## JULY 1987

Australia $\$ 2.20$, Hew Zealah̃h $\$ 2.95$ (inc. GST), Malaysia $\$ 5 \cdot 95, \cdot 20$ (2.


The S-VHS Specification TX9 Thyristor PSU Servicing Series and Shunt Networks Video-8 Audio Techniques A Vintage TV Restoration VCR Clinic• The Glue Gun TV Fault Finding • DX-TV

## MANOR SUPPLIES

MKV PAL COLOUR
TESI GENERATOR FOR TV \& VCR.

$\star+0$ different patterns and variations.

* Broadeast transmission accuracy fully interlaced sync pulses with correct picture blanking).
$\star$ EBU colour bars, BBC colour bars, whole rasters \& split bars (specially uscful for VCR service). white. yellow. cyan. green. magenta. red, blue and black.
* Chequerboard.
$\star$ Mono outputs with border castellations. cross batch. grey scale, vertical lines, borizontal lines and dots. UHF modidator output plugs straight into receiver acrial socker.
$\star$ Additional video output for C"IV \& V'CR.
$\star$ Facilities for sound output
* Easy to buid kit. standard parts. Only 2 adjustments. No special test equipment required.
$\star$ Mains operatced with stabilised power supply.
* All kits fully guaranteed with back-tp service.
* Also available with VHF Modulator.

Price of Kit $£ 70.00$
( Casc ( $1\left(0^{\prime \prime} \times 60^{\prime \prime} \times 21 / 4^{\prime \prime}\right)$ app. £8.60
Optional Sound Module ( 6 MH Iz or 5.5 MH m ) $\mathbf{~} \mathbf{~} 3.90$ Built \& Tested in Case inclading Sound Module $£ \mathbf{E 1 0 8 . 0 0}$

## SpECIAL TEST

report $1 \quad$ Post/Packing $\ell^{2} 2.8(1)$
-TELEVISION 1 Add VAT $15 \%$ ГO ALL PRICES DEC. 1982 」

## PAL COLOUR BAR GENERATOR (Mk4)


$\star$ Ontput at LHIF, applied to receiver acrial socket.

* In addition to colour bars R-Y. B-Y citc.
* Cross-hatch. grey scale. peak white and back level.
$\star$ Push button controls, battery or mains operated.
* Simple design. only five $i . e$ s on colour bar P.C.B.

PRICE OF MK 4 COLOOR BAR GENERATOR KIT £30.00. CASE £8.60. BATT HOLDERS £ +20 . MAINS S(IPPI, Y KIT $£ 4.20$ ( (Combined P\&P $£ 2.80)$.

 VAF MODOUATOR ICII I to 4) FOR OVERSEAS E5.75.
EASII, ADAPTED FOR VIDEO OLTPDI \& C.C.T.V.

| AIII |
| :--- |
| V 15 |
| $15 \%$ |

## TELETEXT DECODER PANELS (TESTED) <br> Mullard VMG101 £30.00, Philips KT3, K30 £30.00, Texas XMII

 (TIFAX) £28.(0) (untested £. $5 .(6)$ p.p. $£ 1.80$
## THORN TX9 MK2/3, TX10, teletext

Mullard Decorder panel + Interface $£ 35.00$ p.p. $£\{.80$
THOKN TXIO, PHILIPS G11 PRESTEL, TEIETEXT
Mullard Units VM 6230. 0.330 plus Line Coupler \& Interface £38.00 p.p. $£ 2.50$

## TV SERVICE SPARES

BACKI! BY TWENTY YEARS EXPERIENCE \& STAFF (\%F TECHNICAL EXPERTS
IOMFS. TRIPIERS. PANELS. TLINERS. SELEC"IORS ETC.
 imput) (an new equipment te.(M) p.p. हो. (0).
 (cam ceplace carl er mechamial selector unit).


PIIIIIPS (;11 PGNELS ex rental (unlested)

PIII IPS HANDSETS New Replacementspp E1.50
KT3 Nom tcい (

CHOOR MANEAS PDP

- 1.50 ( $\mathrm{Cl} \mathrm{X}-\mathrm{s}$ £ 1.50 .





 THORN TX9, TX10 Sam Filter If Pame E5.00 P-p. R0p.
 SAW FIITER IF AMPIFIER PLDS TUNER Completi and ECted for



(ROSS HATCII UNTH KIT, Nerial hpul ype mel. T.










 fret






THOR *








BUSH OTOHCHTUNE ?




lop'rs New and guar P'Pex.so. Bobhion sop.
HERG., ISII, IIRCONI. IITRA


OTIIERS AV III.ABI\&:. PRICES ON REQUEST.
TRIPLERS Full ratlme analdhle Nomo
SPE IAI, OFFER TR IIIIERS




(THOP PREAISF
IIIOUSAVB OF ADHITIONAL ITEVIS. ENQUIRIES INVITEI)
I.AR(BE SEDECTKN TESTED (OLOQR PANELS P(DPUIAR NODELS

Telephone $111-794 \times 751.7947 .46$
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead Brit. Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit. Rail Stn. (St. Pancras, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PIEASE ADI WAT $15 \%$ TO AII, PRICES INCLI P +


## COPYRIGHT

(C) IPC Magazines Limited, 1987. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

## CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

## SUBSCRIPTIONS

An annual subscription costs $£ 16$ in the UK, £19 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

## BACK NUMBERS

Some back issues published during the last six months are available from the Editoria Office at $£ 1.40$ inclusive of postage and packing. Address requests to Television, Editorial Office, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London, SE1 9LS.

## QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. Correspondents should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

## this month

## 597 Leader

598 TX9 Thyristor PSU Servicing
Gordon Haigh
One of the problems with the earlier versions of the
Ferguson TX9 chassis is the tendency for the mains fuse
to blow for various obscure reasons. How to deal with
this and other common problems.
600 Letters
604 The Super-VHS Specification
Steve Beeching, T. Eng.
Improvements in video tape recording technology have
made it possible to upgrade the VHS system to give
greatly enhanced performance. Details of the new specification.

## 605 Next Month in Television

606 Now Read This
Les Lawry-Johns
Details of some new fuses that could fool you and
accounts of some of the odd things that come into the shop, including a certain radio set...
607 Product Report: Glue Guns Harold B. Berkley
The glue gun can be a very helpful addition to the tool
kit, enabling various repairs you might otherwise be
unable to handle in the field to be dealt with.
608 The 8 mm Video System, Part 4
Eugene Trundle
This time the audio side of the Video- 8 system,
covering the f.m. and PCM audio techniques.

## 614 Teletopics

News, comment and developments.
616 TV Fault Finding
Reports from J.K. Potts, Guy W.E. Mundy, T. Eng.,
Hugh MacMullen, Mick Dutton, Steve Leatherbarrow, Lawrence Ingram and G.C. De Fraine.
618 Getting Started with Satellite TV
John Hopkins
A light-hearted account of some of the problems you face when first getting a satellite TV receiver system going.
619 Test Pattern Program for the Vic 20
Bill Brown
A simple program to enable the Vic 20 computer to be used as a test pattern generator.
622 Series and Shunt Networks S.W. Amos, B.Sc., C. Eng., M.I.E.E. The characteristics of series and shunt networks, their relationships and how they can be used.
625 Micro Clinic
Reports from Roger Burchett and Nick Beer.
626 A Vintage TV Restoration
Steve Rowley
How a fifty-year old Ekco TA201 vision adaptor was restored to working order.
628 VCR Clinic
Reports from Steve Beeching, T. Eng., Eugene Trundle,
Philip Blundell, Eng. Tech. and Patrick Rafferty.
630 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad. Details of a compact v.h.f. aerial of Russian design.
633 Service Bureau
634 Test Case 295
OUR NEXT ISSUE DATED AUGUST WILL BE PUBLISHED ON JULY 15

|  | TRADE COUNTER OPEN |  |  | THERE IS VAT OM $P+P$. <br> BOOKS AND MANUALS ARE ZERO V.A.T. <br> Goods are despatched on the day we receive your order If tor any reason we are out of stock we will try to inform you as quicky as possibie. We try our best to give a speedy, fair and eficient service. V.A.T. invoice on request. Give us a ring - we'll give you service. Please ask if what you need is not listed - we will try to help. Prices are subject to change without notice. In some cases we may have to supply an equivalent. |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| ABBEY STREET, ACCRINGTON, LANCS | MON-SA |  |  |  |
| el: 0254 36521/32611/390936 BB5 1EE. | 9am-5pm | Hates |  |  |
| Telex: 635562 Griffin G (For P.V.) | not Wed pm) |  |  |  |






HOW TO INCREASE YOUR PROFITS, IMPROVE YOUR SERVICE, WITH COST EFFECTIVE TEST EQUIPMENT.

## HAMEG OSCILLOSCOPES



FREE Securicor Delivery
specification

- Bend Chth DC-20MHz
- Sensay Lne
-Time Base $1.255 / \mathrm{cm}-10 \mathrm{~ns} / \mathrm{cm}$
- Delayed Sweep 100ns-0.15
- Variable hold-ott 10.1
- Ourrscan LED indicalas
- Caibrator

Price $£ 418.00+£ 62.70$ V.A.T.

## FREE Securicor Delivery

specification

- Bandwidth DC. $60 \mathrm{M} / \mathrm{H}_{2}$
- Sens. Chi
- Trigger OC-80MHZAC. DC. MF, LF, (TV Frame) - Varable hold -off 10:1
- Switchable Calibrator
- Overscan LED indicators

Price $£ 583.00+£ 87.45$ V.A.T.


## DIGITAL LCR METER

* LCD Display
- 18Ranges
* Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$
* Capacitance 1pf-200
* Resistance 1 ohm-20 Mohm
* High acuracy

Price $£ 85.00+£ 12.75$ V.A.T.


HAMEG are Europe's top seling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All incorporate a useful COMPONENT TESTER. Size-all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear displav $8 \times 10 \mathrm{cms}$. Mains supply $110 / 125 / 220 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$. 2 YEAR WARRANTY HM203-6 20MHzStandard FREE S SPECIFICATION

- Bandw Coth DC-20MHz
- TMe Base $0.2 \mathrm{~s} / \mathrm{cm}$ - $20 \mathrm{~cm} / \mathrm{cm}$
- Trigger DV. 40 MHZAC . DC. .FF. LF. (TV Frame - Active TV Slinc. Sep.
- Variabie holl-oft 10.1
- Calibrator
features
Price $£ 314.00+£ 47.10$ V.A.T. Including two probes
HM204-2 20MHz Multi-function


HM205 20MHz Digital Storage FREE Securicor Delivery SPECIFICATION - Digital Storage

- Anaiogue Real Time (Same as 203-6) - Bandwdith DC-20MHz
- Sens. Ch1, Ch2, 2mV/cm Active TV Sinc. Sep. - $2 \times 1 \mathrm{kStorage}$ - Vtrogage Range. $1 \mathrm{~ms}-5 \mathrm{~s} / \mathrm{cm}$ - Varable hald - Culubrator

Price 5498
74.70 V.A.T Including two probes
HM605 60 MHz Multi-function

B.K.'S CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green \& red guns separately. Fitted with delta and i.I. sockets. Compact size $120 \times 65 \times 60$ mm . Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.
B.K.'S REVOLUTIONARY DYNAMIC 'LOPT' TESTER

Revolutionary L.O.P.T. tester. Operates
in dynamic mode which actually tests the
L.OP.T. Under high vohage conditions withour de-soldaring or removal.

Price $£ 25.99+£ 3.90$ V.A.T.
THANDAR SC110A PORTABLE OSCILLOSCOPE * Full ting, fac. inc. TV frame etc
Only $21 / 4$ thick

- Fits in a brief case

Sens. 10 mV

* Bandwidth 10 MHZ

Price $£ 195.00+£ 29.25$ V.A.T.
$\qquad$


INSULATION TESTER 500V - Electronic battery operated

- Measuring Voltage 500 VDC
- Measuring Range 0-100Mohm
Centre scale 2Mohm
Price $£ 65.00+£ 9.75$ V.A.T.


## LEADERLCT910-A CRT TESTER REJUVENATOR

Our top selling instrument is designed to reluvenation of both coiour and BN CRT's

* Tests for shorts and leakage between electrodes.
* Tests cathode emission characteristics - Separately checks condition of guns. - Removal of shorts and leakage between electrodes.
- Checks heater warm-up characteristics. - Rejuvenation of low emission cathodes with automatic timing.
* Super rejuvenation with manual control. - Complete with tube base adaptors. * SizeH230mm W330mmD120mm


SADELTA FIELD STRENGTH METER TC-402
THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels delivered by the antenna toa TV or FM receiver, in order to test the performance of the antenna and evaluate the best condtions during installation etc. To facilitate measurements, the tuning frequency readoul is shown on a digital display.

## FEATURES

* Covering FM and all TV bands (UHFNHF) including CATV frea
* Digital tuning display (3 digits) for direct frequency readout
* Accurate 10 turn'tuning potentiometer.
* Built-in loudspeaker enables monitoring of sound in AM/FM.
* Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \mathrm{V})$.
* Continuity tester 0-500 ohms
* Fully portable (battery).
* Sturdy carry case.

Price $£ 249.00+£ 37.35$ V.A.T.
SADELTA COLOUR PATTERN GENERATORS THE SADELTA RANGE OF HAND HELD COLOUR PATTERN GENERATORS IS intenced for use in production, instalation and service of both colour and monochrome iv sets, video and computer monitors. In order to control and adust the various parameters eight swichable
patterns are provided. The technician has ready access to Laboratory, workshop and fieic use patterns are provided. The technician has ready access to Laboratory, workshop and fieic use size insinuments. Internal re-chargeable Ni-Ca's. Suppited with 9 V power supply charger. Size $131 \mathrm{~mm} \times 81 \mathrm{~mm} \times 23 \mathrm{~mm}$. T.V. PATTERN GENERATOR PAL MC11B UK
 - Band IV (21-34) *O/Put 10 mV into 750 hms - Band III (5-12) *Sound output *PALI.
PAL VIDEO COMPOSITE GENERATOR * PALB.G.l. Audio O/Pul 10 mV * PALB.G.l. $\quad$ * Audio O/Put 10mV Price £124.95 + £18.74 V.A.T.
SECAM VIDEO COMPOSITE GENERATOR

- SECAM B.G.D.K.

Audio O/Put 10 mV

- O/Put 1Vp.p. (i) 750 mm * Switching 12V @4k7ohms Price £124.95 + £18.74 V.A.T.
R.G.B. PATTERN GENERATOR
* O/Put sigs Pos.RGB * O/Put TTL 5VP-P

Neg. Composite *BlankPulse etc. CCIR
Price £111.95 + £16.79 VA.T.

DIGITAL THERMOMETER
$\begin{array}{cl}* & \text { Pocket Size } \\ -50^{\circ} \mathrm{C} \text { to }+750^{\circ} \mathrm{C} \\ \cdots & 1^{\circ} \mathrm{C} \text { Resolution } \\ \cdots & 0.5^{\prime \prime} \mathrm{LCD} \\ \cdots & \text { Supplied with } \\ \text { thermocouple }\end{array}$
Price $559.50+$ £8.92 V.A.T.




LEADER HIGH VOLTAGE METERED EHT PROBE
EADER High Voltage Metered EHT
LEADER High Voltage Metered EHT
PROBE. Measures up to 40 KVDC
with safety. Built in meter.
Accuracy $\pm 3 \%$

+ £6.75 V.A.T.

The THANDAR TP1 LOGIC PROBE and TP2 LOGIC
PULSER are effective and economical tools for checking both TTL and CMOS circuits. TP1 can show 14 different circuit conditions and can detect pulses down to typically
10 ns . TP2 can inject a signal directly into a circuit without Price £23.00 damaging sensitive components. Together they can $+£ 3.45$ V.A.T. stimulate and monitor responses of components 'in each circuit'. greatly aiding fault finding.
U.K. POST PAID, export enquines welcome. VIsa/Access or cheque with
order payable B.K. Electronics. Official Orders wicone from Govt order, payable B.K. Electronics. Official Orders welcome from Govt. Depts.,
Colleges. P. L.C. setc. Large S.A.E. for techn cal leatlets of complete pange. Colleges, P.L.C.'s etc. Large S.A.E. for techn cal leailets of complete range. Delivery normaliy within seven days.

UNIT 5, COMET WAY, SOUTHEND-ON-SEA,
ESSEX. SS2 6TR TEL: 0702-527572


## New Branch Opening Soon <br> Watch this space for details.



## MAKE YOUR INTERESTS PAY:

Train at home for one of these Career opportunities
More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICs has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your ćnoice. (Tick one box only!)

| Electronics | $\square$ |  <br> TV Servicing | $\square$ |
| :--- | :--- | :--- | :--- |
| Basic Electronic <br> Engineering <br> (City \& Guilds) | $\square$ | Radio Amateur <br> Licence Exam <br> (City \& Guilds) | $\square$ |
| Electrical   <br> Engineering $\square$ Car <br> Mechanics $\square$  <br> Elec. Contracting/ <br> Installation $\square$ Computer <br> Programming   | $\square$ |  |  |
| GCE over 40 'O' \& 'A' level subjects | $\square$ |  |  |



P Code
nternational Correspondence Schools, Dept. EGS77, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours)

## INTERNATIONAL LTD.

## WHOLESALERS OF QUALITY EX. RENTAL EQUIPMENT TO UK \& EUROPE

It seems customary for many wholesalers to advertise the largest range in the UK, at the lowest prices. However when you arrive at some of these places the equipment looks as though it has come out of a war zone and has been delivered by tipper.

At TVS, we purchase our sets from one of the countries principal rental companies, who deal with virtually every major manufacturer thus giving us a range of products that we genuinely feel are unbeatable. Don't take our word for this though. If you care to give us a ring we will send you free of charge, by return a comprehensive price list of all our products. You will also find the prices we advertise are the prices you pay, (a refreshing change we feel these days).
As well as a large range of TVs we have many VCRs on special offer this month including:

## FERGUSON 3 V29 FERGUSON 3V30 FERGUSON 8940 stereo

These are not just workers but fully refurbished, wrapped and include instruction books.
These must be the best prices in the country for the most popular electronic VCR ever made.
We also have a limited number of other refurbished machines from only $£ 60.00$.
To reserve your order phone while stocks last.

## EXPORT INQUIRIES WELCOME

Phone Head Office, Bromsgrove FOR FURTHER DETAILS AND A COMPREHENSIVE PRICE LIST CONTACT: COLIN BROOMFIELD TVS INTERNATIONAL LTD.

Head Office, Unit 7, Station St., Bromsgrove, Worcs. B60 2BS.

## (0527) 71186 or 37037

or call our latest franchise dealers:

Pitchford \& Evans, Unit 2, Station Hill, Oakengates, Telford TF2 9AA. 0952616771 Prices quoted for cash payment and subject to VAT Delivery service available to UK \& Europe


## VHS VIDEOS

FERGUSON 3V22

| WORKING | $£ 80$ |
| ---: | :--- |
| NON-WORKING | $£ 35$ (EASY |
| (FAUTS) |  |

ALL MACHINES ARE COMPLETE NO MISSING TRIM GOOD CABINETS

## ELECTRONIC VIDEOS

MANY MODELS - SOME REMOTES WORKERS £100 NON-WORKERS £70

## V.C.R. ELECTRONICS

(THE VIDEO PEOPLE!)
UNIT 5, PRESTWOOD COURT,
LEACROFT ROAD,
BIRCHWOOD, WARRINGTON, CHESHIRE TELEPHONE: 0925819081

FIRST IN TUBE REBUILDING TEGHNOLOGY 30AX: 540 SERIISS REDUCED SERTICING COST, FIT A DREGT REPLGEMEIT AYALLABLE ONLY FROM CHPOMAVAC. PRE GONVERTED AS ORIMINEAL. EXIERNAL MULTIPOLE UNIT NOT REQURED.


## Get on the hot-line today!

LOOK! AT NO EXTRA COST
30AX PRE CONVERGED
6812959 most types of Inline Re-builds or new ex-stock

PRICES SUBJECT TO GLASS EXCHANGE

## Delta Rebuilds Inline Rebuilds

| Up to 19" | £28 | Up to $22^{\prime \prime}$.. From $\mathbf{£ 4 0}$ |
| :---: | :---: | :---: |
| Up to 22" | £30 | Up to $26^{\prime \prime}$.. From $£ 45$ |
| Up to 26 ${ }^{\prime \prime}$ | £ 3 | A56-540x ............. $£ 56$ |
| $110^{\circ}$ up to $22^{\prime \prime}$ | £34 | A66-540x ............. £58 |
| $110^{\circ}$ up to $26^{\prime \prime}$ | £38 | Bonded Coil ....... $+£ 5$ | $+\ldots 2$ f3

ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES

IN LINE TYPKS (NOT REBUILDS) PHONE RE STOCK POS.
Please enquire types not listed

| 370 HFB-A37-590 | £50 | AXT 56-001 | £67 |
| :---: | :---: | :---: | :---: |
| 370 HUB | £50 | 670 CZB | £80 |
| AXT 37-001 | £50 | A66-540 | £110 |
| 420 CSB | £50 | 420 FSB | £60 |
| 420 EDB-A42-590. | £50 | New Sony Tubes Certain types below list |  |
| 420 EZB | $£ 50$ |  |  |
| 420 ERB | £50 |  |  |
| 470 KUB ......... | -.....f50 | MIN. CARRIAGE $£ 5$ £10 if glass collected. TERMS <br> Cash with order ALL PRICES EXCLUSIVE OF VAT |  |
| 51 CIUFB/A51-590. | ....... $£ 67$ |  |  |
| 51 CVSB | - ..... $£ 67$ |  |  |
| AXT51-001 ......... | . 667 |  |  |
| 560 DYB-560 DTB | . 667 |  |  |
| 560 EGB | . 667 |  |  |
| $560 \mathrm{CGB}$ |  |  |  |
| NOTE | * WE PURCHASE SURPLUS STOCKS OF INLINE TUBES: ALSO A56/ $66-510 / 540$ ETC. OLD GLASS. <br> DELIVERY: By return on all stock items. |  |  |
| Surcharge |  |  |  |  |  |
| without |  |  |  |  |  |
| exch. glass. |  |  |  |  |  |

THE COMPANY WHO PUT HIGH STANDARDS FIRST


CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959


E1 BAKERS DOZEN PACKS Price per pack is $\mathbf{£ 1 . 0 0}$. $^{*}$ Order 12 you may choose another free. ltems marked (sh) are not new but guaranteed ok
$5-13 \mathrm{amp}$ ring main junction boxes
$5-13 \mathrm{amp}$ ring main spur boxes

- surface mounting llght switches

4 - in flex line switches with neons

- mains transtormers with 6V 1A secondaries

1 - extension speaker cabinet for $6^{\dagger} / 2^{\prime \prime}$ speaker
12 - glass reed switches
1 - ulirasonic transmitter
1- ultrasonic transmitter and 1 receiver with circuit
2 - light dependent resistors
4 - wafer $s$ witches $-6 p 2$ way, $4 p 3$ way, $2 p 6$ way, $2 p 5$ way, smal $1-6$ digit counter mains volitige $1 / 4$ spindle your choice

- Nigat counter mains voltage
- key switch with key

2- aerosol cans of ICI Dry Lubricant
48-2 metre lengths colour-coded connecting wire
1 - long and medfum wave funer kit
8 - rocker switch 10 amp mains SPST
$1-24$ hour time switch mains operated (sh)

- neon valves - make good night lights
$2-12 V D C$ or $24 V A C, 3$ CO relays
-12V 2 CO minialure relay very
- 12 V 4 CO miniature relay
miniature uniselector with crrcuit for electric jigsaw puzte
- ferrite rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aerials
- mualardetic bryistor trigger module
- low pressure 3 level switch can be mouth operated -25 watt pots 8 ohm
4 - wire wound pots - 18, 33, 50 and 100 ohm your choice - lime reminder acjustable $1-60$ mins clochwork
- mains motor with gear box 1 rev per 24 hours
- mains motors with gear $00 \times 16 \mathrm{rm}$
- thermostat for fridge
$1-2^{1 / 2}$ hours delay switch
mains PSU 9 V
- mains power supply unit - 6V DC
$5^{\prime \prime}$ soeaker size rady unit - $4^{1 / 2 V}$ DC
- $5^{\prime \prime}$ speaker size radio cabinet with handle
heating pad 200 watts mains
- heating pad 200 watts mains
- wall mounting thermostat $24 V$
teak effect extension $5^{\prime \prime}$ speaker cabinet
p.c. ooards with 2 amp full wave and 17 other recs

10 - mirs twin screened flex white p.v.c. outer
25 - clear plastic lenses $13 / 4$ diameter
10 - very fine drills for pcos etc
10
4 - extra thin screw drivers for in
2 - plastic boxes with windows, ideal for interrupted beam switch
10 model aircratt motor - require no onvoft switch, Just spin to start
10 - $4 B A$ spanners 1 end open
-4 reed relay kits 3 V coll normally open or colo

- pilot bultos 6.5V 3A Phillios
- 12 V drip proof relay - ideal for car jobs
- varicap push button tuners with knobs
- short wave air spaced trimmers $2-30$ t
$10-12 \mathrm{~V} 6 \mathrm{~W}$ bulbs Philips m.e.s.
3 - oblong amber indicators with liliputs 12 V
6 - round amber indicators with neons 240 V
$100-$ p.v.c. grommets $3 / 8$ hole size
- short wave tuning condenser 50 pf with $1 / 4^{n}$ spindle
and good length $1 / 4^{n}$ spindle
1- plastic box sloping metal front, $16 \times 95 \mathrm{~mm}$ average depth
6-5 amp 3 pin flush sockets brown
In flex simmerstat for electric blankeaded entry
- In flex simmerstat for electric blanket soldering iron etc - thermostats, spindle setting - adjustable range for ovens etc. - mains operated solenoid with plunger 1
- computer keyboard switches with knobs, pco or vero mounting - electric clock mains driven, always right time - not cased - stereo pre-amp Mulard EP9001
-12 V solenoids, smali with plunger
- mains transtormer $9 V 1$ amp secondary $C$ core construction - car door speaker (very flat) $6^{1}$,2" 15 ohm made for Radlomobile speakers $6^{\prime \prime} \times 4^{\prime \prime} 4$ ohm 5 watt made for Radiomobile
speakers $6^{\prime \prime} \times 4^{\prime \prime} 16$ hm 5 watt made for Radiomibile Speakers $6^{\prime \prime} \times 4^{\prime \prime} 16$ ohm 5 watt made for Radiomobile - mains motor with gear-box very small, toothed outpul 1 rpm
- standard size pots, $1 / 2$ meg with dp switch $-13 A$ switched socket on double plate with aer - mains 15 V
en transformers 15 V iA secondary p.C.b, mounting ar ciga 3 watt pot $1 / 4$ spindle 100 ohm - car cigar lighter socket plugs

15 amp round pin plugs brown bakelite
$0-$ ceramic magnets Mullard $1^{\prime \prime} \times 3 / 8 \times 5 / 16$

- 12 pole 3 way ceramic wave charge switch
- lubular dynamic microphone
T.V. turret tune (black \& white TV)
oven thermostats
suo miniature micro switches
1/4n. 600 hm loudspeakers
mains operated relay with
mains operated relay with 2 sets c/o contacts
- packets resin filler/sealer with cures

7 segment I.e.d displays
OC boards for stripping, lots of valuabie parts

- 3 double polie magnetic tip, saves repairing fuses
- 1000 out 25 V axial electrolytic cpacitors

MULLARD UNILEX AMPLIFIERS We are probabty the only firm in the country with thesa now in stock.
Allhough only four matts 0 channel, these give supert reproduction.
We now ortier the 4 Mullard frodulules - i.e. Mains power unit (EPgoon)


## CAR STARTER/CHARGER KIT




## VENNER TIME

SWITCH

 or shonening gay An exoensve:tme smich
 convert this into a normal 24 hr , time switch
but with the added advantage of up to 12 orvolts per 24 hrs. This makes an ioeal
controler for the immersion healer. Price GHT UNIT

 Hoged enuoun tor dsom wokk. The unt is housed in an artactive two



## 12 volt MOTOR BY SMITHS

 Sito no 3.45

## 25A ELECTRICAL

## PROGRAMMER



## -THIS MONTH'S SNIP

## electronics. Japanese made, brand new. We are

 old that this is a standard replacement in many Amstrad and other popular computers, and we supply with lechnical information. Special snip
## MAKING SUNBEDS?

pach in quantity TUBE HOLDERS Vanopy type sping badeo, 4 pairs for $\mathbf{E 1}, 100$ pairs

> 400 Watt Nains Isolation Transformer 230 volts in 230 votts out. Supplementary 10 volt winding for voltage adjustments. Torrod dal construction makes it most compact. Regular price $£ 40$. Our price only $£ 10.00+£ 2$ post.

## FANS \& BLOWERS


$4^{4 *} \times 4^{4 \prime}$ Muttin equpment
Extractor or blower 115 V supplied with $23010 \$ 15 \mathrm{~V}$ adaplor $\mathrm{\varepsilon 9.50}$
$10^{\prime \prime} \times 3^{3}$ Tange computers but guaranteed 12 months.
$10 \times{ }^{2}$ Tangenlial Blower. New. Very quiet - supplied with 230 to
$115 V$ adaptor on use wo in senes to give long blow $£ 2.00+£ 1.50$ post
or $£ 4.00+£ 2.00$ post for two

## IONISER KIT <br> negative ION generator. Makes, you feet betler and work harder - a ocrmplete mains operated kit, case inctuded. $£ 9.50$ plus $£ 2.00$ post.

## TELEPHONE BITS

B.T. plug socket.......................
Extension sock

Cord adapiors ( 2 trcm one socket),........
it for converting old entry terminal box 10 n.

- $£ 11.50$

MINI MONO AMP
controul should you require it. The amplifier has three transistrrs and we More tectinical data will be inclucted with the amp. Brand now,

## J \& N BULL ELECTRICAL (T) 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5QT

MAIL ORDER TERMS: Cash, P.O. or cheque with order. Orders under from schools and pubirc companies. Acces \& B/card orders accepted.

## OVER 400 GIFTS YOU CAN CHOOSE FROM

dozen range and your 400 packs in our Baker's gif with each dozen pounds you spend on these packs. A classified list of these packs and our lates "News Letter" will be enchosed with your goods, and

## £2 POUNDERS

## and mermometer

 $V$ ariable and reversible 8-12V psu for model controt 24 voll psu with separate channels for stereo made for Mulard 100 W mains to 115 V auto-transtormer with voltage tappingsMains molor with gear box and variable speed ale wound so sultabie for turther speed control
Time and sel switch. Boxed, plass fronted and with knobs.
Comolions
Ciminots up to 15 amps ideal to program electric heaters
12 volt 5 amp mains ransformer - low volt winding on separate bobbin and easy to remove to convert to lower
12 - Voltages for highere currents
2P14 - Mug Stop kit - when thrown emits puerci
2P15- interrupted Beam kil for burglar alarms, counters, etc
2P18- Lperate mifror ball
2P19 - Disco swith-motor drves 6 or more 10 amp change over micro swiches supphed ready for mains operation
20 metres extension lead. 2 core -ideal most Black and Decker garden tools etc.
2P21 - 10 wath amplifier, Mullard module reference 1173
${ }^{2} 222$ - Mblor driven switch 20 secs on or off after push
2P24- Coockwork qperated 12 hour switch 15 A 250 V with clutch Gounter resellable mains operated 3 digit Drill Pump - always useful coupies ohm any make portable drill 4 metres 98 way interconnecting wire easy to strp el working and definitity a bit of history 2P34 - Solenord Air valve mains ooperated 200 R.P.M. Geared Mains Molor $1^{\prime \prime}$ stack quite powerful,
definitery large enough to dnve a rotating aenial or a tumbl polishing stones eic.
2 P 43 - Sinall type blower or extractor fan, motor inset so very
 2P49 - Fireveancy from 50 hz to 25 hz to give nght nnging ton

2P62 - Spindle I
2P66- 12 kw tangential heater 115 v easty convertble tor 230 V
2P68- $115 v-0-15 v 2$ amp mains transformer
2P69-1 $250 \mathrm{v}-0-250 \mathrm{v} 60 \mathrm{~mA} \& 6.3 \mathrm{~V} 5 \mathrm{~F}$ mains transformer $+£ 1$ post $1115 v$ Muptin molot two $4^{4} \times 4^{\text {tw }} \times$ approx. ex computer

- 2 nour timer, plugs into 131 socke

Sargame 24 hy thime swith 20 amp S.
120 min. time switch with kno
120 min . time swich with knob
90 min time swich with edgewis
13 minh time switch with edgewise engraved controlle,
nains translommer 24 k 2 A upnght mounting
20 m 4 core telephone cable, white outer
pg8- 20 m 4 core telephone cable, white outer
pion - 500 hardened pin type staples for telephone cable

2P107- तre
$2 \mathrm{C108}$ - rreatmbrane keyboard, telephone type superior plug in type 2P109-5 w wde biack adhesive pvo tape 33 m , add $\Sigma_{1}$ post il not
collecting 2P111-1TT line coutput unit
2P112-6 yolt 200 MA Vohage regulated PSU for 13 amp socket
2P113-9 wot 200MA Votage regulated PSU for 13 amp socket 2P114-12 volt 200MA Voltage regulated PSU for 13 amp sockel
2P116-FMM firant end with



## LIGHT CHASER KIT <br> Kit Mor anver smich <br> sets of X-mas lights makes a very eye catching display for homme, shop or disco, only 55 ref 5 P56.

## £5 POUNDERS*

## 保

back switches off, an in ideat caravan unit.
Sosend to light kit complete in inase sunt suitable for up to 750 wats
Silent sentinel ultra sonc transmiter and $12{ }^{W}$ alarm belt with heavy $6^{6}$ gong, sultabie for outside it protected from direct ralliall. Ex GPO but in perfeci order and
5P15 Uniselector 5
5P18 moxor driven water pump as finted to many washing machines
5P20
5ts, matchbox size, survellance e transmiter and 1 FM receiver

coliect add $£ 3$ post
$5 P 25$ special etfects lighting switch. Up to 6 channels of lamps can be
on or off for varying time periods
5P27 carridge player 12 V , has high quality stereo amplitier
5P28 gear fump, mains motor driven with inlel and oullet pipe
corinectors
5P32 large mains operated push or pull solenoid. Heavy so add S 1.50
5P34 poat 244 A torotdal mains transformer
5P35 medern board from telephone auto dialler, complete with keypad
and all ics

5P48 1elephone extension bell in black case, ex-GPO
5P50 box of 20 intra red quarta plass nclosed
5P50 boz of 20 Intra red quartz glass enclosed 360 w heating elements
5P52 mains transformer 26v 10A upright mounting, add $£ 2$ post
$5 P 58$ Anistrad stereo tuner $F M$ and LM and S . AM

21/2kw tangential biow heater, add $£ 1.50$ post if not collecting
Fluorescent light box for viewing PCB's of can be used for shop

## TRANSFORMER IN WATERPROOF

METAL CASE


1987 CATALOGUE available - range of components greatly increased - over 136 pages fully illustraded. Price $£ 1.00$ per copy (free upon request with orders July Special Offer
1DA DC/Battery checker
Buzzer/Audio output tes
ONLY £9.99
NORMAL
+75P PRP

+ $15 \%$ VAT
VERSATLLE
HANDLESTAND
AND 19 RANGES. LEADS WITH
4MM PIUGS BATTERY AND INSTRUCTION MANUAL SUPPUED. MIRROREO SCALE. FUSE PROTECTION
AC VOLTS: $0.50-250-1 \mathrm{kV} \pm 5 \%$
C CURENT. $0.5-50-50-50 M-10 \mathrm{MV} \pm 5 \%$

DECIBERS: CHECKER: 1.5 VV 750 HM



## SOLDER: $60 \%$ TIN-A0\% ALLOY

22. Non-c
500gm Ree
10 Reels


12V RECHARGEABLE UNIT
encapsulated in a Black Plastic Case
Fuse Holder in charged. $245 \times 75 \times 75 \mathrm{~mm}$.


