TELEPRICE DISTRIBUTOR FOR E. ENGLAND

> SIMPLY

THE BEST

BEST PRICES

BEST QUALITY

IN EX-RENTAL TV \& VIDEO EQUIPMENT

RING TONY ON
0553766766 FOR YOUR BEST DEAL YET!

SEMPLE SERVICE 59 HALL RD CLENCHWARTON KINGS LYNN NORFOLK

TRADE MARK OF QUALITY

summer prices last at W. TREE'S

bulk quantities OF computers available

TOP QUALITY
HI-FI ALSO IN STOCK PIONEER JVC SONY

EX-DISPLAY CAMCORDERS SONY, JVC, PANASONIC, MINOLTA

NO ORDER
TOO LARGE OR SMALL

LARGE QUANTITY OF EX-RENTAL CTVs in working order from only £10!!!

Mixed loads of TVs and VCRs by the container. Telephone NOW for details

THIS MONTHS SPECIAL OFFER FROM PHOENIX TV'S

- include DECCATATUNG monitor style CTV standard/Remote/Teletext from

(video stand included) Absolutely as new.
- FINLUX/TATUNG/GEC/SENTRA VCR As new boxed, instructions, remote control from £100

PHOENIX TV WHOLESALE
UNIT 3A SANDALL LANE, KIRK SANDALL IND EST Telephone BECKY on 0302890117

TELEVISIONS - VIDEOS-TEEEVISIONS

VIEW-TEEL

A NEW NAME IN

TRADE SURPLUS TVs

Large selection mainly
THORN - GRANADA STOCK

Discount ten or over

ALL SIZES AVAILABLE
Thousands in stock. Good quality Fresh stock every week
Portables, Teletext, VHS Videos, STD $20^{\prime \prime}, 22^{\prime \prime}, 26^{\prime \prime}$
Complete loads at discount prices
All stock collected from source by our transport and handled with care

想 View-tel televisions (0388) SWAN STREET, EVENWOOD,
 832832 Nr. BISHOP AUCKLAND, CO. DURHAM.

STHE	
SOUTH WALES	
NEW DELIVERIES EVERY WEEK	
COLOUR TV	
VIDEO	
ELECTRONIC VHS FROM £70 WORKING JVC HEADS £15 RANGE OF NEW HANDSETS	
ALL PRICES INCLUSIVE OF VAT	
UNITS 11 \& 12, TAVERNER ESTATE, CAERLEON, NEWPORT, GWENT (3 miles from M4; Junction 25)	
Ring Bob on 0633430040	

 IN THE HEART OF THE SOUTH

```
Working P.I.L. type TVs
rom \(£ 15\)
Teletext TVs inc. handsets ............................... from £50
NV333 Nat. Pan £70
MK3 All......................................................................
MK3A from \(£ 20\)
MK4
£35
Many other makes available including
PANASONIC, HITACHI, GEC, ITT, PHILIPS, PYE etc PHONE FOR PRICES
10\% DISCOUNT ON 10 MIX
```

ALL TRADE GOODS GUARANTEED
ALL GOODS READY FOR SHOWROOM ALL PRICES SUBJECT TO VAT

ELECTRONIC TYPE VIDEO RECORDERS from $£ 65$ FRONT LOADERS from £75 PHONE FOR PRICES

SPECIAL MAIL ORDER SERVICE PHILIPS 6467 REBUILDS $£ 45+$ P\&P Complete mechanisms rebuilt, motors included (except heads). PHONE FOR DETAILS
ask for DAVE or ALAN
Hours of business 9 to 5.30 Mon-Fri, 9 till 1 Saturdays FAX 0403 733178. 24 hour answerphone Situated at: REAR OF UNIT 31, STATION ROAD INDUSTRIAL ESTATE, SOUTHWATER, Nr HORSHAM, WEST SUSSEX.

