SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

Free this month Instrument Screwdriver

Wide-range Capacitance Bridge A Low-cost TVRO Installation The Art of Fault Finding Fast-shutter Video Cameras Digital Stereo Sound Systems TV Fault Finding o VCR Clinic

MANOR SUPPLIES

MKV PAL．COLOUR TEST（GENERATOR FOR DOMESTIC TV \＆VCR．

$\star+0$ different patterns and variations．
＊Broadeast transmission accuracy（fully interlaced sync pulses with correct picture blanking）．
\star EBU colour bars．BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow cyan，green，magenta，red，blue and black．
＊（hequerboard．
＊Mono outputs with border castellations，cross hateh． grey seale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR．
\star Facilities for sound output．
\star Easy to build kit，standard parts．（Only 2 adjustments． No special test equipment required．
\star Mains operated with stabilised power supply．
\star All kits fully guaranteed with back－up service．
－Also available with VHF Modulator．

Price of Kit

（alse（ $\left.10^{1 \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}\right)$ app．
£8．60
Optional Sound Module（ 6 MHz or 5.5 MHz ）
£3．90
Built \＆Tested in Case including Sound Module
£108．00
「SPECIAL TEST
REPORT
Post／Packing $£ 2.80$
＇TELEVISION＇
OEC 1982
Add VAI 15% TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

＊Output at UHF，applied to receiver acrial socket．
＊In addition to colour bars R－Y．B－Y etc
＊Cross－hatch．grey scale．peak white and hack level．
＊Push button controls．battery or mains operated．
\star Simple design，only five i．c．s on colour bar P．C．B．
IPRICE OF MK＋COLOUR BAR GENERATOR KIT £30．00．（CASE £8．60）．BAT＂T HOLDERS £4．20．MAINS SLPPLY KIT £4．20（Combined P\＆P £2．80）．

 VIF momoldator（Cll 1 to t）for overseas e5．75．
EASIIS ADAPTED FOR VIDEO OUTPIT \＆C．C．T．V：

TELETEXT DECOOER PANELS（TES＇TED）

Mullaral VM $6101 £ 30.160$ ，Philips KT3，K． $30 £ 30.00$ ，Texas XMII （TIFAX）£28．（N）p．p．£ i．s
THORN TX9 MK2／3，TX10，teletext
Mularal Decorder panel＋Interface $£ 35.00$ p．p．$£ 1.80$
THORN TX10，PHIL．IPS（；11 PRESTEL，TELETEXT
Mullard Units VM 623016.630 plus Line Coupler \＆Interface $\mathbf{£ 3 8 . 0 0}$ P．p．£2． 50

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \＆STAFF OF TECHNICAI EXPERTS

LOPTS．TRIPLERS，PANELS．TUNERS，SEI．ECOORS ETC
spectal．Offte lromt End Unit incl．Tuner．Sam IF and Channel Selector £20．（6）P．P． E^{2} ．（4）
PIILIIPS（all PANELS（teved）

GII Ulirasonic Nontex $\$ 22.50$ ，Infrat red Text $£ 22.50$ ）（）thers available

PIIIIPS HANDSETS Ex rental，text，Untested．KT lext／Video Type，e3．5

POIOLR MANUALS PR FIp．

TIORN REMOTE CONTROI HANDSETS
 TX10 lifra red Tektext E21．50，p．p．t1．20．Other awaital）
 TX9／TX10 Teletext interface pancl（ $152+$ ）t5．（0）p．p．Sop

TIIORN TX9，TXIO Saw Filter IF Pancl．ts．（0）p．p．sitp．
TX9，TXIO Remote \＆tuning control patiel（1515）£10．50 p．p． $\mathfrak{E l} .80$ ． SAW FILTER IF AMPLIFIER PIUS TUNER complete and Eexted tor T．V Sound \＆Visiom． 228.50 P．P．$£ 1.20$ ．
PAL DECODER KIT（Video（o）RGB）for Monitor t27．（1）p．p．El．（K）． PAL EN（ODER KIT（R（iß to V＇ideo）£ 18.50 P．P．£1．．30．
CROSS ILATCII UNIT KIT，Acrial mput type incl．T．V．wne and UfIf Modulator，Battery（Operated，also give Peak White \＆Black Levels．ean bu used for ans eet ti2．00 pp siop（Alum（ase t2．90 p．p．E1．40．）ADDI－ TIONAL GRE）SCALE KII E2．90 P．P．hor
IHF SIGNAL STRENGTH METER KIT $£ 22.00$ Alum．（asc $£ 2.90$ ）．DE Luxe（ase Ex．（0）（Bull \＆Tested E48．（0））p．p．E2．30．
CRT TESTER \＆REACTILATOR KIT For Colour \＆Mono complete with
 BLisll A823 Combergence．Time Base Panch E5．M0 each p．p． $\mathfrak{t l}$ ．8il．

ITT（YC．3）SERIFS．Convergence \＆Puity Contol Pancs． 22.31 P．P． 1.50

TIIORN Ex9 Fance ed pactory or small quares．Includes I．Cs d Somiconductors ete．Ez．00 p．p．£1．80．
THORN TXY Parrels calayedex tactory tor sparen incl．Electrolytic \＆Mains Transformers ex．59 P．p．E．（k）．

 PYE 725 Front Control Pameld $£ 3.50$ p．p．$£ 1.2()$

UIF／625 TLNERS，many different types in stock．DEC（CA Bradford 5
 TV SOUND IF Pancls t6．80 pre tleni．
BoPTS Now and guatr．P／P E1．50．Bohbins 80p．

FERG．，HIN．WAKCON，ULTRA

TIORN Zimh Thasisc＇AN．EITI

THORN IX＂
THORN IAIO

SPECIA．OFFER
DECC 471.8

PHITAPSO
RBAI AXZ

P）E $691-7$ chash type ond

TITCR

E3．50 PHILIPS（SX

£2．81 PHILIPWが，
2．8（．．．．．．．．．£18．

ts．00 PHILLPS（T）－
PYE 713715 （Cheloca）
t4． 80

OTHERS AHAIL ABLE，PRICES ON REQLESL
TRIPLGRS Full range isalall心．Mono ©（olour
SI＇ECIAI，OFFEK TKIPLERS
PHILIPS（is（Short Focus 心ad）t2．50 p，p，El．3

THOKN $15(0) 5$ Stick $£ 1.50,1500)$ 3 Stick tl． 50 p．p． 80

TIIORN TXIO focus control £10．00 P．p．El．WM．
PYE 713． 7.31 IF Module $£ 3.50$ p．p．SOp
 $51 p$ ．

CIOUS CALIERS WELCOME AT SHOP PREMISPS
HFOSAND．OF ADITTIONAL．I＇TENIS，EXQUIRIES INVITEJ） LARGE SEIECTION TESTED COLGIR PANELS POPULAR MODELS

Telephone 01－794 8751， 7947346

MANOR SUPPLIES

172 WEST END LANE，LONDON，NW6 1SD
NEAR：W．Hampstead Tube Stn．（Jubilee）Buses 28，159，C11 pass door W．Hampstead Brit．Rail Stn．（Richmond，Dalston，Stratford，N．Woolwich） W．Hampstead Brit．Rail Stn．（St．Pancras，Bedford）

Access from all over Greater London．
Mail Order： 64 GOLDERS MANOR DRIVE，LONDON NW11 9HT
Please ado vat 15% TO All PRICES INCl， $\mathrm{P}+\mathrm{P}$

Vol. 38, No. 5
Issue 449

On sale February 17th

COPYRIGHT

(C) IPC Magazines Limited, 1988. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 16$ in the UK, £19 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BACK NUMBERS

Some copies of issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address requests to Television, Editorial Office, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London, SE1 9LS.

INDEXES

Indexes to Vols. 35 and 36 are available at 80 p each from the Editorial Office (address above)

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

333 Leader
334 Practical Computer Programming, Part 3
This time a look at computer languages, what they do and how they go about it, with some common programme writing routines.
336 More Troubles
Les Lawry-Johns
Never a dull moment - either the sets or their owners bring problems along.
338 Wide-range Capacitance Bridge
David Botto
Designed with the needs of the service department in
mind, this bridge has five ranges covering 5 pF to $2,000 \mu \mathrm{~F}$, with a sixth range for matching resistors, capacitors,
etc. Resistance ranges can easily be added. There are also
two squarewave test signal outputs. The unit is easy to build and uses readrly available components.
344 Letters
347 A Low-cost TVRO Installation, Part 1
Roger Bunney
The aim was to achieve an efficient satellite TV receiving system at minimal cost, sacrificing ease of operation to optimum performance. Details of the equipment and a method of adapting a patio mount to obtain azimuth adjustment.
350 TV Faułt Finding
Reports from Mick Dutton, D.H. Davies, Hugh
MacMullen, Joseph Cieszynski, Roger Burchett and Philip
Blundell, Eng. Tech. Plus a note on variac repair by John de Rivaz, 8.Sc. (Eng.)
eletopics
News, comment and developments.
354 Long-distance Television
Roger Bunney
Reports on DX conditions and rception plus news from
home and abroad.
356 A Professional Institution for TV Technicians
Ian Channing
The Society of Electronic and Radio Technicians'
Incorporated Practitioners in Radio and Electronics
Division provides a professional service for servicing personnel.
357 Fast-shutter Video Cameras
Eugene Trundle
Many video cameras with solid-state image sensors
now have electronic shutter operation to minimise blur
with fast-moving subjects. How the sensor and shutter system work.
\section*{The Art of Servicing}
B. A. Berry
The art lies in the diagnostic steps that can be taken to localise the cause of a fault before any test equipment is brought into play.
363 Next Month in Television
364 VCR Clinic
Reports from Steve Beeching, T. Eng., R.S. Narwan,
Khalied Kwimry, Christopher Holland, Alfred Damp and
Eugene Trundle.
Sound Systems, Part 3 Geoff Lewis, B.A., M.Sc.
Details of various digital sound systeris including
Dolby ADM, NICAM 728 and the MACIPacket variants.
370
Service Bureau
371 Test Case 303
OUR NEXT ISSUE DATED APRIL WILL
BE PUBLISHED ON MARCH 16

SPECTRUM 48K SPARES				
ULA6C001		7.80		
128KROM				
		1.10		
CPUZ80		1.70		
CPUZ80		2.00		
T14532 use 4164/4564		1.60		
OK13732 while stocks last.		3.00		
ZTX213.		0.17		
Z1×313		0.27		
ZTX650/1....		0.35		
		0.80		
		0.80		
		0.78		
7805 Voltage Regulal		0.58		
		0.90		
74LS157		0.78		
Modulator (UM1233).Heatsink (ss 182		2.20		
Heatsink Iss. 182		0.45		
Heatsink lss 3 Loudspeaker.		0.45		
		0.90		
		0.15		
Trimmer 50pt Max.		0.32		
Keyboard Membrane Keyboard Template		2.25		
		1.50		
Keyboard Template Keyboard Conn. 5 Way		0.17		
Keyboard Conn. 8 Way		0.35		
Double Sided Tape 40 cm .Double Sided Tape Roll.		0.35 5		
		5.75		
PSU 1400		0.85		
Power Socke		0.32		
Power Plug,		0.40		
Jack Sock. (Ear/Mic) Upper Case		0.15 2.00		
Lower Case		2.00		
		0.06		
Power Supply Lead		0.95		
Screw 9.5mm (Sty 4).		0.15		
Spectrum Upgrade Kit without resets...		$\begin{aligned} & 23.65 \\ & .22 .95 \end{aligned}$		
SPECTRUM PLUS SPARES				
Sys. Test Ca$74 \mathrm{LSO}$				
		0.58		
ZX8401=PCF 1306		4.50		
		3.00		
		9.17		
Membrane (5Layer)		4.50		
Bubble Mat.........		1.50		
		1.25		
Clamp Short...		0.15		
Clamp Long.		0.15		
		0.68		
Leg (Each).		0.15		
Spring (Each).		0.15		
		0.15		
ZX81 SPARES				
ULA2C210E .. 3.95				
64 KROM		4.00		
RAM 4118		2.92		
RAM2114CPUZ80...		2.31		
		1.70		
ZTX313.		0.27		
Keyboard Keyboard Conn 5 Way		1.90		
		0.17		
Keyboard Conn. 8 Way		0.30		
Modulator		8.10		
		2.20		
Modulator Cover		0.27		
Upper Case		1.50		
		1.50		
Ceramic Filte		0.41		
Heatsink		0.15		
		0.15		
Resistor Pack $5 \times 10 \mathrm{~K}$		0.27		
Resistor Pack $8 \times 1 . \mathrm{K}$.............................. ${ }^{\text {a }}$. 0.27				
COMMODORE ICS	COMPUTER ICS			
6510 CPU6526 CIAKeyboard5.66	74LS260 55			
	2732 3.30	LIST		
$\begin{array}{ll}\text { Int. } & 5.11\end{array}$	$2764 \quad 3.20$	OF		
6561 6569 col	$27128 \quad 4.95$	OF		
6569 Col Vid.	27256	CMOS		
Cont 6581	4116			
$\begin{array}{lr}6581 & \text { Sound } \\ \text { Gen } & 7.79\end{array}$	4164 1.60 6264 175	AND		
	$\begin{array}{ll}6264 & 2.75 \\ 6522 & 4.00\end{array}$	T.T.L.		
ROM $\quad 3.37$	Z80A CPU $\quad 1.70$	I.C's		
901226 Basic	827113	. 0 S		
ROM 6.45	27×213	AVAIL.		
$\begin{array}{ll}901227 & \text { Kernel } \\ \text { ROM } & \\ 3.52\end{array}$	71×313 27 $\times 650 / 1$ 35	JUST		
906114 PLA 4.51	$1{ }^{2}$	ASK		
4164 RAM 1.60	TMS1000 $\quad 8.95$			
Timer 555 8501	DRDERS WECOME FROM SCHOOLS, COLLEGES, GOVERMMEMT ESTABS.			
${ }_{8701}$ Clock Chip 5.45				
象 (0254)				

HOW TO ORDER
Up to 1 K ADD 87 p per order (U.K.I. Heavier parcels e .g. cable. service alds, degausing coils please allow $£ 250 \mathrm{P}+\mathrm{P}(\mathrm{U} . \mathrm{K})$. Expont orders charged at cost.
FIrst Class Mall is used whenever possible Add 15% VAT to total except where it states zero rate. Bulker iterns will be sent by carri-
er $£ 7.50+$ VAT up to 25 K (except

Buikier
er $£ 7.50$
tubes)
We do no

ubes!

THERE IS VAT OW P+P.
BOOKS AND MANUALS ARE ZERO V A.T Goods are despatched on the day we recelve your order If tor any reason we are out of slock we will try to inform you as quickly as possible We try our best to give a speedy, fair and etticient service. VA.T invoice on equest Give us a ring - we 'l give you service. Please
ask if what you need is not listed - we will try to help Prices are subject to change without notice in som cases we may have to supply an equivalent.

Export oroers welcome REMOTE HAND SETS

SAME DAY DESPATCH FAST - FAIR - EFFICIENT SERVICE

AMSTRAD			
1422292	CTV2210		15.00
1422187	CTV2200		15.00
151910	TVNIDE0		15.00
1409221	CTV1409		15.00
151175	VCR5200		17.00
150583	VCR7000		10.00
150878	VCR9000		10.00
DECCA			
80/100	NON TXT	US	16.50
80/10	NON TXT	US8511	19.50
101	NON TXT	US8513	23.50
SONY			
C5	RH75T		29.04
C6	RH72		22.62
C7	RHT200		45.00
C9	RHT213		45.00
ITT			
305	\|R8649		29.04
306	1R8650		22.65
CVC45 RG5	VS8262		25.00
CVC32 RG15	vS8573		25.00
PLEASE NOTE That some handsets			
ARE MANUFACTURERS ORIGINALS BUT			
SOME MAY BE AN ALTERNATIVE TYPE.			

FIDELITY			
FD09193	Txt.	32 butt.	15.90
FD09820	15500	12 butt	13.81
fD09156	F14R	12 butt	13.81
FD09111	AVS	14 butt	13.75
FD09141	CTVI4S	4 butt.	13.75
	20R/22R/140R		

THORN/FERGUSON

T731	TX9/10/100	TXT/STEREO IR
T732	TX10	TXT IR
7736	TX9/10/100	TXT IR

T739 TX100

		16.50
JVC		
TP843	TXT IR	13.50

GEC		13.50
GEC/HITACH	9300 N4001	
GC56520831	C1404H-C1656H	30.93
GCA512220	C1653	22.00
GCA512230	C2086H, C2087H	28.50
GCA5070	C2067H	28.50
GCA514620	C2089H, C2090H	21.00
	C2889H, C2290H	
GCA510870	C2069, C2269H	27.50

GRUNDIG
RTP20NRC112
RTP05 NRC138 RTP06/R107N
RTP07/IR380N
VRC204

16.50	
16.50	
16.50	
16.50	
16.50	
16.50	

			NEY
TP16-21-21VHR	IR	13.50	PRC6000
TP8-120-120E	1 R	13.5	
TP160-60F	IR	13.50	
TP200-300-390	18	13.50	Programmable
TP400VT-500VT	18	13.50	Remote
TP12	us	13.50	Control
LIPS			Will operate
R170843 TXTIR 13.50			most infrared remote
ONIG) TXT IR8435		22.20	
ONIG) TXT 2 FUNC	ON VS8	18.75	$\begin{aligned} & \text { equipment } \\ & \text { TV-HiFi-UCR } \end{aligned}$etc.
8UTON 691-17181 (PHILIPS) US 27.00			
(KONIG) TEXT IR8		17.94	
35/40 RC5		25.00	PRC6000
EPAIR LITS - FOILBUTTOMSTWST.			Engineersneed only
without text WITH TEXT		8.95	
		8.95	need only carry 1.
E CONTROL TESTER		29.94	Remote ONLY
ERS FROM GOVERNMEN1 ABLISHMENTS, SCHOOLS. ETC. WELCOME ON REQUISITION.			
			¢52.95
			DOWT BE WITHOUT
			OwE!

P. V. tubes

TEL: 0254

36521	RING
32611	FOR

390936 SERVICE
TELEX: 635562
GRIFFIN G
FOR P.V.
CALLERS ALWAYS WELCOME
ACCESS - VISA
EXPORT ENQUIRIES WELCOME
\star "DOUNEO TAPE
SKC

REFURBISHED HEADS (Exchange) Equivalents Chart in Catalogue THORN NEW LIFE (Most VHS types) hitach, fioe ity, Matiomil PALASOMC, PHHLPS.

E60	2.00
E120	2.30
\rightarrow E180	2.45 ¢
E240	3.45
\rightarrow L750	2.70 ¢

REPLACEMENT
VIDEO HEADS

\section*{}

-

HITACHI

VT6500 3HSSHA
V88000 3HSSHA
VT8100 3HSSHA
$\begin{array}{ll}\text { VT8700 } & \text { 3HSSHA } \\ & \text { 3HSSHA }\end{array}$

| | 25.50 | SLC6 | PS | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VT9300 | 3HSSHA | $\mathbf{2 5 . 5 0}$ | SLC7 | 3HS |

VT4000 3HSSH
V

VT4200	3HSSH	25.50	SLC40
VT5000	3HSSH	25.50	SLT50
VT5500	3 HSSH	25.50	SLF60
			SLK95
ORION			SL200
			SL3000
VH1	3HSSN	21.95	SL8000
VH2	3HSSN	21.95	SL8080

Nationwide Television Wholesale \& Distribution Ltd.

UNIT 17 ASTON CHURCH TRADING ESTATE, ASTON CHURCH ROAD, NECHELLS, BIRMINGHAM B7 5RZ. TELEPHONE: 021-327 2834

EX. RENTAL COLOUR TV'S AND VIDEO'S

Many makes always in stock, e.g.:

Full Thorn range. ITT, Bush, Philips, Grundig, Amstrad, Pye, Hitachi, Sanyo, Toshiba and many others.
All makes of VHS video's and Beta video's.
For a competitive quotation, please ring the above number.

Export enquiries welcome and deliveries can be arranged.

MAKE YOUR INTERESTS PAY\& Train at home for one of these Career opportunities

More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. POst or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Cuilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
GCE over 40 '0' \& 'A' level subjects		\square

Name

P Code
International Correspondence Schools, Dept. EGS38, $312 / 314$ High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2925 (both 24 hours).

TEST INSTRUMENTS UK's LARGEST IN-STOCK

 CROTECH 3031 rom hi single $£ 208.00$ track e comp.
 Scape Add ons Slor age Tazoi. BCH adaplor OM 358 . Logic

POCKET INSTRUMENTS

 KT 9058 hame Dighial Cap Meter
2030 ET 27 Range muthmeter 10 A A. 10 C . Ane etc
5050 E 41 fiange Ft mete N . 10 A OC Buzzer
10282 If lange mere TIL. cmas
 62550 Mr I LDoic Probe las 250 MHZ with access XI/ $\times 10$ Scope/mal Le 08 dight Freqrounter PFm 2000 a 200 mh 25 LH I TR Dipmele

1KOH Res ciamp meet

* 501 Electronitial power meler $2 \mathrm{KW} / 4 \mathrm{KW}$ wh power
 - TH301 Gigita lemper ture meerer. $12 \mathrm{~A} \mathrm{AC} / \mathrm{DC}$
 MEASUAMMG MSTHUMENTS SELERESS TOOLS AUOUO/T/WDED
SEEGAMLO DICITAL MULTIMETERS
BENCH OIGITAL MUL 100 m OHM
 3225025% pasic $£ 119.00$

 $T \mathrm{~m} 3511600.1 \% \mathrm{~m} / 1500$ 8035 LEC ZOA AC/OC 0.1% OMS $£ 179.00$ B035T LEO $20 \mathrm{AC} / \mathrm{DC}$ True RMS 2169.00

COUNTERS \& TIMERS
CLL RENLH MODELS
FREQUFNCY COUNTERS 599.00

METIOA $220 / 240 \mathrm{~V}$ AC B tigh | E99.00 |
| :--- |
| 126.00 |

METGOO LEDO.1HZ $£ 175.00$
MET1000 RESOLUTION 5 Kiv min Senstivity $£ 199.00$

TF200
COUMTER/TIMERS B OGIT LEO
C 219.0
APPOLLO 10 STA LD OISPLAY HOLO RPM

APPCLLO 100 PLUS DISPLAY HOLORPM.
$\mathbf{2} 2550$

| STOP WACHETC. PLEASE AOD VAT (UX ONLY) |
| :--- | DISCOUNT YOUBWERS Send 12×19 sat (81 stamp UK) tiade a enucation a expoitsupplied ORDER BY POST OB PHONE • OPEN 6 DAYS A WEEK FOR CALLERS

You know what you want! You know the price you want to pay!

Now let Celtel come up with the goods

Our two conveniently located warehouses hold huge stocks of ex-rental equipment
at prices to suit you. Call us now and tell us your requirements - you won't be disappointed.

MIDDLESEX
Unit 18, Central Trading Estate, Staines, Middlesex TW 18 4XE Tel: 078464551 M25 Junction 13

ESSEX
2 Breach Road, West Thurrock, Essex RM16 INR Tel: 0708861404 M25 Junction 30/31

Phone - Toll free 0800289239 FAX 078463700

Head Office:

325 Two Mile Hill Rd.
Kingswood,
Tel: 0272673521

Wholesale Divisior 138 Bell Hill Rd., St. George.
Bristol BS5 7NF.
TRADE T.V. AND VIDEO

QUALITY COLOUR CTV AND VIDEO

WORKING T.V.'s from £15. Most Makes. ELECTRONIC VIDEO £50. B Grade Manufacturers Stock up to $£ 100$ off Manufacturers List Trade Price.

TELETEXT FST STEREO PICTURE IN PICTURE AVAILABLE MOST SIZES WORKING VIDEO ALL TYPES P.O.A.

DISCOUNT FOR QUANTITY

Direct Loads From Source
Around $£ 400$ for T.V. Delivery Arranged

NI-CADCHARGER. Will charge any 4 cells - AA, C or D

The Digital Meter you want at the price you have been looking for! 31 ranges including capacitance PLUS transistor tests.
AC/DC current - 0.1 microamp-10A 5 ranges. Volts $-100 \mathrm{microV}-1000 \mathrm{~V}$ (AC to 750 V) -5 ranges. Resistance 100 milliohms to $20 \mathrm{M}-6$ ranges. Capacitance 1 pF to $20 \mu \mathrm{~F}$. With case and leads $£ 45.00$

SKETCH PAD for the BBC B micro. Made by CUMANA. Circles, Triangles, Rectangles, lines plus Freehand sketching. With Leads and Demo Tape.
Was $£ 69.50$. Our price £19.50!
Prices include VAT. Please add $£ 1.00 \mathrm{p} \& \mathrm{p}$ per total order.
E. CROYDON ELECTRONIC DISCOUNT 74 LOWER ADDISCOMBE ROAD, CROYDON CRO 6AB Tel: 01-655 1045

ZENERS

VOLTAGE

 -

GRANDATA LTD.
 \section*{NEW VIDEO HEADS} IOEO MOTORS

 JVC 3HSSNATIONAL SONY

VIDEO BELTS KITS

AKAI		
VS-2EG/5EG	(5)	$£ 1.80$
VS-9700EG	(6).	£2.00
JVC		
HR-33003600	(9)	¢2. 20
HR-3330	(7)	£2. 20
HR-3360 3660	(7)	£1.90
HR-7200	(3)	$£ 1.40$
HR-7700	(3)	$\Sigma 1.40$
NATIONAL		
NV-333	(5)	51.60
NV-2000	(5)	11.55
NV-3000	(6)	$\underline{1.80}$
NV-7000	(5)	1.50
NV-8600	(7)	52.00
SONY		
SL-C7/SL-JL	(6)	\$1.95
SANYO		
VTC-5300	(5).	§1.90
VTC-5500	(3)	£1.10
VTC-9300	(4)	$\cong .40$
HITACHI		
VT-5000	(7)	$¢ 1.95$
VT-8000	(3)	51.10
VT-11	(5)	£2.20
TOSHIBA		
V. 5475	(6)	$¢ 1.90$
V. 7540	5)	§1.90
V. 8600	(6)	§1.50
SHARP		
VC-7300	(5)	£1. 60
CASSETTE MOTOR		
		92.90
9VCW		¢2.90
12 VCCW		¢2.90
12 VCW		92.90
13.2 VCW		£2.90
13.2 VCCW		¢2.90
CASSETIE TAPE HEADS		
MONDHEAD		¢1.30
STEREOHEAD		¢2. 20
MONO MINI HEAD		¢2.50
AUTO REVERSE HEAD		52.60

923.00
923.00
925.00 93.00
$\$ 25.00$ 51.80 $£ 2.20$
$£ 2.20$
$£ 1.90$
$£ 1.40$ $\$ 1.40$
$\$ 1.40$
51.60
51.55
51.55
51.80
$\$ 1.50$
$\Sigma 2.00$ $\$ 1.95$
$£ 1.90$
$£ 1.90$
$£ 1.10$

1.95

$\$ 1.10$
$؟ 2.20$
$\$ 1.90$
$\$ 1.90$
NATIO NV-300 NV-7000 SANYO
VTC- 9300 VIC-9300
VTC-5500 SONY JVC
HR- 3300 HR-3300
HR-3330 HR-3360/3660 HR-7200 VKAI 9700 E HITACHI VT-5000 VC-6300/6500 SONY SHARP LOAD
JVC

CAP CAP DR TO CA ID SA RE

 TOSHIBASONY
RFW PU -

SANYO CAPSTAN MOTOR 4-52TV-51000 $\Sigma 24.00$
CAPSTAN MOTOR BHF-1100D
REEL MOTOR RMOTV 1007 GEZZ REEL MOTOR RMOTV 1008 GEZ

CAPSTAN MOTOR PU-55371V
CAPSTAN MOTOR PU-45979 ORUM MOTOR PU-46414
APSTAN MOTOR 70125101 E28.00 IDLERS \& PULIEYS REPLACEMENTS REEL PULLEY 143-0-662T-0120
REW PULLEY A-6706-348-B REW PULLEY A-6706-391-AB SHARP
IDLER SHARP NIDLO005 GEZZ HITACHI IDLER ASSEMBLY V - 686148

IDLER ASSEMBLY PU-47752 DEO PINCH ROLLERS $1 \quad £ 5.2$ £5.20 $\$ 4.00$ $\begin{array}{r}\$ 4.00 \\ \\ \hline 3.00\end{array}$ 92.25 $\$ 3.00$ 3.85

5.00 | $£ 4.75$ |
| :--- |
| $£ 4.75$ |
| $£ 4.75$ |
| $£ 4.75$ |
| |
| $£ 4.75$ |
| $£ 4.75$ |
| $£ 5.00$ |
| $£ 5.00$ |
| $£ 5.00$ |
| $£ 5.00$ |
| $£ 3.60$ |
| $£ 4.75$ |
| |
| $£ 5.00$ |

FIRST IIT TUEE REBULDIMG TEGHPOLOGY 30AX, 540 SERHES REDUGED SERMGIIG COST, FIT A DIREGT REPLAGEMENT AVAILABLE ONLY FROM GHROMAVAC. PRE CONVERTED AS ORICISAL. EXIERAAL MULTIPOLE UNIT NOT REQUIRED.

\square Get on the hot-line today!
LOOK! AT NO EXTRA COST 30AX PRE CONVERGED

061 6812959

most types of Inline Re-builds or new ex-stock PRICES SUBJECT TO

Delta Rebuilds Inline Rebuilds

Up to 19"	£28
Upto 22"	£30
Upto 26"	£34
$110^{\text {c }}$ up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+£2
A47342 New	£28
17FHP New	£30
470EHB New.	£30

Up to $22^{\prime \prime}$.. From $£ 40$ Up to $26^{\prime \prime}$.. From $£ 45$ A56-540x ……........ $£ 56$ A66-540x …........... $£ 58$ Bonded Coil $+\mathbf{£ 5}$

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES

IN LINE TYPES (NOT resuins) PHONE RE STDEK POS.

Please enquire types not listed

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

HOW TOINCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

 HAMEG OSCILLOSCOPESHAMEG are Europe's top seliing DUAL TRACE OSCILLOSCOPES. Select from four superb models. All incorporate a useful COMPONENT TESTER. Size - all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear displav $8 \times 10 \mathrm{cms}$ Mains supply $110 / 125 / 220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$. 2 YEAR WARRANTY HM203-6 20MHz Standard FREE Securicor Delivery SPECIFICATION - Bandwidin DC-20MHz

- Sens.Ch1.Cn2. $2 \mathrm{mV} / \mathrm{cm}$
- Trigger DC-40MHzAC. DC. MF LF, (TV Frame) - Inver both channeis
- Variable hold-off 101
- Calibrator

Price £314,00 E £ 47.10 V.A.T. Including two probes

FREE Securicor Delivery

HM204-2 20MHz Multi-function

HM205 20MHz Digital Storage FREE Securicor Delivery SPECIFICATION

- Analogue Real Time (Same as 203.6)
 Bandwrath DC-20MHz * Sens Ch1. Ch2 2 mV/cm - 100 KHz Sample Rate * $2 \times 1 \mathrm{k}$ Storage * Storage Range. - Varrible ho - Plus many more teatures

Price $£ 498.00+£ 74.70$ V.A.T Including two probes

Price $£ 583.00+£ 87.45$ V.A.T

HM605 60MHz Multi-function

B.K.'S CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green 8 red guns separately. Fitted with delta and mm. Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.

B.K.'s REVOLUTIONARY DYNAMIC 'LOPT' TESTER Revolutionary L.O.P.T. tester. Operatos in dynamic mode which actually tests the L.O.P.T. Under high voltage conditions without do-soldering or removal. Size $75 \times 100 \times 40 \mathrm{~mm}$. Supply 240 V AC Price $£ 25.99+£ 3.90$ V.A.T.		
DIGITALLCRMETER * LCD Display * 18 Ranges * Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$ * Capacitance 1pf-200uf * Resistance 1 ohm-20Mohm * High acuracy Price $£ 85.00+£ 12.75$ V.A.T.	Price $£ 65.00+£ 9.75$ V.A.	500V

,

£1 BAKERS DOZEN PACKS Price per pack is $£ 1.00$.* Order 12 you may choose another free. ltems marked (sh) are not new but guaranteed ok.
1-5 13 amp ring mann unction boxes
2-5 13 amp ring main spur
5-3 flush electrical
7-4in flex line switches with ne
8-2 80 watt brass cased elements
9-2 mains transiormers with 6 V 1 A secondanes
$11-1$ mains transformers with $12 V^{1 / 2 A}$ secondarles
$12-5$ octal bases for relays or valves
2-

- 2 glass reed switches

16-4 tape heads, 2 record, 2 erase
1-1 ulitrasonic transmitter and 1 ditto recerve
$8-215000$ mid computer grad
$9-2$ light dependent resistors

- 5 ditterent micro switches
- 2 malns interference suppressors
$3-140$ watt 3 way crossover unt
- 16 digit counter mains 3 way crossover unit

0-2 Nicad battery chargers
$1-1$ key switch with key
2humidity switches
2 ar macere lengths colour-coded connecting wire
-2 sold diaelectric 2 gang tuning condenso

- 10 compression tnmmers
- 6 rocker switch 10 amp mains SPST
- 5 Rocker Switches 10 amp SPDT Centre 0n
- 4 Rocker Switches 10 amp DPDT
$46-16$ hour clock timeswitch
48-26V operated reed switch relays
- 10 neon valves - make good night lights
$1 \times 12 \mathrm{~V} 2 \mathrm{CO}$ very sensitive relay
2-1 12V 4 C relay
55-1 locking mechanism with 2 keys
- 5 Dolls House switches
$50-5$ territe rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aerials
- 4 ferite slab denals with L\&M wave coils
- 4200 ohm earpeces
- 1 Mullard Thyristor trigger modul
$54-10$ assorted knobs $1 / 4$ spindies
- Magnetic brake - stops rotation instantly

7 - low pressure 3 level switch

- 225 watt pots 8 ohm

70-2 25 watt pots 1000 oh

- 4 wire wound pots - 18, 33, 50 and 100 ohm
- 43 watt wire wound pots 50 ohm

7 - 1 time reminder adustable 1
7 - 5.5 amp stud rectitiers 400 v

- 1 mains shaded pole motor $3 / /^{\prime \prime}$ stack - $1 / 4^{\prime \prime}$ shah $-25^{\prime \prime}$ ali fan blades fit $1 / 4^{\prime \prime}$ shaft $-23^{\prime \prime}$ plastic fan blades fit $1 / 4^{\prime \prime}$ shaf
- manns motor suitable for above blades
- mains motors with gear box 16 rev per 24 hours
- 411 pin moulded bases for relays.
$94-5$ B7G valve bases
- 4 skirted B9A valve bas
- 1 thermostat for tridge

8 - 1 motorised stud switch (sh)
$-121 / 2$ hours delay switch

- 6 V mains power supply unit
- $14 \mathrm{~A} V$ mains power supply unit
-15 " speaker size radio cabinet with handle
$10^{1 / 4^{\prime \prime}}$ spindle type volume controls
0 - 10 slider type volume controls
4-1 1W amplifier Mullard 1172
- 1 wall mounting thermostat 24 V
-
- 2 p.c.b. with 2 amp full wave and 17 other recs
$22-10 \mathrm{mtrs}$ twin screened flex whate p.v.c outer
- 2 plastic boxes with windows, ideal for interrupted beam switch etc
$188-1$ plastic box sloping metal front, $16 \times 95 \mathrm{~mm}$, average depth 45mm
241-1 car door speaker (very flat) $61 / 2^{\prime \prime} 15$ ohm made for Radiomobrle $243-2$ speakers $6^{*} \times 4^{\prime \prime} 15$ ohm 5 wath made for Radiomobile or 115 V
267-1 mains transtormer 15V 1A secondary p.c b mounting
$330-26 \mathrm{~V} 0.6 \mathrm{~V}$ manns transformer 3 A p.c b mounting
$350-40$ double pole leaf switches
$365-17 \mathrm{ut} 660 \mathrm{~V} 50 \mathrm{~Hz}$ metal cased condense
$453-221 / 4 i n .600 h m$ loudspeakers
$454-22^{1 / 4 i n} 80 h m$ loudspeakers
463-1 manss operated relay with 2 sets c/o contacts
464-2 packets resin filler/seater with cures
465-35A round 3 pin plugs will tit tem 193
466-4 7 segment I e.d displays
an -4 pc boards for stripping, lots of valuable parts
400 - 13 A double pole magnetic trip. saves reparing fuses
-4 1000ut 25 V axial electrolytic capacitors
- Audax PM $8^{\prime \prime}$ speaker 15 ohm 5 watt rating

ABA nuts 1 parr stereo tape head as in cassette recorder/players
$546-1$ bridge recturer bor international rectiter
548 - 2 battery operated relays (3 -6V) each with $5 \mathrm{~A} / 0$ contacts
pairs
$563-2$ lithum 3 V battenes (everiasting sheif file)

OVER 400 GIFTS

YOU CAN CHOOSE FROM
There is a total of over 400 packs in our Baker's dozen range and you become
git w lassified ist of these
ss and our latest
you will automatically recerve our next news tetter

THIS MONTH'S SNIP
$31 / 2$ floppy Disk Drive, made by the Chinon Company of Japan. Beautituly mide and probably the most compast device of its kind as it weighs only 600 g and measures only 104 mm wide, 162 min deep and has a height of only 32 mm other features are high precision head positioning - sirgle push loading and ejea - direct drive brushiess motor - 500 per disc - Shugart compatible interface - standard connechions - interchangeable win most omer $3 / 2$ and $51 / 1$ month at g28. 50 post and VAT included.

CASE - adaptable for $3^{\prime \prime}$ or $31 / 2^{\prime \prime}$ FDD, has room for power supply components price only $£ 4$ includes circuit of PSU. Our Ref 4 P8

POWER SUPPLY FOR FDD - 5 V and 12 V volitige regulated outputs, complete kit of parts will fit into case 4 P3 pice $£ 8$ o with case $£ 11$

MULLARD UNILEX AMPLIFIERS

We are probably the only firm in the country with these now in stock Although only four watts per channel, these give superb reproduction We now otter the 4 Mullard modules - i.e. Mains power (EPgo00) all tor £6.00 plus $\mathbb{E Z}$ postage for prices of modules bought separately see TWO POUNDERS.

CAR STARTER/CHARGER KIT

Flat Battery! Don't worry you will start your car in a few mmutes with his unit - 250 watt transformer 20 amp rectifiers, case and all part

MINI MONO AMP on p.c.b. Size $4^{\prime \prime} \times 2^{\prime \prime}$ (app)
Fitted volume control ans a hole for a tone control should you require it The ampliter has three transistors and we estimat the output to be $3 W$ rms.
More technical data will be
included with the amp Brand new. low price of $£ 1.15$ each or $£ 13$ for 12

LIGHT BOX

This when completed measures approximately 15×14 The light source is the Philips fluerescent "W" tube. Above the light a sheet of fibreglass and through tris should be suticient light to enable you to tollow the circuit on fibreglass PCBs. Price for the complete kit. that is the box, choke. starter. tube and switch and fibreglass is $£ 5$ plus $£ 2$ post, order ref 5 P69

TANGENTIAL HEATERS

We agan have very good stocks of these quiet running instant heat units they require only a simple case. or could easily be fitted into the bottom of a kitchen unit or book case etc. At present we have stocks of £6.95 tor the 3 k . Add post $£ 150$ per heater if not collecting CONTROL SWITCH enabling full heat, halt heat or cold blow. wit connection diagram. 50 p for 2 kw . 75 p for 3 kw .

FANS \& BLOWERS

$5^{\prime \prime} £ 5+£ 1.25$ post 6 โ6 + $£ 150$ post.
$4^{\prime \prime} \times 4^{\prime \prime}$ Muttin equipment cooling tan 115 V E2.00
$4^{\prime \prime} \times 4^{\prime \prime}$ Muffin equipment cooling fan $230 / 240 \mathrm{~V} £ 5.00$
$9 "$ Extractor or blower 115 V supplied with 230 to 115 V adaptor E 9.50 £2 00 post.
All above are ex computers but guaranteed 12 months
$10^{\prime \prime} \times 3^{\prime \prime}$ Tangential Blower. New Very quiet - supplied with 230 io 115 V adaptor on use two in serles to give long blow $£ 2.00+£ 1.50$
post or $£ 4.00+£ 200$ post for two.