MAINS OPERATED CHARGERFOR
ABOVE UNIT
For a limited period only, while
stocks last, we offer an exe-quipment
Battery Charger for the above units. Although not new these Chargers are ully tested and guaranteed.
When originally supplied thes coss over $\{300$. We offer them at
$£ 15.00$ each including VAT \& postag

## Valves

Enquiries are wel-
comed for any other
valve not lom
vomed for any oher
valve not listed here
Price (i)



| S + DIODES |  |  | Type | Price (if) | Type Pr | Price (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (E) | Type Price | Price (E) | BC548 | 0.08 | BF181 | 0.27 |
| , | BC118 | 0.20 | $A B$ or C | 0.10 | BF182 | 0.32 |
| . 30 | BC119 | 0.32 | BC549 | 0.08 | BFF183 | 0.32 |
|  | BC125 | 0.14 | A or B | 0.10 | BF 184 | 0.30 |
|  |  |  | BC550 | 0.10 | BF185 | 0.28 |
| 0.58 | BC140 | 0.30 | A or B | 0.10 | BF194A | 0.15 |
| 0.38 | BC141 | 0.30 | BC557 | 0.10 | BF195 | 0.12 |
| 40 | BC142 | 0.28 | ВС558) | 0.10 | BF224J | 0.20 |
| . 38 | BC143 | 0.28 | BCX32 | 0.40 | BF240 | 0.30 |
| 0.45 | BC1478 | 0.16 | BCY70 | 0.16 | BF241 | 0.30 |
| 0.48 | BC148 | 0.10 | BCZ10 | 3.21 | 8F244A | 0.30 |
| , | BC148B | 0.12 | BCZ11 | 2.60 | 8F257 | 0.22 |
|  | BC149 | 0.12 | BD124F | 0.70 | BF258 | 0.26 |
|  | BC149C | 0.14 | BD129 | 0.90 | BF259 | 0.30 |
| 0.25 | BC159 | 0.14 | BD130Y | 0.68 | BF262 | 0.34 |
| . 32 | $\mathrm{B} / \mathrm{C}$ | 0.16 | BD131 | 0.36 | BF263 | 0.38 |
| . 25 | BC160 | 0.38 | BD132 | 0.36 | BF270 | 0.30 |
| 0.42 | BC161 | 0.48 | BD135 | 0.26 | BF271 | 0.28 |
| 0.24 | BC168B | 0.25 | 8D136 | 0.26 | BF273 | 0.22 |
| 0.38 | BC170/ABC ${ }^{\text {C }}$ | 0.12 | BD137 | 0.28 | BF274 | 0.34 |
| 1.50 | 8C171/AB | 0.10 | BD138 | 0.30 | BF294 | 0.46 |
| 0.88 | BC172/8/C | 0.12 | 8 BD 39 | 0.30 | 8F336 | 032 |
| 1.10 | BC177/8/C | 0.24 | 8D140 | 0.28 | 8F337 | 0.28 |
| 0.90 | BC182/A/B/C | C 0.10 | BD142 | 1.26 | BF338 | 0.28 |
| 1.20 | BC182L | 0.10 | ${ }^{\text {BDI }}$ B0E | ${ }_{0}^{1.82}$ | BF355 | 0.37 |
| 0.40 | LA LD LC | 0.12 | BD160 | 1.58 | BF371 | 0.27 |
| 0.88 | BC183/AB/C | C 0.10 | BD165 | 0.45 | BF450 | 0.38 |
| 2.10 | BC183L | 0.12 | BD183 | 0.70 | BF457 | 0.36 |
| 2.10 | la lbic | 0.10 | 8 C 201 | 0.52 | BFR51 | 0.36 |
| 0.66 | BC184 | 0.10 | 8D202 | 0.57 | BFR61 | 0.32 |
| 0.44 | A BCLLCL8 | $8 \quad 0.10$ | BD204 | 0.50 | BFP90 | 0.86 |
| 0.50 | BC212ABMC | - 0.10 | BD222 | 0.80 | BFT49 | 0.68 |
| 0.50 | BC212L | 0.10 | ${ }^{\text {BD225 }}$ | 0.40 | $\mathrm{BFP}^{\text {BF }} 3$ | 0.86 |
| 0.50 | LA LB | 0.10 | BD232 BD234 | 0.45 0.30 | BFF50 BFY51 | 0.22 |
| 0.40 | BC213/A/B/C | C 0.10 | 8 B 235 | 0.30 | BFY52 | 0.22 |
| 1.50 | BC213L | 0.10 | BD236 | 0.38 | BFY90 | 0.80 |
| 0.50 | LA LB LC | 0.10 | 8D237 | 0.38 | 8FY90S | 1.34 |
| 1.40 | 8C237 | 0.12 | BD410 | 0.76 | BR100 | 0.25 |
| 5.20 | 8C238 | 0.12 | BD434 | 0.58 | BR101 | 0.40 |
| 2.00 | BC251/AB | 0.14 | BC438 | 0.58 | BR103 | 0.50 |
| 2.90 | BC262 | 0.26 | BD439 | 0.85 | $8{ }^{8} 303$ | 2.75 |
| 4.40 | A B | 029 | BD441 | 1.00 | BRY39 | 0.50 |
| 1.03 | BC301 | 0.30 | BD507 | 1.05 | BRY56 | 0.42 |
| 0.12 | BC302 | 0.30 | B0520 | 120 | BSX20 | 0.35 |
| 0.40 | ВС303 | 0.30 | BD687 BD707 | 0.88 0.88 | BSY52 | 0.35 0.25 |
| 0.16 | BC307A | 0.15 | BD×18 | 1.00 | BT100A/02 | 0.90 |
| 0.12 | BC317A | 0.12 | BD×32 | 1.48 | BT 101/300 | 2.75 |
| 0.20 | BC323 | 0.90 | BF115 | 0.32 | BT 101/500 | 3.25 |
| 0.32 | BC327 | 0.20 | BF117 | 0.50 | BT 102/300 | 3.60 |
| 0.30 | BC328 | 0.16 | BF119 | 0.82 | BT106 | 1.15 |
| 0.42 | BC337 | 0.08 | BF120 | 0.38 | BT116 | 1.20 |
| 0.10 | вс338 | 0.12 | ${ }^{\text {BF } 125}$ | 0.42 | BT119 | 13.30 |
| 0.12 | BC350A | 0.24 | ${ }^{\text {BF }} 127$ | 0.41 | ${ }^{\text {BT }} 1381600$ | 1.30 |
| 0.10 | BC351 | 0.16 | ${ }^{\text {BF154 }}$ | 0.14 | BT151/560R | R 0.90 |
| 0.14 | BC478 | 0.20 | BF157 $8 F 160$ | 0.43 | ${ }_{\text {BU104 }}^{\text {BTM }}$ | 2.80 1.80 |
| 0.10 | BC516 | 0.48 | BF167 | 0.32 | BU105 | 1.20 |
| 0.14 | BC547 | 0.08 | 8F177 | 0.42 | BU108 | 1.75 |
| 0.12 | A or B | 0.10 | BF178 | 0.26 | BU124AE | 0.98 |
| 0.28 | BC440 | 0.36 | BF180 | 0.27 | BU126 | 1.40 |


|  |
| :--- |
| rice |
| 0.27 |
| 0.32 |
| 0.32 |
| 0.32 |
| 0.30 |
| 0.28 |
| 0.15 |
| 0.12 |
| 0.20 |
| 0.30 |
| 0.30 |
| 0.30 |
| 0.22 |
| 0.26 |
| 0.30 |
| 0.34 |
| 0.38 |
| 0.30 |
| 0.28 |
| 0.22 |
| 0.34 |
| 0.46 |
| 032 |
| 0.28 |
| 0.28 |
| 0.37 |
| 0.27 |
| 0.38 |
| 0.36 |
| 0.36 |
| 0 |
| 0.32 |
| 0.86 |
| 0.68 |
| 0.86 |
| 0.22 |
| 0.22 |
| 0.22 |
| 0.80 |
| 1.34 |
| 0.25 |
| 0.40 |
| 0.50 |
| 2.75 |
| 0.50 |
| 0.42 |
| 0.30 |
| 0.35 |
| 0.25 |
| 0.90 |
| 2.75 |
| 3.25 |
| 3.60 |
| 1.15 |
| 1.20 |
| 3.30 |
| 1.30 |
| 0.90 |
| 2.80 |
| 1.80 |
| 1.20 |
| 1.75 |
| 0.98 |
| 1.40 |

TYpe
BU133
BU204
BU205
BU206
BU208A
BU326S
BU407
BUX80
BUY20
BUY69A
BUY69B
BY100
BY103
BY122
BY126
BY127
BY133
BY135
BY164
BY179
BY182
BY 184
BY187
BY 189
BYY98
BY199
BY206
BY207


|  |
| :--- |
|  |
| (C) |
| 0.95 |
| 1.20 |
| 1.20 |
| 2.71 |
| 0.32 |
| 0.39 |
| 0.35 |
| 0.55 |
| 0.70 |
| 0.42 |
| 0.44 |
| 0.42 |
| 0.63 |
| 0.70 |
| 0.58 |
| 0.50 |
| 0.27 |
| 0.14 |
| 2.80 |
| 0.04 |
| 0.05 |
| 0.05 |
| 0.07 |
| 0.04 |
| 0.12 |
| 0.13 |
| 0.16 |
| 0.17 |
| 0.19 |
| 0.34 |
| 0.30 |
| 0.48 |
| 0.14 |
| 0.30 |
| 0.60 |
| 0.65 |
| 0.10 |
| 2.80 |
| 1.80 |
| 0.84 |
| 1.70 |
| 0.88 |
| 0.50 |
| 0.92 |
| 2.70 |
| 0.60 |
| 0.60 |
| 1.00 |
| 0.68 |
| 1.20 |
| 0.30 |
| 0.70 |
| 0.70 |
| 2.80 |
| 0.73 |
| 2.70 |
| 0.70 |
| 2.90 |
| 3.20 |
| 0.80 |
| 1.50 |
|  |



BATTERY CHARGER
$\qquad$


## EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 585.

## ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

## SECRETARY

Janet Reeve
01-261 6671

## CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

## ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

## SUBSCRIPTION ENQUIRIES

0444459188

## TELEORSUOR

## Trade Wars, Phoney Wars

There are growing signs of trade wars, particularly in the consumer electronics field, though one can't help but feel that they will turn out to be phoney wars. The start of the present skirmishes was the dispute between the USA and Japan over semiconductor production, pricing and sales. Dissatisfied with the Japanese response to claims of chip dumping, in part through intermediate markets, the US government slapped a 100 per cent duty increase on a range of Japanese goods including colour TV sets and computers. Concerned about the growing trade deficit between the European Community and Japan, and the possibility of a switch of Japanese exports from the USA to Europe as a result of the US government's duty increases, the EC has threatened to do much the same (no suggested figure this time, the phrase is "punitive tariffs"). The problem here is that the EC's trade deficit with Japan is now running at an annual figure of $\$ 21$ billion and shows no sign of any decrease.
One can appreciate the concern of Western governments and industrialists over these trade imbalance problems. It's less easy to see what can or indeed should be done about them. Let's first consider the Japanese situation. The country after all has it own problems, stemming in particular from its geographical constraints. Some 70 per cent of Japanese land is usable neither for industry nor for agriculture, consisting largely of mountains. The country's large population is squeezed into a small land area with little by way of natural resources. To export something or other is the only way of survival given this situation. In short, the country can support itself only by the export of saleable goods. There have been complaints that this is too much of a one way affair, that the Japanese don't buy foreign products and that their markets are not open to foreign manufacturers. But since they do so well themselves it seems a bit pointless to expect them to import manufactured goods on any scale.

In theory it shouldn't matter if Japan has a whopping surplus in the trade of manufactured goods since there are deficits elsewhere - in the need to import fuel and raw materials, and in a traditional though growingly less important reliance on the use of bought in services (banking, insurance, etc.). But of course Japan's income has steadily advanced because of the value added nature of its exports. The result has been growing monetary imbalances in favour of Japan. But what's to be done with this income? You can invest only so much of it in research and development, and the Japanese have a great deal left over. In recent years it's been going into funding the USA's government and trading deficits. Investing in dollar assets that depreciate is a mug's game however, and the Japanese have already lost a fortune in this way. They do it for want of an alternative but are aware of the nature of the problem. Hence the growing tendency of Japanese manufacturers to establish overseas production, not only in low-cost countries around the Pacific basin but in the Americas and Europe. This isn't done out of any particular altruism but because, to quote a phrase, there is no alternative. So far as the consumer is concerned, instead of getting his nice Japanese goods from Japan they come from local plants. And this means, amongst other things, that some local employment is generated.

The growing Japanese predominance in certain spheres of production is naturally of concern to industrialists elsewhere. But you can't really blame the Japanese for it nor expect them to do very much about it. The idea that they should "open up their markets" etc. is really rather futile. Since they can make most of what they want as well or better than others, exactly what is to be sold to them? The answer to this usually seems to be scotch, rollers, smoked salmon and suchlike. That's hardly a solution to the problem.

The Japanese have got where they are by working out their production plans on a global basis, assisted by a benign domestic economic climate (ready finance at low rates of interest and little by way of industrial problems). Others could have done much the same. But traditionally entrepreneurialship in the west has consisted of seizing opportunities as they arise and making the most of them. And you can hardly develop a longterm strategy when, as for so many years in the UK, you have to operate in the context of a roller-coaster, stop-go approach to economic management.
There is, when you consider it, nothing particularly special about the Japanese approach to industry other than the fact that they get their act together rather well. Where does this leave the rest of us right now? We can't undo Japanese success nor wish their industries away - and the consumer would soon feel the deprivation of not having ready access to the fruits of Japanese production. All we can do is to learn the lessons that are clearly there and try to do a bit better ourselves. The long overdue dollar depreciation against the yen, starting in late 1985, has had severe effects on the profitability of Japanese industry. You can't indefinitely maintain unrealistic exchange rates, though the markets don't operate with the efficiency one would wish. From the longer term view it already looks as though the trade imbalance problem is no longer the insoluable one it once seemed. Meanwhile the calls for Japan to import more and expand its economy, and the threats of sanctions and tariffs, are beginning to look like so much posturing.
The problem of Japan's ability to run value-added industries and benefit from substantial research and development work remains. This is not the sort of thing that can be changed overnight. In the short term the only practical solution lies in greater collaboration and more joint-venture projects.

## COVER PHOTO

Our cover photo this month shows a picture-in-picture display on a Sanyo Model CBP2146. An article on PIP circuitry will appear in a later issue.

# TX9 Thyristor PSU Servicing 

## Gordon Haigh

Later versions of the Ferguson TX9 chassis (PC1044 main panel) use a chopper power supply, with all the advantages this brings, such as lower component count, reduced weight and simplified operation. The circuitry will also in general provide automatic protection in the event of an overload or other malfunction without necessarily blowing the mains fuse. With the earlier thyristor type of power supply (sets with main panel types PC1001 or PC1040) this is not so - any distressful situation in the power supply is likely to blow mains fuse FS1. This article deals with the earlier type of power supply circuit since this is the one that's more likely to give you problems. The complete circuit of the earliest version ( $\mathrm{PC1001}$ panel) is shown in Fig. 1: there were several minor modifications in the PC1040 version and in this the diodes have D instead of W reference numbers, the transistors have TR instead of VT reference numbers, while the thyristors have CSR instead of SCR reference numbers.

## Quick Checks

The block diagram in Fig. 2 shows how the various voltage supplies are distributed through the set. All these voltages as well as the $22-26 \mathrm{kV}$ e.h.t. depend on the power supply producing the correct stabilised h.t. of 115 V at the output side of R197. A 120 V tuning supply is tapped from the other side of R197. It's a relatively easy task to do some quick spot checks on these voltages - all readings shown are taken with respect to chassis. Chart 1 gives a quick guide to supply line faults.

Chart 2 shows a more detailed approach to adopt when the symptoms are a dead set with FS1 intact. Note that the line oscillator will not receive its start-up supply if the line driver transistor VT67 has failed - this is a weak link. If R223 is burnt the replacement should be a $470 \Omega, 5 \%$,
0.5 W fusible type and with this value fitted R216 must be $1 \mathrm{k} \Omega, 5 \% 0 \cdot 5 \mathrm{~W}$.

## Mains Fuse Blown

We come next to the bit we all like best - wondering whether there will be enough 1.6AT fuses in stock. It's important to appreciate that the circuit incorporates a crowbar thyristor (SCR2) which fires when the h.t. exceeds 130 V or the current demand is excessive. As a starter, follow the procedure given in Chart 3.

A severely blackened fuse suggests that the crowbar trip has operated. A replacement fuse may restore normal operation, but for only say a couple of days - this prompted one contributor (see Television July 1984) to design an electronic circuit breaker. Fortunately Ferguson have compiled another fault-finding procedure - see Chart 4 - using a 2A thermal cutout. This second approach should be used when the first has been exhausted or proves to be inconclusive. A $100 \mu \mathrm{~F}$ capacitor and 3 A fuse are also required when doing battle in this way with the more sticky or subtle faults.

Intermittent fuse blowing should direct attention to zener diodes W85 and W83, transistor VT66 and the crowbar thyristor SCR2. The regulating thyristor SCR1 can blow the fuse without measuring short-circuit, so as with any suspects it's best to fit a new replacement part, if only for elimination purposes to save time. R184 (220k $\Omega$ ) in the set-115V control network can go high in value to cause fuse blowing.

Ferguson state that if EW modulator diode W96 goes short-circuit the crowbar thyristor will fire, blowing FS1, and that this fault can damage VT72/3/4 and R251 in the EW modulator drive circuit.

The degaussing thermistor must be replaced with the


Fig. 1: Thyristor power supply circuit used in the initial version of the Ferguson TX9 chassis (main panel PC1001).


Fig. 2: Block diagram showing the origin of the various supply lines in the TX9 chassis.
correct type - the wrong type can go up in smoke, with perhaps fuse failure.
If SCR1 goes short-circuit the momentary rise in h.t. before FS1 blows can damage the following components: the line output transistor VT68, the 24 V rectifier W94, W103 and the TDA1170S chip in the field timebase, the 15 V supply reservoir capacitor C 193 and the 12 V regulator chip IC56.
There are several official modifications for dealing with the problem of random mains fuse blowing. These are as follows. PC1001 panel: (1) change Cl 46 to $22 \mu \mathrm{~F}, 16 \mathrm{~V}$; (2) change R223 to $470 \Omega$ and R216 to $1 \mathrm{k} \Omega$ - these two changes must be implemented simultaneously (see above); (3) change the line driver transistor VT67 to the correct Ferguson approved type (part no. 00TR-(29-7011TG). PC1001/1040 panels: (4) change L65 to the later type; (5) change W85 to the correct Ferguson approved type (part no. 02V4-718); (6) change C134/5 to $0.001 \mu \mathrm{~F}$, 1 kV .

## Displaced Picture

A problem that sometimes arises with these sets is horizontal displacement of the picture to the left. The cause is either R212 or R217 (both $220 \mathrm{k} \Omega$ ) in the line generator feedback loop going high in value or opencircuit. Originally carbon-film resistors were used in these positions. They were changed to metal glaze resistors in later production.

## Set's Label

Finally, don't forget the label pasted in the set. It carries enough information to locate and carry out quite a few preset adjustments, which is helpful in the field.

## Chart 1: Supply line checks.

In the event of a dead set, can you hear the line start up? If not check for 115V at R197 then refer to Charts 2-4. If the line start up is audible, is there a slight buzz from the speaker? If there is, check for 12 V at C191-if this supply is absent suspect IC56.
For no sound check whether 15 V is present at the cathode of W95. If o.k. check R156 and IC53.
For field collapse with normal sound check for 24 V at the cathode of W94. If o.k. suspect IC55 stage.
If there's a bright raster with flyback lines and normal sound check for 190 V at C182. If o.k., suspect IC52.

## Chart 2: Set dead, FS1 intact.

Check the voltage at the cathode of SCR1.
If 120 V , check whether R223 is burnt. If so check IC54 and VT67. If not check W82, R197, VT67 and VT68 (could be open-circuit).

If the voltage at the cathode of SCR1 is approximately 12.5 V check W78.

If there's $0-2 \mathrm{~V}$ at the cathode of SCR1, check for about 210 V at its anode. If there's zero voltage here check the mains bridge rectifier, W66 (if in series with SCR1) and the mains input. If the 210 V supply is present check the a.c. voltage at the anode of SCR3, via an $0 \cdot 1 \mu \mathrm{~F}$ capacitor. If the reading is 0.2 V a.c. check SCR1 and T 1 . If the reading is 0 V check for 30 V at the emitter of VT62. If the reading here is approximately 20 V VT 62 is short-circuit. If the reading is 0 V check W67 for being open-circuit and C137 for being shortcircuit. If the 30 V is present, check VT65, C138, C143, C144, W73 and SCR3.

## Chart 3: Dead set, FS1 blown, Method 1.

Switch off at the mains. Replace FS1. Turn R185 fully anticlockwise (minimum h.t.) and the volume control to the half-way point. Switch on.
If the sound comes up then the fuse blows check VT62 and VT65.
If there's sound but no raster, check the 115 V line at R197: adjust R185 to increase the h.t. slowly to exactly 115V. If FS1 blows go to Method 2.

If FSY blows, disconnect the mains lead and fit a replacement fuse. Disconnect the degaussing coil. Then check the resistance across the mains lead both ways, using the middle ohms range.
If the reading is $1 \mathrm{k} \Omega$ one way, check for shorted bridge rectifier diodes.

If the reading is $100 \mathrm{k} \Omega$ both ways, check SCR1 for being short-circuit. If its resistance is greater than $1 \mathrm{M} \Omega$ anode to cathode, check the resistance of SCR2 from anode to chassis (red lead to chassis, black to SCR2 anode).

Check SCR2 and W77 if the reading is a short-circuit.
If there's an initial short-circuit, rising to $20 \mathrm{k} \Omega$ as $\mathrm{C} 147 / 8$ charge, check W93, W94 and W95 for being short-circuit and for shorts across the 15 V and 24 V lines.
If the reading is $3-4 \mathrm{k} \Omega$, check VT67 for being short-circuit or for a short across the 190 V line.
If the reading is $1 \mathrm{k} \Omega$, disconnect VT68's collector and remeasure. If the reading is still $1 \mathrm{k} \Omega$ there's a short-circuit across the 115 V supply. If the reading rises to greater than $20 \mathrm{k} \Omega$, check VT68.

## Chart 4: Dead set, FS1 blown, Method 2.

Switch off at the mains. Connect a 2A thermal cutout (as used in Thorn 3000/8000 series chassis) in series with the live side of the mains supply. Replace FS1 with a 3A fuse. Solder a $100 \mu \mathrm{~F}$ capacitor across C143 to increase the slowstart action. Switch on.
If FS1 blows immediately, check W62-5, SCR1, C130, C131 and W72 for shorts.

If FS1 blows after a few seconds, switch off and reset the cutout. Monitor the voltage at the cathode of W82. Switch on. Note the voltage indicated by the meter before the cutout operates.

If above 115 V , check VT65, VT62, W66, W69, W68, W72 and W78. The h.t. could be set too high.
If the reading is $50-100 \mathrm{~V}$, check W77, W83, W94 and W95 and for shorts across the 24 V and 15 V lines.
If the voltage is below 2 V check W85, SCR2 and C147, and for a short across the 115 V line.

If the reading is $5-15 \mathrm{~V}$, switch off and disconnect the collector of VT68. Reset the cutout and switch on. If the cutout holds, check VT68 and W96. If it operates, check C148, VT6 6 and for a short across the 190 V line.

# Letters 

## SERVICING CHARGES

I've been a regular reader of your magazine for some years now and find it a great help, being self-employed, I have little time available to go on up-dating courses or anything of that sort. One thing bothers me however. There never seems to be any discussion on the subject of pricing repairs. Prices are often given in your test reports and other items relating to pieces of equipment, but when it comes to repair prices - nothing! Anyway, I'd like to start the ball rolling on this topic.

It's a fact that our trade has been adversely affected by retail discounting. Many small businesses have had to cut down on retail sales to such an extent that their main turnover now comes from servicing. Conversely, the discount merchants have their problems when it comes to servicing. They've got themselves a very poor reputation as a result of the poor wages they pay (how can they pay more when they make so little on sales?). Poor wages mean that they end up with substandard engineers. I'm not saying that all their engineers can be so described, but when I worked for two large discount houses some years ago I was disgusted with the quality of many of their engineers. It seems that the best engineers at such organisations have to be confined to benchwork - a good man is seldom sent out on housecalls. These discount firms tend to have a discount service. They are poorly organised and costs run high. It's not uncommon for them to charge over $£ 25$ for a call out.

Let's consider the possibilities this opens up for the smaller firm. I'm not suggesting that we enter into a price war with respect to call-out charges - it would be counterproductive to do so - but I feel that by being more efficient we can charge similar rates while making a better profit. We have two big advantages. First, we are local and know most of our customers on sight. Secondly we can be available more quickly and for more hours than the large groups.

I used to send customers packing when they came in carrying their Hinsho, hi-mo or Flymo come to that, but I then came to my senses. These people deserve all that comes their way. So I'll repair their equipment, but at a price: they are charged at a higher rate than I charge my faithful customers. I can hear you saying "what a rip-off merchant this man must be". Not so. Just think how often you have taken on unfamiliar equipment and found yourself losing money on the job. Now ask yourself what these customers have done for you. Don't think you will get them to buy from you as a result of your efforts - if you're lucky one in a hundred may come back to purchase something, and that's not good odds.

So down to charges. I feel that one must have a standard call-out charge, but with flexibility to allow for regular customers. Say $£ 20$ to $£ 25$. This should cover the first half hour spent in the customer's house. If the repair cannot be completed in that time it's probably better done in the workshop anyway. Charges for workshop repairs should again be in the region of $£ 25$ an hour. It makes no difference to costs whether a transistor radio or a VCR is being worked on - the overheads, wages and costs are all the same, so the charges should also be the same.

I find it advantageous to swap service information with
other small local businesses: we all help each other in this respect. Also, we don't criticise each other and we don't discount each other. In this way we find that there's a good living to be made for all of us. As a general rule in my town we all cooperate with each other and there's no backbiting to worry about.

When I suggested to a friend of mine in the next town that he should increase his prices he said he'd lose all his customers. Two years later he's doubled his prices and trebled his number of customers! In fact he's expanding in the service field and closing down his retail shop.

Let's face facts. We are keeping what must seem like the eighth wonder of the world in good condition and deserve payment to suit. I spend a lot of money on equipment, and pay my staff well. We have to be qualified to a high standard not only in being able to diagnose and repair faults in electronic equipment but also in rally driving, plumbing, joinery, building, bottany and coffee sampling! We are expected to listen to the customer's family history and smile whilst attending to a set next to a bloody great fire while the kids empty the tool kit, the dog gets in the way and the customer wants to make you a cuppa. All you want to do is to get out as fast as you can! As engineers, we must surely be worth more than an electrician or a plumber, a motor mechanic or even a refuse disposal man.

In conclusion, if we are to pay ourselves a respectable wage for a respectable trade, we must charge respectable prices.
D. Tasker,

Harrogate, Yorkshire.

## CHECKING CRT HEATER SUPPLIES

J. LeJeune's novel approach to the problem of assessing c.r.t. heater voltage when the supply is non-sinusoidal (c.r.t. heater voltage checker, January 1987 issue) interested me for a couple of reasons.

First, I had occasion in the past to tackle this problem and found a simple solution: I used a car dashboard type voltmeter. This type of movement - in common with others used on the instrument panel - has as its basis a bimetal strip which is heated by a coil of resistance wire (see Fig. 1). The strip is coupled to the pointer in such a way that its small displacement is amplified. This displacement is a function of the true r.m.s. value of the current flowing in the coil, irrespective of its waveform. The bimetal strip is $U$ shaped, with the winding on one leg only. The direction of displacement in each leg due to the ambient temperature is such that these displacements cancel at the pointer coupling. Thus the meter registers


Fig. 1: Basic mechanism of a car instrument panel meter.
Fig. 2: Recalibration of the tube tester/booster heater supply voltmeter. Original markings are the lower ones, true r.m.s. equivalents are those above.
 Topquatir Ex-REWhiny

05
Panasonic JVC HITACHI SONY TOSHIBA PHILIPS

ElEctions HS

## DRAKE

 The answer to your satellite TV questions.

Drake brings satellite TV down to earth. An exciting variety of television entertainment exists and the Drake line of satellite equipment will bring it into your home - EASILY and AFFORDABLY. Get on the road to expanding your entertainment horizon by seeing the Drake line TODAY!

Become a DRAKE SATELLITE DEALER and take advantage of our special dealer prices. We are the main importers and distributors for R.L. Drake, one of the largest USA manufacturers. Don't be misled by inferior products when you can sell the best. From only $£ 495+$ VAT (inc 10 mts cable). Contact

TELEVISION AND VIDEOS AT REALISTIC PRICES FROM THE SPECIALISTŞ. LATE MODELS ALWAYS AVAILABLE WITH 100\% CABINETS AND TUBES. ALL SETS READY FOR INSTANT INSTALLATION AND VIDEOS FULLY SERVICED.

## QUALITY AND RELIABILITY IS OUR AIM AT ALL TIMES.

## ALSTON-BARRY SATELLITE SERVICES

36 MILTON ROAD CAMBRIDGE. (0223) 69215

32 BROAD STREET
ELY (0353) 61462


LATER MODELS ALSO AVAILABLE.
ELECTRONIC VIDEOS FROM ONLY $£ 135$

+ VAT. MOST MAKES IN STOCK. FREE
ELECTRONIC VIDEOS FROM ONLY £135
+ VAT. MOST MAKES IN STOCK. FREE DELIVERY FOR SENSIBLE SIZED ORDERS
from only $£ 60$
from only $£ 75$
from only £125
from only £135
KT3
K30
CTX
K35

ALSO AT

that there is a real difference at Cricklewood Electromics That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, competitive prices and service from the UK 's number one $100 \%$ component shop No gimmicks, no gadgets or computers, just components, milhons of them, all easily available by mail order, calling or credit card telephone orders. Just pick up the phone (or a penl to get vour FREE copy now (no SAE required) You have nothing to lose

only the difference in temperature between the legs due to the coil current.

The particular voltmeter I used had a coil resistance of around $400 \Omega$ and drew only 15 mA at 6.3 V . The original scale was marked from $6-17 \mathrm{~V}$. When this was carefully recalibrated at 1 V intervals, using the bench power supply, it was found to start indicating at 5 V . The one snag with this type of meter is that it's very slow to respond and has to be left connected for several seconds until the pointer finally settles.

It's possible to boost the heater of an ageing tube by introducing a turn of wire around the core of the line output transformer in series with the existing heater supply. By using a true r.m.s. meter you can then tailor the value of the series resistor in the supply to give a heater voltage in the region of 7.5 V , a figure which shouldn't really be exceeded. If the extra turn is in the wrong direction the heater voltage will of course be reduced.

All this has made me aware of an oversight on my part - in my c.r.t. tester/booster article (February 1987). The heater voltmeter in this tester/booster measures the average voltage of a rectangular waveform. Now this is different from the r.m.s. value, which is what really counts. The difference is greatest when the voltage is low and comes closer to the r.m.s. value as it increases. The relationship between the two in this particular case is Vrms $=V($ Vave $\times 12)$. Fig. 2 shows how the meter dial should look. With the unit as it stands tubes are tested and boosted at a higher voltage than that shown.
Alan Willcox,
Cardiff, South Glamorgan.

## PORTABLE PUZZLE

A great number of traded-in monochrome portables fitted with the Thorn 1590 have come my way over the years. I find that the worst trouble is inability of the 11.6 V regulator to stabilise. In some cases I've changed every component in the power supply and have even changed the line output transformer on the assumption that it might have been loading the supply, but all to no avail.

Have other readers experienced this difficulty? And would it, with hindsight, have been better to arrange for all the circuits to run off the 11.6 V rail rather than having some of them run off the 25 V boost rail?
K.J. Treeby,

Plymouth, Devon.

## CUSTOMERS' DIAGNOSES

Although I've not been in the trade for as long as Colin Goodman (Letters, April) I've heard all those diagnoses from customers - and several others as well. In the event of an intermittent fault that clears as you arrive, it's "you've got the magic touch" or "it's like when you visit the dentist and your toothache goes" - if I'd had a quid for every time I've heard that one I'd be able to retire. Other customer cliches include "we didn't touch it, it just went like that" - what they mean is that the transmitter went off the air for ten seconds, in which time they twisted all the tuning knobs from ch. 21 to ch. 68.

Then there are the "famous names", rentat customers who call in about ghosting whenever a tanker is anchored in the Solent, or for co-channel interference, and it's always the same - "it's never done it before", "our old set didn't do it", and "we don't get you out for nothing you
know". But the records show that engineers have spent enough time at these addresses to be almost able to set up residence there. Do such customers really expect engineers to believe them, especially when the same engineer calls each time, or do they think TV engineers have just swung down from the trees? "Famous names" can progress to become "really famous names": with these people you can be 90 per cent certain of what you'll find wrong (usually nothing) and what they'll say to you.
Alfred Damp,
Ryde, Isle of Wight.

## HIGH-VOLTAGE FILAMENT VALVES

Your recent article on vintage mains supplies makes me wonder how many readers remember the OSDA-GANZ valves of the early thirties? If I recall correctly these valves ran their high-voltage filaments directly off d.c. mains supplies: you could read a book by the light they emitted. R.E.D. Mathews,

Christchurch, Dorset.

## PANASONIC U2 CHASSIS

Recently another Panasonic TC2205 (U2 chassis) came my way with a low-emission c.r.t. and an EW fault. The tube was changed, after removing the boost transformer from the circuit, and I then set about checking the electrolytics, four of which came away in my hand. I finally tackled the EW fault. The usual trouble-makers here are the BD237 EW modulator driver transistor Q753 and the $4.7 \Omega$ resistor R 770 in its collector circuit. The resistor turned out to be faulty, but after replacing both these items the fault persisted. Further investigation revealed that there was only a slight negative voltage at the junction of the modulator diodes instead of the usual 1215 V . This led me to check the resistance across the lower diode, which gave a correct reading of $4.8 \mathrm{k} \Omega$ - replacing both diodes made no improvement. In desperation I resorted to swapping all the components in the circuit, using those from an identical set. The faulty item turned out to be the last one changed - the loading coil L752. I hope this note will be useful to other readers.
John L. Howard,
Barnstaple, N. Devon.

## NO MORE FUN?

Mr. Kendall's letter (March) took me back a few years further. I first became interested in electronics about sixty years ago, at the age of eight, when I built my first crystal set. I remember saving for weeks to buy a valve, and building a set which eventually had a loudspeaker made from an earphone with a paper cone attached to the diaphragm!

In 1948 I started on TV with a set much like Mr. Kendall's, only I had built a simple oscilloscope with a 3 in . tube which provided the display. I remember watching the trade programmes in the mornings - Petula Clark was on one piece of film that appeared regularly, and an extract from William Walton's Facade also comes back.

When the Wireless World design appeared I set to work to build it. Lots of EF50s and wind not only your own r.f. coils but the scan coils and the line output transformer as well. A visit to Lisle Street, in those days a feast of radio junk shops and not, as now, Chinese food stores, produced a pre-war 9in. Mazda tube, new, for about $£ 10$ and

I was in business. The set was in advance of its time in some ways - flyback e.h.t. for example (though only about 5 kV if I remember) - and with modifications gave yeoman service for about ten years, when the tube gave up. By then it had had a Haynes line output transformer and scan coils fitted and incorporated a regulated power supply of about 300 mA at some 300 V , black-level clamping, flywheel sync and lots of other things which were luxuries in those days. I still have the original hand-wound scan coils.

The set and its immediate successor gave me a lot of fun and entertainment, but I feel that the fun is no longer
there in the hobby. So much of what we do is now contained in little black chips. When you build something it's a matter of putting the right chips into the right places on the PCB, and unless there's a defective chip it works. Designing is now much more difficult for the amateur without a lot of reference books. I'm not against chips: I built the Wireless World teletext adaptor (around 100 chips!) and I also have a computer which I pull to pieces at intervals, but again it's mostly a matter of just plugging in chips!
M.C. Matthews, Dorchester, Dorset.

## The Super-VHS Specification

It's almost ten years now since I saw the first VHS video cassette recorders - the JVC Model HR3300. Some of these early machines are still in service, having stood the test of time.

## Comparisons

In all VCR systems the luminance signal to be recorded is first frequency modulated on to an h.f. carrier. It's recorded on tape as the lower sideband of the spectrum produced by this f.m. process. Fig. 1 shows the signal spectra for various VCR systems, (a) standard VHS, (b) Beta super hi-band and (c) the new Super VHS (S-VHS). As you can see, the luminance signal bandwidth, and hence the picture resolution, depend on the extent of the lower sideband frequency spectrum that can be recorded on the tape.

The advent of the 8 mm video system has led to claims that this will become the new domestic VCR standard. I don't agree with this, nor do I agree that Video-8 is significantly better than the standard VHS system. The Video- 8 system has been able to take advantage of developments in video tape recording technology. What if the VHS system was to take advantage of these same developments? This is where the S-VHS system comes in.

In the past, certain Betamax machines gave rather better performance than their VHS contemporaries. This was basically because the Beta system's luminance carrier deviation is slightly wider at $3 \cdot 8-5 \cdot 2 \mathrm{MHz}$ than the standard VHS carrier deviation of $3 \cdot 8-4 \cdot 8 \mathrm{MHz}$. Whilst this higher specification didn't increase the resolution much it did significantly reduce the video noise content. As a result, greater enhancement could be used for the same signalnoise ratio than with VHS. So Beta machines could provide an apparently better bandwidth and resolution.

With the Video-8 system the luminance f.m. deviation is $4 \cdot 2-5 \cdot 4 \mathrm{MHz}$. Since the carrier is at a higher frequency than with standard VHS or Beta, the result will be a wider lower sideband f.m. bandwidth and thus improved resolution. The wider deviation of $1 \cdot 2 \mathrm{MHz}$ compared to standard VHS will give an improvement in signal-noise performance, but this is offset by higher density recording on the narrower 8 mm tape. Further improvement is allowed for however by the use of higher grades of metal tape.

Thus to achieve improved performance with a video recording system, three factors require attention. First a higher luminance carrier frequency to enable the bandwidth and thus the resolution to be improved. Sec-

Steve Beeching, T.Eng.
ondly a wider frequency deviation to improve the signalnoise performance. And thirdly an improved type of tape is required to enable the first two factors to be implemented.

The Super Beta standard is shown in Fig. 1(b) for comparison. The luminance carrier frequency of $4 \cdot 8$ 6 MHz gives increased resolution ( 370 lines) compared with standard Beta while the 1.2 MHz deviation provides a good signal-noise ratio. Overall the performance is much better than with standard Beta.

## Super-VHS

The new Super VHS specification pushes the luminance bandwidth even farther up the scale, the carrier deviation being $5 \cdot 4-7 \mathrm{MHz}$. This results in a massive resolution increase from 250 to 400 TV lines while the wider 1.6 MHz deviation improves the signal-noise ratio. The bandwidth of the down-converted chroma signal is increased to over 500 kHz , centred on 627 kHz , giving enhanced colour. The luminance white and dark clip levels have been increased to 250 per cent and 70 per cent respectively.

The new specification also reduces cross-colour effects. If you compare Fig. 1 (a) and (c) you will see that the upper sideband of the chroma signal and the lower sideband of the luminance signal no longer overlap - in fact there's a gap of some $200-300 \mathrm{kHz}$.

JVC intend the new S-VHS machines to have separate luminance and chrominance inputs and outputs so that the improved cross-colour performance and bandwidth are maintained. JVC also intend to market a high-grade colour TV set with separate luminance and chroma facilities. It will take advantage of the improved S-VHS specification, though standard r.f. and composite facilities will no doubt be provided. All this is likely to upset the Euro camp with its SCART connector.

## Tape

The whole system depends on the availability of a tape capable of handling the wider bandwidth. A new tape, intended exclusively for S-VHS use, has been developed. It uses a highly efficient cobalt iron oxide material and has the high coercivity of $800-900$ Oersteds (the high grade and super high grade tapes currently available have the relatively high coercivity of $720-750$ Oersteds). The cassette has an identification hole so that the VCR can .identify the type of tape.

There would be no point in using the new tape with


Fig. 1: Comparison between the signal spectra for various VCR systems. (a) Existing VHS. (b) Beta super hi-band. (c) The New Super-VHS specification.
current VCRs. They would not be able to erase it let alone record on it, though it may be suitable for use with some uprated models to be produced later this year. The new tape will be manufactured by Fuji, Maxell, TDK and Scotch in addition to JVC.

## Recorders

The new S-VHS VCRs will have dual VHS standard capability, being able to record and playback to either specification. Current models are not able to handle S-VHS tapes.
S-VHS machines will be released this summer by JVC, Panasonic, Mitsubishi, Hitachi and Sharp - in Japan. There's no PAL version as yet, though I expect some S-VHS models to be released in Europe by the end of the year or early next year. The price is likely to be in the region of $£ 1,000$. In due course Sony will no doubt announce a new super duper Beta format to handle extended definition TV signals (EDTV), with a resolution of 500 lines. When you come across references to ED Beta some time in 1988, remember that you read about it first in Television!
As an aside, whilst we in the UK are still stuck with standard terrestrial TV transmissions it would nevertheless seem that the designers of C-MAC satellite TV decoders should be thinking of providing a separate chroma output. I've no doubt that it would be easy enough to modify TV sets to buffer out the chrominance. Any ideas as to which SCART pin we could hijack?


- DIGITAL SERVICING WITH A LOGIC PULSER

Tackling the complex digital circuitry used in many VCRs is perhaps the biggest problem that service engineers face zoday. Hours can be spent in trying to pinpoint fau ts in system control circuitry, and many expensive chips may be replaced without clearing the fault. Use of equipment specifically designed for fault-finding in digital circuitry greatly helps. Two such items are now readily available at a reasonable price, the logic probe and logic pulser. The former is similar to the traditional signal tracer while the latter acts as a logic signal generator.

In an earlier article (November 1985) David Botto described the use of a logic probe. This time he takes digital servicing a step further in describing the use of a probe end pulser combination. Until recently several types of pulser would have been required to cope witt the various logic families: it's now possible :o obtain for less than $£ 17$ a logic pulser that operates effectively with all types of logic circuitry.

## - BUDGET VARIABLE PSU

A recent bench power supply test report stressed its many uses in the workshop. For the impecunicus or those with less exacting requirements William Harrison presents a simple, low-cost variable regulated power supply.

## - TELEVISION ON TAP

J. LeJeune takes a close look at cable television, sterting with a survey of the various types of systems that rave been used over the years.

MORE ON VIDEO-8
The concludirg instalment of Eugene Trundle's Video-8 series deals with further aspects of PCM audio and servicing procedures for Video-8 equipment.

PLUS ALL THE REGULAR FEATURES

## ORDER YOUR COPY ON THE FORM BELOW:



# Now Read This 

Les Lawry-Johns

I'm told that some of you who repair Ferguson videos don't recognise a fuse when you see one. Now I don't care to get involved with VCRs myself but when I was given this information I thought it would be prudent to pass it on, although the majority of you probably know what it's all about already. The point is that the fuses concerned don't look like fuses, they look more like a small diode or a transistor with two legs. They're called Wickman fuses and are rated at 150 V . Close scrutiny of the list given in Table 1 reveals that the current rating is obtained by multiplying the type number by 40 , for example type ICPF10 has a rating of $400 \mathrm{~mA}(10 \times 40=400)$. Cries of never... Table 2 lists the range of Wickman fuses available from Philips Service, and their code numbers for ordering purposes. I hope you find this of interest. Take a note of it, just in case.