SOUTHSIDE TV

UNIT 8, APPLE IND. ESTATE, WHITTLE AVE., SEGENSWORTH WEST, FAREHAM, HANTS. OFF JUNCTION 9, M27
Telephone: LOCKSHEATH (0489) 577251. 24 Hours

CORIGROVE LTD T/A
 Basford Wholesale
 APPROVED THORN DISTRIBUTOR
 Humberside Premier ex-rental Wholesaler Large stocks of Thorn/non-Thorn TVs/VCRs, working, non-working, untested
 TEST FACILITIES AVAILABLE
 No order too large or small
 Ring Jim on 0482-215215 (2 lines)
 for a guaranteed square deal.
 Units 67
 Brighton Street Industrial Estate, Hessle Road, Hull HU3 4UW.
 Under the A63 (Clive Sullivan Way) exit ring road Left at roundabout past Salvesons, left at next roundabout onto industrial estate.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting is $£ 10.35$ per single column centimetre (minimum 3 cms). Classified advertisements 70 p per word (minimum £12), box number $£ 4.00$ extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2331, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS.
종 PHONE 071-2615942 \leftrightarrows FAX 071-2615546

LINEAGE

EX-RENTAL TV \& VIDEOS WANTED in any quantity. Top prices paid. Tel. Becky, 0312890117.

PRIVATE RETAIIER has P/Exchange video recorders to clear on regular basis. Tel. (1494 814317.

BELGIAN FIRM. Importing second hand TV's and video's from UK for more than 8 years, we buy VHF/ UHF viders and other items. we pay cash. We also export new TV's/videos VIIF/UHF BAND/HYPERBAND Fax us at $32-2-461(2+13$.

SEMICONDUCTORS, VALVES, COMPONENTS, hardware. Unbeatable prices. For new [990 catalogue and free bagful of components. send $£ 1$ plus large S.A.E. Kenzen (TV). Unit 9. $16 / 20$ George Street, Birminglam RI2 9RG
OCHRE MILL TECHINICAL SERVICES. Are now on (O6tef) (Malmbesbury) 823228. Grundig TV spares, all models to 1983. Filst. friendly, helpful, sensible prices. Gt Lype Farm, Chariton. Nr Malmeshury. Wilts SNiG, 9IDR.
HAMEG 203/6 OSCILLOSCOPE c/w probes and manual. Perfect condition. $£ 250.0743850689$.

CLOSED CIRCUIT TELEVISION equipment repairs. Prompt and reliable service repair of cameras monitors TIPS VCR etc. Tel. (2228-810)05.

METERS. Reconditioned 10p/50p available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

EX-EQUIPMENT TV PANELS and Spares available for Ferguson, P'ye. Philips, GEC. Decca, II'Г etc. SCR (1243×28830)

SPARES \& COMPONENTS

WIZARD DISTRIBUTORS

MANCHESTER

TV \& VIDEO SPARES
We stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, SC'HNEIDER, HIN'ARI \& DECCA And also THORN \& . ITT FIDELITY SPARES MAIN DISTRIBUTOR.

DIFFICULTY OBTAINING SPARES?

Try us on Plymouth (0752) 767738
Trade or retail or send S.A.E. for special offers list. AGS Electronics, 2 Haxter Close, Belliver Roborough, Plymouth PL6 7DD. Fax: (0752) 768693.

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment. ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

LIE OUTPUT TRAMSFORMERS		TRIPLERS Contimued	
		Nordmende	from 5.25 to 8.39
Autiovo			5.25
	from 8.39 to 9.45	Saba	trom 5.25108 .39
Blaupunk	from 10.491018 .90	Siemens	5.25 108.39
Decca	from 8.391013 .65	Telefunken	trom 5.25108 .39
Grundig	from 6.30 to 12.60	TRAPLEAS	Grundig Chassis
	from 8.39 to 13.65	cuc 2201	each 9.95
	from 7.35 to 9.45	Cuc 3400	each 9.95
Loewe Opta	from 9.45 to 13.65	CuC 3410	each 9.95
	from 9.45	CUC 2600	each 9.95
Nordme	from 8.391018 .90	CUC 2800	each 9.95
Prilips	from 6.30 to 16.80	CUC 2400	each 9.95
Sab	from 10.49 to 14.69	CuC 2410	each 9.95
Sa	from 8.39	CUC 2200	each 9.95
Siemens	from 9.45 to 18.90	CUC 3300	each 9.95
Telefun	from 9.45 to 11.55	CUC 2210	each 9.95
TRIPLERS		SWITCH M for Grundion	IE TRANSFOPMER
Autiovox	from 7.35	CUC 95	
	from 5.25 to 6.30	CUC 120	each 7.95
Grundig	from 5.25 to 9.95	CUC 220	each 7.95
	trom 5.25 to 8.39	No AcCoun	SMO CREDIT CARDS
Korting	trom 5.25108 .39	POSTA	DERCHEOUE WITH
Loewe Opla	om 5.25109 .49		20.50 FOR P8P
LOPTX for Siemens FF 3057 Colour TV, Crignal Part No. 52-46300 3009, 24.95			
DONBERG ELECTRONICS LTD SCHOOLMASTERS HOUSE, RANAFAST, CO. OONEGAL, EIRE TEL: 075/48275 FAX 075/48275 EIRE			

