SEPTEMBER 1986

TE

 SERVIGING-PROJECTS

Servicing DX-TV•Beht

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS

LOPTS, TRIPLERS, PANELS, TUNERS, SEIECTORS ETC
SPECIAI, OFFER Mullard/Philips quality UHIF modulater (audio \& viden input) ex new equipment $£ 5.00$ p.p. $£ 1 .(0)$
PLIIIIPS Gill 6 position touch tume channel selector umts E 16 . (0) p.p. f 1.80 PHILILS GII PANELS (tested).
 PIILIPS GII PANELS ex rental (untested)
Power, frame, If, decoder E 10.00) cach p.p. £2.(0).
PIILIPS HANDSETS Ex iental, Teletext. Untested. KT3, K30) (TX, KI4, K 35 ctc. $£ 3.50$ p.p. $£ 1.00$.

THORN REMOTE CONTROL HANDSETS
TX9 [LTRASONIC (3-button) E 15.00 ; TX9. TX10 lifra red $£ 18.00$: TX9. 1×10 Intra red Teletext $£ 20.00$, p.p. £1 20 .

TX9/TX10 Teletext intertace panel (1524) £5.01 p.p. Bop.
 Tllorn Txio Serie Facia Control Pancl with 8 position (hannel Selector 46.51 P.p. £1.51).

SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. $£ 28.50 \mathrm{p}$.p. \& 1.21 .
THORN TX9, TXIO Saw Filter IF Pancl. 55.00 p.p. 80 p
PAL DECODER KIT (Video to R(iB) for Montors \&27.(0) p.p. 11.0%
PAL ENCODER KIT ($\mathrm{R}(\mathrm{BB}$ to Video) $£ 18.50 \mathrm{p} . \mathrm{p}$. $£ 1.30$
TELETEXT DECODERS New \& Tested Mullard VM 6101 E.30.00), Texas

CROSS IIATCH UNIT' KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Batter Operated, also gives Peak White \& Black Levels, can be

IUF SIGNAI. STRENGTH METER KTT $£ 22.00$ Alum. (ase £2.91. De Luxe Case \&8.60 (Built \& Tested \&48.00) p.p. £2. 30 .
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $\mathbf{£ 2 9 . 5 0} \mathrm{p}$.p. £2 80 .
BUSH A823 Convergence, Time Base Pancls 55 (0) each. p.p. $£ 1.80$.

BUSII A816 IF Pancl (Surplus) $£ 1.00$ p.p. © 0 p, 5 or $£ 4.00$ p.p. £1.40.
GEC 2041 Decodel Panels, $£ 1.50$ p.p. £I. 80 .
GFC 2110 PANELS Frame $£ 8.50$ p.p. f1.40. Sound $£ 2.50$ (tested) p.p $\$ p$. GEC 20 AX Line Time Base $£ 18.00$. IF-Decoder $£ 12.50$ P. P. $£ 2.00$.
P'E 691-7 (DDA Panek. Makers tested stock. £6.00 p.p. £1.45.
THORN TX9 Pancls ex factory for small spares. Includes I.Cs \& Semiconductors etc. $\mathbf{~} 3.00$ p.p. $£ 1.80$.
THORN TX9 Panels salvaged ex factory for spares incl. I(OPY \& Mains Transformers. £10.(0) p.p. £. El 0 .
THORN TXY Pamels ex factory salvaged complete cond. 220.00 p.e. £.81
TIIORN 8000, 8500, 8800 If: Decoder Pancls Tested $£ 10.001$ p.P. \& $£ .34$.

TIIORN YOWO IF/Decode Pancls Salvaged. For spares $\mathbf{1 2 . 5 0}$ p.p. $£ 1.80$.
THIORN 9 ghe Frime Time Base Es. 50 P.p fl . 80 .
 PIILIIPS GX Line Driver Pand incl. Equalizing Coil. $\mathbf{E 1 . 0 0}$ P.p. 60 p .
G11 PANELS, EX Rental SCAN (ind LOPT) £28.00 p.p. $£ 250$ (tested).
GII PANELS. Power, Frame, IF, Decoder, \&18.00 each. P.p. £2. (0) (tested) GRLNDIG, 86:30 Series Varicap Tuners $\mathbf{\$ 5 . 0 0} \mathrm{p} . \mathrm{P}$. fl . (N)
1321. ELC $1(143 / 5 £ 7.80$ p.p. 80). Makers Controls PYE (T20) 4 PSN $£ 7.50$.

BUSH "TOUCII TUNE" Varicap Control 2585,710 £3.80 p.p. f1.(M)

IHF/625 TUNERS, many different types in stock. DECCA Bradford 5
 TV SOU ND IF Pancls $\mathrm{f6} 80 \mathrm{p}$ p.p. £1. (1)

RUSIL. MURP\\|Y 774 x'ries 99.80	
	R.B.M. ${ }^{\prime} 120.122$ Bubbin ¢5.80)
FERG., IIMV, MARCONI. ITHRA	10ECCA Bradford (state Mod No) . . . E8.80
15(0), 1540, 1541.1612.1613,1712...... 54. (x)	
TIIORN 16010.1615.169).1691 89.15	
	[TT (VC5to9. CVC20................99.80
	[TIC'VC25. CVC30)s*ries 88.80
]IIILIPS 170,210,36Miseries 77.65	ITT CVC459.80)
PIILIIPS K.30 $£ 18.50$	PYE 691-(6)7 (state model no.) $\quad \mathbf{E 1 0 . 0 0}$
SPLCIAL OFFER	
DEECA 1700, 2001, 20201. 2401.2420 c3.80	
(FEC2114/Juniorloncline £2.80	
PIILIIW 320 £2.80	PHILIIS KT3................... 9.80
	THORN $3040 / 350 \times 15 C A N$. EHT $£ 6.90$
(;EC 20)28.2(401. 21 (0) f4.801	
	TIKRN TX) $\boldsymbol{\Sigma 1 4 . m}$

PIHLIISK 9

OTLIERS AVAILABLE, PRICES ON REQLEST.
TRIPLERS Full range available. Mono \& Colour
Special Offer: THORN $3(1001 / 3500)$ EIHT Tripler $£ 2.50$ p.p. $£ 1.30$
.3 C CRT Boost Transformers for Colour \& Mono e5.90 p.p. $£ 1.40$
IORN TXIO focus control 88.80 p.p. 8 ITp.
CALIERS WELCOME AT SHOP PREMISES
IIOUSANDS OF ADDITIONAL ITEMS ENOUIRIES INVITED
GEIECTION TESTED COLOUR PANELS POPULAR MODELS

TE \qquad

COPYRIGHT

(C) IPC Magazines Limited, 1986. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 14$ in the UK, £17 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Send orders for binders ($£ 4.50$) and indexes (75p) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add 60p for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

701 Leader
702 Servicing the Fidelity $\mathbf{Z X 3 0 0 0}$ ChassisDavid Botto
An account of the TDA4600/BU426A chopper powersupply circuit and the steps to take when dealing with adead set.
707 June's Daughter Les Lawry-JohnsJune's daughter's set was an ITT CVC5 that causedquite a problem. Then there was another Dawe, with atroublesome TX10.
708 TeletopicsNews, comment and developments.
710 Letters
711 Servicing Sinclair Microcomputers, Part 5 Ken TaylorNotes on earlier versions of the Spectrum.Harold PetersBack to basics plus a survey of who sells what in theTVRO market.
718 The Toshiba V5470B - fault-finding guide John CoombesA run-down on common faults with this piano-keyoperated Betamax machine.
720 The Development of Colour Tubes, Part 4 Eugene TrundleThis time the screen end of the tube - the phosphorsand characteristics of the glass faceplate. Also tube safetyfeatures and definition enhancement.
723 Correction and Next Month in TelevisionMike PhelanSplit-phase and synchronous motors plus some hintson servicing
728 Sinclair QL Test Pattern Program John de Rivaz, B.Sc. (Eng.)
The program provides colour bars, a crosshatch andfull test pattern.J. LeJeuneInfra-red remote control for TV sets, taking the MullardSAA5000 system as an example.
732 Cable '86Harold Peters reports on the 1986 cable/satellite TVshow at Brighton.
73 VCR Clinic
Reports from Hugh Allison, Christopher Holland, PhilipBlundell, Eng. Tech., Steve Leatherbarrow, K. N. Bayes,Brian Wright and R. T. Rees
734 TV Fault FindingReports from Richard Roscoe, Roger Burchett, AlanShaw, J. R. Armagh, Geoff Fardon anc L. Dinsdale.
Long-distance Television
Roger BunneyReports on DX conditions and reception plus news andband changes.
739 Service Bureau
740 Test Case 285
OUR NEXT ISSUE DATED OCTOBER WILL

 BE PUBLISHED ON SEPTEMBER 17

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADD 87 p per order $\mathrm{P}+\mathrm{P}$ Goods are despatched on the day we receive your
(U.K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try cable service aids, degaus. to inform you as quickly as possible. We try our best coils please allow $£ 1.50 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and efficient service. V.A.T. U.K.). Export orders charged invoice on request. Give us a ning - well nive you at cost. First Class Mail is used service. Please ask if what you need is not listed - we whenever possible. Add 15% will try to help. Prices are subject to change without VAT to total except where it notice. In
states zero rate.

P. V. TUBES

 to the rest.
 etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

HUSSAIN CENTRAL TV LTD

NEW BRANCH NOW OPEN AT SOUTHAMPTON

BEST QUALITY AT THE LOWEST PRICES IN BRITAIN TODAY

G11 • 660
PYE G11
G11 REMOTE (with hand set)
G11 TEXT (with hand set)
G11 ELECTRONIC TUNER
THORN 9600
THORN 8800
PYE 222
GEC SOLID STATE
£25 ITT CVC 20/30 £15
£30 DECCA 80/100
£15
£45 ITT REMOTE (with hand set) £30
£55 TX TEXT (with hand set) £55
£30 THORN 9000 REMOTE £15
£25 THORN 9200 £27
£10 THORN 9800 £15
£10 G8 22" £10
$£ 10$ GEC STARLINE $£ 15$

MANY MORE LATE MODEL TVs IN STOCK INC. REMOTE, TEXT, STEREO TEXT AND 14", $16^{\prime \prime}$ PORTABLES

All TVs have excellent cabinets

VHS: Working. Bring your own tape and try them yourself at £65
1000 Working VHS Video's in stock from $£ 120$
Untested Electronic VHS £90
betamax video's
ELECTRONIC Beta Full working from $£ 40$ Untested Beta from £25

Toshiba 9600, 5470, Sanyo 5000, 5300, 5010, Sony C5, C6, C7.
PLUS MANY MORE MODELS IN STOCK
Prices are subject to 15% VAT and based on quantity
Deliveries arranged on quantity or call at our branches for fast and friendly service from the professionals

SOUTHAMPTON	BIRMINGHAM	PRESTON	LONDON	CHEPSTOW
0703-777254	$021-6221023$	$0772-312101$	$01-807$ 4090	0291271000
	$021-6221517$		$01-8841314$	

MAKE YOUR INTERESTS PAY:
 Train at home for one of these Career Opportunities

More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better jOD, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
CCE over 40 'O' \& 'A' level subjects		

Name:
Address

FIRST II TUBE REBULDING TECHNOLOGY

REDUGED SERNICNIG COST, FIT A DIREGT REPLAGENENT

availabie ouly from ghromavac. PRE CONMERGED AS ORICNAL. EXIERNAL MULTPRE UNIT NOI REQUIRED.

Get on the hot-line today!
LOOK! AT NO EXTRA COST 30AX PRE CONVERGED

061 6812959

 most types of Inline Re-builds or new ex-stockPRICES SUBJECT TO GLASS EXCHANGE

Delta Rebuilds.

Up to 19"	8
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+£2
A47342 New	¢28
17 FHP New.	£30
470EHB New	£30

Inline Rebuilds

$22^{\prime \prime}$	
Up to $26^{\prime \prime}$	
540x	
540	
REBUILT MONO TUBES AT COMPETITIVE PRICES	

TN LINE TYPES EX-STOCK SELECTION NOT REBULDS Please enquire types not listed

QUANTITY

DISCOUNT
AVAILABLE
Ask for details WILL ADVISE YOU ON PROBLEMS YOU MA DELIVERY: By return on all stock items.

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

£1 BAKERS DOZEN PACKS
Price per pack is $£ 1.00 .{ }^{*}$ Order 12 you may choose another free. Items marked (sh) are not new but guaranteed ok
-13 amp nng marn tunction boxes
-13 amp nng main spur boxes
3 amp nng maln spur boxes

- Suriace mounting switches sultible insulated for manns voltage flush mounting
4-in fiex line switches with neons
mans transtomers with 6 V 1 A secandanes
- manns transtormers with $12 \mathrm{~V} 1 / 2 \mathrm{~A}$ secondaries
- glass reed switches
ultra transmmers and 2 recevers mith crrcun!
4 - water switches -602 way, 403 wayy 206 way 205 way, ip 12 way small one
hold hxing and good length //4 spy
Nicad battieny charge
key switch mith key
- -erosod cans ol licl Dry Lubricant
$96-1$ metre lengitis colour-conded connectirig wre
$1-$ long and medum wave tunes kt
1 - long and medium wave tuner kit
8 - rocker swith 10 amp mans SPST
-24 hour time eswitch manns operated (s h)
6 V operited reeed switch relays
 $2-12 \mathrm{~V} D \mathrm{C}$ or 24 AC 3 CO relays
$1-1222 C 0$ mennalure relay very sen

1- lowsung mechanism with 2 keys

- ferrite rods $4^{4} \times 5 / 16^{\circ}$ diameter zerials
- terme slibb aenais w with $L 8 \mathrm{M}$ wave colls

- magnetic brake - stops rotation instantly
- low pressure 3 level swict can be mouth op
-25 wars pult 8 ohm
-25 watt pols 1000 ohm
w wre wound pots -18.3
- wre wound pois - 18. 33.50 and 100 ohm your chotoe
1250 want dimmer Ultra rel SE20

1250 watt dimmer Uiltra ret SE20
-30 A panel mounting styslok fusses

- manns shaded poie molor $3 / 4{ }^{3}$ stack $-1 / 4$ shan
- mains moter with pear box 1 rea per 24 hours

- thanrmostat tor findge
molonsed sturd switch (s
$21 / 2$ hours delay switch
- manns power supply unit
- manns power rupply unt - 6y DC
- 5 pin thex plug and panel socket
-5 speaker ske radoc catbure: with handle
- shider type wotume controts
0 - slider yppe votume cantrot
- musical boxes (less keys)
- musicar boxes liess keys!
- heatny pad 200 wans mans
FM front end

FM front end with turnarg con
IW amplifier Mullard 1172

- War mplifier Mullard 1172

-pc boards mith 2 amp tull wave and 17 other recs

100 - clapies plastic thenses $13 / 4$ diameter
4 - pilot oulb lamp melal
4 - plot bulb lamp metal calp on
10 - very tine diliss for pcls eic
- extra tinin screw drvers too instruments
- plastic boxes with windows, didal lor interrupted beam swich
- model aicraft molor - reaure no oniff switch. ust sin to
- model aircratt motor - regure no on'oft switch, ustst spin to start

- secret switch kif with diata

12 way connector blowss 25 A 250 V .
Hisht mountang
- 3 A sockets good Bntish make buu brow
short wave aid spacod thmmers $2-3$ oro
- shocking coil sip widn datammersve hun with ins

 - shion twave tuuning conddinser 50 pi with $1 / 4$ s. spindie
- three pang turing condenser each section 500 pi with frimmiers and good length
spindee

- in flex simmerstat tor electric blanket soldening ron etc

mains solenoin with plunger compact ypee
cerame mages Mulard 1 . $\times 38 \times 516$
12 pole 3 way cerame wave charge switch
12 pole 3 way ceramic wave charge swich
stereo mop 1 watt per channel
tubur dynamic microphone moth desk rest

adapatabie eegenter
Over themostats
Clare Elliot sale

MULLARD UNILEX AMPLIFIERS
Me ate mRD UNILEX AMPLIFERS

CAR STARTER/CHARGER KIT

Flat Battent Don't worry you will start your car in a lew mienutas
with this unit -250 watt ranstormer 20 amp rectitiers, case and all parts

VENNER TIME SWITCH
Mains operaled with 20 amp swich,
one on and one of p er 24 hrs reppeats daily automatically correcting to the lengthening or shorenining day. An expensive time switch but you can have
it for only E .95 without case. metal case it for only $\sum 2.95$ without case, metal case
$\sum 2.95$. adaptor kit to convert the into a nommal 24hr. ime swinch but with the added advantago of up to 12 orvolits per 24 hrs.
This makes an ideal controler for the E-Electrcictry Board. immersion heater. Price of adapor kit is SOUND TO LIGHT UNIT
 plenty rugged erough for disoo work. The unit is housed in an attractive
two tone metal case and has controls for each channel, and a
 panel mounting fuse hoiders provide thyristor protection. A. four pin ¢14.95 in kr form.
12 volt MOTOR BY SMITHS
 $1 / 10$ to $£ 3.45$
25A ELECTRICAL PROGRAMMER
Leart in your sleep. Have radio playing and
kettele boiling as you wake - switch on lights to ward
off intuders - have a wamm house to come off intruders - have a wamm house to come
home to. You can do all these and more. By home to. You can do all these and more. By
tamous maker with 25 amp on/off swith. A beautiful unit at $£ 2.50$

THIS MONTH'S SNIP

Is a Presel Unit, brand new and complete except for some ICs, also we understand lested. So should work OK Girectly the missing chaps are fined. Suppied complete winh hand be missed, even if you don't want to use it for its original purpose. It has wonderfuul spares value: you will have a long low cas controis. such a case could easily cost you £5. You will have a modem; more and mose telephone/computer operations are
being perlormed and this modern could set you going. Price ES
plus $£ 1$ post.

- GOODS ARE ON APPROVAL

these notes are often hastily written and tectnical
information sheets are seldom available about the items we intormation sheets are sebom avalable about tescribe, also advertisements sometimes go to press withoul our having a chance to correct any mistakes. however, everything we sell is supplied on the
understanding that if is is not suinale of your proiect you may
 of description in our copy then we will pay postage. If not. then
pou pay the postage. Note this ofter applies to kits, but only you pay the postage. Nole th
if consinuction is not started.

FANS \& BLOWERS
Woods extractors
$5^{\prime \prime} £ 5+£ 1.25$ post. $6^{\prime \prime} £ 6+\varepsilon 1.50$ post

$5^{\prime \prime}$ Plannair extractor $£ 5.500$.
${ }^{£ 2}$ post. All above are ex computers but guaranteed 12 months. $10^{\circ} \times 3^{\prime \prime}$ Tangential Blower. New. Very querer - supplied. with 230 to

IONISER KIT
Refrest you home, office, shop. work room, etc. with a negatve complete mains operated kit, case included.