## The Big Roberts

This large set was brought in the other day by two big fellows who puffed a bit. It turned out to be fitted with the Philips G9 chassis, which was bad news for uncle Les. There was about four inches of field scan on the $26 i n$. tube, almost full width, no control of brightness and very little sound. Now as you know the first thing to do with this chassis is to check the condition of C138 $(2,200 \mu \mathrm{~F})$ which decouples the emitter of the BU208 line output transistor, serving as the reservoir capacitor for the 42.8 V supply. I didn't suspect it of being the cause of the fault conditions but checked it just the same. It was on the way out, emitting thick black fluid. I changed it and tried the set again. Still the same. The BU208's emitter voltage was low at about 20 V , thus explaining the poor field scan, low sound, etc. I removed the plug connected to the timebase panel (line oscillator, field timebase, EW correction circuit etc.) and the BU208's emitter voltage rose to 40 V .

Like a fool I fitted another timebase panel. The symptoms remained the same. So I concentrated on the line

## Table 1: Wickman fuses used in Ferguson video equipment.

| Type | Rating | Part no. | Used on |
| :--- | :---: | :---: | :--- |
| ICP-F10 | 0.4 A | $01 \times 0-042-112$ | $3 \mathrm{~V} 33 / 38 / 39 / 42 / 43 / 45 / 47 / 48 / 49 / 54 / 56$ |
| ICP-F15 | 0.6 A | $01 \times 0-040-407$ | $3 \mathrm{~V} 29 / 30 / 35 / 36 / 38 / 39 / 49 / 50$ |
| ICP-F20 | 0.8 A | $01 \times 0-086-061$ | $3 \mathrm{~V} 46 / 50$ |
| ICP-F38 | 1.5A | $01 \times 0-057-320$ | 3 V 38 |
| ICP-N10 | 0.4 A | $01 \times 0-058-395$ | $3 C 01,3 \mathrm{~V} 44 / 45 / 48 / 50$ |
| ICP-N25 | 1A | $01 \times 0-085-007$ | $3 \mathrm{~V} 44 / 45$ |


| Table 2: Wickman fuses from Philips Service |  |  |  |
| :---: | :---: | :---: | :---: |
| Rating. | Code no. | Rating | Code no. |
| 63 mAT | 25310058 | 1-25AT | 25310075 |
| 160 mAT | 25310054 | 1 1.6AT | 25310046 |
| 250 mAT | 25310071 | 2 A | 25310051 |
| 315 mAT | 25310074 | 2AT | 25310039 |
| 400 mAT | 25310064 | 2.5 A | 25310082 |
| 500 mAT | 25310041 | 2.54 AT | 25330089 |
| 630 mAT | 25320089 | 3.15AT | 25310048 |
| 800 mAT | 25330104 | 4AT | 25310047 |
| 1AT | 25310052 | 5AT | 25310065 |

output panel and found a leaky diode (D176) in the beam limiter circuit. Replacing this didn't alter things one jot and I was getting fed up. After further checks I found that the "lower" diode in the diode modulator circuit, D156 (BYX55-600), was open-circuit. Heaving a sigh, I replaced this and put the panel back in. It worked. Full voltage at the BU208's emitter, a lovely field scan, full control of brightness and good sound. I would have thought that an open-circuit diode in this position would have had a more drastic effect on the width, but it didn't. Something else to remember.

## The Pye 196

This set gave me a bit of a headache. It's a small monochrome portable fitted with the Philips TX chassis. The complaint was that the picture would go off at irregular intervals, leaving a blank raster with slight radio music or talking sounds in the background. To me this meant trouble in the i.f. strip. My problem was that the fault just wouldn't put in an appearance. The picture stayed on for days. Eventually, one morning, the picture did go off, leaving a blank raster.

I leapt at it and found that the voltages at the base and emitter of the first i.f. amplifier transistor were higher than they should have been - about the same as at the collector. If I switched off to check the transistor however the fault would be gone and we would be back to normal. So I followed the base bias back to the a.g.c. amplifer transistor TS351 and found that this had no base bias. Its collector voltage was thus high and the i.f. amplifier transistor TS217 was being turned on excessively. The base of TS351 is biased by R353 ( $820 \mathrm{k} \Omega$ ) which was opencircuit. After replacing this the set behaved itself for several days and the owner was glad to collect it.

The set was used in a caravan and had always behaved for the husband but always gave his wife trouble. She blamed him and he was glad to be out of the doghouse. It's all right for him. I live in one all the time. Tessa and Zeb are good really: it's the cat that leads me a dog's life.

## The Radio Set

This was a killer. A shop (I won't say who it was, Peter) had told this chap that the only place where he would get his radio set repaired would be here. I said I would have a look at it if he brought it in. Shortly after this he appeared with his wife, carrying a small wooden box. His wife explained the trouble.
"When we turn up the volume it screams at us."
I took the back off and looked inside. On the righthand side there was a tall object which I took to be the dropper. Next to this there was a valve which seemed to be a 6Q7. It was obviously a double diode triode anyway. There were two further valves to the left, both with top caps connected to the tuning gang (two sections). I looked for an output valve and rectifier but they weren't there.
"Did you say this set goes?"
"Yes, but it howls at you."
I plugged it in and switched on. Something flashed and went bang underneath. I unplugged it and removed the chassis screws and the knobs at the front. The whole thing came out, including the speaker. When I turned it over I saw that the mains filter capacitor had disintegrated. So I clipped it out. "We'll fit another if a strong station has a hum behind it" I explained.

I switched it on again and was aware of an obnoxious smell.
"It's the smell that's getting us down" he said.
I sniffed around and it seemed to come from the dropper. I looked at it closely. It wasn't a dropper, though it looked like one. It was an old selenium rectifier. I disconnected one end and fitted a BY127. "It won't smell any more" I said.
"That little thing in place of that big one?" he queried.
"The march of time" I explained.
I examined the set in more detail and came to the conclusion that the double diode triode drove the speaker, that what I had assumed was the i.f. amplifier was in fact the second r.f. amplifier, and that what I had assumed was the frequency changer was the first r.f. amplifier. It wasn't a superhet at all, it was a t.r.f. receiver. This meant that the "volume control" was in fact a reactance control, hence the oscillation when it was turned up. I connected the short aerial lead to the braiding of a TV aerial and the set started to perform. With the set tuned to the h.f. end of the medium wave band I tuned the trimmers on top of
the gang. The stations now came through loud and clear. I turned up the "volume control" and the set howled, so I turned it down for comfortable listening.
"How long an aerial lead do you use?" I enquired.
"About four feet, connected to a water pipe" he replied.
"Well don't connect the aerial lead to a water pipe unless you use it as an earth. Use a bloody great length of single lead and don't connect it to anything."
"Why?"
"Because the ideal length for an aerial is half a wavelength. Radio four on the long wave is 1,500 metres. The aerial length for this is therefore 750 metres. Get the drift?"
"Yes. Thanks very much."
So they went off leaving me feeling full of nostalgia for the old days. I thought I'd forgotten it all but back it came. I still wonder about that double diode triode driving the speaker

## Product Report: Glue Guns

For some time now I've been using a glue gun for both field and bench work. It's proved to be so useful that I never venture into the field without one. Traditionally we seem to carry in our kit everything for repairing the set, but seem to overlook damage to the cabinet, knobs and other bits and pieces. Very often a second, wasteful call is needed. With a glue gun in your hand you can eliminate many of these problems.

## The Weapon

Glue guns use hot-melt adhesive sticks - many types of glue sticks are available for bonding different materials. I prefer the clear, general-purpose sticks usually provided with the gun. These will deal with most plastics, wood, fabric, paper, etc.

There's no shrinkage of the glue and the bond is ready when cool. The material is a good insulator and can be used as a sort of potting compound.

For around $£ 10$ you can pick up an electric glue gun, with glue sticks, and get started. There are two types of sticks: short, manual fed ones and longer, trigger fed sticks. Both types are o.k.

Camping Gaz have introduced a cordless glue gun. One of these (type P500) has been supplied to me for evaluation and I'll be reporting on it at a later date. It's powered by a Camping Gaz CV360 butane gas cartridge which should give around four hours' continuous use. Ignition is electronic, using one small battery. Two of the longer glue sticks ( $11 \mathrm{~mm} \times 210 \mathrm{~mm}$ ) are provided. The catalytic heating system means that there's no naked flame. The gun is good but not cheap at around $£ 35$.

## Applications

You will doubtless find many uses for your glue gun. Here are some of mine.

Cabinet repair is where the glue gun really shines - in the field instead of having to cart a set in for repair or even cabinet replacement. Repairs that are possible in the field include: cracked cabinets and fascias; internal damage to plastic mouldings; switch and push-button

Harold B. Berkley
mountings.
The gun can be of great help with older and obsolete sets for which parts are no longer available. Have you ever been to an older set which has push-buttons that go flying across the room when you change channels? No problem with the glue gun!

The above remarks also apply to bench work and refurbishing of course.
Here are some specific uses. With whistling line coils, for example in the Thorn 9600 chassis, a quick squirt of glue will usually provide a cure. This is worth a try on other noisy chokes and transformers. Where an on/off switch has been pushed into the set, breaking the plastic moulding, a new switch can be glued in - allow to cool before testing. When the aerial socket comes away from the cabinet, for example in Korting sets, a glue gun will come to the rescue. In fact the list is endless.

## In Conclusion

In conclusion, this must be one of the few gadgets that will earn its keep very quickly. With the new cordless type giving greater convenience ever more uses will be found. If anyone finds some good ones, let us know!


The Bostik thumb-operated hot-glue gun in blister pack.

# The 8mm Video System 

## Part 4

## Eugene Trundle

As Fig. 1 showed, the very thin tapes used in Video-8 cassettes have a much shallower magnetic layer than that of conventional video tape. This means that the depthmultiplex audio recording technique, as used for VHS hifi , is not possible. Various ways of recording the sound are used in the Video-8 system. These are as follows: (1) A mono audio signal can be recorded on the tape via the video heads, using a frequency-modulated 1.5 MHz carrier. (2) The audio signal (digital, stereo) can be recorded via the video heads in the form of pulse-code modulation (PCM) that occupies its own section of the recorded video track (see Figs. 5-7). (3) Provision is made for recording a mono audio signal as a longitudinal track via a stationary head - this is referred to as "auxiliary audio". All Video-8 machines are equipped with an f.m. audio system. The more sophisticated models also incorporate PCM audio. So far as 1 am aware no production machines to date have made use of the third (lo-fi!) technique. We'll consider the f.m. audio system first.

## FM AUDIO

As Fig. 8 showed, f.m. audio has its own part of the Video-8 frequency spectrum. It offers a performance comparable with that of VHS and Beta hi-fi, albeit in mono only, with the frequency response limited to 15 kHz .

## Companding

The secret of the excellent performance of the f.m. audio system used with Video-8 equipment is the companding (compression-expansion) technique employed (this technique is also used with VHS and Beta equipment of course). While it calls for great precision in the record and playback electronics - easily implemented by using purpose-designed i.c.s - it's capable of better frequency response, dynamic range and signal-to-noise ratio than any attempt to record the audio without such processing.

The principle of companding is shown in Fig. 27. Starting with ()dB input (top right-hand corner), for each 20 dB input signal decrease a gain of 10 dB is applied. So a -20 dB input signal level emerges as -10 dB , a -40 dB


Fig. 27 (left): Companding characteristic. The $d B$ scale is logarithmic, so the compression and expansion effects are fiercer than this diagram suggests.

Fig. 28 (right): How companding reduces playback noise and keeps the "magnetic swing" in the tape small. This technique would not be practical with a "direct" tape recording system - the slightest non-linearity in the transfer characteristic would cause large-amplitude distortion effects - but can be used with a precision f.m. system.
input signal level emerges as -20 dB and so on. The result (upper line in Fig. 27) is to compress an input signal dynamic range of $80 \mathrm{~dB}(10,000: 1)$ into a recorded span of of $40 \mathrm{~dB}(100: 1)$. Hence the expression 2:1 (logarithmic) compression ratio. This total range of 40 dB is very easily accommodated by the tape system.

To restore correct signal conditions during playback $2: 1$ expansion is applied - see the lower line in Fig. 27. The broken line shows the overall result: the original audio input and the system output levels have been equated. In the process there's a tremendous reduction in noise level, as Fig. 28 shows. Here the tape noise is shown as being at a level of about -45 dB . After the playback expansion process it will be at some 85 dB below the peak sound level.

## FM Record System

Because the sound signal is going to be used to frequency modulate a carrier, various conditioning processes are required in preparation for this - these are in addition to the amplitude compression. Fig. 29 shows the basics of the audio f.m. record system.

After passing through a sharp 15 kHz cut-off filter (to avoid TV line frequency breakthrough and to ensure correct operation of the noise-reduction circuit), and in the case of a camcorder a sharp ( $12 \mathrm{~dB} /$ octave) 200 Hz high-pass filter (to lose wind, handling and lens-motor noise), the signal is applied to the non-inverting input of the main operational amplifier (MOA). Compression is applied by adjusting the feedback to the MOA's inverting input. As you can see, the MOA's output passes via the weighting filter to an r.m.s. detector. This is a very precise measurer of the effective signal level. The output from the r.m.s. detector is used to control the gain of a voltagecontrolled amplifier (VCA) which regulates the level of the feedback applied to the MOA. The VCA's characteristic is that shown in Fig. 27: the stronger the input signal the greater the feedback and vice versa. The 2:1 compression is thus put into effect.

Weighting and pre-emphasis are also carried out via the feedback circuit. The pre-emphasis-l block consists of a filter with a falling response of around 1.5 dB /octave between 2 kHz and 14 kHz : by reducing the h.f. negative feedback a boost is given to the higher frequencies. Pre-emphasis-2 is carried out by a filter in the signal path to the VCA. This has a falling response at around 1 kHz , and since it is again in the negative feedback path the effect is to boost the higher audio frequencies. The weighting filter in the path to the r.m.s. detector increases the VCA's gain, largely cancelling the effect of pre-emphasis-2, when the predominant audio signal components are of high frequency. This improves the linearity and ensures that with large h.f. signals the f.m. deviation limits aren't exceeded.

The result of all this is a carefully tailored, shaped and 2:1 compressed audio signal which is passed to a limiter circuit. This is included to clip any signal excursions that may cause over-deviation in the f.m. modulator. The latter consists of an astable voltage-controlled oscillator (VCO) whose output is the record f.m. signal, with a


Fig. 29: Block diagram of the audio f.m. recording system.


Fig. 30: Block diagram of the audio f.m. playback electronics.
centre frequency of 1.5 MHz . This frequency is set by a "carrier" potentiometer while the deviation (nominal 60 kHz , maximum 100 kHz ) is set by the "set deviation" potentiometer. The f.m. modulator's output is fed to a low-pass filter with a crossover frequency of around 1.7 MHz , then a carrier-level preset which adjusts the audio f.m. writing current to a level about 13 dB below the chroma writing current level. The f.m. audio is finally added to the chroma, luminance and ATF signals, the lot then passing to the rotary video heads for recording.

## FM Playback

The playback system shares much of the record circuitry. Fig. 30 shows the arrangement in block diagram form. The audio f.m. is filtered from the other off-tape signals by a bandpass filter that's sharply tuned to 1.5 MHz , having a bandwidth of about 250 kHz . The main playback path is via the limiter (to remove a.m. components) then to a phase detector whose other input is a 1.5 MHz signal from the same VCO that was used as the f.m. modulator in the record mode. The VCO and phase detector form a phase-locked loop (PLL) which demodulates the f.m. audio.

The demodulated audio next passes through some dropout compensation circuitry. It goes first to the block labelled hold-I which is primarily concerned with masking the signal discontinuity at the head change-over points. The output from this block is normally routed through a low-pass filter thence via the hold- 2 block to the expander circuit. In the event of a dropout however the dropout detector will sense the shortfall in carrier level and produce an output that activates the dropout switch. The hold-2 circuit then provides dropout compensation to maintain the instantancous audio signal level until the dropout has passed. The low-pass filter has a slight delay effect on the signal with respect to the hold operation. A prolonged dropout (or lack of f.m. signal for any cause) will bring the mute control circuit into action, shutting down the audio output altogether.

The main feature of the audio playback electronics is the expander, which again uses the MOA and associated
circuitry. This time the MOA has a fixed resistive feedback path and acts simply as a buffer. Its output passes through the record pre-emphasis-2 network whose falling h.f. response now provides de-emphasis. Next comes the VCA which is still controlled by the r.m.s. detector. Since the VCA is now in the main signal path rather than in a negative-feedback path, its effect is to reduce the gain as the off-tape signal decreases, giving the expansion characteristic shown on the right-hand sides of Figs. 27 and 28. Pre-emphasis filter-1, still depressing the higher frequencies, now provides de-emphasis-1. On emergence from this filter the audio signal has been fully restored and is ready to be buffered out.

## PCM AUDIO

Whereas the audio f.m. system and its main feature of companding are used for hi-fi sound in other VCR systems, the use of a domestic digital audio record/ playback system (PCM) is unique to the Video-8 format though the imminent introduction of DAT (digital audio tape) will change that. Before launching into the workings of the PCM circuitry we need to know a bit about digitising analogue signals.

Sampling and quantisation are the two processes required to convert an analogue signal into an equivalent digital bit stream. The procedure is shown in elementary form in Fig. 31. First comes sampling: a gate is momentar-


Fig. 31: Principle of digitising an analogue signal.
ily opened at short, regular intervals to take a "snapshot" of the signal level at each instant. With the Video-8 format the sampling frequency (for PAL machines) is 31.25 kHz , twice the line rate. Now Nyquist's law states that the sampling frequency must be at least twice the highest signal frequency, so a sampling frequency of 31.25 kHz implies that the highest signal frequency the system will handle is 15 kHz . To avoid aliasing effects, the signal must first pass through a low-pass filter with a very steep roll-off above this frequency.

The second step is to quantise each sample in turn: its amplitude is measured and converted to the appropriate binary number. The final quality - in terms of fidelity and signal-to-noise ratio - of a signal that's processed in this way depends almost entirely on how many digits we use for this binary number, i.e. the greater the number of bits the greater the number of signal level differences we can accommodate. This quantisation is something of a compromise since (assuming real-time operation) the entire digital word has to be generated and conveyed in the short, fixed period between samples. So the more bits we use the greater the bandwidth required in the transmission circuits and the greater the storage capacity of the disc or tape. Various bit rates are used for entertainment audio: 16 bits for studio applications and the compact disc; 14 bits for the EIAJ standard as used for example in the PCM-F1 format; and 8 bits for Video- 8 PCM. With Video-8 the initial sampling is done at 10 bits however: this gives some advantages, as we shall see. Ten bits offers us a total of 1024 quantisation levels. So at the output of the analogue-to-digital converter used in our PCM system we have a rapid-fire string of binary words forming a signal that has only two amplitude levels, one and zero.

## Basic PCM System

We've already seen (Figs. 5-7) that the PCM signal is recorded on a "forward extension" of the video track, and since only $30^{\circ}$ of head rotation is available for it the sound signal has to be time compressed by about 6:1. Fig. 32 shows in broad outline the audio signal processing in the PCM mode. In the record mode the analogue audio signal first passes through the same compander/emphasis circuitry we've already described for noise reduction in the audio f.m. mode - all that technology is too good to waste! The first step after this is analogue-to-digital (A-D) conversion - to 10 -bit words. This is followed by nonlinear reduction to 8 bits. Error-correction words are then added to the data before it's stored in a pair of 16 K RAMs, to be tone modulated and passed in turn to each
of the video heads as they traverse the first $30^{\circ}$ of the helical tracks. A slight audio signal delay is inherent in this process: the audio that accompanies field $n$ is recorded on the tape during the PCM segment preceding field $n+2$. During playback the need for processing and time expansion means that the segment of sound is reproduced during field $n+3$. This 60 msec delay is not perceptible to the viewer however.

The signal processing arrangements so far described are used again for playback. The modulator becomes a PLL demodulator, and the memories are loaded with off-tape digital sound data during the 2.9 msec or so when each video head is connected to the PCM circuit by the switching shown. During the next 20 msec or so the memory in use is read out via error correction and concealment circuits. The digital sound data is then. D-A converted to amplitude-compressed audio. Noise reduction is applied in the expansion process and the audio is finally passed out of the machine.

## A-D Conversion

The A-D conversion process is based on the action of a single integrating capacitor. Fig. 33(a) shows the principle. During the first (discharge) period a gate opens momentarily to discharge the capacitor to a level proportional to the analogue input voltage at that instant: this is the sampling time. The capacitor is then recharged by a constant-current source' until the voltage across it reaches reference level REF H . With a constant charging slope, the time taken for this is proportional to the initial charge on the capacitor. This period is measured in terms of clock pulses to give a rough count of the value of the analogue sample voltage. In this way the five most significant bits (MSB) of the 10 -bit word are formed.

Unless the master clock rate is very high (which is expensive in terms of hardware) there's a degree of uncertainty in this process: the accumulated count depends on the chance timing of the ramp termination relative to the incidence of a clock pulse. Correction for this is carried out during the "fine integration" period, when the capacitor is charged from level REF $H$ to a further fixed voltage REF L by a much smaller constant current - in fact 31 times smaller than that which produces the initial, steep ramp. Once more clock pulses are accumulated in a counter during this period, and the contents of the counter when the voltage across the capacitor reaches level REF L make up the five least significant bits (LSB) of the 10 -bit digital word. The five LSB (maximum count 32) can influence the value of the


Fig. 32: Block diagram of the PCM processing arrangement.


Fig. 33: A-D conversion: (a) working principle; (b) timing diagram.
word (maximum count 1024) by only about three per cent, so the action of the second ramp-up can be considered as a "trimming" or "vernier" process. The two 5 -bit sections are assembled end-on to form the 10 -bit word.
Fig. 33(b) shows a timing chart for the A-D process. Right and left audio channels are digitised in turn, each at $32 \mu \sec$ intervals. The top waveform is that of the word clock WCK, whose positive section lasts for $16 \mu \mathrm{sec}$. For the first $3.48 \mu \mathrm{sec}$ of this period a gate (controlled by CC, convert command) is opened to give the R -channel audio access to the sampling capacitor. When the gate closes another one opens to pass a constant-charge current into the capacitor. A path is simultaneously opened to allow clock pulses into the 5-MSB counter. A comparator, sitting on the REF H level, detects the finishing point of the first ramp, whereupon it shuts down the 5-MSB counter, simultaneously switching over to the "low" con-stant-charging current and diverting clock pulses into the 5-LSB counter. A second comparator, whose reference is REF L, shuts down both these processes at the end of the second ramp.

At this point the sampling capacitor is fully charged and the A-D converter is ready to do the same job on the Lchannel signal during the WCK's $16 \mu$ sec "low" period. In our drawing the L-channel audio level is quite different from the previous R-channel sample, and this is reflected in the much shorter primary ramp period. The secondary ramp is of nominally the same length in both cases of course. Note that the R-channel data (bottom of diagram) is clocked out during the period of L-channel digitisation.
This "dual-slope, single-integration" method of A-D conversion is one of several that could be used. Choice of method is always a compromise between cost, accuracy and speed of performance. The choice is an excellent one in this case, giving very good results. The A-D converter chip is also capable of running "backwards" to carry out D-A conversion. We'll return to this shortly.

## 10 to 8 Bit Conversion

The performance of a linear 8 -bit audio data system is not good enough for high-fidelity reproduction. Its main drawback is "quantising noise", the "dither" experienced by signals that fall between the quantising levels. This can be overcome by non-linear conversion from ten to eight bits (see Fig. 34), in which 10 -bit quantisation is used for small signals, decreasing to 9 bits for moderate signals, 8 bits for average signal levels and 7 bits for the largest signals. Thus the 512 levels initially available on each side
of zero signal level are reduced to 128 levels in the 8 -bit output word. The data is in twos complement form, which means that the most significant bit (MSB) indicates the polarity of the analogue signal - one for a negative sample, zero for a positive sample. 10 -bit to 8 -bit conversion as shown in Fig. 34 is carried out by referring to a look-up table held in a ROM in IC101 (see Fig. 36).
The effect on the audio signal of non-linear quantisation is shown in Fig. 35. As you can see, quantising noise is small at low-signal levels due to the "high definition" 10 bit conversion: it becomes progressively greater as the quantising steps get larger on signal peaks. The resultant noise is lost in the loud signal however, and the effective dynamic range of the system is an impressive $9(\mathrm{dBB}$. This is one example of the many bit-reduction techniques that are used in data storage and transmission systems.

## Data Storage and Protection

Thesdata is storedrin a pair of 16 K RAMs into which it's clocked in the form of parallel 8 -bit words during the


0675
Input, 10 bits
Fig. 34: 10-bit to 8 -bit conversion chart. As the graph shows, the 8-bit output signal is non-linear.


Fig. 35: The effect of non-linear quantisation on the playback signal: quantising noise is present only with large (loud) signals.
storage period. When the PCM write period comes round the data is rapidly clocked out - with several alterations and additions. It has ID data added to indicate the nature of the data, i.e. stereo/bilingual, reverse record, multiPCM etc. It has P and Q parity words added to facilitate error correction. The data is "scattered" throughout the PCM record period in accordance with a cross-interleave code (CIC) which is part of the Video-8 format: this is a general precaution against the effect of a dropout, which instead of blowing a big hole in the data stream merely damages odd bits here and there, hopefully not beyond the repair capability of the parity-check system and the second protection arrangement, a 16-bit CRCC (cyclic redundancy check code). This latter is added en route between the RAMs and the PCM f.m. modulator. The bit redundancy of the PCM format used in the Video-8 system is 38.5 per cent, which is not as wasteful as it seems when the recording system is the unpredictable one consisting of magnetic tape and a tiny read/write head.

## Recorded Data

The data is finally passed to the PCM record modulator which operates in the FSK (frequency shift keying) mode: the recorded frequencies are 2.9 MHz for a zero and $5 \cdot 8 \mathrm{MHz}$ for a one. The maximum bit transmission rate of $5 \cdot 8 \mathrm{Mbit} / \mathrm{sec}$ may be compared with that of $2 \cdot 03 \mathrm{Mbit} / \mathrm{sec}$ for the CD system. The difference of course is that with CD the data transfer is in real-time whereas for Video- 8 PCM data the transfer is time-compressed to about $6: 1$ to fit it into the tape and time slots available.

## Practical Arrangement

The foregoing explanation was of necessity a bit theoretical, and will do little to clear the waters when you examine the circuit diagram - the relevant part (pages 142-4 of the EVS700 manual) looks something of a jungle! To assist with this, Fig. 36 shows how the functions and processes are divided up between the main i.c.s used and the routing of the signals, data and control lines between them. It also gives an idea of the remarkable dual-function operation of most of the chips, which reverse their function during playback to undo, as it were, what they did in the record mode. This applies to the A-D converter chip as well, which is switchable to D-A operation using many of the same internal components.

We'll look at the record path first. The 10 -bit serial data enters IC101 at pin 16 for conversion to the non-linear 8bit format - the ROM instructions for doing this are incorporated in the chip. From pin 9 the serial data passes to pin 46 of IC102, in synchronism with the transfer clock between pins 4 and 3 respectively of the two chips. The data is passed via the serial-to-parallel and multiplex block to the RAM port control section, which is basically a manipulator of addresses. The cross-interleave code and the ID data from IC154 are also inserted at this point, the latter via a 4 -bit parallel bus linked to pins 34-37. IC154 takes its instructions from the "feature CPU" chip IC0)1 which governs the entire PCM processing. The data storage RAMs IC105 and IC106 are read, written and addressed via parallel 8 -bit buses which are linked to pins $9-33$ of IC 102 . Also within IC102 is the ROM-based CRCC and the means of inserting it into the serial data stream. Finally, IC102 incorporates the f.m. modulator, an astable VCO which acts as a PLL f.m. demodulator during playback. The FSK f.m. data leaves IC102 at pin 8 for buffering between pins 10 and 12 of IC103 on its way
to the recording heads.
The lower blocks in Fig. 36 are concerned with pulse generation and housekeeping. The master clock generator (MCK, 11.5 MHz ) is in IC104, the output at pin 8 being phase-locked to the 50 Hz "off-air" field sync pulses via the S REF signal coming through IC153. The phase detector for this purpose is in IC101, between pins 14 and 1 with its output appearing at pin 20 . IC152 delays the head flip-flop pulses for the multi-PCM mode (see later). IC151 generates timing pulses for activation of the flying erase head, particularly during the PCM-dub and multiPCM modes. IC111 is concerned only with generating video masking signals during the PCM-dub process - the need for these will be explained later.

During playback the off-tape PCM signal is routed via the PLL section of IC103, the f.m. modulator section of IC102 forming part of the loop. After demodulation the data takes the same path (in reverse) through IC102. Deinterleaving takes place at the RAM port control section, by address manipulation. Error checking and parity correction of the 8 -bit word also take place in IC102: if it can't cope, an error flag is passed to pin 5 of IC101 to invoke an error-masking process. The 8 -bit data is converted back to 10 -bit linear form between pins 9 and 16 of IC101, again in accordance with the ROM look-up table. When it emerges from pin 16 the reconstituted data is ready for D-A conversion.

## Data Format on Tape

In all, 157 blocks of data are recorded on the tape, along with a preamble and post-amble (both at 5.8 MHz ), during the 2.9 msec occupied by the heads' first $30^{\circ}$ of tape scan. The preamble is there to synchronise the playback detector PLL. The post-amble's main job is to ensure that all "old" data is eliminated and all new data recorded in the PCM-mode: it accommodates any slight timing errors.

Fig. 37 shows progressive expansions of sections of the PCM data period - one of the 157 blocks is shown in detail. The first three data bits indicate the start of a block. The next eight contain an address to indicate to the RAM control section the CIC and ID status. Next comes an 8-bit Q parity word for error checking. This is followed by the first four 8 -bit words of actual data, W0-W3, then an 8 -bit P parity check. W4-W7 are the remaining four data samples, after which comes a 16 -bit CRC errordetection code word.

One of the data words is further expanded below. No change during a bit period indicates 0 ; a change during a bit period indicates 1. This particular word is thus 00111010 . The successive data words W0-W7 don't follow the sequence left-1, right-1, left- 2 , right -2 etc. because of the cross-interleave code. Typically the scattering may be as follows: $\mathrm{Q}=\mathrm{Q} 366 ; \mathrm{W} 0=\mathrm{L} 0 ; \mathrm{W} 1=\mathrm{R} 48 ; \mathrm{W} 2=$ L95; W3 $=$ R143; $\mathrm{P}=$ P288 etc. This would be impossible to sort out without the standard CIC held in ROM in the PCM processing chip IC102. As with CD, all Video-8 machines work to the same code book of course!

## PCM Playback

During playback the output from each head is in turn gated to the PCM processing department for the appropriate $2.9 \mathrm{msec} / 30^{\circ}$. The f.m. data is demodulated by a PLL and stored in the same pair of 16 K RAMs that are used in the record mode. The RAM controller section ensures that the data clocked out of the RAMs is realigned in accordance with the playback CIC. The


Fig. 36: PCM processing is carried out by several i.c.s, as shown here with their relationships and interconnections. IC111/ 152/153 are mainly concerned with multi-PCM operation: IC151 additionally deals with PCM dub processing.


Fig. 37: Analysis of the PCM segment of a recorded tape track. The characteristics are explained in the text.

CRCC section indicates the presence of any data errors in each block: these will normally be corrected by the $P$ and Q parity check words. If the error is too great for this correction an error fiag appears, invoking the interpolation section.
Most data errors are caused by dropouts and can generally be corrected by the combined effects of the 16 bit CRCC word and the two 8-bit P and Q parity check words. If the dropout is so severe that all these measures fail, interpolation is carried out. With this process a badly corrupted sample is discarded and replaced with a synthesised one derived from preceding and succeeding
samples.
The way in which this is done is illustrated in Fig. 38. In (a) one data word, D2, is missing. Primary interpolation takes place: D2 is reconstituted as a word carrying data consisting of the average of the words on both sides, D1 and D3. Secondary interpolation is used where, as in (b), two consecutive words (D2 and D3) are damaged. D2 is simulated by taking an average of the data in words D1 and D4: a new D3 is formed from the average of the new D2 and the existing D4.
What happens if three or more consecutive words are so corrupt that they have to be discarded? It becomes impossible for the electronics to speculate on what they might have been during the short time available, so the chip goes into a "pre-hold" mode, as shown at (c), in which the value of the last good word is held until the reappearance of valid data.

The data leaves the de-interleave and error correction section still in non-linear 8 -bit form. It must next be expanded back to 10 -bit form. The process is similar to


Fig. 38: Interpolation processes: (a) primary operation in the absence of one sample; (b) secondary operation where two samples are missing; (c) "pre-holding" where three or more samples have been lost.


Fig. 39: D-A conversion during PCM replay. In this example the $R$-channel output is much lower than the $L$-channel output.
that used for 10 - to 8 -bit conversion during record, again using a look-up table in ROM. The error concealment process just described in fact takes place at the linear 10bit stage.

D-A conversion makes use of the same integrator stage and storage capacitor as before. Fig. 39 shows a timing chart for the D-A conversion process. The capacitor is first rapidly discharged (during the DIS pulse) to a fixed $(2 \cdot 5 \mathrm{~V})$ reference voltage, REF A. At the end of the DISpulse period the capacitor is charged by a constant current for a period depending on the contents of the data word being converted. The maximum charging period (corresponding to peak sound) will not exceed $8.35 \mu \mathrm{sec}$ and the final charge level (at constant current, remember) is proportional to the charging period. This level is sampled (APT pulse period) during the final $5 \cdot 56 \mu \mathrm{sec}$ of the
conversion process: a succession of these samples is integrated to form the analogue output signal. As shown in Fig. 39, left- and right-channel signals are dealt with alternately, in a $32 \mu \mathrm{sec}$ cycle. Again there's a timing delay - the L-channel sampling/integration takes place as the succeeding R-channel data is being clocked into the conversion registers.
The analogue signal thus reconstituted is still in am-plitude-compressed form of course, and next undergoes expansion in the compander circuit previously described in connection with the audio f.m. section. It's then ready to be passed out of the machine. It's amazing, when listening to the crystal-clear and noise-free audio reproduction from a PCM tape, to think of all the aliases, disguises and transformations the signal undergoes during its passage through the entire system.

## Teletopics

## at the shows

There were several interesting innovations and hints of things to come at this year's brown goods' trade shows. Large screen CTV sets for a start. Both Grundig and Mitsubishi showed sets using a 36in. FS tube - the same tube in fact, made by Mitsubishi. Grundig's "Super Large Screen" set retails at just under $£ 3,500$ and is intended primarily for commercial use. Fidelity have developed a digital TV chassis using ITT chips: it will be used in a range of models with different screen sizes, from 14in. upwards. Hinari's Sunrise Model TVA1, a 14in. colour set, is designed specifically for use in the bedroom: it incorporates a digital clock timer to wake you up to morning TV and a fall-asleep function which automatically puts the set into the standby mode until the morning if you drop off at night. With full function remote control it comes at a suggested price of $£ 199 \cdot 95$. Colour LCD TV sets are likely to be available from several manufacturers before long, including Philips who have just announced a $£ 45 \mathrm{~m}$ investment in a new plant at Heerlen specifically for the manufacture of LCD panels and TV sets. Philips expect to introduce a 3 in . model later this year, featuring an "active LCD" which is claimed to give higher resolution and better colour than passive types.

Digital was the buzzword in the VCR field, with several new models incorporating digital video processing circuitry to provide features such as picture-in-picture and
freeze frame. Sharp, in a special "take a look at the future" show, revealed work on a 3D VCR using standard VHS cassettes. Sansui showed a digital video processor, Model VX99, to provide various special effects in conjunction with a camera that can be genlocked. Effects include eight background colours, oil-painting effects, wipes/mixing/fading and picture-in-picture - all for an anticipated price of around $£ 400$. Entryvision CCTV systems are being introduced by various companies including Sharp and Toshiba (see also note last month on the Sony Watchcam). The Toshiba system has a camera the size of a fountain pen and a colour LCD monitor. Sharp's system uses an interphone line to provide multiplexed transmission of sound, video and phone signals plus power.

## NEW JOINT VIDEO VENTURE

Hinari Consumer Electronics has formed a $50: 50$ joint venture company with Japanese manufacturer Shintom to establish a new VCR plant at Cumbernauld near Glasgow. An investment of over $£ 4 \mathrm{~m}$ is envisaged and the plant is expected to be in operation within a few months. There will be four models initially and about half the output will be exported to other EEC countries.

## TOUGH EEC ACTION

The European Community has adopted a tough stance in efforts to counteract the EC trade imbalance with Japan and avoid possible diversion of Japanese goods to Europe following the recent imposition of tariffs by the USA. The proposed EC measures are aimed particularly at con-
sumer electronics goods, including components for use in VCR manufacture. "Punitive" tariffs could be imposed on colour TV sets in the event of evidence of trade diversion from the US market.

## THE VCR RABBIT

A new system, called the VCR Rabbit, which enables a VCR to drive up to five TV sets around the house, with remote control from another room, has been introduced by EGH (UK) Ltd., Cross Green Industrial Estate, Leeds LS9 0SG. It involves the use of two types of module. The transmitter module is connected to the VCR's output and to the main TV receiver via a standard coaxial cable. A second wire only 0.7 mm thick links the transmitter module to a remote Rabbit receiver module up to 50 m distant. This thin wire carries the VCR's video signal to the receiver module which converts it to r.f. for feeding into a second set - up to three more sets can be linked to the system via receiver modules. The link wire also carries remote control signals back to the transmitter. Each receiver module is able to receive infra-red remote control commands, while the transmitter module can provide an infra-red output to control the VCR. Thus a handset used with any of the receivers will control the VCR. A simple pack consisting of a transmitter and a receiver unit with link wire costs $£ 99$. Extra receivers cost $£ 49$ each (with wiring).

## BRANDS AND THE SPARES GUIDE

Teleton Electro (UK) Co. Ltd.'s parent company The General Corporation has adopted the new corporate name Fujitsu General Limited. Fujitsu General will replace the General brand name. Both Fujitsu General and Teleton branded goods will be sold in the UK.

Our TV/VCR Spares Guide, published with the April issue, should have given Technical and Optical Equipment (London) Ltd. as the source of spares for Rigonda sets, not Zenith International. The address and telephone number given were correct.
Information and spares for the Lincoln 35C, about which several readers have asked, are available from Nikkai Imports Ltd., Regents Park House, 45 Byron Street, Leeds LS2 7Q5 (0532 441 640). Spares for Harwood TV sets, which were distributed by Harman Isherwood of Leeds, are available from Jackson Products Ltd., 18th Floor, Station House, Harrow Road, Stonebridge Park, Wembley, Middx HA9 6DE (01-900 0433). This firm can supply only to bona fide trade customers. Spares for Cihan (pronounced GeeHan) and Aro sets are available from Key Electronic Services, 10 Hey Streeet, Bradford, W. Yorks BD7 1HS (0274 370 348). The Cihan brand was used by Greens and the Aro brand by Makro.

We have been asked by Willow Vale Electronics to point out that they are the sole UK distributors appointed by Sharp (UK) Ltd. Wizard Distributors should not have been listed as an official Sharp spares distributor.

## AMPMACE REMOTE CONTROL UNITS

Ampmace (Beechwood House, Falkland Close, Coventry CV4 8HQ) have introduced a range of remote control units which can be used for replacement purposes with TV sets and VCRs from various manufacturers. Ampmace point out that the demand for remote control units is increasing as more and more remote control TV sets appear in the second-hand market and as original


Some of the range of Ampmace remote control units.
handsets are damaged or lost. Units currently in stock are suitable for use with Decca, Ferguson, JVC, Philips and Grundig TV sets. The range is to be expanded to cover ITT and Sony sets, Ferguson VCRs and various continental models. Trade prices are $£ 14$ plus VAT for ultrasonic units and $£ 14.50$ plus VAT for infra-red units.