$9^{\prime \prime}$ MONITOR

deal to work with computer or video camera uses Phillps black and white tabe ref M24/306W. Which tube is implosion and X -Ray radiation protected. VDU is brand new and has time base and E-T crrcuitry. Requires only a 16 V ac supply to set it going It s made up in a lacquered metal fiamewo but has open sidess so should be cased. The VDU comes has our six months quarantee OHfered at a lot less than some lirms are asking for the tube alone, only $£ 16$ plus $£ 5$

LOW COST OSCILLOSCOPE - kit to convert our g^{\prime}

 monitor into an oscilloscope with switched time bases to allow very hig and very low frequency waveforms to be observed and measured Signal amplitudes from as low as 10 mV and as high as 1 kV can easily be observed and measured Ideal for servicing. also for investigating TV radio and audio circurts.Kit contans all the parts for the conversion and the power supply to
operate from mans $£ 25$ our ref $25 P 3$

TELEPHONE LEAD

3 mits long terminating one end with new BT. flat plug and the othe end with 4 correctly coloured coded wires to fit to phone or appliance Replaces the lead on ald phone making it suitable for new BT socket
Price $£ 1$ ref BD552 of 3 tor $\mathbb{2}$ ref 2P164

COMPACT FLOPPY DISC DRIVE EME-101

EMC- OI dives a 3 disc of he new standard which desple its small size provides a capacity of 500 k per dise. which is equivalent to the $3^{1 / 2} 2^{\prime \prime}$ and $5^{1 / 4^{\prime \prime}}$ discs. We supply the Operators Manual and other information showing how to use this with popular computers: BBC, Spectrum, Amstrad etc All at a special snlp pice of 27.50 posi and VA Data available separately \boxminus, refundable if you purchase the

POWERFUL IONISER
Generates apprux 10 times more IONS than the ETI and similar crecuits. Will refresh your home, office, strop, workroom etc. Makes you feel better and work harder complete mans operated kit, case included $£ 11.50+£ 3$ P\&P.

J \& N BULL ELECTRICAL

Dept. T.V., 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5QT.
MAIL ORDER TERMS: Cash, P.O. or cheque with ordsr. Orders under $£ 20$ add $£ 1$ senvice charge. Monthly account orders accepted from schools and public companies Acce
Bnighton (0273) 734548 or 203500 .

NEW ITEMS

Some of the many described in our current list which you will receive with your parcel.

SUPER WATER FUMP - Approx $1 / 3 m p$ mans operated onginally intenced o operate a $£ 300$ shower unit at a controlled pressure - but of course suitable for many orher water or liquid moving operations - where a and Post Paid. Our Ref. 25 P2
VERY USEFUL MULITESTERS
aits - DC MA and OHMS etc - These have all usual ranges AC \& DC "Low OHMS." range very beit an unusual and very usetul feature is XG.P.O. and inay. have fautts but we test and guarantee the movement to be O.K. Price $£ 3$ each. Ref. $3 P 30$

BD31
OWER PACK OTA PACK AMPLFIER CASE - Size approx $10^{\prime \prime} \times 8^{1 / 4^{\prime \prime} \times 4^{3 / 4^{\prime \prime}}}$ plated steet - with ample perforations fo cooling Front panel has onyott
 Miniature bcli Thumb wheel swith - Matl black edge switch engraved white on black - gold plated, make before break contacts ize approx. 25 mm high 8 mm wide zomm deep - made by the famous DB601 EDGE METER - minuature, whole size approx. $37 \mathrm{mmn} \times 13 \mathrm{~mm}$ 100ua - centre zero scaled 0 to - 10 and LARGE 2 SPEED MOTOR - 1 hp at 2500 rpm and $1 / 4 \mathrm{hp}$ at 200 rpm continental make, intended originally to power an industrial machin RUBBER FEET - Stuck on ideal tor small instruments and cabinets pack of 56 for 81 Ref BD603.
CLEANING FLUNO - Extra good quality - intended for video and tape heads - regula price $£ 150$ per spray can - our Price -2 cans for $£$ RON ${ }^{-T}$ FREEZE UP! - We have had the strongest winds tor over 200 years and who knows may be in for coldest winter. so it you have nol aready protected your water pipes you should do so now - our heating week to ruir - 15 metres (minimum length to connect to $220 / 240 \mathrm{~N}$ mans). Price 55 . Our Ref 5P109
Plezo ELECTRIC FAN an unusual fan, more like the one used by Madame Butterily, than the conventional type. it does not rotate The arr movements is caused by two vibrating arms. It is American made mains operatec, very economical and causes no interference So it is deal for computer and instrument cooling. Price is only $£ 1$ each Fie BD605.
SPRING L
SRRING LOADED TEST PRODS - heavy duty, made by the famous Bulpin compary. Very good quality Price our ior L . extends to nearly two metres. Price $£ 1$ each Ref 80599 TELEPHONE BELLS - these will work off our standard mains frough ranstormer. but to sound exactly like a telephone. they then must be dith 25 hz 50 v . So with these bells we give a circut for a suitable power supgly. Price 2 bells for $£ 1$ Ref. 80600 .
anges - carry one of these and so be always ready to test ac/dc volts to 1000. DC milligrams and have an ohms range for circutt testing - will eam its cost tri no time Pnce only $£ 7$ Ref 7P2
BLOW YOUR ROOF OFF 140 wath speaker systems
LOW YOUR ROOF OFF 140 wath speaker systems - new type you must not hidel They have golden cones and golden surrounds and look
really "Bootiful" 12 "Woofer, Midrange and Tweeter and comes with a crossover at a special introductory price of $£ 49$. carrage pand. Two sets for £95 carraaze paid. 140 w Wooter only £35 carriage pard. ASTEC PSU. Mans operated switch mode so very compact $\left(6^{1} 2^{\prime \prime} \times 4^{\prime \prime}\right.$ $\times 2^{2 \prime}$ approx L- Outputs: +5 Volts $35 \mathrm{amp}+12$ Volts 15 amp -5
Volt 15 amp. Brand new. Normal price $£ 30+$ Our price only $£ 10$ Ref. 1OP34 APPLIANCE THERMDSTATS - spindile adjust ty
heaters or SImpilar Pice 2 for $£ 1$ Ref BD582

COMPUTERS

anconsignment of computers expected in mid March various makes and umbers. whe or phone for detalls

NOVEL NIGHT LIGHT - plugs into a 13A socket. Gives out a surprising keep a nervous child happy Very low consumption, probably not enough to mave the meter Price E1. Ref BD563
CASE WITH 13A PRONGS - to go into 13A socket, nice size and suitable for pienty of projects such as car battery trickle charger, speed
controller, time switch, night light. noise suppressor dimmers etc. Price controller, time switch, night light. noise suppressor. dimmers etc Price
-2 tor $£ 1$ FFef. $8 D 565$.
SPEAKER EXCENSION CABLE - twin 07 mm conductors so you can have long currs with minmum sound loss and for telephone extensions
 ALPHA-MUMERIC KEYBOARD - this keyboard has 73 keys with contactless capacitance switches giving long trouble free lite and no contact bourse. The keys are arranged in two groups, the main area field is a QWERTY array and on the right is a 15 key number pad. board size is approx $13^{\prime \prime} \times 4^{\prime \prime}$ - brand new but offered at only a fraction of its cost namely $\mathrm{E3}$, olus $£ 1$ post. Ref. 3 P27.
TELEPHONE EXTENSIOMS - it IS NOw lega
ELEPN winng of telaghone extensions. For this we can supply 4 core telephone
cable, 100 m coil $£ 850$ Extension BT sockets $£ 2.95$. Packet of 500 plastic headed staples $£ 2$ Dual adaptor for taking two applances fro one socket $\mathbb{E} 95$ Leads with BT plug for changing old phones 3 ior $£ 2$ MODULAR SWITCH - Panel mounting highest quality and ideal where extra special front panel appearances is required, can be illurn
required d. o t and latching. Price -2 for $£ 1$. Ref. BD607
WRE BARGAIN - 500 metres 07 mm soldd copper tinned and p v. covered Onty $\Sigma 3+\varepsilon 1$ post. Ret. 3 P31 - that's well under $1 p$ per INTERRUPTED BEAM KIT - this kit enabies you to maire
WiNTERRUPTED BEAM KKT - this kit enabies you lo make a switcn that will trigger when a steady beam of infra-red or ordinary light is broke Circuit diagmam but no case. Pnce $£ 2$. Ref 2 P15.
3-30V VARIABLE VOLTAGE POWER SUPPLY UNIT - with 1 amp OC output intended for use on the bench for experimenters, studerts, inventors, sirvice engineers etc This is probably the most important
piece of equipment you can own (After a mult range test meter) It piece of equipment you can own (After a multt range test meter) it circuit and averioad protection, which operates at 11 amp approximately Other features are very low ripple output, a typical npple is 3 mV pk-pk, 1 mV rms Mounted in a metal fronted plastic case this has a voltmeter on the front panel in addition to the output control knob
and the output terminals Price for complete kit with full instructions is 15 Ret. 15P7. TRANSMITRER SURVEILLANCE (BUG) - tiny, easily hidden. but which will enable conversation to be picked up with FM radio. Can be housed
in a matchbox All electronic parts and circuit. Price £2 Ref. $2 P 52$.

1987 CATALOGUE available - range of components greatly increased - over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders

[^0]ORDERING: All components are brand new and to full specification. Please

add 85 p postage/packirg (unless otherwise specified) to all orders and then add 15% VAT to the total. Minimum order $£ 5.00$. Either send cheque/cash/postal order or send/telephone your Access or Visa number. Official orders from schools, universities, colleges etc most welcome. (Do not forget to send for our 1987 catalogue - only $£ 1.00$ per copy). Delivery by return on ex-stock items. All prices subject to change without notice. RETAIL shop open Mon-Fri 9.00-5.00. Sat 9-12.00.

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 321.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS
Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP
Ron Scorey
01-261 6035

SUBSCRIPTION ENQUIRIES

0444440421

COVER PHOTO

This month's cover photograph shows the wide-range capacitance bridge in use on the bench - see article on pages 338-342.

CORRECTION

We apologise to Peter Richards for an error that occurred in his letter in the January issue. Velocity is measured in metres sec^{-1} or metres/sec. Metres/ $\sec ^{-1}$ as printed is incorrect.

The Japanese Onslaught

Yours truly does not subscribe to the determinist theory of history, preferring the cock-up theory - that accident and miscalculation play a large part in determining the course of events. This seems to be self-evident since even the best laid plans are prone to come unstuck. There have, nevertheless, been times when one has been tempted to think that the onslaught by Japanese consumer electronics manufacturers on the European market has been part of a deep-laid plan, possibly co-ordinated by the at times sinister looking hand of the Japanese Ministry of International Trade and Industry. Quite how well co-ordinated it has been we'll probably never know. We certainly know its effects, but when these are analysed you tend to get back to the general muck-up view of things.
A powerful article in a recent issue of the Financial Times, by Fred Burton of the University of Manchester Institute of Science and Technology, argues that Europe has in the main been following self-defeatist policies in the consumer electronics manufacturing field. He questions the advantages claimed for encouraging investment by Far Eastern manufacturers in European production facilities - that local production is enhanced, jobs are created, exports are increased and that benefits accrue from technology transfer and the effects Japanese manufacturers have on local component suppliers. He points out for example that employment in consumer electronics manufacturing in Europe fell from 250,000 in 1975 to 120,000 in 1985, adding the qualification that productivity increase contributed to this. He suggests that technology transfer is insignificant - that although Japanese companies account for 20 per cent of CTV and 90 per cent of VCR production in Europe (before Philips VHS machines?), research, design and development are all carried out in the Far East - fewer than fifty Europeans are engaged in development work for Japanese concerns, none on research. Technology transfer, he concludes, "is confined to job training and technical instruction to suppliers". He feels that encouraging Japanese manufacturers to set up in Europe by giving them incentives and subsidies has been of only short-term benefit, the main aim being to achieve import substitution.
When you look at what has happened in the UK one is inclined to be suspicious. Toshiba took over the old Rank manufacturing facility, Hitachi did the same with the GEC plant, Sanyo likewise with Pye and Mitsubishi with the Tandberg (UK) plant. Sony, Panasonic and others have started up afresh on green-field sites. But the fact is that of the plants that were taken over by and large only the buildings were retained, the old manufacturing facilities being stripped out. One could argue whether all this would have happened had the UK industry been fundamentally sound, with adequate investment, modern production facilities and, the end product, well designed equipment built to last. For various reasons that belong to history, the UK consumer electronics industry was not in a particularly healthy condition when the Japanese onslaught started. What's left of it is rapidly being taken over, again largely by overseas companies, in an attempt to salvage something - one thinks of Thomson's take-over of the Ferguson CTV plants and the current question mark over Fidelity (see Teletopics).
What the Japanese have all along sought is a presence in Europe to avoid possible trade barriers and duties - the same policy was followed in the USA, where the major Japanese manufacturers long ago set up manufacturing facilities. The concern of Japanese manufacturers at the possibility of being excluded from the European market is understandable. Have their efforts been successful? As an insurance policy maybe, but financially the answer seems to be no. To return to Fred Burton's research, he comments that "throughout europe Far Eastern subsidiaries have shown a return on sales below three per cent, with Sony, Hitachi, Sanyo and Mitsubishi declaring large losses on their UK operations". The time scale of this economic performance is not stated, but the fact remains that these European plants have hardly been a resounding success as regards profitability. Perhaps this is once again a part of the Japanese view that market share is the all-important thing.

Fred Burton concludes that to transform Far Eastern investment in Europe so that it contributes to the long-term economic welfare of the region various conditions should be laid down, for example that there should be a greater research and development element. It's difficult however to see how this could be put into effect.
Europe has not entirely lost out in the TV field. The development of the MAC satellite TV transmission standard and its implications for receiver manufacture, work on videotext systems, digital sound systems and tube technology (45AX) are all of major significance, comparable to anything being achieved in Japan where the emphasis at the moment seems to be on digital video processing (a field where Europe led initially). Now that European setmaking has been substantially rationalised - the take-overs by Thomson and Nokia and Philips' collaboration with Grundig - the manufacturing side of the industry should be a lot healthier. There doesn't at present seem to be too much cause for alarm. Basically what I'd say we've seen over the years has been a messy series of moves by various companies trying for either short- or long-term success, in other words the muck-up theory of events. What could, in retrospect, be said is that had a more determined effort been made to rationalise UK TV setmaking back in 1979, when the National Economic Development Council produced a plan, we might still have had an indigenous UK TV industry. But then again we might not: remember the grossly overvalued pound in the early 80 s?

Practical Computer Programming

Part 3

Mike Phelan

Having discussed microprocessors and operating systems without going into fine detail it's time for us to tackle the subject of computer languages. A microprocessor chip feeds itself with a stream of highs and lows, i.e. ones and zeros, which it finds in various memory locations. It's told where to look by these highs and lows, the process being started by a program held in a permanent piece of memory (ROM). The first instruction will be found at a fixed location (address) that's used by the particular type of microprocessor. The computer's operating system looks after directing information to the screen, printer, disk or tape, etc., and running the various programs.

The computer language BASIC, which most home computers use in various forms, is itself held in ROM and is loaded when the machine is powered. With a business machine the language in use is loaded from a disk, either a floppy removable one, typically with a capacity of 360 kb or 1.2 Mb , or a fixed Winchester type with a storage capacity of $5-100 \mathrm{Mb}$. With this type of machine the operating system is also loaded when the machine is powered. It may carry out other tasks such as loading a program automatically. To do this the operating system looks for the presence of a particular file on the disk: the file will contain a list of commands which the operating system understands. With the DOS operating system this file is called AUTOEXEC.BAT; with CP/M the file is called PROFILE.SUB.

The final result of preparing a program which a computer can carry out is a list of numbers to be fed to the microprocessor. These numbers must be held in memory so that they are accessible while the program is being run. Clearly one would have to be something of a masochist to laboriously design and write a program in this form, as a list of binary numbers. The task would be prone to error, tedious and impossible for anyone, including the author, to understand at a later date. Even so, in the pioneering days of computers this was the way in which programs were written!

The purpose of a computer language is to convert these numbers, i.e. instruction bytes, into a more readable form. The basic instructions in binary number form are known as machine code. They can be considered as the "lowest" level of computer language - the level that a microprocessor understands directly. The next step up is to use a program called an assembler.

Assembler

An assembler expects the user to write his program using meaningful mnemonics for the instructions. These are written in the form of a text file, using a word processor or editor - the latter is a form of word processor without some of the more advanced features found with word processors. The assembler is then run: it reads the file and converts the mnemonics into instruction bytes. Comments can be included in the text file - known as source code - to enable others to understand how the program works. The important point is that every mnemonic represents one instruction.

The source code shown in Table 1 is for a program to change the border colour on the screen of a machine that
uses an 8086/8088 microprocessor - an IBM or similar machine. There are several points of interest. It will be seen that the most-used mnemonic is MOV. This indicates that data is to be moved between registers in the microprocessor chip and/or memory addresses. The things that follow MOV are the destination and source of the data. Items in the right-hand column are comments that don't appear in the assembled code. The more observant will notice that it takes five steps to multiply a number by ten! The mnemonics used are decided upon by the microprocessor manufacturer: most producers of assembler software adhere to the standards. A note for frightened would-be programmers: this file has been shown purely as a matter of interest - it's programming at the deep end.

High-level Languages

What we need is a language more like English, one that has single commands to carry out often used instructions such as the multiplication by ten just mentioned. The more akin it is to English the easier the program will be to understand - there's no point in making things unnecessarily difficult.

The most common high-level general-purpose language is BASIC. As mentioned in Part 2 BASIC is itself a program which may be stored on disk or in ROM. If on disk it must be loaded into RAM in the computer for a BASIC program to be written or run.

To write a program we type in lines of text, using words known to BASIC. The interpreter in the computer stores these words in shortened form by assigning a number to each word. This process is known as tokenising. We can then "save" (store) the program on disk or run it there and then. If neither is done the program will be lost at switch off, since it's stored only in RAM. Tokenising is not seen by the user, to whom the program consists of lines of text.

With BASIC each line can contain several instructions this is not the case with some languages. When the program is run the interpreter converts each instruction into the relevant machine code for the microprocessor used in the computer. One BASIC instruction can produce hundreds of bytes of machine code, so the use of a high-level language speeds up programming no end. The interpretation process slows down a program's running speed however. Two other factors that reduce the running speed are the syntax and error checking that the interpreter performs.

Compiler

One solution to this speed limitation is the use of a compiler. The program is first written and tested in the normal way. It's then fed to the compiler which does all the syntax checking then turns the program into machine code once only instead of each time the program is run. In this way the file can be run without BASIC being present. Another advantage is that if the program is being sold commercially the source code is not released - it would therefore be very difficult to alter or "borrow" any of the program.

Many high-level languages are available only in compiler
form. Programs can thus be tested only by compiling then running them. Some errors will be thrown out by the compiler, but you can find you've written a valid program that doesn't do what you want.

Use of an interpretive language means that small sections of program can be tested quickly. In addition, most interpreters have a command mode in which instructions can be executed directly from the keyboard without being stored as a program. BASIC and dBase II/III are both of this type.

Control Structures

Most languages have things called control structures. To explain this, a program is basically a series of instructions which are executed in order. Quite often however we want the program flow to change, depending on things like a keyboard input from the user. For example, suppose we have a program that prints a one-hundred page list of customers on request. We wouldn't want all this if we only wished to find out whether Mrs. Bloggs was in arrears with her rental. Clearly in these two cases the program has to be put into effect in different ways: a control structure enables this to be done, by changing the sequence in which program lines are called up.

Most if not all high-level languages use "condition" and "iteration".

Condition

The condition control structure uses the words "if then else". If the result of the expression following the if is true, any commands on the same line, up to else, are performed. If the result is false, commands following else on the same line are performed. The else is optional. For example, we might have the line IF $X=2$ THEN PRINT " X is two" ELSE PRINT " X is not two".

Some dialects of BASIC use a better if construction that's shared by other languages, as follows:

IF (expression)
commands
commands
commands
ELSE
more commands
more commands
more commands
END IF.
This is much better, as it allows for more lines of commands than the simpler version.

Iteration

There are several varieties of iteration, which is used if we want to perform a group of commands several times. This is also known as looping. Consider a program that prints a message on the screen ten times (whatever use this might be!). It would be cumbersome to program the line PRINT "This is the message" ten times. Instead, we enter:

FOR J = 1 to 10
PRINT "This is the message"
NEXT J
which is known as a for/next loop. The action is that we use a variable, J in this instance, though we could have called it $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ or FRED. The value of J starts as one, then the

Table 1: Source code example.

Code (hex)	Mnemanics		Comments
8A0E8000	MOV	CL,(0080)	;get tail length
80 F902	CMP	CL,02	;has tail at least 1 digit
7230	JB	0139	;no tail
80F903	CMP	CL,03	;has tail 2 digits?
772B	JA	0139	;tail 3 or more digits
740D	JZ	011D	;tail 2 digits - value
8A168200	MOV	DL,(0082)	;move single digit up
88168300	MOV	(0083), DL	;to same address as >9
33 CO	XOR	AX,AX	;clear accumulator
E90F00	JMP	012C	;process 1 digit
A08200	MOV	AL, (0082)	;get tens digit
2 C 30	SUB	AL,30	;ascii to int
D0E0	SHL	AL, 1	;2n
8AD0	MOV	DL,AL	;park it
D0E0	SHL	AL, 1	;4n
DOEO	SHL	AL, 1	;8n
00D0	ADD	AL,DL	;10n in al
8A168300	MOV	DL,(0083)	;get units digit
80EA30	SUB	DL,30	; a to i
00D0	ADD	AL,DL	;tens + units
BAD903	MOV	DX,03D9	;port number
EE	OUT	DX,AL	;bang!
C3	RET		

message is printed. When the interpreter reaches the NEXT J line it increases the value of J by one and checks whether it has yet reached ten. If not the program reverts to the line following the FOR. Otherwise it continues with the line following NEXT. Thus all the lines between FOR and NEXT are performed a set number of times. Some languages don't have this feature.

Two other forms of iteration are found in many languages and in some versions of BASIC. They both rely on repeating a process until an event occurs instead of carrying out repetition a fixed number of times. There's a slight difference between the two structures, though it's not a vital one.

The first is the REPEAT/UNTIL loop. Here's an example, in BASIC:

REPEAT

INPUT "Please enter your name, 999 to end";a\$
PRINT a\$
UNTIL a\$ = "999"
This is a nonsensical example but serves to illustrate the idea. The program will repeatedly ask for and print the name until you enter 999. The UNTIL line carries out the test. If the expression returns a false result the program goes back to the REPEAT. Thus the instruction(s) within the loop are always carried out at least once even if the condition is true to start with.

The other type of iteration differs in that the loop is repeated while a condition is true. Here's an example in dBase III:

DO WHILE .NOT. EOF()

? name, addr,telno
SKIP
ENDDO
The test .NOT. EOF() simply checks whether the end of a file has been reached. SKIP moves through the file a record at a time. Don't worry about this: the significant point is that the test is carried out at the beginning of the loop instead of the end.

CASE Structure

These control structures are mandatory for any computer language. There's another very useful one that's missing in BASIC. This is the CASE structure. Consider a program with a menu of choices from which the user has to chose a number or letter. With BASIC we would probably carry out an IF test on all the possible choices, or adopt some equally complicated method. The CASE structure eliminates this problem. Here's an example, in language C :
switch (choice)
\{ case 1: command; break; case 2: another command; break case 3: yet another; break
\}

Much neater, isn't it? This particular section of code carries out different commands on the value of a variable
"choice". The word "break" is a part of language C to prevent execution of more than one command at this point.

F

Threaded Interpretive Languages

Before closing this time we must mention another class of languages altogether. BASIC, C etc. are all procedural languages, i.e. the interpreter or compiler reads a list of instructions sequentially or in a sequence determined by a control structure. This other class of languages is called threaded interpretive - the best known example is FORTH. With these the language consists of a number of named routines known as words. You don't really write a program, but instead define new words in terms of existing ones, ending with a single word that executes the program. An application written in FORTH is really an extension of FORTH rather than something separate. We'll have more to say about FORTH next month, when we come to consider the suitability of these various languages for different applications.

More Troubles

Les Lawry-Johns

Well here we are again, tapping all the wrong keys and making a mess of everything. How the editor puts up with it I just don't know. Poor old Stan from SEME is also on the rocks. He can't do much driving, so we have to phone our orders in and make sure he gets the credit. One way or another we all seem to be up against it. Perhaps we're being tested. Like I was when this chap brought in a fairly new 14in. Fidelity portable, a CTV140 I think.

The Fidelity Portable

It didn't want to work at all, and I didn't suspect the line output transformer as I would have done with the earlier ZX2000 chassis. When I had switched it off however I checked between the line output stage feed resistor and chassis. The reading was 20』. Probably the BY127 efficiency diode in parallel with the line output transistor (BU508A). I peered inside and failed to see it. Someone had taken it out and fitted it underneath, as I discovered when I withdrew the panel. On closer inspection I found that it was fitted the wrong way round. So I removed it and checked again. The low reading was still present. I was about to bawl at the line output transformer when I thought I'd better check the transistor first. It was the BU508A that was causing the trouble, so I apologised to the transformer and fitted a nice new transistor and put the diode in the right way round.

When I switched the set on again I was rewarded with a nice, clear picture. On fitting the rear cover I saw a label attached. Rapid Repairs. Oh well, that explained it all. These Rapid Repairs people have been going around lately causing havoc. Not Rapid Repairs, actually, but you know who I mean - don't you?

Before I Forget

Time to thank those of you who've written in to wish me a rapid recovery from the brain shut-down that's been troubling me of late. I'd like to thank in particular Ken Muir of Maidstone. He suggested that a book called "Service with a Smile", illustrated by Giles and containing
some of my articles, ought to be published. Articles other than the Red Baron one. What was wrong with the Red Baron? Thanks to E.V. Hurran for the tip about vitamin E. Must try this. In reply to David Botto of Bournemouth, thanks, I've stopped taking the tablets - they seemed to make my head spin round instead of being hazy. Also John Wakely of SW19 - sorry I took so long to acknowledge your letter.

Mr. Cole's ITT

Mr. Cole came in moaning his head off about his old ITT CVC5 I'd repaired before Christmas.
"It's gorn again. Now don't get me wrong, I'm not moaning, but it shouldn't have gone again so quickly, should it?"
"It depends on what's wrong with it."
"There's no sound. Here's the bill you gave me."
I looked at the bill. It said "replace the boost capacitor, $0.47 \mu \mathrm{~F} 1 \mathrm{kV}$, and test".
"That's got nothing to do with the sound" I said.
"Course it has. You did the set, didn't you? And it shouldn't have gone again so quickly."

So I told him to leave it with me to check over. I suspected the PCL86 audio valve but it turned out to be the loudspeaker. A new one put everything right and the sound was crisp and clear. I wrote on the bottom of the previous bill "fit new loudspeaker, previous one has given 15 years' service, $£ 5$ ".

When he came back he had a big smile on his face. I showed him his speaker and the bill and his smile faded.
"I'm not paying you any more money and that's that."
"O.k. Leave the set here and I'll sell it to get my money back."
"Not likely" he said as he tried to lift the set up. He couldn't, since I'd brought it in. "Help me get it to the car" he panted.
"Not likely" I said. "Pay your fiver or clear off."
So he paid his fiver and I picked up the set and put it in the car. If I'd known I'd have made it a tenner.

Boozy Tessa

Tessa now has three saucers of sherry a night. Zeb won't drink but there's no doubt that Tessa's a drunkard. H.B. is on the wagon and says Tessa takes after her dad (you know who). All I have is a few scotches, only a few

Wide-range Capacitance Bridge

David Botto

Servicing TV sets and VCRs presents plenty of problems for the service engineer, not the least of which is checking suspect capacitors, especially of the smaller values. You may stock a comprehensive range but there always seem to be calls for the odd values that are not to hand. It's also a good idea to check new capacitors before they are soldered into the circuit - they have been known to be faulty!

Despite this, in the writer's experience relatively few TV/VCR service departments seem to possess an instrument that will measure capacitance accurately. You'll find that the capacitance bridge described in this articie will be in constant use on the bench, saving you hours of time and a lot of tension and frustration.

Features

The instrument has five ranges, covering from 5 pF to $2,000 \mu \mathrm{~F}$. There's also a sixth range which is useful for accurately matching in value two or more resistors, capacitors or other components. Resistance ranges can be included if required. In addition a handy choice of two squarewave signal outputs is available for checking the sound circuitry in TV sets, VCRs, etc.

Because bench space is always at a premium the instrument has been designed for compactness: it measures $7.5 \times 4.33 \times 2.22 \mathrm{in}$. $(19 \times 11 \times 5.6 \mathrm{~cm})$. Battery operation was chosen for three main reasons. First so that the instrument can be carried easily for field servicing, without the need to hunt around for a spare mains socket in the customer's home. Secondly because the tester is more convenient to handle without trailing leads, and can easily be moved to any part of the workshop. And finally because mains operation would increase the size and weight considerably. Since it's in operation only when a measurement is being made the batteries enjoy a long life.

Principle of Operation

Understanding the principles of operation helps in obtaining the best results from any instrument. The capacitance tester design is based on the well-known principle of the Wheatstone bridge. Fig. 1 shows the basic circuit. Resistors R1 and R2 have the same value. R3 and R4 also have the same value. With a d.c. voltage applied across points W and X , current will flow via the resistive potential divider chains R1/2 and R3/4. Since the voltages at Y and Z will be the same, no current will flow through the meter. If the ohmic value of R3 or R4 (or alternatively of R1 or R2) is altered the bridge will no longer be balanced and the meter's reading will deflect from centre zero to give either a positive or a negative reading. For example, if R 3 is reduced in value voltage V 3 will decrease and voltage V4 will increase, with voltages V1 and V2 remaining the same. The d.c. voltage at Z is now higher than that at Y. The bridge is unbalanced and the meter gives a positive reading - see Fig. 2. For the bridge to be balanced again the value of R1 must be decreased so that voltages V1 and V3 are exactly equal.

In Fig. 3 resistors R1 and R2 have been replaced with a linear potentiometer. Ratio 1 corresponds with R1 in Figs. 1 and 2 while Ratio 2 corresponds with R2. The unknown

R corresponds with R3 and the standard R with R 4 . The bridge circuit can now be used to measure resistance. An accurate resistor of known value is connected across terminals A and B . The resistor whose value is to be measured is connected across terminals C and D . If the two resistors are of equal value and the slider of the potentiometer is at track centre the meter will indicate zero voltage. If however the value of the unknown resistor differs from that of the known, fixed value resistor the potentiometer's slider will have to be moved up or down for the bridge to be balanced and give a zero reading on the meter. The value of the unknown resistor can now be obtained from the formula: unknown $\mathrm{R}=$ ratio $1 \times$ (standard $\mathrm{R} /$ ratio 2).
For example, suppose the value of the standard resistor is 10Ω, ratio 1 is 80Ω and ratio 220Ω. This gives us $80 \times$

Fig. 1 (left): Wheatstone bridge in the balanced condition.
Fig. 2 (right): Unbalanced Wheatstone bridge.

Fig. 3 (left): Wheatstone bridge with balance potentiometer.
Fig. 4 (right): Bridge for measuring capacitance.

Fig. 5: Basic circuit arrangement used in the Hunt's Capacitance Analyser.

Fig. 6: Circuit of the wide-range capacitance bridge.
$(10 / 20)=40$, i.e. the value of the unknown resistor is 40Ω. With a set of standard resistors, resistance values can be measured precisely over a number of ranges. In practice the potentiometer is fitted with a scale that's calibrated in resistance values, doing away with the need for any calculations.

A capacitor has an ohmic reactance value Xc that's given by the equation $\mathrm{Xc}=1 /(2 \times 3 \cdot 14159 \times \mathrm{f} \times \mathrm{C})$, where f is the frequency and C the capacitance value. By using an a.c. source voltage instead of a d.c. one the ohmic reactance of a capacitor of unknown value can be balanced against that of a known value capacitor in a bridge circuit - see Fig. 4. In this way the Wheatstone bridge can be adapted to measure capacitance.

Hunt's Capacitor Analyser

In the 1940s and 50 s capacitance bridges such as the Hunt's Capacitor Analyser were found in most radio service departments. Earlier versions were built into a stout oak case with a removable lid: later versions had metal cases. A magic-eye tuning indicator was used to show bridge balance and there was a scale marked with resistance and capacitance values so that measurements could be read off directly. The basic circuit is shown in Fig. 5. Because the mains-derived a.c. source voltage is a very stable 50 Hz , resistors were often used as the capacitor standards. For example, at 50 Hz the reactance of a $1 \mu \mathrm{~F}$ capacitor is $3,180 \Omega$ and that of an $0 \cdot 1 \mu \mathrm{~F}$ capacitor $31,300 \Omega$. These instruments usually had a range of $0.0001-100 \mu \mathrm{~F}$ and about $5 \Omega-10 \mathrm{M} \Omega$, which was quite adequate for servicing the valve radios of the time. These old bridges still give good service in a few workshops.

Circuit Description

The capacitance bridge that forms the subject of this article uses two inexpensive i.c.s. Fig. 6 shows the complete circuit. A sinewave voltage is generally used to power a test bridge but experiments have shown that almost any type of a.c. waveform can be used. This circuit employs a 555 timer i.c. to provide a squarewave output. The arrangement has
the advantage of being simple, few components being required. The 555 chip's frequency of oscillation is determined by the value of $\mathrm{C} 2(0 \cdot 1 \mu \mathrm{~F}), \mathrm{R} 2(1 \mathrm{k} \Omega)$ and the setting of VR2. With SW2 in the open position the frequency is 146 Hz . When SW2 is closed R3 is connected in parallel with VR2 and the frequency is increased to approximately 456 Hz .

The squarewave oscillator's output is applied to the primary winding of transformer Tl , whose secondary feeds the bridge. VR1 is the calibrated balance potentiometer while capacitors C6-C10 are the standards against which the capacitor under test is balanced. Since resistance values can be accurately measured with a digital multimeter, resistance ranges were not included in the prototype. It's simple to add resistance ranges to the bridge if required. Use close-tolerance 0.5 W resistors of $100 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, $1,000 \Omega, 100 \Omega$, and 10Ω as the standard balancing resistors. Fig. 7 shows the additional circuitry. The range covered is from $1 \mathrm{M} \Omega$ down to the resistance of five inches or less of 22 s.w.g. single-strand connecting wire! This last range is useful for checking the windings of low-resistance coils for shorted turns.

VR1 is a linear, wirewound $10 \mathrm{k} \Omega$ potentiometer. Its balance point is detected by the LM386 audio amplifier which drives a 2 in ., 8Ω loudspeaker. The balance signal from the bridge is coupled by C 5 and the preset gain potentiometer VR3 to pin 3 of the LM386 chip. When the correct balance point has been found there will be no output to the LM386 and thus no sound from the loudspeaker. The capacitance of the component being tested is then read directly from the calibrated scale.

The small control VR4 is the power factor control. It's used on the two higher capacitance ranges to obtain a sharper null balance and to indicate the power factor of the capacitor being tested.

Two separate battery supplies are provided, one for the 555 oscillator and the other for the LM386 audio amplifier. This prevents unwanted coupling upsetting the accuracy of the bridge balance. Another advantage is that the batteries enjoy a longer life. It's important that the earth sides of the two supplies are not connected together.

Jack socket J1 is the output for the squarewave test
signal: in this application VR1 acts as a gain control. J2 enables a scope to be connected to serve as a null point indicator, with the sound cut out.

Construction

Construction of the instrument is straightforward and the parts required are all readily available. The accompanying photographs show the finished appearance and internal layout of the tester. A plastic case is used - don't use a metal case because this could cause problems as a result of internal capacitances. A Tandy de luxe project case was used for the prototype, catalogue no. 270-224. Any similar plastic case is suitable.

Fig. 8 shows the recommended layout for the controls and the terminals - the positions were chosen to avoid unwanted circuit coupling. The i.c.s are mounted on two separate experimenters' "perfboards", Tandy catalogue no. 276-150. Each perfboard is held in place securely with double-sided sticky pads (these are available from all good hardware shops). Use of these perfboards makes it unnecessary to etch your own PCBs, thus saving a great deal of time and effort. Make sure that the two battery holders are fitted to the bottom of the case securely - use a little Blue-Tack.

The accuracy of the bridge depends on the tolerance of capacitors C6-C10. C6 is a 100 pF silver mica type accurate to ± 1 per cent. C 7 and C 8 are good quality capacitors that were found to be quite close to their stated values. C9 and C10 are small, 25 V working electrolytics. Don't solder C9 and C 10 into circuit until you've set up the other ranges.

T1 is an RS Components type T/T3 which happened to be in our stock (it's no longer listed). Any small audio driver transformer is suitable - don't use an output transformer. Twist together the two insulated wires from the transformer's secondary winding to the ends of the bridge arm.

The miniature on/off switch SW1 is a double-pole, double-throw type with three positions (on/off/on). Mark the off position clearly so that the instrument will not be accidentally left switched on while not in use.

Fig. 9 shows a full-sized calibrated scale which you can trace or copy, saving yourself a lot of work. The best material to use for this is white Bristol board, which should be available from your local art shop. In order to use the

Internal layout of the prototype. For external view see photograph on front cover.
scale as shown it's essential to fit the specified RS Components $10 \mathrm{k} \Omega$ linear control (type 173-237). After final testing, cover the scale with a piece of stiff, clear plastic approximately $1 / 16 \mathrm{in}$. or 1.5 mm thick to keep it clean and free from accidental damage.

It's also an idea to fit four small self-sticking cushion feet to the bottom of the case. This will stop the instrument sliding about on the bench.

Setting up and Calibration

There's nothing difficult about setting up the capacitance bridge. Before you do so ensure that all the wiring and connections are in order. Then set the two preset controls VR2 and VR3 to their mid-positions and the balance control VR1 to mid-track. Turn the range switch SW3 to the balance position and SW2 to its 146 Hz setting.

Connect the batteries and, if you've a frequency counter, plug it into jack socket JI via a 10:0 isolating probe. Turn the power switch SW1 to the output position and if all is well the counter should give a reading in Hz . Adjust VR2 for an output at 146 Hz . Close SW2 and the counter should give a reading in the region of 456 Hz - this is not critical. Disconnect the counter. If you don't have one, set SW3 to position C, the power switch to on and adjust VR2 for a pleasant low-pitched buzz from the loudspeaker. Closing SW2 should produce a higher tone.

Note that a single scale is used for all five capacitance ranges. To calibrate the bridge, connect an accurate $0 \cdot 1 \mu \mathrm{~F}$, 250 V working capacitor across the test capacitor terminals and set SW3 to position C. Rotate VR1 until you find the position that gives the minimum output from the loudspeaker (use the 456 Hz setting). VR3 should be adjusted for sufficient, not excessive, sound from the loudspeaker. When the null/minimum sound position has been found, set VR1's knob exactly to the centre position (10) on the scale. This should be at the control's mid-track position. If you now measure other capacitance values you should find that the accuracy of the scale is already quite good.

For correct calibration however you'll need a range of accurate capacitors with values between $3 \cdot 3 \mu \mathrm{~F}$ and $0.002 \mu \mathrm{~F}$ - see Table 1. Notice that with the exception of the centre 10 position the calibration lines shown in Fig. 9 don't quite connect to the centre of the scale. Using range C , connect each test capacitor in turn to the test capacitor terminals and adjust VR1 for minimum sound. After each check link the calibration line to the edge of the scale - see Fig. 10. For this range the scale numbers have to be divided by one hundred: the centre 10 represents $0 \cdot 1 \mu \mathrm{~F}, 47$ stands for $0.47 \mu \mathrm{~F}$, etc.

