

 SERVICING•PROJECTS•VIDEO-DEVELOPMENTS

Servicing the Sharp VC9300 Surface-mounted Technology Rapid TV Fault Diagnosis Video 8 Signal Processing Test Report • VCR Clinic TV Fault Finding • DX-TV

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.

* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service
\star Also available with VHF Modulator.

Price of Kit

£70.00
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4 ")}$) app.
$£ 8.60$
$£ 3.90$
Optional Sound Module (6 MHz or 5.5 MHz)
Built \& Tested in Case including Sound Module
$\mathfrak{£ 1 0 8 . 0 0}$

SPECIAL TEST
 report Post/Packing $£ 2.80$
 'TELEVISION' Add VAT 15\% TO ALL PRICES
 DEC. 1982_

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE $£ 8.60$. BATT HOLDERS $£ 4.20$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P $£ 2.80$).
MK 4 (BATTERY) BULLT \& TESTED $588.00+£ 2.80$ P \& P. MK 4 (MAINS) BUILT \& TESTED $£ 68.00+£ 2.80 \mathrm{P} \& \mathrm{P}$. VHF MODLLATOR (CH 1 to 4) FOR OVERSEAS 55.75. EASII.Y ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

TELETEXT DECODER PANELS (TESTED)

Mullard VM6101 $£ \mathbf{3 0 . 0 0}$, Philips KT3, K30) $£ \mathbf{3 0 . 0 0}$, Texas XMII (TIFAX) $£ 28.00$ (untested $£ 5.00$) p.p. $£ 1.80$
THORN TX9 MK2/3, TX10, teletext
Mullard Decorder panel + Interface $\mathbf{£ 3 5 . 0 0}^{\mathbf{2}}$ p.p. $£ 1.80$ THORN TX10, PHILIPS G11 PRESTEL, TELETEXT
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{£ 3 8 . 0 0}$ p.p. $£ 2.50$

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC.
SPECIAL OFFER Mullard/Philips quality UHF modulator (audio \& video input) ex new equipment $£ 5.00$ p.p. $£ 1.00$.
PHILIPS G11 6 position touch tune channel selector units $\mathbf{£ 1 6 . 0 0}$ p.p. £1.80 (can replace earlier mechanical selector unit).
PHILIPS G11 PANELS (ested).
Power, Frame, IF, decoder $£ 18.00$ each p.p. $£ 2.00$. Scan $£ 28.10$ p.p. $£ 2.80$.
PHILIPS G11 PANELS ex rental (untested).
Power, Scan $£ 10.00$, Frame, Decoder $£ 5.00$ p.p. $£ 2.00$.
PHILIIS G11 Ultrasonic Non Text Replacement Handset. New. £22.50 P.R. £1.50)

PHiLIIS HANDSETS Ex rental, Teletext, Untested. KT3, K30, CTX, KT4, K35 etc $£ 3.50$ P.p. $£ 1.00$.
FERGUSON Video Manual $3 \mathrm{~V} 24 \mathrm{£8} .50$ p.p. $£ 2.00$
COLOUR MANUALS P.p. 50 p
PHILIPS G11 33.50 , KT3 83.50 , CTX-E 11.50 , CTX-S $\mathbf{1 1 . 5 0 .}$
THORN REMOTE CONTROL HANDSETS
 £18.00; TX9, TX10 Intra red Teletext $£ 20.00$, p. P. £ $£ 20$.
TX9 Ulltrasonic remote handset transducer $£ 2.00$, switches 3 for $\$ 1.50$ p.p. 5% p. TX9/TX10 Teletext interface panel (1524) £5.00 p.p. 80 p .
THORN TX9 Ultrasonic Remote/Control/Receiver panels. $£ 8.50$ p.p. $£ 1.50$. THORN TX10 Series Facia Control Panel with 8 position Channel Selector $\$ 6.50$ P.p. $£ 1.50$
TX9, tX10 Facia control panel incl. infra-red remote receiver $£ 8.50 \mathrm{p} . \mathrm{p}$. $£ 1.80$
THORN TX9, TX10 Saw Filter IF Panel. £5.00 p.p. 80 p.
TX9, TX10 Remote \& tuning control panel (1515) $£ 10.50$ p.p. $£ 1.80$. SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. £28.50 p.p. £1.20.

PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ p.p. $£ 1.00$ PAL ENCODER KIT (RGB to Video) $£ 18.50 \mathrm{p} . \mathrm{p}$ £ $£ 1.30$.
CROSS HATCH UNIT KIT, Acrial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $\mathbf{£ 1 2 . 0 0}$ p.p. 8 .p. (Alum. Case $\mathbf{5 2 . 9 0} \mathrm{p} . \mathrm{p}$ A. 40 . ADDITIONAL GREY SCALE KIt $£ 2.90$ p.p. 45 p .

UHF SIGNAL STRENGTH METER KIT £22.00 Alum. Case £2.90. De Luxe Case $£ 8.60$ (Built \& Tested $£ 48.00$) p.p. $£ 2.30$. with Case. Panel Meter Indicator - can be adapted for with Case. Panel Meter Indicator - can be adapted for latest CRTs $£ 29.50$ P.P. 52.80 .

BUSH A823 Convergence, Time Base Panels $\mathbf{£ 5 . 0 0}$ each p.p. $£ 1.80$
GEC 2110 PANELS Sound $£ 2.50$ (tested) p. P. 80 p
GEC 20AX Line Time Base 18.00 p.
ITT CVC30 SERIES. Convergence \& Purity Control Panels, 85.00 p.p. £1.50.

THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors etc. $\mathbf{£ 3 . 0 0} \mathrm{p}$.p. $£ 1.80$.
THORN TX9 Pancis salvaged ex factory for spares incl. Electronic \& Mains Transformers. $\mathbf{8 8 . 5 0}$ p.p. $£ 3.00$.
THORN TX9 Panels ex factory salvaged complete cond. $£ 20.00$ p.p. $£ 3.00$ THORN 8000, 8500,8810 IF Decoder Panels Tested $£ 10.00$ p.p. $£ 2.30$ THORN $8000 / 8500$ iF/Decoder Panels salvaged $£ 3.20$ p.p. $£ 1.80$
THORN 9000 IF/Decoder Panel $£ 6.00$ p.p. $£ 2.30$.
THORN 9000 IF/Decoder Panels Salvaged. For spares $£ 2.50$ p.p. $£ 1.80$. PHILIPS G\&G9 IF/Decoder Panels for small spares incl ICS $£ 2.50$ p.p. £1.60. PHILIPS G8 Line Driver Panel incl. Equalizing Coil. $£ 1.00$ p.p. 60 p. GRUNDIG: 8630 Series Varicap Tuners $\mathbf{~} 5.00$ p.p. $£ 1 .(0)$.
U321 VARICAP $\mathrm{E}_{2} 80 \mathrm{p} . \mathrm{p}$. 80 p . Makers Controls HITACHI 4 POSN £9.50, DECCA 4PSN $£ 5.80$, 6 PSN $16.80 \mathrm{P} . \mathrm{P}$. 8 (p. etc.
BUSH "TOUCH TUNE" T20/22 Series Fascia Unit $£ 7.50$ p.p. $£ 1.50$. VARICAP UHF VHF ELC 20015 £ 9.80 p.p. $£ 1$ (0).
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 pessition $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$. TV SOUND IF Pancls $\mathbf{E 6 . 8 0}$ p. p. fi. 100°.
LOPTS New and guar. P/P $£ 1.50$, Bobbins 80p.
FERG., HMV, MARCONI, ULTRA

1590), 1591, 1612, 1613, 1712	¢4.80	R.B.M. T20, T22	. 80
FERCUSOS 3787 (Normende)	¢9.80	R.B.M. T20, T22 Bobbin	55.60
THORN 16(x), 1615, 1690), 1691. 179 (decCa Bradford (state Mod No	
THORN 3000/3500 SCAN. EHT	E6.90	DECCA ${ }^{\text {(}}$ (10 (0)	
THORN 8(00) , 8500, 8880	f12.80		
THORNYOOI O\% $\%$ do	£12,90	GEC2110 series	110.60
THORN TX9	122.50	ITTCVE 5toy. CVC20.	¢9.80
THORNTXIO	£16.50	[TTCVC25, CVC30 ${ }^{\text {series }}$	
SPECIAL OFFER		ITTCVC45	$\underline{9} .80$
DECCA 1700, 2001, 2120. 2401 , 2420	£ 5.80	PYE 725 (¢ $^{\circ}$) 731 to 741.	¢9.20
GEC2114]/Junior Fineline	¢2.80	PHILIPS G8	c8.80
Plililis' 320	£2.80	PHILIPS G9	¢10,8
RBMA823	¢4.80	PHIIIPS GII	¢18.50
GEC2128, 2040.2100	44.80	PHIIIIPS KT3	19.80
PYE691.7 chassis type only	${ }^{65.00}$	PHILIPS K30, K35	f18.50
PYE 713, 715.PHILIPS 570,571	¢6. 80	PHILIPSCTX-E	¢21,00
PHILIPS K9.	¢6.80	PHILIPSCTX-S	¢21.00

PYE 691.7 chassis type only
PYE 713.715. PHILIIS 570.571
PHIIISSK K

RIPLERS Full range available. Mono \& Colour
SPECIAL OFFER TRIPLERS
THORN $30(0) / 3500$) $£ 2.50$, PYE $725 / 731$ (4 lead) $£ 1.50$ p.p. $£ 1.20$
THORN 15005 Stick £1.50, 15003 Stick £1.50 p.p. 80 p
6.3 V CRT Boost Transformers for Colour \& Mono $£ 5.90$ p.p. $£ 1.40$. CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
Goxds available if in stock imme diately over shop counter (Mail order between 3 days and Goxds available if in stoxk imme diately over shop
I week from receipt of order). ADD VAT 15%.

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead Brit. Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit Rail Stn. (St. Pancras, Bedford) Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT
PLEASE ADI VAT 15% TO ALL PRICES INCL P+P

COPYRIGHT

(C) IPC Magazines Limited, 1987. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 16$ in the UK, £19 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4.50$) and indexes (vols. 30-35 only, 75p each) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add 60p for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

QUERJES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

453 Leader

454 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad. Details of a high-pass CB filter.
459 The Return of Madame Martine Les Lawry-Johns A family of fortune tellers add to Les's troubles.
460 Servicing Mechanical VCRs, Part 3
Mike Phelan
Capstan assembly and pinch roiler problems.
462 Letters
464 Rapid TV Fault Diagnosis
George Wilding
Hints on the speedy diagnosis of TV faults, with the recommendation to employ dynamic testing where practical.
465 Using the Eurodecoder Panel Peter Marlow, B.Sc.(Hons.), C.Eng. How to use surplus panels from the Philips KT3/K30 chassis in the Television low-cost teletext decoder project.
466 Servicing the Sharp VC9300
David Botto
This no-frills VHS machine became a best seller.
Guidance on the various fault conditions you may meet.
470 Faults in CCTV Systems, Part 3
Peter Graves
Concluding instalment in this series on some of the sorts of faults that can arise with CCTV installations.
472 TV Fault Finding
Reports from R.T. Rees, Christopher Holland, Steve Leatherbarrow, Philip Blundell, Eng. Tech., Martin Pomeroy, Les Grogan, Michael Dranfield and Roger Burchett.
474 Test Report
Eugene Trundle
The Thurlby/RS 15V/4A bench power supply proves to be an extremely useful tool in the video/TV workshop. It can even be used as a high-impedance digital voltmeter.
478 The 8 mm Video System, Part 2
Eugene Trundle
Chroma signal processing in the record and playback, including trick, modes. Also luminance signal processing and the flying erase head system.
Next Month in Television
Surface-mounted Technology
Geoff Lewis, B.A., M.Sc.
S-M technology enables compact, high-performance
PCB assemblies to be produced. Production methods and a look at servicing aspects.
483 Teletopics
News, comment and developments.
484 VCR Clinic
Reports from Eugene Trundle, Roger Burchett, Steve Leatherbarrow and Philip Blundell, Eng. Tech.
486 Service Bureau
487 Test Cast 293
OUR NEXT ISSUE DATED JUNE WILL
BE PUBLISHED ON MAY 20

N1270	12.20	AN7146	$\underline{2.20}$	HA1199	\＄1．85	LA111	50.95	M5106 ${ }^{\text {P }}$	0.75	（5） 51	E6．75	1A7628P	2．35		${ }_{50.60}$				
203	$\underline{2} 20$	AN7154	81.90	HA1306W	£1．80	LA1140	52.20	M5134P	$\ldots 3.25$	STK5720	E6． 80	TA7640AP	81.75	2 SA103					
AN210	51.75	AN7156N	$\underline{2} .50$	HA1319	12.50	Laszor	${ }^{50.85}$	M5155P	¢1．85	STK5730	54.25	TA76418P	51.95	2SA329	${ }^{50} .40$				
AN211A	$\underline{2.30}$	AN7158N	E3． 25	HA1339A	E1．85	La1222	51.00	M51102L	\％3．95	STK7308	25.95	TA7658P	51.75	2SA350	$\begin{aligned} & 00.60 \\ & 50.40 \end{aligned}$				
AN2140	81．80	AN7160	$\underline{53.75}$	HA1366W	${ }^{51.80}$	LA1230	\％1．50	M51513L	${ }^{\text {E1．}}$ 1．80	STK825011	110.75 55.80	TA76688P	¢1．98	2SA539					
AN2178	52.20	AN7161	$\underline{53.75}$	HA1366W	$\underline{51.85}$	LA1240	¢1．95	M51514AL	£1．95	STR441	E5．80	TA7688P	$\underline{5.95}$	2SA562		LONDON W2 1LGTel： $01-723$ 9246 Answerthone			
AN228W	$\underline{92.90}$	AN7168	92.75	HA1367	${ }^{\text {cx．}}$ ． 25	LA1365	¢1． 50	M51515EL	9.70	STP2012	77． 20	UPC16C	¢1． 95	2SA643	50.40 50.70				
AN234	${ }^{55.95}$	AN7178	$\underline{72.95}$	HA1368	${ }^{51.90}$	LA1368	$\underline{1} 50$	M51516L		STR4211	87.20	UPC20C	\％ 2.50	2SA733	$\begin{aligned} & 00.35 \\ & 00.95 \end{aligned}$				
AN236 ${ }^{\text {A } 2390}$	${ }_{54} 2.50$	AN7213 ${ }_{\text {AN7223 }}$	$\underline{3.20}$	HA1368R HA1372	${ }^{51.95}$	LA1387 L1460	${ }^{3} .60$	M51517L	$\underline{9.80}$	STR6020	97.20	UPCJSAIC	$\underline{52} 20$	2SA768 2SAB99		Tel：01－723 9246 （Answerphone）			
$\begin{aligned} & \text { AN2390 } \\ & \text { AN240P } \end{aligned}$	$\begin{aligned} & £ 4.20 \\ & 81.50 \end{aligned}$	$\begin{array}{\|l\|l} \text { AN7223 } \\ \text { AN7273 } \end{array}$	${ }^{23.95}$	$\begin{aligned} & \text { HA1372 } \\ & \text { HA1374 } \end{aligned}$	${ }^{93} \mathbf{8} .50$	La1460 La2100	$\underline{52.50}$	M515182AL	$\underline{51.90}$	TA7050P	${ }_{c}^{\text {c1．}} 818$	${ }^{\text {UPCC561C }}$	12.30 $\$ 2.50$	2SAB99	［00． 80	VIDEO BELT KITS		LATE EXTRA	
AN241P	51.50	AN7310	E1．20	HA1371	$\underline{\%} 20$	LA3160	51.50	MB3705	£1．80	TA7054P	\％ 20	UPC566H	50.75	2 SA1015	$\ldots 0.35$	AKAI VS－2EG／5EG（5）¢2．00 AN5430 £2．95			
AN247P	$\underline{5} .5$	AN7311	¢1．20	Ha1388	53.50	LA3161	$\underline{2} 50$	MB3712	\＄1．50	TA7066	¢1．50	UPC573C	2.50	2 SA1102	9.20	AKAI VS 9700EG（6）	$\underline{\mathrm{c}} .25$	AN7140	$E 2.20$
AN259	$\underline{5} .75$	BA301	¢0． 80	HA1389	$\underline{5} 20$	La3201	${ }^{50} 0.95$	MB3713	¢1．60	TA7070P	81.75	UPC574J	50.65	2 2SA103	\％ 2.2	FISHER VBS 7000 （6）	¢． 70	UPC1365C	¢3．60
AN260P	0.20	BA311	¢0．95	HA1389R	$\underline{320}$	La33200	20． 65	M83722	$\xi^{53.50}$	TA7104P	$\underline{81.95}$	UPC575C	¢1． 00	2SA1105	5.75	FISHER VBS 9000 （3）	$\underline{51.50}$		
AN262	$\underline{\$ 1.60}$	8A313	50.80	Ha1392	$\underline{9250}$	L43301	81.30	M83730	$\underline{2.50}$	TA7108P	${ }_{\text {c1 }} 50$	UPC576H	9	2SA1106	$\underline{8.75}$	HITACHI VT5000（7）	$\underline{E 2} 20$	UPC1394C	$\underline{1.95}$
AN271A	$\underline{2} .50$	BA318	51.50	ha1394	92.95	La3350	${ }^{21} 1.30$	M83731	¢3．50	TA7109AP	$\underline{7} 20$	UPC587C	E1．30	2S854	50.70	JVC HR3300／3600 ${ }^{\text {9）}}$	$\underline{22.50}$	SAA1059	8.95
AN274	$\underline{2} .75$	ba401	¢0． 80	Ha1397	$\underline{9} .75$	LA3361	E1． 20	M83756	5.60	TA7120P	¢0．75	UPC592	¢0． 95	2 2875	50.60	JVC HR3360／3660（7）	$\underline{52.50}$	SAA1250	13.25
AN295	E3．60	BA402	50.80	Hal398	9.75	LA3370	9.80	M88719	¢3． 85	TA7122AP	50.90	UPC595C	$\underline{7.20}$	2 S8341V	0.75	JVC HR7700（3）	9.70	SAA1251	$£ 4.95$
AN301	53.50	BA403	$¢ 1.95$	HAT457w	51.75	LA4030P	52.00	S 40W	£10．50	TA7130P	¢1． 00	UPC1001	$\underline{5} .20$	258405	50.80	PANASONIC NV333（5）	c1． 90	SAA1272C	¢3． 25
AN302	${ }_{5} 9.35$	BAS11A	¢1．80	HA1112W HA11211	${ }_{\text {cis }}$	LA4031P	$¢ 1.95$ c1．	Sl－1125	${ }_{8}^{7} 9.50$		$c 1.00$ 81.00	UPC1009C	${ }_{51.95}$	2S8471	${ }_{8.50}$	PANASONIC NV2000（5）	¢1． 90	SAA5000	£1．50
AN303	${ }_{c}^{53.75}$	BA514	¢1．90	HA11211 HA11215A	$\underline{52.30}$	LA4032 ${ }^{\text {La }}$	$\underline{81.90}$	STKK013	77.25	TA7139P	$\underline{91.50}$	UPC1025	1.95 7.30	${ }_{2} 58492$	00.75	PANASONIC NV7000（5）	$\underline{17.75}$	SAA5010	£4．50
AN313U	$\underline{\$ 25}$	B4526	93.50	HA11219	$\underline{93.25}$	La4100	51.20	STKO14	97.25	TA7140P	81.75	UPC1026	\％1．00	2 SB5090	21.95	PANASONIC NV8600（7）	$\underline{\mathrm{E} .25}$	SAA5020	¢5．75
AN315	$\underline{2} .30$	BA527	57.60	HA11221	$\underline{9} .75$	LA4101	$\underline{1} 1.00$	STKO15	${ }_{5} 5.20$	TA7142P	\％． 95	UPC1028	50.90	${ }^{2}$ 2S8536	${ }_{50} 0.95$	SANYO VTCS500（3）	91.50	SAA5030	£6．50
AN316	£3．75	bas32	£1． 60	HA11223W	${ }^{93} .80$	LAA102	c1． 8	SIK020	¢5． 30	TA725P	$\underline{52}$	UPC 1032	$\stackrel{51.95}{ }$	2S856	${ }_{50} \mathbf{2 1 . 5 0}$	SANYO VTC9300（4）	$\underline{2.75}$	SAA5040A	£8．50
AN318	¢4．95	8A536	$\underline{5.40}$	HA11226	54.50	La4112	81.75	STK025	77．50	TA7152P	$\underline{5} .50$	UPC 1035C	\＄1．95	2SB698	00.40	SHARP VC6300（5）	$\ldots 2.25$	SAA5040B	¢10．50
AN33	$\mathfrak{T} .95$	BA547	$\ldots 2.50$	HA11227	$\underline{2} 20$	LA4 120	2.95	STK040	58.70	TA7157P	51.65	UPC1037H	81.25	2S8755	23．50	SHARP VC7300／700	\％． 80	SAA5042	¢8．00
AN340P	£1．50	BA612	£1．80	HA11235	$\underline{2 .} 30$	La4125	$\underline{20}$	STK043	¢10．50	TA7176P	$\ldots .75$	UPC1156	$\underline{\square} .55$	2 SC372	50.35	SHARP VC8300（5）	$\underline{\%} .00$	SAA5050	¢7．50
AN360	51.30	ba631	¢5．75	HA11244	¢4．60	La4 126	$\underline{\square} \mathbf{7}$ 60	STK077	26．50	TA7193P	9.00	UPC115	50.95	${ }^{25 C 380}$	50.35	SHARP VC9300	E1．80	TDA1908	\＄1．75
AN362L	91.60	BA656	¢4．50	HA1401	57.80	LA4140	${ }^{50.80}$	STK078	¢6．75	TA7202P	${ }_{5} 1.50$	UPC116	¢1．30	2SC458	50.30	SONY SLT7MET7（6）	52.00	TDA2653A	£5．20
AN366 ${ }^{\text {a }}$	¢1．70	baba 3	¢4．50	HA11423	¢4．75	La4160	9.40	STK080	${ }^{7} 75$	TA7204P	c1． 75	UPC117	${ }_{c 1.60}$	2SC461	${ }_{50.35}$	SONY SLC7／J7（6）	92.00	TDA3505	¢4．75
AN374P	$\underline{2} .20$	BA847	9.75	HA11440A	$\underline{3.95}$	LA4170	\％ 3.5	STK082G STK086	7.75	ta7205AP	81.75 81.00	UPC117	¢1． 50	2SC503Y	50.70	SONY SL800／8080（6）	$\underline{2} .50$	TDA3560	50
${ }_{\text {ANG610 }}$	${ }_{51}^{51.80}$	BA853	¢7．50	HA11701 HA1703	${ }_{84.50}$	LA4929	${ }_{81} 1.95$	STK430	55.50	TA7207P	81.75	UPC1176C	81.75	2SC536	0.35	TOSHIBA V5475（6）	$\underline{2} .20$	TDA3651	$\underline{2.95}$
AN6 12	¢1．80	baistof	$\underline{1} .75$	HA＋1704	25.20	La4200	91.50	STK431	${ }^{\text {E5 }}$ ． 95	TAZ208P	81.75	UPC1177H	¢1． 60	${ }^{25 C 537}$	${ }^{2} 0.35$	TOSHIBA V7540 5	$\underline{52.25}$	TDA4431	¢2． 25
AN5033 AN5 265	¢5． 25	ba1330	¢1．75	HA11705 HAT1706	${ }_{\text {cter }} \mathrm{E6.75}$	La4201	${ }^{¢ 1.60}$	STK433 STK435	55.	TA7210P	${ }_{5}^{52} .50$	UPC118182	c1． 10 $\mathbf{c 1} 10$	2SC732	¢0．35	TOSHIBA V8600（6）	¢1．80	TDA4600	2.95
AN5510	$\underline{\mathrm{E}} .75$	bat360	¢1． 80	HA11710	93.75	La4230	$\underline{725}$	STK436	E5．	TA7215P	E2． 30	UPC118	$\underline{5} 20$	2SC733	50.35				
5620X	9.50	BA5102A	$\underline{\$ 2} 75$	HA11711	$\underline{89} 50$	LA4250	$\underline{\$ 2.75}$	STK437	E6． 5	TA7217AP	81.60	UPC118	F2． 50	$2 \mathrm{SC8} 2$	50.30	－		2－132 Volts	
AN5701	¢1．80	BA5406	93.20	HA11713	¢6． 50	LA4420	E1． 60	STK439	55.5	TA7220P	9.50	UPC118	50.90	$2 \mathrm{SC840}$	${ }^{51.50}$	\％\％Nกำ\％			
AN5722	¢1．60	BA6137	$\underline{\$ 2} 75$	HA17174	¢5．95	La4422	$\underline{\$ 1.40}$	STK441	c7． 0^{6}	tafz22ap	c1． 30	UPC118	51.75	2Sc900	$\mathfrak{0 . 3 5}$				
AN5730	¢1．85	BA6209	$\underline{93.75}$	HA11715	${ }^{\text {c } 6 . ~} 25$	LA4430	$\underline{\$ 1.40}$	STK443		TA7223P	$\underline{7} 30$	UPC1215	81.35	${ }^{251929}$	0.35	\cdots		Cassetie	
AN5732	¢1．85	BA6304	$\underline{2} .20$	HA11716	¢4．75	L44440	9.50	STK457	${ }^{68} 58$	TA725P	${ }_{\text {ç．}} 20$	UPCC1225	${ }_{5}^{2} .20$	2Sc103	${ }_{64.75}$		\sim		
AN5753	¢1．	CXO642	EBP^{50}	HA17 HA117	${ }_{54} 5$	LA44	9.75	STK461	${ }^{76.50}$	TA7227P	$\underline{5} 20$	UPC1230H	5.50	2SC1061	$\underline{\$ 1.20}$	48	Ste		
AN6310	$\underline{56.25}$	CX0658	$\underline{5} .95$	HA11727	c9． 50	LA4461	¢1．81	STK463	$\underline{E 1.40}$	TA7229P	£3．25	UPC1263C	$\underline{52} .50$	2SC1096	50.70		Auto	everse	
AN6341N	£4．00	CX	9.75	HA11745	$\underline{59.00}$	LA4500	$\underline{9} .60$	STK465	c3． 50	TA7230P	c1． 95	UPC 1277\％	$\underline{0} .75$	2SC136	$\mathfrak{N 0 . 3 5}$				
344	A	cx	12	HAT1747	c9．50	LA4505	$\underline{7} .80$	STK501	cc． 25	TA7232P	0.95	UPC1278	$\underline{5} .75$	${ }_{2} \mathrm{SC1} 1815$	${ }^{5} .45$				
50	$\underline{7}$	CX101G	E． 26	HA11747A	29.50 	La455	${ }^{24.25}$	STK002 STK002	c． ci	TA7241A	\％2．95	UPC135	c1． 20	2SC19	${ }_{\text {c }}$	W		ERAMIC	LTERS
ANNG360	${ }^{2} 4.50$	Cx130	54.75	HA11750	${ }_{55}$	La5112	c1． 85	STK0039	c4．75	TA7270P	5.75	UPC135	$\underline{5} .00$	2SC1957	§0．80				
AN6362	¢5．50	CX136A	$\underline{77.50}$	HA17751N	c8	LA64580	1.	STK004	¢6． 25	TA7310	¢1．85	UPC136	52.20	2SC1969	1.75			MB	
	F7．50	CX143A	$\underline{57.50}$	HA11753NT	c8．50	La7016	$\underline{5.75}$	STK0049	cr． 50	TA7312P	51.50	UPC13781	$\underline{5} .40$	2SC2078	$\ldots 0.95$	ふ00	S		． 35
AN6 387	55.9	CX157	¢4． 25	HA11758NT	${ }^{18} .50$	LA7215	9.75	STK0059	77	TA7313	91.50	UPC138	¢1． 10	${ }^{2} \mathrm{SC}$		以以포엉			
		Cx158		HA1176	2.50	La	ct	STk0		Ta	5	－	G． 50	S	c1． 95				
AN6677		Cx161A	${ }_{9} 9.50$	HA11788 HA11816	${ }^{2}$	LA7	${ }^{1}$	STK20	55.	TA7317P	$\underline{9} .75$	UPC1391	51.50	2SC25	${ }^{1}$		포 CDA	6．5MC	
AN6873	${ }^{4}$	Cx162	33.95	HA11828NT	59.50	LA7801	$\underline{2.95}$	STK2129	¢6．75	TA7324P	$\underline{5250}$	UPC1403C	E5．75	$2 \mathrm{SC25}$	$\underline{2}$				
AN6884	$\underline{2} .75$	CX170	26.75	HA12001W	c6． 50	LA7806	F9．75	STK2230	6． 50	TA7325P	$\underline{1.00}$	UPC1420Ca	¢6．50						
105	$\ldots 2.30$	CX181	． 75	HA12002	2.95	LA7808	$\underline{3} .95$	STK3042	${ }^{56.50}$	TA7328AP	$⿳ ⺈ ⿴ 囗 十 大$	UPC 1458C	${ }_{\text {c\％}}$	TDAT20	${ }^{51} 50$	curies invited for		S．	
110	¢1．50	HA1124	92.75	HA12017	2． 75	181287	$\underline{7} 7$	STK4060	． 50	TA7331	\ldots	UPC1533HA	${ }^{2} .75$	TO			，		
11	E1． 50	HA1125	． 75	HA12035	¢9．50	181405	${ }_{7} \mathbf{7} .95$	STK419111		TA7607AP	$\underline{\square}$	UPC 45588	${ }_{50} .90$	TDA20	$\underline{7} 20$	MS DESP	HED W	HIN 48 HOUR	
7114E	¢1．75	HA1137 HA1144	c1． 75 ¢4． 25	HA12038 HA12413	$\underline{26.75}$	LC7120	ma^{50}	STK4332	55.75	TA7608CP	¢3． 95	UP0151	Es． 75	toazo	$\underline{E 2.75}$	ase add 60p post a	no	en add 15\％	tote
AN7116		HA1151	22.50	HA13001	2.95	LC7130	$\underline{5} .50$	STK4392	7.50	TA7609P	$\underline{9} .70$	UPD45146	9.50	TOA200	51.50	Calr	by appoi	ment	
20	¢1． 50	HA1156	51.20	HA13402	4.95	LC7131	53.75	STK5211	． 75	1 A	c3． 20	X0042CE	$\underline{72} 2$	toaze20	¢1．40	opening times toam	r－5pm．M	on－Fri，9－12 Sas	
AN7130		HA1167 HA1196	${ }_{c 1}^{91.75}$	HA13403 HA13430a	¢4．50	LC7136 LC7137	${ }^{8} \mathbf{8} .75$	SIK5421 STKS422	¢6．75	ta7614AP TA7617AP	${ }_{\square 2.50}$	X0077GE $\times \mathbf{0 0 9 2 C E}$	${ }_{56.60} 9.95$	TDA3562A	¢5．50	USNACCESS ACCEPTED	MIN．	LEPHONE OR	£5．00

Telegen－1

PRICE E18．35（Inc．VAT） ＊EXCEPTIONALLY LIGHT AND DURABLE －POCKET SIZE FOR OUTSIDE SERVICE ＊PP3 BATTERY POWER SOURCE ＊FIVE DIFFERENT TEST PATIERNS FOR COLOUR \＆MONO N ＊CROSSHATCH GRID＊dot matrix ＊WHITE RASTER
＊HORIZONTALS＊VERTICLES ＊ 3.5 mm JACK SOCKET FOR OPTIONAL 3．5mm
P．S．U．
A lightweight，extremely portable and versatile pattern generator for blackwhite and colour T．V．alignment and service at the customer s home．At the tum of a switch， the generator can provide five essential test patterns for correct installation，fast checks and repairs．Pattern stability is first class and compares favourably with other
more costly bulky generators only suitable for bench work．The generator is pocket more costly bulky generators only suitable for bench work．The generator is pocket
size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams．Switched 3.5 mm jack socket allows use of external power supply with battery in situ．

Telegen－2

PRICE $£ 34.45$（Inc．VAT）
＊EXCEPTIONALLY LIGHT \＆DURABLE
＊COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
＊RED RASTER＊GREEN RASTER
＊bolour basters
＊3．5 mm Jack socket for p．S．U．
＊PROVIDES UHF SIGNAL APPROX．
CHANNEL 35
Telegen 2 is a colour bar

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective，stable and durable．It is the perfect compliment to Telegen 1，giving colour bars arranged in the following sequence：white，yellow，cyan，green，magenta，red， blue and black．The unit provides a signal in the UHF band approx．Channel 35 and
requires a supply of 14 to 18 volts D．E．

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE £4．55（inc．VAT）
ALL ITEMS POST AND PACKING E1． 44 （Inc．VAT）
All goods should be delivered within 4 working days．
32 TEMPLE STREET，WOLVERHAMPTON WV2 4AN．TEL：（0902） 29022
（U．K．ONLY）

MAKE YOUR INTERESTS PAY！
 Train at home for one of these Career Opportunities

More than 8 million students throughout the world have found it worth their while！An ICS home－study course can help you get a better job，make more money and have more fun out of life！ICS has over 90 years experience in home－study courses and is the largest correspondence school in the world．You learn at your own pace，when and where you want under the guidance of expert＇personal＇ tutors．Find out how we can help YOU．Post or phone today for your FREE INFORMATION PACK on the course of your choice．（Tick one box only！）

GCE over 40 ＇ 0 ＇\＆＇A＇level subjects
Name：
Address：
P．Code
International Correspondence Schools
Dept．EGS57，312／314 High St．，Sutton，Surrey SM1 1PR．Tel：01－643 9568 or 041－221 2926 （both 24 hours）．

HAMEG OSCILLOSCOPES

HAMEG are Europe's top selling DUAL TRACE OSCILLOSCOPES. Select from four superb models. All incorporate a useful COMPONENT TESTER. Size - all models $-285 \mathrm{~mm} \times 145 \mathrm{~mm} \times 380 \mathrm{~mm}$. Clear displav $8 \times 10 \mathrm{cms}$. HM203-6 20MHz Standard FREE Securicor Delivery
 SPECIFICATION - Bancwoth OC-20MHz

- Sens. Cni. Ch2. $2 \mathrm{mv} / \mathrm{cm}$
 Acive TV Sinc. Sep. - Inver both channeis
- Calibrator
- Palbs mator

Price $£ 314.00+£ 47.10$ V.A.T, Including two probes

FREE Securicor Delivery
HM204-2 20MHz Multi-function

HM205 20MHz Digital Storage FREE Securicor Delivery SPECIFICATION

- Ogqtal Storage
- Analopue Real Time (Same as 203-6) - Bandwarthoc. 20 OMHz
 - Activ TV Sinc. Sep
- $2 \times 1 \mathrm{KStragage}$
- Storage Fance $1 \mathrm{~ms}-5 \mathrm{~s} / \mathrm{cm}$ - Vanabe hold - Calispatar mant

Price $£ 498.00$ teares ncluding two probes

B.K.'s CRT TESTER-REJUVENATOR

Tests and rejuvenates blue, green \& red guins separately. Fitted with delta and
PI.L. sockets. Compact size $120 \times 65 \times 60$ PI.L. sockets. Compact size $120 \times 65 \times 60$ mm. Supply 240 V AC

Price $£ 32.00+£ 4.80$ V.A.T.
B.K.'s REVOLUTIONARY DYNAMIC 'LOPT' TESTER

Revolutionary L.O.P.T. tester. Operatos In dymamic mode which actuaty tests the without de soldering or removal. Size $75 \times 100 \times 40 \mathrm{~mm}$. Supply 240 V AC

Price $£ 25.99+£ 3.90$ V.A.T.