## NEW MASTHEAD AMPLIFIER

The UP3302 is the latest addition to the Antiference range of masthead amplifiers. It provides high gain at u.h.f. with a v.h.f. bypass that doesn't require termination if not used. The two-stage amplifier provides a gain of 27 dB at u.h.f., $\pm 2 \mathrm{~dB}$, with a noise figure of $2 \cdot 5 \mathrm{~dB}$ and "exceptionally good" VSWR characteristics. Remote power can be taken from a base power unit or a distribution amplifier with 12 V line output, e.g. the Antiference XS6/ 32. Provision is incorporated to line power a masthead v.h.f. amplifier via the U3302. The retail price is $£ 18.50$ plus VAT.

## SONY MIC FOR VIDEO-8 USE

Sony has introduced an electret condenser microphone for use with its complete range of Video-8 camcorders. The ECM-K120 has variable directivity - the response can be supercardioid, unidirectional or omnidirectional - and is powered either by battery or from the camcorder. A special suspension for the pickup cupsules and receptacle damper reduce the effect of contact noise or vibration from the camcorder. The plugs are gold-plated to provide quality connections.

## IN BRIEF

Amstrad has withdrawn from participation in British Satellite Broadcasting, the UK DBS venture. BSB has been awarded a separate fifteen-year franchise to provide advanced teletext on three DBS channels . . . Mullard is investing some $£ 15 \mathrm{~m}$ at its Durham TV tube plant to extend production to include high-resolution data graphic display tubes. Production will initially concentrate on $90^{\circ}$ 14 in . DGD tubes and is expected to reach an annual level of a quarter of a million tubes by the end of 1988 . Kodak has announced the availability in the UK of its Megaplus camera. This is an advanced solid-state monochrome camera with the high resolution of 1.4 million pixels. It's intended for industrial and scientific applications.

# TV Fault Finding 

Reports from J.K. Potts, Guy W.E. Mundy, T. Eng., Hugh MacMullen, Mick Dutton, Steve Leatherbarrow, Lawrence Ingram and G.C. De Fraine.

## Decca 110 Series Chassis

These sets have proved to be quite reliable apart from occasional failure of the e.h.t. tray which can be replaced with a standard type. This is usually all that's required. Recently however one came in with the usual faulty tray but damage to the chopper power supply had occurred. On inspection we found that the d.c. fuse F601 has blown, the fusible resistor R627 in the start-up circuit was open, and both the chopper transistor $\operatorname{Tr} 605$ and transistor Tr604 in the driver stage were short-circuit. Tr604 is type BSR59 and it turned out to be very difficult to get a replacement. It's a special device with a fast-switching junction and seems to have been discontinued. We eventually had to go to Tatung who supplied a Ferranti FST164K5. On fitting this the set was back to normal, but a lot of delay and telephone enquiries had been involved.

J.K.P.

## Grundig 6632GB

We've had several of these older remote control models with the same symptoms: set on permanent standby, won't switch on but the channel numbers change. In each case the problem has been due to $\operatorname{Tr} 1341$ (BC548B) on the self-seeking module being leaky.
G.W.E.M.

## Fidelity ZX3000 Chassis

The problem with this set was predominantly green/pink pictures with occasional surges of green saturation. A scope check on the colour bars at the base of the green output transistor revealed "squashed" green chroma. R224 ( $100 \mathrm{k} \Omega$ ) which biases the base of the green driver transistor TR14 had risen in value to $203 \mathrm{k} \Omega$. G.W.E.M.

## Zanussi $22 Z 616$

This modern stereo TV set would start to display a white hum bar and a slightly reduced picture size, with the power supply "chirping", after about four hours' use. It would then switch to standby and would subsequently restart and run again. Obviously the fault was a thermal one. Use of the hairdryer/freezer technique established that the TDA4600 switch-mode power supply control chip IC301 was faulty.
G.W.E.M.

## Sony KV1810UB

This set suffered from severe field cramp when the back was on. It was a difficult fault to find. The culprit eventually turned out to be the coupling electrolytic C522 $(22 \mu \mathrm{~F}, 16 \mathrm{~V})$ which became leaky at a certain critical temperature.
H.MacM.

## Rank-Toshiba T24 Chassis

This has proved to be an extremely reliable chassis. One problem is the lack of a field shift control. If there's slight ficld cramp and the picture is a bit low, increasing the value of C 317 in the feedback circuit from $2 \cdot 2 \mu \mathrm{~F}$ to $4 \cdot 7 \mu \mathrm{~F}$ will put matters right.

No chroma is usually caused by R 229 ( $3.6 \mathrm{k} \Omega$ ) going open-circuit.

An occasionally snowy picture can be caused by plug

501 from the tuner to the i.f. strip being dirty - you can't see this, it looks so clean from the outside.
H. MacM.

## Sharp 12P41

Lack of height with cramping at the top and bottom can be caused by a dry-joint on the deflection coils subpanel where there's a centre-tap connection.
H.MacM.

## Philips G11 Chassis

This set had no chroma - whenever I left the customer's house. I eventually discovered that connection 17 on chroma/luminance module U6200 had never been soldered.
H.MacM.

## Ferguson TX90 Chassis

The height on this portable was a trifle enthusiastic - we estimated about 18 ft . On one shot we were trying to work out what the silvery object that covered a third of the screen was - it turned out to be a man's belt buckle! A BZV85 68 V zener diode in the field output stage read normal in the forward direction and $18 \mathrm{k} \Omega$ in reverse. Replacing it cured the fault. Before finding this one I had tried changing the field output transistors - note that the zener diode is not present in earlier production models.

Another of these sets went into shutdown periodically, needing to cool for ten minutes or so before it would work again. Due to the nature of the fault it was some time before we discovered that the regulator was the culprit. Freezer and heat had little effect.
S.L.

## Philips KT3 Chassis

A variety of highly intermittent and unpredictable faults on these sets with the tuner preset draws have been encountered - all sorts of colour variation and tuning change etc. on one or more channels. None of the usual methods of fault provocation seem to work and the only cure is to plod through all the plug pins and sockets on the selector and tuner panels, soldering and adjusting every one of them.
L.I.

## Grundig CUC220 Chassis

The complaint with this set was white lines at the top when hot - it would show up only in a warm room with the back cover on. A puff of freezer on the TDA2655B field timebase chip revealed the culprit.
L.I.

## Blaupunkt FM120

A common fault with this model is sound and h.t. present but no e.h.t. You will probably find the $18 \Omega$ wire-wound resistor in the feed to the BU208D line output transistor open-circuit. Check the line output transistor before replacing the resistor, and remember the e-e reading due to the diode in the BU208D.

In one of these sets the $18 \Omega$ resistor was open-circuit and the BU208D was leaky. After a check on the line drive we switched on. Enormous sparks came from the focus tag on the line output transformer and the internal
resistors were found to be very low in value. A new transformer had to be fitted.
L.I.

## Philips KT3 Chassis

There was no h.t. and no output from the TDA2581 chopper control chip. The U470 chopper module was removed and the 12 V supply to the chip was checked - it comes from the junction of R300, C300) and zener diode D300 on the U450 mains rectifier panel. The zener diode (12V) was found to be open-circuit and further investigation showed that the print from R298 runs between the tags of C300. A minute amount of carbon was found here. The print was cut out and bridged and D300 and C300) were replaced. The chip failed almost immediately after switching on so this also had to be replaced.
L.I.

## Sony KV1320 Mk. 1

I get quite a number of sets that are brought down from London by owners of weekend cottages etc., also a number of Sonys which have been turned away elsewhere. This set fell into both categories. It had not been used for some while and was partly dismantled. Someone had broken the e.h.t. rectifier - a 3AT2 valve in the Mk.I version - and had given up. With this replaced and the set reassembled it seemed to work very well. After a long test it went back to London - to reappear a few weeks later. "Gradually goes dark" was the complaint this time, and after three days it did indeed go dark. Touching board $P$ restored the brightness and it took ages to go wrong again. Careful probing then led us to the tube's screen voltage control VR602. To be on the safe side a new one was fitted.
R.B.

## Plustron Palladium C14ENS

Twice the e.h.t. stick arced over to the screening can, killing the TA7146P intercarrier sound chip. I removed the can and cut up an old Pye hybrid chassis focus control to enclose the stick fully and stop any further fireworks.

## Fidelity ZX3000 Chassis

The problem with this colour portable was that if it was left for more than a day or two it would start up with screams of protest from the line output stage, eventually settling down and working normally from then on. A raster with a foldover could sometimes be seen. After trying a new line output transformer we found that replacing the BU508A line output transistor cured the problem. I must say that I've not come across this sort of behaviour due to a line output device before. Incidentally the set was very badly affected by nicotine: when I washed the back half of the cabinet shell in soapy water I found that it was silver, not a jaundiced yellowy-grey.

The ZX 3000 is also used as the basis of some computer monitors (Prism for one). The owner of one of these had been fiddling with the first anode control and had split the slot with an unsuitable screwdriver. I just managed to reset it correctly with a pair of pliers.
R.B.

## Philips K40 Chassis

The problem with this set was a predominance of blue. Faint blue flyback lines were also visible. Checks on the tube base panel showed that the fault lay in the blue
output stage, since the output transistor's collector voltage was low at 100 V instead of 160 V . The base voltage was correct and the emitter voltage was slightly out. We checked the values of the resistors in the blue channel in comparison to the other two channels but could find no differences. After disconnecting everything in turn we discovered that the h.f. compensation capacitor C2216 was leaky (about 4002). This didn't show up in circuit because there's a series resistor. Replacing C2216 provided a cure.
M.Du.

## Panasonic TC2201

The complaint was no picture with a funny noise on the sound. When we switched the set on there was indeed no picture and the funny noise was loud motorboating. Use of a can of freezer proved very helpful: when the AN331 a.g.c./sync chip IC301 was squirted the picture and sound returned to normal. A replacement chip put matters right.
M.Du.

## Thorn 1590 Chassis

The complaint with this set was that the picture shrank from the bottom when it warmed up. We tried just about everything in the field driver and output stages without success. The cause turned out to be the field oscillator isolating diode W3. It measured perfect out of circuit but a replacement cured the fault.
M.Du.

## Toshiba C2290B (Rank T24 Chassis)

This set suffered from very grainy pictures. We at first suspected the tuner as we've had many similar repairs due to lightning damage. In this case however the tuner was blameless: the cause of the fault was a dry-joint on the tuner coupling coil 1L31.
M.Du.

## NordMende T4231/Ferguson 3787

The complaint with this set was that it died after about fifteen minutes. This was indeed the case and we found that regulation thyristor DU11 (type 17058) was the culprit. It was going open-circuit when warm. M.Du.

## Panasonic TC2203 (U1 Chassis)

There was no output from the power supply. The chopper transistor Q801 was found to have 325 V at its collector but nothing at its emitter. There was no voltage at its base either as R832 (150 ) had gone open-circuit. M.Du.

## Ferguson TX90 Chassis

The set came in with the complaint of intermittent loss of picture and sound. It ran for two days before the fault put in an appearance, then the slightest touch on the board restored normal operation. No tapping or movement would make the set go off again. When the next failure occurred the tube's heaters went out, there was no focus voltage and the readings at the collectors of the RGB output transistors were low at 95 V . Eventually the set failed completely - just as well or I'd still be looking! It turned out that the winding between pins 9 and 6 of the line output transformer was open-circuit, but to add to the confusion pin 9 was internally shorting to pins 5,7 etc. Hence a 95 V h.t. rail. What had happened inside that transformer I shall never know.
G.C.DeF.

# Getting Started with Satellite TV 

John Hopkins

Having made the decision to become the first stockist of satellite TV receiving equipment in Felixstowe I sent off an order, with cheque, to a supplier. That was on November 7th. Exactly twenty days later a small white delivery van drew up outside to deliver the goods for my latest venture.

We unloaded the four parcels and carried them into the shop in the fond hope that we might find everything labelled with full instructions enclosed. But alas we should have realised: Murphy's Law still governs all new ventures!

## Aerial Assembly

The aerial assembly comes in three parts, the dish itself which we instantly recognised, the stand assembly which had clear instructions, and the polar mount which is where the supplier started to lose interest. We followed the instructions up to the point where we had a perfect stand assembly. The next step was to attach the dish to the polar mount by means of four long bolts. This was where Murphy's Law started to apply. Unfortunately the top two bolts have to be longer than the bottom two because the top rib is longer and has a bracing strut to fit on to it. This item is referred to as part reference $E$, with no further explanation. Also supplied is part reference $F$, which is shown as a short length of flat strip steel rounded off at one end, with two holes at the square end and one hole at the round end. This turned out to have two holes, both of which were square, at each end.

We decided to assemble the dish in the shop for two reasons. First to see how it went together. Secondly customers might come into the shop to see what we were up to - and might actually buy something. After a quick trip to the local builders' merchants for the correct length bolts we followed all the instructions and found that we had a bit left over. It was a long bar of black steel, $22.5 \times$ lin., with a large hole at one end and a small hole at the other. It acts as a bracing strut between parts E and F , but we first had to make a further trip to the builders'


Success - the dish assembly on the balcony above the shop.
merchants for a bolt to secure the small hole to part E .
Now we had only to secure the feedhorn to the dish, using the three steel rods provided. So we unpacked the final parcel and there it was - gone! We had ordered an inclinometer so that we would have everything ready for installation by the date we had advertised but this and the feedhorn had not been delivered. They came two days later, via the postman. The feedhorn had three wires hanging from it, coloured red, white and black. These obviously went to the earth, pulse and +5 V connections on the receiver, but which way round? A phone call to the supplier gave us a hint. "If you look at the back of the receiver you'll see that there are three connections, red, white and blue." "But mine are red, white and black." "Yes but we remember it easier as red, white and blue." So I asked him which colour went to +5 V and he said he didn't know but they connected as red, white and blue in that order. Nice to find that we all know what we're talking about even if we haven't the faintest idea what we're doing.

## Switch on

The dish was reassembled in the back yard and everything was connected up. So I decided to take the plunge. Using a long stick I poked at the on-off switch. Well not quite, but I did feel that I might be about to destroy something I was not sure about. Just to be on the safe side I had left the feedhorn wires off when I switched on. Then I switched off, connected the wires, and switched on again. Sure enough the signal strength indicator light dimmed. I quickly switched off and connected the wires as follows: red to +5 V , white to pulse, black to ground. The light came up to full brightness again and I prayed to forgotten gods that I hadn't destroyed anything.

## Finding a SateNite

Now we come to the bit that counts. As I write this I've finished my first installation and can afford to say it's not too bad, or you just do this and then that. Don't you believe it! Imagine a piece of paper about four inches square with a pin hole somewhere in it and that you have to find the hole using a pin while blindfolded. If you start tracking at the top left-hand corner and more to the right then back again you'll eventually find it, but if your satellite is the hole and the dish is the pin you also have to have your receiver correctly tuned to the satellite TV signal and correct polarity alignment. Get either of these wrong and you can go right past the satellite without noticing it.
We set the stand on level ground and checked that it was not only level but that the centre pole was straight on all sides, using a spirit level, then mounted the dish and pointed it due south. Right at the building next door! I decided to give up for the day and went in for my tea.

## Next Day

Next day I set the receiver to number five and by using a small, short-range walky-talky managed to get a very
poor patch of light in the centre of the screen. At this point a small warning: don't fit an aerial to the u.h.f. input of the satellite receiver or you may find you're trying to tune in the BBC or ITV. We tried tuning in the satellite receiver and at about three we got RAI. This is an Italian station on the lines of ITV and comes through quite sharply, though the sound is a bit paper-and-combish. By slight adjustments to everything on the dish we were able to get the best we were going to unless we pulled down our neighbour's shop, so we decided to move the dish.

For the rest of the day we moved the dish all over the yard and the shop next door moved with us. Fortunately we have a small balcony over the top at the front of the shop, and a quick trip with the compass confirmed that we would have a clear view to the south if we pulled down part of the balcony rail.

Another day dawned on this Herculean task and saw us repeating the whole exercise on the balcony. This had the advantage of shorter cables, and we were really beginning to feel confident. It seemed that we had RAI in no time at all, and this time it was better than the local station.

## Polarity

Then we hit the next snag! We had RAI, Europa (it was still on then) and TV5, also a very poor (scrambled) Sky. But where were all the other stations? There's a polarity button on the front of the receiver, but pushing this didn't seem to do anything. Time for another call to
our suppliers. The chap there told me that when I'd connected my red, white etc. leads l'd jammed the polarotor motor. He told me to take it apart and, using a pair of needle pliers, turn the motor manually to free it. I didn't like the idea of doing this but tried it anyway and was rewarded by a motor noise when the polarity switch was pressed. Lo and behold we'd a lot more stations to look at, including Music Box - a 24 -hour pop music program in English.

## In Conclusion

I won't bother you with the number of days that passed by. We had snow, rain, Christmas and the New Year. Somewhere along the line we found another satellite, about $40^{\circ}$ to the right. This gave us Premier with movies, the Children's Channel, CNN news, Screen Sport and Lifestyle. One final note: the bracing strut between $E$ and F has to be drilled in several places, and there's a certain amount of play in all the joints - this has to be allowed for in the final adjustments. All in all it turned out to be a very worthwhile project, and having done it once I now know that I can save time by tuning in the customer's TV set and receiver to the dish in a matter of minutes and that the dish will be easier to align because I know where to point it.

Hopefully this account of my comedy of errors will encourage others to have a try at this product, because it really is here to stay.

## Test Pattern Program for the Vic 20

Bill Brown

Various computer test pattern programs have appeared in Television in the past, but I've yet to spot one for the Commodore Vic 20 - until now!

Like the Commodore 64, the Vic 20 has a screen border which can't be used for display. This can be overcome by using double-height, user-defined graphics and altering the number of rows and columns, then recentring the display. A total of ten screen displays is instantly available after running the following program. This is made possible by redefining the characters used rather than by redefining the entire screen. In lines $90-120$ press keys $\mathrm{f} 1, \mathrm{f} 3, \mathrm{f} 5$ and $\mathfrak{f 7}$ as indicated between the quotes: do not type fl etc. Further improvements could be incorporated, e.g. sound, colour bars, etc., but a grey scale is not available with the Vic 20.

The patterns are called up as follows:

| Key <br> pressed <br> 1 | Effect |
| :--- | :--- |
| 2 | Changes display to black characters on <br> white screen <br> Changes display to white characters on <br> black screen |
| f1 | Displays horizontal lines <br> f3 <br> f5 |
| fisplays vertical lines |  |
| Any other | Displays crosshatch <br> Displays dot matrix <br> Displays combined crosshatch with dot <br> matrix |

I've found this program to be very useful when setting up the convergence in the absence of an off-air test
pattern display and hope that others will also find it a useful servicing aid. I would expect that the idea could be adapted to suit other computers, but if so the locations would have to be changed.

```
Program
    10 POKE 36879,25:POKE 36869,255:POKE 52,28:POKE
        56,28: CLR
    20 X=7680:Y=8185:Z=30720:H=36864:V=H+1:C=V+1:
        R=C+1:MS=7168:ME=7183
    30 FOR A=X TO Y:B=A+Z
    40 POKE A,0:POKE B,0: NEXT
    GOTO 240
    GET I$:IFI$="''THEN 60
        IF I$=" 1" THEN POKE 36879,25: GOTO 60
    80 IF I$=" '2" THEN POKE 36879,17: GOTO 60
    90 IF I$="f1" THEN 200
    100 IF |$="f3"' THEN 210
    110 IF I$="f5"" THEN 220
    120 IF 1$="f7" THEN 230
    130 GOTO 240
    200 FOR L=MS TO ME: POKE L,0: NEXT: POKE 7175,255:
        POKE ME,255: GOTO 60
    210 FOR L=MS TO ME: POKE L,16: NEXT: GOTO 60
220 FOR L=MS TO ME: POKE L,1: NEXT: POKE 7175,255:
        POKE ME,255: GOTO 60
230 FOR L=MS TO ME: POKE L,0: NEXT: POKE 7171,16:
        POKE 7179,16: GOTO }6
240 RESTORE
250 FOR J=0 TO 15: READ E: POKE MS+J,E: NEXT
260 POKE V,13: POKE H,7: POKE R,37: POKE C,156:
        GOTO 60
1 0 0 0 \text { DATA 1,1,1,17,1,1,1,255}
1010 DATA 1,1,1,17,1,1,1,255
```




# Series and Shunt Networks 

S.W. Amos, B.Sc., C.Eng., M.I.E.E.

The star and delta networks shown in Fig. 1 are familiar to power engineers. They can be equivalent: in other words, provided the component values for one network are related to those of the other in a particular way the two networks have identical electrical characteristics. Thus for equivalent networks it's impossible to determine, from measurements made at the terminals, whether the components are star- or delta-connected.

These networks are also well known to electronic engineers of course, but usually appear differently in circuit diagrams. The star network is generally shown as in Fig. 2(a) and is known as a T network: the delta network is drawn in the form shown in Fig. 2(b), the pi network. Again the T and pi networks can be equivalent so that, given the component values used in one network, it's possible to calculate the component values needed in the other network to give identical characteristics. One of the two alternatives may be more suitable than the other for a particular application however. In this article we'll give some examples and show how to calculate the component values required.

Our first example consists of a two-stage amplifier with the transistors connected in cascade, see Fig. 3(a) - the circuit is shown in simplified form. The idea here is to apply negative feedback to improve the linearity but more particularly to make the amplifier's performance less dependent on the characteristics of the particular transistors used.

One way of applying negative feedback is to use a series-connected resistor, R3, between the collectors of the two transistors as shown. It's immediately apparent that R1, R2 and R3 form a pi network. An alternative approach is to use the shunt-connected resistor R 4 to feed the two collector load resistors, as shown in Fig. 3(b). The three resistors now form a T network. In both circuits the


Fig. 1 (left): Star (a) and delta (b) networks.
Fig. 2 (right): The star network is better known to electronic engineers as the $T$ network (a) while the delta network is better known as the pi network (b).

(a)


D656

Fig. 3: Two ways of applying negative feedback to a twostage amplifier, (a) by means of a pi network and (b) by means of a $T$ network.
feedback affects Tr 2 only - Tr 1 is outside the feedback loop and serves only to introduce the input signal to Tr 2 .

In examining the behaviour of the two circuits shown in Fig. 3 we must remember that bipolar transistors are current-operated devices, even though they are often used as voltage amplifiers - an example of such an amplifier will be given later. We will consider the circuit therefore in terms of Tr 2 's input and output currents. We can calculate the effect of the feedback applied in circuit (a) in the following way. Tr2's effective collector load consists of R2 and R3 in parallel, but if the value of R3 is large compared to that of R2 its shunting effect can be neglected. Thus Tr2's collector current (lout) sets up a voltage lout R2 across R2: this voltage drives a current (loutR2)/R3 through R3. This is the feedback current Ifb that's applied to Tr2's base. Thus we have $\mathrm{Ifb}=$ (loutR2)/R3, giving Iout/Ifb $=\mathrm{R} 3 / \mathrm{R} 2$.

We'll assume that R3 applies a considerable amount of feedback. Thus the feedback current $I \mathrm{fb}$ is many times the base current, and Tr 2 's input current lin (which must be equal to the sum of the feedback and base currents) is very nearly equal to Ifb . We can thus say with little error. that Tr2's current gain is:

Iout/Iin $=$ R3/R2 $=$ feedback resistance/load resistance.
The gain is therefore independent of Tr 2 's characteristics and is determined by the component values used in the negative feedback circuit.

Now consider the alternative circuit shown in Fig. 3(b). Tr 2 's output current lout flows through R4, generating a voltage loutR4 which in turn drives a current $I \mathrm{fb}$ of (IoutR4)/R1 into Tr2. On the same basis as before we can


Fig. 4: Feedback arrangements as in Fig. 3 but this time with field effect transistors.


Fig. 5 (left): The arrangement shown in Fig. 4(a), but this time with complementary transistors.

Fig. 6 (right): Complementary bipolar transistor circuit with $T$ network negative feedback.
say that Tr 2 's current gain is given by:
Iout/Iin $=$ R1/R4 $=$ load resistance/feedback resistance.

The current gain is once more independent of transistor characteristics provided the feedback is considerable.

Notice that in both circuits the current gain is equal to the ratio in which Tr2's output current is split at point A. This is a useful feature of this type of circuit, enabling the current gain to be deduced by simply checking the component values used in the current divider.

If the two amplifier circuits shown in Fig. 3 are to provide the same current gain we get, equating expressions (1) and (2), R3/R2 $=$ R1/R4, i.e. R3R4 $=$ R1R2. Thus the product of the feedback resistors is equal to the product of the collector load resistors.

The values of R1 and R2 are normally chosen to suit the required operating conditions for the transistors and the supply voltage. Thus for a given amplifier circuit their product is fixed and there's a reciprocal relationship between the equivalent values of R3 and R4 - the higher R3 is made, the smaller must be R4 to provide the same degree of feedback.
As an example, suppose R1 is $4.7 \mathrm{k} \Omega$ and $\mathrm{R} 23.3 \mathrm{k} \Omega$. The product is $15.5 \times 10^{6}$. We can now choose a value for R3 (or R4) to give the required gain. Let's choose to have a current gain of 5 . Thus from expression (1) we would give R3 a value of $5 \times 3.3 \mathrm{k} \Omega=$ approximately $16 \mathrm{k} \Omega$. If instead we chose the T network feedback circuit R4 would be $\left(15.5 \times 10^{6}\right) / 16 \mathrm{k} \Omega=$ approximately $1 \mathrm{k} \Omega$, a result which can be obtained just as easily from expression (2).

What happens if Tr 1 and Tr 2 are field-effect transistors or valves, i.e. voltage-operated devices? We can't in this case analyse the circuit behaviour in terms of currents because these devices respond only to the voltage applied to the gate or grid. Fig. 4 is a repeat of Fig. 3 with junction-gate field-effect transistors replacing the bipolar transistors.

In Fig. 4(a) R1 and R3 comprise a voltage divider across Tr2's load resistor R 2 , applying a fraction $-\mathrm{R} 1 /(\mathrm{RI}$ +R 3 ) - of the output voltage Vout to Tr2's gate. If the value of R3 is large compared to that of R2, as is usual, the division ratio becomes approximately R1/R3 and the feedback voltage is (VoutR1)/R2. Provided the feedback employed is considerable, this is almost equal to the input voltage Vin provided by Trl. Thus Vin $=($ VoutR1 $) / \mathrm{R} 3$, so that $\operatorname{Tr} 2$ 's voltage gain is given by:

Vout/Vin $=$ R3/R1 $=$ feedback resistance/load resistance.

In Fig. 4(b) the voltage divider across Tr2's output is formed by R2 and R4. The feedback voltage generated across R4 is applied to Tr2's gate via R1. Thus Tr2's voltage gain is given by:

Vout/Vin $=$ R2/R4 $=$ load resistance/feedback resistance.

In both circuits the voltage gain is given by the ratio of the two resistors that form the negative feedback voltage divider across the amplifier's output. Thus once more the feedback amplifier's voltage gain can be deduced from the values of these two resistors.

For equal voltage gain with the two circuits shown in Fig. 4 we have from expressions (3) and (4) R3/R1 = R2/ R4, giving R3R4 = R1R2, which is precisely the same result we had with the bipolar transistor circuits. This general result is therefore applicable to all forms of active
device.
As an example, consider the circuit previously suggested, with R1 $4.7 \mathrm{k} \Omega$ and R2 $3.3 \mathrm{k} \Omega$, giving a product of $15.5 \times 10^{6}$. This time we want the feedback to give us a voltage gain of 5 from Tr 2 . If we use a pi feedback circuit then from expression (3i) R3 must be $5 \times 4.7 \mathrm{k} \Omega=$ $23 \cdot 5 \mathrm{k} \Omega$. If we use a T network instead, R 4 should be $(15 \cdot 5$ $\left.\times 10^{6}\right) / 23 \cdot 5 \mathrm{k} \Omega=660 \Omega$. a result which can also be obtained from expression (4). These values for R3 and R4 are not the same as those that were required to give a current gain of 5 - in fact use of expressions (1) and (2) would show that these particular values for R3 and R4 would give a current gain of $7 \cdot 1$. Thus for a particular circuit the voltage gain is not equivalent to the current gain. The disparity can in fact be enormous, as shown later.

## Choice of Circuit

Thus we have two possible ways of applying negative feedback in an amplifier circuit - by means of a pi-section or a T-section network - and by suitable choice of value for R3 or R4 both can be arranged to provide the same gain. Does one network have an advantage over the other?

If, in addition to establishing the gain and improving the linearity, the negative feedback is used to shape the frequency response, there may be a good reason for choosing one type of circuit rather than the other. For example, R3 in Fig. 3 and Fig. 4 could be shunted by a capacitor to increase the in.f. negative feedback, providing a response that falls as the frequency rises. To achieve the same result with a T-section network it would be necessary to add an inductor in series with R4. Connecting a capacitor in series with R3 would reduce the feedback as the frequency falls, giving a response that rises with decreased frequency. To obtain the same response with a T-section network an inductor would be required in parallel with R4. If a capacitor is connected in parallel with R4 the response rises as the frequency is increased. To obtain this result with a pi-section network an inductor would be required in series with R3. Since no one likes to use an inductor where a capacitor can be used to achieve the same effect, pi or T networks can be used depending on the shape of the required frequency response. It's significant that in each of these three examples a capacitor included in one network requires an inductor in the other to give the same frequency response shape.

## Two-stage Feediback

So far we've treated Tr 1 as a source of signal for Tr 2 . It would clearly improve the linearity of the whole amplifier if Tr 1 was included within the feedback loop. Doing this is simplified if Trl is of complementary type to Tr 2 , permitting direct connection between the collector of Trl and the base of Tr 2 . One possible arrangement is shown in Fig. 5. Trl's collector load resistor R1 is now connected to the negative side of the supply. Its position in the pisection feedback circuil is taken by R5, Trl's emitter resistor. One might think that the analysis previously given for the circuit shown in Fig. 3(a) doesn't apply to this arrangement, but in fact it does. So long as the analysis is confined to the signal currents the inclusion of Trl within the feedback loop makes no difference. The feedback current flowing through R3 is applied to the emitter of Trl. It thus passes through Trl, emerging virtually unchanged in amplitude or phase at Trl's collec-


Fig. 7 (left): The arrangement shown in Fig. 6, but with R5 omitted.

Fig. 8 (right): The losses in an LC circuit can be represented as a series (a) or a shunt (b) resistance.


Fig. 9: Two methods of capacitive coupling to an LC tuned circuit, (a) by means of a series capacitor and (b) by means of a shunt capacitor.
tor. As before, it's then applied to Tr2's base. It's assumed that R5 is large compared with Trl's emitter a.c. resistance and that R1 is large compared with Tr2's base input impedance - both reasonable assumptions in a practical circuit. So the feedback current enters Tr2's base as in Fig. 3(a) and Tr2's current gain is given by R3/R2. Trl acts as a common-base amplifier for the feedback current - such an amplifier has unity current gain of course. Trl is still a common-emitter amplifier of the current fed to its base, with considerable current gain which is unaffected by the feedback current.
How does this circuit react to voltage signals? This is a quite different story, because R3 and R5 now act as a voltage divider across Tr2's output and the feedback voltage generated across R5 behaves as an input voltage for Tr 1 , a voltage which is amplified by Tr 1 to appear of increased amplitude but non-inverted at its collector and thus at Tr 2 's base. So Tr 1 is now well and truly within the feedback loop and its gain is reduced, along with that of Tr 2 , to give an overall voltage gain of R3/R5. Thus in this circuit there's a great disparity between the voltage and the current gain.

Applying the series/shunt transformation to Fig. 5 gives us the circuit shown in Fig. 6. Here the ratio of R2 to R4 determines the overall voltage gain and R5, which in Fig. 5 determines the degree of feedback, no longer serves any useful purpose. In fact it attenuates the feedback voltage applied to Trl's emitter and can be eliminated, giving the circuit shown in Fig. 7. This is often used as a linear voltage amplifier - see for example Tr1/2 in Fig. 4 on page 113 of the December 1986 issue of Television.

## LC Circuits

In discussing feedback networks we have seen that the product of the equivalent series and shunt resistors is equal to a product characteristic of the amplifier - in fact the product is that of the two resistors. This reciprocal relationship between equivalent values of series and shunt components crops up in a number of different areas in electronics. It occurs for example in $L C$ circuits, where the series resistance in the circuit is related to the shunt
resistance according to the expression:

$$
\text { series } \mathrm{x} \text { shunt resistance }=(L \text { or } C \text { reactance })^{2} .
$$

In an $L C$ circuit however the series resistance is unlikely to be that of a component deliberately included in the circuit. It's more likely to be resistance that's inherent in the inductor, representing the losses due to ohmic resistance, skin effect and proximity effect. This resistance is not often directly encountered in electronics: it's more likely to be known indirectly because it determines the inductor's $Q$ value according to the relationship:

$$
\begin{equation*}
Q=\text { reactance/series resistance } \tag{5}
\end{equation*}
$$

For example, the coil in a TV i.f. tuned circuit might have an inductance of $1 \mu \mathrm{H}$, which represents a reactance of approximately $230 \Omega$ at an i.f. of $36 \cdot 5 \mathrm{MHz}$. The undamped $Q$ value might be 100 , and expression (5) tells us that the series resistance is $2 \cdot 3 \Omega$.

The loss in an i.f. winding can alternatively be represented as a resistance in parallel with the $L C$ circuit, as shown in Fig. 8(b). This is often known as the parallel resistance, or dynamic resistance, of the tuned circuit. It's related to the $Q$ value and the reactance as follows:

$$
\begin{equation*}
Q=\text { shunt resistance/reactance } \tag{6}
\end{equation*}
$$

Using the same figures as above, this is equal to $23 \mathrm{k} \Omega$.
Such a shunt resistance is not a physical component but a fictitious one effectively connected across the $L C$ circuit: it's nevertheless real in its damping effect on the circuit, and limits the $Q$ value to 100 .

The $Q$ value determines the bandwidth of the tuned circuit (being equal to bandwidth/centre frequency). We would probably decide that a value of 100 is too high for a TV i.f. amplifier, giving a bandwidth of only 365 kHz at a centre frequency of 36.5 MHz . To obtain a 6 MHz bandwidth, as required for a 625 -line TV signal, a $Q$ value of about 6 is more suitable. From expression (6) this corresponds to a shunt resistance of $1,400 \Omega$. To obtain this result we could connect a resistor of say $1.5 \mathrm{k} \Omega$ across 'the $L C$ circuit or, more practically, we could arrange for the input resistance of the following transistor to provide the required damping.

We have so far confined our attention to series and shunt resistors, but star/delta transformations are possible with other components. Suppose for example that we wish to inject a signal into a tuned circuit. Mutual inductance is frequently used of course to provide the coupling between the signal source and a tuned circuit - very convenient because this doesn't require any additional components. Sometimes however mutual inductance isn't convenient (an example is given later) and a capacitor is used instead. The coupling capacitor can be used as a series component, as in Fig. 9(a), or as a shunt component, as in Fig. 9(b). The magnitude of the signal injected into the $L C$ circuit is determined by the coupling coefficient which, for series and shunt capacitors respectively, is given by the following relationships:

$$
\begin{align*}
& \text { coupling coefficient }=\text { series } C / \text { tuning } C  \tag{7}\\
& \text { coupling coefficient }=\text { tuning } C / \text { shunt } C \tag{8}
\end{align*}
$$

Combining these expressions, we can see that the values of the series and shunt capacitances required to give the same degree of coupling are related by the expression:
series $C \times$ shunt $C=$ tuning $C^{2}$.
Let's take a practical example. A 465 kHz i.f. transformer commonly employs two similar tuned circuits which are loosely coupled to provide a bandpass effect.

The coupling coefficient needs to be about 0.015 to give a bandwidth of 7.5 kHz , suitable for use in an a.m. radio receiver. A common tuning capacitor value for such an i.f. transformer is 250 pF . If series-capacitance coupling is used, expression (7) shows that the coupling coefficient calls for a series capacitor of 3.75 pF . If, on the other hand, shunt-capacitance coupling is used, expression (8) shows that the value of the coupling capacitor should be $0.017 \mu \mathrm{~F}$.

Shunt-capacitance coupling is useful when the two tuned circuits forming a bandpass pair are physically separated - as for example in a TV receiver where one section of a bandpass tuned circuit is mounted in the tuner and the other at the input to the i.f. strip. Nowadays the tuner is mounted on the same PCB as the i.f. strip, but in earlier designs it was common to couple the two circuits together via a length of coaxial cable whose capacitance formed part of the coupling capacitance.

## Micro Clinic

## Sinclair Spectrum

It's been said before that the first check with these machines should be on $\operatorname{Tr} 4$ and the -5 V line. The machine can initalise and appear to be o.k. (until the keyboard is used) with the -5 V line missing, so to save time and heartache remember to make voltage checks first.

Colour problems with later Spectrums and Spectrum Pluses are generally due to the SN94459N chip - replace it with an LM1889.
R.B.

## Acorn Electron

My colleague found the d.c. power socket dry-jointed and the output lead broken at the power pack end. Too late though: on this machine the ULA (type 12C021) appears to succumb first. It’s expensive at over $£ 20$. The moral of course is always to look after your power supplies. R.B.

## Printers

We've started to take on printer repairs - more by default than design. A Micro Peripherals MP165 (an NEC clone) is owned by a local printer who kept on using it with a very dodgy head. On fitting a new one we found that the descenders and the underlining were missing. One of the pins was not firing, due to the relevant driver transistor (type 2SD1308) being short-circuit collector-to-emitter.

Next came an Epson FX80 which would work with an Amstrad but not with a BBC computer. On setting up a test we found that the BBC computer knew the printer was connected and kept on trying to fill the printer's buffers without success. While checking around the parallel interface we found that pin 29 was permanently low. This is a return for the "busy" line. The pull-up resistor ( $3 \cdot 3 \mathrm{k} \Omega$ ) is part of a multiple thick-film package which appeared to have a bad connection on one leg. To be sure we changed it. Why the printer worked with an Amstrad computer is not too clear. Perhaps someone with knowledge of IBM and compatibles can explain this? R.B.

## Sinclair Spectrum Plus

We sold a batch of "new" Spectrum Pluses to a local school and congratulated ourselves on beating Dixons etc. for the order. That was a mistake! We've had a few back with odd problems which we've had to repair ourselves under guarantee. The common link is that they've all received attention before.

One machine had had reset problems since we'd supplied it. The reset had been slow and not always completed. Also the logo had occasionally been accompanied

## Reports from Roger Burchett and Nick Beer

by the flashing cursor. On investigation the machine turned out to be a Spectrum issue 3B that had been converted to a Spectrum Plus. The reset arrangement was novel - instead of taking the CPU reset pin to chassis it took the 5 V line to chassis! No apparent damage had been caused by this brutal treatment and the machine now works normally.

Following this we've had a number of other Spectrum Pluses with old boards inside. One was a real heartache. It came in with Tr 4 short-circuit and a number of chips damaged. We did a memory check before boxing it up and found that it worked only as a 16 K machine. To shorten a long story, it would appear that Sinclair sold a number of 48 K machines that were working only with 16 K - labelling them as 16 K of course. The extra 32 K of RAM was soldered in (no holders), ready to spring any poor unsuspecting soul about to upgrade them a surprise. This particular board had been recycled in a Spectrum Plus case and had been sold again (in a large Liverpool store), still only as a 16 K machine. No one appears to have checked it at any stage during this procedure. Just to add a little spice to the fun, the membrane was very intermittent on extend mode, delete and symbol shift. As we're a long way from Liverpool we repaired all this and levied a nominal charge, hoping to get the loss covered by future business.
Way back in BC (before computers) we made it our policy always to check TV sets before delivering them. We continued this policy AD (after digital?) and it has paid dividends over and over again. We refuse to sell an item still boxed unless the customer is adamant. Even so we recently missed an Amstrad printer whose ribbon was twisted.
R.B.