 a cheque made payable to Television 'crossed "Lloyds Bank". Television Classified Room 2331, Kings Reach Tower, Stamford Street, London SE1 9LS. The charge per word is 70p plus 15\% VAT (minimum £12.00).

ASJAA INTL

TV \& VIDEO SPARES
WE STOCK SPARES FOR JVC, NATIONAL, SHARP, HITACHI, SANYO, NEC, SONY, TOSHIBA \& ETC
DID YOU KNOW WE ALSO STOCK: VIDEO HEADS, I.Cs, TRANSISTORS, FUSES, VIDEO RUBBER BELTS \&

CAPACITORS \& ETC
Counter: Mon-Fri 9am-5pm (Trade Oniy) 36, GLOUCESTER ROAD, NORTH HARROW, \square MIDDX. HA1 4PW.

TEL: 01-427 8213 FAX: 01-861 1282

ATTENTMDN RETAILERS/WHOLESALERS VHS VIDEO TAPES

Supplied at very competitive prices. EG: 3hrs Tape (Blank) from £1•10+VAT
Also all sorts of electronic goods supplied including BRANDED TAPES such as Scotch, JVC, Memorex etc. All at competitive prices.
FOR DETAILS CALL OUR HOT LINE Tel: 0582453720 or 0860501274
VIDEO MASTER U.K.
84 Wellington Street, Luton, Beds LU1 5AA

PRICE BUSTERS ! ! !

SEND EO.50p FOR OUR CATALOGUE (includes free gift worth 60p) SHARP IDLER TYRES, MIN PACK OF TEN £3.00 STATE LARGE OR SMALL (GEZ0006,0005) THEIR SPRINGS EO. 35 EACH JVC/FERG. 3V29/30 HR7200 LOADING BELTS, 100 FOR £11.99 BACK UP CAP FOR SENTRA, SOLAVOX ETC £1.99 EACH (R.R.P. £5.99) PHILIPS 1.2V 2.4V BACK UP BATTERIES $£ 1.60, ~ £ 2.90$ (min order ten) MIN ORDER 55.00 P/O CHEQUES + P/P £1.00 THEN ADD VAT TO:
VIDEO \& ELECTRONIC COMPONENTS (L’POOL) 101 ROCKY LANE, TUEBROOK, L'POOL 6 4BB

