SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

Ferguson's New TX99 Chassis A Tifax-VM6101 Conversion Video Tape Characteristics VCR Back Tension • DX-TV Picture-in-picture Displays VCR Clinic•TV Fault Finding

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR DOMESTIC TV \＆VCR．

$\star 40$ different patterns and variations．
\star Fully interlaced sync pulses with correct picture blanking．
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，vellow． cyan，green，magenta，red，blue and black．
\star Chequerboard
＊Mono outputs with border castellations，cross hatch． grey scale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver aerial socket． Additional video output for CCTV \＆VCR．
Facilities for sound output
\star Easy to build kit，standard parts．Only 2 adjustments． No special test equipment required．
\star Mains operated with stabilised power supply All kits fully guaranteed with back－up service． Also available with VHF Modulator

Post／Packing $\mathfrak{£ 2} 20$

PAL COLOUR BAR GENERATOR（Mk4）

\starOutput at UHF，applied to receiver aerial socket．

\starIn addition to colour bars R－Y，B－Y etc．
Cross－hatch，grey scale，peak white and black level．
Push button controls，hattery or mains operated
\star Simple design，only five i．c．s on colour bar P．C．B．
Backup service available
PRICE OF MK 4 COI．OUR BAR GENERATOR KIT £30．00．CASE £8．60．BATT HOLDERS £4．20．MAINS SUPPLY KIT £4．20（Combined P\＆P £2．80）．

MK 4 （BATILERY）BUILT \＆TENTED $£ 58 .(0)+£ 2.80$ P \＆P． MK \＆（MAINS）BLILI \＆TESTEI）$£ 68 .(N)+£ 2.80$ P \＆P VHF MODC＇LATOR（ClI 1 to 4）FOR OVERSEAS 5.75. EASHY ADAPIED FOR VIIEEO OITPUT \＆C．C．T．V．

TELETEXT DECODER PANELS（TESTED）
Mullard VM6101 $£ 30.00$ ．Philips KT3，K． 30 £ $\mathbf{~} 30.00$ ，p．p．$£ 2.30$
Philips gal prestel TELETEXI liNIT includes Multard VM6230 「eletext Decoder． 6330 panel，plus Line Coupler and Interface $£ 30.00$, p．p． $\mathfrak{E} \geq .80$

TV SERVICE SPARES

BACKED BY＇TWENTY YEARS EXPERIENCE \＆STAFF OF TECHNICAL EXPER＇TS
L．OPTS，TRIPI．ERS．PANELS．TUNERS，SELECTORS ETC PHILIPS KT3，K30 PANELS，tested，exchange，sound power，frame，RGB £7．50 each．Decoder（Non－text）£10．（0）p．p．$£ 1.50$

THORN 8（010）TO 85（0）Panels kested exchange．Power $£ 7.80$ ．8800， 9810 power \＆8．80 p．p $£ 1.51$ ．Frame £ 10.0 （K）p．p．© 2.31
THORN TX9，TXIO Facial Control Panci Incl Infra Red Remote Recciver t8．50）p．p．E2（k）．
BLSII T202：Toush Tune Facia Unil $£ 7.50$ n．p．£2．（M）

PHILIPS GII PANELS（tested）

PHILIPS GII PANELS ex ichtall（untested）
Scun Frame．Decoder E5．（N0 p．p．E2．（n）．
PIHLPS GII IF PANEL（Neu）Len Tumer E2．50 p．p．E1．3u
PIIILIPS HANDSETS（New Replacements）p．p．£1．50．

PIIL IPS HANDSETS E \downarrow rental，text，Untested．KT Text／Video Type，e3．50 p．p．A．©（ox．
PIILIPS COLOLIR MANUALS p．p．\＆Pop
GII，K30，K35， $2 \mathrm{~A} £ 3.50$ ，KT3 4.50 ，CTX－I，（TX－S．CF $\ddagger 1.50$ each THORN RETOTE CONTROI，HANDSETS
 £19．50，p．p．$£ 1.20$ ．Large selection others available：Sony，Grundig．cte．
TX9 lithasmic remote handet transducer $£ 2.100$ ，switches 3 for $£ 1.50$ p．p． $5(\mathrm{pp}$ ．

TIIORN TX9，TXIO Sam Fäter II P＇ancl．E5．00）p．p．Sop
TX9，TX10 Remote \＆tuning control pane（ 1515 ）£ $10.50 \mathrm{p} . \mathrm{p}$ ． 1.80 ．
PAL DECODER KIT（Video to R（iß3）tor Monitors £27．（0）p．p．E1．（0）
PAL ENCODER KTT（RGB to Videct）£ 18.50 p．p．£1． 30 ．
CROSS HATCH LNIT KIT，Aerial Input type ind T．V．yyne and UHI Modulator．Battery（Operated．alho gives Peak White \＆Black Levels，can the
 TIONAL GREX SCALE Kit $£ 2.90$ p．p．+5 p．
CLHF SIGNAL STRENGTH METER KIT $£ 22.00$ Alum．Case £2．90．De

CR＇T TESTER \＆REAC＂IVATOR KIT Jor Colour is Mono complete with Calse，Panel Meter Indicator－can be adapled for latent（R＇Ts £29．50 p．p．Q2．80． BLSII 1823 ，Time Base Pancls 45.00 each P．p． 1 I． 80

ITT（VC30 SERIFS PANEIAS SURPLUS（untested）$£ 2.50$ each．CMP31．

rIT CVC20， 30 series chasic for pares（shop only） $\mathbf{E 2} .50$ ．
THORN TX9 Panch ex tactory for small spares．Includes I．Ce \＆

THORN TXY Pat ets salwaged ex factory for spares inel Electrolytic \＆Mains Transformers ex 50 p．p．E3．（x）

VHF Philips．N＇St t6．80 P．P．$£ 1 .(6)$ ．

LHF／625 TUNERS，many different wpes in sock．DECCCA Bradiond 5 posituon．MLILLARD + position $£ 2.50$ ，JAP Rotary $£ 4.80$ p．p．$£ 1.81$ ．

	M，15ヶリ｜｜ci		

SPCDCDAL OFFER

PHIIIPS 30
PHIIIPS（i）

P111IPS（is

OTIIERS AVAIIABIIE，PRICES ON REQUEST．
TRIPLERS Full range avalable Mono \＆Colour．
SPECIAL OFFER TRIPLERS

THORN TV10 tocus contral $\mathbf{\& 1 0 . 0 0}$ p $t 1 .(\mathrm{NI}$
 455 （RYSTALS for Remote Control llandsets．tlor ti． 00 p．p． 50 p． Vllf tu UlF Converter $£ 26.50 \mathrm{p} . \mathrm{p}$ ．$£ 2.50$.

CALIERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS，ENQUIRIEN INVITEI） LARCE SELECTON TESTED COLOUR PANLLS POPUSAR MODELS

Telephone 01－794 8751． 7947346

MANOR SUPPLIES

172 WEST END LANE，LONDON，NW6 1SD

NEAR：W．Hampstead Tube Stn．（Jubilee）Buses 28，159，C11 pass door W．Hampstead Brit．Rail Stn．（Richmond，Dalston，Strattord，N．Woolwich） W．Hampstead Brit．Rail Stn．（Bediord，Kings X，Crawley，Brighton） Access from all over Greater London
PIEASE AIDD VAT 15% TO ALL PRICES INCL，P＋P

COPYRIGHT

(C) IPC Magazines Limited, 1988. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 18$ in the UK, £21 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Some copies of issues published during the last six months are available from the Editorial Office at $£ 1.50$ inclusive of postage and packing. Address requests to Television, Editorial Office, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London, SE1 9LS.

INDEXES

Indexes to Vols. 35 and 36 are available at 80p each from the Editorial Office (address above).

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

733 Leader
734 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad. Plus a histcrical note on airborne TV transmissions.
739 Video Tape Types and Characteristics
George Cole
A wide variety of types of domestic video tape is on the market, though most people use standard-grade ferric oxide tape. Developments such as hi-fi sound, 8 mm video and S-VHS have called for improved types of tape. A summary of what's available and basic tape characteristics.

742 Teletopics

News, comment and developments.
744 TV Fault Finding
Reports from Dave Dulson, W. H. Clarke, Hugh MacMullen, Philip Blundell, Eng. Tech., Roger Burchett, Nick Beer, Jim Rainey and J. Oljjnyk.
746 The Importance of VCR Back Tension
Nick Beer
Incorrect tape back tension can cause various troubles in VCRs. It's worth checking and adjusting this.
747 The Blaze
Les Lawry-Johns
Outside the shop, not inside! This and other matters arising . .
748 Letters
751 Next Month in Television
752 Satellite TV Filter Unit
Roger Bunney
This versatile unit provides bandwidth limiting plus amplification or straightforward amplification. The gain is adjustable.
753 Practical Computer Programming, Part 6
Mike Phelan
Design of the various sorts of display that might be required.
755 Servicing Notes on the Luxor SX9 Chassis
J. R. Trimmer

756 A Tifax/VM6101 Conversion John de Rivaz, B.Sc. (Eng.)
Use of the Mullard VM6101 teletext Cecoder module in
the Manor Supplies teletext adaptor. A simple TL interfacing circuit is used.
758 VCR Clinic
Reports from Eugene Trundle, Ian Bowden, Philip Blundell, Eng, Tech., Dave Dulson, Alfred Damp and Nick Beer.

762 Storing TV Pictures in Chips, Part 3
Eugene Trundle
This instalment describes the way in which picture-inpicture displays are produced
764 The Ferguson TX99 Chassis J. LeJeune
Circuit features of Ferguson's new CTV chassis for 90° scanning.
769 Service Bureau
770 Test Case 308

HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

HAMEG OSCILLOSCOPES

HAMEG are Europe's top seliling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All incorporate a usefu COMPONENT TESTER. Sain-ar models-285mm $\times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear displav $8 \times 10 \mathrm{cms}$ Mains supply $110 / 125 / 220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} 2$ VEAR WARRANTY HM203-6 20MHz Standard FREE Securicor Delivery SPECIFICATION
 Bandwith DC. 20 MHz
 Actuve TV Sinc. Sep.

- Vavert both channels hold-off 10
- Calubrator

Price $£ 314.00+£ 47.10$ V.A.T Including two probes
FREE Securicor Delivery
HM204-2 20MHz Multi-function

Price $£ 418.00+£ 62.70$ V.A.T.
HM205 20MHz Digital Storage FREE Securicor Delivery SPECIFICATION

- Analcgue Real Time (Same as 203-6)

- BandwidthDC.20MHz - IrigerDC-40MHzAC
Actue TV Sinc Sep
-10 KHz Sample Rate
$-2 \times 1 \mathrm{~K}$ Storage : $2 \times 1 \mathrm{~K}$ Storage - Storage Range - Caibrator V.A.T.

B \& K PRECISION CRT ANALYSER-RESTORER

The number one CRT Test Instrument. Over 5000 U.K. Television engineers

 wouldn't be without it* All CRT's checked identically inciuding all in-line and one gun types - Tests all three guns of colour CRT's -Measures true dyramic beam current that actually passes through G1 aperture to screan * Measures al shorts and leaks - preserving more CRT's * Tests focus etectrodes lead continuity finding faults that other Testers miss * Uses most powerful restoration method known with minimum danger to CRT Rejuvenated CRT's guaranteed as new for two years " Obsolescence proot Perpetual set up chart up-dated and new adaptors development *Tests and rejuvenates VDU's and Oscilloscope tubes *A range of over 40 CRT base adaptors availabie * Increases proit * Pays for itself in months
PRICES
Model 467 Tri-dynamic three meter instrument Inc. 6 common adaptors Model 470 Single
Moder 470 Single meter instrument lnc. 6 common adaptors
Wechnical leatlets
$£ 395.00+559.25$ V.A.T

Technical leaflets avaiable GEI INTO PROFIT NOW

SADELTA FIELD STRENGTH METER TC-402

THE SADELTA FIELD STRENGTH METER TC-402 has been designed io measure the

 signal levels delvered by the antenna toa TV or FM receiver, in order to test the performance of the antenna and evaluate the best conditions during installation etc. To faciltate
FEATURES

* Covering FM and all TV bands (UHFNHF) including CATV freq * Digital tuning display (3 digits) for direct frequency readout.
* Accurate 10 turn tuning potentiometer
* Built-inloudspeaker enables monitoring of sound in AM/FM
* Meter measurement in voltage and dB from $20 \mu \vee(26 \mathrm{~dB} / \mu \mathrm{V})$.
* Continuity tester 0-500 ohms.
* Fully portable (battery).
* Sturdy carry case

Price $£ 249.00+£ 37.35$ V.A.T.

SADELTA COLOUR PATTERN GENERATORS

and computer monitors In order to control and adjust the varrous parameters eight swichable patterns are provided. The technician has ready access 10 Laboratory workshop and tield use
as the Generator has been designed using the atest incro-technology lo achieve truly pocket
size instruments interial re-crargeabin. size instruments. Internal re-chargeabe Ni-Cas Supplied with gV power supply charge
 $\begin{array}{ll}\text { * BandIV }(21-34) & \text { * O/Put } 0 \mathrm{mV} \text { into } 750 \mathrm{hms} \\ \text { * Band III }(5-12) & \text { Sound output }\end{array}$ *PALI. Price £124.95 + £18.74V.A.T
PAL VIDEO COMPOSITE GENERATOR - PALB.GI. * Audio O/Put 10 mV

* O/Put 1Vp.o (it 750 hms * Switching 12 V (i) 4 K 7 ohms Price £124.95 + £18.74 V.A. SECAM VIDEO COMPOSITE GENERATOR - SECAMBGD.KL - Audio O/Put 10 mV Price f124.95 +E 18.74 V.A.T.

R.G.B. PATTERN GENERATOR

O/Put sigs. Pos.RGB \quad O/Pul TTL 5VP-P
Neg Composite Price£111.95 + £16.79VA.T.

The THANDAR TP1 LOGIC PROBE and TP2 LOGIC PLSER are effective and economicar tools for checking botn 1 and CMOS circuits. TP1 can show 14 different 10ns. TP2 can infect a signal directly into a circuit without damaging sensitive components. Together they can stimulate and monitor responses of components in

Price £23.00
£3.45 V.A.T. each
 B. K. ELEGTRONIGS DEPT. T

UNIT 5, COMET WAY, SOUTHEND-ON:SEA, ESSEX. SS2 6TR TEL: 0702-527572

WE WILL ONLY SUPPLY TOP
QUALITY, BRANDED COMPONENTS.
REPUTATION COUNTS WITH US

COMPUTER SPARES	INTEGRATED
4116-2.......................1.00	
4164-1501.95	TYPE PRICE
453220NL3.......... 250	AN303
453220NKL4 250	AN305 .
	AN318.......
7.95	AN7116... 210
881-	
1889……...).-	HA1339A - -
ULA6COO1 7.95	HA1366W....
213 $\quad 30$	HA1366WR.................. 1.5
	HA1374 -.................... 245
2TX650	HA1377 -
	HA1392
	HA13001 - 4.50
DHODES	HA13008 ……
TYPE PRICE	
127 10	LA1230 2.95
133 25	LA1355.... 2.45
164 - .-.................... 60	LA4440.
179	La4445
223 125	L44460 . . - - - - . - $\quad 24 . \quad 245$
BY227.......................... 20	LA4461.................... 2245
BY2998800......................95	LA78001.55
BY299800 25	LA7801 290
BYX $55 / 600$	MC13002
SKE553/10 1.45	MC14497P
1N4001-7....................... 07	SAA 1250....
1N5401-8....................... 18	
	SAA3027............ - 3.55
	SAA5000 A
E.H.T. TRAYS	
Continental Inc. Focus 8.95	SAA5012
ECCA 100 7.35	SAA5050 \ldots -
DECCA 120/130............. 1.95	SAF 1039 P 2.25
1TCVC2030	SL470/1DP
ITTVVC45.................1.50	SL480
PHILIPS G8 (550) 1.90	SL490 230
кт3.................1.95	SL1430..................1.95
RBM T20/22A.............. 1.35	SL14311. 1.95
THORN 850008800 120	SL1432 _-. --.....1.15
THORN 9000 8.00	SN76660N 65
UNIVERSAL5.70	STA471C... 6.95
	STK212911.95
FUSES	STK4335.95
AS: IPkts	STK4332
OMA, 315MA, 400MA.	STK435...5.95
$500 \mathrm{MA}, 630 \mathrm{MA}, 800 \mathrm{MA}$.	STK437.... -6.95
1.25A, 1.6A, 2A, 2.5A	STK439..7.50
$5 A, 4 A, 5 A, 6,3 \mathrm{~A}, 84 \ldots . .120$	STK459.8.55
mm D D. B: (Pkts of 10)	STK4619.95
IOMA, $630 \mathrm{MA}, 800 \mathrm{MA}$,	STK463
6A, 2A, 2.5A, 3.15A	STK465

G.G.L.COMPONENTS

PO BOX 72, UNIT 7, SOUTH JOHN STREET, CARLISLE, CUMBRIA CA2 5AL PHONE (0228) 39693/20358

PUSH BUTTONS

	PUSH BUTTONS
5.95	DECCAIT 6 WAY...............
4.70	FERGUSON TX9.
5.95	FERGUSON TX10
5.75	ferguson tx90
	FIDELITY CTV1408 WAY..........195
	$11 \mathrm{CVC5} 7 \mathrm{WAY}$. 11.75
	17 CVC2030
	$1{ }^{1 / 2}$ CVCA5 (PORT.)
265	PMUCVCAS (PORT)
	PHILPS G8ISR 550...........16. 2.9
5	PYEG
	RBM T20A 6 WAY 11.95

SERVIC
TELEVISON x9.... DECCA

FERGUSON TV SPARES

$\begin{aligned} & \text { FERG } \\ & \text { TX9/10 } \end{aligned}$
Dual PTC 285
Focus Unit TX10 8.50
Line D/P Trans TX9... 23.50
Line 0/P Trans TX10 - $\quad 29.9295$
On/OHS Swich (Remote) 1.95
Push Button TX9.................16.95
Push Button TX1016.95
RFIChoke TX9... 2.95
Tuner............................... 14.95
W90. 100
Line 0/P Yrans TX90 14"........ 19.75
Line 0/P Trans 7X90 22 ${ }^{\prime \prime}$...... 19.75
Line 01P Trans TX100 90 19.95
Line O/P Trans TX100 110
On/OHS Switch (Remote)1.75
Push Bution TX90 1295
35

FERGUSON VIDEO SPARES 3Y00/16/22

 Pinch Roller
Take-Up Clutch (Small) Take-Up Clutch (Large)5.55

3V29330 Booster

 Booster Loading Motor Pinch RollerPilot Lamp. Pilot Lamp
Reel Idler... Take-Up Clufch Take-Up Idler
Video Head. Video He
3v3s/36

	1.	19.50
NAT. PAN.		
VIDEO SPARES		

Cassette Housing 28
Reel Idler............... 2

Take-Up Idler

v4/45

 Capstan Motor .. Cassette Housing oading Motor Video Head...$\cdots-22$

50
5
5
5

VIDEO SPARES

\qquad

24.95

《心O
udio Head - 19

0 KENT TRADE SUPPLIES

 2 Forstal Road, Aylesford, Maidstone, Kent ME20 7AU.疋 TELEPHONE 0622 79313/78136
OPEN 9am-6pm MONDAY-SATURDAY

EX RENTAL
COLOUR TELEVISION

> 9000................. 18.00
> 9600 $£ 28.00$
> 9900 £30.00
> TX9 £38.00
> TX9 Text........... £70.00
> TX10£40.00
> TX10 Text......... $£ 85.00$
> \sum NON WORKING MODELS p.O.A.

NWMN
8,800 Working....£5.00

FRANGHISED U.K. AND EXPORT DEALER REQURED FOR DISTRIBUTION

EX RENTAL WORKING VIDED RECORDERS
WORKING
NON-WORKING

$3 V 22$	$£ 59$	$£ 22$
$3 V 16$	$£ 59$	$£ 22$
$3 V 30$	$£ 79$	$£ 40$
$3 V 23$	$£ 75$	$£ 25$

FRONT LOADERS FROM £85 LARGE SELECTION OF OTHER MAKES IN STOCK

FOR THE BEST IN EX-RENTAL TV \& VIDEO

VOLUME DISCOUNTS!

We are now European Distributor of the revolutionary ONE FOR ALL Universal Remote Control Easily programmable to control all the appliances in your home: TV VCR, CD, lights, etc. etc.
ONLY $£ 49.95$ Dealer enquiries welcome

NEW CONTRACT

Our new supply contract means we now offer the widest possible choice of fast selling Videos and TVs at UNBEATABLE PRICES

TOLL FREE LET CELTEL PICK UP THE COST OF YOUR CALL
Or contact one of our two conveniently located warehouses

SOUTHSDETV

UNTT 8, APPLE IND. EST.,
WHITTLE AVE., SEGENSWORTH WEST, FAREHAM ӧт тистоом, мм2 HANTS. TEL. (04895) 77251

* TOP QUALITY ex-rental TV's \& Videos
* Fresh stock deliveries EVERY week
\star All items complete with original handsets
\star Working stock always available in quantity
* 24 hr ansaphone service

Opening times: Mon-Fri 10am-5.30pm Sat Mornings 10am-1pm.

[^0]

FIRST TH TUBE RESUIDING TEGHOLOGT

 30AX，540 SERIIES

Delta Rebulids

Up to $19^{\prime \prime}$	$\mathbf{£ 2 8}$
Up to $22^{\prime \prime}$	$\mathbf{£ 3 0}$
Up to $26^{\prime \prime}$	$\mathbf{£ 3 4}$
110° up to 22＂	$\mathbf{£ 3 4}$
110° up to $26^{\prime \prime}$	$\mathbf{£ 3 8}$
Low focus	$\mathbf{+ £ 2}$
A47342 New	$\mathbf{£ 2 8}$
17FHPNew	$\mathbf{£ 3 0}$
470EHB New	$\mathbf{£ 3 0}$
Delta only．Less $5 \% 5+$	

Delta

\section*{| WORKING VIDEOS | | WORKING TVs | |
| :---: | :---: | :---: | :---: |
| 3V22 | ． 55 | 9900 | £35 |
| $3 \mathrm{~V} 23 \mathrm{inch} / \mathrm{set}$ | £75 | TX9 | £55 |
| 3V29 ．．．．．．．．．．．． | £70 | TX10 | $£ 55$ |
| 3V30． | £75 | TX9 Txt | £80 |
| 3 V 30 （stereo） | £80 | TX10 Txt | £85 |
 LOADSA STOCK！！
 SEMPLE 贯童 SERVICE
 沙 ：GREAT SUMMER DEALS 沙 ON}

Come and see us and we＇ll work out a deal for you

WITH OUR UNIQUE 7－DAY EXCHANGE GUARANTEE AND DELIVERY

59 Hall Road，Clenchwarton，Kings Lynn，Norfolk
TEL． 0553766766
LH LINE TYPES（not REBULOS）PHONE RE STOCK POS．
Please enquire types not listed

370 HFB－A37－590	± 50	AXT 56－001	£67
370 HUB	£50	670 CZB	£80
AXT 37－001	f50	A66－540	£125
420 CSB	£50	420FSB	£60
420 EDB－A42－590．	£50	14＂（A34）；16＂（A38）； $21^{\prime \prime}$ （A51）；FST now available at special low prices	
420 EZB	150		
420 ERB	150		
470 KUB	¢50		
510 UFB	£67	MIN．CARRIAGE £5 $£ 10$ if glass collected． TERMS Cash with order ALL PRICES EXCLUSIVE OF VAT	
510 VSB	167		
AXT51－001	E_{67}		
560 DYB－560 DTB	¢67		
560 EGB	¢67		
560 CGB 560 DMB	667 667		

NOTE
Surcharge
without
exch．glass．

> WVE PURCHASE SURPLUS STOCKS OF INEINE TUBES: ALSO A56/ $66-510 / 540$ ETC OLD GLASS.
> DELIVERY: By return on all stock items.

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD．，PUMP STREET， HOLLINWOOD，OLDHAM OL9 7LR
Ask for Mr Butterworth ON：061－681 2959

POPULAR BAKERS DOZEN PACKS (Still available)
All packs are $\mathbf{\Sigma 1}$ each, if you order 12 then you are entitled to another free. Please slate which one you want. Note the figure on the extreme lett of the pack ref number and the next figure is the quantity of items in the pack, finally a short description

BD2	5	13A spurs provide a fused outlet to a ring main where device such as a clock must not be switched oft
BD7	4	in flex switches with neon on of lights. saves leaving things switched on
B09	2	6v. 1A mains transtormers upright mounting with tixed clamps
BD11	1	$61 / 2^{n}$ speaker cabinet ideal for extensions, takes your speaker Ref BD137
BD13	12	30 watt reed switches, it's surprising what you can make with these - burglar alarms, secret switches, relay elc etc.
B022	2	25 watt loud speaker two unti cross-overs
BD29	1	B O.A.C. stereo unit is wonderful value
BD30	2	nicad constant current chargers adapt to charge almost any nicad battery
BD32	2	humudity switches, as the air becomes damper the membrane stretches and operates a microswitch
BD34	48	2 meter length of connecting wire all colour coded
BD42	5	13A rocker switch three tags on/off. or change over with centre off
BD45	1	24 hr time switch, ex-Electricity Board, automatically adjust for lengthening and shortening day Originat cost $£ 40$ each
BD49	10	neon valves, with series resistors, these make good night lights
BD56	1	mini uniselector, one use is for an electric jigsaw puzzle, we give circuit diagram for this. One pulse into motor, moves switch through one poie
BD59	2	flat solenoids - you could make your multi-tester read AC amps with this
B067	1	suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water lanks
BD91	2	mains operated motors with gearbox. Final speed 16 rpm 2 watt rated
BD103A	1	6 750MA power supply, nicely cased with input and output leads
BD120	2	stripper boards each contains a 400 v 2 A bridge rectifier and 14 other diades and rectifiers as well as dozens of condensers etc
BD122	10m	twin screened tlex with white puc cover
BD128	10	very fine drills for p.c.b. boards etc. Normal cost about 80 peach
BD132	2	piastic boxes approx. $3^{\prime \prime}$ cube with square thole through top so ideal for interrupted beam switch
BD134	10	motors for model aeroplanes. spin to start so needs no switch
BD139	6	microphone inserts - magnetic 400 ohm also act as speakers
BD148	4	reed relay kits you get 16 reed switches and 4 coll sels with notes on making c/o relays and other gadgets
BD149	6	sately cover for 13A sockets - prevent those inquistive littie fingers getting nasty shocks
BD180	6	neon indicators in panel mounting folders with lens
BD193	6	5 amp 3 pin flush mounting sockets make a low cost disco pane!
BD196	1	in fiex simmerstat - keeps your soldering iron etc always at the ready
BD199	1	mains solenord very powerful has 1 " pull or could push if modified
BD200	8	keyboard switches - made for computers but have many other applications

12 v alarms make a noise about as loud as a car horn. Slightly soiled but OK
$6^{\prime \prime} \times 4^{\prime \prime}$ speakers 4 ohm made from Radiomobile so very good quality
tacho generators, generates one valt per $100 r e v s$ panostat controls output of boing ring from simmer up boll
50 leads with push on $1 / 4^{n}$ tags - a must tor hook ups - mains connections etc
oblong pustr switches for bell or chimes, these can mains up to 5 amps so could be foot switch if fitted into pattress
mini 1 watt amp for record player. Will also change speed of record player motor
$\begin{array}{ll}\text { BD275 } & 1 \text { Guitar mic - clip on type suits mest amps } \\ \text { BD283 } & 3 \text { mild steel boxes approx. } 3^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime} \text { deep }\end{array}$ standard electrical
BD293 - 50 mixed slicon diodes
$\begin{array}{lll}\text { B0296 } & 3 & \text { car plugs witl lead, fits into lighter socket } \\ \text { BD305 } & 1\end{array}$ BD305 1 tubular dynamic mic with optionat table rest Most

5A BATTERY CHARGER KIT
All parts including case. Only $£ 5$ plus $£ 1$ postage OVER 400 GIFTS YOU CAN CHOOSE FROM There is a total of over 400 packs in our Baker's oozen range and you beco
gift with each dozen packs
Our lalest "News Letter"
Our lalest "News Letter" will be enclosed with your goods, and you will automatically receive
our next news letter. If you want our 1988 classified list please request this.

F.D.D. BARGAIN

$31 / 2$ tioppy Disk Drive, made by the Chinon Company of Japan. Beautilully made and probably the most compac device of its kind as it weighs only 600 g and measures only 104 mm wide, 162 mm deep and has a height of only 32 mm other teatures are high precision head positioning - single push loading and eject - direct drive brushless motor Shugart compalible intertace - slandard connections - inter changeable with most other $31 / 2$ and $51 / 4$ drives. Brand new with copy of makers manual. Offered this month at $£ 28.5$

CASE - adaplabie for $3^{\prime \prime}$ or $31 / 2^{\prime \prime \prime}$ FDD, has room for power supply POWER SUPPLY FOR FDD 5 V and 12 V ves
POWER SUPPLY FOR FDD - 5 V and 12 V vattage regulated outputs. complete k
f11. Our ref 11P?

9' MONITOR

Ideal to work with computer or video camera uses Ph,ips black and white tube ref $\mathrm{M} 24 / 306 \mathrm{~W}$. Which tube is implosion and X Ray radiation provected. VOU is brand new and has a time base and EHT circuitry Requises onfy a 16 V dc supply to set going It's made up in a lacquered metal framework but has open sides so should be cased The VDU comes complete wit circuit diagram and has been line tested and has our six month guarantee Otfered at a lot less than so
the tube alone, unly $£ 16$ plus $£ 5$ post

CASE FOR $\mathbf{9}^{\prime \prime}$ MONITOR

We have arranged with a metar worker to make cases for the 9 Monito case will be made trom coated sheet steel the price $£ 12$ plus $£ 2$ post. The 7 in high which will give ample space for the Power Supply and externa controis if you fil them

PROBLEM SOLVED

We have obtained from the manufacturers of the $9^{\prime \prime}$ Monitor, the $T L$ computer. We have jail the printed circuit board made and have ail the components and cait supply this converter in kit form price £6. Our rel 6P4.
3" FDD HITACHI 305SXA
This has standard Shugart connections and will work with most computers but is particularty suizable tor Amstrads, in lact it was recommended in recent "Computing : sith Amstrad" Prlce $£ 30+£ 3$ post

MINI MONO AMP

Fitted volume control and a poid ar ane control

 should you require 4 'The amplitier has three transistors and we estimate the output to be 3 W rms.inciuded with the amp. Brand new perfect condthon. othered at the very low price of $£ 1.15$ each, or $£ 13$ for 12

THIS MONTH'S SNIP

ACORN COMPUTER DATA RECORDER (CASSETTE). This is a morse data recorder with switchabie moior contel intended io use with the Acorn Electron or BBC computers but aiso normat recort and play-back of music and speech
Six key controls give "PAUSE" "STOP" and "EJECT" "CUE/FAST FORWARD" "REVUEREWIND" and "RECORD" fast forward and rewind (100 seconds for C60). Also tape counter witt sesel bution. Input signal range 5 mV . Input impedance 40 k ohm. Can be bathery operated tut is supplied with a mairs adaplor. Brand new silil in manulacturer's wrapping E8. Order Ret. 8P18 add 22 postage.

VENNER TIME SWITCH

 Mains operated wth 20 amp switch one on and one oft per wist 24 hrs. automaticalty correcting for the lengthening bul you can have it for only $£ 2.95$ wimput case, melal case - $£ 2.95$, adaptor kil to convert this into 3 normal 24 ht time switch but with the added advantage of up to on/ofis per 24 hrs. This makes an ideal adaptor kit is $£ 2.30$.

Ex-Electricity Board Guaranteed 12 moarth

GPO TEST METER 12/C1

20.000 opv 19 ACNC ranges. including all the usual ones and a ven uselu low ohma range. also shunt provishon tor reang up ha It is in a real teather carrying case and comes complete with leads

$8^{\prime \prime}$ GREEN SCREEN MONITOR

angle A very compact wit measuring only $1012^{\prime \prime} \times 10^{\prime \prime} n^{\prime \prime} \times 71^{\prime \prime}$ hig operates to a 15 V OC operates from a 15 V OC supply - composite inpul so ideal for use wth guarantee 6 months Price £17.50 - Our Ref 17P1 - please add $£ 3$

25 A ELECTRICAL PROGRAMMER
Leam in your sleep Have radio playing and kettle
boiling as you :wake-switch on lights to warn off
You can do all these and more. By a famous
maker with 25 amp on/oft switch. A beautiful unit at $\sum .50$.

POWERFUL IONISER

Generates approx. 10 times more IONS than the ETI and similar circuits. Will reiresh your home, office, shop, workroom etc operated hit. case included $£ 11.50+£ 3$ p\&\&p

J \& N BULL ELECTRICAL
 Dept. T.V., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5OT.
 MAIL OROER TERMS: Cash, P.O. or cheque with order. Orders unde

$\sum 20$ add $£ 1$ service charge. Monthly account orders accepted from schools and public companies. Access \& B. caro orders accepted Brighton (02 23) 734648 or 203500 .

in our current

E-CHARGEABL: NICADS ' D ' SIZE these are tagged tor easy foining logether but tags can easily be remov
2P141. 6 for £14 ret 10P47
BAIGHT LIGHT :WITCH will control mans Criculs up to 10 amps. gets its with pulses tram car headights. brght dayight etc so in does not us atteries and its sensor is compleiely isolated

POWERFUL 12V MOTOR was

1 ICH FDO Hiachu ret. HFD $205 S X A$ Ideal replacement or second dinve in ar pow id mid charer a Cab OLAR POWEPED NL-CAD CHARGER 4 NI-CAD batteries AA (HP7) charged in | Price hours or $£ 6$ Our rel 6 in 3 |
| :--- |

50. 20A TRANSFORMER C Core constuction so quite easy lo adapl tor other Outputs - tapped mans milpu!
coliecting order Ret 25P4.
FREE POWERt Can be yours if you use our solar cells-slurdly made modules with new System bubbie magntiters to concentrate the light and so ellmmate the
sed tor actual sunshne-lhey work just as well in bright light voltage input is 45-you join in series to get desired voltage and in paraliel tor more amps Module A gives 100 mA . Price $£ 1$. Our rel. 80631 Module C gives 400 maA A Price $£$ 2. Our ret $2 P 199$ Madule D gives 700 mA . Price $£ 3$. Our ret 3 P12 SWITCH ac loans with your compuiter Ths is easy and relabie in you use our sold -nate relay This has no moving parts, has migh input resistance
and acts as a noise barrer and provides 4 kW isolation between logic terminals and acts as a noise barrier and provides 4 kW isolation between logic terminals 'e furn on viltage is not critical anything between 3 and 30 V . internal resistance is atout
each Ref 2P983
METAL PROJECT BOX Ideal size for banery charger, power supply elc, spayed

EIG SMDOTHING CAPACITDR. Sprague powerlytic 39 . 000uF at $50 \mathrm{O} \S 3$ Our
4-CORE FLEX CABLE. Cores separately insulated and grey PVC covered overall
Each copper zove size 70.2 mm Ideal for long telephone runs or similar applications vven at mans voltage. 20 metres $£ 2$ Out ref. 2P996 or 100 aplicalions tven at manns voliage
netres coll \mathbf{B} Order ret 8P19
rwin gang tuming capacitor. Each section is $1005 u$ with trimmers and ood length 1/4in spindle old but unused and in very goot condition \&1 each Ous ref BDEz30
13A PLULSS. Good Brilish make complete with fuse parcel of 5 tor $£ 2$ Order ef. 2 P 986
13A ADAPT\& RS - Takes 2 13A piugs. packet of 3 for $£ 2$ order Ref 2P187. 20 v - $\mathbf{0}$ - 20 v - Mains transtormers $2^{1} / 2 \mathrm{amp}$ (100 wath) loading lapped BENCH ISO ATION TRANSFORMERS 500 watt - 230 v in and out with plenty of

BURGLAR ALARM BELL $-6^{\prime \prime \prime}$ gong - OK to lix outside in the rain and shetter
mant operaston 18 Rel 8 p
4 HDUR WME SWITCH - 16A changeover contacts. up to 6 on offs per day
Capacitol bargain - axal ended - 4700 ut (il 25 v Jap made. Normaly 50 p
each. but you will get 4 for £1. Re! 613
PIEZO ELEETAIC FAN an unusual tan more like the one used by Madame Butterliy, twan the conventional type it does not rotate the alr movements conomicas and causes no interterence So it is iteal for computer and instument cooling Price is only $\$ 1$ each Ret, B0605
SPRING LJADEO TEST PRDOS - heavy duty, made by ite famous Bulgin CURLY IEAD - four core standard replacerment for telephone handset, extends each Ret BD599
TELEPHOHE BELLS - these will work oft our standard mains through a anstormer bul to sound exactly lite a tetephone they then must be fed wind 25k 50 V So with these bells we give a circuit for a sulitable power supply.
 Brand new Normal price $£ 30+$. Our price only $£ 10$ Ret 10 P34
APPLIANCE THERMOSTATS - spindle adust yppe sutabie for convector heaters appliance thermostats - Spindle a
or similaz Price 2 tor $£ 1$ Rei bD58?
CORE FLEX BARGAIN No. 1 - Core size 5 mm so ideat to long extension

3 COAE FLEX BARGAIN Na. 2 - Core size 125 mm so suitable tor long extensio: leads carving up to 13 amps - or short leads up to 25 A . 10 m for
L2 orde Ret 2Pr90
CASE WITh 13A PRONGS - 10 go into 13 A socket, nice size and sultable to plenty of proiects such as car battery trickle charger. speed controller, time
swinch. night ight. noise suppressor. dimmers etc Price -2 lor $\lceil 1$ Ret

ALPHA-NUMERIC KEYBOARO - this keyboard has 73 keys with contactless Capaclance switches giving long trouble free lite and no contact bounce The
 Out offered at only a laction of its cost namiely £3. plus $£ 1$ post. Ref. 3 P27.
TELEPHONE EXTENSIONS - 11 is now fegat for you to undertake the wing of TELEPHONE EXTENSIONS - it is now legal for you to underake the wing of £8.50. Extension BT sockels $£ 2.95$. Packet of 50 plastic headided staples \mathbb{Z}. 28 50. Extension BT sockets $\mathbb{2}$. 95 . Packet of 50 plastic headed staples $£ 2$ Dual acaptor for taxing two appliances tro
plug le: changing oid phones 3 for $\Sigma 2$
Whe BaRGain - 500 merres 07 mme sold copper tinned and p v.c. covered Only $\mathrm{Cz}+\mathbb{1}$ \& post Ret, 3 P31
INTERRUPTEO EEAM KIT - this kit enables you to make a swich that wil trigger when a steady beam of infla-red or ordinary light is broken Mann components - relay photo transistor, resistors and caps etc Circuit diagram but no case. Price $£ 2$. Ref 2 P15
3.30V VARIABLE VOLTAGE POWER SUPPLY UNIT - with 1 amp DC output. Intented tor use on the bench tor experinsenters. students, inventors, service enginters etc This is probably the most importani plece of equiprent you can
own 1 After a multh range test meter). It gives a variatle output from 3 -30 voths and has an automatic shon crrcuit and overtoad prolection which operates a! 11 amp approximatety. Other teatures are very low ripple outpul a typical ripple is 3 mV pk-pk. 1 mV rms. Mounted in a metal tronted plastic case, this utout terminals. Pnce for complete kil with fult instuctions is ¢.15. Re! 15P7 TRARSMITTER SURVELLLANCE (BUG) - Lury, easily hidden, but which will
enable conversation to be picked up with FM radio Can be housed in a

CATALOGUE available - range of components greatly increased - over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders over

AUGUST SPECIAL

SPECIAL OFFERS WHILE STOCKS LAST ENGRAVER - BATTERY OPERATED

Enquiries are wel
comed for any other
valve not listed here.