It's not necessary to calibrate all the other ranges once the C range has been calibrated correctly. It's best however to check the 5 pF and 10 pF balance points on the A range, using 2 per cent tolerance silver mica capacitors for the purpose.

The balance scale should be read as follows.
Range A: Centre scale 100 pF . Scale numbers times ten (read in picofarads).
Range B: Centre scale $0.01 \mu \mathrm{~F}$. Scale numbers in $\mu \mathrm{F}$ divided by 1,000 .
Range C: Centre scale $0 \cdot 1 \mu \mathrm{~F}$. Scale numbers in $\mu \mathrm{F}$ divided by 100 .
Range D: Centre scale $10 \mu \mathrm{~F}$. Scale reads in $\mu \mathrm{F}$ directly. Range E: Centre scale $100 \mu \mathrm{~F}$. Scale numbers in $\mu \mathrm{F}$ multiplied by 10 .

Two small 25 V electrolytics are used as the standard capacitors in the D and E ranges. You can use the

Fig. 7: Extra components required to add resistance ranges. SW3/SW3a comprise a two-pole, six-way switch

Fig. 8: Suggested drilling details for the case top. Hole sizes depend on the components used.

Table 1: Components for precise calibration.
Capacitors: $3.3 \mu \mathrm{~F}, 1 \mu \mathrm{~F}, 0.47 \mu \mathrm{~F}, 0.33 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 0.15 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$, $0.068 \mu \mathrm{~F}, \quad 0.047 \mu \mathrm{~F}, \quad 0.033 \mu \mathrm{~F}, \quad 0.022 \mu \mathrm{~F}, ~ 0.015 \mu \mathrm{~F}, ~ 0.01 \mu \mathrm{~F}$, $0.005 \mu \mathrm{~F}, 0.002 \mu \mathrm{~F}, 10 \mathrm{pF}$ (silver mica 2%), 5 pF (silver mica $2 \%)$.

Use range C. Divide scale numbers by 100.
Resistors: $3 \cdot 3 \mathrm{k} \Omega, 1 \mathrm{k} \Omega, 470 \Omega, 330 \Omega, 220 \Omega, 150 \Omega, 100 \Omega, 68 \Omega$, $47 \Omega, 33 \Omega, 22 \Omega, 15 \Omega, 10 \Omega, 5 \Omega, 2 \Omega$.

Use range B. All resistors should be close-tolerance types - gold 5\% or better.

Components List

R2
VR1 10k 1 W linear wirewound, RS173-237
VR2 470k Ω miniature horizontal preset
VR3 10k Ω
VR4 $1 \mathrm{k} \Omega$ miniature horizontal preset miniature linear panel-mounting control
C1 $470 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ tubular electrolytic
C2 $\quad 0.1 \mu \mathrm{~F} \quad 150 \mathrm{~V}$ tubular
C3 $10 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ tubular electrolytic
C4 $\quad 0.1 \mu \mathrm{~F} \quad 150 \mathrm{~V}$ tubular
C5 $\quad 0.05 \mu \mathrm{~F} \quad 150 \mathrm{~V}$ tubular
C6 $100 \mathrm{pF} \quad 1 \%$ silver mica, RS 124-780
C7 $0.01 \mu \mathrm{~F}$ polystyrene, RS 113-409
C8 $\quad 0.1 \mu \mathrm{~F} \quad 100 \mathrm{~V}$ epoxy cased ceramic plate, RS 125-733
C9 $10 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ electrolytic
C10 $100 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ electrolytic
C11 $\quad 0 \cdot 1 \mu \mathrm{~F} \quad 150 \mathrm{~V}$ tubular
C12 $\quad 0.1 \mu \mathrm{~F} \quad$ 150V tubular
C13 $10 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ tubular electrolytic
C14 $1 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ tubular electrolytic
C15 $100 \mu \mathrm{~F} \quad 25 \mathrm{~V}$ tubular electrolytic
IC1 555 timer
IC2 LM386 audio amplifier
T1 RS T/T3 or similar audio driver transformer
SW1 Miniature DPDT on-off-on toggle switch. Tandy 275-620 or similar
SW2 SPST microminiature toggle switch. Tandy 275624 or similar
SW3 Six-way two-pole rotary switch. RS 327-658 or similar
Two 3.5 mm jack sockets
Miniature 8Ω, 2in. loudspeaker
Two penlight battery holders each to hold four batteries, plus snap-on connectors. Tandy 270-383 or similar
Two perfboards. Tandy 276-150 or similar
Plastic case, e.g. Tandy 270-224
Self-sticking cushion feet. Tandy 64-2346 or similar
Additional components for resistance ranges:
R4 10Ω RS $149-616$, R5 100Ω RS $149-644$, R6 $1 \mathrm{k} \Omega$ RS
149-694, R7 10k RS149-818, R8 100k Ω RS 149-925
SW4 SPDT miniature switch
accurately calibrated C range of the bridge to measure a number of $10 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$ electrolytics, selecting two that have exactly the required values.

Resistance Ranges

If resistance ranges are to be added to the bridge you'll find that the additional figures required on the balance scale will be the mirror image of those used for the capacitance ranges. For proper calibration a range of close-tolerance resistors is needed - see Table 1. Check their accuracy first with a digitial multimeter. The resistor to be checked is connected across the test capacitor sockets. Draw the ohms scale as shown in Fig. 9, with the same numerical values but as a mirror image. Mark it out on the outer edge of the capacitance scale, leaving room for calibration link lines. It's easily calibrated by selecting range B. Connect each of the resistors listed in Table 1 to the test sockets in turn. Adjust VR1 for minimum sound.

Fig. 9 (left): Full size calibrated scale for the bridge.
Fig. 10 (right): The 'link" method of calibration, which allows for component variations.

As you do so, mark in their numerical values - divided by ten - on the resistance scale.

If fitted, the resistance ranges read as follows.
Range A: Centre scale 10Ω. Scale reads directly in ohms. Range B: Centre scale 100Ω. Scale numbers multiplied by ten.
Range C : Centre scale $1 \mathrm{k} \Omega$. Scale numbers multiplied by one hundred.
Range D: Centre scale $10 \mathrm{k} \Omega$. Scale numbers multiplied by one thousand.
Range E: Centre scale $100 \mathrm{k} \Omega$. Scale numbers multiplied by ten thousand.

Circuit Varnish

After calibration it's a good idea to apply a thin coat of circuit varnish to all solder tags, joints, etc. Don't spray the varnish on - use a small brush. This will help to ensure reliability in the long term.

Use

A capacitor to be tested can be connected to the test capacitor terminals directly or via test leads. In the latter case note that with small picofarad value capacitors the presence of the test leads might result in an incorrect reading.
Make sure that a capacitor is discharged before connecting it to the test terminals - especially in the case of large-value reservoir and smoothing capacitors.

Select the appropriate range with SW3, turn the scale pointer until the minimum volume note is heard from the loudspeaker, then read off the value from the scale. A balance point at the extreme left of the scale indicates a short-circuit while a balance point at the extreme right indicates an open-circuit.

A convenient feature of the bridge is that an oscilloscope can be connected to jack socket J2, enabling the balance
point to be observed visually with the sound cut out.
When checking electrolytic capacitors, note the normal position of the power factor control for the sharpest null balance. The term power factor relates to losses and leakage in a capacitor. If you find that the power factor control has to be turned well beyond the normal position the capacitor being tested is leaky.

You'll soon get used to reading the power factor and scale pointer figures. Measurements can be made using either oscillator frequency. The lower frequency is best for large-value capacitors, the higher frequency for picofarad values.

Some capacitors can be checked in circuit - disconnect the equipment from the mains supply first! In many cases however the measurement will be affected by other components in the circuit. The easiest way to isolate an in-circuit capacitor is to unsolder one of its leads and keep this clear of the printed circuit. Check the capacitor via your test leads, then resolder the lead if the capacitor tests good. This saves time and the frustration of struggling to replace capacitors in positions that are hard to get at.

The balance range is very helpful when you need matched components and don't have them to hand. Two components such as capacitors, coils, resistors, etc. can be matched exactly. One component is connected to the test capacitor terminals, the other to the balance terminals. When two components are matched correctly the bridge will balance with VR1's pointer at the half-way scale mark.

The two squarewave signals available are extremely useful for checking audio circuitry. Turn SW1 to the output position and plug a screened lead into jack socket J1. The lead should be at least a metre long so that the capacitance bridge's unscreened case is well away from the equipment under test. VR1 now acts as a volume control. If you connect a scope to J1 you'll see the squarewave output increase and decrease as the control is turned.

As you become accustomed to your capacitance bridge you'll find new uses for it.

Letters

SERVICING INDUSTRY CHANGES

From the letters in your January issue it appears that many readers are aware of the changes taking place in the TV and video servicing industry. While it will take another couple of years for the new order of servicing to be fully established, anyone in the industry who doesn't recognise the changes will be left out in the cold.

Martin Blake's letter is significant in drawing attention to the new attitude being taken by many manufacturers. Rather than adopt the negative approach of rejecting Grundig products, he ought to take the initiative and contact Grundig and its dealers in his area. They may be all too willing to off-load some of their servicing. Reputable manufactureres are willing to support servicing organisations that are, in turn, prepared to invest in equipment and training. Grundig and JVC in particular do so. But why this new attitude and what does it involve?

Much of the TV and video equipment produced by the major manufacturers today is of very advanced design, incorporating complex microcomputer routines that make it possible to have access to internal functions via the microcomputer. Also we are seeing the first examples of equipment with field stores to give picture-in-picture and other features. There are Grundig VCRs with the ability to override emergency fault routines, JVC camcorders with the same facilities, Finlux TV sets with internal adjustments via the remote control handset, and both Sanyo and Toshiba VCRs with field stores. Without backing from the manufacturers, servicing this type of equipment will be beyond the service engineer. He won't stand a chance of repairing it and will end up returning the equipment to the customer - with a high probability of additional faults.

You may say it's all right for Steve because he has Grundig Pete to talk to. But there have been times when we've both been confused over a simple VS180 and have not known, after someone has had a go at it, in which of two panels or three switches the fault has lain.

Say that you are faced with a new Panasonic NVM5 and the contrast of the picture is slowly changing up and down again. Nowhere does it mention that this is normal in the high-speed shutter mode, or that in a certain new VCR the slow-motion tracking control is now the same knob as the normal one. It gets to the point where the operating procedures can be as confusing as the internal circuitry! When faced with a new, faulty product for the first time you may not even be able to operate it, let alone repair it.

There are other points in the same issue. The man with the battered Marina van who finds it less casy/viable to carry out field repairs, so that more have to be done on the bench. "Ex-valve set dabbler" complains that the magazine has changed from DIY towards the trade. There's no such thing as DIY vidco repairs. You can't swap syscon or LSI servo chips like you could valves. For one thing they don't plug in, and for another without very good quality soldering/desoldering equipment the print will be damaged and that will write off the PCB and the VCR or TV set for good.

There will be plenty of opportunities for enterprising engineers who are prepared to spend money on equipment and time on training to set up regional service
centres for their local dealers, because as time progresses and domestic electronic equipment becomes more complex most sales-orientated dealers will not be able to cope with their own servicing. Think about it . . .
Steve Beeching,
Barnby, Newark.

GRUNDIG'S NEW POLICY BACKED

I was amazed to see criticism of Grundig's new service policy when to me, a Grundig dealer of long standing, the company is now getting it right. It would take a full article to go into this in the depth it deserves, but I would sum it up as a policy of looking after those who look after you. If we look after the people who buy from us, and Grundig looks after us, that's as much as anyone is entitled to expect - but consider yourself fortunate if that's what you get.

In the past we had difficulty in getting through to Technical Information and Spares, mainly due to nondealers taking up telephone time. Grundig has made every effort to give its dealers information through service courses, technical bulletins, etc., but there were still occasions when we had a query that couldn't be dealt with because Technical's phones were engaged while they answered simple queries from non-dealers because they hadn't been on courses etc.

Your correspondent refers to people who move from one district to another being unable to obtain service. There are bound to be some drawbacks with any system, but as more dealers become aware of the Grundig dealer support I would expect it to be only a matter of time before there's a Grundig dealer in every town.

What I am amazed about is that no one appears to be complaining about Philips. Its back-up is so poor as to be virtually non-existent. The company closed down all its service departments and appointed "specialist dealers". We approached one regarding an under guarantee compact disc player. They told us they knew no more than we did about these machines, so they might have to spend some time on the fault. Philips allow only $£ 10$ so we’d have to pay any additional costs ourselves. What sort of back-up is that? The profit margins rarely allow a 25 per cent mark up, so in the event of a problem arising the chance of a final profit is remote. We changed from dealing direct to dealing through a wholesaler, who at least looks after any under guarantee items.

When Philips sold its last V2000) series VCRs the company didn't run service courses but trained four/five engineers who operated from Manchester. Any faulty machines were sent there via Securicor. This was a shortsighted arrangement, since at the end of the day the dealer knows nothing of these machines - and now's the time one can expect them to start coming in for service. Perhaps Philips would care to tell us whether the bods in Manchester are still slaving away, or provide some helpful advice so that dealers can cope with any future problems. R. K. Caley,
R.K. Electrics of Ilfracombe.

OBTAINING A VARIABLE AC SUPPLY

I read with great interest Albert Hitching's article in the November issue, describing a versatile bench transformer. During the course of my work as an electrical breakdown technician I visited a firm of hose equipment specialists who were electroplating small parts to fit on the end of high-pressure hoses. They were using a small battery
charger with lamps connected in series to set the current as required. They wanted a better method of doing this, but as always didn't want to spend much money. I fitted an MK dimmer unit in series with the primary winding of the transformer and chucked out all the lamps. MK states that some of its dimmers can be used to control transformer loads in this way provided a $470 \mathrm{k} \Omega$ resistor is connected across the transformer's primary winding.

I've since used this idea to control a bench isolating transformer. This gives me any voltage I require and also a nice slow start to anything I'm working on. With fuses fitted where needed this seems to be a safe arrangement, though maybe some of your contributors who write with all those letters after their names will pull the idea to bits. But that's life - it works!
S. J. Searle,

Colchester, Essex.

A NEW TYPE OF COWBOY

The cowboys have struck in Huddersfield town centre. Not the normal rusty van/run-down shop type of cowboys but a new breed - fast sales talk and expensive shop type cowboys. They are causing considerable distress to all respectable dealers. Their prices seem to be reasonable to Joe Public, but what they are selling should have been scrapped a decade ago. The main point that's causing concern is that they are advertising these second-hand goods as bankrupt stock, with no guarantee.

I've met countless victims of these con-merchants, people who have bought a TV set or VCR that broke down several days later and were told by these "professionals" that they would not carry out the repairs required. When outraged customers take a stronger line and talk about consumer protection they are told where they can go.

I've tried to repair several of these bankrupt stock items and have been amazed that they worked in the first place. People like this not only upset their customers but tend to give the impression that all second-hand TV firms are the same. Something must be done to stop these cowboys. They might be in your town next.
J. P. Roebuck, Britannia Electronic Industries, Huddersfield.

REPAIRS TO VIDEO CASSETTES

Harold Peters provided some useful tips in his article on servicing VHS cassettes in the January issue. Here are some more, based on my experience.
(1) Spools used by TDK and Maxell/Hitachi are incompatible with JVC shells, though JVC's spools are compatible with TDK and Maxell/Hitachi shells. I've found that TDK and Maxell are in all respects compatible, assuming the format to be the same of course! Note that JVC makes tapes for Ferguson, Baird, Thorn, Akai, ITT and Kodak.
(2) The best method to adopt when removing the leader retaining wedge from the spool is as follows. Turn the spool over (white side up), insert a long ball-point pen tip into the small hole and push the wedge out. Under no circumstances prise the wedge out with a screwdriver blade - the brittle plastic is likely to fracture or break, causing further heartache.
(3) Assuming that the procedures described in the article and above are carried out no problems should arise. It would be far better to discard faulty cassettes, but what about irreplaceable recordings? In serious cases one
would do better to have the recording(s) copied on to a fresh tape before discarding the original - current HQ VCRs are capable of producing excellent copies.

Finally, never use unbranded or unheard-of brands.
In passing, I'd like to sympathise with the man in the battered Marina van. At the ripe old age of twenty two I often wish I'd been this age in the days of faulty valves and open-circuit mains dropper sections. As a toddler in the sixties I recall frequent visits from the NE Co-op engineer who used to attend the family set (a Defiant 9 961U I seem to recall) which frequently gave trouble. Far from screaming, I found the set and its interior fascinating, though the engineer preferred me to be out of the way. But that's another story!
Brian Renforth,
Newcastle-upon-Tyne.

BETTER CABINETS WANTED

The things that make servicing more complex are switchmode power supplies, diode-split line output transformers and cmos circuitry. Are we paying too high a price for the increased efficiency and power saving that these techiques offer? Personally I wish that manufacturers would revert to more robust cabinets instead of improving the works inside. It's paradoxical that whilst the technology inside TV sets has progressed by leaps and bounds the cabinets, now made of flimsy plastic, have never been worse.
K. J. Freeby,

Plymouth, Devon.

STILL PRACTICAL!

Your correspondent "ex-valve set dabbler" is right to point out that Television is read more by the trade these days. But take a look at the publications they used to read. The technical ones require fluent hexadecimal and total silence to be understond, while with the trade papers it's difficult to tell where the copy ends and the ads begin.

As for not caring for the enthusiast, I personally in the last year or so have described a method of finding Eutelsat-1 using a milk straw, school protractor and string; a way of videotaping teletext using a single transistor; and how to extend tape life using a pencil, rubber and scissors! F.J. Camm will pause from repairing his celestial twovalver to look down on us benignly for that! Having contributed to the magazine under F. J. Camm, Ray Street, Norman Stevens etc. I personally prefer the current style - the editor uses his blue pencil to add topicality rather than to delete anything with the slightest twinkle of humour in it.

The Western Brothers used to say "there's only a few of us left" (remember?). Les is on his tablets, and so am I to a lesser extent - such is the cut and thrust of fixing today's unfixables. So how about it "ex-valve set dabbler" and others like him? You must have come across something that will be of interest to us all. Simply write it up so that the chap going home on the train after a hard day will enjoy it. I can promise you the sky won't fall in!
Harold Peters,
Lowestoft

NOT DETERRED

I agree with "ex-valve set dabbler" - your magazine is not catering for the DIY man. I don't care what the trade people think, I for one am going to have a go - at anything. It's about time we had a magazine that did
something for us like Practical Television used to do, concentrating on a particular set with complete circuit diagram - over two or three issues if need be.
Geoff Hope, electrician,
Guisborough, Cleveland.

DABBLERS CONDEMNED

It's a good thing "ex-valve set dabbler" didn't sign his name. If I got hold of him I'd be likely to punch him on the nose! How many times have I seen fuses covered with silver paper, soldering like arc welding - even VCR heads cleaned with Germolene. And you can bet that the people who bring these sets in will tell you "it was all right last night". If only my life was centred around an endless supply of replacement panels: maybe I could pack up at dinner time and go home.

After spending three years at technical college (and I'm still not finished) I found that letter an insult. A good technical background and years of experience are needed to do this job properly. That's why some people are dabblers and others experts.
From a very angry Peter Goodman,
ex-Kettle repairman,
Corby, Northants.

ENTHUSIAST REPAIRS

I would like to echo the comments made by "ex-valve set dabbler". There has been much talk in your columns recently about service charges, trade-only suppliers and rip-off merchants. Although professionally involved in electronics, as a circuit designer in the computer industry, I repair TV sets for friends simply because I find it a fascinating field, not for any financial benefit. One advantage is that I can mend sets which those in the trade wouldn't consider to be worthwhile. I've spent many hours slaving over a G8 or an A823 that would otherwise end up on the scrap heap. I've even repaired stock faults on sets that respected dealers have said were beyond repair. I'm not kicking the trade, but there are still clearly a lot of hobbyists like myself who repair things purely out of interest and to help others.

A week or so ago I found myself reading some of your issues from the seventies. They were refreshingly interesting, full of practical tips, and there were many more component advertisers. The magazine seems to be trying to cover too wide a field today, the practical TV side being displaced by articles on VCRs (a field that's not really suited to the hobbyist), computers (widely covered elsewhere) and how to run a business. The advertisements also have a strong trade bias - I personally have no use for Glls by the bucketfull.

I suggest you cast your eyes back to what the magazine was saying ten years ago. I agree that times have changed, but would hazard a guess that the number of hobbyists has changed little since then. You should still cater for our needs.
D.W. Sergeant,

Bracknell, Berks.

A CLUB FOR DABBLERS?

I'd like to meet "ex-valve set dabbler" so that we can get dabbling together. You see I'm an unemployed faultfinding electrician with experience of many types of equipment. My hobbies are amateur radio and electronics.

Last year I managed to get a job for three months, but when they found out I was diabetic I was given a week's notice. Since then I've been unable to get even an interview because of my health and have turned to doing whatever repairs I can for others in a similar impecunious position to my own. Trying to get spare panels etc. when you cannot afford them is a tricky business (has anyone a spare power supply for a G11, the same plus a decoder/ signals panel for a G8?).

What I want is to do TV servicing in a workshop. If anyone is interested I'll send my details, c.v. etc. It would be an idea if dabblers and those who are unemployed but have some technical knowledge could get together to form a club. Let's all dabble together!
Ian Ruddock, G8NCZ, 54 Woodcroft Avenue, Stanstead Abbots, Ware, Herts SGI2 8JQ.

MODIFICATION WANTED

I wonder if any reader could suggest a modification to the Philips 2023 VCR to override the three-four minute automatic switch off (unless a deck function is in use) so that the machine can be used to remote control a nonremote control TV set without the annoyance of loss of program cvery few minutes?
R.W. Silver,

Glasgow.

SPARE PARTS QUERY

Does anyone know of a spare parts supplier for Silver products? Tech-Semco used to be able to provide spares but is no longer in the spares business. Perhaps one of your readers might be able to help?
Simon Kelly, JKL Electrix,
Newcastle, Co. Down.

MMDS AND IRISH CONDITIONS

The MMD system described in the November issue is ideal for short-range links between line-of-site reception points, e.g. for extending a cable system to an adjoining town without the need for costly underground cabling. Here in Eire there's a need to extend multichannel reception of UK signals to smaller urban areas by retransmission from local clevated sites. The problems relate to controlling the spread of reception, achieving adequate financial arrangements and dealing with copyright requirements.

In the case of small, isolated towns and rural areas however MMDS is likely to be a costly business and distribution at $2 \cdot 5 \mathrm{GHz}$ could present many difficulties.

I note with interest reference to Canadian firms in the MMDS article, and recall some previous Canadian efforts at signal distribution in Eire. A decade ago Waterford City Cabling had Canadian experts who chose the wrong reception site and the wrong UK u.h.f. source (from S.W. England instead of S.W. Wales), then spent a couple of years "experimenting" whilst the long-suffering viewers waited for satisfactory signals. To this day some nearby unauthorised rebroadcasters provide reception that's superior to the cable system. In the case of Cork City more Canadian experts "experimented" and chose the wrong mountain range for reception, despite the advice of many Irish experts. Subscribers are of course paying for these past mistakes. I hope that more experiments by Canadians, this time in the MMDS field, are not going to be foisted on Irish viewers.

Personally I'd prefer to see redistribution at u.h.f. with simple encoding. The use of well-tried u.h.f. technology and local expertise could provide signals at a very reasonable cost - you wouldn't need a multimillion pound organisation to operate such a system. MMDS can be received on a line-of-sight basis only, and linear output amplifiers with outputs in watts would be very expensive. The same power levels at u.h.f. would provide a much more effective TV coverage in Irish rural areas. I can't see the merits of using untried, expensive s.h.f. systems when practical u.h.f. systems would suffice. In the USA and

Canada MMDS operates from high hill sites overlooking wide open expanses of flat terrain - perhaps line-of-sight up to 100 miles. The geographical conditions in rural Ireland are quite different.

Any proposed developments should be given very careful research and experimentation before we see a rush of microwave dishes on our hillsides. Perhaps DBS TV will come to our aid before MMDS. Time will tell.
Des Walsh,
Carrigaline
Co. Cork

A Low-cost TVRO Installation

Part 1

Roger Bunney

There is very little satellite TV reception at present amongst DX-TV enthusiasts. Several have made their own equipment however while others have invested sums of hard-earned cash in commercial receiving installations equipment from Connexions seems to be favoured. It's a hard economic fact that even a basic system to traverse the heavens, using an azimuth/elevation mount, is likely to cost you $£ 650$ plus. For a motorised system with computer memory and an up-market receiver the figure rises to
 cables. In addition you might need a line amplifier.

As regular readers will know, I've been involved in terrestrial DX-TV reception and experimentation for many years. Much of my equipment has been home built, and spending large sums of money on equipment goes against the grain. Though so few DXers are active with satellite TV reception I've for some time felt that this subject should be given greater attention. To encourage others I decided to see what could be done. The main aims have been to minimise the cost of the exercise, incorporating homemade innovations where possible, while obtaining results comparable to those provided by a more up-market system. Cost saving has been achieved by accepting a degree of operational inconvenience that would probably put the normal domestic viewer off. It was also felt important that any DIY aspects should be repeatable by others who have little or no knowledge of TVRO installations - though the enthusiasm characteristic of UK TV-DXers has been assumed!

Selection of Equipment

When you look through the advertisements in Television and the various video magazines you'll see quite a wide range of TVRO equipment on offer, much of it expensive. What we are seeking is the cheap gear, at the lower end of the market, which means manual receivers, patio mounts and the domestic packages aimed at the DIY or "pub" market. I decided to opt for the cheapest - a 90 cm dish with a head unit having a noise figure of $1 \cdot 8-2 \mathrm{~dB}$ and a manual receiver. The head unit picks up the signal collected by the dish and converts it from s.h.f. to a lower frequency (the first i.f.) for feeding to the receiver unit itself. It's the convention today to refer to the electronic part of the head unit as an LNB (low-noise block), so we'll use this term from now on. In the patio mount field it's unlikely that you'll find dishes with a diameter of more than about a metre.

With the low-power satellites we're aiming to receive a

Y cm dish provides an LNB input that borders on the marginal, so a very low noise system is essential. At under $£ 500$ retail typical performance figures are gain of around 55 dB with a noise figure of 2 dB or lower. If you can go for a 1 m dish, so much the better. The latest LNBs use HEMFET technology, with noise figures of less than 1.5 dB - but you pay for this enhanced performance! The system I've put together uses a 90 cm dish and an Echosphere LNB feeding, via RF125 u.h.f. coaxial cable, an Echosphere SR1000e receiver. Having sounded out the market for possible sources of supply - not an easy task - I decided to purchase the equipment from North East Satellite Systems of Cropton, North Yorkshire. John Standen of North East Satellite Systems is noted for his expertise in the commercial satellite market and I feel that his company's track record gives assurance should any problems arise.

I decided that use of a polarotor for remote change between vertical and horizontal polarisation was unwise since it introduces a loss approaching 3 dB . This is unacceptable with a dish of less than 1 m (we're not talking about DBS reception!). It means that the LNB/feedhorn assembly will need to be physically rotated to suit the polarisation of the required transponder downlink. Inconvenient - but a financial saving! I bought an adjustable scalar ring assembly since this allows you to "tune" the head for optimum signal pickup from the dish. Doing this can provide an improvement of $0 \cdot 5-1 \mathrm{~dB}$. The LNB is fed with an input at $10 \cdot 9-11 \cdot 7 \mathrm{GHz}$ and provides a downconverted i.f. output at $950-1,750 \mathrm{MHz}$.

Having decided to buy the Echosphere units a cheque was sent off. Shortly afterwards two large cardboard boxes arrived . . .

The Patio Mount

A patio mount is basically a fixed dish stand which is bolted down. The dish is elevated by a sliding telescopic pipe arrangement, the lower lip of the dish being hinged to the patio frame beneath. Patio mounts are usually found at pub or bookie shop installations where a specific channel, such as CNN, MTV or Sports Channel, is being received since only one channel is required the dish can be permanently fixed for reception from one satellite. BT often instal preset dish systems at bookie shops to receive the betting downlink information service.

Having unpacked my patio mount and dish I had the problem of how to adapt the mount to obtain an azimuth swing so that the dish could be swung from east to west through south, giving access to the Clarke Belt where the
various geosynchronous satellites are parked in orbit. Use of a polar mount, which when set up gives accurate tracking across the Clarke Belt, would have been best, but the impoverished TV-DXer following the set up described here must settle for independent adjustment of the azimuth and elevation.
The patio mount is designed to be bolted down on to a concrete base/flat roof. For this purpose several lugs are welded to the hoop that comprises the patio mount frame. The dish is hinged directly to one side of the frame: at the opposite side of the hoop there's a telescopic steel tube assembly that lifts the dish up in elevation - tightening a single bolt maintains the correct angle. A simple but effective arrangement.

Obtaining Azimuth Adjustment

I obtained some sturdy industrial casters (try a tool supplier for these) which for fixing purposes have quarter inch threaded studding. The casters can be bolted to the frame to give movement, using appropriate plated nuts and washers. The only problem is that the casters are free to move and rotate on their own. To overcome this difficulty the vertical spindles around which the casters rotate were carefully drilled and tapped through with steel self-tapping screws (one per caster). When fixed as shown in Fig. 1 and the accompanying photos the dish and mount will now rotate circularly, i.e. turn on the spot. Further precision is needed however.

You will probably be able to scrounge an old industrial tidybin lid from your local refuse depot (find under Environmental Health Services of the local council authority). These are flat, circular lids that fit on top of the wheeled bins you find behind shops etc. The type made by Refuse Systems of Bradford is perfectly flat and round (like a tea tray). It has an access hatch with lip - when used in its intended manner a rubber lid fits over this. I acquired a rusty specimen gratis and cut away the small access lip, leaving a large lid with a hole in it. It's best to paint the lid with rust preventer and then a gloss enamel paint.

The idea is that the dish and its now wheeled patio mount sit inside the upturned lid, rotating within the lid in a disciplined manner. Unfortunately the internal diameter of the dustbin lid was found to be greater than the extreme diameter of the casters. To get round this problem sleeved garden hosepipe was fitted around the inside of the lid's outer lip. The hosepipe was made into a loop and joined with a piece of half inch outside diameter alloy tubing -ex-v.h.f. aerial element tubing. The aim is to achieve a friction fit against the side of the casters so that the assembly can be easily rotated but won't move on its own accord. In my case it was necessary to provide additional packing, using thin plastic strip, to obtain the desired degree of frictional pressure on the sides of the casters. Before the wheeled dish and frame are fitted within the

Fig. 1: Fixing the casters to the frame (not to scale). The patio mount casters are fixed at 90° positions on the flanges provided. Lock the caster wheels (see text) to allow movement in one plane only - parallel with the adjacent frame, as shown here.

Photo 1: The industrial dustbin lid, with access cut-away, treated with an anti-rusting chemical.

Photo 2: The wooden frame, held together with timber connectors, on which the dustbin lid will rest.

Photo 3: The now painted dustbin lid at rest on the wooden frame. Take care not to cut away the access hole lip too close to the main outside lip.
dustbin lid, paint a horizontal white line to serve as the north/south reference. There are several holes in the surface of the dustbin lid. These were rivet holes for the original steel handles. Use two holes to provide anchorage to the ground to prevent movement of the lid and hence disruption of the N/S reference. Leave the other holes to provide drainage.

Alignment

Make a simple wooden base from creosoted timber, say $2 \mathrm{in} . \times 3 / 4 \mathrm{in}$., holding it in place with "bang-in" timber connectors. Place the lid on the timber frame in a location that gives a clear view of the southern sky between SE and SW. Carefully align the lid with its white horizontal line on a magnetic north/south path. This reference must be

Photo 4: One of the casters bolted to the patio frame hoop. Fix the casters to prevent movement around the vertical spindle. To do this, hold the caster unit in a vice and drill a hole through the side of the caster shroud, then the spindle itself. Fit a self-tapping steel screw of sufficient length to pass through the outside shroud and the spindle, projecting beyond the inner edge of the spindle. The caster will then rotate only parallel to the steel hoop.

Photo 5: The now mobile patio mount sitting inside the dustbin lid. Note the hosepipe packing - this is fixed to the rim of the dustbin lid with Evostick to prevent it moving. The white line is the magnetic north/south reference. The access hole is useful since you can stand in it when adjusting the feedhorn assembly over the top of the dish. Several holes are provided in the dustbin lid to aid drainage and allow two six inch nails to be hammered into the ground to prevent movement of the lid once it has been calibrated with satellite aiming points.
accurate. Avoid using the compass near the lid otherwise the steel will deflect the needle from true. The reason for having the reference line on the lid is so that it can again be aligned when moved elsewhere in the garden and markings for known satellites will remain true.
Make a vertical reference line on the hoop frame, centrally beneath where the dish is hinged, i.e. at the front of the system. When a satellite is located a matching reference line can be painted on the rim of the dustbin lid, with an index or reference number, so that you can always accurately return to the same azimuth.
So we now have a mounting system that provides simple azimuth movement. It cost next to nothing to make (this depends on your sources of scrap metal). Next month we'll give details of the elevation adjustment. If it all sounds a bit

Photo 6: Close-up of the head assembly minus LNB. The support arms with PVC tubing make fixing easy: the protruding screw allows polarisation and focus adjustment. All very simple - you can't go wrong with the equipment I purchased.

Photo 7: Another view of the scalar ring assembly - its adjustment screw can just be seen. This enables the ring assembly to be slid up and down the feed tube. Careful observation of a weak signal on a TV screen while adjusting the ring will show clearly where it peaks.

Photo 8: The Intelsat bird at $27.5^{\circ} \mathrm{W}$ was found within two minutes once the LNB was fixed. Beginner's luck - it took 42 minutes to find the ECS bird at 13° E! Just to prove that the system works, this photo shows the EBU-Washington news preview feed, not too strong a downlink, being a half transponder on the basic full transponder receiver.
complicated, I should add that I can go from say the Intelsat bird at $27.5^{\circ} \mathrm{W}$ to the Eutelsat bird at $13^{\circ} \mathrm{E}$ in about twenty seconds (plus a walk to the dish!) and later reset to Intelsat accurately without the need for a signal strength meter or a TV screen display.

TV Fault Finding

Reports from Mick Dutton, John de Rivaz, B.Sc.(Eng.), D.H. Davies, Hugh MacMullen, Joseph Cieszynski, Roger Burchett and Philip Blundell, Eng. Tech.

Ferguson TX90 Chassis

This colour portable suffered from intermittent colour. No amount of heat or freezer would induce the fault. We noticed that the colour was always correct when the set was first switched on. It would then go into bars and finally off. From this it seemed likely that the problem was around the colour decoder reference oscillator. We started to change capacitors and when C155 (47 pF) was replaced the colour stayed on. We used a 100 pF component as in later production.
M.D.

ITT CVC800 Chassis

We'd seen this set several times over the past twelve months. The customer always complained that it failed to start properly. He said it made a screeching noise that built up gradually until the set sprang to life. We were never able to pin this down as the set would always work correctly with the back removed and the test equipment hooked up. Recently however the customer came in and reported that the set had gone dead. On removing the back we found that the 110 V rail was very low and pulsing. It didn't take long for us to discover that the smoothing capacitor C757 $(10 \mu \mathrm{~F})$ was open-circuit.
M.D.

Philips KT3 Chassis

We were fooled by one of these sets which was tripping. By the time a friend called we'd changed just about everything. "What about the mica washer under the line output transistor?" he said. When removed we found it had a pinhole that produced arcing.
M.D.

Mitsubishi CT180B

This set had suffered is first breakdown from new (some nine years!) The problem was that the picture was severely reduced in size all round. We found that the h.t. line was at only 85 V instead of 105 V . R909 (220), 10W) was getting very hot and we discovered that the over-voltage protection transistor Q905 (2SC620) had gone short-circuit. A replacement put matters right.
M.D.

Rank T20 Chassis

This set came in dead. We soon found that the BU208A line output transistor was short-circuit. A replacement was fitted and the usual dry-joints on the line scan plug were resoldered. The set was given a short soak test then returned to the customer.

It came back a few days later with the same complaint. After fitting several BU208As we eventually found that the scan coil connections at the plug on the coils were burnt and making poor contact. Resoldering the wires directly solved the problem.
M.D.

Amstrad CTV1600

The complaint with this set was field collapse. Supplies were present at the field output transistors but there was no voltage at the base of the driver transistor. On checking back to the LA7800 timebase generator chip we found that there was no 12 V supply to the field section, due to a
dry-joint from the 12 V rail to pin 12. It's worth noting that this i.c. has two supplies - one for the field and one for the line section.
M.D.

Variac Repair

Having been a wally and burnt out the variac I put it on one side and looked up the prices in a surplus catalogue. After recovering from the shock I thought I'd try to repair the faulty one. It can be seen from the circuit (see Fig. 1) that a burn-out usually occurs when current can flow from the mains to an overload through a relatively short section of the winding. Furthermore, it's the output current that's critical. So a 5A cutout was fitted in place of the more usual terminal block (see Figs. 1 and 2). The prongs were removed and replaced with soldering tags: it was then connected in series with the output cable, which ran to a floating 13A socket.

The variac was repaired by first dismantling the unit completely to reveal the central toroid. The burnt section was wound off and a similar diameter enamelled wire was then selected to wind back in its place. Once the section was rewound it was pressed down so that the turns passing under where the brush would move were flat and level. They were then sanded off with a piece of sandpaper so that the brush could make contact.

If I can make it work after a home repair I'm sure most other Television readers will be able to do the same should they have a similar unhappy accident.
J.deR.

Monochrome Portable Problems

Dwektronix "Classic 12": No field scan was traced to D506 (BA233) being faulty. It's connected between the emitter and base of the field output transistor. Note that later versions of the Classic 12 have an i.c. field timebase.

Fig. 2: Variac mechanical details.

Monelectric Minimatic 12in. portable: We've had failure of the ITT mains bridge rectifier in several of these sets. Fitting a 3A RS bridge to the heatsink on the right-hand side cures the fault.
Philips TX chassis: Intermittent loss of the sound and vision signals was traced to dry-joints on the tuner's feedthrough capacitors. Resoldering all joints cured the fault.
Binatone Cavalier Model 19496: Loss of sync was traced to D302 being faulty.
Thorn 1590/1 chassis: The l.t. line was low and couldn't be adjusted. The cause was failure of the line output transistor VT26.
D.H.D.

GEC 14in. CTV (ITT Pico 1A Chassis)

We've had two of these sets with the same problem. If all the tuning buttons are pushed in they will lock in. To release, open the tuning cover and insert a small plastic probe into the plastic plate behind the buttons. Then lift the plate up and down to release.
D.H.D.

Fidelity ZX2000 Chassis (CTV14)

The switch-mode power supply would trip when the set had warmed up. The cause was C412 ($1000 \mathrm{pF}, 8 \mathrm{kV}$) flashing internally. This capacitor decouples the input to the focus unit.
H. MacM.

Sanyo CTP3106 (80P Chassis)

This fault took us a time to find because it occurred only when the set was very warm. In this condition there was a considerable increase in the h.t. voltage, from about 115 V to 150 V . The chopper transistor's input coupling capacitor C314 $(47 \mu \mathrm{~F}$ electrolytic) was found to be slightly leaky.
H. MacM.

ITT CVC1204 Chassis

The switch-mode power supply seemed to be o.k. but the line output stage wasn't doing anything. R744 ($1 \mathrm{k} \Omega$) which feeds the line driver stage often burns up to cause this problem but appeared to be perfect visually. It was nevertheless very nearly open-circuit.
H.MacM.

Hitachi NP6C Chassis

This was a difficult one because the fault occurred only with the back on! The picture would suddenly shrink to about 12in. but remain quite linear and in focus. Eventually we found that TR904 in the regulator circuit was intermittently faulty. The h.t. would then fall to about 95V. H.MacM.

Philips K30 Chassis

No video and a very dark raster can be caused by a number of things with these sets, but two faults of particular interest came our way recently.