TELEPHONE BITS

Master socket (has surge arrestor - nnging condenser etck and takes B.T. Exiug.
Dual adaptors (2trom one sockel)..........
Cord terminating with BT. plug 3 metres
ir cortin......................... $£ 2.95$ Knt for converting old entry terminal box to new B . T master socket.
complete with 4 core cable. cable clips and 2 BT exlension sockets $£ 11.50$.
MINI MONO AMP mad volume control and a hode for a tone conirol should you require in.
has three transistors and we
estimate the outtut to be 3 W ms. has three transistors and we
estimate the output to be 3 W ms .
More tectincal data More tectrincal data will be included
with the amo Brand neww. the amp Brand new.

J \& N BULL ELECTRICAL (T) 128 PORTLAND ROAD, HOVE, BRICHTON, SUSSEX BM3 5QL

MAIL OROER TERMS: Cash, P.O. or cheque with order. Orders under 20 add $£ 1$ sernce charge. Monthly account orders acocepted fom schools and public comparies. Access \& ioncard

OVER 400 GIFTS
YOU CAN CHOOSE FROM
hereme is a rolaz or owe git with each dozen pounds you spend and you packs. A classined ist of these packs and our latest "News Letter" will be enters

TWO POUNDERS*

Waimouning themostat, high precision with merculy swich and

- Variable and reversible 8-i2v psu for model control

24 woh psu with separate charnets for stereo madie for Mullard cow ma
$2{ }^{2} 67$
P8 -Mni key, 16 tution membrane keyboard. hst pnoe over £12
wound so suitathe for further speed control speed selector. Senes
PO - Time and set swich. Boxed glass tronted
PP10-12 1015 amps. idgal to program electinc hoaters 5 . 12 and Controts
bobben and easy to remove to convert to lowe voltages separate - Powner amp mocule Mulland Unilex EPGoco (not stereo preamp module Unwex 9001 is BD216
Dasc or Tape precision moior - has balanced rotor arad is reversible 230 mop kp
2P14 - Mug Stap kit - when thrown emits piencing squank
2P15 - mitempled Beam kit for burglar alams, counters, etc.
2P17-2 rev [r munte mans diven molor with gear box, ideal to operate

- Luquidigas shut of vave mans solenoid operated
$2 P^{2} 18$-Lquidigas shut of vaive mans solenoid operaled
$2 P_{19}$-Disco swith-riotor dives 6 or more 10 amp change over micro Swithes suppted ready for mains qperabon garden locks etc.
2P21- 10 wath ampifier, Mullard module reterence 1173
2P22 - Motor diven switch 20 secs on or off after push
$2 P 22$ - Mober diven switch 20 secs on or off ahter push
2P24 -Clockwork operated 12 hour switch 15A 250V with cultch 2P27-Goodmans Speaker 6 inch round 8 otrm 12 2 P28 - Dill Pump - adways uselul couples to ary make portable drit 2P29-24 postion Yadey switch contacts raled 5A - $1 / 4$ spencle 2P31-4 metws 98 way interconnecting wre easy to strip
2 P32 - Hot Wire amp meter - $4^{1 / 2}$ round surface mounting 0-10A - odd but working and definmely a bit of history
Solenod Ar vave mains operated
$2 P 34$ - Solenod Ar Vave mains operated
2 P35 - Battery charger kit comprising mains transiorner, full wave rectifier
and meter, suitable for charging 6v or 12 v .
2P38-200 RP.M Geared Mains Motor $1^{\prime \prime}$ stack quite powertul. definiely large enough bo thive a rotating aenal a ambler for polshing stones etc.
2P42 - Tutula hater 60 watts per f. unused but shigntly storage soled
mada by G.E. Perlect order (must be collected by appoinment as 12t lorg)
$2 P 43$ - 5 mall ispe biower or extractor lan. motor nsel so very compaut
22_{46} - Our fantour crill comtrol ket complete and with
$2 P^{2} 48$ - Teleptrone mging unit reduves mains to 50 volts and changes
frequency from 50 hz to 25 hz to give nght ringing tone
2P49 - Fire Alarm break glass switch in heavy cast case
$2 P 51$ - Stereo Headphone amplifier, with pre amp
$2 P 55-$ Mans motor, extra powertul has $1^{1 / 2 / 2}$ stack and good length of
2P62 - 1 pair Goocmans 15 ohm speakers for Untox
$2 P 63-15 \mathrm{Kv} 20 \mathrm{~mA}$ mains transforner ex equapment
2P64-1 five bladed tan $6^{1 / 2}$ ' with mains motor
$2 P 66$ - 12 Kw tangental heater 115 v easily comvertble for 230 V

$2 P 69-1250 \mathrm{v}-250 \mathrm{~V} 60 \mathrm{~mA}$ \& 86.3 v 5 A mains transtomer
1 E.M.I. tape motor wo speed and reversible
1 PAPST 2405 to motor
-1 2 hour imer, phigs imo 13A sooket
-1 nistrimembox winh key size $12^{\prime \prime} \times 4^{1 / 2 / 2 "}$ wide $6^{\prime \prime}$ deep $-9 \mathrm{v}-9 \mathrm{y} 2 \mathrm{amp}$ mains transformer
25 fm .75 wim flat fex for mams appliances
- Madem board with press keys lor telephone redaller.
- 20w-0-20. $1 / 2 A$ Mains transtormer
-90 mm bine swich with knob swich with edgewise engraved controller
- Paneil rneter size $21 / 2^{\prime} \times Z^{\prime}$ scaled power lactor

E5 POLNDERS*
12 voll submersible pump complete with a tap which when brought
over the basin switches on the pump and when pushed tack switches Off, man ideal caravan unt.
Sound so ght
sound n intry
Silent sentinel utitra sonic transmitter and recoive kit, oomplete 250 wat isolating transtomner to make your servce bench sale, has operite American of ofther 115 V equipment which is othen only nsulutated 10
neawy
6. i2V alarm bell wth heavy 6 " gong, suriable tor outide in protected from
${ }^{5 P} 15$ diniseleator 5 pole 25 way 50 volt coill ${ }_{518}$ moll
$5 P 18$ motor diviven water pump as tited to mary wasting maccimes
$5 P 202$ kits math
5 Pex size.

5P25 special poffects ligtring swith Up to 6 channets of lamps can be on or of for varing time periods
5P26 Audax woctern 8 年 8 ohn 35
${ }^{5 P 27} 27$ cartudgye player 12v, has high qualty stereo amplifer
5P28 gear pump mans motor ctiven with intet and outter ppe connectors
5P32 large mains operated pust or pull solencid Heavy so add 150 post $5 P 32$ large mains operated push or pull solenoid Heavy so add $£ 1.50$ post
5 P34 24 V 5 A toroida mans transiommer
5P35 modem boand from leteophone auto dialler, complete whth keypad and
5 all 1 hs
${ }^{5} 5415^{\prime \prime}$ extractor fan, very quiet unner sh. grid 12 mths .
5P51 200 wan auto transtormer, torcidal wound and encapsulated $230-115 \mathrm{~V}$,
LIGHT CHASER KIT Moor diven swhich bark with conmection diagram. Aused in connection with 4 sets of X-mas shaths makes a
very eye calching desplay tor home, shop o disco, only $\& 5$ ref $5 P 56$.
VALVE PRE AMP
described in the A
VALVE PRE AMP desconbed in the Aug E.T.I. it's a very
 B9A valie beses 4 for $\mathrm{E1}$
Double tag strips 3 lengths $£ 2$ Double tag strips 3 lengths $\frac{\text { E2 }}{}$ Toggte swiktes dpst and 40 way rotary swikh
\dagger meg swingles gang pot 4 for $\Sigma 1$
$100+100413200$ elecroyic 2 for $£ 1$
$100+100 \mathrm{~d} 320 \mathrm{~N}$
4 ut 300 f for $\mathrm{E1}$

EAST CORNWALL COMPONENTS
119 HIGH STREET
WEM
SHROPSHIRE SY4 5TT TEL: 093932689
TELEX: 35565

add 65 p postage/packing (unless otherwise specitied) to all orders and then add 15\% VAT to the total. Minimum order £5.00. Either send cheque/cash/postal order or send/telephone your Access or Visa number. Otficial orders from schools, universities, colleges etc most welcome. (Do not forget to send for our 1986 catalogue - only $£ 1.00$ per copy). Delivery by return on ex-stock items.

EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 689.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671
SECRETARY
Janet Reeve
01-261 6671

CLASSIFIED
 ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

INFORMATION WANTED

Can anyone provide information on sources of spares/service data for the following: Soundmaster monochrome portables (distributed in Ireland), Trophy monochrome portables and Griffin Teleranger TV/monitors?

COVER PHOTO

That pretty but annonymous looking chassis on our front cover this month is the Fidelity ZX 3000 . See article on page 702.

TELEORSDOR

Learning, coping and doing

Learning is something that many of us find tricky. But what exactly is learning? It depends of course on what one is learning about, or to do. Important that last distinction. There was a time when learning, in the sense of the formal acquisition of knowledge, was the province of a very small minority of the population, those who attended the universities. Yet everyone had to do a certain amount of learning in order to operate successfully in society, i.e. get by from day to day and do a job that brings in an income. For many learning consisted of the apprenticeship system - learning by doing, by acquiring skills passed on by those who already possessed them. The traditional apprenticeship system seems long dead, killed by the age of equal opportunity and education for all. It had two great disadvantages. It tended to lock people into a particular type of job for life, and it prevented anyone else from doing particular types of job if they wanted to. We live to this day with the legacy of demarcation disputes and skill shortages.

One thing that helped to kill off the apprenticeship system was the increasing technical content of many jobs. The more complicated a job becomes, the greater the need for formal instruction. The problem becomes more acute as the pace of technological change increases. Those who learnt their electronics in terms of the thermionic valve had to start all over again with the advent of solid-state electronics. This sort of thing led to talk of the need for continuous retraining throughout one's working life. The great question here is how well we've succeeded in going about this, and whether the formal processes of education have been effective.

These problems are particularly relevant in the field of electronics, and seem to me to bring out the fact that by and large people get on surprisingly well despite a lack of formal training. Just consider the servicing of consumer electronics equipment. There are still those who started off dealing with valved radio and audio equipment before graduating to TV sets. The dreaded complication of colour followed, and when one looked at the formal explanations of how it worked one shuddered. Yet most of us soon got the hang of it and the air of mystery evaporated. The same can be said of the change to solid-state technology. The latter has enabled great strides to be taken in increasing the sophistication of consumer electronics products - imagine a teletext decoder built of valves! So digital techniques, once confined to obscure books on computers, started to appear in the domestic telly. Did we all rush off to the local college to acquaint ourselves with this new subject? Not at all, and I suspect that many people were soon wielding their logic probes without giving too much thought to the matter.

Video added a whole new field of complications. New signal processing techniques coupled with a need to understand automatic control systems. Before long we were not only having to take servo systems in our stride but microcomputer control of functions as well. And if you decided to keep out of video you nevertheless found that the microcomputer chip was beginning to do its stuff in TVs as well. Is this all? Well microwave technology is now a part of the domestic TV scene as well with the advent of satellite TV transmissions. Yet somehow or other we're still coping!

If the educators had their way we'd all have to traipse back to their halls of learning to find out about these new technologies as they came along. In practice of course there simply isn't time for those in full-time employment to go off for weeks/months to follow a formal course - while the educators are in fact in the same boat! A nice irony here. It has often taken a long time for formal courses to catch up with advances in technology.
I often wonder how we've all managed to cope with this flood of innovation. The fact that we have seems to carry some sort of message for those in education: that the experienced person can pick up a surprising amount of knowledge without going through formal educational procedures. I'm not saying that one can acquire an in-depth understanding by a process of assimilation. Design knowledge and practical knowledge are different things. In past times one might have talked about theoretical and practical knowledge. But a concern with theory nowadays is something that takes us into the realms of research.

One of the great problems is the way in which information is presented. It's so easy to make things seem more complicated than they really are. Add to this the fact that what's new always seems to be a bit mysterious and you soon have a rather off-putting prospect. Yet quite often a simple analogy, a rather good diagram or a couple of brief sentences that manage to get to the heart of things will unlock a whole new range of understanding. The moral here seems to be that if we can find ways of putting things across simply life will be made a lot easier for us all. There are unfortunately always those who want to do the opposite. They like to cloak their knowledge in obscure terminology or simply to adopt terms that are singularly unhelpful to those who are uninformed. An example of this is when techniques or devices are called after their inventors rather than by what they actually do. By all means give credit to the great innovators, but it doesn't help the rest of us to perpetuate their names in this way. Surely the classic example of this sort of thing in recent times is the adoption of Hz instead of c / s, something that none of us can now avoid. It simply amounts to pulling the wool over people's eyes unnecessarily. Oh yes, you get rid of the /, which is very clever and efficient: but c/s is self-explanatory, Hz isn't. Avoid unnecessary confusion and we shall probably all manage to cope with new techniques as they come along. Without having to become apprentices, and without having to return to the classroom every couple of years.

Servicing the Fidelity ZX3000

David Botto

The ZX3000 chassis is used in many Fidelity colour TV sets including the CTV14S (later versions), the CTV20, the CTV2022, the CTV20R, the CTV2024, the CTV22, the CTV22R and the CTV2224. Several of these models incorporate remote control.

The Usual Symptoms

Whilst the chassis is generally reliable it does have one nasty tendency. It likes to go dead, blowing the expensive chopper transistor and fuse. After careful tests the service engineer fits a nice new BU426A transistor and a 1.6 AT fuse. When he switches on he's rewarded with a good picture and prepares to refit the back. Then suddenly, after anything from five to thirty minutes, a loud bang is heard and to his dismay both the fuse and the chopper transistor have once more failed.

To make life more interesting, in all the chassis we've handled the components on the main PCB are not identified by letters or numbers. You'll now understand why Pete recently sat by his bench sadly contemplating a ZX3000 chassis together with a little heap of useless BU426A transistors and 1.6AT fuses.

The ZX3000 chassis uses a self-oscillating chopper power supply circuit based on the Siemens TDA4600 chip. Regulation is achieved by varying the mark-space ratio and frequency of the drive waveform provided by the TDA4600 chip. Follow the procedure outlined below
and you'll find these sets straightforward to service. Many other chassis nowadays use the same basic power supply circuit, so you'll find this information of wide application failures are usually due to the same causes.

Power Supply Circuitry

The power supply circuit, with a simplified block diagram of the TDA4600 chip, is shown in Fig. 1. The 240V a.c. mains supply is fed via a push on-off switch and fuse F1 to the mains filter coil T1. In remote control models a relay mounted on the mains switch provides remote switch off. In some sets the mains filter capacitor C81 is fitted across the output from T1 whilst in others it's designated C251 and is fitted across the input - the alternative arrangment is shown in Fig. 2. So far we've had no trouble due to the mains filtering components.

Bridge rectifier D3-6 develops, via the surge limiting resistor R80, about 350 V d.c. across its reservoir capacitor C86. Note that if fuse F2 has been removed or has blown and the set is switched on then off it takes some time for C86 to discharge via R81. To avoid giving yourself a nasty shock, use a $2 \cdot 2 \mathrm{k} \Omega$ resistor to discharge C86 before handling the chassis.

The positive side of the power supply is connected via fuse F2 and the primary winding 12-14 of the chopper transformer T2 to the collector of the BU426A chopper transistor TR3. The emitter of TR3 is returned to the

Fig. 1: Power supply circuitry used in the Fidelity $Z \times 3000$ chassis
negative side of the 350 V supply. Notice that T2 isolates the rest of the set's circuitry from the a.c. mains supply. Since the power supply circuit itself is not isolated from the a.c. mains supply an isolated bench supply transformer should always be used when servicing the ZX3000 chassis. Notice too the special isolator units.

As soon as mains power is supplied and the set is switched on D7 charges C87 via R82 and R83. When the voltage at pin 9 of the TDA4600 i.c. reaches 4 V with respect to pin 6 an internal reference voltage of 1.12 V switches on within the chip's complex circuitry. More internal reference voltages then appear within the i.c., and as the voltage across C 87 rises to 11.8 V internal switching turns on an extremely accurate, temperature stabilised 4 V supply which is used to power all the internal circuitry except for the chopper transistor's base drive amplifier. It's this stabilisation that makes the circuitry within the TDA4600 largely independent of mains input voltage variations over quite a wide range.

Resistor R91 is connected between the positive side of the 350 V supply and pin 4 of the i.c. It charges C 90 to produce a sawtooth voltage waveform at pin 4. This sawtooth is added to a switching waveform within the i.c. and appears at pin 8 as the drive waveform for the chopper transistor - the drive is via R84, choke L (L2 on some Fidelity circuits, L13 on others) and capacitor C93. As TR3 commences to switch on and off energy is generated in the chopper transformer's primary winding 12-14. The current induced in winding 11-10 charges C87 to 12 V via D 8 , taking over from the start-up supply.

Feedback is obtained from winding 9-8 of the transformer. Pin 2 of the chip is linked to tag 8 of the transformer via R89 and R92: when the voltage at pin 2 falls to zero, corresponding to zero energy in the transformer, the cross-over detector tells the control circuitry within the i.c. to switch TR3 on again. D10 rectifies the voltage across tags $9-8$, producing a voltage of some -22.6 V across C91 for regulation purposes. This voltage is applied to pin 3 of the chip via R88 and the preset PR1. Pin 1 of the i.c. provides a reference voltage for the other end of the resistive chain R86/7/8/PR1. R86 with C89 form a delay circuit while C88 stabilises the frequency under excess and no-load conditions.

An excessive overload across the secondary windings $7-$ 2 will reduce the voltage developed across winding 11-10 and thus the voltage at pin 9 of the i.c. When the voltage at pin 9 falls below 7.5 V the drive to TR3 is removed. Normal load variations simply vary the voltage developed across winding 11-8 and thus across C91. This in turn varies TR3's switch-off time, via the internal control/ triggering circuitry.

The h.t. rectifier D13 charges C100 from one of the three taps $2,3,4$ on the transformer - the correct tapping for the c.r.t. size must be selected. The h.t. should be 112 V for a 14 in . tube, 119 V for a 20 in . tube and 150 V for

Fig. 2: Alternative mains filter arrangement.

TV LINE OUTPUT TRANSFORMERS PRICES INCLLUDE VAT \& CARRIAGE

a 22 in . tube. To set the voltage, turn down the brightness and contrast controls, connect a digital voltmeter across C100, then use a plastic tool to adjust PR1 for the correct voltage. Check the voltage after the set has been operating for half an hour.