EAST CORNWALL COMPONENTS 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 093932689

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 721.

ADVERTISEMENT MANAGER

David W.B. Tilleard
()1-2616671

SECRETARY

Janet Reeve
0)-261 6071

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-2615942

ADVERTISEMENT COPY AND MAKE-UP
Ron Scorey
(11-2616035

SUBSCRIPTION ENQUIRIES

$0444+40421$

COVER PHOTO

This month's cover photograph shows the new Ferguson TX99 CTV chassis, a compact single-panel (plus c.r.t. base board) concept designed to drive a range of 90° tubes. See article on pages 764-8.

The Broadcasting Debate

The last few weeks have been notable for the number of statements and reports that have appeared on the future of TV broadcasting in the UK. We have had the suggestion that BBC-2 and Ch. 4 might be made into satellite TV only services so that their terrestrial transmitter networks could be freed for additional advertisement-funded national and regional channels, the Home Secretary Douglas Hurd has been openly questioning the funding of the BBC via the licence fee and the role of the IBA, the Commons all-party Home Affairs select committee's report on the future of broadcasting has been published, and plans for considerable expansion of satellite TV services have been announced. All this comes as the government's White Paper on the subject is awaited in the autumn.

The government has called for discussion and debate on the future of broadcasting arrangements in the UK. How much notice it will take of views put forward remains to be seen. The Home Affairs committee's 195 -page report The Future of Broudcasting presents a cogent case for leaving things much as they are at present. In welcoming the report. Mr. Hurd commented that "I can understand the uncertainty that's unsettling the broadcasting institutions as fresh ideas are put forward and examined". Well he would say that - after all it's the government that has all along been pressing for change.
Two factors suggest a possible need for change. First, developments in technology are bringing about change anyway. Secondly, the fact that the BBC and IBA have been around for a considerable time in their present form may mean that they have outlived their usefulness.

The technology argument means cable and satellite TV of course. These are already giving viewers greater choice. Cable TV in its new form, as opposed to the old relay networks, has been around for some time now but has hardly led to a revolution in TV. Things might change when Murdoch and Maxwell get going with their satellite TV services - British Satellite Broadcasting's services are also due to start late next year. So the public is going to be given a considerably wider choice quite soon regardless of the amount of debating that goes on. In which case, why all the fuss?

If the BBC and the IBA could be shown to be providing inferior services, there would certainly be a case for change. The only yardstick for such an assessment is by way of international comparisons. These always highlight the superiority of the established UK broadcasting services. Some members of the government may feel that the idea of a publicly funded service such as that provided by the BBC does not fit in with current thinking about a market led economy. The case has been forcefully argued in some quarters that the BBC should seek its money through subscriptions, pay-to-view or whatever father than taking its money and providing what it thinks fit. But this could jeopardise a perfectly good system - as viewing tigures attest - for the sake of ideology. Hardly a wise course.

The Hone Affairs commiftee came to the conclusion that the BBC, funded by its licence revenue, was "remarkable value" and should continue much as it is. Its main TV recommendations are as follows: that there should be no change in the basic role of the BBC: that Ch. 4 should remain substantially as it is; that a fifth terrestrial TV channel based on a network of local stations should be established as soon as possible; that the IBA should be replaced by a new Commercial Television Authority that would regulate the ITV, cable and satellite TV services; that a system of regulated tendering should be used when the current ITV franchises come up for renewal in 1992; that British Satellite Broadcasting's DBS services should be given a fair trial; that separate night-time TV franchises, from midnight until (kg()), should be introduced in 1993; that franchises for the two remaining DBS channels should be awarded as soon as possible after 1993; and that the newly set up Broadcasting Standards Council should base its findings on proper research rather than the representations of pressure groups. The Committee spent six months on its deliberations and members visited the USA and Italy to sample the offerings of overseas TV broadcasters. It might seem that the IBA has come out of all this badly, but the committee's chairman John Wheeler pointed out that the proposal for a new Commercial Television Authority had not been made because of any shortcomings but because "a new body is required for a wider and more flexible task". The IBA has proved itself to be flexible in the past however, and there is no reason to think that it couldn't cope with any added responsibilities given to it. Finally, Mr. Wheeler suggested that public service broadcasting should remain at the centre of a recast UK TV service, with the interests of viewers rather than advertisers at the forefront. "In the medium term" he continued, "we think that the majority of viewers will still watch the same four channels as they do now. We don't want the success of new services to be at the expense of the present much-valued ones." A rather more down-toearth view than that of the Peacock Committee, and non the worse for that.

Thanks!

There was an incredible response to our questionnaire in the June issue - we received several thousand completed forms. Our thanks to all who assisted in this way. A computer analysis of the results is under way and witl help us in determining future policy.

Long-distance Television

Roger Bunney

At first there seemed to be a poor start to the 1988 Sporadic E season. During the latter half of May however there was a considerable improvement, with a number of exotic signals being logged and several intense openings. The log is as follows:

6/5/88 An aurora on the 5th extended into the 6th, giving auroral TV reception that included RAI (Italy) ch. IA and unidentified signals on chs. E3 and 4. It gradually developed into an SpE opening, with signals in the UK noted from RAI chs. IA, B; TVE (Spain) E2, 3, 4: RTP (Portugal) E2, 3; JRT (Yugoslavia) E3, 4; TVR (Rumania) R2; TVP (Poland) R1; ARD) (West Germany) E2, 3, 4: DFF (East Germany) E4; TSS (USSR) R1, 2; CST (Czechoslovakia) R2; RUV (Iceland) E3; TDF (Canal Plus) L3; RTT (Tunisia) E4.
7/5/88 TVE E3, 4; RAI IA. B; JRT E3; ARD E2; ORF (Austria) E2a; +PTT (Switzerland) E3, 4; TDF (France) L2, 3. 4.
8/5/88 TVE E3, 4.
9/5/88 SVT (Sweden) E2.
10/5/88 SVT E2; NRK (Norway) E2.
11/5/88 ARD E2, 3, 4; RTB-F (Belgium) E3; + PTT E2, 3: RAI IA; DR (Denmark) E3, 4; ORF E2a, 4; TVE E2; RTP E3; CST R1; TSS R1; TVP R1; NRK E2, 3. 4; SVT E2, 3. 4.
12/5/88 EPT (Greece) E3.
13/5/88 RUV E4.
14/5/88 SVT E2.
15/5/88 TVE E2, 3, 4; TVE-2 E2; RAIIA, B; ORF E2a; JRT E3, 4; EPT E3; RTP E2, 3; TDF L2, 3, 4; +PTT E2. 3; TVP R1, 2, 3; NRK E3; SVT E2; MTV (Hungary) R1, 2; Tele-Uno IA (Italian free station).
16/5/88 TVE E2. 4.
17/5/88 CST R2; TSS R1; TVE E2.
18/5/88 RAI IA, B: TVR R2; CST R2; NRK E2, 3; TeleGralano E2 (Italian free station).
19/5/88 RAI IA, B; NRK E2, 3, 4: SVTE2, 3; RUVE4; TSS R1, 2; TVR R1, 2; CST R2; +PTT E3; JRT E3, 4: TWM IA (Italian free station).
20/5/88 TVPR1, 2; TSS R1, 2; TDF L2; +P「T F2; CST R2.
21/5/88 TVE E2.
22/5/88 RAI IA. B; TSS R1, 2, 3; TVP R1, 2; NRK E2; SVT E2, 3, 4; TDF L2, 4: TVA IA (Italian free station).
23/5/88 RAI IA, B; TVA IA; MTV R1: TVP R2; TSS R1, 2 , 3; JRT E3, 4 ; SVT E2, 3. 4; NRK E2, 3, 4; CSI R1; DR E3, 4; RUV E4; RTS (Albania) IC; YLE (Fin-
land) E3, 4. A coloured announcer was seen on ch. E3 at $18(1)$, the signal (NTV?) being from the south.
24/5/88

25/5/88
26/5/88

27/5/88 TSS R1, 2, 3; TVP R1, 2; JRT E3, 4; TVE E2, 3, 4. E2, 3; TVE E2, 3. 4; TDF L2; +PTT E4; ORF E2a, E4; ARD E2, 3, 4; MTV R1, 2; TVR R1, 2; JRT E3, 4; CST R1. 2, 4; TSS R1, 2, 3, 4; TVP RI, 2, 3; RUV E3, 4; DR E3, 4; YLE E3; NRK E2, 3, 4; SVT E2, 3; JTV (Jordan) E3 from (1720-(0)45.
28/5/8K TSS R1, 2; JRT E4; RAI IA: SVT E2; TDF L2; TVP R1; ZTV (Zimbabwe-Gwelo) E2 at 1910.

29/5/88 RAI IA; Syria E3.

30/5/88 RAI IA, B; TVE E2, 3, 4; TDF L2, 4; JRT E3, 4; Syria E3 at 1906 ; ZTV Gwelo E2 at 1820.
31/5/88 RTP E2, 3; TVE E2, 3,4.
1/6/88 RAI IA.
3/6/88 TSS R1.
There was a remarkable all-day SpE opening on June 6th. At about 2300) system M signals from the USA/ Canada were noted on chs. A2, 3, 4 and vision only on ch. A5 (77.25 MHz !). More details next month.

There was a minor tropospheric opening on the 7th and a major one that lasted from the 14th to the 17th. Quite remarkable Band III reception from the Low Countries, France, West Germany, Denmark and the nearer Scandinavian stations was experienced. The first two days were best in northern parts of the UK, but conditions later improved in the south, giving DR chs. E5, 8, 10, NRK E9, 11, SVT E8 and RTL E7. Simon Hamer did extremely well in north Wales, logging every ITV region including the Channel Islands. Interesting that he received Radio Jersey and Radio Guernsey on the 17th.
The Syrian ch. E3 SpE signals on the 24th/29th were logged by Tim Anderson in Hastings, Dave Shirley in St. Leonards and, on the 30th, by Cyril Willis at Kings Lynn - a corner-screen logo made identification possible. Cyril logged Gwelo, Zimbabwe (ZTV) ch. E2 on two occasions, on the 28 th from 191(0-1930 with a dark skinned lady announcer and on the 30th with English language sound, followed by Syria ch. E3! The Jordanian ch. E3 reception on the 27 th consisted of a weak PM5544 test pattern followed by an English-language police-type programme from (080)-(1845 - an Arabic caption was seen floating over the Jordanian signal at (1845! The ch. E3 Greck (EPT) reception on the 26 th also produced a PM5544 type pattern, with the white background grid intermittently flashing, from ($1745-0800$ after which the display stabilised. On several occasions the FUBK pattern

Left: JOAX-TV 4 (Japan) test card photographed by Fred Robins during a recent visit. Centre and left: TVP Wrocklaw ch. 38 and an amateur TV test pattern received by Ryn Muntjewerff (Holland) during a tropospheric opening last December.
was seen on ch. E4 carrying the identification NEI I: it's thought that this is NDR Flensburg carrying a test transmission sourced from Niebuell. Back-scatter SpE was noted on several occasions, producing very short-skip signals such as Copenhagen ch. E4 noted in Essex.

French radio amateurs have been heard via $\mathrm{Sp}_{\mathrm{p}} \mathrm{E}$ at 50 MHz , though they don't at the time of writing have authorisation to be on air. The $50 \cdot(032 \mathrm{MHz}$ Ascension Is. beacon ZD8VHF was heard at high levels in the southern UK on May 15th, and again next day in central UK. On both days the signals were present at 1700 onwards. Obviously this is the time to look for African Band I signals from Nigeria, Ghana and Zimbabwe. Finnish amateurs will have access to the 50 MHz band from the end of June. During April a Johannesburg amateur (ZS6WB) reported reception of European ch. E2 TV signals at around 1910 GMT.
Personally I'm finding that Band I is becoming cluttered up - in the more built-up areas it's becoming an r.f. dustbin! Apart from computers that radiate spurious signals throughout the v.h.f. spectrum, over quite some distance, (it seems that the UK is well behind the FCC standards) the 49 MHz segment is becoming choked with baby alarms, toy walkie-talkies, pagers and cordless phones. I've even seen a 49 MHz f.m. radio three-channel intercom system for domestic use. A local baby alarm radiates over a half mile radius, producing a noise-free raster here. Despite all this the DTI seems to be quite happy.

My thanks to the following for sending in reception reports to add to my own meagre loggings: Dave Shirley (Hastings), Tim Anderson (St. Leonards), Roger Fussell (Torpoint), David Oliver (Birmingham), Simon Hamer (Powys), Ryn Muntjewerff (Holland), Tim Healey (Plymouth), Dr. Eric Duncan (Fife), Peter Schubert (Rainham), Bill Cotterill (Tipton), Iain Menzies (Aberdeen), Mark Baldwin (Rushden), Mel James (Anglesey) and Cyril Willis (Kings Lynn).

News Items

UK: The late-night British Medical TV service test transmissions continue, with Canal Plus type scrambling. Apparently the BBC is working on a different scrambling format which will be used when the service starts in the autumn. It's understood that the programmes will be transmitted during the very early morning period, before the BBC-2 Open University programmes.
Denmark: Test transmissions from the new Hove (Copenhagen West) ch. E31 and E53 outlets started on May

AERIAL TECHNIQUES

Send for a copy of our glossy covered illustrated CATALOGUE. We've got some surprises for you, with the introduction of new Multi-standard Televisions/Monitors, a new range of Aerial Rotators and many, many more items. We've retained all of the well established and popular products, but have taken this opportunity to introduce lots of exciting new items for you the enthusiast. Our extensive listings cover domestic, fringe and DXing installations within Bands 1 to 5 inclusive. AERIAL TECHNIQUES provide a complete and comprehensive consultancy service for ALL reception queries and problpms. WOULD YOU LIKE TO RECEIVE AN EXTRA ITV CHANNEL AT LITTLE EXTRA COST? IF SO, SEND FOR OUR CATALOGUE AND INCLUDE AN SAE TOGETHER WITH DETAILS OF PRESENT ITV REGION RECEIVED.
For a speedy dispatch, ACCESS and VISA Mail and Telephone orders may be placed for any of the products listed in our illustrated Catalogue. We are active TV/FM DXing secialists - your guarantee of honest and knowledgable advice
NEW! Band 1 Notch Filter type TDNF-1 (tuneable) £10.90
AERIAL TECHNIQUES IS UNIQUE -
OUR HIGH QUALITY CATALOGUE COSTS ONLY 75p
Prices inclusive of VAT \& Postage - delivery by return

ACCESS \& VISA
Mail and Telephone Orders welcome

11. KENT ROAD, PARKSTONE, POOLE, DORSET BH12 2EH

 Tel: 0202. 7382329th. Programmes in ch. E31 are due to start on June 1st the PM5534 test pattern carries the identification DR at the top and KBH VEST at the bottom. The E53 outlet is due to start transmitting DR-2 on October 1st.
Austria: There has been an expansion of regional TV programming and in some areas two regional services can be received.
India: Band III rather than Band I is likely to be used for future extension of the networks. The Delhi based second channel, which at present covers seventy per cent of the country, is to have more regional opt-outs. Major network linking across the country will not be complete until the Insal II series is in operation from 1990 onwards.
Satellite TV: Launch of the Scandinavian TELE-X project has been postponed until late 1989 at the earliest. With Denmark unlikely to participate it seems that only two

Above: Test pattern being used during an EBU news transmission via the ECS satellite at $7^{\circ} \mathrm{E}$. Off-air photograph from Ian Waller (Lincoln).

IRISH T.V. DEALERS

VIDEOS UHF-VHF Ferguson, Sharp, ITT, Panasonic, Nord, etc fully serviced. Top Loaders, from $£ 150$ each. Front Loaders from $£ 175$ each.
TV's UHF-VHF Most makes in stock 8,16, and multi Channel remotes. Fully serviced from $£ 75$ each, untested off the pile £30 each.
EXPORT SPECIALISTS
"Sets modified for African transmission"
T.V. TRADE SALES
E.D.I. HOUSE, KYLEMORE PARK WEST,
DUBLIN 10. TEL. 0001264139 or 263517
programmes will be carried. NRK (Norway) can now be seen via the Intelsat satellite at $1^{\circ} \mathrm{W}$: tune to 11.45 GHz , horizontal. The DTI is making available to multipoint satellite telecommunications services six uplink points: applications have been invited for twelve-year licences and services could include sound/TV entertainment.

Satellite Dishes

I've received several queries on the use of dishes for home satellite reception, in particular as to whether planning permission is required. The regulations are laid down by the Town and Country Planning General Development Order 1985 - Amendment No. 2. This permits the installation of a receiving dish not exceeding $9(0 \mathrm{~cm}$ in diameter on or about a domestic/residential/industrial property, or at chimney/eaves height providing the system is attached no higher than the highest part of the roof. If the location is designated as one of outstanding beauty however, or is a conservation area, planning permission must be sought before a dish is mounted on a building or fixed to a stable/permanent foundation. Since the main requirement is a clear view of the sky, reasonable reception should in many cases be possible with the aerial at ground level, in a discreet location such as a rear garden. The system is unlikely to be more than $4-5 \mathrm{ft}$ high and thus unseen, so my own reaction would be to go ahead and instal. The patio mount system I described in recent issues is less than 42 in . high above ground level in its wheeled rotating frame. Interesting to note that several satellite TV suppliers now offer wall; batcony and chimney mounting dish systems.

From our Correspondents . . .

Two letters in particular heartened me this month. J. Walley wrote from the Birmingham area: he's eighty years young, completely deaf and has read this magazine from issue no. 1! He recently bought a basic $9(1 \mathrm{~cm}$ TVRO satellite system from Alston-Barry (Cambridge) who pretuned the receiver and described where to tune and look. Mr. Walley is now receiving numerous satellite signals. His basic patio mount is similar to mine but he moves his dish with the aid of lawn markers and a cheap gun sight for location. Sky, Super and RAI-UNO all carry teletext, which helps with his deafness - RAI even has English news. Tim Healey, a veteran DX-TXer, has been ill with a heart condition: a recent aortic valve replacement has made him feel a new man and he's now back DXing and keeping busy in Plymouth. Our best wishes to these two active gentlemen!

VHF TV - the UK decision

As mentioned briefly last month, the government has decided against reintroducing Band I/III TV transmissions in the UK. Consideration had been given to this possibility as a means of adding extra TV services, sharing the bands with the newly established PMR and other services that now use these frequencies. The feasibility study that had been undertaken came to the conclusion that Band III couldn't accommodate a new broadcast channel while living in harmony with its mobile radio neighbours. Band I could perhaps have provided a service for the major population centres (but not all of them), but the coverage would have had to be at the expense of moving the newly arrived mobile and other services, at a high compensatory cost. Ironic perhaps is the comment that re-establishing high-power TV transmissions in Band I could have upset
our European neighbours who`ve made their r.f. management plans on the assumption that the UK has opted out of v.h.f. TV. The SpE phenomenon was given as a further reason for not returning to Band I, because of the highlevel interference problems that prevail during the summer months. Finally the Civil Aviation Authority suggested that harmonic interference could be a problem.

The 405 -line $v . h . f$. TV system officially closed down on January 6th, 1985, though several relays continued for a few days. Bands I and III are still allocated to TV broadcasting in the European broadcasting region, and are extensively used by countries in both west and east Europe. Will the newly established Band I mobile radio services be subjected to severe disruption during the summer months as a result of SpE propagation?

Airborne TV

We have previously described the activities of the Blue Eagle fight, which during the Vietnam war provided wide TV coverage from transmitters aboard high-flying aircraft. Recently (April 1988) the US magazine Popular Electronics described a series of tests that were carried out much earlier, in the mid-194()s, with a view to achieving wide TV coverage from airborne transmitters.
Staff of Westinghouse Radio designed a prototype system in July 1945. The "Stratovision" project would use aircraft equipped with f.m. radio and TV transmitters. flying at 25-30, (0)oft. Narrow beamwidth signals would be received on a particular channel and retransmitted on another channel with coverage over a vast area. Details were shown to the Glen L. Martin Aircraft Company, which by spring 1946 had equipped a World War Two surplus bomber with Band II (107.5 MHz) and ch. A21 $(515 \mathrm{MHz})$ transmitters. Initial test flights proved that successful reception was possible over an area of about 250 miles. Areas flown over during these tests included Philadelphia, Wilmington, New York, Washington, North Carolina, Baltimore, Pittsburgh and Detroit. It seemed that cight Stratovision aircraft would give coast-to-coast coverage while fourteen would cover three-quarters of the US landmass. The transmitting aerials were mounted on a 10 ft mast that hinged down from the bomb bay.

The encouraging results led to the conversion of a much larger B29 airoplane. In a 1948 test at Pittsburgh it relayed signals uplinked from Baltimore over an area that extended from south Virginia to New York state. At about this time the US airforce also experimented with airborne TV transmissions. The Stratovision project was considered to be a success, but was overtaken by progress with land-based communications technology, in the shape of a nationwide microwave network. The experience gained was however put to use in the very successful Blue Eagle service of the late 196()s.

This same magazine mentions that the first terrestrial u.h.f. TV transmitter, KC2XAK at Bridgeport, Connecticut, was tried out in December 1949. The vision carrier frequency was 530.25 MHz (approximately ch. A24). Ch. A4 programmes from WNBT-TV in New York were relayed over a distance of 45 miles via a 2 GHz link between the 85th floor of the Empire State building and a 9 ft dish mounted at 180 ft up the 250 ft transmitting mast at Success Hill. Transmitter power was 1 kW peak vision with 500W sound, the omnidirectional acrial providing a gain of 20 dB . The results were found to be equal to or better than existing v.h.f. services, and following this experiment the FCC opened up u.h.f. for TV broadcasting, with channel allocations made in 1951/2.

Video Tape Types and Characteristics

George Cole

The video tape market has come a long way since the time when all that was on offer to the consumer was standardgrade, ferric oxide tape. These days tape manufacturers offer a bewildering variety of tapes, using various materials including cobalt doped ferric oxide, chromium dioxide and pure metal particles. Furthermore there are numerous grades of tape within the ferric oxide group. Metal evaporated tape may yet appear on the domestic video tape market, and perhaps even 4 mm tape.

Ferric Oxide Tape

A high-coercivity tape is required for video signal recording. Most video tape is made from gamma ferric oxide, which has a natural coercivity of around 400 Oersteds. This isn't a high enough value for successful video recording, so the coercivity is raised by doping the oxide particles with cobalt and reducing the particle size. The particles are acicular (needle shaped) and, in VHS standard-grade tape, are around 0.4 microns in size.

Most ferric oxide tape is made up of several layers -seven-layer tape is not unkown. The first layer (see Fig. 1) is the back coating, which is made from carbon and is about 1 micron in thickness. Its job is to reduce the static build up that attracts dust and degrades performance. Next comes the tape's "backbone", the polyester base film that supports the magnetic coating. This layer is around 13 microns thick and needs to be flexible, strong and non-elastic. The magnetic layer is an emulsion around 5 microns thick. It consists of a complex mix of ingredients comprising magnetic powder, binder, colouring pigment, anti-static agents, abrasive material (for head cleaning and good tape-to-head contact) and solvents. Every manufacturer has his own secret recipe, and you won't find many ingredients listed on the tape package!

Video recording makes heavy demands on the tape. In the VHS system for example the magnetic particles must be able to record wavelengths as short as 1.3 microns. The emulsion must be highly resistant to flaking, otherwise dropouts will occur. Head-to-tape contact must be good, but at the same time sticking must be avoided. And so it goes on. The performance of video tape depends on a large number of factors, including temperature, humidity and the condition of the deck's mechanics.

Using tape specifications to compare one manufacturer's tape with another's is not an accurate way of assessing performance. For one thing all tape manufacturers use their own reference tape as a yardstick for tape standards. There's no standard reference tape, and what's more the

Table 1: UK video tape market shares

Type of tape	Market share
Standard VHS tape	87%
High-grade VHS tape	3%
VHS-C tape	1%
Standard Beta tape	8%
High-grade Beta tape	$<0.5 \%$
8mm tape	1%

Source: $3 \mathrm{M} /$ trade estimates
reference tapes are regularly upgraded. That's why you sometimes find that a new set of tapes appears to have a worse specification than the older ones they've replaced!

Tape Manufacture

Video tape manufacture is a demanding business. Most makers will tell you that production is part chemistry, part technology, part cookery - and part luck.

The various ingredients of the magnetic layer are mixed to form an emulsion which is spread on to a jumbo sized polyester base that runs along a conveyor belt system. The coated base next passes through an orientation magnet which aligns the metal particles in the same direction. This is followed by drying, after which the coating is polished to produce a smooth top surface. This smooth surface improves the tape-to-head contact and reduces the degrading effect known as modulation noise. With VHS tape the surface irregularities are limited to around 0.05 microns. The tape is finally slit into half-inch wide strips, tested and spooled into cassettes.

VHS Tape

Ferric oxide and chromium dioxide tapes are used with the VHS format. The ferric oxide tapes are available in a number of different grades.
The standard VHS grade is also sometimes called regular or normal grade tape (but never low grade!) and is by far the largest seller (see Table 1). Quality brand E180 tapes are now available for as little as $£ 2 \cdot 50$. One welcome result of this is the virtual disappearance of dodgy brands which could produce poor picture quality, clogged VCR mechanics and head damage.
The VHS tape specification (see Table 2) was set over ten years ago. Since then, tape and head performance have far outstripped the original specification. The performance of JVC's current standard-grade tape is included for comparison - but remember the point made earlier about performance comparisons.

High-grade Tape

Although today's slandard-grade tapes perform much better than older ones, various developments of the VHS system have led to a demand for higher specification tapes. VHS long-play operation increases the recording time by halving the video tracks to 24.5 microns. The system is very intolerant of tape dropouts. Depth multiplex recording is used for VHS hi-fi. This calls for a thick, even coating with improved audio response. Since the audio tracks are 40 per cent narrower than the video tracks, accurate tape tracking is essential. With the VHS HQ system the white clip level is

Fig. 1: The layers of a typical ferric oxide video tape.
raised from 160 to 200 per cent, so a better frequency response is required. As a result of these developments tape manufacturers have introduced all manner of tape grades including high grade, extra high grade, super high grade, ultra high grade, master grade, hi-fi grade, library grade and pro-grade.

Audio tapes conform to an IEC standard classification, but this does not apply to video tape. The International Tape Association (ITA) tried to set such a standard a couple of years ago but met with little success. Part of the problem is that while audio tapes are grouped according to the materials used for the coating, e.g. chrome, metal, etc., all these different video tape grades use ferric oxide. The problem is further compounded by the fact that when you test the tapes you can on some occasions find that there's no difference between a high-grade tape and its standard counterpart. Also, it's not unknown for standard-grade tape to out perform the high-grade type!
Early high-grade tapes were simply standard-grade tapes with a better than average dropout performance. Today's high-grade tapes incorporate a number of real improvements however. First, particle size is reduced to around 0.24 microns, which greatly improves the information packing density. The BET value is defined as the surface area covered by one gram of tape particles. With standardgrade VHS tape the BET value is around $30 \mathrm{~m}^{2} / \mathrm{g}$, which means that one gram of particles occupies $30 \mathrm{~m}^{2}$ of space. High-grade tape has a BET value of between $40-50 \mathrm{~m}^{2} / \mathrm{g}$. This increases the coercivity to over 700 Oersteds, greatly improving the frequency response.

Many high-grade tapes have additional coatings and new formulations. For example, to achieve improved highfrequency response JVC's new pro-grade uses barium ferrite in addition to ferric oxide. The coating process is also more tightly controlled, so that whereas with standardgrade tapes the average number of dropouts is around 15-20 per minute with some high-grade tapes the dropout rate is as low as three per minute.

Standard-grade cobalt-modified gamma ferric oxide tape, with magnification of 30,000 .

S-VHS cobalt-modified gamma ferric oxide tape, with magnification of 30,000 .

Overall, high-grade tapes have a higher f.m. output, better signal-to-noise ratio and lower modulation noise than standard-grade types (see Table 2). The cassette shells are also made to finer tolerances and the boxes are often more robust. They incorporate features such as anti-static treatment and magnetic protection.

Tape manufacturers recommend the use of high-grade tape for long-play operation, hi-fi recording, archiving and recordings that are to be edited on to another tape. But, as Table 1 shows, the general public appears to be more interested in economy than performance.

S-VHS Tape

With the S-V'HS system picture detail is greatly increased by shifting the f.m. carrier to $5 \cdot 4-7 \mathrm{MHz}$ (deviation) as opposed to $3 \cdot 8-4 \cdot 8 \mathrm{MHz}$. With the wider bandwidth that this makes possible, some of the higher frequencies have wavelengths as short as 0.8 microns. At these dimensions there's a danger of self-erasure, and to reduce this risk tape with a higher coercivity than that of high-grade tape is required.

The use of high-coercivity metal tape was proposed when JVC first began research on S-VHS. Eventually JVC settled on a special grade of ferric oxide tape. The coercivity is raised to 900 Oersteds by reducing the particle size to just 0.18 microns, enabling the tape to record the higher frequencies.

To ensure that only S-VHS tape is used for S-VHS recording, the cassettes have an identification (ID) hole on the underside. If a VHS cassette is inserted the machine's S-VHS recording mode is rendered inoperative. VHS recordings can be made on S-VHS tape, and there has been some controversy as to whether ordinary VHS machines will be able to record and erase S-VHS tapes. JVC, 3M (Scotch), TDK and others have carried out extensive tests using blank S-VHS tape in old-style piano-key VHS machines, camcorders and hi-fi machines, using both the

SHG cobalt-modified gamma ferric oxide tape, with magnification of 30,000 .

Tape using hexagonal barium ferrite particles for vertical recording. Magnification 100,000.

Characteristic	Basic specification	Current JVC standard grade	JVC Pro-grade tape	Chromium dioxide tape
F.M. output	-2dB	0.5 dB	3.5 dB	4 dB
Chroma output	-2dB	0.5 dB	2 dB	-
Video s/n ratio	-2dB	1.1 dB	$3 \cdot 2 \mathrm{~dB}$	0 dB
Chroma s/n ratio	-2dB	1.7 dB	3.9 dB	OdB
Audio frequency response	$\pm 2 \mathrm{~dB}$	0.5 dB	2 dB	2 dB
Coercivity	600	680	approx. 1,450	600
	Oersteds	Oersteds	Oersteds	Oersteds

The remanence for chromium dioxide tape is quoted as 1,450 Gauss. There is no specification for the remanence of ferric oxide tape but the figure for most standard-grade tape is between 1,200 and 1,400 Gauss.
standard- and long-play modes where applicable. No erasure problems were encountered. 3 M has gone as far as suggesting that S-VHS tape improves VHS picture quality subjectively. As S-VHS tape will cost between three and four times standard-grade tape however it's unlikely that many VHS users will be tempted into using it for day-today recordings.

Chromium Dioxide Tape

Chromium dioxide was first used in audio tapes. It initially found its way into video tape as an abrasive additive in the tape emulsion. BASF however markets a range of "chromdioxid" tapes in a variety of grades. To start with there was some controversy as to whether their use would accelerate head wear, but BASF claims that its chromium tapes actually increase head life. A tape life of over 500 passes (most ferric oxide tapes have a life of $100-300$ passes) is quoted. Table 2 includes the specifications of a typical chromium dioxide tape, but for the reasons previously given comparisons with ferric oxide tapes are again difficult.

Metal Tape

Ferric oxide tape development has probably reached the end of the road with S-VHS. To record even shorter wavelengths than with S-VHS requires the use of tape with a higher coercivity, and that means metal tape.

Metal tape is widely used in professional formats such as the M11 and Betacam SP camcorder ones and for the D1 and D2 digital video recording systems. Domestic systems that use metal tape include the 8 mm and Extended Definition (ED) Beta formats. It's also used with the Digital Audio Tape (DAT) system. Several VHS manufacturers, notably Matsushita (Panasonic) and Hitachi, have developed digital VHS recorders which make use of the high-density feature of metal tape, but such machines are unlikely to appear on the market for some time.

Metal tape has a far higher coercivity (typically 1,500

Fig. 2: Sputtered sendust heads for use with metal tape.

Oersteds) than ferric oxide tape and a much greater remanence value (some 2,500 Gauss), which means a far higher signal-to-noise ratio (around 10 dB higher). The tape can record wavelengths as short as 0.3 microns. For a given area, metal tape offers four times as much storage capacity as ferric oxide tape.

There are two types of metal tape, metal particle (MP) and metal evaporated (ME). In both cases the metal consists of an alloy of iron, nickel and cobalt.

MP tape is made in much the same way as ferric oxide tape, the base film being coated with the metal particles. The resulting tape has an overall thickness of around 13 microns - a 1 micron back coating, 9 micron base film and 3 micron metal coating. For increased playing time MP tape that's just 10 microns thick is also available.

One of the problems with MP tape is that the high coercivity and relative thickness of the metal coating mean that a high recording current is required. As a result there's a danger of the ferrite video heads saturating. To overcome this the ferrite heads are sputtered with an alloy of iron, aluminium and silicon called sendust (see Fig. 2). This greatly improves the recording characteristics.

ME tape is made by passing the base film through a vacuum chamber and heating the metal alloy with an electron beam until it boils. The metal vapour condenses on to the film, forming a very thin layer just 0.15 microns thick. Coercivity is much the same as with MP tape, but the thinness of ME tape gives much longer playing times. ME tape is expensive to produce however: all current formats that require metal tape use the MP type.

Video-8 Tape

The 8 mm format has a low writing speed (just $3 \cdot 12 \mathrm{~m} / \mathrm{sec}$) and uses an audio-sized cassette. The system would not be possible without the use of high-density, high-coercivity metal tape. With the 8 mm system wavelengths around 0.6 microns are recorded. Tapes that provide playing times of 15,30 and 60 minutes are 13 microns thick while 90 minute tape is 10 microns thick. Technical problems have so far thwarted the introduction of 120 minute tape in the PAL markets.

The recently announced high-band 8 mm format will use a special type of tape, but no details of this have been announced so far.

Developments

The ED Beta format has a carrier deviation of 6.8 9.3 MHz and uses half-inch MP tape. Tape thickness is 19 microns - a 1 micron back coat, 15 micron base film and a 3 micron magnetic layer. Coercivity is 1,450 Oersteds and
remanence 2,500 Gauss. ED Beta tape cannot be used with standard Beta recorders.

Samsung has developed a video recording format that uses 4 mm DAT tape. This is an MP type with similar remanence, coercivity and tape thickness to 8 mm MP tape The DAT cassette is about half the size of a conventional audio cassette. It offers great portability and a recording time of 80 minutes, nearly three times that of a VHS-C cassette. The system is unlikely to be launched without widespread industry support.

The next stage of development is likely to be a move away from tape with longitudinally orientated particles to
vertical recording with the particles standing upright. This would greatly increase the recording density. JVC's work on vertical recording has resulted in the development of hexagonal barium ferrite particles - the accompanying photo gives an idea of the kind of particle shape this work is producing.