## Atari 1010 Cassette Decks

We've had a number of these with the plastic function selector buttons broken. Replacement requires quite a bit of dismantling but is fairly straightforward.
N.B.

## Commodore 64

This machine wouldn't stop at the end when loading a program from a cassette or wouldn't load after acknowledging finding the program. The cause was a faulty 6510 chip.
N.B.

## Sinclair Spectrum

In this Spectrum both Tr4 and the $5 \cdot 1 \mathrm{~V}$ zener diode had gone short-circuit, thus preventing operation of the power supply.
N.B.

# A Vintage TV Restoration 

## Steve Rowley

Following the start of regular TV broadcasting in November 1936, and the subsequent decision in February 1937 to adopt the Marconi-EMI 405 -line system and drop alternate transmissions using the Baird 240 -line system, it has to be said that the sale of TV receivers was, to put it mildly, disappointing. Television was surrounded by an air of mystique. Indeed one of the rumours that abounded at the time was that "they" could see into your home in the same way that the viewer could watch an outside broadcast. It was almost certainly not for this reason however, but simply because of the cost, that so few sets were sold.

Jobs were scarce in the depressed thirties, and money to spend on luxuries was scarcer still. To add to the problem many families would have recently bought a wireless set and would probably not be able to buy a new TV set whilst still paying for the wireless. At sixty to a hundred' pounds or more TV didn't come cheap. The radio and TV manufacturers responded by bringing out smaller sets with five, seven and nine inch screens. The smallest of these, the five inch HMV 904/Marconiphone 706, cost 29 guineas - the seven inch versions sold at 39 guineas. These sets were bought in reasonable numbers, but the price was still beyond the reach of most people.

By 1939 a number of manufacturers, notably Ekco, Pye and GEC, had brought out "television adaptors". These were vision only receivers that produced pictures in the normal manner on their small screens: the accompanying sound was obtained by connecting the "adaptor" to one's wireless set. By omitting the loudspeaker and audio output stage the size of the cabinet could be reduced and the price could be kept down to a level within reach of a wider section of the public. The Ekco Model TA201 was one such set: it sold for 22 guineas.

## The Ekco TA201

By the standards of the day the TA201 was a small set. It measured $191 / 2 \times 17 \times 16 \mathrm{in}$. yet weighed a hefty 70 lbs . The 7 in . tube produced a $61 / 2 \times 51 / 2 \mathrm{in}$. picture - note that the pre-war aspect ratio was $5: 4$. The cabinet was of polished, fine-grained walnut, and a matching stand was available for an extra two guineas. Also available was a sister model, the TS701, which was similar in appearance but had sound and cost 26 guineas.

Judging by the amount of promotional material produced, Ekco obviously expected great things of the TA201. Original leaflets and brochures for pre-war sets are nowadays very scarce, so it's perhaps an indication of how much material was produced that I've three different brochures on this model.

## Condition

As a collector and restorer of vintage TV sets I acquired a TA201 from a fellow collector some six years ago. It was in a sad state, with a rusty chassis and a control knob and the fibre back missing. Worst of all the tube was broken. Despite several advertisements and much searching I couldn't find a replacement tube, either new or used. Everything comes to those who wait however, and during the next couple of years two more TA201s plus a spare
tube came into my possession. One of these sets I've passed on: the other, though minus its cabinet, provided all the missing parts, including the tube and fibre back cover.

## Restoration

The methods and techniques used in restoring vintage sets couldn't be farther removed from those employed in the modern repair shop. The thought of switching on then, if the set survives, finding upwards of 25-30 faults would be unthinkable for a commercial servicing organisation.

My own approach is first to remove the chassis from its cabinet and then, using a stiffish paint brush together with a fine-nozzled vacuum cleaner, to clean the chassis thoroughly, sucking away all the accumulated dust and rubbish. The next step is to clean around the tube's e.h.t. connection, also the connecting cable.

The chassis of the TA201 is well laid out from a maintenance point of view. There are three units, one mounted horizontally at the bottom and one at each side, with the valves facing inwards. This layout gives easy access to the undersides of two of the three units. The bottom unit is the power supply which doesn't need much attention to its underside whilst the set is running.

With the set in a clean condition my next task was to replace all the waxed paper and electrolytic capacitors the majority of the latter are underneath the power supply chassis, for h.t. smoothing. Without exception all the waxed paper capacitors were leaky, so around ten faults were probably removed in one go. The leads of the new capacitors were coiled to form small "tubes" which could be soldered in place over the severed leads of the original components. This gives a neat appearance, and the joints and layout remain in the original condition. Once the capacitors were sorted out I gave the resistors a quick look over for signs of over heating and where necessary checked the value with an ohmmeter. None of the resistors appeared to be seriously adrift, so it was time to switch on.

## The Big Moment!

The big moment had arrived! Would the Ekco work after forty-five years out of service? Perhaps predictably, the results were somewhat less than exciting. For my efforts so far I was rewarded with nothing more than a ghostly white blob which didn't appear to respond to any amount of knob twiddling. Clearly the timebases weren't working.

Both timebases have T41 thyratrons as the generators. The line output stage uses an AC6 while the field output stage uses a Pen45. All four valves were changed, but there was no improvement in the results obtained. Unfortunately E.K. Cole didn't permit publication of the circuit diagram, so my fault finding was seriously hampered. The service information at my disposal consisted of three pages from the July 1939 issue of the "Radio Marketing" Service Man's Manual. This included just about everything other than the vital circuit diagram.

Not to be outdone, I worked my way around the circuit and eventually found a very leaky capacitor hidden away behind a potentiometer mounting panel on top of the chassis. This capacitor is part of the line form circuit, and on replacing it I soon heard the familiar 10 kHz whistle telling me that the line timebase was now working. Replacement of the two $0 \cdot 1 \mu \mathrm{~F}$ Visconol 4 kV e.h.t. reservoir/smoothing capacitors cured the massive hum bar that moved slowly down the screen, and I now had a blank raster that could be controlled in height, width and focus.

My success was unfortunately short-lived. The screen slowly turned dark and smoke began to issue from the power unit. A check with the ohmmeter confirmed the worst - the e.h.t. transformer had developed shorted turns. Anyone who restores vintage TV sets lives in fear of this happening - finding a replacement is virtually impossible, and rewinding the original is costly, always assuming that you can find someone prepared to do it.

In the present case I'd the spare chassis, so the e.h.t. transformer was quickly removed from this. Not surprisingly, the "new" transformer was itself a replacement type, so it would appear that the original transformer was prone to failure. Fortunately the replacement worked, so I was back with my blank raster.

## 405-line Material

There's one major stumbling block when restoring 405line sets - there are no longer any transmissions! But we have our ways. If, like myself, you're not lucky enough to possess a standards converter, there are basically two choices. The first is to use a simple 405 -line pattern generator. This is adequate for restoration purposes, but provides little of entertainment value for subsequent viewing! A much better solution is to use video recordings of 405 -line material. Normal 625 -line recordings cannot be used unless processed through a standards converter. Connect the VCR's video and audio output sockets to a v.h.f. modulator operating at the correct frequency for the TV set - the construction of a suitable modulator was described in the October 1984 issue of Television. I'm fortunate in possessing both pre- and post-war v.h.f. material, including "Television Comes to London", a short film about the construction of the Alexandra Palace studios and transmitter.

## Getting the Picture

The v.h.f. modulator's output was connected via a length of standard coaxial cable to the TA201's aerial input socket. Being a born optimist, I drew the curtains and switched off the lights in readiness for some viewing. As anyone in the trade will confirm, such rashness always invokes a variety of faults - and this was no exception. Sod's Law again prevailing, there remained a blank raster and no amount of contrast increase (gain) or focusing adjustment would resolve a picture.

The SP41 vision r.f. amplifier valves were replaced, as were the SP42 sync separator and the SP41 video amplifier valves. All to no effect. The fault was eventually traced to the vision demodulator valve which wasn't lighting up. This was difficult to find as the valve, a D1 subminiature type, was concealed in what looked like another r.f. tuning coil can. The D1 is a strange little valve, with three pins in a row at one end and a further pin at the other end. Replacing it had the desired effect, and after carrying out adjustments to the hold controls and the contrast and focus controls the familiar figure of

## BILLINGTON VALVES

NEW, GUARANTEED VILVES + COMPONENT BARGAINS

| NEW VALVES - BOXED, 90 DAY GUARANTEE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DY87 | 45p | KT66 USA | 1000p | PL504 | 90p | PY88 | 48p |
| DY802 | 43p | KT66 GEC | 1300p | PL508 | 165p | PY800/801 | 68p |
| ECC81. | 80p | KT88 USA . | 1100p | PL509 | 400p | PY500A | 150p |
| ECC82. | 65p | PCF802 | 60p | PL519 | 440p | 30FL2 | 135p |
| ECC83. | 65p | PCL82 | 63p | PL802 | 550p | 3AT2B | 295p |
| EL34 | 190p | PCL 805/85 | 80p | PL802T | 390p |  |  |

USED VALVES clean \& tested working - 28 DAY GUARANTEE ECC81 Mullard Mfg (CV 4024) 80p
ECC82 Mullard Mfg (CV 4003) 70p PL509 £2.00
PHONE FOR IMMEDIATE QUOTATION ON ANY VALVE
Almost any type available from stock. Rarities our speciality. Competitive prices.

## NEW, GOOD QUALITY TRANSISTORS

BU126 70p, BU208A 80p, BU326A 65p, BU508A Sanyo 130p, BU508D 130p
E.H.T. MULTIPLIER. Good quality universal triplers $£ 4.40+$ VAT + post. Suitable for nearly all sets - B+O, Decca, GEC, Grundig, ITT, Philips, Pye, Rank + continental.
1000 resistors or 1000 capacitors $£ 3.50$ post paid.
INCREDIBLE BARGAIN PACKS. Parcels of mixed I.C.s, transistors, relays, capacitors, resistors, potentiometers, switches, etc., etc. $2.5 \mathrm{kgs} £ 5+$ VAT delivered 10kgs $£ 10+$ VAT delivered.
TO ORDER: Please add 50p post/packaging per order and VAT @ 15\%. Same day despatch now guaranteed. Govt + export orders welcome. We accept Barclaycard. Possible delays during staff holidays June 8-21 [on unusual items only].
WE WILL BUY VALVES! we are short of audio types PX4, PX25, KT66, KT88 etc. (plus PP3/250, PP5/400, DA30 etc.).

## BILLINGTON VALVES

39 Highlands Road, Horsham, West Sussex RH13 5LS Phone 0403210729 Fax 0403210108 Telex 87271 PRODSS G

If visiting in person, please phone first to check that office is attended

Mickey Mouse came into view. This cartoon was the very last programme to appear on TV prior to the wartime close down. It was perhaps ironic that it should appear on the screen after I'd devoted so many hours to the restoration.

## Results

The sound output socket (complete with its original plugs) was connected to the gramophone sockets of a contemporary Cossor wireless set, Model 375. This time I was lucky, and after a couple of minutes of warming-up time "The Lambeth Walk" was echoing round the room. Both the picture and sound were of good quality, the latter being considerably better than the sound obtained from many modern-day sets. The geometry and contrast were good but the brightness was such that viewing was best either in an unlit room or with the light source behind the set. Advancing the setting of the brightness control too far produced flaring, which was only to be expected with a set of this age. Judicious adjustment of the r.f. cores produced a further improvement, as did adjustment of the sound rejector capacitor, which improved the line hold.

The set is now used on a fairly regular basis, mainly for the entertainment of those who are either too young to remember or who simply couldn't afford pre-war television. Watching the Ekco TA201 is not at all like watching a modern TV set. For me it invokes a feeling of excitement, as though I was one of the pioneers who produced the first television pictures. Last year saw the fiftieth anniversary of the start of high-definition TV broadcasting in the UK. I wonder whether the little Ekco will be producing pictures in another fifty years' time?

# VCR Clinic 

Reports from Steve Beeching, T. Eng., Eugene Trundle, Philip Blundell, Eng. Tech. and Patrick Rafferty

## Saisho VR9055

There was no cassette tray operation, no eject and a tape was stuck in the machine. As the motor was without power the main drive i.c., type RA6209, was suspected. After replacing this the operation was sluggish and hesitant, with intermittent eject. The motor had been checked with an external power supply (yes, the RS one E.T. reviewed in the May issue - he got his after seeing mine!), so we were back to the chip. As luck would have it however I checked the wiring to the motor. This is wrapped around the cassette compartment metal chassis, was tight and had cut through, shorting the motor's output to chassis.
S.B.

## Sharp VC8381

There were no playback pictures and the E-E pictures showed signs of white clipping. The supply lines were correct. Rather than getting bogged down with the clipped whites attention was turned to the absence of playback pictures. IC402 had no sync pulses at pin 1 and no video signal at pin 20, though there was a video signal at pin 18. In the E-E mode there were signals at both pins 18 and 20 , but the signal at pin 20 was clipped. After changing the i.c., for no good reason whatsoever, the voltages were checked. Pin 18 read $5 \cdot 1 \mathrm{~V}$ instead of $4 \cdot 3 \mathrm{~V}$. C439 was found to be leaky.
S.B.

## JVC HRD725

There was a background sizzle on the sound from the right-hand stereo hi-fi channel. The left-hand channel was fine. Various checks were made, including increasing the level of the right-hand 1.8 MHz carrier. All to no avail. Only replacing the video heads (ouch!) provided a cure. Although the left and right audio channels are recorded by the audio heads as a mixed carrier, head wear seems to affect the right-hand channel first - presumably because of the higher frequency.

Another problem that can occur with these machines is failure of the power supply regulator transistor Q2. This can create unforeseen problems - the symptoms range from full to no display, with the capstan motor running. If Q2 has failed, change both Q1 and Q2 and check D2. As the rail voltage can increase to 20 V or so a regulator circuit on the tuner panel is likely to be destroyed, so replace the following as a precaution: Q3, D13, D17, D18, D19, D20, C13, C14, L1 and IC1.
S.B.

## Grundig VS380

Intermittent sound erasure is generally due to cracks in the solder joints on the coils around the erase oscillator. These are mounted horizontally and are subject to machanical shock.

Low audio from the left-hand channel with an AV input was traced to failure of the input select i.c. Customers should be told not to connect plugs and sockets while the machine is powered.
S.B.

## Grundig VS300 Series

You may sometimes find that the head drum goes around backwards. The drum motor is bidirectional and is told which way to rotate by the microcomputer chip, via a
series/parallel shift register and a four-way buffer driver. If the micro gets incorrect data from any source it tends to rotate the drum the wrong way. In one case the cause of the trouble was found to be the input data interface while in another the cause was a seized capstan motor. Drum motor winding failure will create the same problem. So remember: backwards drum rotation is only a symptom and the cause could well be something apparently not related to the drum. You must check the power rails, resets, FGs, CTL and optocoupler input to the syscon before ripping out expensive i.c.s. Ask Grundig Pete! S.B.

## Grundig VS380

Intermittent operation of the f.m. audio record level display was traced to a poor joint on T2049. This removed the 22 V supply.
S.B.

## Ferguson 3V44/JVC HRD140

There were no functions and no "operate" power up. After checking all the circuit protectors attention was turned to the syscon microcomputer chip which was replaced. Note that the M50730-607SP has been replaced by the M50730-610SP - I don't know why.
S.B.

## JVC HRD180

One of these machines lost time. Replacing the clock crystal X101 and resetting C102 as per the manual cured the trouble.

With another one there were no functions and circuit protector CP4 was open-circuit. This was bridged with a piece of wire as a check but there was no 12 V at pin 9 of the 12 V regulator. With a new regulator fitted there were still no functions and CP4 was again open-circuit. The cause of the fault was traced to the motor drive chip IC602 which was short-circuit - a $12 \mathrm{~V}, 3 \mathrm{~A}$ power supply helped sort this out.

There was inconsistent channel selection with another of these machines - when changing channels the u.h.f. numbers would alter and the machine would be off tune. For example, if programme 9 was tuned to ch. 58 , selecting 9 would result in ch. 21 or 57 appearing, though reselecting would produce ch. 58 . Changing the tuning memory chip, the tuning PLL chip, then the timer/display microcomputer chip had no effect. The resets, power rails and clocks were all checked - even the timer was changed. The cause? C7 on the power panel had a dry-joint at one end. This put a ripple on the 30 V line, confusing the memory chip.
S.B.

## Panasonic Oil Clutch Motors

Heard about the new Panasonic oil clutch motors? What will we tell customers - it leaked?
S.B.

## JVC GRC1

One of these camcorders wouldn't record. The cause was a faulty record inhibit switch.

Intermittent audio recording and no playback tracking was traced to a wire to the erase head shorting to the
servo panel - the sharp component pins penetrate the screened cable. This is a problem with portable equipment which is subject to mechanical shock.

On another of these machines intermittent audio recording was traced to a dry-joint in the oscillator circuit: all suspect joints were touched up.
S.B.

## NEC PVC744E

There's a good chance that the reel motor is faulty if any of the reel drive transistors have failed (Trl1 and Tr12 usually go).

When refitting the cassette housing make sure that it doesn't catch on the back-tension band - or you'll find that the machine won't thread up.
P.B.

## Sony SLC6 Mk. 2

The metal cassette flap had come off and was loose inside the machine. When it was refitted the machine would thread up but the loading ring wasn't being held in position. A quick read through the manual was needed to discover that the brake/select solenoid wasn't being pulsed. Q613 was short-circuit.

## Sharp VC387

The problem with this machine was tracking noise on playback - the noise was stationary and the tracking control had no effect. As the drum lock (TP701) and capstan lock (TP708) voltages were normal attention was turned to the tracking control which was found to be open-circuit.

For no power on but the clock working check that IC801 on the mechacon board has 9 V at pin 64 . If not, follow the track back and you'll probably find an opencircuit semiconductor fuse (this isn't shown on the circuit diagram!).
P.B.

## ITT VR3916

We've had two more cases of no clock display. In one case R423 on the timer board was open-circuit, in the other R2 in the power supply was responsible.
P.B.

## JVC GXN70

The reported problem was no colour, though a scope check showed that the CVBS output had chroma information. Investigation on the SSG/deflection panel showed that the subcarrier frequency was incorrect at about 4.42716 MHz . The problem was solved by replacing crystal X701, which enabled the subcarrier frequency to be correctly set with the trimmer.

In this camera the screening cans that surround the crystal and SSG chip are extremely tricky to remove: there's a great risk of damage to the board and nearby components.
E.T.

## Toshiba V8600

The accusation againt this old battleship of a VCR was that it lost five minutes in each hour. Set to run in the workshop it kept better time than my wristwatch for two days on the trot. It was then returned to the customer's home, where it continued to keep exemplary time. The likelihood is that a spike or transient on the mains supply had triggered the microcomputer chip into 60 Hz operation of the clock counter. In future we'll advise customers with
this sort of problem to unplug from the mains, count to ten and try again before bringing the machine to the workshop.
E.T.

## Sony SLC6

The customer had no sooner taken this machine home after a workshop overhaul than he was on the phone to complain that it wouldn't thread up. This sort of problem has cropped up in the workshop too, on various makes and models. The solution lies in getting a correct microcomputer reset. The customer had switched on at the mains with the VCR operate switch already on: it's sometimes essential to apply mains power before you switch on at the front panel.
E.T.

## JVC HRD180

This machine, one of the latest, came back to the workshop with a no vision recording fault. It was intermittent, like all the best ones. The effect was complete loss of picture to a screenful of snow while the sound continued. The problem lay at CN2/7 (/REC) on the video board, where a stiff ribbon cable enters from J 2 on the mechacon board. The solder connection had probably broken when the 03 video board was hinged down during assembly.

> E.T.

## JVC GZS3/S5

The picture produced by this camera was very dark, with a pink and purple chroma overlay. Turning the colour fully down at the monitor gave us a very dark picture with only the brightest highlights (workshop lamps and windows) emerging from the blackness. The luminance signal was o.k. up to Q 2 on the 01 video processing board: it then virtually disappeard. The trouble was in the blacklevel clamp circuit, where the /CP2 pulse ties the luminance signal to a fixed 1.7 V potential during the line blanking period. This clamp reference voltage is held by a $10 \mu \mathrm{~F}$ tantalum capacitor, C5, which was open-circuit.
E.T.

## Grundig VS180

On most occasions a known good tape would play back perfectly but now and again the picture would begin to jump for a few seconds at intervals of $40-45 \mathrm{secs}$. When playback returned to normal the fault wouldn't occur until the machine had been stopped and restarted. The time interval between the jumping sessions suggested that the problem was due to the rotation of the spools in the cassette rather than electronic trouble.

We found that when the fault occurred the back-tension tape control arm was firmly locked to the optosensor instead of being free to swing back and forth to level out tape pay-out irregularities. When the fault was not present the arm was free to trigger the sensor as it should. There's a small plastic sleeve on the control arm's stop peg. It's retained by a "hooked" end on the peg, presumably a buffer. This sleeve must have flattened a little, since now and again the hooked end would latch over the back plate of the optosensor at start up. As the owner came from afar and wanted to leave at once I slipped a small length of RS red plastic sleeving tightly over the peg-and-sleeve so that the red sleeving stopped the hook engaging. Results were first class. Note that the diagram on page 74 of the manual doesn't show either the plastic sleeve or the hooked end to the stop peg.
P.R.

# Long-distance Television 

Roger Bunney

As hoped, April proved to be a rewarding month for Sporadic E reception. This is always a pointer to a good season starting in mid-May. There were several periods of SpE activity, including an excellent opening on Easter Monday afternoon - it's most unusual for an opening to occur during a public holiday! The settled weather conditions proved helpful for tropospheric propagation, and as an additional bonus the April Lyrids meteor shower (April 19-25th) produced substantial signal pings at frequencies rising as high as Band III. The SpE log, collated from various UK reports, is as follows:

| 5/4/87 | NRK (Norway) ch. E2; SR (Sweden) E2; DR <br> (Denmark) E3. |
| ---: | :--- |
| 14/4/87 | DFF (E. Germany) E4; NRK E4; CST |
|  | (Czechoslovakia) R1. |
| 16/4/87 | TVE-1 (Spain) E2-4; TVE-2 E2; RTP <br> (Portugal) E2; ARD (W. Germany) E2. |
| $19 / 4 / 87$ | RAI (Italy) IA, B; ORF (Austria) E2a; TVE-1 |
|  | E2-4; TVE-2 E2. |
| 20/4/87 | TVE-1 E2-4; TVE-2 E2; RTP E2, 3. |
| 26/4/87 | TVE-2 E2; RTP E3. |

The 21 st provided CB SpE at 27 MHz , with various southern European stations being heard at high levels. Band I was not affected.

Tropospheric propagation improved from the 12th. Band I, III and u.h.f. signals from RTE (Ireland) were received in central/western UK by the 15th. W. German Band III/u.h.f. signals were also improving, with reception in central/southern UK. But the most active period was from the 23 rd to the 29 th. Throughout this period $W$. German/Benelux/French Band III/u.h.f. signals were received at good strengths as far west as Wales. Perhaps the most active day was the 28 th, with Swedish v.h.f./u.h.f. and Danish Band III signals being added. Interesting that on the 29th Iain Menzies (Aberdeen) received very strong E. German u.h.f. signals during the morning - conditions died down later that day.

The new Dutch third programme (NOS-3) transmitter at Smilde (ch. E44, $1,000 \mathrm{~kW}$ e.r.p.) was on test during April - so keep a careful watch on this channel.

During the April Lyrids meteor shower Mark Baldwin (Rugby) logged ORF (Austria) ch. E5 and CST (Czechoslovakia) ch. R6. This reception occurred on the peak day - the 22 nd. MS propagation was fairly active during the period, with medium/short pings in Band I. Band III MS is not usual but, as Mark as shown, can occur.

## News Items

Spain: A new TVE-1 transmitter is in operation on ch. E2 at Casares, a small mountain town some 22 miles NNE of Gibraltar. The output power is at present unknown but is expected to be low.
UK: John Butcher, under secretary of state at the DTI, has indicated that the department is giving sympathetic consideration to the use of the 50 MHz band $(50-52 \mathrm{MHz})$ by class $B$ amateur radio operators - the band is at present
used only by class A operators. Power level limitations could be eased.

The DTI has also indicated that the UK Citizens' Band is to be increased to 80 channels, using the new European standard (CEPT). Use of the original 40 channels will be reviewed in 1990.
W. Germany: A network is being commissioned to transmit the SAT-1 satellite TV service to main areas. Most of the transmitters operate at under 1 kW e.r.p. The main ones of interest are as follows:
Augsburg ch. E38/40, 6kW. Bremen ch. E45, 1 kW . Kaiserslautern ch. E50, 1kW. Munchen ch. E29, IkW. Saarbrucken ch. E56, 1 kW . Bamberg ch. E45, 1 kW .
Denmark: Rumours suggest that from 1990 onwards all v.h.f. transmitters will gradually be closed, starting with the ch. E3/4 outlets which are soon to have u.h.f. counterparts. The new transmitter tower in West Copenhagen, due to open on April 1st 1988, will transmit DR-1 on ch. 31 and TV- 2 on ch. E53 - the old ch. E4 outlet will continue in use for some years.
W. Germany: The following private/local TV transmitters will operate in Schleswig-Holstein: Kiel ch. E24 400W e.r.p. TV-1; Flensburg ch. E24 100W e.r.p. TV-1; Flensburg ch. E28 200W e.r.p. TV-2.

New identifications have been announced for the Bremen ZDF and Radio Bremen 3 test patterns - " 2. Programm K34" and "3. Programm K42" respectively, with "Bremen" above in both cases.

Channels E61 and E69 are to be released for TV broadcasting. The BDXC report that for NDR/RB/SFB programme linking there's a high-power tropospheric link between Gartow/Hohbeck in W. Germany and W Berlin. The link uses ch. S13 ( $245 \cdot 25 \mathrm{MHz}$ vision) and operates at 500 kW e.r.p.
USSR: The Moscow first programme now starts an hour earlier, at 0400 GMT. The first news programme, Vremja, is at 0430-0500.


Roger's DX aerial mast complete with Les Wallen 27 and 49 MHz aerials and full-size plastic decoy falcon to the rear of the Band I array.

France: Two new TV6 (now called M-6/Metropole 6) transmitters are in operation - Lille/Lambersart ch. E53 and Dunkerque-Ville ch. E62. The power is 1 kW e.r.p. in both cases.
USA: Of interest though not exactly DX-TV news - US military officials have activated a communications satellite that had been "in storage" for at least seven and a half years. The Ford satellite was the third in a series of four and was held stored due to the excellent performance.and life of the second satellite in the series, NATO-IIIB.

## Spectrum Deregulation and Pricing

The DTI has just published a substantial document entitled "Deregulation of the Radio Spectrum in the UK". This considers potential changes in the spectrum to accommodate new services, new frequency planning, and "the possible benefits from introducing market forces and the price mechanism into spectrum management". It requires closer study than we have so far been able to give it, but several points are clear.

There is to be no development of ground radar in the TV band $582-606 \mathrm{MHz}$ and existing installations are to be phased out in the interests of reducing TVI. These installations currently operate at 60 kW peak power. The subdivision of Band III has been reviewed - details were given in an earlier column. It's suggested that Band I could be split into two allotments approximately 8 MHz wide, though the possibility of interference from foreign broadcasters and "some computer and other electronic equipment" is recognised. Some of the suggested users are cordless PABX (operators may need a bandwidth of 8 MHz to allow high packing density), diversity paging (using several frequencies at specified time intervals), and that old favourite PMR. The document recommends early release of the Band I spectrum to allow rapid, costeffective development of the equipment that would be required. Implementation would be helped by increased revenue from licence fees. An indication of the future!

## DX-TV Tuner Unit

HS Publications of 7 Epping Close, Mackworth Estate, Derby DE3 4HR have announced a new converter unit, the Special D100, that covers Band I, II (TV), III and u.h.f. It costs a little more than the Standard D100 which omits Band II. It's based on the NSF 47807 tuner and includes switched selectivity. For further information send an s.a.e. to HS Publications.

## Far East Report

Our correspondent in South Korea, Jean-Louis Dubler, has been on his travels again. He reports that there are four TV networks in Thailand, though their coverage is limited. Bangkok has four TV channels, three of which have affiliated Band II f.m. transmitters for relaying duallanguage sound. Two of the networks are operated by the army, the others being private. Singapore has three channels, one with 100 per cent English language transmissions and the other with various Malay dialects. There's a single TV channel in Bali - but Malaya ch. E3 is available via transequatorial tropospheric propagation at a distance of some 700 miles, reception varying from fair to poor!

## Aerials and Other Things

As mentioned last month, I've been looking into the possibilities of using small active and passive aerials for

## FERNSEH-ANTENNA

Combined Band 1/3 Aerial for TV-DXing


The 1987 Sporadic-E season is now with us! Time to take advantage of a special offer from Merial Technieques to re-equip your system. The FernsehAntenna DR1712 is an efficient low cost Wideband VHF aerial covering both Bands $1 \& 3$, it has a gain of 3.5 dB in Band 1 and 9.5 dB in Band 3 . Folded dipoles for peak efficiency are used in both Band $1 \& 3$ sections. Front to back ratio is $11 \mathrm{~dB}-$ Band $1 ; 25 \mathrm{~dB}$ - Band 3 . The aerial has been gold lacquered for high resistance against weather corrosion. This array has close spaced elements, making it a very compact length of $72^{\prime \prime}$, ideal for the enthusiast with restricted space, or those unable to erect separate aerials. This aerial only requires a single coaxial downlead.
In certain areas the use of a wideband VHF amplifier can be advantageous, the Antiference UP1300 fits the bill. This preamplifier covers 40 230 MHz (Bands 1 to 3 ) with a gain of 19 dB and a low noise figure of 2.5 dB . 230 MHz (Bands 1 to 3 ) with a gain of 19 dB and a low noise figure of 2.5 dB .
The amplifiers matching power supply unit provides 12 v DC via the The amplifiers m
coaxial downlead.
FERNSEH-ANTENNA Combined Band 1/3 Aerial - Special offer - carriage free!
ANTIFERENCE UP 1300 Band 183 Amplifer.................................... 43.75

ANTIFERENCE PU1240 12v DC FowerSupply (mains operated)......................................... 15 KINGRDTOR Automatic 'offset' Antenna Rotator and Control Consol (uses 3 core cable)
SUPCRT BEARIMG for heavier load applications .................................. £13.95
Aerial Techniques, the company that knows the TV-DXing hobby carry a large and comprehensive range of aerial equipment for every type of installation - and with a huge range of filters, amplifiers, cables, rotators, masts and supporting hardware. Send for our illustrated Catalogue at 65p, if it doesn't list what you want, then we can obtain it quickly.
STOP PRESS - New Triax style Notch Filter, covers whole of the UHF Band; $470-860 \mathrm{MHz}$ completely tuneable. Notch depth up to 26 dB ...............56.95 (includes postage).
All prices inclusive of VAT \& Carriage
Delivery normally 7-10 days. ACEESS \& VISA Mail and Telephone Orders welcome

AERIAL TECHRNIOUES (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: Q202 738232.

## TV LINE OUTPUT TRANSFORMERS prices include vat \& carriage

TRANSISTORS, IC's, ALSO STOCKED.

| BAIRD: 8290, 8752, 8773, 8180 | 12.00 | ITT: VC200 to VC402 CVC1, CVC2 (FORGESTONE) | $\begin{array}{r} 9.20 \\ 11.50 \end{array}$ |
| :---: | :---: | :---: | :---: |
| RANK BUSH MURPHY |  |  |  |
|  |  | CVC5, CVC7, CVC8, CVC9, CVC20 |  |
| A774 with stick rectifier | 9.78 | CVC25, CVC30, CVC32, CVC45 |  |
| A816, T16, T18, Z712, 2715 | 10.35 | CVC800, 1100, 1150, CVC40 |  |
| T20, T22, T26, Z179, A823 2718 Basic unit | $\begin{aligned} & 11.50 \\ & 13.50 \end{aligned}$ | CVC1200, 1204, 1210, 1215, 2600 P. 0 |  |
|  |  | PYE: 169, 173, 569, 36 |  |
| DECCA: 1210, 1211, 1511 | 11.50 | CT200, CT200/1, CT213 | 10.35 |
| 1700, 2001, 2020, 2401, 2404 | 9.20 | 725-731, 735, 737, 741 | 9.78 |
| CS1730, 1733, 1830, 1835 |  | PHILIPS: 170, 210, 300920 |  |
| 30, 70, 80, 90, 100 | 9.20 | 320 series <br> TX, T8, TX2, TX3 mono | 9.78 |
| 120, 130, 140, 160 | P.0A. |  | $\begin{aligned} & \text { P.O.A } \\ & \mathbf{£ 9 . 2 0} \end{aligned}$ |
| FERGUSON, THORN: 1590, 1591 | 920 | TX, T8, TX2, TX3 mono G8 and G9 Series |  |
| 1690, 1691. buitt in rect.  <br> 1600, 1615, 1700, 1790 P. 0.78 <br> A.  |  | KT2. KT3. series 9.29 |  |
|  |  | CTX G11. K30. K4. K40. split diode P.O.A. |  |
| 3000, 3500, 8000, 8500, 8800 | P.0.A. | BINATONE: 9909, 9860, 9488 P.0.A. |  |
| 9000, 9200, 9300 series | 12.00 | DORIC Mk3, Mk1 |  |
| 9500, 9600, 9650 series | 10.99 | SONY KV 1400, 1612, 2000 |  |
| 9800, TX9, TX10, TX90, TX100 | P.OA. | GRUNDIG: most models in stock |  |
| MOVIESTAR 3781, 3787, 8180 | 12.00 | NORDMENDE: 8290, 7206,7306 P.0A. |  |
| TX10 focus unit | 10.87 | SANYO: 5101, 5103, 7118, 7130 P.OA. |  |
| FIDELTY: FTV12 mono | 10.35 | TOSHIBA: C800, C800B P.OA. <br> TANDBURG: 190, CTV2, CTV3 P.0A.  |  |
| 2X2000 $2 \times 300016.43$ |  |  |  |  |
| G.E.C. 2047 to 3135 mono 9.20 | 9.20 | HITACHI: 1471, CPB260, 2501 P.O.A. AMSTRAD: CTV2200, CTV2210 P.0A. |  |
| 1201H, 1501H, 2114, 3133, 3135 DUAL \& SINGLE hybrid col. SINGLE STD solid state SINGLE STO split diode | $\begin{array}{r} 9.20 \\ 10.00 \\ 12.00 \\ \text { P.O.A. } \end{array}$ |  |  |  |
|  |  | Delivery by retum of post. Shop callers welcome. |  |
|  |  |  |  |  |
|  |  |  |  |  |
| INDESIT: 24EGB, 12LGB, 12SGB 10.35 |  | Tidman Mail Order Ltu., |  |
| - WINDINGS |  | 236 Sandycombe Road, |  |
| TYNE: main winding | 6.80 | Richmond, Surrey TW9 2E0. |  |
| RBM: T20, T22, T26, 2179 | 6.33 | Approx. 1 mife from Kew Bridge. |  |
| WALTHAM: W125 eht winding | 2.37 | Phone: 01-948 3702 |  |
| WALTHAM: W190, W191 eht coil | 6.00 | Man-Fri 9 am to 12.30 pm \& |  |
| KORTING: hybrid winding | 6.90 | $1.30-4.30 \mathrm{pm}$ |  |
| THORN: 8000, 8500, 8800 eht | 6.70 | Sat 10 am to 12 noon. |  |

DX-TVing. The Les Wallen 49 MHz UK paging service aerial has now been mounted on my mast at the 40 ft level: the equivalent 27 MHz base aerial is mounted on an adjacent stub mast (see accompanying photo). The 27 MHz base aerial is 40 in . overall and again has an integral SO329 socket (for use with PL259 plug). Both aerials consist of a helical element within a waterproof PVC tube, with an efficient built in vertical mast clamping bracket arrangement. Initial tests suggest that at 49.83 MHz the gain of the 27 MHz aerial is some $8-10 \mathrm{~dB}$ up on that of the 49 MHz aerial - it will be interesting to check on the results obtained when the SpE season starts. I'm told that Revco now have an in-line "tube-like" preamplifier that covers the whole radio spectrum to 1 GHz with a gain of around 13 dB , a noise figure of $3-5 \mathrm{~dB}$ and excellent linearity/overload performance - a sample is awaited. Initial assessment of the 27 MHz aerial showed that it worked well from 6 MHz upwards through to the 450 MHz u.h.f. band, with a scanner.

If you look at the photograph you'll see that there appears to be a bird flying close to the lattice mast. As


Fig. 1: Overall view of the Russian wideband v.h.f. array.


Fig. 2: Constructional details of the first director.

Fig. 3: Feeder/dipole matching arrangement.



Fig. 4: Element dimensions and spacing.

DXers and radio amateurs will know, various birds love to perch on aerial elements. This leads to the build up of excrement on the alloy tubing, which then tends to corrode. This is in addition to the droppings to ground from such birds. I noted the suggestion in a recent magazine of using a decoy bird of prey to frighten other birds off and eventually found at a local garden centre a replica plastic hawk modelled in flight. This was suspended from the rear of the Band I array using fishing line nylon. Initial results suggest that starlings are wary, though a local pigeon is quite happy to sit nearby.

One of the nylon supports snapped after just one day, so stainless steel fishing line was then fitted. Three days later the hawk crashed to earth due to excessive spin on the two stainless steel support wires used. Shorter wires have now been fitted to prevent this spin. The plastic bird of prey certainly looks realistic, seeming to hover in a gentle breeze. One concerned neighbour reported a large bird caught up in the mast - could I climb up and release it! So if you are suffering from aerial damage caused by birds, a plastic hovering bird of prey could be the answer.

Details of a "small-dimension TV aerial for the v.h.f. band" have been received from a contact in Poland. Unfortunately the text is largely in Russian, making it extremely difficult to establish the theory of the aerial and the claimed performance. Constructional details are shown in Figs 1-4 and Table 1. It should be possible to make up this aerial, using helical elements within plastic tubing (rainwater/drain piping). The original articles include gain figures which indicate wideband performance, ranging from 9 dB at 50 MHz to around 10.25 dB peak these figures are based on an array with five directors, a single dipole and a sheet reflector.

The main feature of the aerial is the helical director and dipole elements which have eight turns in each half element, with ten close-spaced turns at the centre (directors - the dipole has a matching arrangement), using 1 mm diameter enamelled wire located in a slot. Metal cones are fixed at each end of the elements and are connected to the far ends of the spiral element wire. There's no boom connection at the centre of the elements - the plastic boom is some 90 cm long with a diameter of 30 mm . Each element varies in turn detail (see Table 1).

Hopefully the information given will be sufficient to, enable an aerial of this type to be tried. If the aerial does indeed provide the performance claimed it could well be the answer to the problem of minimising the visual impact of a v.h.f. DX-TV aerial in a modern housing estate. The detailed metal cone diagrams suggest that the profile is important in obtaining the claimed performance. I wonder. whether a tube of copper (water pipe) would suffice, the coil being wound on a given plastic/PVC pipe complete with end copper tube and the assembly then slid inside a slightly larger PVC tube to provide weatherproofing.

Table 1: Element coil details.