THANDARSC110A PORTABLE OSCILLOSCOP

Only $21 / /^{4}$ thick Fils in a brief case

- Sens. 10 mv
- Bandwidth 10MHZ
 accessories
* Full trig. fac. inc. TV frame etc * Battery or mains adaptor

Price $£ 195.00+£ 29.25$ V.A.T. Carry Case $£ 6.25+$ โ0.93 V.A.T Ma

DIGITAL LCR METER

* LCDDisplay
* 18 Ranges
- Inductance $1 \mu \mathrm{H}-2 \mathrm{H}$
* Capacitance $1 \mathrm{pf}-200 \mu \mathrm{f}$
- Resistance 1 ohm-20Mohm
* High acuracy

Price $£ 85.00+£ 12.75$ V.A.T

INSULATION TESTER 500 V

Electronic battery operated
Measuring Voltage 500 VDC
Measuring Range
0.100 Mohm

Centre scale 2Monm
Price $£ 65.00+£ 9.75$ V.A.T.

LEADER LCT910-A CRT TESTER REJUVENATOR
Our top selling instrument is designed to readily test the various characteristics and rejuvenation of both colour and BNCRT's Tests for shorts and leakage between electrodes.

- Tests cathode emission characteristics - Separately checks condition of guns. - Removal of shorts and leakage between electrodes.
* Checks heater warm-up characteristics - Rejuvenation of low emission cathodes with automatic timing.
- Super rejuvenation with manual control. - Complete with tube base adaptors. - Size H230mm W330mm D120mm.

SADELTA FIELD STRENGTH METER TC-402
THE SADELTA FIELD STRENGTH METER TC-402 has been designed to measure the signal levels delivered by the antenna to a TV or FM receiver, in order to test the perf of the antenna and evaluate the best conditions during instalataion etc. To ta measurements, the
FEATURES
FEATURES

* Covering FM and all TV bands (UHFNHF) including CATV freq.
* Digital tuning display (3 digits) for direct frequency readout.
* Accurate 10 turn tuning potentiometer.
* Built-in loudspeaker enables monitoring of sound in AM/FM.
* Meter measurement in voltage and dB from $20 \mu \mathrm{~V}(26 \mathrm{~dB} / \mu \mathrm{V})$.
* Continuity tester 0-500 ohms
* Fully portable (battery)
* Sturdy carry case.

$$
\text { Price } £ 249.00+£ 37.35 \text { V.A.T. }
$$

SADELTA COLOUR PATTERN GENERATORS THE SADELTA RANGE OF MAND HELD COLOUR PATTERN GENERATORS Is intended for use finproduction, installation and senice of both colour and monochisome TV seis. viceo and computer monitors. In order to control and adiust the various paramelers eight swichabes patterns are providec. size instruments. Internal re-chargeable N-Cd's. Suppted with gy power supply charger, Size $131 \mathrm{~mm} \times 81 \mathrm{~mm} \times 23 \mathrm{~mm}$. T.V. PATTERN GENERATOR PAL MC11B UK
 Band $\operatorname{l}(21-34)$ - O/Put 10 mV into 750 hms * Band V(21-34) * O/Put

* Band Ill (5-12) - Bandll

Price £124.95+£18.74V.A.T.
PAL VIDEO COMPOSITE GENERATOR

* PALB.G.I.
* AudioO/Put 10mV
* Switching 12V@4K7ohms

Price £124.95 + £.18.74 V.A.T.

SECAM VIDEO COMPOSITE GENERATOR

* SECAMB.G.D.K.L. Audio O/Put 10 mV * O/Pul IV p.p. (i) 750 hms * Switching $12 \mathrm{~V} @ 4$ K7ohms Price $\mathbf{E 1 2 4 . 9 5}+\mathbf{E 1 8 . 7 4}$ V.A.T.
R.G.B. PATTERN GENERATOR

O/Put sigs. Pos.RGB * O/Put TLL5VP-P
Neg. Composite *Blank Pulse etc. CCIR
Price $£ 111.95+£ 16.79$ V A.T.

DIGITAL THERMOMETER

Price $£ 59.50+£ 8.92$ V.A.T.

200 MHz DIG. FREQ. METER

* Pocket Size
* 8Dig. LED

Display

- Freq. Range

20 Hz to 200 MHz

- Resolution 0.1 Hz
- Sensitivity 10 mV

Price $£ 75.50+£ 11.32$ V.A.T Price
LEADER HIGH VOLTAGE METERED EHT PROBE
LEADER High Voltage Metered EHT PROBE. Measures up to 40 KVDC with safety. Built in meter Accuracy $\pm 3 \%$

+ + 6.75 V.A.T.

The THANDAR TP1 LOGIC PROBE and TP2 LOGIC PULSER are effective and economical tools for checking both TTL and CMOS circuits. TP1 can show 14 different circuit conditions and can detect pulses down to typicaly 10ns. TP2 can iniect a signal directly into a circuit with
Price $£ 23.00$ damaging sensitive components. Together they can
£3.45 V.A.T. each
B. K. ELEGTRONIHS DEPT. T

ESSEX. SS2 6TR TEL: 0702-527572
 BOARD AND TUBE NOW ONLY

$\mathfrak{f} 20$ ЕасН

 Inclusive of VAT $£ 3.50$ Postage
Professional Monitor

 Drive Board \& Tube This Crofton Monitor Kit comprises a 18" P31 Cathode Ray Tube and Drive Board. The Dtive Board requires 12 volts at 1.25 Amp continuous (1.85A surge), separate line, field and video at TTL levels. By the addition of a few standard components this board can be driven from standard composite signals.The Drive Board has a bandwidth of 24 MHz and is capable of displaying 25 lines of $80+$ characters.
This is a professional board and tube as supplied to manufacturers of terminals, and out performs monitoŕs costing many times this price.
A few boards and tubes are also available mounted on a metal frame.
A circuit diagram, together with full instructions, are provided with each board and tube.
You will bo absolutely delighted with the performance.

ALWAYS A SPECIAL DEAL AT CROFTONS

Crofton Electronics,
"Kingshill", Nextend, Lyonshall, HR5 3SX. Telephone: 05448557

FIRST IS TUBE REBUILDNG TEGHNOLOGY 30AX; 540 SERIIES REDUGED SERTICING GOST, FIT A DIFEGT REPLAOEMENT
AVAILABLE ONLY FROM GHROMAVAC. PRE CONVERGED AS ORIGNNGAL. EXTERNAL MULTIPOLE UNIT NOT REQUIRED.

LOOK! AT NO EXTRA COST 30AX PRE CONVERGED

061
6812959

most types of Inline Re-builds or new ex-stock PRICES SUBJECT TO

Delta Rebuilds Inline Rebuilds

Up to 19"	$£ 28$
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+ $¢ 2$
A47342 New .	£28
17FHP New	£30
470EHB New .	f30
Delta only. Les	5

Up to $22^{\prime \prime}$.. From $\mathbf{£ 4 0}$ Up to $26^{\prime \prime}$.. From $£ 45$ A56-540x ….......... £56 A66-540x £58
Bonded Coil +f5
ALL SIZES OF NEW AND REBUILT MONO TUBES AT COMPETITIVE PRICES
IN LINE TYPES (not rebuldos) PHONE RE STOCK POS. Please enquire types not listed

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

CENTRAL
 T.V. \& VIDEO WHOLESALERS LTD. BIGGEST SELECTION - KEENEST PRICES

FERGUSON
MECHANICAL
WORKING FROM

V H S

ELECTRONIC WORKING from $£ 110$
ELECTRONIC VIDEOS,
INFRA RED REMOTE CONTROL $£ 125$
PLEASE BRING YOUR OWN TEST TAPE
MANY MORE LATE VIDEOS IN STOCK
FERGUSON - 3V35/3V45/3V30/3V29/3V23/3V24/3V22/3V16 ETC PLUS PANASONIC - HITACHI - J.V.C. - AKAI SHARPS - PHILIPS - GRUNDIG - TRIUMPH - MITSUBISHI LARGE SELECTION OF BETAMAX VIDEOS

SPECIAL PRICE

WE HAVE PROBABLY THE BIGGEST STOCK OF THORN TV's IN THE SOUTH OF ENGLAND WORKING 26 " TELETEXT from $\mathbf{f 6 0}$ inc HANDSET PLUS WORKING FULL REMOTE from $\mathbf{f} 40$ WORKING $22^{\prime \prime}$ REMOTE TV's from $\mathbf{f 2 5}$

* COLOUR PORTABLE WORKING from $\mathbf{£ 6 0}$ *

PHILIPS K30, KT3, G11 - TELETEXT/REMOTE G11 FROM £18-G8 FROM £5
PLUS ITT - GEC - BUSH - JAPS - DECCA ETC ALL WITH EXCELLENT CABINETS

FURTHER DETAILS RING NOW!

GRADE B TELEVISION VIDEO - AUDIO \& HI FI

HITACHI - FERGUSON VIDEO HEADS IN STOCK

01-807
 4090

 1314CENTRAL, Cedar House, Nobel Road, Eley Estate, Edmonton N18 N.B. PLEASE TAKE NOTICE THAT WE ARE NOT CONNECTED WITH M/S HUSSAIN, CENTRAL
£1 BAKERS DOZEN PACKS
Price per pack is $£ 1.00$.* Order 12 you may choose another free. Items marked (sh) are not new but quaranteed ok

13 amp ring main junction box
 surface mounting light switches

3 - electrical switches internediate type, will also replace 1 or 2 way
in fle white flush mounting
in flex line swicches with neons
mains transtormers with 6 V A secondaries
mains transformers with $12 \mathrm{~V} 1 / \mathrm{AA}$ secondaries

- glass reed switches
ultrasonic transmitters and 2 receivers with circuit
water switches -6 p 2 way, $4 \rho 3$ way, $2 p 6$ way, $2 p 5$ way, $1 p 12$ way small one hold fixing and good length $1 / 4$ spindele your choice
Nicad counter mains voltage
Ney switch with key
aerosol cans of licl Dry Lubricant
- long and medium wave tuner kit
- rocker switch 10 amp mains SPST

10 - neon valves - make good night lights
$2-12 V D C$ or $24 V A C, 3$ Co relays
iv 2 CO minialue relay very sensitive 4 40 minialure rearay
locksin mech parat sockets (total 320 sockets)
locking mechanism with 2 keys
miole
Mulard \mathbf{x} actor
magnetic brake - stops rotation instantly
ow pressure 3 level switch can be mouth operated
25 watt pots 1000 ohm
wire wound pots - 18, 33, 50 and 100 ohm your choice
time reminder adjustable $1-60$ mins clockwork
mains motor with gear box 1 rev per 24 hours
mains motors with gear box 16 rpm
moltorised stud swith (s n.
$21 / 2$ hours delay switch
mains PSU 9V

- mains power supply unit - 6V DC

5 " speaker size radio cabinet with handie
musical boxes (less keys)
IW amplifier Mulard 1172
wall mounting themostat 24 V
leak effect extension 5 " speaker cabinet
push push switches for table lamps etc.

- mitr twin screened flex white p.v.c. outer
pilot buib lamp metal clip on type
- very fine dritls for pcbs etc.
- Dlastic noxes withers for instiuments
- model aircratt motor - require no onnoft swithled beam switch
- 4BA spanners 1 end open, other end closed

4 reed relay kits 3 V coil normally open or col if magnets added pilot bubbs 6.5 V 3 A Philips
varicap push button - idean fors with car iobs

- short wave air spaced trimmers 2.301
- 12 V 6W bubs Philips m.e.s.
- oblong amber indicators with liliputs 12 V

0 - p.v.c. grommets 3 /h hole size
shorl wave tuning condenser 50 pf with $1 / 4$ " spindle
doood lenoth $1 / u^{\prime \prime}$ condender

- plastic box slooing melal front, $16 \times 95 \mathrm{~mm}$ average deoth 6-5 amo 3 pintwish scckets brown
.
 -10 diait switcr pard for telenonones etc.
- electric clock mains driven, always right time - not cased stereo pre-amp Mullard EP9o01
mains transtormer $9 V 1$ amp secondary C core construction can door speeaker (very flat) $61 / 2^{\prime \prime} 15$ oht made for Radiomob speakers $6^{\prime \prime} \times 4^{4 \prime 4} 4$ ohm 5 watt made for Radiomobile speakers $6 \times 4{ }^{4}$ ohm watr made of radionoobile mains motor with gear-box very small, toothed output 1 rpm - standard size pots $1 / 2$ meg with dp switch eater etc. 5 V (ranstormers $9 \mathrm{~V} 1 / 2 \mathrm{~A}$ secondary splif primary so ok also - mains transformers 15V 1A secondary p.c.b. mounting - ten turns 3 watt pot $1 / 4$ spindie
-15 amp round pin plugs brown bakelite
- mains solenoid with plunger compact lype -
- ceramic magneis Mullard 1 " $\times 3 / 8 \times 515$

10 - ceramic magnets Mullard 1 1" $\times 3 / 8 \times 5 / 16$
-12 pole 3 way ceramic wave charge swith

- stereo amp $2 W$ per channel
tubuiar dynamic microphone with desk rest T.V. Aurret tune
sub miniature micro switches

MULLARD UNILEX AMPLIFIERS
We are probably the only firm in the country with hese now in slock We now offer the 4 Mullard modules - i.e. Manns power urit (EP9002) Pre amp modute (EPSoO1) and wo amplifier modules (EPPooo) all tor
$E 6.00$ plus $£ 2$ postage. For prices of modues bought separately see

CAR STARTER/CHARGER KIT

Ex-Electricity Board.

VENNER TIME SWITCH

and ore or per 24 nrs. repeaals dally
automaticalty correcting for the lengite or shotening day. Af expensive tifine swich
but you can have it or but you can have it tor only $\sum 2.95$ without
case, metal case $-\mathbf{~} \mathbf{2} .95$, adaplor kit to case, metal case- $\mathbf{E 2 . 9 5}$, adaptor kit to
convert this into o nommal 24 hf . time swich
 orvorts per 24 trs . This makes an indeal
controler lou the immersion heater. Price of

SOUND TO LIGHT UNIT

Complete kn of parts of a three channet sound to hight unit controlurg
over 2000 watts of lighting. Use trus al tome if you wish but n is premny nuged enough tor lisso. work The unitis shoused in an atractive two tove metal case and has conirros tox arach channet, and a master ovioth.

12 volt MOTOR BY SMITHS
 spurde -

25A ELECTRICAL

 PROGRAMMERLearn in your steep. Have radiop paying and
Kortin eovilig as you wake - swicho lights to ward
on intuders - have a wamm house to come oll intruders - have a wamm house to come
home to. You can do all inese and more. By home to. You can do

THIS MONTH'S SNIP
400 Watt Mains Isolation Transtormer 230 volts in
230 volts out Supplementary 10 volt winding for 230 volts out Supplementary 10 volt winding for
vottage adjustments. Torroidat construction makes vottage adjustments. Torroidal construction makes it most compact. R.
$£ 10.00+£ 2$ post.

MAKING SUNBEDS?

each in ouantity Canop type spring loaded, 4 pairs for $\varepsilon 1,100$ pairs

TANGENTIAL HEATERS

We again have very good slocks of these quever running inslant heaa units They eequire only a simply case. or curd easity be fited mio the

bottom of a kithchen unit or book case elc. AA present we have stocks

CONTROL SWiTch enabling fulu heat, nalt heat or cold blow.

FANS \& BLOWERS

${ }^{9}{ }^{5}{ }^{5}$ Extract
 115 y adaation on use wo in senes to give long blow $£ 2.00+\varepsilon 1.50$ posi
or $£ 4.00+\Sigma 200$ post tor mo.

IONISER KIT

generalor Makes you feel better
harder - a oumplete mains operated kt, case included.
E 11.95 pus
Z .00 post

TELEPHONE BITS

B. T. ptugg,..........
Exiension socket.
ing condenser etc) and takes
Uual adaptors (2trom one socket)

Cord terminating with B.T. plug 3 metres.
complete with 4 oore cable, cable clips and 2 BT extension
MINI MONO AMP
conirol should you require it. The amplifer
thas three rransistors and we
estimate the output to be $3 W$ rms.
More technical data will be
with the amp. Brand new,
J \& N BULL ELECTRICAL (T) 250 PORTLAND ROAD, HOVE, BRIGHTON, SUSSEX BN3 5QT
MAIL ORDER Service charge. Monithly account orders accepted form
schools and pubic companies. Acces \& Eicard orders
Brignton 0273 734648. Buik or ders: write for quote.
\qquad

OVER 400 GIFTS YOU CAN CHOOSE FROM

 there is a tolal of over 400 packs it our Baker's gift with each dozen pounds you spend on these packs. A classified list of these packs and our latest
POUNDERS*

:
and theunting thermostat. thigh precision with mercury swich
Variable and reversible 8.12V psu for model control
24 volt psu with separate channels for stereo made for Mullard
UNILEX
P6- 100 W mains to 115 V auto-transtorner with voltage tappings
Warns motor with gear box and vaniabe sp
2P9 - Time and sel switch Boxed, glass frontid and with knobs
2 P10 - Controls $\mathbf{u p}$ to 15 amps. Ideal to program electric heaters
separate bobbin and easy to remove to convert to lower
voltages for higher currents
2P12 - Disc of Tape precision motor - has balanced rotor and is
 2 2P17-2 rev pr minute mains dnven motor with gear box. ideal to 2P18 - Liquide gas shut of valve mains solenoid operated
2P19- Disco switch -motor drives 6 or more 10 amp change over 2P20 - mikro switches supplied ready for manns operation
20 metres extension ead. 2 core - ideal mosi Black and
Decker garden tools elc.
1 - 10 watt amplitier. Mullard module reference 1173
2 - Motor driven swich 20 secs on or of atter push

Clockwork operated 12 hour switch 15 A 250 V with clutch | Counter resetlable manns operated 3 digit |
| :--- |
| Goodmans Speaker 6 inch round 8 ohri |

Dril Pump - always useful couples to any make portable drill 4 metres 98 way interconnecting wre easy to strip
Hot Wire amp meter $-41 / 2$ round surface mounting 0. but working and detinitely a bit ol hisiory
Sotenoid Air Valve mains operaled
200 A.P M. Gaared Mains Motor $1^{\prime \prime}$ stack quite powerful,
definitely large enough to dnve a rotating aenal or
polishing stones etc.
Small rype blower or extractor fan, motor inset so very
 Telephone ringing unil feduces mains to 50 volts and changes Fire Alarm break glass switch in heavy cast case ton - Stereo Headphone amplifier, with pre-amp

- Mains molor, extra powerful has $1 / / 2^{\prime \prime}$ stack and good length of

2 Ww tangential heater 115 v easily con
$12 v-12 v 2$ amp mains
transtormer
$5 v 0.15 v 2$ amp mains transtomer

12 hour bmer. plugs into aporox. ex socket
- 9v.0.9v 2 amp mains transformer

- Sangamo 24 ht time sumentich 20 amp S.H.
- $90 \mathrm{mm}$. . tume swich with edgewise engraved controtler
- 13 A socket on salin chrome plate very superior G.E.C. - mains translormer 24 v 2 A upright mounting
 10 A do switch
- membrane keyboard, telephone type superior plug in type | 2P107 - membrane keyboard, telephone type superior plug in type |
| :--- |
| 2 P 108 - mains motor with gear box giving 110 mpm |
| 1 | - collecting

\qquad P112-6 voll 200 MA Votage regulated PSU tor 13 amp socket | 2P114-12 voil 200MA Vothage regulated PSUU $1 / 13$ amp sockel 13 amp socket |
| :--- |
| $2 P 16$-FM ront end with tuning capacitor and F.M. arcultry |

LIGHT CHASER KIT Maot diven smits bank with connection diagram, used in connection with 4 sets of X-mas lights makes a very eye catching display tor home shop or disco, only 85 ref $5 P 56$.

E5 POUNDERS:

1987 CATALOGUE available - range of components greatly increased - over 136 pages fully illustrated. Price $\mathbf{f 1 . 0 0}$ per copy (free upon request with orders over $£ 15$). Includes 50p Credit Note, Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now - will be sent within 7 days.

EDITOR

John A. Reddihough

Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 441.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

COVER PHOTO

This month's cover photograph shows the innards of the Sharp VC9300 videocassette recorder - well some of them anyway. See article on page 466.

OBSCURE BRANDS

Readers have asked about two more obscure 14in. colour portables, the Harwood and the Lincoln 35C. Does anyone know of a source of service data and/or spares?

WIZARD-SONY

Wizard Distributors were quoted in our TVNCR Spares Guide (April issue) as being official distributors of Sony spares. We have been asked by Wizard and Sony to point out that this is incorrect. Wizard do stock and sell Sony parts, but these are sold on from official Sony distributors.

TELEORSLOM

Value Added

What do you do when profits begin to slide - sharply? It's a question that will have been exercising the mangement of all those well-known and seemingly invincible Japanese electronics goods (and other products) manufacturers over the last year or so since the value of the yen started to rise sharply in relation to the dollar. One answer of course is increased off-shore production. We mentioned Aiwa's move to Singapore on this page last month. Other Japanese consumer electronics manufacturers have been taking similar, if not quite such drastic, steps recently. One likely beneficiary is the UK. Sony for example has just announced a $£ 30 \mathrm{~m}$ investment programme for its Bridgend plant. When the programme has been completed in 1990 production capacity will be more than doubled to over half a million sets a year, including for the first time small-screen colour sets. So what's bad news in Japan could be good news elsewhere. Major Japanese consumer goods manufacturers long ago adopted a policy of establishing off-shore production facilities close to large markets, amongst other things as a form of insurance against the adoption of protectionist policies by major importing countries. Hence the fact that all major Japanese consumer electronics manufacturers have plants in N . America: they will doubtless have been increasing their investment in such plants recently. The same policy has been adopted by the S. Koreans, which is relevant to Samsung's decision to go ahead with the development of a microwave oven/VCR/TV plant on Teesside.

There's been some criticism of the practice of Far Eastern manufacturers setting up assembly lines in Europe and N. America. It's been termed screwdriver investment, since the technical know-how and research and development remain back at headquarters. While some concern over this is justified it's nevertheless better to have such plants than nothing at all, and one has to bear in mind that most of what they produce has been developed in Japan anyway. One solution to this conundrum is the joint venture concept, where European/N. American/Japanese firms link in joint investment projects to develop and manufacture goods.

Apart from off-shore production, what other courses of action are available to Japanese manufacturers? One policy is the value-added approach - to develop, manufacture and sell more sophisticated products that provide a better profit margin. We are already seeing the implementation of this policy as more sophisticated models begin to appear on the market. There have for example been several announcements recently of VCRs incorporating new and more advanced features. They include Toshiba's machine with a field store memory to provide off-air as well as off-tape still pictures; an Hitachi machine that incorporates picture-in-picture, the monitor displaying a second, smaller picture from a second channel or video source in addition to the main one; and Panasonic's announcement of a VCR with bar-code programming. In due course such things will doubtless come to be regarded as standard features in the way that we now expect freeze frame, slow motion, forward and reverse search etc. as a matter of course.

It's not only a matter of more sophisticated versions of existing products however, but also of new systems. The digital audio tape system has already been launched in Japan, with models from Aiwa, JVC, Matsushita, Sharp and Sony now on sale there. Models are likely to appear in the N. American and European markets before long. The only thing that's held DAT back of course has been controversy over the implications of duplicating material from compact discs. Various approaches to this problem have been suggested, and in the nature of things some compromise will doubtless be adopted before long.

Another system that's put in an appearance recently is the compact video disc. This is a rather curious concept: why should anyone want a brief video programme? It seems however that the main emphasis here will be on the pop music market. The CD-V discs that have been demonstrated so far have contained programme material consisting of twenty minutes of audio and a five minute vision/sound "clip". The discs themselves present no problems since similar CD and LaserVision discs are already in production: players able to handle various types of audio/video discs are already either available (not in the UK at present) or under development. A major push is expected at the Chicago Consumer Electronics Exhibition later this year. It will be interesting to see whether the idea catches on.

We can, then, expect to see an increasing flow of new products offering new features and possibilities. The technology is already there - chips, digital signal processing, more advanced tapes and so on. It's now more a matter of exploiting this technology to provide new production and marketing opportunities.

CORRECTIONS

We've been having trouble with part numbers recently. The correct part number for the timer panel ceramic filter in the Ferguson 3 V23 VCR is $01 \mathrm{X0} 0-033-926$. The part number quoted in Service Bureau, December 1986, is for the complete panel. The correct part number for the Philips Magic Mirror (Market Place, March 1987) is 395 37209, not 395 37198 which is for a headband mirror. In the article on Sony KV1810 GCS conversion, February 1987, the knee of the line output transistor's collector waveform was referred to in the text as the turn-on instead of the turn-off area (page 254, line below Fig. 9). Our apologies for these slips.

Long-distance Television

Roger Bunney

Following the very active tropospheric opening during end January/early February the rest of the month provided very little by way of DX-TV signals. Meteor scatter propagation produced some short signal pings, tropospheric propagation ceased altogether, there was less auroral activity than usual and only a few Sporadic E signals provided some brighter moments in an otherwise bleak month. The approach of April should see an increasing incidence of SpE propagation. Hopefully by the end of the month there will have been at least one good opening - we used to consider such an opening as a good omen for the coming season, from mid-May onwards. The February SpE log from the few reports received at the time of writing is as follows:

6/2/87	NRK (Norway) ch. E2, 4; SR (Sweden) E4;
	TVE (Spain) E4.
8/2/87	TSS (USSR) R1.
$12 / 2 / 87$	TVP (Poland) R1; RUV (Iceland) E4.
$15 / 2 / 87$	NRK E3.
$16 / 2 / 87$	CST (Czechoslovakia) R1.
17/2/87	ORF (Austria) E2a.
19/2/87	TVP R1.
$20 / 2 / 87$	SR E2.

Meanwhile in Australia the SpE season has been slowly decaying, though there have been some excellent catches. Anthony Mann for example has received confirmation of his reception of Quezon City, Philippines ch. A2 (system M) in Perth, Western Australia on September 14th last: the transmitter has an output of 40 kW which, fed to a 10 dB gain aerial, produces an e.r.p. of 400 kW . We also hear that Malaysian ch. E2 TV sound (53.75 MHz) has been monitored in New Zealand at a distance of some 5,000 miles - on December 12th last. Other signals received by Anthony Mann have included Indonesia ch. E4 and Samoa ch. A2. His reception of the Philippines ch. A2 coincided with reception of Malaya ch. E2 in Sydney.

Several letters have been received from overseas about the BBC proposal for a "TV World Service". No decision has been made so far on this proposal. The service would be intended for cable networks and would depend on the availability of satellite transponders. The idea is to provide
half-hour programmes consisting of news and topical interest items on a five days a week basis.

News Items

Low Countries: A third service, NOS-3, is to start in Holland on April 1st 1988. The name of the Belgian BRT (Flemish) network is to be changed to VRT. Two commercial TV networks are to be set up in Belgium, one serving the French-speaking south of the country and the other the Dutch-speaking north. This would end the present state monopoly in TV broadcasting.
Norway: The first local TV stations have now come into operation. Details are as follows: Bergen ch. E45 50W; Smors ch. E48 10W; Geitanuken ch. E51 10W.
Finland: The Swedish first programme is now being transmitted from Aland on ch. E28 with 600 kW e.r.p.
Satellite TV: We understand that the Premiere, Lifestyle, Arts, Sports and Children's Channels will be transmitted using the MAC system from the end of the year. TV5 is now being transmitted using PAL entirely. Comex Systems, Comet House, Unit 4, Bath Lane, Leicester LE3 5BF have introduced a sync processor unit for use with satellite TV receivers (and also for baseband video use in DX applications). It's apparently suitable for use with the Filmnet service that employs a degree of scrambling. Retail cost of the unit is $£ 143.75$ including VAT.

Amateur TV

Certain items previously supplied by Solent Scientific, which is not at present trading, are now being supplied by the Worthing and District Video Repeater Group, Toftwood, Mill Lane, High Salvington, Worthing, Sussex BN13 3DF. The range at present consists of a 23 cm $(1.3 \mathrm{GHz})$ ATV receiver-converter kit, a 1 W f.m. TV transmitter, a 16 in . diameter dish and a CCIR pre-/deemphasis kit. The plan is to extend the range. Please send a stamped, s.a.e. with any enquiries.

The Bristol FM-TV Group, 15 Witney Close, Saltford, Bristol BS18 3DX has introduced an 18 -element Yagi aerial that provides a gain of around 10 dBd in the 23 24 cm band. The price is $£ 12.50$ if the aerial is collected, $£ 14.75$ by post in the UK. The array is 0.92 m long and has a rear stub mast mounting.
Europe now has its own international ATV organisation EATWG (European Amateur Television Working Group). It has been formed to "promote and protect the interests of ATVers" and to represent the ATV case to such organisations as the IARU.

We commented recently on ATV activity within the Australian u.h.f. TV broadcasting spectrum. As a result of the move of Australian Band II TV stations to u.h.f.

Variations on a theme. Left: The NOS (Holland) FUBK pattern with identification. Centre: Czechoslovakian "DDK 1" FUBK pattern received in Holland on ch. R36 during last October's tropospheric opening. Photos from Ryn Muntjewerff. Right: RTM (Morocco) FUBK test pattern received in France on ch. E4 by M. Dubernat.
the Department of Communications has indicated that the 580 MHz ATV repeaters may lose their licence

New EBU Listings

W. Germany: Quartier Napoleon (Berlin) ch. E31. This $85 \mathrm{~kW} / 17.8 \mathrm{~kW}$ (horizontal) transmitter is operated by the French Forces (GMFB). It uses System G SECAM, i.e. with 5.5 MHz f.m. sound, the same as in East Germany. France: Troyes ch. E29 200kW e.r.p. horizontal (TV6); Rennes-Saint-Pern ch. E31 100kW e.r.p. horizontal (TV6); Rennes-Saint-Pern ch. E34 100kW e.r.p. (TV5).
Poland: A report from another source mentions that the Warsaw ch. E27 TVP-2 transmitter is now operating at 10 kW e.r.p. A co-sited ch. E51 transmitter operating at 2 kW is broadcasting the TSS-1 service (USSR first programme) for the local Soviet Forces.

Tandy VHF Radios

Though an increasing number of DX-TV enthusiasts are now purchasing multi-standard TV sets, and hence enjoying both sound and vision reception during appropriate conditions, it's possible to retain the advantages of narrow-bandwidth vision operation and still receive good quality sound - by employing a radio receiver covering the appropriate frequency ranges. This of course calls for rather more physical dexterity. We recently received a copy of the 1987 Tandy US catalogue which lists four portable radio receivers that cover Bands I/III (their chs. A2-6 and A7-13). One of them also covers the u.h.f. chs. A14-83. If you happen to be visiting the USA, or have friends there wanting to send you a present, the following are worth considering:
Model 12-613. Covers the two v.h.f. TV bands. Hand/ pocket portable set operated from a 9 V battery. $\$ 30$.
Model 12-648. Covers m.w., $88-108 \mathrm{MHz}$ f.m. plus Bands I/III. Large portable operated from a 6 V battery. $\$ 40$.
Model $\mathbf{1 2 - 7 8 0}$. Covers $54-88 \mathrm{MHz}, 88-108 \mathrm{MHz}, 108-$ 175 MHz and $175-230 \mathrm{MHz}$. Large portable (case 11 in . long) operated from a 6 V battery. Known as the Portavision 50. \$60.
Model 12-781. Covers Band I, Band III and the u.h.f. TV bands. Large portable for 6 V battery operation. $\$ 70$.

Apart from the pocket portable these sets can all be operated from a 117 V a.c. supply as well. I've personally owned a Portavision 50. As a general all-round v.h.f. receiver and for SpE Band I reception (its System M coverage includes the OIRT Band II) I found it to be an excellent unit. Tuning is via a slide rule (similar to the UK Realistic DX65). Tandy even feature a stereo tuner/ amplifier for Band I/III/u.h.f., at $\$ 140$. They're also into TVRO at 4 GHz , with a 10 ft diameter dish, LNBs, etc. The address is Tandy/Radio Shack, Export Department, 500 One Tandy Centre, Fort Worth, Texas 76102, USA.