Acknowledgements

I would like to thank BASF, JVC, Maxell, Scotch, Sony and TDK for their help in providing information that has been used in this article.

Teletopics

SKY TELEVISION

Rupert Murdoch's News International has announced a major extension of its subsidiary Sky Television ple's satellite broadcasting interests. The company plans to start a four-channel satellite TV broadcasting service via the Astra satellite, which is due to be launched this November. A ten-year lease has been signed for three of Astra's transponders, which will be used for a general entertainment and arts channel, a news channel and a feature film channel. An option hás been taken on a fourth transponder for a sports channel which would be a joint venture with a consortium of EBU members. The services will be uplinked by British Telecom and will be regulated by the Cable Authority. Transmissions are due to begin next February, following tests in December. The services will be free, supported by advertising, so there will be no question of scrambling. A 24 -hour radio service will also be offered, with stereo sound quality, presenting non-stop music from compact discs. Sky Television will be operated from a new facilities centre in the UK: it will include news studios, transmission suites, post-production facilities and offices. The services will be known as Sky Channel, Sky News, Sky Movies and Sky Radio.
To coincide with the start of the new services Amstrad will be entering the satellite TV market with an Amstrad Fidelity branded 60 cm dish and receiver package aimed at the mass market, with a $£ 199$ VAT inclusive price tag. This low price is helped by the fact that the transmissions will be to the PAL standard, with no scrambling or access control. The company is tooling up for production of up to 100,000 units a month, with deliveries scheduled to begin in the first quarter of 1989. Assembly is planned in the UK though certain key components will be sourced in the Far East. It's understood that an agreement has been reached with GEC-Marconi for the supply of one million LNBs. The basic model will be known as the SRXI(0), but there will be a series of models with extra features including a $£ 259$ unit with remote control. Distribution will be via the company's traditional High Street and independent outlets. Aerial contractors are expected to charge $£ 40$ or so for an installation.

SES, the Luxembourg company that owns the Astra satellite, has decided to order a second satellite which will be launched in 1990. This will provide a back-up for Astra and will increase the total channel capacity to 32 .

Maxwell Communications, W.H. Smith and British Telecom have jointly announced their intention to start a satellite TV service with probably six channels. Either the

Astra satellite or a second-generation, medium-power Eutelsat satellite will be used and the transmission standard will be D-MAC. The companies control or are major shareholders in the Premiere film channel, the Home Video Channel, Screensport, Lifestyle, MTV and Children's Channel. Direct-to-home transmissions are expected to begin early next year.

BROADCASTING CHANGES SUGGESTED

Several suggestions for major changes to the present UK broadcasting arrangements have been made recently. The Home Office is studying the idea of making BBC-2 and Ch. 4 available via satellite only in order to increase the number of national and regional channels, the aim being to give the viewer a wider choice and advertisers a better deal through increased competition between broadcasters. The government has stressed that the scheme is still at an exploratory stage, and that terrestrial BBC-2 and Ch. 4 transmissions would continue for a number of years. One suggestion would be to use the two spare transponders on the BSB satellite.
In a recent speech the Home Secretary Douglas Hurd called into question the traditional licence fee. He is reported to have commented that "as the viewer has more and more channels to choose from it will become less and less defensible that he should have to pay a compulsory licence fee to the BBC regardless of the extent to which he watches its programmes". It seems that the alternative would be a subscription scheme. The Home Secretary also questioned whether the role of the IBA in setting detailed schedules would in future be necessary, and put forward the suggestion that transmission and the provision of programmes should be separated.

MICROWAVE TV

GEC-Marconi has been advocating the use of microwave TV services in the UK. The firm estimates that $80-90$ per cent of the population could be provided with up to 30 channels at a relatively modest cost - transmitters could cost as little as $£ 30,000$ and receivers less than $£ 100$. The $2 \cdot 5 \mathrm{GHz}$ band would be used for such MMVD (multichannel microwave video distribution) services, with lowpower transmitters each covering an area with a radius of 30 km . A demonstration of the technique was given recently at the Chelmsford headquarters of Marconi Communications Systems. The firm points out that distribution of TV services via a microwave network would be a much cheaper solution than either cable or satellite systems.

TELEVOX

A new teletext-based service for advertising holidays, houses, jobs etc. has been introduced by McCallum Televox. Subscribers phone the Televox Centre at Cam-
bridge, where voice recognition equipment is used for identification. Pages of teletext can then be requested there are at present 400 pages of advertising and the target is 4,500 pages by the end of the first year. The pages are transmitted by the IBA, using part of the Oracle space reserved for subscription services. There's an average delay of four seconds between page selection and the page appearing on the screen. A legal dispute between Televox and Oracle, which is at present being forced to transmit the pages, could bring the service to an end.

HIGH STREET CHANGES

Thorn EMI subsidiary MultiBroadcast is starting a retail chain which will trade under the name Value Vision. One of its main activities will be the sale of reconditioned ex-rental equipment. The first two shops are in Nottingham and Wolverhampton. Ten or so more outlets will be opened during the coming year, in the midlands and south. Servicing will be looked after by MultiBroadcast's service organisation, which is being expanded to take on contract work.

Woolworth's electrical subsidiary Comet has bought from Granada fifteen Connect outlets in Northern Ireland.

JOB LOSSES IN MANUFACTURING

Both Philips and Thomson have announced substantial staff cutbacks. Philips will be shedding 900 jobs at its Eindhoven consumer electronics division, the largest single reduction to be announced by the company in fifty years. Most of the cuts will be made next year. The move is part of an overall plan to cut 20,000 jobs and close at least 70 factories world-wide. Philips' aim is drastic cuts in production costs and more rapid product development from initial idea to market launch. The company has already shed over 4,000 jobs this year, mainly in the consumer electronics division. More redundancies could follow.

Thomson's newly formed Thomson Consumer Electronics subsidiary is expected to announce shortly plans for large-scale job reductions world-wide. The division has 40 plants in 17 countries and a workforce of over 50,000 , including the GE-RCA operation in America.

1988 HAM EXAM

A Radio Amateurs' Examination course is to be held at Paddington College commencing at 6.30 p.m. on September 13th. Enrolments take place during the week commencing September 5 th, between 1-4p.m. in the afternoon and $6-8 \mathrm{p} . \mathrm{m}$. in the evening, on the third floor of the college at Paddington Green, London W2 1NB. Because of ILEA economies this is likely to be the only ILEA sponsored RAE course to be held in the ILEA area during the academic year 1988-9. The Paddington course covers the City and Guilds RAE exam syllabus and also makes use of the College's facilities to enable students to carry out practical experiments in the electronic theory covered, the aim being to provide a grounding in electronics as well as an Amateur Radio licence. The course tutors are David Peace (G4KKM) and David Hunt (G6MFR). Further information can be obtained from the college on 01-402 6221 or David Peace on 01-892 7585.

END OF RTS

This year will be the first since the early fifties that does not see the publication of an annual volume of Radio and Television Servicing. In the early days the books were published by Newnes; for the last decade or so they have appeared under the Macdonald imprint. At one time your
editor used to compile the TV section. There's good news however for those who still want a book of circuits etc. U-View TV Tubes of 29 Warmsworth Road, Doncaster, South Yorkshire DN4 0RP, which has been acting as a main distributor of these books, will this year be publishing its own Television Circuit Book - a quality hard-bound book in A4 size. No clock radios or record players, but more TV circuits. A Video Circuit Book is to follow. We understand that both books should be available by the end of the summer.

SPARES NOTES

Following the recent changes at Fidelity Radio, reported in this column last month, SEME Ltd. point out that these will not affect the spares situation. SEME will continue to fulfill Fidelity's obligations for the supply of spare parts, in particular the policy of maintaining supplies for major products for five years. The company will also continue to provide technical advice on spare parts. SEME Ltd. is located at Unit 2E, Saxby Road Industrial Estate, Melton Mowbray, Leicester LE 13 1BS, telephone (6664 65392 or 66881 .

HRS Electronics Ltd. has moved to Garretts Green Lane, Garretts Green, Birmingham B33 0UE. The new premises give the firm a five-fold increase in space, to $109,000 \mathrm{sq}$. ft. The new telephone numbers are: sales 021 789 7575; accounts 021789 7676; general 0217897171. Note that this firm operates a trade only policy.

NEW CATALOGUE

The summer 1988 edition of the Cirkit constructors' catalogue is now available, featuring many new products in its 184 pages. Items featured for the first time amongst the 3,000 lines include a low-cost 10 MHz oscilloscope, the Easiwire fast circuit prototyping system, an automatic nicad charger-cycler and two new hand-held scanning receivers. There are also additions to the components range, including scart and mains connectors, r.f.i. filters, ABS and 19 in . rack cases and cyno adhesive. The catalogue costs $£ 1 \cdot 30$ and is available from Cirkit Distribution Ltd., Park Lane, Broxbourne, Herts. EN 10 7NQ, telephone 0992444111 (sales desk) or 0992441306 (other departments).

IN BRIEF

Sony has launched in Japan a video version of its Walkman. The combined display unit and tape deck is housed in a casing the size of a fat paperback and sells for around $£ 550$. . Agreement has been reached between European consumer electronics manufacturers and the EBU on the specification for the Eurocrypt satellite TV scrambling and conditional access system... Under proposals that have been added to the Copyright, Designs and Patent's Bill, users of VCRs will have to wipe out their recordings within 28 days. The aim is to stop viewers building up home video libraries. It's not certain how such a regulation could be enforced . . . The IBA's engineering division has completed the installation of replacement high-power u.h.f. transmitting equipment at Mendip. Somerset. It's the first station to be re-equipped in a major modernisation programme. All the original u.h.f. colour transmitters will be replaced over the next ten years. The new transmitters at Mendip use pulsed klystrons for high electrical efficiency and low maintenance, and will be capable of providing high-quality NICAM digital stereo sound. Stereo sound will be available in London and parts of the Yorkshire region from autumn 1989: the full ITV and Ch. 4 service will begin in 1990 .

TV Fault Finding

Amstrad CTV2200

There have been various comments on this set in recent issues. I've found that the main reason why it self-destructs at switch on or soon after, blowing Q501 (2SC3156), Q802 (2SD139B) and sometimes Q503 (2SA916), is dry-joints on the line driver transformer T801. They can also be responsible for reduced width at one side, sometimes intermittently. Also check the h.t. smoothing capacitor $\mathrm{C} 520(100 \mu \mathrm{~F})$ which works very close to its tolerance of 160 V . If you don't have a 2 SC 3156 to hand a BU208A will work quite happily as a replacement.
D.D.

Ferguson TX9 Chassis

The customer complained that faces were green, which is not acceptable even here in Ireland. On checking the grey scale everything seemed to be normal, so it was a case of straight into the colour decoder to look for the cause of the phase reversal. The chip (IC52) was changed first, with no luck. Balance control RV67 which has been known to cause this trouble, also the chroma delay line and the components in the ident circuit, were then tried. Still no luck. The voltages and waveforms all looked fine. With despair setting in I rang friend Snow, who is never stuck with Ferguson- sets. "Have you checked the degaussing circuit?" he asked, "if not try it now." I'd spent a whole day trying to find the fault in the decoder, but three seconds with a degaussing coil cleared the green faces. The culprit was the posistor.
W.H.C.

Some Quickies

Waltham W350: This set had reduced width when warm and sometimes failed to start when cold. Without being in any way intermittent, the line oscillator transformer could be removed by hand without the use of a soldering iron. Philips K30 chassis: A noiseless raster was cured by changing the i.f. module, but this turned out to be a red herring. R1412 (12Ω) which smooths the 12.5 V supply for the tuner and the i.f. module was intermittently opencircuit. When disturbed by changing the i.f. module it was o.k. for a while.

NordMende 4230: This 16 in . colour set uses the same chassis as the Ferguson Model 3878. When the mains supply was applied via our variac we found that it wouldn't operate with an input of more than 150 V . It took us a considerable time to discover that CA13 $(0.47 \mu \mathrm{~F})$ which couples the drive to the line flyback thyristor was slightly leaky.
H.MacM.

GEC C2000

This and other Tatung models that use the TDA4503 signal processing chip seem to give a crackling noise on sound during video search. The only cure found so far is to alter the value of R106 to give $3 \cdot 7-4 \cdot 2 \mathrm{~V}$ at pin 28 of 1101 when the AV position is selected. This usually calls for a resistor value in the range $150 \mathrm{k} \Omega$ to $180 \mathrm{k} \Omega$.
P.B.

Grundig CUC2401 Chassis

If you find that the sound mutes on playback of a prerecorded tape, check which type of ABL module is fitted. If it's type 29504-107-31, change it for a 29504-(0)7-28

Reports from Dave Dulson, W.H. Clarke, Hugh MacMullen, Philip Blundell, Eng. Tech., Roger Burchett, Nick Beer, Jim Rainey and J. Olijnyk

or disconnect the link from the TDA8185 chip to pin 9 of the ABL module. Removing the link disconnects the mute, so the self-seek tuning won't stop when a station is found etc.
P.B.

Finlux 9000 Series

You sometimes get failure to start from cold with these sets, especially in cold weather. We've come across two causes of this trouble. Either Ru17 $(270 \mathrm{k} \Omega)$ has been intermittent or Cu6 has dried up.
P.B.

Grundig CUC2600 Chassis

I've had this fault on two occasions now. From cold the set gives either a blank raster or snow on the screen, with no sound. The slightest movement of the chassis will cure the fault for days. On both occasions tuner replacement has provided a permanent cure.
P.B.

Amstrad CTV1400

These sets are very prone to developing dry-joints on one or all of the line driver transformer's pins (T701). If the owner doesn't bother to do anything about the resultant intermittent faults (they very seldom do) the first thing the service engineer knows about it is when he's presented with a set with a dead line output transistor (Q705). The original is a 2 SD904 but Amstrad now supply a 2 SD822. Incidentally, take circuit details on the panel and in the service manual with a pinch of salt. The LA7800 sync/timebase generator chip IC701 has pin 8 marked correctly on the underside of the panel but pin 16 is marked pin 1 . In the manual the voltage at pin 12 of this chip is shown as 1.2 V instead of $12 \cdot 2 \mathrm{~V}$.

Q705's collector connection to the print is via a stud that's soldered in. This is not very reliable. An extra lead from the connecting nut through one of the convenient holes in the board to the print land is a good idea.

In my experience these sets benefit from having the board cleaned up and coated with circuit varnish. R.B.

Rank T20/22 etc Series

This one should appeal to those who, like me, delight in minimal cost repairs. The ultrasonic remote control handset used with these sets has a phosphor-bronze leaf spring that not only returns the switch to the off position but gives an audible click when doing so. After a number of years the spring fractures. There are several ways to restore operation without the click, but if you wish to retain this feature

Fig. 1: Making a replacement leaf spring for the ros3 control handset used with the Rank T20/22 series chassis.
you either need a new spring (if you can obtain one) or you must improvise. If you don't have phosphor-bronze of the right flexibility, here's a free source of substitute material: cut up a drinks can! These are made of spun aluminium which is already work hardened. Cut out the required' shape (see Fig. 1) and hammer it over a suitable rod or tube to get the spring to rest in the off position. The spring doesn't have any electrical function - this is taken care of by separate fingers. Only time will tell how long this repair lasts, but it takes just a few minutes to do and must be a cost-effective solution.
R.B.

Ferguson TX90 Chassis

The fuseholder for FS102, the secondary fuse on top of the mains transformer, tends to overheat and cause intermittent operation. It's of the type with a Paxolin base, and you'll find this scorched. As this is the fuse that blows when the mains rectifier diodes short - often intermittently the problem could be due to regular fuse changing before the fault is tackled properly, i.e. change all four diodes to type BYD33G. The fuse has been uprated from T1A to Tl.6A.
R.B.

Decca/Tatung 145 Series Chassis

For chopper transistor failure in this chassis check R808 ($100 \mathrm{k} \Omega$) and R810 ($82 \mathrm{k} \Omega$).
R.B.

Ferguson TX9 Chassis (PC1001 Panel)

If the BZX79C4V7 zener diode W54 goes open-circuit the result is flyback lines at the bottom of the screen, increasing in size over the bottom third. The lines are always green perhaps someone can explain why? W54 is the blanking input clamp diode at pin 2 of the $\mu \mathrm{PC} 1365 \mathrm{C}$ colour decoder chip IC52.
R.B.

Thorn 3500 Chassis

One of these elderly sets began to eat chopper transistors, always when no one was watching it. The only fault I could find in the power supply was a suspect joint at one end of the 30 V line fuseholder. Flexing the board quite hard in a darkened room enabled me to see a spark. I'd previously seen the picture fluttering, and tapping the panel had caused line collapse, but the joints all looked reasonable. Going over all possible bad joints in the area seems to have put matters right.
R.B.

Salora 1F3

In the June issue John L. Howard mentioned condensation as a cause of field slip from cold in these sets. What often happens is that condensation on the tripler causes tracking which in turn upsets the field sync.
N.B.

Bang and Olufsen 4402 (35XX Series)

The width varied intermittently, accompanied by a nasty crack of e.h.t. followed by line collapse. A dirty connection on the scan coil plug, at the coil end, was responsible. It had started to arc and burn the plastic plug casing. N.B.

Panasonic TC2061 (U5 Chassis)

This set was reluctant to change channels. When it did there was bad picture distortion (lines) for five-ten seconds, and when tuning the set wouldn't lock to the optimum
point. The fault was not affected by temperature changes or time. A check on IC171 (SAB3035) and the connections to the associated crystal X171 seemed appropriate steps. We've had several cases where poor joints on X171 have caused misoperation of IC171. In this case replacing the chip restored correct operation.
N.B.

Panasonic TC2205 (U2 Chassis)

Stuck on standby is a fairly common fault with these sets. I dived for the chopper power supply rectifier diodes D852/3 etc., the usual cause, but they were all intact. After much time spent checking around I decided to replace the line driver transistor Q501. This restored a bit of life but the trouble was by no means cured. In the end I came to the conclusion that the line output transformer was probably faulty, something that's virtually unknown in Panasonic sets. Fitting a replacement cured the trouble.
N.B.

Panasonic TC381G

After thirty seconds the picture would flare up bright green and the set would then Irip. The cause of the trouble was traced to a grid-cathode short in the 320BTB22 tube. This is an expensive item to replace, so I played around with my newly acquired B and K 467 tube restorer and cleared out the short, thereby saving an otherwise first class set. N.B.

More Quickies

Sanyo CTP7130/1/2: If the line output transistor fails at switch on or some time later check for a dry-joint on the heatsink support tag. Resoldering provides a cure.
Thorn 1615 chassis: For reduced field scan check whether the HT2 rectifer diode W 34 , type BY210-600, is opencircuit.
Grundig CUC70 chassis (Model C7400): We've had a couple of faults recently with these sets. Field collapse was due to D 353 being short-circuit - the $26 \mathrm{~V}+$ D supply was missing. A white raster with high first anode voltage occurs when R723 goes high-resistance or open-circuit.
Grundig CUC41 chassis (Model C2112): For intermittent mains fuse failure replace D657 (MZD160).
J.R.

Triumph CTV8520

The fault report said "crackles" and it turned out that the tripler was duff. I hadn't got one so, after moving a few components to the copper side of the board, a universal tripler was fitted. These sets have an unusual focus arrangement, built into the tripler, so I left the focus lead off. When I switched on there was e.h.t., closely followed by an out-of-focus picture. So far so good! Numerous focus units were then tried. The one that eventually worked was for the Thorn 9000 chassis. I fixed it on to the plastic chassis and gave the set a long soak test. It's since gone back to the customer and there have been no complaints to date. J.O.

Hitachi CPT2064

This set came in dead, with fuse F901 blown. We found that IC901 (STR440) and Q781 (2SD898B) were both short-circuit. Everything seemed to be all right when these items were replaced but the set was back with us next day, the complaint this time being that the set couldn't be operated by remote control. The handset was working so we replaced the M58485P chip IC3003. This restored normal operation.
J.O.

The Importance of VCR Back Tension

Nick Beer

Back tension in a VCR is the reverse force encountered by the tape when threaded up. My reason for writing this short article on the subject is to help engineers who may be nagged by odd intermittent deck faults in playback/record or encounter machines with a tendency to premature head wear. The importance of correct back tension seems to be either unknown or ignored. It's amazing how many workshops that have a fairly large throughput of VCRs don't possess any method of back tension measurement.
Back tension is provided by braking (the soft brake band) on the supply reel and the back-tension lever, see Fig. 1. Usually one or other of these can be adjusted to obtain correct back tension.
Without back tension there would be no control over the tape as it passes the entry guide to go round the head drum, i.e. the tape would be slack, not taught as it should be. The tape would therefore loop into the mechanism and the picture would be severely impaired - in fact the machine would be unusable.

Incorrect Back Tension

Very low back tension is not a common problem except in the Mitsubishi Model HS303 where the back-tension lever has a tendency to stick in its rest position, usually giving the impression that one of the heads has failed (back tension is still partially present due to the effect of the soft brake).

Slightly low back tension usually means that the tape snatches or loops as it passes the back-tension lever, particularly in the forward search mode and just after completion of threading.

Excessive back tension is by far the most common condition. Unfortunately it often goes unnoticed because the machine has come in for some other reason, for example a worn head, though excessive back tension is very often the underlying cause of the trouble. The reason for excessive head wear is that the back tension opposes the take-up torque. It therefore directly affects the pressure exerted by the tape on the head drum, by determining how tightly the tape is wrapped round the drum. Thus constant operation with too much back tension will lead to premature head failure.
Some Panasonic machines provide good examples of this

Fig. 1: Typical VHS VCR deck layout, showing the main mechanical components and the point at which to check the back tension when using a Tentelometer. A shows correct back tension, B low back tension and C very low back tension (the tape would unravel round the drum). The usual problem is excessive back tension.
sort of thing. When head wear is mentioned the NV730 springs to mind. This is a two-speed machine with super still, so the heads are pricey - about $£ 75$ retail plus VAT for a new drum, though MCES now do excellent rebuilds. A high proportion of these machines have had to have new heads after eighteen months to two years' use. Some are coming in for head replacement yet again. In most cases a check on the back tension would have showed the basic cause. I'm not saying that incorrect back tension is in every case the cause, but the machines I've adjusted haven't been back.

In older Panasonic VCRs back tension is generally $25-30 \mathrm{~g}$, but with most of the NV730s I've had in it has been between 50 g and 60 g ! Only the other day one came in with duff heads. The customer said he knew it was the heads because he had had the same trouble 12-18 months previously. Someone else had fitted a new drum and when I measured the back tension I found that it was 56 g .
Staying with the Panasonic range, I've had head failure with a number of NV-G21s and NV-G25s - under guarantee of course. In all but two cases the back tension was over 45 g . With these machines it should be $20-25 \mathrm{~g}$!

I must apologise to Panasonic for keeping on about their machines, but they do provide good, well-known examples of the problem - other manufacturers are guilty of inaccurate setting up at the factory.

Measuring Back Tension

Having made the case for checking the back tension, how do you measure it? We use the Panasonic Tentelometer (see Fig. 2). It's a hand-held meter with three probes through which the tape runs, as shown in the accompanying diagrams. It comes with a calibration weight and instructions and is a superb device for the purpose. Place the three probes around the tape, as shown, at a point between the erase head and the entry guide. Take measurements with an E120 cassette, approximately half way through, ensuring that the meter's probes are kept vertical with respect to the tape. The device works by calculating the tension as the amount of force the tape applies to the middle probe and this probe's movement with respect to the other two probes.

There are cassette type meters like the type you use for fast forward/rewind and take-up torque measurement. An example that's as good as any is available from Willow Vale under part no. 20-998A - it's a Thorn unit. Use is by playing the tape as usual and reading off the scale.

Adjustment

Back tension adjustment is carried out by one or other of the following methods - the service manual will tell you what to do:
(1) Adjustment of the supply reel soft brake tension.
(2) Adjustment of the landing position of the back-tension lever, by increasing or decreasing the actuating spring pressure for correct tension.
(3) As (2) but using a jig with marked graduations and ensuring that the lever falls within a specified area - there is no need for a tension measuring device in this case, which applies for example with some Sanyo models.

Fig. 2: The Panasonic Tentelometer and its use.

I hope I've said enough to stress the importance of back tension, and that you'll accordingly check this point. The price of a meter or a cassette meter will soon be recouped, especially if you care for a number of rental machines.

The Blaze

Les Lawry-Johns

A red Consul drew up outside. Its driver came in to collect his set which, on investigation, had turned out to be not worth repairing. He carried the set out, put it in the car, closed the boot and got in behind the driving wheel. His wife and two children were with him. I heard him trying to start the car, but it didn't want to know. Next thing I knew they were all coming into the shop. "Call the fire brigade, my car's on fire!"

So I dialled 999 . When I got through to the fire people I told them there was a car on fire outside my shop and they promised to be there in a moment. As I turned from the the phone I saw Phil, who comes in on Saturdays, struggling with the shop fire extinguisher. I took it from him, whipped out the wire and went out to the car. Flames were coming from under the bonnet. So I bashed the top of the extinguisher and directed the spout up near a front wheel. The extinguisher gushed out a white cloud, and at that moment the car's starter started up. After a few more moments the white cloud stopped gushing and the flames were out - there was still a lot of somke, but the fire was dying down. H.B. shouted at me to get away from the car she was leaning out of an upstairs window and thought it was about to blow up. It wasn't.

Just then the fire brigade arrived, along with a police car. The firemen lifted the car's bonnet and looked at the mess inside. It was a mess. I recognised the policemen as he got out of his car. It was Bill Bevan, whose wife is expecting. He took the car driver's name and address, and the number of the car. He suggested that when I got the bill for refuelling the extinguisher I should send it to the car's owner who would present it to his insurance company. When I got the estimate it was for eighty pounds plus VAT. I wrote to the address Bill gave me, but haven't had a reply. Oh well! And what did the local rag say next week? "Fire brigade puts out car fire." Thanks a million!

The Fidelity ZX2000 Chassis

I've serviced hundreds of Fidelity TV sets. In the earlier $\mathrm{ZX} 2(0) 0$ chassis failure of the line output transformer is the usual cause of R901 in the supply to the line output stage being burnt out. Normally you replace the transformer with the later type from the ZX 3000 chassis, fitting the adaptor base, remove the focus and first anode controls as these are built into the new transformer, replace the resistor and
everything works fine.
The last one I did this to came back a few days later. This time I found that the chopper transistor and the chopper circuit efficiency diode D24 (RGP15J) had failed. I must confess that the diagnosis and repair were not as straightforward as this account suggests - my muddled head is going to get me into some trouble soon.

How's This for Service?

Phil dropped in during the week to see if I had an SN76532N for an ITT VC300 monochrome portable he was repairing. I looked here, there and everywhere but couldn't find one. He left and enquired around the town but didn't have any luck. Someone told him that Gosling Electronics would have one, but they are in south London, some twenty miles away.

Not to be deterred, Phil jumped into his car and sped off there - after checking by phone to ensure that they had one. He found the shop, but the chip was in the outside engineer's van. Gosling drew a diagram to show where his calls were and Phil once more set off on the chase. First here, then there and eventually, would you believe it, Phil caught up with him. The engineer had the chip and let Phil have it (too cheaply I thought). When Phil got back and fitted the SN76532N sync was restored. You think you go to a lot of trouble to please your customers!

Two Old Dears

These old dears brought their white Ferguson 3848 (1690) chassis) along in a black dustbin bag. As I got it out they told me there was no sound or vision. While they nattered away I whiped the back off, releasing the aerial etc. panel for easier access. When I switched the set on there was slight sound and the tube's heater was dim. On removing the e.h.t. cap the set showed more life.

I switched the set off and clipped the e.h.t. lead. The right sort of e.h.t. diode wasn't in stock - the only one I could find was the little white Thorn 8000 chassis type. I screwed this on to the line output transformer's screen, then connected the line output transformer to it - after removing the new unit's stud and carefully insulating the connection. When the e.h.t. cap was connected to the tube the set sprang to life, with a good picture and full sound. I know I should have replaced the complete overwinding, but it wasn't necessary. Meanwhile the ladies were still nattering away as I replaced the cabinet etc. I heard one of them say "makes you wonder what it's all for".
"Don't you know?" I asked.
"No I don't" one of them replied.
So I explained to them what life is all about.
"When you're young you get a partner, then a child whom you bring up as best you can. When it has repeated the process it's time for you to go to make room for the newcomer. That's all there is to it, whether you like it or not. No point in belly aching about it."

They looked at me as though I was mad.
"I don't think much of that view of life - when will the set be ready?"
"It's ready right now and the charge is ten quid."
They paid up and departed, still thinking they were important, as we tend to do. When will we learn? From the red salmon for example, which dies after spawning. But why do some spirits survive - like the soldiers under the local fort. They keep on appearing, though their boss General Gordon never does.

Letters

SELLING PARTS TO THE PUBLIC

How interesting to read the letter (Sharp Spares, June) from a spares wholesaler on selling parts to the general public. Our firm is situated near a large electronics design and development facility, consequently we know what we speak about. Judging by some of the clear-ups we've had to perform, most qualified electronics engineers are incapable of carrying out simple TV and video repairs. I'm a qualified electronics engineer myself, but I chose to leave the industrial side because I found consumer electronics more challenging. From my experience in industry, I can say that many of my contemporaries there readily recognise that their skills are different from those required in the servicing profession. Not superior skills, but different ones.

More importantly, the wholesaler has not considered the practicalities of dealing with a customer of this type. He comes into service reception and says he wants say car audio spares. Has he got the part numbers? No. Has he got the manual? No. Call an engineer to discuss his requirements and add the cost of his time to that of the receptionist. Wade through the spares list and try to identify the spares by name alone. Remember that if you order the wrong ones the wholesaler won't give you a refund. Total the order. Find it incurs a small-order charge as well as a hefty post and packing charge.

Phone customer (more receptionist time) to tell him that the cost of processing his order on time and a 30 per cent mark up is more than $£ 30$ and see what he says. Charge him trade price for parts plus 30 per cent. Big deal, less than $£ 5$ profit which won't even cover the surcharge and postage, let alone staff time. What a cheek this wholesaler has! We're in business to earn a living as service engineers, not to act as wholesalers' middle men. If he wants this sort of trade he's welcome to it. Just a minute, the qualified electronics engineer has just come in again. He says one of the parts we supplied doesn't fit . .
Jon D. Woodward, Proprietor, Technovision, Wookey, Wells, Somerset.

THE FULLY QUALIFIED ENGINEER PROBLEM

I have often come across letters complaining about the much-maligned retailer. The one from Willow Vale (Sharp Spares, June) is no exception. I'm not one of those Stevenage dealers, but if the "fully qualified engineer" had called at my shop he may have found me as equally unhelpful with regard to the sale of spare parts. You see, the problem of selling spares to an unknown visitor is fraught with problems. First I have to assess the reliability, ability, knowledge and common sense of the individual. We harassed, self-employed service engineers are at the sharp (no pun intended) end of life in general. We are squeezed between the massive general public, whom we try to please and who in turn patronise us, and its backing from such entities as the local consumer services, television and radio consumer programmes and various other organisations set up to help Joe Public, and on the other hand the suppliers of stock, parts and equipment, some of whom are helpful and some decidedly unhelpful, also the various government organisations that have been set up to remove our profits and the sometimes arbitrary controls, regulations etc. they see fit to impose. It amazes me how many
truly independent shops remain in business, whether they deal with electronics or other goods.
Back to that stranger who wants us to order spares for him. Does he know what he's talking about? I'm not certain that I could myself name each and every item, component, assembly etc. in every piece of equipment that comes across the counter of my shop! I'm not so sure that the manufacturers of the equipment could do so either. The same item is often given a different name by different manufacturers, hence the plethora of computerised part numbers. If the wrong part is ordered I have to repack and return it.

Next, is the customer going to fit the part correctly? If he doesn't and the item is damaged the customer is likely to bring it back and say that it was faulty, demanding a replacement or his money back. This can be a particularly difficult problem as in many cases the item concerned may well have been faulty, a fact that's not always obvious on physical inspection, for example a defective i.c. Then what if the customer's diagnosis was wrong, something that happens to the best of us at times? He may well find that he doesn't need the part, bring it back and demand a refund especially if it's an obscure item that one is never likely to need to use, and is now of suspect quality! Finally, and possibly with far-reaching consequences, what would my position be if in the process of fitting his spare part the customer injured himself? Could I be held liable for encouraging him to dabble with something dangerous, say an e.h.t. tripler?

As you can see, selling spare parts is often not worth the candle, especially as one sometimes makes only a few coppers out of the deal!

One of the many things I've learnt in this trade is to beware of the so-called expert. I've discovered that the more qualified and the more a customer proclaims to know the less he seems to be able to actually do the job! The local hobbyist on the other hand is usually far more practical, enjoys what he does and is generally all the more interesting to deal with.

A final point. It may take quite a time to establish what's wanted, then one has to look up the catalogues (even Willow Vale don't stock everything!) and ring up to find whether it's in stock, if so how much and not to forget to add the processing charge, the packing charge, the postage charge and of course VAT. Say I double the final sum and charge the customer accordingly, I'm not exactly going to be able to buy the baby a new pair of shoes! But if I were to take on the complete job and fit the item myself, then of course I would be much more interested: I would earn considerably more money in as much time as it has taken me just to order the required part! If Willow Vale feel piqued at producing such a costly catalogue, why don't they advertise in the press and deal direct with the public? I somehow feel that the reason is the points made above. Adrian Irwin,
Waltham Forest, London EI7.

A SHARP DEALER REPLIES

In reply to Brian Tuckfield's letter (Sharp Spares, June) we, being in the service trade, have had several instances of so-called fully qualified electronics design engineers asking us to order parts. Invariably they ask for the wrong parts and we get lumbered with them. If we send them back to Willow Vale we are charged a 50 per cent restocking charge! If we complete the repair ourselves however we know that the work will be carried out to our mutual satisfaction.

In conclusion I'd like to ask three questions, bearing in mind that Willow Vale is "dealer bashing". (1) Is it policy to supply direct to the public? (2) Had they proof that the customer did approach a Sharp stockist? (3) Did the customer show his diploma?
Sharp Dealer, North Devon.

SERVICE COSTING

Brian Tuckfield of Willow Vale has written two letters recently attacking the service trade. In the first he criticised engineers for not being aware of what is available from his company. Have you tried to get a WVE catalogue?! We've been trying for at least eighteen months and have been told it's still being printed. On our last attempt the young lady, embarrassed at having to use the same excuse, suggested that it was being done by Mr. Caxton himself. It's also worth saying that parts lists are infuriating things to have to plod through: a well indexed catalogue giving say a section on reel motors with the total list of makes and models available would be much more helpful.

The second letter concerned Sharp spare parts. A recent costing of ours might indicate the type of problems faced by retailers and service departments. Initial customer enquiry (five minutes) followed by seven abortive attempts to phone WVE (six minutes), cost so far $£ 2 \cdot 74$. Placement of order and stock availability check ($31 / 2$ minutes), labour 87 p, phone 51 p plus VAT. Cost of part $£ 3.50$ plus VAT. Small-order surcharge $£ 2.25$ plus VAT. Total cost to ourselves $£ 10.80$.

Even if we added a mark up of 100 per cent on the cost of the part we wouldn't cover our costs let alone make a profit. The only way Brian Tuckfield's firm makes a profit on these small orders is to charge a small-order handling charge. Now according to the latest price information received from WVE (July 1986) we should have charged the customer $£ 3.96$ including VAT, which produces a nice loss on the transaction of $£ 6.84$. No wonder the Stevenage dealers didn't want to know. Like WVE, they would like to stay in business. We in the trade are used to these unfortunate small-order charges, but I would like to know what reaction Brian Tuckfield would expect from a member of the public who was told that his part should cost $£ 3.96$ but that a 250 per cent handling charge was necessary to give the retailer a very small profit.

We find WVE to be generally a useful supplier, though a better catalogue would help us both and I suspect many others. Also less knocking would be mutually beneficial. L. J. Pitts,

Buckfastleigh, Devon.

COST OF REPAIRS

Two recent letters prompt me to write to you. First Bryan Magrath of Mastercare (May) seems to be happy charging $£ 10$ for a TV service manual. I also paid $£ 10$ for a Triumph colour TV service manual which consisted of eight pages of photocopies and a double page with the circuit. Photocopies normally cost 10 p retail, so I assume that the manual would cost say 50 p at trade prices. Adding about $£ 2$ for handling and 50 p postage still leaves a handsome profit!

This brings me to Brian Tuckfield's letter in the June issuc. He seems to imply that service departments have a moral duty to repair any equipment. Although I don't know the cost of the belts and wheels he mentions, the charge for handling them would be $£ 2.50$. The cost of a long-distance telephone call has to be added, and if we add
a further $£ 1$ or $£ 2$ profit for the dealer the customer would end up with a bill of say $£ 7$ or $£ 8$. There’s no guarantee that he would pay that amount for a few rubber belts and wheels. In many cases they don't consider it worthwhile and there is then no way in which the dealer can get his money back. He's stuck with the spare parts, all for the sake of $£ 1-£ 2$ profit.

If Mastercare doesn't find it viable to supply a photocopied service manual for less than $£ 10$, and Willow Vale charge $£ 2.50$ whether they supply a belt or $£ 100$ worth of spares, most dealers won't find it worthwhile selling small parts for a petty profit, let alone repairing that particular cassette player. The cost of repair in this case might be $£ 20$, which the customer might considere scandalous. Perhaps if suppliers reduced their handling charges for small orders it would be viable for the dealer and customer alike to have such equipment repaired. It would be very helpful if suppliers undertook field research, got to know their dealers better and found out why they don't bother about small repairs.