SERVICE DATA

IMMEDIATE DESPATCH of all Phonc Orders by ACCESS, VISA, etc. or to Listed Customers WORLO'S LARGEST COLLECTION OF SERVICE MANUALS . . . Irom $£ 3.50$ to $£ 50$. . Most unobtainable elsewhere Every issued FULL SIZE SERVICE SHEET in stock; CTV's or Combinations $£ 3.50$ /Singles $£ 2.50$; Plus LSAE LSAE for any Quotation, plus FREE large Catalogue, STREE Review. Pricelists, etc.			
T.I.S. Publications		Other Publications	
Practical TV Repairs by Tunbridge	$¢ 12.95$	Oscilloscopes, How to Use/How to Work	£25.00
Spectrum Repair and Service Guide		Mobilc Radio Servicing Handlyok	
Colour TV Servicing by King		VCR Servicing Guide by Beeching	£20.00
Practical Radio, Repair \& Service Course		Refrigeration \& Air Conditioning	
Microwave Servicing Manual by Coombes		Video Techniçues 2nd ed by G Wh	
LSAE for any Quctation		VHS Common Fiults from Thorn	E3.
		Newnes Guide to TV \& Video Technology	
STREE Review, Prictists, etc,		Servicing Personal Computers by Toole	
25 Fault Finding Booklets covering most Videos from 1979, to matcla cires below 5 Giant Binders containing Circuits \& Layouts for most Videos from 1979 to 1988			
			¢139.00
COMPUTER PROGRAMMES for Smaller the Business			
STANDARD WAGES		Each trook costs only	
LL FIRM BOOKKEEPING		Each disc costs only	20
Printers pricing		Disc/Manual, ordered together cossis only	
Every programme follows certain important rules: Simple to use; As few entries as possible; Compact; Fasy to understand; Clear explanations; Above all - USEFUL \&/OR NECESSARY.			

ESERVICE MANUALS

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appliances etc.
Equipment from the 1930's to the present and beyond. Over 100,000 models stocked, originals and photostats. FREE catalogue Repair \& Data Guides with all orders. MAURITRON TECHNICAL SERVICES (TV),
8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.
Tel:- (0844) 51694. Fax:- (0844) 52554

SERVICE DATA

NEW PRODUCT!!

How many wasted hours have you spent on servicing?
E.C.S. offers you complete index of approx. 5,000 TV and video faults listed in 10 years of TV mag.
Index's are alphabetically listed by make, model, fault and are now available for just:

£7.50 for Television Faults £7.50 for Video Faults

or $£ 15.00$ for both sets complete with protective ring binder. Regular updates are also available. But one of the above index's must be purchased in order to qualify for this service. To secure your order please make Cheques/Postal Orders payable to:

$$
\begin{aligned}
& \text { E.C.S. } \\
& \text { 31 Prenton Road West, } \\
& \text { Prenton, Birkenhead, } \\
& \text { Merseyside L42 9PY. }
\end{aligned}
$$

Please add £1.50 per order for P\&P

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German. European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries:

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast
Co. Donegal, Republic of Ireland. Phone: 07548275

ADVERTISERS

 faX YOUR ADVERTISEMENT INSTRUCTIONS T0071-261 5546
BY 20/8/90

FOR PUBLICATION IN THE OCTOBER ISSUE.

NOVEMBER'S
ADVERTISEMENT COPY DATE IS 17/9/90

SERVICE MANUALS
 VCR - CTV - MTV - MICROWAVE

 Most makes and models - UK, Japanese Korean, German, USA etc. types available. For list with money-saving vouchers send $£ 2.50$ DATA-GO 112 AMEYSFORD RD., FERNDOWN,$$
\text { DORSET BH22 90E. Tel: } 0202894207
$$

$$
\begin{aligned}
& \text { Telephone enquiries can be made only between } 2 \mathrm{pm}-4 \mathrm{pm} \text { Mon-Fn } \\
& \text { Fax is available on the above number from } 5.30 \mathrm{pm}-8.30 \mathrm{~m} \text { any }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fax is available on the above number from } 5.30 \mathrm{pm}-8.30 \mathrm{am} \text { any } \\
& \text { day No credit cards, no accounts, callers pease telephone first. }
\end{aligned}
$$

BOOKS

NEW!

Ku -Band
SATELLITE TV
Theory,
Installation
and repair
Completely updated 3rd Edition
Over 400 pages packed with
essential information for anyone involved in moden satellite communications.
This authoritative book covers dish theory, uplinks, tootprints, site survey, installation and repair, descrambling and cable TV.

Excellent value at only E23

Pay by Cheque
ACCESS
MASTERCARD
VIncman VISA

FREE! Dish Angles service with every order - worth £3. We'll provide you with a persnales you need to receive 30 satellites.