R93 and ZD2 provide the 33V tuning supply. D11 and C98 provide a 25 V supply for the sync/timebase generator chip IC4. Note that a major change occurred fairly early in the production of the ZX 3000 chassis. In the early version the sync/limebase generator chip IC4 is a TDA8180 and the field output chip is a TDA2170 or TDA2270 (in this version the TDA4600 is referred to as IC7): in the later version IC4 is a TDA2578 and IC6 a TDA3651, the TDA4600 being referred to as IC8.

Tackling a Dead Set

So what to do when confronted with a "dead" ZX3000? Remove the back and examine the mains fuse F1. If it has failed with no signs of blackening the cause may simply be ageing. Fit a new fuse and if the set starts to work you're entitled to heave a sigh of relief. Let it run for several hours before returning it to the customer.

If F2 has failed however you'll almost certainly find that TR3 has zero resistance between all its connections. You'll now need to unslot the aerial socket from the chassis and take out the two little screws at the side and near the front of the PCB surround to withdraw the chassis. To get at the components you'll then have to take out the five screws that hold the circuit board to its frame.

The line output stage can be isolated by removing or disconnecting one end of R97. This enables the power

Fig. 3: Positions of the main components, and those referred to in the text, in the power supply. TH1 is the degaussing circuit thermistor.

Fig. 4 (left): Waveform at the base of the chopper transistor TR3 with F2 removed from its holder.

Fig. 5 (right): Applying an external 12V supply when checking for line drive.
supply to be operated when there's an overload in the line output stage.

If TR3 and F2 have both blown, replace the following components - do this even if they appear to be in order when you check them (Fig. 3 shows their positions on the component side of the board). First R91 - strange things tend to happen to this resistor. Secondly C88 - if you've a capacitor checker to hand, check the value of the replacement before fitting it. Thirdly R85 - again check the value before fitting. You'll find it essential to replace these components or else you'll almost certainly end up with a pile of dud BU426As, as Pete did. Fit a new BU426A of course, but don't replace F2 for the moment.

Next carefully check D7, D8, D9 and D10. Then check R84 out of circuit, using a digital multimeter with low ohms compensation or allowing for the resistance of the meter leads.

Use your component tester or a capacitor tester to check C93, C87, C89 and C91. Finally measure the values of R82/3 to ensure that they are correct. If you've the slightest doubt, change them. You'll generally find however that R91, C88 and R85, which must all be replaced, are the cause of the trouble.

With F2 still out of circuit, connect your scope to the base of TR3 via a $10: 1$ probe, with the chassis clip to TR3's emitter. Connect the set to the mains via a variac or tapped transformer, switch on and increase the supply voltage slowly. As the voltage is increased you should see
the hefty waveform shown in Fig. 4. Note that this is not the waveform you'll see when the set is working normally. Though you might tend to suspect the TDA4600 when faced with a dead set we've yet to have one fail.

Disconnect the set from the mains supply, discharge C86 and replace F2. Check the BU508 line output transistor TR5 with your component tester, then refit R97. Connect a digital voltmeter across C 100 .

Reconnect the set to the mains supply via the variac or tapped transformer and gradually increase the input. You should now obtain both picture and sound. If you've been tempted to omit replacement of the components we've mentioned, just turning the TV set up on the variac to see what happens, you might well get the picture and sound accompanied by a loud whistle from T2, indicating that the power supply is working off frequency. This will be followed by the usual loud bang from F2.

Line Drive Checks

If removal of R97 proves that the fault is not in the power supply (it almost always is), check the BU508 line output transistor TR5 and the BY228 efficiency diode D16. Also make sure that 25 V is present at the cathode of D11 (incidentally there are two 25 V lines in this chassis, the other one being derived from the line output transformer via D18).

To check for line drive, first carefully desolder and remove the MC7812 12 V regulator, with R 97 still disconnected. Connect a mains-isolated, regulated 12 V supply as shown in Fig. 5. Switch the set on and check once more for 25 V across C98. Connect the scope's $10: 1$ probe to the base of TR5 to see whether the base drive waveform is present. If not, move the probe to the collector of the BF460 line driver transistor TR4. This transistor can fail. If necessary go on to check for drive at the base of TR4. This comes from pin 7 of IC4 if it's a TDA8180 or pin 11 if it's a TDA2578. You'll easily see which i.c. you've got the TDA8180 has 24 pins while the TDA2578 has 18. In addition with the TDA8180 there's no line hold control while with the TDA2578 the 5 V regulator, transistor TR1 and the ceramic resonator are omitted. The test procedure for line drive is identical whichever type of chip is used.

Where a TDA8180 is used, make sure that the 5 V regulator supplying pin 24 is in order. The two types of i.c. used in position IC4 seldom fail, so don't suspect them until all else has been checked.

If there is line drive at the base of TR5 the next step is to check the rectifier diodes fed from windings on the line output transformer - D17, D18 and D19, all type RGP15J. It's easy to check for an overload elsewhere in the circuitry by removing D17 and D18 in turn, with the mains switched off first of course.

Because the line output transformer is of the diode-split type we anticipated problems when we first started handling the ZX3000 chassis. But to date we've not had one failure. As mentioned before, when you've got a dead ZX3000 you'll usually find that the fault is in the power supply rather than the line timebase.

Protective Varnish

In conclusion, when the repairs have been completed spray a little circuit varnish on the connections you've soldered. With this particular chassis, be sure to leave the varnish to dry for at least an hour before switching the set on again.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPO. Telephone 0268690868
 Telex 99305

TRADE COUNTER OPEN

ORDEFS DESPATCHED SAME DAY
ADD 75p F\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

SERVICE AIDS

Ambersil MS4 Silicone Grease Ambersil Freezer
Ambersil Ambertube
Ambersil Ambertron
Ambersil Anti-Static Screen Cleaner Ambersil Anti-Static Screen Cleaner
Ambersil $40+$ Protective Lbiriant Ambersil Amberclens Foaming Cleaner 1302126 Ambersil Circuit Lacquer

	PUSES		
	20 mm		1/4/
50MA	10 for 700 10 for 50	$\begin{aligned} & 250 \mathrm{MA} \\ & 750 \mathrm{MA} \end{aligned}$	10 for 6 Exp 10 for Efo
315MA	10 for 50p	7 A	10 for 50p
500MA	10 for 500	10A	10 for 50p
25 A	10 for 1.00	20 A	10 for 50p
315 A	10 for 1.00	50A	10 for 50p

Thorn Mains IX 30003500
Tharn Mains TX 800085500
Thom Mains $7 x 9000(701)$
Thorn Mains T $9060(51512)$
hom S.OP.T 800085500
Thom EHT TX 3000/3500
Thom LOPT 9000
Thom LOPT 96000
Thom LOPT 1690099
Thom LOPT 8800
Thom LOPT 8500
Thom LOPP ${ }^{\text {T }}$ K9
Thom LOPT XX10
Thom LOPT XX90
Pye LOPT 713
Pye LOPT 731
Philips LOPT 69
Phiilis LOPT G11
Phiiips LOPT.G11
Diode Slifit LOPT AT2076/35
Sanyo LOPT AM-WM 21
Sanyo LOPT AM- WM-4
Philips LLPT G8
Sanyo LOPT (CW21) 4-2751-44700
ITMyopt Cvct-9
ITI LOPT CVC30
Baird 8750
Baird 8752
Thom Line Drive TX. TX9 (T2)
Thom Line Drive TX. 8 K etc. (T402)
Thom Switch Mode TX 9K6 (T511)
Thom Input Choke XX9 (L64)
thom Choke TX90 (L120)

Pye $78+16$	EHT TRAYS	
Pye 147+260 50p	Thom 3000	5.50
+1K+47+12 ${ }_{12}$	Thom 8000	4.50
Thom $50+40+1 \mathrm{~K} 560 \mathrm{p}$	Thom 8500	6.00
Thorn $128+16+1 \mathrm{k} 7+$	Thom 9000	7.90
$116+462+126$	Thom 9600	6.00
	Thom 900/950	1.50
$1250+14+58$	Thom 15003 stick	10
	Pye 7134 lead	5.88
	Pye 7135 lead	5.97
Philips 2R2+682 900	Pye 725	6.35
Philips 47R 52 P	Decca Bradford	5.00
Thom $6+1+100$ S2p	Baird 8750	7.10
	Korting A29100	7.10
Thermal Cut-Dut Thom 3000 Metal 1.45	Philips G8 (520)	6.50
Thom 88500 Plastic	Philips 68 (550)	650
1.45	Universal	5.00

MULTISECTION CAPACTTORS
 $200+200+100$ $32+32+16$
$2200+200+100+32 V$
$242 p$

 $200+100 \quad 350 V 700$
$200+100+100+50$

350% | 200 |
| :--- |
| $50+$ |
| 100 |
| 100 |
| 250 |
| 150 |
| 200 |
| 500 |
| Tho |
| 175 |
| 74 |
| 40 |
| 47 |

CA 0.2 M 22 M 50 M 100 M 100 M 220 M 400 M 400 M 800 1000 090

DIODES

CHROMAVISION MANCHESTER and BIRMINGHAM 061-736 6333

WORKING VIDEOS 100's IN STOCK NOW IN STOCK

WORKING, NON WORKING + UNTESTED TV's

AT LOW, LOW PRICES THORN, ITT, MOST MAKES BUSH, PHILIPS, ETC. WORKING SETS FROM E25.00 TELETEXT, REMOTES, BASICS ALSO COLOUR PORTABLES, NORDMENDE, T.X. ETC. CLOCK TRIMS FOR 3V16/22 VCRs $£ 2.00$

CASH ONLY
 CHROMAVISION, 95 LANGWORTHY RD, SALFORD, MANGHESTER M6 5PH
 All prices subject to V.A.T.
 WE ARE HERE
 Only 2 minutes from
 end of motorway

 Open 6 days a week 9.30 a.m. -6.30 p.m. Sundays by appointment

A

SADELTA

FIELD STRENGTH METER

 MODEL TC-402THE SADELTA FIELD STRENGTH METER TC-402 has been designed receiver, in order to test the performance by the antenna to a $1 /$ or F . best conditions during installation etc. To facilitate measurements, the tuning frequency readout is shown on a digital display.

FEATURES

- Covering FM and all TV bands (UHF/VHF) including CATV freq. - Digital tuning display (3 digits) for direct requency readout. - Accurate 10 turn tuning potentiometer.
- Built-in loudspeaker enables monitoring of sound in AM/FM.
- Meter measurement in voltage and dB from 20 uV voltage and dB from 20 uV
$(26 \mathrm{~dB} / \mathrm{uV})$. (26dB/uV).
- Continuity tester 0-500 Ohms
- Fully portable (battery) - Sturdy carry case

PRICE $£ 249+£ 37.35$ VAT

U.K. POST PAID, expor enquiries welcome. Visa/Access or cheque with order payable to B.K. Electronics. Official orders welcome from Govt. Depis., Colleges.

 L.C.s etc. Lawithin 7 days.
B. K. ELEGTRONIGS Dent. T',

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572

- Satellite TV

Stockists of 4, 11 \& 12GHz Equipment. Distributors for:

COHAPARRAL

DH Satellite TV DakE

D) ANTENNA

Specialists in supplying to Dealers
Haprric(O)
CENTURY WAY, MARCH, CAMBS., PE 15 8QW. ENGLAND
TELEPHONE: (0354) 51289 TELEX: 995801 GLOTLX-G REF: H25

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ.
Phone: (0902) 29022.

June's Daughter

Les Lawry-Johns

You may recall me telling you a while back about a frustrating call on June, when her dog Piddler pinned me to the floor and was about to tear my throat out just before he recognised me. Well, her daughter got a relative to bring her set down to me and carry it in for her. It was a large 26 in . ITT set fitted with the CVC5 chassis. Yes, an oldie - but in good condition. The report was that the picture went off but the sound stayed on.

I switched it on and when it had warmed up my neon glowed when brought near the PL509 line output valve. So the line output stage was active, but there was no sign of a raster - or sound for that matter. I tested this and that and when I checked the voltages in the sound i.f. stages dance music blared out.
"There you are" said June's daughter.
"That's radio music" I growled.
The same music came through when I was checking the final vision i.f. transistor and this suggested to me that the fault was in this stage. Now most of you know how difficult a fault in this section can be. I switched off and cold checked the BF123 transistor (T17). I couldn"t get any readings from base to emitter or base to collector but I wasn't sure where I was in the confined space. So I reasoned (?) with myself. If the BF123 was open-circuit, I could hold a BF197 across its contacts as a check. Switch on again and allow the set to warm up. Sort out a BF197 and hold it in position, base to base etc. True TV sound burst out and a picture appeared on the screen.
"There it is" screamed June's daughter.
This scared me (women's voices do) and I withdrew the BF197. The sound and vision continued and I gave a sickly smile.
"Aren't you clever?" said June's daughter.
"Aren't I?" I agreed, wondering what the hell had happened. Tap the vision i.f. stage and move it about a bit. The vision and sound continued whatever I did. Pull the aerial out and switch off.
"We'll put the back on and pretend it's finished. Then we'll switch it on again to surprise it. That's what we'll do." And that's what we did. The picture was now grainy and horrible though the sound was o.k.
"Bloody tuner's up the creek" I bawled. "It wasn't a minute ago." So off came the back cover and I moved the tuner about a bit. A lovely picture came on then went all grainy again.

I removed the covers and laid the tuner on its side. Resoldering the r.f. amplifier transistor's base and emitter connections did the trick. After that it wouldn't go grainy again. We put the rear cover back and tried again. It was still all right. So they took it away, after I had warned them that the sound and vision could fail again at any time as I didn't trust it. The set hasn't been back so I suppose it's still all right. But what brought the BF123 to life - if indeed it was faulty? Perhaps it's me that's faulty? I can imagine E.T. chuckling away down there in Sussex. "Yes, it's you who's faulty Les!" Well I know I'm silly but the inspector of taxes had my books last year and couldn't fault them: there's not many can say that! And I did check the soldered edge connectors, so there.

You'd think the way I natter on that I don't have any real troubles. No so. Take the Thorn 9000 that came in the other day for example. I put a new tripler in it last week and this week it came back with the report that it was "no go - probably the switch". It wasn't the switch of course and there was plenty of h.t. at the collector of the R2540 Syclops transistor. I moved over to the line driver transistor and found that there was only 12 V or so at its collector instead of around 150 V . The same voltage readings were obtained at its base and emitter. Like a fool I dallied around the subpanel for a while, finding wrong voltages all over the place, also aware that I'd had this trouble before and had solved the matter in minutes. At last I listened to the voice in my head. It kept saying "thick film unit".

I got one off the shelf and fitted it, telling myself that it wasn't going to help matters. When I switched on again the e.h.t. rustled up. I knew it was going to be the thick film unit all along of course. It's just that I like to give myself a bit of exercise every now and again.

The Family Dawe

I've mentioned the brothers Jack and Oven Dawe before. I've just discovered that there's another. Ray. I couldn't believe it. All I can say is that their parents must certainly have had a sense of humour.

Ray said he had a set that didn't like odd numbers. We asked him what it was. It turned out to be a Ferguson set fitted with the TX10 chassis, and it wouldn't select channel one - or three or five etc. "You've a duff chip" I told him, hoping I was right.

He brought the set in and sure enough a new SAA5012 remote control receiver/decoder chip restored normal channel selection. Peace was thus restored in Ray's household. He'd altered the selectors so that 2 gave BBC-1, 4 gave BBC-2, 6 gave ITV etc. but his wife had said that interferring with the set would bring bad luck. She was right.

After we'd replaced the chip and reselected the programmes the set worked for one day then gave up. He brought it back and we investigated. I lowered the rear, i.f. panel and the set behaved itself, showing a nice picture and producing nice sound. I raised the panel and it lapsed into sullen silence. Feeling a bit annoyed I lowered the panel again and everything, was all right. Inspection showed that the cable loom was subject to pressure from the i.f. panel when it was raised and that the insulation had punctured. Only a slight movement was required to put the cableform out of risk. I seem to remember having had this one before, but such is the state of my deplorable memory that I can't recall when it was. The set now functioned correctly however and Ray had to face his wife . . . "I told you so" she said.

This and That

Stan from SEME had popped in to take an order. He also wanted to know if I'd seen Ray Ling the Chinese fence. Daft, isn't he? Shortly after he'd gone a nice couple popped in to say hallo. They were from Blackpool and being in the area had decided to run Les to ground they're regular readers. Thanks for calling, Chris and Jill. Hope to see you again sometime. Also hope you weren't too disappointed. I did get that set done. Can't remember which one it was, buit I was in a bit of a dither over it for a while.

Teletopics

BUOYANT FIRST QUARTER

CTV deliveries to the trade during the first quarter, at 865,000 , increased by $12 \cdot 3$ per cent compared to the same period in 1985. The upsurge was mainly in small-screen sets, where deliveries rose from 349,000 to 459,000 . This in turn led to a significant increase in imports, mainly from Japan. Deliveries of large-screen sets fell from 421,000 to 406,000 , while deliveries of teletext-equipped sets remained much the same at 147,000 . A fifth of the large-screen sets were fitted with FS tubes. VCR deliveries increased by 30 per cent to 381,000 while camcorder deliveries rose by 300 per cent to 15,000 . In other sectors of the trade CD player deliveries rose by over 400 per cent while home computer deliveries decreased by 83,000 . A good year is being predicted for the video/TV trade. Deliveries of CTVs are expected to increase to around 3.8 million while VCR deliveries should be around 1.8 million.

HQ VHS MACHINES

VHS VCR manufacturers are adding "HQ" machines to their ranges - you'll find the initials HO (high quality) somewhere on the front panel with most recent releases. HQ is an industry-agreed picture enhancement system: some of the techniques used were described in Steve Beeching's series on VCR developments earlier this year. Three basic techniques add to the improved quality picture. First, increased h.f. pre-emphasis gives improved definition in areas of the picture where the contrast ratio is high. Improved videotape characteristics have helped in this respect, enabling the recorded f.m. range to be extended to 5.8 MHz . Secondly, detail enhancement in low-contrast ratio areas of the picutre is achieved by using improved picture sharpening techniques - low-level h.f. signal components are filtered out, boosted then added back. The third technique involves the use of a delay line to provide noise reduction. Note that there is complete compatibility between HQ and non-HQ machines.
Ferguson's latest range of VCRs, Models 3V55, 3V59 and 3 V 53 , are all of the HQ type. In addition these models all incorporate infra-red remote control with timer setting via the remote control system. The 3V55 has a four-event, fourteen-day timer and a suggested retail price of $£ 379$. Model 3 V 59 adds two-speed operation at $£ 479$ while Model 3V53 adds hi-fi sound at $£ 699$.