High-Pass CB Filter

R.F. interference is a continual problem for those of us interested in receiving low-level v.h.f./u.h.f. signals. Unfortunately these weak signals fall outside the DTI's terms of reference, which means that the DXer has either to tolerate the problem or adopt his own methods of minimising it. There are many sources of interference, and the use of high-gain, wideband head amplifiers makes matters worse. When the CB fad started in the early 1980s it soon became obvious that many operators were using illegal imported a.m. rigs from the USA, generally employing a.m. or s.s.b. The subsequent UK CB regula-
 sSALORA MULTI-STANDARD PaLSECAM COLOUR TELEVIIION $£ 339.00$

Salora Technology from Scandinavia introduces the very latest in design and technology for their new compact portable Multi-standard TV. This receiver incorporates uirtually all the facilities You need to suit your EuropeanW Worldwide travels - or high definition colour TV with SCART socket for Video/Audio input \& output, fully infra-red remote control with a 30 channel memory, full coverage tuner (VHF, UHF + in between cable channels).
The basic $15 L 30$ is offered with System I (for UK), System B/G (for Europe) and System (for France \& Luxembourg) plus automatic PALSECAM switching, together with
automatic sound switching between the various systems.
Extra facilities can include Video/Teletext; NTSC; $12 / 24 D \mathrm{C}$ volt operational package (SAE for detailed leaflet.)
As appointed Salora agents specialising in Multi-standard TV/Video systems, Aeria Techniques offer professional service with the backing of 20 years experience in Rotors, hardware and associated accessories are all shown in our comprehensive Gatalogue at 65 p .
SALDOA $1513015^{\prime \prime}$ screen PALSECAM Multi-standard colour TV covering Systems B/G/ with infra-red remote control unit E353.09 Teletext option package
$12 / 24$ volt DC portable/mobile option package.
NTSC video input module option package
NB All options fit internally and either are automatic or remote control unit switching The above prices are inclusive of VAT, Carriage (fully insured) is $£ 8.75$ for delivery to any mainland UK address, other areas and Eire p.o.a.

 stating exact requirements.
AERAL TECMMOLES provide a complete and comprehensive consultancy service for ALL TV/FM queries and problems, for domestic, fringe and DKine. (SAE with all enquiries please.)
access \& VASA orders welcome.
Delivery approx. 7-10 days

AERIAL TECHNIOUES (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 0202738232.
CAYCARD
VISA

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE				
TRANSISTORS, IC's. ALSO STOCKED.				
BAIRD: 8290, 8752, 8773, 8180	12.00	ITT: VC200 to VC402 CVC1, CVC2 (FORGESTONE)	$\begin{array}{r} 900 \\ 11.50 \end{array}$	
RANK B				
A774 with stick rectifie	9.78	CVC25, CVC30, CVC32, CVC45	9.20	
- ${ }^{\text {A } 2016, \mathrm{~T} 22, \mathrm{~T} 26, ~ Z 179, ~ A 823 ~}$	10.3	$\begin{array}{lll}\text { CVC800, 1100, 1150, CVC40 } & \text { P.OA. } \\ \text { CVC1200, 1204, 1210, 1215, } 2600 & \text { P.OA. }\end{array}$		
	11.50			
2718 Basic unit		PYE: $169,173,569,368$CT200, CT 200/1, CT213	9.2010.35	
DECCA: 1210, 1211,	11.50			
1700, 2001, 2020, 2401, 2404 CS1730, 1733, 1830, 1835	9.209.20	725-731, 735, 737, 741	10.35 9.78	
		PHHLPS: 170, 210, 3009.20		
		320 series TX, T8, TX2, TX3 mono	P.0.A ${ }^{\text {9.7 }}$	
FERGUSON, THORN: 1590, 1591	9.20			
1690, 1691. built in rect 1600, 1615, 1700, 1790		68 and 69 Series	59.20	
	P.OA.	KT2. KT3. series CTX G11. K30. K4. K40. split diode		
3000, 3500, 8000, 8500, 8800	P.OA			
9000, 9200, 9300 series		BINATONE: 9909, 9860, 9488 P.OA.		
9500, 9600, 9650 series	10.99	DORIC Mk3, Mk1 SONY KV 1400, 1612,2000 P.OA.		
9800, TX9, TX10, TX90, TX100	$\begin{aligned} & \text { P.OA } \\ & 12.00 \end{aligned}$			
MOVIESTAR 3781, 3787, 8180		SONY KV 1400, 1612,2000 P.OA.GRUNDH: most models in stock		
TX10 focus unt	10.87	NORDMENDE: 8290, Z206, 2306		
HDELTIY: FTV12 mono ZX2000 ZX3000	$\begin{aligned} & 10.35 \\ & 16.43 \end{aligned}$	SHARP: C1851H, C2051H, 1405TOSHIBA: C800, C80B	P.OA	
			P.0A	
G.E.C. 2047 to 3135 mono 1201H, 1501H, 2114, 3133, 3135 DUAL \& SINGLE hybrid col. SINGLE STD solid state SINGLE STD split diode	$\begin{array}{r} 9.20 \\ 9.20 \\ 10.00 \\ 12.00 \\ \text { P.OA. } \end{array}$	TANDBURG: 190, CTV2, CTV3 P.OA. TELEFUNKEN: most models in stock HITACH: 1471, CPB260, 2501 P.OA AMSTRAD: CTV2200, CTV2210 P.OA.		
		Delivery by retum of post		
INDESTT: 24EGB, 12LGB, 12SGB 10.3		Tidman Mail Order Ltd., 236 Sandycombe Road,		
WNDINGS				
TYNE: main winding	6.80	Richmond, Surrey TW9 2EO. Approx. 1 mile from Kew Bridgo. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm \& $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12 noon.		
RBM: T20, T22, T26, 2179	6.33			
25 eht winding	237			
W190, W191 eht coil	6.00			
KORTING: hybrid winding THORN: $8000,8500,8800$ eht	6.90			
	6.70			

Fig. 1: CB filter devised by Len Smith. (a) Circuit, (b) component side of board, (c) track side, (d) filter housing. The filter is built on a 14 -hole, 3-strip piece of Veroboard with 0.1 matrix and is housed in a 3in. long, 0.5 in . inside diameter soft-drawn aluminium tube. Six inches of low-loss coaxial cable and a one inch length of 0.5 in . rubber sleeving are required - also an 0.5 in . grommet. Terminate with a 75Ω coaxial plug at one end and a 75Ω coaxial socket/plug at the other. Stripline inductors LA and LB consist of part of the Vero copper tracks covered with solder. $L 1$ and L2 consist of six turns of 26 s.w.g. e.c. wire wound on an $1 / 8 \mathrm{in}$. drill. C1 is $10 \mathrm{pF}, \mathrm{C} 25.6 \mathrm{pF}$, TC1 2-10pF and R1 either $120 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$.
tions laid down stringent conditions on transceiver design and harmonic radiation but those imported a.m./s.s.b. rigs are pretty poor when it comes to harmonic radiation. As a result we get interference at $54 \mathrm{MHz}(2 \times 27 \mathrm{MHz})$, often made worse by the use of wideband linear amplifiers ("burners") that lift the signal from typically 10 W to some $30-50 \mathrm{~W}$. Highly illegal, but equally highly popular. The PO Radio Service could often be induced to take enforcement action in cases of direct harmonic radiation, or alternatively direct negotiation with the operator might ease matters (assuming that the operator is known).

Such radiation was reduced to very low levels with the advent of legal CB. Even so the combination of a Band I aerial, a high-gain wideband amplifier and a local CB operator can cause problems. The amplifier can be driven into non-linearity/overloading, the saturated amplifier then spreading the CB signal over a very wide bandwidth. This is one reason why masthead amplifiers should be avoided in Band I: if problems arise after installation it's difficult to add filtering prior to the amplifier's input.

There are several CB filters on the market. Most tend to be u.h.f. pass, braid-break types giving high attenuation of Band I frequencies. AKD, well known in amateur radio circles, make a range of filters, including those for DTI use. The PO high-pass filter type FS38A gives high attenuation (30 dB) below 40 MHz and a rapid changeover to minimal loss in Band I. It can be obtained at times from aerial suppliers.

Len Smith of Waterlooville, South Hampshire has some fourteen CB operators living within four roads of his home. Interference in Band I and upwards can affect all DX-TV signals at his location. Details of the filter he designed to deal with the problem are given in Fig. 1. Though we've not ourselves had a chance to try it out Len tells us that he now has a clean Band I and upwards TV
spectrum. The filter is housed within an isolated (isolated from the screen of the coaxial cabling, i.e. floating) tube and makes use of a piece of Veroboard to form stripline inductors. Trimmer TC1 is adjusted for minimal CB breakthrough - and that completes the filter!

We'd be interested to hear from other filter designers, and about interference problems and solutions generally.

From our Correspondents . . .

Cyril Willis took the opportunity to test a newly acquired 2 in . Casio v.h.f./u.h.f. TV set while flying back from a recent holiday in the Canary Islands. The flight reached $42,000 \mathrm{ft}$. French Band III/u.h.f. TV was visible soon after take off and most channels were full of signals throughout the whole flight, though on programme apart from four TV de Galicia u.h.f. channels. UK signals were visible some 800 miles out.

Robert Copeman (Victoria, Australia) has received a pirate TV station on ch. A3 radiating the call sign "NBC-3 Nunawading Broadcasting Commission" with colour bars and electronically generated identifications. Pirate f.m. activity on an irregular "amateur" basis is apparently very popular there. NBC-3 was logged on January 30th: programmes started at 2000 local time.

Fraser Lees has kindly identified the "Televerket" caption shown in the March column. It's in fact "Telemarket" and originates, on ch. E2, from a private Italian station operating in the Rimini area (the telephone number gives this away). Many low-budget Italian stations transmit such marketing programmes to fill up time, often selling single second-hand items offered by viewers. With RAI now closing down many of its v.h.f. relays the channels are quickly snapped up by private broadcasters which once on air will rarely switch off their transmissions - during non-programme periods a test pattern/computer graphic is left on to maintain occupation of the channel! There are also many f.m. radio links now operational in the 50 MHz band. Due to the general chaos TV-DXing at v.h.f. can be difficult if not impossible in Italy.

The "TKCI 3" test pattern shown in the March column has been identified by John Tellick as originating from the Intervision switching centre at Prague, Czechoslovakia. The initials stand for Technical Co-ordination Centre for Intervision.

Can anyone help Nicholas Brown of 30 Cymbeline Way, Rugby, Warks CV22 6 JY who is seeking the loan of a recorded BBC-2 programmed called "Window on the World - The Story of Europe's TV", broadcast on October 30th 1986. Either a VHS or Beta tape would do. Please write to Nick directly.

Gareth Foster has recently returned from a holiday in Malaysia and has kindly forwarded a locally recorded VHS tape of signal activity in Singapore. I was surprised by the high level of teletext, both information and advertising. The PM5544 test pattern is of course all too popular. Three local programmes in Singapore use chs. E5, 8 and 12. The ch. E8 programmes feature Mandarin Chinese speech, the others being primarily in English. The three services are RTM1, RTM2 (both v.h.f.) and TV3 (Band III/u.h.f.). There are three programme services generally available in Malaysia. Speech is mostly Malay though English, Chinese and Tamil language programmes are broadcast from time to time. Gareth returned with a "DX Antenna Co." wideband Band I/II/III aerial with a gain claimed to be within $3 \cdot 5-7 \cdot 5 \mathrm{dBd}$ and a front-back ratio from $8-19 \mathrm{~dB}$. The cost was only $£ 19$. It will soon be gracing the Twickenham skyline!

PLEASE ADD E1. 25 POST \& HANDLING THEN 15% VAT TO TOTAL.

The Return of Madame Martine

Les Lawry-Johns

Some while back I wrote about a seaside fortune teller who warned me about the blue tant. I mentioned that a while later I delivered a new set to a customer who was a friend of mine. As we were watching the golf the colour faded out - Bob didn't notice this as his hero was in a bunker. I related that I'd traced the fault on the decoder panel and that it turned out to be due to a blue tant. Time passes, and alas poor Bob has passed on. But the memory remains. Last Saturday as I was working on a set on the bench an old girl came in. She looked at me and I had this feeling I'd seen her before.

Good fortune is coming

"You've a lucky face. Good fortune is coming to you." "It's about time" I commented.
"Be patient" she said, "good things are worth waiting for."
"I've been waiting for years dear, and I'm still scratching a living mending these things."
"Give me your hand and put a five pound note on it. I will reveal all."

I looked at her hard. "I have to work to earn five pounds. Often for a bloody long time. You want five pounds for a couple of minutes' waffle?"
"It's not waffle: it's the truth and you'll see later on."
It dawned on me whom I was talking to. The blue tant lady. Oh dear. I whipped a five pound note from the till. She whipped it from my hand like lightning. She then grabbed my hand and traced lines down it to my wrist.
"You've a long life and a happy one. It wasn't always so. You were unhappy some years ago but that's behind you. You're happy now and good fortune is coming to you soon."
"As soon as it came to you?" I queried.
She gave me an impatient look. "Now screw thirty pounds up and put it on your hand. I'll put the crystal ball on it."
I scraped around until I had found thirty pounds and screwed it up as I was told. She stroked my hand.
"Now you wouldn't begrudge me that small amount, would you?"
"Oh yes I would" I snapped. "You've already conned me for a fiver. Make do with that."

Her attitude changed immediately. "You're mean, that's what you are. Begrudging an old woman an honest living. You'll regret it."

Just then Phil came in and she started on him. He too parted with a fiver and she told him he'd marry a girl with an M and an L in her name. Phil's loved one is called Sarah. Oh well. How easily we part with our hard earned cash. Seeing that she wasn't going to get any more she departed, saying as she went "beware the white cap".

The next witch on the scene was Honey Bunch.
"You dozy oafs, parting with a fiver each to that old hag. She can't tell fortunes but she seems to be able to grab them off fools like you two. I can tell fortunes better than she can any day of the week."

She can too. Sometimes when she holds something of mine she can say what's going to happen next, and she's always right. But I don't want any of you lot calling here to have your fortunes told. If you do I'll be the one to tell them.

Universal triplers

Do you remember me telling you about Keith from Pompey who called to bring me some scan coils I didn't need after all? While he was here I sold this chap a universal tripler to fit to his CVC30 and told him to join the diode and earth leads together to the earthy side of the focus control. The right and proper thing to do . . . with the ITT set. Keith had commented that the tripler wouldn't last long connected that way and I'd wondered why.

Well the other day I had a call-out to fix a G8. It needed a tripler and I didn't have the G8 one with me, so I dug out a universal tripler and trimmed the leads, soldered the cap on, etc. I joined the diode and earth leads together and soldered them to the clip. On switching on there was a humming noise and very little e.h.t. The new tripler was getting hot. I switched off and clipped through the diode lead. Everything then came on fine and I felt daft. You see I'd always fitted the original Philips type tripler in a G8, never having had to use a universal one before.

When I got back to the shop I looked up the leaflet and it clearly tells you to trim off the diode lead and insulate. Connecting the diode and earth leads together on the G8 had meant that the clipper diode had no load. Sorry Keith, I was right about the ITT, but wrong about some of the others. I didn't know the G8 was amongst them. I'm amazed at the things I don't know. And a little bit ashamed.

Washers

A set fitted with the Philips CTX chassis came in the other day - I think it was the E version. The chopper transistor was faulty so I fitted another without trouble and checked around to see whether there was a cause for the chopper's demise. There was. The line output transistor was short-circuit. I decided to use a BU508A but found that the original transistor didn't use an insulating washer, being solid plastic. So I had to fit a washer in order to use the BU508A. Why's this worth mentioning? Restricted space, that's why. I had to use a pair of tweezers to fit the transistor and washer in position - the gap between the line output transformer and the side wall is about half an inch. The chopper needed the same treatment, but in this case there was plenty of room.

Talking about washers, the rubber ones used in the Ferguson TX100 chassis are beginning to give trouble. Apparently they tend to puncture, probably due to slight irregularities in the surface of the transistor or the heatsink. I thought l'd pass this on to you in case you have one of these sets and are puzzled by the transistor being all right but an obvious short being present.

The-white cap

I know you thought the white cap would probably be an $0.47 \mu \mathrm{~F}, 1 \mathrm{kV}$ type living in a CVC5 or something like that. Well you were wrong. It lived on the head of a pretty girl .who, believe it or not, popped into the shop to tell me l'd
a lucky face and would live a long time and would have good fortune. She looked at Phil and asked him to go away. She then said in a low voice "don't trust that man, he's after your business."

I called Phil back and we had a bit of a laugh. Phil said to the girl "you don't happen to know Madame Martine by any chance?"

The girl looked sort of funny and replied "she's my grandmother and told me this gentleman was generous. You are dear, aren't you?"
"Sorry dear but this drain on my hard earned cash is
getting a bit much. Would you take a couple of quid and clear off like a nice girl now?"
"That won't help me. I need folding money."
"Well you'll have to clear off without then and leave me to earn my dishonest living."
"It's only he who stopped you giving me a tenner. I know. I'll see you again."

And she went, white cap and all, leaving me a little uncertain and a little bit angry at the way some people expect to be able to make a living. I suppose I'll have a lot of bad luck now . .

Servicing Mechanical VCRs

Part 3

In conjunction with the pinch roller the capstan drives the tape along the tape path at a constant speed. It forms part of the drive train, and a rather important part at that. Due to the critical mechanical tolerances it can give a lot of trouble.

Capstan Drive System

Fig. 1 shows the capstan drive system in detail. The motor is mounted in an inverted position below the deck, with the pulley protruding above. A short flat belt goes from this pulley to the relay pulley, which runs in ballraces. The lower part of this pulley drives the capstan flywheel via a flat belt: it also provides the power for the reel idlers, via a square section belt. We'll deal with the latter part of the mechanism in a later article.

The capstan itself consists of a hardened, ground steel spindle which is pressed into an alloy flywheel - see Fig. 2. The spindle runs in a sintered bronze bush and to form a lower bearing there's a polypropylene plug in the retaining strap on which the rounded lower end of the spindle runs. A plastic oil fence is pushed on to the spindle above the bearing to prevent oil from the bearing creeping up the capstan spindle and getting on to the tape.

There are one or two slight differences here between models. The original 3292 capstan ran in ballraces and had no lower bearing. In the 3 V 16 the lower bearing is in the form of a plate rather than a strap, to carry the PCB with the capstan servo tacho printed coil. This is why the other models appear to have a few spare pillars on the deck. With the exception of the 3 V16 the machines have two magnets in the flywheel rim and a pickup head on the deck chassis, the servo being a simple speed control system which compares the capstan speed with a crystal frequency (Models $3 \mathrm{~V} 00 / 3 \mathrm{~V} 22$) or a tuning fork (Model 3292).

Solenoid Operation

It may be worth mentioning that the portable Model 3 V 01 (an excellent though heavy machine) employed a very similar deck mechanism, the main difference being the way in which the stop solenoid operates. On the mains models the stop solenoid and the pinch solenoid (except for the 3292) have two windings. One consists of a few turns of thick wire and is supplied with a short, heavy current pulse to pull in the armature. The other winding consists of many turns of fine wire and is subsequently energised to hold in the solenoid. This arrangement

Mike Phelan

avoids the need to pass a heavy current through the solenoid for any length of time. Even this system would not be really suitable for a portable machine however, as the power required to operate the stop solenoid under stop-start conditions would load the battery excessively.

The solution adopted with the 3 V 01 is to have a small solenoid with one winding and allow the inertia of the flywheel to do the work! The flywheel rim is castellated, and. when the stop solenoid operates the pivoted armature engages with the castellations. The flywheel rotation moves the armature at right-angles to its original direction of travel and operates the stop mechanism. Similar in fact to the autostop arrangement on many audio tape decks. Later portables use a permanent magnet as a hold for the solenoids.

The Pinch Roller

The pinch roller is another very important part. It consists of a rubber covered brass tube with a tiny ballrace within. The circumference is ground to extremely fine tolerances. Fig. 3 shows the way in which the pinch roller is attached to a steel pin mounted on the pinch roller lever. The loading mechanism moves this lever almost into position, the final movement being provided by the solenoid. Except, that is, for the 3292: this model has no pinch roller solenoid, the roller being moved fully into position by the mechanism, the pause key pulling it back against a spring.

Routine Maintenance

Most of the components mentioned here form part of the regular maintenance schedule. All the belts should be removed and cleaned and if necessary replaced. Clean the pinch roller (it's safer to remove it first). Don't use any downward pressure when removing or replacing the pinch roller screw - the lever is easily bent and this can give rise to all sorts of problems. Clean all the pulley surfaces, paying special attention to the brass part of the relay pulley - this seems to have a greater affinity for belt material! To remove the capstan belt it will of course have been necessary to remove the lower bearing strap or plate. This will enable you to remove the capstan assembly - take care that the oil fence doesn't get mislaid.

Clean the capstan spindle and apply one drop of oil near the bottom. You'll have to clean it again after replacing it, in case any oil has been picked up during its passage through the bearing. On the 3V16 you'll also have

Fig. 1: The capstan drive system.

Fig. 2 (left): The capstan (Model 3292 differs).
Fig. 3 (right): The pinch roller.

5616
Fig. 4: Different relay pulleys.

Fig. 5: Pinch roller problems (exaggerated).
to centre the tacho PCB. There's a special tool for this, but if you align it visually with the recess in the flywheel you won't be far out.

Don't oil the relay pulley or pinch roller: as the races are sealed, this would be a complete waste of time.

Problems

The capstan motor will need replacement at some time during the life of the machine. This is less critical on the non-freeze frame models, but as the upper bearing is exposed it has a tendency to gather dust and become noisy or seize up. This can usually be repaired - see our previous series on electric motors. The correct motor must be fitted on the 3 V 16 - some motors that appear to be identical physically will give poor performance in the slow-motion and still modes. This can be a baffling fault: it's due to the motor armature being too heavy. The still and slow modes rely upon the tape being moved in several increments until a control pulse reaches a set position, the
drive being determined by the pulse. The wrong motor makes it impossible to achieve this.

One curious fault is caused by the oil fence not being pushed right down. If it's high enough to contact the tape the servos will go berserk! When refurbishing a secondhand machine search for this little part if it's not in place it can end up in some unlikely spots to cause trouble. '

The relay pulley can be forgotten unless the bearings become noisy - in this event replacement is the only cure. There are two types of relay pulley (see Fig. 4) as the belt arrangement in the Mk. III deck is different.

The capstan can be bent as a result of rough handling. Observation while running will show this up. A more common result of dropping the machine is that the lower bearing strap is bent by the weight of the flywheel. As a result the pulses from the pickup head will be intermittent or absent. Don't forget that these heads can develop an intermittent open-circuit.

The capstan bearing occasionally becomes dry, causing tape flutter.

Pinch Roller Troubles

The worst part of this show is the pinch roller, though it's only fair to say that the problems are generally due to mishandling. These problems are of three types: misalignment in either the plane of tape travel or at right angles to it, and wear.

We'll consider wear first. The tape wears the roller which eventually develops a cotton-reel shape - see Fig. 5(a). As a result the edges of the tape are pushed together, causing wrinkling of the edges. This in turn modulates the control pulses with the "wrinkle frequency", typically about 0.5 Hz , giving horizontal movement of the picture. Diagnosis is by laying the roller on a flat, opaque surface, or better still a mirror. No daylight should șhow through. Once again replacement is the only cure.

Fig. 5(b) and (c) show what happens when the pinch wheel lever gets bent. The 3292 doesn't suffer much in this respect as the lever is cast rather than being a steel pressing. Both planes of bending have a similar effect and make the tape travel up or downhill. The condition shown in Fig. 5(b) can be checked by pushing the roller towards the capstan and looking for daylight when they are in light contact. Straighten the lever carefully by hand. This type of misalignment tends to wrinkle the tape by attempting to drive one edge faster than the other. If the pinch roller leans in the direction of tape travel - Fig. 5(c) - the tape will tend to move up or down. This effect is obvious when the back tension pole is pulled back, relieving the back tension - this is the pole on the left of the deck, attached to a lever with a brake band at its end. With no back tension there should be no perceptible movement of the tape up or downwards for say ten seconds.

The Pinch Solenoid

The pinch solenoid is relatively trouble free. Don't oil it as this will eventually cause sticking, as will any spillage that penetrates the mechanism here. The long lever that moves the solenoid is especially prone to this due to its great area of contact with the baseplate. Sluggish solenoid action (a pause before it engages) can sometimes be traced to an intermittent after-loading switch. This is the rearmost of the two microswitches near the solenoid.

Next month we'll be looking at the loading mechanism.

Letters

VINTAGE RENTALS

I must correct an error in your March leader. You state "the rental company's sets were its trade stock so no purchase tax was involved". This was not so. I was in the TV rental business and we had to pay P.T. when we bought the sets.

Northampton was a fringe area, and the cheap Sobell and similar sets were insensitive, lacked good flywheel sync and a.g.c. and were pretty poor performers. They were also not very reliable, proving once again that you get what you pay for!

Rental certainly made good sense for most people - we had 81 12in. GEC sets out on rent in 1953 and had to change 140 tubes in the first eighteen months. We then converted to Mullard tubes and had no further c.r.t. trouble.

When colour came along the most unreliable sets we had were the Bush ones which had an average fault rate of 16 times per annum, mainly due to faulty i.c.s. The KB sets were about the most reliable of the UK produced ones.

A big difference with the present day is the fact that in the fifties and early sixties one in every four sets we purchased had to be repaired before sale - we even had one set with a wire missing. Today's sets, which can be taken straight out of the box and plugged in without repair or adjustment, were then just a dream.

R.S. Turner,

Northampton.

INTERFERENCE TO VCRs

Many thanks to A.R. Lloyd of Plymouth for his observations on interference to VCRs. The main consideration in my article was with the more difficult to eradicate kinds of interference that emanate from r.f. sources such as radio amateurs, emergency services and broadcast transmitters. Radiation from TV receivers can indeed be removed by the simple expedient of placing an aluminium foil sheet beneath the set. Close off-air channel patterning can also be easily cured by shifting the r.f. converter's frequency removal of the aerial lead from the VCR will provide a good clue.

These are fairly simple things to sort out and form the most common types of disturbance to the picture. When these basic and often effective cures fail to produce results more clues have to be sought and the covers have to come off. Interference to VCRs from radio transmitters is more common than many people realise - ask anyone who lives near Daventry, Brookman's Park, Droitwich or Moorside Edge! Field strengths of $60 \mathrm{~V} / \mathrm{m}$ are common within 500 yards of the masts.

Recent VCRs with metal bottom and top covers that overlap a good deal are much less affected by interference pick-up. I'm currently testing an RS Components RFI/ EMI paint spray on earlier plastic-cased machines: the results have been very encouraging.

J. LeJeune,

Nottingham.

I think that A.R. Lloyd has been very lucky not to have had interference problems of the type described by J . LeJeune. I've a Ferguson 3V29 and an Hitachi TV set.

The receiver can easily handle adjacent signals, e.g. Dover ch. 50 and Sudbury ch. 51 . The nearest signal I have here to the VCR's output is Sudbury ch. 41, so I've no trouble with co-channel interference. Everything normally works well but I sometimes have interference on the picture in the playback mode. It looks rather like the s.w. interference we used to have in the fifties on sets with low i.f.s. Removing the aerial from the VCR usually stops the trouble. Connecting an earth to the VCR's metal base plate makes the trouble much worse.
Alex Clapton, B.Sc.,
Ipswich, Suffolk.

RECYCLING COMPONENTS

Many of your readers will like myself have rescued scrap logic boards full of 74Ls and linear chips. Removing these chips for reuse by conventional means, i.e. desoldering bolt and pump or desoldering braid, is well nigh impossible without damage or destruction of the items you're trying to save. Anyone with a hot-air type of paintstripping gun might like to try the following method however. It works well even with double-sided boards. A word of warning though: before you start, make sure you're wearing a pair of safety spectacles - solder splashes are a real hazard.

Mount the scrap board vertically in a vice so that you have access to both sides - a "Workmate" type bench is ideal for this. Grip the chip by its ends with a pair of vice grips or similar and heat the print side of the board with the gun. Don't put too hard a grip on the i.c., and give the heat time to melt the solder. Gently rock the grips: when the solder has melted the chip will come away from the board with very little effort. The first chip will take an interminable time to come free, but if the next one you decide to remove has received some of the heat used on the previous one the time taken will be considerably reduced.

After a few chips have been removed the "something for nothing" urge will take over and you won't be content until you're faced with a bare board. Use a low-wattage soldering iron to remove any bits of PCB tracks left on the chips, and straighten up the legs.

The heat from the gun doesn't seem to affect the chips adversely. I've found that over ninety per cent of the devices removed in this way have been o.k. The other ten per cent are usually damaged physically by over-zealous application of the vice grips.

Happy junking!
Alastair J. Downs,
Edinburgh.

MAINS ISOLATION FOR MONITORS

In your March issue P.J. Dinning contributed an article on using opto-isolators to overcome the problems of mains isolation when converting a commercial CTV set to a cheap RGB data monitor. The article was a follow-up to my earlier one in the August 1986 issue.

I'm in full agreement with P.J. Dinning that picofarads are present between the primary and secondary windings of a mains transformer and that data corruption can occur when fast transients are present on the mains supply. When considering what form of mains isolation to adopt, i.e. opto or inductive, I gave careful thought to the physical fixing arrangements and the need to maintain a high standard of wiring, bearing in mind that many commercial CTV chassis use a bridge rectifier across the
mains input and are at half-mains potential with a very low input impedance. The use of a suitably rated transformer for isolation, with correct earthing to ground physical, must be regarded as an extremely safe method and good practice.
C.R.T. flashover would be less likely to cause data corruption if a low-impedance discharge path is correctly wired to ground physical.
Regarding expense, I've seen suitable transformers advertised recently in the magazine for less than $£ 20$ approximately the equivalent of four suitable optoisolators and discrete components. Whether a 500 VA rated transformer is necessary depends on the power supply used in the chassis to be modified. When a switchmode circuit is used it may not be necessary to use additional mains isolation. This would have to be looked at very carefully.
I'm pleased to see your readers being given several options for modifying older types of chassis - all methods have their pros and cons.
Brian Webb,
Havant, Hants.

EXCLUSIVE AGENCIES

I thought the bad old days of exclusive agencies were over - but I was wrong. Needing a special component for a CVC801 I sent my order on headed notepaper with a cheque to ITT Consumer Products Ltd. Back it came with a letter to say that they could supply spares only to agency accounts and invited me to order through my nearest agent ten miles away. I've obtained spares without any problems from almost every other TV manufacturer British, German and Japanese. If they can all do it, I wonder what makes ITT different? The irony is that the firm I was asked to order from now employs no qualified TV engineers - it puts its repair work out to independent engineers like me!

L.P. Watkinson,
 Telesonic Services, Holsworthy, Devon.

SONY FAULT FINDING GUIDES

In your reference to the Sony Fault Finding Guides in the March issue (Teletopics) you say that the books have been based on our spares computer records. This is incorrect and I feel could be misleading to any engineer considering the purchase of these guides. The information has been amassed from service repair data gathered from our Service Centres throughout the UK and Europe. As a result we've found that the information presented gives a very high statistical probability of correct fault location. Finally the guides are available from our Spare Parts department at Thatcham, not the Service Department.
Mike Nicholls, Technical Publications, Sony (UK) Ltd., National Operations Centre, Pipers Way, Thatcham, Newbury, Berks RG13 4LZ.

THE FIDELITY CTV14

Having just read Les Lawry-Johns' comments on the Fidelity CTV14 in your March issue I feel compelled to write in. I've encountered Fidelity sets on only three occasions, my experiences being briefly as follows.

In the first set the line output transformer and chopper transistor were short-circuit. When these were replaced the result was an e.h.t. flashover to the scan coils via a pinhole in the glass beneath the coils. The tube had obviously caused the fault which had by now blown
several expensive chips, transistors, etc. Set written off.
Defective line output transformer insulation in the second set caused corona discharge and tripping. The customer decided to buy a new set as he was unwilling to pay for a new transformer.
In the third set the line output stage tuning capacitor was open-circuit (split open). The result was excessive e.h.t. and flashover to the scan coils, as a result of which the following went short-circuit: the line output transistor, the chopper transistor, the field, sound and i.f. chips . . . etc. The set was just out of guarantee and was written off.

A sorry tale of woe.
M.J. Darby,

Coventry.

VINTAGE MAINS SUPPLIES

Chas E. Miller's article on vintage mains supplies (March issue) took me back to the thirties era of radio. Major setmakers supplied models for odd supplies, with 25 and 100 Hz transformers. I believe some went to places where collieries supplied the power. Most d.c. supplies seemed to be of the three-wire type - the third wire gave half voltage. I worked in Aldershot, Hants where we had a 220 V d.c. supply for lighting, but our rotary converter for accumulator charging had a 415 V d.c. input, 7.5 V d.c. output. A.C. sets were run on d.c. to a.c. converters. These were motor-generators, a popular version being the electro-dynamic type. This was a portable, rubbermounted, steel-cased unit. It was quiet and efficient.

A stock fault with mixed supplied was a burnt out mains transformer due to d.c. being applied. My home town, Windsor, was also d.c. then. This reminds me of an occasion in the Castle's furniture stores. A large radiogram owned by the late Duke was abused in this way by workmen hoping to get the racing results.

Younger readers may think that a live chassis is peculiar to TV sets. Not so. It was found with a.c./d.c. radio sets in the UK in the mid-thirties. The sets of the day were unfused, had single-pole mains switches and were fed from bi-pin plugs. It was usual for an earth and an outside aerial to be connected - no ferrite rods then. The earth sockets on these sets were a hazard on a.c. supplies. Isolated by means of an $0 \cdot 1 \mu \mathrm{~F}$ capacitor they could pack a punch. I once took a junior out on a call and remember him saying "this earth's no good" as he withdrew the rod from the soil. His yells as the a.c. shook him belied his comment. Even then we suffered from the Wally, with earth leads being taken to meat skewers in flower pots.

Other ancients will remember the Ferranti chassis with i.f. trimmer screws at the rear, irresistable to handymen. Later on came the radio with a heater ballast mains lead which would be shortened by smart-arse types, thus destroying the valve chain.

My experience with vibrators was only in early car radios, where the hash could drown out weak signals. But just before McMichael became Sobell I had the chore of minimising hash in a radio for the technical director's yacht. I learnt a little about earth loops.

William Harrison,

 Windsor, Berks.
PUSH-BUTTON TUNER WANTED

Can any reader supply me with a push-button tuner in good condition for a GEC 2040/2041 colour TV set?
Mike Mills, 34 Garton Road,
Sydenhamं, London SE26 5HD.

Rapid TV Fault Diagnosis

George Wilding

Three factors contribute to rapid TV fault diagnosis. First, an assessment of the probable cause prior to making any tests. Secondly, meter tests designed to pinpoint the faulty stage. Thirdly, checks to eliminate as quickly as possible all likely defective components.

Transistor Defects

So far as transistors are concerned line and RGB output types exhibit by far the greatest incidence of complete junction breakdown. With RGB output transistors tube flashover is the most common cause of failure, giving the loss of one colour symptom. Largely due to the lower working and flyback voltages involved, field output transistors have a much better service record. After some years of service the high-voltage and/or high-current transistors used as series regulators or electronic filters can develop increased collector-base leakage, the result being a hum bar. When there's no output from a discrete transistor i.f. strip the first thing to do is to check whether a gated a.g.c. amplifier transistor is used and if so to test this item. Such transistors have a much higher incidence of breakdown than those used for signal amplification: the usual result when they break down is that the controlled transistors are driven to saturation.