It seems that, with the cost of manuals and spares today, more and more dealers are turning away small, unprofitable jobs. I hear lots of customers complaining about not being able to find anyone willing to repair some brands of equipment sold by the large chain stores. The more shops that do so and stick with brands that provide good backing at sensible prices, the sooner the public will be educated into spending a few pounds more for good equipment. It's been said many times before in these pages!
C. Deus,

King's Lynne, Norfolk.

LACK OF HELP

I must agree with Mr. Barnes-Wallis's remarks (July). We all need help at some time or other, but in many cases the manufacturer/importer is most reluctant to give the information required. Blank refusals of help have come from both Sony and Grundig because I'm not an account holder, though I've bought replacement parts for their models over the years from wholesalers.

One fault that comes to mind concerned a Sony SLF1UB VCR. The problem was tape snatching, and it cost me dear. Not being familiar with the Betamax lace-up I misread the symptoms and deduced that the trouble was in the reel motor/servo control loop. Waveform checks seemed to confirm this deduction, but chip changing made no difference. At this point I suspected the reel motors, so a phone call was made to Sony to confirm the diagnosis and price the unit. Advice was refused, leaving me with a problem. I bought the reel motor PCB (expensive) but it didn't help. Your service bureau supplied the cure - shiny heads, creating a vacuum so that the tape sticks to them, now a common problem. Easy when you know, but l've ended up with a surplus reel motor PCB.

Only companies with a large throughput of equipment for repair seem to be able to acquire such information. A single engineer on his own, however good and well equipped with test gear, can never obtain it.

I've recently written to two companies asking for information on intermittent loss of colour when using a BBC or Amstrad/Sinclair Plus Two computer with Triumph CTV82019 series TV sets and their badge engineered counterparts, but have had no help. Can anyone assist?

Giving credit where it's due, a call to GEC Glasgow some years ago provided the answer to a problem I'd not have solved without completely rebuilding the power
supply. That help was welcome indeed.
Service manuals are another problem. Granted they cost money to produce, but without them service engineers cannot maintain equipment in a way that reflects manufacturers' standards and reputation.
Ray Crockit, Eng. Tech., Television and Video Services, Anglezarke, Thrumster, Wick, Caithness KWI 5TX. Telephone 095585214.

ORACLE PUZZLE

Could any reader tell me what's going on with HTV teletext? For some months HTV page 777 has consisted of a continuously-changing display of jumbled numbers and figures, but now there's an intermittent flash of a text page. I've recorded this with a camera and on playing it back with pause I find that the page heading has "Televox" or "Myrzad". It appears to be a computer service of some sort. Any ideas would be welcome.
Chris Plaice,
DER, Swansea.

FS TUBE SETS

I feel I must reply to the reader who complained about a Toshiba FST model. I've been a retailer/service engineer dealing with Toshiba sets since 1973 , and have taken delivery of FST models since 1984. The quality of the convergence, grey scale, purity and focus has been excellent with all models. I demonstrate the conventional tube 222 T series alongside the FST 212 T series and customers all comment on the superb results with these models. I would be interested to know which model your reader has, and would be only too pleased to sort out the problems. Toshiba offer a two year parts and labour guarantee, and to date I've had only very minor problems such as the odd tuner etc. despite having sold a large number of sets. All customers - and they are the best judge - are delighted with the product.

John Wakely,
Colliers Wood, London SWI9.
With reference to Colin McCormick's complaint (June) about the convergence/focus/purity/grey scale with sets that have FS tubes, we've had a Sony set with convergence errors and an Hitachi set with convergence/purity/focus errors, but these have been the only two sets out of thousands. A check in the showrooms under the right conditions suggests that FS tubes are very good. Some of us, I suppose, are just unlucky.
Paul C. Rowe,
Camborne, Cornwall.

LOW PRICES

I can only assume that whoever wrote your July leader is either a major shareholder in Amstrad or has never had to try to earn a living in the TV service industry. Manufacturers seem to have a kamikaze obsession with cutting each other's throats, and expect the dealers and service engineers to join them.

In the coronation year, 1953, a 9in. monochrome set that received a single channel cost approximately $£ 100$. Today, in spite of years of inflation and technological advances that have added many features, a colour TV set which can receive at least four channels can cost as little as $£ 140$ - a little extra secures remote control, a larger screen size, teletext, etc. Not content with this, the manufacturers now
supply household goods, free licence stamps and five-year guarantees with their give-away sets. To be fair, they do pay the dealer the princely sum of $£ 8$ for a major repair under guarantee. These prices have created a "throw it away" age, and it's little wonder that the service industry is suffering in the way it is.

As you say, Amstrad assemble some equipment in this country, from imported parts. I suggest that this is in effect dumping from the UK instead of the Far East. Alan Sugar has made for himself and his shareholders a great deal of money, but he's not doing the TV trade or the service industry any good at all, and neither he nor your editorial can expect any applause from me.
R. A. Holmes,

Enfield, Middlesex.
Editor's note: The editor does not hold shares in Amstrad or any other consumer electronics company, and has never done so.

WYLEX MAINS PLUGS

I read Brian Renforth's letter (June) on Wylex mains plugs with interest. These plugs and sockets, and variants, are still widely used in the Manchester area. In fact the Wylex company is only a few miles away from here, at Wythenshawe, South Manchester.
In addition to the normal 5 A and 13A types there was a variation with offset live and neutral pins, also a 13A plug that allowed a 5A one to be plugged in piggy-back style. There must be thousands still in use, judging from the number of homes in which I've encountered them. Every so often a bag of plugs and adaptors appears for sale in the under $£ 50$ domestic sales adverts in the Manchester Evening News. I understand they are rapidly disposed of!
Roderick Ballardie,
Timperley, Cheshire.

NOISY HITACHI VT63/64

Keith Pemberton (July) mentioned the use of Hita-sol grease to cure a noisy Hitachi VT64 VCR. A permanent cure for this problem is to fit the flywheel holder used in the earlier VT33. This has a nylon bearing that requires no lubrication. GEC also issued a technical bulletin for Model V 4005 H (March 1986) explaining in detail how to overcome this problem. The GEC part number for the flywheel holder is V7386832.
Don McDonald,
Bargoed, Mid-Glamorgan.

MISCELLANY

A couple of points relating to my article on the Decca $80 / 100$ series chassis (June) should perhaps be clarified. First the section on power supply faults rather suggests that R801, the 6.8Ω section of the dropper, is on the power supply PCB. It isn't, of course. Replace it for intermittent fuse blowing or bridge rectifier faults if all else fails. Secondly, in nine times out of ten you'll find that the field output transistors in the 100 chassis are BD707s rather than BD278As. Common spares such as tuners, button units, volume controls, triplers, LOPTs and smoothing capacitors are available from Willow Vale, HRS etc.

* In connection with my report on the Panasonic NVG25B in the same issue (page 605), Panasonic do provide details on setting up the mechanics, including the mode switch, in a separate G Mechanism manual which we'd not received at the time of writing. The manual has some errors
however, so my notes may still be helpful - but note that the pip is about 100° clockwise from the slots in the mode switch, not 180° as shown in Fig. 2.
I'd like to applaud Brian Tuckfield's concern (letters, same issue) and interest in the matter of the customer from Stevenage. If I was one of those "dealers" I would be thoroughly ashamed of myself. Here we are trying to uphold and improve the image of the trade and these dealers let us down badly. We are trying to root out the cowboys and the "couldn't care less" brigade and need all the help we can get. My WVE representative tells me that though non-technical he always reads Television to pick up any problems or grievances he may be able to sort out and put right. He's certainly helped us in the past. I hope the retail trade, particularly it seems in Stevenage, will take notice.
Also a quick note on Philip Blundell's reference in VCR Clinic to non-genuine belt kits for the Sharp VC6300. We've had identical troubles with the Hitachi VT5000 and Sony SL8()0) series machines. The moral is - fit genuine belts!
Nick Beer,
Bideford, N. Devon.

JAPANESE SYMBOLS PREFERRED

The Japanese practice of using the same symbols in layout diagrams as in circuit diagrams is to be commended. It's so easy to locate components - zigzag resistors, parallel-plate capacitors and spirals for coils. The UK system is much harder to follow, with all components shown as rectangular boxes. German diagrams are even worse, with thick straight lines for wound components. The weakness of Japanese service manuals is their lack of description of how circuits work.

Although conductance is rarely used, I think the mho was a far more practical unit. It was simplicity itself, which is surely what standards should be.
K. J. Treeby,

St. Judes, Plymouth.

HELP WANTED

I've a Rigonda VLIo()M (one of the Russian 5in. TV sets) which I have been using for DX-TV reception - it has good sensitivity and rock-steady sync that seems to be able to cope with the dirtiest signals. Unfortunately the LOPT has developed shorted turns in the heater winding, rendering the set useless. The importers tell me the part is no longer available, and the only other source of supplies (Star Radio) I know of seems to have gone out of business. I would be grateful if anyone who has a transformer or knows of a source would get in touch.
J. C. Chandler, I Bramhall Moor Lane, Hazel Grove, Stockport, Cheshire SK7 4AJ.
Telephone 0614280811 Ext. 297 day, 0614839659 evenings.

Editorial note: We receive other letters from time to time asking about spares for these sets. If there are any sources, we'd like to know too.

FOR DISPOSAL

I have for disposal a home-constructed, 405 -line singlechannel (London) TV receiver in a cabinet. It was working when put in the loft some years ago. Would anyone like it? A. Newton, 9 Millais, Horsham,

West Sussex RH13 6BS. Telephone 040366018.

next month in

FREE NEXT MONTH

Our September issue comes with a cover-mounted gift - this time a pact of two 1 N4007 power diodes. These devices are réted at $1 \mathrm{~A}, 1 \mathrm{kV}$.

- SERVICING THE SONY KV2752

Tris is a higr-perfcrmance receiver with a 27 in . tuse and two loudspeakers that together provide over 10W of audic power. Its main failing is a tendency to go dead suddenly after working well for a long time. One or more expensive power transistors will be found to have failed. This is simple enough to ciagnose, but unless you know what steps to take a repeat performance will not be Icng in comirg. Dasid Botto describes the set, the action required in dealing with a dead one, and provides servicing notes on the various panels. Much of the information also applies to Models KV2252 and KVV225j.

- INTERNATIONAL TV STANDARDS

One of the most common queries we receive is for information on the TV standards used in overseas countries. It's some years since we last published a guide. Next montr's list has been considerably expanded arid, of course, updated. In addition to basic standerds, information on mains supplies and channel allocetions is included.

- THE PANASONIC G DECK

The latest Panasor ic VCR mechanism is an innovative design. t 's lig th and compact and nice to work on once you knou its habits. There have been one or two teething troubles which can take a time to sort out if you are not familiar with the deck. Nick Beer summarises experience to date.

- MULTI-FUNCTIUN MEMORIES

In the concluding instalment of his series on the use of field stores in TV/video equipment Eugene Trundle describes the multi-function memory used in the Sanys VHFD500/700 series VCRs.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR CCPY ON THE FORM BELOW:

TO.
(Name of Newsagent)
Please reserve/deliver the September issue of TELEVISION ($\mathbf{E 1} 1 \cdot 40$), on sale August 17th, and continue every month until further notice.
NAME
\qquad
ADDRESS
\qquad
\square

Satellite TV Filter Unit

Roger Bunney

In the April 1988 issue I described a very simple bandwidth limiting filter that can be used to reduce noise/sparklies with very weak/marginal signals. The filter is inserted in the 70 MHz i.f. in/out loop that's present at the rear of many imported satellite TV receivers and is intended for descrambler use. Since then I've built a more versatile filter unit with three switched positions, see Fig. 1. This gives either straight through operation, amplification without

Fig. 1: Block diagram of the filterlamplifier unit.

Fig. 2: The power supply circuit.

Fig. 3: The bandpass filter circuit. L1 6.5 turns (Toko blue r.f. moulded coill, L2/4/5 8.5 turns (Toko white), L3 5.5 turns (Toko green).

Fig. 4: The amplifier circuit, with BA479 pin diode signal
bandwidth limiting, or bandwidth limiting with amplification. On its own the filter introduces a loss of 3 dB which is more than compensated for by the amplifier.

The system is simple and requires little explanation. Fig. 2 shows the power supply which provides a regulated 12 V output. In my case I also use it to power an outboard System I sound/vision modulator. This is a compact, steel-cased unit made by Technicolor for its now obsolete video format. It's currently available from Star Satellite Systems Ltd., 27 Galgate, Barnard Castle, Co. Durham (tel. 083338385) at $£ 13$ plus $£ 1.50$ post and packing. The output is variable over chs. $30-39$.

The filter circuit itself is shown in Fig. 3, while Fig. 4 shows the amplifier circuit. The latter uses a low-cost BFX88 transistor and has minimal filtering. Gain is controlled by means of a BA479 pin diode (D1) which gives a variable attenuation of up to 28 dB . The amplifier's gain is $12-15 \mathrm{~dB}$.

Construction is generally non-critical, though as with all v.h.f. circuitry a compact layout should be adopted. As shown in Fig. 1, the main connections use thin coaxial leads with the screens earthed: it's not necessary to use coaxial leads for the switch pin cross connections. The BA479 is available from Cirkit by mail order while the Toko moulded r.f. coils can be obtained from Maplin.

The two coils in the amplifier circuit provide a degree of selectivity - you'll find that they give a vague peak. The main selectivity is provided by the filter unit of course. This has five coils which are tuned to the spot frequencies listed in Table 1, giving a bandwidth of $16-18 \mathrm{MHz}$. Having made

Components list

Filter unit:

L1	UF67X
L2, 4,5	UF69A
L3	UF66W
Maplin UF	series

$\mathrm{C} 1,4,7,8 \quad 22 \mathrm{pF}$
C2 $\quad 18 \mathrm{pF}$
C3, 5, 6 33pF 100 V ceramic

Amplifier:

C1	$5 \cdot 6 \mathrm{pF}$ silver mica	R1	12 k
C2, 3, 4, $70.1 \mu \mathrm{~F} 100 \mathrm{~V}$ ceramic	R2	2.2 k	
C5, 6	1 kpF feedthrough	R3	10 k
L1, 2	UF69A	R4	150Ω
L3	V.H.F. choke	R5	270Ω
Tr1	BFX88	R6	1.5 k
D1	BA479	All $0.25 \mathrm{~W}, 10 \%$	

Power supply:

BR1	$1 \mathrm{~A}, 100 \mathrm{~V}$ p.i.v. bridge
T1	$9-0.9 \mathrm{~V}$ sec., 200mA
C1	$1,00 \mu \mathrm{~F}, 63 \mathrm{~V}$
C2, 3,5	$1 \mathrm{kpF}, 100 \mathrm{~V}$
C4	$470 \mu \mathrm{~F}, 40 \mathrm{~V}$
R1	$1.5 \mathrm{k}, 0.5 \mathrm{~W}$
RV1	5 k linear
F1	250 mA

LED, DPDT switch and 7812 regulator

Table 1: Alignment frequencies

\(\left.$$
\begin{array}{cccr}\text { Adjust for maximum } \\
\text { output }\end{array}
$$ \quad \begin{array}{c}Adjust for minimum

output\end{array}\right]\)| L.1 | 76 MHz | L 3 |
| :---: | :---: | :---: |

these adjustments you may well find that a further peak-up is beneficial: slightly retune while watching the picture.

In the absence of upmarket test equipment alignment can be carried out in either of two ways. Use a signal generator to inject the appropriate frequencies, with a field strength meter to observe the output. Alternatively, use a signal generator and feed the unit's output to a receiver such as an Eddystone 770R, a scanner, etc., preferably with the a.g.c. off. Use the S meter for peaking, reducing the sensitivity as levels rise.
The unit was built into a diecast box which, with adhesive feet, sits atop the satellite receiver. It's a simple but very effective arrangement.

Practical Computer Programming

Part 6

Next on the list of topics comes the user interface. By this we simply mean the bits of the software the user actually sees, that is the screen displays and the printed material produced. Most of the inner workings of the software need not be known or understood by the person who enters data via the keyboard or interprets the output on the screen or on paper.

As most of us who design systems do it for our own use, you might think that the general rules would differ from those of commercial software. This is not really the case. Bad habits and sloppy design are as much an inconvenience when it's your own fault that the program crashes or the screen display is hard to read! Then again, could you guarantee that no one else will ever use your system? You may pass it on to a colleague or, if it turns out to be very useful, place it in the public domain or even market it! So a code of practice of some sort is advisable. This should cover all aspects of the design, not only the user interface.

In previous articles we have considered the basic problems and suggested ways of deciding whether the use of a computer is an appropriate solution. We followed this by outlining a suitable data structure or dictionary, which lays down the data items we need to store, their types and sizes. The next stage is design of the screen displays or prints.

There are four basic types of display: (1) pure text, e.g. help screens, instructions, etc.; (2) menus to enable the user to select a choice from several options; (3) data entry screens; (4) reports. In this context a report means any output from the system, whether on the screen or a hard copy print-out. Types (3) and (4) can sometimes overlap; for example the data entry to a database system can allow the user to see previous inputs. We'll deal with these types of display in turn.

User friendliness is a good thing to aim for, within reason - a system that explains every move on the screen, and asks for confirmation of every entry, is rather tiresome to use.

The next step is to make a list of the screens and print required and to draw them all on paper. Layout grids are available to make this job easier, but are not essential. At this point you will need to decide what menus, if any, you require, and whether any help screens should be included. The rest of the process consists of establishing the design rules. Some of the latter are the writer's own personal preferences, but others are established practice

We'll split the guidelines into those for menus, data entry and report design, though some of the points to be made apply to all three. One common requirement is consistency. If for example you call something a "service docket number" in one place, don't call it a "job number" somewhere else. Make a note of such conventions on

Mike Phelan

paper. Indeed keep all the notes you make during the design, and convert your rough notes into more readable form as the design progresses. Otherwise if you need to extend or change the system in say twelve months' time you will have forgotten most of how it was designed! In the design of a small to medium piece of software, as in my currenะ role, I usually get through a few A4 ruled pads and a few dozen screen layout grids.

General Rules

I'm going to lay down some general rules, also some specific to our requirements. No excuses will be given for the fact that some of the guidelines may appear to be too exacting for "own use": when we come to the design stage I shall be advocating simplicity. This may sound like a contradiction in terms, but the two principles can and do go together.
The first rather obvious point about screen displays is that they should be readable. As most microcomputers can have a colour monitor with a capability of sixteen colours or more there's a great temptation to use them all. Don't! A maximum of four colours should be sufficient for most purposes. If you must have frames round things on the screen, use the 8 -bit frame characters (if your computer supports them). Alternatively, home computers without these characters in their sets usually allow some sort of line drawings in BASIC. Frames made from asterisks look amateurish, as do those made from the bar and minus sign characters. A wide frame can be made by changing colour and printing a series of spaces. A few examples are shown in Fig. 1. If frames are not needed or are impractical, horizontal lines can be drawn using the minus (-) or underline (___) characters.

Don't clutter the screen with rubbish. Does the user

YOUVE BEEN FOLLOWING TELEVISION'S
PRAGTIGAL COMPNER PROCRAMMNG SERIES
The FAULTS REPAIR MANAGER does the following:
1. Processes product histories
2. Stock control \& Sales accounting
3. Prints out works order with fault data
4. Produces detailed invoices
All this \& more for only £100
Money back undertaking.
Send remittance or ask for further details to
SPACECRAFT LTD,
70 ROLLESTON RD, FIRTH PARK, SHEFFIELD
R 0742 467192
Computer hardware and systems also available

YOU'VE BEEN FOLLOWING TELEVISION'S

 PRAGTICAL COMPUTER PROGRAMMING SERIES NOW BUY THE PROOBRAM!The FAULTS REPAIR MANAGER does the following: 1. Processes product histories
2. Stock control \& Sales accounting
3. Prints out works order with fault data
4. Produces detailed inyoices

All this \& more for only $£ 100$
Money back undertaking. SPACECRAFT LTD,
70 ROLLESTON RD, FIRTH PARK, SHEFFIELD \% 0742467192
Computer hardware and systems also available

Bad

Bad

Good

Good

Fig. 1: Bad and good ways of making frames.
really need to know that NURDLE.BAS is currently running, or that there is 17 K of memory free? Do not display everything in upper case (capitals): this makes reading difficult, though you can use upper case for headings etc.

When using colour, choose ones that are easy on the eye. Personal taste probably plays a part here, but good combinations are white, cyan, light green or light blue with black, either colour being used for the foreground.

Printed Reports

The most important factor with printed reports is the layout. Don't have too much spacing between rows, and take care to justify numeric and character data correctly. This means lining up the right- or left-most digit. Generally, character fields should be left justified, numeric fields right justified. Underline the column headings to the width of the heading, not the data. The remarks about the use of lower case apply equally to printed reports. Here are some examples:

Name	Address		Make	
		Labour		Materials
Bloggs	12 High St	Toshiba	22.50	58.00
Smith	3 The Avenue	ITT	$100 \cdot 25$	0.50

Here's how not to do it:

NAME	ADDRESS	MAKE	LABOUR	$\frac{\text { MATE- }}{\text { RIALS }}$
Bloggs	12 High St	Toshiba	$22 \cdot 50$	58.100
Smith	3 The Avenue	ITT	$100 \cdot 25$	0.50)

The second example is untidy and if there were more than a few lines it would be difficult to read.

Don't use fancy printer tricks, i.e. different fonts etc. These are more suited to desktop publishing than business reports.

Putting a date on the report is useful. And give it a title, especially if more than one type of print is used.

Always give the user an option to confirm that the printer is on and the paper lined up before printing. If printing the report changes any of the data or clears it out, allow for printing the report as many times as required before updating anything. This takes care of the paper running out or jamming in mid-print.

Menus

Menus allow the user to choose an option, which can be a further menu, but try to avoid too complicated a menu hierarchy. If the number of options is three or less a menu might not be necessary: a simple prompt with three possible replies would do just as well.

There are basically two types of menu, the lightbar type and the older format where the choices are displayed with a
letter or number against each item. There is a always a quit or exit option to return to the previous menu or out of the program. It's best to use letters with the letter or number choice type of menu - this will give you 26 possibilities for a single key press. To trap invalid choices, make the program ignore them rather than bothering with an error message. The key used for exit should be consistent if there are several menus. In such cases it's a good idea to make the choice default to the exit character, say "X", so that it's only necessary to hit return to go to the previous menu, but for the first menu to default to a space so that a definite effort has to be made by the user to type in a letter. This avoids problems caused by typing ahead or holding the return key down.

It's a good idea for all the menus in a system to look alike, and for the name or title of the menu to appear at the top. The items should be centred and left justified, with the choice letter prominent. Here's an example:

SERVICE HISTORY SYSTEM MAIN MENU

(A) . . . Enter data from service docket
(B) . . . Clear completed jobs
(C) . . . Reports menu
(D) . . . Back-up data

Please enter choice from above or Q to quit.
A very readable screen with only the required information present.

The lightbar menu is a slightly different animal - the choices are selected by using the cursor keys to highlight choices with inverse video, then using the return key or space bar to confirm. Further enhancements are to print an on-screen explanation of each choice - known as expansion - and to allow selection by the initial letter of the choice. The latter assumes of course that the initials are unique. Unless the language you intend to use supports lightbar menus they take quite a lot of programming, though it can be fairly simply done with BASIC or C and dBase III plus has its own function to make them easy to produce. Enhancements can be added after the system has been tested and the bugs have been ironed out.

We cannot leave the subject of lightbar menus without mentioning pull-down menus, though these are really outside the scope of the article. A typical pull-down menu has an initial row of choices across the top of the screen. On selection by initial or cursor plus return a small lightbar menu appears giving further options from the initial choice. Moving right or left changes the pull-down menu to a different one relevant to the choice that appears below. All very sophisticated.

Data Entry Screens

With a screen-based system a data entry screen looks like a form to be filled in, rather then prompting for items one at a time. The ideal is also to have "full-screen editing", where the user can move around the screen using the cursor keys, possibly correcting previously entered items. dBase II etc. allows for this without need for any extra programming, but it can be done in other high-level languages.

Give the screen a name or title.
Prompt the user to fill in the items in a logical order, and always start at the top left corner. Proceed either by row or column.

Try to arrange the items so that they are left justified. The prompts should also be left justified. If the prompts are
of different length, so that a prompt is far from the item box, use a row of dots to connect them. As follows:

There should be no need for more than three pairs of foreground/background colours, one for the normal text, one for the data windows and one for any error messages, in ascending order of visibility. Flashing error messages are acceptable. Where a limited number of choices is available, display them. For example:

Colour, mono or video? (C/M/V) [_]
Note that [_] means a data entry window in which a cursor will be visible.

Again, if there's more than one data entry screen, give each one a title. Don't get carried away with drawing boxes etc., and if you must do so make them consistent throughout the system. For example, a double line box for the title, single lines elsewhere, or simply a row of minus signs above and below the title.

Make the data entry screens of similar appearance to your menus, and preferably of the same colour.

The matter of validating inputs, i.e. checking for user errors, really comes in at the program design stage and will be left until then.

Screen Reports

Screen reports can be used as an alternative to printed reports, and are in some cases preferable. For example, suppose that you have a database of suppliers and part numbers by model. It would be a waste of time printing these every time you want to order a part! In other cases you might want the choice between screen or hard copy:
this may take the form of first providing a screen report then asking the user if he wants a print. The two versions might appear like this:

Screen or print? (S / P) $\left\lfloor _\right\rfloor$
before printing, or
Print this screen? (Y/N) [_]
after the screen display.
Don't lose sight of the fact that there are fundamental differences between screen reports and hard copy. You must bear this in mind when using the same chunk of program to perform both. Screen reports must stop when the screen is full, awaiting a key to be pressed (preferably any key), but printed ones must perform a form-feed or "page throw" after the appropriate number of lines have been printed. If the report is of any length page numbering (pagination) needs to be done, with the title and column headings repeated on each page.

Mosi screens are limited to 80 characters per line (CPL), as is A4 paper, but wider paper with 132 CPL is in common use - provided your printer can handle it. The normal size of print is ten characters per inch and six lines per inch. The latter very seldom needs to be changed, but printing a fairly wide report on A4 sometimes calls for condensed print, usually 17 CPI . With most matrix printers this can be selected by a switch, or the software can send a control code - normally ASCII 15 - to do the job.

Design Progress

If you are designing a system you should by now have a large collection of bits of paper, among them a rough draft of the system requirements, a data dictionary or structure, and the screen and print layouts. In the next instalment we should be able to sort them out in order to start on the program design and the choice of language to use.

Servicing Notes on the Luxor SX9 Chassis

The Luxor SX9 chassis was introduced in late 1983 and is used in various models including the $5634,5639,6734,6739$ etc.

The most common problem is caused by the two copper heatsinks in the power supply. Unfortunately in early production sets they were used to bridge parts of the circuit. They quickly became dry-jointed, giving rise to a number of different symptoms - intermittent loss of picture, faint bars running across the screen, failure of the line driver (more on this below), failure of the line output transistor, and any fault that cannot easily be explained. They must be resoldered using a large iron, after which they normally give no further trouble.

The mains on/off switch can go short- or open-circuit: replacements are of a better quality. Tuning and memory faults are caused by the back-up battery going down and the earthing points inside the tuner. If the set changes channel on its own, or for that matter performs any other function on its own, the cause is likely to be air trapped in the touch membrane. This can be proved by wiping across it, when the fault will be temporarily cured. Replacements come with the plastic framing and have a green connecting strip.

As mentioned above the BD419 line driver transistor TH01 can fail, going short-circuit. This will in turn burn up RH03 ($6 \cdot 8 \Omega$) and RN19 (1 Ω). If these resistors, which are
J.R. Trimmer
safety types, start to cook again the most likely cause is LH01 shorted: be warned - it may read o.k.!

Power supply faults are rare, but a strange fluttering noise followed by the set going into standby is caused by lack of heatsink compound on the TDA4600 chopper control chip IN01. The trip circuit puts the set in standby through TN02 remoking the 12 V supply.

Recently we've had several cases of line output transformer failure. If you find that the h.t. is only $30-40 \mathrm{~V}$, disconnect RH 07 . This should restore sound and full h.t. (121 V or 142 V depending on version). Failure of the line output transformer usually takes the line output transistor as well. Note that there are 90° and 110° versions of the chassis.

Whenever a set is serviced it's worth checking for dry-joints around the line linearity coil, the line driver transformer, RH07 and the chopper transformer. Dryjoints are by far the most common problem with these sets, often causing the microcomputer control chip to lock up.

Poor operation of the remote control can be cured by washing the rubber pressure pad and handset board: they tend to become sticky due to a reaction between the pad and board. At the same time it's best to disconnect the store button on the handset by sticking tape under the pad: this saves a lot of service calls for sets tuned to the same channel.

A Tifax/VM6101 Conversion

John de Rivaz, B.Sc. (Eng.)

Although there are now many teletext-equipped TV receivers on the market, some being available at relatively low cost secondhand, a teletext adaptor is invaluable to the aurally handicapped who wish to record subtitled programmes. For some years Manor Supplies sold an adaptor which used the Tifax XM11 decoder module. As has been pointed out in previous letters and articles in Television, the XM11 was designed before the UK teletext specification had been finalised. For this reason it now gives trouble. I decided to have a go at removing the Tifax module from my Manor Supplies adaptor and fitting in its place a Mullard VM6101 decoder module. Previous articles (December 1986/January 1987 and September 1987) have described ways of using the VM6101 with an 8748 programmable microcomputer chip to provide keypad/ decoder module interfacing.

My Manor Supplies adaptor was still in use despite the missed lines. It had developed a further fault: with multiple pages, such as page 502 C 4 , it would skip to a following page when the subpage changed. Rather than using the microcomputer chip solution to the problem of providing control signals for the VM6101 decoder module I decided to make a simple unit from TTL chips and some diodes. This has the advantage that the user can select what codes are chosen and what codes go to what key, enabling the Manor Supplies unit's key configuration to be retained. If the constructor already has some diodes and some of the chips, this will probably be the cheapest solution.

Modifications to the VM6101 Module

As noted in the previous articles, some minor modifications to the VM6101 unit have to be carried out (see Fig. 1). These consist of reversing the polarity of the $1 \mu \mathrm{~F}$ video input coupling capacitor, adding a $4.7 \mathrm{k} \Omega$ resistor to pull up the superimpose line to 5 V , and adding a link between pins 4 and 5 of PL3. The VM6101 unit I obtained from Sendz Components had plugs with it and a small board with transistors was plugged into PL5. This small board was removed and jumpers were connected to bring out the

Fig. 1: VM6101 decoder panel connections and modifications.

RGB and blanking signals from spare pins on PL4. I found that the link on PL3, for the sync supply, was already in place.

Modifications to the Manor Supplies Unit

The wiring harness in the Manor Supplies unit was modified as follows: everything to plug A on the video/ pulse board was disconnected, as were the RGB wires from plug B on this board to the encoder. The RGB wires were also removed at the encoder end.

An additional couple of transistors (see Fig.2) were added in order to make use of the sound mute on text feature. This arrangement sets the d.c. volume control connection to the TBA120SQ chip (pin 5) low when text is selected. One of these transistors was fitted to the VM6101 panel, using the panel's 5 V supply, the other transistor being fitted on the receiver module's sound subpanel. The input to the first transistor was taken from pin 1 of PL1.

Power for the VM6101 module and the interfacing circuit was taken from the regulators already present in the Manor Supplies unit - the 5 V supply was taken from regulator no.

Fig. 2: The sound mute circuit.

Fig. 3: The TTL keypad-decoder interfacing circuit.

Fig. 4: The keypad switching circuit.
2. The VM6101's video input was taken from pin 7 of PLA on the video/pulse board. The RGB outputs from the VM6101 module were connected to the encoder's RGB inputs, the inverters previously required being left out of circuit. The blanking output from the VM6101 module goes to the video/pulse board, which also receives a sync input from pin 3 of PL3 on the VM6101 module disconnect the end of R7 previously connected to R5 and connect it to the VM6101's sync output. This latter modification overcomes the annoying fault of teletext judder when a bright, nearly white picture is transmitted.

Keypad and Interfacing Circuitry

The interfacing arrangement I used (see Fig. 3) has the advantage that the circuit can be built in stages, each section being tested before proceeding. The start is the oscillator, which uses half a 7413 . Its output is fed to a 7400 nand gate used as a buffer. The output from this is the

Table 1: Keypad connections
Key
Multiplexer bit connections:

	1	2	3	4	5
1	D	D	D	D	x
2	x	D	D	D	x
3	D	x	D	D	x
4	x	x	D	D	x
5	D	D	x	D	x
6	x	D	x	D	x
7	D	x	x	D	x
8	x	x	x	D	x
9	D	D	D	x	x
0	x	D	D	x	x
Reveal	D	x	x	D	D
Update	x	x	x	D	D
Mix $(=$ set small)	D	x	D	x	x
Video on	D	D	D	D	D
Text on	x	x	x	x	x
P					

Not used.

The mix key is used to set to small characters. This is done in case any glitches would make the large character set appear. Connect the video on key to bit 0 as well. Connect the text on key to pin 6 of the 7430 i.c. See Fig. 4.

Additional keys that could be used are:

Time on	x	x	x	x	D
Time off	D	x	x	x	D
Top	x	x	D	x	x
Bottom	D	D	x	x	x
Hold	x	D	x	D	D

$\mathrm{D}=$ diode present, $\mathrm{x}=$ no connection, see Fig. 4. Press any key for the same effect as originally.

DLIM input required by the VM6101 module and is also fed to the 7496 counter chip. For testing, earth the reset pin 16 so that the counter free runs. The 7496's A output is connected to the B input while the B, C and D outputs go to the 74151 multiplexer's A, B and C inputs. At this point it should be possible to earth one or more of the multiplexer's inputs and observe the output, thus checking the circuit so far.

Further gating is required to make the unit operate in a one-shot mode. An 8 -input nand gate (see Fig. 4) with five of its inputs connected to the 74151's bit 1-5 inputs generates a pulse whenever a key is pressed. We also require a 000000 signal, so a further input is connected to the text-on key. The output from this gate was initially fed direct to an inverter driving a latch which is reset by a 3 -input gate connected to detect number 8 going into the multiplexer. This however would cause each key to repeat if held down. A differentiating network ($0.01 \mu \mathrm{~F}$ plus 330Ω) was therefore added to give a "one-shot" effect. With this the keys were found to suffer from bounce, so a diode and $10 \mathrm{M} \Omega$ resistor were added. When the $0 \cdot 01 \mu \mathrm{~F}$ capacitor charges, a current pulse is sent to the latch. If another key press follows quickly, the capacitor is still charged and the second pulse is ignored. Only when the capacitor has discharged will a further pulse be passed. The latch switches off the oscillator and resets the counter, except when a key is pressed. The circuit is thus dormant when no key is being pressed, minimising possible interference to the rest of the unit
The keyboard was connected via a ribbon cable. One end of each key is connected to chassis (see Fig. 4), the other end going to various numbers of diodes. As previously mentioned the text-on key is connected to one input of the 7430 nand gate to generate a 000000 signal. The video-on key is connected via diodes to the multiplexer's bit $1-5$ inputs and directly to the bit 0 input. Table 1 shows the connections to each key.

The modified adaptor has been in use now for several months, giving excellent results. VM6101 modules can be obtained from Sendz Components and Manor Supplies.

Book Note

Video Handbook, second edition, by Ru van Wezel. Published by Heinemann Professional Publishing Ltd. at $£ 30$.

The second edition of this book has been virtually rewritten, such is the rate of progress in the video field. It contains a great deal of information on almost everything that could be roughly classified as video, including television standards etc. The book does not seem to have a very clearly focused readership, dealing as it does with subjects as diverse as professional video equipment, community TV services and TV production techniques.

VCR Clinic

Sharp VC386

This is a nasty fault which we've had twice so far. It appears only when channel change is attempted, and then only intermittently, the symptom being no signals with the tuner's varicap control voltage awry. The cause is a dry-joint at socket TA on PWB (printed wiring board!) T. This removes the pulses on the control- 1 or control- 2 line, whereupon IC1401 throws a wobbly.
E.T.

Mitsubishi HS338

If the proffered cassette goes in at an angle and is then almost immediately ejected, the cause is probably that the cassette drive cog on the left-hand side of the front-load housing has jumped a tooth or two - check that the housing is parallel with the front of the machine in the ejected position. Like many such troubles this is probably brought about by the owner using excessive force.
E.T.

Blaupunkt RTV321

There was weak sound on E-E and record. Replacing the i.f./tuner board brought the level back up, so attention was turned to the circuitry around IC751 (AN5215). Transformer T752 wouldn't peak up as C755 (39pF) was opencircuit. When T752 is off adjustment the voltage at pin 7 of IC751 changes from the $3 \cdot 5 \mathrm{~V}$ usually present.
P.B.

Ferguson 3V57

The part of the display that shows fast forward, play etc. didn't work though the clock part did. IC301 (MN1250) drives the faulty part of the display. Its serial data lines (pins 14 and 17) had the same signals on them, which seemed odd until we found that they were shorted together by a solder bridge across pins 7 and 8 of CN304.
P.B.