In the first case there was no luminance output from the TDA2560) chip (earlier two-chip decoder). After some time I tried another decoder panel and proved that the fault was on the mother board. Checks around the flyback blanking transistor T1535, the contrast controls, etc. revealed nothing but I then discovered that pulses were present at the cathode of D1422, which links the line output transformer derived beam-limiting potential to the contrast circuit. This provided the clue since there should be a steady voltage at this point. Inspection of the 68 nF smoothing capacitor C1565 revealed a hairline crack at one
end, and when a replacement was fitted a normal picture appeared.
The second set had the same symptoms and initial checks such as unplugging the teletext interface and checking the d.c. voltages showed us only that the tube's cathodes were at 150 V , so that the tube was cut off. A scope revealed that colour-difference and luminance signals were present at the decoder panel, but tests around the RGB output panel led us nowhere. At one point we checked the -20 V bias supply from the line output stage and found that it was slightly high. Not too surprising perhaps as the supply is unregulated, but we nevertheless found that the relevant reservoir capacitor ($\mathrm{C} 1586,100 \mu \mathrm{~F}$) was open-circuit. We discovered this by scoping the -20 V line which turned out to have line-frequency pulses on it. Interesting that when measured with an Avo 8 the voltage was found to be high, something that shouldn't happen when the supply decoupling is open-circuit. We can only surmise that the presence of line pulses with the meter switched to the d.c. range led it to produce an incorrect reading.

Other causes of no picture with these sets are loss of line pulses due to dry-joints, failure of the TDA2560 or TDA3560/1 chip (depending on decoder type), failure of the flyback blanking transistor (T1535) and, on teletext versions, failure of either fuse on the teletext power supply mounted at the base of the cabinet.
J.C.

Panasonic TC2201

A sad story this. The elderly owner complained that there was intermittent line collapse. No fault could be found during a number of visits and eventually the set failed. Fusible resistor R525 ($68 \Omega, 0.5 \mathrm{~W}$) in the feed to the line driver stage had gone open-circuit. A couple of ordinary 33Ω resistors in series were fitted temporarily and everything seemed to be all right, but the set failed again a short time after fitting the correct type of resistor. This time the BU208A line output transistor had failed. The set seemed to work normally after replacing this, though the calls complaining about intermittent line collapse were becoming more regular. Finally I saw what the problem was: the set was tripping due to the h.t. rising. I could see the h.t. breathing as I watched it.

On Panasonic's advice I replaced the two zener diodes D809 and D819 which. incidentally, are 5 V and 6 V respectively, not both 6 V as stated in Service Bureau last September (page 773). To be on the safe side I also replaced D815 and the set-h.t. control R813 ($1 \mathrm{k} \Omega$) which has been known to give trouble.

Unfortunately the focus control had suffered too many blows and was varying intermittently. It's no longer available from Panasonic, so a Thorn 8500 type was pressed into service.

Reverting to the Service Bureau item just mentioned, D815 and R813 should be added to the list of items to be replaced.
R.B.

Decca 70 Series Chassis

I've had quite a few colour portables in recently fitted with this chassis and with the complaint no colour. The cause of the trouble is often a faulty chroma delay line (DL700). Due perhaps to the sets being dropped? P.B.

ITT 80-90 ${ }^{\circ}$ Chassis (Power board CVC820)

If the line output stage is drawing excessive current, pulling down the 120 V h.t. supply, before suspecting the shift or line output transformer try disconnecting pin 5 of
the TDA1170S field timebase chip in case it's shortcircuit.

If the set changes channel intermittently by itself, try changing the focus spark gap.
P.B.

ITT CVC30 Chassis

I seem to see a lot of ITT sets: this day all the calls were to the same range. Some of the faults were stock ones, some not.
(1) Dead with the power supply whistling and no 160 V h.t. supply. The h.t. rectifier D19 was open-circuit. Someone had fitted an SKE type.
(2) Dead, power supply tripping. The BU208 line output transistor was short-circuit due to a burnt scan coil plug.
(3) Lack of height due to dry-joints on the field module earth.
(4) Intermittent dark picture due to dry-joints on the EW modulator transformer.
(5) Dead set, no 160 V supply to the line output transistor due to a dry-joint on the tag to mounting bolt.
(6) Remote control not working when out of set. PCB mounted coil in handset broken off.
(7) Blank raster. R28 (820) open-circuit. This resistor feeds line pulses to the colour decoder panel.
(8) Tripping - stopped when the tripler was disconnected but the fault was still there with a new tripler fitted. C61 on the earthy side of the line output transformer's e.h.t. overwinding was short-circuit.

Didn't need the loan set that day!
whether to close it down completely. Elimination of manufacturing losses would enable Fidelity to operate profitably.

Meanwhile Hinari has decided to establish a new plant at Cumbernauld, Scotland for the production of brown goods. Initial products will be hi-fi and compact disc systems.

s-VHS

JVC has announced that the S-VHS specification for Europe has now been finalised. Initial information on S-VHS was given in this magazine last July.

The main change with S-VHS, which requires special tape, is that the f.m. carrier deviation is $5 \cdot 4-7 \mathrm{MHz}$ instead of $3 \cdot 8-4 \cdot 8 \mathrm{MHz}$, giving a horizontal resolution of over 400 lines. The chrominance carrier frequency remains the same at 627 kHz while the white and dark clip are 210 and 70 per cent respectively. Audio is standard VHS linear or VHS hi-fi. Tapes will be available in a variety of lengths, designated SE180, SE120 etc. - there's so far no provision for a four-hour tape. S-VHS-C tape is the standard thirty minute length (SP mode). European S-VHS equipment is being designed to work with PAL, Secam and other signals including MAC. No launch details have been released.

An International Electrotechnical Commission (IEC) proposal for scart connectors to be used with the new S-VHS system is under consideration. The IEC suggests splitting the separate chroma signal, used with S-VHS to avoid cross-colour effects, into RGB components to feed to the appropriate scart socket pins. This would involve additional circuitry but would have the advantage of compatibility with TV sets equipped with a scart socket.

PRODUCTS GO DIGITAL

Digital seems to be the flavour of the month as Japanese VCR manufacturers add digital machines to their ranges. Models from Panasonic, Toshiba and Sharp have already been mentioned in these pages. Toshiba's latest model, the DV-90W, has digital still and slow plus HQ Pro, which employs all four of the HQ features and additional filtering. It also has an elapsed time counter which uses the control pulses for time calculation. The price is around $£ 480$. NEC's latest VCRs, Models DX-1000K and DX-3000K, incorporate a digital video noise reduction system and digital still, slow and picture memory (the off-tape or off-air picture can be frozen). Other features include twin-speed strobe, fast search and HQ circuitry. The DX-1000K has a suggested price of around $£ 450$ and the DX- 3000 K , with hi-fi stereo sound and two-speed operation, a suggested price of around $£ 700$.

A digital TV receiver using ITT's chip set has been
introduced by Telefunken. It has a 29in. "Super-Planar" flat-face tube with a new type of gun assembly and a stereo sound capability of 40 W music power per channel with four front-facing speakers. The colour decoder is of the multistandard type, handling PAL, Secam and NTSC signals, and the coverage includes v.h.f.

Panasonic has introduced a digital mixer which can mix or wipe any two video signals whether synchronised or not. Special effects can be created by a frame synchroniser. The WJX10 sells at around $£ 1,200$).

TV SOUND TUNER

To overcome the problem of poor sound reproduction from the average TV receiver Radio and TV Components (Acton) Ltd. has introduced an independent TV tuner which can be directly connected to a hi-fi system. The unit is mains operated and has full u.h.f. coverage with five preselected tuning controls. It can also be used in conjunction with a VCR. The basic model costs $£ 29 \cdot 50$. A version with a built-in stereo headphone amplifier for the hard of hearing costs $£ 35.90$. The tuners are available by mail order (add $£ 2.50$ post and packing) from the company's Acton branch at 21 High Street, London W3 6 NG . The company has branches in Acton and the Edgware Road.

LOW-NOISE HYBRID AMPLIFIERS

The new OM2000) series of Mullard hybrid amplifiers offers improved performance with MATV, CATV etc. systems noise figures are about 25 per cent less than with the standard range. There are five devices with type numbers OM2045, OM2050, OM2060, OM2061 and OM2070. Performance ranges from a gain of 12 dB with noise figure of $3 \cdot 6 \mathrm{~dB}$ for the OM2045 to a gain of 28 dB with a noise figure of 4.8 dB for the OM 2070 . The amplifiers are wideband devices covering $40-860 \mathrm{MHz}$ with input and output at 75Ω and require a 12 V supply. They use thin-film technology and the latest Mullard u.h.f./s.h.f. transistor type BFR92.

IERE RECORDING CONFERENCE

Sessions on laser recording techniques and media will be featured at this year's International Conference on Video, Audio and Data Recording, which is being held at the University of York from March 21-24. The conference is the seventh in the biennial series organised by the Institution of Electronic and Radio Engineers. It will be preceded by a tutorial day wholly devoted to optical recording. Two papers on erasable optical storage, from Philips and Sharp, will be included in the first session of the main conference. For further information and registration forms apply to: The IERE Conference Secretariat, Savoy Hill House, Savoy Hill, London WC2R 0JD (telephone 01-240 1871).

NEW ME TAPE PROCESS

Thorn-EMI has developed a new process for producing metal evaporated (ME) tape, which is used for Video 8 and digital audio cassettes. The process involves enclosing the tape coating plant in a vacuum chamber. A crucible of metal is then heated to boiling point with a high-power electron beam. Finally a wide roll of polyester is wound over the crucible so that the metal atoms condense on the backing to produce an 0.15 micron recording layer. Special shutters ensure that only atoms arriving at an oblique angle
are deposited on the backing. According to Thorn-EMI this results in the columnar crystals leaning against and supporting each other instead of standing upright on the polyester. The magnetic resolution is claimed to be better than 0.3 microns.

FLAT TRADING

Disappointing half year results announced by Dixons have underlined the fact that the radio/video/TV trade has been going through a flat patch, with a poor Christmas. Dixons ordered ten per cent more stocks for the Christmas period but sold twelve per cent less. The present aim is to clear excess stocks by price cutting.

VIDEOPHONE FORMAT AGREEMENT

Agreement of a standard for videotelephones has been reached by Japanese manufacturers and has been given preliminary approval by the Telegraph and Telephone Technology Committee. The standard relates to the transmission of still pictures over conventional telephone lines. Transmission of a picture takes five-six seconds, during which time conversation is not possible. Mitsubishi, Matsushita, NEC and Sony plan to start selling still picture phones this spring. There had been disagreement earlier between Mitsubishi and Sony, both of whom have been selling videophones in the USA. Mitsubishi's system was quicker and had a slightly larger screen, but sold for $\$ 1.000$ compared to about $\$ 375$ for the Sony equipment. The systems basically use fax principles with a camera and microchips for image processing.

NEW APPROACH TO 3-D VIDEO

A small, London-based technology company, Aspex, has developed a new approach to 3-D applicable to all forms of recorded visual images including TV, video and film. The system uses a special lens - there's no need for two separate images - and is said to improve the sharpness and colour saturation of images. When special glasses are worn a depth effect is created.

telecom still picture transmitter

Canon has developed a portable transmitter, type RT611, for use with its still video communications system. The transmitter enables images held on an SV floppy disc to be easily transmitted via an ordinary telephone to anywhere in the world. It can be connected to the line directly by means of adaptor LC-RT or coupled to the telephone mouthpiece by means of acoustic coupler AS-RT. The RT611 has a built-in 1.5 in. screen for display of the image. At the receiver end a conventional wire phototransceiver can be used for monochrome or a Canon SV transceiver type RT971 for colour or monochrome. Colour transmission takes only three minutes.

The transmitter was exhibited at the recent Geneva Telecom Show alongside two units currently under development, the Canon image processor and a video input adaptor for use with the Canon digital colour laser copier. The latter was launched in the UK last year. The image processor will process video images in a variety of ways capabilities include manipulation of form, colour and image size, and combining multiple images to form a composite image. The unit is computer controlled and incorporates a frame store: to alter the image as required a pressure pen is used with a colour monitor.

Long-distance Television

Roger Bunney

Apart from an uplift from Geminids/Ursids meteor shower activity December is traditionally a quiet month. This time it was somewhat different. There were no fewer than three tropospheric openings that produced quite excellent reception, particularly in central/southern England, during the period.

The first spell occurred on December 6th, when a prevailing high-pressure system produced high-level Band III/u.h.f. signals from near/central Europe. Typically Belgium, Holland, France, West/East Germany and Denmark were received in the Midlands.

The second spell occurred around the 14th, with a virtual repeat of the conditions on the 6th though Band III ducting was more noticeable - many enthusiasts received CST (Czechoslovakia) ch. R10 (PIzen) for the first time. The opening continued through the 15th, with reception extending as far as Poland. Another first for several vigilant DXers was TVP (Poland) ch. R38 Wrocklaw. One comment had it that this transmitter came in "like a local". Reception of CST ch. R35 was also widely reported.

The third and perhaps most dramatic opening occurred on the 23 rd, though it was trailed and tailed on the 22 nd and 24th. A fast-moving lift produced rapidly changing and selective reception, with ducting. Towards the latter part of the event signals were received from Scandinavia. Several logs received resemble a West European transmitter list, covering from RTE (Ireland) in the west to Denmark in the east and NRK (Norway) to the north. France was well received, with David Moller in Birmingham logging TV5 on chs. E29 and E35. Several DXers had their first sighting of the new NOS-3 (Holland) ch. E34 Roermond transmitter on test pattern. Many West German Band III and u.h.f. stations were logged, and as with the earlier openings Band III was most rewarding, with TVP-1 ch. R8, SR (Sweden) ch. E8 and u.h.f., NRK chs. E5, 8 and 9 (but no reports of the new u.h.f. relays!), RTL (Luxembourg) ch. E7 and, for those near the east coast, Dutch ATV amateurs (PE1HLR, PE1DWA) in the 435 MHz band. An interesting reception for three DXers was the ch. E2 100W BRT (Belgium) relay in Antwerp, with vertical polarisation - even Simon Hamer in distant North Wales logged this one!

Three doses of tropospheric reception during December constituted a good Christmas present for many TV-DXers. It's unfortunate that 435 MHz ATV activity seems to be on the decline. Though they do look, few DXers now report having seen any ATV transmissions during good conditions. Perhaps there's been a mass migration to 1.3 GHz f.m.!

There was some Sporadic E reception during the month. The collated \log is as follows:

[^1]23/12/87 TVE E2.
25/12/87 TVE E2, 3; NRK E4.
26/12/87 TVE E3.
27/12/87 RAI 1A; NRK E3.

A very slight tropospheric lift was noted on the 27 th, with mainly signals from TDF (France).

Auroral activity was very quiet. Iain Menzies (Aberdeen) noted slight disturbances on the 12th, 14th and 19th.

The tropospheric activity turned interest away from MS reception - the Geminids and Ursids showers seem to have produced minimal activity this year. The January Quadrantids around the 4th produced an increase in the normal diurnal activity, with Band I favoured - no reports of Band III reception at all.

An excellent month for December then, ending the year with a flourish!

My thanks to the following for their reception reports: Iain Menzies (Aberdeen), Simon Hamer (Powys), David Oliver (Birmingham), Gareth Foster (Twickenham), Cyril Willis (Norfolk) and Roger Fussell (Torpoint).

George Gaskin (Gibraltar) reports that TVE is now operating for 24 hours a day at weekends and that private stations will be starting up over the next two years, also a third channel in the Andalusian region. So we should be noting more Spanish reception. For optimists, GBC-TV (Gibraltar) has started its "infotel" service, a continuous series of advertisements outside broadcast hours, generally on a 24 -hour basis.

During the past month I've been assembling a flexible TVRO system using a 90 cm dish with patio mount and 11 GHz satellite package. The results are chronicled elsewhere in this issue. The aim was to gain experience in this new field (following earlier experiements at 4 GHz and with the 860 MHz ATS satellite) and to encourage others. It can be an expensive move to make, so I opted for the cheapest solution possible which has meant operational limitations. On the day this was written, January 7th, I noted a new downlink on the ECS bird at $10^{\circ} \mathrm{E}$. The 11.65 GHz (horizontal) signal consisted of colour bars with the identification E8T-5-MI and conversation in Italian. There are signals apart from Super Channel and the domestic/ cable downlinks about.

News Items

UK: New scope for TV-DXing in the UK is in prospect with the efforts being made to find space for fifth and sixth networks. Many new transmitters could be accommodated in chs. 35-38, the problem being that parts of these channels are at present used for airport radar and radio astronomy. Another possibility being considered is distribution at 2.5 GHz (see article in the November issue). For this latter application North East Satellite Systems has already made prototype receiver-converters with six inch dishes, aiming for a price at around $£ 50$. The signals would be down converted to u.h.f./a.m. at the head. Using current technology, systems could be in operation within eighteen months. A microwave band that's likely to be allocated to truly local terrestrial TV within the next five years is at 29 GHz .
Devices called videosenders are currently available at various glossy high street hi-fi stores. They are illegal to use but not to buy! Their purpose is to enable the user to transmit the output from his VCR around the house - and it seems around the immediate neighbourhood as well. Garry Smith (Derby) recently tested one and found that it
produced excellent quality radiation even without fitting an aerial. Ranges claimed are up to 165 ft , at around ch. 21 . Gareth Foster has taken the use of these devices to the Advertising Standards Authority, since they are being advertised in video magazines with in some cases no warning about the illegality of their use. Interference to IBA ch. 21 transmissions has already been investigated. Belgium: A new TV service in Flanders, Vlaamse Televisie Maatschappij, is due to start this autumn. It will carry advertisements. Operators have yet to be appointed. Australia: The first Aboriginal TV service, Imparja Television, has been brought into operation by the Central Australian Aboriginal Media Association of Alice Springs. The transmissions are uplinked to the Aussat satellite, picked up on downlink by a number of ground stations and then retransmitted locally. Local stations can opt out of the network Imparja programme.

The Minister for Communications has announced a timetable for the clearance of TV from Band II (chs. 3, 4, 5 and 5 a). Services will be moved to other frequencies, including u.h.f. Most stations are to be moved by 1993 though a few relays will continue in operation until 1/1/96. The aim is to allow more rapid development of the Band II f.m. radio services. Australian readers can obtain the "Television Station Draft Clearance Timetable", media release no. $98 / 86$, from the Department of Communications (062 $64 \quad 3235$)
West Germany: The opening up of u.h.f. channels E61-68 for TV use is progressing well and it's hoped that the new spectrum will be in use by private TV starting this autumn. Low powers will be used initially, with higher power stations later. There's more DXing potential with transmitters in the Schleswig-Holstein area transmitting the SAT-1

WE WOULD LIKE YOU TO VIEW All OUR PRODUCTS!!

Send for a copy of our glossy covered illustrated CATALOGUE. We've got some surprises for you, with the introduction of new Multi-standard Televisions/Monitors, a new range of Aerial Rotators and many, many more items. We've retained all of the well established and popular products, but have taken this opportunity to introduce lots of exciting new items for you the enthusiast. Our extensive listings cover domestic, fringe and DXing installations within Bands 1 to 5 inclusive. AERIAL TECHNIOUES provide a complete and comprehensive consultancy service for ALL reception queries and problems. WOULD YOU LIKE TO RECEIVE AN EXTRA ITV CHANNEL AT LITLE EXTRA COST? IF SO, SEND FOR OUR CATALOGUE AND INCLUDE AN SAE TOGETHER WTTH DETAILS OF PRESENT ITV REGION RECEIVED.
For a speedy dispatch, ACCESS and VISA Mail and Telephone orders may be placed for any of the products listed in our illustrated Catalogue. We are active TV/FM DXing secialists - your guarantee of honest and knowledgable advice
NEW! Band 1 Notch Filter type TDNF-1 (tuneable) $\mathbf{£ 1 0 . 9 0}$ AERIAL TECHNIOUES IS UNIQUE
OUR HIGH QUALTY GATALOGUE COSTS ONLY 75p
Prices inclusive of VAT \& Postage - delivery by return
(ERNAM TEOHWHOUES (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 0202738232

programme (Garding ch. E25 at 6kW e.r.p., Schleswig ch. E42 at 330W and Eckernforde ch. E37 at 120W) and RTL Plus (Garding ch. E58 at 6 kW , Suderlugum ch. E56 at 5 kW , Schleswig ch. E52 at 500W and Eckernforde ch. E60 at 120 W).
Denmark: Two additional TV2 stations are likely to come on-air this summer (TV2 officially starts in October). These are TV-Fyn and either TV/nord (Aarhus transmitter) or a unit in Copenhagen.
Radio Amateurs: Dutch amateurs have been allocated the $50-50.45 \mathrm{MHz}$ spectrum for c.w. (morse) at up to 30 W output from March 1st to January 1st 1994, with an annual review by the authorities to consider any interference problems - we understand that many cable systems now use ch. E2.
Computer interference: Interference from the BBC computer can be reduced significantly. An article in the December issue of the RSGB magazine Radio Communication contains a thorough discussion of the problem and practical suppression details that allow reception at 50 MHz with the receiver some ten feet from the computer!
Satellite TV: As mentioned in Teletopics last month the West German TV-Sat 1 DBS satellite has been written off. The loss also affects the start of the French DBS service and, we understand, later stages of the Aussat programme.

The UK film channel Premiere is now using SAVE-SAT scrambling.

Signal Strength Meter Postscript

I reviewed the Planet SSMU signal strength meter, a budget priced instrument distributed by HRS Components, in the March 1987 issue. The review seems to have had an effect since the two shortcomings noted have been dealt with in the new SSMU-2 version. Aerial Techniques have sent me an instruction folder which shows that an increased audio level is now available via a two-position switch (for normal or boost level) and that a 3.5 mm jack socket has been fitted for external headphone use outdoors - inserting a 3.5 mm plug cuts out the internal sound via the case-mounted transducer.

Studies on Additional TV Services

A press release from the DTI, dated December 17th, brings good news. The current studies into the feasibility of
additional TV networks for the UK are to be extended to include Bands I and III as well as u.h.f. and MMDS at s.h.f. ($2 \cdot 5 \mathrm{GHz}$). The DTI seems to prefer the term MVDS (multipoint video distribution system) to MMDS (multichannel microwave distribution service). At v.h.f. the study will consider the possible effect on recent mobile radio allocations.

From our Correspondents...

Keith Watkins (Redruth) has written to us on some interference problems. A friend lent him an RTTY/CW decoder unit which wipes out Band I, while his Christmas present, a Philips CD160 compact disc player, similarly removes any chance of Band I reception. Has anyone any solutions for this latter problem?

Fred Robins (Stubbington) spent a period in Japan recently. During his visit he took a series of excellent off-screen photographs of local TV test patterns etc. We'll be featuring some of these over the next few months. Thanks Fred.

Jean Louis Dubler, who has written to us previously from South Korea, has now moved to Montreux, Switzerland. A recent letter describes local TV conditions there. He has four Swiss and four French channels, two of which (Canal Plus and Telecine) are scrambled. The situation is about to change, with Canal Plus taking over the Swiss Telecine transmitters. The two-year-old Telecine has always operated at a loss, but Canal Plus has sufficient subscribers to make a profit. Canal Plus will have to use a different scrambling system in Switzerland since pirate Italian decoders are available there cheaply. It has opted to use the Telecine system. The situation is further complicated since Canal Plus uses yet a third system in the Swiss/French border area. Canal Plus operations are eventually to be extended to Belgium and Morocco.

A pirate station near Geneva transmits on ch. E52 using the SECAM-L system and intends to introduce repeaters, assisted by the NRJ f.m. radio network. There's been a proliferation of pirate transmitters in the French/Swiss border area, some like Radio Thollon at $93 \mathrm{MHz}, 4 \mathrm{~kW}$ operating with high output powers. Many stations on the French side of Lake Geneva aim at a Swiss audience.

The Montreux cable network has fifteen channels, including the English-language Sky and Super services and the French LA5 and M6 services.

A Professional Institution for TV Technicians

lan Channing

There have been professional bodies in the consumer electronics industry since the early days of broadcasting. In the 1920s the Institute of Wireless Technology was formed: it eventually became the Institution of Electronic and Radio Engineers. The Institution of Practical Radio Engineers was founded in the 1930s: this became the Incorporated Practitioners in Radio and Electronics. The Guild of Radio Service Engineers appeared in the 1940s, only to disappear in the 1950s. The Society of Electronic and Radio Technicians (SERT) was founded in 1965, to look after the interests of what are now known as Engineering Technicians and Technician Engineers. In every case the aim of founding such bodies was to establish a standard which employers would recognise and use. It would keep out the "cowboys". The problems are that (a) there will always be cowboys around and (b) the industry
needs a means of identifying competent staff.
Over the past twenty years the pattern of qualifications has changed. The majority of technical staff in the servicing field now qualify through the City and Guilds Course 224, Electronic Servicing, which however does not meet the current requirements of the Engineering Council for Technician registration. Realising this, SERT sought a means of providing a professional service for servicing staff who, though qualified, were not eligible to join the Society.

The opportunity to do this occurred in 1982 when SERT was asked to take over the Incorporated Practitioners in Radio and Electronics (IPRE). This body had been in existence since 1935 but had been going through a period of considerable decline. When the existing members of the old IPRE were absorbed into SERT a new division was set up, using the same title - the IPRE Division. The Society's

IPRE Division provides a complete professional service for qualified staff engaged in the maintenance, test and installation field in all branches of electronics. It has an autonomous Board Management which runs its own affairs and has representation on the main Council of SERT.

There are two corporate grades within the Division Member and Associate Member. Members of both grades are entitled to use the appropriate designatory letters MIPRE or AMIPRE. There is also a Student grade for those still receiving technical education.

All the Division's members enjoy the same learned society benefits as members of SERT. These include the monthly journal Electronic Technology, which contains feature articles, industry news and new product information across the whole range of electronic engineering. The Division organises special one-day seminars on matters of current technical interest, such as compact discs and satellite broadcasting. All IPRE members are entitled to attend these at a reduced members' rate. They are also entitled to attend seminars and residential conferences organised by the Society of Electronic and Radio Technicians.

IPRE members are able to participate in SERT Local Section activities, and most section committees include at least one IPRE member. These activities include technical lectures, visits and social events.

The main qualification for membership of the IPRE Division is the Part II Certificate of Course 224, Electronic Servicing, but certain service and company qualifications are accepted on an individual assessment basis. The minimum age of admission to the grade of Member is 26 : applicants must be exercising some degree of responsibility such as being a senior engineer or service manager. Associate Member applicants must be at least 20 years of age and have had one year's appropriate experience.

Membership at present costs $£ 18$ a year for Members and $£ 16$ a year for Associate Members. There’s a $£ 5$ entrance fee for both grades. Student members pay $£ 7$ a year and there is no entrance fee.

The aim is to maintain standards and in so doing enhance the status of appropriately qualified personnel. Membership enquiries are welcome. Full details and application forms are available from the Secretary, IPRE, 57-61 Newington Causeway, London SE1 6BL.

Fast-shutter Video Cameras

Eugene Trundle

For conventional applications the pick-up device used in a video camera, whether of the broadcast or consumer type, integrates the received image over an entire field period. During this period each picture element (pixel) at the rear of the pick-up device's faceplate charges or discharges depending on whether the image sensor is a solid-state type or a vidicon-type tube. With a vidicon the scanning electron beam charges the photosensitive surface once per field: between scans, the surface discharges depending on the intensity of the light falling upon it. With a solid-state image sensor the photosensitive surface charges, the signal being read out by charge transfer at field rate. Whichever way it's done, the important thing is that there's a storage effect during each TV field.

As with conventional still photography, this long exposure time gives good sensitivity. Unfortunately however it means that fast-moving objects are blurred. If anything in the picture moves appreciably during the 20 msec field period it will be reproduced as a blur, no matter how good the still-frame arrangements employed by a VCR used to play back the picture. The problem is that the video signal at each pixel represents the integration of all that's visible during the whole field period, not just the brief moment when a pixel is being scanned or read out.

With a vidicon type tube little can be done about this. Either a very special target layer would have to be used or a fast-scan system with some form of external field storage. Neither is practical for an inexpensive camera with the requirement to revert at will to conventional image sensing. With a CCD (charge-coupled device) type of solid-state image sensor however the scanning and storage functions are easy to separate. This opens the way to the use of fast-shutter techniques which give clear reproduction of fast-moving objects.

The idea is that each sensor pixel is blinkered during most of the duration of the field period, taking a very brief "peep" at the scene at 20 msec intervals. Again as with conventional still photography there's a penalty to be paid:
light sensitivity is inversely proportional to shutter speed, so that a camera operated in the fast mode will produce good pictures only when the light conditions are good.

CCD Operating Principles

Behind the faceplate of a CCD image sensor there's an array of capacitive photodiodes arranged in rows and columns. These correspond with the lines and pixels that make up the TV image. With suitable biasing each photodiode acquires a charge that corresponds to the light level it sees. The imaging surface of the CCD consists of hundreds of thousands of mutually isolated photodiodes. The output from each photodiode is connected to a MOSFET transistor that acts as a switch - see Fig. 1. When a pulse is applied to the gates of these transistors the

Fig. 1: Photodiode charge transfer. The diodes on the left represent one column of image sensors: the "progressive bucket" effect of the transfer charge voltage applied to each cell of the register on the right is represented by the depth lines on their sides.
charges on the photodiodes are transferred to a shift register. Unlike a digital shift register, the type used in this application can handle an analogue signal that consists of charges, or "packets" of electrons. This type of shift register is commonly referred to as a bucket-brigade device (BBD).

Shifting the charge packets along the register is achieved by sequentially altering the potentials applied to the BBD's cells. The electron packets have a tendency to fall into an adjacent "potential well": by creating successively deeper depletion layers in adjacent cells the electron packets can be stepped along the shift register/BBD by using clock pulses in a four-phase sequence.
As shown in Fig. 2, each column of photodiodes has an associated, separate vertical shift register. During each field blanking period a transfer pulse is applied to the gate of each FET. As a result the charges developed by the photodiodes are transferred to the associated vertical shift registers. All the FETs are switched on at the same time, so that once per TV field a complete set of pixel charges is stored.

On the first change of V-clock pulse the charges in all the vertical shift registers move up one. At the top there's a horizontal shift register which thus receives the first line of the picture. This is another BBD, whose contents are now rapidly transferred leftwards by a second and much faster four-phase clock pulse system. The charge packets fall off at the end of this shift register as it were, forming a sequence of pulses of varying height - the analogue video signal. The clock pulses have to be filtered out before the signal can be used.

During the line blanking interval the vertical registers are again pulsed, so that successive complete TV lines are fed into the horizontal shift register. These charges are clocked leftwards along the horizontal shift register during the following line scan period. We thus get at the output a serial information stream that corresponds to the target output from a conventional vidicon tube. At the end of a field the charges from all the photodiodes have been read out, the vertical and horizontal registers are empty, and the
whole sequence is repeated. The CCD clock and drive pulses are provided by a timing/divider chip which is governed by the camera's master subcarrier and sync generator (SSG) section. This is in turn controlled by a precision crystal.

Timing

Each photodiode or pixel sensor is briefly addressed once per field. Between times it sits there building up a charge depending on the light input - see Fig. 3. The pulse train at the top of this diagram represents the field blanking intervals. At time $t 1$ we are approaching the end of a field period and charges will have been built up on the photodiodes which have for some time been isolated from the vertical shift registers. The video information from the previous field - A - has been moving along the vertical shift registers as shown in the lower half of the diagram. At time t2 the transfer pulse occurs, during the field blanking period. The next field, B, is then fed into the vertical shift registers, ready to be clocked through. The photodiodes are now discharged and start to charge once more to produce the next field C .

Fast-shutter Mode

Fig. 4 shows the sequence of events when the CCD control chip is switched to the fast-shutter mode. Again at time tl we are towards the end of one field period and each photodiode has had some time to charge. This stored image will contain blur, and must therefore be discarded. At about line 623 a transfer pulse $t 2$ dumps the charges into the vertical shift registers. Soon afterwards a high-speed charge-shifting pulse train is applied to the shift registers to flush them clean - see Fig. 5. The effect of this is not seen it occurs during the field blanking period, when the video is muted.

Meanwhile the photodiodes have again been charging. They are allowed to do so for 19 TV lines (nos. 623 to 17), as Fig. 5 shows. On line 19, at time t 3 in Fig. 4, a second

Fig. 2: Representation of a complete CCD image sensor, simplified to show 64 sensors in an eight-by-eight matrix. Typical practical arrays for consumer cameras would have about 250,000 elements arranged in a 579×422 matrix. The switched charges progress upwards along the vertical shift registers then along the horizontal shift register, under the control of fourphase clock pulses.

Fig. 3: Photodiode charging and transfer switching at the normal $(20 \mathrm{msec})$ shutter speed. Three successive fields, identified as A, B and C, are shown.

Fig 4: Photodiode charging (two-cycle) and transfer switching in the high-speed shutter mode. Between t2 and t3 a fast discard clocking pulse train sweeps all the C information out of the vertical shift registers.

Fig. 5: Time-related waveforms for the high-speed shutter mode, (a) line sync pulses, (b) field sync pulse, (c) composite blanking, (d-g) three-level vertical drive pulses in the image sensor section - the highest levels V1 and V3 trigger photodiode charge transfer. The 805 kHz pulse trains in the waveforms on the left rapidly empty the vertical shift registers during the first half of the field blanking period.
transfer pulse is applied to once more fill the vertical shift registers. This time the information contains no blur, since the "shutter" has been "opened" for only a 19 -line period. Nineteen lines is 1.216 msec or $1 / 822 \mathrm{sec}$. The brightness information obtained during this short period is stepped along the registers in the normal way to form the video output signal. This is continuous because of the storage effect introduced by the cells in the BBD shift registers, but at a lower level, as Fig. 4 shows.

There are other methods of carrying out fast-shutter operation. The one described, used by Panasonic, doesn't require special facilities on the sensor array itself. A range of shutter speeds can be provided to trade off sensitivity against image blurring. You can't however see how well you've done until you get home and use the VCR to freeze the image, so that any shutter speed control is best done automatically with reference to the available light. No doubt the next generation of fast-shutter cameras will have automatic movement speed detectors and light meters
hooked to a microcomputer to govern the exposure time. With auto-focus, auto-iris and auto-white balance they may, by 1990, have disappeared up their own exhaust pipes: we can then all go back to box Brownies.

Use

The fast-shutter facility should be used only when it's known that freeze-frame reproduction with a suitable VCR will be required. This avoids not only the penalty of a twenty-fold decrease in light sensitivity but also the loss of some "smoothness" in the picture when it's viewed in the normal playback mode.

Fast-shutter operation is really successful only in sunlight: artificial lighting from an a.c. source (i.e. the domestic mains supply) gives rise to a heavy flicker effect. This is most noticeable with fluorescent lighting which has short-persistence phosphor. Fluorescent lighting makes camera colour balancing difficult anyway.