Resistor Troubles

Resistors which have values in the Megohm range and are used to pass a constant current tend to increase in value after some years of service. Those particularly at risk are ones used in the tube's first anode and focus supply circuits. Low to medium value resistors can rapidly fall in value, especially when subjected to even a shortterm overload. They will continue to fall in value after the overload has been removed, so if you are at all suspicious check the resistance value.

Lack of Brightness

Inability to obtain normal, full brightness, assuming that the beam limiter is not misadjusted of faulty, is commonly the result of an increased value resistor in the feed to the tube's first anode(s). Where the brightness control range is restricted in either direction or the brightness varies spasmodically it pays first to check any zener diode used to set the d.c. brightness level.

No EHT

Now for an example of rapid fault diagnosis, taking that most common of complaints no line output/e.h.t. If all the power rails are intact, no fuses have blown and no trip has operated, the cause is either a non-operational line output transistor or loss of line drive. The great majority of sets today use an i.c. to generate the line drive, followed by a driver transistor which is transformer coupled to the line output transistor. Thus barring print disconnections or socket troubles, and the very rare incidence of line driver transformer breakdown, the cause of the fault is likely to be either an inoperative chip, a defective line driver transistor or an output transistor with an open-circuit
junction or a short-circuit base-emitter junction - a collec-tor-base or collector-emitter short-circuit would have blown a fuse of course.

The output transistor is the main probability, but as checking it could involve removal of an e.h.t. cage before unsoldering either the base or emitter connection it's generally quicker to eliminate the other suspects. To check the i.c. implies reference to the service manual for relevant pin connections and voltages, while a check of the driver transistor can consist of either voltage measurements or resistance checks across the junctions. All three procedures are time consuming. It's much better to go for direct evidence of line drive, i.e. dynamic testing. In this respect a digital multimeter is particularly useful since most have a.c. voltage ranges that extend to approaching line frequency with only a relatively small fall-off in reading. Being calibrated for sineware r.m.s. values their response to what is essentially a rectangular pulse waveform will naturally be greatly reduced. But all we want is firm evidence of the presence of a waveform instances of low drive amplitude are rare.

Test probe application to the collector of the driver transistor is naturally the first step to take. If the drive is found to be present, removing the e.h.t. cage and delving into the line output stage will not be a waste of time and effort. If there's no drive at the collector but there's drive at the base then clearly the driver stage is at fault. If there's no base drive there's either no output from the line oscillator chip or a short-circuit across the driver transistor's input, the most likely cause of the latter being a baseemitter short-circuit in the transistor itself.

In total then two or three quick tests should localise the cause of the fault.

Field Collapse

Another very common TV fault is no field scan. In many sets most of the field timebase circuitry is contained in a single i.c. The majority however use a multi-stage discrete circuit, which means that the first essential is to pinpoint the defective stage. Now while digital multimeters tend to have greater sensitivity and always have a much higher input impedance, moving-coil types can be almost equally useful for showing that a sawtooth waveform is present, though once again the values recorded will be only a fraction of the actual peak-peak amplitudes. The point however is that by using meter tests to identify the faulty stage the usual voltage and resistance tests are reduced to a minimum. Dynamic testing is particularly useful in view of the d.c. coupling frequently used in discrete field timebase circuits.

Other Field Faults

Severe field non-linearity, especially towards the bottom of the scan and tending to get worse as the temperature rises, is commonly caused by excessive collector-base leakage in the output transistors. If the non-linearity is fairly static and has increased gradually over a period of time a partially dried up coupling or decoupling capacitor could well be the cause. Large capacitance loss in a coupling capacitor can be detected with a meter by noting
the wide disparity between the input/output waveform amplitudes. In the case of a decoupling capacitor loss of value will be revealed by the excessive amount of signal developed across the capacitor.

Even slight leakage in a base coupling electrolytic capacitor can have a major effect on the d.c. biasing of the driven transistor, again producing severe non-linearity.

Though erratic variations in height and/or linearity are often caused by presets with dirty tracks or poor slider contact, ageing electrolytics can cause similar symptoms.

Excessive height with bad linearily is invariably due to an open-circuit component or a disconnection in a negative feedback loop. Should panel tapping have no effect it pays to turn the linearity presets from end to end to show up possible hairline cracks and indicate the defective feedbáck loop.

Weak or non-existent field sync with a well locked line oscillator may well imply a fault in the field sync circuitry: it's often due to a high-value resistor used to bias the base of the sync separator however.

Using the Eurodecoder Panel

The Television low-cost teletext decoder project published in the December 1986 and January 1987 issues used a Mullard VM6101 module because of its low cost and ready availability. Another suitable module has since become available, the Eurodecoder panel used in the Philips KT3 and K30 chassis. You may be able to obtain this even more cheaply than the VM6101 (from Sendz Components and Manor Supplies). Its size is similar to that of the VM6101 and it fits in the box suggested for use with the low-cost teletext decoder project.

As with the VM6101 module, some preparation work has to be carried out on the KT3/K30 board before it can be used in the project. The modifications required are shown in Figs. 1 and 2. They are summarised below:
(1) Remove connector blocks V2, V3 and V4 to allow direct soldering to the PCB (unless you can get some connectors!).
(2) Reverse the polarity of C 2002.
(3) Remove R3002.
(4) Short out or link our resistors R3021 and R3022.
(5) Connect the video input to connector V3 pins 1 and 2.
(6) Apply the power supplies required to connector V2, 12 V to pin $1,5 \mathrm{~V}$ to pin 3 and chassis to pin 5.
(7) Wire the data control lines to connector V4 - DLIM to pin 4, /DATA to pin 3 and the chassis connection to pin 2.
(8) Using a scalpel, cut the tracks leading to pins 22, 23 and 24 of IC7043 (SAA5050). Sólder flying leads directly to these pins to form the colour outputs. These are red to pin 24 , green to pin 23 and blue to pin 22.
(9) Connect a flying lead to pin 5 of IC7041 (SAA5020).

This is the /AHS output.
The only other change required when a KT3/K30 panel is used instead of a VM6101 module is to the 8748 microcontroller chip's software (ICl on the interface panel). The IBUS instructions are different, requiring changes to the look-up table inside the chip. This part is available, programmed, from VIP Ltd., 32 Charlton Lane, Cheltenham, Gloucestershire GL53 9DX - to order it, ask for an $8748 / \mathrm{KT} 3$ chip. The other items required for the project are also available from VIP Ltd. (for details see page 112 of the December 1986 issue).

The KT3/K30 teletext decoder boards come ready aligned (as does the VM6101). The two boards I've tried both worked without adjustment, although one was advertised as untested and required a new SAA5042 chip. An important point is that if the teletext decoder project doesn't work when first assembled don't start fault finding by making alignment adjustments on the decoder panel it's almost certainly something else that's wrong.

Peter Marlow, B.Sc.(Hons.), C.Eng.

Fig. 1: Modifications to the Eurodecoder circuit.

Fig. 2: Eurodecoder panel layout, showing modifications.

Servicing the Sharp VC9300

David Botto

Abstract

The Sharp VC9300 VCR is a front-loading VHS machine with a wired four-function remote control unit. It was on sale during the 1982-3 video boom period and proved to be a best-seller. We've found it to be quite reliable. A digital multimeter is essential for voltage measurements and a logic probe and component tester (see the June 1984 and November 1985 issues of Television) will save you a lot of stress and time - some oscilloscopes incorporate a component tester.

Access

Begin by removing the three screws at the back of the top cover and the one under the little panel that fits over the TV channel tuning controls. The top cover can then be lifted away to reveal the interior. A magnetic screwdriver will help to avoid the frustration that arises when searching the interior of the machine or the floor for dropped screws.
Looking into the machine you'll see the flat-mounted PWB-C Y/C PCB that handles the colour and luminance signals. After removing the two screws at the lower left and releasing the clip at the lower right the board can be lifted backwards on its hinges. A metal cover over the video heads is held by the same two screws. It's easy to forget to replace this cover: you may then experience problems with patterning.
At the front right, also laid flat, you'll find PCB PWBU which contains the preset tuning controls. Beneath this panel there are two small PCBs which house the audio circuitry (PWB-B).
PWB-I which holds the tuner and i.f. amplifier is at the front right, mounted upright. The upright PWB-D panel behind it contains the mechanical switch circuitry.
The bottom metal cover plate comes away easily after removing three screws. The front panel can be taken off after unscrewing three more screws that hold the three lugs at the top of the front panel and releasing the clips at the bottom. Be careful not to lose the two felt pieces on the front slider switches: they tend to drop off, never to be seen agāin.
With the front panel removed you'll see to the right the PWB-T PCB which contains the clock circuitry and display, the tuner selector switches and LED indicators. It's held in place by a single gold-coloured screw and a top plastic clip - be careful, this clip breaks easily. The PWBH operations circuit board is on the left.
The large PWB-A board at the bottom of the machine contains the mechanism control and servo circuitry. It can be released by removing the two gold screws near the front and two side plastic clips. After pulling out plug HA2 at the front of the board it will swing out by about 45°, allowing sufficient access for most purposes. The less you disturb the PCBs in this machine the better.

The Power Supply

It's not particularly easy to get at power supply board PBW-P. This board is enclosed in a metal box at the top rear of the machine, under a metal support bar that runs the length of the machine and to which the two plastic hinges that carry board PWB-C are fixed.

To gain access, first remove the little black screw above mains on-off switch S901, whilst viewing the VCR from the rear. Next unscrew the black screw just above the moulded indicator arrow to the left of the aerial (antenna) input socket. Finally unscrew the two big gold screws at the top of the metal support bar. The bar support and PCB can then be lifted away and the metal box undone so that PBW-P is revealed.
The power supply circuit is shown in Fig. 1. Most of it, anyway: there's an oscillator/rectifier circuit on board PWB-A to produce some additional voltage lines and the 13 V line crowbar protection circuit is also on this board.
The mains supply is fed to connection points OB1 (neutral input) and OB3 (live input) on board PWB-O, then via fuse F 901 and points $\mathrm{K} 908 / 9$ to connection points K902/3 on panel PWB-Z. K902/3 connect to the mains power switch S901, then to points K901/4. The Mylar mains filter capacitor C901 is connected across K901/4. Also on this board is a special $12 \mathrm{M} \Omega$ carbon resistor, R901. The mains supply leaves board PWB-Z at K901/4, returning to board PWB-O at K910 and K907. After passing through the filter choke L901 the supply goes via OA4/6 to the primary winding of mains transformer T901.

T901's secondary winding supplies the chopper regulator board PWB-P at connections K9002 and K9012. One side of the supply is, taken to the off-board fuse F9001 via K9011 and K9001. The supply is then fed to the bridge rectifier D9001 (part no. RHDX0008GEZZ) which develops about 34 V across its reservoir capacitor C9003. The positive side of this d.c. supply goes to the emitter of chopper transistor Q9001. You'll recognise this as a standard series chopper circuit, with L9002 the inductive reservoir and D9003 the efficiency diode. The output from the choke is filtered by C9007/L9003/C9008. A regulated 13 V supply is obtained at K 9006 .

IC9001 ($\mu \mathrm{PC} 393 \mathrm{C}$) contains two operational amplifiers. OP1 and the associated external components act as a 30 kHz oscillator whose output, developed across C9912, is taken to the inverting input of OP2. This second operational amplifier acts as a pulse-width modulator, its noninverting input (pin 3) being fed from the collector of the error detector transistor Q9004 which senses the chopper output voltage via zener diode D9006 and the potential divider network R9016/7/8. A variable mark-space ratio output whose on/off times depend on the voltage across C9007 thus appears at pin 1 of IC9001. This drives the base of the chopper transistor via Q9003 and Q9002.

At switch-on diode D9004 charges capacitors C9009/ 9010 to provide a start-up supply for the chopper control circuitry. Once the chopper gets going this part of the circuit is supplied via D9005.

Panel PWB-P also contains a conventional series regulator circuit which produces a stabilised 12 V supply at K9008. Q9006 is the series regulator transistor and Q9007 the error amplifier. The circuit is switched on and off by Q9005/Q9008. The base of Q9008 is taken via K9004 to connector AE3 on the mechanism control panel PWB-A, where it goes to pin 33 of the 64 -pin microcomputer chip IC801. When the on switch is pressed pin 33 of this i.c. goes high and the 12 V line appears. During cassette unloading pin 33 goes low, switching off the 12 V line. In the timer mode pin 33 goes high when the VCR begins to

Fig. 1: The power supply circuit. A converter stage and a crowbar protection circuit are mounted on the mechacon panel.
record, establishing the 12 V supply.
Diodes D9002 and D9010 develop across C9004 a positive d.c. voltage that goes via K 9007 to connector AE5 on board PWB-A, providing a power-off error voltage.

C9002 feeds a 50 Hz signal to K 9009 to synchronise the timer clock with the a.c. mains supply. This signal goes to AE4 on the mechacon board and then follows a rather roundabout route before finally arriving at pin 3 of the timer microcomputer chip IC5001 on timer board PWB-T.

Power Supply Faults

The first step to take with a machine that shows no signs of life is to check fuses F901 and F9001. If one of these fuses has failed and it's not a nasty black colour the failure may simply be due to old age. If so, give the machine a four-hour test before returning it to the customer. If F9001 again blows after an hour or so, the machine functioning correctly after replacement of F9001, suspect an overload on the 13 V line. The cause is probably a defective component in the power supply circuitry on panel PWB-A. Use your component tester to check, in the following order, zener diode D901 (RHEX0019GEZZ), thyristor Q903 (3P1M), C915 $(2 \cdot 2 \mu \mathrm{~F}), \mathrm{C} 903(4 \cdot 7 \mu \mathrm{~F})$ and zener diode D902 (RHEX0045TAZZ). The two electrolytics can dry out and corrode.
The PWB-P power supply board is very reliable, which is just as well considering how difficult it is to get at it. But you can get problems. The best place to measure the output voltages from panel PWB-P is at pins 1-6 of connector AE. This connector is located at the rear of panel PWB-A (the mechacon board), next to fuse F902. Check for 13 V at pin 1 and 12 V at pin 2 , using your digital voltmeter.
If the 13 V supply is present but the 12 V supply is
missing, before you start to remove board PWB-P connect the positive supply clip of your logic probe to pin 1 of connector AE and the negative supply clip to pin 6 , then check the logic level at pin 3. This should be high when the front panel "standby-on" control is pressed.

When you've established that there's a fault in the PWB-P board circuitry remove the board from its metal cover and place some insulating material between the board and the machine's chassis to prevent the print touching the chassis with the mains supply switched on. If fuse F9001 blows and turns black, start by checking the bridge rectifier D9001 for shorts.

Check the waveform at the collector of Q9003 (see Fig. 2) with a $10: 1$ probe. If it's missing, check transistors Q9003/4 and Q9001/2 in that order, then zener diode D9006 and diode D9005. If all seems to be in order but the oscillator circuit won't start up suspect the start-up capacitors C9009/C9010. One or other may have dried up. So far we've had no problems with IC9001.
Once you've dismantled board PWB-P and got it working it's a good idea to check the eight electrolytics for loss of capacitance and the few diodes and transistors for the slightest leakage. This takes only minutes with a component tester and could save you the frustration of having to dismantle the PWB-P board again within a week or two.

Fig. 2: Waveform at pin 1 of IC9001 (a) and at the collector of transistor Q9003 (b).

Before replacing board PWB-P in its metal box, first carefully set up the 13 V line (R 9017), then the 12 V line (R9022), with the machine in the record mode. Recheck the voltages when the machine has been running for half an hour.

The Luminance/chroma Panel

Fortunately few faults seem to occur on the luminance/ chroma panel PWB-C. The adjustments don't seem to drift, so don't disturb them unless it's absolutely essential. Before looking for obscure faults examine the printed circuit carefully for cracks or dry-joints where it's joined to the various socket connectors. Damage can occur when the panel is opened and swung back too quickly. Be sure to clean the video heads and the audio/control and full erase heads with a proper video head cleaning kit before making further tests.

A quick check is to play a colour-bar test tape with a scope connected, via a 10:1 probe of course, to test point TP308. Adjust the scope's timebase so that you can see the head I and 2 signals separately.
The signal at TP308 is fed via Q305 (2SC945), filter

Table 1: IC801 logic level checks

Pin	Function	Condition				
		Tape stopped	Play	Record		Reverse
1	Supply brake strong	L	L	L	L	L
2	Supply brake medium	L	L	L	L	L
3	Supply brake weak	L	L	L	H	L
4	Take-up brake strong	L	L	L	L	L
5	Take-up brake medium	L	L	L	L	L
6	Take-up brake weak	L	L	L	L	H
10	Fast forward LED	L	L	L	H	L
11	Rewind LED	L	L	L	L	H
12	Dub LED	L	L	L	L	L
13	Record LED	L	L	H	L	L
14	Playback LED	L	H	L	L	L
15	Pause LED (high in pause)	L	L	L	L	L
167	End/start sensors	$L+P$ in all above modes				
18	Sensor stop input	H	L	L	L	L
19	Dew sensor input	L in all modes with no moisture				
20	Timer rec. indicator input	L in all modes when not on timer				
21	Timer CTL input	L in all modes when not on timer L in all modes when not on timer				
22	Timer rec. output					
23	AL output	L	H	H	L	L
29	Oscillator	$\mathrm{H}+\mathrm{P}$ on all functions				
33	Power CTL	H	H	H	H	H
34	Dew indicator output	L when normal				
35	AV mute output	L	H	L	-	L
36	DM mute	H	L	L	-	H
37	Drum rotation sensor	H	*	*	H	H
38	Reel sensor input	H	t	H	*	*
44	Sleep input	L	L	L	L	L
45	Camera remote control input	L	L	L	L	L
54	Reel motor UL/swing	L	L	L	,	L
55	Reel motor play/rec.	L	H	H	L	L
59	Reel motor VS	L	L	L	L	L
60	Reel motor FF/rew.	L	\ddagger	\ddagger	H	H
61	Motor reverse	L	L	L	L	H
62	LDM CTL	L	L	H	L	L
63	Cap mute	H	L	L	H	H
64	Cass. M.CTL	L	L	L	L	L
* $\mathrm{H}+\mathrm{P}+\mathrm{L}$						
$\dagger \mathrm{H}+\mathrm{P}+\mathrm{L}$ very slow						
$\ddagger \mathrm{L}+\mathrm{P}$ momentary						
Pins 24, 26, 27 and 28 are connected to chassis.						
Pins 31 and 32 are at 10V.						
Pins 42, 43, 46-49 are the AD0-5 lines, $L+P$ in all modes.						
Pins 50-53 are the KE0-3 inputs, $L+P$ in all modes.						
Pins 7-9, 25, 30, 39-41 and. 56-58 not connected.						

FL302 and the emitter-follower Q306 (2SC945) to pin 18 of IC501 (AN6360). This device can give trouble, either failing to function at all or causing various strange effects to appear on the picture. It has been used in VCRs of various makes. Before replacing it, make sure that its 11.6 V supply is present at pin 5 . If this supply is missing check L502 $(220 \mu \mathrm{H})$ for continuity or dry-joints.
If all is well with IC501 the luminance output will be present at pin 7. It passes to pin 15 of IC402 (HA11703) where it's combined with the chroma signal. You should see the complete video signal in the record, playback or E-to-E modes at TP402.

If you think that the a.p.c. adjustment (C517) is out don't be in a hurry to adjust it. First connect a $39 \mathrm{k} \Omega$ resistor and an $0.01 \mu \mathrm{~F}$ capacitor in parallel between TP503 (pin 13 of IC502, AN6371) and chassis and an $18 \mathrm{k} \Omega$ resistor between TP501 (pin 9 of IC502) and chassis (TP504 and TP506 are convenient chassis points). Select the record mode, feed a colour-bar signal to the VCR and connect an accurate digital counter via a $10: 1$ probe between TP502 (junction of C521/R523) and chassis (TP504). The reading should be $4 \cdot 433619 \mathrm{MHz}$. If it's incorrect, adjust C 517 gently to obtain the correct frequency.

As with most VCRs, problems occur due to small electrolytics on the board drying out and losing capacitance. A poor signal at TP402, yet with a good signal output from the r.f. output socket to the TV set, can be due to $\mathrm{C} 431(1,000 \mu \mathrm{~F}, 16 \mathrm{~V})$ becoming almost opencircuit. The reverse occurs if $\mathrm{C} 439(100 \mu \mathrm{~F}, 10 \mathrm{~V})$ dries out and fails and C431 is in order.
If a signal fed to the video input socket at the rear of the machine seems weak check $\mathrm{C} 201(100 \mu \mathrm{~F}, 10 \mathrm{~V})$ for low capacitance and/or leakage. Before condemning IC501, check C509 ($47 \mu \mathrm{~F}, 16 \mathrm{~V}$) and C502 ($1 \mu \mathrm{~F}, 50 \mathrm{~V}$).
These small electrolytics on board PWB-C are less liable to dry out than on earlier TV sets and VCRs. But if you've a puzzling fault on this board it takes only minutes to check all the small electrolytics with a component tester.

Function Faults

A dirty or faulty reel idler assembly (part no. NIDL0005GEZZ) and/or reel motor (part no. RMOTV1008GEZZ) can cause the following problems: no or poor rewind or fast forward; the machine going into the stop mode intermittently; the tape not going back into the cassette when stop is selected; tape spilling out during playback.
To clean or replace the reel idler assembly and if necessary replace the reel motor the cassette housing has to be removed. Remove the four little red-gold screws at the sides of the housing and the two larger black screws in front, gently unplug the connector at the left and lift the housing clear. Clean the reel idler assembly and the entire tape path mechanism. If this doesn't provide a cure you may need to fit a new idler assembly or the fault may be due to the reel motor sticking or having a dead spot. It's sensible to replace the reel idler assembly when fitting a new motor.
To fit a new reel motor remove the cassette down switch and holder - two metal screws only - to reveal a little metal bracket and the two small screws that hold the reel motor (see Fig. 3). A small coiled spring has to be unhooked: it easily flies off into the unknown, so be careful not to lose it! Swing back the PWB-A mechacon
panel and the reel motor can be replaced. Note that the fault can sometimes be due to the plastic sleeve on the motor shaft riding up.

All sorts of strange and apparently complex function faults, such as tape stopping and starting or some functions not working properly or at all, can be caused by the cassette down switch (part no. QSWK0008GEZZ) and/or the little slide switch (part no. QSWS0032GEZZ) sticking or making no or poor contact. It's good sense to clean and check these switches whenever you've a function fault or a machine comes in for service. They've even been known to break in half. This could save you hours of time and worry as you try in vain to find a fault in the circuitry!

Other faults such as fast forward or rewind slow or no rewind at all can be due to relay RY7751 (part no. RRLYZ0016GEZZ) sticking or failing. The associated transistor Q7754 (2SD882) likes to leak or go open-circuit, sometimes intermittently, giving similar symptoms. These two components are on the PWB-A mechacon panel.

The trip counter can be responsible for intermittent stopping due to a worn gear - the take-up reel drives the motion detector via a belt, with a further belt driving the counter from the detector. As a check, reset the counter then test the machine. If it always stops at a certain number the trip counter is responsible - as a further check remove the counter belt.

The Converter Stage

As previously mentioned there's a converter stage on the mechacon panel (PWB-A). This consists of an oscillator and several rectifier diodes. The transformer T902 (part no. RTRNH0015GEZZ) provides anti-phase 2 V a.c. outputs and feeds three rectifiers. D903 (1SS81) develops -20 V across $\mathrm{C} 907(47 \mu \mathrm{~F}, 150 \mathrm{~V})$. This supply is fed via connector AD7 to connector TB3 on timer/ channel selector board PWB-T. D904 (1SS81) develops 10 V across C $908(220 \mu \mathrm{~F}, 25 \mathrm{~V})$ which goes via AD 8 to TB4 on board PWB-T and via AF3 to MA9 on the cassette unit. This supply is also used on the PWB-A board itself, including pin 32 of the microcomputer chip IC801 (RHIX0074GEZZ). D905's (DX0126CE) output is developed across C909 ($47 \mu \mathrm{~F}, 100 \mathrm{~V}$) and fed via R908 $(2 \cdot 7 \mathrm{k} \Omega, 2 \mathrm{~W}$ safety) to connection ACl where 50 V should be recorded. This supply goes to UC2 on board PWB-U. The 2 V a.c. feeds go via AD 3 and AD 4 to $\mathrm{TB} 1 / 2$ on board PWB-T, finally arriving at pins 20 and 38 of the clock display. When choke L902 $(100 \mu \mathrm{H})$ goes opencircuit, as it sometimes does, all these voltages disappear. The reservoir capacitors C907/8/9 can dry out and lose capacitance. The rest of the circuitry around transformer T902 has so far proved to be extremely reliable.

System Control Checks

The easiest way to check the system control circuitry is to use a logic probe. First ensure that all the d.c. supply voltages are present then, with the mains supply disconnected, carefully solder two half-inch lengths of bare wire to pins 32 (Vss +) and 28 (Vdd) of IC801. Connect the probe's positive supply lead to pin 32 and the negative supply lead to pin 28.

First check that an $\mathrm{H}+\mathrm{P}$ logic signal is present at pin 29 (oscillator) of IC801. Then monitor the various pin levels (see Table 1). If no indication whatever is obtained at a pin that should show a logic level the connection within IC801 has failed. Should this occur, heating and freezing may soıretimes temporarily restore IC801 to a working

Fig. 3: Sketch of the cassette down switch, viewed from the top, (a). Sketch of the reel idler and motor viewed from the top with the cassette carriage removed (b).
condition. A connection like this can be the cause of intermittent results. When you're reasonably sure that IC801 is defective, carefully desolder and remove it, trying not to damage the device. Now fit a 64 -pin i.c. socket. This gives you two advantages. If the original i.c. proves not to be faulty after all you can put it back again, and if the new one fails some time it's easily replaced.

IC803 (STA401), IC802 (IR3403) and IC804 (IR2403) are logic inverter i.c.s that can, on rare occasions, fail. Usually one output only goes open-circuit. If this happens just one function may cease or the whole system may stop. These chips are simple to check - the logic level output from each inverter should be opposite to that at its input. Don't forget to transfer the positive supply clip of your logic probe to the positive line supplying these inverter chips. If you suspect an overload in the circuitry desolder the output pins of each inverter temporarily.

We've had not problems with any of the other chips on board PWB-A.

The cassette lamp should be replaced if it has seen a fair amount of service. If you don't it's sure to fail shortly afterwards, preventing the machine from functioning.

The adjustments on board PWB-A usually don't drift. If you have any suspicions, check the small electrolytics on the board for leakage and loss of capacitance and examine the board carefully for dry-joints before wielding your small trimmer tool.

Other Boards

The PWB-T board and the associated PWB-U board contain the clock display, timer, channel selector and tuning circuitry.

If the clock circuitry functions incorrectly or not at all, the first thing to check is that the voltages at connector TB are present and correct. These include the 2 V a.c. supplies at TB1/2 which feed connections 20 and 38 of the clock display. If this a.c. supply is missing look for a dry-joint around one of the connecting sockets en route from board PWB-A. Don't overlook the 50 Hz synchronising signal at TB7 - if all is well the digital multimeter reading here should be about 14.17 V a.c. If it's not, suspect C9002 on board PWB-P. IC5001 (MP2812S) seldom gives trouble: before condemning it check the three transistors on the board - Q5001/3 (both 2SA733) and Q5002 (2SC945).

The channel selector switches sometimes become noisy and unreliable. The only satisfactory cure is replacement.

If the VCR doesn't erase previous recordings properly or at all in the record mode carry out a scope check, via your 10:1 probe, at TP601 (pin 8 of connector BB) on the PWB-B-1 audio board. A nice sinewave should be present here. If not, check R626 (10Ω fusible), L602 (1 mH) and

Q604 (2SC496) in that order.
Perhaps we've been fortunate, but we've never had trouble with the PWB-D fine still/mechanical switch board or the PWB-H operation circuit board.

In Conclusion

If a new belt is required it's best to fit a complete set of belts to ensure future reliability. Avoid unnecessary complications by using the correct Sharp spares and recommended transistors which are readily available from Willow Vale Electronics Ltd. (11 Arkwright Road, Reading, Berks RG2 0LU, telephone 0734876 444). They can also supply service manuals.

Before finally assembling the machine ensure that all the connecting leads are neatly tucked into their correct positions and that you've not forgotten to replace any of the small screws you may have removed during servicing.

You may come across a version known as Model VC9300E, which persons unknown sometimes bring into this country. It operates on a wide range of a.c. voltages from 95 V to 250 V and has an entirely different switchmode power supply to the one described earlier. At the front there's a PAL/SECAM switch. The machine is not designed for use in the UK but it's possible, if you like a challenge, to remove the crystal filters in the sound i.f. circuit (board PBW-I) and replace them with the correct UK types. You'll then have to retune the circuitry a little.

Faults in CCTV Systems

Part 3

This is the concluding instalment in a three-part series that deals with some of the less common faults you might find with closed-circuit TV systems.

Flats' Surveillance System

Two cameras were installed at a block of flats, one in a weatherproof housing to look at the door entry panel with the bell buttons and entry phone for each flat, the other inside to look at the lift area. The video signals from the cameras were fed to modulators feeding the communal aerial distribution system. The residents could tune in to either picture on their domestic sets to see who was calling them from the door or to look for trouble taking place in the lift area. Both cameras were reported to be faulty, with no picture from either of them.
The engineer looked at the outside camera first. It had a separate power supply which was installed in a cupboard on the third floor: this power supply was connected to the rest of the camera in the external housing via a multicore cable. When the cupboard door was opened it was found that the power supply had been switched off. Switching it on produced a satisfactory picture on a local monitor. The camera in the lift lobby was self-contained, so the engineer went downstairs to look at it. This was an even easier "fault" to find - the camera had been stolen!

Misleading Voltage

The report on an unfamiliar, low-voltage camera was that it produced "no picture". When the engineer arrived on site he found that the monitor was showing a blank, unlocked raster. The camera cable - a thin multicore containing two coaxial links, one for video and one for sound, plus two cores for power - plugged into the rear of the monitor. As a first step the cable connector's shell was removed: 12 V d.c. was measured across the power pins at the monitor end.

The camera was mounted some distance away. When it was removed from its housing the 12 V supply at the end of the cable was found to be missing. The continuity of the vision coaxial link was checked by measuring the resistance across it. This was about 85Ω, i.e. the 75Ω terminating resistor in the monitor plus the resistance of the cable in series with it. So it seemed that the cable hadn't been cut. The screens of the coaxial links and the power

Peter Graves
common lead were found to be joined together at both ends of the cable.
From the engineer's point of view the system appeared to be as shown in Fig. 1, with the fault an open-circuit power lead. It was impractical to replace the whole cable: it was inspected visually as far as possible but no damage was found. The engineer decided to remove the unused audio lead from the existing pins and connect the inner core and the screen together at the power pin to replace the "broken" power lead. Fortunately he measured between the power supply and the common lead at the monitor end before switching the system on again. There was now a short-circuit between the power and common leads even though both ends of the cable were still disconnected. This short-circuit was of such a low resistance that it had to be near the monitor end of the cable.

The cable was carefully followed back. A few feet away, concealed behind some other equipment, the engineer found an auxiliary power supply which was in line with the camera cable. Fig. 2 shows the actual arrangement. This auxiliary power unit supplied the camera, the 12 V at the monitor plug being a red herring - it didn't go anywhere. Only the video coaxial cable was being used between the monitor and the power supply, the rest of the cores being redundant. The screens of the video and audio coaxial links were commoned within the auxiliary power supply.

The engineer found to his horror that the auxiliary power supply had been switched off, which completely explained the original fault. The sound links were reconnected to their original pins and when the auxiliary supply was switched on the picture was immediately restored. Three hours had been spent looking for a "fault" caused by someone accidentally switching the auxiliary power supply off. It shows how easily one can be misled when details of the installation are not available.

Furnace Installation

Each furnace in a coal-fired power station was split into two sections vertically. Each half had a furnace-viewing camera, in an air-and-water cooled housing, to look at the burners on the opposite wall. The cameras were of the separate head type, i.e. the camera head contained the lens, scan coils, head amplifier and part of the scan circuit, the rest of the camera circuitry being rack-mounted under

Fig. 1: How the system appeared to be connected.

Fig. 2: The actual connections.

Fig. 3: The modified monitor
the control room and connected to the camera heads by a multiway cable. The video outputs from the rack were fed to monitors in the control room.

During an early stage of a new maintenance contract an engineer was checking at the rack with a test monitor that could be connected to any of the video output leads by a selector switch. All pictures from the furnaces were satisfactory at the rack, but on walking upstairs to the control room he found that there were no pictures on either of the monitors for one furnace, just blank, locked rasters. It was unlikely that both cameras or both monitors had simultaneously failed in the same way but instead of keeping quiet and going back to check at the rack the engineer offered to see if he could "get some pictures on those monitors". This was greeted with howls of laughter from the control room operators and comments like "let us know if you find any". The furnace had been shut
down in the few minutes it had taken him to walk from one floor to the next.

Adding a VCR

A 9in. monitor was supplied, fitted with a two-way switcher for use with two cameras that plugged into the rear panel sockets and took their power from the monitor's d.c. rail. Multiway cables containing coaxial and power leads connected the cameras to the monitor. Two of the positions of a three-position toggle switch on the monitor's front panel selected the output from camera A or camera B all the time. In the third position ("auto") the two pictures were displayed alternately at a rate that could be varied. Switching was carried out by an analogue switch i.c. driven by some simple logic selected by the front panel switch. The logic was driven by a variablefrequency oscillator whose output was set by a potentiometer accessible through the front panel.

After delivery the monitor was modified to include a VCR in the system. The arrangement adopted is shown in Fig. 3. The lead between the switching circuit and the rest of the monitor circuitry was broken and taken to and from the VCR via two u.h.f. connectors on the monitor's back panel. With the VCR in the record or standby mode the signal from its input socket passed via internal amplifiers to its output socket. When playback was selected the tape playback signal appeared at the output socket to provide the display on the monitor. Thus no extra switching was required in the monitor, the VCR's controls automatically selecting the correct circuit arrangement.

The cameras, monitor and VCR were connected together - but the system didn't work. The monitor displayed just a blank, unlocked raster in all VCR switch positions. The problem caused some consternation. If the VCR's sockets were linked across the monitor would work with the cameras. The VCR was checked in both record and playback with a separate camera and monitor: no problems were found in either the record, standby or playback modes. The video cables between the monitor and the VCR were also tested.