VIDEO SCRAMBUNG \& DESCRAMBUNG. By R. Graf, W She ets. Advanced theory and circuits \quad E2 \quad E3 WORLD SATELITE TV \& SCRAMblimg methods. By F. Bayin, R. Maddox, and J. McCornac. 340 pages of scrambing methods and broadceast tommats incluting Filmnet, Sky Movies, BSB $£ 29$ home satellie iv installation videotape, vhs pal format 40 mins. Includes how to install large, motorised dishes on C \& Ku Band systems .
HIDDEN SIGNALS ON SATELITE TV. By T Harrington, B Cooper. Teletext, telephone channels, telerype, audio sub-cariers information...................... SATELITE, OFF-AR \& SMATV. By S. Berkoff. Private Cable,
 world satellit almanac. 2nd Edition. By M long. 650 pages. All fooprints and details. 1990 WORLD SATELTE ANNUAL By M Long. The official Supplement of the World Satellite Almanac. Contains detailed descriptions of most satellites SATELIE TELEVISION, INSTALLATION GUHE 2nd edition B Breeds. Full of essential intormation for the working instla Sumber one best seller in Europe sateutie and cable scrambung' and descrambung. By B. Gale. 2nd Edition. 280 pages. Basic theory. Explores the newtechnofogy, in clear language. Send SAE for Satellite Booklist

[^1]
SPECIAL OFFERS from INFOTECH (T)

76 CHURCH STREET LARKHALL, LANARKSHIRE ML9 1HE ACCESS or VISA by return post or
Phone (0698) 884585/883334 NOW HURRY WHILE OFFER LASTS
T.V. - AUDIO - RADIO REPAIR \& SERVICING VOL. 1a \& VOL. 1b
VOL. ta: Over 160 large pages giving all servicing, alignment, stock faults, faultinding etc. for CTV (including Philips System 4, Decca 8 ITT for 1980-89, plus a host of others); Over 50 popular audio sets from radios to full hi-fi systems from 1987-89; plus over 20 CD players and systems up to 1989
VOL. 10: Giant diagrams, each page over 2 feet by nearty 1.5 feet - includes the full size circuits for all the equipment in 'VOL. 1a' plus waveforms, layouts and other data. Not the tiny near-useless sizes supplied by all the other publishers.
VOL. 1a: £16.95; VOL. 1b: £29.50; BOTH: $£ 45.00$

MICROWAVE SERVICING

 MANUALby Jom Coombes FSTREE Normal Price is £14.95 Now Only $£ 6.95$ "LIMITED PERIOD"

HI FI SERVICING MANUAL by John Coombos FSTREE PRE-PUBLISHING OFFER Only $£ 7.50$

TUBE SERVICES

W WED $^{\circ}$	
BMR-9O-Hi-Ec $\$ 446+$ VAT Europe's most incl. 7 sockets frequently bought CRT-Regenerator-Analyzer; pays itself within 4 weeks; regenerates picture tubes even better; removes shorts filamentcathode; cathode - grid 1, grid 1-gric available; has 12 heating-voltages; tubes-types; also available: BMR 44	carries gas to getter; 140 adaptors adaptor-list with more than 8500 286 + VAT, incl. 7 sockets.
(1)	Plaese, ask for cataiogue U.K.: Blendown LTD, Tel. (0492) 49246 Fax 47880-A.G.S. Electronics, Tel (0752) 767738 , Fax 768593 IRL: Dð̈berg Electronics, Tel. (075) 48275, Fax 48275 NZ: TDON Ltd.. Tel. 668-907. Fax 646-216

BUSINESS FOR SALE

BUSINESS FOR SALE
 Established TV sales \& repairs shop in busy York suburb. Comfortable 3 bedroomed accommodation. Low Tax area.
 Freehold $£ 100,000$ plus SAV
 Tel. 0904410055

REBUILT TV TUBES
 DIRECT FROM THE FACTORY WHERE THE BEST COSTS LESS
 FINEST QUALITY LOWEST PRICES
 SPECIAL DISCOUNTS FOR BULK BUYERS

2 YEAR GUARANTEE, 4 YEAR OPTIONAL ALL MAKES INC. SONY NATIONWIDE DELIVERY
SHERWOOD TUBES LTD 60A PEVERIL STREET, NOTTINGHAM NG7 4AH. Tel. 0602786896

Canver COIOUR TuSE

Registered Oftice: 'Fairlands', Beckney Avenue, Hockley, Essex SS5 5NR. Telephone: Southend on Sea (0702) 201108
ESTABLISHED 10 YEARS

C.R.T.'s REPROCESSED TO ORIGINAL MANUFACTURER'S SPECIFICATION.