## Element

Spacing
between
turns ( mm )

| Overall length | Overall length of |
| :---: | :---: |
| of coils in | 1 mm enamelled |
| each half | wire per half |
| element (mm) | element (mm) |

Dipole
Director-1
Director-2
Director-3
Director-4
Director-5
8.8
8.7
8.6
6.8
6.4
6.3

| 90 | 720 |
| :--- | :--- |
| 84 | 672 |
| 78 | 624 |
| 70 | 560 |
| 64 | 504 |
| 62.8 | 502.4 |

# Service Bureau 

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

## GRUNDIG CUC70 CHASSIS

The problem with this set is colour patterning during monochrome reception. It works perfectly with colour programmes. The patterning is intermittent and can occur with the set at any temperature from cold to fully warmed up. Tapping the decoder board makes no difference and there don't seem to be any dry-joints. The only way in which the interference can be cleared is to turn the colour right down.

The problem is not with the set but with the broadcasting authorities who nowadays seldom seem to switch off the burst signal during monochrome transmissions. As a result the Grundig set's colour-killer doesn't switch off, leading to colour confetti if the signal is anything less than impeccable. The only solution, it seems, is to turn down the colour control during the rare periods of monochrome pictures.

## SANYO VTC5000

The problem with this four year old machine is continual mains fuse blowing. The $\mathbf{3 1 5 m A}$ fuse may blow after a day or it may last a month. The machine works perfectly once the fuse has been replaced. About six fuses have been fitted so far, and adding a transient suppressor in the mains plug has not improved matters. The fuse always blows when the machine is in the standby mode.

The fault is quite common on these machines. It should clear after replacing the mains filter capacitor C5201 with an $0.0047 \mu \mathrm{~F}, 350 \mathrm{~V}$ a.c. type. RS Components stock a suitable capacitor.

## FERGUSON TX90 CHASSIS

The bottom two inches of the field scan are very unstable when the set is first switched on, and a white line is present about two inches from the bottom. A very light tap on the cabinet will cure the fault temporarily. The field scan occasionally collapses for a second or so. After half an hour the field scan is usually normal.

This problem is quite common and is almost always caused by dry-joints on the legs of the field output transistors TR104 and TR105. Resolder these carefully, along with any other suspect looking joints in the same area of the board.

## SONY SL8000UB

This machine will run for only five-fifteen minutes in the record or play modes. After this the keys return to the stop position - as if end-of-tape is activated. Subsequent attempts at restarting produce no results as the keys spring back up: only the rewind function is available. If the machine is left for a considerable time you can get another
five-fifteen minutes of record or playback. The heads and threading ring have been cleaned and a new belt has been fitted.

The machine plainly thinks it has reached tape end, due to cessation of oscillation in the left-hand side end-sensor coil. While a faulty coil or intermittent plug/socket connections can be responsible, the fault is more often due to failure of the forward sensor preset RV701. Replace it, along with RV702, then set up both of them as specified in the manual.

## ITT CVC32/3 CHASSIS

The programme suddenly changed to channel 1 while we were watching channel 3 . Now this is the only programme that can be obtained whichever button is pressed. The SAA1024 chip in the remote control transmitter has been changed but this had no effect.

The most likely cause of the problem is the SAA 1025 remote control decoder chip ICl in the CMC60 remote control assembly in the set. Before condemning it check for 18 V at pin 16 of IC4 and $8 \cdot 2 \mathrm{~V}$ at pin 8 of IC2. If either of these supply lines is incorrect, suspect zener diodes D2 and D4.

## PANASONIC NV333

The problem with this machine is that the lid won't stay down. It seems to be permanently in the eject mode. If the loading mechanism is wound manually the lid shuts, but as soon as power is reapplied the loading motor comes on and lifts the lid up again.

We suggest that you check the operation of the cassettedown and loading-end switches before suspecting trouble in the syscon department. Make sure that the eject button is not stuck, leaky or corroded. If all these things are in order and the contacts on the remote control jack socket are making properly the most likely culprit is the mode select switch.

## FERGUSON TX10 CHASSIS

There's quite severe darkening of the picture when white captions are displayed and, depending on the white content of the picture, there's a constant variation of the background brightness level - particularly on video playback. The VCR is not at fault since it works correctly with another set. The picture seems rather flat generally despite the fact that a new tube has been fitted recently.

It seems very much as though something is amiss in the beam current limiter circuit. Prove it by disconnecting R622, when normal contrast should be restored. If not, the TDA 3560 decoder chip IC601 is suspect. If normal contrast does return, check $\mathrm{C} 609(10 \mu \mathrm{~F})$ then the components between R622 and the tube's outer conductive coating.


## ITT CVC1200 SERIES CHASSIS

The problem with this set is that the BU508A chopper transistor goes short-circuit at switch-on. Trying to check on the cause is getting rather expensive!

A very common cause of this symptom is that R716 ( $150 \mathrm{k} \Omega$ ) is faulty. Replace it anyway. If the old one checks o.k., test the following items before restoring power: line output transistor T501, EW modulator diode D501 and the rectifier diodes D732 and D733. If the problem lies with any of these four, leakage or a short-circuit will be indicated.


295
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.
VCR repairs are eagerly undertaken by those of our technicians who are following the practical VCR servicing course of the City and Guilds Institute at the local college. They represent good practice for this summer's "handson" examination.

Useful experience was promised by a Ferguson 3V42 in the awaiting repair queue. Its problem was noted down as no colour, and the man who picked it up was anxious to deal with it "by the book", as he would have to on the day. Having connected it up and tuned the monitoring TV set to its output channel, he replayed a good test tape of colour bars. Despite the fact that the VCR's rear-mounted switch was set to colour the monitor displayed a crisp black-and-white step wedge.

His next move was to make a recording of the colourful bars reproduced in the E-E mode from a pattern generator and to replay the tape via a working machine. This proved that the fault was also present in the record mode - playback of the tape was in monochrome, with occasional breakthrough of vertical bars of incorrect colour. So it was back in with the colour-bar test tape and settle down to trace the fault with the 3 V 42 in the playback mode and the scope as the main diagnostic tool.

This machine's video circuit board is mounted print side up in an ideal position for access and diagnosis - above the deck. All the components and test points are clearly marked and the service manual is a helpful one. In short, the working conditions were ideal. Our technician's first check was for an off-tape 625 kHz colour-bar signal at TP404, the input to the main up-converter on the board. It was present and at the correct 300 mV peak-to-peak level. An output from the converter was present at pin 23 of IC401 and the signal was also present at TP401, proving that the 4.43 MHz bandpass filter BPF402 was intact and also that the converter was receiving an input from the sub-converter stage via BPF401.

Continuing along the helpful green dotted line on the circuit diagram, our technician traced a 4.43 MHz signal which looked like good colour bars through the crosstalk cancelling circuit then back into IC401 at pin 1. Within the chip, the signal passes from pin 1 to pin 21 via the playback colour-killer, which plainly took some objection to the signal it was seeing: for most of the time the chroma at TP405 was muted. At odd moments the colour-bar signal would appear at TP405, but the monitor's display remained firmly in monochrome! It was correctly deduced that this was due to the action of the auto colour-killer in the TV set - further evidence that the chroma signal was in some way sub-standard, though it looked quite acceptable on the oscilloscope's screen.

The VCR's chroma signal channel was clearly intact, so our technician decided to check the frequency of the voltage-controlled 4.43 MHz crystal oscillator. The counter showed that it was correct to within 20 Hz : its amplitude at TP403 was also correct. The a.f.c. setting (for 625 kHz at TP422) was also found to be correct. Enquiry amongst colleagues on the subject of strange no-colour faults produced horror stories about incorrectly wired video heads, but the drum and the wiring to it had not been disturbed. What next? D.C. voltage checks at the i.c. pins perhaps. These were not very fruitful, and in terms of the practical examination period time was ebbing away. Which essential test had been omitted? See next month's test case page.

## ANSWER TO TEST CASE 294 - page 560 last month -

Our patient last month was a Decca TV set fitted with the 100 series chassis. It appeared to have an evil and obscure a.g.c. fault that put a heavy horizontal shading bar across the picture and thoroughly upset the line and field sync. We had proved that the cause of the trouble was on the i.f. panel - by fitting a known good one. After refitting the set's own panel we'd then encountered some rather puzzling conditions in the a.g.c. department.

The root of the trouble lay at pin 6 of the TCA270S vision demodulator/a.g.c./a.f.c. chip. One generally finds a single capacitor connected between this pin and chassis, the 47 nF a.g.c. reservoir capacitor - in this case C126. The Decca designers however had decided to add an extra network consisting of D103 (1N4148) followed by the parallel combination of $\mathrm{C} 125(4 \cdot 7 \mu \mathrm{~F})$ and RI10 $(120 \mathrm{k} \Omega)$ connected to the 12 V line, which of course is grounded signalwise. D103 had gone short-circuit, effectively placing C125 in parallel with C126. This hundred-fold increase in the value of the reservoir capacitor was clearly not to the chip's liking.

The network D103/C125/R110 does not normally take any part in the a.g.c. circuit's action - it's there as a clipper to prevent noise spikes and similar disturbances producing spurious a.g.c. effects.

Not a nice fault, though we should perhaps not have taken so long to find a dead short in the only standard diode (as opposed to the various zeners) on the entire i.f. panel.

Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $£ 16$, overseas (surface mail) 19 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.


## HITACHI VHS COLOUR

 CAMERAS Mains Only Tested/ Working - £125
## VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35 HITACHI 5000, 8000
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

## SHARP

620, 630, 640, 2300 H T/P Untested from $£ 70$

## BETAMAX VIDEOS

SANYO VTC 9300, 5000, 5300 SONY C5, C6, C7, C9 Untested from $£ 30$ HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER
£10, ROBERTS VHF RADIOS £5
VHS/Beta tapes used from 40p each

## PLUS

$17^{\prime \prime} 18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from f 8 . Also available CTVs Remote Control \& Teletext
All prices subject to $15 \%$ VAT
Discount for Quantities Complete loads delivered from pick up point
JOHN CARTER
(Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON
Phone: 0602303124
W. TREE'S TVs
are moving to larger premises.

## SPECIAL

CLEARANCE SALE
OF VIDEO RECORDERS AND TELEVISIONS
Large Selection of Colour TVs including portables, remotes and Teletext.
Good selection of VHS Videos,
National Panasonic, Model NV333

## £115 plus VAT.

National Panasonic, Model 2000

## £115 plus VAT.

JVC Front loader, Model D120EK

## £145 plus VAT. SPECIAL OFFER

of ex hotel video recorders, Philips VHS Model No 6560 Infra red remote

## $£ 165$ + VAT.

Present Address:
Unit 9, Stonebridge Mills, Stonebridge Lane, Armley, Leeds 12.
New Address:
Sunshine Mills, Wortley Road, off Whingate Road, Leeds 12.
By the time this issue is published we hope to be installed in our new premises, five minutes drive away. If, due to unforeseen circumstances, our move is delayed please contact us at our old address.

Telephone:
Leeds (0532) 638804
$\star \star \star$

# HUSSAIN CENTRAL TV LTD bRAND NEW VHS VIDEO best Price in the uk ONLY £180 - YES £180 

Full Remote - Front Loader - 14 day -4 event - O.T.R.

## BEST DEAL IN UK FOR NEW VIDEO <br> ALSO NOW STOCKING A FULL RANGE OF THORN EX RENTAL VIDEO AND TV

HOT NEWS. 5,000 LATE MODEL TV'S AVAILABLE
27" SONY TEXT - TX STEREO TEXT - PHILIPS' STEREO TEXT
HITACHI AND TOSHIBA MONITOR STYLE TEXT - 16" STEREO TEXT
$14^{\prime \prime}$ and $16^{\prime \prime}$ R/C PORTABLES - $14^{\prime \prime}$ and $16^{\prime \prime}$ PORTABLES
Plus many more models in stock. All Handsets supplied with working
TV's, and all Cabinets in excellent condition.

## VIDEO

CHEAPEST EVER ELECTRONIC WORKING VHS VIDEO From ${ }^{2}$ \{65
CHEAPEST EVER ELECTRONIC WORKING BETA VIDEO From ${ }^{2}$ ?20 Many models and types in stock

All stock is the highest quality in the UK If you are looking for the best stock you must visit one of our branches now
All prices are subject to 15\% VAT and based on quantity

| BIRMINGHAM LONDON PRESTON SOUTHAMPTON CHEPSTOW |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $021-6221023$ | $01-9615005$ | $0772-312101$ | $0703-777254$ | $0291-271000$ |

01-961 5005
0772-312101
0703-777254
0291-271000


| OSCILLOSCOPES | SPECIAL OFFERS |
| :---: | :---: |
| MENT D83. Dual Trace 50MHz | 35 MHzz . Deiay Sweep. Solid State. Porrable $8 \times 10 \mathrm{~cm}$ Dishlay. With Manual. ........... NOW ONLI 1180 each |
| TELEQUIPMENT D75. Dual Trace 50MHz. Deiz |  |
|  | Display. With Manual. $\qquad$ NOW ONLY £180 aach |
| Hz | Viewing Hood. .-.o. ${ }^{\text {a }}$ (10 |
|  | SOLAATIRON OSCILILOSCOPE CD1400 Dual Beam |
| S.E. LABS SM111 Dual Trace 18 MHz Solid |  |
|  |  |
|  |  |
|  | RANK EHT METER 3OKV $\qquad$ EZOPSP \&4 LEADER EHT METERED PROBE. 4OKV Un-used E3O P\&P $£ 4$ |
| TELEOUIPMENT S5AA. Single Trace 10M |  |
|  |  |
| MULTMETERSAVO 9 Mk4(Identical to AVO 8 Mk4 but scaled differently) Complete with Batteries \& Leads AVO 8 MK2 Complete with Batteries \& Leads .......... \& 85 Above Items in GOOD WORKING ORDER appearance not A1 hence the price. AVO IEST SET No 1 (Miitrary yersion of AVO 8) Complete with batteries, teads \& Carying Case £65 with 2 Croc-Clips $\& 2$ Proos. ( $p \& 0$ \& 2 )................ 85 | DISK DRIVE PSU.24OV 1N; 5V 1.6 fa \& 12 V 1.5 A out. <br> Sze: W125mm, $775 \mathrm{~mm}, 0180 \mathrm{~mm}$. Cased. Un-used. <br> Only 110.00 each (P\&P $\sum_{\text {E2 }}$ ) <br> Owerty keyboard (as in Lynx Micro). Push to make. <br> Cased <br> SWITCHED MODE PSU +1-12V $0.25 \mathrm{~A} ; 5 \mathrm{~V}$ 15A: 24V <br> 1.4 A . £30 each P\&P £3 |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  | ISOLATING TRANSFORMERS |
|  |  |
|  |  |
|  |  |
|  | NEW EQUIPMENT <br> HAMEG OSCILLOSCOPE 605. Dual Trace 60MHz. Delay Sweep Component Tester .......................E583 HAMEG OSCILLOSCOPE 203.6. Dual Trace 20 MHz . Component Toster \& 2 Probes All Other Models Available. |
| batteries, leads $\&$ instructions. |  |
|  |  |
|  | BLACK STAR FREQUENCY COUNTERS P\&P £4 Meteor $100-100 \mathrm{MHz}$ <br> Meteor $600-600 \mathrm{MHz}$ <br> Meteor 1000-1GHZ <br> SLACK SIAR JUPII 5500 HUCNKN GENERA Sine/Square/ Friangle 0.1 Hz - 500 KHz . P8P E4 BLACK STAR ORION. PAL TVMIDEO COLOUR PATIERN GENERATOR |
| (P\&P¢4). ......................... 0 ml |  |
| Labge |  |
| туpe Сm60ss-DC |  |
| ter. Mains or Rattery. |  |
| MARCONI TF2604 |  |
|  | HUNG CHANG DMM 7030. $31 / 2$ digit. Hand held 28 ranges induding 10 Amp ACJC $0.1 \%$. Complete with Datteries \& leads. P\&P A 4 <br> AS ABOVE. DM M $6050.0 .25 \%$ <br> $E 33.50$ |
|  |  |
| CON VAL |  |
| 1 mV -300VFSS |  |
| PPILIPS COLOURBAR GENERATOR type |  |
|  | OSCILLOSCOPES PROBES. Switched $\times 1$; $\times 10$. P\&PE2 |
|  |  |
| USED EQUIPMENT - WITH 30 OAYS GUARANTEE. MANUALS SUPPLIED IF POSSIBLE. This is a VEAY SMALL SAMPLE OF STOCK. SAE or Telophone tor Lists. Please check availability before ordering. CARRIAGE an units $\varepsilon$ \&6. VAT to be addeo to Total of Goods \& Cariage |  |
| STEWART OF READING <br> 110 WYKEHAM ROAD, READING, BERKS RG6 1PL |  |
|  |  |  |
|  |  |
|  |  |

## BOLTEN LTD. <br> 63, JEDDO ROAD, LONDON W12 9EE. <br> Tel: 01-749 0915 (2 lines) <br> Telex: 262421 BOLTEN G

## VIDEO HEADS

| Sony Universal Eq. DSR 36 | .f29.95 |
| :---: | :---: |
| Sony Universal Eq. DSR 43 | f29.95 |
| Sony C-9 | . $£ 47.95$ |
| Ferguson/JVC Universal | $£ 28.50$ |
| National Panasonic Universal | . $£ 28.50$ |
| National Panasonic (370/380/430/460) | £32.95 |
| National Panasonic (777/330) | £46.95 |
| Hitachi 5000 (Not Genuine) | £29.95 |
| HitachiVT11/HIVINT3 (Genuine) | £29.95 |
| Toshiba 9600 | £39.00 |
| Sanyo (Genuine) | . $£ 44.95$ |
| Fisher Universal Eq. FVH D720 | . $£ 37.00$ |
| Akai Universal | . $£ 28.50$ |
| Sharp | £39.95 |
| Amstrad 7000/9000/4600 | £32.95 |
| Saisho 605/705/805/905/100 | ¢ $£ 32.95$ |
| Triumph 9500/9501/9525 | ¢ 53.95 |
| Sanyo Pulley VTC 5150 | f6.95 |
| Sanyo Motor VTC 5150 | f7.25 |
| Belt Kits (Most Models). | £3.99 |
| Remote Controls TV Grundig/Philips | £16.95 |
| Remote Controls Philips 7 (4300) | £17.95 |
| Pinch Wheels (various Models) | f5.95 |
| Sony Idler Kits C-5/C-7 | £4.50 |
| Sony Idler Kits C-6. | f2.95 |
| Other Accessories - Mod kits, Integrated Circuits, Idler Assy, Gear Idler Assy, Reel \& Loading Belts, Capstan \& Reel motors, Reel Drive |  |
|  |  |
| Pully units also available in most models. Please call for full list. Please add 15\% VAT plus $£ 1.00$ p\&p per order. |  |
|  |  |
| Delivery within 7-14 days subject to availability. |  |
| PLEASE NOTE OUR NEW ADDRESS |  |
| AND TELEPHONE NUMBER |  |


| AN1270 | 72.20 | AN | 9.20 | HA1 199 | ［1． 85 | LA111］P | ¢0．95 | M5106P | $\underline{5} .75$ | K5451 | \％8．75 | A76288 | マ． 95 | 2Savel | （1）2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AN203 | 12.20 | AN7154 | 9.90 | HA1306W | 81.80 | LA1140 | $\underline{2} 20$ | M5134P | 6.25 | STK5720 | E6．80 | TA7640AP | 91.75 | 2SA103 | 50.60 |  |  |  |  |
| AN210 | 81.75 | AN7456N | 12.50 | HA1319 | 12.50 | LA1201 | 50.85 | M 5155 P | ¢1．85 | STK5730 | ¢4． 25 | TA76418P | 61.95 | 2 2SA329 | 50.40 |  |  |  |  |
| AN211A | 12.30 | AN7158N | m． 25 | Hat339a | 81.85 | La1222 | 9.900 | M51102L | E1． 95 | STK7308 | $\underline{55.95}$ | TA7658P | ¢1．75 | 2 2SA350 | 50.60 |  |  |  |  |
| AN2140 | ¢1．80 | AN7160 | 63.75 | HA1366W | 91.80 | LA1230 La1231 | \％1．50 | M51513L | 12.80 | STK8250II | $\mathrm{EDO}_{80} .75$ | TA7668BP | 97.98 | 2SA495 2SA59 | $\begin{aligned} & 90.40 \\ & 00.40 \end{aligned}$ | 6 |  |  |  |
| AN217B AN228W | $\underline{\square} \mathbf{C} .20$ | AN7161 AN7688 | ¢3．75 | HA1366WR HA1367 | 91.85 | LA1231 LA1240 |  | M51514AL | c1．95 | STR440 | ¢5． 58 80 | TA76889 | \％2．95 | 2SA539 | $\begin{aligned} & 90.40 \\ & 50.40 \end{aligned}$ | 6 |  |  |  |
| AN228W | $\underline{5} 2.90$ | AN7168 | 92.75 | HA1367 | ¢2． 25 | La1365 | ${ }_{c}^{21.95}$ | M 51515 SL | 92.70 | STR441 STR2012 | ¢5．80 | UPC16C | ${ }^{91} .95$ | 25A562 | $\begin{aligned} & 50.40 \\ & 50.70 \end{aligned}$ |  |  |  |  |
| AN234 | E5． 95 | AN7178 | 5.95 | HA1368 | ¢1．90 | LA1368 | $\underline{2} .50$ | M51516L | $\underline{57.80}$ | STR4211 |  | UPC20C | 9.50 | 2SA733 | 20． 35 |  |  |  |  |
| AN236 AN2390 | 12.50 | AN7213 | 52.20 | HA1368R | 91.95 | LA1387 | ${ }^{2} 3.60$ | M51517L | $\underline{62.80}$ | STR6020 | E7．20 | UPC3OC | 22.20 | 254768 | 50.95 | 2392 | 6 | ISWC | 010） |
| AN240P | £1． 50 | AN7273 | 13.95 | HA1374 | £2． 50 | LAP100 | $\underline{2} .55$ | M51521AL | $\varepsilon 1.90$ | TA7059 ${ }^{\text {T }}$ | $⿳ ⺈ ⿴ 囗 十$ | UPC561C | \％ 7.30 | 2SAB99 | c0． 50.40 | VIDEO BELT KI |  |  | TRA |
| AN241P | 15.50 | AN7310 | ¢1．20 | HA1377 | $\underline{2} .20$ | LA3160 | ¢1．50 | M83705 | ¢1． 80 | TA7054P | 12.20 | UPC5667i | ${ }_{50.75}$ | 2 SA1015 | ${ }_{0} 0.35$ | AKAI VS－2EG／5EG（5） | 5.00 |  |  |
| AN247P | $\underline{2.50}$ | AN7311 | 91.20 | HA1388 | 18.50 | La3161 | 92.50 | M83712 | 51.50 | TA7066P | ${ }^{51.50}$ | UPC573C | $\underline{7} .50$ | 2SA1102 | 12.20 | AKAI VS 9700EG（6） | $\underline{E .25}$ |  | 2.95 |
| AN259 | 8.75 | 8A301 | c0． 80 | HA1389 | 12.20 | La3201 | ${ }^{2} 0.95$ | MB3713 | $\underline{81.60}$ | TA7070p | 91.75 | UPC574 | ${ }^{0} 0.65$ | 2SA1103 | 12.20 | FISHER VBS 7000 （6） | 8.70 | AN7140 | £2．20 |
| AN260P | $\underline{8.20}$ | 8A311 | ${ }_{50.95}$ | HA1389R | $\underline{\square} 20$ | La3210 | 50.75 | MB3722 | 3.50 | TA7074P | ${ }_{9} 9.95$ | UPC5750 | 51.00 | 2SA1104 | 92.50 | FISHER VBS 9000 | 87.50 | UPC1365C | $¢ 3.60$ |
| AN262 | 51.60 | BA313 | 50.80 | HA1392 | 52.50 | La33301 |  | MB3730 | $\underline{2} .50$ | TA7104P TA7108P | 5.50 | UPC57601 | 520 | 2SA1105 |  | H TACHI VT5000（7） | $\underline{2} .20$ | UPC1394C | £1．95 |
| AN271A | $\underline{92} 50$ | BA318 | 91.50 | HA1394 | $\underline{7.95}$ | La3350 | \％1．30 | MB3731 | 0.50 | TA7109AP | $\underline{12.50}$ | UPC5872 | 51.30 | ${ }_{\text {2SBS }}$ | 50.70 | JVC HR3300／3600（9） | E2．50 | SAA1059 | ¢1．95 |
| AN274 | $\underline{2.75}$ | BA401 | c0． 80 | HA1397 | 0.75 | LA3361 | \％1．20 | M83756 | $\underline{2.60}$ | TA7120P | c0．75 | UPC5924 | ${ }^{1} 0.95$ | ${ }^{2} 5875$ | 20．60 | JVC HR3360／3660（7） | $\square .50$ | SAA1250 | £3．25 |
| AN295 | 13.60 | BA402 | ¢0．80 | HA1398 | 12.75 | La3370 | 9280 | M88719 | $\underline{3} .85$ | tap122ap | ${ }^{2} 0$ | UPC595C | 52.20 | 2SB34iv | $\underline{2} .75$ | JVC HR7700（3） | E1． 70 | SAA1251 | ¢4．95 |
| AN301 | 23.50 | BA403 | $\underline{51.95}$ | HA1457W | ${ }^{2} 1.75$ | LA 4030P | 9.00 | S 40 W | \＄10．50 | TAFti30P | ร1．00 | UPC10C1H | 97.20 | ${ }^{2 S 8405}$ | 20.80 | PANASONIC NV333 | ¢1．70 | SAA1272C | 84.95 |
| AN302 | c3． 30 | basila | 81.80 | HA1112W | 23．75 | LA4031P | 19.95 | SI－1125H | 9.50 | TA7136P | ¢1．00 | UPC10C9C | $\underline{2} .20$ | 2S8425 | $\underline{92.95}$ | PANASONIC NV2000（5） | ¢1．90 | SAA1272C | ¢3．25 |
| AN303 | 12.15 | BA514 | 51.90 | HA11211 | 9.30 | LA4032P | ¢1． 90 | STK011 | $\underline{93}$ | ta7737P | 51.00 | UPC1018C | 91.95 | $22^{2471}$ | $\underline{33.50}$ | PANASONIC NV2000（5） | ¢1．90 | SAA5000 | ¢1．50 |
| AN305 | ¢3．50 | bas2t | 51.80 | HA11215A | ¢4．35 | LA4051P | 92.20 | STK013 | 9.25 | TA7139P | $\underline{2} .50$ | UPC1025H | 12.30 | 2 28492 | 50.75 | PANASONIC NV7000（5） | 17.75 | SAA5010 | £4．50 |
| AN313U | $\underline{52.95}$ | 8A526 | E3．50 | HA11219 | ${ }^{\text {ci．}}$ \％ 75 | Las 100 | ${ }^{51} 20$ | STK014 | 0.25 | TA7140P | c7． 75 | UPC 1026C | 18.00 | ${ }_{2} 2885090$ | ${ }^{1} 1.95$ | PANASONIC NV8600（7） | $\underline{\square} .25$ | SAA5020 | ¢5．75 |
| AN315 | 5.30 | BA527 | 51.60 | HA11221 HAll2 2 W | \％． 75 | la4101 LA4102 | ${ }_{51.00}$ | STK015 STK020 | ${ }_{55}^{5} 575$ | TA7112P | 9.95 | UPC 1088H | ${ }_{51} 5.95$ | 2SB536 | 20.95 0150 | SANYO VTC5500（3） | $\underline{\$ 1.50}$ | SAA5030 | $\underline{56.50}$ |
| AN316 | 13.75 | BA532 | ¢1．60 | HA1 HAf 1223 S | E3． 81.90 | LA4102 | ${ }_{81.40} \mathbf{8 1 . 7 5}$ | STK020 STK022 | 5 | LA7745p | 52.50 | UPC1091H | $81.95$ $50.60$ | ${ }^{2}$ 2SB5546 | 19.50 50 | SANYO VTC9300（4） | $\underline{C} .75$ | SAA5040A | £8． 50 |
| AN318 | £4．95 | BA536 | $\underline{02.40}$ | HA11226 | ${ }^{1} 4.50$ | LA4112 | 81.75 | SIK025 | $\underline{5.50}$ | IAT152P | $\square .50$ | UPC1035C | 12．95 | 2S8698 | 50.40 | SHARP VC6300 | $\underline{C 25}$ | SAA5040B | 10.50 |
| AN331 | $\underline{7.95}$ |  | $\underline{\square} .5$ | HA11227 | $\underline{\%} .20$ | LAA120 | $\underline{2} .95$ | STK040 | 9.70 | 1A7157P | c1． 6.5 | UPC107\％ | 81.25 | 2 S 875 | E． 50 | SHARP VC7300 7700 （5） | $\underline{1.80}$ | SAA5042 | ¢8．00 |
| AN340P | c1．50 | BA612 | ¢1．80 | HA11235 | $\underline{7.30}$ | LAA125 | E2． 20 | STK043 | ¢10．50 | IA7176P | $\underline{\square} .75$ | UPC1156H | 0.95 | $2 \mathrm{SC372}$ | 20．35 | SHARP VC8300（5） | $\underline{7} .00$ | SAA5050 |  |
| AN360 | ¢1． 30 | BA631 | £5．75 | HA11244 | ¢4．60 | LA4126 | $\underline{0.60}$ | STK077 | ［6．50 | TA7193P | 54.00 | UPC1158H | 20．95 | $2 \mathrm{SC330}$ | 00.35 | SHARP VC9300 | ¢1．80 |  |  |
| AN362L | ¢1．60 | BA656 | ¢4．50 | HA11401 | $\underline{2} .80$ | LA4140 | ${ }^{1} 0.80$ | STK078 | ¢5．75 | IA7202P | E4．50 | UPC11E5C | ¢1． 30 | $2 \mathrm{SC458}$ | 50.30 |  | $\underline{2} .00$ | TDA 908 | $¢ 1.75$ |
| AN3669 | 9.70 | BA843 | ［4．50 | HA11423 | ［4．75 | LA4160 | 12.40 | STK080 | 77．50 | TA7203P | 9.90 | UPC11E8C | 51.30 | $2 \mathrm{2SC460}$ | 00.35 | SONY SLC7／J7（6） | $\underline{200}$ | TDA2653A | $¢ 5.20$ |
| AN374P | $\stackrel{1}{9}$ | BAB47 | £3．75 | HA11440A | $\mathrm{CH.}^{1.95}$ | LA4170 | $\underline{53.50}$ | STK0826 | ¢7．75 | TA7204P | ${ }^{1} .75$ | UPC1170H | ¢1． 60 | ${ }^{25 C 461}$ | ¢0． 35 | SUNY SLC7MJ（6） | $\underline{5.00}$ | TDA3505 | ¢4．75 |
| AN3T7 | 9.00 | BA853 | E7．50 | HA＋1701 | ${ }_{6}^{13.50}$ | LA4182 | 9.10 | STK086 | $\mathrm{m}_{1} .50$ | ta7205AP | ${ }^{1} 1.00$ | UPC11716 | $\mathrm{cc}_{51.50}$ | ${ }^{2 S C 5} 533 \mathrm{Y}$ | c0． 70 | SONY SL800／8080（6） | $\underline{5} .50$ | TDA3560 | ¢4．50 |
| ${ }_{\text {AN6 }}$ AN612 |  | BA1310F | 81.75 | HA11703 HA1 7704 | ${ }_{56} 5.50$ | LA4192 | ${ }_{c}^{51.95}$ | STK430 | ${ }_{5}^{5} .50$ | TA7207P | 91.75 | UPC1176 | ¢1．75 | ${ }_{2 \text { 2SC536 }}$ | $0_{0} 0.35$ | TOSHIBA V5475（6） | $\underline{\square} 20$ | TDA3651 | ¢2．95 |
| AN5033 | 55.25 | BA1320 | ¢1．25 | HA11705 | ${ }_{56.95}$ | LA4201 | 81.60 | STK433 |  | TA7210P | $\underline{8} .75$ | UPCC1181H | ¢1．10 | 2SC710 | ${ }_{500}^{20.35}$ | TOSHIBA V7540（5） | $\underline{C 2} 25$ | TDA4431 | $\underline{¢ 2.25}$ |
| AN5265 | ¢3． 20 | BA1330 | 9.7 | HA11706 | ¢4．75 | la4220 | 51.50 | STK435 | 15.50 | TA7214P | 52.60 | UPC 11 12\％ | 91.10 | 2SC732 | ${ }_{60} 0.35$ | IOSHIBA V8600（6） | $£ 1.80$ | TDA4600 | $£ 2.95$ |
| AN5510 | $\underline{1} 2.75$ |  | ¢1．80 | HA11710 | 63.75 | la4230 | $\underline{7.25}$ | STK436 | E． 25 | TA7215P | $\underline{72} 30$ | UPC11183 | 9.20 | ${ }^{2 S C 733}$ | 20．35， | 응용ㅇㅇㅇㅇㅇㅘ |  |  |  |
| ${ }_{\text {ANS }}$ AN201 | ${ }_{51} 53.50$ | ${ }^{\text {BA5 } 5406}$ | ¢2．75 | HA11711 | ${ }_{5}^{59.50}$ | LA4250 la420 | $\underline{9} .75$ | STK437 | ${ }_{565}^{565}$ | TA7217AP | ${ }_{51.60}$ | UPC11e5 | 52.50 | ${ }^{25 C 828}$ | ca． 30 |  |  |  |  |
| ANS722 | E1．60 | BA6137 | $\underline{2.75}$ | HA11714 | ${ }^{56.95}$ | LA4422 | 91.40 | STK441 | 7.7 .95 | TA7222AP | ${ }^{91} 130$ | UPC118\％ | ${ }^{20} 175$ | 2SC900 | ¢1．50． 50 |  |  |  |  |
| AN5730 | 11.85 | 846209 | E3．75 | HA11715 | E6．25 | LA4430 | c1． 40 | STK443 | ¢7．95 | TA7223P | \％ 30 | UPC1215V | 91.35 | 25c9290 | ¢0． 35 |  |  |  |  |
| AN5732 | ${ }^{c} 1.8$ | BA6304 | ¢7．20 | HA11716 | E4．75 | L44440 | $\underline{3} .50$ | STK457 | $¢_{6.50}$ | TA7225P | $\underline{53.25}$ | UPC1223C | $\underline{9} .20$ | 25C9300 | c0． 35 | 0 cassette heads |  |  |  |
| AN5753 | 91.95 | Cx0642 | 28．50 | HA11717 | ¢5．75 | LA4445 | 92.75 | STK459 | 96.75 | TA7226P | ${ }^{2} 3.20$ | UPC1225H | ${ }^{9} .00$ | $2 \mathrm{SC1034}$ | ¢4．75 | 0 | M |  | c1． 50 |
|  |  | C×065B | $\underline{\square} .95$ | HA11718 | £4．75 | L44460 | ${ }^{51.80}$ | STK461 | ¢7． 50 | TA7227P | $\underline{\square} .20$ | UPC1230H | $\underline{9} .50$ | 2 SC1061 | 5120 | 4 |  |  |  |
| AN6310 | ${ }_{\text {ct }}$ | Cx075 | $\underline{8.75}$ | MA1727 | ${ }^{59.50}$ | la4461 | \％1． 80 | STK463 | c98． 40 | TA7229P | ${ }_{c} \mathrm{c} .25$ | UPC1263C | ${ }^{51.50}$ | 25 Cl 1096 | ${ }^{2} 0.70$ | ய－¢ | $\cdots$ | － | 75 |
| AN6344 | E4． 75 | CX095 | ¢2．85 | HA11747 | 99.50 | LA4505 | 5.80 | STK501 | ¢5． 28 | TA7232P | ${ }_{7}^{7.95}$ | UPCC12 | $\underline{9} 75$ | ${ }_{2 S 18}$ | ${ }_{50}^{20.35}$ |  |  |  |  |
| AN6350 | 17. |  |  | ha11747an | ¢9．50 | LA4507 | 54.25 | SIK0025 | C4．95 | TA7240AP | \％ 2.95 | UPC1350 | 91.20 | 2SC1875 | $\underline{\square}$ | －๙ை |  |  |  |
| AN6356N | E3．85 | Cx1016 | $\underline{57.75}$ | HA11749 | ¢4．75 | LA4520 | $\underline{\square} .50$ | STK0029 | 54.75 | TA7241AP | 9.95 | UPG1353 | $\underline{1} .95$ | 2SC194 | c3． 25 |  |  | AM |  |
| AN6360 | £4．50 | Cx130 | ¢ 4.75 | HA11750 | ${ }^{5} 5.00$ | LA5112 | c1．85 | STK0039 | ¢4．75 | TA］270P | $\underline{M} .75$ | UPC135 | 12.00 | $2 \mathrm{SC195}$ | 10．80 |  |  | 3 LEA |  |
| AN6362 | $¢^{5} 5.50$ | Cx136A | ¢7．50 | HA11751NT | 88.50 | L464580 | 91.20 | STK0040 | \％6． 25 | TA7310P | c1．85 | UPC13E | 9. | 25 Cl 19 | \％1．75 | 늘욱 | SF | MB | 0.35 |
| AN6363 | ¢7． 50 | Cx143A | ¢7．50 | HA11753NT | 58.50 | La7016 | $\underline{82.75}$ | STK0049 | 26．50 | TA7312P | 91.50 | UPC1378 | $\underline{\$ 2} 40$ | $2 \mathrm{SC207}$ | ¢0．95 | 元 | SFt |  | c0． 35 |
| AN6387 | ${ }^{5} 5.95$ | Cx157 | E4． 25 | HA11758NT | 88.50 | LA7215 | 02.75 | STK0059 | 87.00 | TA7313AP | ${ }^{1} 1.50$ | UPG1362C | ${ }^{1} 1.10$ | 2SC21 | 50.95 | 5以조ํㅗㅇํ | SFE | ．0MB | c0．35 |
| AN6610 | 97.80 | Cx158 | $\ldots 3.75$ | HA11768 | £4．50 | La7751 | ¢4．75 | SIK0080 | ¢7．75 | IA7314P | $\underline{9} .50$ | UPC1384C | $\underline{\square} .85$ | 2SC2335 | 51.50 | \％ |  | SM | 20．35 |
| AN6677 | ${ }^{6} 6.30$ | C×160 | ¢3． 50 | HA11788 | ¢4．50 | LA7755 | 13.20 | STK2028 | 7.50 | TA7315AP | $\underline{2} .35$ | UPG1367C | $\underline{3} .50$ | $2 \mathrm{SC2577}$ | 97.95 |  | － |  | 0.40 |
| AN6817 | 97.6 | Cx161A | §3．50 | HAl1816NT | ${ }^{\text {c\％}}$ ． 50 | La7800 | $\underline{51.95}$ | SIK2029 | 25.75 | TA7317P | $\underline{\$ 2.75}$ | UPC1391H | 81.50 | $2 \mathrm{SC2578}$ | 9.75 |  | 工 CDA | 6．5MC | ． 40 |
| 873 | $\underline{4}$ | Cx162 | ¢3． 95 | HA11828NT | ${ }^{\text {c．}} 50$ | LA7801 | 97.95 | STK2129 | 66.75 | TA7324P | 97.50 | UPC14E3CA | £5．75 | $2 \mathrm{SC2579}$ |  |  |  |  |  |
| AN | 12 | Cx170 | ¢6．75 | HA12001W | $\underline{56.50}$ | La7806 | \％ 7.75 | SIK2230 | 56.50 | IA 325 P | 81.00 | UPC14：0CA | $\underline{56.50}$ | $2 \mathrm{SC2580}$ | $\underline{9} .75$ |  |  |  |  |
| ${ }^{\text {AN7 }}$ A 71105 | c1． 50 | CX181 HA112 | ¢8．75 | HA12002 HAT2017 | $\underline{\$ 2.75}$ | LA7808 | $\underline{72.75}$ | STK3042 STK4060 | ${ }_{66} \mathbf{6} 50$ | IA7328AP | 9.20 | UPC 1458 | ${ }^{\text {¢0 }} \mathbf{0} 95$ | TDA1515 | $\mathrm{C}_{54} 50$ | quines invited for a | des | we | oonted |
| AN7111 |  | HA112 | ¢1．75 | HA12035 | 99.5 | LB1405 | $\underline{\square} .20$ | STK414111 | $\underline{5} .50$ | TA7343P | $\underline{5} .95$ |  | ci． 50 | TDA20 | 20．80 |  |  |  |  |
| AN7114E | 51.75 | HA1137\％ | 61.75 | HA12038 | ¢6．75 | LC40668 | $\underline{72.95}$ | STK419111 | $\underline{58.95}$ | IA7607ap | $\underline{8.95}$ | UPC4558 | 50.90 | TDA20 | $\underline{9} 20$ | ESPATCHID | HO | N 48 HOU |  |
| AN7115E | 51.60 | HA1144 | ¢4．25 | HA12413 | $\underline{\$ 2.75}$ | LC7120 | E． 50 | STK4332 | 65.75 | TA7608CP | 12.95 | UPD1514 | 55.75 | toazo | 9.75 | post．and packin | ing and | hen add 15\％ | 1010 |
| ＋16 | c1． 5 | HAltis | $\underline{2} .50$ | HA13001 | 72.95 | LC7130 | 23． 50 | STK4392 | ¢7．50 | 1A7609P | $\underline{\square} .70$ | UPD45148 | $\underline{3} .50$ | IDA200 | $\underline{51.50}$ | Callers by | appoint | ， |  |
| 20 | ${ }_{5} 1.50$ | HA1156W | ． 20 | HA13402 | 95 | LC7131 | 75 | STKS219 | ¢6．75 | TA7611AP | ${ }^{\text {m }}$ ． 20 | X0042CE | $\stackrel{1}{1}$ | TDA2020 | 91.40 | openngy times toam－5 | 5pm，Mo | n－fri．9－12 Sat |  |
| ${ }_{\text {ANN }}$ AN745 ${ }^{\text {a }}$ | ${ }_{c 1.95}$ | HA1167 HA1196 | 83.75 $\mathbf{E 1 . 7 5}$ | HA13403 HA13430A | C7．50 | LC7 C7136 | $\underline{\square} \mathbf{M} .75$ | STK5421 | ${ }_{\text {¢ }}{ }_{\text {¢6．75 }}$ | TA7614AP | $\square{ }_{\square}^{7.75}$ | X00776E X0092CE | 59.95 | $\begin{aligned} & \text { TDA203 } \\ & \text { TRA356 } \end{aligned}$ | $\begin{aligned} & \xi 1.40 \\ & 55.50 \end{aligned}$ | SNACCESS ACCEPTED | MIN，TEI | EPHONE ORO | ¢5．00 |

# LRC（SPARES）ITD 

ORDERS BEFORE 4．00 P．M．－SAME DAY DESPATCH！ LIST PRICES EXCLUSIVE OF VAT ORDERS UNDER £50 ADD £1．00 P\＆P SONY SPARES FAST！－ex－stock！



VIDEO HEADS
 Parasonic 4HSS Equivalent heads (Not NV366) Forguson $3292,3 \mathrm{VOO}, 3 \mathrm{~V} 16,3 \mathrm{~V} 22,3 \mathrm{~V} 23,3 \mathrm{~V} 24,3 \mathrm{~V} 29,3 \mathrm{~V} 30,3 \mathrm{~V} 35,3 \mathrm{~V} 36$,
3 V 38 genuine 3V38 genuine Sharp
 Sharp VC7300, 7700, 8300 genvine
Shany
Sony
C5.C6.C7
genuine
Sony CL C7 genuine .............
Sony C9. $\mathrm{C} 00, \mathrm{C} 30$ genuine.
Sony C9. ..... CT................
Sony C20, C30 Equivalent ...
Sanyo
Toshibs
V $9600, \mathrm{~V} 31, \mathrm{~V} 33$ Equivalent Toshina V9600, V31, V33 genuine
Toshiba V860. Hitachi
TT5000, 8000, 8300, 9300, 9500, 9700, VT 11 , VT 14E genuine Fisher
Fisher
$615 / 620$ Equivalent. PNCH ROLLERS
Panasonic
NV2000, 7000, 7200 NV333, 366,688,370. Sharp Charp
VC7300,7700, 8300 VC9300, 38
T5000,8000,9000
VT11E, 14E, 17E, 19 E
Sony SL.CZO. C30.
SL8000. 8080 Ferguson/JV V00.3V16, 3 V 22 .. 3 V 23 , 3V $24.3 \mathrm{~V} 29 / 30$ Sanyo VTC $9300,5000,5300$
VTC5400,5150,6500

```
*..........................87.95
```

WE CARRY HUNDREDS OF VIDEO SPARES INC. PLAY IDLERS, CLUTCHES, MOTORS, SERVICE MANUALS, TENSION BANDS, BELTS AUDIO/CONTROL HEADS, ALIGNMENT TOOLS AND TAPES ETC.
*SPECIAL ORDER FACILITIES**
${ }^{* *}$ FOR NON-STOCK ITEMS ${ }^{* * *}$
ALL SPARES LSTED ARE GENUINE PARTS. WE ALSO STOCK THE FULL RANGE OF CHEPER REPLCEMENT PARTS E.G. BETT KTTS. PIMCH ROLLESS, HEOOS, EC. P. P. A.