The problem was caused by a combination of circumstances. Since the monitor was designed for the cheaper end of the market the switcher circuit was simple and had no buffer amplifier at its output. Normally this didn't matter because the input impedance of the following monitor circuitry was high enough not to load the switcher output. When the VCR was linked to the switcher the 75Ω terminating resistor at its input and the "on" resistance of the analogue switcher (typically between 80Ω and 300Ω depending on the type used and its operating voltage) formed a potential divider that drastically reduced the signal level at the output of the switcher.

Within the VCR the input signal was monitored by a circuit which cut off the output if the input level was too low. The potential divider effect reduced the signal level below this circuit's threshold - as far as the VCR was concerned it had no input. No input meant no output.

As the equipment was needed urgently the terminating resistor at the VCR's input was disconnected. This was not a very satisfactory solution as the VCR was rendered non-standard and would have to be restored to normal in the event of it being sent away for repair, but since the leads to the VCR were only about a metre long the slight mismatch could be tolerated. In later installations of this type a simple buffer amplifier was fitted within the
monitor, between the switcher output and the input to the VCR.

Low-light Camera

Many underwater cameras use a SIT (silicon intensifier target) low-light tube. Use of a sensitive camera means that little additional lighting, which may be difficult to provide underwater, is needed. In addition the problem of light back-scatter into the camera from debris floating in the water is minimised. A customer of a company that made underwater cameras rang up insisting that an engineer be sent out to a site to fix a camera "because it was not sensitive enough".

The camera was on a gas rig in the North Sea and the engineer was flown out, on an urgent basis, with his test equipment and spares. On arrival he found that the "faulty" camera worked as well as the new spare he had taken with him. When this was pointed out to the customer he shut the camera in a completely dark room and demanded to know why he couldn't see anything. It took some time to explain the difference between a "lowlight camera" and a "no-light camera"! The non-technical customer had been casually told something like "these cameras can see in the dark" by the salesman. The phrase had been taken literally and the customer's diving crew
were trying to use the camera, without additional lighting, to inspect the sea bed under a rig on a November evening.

Strapping a diving torch to the camera enabled reasonable pictures to be obtained, getting both the customer and the camera supplier off the hook.

In Conclusion

The faults that have been described in these articles are all based on practical experience. Some general lessons can be drawn from them.
First, reliability starts at the system design and specification stage: it's a false economy to cut corners, particularly with respect to cables and connectors. Quality pays.
Secondly, those who design and install CCTV systems should be aware of the fact that their systems will require servicing at some stage - far too many are designed and installed by people who've never had to do field servicing. External cameras in particular call for a means of access and a local power supply should be available for test equipment.

Thirdly, detailed documentation which is kept up-todate is vital in all but the simplest installations.
Finally, you can't plan for everything. Surprises will always occur. If everything worked perfectly most of us would be out of a job.

TV Fault Finding

Panasonic TC2205 (U2 Chassis)

The picture was bright and looked as though the line hold control was off frequency. The 195 V supply smoothing capacitor $\mathrm{C} 856(10 \mu \mathrm{~F})$ was found to be open circuit.
R.T.R.

Sanyo 80P Chassis

This set would take a long time to come on and the startup was intermittent when the set was hot. C312 ($10 \mu \mathrm{~F}$) which develops the supply for the error detector transistor was found to be almost open-circuit. It's also worth checking the chopper transistor's base bias/start-up resistor R302 ($470 \mathrm{k} \Omega$) and for a dry-joint at the collector of the chopper transistor (Q304) on these sets.

The problem with another of these sets (Model CTP7132) was no/poor line sync: the line hold had to be adjusted when changing channels. The sync separator and line oscillator are in IC401 (LA7800) which, being a plugin i.c., is easy to check by substitution. On this occasion the chip was o.k. A check at pin 16 revealed that the line feedback signal was missing due to a collector-base short in Q421 (2SC536).
R.T.R.

NordMende F11B Chassis

A puzzling problem we've had recently with some of these sets has been very intermittent failure of either the BU806 chopper transistor or the BU508 line output transistor. Replace the offending component and the set will work again for anything from a few days to a few months before the transistor fails again.

The problem is due to the preset adjuster PP01 in the power supply. The suspect type is square-shaped and what happens is that intermittent wiper contact allows the 124 V

> Reports from R.T. Rees, Les Grogan Christopher Holland, Martin Pomeroy, Steve Leatherbarrow, Roger Burchett, Michael Dranfield and Philip Blundell, Eng. Tech.

line to rise sharply. Note also that if the line output transistor fails it will take with it the feed resistor RP14. This is shown on the circuit diagram as R39, which means $0 \cdot 39 \Omega$ not 39Ω. Fit the latter value by mistake and it will go up in smoke at switch-on.
C.H.

Samsung Cl338

Several of these 14 in colour sets have been returned to us recently in the "set dead" condition, the cause being an open-circuit mains fuse. Failure is due to the current drawn by the degaussing circuit at switch-on being more than the 800 mA fuse can cope with. The factory approved answer is to use a 1 A anti-surge fuse as a replacement.
C.H.

Sony KV1810

Sporadic failure of the line driver transistor Q509 can be due to C 538 (an $0.47 \mu \mathrm{~F}$ electrolytic) going low in value. I suspect that this can also contribute to failure of the line output gate-controlled switch (Q510) and always replace it as a matter of course, using a polyester type.
M.P.

Philips KT3 Chassis

It was all 4 s and 7 s with this set due to that nice 4.7Ω resistor R291 in the power supply. No sound was traced to R413 (4.7) in the feed to the sound panel being opencircuit.

Another of these sets had an unusual fault. Everything was fine at switch-on, but as the set warmed up bending of the verticals developed at the top of the picture. The effect was similar to the bending that occurs on some sets
that are not video compatible when playing VHS tapes. As the set continued to warm up however the bending got worse and moved down the screen to the half-way point. A replacement sync panel was tried as a check (easy!) but failed to cure the problem. Some discolouration of the print was then noticed around D567 (BY228) in the EW diode modulator circuit. The diode was swapped over with one from a donor set. Hey presto!, the fault swapped with it.
S.L.

Grundig CUC41KT Chassis

The sync gradually drifted off. It proved to be an elusive fault which was eventually traced to $\mathrm{C} 738(0 \cdot 22 \mu \mathrm{~F})$ on the sync/line oscillator panel.

A case of tripping at switch on, with the set eventually settling down, was cured by replacing $\mathrm{C} 662(470 \mu \mathrm{~F})$ in the power supply - it was found to be completely open-circuit.
S.L.

Philips KT4 Chassis

We've had quite a few of these nice sets in with the dead or more usually intermittently dead symptom. The cause has in every case been dry-joints around the line output transformer connections.
S.L.

Rediffusion Mk. IV Chassis

The power supply gave a very low output and very rarely worked normally. If the set was left on for any time while testing the chopper transistor would be ruined. We found that the chopper driver transistor 4TR2 had a reverse base-emitter leak (several hundred $\mathrm{k} \Omega \mathrm{s}$).
S.L.

Ferguson TX100 Chassis

The symptom with this set was line tearing which varied with the settings of the brightness and contrast controls. The cause of the trouble was traced to R143 in the feed to the line driver transistor - it had increased in value from 15Ω to 250Ω.
L.G.

Panasonic TX2284 (U3W Chassis)

EW distortion in this set was due to the EW diode modulator driver transistor Q753 being open-circuit base-to-collector. Note that this transistor is mounted on the same heatsink as the field output transistors.
L.G.

Decca/Tatung 140/150 Chassis

The picture was very dark even with the contrast and brightness controls turned up fully. Q205 on the tube base was found to be open-circuit. This transistor forms part of a circuit that's used to hold the emitters of the lower transistors in the RGB output stages at a constant 2.6 V and also provides beam limiting.
L.G.

Panasonic TC2203 (U1 Chassis)

The symptom was sound but no picture, though the e.h.t. was present. A check at the collectors of the RGB output transistors revealed that these were all at about 175 V and thus cut-off. Moving back to the TDA2530 matrixing/ drive chip IC301 we discovered that the supply pin (9) was high at 15 V . This took us to the 12 V regulator transistor which was o.k., the trouble being due to one of the
associated series-connected 6 V zener diodes which was open-circuit. Replacing this restored the correct 12 V supply and a good picture.
M.D.

Thorn 9000 Chassis

The problem with this set was a short across the l.t. rail. The relevant fuse ($\mathrm{F} 4,1.6 \mathrm{~A}$) had blown. It was necessary to lift components one by one to find the short, which was eventually traced to $\mathrm{C} 171(6.8 \mu \mathrm{~F})$ on the signals panel. This is a small, red tantalum looking capacitor and has since been found to be the cause of the same fault in sets fitted with the 8500-8800 series chassis - the signals panels are very similar.

Another 9000 displayed a good picture apart from the fact that the whole screen was covered with large coloured dots. The cause of this was traced to internal arcing in the focus control.
M.D.

Panasonic TC2213 (U3W Chassis)

This set incorporates automatic channel search and the trouble was with the tuning action. The sweep would start when the auto button was pressed but it wouldn't stop at any of the channels. Extensive checks were carried out on the control panel but nothing amiss could be found. So the set was put aside to await the arrival of another one.

Panel swapping when a second set came along revealed that the fault was in the main chassis. We then found that gross mistuning of the a.f.c. detector coil L151 would stop the sweep on channel. Replacing the AN5132 vision i.f. chip IC101 made no difference but a new coil cured the fault. Presumably the internal tuning capacitor had gone open-circuit.

Rediffusion Mk. I and III Chassis

Ex-Rediffusion sets dumped by Granada continue to pour in. One Mk. I colour set confused me though the fault was simple. The mains fuse had blown and replacing it produced the sound but no raster symptom, with the PY500A glowing. There was no thermal trip action. After checking the boost capacitor and the valves I disconnected the tripler which turned out to be faulty. This is the first time I've encountered tripler failure in the Mk. I chassis. The thermal trip senses the line output valve's cathode current so it didn't react. This is something of a design fault, but considering the age of these sets they are very reliable. Personally I think Granada were mad to close down the Rediffusion setmaking operation.

A few days later I encountered my first faulty tripler in a Mk. III chassis. Although it was a number of years old this set had hardly been used, so presumably damp played a part here.
R.B.

Network NW1210

Very poor/non-existent field sync was traced to the sync separator transistor's bias resistor R409 (1.2M Ω) going high in value.
R.B.

Finlux 1000 Series

The symptom with this set was no picture - just a plain raster. As usual with a TDA3562A decoder chip I started by making d.c. checks around the auto black level feedback loop, where transistor Tb 1 turned out to be short-circuit between its base and emitter. P.B.

Test Report: Thurlby/RS Bench Power Supply

Eugene Trundle

As our portable video equipment workload increased we started to find it inconvenient to chase up every customer for his mains unit or to rely on batteries whose charge level is in our experience usually low or zero. A 12 V mains power supply salvaged from a scrap HR2200 was initially used. It proved to be somewhat inflexible and eventually blew up. It was of no use for the new breed of camcorders anyway: these work from a 9.6 V supply. The cheap, low-capacity bench power supply next pressed into service thoroughly misled us: it was unable to supply the short-term surge current required by many portable equipments in such situations as going from stop to record, when the camera, VCR and loading motor are all on at once - the supply voltage would dip below the cut-out threshold and the machine would promptly cut out. So we decided to dip into the test-gear budget (what's that?) for a "proper" power supply unit. The choice fell on the Thurlby PL series 15V , 4A unit available from RS Components (stock no. 611-420).

This beefy unit is a mains-operated bench power supply that provides a variable stabilised d.c. output voltage of up to 15 V with a current capability of up to 4 A . The output voltage is set by coarse and fine rotary controls, the latter enabling the required voltage to be set to within 10 mV . A third rotary control enables a current limit to be set - from a few milliamps to the unit's full 4A capability. Two front-panel mounted digital meters, each of $33 / 4$ digit (4,000 count) capacity with $0 \cdot 5 \mathrm{in}$. LED numerals, provide simultaneous and continuous monitoring of the voltage and current levels. Where the current consumption varies rapidly on load a damping mechanism can be invoked to reduce the milliammeter count rate, thus reducing the "boggle factor". A full specification for the instrument is given in Table 1. Other versions are available -5 V and 0 30 V types, also dual and triple supplies.

Hook Up

The output voltage appears across two 4 mm sockets. Our first action was to make up connecting leads with terminations appropriate to the portable video equipment we service - mainly the JVC/Ferguson camcorder range and Sony/Pioneer 8 mm camcorders. A third lead with shrouded mini-croc-clips caters for most other requirements. Thus kitted up we were able to devote all our mental resources (such as they are) to diagnosing and repairing faults rather than having to worry about keeping the wheels turning . . .

In Action

This power supply proved its worth from the moment it was installed. We'd be lost without it now. Its effective output impedance of $5 \mathrm{M} \Omega$ enables it to sustain all the transient demands of the mechanics of portable video decks and camcorders. It also provides some very useful aids to fault diagnosis and to setting up procedures: one quickly gets accustomed to the current demand made by each type of machine in its various modes, and the continuous current monitoring provides a useful indication of the health of the patient on the bench. The ability to set the output voltage finely facilitates easy checking and
adjustment of the user low-battery warning indicators and the under-voltage cutout point - items that are incorrectly set at the factory suprisingly often.

When it's not in use for repair work the unit can be put to work as a battery charger - for video batteries or any other lead-acid or nicad types. Charging can be done in the constant-voltage or constant-current mode as required. It will also charge car batteries - as ours did between-times during the snowy mid-January period!

Nor was use with "outdoor" gear the only video application we found for this power supply. With a suitably low output voltage it can be used to wind tapes and cassettes out of - or in to - dead VCRs, also to test for "jamming" and to test newly-repaired front-loading mechanisms out of the machine. Similarly, the loading or mode motors in modern decks can be "pulsed" to check the operation of the mechanics and mode switches, while the instrument's milliammeter gives an accurate indication of the mechanical load being imposed and the condition of a motor. The action of the servo disc-braking coil in oldie machines like the Philips N1500, Sanyo VTC9300 and Sony SL 8000 can be checked by direct application of a variable current from this instrument.

It's very often necessary to estimate for the repair of a VCR with a power supply fault. Without restoring correct operation of the power supply there's no way of telling the

Table 1: Specification

Line voltage: $110,120,220,240 \mathrm{~V}$ a.c. $\pm 10 \%$ at $48-63 \mathrm{~Hz}$.
Output: 0-15.5V nominal; 0-3.98A nominal.
Output terminations: 4 mm terminals with 19 mm (0.75 in .) spacing. D.C. output switch.
Sensing: Remote via 4 mm terminals or direct via shorting links (provided).
Line stability: $<0.01 \%$ of maximum output for 10% line change.
L.oad regulation: $<0.01 \%$ of maximum output for 90% load change.
Protection: Full short-circuit and overload protection.
Ripple and noise: Typically $<1 \mathrm{mV}$.
Output impedance: $<5 \mathrm{M} \Omega$ at 1 kHz .
Temperature coefficient: Typically $<0.01 \% /{ }^{\circ} \mathrm{C}$.
Transient response: $<20 \mu \mathrm{sec}$ at $<50 \mathrm{mV}$ of setting for 100% load change.
Constant-current output impedance: Typically $50 \mathrm{k} \Omega$ with voltage limit at maximum.
Voltage controls: Continuously variable coarse and fine controls.
Current limit: Continuously variable from $0-99 \%$ of maximum current rating. Automatic indication of constant-current operation.
Meters: Dual $33 / 4$ digit (4,000 count) with 12.5 mm (0.5 in .) LEDs. Reading rate 4 per second.
Meter resolution: Voltage 0.01V over entire range. Current 0.001 A over entire range.

Meter accuracy: Voltage 0.1% of reading $\pm 0.05 \%$ full scale. Current 0.3% of reading $\pm 0.2 \%$ full scale. At 20 $25^{\circ} \mathrm{C}$.
Current meter damping: Normally 20 msec , switchable to 2 seconds for averaging rapidly varying loads.
Operating temperature range: $0-45^{\circ} \mathrm{C}$.
Electrical safety: Designed and manufactured to comply with IEC 348.
condition of the heads, motors, etc. whose cost, if faulty, will be greater than that of the power supply job. This power supply can in many cases be used to energise a machine before the soldering iron is disturbed or much time is spent, so that the overall situation is known at the outset.

At the other end of the current scale the availability of a variable, closely stabilised voltage source can provide diagnostic short-cuts. Examples include the injection of a high logic level at an i.c. pin (current limit set low); the testing of servo units where the effect of a steady "error" voltage on motor speed and the feedback signal can be studied; the manipulation of a.g.c. voltages in i.f. amplifiers, and particularly tuners, to ascertain cause or effect; the provision of a control potential for voltage-controlled attenuators or amplifiers as used in camcorders, sound i.f. chips and so on. The latter application is relevant to TV sets where the brightness, contrast and saturation levels are nowadays set by d.c. control lines.

TV and Other Applications

In fact there are many time and trouble saving roles for the variable power supply in TV servicing. A.G.C. and tuner gain tests have already been mentioned. When servicing TV power supplies it's often helpful to be able to run up the control and pulse-generating sections in the absence of mains power, or with a reduced primary a.c. supply, in order to prevent fireworks if a fault is present: the Thurlby unit's output terminals are isolated from mains ground and the instrument's case, and it's safe to superimpose up to 300 V on this.

In the same way that a mains variac is often used to soft-start a TV set under investigation this unit can be used to run up gradually the power applied to a newly repaired or newly designed circuit, for example a field timebase or audio amplifier, while keeping an eye on the unit's ammeter. This procedure of increasing the voltage while watching the current is also useful for testing zener diodes, and for the bizarre purpose of "softly" killing semiconductors, fuses and low-value resistors. To what end? To imperceptibly introduce faults for diagnostic

The Thurlby PL series bench power supply which is available from RS Components/Electromail.

BRAND NEW VIDEO HEADS
3HSS Types equivalent to JVC TU31332 (L, J or M). Only $£ 31.35$ each inc P\&P \& VAT. Ex stock from Luton. D.I.Y. TV TUBE POLISHING KIT

The Kit includes everything you need to polish approx 25^{*} tubes to a high stendard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.

Kit Price $£ 57$ inc P\&P and VAT.Available from Luton only.
"Depends on depth and arss to be polished.
TV TUBES FREE DELVERY*
Quality, High Temperature Reprocessing

TUBE SIZE UP TO \& INCLUDING	$\begin{aligned} & \text { AXT37-001 } \\ & \text { A51-421X } \\ & \text { A51-426x } \\ & \text { A51-570 } \\ & \text { A51-500X } \\ & \text { A51-500X } \\ & \text { A51-701X } \end{aligned}$	AXT51-001 510 VAB 22 510VLB22 510VSB22 A56-510X A56-540X A56-701X AXT56-001			
$20^{\prime \prime}$		¢44		1550	$\underline{5} 8$
22'		£46		-	f64
$26^{\prime \prime}$		£48		-	$\mathbf{6} 85$

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years.
Prices shown are for 12 months quarantee
All tubes exchange glass required.
Delivery charge on colour tubes: Within 40 miles of Luton
1 or $\mathbf{2}$ tubes $\mathbf{f 6}$. 3 or more tubes FREE DELIVERY*
Please add 15\% VAT to all prices. Callers welcome. Please phone first.
WELL VIEW
114-134 Midland Rd, Luton, Beds.
Open Mon-Fri 9am-6pm. Late opening Tuesday \& Thursday till 8 pm . Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
Phone between 2-5pm.
West One Distributors Ltd., Chesham, Buckinghamshire. Tel. 0494778197
Best price paid for A66-540X, old glass
training exercises! Indeed this unit is ideal for training purposes: its inbuilt current-limiting and constant-voltage/ current characteristics are useful for demonstrations and, more to the point, make it impossible for the student to blow up the power supply.

Computers and their peripherals can also be powered by this unit of course, and it will (in time of need) run little Willie's Scalextric or train set far better than the power unit supplied. When the previously mentioned January snows melted, our ill-sited workshop promptly flooded. It was rapidly pumped out by a 12 V bilge pump powered by you-know-what!

Some time after we acquired the instrument, while it was fulfilling its normal role on the bench, we discovered quite by accident that it would also act as a highimpedance digital voltmeter with an accuracy of 0.1 per cent if the output voltage was set to zero and the unknown voltage was applied to the output terminals. A check with the handbook confirmed that this is permissible provided the applied voltage doesn't exceed 50 V .

Conclusion

Since the day of its arrival we've found this instrument to be indispensible. So far as I am concerned its only drawback is that everyone in the service department continually wants to borrow it. I consider is to be excellent value for money at $£ 159$ plus VAT. Those who don't hold an account with RS Components can obtain it from the RS subsidiary Electromail (PO Box 33, Corby, Northants NN17 9EL - telephone 0536204 555) at an inclusive price of $£ 185 \cdot 15$. Since it can be reasonably expected to last for say fifteen years I'd look upon it as an investment.

ECONOMIC DEVICES，PO BOX 228，TELFORD TF2 8QP

 $1.81 \left\lvert\, \begin{aligned} & 2 \operatorname{Scs} 3 \\ & 25\end{aligned}\right.$

0.79	AF180
0.41	AF181

AF181
AF186
AF239 $A F 23$
$A F 29$
$A L 13$
$A N 115$
$A N 155$
$A N 1506$
$A N 25$我交改㽞

AN240P
AN241

$|$| BA656 |
| :--- |
| BA7100 | $7.55 \left\lvert\, \begin{aligned} & \mathrm{BC} 560 \mathrm{C}\end{aligned}\right.$ $\left\lvert\, \begin{aligned} & \text { BC560 } \\ & \text { BC635 }\end{aligned}\right.$ 1.35 BC63

\section*{| 1.100 |
| :--- |
| 0.106 |
| 0.120 | 8}

F YOU DONT SEE TIUSTED ASK FORQUOTE

TEL 0902712083 TELEX 338490

The 8mm Video System

Part 2

Eugene Trundle

In Part 1 last month we covered the basic specification and characteristics of the Video 8 system, including the cassette, the track and deck layout and finally the recorded signal spectrum. This time we're going to consider the chroma and luminance signal processing.

Chroma Record System

The chroma signal processing system is conventional, though there are several points of interest. The basic arrangement used in the record mode is shown in Fig. 9.

The 4.43 MHz chroma subcarrier is filtered from the composite video signal and then fed to an amplifier whose gain is regulated to maintain a constant burst (and hence chroma) amplitude - this is the a.c.c. action (automatic chrominance control). Two reservoir capacitors are used, with switching at field sequential rate: this gives separate gain control to compensate for any difference in the characteristics of the two video heads.

The next stage is chroma emphasis whose main purpose is to reduce chroma noise, particularly with low-level signals. The outermost chroma sideband signals are weakest and most susceptible to noise: these are boosted by a filter that has a bell-shaped response, similar to that used in a SECAM decoder. A complementary filter restores the signal balance during playback, reducing the chroma noise in the process. A further stage of emphasis operates when gated on by a suitably timed pulse, doubling the amplitude of the burst to make it less susceptible to tape noise and increase the accuracy of the playback chroma-correction processes. It partly compensates for the fact that the Video 8 system doesn't use the Betamax system's excellent pilot-burst system. This 6dB burst emphasis system is also used in US-standard VHS machines (NTSC colour system).

The chroma down-converter works in the subtractive mode, with a "local-oscillator" input at $5 \cdot 16 \mathrm{MHz}$. To facilitate crosstalk correction during playback the 732 kHz output from the down-converter has a phase advance of 90° per TV line for application to head A (ch. 1) and a non-changed phase for head B (Ch. 2). To remove timing jitter during playback the relationship between the 4.43 MHz subcarrier frequency and the line frequency (fH) has to be strictly maintained. The arrangement used to generate the $5 \cdot 16 \mathrm{MHz}$ local-oscillator signal takes care of these factors.

Fig. 10 shows the arrangement in block diagram form. Line sync pulses from the signal to be recorded are used

Fig. 9: Block diagram showing the chroma signal processing in the record mode. Separate a.c.c. reservoir capacitors provide for differences between head characteristics.
to lock a $375 \mathrm{fH}(5.86 \mathrm{MHz})$ voltage-controlled oscillator (VCO) whose output is fed to a divide-by-eight circuit which is programmable, coming under the influence of line-rate pulses from a second VCO that's locked to the incoming line sync signal by means of a phase-locked loop. The output from the divide-by-eight counter is at 732 kHz , with a 90° per line phase-stepped characteristic when used with head A. For use with head B the phaseshift system is muted by the head-switch flip-flop signal (a 25 Hz squarewave) that's also applied to the programmable counter.

The 732 kHz signal is fed to an additive mixer (carrier converter) whose second input is a stable 4.43 MHz c.w. signal derived from a crystal oscillator locked at 90° to the burst signal: $4 \cdot 43 \mathrm{MHz}+732 \mathrm{kHz}$ gives $5 \cdot 16 \mathrm{MHz}$ for application to the down-converter. The record chroma signal that emerges from the down-converter has the required head A 90° per line phase-stepping characteristic, and after filtering it's added to the luminance f.m. record signal. The carrier inverter shown in Fig. 10 is immobilised during record: it's used for trick-mode playback, as we shall shortly see.

Chroma Playback

As is always the case the chroma playback arrangement is more complex than the record system - due to the need for dejittering and crosstalk cancellation. An outline of the system is shown in Fig. 11 - many of the stages are common with those used for recording.
The 732 kHz off-tape signal is controlled by the a.c.c. stage before being applied to an up-converting mixer. The output from this, at 4.43 MHz , enters a comb filter for crosstalk removal before de-emphasis is applied by a bell filter with a characteristic which complements that used during the record process. In the normal playback modes the chroma signal is now ready to be added to the luminance signal to form a composite (CVBS) video output. Derivation of the $5 \cdot 16 \mathrm{MHz}$ "local oscillator" signal is the key to correct phase restoration and dejittering of the chroma playback signal.
As before the 5.16 MHz c.w. signal is generated by a mixer whose inputs are at 4.43 MHz and 732 kHz . The source of the 4.43 MHz input is a crystal (the same as that used in the record mode) but the oscillator is now "freerunning", i.e. it's not within a control loop: it acts as a master oscillator for the chroma playback system.

The a.p.c. detector has two inputs, a gated sample (burst) of the up-converted subcarrier and a 90° phaseshifted signal derived from the 4.43 MHz crystal oscillator. The phase detector's error voltage output acts on a $5.86 \mathrm{MHz}(375 \mathrm{fH}) \mathrm{VCO}$ whose output passes through the programmable divide-by-eight counter to produce the required 732 kHz signal for the carrier converter. Once again the counter/phase-shift circuit is programmed by the head-switching flip-flop squarewave to produce the appropriate phase-stepping characteristic for head A's signal and a constant-phase output for head B's signal. This cancels the phase shifting introduced during the record process: it's used in the comb filter circuit where crosstalk is cancelled.

Fig. 10: Generating the 5.16 MHz "local oscillator" signal for the down-converter in Fig. 9.

Fig. 11: Chroma playback up-conversion and carrier generation.

The phase detector's control range is limited - it can work over a range of only 180°. To prevent the phase detector "running out of road" the burst ident detector compares the phase of the playback chroma burst with the local $4 \cdot 43 \mathrm{MHz}$ c.w. signal from the crystal oscillator. If a phase error is detected a reset signal is passed to the carrier inverter in the 5.16 MHz feed to the up-converter. This has the effect of inverting the chroma output signal so that the correct operating range for the a.p.c. detector is maintained.
During normal playback then the dejittering agent is the 5.86 MHz VCO which acts in a phase-control loop to maintain the correct phase (and hence colour) by slaving the chroma signal to the 4.43 MHz reference signal. The subcarrier frequency control normally provided in chroma playback systems is not required here, though the facility does exist - the a.f.c. ident detector shown at the bottom in Fig. 11. This steers the $5 \cdot 86 \mathrm{MHz} \mathrm{VCO}$ on a line-by-line basis, producing an error output voltage which is derived from a comparison of the off-tape line sync pulse and an fH pulse counted down by the $\div 375$ circuit. The VCO is thus locked at 375 fH . This arrangement is normally operative only in the jog (trick) playback modes, which call for the use of several other artifices.

Jog Chroma Correction

In any mode other than normal playback at SP or LP speeds the linear tape speed differs from that used during record. As a result the path of the heads crosses the tape tracks instead of being centred on them. Because the track correlation is 1 H and 2 H (SP and LP respectively) these track crossings - typically in the search modes -
cause no problems with the luminance signal (unlike VHS-LP, where an 0.5 H jump pulse generator and a $32 \mu \mathrm{sec}$ signal delay are required) but can give rise to a disordered PAL chroma signal.
As head A (Ch. 1) for example crosses from one of its tracks to an adjacent track in the search mode (cue or review) it may well leave on a $+(\mathrm{R}-\mathrm{Y})$ line and move to another line with $+(\mathrm{R}-\mathrm{Y})$ instead of the expected $-(\mathrm{R}-$ Y), destroying the PAL sequence. This cannot be prevented but can be masked by using the additional circuitry shown in Fig. 12. Here the chroma signal is checked for correct burst phase sequence by comparing it - in the sequence detector - with an artificial burst generated within a special chip. When an incorrect sequence is detected a logic circuit comes into action, operating a

Fig. 12: Chroma correction arrangements used in the trick playback modes.
changeover switch in the $5 \cdot 16 \mathrm{MHz}$ path to the up-converter. Its effect is to invert the phase of the chroma signal, burst and all, about the $\mathrm{B}-\mathrm{Y}$ axis, restoring the normal PAL continuity at the chroma output.

The way in which this is done is unusual. The carrier converter's two inputs, 4.43 MHz and 732 kHz , produce both sum $(5 \cdot 16 \mathrm{MHz})$ and difference $(3.7 \mathrm{MHz})$ outputs which can be selected by means of bandpass filters. Either can be used as the "local oscillator" input to the upconverter, whose output will in both cases be at 4.43 MHz . When $5 \cdot 16 \mathrm{MHz}$ is being used the carrier converter is working in the additive mode and the up-converter in the subtractive mode: when 3.7 MHz is being used the carrier converter subtracts and the up-converter adds. The point is that in the additive mode the up-converter inverts the phase of the $\mathrm{R}-\mathrm{Y}$ chroma without upsetting the head A phase-stepping sequence.

Alteration of the chroma phase on such a rapid basis would ordinarily cause instability in the a.p.c. detector circuit, which has a relatively long time-constant. To prevent this a compensation link is provided between the sequence detector and the a.p.c. detector.

Further compensation techniques used in the jog chroma playback mode include a high-speed a.c.c. circuit to minimise the effects of mistracking, a facility to correct the speed of the 5.86 MHz VCO by applying off-tape line sync pulses to the a.f.c. ident detector, and a quasi-burst insertion circuit in which a locally-generated PAL burst signal is substituted for the off-tape one - the latter could be corrupted by mistracking noise or timing errors. In Sony's own and derived machines all these jog chroma circuits are incorporated in a specially designed chip, type CX20117.

Chroma Crosstalk Compensation

The effect of the line-rate phase advance given to the chroma signal recorded by head $\mathrm{A}(\mathrm{Ch} .1)$ is shown in the top row (a) in Fig. 13 - this assumes that the signal consists of a plain red raster. The constant-phase red signal recorded in the adjacent tracks by head B (Ch. 2) is shown in row (b). When the tracking during playback is correct head A will read mainly its own tracks, but crosstalk will give rise to a small signal from the Ch. 2 tracks, as shown in row (c). The TV-line correlation between adjacent tracks ensures that the crosstalk signal is coherent. In restoring the phase of the Ch. 1 playback signal the crosstalk signal is rotated clockwise by 90° per line as shown in row (d). Row (e) is the result of delaying previous row (d) by two TV lines, i.e. $128 \mu \mathrm{sec}$. When the signal components from rows (d) and (e) are added (electrically) the crosstalk signals (black arrows), being equal and opposite, will be cancelled while the wanted inphase signals will add and will thus be reinforced.

Although Fig. 13 shows only a red hue and takes no account of the PAL alternations of the signal the crosstalk cancellation system works for all hues and for PAL, as a laborious redrawing of Fig. 13 for different signal conditions would show. In fact the only time when the system breaks down is when the colours on adjacent lines are markedly different.

Though not actually part of the format, V8 machines incorporate a correlation detector and switch to prevent hue distortion at the upper and lower edges of coloured objects in the picture. Fig. 14 shows its operation. A feedback loop is used to feed back 2 H delayed chroma to a subtractor in the chroma signal path. The correlation

Line	n	$n+1$	$n+2$	$n+3$	$n+4$	$n+5$	$n+6$	[0820
(a)		\square		\square		$\sqrt{\square}$	ξ	Head A. Ch. 1 record: phase advances 90° per line
(b)			\square			4	4	Head 8, Ch. 2 record: no phase shift
(c)		N				4		Ch. 1 playback with crosstalk from Ch. 2
(d)								Ch. 1 playback with 90° line phase retard
(e)								Ch. 1 playback with 2-line delay
(f)								Ch. 1 output from delayline matrix: crosstalk cancellod out

Fig. 13: Chroma crosstalk cancellation achieved by the twoline delay line and add matrix.

Fig. 14: Operation of the correlation detector in the chroma crosstalk cancellation circuit - this prevents colour distortion at sharp horizontal edges in the picture.

detector allows a high degree of feedback when the chroma correlation is high: when low or no correlation is present however an alternative feedback path is switched in to cancel the effect of the crosstalk-compensation delay line.

The Flying Erase Head

An important feature of the Video 8 format is the headdrum mounted flying erase head. Its width covers approximately two tracks and it's mounted at 90° to the line on which the record/playback heads are situated, as Fig. 15 shows. The main advantage of the flying erase head is in editing situations where a clean cut between the old and the new video material is achieved. Because of the physical separation between the stationary full-erase head and the video-head drum in other formats the old tracks must be overwritten by the normal (or a specially increased) luminance recording action of the rotating heads during the first few moments of a new recording. This provides adequate erasure of the previous luminance signal but leaves remnants of the original chroma signal:

Fig. 16: The advantage of the flying erase head. The start of a new recording in a fixed erase head machine is shown at (a). The portion of the tape between the fixed erase head and the video head drum will produce chroma patterning during playback. At the end of the recording a blank section of the tape is present before reversion to the original recording. This is shown at (b). In (c), representing a record start with a flying erase head, an instant and complete transition is achieved between the old and new recorded material. A slick changeover again takes place at the end of an insert recording, as shown at (d).
the result is colour stains at the transition point during playback - the severity of the stains depends on the colour saturation and content of the old and new pictures. The flying-erase system has long been used on professional video equipment. Fig. 16 shows the way in which these unsightly colour glitches are avoided: it also shows how a "noisy gap" is avoided at the end of an insert recording. The erase head, which needs considerable energy, is driven via a high-power rotary transformer and is switched on and off by the syscon. The process of PCM dubbing involves fast switching of the erase head and will be dealt with later.