BUSINESS NEWS

Problems with its Inmos semiconductor subsidiary held back profits at Thorn EMI in the year to March 31st 1986. Ferguson has been restored to profitable tading however, following a restructuring and cost-reduction programme, while the retail and rental business did particularly well, with a $£ 97.6$ million profit on sales of $£ 885.3$ million compared to a profit of $£ 86 \cdot 6$ million on sales of $£ 831 \cdot 9$ million.
Japan's largest consumer electrical/electronics products manufacturer Matsushita (Panasonic) has reported a 26 per cent fall in net earnings for the half year ended May 1986, the first setback for eleven years. A fall in total sales of eight per cent is attributed largely to the high value of the yen - sales of video equipment, including TV sets and VCRs, fell by 18 per cent. Matsushita comment that the
situation is "fluid", making it difficult to predict the outcome for the full year.
Fidelity, now part of Caparo Industries, increased sales by approximately 70 per cent during the latest half year. Two new manufacturing lines have been added to the Acton factory and there are plans for a new plant which is expected to be located in the Midlands.
Goodmans Loudspeakers Ltd. has dropped the Saba franchise less than a year after taking over distribution in the UK following the closure of the European Electronics Corporation. Goodmans will be fulfilling servicing obligations on sets supplied but details of long-term arrangements for Saba products are awaited.

VIDEO SCENE

Model VR6467 is the first in a new range of "slimline" VHS machines from Philips - it's described as a "basic" model, with a three-event timer, auto-off override to permit use as a tuner and infra-red remote control. A novel feature of the re-engineered mechanical deck is the use of the U-wrap technique when threading up - this has hitherto been seen only on Beta models. The new range will run parallel with the current series for some time to give a choice of presentations.
In another development Philips has decided to shelve the introduction of 8 mm video equipment for the time being, adopting instead the VHS-C camcorder format. The VKR6830 camcorder to be introduced this autumn will be manufactured for Philips by JVC - it's basically the JVC GRC7. The suggested retail price is expected to be under $£ 1,300$.
A manufacturing deal on tape deck mechanisms has been signed between Grundig and Matsushita. Grundig will manufacture items such as head drums for Matsushita's W. German subsidiary and will in turn sell Matsushita assembled machines.
A playback only VHS machine, Model VI910, has been announced by Samsung. The front-loading machine, which incorporates picture search and freeze frame, will sell for just under $£ 200$.

Canon intends to start selling a video still camera in Japan and the USA later this year. Pictures, with NTSC encoding, are recorded on a reusable magnetic disc. The complete equipment range will include a playback unit to enable the pictures to be viewed on a TV set, a colour printer, and a transceiver to transmit and recieve image information over telephone lines. The magnetic disc stores fifty pictures and the camera, which seems to be intended mainly for press and commercial users, can operate at up to ten frames per second. Sound can also be recorded.
The RCA CED video disc system has come to a final end with the announcement that disc manufacture at RCA's Indianapolis plant has ceased. Player production by RCA ended in April 1984 - the system was launched in early 1981.

SATELLITE TVRO EQUIPMENT

The latest issue of the British Amateur Television Club's magazine CQ-TV (no. 135) contains a TVRO receiver project using the modules mentioned in this column last month. The Astec AT1020 and AT3010 tuner and i.f./ demodulator modules are partnered by a single-chip intercarrier sound demodulator and a PCB is available from BATC Members' Services. Membership of the BATC costs $£ 5$ annually - application forms can be obtained by sending a stamped addressed envelope to Dave Lawton, Grenehurst, Pinewood Road, High

Wycombe, Bucks HP12 4DD. Since membership is payable annually on January 1st the charge for each remaining quarter on application is $£ 1.25$.
STS (Satellite Technology Systems Ltd., Satellite House, Blackwarth Road, Bristol BS5 8AU) have introduced a low-noise $10 \cdot 95-11 \cdot 7 \mathrm{GHz}$ LNB priced at $£ 125$. Gallium-arsenide f.e.t. technology is used, giving a noise level of 2.3 dB at $25^{\circ} \mathrm{C}$ and a gain in excess of 50 dB - this specification is said to be comfortably exceeded in practice. The local oscillator is of the dielectric resonator type, giving high stability regardless of temperature. A WR75 input is provided and the N type output connector can easily be waterproofed - the unit itself is hermetically sealed for all-weather operation.

Two complete satellite TVRO packages have been introduced by Comet Radio. These will initially be availble at the Hull, Leeds, Norwich and Rochester stores. The system giving single-satellite coverage costs $£ 890$ while the multi-satellite system is priced at $£ 1,190-$ the price includes installation, a year's parts and labour guarantee and a dish licence.

TV/VCR SPARES

Willow Vale Electronics Ltd., 11 Arkwright Road, Reading, Berks RG2 OLU (0734 876 444) has been appointed sole Grundig parts distributor in the UK - Willow Vale now stock the complete range of genuine Grundig replacement spares for distribution to non-Grundig account dealers. Grundig dealers can order either direct from Grundig or from Willow Vale. While replacement modules are available from stock the original module must be returned for examination before an exchange panel/module is issued. Willow Vale have issued new lists of Fidelity spares and Thorn VCR spares available from them - also spares for Philips, Thomson and Sharp microwave ovens.

Tech-Semco, who provide spares for variuos makes of TV sets and other consumer electronics products equipment (see the April issue Spares Guide), have moved to Precision Centre, Heather Park Drive, Wembley HA8 1SU (01-902 8832). The accounts department remains in Brixton but orders should be sent to the above address.

Philips Service (604 Purley Way, Croydon CR9 4DR) has issued an Approved Service Dealer Directory. Following the policy change mentioned in this column last May, Philips has now set up a network of Approved Service Dealers throughout the UK to provide local spares and repair services for Philips and Pye consumer electronic products.

Spares for Commodore microcomputers are now being handled by HRS Electronics Ltd., Electron House, Great Barr Street, Birmingham B9 4BB (021-771 2525).

Thorn have introduced the Newlife range of reprocessed upper head drum assemblies for a wide range of popular VHS machines. The old assembly, in good condition, should be carefully packed to avoid damage and returned to a distributor or direct to Thorn EMI Colour Tubes Ltd., Factory B, Pallion Industrial Estate, St. Luke's Road, Sunderland SR4 6SR. The reprocessed drums have new heads and carry a twelve month guarantee covering normal domestic use.

PORTABLE TELETEXT RECEIVER

A battery-operated, portable teletext-only receiver with liquid-crystal display, called the Intercepter, is to be introduced by a new company called Telebeam International. Distribution will be through dealers and the price is likely to be about $£ 200$.

RS GO MAIL ORDER

RS have set up a subsidiary, Electromail, PO Box 33, Corby, Northants NN17 9EL (telephone 0536204 555) to provide a mail order service for RS products. Priced RS catalogues are issued every four months - for the latest 600 -page catalogue send $£ 2.50$ to the above address.

BBC STARTS DIGITAL STEREO TV SOUND EXPERIMENT

The BBC started limited experimental engineering tests of digital stereo TV sound on July 18th from the Crystal Palace BBC-2 transmitter and its associated relays. The first programme to be transmitted in these tests was "The First Night of the Proms", which was broadcast live from the Albert Hall. The aim of the tests is to enable staff to gain operational experience and allow manufacturers to build and test prototype stereo TV sound decoders. The normal sound channel is not affected by these tests, which will be liable to interruptions. Details of the standard were given in this column last May. Briefly the digital stereo sound signal is transmitted by quadrature phase-shift keying modulation of an r.f. carrier placed 6.552 MHz above the vision carrier, at a data rate of $728 \mathrm{kbit} / \mathrm{sec}$. The system, developed by the BBC , underwent initial trials in 1983-4 and is the subject of a joint BBC/IBA specification that is under consideration by the Department of Trade and Industry as a potential UK standard.

CITIZEN INTRODUCE LCD TV SET

Citizen Watch (UK) Ltd., CP House, 97-107 Uxbridge Road, London W5 5TP have announced the official introduction of their Model 06TA pocket monochrome TV receiver with liquid crystal display in the UK. The price is $£ 99.95$. Brief technical details were given in an article in our June issue. The 2.5 in . screen now has black matrixing to improve the contrast. Standard accessories include an earphone (there's also a built in speaker), soft case and four AAA (R03) batteries.

AERIAL RIGGERS COURSE

One-week intensive instructional courses for those wishing to operate their own aerial erection services are being run by R.B. Mannion, Badcual House, Badcaul, Dundonnell, Garve, Ross-Shire, Scotland IV23 2QY. The courses involve both theoretical and practical, hands-on instruction, covering all aspects of television and radio reception. Robert Mannion worked for the IBA until 1984 on surveying, planning and testing u.h.f. TV relay systems.

ADCOLA REWORK STATION

Adcola's new 777 soldering station is a portable unit that incorporates its own internal vacuum source when operating direct from a $220 / 240 \mathrm{~V}, 100 \mathrm{~W} 50 \mathrm{~Hz}$ supply. Both the desoldering and soldering tools are thermostatically controlled, with the desoldering tool on a set/read device coupled to a LED display. A standard 444 Adcola soldering tool with integral electronic control is used. The desoldering tool has heating of the tip throughout its length to reduce the possibility of tip blocking during normal desoldering operations. Replacement tips cost less than $£ 1$. A range of four tips is supplied with each desoldering station. The versatility of the station is enhanced by a hot-air blow. The station, complete with operating instructions and a comprehensive spares and tool kit, is priced at under $£ 500$. For further details apply to Adcola Products Ltd., Adcola House, Gauden Road, London SW4 6LH (01-622 0291).

Letters

DECCA 80 CHASSIS

One of these sets would trip after being on for nearly two hours. Strangely the mains fuse F1 didn't always blow, and when the set cooled down again it worked perfectly. The cause of the fault was eventually traced to the 25 V shunt regulator circuit which stabilises the supply to the audio amplifier chip. The 24 V zener diode D307 was faulty, the driver transistor $\operatorname{Tr} 303(\mathrm{BC} 157)$ had exceptionally high gain and suspected leakage, and R372 (150 $)$ in its base circuit was discoloured though of the correct value. Replacing these items restored normal operation.
K.J Treeby,

St. Judes, Plymouth.

SONY MODEL KV1340UB

A couple of points on this set. First no sound with the picture blanked out over one side of the raster and the h.t. smoothing resistor R617 burnt was found to be due to the associated smoothing capacitor C605 ($4 \cdot 7 \mu \mathrm{~F}, 160 \mathrm{~V}$). Secondly on several of these sets we've had in the EBC markings for the error detector transistor Q605 on the power supply board PR have been marked incorrectly. If you can't set the h.t. for 110 V after replacing this transistor, check that the transistor has been connected correctly. It's an easy mistake to make.
Roy Birchinshaw,
Sprowston, Norwich.

ELECTRIC MOTORS

With reference to Mike Phelan's article on electric motors in your last issue, particularly Table 1 on page 654, I'd like to point out that most commutator motors are not universal. Shunt-wound, compound-wound and permanent-magnet types will not run on a.c. The reason for this is that if the current flowing in the armature is reversed the direction of the magnetic field must also be reversed to keep the shaft torque the same. This is plainly not possible with a permanent-magnet type. It is also impractical with a shunt-wound motor (field and armature in parallel). Because of the different field and armature winding inductances the respective currents wouldn't be in phase and the motor torque would reverse fifty times a second. Even if the field and armature windings were connected in series to ensure that the current flowing in each was the same the motor still wouldn't run on a.c. - unless the iron circuit in the field winding was laminated, as in a power
drill. Imagine trying to reverse the field in the solid casing and polepieces of a car starter motor at 50 Hz : the eddy current losses would swallow up most of the energy.

So only the series-wound type with laminated cores is universal, the other commutator type motors running on d.c. only. Table 1 provides a more accurate motor type "tree".
Ian Poskitt, St. Ives, Huntingdon.

PHILIPS G8 CHASSIS

The two recent articles on the Philips G8 chassis (May and July 1985) show the benefit gained by large-scale refurbishing of a single type of chassis - stock faults are quickly brought to light while obscure ones get a better chance of being detected. The results reported in those articles closely follow our own experience of these sets. The chassis is basically reliable: not as good as a modern set, but good enough to warrant time and money being spent on them to increase their life span. Minor irritations such as the red goo in coil L005 on the decoder panel, the red goo at both ends of the blue lateral convergence coil and the varnish in the line output stage storage equalising coil are well known - as of course is the infamous line output transformer which Philips have done very little to improve.

The elimination of potential dry-joints, from which all panels suffer, greatly improves the reliability of the chassis. It is our recommendation that a soldering iron is applied to the following points, whether the joints appear to be satisfactory or otherwise.
(1) On the power panel, the four tags on the dropper, the three tags on the board associated with the input inductor (round type only) and the thermistor (R1362) in the degaussing circuit.
(2) On the chroma panel, the contrast potentiometer terminations, including the earth shield, the three RGB output transistors and their collector load resistors, and both ends of the luminance delay line.
(3) On the signals panel, the two BD131 audio output transistors, the 12 V zener diode D166, the resistors in series with the 45 V and 25 V inputs (R189, R190, R200 and R221) and R143 ($33 \mathrm{k} \Omega$) which feeds the TAA550 tuning voltage stabiliser.
(4) On the timebase panel R516 ($10 \mathrm{k} \Omega$) which feeds the 18 V zener diode, R533 (15S) in series with the field output stage, the field driver transistor's load resistor R457 ($1 \cdot 2 \mathrm{k} \Omega$), and R483 (15Ω) in the transductor circuit also the transductor's terminations.
(5) On the line output panel, the trigger amplifier transistor's load resistor $\mathrm{R} 515(8.2 \mathrm{k} \Omega)$, the damping resistor

Table 1: Types of electric motor.

R521 ($4 \cdot 7 \mathrm{k} \Omega$) in the line driver stage, and all the tracks and terminations on the upper drive panel, associated with the line driver transformer's secondary windings. After the resoldering, check across the two 10Ω damping resistors R527 and R529 with a low-reading ohmmeter. The reading should be around 1Ω : a higher reading indicates a high-resistance track.

The line output stage equalising coil repair described in the July aricle was excellent and adds to our own method of coil replacement by using the plastic formers from the rear convergence panel and rewinding, fitting centre spacers as necessary.

Buzzing inductors can generally be silenced by force fitting one or two rawlplugs - preferably not in front of the customer.

Slight bottom cramping is usually due to open-circuit field windings on the transductor - this adds the 15Ω damping resistor as a series element.

Attempts to remove the teletext lines by adjusting the field output stage bias present R 463 are not always successful as bottom cramping can occur before the lines disappear. Several methods of increasing the field flyback time exist. Our favourite one was devised by John

McKenna of Barrhead, Renfrewshire - replace C481 $(0.47 \mu \mathrm{~F})$ in the raster correction circuit with a high-value electrolytic (greater than $1,000 \mu \mathrm{~F}, 64 \mathrm{~V}$ wkg.). The Rank A823 chassis also benefits from this modification.

A buzzing noise on high contrast scenes turned out to be due to the degaussing shield vibrating. It is permanently silenced by fitting plastic inserts between the shield and the c.r.t. glass, around the e.h.t. connector.

The greatest improvement to the reliability of this chassis comes from removing diode D544 on the line output panel. This disconnects the beam limiting circuit. The modification has saved countless hours of service calls to deal with intermittent brightness faults. The G11 chassis (non-teletext versions) also benefits from such treatment - remove transistors T4085/6 - and it's thought that other chassis may be "improved" by similar modifications. Engineers who subscribe to this view are asked to form a club to be known as RIBALD - Removal of Inadequate Beam Limiting Devices. It's proposed to nominate L.L.-J. as president. Will the proposer please make himself/herself known?
Mike Bragg,
Elliott Rentals, Paisley, Scotland.

Servicing Sinclair Microcomputers

Part 5

Previous treatment of the Spectrum in this series has related specifically to the issue 3 and 3 B versions. There has however been continuous development of the machine since its introduction in 1982. The range now extends from the initial issue 1 version to issue 6 A , covering a total of eight models with six PCB changes. It's time we looked at some of these variants, starting with the earlier models.

The issue 1 and 2 versions have a lot in common. They both have the early zigzag shaped heatsink, and both have small trimmer capacitors and preset potentiometers for setting up the colour generator circuits. The issue 2 board layout is shown in Fig. 8. The issue 1 differs only in the design of the original 32 K extension memory, which isn't assembled on the main board as with all later versions. Instead, it's built on a plug-in board that carries the memory i.c.s and the decoders and multiplexers. This daughter board plugs into two DIL sockets at the rear of the main board and extends right across from the modulator to the coil. To accommodate this, the CPU and the multiplexer chips IC3/4 are moved towards the front of the main board along with the ULA and ROM chips, leaving a clear space into which the extension memory board fits. If this space isn't filled the machine isn't worth very much, since the extension is no longer available and without it the majority of the commercial programs cannot be used.

Another distinctive feature you will find on some issue 1 boards is the "spider". Due to a timing error in the 5 C 102 ULA chip it was necessary to fit an extra 74LS00 i.c. Because this was added retrospectively there wasn't room for it on the board, so the i.c. had to be mounted on its own small board suspended above the main board by the connecting wires. When the later type 5C112 ULA was introduced the spider was no longer required. The initial issue 2 board used the same 5C112 ULA but a further modification was fitted: this was the addition of

TR6 which replaced the previous diode/resistor network see Fig. 9. As you can see from Fig. 8, TR6 is mounted across the top of the CPU i.c. Later versions of the issue 2 board have the current 6 CO 01 ULA chip: this necessitated some resistance changes which are detailed in (4) of the issue 2 modification instructions.

The following modifications should be added whenever a Spectrum is dismantled for servicing. First, issue 1 versions.