Grundig VS180

There appeared to be a tape path fault. The off-tape f.m. at the start of the rotation of the heads was very low, though the last half was o.k. The paint seals on the guides were unbroken, the tape tension was normal and a replacement tension arm had no effect. A new head drum was finally tried and this restored normal operation.
P.B.

Samsung V1-621

"Whirring noise, horrid smell of burning and won't load the tape" was the way the customer put it. The noise was the loading motor running while the smell came from the plastic pulley on the motor shaft - it had almost slipped off the end and had become stuck against a plastic moulding. The pulley's centre hole was sealed with plastic which had melted. We had to order the pulley by description as Samsung have left out the part number list for the main mechanism exploded view.
I.B.

Panasonic NV730

When the on/off button was pressed all this machine did was beep and light the on LED. The fluorescent display was out due to loss of the -45 V supply and hence the -30 V supply to the display. There was also no power-on

Reports from Eugene Trundle, lan Bowden, Philip Blundell, Eng. Tech., Dave Dulson, Alfred Damp and Nick Beer
signal at the main regulator chip IC5001. This was because the 45 V supply was missing. Both these supplies are derived from a common winding on the mains transformer via a 4.7Ω safety resistor (R1002) which had gone opencircuit.
I.B.

Panasonic NV-G7

This machine was dead apart form the clock display. The digital counter display appeared when the on/off button was pressed, but there was no channel number, no on LED display and no mechanical functions worked. A faulty STK5331 main regulator chip (IC100I) was responsible.
I.B.

Amstrad VCR4700 and Hinari VXL5

These VCRs have very similar cassette decks and seem to suffer from the same fault. When play or record is selected they may operate for about twenty seconds then shut down. In all cases to date the cause has been the take-up reel sensor. The clue to the fault is to select tape counter on the front panel then press play: the numbers displayed will be very erratic and irregular.
D.D.

Ferguson 3V35,36/JVC HRD120,225

A number of these machines are coming in with loading belt faults, the complaint being intermittent failure to play or record. The belt is the same as the one in the $3 \mathrm{~V} 29 / 3 \mathrm{~V} 30$ and is just as difficult to replace. The Ferguson part no. is 01 X1-040-006.
D.D.

Akai VS4

The fault report on this machine was "rewinds then dead". On the bench we found that it was totally dead, with no functions whatsoever and no channel display number. Our first check was on the power supply. The 12 V and 14 V outputs from the STK5325 regulator IC1 were missing because the control line (pin 9) was at 4.5 V instead of 0 V . I've had this before when the cassette deck lamp has been open-circuit. A quick check confirmed that it was, but a replacement left things as before. We decided to shortcircuit pin 9 of IC1, and when this was done we had 2 V and 3 V respectively on the 12 V and 14 V lines. As there didn't seem to be excessive current a new STK5325 was fitted. This produced the 12 V and 14 V supplies - but only with pin 9 held at 0 V . Also the reel motor went into continuous rewind. With the short-circuit removed from pin 9 of ICl the machine stayed dead.
There was no response when the function-on button was pressed, so a check around the key scanning chip IC3 seemed to be a logical course of action. A scope showed that there were no key scanning pulses on pins 12-15. Replacing the MB88401 microcomputer chip restored the scanning pulses, but I still had no 12 V and 14 V rails. Back to system control chip IC5, another MB88401, that provides the turn on control signal for the regulator. Scope and meter checks here were inconclusive, so the chip was replaced. When the function button was pressed the function LED and the channel display lit, but the reel
motor still went into rewind for a few seconds after which the machine shut down again.

Time was wasted on a fruitless search through the motor and system control circuitry before we found that the cause of the final fault was a slipping loading belt. Somehow it managed to get the system control confused. Once it was replaced everything worked correctly. I assume that this was the original fault and that a second fault, the defective regulator, had killed the lamp and the two microcomputer chips. Just my luck!
D.D.

Philips VKR6800 Camcorder

This camcorder displayed and recorded only in blue. While filming a colour bar chart (actually a TV set displaying colour bars) we were able to trace the blue and red signals through the various processing circuits to IC401. All the inputs to this chip, i.e. $B-Y, R-Y$, the burst and $4 \cdot 43 \mathrm{MHz}$ carrier, were correct. Replacing the chip (AN2431) put matters right and when the circuitry around it was aligned the camera produced excellent results. A.D.

Mitsubishi HS349

We've had two of these machines that were faulty from new. The first had an intercarrier buzz on all channels in the E-E mode, with the difference that the buzz was being recorded. Component checks in the sound i.f. circuit revealed that C 307 was open-circuit. It's one of those capacitors that look like a resistor.

The fault with the second machine was no picture, only lines. When a test tape was tried it was obvious that the drum speed was wrong. We found that D4A4 in the drum servo circuit was broken, a new 1 N 4148 putting matters right.
A.D.

Sanyo VHR3300

This brand new machine would intermittently go into standby. You could tap the case anywhere and it would turn off, but the fault could be provoked more easily on the servo/syscon board. On removing the bottom cover the cause of the problem was obvious - the board had jumped out of its retaining clips during transit, and was shorting to chassis via the bottom case.
A.D.

Ferguson 3V29/JVC HR7200

The capstan motor wouldn't start: the VCR would load the tape, then after five seconds it would unload. We found that the "motor stop control" input from the mechacon board was high, as though the machine was in pause. Pin 22 of IC4 on the mechacon board should be at 0 V during play and at 10 V in pause. It was actually at 5.6 V , which was high enough to change the state of the following gate. Replacing IC4 restored normal operation.
A.D.

Samsung V1-626

Rapid drifting off tune was traced to a number of dry-joints on the tuner - it seemed as if it might have had a fair knock from above. We've traced a number of faults in these machines to dry-joints. N.B.

Panasonic NV-G25

Having cleaned the heads, a field engineer brought this one in for the following faults: the noise bars on cue and review were wider than normal (they are usually almost invisible); at $1 / 25$ th speed every other frame was obliterated by noise;
odd frames were noisy with the $1 / 5$ th and $1 / 10$ th speeds; and the still frame was very poor. On examination we found that the heads were faulty. When I used the special Panasonic tool - wonderful machine - to replace the heads I noticed that all the relevant adjustments (tracking fix, head frequency response etc.) had been set at one end of their tracks. Presumably the original head had been a borderline one.
N.B.

Salora SV8500

This Mitsubishi clone would erase and play sound but wouldn't record any. The trouble was traced to Q302 and Q304 which were both leaky. It's a major job to dismantle this machine for service!
N.B.

Sony CCDV8AF

New heads had been fitted but within a week this camcorder was back because the zoom motor ran all the time, keeping the lens fully out. We found that there was a break in the print around the zoom motor circuitry. N.B.

Ferguson 3V35/JVC HRD120

The customer's complaint was that the machine would occasionally stop as soon as play had started. After many hours of soak testing we found that the cause of the trouble was a lazy drum motor. With no drum rotation, the machine stopped.
N.B.

Panasonic NV333

Until recently the cause of the tape riding up and spooling into the machine in the review mode has always been a worn upper drum. Recently however we've had some machines where the same end result has been caused by the lower drum becoming too smooth. Sometimes a good rub with Brasso will provide a temporary cure, staving off replacement for a while. This is worthwhile as the cost of a new direct drive unit is considerable.
N.B.

Sony CCDV100E

Field buzz on sound when recordings are made with the built-in microphone is usually caused by the microphone harness being too close to the deflection yoke leads. N.B.

Sharp VC8300

No display was fairly quickly traced to an open-circuit digitron heater. A simple fault, but one that in practice is not as common as you might expect.
N.B.

Panasonic NV-G12

Tuning problems due to IC7551, D7555 and Q7551/2 going short-circuit have been a problem with these machines. Some guidance has now come from Panasonic. It seems that all machines with the serial number prefix E7 can be affected. Resistor legs around the i.c. were bent over during assembly, before soldering, and they can intermittently touch lands on the PCB. The cure is to straighten suspect legs. Some machines have already been done by Panasonic themselves.
N.B.

Sony CCDV8AF, EVA300 etc

If replacement of the tension regulator arm is required because the shaft slips out of place be sure you fit the modified type, part No. X-368-652-84.
N.B.

\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{1} \& \multicolumn{2}{|r|}{］} \& \multicolumn{2}{|l|}{TGE} \& \multirow[t]{2}{*}{P0} \& \& \multirow[t]{2}{*}{\({ }_{\text {8uxa }}{ }^{5}\)} \& \multirow[t]{2}{*}{75} \& \multirow[t]{2}{*}{\％，\({ }_{\text {Ha196 }}\)} \& \multirow[t]{3}{*}{10} \& \multicolumn{2}{|l|}{\(4 \sqrt{3}\)} \& \multicolumn{2}{|l|}{WAM} \& \multicolumn{2}{|l|}{P1011} \& \multicolumn{2}{|l|}{1 TV 2} \& \multicolumn{2}{|l|}{\(4 A^{2}\)} \\
\hline \({ }_{\text {cosem }}\) \& \({ }_{3}^{3.30}\) \& \& \({ }^{0.67}\) \& 1206 \& \({ }^{258}\) \& \({ }_{\substack{8 C 20 \\ 8.2788}}\) \& 0.14 \& \& \& \& \& \& \& MC1351P \& 236 \& sass \& 54 \& \({ }^{\text {sprata }}\) \& \({ }^{48}\) \& 18Asa \& 1.87 \& \({ }^{\text {TOA4431 }}\) \& \({ }^{2 n}\) \\
\hline \({ }^{\text {P／5，}}\) \& \({ }_{5}^{3.0}\) \& \({ }^{251829}\) \& \({ }_{450}^{20}\) \& anzea \& \({ }^{385}\) \& \& \({ }^{20} 8\) \& \& 2， 215 \& 8uze \& 1127 \& HA13001 \& \& \({ }^{\text {Mclis2 }}\) \& 225 \& sass \& 5， 5 \& Stiras \& \({ }_{516}^{536}\) \& TaAs0 \& 118 \& toama \& 3.35 \\
\hline 17053 \& \({ }_{561}^{561}\) \& \({ }_{2}{ }^{25 C 1893}\) \& 3.00 \& AN211 \& 3.28 \& BC214 \& 0.10 \& bore \& 121 \& вuns \& 120 \& \& 187 \& MC1358 \& 215 \& \& 22 \& \& \& \& \& \& \\
\hline 1707 \& 930 \& \({ }^{25 C 1906}\) \& 0.98 \& AN21 \& 200 \& \({ }_{\text {B } 2 \text { cra }}\) \& 0.40 \& 迷 \& 105 \& buranz \& 197 \& HA1332 \& \(2 \pm\) \& Mclumol \& 2.00 \& Sassbic \& 128 \& Shaser \& \({ }_{525}\) \& \({ }_{\text {treasma }}^{\text {traso }}\) \& \({ }_{1}^{1.58}\) \& toatsion \& \\
\hline （17899 \& \begin{tabular}{l}
395 \\
250 \\
\hline
\end{tabular} \& \({ }_{\substack{251.2121}}^{25193}\) \& 137 \& \({ }_{\text {An }}^{\text {A } 23}\) \& 5.58 \& \({ }_{\text {BC238 }}^{88}\) \& 0.10 \& \({ }^{85115}\) \& 040 \& \& \({ }_{1}^{112}\) \& \& \({ }_{1}^{402}\) \& \({ }_{\text {MCli413 }}\) \& \({ }_{7} 041\) \& \& \({ }_{133}^{293}\) \& \& 5.5 \& \& \({ }^{108}\) \& \& \({ }_{6}^{6.88}\) \\
\hline 17376 \& 1.5 \& 251939 \& 228 \& \& 125 \& \({ }_{\text {BC238 }}\) \& 008 \& Bf118 \& 0.67 \& Buzos \& 1.50 \& \& 27 \& MCIT4 \& 215 \& \& \& \({ }^{\text {5038 }}\) \& \& rcazasa \& \& \& \\
\hline INM \& 008 \& 142 \& 108 \& \& 1.11 \& － \& 025 \& ， \& 025 \& 8u226 \& 215 \& HA13388 \& 245 \& MC14s \& 3.46 \& Sasbr10 \& 27 \& T8037 \& 2.11 \& \& 239 \& toastoo \& 275 \\
\hline INa \& O068 \& \({ }_{25}\) \& －1098 \& \({ }_{\text {AN2 }}^{\text {AN2 }}\) \& \({ }^{4} 80\) \& \& －0．30 \& \& 0.21
0.13 \& \({ }_{\text {8U336 }}^{8038}\) \& \({ }_{220}^{200}\) \& \({ }_{\text {HA }}^{\text {HA1388 }}\) \& \({ }_{3}^{1.36}\) \& \& 310 \& SBA） \& \(\begin{array}{r}161 \\ 195 \\ \hline 1\end{array}\) \& \& \({ }_{1 \times 2}^{097}\) \& \({ }_{\text {TCa }}\) \& \begin{tabular}{l}
216 \\
228 \\
28 \\
\hline 1
\end{tabular} \& \({ }_{\text {TOAB }}\) \& \({ }_{275}^{23}\) \\
\hline INa \& 0.05 \& \({ }^{25 C 1}\) \& 193 \& AN230 \& \({ }^{385}\) \& 8с300 \& 035 \& \({ }_{81}^{81} 13\) \& 028 \& Buam \& 1,49 \& HA1374 \& 4.00 \& C \& 2.15 \& \({ }_{\text {scss }}\) \& 1.46 \& tope9 \& 1.95 \& tca \& 224 \& IDA \& 3.15 \\
\hline INA \& －008 \& \({ }^{2551959}\) \& 29 \& \({ }_{\text {ancas }}\) \& \({ }_{528}\) \& \({ }_{\text {BCOM }}\) \& 0.53 \& \({ }_{\text {Bre }}^{184}\) \& －028 \& － \& O2， \& \(\underset{\text { Hal3 }}{ }\) \& 1.75 \& \({ }_{\text {MC5192 }}\) \& －1980 \& Soaza \& 12.5 \& T6058 \& － \& \({ }_{\text {TCasso }}\) \& \({ }_{3}^{2 \times 5}\) \& \({ }_{\text {doasi }}\) \& \\
\hline 1 Na \& 007 \& 25 Cl 183 \& 27 \& 1301 \& 200 \& вс203 \& 104 \& \({ }^{\text {bf } 515}\) \& \& 81412 \& 58 \& на1339R \& 205 \& MC \& 3.9 \& 562 \& 645 \& TSOP \& \(2 \pi\) \& tcab \& 2.60 \& T081033 \& \({ }_{\text {2，}}\) \\
\hline \& 0.03 \& 2 S \& 125 \& AN302 \& 198 \& \& \({ }^{0} 08\) \& Bfis8 \& 0.18 \& \& 1.13 \& HA1339 \& 239 \& MC7818C \& 218 \& \& 1175 \& \& 125 \& \& 31 \& \& 305 \\
\hline \& 005 \& \& 0.34 \& \& 0 \& \& 0.11 \& \& 0.18 \& \& 45 \& \& 2.17 \& \& 0 Os \& \& \({ }^{827}\) \& \& 28 \& \& 2．25 \& \& \({ }^{230}\) \\
\hline INSANO2 \& 0.15 \& \({ }^{2}\) \& 211 \& AN316 \& 3.50 \& \& 0.13 \& \({ }_{\substack{\text { Bf } \\ 8 \times 160}}^{\substack{168}}\) \& －0．31 \& \& 1.85 \& \& 1.98
218 \& \({ }_{\text {M }}^{\text {M } \mathrm{CR} 211}\) \& \({ }_{028}^{223}\) \& Stilizh \& \({ }_{7}^{175}\) \& Ton \& \& TCCAB3 \& \& \({ }_{\text {den }}\) \& lis0 \\
\hline INs \& 0.16
0.15 \& \({ }^{2552063}\) \& 1097
3 \& \({ }_{\text {AN3 }}^{\text {AN32 }}\) \& 9，4，4
5 \& \({ }_{\text {BC328 }}\) \& 0.15
0.10 \& \& －034 \& \& 180
298 \& \({ }_{\substack{\text { HA139 } \\ \text { HA1466 }}}\) \& 228 \& ME \& －028 \& \({ }_{\substack{5112 \\ \text { S13 }}}\) \& \(\xrightarrow{1853}\) \& \& 120 \& TCA \& 5 \& \& \({ }_{0}^{827}\) \\
\hline INS \& 0.35 \& 2552273 \& 22 \& AN \& 225 \& \({ }_{\text {BC233 }}\) \& 009 \& BF／8 \& 0.0 \& \({ }^{\text {Busab }}\) \& 1.79 \& HA1452 \& 0.85 \& ME80 \& \({ }_{0} 0.3\) \& Ske2F104 \& 129 \& Tonlsw \& 196 \& TCa910 \& 204 \& TC106M \& \\
\hline \& \({ }_{0}^{031}\) \& \({ }_{2}^{2523855}\) \& \({ }^{16}\) \& \& 585 \& \({ }^{\text {BCase }}\) \& 010 \& \({ }^{\text {er }} 179\) \& \({ }^{0.38}\) \& \& 000 \& H01 \& 207 \& Meor \& \({ }^{0} 9\) \& SkEze3 \& 0.8 \& Ton3 \& 145 \& TCa9 \& 247 \& TiCa4 \& 0.7 \\
\hline \& 0.031 \& \({ }^{252} 28091\) \& 1230 \& \({ }_{\text {An }}^{\text {An } 3 \text { \％}}\) \& 1531 \& \({ }_{\text {BC3s }}\) \& \({ }^{024}\) \& \& 0， 0 \& \& \({ }_{108}^{198}\) \& \& \({ }^{195}\) \& M／2301 \& 330 \& \& 0.3 \& \({ }^{\text {T9035V }}\) \& 195 \& Tсаяай \& 238 \& \({ }^{\text {cas }}\) \& 0.50 \\
\hline 159 \& 010 \& \(2 \mathrm{2S} 2\) \& \({ }_{10}\) \& \& \({ }_{59}\) \& \({ }_{\text {BCa4 }}\) \& 04 \& 182 \& 0.4 \& Bux \({ }^{\text {a }}\) \& 1，00 \& H038 \& 125 \& M \& －1．193 \& Skefrza \& 0．4． \& Tgrsav \& \({ }_{5} 5\) \& T13F30 \& ， 1.65 \& IP1 10 \& （106 \\
\hline \& 0.33 \& 2SC \& 0.08 \& 332 \& 132 \& bcasa \& 036 \& 183 \& 0.3 \& Bux \({ }^{\text {d }}\) \& 1.10 \& 位 \& 1409 \& MJ8 \& 490 \& SkE \& 124 \& T905 \& 07 \& T0627 \& 450 \& T1P10 \& 0.45 \\
\hline 2 N \& －0．98 \& \({ }_{25 \mathrm{c}}^{28236}\) \& 1.08 \& AN511 \& 334 \& \({ }_{\text {BCas }}\) \& 0.3 \& \({ }_{\text {Bri }}^{135}\) \& 0.38 \& \({ }_{\text {BY }}^{127}\) \& \({ }_{0} 010\) \& H04 \& 889 \& MJE233 \& 128 \& Ske \& 190 \& \({ }^{19606}\) \& O， 0.9 \& \& 225 \& Tiplit \& － 0.5 \\
\hline 2 N 3 \& 0.61 \& \({ }^{2525278}\) \& 1.169 \& ans 120 \& 4.50 \& \({ }^{\text {BCata }}\) \& 1.15 \& \({ }^{\text {Br }}\) ¢ 9 \& 0.14 \& \({ }^{\text {Pr Pr }}\) 83 \& 0.12 \& Hishios \& \({ }^{600}\) \& MJE3 \& 049 \& \& 215 \& tapoz \& 480 \& roaic \& 238 \& tip 12 \& 050 \\
\hline \(2 \times 3\) \& －1．56 \& \({ }^{25 c} 2335\) \& 12.8 \& ANS52 \& 4.0 \& \({ }_{\text {BCOIP }}\) \& 02 \& \({ }_{\text {8FF } 96}\) \& 0.17 \& \({ }_{\text {Bry } 17}\) \& 0.5 \& HM 233 \& 98 \& ML31 \& 30 \& SL14 \& 3.89 \& talasi \& 1.14 \& T0A10 \& 275 \& \({ }_{\text {TP1 } 120}\) \& \({ }^{09}\) \\
\hline \& 0.18 \& \& 128 \& \& 550 \& \({ }^{\text {BCa79 }}\) \& 041 \& \({ }^{85} 197\) \& 0.18 \& 88179 \& 1.08 \& HM6232 \& 525 \& ML23 \& 3.01 \& St14 \& 3.9 \& \& 000 \& \& 0 os \& \(\mathrm{TIP}_{1 / 237}\) \& 150 \\
\hline \({ }_{2}^{2 N 3}\) \& 0.16
0.14 \& \({ }^{2}\) \& \& \({ }_{\text {A }}^{\text {ANS512 }}\) ANS613 \& \({ }_{420}^{230}\) \& \({ }_{\text {BCC46 }}^{\text {B／32 }}\) \& \({ }_{0} 028\) \& \& －111 \& \({ }_{8}^{\text {8Y }}\) \& －7 \& HMM6251
HMP103 \& \({ }_{45}^{58}\) \& \({ }_{\text {M }}\) \& \begin{tabular}{l}
257 \\
5 \\
\hline
\end{tabular} \& （ill \& \({ }_{24}^{34}\) \& \({ }_{\text {cta }}^{\text {a }}\) \& \({ }_{127}^{07}\) \& ToAloli \& 1.103 \& T1P235 \& 024 \\
\hline 203 \& 016 \& \({ }^{25 C 2377}\) \& 1.00 \& Anstas \& 398 \& 8c547 \& 0.10 \& Br200 \& 0.37 \& Bris9 \& 1.18 \& нмя¢032 \& 99 \& M1933 \& 3.00 \& \& 250 \& tala \& 313 \& T041128 \& 245 \& － \& 046 \\
\hline \& 0.13 \& \({ }^{25 C 2578}\) \& 6.75 \& 15701 N \& \({ }^{166}\) \& \({ }^{\text {BCC548 }}\) \& 012 \& \({ }^{\text {br } 218}\) \& 0.36 \& 8y1s8 \& 162 \& HMMO \& 37 \& ML9 \& 3.38 \& S1480 \& 3.98 \& TA） \& 18 \& toato \& 242 \& T1P2 \& 003 \\
\hline \({ }_{2}^{2} \times 33\) \& 03 \& \({ }^{25588371}\) \& \({ }_{1}^{195}\) \& \& O20 \& \({ }_{\text {BC5s }}^{\text {BC59 }}\) \& 0 \& \& －0， 0 \& \& \({ }_{0}^{024}\) \& cims \& \％ 12.15 \& MM \& \({ }_{9} 89\) \& \({ }_{\text {Stal }}\) \& \({ }_{695}^{18}\) \& \({ }_{\text {cta }}^{\text {a }}\) \& 258 \& TDA103 \& S \& \& 040
075
0,0 \\
\hline \(2 \times 37\) \& 200 \& \({ }_{25513}\) \& \({ }_{64}\) \& ANE310 \& 4.4 \& \({ }_{8 C 56}\) \& 970 \& BF240 \& 017 \& Bravesm \& оя \& нт1202 \& 206 \& Mms3ibn \& 311 \& St91 \& \({ }_{9} 90\) \& IAT0 \& 190 \& toalia \& 15 \& п1P305 \& \({ }^{0} 0.75\) \\
\hline \& 0.51 \& \({ }^{255372}\) \& 140 \& Anc3an \& 10.14 \& ［57 \& 0.10 \& \({ }^{\text {Br } 241}\) \& 0.15 \& вY2 \& \({ }^{027}\) \& KAz：01 \& \& Mм \& 201 \& \& 1.80 \& \& 208 \& \& 205 \& т1P3 \& 0.41 \\
\hline \({ }_{2}{ }^{2}\) \& 0.6 \& \({ }_{25}\) \& （130 \& 退 \& 1.43
1.60
1 \& \({ }_{\text {BC559 }}\) \& － 010 \& \& －0．59 \& \& \({ }_{1}^{0.6}\) \& \({ }_{\text {k }}^{\substack{\text { kessic } \\ \text { KC582C }}}\) \& \(\xrightarrow{1800}\) \& MM538 \& \({ }_{6}^{6.54}\) \& \({ }_{\text {SN }}^{\text {SN }}\) \& \({ }_{1025}^{298}\) \& \({ }_{\text {coin }}\) \& \& \({ }_{\text {TOAI }}\) \& 1385 \& \& －\({ }_{\text {a }}^{0.36}\) \\
\hline \(2{ }^{2} 3\) \& 0.0 \& \({ }^{25 \mathrm{C}}\) \& 0.50 \& \& 15 \& \({ }^{\text {BC }}\) \& 0.14 \& Br276a \& 258 \& \({ }_{8}^{8123}\) \& 12 \& L200CV \& 1 198 \& MN1 \& \({ }^{13,56}\) \& SN237 \& 7.19 \& TAT \& 5 5． \& TDAI \& 098 \& \({ }_{\text {IFP37 }}\) \& 038 \\
\hline \({ }_{2} \mathrm{~N}\) \& 3 \& \({ }_{2 S}\) \& \({ }_{0} 0\) \& \& \({ }_{0} 18\) \& \({ }_{\text {BCas }}\) \& 028 \& \& \({ }_{0} 0\) \& \({ }^{\text {Bra }}\) \& 0.8 \& Lal210 \& 1.38 \& MN1435 \& 12.40 \& SN297 \& bo4 \& tavi \& 311 \& ToA \& 250 \& \({ }_{\text {ITP3 }}\) \& \({ }_{0}^{0.50}\) \\
\hline 2 Na \& 0 \& 2SC \& 0.15 \& anc6io \& 240 \& d \& 024 \& 81857 \& 0.34 \& 8227 \& 0.20 \& LA1 \& 105 \& \& 5.07 \& SN2912 \& 11．8 \& \& 092 \& TDAI \& 33 \& IIP \& \(0 \times 0\) \\
\hline \({ }_{2}^{2 N 5}\) \& －050 \& \({ }_{2}^{2555}\) \& 288 \& AN71 \& 138 \& \& 020 \& \& \({ }_{0}^{0.3}\) \& \({ }_{8}^{8127289}\) \& \({ }^{0.90}\) \& LA333 \& \({ }_{118}^{2.87}\) \& \({ }^{\text {MP27812 }}\) \& \({ }_{507}\) \& SNY \& \({ }_{165}^{8 / 1}\) \& \& \begin{tabular}{l}
23 \\
1.50 \\
\hline 1
\end{tabular} \& \({ }_{\text {ToA }}\) \& 1211 \& \({ }_{\text {T1P }}\) \& \({ }_{0} 0.05\) \\
\hline \({ }_{2}^{2} 2 \times 5\) \& 0.45 \& \({ }^{255535}\) \& 0.79 \& AN749 \& 1.108 \& \({ }_{\text {BCx34 }}\) \& 0.18 \& \& 028 \& \({ }^{81272965}\) \& 0.98 \& LA1333 \& \({ }^{1.05}\) \& MP5512 \& \({ }_{2}^{1.73}\) \& \({ }^{\text {SN2737 }}\) \& 4 \& \({ }^{\text {a }}\) 713 \& 0.60 \& TDAI \& \({ }^{3.96}\) \& Tip \& \({ }^{105}\) \\
\hline \({ }_{2} 215\) \& 0.61 \& \({ }^{255357}\) \& 0.54 \& AN751 \& 237 \& \({ }^{80116}\) \& 0.0 \& \({ }_{8}^{827}\) \& 0.34 \& \({ }^{\text {dras }} 6\) \& 1.03 \& Lal36 \& \({ }_{2} 208\) \& MPF256C \& \({ }_{0}^{2.50}\) \& SN2972 \& 497 \& \({ }^{\text {la }}\) 1a731 \& \(\bigcirc{ }^{10}\) \& toalz \& \({ }_{38} 1.58\) \& HP \& 0.50 \\
\hline \({ }^{2 N 6}\) \& 158 \& 25 CCOSO 1 \& 1.16 \& 7156 \& 285 \& \({ }^{80124}\) \& 1.31 \& \({ }^{82723}\) \& 020 \& \({ }^{\text {Pr238 }}\) \& 0.36 \& LA1385 \& 1.53 \& MP5657 \& 048 \& 5N27718 \& 1.85 \& TA774 \& 3.87 \& toat \& 430 \& IIP \& 0.49 \\
\hline \({ }_{2}^{2 \times 1}\) \& 0 \& \({ }_{2 \text { 25c6ise }}^{2368}\) \& 0．s \& （1788 \& 2H \& \({ }_{80132}^{80131}\) \& 0.07 \& \({ }_{\substack{81724 \\ 8724}}\) \& \({ }_{03}^{020}\) \& \({ }_{\text {Brab }}^{\text {Brya }}\) \& 0.95 \& \({ }_{\text {L }}^{\text {La } 1383}\) \& 1908 \& MPSA42 \& \({ }_{0}^{0.27}\) \& \& 2.85
5.56

d \& \& 2.50
18 \& ${ }_{\text {ToA }}^{\text {ToA }}$ \& ${ }_{13} 3$ \& ${ }_{\text {ITP }}^{\text {ITP }}$ \& ${ }_{005}^{008}$

\hline ${ }^{2} \mathrm{NG}$ \& 09 \& ${ }^{2}$ \& 0.61 \& Anrza \& 45 \& 80133 \& 0.53 \& ${ }_{8} 1838$ \& 0.33 \& Brass \& 1.49 \& La381 \& 0.91 \& MPSA92 \& 02 \& SN209 \& 04 \& TA1448P \& 1.67 \& TDA1412 \& 088 \& Н1P92 \& 0×9

\hline ${ }^{2} \mathrm{Na}$ \& 105 \& ${ }^{256681}$ \& 40 \& \& 350 \& ${ }^{8013}$ \& 0.35 \& 8F33 \& 0.45 \& ${ }^{87448}$ \& 1.8 \& La33s \& 5.58 \& Mpscos \& \& \& 0.34 \& Ta）74 \& 3.26 \& toalazo \& 2.58 \& tipq28 \& 0.53

\hline ${ }_{25 A}^{25 A}$ \& 1s0 \& ${ }_{2 S 664}^{25682}$ \& 1.18 \& ${ }_{\substack{\text { allit } \\ \text { auli }}}^{\text {ald }}$ \& 25 \& ${ }_{8013}^{8013}$ \& ${ }_{0}^{0.26}$ \& ${ }_{\text {BFF35 }}^{8 \times 38}$ \& 0.39 \& ${ }_{\substack{\text { Bnis }}}^{\text {Bris }}$ \& 0 \& Lanil \& $\xrightarrow{1.98}$ \& MPSU115 \& ${ }_{0}^{1.75}$ \& SN740 \& 0.30 \& tapte \& ${ }_{4}^{2750}$ \& ${ }_{\text {ToAl }}$ \& 345 \& ${ }_{\text {T1Pa }}$ \& ${ }_{0.37}^{0.3}$

\hline 25 A \& 049 \& 255693 \& 0×1 \& arlosk \& 208 \& 80138 \& 0.38 \& 8F362 \& 0.2 \& Brx55 600 \& 02 \& La4iot \& 0.94 \& mpsuga \& 1.98 \& SNi4at \& 0.52 \& ［A7162P \& \& TDA14 \& \& 1543 \&

\hline \& 125 \& \& 0 \& \& 109 \& 80138 \& 号：20 \& ${ }^{85633}$ \& \& ${ }^{81 \times 21} 1600$ \& 0.85 \& Aa $^{\text {a }}$ \& O75 \& Mres \& \& SNTMask \& O27 \& TA＞72 \& ，1，414 \& ToAl \& 78 \& ¢ \& 028

\hline ${ }_{25} 5^{2}$ \& 0.45 \& 25C \& ${ }_{10}$ \& 8a310 \& ${ }_{0} 1.14$ \& 8014 \& 1.0 \& ${ }_{8539}$ \& 08 \& 8nss \& 120 \& ${ }_{\text {La412 }}$ \& ${ }_{188}$ \& MR914 \& 120 \& SNTA1 \& 161 \& TATI \& ju \& ITAl \& 36 \& Tish \& \％s

\hline \& \& \& 1.43 \& BA1310 \& 1.9 \& 80.50 \& 18 \& Bfal \& 0.86 \& вz793C30 \& 128 \& Lat138 \& 458 \& MSMS81 \& 173 \& sN71 \& 074 \& tarzo \& 216 \& TDA \& 2.60 \& rior \& 255

\hline 2S4 \& 48 \& \& 0.30 \& BA1320 \& 138 \& ${ }^{80} 5$ \& 0.07 \& ${ }^{\text {Brai }}$ \& 1.87 \& BYY88 RANGE \& O． 010 \& ${ }^{\text {Lasiso }}$ \& ${ }^{0} 100$ \& MSMS \& （15．15 \& SNR414 \& 20. \& tara \& 12.9 \& Toal \& 3.15 \& \& 15.00

\hline ${ }_{2}^{25 C}$ \& is \& 2sc730y \& 18 \& 8a 3130 \& 275 \& ${ }^{80163}$ \& 0.1 \& ${ }_{\text {Braze }}^{\text {Braz }}$ \& 0.58 \& ${ }^{\text {B2x }}$ 89 PANGE \& 0.10 \& ${ }_{\text {Laszo }}$ \& 1.04 \& NESA2 \& 2.55 \& SNP15 \& | 1.51 |
| :--- |
| 127 |
| 1 | \& ${ }^{\text {a }}$ \& ${ }_{1,12}^{2,12}$ \& \& ${ }_{688} 6$ \& （TMS1029 \& 1395

\hline ${ }_{2 S}^{25}$ \& 135 \& ${ }_{2}^{256878}$ \& ${ }^{023}$ \& ${ }^{\text {BA }}$ \& 0.19 \& ${ }^{80196}$ \& 0.0 \& \& 0.03 \& \& 0.46
0.76 \& lasto \& 1.18 \& \& ${ }_{0}^{0.16}$ \& SNY2190 \& 055 \& Tat2108 \& 1， 14.5 \& TDA \& 228 \& TMS37200 \& 538

\hline ${ }_{2} 2 \mathrm{~A}$ A \& 6.55 \& 25C \& 096 \& BA \& 0.40 \& 80179 \& 0.15 \& ${ }^{\text {BFA5 }}$ \& 0.41 \& ${ }_{\text {casa }}$ \& iss \& La430 \& 129 \& \& 125 \& SN1 \& 0.49 \& ${ }_{\text {T A } 212}$ \& 207 \& ${ }_{\text {TOA }}$ \& 129 \& TMS3355 \& ${ }^{163} 13$

\hline ${ }_{2} 254$ \& 0，400 \& ${ }^{25 C 930}$ \& 0.051 \& ${ }^{\text {8A }}$ \& 012 \& ${ }^{80181} 88$ \& ${ }_{0}^{0.98}$ \& | BF458 |
| :---: |
| Befs | \& 0.38 \& Салах9 \& O． 38 \& ${ }^{1}$ \& 181 \& OAa \& 011 \& SST74 \& 027 \& TAR3： \& 1.45 \& ${ }_{\text {TOAI }}$ \& 2.85 \& IMSS39N \& ${ }^{1955}$

\hline \& 23 \& ${ }^{255940}$ \& \& ${ }_{80}^{88159}$ \& ${ }_{0}^{0.05}$ \& ${ }^{80172}$ \& ${ }_{0}^{099}$ \& \& 1.95 \& Caves \& 220 \& ${ }^{\text {a }}$ \& | 3.95 |
| :--- |
| 1.9 |
| 1.6 | \& ${ }^{\text {OLas }}$ \& 0.14 \& SN \& 104 \& TAR2 \& \& toam \& \& \&

\hline ${ }_{2 S} 5$ \& 28 \& 2501128 \& 230 \& 8A182 \& 024 \& ${ }^{801}$ \& 127 \& ${ }^{\text {BF46 }}$ \& 02 \& ${ }_{\text {coser }}$ ca3131 \& 238 \& 1446 \& 295 \& ${ }^{\text {apas }}$ \& 0.13 \& ${ }^{\text {SNT}}$ \& 0.95 \& tazzap \& 213 \& toaz \& 1.48 \& TYE0 \& 297

\hline ${ }_{25 A}^{254}$ \& 0.51 \& \& －0．94 \& ${ }_{8 A}^{8 A}$ \& 124 \& ${ }^{80188} 8$ \& 0. P8 \& ${ }_{\text {BFa71 }}$ \& 0.33 \& ${ }^{\text {cosen }}$ \& 027 \& ${ }_{\text {laber }}$ \& － \& ${ }^{\text {ocr }} \mathrm{C}$ \& 2.15 \& SNatse \& ， \& ${ }_{\text {data }}$ \& 1.67 \& ${ }_{\text {diaza }}$ \& ${ }_{100}$ \& ${ }_{\text {U }}^{\text {UTN }}$ \& | 8.50 |
| :--- |
| 89 |
| 9 |

\hline \& 488 \& 2501 \& 1.10 \& ${ }_{\text {8a311 }}$ \& 13 \& 80190 \& $0 . n$ \& bea72 \& 033 \& coumer \& 135 \& La7202 \& 1197 \& ${ }^{0} \mathbf{0} 36$ \& 12.28 \& SN76013 \& 350 \& TA1240 \& 355 \& toaz \& as \& UPCI \& ${ }_{59} 9$