Luminance Processing

It is not proposed to describe the luminance circuits in any detail since apart from the use of a high f.m. carrier frequency (see Fig. 8) they follow conventional practice, with non-linear pre- and de-emphasis for noise reduction and a 7.8 kHz (half line rate) shift of the f.m. carrier frequency field by field to facilitate crosstalk removal by means of a comb filter during playback.

A feature of the Sony luminance record system is the use of a delay-line comb filter (the same one that's used for noise reduction during playback) in conjunction with a clamp to remove, line by line, any d.c. offset in the recorded luminance signal. This ensures that the field-rate half line frequency differential in the f.m. oscillator is accurately maintained for optimum working of the luminance crosstalk cancellation system.

Current Video 8 machines also use the correlation detection system during playback to prevent signal distortion in the noise-cancelling circuit in situations where the adjacent TV lines are dissimilar. These techniques were described by Steve Beeching in the March 1986 issue (see page 300). The luminance correlation detector used in Sony 8 mm machines operates in a similar manner to that in the chroma playback circuit already described.

RECENT PHILIPS CHASSIS

We've had little to say about Philips TV chassis since a brief article on the CTX in the January 1983 issue. Time then for an up-date. Harold Peters traces the evolution of Philips sets from the KT3/ K30 series through System 4 - with notes on servicing these models - to the current CF1 and 2A chassis. Coverage includes the SOPS (self-oscillating power supply) system, Philips' variation on the old Siemens concept.

- 25 kV EHT PROBE

With care it's possible to build an e.h.t. meter at a modest cost: Andrew Heron provides constructional details for a self-contained probe incorporating a moving-coil meter. The probe has been designed to measure voltages up to 25 kV and the prototype has provided three years' reliable service.

- LOW-VOLTAGE DC OPERATION

It's holiday time again, which means complaints about the operation of equipment designed for use with low-voltage d.c. supplies. J. LeJeune provides practical guidance on satisfactory operation, particularly on the importance of adequate wiring, on interference problems and on obtaining a 12 V supply from a 24 V source.

- VIDEO 8: THE ATF SYSTEM

The use of control pulses recorded on a longitudinal track at the edge of the tape, as in the VHS and Beta systems, has served us well. With the Video 8 system's very narrow tracks however a more precise tracking technique is required. The system used is akin to that employed in V2000 VCRs, i.e. automatic track following pulses are laid down during the helical scan. Next month's Video 8 article describes the implementation of the technique in the 8 mm format.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:
TO.
(Name of Newsagent)
Please reserve/deliver the June issue of TELEVISION ($£ 1 \cdot 30$), on sale May 20th, and continue every month until further notice.
NAME
ADDRESS

Surface-mounted Technology

Geoff Lewis, B.A., M.Sc.

One of the most significant developments in printedcircuit board technology has been the introduction of surface-mounted components/devices (SMC/D). Use of very short tabs instead of the conventional lead-out wires means that the performance of these components is much closer to the theoretical specification. As a result of the reduced self-resistance, -capacitance and -inductance SMDs have a much better r.f. performance and much higher operating speed.
Surface-mounted components are soldered directly to metallic pads or lands on the PCB. The components are smaller physically and can thus be mounted closer together, resulting in smaller and more compact PCB assemblies. Since there are no through holes the PCB strength is greater, allowing the use of thinner substrates. Although the components themselves are smaller, the relatively larger contact pads provide better heat dissipation with lower resistance connections.

Board Production Techniques

SMD technology is particularly suited to automated production, leading to significant cost reduction. The changes mean that new soldering techniques have had to be developed. What could once be regarded as an acquired practical skill must now be considered as the application of a branch of chemical science. Three basic techniques are employed in the production of PCBs using surface-mounted components: the different methods have a bearing on the way in which a PCB is handled when servicing.
With wave-bath soldering a heat or ultra-violet light curing adhesive is used to attach the components to the PCB solder resist. The board is then preheated and passed, inverted, over a wave-soldering bath. The adhesive is used to keep the components in place whilst the solder joints are being made.

With reflow soldering a solder cream or paste is used instead of the adhesive. The paste is applied to the PCB through a silk screen, the components being positioned and held in place by the paste's viscosity. The assembled board is then passed through a melting furnace or over a hot plate. As a result the solder in the paste reflows to make the joints.

Vapour-phase reflow soldering is a derivative of the reflow method, using the latent heat of vaporisation to melt the solder cream. The assembled PCB is preheated then immersed in an inert vapour of saturated fluorocarbon

Fig. 1: Vapour-phase reflow soldering system.
liquid which is used as the heating medium: the heat is quickly and evenly distributed as the vapour condenses on the cooler PCB. This method has an important safety factor in that the soldering temperature cannot rise above the liquid's boiling point of about $215^{\circ} \mathrm{C}$.

This method is illustrated in Fig. 1. The primary liquid is boiled to produce the saturated vapour at the bottom of the chamber. It's trapped by a blanket vapour of, typically, trichlorotrifluoroethane, which has a condensing temperature of about $47^{\circ} \mathrm{C}$. This situation is maintained by the condensing coils. PCB preheating is necessary to prevent disturbance of the temperature equilibrium when the chamber is being loaded.

Solders and Fluxes

All electronic components become stressed at high temperatures. The effect is cumulative. Because of this the work temperature during production and servicing must be controlled. The wave-soldering operation for example is normally restricted to a temperature of $260^{\circ} \mathrm{C}$ maximum for no more than four seconds. Use of low melting-point solders is thus critical to component lifetime. The standard tin/lead (60/40) solder, which has a melting point of $188^{\circ} \mathrm{C}$, is not recommended for use with SMDs which often have silver- or gold-plated contacts to minimise joint resistance. Tin/lead alloy solders all cause silver leaching, i.e. the tin absorbs the silver from the component over a period of time, leading to high-resistance connections. The problem is avoided by using a silver-loaded alloy solder such as 62 per cent tin, 36 per cent lead, 2 per cent silver. Its melting point of $179^{\circ} \mathrm{C}$ makes it particularly suited for use with SMDs. Tin also tends to absorb gold, producing a similar problem which is aggravated by the higher soldering temperatures required. A silver bearing alloy also helps with this problem.

Flux is used in soldering basically as an anti-oxidant. The most effective flux causes an increase in the solder's rate of flow, thus lowering the component heating effect. The type of flux recommended for SMD use is either a natural organic resin compound or one of the new synthetic chemical types which leave less unwanted deposit on the finished board.

Servicing Aspects

A solder rework station could well be cost-effective for a large service department. It could include a small portable vapour-phase soldering unit such as the Multicore Vaporette, which is particularly suitable for small batch work. Much ingenuity is called for in the smaller servicing department when SMDs are first met.

The method used to remove a suspect component depends on the number of connections. For a two or three connection component such as a diode, resistor or transistor a fine soldering iron used in conjunction with solder wick or a solder sucker can be effective. Special tools are available for use with i.c.s. These vary from special collets that can be attached to the soldering iron, or electrical wire strippers, to the use of a controlled hot-air blast. These methods allow all the pins to be heated simulta-

Fig. 2: Good and bad soldered joints. See text.
neously so that the component can be lifted away.
Alternatively the component can be removed by cutting the connections, spills or tabs being removed separately. This is not quite so drastic as it might appear to be. Reuse of a suspected faulty component is not recommended, even though it might turn out to be serviceable - the two heating cycles required to remove and restore the device will greatly add to the component's total heat distress, with the result that it can fail prematurely at a later date.

Removing even a two-contact component can be a double-handed job. It's recommended therefore that any PCB being serviced is held securely in a suitable clamp. Once the solder has been removed there may still be the problem of removing the glued component. Though care should be taken when prizing such a component off the board track damage is unlikely as the adhesive should have been applied to only the solder resist part of the board.

Before a new component is fitted each pad should be lightly tinned using the appropriate solder and flux. Because of the smaller board size the tracks are much closer together than with a conventional board. It's important therefore to position the new component accurately and carefully. In the case of multi-contact components, secure two diagonally opposite connections first. The heat from the soldering iron, which should not be rated in excess of 40 W , should be applied to the component via the molten solder as shown at D in Fig. 2. Each joint should be made in a period of about three seconds. D also illustrates how a good joint should look, the solder fillet having a smooth miniscus.

Three faulty joints are also shown in Fig. 2. Joint A has too little solder, resulting in a high-resistance connection. Joint B is the result of using too much solder - this is probably due to the use of excessive heat. Joint C is again an example of using too little solder, once more giving a high-resistance connection.

As a final point, note that some SMDs are too small for the component value to be marked in the normal way. Unmarked components should therefore be stored in their protective packing until they are needed. Otherwise devices that may be difficult to identify will become mixed.

Teletopics

SATELLITE TV LATEST

British Telecom has signed two major agreements, with Eutelsat and the Societe Europeenne des Satellites (SES) of Luxembourg, to distribute TV programmes via satellite to Europe. The agreement with Eutelsat is for up to eight of the transponders on the Eutelsat-2 satellite due for launch in late 1989. The agreement with SES is for up to eleven transponders on the Astra satellite which is due for launch next year. Both these satellites are medium-power types that would give reception in an area bounded by Edinburgh, Stockholm, Milan and Bordeaux using dish aerials as small as 60 cm . Under the agreements British Telecom will lease the satellite transponders and sell time to programme suppliers.

A row has broken out over the supply to British Satellite Broadcasting (BSB), which holds the UK DBS franchise, of satellites for the service. The US satellite organisation Comsat has offered BSB two satellites for around $£ 46 \mathrm{~m}$ with a launch date in 1989 , a year earlier than previously envisaged for the start of the service. The satellites were originally intended to provide a US DBS service which was aborted. Modification for European use would take about eighteen months, roughly half the time it would take to build a new satellite. British Aerospace has protested that Comsat's offer amounts to dumping, since the satellites would be supplied at far less than the true manufacturing cost.

The Australian Bond Corporation, which was a member of one of the unsuccessful consortia that applied for the UK DBS franchise, plans to invest $£ 30 \mathrm{~m}$ in the BSB satellite project. BSB is in talks with various potential investors to raise additional capital for the project.

Home Video Channel and Premiere have merged to form a single feature-film channel. Following the deal British Telecom Vision and the Mirror Group will be 30 per cent shareholders and joint managing partners of the
new Premiere service. The remaining shares are held by film companies.

A new version of the MAC satellite TV transmission system, EU-MAC, has been announced by the IBA. The aim is to achieve a common European satellite TV transmission standard - EU-MAC was developed following discussions with the electronics industry throughout Europe. The original MAC-C standard, which has been accepted by the EBU, is not compatible with cable systems. For this reason France and West Germany have preferred a less sophisticated version known as MAC-D2 for use with their DBS satellites, which are due to come into operation during the next twelve months. EU-MAC is compatible with cable operation and can be relatively easily converted to MAC-D2. Lile MAC-C, EU-MAC is suitable for wide aspect ratio/enhanced definition transmission (extended-MAC).

COMPACT VIDEO DISCS

Since the compact audio disc uses similar technology to LaserVision, why not compact video? Matsushita, Philips and Yamaha are jointly developing what is to be known as the CD Video system and will be demonstrating CD Video players at this summer's Chicago Consumer Electronics Show. Sale of the player in the US market may start this autumn. Major software companies have announced their support and commitment to the CD-V system and it's expected that other electronics manufacturers will become involved soon. There are also plans for 8 and 12in. discs using LaserVision technology with digital sound.

GRUNDIG'S SURPRISES

Grundig is to introduce a colour set with a 32 in . FS tube during the spring trade show period: the firm has exclusive use of the 32in. tube in Europe for a six-month period.

A flicker-free television receiver, the new-generation multi-system M70, will be available in the UK this October. The set has a 28 in . tube and a 100 Hz picture frequency - the picture is refreshed 100 times a second instead of the conventional 25 times a second. This has
been achieved by incorporating a 4 Mbit CCD memory system which gives the added advantage of slide-quality still pictures.

TV AT 14GHz?

Croydon Cable, with the support of other London cable TV operators, has applied to the Department of Trade and Industry for permission to use frequencies in the 14 GHz band to provide a local London channel consisting of live news and magazine programmes.

FLAT SATELLITE TV AERIAL

A new flat satellite TV receiving aerial that's said to have many advantages over a parabolic dish has been jointly developed by Comsat and Matsushita. The aerial was on show at the recent Wembly Cable and Satellite '87 exhibition and is expected to be on the market later this year.

The flat design combines Comsat's expertise in satellite aerial technology with Matsushita's printed circuit design and production techniques. Unlike a parabolic dish, which is a reflective device, the flat plate aerial receives the microwave transmissions direct, making alignment less critical. The thin, light-weight design makes installation relatively easy. Portable models are also to be made available.

PLANT EXPANSION

Sony is to increase production of both TV sets and tubes at its South Wales plants. The $£ 30$ million TV investment will double the output of sets from 250,000 a year to over 500,000 a year when complete in 1990 and will create 300 extra jobs. Tube production is to be increased from 300,000 last year to 400,000 this year.

Samsung has decided to go ahead with its $£ 17 \mathrm{~m}$ plant at Billingham, Cleveland. The company had suspended plans pending clarification of the EEC's plans to impose duties on imported components. Production is likely to start late this summer.

Sanyo is to double production of TV sets and VCRs at its Lowestoft plant. Output of colour sets will be increased to 170,000 a year while VCR production will be increased to 150,000 a year.

SOUND BALANCE AND THE HARD OF HEARING

A working group consisting of representatives of the BBC, the IBA, the ITCA, the Royal National Institute for the Deaf and the British Association for the Hard of Hearing has been set up to study the problem of dialogue audibility in some TV programmes. People with hearing difficulties have complained that they find it hard to follow dialogue when the accompanying background sound, such as music, audience response and various effects, is present at a similar level. The working party will organise a series of tests to investigate the way in which sound balance affects dialogue intelligibility - both for the hard of hearing and viewers with normal hearing. It's hoped that the investigation will lead to a clearer understanding of the problem and suggest ways in which the situation can be improved. The aim is to see whether it would be possible to adjust the sound balance without impairing the artistic effect intended by the producer.

IN BRIEF

Full details of a video monitor conversion for the Ferguson TX 90 chassis are contained in the March issue (Vol. 21, no. 3) of Electronic Technology. The magazine is the journal of the Society of Electronic and Radio Technicians (57-61 Newington Causeway, London SE1 6BL) . . . A VCR offering picture-in-picture capability is to be introduced by Hitachi later this year. The new Model VT250 will enable the viewer to see an off-air and a playback picture simultaneously . . . It seems many, many years since we last saw a TV set bearing the Ambassador brand name. A new range of Ambassador products, including a 14 in . TV set and a VCR, is to be launched by Sentra Consumer Products of Wood Street, Brighouse, W: Yorkshire.

VCR Clinic

Mitsubishi HS318

This newish machine came in with the complaint "no colour". A known good colour-bar tape played back in black and white, but we were relieved to find that a recording made by the machine played back in colour on another machine. A quick scope test revealed that the chroma signal got no farther than transistor Q6B0, the 627 kHz playback amplifier, whose base voltage was correct at 1.6 V but whose emitter read 0 V . A replacement transistor cured the fault, though the base-emitter junction of the faulty one read o.k. on an ohmmeter when tested out of circuit.
E.T.

JVC HR2200/Ferguson 3V24

"Flashing Lights" said the owner. "It's going into the alarm mode" we told him. When we explained what might be wrong and what that might cost he went into the alarm mode too . . . Sighs of relief all round then when we found that the cassette lamp had failed.

With a new lamp fitted the lights stopped flashing, but when play was selected the head drum roared round at

Reports from Eugene Trundle, Alfred Damp, Roger Burchett, Steve Leatherbarrow and Philip Blundell, Eng. Tech.
about ten thousand r.p.m. There was no drum FG signal at TP7 in the servo section. None at terminals 111 or 112 on the servo board either. A new drum motor required? No, there was continuity through the FG coil at the motor connector. The trouble was due to dry-joints on the motor drive amplifier board, whose terminals $11,12 / 21,22$ pass on the FG signal.
E.T.

Sanyo VTC9300

These golden oldies were built like battleships and give every sign of outliving all their contemporaries. One arrived in the workshop the other day with a broken belt, and was thus unable to play. A footnote on the job card, in the owner's writing, gave elaborate instructions on how to get the tape to load: hold down the cassette lid with one hand while half-pressing the eject lever with the other and simultaneously pulsing the play lever till it stays down. He'd apparently been going through this procedure for some months before the belt broke to spoil his fun. The problem was that the mains motor was not being
energised on receipt of a cassette: the cause was the fact that the loading switch (a great big microswitch bolted to the left-hand side of the deck) had gone open-circuit. Its tags and blade differ from the standard RS Components type lever microswitches in our stores so one had to be ordered from Sanyo. With it and the belt fitted, and the heads cleaned, the machine seemed to be ready for another ten years' use.
E.T.

Finlux VR1030

The problem here was that the machine would lace up then, when the play key was pressed, it would unlace again - regardless of whether a tape was inserted or not. A second symptom was that the head drum rotated so fast there was a danger of it becoming airborne.

Taking these two symptoms together led us to the head drum tacho pulse generator. This consists of an optocoupler through which a drum-mounted interrupter whizzes. It's conveniently mounted on top of the drum, making it easy to establish that no output pulses were present during the few seconds available before the syscon shut the show down. In fact the phototransistor was o.k., but the LED section had gone open-circuit. A new optocoupler assembly restored order, with the correct 12 V peak negative pulse per 40 msec at pin 3 of P 669 . E.T.

Hitachi VT33

A weak point that's come to light is where the wires to the supply end sensor (Q141) are soldered into the cassette loading motor board. The wires are pulled tight and eventually break off, giving no rewind or review. R.B.

Hitachi VT11

Intermittent stopping/tape snagging was the fault report with this machine. As the fault didn't show up on test a basic deck service was carried out and the pinch roller was replaced. It came back of course, this time with the tape still in the machine. It looked as though the capstan had stopped, so a new capstan motor was fitted (this cured the warbling sound). Back it came a third time. The unit was put to one side with the bottom panel unhinged. It played away merrily for hours. Eventually I caught it. The drive was there for the take-up reel but the clutch assembly that drives it underneath the deck didn't rotate. I removed it (this is easier said than done, as it was almost solid on its shaft) and after lubricating the shaft the trouble had been cured.
S.L.

Sharp VC9700

Intermittent failure to play was the fault with this machine. When the fault occurred the drum didn't rotate as the motor control voltage at plug ES2 was low (1V). The drum muting transistor Q719 was leaky.
P.B.

Sanyo VCT5000

For no E-to-E vision check relay RY1001 on board VD1 for dirty contacts.

Sharp VC8300

This machine intermittently blew fuse F903. In the past this has often been due to a faulty drum motor, but not on this occasion. The fuse would usually blow when the tape was unthreading, so a meter was connected in the feed to
the threading motor. As there was no overload here we had to work back. The problem was eventually traced to an intermittent short in the forward/reverse switch (part no. QSWF0002GE). It's mounted by the solenoids. P.B.

JVC HRD120/Ferguson 3V35

This machine wouldn't accept a cassette. A quick check revealed that there was no supply to the cassette motor drive chip due to the 13 V supply protector CP1 on the mechacon panel being open-circuit.
P.B.

Sharp VCRs with Scotch Tapes

Since the shop down the road started to sell Scotch tapes I've had a number of cases of Sharp machines creasing only this make of tape, usually in the rewind search mode though three machines creased the tape in playback. In all cases the tape folded as it went over the drum exit guide. In most machines the search or playback tension was towards the top of the tolerance range and readjustment provided a cure. New rotating guides were required in the other machines. One wonders why the problem showed up with only this make of tape?
P.B.

JVC HRD565

Intermittent failure to eject was the complaint with this machine. The problem was to have a meter connected at the right time and in the right place. To start with we connected the meter across the cassette motor. This turned out to be a fortunate move: when the fault did occur the voltage across the motor rose but the motor stood still - a slight touch on the motor wormgear and the motor sprang to life. Replacing the motor restored normal operation.
A.D.

Mitsubishi HS330

This two-speed machine couldn't detect SP or LP and was constantly switching between speeds. When the VCR did settle the displayed picture suggested that the drum input/ output guides were incorrectly set. Readjusting these guides cured the fault.
A.D.

Sony SLC5

With its own recordings there was no picture except in the pause and picture search modes. The machine worked all right with prerecorded tapes. A check on the f.m. envelope at the head amplifier board showed that one output was rising and falling, indicating a servo fault. Checks on the servo board then revealed that the CTL pulse was missing at TP11. Replacing the audio/control head cured the problem.
A.D.

Fisher FVHP715

This machine would work intermittently: when it was in the fault condition all the front indicator lights went out but the clock and counter stayed on. When we moved the machine from the soak test rack to the work bench it worked normally. We were unsure whether the trouble was due to a confused microcomputer chip or a dry-joint. When the fault eventually appeared we removed the mains plug, counted to ten and plugged in again. As the fault was still present we looked for a dry-joint. After much tapping we found one at R971 on the power board.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

SONY KV2022UB

This set may work normally for weeks on end but on some occasions it won't switch on at all. In the fault condition the 105 V h.t. supply is missing. If the set is left off for a while it will return to the normal working condition.

Check by substitution the chopper driver transistor's base bias resistor R624 ($120 \mathrm{k} \Omega$), the decoupler C609 $(3 \cdot 3 \mu \mathrm{~F})$ and the error detector transistor's reference diode D603 (RD12E-B2). If the start-up resistors R602 and R603 (both $47 \mathrm{k} \Omega, 1 \mathrm{~W}$) are cold after a period of nonrunning, replace both. This assumes that the mains bridge rectifier is producing 360 V at the collector of the chopper transistor Q605.

THORN 9000 CHASSIS

The problem is very intermittent height reduction, with the lines carrying teletext information appearing approximately a quarter of an inch below the top of the raster. Scope tests have been carried out in the field timebase but due to the short duration of the fault nothing of significance has been noticed.

Now that these sets are getting on in years dry-joints are a common cause of problems. It's likely that replacing the large electrolytics in the field timebase circuit and resoldering all the joints here will do the trick. If not, use heat from a hairdryer and freezer spray to check the semiconductor devices in the field timebase, particularly VT407, VT408 and W408 in the driver and output circuits.

SANYO VTC5400

When any function other than pause is selected the machine returns to the stop mode after exactly two seconds. In addition the record function can be entered only when the lock button has first been pressed. All chip voltages seem to be correct and the sensors appear to be working correctly.

The fact that pause is the only function which works correctly indicates that the problem lies with the reel sensors. If these have been checked by substitution the only other likely possibility is failure of the BA6135 chip. Rather than change this on spec however it would be better to check the generation and progress of the reel sensor pulses.

TELETON C18BS

The problem with this set is sound distortion after a few hours' use. The speaker seems to be all right and the sound is quite good at other times. The distortion is the same on all channels.

This effect is very often caused by a "soft" loudspeaker that warps and rubs as it warms up - lash in a substitute 16Ω or 15Ω speaker as a check. If the problem remains
the fault is most likely to lie amongst the bunch of audio amplifier transistors TR704/5/6/7 - use gentle heat from a hairdryer and freezer to check them. It's possible though unlikely that the TA7073AP sound chip is responsible: test it thermally in the same way.

PANASONIC NV333

When the machine is powered the loading motor continues to run and the machine stays in the loaded condition. The syscon microcomputer chip has been replaced but this hasn't made any difference.
A very common cause of this problem is slippage of loading belt 2 . If replacing this doesn't provide a cure, suspect misadjustment of (or a fault in) the mode switch. Its mechanical adjustment is very critical.

SHARP VC7300

The machine will suddenly switch off for no reason, in either the play or record mode. Pressing the relevant button, play or record, restores normal operation. There's no set time for the switch-off: it could be after five minutes or after an hour or so.
Check by inspection whether the take-up spool is stopping. If it is, check the play idler which may need replacement. If the spool doesn't stop, the cassette lamp could just be responsible (intermittently open-circuit) but it's more likely that the take-up rotation sensor optocoupler assembly is faulty.

PYE G11 CHASSIS

The picture is stable at normal brightness but with no signal or a dark scene the raster is smaller.

First check the voltage at the h.t. fust F4037. If the reading is less than 156 V the power supply should be checked. If everything is o.k. here the line output transformer is suspect. Before replacing it try resoldering the joints on the underside of the panel. The whole board can be reworked in less than half an hour.

FISHER FVHP615

There's loss of colour and horizontal lines apear across the screen as though the tracking is incorrect, but the tracking control has no effect. I've changed the i.c.s in the servo circuits and made various checks here but have been unable to find any cause of the problem.

It's almost certain that the cause of the problem doesn't lie in the servo section. The common factor between the two symptoms - no colour and incorrect servo action - is that they both depend on the 4.43 MHz subcarrier signal. It's likely that this is missing. It comes from X202 and Q232 on the video PCB. A scope will be needed to trace it.

SANYO 80P CHASSIS

The first thing we found was that the 800 mA fuse in the chopper circuit had blown. The chopper transistor was then found to be short-circuit. These items were replaced, along with R302 and C314 in the chopper transistor's base circuit. As no short-circuits were apparent 130 V was applied via an isolating transformer. This produced a perfect, full-sized picture. When the input was increased to 180 V however the fuse blew again and we had another short-circuit chopper transistor.

The bias and coupling components in the chopper transistor's base circuit are the most common culprits, but
you've replaced them. We suggest you check by substitution the other components immediately associated with the chopper transistor, C315 (1,500pF), R315 (39) and R318 (0.33Ω), also R313 (2.7Ω) which is in series with the chopper circuit and the two zener diodes D305 and D309 in the control circuit.

293

Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

As a general rule we don't service TV sets that are more than about seven years old. This is for the following very good reasons: in many cases spares are hard to obtain; future reliability is unlikely to be good, leading to callbacks; and the general condition of many such old soldiers is such that either the set has to be returned in poor shape or the "repair" process can be a very lengthy and expensive one. Individual makes and models vary tremendously of course, so our rule is reasonably flexible. Provided we can get the parts we'll do it if we think that we, the customer and the set will all be friends in a year's time . . .

So what were we doing inside a 1976 -vintage ITT hybrid set (CVC9 chassis)? Wallowing in nostalgia! This fugitive from the corporation tip had no colour. It was given to a trainee to deal with, more as a training exercise than because this was necessary. The trainee did very well. He started by carefully tuning the set to an off-air transmission, then waded into the decoder department with an oscilloscope probe. The displays he got with the vision signals were inconclusive, partly because of the varying chroma content and partly because it's difficult to trigger the scope reliably from the burst. A colour-bar generator was substituted for the off-air signal, and a more stable external triggering mode was arranged for the scope.

Thus equipped, our trainee established that chroma signals of reasonably good amplitude were present at the chroma amplifier transistors T27 and T28 and were being fed to the burst gate/amplifier transistor T34 along with the correct gating pulse. A 13 V peak-to-peak gated burst output was present at the collector of T34. The next check was for the presence of the ident signal at the collector of T35. Virtually nothing was present here. With the scope flat out (gainwise) a few millivolts of misshapen 7.8 kHz signal were discerned - less in fact that were present at the base drive point, the junction of C212 and R296.

The next logical step seemed to be to check the d.c. voltages around T 35 . The base and collector readings were both rather low at 0.35 V and 4.5 V respectively. At
this point an experienced technician was consulted. His much respected - but completely wrong! - advice was to replace the transistor. The result of doing this was that exactly the same symptoms and readings were present as before.

Our trainee reported these facts and pressed the experienced technician for further words of wisdom. He suggested checking the base bias and collector feed resistors, also the tuning of the ident coil. These measures made no difference and the false prophet soon found himself in the trainee's chair! Muttering to himself he prodded with the voltmeter and probed with the scope, confirming the conditions already outlined. The culmination of his checks was the disconnection of one not previously mentioned component. This action restored a beautiful ident signal at T35's collector. An ohmmeter test on the now-isolated component proved it to be o.k., but an associated component certainly wasn't when checked with the same instrument. What was it? See next month's test case page.

ANSWER TO TEST CASE 292 - page 413 last month -

Our test case story last month concerned one of those maddening intermittent faults that are part of every service technician's burden. The set (Tatung 120 series chassis) would at irregular intervals choose its own programmes. Fruitless investigation of the channel selection system included changing the control chip and several of its peripheral components, all to no avail.

It's a moot point whether the fault would have continued to be present with the chip running from an external power supply. Everything would depend on the way in which the transient was getting into the channel selection system when the focus spark gap flashed over. The cause of the problem was brought to our notice because an ear happened to be close to the back of the set at the vital moment. It would however have been audible in reasonably quiet surroundings, the sound being similar in nature and volume to the snapping of fingers. If only the customer had mentioned the "snicking" noise! We found that it could easily be instigated by gently blowing on the spark gap.

The new component we fitted was of a different (fully enclosed) type, Tatung part no. 2519909 , and we don't expect any more problems. Does anyone want to buy an SN76705AN?

[^0]TV WAREHOUSE, WATLING STREET (A5),
HOCKLIFFE, BEDFORDSHIRE (3 miles Junction 12 - M1) TELEPHONE 0525 210686/210768

COMPLETE SYSTEMS NOW IN STOCK

BRITAIN'S BEST SELLING SATELLITE TV SYSTEMS

PRICES START AT UNDER 5500 FOR BASIC SYSTEM - 1.2 m DISH. WITH DELUXE REMOTE CONTROL SYSTEM UNDER £700-1.2m DISH DEMONSTRATION UNIT AT WAREHOUSE OPEN MON-SAT 9 a.m. TO 5.30 p.m. INSTALLATION ANYWHERE IN U.K.
EXPORT ENQUIRIES WELCOMED. FOR SPAIN
CONTACT OUR AGENTS:
KELESA, CAP BLANC 38, LOCAL 9, CARRETERA, ALICANTENALENCIA 332.
TEL. ALICANTE 5843654
Satellites and Videos IN STOCK at Spanish Warehouse HUNDREDS OF TELEVISIONS IN STOCK FROM £10 VHS VIDEOS FROM £50 BETA FROM £20 ALL PRICES PLUS V.A.T.

TAYLOR T.S. 2008 8 WAY U.H.F.T.V. DISTRIBUTION AMPLIFIER

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
* All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied 'off the shelf'
* Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ.
(U.K. ONLY)

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working - £125

VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35 HITACHI 5000, 8000
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010 SHARP
620, 630, 640, 2300 H T/P Untested from $£ 70$

BETAMAX VIDEOS SANYO VTC 9300, 5000, 5300

 SONY C5, C6, C7, C9 Untested from $£ 30$ HITACHI VHS TUNER/TIMER £10, HITACHI VHS BATTERY CHARGER £10, ROBERTS VHF RADIOS £5VHS/Beta tapes used from 40p each

PLUS

17" $18^{\prime \prime}$ 20" $22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State from f8. Also available CTVs Remote Control \& Teletext All prices subject to 15% VAT Discount for Quantities Complete loads delivered from pick up point JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON
Phone: 0602303124

PHILIPS YEARS AHEAD

THE CREDIT CARD CALCULATOR

 SOLAR POWERED$\mathbf{£ 4 . 7 5}$

G8 100K Pots on Panel
K 301 Mains Switch remote
K 35 Mains Switch remote
KK5 Aerial Socket and Plug in Lead to Tuner
KT3-K.0 Slider Pots 4.7 ku 47 ku
KT3,K.K3 Slider Pots $4.7 \mathrm{ku} 47 \mathrm{ku} \quad \begin{array}{r}75 \mathrm{p} \\ \hline 150 \\ 20 \mathrm{p} \text { each } \\ \hline\end{array}$
LARGE Foacs Pots. Fits Pye, GEC, ITT, Decca
G8 Power Supply Panel
EX DECCA
P0.
EX DECCA $80-100$ Frame
THORN $8000-8500-8800$ Decoder
GL.ASS BEADS Diodes 200/d1.2A
G11 if Panel
GII Decoder Panel
POWER SUPPLY
731
G11 611 Condenser 470250 V ITT
G8 Line Panel
G8 6 Push Button
KT4KKT3K30 Handset Replacement
HT520 METER 20,000 Fuse Diode Protector Logic Test Facility
se00 SERIES Decoder 01929014080 Thom
($\quad 5.00$
20AX GEC LOPT Panel with Split Diode
LOPT Split Diode 243287
RANK 220 Fouces Pot
RANK T20 Fouces Pot
RANK 718 Fours Pot
RANK 718 Foucs Pot
26° LOPT Split Diode 2432301
16^{*} LOPT Split Diode 2433481
16" LOPT Split Diode 2433481
Ex Panel Split Diodes 243287/2432981
HITACHI Mains Switch

HITACHI AE Socket
1 CONDENSER Axail Leads $450 \mathrm{~A} / \mathrm{C} 1200 \mathrm{D} / \mathrm{C}$

MAINS TRANSFORMER 240v in/20v/8v

GREEN FLAT, NEC, LED's
$15 V 115 V 11$ Amp Print Type
$12+12 \mathrm{~V} 2.8 \mathrm{PA}$ Print $\left.1^{\prime \prime} \times\right]^{4}$

$12+12 V$
$8+8 V:$ Arpa Print
HITACHI $6 \times 4-8 \Omega$ Speaker
ETS\% UHF V/CAP Tuner, small
FIDELITY Panels with l.C
FIDELITY LOPT Split Diode AT207680
$\left[\begin{array}{l}\mathrm{E3}, 00 \\ \mathbf{£ 5 . 0 0} \\ \hline\end{array}\right.$

HI-FI MICROPHONE NBSOI Philip	$\mathbf{8 8 . 0 0}$
G8 TUNER V/CAP on Panel	$\mathbf{8 3 . 5 0}$
$\mathbf{C 8}$	

G8 TUNER V/CAP on Pancl	$\mathbf{8 3 . 5 0}$
G8 SPEAKER	75 p
9,000 SPEAKER	$\mathbf{8 1 . 0 0}$
\mathbf{y}	

9,000 SPEAKER
THORN 9000 Sound OP Panel

ONE LLC K35 Decoder
THICK FILM, Hitachi RB-32 4A

K30 $\mathbf{H} / \mathrm{K} 35$ if

THICK FILM, Hitachi Frame	$\mathbf{8 2 . 0 0}$
EHOR	$\mathbf{5 2 0 0}$

THORN Lopt $8500-8800080$
TX9 THORN Tuner Panel with ICS Pots
N.E.C. Light Emitting Diodes

BY223 Replacement
THORN CHASSIS I600-1700 Series Mono

THORN 1600 Rec- $\&$ Anode Cap	$£ 10.00$

KT3.K.30 Slider Pois 4.7k	50p
ET-614 UHF V/CAP Tuner	f1.00 for 10
	$\mathbf{2 2 . 0 0}$

ET-614 UHF V/CAP Tuner	22.00
K35 20 Turn Pots	$6 p$ each

HITACHI \& GEC 20k Pots	$\mathbf{2 0}$ for $\mathbf{8 1 . 0 0}$
KT3 K.30 Speaker	$\mathbf{3 0 p}$

K35 12 way Push Bution Unit
K35 L.O.P.T. Split Diode
RANK T20 Front Panel
G8 6 Bution Unit. New Type
6 off LED DISPLAYS, Mixed
(8 R.00
AERIAL SPLITTER with filter

DYNAMIC STEREO HEADPHONE EM 6146	$\mathbf{£ 1 . 0 0}$
PHILIPS INI DIRECTIONAL	
1000	

PHILIPS UNI DIRECTIONAL Dynamic Microphone	$\mathbf{8 1 0 . 0 0}$
20 TURN POTS with Band Switch	$\mathbf{1 0 p}$

PUSH BUTTON Mains Switch with Screw Holes Fixing	10p
PYE 713 Line Trums	4 for E .5

PYE 713 Line - frams
PYE 7 TI Line Trans

800y DIODES at 3 amps. Glass Beads
G11 6 Touch Unit mitrable Forms (Drawer Unit) Replacement

KT3 Line Output Transformer
9000 THORN Front Panel with POTs \& Push Buttons
THORN 8500 Time Base
7 SEG DISPLAYS 4 Bank Displays Z-6042T

SPLIT DIODE FBSI245AR
PHILIPS KT3 4R7 W.W. Resistor

63 BISHOPSTEIGNTON,

SHOEBURYNESS, ESSEX SS3 8AF.
SAME DAY SERVICE
All items subject to availability. No Accounts: No Credit Cards. Postal Order/ Cheque with order. Add 15\% VAT, then E1 Pustage. Add Postage for Overseas. Callers: To shop at
212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10% handling charge.
\star

HUSSAIN CENTRAL TV LTD

 THE UK'S LEADING TV \& VIDEO WHOLESALER OFFER YOU THE BEST STOCK AT THE BEST PRICES WORKING 27" SONY TEXT - TX STEREO TEXT - PHILIPS' STEREO TEXT HITACHI AND TOSHIBA MONITOR STYLE TEXT - $16^{\prime \prime}$ STEREO TEXT $14^{\prime \prime}$ and $16^{\prime \prime}$ R/C PORTABLES - $14^{\prime \prime}$ and $16^{\prime \prime}$ PORTABLES
Plus many more models in stock. All Handsets supplied with working TV's, and all Cabinets in excellent condition.