## CREDIT CARD

 ORDERS BY TELEPHONE RECEIVED BY 4 PM. ARE DESPATCHED SAME DAY| Panasonic N $22000,7000,7200$ $\qquad$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

PeLT KITS (GENUINE)
PV2000, 2010


## TELEVIDEO SERVICES

## NEW VIDEO HEADS

from
£24.95 each plus V.A.T. \& carriage

Our selected range of NEW VIDEO HEADS have been manufactured to the Highest specification and are fully covered by our 1 Year Guarantee.

We supply HEADS of Most Types for AKAI - FERGUSON - JVC - SANYO - SONY - NAT. PANASONIC - Etc - Etc.

Please contact us for details of Our Full Range of Video Spares including Motors, Pulleys, Belts, Idlers, Etc.

Our Full List will be sent on request. Electrovisia LIMITED
P.O. Box 55 Stratford-upon-Avon Warks. CV37 0UB 0789-298510

## TELEVISIONS

Limited number of Colour and Mono Televisions are now available Mixed Models sizes and types available singly or in tens. They are catalogue returns and may be faulty or have marked cabinets, but the tube is warranted good. All are suitable for refurbishment or rental and show a substantial saving on price.

For Further Details:
COLOURTRADE
221 Bridge Street West, Hockley, Birmingham B19 2 YU . Tel: 0213597020

## CUSTOMER CAN'T PAY?



## DONT LOSE HIM FIT A TV METER

COINAGE AVAILABLE: $10 \mathrm{p}-50 \mathrm{p}-\mathrm{f} 1$ COMPLETELY VARIABLE TIMINGS

* Albance

MANUFACTURERS OF TV COIN OPERATED METERS Contact: (0202) 674272
87-89 Sterte Avenue, Poole, Dorset BH15 2AW Telex: 418253 PORTLX G.

## ENGINEERS

Looking for a brighter future? Join the fast moving and lucrative computer servicing industry.
Vacancies are now available on our
MICROPROCESSOR SYSTEMS TECHNICIANS COURSE
A 16 week full time course designed for TV Engineers wishing to retrain in:

## MICROPROCESSOR TECHNOLOGY

The course concentrates on realistic hands on practical work.
Start dates: JUNE 22nd 1987
JULY 14th 1987
OCTOBER 12th 1987
Apply with full CV to:
MILTON KEYNES SKILLCENTRE Chesney Wold, Bleak Hall, Milton Keynes Or ring Bryan Hall on (0908) 670001 for further details.
NO TUITION FEES. A training allowance and lodging/travel allowance will be paid.
(M.S.C. - J.T.S. funded course)



## BRITAIN'S LARGEST SUPPLIERS

 OF EX-RENTAL TV AND VIDEO SPECIAL OFFER BETASANYO C5, C6, C7, C9 FROM

## £20

VHS

| HITACHI | FERGUSON |
| :---: | :---: |
| 5000 | 3 V 22 |

## f60

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. COLOUR TV from £5
CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES
FRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

## UNIVERSAL NICAD CHARGER



A brand new universal charger (charges any combination of PP3, AA, C \& D CELLS), for only $£ 5.95$ plus $£ 1$ post and packing.


NEW AA/HP7 NICADS 90p each when ordered with charger.

## FERGUSON

9.6 volt standard rechargeable battery type VA282. Use with Videostar C camera/recorder, model no. 3V41, also suits JVC camcorder models JR1 and $2 £ 18$ each $+£ 1$ p\&p.
E. CROYDON
DISCOUNT ELECTRONICS
40 LOWER ADDISCOMBE ROAD,
CROYDON, SURREY
8 01-688 2950
sHOP HoURs Mon-Sat 10-5.30
(Closed Weds)


|  |  |
| :---: | :---: |
| NATIONWIDE MAIL ORDER |  |
| LOCAL DELIVERY - 2 YR GUARANTEE |  |
| A47 342/343X-470 BCB22/CTB22/BGB22 470-ESB22/EFB22/ERB22/FIB22 $\qquad$ 1239 | SONY TYPES f69 |
|  | 470DLB22/FWB/KHB/KTB |
|  | KLB-520SB22/NB/RB/XB |
|  | A49/HT00X-570DB22/EB/HB |
| 510-V1822(555) DTB22/001/RFR22/RCB22/SFB22 .. 563 | GB/JB-A53JBW01X/JCG00X |
| ${ }^{4515750 \times / 5800 / 01 / 210 / 241 \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~} 853$ | JB00X-680CB22/DB/EB |
| 560-D7822(556) H822/AKB ${ }^{\text {a }}$ |  |
| 560-ETB22/DTE22/CSB22/DMB22/DNB22 .................. 653 | 14' PORTABLES ¢59 |
|  | 3708UB-AXT3001- |
|  | 37-550/2/3/4-A37-570 |
| 30 AX -A56-540X-A66-540X | 580/590 |
|  |  |
| LOCAL DELIVERY FROM ACCRINGTON, LANCS. |  |
|  |  |
| Apollo, The Potters Wheel, <br> Mullion Cove, Mullion, Nr. Helston, TR12 7ET. |  |
|  |  |
|  |  |


| 2SA－564 | ¢0． 15 | 2 SO | ¢2． 60 | HA－1151 | 51.25 | TA－7229 | 52.50 | BC－307A | 20.055 | B0X | 2.42 | TDA－2009 52.20 | L－165V | 92．an |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2SA－673 | 20.20 | 2SD－869 | ${ }^{\text {c\％}} 3.20$ | HA． 1156 | \＄1．30 | TA－7230 | 51.30 | BC－3078 | 20．005 | B0x－548 | 50.42 | TDA－2020 51.40 | L－200CH | \％1．5 |  | 50.98 | STVL | RW－320 | ${ }^{20.52}$ |
| 2SA－683 | 20.20 | 2SD－880 | 20.50 | HA－1367 | ¢3． 60 | TA－7240 | 2.50 | BC－308 | 20．005 | BF－173 | 20．65 |  | L－2605Cy | \％1．00 | VIC－9300 | 0.50 | WE Mave ful | AW－321 | 80.52 |
| 2SA－684 | 50.20 | 2SD－882 | ¢4．50 | HA－1392 | \％2．50 | TA． 7248 | 54.00 | BC．308A | 20．055 | BF－257 | c0． 30 | TDA－20304V 2 | MC－1458CP | 20.5 |  |  | AUMGE OF THE | RW－327 | 50.54 |
| 2SA． 748 | $\$ 1.00$ | $2 \mathrm{SO}-1135$ | c0．85 | HA－8406 | ¢0．75 | TA－7310 | 91.25 | BC－3088 | 00.055 | BF－258 | ${ }^{20.30}$ | T04－2030AV 22. | MC－1488P | 20.5 | SHARP |  | smus mostr | AW－328 | 20.01 |
| 2SA－765 | £3．00 | AN－203 | £1．00 | HA－11227 | ¢1．00 | TA－7313 | 20.80 | BC． 309 | 20．055 | BF－259 | 50.30 | TOA－2030H | MC－1469P |  | $5 C 7000$ | 51.40 | LPPNESE | RW－329 | c2．45 |
| $25 A-769$ | ¢1．50 | AN－210 | ¢0．90 | HA． 11423 | $\underline{2.10}$ | TA－7314 | ¢1．35 | BC－3098 | 50.055 | BF－272S | 80.75 | TA－2040H 82.20 | 2N－2219A | ต．\％ | VC－6000 | 51.56 | MODESS：PLS | RW－51 | 20.51 |
| 2SA．771 | §1．50 | AN－214 | 51.50 | HA－12017 | \％1．30 | TA－7315 | ${ }_{61} 1.35$ | BC－327－16 | 50.055 | BF－457 | ${ }^{20.51}$ | TMA－2000 | $2 \mathrm{~N}-2360 \mathrm{~A}$ | co． 5 | VC－9300 | ${ }^{51} 1.95$ | ASK FOR FLL | RW－52 | c0． 38 |
| 2SA－794 | $\underline{10.60 ~}$ | AN－272U | ¢2．90 | HA－12413 | ¢1．30 | TA－7317 | ¢1．00 | BC－327－40 | 20．055 | Bf－458 | £． 51 | TOA－2530 51.70 | $2 \mathrm{~N}-3055$ | 50.3 |  | ${ }_{81} 1.65$ | LPI DIE | RWW－54 | c0．38 |
| 2SA－798 | 80.60 | AN－301 | ¢2．35 | HA 12411 | $£ 1.60$ | TA－7323 | 17． 20 | BC－328 | 10．055 | BFY－52 | 20，30 | TO4－2822 50 | $2 \mathrm{~N}-3866$ | 50.50 | VC－8300 | c1．40 | FRICE： 2.6. | RW－56 | c0． 36 |
| 2SA－850 | 20．30 | AN－302 | ［2． 50 | LA－1365 | 51.20 | TA． 7324 | 51.10 | BC－337 | c0． 055 | BFr．76 | 20.97 | TDA－2822m 20.8 | CD4009ube | 20.6 |  |  |  | RW－58 | ci． 51.30 |
| 2SA－893 | c0．30 | AN－303 | c3． 20 | LA－3161 | 51.20 | TA－7325 | c0．75 | BC－337－16 | ¢5．056 | BFY－50 | 50.40 | TDA－3410 | ME－371 | 20.6 |  |  | Cartridges |  |  |
| 2SA－958 | ¢0．75 | AN－315 | 51.00 | LA－3220 | 51.00 | TA－7326 | ¢1．35 | BC－337－25 | 20.055 | BFY－51 | 20.41 | TDA－3560 \％3． | MUE－521 | 20．3 | SL－Csic7 | 1 | cartmides | UTMU |  |
| 2SA－968 | ¢0．75 | AN－318 | ¢5．75 | LA．3365 | 51.20 | TA 7328 | \％1．40 | BC－337－40 | 20．055 | BFY－90 | 1． 08 | T04－3590 | KC．581 | E4．20 |  | $\underline{5} .40$ | woods of |  |  |
| 2SA－985 | 51.20 | AN－360 | 81.75 | LA－4100 | c0． 85 | TA－7331 | 51.00 | BC－338 | 50．055 | BFR－36 | ¢1．10 | C4．3401E E0．82 | LM－3900 | 20．${ }^{2}$ |  |  | caimindes | BR－1225 | 20.75 |
| 2SA－992 | 59.30 | AN－5010 | 0.50 | LA－4125 | ¢1． 90 | TA－7628 | 81.00 | BC－377 | 20． 20 | BFR－38 | 23．80 | CA3065 $\quad 8.75$ | LM－723CN | c0．c2 | TOSHMS |  | CMIT PaCES IS： | $\begin{aligned} & 8 R-1616 \\ & B R-2016 \end{aligned}$ | $0.75$ |
| 2SA－1060 | \＄1．50 | AN－5431 | 8.20 | LA－4183 | ¢1．50 | TA－7658 | 81.20 | BC－393 | 20．40 | BU－104 | \％3． 90 | ${ }_{\text {C－}}^{\text {C－3410E }}$ | CA-3140E | 50.00 | V－5250 | 52.20 | 65． 00 | 8R－2016 | ${ }^{20.75}$ |
| 2SA－106 | 91.50 | AN－5435 | ¢1．00 | LA－4190 | 51.50 | UPC－575 | \＄1．05 | BC－546 | 20.055 | BU－205 | 50.60 | ${ }_{\text {TIP－294 }}$ | CA－3009 | 18.5 | － $\begin{aligned} & \text { V－5450 } \\ & \mathrm{V}\end{aligned}$ | ¢1．30 |  | ${ }_{\text {BR－2320 }}$ | 50．75 |
| 2SA－1141 | $\underline{2.90}$ | AN－5440 | 92.15 | LA－4195 | 11．70 | UPC－1031 | £1．30 | BC－546 | 20，055 | BU－208 | c0．6s | TIP－23A |  |  | V－8800 | \％1．20 |  | BR－2325 | 20.75 |
| 2SA－1303 | 51.50 | AN－5510 | 2.50 | LA－4422 | \＄1．50 | UPC－1181 | ع1．05 | BC－547 | 20．055 | BU－126 | 20．00 | T1P－23A ${ }^{\text {7P }}$ | nde | ats | V－5475 | ${ }_{51.45}$ |  | ${ }_{\text {CR}} \mathrm{CR}-1220$ | ${ }^{20.75}$ |
| 2SB－527 | 50.60 | AN． 5612 | 82.80 | LA－4430 | 51.30 | UPC－1182 | £1．05 | BC－547A，B，C | 20．055 | BU－500 | c1．00 |  | AKU： |  |  |  |  | CR－1620 | 20.75 |
| 2Sb－544 | 50.40 | AN－5720 | ¢1．25 | LA－4440 | 52.10 | UPC－1185 | 81.72 | BC－548 | 20.055 | BU－326A | 50．\％ | TIP．30C | VS－10 | 50.78 | FERGUSOM |  | VMS－3UES 7.50 | CR－2025 | 50.75 |
| $22^{28-557}$ | 82.25 | AN－5722 | E1．25 | LA－4445 | $\underline{2.20}$ | UPC－1212 | 81.10 | BC－548A，$B$ | 00.055 | BU－508A | ¢1．30 | TIP－31 $\quad 80.22$ | VS－2EG5EG | 20.63 | 3 V 00 | 62.50 | WMS－35 ${ }^{27.50}$ | CR－2032 | 20.73 |
| 2SB－562 | ${ }^{2} 0.30$ | AN－5730 | ¢1．35 | LA－4508 | c1．70 | UPC－1213 | £1．06 | BC－549 | 20.055 | B4．5080 | 51.40 | $\mathrm{TIP}_{\text {TP－314，}}$ | V5－7300 | 21.35 | 3V16 | ${ }^{51.85}$ | Wors 27.50 | CR－2316 | $\mathrm{nc}^{0.73}$ |
| 2SB－681 | 22.50 | AN－5732 | ¢1．25 | M－51102L | 9.50 | UPC－1277 | 2.00 | BC－5498 | 20．055 | BOY－20 | 51.20 | T1P－31C | vs－9700 | \％．00 | ${ }^{3} 122$ | $\underline{800}$ |  | CR－2420 | ${ }^{20.73}$ |
| 258－688 | 81.25 | AN－5738 | ¢1．00 | M－51515L | 0.04 | UPC－1230 | 81.99 | BC－557 | 20，055 | TBA－120S | 50.60 | TPP－32 50.22 |  |  | 3V23 | ${ }_{20.75}$ | warc | CR－2430 | $\mathfrak{0 . 7 5}$ |
| $2 \mathrm{Sb-718}$ | 20.75 | AN－5900 | 91.50 | MB－3712 | 51.50 | UPC－1353 | c2． 45 | BC－557A，B， C | 20.055 | tiba－231A | 51.05 | TIP－32A．B | VES |  |  |  | calcuйоя | Alu | d |
| 258.772 | 20.50 | AN－6249 | ¢1．20 | MB－3713 | 52.00 | AC－187 | 9.15 | BC－558 | 20.055 | TBA－331 | 80.80 | $1 \mathrm{P}-32 \mathrm{Cl}$ 50.22 <br> 10  | VBS－70 | 20．40 | dRu |  | WCA | Colt | － |
| ${ }_{2 S C-497}$ | 51.50 | AN－6250 | 50.40 | MB－3730 | E2． 50 | AC－187K | 5.20 | BC－5588 | 20．055 | TBA－520 | 81.00 | TIP－33A 20.50 |  | 20.40 | AUDO |  | acteras | 810 （N） | 2 |
| 2SC－681 | 97.95 | AN－6320 | 82.00 | NE－646 | 0.50 | AC－188 | 20.15 | BC－5598．C | 50.055 | TBA－540 | ¢1．00 | $\mathrm{TIP}_{T 1 \mathrm{P}-41}$ |  |  | AECDADERS |  | RW－40 50.48 | 813 （0） | 50.45 |
| 2SC－710 | 20.20 | AN－6332 | ¢5．00 | STK－011 | ¢5．98 | AC－188K | 20.22 | ${ }^{\text {B }} \mathrm{CY}$－70 | 50.25 | tra－800 | 50.45 |  | V－5000t |  | TUAMTABLE |  | RW－42 | 814. | c0． 38 |
| 2SC－738 | 50.25 | AN－6341 | 22.80 | STK－015 | \％5． 25 | AU－113 | 5.40 | BCY－72 | 82.19 | TBA－810S | 50.60 |  |  | ¢1．5 |  |  | $\begin{array}{ll}\text { RWW－44 } \\ \text { RW－47 } & 50.53 \\ 20.25\end{array}$ | 815 （AA） |  |
| 2SC－741 | 81.95 | AN－6342 | 91.50 | STK．016 | ${ }^{6} 5.89$ | AD－149 | 50.45 | ${ }^{80-135}$ | 50.20 | TBA－BTOP | 51.00 |  | NC |  |  |  | RWW－48 20.4 <br> RW  <br> 18  |  | c0． 25 |
| 2SC－790 | 50.90 | AN－6360 | 2.80 | STK－032 | 512.45 | AD－166 | 51．00 | 80－136 | 50.20 | tra－bilas | 50.90 | TIP－48 ${ }_{\text {ITP－4 }}$ | HR－3330 | $\underline{0.00}$ | ${ }_{86 \times 1.2}^{60}$ | 20.12 | RW－49 | A） 604 | $\begin{gathered} 22 \\ 51.05 \end{gathered}$ |
| 2SC－828 | 50.15 | AN－6551 | 81.00 | STK－035 | 58.00 | BC－171C | 50.055 | 80－140 | 10.40 | tBa－810ap | 51.20 | TIP－102 | HR－7200 | $\underline{50.75}$ | 120×1．25 | 50.12 | RW－410 00.45 |  |  |
| 2SC－829 | 00.15 | AN－6884 | 50.90 | STK－043 | 27.50 | BC－172A | c0．005 | 80－201 | 50.40 | TBA－820 | c0．60 | TIP－102 | HR－3360 | ¢1．95 | $135 \times 1.25$ | 20.12 | RW－411 80.45 | Р 40 то |  |
| 2SC－945 | 00.15 | AN－6912 | 51.25 | STK－080 | 28．50 | BC－172C | $\underline{50.055}$ | 80－233A | 50.30 | TBA－820M | 50.60 | T1P－105 | HR－4100 | ¢1．\％ |  |  | RW－413 | BATERA |  |
| 2SC－1018 | $\underline{20.75}$ | AN－7060 | 9.25 | STK－082 | ¢10．05 | BC－177B | 80.19 | 80－240A | 20， 30 | tBA－950 | 51.50 | HP－125 | HR－6500 | 02.25 |  |  | RWW－415 20.45 | 867 （J） | 51.54 |
| 2SC－1061 | 00.75 | AN－7105 | 91.60 | STK－0029 | 84.10 | BC－179 | 0.22 | B0－243C | 20.50 | TBA－1441 | 91.05 | TP－125 | HR－3300 | 82.55 | $\times 0.5 \times 4$ |  | RW－4．8 | RPX－1 | 20.61 |
| 2SC－1173 | 20.40 | AN－7110 | 51.20 | STK－0060 | 58.70 | BC－182 | £0．055 | 80－2448 | 20.45 | TCA－660 | 2.59 | TIP－126 | HR－7700 | E．7） | 88 | 25 | RW－30 | RPX－14 | c1． 45 |
| 2SC－1383 | 50.25 | AN－7116 | 50.90 | STK－435 | ［4．50 | BC－182A | ¢0．055 | BD－244C | 50.40 | TCA－750 | 93.00 | HCF40018E 80.18 | HR | $\underline{0.77}$ | $888 \times 0.5 \times 5$ |  | $\begin{array}{ll}\text { RWW－33 } & \text { 20．45 } \\ \text { RW－36 }\end{array}$ | RPP－23 | ${ }^{\text {c1．}} 123$ |
| 2SC－1384 | $\underline{50.25}$ | AN－ 7117 | 50.80 | STK－436 | 55.80 | BC－1828 | ¢0．065 | BD－278 | 50.70 | TCA－760 | 92.00 | HCF40088E 20.50 |  |  | $88 \times 0.5 \times 5$ $122 \times 0.5 \times 5$ | ${ }_{2} 2.60$ |  | RPP－27 | \％． 2.05 |
| 2SC－1413AH | c3．00 | AN－7120 | 51.25 | STK－439 | 27.45 | BC－182C | 20．055 | BD－233 | 50.30 | TCA－900 | 50.75 | HCF4017BE 50.52 <br> $H C F 402585$ <br> 0.25 | Nyow |  | $189 \times 0.5 \times 5$ | ${ }^{20.60}$ | RW－39 |  | $\underline{50.40}$ |
| 2SC－1454 | 53.50 | AN－7140 | c1．50 | STK－441 | 99.80 | 8C－183 | 20.055 | 80－234 | $\underline{00.30}$ | TCA－940N | 20．60 | HCFF40258E 80.25 | NV－8600 | ${ }_{c}^{\text {c1．}}$ c｜ 5 | $195 \times 0.5 \times 5$ | 20.60 | RW－300 | RPX -75 | 50.39 |
| 2SC－1567 | 50.50 | AN－7143 | 17.50 | STK－457 | 97．90 | BC－1838 | 80.055 | 80－237 | 50.30 | TCA－3089 | E1．65 | HCF40288E E0．4． | N－8600 | ${ }_{50}^{51.65}$ | $205 \times 0.5 \times 5$ | ¢0．60 | RW－310 20.38 | RPX -225 | 20．55 |
| 2SC－1775 | 20.15 | AN－7145 | 02.20 | STK－459 | 58.50 | BC－183C | 20.055 | 80－238 | 50.30 | TA－440 | 81.45 | HCF40508E mi． 32 | N－77\％ | 50.6 | 25x0．0x |  | RW－311 20.39 | RS－76 | 50.60 |
| 2SC－1815 | 20.15 | AN－7146 | 02.20 | STK－460 | 88.70 | BC－184 | 20.055 | 80－379 | 20．24 | TDA－1011 | 81.15 | HCF401038E E2．${ }^{\text {g }}$ | N－7200 | 20．4 | CASSET | L0s | RW－313 $\quad$ 0． 4.4 | LOMGLIf |  |
| 2SC－1845 | $\underline{20.15}$ | AN－7156 | ［2．80 | STK－1030 | ［4．95 | BC－184A | 20．055 | 80－433 | 20． 28 | TDA－1012 | ¢1．85 | HCF40106BE 20.3 | NN－7000 | E．em | MONO | 10.90 | RW－315 20.42 | （Superabli） |  |
| 2SC－1913 | 20．90 | AN－7161 | 0.50 | STK－2029 | 77.55 | BC－1848 | 80.055 | 80－434 | 00.28 | TA－1054 | ¢1．10 | £1．30 | NV－600 | 2． 1.45 | STEREO | \％1．50 | RW－316 £0． | AC－3（PP） | 20.52 |
| 2SC－2240 | 50.15 | AN－7168 | 02.60 | STK－2125 | 87.45 | BC－184C | 20．055 | BD－436 | $\underline{0.28}$ | TDA－1059 | 20． 55 |  |  |  |  |  |  |  |  |
| 2SC－2320 | ¢0．15 | AN－7213 | 91.00 | STK－2129 | 88.10 | BC－2128 | 20．055 | B0－437 | 20． 30 | TDA－1151 | 20．73 |  | ITE | NE |  |  | LISTED A |  |  |
| 2SC－2550 | 20.75 | AN－7218 | 19.10 | STK－2250 | 511.40 | BC－212C | 20．055 | B0－441 | 20． 30 | TA－1170 | 81．00 |  |  |  |  |  | AVAlla |  |  |
| 2SC－2577 | ¢1．25 | AN－7220 | 91．60 | STR－4090 | 88.00 | BC－213 | 20．055 | 80－442 | E0． 30 | TA－1180 | c1．45 |  | Es AR |  |  |  |  | NO |  |
| ${ }^{2 S C-2581}$ | ¢1．50 | AN－7223 | $\underline{51.40}$ | TA－7061 | 51.00 | BC－213A | 50.055 | BD－535 | 20．30 | TA－1220 | c1． 20 | 0 | TATION | E | N FOA |  | ExPOR | UAN | S． |
| 2SC－3284 | 91.50 | AN－7224 | ¢1．25 | TA－7137 | 51.00 | BC－2 238 | 50.055 | BD－536 | 20.35 | TD－1510 | ［4．10 | L | ST AV／ | ＋ | ITH OR | OR | SAE PLEASE | 4 |  |
| 2SC－3298 | 91.50 | AN－7311 | c0．90 | TA－7140 | 51.00 | BC－213C | 50.055 | BD－5508 | 84.50 | TDA－1905 | c． 98 |  | ALL TH | 000 | ARE | ND | DP QUAL |  |  |
| 2SC－3519 | £1．50 | AN－7410 | $\underline{51.50}$ | TA－7157 | 17.28 | BC－214 | 50．05 | BD－675A | 50.28 | IDA－1908 | 51.20 | ORDERS | BELOW | ． 00 | （－VAT）A | P8 | E0． 78 （For | C．on |  |
| 2S0－288 | 50.75 | AN－7812 | 91.50 | TA－7204 | c1． 20 | ${ }^{8 C} C$－214日 | c0．005 | 80－678 | $\underline{0.28}$ | T0A 1670 | $\underline{2.70}$ | BUT ORD | DERS ABO | E | 0 （EX－Y | P8 | FREE（For | onl |  |
| $250-381$ $250-525$ | 50.90 | BA－301 | ¢1．00 | TA－7205 | 51.20 | ${ }^{B C-214 C}$ | 90.055 | 80－679 | 50.28 | TA－2002H | 50.60 | VISITING | G TIME： 10 | AN T | 6PM（MO | －FRI） | 10AM TO 12 | OM SAT． |  |
| 2S0－525 | 50.75 50.75 | － $\begin{aligned} & \text { 84－308 } \\ & \text { B4－311 }\end{aligned}$ | 81.00 81.00 | TA－7207 | ع1．35 | BC－2378 BC－238 | 80．035 | BD－680A BD－62 | 50.30 50.30 | TDA－2002V | 50.80 51.20 |  |  |  |  |  |  |  |  |
| 2S0．600k | ¢1．50 | 84－333 | 97.00 | TA－7214 | 52.90 | BC－238A | 50.055 | 80－707 | 20.50 | TA－2003V | \＄1．20 |  |  |  |  |  |  |  |  |
| $250-718$ | 91.25 | HA－1124 | 91.25 | TA－7215 | 52.20 | BC－238C | 50．065 | B0－711 | 20．50 | TDA－2004 | ¢1．80 |  |  |  |  |  |  |  |  |
| 2S0－837 | 20.85 | HA－1125 | ¢1． 25 | TA－7225 | 52.50 | BC－2396 | ca． 0.05 | 80－712 | £0．55 | TDA－2005M | $\underline{52.50}$ | WLOUCE | TE | 1 | H |  |  | A |  |
| 2S0－845 | ¢1．75 | HA－1137W | 11．35 | TA－7227 | 2.20 | BC－239C | c0． 055 | BDX－53A | 20.42 | TA－2006V | 81.40 |  | Tef： 0 | 27 |  | E． | 933986 |  |  |

## CREWE WHOLESALE TV

77 Coleridge Way，Crewe
Tel： 0270582924
15 mins from Junction 17，M6
WORKING TVs FULLY ENGINEERED YOU BUY．NO BUMPED TUBES．

| Decca 80s \＆100s | $\mathbf{£ 2 5}$ |
| :--- | ---: |
| Bush T20 | $£ 30$ |
| ITT CVC 20 \＆ 30 \＆32 | $£ 25$ |
| G11s | $£ 35$ |
| GEC Starline | $\mathbf{£ 2 5}$ |
| GEC 2110， 2111 | $\mathbf{£ 2 0}$ |
| Rediffusion Mk 3 | $\mathbf{£ 2 5}$ |
| Thorn 8，800 to T／X from | $\mathbf{£ 2 0}$ |
| Text Available | POA |
| CABLE DORICS WITH OR WITHOUT <br> TRANSLATORS PLUS A FULL <br> RANGE OF OFF THE PILE SETS <br> JUST ARRIVED 1000s OF <br> COMPUTER GAMES． |  |

## Universal Semiconductor Devices Ltd．

17 GRANVILLE COURT，GRANVILLE ROAD， HORNSEY，LONDON N4 4EP ENGLAND．


TEL．01－348 9420／TELEFAX．01－348 9425＊TLX． 25157 usdco g
WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES．THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK．IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST
TRANSISTORS－BIP OLARS－GERMANIUM AND SILICON SMALL SIGNAL
－POWER DARLINGTONS－ALL SHAPES AND SIZES VHF／UHF DEVICES－ALL SHAPES AND SIZES

FETS－POWER MOSFETS UNIJUNCTIONS
dIODES－GERMANIUM AND SILICON RECTIFIERS AND BRIDGES OPTO－ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZES $\rightarrow$ THYRISTORS AND TRIACS－ALL

```
安 安
```

SHAPES
SIZES
RATINGS
INTEGRATED CIRCUITS：
CONSLMER－DIGITAL／ANALOGUE
MICROPROCESSORS AND PERIPHERALS

## IC SOCXETS

## CATALOGUE

MAIL ORDER CUSTOMERS：PLEASE SEND $£ 1.00$ IN STAMPS，CHEQUE OR POSTAL
ORDER．SENT FREE OF CHARGE，WHEN REQUESTED ON OFFICIAL LETTERHEAD（WITHOUT REFUND），TO OEM＇S，SCHOOLS，COLLEGES，UNIVERSITIES， GOVERNMENT INSTITUTIONS，COMPUTER FIRMS，ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS
SPECIAL DISCOUNTS AND PAYMENT TERMS ARE AVAILABLE TO ABOVE INSTITUTIONS．

[^0]
## PRICE

| 1-3 | £19.95 each |
| :---: | :---: |
| 4-19 | £15.62 each |
| 20-99 | £13.86 each |
| $100+$ | £13.48 each |
| Prices | Carriage. |



## CentreVision

TEL: 0222-44754
SLOPER ROAD, LECKWITH, CARDIFF
EXIT 33 OFF M4

## 3V22 VHS VCR - WORKING

 ONE OFF £85 10 OFF $£ 75$ 20 OFF $£ 68 \quad 30+\mathbf{£ 6 5}$MANY ELECTRONIC VIDEOS IN STOCK
MANY TOP QUALITY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

| THE WORLD <br> 8-10 Rhoda |  | E2 | $\begin{aligned} & \text { E } \\ & \text { Tel: } 0 \\ & \text { P+P } 1 \text { PA } \end{aligned}$ | 7290506. <br> EL £1.50. 2 P |  |  |  |  |  | ORKING ANELS ALORE! |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | If | TUNER | DECODER | G8/G9 DECODER IF COMBINED | $\begin{aligned} & \text { LiNE } \\ & \text { OUTPUU } \end{aligned}$ | POWER | CONVERG | FRAME | VIDEO | 6 WAY TUNER SWITCH BANK |
| PHILIPS G. 8 | 6.00 | 5.50 | 8.00 | 16.00 | 15.00 | 9.00 | 6.00 | 9.00 |  | 4.50 |
| THORN 3000/3500 | 3.00 | 6.75 | 5.00 |  | 9.00 | 9.00 | 6.00 | 7.00 | 6.00 | 2.75 |
| GEC 2110 | 11.00 |  | 6.00 |  | 13.00 | 7.00 | 6.00 | 6.00 | 6.00 | 6.00 |
| PYE 731 |  |  | 11.00 |  | 19.00 | 11.00 | 8.00 | 9.00 |  | 5.50 |
| BUSH Z/718 | 8.50 | 7.50 | 15.00 |  | 25.00 | 4.00 | 6.00 | 15.00 |  |  |
| BUSH T/20 | 8.50 | 7.50 | 15.00 |  | 20.00 | 20.00 | 6.00 | 15.00 |  |  |
| PHILIPS G11 | $\begin{array}{\|c\|} \hline 15.50 \\ \text { WTH MOMANED } \\ \text { SOUNO MODULE } \end{array}$ |  | 13.00 |  | 20.00 | 20.00 | 6.00 | 15.50 |  |  |
| DECCA 80 | 13.00 | POA | 15.00 |  | 13.00 | 11.00 |  | 15.00 |  | POA |
| POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!! |  |  |  |  |  |  |  |  |  |  |

## MODERN COLOUR TVS AND ELECTRONIC VHS VIDEOS

## Fantastic Bargain 10 Working Electronic VHS Videos $£ 1000$ Modern Working Colour TVs. Large selection

## Ring for Prices

## TELETRADERS

Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154

## THE NO. 1 WHOLESALER IN THE SOUTH

## SPECIAL PURCHASE

R.G.B. Interface units for Spectrum and Sinclair computers normally an optional extra greatly enhances display and a massive saving on the normal price

## Mono T.V. Chassis

Teletext Decoder Remote Control Board
Both adaptable to other models!
Price $£ 3.99$ each, or any 3 for $£ 10.00$ inc. P\&P
For Further Details: COLOURTRADE
221 Bridge Street West, Hockley, Birmingham B19 2 YU. Tel: 0213595970

## REPLACEMENT VIDEO HEADS AT

COMPETITIVE PRICES
from Luton only.
FOR AKAI, AMSTRAD, BAIRD, DECCA, FERGUSON, FISHER, GEC, HITACHI, ITT, JVC, MITSUBISHI, NEC, NORDMENDE, ORION, SABA, SAISHO, SANSUI, SHARP, SIEMENS, SONY', TATUNG, TELEFUNKEN, TENSAI, TOSHIBA, TRIUMPH' TROPHY.
D.I.Y. TV TLBE POLISHING KIT

Kit Price $£ 57$ inc P\&P and VAT. Available from Luton only.
Quality, High Temperature Reprocessing

| $\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \\ & \text { UP TO \& } \\ & \text { INCLUDING } \end{aligned}$ | AXT37-001 <br> A51-421X <br> A51-426X <br> A51-570X <br> A51-580X <br> A51-590X <br> A51-701X | UNE \& P PL i. <br> AXT51-001 <br> $510 \mathrm{VAB22}$ <br> $510 \mathrm{VLB22}$ <br> 510VSB22 <br> A56-510X <br> A56-540X <br> A56-701X <br> AXT5*-001 | 560BYB22 <br> 5600782 <br> 560EGB22 <br> A66-510X <br> A66-540X <br> A67-701X | MININECK $(225 \mathrm{mmm}$ colour) $370 \mathrm{HGB22}$ 370KRB22 370KSB22 370KXB22 420FTB22 470NUB22 510KXB22 | SONY TRINTRON 330AB22 400EFB22 4700LB22 470FWB22 520 KB 22 520 NB 22 520SB22 570 HB 22 6800822 680 EB 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $20^{\prime \prime}$ |  | 144 |  | $\mathbf{5 5 0}$ | $£ 58$ |
| $22^{\prime \prime}$ |  | £46 |  | - | £64 |
| 26" |  | £48 |  | - | ¢85 |

All tubes exchange glass required.
Please add 15\% VAT to all prices. Callers welcome. Please phone first.