Issue 1 Modifications

(1) When National 4116 RAM i.c.s are fitted, remove R57 (330 Ω) - connected to pin 28 of IC2 - and fit a $1 \mathrm{k} \Omega$ resistor between the CAS line and the 12 V rail and another $1 \mathrm{k} \Omega$ resistor between the $\overline{\mathrm{RAS}}$ line and the 12 V rail. These resistors are best fitted on the underside of one of the memory chips IC6-13. C54 (at pin 28 of IC2) can also be removed - but it must be left in circuit when the 4116 RAMs are of NEC manufacture.
(2) When a type 5 C 102 ULA is fitted, add a 100 pF capacitor between the $\overline{\mathrm{RAS}}$ line and chassis.
(3) $\mathrm{C} 46(1 \mu \mathrm{~F}$ electrolytic) should be replaced with a hightemperature capacitor as it's mounted beneath the heatsink.
(4) Axial capacitors should be fitted in place of all the disc ceramic capacitors. The following capacitors must be replaced: C41 (ROM pin 14 to pin 28) and C49 (between the collector and emitter of TR4) - these capacitors are both 47 nF .
(5) If there's insufficient colour difference between white and yellow, fit a $47 \mathrm{k} \Omega$ resistor between pin 13 of IC14 (LM1889) and chassis.
(6) To improve the reliability of the voltage generator the circuit should be modified to correspond with Fig. 13. A minimum would be to change the value of R60 and fit a $4.7 \mu \mathrm{~F}$ electrolytic (C74) between the emitter and base of

TR5. See the notes on this section of the circuit in Part 6 next month.
(7) Finally, if you want to use the Spectrum to operate a Z80 PIO, or if you find that some machine code software doesn't run satisfactorily, check that the following modifications have been made.
(a) Change TR3's base circuit as shown in Fig. 10, i.e. replace D14 with C67, change R24 to $1 \mathrm{k} \Omega$ and add the pull-up resistor R73.
(b) Change R27 from 680Ω to 470Ω or shunt it with a $1.5 \mathrm{k} \Omega$ resistor (ULA pin 33 to CPU pin 20).

Issue 2 Modifications

Now to issue 2 boards. Like the modifications given for the issue 1 version these should be made whenever possible. Fig. 8 shows the positions of the components.
(1) Replace all disc ceramic capacitors with axial ones. Especially change C41 and C49 (47 nF) - as with issue 1 boards - and change C43 $(100 \mathrm{nF})$ in the voltage generator circuit. This, together with modification (3) below, will update the circuit almost to issue 3 standard.
(2) To improve the colour, change R 48 to $2 \cdot 2 \mathrm{k} \Omega$, R49 to $8 \cdot 2 \mathrm{k} \Omega, \mathrm{R} 50$ to $4.7 \mathrm{k} \Omega, \mathrm{R} 72$ to $10 \mathrm{k} \Omega$ and C 65 to $22 \mu \mathrm{~F}$. These components are all associated with the luminance/ chrominance drives to TR1 and TR2 (see Fig. 11).
(3) Carry out the same modifications as those listed under (6) and (7) for issue 1 boards.
(4) The only currently available ULA is type 6C001. When this is used to replace an earlier type the following modifications should be made: change R47 to $1 \mathrm{k} \Omega$, R49 to $10 \mathrm{k} \Omega$ and R56 and R63 to 470Ω.
(5) There's no need to change the speaker circuit from
that shown in Fig. 5 to that shown in Fig. 11. The modification is very simple however if increased sound output is required.

Servicing Aspects

From the servicing point of view the advice given for issue 3 versions applies in general to issue 1 and 2 versions. There's one exception. There are four presets (TC1, TC2, VR1 and VR2) that may need setting up if any changes have been made. Their positions are shown in Fig. 8 and their functions are as follows.

TC1 sets the frequency of the 14 MHz crystal that controls all the computer timing, including the 50 Hz field sync signal. You might think that this would provide an easy means of setting up this control, but in many cases the range of adjustment is too small to enable the 50 Hz to be locked. The control is used only to alter the frequency slightly, to eliminate any objectionable colour patterning on the screen.
TC2 sets the frequency of the colour subcarrier oscillator and unlike TCl Sinclair advise precise adjustment using a frequency counter. I've personally had no problems with the setting of this control but if a check is required it should be possible to compare the results with the frequency obtained from a TV set locked to a transmitter.

VR1 and VR2 are the only controls that may present difficulties. They affect the phasing of the colour-difference signals and are interactive in their effect on the display. Take particular care when dealing with issue 1 models because although the controls are in the same positions and are marked as shown in Fig. 8 the connec-

Fig. 8: Layout of the issue 2 board.
tions between them and IC14 are reversed.
A colour display is necessary for setting and checking these controls. The following short program will display colour bars, enabling the effect of any changes to be seen across the colour spectrum. It's advisable to save this program to make it easier to load when the top case and keyboard are lifted to reach the presets.

```
\(10 \quad\) FOR N \(=0\) TO 7
20 FOR M \(=0\) TO 3
30 PAPER N : PRINT" ";
40 NEXT M
50 NEXT N
60 GOTO 10
```

This will display the Spectrum colours corresponding to keys 0 to 7 , i.e. black, blue, red, magenta, green, cyan, yellow and white.

If there's no colour on the screen when this program is entered and run, check the TV set's tuning and colour controls. If there's still no colour the controls will have to be set up. The procedure suggested by Sinclair is as follows.
(1) Switch on and initialise the computer. Do not enter a program.
(2) Using TC2, set the colour subcarrier frequency to $4 \cdot 433619 \mathrm{MHz} \pm 50 \mathrm{~Hz}$.
(3) Using VR1, set the voltage at pin 4 of IC14 to 50 mV $+0 \mathrm{mV} /-5 \mathrm{mV}$ relative to pin 3 .
(4) Using VR2, set the voltage at pin 2 of IC14 to -50 mV $+5 \mathrm{mV} /-50 \mathrm{mV}$ relative to pin 3 .
These settings are designed so that pins 2 and 4 will be at zero with respect to pin 3 when the computer is at its operating temperature. In the factory however they set pin 4 to $130 \mathrm{mV} \pm 20 \mathrm{mV}$ and pin 2 to $-75 \mathrm{mV} \pm 20 \mathrm{mV}$, so you can take your choice which values to use.

Personally I prefer the following method of setting these controls. It may seem very complex at first sight but it's actually quite simple. A word of explanation. Those of you who are long in the tooth - and short of hair - may remember ion traps. These could be set in a few seconds but it took you twice as long even to read the Mullard instructions. This procedure is similar. As the settings aren't critical - about the same as the average hold control - getting the colour correct is easier than reading the instructions. So here they are:
(1) Load the program above and run it.
(2) Assume that the subcarrier frequency is o.k. and set VR1/2 to mid-travel.
(3) Slowly sweep VR1 until colour is displayed. If no colour shows during the full travel of VR1, move VR2 slightly and try again.
(4) Keep moving VR2 in steps of about 20° to 30°, sweeping VR1 slowly back and forth until colour has been obtained, or the whole range of both potentiometers has been covered.
(5) If no colour can be obtained at any settings, mark the position of the vanes of TC2 and move it approximately 30°. Repeat (3) and (4) above. At worst it should take only about four-five repeats to get some indication of colour.
(6) When some colour is displayed, move the presets one at a time until the full eight colour bars are present, in their correct colours. Finally, find the optimum position for each adjustment, going over TC2, VR1 and VR2 at least twice.

The colour controls should now be set up correctly and the bars displayed in their correct colours. Check by

ULA pin 33
0275

Fig. 9: Modifications associated with pin 33 of IC1: early version left, later version right.

Fig. 10: Modified clock circuit. It's essential to modify the circuit to that shown on the right whenever the earlier version is found.

Fig. 11: Circuit variations around IC1/IC14 in earlier versions - compare with Figs. 1 and 5.
switching channels on the TV set and making sure that the colours lock without any delay. When all is well set TC1 as described below.
If you still have a problem there could be a fault in IC14, the associated circuitry or the signals from the ULA. The colour-difference signals can be checked either at pins 17 and 18 of the edge connector (underside) or at VR1 and VR2. Examination of the signals with and without the colour display running will show if the ULA is o.k. Check the oscillator and its frequency at pin 17 of IC14 - use a high-impedance probe when checking the frequency.

Finally, when a satisfactory colour display has been obtained put in a program giving a screenfull of characters in red ink with a background of green paper and adjust TC1 for minimum patterning. Some early machines have a hole in the bottom of the case to enable this adjustment to be carried out with the computer fully assembled.

Next month we'll deal with the $4 \mathrm{~A}, 4 \mathrm{~B}, 5$ and 6 A versions.

Satellite TVRO Installation

Part 2

Harold Peters

Before briefly surveying the market scene here's a quick run down on the basics of satellite TV - something we should perhaps have done first, but then you were so keen to get the dish up and working that aerial installation took priority. It's hard to believe that with the technology now well past the development stage and in a stable state there was only Russia's Gorizont four years ago - and before that nothing to speak of. Previous articles in Television have possibly been a little ahead of their time and assumed some basic background knowledge. This time we'll assume that you prefer to start from scratch.

Orbits

If you throw a ball in the air it takes an elliptical course and lands some distance away. At one point it is neither going up nor coming down, the force you gave it being equal and opposite to the pull of gravity. If only we could keep it there it would hover and we could bounce signals off it. Sadly air resistance joins with the effect of gravity and down it comes. The harder you throw it the farther away it lands and the wider the ellipse it traces until - with the aid of a rocket - you propel it so hard that the ellipse is greater than the earth's circumference and it "falls off the end", circling the globe.

Its elliptical path will be farthest from earth (the apogee) round the other side and nearest (the perigee) when it comes back over the launch site some ninety minutes later. Unfortunately the earth has spun round on its axis by $22 \cdot 5^{\circ}(360 \div 16)$ during this time, so the launch site misses the satellite completely. It's not much good then for bouncing signals off.

Suppose that while it is at its apogee you can boost its velocity. It could either leave the earth's influence altogether or, if you get it just right, it will go into a larger orbit farther out, one in which it circles the earth exactly once every twenty four hours. Position this orbit directly above the equator and an observer there, looking up, would see the satellite apparently motionless in the same place in the sky - because its angular velocity is the same as that of the earth. This geostationary or synchronous orbit is at 22,300 miles above the equator and is sometimes known as the Clarke orbit - since Arthur C. Clarke first suggested its possibilities in a letter to Wireless World back in 1945.

Satellites

The satellites in this orbit are used primarily for communications, including TV, and share a common basic design. A series of solar panels capable of collecting about $1.5 \mathrm{~kW} / \mathrm{m}^{2}$ are attached to the main, cylindrical body of the satellite. These panels are arranged to turn and point towards the sun as the earth rotates. Dishes, some steerable and others fixed, pick up signals from the earth. Others retransmit the signals back down again. A "re-ceive-transmit" pair is called a transponder and in the case of the Eutelsat birds and others the uplink from earth uses frequencies at around 14 GHz while the downlink frequencies are at around 11 GHz . The transponder simply
converts the frequency of the signal it receives before beaming it back.

Satellites are kept on station by small gas jets that correct any positional errors. The more you have to use the jets the shorter the satellite's useful life. When you consider that the accuracy needed to keep within $0 \cdot 1^{\circ}$ drift per year is 70 feet radius (in 22,300 miles) and that any ovality of orbit must be less than 23 miles for a diurnal variation of less than $0 \cdot 1^{\circ}$ the drifts are remarkably small. With their near-equatorial launch sites France and the USA are luckier than Russia. The Russian satellites, launched from somewhere in the steppes, come on to geostationary orbit from the side, so most of them "wobble" a bit more than the others: with the foresight for which their engineers are noted however this wobble is arranged to give maximum e.r.p. over their own territory at peak viewing times.

Owing to the tilt of the earth's axis the satellites see the sun for 24 hours of the day for most of the year. During the equinoxes however the earth comes between the sun and the Clarke belt at midnight, shutting off the solar power supply. To keep the weight down the batteries provided are sufficient to keep only the telemetry and other essential beacons going. In practical terms this means that to avoid losing programmes before midnight the satellite should be placed in a longitude at least $11^{\circ} \mathrm{W}$ of the intended area of reception. At their peak these eclipses last for 72 minutes: they reduce to zero 22 days on either side of the equinoxes. Eutelsat-1 is unfortunately placed in this respect. At $13^{\circ} \mathrm{E}$ its solar power supply fails at $9.56 \mathrm{p} . \mathrm{m}$. GMT during the equinoxes - we've already had complaints from people deprived of signals before midnight!

Footprints

The beam from a satellite can be wide (an omnibeam or Eurobeam) and of low power or concentrated in the form of a high-powered "spot". An example of the latter is the Eutelsat-1 west spot shown in Fig. 1. The graph of the area with adequate field strength is called the "footprint", the centre point aimed at is called the boresight - for Eutelsat-1 this is in the North Sea, off Cleethorpes - while the concentration of signal required to bring this about is the beamwidth, which is about 1.5° in this example. Beamwidth is determined by the satellite's dishes - the wider their diameter the smaller the beamwidth - and, as the diameter is limited by how big a dish you can get on to the launch vehicle without folding, on the launching system itself.

Signals

Terrestrial TV signals are picked up by rods and measured in terms of "microvolts per metre"; decibels are generally read in voltage terms (6 dB down $=$ half strength) and ratios are expressed as "signal-to-noise". With a dish for satellite reception the sensitivity is given in terms of watts per square metre ($\mathrm{W} / \mathrm{m}^{2}$), decibels are used in wattage terms (3 dB down is half power), and the ratio

Fig. 1: Footprint for Eutelstat-1 - dBW contours.
usually quoted is "carrier-to-noise". At first you tend to try to relate the old to the new, but you soon get used to the new terminology. In addition bitter experience soon teaches you that in satellite work one dB can make all the difference between no picture and a picture with no snow. So when you're told that a heavy rainstorm will drop the signal by a mere 1 dB , rest assured that your viewer will most certainly notice the difference. But we digress . . .

Since less power is required to resolve a clean signal with f.m., in all transponders in current use the vision carrier is frequency modulated. In addition all the transponders use medium-power travelling-wave tubes

Fig. 2: Intelstat VA F11 footprint. For half transponder use, e.g. Premiere and Screen Sport, reduce by 3dB.
(TWTs) as the output devices. Maximum frequency deviation corresponds to the maximum modulation depth with a.m., and represents the excursion from peak white to the sync tip. The brighter the picture the further the deviation from the nominal carrier frequency. The modulation, or picture content, is the rate at which the deviation changes from the nominal carrier frequency to maximum deviation, and because the sidebands are a product of the two the bandwidth required for an f.m. satellite TV channel is about six times that required for an a.m. terrestrial TV channel.

Affordable entertainment

Reliable, simple satellite systems from Connexions.
With a Connexions satellite system, up to fourteen channels of entertainment and information are available to you - whether private home, pub, club, disco, hotel, restaurant or educational establishment. The channels currently available are broadcasting a wide range of top quality material including current cinema films, nationa/international and minority sports, pop videos, childrens programmes, news channels and general entertainment.
Trade and dealership enquiries welcome.

Connexions Satellite Systems Ltd

125 East Barnet Road, New Barnet. Herts. EN4 8RF. Telephone: 01-441 1282 (5 lines). Telex: 295181 SMC G.

Fig. 3: Depolarising a circularly-polarised signal - the C band method for Gorizont. A PTFE wedge at 45° bends the horizontal component of the signal through 90°, adding it to the vertical component to increase the gain by $3 d B$.

A typical Eutelsat transponder channel has a bandwidth of 36 MHz , with a deviation of 28 MHz from black to white. Bandwidth limitation is possible by transmitting only one sideband. So you can get two programmes for the price of one by separately modulating each half of the transponder's bandwidth. A good example of this is the use by Screen Sport and Premiere/Children's Channel of two common half transponders on Intelsat VA F11. It is for this reason that a larger dish is generally required for receiving these programmes than their Eutelsat counterparts. Although the power flux density, or field strength, is about the same for both satellites, half transponder use effectively reduces the received signal by 3 dB .

Polarisation

Additional frequency sharing is made possible by polarising the outputs from the transponders. Music Box and Sky share a common channel with slightly offset carriers: the Music Box signal is vertically polarised however while Sky is horizontally polarised. If you've adjusted your LNB correctly the unwanted channel will be cancelled out. Don't expect the LNB to be at exactly right angles to the ground for this condition. Unless the satellite is due south of you the polarisation will appear to be at a small angle.
The forthcoming DBS transmissions will use circular polarisation. Signals radiated in this way rotate, like a rifle bullet, as they travel from one point to another, and as far as your dish is concerned can be broken down into horizontal and vertical components. So an ordinary LNB will pick up circular polarisation whichever way round it's mounted. To prevent this and get 3 dB more gain a "depolariser" consisting of a diagonal wedge of material of high dielectric strength, such as PTFE, is inserted in the mouth of the feedhorn (see Fig. 3). Once the depolariser has been optimised for the reception of right-hand circularly polarised signals all left-hand circularly polarised signals will be cancelled out and vice versa. Experience of circular polarisation can be gained from the Russian Gorizont C-band transmissions - still going strong at just below 4 GHz , where everything is much easier to adjust.

Dispersal

Energy dispersal is provided on all transmissions by "wobbling" the carrier either side of its mean. Unless this wobble is filtered out after detection the picture will have an unbearable field flicker. Again Gorizont provides a practical exception: its dispersal is very slow, with quite a massive swing that cannot easily be filtered out after
detection - it's best dealt with by adjusting the timeconstant of the i.f./a.f.c. loop. Energy dispersal is used to minimise interference to terrestrial microwave links.

TV Systems

Despite the agreement to use C-MAC as the European satellite TV transmitting standard only the Norwegian NRK channel on Eutelsat-2 uses it at the moment. Most of the other transponders use the terrestrial system of the area aimed at. Thus France and Russia use SECAM, the rest PAL. All with 625 lines. This includes Ted Turner's Cable News Network (CNN) which is converted before being uplinked.

Sky is scrambled but at the moment the rest of the channels are clear. Some may follow the US practice of introducing scrambling once sufficient non-paying viewers are hooked on their offerings. A prerequisite for this will be the availability of a cheap, reliable scrambling system. Those in use today stem from military applications and are expensive to produce.

The accompanying sound signal is transmitted on an intercarrier in the 6.65 MHz region - all the channels that began by using the sound-in-sync system have now changed to this method. This permits stereo and/or multilingual transmission to be added. For stereo the Wegener system is commonly used, with a mono signal at 6.6 MHz , stereo left at 7.02 MHz and stereo right at $7 \cdot 2 \mathrm{MHz}$. Europa TV (Eutelsat-1 at $11 \cdot 17 \mathrm{GHz}$ with horizontal polarisation) intends to be multilingual, with English at 6.65 MHz , Dutch at 7.02 MHz , Portuguese at 7.2 MHz , German at 7.38 MHz and Italian at 7.56 MHz .

If you experience sibilance on any channel this means that it uses a different de-emphasis time-constant from the standard $50 \mu \mathrm{sec}$. Many receivers are now fitted with programmable variations for both de-emphasis and the sound intercarrier frequency. Failing this, suitable equalisation should be applied after detection. Gorizont, as ever, differs. The intercarrier is at 7 MHz and companding is applied, using a 12 kHz pilot tone to provide the variable correction after detection and amplification of the signal. You can still listen to the uncorrected sound but it's pretty terrible.