VIDEO

CHEAPEST EVER ELECTRONIC WORKING VHS VIDEO From ${ }^{\text {P1110 }}$
CHEAPEST EVER ELECTRONIC WORKING BETA VIDEO ysent

Many models and types in stock

All prices are subject to 15% VAT and based on quantity If you're a Professional - deal with the Professionals Export enquiries to our Birmingham Head Office Fast, friendly service guaranteed
BIRMINGHAM
LONDON
01-961 5005
PRESTON
SOUTHAMPTON
CHEPSTOW
021-622 1023
0772-312101 0703-777254
0291-271000
021-622 1517

DRAKE

The answer to your satellite TV questions.

Drake brings satellite TV down to earth. An exciting variety of television entertainment exists and the Drake line of satellite equipment will bring it into your home - EASILY and AFFORDABLY. Get on the road to expanding your entertainment horizon by seeing the Drake line TODAY!

TELEVISION AND VIDEOS AT REALISTIC PRICES FROM THE SPECIALISTS. LATE MODELS ALWAYS AVAILABLE WITH 100\% CABINETS AND TUBES. ALL SETS READY FOR INSTANT INSTALLATION AND VIDEOS FULLY SERVICED.

QUALITY AND RELIABILITY IS OUR AIM AT ALL TIMES.

KT3
K30
CTX
K35
from only $£ 60$
fromonly $£ 75$
from only £125
from only £135

LATER MODELS ALSO AVAILABLE.

ELECTRONIC VIDEOS FROM ONLY £135 + VAT. MOST MAKES IN STOCK. FREE DELIVERY FOR SENSIBLE SIZED ORDERS

Become a DRAKE SATELLITE DEALER and take advantage of our special dealer prices. We are the main importers and distributors for R.L. Drake, one of the largest USA manufacturers. Don't be misled by inferior products when you can sell the best. From only $£ 495$ + VAT (inc 10 mts cable). Contact

ALSTON-BARRY SATELLITE SERVICES

36 MILTON ROAD CAMBRIDGE. (0223) 69215

ALSO AT
32 BROAD STREET
ELY (0353) 61462

LRC (SPARES) LTD

SONY SPARES FAST! ~ex-stock!

ORDERS BEFORE 4.00 P.M. - SAME DAY DESPATCH!
LIST PRICES EXCLUSIVE OF VAT
ORDERS UNDER £50 ADD £1.00 P\&P

SEMICONDUCTORS DIODES ${ }_{\mathrm{K}}^{\mathrm{G}} \mathrm{KV}$ Gen.
KV 18100 B KV 1810104 -2A 4A 101 KV 2704=SHOR 304? THYRISTORS
$\mathrm{SG}-264$
$\mathrm{sG}-629$
$\mathrm{SG}-653$ KV Gen.
KN $1810 \cup \mathrm{~B}$
KV Gen $=$ SG613 IC's SLC7UB

VTR Gen,
Sicsivie
slccub
ky 220001

NGE260
KV 2 2006062UB
SLCTUB
$\begin{array}{ll}\text { UPO } 546 \mathrm{Ci} 107 & \text { SLCTVB } \\ \text { UPO } 5470049 & \text { SLCJUB }\end{array}$
TRANSISTORS
P.S.U. TRANS. KIT 2 SC 2335 SLC7
TRANS ASSY IAF 40
RA. 7.5 .

SC 4030
SC 867 A

VIDEO SPARES		
SLC57 CoOST antena	SONY PART N	
B MODULATOR	${ }^{1-463.266-960}$	${ }_{61} 37.50$
TAPE UP SENSOR (C7)	$1-543.145-00$	1.80
CONTROL KNOP (C7)	${ }^{3} 659.547-00$	1.24
		1.24
CAPSTAN MOTOR	${ }_{8-833-0008}$	${ }^{42.41}$
101ER KIT	A.670-634.88	40
UIMIIER ASSE	$x \cdot 365-331.00$	98
IDERA ASSEMBCY	X. x 35-932-40	1.24
OTACH AOLM		1.80 1.24
stcb		
lenoid	1-454-29	10.86
modlator	$1-464$	70.91
	- ${ }_{\text {3 }}^{3.671-126-00}$	1.24
101ER KT	A. 670.639 .18	4.18
REEL MOTOR	A-673.710-14	17.20
REEL MOIOR	A $6733-710-6 \mathrm{~A}$	27.85
forwang assembly	A-674.007.	. 10
MOTOR FRONT	A 6 [75-13-1A	15
Pulley Assy,	367	
SL-F1C9		
CDC CONVERT	464-21	${ }^{22.53}$
ARIAGE MOD KT (SS)	${ }^{\text {A }} .6755 \cdot 1212128$	
CASS. LOAD MeCH (c)		. 65
UPPER CYINDE	${ }_{\text {A }} \times 676.013-8 \mathrm{~A}$	${ }^{27.65}$
5 RING ASSEMBLY	x-366-943-10	
PINCH ROLLER (SLC2O)	x-366-930-76	7.85
BELTS		
INDIVIDUAL BELTS AVAILABLE IF REQUIRED		
SII8000 KIT 5 PIEC		
SLCS7 KIT 6 PIECES		
SLC6 KIT 6 PIECES		
TAKE UP	3.434.110-00	1.24
BELT DRIVE TC	${ }_{3-988.114-00}$	${ }_{1.24}$
BELT MIDWAY TC 161SO	3-531-646-90	1.24
belt capstan tc 92	3-536-447-01	1.24
CAPSTAN TC 1 $135 / 3665 \mathrm{D}$	3-542-458-00	1.24
belt maf BELT CAPSIAN TC Gen	${ }^{3}$	${ }_{1}^{1.24}$
BELT CAPS. HST 300	3-564-319-00	1.24
THP BELT MMK-3000	${ }^{3-573-122-00}$	1.24
		1.24
HMK 708 UNIV. TITABLE	4-827-489-xx	3.10

SWITCHES \& RELAYS

RELAY SLC7	1.515-416-40	4.98
felar	1-515-418-00	4.98
RELAY TC-K55	1-515-547.11	4.98
CHANNEL KV1340/820	${ }^{1-516-847.00}$	16.80
TIMER SW SLC57	1-552-438-00	1.80
SLIDE SW REC SL8COO	1.552.834.00	1.24
SLIDE SW R/P SL8000	1-552-836-00	1.80
SWITCH POWER KV GEN		4.98
REMOTE CONTROLS		
RM 604B	KV 1612	43.76
RM 606	KV 2704	52.38
RM 603B	KV 2206	61.51
RM 609	KV 1612 (MK2)	43.76
RM 615	KV 2212	52.38
RM 602	KV 2200	37.50
(RM 632	KV 2252	37.50
RMI 200	SLC7	52.38
¢RM 751	SLC5/7	29.30
RM 616		52.38
RM 72	SLC6	22.53
AMT 213	SLC9	43.76
GENERAL COMPONENTS		
UNIV. TEXT BOARO	OPK203B	70.91
ACFI CHARGER UNIT		42.01
CAP 33mF 160v KV	1-123-024-11	1.24
CAP 22 mF 400 v KV	1-123-032-11	1.24
CAP 0.018 mFF 1.5 vkV	1.129-952-11	1.80
TRAP 6 MHz	1-409-333-00	1.24
TELE AERIAL KV1400	1.501-178-00	7.85
FILTER 6Mhz	1-527-262-11	1.24
TERMINAL ANTENMA	1-536-683-1t	10.86
STYLUS ND 1436	1-549-114-00	11.31
R/P HEAD 181-36020	8-829-373-40	5.10
MOTOR DNF-1001B	8-835-005-00	22.53
MOTOR DNE-4100A	8-835-049-01	17.20
VID. TEST TAPE KR52H	8-969-995-52	36.55
CARTAIDGE XL 150	A-450-506-9A	22.53
STYLUS ND 150G	A-458-706-28	10.86
PINCH ROLLER TC Gen.	x x-348-930-60	1.24
P. ROLLER TC 204SD	X-354-241-30	1.80
MOTOR KIT MI-Gen.	x -354-931-41	17.20
PINCH ROLLER	X-355-862-00	1.24
PINCH ROLLER TCK 55	X-356-400-60	1.24
CAS. HDLD. ASSY. TCK44	x-357-350.91	1.80
BEARING ASSY. HMP70	X-482-740-81	4.10

SUPERBARGAIN TV
LARGE SELECTION OF THORN EX-RENTAL TV's + VIDEOS

TV's
VHS VIDEOS

8800		$£ 13$	
8800	R/C	$£ 17$	
9000		$£ 16$	3 V 22
9000	R/C	$£ 22$	3 V 23
9200		$£ 35$	3 V 29
9200	R/C	$£ 40$	3 Z 30
9600		$£ 28$	
9600	R/C	$£ 35$	
TX9 + TX10	$£ 49$		
TELETEXT	from $£ 70$ inc. Handset		

ALL PRICES SUBJECT TO VAT! DISCOUNT FOR QUANTITY! LORRY LOADS AVAILABLE DIRECT FROM SOURCE!
FOR FURTHER INFORMATION PLEASE CONTACT KEITH OR GEOFF ON 021-502 2996, OR VISIT: UNIT 5, GLOBE STREET, HOLLOWAY BANK WEDNESBURY, WEST MIDLANDS Only 5 mins from Junction 1 of M5

SPARKWORLD LTD. THIE SDUTH WESTMS NO. 1
In Ex-Rental TVs, Videos and White Goods

A large and varied selection to choose from. With new stock arriving all the time. Many late Model TVs \& Videos in stock.

FOR THE BEST PRICES AND THE BEST SERVICE CALL US NOW
AND WE WILL GIVE YOU 5\% Discount with this advert

Don't Delay - Phone Today 062655294
Unit 3, Brunel Buildings, Brunel Road, Newton Abbot, Devon

SPECIAL TRADE ANNOUNCEMENT

LARGEST STOCKS OF EX-RENTAL 'THORN' COLOUR TVs \& V.H.S. VIDEOS

8800 R/C	$3 V 00$
9000 R/C	$3 V 16$
9200 R/C	$3 V 22$
9600 R/C	3V23
9600 TTX	$3 V 29$
TX9/TX10	$3 V 35$

Cabinet 9600 with Brand New Hand Sets Thorn 9000's at $£ 16$ Special Offer Price and also Thorn 8800 Special Offer Price £13.

Fully remote control cabinets CTV $£ 20$

ALSO UNLIMITED SELECTION OF

BUSH T20/24
DECCA 80/100 G.E.C. SOLID STATE \& STARLINE HITACHI ITT CVC30 \& CVC45

PHILIPS G8, G11 \& KT3 R/C
REDIFFUSION MK 1 \& MK3 REDIFFUSION MK 4 \& TELETEXT TV \& VIDEO STANDS IN STOCK Lorry Loads Delivered from Source DON'T HESITATE TO CONTACT US FOR FRIENDLY SERVICE TRY US - YOU'LL LIKE US!

MIDLAND BRANCH Hockley
Discount Televisions,
94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551 2233 - Ask for Jazz

NORTH-EAST BRANCH Northem TV Distributors, Unit 2, Perth Court, 11th Avenue, Team Valley, Gateshead, Tyne \& Wear. 091-4875389 - Ask for Joe

Averos TEST EQUIPMENT THE DSGERNNING T.V. ENGINEER'S CHOICE

Sourced from leading European manufacturers Alcon multimeters are ideal instruments for the T.V. service engineer. Precision fully protected movements, comprehensive ranges (plus optional E.H.T probe) and clear mirrored scales make them perfect for bench applications, yet their rugged construction and stout carrying cases enable them to shrug off the rigours of field service use. Full after sales service is available, but we don't expect you to need it!

28 ranges
$20 \mathrm{k} \Omega \mathrm{N}$ d.c. \& $4 \mathrm{k} \Omega \mathrm{N}$ a.c.
(With protective fuse)
Accuracy: 2% d.c. and resistance, 3% a.c 28 ranges: d.c. $\mathrm{V} ; 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}$, $100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. $1 ; 50 \mu \mathrm{~A}, 600 \mu \mathrm{~A}$, $6 \mathrm{~mA}, 60 \mathrm{~mA}, 600 \mathrm{~mA}$. a.c. $\mathrm{V} ; 15 \mathrm{~V}, 50 \mathrm{~V}$, $150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. $1 ; 30 \mathrm{~mA}$, $300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms; $0-2 \mathrm{k} \Omega, 0-2 \mathrm{M} \Omega \mathrm{dB}$; from -10 to +62 in 6 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$
The 28 ranges cover all likely requirements. E.H.T. PROBE. An optional E.H.T. probe for use with this instrument, reading up to 30 kV £ 14.00 extra.
(complete with carrying case leads and instructions)

$\star 20 \mathrm{~K} \Omega \mathrm{~N}$ AC AND DC

* 39 RANGES \star INDESTRUCTIBLE
$\binom{$ automatically protected }{ on all ranges but 10 A}
\star E.H.T. PROBE
(Reads up to 30 kV
(Reads up to
E14.00 extra)

Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. 3% (of f.s.d.)
39 ranges: d.c. $\mathrm{V} ; 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$ d.c. $1 ; 50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} ; 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; a.c. $1 ; 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ $\Omega ; 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$ dB ; from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
(complete with carrying case, leads and instructions)

ONLY £33.50

ELECTROTESTER fairly similar ranges to the above but reads up to 30A (ac \& dc) £34.
PRICES Our prices include VAT and postage and goods are normally desptached by retum
For details of these and the many other instruments in the Alcon range, including muhimeters, components measuring, automotive and electronic instruments, please wite or telephone

Instruments Ltd.
19 MULBERRY WALK • LONDON SW3 6DZ • TEL: 01-352 1897 • TELEX: 918867

BOLTEN LTD.
 63, JEDDO ROAD, LONDON W12 9EE.
 Tel: 01-749 0915 (2 lines)
 Telex: 262421 BOLTEN G

VIDEO HEADS

```
Sony Universal Eq. DSR 36
\(£ 29.95\)
```

Sony Universal Eq. DSR 43 $E 29.95$
Sony C-9 £47.95
Ferguson/JVC Universal $f 28.50$
National Panasonic Universal ..58.50
National Panasonic (370/380/430/460) £32.95
National Panasonic (777/330)
Hitachi 5000 (Not Genuine)
Hitachi VT11/HIVI/NT33 (Genuine)
Toshiba 9600
£46.95

Sanyo (Genuine)
Fisher Universal Eq. FVH D720
Akai Universal
…........ $£ 39.95$
Saisho 605/705/805/905/100 ... £32.95

Sanyo Pulley VTC 5150 ...95
Sanyo Motor VTC 5150 ... $£ 7.25$
Belt Kits (Most Models).. 99
Remote Controls TV Grundig/Philips ...95
Remote Controls Philips TT (4300) .. £17.95
Pinch Wheels (various Models) ... 95
Sony Idler Kits C-5/C-7 .. $\mathbf{E 4} .50$
Sony Idler Kits C-6...
f2 95
Other Accessories - Mod kits, Integrated Circuits, Idler Assy, Gear Idler Assy, Reel \& Loading Belts, Capstan \& Reel motors, Reel Drive Pully units also available in most models. Please call for full list.
Please add 15\% VAT plus $£ 1.00$ p\&p per order.
Delivery within 7-14 days subject to availability.
PLEASE NOTE OUR NEW ADDRESS
AND TELEPHONE NUMBER

UNIVERSAL NICAD CHARGER

A brand new universal charger (charges any combination of PP3, AA, C \& D CELLS), for only $£ 5.95$ plus $£ 1$ post and packing.

ONLY $£ 5.95$

NEW AA/HP7 NICADS
90 p each when ordered with charger.

FERGUSON

9.6 volt standard rechargeable battery type VA282. Use with Videostar C camera/recorder, model no. 3V41, also suits JVC camcorder models JR1 and $2 £ 18$ each $+£ 1$ p\&p.

NEW VIDEO HEADS

from
£24.95 each plus V.A.T. \& carriage

Our selected range of NEW VIDEO HEADS have been manufactured to the Highest specification and are fully covered by our 1 Year Guarantee.

We supply HEADS of Most Types for AKAI - FERGUSON - JVC - SANYO - SONY - NAT. PANASONIC - Etc - Etc.

Please contact us for details of Our Full Range of Video Spares including Motors, Pulleys, Belts, Idlers, Etc.

Our Full List will be sent on request.

Electrovisia LIMITED

P.O. Box 55 Stratford-upon-Avon Warks. CV37 OUB 0789-298510

CREWE WHOLESALE TV 77 Coleridge Way, Crewe Tel: 0270582924 15 mins from Junction 17, M6	
WORKING TVs FULLY ENGINEERED	
AND TESTED. TRY	ORE
YOU BUY. NO BUM	
Decca 80s \& 100s	£25
Bush T20	£30
1 T CVC 20 \& 30 \& 32	£25
G11s	£35
GEC Starline	£25
GEC 2110, 2111	£20
Rediffusion Mk 3	£25
Thorn 8,800 to T/X from	£20
Text Available	POA
CABLE DORICS WITH OR WITHOUT TRANSLATORS PLUS A FULL	
RANGE OF OFF THE PILE SETS	
JUST ARRIVED 1000s OF	
COMPUTER GAMES.	

W. TREE'S TVs are moving to larger premises.
SPECIAL CLEARANCE SALE OF VIDEO RECORDERS AND TELEVISIONS

Large Selection of Colour TVs including portables, remotes and Teletext.
Good selection of VHS Videos,
National Panasonic, Model 7200 £165 inc VAT reduced to

£155 inc VAT.

National Panasonic basic models, old price $£ 145$ inc VAT

New Price £135.

SPECIAL OFFER

of ex hotel video recorders,
Philips VHS Model No 6560 Infra red remote

£185 + VAT.

We would like to thank all our dear customers for all past business. We hope this will continue at our new premises

Sunshine Mills, Wortley Road, off Whingate Road, Leeds 12.
Only 5 minutes drive from our old address. We move on 27th May.

Telephone:
Leeds (0532) 638804

BRITAIN'S

LARGEST SUPPLIERS

OF
 EX-RENTAL TV AND VIDEO SPECIAL OFFER BETA
 SANYO C5, C6, C7, C9 FROM £20
 VHS

HITACHI 5000

FERGUSON 3V22

f60

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc. COLOUR TV
from $£ 5$

CALL \& SEE OUR SELECTION

 DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICESFRANK FORD
(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

TELEQUIPMENT D61A Dual Trace 10MHz With	
S.E. LaBS SM111 Dual Trace 18MHIZ Solid State Portable AC or External DC operation $8 \times 10 \mathrm{~cm}$ display with Manual \qquad 5165	
SOLARTRON CO1400 Oual Trace 15MHz with Manual. \qquad	
TELEQUIPMENT D43. Dual Trace 15 MHz . With Manual... 5100	150 KHz -220MHz
	ME
TELEQUIPMENT S54A. Single Trace 10 MHz . Solid State. With Manual.	
ADVANCE/GOULD DVM5 Auto ranging: max reading 20,000 . AC/DC volts resistance. Only 550 (P\&P 5)	
	makconl 2604 (Later version of if 1041 V TMM)
MULTIM	
$9 \mathrm{Mk4}$ (Identical to AVO 8 Mk4 but scaled	
AVO 8 Mk2 Complete with Batteries \& Leads 415	1
appearance not At hence the price.AVO TEST SET Ho \dagger (Mitary version of AVO 8)	col
Complete with batteries, teads \& Carrying Case E 65 TEST LEADS surtable for AVOMETERS. Red \& Black with 2 Croc-Clips $\& 2$ Prods. (p\&p \&2) \qquad	
PhilipsTaylor/AVO etc. Complete with Batteries \& Leads ... $£ 10$	HAMEG OSCILIOSCOPE 203.6. Dual Trace 20 MHz
AVO TRAMSISTOR TESTER T169Handed. GONO GO for in-situ Testing. Complete with batteries, leads \& instructions. ($\mathrm{P} \& \mathrm{p}$ £3) NOW ONLY £12	
ISOLATING TRANSFORMER 	
DISK DRIVE PSU. $240 \mathrm{~V} 1 \mathrm{~N} ; 5 \mathrm{~V} 1.6 \mathrm{~A} \& 12 \mathrm{~V} 1.5 \mathrm{~A}$ out. Size: W125mm, H75mm, D180mm. Cased. Un-used. - Only £10.00 each (P\&P £2) Qwerty keyboard (as in Lynx Micro). Push to make. Cased 55 each (P\& P £2) Various $51 / 4^{\prime \prime}$ Floppy Disk Drives and Stepping Motors Available.	
	AJ
USED EQUIPMENT - WITH 30 DAYS GUARANTEE. MANUALS SUPPLIED IF POSSIBLE. This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability betore ordering. CARRIAGE all units £16. VAT to be added to Total of Goods \& Carriage.	
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL	
Henme	

Universal Semiconductor Devices Ltd.

17 GRANVILLE COURT, GRANVILLE ROAD, HORNSEY, LONDON N4 4EP, ENGLAND. TEL. 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON SMALL SIGNAL

-

POWER
DARLINGTONS - ALL SHAPES AND SIZES
VHF/UHF DEVICES - ALL SHAPES AND SIZES
FETS - POWER MOSFETS UNIJUNCTIONS

DIDOES - GERMANIUM AND SILICON RECTFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZES \rightarrow THYRISTORS AND TRIACS - ALL

SHAPES
安 空 SIZES

RATINGS
INTEGRATED CIRCUITS
CONSUMER - DIGITAL/ANALOGUE
MICROPROCESSORS AND PERIPHERALS
IC SOCKETS
MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST, ENCLOSING 51.00 IN STAMPS, CHEOUE OR POSTAL ORDER.
CATALOGUE sent free of chage when reuysted on onficial LEITERHEAD (WITHOUT REFUND), TO OEM'S, SCHOOLS, COLLEGES, UNIVERSTTIES, GOVERNMENT INSTITUTIONS, COMPUTER FIRMS, ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS.
SPECIAL oIscounts and payment terms are available to above INSTITUTIONS.

> PLEASE ENQUIRE FOR QUANTITY DISCOUNTS. WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2SA-564 \& £0. 15 \& 2SD-850 \& 12.60 \& HA-1151 \& 11.25 \& TA-7229 \& 2.50 \& BC-307A \& 50.055 \& BDX-53B \\
\hline 2SA-673 \& E0. 20 \& 2SD-869 \& 53.20 \& HA-1156 \& \(\underline{11.30}\) \& TA-7230 \& £1.30 \& BC-307B \& \({ }^{0} 0.055\) \& BDX-54B \\
\hline 2SA-683 \& \(\underline{50.20}\) \& 2SD-880 \& c0.50 \& HA-1367 \& \$3. 60 \& TA-7240 \& \(\underline{2} .50\) \& BC-308 \& \({ }^{0} 0.055\) \& BF-173 \\
\hline 2SA-684 \& 50.20 \& 2SD-882 \& ¢4.50 \& HA-1392 \& 9.50 \& TA-7248 \& ¢4.00 \& BC-308A \& ¢0.055 \& BF-257 \\
\hline 2SA. 748 \& 51.00 \& 2SD-1135 \& \({ }^{5} 0.85\) \& HA-1406 \& c0. 75 \& TA.7310 \& \({ }^{1} 1.25\) \& \({ }^{\mathrm{BC} C-308 \mathrm{~B}}\) \& \({ }_{5}^{50.055}\) \& BF-258
\(\mathrm{BF}-259\) \\
\hline 2SA-765 \& \(E .00\) \& AN-203 \& 81.00 \& HA-11227 \& 21.00 \& TA. 7313 \& 50.80 \& BC. 309 \& \({ }^{0} 0.055\) \& BF-259 \\
\hline 2SA-769 \& \$1.50 \& AN-210 \& ¢0.90 \& HA-11423 \& \({ }_{5} 10\) \& TA. 7314 \& ¢1.35 \& BC-3098 \& 50.055 \& \({ }_{8 F}^{\text {BF-272S }}\) \\
\hline 25A-771 \& 51.50 \& AN-214 \& 11.50 \& MA. 12017 \& 51.30 \& TA-7315 \& ¢1.35 \& \({ }_{\text {BC- }}\) \& \({ }_{50}\) \& BF-458 \\
\hline 2SA-794 \& £0. 60 \& AN-272U \& 27.90 \& MA-12413 \& c1. 30 \& TA-7317 \& \({ }_{81.20}\) \& \& \({ }^{20} 0.055\) \& \({ }_{\text {BFY-52 }}\) \\
\hline 2SA.798 \& ¢0.60 \& AN-301 \& 9.35 \& HA-12411 \& 51.60
81.21 \& TA-7323 \& \({ }_{51.10}\) \& \& \({ }_{50}\) \& BFY-76 \\
\hline 25A-850 \& \(\mathrm{c}_{50.30}\) \& AN 3020 \& 82.50 \& LA-1365 \& 81.20
81.20 \& TA-7324 \& ¢1. 75 \& \({ }_{\text {BC- }}\) B37-16 \& \({ }^{20} 0.055\) \& BFY-50 \\
\hline 2SA-893 \& \begin{tabular}{l}
c0. \\
c0.75 \\
\hline
\end{tabular} \& AN-303 \& \$1.00 \& \({ }_{\text {LA }}^{\text {LA. } 3220}\) \& 51.20 \& TA-7326 \& \({ }_{\text {cle }}\) \& BC-337-25 \& \(\underline{50.055}\) \& BFY-51 \\
\hline 2SA-968 \& ¢0.75 \& AN-318 \& \(\underline{5} 5.75\) \& LA-3365 \& ¢1.20 \& TA-7328 \& 51.40 \& BC-337-40 \& ¢0. 055 \& BFY-90 \\
\hline 2SA-985 \& 81.20 \& A \(4+360\) \& \(¢_{0} .75\) \& LA-4100 \& 50.85 \& TA-7331 \& 81.00 \& BC-338 \& \(\underline{50.055}\) \& BFR-36 \\
\hline 2SA-992 \& \(\underline{50.30}\) \& AN-5010 \& 12. 50 \& LA-4125 \& \(\underline{51.90}\) \& TA-7628 \& c1.60 \& BC. 377 \& \({ }^{50.20}\) \& BrR-38 \\
\hline 2SA-1060 \& 51.50 \& AN-5431 \& 12.20 \& LA-4183 \& ¢1.50 \& TA-7658 \& ¢1. 20 \& BC-393 \& \({ }_{50.055}\) \& BU-205 \\
\hline 2SA-1106 \& £1.50 \& AN 5435 \& \$1.80 \& LA-4190 \& ¢1.50 \& UPC-575 \& \({ }_{81.05}\) \& BC-546
BC. 546 \& \({ }^{20.055}\) \& BU-208 \\
\hline 2SA-114] \& ¢ 2.90 \& AN-5440 \& \(\underline{5.15}\) \& LA-4195 \& 51.70 \& UPC-1181 \& 81.05 \& BC-547 \& c0.055 \& BU-126 \\
\hline 2SA-1303 \& ¢1.50 \& AN-5510 \& \%. 50 \& LA-4422 \& E1.50 \& UPC-1181 \& \(\underline{81.05}\) \& BC-547A, B, C \& 50.055 \& BU-500 \\
\hline 2SB-527 \& ¢0.60 \& AN-5612 \& 52.80
51.25 \& LA-4430 \& E1.30 \& UPC-1185 \& 81.72 \& BC.548 \& ¢0.055 \& BU-326A \\
\hline \({ }_{\text {2SB-544 }}\) \& \(\underline{50.40}\) \& AN-5720 \& c1. 25

81 \& LA-4445 \& $\underline{\Sigma} 2.10$ \& UPC-1212 \& 81.10 \& BC-548A; ${ }^{\text {B }}$ \& 50.055 \& BU-508A

\hline 2 SE -562 \& c0. 30 \& AN-5730 \& $\underline{18.35}$ \& LA-4508 \& ¢1.70 \& UPC-1213 \& 51.05 \& BC-549 \& £0. 055 \& BU-5080

\hline 2SB-681 \& [2.50 \& AN-5732 \& $\underline{1.25}$ \& M-51102L \& 2.50 \& UPC. 1277 \& 92.00 \& BC-5498 \& ¢0.055 \& BDY-20

\hline 2SB-688 \& ¢1.25 \& AN-5738 \& \$1.00 \& M-51515L \& ${ }_{52} 8.80$ \& UPC 1230 \& ¢1.99 \& ${ }^{\text {BC }}$-557 578 \& ${ }_{50} \mathbf{0} .055$ \& TBA-120S

\hline 2SB-718 \& 50.75 \& AN-5900 \& $\underline{51.50}$ \& M8-3712 \& ¢1.50 \& UPC-1353 \& \% 2.45 \& ${ }_{\text {BC }} \mathrm{BC}-557 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ \& 10.005 \& ${ }_{\text {TBA-331 }}$

\hline 2SB-772 \& 10.50 \& AN-6249 \& $\underline{51.20}$ \& MB-3773 \& 9.00 \& ${ }_{\text {AC-187 }}$ \& co. 50 \& ${ }^{\text {BC } C-5588 ~}$ \& 00.055 \& TBA-520

\hline 2SC-497 \& 51.50 \& AN-6250 \& ${ }^{5} 0.40$ \& MB-3730 \& $\underline{2.50}$ \& AC-188 \& 50.15 \& BC-5598, C \& 00.055 \& TBA-540

\hline 2SC-681 \& 51.95 \& AN-6320 \& ${ }_{55.00}^{1000}$ \& NE-646 \& $\stackrel{2}{5.50}$ \& ${ }_{\text {AC }}^{\text {AC- } 1888}$ \& 80.22 \& ВСY-70 \& £0.25 \& tBA-800

\hline 2SC-710
2SC-738 \& 50.20

50.25 \& AN-6332 \& 2.00
2.80 \& STK-015 \& 15.98
c5. 25 \& AU-113 \& $\underline{2} .40$ \& BCY-72 \& c0. 19 \& T8A-810S

\hline 2SC-741 \& 91.95 \& AN-6342 \& E1.50 \& STK-016 \& ¢5.80 \& AD-149 \& 20.45 \& B0-135 \& c0. 20 \& TBA-810P

\hline 2SC-790 \& ¢0.90 \& AN-6350 \& 52.80 \& STK-032 \& ¢12.45 \& AD. 166 \& ¢1.80 \& BD-136 \& c0. 20 \& IBA-810AS

\hline 2SC-828 \& 50.15 \& AN-6551 \& ¢1.00 \& STK-035 \& $¢^{88.00}$ \& BC-171C \& ¢0. 055 \& B0-140 \& c¢. 040 \& IBA-810ap

\hline 2SC-829 \& $\underline{0.15}$ \& AN-6884 \& £0.90 \& STK-043 \& EFP_{50} \& BC-172A \& ¢0.055 \& B0-201 \& ¢0.40 \& TBA-820

\hline 2SC-945 \& $\mathrm{c}_{0} 0.15$ \& AN-6912 \& £1.25 \& STK-080 \& ¢6.50 \& BC-172C \& \%0.055 \& BD-240A \& c0.30 \& T8A-950

\hline 2SC-1018 \& ¢0.75 \& AN-7060 \& $\underline{11.25}$ \& STK-082 \& ¢10.05 \& \& ¢0. 29 \& BD-243C \& co. 50 \& TBA-1441

\hline ${ }^{25 C-1061}$ \& ${ }_{50.75}$ \& AN-7105 \& c1. 61.0 \& STK-0029 \& ¢8. 10 \& ${ }_{\text {BC- }}^{\text {BC-192 }}$ \& ¢0.055 \& BD-244B \& co. 45 \& TCA-660