PHILIPS, SONY, HITACHI, etc.
POLISHING SERVICE AVAILABLE

SATELHTE

SATELLITE TV
INSTALLATION AND SERVICING
'The Professional's Training Package"
A complete package that tells you all you need to know to offer a Satellite TV installation service.

Comprises a 50 minute videotape of clearly presented
information, starting from the basics of satellite communication through to the on-site installation, and a 46 page easy-to-follow manual with diagrams and illustrations.

Send off for further information on this valuable teaching aid now to Microforge, 339 Clifton Drive South, St Annes, Lancashire FY8 1LP Telephone: 0253-725499

Please send me further information on the Microforge
Satellite TV Training Package:
Name - Post Code --
Address
\square

TV WHOLESALER'S

BESCO LIMITED T/A

NORTH WEST ELECTRONICS

 ENTIRE RANGE OF EX-RENTAL TVS \& VIDEOSNEW STOCKS EVERY DAY, WORKING OR OFF THE PILE makes include:- Sharp, Hitachi, Ferguson, Pye, NAT PAN, ITT etc. Working VHS video from £35.00. Late models always available.

KNOCKOUT PRICES ON COLOUR TVs FERGUSON, PYE, HITACHI, PHILIPS, BUSH, ITT, etc. TELETEXT BARGAINS FROM £30.00 (WORKING). FERGUSON TX TELETEXT ONLY £55.00. PHILIPS/PYE TEXT ALWAYS AVAILABLE. OVER 1000 COLOUR TV AND VIDEOS AVAILABLE.
RING OUR HOTLINE NOW FOR PRICES OR CALL IN YOU WILL BE DELIGHTED

Working		Ex-Equipment Panels				
IF	Converger	Decoder	Line scan	Power	Frame	
T20//22X		5	14	18	17	14
T26 X		5	16	20	17	X
Philips G11 14.50	5	12	20	20	11.50	

All prices include Postage \& Packing. But + VAT \star IF THE PANEL YOU REQUIRE IS NOT LISTED PLEASE ASK *

BRADFORD

SPRINGMILL STREET
MANCHESTER ROAD, BD5 7RL.
RING: TONY (0274) 308186
OPEN 6 DAYS 9am-5pm.

Prices are plus VAT \& based on quantity

MANCHESTER
UNIT 3, MERSEY RD. NORTH IND EST., FAILSWORTH
RING: DAVID (061) 6834612
OPEN 6 DAYS 9am-5pm.

C. T. V.

2 NORTON ROAD, STOURBRIDGE, WEST MIDLANDS TELEPHONE: 0384-390706 / 0836-585829 (24 HR)

LARGE SELECTION THORN TV + VIDEOS QUANTITY OF NON THORN TV + VIDEOS QUANTITY OF PORTABLES AVAILABLE ALL AT COMPETITIVE PRICES OPEN: MON-FRI - 9.30-5.30
 SAT - 9.30-3.00

TEL:
0384-390706

DISTRIBUTION

NEWS FLASH

WE ARE PART OF THE BIGGEST BUYING GROUP OF RADIO RENTALS \& GRANADA TVS \& VIDEOS

\star TRY US NOW \star FRESH STOCK WEEKLY GUARANTEED. NO TUBES BOOSTED GENUINE OFF THE PILE WORKING OR NON TESTED

1000's 1000 's OF TVS \& VIDEOS - ALL MAKES IN STOCK NOW INCLUDING FST \& B GRADES - AUDIOS

BIRMINGHAM
D.S.D. DISTRIBUTION

UNIT 3, ARMOURY ROAD,
SMALL HEATH TRADING ESTATE,
SPARKHILL; BIRMINGHAM B11 2PP.