\hline ${ }_{2 S}^{25462383}$ \& 11.4 \& 2515152
250198
$\substack{\text { 20，}}$ \& ${ }_{120}^{204}$ \& ${ }_{\text {Ba3 }}$ \& 1.105 \& ${ }_{8020}^{8020}$ \& ${ }_{0}^{0.50} 0$ \& $\underbrace{\substack{\text { Bra }}}_{\text {8rama }}$ \& \％ \& \& 024 \& \& ¢90．98 \& ${ }^{0} 044$ \& ${ }_{0}^{0.38}$ \& SNY02 \& 2，5 \& \& 3 \& TOAR \& 1180 \& UPCII \& （8．95

\hline \& \& ${ }^{25023}$ \& 0×1 \& ${ }^{\text {Ba3 }}$ \& 0.06 \& ${ }_{80203}$ \& 050 \& BF994 \& 220 \& C00413 \& 0.33 \& La） 102 \& 3.90 \& ${ }_{0} 0$ \& 044 \& SN8633 \& ${ }_{36}$ \& TAİ33ap \& 136 \& ${ }_{\text {Toat }}$ \& 207 \& upcio \&

\hline ${ }_{2} 25 \mathrm{SA}$ \& 1.61 \& 25 \& ${ }_{20}^{1000}$ \& ${ }^{\text {8A3318 }}$ \& ${ }_{108}^{100}$ \& ${ }_{\text {cose }}^{8020}$ \& | 0.41 |
| :--- |
| 1.78 |
| 18 | \& ${ }_{8}^{85503}$ \& \& ${ }_{\substack{\text { cionil6 } \\ \text { Co4017 }}}$ \& － 046 \& \& 100 \& － \& $0 \cdot 0$ \& SN7611 \& 16 \& ${ }_{\text {TRAB3 }}^{\text {TAR2 }}$ \& 190 \& \& 209 \& UPCLiod \&

\hline ${ }_{25}^{25 A}$ \& 1.105 \& \& 198 \& baxas \& 13 \& 80208 \& 0.34 \& 8E556 \& 0.18 \& coader \& 123 \& ${ }_{181274}$ \& 361 \& 00182 \& 198 \& \& 198 \& TAT3 \& 061 \& \& ${ }_{228}^{288}$ \& UPCC1156H \& lis

\hline \& 0.9 \& 25 \& ${ }_{208}^{258}$ \& \& $\underset{280}{623}$ \& ${ }_{\text {B022 }}^{8023}$ \& ${ }_{0}^{0.99}$ \& ${ }_{\text {Brems }}^{8 \times 59}$ \& 027 \& \& 0.38 \& \& 91013 \& PITG42 \& ${ }_{2}^{1.45}$ \& SN152 \& 200 \& \& ${ }_{585}^{115}$ \& \& ${ }^{237}$ \& UPCLII \& iso

\hline \& ${ }_{0}^{06}$ \& 250 \& ${ }^{268}$ \& Eas51 \& 120 \& ${ }^{80288}$ \& 0.03 \& ${ }^{\text {Br75 }}$ \& 0.59 \& ${ }^{\text {coun2 }}$ \& 0.04 \& ${ }^{1233150}$ \& 275 \& Pras\％ \& ${ }_{14}^{19}$ \& SN7622 \& 327 \& TAFEO \& 220 \& Totas \& ${ }^{3} 50$ \& UPC， \& 103

\hline \& 0.90 \& 3 33 \& 5150 \& \& 25 \& ${ }^{80292}$ \& ${ }_{0} 0.50$ \& ${ }_{\text {BF761 }}^{\text {Bris }}$ \& \& \& ${ }_{0}^{0.85}$ \& ${ }_{\text {IM187 }}$ \& 17.4
13.4 \& ${ }_{\text {Rex }}^{\text {R1039 }}$ \& \& SN162\％ \& 885 \& ${ }^{\text {a }}$ \& 220 \& ${ }^{\text {a }}$ \& ${ }_{30}^{371}$ \& UPCCL1854 \&

\hline \& 0 Oes \& ${ }^{250339}$ \& ${ }^{210}$ \& \& ${ }^{839}$ \& ${ }^{80234}$ \& 0.9 \& ${ }_{\text {BrF69 }}^{87}$ \& 0.50 \& come \& ${ }^{106}$ \& ${ }^{\text {L2maza }}$ \& 68 \& ${ }_{\text {R }}^{\text {R20988 }}$ \& 138 \& SNV7383 \& 230 \& Tif7e \& ¢ 525 \& \& co． \& YPCCL222 \&

\hline \& \& ${ }_{25}^{25}$ \& ${ }_{213}^{128}$ \& \& 2ex \& \& 0.39 \& \& 边 \& － \& ， \& LMz37） \& \& \& 138 \& （inctiol \& \& \& 边 \& \& \％ \& \&

\hline \& 19 \& 250550 \& ${ }_{28}^{231}$ \& 8A336 \& 150 \& ${ }^{802989}$ \& ${ }^{0} 05$ \& ${ }_{\text {bersso }}^{\text {Bres }}$ \& 0， 0 \& \& 020 \& LIM32N \& 08 \& \& 130 \& SNi65 \& ${ }_{30} 150$ \& \& 7,50
095 \& \& ${ }_{5}^{056}$ \& UpCCI28 \& ${ }_{2}^{1.15}$

\hline \& 214 \& 2506 \& ${ }_{0 \times 6}^{2 *}$ \& ${ }_{8}^{86655}$ \& 108 \& ${ }^{8024} 8$ \& 0.39 \& ${ }_{\text {Brema }}^{\text {Brag }}$ \& O． 0.50 \& ${ }^{\text {cosen }}$ \& ${ }_{0}^{065}$ \& Im360k \& ${ }_{1188}$ \& ${ }_{\text {R2235 }}$ \& 1.19 \& cock \& $\underset{308}{259}$ \& \& $\underset{258}{108}$ \& \& ${ }^{9} 976$ \& UPCCI \& 181
100
108

\hline \& 1，175 \& 063 \& 道 \& ${ }_{\text {® }}^{\text {BAO }}$ \& ${ }_{\substack{23 \\ 115}}^{115}$ \& \& － \& \& ${ }_{0}^{050}$ \& （ \& On
0.10
1.10 \& IM348 \& 215
280 \& ${ }_{\substack{\text { R23 } \\ \text { R23 } \\ \text { R23 }}}$ \& 1,8
1,59

0.59 \& \& \begin{tabular}{l}
208

200

200

\hline

 \& \& \& \&

250

235

\hline 235
\end{tabular} \& UPC， \&

\hline \& 136 \& \& 0.72 \& ${ }_{\text {BA }}$ \& ， \& ${ }_{8}^{802}$ \& 0.45 \& \& －208 \& cos \& 200 \& ， \& 325 \& \& －1／6 \& \& 2， 2.4 \& ${ }_{\text {a }}$ \& 128
12
12 \& \& 1.60 \& UPCII35 \& 100

\hline \& 1.15 \& ${ }^{250655}$ \& ${ }_{3}$ \& BAS \& ${ }_{01}^{5 \%}$ \& \& 0.99 \& BF \& $1{ }_{108}^{108}$ \& \& \& \& 1023 \& \& ${ }_{201}^{201}$ \& \& ${ }_{485}$ \& \& \％ 6 \& \& ${ }_{250}^{180}$ \& ${ }_{\text {UPC }} \mathrm{UPC}$ \& ${ }_{16}^{204}$

\hline \& 3 \& \& 0，00 \& BAV \& \％31 \& ${ }_{80}^{\text {B03 }}$ \& ${ }_{105}$ \& ${ }_{\text {Brem }}^{\text {Bram }}$ \& 1050 \& \& ${ }_{314}^{409}$ \& LM \& 10．15 \& ${ }_{\text {R2243 }}^{\text {R24 }}$ \& \& \& 330

5.11 \& \& 214 \& ${ }_{\text {TOA }}^{\text {TOA }}$ \& | 340 |
| :--- |
| 240 |
| 10 | \& UPCL13 \& ${ }_{451}^{285}$

\hline ${ }_{25}^{25}$ \& 250 \& ${ }_{25081}^{25073}$ \& ${ }_{3}^{0.00}$ \& ${ }_{\text {bawkr }}^{\text {bavi }}$ \& 0.12 \& ${ }_{803}^{802}$ \& ${ }_{2}^{060}$ \& \& ${ }_{0}^{034}$ \& Cx \& ${ }_{1288}^{964}$ \& \& 3.81 \& \& $\underset{\substack{1.31 \\ 1.30}}{ }$ \& \& ${ }_{6.00}^{6.00}$ \& ${ }_{\text {Ta }}^{\text {TAG6611 }}$ \& $\underset{888}{262}$ \& \& li．ce \& UPCC13 \& $\underset{49}{18}$

\hline ${ }_{25}^{25}$ \& 118 \& ${ }^{255823}$ \& 19 \& ${ }_{\text {Bax }}^{\text {Bax }}$ \& 048 \& ${ }_{8}^{8031}$ \& 200 \& ${ }_{\text {Brexe }}^{\text {Brase }}$ \& 0.4 \& \& 786
886

88 \& ${ }_{1}^{1 \times 2}$ \& | 357 |
| :--- |
| 937 |
| 10 | \& ${ }^{\text {R23 }}$ \& 0.69 \& SN76810N \& 0.50 \& tamod \& 2313 \& toazerilao \& 298 \& Yectasg \& 33

\hline ${ }_{25}$ \& 230 \& ${ }_{250}^{250}$ \& 2.80 \& ${ }_{\text {BAX }}$ \& 0.11 \& ${ }^{\text {803 }}$ \& 0.76 \& ${ }_{\text {Bra }}$ \& $0 \leq 5$ \& ${ }_{\text {cxi3 }}$ \& ${ }_{128}$ \& 183 \& 9.37 \& \& ${ }_{100}$ \& \& ${ }_{5} 5$ \& ${ }_{\text {TAA }}$ \& 283 \& TuAzila \& 105 \& UPR2a \& 1，${ }_{1}$

\hline ${ }_{25}^{225}$ \& \& ${ }_{\substack{25085650}}^{25050}$ \& 18 \& ${ }_{\text {BCI }}^{\text {BC，}}$ \& 0.15 \& ${ }^{\text {B0a }}$ \& 0.47 \& ${ }_{\substack{\text { bra } \\ \text { Bra }}}^{\text {der }}$ \& ${ }_{0}^{0.4}$ \& （ex \& \& \& 727

593 \& \& －0， \& Spe \& | 554 |
| :--- |
| 0.55 | \& \& $1{ }^{1090}$ \& \& ${ }_{215}^{315}$ \& Upras \& 251

4.17

\hline \& ${ }_{3}^{105}$ \& ${ }_{\text {cki }}^{250832}$ \& 1175 \& ${ }_{\substack{\mathrm{BCO} \\ \mathrm{BCI} \\ \hline}}$ \& 0.15 \& ${ }^{\text {B0 }}$ \& ${ }_{0}^{0.56}$ \& ${ }_{8}^{\text {BFF }}$ \& 030
035 \& CX157 \& 558
50 \& \& ${ }_{1237}^{1935}$ \& \& $\underset{ }{159}$ \& Spss3 \& ${ }_{\text {1se }}^{19}$ \& \& $\stackrel{105}{109}$ \& ${ }_{\text {Tod }}^{\text {ToA }}$ \& 1， 126 \& yers3C \& 58

\hline ${ }_{25}^{25}$ \& ${ }^{38}$ \& ${ }_{\substack{250388 \\ 25 \mathrm{k} \\ \hline 105}}$ \& 125 \& ${ }^{\mathrm{BCC}}$ \& 0.38 \& \& ${ }_{0}^{0.69}$ \& \& 027
0.29 \& \& ${ }_{6}^{6464}$ \& ${ }^{\text {M153 }}$ \& ${ }_{1}^{68}$ \& s28300 \& 53
54
54 \& STAA \& \& \& 002 \& ITAA \& 208 \& UPCGI \& 4.10

\hline ${ }_{25}^{25}$ \& 0.6 \& \& ${ }_{0} 21.63$ \& ${ }_{\text {BCCi32 }}$ \& 024 \& ${ }^{\text {8 }}$ \& 0.40 \& Bra \& 0.61 \& Cx55s \& ${ }^{1229}$ \& ${ }_{\text {M } 23 \mathrm{C}}$ \& 1.98 \& 58822 \& 347 \& STA \& 395 \& ${ }_{\text {tia }}$ \& 17 \& \& 2.9 \& UPGa \& ${ }^{2.11}$

\hline \& 1.176 \& \& 085 \& ${ }_{\text {BCO}}^{\text {BC }}$ \& ${ }_{0}^{1018}$ \& ${ }_{\text {BD }}$ \& \& $\underbrace{\text { Bry }}_{\text {Bric }}$ \& ${ }_{80}^{220}$ \& ${ }_{\text {ckiz }}$ \& ${ }_{0}^{6,4}$ \& \& \％ \& \& ${ }_{15} 15$ \& \& \& \& 1.6 \& ${ }_{\text {Tod }}^{\text {TOA }}$ \& ${ }_{2}^{678}$ \& \& $\stackrel{121}{121}$

\hline ${ }_{25}^{25}$ \& \[
$$
\begin{aligned}
& 38 \\
& 485 \\
& \hline 48
\end{aligned}
$$

\] \& ${ }_{7}^{7815}$ \& \[

$$
\begin{aligned}
& 0.54 \\
& 0.60 \\
& 0.012
\end{aligned}
$$

\] \& ${ }_{\text {BCL }}^{\text {BCI } 38}$ \& \[

$$
\begin{aligned}
& 0.04 \\
& 0.28 \\
& 010
\end{aligned}
$$

\] \& \& \& ${ }_{\text {BRI }}^{\text {BRI }}$ \& \[

$$
\begin{aligned}
& 0.54 \\
& 0.54 \\
& 0.95
\end{aligned}
$$
\] \& \& \& ${ }_{\text {M5i }}$ \& ${ }_{3}^{521}$ \& samu \& ${ }_{880}^{1850}$ \& \& ${ }_{5}^{245}$ \& ${ }_{\text {IRA }}$ \& 1．10 \& ${ }_{\text {Toder }}^{\text {Tod }}$ \& （3，00 \& UPC \& 235

\hline 25 \& $$
\begin{aligned}
& 388 \\
& 4.5
\end{aligned}
$$ \& \& \[

0.021
\] \& ${ }_{\text {BCl }}^{\text {BCl }}$ \& 0.4

0.4

0.4 \& \& O08 \& ${ }_{\text {Brac }}^{\text {Brac }}$ \& $$
\begin{aligned}
& 9715 \\
& 2,10
\end{aligned}
$$ \& ${ }^{60323}$ \& \& \& ${ }_{4}^{0.95}$ \& Scas \& 517

185 \& \& $\stackrel{1258}{1234}$ \& ${ }_{\text {TBA }}^{\text {TBA }}$ \& 120 \& Titatizan \& cis \& UPC59 \& 215
215
115

\hline 25 \& \& \& － \& ${ }^{\text {BCC112 }}$ \& 023 \& ${ }^{105553}$ \& （1， \& \& $$
\begin{gathered}
2060 \\
0.60
\end{gathered}
$$ \& ${ }^{\text {din }}$ \& ${ }^{1,15}$ \& M5133， \& 5 \& Samio \& 46 \& \& ， \& ${ }_{\text {I }} 1849$ \& 234 \& ${ }_{\text {Tida }}$ \& 25 \& UPC5 \& \％ 10

\hline \& $$
\begin{aligned}
& 1.85 \\
& 0.04
\end{aligned}
$$ \& ${ }_{\text {ac }}^{\text {ac }}$ \& O24 \& \& 0.93 \& ${ }_{8}^{8053}$ \& 0.58 \& ${ }_{\text {ERR }}^{\text {BRa }}$ \& 0．69 \& ${ }_{\text {HAl }}$ \& 253

1.12 \& ${ }_{\text {M }}$ \& \begin{tabular}{l}
545

9

\hline 95

\hline

\end{tabular} \& ${ }_{\text {SAA }}$ \& 4 \& \& $\underset{5}{2750}$ \& \& \[

$$
\begin{aligned}
& 130 \\
& 211
\end{aligned}
$$
\] \& \& ${ }_{6} 138$ \& UP015 \& 4，${ }^{4} 6$

\hline \& \％ 35 \& \& ${ }_{0}^{030}$ \& ${ }_{\text {BC }}$ \& 013
011 \& ${ }_{80}^{80}$ \& ${ }_{0}^{0.65}$ \& \& （087 \& \& 18 \& \& $\underset{\substack{1405 \\ 65}}{105}$ \& \& ${ }_{4}$ \& \& 5，1010 \& ${ }_{\text {IPAS5200 }}$ \& \％isis \& \& 2.40 \& yppan \& ${ }_{48}^{408}$

\hline \& ${ }_{326}^{227}$ \& ${ }_{\text {actig }}$ \& 078 \& \& 0.13 \& ${ }_{\text {B05 }}^{\text {B053 }}$ \& 0.50 \& \& ${ }_{129}^{698}$ \& \& 5．17 \& \& ${ }_{26}^{297}$ \& \& 39 \& STK2 \& ${ }_{\substack{1695 \\ 1605}}^{108}$ \& ${ }_{\text {reas }}^{\text {ras }}$ \& 130 \& \& 125 \& yppisa \& ，

\hline \& 0.08 \& \& 038 \& ${ }_{8} \mathrm{BC}$ \& 0.14 \& ${ }_{80}^{80}$ \& 08 \& ${ }_{\text {BSTIC }}^{\text {BSTC }}$ \& 309 $\begin{aligned} & 305 \\ & 280\end{aligned}$ \& HA1 \& ${ }_{563}^{126}$ \& ${ }_{\text {M }}^{\text {M } 5151581}$ \& ${ }_{1,61}^{215}$ \& SAAII
SAAl \& ， 17 \& \& 1985 \& ${ }_{\text {I }}^{\text {TBAS }}$ \& 1.15 \& İPA \& ¢ \& \& ¢

\hline ${ }_{2}$ \& 008 \& AC， 18×8 \& 043 \& BC \& 0.6 \& ${ }^{\text {B0 }}$ \& 0.57 \& \& 369 \& HA1！ \& 5.65 \& \& 220 \& ${ }_{\text {sa }}$ \& 3.20 \& ${ }_{\text {STK}}^{51}$ \& 575 \& trabe \& i， 0 \& toas3io \& 998 \& xoazice \& 499

\hline \& 0．50 \& \& ${ }_{108}^{108}$ \& ${ }_{\text {che }}$ \& ${ }_{036}$ \& ${ }_{80}$ \& ${ }_{1} 1.48$ \& \& ${ }^{260}$ \& \& ${ }_{4} 0$ \& \& 9 \& ${ }_{\text {S }}$ \& 25 \& \& \％ 60 \& \& 18 \& \& 20 \& ¢ \& ${ }^{5} 5$

\hline 2s \& 1040 \& ${ }^{\text {AOPI45 }}$ \& 1， 1.30 \& ${ }_{\text {BCI }}$ \& 0.016 \& ${ }_{\text {BD }}$ \& ${ }_{3}^{249}$ \& \& O． 030 \& \& ${ }_{6}^{664}$ \& \& 8 \& \& \& \& \& ${ }_{\text {I }}^{\text {IBA }}$ \& ${ }_{\text {l }}^{1.71}$ \& \& 28 \& \& ${ }_{25}$

\hline ${ }_{25}^{25}$ \& \& \& ${ }_{20}^{030}$ \& ${ }_{8}^{8 C 1}$ \& 0.11 \& ${ }_{80}^{\text {B0 }}$ \& \& \& 0.51 \& ${ }_{\text {HA }}^{\text {Ha }}$ \& 5， 3.50 \& \& 385 \& \& 508 \& \& ${ }_{108}^{198}$ \& ${ }_{\text {IBA }}^{\text {IBA }}$ \& 250 \& － \& 579 \& xoctict \& ${ }_{6}^{60}$

\hline 25 \& 305 \& ${ }_{\text {AFL1 }} 15$ \& 0.72 \& ${ }_{\text {BC }}$ \& 01 \& ${ }^{\text {B0 }}$ \& 1.5 \& \& 1.76 \& hall \& 334 \& ， \& 145 \& ${ }_{\text {sabasa }}$ \& 88 \& stka3 \& 562 \& เвa＞zo \& 350 \& toase \& 59 \& xabazce \& a3s

\hline \& 207 \& \& 120 \& ${ }_{8 C}^{8 C}$ \& 02
03
03 \& ${ }_{\text {Brase }}$ \& 00.0 \& \& ${ }_{2}^{217}$ \& ${ }_{\text {HA）}}$ \& ${ }_{313}^{291}$ \& M \& 0.0 \& \& 5 \& St \& $\underset{102}{11.15}$ \& \& ${ }_{23}^{335}$ \& \& 2．50 \& ${ }^{\text {xoabsce }} \times$ \& ${ }_{10}^{4000}$

\hline ${ }_{25}^{25}$ \& 050 \& \& ${ }^{0} 1.45$ \& \& ${ }_{026}^{026}$ \& ${ }^{\text {B0811 }}$ \& ${ }^{0} 9$ \& \& | 1,88 |
| :--- |
| 0.39 | \& $\underset{\substack{\text { HA1173 } \\ \text { HAll71 }}}{ }$ \& ${ }_{7} 95$ \& \& \& \& ${ }_{3}^{7176}$ \& \& 11．7 10 \& \& －1．71 \& \& 2\％s \& ${ }^{\text {xon7 }} \times$ \& 19\％

\hline \& 178 \& ${ }_{\text {AF }}^{\text {AFI } 19}$ \& 0．5s \& ${ }_{\substack{8 C 182 \\ 8 C 182 \\ \hline 18}}$ \& 0.05 \& \& 239
09 \& ${ }_{8}^{81}$ \& ${ }_{248}^{248}$ \& ${ }_{\text {HAI }}^{\text {HA1 }}$ \& ${ }_{9}^{3.75}$ \& ${ }_{\text {M }}^{\substack{\text { M83712 }}}$ \& $\underset{100}{100}$ \& \& ${ }_{696} 9$ \& ${ }_{\text {STK }}^{\text {STK501 }}$ \& ¢ 120 \& \& 1.60 \& Tomatiol \& 150 \& ¢ \&

\hline \& 050 \& Afiri \& 053 \& ВС183． \& 023 \& Bosel \& 0．4 \& Bu109 \& 150 \& HAl \& ， 1.120 \& мвз370 \& ${ }_{209}^{200}$ \& ${ }_{\text {S }}$ \& \％ \& ${ }^{\text {STK }}$ \& 12.4 \& ${ }_{\text {IBAB }}$ \& 1．00 \& 10atazeb \& 599 \& \& ${ }^{515}$

\hline \& 319 \& \& 0.33
0.43 \& \& 0.13
0.26 \& ${ }_{\text {bowsal }}^{\text {Bowac }}$ \& ${ }_{1}^{145}$ \& 110 \& ${ }_{500}^{200}$ \& ${ }_{\text {a }}$ \& \& Mc \& ${ }_{0}^{3600}$ \& \& 3， 3 \& \& ${ }_{1}^{2950}$ \& \& 158
0.08

0 \& \& 407 \& － \& | 203 |
| :--- |
| 750 |

\hline \& 13 \& ${ }^{\text {afer }}$ \& ${ }^{089}$ \& \& 08 \& \& $1{ }^{15}$ \& ${ }^{\text {Bu125 }}$ \& 228 \& HA11355P \& 63
1980
1980 \& \& 9，${ }_{19}^{190}$ \& SAF \& 29 \& \& 698 \& ${ }_{\text {remabo }}$ \& 250 \& \& 258 \& xoate \& ${ }^{\text {a }}$

\hline ${ }_{2 S C 1815}$ \& 0.45 \& aniss \& \& ${ }_{\text {BCr2as }}$ \& 0.16 \& ${ }_{\text {Bxx }}$ \& 125 \& 84137 \& 6.53 \& Hal180 \& 515 \& 1 MCl 1350 P \& 1.56 \& Sassfos \& 180 \& STR4aso \& 10ss \& tBAS200 \& 231 \& ${ }_{\text {Toamers }}$ \& 300 \& ${ }_{\text {zer }}$ \& ${ }_{3,8}^{8,75}$

\hline
\end{tabular}

USE YOUR ACCESS OR BARCLAYCARD \% TEL 0902712083					
* HIGH QUALITY VIDEO SPARES *					
				BELTS	

Storing TV Pictures in Chips

Part 3: Picture-in-picture displays

Eugene Trundle

The systems described in Parts 1 and 2 of this series present the picture stored in memory as a full-screen display. This enables the video signal to be stored in composite form. To inlay a small picture in the main picture display calls for more complex digital and analogue circuitry. The inlay picture (PIP) is not presented in real time - its width is a fraction of the $52 \mu \mathrm{sec}$ active line period while its height is a fraction of the 18.4 msec active field period. To achieve a PIP display a "time warp" in the readout from the memory is required. It's done by using different writing and reading rates. In addition the composite video signal for the PIP display must be decoded to YUV form (separate luminance plus U and V chrominance signals) before storage in digital form in the memory, then recoded to PAL (or whatever system is in use) form after readout from the memory and DA conversion. One advantage however is that the memory capacity required is not so great as with a full-screen display, since the information processed and stored occupies only a small area of the screen, typically one ninth.

The need for colour decoding/encoding becomes obvious when it's appreciated that for correct colour the processed PIP signal must be governed by the same subcarrier as that used for the main picture on the screen. The U and V components of the reconstituted PIP signal are PAL encoded, then added to the PIP luminance signal and finally the composite PIP signal is switched into the main-screen video signal in synchronism with the latter's line and field scanning. The timing of the PIP readout, in relation to the main-screen scanning, determines the position of the inserted PIP - it's usually placed in one of the four corners of the screen.

The Hitachi VT250

The description which follows is based on the PIP processing section of the Hitachi VT250 VCR. That used in the Sanyo Model CBP2 146 colour TV receiver (see the photograph on the cover of the July 1987 issue) is similar in many respects.

Video Sampling

The first step in producing a PIP display is to sample the video waveform of the picture to be used for the purpose. Fig. 17 shows this process. The outer rectangle is 20 msec high and $64 \mu \mathrm{sec}$ wide, embracing the entire field period. The longer dashed line shows the active (display) picture area, consisting of 288 lines each containing $52 \mu \mathrm{sec}$ of video information. The shorter dashed rectangle shows the part that's sampled for PIP use. It consists of 264 lines each of which contains part of the line blanking period (for clamping purposes) and all the picture information. Sampling is done at a frequency of about 10.74 MHz (intervals of $93 \cdot 122$ nsecs). Thus each line is divided into 687 samples. The first 32 samples of each line are discarded, leaving 655 samples. Two out of every three of these are discarded, the remaining 218 evenly-spaced samples being retained. Similarly, two out of every three scanning lines are discarded, leaving 88 lines.

We now have a rather coarse picture consisting of 88 lines each with 218 samples. This is what's committed to
memory. When it's reproduced, the lack of detail (with a test card, the lack of some of the horizontal and vertical features!) will be consistent with its size in relation to the main picture. We can't anyway reproduce detail that's smaller than one standard scanning line. The original picture to be used as the PIP display has thus been compressed to about one ninth (one third by one third) of its original area.

Memory Capacity

After sampling, quantisation to give 64 possible levels of signal amplitude takes place, the result being an AD converted signal consisting of six-bit words. We can therefore calculate the memory capacity required for the PIP display. One field of 88 lines with 218 six-bit samples gives us a total of 115,104 bits. For reasons that will become clear shortly, it's necessary to store two such fields, so the memory must be able to store 230,208 bits. Two memory chips are used, each arranged in $64 \mathrm{~K} \times 4$-bit form: this total of 512 K is very sparingly used, in order to simplify the addressing and memory management. Writing into the memory takes place in real time, whereas the readout is three times faster in order to print the PIP in a small area of the screen.

Signal Processing

The PIP signal processing carried out in the Hitachi VT250 VCR is outlined in Fig. 18. The incoming signal is first fed to a PAL decoder which splits the composite signal into baseband Y, U and V outputs. It also produces an alternating V subcarrier for ident purposes. The YUV outputs are then bandwidth limited by filters, the Y signal to 1.3 MHz and the U and V signals to 200 kHz each. The alternating V characteristic (the PAL $\mathrm{R}-\mathrm{Y}$ signal switching) is removed by a switched inverter that works at 7.8 kHz . The three separate video signals are next applied to the "contacts" of an electronic multiplexing "rotary switch" that revolves at $3 \cdot 58 \mathrm{MHz}$ (fs), which is one third of the effective sampling frequency of 10.74 MHz . Thus this is the point at which two in three of the signal samples are discarded.

Fig. 17: PIP sampling area of the incoming picture. The area within the broken lines is processed in digital form. Sampling takes place during lines 22 to 285 inclusive, embracing vertical columns 32 to 687.

Fig. 18: Simplified block diagram of the PIP processing system in the Hitachi VT250 VCR.

The output from the "wiper" of the rotary switch consists of a time-division multiplexed sequence as follows: U,Y,Y,V,Y,Y. So the Y signal is sampled four times for each sample of U and V , giving a sampling frequency for the Y signal of about 2.4 MHz and a sampling frequency for each of the U and V colour-difference signals of about 600 kHz . Hence the need for the low-pass signal filtering: the sampling rate in AD conversion must be at least twice the highest likely frequency of the signal being sampled. Next comes a 6-bit AD converter, which again operates under the control of the 3.58 MHz clock signal. Its output is passed into the memory.

PIP Readout

The sequential YUV digital data read from the memory passes to a demultiplexing rotary switch which this time works faster -at $3 \times$ fs, i.e. $10 \cdot 74 \mathrm{MHz}$. Since the switch

Fig. 19: Way in which the memory is arranged and used.

Fig. 20: Memory map for the storage DRAMs. All six memory pages (arrays) are laid out similarly.
operates in synchronism with the memory readout, the YUV data is separated on a strobe basis. It's then passed to separate DA converters, which are controlled by the same 3fs clock signal. After passing through individual low-pass filters/integrators the analogue Y, U and V signals are ready for recoding into composite PAL form. Two subcarrier feeds from the main-screen video signal are used to govern this process, so that the colour of the PIP display is correct - the main-screen swinging burst signal acts as the reference for both.

Finally a white box (PIP outline) is generated, to emphasise the border between the inlay picture and the main picture, and added to the composite PIP signal. Gating then inserts the PIP signal into the video output while the main-screen display is blanked for the duration of the PIP.

The PIP Memory

Fig. 19 shows the way in which the storage DRAMs are arranged. We have to store six bits at a time, for which all four pages of DRAM one plus two pages of DRAM two are used. Each page consists of 256×256 cells, and is divided into two halves. The upper halves form one field store, the lower halves forming the second - as previously mentioned, two fields are stored. This need to store two fields arises from the fact that we must be able to write and read data simultaneously. As the upper store is being written into, the lower store is being read and vice versa.

Consider a field of incoming video being written into the upper half of the memory. It comes in on a unidirectional bus, with the first bits being stored at the top left-hand corner of each of the six pages in use. The first TV line to be stored is no. 22 (see Fig. 17). It starts at memory cell 0 , with a $V(R-Y)$ sample - a memory map is shown in Fig. 20. Next come two Y samples, then one of $U(B-Y)$, two of Y and so on until the end of the PIP TV line is reached at memory column 218. The second PIP TV line ("real" line 25) is next stored in row two of the memory and so on until all 88 lines of the PIP ficld have been written in. We have now reached column 218 in row 87 of the memory page.

Memory rows 88 - 127 are not used. PIP field two is stored in the lower half of the memory page, on rows 128-215 inclusive. As PIP field two is being written in - in synchronism with its own line and field sync pulses - PIP field one is being read out of the memory. Each row of 218 bits passes into a 256 -bit buffer memory within the storage chip. At the beginning of each main-screen line scan, one line (218 bits $\times 6$) of PIP data is transferred from the main memory to the line buffers. It's then read out at 3 fs to shorten the time-axis to one third. This ability to write and read at different rates is the key to TV standards conversion as well as PIP effects.

The memory system does not require a refresh operation since there's no PIP freeze frame facility with this design.

Fig. 21: Block diagram showing the PIP control chip and the associated PIP processing arrangements.

Thus the write/read cycle is continuous in 20 msec periods, during which the data can be sustained in the DRAM cells.

PIP Control Chip

As with the previous systems we've looked at, the memory control chip is a complex gate array. It governs the write/read operation and provides clock pulses for the AD and DA converters, the multiplexer, the internal demultiplexer and the PIP-insert switching. A block diagram showing its main functions is provided in Fig. 21. The stack at its input data port is required because reading from memory is given priority over writing into memory. This calls for a temporary "queueing area" for the data to be written in. It takes the form of six pairs of memory cell
arrays, in which the data to be written into the memory is held for a $1 / \mathrm{fs}$ period then released in the following cycle. The stack process is triggered by the main-screen display line sync pulses. Further functions carried out by the memory control chip are mode control, the provision of blanking and clamping pulses for the PIP analogue processes, generation of the pulses that provide the edge (white border) and PIP position control.

Next Month

In the concluding instalment next month we'll look at the multi-function memory that provides a comprehensive range of digital functions in the Sanyo VHRD500/700) series of VCRs.

The Ferguson TX99 Chassis

The TX99 is the latest development from Ferguson in the evolution of its TV chassis designs. It's partly a replacement for the popular TX90 chassis, which was originally introduced for small-screen colour portables and went on to drive tube sizes up to 20 in . The TX85 (see Television,

Fig. 1: Block diagram of the TX99 chassis.

J. LeJeune

October 1987) has already been introduced to cater for small-screen colour portable use. The new TX99, which is very much updated in comparison with the TX90, is to be used as a basic 90° chassis capable of driving a wide variety of tubes, though most models will probably be fitted with $15,17,19$ and 21 in . FS tubes.

Major improvements on the TX90 chassis are automatic grey-scale correction, non-interlaced teletext and improved line sync - there's a dual-loop oscillator in the TDA4505 chip. The customer controls are no longer fixed to the main PCB , giving greater freedom over cabinet presentation. The new chassis is SECAM/NTSC adaptable and has automatic $50 / 60 \mathrm{~Hz}$ field rate switching. A free-running switch-mode power supply provides mains isolation and operation over a mains input voltage range of $175-265 \mathrm{~V}$ a.c. r.m.s.

The c.r.t. base panel varies to suit the tube type. The following circuit description covers the basic PC1210 PCB. A block diagram of the receiver is shown in Fig. 1.

The Power Supply

The switch-mode power supply (see Fig. 2) is based on the well-known Siemens TDA46(0) control chip, the circuit being very similar to that used in the TX 100 chassis. A bridge rectifier produces a rough d.c. supply of around

Fig. 2: The switch-mode power supply circuit.

350 V from the mains input. The degaussing and mains filtering is conventional, the degaussing coils being doubleinsulated.

The chopper transistor TR3 is driven from pins 7 and 8 of the control chip. Forward drive to turn TR3 on is from pin 8 via R88 which is used to adjust the level of drive. The pull-down pin 7 ensures that TR3 turns off rapidly, preventing unwanted power dissipation.

A start-up voltage for the power supply is provided by thyristor SCR1. A.C. from one side of the bridge is fed to the anode of this device, whose gate is connected to the same source via R84/5. At switch on C 87 will be discharged and the cathode of SCR1 will be at 0 V . SCR1 charges C87, and when the voltage at its cathode is approximately 6.5 V R84/5 can no longer turn the thyristor on because the voltage at its cathode exceeds the peak voltage at its gate. The voltage thus developed across C87 is applied to pin 9 of the chip. It's sufficient to bring IC6 to life, delivering short drive pulses to start up the chopper circuit. The pulses appearing at pin 13 of the chopper transformer T 1 are rectified by D12: once the chopper circuit is running normally D12 and C87 provide a stable 12 V supply for the chip. Pin 5 of the chip detects under-voltage conditions, shutting down the i.c. if necessary to prevent incorrect operation. Pin 4 senses changes in the mains supply and ripple on the unregulated input, the internal circuit cancelling these variations.

A 4 V reference supply produced within the i.c. is available at pin 1. This reference voltage is coupled to pin 3 via R93. The output of a small winding on the transformer is rectified by D15 to produce a negative voltage which is also coupled to pin 3, via the set-h.t. control RV6 and R92. The effect of this is to offset the 4 V reference voltage by about 1.5 V so that the voltage at pin 3 is about 2.5 V . It can be varied by RV6, which sets the outputs obtained from the power supply - the on/off times of TR3 determine the output voltages.

Pin 2 of IC6 is the input to a zero-crossing detector which senses, during TR3's off period, the point at which the voltages across the transformer's secondary windings fall to zero. When the a.c. at pin 14 of the transformer crosses zero and attempts to reverse, IC6 switches TR3 on to produce the next cycle of operation.

Three rails are derived from the chopper transformer, 115 V for the line output stage, 50 V for the field output stage and 18 V for the audio circuit. This last rail also feeds a 781212 V regulator which supplies the small-signal sections of the receiver.

Standby operation is obtained by turning TR4 off from the remote control unit. When its base goes high TR4 switches off, disabling the audio circuit, all the signal circuitry and the line and field oscillators. The switchmode power supply keeps working in the standby mode, maintaining the supplies to the field and line output stages. Although there is a slight temperature rise within TR3 due to the high operating frequency in the standby mode, this is of no consequence.