15/80 H	3.30	2SA940	1.32	2SC535	0.79	AF180	0.55	BA656	1.00	${ }^{\text {BC5 } 50 C}$	0.14	BDX63A	196	BFY52	027	BYX71-350	0.72
1585R	3.30	2SA940-2	214	2SC536	0.45	AF181	0.53	8A7100	11.35	${ }^{\text {BC63 }}$	0.36	BDY20	121	BfY79	0.49	BYX94	0.16
16039	0.79	2 SA950	0.72	2SC537	0.54	AF188	0.53	Babsia	28.98	BC636	028	BDY81	1.05	BFY90	0.61	BYY5	120
16181	1.04	2SA951	1.75	2SC605L	1.16	AF239	0.43	ba843	3.96	BC637	024	BFI15	0.40	BLY49	220	ВZY93С30	1.86
16182	1.04	2SA966-Y	1.16	2SC620	0.95	AF279	0.88	BAB54	5.76	${ }^{\text {BC639 }}$	020	${ }^{\text {BFIL17 }}$	0.66	BR100	029	BZY88 RANGE	0.10
16334	0.98	2SA999	1.36	2SC643A	1.54	AL113	1.36	BAV18	021	${ }^{\text {BC640 }}$	024	${ }^{\mathrm{BF} 5118}$	0.67	BR101	0.65	BZX61 RANGE	0.18
16335	0.94	2SB774	1.15	2SC668	0.67	ANT15	3.98	BAV19	0.11	${ }^{\text {BC879 }}$	0.49	${ }_{\text {BFI2 }}{ }^{\text {FF/ }}$	025	BR103	0.55	BZX79 RANGE	0.10
16446	0.98	${ }^{2 S B 185}$	1.13	${ }^{2 S C 681}$	4.40	AN155	1.89	BAV21	0.12	${ }_{\text {BC }}$	0.18	${ }_{\text {BF127 }}$	${ }_{0}^{0.13}$	${ }^{\text {BR } 303}$	1.15	${ }^{\text {C106D }}$	0.46
16600	1.38	2SB375	3.87	2SC682	1.88	AN206	258	BAW62	0.11	${ }_{\text {BCY70 }}$	0.30	${ }_{\text {BF1 }}{ }^{\text {b }}$	029	BRC116	0.67	C106M	0.76
16802	127	2SB400	0.40	${ }^{2 S C 684}$	1.05	AN208	3.55	BAX12	0.48	${ }_{\text {BCY }} 1$	021	${ }_{\text {BFF }} 153$	0.58	BRC300	201	${ }^{\text {C12 }} 12$	0.58
17052	5.61	2SB405	1.03	${ }^{2 S C 693}$	0.63	AN210	228	bax 13	0.11	BCY72	0.20	BF554	026	${ }^{\text {BRC5296 }}$	0.7	CA3046	1.55
17053	5.61	2SB449B	6.98	2SC710	0.69	AN211	325	bax16	0.11	BD115	0.34	BF157	0.33	BRC6109	0.83	CA3089	0.83
17074	930	2SB511	250	2SC711A	0.50	AN2140	240	BC107	0.13	BD116	0.70	BF158	0.18	BRC82	1.08	CA3090aa	325
17089	3.45	${ }^{2 S B 54}$	1.39	${ }^{2 \mathrm{SC}} \mathrm{C} 717$	128	AN234	5.92	BC107a	0.11	BD124	1.31	8F559	0.18	BRC83	219	CA3094	220
17127	250	${ }^{2 S 8546}$	0.56	${ }^{2 S C 7734}$	1.43	AN236	3.78	8C1078	0.18	80124P+KIT	0.69	${ }^{\text {BFI } 160}$	0.31	BRC84	208	CA3131EM	295
17376	1.58	2 2S856	2.80	${ }^{2 S C 761-Y}$	0.95	A 2339	4.68	${ }^{\text {BC108 }}$	0.08	${ }^{80131}$	0.57	${ }^{\text {BFI67 }}$	0.38	B8X44	0.60	CBE16848N- 071	1.56
1 14001	0.04	2SB618a	222	${ }^{2 S C 783}$	3.98 1.85	AN240p	125	${ }^{8 \mathrm{BCL} 108 \mathrm{~B}}$	0.15	${ }^{8 D 132}$	0	${ }_{\text {BFI73 }}$	0.334	BR×49	0.67	CD4001	0.34
1N4002	0.06	${ }_{2 S 8643}$	0.80	${ }_{2 S 888}$	188 0.28	AN241	1.71	${ }_{8 \text { BC109 }}$	0.12	${ }^{\text {BD }} 1335$	${ }_{0}^{0.35}$	${ }_{\text {BF178 }}$	0.40	${ }^{\text {BRY }} 39$	0.69	${ }^{\text {COU402 }}$	027 1.35
1/ 4003 in 40004	0.06	${ }^{2}$ 2S8669	3.67	$2 \mathrm{CSC867A}$	3.84	AN245	4.49 1.80	BC109C	0.12	${ }^{\text {BDI } 136}$	0.26	${ }^{\text {BFF179 }}$	0.36	BSS38 ${ }_{\text {BSTB0140G }}$	${ }_{5}^{0.87}$	CD4011	029
1N4005	0.05	2SB681	335	${ }^{2 S C 876}$	0.95	AN260	1.85	${ }^{\text {BCl13 }}$	0.14	${ }^{8 D 137}$	${ }^{023}$	${ }^{\text {BFI } 180}$	${ }_{0}^{0.36}$	${ }^{\text {BSTC0246 }}$	6.99	CD4012	0.34
1 N4006	0.08	${ }_{\text {2SB75 }}$	1.98	${ }_{2 S C 935}^{25}$	4.13	AN262	120	${ }^{8 C 126}$	0.33	${ }^{80138}$	0.38	${ }^{\text {BFI } 182}$	0.34	BSTC0233	725	CDU4013 CD4016	${ }_{0}^{0.43}$
1N4007	0.07	2 SB 774	0.65	2SC936	8.66	AN272	825	8C132	0.14	BD140	0.29	BF183	0.39	BSTCC0143	3.07	CD4017	0.82
1 1Na148	0.03	2 28819	1.13	2SC940	4.68	AN295	5.52	BC135	0.14	BD144	1.70	BF184	0.43	BSTD1043	2.85	CD4020	123
1 N4448	0.05	2SC1034	6.75	${ }^{2 S D 1128}$	290	AN301	2.45	${ }^{\text {BC }} 137$	0.18	${ }^{\text {BD } 150}$	125	${ }^{\text {BF195 }}$	0.39	BSV578	3.49	CD4022	0.39
1 1 5401	0.14	${ }^{25 C 1050}$	5.06	${ }^{2 S D 1138}$	0.94	AN302	3.99	${ }^{8 C 138}$	0.34	${ }^{80157}$	0.67	${ }^{\text {BFI } 194}$	0.14	${ }^{\text {BSW68 }}$	0.60	${ }^{\text {Co4023 }}$	028
1N5402	0.15	${ }^{\text {2SC1096 }}$	1.16	${ }_{2 S 01273}$	1.56	AN303	4.39	8C139	0.28	${ }^{\text {BDI } 160}$	1.50	${ }^{\text {BFF }} 195$	0.14	BSX19	129	CD4025	0.64
1 L 5483	0.16	2SC1104	3.98	${ }^{2 S D 1453}$	1.40	AN305	8.95	BC140	0.45	80163	0.71	${ }^{\text {BFI } 196}$	0.17	BSX20	0.30	C04028	0.84
1 N5404	0.15	${ }_{\text {2SCl114 }}$	4.54 3 3	${ }^{\text {2SDI52K }}$	264	${ }_{\text {A }}$ A315	246	${ }^{\text {BC141 }}$	0.34	${ }^{80165}$	0.62	${ }^{\text {BFI } 197}$	0.18	BSY52	0.50	${ }^{\text {CO4 }}$ C0468	0.85
1N5408	0.35	${ }^{\text {2SCl1116 }}$	4.35	${ }_{\text {2S023 }}$	420 0.49	AN316	553	${ }^{\text {BC142 }}$	0.19	${ }^{80} 1688$	0.42	BFF198	0.17	${ }^{\text {BST79 }}$	0.51	CDI047	1.06
${ }_{1}^{1} 1014$	0.04	2SC1124	1.28	2SD235	0.60	AN320	5.47	${ }_{\text {BC1 }} 14$	0.09	${ }_{\text {BDI } 175}$	020	BF200	0.31	${ }_{\text {BTI }}$	1.45	C04052	0.75
IR3403	5.00	2SC1129	1.65	2 SO 24	229	AN321	225	BC148A	0.11	B0179	0.45	BF218	0.36	BT119	1.76	CD4066	020
151555	0.31	2SC1131	0.64	2 2S257	1.98	A 322	5.85	BC148B	0.13	BD181	0.99	BF224	0.17	BT120	217	CD4069	029
${ }_{1}^{1 S 44}$	0.10	2SC1158	333	2 2S292	2.59	AN331	5.11	BC148C	0.11	BD182	0.99	BF237	0.65	BT121	248	CD4070	0.66
1S5012A	0.81	${ }_{2 S C 1162}^{2 S}$	0.55	${ }^{2 S D 313}$	259	AN337	5.37	${ }^{\text {BCIL49 }}$	0.11	${ }^{8 D 183}$	0.99	${ }^{\text {BF240 }}$	0.17	${ }^{\text {BTI23 }}$	1.88	CD4081	0.35
15921	0.10	2SC1172	27	2SD325D	226	A N340P	1.17	BC1498	0.13	${ }^{8 D 184}$	121	BF241	0.15	BTI51-800R	0.89	CD4093	0.72
2N1303	0.38	2SC1195	3.26	2 SD348	16.13	AN355	5.98	BC153	0.14	BD187	0.53	BF245	0.50	ВП6018	242	CD4511	1.10
2N22194	033	${ }_{2 S C 1212 A}$	1.97	${ }^{2 S D 350}$	520	AN362	1.50	BC154	0.14	${ }^{\text {BD } 189}$	0.09	${ }^{\text {BF245A }}$	0.52	ВП8124	4.89	CD4528	204
2 22222	0.38	${ }_{2 S C 1213}^{2 S}$	0.89	${ }_{2 S}^{2 S 0353}$	7.50	AN370	3.95	${ }^{\text {BC159 }}$	0.36	BD190	0.72	${ }^{852458}$	0.49	BU106	248	CD4556	1.47
2 N 2646	0.80	${ }_{2 S C 1226}$	1.46	${ }^{2} \mathrm{SD} 389$	2.41	AN5010	5.70	${ }^{\text {BCII60 }}$	0.40	${ }^{80201}$	${ }^{0.655}$	8F2464	252	${ }^{\text {BU }} 108$	1.50	CROZAM-8	1.70
2N2904	0.35	${ }^{25 \mathrm{SC}} 1293$	0.90	${ }^{2 S D} 401$	1.40	AN5111 AN5120	292	${ }_{\text {BC161 }}^{\text {BC16 }}$	0238	${ }^{80202}$	${ }_{0}^{0.50}$	${ }^{85255}$	0	BU109	268	CV12E	4.09
2N2905	0.59	${ }_{\text {2SC1316 }}$	198	2SO414 2S0471	198	ANSI20N AN5132	4.50 5	${ }_{\text {BC169C }}^{\text {BCI }}$	${ }_{0} 0.16$	${ }^{80203}$	0.41	${ }_{\text {BF25s }}$	0.42	${ }^{\text {Buthio }}$	5.69 4.16		3.14
${ }^{2} 2 \times 2906$	0.38	${ }_{2 S C 1317}$	0.50	${ }_{2 S 0560}$	295	AN5250	3.98	BC170	0.16	BD207	1.79	${ }_{\text {BF256LC }}$	0.82	BU125	248	Cx108	1248
2N2928	0.15	2SC1354	0.49	2S0588A	236	AN5435	225	BC171	0.11	BD208	0.34	BF257	0.34	BU126	1.45	CX109	786
${ }^{2}$ 2N3053	0.35	${ }_{2 \mathrm{SCl} 1383}$	120	${ }^{2 S D 600}$	298	AN5610	5.50	${ }^{\text {BC }} 172$	0.13	BD222	0.50	${ }^{\text {BFF258 }}$	0.36	BU137	6.53	${ }^{\text {Cx }} 130$	8.76
2N3054	0.99	2SC1394	245	2SD601R	0.65	AN5612	4.68	BC172B	0.27	BD225	0.49	BF259	0.34	Bu205	1.35	${ }^{\text {Cx134 }}$	1232
2N3055	0.61	2SC1398	0.79	$2 \mathrm{SD613}$	1.03	AN5613	4.63	BC173	0.17	B0228	0.63	BF262	028	BU206	127	${ }_{\text {Cx }} 136$	11.49
2N3442	1.56	${ }^{2 S C 1413 A}$	3.05	${ }^{250521}$	12.85	AN5630	3.95	BC1748	027	${ }^{80229}$	1.05	${ }^{\text {BFF263 }}$	0.57	BU207	1.60	${ }^{\text {cx }} 139$	11.83
2N3702	0.14	${ }_{2 S C 1446}$	125	${ }^{250636}$	0.55	AN5701N	1.65	${ }^{\mathrm{BCL} 17}$	0.35	${ }^{\text {B0232 }}$	0.50	${ }_{\text {BF271 }}$	0.34	${ }^{\text {BU208 }}$	120	CX 157 $\mathrm{C} \times 58$ 158	5.52
${ }^{2}$ 2N37705	0.18	${ }^{\text {2SC1475 }}$	207	${ }^{25}$	0.12	ANN250	295	${ }^{\text {BC179 }}$	026	${ }^{80234}$	0.47	${ }^{\text {BFP273 }}$	020	BU20802	1.97	cxis8 cıin	5.54
2N3706	0.14	2SC1505	1.00	2 20657	3.50	Ang310	8.74	BC182	0.05	${ }^{8} 2238$	039	BF324	0.35	BU208D	1.95	${ }_{\text {c }} \times 187$	6.84
2N3707	0.16	2SC1514	1.69	2S0661A	0.80	Ang320N	428	BC182L	0.10	80239	0.45	BF336	0.33	BU209	1.50	Cx755	1295
2N3711	0.13	2SC15730	125	2 2S731	1.05	AN6340	10.14	BC182LB	0.01	BD240	0.57	BF337	0.45	BU226	245	CX885A	6.85
2N3771	0.70	2SC1578	8.74	2 SD773	0.60	An6341	298	${ }^{\text {BC1 } 1832}$	0.11	${ }^{\text {BD2 }}$ 21	3.39	BF338	0.33	BU326	200	DEC1	220
2N3772	1.71	2SC1583	0.50	2 SD811	3.30	AN6342	27	BC183LB	0.2	80242	0.39	${ }^{\text {BFF355 }}$	0.99	BU326A	220	DEC2	220
${ }^{2} \times 3773$	1.65	${ }_{2 \text { SC1617 }}$	3.89	${ }^{2 S 0823}$	1.98	AN6363	16.00	BC184	0.13	BD243A	0.35	${ }^{\text {BF362 }}$	0.62	BU326S	220	DS3486N	4.33
2N3819	0.54	2SC675	1.41	2SD837	1.56	AN6371	924	BCi84L	0.14	BD243C	0.29	BF363	0.50	BU406	1.49	DS3487N	4.95
2N3823	1.17	2SC1678	1.98	${ }_{2} 2$ SD841	2.50	AN6387	10.65	BC184LB	0×1	80244	- 4	${ }^{\text {BFF371 }}$	0.50	BU4060	1.79	E1222	0.40
2N3904	0.62	${ }^{2 S C 1741}$	127	${ }^{2508565}$	1.00	AN6531	1.95	${ }^{\text {BC }} 1886$	027	${ }^{80244 C}$	${ }^{1.79}$	${ }_{\text {BF391 }}^{\text {BF917 }}$	025	BU407	0.82	${ }^{\text {E5522 }}$	0.28
${ }^{2} \mathrm{~N} 3908$	0.62	2SC1810	1.70	2S08570	1.84	AN6551	1.35	${ }^{\text {BC187 }}$	0.28		1.99	${ }^{\text {BF4 } 47}$	0.84	BU4070	0.99	E5386	025
2N4101	1.3	2SC1815	0.45	2 2SD882	1.15	AN6552	0.68	${ }^{\text {BC204 }}$	0.16	8D246C	0.7	BF418	1.87	Bual2	529	E9003	0.46
${ }^{2} \mathrm{~N} 424400$	3.30 0.99	${ }^{\text {2SCC1826 }}$	0.67 228	2SD894 2S098	1.75	AN6610 AN6677	240	BC207 BC212	${ }_{0}^{0.14}$	BD253 BD2784	${ }^{1.05}$	${ }_{\text {BFent }}^{\text {BF422 }}$	029	BU426A BU500	1.13	${ }_{\text {E }}^{\text {E9005 }}$	0.50 588
2N5293	0.50	2SC1875	4.50	${ }^{2 S K} 105 \mathrm{H}$	215	AN7111	125	BC2128	0.26	BD317	260	BF450	0.35	BU508a	125	GC374	${ }_{1.65}$
2N5294	0.50	2SC1881K	2.38	2SK152	3.59	AN7114E	8.54	BC213L	0.10	BD318	200	BF451	029	BU536	1.65	G0243	4.34
2N5296	0.49	2SC1893	3.02	2SK34	0.76	AN7115	3.38	BC213LB	0.15	80375	0_{42}	BF457	0.41	BU608	1.80	G7758	0.84
${ }^{2 N 5297}$	0.50	${ }^{2 S C 1906}$	0.98	2SK41	1.07	AN7120	4.65	${ }_{\text {BC2 }}{ }^{\text {B } 214}$	0.10	80330	0.76	${ }^{\text {BF458 }}$	0.35	BU705	295	GH3F	1.82
2N5298	0.61	$2{ }^{\text {SCl } 1921}$	1.37	2SK79	298	AN7145	280	BC214LB	0.26	80410	0.52	BF459	0.52	BU806	1.79	HA11215	1.75
2N5771	1.18	2SC1923	0.30	40408	0.50	AN7146	4.35	BC225	0.40	${ }^{80433}$	047	BF460	1.45	BU807	0.80	HA11219	253
${ }^{2} \mathrm{~N} 6109$	158	${ }^{2 S C 1929}$	225	40594		AN7151	226	${ }^{\text {BC237 }}$	0.10	${ }^{80434}$	049	BF649	0.25	BU826a	1.95	HA11225	1.50
2N6130	0.80	2SC1942	1.65	40636	1.43	AN7156	285	${ }^{\mathrm{BC} 2378 \mathrm{BJ}}$	0.12	${ }^{80435}$	049	BF470	0.55	BUW84	1.39	HA11226	10.44
2N6133	125	2SC1945	7.99	4EX581	0.80	AN7158	238	${ }_{\text {BC2 }}{ }_{\text {BC } 238}$	${ }_{0}^{0.13}$	${ }^{\text {BDa36 }}$	0.60	${ }_{\text {BFP47 }}^{\text {BFA }}$	033	BUX84	1.00	HA11229	1.96
${ }_{2}$ N66292	1.95	${ }_{2 S C 1957}$	1.09	7805-T022	0.30 0.63	${ }_{\text {an }}^{\text {ant223 }}$	4.25	ВС238B	0.08	B0438	040	BF479	0.35	BuY69a	204	HA11124	5.25
2N696	0.43	2SC1953	1.93	7806	0.73	AU107	3.50	BC239	0.12	BD441	1.42	BF480	1.38	BY126	0.13	HA11244	4.02
${ }^{2} \mathrm{~N} 698$	0.43	2SC1962	1.93	7808	0.85	AUl10	225	BC2398	025	BD442	1.41	${ }^{\text {BFP491 }}$	1.99	${ }^{\text {BY127 }}$	0.08	HA11251	4.47
2 2SA1006	1.50	2SC1969	204	7812-T022	0.35	AU113	525	BC251A	0.31	BD509	1.55	BF995	0.64	BY133	0.12	HA1125	429
${ }^{\text {2SA }}$ 2SA1011	1.65	2SC1983	1.51	7815	0.64	AY105K	208	${ }^{\text {BC294 }}$	0.50	${ }^{\text {BD5 }} 10$	0002	${ }^{\text {BF506 }}$	0.43	${ }^{\text {BY1 }} 164$	0.45	${ }_{\text {HA1 }}$	4.87
2SA1012	125	2SC2009	0.34	7824	0.64	A ${ }_{\text {A }}$	881	${ }^{\text {BC }} 301$	0.45	${ }^{\text {BDO529 }}$	0.38	${ }^{8}$	0.24	${ }^{\text {BY179 }}$	1.08	HA11414	5.15
2SA1020\%	0.89	2SC2029	233	7905	0.80	8250	225	BC302	0.53	80530	1.18	BF532	0.45	BY182	0.95	HA1144	7.87
2SA1027R	0.45	2SC2028	211	9368	10.70	B40	1.55	BC303	1.04	BD533	0.15	BF596	0.18	BY184	0.37	HA1156	1.16
${ }^{254} 473$	0.75	2SC2063	0.99	AA133	0.12	BA130	0.14	BC307	0.18	BD534	0.53	BF597	027	BY187	0.7	HA1160	4.78
${ }^{\text {2SAF }}$ 2S5S ${ }^{\text {2 }}$	4.95	2SC2078	3.11	${ }_{\text {ACl }}$	0.12	${ }_{\text {BA } 13710}^{\text {BA }}$	1.98	${ }^{\text {BC3307A }}$	008	${ }^{80535}$	0.79	${ }^{86694}$	0.22	${ }^{\text {BY189 }}$	1.79	HA11166	1.90
${ }_{\text {2SCl173Y }}$	125	${ }_{\text {2SC2085-a }}^{\text {2S }}$	225	${ }_{\text {ACl27 }}{ }^{\text {ACl23K }}$	0.43 0.27	BA 1320 BA 132	1.38 3.95	${ }_{\text {BC }}$	0.18	${ }_{80537}^{8053}$	0.0 .61	${ }^{87757}$	0.0 .59	(${ }_{\text {BYY98 }}^{\text {BY2012 }}$	1.62	HA1166X	${ }_{5}^{6.43}$
2SC1509	1.35	2SC2091	1.30	AC128	0.34	bal 1330	275	BC309	0.17	B0538	0.80	BF761	1.05	BY20320	0.59	HA11706	3.61
2SD1391RL	3.95	2SC2141	244	${ }^{\text {AC138 }}$	0.24	BA 145	0.19	BC317A	0.13	B0544B	0.83	BF762	0.50	BY207	0.22	HA17705	8.00
${ }^{25 A 1095}$	3.00	2SC2166	1.98	AC141	029	BA 148	0.25	BC327	0.15	BD598	1互	BF869	0.47	BY208	0.46	HA11703	4.22
${ }_{2}$ SA1103	6.55	${ }^{2 S C} 2816$	${ }^{0} .69$	${ }^{\text {ACCl42K }}$	0.35	${ }^{\text {BA } 154}$	0.40	${ }^{\text {BC328 }}$	0.10	${ }^{80677}$	0.0	BF870	0.30	${ }^{\text {BY } 210.400 ~}$	0.19	Hallivol	4
2SA329	0.40	${ }_{2 S C 2233}$	180	AC151	028	${ }^{81} 155$	0.12	${ }^{\text {BC337 }}$	0.09	${ }^{80679}$	0.5	${ }^{\text {BF959 }}$	0.42	BY210-600	027	HA171710	9.50
2SA990	225	2SC2278	1.69	${ }_{\text {ACl79 }}$	0.28	BA159	0.08	${ }_{\text {BC368 }}$	0.24	${ }^{806581}$	1.48	${ }^{\text {BF970 }}$	0.49 0.50	${ }^{\text {BY }}$ 8210-800	0.30 1.64	HA117 HAlli	9.75 20.16
${ }^{2 S A 493}$	225	2SC2214	217	AC183	0.72	BA182	024	BC440	0. ©	BD696	247	BFF33	0.44	BY223	123	HA11715	325
2 2SA562	0.57	${ }_{2 S}^{2 S C 2335}+\mathrm{KIT}$	13.4	${ }^{\text {ACP187 }}$	0.39	BA232	1.66	BC441	0.44	${ }^{80699}$	3.49	BFR61	0.92	BY224600	1.88	HA11714	9.75
${ }^{2 S A 564}$	0.75	${ }^{2 S C 2551}$	123	${ }^{\text {ACTi87K }}$	0.43	BA302	124	BC454	0.36	BD700	370	BFAB62	0.50	BY225-100	1.13	HA17716	13.10
${ }_{2}^{2 S A 614}$	4.88	2SC2565	3.92	AC138	0.37	${ }^{\text {BA3 }} 1$	1.35	${ }^{\text {BCa }}$ 80	0.42	${ }^{80777}$	0.90	BFR79	029	${ }^{\text {BY226 }}$	023	HA11725	${ }^{1828}$
${ }_{\text {2SA6393 }}$	1.15	${ }^{\text {2SC2570 }}$	${ }_{2}^{288}$	${ }^{\text {AC }}$ AC1888K	${ }_{0}^{0.44}$	${ }_{\text {BA }}^{\text {BA312 }}$	1.45 0.76	${ }^{\text {BC461 }}$	0.35	${ }^{\text {BD709 }}$	1.05	${ }^{\text {BFRP1 }}$	1.6	${ }_{\text {BY27 }}^{\text {BY27 }}$	0.20	HA11725MP HA11755P	16.00
254659	0.49	2SC2578	6.73	AC193K	0.65	BA317	0.08	BC463	0.64	BD809	0.94	BFR89	1.63	BY229-1000	1.12	HA11781	19.90
${ }^{25 A 673}$	1.50	${ }^{2 S C 2671}$	1.99	ACIgak	0.65	BA318	0.02	${ }^{\text {BC477 }}$	0.37	B0810	0.69	bfrgoa	0.70	BY229-600	0.92	HA1180	5.15
2SA684	1.61	${ }^{2 S C 28286}$	207	AD140	1.06	BA328	1.05	${ }^{\text {BC478 }}$	0.21	BD879	0.76	BFI42	0.43	BY255	0.66	HA1196	1.43
2SA697 2SA 699	1.05	${ }_{2 S} 252888$ A	1.85	AD143	1.93	BA333	1.37	BC479	0.41	${ }^{\text {B0880 }}$	0.78	${ }^{\text {BrF43 }}$	0.43	BY295-600	1.03	HA13001	1.73
2SA715	0.95	${ }_{2 S}{ }^{\text {Sc372 }}$	1.40	${ }^{\text {ADP }} 161$	1.60 0.30	${ }_{\text {BA }}$	286	${ }^{\text {BC5 } 546}$	0.08	${ }^{\text {BDP899 }}$	245	${ }_{\text {BFW } 10}^{\text {BF }}$	0	${ }^{\text {B7298 }}$	0.36 0.45	HA1306 HA1338	225
254747	10.74	${ }^{25 C 373}$	1.16	A0162	0.30	BA511	1.95	BC547	0.10	BD901	0.79	BF29	0.34	BY407	0.90	HA1339	3.40
${ }_{2 S A 848}$	1.36	2SC333	1.33	AD262	125	BA514	220	BC548	0.10	B0902	0.84	BFX84	0.37	BY409	1.49	HA13402	787
${ }_{2 S A 8 B 5}$	${ }_{2}^{0.05}$		0.50	${ }_{\text {AF115 }}^{\text {AF } 14}$	2.78	${ }^{\text {BA521 }}$	88.94	BC549 BC550	0.10 0.10	${ }_{\text {BDWB4C }}$	1.45 1.56	-	0.31		135 0.65	HA 13342 HA 13365	265 4.02
2 24a33	0.99	2SC403C	0.60	AF118	120	BA566	7.98	${ }^{\text {BC556 }}$	0.10	BDX32	1.75	BFX87	0.55	BYW19:1000	0.69	HA1366WR	1.50
254884	0.65	${ }^{2 S C 41}$	2.19	AF127	0.79	BA527	2.98	${ }^{\text {BC55 }}$ 7	0.10	8DX53a	125	${ }^{\text {BFX } 888}$	0.34	${ }^{\text {BrW5 }}$	0.16	HA1367	275
${ }_{2 S A 872}$	0.80	2SC458	0.15	AF139	0.40	BA532	1.50	BC558	0.10	BDX538	1.85	BF889	0.44	B B 10	029	HA1368R	245
${ }_{\text {2SAA937R }}$	215	${ }_{2 S}^{2 S C 495}$	${ }_{2}^{0.98}$	${ }_{\text {AFF }}^{\text {AF7 }} 178$	${ }_{0}^{1.45}$	${ }_{\text {BAF } 209}^{\text {B }}$	205	${ }_{\text {BC5599 }}$	0.10	${ }^{\text {BDX }}$ B698	216	${ }_{\text {BFY }}$	0.38	8YX55-600	023	${ }_{\text {HA1368 }}$	207
IF YOU		2 C515 ${ }^{\text {a }}$		Aflig		BA6209	4.55	ВС5998	0.11	B0X624	215	BFYS	025	BY771-600	0.85	HA1370	3.30

The Art of Servicing

B.A. Berry

As an old hand at this radio and television servicing business it saddens me that fault finding is becoming a lost art. The growing use of chips is doubtless responsible for much of this lack of finesse, and as ever more advanced techniques are coming into use the situation is getting worse. There's still room for the art of fault finding however, even if it's only in fault location to panel level. Nowadays, on being handed a piece of faulty equipment to repair, too many youngsters charge straight in without thinking. Even when they do think they invariably assume that the fault is the most complicated one they can imagine. The next time you're handed a piece of equipment for repair - stop right there and think! Nearly all faults can be isolated to a particular area without bringing even a test meter into use.

Customer Interrogation

Before you let the customer out of the shop it's imperative that you give him a real third degree on just what's gone wrong and how it happened. Write this down, because the moment he's gone you'll forget the .most important point. It's also extremely important that you ask whether he attempted to do anything about the fault himself. Most people will cheerfully leave say a camera repair job to a specialist but will quite happily take a screwdriver to their video recorder or TV set, then expect you to be able to diagnose and repair a fault when the equipment has been misaligned. It's happened to me all too frequently.

So take careful notes before the customer leaves. The sorts of things you should ask are: At what time and where did the fault occur? Was the customer in the room at the time? For how long had the equipment been working satisfactorily? What are the symptoms, and was there any smoke or peculiar noises? What action did the customer take when the fault occurred, and did the equipment get hot? If so, ask him to point out the exact spot on the external case. Had the customer been doing anything to the equipment at the time? You'd be surprised for example how many people attempt to join up a speaker extension lead while the equipment is working!

The final thing before the customer leaves is to ask him tactfully whether or not he's attempted any repair action himself. Point out that this question is merely to save him money in the long run. If any trimmers or preset controls have been turned, find out now. Such information could cut down the servicing time considerably. Much as you would like to read the riot act at this stage, don't. To do so would only result in the customer denying that he'd even thought of touching anything.

Preliminary Assessment

Having got the equipment on the bench you may feel that you are now justified in removing the outside case. Not so! If you are unfamiliar with it, get the service manual out - if you have one - and check on the system and circuit configuration. In a great many cases, especially with the more sophisticated types of equipment that are being increasingly brought in for attention, the cause of the trouble can simply be a matter of misadjustment, e.g. a

TV/aux switch in the wrong position. It's so easy for even an experienced engineer to miss the obvious when questioning a customer in a perhaps crowded shop. So unless the reported fault obviously requires a look inside, don't unbox the equipment. Instead, apply power and commence your own investigation by checking all external control settings and indicator lamps. Don't neglect input fuses, even when the customer has told you that he changed the fuse. Some 3A and 13A mains fuses are notoriously unreliable. I always make a habit of putting the meter across a new one just in case.

As you go through the various controls, note exactly what they do or don't do. Take your time over this, because this is the stage at which you will be forming your own opinions as to the likely cause of the fault. I always remember the advice given to me by an old engineer who taught me the trade: eyes first, cars next, fingers last of all! It's stood me in good stead over the years.

Initial Checks Inside

By now you will have formed a preliminary idea of what the problem is and where the cause lies. So power off and unbox. At this stage the most useful tool may well be a large magnifying glass. A thorough and concentrated look at the board and the components on it may well reward you with an easy repair. Cracks, solder bridges, overheated components and dry-joints are easy to see under a lens.

With equipment that's been operating satisfactorily for at least six months component failure is only rarely the cause of a fault - unless the component has been subjected to outside influences! Modern components are very reliable. Remember the bathtub curve which clearly shows that most component failures in solid-state equipment occur in the first few months. Failures then fall to a very low level for the normal life span of the equipment, rising again as the equipment reaches the end of its expected life span. During the long period between the initial burn in and old age most faults are due to the causes previously listed, with dry-joints leading the list of possible culprits. In the main they can be found quite easily with a lens.

Test Equipment Next

Component failures do of course occur from time to time in otherwise healthy equipment. It's then that you need the meter or scope. I can't emphasise too much the wisdom of measuring supply voltages and currents. They can give a very good clue to the cause of a fault - especially if you've been clever enough to measure these voltages and currents in a similar piece of equipment that's working. Yes, I know that the readings are given on circuit diagrams - but not always, and not always the particular ones you want. It pays to make your own measurements and keep a note of them. A rise in supply current will lead you to look for a short-circuit, while a reduction should lead you to a burnt out or open-circuit component.

After checking the supply voltages make voltage checks around the transistors in the suspect area. The fastest way to check a transistor in an amplifier circuit is to measure its base-emitter bias - with a normal silicon transistor the reading should be around 0.7 V . A quick front-to-back
resistance check on any diodes in the fault area comes next. If a diode reads o.k. but you're still suspicious, change it. I've met some really nasty diodes in my time - ones that check out fine but prove, on replacement, to have been the cause of the equipment failing to work correctly.
If everything else seems to be in order it's time to suspect the i.c.s on the board. Undoubtedly the fastest method of checking is by substitution, particularly with some of the special devices that are around today. If you haven't got a replacement to hand you might find that there's a second chip of the same type on the board. This can be swapped over with the suspect to see whether a different fault appears. If so, you've found your culprit.

I've found that the little RS logic testers that can be clipped over a chip are very handy, though somewhat expensive: LEDs give an instantaneous indication of the logic state at each pin, making the job much easier. Don't neglect the old-fashioned signal tracer with audio equipment. A quick probe around with one of these can locate the source of a fault in a matter of minutes.

DC Amplifiers

About the worst type of fault I've met in audio equipment, at least of the older type, is where there are several d.c. coupled amplifier/driver/output transistors. When one of the output transistors goes short-circuit normally one or more of the other transistors fails with it. If you try to work out what's wrong by taking voltage readings in a logical manner you can find yourself running round and round in circles. The best approach is to start with the first transistor involved. Remove and check it - the ordinary Avo tests will do nicely. If necessary, replace it. But don't switch on again until you are sure that all the transistors and diodes in the circuit are o.k. The amount of distress this procedure will save makes the time taken well worthwhile.

Don't Twiddle Coils

Perhaps the best advice I can give the up and coming engineer on TV repairs is not to assume that any coils are misaligned. The occasions when this is the case are rare indeed - unless the customer has been at it! I can well recall the grief I caused myself in my earlier years by assuming that a twitch here and there would provide a cure - only to discover that it didn't, and eventually that the cause of the trouble was a dry-joint, leaving me with an unnecessary realignment job - it was this, by the way, that led my boss to give the little lecture referred to earlier! I'm well aware that there are those of you out there who consider yourselves to be perfectly able to align a TV set by eye and ear. The next time you try it, have a look at the $3 \cdot 5 \mathrm{MHz}$ bars in a test pattern - they won't be a pretty sight!

Electromechanical Equipment

With any equipment that employs both mechanical and electronic techniques the cause of trouble is much more likely to lie in the mechanical side. Where an electronic component is subject to wear, this will probably be the cause of its failure - video and audio heads provide clear examples of this. And we all know the problems that the tape path can cause with VCRs. It's worth emphasising again that with this sort of trouble it's your eyes that will be of most use to you: study the problem until you are quite sure of what is causing the fault, and only then start stripping the equipment down.

next month in

Free next month

 TV/VCR SPARES GUIDEFor the third year running Television presents its TVNCR spares guide, a handy reference to the ma nufacturers' and s.jppliers' addreses and phone numbers that are always in need. Updated to cover recent changes, new brands, etc. An essential item for the service deparment.

- SERVICING MITSUBISHI VCRs

Faclt-finding notes covering mainly the HS3C3, HS320, HS304, HS33J, HS306 and HS307. Written up by Derek Snelling on the basis of his experience witn these machines on rental and sales contracts.

DETECTING LICENCE DODGERS

Do you know how TV detector vans can pinpoint the exact locations of working TV sets in a building? Vivian Capel locked behind the scenes to see the techniques and equipment used.

- ALL ABOUT BAR CODES

Bar code scanning r as for some time been used for pricing in shops and has been taken up as a simple means of programming domestic electronic equipment. Harold Peters explains how the coding system works.

- MICROWAVE TECHNIQUES

Now that satellite transmissions at s.h.f. are a part of everyday televisicn it's becoming important to know about microwave techniques. Start of a new series on principles and practical devices by Andrew Heron.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO.
(Name of Newsagent)
Please reserve/deliver the April issue of TELEVISION ($\mathbf{E 1} 1.40$), on sale March 16th, and continue every month until further notice.

```
NAME
```

\qquad
\square
..
...

Amstrad 4600

The capstan servo lost lock when the machine had warmed up. A slight problem was that the main servo chip IC303 (BA718) responded to freezer but the fault was still there after it had been replaced - not to mention the hassle of getting one . . The culprit turned out to be the operational amplifier chip IC302 which drives IC303 and is next to it. This device had obviously caught some of the freezer. S.B.

Grundig VS380

The problem with this machine was no clock display. The clock and calendar counter, with serial clock and data outputs to the main microcomputer, is IC2080. All voltages seemed to be o.k. but the 32 kHz quartz crystal was very quiet. So the crystal and IC2080 were replaced - to no effect. After much deliberation it was realised that the 5 V reading at pin 15 (VSS1) was incorrect due to the serial ni-cad cell being short-circuit. The correct voltage is 3.8 V . Replacing the cell restored the clock operation. All other functions had to be reset using the service/pause function to preload the RAM.
S.B.

Toshiba V5470

The playback picture looked as though the TV set's field oscillator was running fast - locked at twice field frequency with two partially superimposed pictures. The oscilloscope showed that part of the video signal was missing, but only on alternate fields. As the f.m. playback signal was full and correct it wasn't head or mechanical alignment trouble.
Attention was turned to the muting circuits on the servo/logic panel where C608 was found, by substitution, to be low in value. It's in the muting hold-off circuit and prevents muting as long as the control track pulses are present. In this case the capacitor's changed value meant that the time-constant wasn't long enough.
S.B.

Amstrad 5200

There was no operation with this machine. Q651 in the 18 V power supply was open-circuit and the supply had a short to chassis across it. This was traced to the BA718 chip IC307 which was short-circuit. Replacing the chip and the transistor restored full operation.
S.B.

Panasonic NV370

There was no playback colour - the a.p.c. loop was not locking as the reference frequency was way off. The PCB module component was replaced.
S.B.

Panasonic NV100

Quite an old machine, this one. It had two faults, no playback audio and no playback colour. Lack of audio was due to a leaky capacitor, C4016-I knew it was leaky because the voltage at pin 1 of IC4001 was low at about 2 V instead of 4.3 V . The absence of colour was more of a problem - IC8001, a hybrid device, had been changed. It took quite a long time to measure all the frequencies and set up the a.f.c. and a.p.c. circuits. The result of all this effort was no colour for the first few seconds, the exact time depending on how long the machine had been switched off. After an overnight rest it was two-three minutes whereas after a half-hour off period the colour stayed away for only
thirty seconds. It did make fault-finding tiresomely long, but the customer wanted it done. Anyway, the a.f.c. loop was found to be locked during the monochrome period so this was cleared of suspicion, leaving the a.p.c. loop. In fact the ident output at pin 41 of the relevant chip was highly active, confirming the diagnosis. None of the frequencies were off and I was getting down to change the i.c. when I spotted C8009. Replacing this cured the problem.
S.B

Grundig VS180

If you find that one of the reel motors is running continuously check C301 or C305 in the motor drive circuit for being leaky.
S.B.

National Panasonic M5 Camcorder

If the complaint with one of these machines is noisy audio on playback of its own recordings, before spending a lot of time searching for some obscure fault in the microphone/ audio record section first try checking the d.c. lead to the drum motor. I've found that the ribbon cable supplying the d.c. presses against the lower drum motor, causing audio pickup of a clicking noise which is transferred to the microphone.
K.K.

Fisher FVHP530

The fault report was no channel operation - you couldn't get any test signal on the monitor either. All 1.t. outputs from the power supply were checked. A $3 \cdot 15 \mathrm{~A}$ fuse was found to be open-circuit as a result of Q907 (B698) being short-circuit. After checking transistor data a BD234 was fitted as a replacement. This along with a new fuse solved the problem.
R.S.N.

JVC HRD120/Ferguson 3V35

A good rule of thumb with microcomputer based mechacon and syscon circuits is that the main microcomputer chips themselves seldom fail. Before replacing them check the relevant d.c. lines, the clock pulses, etc., and remember that the various buffer chips are more prone to failure than the microcomputer chips.
We've recenlly had two HRD120s that proved to be exceptions to the rule. In the first the machine operated normally for about ten minutes before jumping into the timer mode, after which the machine became totally nonfunctional. Liberal squirts of freezer didn't have any effect. We found that in the fault condition the input to the CPU chip from the timer switch at pin 35 wasn't activated: the conditions at the rest of the CPU's pins appeared to be correct, with the trains of pulses on data line pins $27,28,29$ and 30 showing some activity on the scope. After removing half a tube of Japanese Evostick from the chip's 52 pins and fitting a replacement the machine worked normally.
The second machine couldn't be switched on by the operate switch. Again the conditions at the CPU's pins all appeared to be correct, with the level at pin 36 changing when the operate switch was selected, but this time there was a distinct lack of activity on the four data lines that connect to the input/output expander IC202. A new CPU chip was again the answer.

As an aside, we've found that the capstan motors in quite a number of these machines have become noisy. This normally has no effect on the quality of the picture and sound, and when the owner is confronted with the price of a replacement motor he's usually prepared to live with the noise. If a particularly bad motor is run in the play mode for a few hours however check that it still has sufficient torque to perform tape unloading properly -a loop of tape can be left outside the cassette and this will be damaged when the cassette is ejected.
C.H.

Ferguson 3V20 Camera

The electronic viewfinder took a long time to display an image and when the c.r.t did light up there was lack of width with foldover on the right-hand side of the screen. The cause of the fault was traced to the line output transistor's $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ base drive coupling capacitor. Inspection revealed that it had a corroded leg. A similar type and value electrolytic is used in the viewfinders field timebase circuit: this was also corroded, though there was no field fault. Both electrolytics were replaced.
A.D.

Ferguson 3V35 and variants

Intermittent cassette loading with these machines is usually due to the insert detect switches. These switches can also cause the following symptoms: excessive force has to be used to insert a cassette, or the cassette is taken in half way then ejected. To prove whether the switches are faulty, check at pin 6 of CN27. This pin should go low while the cassette is being taken in. If the pin goes high the switches are faulty. Needless to say both should be replaced.
To operate these machines with the cassette housing unplugged and removed from the machine, switch off at the front, connect pin 5 of CN27 to chassis, then switch on. The microcomputer now thinks that the cassette housing is lowered: all functions with the exception of record can be selected and the shorting link removed. For record, connect pin 7 to chassis and select play and record as usual.
The capstan motor can be a source of rumbles which can usually be cleared with a drop of oil. To prove that the capstan motor is the source of the noise, play a tape and then select pause. If the noise stops the capstan motor is at fault. It should have no play on its shaft at all. If, by holding the motor, the pulley can be moved back and forth there's wear in the bearing. Another check worth making is to look for metal filings on the ASM board. Their presence indicates considerable wear in the bearing. Replace the motor if these checks indicate that the bearing is worn.

The video heads in these machines seem to be prone to early failure. The refurbished heads available work well. In setting up the Q you might find that the trimmers are noisy.
A.D.

Mitsubishi HS318

Not a very old machine this one - still under guarantee in fact. It would accept a cassette quietly, but when it was asked to play or record its efforts to load the tape were accompanied by a mechanical bang-bang-click effect as the loading arms jumped about violently. Moving from stop to fast forward or rewind was also a noisy business.

Inspection showed that plastic gear 1 (part no. 641D71001) had several teeth broken off it. Phasing up the mechanics after fitting a replacement can be difficult! The key to success is to align the scribe marks on the two sliders at the front (underside) of the deck, and closely follow the manual's instructions for refitting the mode
switch. Both must be done with the mechanics in the stop (not eject) position.
E.T.

Panasonic NV8600

These oldies were built well! Some look set to go clunking and twanging into the nineties. One we had in for repair wouldn"t play or record because the pinch roller solenoid wouldn't pull in. The solenoid would hold in when operated by hand and we found that the pull-in transistor Q622 was open-circuit. A BD139 transistor turned out to be a successful replacement, but we also checked the damping diode (D624) as a precaution.
E.T.