TRY

LEICESTER DATA DISTRIBUTION
No. 2 ASCOT ROAD, OFF MELTON ROAD, LEICESTER.

TV WHOLESALER'S

THESE ARE ALL GENUINE PRICES ONE \& TWOS INCLUDED JUST BRING YOUR TRADE CARD

WE ARE EUROPE LARGEST EXPORTERS OF REFURBISHED TELEVISIONS \& VIDEOS ALL ENQURIES WELCOME

TELEX: 378414 BL BIRD G

\qquad
$-$
FAX: 0602861027
ALL OUR TELEVISIONS AND VIDEOS ARE IN GOOD ORDER WITH CLEAN CABINETS AND WORKING REMOTE CONTROL

NOTTINGHAM

(10,000 sq. feet Warehouse) Unit 3-3a Meadow Trading Est Meadow Lane Near Notts County Football Ground In National Tyre Yard, Nottingham NG2 3HQ Telephone:

(0602) 864627

NEW Black \& White Portable TV's Battery \& mains for export only

SHEFFIELD

($6,000 \mathrm{sq}$. feet Warehouse)
2 min from June 34 of the M1 Unit 17
Meadowhall Trading Estate 27 Amos Road, Sheffield 4 Telephone:
(0742) 422633

TVs - COLOUR - TVs

Fully working TVs, all with EXCELLENT CABINETS. Fully soak tested for immediate sale and all on working display.

Always a good mix of K-73 - K-30 Mark 3 and 4 Grundig and many others. Basic to text. Changes daily.

Off the pile stock available from around $£ 5$ upwards. Direct loads available to suit you - Phone us.

MALL ORDER USED VCR SPARES

3-V29-30-35 etc. Panasonic 2000, 2010, 7000, 7200, 777, 370 and others. Akai, Hitachi, Sharp, Pye, Philips, Samsung changing daily. Phone for details and prices. S.A.E. by post.

GENERAL FAGTORS - open 10am- 5pm Mon-Fii Union St., off Sepulchre Gate West. Doncaster South Yorks DN1 3AE Tel 0302-349583 Fax 0302-349510 21/2 miles from A1M for M18 - M1

ADMIN TELEVISION

UNIT 13A
GORTRUSH IND.
ESTATE
DERRY ROAD,
OMAGH, CO. TYRONE.
N. Ireland T.V. trade

TELEVISION SEPTEMBER 1990

ME AREMOMMEI		
CREWE WHOLESALE TV LTD. CHESHIRE'S LARGEST WHOLESALERS Specialists in working TVs \& Videos		
TVs \& Videos working, non working \& Off the pile.		
TV \& Video stands, shelving, shop fittings		
Thousands of Ex-Demo VHS tapes		
Hand Units - Heads - Slotmeters Workshop Manuals		
TONS of assorted spares - ALL BRAND NEW IDEAL JOB LOT or RADIO RALLY GEAR		
Pattern Generators/Scopes/Translaters		
ALMOST EVERYTHING FOR THE TV \& VIDEO RETAILER		\% WEARE
Tel:- 0270582924 Fax:- 0270505470 Please note change of address		
HEWIT STREET CREWE	$\overbrace{\substack{\text { finion } \\ \text { sibuen }}} \mid \overbrace{\text { carase }}$	

TOP CLASS PANASONIC WORKING TV \& VIDEO

GOOD CHEAP STOCK "OFF THE VAN" Good Selection of Makes Tom Poole or Brian Ricketts 061-273 2854/274 3409

REPO

DAISY WORKS,
345 STOCKPORT ROAD,
LONGSIGHT, MANCHESTER
(A6 Between Stockport \& Manchester)

ADUERTISERS

FOR DETAILS
OF HOW TO REACH TELEVISION'S PRIME AUDIENCE TELEPHONE 071-261 6671

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., St lves plc. Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £20, overseas (surface mail) £24 per annum, payable to Quadrant Subscription Services Lid., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: SWIFT TELEVISION PUBLICATIONS
 17 Pittsfield, Cricklade, Swindon, Wilts SN6 6AN. Tel: 0793750620