So much then for the basics. We shall delve into the "nitty-gritty" next month when we go into greater detail. Meanwhile we'll take a look at the market place.

Who Sells What

Because things tend to happen fast in the satellite TV field we can say only that the following brief review of who sells what was correct at the time of going to press.

Initially most packages available could be directed at only one satellite and if you needed signals of both polarities two LNBs were required, together with some switching at the set end. Then NEC introduced a double LNB assembly in which the two local oscillators are offset so that channels with horizontal and vertical polarisation can be multiplexed and sent to the receiver via a single coaxial cable. The latest thing is the polarotor, which is cheaper than an extra LNB: it either rotates the LNB through 90° or rotates a polarising element in front of the LNB. Almost all packages can now be supplied with motorized azimuth control to move the dish from Eutelsat to Intelsat. This is especially useful if you want to beam in on satellites lying between the two popular ones. The next step will be to extend the LNB ranges into the DBS
spectrum, some $0-500 \mathrm{MHz}$ higher than the 11 MHz band and to provide C-MAC decoders.

Prices in the following notes are suggested retail ones and do not specify whether installation is included. Most equipment is guaranteed for twelve months and the basic packages assume a cable run of $20-30 \mathrm{~m}$. Longer runs would call for a larger dish or the use of in-line amplifiers. Fixed mounts are those with "Az-El" adjustment.
Armstrong Electronics Ltd., 4/9 Blessington Court, Dublin 7, Ireland. Distributors of satellite TV receiver systems, aerials and electronic equipment. Recently announced a range of spun aluminium dishes available in sizes from 1.5 m to 4 m , with polar or fixed mounts and the facility to fit a motor or hand crank. Matching NEC feedhorns and Houston Tracker motors are available.
Avcom, 500 Southlake Boulevard, Richmond, Virginia 23236, USA. Their portable spectrum analyser type PSA35 was mentioned as a useful item in Part 1. A companion sweep generator, type MSG1750, sweeps from $950-1,750 \mathrm{MHz}$. Other equipment and a full range of accessories are available.
Beltronics, Kembrey Park Industrial Estate, Swindon, Wilts. Cheapest TVRO package around $£ 1,250$. Choice of 1.2 m or 1.5 m dish with polar mount and polarotor or two LNBs. Aerial actuator extra.
Connexions Satelite Systems Ltd., 125 East Barnet Road, New Barnet, Herts EN4 8RF. Cheapest package $£ 895$ with $1 \cdot 2 \mathrm{~m}$ offset dish, polar mount, polarotor and CX2460 receiver. For about another $£ 300$ you can have the CX2460R remote control receiver and an aerial actuator with indoor control.
Euro-Sat, 107 Cross Street, Sale, Cheshire. Range of dishes from 1 m to 3 m with stand and feed support.
Ferguson. Thorn EMI Ferguson Ltd., Cambridge House, Great Cambridge Road, Enfield, Middx EN1 1UL. Home satellite system package ES01 is available at around $£ 1,495$. Includes a 1.5 m dish with polar mount (1.2 m or 1.8 m dishes are also available), polarotor, LNB, satellite receiver with IR remote control. Aerial actuator is extra. Greenwich Satellite Ltd., 62-64 Beresford Street, London SE18 6BG. Master UK distributor of NEC equipment. A full range of systems is available starting at $£ 1,056$ for a 1.5 m dish, polar mount, LNB and receiver. Larger dishes, actuators and remote control are available as extras. A unique feature is the double-stacked LNB assembly.
Grundig International Ltd., Mill Road, Rugby, Warwickshire CV21 1PR. For $£ 1,750$ Grundig offer the STR200 receiver (see review in June issue), a 1.5 m pressed aluminium dish with polar mount and twin LNBs. Handic/Victor, Unit 1, Valley Centre, Gordon Road, High Wycombe HP13 6EQ. The basic package, at around
 available as an extra, plus Japanese electronics. Handic claim that the outfit can be assembled on a DIY basis in thirty minutes.
Harrison Electronics, Century Way, March, Cambridgeshire PE15 8QW. Stockists of 4, 11 and 12GHz equipment including dishes, LNBs, receivers etc.
ITT Consumer Products (UK) Ltd., Paycocke Road, Basildon, Essex SS14 3DR. Around $£ 1,200$ buys you a $1 \cdot 4 \mathrm{~m}$ square offset dish, 96 channel receiver with IR remote control, an LNB, polar mount and polarotor.
Kesh Electronics Ltd., Main Street, Kesh, Fermanagh, NI. Supplies 0.9 m to 2.8 m dishes and complete systems for 4 , 11 and 12 GHz .
Luxor (UK) Ltd., 87-89 Farnham Road, Slough, Berks SL1 4UL. See Salora.

Maspro-Denkoh, 76 Shoe Lane, London SE4A 3JB. Package consists of a 1.2 m offset dish with polar mount, LNB and Japanese receiver for $£ 1,500$. Polarotor and aerial actuator available as extras.
Megasat Ltd., 5 St. Pancras Commercial Centre, 63 Pratt Street, London NW1 0BY. Pioneers in the TVRO field. Now supply to the trade only. Can assemble packages from a wide selection of dishes, LNBs, receivers and ancillary gear. An integrated package is available comprising a 1.8 m dish with polar mount, polarotor, 1.8 dB LNB and receiver.
NEC. NEC Business Systems (Europe) Ltd., 36 Oval Road, London NW1 7EA. See Greenwich Satellite Ltd. Network Satellite Systems Ltd., Unit 7-8, Newburnbridge Industrial Estate, Hartlepool, Cleveland. Full band package available for about $£ 800$.
North East Satellite Systems, Cropton, Pickering, North Yorkshire YO18 8HL. Supply a range of dishes in sizes $1.6 \mathrm{~m}, 1.8 \mathrm{~m}, 2.2 \mathrm{~m}, 2.4 \mathrm{~m}, 2.6 \mathrm{~m}$ and 2.7 m . Also ancillary equipment and complete packages.
Orbitel. Harvetti Ltd., 16-20 Cumberland Street South, Dublin 2. Can supply a basic package comprising 1.8 m dish, fixed mount, LNB and receiver for about $£ 800$. A fully motorised version costs around $£ 1,200$. Other options available.
Precision Antennas, Masons Road, Stratford-upon-Avon, Warwickshire CV37 9NU. Supplies $1.5 \mathrm{~m}, 1.8 \mathrm{~m}$ and 2.2 m dishes with polar mounts and feedhorns. Optional items include a wall-mounting polar mount and special configurations to suit roof mounted steelwork.
Rohde and Schwarz UK Ltd., Roebuck Road, Chessington, Surrey KT9 1LP. Suppliers of professional testgear of high quality, intended for manufacturers and cable companies, including the SFSZ satellite i.f. test transmitter which covers $50-1,750 \mathrm{MHz}$ and is capable of being modulated with video at up to 8 MHz bandwidth.
Salora (UK) Ltd., Techno Trading Estate, Swindon, Wilts SN2 6EZ. Has available a full range of domestic TVROs including TV sets with built-in satellite TV receiving capability and full remote control of channel, polarity and satellite. Basic package available at around $£ 1,000$. Similar equipment included in both the Salora and Luxor ranges. Policy is to permit upgrading of equipment by retrofitting of extras.
Sat-Tel. Space Communications (Sat-Tel) Ltd., 9 Edgemead Close, Round Spinney, Northampton, NN3 4RG. Basic package consists of a 1.8 m solid or perforated dish with polar mount, an LNB and STR1 receiver. Polarotors and aerial actuators are available for upgrading. Latest dish is a 1.4 m square offset type.
SATVRN. Satellite TV Antenna Systems Ltd., 10 Market Square, Staines, Middx. Packages start at around $£ 855$. Three dishes are available: 1.2 m offset, 1.5 m and 1.8 m , with polar mounts and optional polarotors and actuators. The SATVRN TDM1210 receiver can be converted to full remote control. Currently supplies packages to Thorn EMI Ferguson. DDT Maintenance Ltd., 58-64 Northfield Road, King's Norton, Birmingham B30 1JH provides a full installation and maintenance service.
STS. Satellite Technology Systems Ltd., Satellite House, Blackwarth Road, Bristol BS5 8AU. Basic package (STS300 series system) consists of a 1.2 m offset dish with polar mount, an LNB and SSR7700 receiver for around $£ 1,000$. A polarotor is available as an optional extra. The STS 600 system for hotels etc. can feed over 200 separate TV sets. Official UK agents for Japanese Satcom Receivers. Has dealer training centre at Bristol headquarters.

The Toshiba V5470B Fault-finding guide

John Coombes

The Toshiba V5470B is a piano-key operated Betamax VCR that was on sale during 1980-81. It was of advanced design for its time, with digital capstan and drum servos and three motors, one for direct drum drive. Features include a seven-day, three-event timer; microcomputer memory tuning; freeze frame in colour with the noise bar shunted off screen; picture search with colour; a programme quick selection facility; playback speed continuously variable between normal and double speed; and wired remote control. The machine was also sold as the Bush BV6900. The following notes summarise common problems.
(1) No results: Check the mains fuse F801 (500 mA delay type). If it's blown check the mains filter capacitor C801 $(0 \cdot 1 \mu \mathrm{~F})$ which sometimes goes short-circuit.
(2) No results with the standby light on: Check fuse F802 (3.15 A delay type) for being open-circuit. If it has blown check the double diodes D801 (S5151) and D802 (S5151R) in the 17 V supply for shorts. If necessary go on to check F 803 (1 A delay type) in the 24 V supply. Check rectifier diodes D804/5/6/7 (all 1S1885) if F803 is shortcircuit. Note that the regulated $12 \cdot 4 \mathrm{~V}$ and 12 V lines are derived from the 17 V supply while the regulated 16.5 V line is derived from the 24 V supply.
(3) No results, ejected tape loose: Check for a broken guide pulley belt.
(4) No functions operational: Check that the 12 V supply is present. If so check that 7.5 V is present at test point TP511 (there should be a 15 V p-p squarewave here) on servo board PW2110. If this voltage is missing remove plug P507 on the board. If a short is present at this plug check whether the stop solenoid microswitch S681 is faulty - this switch can also cause intermittent deck shutdown.
(5) Keys release: First check the plugs/sockets on servo board PW2110. Try removing plug P903 on pause board PW2113: if the drum motor doesn't operate suspect IC501 (TM4216P) on the servo board. Alternatively the capstan motor may fail to operate: again check IC501. If the tape doesn't move check the drive belts, the play idler reel assembly and the tape path and upper cylinder.
Key release with the capstan and drum motors running too fast again means a check on IC501 and if necessary C964 ($0.01 \mu \mathrm{~F}$) on drum drive board PW2115 - this capacitor can go short-circuit. For key release with slight drum rotation check the drum drive transistor Q961 (2SD235Y) on panel PW2115.
(6) Play key jumps up intermittently: Usually caused by a badly worn play idler which can damage or break the tape. If the complaint is tape creasing check and if necessary replace the play idler. If the problem is caught early and the play idler is not worn it may be possible to do a service as follows. Separate the clutch assembly and remove any dust from the felt pads, then clean the plastic face plates with alcohol. Check the rubber tyre and if shiny rotate it on a small piece of wet/dry then clean with cloth and alcohol. Refit, replace play belt and check that the play torque is $80-120 \mathrm{~g} / \mathrm{cm}$.
(7) Record key releases intermittently on a timer recording: Check that the modification on servo board PW2110
has been carried out - R619 should be $330 \mathrm{k} \Omega$, not $150 \mathrm{k} \Omega$.
(8) No eject: If it is displaced, reseat the wheel that guides the loading ring. Check the rewind key. If stiff to operate it may be necessary to remove the mechanism to clean out thick hardened grease that prevents free movement. After reassembly the problem should be cleared.
(9) Tape loading problems: Check the adjustment of the loading drive assembly. Too close tolerance will mean excessive tape tension or no loading/unloading. Excessive tolerance means loose loading ring movement with poor performance.
(10) Tape will not run: Check for a faulty loading end switch. If incorrectly set, follow procedure in manual.
(11) No play after rewind: Check whether R581 ($1 \mathrm{k} \Omega$) on board PW2110 is open-circuit, then the stop microswitch which may be shorting.
(12) No or poor rewind: Check whether the tape is very tight. If an L750 cassette is poor on rewind check the rewind idler assembly. Replace the complete unit if the tyre is worn. Cleaning and lubrication may be all that's required if the tape is just running slow. Check that the reel brake is not sticking. If so free it and ensure that it's clean. Check that the supply reel and the fast forward/ rewind belt are clean - replace the belt if it's elongated. If all these points are in order, suspect a badly worn upper drum. As a temporary measure, or to prove the point, clean it with a metal polish - this is a temporary measure only!
(13) Tripping on rewind: Check whether the tape is too tight, causing premature tripping. If necessary set up the rewind oscillator control R652 as specified in the manual.
(14) Autostop solenoid inoperative: If the plunger doesn't move freely in the solenoid housing, grease lightly. If necessary set up the solenoid position. Note that it will not release when the tape is at the end or reaches the counter memory point. It may not release when tape slack is detected or with no head rotation due to tape sticking.
(15) Monkey chatter on cue/review: Suspect IC601 (CX141) on servo board PW2110.
(16) Tape damage: A faulty pinch roller or play idler see (6) - can be responsible for creased or broken tapes. In addition to incorrect tape path adjustment misalignment of the upper drum can cause tape damage. Failure of the slack sensor to operate will result in tangled or looped tape. Replace or set up the switch alignment as in the manual.
(17) Wow/flutter on sound: First check that the tape spools and pulleys are clean. Then suspect a faulty capstan motor. If the voltage at pin 1 of IC503 on panel PW2110 varies when the capstan motor is slowed down this usually indicates that the servo circuitry is working normally. Before replacing the motor (there may be noise bands in addition to waw/flutter) check the play idler and ensure that the capstan flywheel is free, clean and lubricated. If the capstan motor has to be replaced, check the tape speed and ensure that the correct capstan motor pulley is fitted the larger the pulley the higher the speed and vice versa. The capstan motor can also be responsible for lateral picture instability, though the usual symptom is wow/ flutter on sound.
(18) Bent verticals: Ensure that the back tension is set up correctly. If so, suspect the drum motor.
(19) High-pitched howling: This fault may be intermittent. Check that the capstan flywheel shaft is clean and slightly lubricated.
(20) Video troubles: The most common fault is loss of
output from one head. The cause could be build up of dust in the gap. Clean with a cleaner stick and alcohol. The fault may show up only with the machine's own recordings, playback of prerecorded tapes being all right. If there's a cotton-wool effect across the screen with a picture in the background suspect that one of the heads is open-circuit. Streaking across the picture is another symptom caused by a faulty head.

There are other causes of an incorrect f.m. waveform, i.e. excessive noise on the picture. Check the alignment of the tape path, also the upper drum for excessive wear or misadjustment. The record/playback switch S101 can cause intermittent noise and picture breakup if it's dirty, misadjusted or worn. If the outputs from the two heads differ when playing back a recording check the adjustment of R152/3/4/5 on board PW2108. If this doesn't do the trick the drum dihedral adjustment may be incorrect. This is a complicated adjustment - it's simpler to replace the drum. For a good picture with no wow or flutter on sound, eccentricity alignment to a setting of less than three microns must be undertaken when a new drum is fitted.
If there is no recorded video, check IC401 (TA7637P) on board PW2109 by replacement. If there's no output from $\mathrm{Q} 404 / 5$ check whether $\mathrm{C} 419(0.022 \mu \mathrm{~F})$ is leaky.
For smeary playback check IC402 (TA7636P) on board PW2109 by replacement.
(21) Colour drop-cut on cue/review: Check crystal X961 on drum drive board PW2115 - it can go off frequency.
(22) Interference on sound: This can be caused by a faulty drum motor. Make sure that the noise suppression components L961 and C962 ($0.01 \mu \mathrm{~F}$) on drum drive board PW2115 are in order.
(23) Poor stills/vertical bouncing on cue/review: Suspect
absence of the VD pulses from ICH 01 (TC4528P) on speed control logic board PW2117.
(24) No frame advance: First ensure that the frame selector switch S982 on switch board PW2116 is operating correctly. Then check ICH03 (TC4528BP) on board PW2117 by replacement.
(25) Still frame slipping: Check that the frame correction control RH51 on board PW2117 is not set too high. Slightly adjust the screw to set the noise band at the bottom of the screen.
(26) Timer not alight: Check clock bulbs for opencircuits. This can occur when the machine is unplugged from the mains supply for the first time in a few years.
(27) Programme timer i.c. faults: The symptoms caused by IC861 (TC5038P) on board PW2112 can be many and varied - digits not illuminated, days not changing on programme setting or inoperative on second programme, and incorrect time settings. The timer may fail to latch, switching off from the mains for a few minutes after which the timer will reset.
(28) No channel lights, one channel only alight or stuck on BBC-1: Check ICA01 (TC9002AP) on selector board PW2106 by replacement.
(29) Memory button inoperative - will not lock channel: Check the TMM841P memory chip ICC01 on board PW2106 by replacement.
(30) Tuning drift: Several items on selector board PW2106 can cause this problem. The most likely cause however is the tuner unit itself - check by replacement. ICA01 (TC9002AP), ICC01 (TMM841P) and/or ICC02 (TA7619AP) on board PW2106 can all cause the trouble when warm or intermittently from cold. The other item you might need to check, again by replacement, is the 33 V tuning supply stabiliser DE01 ($\mu \mathrm{PC} 574 \mathrm{JC}$).

The Development of Colour Tubes

Part 4: Behind the Colour Screen

Eugene Trundle

Just behind the tube's faceplate is the point where it all happens! The rear of the glass surface is coated with dots or stripes of phosphor materials that glow when bombarded by the electron beams. Phosphor brightness is proportional to the beam current and the accelerating voltage (e.h.t.).

Phosphors

A wide range of phosphor colours is available, but for colour tubes the three phosphors used - classified X in Europe, P22 (Jedec) in the USA and B22 in Japan - have very specific coloured light emission characteristics that are based on the EBU chromaticity co-ordinates - see Fig. 39. All the colours within the solid triangle can be reproduced on the screen - this compares well with the range of colour pigments, dyes and inks available. Monitor tubes are sometimes provided with a lighter blue phosphor (sky blue) whose desaturated colour gives much more legible alphanumeric displays while still offering a usuable hue for graphics displays. Purer colour phosphors have been developed since the EBU co-ordinates were finalised: these are also shown in Fig. 39 (enhanced red and green).