Tuner and Signals Processor

The UK version of the TX99 comes equipped with a Ferguson SC4 tuner, the export versions having a combined v.h.f./u.h.f. tuner. The tuner's output is amplified by approximately 26 dB in a single transistor (BF959) i.f. preamplifier stage which drives the i.f. bandbass shaping SAW filter. This is followed by a TDA4505-N4Y chip which contains most of the signal circuitry, apart from the colour decoder, and also the sync and timebase generator circuits. A pnp transistor (TR1) in the a.f.c. circuit clamps the a.f.c. line at 6 V during setting up and channel changing.

A block diagram of the TDA4505-N4Y chip (IC2) is shown in Fig. 3. It contains the vision and sound i.f. amplifiers and detectors, the a.f.c. and a.g.c. systems, the sync circuitry and the line and field generators. The field output stage is driven directly from pin 3 but the line drive output at pin 26 goes to a conventional transformercoupled driver stage.
The i.f. input is at pins 8 and 9. Synchronous detection is employed for low harmonic distortion and there's no a.f.c. coil, the 90° phase shift required by the a.f.c. detector being achieved within the chip. The detector tank coil L6 is set for a 6 V a.f.c. output with a 39.5 MHz carrier input; the sound detector coil L9 should be adjusted for best sound reception of an off-air transmission. A d.c. volume control sets the voltage at pin 11 of the chip and the audio output appears at pin 12 for feeding to a separate TDA2611A

Fig. 3: Block diagram of the TDA4505 signals processor chip.
power amplifier (IC4). A.G.C. for the tuner appears at pin 5 , an inverting stage (TR10, BC307B) being required with the SC4 tuner (but not with the UV4I1 v.h.f./u.h.f. tuner). The video output at pin 17 is fed to the colour decoder chip via an emitter-follower transistor (TR11, BC237B) and returns to the intercarrier sound section of the chip via a 6 MHz ceramic resonator. A bridged-T filter in TR1I's emitter circuit removes the 6 MHz sound from the feed to the colour decoder chip and the return feed to the sync separator in IC2. TRII is included to provide a lowimpedance video source: this results in greater tolerance to stray capacitance effects, which can seriously degrade picture definition, in the PCB layout.

A flywheel sync circuit with two control loops maintains the line drive output at pin 26 in phase and frequency lock with the incoming line sync pulses. To set the line oscillator's free running frequency, the chip's sync input pin 25 should be linked to the 12 V rail. The first control loop's error voltage appears at pin 24, where R23, C25 and C26 form a time-constant network. R22 couples this point to the line hold control network R21/RV2/C24 which sets the free-running frequency. The second control loop's error voltage output appears at pin 28 where the time-constant is set by C29 and R25. The earthy end of R25 is connected to the slider of RV3, which provides a means of varying the line phase for horizontal shift purposes.

The field oscillator makes use of a conventional $R C$ network which is connected to pin 2-C31 and R27 set the free-running field frequency, no field hold control being required. Field sync is achieved internally. A divide-by-312 circuit determines the window for the field sync pulse. Direct sync is used, the divider controlling the period
during which the oscillator can be reset by a sync pulse.
A signal derived from the field divider is used to generate the appropriate amount of field blanking for the standard in use, 50 or 60 Hz . The amplitude and duration of the field blanking signal are determined by the vertical blanking generator, whose output is mixed with the line blanking and burst gate pulses in the sandcastle pulse generator circuit.

Line blanking is most easily derived from the line flyback pulses, which are clipped and mixed in at pin 27. Correctly timed burst gate pulses are obtained from the rising edge of the line sync pulses, their duration being determined by accurate timing circuits within the chip.

Colour Decoder Chip

The TDA3301 is a newcomer to the range of colour decoder chips available. A block diagram is shown in Fig. 4. It incorporates automatic grey-scale correction which is now a standard feature, easing colour balance adjustment during manufacture and providing compensation as the tube ages. Three coils and one potentiometer comprise the only variable components for setting up. L13 forms part of a high-pass filter at the chroma input while L11, L12 and RV4 are associated with the chroma delay line. LI1 is tuned to 4.43 MHz . L12 and RV4 are adjusted for minimum Hanover bars. There's no subcarrier rejector adjustment: this is now incorporated in the luminance delay line.
Composite video is fed in at pin 37 while filtered chroma is fed in at pin 1 . The luminance signal is first amplified by 10 dB within the i.c., emerging at pin 35 to pass through the

Fig. 4: Simplified block diagram of the TDA3301 colour decoder chip.
luminance delay line (and subcarrier trap). It re-enters the chip at pin 36. Internal systems operating on the luminance channel perform black-level clamping, contrast control and blanking. The contrast and saturation controls are interlinked. The effect of the brightness input at pin 30 is to shift the d.c. level on which the luminance signal sits. A preset brightness control is provided.

Beam limiting is carried out via the brightness and contrast systems. Fig. 5 shows the sensing circuit. Diode D27 is connected between the earthy end of the e.h.t. system and chassis and is forward biased from the 115 V rail via R127 and R128, passing a forward current of approximately $600 \mu \mathrm{~A}$. The c.r.t. beam current flows via D27 in the opposite direction: when it reaches $600 \mu \mathrm{~A}$ D27 switches off and the junction of D27/R128 goes negative. TR2 then provides beam limiting via emitter-follower action. For larger tubes the onset of beam current limiting can be raised to 1 mA by closing link 56 .
The chroma circuitry follows conventional practice. The reference oscillator operates at 4.43 MHz , and the 90° phase shift required for U demodulation is achieved within the

Fig. 5: The beam limiter circuit.
i.c. After filtering, the demodulated colour-difference signals are matrixed with the luminance signal and blanking signals are inserted. Blanking, burst gating and clamping are carried out by pulses produced by timing logic counters A and B .

Changeover to RGB teletext inputs (or from a peritel socket if fitted) is controlled by the "fast blanking" pin 23 which requires a steady d.c. input in excess of 700 mV .
Automatic grey-scale correction is carried out by threc clamps, one each for R, G and B. These are gated on to coincide with test signals which are added to the RGB outputs during the line blanking periods - this is done within IC3. Feedback is from resistors in the collector circuits of the emitter-followers TR22/24/26 incorporated between the RGB output transistors TR21/23/25 and the c.r.t.'s cathodes. The dark level beam current is set at $16 \mu \mathrm{~A}$ by resistors $\mathrm{R} 65 / 6 / 7$. There is also dynamic beam limiting which is set by R57 and limits the peak current of any one gun to 3 mA .

RGB Output Stages

Fig. 6 shows one of the RGB output circuits (green). TR23 is a class A amplifier whose output is buffered by the emitter-follower TR24. The resultant low-impedance c.r.t. drive allows fast charge and discharge of the c.r.t.'s cathode input capacitance, giving good bandwidth. The output circuits follow convention in being mounted on the c.r.t. base panel, removing the bandwidth limitations associated with long leads. The video gain is set by RV22 which allows peak-white colour adjustment during grey-scale alignment.

Fig. 6: The green output stage and the circuit for overriding the auto-grey-scale system at switch on.

Fig. 7: The line driver and output stage circuits.

The circuitry associated with TR28 overrides the automatic grey-scale correction system at switch on to avoid a peak white raster. The operation of this circuit is controlled by the time-constant network R210/C213.

Line Driver and Output Stages

The line driver and output stages (see Fig. 7) are conventional. Because of the tube/yoke systems to be used with the chassis, no EW correction circuit is necessary. A low-voltage, transformer-coupled driver stage switches the

Fig. 8: the field output stage circuit. The resistors in TR5's collector circuit contribute to the fast flyback.

R4050 line output transistor. This is a Texas Instruments device with a quoted maximum operating collector voltage rating of $1,300 \mathrm{~V}$. The peak flyback voltage measured at the collector was 900 V , so there appears to be a good safety margin.

The diode-split line output transformer provides various supplies -180 V for the RGB output stages and as a source for the tuning voltage, 10 V for the TACS remote control system, 23 kV e.h.t., adjustable focus and first anode voltages and the heater supply.

Because of the intention to use various different types of c.r.t. with the chassis, Ferguson has included what it refers to as a "c.r.t. personality" panel ($\mathrm{PC1690}$). This carries the scan-correction capacitor and allows for different connections to the width control.

Field Output Stage

Fig. 8 shows the discrete component field output stage. The lower transistor of the output pair, TR6, is a Darlington device. This reduces the drive current requirement, enabling the output stage to be driven by the TDA4505 chip directly. A feature of the circuit is the four 11Ω resistors in the feed to TR5's collector. These reduce the collector voltage and the dissipation in the transistors during the first half of the scan, restoring the voltage to 50 V during the second half of the scan in preparation for the flyback, giving a short flyback time. A.C. feedback from RV8 via Cl 107 controls the height while RV7/R112/C106 provide linearity correction. D.C. feedback from the junction of R111/R114 stabilises the operating conditions in the output stage.

In Conclusion

The chassis does not incorporate stereo sound capability, either base band or off-air, presumably because it's not intended for use in up-market receivers. Teletext capability is built in however, reflecting the rising popularity of the broadcast text services. A plug on the chassis appears to cater for low-voltage operation via a d.c.-to-d.c. converter, a feature that will be welcome in many applications.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON 3V38

The head drum runs fast until the machine has been in operation for about half an hour, after which the drum slows and the servo locks. When the drum runs fast the voltage at pin 13 of IC404 is excessive. The supplies to the i.c.s are normal.

First confirm that the drum FG signal is present during the fault - check at TP421. If not, check the FG winding on the motor, IC404 etc. If the FG signal is present check the condition and setting of R463 before suspecting IC404 and IC403 in that order. Use of freezer and gentle heat from a hairdryer may help in tracing the source of this fault.

PHILIPS K35 CHASSIS WITH TELETEXT

A teletext fault has recently developed: occasionally single characters are missing from the text and on other occasions horizontal bands of several lines are missing - very often these are part of the page header. The problem started with BBC-2 and has now spread to BBC-1. ITV is all right.

While it's possible that the fault could be in the receiver circuitry, in which case very slight adjustment of the vision detector tank coil and/or the a.f.c. coil will probably clear it, much more likely is deterioration of the aerial system. Check the aerial, its downlead and the associated connections. A decoder fault is most unlikely.

HITACHI CBP260 (NP9A CHASSIS)

The problem is slight pulling on vertical bars. It's not affected by any of the controls.

If the disturbance travels slowly up or down the screen, check for ripple on the 18 V remote control receiver power line and the main power line. IC980 and C983 are suspect in the former case, C907 in the latter. If the line distortion is stationary, check the earthing of the tube's outer conductive coating.

PHILIPS CTX-E CHASSIS

The picture is good but there's a low-intensity background warble on the sound. It appears to alter slightly in frequency and level depending on the picture content. The programme sound very often masks the warble, but it's plainly audible on quiet passages.

This may be difficult to track down. The most likely cause of the buzzing is radiation from the c.r.t. getting back to an unscreened audio lead. You will have to trace through the circuit and eliminate stages progressively.

JVC HR2200

The LED indicators on the front panel of this portable unit flash from left to right and the machine will not operate. This is the alarm mode of course and I've been told that a
faulty cassette lamp is often the cause, but a check has shown that the lamp is working.

While failure of the cassette lamp is the most common cause of entry into the alarm mode another common cause is defective, i.e. metal fatigued, sensor switches under the deck. There are four of them. If they prove to be o.k. the solenoid switching transistors are suspect. These are on the audio/mechacon panel, X25-28 for the pinch solenoid and X21-24 for the brake solenoid. Replace all four in each group at one go.

ITT CVC32 CHASSIS

ITV, BBC-1 and BBC-2 are all right but on Channel 4 there's sometimes field rolling that cannot be stopped by field hold control adjustment. The fault is random: sometimes the picture is rock steady, sometimes the picture will flick then roll for a few minutes before settling down and at other times it just keeps rolling.

The fault is not unknown in this chassis and can often be cleared by replacing the electrolytic capacitors in the i.f. module - C303/7/9/12. If this doesn't provide a cure, try slight adjustment of the r.f. a.g.c. control R309. If necessary try the effect of adding an attenuator (say 6 or $1(0 \mathrm{~dB})$ at the aerial input.

HITACHI VT19

There's no clock or channel display and when play is selected the machine laces up, plays for about three seconds, then unlaces and stops. The same sequence applies with the other functions. The fault appears to be in the 10 V supply to the clock/channel display board - the $2 \cdot 5 \mathrm{~A}$ fuse blows for no apparent reason.

The primary source of the 10 V supply you mention is Q1795, which could well have failed with internal leakage. This would account for the fuse blowing. Use a BC171B if this transistor has to be replaced. If, due to tolerances in the mains transformer, the voltage at TP1792 exceeds 21 V , increase R1768 to 150). Check also diode D1769 (V06C) and zener diode ZD1769 (HZ-11C). Note that there's an error in the back-up circuit in the manual Q1795's emitter voltage should be shown as 10 V .

SONY KV2200

There's an intermittent whistle, but only with a picture present. With no signal input there's no whistle. When it's present the whistle is accompanied by Hanover bars. I've tried disturbance checks on all the chokes and the transformers but have been unable to pinpoint the source of the whistle.

This effect generally stems from instability in the power supply circuit, the cause being dried up electrolytic capacitors. We suggest you check C612 ($3 \cdot 3 \mu \mathrm{~F}-4 \cdot 7 \mu \mathrm{~F}$ will do) and C622 ($33 \mu \mathrm{~F}$).

QUERY COUPON

Available until 17th August 1988. One coupon, plus a $£ 1.50$ (inc. VAT) cheque or postal order, must accompany EACH PROBLEM sent in accordance with the notice printed above.

TELEVISION AUGUST 1988

ITT CVC1215 CHASSIS

The EW modulator driver transistor T563 and a couple of components (C511 and R503) in the line scan circuit had to be replaced, but now the set powers up at a reduced rate, all outputs from the line output stage being down to 25 V . With the power supply isolated and a dummy load connected the maximum output that can be obtained is 125 V instead of the correct $\mathbf{1 4 5 V}$. The line output stage does not seem to be loading the power supply and the set doesn't show any signs of stress.

The 145 V supply reservoir capacitor $\mathrm{C} 733(10 \mu \mathrm{~F})$ could be low in value and should be replaced. Also try C728 $(22 \mu \mathrm{~F})$ which provides the 13 V supply in the chopper circuit. We've known C614 ($100 \mu \mathrm{~F}$) which decouples the supply to the TDA1940F sync/line oscillator chip cause problems of this sort.

We've still got some Decca series 80 and 100 TV sets about. They've served us well on rental, and still produce the odd surprise for our engineers despite our many years' acquaintance with them. Take the one we had in the other day.

The job card said "funny colours". What does that mean? What in fact it meant was that the picture was fine at switch on, but within five or so minutes the colours changed to give a bizarre display - similar to what you'd get by swapping the tube drives around. Exactly what the unusual colours were is not really relevant to the diagnosis. A squirt of freezer here and there on the decoder panel established that the MC1327 colour demodulator/matrixing chip seemed to be responsible for the trouble, so it was replaced.

The set was then left to run while waiting collection. Within a few minutes the colours were once again wrong, and a squirt of freezer on the new MC1327 chip brought them back to normal. It seemed unlikely that the original and the new chips had identical faults. In fact we found that after a few minutes in operation the i.c. was fingersizzlingly hot. This was an unusual one indeed!

Study of the circuit diagram (see Fig. 1) suggested a very obvious cause for all this. The chip receives it's 25 V supply at pin 14, the supply being stabilised by zener diode D202 which is fed from the 37 V rail via R 246 . It seemed likely that D202 had gone open-circuit and that the chip's supply voltage had risen. But no, this wasn't so! In fact there was only 2 IV at pin 14, and zener diode D202 was cold. The series resistor R246 was very warm indeed, and so by now

Fig. 1: Power supply arrangements associated with the MC1327 colour demodulator/matrixing chip in the Decca 80 and 100 series chassis.
was the chip. Disconnecting D202 made no difference to the voltage reading at pin 14 .

A check was made on the other voltages around the chip. All were found to be low, but not so low as to upset the operation of the RGB output stages - until the chip overheated - or the overall functioning of the device. The voltages at pins 5,12 and 13 were markedly low at around 2 V . What do you think was the cause of the trouble? When the faulty component was replaced the MC1327's dissipation returned to normal - as did the voltage at pin 14. For the answer, see next month.

ANSWER TO TEST CASE 307 - page 686 last month -

A hot and sultry workshop was the setting for last month's puzzle, in which a GEC Model C2026 (PIL tube chassis) would pump half a dozen times at switch on then lapse into rest. The technician dealing with it was also rather languid if his random, shot-in-the-dark approach to diagnosis was anything to go by - maybe it had something to do with the ventilation system, or lack of one, in the workshop. His more alert colleague soon got to the bottom of the trouble.

Their first joint action, removal of the line shift choke, could well have cured the fault. Chokes of this type often develop short-circuit turns in sets of this vintage, triggering the excess-current trip. In fact the excess-current trip in the set was operating, though not because of excessive current. What had happened was that the current sampling resistor $\mathrm{R} 530(1 \Omega)$ had gone high in value. The reading obtained on the ohmmeter varied around the 3Ω mark. The equivalent resistor in the ITT CVC20 chassis is R 89 ; in the CVC30/32 it's R86.

A quick way of proving the point would have been to short out the sampling resistor, which is connected in series with the chopper transistor. If there had been a real overload fault present however this would have invited disaster! Better to connect the scope across C513 (4.7 nF), which decouples the TDA2640 chip's current sampling input pin, to see whether the excess-current pulses are well in excess of the normal 50 mV level.

[^1]

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE				
TRANSISTORS, IC's, ALSO STOCKED				
BAIRD: 8290, 8752, 8773, 8180	12.00	ITT: VC200 to VC402 9.20 CVC1, CVCC (FORESTONE) 11.50 CVC5, CVC7, CVCB, CVC9, CVC20 10.35 CVC25, CVC30, CVC32, CVC45 9.20 CVC800, 1100, 1150, CVC40 P.D.A. CVC1200, 1204, 1210, 1215, 2500 P.0.A.		
RANK BUSH MURPHY				
A774 with stick rectifier	9.78			
A816, T16, T18, 2712, 2715	10.35			
T20, T22, T26, Z179, A823	11.50			
2718 Basic unit	13.50	PYE: 169, 173, 569, 368 CT200 CT200/1, CT213	$\begin{array}{r} 9.20 \\ 10.35 \end{array}$	
DECCA: 1210, 1211, 1511 1700, 2001, 2020, 2401, 2404 CS1730, 1733, 1830, 1835 30, 70, 80, 90, 100, 120, 130	11.50			
	9.20	725-731, 735, 737, 741	9.78	
	9.20	PHILIPS: 170, 210, 3009.20		
	9.20	320 series	9.78	
FERGUSON, THORN: 1590, 1591	9.20	TX, T8, TX2, TX3 mono	P.0.A	
1690, 1691. built in rect.	9.78	G8 and G9 Series KT2. KT3. series CTX G11. K30. K4. K40. split diode		
1600, 1615, 1700, 1790	P.O.A.			
3000, 3500, 8000, 8500, 8800	P.OA.			
9000, 9200, 9300 series	12.00	$\begin{array}{lr}\text { BINATONE: 9909, 9860, } 9488 & \text { P.0.A. } \\ \text { DORIC Mk3, MkI } & \mathbf{1 1 . 5 0}\end{array}$		
9500, 9600, 9650 series	10.99			
9800, TX9, TX10,TX90, TX100	P.0.A.	SONY KV 1400, 1612, 2000 P.0.A. GRUNDIG: most models in stock		
MOVIESTAR 3781, 3787, 8180	12.00			
TX10 focus unit	10.87	NORDMENDE: 8290, Z206, Z306 P.O.A. SANYO: 5101, 5103, 7118, 7130 P.O.A.		
FIDELITY: FTV12 mono ZX2000 ZX3000	10.35	SHARP: C1851H, C2051H, 1405HINARI: CT4, CT5		
	16.43			
G.E.C. 2047 to 3135 mono 9.20		HINARI: CT4, CT5 TANDBURG: 190, CTV2, CTV3	21.50 P.0.A.	
1201H, 1501H, 2114, 3133, 3135	9.20	TELEFUNKEN: most models in stock HITACHI: 1471 CPB260, 2501 P.0.A		
DUAL \& SINGLE hybrid col. SINGLE STD solid state SINGLE STD split diode	10.0012.00	HITACHI: 1471, CPB260, 2501 P.0.A. AMSTRAD: CTV2200, CTV2210 P.D.A		
	P.O.A.	Delivery by return of post.		
INDESIT: 24EGB, 12LGB, 12SGB	10.35	Tidman Mail Orter Ltd.,		
WINDINGS		236 Sandycombe Road, Richmond, Surrey TW9 2E		
TYNE: main winding	6.80			
RBM: T20, T22, T26, Z179	6.33	Approx. 1 mile from Kew Bridge.		
WALTHAM: W125 eht winding	2.37	Phone: 01-948 3702		
WALTHAM: W190, W191 eht coil	6.00	Mon-fri 9 am to 12.30 pm \&		
KORTING: hybrid winding	6.90			
THORN: 8000, 8500, 8800 eht	6.70	Sat 10 am to 12 noon.		

VIDED HEADS AT UNBEATABLE PRIGES

FERGUSON/JVC/AKAI UNIVERSAL 3HSSV £16.50

FERGUSON 3V32 JVC HR7655
FERGGUSON 3V43/44/45/46/47/50
FERGUSON3V48 JVC HRD565
SOMY REPLACEMENT HEADS
SONY UNIVERSAL 1 PINC5:C6/C7.
SONY SLF-1/C20/C30/F30/C40/SLT20ME SLT30ME
SOrJY SLC-8/C9/60/30/SLT50/SLF60/SL200
$\$ 18.50$
PANASONIC UNIVERSAL 3HSSN £17.00
PANASONICNV370:NV380/NV 100 -PHILIPS VR6460
PANASONICNV777/NV330 3HEAD
PANASONIC NVZ3ONV250NV260/NV270/NV-G9/10/11
PANASONIC NV430/NV460
PANASONICNV3664 HEAD
PANASONIC NV7304 HEALI
PANASONICNV 180 PORTABLE 4 HEAD
HITACHIVT6500, VT7000, VT8000, VT8500, VT 8700 HITACHIVT11, VT14, VT33, VT34, VT 330 , VT 340
SANYO VHR1100, VHR1110, VHR1300
SANYO VHR1500 3 HEAD
TOSHIBA V9600
SHARP VC9300, VC9500, VC9600, VC9700, VC9800 ETC
ANSTRAD VCR4500, 4600, 5200, 9000
AMSTRAD VCR7000
SAISHO VR $605,705,805,905,100$
FISHER UNIVERSAL FVHC.720,520,530 ETC
$£ 24.00$
$£ 31.00$
$£ 34.50$
$£ 27.00$
$£ 40.00$
£44.00
£44.99
$£ 23.00$
$£ 22.00$
£39.00
$£ 49.00$
$£ 26.50$
£25.00
£24.00
£24.00
$£ 24.00$
£24.00
all above heaos are brand new and of japanese origin WE ALSO STOCK BELT KITS, PWHEELS, MOTORS, IDLERS, PULLEYS, LAMPS, ETC. RING NOW FOR OUR STOCK LIST. F.O.C
all ex-stock items despatched same day. no minimum order value. ADD §1.00 P\&P PLUS V.A.T. TO ALL PRICES.
ORDERS BY ACCESS AND VISA ACCEPTED.

Omega Electronics

252A HIGH STREET
HARLESDEN, LONDON NW10 4TD
Tel: 01-965 5748 (24 Hours Answering Service

miyloz

U.H.F. TELEVISION DISTRIBUTION AMPLIFIERS

	\star Do you use cathode ray tubes?
	Can't find a replacement or shocked by the cost? It may well be that a rebuilt tube will solve your problem.

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

> WHY NOT TELEPHONE UXBRIDGE (0895) 55800 TO DISCUSS YOUR REQUIREMENTS. DAVE
> DYSON WILL HELP YOU WITH DOMESTIC TV TUBES. TERRY SMITH DEALS WITH COMMERCIAL/ PROFESSIONAL TYPES.

We are currently redeveloping our factory and have temporarily transferred production facilities to a factory unit in nearby Iver (Bucks). We have made arrangements for the Uxbridge 55800 telephone to be rerouted to the Iver factory at the exchange, but if you should wish to dial directly, the Iver number is (0753) 630137. During the temporary period of relocation we shall maintain goods handling facilities at Uxbridge. It would be appreciated if intending visitors telephone us first to be sure that technical staff are available at Uxbridge if required. We greatly appreciate the confidence placed in us by our customers which has enabled our business to grow and look forward to being of continued service in the future, particularly when we move back to our headquarters site later this year.

DISPLAY ELECTRONICS LTD. SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

HITACHI
5000, 8000

NATIONAL PANASONIC

 NV8600, 8610, 2000, 7000, 370, 333, 2010
SHARP

620, 630, 640, 2300 H T/P Untested from $£ 70$

BETAMAX VIDEOS

 SANYO VTC 9300, 5300SONY C5, C6, C7
Untested from £25
HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS £5 VHS/Beta tapes used from 40p each
Sorry must collect as we do not send through the post.

PLUS

17" $18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from £8. Also available CTVs Remote Control \& Teletext All prices subject to 15\% VAT Discount for Quantities Complete loads delivered from pick up point
JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON
Phone: 0602303124

CENTREVISION

SLOPER ROAD, LECKWITH, CARDIFF. Exit 33 off M4 PHONE: 022244754 ALL OUR PRICES ARE NOW VAT INCLUSIVE
NEW BOXED FST TVS BY LEADING MAKERS. MANY SUITABLE FOR SATELLITE
MANY HUNDREDS OF EX RENTAL TV AND VIDEOS AT GIVE AWAY PRICES. NO REASONABLE OFFER REFUSED.

ITT TEXT FROM £30

THORN TX10 FROM £35

PHONE FOR A COPY OF OUR PRICE LIST.

Z.nePryt TV \& VIDEO WAREHOUSE

We are one of Southern England's foremost Trade suppliers of top quality ex-rental TV and Videos. A good range in Philips, JVC, Sony, Toshiba, Hitachi and National Panasonic colour TVs including portables, teletxt and remote control models

> BRIGHTON CUSTOMERS CONTACT SIMON HEALY

UNIT N2
London Road Trading Estate Sittingbourne, Kent. CONTACT BRIAN MOLLETT

VIDEO AND TV SPARES

Stock items despatched by return VIDEO HEADS
3HSSVA Fergusonon most models 3HSS4VB-Ferguson 3V32 JVCHR7655 3HSS4VC-Ferguson 3V48 JVCHRD565. 3 HSSN - Panasonic most models. \qquad
\qquad VR6460
3HSSU2N - Panasonic NV230/470/480/G9/G1...................................... G15PX
3HSSU3N - Panasonic NV430/460 3HSS3N - Panasonic NV777/330
3HSS4NB-Panasonic NV730.
3HSSANA - Panasoinc NV366. 3HSSHA - Hitachi VT 8000/9500 etc 3HSSHB-HitachiVT11/33/63 etc. 3HSSSP-Sharp VC9300/9500 etc PS3B-Sony C7/5/6 SL8000 etc
3HSSSF - Fisher FVH710/510 etc. 3HSSR - Amstrad, Saisho, Orion etc. PSF1 - Amstrad 4500/5200 $\ldots .$.
PS3BT - Toshiba V $9600 / 31 / 33$
PS3BT-Toshiba V9600/31/33
3HSSSY-Sanyo VHR1 100/1110/1300 3HSS3SY-Sanyo VHR1500. reprocessed heads send old head. Sharp (brass) and Mitsubishi models (tI $£ 37.50$ and most 4 head VHS types (a£45.00.
VIDEO MOTORS
Drum Motors
Ferguson/JVC (Mechanical models)
Sharp VC7300/7700/7750/8300
Reel Motors
Sharp VC9300/9500 etc. (most models)
Capstan Motors
Capstan Motors
Ferguson/JVC (mechanical models) Ferguson 3V35
17.90
$\Sigma 15.90$

Sony SLC7/C5 (BHF 1100D) Sharp VC7300/7700/7750.
28.20 REMOTE CONTROLS Ferguson, Grundig, ITT, Phillips, Pye, Sony various models.. $£ 13.50$

CAR RADIO/CASSETTE MOTORS

$6 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ and 13.2 V clockwise or anticlockwise. Three sizes available
(1) Shaft 10 mm , Height 34 mm , Width $38 \mathrm{~mm} £ 3.50$
(2) Shaft 7 mm , Height 21.5 mm , Width $34 \mathrm{~mm} £ 3.50$
(3) Shaft 8 mm , Height 25 mm , Width 36 mm $£ 3.50$

LINE OUTPUT TRANSFORMERS
Decca 100 \qquad .88 .50
T1 CVC 25/30/32 ..
Rank Bush T20A.
$£ 9.25$
OTHER SPARES
IC STR6020 Modification kit for Hitachi CPT1471/1473.

Universal Video Copying Kit (scart) $\mathbf{\Sigma 5 . 2 0}$
Video Cassette Lamp suitable for Ferguson/JVC with or without plug co.50 Cassette Lamps suitable for Sharp/Panasontc $\mathbb{\Sigma 0 . 5 0}$
Universal Cassette Lamps 60 ma Universal Cassette Lamps 60 ma $£ 0.50$
CRT Anode Caps CRT Anode Caps Video Tape Splicing Kit 55.25

Hitachi Frame Module HM6251 (Y2370551) $£ 4.60$
Video Head Cleaning Sticks.............................. $\mathbf{£ 0 . 1 7}$
Cassette Lamp suitable for Sharp VC9300 erc $£ 1.25$ Universal Tripler

£21.45 Sink Compound Freezer etc. now in slock Ask for £22.50 prices.

BELT KITS
Most Models
Sanyo VTC5000
Access \& Visa Accepted

DLER ASSEMBLIES

Sharp VC9300, VC9500 etc. Idler £1. 75
Sharp VC9300, VC9500 etc. Idler (NDL0005GEZZ) genuine
Sharp VC481, VC581 etc, Idler..90
Sharp VE481, VC581 etc. Idler (NIDL0006GEZZ)
genuine-1.................................
Hitachi VT1 1/33/14/17/19 etc. Ider
$£ 3.50$
Hitachı VT9300/9500 etc. Play Ider........................ $£ 1.75$
Hitachi VT9300/9500 F/F Idler ... $£ 3.65$
Hitachi VT8000/8300/8500/8700 F/F Rew Idler
Hitachi VT8000/8500 etc. Play Idler Assembly Hitachi VT8000/8500 etc. FF/REW Pulley.
Ferguson Take up Clutch (mechanical models).
Ferguson 3V29/3V30 Take up idler
Ferguson 3V29/3V30 Take up clutch.
Ferguson 3V29/3V30 Reel Idler..
Fergusan 3V35 Reel Idler
Ferguscn 3V35/36/38/39 Take up clutch.
Sanyo VTC5000/5150/6500 Idler roller asse..........£2.00 Sanyo VTC5000/5150/6500 Reel Driv Pussembly. £1.95 Sony C5/C7 Rewind kit Fisher FVHP615 Idler assembly. Fisher FVHP615 Gear idler assembly Panasonic NV370 etc. (VXP0521) Panasonic NV8600/8610 Play Id.......................... $£ 4.35$ Panasonic NV00, 80 IT1 Panasonic Panasonic NV600/688 Idler (VXP0515). Panasonic NV333/366 Idler arm (VXL0997). Panasonic NV8400/8600/8640/8620 (VXP0245) £3.10 Panasonic NV333/366 etc. (VXP0401) NV7000/7200 7800 (VXP0344) NV2000/3000 (VXP0331) (VXP0329).
PINCH ROLLERS
Most Models....
£2.70

Please add 75p per order for p\&p and then add 15% VAT.
A. Z. ELECTRICS 183 Acre Lane, Northampton NN2 8DX Telephone: (0604) 847800

Unit 7, Station Street, Bromsgrove, Worcestershire B60 2BS.祭 (0527) 37037 or 71186 Telex: 334719 Alpha G. Fax: (0527) 65358

LOADS AVAILABLE DIRECT FROM SOURCE AT UNBEATABLE PRICES

average prices of sets when purchased on direct loads of approx. 100 TV and 20 VCR : THORN TELEVISION

$£ 10.00$	Tx Text
$£ 15.00$	Stereo Text
$£ 15.00$	8800 etc
$£ 15.00$	Mono

£70.00
£F.O.C.
£F.O.C.

THORN VCR	
3V30	$£ 59.00$
Stereo	$£ 59.00$
3V23	$£ 59.00$
Mech	$£ 32.00$

£30.00
Both TV and VCR's have excellent switch on rate
Direct loads need to be booked in advance whenever possible. Our driver will then phone you from source with exact content and price. If load is suitable (as we feel sure it will be) he will deliver direct to you.
THORN NEWLIFE 9000 TUBES IN STOCK FOR ONLY £15.00 WHILE STOCKS LAST BRAND NEW HAND SETS AVAILABLE FOR ONLY £9.50 THORN NEWLIFE HEADS ONLY £17.50

Delivery anywhere in UK or Europe available at nominal cost. Prices subject to VAT and on strictly COD Basis. Access and Visa also accepted when booked in advance. For further details phone Colin Broomfield today.

GREWE WHOLESALE TELEVISION CHESHIRE'S LARGEST WHOLESALERS - OVER 18,000 SQ. FT. 15. MINUTES FROMUUNCTION 17, M6

OVER 11,000 TV's IN STOCK NOW!

(Including hundreds of text working and off the pile) G11's, G11 Text, Bush T-20 upwards, 8,500, $8,800,9,000,9,600,9,900$, full remote TX, TX Text, Finlandia, G.E.C., K30, KT3, Grundigs, ITT's, Trimlines, 800, CVC 40 and 30's, Decca 80's and 100's, Doric 3's, 3A's and 4's, and cable with translators. Philips KT30-3-45 stand \& text.

VIDEOS

VHS - MECHANICAL HITACHI, FERGUSON 3V23-3V30

BETAMAX - SONY, SANYO, TOSHIBA, etc. (Working or untouched)

RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS BULK SUPPLIES AVAILABLE - RING DAVE ON HOT LINE CREWE 582924

MARSTALL LTD

TV \& VIDEO WHOLESALERS

15 BOWLERS CROFT, CRANE FARM ESTATE, BASILDON, ESSEX

LARGE SELECTION OF THORN TV \& VIDEO'S PLUS MANY OTHER MAKES

	WORKING	OFF THE PILE
	$£ 20$	$£ 10$
	$£ 30$	$£ 15$
9000	$£ 45$	$£ 25$
9600	$£ 50$	$£ 35$
9600 TEXT	$£ 85$	$£ 60$
TX BASIC	$£ 105$	$£ 80$
TX TEXT		$£ 50$
STEREO TEXT	$£ 80$	$£ 50$
INCLOES HANSET		
ELECTRONIC VIDEOS	$£ 80$	

SECOND HAND AND NEW SPARES AVAILABLE.

ELECTRONIC VIDEO'S FOR SPARES FROM ONLY £30 EXPORT INQUIRIES WELCOME. discount off quantitiles, pLus delivery service available.

COME AND PAY US A VISIT FOR A CHAT ABOUT YOUR REQUIREMENTS OR GIVE US A RING ON

95 LANGWORTHY RD. SALFORD MANCHESTER M6 SPH

> OVER 6,000 TV'S \& VIDEO'S IN STOCK 7,000 SQ. FT. WAREHOUSE

LRC (SPARES)ORDERS BEFORE 4.00 P.M. - SAME DAY DESPATCH!
LIST PRICES EXCLUSIVE OF VAT
ORDERS UNDER £50 ADD £1.00 P\&P
90B CLEVELAND STREET, LONDON W1P 5DR

BARRY TV SERVICES WHOLESALE
BUYING TV'S and VIDEO'S?

THEN LOOK NO FURTHER
QUALITY - QUANTITY AND A QUESTION OF PERSONAL SERVICE IS G/TEED.
the prices are right SO DON'T DELAY
MAKE MONEY TODAY
TEL. 0223862924

ALSTON-BARRY INTERNATIONAL

TOMORROWS TECHNOLOGY TODAY

SATELLITE SYSTEMS NOW AVAILABLE BY AMERICA'S LEADING NAME R.L. DRAKE FROM ONLY $£ 299$ + VAT
TRADE (Trade Enquiries from Only Genuine Dealers and Installers please)
FULLY MOTORISED FROM ONLY £449 + VAT! YES £449 + VAT CALL TODAY
Tel. 0223860958 FAX 0223860965

UNIT 4 \& 5, WINBORN BUILDING, CONVENT DRIVE, WATERBEACH, CAMBRIDGE

KIT PRICE £57 inc P\&P and VAT. Available from Luton only.					
SONY TUBES REPROCESSED WITH ORIGINAL SONY GUNS					
Quality, High Temperature Reprocessing					
TUBE SIZE UP TO \& INCLUDING		IN UNE \& PIL i.e. AXT51-001 510 VAB 22 $510 \mathrm{VLB22}$ A56-510X A56-540X A56-701X AXT56-001 AXT56-001			
$18^{\prime \prime}(47 \mathrm{~cm})$		£44		¢44	$£ 58$
22' ${ }^{\prime \prime}$ (56cm)		£46		¢52	¢64
$27^{\prime \prime}(68 \mathrm{~cm})$		$£ 52$		-	¢85

All tubes exchange glass required.
Please add 15\% VAT to all prices. Callers welcome. Please phone first.