JVC HRD150

The owner of this machine must have had super-sensitive hearing - or a shelf or trolley that acted as a sounding board! He complained of a barely perceptible clonking noise in the record and playback modes. In a very quiet part of the workshop we could hear it: the noise was coming from the area of the supply spool turntable. We found that the supply reel clutch pinion was very slightly eccentric. This was proved by watching and listening while we spun the supply reel by hand with the back-tension band slackened. A replacement clutch assembly eliminated the trouble.
E.T.

Panasonic NVM5B Camcorder

This was the first camcorder we've serviced without removing its case - the trouble was in the viewfinder, which clips on and plugs in. Its little screen was brilliantly lit up, with not a vestige of a picture. The diddy little monochrome c.r.t. is grid modulated by a single transistor video amplifier which is supplied by a negative line derived from pin 5 of the tiny line output transformer. The negative supply was missing because the rectifier diode was opencircuit. It's encapsulated within the transformer, so the entire unit had to be replaced - fortunately under guarantee. The replacement came in a tiny parcel . . . E.T.

Panasonic WVP200E Camera

We and our customer almost came to blows over this old camera! He said it sometimes lost sound. We ran it for days on end with complete sound continuity. He finally convinced us by bringing in a tape recorded by the camera. There were long periods of silence, often triggered by movement of the camera. When the sound went the action of the audio a.g.c. circuit brought up the background noise, so we decided that the trouble was not far from the microphone.

And so it was! The signal from the camera-mounted microphone passes through a switch on the jack socket for the left (mono) external microphone. The socket's connecting pins were dry-jointed to their mini-PCB. E.T.

Mitsubishi HSC20/JVC GRC7 Camcorder

The symptom with this camcorder was no threading. It would try to do so, then shut down with various function lights flashing. While dismantling it we noticed that one of the four cassette lid screws was missing. When we'd got it completely to bits we discovered that the missing screw was lodged in the loading mechanism - this was the cause of the trouble. We were much miffed to note that a good shake and rattle session would have dislodged the screw without the need to take the machine apart .

Dual-channel TV Sound Systems

Geoff Lewis, B.A., M.Sc.

Last month we looked at some of the basic techniques used in digital sound systems. In this concluding instalment we'll consider some of the systems in use or proposed for use in dual-channel TV sound applications.

Dolby ADM System

The Dolby adaptive delta modulation (ADM) system is a variant of delta modulation using one bit per sample to indicate whether the analogue audio signal has increased or decreased in amplitude. It's a most effective bit rate reduction technique, allowing the use of a considerably higher sampling frequency. This in turn leads to a simpler decoder filter arrangement, without the risk of aliasing. Unlike pulse-code modulation, a single bit error has the same effect wherever it occurs. When an error bit is detected in a delta modulation system, introducing an opposite polarity bit will reduce the audible effect to almost zero. The only major disadvantage is that an overload can arise when the signal amplitude changes by an amount greater than the quantizing step size. The ADM system devised by Dolby Laboratories Inc. and adopted for use with the Australian DBS service, which uses the B-MAC transmission standard, employs both a variable step size and variable pre-emphasis to produce very high quality audio.
A pre-emphasis circuit at the encoder continuously monitors the signal frequency spectrum to determine the optimum pre-emphasis characteristic. After pre-emphasis the signal passes through a step sizing circuit which continuously evaluates the signal slope to select the best value. The pre-emphasis and step-size information is then coded as two low bit rate control signals. The audio signal is delayed by 10 msec relative to the control signals: this ensures that the control signals reach the decoder in time to enable it to decode the received audio signal in a complementary manner.

For transmission the digital signal is formatted into blocks, with provision made for synchronisation. There are two types of format, one for signals that occur in bursts, such as sound-in-syncs and B-MAC, and the other for continuous signal channels.

The basic operation of the decoder can be outlined with

Fig. 1: Dolby ADM decoder.
reference to Fig. 1. After demodulation the signal components, which consist of audio data for each channel at a typical bit rate of $200-300 \mathrm{~kb} / \mathrm{sec}$ and the control data at the half line rate of $7.8 \mathrm{~kb} / \mathrm{sec}$, are separated out using suitable filters. The audio data is clocked into a multiplier stage as a bipolar signal: the step-size data acts as the multiplying constant. The audio data is then converted to analogue form using a leaky integrator. De-emphasis control works in a similar way, but instead of using the control signal to vary the gain the amplifier stage involved operates as a variable, single-pole frequency de-emphasis network. The decoder is available in i.c. form (the Signetics NE5240), is simple and is relatively insensitive to component tolerances.

MAC/Packet Systems

The overall frame structure for the C-MAC and D-MAC systems, with packet sound channels, is shown in Fig. 2. The only significant difference between the two systems lies in the carrier modulation method employed. C-MACl Packet uses 2-4 phase shift keying (a form of QPSK) modulation of the common sound and vision carrier while D-MAC/Packet uses duo-binary coding which can be amplitude or frequency modulated on to a separate sound carrier.

Each $64 \mu \mathrm{sec}$ line period contains 1,296 sampling points, which is equivalent to a sampling frequency of 20.25 MHz . The audio channels are sampled at 32 kHz , quantized into 14 bits per sample, and then coded in twos-complement form. For stereo the left and right channels are sampled simultaneously, coded separately and transmitted alternately. The sound and data bits are organised into 164 packets, each of 751 bits, in two sub-frames. We thus have a total of 123,164 bits which have to be transmitted in 40 msec , equivalent to a bit rate of $3.0791 \mathrm{Mb} / \mathrm{sec}$. This total capacity can be subdivided in many ways. Depending on the methods of coding and level of error protection employed, some of the possibilities include: three linear stereo sound channels with basic error protection; four companded stereo sound channels with basic error protection; two linear stereo sound channels with extended error protection; three companded stereo sound channels with extended error protection; or the equivalent in mono or dual-language channels.

The error protection systems used are as follows: (1) Linear mode, first level. One even parity bit is added to the eleven most significant bits of each sample. (2) Linear mode, second level. An extended Hamming code $(16,11)$ is applied to the eleven most significant bits. This is capable of correcting single-bit errors. (3) Companded mode, first level. One even parity bit is added to the first six most significant bits. (4) Companded mode, second level. An extended Hamming code $(11,6)$ is added to each sample. This will correct most single-bit errors.

The companding system is similar to that employed with NICAM-3 (see later), which is used for processing digital sound in studios etc. After sampling, the sound plus data burst is organised into blocks of 3214 -bit samples. These are then compressed to ten bits each, using a scaling factor determined by the magnitude of the largest sample in the

Fig. 2: Frame multiplex structure used for C-MAC and DMAC Packet systems (not to scale).
block. The scaling factor is encoded into the parity bits for each block to indicate the degree of compression. This scaling factor is extracted at the receiver using majoritydecision logic which also restores the original parity. The decoded scaling factor is then used to expand all the samples in the relevant block.

To minimise the effects of burst errors the 751 bits in each packet are interleaved. An energy dispersal or spectrum shaping technique is applied after interleaving, to randomise the data stream. This is done to all except the first seven bits in each line and the data in lines 624 and 625. The process consists of adding the output of a PRBS generator with a period of $2^{15}-1=32,767$ bits to the data stream by means of exclusive-or logic. The PRBS generator runs at 20.25 MHz and is initialised at the start of every frame so that the first addition always applies to bit eight of line one.

C-MAC Modulation/demodulation

With the 2-4 PSK modulation system logic one is represented by a $+90^{\circ}$ phase shift while logic zero is represented by a -90° phase shift. There are three basic ways of demodulating such signals. If the carrier/noise ratio is high, typically greater than 16 dB , it's possible to use the vision f.m. discriminator to recover the audio/data signal as well. More commonly however either a coherent or a differential demodulator is used. A coherent demodulator detects the incoming signal and compares it with a highly stable reference signal: any instability leads to bit errors. Since the received signal is in the form of DPSK, differential demodulation can give better results: with the received data in the form of phase differences in successive intervals, these differences can easily be detected by comparing the received signal with itself after a delay of one bit period.

D-MAC Modulation/demodulation

The bipolar duo-binary sound and data signal is in analogue form, with a bandwidth of only $10 \cdot 125 \mathrm{MHz}$, for a channel bit rate of $20.25 \mathrm{Mb} / \mathrm{sec}$. After demodulation the sound signal can be recovered by full-wave rectification followed by slicing at the half amplitude level.

D2-MAC Sound Channel

The D2-MAC/Packet sound channel has the same format as D-MAC/Packet except that provision is made for only one sound and data sub-frame in the same approximately $10 \mu \mathrm{sec}$ period. The reduced bit rate of $10 \cdot 125 \mathrm{Mb} /$

(b)

D866
Fig. 3: The VIMCA system. (a) Block diagram of the encoding arrangement. (b) Decoder block diagram.
sec allows for one high-quality stereo channel plus a lower grade audio channel and a limited data service. The total bandwidth of the sound and vision channels is just under 13.5 MHz , allowing transmission over current cable networks.

Compatibility of MAC Systems

In all the MAC variants described above the demodulated digital signal is processed in a manner complementary to the sequence used for encoding. That is, the signal is first descrambled to remove the PRBS energy dispersal component, de-interleaved, expanded from 10 to 14 bits and finally checked for errors. This common arrangement, plus the similarities in the sound and data frame multiplexes, means that universal chip sets that will automatically recognise and decode whatever system is in use are likely to be made available to setmakers.

VIMCA System

An important point that has to be considered when planning to add stereo sound to an established mono TV network is the cost of modifying all the transmitters.

The Australian organisation IRT Ltd. has developed a bolt-on system that provides a neat solution. It's known by the initials VIMCAS (vertical interval multiple channel audio system) and can also be used with VCRs, again without modification being required. Basically, the system incorporates time-compressed and companded audio signals in spare line periods during the field blanking interval. Each line can accommodate an audio base bandwidth of approximately 4.7 kHz , so that six lines will provide a pair of stereo channels 14 kHz wide. Multiple lines can alternatively be used for dual-language or data transmissions.

Fig. 3 shows the general principles involved, (a) for encoding and (b) for decoding. We'll consider encoding first. The analogue audio signal in each channel is first band limited and compressed, then sampled, quantized and loaded into a digital memory. During the appropriate video line it's read out of the memory at a very much higher rate, thus achieving time compression. The signal is then
converted back to analogue form and is gated into the video signal. The bandwidth of the time-compressed audio signal is about 2.5 MHz , which is well within the capacity of the video channel. Decoding is done in a complementary manner, as shown in Fig. 3(b). Any additional channels require their own AD converters and digital memories but can share the DA converter.
When several contiguous lines are used for wideband audio there's signal duplication at the end and beginning of successive lines. The signal at the beginning of a line, where corruption by interference or distortion is most likely, can thus be discarded.
The system has been found to be very flexible in operation - it's possible to mix wide and narrow band signals without cross-talk. Scrambling can be provided while the signal is in digital form or simply by alternating the line sequences. When the system is used with a video tape recorder the signals are not affected by the head switching and, due to the method of synchronism, wow and flutter are said to be negligible.

NICAM 728

The UK standard for terrestrially transmitted digital stereo TV sound channels is NICAM 728 . Let's briefly look at the history. The West German dual-carrier system was extensively tested in the UK, with the PAL system I standard. It was found to be almost impossible to include a second sound carrier between 6 and 8 MHz without causing unacceptable interference to either the vision or the primary sound carrier. With systems B and G, used elsewhere in Europe, the primary sound carrier is at 5.5 MHz with respect to the vision carrier, leaving enough spectrum space to avoid the interference problems found in the UK. Over the years BBC and IBA engineers have developed considerable expertise in digital processing of the TV sound channel - from the sound-in-syncs system used since the late sixties for sound links between studios and transmitters to the more recent work on MAC systems. Starting with this background BBC engineers developed the system that has come to be known as NICAM 728 NICAM relates to the companding system employed (near-instantaneous companded audio multiplex) while 728 indicates the digital data rate used.
NICAM 728 has a second subcarrier at a level of -20 dB relative to the peak vision carrier and spaced 6.552 MHz above it $(6.552 \mathrm{MHz}=9 \times 728 \mathrm{kHz})$. This carrier is differentially modulated by the digitally encoded signals for both channels of the stereo pair. The present 6 MHz f.m. sound channel is retained in the interests of compatibility with current mono receivers.

The digital subcarrier is quadrature (four phase) PSK modulated: each resting carrier phase represents two bits of data, thus halving the bandwidth required. Because of the differential encoding (DQPSK) only the phase changes have to be detected at the receiver, the bits to phase change relationships being as follows: $00=-0^{\circ}$ phase change; 01 $=-90^{\circ}$ phase change; $10=-270^{\circ}$ phase change; $11=$ -180° phase change.

Pre- and de-emphasis to CCITT recommendation J176.5 dB boost or cut at 800 Hz - is applied either while the sound signal is in analogue form or by means of digital filters while it's in digital form. The left and right channels a. : cimultaneously sampled at 32 kHz , then coded and quantized separately to 14 -bit resolution and transmitted alternately at a frame rate of 728 bits per millisecond ($728 \mathrm{~kb} / \mathrm{sec}$).

The NICAM compander processes the 14-bit samples in

Fig. 4: Coding scheme for NICAM 728 companding.

Fig. 5: NICAM 728 frame multiplex.
the manner shown in Fig. 4. The rule for disregarding bits can be summarised as follows: the most significant bit (MSB) is retained and the four following bits are deleted when they are of the same consecutive state as the MSB; if this leaves a word of more than ten bits the excess bits are deleted from the region of the least significant bit (LSB). A single even parity bit is added to check the six most significant bits in each word. The data stream is then organised into blocks of 32 11-bit words in twos complement form.

The magnitude of the largest sample in each block is then used to determine a 3 -bit scaling factor, which is encoded into the parity bits for that block. A majority decision logic circuit is used in the receiver to extract the scale factor - this process also restores the original parity pattern.

Two blocks of data are then interleaved in a 16×44 (704 bits) matrix to minimise the effects of burst errors. Adjacent bits in the original data stream are now 16 bits apart.

A transmission frame multiplex of the form shown in Fig. 5 is then organised. Additional bits are used as follows: eight bits form a frame sync word (framing word); five control bits select the mode of operation ($\mathrm{C} 0-\mathrm{C} 4$); eleven additional data bits are reserved for future developments. The modes are as follows: stereo signals consisting of alternate channel A and B samples; two independent mono signals transmitted in alternate frames; one mono signal plus one $352 \mathrm{~kb} / \mathrm{sec}$ data channel on alternate frames; one $704 \mathrm{~kb} / \mathrm{sec}$ data channel; other ideas not so far defined.
After the interleaving of the 704 sound data bits ($64 \times$ 11-bit samples) the complete frame, except for the framing word, is scrambled to provide energy dispersal. This is

Fig. 6: Decoding the NICAM 728 stereo signal.

Fig. 7: DQPSK signal decoding.
done by adding via exclusive-or logic a PRBS of length $2^{\prime \prime}-$ 1. The PRBS generator is reset on receipt of the framing word.

To limit the bandwidth the data stream is passed through a spectrum shaping filter that removes much of the harmonic content of the data pulses. This, combined with the action of a similar filter in the receiver, produces an overall response that's described as having a full or 100 per cent cosine roll-off.

The data stream is finally divided into bit pairs to drive the 6.552 MHz subcarrier's DOPSK modulator.

Decoding NICAM 728

NICAM 728 decoding is shown in block diagram form in Fig. 6. The secondary sound channel's subcarrier appears at either 32.948 MHz or 6.552 MHz depending on the arrangements used in the receiver's i.f. strip.

The spectrum shaping filter forms part of the system's overall pulse shaping and has an important effect on noise immunity. Overall filtering ensures that most of the pulse energy lies below a frequency of 364 kHz (half bit rate).

The QPSK decoder recovers the data stream which is scanned by the framing word detector so that the start of each frame is located in order to reset the PRBS generator. The PRB sequence is then added to the data via the exclusive-or gate to provide descrambling (energy dispersal signal removal). De-interleaving is also synchronised by the arrival of the framing word. Standard procedures are used for error control, which is carried out within an i.c. The operating mode detector searches for the control bits $\mathrm{C} 0-\mathrm{C} 4$ to set up the data and audio stage switches automatically, the data outputs being those for the 352 or $704 \mathrm{~kb} / \mathrm{sec}$ data channel options. The expansion circuit functions in a complementary manner to the compressor, but uses the scaling factor to expand the 10 -bit data words into 14 -bit samples. The data stream is finally converted back into analogue form for feeding to the audio amplifier stages. These should be designed to a very high standard the audio quality provided by NICAM 728 approaches that of the compact disc.

The DQPSK decoder is a particularly complex item
that's fortunately available in i.c. form - the block diagram shown in Fig. 7 is very much simplified. The two main sections are concerned with recovery of the carrier and the bit-rate clock. The first section employs a voltagecontrolled crystal oscillator running at 6.552 MHz and two phase detectors to regenerate the parallel bit pairs, which are referred to as the I and Q signals (in-phase and quadrature). A second similar circuit, locked to the bit rate of 728 kHz , is used to synchronise and recover the data stream. Parallel adaptive data slicers square up the data pulses and the DQPSK signals are then decoded by differential logic. The bit pairs are finally converted to serial form.

A practical decoder incorporates a further phase detector circuit driven from the Q chain. This is used as an amplitude detector which generates a muting signal if the 6.552 MHz subcarrier is absent or fails. The audio system is then switched over to 6 MHz f.m. mono sound.

Current Status of NICAM 728

Both the BBC and the IBA are currently involved in a transmitter replacement programme and plan to add NICAM 728. The BBC has announced that a regular service with NICAM 728 is unlikely to start before 1991, but the IBA has hinted that its services could start earlier. In the meantime, the Swedish and Hong Kong broadcast services have taken up the system and expect to be operational some time this year. As a result of the similarities with the MAC/Packet systems it's expected that chip sets for decoding will soon be available at a reasonable cost. Texas Instruments and Toshiba have both stated that they could have chips available at very short notice, while JVC has announced that it already has a TV receiver and VCR with digital stereo capability ready for launch as soon as the services come into operation.

Correction

Finally, a correction to Part 2 last month. 2" - ' in the first line of the second column, page 271 , should have read $2^{n}-1$. As printed there would be only four PRBS states instead of the seven listed in Table 2.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

GRUNDIG CUC220 CHASSIS

After the set has been running for about twenty minutes the chopper transformer starts to buzz. This increases, with increased contrast or brightness. Eventually the set will go to standby intermittently. All the secondary supplies seem to be in order.

Replace R632 (100k Ω), C631 ($100 \mu \mathrm{~F}$) and R631 $(0 \cdot 68 \Omega)$. If the problem remains the TDA460) chopper control chip IC631 is suspect.

FERGUSON 3V23

The picture is stable but there's very bad flutter on sound. This fault got worse over a period of six months and is now so bad that listening is unpleasant, especially with tapes recorded by the machine. Changing the main capstan drive belt has had no effect. I've bought a second machine to use while the first is put right and find that the same fault is beginning to occur with this one.

First check that the back-tension is correct and not varying - watch the back-tension lever in operation. If this is all right listen to the sound carefully. If the problem is amplitude variation (loud/soft) try zenith adjustment of the audio head - tilt its top slightly outwards. If the problem is frequency variation (wow) concentrate on the operation of the capstan. Clean the capstan and pinch roller - replace the latter if it's eccentric or binding. The capstan speed could be varying due to a faulty motor, but check the capstan servo circuit first, setting up as outlined in the manual - an oscilloscope is almost essential for this.

ITT CVC9 CHASSIS

There are horizontal black lines at the top of the picture, in bands, decreasing in intensity from the top of the screen. Very occasionally these lines are not present. Various items in the line/field blanking circuits and the line output stage have been checked.

A common cause of this problem is ringing in the scan yoke (field section) or the pincushion distortion correction transductor. Check the following: R364, R362 (pincushion amplitude), L125 and R354 (vertical shift). A dry-joint on the transductor L121-4 or one of the above components is quite common.

PHILIPS CTX-E CHASSIS WITH TELETEXT

There's a great disparity in the brightness levels between teletext and programme displays. When the brightness is set for a normal picture the teletext is blindingly bright. Are most sets sold like this? I gather there's no means of adjustment.

The amplitude of the teletext display is set by a small potentiometer which is situated between the SAA5050 character generator chip and plug V5. There are two potentiometers in this area on the teletext decoder board. The one nearest the edge adjusts for minimum judder in the mixed mode, the one that's farther in setting the brightness. These adjustments are not present on later boards. With these the teletext and picture brightness can be set separately by means of the remote control handset.

FERGUSON 3V22

Considering its age this machine records and plays back quite well. The problem is that with prerecorded tapes the colour smears to the left. Adjusting the tracking control alters the condition for a second or so, then the colour returns to its original position.

This problem can be caused either by incorrect tape path alignment, which is common with later versions of the 3 V 22 , or by incorrect or varying drum or capstan speed. By adjusting the tracking control you are momentarily altering the drum speed so that the position of the heads with respect to the information on the tape alters, hence the fault clears momentarily. The action required to restore correct operation is to replace the belts, pinch roller and take-up clutch, then go through the full alignment procedure for the audio/servo board, taking particular care with the drum and capstan adjustments. If the problem persists, use a scope to check the pulses from the control and pickup heads. Finally, it may be necessary to carry out complete realignment of the tape path.

ITT CVC1203 CHASSIS

When this set first came in we found that the mains bridge rectifier's reservoir capacitor C658 was leaky. Prior to this the set was reported to have "gone off" on a few occasions. No fault was noticed during a three day soak test, so as a precaution the chopper and line output transistors were replaced and the $h . t$. was checked. The set is now going off again, the first symptom being loss of station before the set reverts to the standby mode.

We suggest that you start by replacing R716 (150k Ω) in the power supply and $\mathrm{C} 614(100 \mu \mathrm{~F})$ in the line generator circuit: these components are troublesome in this chassis. If necessary then suspect the 12 V regulator chip IC751 (type 7812) - after checking for dry-joints around the chopper and line output transformers.

NEC PVC470E

After replacing the video heads the picture obtained is excellent. Record and playback of tapes recorded since the head change is normal but with tapes recorded before the head change there's a tracking problem which is usually confined to the lower part of the picture. The problem can be described as bright white blips with small tails. Moving
the tracking control either way from centre makes the problem worse, i.e. more blips with horizontal white lines. I suspect that the drum entry guide needs adjustment.

You are almost certainly right in suspecting that a tape path problem is present. Since the mistracking is mainly confined to the bottom of the picture however it's more likely that the problem lies with the exit guide. Before carrying out adjustment (consult the manual) clean the guide, head drum assembly etc. thoroughly and ensure that the head screws are tightened evenly.

303
Each month we provide an interesting case of
TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

This month's test case concerns an Hitachi VT8500 VCR, though the symptom and cure would apply equally to any VCR, whether of the VHS or Betamax format. It was a puzzler indeed. Since solving it however we've come across similar symptoms in other machines - and in every case the cause of the problem has been the same.

The fault was confined to the recording process: playback of a known good tape was perfect every time. When a tape recorded by the machine was played back the picture tended to roll and judder vertically - whether played back on the machine itself or another one. Vertical stability of the monitor's picture depends on the field sync pulses of course, so our first step was to hook an oscilloscope to the playback head amplifier.

The display on the scope's screen is shown at the top in Fig. 1. An unusual sight: the leading edge of every other r.f. envelope from the heads had a hole in it, wide enough to knock out some of the field sync pulse - which is almost the first thing to be recorded during each head sweep across the tape. The edges of the holes were quite steep and sharply defined, quite unlike the bottle-neck effect produced by a misaligned tape entry guide. Guide problems seemed unlikely anyway since the r.f. output envelope from one head was perfectly square and normal. Surely any

Playback R. E envelope

Drum flip-flop pulses
Fig. 1: Top, the waveform at the faulty machine's playback head amplifier. Bottom, the correctly timed 25 Hz drum flipflop waveform.
mechanical problems would effect both heads equally? We couldn't imagine any tape path or head faults that would give rise to this strange effect. So it seemed to be some sort of electrical fault.

When we monitored the luminance writing current during record we found that it was continuous and of the correct amplitude. Next we closely examined the 25 Hz drum flip-flop pulse waveform during record and playback. It was straight-sided, symmetrical and correctly timed, as shown at the bottom in Fig. 1. In desperation we phoned the owner and quizzed him closely on how and when the fault had developed. It seemed that the machine had been perfectly all right until it had been taken to a repair shop (not ours) with the complaint "woolly sound". Since being returned with a hefty bill the sound had been better but the picture had bounced and rolled like a ball. Our morale sank. The "fault" may have been the result of hamfisted twiddling, modification or bodgery . . .

In an attempt to analyse the fault symptom in greater detail we played back the tape on another, good machine and watched the playback r.f. envelope. The results were just the same. As soon as the section of tape recorded by the Hitachi machine changed to the machine's own recording the shape of the envelope returned to normal. We noticed a strange effect however, and this was the key to correct diagnosis. Two or three seconds before the end of each playback of a test recording session on the Hitachi machine the shape of the r.f. envelope returned to normal the hole had disappeared! This happened regardless of the machine used for playback. Suddenly we knew the answer! What was it? See next month.

ANSWER TO TEST CASE 302 - page 291 last month -

The situation outlined last month arose from inexperience on the part of the technician sent to deal with the problem in the field. The very bright raster displayed by the 16in. ITT set couldn't have been caused by an increase in the c.r.t.'s cathode voltages - indeed the increase was a result of the technician's reaction and that of the beamcurrent limiter circuit to the high brightness fault, the technician backing off the manual brightness control while the beam-limiter circuit pulled down the contrast level, both in ineffectual attempts to restore a normal display.

As Sage quickly twigged, the key to the problem lay in the fact that adjustment of the tube's first anode voltage had no effect on the brightness of the raster. It should have done! His conclusion was that the first anode voltage was excessively high and was unaffected by the first anode potentiometer's setting. At no time had the field technician checked the voltage at pin 10 of the tube! The cause of the trouble lay in R46A of course: this resistor links the earthy side of the potentiometer to chassis, forming part of the potentual divider chain. Its body had cracked.

The value of R 46 A is $750 \mathrm{k} \Omega$, which is not normally carried as a spare - it's not a preferred value. Since the technician didn't have two $1.5 \mathrm{M} \Omega$ resistors to connect in parallel he fitted an $820 \mathrm{k} \Omega$ resistor and readjusted R47A to obtain the correct black level.

[^2]

KENT TRADE SUPPLIES

2 Forstal Road, Aylesford, Maidstone, Kent ME20 7AU.疋 TELEPHONE 0622 79313/78136 OPEN 9am-6pm MONDAY-SATURDAY

EX RENTAL VIDEOS

3V22 AND 3V16 WORKING FROM £59.00 3 V22 NON WORKING COMPLETE FROM £29.00 3 V22 INCOMPLETE FOR SPARES ONLY £17.50 ELECTRONIC VIDEOS

3V30 WORKING FROM £79.00
3V30 NON WORKING BUT COMPLETE
FROM £45.00
3V30 NON FOR SPARES ONLY FROM £22.50

ALSO SHARP - AKAI - GRUNDIG - HITACHI - MITSUBISHI - VHS atc P.O.A.

EX RENTAL COLOUR TV's

LATE SETS IN WORKING ORDER TELETEXT MODELS FROM £59.00 REMOTE CONTROL SETS FROM $£ 30.00$ OLDER TV's 8,800 8,500 IN WORKING ORDER FROM £10.00 NON WORKERS FROM £3.00

FOR DETAILS OF OUR CURRENT STOCK TELEPHONE: ANDY
 TODAY

HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS VCR SERVICING (3 WEEKS FULL TIME) DATE ON APPLICATION TUITION FEE $£ 575$ FUL TIME 1 YEAR BTEC NATIONAL CERTIFICATE ELECTRONICS ENGINEERING 1. T.V. \& VIDEO (Electronic Equipment Servicing) 2. COMPUTING TECHNOLOGY (Micro Processors, Communications and Interfacing) 3. INFORMATION TECHNOLOGY (Satellite TV, CD, Networks) 4. SOFTWARE ENGINEERING (Assembler, BASIC, PASCAL, CADCAM) Courses commencing 25th April 1988. Unemployed may be eligible for new JTS grant support. Further details from: LONDON ELECTRONICS COLLEGE (VC Dept.), 20 Penywern Road, Earls Court, London SW5 9SU. Tel: 01-373 8721	

LINE OUTPU	RANSFORMER IT \& CARRIAGE	
TRANSISTORS, IC's, ALSO STOCKED.		
BAIRD: $8290,8752,8773,8180 \quad 12.00$	ITT: VC200 to VC,402 CVC1, CVC2 (FORGESTONE)	
RANK BUSH MURPHY		
A774 with stick rectifier 9.78	CVC25, CVC30, CVC32, CVC45 9.20	
A816, T16, T18, 2712,2715	CVC800, 1100, 1150 , CVC40 P.0.A.	
T20, T22, T26, 2179, A823 11.50	CVC1200, 1204, 1210, 1215, 2600 P.0.A.	
2718 Basic unit 13.50	PYE: 169, 173, 569,368 9.20	
OECCA: 1210, 1211, 1511	CT200, CT200/1, CT213 10.35	
1700, 2001, 2020, 2401, 2404	$725-731,735,737,741 \quad 9.78$	
CS1730, 1733, 1830, 1835	PHILIPS: 170, 210, 3009.20	
$30,70,80,90,100$	320 series 9.78	
120, 130, 140, 160 P.0.A.	TX, T8, TX2, TX3 mono P.0.A	
FERGUSON, THORN: 1590, 15919.20	68 and 69 Series $\quad 99.20$	
1690, 1691. buitt in rect. 9.78	KT2. KT3. seriesCTX G11. K30. K4. K40. split diode P.0.A.	
1600, 1615, 1700, 1790 P.O.A.		
3000, 3500, 8000, 8500, 8800 P.0.A.	BINATONE: 9909, 9860, 9488 P.0.A.	
9000, 9200, 9300 series 12.00	OORIC Mk3, Mk1SONY KV 1400, 1612, $2000 \quad$ P.O.A.	
$9500,9600,9650$ series 10.99		
9800, TX9, TX10,7X90, TX100 P.0.A.	GRUNDIG: most models in stock	
MOVIESTAR 3781, 3787, $8180 \quad 12.00$	NORDMENDE: 8290, Z206, 7306 P. 0. A.	
TX10 focus unit 10.87	SANYO: 5101, 5103, 7118, 7130 P.O.A. SHARP: C1851H, C2051H, 1405 P.O.A.	
FIDELITY: FTV12 mono 10.35	TOSHIBA: C800, C800B P.O.A.	
ZX2000 ZX3000 16.43	TANOBURG: 190, CIV2, CIV3 P.0.A. TELEFUNKEN: most models in stock	
G.E.C. 2047 to 3135 mono 9.20 TELEFHNKEN: mosi models in stock HITACH: 1471, CPB260, 2521 P.O.A. 1201H, $1501 \mathrm{H}, 2114,3133,3135$ 9.20 AMSTRAD: CTV2200, CTV2210 P.O.A.		
DUAL \& SINGLE hybrid col. 10.00 SINGLE STD solid state 12.00 SINGLE STD split diode P.0.A.		
	Shop callers welcome.	
INDESIT: 24EGB, 12LGB, 12SGB 10.35	Tidman Mail Order Ltd.,	
WINDINGS	236 Sandycombe Road,	
TYNE: main winding 6.89	Richmond, Surrey TW9 2EQ. Approx. 1 mile from Kew Bridge.	
RBM: T20, T22, T26, 2179		
WALTHAM: W125 eht winding 233	Phone: 01-948 3702	
WALTHAM: W190, W191 eht coil 6.00		
KORTING: hybrid winding 6.90	1.30-4.30 pm	
THORN: 8000, 8500, 8800 eht 6.70	Sat 10 am to 12 noon.	

BRPAK BARCADIM,

DIODES \& SCRS

30 Assomed voll Zeners. Sornw iw

 SiA Diodes like DAZ20VBAX $13-16,402200 \mathrm{~mA}$ Assoted Sill Rectulers 1 A - 10 A , mixed woll
IN4002 Sil. Rectifiers. IN4002 Sil. Rectifiers, 141000 , preformed prec
 SCR's 800 MA , 200, 2 N 5064 , plastic. TO92 OA991 point contact germanum Diodes, uricoded 50 DA47 gold honded germanum Diodes. un
50 OAT/ 79 detector germanum Diodes.
50 OAs0 type germanium Diodes. uncoded
 20 SA Sud Rectifiers, $50-4000$, assorn

 Diac BRIOO itrac trgge
TRANSISTORS
Sil Transistors. NPN plastic, coded. with data
0 St. Transistors, PNP plastic, coded., with dazaa

0 PNP Sil Switchng Transisters

5 TISSO SII, Transistors, NPN 400400 mA Ale $100+$ TO92F1.00

ZTX107 Silies Sil Transistors. PNP plasic
2TX107 Sil Trans stors. NPN eqM BCIOD plastic

BFT33 NPN Si. Transistors, 80, 5A Hie50 200 TO39

TRANSIST Description
 TRANSISTO Description SM1522 PNP

OCT5 germanium RF Tfansisitors
Pioglammable Uniuunctorn Transistors. MEU2z
Progiammable Uniunction Transistors. MEUZ2
FETs UHF:VHF Amplifiers, swicting \& choppers, to KT s generay purpose like $2 \times 33819-2 \mathrm{~N} 5457$, data MOS-FET: Signetics, SO 304
IXXOO NPN Sticon Trancinas
MPSAOF SA Stricon TransIstors 8 . 500 ma He50 + tog
 2N3os5 Sid Power Transistors. I Lult spec

$$
{ }_{0}^{\text {I.C.S }}
$$

$$
\begin{aligned}
& \text { C.S all new gates } \\
& \text { ned IC. DiL Sockers }
\end{aligned}
$$

$$
\begin{aligned}
& \text { es - Fip fiop } \\
& \text { kers, } 840 \text { pin }
\end{aligned}
$$

ALl GATES" new
"All GATES" new
larm Whike plasicic body with mounting brachel. Power 1200C 150mA

0000 Centre HF cone
Hug-in fielays. Mixed volts,
lastic Vice, small, with suction basa
Unive ISal Tastet, wert ceramic
6 Pc SIANEY ScrewdriverPrck-up rool, spring loadedHeiping Hand
WatchmakersMrimatere Side Cutters
Minature Berm nose Phers
Inversal N-Cad Battery Charger AA-HPII-HPZ PHPAA N-Cad 8atheries 125v 500mAH C/RC-HP11 Ni-Cad Batteries Rechargeable
Tw Oualiv Low Coss Solderiog ImoSww "Lighweight" Duabity Low Cost Soldering Iron. 240uACH.30ong Finger Gino Sodivstable
50 gramsAtching Pen Elch resistant Spare eip. BiveHere Solder 5 m lotal. 10 and 22 SWGComplete with ron stand and sponge. Strong metal construction anith
Etch Resiss PCC Transiter Sheeis. Asst symbolshmes

Plece Needla File Se
et of 4 nun. low cosi Side \& End Cutrers, snipe \& combmaton Pliers 5
sul handles
Toas
Tooscription
18 Pc Hax Wrach Keys AF sies in walle!
is PC Hex Key Wrench Set SAE ind Ment
Crenping Piers. Wire Strippers \& Boli Cutie
ad Action Strpping Prers Adustable iawGnp Locking Pliers
Long Nose Grp Locking Pu
. Adustable Wrench Forged alloy ste

Screwdiriver 400 mm long. 6 mm hat blade

Pc high quality Screwdrver

LEADS

2m vereak Lead Lead 2 pin DIN Plug to 2 pin DIN Skı. 1 tore cabte ind scrented 5 pin OIN Plug-5 pin DiN Plug fran
Cr
m TypewirterCAlculator Lead 3 pin Plug. ang led European IEC cosocm Patch Lead. Pl259 Plug to PLuss Plug12 m Patch Lead PL259 Plugg to PL2599 Plug$2 m$ Lead 4 Phono Plugs to of Ptono PlugsIm Lead Scart Plug to 5 pin DiN Plug \& 2 ENC Plugs2 m Vad Scart Plug to 5 pin DIN Plug \& 2 BNC Plugs3m Headohone Lead. 35 mm Jack Plug to 35 mm Jack Sk2m Coax Lead BNC Plug to BNC Plug 75 ohms
2 m Coax Lead BNC Plug to UHF Plug. 75 ohms
ternone aceessories
Trleotone Ext Lead. Plug to SockerJouble Adaplor. One 1OC plug. 2 socketIDC Telephone Plug 4 way

WANTED URGENTLY

Ex-rental Video and TV buyers large and small for new Wholesale Business in Coventry.
We do not claim to be the No 1, or the largest, or the best, or have 1,000 's of TV's in stock. Just fair stock at a fair price.

Full working and genuine, untested, available

"SOUND REFRESHING"?

Well, give us a call. 3 minutes from Junction 3 off M6 Motorway.

Ring D.S.M. on 0203-644004

UNIT 6,
68 BAYTON ROAD, EXHALL INDUSTRIAL ESTATE, COVENTRY.

CREWE WHOLESALE TELEVISION CHESHIRE'S LARGEST WHOLESALERS - OVER 18,000 SQ. FT. 15 MINUTES FROM JUNCTION 17, M6

 OVER 7000 TV's IN STOCK NOW!

 OVER 7000 TV's IN STOCK NOW!
 (Including hundreds of text working and off the pile) G11's, G11 Text, Bush T-20 upwards, 8,500, $8,800,9,000,9,600,9,900$, full remote TX, TX Text, Finlandia, G.E.C., K30, KT3, Grundigs, ITT's, Trimlines, 800, CVC 40 and 30's, Decca 80's and 100's, Doric 3's, 3A's and 4's, and cable with translators. Philips KT30-3-45 stand \& text.

 VIDEOS

 VIDEOS
 VHS - MECHANICAL HITACHI,
 BETAMAX - SONY, SANYO, TOSHIBA, etc. (Working or untouched)

 RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS

 RING NOW FOR THE LATEST PRICES ON TV's \& VIDEOS

 BULK SUPPLIES AVAILABLE - RING DAVE ON HOT LINE CREWE 582924

 BULK SUPPLIES AVAILABLE - RING DAVE ON HOT LINE CREWE 582924

 CREWE WHOLESALE TELEVISION

 CREWE WHOLESALE TELEVISION
 Williams Street Warchouse, Crewe, Cheshire. 80270582924

NETTO

T.V. AND VIDEO SALES NOW COVER THE COUNTRY

SUPPLIERS OF EX-RENTAL T.V. AND VIDEO AT TRADE PRICES
 WORKING OR NON-WORKING THE CHOICE IS YOURS
 THE PRICES ARE RIGHT!

UNIT 2 COUNTY BLDG. RACECOURSE IND. ESTATE ORMSKIRK RD., LIVERPOOL

L9 5AL
051-530-1285

UNIT 1A LYON ROAD LINWOOD IND. ESTATE LINWOOD, RENFREWSHIRE PA3 3BQ 0505-29284

UNIT 5 PORTVIEW ROAD BRISTOL
BS11 9LQ
0272-235093

7/8 KINGS GROVE IND. ESTATE
INVINCIBLE ROAD, FARNBOROUGH HANTS. GU14 7QS 0252-540814

VHS VIDEOS

 FERGUSON3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

HITACHI 5000, 8000
NATIONAL PANASONIC
NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP

620, 630, 640, 2300 H T/P Untested from $£ 70$

BETAMAX VIDEOS

SANYO VTC 9300, 5300 SONY C5, C6, C7 Untested from £25
HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS £5 VHS/Beta tapes used from 40p each
Sorry must collect as we do not send through the post.

PLUS

$17^{\prime \prime} 18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from f 8 . Also available CTVs Remote Control \& Teletext All prices subject to 15% VAT Discount for Quantities Complete loads delivered from pick up point

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

BECOME A VIDEO ENGINEER IN 3 WEEKS AT HOME

We are able to offer a video training course which will bring rapid results using

AUDIO VISUAL TECHNIQUES

Course package includes video fault diagnostic tape - Easy to follow instruction on audio cassettes - And a full set of comprehensive notes and diagrams.