What the co-ordinates defining the colour triangle don't show is the purity (spectral bandwidth) of each phosphor. The spectral/energy emission characteristic for a typical modern tube is shown in Fig. 40. It can be seen that red has the narrowest bandwidth and lowest efficiency. To produce a standard colour-temperature white raster (Illuminant D6500) a typical anode current contribution by the red gun is 42 per cent, with the green and blue guns contributing 35 and 23 per cent respectively. When you recall that white light consists of 30 per cent red, 59 per cent green and 11 per cent blue you get an idea of the relative phosphor efficiencies. Other factors (many of them!) being equal, picture brightness depends largely on the chromaticity and efficiency of the green phosphor. Since the earliest colour tubes there has been a fifteenfold increase in white brightness due to phosphor improvements. Many phosphor materials have been used over the years: the current favourites (in Europe, America and Japan) seem to be yttrium/oxysulphide/europium (rare earth) for red, zinc sulphide/silver for blue and zinc sulphide/copper/aluminium for green.

With early in-line gun tubes the RGB phosphor stripes were laid on the screen continuously, i.e. with no gap between them - see Fig. 41(a). To provide some beam landing tolerance to take account of mask expansion, imperfect setting up and stray magnetic fields the mask slots were made narrower than the stripe width. For a domestic tube this resulted in a beam landing tolerance of about 60 microns at the centre of the screen and 140 microns at the edges. This approach is called a positivetolerance system. The alternative approach shown in Fig. 41(b) is the negative-tolerance system where the mask slots are wider than the phosphor stripes, which now have a "guard-band" between them. In this case the beams slightly overlap their intended phosphor stripes. Apart from the advantage of making black matrixing possible
(we'll come to this in a minute) the negative-tolerance screen produces a crisper picture due to the absence of "spread" and light scattering across the now sharply defined phosphor glow areas. The dimensions given in Fig. 41(b) relate to the Videocolour A66-FS10 tube.

Improving the Contrast

Achieving a high contrast TV picture is largely a battle to reduce the reflection of ambient light from dark (unenergised) sections of the screen. The first step taken to improve matters was the black matrixed screen, in which the spaces between the phosphor dots or stripes are filled with a light absorbing black pigment (usually based on carbon or graphite) to reduce screen reflectivity. The phosphor material itself is very light in colour however, and it was not long before dyes were added to the phosphors, making each absorb incident light other than

Fig. 39: The CIE chromaticity diagram.

Fig. 40: Spectral emission and relative efficiencies of the phosphors. Although red peaks far higher than the others its very narrow emission band makes it the least efficient of the three.

Fig. 41: Positive-tolerance screen-mask system (a) compared with a negative-tolerance system (b) for use with a black matrixed screen.

Fig. 42 (left): To achieve a comparable number of vertical picture lines the dot pitch of an in-line gun tube must be much finer than with a delta-gun tube.
Fig. 43 (right): Effect of two widely different faceplate glass densities on the contrast ratio. Ideally we need to change the filter density to suit the ambient lighting conditions -a separate glass filter introduces multiple light reflections however.

Fig. 44: Light transmission characteristic of a selective filter faceplate.
that of its own colour. These are called pigmented phosphors, and can be recognised by the RGB coloured appearance of the phosphor pattern on the face of an unenergised tube. The use of pigmented phosphors and
black matrixing can reduce the reflectivity of the tube face by as much as 30 per cent without sacrificing brightness. This advantage can be used to improve either the brightness or contrast depending on the faceplate glass light transmission characteristic, as we shall see.

The rear surface of the phosphor is aluminised, the conventional practice for many years now, to reflect the phosphor light forwards, to equalise the charge over the whole screen area and to form an ion barrier. The gun side of the aluminising layer is often sprayed black, as mentioned last month in connection with mask heatsinking.

Stripe Pitch

With tubes intended for domestic TV use the phosphor stripe pitch is 0.8 mm for screens above 50 cm diagonal and about 0.6 mm for smaller screen sizes. Individual phosphor stripes are typically 0.19 mm wide in a large-screen, matrixed tube. Since no-picture element can be smaller than the width of a stripe triplet, the structure of the screen and mask is a limiting factor for the tube's resolution. A standard 66 cm stripe tube is capable of resolving about 350 lines, a 51 cm tube about 270 lines and a 37 cm type about 250 lines. These figures allow for a pixel to cover two stripe triplets, for easy viewing and to avoid spurious effects.

High resolution tubes with the stripe pitch down to 0.31 mm are available at high price to give 370 lines with a 37 cm screen and 550 lines with a 50 cm screen, again allowing two triplets per pixel. They are expensive not only because of the precision of the screen and mask but also because of the special gun and yoke required to produce a suitably small spot size and matching convergence performance.

Delta-gun tubes give better definition for a given triad spacing - see Fig. 42 . One 50 cm delta-gun tube on the market has a dot pitch of 0.2 mm , offering a 1,680 dot count across its width: sticking to our two-dot per pixel criterion, this gives a resolution of 840 lines. It must be interesting to converge!

Faceplate Glass Characteristics

The faceplate glass characteristics have an important bearing on picture tube performance. In effect the glass panel acts as a neutral-density filter, having grey glass with a light transmission characteristic that can vary, depending on tube design, between 40 and 85 per cent.

The basic idea of the tinted faceplate, which inevitably reduces picture brightness, is to reduce the screen's reflectivity and thus increase the contrast. Use of glass with a low light transmission characteristic helps because reflected light has to pass through the glass twice while the light emitted by the phosphors passes through only once. Thus if the glass light transmission characteristic is 50 per cent a fourfold reduction in reflected light is achieved for a halving of the available light from the phosphors.

The tendency in Europe seems to be to use a high light transmission glass for maximum light output (it seems, especially from their factory "granny-button" settings, that our German and Dutch cousins watch TV in a very subdued light). The USA and Japan on the other hand have generally opted for a better contrast ratio using low light transmission glass. Fig. 43 shows the effect of two different glass densities on the contrast ratio for a modern screen with black matrix infill and pigmented phosphors.

Mitsubishi go a step beyond the neutral-density filter principle with their Blue Diamond tubes. Into the faceplate glass mix go the rare-earth element neodymium oxide plus colourants, giving selective light transmission properties. These faceplates provide increased attenuation at wavelengths around 580 nm (see Fig. 44), offering enhanced contrast where the ambient light level is high.

Also relevant to the faceplate is the question of reflections from the outer polished surface. The mirror effect of this surface will show an image of the room, the viewers and particularly any light sources. For domestic use the flat type screen (FST) has advantages because of its narrower capture angle. With monitor tubes, especially those used to display small alphanumerical characters, various treatments are available to break up the outer glass surface so as to diffuse reflections. All except the most expensive tend to impair the definition however, so careful design and control are required. The two most common treatments are chemical etching and silica coating. Fig. 45 shows the effect of the latter treatment on a half-coated screen by Mitsubishi.

Glass Envelope

The primary purposes of the glass envelope are to contain the vacuum essential for the tube's operation and to provide a flat viewing screen. There are many secondary functions. One is to provide the e.h.t. reservoir capacitor, whose plates consist of the conductive graphite coatings on the inner and outer surfaces of the bowl: with a large tube the capacitance value can be $2,200 \mathrm{pF}$.

To reduce the energy released from this store in the event of a flashover, and just as important the rate of energy release, the inner graphite coating in present-day tubes is made resistive. The addition of iron oxide to the coating increases its resistivity and gives it a characteristic reddish colour. The effect is that of having a resistor of about 400Ω value in the path of any flashover current to any gun electrode. This technique reduces the likely flashover current from around 700A peak to approximately 60 A while the rate of current build up is reduced by a factor of ten. The result is a great decrease in the amount of transient energy reaching the low-voltage circuits of the receiver, and less risk to the increasingly sensitive chips nowadays being used.

The protection functions of the envelope are twofold.

Fig. 45: Surface treatment of the faceplate diffuses light reflections from the tube's faceplate.

Fig. 46: The degaussing coil position for an in-line gun tube is shown at (a); the resultant degaussing field in the mask is shown at (b).

Fig. 47: Current tube type numbering system.
Strontium carbonate is included in the glass mix to provide an X-ray radiation barrier - the production of Xrays increases according to the twentieth power of the e.h.t. voltage. At specified e.h.t. voltages and currents the radiation from any accessible part of a working tube does not exceed the international standard of $0.5 \mathrm{mR} /$ hour: at the faceplate it's in practice usually less than $0.1 \mathrm{mR} / \mathrm{hour}$. The envelope must also protect viewers from the effects of implosion. The faceplate of current (FST) tubes is around 12.5 mm thick at the centre and thicker towards the edges. The stress of atmospheric pressure on the faceplate is conveyed to the rimband where it's contained in the band's tension.

The envelope is made in two parts, the neck/bowl and the screen. These two components are heat-sealed together at a late stage in manufacture. The tube is then pumped to a hard vacuum and sealed at a glass pinch at the rear end. To absorb any further gases, particularly those liberated from the gun, mask, etc. during the life of the tube, a getter material (usually based on barium) is used. It's packed into a trough at the end of a spring attached to the front of the gun assembly, to tuck it well out of the way in the tube's bowl. After tube evacuation it's fired by means of a local r.f. heater to activate it.

Internal Degaussing Shield

In modern tubes the degaussing shield is incorporated within the bowl. This magnetic shield prevents ambient magnetic fields upsetting the beam landing. Any flux it acquires itself is neutralised by the action of the degaussing coils which are mounted on the tube's bowl and also demagnetise the shadowmask and rimband. The coils are fed with a decaying burst of 50 Hz a.c. at switch on. With in-line gun tubes there's infinite vertical landing reserve, so it's necessary to generate only a vertical field to correct for the stray fields which would deflect the beams horizontally. This is achieved by the coil configuration shown in Fig. 46(a) which, because of the continuity of the mask material in the direction of the degaussing field (Fig. 46(b)), requires fewer ampere-turns than the degaussing coils for a delta-gun tube. An h.f. bypass capacitor shunts the degaussing coils to prevent currents induced from the line scan coils causing beam mislanding.

Tube Nomenclature

For many years tube size has been specified in inches (more recently centimetres), the quoted figure referring to
the overall diagonal measurement across the glass screen. This was somewhat misleading, and all tube makers have now agreed to adopt the Worldwide Type Designation System. With this the visible picture diagonal is quoted in centimetres. Fig. 47 explains a typical c.r.t. type number using this system.

The FS tube types - tubemakers are very rapidly converting to FST production - have the following common sizes: 22 cm (9 in .), 36 cm (14 in .), 41 cm (16 in .), 51 cm (21in.), 59 cm (24in.), and 66 cm (27in.). Where these figures correspond to the old Pro-Electron classification system the picture area with the new types is greater. The new 51 V tubes have 6.2 per cent greater picture area than the old 22 in . types and the new 66 V tubes 9.5 per cent more picture area than the original $26 \mathrm{in} . / 66 \mathrm{~cm}$ types. Hence the claim - made more in the USA than here - for $28 i n$. as the largest consumer tube size.

Definition Enhancement

There are two ways in which the scanning spot in a colour tube can be manipulated to give an apparent improvement in picture sharpness. Both have been used in Sony receivers under the name Turbo Trinitron. The first uses a split focus electrode to which differential pulses at instants of black/white or white/black transitions in the video waveform are fed. The pulses are obtained from the luminance signal by filtering. This is followed by differentiation, amplification, phase splitting and then application to the focus electrodes via two separate output stages. The effect of this arrangement is to "flatten" the scanning spot momentarily into a narrow ellipse, thus enhancing the vertical edge of the picture feature.

A similar drive system is used with the later velocitymodulation enhancement system. Here however the "edge pulse", derived as above, is fed to a little class B push-pull output stage whose load is the VM yoke - a few turns of wire on a plastic former mounted on the tube neck. The field produced by this winding opposes that produced by the line deflection coils. Its effect is thus not on the size of the spot but on its scanning velocity. Imagine a white-to-dark transition. If we momentarily slow the spot down before the edge, then momentarily speed it up afterwards, we shall emphasise the edge by brightening it - the increased spot dwell-time gives greater brightness at that point. This is followed by a black edge, produced by the subsequent spurt put on by the spot to catch up its correct position along the line. The system works with black-to-white transitions as well, with none of the "phase" penalties of electrical enhancement circuits. In fact it works very well indeed, especially with teletext and computer displays: plugging the VM yoke in and out gives a convincing "before and after" demonstration.

Next Month - Beam-indexed Tubes

Next month we'll take a look at the beam-indexed colour tube: several versions of this type of tube have been introduced recently for various special purposes.

CORRECTION

We apologise for an error that got into Mr. Pearson's letter about sound problems with the Grundig Model 6010 (page 576, July issue). "NS transductor" should have read "ultrasonic transducer". This is connected via a phono connector to the TD (remote) panel.

next month in

FREE GIFT!!

A simple aid to chip removal will be provided free with the October issue of Television. Be sure not to miss your copy!

- SERVICING THE JVC HR7300

Davic Botto provides servicing notes on these popular machines. In general the information applies also to the HR7200 and the Ferguson 3V29 and 3V30.

- BATTERY-OPERATED CRT TESTER

A portable tester which gives a quick indication of tube emission is a boo when buying second-hand CTVs "off the pile". This design by Nick Laidlaw uses a Thorn 3500 series e.h.t. transformer to generate some 350 V for test purposes. It can be usec to test both delta and PIL type tubes and is powered by a 6 V lead-acid battery.

- BEAM-INDEXED COLOUR TUBES

A striped screen and a single gun, with the input switched in RGB sequence - that's the beamindexed colour tube. This type of tube has been talked about for man'y years: it's now being used for certain special aכplications. Eugene Trundle looks at these new tubes in the concluding instalment of his current series.

- SERVICING THE FERGUSON 3787

Larje numbers of these well-made 14 in . colour portables are still in use. Their thyristor line output stage and power control circuitry confuses some, but the sets are well worth attention. Colin Boggis provides guidance on circuit operation and comman faults.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

The Operation of Electric Motors

Part 2

A more efficient method of producing a rotating electromagnetic field is to use two sets of windings, with the second set arranged so that the current, and therefore the magnetic flux, is out of phase with that produced by the first set of windings. If the two sets of windings are on interleaved poles, as shown in Fig. 1, the arrangement will produce a rotating field similar to that produced by the shaded-pole motor (see last month).

Phase-shift Arrangements

One way of providing the necessary phase shift is to include a large value capacitor - typically several microfarads - in series with one set of windings so that the current flowing through this set leads that flowing through the other by up to 90°. Ninety degrees cannot be achieved because of losses in both the winding and the capacitor, but the rotating field is smoother than that provided by the shaded-pole arrangement. The latter provides much less phase shift, indeed sufficient to start the motor under only the lightest loads. The capacitor-start motor has much better starting torque and smoother running than the shaded-pole motor. The smoother running is due to the fact that it is a motor with effectively double the number of poles running from a 100 Hz supply.

It is quite common with larger capacitor-start motors, such as those used in domestic appliances etc., to use a centrifugal clutch to disconnect the start-up winding when the motor has reached some 75 per cent of its full speed. This is possible because the rotor's inertia will allow the motor to run, but not start, with a pulsating field. The advantage of smoother running is lost with this arrangement however. Even larger motors have another capacitor in series with the running winding, but this is mainly for power factor correction.

An alternative way of producing a phase shift in the starter winding is to include inductance instead of capacitance. For the starter winding to have a larger inductance than the running winding it would have to have more turns, and would therefore take up more winding space. So the opposite approach is taken. The starter winding is made with few turns of relatively thin wire. It's thus mainly resistive, so that the current flowing in the more inductive running winding lags that in the starter winding. Because of the small number of low current-carrying capacity turns the starter winding would overheat after a few seconds, so a centrifugal switch is necessary. This type of motor has not entered the realms of consumer electronic products yet - we have covered it for the sake of completeness. Fig. 2 summarises the phase-shifting methods we've been discussing.

Synchronous Motors

For some applications a motor whose rotation is dependent on the supply frequency is required. Electric clocks and slot-meter mechanisms are two such applications, though the crystal-controlled timepiece has succeeded the former. High-quality turntables also require accurate speed control, but servo technology now takes care of this. There is use for the synchronous motor in timer
mechanisms however.
For a motor to run at a speed dependent on the supply frequency there must be no slippage between the rotor and the rotating electromagetic field. As the squirrel-cage type of rotor described last month relies on this slippage to induce current in the rotor, and thus magnetise it, it would clearly not do - the maximum speed would be only some 98 per cent of that of the rotating field. The answer is to use a permanent magnet as a rotor. Since it's usually a time-keeping function that's required, the motor is designed to run as slowly as possible to reduce the amount of reduction gearing required. The only way to do this, assuming that a mains supply is being used, is to increase the number of poles - thirty or more is not unusual. One method of construction is shown in Fig. 3: only a single coil is needed. The rotor does not need to have as many poles as the stator, provided they are no wider than the stator poles.

Some method of starting the motor is still required. Any of the methods used with a squirrel-cage motor could be employed, but getting two sets of windings on multiple poles of thirty or so would be difficult and expensive. Even shading rings would present a problem. Another method is used therefore: the rotor has an extra pole which causes a slight movement at switch on, sufficient to get the motor moving at its running speed. This pole can take many forms and indeed is not always visible - the rotor is somethimes a ferrite-plastic disc with no clue as to how it has been magnetised. Another type consists of a three-armed spider made of soft iron and attached to the rotor, or one stator tooth may be made wider than the rest.

The only problem is that the direction in which a motor of this type starts is, without some extra arrangement, indeterminate. The starting and thus running direction of a split-phase motor with two windings is fixed and can be changed only by reversing the connections to one, not both, set of windings. The shaded-pole motor can be reversed only by completely reversing the stator, in effect using the other end of the motor. Synchronous motors with the type of impulse start mechanism just described will quite happily start in whichever direction they feel like, so some means of stopping the motor and reversing it if it starts backwards must be provided. The mechanism shown in Fig. 4 is normally used. If the motor starts in reverse it's allowed to complete part of a revolution, in order to store inertia. The friction from the disc on the rotor spindle moves the pawl into engagement with the pin, so that the rotor is suddenly arrested. The stored energy is transferred into bending the springy pawl, which releases the energy to give the rotor a kick in the correct direction of rotation. This mechanism is sometimes applied at a later point in the reduction gearing: this is more effective, as the inevitable amount of flexibility in the drive imparts a greater impulse to start the motor on the straight and narrow.