\hline 2SC-1173
2SC. 1383 \& 50.40

50.25 \& AN-7110 \& ¢1.20 \& STK-435 \& ${ }^{28.50}$ \& BC-182A \& c0.055 \& BD-244C \& 50.40 \& TCA-750

\hline 2SC-1384 \& 20.25 \& AN-7117 \& 50.80 \& STK-436 \& 55.80 \& BC-1828 \& ¢0.055 \& BD-278 \& c0. 70 \& TCA-760

\hline 2SC-1413AH \& 53.00 \& AN-7120 \& ¢1. 25 \& STK-439 \& ¢7.45 \& BC-182C \& c0. 055 \& BD-233 \& c0.30 \& TCA

\hline 2SC-1454 \& $\underline{53.50}$ \& AN-7140 \& ¢1.50 \& STK-441 \& ${ }_{59} 9.80$ \& BC-183 \& ¢0.05s \& B0-234 \& c0. 30 \& TCA-940N

\hline 2SC-1567 \& £0.50 \& AN-7143 \& ¢1.50 \& STK-457 \& ¢7.90 \& BC-183B \& ${ }_{\text {cose }} \mathbf{0} 0.055$ \& ${ }^{\text {B0-237 }}$ \& c0.30 \& TCA-3089

\hline 2SC-1775 \& £0. 15 \& AN 7145 \& 9.20 \& STK-459 \& c6.50 \& ${ }_{\text {BC-184 }}^{\text {BC-183 }}$ \& ${ }_{0} 0.0055$ \& 80-379 \& 50.24 \& TDA. 1011

\hline $2 \mathrm{CC}-1815$ \& c0. 15 \& AN 7146 \& 9.20 \& STK-460 \& \& ${ }_{\text {BC }} \mathrm{BC} 184 \mathrm{~A}$ \& 00.055 \& 80-433 \& 50.28 \& TDA-10+2

\hline 2SC-1845

2 SC - 1913 \& $¢ 0.15$ \& AN-7156 \& 92.80 \& STK-1030 \& | c4.95 |
| :--- |
| $\mathbf{7 7 . 5 5}$ | \& BC-184B \& ¢0.055 \& BD-434 \& 50.28 \& TDA-1054

\hline 2SC- 1913
$2 S C-2240$ \& ${ }_{5} \mathrm{C} .90$ \& AN-7161 \& C2.60 \& STK-2029
STK-2125 \& ${ }^{17} .45$ \& BC-184C \& c0.055 \& BD-436 \& c0.28 \& TDA-1059

\hline 2SC-2320 \& ¢0.15 \& AN-7213 \& c1.00 \& STK-2129 \& ¢8.10 \& BC-212B \& c0.055 \& B0-437 \& 50.30 \& TDA-1151

\hline 2SC-2550 \& ¢0.75 \& AN-7218 \& 51.10 \& STK-2250 \& $£ 11.40$ \& BC-212C \& ¢0. 055 \& B0-441 \& $\mathrm{c}_{0} 0.30$ \& TDA-1170

\hline 2SC-2577 \& 51.25 \& AN-7220 \& 51.60 \& STR-4090 \& £8.00 \& BC-213 \& 00.055 \& 80-442 \& ¢0. 30 \& TDA 1180

\hline 2SC-2581 \& $\underline{51.50}$ \& AN-7223 \& $\underline{11.40}$ \& TA.7061 \& ¢1.00 \& BC-213A \& ${ }_{0}^{0} 0.055$ \& BD-535 \& 50.30 \& TDA-1220

\hline 2SC-3284 \& ¢1.50 \& AN-7224 \& ¢1.25 \& TA-7137 \& c1.00 \& ${ }^{\mathrm{BC} C-2138}$ \& ${ }_{0} 0.055$ \& ${ }^{\text {BD-536 }}$ \& ${ }_{54} 50.35$ \& TDA-1905

\hline 2SC-3298 \& ¢1.50 \& AN-7311 \& $¢ 0.90$ \& TA-7140 \& ¢1.00 \& BC-213C \& ${ }_{0} 00.055$ \& \& \& TDA-1908

\hline 2SC-3519 \& ¢1.50 \& AN-7410 \& ¢1.50 \& TA-7157 \& ¢1.20 \& BC-214 \& ${ }^{20} 0.055$ \& ${ }^{\text {BD }}$-678 ${ }^{\text {d }}$ \& c0.28 \& TDA-1670

\hline 2SD-288 \& 50.75 \& AN- 7812 \& c1.50 \& TA-7204 \& ¢1.20 \& BC-2148 \& ${ }_{0}^{0} 0.055$ \& B0-679 \& c0.28 \& TDA-2002H

\hline 2SD-381 \& ¢0.90 \& BA-301 \& ¢1.00 \& TA-7205 \& c1. 20 \& BC-214C \& 00.055 \& ${ }^{\text {BO-680A }}$ \& c0.30 \& TDA-2002V

\hline 2SD-525 \& 50.75 \& BA-308 \& ¢1.00 \& TA-7207 \& ¢1.35 \& $8 \mathrm{C}-2378$ \& c0.055 \& BD-680A \& c0. 30 \&

\hline 2SD-526 \& ¢0.75 \& BA-311 \& ¢1.00 \& TA-7208 \& ¢1.08 \& BC-238 \& 00.055 \& BD-707 \& 50.50 \& TDA-2003V

\hline 2SD-600k \& $\underline{11.50}$ \& 8A-333 \& ¢1.00 \& TA.7214 \& 52.90 \& BC-238A \& ${ }_{50}{ }^{1} 0.055$ \& BD-707 \& ${ }_{50.50}$ \& TDA-2004

\hline 2SD-718 \& $\underline{11.25}$ \& HA-1124 \& ¢1. 25 \& TA-7215 \& 5.20 \& ${ }^{8 C-238 C}$ \& ¢0.055 \& 80-712 \& ${ }_{50.55}$ \& TDA-2005M

\hline 2S0. 837 \& ${ }^{20.85}$ \& HA-1125 \& ${ }_{51} 1.25$ \& \& \& BC-2398
BC-239 \& 10.055
10.055 \& B0x-53A \& 50.42 \& TDA-2006V

\hline 2S0-845 \& 81.75 \& HA-11 \& ¢1.35 \& TA. 7227 \& 2.20 \& BC-290 \& 2.055 \& \& \&

\hline
\end{tabular}

CUSTOMER CAN'T PAY?

DONT LOSE HIM FIT A TV METER

COINAGE AVAILABLE: $10 p-50 p-£ 1$ completely variable timings

H Albence
 METERS UMITED

MANUFACTURERS OF TV COIN OPERATED METERS Contact: (0202) 674272
87-89 Sterte Avenue, Poole, Dorset BH15 2AW
Telex: 418253 PORTLX G.

SETS \& COMPONENTS

PHILIPS GII AND BUSH T20 regular supplies. For prices phone 01-845 2036.

GRUNDIG SPARES TEST INSTRUMENTS. Oscilloscopes. Manuals. Ochre Mill Technical Services Limited, Stone. 0785814643.

TV's - HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp. Fully refurbished. PEARSON TELEVISION, $048+863489$. Delivery arranged.

TRADE TV SALES now open. Untested from $£ 5$, working from $£ 15$. Tel. Mansfield 0623511418.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 7.20$ per single column centimetre (minimum 2.5 cms). Classified advertisements 45 p per word (minimum 12

AUDIO VISUAL SERVICES
 36 Wycombe Road, Princess Risborough, Bucks.

 SPECIAL APRIL CLEARANCE

 SPECIAL APRIL CLEARANCE}

500 machines must go at knock down prices unserviced mechanical and electronic, large stock available so we can do a deal.

Makes include
Thorn • Hitachi • Sharp • Panasonic • Philips • Akai • Mitsubishi Mechanical From $£ 45.00$

Electronic $£ 65.00$
Please note we do actually keep the above stock, we do not just advertise it.
DO YOU REQUIRE FULLY REFURBISHED VHS VIDEO? If so, read on . . .

READY FOR RESALE - VHS RECORDERS FULLY SERVICED

(ie new belts, clutches, heads)
Prices start from $\mathbf{£ 8 9 . 0 0}$
PHONE PRINCESS RISBOROUGH 3226 OR 2995

TV SALES \& SERVICE CENTRE

We are component part stockists for:
SANYO, SONY, SHARP, NATIONAL PANASONIC, HITACHI, TOSHIBA \& FERGUSON.
Ask for details about our

TV, VIDEO \& AUDIO

 TECHNICAL PROBLEMS ADVICE BUREAUPhone (09276) 4252
185 Watling Street, Radlett, Herts WD7 7NQ.

WIZARD DISTRIBUTORS MANCHESTER TV \& VIDEO SPARES

We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, HITACHI, DECCA + ITT
FIDELITY SPARES MAIN DISTRIBUTOR. Did you know we also stock FUSES
TUBES
AEROSOLS
RESISTORS
CAPACITORS
VALVES
HANDSETS
IDEO HEADS AND MUCH MOL
ANO MUCH MORE ACCESSORIE TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN
Tel: 061-872 5438; 061-848 0060.

WE BUY SURPLUS

ICs, Transistors, Tuners \&
Transformers, etc for cash settlement. Factory redundant stocks purchased. Contact D\&S SPARES
183 WATLING STREET, RADLETT Phone: (09276) 4252

DEALERS ONLY

GENUINE REGULAR LARGE QUANTITIES
Philips G8-520 £15 $26^{\prime \prime}$
Philips G8-550 £25 20 \& 22" 10
Philips G11 - Guarantees Only WORKING
520-30 550-45
SPARES PANELS AVAILABLE
Tel. 514047 or call:
Cullum TV \& Video
Unit 5, Worle Ind Estate, Queensway, Worle, Weston Super Mare, Avon
(Junct 21 M5 200yds)

EERUICE PQGES

vords), box number 75p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank 'LC'. Treasury notes should always be sent registered post. Advertisements, ogether with remittance, should be sent to the Classified Advertisement Jept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach「ower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

BIRMINGHAM'S REPUTABLE TV AND VIDEO TRADE SUPPLIER
 NO GIMMICKS - NO TIME WASTED WE ACTUALLY CARRY UNTESTED AND WORKING STOCK
 FOR-STOCK SITUATION RING - 021-772 2733
 WILTSGROVE LIMITED 128-130 Ladypool Road,

 Sparkbrook, Birmingham B12 8JA. CASH ONLY
HALTON TV
 TRADE DISPOSAL

The Wholesaler you won't find competing with you on the High St. TV and Videos

GEC, Philips, Decca, Doric, Thorn
\star Remember, we have NO retail outlet \star
St Michaels Industrial Estate, Widnes Tel. 0514231577

GIANT SCREEN TVs
 VIDEO PROJECTORS

All leading makes available. Large quantities of some lines. New and second hand equipment bought and sold.
J. H. Roche \& Co. Ltd.,

36 Station Road, Wylde Green,
Sutton Coldfield, West Midlands B73 5.JY
Tel: 0213542393 (24 hrs).

STARLITE
ELECTRONICS
WILLOWS FARM,
A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238. EX RENTAL TVs UNTESTED FROM £15.00 WORIKING TVs $£ 20.00$ RE-GUNNING TUBES

2 year guarantee
 including Sony

T SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

TELEVIEW 01-994 5537
194, Acton Lane, London W.4.

I.T.V.C.

BEST QUALITY EX-RENTAL AND GRADED TVs \& VIDEOs
OFFERING A FRIENDLY \& FIRST CLASS SERVICE TO THE TRADE
GET ON THE WAY TO SUCCESS
BUY AT COMPETITIVE PRICES
TO INCREASE YOUR PROFITS

VHS VIDEOS

 (Mech. Electronic) fercuson, hitachl, JVC, NAT. PAN., etc. BETASANYO, SONY, TOSHIBA, etc. TELEVISION PHILIPS 550, G11, KT3 BUSH T20, T22, T24, T26 THORN 8.8K, 9K, 9.6K, TX HITACHI, NAT. PAN., I.T.T., PYE, etc. VAN LOADS DELIVERED DIRECT FROM SOURCE

PHONE STEVE 0602864627

UNIT 3, MEADOW TRADING ESTATE, MEADOW LANE,
OPP. CATTLE MARKET, NOTTINGHAM NG2 3HQ

WHY NOT LET

TELEVISION SELL YOUR PRODUCT

RING NOW ON
01-261 5942

AT LAST IN THE SOUTH

Rock bottom prices on working Thom, Philips, etc, Sonic, IR, Text

Phone Telesel on:
Bournemouth 708517

MONOCHROME TELEVISIONS

Pye $24^{\prime \prime}$ new with full guarantee
ONLY $£ 75$ each, inclusive car VAT.
Trade terms available from: T:I.E. LMITED
30 Brook Ave, New Milton, Hants. Tel: 0425615335

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY

'BOBS'

TELEVISION
WAREHOUSE
A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO

WORKING TV \& VIDEO

ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM NON WORKING GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES ELECTRONIC, REMOTE, FRONT LOADER VIDEOS
NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC, ETC.
K30, KT3, G11, TEXT, REMOTE AND BASICS
ITT, GEC, BUSH, JAPS., DECCA, ETC.

PHONE BOB BEAN ON:
0268728966
AND DISCUSS YOUR REQUIREMENTS

'BOBS'

TELEVISION WAREHOUSE

NEW

 PHILIPSNEW PHILIPS

NEW PHILIPS

NEW PHILIPS EX CATALOGUE RETURNS
_ARGE STOCK NOW HELD. ALL SIZES AND CURRENT MODELS

All working AND SHOWROOM READY

Guaranteed

P

HONE

BOB BEAN 0268728966

TO RESERVE YOUR SUPPLY NOW

VIDEO SPARES

Stock items despatched by return Access \& Visa welcome VIDEO HEADS

Capstan Motors

Drum Motors

Ferguson/JVC 3V00/3V22 etc. (mechanical models)
. 929.00
Sharp VC9300, VC9500, VC9100 etc. $\mathbb{E 6 . 6 0}$
Reel Motors
Sanyo VTC5000, VTC5150, VTC5300 VTC5400 VTC6500, VICS150, V12.00 Sharp VTC9300, VTC9500 etc. (most CP models)

Please add 75p per order for p\&p and then add 15\% VAT
A.Z. ELECTRICS

174 Kettering Road, Northampton NN1 4BE
Telephone (0604) 24380
BOURNEMOUTH
BEST SOURCE IN THE SOUTH FOR CLEAN WORKING TV \& VIDEOS
TVs Bush/Decca/GEC/ITT/Japs/Philips
Thorn REMOTE \& TEXT
Videos 2000, Beta \& VHS
PI.EASE PHONE FOR PRICES
Mon-Fri 9-1, 2-5
HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

N.F.P.C.

PERSONALISED PROTECTIVE COVERS SPECLALISTS
For TV, VCR's, AudioNisual Equipment, White Goods etc.
Are you still using an old blanket or custion to protect vour goods/equipment during transit?
This may give a litte patchy protection but it certainly does nothing for your image.

PROMOTE \& PROTECT
How personalised protective covers can protect you. For a modest initial outtay, our smart, purpose-made, personalised protective covers will provide supent protection against damaged cabinets, screens, moisture etc. And at the same time give a tremendous boost to your company image.
Says Mr. W., Company Director, Edinburgh
Not only do they protect the equipment they also provide added
security \& prestige, in pure business terms, they only have to seccurity \& prestige, in pure business terms, they only have to prevent 1 item being scored in transit to justify their initial cost. All covers are made from durable, well-padded quifted nyton and personalised with your trading name in a wivid eye catching print.
Write now for further details and tabric \& print sampla to:
N.F.P.C., Bywell House, 3 Fenham Hall Drive

Hewcastie Upon Tyme ME4 gUT
091-272 4646

TURN YOUR SURPLUS

ICS transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact:
COLES-HARDING \& CO
103 South Brink, Wisbech, Cambs.
Tel. 0945584188

- ESTABLSHED OVER 10 YEARS *

B.G. COMPONENTS

T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices.
We also stock a comprehensive range of rebuilt C.R.T.'s including Hitachi and Sony.

Open Monday-Saturday
Hill Street, Oldham OL4 2AG
061-624 1753

GRUNDIG INFA-RED Remote control units VIF-KI consist TPV355 Transmitter \& VIF-E1 receiver brand new $£ 4.99$ P\&P $£ 2$, box of ten VIF-EI $£ 10$ P\&P $£ 3$ GRUNDIG CAMERA lead VKS 1900 (7 meters with 8 pin plug \& socket) $£ 3$ P\&P $£ 1$. GRUNDIG REMOTE CONTROL 440 with 8 meters core cable $£ 3.95$ P\&P $£ 2$. GRUNDIG Portable television lead (5 meters) with car lighter plug 7000 for sale OFFERS? sample $£ 2$. DEPT 5 STAN WILLETTS 37 High Street, West Bromwich, West Midlands B70 6PB Tel 0215530186

VIDEO

ELECTRONIC VIDEOS

Regular supply very clean working condition Panasonic/JVC/Hitachi, etc. Relationship required with a few reliable dealers able to take 5 s to 20 s , or thereabouts, on a regular basis Models updated regularly and prices very reasonable. We are based in the North West.

SOME SUPERB WORKING TVs ALSO AVAILABLE
Same high standard
SONY/PANASONIC/PHILIPS, etc.
BOX NO 234

BUSINESS OPPORTUNITIES

WEST COUNTRY BUSINESSES FOR SALE
£39,500 - TV, Audio, Hi-Fi and domestic appliances coupled with good workshop trade in High St position, busy dormitory town for Bristol: favourable lease, a/cs avail Estab 33 Yrs, for sale due to retirement - Radio/TV/Electrica Retail-TV rentals and comprehensive repairs: good showrooms, workshops, potential $3 / 4$ bed. flat in market town close M5: $£ 120,00$ freehold, Trade Inven. Incl A Reg van and goodwill.

Full details of both the above businesses from:

9 Boulevard, Weston-Super-Mare Tel: 0934413735
LARGE SHOP, consists of 4 furnished flats, prime position, highly recommended leasehold, $£ 12,000$. Liverpool. Tel 0925573607

WANTED

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED

I/Cs - Tuners - Transistors - Valves Diodes etc, any quantity considered immediate payment.

ADM Electronic Supplies
Tel. 0827873311.
WANTED. PHILIPS Pattern Generator PM5506/5508 in good working order. Phone 0254484561.
WANTED VIDEO TVs, portables. Cash paid, any quantity, fast collection. Television Direct, Manchester 061-788 8997.
WANTED ITT CMR 803 tuner if working or not. Tel. 0706227645.

AERIALS
SATELLITE TV
RECEPTION EQUIPMENT

MULTI-OUTLET/MULTI-CHANNEL Installations.
Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham. (0709) 813419.

TVs GREAT BUYS G11s from £20

REMOTES un And sonc from £35 TEXT MANY MAKES from £55

$011 \sim$ FULLY WORKING SETS AVAILABLE. ALL SEEN IN $20 \mid$ OUR COMFORTABLE TRADE ONLY SHOWROOM. excellent cabinets, Ready for sale or rent, basic TO TEXT. NO JUNK.

ITTC VDEOS ALL ELECTRONIC, GOOD CLEAN MACHINES IIO NOT KICKED ABOUT, BASIC TO FULL VR WITH DOLBY. MAKES BY PANASONIC, HITACHI, JVC, MITSUBISHI, FISHER ETC. AND OTHERS AS THEY ARRIVE.

2001 SYSTEM VIDEOS FROM ONLY 121 LOAD ON STOCK, GOOD CLEAN MACHINES AT BARGAIN PRICES, ALL HAND PICKED. 2020-2021-2022. PHILIPS, GRUNDIG 4×4 and 2×4 SUPER AS AVAILABLE.

TV ALL OF THE FOLLOWING MAKES AND TYPES IN IS STOCK ON PREPARATION OF THIS ADVERT: DECCA 80-88 100. FERGUSON TX $9+10,9000$. GEC 2642-2242, 2642 TEXT. GRUNDIG 7200-7400-6012-6610-6245-2200. SONY 1810-2040-2022. ITT CVC 8-9-20-23-25-30-32. TELEFUNKEN 8256. MITSUBISHI CT200-2606. TANDBERG. KORTING. PANASONIC. gOOD CLEAN CABINETS ON MOST SETS. WE LOOK AFTER THEM FOR YOU.

CASH ONLY

OPEN 10am to 5pm MON-FRI PRICES BASED ON QUANTITY

BOOKS AND PUBLICATIONS

MACDONALDS RADIO \& TV SERVICING BOOKS, NEW 74-75, 75-76, 76-7, 77-78, 79-80, 80-81, 82-83, 83-84, 84-85, 85-96. $78-79$ and $81-82$ OUT OF PRINT		
Macdonaids Price	85-86	
OUR PRICE		£23.00
Two or more	AVAILABLE	00 eac
Full set of 10		£199.00
Prices inctude delivery U-VIEW, 29 Warmsworth Road, Doncaster, Yorkshire DN4 0RP.		

METERS

AVON METERS

We buy and sell and repair TV coinmeter Reasonable prices, one year guarantee. 48 Mead Road
Stoke Gifford, Bristol BS12 6PT 0454776413

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

GEM METERS

We buy and sell TV slot meters. Why not try our repair service?

Contact Mr Wolstenholme on:
0942826126

SPECIAL OFFERS

FREE MEMBERSHIP to a new national electronics club. For details and a free pack of components worth over $£ 10$, send only $£ 1$ P\&P to Dept Tel, Woodside, Dowsett Lane, Ramsden Heath, Billericay, Essex CMII IJL.

FOR SALE

DEALERS

We have vast quantities of working Thorn 9000 CTVs with excellent tubes from £30. Also working VHS videos from $£ 80$

TEL: 01-729 3356

SERVICE and SELL WITH CONFIDENCE

SHARP \& GRUNDIG

PARTS ARE FAST FROM WILLOW VALE

The manufacturers who care abour Service
 $30,000+$ different stock parts
 24 hour despatch

Over 95\% 'first pick' supply ratio from stock
Willow Vale's comprehensive parts listings for Sharp and
Grundig products make ordering and identification easy.
Contact the Sole UK Parts Distributors and find out what SERVICE is really about.

Willow Vale Electronics Ltd

11, Arkwright Road, Reading, Berks. RG2 OLU.
Telephones: 0734876444 (24 hours) 8 lines
Telex: 848953 Willow G
Faxline: 0734-867188
Enterprise Park, Reliance Street
Newton Heath, Manchester 10
Telephones: 061-682-1415
Faxline: 061-682-9031

Please send me your comprehensive Sharp, Grundig spares catalogues together with wallcharts of the other spares you stock: (TRADE ONLY) I enclose 50 p stamp for postage

Dealer/Engineer

```2
```

SATELLITE SYSTEM Complete, 1.6 M dish, polar mount, base STS LNB, receiver and cables. Wythall 823911, Nr. Birmingham.

TELEVISION 69/86 210 copies. Offers: 35 Knox Road, London E7. 01-555 3796.

TVS 90MO REMOTE in guaranteed working order, $£ 40$ each. Telephone 01-622 3137 01-720 1228.

MUST SELL! Philips-scope, freq, generators counters, PSUs, etc, absolute bargain, $£ 900$. Tel: 051-256 7487.

DEVONICS 2 YEAR GUARANTEE

Inline Tubes Up to $20^{\prime \prime}$ $22^{\prime \prime}$
$26^{\prime \prime}$
£43
£45
Sony
£46
$+£ 15$
Bonded Coil
30 AX (540X)
Delta tubes

$$
+£ 5
$$

Mono Portables
from $£ 28$

Free Sixth Tube

For every five rebuilt colour tubes bought at list price we will supply a further tube valued up to $£ 46$ free except for the cost of delivery and exchange glass if necessary. No time limit. Or ask for con-
tract rates. All plus carriage and VAT
2A BARTON HILL ROAD, TORQUAY TQ2 8JH.
or ring John Hodges on 080333035.

PHILIPS COLOUR TVs AT NEAR TRADE PRICES

A large purchase of surplus warehouse returns enables us to ofter the public some magnificent bargains. Choose from a wide range of features including $14^{\prime \prime}$ to $26^{\prime \prime}$ screens, remote control, teletext, text printer, flatter squarer screens, etc. Stands and video bars supplied with appropriate models. Every set tested before sale with 3 month guarantee.

VISION PROMOTIONS
Branches at 3A Commerce Estate,
Kingston Road, Leatherhead Hours 9 am to 5 pm .
Phone 370066 for stock availability
321 Oid London Road, Hastings
Hours noon to 8 pm , Sats 9 am to 5 pm , closed Mondays Phone 444415

ACTIVE DEFLECTORS

We produce a 4-channel power amplifier (10dB power gain) as an 'Add-on' to existing 1 volt amplifiers. Rec retail $£ 150$.

Distributors Wanted

Skywave Engineering Limited, Waternish, Isle of Skye. Tel (0478) 2843.

SERVICE SHEETS

TECHNICAL INFO SERVICES (T) - 76 Church St., Larkhall, Lanarkshire ML9 1HE. Worid's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues. MAIN STOCKIST OF ALL HEINEMANN-NEWNES TECHNICAL BOOKS DELIVERY BY RETURN FULL LIST ON REQUEST
Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide $+£ 4$ Vouchers - saves time and expense E3.
Any published single service sheet for $\mathbf{£ 2 . 5 0}+$ Isae except ctv/mus-c/combis from $\mathbf{\Sigma 3 . 5 0}+$ Isae
A selection from our slocks of thousands of Service Manuals ready for despatch by return post.
Any Sony: Hitachi ctv from $\mathbf{£ 9 . 5 0}$. Thorn $3000 / 3500$ £9.50. Thorn 8000/8004/8500/8600 £9.50. Philips G8 Anyplete £9.50. Decca 30/31 £8.50. Ferguson/JVC 1st video $£ 19.50$ or 3 V 00 types basic manual $£ 19.50$. Any Finlandia: Tyne CTV $£ 9.50$ each. Rank A823 complete $£ 9.50$.
COMPREHENSIVE PRACTICAL TV REPAIR MANUAL $\mathbf{\varepsilon 9 . 5 0}$ PRACTICAL RAOIO SERVICING \& REPAIR COURSE $£ 9.50$ THE 12 TUNBRIDGE TV REPAIR MANUALS DMY £99 THE 5 MCCOURT TV REPAIR MANUALS OMY £55 ANY SET OF 5 INOIVIDUAL TV VIDEO REPAIR MANUALS FOR $£ 12.50$ OR ALL 3 SETS (15 MANUALS) FOR E36.

UNIQUE COLIECTIOAS OF CIRCUITS, LAYOUTS, ETC. . . . FANTASTIC VALUE
British ctv from hybrids to modern (3 binders) $\mathbf{5 6 0}$ (2off)
Videos, all types (3 binders) $£ 58$... any 1 for $£ 22$ Mono TV (2) £40 Foreign ctv (2) $£ 38$ Domestic Eqpl (2) £38 Portable British ctv (1) $£ 22$ plus VAT.

COMPLETE REPAIR SYSTEMS . . . huge savings from published prices

British ctv 4 binders of Circuits plus 7 Repair Manuals plus ref books, etc.
or only $£ 140$
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only $£ 70$
Videos 3 binders plus 15 individual Repair Manuals cover all the commonest models for only £ $£ 0$ Complete Integrated T.V. Repair System only $£ 250$ or in 12 sections at $£ 25$ per section. Contents: 8 binders of circuits/ 17 Repair Manuals/dozens of other manuals . . Any new publications from us
No VAT on Systems within 1 year of ordering 1 st section will be added at no extra charge.

No VAT on Systems
NEW 1987 British CTV Repair Manuals for $\mathbf{\Sigma 8 . 9 5}$ NEW. NEW Repair Manuals for Spectrum with circuits only £5.00 NEW. NEW Collection of 20 Hoover's W/Mc circuits $£ 8.95$ NEW. NEW Domestic Equipment Repairs \& Servicing £14.95 NEW.
Repair data/Circuits/Service data almost any individual mono Iv £12.50 basic ctv £12.95 video £10.50 LSAE BRIMGS ANY REQUESTEO QUOTATIOM - FUUER DETALLS - FREE MAGAZINE - PRICE LSTS ETC. PHONE 0698884585 Mon-Fri before 5pm or 0698883334 any other time - FOR FAST QUOTES

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock.

 Colour $£ 3.00 \quad$ Mono $£ 2.00$ Manual prices on request. All our prices include post and packing costs. Send stamped envelope for free catalogue and any enquiries. SANDHURST TV SERVICES (MAIL ORDER) 57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.
NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

SITS VACANT

TV/VIDEO ENG. Currently working independently and part-time wishes to contact eng in similar position with view to combine efforts/resources. Tel Steve 0954 80285. Cambs. area.

SPECIAL OFFERS

LINE OUTPUT TRANSFORMERS Rank-Bush-Murphy T705 A $£ 8.50$ TDA 2600(min. Order 5) £4.95
The Above prices include P\&P
Post off your cheque NOW!!
DÖNBERG ELECTRONICS
Schoolmasters House, Ranafast, Co. Donegal, Eire.

SERVICE DATA-UK VCR \& CTV

Circuits + layouts or complete manuals
Comprehensive lists inc. $£ 1.00$ Voucher redeemable on first purchase. Send 50p Cheque or P.O. (No SAE required)
DATA-GO, 112 Ameysford Road, Ferndown, Dorset BH22 9QE

MISCELLANEOUS

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc $\$ /$ sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

PICTURE TUBE REPAIR EQUIPMENT BMR 90

Versatile and reliable.
Although many things have become cheaper, picture tubes are still expensive. So utilize tubes fully by using our new generation machine.
Regenerates picture tubes even better - Also IN-LINE Removes short-circuits, even between cathode and filament . Measures beam current, emission current, life expectancy, etc.

Sole Agents BLENDOWN LIMITED, 34 Glan-y-Mor Road, Penrhyn Bay, Llandudno, Gwynedd, 'Wales. Tel. (0492) 49246

WE ARE LOCATED IN - UXBRIDGE At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the $\mathrm{M} 25 / \mathrm{M} 3$, M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD. UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX.

N.G.T. COLOUR TUBES
 First Independent Rebuilder with B.S.I. CERTIFICATION DELTA - IN-LINE - PIL - BONDED YOKE including
 AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
 \star Rebanded with new adhesives
 \star Excellent high voltage clean-up
 \star Accurate alignment of Gun and Yoke
 for optimum convergence
 N.G.T. ELECTRONICS LTD., 120 SELHURST ROAD, LONDON SE 25 Phone: 01-771 3535.
 25 years experience in television tube rebuilding.

NATIONWIDE MAIL ORDER	NE FOR OUOTE
LOCAL OELIVERY - 2 YR GUARANTEE	
	${ }_{653} 53$ SONY TYPES f6g
A51-161 $/ 162 / 163 / 168$ (1) 53	E53 KLB-520SB22/NB/RB/XB
	E53 A49/HT00X-5700B22/EB/HB
	${ }_{553} 5 \mathrm{~GB} / \mathrm{JB}-\mathrm{A} 53 \mathrm{JBWO} 1 \mathrm{X} / \mathrm{JCG} 00 \mathrm{X}$
A51570 / /580/001/210/241	${ }_{\text {E53 }} 5$ JB00X-680CB22/DB/EB
	\% 69
$560 \mathrm{El822/01822/CSB22/DMB22/DNB22}$	${ }_{553}^{\text {t53 }}$ 14' PORTABLES 559
	${ }_{553}^{533}$ 3708UB-AXT3001-
	${ }_{\text {E53 }}$ ¢39 37-550/2/3/4-437-570
${ }_{30 A X}$-A56-540X-A66-540X	${ }_{656} 55$
PLEASE PHONE BEFORE CALLING	
LOCAL DELIVERY FROM ACCRINGTON, LANCS.	
Apollo, The Potters Wheel, Mullion Cove, Mullion, Nr. Helston, TR12	

INDEX TO ADVERTISERS

TV LINE OUTPUT TRANSFORMERS
PRICES INCLUDE VAT \& CARRIAGE

DECCA		PHILIPS G8 \& G9 series colour	REWHND SERVICE
CS1730 1733 colour CS1830 1835 colour '30' series Bradford colour 80 series colour 100 series colour	$\begin{array}{r} 10.00 \\ 10.00 \\ 10.00 \\ 9.00 \\ 9.00 \\ \hline \end{array}$		
		368.169,569,769 mono 10.00	RANK BUSH MURP
		725-741 $\quad 9.00$	T20a T22, 126 Pri \& Sec
		REDIFFUSION Doric Mk. $3 \quad 10.00$	2718 primary state $18^{\prime \prime}$ or $22^{\prime \prime}$
KB - ITT		PAPWORTH TRANSFORMERS 80 Merton High Street, London SW19 1BE 01-540 3955	EHT
VC200 VC205 VC207 mono 9.00 CVC5 CVC7 CVC8 CVC9 col. $\mathbf{1 0 . 0 0}$ CVC20 series colour $\quad 9.00$ CVC30 CVC32 series colour $\quad 9.00$			FARA E15
		$14^{\prime \prime}$ colour overwind	
		ON	
		1690-1691 EHT overwind	
		Watham 190 EHT overwin	
All lopts and windings are new and guaranteed			590 EHT overwi
		lelivery by return of past.	CALLERS WELCOME Open Mon. Fri. 9 to 5.30 pm

IRELAND'S OWN TV TRADE SALES at E.D.I.

LARGE QUANTITY OF BRAND NAMES. 9 AND 12 CHANNEL UHFNHF WORKING COLOUR SETS.

VIDEO RECORDERS: Ferguson 3V39, 3V29; 9803E, Nordmende V102K, Sharp VC482. Front and top loaders UHFNHF. All fully serviced.

HI-FI STACK SYSTEMS: As new. Sanyo, Sharp and Ferguson 15-20 Watts per channel. "KEEN TO SELL AT KEEN PRICES". TVs from £50. VIDEOs from £140

T.V. TRADE SALES
T.V.T.S.

E.D.I. House, Ballyfermot, Dublin 10 Clover Place, College St., Killarney Tel. 263517-264139

Tel. 06433655
EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans - smoothers I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only. 32 TEMPLE STREET, WOLVERHAMPTON (0902) 29022

CentreVision

TEL: 0222-44754
SLOPER ROAD, LECKWITH, CARDIFF
EXIT 33 OFF M4
3V22 VHS VCR - WORKING ONE OFF £85 10 OFF £75 20 OFF $£ 68 \quad 30+\mathbf{£ 6 5}$
MANY ELECTRONIC VIDEOS IN STOCK
MANY TOP QUALITY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT

OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £16, overseas (surface mail) 119 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