## WELL VIEW

114-134 Midland Rd, Luton, Beds.
Open Men-Fri 9am-6pm. Late opening Tuesday \& Thursday till 8 pm . Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
Phone between 2-5pm.
West One Distributors Ltd., Chesham, Buckinghamshire.
Tel. 0494778197
Best price paid for A66-540X, old glass
N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE
including
AXT Series, DZB series 20AX - 30AX
A56 610/67 610 series, A51 570/580/590X
A51 161X, Sony types etc.
$\star$ Rebanded with new adhesives

* Excellent high voltage clean-up
$\star$ Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

Thorn 3000/3500
Thorn 9000 Thorn 9000
UNIVERSAL UNIVERSAL

## TRIPLERS

 E 0 O inc.$\mathrm{p} \& \mathrm{p}$
The UNIVERSAL TRIPLER can be used in most G.E.C., I.T.T., Pye, Rank, Decca \& Continental sets. WING ELECTRONICS


No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 7.20$ per single column centimetre (minimum 2.5 cms ). Classified advertisements 45 p per word (minimum 12 words), box number 75 p extra.

## INDEPENDENT TELEVISION \& VIDEO COMPANY

## OFFERS TOP QUALITY TELEVISIONS \& VIDEO'S AT LOW-LOW PRICES

WORKING, (SWITCH ON TO PROFITS WITH US) TO RETAIL AND TO INCREASE YOUR PROFITS.
E.G. V.H.S. VIDEO WORKING FROM $\mathbf{f 6 0 . 0 0}$
E.G. TELEVISION - THORN TX9, TX10, PYE PHILIPS KT3, KT30 - SONY 2020-2204UB -NAT. PAN. - TC.2205-HITACHI - AND MANY MANY MORE TOCHOOSE FROM.................£55.00
PHILIPS G11. PYE G11. TANBERG. ITTETC. FROM $£ 40.00$
THORN 9000 ETC $£ 25.00$ PLUS MANY MORE TESTED, WORKING PORTABLE TELEVISIONS \& ELECTRONIC VIDEO'S ON SALE

WE ARE EXPERIENCED IN EXPORT MARIKET REFURBISH TELEVISIONS - VIDEOS - ELECTRICAL GOODS \& OTHER COMMODITES. EMQUIRIES WELCOME TELEX: 378414 BL BIRD-G FAX: 602588505 OR UNTESTED TELEVISIONS \& VIDEOS. DIFFERENT MODEL OFF PILE TO CHOOSE FROM - MIXED LOADS WELCOME DIRECT FROM SOURCE AT ROCK BOTTOM PRICES. TRY US, GUARANTEE NO DISAPPOINTMENT. ALL PRICES SUBJECT TO 15\% VAT.

> UNIT 3-8, MEADOW TRADING ESTATE, MEADOW LANE, Opp. CATTLE MARKET in National Tyre Yard, NOTTINGHAM NG2 3 HQ Tel: 0602864627


NORTHAMPTON TRADE TV'S

## CLEAN WORKING

 COLOUR TV'SFROM £20.00 (plus VAT)
OFF THE PILE SETS
FROM £12.00 (plus VAT) in lots of 10

## Telephone (0604) 37425

## DHOUPER VISION

Ex-Rental wholesale in T.V.s \& Videos, unbeatable prices, good quality sets at trade prices

## (Sets from £7.00)

(Working or non-working sets) 674 Coventry Road, Small Heath, Birmingham B10 OTJ Tel: 021-772-2743
Lorries direct from rental source

## TURN YOUR SURPLUS <br> ICS transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. <br> COLES-HARDING \& CO <br> 103 South Brink, Wisbech, Cambs. <br> Tel. 0945584188 <br> * ESTABUISHED 45 YEARS *

| B.G.COMPONENTS |
| :---: |
| T.V. \& VIDEO SPARES |
| We supply spares for most makes including Sony and |
| Fidelity all at competitive prices. |
| We also stock a comprehensive range of rebuitt |
| C.R.t.'s including Hitachi and Sony. |
| Open Monday-Saturday |
| Hill Street, Oldham OL4 2AG |
| $061-6241753$ |



I prices plus $15 \%$ VAT. All cheques, postal orders etc., to be made payable to Television, id crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Jvertisements, together with remittance, should be sent to the Classified Advertisement 3pt., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford reet, London SE1 9LS. (Telephone 01-261 5942).

| CRANDIG, TELEFUMKEM, PHILPS, SONY FIDEUTY, ROBERTS DYMATROM, <br> T.V. BREAK <br> Ex-equipment orland new spares for mo supplied on pro-forma basis only. Send <br> T.V. Breaker <br> 16 North Street, Oscournby, IF IT IS AVAIL <br> WE CAN SUP <br> NO CALLERS |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## GIANT SCREEN TVs VIDEO PROJECTORS

All leading makes available. Large quantities of some lines. New and second hand equipment bought and sold.
J. H. Roche \& Co. Ltd.,

36 Station Road, Wyide Green,
Sutton Coldfield, West Midlands B73 5JY. Tel: 0213542393 (24 hrs).

2000 TV TUNERS
UHF PUSH BUTTON TV TUNERS IN SUMUNE CABINET WITH COMPOSTE VIDEO OUTPUT. CHEAP TO CLEAR. MINIMUM ORDER 10. CONTACT:
SCPEEIS MICRO COMPUTERS \& EECTRONUS LTD. WAIN AVEINE, MOOR PARX, MORTRNTOO, MIDOX. TE: 0927420664 TEEX: 929224 SCPFER G

## HALTON TV <br> TRADE DISPOSAL

The Wholesaler you won't find competing with you on the High St. TV and Videos GEC, Philips, Decca, Doric, Thorn
$\star$ Remember, we have NO retail outlet $\star$ St Michaels Industrial Estate, Widnes Tel. 0514231577

## TUBES

ONE YEAR GUARANTEE
14" 370 - KRB - LHB - HGB - HFB - HUB - BRB - EGB -
 16. Broken Tube We Can Halp.
$16^{\prime \prime} 420$ EDB - EFB - CZB, 42 - 001, 42 - 556.
$20^{\prime \prime} 51-161,51-500-554-570-575-580-590-51-$
001 AXT - 510 JKB - VB - UFB - RJB - UDB - HWB - 510 001 AKT - 510 JKB - VB - UFB - RJB - UDB - HWB - 510 ABUB from $£ 45$.
$22^{\prime \prime} 56-500 £ 45,56-540-610-611-615-700-712-$ 560 EGB-DAB - DMB - BYB-EGB-TB-GAB-AXB -EIB HB - DYB-A1B-BMB - HW 56-001 AXT
26" $66-500-510-540-611-615 \mathrm{E} 55$.
HITACHI 510 HWB - VLB - VSB - 560 DZB - HWB - 490
RO2Y
SONY £65 Cash \& Carry only.
DELTAS £29.00 Reguns.
A56-120 A56-140 month guarantee.
A44-270-1 A65-120 466-140 (410) A67-120 343 All prices are inclusive U-VIEW
29, Warmsworth Road, Doncaster,
Yorkshire DN4 0RP. Tel: 0302855017. Callers ring first, open every day including Sunday $1 / 2$ a mile from AI

## WE BUY SURPLUS

ICs, Transistors, Tuners \& Tranisformers, etc for cash settlement. Factory redundant stocks purchased. Contact
D\&S SPARES,
183 WATLING STREET, RADLETT Phone: (09276) 4252

## VIDEO SPARES

Stock items despatched by return Access \& Visa welcome

VIDEO HEADS
Universal VHS heads most models ....... 529.50 Hitachi, Ferguson, Panasonic etc. (most models) (genuine) ................................ $£ 35.00$ Sharp VC9300, VC9500
(equivalent) (equivalent) $\qquad$ Sony SLC5, C6, C7 (genuine) .................. $£ 42.00$ Sony SLC5, C6, C7 (equivalent). Sony SLF1, C20, etc. (equivalent) Toshiba V9600, V31, V33 (equivalent) 839.60

Reprocessed Heads (Send old head with order. The drum should be free of scratches and marks)
Most VHS models ..
Sharp (most models).
Most VHS 4 head types
VIDEO MOTORS
Drum Motors Ferguson/JVC (mechanical models) ...
$\mathbf{£ 2 9 . 0 0}$
$\mathbf{Y 2 . 6 0}$
Reel Motors
Sanyo VTC5000,
5150, 5300 6500 Shap VTC9300 etc. (most models)

Capstan Motors
Ferguson/JVC (mechanical models) Ferguson 3V35 5.

Hitachi VT11, VT33, VT14. VT17 Hitachi VT8000, VT8300, VT9300.
Sony SLC5 SLC7 (BHF 1100d). Sharp VC9300, VC9500 etc.


Please add 75p per order for p\&p and then add 15\% VAT

## A.Z. ELECTRICS

174 Kettering Road, Northampton NN1 4BE
Telephone (0604) 24380


Eliminates scratching and damage to screens and cabinets, etc. "a good investment in my opinion" Eugene Trundle, Television March 87 For Televisions, Video Recorders, Audio Visual Equipment, White Goods, etc.
PERSOMALISEED T.V. TRANSIT COVERS
These are tea-cosy style and comne in three sizes. Standard (to fit up to 22 comfortably - they will even fit
some of the $26^{-}$models Extra Large (for the "brutes) Portable (to fit Lpo to $16^{\prime \prime}$ )
PERSOMALSED VCR PR

Pack of $5-£ 41.25 \quad$ each
Marce 59.50 P

PERSOMALSED VCR PROTECTIVE COVEIS
Designed to give all-round protection, they fit all modern modets
(but may not hit some of the odfer, liger med.)
(but may not fit somme of the odder, liager models). The recorders fin
snugly inside the covers, which then fasten with
Pack of 5- 446.25 P
Pack of 5-E36.25 snugly inside ine covers, which then fasten witi Veicro lasteners, thus awoiding
dangting mains fiexes during transit, and allowieg discreet removal to and tro PERSOMALESED JUMBO COVERS
A universal cover for fridges. freezers, washing machines, etc.
PERSONALSSED TIOY WRAP
Keep the floor of your vehicle free hrom chutter with this
Keep the ino
handy little wrap with Velcro fasteners $\left(18^{\prime \prime} \times 1 ? 9\right)$
$\qquad$
 PERSOMALISED SPECIAL DISCOUNT PACKAGE (A) ( $2 \times$ Std TV, $2 \times$ VCR and $1 \times$ Xharge TV)
 PERSOMALLSED SPECIAL DISCOUNT PACKAGE (B)

COMPANY Locos Thi T)
COMPANY LOGOS - These kruk absolutely super - Please "phone for details.
£7.50 ozen
Pack of $5-£ 36.25$
Pack of $10-970.00$


1. Indicate your trading name whth orde

Add Postage and Packing as follows:
Orders over E100-firee PsP.
3. Add $15 \%$ V.A.T.
N.F.P.C 'Byelvell payable to N.F.P.C. and forward io:

Newcastle upon Tyme NE4 SUT
TEL: (091) 2724646
Plases allow 28 days for dellvery
Mail Order Terms: Cheque with order.
Monthly account orders accepted from Education Depts., Local Authorities, Hospitals, Public Companies.

# NORTH WEST ELECTRONICS NEW STOCKS ARRIVING DAIIY 

## SPRING BARGAINS DISCOUNT FOR QUANTITY WORKING TVS AND VIDEOS ON SHOW



## LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY


## 'BOBS'

TELEVISION WAREHOUSE
A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO

## WORKING TV \& VIDEO

Engineered to the highest specification ready for your SHOWROOM

## NON WORKING

GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES
ELECTRONIC, REMOTE, FRONT LOADER VIDEOS
NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC, ETC.
K30, KT3, G11, TEXT, REMOTE AND BASICS ITT, GEC, BUSH, JAPS., DECCA, ETC.

PHONE BOB BEAN ON:
0268728966
AND DISCUSS YOUR REQUIREMENTS

'BOBS'
TELEVISION WAREHOUSE

## NEW

 PHILIPS NEW PHILIPS NEW PHILIPSNew philips EX CATALOGUE RETURNS
LARGE STOCK NOW HELD. ALL SIZES AND CURRENT MODELS
All working and SHOWROOM READY
Guaranteed
Phone
BOB BEAN 0268728966
TO RESERVE YOUR SUPPLY NOW

## DEALERS IN THE SOUTH WEST PLEASE NOTE

We are a new Trade Warehouse in the Newton Abbot area.
Regular direct supplies of clean, working VHS videos and TVs available at fair prices.
Discounts on Quantity Phone or Call

|  | ACORN TV WAREHOUSE | 3V23 |
| :---: | :---: | :---: |
| 3v22 | WITH |  |
| working | IPPLEPEN (0803) 813281 | HANDSETS |
| £60 |  | WORKING |
| IN TENS | You'll find us opposite Two Mile Oak | £115 |
|  | Imn, on Totnes/Newton Abhol Road | IN TENS |

## BOURNEMOUTH

WORKING PRICES - 500+ IN STOCK 10 DECCA £250, 109600 R/C $£ 450$ 10 G11 £300, $\quad 10$ TX $9 / 10 £ 650$ 109000 R/C $£ 350,10$ TEXT $£ 1000$ ALL + VAT
LARGE STOCKS OF BETA + VHS - PHONE FOR PRICES TRADE ONLY - CASH ONLY WE HAVE NO RETAIL OUTLET Warehouse Open Mon-Fri 9-1, 2-5

## HILLIER'S, UNIT 2A,

 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932| PLEASE |
| :---: |
| MENTION |
| TELEVISION |
| WHEN |
| REPIYING |
| TO |
| ADVERTISEMENTS |

# TVs GREAT BUYS G11s from $£ 20$ <br> <br> REMOTES vR AND SONIC from $£ 35$ <br> <br> REMOTES vR AND SONIC from $£ 35$ TEXT MANY MAKES from $£ 55$ 

 TEXT MANY MAKES from $£ 55$}

O 1 FULLY WORKING SETS AVAILABLE. ALL SEEN IN OUR COMFORTABLE TRADE ONLY SHOWROOM. EXCELLENT CABINETS, READY FOR SALE OR RENT, BASIC TO TEXT. NO JUNK.

TIC VIDEOS ALL ELECTRONIC, GOOD CLEAN MACHINES NOT KICKED ABOUT, BASIC TO FULL IR WITH DOLBY. MAKES BY PANASONIC, HITACHI, JVC, MITSUBISH, FISHER ETC. AND OTHERS AS THEY ARRIVE.

## 2111 SYSTEM VIDEOS FROM ONLY 221 LOAD ON STOCK, GOOD CLEAN MACHINES AT BARGAIN PRICES, ALL HAND PICKED. 2020-2021-2022. PHILIPS, GRUNDIG $4 \times 4$ and $2 \times 4$ SUPER AS AVAILABLE.

TIS ALL OF THE FOLLOWING MAKES AND TYPES IN 10 STOCK ON PREPARATION OF THIS ADVERT: DECCA TEXT. GRUNDIG 7200-7400-6012-6610-6245-2200. SONY 1810-2040-2022. ITT CVC 8-9-20-23-25-30-32. TELEFUNKEN 8256. MITSUEISHI CT200-2606. TANDEERG. KORTING. PANASONIC. GOOD CLEAN CABINETS ON MOST SETS. WE LOOK AFTER THEM FOR YOU.

## GENERAL FAGTORS <br> UNION STREET, DONCASTER SOUTH YORKS

## CASH ONLY

OPEN 10am to 5pm MON-FRI PRICES BASED ON QUANTITY ALL PLUS VAT.

## TV SALES \& SERVICE CENTRE

We are component part stockists for:
SANYO, SONY, SHARP, NATIONAL PANASONIC, HITACHI, TOSHIBA \& FERGUSON.
Ask for details about our
TV, VIDEO \& AUDIO TECHNICAL PROBLEMS ADVICE BUREAU
Phone (09276) 4252
185 Watling Street, Radlett, Herts WD7 7NQ.

## WIZARD DISTRIBUTORS MANCHESTER

TV \& VIDEO SPARES
We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR. Did you know we also stock FUSES
$\qquad$ AERIALS
AEROSOLS RESISTORS CAPACITORS VALVES
HANDEETS VIDEO HEADS

AND MUCH MORE
Counter open Monday-Friday 9am-4.45pm TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN
Tel: 061-872 5438; 061-848 0060.

## COURSES

TV \& Radio Aerial Rigging? Intensive "Foundation" Training Courses for the Technician Engineer
Start off on the right course ... be fully informed! One week intensive instructional courses, run by an ex-broadcasting engineer. Residential, marvellous accommodation with excellent food. Theoretical and practical "Hands on" instruction. Training covers all aspects of television and radio reception. Become an aerial erector who can provide the best, because he's learnt the best way!
Courses held throughout the year, amidst the beautiful Highland scenery. Non-participating partners welcome at minimum extra cost. Transport from Inverness provided if necessary.

Further details by SAE to:
R.B. Mannion (Assoc. Member of Confederation of Aerial Industries), Badcaul House, Badcaul,
Dundonnell, By Garve,
Ross-Shire IV23 20Y.
Tel: 085-483-213.

## TOP QUALITY TV \& VIDEO AT ROCKBOTTOM PRICES

LARGEST SELECTION OF 8800, 9000, 9200, 9600, TX9, TX10, STEREO TEXT COLOUR PORTABLES


## ALL SETS \& VIDEOS OFF THE PILE



## SERVICE and SELL WITH CONFIDENCE

## SHARP \& GRUNDIG

PARTS ARE FAST FROM WILLOW VALE

$30,000+$ different stock parts
24 hour despatch
Over $\mathbf{9 5 \%}$ 'first pick' supply ratio from stock
Willow Vale's comprehensive parts listings for Sharp and
Grundig products make ordering and identification easy.
Contact the Sole UK Parts Dlstributors and find out what SEAVICE is really about.

## Willow Vale Electronics Ltd

11, Arkwright Road, Reading, Berks. RG2 OLU.

Telephones: 0734-876444 (24 hours) 8 lines
Telex: 848953 Willow G
Faxline: 1734-867188
Enterprise Park, Reliance Street
Newton Heath, Manchester 10
Telephones: 061-682-1415
Faxline: 661-682-9031

Please send me your comprehensive Sharp, Grundig spares catalogues together with wallcharts of the other spares you stock: (TRADE ONLY) I enclose Sip stamp for postage.

Dealer/Engineer: $\qquad$

PHILIPS COLOUR TVs AT NEAR TRADE PRICES
A large purchase of surplus warehouse returns enables us to offer the public some magnificent bargains. Choose from a wide range of teatures including $14^{\prime \prime}$ to $26^{\prime \prime}$ screens, remote control, teletext, text printer, flatter squarer screens, etc. Stands and video bars supplied with appropriate models. Every set tested Defore sale with 3 month guarantee.

VISION PROMOTIONS
Branches at 3A Commerce Estate,
Kingston Road, Leatherhead Hours gam to 5pm.
Phone 370066 for stock availability 321 Old London Road, Hastings
Hours noon to 8 pm , Sats 9 amm to 5 Smm, closed Mondays Phone 444415

240 ISOLATING TRANSFORMERS. 250 watt continuous, 500 intermitting. $£ 8.00$. 2 for $£ 15.00$. SHANE HILL ELECTRONICS, 5 St Josephs, Ballycruttle, Downpatrick BT30 7BN.

3V22/4 6's FULLY ENGINEERED WITH TIONS VERY GOOD CONDITION C-5 TIONS. VERY GOOD CONDITION FOR IMMEDIATE RENTAL
f75.80 NEW LIFE A56-120 CRT's 2 Year Guarantee. TO CLEAR AT £25.00 Ditto A44-27IX $\mathbf{£ 1 5 . 0 0}$ SELF CONTAINED TV TUNER UNIT O/P'S - SOUnd $3 W$, Viston IV, ideal for Teletext Convertor or Sound Source. BRAND NEW $£ 15.00$
ALL PRICES PLUS VAT \& P/P
UNDERWOOD ELECTRONICS 0902756140


# PICTURE TUBE REPAIR EQUIPMENT <br> BMR 90 

Versatile and reliable. Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.
Regenerates picture tubes even better - Also IN-LINE Removes short-circuits, even between cathode and filament • Measures beam current, emission current, life expectancy, etc.

can pay for itself in 4 weeks, if you are not using BMR 90. you are making less profit than you could.
Sole Agents BLENDOWN LIMITED, 34 Glan-y-Mor Road,
Penrhyn Bay, Llandudno, Gwynedd, Wales. Tel. (0492) 49246

GOULD OSCILLOSCOPES OS260 15 mhz dual beam £110, OS3010 40 mhz dual trace dual timebase $£ 195$. $127745419 \%$.

RETAILERS SURPLUS TUBES $14 \times$ Delta $20^{\prime \prime}-26^{\prime \prime}$ offers. 122923187

LARGE MURPHY, 30 year old console television with doors, offers. Diss (0379) 51345 .

## BOOKS AND PUBLICATIONS



## THE DOMESTIC VIDEO RECORDER SERVICING BOOK

## THE ENGINEERS BIBLE

WITH CHAPTERS ON HI FI, DIGITAL SERNOSS LUMINANCE AND CHROMINANCE SİN能 CIRCUITS, FAULT GUIDES AND CONNECTION DATA. A MUBT FOR ALL VIDEO REPAIRERS AND STUCOTHE COMPLTE BEFRRENCE TO VIDEO REGGRGEMERCUITS
ORDER YOUR COPY NOW FOR ONLY $\mathcal{L} 16,95$ inc. P\&P OTHER TITLES AVAILABLE
SEND S.A.E. FOR LIST DIRECT FROM: GROVE FARM, LONG LANE, BARNBY IN THE WILLOWS, NEWARK, NOTTS.
CHEQUES AND PO'S PAYABLE TO D. BEECHING.

## VIDEO

## ELECTRONIC VIDEOS/TV's CLEAN MODERN WORKING

VID's/JVC/Hitachi/Panasonic etc.
TV's/Sony/Philips/Panasonic etc. Long term relationship required with a few reliable dealers able to take 5's 20's of TV's or Videos or mix on a regular basis.
Based in the North West
Prices reasonable and stable Box 234

> WHY NOT LET TELEVISION SELL YOUR PRODUCT FOR YOU RING NOW ON 01-261-5942

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire

PHILIPS 1502 Video $£ 50.100,1500 / 1700$ tapes $£ 100$. o.n.o. 0782623464 (daytime).


## TECHNICAL INFO SERVICES (T) - 76 Church St., Larkhall, Lanarkshire ML9 1HE.

World's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues.

MAIN STOCKIST OF ALL HEINEMANN-NEWNES TECHNICAL BOOKS
DELIVERY BY RETURN FULL LIST ON REQUEST
Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide $+£ 4$ Vouchers - saves time and expense Ef.
Any published single service sheet for $\mathbf{£ 2 . 5 0 ~ + ~ I s a e ~ e x c e p t ~ c t v / m u s - c / c o m b i s ~ f r o m ~} \mathbf{£ 3 . 5 0}+\mathrm{Isae}$. A selection from our stocks of thousands of Service Manuals ready for despatch by return post.
Any Sony: Hitachi ctv from £9.50. Thom 3000/3500 £9.50. Thom 8000/8004/8500/8600 £9.50. Philips G8 complete £9.50. Decca $30 / 31 £ 8.50$. Ferguson/JVC 1st video $£ 19.50$ or 3 VOO types basic manual $£ 19.50$. Any Finlandia: Tyne CTV £9.50 each. Rank A823 complete $\mathbf{£ 9 . 5 0}$.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL E9.50 PRACTICAL RADIO SERVIICING \& REPAIR COURSE 59.50 THE 12 TUNBRIDGE TV REPAIR MANUALS OMY $£ 9$ THE 5 McCOURT TV REPAIR MANUALS OMY ANY SET OF 5 INDIVIDUAL TV VIDEO REPAIR MANUALS FOR $£ 12.50$ OR ALL 3 SETS (15 MANUALS) FOR £36.

## UNIQUE COLLECTIONS OF CIRCUITS, LAYOUTS, ETC. . . . FANTASTIC VALUE

## British ctv from hybrids to modern ( $\mathbf{3}$ binders) $\mathbf{£ 6 0}$ (20ff) Videos, all types ( 3 binders) $\mathbf{E 5 8}$. . . any 1 for $£$

 Mono TV (2) £40 Foreign ctv (2) £38 Domestic Eqpt (2) £38 Portable British ctv (1) £22 plus VAT.
## COMPLETE REPAR SYSTEMS . . . huge savings from published prices

## British ctv 4 binders of Circuits plus 7 Repalr Manuals plus ref books, etc.

for only $£ 140$ Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only $£ 70$
Videos 3 binders plus 15 individual Repair Manuals cover all the commonest models
for only $£ 90$ Complete Integrated T.V. Repair System Contents: 8 binders of circuits/17 Repair Manuals/dozens of other manuals. . . Any new publications from us within 1 year of ordering 1st section will be added at no extra charge. No VAT on Systems

NEW 1987 British CTV Repair Manuals for $\mathbf{8 8 . 9 5}$ NEW. NEW Repair Manuals for Spectrum with circuits only £5.00 NEW. NEW Collection of 20 Hoover's W/Mc circuits $£ 8.95$ NEW. NEW Domestic Equipment Repairs \& Servicing E14.95 NEW.

Repair data/Circuits/Service data almost any individual
mono tv E12.50
basic ctv £12.95
video $£ 10.50$
LSAE BRIMES ANY REQUESTED QUOTATION - FLUER DETALS - FREE MAGAZINE - PRICE USTS ETC.
PHONE 0698884585 Mon-Fri before 5 pm or 0698883334 any other time - FOR FAST QUOTES

## GERMAN SERVICE SHEET SPECIALISTS

Our connections are world-wide. We furnish any kind of German. European and Japanese service sheet or manual. Thousands of different sheets and manuals in stock. For any enquiries

DÖNBERG ELECTRONICS
Schoolmasters House, Rannafast,
Co. Donegal, Republic of Ireland.
Phone: 07548275

## SERVICE DATA-UK VCR \& CTV

Circuits + layouts or complete manuals Comprehensive lists inc. £1.00 Voucher redeemable on first purchase. Send 50p Cheque or P.O. (No SAE required) DATA-GO, 112 Ameysford Road, Ferndown, Dorset BH22 9QE

[^1]AERIALS
MULTI-OUTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full or trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane. Micklebring. Rotherham. (0709) 813419

SATELLITE TV RECEPTION EQUIPMENT

|  |
| :---: |
|  |  |

## METERS

## GEM METERS

We buy and sell TV slot meters Why not try our repair service?

Contact Mr Wolstenholme on: 0942826126

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Pcole) LTD. (0202) 683498.

## AVON METERS

$50 p$ or $£ 1$ TV meters
from E5.95 each plus V.A.T. (Discount for Quantity) We also repair and buy unwanted meters. Phone now.
Stoke Gifford, Bristol BS 12 6PT Tel. 0454776413

REPAIR SERVICE
AVO's OSCILLOSCOPES \& TEST EQUIPMENT repaired. Manuals available. J.R. COAD ELECTRONIC SER VICES. Phone 01-340 0230.

WANTED

## SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment. ADM Electronic Supplies Tel. 0827873311.
Wanted. Crown portable TV/Radio Model 5TV65R. With rechargeable battery and in good working order. Non-working for spares considered. Any information on spares for this monochrome 5 inch screen Jap receiver appreciated. Tel. 085-483-213 (Scotland)
RADIO \& TV SERVICING Volumes pre 1966 and past 1972. Oxford 735821

WANTED. Ex rental colour TV, any quantity. quick collection. Discretion assured. Cash paid. Sheffield 312832.

WANTED VIDEO TVs, portables. Cash paid, any quantity, fast collection. Television Direct, Manchester 061-788 8997

## SPECIAL OFFERS

FREE MEMBERSHIP to a new national electronics club. For details and a free pack of components worth over £10, send only £1 P\&P to Dept Tel, Woodside, Dowsett Lane, Ramsden Heath. Billericay, Essex CM11 IJL

## FOR FURTHER INFORMATION RING PAT <br> 01-261-5942




| TO ORDER | R S | E BACK PAGE | Rank 120 21.36 Pancl <br> NEW Ifil IHIORN（hassis with If \＆At NEW（iEC $20 \lambda X$ Pouer Supply Sulleh M1 Gomplete neu（iEC portalte chaswis MI？ <br>  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mithuthtia PY 3＋2all Tumer | ${ }^{\text {¢ }} 7$ |  |  <br> Find + Jungle pancl for（ EE （ $31,3 / 3 / 3135$ |  |  | Multi－Caps |
|  | ${ }^{6}$ | $ccc$ |  |  |  |  |
| M11． | \％ |  | Pethelsal．me or | 25\％ | \｛ $\{12.10 .10$ |  |
| Now exnol）Thern Spares | 54） |  | 「は 20．I／unit <br> Pe $3051.11 \mathrm{c}^{2}$ an pamel <br> be 713 1f pamel and ander |  | 67 51 | 350 |
|  |  |  |  |  | E7．（0） | －thern |
|  | \＆1．${ }^{\text {a }}$ | h55 | P＇ye 71．3 Chromel <br> Pyef helse：limehase panct with I OPMI | OFF | \＆ |  |
|  |  |  | Pye 7.31 frame Panel <br> Pic 731 （ Gumeremelbume |  | ［5．（1） |  |
|  |  |  |  | ALL | E5．00） | ${ }^{3} \mathbf{3}$ |
| xixal emberyence | ${ }^{5} 3$ |  |  |  | Elu， | Gillcap 7702511 |
|  |  |  | Pic（1）a／2s pancl <br>  |  | Eb．16） |  |
|  |  |  |  |  | ¢4． | （ax1 |
|  |  | Buth Iube Bane on panct |  |  | te．as） |  |
|  | ${ }_{\text {c }}$ |  | Mund RANK Chasu 127a NIW |  | E10．00） | あx¢ |
| （inlo |  |  | $\mathrm{NH} \cdot \mathrm{U}$（ig）Frame Pallel <br> NEW （ $\mathrm{H} / \mathrm{II}$ IF Pambl |  | citice | $\begin{aligned} & 50151 / 101375 \\ & =2 \times 12 x+5 / 25135 y \end{aligned}$ |
|  | low |  |  |  | E11．（10） |  |
|  |  |  | （is luner limit Pramel | －$-210 x \mid$ | 200200 |  |
|  |  |  |  |  |  |  |
|  <br> If＂Modd mill cel of SN741s |  | － | （is 6 Sluphing Pbu | － $11(10)$ |  |  |
|  |  | ${ }_{\text {cix }}$（hromia | 1／11x｜ | 25 p | （10） |  |
|  fank lube brace | \％${ }_{\text {¢ }}^{\text {¢ }}$ |  |  |  | ${ }_{10}^{119}$ | 2 c |
| 35M1 A pats | ¢i．sio | i，1，1．un Phlum |  | ¢ 7 M1／（x） |  |  |
|  |  |  | （ill Il Detecow |  | ${ }_{75 p}^{20}$ |  |
|  |  |  | $\begin{gathered} 1010 \\ \text { ixp } \end{gathered}$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  | Complete CWC 82.5 （ hisum fluth | $\begin{aligned} & \boldsymbol{y}_{10} p_{p} \\ & y_{p}^{10} \end{aligned}$ |  |  |  |
|  |  | 隹） |  | 边 | Sp | P673109 |
|  |  |  |  |  |  |  |
|  | cill | Pre llut me Iam | Silin7 |  |  |  |
|  |  |  | 人MxN R RANK If Panch |  | ${ }_{25 p}{ }^{\text {p }}$ |  |
|  |  |  |  |  |  |  |  |
|  |  | Ppla（ |  | 110 p | xalinceroler |  |  |
|  |  | （kyyy |  |  | 10 |  |  |
|  |  | C7tz RANK IF Pancl |  |  |  |  |  |
|  |  |  | A19815 |  |  | $\begin{aligned} & \text { Gilpp} \\ & \text { cit } \end{aligned}$ |  |
|  |  | I＇ve（ill lront pancl unth 1 ramaducer <br>  |  | C1． $12 \times$ |  |  |  |
|  |  |  |  |  |  | 316 Pomet Surplve fil Full Remanc |  |
|  |  | Pue to humen suitch mirtable f1．（M） <br>  |  |  |  |  |  |
| （is）Mains drupler |  |  |  | （ | ${ }_{10}$ |  |  |
|  | 11．25 |  |  |  |  |  |  |
|  | ${ }_{\text {Efint }}^{\text {Eint }}$ |  | 2Illicilic Poucr Panci |  | 310 |  |  |
|  |  |  |  | －4x｜ 3 an |  |  |  |
| 隹 | E1．$(1)$ |  | CV＇HPUSHBUTION ASSY wilh |  | 510 p | Mectillill |  |
|  | £1．10 |  |  | 111， 1175 | 160 |  |  |
|  | ${ }_{\text {Sin }}$ |  |  |  | 159 |  |  |
| As sachel a lsat |  |  |  |  | $\mathrm{cip}_{\text {che }}$ |  |  |
| （ill | 25p |  |  | ii 1 ＋ $1 \times$ | 15 p |  |  |
|  | \＆1．50） | 11） |  | R13EL $3 \%+4 \times$ | 15p |  |  |
|  | Mp |  |  | Shath | 210p |  |  |
| Meahers |  |  |  | $\pm(4)$ |  |  |  |
|  | ${ }^{1} 1.10$ |  |  | （2tur | 15 p | Hipexan siglial |  |
|  | 61，10） | \｜ $11 /$ K．unk |  | 33／214x | 21 p |  |  |
| N10．unn | ${ }_{50}$ | （1）Phurn | 1rcei Small 75 | $\underset{y}{4}$ | the | Infra Red |  |
| Ss，ith | 7 p | （1） |  | 20） | ${ }^{20 p}$ |  |  |
| 1 k ， 4 tum |  |  |  | $775(1)$ | $25 p$ |  |  |
| ${ }_{6 \times 3}^{104}$ |  |  |  | 2．1） 1 int | 15p | 1－1\％in（ep pexket． |  |
|  | 2 | （1） |  | ＂1tanx mare end | 2010 | Repaired liands |  |
| ¢xi | $\stackrel{4}{4}$ | 2llt cil |  | 22 ıй | $\sum_{21} \mathrm{ilp}_{\mathrm{p}}$ |  |  |
|  | \＆1，${ }_{\text {w }}$ |  |  | 1277， $4 \times 1$ | 150 | （110．（4） |  |
|  | （1．1．14） |  |  |  |  |  |  |
| －ritullat | \＆1． |  | Dmaxk 50 m | ＂11100） | $\operatorname{mp~}_{4}$ | Handects exthangeil |  |
|  | （1） |  | 510 | ＋7114xk | 6 sp |  |  |
| ${ }^{\text {x unhm }}$ |  |  |  | 47519 ${ }^{6}$ | 10 p | 815．16 |  |
| 3id．t ${ }_{\text {a }}^{\text {a }}$ |  | 1118 Pac 731 | ${ }_{\text {la }}$ |  | mip |  |  |
|  | 75p | 11117 | N14 | （10 $51515 \times 1$ |  | TOSIIIBA |  |
|  | oup | （1）？ | M心 | い115 5 ¢M | 11 p |  |  |
|  | 5 p | Rectix ${ }^{\text {R }}$ | 1V91 |  | 15 |  |  |
| hulis 15.014 | 1 |  |  | －III | ${ }_{15 p}$ |  |  |
|  |  |  |  |  | isp | 1 1．tidsel |  |
|  |  |  |  | 疗 | 15p |  |  |
| O11 | （10p |  |  | \％unk | ${ }^{20 p}$ |  |  |
| （11） 51 | 5 mp |  | and leady eram |  |  |  |  |
|  |  |  |  | （1023 | 15 p |  |  |
| 品洖 | lop |  |  | － 2 ， | 15 p |  |  |
| 以1\％ | （1ap | （iill mimit | k य |  | 15 p |  |  |
| 194134 | lap | kisil prulle tor tox |  | zanto－－${ }^{\text {c }}$ | \％10p |  |  |
|  | Sipr |  |  | zandip zunn | 14.9 |  |  |
| 318180 | tip | hcaul |  | and－－ 6 | 15p | Decil Re 12 |  |
|  |  | Rindil．｜uct | 20142020320 | 7515 | mp |  |  |
| （i） 1 M | 4th） | 人41d draw |  | Snill | ${ }_{0}$ |  |  |
|  | mim |  |  | 吅ごK1 | $1{ }_{15}$ |  |  |
| 矿樃1 | Sp， |  | （Small Typer）Havi）Stis | \％inikz | Sp |  |  |
| （13） |  |  | SRH1 | （ix） | ${ }_{5}^{110}$ |  |  |
|  |  | Puth | SRH | $17.10 / 5 \mathrm{hV}$ | \％ $0_{0}$ |  |  |
|  | $\lim _{\substack{\text { cha } \\ \text { min }}}$ |  | SREt | ｜N1心k！ | \％ 100 | G，1） |  |
|  | stp | lump | （1．k＋3 | ご极く | 10p |  |  |
| 139 | ${ }_{\substack{150 \\ 150}}$ |  | LRST | ¢ | 10 p |  |  |
| Ria | 210 | Mant | （R2032 H00 |  |  |  |  |
| Mill | ${ }_{1}^{190}$ |  | （V6 20.5 吅 |  | oup | （x）（12－2x｜5 |  |
| 139 \％ $18 \times 1$ | \％ 41 |  |  | arer Pram | ${ }_{\text {c }}^{2 \times 1}$ |  |  |
|  | Mil | Nut |  |  |  |  |  |
| $1{ }^{19}$ | $1{ }^{\text {lip }}$ | （haski） |  |  | 81．515 |  |  |
| （13） 35 | up |  | Gill Mam Sulch |  | Sllp |  |  |
|  | ${ }^{110}$ | Potuble | ${ }^{\text {a }}$（illy M Marn Swich |  | （2010 | K13Pues upply |  |
| 品 81 | ${ }^{110}$ |  | kis hammuwh |  | ci．（1） | （il（ intrad |  |
|  | ${ }_{20}^{2(10)}$ |  |  |  | 5 sp |  |  |
| 81 | limp |  |  |  | （\％sp |  |  |
| 818 ${ }^{\text {（x）}}$（1） |  | Plifiry |  |  |  |  |  |
|  | ${ }^{110}$ |  |  |  | ${ }_{7}^{75 p}$ |  |  |
| 10， 1102 | sip |  | Mialt Suntch Phlp lame Tpe laci |  | 75， |  |  |
| 防） | 24 p | A… ${ }^{\text {a }}$ | Heml |  | （6． ix）$^{\text {a }}$ |  |  |
| xan ： 75. ，mp | 110 |  |  |  |  | PIIIIIP： |  |
|  |  |  |  |  |  | （1．HTN）SET \＆24．（6） |  |
|  | ${ }_{20}^{2010}$ |  |  | IA（i） | ［11 | we have all parth for mity |  |


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| こら気 <br> 艺 $\stackrel{y}{\dot{E}}$ <br>  |  |  |  |  |  |
|  |  |  |  |  |  |
|  <br>  <br>  <br>  |  |  |  |  |  |
|  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |


[^0]:    PLEASE ENQUIRE FOR QUANTITY DISCOUNTS．
    WE WELCOME TELPHONE AND TELEX ENQUIRIES।

[^1]:    
    Thousands stocked Most Makes, Models, Types * Audio, TV, Video, Test, Amateur etc. LSAE $\star$ enquiries/quotation and FREE Review/ $\star$ price lists with details of our Unique Repair ${ }_{\star}$ and Data Guides, from Valves to Video's. MAURITRON (TV),
    $\star 8$ Cherry Tree Road, Chinnor, Oxon OX9 4QY.