FULL TECHNICAL SUPPORT INCLUDED WITH COURSE

We will also provide a technical back up service to deal with any problems you may have.

SHORT PRACTICAL COURSES AVAILABLE ON COMPLETION

For full details write to:
AUDIO VISUAL SERVICES
Saba UK Service Point
Video Training Dept 34 Danbury Street LONDON N1 8JU
$\mathbf{£} \mathbf{f} \mathbf{O F P R O F I T} \mathbf{£} \mathbf{f} \mathbf{f}$

TME 3

New and rebuilt for most makes of T.V. including: Hitachi, Panasonic, Philips, Thorn, Toshiba, Sharp, Sony Mullard 20AX, 30AX etc Thorn New Life now in stock
Two year guarantee with a four year option. Tube fiting service available.
Cash or credit allowed for certain types of In-line glass. Price list available on request
EXPRESS T.V. SUPPLIES The Mill, Mill Lane,
Rugeley, Stafts.
08894-77600
(9.00-6.00 Mon-Sat)

Bristol
0454-316285
(After 4pm)

2 nePrart
 TV \& VIDEO WAREHOUSE

We are a new Trade supplier of ex-rental TV and Videos. Top quality stock Working and non working. A good range in Philips, JVC, Sony, Toshiba, Hitachi, Teletext and National Panasonic colour TVs

All working stock professionally serviced to showroom standards

COME ON DOWN THE PRICE IS RIGHT!

CONTACT BRIAN MOLLETT

TAYLOR

T.S. 20088 WAY U.H.F. T.V. DISTRIBUTIDN AMPLIFIER

HUSSAIN CENTRAL TU LTO.

The UK's LARGEST INDEPENDENT WHOLESALER OF EX-RENTAL TV \& VIDEO

OON' TRAVEL THE UK LOOKING AT "BUTCHERED JUNK" CALL INTO YOUR
LOCA THE BESTON OF TIN
 Ask For Idris "FORGET THE REST AND SUPPLIED WITH MOST OF OUR WORKING STOCK
THE BEST STOCK Thorn - Philips - Pye bulk enquiries welcome. 599 HCTVUK. Choose from Thexport and bulk 1023 - Telex: 333599 HeTvery it.

We have become No. 1 through our policy of supplying a good quality product with efficient and friendly service.

WHY NOT RING YOUR LOCAL BRANCH NOW

${ }^{\mathrm{I}}$

ELECTRONICS

C.T.U.'S

UIDEO'S
AUDIO
FOR ALL THORN EX-RENTAL C.T.V + VIDEOS
ALL ENQUIRIES WELCOME — U.K. - PLUS EXPORT

CALL NORMAN OR GLORIA ON: 0217795734 FOR FRIENDLY ADVICE \& COURTEOUS SERVICE OR CALL FOR TEA \& COFFEE AND JUDGE FOR YOURSELF!
Unit 18, Tile Cross Trading Estate, Tile Cross Road, Marston Green, Birmingham

PLEASE PHONE BEFORE CALLING
LOCAL DELIVERY FROM ACCRINGTON, LANES
Phone enquiries and letters to:
Apollo, The Potters Wheel
Mullion Cove, Mullion, Nr. Helston, TR12 7ET

BARRY TV SERVICES WHOLESALE

 BUYING TV'S and VIDEO'S?
THEN LOOK NO FURTHER

QUALITY - QUANTITY AND A QUESTION OF PERSONAL SERVICE IS G/TEED. THE PRICES ARE RIGHT SO DON'T DELAY
MAKE MONEY TODAY
TEL. 0223862924
UNIT 4 \& 5, WINBORN BUILDING, CONVENT DRIVE, WATERBEACH, CAMBRIDGE
 VIDEO SPARES FAST ex-stock! please) FULLY MOTORISED FROM ONLY £449 + VAT! YES £449 + VAT CALL TODAY
SATELLITE SYSTEMS NOW
AVAILABLE BY AMERICA'S
LEADING NAME R.L. DRAKE FROM ONLY £299 + VAT
TRADE (Trade Enquiries from
LIC (SPARES)

ORDERS BEFORE 4.00 P.M. - SAME DAY DESPATCH! LIST PRICES EXCLUSIVE OF VAT ORDERS UNDER £50 ADD E1.00 P\&P

90B CLEVELAND STREET, LONDON W1P 5DR

	$\overline{\text { ADS }}$	
PANASONICORIGINAL HEADS		
cinveren		4
\%		
Nisbe	¢H1	${ }_{\text {cex }}$
		${ }_{\text {20, }}^{20}$
Wenc		\%ent ${ }^{\text {mat }}$
NTS50		come
NTM300270007	Kethe	${ }_{0}^{40}$
Noseme		${ }^{40}$
SONY/SANYO ORIGINAL HEADS		
		${ }_{\text {unso }}^{\text {unso }}$
(e)		cex
	cose	ceicio
		4

	Do you use cathode ray tubes?
DISPLAY	Can't find a replacement or shocked by
ELECTRONICS LTD.	It may well be that a rebuill tube will solve your problem.

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WE ARE LOCATED IN UXBRIDGE
At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the M25/M3, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD. UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

Universal Semiconductor Devices Ltd. UNIT 4, SPRINGFIELD ROAD,
CHESHAM, BUCKS. HP5 1PU, ENGLAND.

TEL. 0494 791289/TELEFAX. 0494791296
TELEX 837707 usdco g
WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE fROM STOCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIFOLARS - GERMANIUM AND SILICON
SMALL SIGNAL
POWER
DARLINGTONS - ALL SHAPES AND SIZES
VHFIUHF DEVICES - ALL SHAPES AND SIZES

FETS - POWER MOSFETS UNIJUNCTIONS

dIOdES - GERMANIUM AND SILICON RECTIFIERS ANO BRIDGES OPTO-ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZES
THYRISTORS AND TRIACS - ALL
雨

SHAPES
SIZES

INTEGRATED CIRCUITS:
CONSUMER - DIGITAUANALOGUE
MICROPROCESSORS AND PERIPHERALS
IC SOCKETS

CATALOGUE

1988 CATALOGUE IN PREPARATION. WE WOULD ASK ALL NEW CUSTOMERS TO enauire by letter; TELEPHONE; TELEX OR FAX FOR THEIR REQUIREMENTS. WE WILL GIVE PRICE AND DELIVERY BY RETURN.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

CLEARANCE SALE

We are moving

 to a new warehouse. No reasonable offers refused on any stock.TELETRADERS
Forde Road, Brunel Industrial Estate, Newton Abbot, Devon
Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

BOLTEN LTD.

63, JEDDO ROAD, LONDON W12 9EE. Tel: 01-749 0915 (2 lines)
Telex: 262421 GENUS G
Fax: 01-749 9469 VIDEO HEADS
Sony Universal (1 Pin-Head)
£22.99
Sony Universal (2 Pin-Head)
Sony SLF-1/C-20/C-30
Sony C-9.
Ferguson/JVC/Akai Universal
National Panasonic Universal
National Pan. (370/380/100)/Phillips VCR6460
National Pan. (230/250/270/470/480)
National Pan. (430/460)
National Pan. ($330 / 770$)
National Pan. (366-4 Pin Head)
National Pan. (730)
National Pan. Industrial
Hitachi 5000/5500 (Not Genuine)
HitachiVT11NT33NT14
Hitachi VT8000/6500/9500.
Toshiba 9600
Sanyo VT5000 (Genuine)
Sanyo VT9300 (Genuine
Sharp $£ 22.95$
$£ 27.99$ £27.99 $£ 44.99$
$\mathbf{£ 2 1 . 9 9}$ $\mathbf{£ 2 1 . 9 9}$
$\mathbf{f} 21.99$ $£ 21.99$
$\mathbf{£ 2 7 . 9 9}$ $£ 27.99$
$\mathbf{£} 6.99$ $£ 36.99$
$\mathbf{£ 2 9 . 9 9}$ $£ 29.99$
$£ 36.99$ $£ 36.99$
$\mathbf{£ 4 4 . 9 9}$ $\mathbf{1} 44.99$
$\mathbf{~} 48.99$ $\Gamma 48.99$
$\mathbf{~} 62.50$ $\mathbf{5} 62.50$
$\mathbf{f} 24.99$ $\mathbf{f} 24.99$
$\mathbf{f} 24.99$ $£ 24.99$
$£ 24.99$
$\mathbf{£ 2 4 . 9 9}$
$\mathbf{£ 3 3 . 0 0}$
£ $\mathbf{~} 44.00$
$\mathbf{~} 44.95$
£44.95
$\mathbf{~} 44.95$
$\mathbf{f} 29.50$
$\mathbf{f} 29.50$
Fisher Universal Eq. PVHD720
E26.50
427.99

Amstrad (7000) $\mathbf{~} 27.99$
$\mathbf{~} 27.99$
Triumph ($9500 / 9501 / 9525$)
Belt Kits (Most Models)
Pinch Wheels (Various Models)
Sonv Idler Kit C5/C7
Sony Ider Kit C6
Remote Controls (Various Models)
$\mathbf{f} 3.99$
$\mathbf{f} .95$

OTHER ACCESSORIES
Loading Brum/Reel Motors, Mod kits, I.C., Idler Assy, Gear Idler Assy, Reel \& Loading Belts, Reel Drive Pulley units, Take-up Idlers, Cassette Loading Roller Assy, Take-up Clutch, Cassette Housing Assy, Cassette Lamp, Carm Gear, Upper Drum Assy, and Leads available in most models. Please call for full list. Please add 15% VAT plus $£ 1.00$ p\&p per order.
Delivery within 7-14 days subject to availability.

BRITAIN'S

LARGEST SUPPLIERS

OF

EX-RENTAL TV AND VIDEO SPECIAL OFFER BETA
SANYO C5, C6, C7, C9 FROM

£20

VHS

$$
\mathbf{£ 6 0}
$$

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. COLOUR TV from $£ 5$
CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES
FRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

\begin{tabular}{|c|}
\hline 2SA－473 \& ¢0．35 \& 2S8－545 \& 51.50 \& 2SC－1172 \& ［1．90 \& 2SC－2482 \& 10.40 \& 2S0．882 \& ¢0．35 \& AN． 7161 \& $\underline{22.50}$ \& TDA－2009 $\quad \mathbf{1 7 . 2 0}$ \& L－165V \& 92.80 \& \& \& REPLACEMENT \& $$
\text { RW. } 317
$$ \&

\hline 2SA－489 \& 50.45 \& 2S8－546 \& 51.00 \& 2SC－1173 \& c0． 40 \& 2SC－2501 \& ${ }_{50} 0.75$ \& 2 2S． 898 \& $\underline{2.60}$ \& AN． 7168 \& 92.60 \& TDA－2020 $\$ 1.40$ \& L－2000H \& E1．50 \& VIC－5500
VIC 9300 \& ${ }_{¢ 7.50} 90.98$ \& STYL WE Ha \& $$
\begin{aligned}
& R W \cdot 320 \\
& R W \cdot 321
\end{aligned}
$$ \& $$
\begin{aligned}
& 50.36 \\
&
\end{aligned}
$$

\hline 2SA－490 \& ${ }^{2} 0.60$ \& 2SB－548 \& $\mathrm{co}^{1} 32$ \& 2SC－1195 \& $\underline{52.50}$ \& 2SC－2502 \& 50.80 \& 2SD－982 \& 50.60 \& AN． 7213 \& $\underline{51.00}$ \& TDA－2030AH 51.86 \& L．2605CV \& $\underline{51.80}$ \& \& \& WE HAVE FULL \& RW－321 \& ${ }_{50.54}$

\hline 2SA－495 \& c0． 25 \& 2SB－555 \& 51.50 \& 2SC－1212 \& ¢0．55 \& 2SC－2537 \& ¢4．50 \& 2SD． 1135 \& ${ }_{8} 80.85$ \& AN－ 7218 \& $\underline{17.10}$ \& TDA－2030AVE2．40 \& MC-1458CP \& c0． 50 \& Shatp \& \& STHLUS MOSTLY \& RW－328 \& ${ }_{c} 0.81$

\hline 2SA－496 \& 50.45 \& 2SB－556 \& 51.50 \& ${ }^{2 S C} \mathrm{C}-1213$ \& 50.20 \& ${ }^{2 S C}$－2546 \& ¢0．10 \& 2SD－1138 \& ${ }^{50} 0.90$ \& AN－ 7220 \& ${ }_{51} 1.60$ \& TDA－2030 51.60 \& MC－1488P \& ¢0．45 \& VC－7000 \& 51.40 \& LAPANESE \& RW－329 \& £0．45

\hline 2SA． 564 \& ${ }^{2} 0.15$ \& 2SB－557 \& $\underline{525}$ \& ${ }^{2 S C}$－1214 \& 50.15 \& ${ }^{2 S C}$ S－2550 \& ¢0．75 \& 2SD－1265 \& ¢0． 65 \& AN－7222 \& ${ }_{50} \mathbf{5 0} 80$ \& TDA－2040H E2． 20 \& MC－1489P \& ¢0．45 \& VC－6000 \& 51.55 \& MOOELS：PLS \& RW－51 \& ${ }^{50.51}$

\hline 2SA－608 \& ${ }^{5} 0.05$ \& 2SB－560 \& £0．30 \& 2SC－1222 \& £0．35 \& 2SC－2555 \& $¢ 1.75$ \& 2SD－1273 \& ${ }^{50} 080$ \& AN－7223 \& 51.40 \& TDA－2040V 82.20 \& 2N－2219A \& c0． 30 \& VC－9300 \& ${ }^{20} 98$ \& ASK FOA FULL \& AW． 52 \& ${ }_{50.36}$

\hline 2SA－673 \& EDO^{20} \& 2SB－562 \& ${ }^{1} 0.30$ \& 2SC－1226 \& c0．75 \& 2SC－2564 \& 92.50 \& 2SD－1397 \& 51.55 \& AN－7224 \& 51.25 \& TDA－2530 $\quad \mathbb{\%} .70$ \& ${ }^{2 \mathrm{~N}-2369 \mathrm{~A}}$ \& ¢0．35 \& VC－6300 \& ${ }^{51.65}$ \& LSTT THE UNIT \& RW－54 \& ${ }^{c} 0.36$

\hline 2SA．677 \& $\mathrm{Ec}^{1} 30$ \& 2SB－566 \& $\underline{51.20}$ \& 2SC－1317 \& c0． 25 \& 2SC－2565 \& 12.80 \& 2SD－1398 \& $\underline{2.00}$ \& AN－7310 \& 50.60 \& TDA－2822 \& $2 \mathrm{~N}-3055$ \& ${ }^{2} 0.38$ \& VC－6100 \& 51.40 \& PRICE：$£ 2.60$. \& RW－56 \& ¢0．36

\hline 2SA．683 \& $\mathrm{c}_{0} .20$ \& 2SB－568 \& 50.15 \& 2SC－1318 \& £0．25 \& 2SC－2575 \& ¢0． 10 \& 2SD－1425 \& $\underline{5} 230$ \& AN－7311 \& ¢0． 90 \& \& 2N－3866 \& ${ }^{50.90}$ \& \& 51.40 \& \& RW－57 \& ${ }_{5}^{50.36}$

\hline 2SA．684 \& $\underline{50.20}$ \& 2SB－595 \& ¢0．80 \& 2SC－1327 \& ¢0．20 \& 2SC－2577 \& 51.25 \& 2SD－1426 \& $\underline{22.30}$ \& AN－ 7410 \& 51.50 \& TDA．3410 57.60 \& CD4009UBE \& c0．60 \& \& \& \& \& 36

\hline 2SA－720 \& 50.15 \& 2SB－596 \& c0． 85 \& 2SC－1328 \& £0．25 \& 2SC－2579 \& 50.95 \& 2SO－1427 \& $\underline{5.50}$ \& AN－7812 \& 51.50 \& TDA－3560 \& MLE－371 \& \& $$
\begin{aligned}
& \text { SONY } \\
& \text { SL-C5:C7 }
\end{aligned}
$$ \& 51.30 \& CARTRIDGES we have 9 \& LTHuM \&

\hline 2SA－726 \& ¢0．15 \& 2SB－647 \& 50.30 \& ${ }^{2 S C-1345}$ \& ¢0．22 \& 2SC－2611 \& 50.40 \& 250－1439 \& 51.60 \& BA－301 \& 51.00 \& TDA－3590 \& MJE－521 \& ¢0．35 \& $$
\begin{aligned}
& \text { SL-C5iC7 } \\
& \text { SL-8000 }
\end{aligned}
$$ \& $\underline{21.40}$ \& \& Coll \&

\hline 2SA－733 \& ¢0．07 \& 2SB－648 \& ${ }^{0} 0.50$ \& 2SC－1368 \& $\ldots 0.40$ \& 2SC－2551 \& $\underline{5.80}$ \& AN－203 \& 51.00 \& BA－308 \& 51.00 \& CA－3401E 50.92 \& KC－58t \& ¢ 4.20

50 \& \& \& CARTRIOGES \& B8－1225 \& 50.75

\hline 2SA－748 \& 51.00 \& 2SB－649 \& 50.40 \& 2SC－1383 \& ${ }_{50.25}$ \& ${ }^{2 S C}$ C－2944 \& ${ }^{1} 1.50$ \& AN－210 \& c0． 90 \& BA－311 \& 51.00 \& \& LM． 3900 \& c0． 52 \& TOSHIBA \& \& CUNIT PRICES IS： \& BR－1616 \& 90.75

\hline 2SA－765 \& £3．00 \& 2SB－681 \& $\underline{52.50}$ \& 2SC－1384 \& ${ }_{50.25}$ \& ${ }^{2 S C}$ Sc3078 \& $\mathrm{c}_{50.25}$ \& AN－214 \& ¢1．50 \& BA－313 \& 50.70 \& CA－3410E \quad ¢ 2.40 \& LM． 723 CN \& ${ }^{50} 50.52$ \& V－5250 \& 52.20 \& c6．00 \& ${ }^{\text {BR－2016 }}$ \& ${ }_{50}{ }^{50} 75$

\hline 2SA－769 \& $\underline{1.50}$ \& 2SB－688 \& 51.25 \& 2SC－1403 \& 51.50 \& 2SC－3182 \& 92.20 \& AN－253 \& c0． 65 \& BA－333 \& 81.00 \& CA－3420AE E3．05 \& ${ }^{\text {CA }}$－3140E \& ${ }_{5} 0.50$ \& V－5480 \& ${ }_{5} 1.55$ \& \& B8－2020 \& 50.75

\hline 25A． 771 \& 51.50 \& 2SB－705 \& 52.50 \& 2SC－1413 \& 03.00 \& 2SC－3284 \& 51.50 \& AN－262 \& 51.10 \& 8A－340 \& 50.75 \& TIP－29A \& CA－3089 \& $\underline{51.15}$ \& V－7450 \& ${ }_{5} 1.30$ \& \& ${ }_{\text {BR }} \mathrm{BR}-2320$ \& ${ }_{c}^{50.75}$

\hline 2SA．794 \& c0．60 \& ${ }_{2 S B}$ ST16 \& ${ }^{50.30}$ \& 2SC－1445 \& 81.00 \& 2SC－3298 \& 51.50 \& AN－272 \& E． 9.90 \& BA－343 \& ${ }_{50} 50.75$ \& TIP－23A，B \& \& \& $\mathrm{V}-8600$
$\mathrm{~V}-5475$ \& ${ }_{51.45}$ \& ORTOFON \& 8R－2325 \& c0．75

\hline 2SA－798 \& 50.60 \& 2SB－717 \& ${ }^{1} 0.60$ \& ${ }^{2 S C-1446}$ \& $¢_{50.75}$ \& 2SC． 3506 \& $\underline{5.30}$ \& AN－301 \& ${ }_{5} 9.35$ \& BA－402
BA－527 \& c0． 50

50.97 \& TIP－3AA， 8 ¢0． 27 \& AKAS： \& \& V－5475 \& 1.45 \& WMEADSHELL \& CR－1620 \& c0．75

\hline 2SA－808 \& \＄1．50 \& 2SB－718 \& £0．75 \& 2SC－1447 \& 10.60 \& 2SC． 3519 \& 51.50 \& AN－302 \& $\underline{5} .50$ \& BA－527 \& ${ }_{5} \mathrm{E} .975$ \& TIP－30C \& Vs－10 \& £0．78 \& Ethguson \& \& CAATAIOGES \& CA－2025 \& c0． 75

\hline 2SA－817 \& $\underline{0.15}$ \& 2S8－757 \& ¢1．30 \& 2SC． 1454 \& $\ldots 3.50$ \& $2 \mathrm{2C}-8050$ \& c0． 18 \& AN－303 \& ESP^{20} \& BA－536 \& | 51.45 |
| :--- |
| 50.85 |
| 8.850 | \& TIP－31 \& VS－2EG／5EG \& ${ }^{20.78}$ \& 3 V 00 \& $\underline{2.55}$ \& $\begin{array}{ll}\text { VMS－3U } & 77.50 \\ \text { VMS．3S }\end{array}$ \& CA－2032 \& ¢0．75

\hline 254.844 \& ¢0．10 \& 2SB－772 \& ${ }^{50.50}$ \& 2SC－1509 \& ${ }_{50} 50.45$ \& 2S0－198 \& 51.90 \& AN－315
AN－ 318 \& ${ }_{51.00} 85$ \& BA－612 \& ${ }^{50.85}$ \& TIP－31A．B ¢ $¢ 0.22$ \& VS－7300 \& £1．35 \& 3V16 \& 81.95 \& vMs．3S $\quad 27.50$ \& CA－2316 \& co． 75

\hline 2SA－850 \& $\mathfrak{5 0 . 3 0}$ \& 2SB－837 \& 10.50 \& 2SC－1567 \& $\underline{0.50}$ \& 2SD－200 \& 53.10 \& AN－318 \& ¢5．75 \& BA－714 \& $\underline{50.30}$ \& \& \& $\$ 1.60$ \& 3V22 \& 92.00 \& \& CA－2420 \& ¢0．75

\hline 2SA－893 \& ¢0．30 \& 2SB－857 \& 50.50 \& 2SC－1568 \& 20．45 \& 2SD－235 \& 50.35 \& ${ }^{\text {A }} \mathrm{N}$－340 \& ¢1．20 \& BA－1310 \& $\mathcal{E c}^{1} .65$ \& TIP－32 \& \& \& ${ }^{3} \mathrm{~V} 23$ \& $\mathrm{c}_{50.75}$ \& \& CR－2430 \& c0． 75

\hline 25A－896 \& ¢0．35 \& 2SC－352 \& 50.60 \& 2SC－1577 \& ¢7．70 \& 2SD－288 \& ${ }^{5} 0.75$ \& AN－360 \& ¢0．75 \& BA－5102 \& ${ }_{51.20}$ \& \& FISHER \& \& 3V29 \& ¢0．75 \& CALCULATOR \& \&

\hline 2 SA－916 \& $¢_{00.18}$ \& 2SC－372 \& ${ }^{50} 0.10$ \& 2SC－1550 \& c0． 50 \& 250.299
$2 \mathrm{SD} \cdot 313$ \& 51.50
50.30 \& ${ }_{\text {AN }}^{\text {AN－51010 }}$ \& ${ }_{57.50}^{50}$ \& BA－5402 \& ¢1．
¢1． 20 \& \& VBS－7000 \& 52.40 \& DRIVE \& \& MiCPO \& Celis） \& Round

\hline 2SA－921 \& $\underline{50.10}$ \& 2SC－380 \& ${ }^{0} 0.12$ \& 2SC． 51514 \& ${ }^{2} 0.75$ \& 2SD－313 \& 50.30
50 \& AN－5111 \& $\xi_{5.50}$ \& BA－5404 \& ¢1． 20 \& TIP－33A $\quad 5050$ \& VBS－9000 \& $\underline{50.80}$ \& \& \& batteaies \& 810 （N） \& c0． 42

\hline 2SA．940 \& ¢0．45 \& 2SC－458 \& c0． 15 \& ${ }^{2 S C}$ C－1584 \& ¢5．50 \& 2SD－315
$2 \mathrm{SO}-325$ \& ${ }^{2} 0.75$ \& ${ }_{\text {AN }}{ }_{\text {AN }}$－5410 \& \& BA－6109
HA－1124 \& ¢1．40 \& TIP－41 ¢0 22 \& \& \& RECOAOE \& \& RW－40 50.48 \& 813 （0） \& ¢0． 48

\hline 254．950 \& ¢0．25 \& 2SC－460 \& $\mathrm{E}^{0} .06$ \& 2SC－1586 \& ${ }^{2} 5.50$ \& $250-325$
$250-352$ \& ${ }_{50}{ }^{50.45}$ \& AN－5431 \& $\sum_{51.80}$ \& HA－1124 \& ¢1．25 \& TIP－41B，C［ ¢ 23 \& HITACH \& \& TURNTAB \& \& RW－42 \& 814 （C） \& ${ }^{\text {c0．}}$ ． 38

\hline 2S4．958 \& ¢0．75 \& 2SC－495 \& 50.60 \& 2SC－1627 \& 50.20 \& $250-352$
$250-357$ \& ¢0．50 \& AN－5435 \& ¢1．80 \& \& 81.25 \& IIP－42 ¢0 25 \& VT－5000E \& \& \& \& RW－44 \& 815 （AA） \& ¢0．20

\hline 254－968 \& ¢0．75 \& 2SC－496 \& ¢0．75 \& 2SC－1667 \& 51.40
80.75 \& $250-357$
$250-358$ \& \& AN－5440 \& \％2．15 \& \& ${ }_{81.25}$ \& TIP－42A，B ¢0．22 \& JVC \& \& squar \& \& RW－47 ${ }^{\text {RW0．25 }}$ \& 824 （AAA） \& £0． 25

\hline 2SA－985 \& ${ }^{5} 0.60$ \& 2SC－497 \& ¢1．50 \& 2SC． 1669 \& 180.75
80.75 \& 2SD－358
$2 \mathrm{SD}-381$ \& ¢0． 35
c0．90 \& AN－5510 \& $\underline{\xi 2.50}$ \& HA－1151
HA－1156 \& 17.25
¢1． 30 \& TIP－42C \& HR－3330 \& $\underline{5200}$ \& 68×12 to \& ¢0．12 \& $\begin{array}{ll}\text { RW－48 } \\ \text { RW－49 } & \\ \text { ¢0．42 }\end{array}$ \& A1604（6L） \& ${ }^{22}$

\hline 2SA－992 \& c0． 30 \& 2SC－536 \& ${ }^{\text {colo }}$ \& 2SC－1670
2S． 1675 \& 50.75

50.19 \& 2SD－381 \& | c0． |
| :--- |
| c0． 75 | \& AN－5612 \& $\underline{¢ 2.80}$ \& HA－1196 \& E1．30 \& TIP－48 \& HR－7200 \& $\underline{50.75}$ \& 86x12

120×1.25 \& \& | RW－49 | |
| :--- | :--- |
| RW－410 | |
| 50.45 | |
| 0.45 | | \& \&

\hline 2SA－1048
2SA－1060 \& E1． 1.50 \& 2SC－644 \& 180.25
$\mathbf{5 1 . 9 5}$ \& 2SC． 17275 \& 50.18

c0． 50 \& ${ }_{2}{ }_{2}^{250-388}$ \& | ¢00． |
| :--- |
| 1.80 | \& AN－5700 \& ¢0．60 \& HA－1197 \& \＄1． 20 \& TIP－102 \& HR－3360 \& 51.95 \& 135×1.25 \& $\mathrm{c}_{0} 0.12$ \& RW－411 $£$ \& PHOTO \&

\hline 2SA－1062 \& 51.20 \& 2SC－693 \& c0．25 \& 2SC－1756 \& 50.45 \& 2S0－389 \& $¢ 0.95$ \& AN－5722 \& ¢1．35 \& HA－1319 \& $\underline{51.45}$ \& TIP－105 \& HR－4100 \& 51.95 \& \& \& RW－413 ${ }^{\text {P0，45 }}$ \& Batteries \&

\hline 2SA－1094 \& \＄1．90 \& 2SC－710 \& 50.20 \& 2SC－1760 \& c0．75 \& 2SD－400 \& $\underline{50.15}$ \& AN－5730 \& $\underline{51.35}$ \& HA－1366W \& 51.75 \& TIP－125 \& HR－6500 \& 92.25 \& FLAT \& \& $\begin{array}{ll}\text { RW－415 } \\ \text { RW－418 } & \text { ¢0．45 } \\ \text { ¢0．91 }\end{array}$ \& 887 （J） \& ${ }^{51.54}$

\hline 2SA－1102 \& 51.90 \& 2SC－717 \& $\mathrm{c}_{0} .25$ \& 2SC－1775 \& ¢0．15 \& 2SO－401 \& $\underline{50.45}$ \& AN－5732 \& £1．25 \& HA－1366WR \& 51.75 \& $\begin{array}{lll}\text { TiP．} 126 & 50.40 \\ \text { ¢0．40 }\end{array}$ \& HR－3300 \& $\underline{925}$ \& \& 0.25 \& RW－30 ${ }^{\text {ROP }}$ \& RPX－14 \& £1．45

\hline 2SA－1104 \& $\underline{\$ 2.05}$ \& 2SC－733 \& $\underline{0} 0.25$ \& 2SC－1815 \& £0．15 \& 2SD－426 \& £1．50 \& AN． 5738 \& c1．00 \& HA． 1367 \& ${ }^{\text {E1．}}$ ¢0 \& HCF4001BE © 0.18 \& HR－7700 \& E0．77 \& $88 \times 05 \times 4$ \& \& RW． $33 \quad 80.45$ \& APX－23 \& ¢1．23

\hline 2SA－1106 \& 51.50 \& 2SC－738 \& 50.25 \& 2SC． 1819 \& £0． 71 \& 2SD－428 \& 51.50 \& AN－5900 \& ${ }^{\text {c1．}} 50$ \& HA－1374 \& ¢1．99 \& HCF4008BE 00.50 \& HR．7650 \& ¢0．77 \& $88 \times 05 \times 5$ \& \& \& RPX－27 \& 9.05

\hline 2SA－1110 \& $\underline{1} .45$ \& 2SC－741 \& 51.95 \& 2SC－1845 \& £0． 15 \& 2SD－438 \& ¢0． 30 \& AN－6248 \& ¢1．20 \& HA 1337 \& 52.00 \& HCF4017BE £0．52 \& HADOMAL \& \& $122 \times 0.5 \times 5$ \& \& RW－37 50.31 \& \& $\sum_{50.35}$

\hline 2SA－1142 \& $\underline{\square} .90$ \& 2SC－783 \& 51.16 \& 2SC－1875 \& $\ldots 2.40$ \& 2SD－468 \& ¢0． 25 \& AN－6249 \& 11.20 \& HA－11225 \& ¢1．70 \& HCF4025BE ¢0．25 \& NV． 333 \& ¢1． 35 \& $189 \times 0.5 \times$ \& ${ }^{50.60}$ \& $\begin{array}{ll}\text { RW．} 39 & 50.52 \\ \text { RW－300 } & \\ 50.58\end{array}$ \& RPXX－625 \&

\hline 2SA－1145 \& 50.20 \& 2SC－789 \& 50.35 \& 2SC． 1890 \& c0． 20 \& 2SO－476 \& c0．45 \& AN－6250 \& ${ }^{50} .40$ \& HA－11227 \& 81.00 \& HCF4028BE £0．48 \& NV－8600 \& $\underline{81.65}$ \& 195×05
205×0.5 \& 50.60
50.60 \& $\begin{array}{ll}\text { RW－300 } & \text { c0．} \\ \text { RW－310 } \\ 50.38\end{array}$ \& RPX－675 APX－825 \&

\hline 2SA－1147 \& 51.90 \& 2SC－790 \& 20.96 \& 2SC－1906 \& $\mathrm{c}^{0} 0.25$ \& 2SD－478 \& ¢0．90 \& AN－6320 \& 52.00 \& HA．11235 \& 1.70 \& HCF4050BE E0．32 \& NV．777 \& $\underline{0.95}$ \& \& \& $\begin{array}{cc}\text { RW－310 } & \text { co．} \\ \text { RW－311 } \\ \text { E0．39 }\end{array}$ \& RPX－825 \& ${ }^{〔} 0.55$

\hline 2SA－1156 \& ${ }^{5} 0.60$ \& 2SC－828 \& ${ }_{5} 0.15$ \& 2SC－1913 \& ¢0．90 \& 2SD－525 \& $\underline{50.75}$ \& AN－6338 \& ${ }^{2} 5.00$ \& HA－11244 \& 81.65 \& HCF40103BE 5099 \& NV－7200 \& c0． 84 \& Cassemt \& ADS \& RW－313 \& TONGL \&

\hline 2SA－1180 \& ¢1．80 \& 2SC－829 \& ¢0．15 \& 2SC． 1914 \& E0．15 \& 2S0－526 \& $\underline{1} 0.75$ \& AN－6341 \& $\underline{52.80}$ \& HA－11251 \& ${ }^{5} 0.80$ \& HCF40106BE CO． 35 \& NV－7000 \& c0．95 \& \& \& RW－315 \quad E0．42 \& （Supe \&

\hline 2SA－1220 \& ${ }^{2} 0.45$ \& 2SC－839 \& $\underline{0} 2.25$ \& ${ }^{2 S C}$－1922 \& $\underline{\mathrm{E}} .50$ \& 2SO－600 \& ${ }^{60.90}$ \& AN－6342 \& ${ }^{¢ 1} .50$ \& HA－11423 \& $⿳ ⺈ ⿴ 囗 十 大$ \& L－123CTB 81.30 \& NV．600 \& ¢1．45 \& STERED \& $¢ 1.50$ \& RW－316 \& $\mathrm{AC}^{\mathbf{3}}$（PP） \& ¢0．52

\hline 2SA－1232 \& ¢1．80 \& 2SC－929 \& $\underline{50.15}$ \& 2SC－1941 \& c0． 40 \& 2SO－612 \& ${ }^{50.40}$ \& AN－6360 \& 92.80 \& HA－12902 \& ¢1．70 \& \& \& \& \& \& \& \&

\hline 2SA－1262 \& $\underline{1.55}$ \& 2SC－930 \& ${ }^{2} 0.15$ \& 2SC－1942 \& $¢ 2.70$ \& 2S0－613 \& ${ }^{2} 0.65$ \& AN－6551 \& ¢1．00 \& HA－12017 \& ¢1．30 \& \& EASE \& \& FO \& \& LISTEO AB \& \&

\hline 2SA－1265 \& ${ }^{1} 1.30$ \& 2SC－941 \& ${ }^{\text {co }}$ 0．25 \& 2SC－1986 \& $\mathrm{c}_{50.45}$ \& 2SD－669 \& ¢0．45 \& AN－6651 \& ¢0．45 \& HA－12413 \& ¢1．30 \& \& ITEMS \& LIV \& Y IS S \& C \& 0 AVAILABI \& \&

\hline 2SA－1303 \& ${ }^{\text {¢1．}}$［00 \& 2SC－945 \& ¢0．15 \& 2SC－2003 \& ${ }^{£ 0.25}$ \& ${ }_{\text {2SO－716 }}$ \& £0．85 \& AN－6884 \& \& HA－12411 \& c1．60
50 \& ABOVE P \& CES AR \& EX－V \& PRICE \& AN \& HANGE WITH \& UT NO \&

\hline 2SB－324 \& $\mathrm{C}_{5} 0.45$ \& 2SC－959 \& ¢0．60 \& 2SC－2022 \& £0．30 \& 2S0－718 \& $£ 1.25$
El .30 \& AN－6912 \& ¢1．
$\mathbf{1 1 . 2 5}$ \& LA－1201 \& 60.75
81.60 \& PECIAL 0 \& DTATION \& ARE \& IVEN FO \& ARG \& AND EXPOP \& QUAN \&

\hline 2SB－337
2SB－407 \& ¢1．
［1．30 \& 2SC－998
2SC－1012 \& E0． 60
c0． 80 \& 2SC－2073
2SC．2120 \& ${ }_{50.75}$ \& 2SO－733
2S0．745 \& $\underline{E 2.30}$ \& AN－7060 \& 11.25
81.60 \& LA－1365 \& ع1．20 \& FULL \& LISt AVA \& BL \& WITH O \& R 0 \& SAE PLEASE \& $\times 4^{\prime \prime}$ ． \&

\hline 2SB－492 \& 20． 30 \& 2SC－1018 \& E0．75 \& 2SC－2229 \& ¢0．25 \& 2S0．748 \& 81.50 \& AN－7110 \& £1．20 \& La－3161 \& £1．20 \& \& ALL TH \& 00 \& ARE \& AN \& TOP QUALI \& \&

\hline 2SB－507 \& c0．90 \& 2SC－1030 \& $\underline{\square} 2.20$ \& 2SC－2236 \& ¢0．18 \& 2S0－761 \& ¢0．45 \& AN－7116 \& ¢0．90 \& LA－3210 \& 50.45 \& ORDERS \& BELOW \& ． 00 \& EX－VAT） \& D P8 \& £0．78（For \& K．only \&

\hline 2SE－511 \& c0． 90 \& 2SC－1050 \& ¢3． 20 \& 2SC－2240 \& £0．15 \& 2S0－8228 \& £4．50 \& AN－7117 \& ¢0．80 \& LA－3220 \& 51.00 \& BUT OR \& DERS AB \& VE $¢ 5$ \& 00 （EX－ \& ）P \& P FREE（For U \& K．on \&

\hline 2SB－512 \& ¢1．25 \& 2SC－1060 \& $\underline{50.45}$ \& 2SC－2274 \& $\underline{50.20}$ \& 2S0－837 \& $\underline{50.85}$ \& AN－7118 \& ${ }^{51.30}$ \& LA－3365 \& ${ }_{5}^{51.20}$ \& VISITIN \& G TIME： 1 \& AM T \& 6PM（M \& N－FRI \& 10AM TO 12 \& M SAT． \&

\hline 2SB－514 \& c0．49 \& 2SC－1061 \& ¢0．75 \& 2SC－2278 \& ¢0．75 \& $2 \mathrm{SD}-838 \mathrm{~L}$ \& 187.50
8175 \& AN－7130 AN－7140 \& ${ }_{5}^{50.60}$ \& LA－4100 \& 50.85
80.60 \& \& \& \& \& \& \& \&

\hline 2SB－536 \& 20．50 \& 2SC－1115 \& $\underline{2} 290$ \& 2SC－2335 \& $\underline{\$ 1.10}$ \& 2S0－859 \& ${ }^{2} 0.95$ \& AN－7145 \& 27.20 \& LA． 4110 \& 51.20 \& \& \& \& \& \& \& \&

\hline 2SE－537 \& ${ }^{2} 0.60$ \& 2SC－1116 \& $\underline{52.90}$ \& 2SC－2371 \& E0．50 \& 2SD－869 \& E3． 20 \& AN－7146 \& 12.28 \& LA－4112 \& 51.20 \& HLO \& TER \& \& Th \& \& \& \&

\hline 2S8．544 \& ¢0．40 \& 2SC－1162 \& ¢0．35 \& 2SC \& ¢0． \& 2 S \& 50.50 \& AN－7156 \& 12.80 \& LA－4135 \& \＄1．30 \& \& Tel： \& 427 \& 8213 \& P1 \& 933986 G \& \&

\hline
\end{tabular}

BRAND NEW VIDEO HEADS AT COMPETITIVE PRICES trom Luto only．

FOR AKAI，AMSTRAD，BAIRD，DECCA，FERGUSON，FSHER， GEC，HITACHI，ITT，JVC，MITSUBISHI，NEC，NORDMENDE， ORION，SABA，SAISHO，SANSUI，SHARP，SIEMENS，SONY， TATUNG，TELEFUNKEN，TENSAI，TOSHIBA，TRIUMPH TROPHY．
D．I．Y．TV TUBE POLISHING KIT
Kit Price $£ 57$ inc P\＆P and VAT．Available from Luton onty．
Quality，High Temperature Reprocessing

TUBE SIZE UP TO 8 INCLUDING	AXT37－001 A51－421X A51－426X A51－570X A51－580X A51－590X A51－701X	UNE \＆PIL i．e． AXT51－001 510 VAB 22 510 VLB 22 510VSB22 A56－510X A56－540X A56－701X A KT56－001	$560 B Y B 22$ $5600 \mathrm{YB2} 2$ 5600ZB22 560EGB22 A66－510x A66－540X A67－701X		
$20^{\prime \prime}$		¢44		$\underline{1} 5$	£58
$22^{\prime \prime}$		£46		－	£64
$26^{\prime \prime}$		¢48		－	£85

All tubes exchange glass required．
Please add 15% VAT to all prices．Callers welcome．Please phone first．
 Luton，Beds．LU2 0B＇
Open Mon－Fri 9am－6pm．Late opening Tuesday \＆Thursday till 8 pm ． Tel．0582－402499．
Your Local Tube Stockist．
Well View，Southampton．Tel． 0703449783.
West One Distributors Ltd．，Chesham，Buckinghamshire． Tel． 0494778197
Best price paid for A66－540X，old glass
 professionals to the UK＇s Number 1 woodworking event． For four days the Wembley Conference Centre will be alive with the sound of woodworking machinery，the scent of freshly－cut timber and the enthusiastic chatter of thousands of keen woodworkers．

Visit the Craft Market ．．．talk to the experts ．．．take in a craft lecture．Call in at the Christie＇s stand for free valuation of your old woodworking tools．Admire the display of winning entries to the Design a Toy Competition，the Furniture Design Awards and the Carve a Dancing Boy Competition devised by Ian Norbury to represent the children of Hamelin gaily following the Piper．

And bring all the family．The exhibition is open from 10 am to 7 pm （ 6 pm on Sunday）．Prices on the door are $£ 4$ for adults and $£ 2.50$ for 16 s and under and senior citizens．

Guidedogs and wheelchairs are welcome． We regret，however，that pushchairs and pet dogs are not permitted．

WILT 1 TROVE 28-29 RIVER STREET DIGBETH BIRMINGHAM 5

 Tel: 021-772-2733OVER 10,000 TV'S \& VIDEO'S IN STOCK LARGE 14,000 SQ. FT. WAREHOUSE

EX RENTAL N.E.C Complete Satellite systems at keen prices.