WELL VIEW

114-134 Midland Rd, Luton, Beds. LU2 OBL.
Tel. 0582-402499.
Open Mon-Fri 10am-6pm. Tuesday closed all day.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703449783
West One Distributors Ltd., Chesham, Buckinghamshire.
Tel. 0494778197

New and rebuilt for most makes of T.V. including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX etc. Thorn New Life now in stock
Two year guarantee with a four year option Cash or credit allowed for certain types of In-line glass Price list available on request.

EXPRESS TVV. SUPPLIES

 The Mill, Mill Lane, Rugeley, Stafts.08894-77600
(9.00-6.00 Mon-Sat)

Bristol

$0454-316285$ (After 4pm)
POST-B-PBDT ELECTRONICS

SEND FOR CATALOGUE (S.A.E. PLEASE) TELEPHONE ORDERS, MAIL ORDER, OR CALL AT SHOP 126 HIGH STREET, CANVEY ISLAND, ESSEX. SS8 7SH 0268690868

SUNSHINE

 SPECIALS
CTVs

LARGE SELECTION OF CTVs COMPLETE AND UNTOUCHED $£ 4.00$ + VAT

GII GEC DECCA 100 ALL CLEAN AND COMPLETE MANY WORKING $£ 8.00$ + VAT

Glls TESTED
CLEAN AND WORKING £16.00 + VAT

VIDEOS VHS N/PAN 2000
FERGUSON 3V29-30 HITACHI 8300 £70.00 + VAT

PHILIPS VR6560 R.C. LESS REMOTE £135.00 + VAT

BETA VIDEOS WORKING FROM
$£ 25.00$ + VAT
W. TREE TRADE TVs SUNSHINE MILLS WORTLEY ROAD ARMLEY, LEEDS WEST YORKSHIRE TEL: 0532638804

WILT AROVE DIGBETH BIRMINGHAM 5
 Tel:021-772-2733

OVER 10,000 TV'S \& VIDEO'S IN STOCK LARGE 14,000 SQ. FT. WAREHOUSE

EX RENTAL N.E.C Complete Satellite systems at keen prices.

NEW LIFE THORN TELETEXT TV 9K tubes available Now only £40. with guarantee for only E15.

TV RANGE
BUSH - DECCA - PHILLIPS - PYE - GRUNDIG GEC - FERGUSON - TOSHIBA - Also Portables

HUGE STOCKS

 WORKING \& GENUINE UNTESTED TV'S \& VCR'S YOU'II HAVE TO SEE TO BELIEVE!!
BRAND

 NEW VIDEO HEADS \& HAND SETS NOW AVAILABLE AVAILABCL
EXGRIENTAL TVS \& VIDEOS

VIDEO RANGE

FERGUSON 3V29/30

FERGUSON 3V23
HITACHI VT11
JVC 7200/7300
SHARP F/L 9100/9300
ORION F/L
HINARI F/L

TX10 BASIC REMOTE CONTROL - FROM £35
VIDEO RANGE - AMSTRAD - AKAI - FERGUSON - HITACHI - JVC - MITSUBISHI - SHARP - PANASONIC

SPECIAL PURCHASE

B GRADE 14" SUWPISE COLOUR PORTABLES,
NEW IR RCC VCRS \& MUSIC GENIRES,
COMPAGT DISC, PORTABLE RADIO CASSETIES,
miciowave oven, eic.
ALL AT VEBY COMPETIIIVE PRICES

CENTRAL \star CENTRAL \star CENTRAL \star CENTRAL \star CENTRAL \star CENTRAL \star CENTRAL \star

SETS \& COMPONENTS

UNBEATABLE PRICES. Semiconductors. valves comporents. equipment. S.A.E. New catalogue and free components. Kenzen, P 435 A Pershore Road Stirchley. Birmingham

OCHRE MILL TECHNICAL SERVICES. Grundig TV spares. all models to lox Fast. Triendly helpfui service, sensithe prices. Also: Test equipment. ascilloscopes. manuals, repairs, re-calibrations. 1785 (Stonc) 814643.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 50p per word (minimum 12

JAPANESE TVs, Mitsubishi, Parrasonic. Sony, JVC. Toshiba, fully refurhisled. Export enquirics welconne PEARSON TELEVISION $148+863+89$.

STARLITE ELECTRONICS 173 BROAD ST. DAGENHAM 01-593 0720

Ex TVs and Videos, Working TVs in our showroom. Re-Gunned Tubes

- most types available. Japanese Tubes also available.

TRADE SALES

Decca 80/100,
Bush T20/22 ITT 32/45
GEC 2002 Dorics Mk3 E-1 2 INC
GEC Bow/Fronts G11's E14 IMC
TX9 and 10. KT3 and 30 FROM $=30$
All Text and Videos PRICE ON ASKING
Phone 0515484414 Admin Television,
Unit J, Admin Building, Kirkby, Liverpool L33 7TX

PANASONIC'S ETC.

EXAMPLES
TC2205 remote
$£ 50$
$£ 110$
TX220022 inch text
c90
NV333 elect Video
Slim front loaders
Superb and working
Many other models/makes More profit, less headaches Regular supply
Repossessed TV Centres Ltd Daisy Works 345 Stockport Road, Longsight, Manchester.
(A6 between M/c and Stockport) Mr Poole or Mr Ricketts Tel. 061-273-2854/274-3409

DHOUPER VISION

Wholesaler in TV's and VIDEO's.

TV'S

B.W. £4 1500-1600

G11, Philips, GEC Starline, ITT CVC 25-32
8800
9K
9200 Basic Monitor - Two function Remote
9200 Full Infra Red Remote
9900 Two function Remote
9900 Full Infra Red Remote
TX9-10 Basic Remote
TX90-100
Text TV's with new Remote G11 Philips-Pye
Portable Colour Basics
TX9-10 Text
Text Portable
TX100 Text
Stereo Text
Professional Stereo Text + Speakers
ITT FST Text
And all Japanese TV's in stock from $£ 15.00$
VIDEOS

5EROICE PQGES

words), box number £1.00 extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

WIZARD DISTRIBUTORS MANCHESTER

TV \& VIDEO SPARES

We stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI \& DECCA
And also THORN \& ITT FIDELITY SPARES MAIN DISTR1BUTOR Did you know we also stock FUSES
TUBES
AEROSOLS
RESISTORS
CAPACITORS
VALVES
HANDSETS
VIDEO HEADS
TELEPHONE ACCESSORIE
Counter open Monday-Friday 9am-4.45pm
Mail Order-Access/Visa
TRADE ONLY
EMPRESS STREET WORKS EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

- SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

 TELEVIEW 01-994 5537 194, Acton Lane, London W. 4.JOMILL ENTERPRISES 173 Dalston Lane, Hackney, London EB. Tel. 01-533 2229
VHF/UHF TELEVISIONS $£ 22.50$ QUANTITIES P.O.A

TURN YOUR SURPLUS

ICs transistors etc. into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO
103 South Brink, Wisbech, Cambs.
Tel. $19945584188 \quad$ Fax. 094558884

* ESTABLISHED OVER 15 YEARS *

Thorn $30(0) / 3506)$ horn

TRIPLERS UNIVERSAL

The UNIVERSAL TRIPLER can be used in mosi G.E.C. I.T.T. I'ye. Rank, Deccad Continental sets.

WING ELECTRONICS

15 Waylands, off Tudor Rd., Hayes End, Middleser

ELECTRONICS

DF THEIR NEW WAREHOUSE

(UNIT 3, MERSEY ROAD INDUSTRIAL ESTATE,

:NING OFFER!! NTH ONLY

 ots of $25 £ 10$ each arranged
BULK ORDERS TO YOUR DOOR

WORKING EX-EQUIPMENT PANELS

	IF	Con- verger	De- coder	Line scan	Power	Frame
T20/22	x	5	14	18	17	14
T26	x	5	16	20	17	X
718	$\overline{4} .50$	5	14	20	3	14.00
Philips						
G11	14.50	5	12	20	20	11.50

All prices include Postage \& Packing. But + VAT

UNTESTED TV's

Bush T20/22 ... £15
Pye G11 ... £15
PyeKT3 .. £30
PyeK30 ... £35
Ferguson TX9 £15
Grundig .. £10
Hitachi .. £10
Thorn 9000 .. £10
Plus many more; GEC, ITT, etc from £5

UNTESTED VIDEO's

Sharps 7300 .. £35
Ferguson3V29 £50
Sharps 8300 £50
National Panasonic £40
Ferguson3V30 £55
Sharps 9300 .. £55
Betamax all makes from £10

HOWROOM

ADY TO SELL VIDEO's \& TV's 'ILL BE DELIGHTED!

; NOW IN STOCK

, Hitachi VT33

60/64, ur 60,
any more
T. \& BASED ON QUANTITY

ACCESS/VISA
WELCOME

INDEPENDENT TELEVISION \& VIDEO CO.

DON'T TRAVEL THE COUNTRY LOOKING AT "BUTCHERED JUNK"
ALL OUR COLOUR TELEVISION'S \& VIDEOS ARE IN EXCELLENT CONDITION, WITH UNMARKED CABINETS AND ARE SUPPLIED WITH REMOTE CONTROL WE ALWAYS HAVE 1000s IN STOCK OF ALL FAMOUS MAKES WE DON'T JUST SAY THAT - SEE FOR YOURSELF AT YOUR LOCAL BRANCH FRANCHISES NOW AVAILABLE WITH MINIMUM INVESTMENT

BULK PURCHASE:-

V.H.S. Electronic Working	From $£ \mathbf{7 5 . 0 0}$
V.H.S. Electronic Untested	From £55.00
V.H.S. Electronic For Spares	From $£ 35.00$
Mechanical V.H.S. Video's Untested	£35.00
Mechanical V.H.S. Video's For Spares	£25.00
All Beta Videos.	From£10.00

WE ARE EXPERIENCED IN EXPORT MARKET REFURBISHED TELEVISIONS \& VIDEO'S
Enquiries welcome C.I.F. \& F.O.B. Prices - Telex: $\mathbf{3 7 8 4 1 4}$ BLBIRDG - Fax: $0602 \mathbf{8 6 1 0 2 7}$

TELEVISIONS CTV'S WORKING FROM £8	WORKING	UNTESTED
Thorn 9000	£20.00	£15.00
Thorn 9200	£25.00	£18.00
Thorn 9600	£25.00	£18.00
Thorn TX9-TX 10	£50.00	£40.00
Decca 80 \& 100	£20.00	£15.00
G.E.C	£20.00	£10.00
I.T.T. R/C	£30.00	E20.00
Philips G11 \& Pye G11	£28.00	£18.00
Philips G11 \& Pye G11 Text with Handset	$\underline{55.00}$	$\underline{45.00}$
KT3	£50.00	£40.00
KT3 Text with Handset	£70.00	£45.00
KT35	$£ 55.00$	$£ 45.00$
KT35 Text with Handset	$£ 90.00$	$\underline{65.00}$
TX9 \& TX10 Text with Handset	£70.00	£60.00
Grundig	£55.00	£45.00
Grundig Text with Handset	$\underline{50.00}$	$\underline{65.00}$
I.T.T. - Ferguson Stereo Text	£130.00	£105.00

PLUS MANY MORE LATE MODEL T.V.'s TOO LONG LIST TO LIST THEM ALL. ALL PRICES ARE PLUS 15\% VAT.

NOTTINGHAM

(10,000 SQ. FEET WAREHOUSE) UNIT 3-3A MEADOW TRADING EST MEADOW LANE
NEAR NOTTM. COUNTRY FOOTBALL GROUND IN NATIONAL TYRE YARD NOTTINGHAM NG2 3WQ.
telephone: (0602) 864627

SHEFFIELD

(6,000 SQ. FEET WAREHOUSE)
2 MIN FROM JUNC. 34 OF THE M1 UNIT 17, MEADOWHALL TRADING EST.

27 AMOS ROAD SHEFFIELD 4
telephone: (0742) 422633

A space ship was seen today outside a local television warehouse in Basildon.

Passers by were held spellbound by the sight of three space aliens appear ing from within the store, carrying what appeared to be Television sets and video recorders.

In an exclusive interview with one of the aliens, our found that the trip report was justified and they had travelled a great rewarding due to the distance across our galaxy to this particular T.V. store, because as they said "Bobs T.V. \& Video deals cannot be beaten". They were also particularly impressed by the large selection of reconditioned sets

The Alien went on to say that as a main dealer for T.V. equipment on his
own planet Trinitron, he found that the trip to earth was justified and
rewarding due to the amazing deals he found at Bobs.
Two of the aliens were also impressed by the variety of makes including Ferguson, Philips, National Panasonic, Hitachi, Sharp, Grundig etc. plus B grade Philips machines.

1 Swinborne Court,

 Burnt MillsInd.Est Basildon, Essex SS131QA.

ACORN TV (SOUTH WEST)

Doric MKIII (NW to clear @ £80 for 10.

3V22 Videos	@ $£ 59.00$ working
3V30 Videos	@ $£ 9.00$ working
3V30 Stereo Vid $@ £ 100.00$ working	

Plus MANY MANY MORE basic and text TV. Why travel miles when we are on your doorstep.

We are now South West stockists' of Konig remote controls. Phone for requirements. ACORN TV WAREHOUSE IPPLEPEN (0803) 813281

You'll find us behind Elf Garage On main Polnes/Newton Abbot Road

TOP QUALITY - HIGH PROFITS

WHY BUY \& SELL RUBBISH?

TELEVIIIONS, VIDEOS \& AUDIO

Good range of new bankrupt stock, manufacturers seconds, late model ex-rental \& H.P. reposessions.

Phone for our latest price list and delivery arrangement.

0299400233 - 400933

COOKERS (UK) LTD.
THE HEATHLANDS, KIDDERMINSTER ROAD, BEWDLEY, WORCS. DY12 1LJ.

NEWCASTLE Upon TYNE

COLOUR TELEUISIONS
THORN-8,800
9,000
9,600
TX9-TX10
DORIC-MK1, MK111, M4. PHILIPS-G11, KT3, KT3D ITT-Various Models.

GEC-Various Models.

TRADE WORKERS ALWAYS AVAILABLE

35, Nunsmoor Road, Fenham, Newcastle-Upon-Tyne. Phone: (091) 2722303

> VHS ELECTRONIC VCRs foom $\$ 25$ VIDEO 2 Rino $£ 15$ Phone us for type availability

CLEARANCE COLOURS
ALL TYPES, BLOCKS OF 10 SETS FROM $£ 40$ PER BLOCK
 KT3 FROM $£ 30$ TELETEXT with HUNIT FROMCOD EACH Thorn TX9-TX10, TX Stereo Beta VCRs Remotes etc. GENERAL FAGTORS UNION ST, DONGASTER SOUTH YORKS.

NOW OPEN IN CORNWALL

DECENT, CLEAN WORKING \& NON WORKING THORN TV's \& VCR's AT COMPETITIVE TRADE PRICES LARGE WAREHOUSE PREMISES

COWELL TV \& VIDEO WHOLESALE

MEVAGISSEY
(0726) 842582

C.T.V.

STOURBRIDGE, W/MIDLANDS

QUANTITIES OF BRAND NEW SMALL APPLIANCES - Microwaves, $14^{\prime \prime}$ C.T.V., $12^{\prime \prime}$ Mono

EX-RENTAL C.T.V. and VIDEO.
DIRECT LOADS AVAILABLE All at Competitive Prices!
Telephone: 0384-390706

DECCA TUBE CLEARANCE
470DUB22 470KUB22
470FIB22R S10DJB22
$£ 25.00$ + vai
CARRIAGE $£ 5.00+$ VAT
Telepart 0902771322
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AZ

ST. AUSTELL

(0726) 69384

GOODMANS

(refurbished) DEX 100
SUPERSLIM CAR GRAPHIC
EQUALISER/STEREO AMPLIFIER $30+30 W-7$ controls
Fader control - LED power indicator £. 9.50 each. Min order 5

SANYO 50W 8" SPEAKERS £2.50 each. Min order 24

SANYO $2^{1 / 2} z^{\prime \prime}$ TWEETER tor above £ 0.75 peach. Min order 24 call Bill Neames on
01-992 8430
RADIO \& TELEVISION COMPONENTS (ACTON) LTO

AERIALS

SPFCIAI OFFER. IRTE whits 1.5 m disthes. All hoxad and new. Complete with stand and chaparral polareter. ()nly $£^{106}+$ VAl Phone (karview Sat-

TECHNICAL INFO SERVICES (T)
 76 Church St., Larkhall, Lanarkshire ML9 1HE

 PHONE 0698-884585 MOn-Fri, 9-5, any other time 0698-883334, FOR FAST QUOTESWORLD'S LARGEST COLLECTION SERVICE MANUALS - Most unobtainable elsewise Prices range from only $\mathbf{\$ 4 . 5 0}$ - large s.a.e. any quotation, no obligation to buy. WORLD'S SOLE Suppliers of TV \& Video Repair Manuals, etc. from TV TECHNIC
also such publishers as Heinemann, Newnes, TV Technic, Thom, etc.
Every published service sheet in stock, supplied full size, not bits \& pieces CTV's or any combination $£ 3.50$ + Isae; any other single item $£ 2.50$ + Isae Complete Circuits Sets for most Videorecorders only $\boldsymbol{\Sigma 7}$ set (No serv shts made) LSAE for quOTATIONS plus GIANT CATALOCUE-NEWSLETTERS-BARGAINS-FREE S/Sht as available

Original Video Service Manuals (O £15 each, 5 for £60, 10 for $£ 100$

Covers most models from Baird, Ferguson, J.V.C., Multi-Broadcast, Radio Rentals and many from Akai Decca, I.T.T., Mitsubishi, NEC, Nordmende, Saba, Sansui, Tatung, Telefunken, Toshiba. Also Philips VR6460 and VR6520/6920; Pye 64VR60 and 65VR20; Panasonic NV370.
Circuit Diagram Collections in Giant A3 Size Binders Any single CTV £4.................. Any Video $£ 7$ British CTV 1972-1986 in 3 Binders $\mathbf{E 6 0 . 0 0}$ Foreign CTV, Huge Selection in 2 Binders $\mathbf{~} 40.00$ Portable British CTV in I Binder $£ 22.50 \quad 4$ Binders of Videos, 1980 to $1986 \quad$ E80.00 UNIQUE INTEGRATED REPAIR SYSTENS (FREE updaling for 1 year from purchase)
TELEVISION.................... 8 Binders of Circuits, 17 Repair Manuals, plus dozens of service manuals, reference
manuals, etc. bringing the system right up to date... Expanded System £375
Without only selected manuals ... Standard System $£ 300$
EORECORDERS
VIDEORECORDERS 4 Binders of Diagrams, 20
Without the Service Manuals, but with everything else.
Monthly terms available any of the four above systems
DOMESTIC EQUIPMENT 2 Binders of Exploded Diagrams, 1 Binder Repair/Service Data, 3 Manuals covering dozens more of the popular circuits and many service manuals.. $£ 75$

Some titles from our massive stocks of publications ready for immediate despatch

Comprehensive TV Repair Manual $\mathbf{9 9 . 5 0}$. Complete Radio Repair \& Service
Spectrum Repair \& Sepaire Manual
Domestic VCR - Servicing Guide Audio Eqpt Tests. King

$\mathbf{£ 9 . 5 0}$	Complete Radio Repair \& Service
$\mathbf{£ 5 . 0 0}$	1987 British CTV Repair Manual
$£ 15.95$	Oscilloscopes, how to use/how they work
£12.95	Servicing Radio, Hifi, TV. King

Newnes Audio \& Hi-Fi Pocketbook Colour Television Servicing, King VHS Common Faults \qquad 1987 British CTV Repair Manual 99.50

Thorn's Crosstalk Omnibus Version

£12.95 Servicing Radio, Hifi, TV. King

$E 9.95$ Servicing Mono Portable TVs. Wilding
$\mathbf{£ 1 2 . 9 5}$ Principles of Compact Disc
E3.50 The PAL System, complete explanation 11.95 Grundig CUC System

89.50
8.95

Thorn's Complete Guide System, DC \& AC Theory/Power sup/RC/Therm Valves/Remotes The Complete Collection of all 17 TV Repair Manuals $\mathbf{2 8 . 9 5}$ each) SPECIAL OFFE Domestic Eqpt Repairs/Service Manual Practical Design of Digital Circuits Servicing Personal Computers
14.95 Modern Wiring Practice

E12.50 110 Projects for the Home Constructor Semi-Conductor Data Book. Ball Set of all Ball $\quad \Sigma 7.50$
Shorn's Technical Manuals from 3V00 to 3V23
$£ 20.00$ Set of all 10 avail
Suppliers to British \& Foreign Governments, Library \& Educational Suppliers.
with every complete Video Manual or Collection bought - Thoms VHS Common Faults
Complete Repair \& Service Manuals
Complete Repair Data with Circuit
Mono TV £12.50; CTV £17.00; Video $£ 19.50$ Complete Repair Data with Circuit ... Mono TV £9.50; CTV 12.50 ; Vid £3.00 + LSAE BRINGS THE ONY COMPREHENSIVE SERVICE SHEETS \& MANUALS CATALOGUES plus FREE CHASSIS GUIDE and 54.00 OF VOUCHERS

FULL WORKSHOP SERVICE MANUALS

Any Video Recorder - $£ 10.00$ POST FREE.
Any Colour/Mono TV, Any Audio, Music System - $£ 5.00$ POST FREE. State Make/Model/Type with order.
FREE Catalogue Unique Repair and Data Guides with all orders. MAURITRON TECHNICAL SERVICES (TV)
8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY.

SERVICE MANUALS Circuils/Layouts, s/sheets etc

VCR - CTV - MTV - CD - CAMERA All European, Japanese \& Korean Makes
Fuil Manuals:
Saisho/Matsui/Triumph/NEC/Orion
Daewoo/Funai/Seismo/Osaki
Philips/Pye \& equivalents
Saisho/MatsuiTriumph CTV Mans. NEC - Loewe - Metz CTV Mans.
from $£ 12.75$

Manuals for manay other brands woll $£ 4.75$ obscure - some unobtainable elsewhere

Prices are all inclusive. No VAT or P/P
For list send $£ 1.00$. No SAE required.
OATA-GD 112 AMEYSFORD RO., FERNODWN, dorset bh22 gae. Tel: 0202894207

MACDONALDS RADIO
 T.V. SERVICINC BOOKS

SPECIAL OFFERS

86 to 87 £29. With 1952 to 1986 Index Book included. 85 to 86 E 21.84 to 85 E 21.80 to 81 £19. 79 to $80 £ 19.77$ to 78 £19. 76 to 77 £19.

$$
74 \text { to } 75 \text { £16. Free Defivery }
$$

CIRCuITS - ع2.95. All in delivered Send cheque or stamps TX 9.10 .1009600 KT3.30.35.40 IT $\mathrm{CT} \times 80$ BUSH T20, T22, T24, T26 DECCA 70, 80, 100 GEC 20AX MK1 MK2 HI TACHI $30,40,60$ GRUNDIG, CUC, $42,60,70,220$ SONY
J. $/ 51 /$ YU, 29 WARIMSWORIRCUD., DONCASTER

GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thoosiands of difterent sheets and manuals in stock. For any conquiries:

> | DÖNBERG ELECTRONICS |
| :---: |
| Schooimasters House, Rannafast, |
| Co. Donegal, Republic of treland. |
| Phone: 07548275 |

THE VALVE DATAMAN

1914-1959 for circuits, service sheets, manuals, handbooks, on all valve and early transistor equipment, including audio, military (British \& Foreign), radio and T/V. Quotation by return via letter (S.A.E.) or phone brochure supplied with S.A.E. Credit cards orders taken over the phone.

THE DATAMAN,
Tudor House, Cossham Street, Magotsfield, Bristol BS17 3EN. Phone: 0272565472.

THE DOMESTIC VIDEO RECORDER SERVICING BOOK

3rd EDITION IN HARDBACK - THE ENGINEERS BIBLE -

With chapters on Hi-Fi, Digital Servos, Fieldstores
Luminance \& Chromınance Signal Circuits, CCD's, Camcorders, 8 mm , S-VHS \& VHS 'C' Formats, Auto
focus Systems, Camera Signal Processing.
A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS THE COMPLETE REFERENCE TO VIDEO CIRCUITS.

ORDER YOUR COPY NOW (while stocks last)
E21.00 inc. P\&P (UK)
From: NEWARK VIDEO SERVICES
GROVE FARM ESTATE, LONG LANE,
BARNBY-IN-THE-WILLOWS. NEWARK.
NOTTS. NG24 2SG. Access \& Visa
Tel. 063684327.

WANTED

WANTED. Ex-rental TV/Videos or any surplus stock. any quantity, quick collection, cash paid on spot. Ring $1532+44195$.

WANTED EX RENTAI, COLOUR TV. Any quantity, quick collection. discretion assured. Cash paid. Sheffield 312832.

WANTED FOR SPARES. Mitsulishi HS7(X)B any condition, will pay all cosis. Phone Halitax 43122 .

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
Fax 0827874835

"WVANTED"
 DEAD OR ALIVE

Ex rental, PX surplus, insurance damaged, CTVs - VCRs, test equipment, components panels \& service manuals, etc, etc, etc.

For national distribution

No load too large, early cash settlements, reliable.

If you have a permanent or one-off disposal requirement
Telephone: 07454769 (24 hours)

> FOR INFORMATION ON CLASSIFIED ADVERTISING PLEASE RING PAT BUNCE 01-261 5942

SERVICE and SELL WITH CONFIDENCE

SHARP \& GRUNDIG

PARTS ARE FAST FROM WILLOW VALE
The manufacturers who care about Service
$50,000+$ different stock parts

24 hour despatch

Over 95\% 'first pick' supply ratio from stock
Willus Vale's comprehemove parts listugg lor Sharp and
Gimoder proxluck make ordering and identification cas
Contact the Sole UK Parts Distributors and find out what SERVICE is really about.
PLUS COMPREHENSIVE STOCKS OF PHILIPS, THORN and FIDELITY PARTS TEST EQUIPMENT. TOOLS. general components and spares

Willow Vale Electronics Ltd

11, Arkwright Road, Reading, Berks. RG2 0LU.

Telephones. 0734-876444 (24 hours) 8 lines
Telex: 848953 Willow G
Faxline: 0734-867188

also at

Enterpise Park. Reliance Street,
Newton Heath, Manchester 10
Telephones: 061-682-1415
Faxine: 061-682-9031

Please send me your comprehensive Sharp, Grundig spares catalogues together with wallcharts of the other spares you stock: (TRADE ONLY) I enclose 50p stamp for postage.

Dealer/Enguneer.
Address:

Postcode:

Sabaco

Dear Customer.

Save yourself russing abour by visiting our newly appointed trade viewing area where you com have tea or coffee whilst browsing through the Bargams.

There's a wide selection of TV. VIDEO, HI-FI, MICROWAVES that are New, Gruded and ex-Rental such as Thorn TVV'ideo, Philips Gll/KT3/30, Bush, Japanese. Fergason, Alba, Sentra, Nikkai Goldsaar. Samsung eft, all at keen prices.

Engincers \& Bulk buyers will be interested in the non-working products for which reasomable offers won't he refused.

Do come and see for yourself, you are assured of a warm nelcome.
Yours sincerels:
M. SABA

TV PANELS from f2.00, Valves from 5 p. Rank. Philips. Ferguson etc. Tel. (12)(N) (6litheroe. Lance) 25128.

SUPPLIERS TOMSA

MANUFACTURERS OF G.R.P. DISH ANTENNAS			
1.OMDIA	558	2.OMDIA	$\underline{180}$
1.2MDIA	178	2.3M (PETAL)	$\underline{2045}$
1.2MOFF SET	[88	3.0M DIA	5637
1.5M OFF SET	¢158	FEED SUPPORT	
1.6MDIA	[96	ASSEMBLY	521
1.8M (PETAL)	[157	POLAR MOUNT	¢122
PLESE NOTE: We are dish manutacturers only and do not supply systems. Please enclose S.A.E.			
EURO-SAT, 107 CROSS ST. SME, CWESHIPE, M33 1m, EMCMAMD			

3 V 29
 £85.00

3HR. VHS TAPE f1.45
NEW 14" PORTABLE $£ 90.00$ TELETEXT £55.00

TELEDISION tube re-gumning pant for sale. Training provided. For details phone (15 $82+(12+4)$

USED 50p TV SLOT METERS. Variable tariff 5 for £20.00) Flus VAT/P\&P. Burditts (Ibstoch) Ltd. . 05.30 61414.

METERS. Reconditioned $10 \mathrm{p} / \mathrm{Sip}$ p available from stock. Contact THE METER CO. (Poole) LTD. (1202) 643448.

AVON METERS

50p or 11 TV meters
from $£ 5.95$ each plus V.A.T.
(Discount for Quantity)
We also repair and buy unwanted meters.
1 Year Guarantee - Phone now: 28 Station Road,
Yate, Bristol BS17 5HW
Tel. 0454321953

REPAIR SERVICE

AVO'S OSCILLOSCOPES \& TEST EQUIPMENT Repaired. Manuals availathe. J.R. (OAD) ELEC. TRONIC SERVICES Phone $01-3411230$.
(GRUN)I(; APPRONEI) SERVICE (O). I V. Video Audio Specialists. Repairs guaranteed. Trade welcome. Tel. Tyneside $\langle\boldsymbol{K}) 2340$ O37.

BUSINESS FOR SALE

RE-CON BUSINESS, two owem with glas-sealer cte.
 $4.345 \underline{2} 815613$.

TV/VIDEO SERVICE CENTRE FOR SALE

ESTABLISHED 15 YEARS. COVENTRY AREA. CONVERTED PUB, PROVIDING GOOD SHOP WORKSHOP. STORAGE \& SUBSTANTIAL LUXURY LIVING ACCOMMODATION.
OFFERS AROUND $£ 85,000$ FREEHOLD DETAILS: 0203440335

RETAll, ISED TV, Videos \& Accessores business North Cheshure Town takings E.31.501 pal growing low overheads lease and hus e9, 5(m) + sav. Box No. 246

RENTAL BUSINESS (SMALIL. Easil ran from home. £9.(MN) p.a. Ideal part-tıme job tor engineer. Owner emigrating. Otters Newcastle (0) 2 (28.3789.

SITS VACANT

ENGINEERS REQUIRED

Experienced Engineers required for expanding car Audio Service Company. Digital techniques required. interesting work with good prospects. Excellent salary.

Please apply in writing: DARDS ELECTRONICS
102 Connaught Road, Luton, LU4 8ES.

[^2]
MISCELLANEOUS

TECHNICALTRAINING INSTRUCTORS

Calling two skilled TV/VCR Engineers to step up

Have you ever felt you'd like to pass on your skills to others - could you communicate your knowledge with clarity? Do you have the capacity to go on learning new techniques?
If in the past you have shied away from a training role because it means being confined to a classroom atmosphere and losing the "hands-on" upproacn, then here is your chance.
Mastercare are the service arm of the Dixons Stores Group and our Customer First attitude means we support our engineers to the hilt. You would be involved in lots of travel within your patch either in the South West (based in Bath) or in Scotland (based in Livingston) and your backing comes from our Technical Training Department in our Hemel Hempstead Head Office. We will of course provide you with a company vehicle, out of pocket expenses, contributory pension scheme and company discount facility.
Interested. . . . let us have details of your past experience, furure aspirations and saiary expectation.

Personnel Manager, Mastercare Lid.,
Maylands Court, Maylands Avenue,
Hemel Hempstead, Hents HP2 7DE.
MASTERCARE
A Durone Group Company
We make it work

PICTURE TUBE REPAIR EQUIPMENT BMR 90

Versatile and reliable. Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.

- Regenerates picture tubes even better. Also IN-LINE Removes short-circuits, even between cathode and filament - Measures beam current, emission current, life
 expectancy, etc.
can pay for itself in 4 weeks, if you are not using BMR 90 you are making less profit than you could.
BLENDOWN LIMITED, 34 Glan-y-Mor Road, Penrhyn Bay, Llandudno, Gwynedd, Wales. Tel. (0492) 49246.
Fax (0492) 47880
Telex 61530 Blend G

PERSONALISED PROTECTIVE COVERS for 'TV's VCR white goods. Send today for cokour leatlet and price list, or sec your S.E.M.E. representative N.F.P.C., Bywell flouse, 3 Fenham I tall Drive, Newcastle upon Tyne NE 4 YU'T. Telephone ($($ K11) 272+646.

WHY NOT LET TELEVISION SELL YOUR PRODUCT FOR YOU RING NOW ON 01-261 5942

Universal Semiconductor Devices Ltd.
UNIT 4, SPRINGFIELD ROAD,
CHESHAM, BUCKS. HP5 1PU, ENGLAND.
TEL. 0494 791289/TELEFAX. 0494791296
TELEX 837707 usdco g
WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE from stock. If we don' stock what you need then we can get it fast FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON SMALL SIGNAL
POWER
DARLINGTONS - ALL SHAPES AND SIZES VHFIUHF DEVICES - ALL SHAPES AND SIZES

FETS
POWER MOSFETS UNIJUNCTIONS
dIODES - GERMANIUM AND SILICON RECTIFIERS AND BRIDGES \rightarrow OPTO-ELECTRONIC DEVICES

THYRISTORS AND TRIACS - ALL
SHAPES
integrated circuits:
CONSUMER - DIGTALIANALOGUE
MICROPROCESSOFS AND PERIPHERALS IC SOCKETS

CATALOGUE

Please send E 1 cheque, postal order or stamps for 1988 catalogue. The catalogue is sent free of charge to all schools, Government Institutions and businesses when requested on official letterhead.
PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE, TELEFAX AND TELEX ENQUIRIES!

APOLLO LANCASHIRE

NATIONWIDE MAIL ORDER

LOCAL DELIVERY - 2 YR GUARANTEE
A47 342/343X-470BCB22/CTB22/BGB22/ A47342/343-470BCB22/FTB22
$470-E S B 22 / E F B 22 / E R B 22 / \mathrm{FTB22}$
A51-2200/1922X.
A51-161 $1 \times 162 / 163 / 168$
 $510-\mathrm{MB} 22$ (555) D $\mathrm{DTB22/001/RFF222RCB22/FFB22}$ A51.590 New
A51-570 \times /580/001/210/241

$560-\mathrm{ETB2220101822/CSB22/DMB22/DNB22}$ A56-611X/615X
A66-120 / A 67 -120x/140/150/2000/410 20AX-A56-500X/510X-A66-500X/510X
30AX-A56-540X-A66-540X

PHONE FOR QUOTE

SONY TYPES £69 470DLB22/FWB/KHB/KTB KLB-520SB22/NB/RB/XB A49/HT00X-570DB22/EB/HB GB/JB-A53JBWO1X/JCG00X GB/JB-A53JB2/D/EB
JBOOX $680 \mathrm{CB} 22 / \mathrm{DB} / \mathrm{EB}$

14" PORTABLES $£ 59$
3708UB-AXT37001-37-550/2/3/4-A37-570/580/590

CASH PAID FOR ALL SIZES SONY GLASS + 66-510/540 560 DZB PIL TYPES

PLEASE PHONE BEFORE CALLING
LOCAL DELIVERY FROM ACCRINGTON, LANCS.
Phone enquiries and letters to:
Apollo, The Potters Wheel,
Mullion Cove, Mullion, Nr. Helston, TR12 7ET.
0326240781

TV LINE OUTPUT TRANSFORMERS
PRICES INCLUDE CARPIAGE. VAT NOT APPLICABLE.

DECCA	PHILIPS	WINDINGS RANK BUSH MURPHY
CS1730 1733 colour $\quad 10.00$	G8 \& 69 series colour 8.50	
8301835 colour $\quad 10.00$		718 promary state $18{ }^{\prime \prime}$ or 2 2' $^{\prime \prime} \mathbf{6 . 0 0}$
'30' series Bradiord colour 10.00	PYE 725-741 CT $200 \mathrm{KT2}$ 8.50	2718 EHT overwind 8.00
80 series colour 8.50	REDIFFUSIOM Doric Mk $3 \quad 9.00$	
100 series colour $\quad \mathbf{8 . 5 0}$	Erg	SOVEREICN FARA $\quad \mathbf{1 5 . 0 0}$
	CTV 2-4-126 $\quad 15.00$	colour overwind
	CTV 3-1-156 3-3-164 15.00	ctrier 9.00
		1690-1691 EHT overwind 7.0
CVC30 CVC32 series colour 8.50		VISUAL DISPLAY UNITS
CVC45 $\quad 8.50$	ANOFOMER	We can Rewind the L.O.P.T.S
F100 FI110 state p/no. 10.00	80 Merton High Stre	for the I.B.M LCF FB1 and the
	$\text { 01-540 } 3955$	Digital VT100 £23.00 old unit Required
windings are new and guaranteed	eny by return of post.	CALLERS WELCOME Open Mon -Fri. 9 to 530 pm

[^0]: Name
 Address

 ## P. Code

 International Correspondence Schools,
 Dept. EGS88, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

[^1]: Published on approximately the 22 nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £18, overseas (surface mail) $\mathbf{E 2 1}$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 \mathrm{X}$.

[^2]: VIDEO/TV ENGINEER. Experienced bench bodeorlv enganeer required. Gond pay. Full or part time. Phome Nail on (1).556 +140