NEW LIFE THORN TELETEXT TV 9 K tubes available Now only $£ 40$. with guarantee for only £15.

TV RANGE

BUSH - DECCA - PHILLIPS - PYE - GRUNDIG GEC - FERGUSON - TOSHIBA - Also Portables

FRANCHISE DEALERS
Required to pick up direct from source.

BRAND NEW VIDEO Heads and hand sets now available

SECOND HAND SPARES For TV's and VCR's now stocked

VIDEO RANGE

AMSTRAD - AKAI - FERGUSON - HITACHI JVC - MITSIBUSHI - SHARP - PANASONIC

OVER 6,000 TV'S \& VIDEO'S IN STOCK 7,000 SQ. FT. WAREHOUSE

Tel: 061-736-6333

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme

If you order goods as a private individual from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become bankrupt or go into liquidation provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the offlicial on sale date of the publication and not later than three months from that date. (Please retain proof of payment).

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has become subject to bankruptcy proceedings or gone into liquidation up to a limit of $£ 4,050$ per annum for any one Advertiser so affected and up to $£ 12,150$ per annum in respect of all advertisers.*
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. All display advertisements are covered but only boxed trader classified advertisements are included. Advertisements as loose inserts are not covered.

SETS \& COMPONENTS

JAPANESE TVs. Mitsubishi, Panasonic, Sony, JVC Toshiba. Fully refurbished. Export enquiries welcome PEARSON TELEVISION. (1484 863489

NEW VIDEO HEADS. Example 3HSSV $£ 22.95$ 3 HSSN £26.44. Sanyo original $50000,90(0) £ 47.45$ E.E.P. LIMITED. Telephone 1915814544

OCHRE MILL TECHNICAL. Grundig spares 1972 1982. Comprehensive module service. Sensible prices. Also Oscilloscopes, colour bar generators, test equipment manuals. 0785814643

TURN YOUR SURPLUS

ICs transistors etc, into cash. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

Contact:

COLES-HARDING \& CO
103 South Brink, Wisbech, Cambs.
Tel. 0945584188
Fax. 0945588844

* ESTABLISHED OVER 15 YEARS *

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting f8.00 per single column centimetre (minimum 2.5 cms). Classified advertisements 50 p per word (minimum 12 words), box number $£ 1.00$ extra.

NEW TRADE WHOLESALER FOR THE FUTURE EX RENTAL TV's AND VIDEO's

We are a new trade wholesaler in Yorkshire and London area. Regular supplies of clean, tested and untested VHS videos and TV's, available at the best prices.

ALL MAKES OF TVs \& VIDEOs AVAILABLE PHONE. YORKSHIRE AREA 0484516670 Ask for Saf
 LONDON AREA 01-769 1029 Ask for Danny

TV PANELS FOR SALE ALL USED

$\Sigma 5$ each, add $£ 1.50$ per panel for 9 /teed working. Decoders £7.50 each or $£ 14.00$ each gleed working. Bush 832/G8-G9; Decca $30 / 3500$ 8500. P\&P per panel 3 panels \& over $£ 3.00$ DAVE WILLIAMS
23 Florence Avenue, Balby, Doncaster, South Yorks DN4 OOB Tel: 0302857526

VHS/UHF Televertas $£ 19.50$ each
Quantities P.O.A.
VHF/UAF ECL200 Kit suitable for direct replacement in 9000

E12.50 Crystals for UK \& Export conversion. JOMILL ENTERPRISES 173 Dalston Lane, E8.

Tel: 01-533 2229

${ }^{6}$ BOBS'

TELEVISION WAREHOUSE

 A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO
WORKING TV \& VIDEO

ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM
NON WORKING
GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES

ELECTRONIC, REMOTE, FRONT LOADER VIDEOS
NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC. ETC.
K30, KT3, TEXT, REMOTE AND BASICS
ITT, GEC, BUSH, JAPS., DECCA, ETC.
PHONE BOB BEAN ON:
0268728966
AND DISCUSS YOUR REQUIREMENTS

NEW

PHILIPS NEW PHILIPS NEW PHILIPS
New philips Ex CATALOGUE RETURNS
LARGE STOCK NOW HELD. ALL SIZES AND CURRENT MODELS
All working And SHOWROOM READY Guaranteed Phone

BOBS

TO RESERVE YOUR SUPPLY NOW

EERUICE PQEES

All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942)

VHS SPARE FOR FERG/JVC
From only $£ 2$ fully tested. Same day despatch, C.W.O Send S.A.E. for price list or phone for details
VIDEOCARE
The Links, Grosvenor Road,
Llandrindad Wells, Powys LD1 5NA. Phone: 05973292

NEWGASTLE UPON TYNE	
COLOUR TELEVISIONS	
$\begin{gathered} \text { THORN-8,800 } \\ 9,000 \\ 9,600 \\ \text { TX9-TX10 } \end{gathered}$	THORN-3V23
DORIC-MK1, MK111, M4.	
PHILIPS-G11, KT3, KT30	
ITT-Various Models.	
TRADE WORKERS ALWAYS AVAILABLE	
35, Nunsmoo Newcastl	n,

UIDED CRMERRS FRDM DNLY 69.00

RLARMS

PLEASE RING FOR DIY KIT PRICES and Save POUNDS.
SPECIRL DFFER
computerised alarm panel FROM CNLY 45.00
4 ZONE CJMPUTERISED PANEI 45.00 2 ZONE COMPUTERISED REMOTE
KEY PAD PANEL.... \qquad 2 ZONE KEY PANELS ... 79.00 C ZONE KEY PANE SRIC........... 33.0 PLEASE FTNG FOR PRICES ON MULT KEY PAD PANELS.

PASSIVE DETECTORS FROM 25.50 SPECIRL DFFER OUTSIDE JASSIVE DETECTORS WILL DRIJE ONE 100Watt INTERNA AND 500hatt SLAVE LAMP. 41.00 500Watt QUARTZ SEALED LAMPS ONLY 18.CO

NEW CCTU VIDED CAMERAS FRDM

UIDED MONITORS

EX CCTU MONITORS SUITABLE FOR ABOUE CAMERAS OR COMPUTERS loolt $P-P$.
MODULATORS..(ENABLES CAMERA TO BE USED WITH A TU) 6.00 MULTI-POSITION CAMERA BRACKETS. 7.50 ALSO AUAILABLE..UARIOUS LENSES.PLUGS. SWITCHERS, TELEMETRY SYSTEMS, ETC LDW LIGH Tray onyy zasion

- CRMERAS

please let us quote for new eqt
MIDULRR SECLRITY SYSTEMS LTD.
63 VICARS HALL GDNS. BOOTHSTOWN. WORSLEY. MANCHESTER. M28 4 JF .

 V/SA TRADE SALES

Decca 80/100,
Bush T20/22 ITT 32/45 GEC 2002 Dorics Mk3 E15 INC
GEC Bon/Fronts G11's E20 INC
ITT Trimlines 223 INC
G8's Hybrid Decca, Doric上5 INC
Phone 0515484414 Admin Television, Unit J, Admin Building, Kirkby, Liverpool L33 7TX

TV SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

TELEVIEW 01-994 5537
194, Acton Lane, London W.4.

NORTH WEST ELECIRONICS

continue into 1988 supplying TOP QUALITY TV's \& VIDEO's AT ROCK BOTTOM PRICES

ALWAYS IN STOCK

Philips KT3, KT30, K35, G11, etc
Bush T20, T26, T24
Hitachi 2216 etc
Thorn TX9, TX10, 9000, etc
Many more to choose from.
Teletext TV's
Philips, Ferguson, GEC etc.
Selection of colour TV's from £5.00 Decca, Ferguson, G8, IT, GEC, Bush, etc.

300 colour TV's $£ 900$ the lot. Make Thorn, Decca, GEC, etc.

WORKING EX-EQUIPMENT PANELS

	IF	Con-	De-	Line	Power	Frame
		verger	coder	scan		
T20/22	X	5	14	18	17	14
T26	X	5	16	20	17	χ
718	7.50	5	14	20	3	14.00
Philips						
G11	14.50		12	20	20	11.50

VIDEOS

Electronic front loading video's from $£ 75.00$ working perfectly, try before you buy!!!

ALWAYS IN STOCK

Sharps 7300, 8300, 8300, 381 etc
Hitachi VT11E, 8300, VT331E, etc
National Panasonic
Thorn 3V29, 3V30 etc.
Due to our excess video stock and limited time we have electronics VHS videos with slight faults from only $£ 50.00$ makes incl' Sharps, Thorn, Hitachi etc.
H.P. Repossessions and Ex-Rentals

TRADE SHOWROOM
Come and see our range of working TV8s and Video's ready for sale or rent.

SPECIAL

Let us quote you
for Bulk Orders on Bush T20/22. Delivered to your door

Pay us a visit, you will be delighted!
All prices are subject to VAT and based on quantity

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORIKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY
Closed 25-26th Dec-1st Jan

ACCESS/VISA
WELCOME CHEQUES ACCEPTED WITH BANKERS CARD

OPBIT GITS SFIT 9-5.30

ITVC

OUR NAME SAYS IT ALL

TELEVISIONS

FERGUSON 9000
FERGUSON 9600
FERGUSON AX
FERGUSON TX Basic
FERGUSON Tx T/T
PHILIPS G11. Basic
PHILIPS G11 T/T
PHILIPS KT3 Basic
PHILIPS KT3 T/T PHILIPS
$\Sigma 15.00$
£18.00
$£ 20.00$
$£ 50.00$
$\Sigma 75.00$
$£ 25.00$
$£ 60.00$
$£ 50.00$
$£ 75.00$

PYE • BUSH • SONY
NAT. PAN. • HITACHI
GEC • GRUNDIG • ITT DECCA
BASIC FROM £ T/T FROM £
tired of butchered JUNK LOOK NO FURTHER
PAY US A VISIT
SATISFACTION GUARANTEED
ELECTRONIC V.H.S. VIDEOS
FROM £75.00
FERGUSON 3V29
FERGUSON 3V30
JVC - SHARP - NAT. PAN.
HITACH - AKAI - AMSTRAD
BETAMAX VIDEOS
SONY - SANYO - TOSHIBA

Ex. Rentals Graded T.V.'s and Video's Stereo T/T Graded T/T Ex. Demo. Portables Colour TV \& B/W Thousands of late models also available Direct loads from source at low prices

\author{
INDEPENDENT TELEVISION \& VIDEO CO.

NOTTINGHAM
 (10,000 Sq. Feet Warehouse)
 UNIT 3-3a MEADOW TRADING EST.
 MEADOW LANE
 NEAR NOTTM COUNTY FOOTBALL GROUND IN NATIONAL TYRE YARD
 NOTTINGHAM NG2 3HQ
 TELEPHONE (0602) 864627
 \section*{SHEFFIELD}
 (6,000 Sq. Feet Warehouse)
 2 MIN FROM JUNC 34 OFF THE M1
 TINSLEY VIADUCT TO A6109
 UNIT 17, MEADOWHALL TRADING EST. 27 AMOS ROAD
 SHEFFIELD 4
 TELEPHONE (0742) 422633
}

				515	
	berley	thwick	ingham B66	Tel: 02	
	Working	Untested		Working	Untested
9 K	£15.00	£10.00	G8	£10.00	£5.00
9200	£25.00	£20.00	G11	£25.00	£15.00
9600	£25.00	£20.00	G11 Text	£50.00	£35.00
TX10	£35.00	£25.00	Decca 80/100	£15.00	£10.00
TX Text	$£ 75.00$	¢65.00	CVC30	£25.00	£15.00
Stereo Text	£110.00	£80.00	ITT Trimline	£50.00	£35.00
PANASONIC, SONY, HITACHI, TOSHIBA AND ALL OTHER LEADING MAKES IN STOCK (WORKING OR UNTESTED)					
VIDEO					
	Working	Untested		Working	Untested
3V23	£75.50	£65.00	Sharp 7300	£75.00	£50.00
3V29	£75.50	£65.00	Sharp 681	£100.00	£75.00
3V35	£100.00	£80.00	Akai VS2	£85.00	£60.00
3V43	£120.00	£85.00	Akai V55	£80.00	£60.00
Sharp 9300	$\underline{595.00}$	£65.00	Hitachi VT11	£90.00	£70.00

DHOUPER VISION

Wholesaler in TV's and VIDEO's. Ex-rental, new graded TV's and VIDEO's in stock. Seeing is believing

TV's Black \& White-41/2" Portables £25.00
G. 11 Basic $£ 15.00$
G. 11 Text $£ 60.00$
TX9, TX10, TX100 Text $£ 85.00$Stereo Text in stock FST ITTVIDEO
Ferguson working from £80.00
Ferguson Untested from 65.00
Beta videos working from $£ 20.00$
Beta videos Untested from 15.00
And all other makes of TV's and VIDEO's available.Many more to come every week.FREE DELIVERY FOR QUANTITY OF SETS

VIDEO SPARES NEW LOW PRICES ON MANY ITEMS	
Stock items despatched by return Access 8 . Visa welcome	
	BELT KITS
3HSS(V) - JVC/ferguson etc........... 12210	Most Models.............................From 50.95
3HSS(N) - Panasonic. Most 2 head models exoept	Sanyo VTC5000 $£ 0.55$
NV370 22 10	IDLER ASS
	Sharp VC9300, VC9500 etc.
PS3B-Sony SLC5/C6/C7, SL8000 etc. E2275	(NIDL0005GE7Z) 5.55
E29 25	Sharp VC481, VC581 etc. (NIDL0006GEZII) $\mathbf{8 2 . 1 0}$
3HSS(H)B-Hitachi VT11, 33, 63 etc. $\mathbf{2 9 . 2 5}$	Hitachi VT11/14/33/17 etc. 1.75 Ferguson TU Clutch (mechanical models) $£ 4.95$
3HSS(SF)- Fisher FVH510, 710 etc 529.50	Ferguson 3V29/30 Take up idler , \% 7.20
PS4B2(S) - Somy SLF1, C20, C30, C40 etc. 529.50	Ferguson 3V29/30 Take up clutch $£ .00$
3HSS(SP) - Srarp VC9300, VC9500 etc. .. $£ 29.50$	Ferguson 3V29/30 Reel idler $\mathbf{E 2} .40$
PS3B(T) - Tosniba V9600, V31, V33 etc. $£ 33.00$	Ferguson 3V35 Reet idter $\mathbf{E 2} \mathbf{3 0}$
3HSS(R)-Amstrad, Saisho, Orion etc. $£ 29.50$	Ferguson 3V35/36/38/39 Take up clutch 4.55
3HSS4(N)A - Panasonic NV366 £46.00	Sanyo VTC5000, 5150, 6500 Idier gear
e above equivalent video heads are new. For	assembly $\mathbf{8 1 . 9 5}$
㑑rocessed heads send old head. Sharp and	Sony C5, C7 Rewind kit £4.10
tsubishi models © $\mathbf{E 3 7 . 5 0}$ and most 4 head VHS	Fisher PVHP615 Idier assembly £5. 20
	Fisher FVHP615 Gear idler assembly $\mathbf{£ 4 . 2 0}$
IDEO MOTORS	Panasonic NV370 etc. (VXP0521) £ 5.75
-	Panasonic NV333/366 etc. (VXP0401) NV7000
Drum Motors	$7200 / 7800$ (VXP0344) NV2000/3000 (VXP0331)
	(VXP0329)....................................£0. 70
Ferguson/JVC (Mechanical models) $£ 21.45$	PINCH ROLLERS
Sharp VC9300, VC9500 etc. $\mathcal{E 2 6 . 6 0}$	Most models from............................ $\mathbf{8}$ \% 70
Reel Motors	MISCELLANEOUS
Sanyo VTC5000, 5150, 5300, 5400 E7. 90	IC STR6020 Modification kit for Hitachi CPT1471/
Sharp VC9300, 9500 etc. (most models) £75.60	1473 56.95
	Universal Video Copying kit 53.50
Capstan Motors	Universal Video Copying kit (scart) £5.00
FergusonfJVC (mechanical models) $\mathbf{5 2 1 1 . 4 5}$	Cassette Lamps Ferguson/JVC type with or without
Ferguson 3V35 522.50	plug .. $£ 0.50$
Sony SLC5, C7 (BHF1100D) $£ 28.20$	Cassette Lamps Sharp/Panasonic $£ 5.50$
Sharp VC9300, 9500 etc ${ }^{\text {P27.60 }}$	Universal Cassette Lamps..................... 50.50

Please add 75p per order for p\&p and then add 15% VAT Send 13p stamp for full list.
A.Z. ELECTRICS

174 Kettering Road, Northampton NN1 4BE Telephone (0604) 24380

MIDLAND QUALITY SETS SINGLES OR QUANTITY SUPPLIED AT THE BEST PRICES
VHS
R/C$3 V 31 \ldots . ~$ Sharp, Hitachi etc. P.O.A.
C.T.V.
Philips G11 Text............................ 550
KT3Text£68
K30 Text............................ $£ 75$
Thorn 9000 R/C $£ 18$
9600 R/C........................... $£ 20$
TX9-TX10 Basic£50
TX9-TX10 Text....................£70
PRICES SUBJECT TO VAT ALL SETS QUOTED, TESTED AND WORKING AND SUPPLIED WITH HANDSETS
15 MIN M1 JUNC. 22 Nationwide Delivery Service Available UNIT 11, MARKET STREET, COALVILLE, LEICESTERSHIRE TEL: 0530-810836/7

$14^{\prime \prime} 370$ - KRB - LHB - HGB - HFB - HUB - GUB - ECB -$148370-K R B-$ LHB - HGB - HFB - HUB - GUB -
EFB - DLB - IB - AXT $-3:-001-57-554-570-590$. Broken Tube - We Can Hetp.
$16^{\prime \prime} 420$ EDB - EFB - GAB - CSB - FSB - ECB - ERB - 42 $556-570-590-A X T-42.001$
$20^{\prime} 51-570-580-594-161-231-421-510 V S B-V L B-$ SWB - HWB - UFB - AXT-51-001 - 490DKB
NEW MULLARD - 51 - 590 - 51 - 427 £55.00
$22^{\prime \prime} 56-500-510-540-610-701-$ AXT56-001-560 AKB - ETB - D2B - DYE - HB - EGB.
$26^{\prime \prime} 66-500-510-540-611-67-701$. DIELTAS £25 TO £30
SONY CASH AND CARRY ONLY FIT THEM YOURSELF BRAND NEW

VIDEO HEADS

 ONE YEAR GUARANTEE
f29

 All in, delivered with our step by step (with photos) instructions. Any Ferguson, JVC, Baird, Decca, Blaupunkt, Tatung, ITT plus all Panasonic (except NV370-380 and 4 head models). For all other makes which we stock please ring.DISCOUNT FOR TRADE
MACDONALDS RADIO \&
T.V. SERVICING BOOKS NEW EDTTION 1986-87 £29 (Macdonalds Price £31.30)
SPECIAL OFFER 1985-86 plus 1986-87 £50 OTHER EDITIONS AVAILABLE U-VIEW
29, Warmsworth Road, Doncaster,
Yorkshire DN4 0RP. Tel: 0302855017 Callers ring first, open every day including Sunday open every day

WIZARD DISTRIBUTORS

 MANCHESTERTV \& VIDEO SPARES
We stock spares for PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI \& DECCA
And also THORN \& ITT FIDELITY SPARES MAIN DISTRIBUTOR. Did you know we also stock FUSES TUBES AEROSOLS RESISTORS
CAPACITORS
VALVES HANDSETS VIDEO HEADS AND MUCH MER
Counter MOCH MORE TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060 .

SUFFOLK TV AND VIDEOS Now Open

Ex Rental TVs and Videos to the Trade.
Large selection of Working Stock in our Showroom.
0394283342 BRIDGE ROAD, FELIXSTOWE, SUFFOLK IP11 7FL

BARGAINS - BARGAINS TVs AND VCRs

VCR 2000s system from $£ 15$ - Good stock clean and tidy. 2020-2021-2022. Grundig 2×4 and 2×4 super plus 2080 mod. 16hr as available. (Phone us).

> G11s from under £20 KT30s from $£ 38$ KT3 from $\mathbf{£ 3 0}$ Teletext from $£ 30$ Remotes from $£ 55$ plus load of others. Call and see us Stock changes weekly.

VHS VCR Electronic from £25 and upward off the pile.

200 plus working CTV and VCR available. All seen working in our showroom. Excellent cabinets, ready for sale or rent.

GENERAL FACTORS UNION ST, DONCASTER

0302 SOUTH YORKS DN1 3AE

349583

DEVON/CORNWALL

 DEALERS PLEASE NOTEThere is now no need to travel miles for stock.
We can supply clean working or non-working TV \& Video at prices comparable, or even less than elsewhere in the country.
Friendly, Helpful Service Quantity Discount \& Delivery

Phone or Call

ACORN TV WAREHOUSE IPPLEPEN (0803) 813281

You'll find us opposite Two Mile Oak
Inn, on Totnes/Newlon Abbot Road

WHY NOT
LET
TELEVISION
SELL YOUR
PRODUCT
FOR YOU

RING NOW
ON
01-261 5942

CLASSIFIED
DEPT.

HALTON TV TRADE DISPOSAL

The Wholesaler you won't find competing with you on the High St. TV and Videos

GEC, Philips, Decca, Doric, Thorn
\star Remember, we have NO retail outlet \star St Michaels Industrial Estate, Widnes

Tel. 0514231577

STARLITE

 ELECTRONICSWILLOWS FARM, A13 RAINHAM, ESSEX Rainham 23225 173 BROAD ST. DAGENHAM 01-593 0720
Ex TVs and Videos, Working TVs in our showroom. Re-Gunned Tubes

- most types available. Japanese Tubes also available

REPAIR SERVICE
AVO'S OSCILLOSCOPES \& TEST EQUIPMENT Repaired. Manuals available J. COAD ELECTRON IC SERVICES Phone ($01-340$ (0230.

BUSINESS FOR SALE

T.V. AND VIDEO RENTAL BUSINESS FOR SALE in Essex, including fully equipped workshop. Highly prof-

TECHNICAL INFO SERVICES (T)

uल
PHONE 0698-884585 Mon-Fri, 9-5, any other time 0098-883334, FDR FAST quotes
WORLD'S LARGEST COLLECTION SERVICE MANUALS - Most unobtainable elsewise Prices range from only $£ 4.50$ - large s.a.e. any quotation, no obligation to buy. WORLD'S SOLE Suppliers of TV \& Video Repair Manuals, etc. from TV TECHNIC also such publishers as Heinemann, Newnes, TV Technic Thom, etc. Every published service sheet in stock, supplied full size, not bits \& pieces Every published service sheet in stock, supplied full size, not bits $\&$ pieces
CTV's or any combination $£ 3.50$ Isae; any other single item $£ 2.50+$ Isae CTV's or any combination $£ 3.50$ + Isae; any other single itern $£ 2.50$ + Isae
Compiete Circuits Sets for most Videorecorders only $£ 7$ set (No serv shts made LSAE for GUOTATIOWS plus glant catalogue-mewsletiers-BARGAINS-FREE S/Sht as available

Original Video Service Manuals @ £15 each, 5 for £60, 10 for $£ 100$

Covers most models from Baird, Ferguson, J.V.C., Multi-Broadcast, Radio Rentals and many from Akai, Decca, I.T.T., Mitsubishi, NEC, Nordmende, Saba, Sansui, Tatung, Telefunken, Toshiba. Also Philips VR6460 and VR6520/6920; Py 64VR60 and 65VR20; Panasonic NV370.
 $\begin{array}{lll}\text { British CTV } 1972-1986 \text { in } 3 \text { Binders } & £ 60.00 & \text { Foreign CTV, Huge Selection in } 2 \text { Binders } \\ \text { Portable British CTV in } 1 \text { Binder } & \mathbf{8 2 2 . 5 0} & 4 \text { Binders of Videos, } 1980 \text { to } 1986\end{array}$ UNIOUE INTECRATED REPAR SYSTEMS (FREE updating for 1 year from purchase)
ELEVISION 8 Binders of Circuits, 17 Repair Manuals, plus dozens of service manuals, reference manuals, etc. bringing the system right up to date.. Expanded System £375 VIDEORECORDERS 4 Binders of Diagrams, 20 Repair Booklets, 20 Service Manuals, etc. .. Without the Service Manuals, but with everything else
. $£ 120$
DOMESTIC EQUIPMENT............................... 2 Binders of Exploded above systems
3 Manuals covering dozens more of the popular circuits and many service manuals......................... $£ 75$
Some titles from our massive stocks of publications ready for immediate despatch

Spectrum Repair \& Service
Domestic VCR - Servicing Guide
Audio Eqpt Tests. King
Newnes Audio \& Hi-Fi Pocketbook
Colour Television Servicing, King
VHS Common Faults
£5.00 1987 British CTV Repair Manual
£15.95 Oscilloscopes, how to use/how they work
£12.95 Servicing Radio, Hifi, TV. King
88.95 Servicing Mono Portable TVs. Wilding
£12.95 Principles of Compact Disc
£3.50 The PAL System, complete explanation $\sum_{57.95}$
£11.55 Grundig CUC System
Thorn's Crosstalk Omnibus Version E11.95 Grundig CUC System
Thorn's Complete Guide System, DC \& AC Theory/Power sup/RC/Therm Valves/Remotes $\mathbf{E 9 . 5 0}$
$\mathbf{1 7} .50$

Domestic Eqpt Repairs/Service Manual \quad 14.95 Modem Wiring Practice $\begin{array}{lll}\text { Practical Design of Digital Circuits } & \mathbf{1 1 2 . 5 0} \quad 110 \text { Projects for the Home Constructor }\end{array}$
Servicing Personal Computers
$\begin{array}{ll}\text { £12.50 } & 110 \text { Projects for the Home Constructo } \\ \text { £17.95 Semi-Conductor Data Book. Ball }\end{array}$
$£ 12.95$
$£ 6.95$
Thorn's Technical Manuals from 3V00 to 3V23
£17.95 Semi-Conductor Data Book. Ball
Set of ail 10 available titles $\mathbf{\$ 7 0 . 5 0}$ Suppliers to British \& Foreign Govemments, Library \& Educational Suppliers.
FREE with every complete Video Wanual or Collection bought - Thoms Vit Common Faults

Complete Repair \& Service Manuals
Complete Repair Data with Circuit. £3.00 + LSAE BRIMES TI
 plus FREE CHASSIS GUHDE and $£ 4.00$ OF VOUCHERS

SERVICE MANUALS

CTV from $£ 4.50$ VCR from $£ 9.75$ Circs/Layouts: CTV £3.25 MTV £1.25 VCR from $£ 5.75 \quad$ Prices include p / p

FOR LATEST LIST SEND $\mathbf{E 1 . 0 0}+$ LSAE
or 'Phone for quate 10am-4pm Mon-Fri
DATA-GO 112 AmeYsford rd. FERNDOWN, DORSET BH22 9QE 0202894207

SERVICE MANUALS for sale from $£ 3.50$ each. Video, TV, audio, hi-fi, cameras, etc. by Sony, Sharp. Sanyo, Toshiba, Nat Pan, Hitachi, Grundig, Technics, Philips and more. Tel. 0246419766 .

CIRCUIT DIAGRAMS

\# Any make, Model, Type, Audio, Music \& Systems, Colour and Mono Televisions, \# Amateur Radio, Test Equipment, Vintage Wireless etc. £3.00 plus LSAE.
State Make/Model/Type with order
Full Workshop Manual prices on request with LSAE.
MAURITRON (TV),
8 Cherry Tree Road,
Chinnor, Oxfordshire OX9 4QY

GERMAN SERVICE SHEET

 SPECIALISTSOur connections are world-wide. We furnish any kind of German, European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries:

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast, Co. Donegal, Republic of Iretand. Phone: 07548275

MISCELLANEOUS

PICTURE TUBE REPAIR EQUIPMENT

 BMR 90Versatile and reliable. Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.

- Regenerates picture tubes even better A Also IN-LINE Removes short-circuits, even between cathode and filament - Measures beam current, emission current, life expectancy, etc.

can pay for itself in 4 weeks, if you are not using BMR 90 you are making less profit than you could.
Sole Agents BLENDOWN LIMITED, 34 Glan-y-Mor Road Penrhyn Bay, Llandudno, Gwynedd, Wales. Tel. (0492) 49246

PERSONALISED PROTECTIVE COVERS FOR TV's. VCR White Goods, send today for colour leaflet and price list, or see your S.E.M. E. representative. N.F.P.C. ‘Bywell House', 3 Fenham Hall Drive, Newcastle L'pon Tyne NE4 9UT, or telephone (091) 2724646.

BOOKS \& PUB's

Ku BAND SATELLITE TV THEORY, INSTALLATION

 AND REPAIRThis 383 page
manual by Baylin \& Gale of USA covers dish theory, uplinks, footprints, site survey, installation and survey, insta
descrambling, cable TV even includes a camputer program for finding your satelite. Second Edition $£ 23$.
SATELLITE AND CABLE SCRAMBUNG AND DESCRAMBUNG, 256 pages VIDEO SCRAMBUNG \& DESCRAMBUNG, Advanced theory and circuits, 246 pages by Graf \& Sheets HOME SATELLIE TV INSTALLATION VIDEOTAPE, 40 minutes. VHS PAL
HIDDEN SIGNALS ON SATELLTE TV. All those hidden subcarriers telephone channels, teletype, teletext by T. Harrington, 234 pages

ATELUTE OFF-AIR \& SMATV. New practical 264 page manual on American Cable TV Systems pages, second edition by MarkLong All footprints, 650 pages, second edion $£ 32$ Price includes P\&P UK. Airmail Europe $£ 2$. Outside
Europe $£ 5.00$ extra per item. urope $£ 5 . D 0$ extra per item.
Pay by cheque, ACCESS MASTERCARD, or COD 24 RIVER GARDENS PURIEY READNG
24 RIVER GARDENS, PURLEY, READING RG8 88 X
TEL: 0734414468 (Answerphone)
METERS

AVON METERS

50p or E1 TV meters

from £5.95 each plus V.A.T.
(Discount for Quantity)
We also repair and buy unwanted meters. 1 Year Guarantee - Phone now 48 Mead Road
Stoke Gifford, Bristol BS12 6PT Tel. 0454776413

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD (0202) 683498.

WANTED

WANTED SONY VIDEO SLC30 UB working or not Tel. 0787474839 Essex.

WANTED EX-RENTAL/PX TV'S (Mainly Brtish) working non-working. East Sussex area. Box 240.

WANTED
 Clean, ex-rental, surplus, PX, bankrupt stocks, of colour tvs, videos, white goods, etc.
 On regular basis, direct from source. Large or small quantities. Can collect any part of UK. If you have what I am looking for, please write to: Box No. 243
 Stating goods, size, method of payment etc.

SURPLUS/REDUNDANT ELECTRONIC COMPONEMTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment

> ADM Electronic Supplies

Tel. $0827873311 . \quad$ Fax 0827874835

VALVES WANTED

Types PX4 \& PX25 or equivalents aiso KT66, KTB8, DA100. Other valves, transistors and shop clearance considered. Cash wating.

Please state price required.
For sale: Packs of resistors, capacitors, potentometers etc etc. 1930-1960s 110 + VAT per 201bs.

Billington Valves,
39 Highlands Road, Horsham, W.Sussex RH13 5LT.
Phone: 0403864086 Fax 0403210108 Telex 87271

SITUATIONS VACANT

TV SERVICE ENGINEERS

We work for most major London Department stores and, due to expansion, are looking for experienced bench and field engineers. Bench engineers will work in 'State-of-the-Art' workshops in Mitcham, Surrey and Home Counties areas. Top salaries will be paid and a 'better than average' estate car provided for field engineers
 TV SERVICE LIMITED Write to or telephone Dennis Fairweathe Service Director Triadcolour TV Service Lted 189/191 London Road Mitcham, Surrey CR4 2JB Tel: 01640 2191/5521
A MEMBER OF THE TRIADCOLOUR GROUP

TELEVISION SERVICE ENGINEERS

Morgan Laboratories Ltd.
Is a highly respected and rapidly expanding broadcast and video projection hire/sales company based in Wembley.
We are seeking locally based experienced Television Field Service Engineers to join our friendly team. Suitable applicants should have a clean current driving licence and be prepared to travel anywhere, anytime! Salary in the region of $£ 12,000 \mathrm{pa}$ with a company vehicle provided.
If you would like a career working with National Television Broadcast companies and International Satellite Conferencing, please contact The Personnel Officer on

01-908 3856

AERIALS

SATELLITE TV RECEPTION EQUIPMENT

LNB's. Recesevers. Oishes. polar mrounts and accessones
Japanese LNBS from
 F Connectors only N F A.alators only
locid tine ampls only 10osb tine ampls only

D ANTENNA

KESH ELECTRICS LTD.

Main St., Kesh, Co. Fermanagh, N.I. Tel: 0365631449 TIx: 747412

BOOKS AND PUBLICATIONS

MACDONALDS RADIO \& T.V. SERVICING BOOKS

NEW EDITION 1986-87 £29 (Macdonalds Price £31.30)
SPECIAL OFFER 1985-86 plus 1986-87 £50 OTHER EDITIONS AVAILABLE: 1974-75 £16 ea. 1976-77, 77-78, 79-80, 80-81 £19 ea.
83-84, 84-85, 85-86 £25 ea.
9 BOOKS £175.
Regret Out of Print 75-76, 78-79, 81-82, 82-83
Prices include delivery - Callers ring first

EURO-SAT
SUPPLERS TO H MF - MOD
MANUFACTURERS OF G.R.P. DISH ANTENNAS

			¢180
1.2MDIA	778	2.3M (PETAL)	${ }_{9248}$
1.2MOFF SET	E88	3.0MDIA	¢637
1.5M OFF SET	5158	FEED SUPPOF	
1.6 MDIA	598	ASSEMBLY	521
1.8M (PETAL)	5157	POLAR MOUNT	£122
PLEASE MOTE: We are disch mamiacturers onty and do not supply trsiems.			

TESTED PARTS FOR SALE. G8 Power Supply $£ 4.50$. IF/tuner $£ 8$. Timebase 57 . G11 Decoder $£ 8$. 1.F. £9. Timebase £9. CRT Base $£ 3.50$. Dynamic correction £4. T/tuner 6 LED c/selector unit $\mathfrak{E 6}$. BU20) ${ }^{2}$ on heat sink £3.(0). 3V22 video head $£ 22$. New Philips LVC150 v/tape ($\mathrm{N} 170 \mathrm{O} /(22) \mathrm{f} 12$. G11 LOPT X ft . Post free. Mr McHugh, 16 Copperkins Road, Hednesford, Staffs WS 125 NW .
TELEVISION TUBE REACTIVATORS Checker complete with instruction and service manual $£ 25$.(\%) only. Tel. 01-289 0598.

FOR SALE

SERVICE and SELL WITH CONFIDENCE

SHARP \& GRUNDIG

PARTS ARE FAST FROM WILLOW VALE

The manufacturers who care about Service
$50,000+$ different stock parts

24 hour despatch

Over 95\% ‘first pick’ supply ratio from stock
Willow Vale"s comprehensive parts listings for Sharp and
Grundig products make ordering and identification easy. Contact the Sole UK Parts Distributors and find out what SERVICE is really about.

PLUS COMPREHENSIVE STOCKS OF PHILIPS, THORN and FIDELITY PARTS TEST EQUIPMENT, TOOLS, general components and spares

Willow Vale Electronics Ltd

11, Arkwright Road, Reading, Berks. RG2 OLU.

```
Telephones: 0734-876444 (24 hours) }8\mathrm{ lines
Telex: 848953 Willow G
Faxline: 0734-867188
```


also at

Enterprise Park, Reliance Street
Newton Heath, Manchester 10
Telephones: 061-682-1415
Faxline: 061-682-9031

Please send me your comprehensive Sharp. Grundig spares catalogues together with wallcharts of the other spares you stock: (TRADE ONLY) I enclose 50p stamp for postage

Dealer/Engineer:
Address:

> MARSTALL LTD 15 Bowlers Groft, Grane Farm Estate, Basildon, Essex TV. \& VIDEO WHOLESALERS

LARGEST SELECTION OF THORN TV \& VIDEO'S IN ESSEX PLUS MANY OTHER MAKES.

Come and pay us a visit for a chat about your requirements or give us a ring on: 0268-531683 Discount of Quantities Plus Delivery Services Available Don't Delay Phone TODAY!

REELANDS OMN	
LARGE QUANTITY OF BRAND NAM	ND 12 CHANNEL UHFNHF WORKING ETS.
VIDEO RECORDERS: Ferguson VC482. Front and top lo	29, 9803E, Nordmende V102K. Sharp HFNHF. All fully serviced.
TACK SYSTEMS: As new. channel. TVs from "KEEN TO SELL	o, Sharp and Ferguson 15-20 Watts per VIDEOs from £140 KEEN PRICES".
E.D.I. House, Ballyfermot, Dublin 10	T.V.t.S. Clover Place, College St., Killarney Tel. 06433655

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE CARRIAGE. VAT NOT APPLICABLE.		 24 hour answering service
	PAPWORTH TRANSFORMERS 80 Merton High Street, London SW19 1BE 01-540 3955	
and guaranteed		$\mathbf{\Sigma 2 0 . 0 0}$ old unit Required.

[^0]: EAST CORNWALL COMPONENTS 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5T T TEL: 093932689

[^1]: 7/12/87 TVP (Poland) ch. R1; DR (Denmark) ch. E3. 8/12/87 TVE (Spain) E3.
 9/12/87 RTP (Portugal) E3; ORF (Austria) E2a.
 13/12/87 TVE E2; MTV (Hungary) R1.
 15/12/87 RAI (Italy) IA; NRK (Norway) E3.
 16/12/87 NRK E3, 4.
 17/12/87 RAI 1A; TVE E3.

[^2]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (Avia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £16, overseas (surface mail) £19 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, exclucfing Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