For interest we would mention that a few synchronous motors used in clocks in the past had no starting mechanism of any kind. They relied on the user giving the motor a push when setting the clock's hands. This idea was also used with some turntables, the on-off switch lever propel-

Fig. 1 (left): Pole arrangement for a split-phase motor.
Fig. 2 (right): Methods of phase shifting.

Fig. 3 The synchronous motor.

Fig. 4 (left): Anti-reverse mechanism.
Fig. 5 (right): Rotor arrangement for a synchronous-hysteresis motor.

Fig. 6: Bearing construction.
ling the platter in the direction of rotation. The method was taken to the extreme by a well-known manufacturer of electronic organs: the electromagnetic tone generator was driven by a synchronous motor, with another shadedpole motor used for starting only, a process involving two switches and taking about half a minute!

The synchronous motor will run at only the correct speed. Any excess load will stall it. With a self-starting motor this fact may be masked by the motor restarting itself when stalled, but one couldn't rely upon this mode
of operation. In fact the synchronous motor is suitable for accurately driving only light loads. To the best of our knowledge, the only motor of this type used in a VCR was that employed in the N 1500 series clock.

A hybrid type of motor known as the synchronoushysteresis type (see Fig. 5) combines the advantages of the synchronous and squirrel-cage types. The rotor is of squirrel-cage construction, but part of its length consists of a permanent magnet. At start up the pole shading brings the rotor to about 95 per cent of the synchronous speed, with reasonable torque. It then pulls into synchronism with the supply frequency. These motors were used by Garrard in their higher priced turntable units and performed admirably well before the advent of servo control in this type of application.

Servicing Aspects

Because the only moving parts in these motors (in our sizes at any rate) are the rotors they are very reliable units. Unless you are engaged in audio work, probably the only a.c. motors you'll be called upon to service are those in elderly Sony, Sanyo and Philips VCRs. Troubles with the windings are rare, but remember that the shaded-pole motor inherently runs hot.

The bearings normally consist of sintered bronze selfaligning bushes. If that sounds rather a mouthful, look at Fig. 6. Sintered means that the bushes are made of metallic powder compressed to the required shape under heat. The bush is therefore porous and can retain lubricant, thus increasing the intervals between servicing. If the bush is spherical it will align itself without the accurate machining that would be needed if it was fixed in position rigidly. The bush is retained by some sort of spring which allows the bush to align itself under running conditions. A felt washer soaked in oil surrounds the bearing - this, by capillary attraction, replenishes the oil impregnated in the bush.

A common fault when the motor is mounted with the spindle vertical and dust can gain entry is that fluff gets wrapped around the top of the spindle, leaching the oil from the bearing to form an abrasive goo that soaks down into the bearing clearance, eventually seizing up. This was a frequent occurrence with some autochangers. Loose laminations in the stator or rotor, or loose shading rings, will cause buzz - sometimes a dollop of liquid epoxy resin will stop this.

Servicing a motor of this type is simple. Dismantle, after marking the stator and rotor ends so that they can be reassembled in the same relative positions. It's quite possible with most motors of these types to put them together with the stator upside down, so that it runs backwards! If the bearings will come apart, i.e. they are not rivetted, dismantle them. Clean all parts - except the stator - in solvent, then dry off. Take care not to lose any shims fitted to the spindile.

If possible soak the bushes and felts in warm engine oil overnight. Examine the spindle for any signs of seizure, and clean carefully without using abrasives. Reassemble and test. Don't worry if the spindle feels tight on initial assembly: just tap it (lightly!) with a piece of wood to align the bearings. With some motors of this type the bearings are retained by springs that are rivetted or pressed into place. Complete dismantling is clearly impractical in this case but the endplate can be soaked in oil, the surplus being wiped off afterwards. These motors should be virtually silent in operation.

Sinclair QL Test Pattern Program

John de Rivaz, B.Sc. (Eng.)

Although the future of the Sinclair QL computer is uncertain quite a lot of them were produced and have recently been made available via various special offers. This article presents a test pattern program for the machine, based on the pattern that appeared on the front cover of the May 1984 issue of Television.

It has a coloured border with a similar order of colours, the display going right to the edges of the screen. Thus arrows are produced at the edge of the pattern, allowing sets to be adjusted for a slight overscan. The pattern has a black background with a centre circle and white crosshatch. There are two columns of colours approximately a quarter and three quarters of the way across. Within the circle there's a vertical white column and to the right of this a column of frequency gratings. These are somewhat larger than with a conventional test pattern because of the limitations imposed by the QL's 256 vertical line resolution in the full colour mode. A black bar on a white background appears at the top while a bright white rectangle with the word "Television" appears at the bottom.

Randomly composed music will play while the pattern is being displayed. If a sound through the TV adaptor is fitted to the QL the sound will play via the TV set. Pressing key s switches the sound on and off.

Colour bars with an overprinted menu of options appear when the program is first run. The pattern is selected by pressing c: b selects bars, g selects the crosshatch and e exits the program. The menu disappears as soon as one of the options is selected. You can switch between crosshatch, bars and the pattern. If a wrong key is pressed however the menu returns. Please note that the computer should not be in the upper case mode.

Entering the program should be straightforward - follow the listing. If you don't want the music leave out the procedure tune in line 840 onwards and instead of the word "tune" in line 260 put "LET i\$=INKEY\$(-1)". This waits until a key is pressed. For those who don't want to type it in I am willing to provide copies for $£ 2$ plus a blank microdrive cartridge to record it on. Send orders to RTL, West Towan House, Porthtowan, Truro TR4 8AX. Cartridges are at the owner's risk whilst in the post. The previously published Spectrum test pattern program is available at $£ 2$ including post - in this case a cassette is provided.

As a result of the relatively high resolution of its TV output the test pattern produced by the QL is much better than those produced by many other machines.

Program

[^0]"Television Test Patterns"\" By J. de Rivaz B.Sc.(Eng)" $\backslash \prime \prime$ (c) 1 August 1986" $\backslash \backslash$ "Press " \backslash " b bars" \backslash " c card""'" g grid" \backslash " s sound on/off" \backslash " e exit program" : OVER 0
210 REPeat control_keys
220 IF $\$ \$=$ " c " THEN card
230 IF $\$ \$=$ " b " THEN bars
240 IF $\$ \$=$ ' g " THEN $w=32$: grid
250 IF $\mathbf{i} \$=$ " e " THEN BEEP: STOP
260 tune : IF i\$<>"c"AND i\$<>" $\mathrm{b}^{\prime \prime}$ and $\mathrm{i} \$<>$ " g " THEN EXIT control_keys
270 END RĒPeat control_keys
280 END REPeat control_panel
290 :
300 DEFine PROCedure bars
310 REMark
320 FOR $\mathrm{j}=0$ TO 7 : BLOCK 64,255,j $\mathbf{6 4 , 0 , c (j)}$
330 END DEFine
340 :
350 DEFine PROCedure grid
360 REMark
370 SCALE 255,0,0
380 spacing $=27$
390 PAPER 0 : INK 7 : CLS
400 FOR $n=$ spacing to 360 STEP spacing
410 LINE n,0 TO n, 255
420 IF $n<255$ THEN LINE $0, n$-spacing/4 TO 512,n-spacing/4
430 END for n
440 END DEFine
450 :
460 DEFine PROCedure card
470 REMark
$480 \mathrm{w}=32$: grid
490 REMark border
500 REMark
510 FOR $i=0$ TO 1
520 FOR $\mathrm{j}=0$ TO 15
530 BLOCK $w, w / 2, j * w, 1 *(255-w / 2), c(j)$
540 IF $\mathrm{j}<15$ THEN BLOCK $w, w / 2,1 *(512-\mathrm{w}), \mathrm{j} * \mathrm{w} / 2, \mathrm{c}(\mathrm{j})$
550 END FOR
560 END FOR i
570 CIRCLE 190,128,76
580 REMark colour columns
590 REMark
600 FOR $m=0$ TO 1 : FOR $n=0$ TO 7 : BLOCK $40,20,90+m * 292,47+n * 20, c(n+8):$ NEXT $n:$ NEXT m 610 REMark white column
620 REMark
630 BLOCK 40,108,200,72,7 : FOR $\mathrm{i}=0$ TO 1 : BLOCK $40,1,200,125+i+i, 0$
640 REMark pulse and bar
650 REMark
660 BLOCK 69,10,222,28,7 : BLOCK 2,10,230,28,0
670 REMark top and bottom arrows
680 REMark
690 INK 2 : FOR $\mathrm{i}=0$ TO 237 STEP 237 :FILL 1: LINE 180,255-i TO 188,247-i TO 197,255-i TO 180,255-i: FILL 0 : FILL 1:LINE 188,247-i TO $180,237-$ - TO 197,237-i TO 188,247-i:FILL 0
700 REMark side arrows
710 REMark
720 FOR $i=0$ TO 362 STEP 362 : FILL 1 :LINE $\mathrm{i}, 120$ TO $8+\mathrm{i}, 128$ TO $\mathrm{i}, 137$ TO $\mathrm{i}, 120$:FILL 0: FILL 1:LINE $16+\mathrm{i}, 120$ TO $16+\mathrm{i}, 136$ TO $8+\mathrm{i}, 128$ TO $16+\mathrm{i}, 120$:FILL 0
730 REMark gratings column
740 REMark

750 BLOCK 40,108,272,72,0
760 FOR $\mathrm{j}=1$ TO 4 : FOR $\mathrm{i}=0$ TO $9-(\mathrm{j}=2) * 5-(\mathrm{j}=3) * 7-(\mathrm{j}=4) * 7$: BLOCK $2 * j, 27,272+i * 2 * 2 * j, 45+j * 27,7:$ NEXT $i: N E X T j$
770 FOR $i=0$ TO $1:$ BLOCK $40,1,272,125+i+i, 0$
780 BLOCK 40,1,272,126,7
790 REMark name
800 REMark
810 PAPER 7 : INK 0 : CURSOR 160,211 : CSIZE 3,1 : PRINT
" TELEVISION "

820 END DEFine

830 :
840 DEFine PROCedure tune
850 REMark
860 REPeat compose_tune
870 length $=$ RND (5 to 20) : cycle_length $=$ RND (3 TO 5) : variation = RND (5 TO 10)
880 DIM notes(length, 1) : DIM notes 1 (length)
890 FOR $n=0$ TO length : LET notes($n, 1)=$ RND (0 TO 255):LET notes $1(\mathrm{n})=$ notes $(\mathrm{n}, 1):$ LET notes $(\mathrm{n}, 0)=2 *$ RND (1 TO 6)
900 FOR vary $1=1$ TO variation

910 FOR vary $1=1$ TO variation : notes(RND(0 TO length $), 1$) $=$ RND (0 TO 25)
920 FOR play_tune $=0$ TO cycle_length
930 FOR $n=1$ TO length
940 LET $\$ \$=$ INKEY $\$: J F i \$=" s$ " THEN BEEP : $s=s=0$
950 IF i\$<> "" AND i\$<>"s" THEN EXIT vary1
960 IF $\mathrm{s}=1$ THEN EXIT n
970 BEEP 0,notes($\mathrm{n}, 1$)
980 LET i\$ = INKEY\$(notes(n, 0)): IF $\mathbf{i} \$=$ "s"THEN BEEP : $\mathrm{s}=\mathrm{s}=0$
990 IF i\$<>"" AND i\$<>" ${ }^{\prime} s^{\prime \prime}$ THEN EXIT vary1
1000 END for n
1010 END FOR play_tune
1020 END for vary
1030 FOR $n=0$ TO length : notes $(n, 1)=$ notes $1(n)$
1040 END FOR vary 1
1050 BEEP
1060 IF i\$<> "" THEN END DEFine
1070 END REPeat compose_tune
1080 BEEP
1090 END DEFine

Modern Receiver Circuitry

Part 6: SAA5000 Remote Control System

J. LeJeune

For the majority of people TV viewing is a passive occupation. Armchair detectives, sportsmen, naturalists, politicians, quiz contestants and those who just want to be entertained are frequently happier if they don't have to leave their armchair to operate the set's controls. Remote control provides this facility, and in this concluding instalment in the present series we'll be looking mainly at the Mullard SAA5000 remote control system.

Development of Remote Control

Early remote control units were wired to the receiver by a long and troublesome cable. An early Philco system however used a flash of light from a pocket torch to operate the motorised turret tuner in a sequential selection of the two channels then available - older readers

Fig. 1: Transmitter keyboard and encoder.
may recall this "Selectaflash" arrangement. Ultrasonic remote control systems first made their way here from the Continent: though they had drawbacks such as spurious responses to rattling keys and coins, aerosol squirts and chattering budgerigars they gave added facilities and freedom from the tethering cable. Ultrasonic systems are slow however and provide only a limited number of functions. The possibilities offered by infra-red light as the communicating link rapidly pushed it into favour. Infrared remote control systems are capable of a higher degree of sophistication, greater speed of response, allow smaller handsets and have reduced battery consumption compared to their ultrasonic predecessors.

Remote control systems are currently beginning to resemble data transfer links. Microcomputer chip technology is taking over, with hardware being ousted by software. Such systems provide an even wider range of facilities. A suitably equipped VCR can be controlled via the TV set, increased sound functions can be added and more teletext features. The systems most likely to confront the service engineer however are those based on the SAA5000 series of integrated circuits, with an infra-red transmission link and mixed digital and analogue control outputs in the receiver.

Transmitted IR Signals

The remote, hand-held transmitter unit uses an SAA5000A integrated circuit to translate a keyboard input to a series digital code. Fig. 1 shows a typical arrangement. The SAS5000A can be operated with up to 36 keys in a 6×6 matrix. Pressing a key connects one of the i.c. pins numbered 4 to 9 to one of the pins numbered 10 to 15 . The full 36 keys are seldom used. 32 is the average for an eight-channel colour set with teletext and 20 for the same set without teletext. The output from the i.c., at pin 16, is a repetitive 24 -bit data sequence (see Fig. 3).

The zeros and ones in the data output from the chip are represented by 4.7 msec long pulse periods which differ

Fig. 2: Output pulse trains for "zero" and "one" bits.

Fig. 3: Typical 24-bit command signal.
from one another in the position of the second negativegoing pulse: Fig. 2 shows the zero- and one-bit pulse outputs. The bits are not transmitted in their initial binary data form because of the characteristics of the infra-red link which wouldn't tolerate a continuous stream of the same bits (this would result in the transmitting and receiving diodes being continuously on or off, a condition that would cause a heavy battery drain and amount to the handset being in effect switched off). To remove the "d.c. component" the transmitted zeros and ones are encoded in the manner shown in Fig. 2. Pulse-position modulation is used: a zero data bit sets the clock-pulse counter to produce a second pulse one clock-pulse period after the initial start pulse, while a one data bit sets the clock-pulse counter to produce a second pulse four clock-pulse periods after the start pulse.

The transmitter handset keys shown in Fig. 1 are numbered to help identify which two SAA5000A input pins are being connected: key 126 for example links pins 12 and 6. Pressing a key causes the binary code for the pin combination to be passed to the modulator section of the chip. This converts each zero and one bit into the appropriate pulse train and assembles the 24 -bit command signal sequence - see the example shown in Fig. 3.

The message section of the command signal has five bits. It's preceded by a seven-bit "framing code" which always marks the start of a command. This twelve-bit sequence is then inverted - zeros become ones and vice versa - to complete the 24 -bit command signal. A com-
mand takes 113 msec to transmit and is repeated for as long as the key is depressed. Should a key be released before the end of a command sequence the transmission continues until the sequence has been completed. The presence of the inverted section of the sequence means that there should always be an equal number of zeros and ones in the command. This enables a simple type, of error detection arrangement to be used in the receiver - in the event of an error, i.e. the received command does not contain an equal number of zeros and ones, the receiver ignores the command.

The use of pulse-position modulation means that the output from the modulator in the SAA5000A chip consists of 24 pairs of short pulses, zero data bits being represented by a closely spaced ($783 \mu \mathrm{sec}$) pair of pulses while one bits are represented by a more widely spaced pair (3.13 msec). The time duration of these short pulses is further reduced by differentiation before being clipped and applied to the infra-red light emitting diode drive circuit. Three IR diodes are generally used, arranged to produce a wide conical beam to allow for considerable misalignment between the handset and the receiving diode. Each IR diode passes slightly over 7A peak, but the on period is only $5 \mu \mathrm{sec}$. The average power consumption is thus very low, the duty cycle of the on:off periods being 1:470. This gives an average current for all three diodes in parallel of only 15 mA .

Remote control transmitters also incorporate some method to indicate that the unit is actually transmitting usually a red LED triggered by the output from the SAA5000A. Some have a low battery voltage warning as well. The latter is often in the form of a low-frequency oscillator that's held off by a zener diode which conducts as long as the battery voltage is acceptable. When the battery voltage falls below the acceptable level the zener diode ceases to conduct and allows the oscillator to operate, flashing the LED.

Remote Control Receiver

The pulsating infra-red output from the transmitter is detected by one or more photodiodes that are sensitive to infra-red radition. The signal produced by the detector is first fed to a low-noise amplifier which raises the level of

Fig. 4: Block diagram of the SAA5012 decoder chip.
the received pulse-train commands to approximately 5 V peak-to-peak for feeding to the decoder module. Some preamplifer circuits use a standard low-noise operational amplifier arrangement with an a.g.c. level adjustment to set the sensitivity for the local conditions; others employ discrete component circuitry to achieve the same ends. The circuitry involved is straightforward and should cause no problems.

The Decoder Chip

The matching decoder in the SAA5000 series is the SAA5012 (see Fig. 4), a 24 -pin MOS device with low power drain. It has a built-in clock oscillator, a command decoder, digital-to-analogue converters, a four-bit binary counter with latching and stepping inputs, a data amplifier and a "limited data" output for synchronising teletext decoder commands, also a flip-flop to control a TV set's main power supply - the on/standby switching.
The received 24-bit command signal is first decoded into binary form and the framing code is detected. Finding that the framing code is present simply provides a "thumbs-up" to tell the decoder that the next five bits contain a message. The message code is then translated into action by the decoder and the appropriate output is produced.

Channel Change Commands

A programme-change command will be loaded into the latched store in binary form: for programme one the output at pins $3,4,8$ and 21 will be 0000 , for programme eight it will be 0111 and so on. This four-bit code is passed to other circuitry - a "one of sixteen decoder" - for further decoding into one tuning output of the sixteen possibilities. It can also go to a seven-segment display decoder-driver. There may in addition be detection logic for AV switching, a.f.c. defeat, and possibly audio muting to quell noises from the loudspeaker during channel changing. The system allows for direct selection of the desired programme via the handset or sequential selection of programmes via a pair of pushbuttons on the receiver's control panel - one for upward stepping and the other for downward stepping. The latter method of programme selection is intended primarily for use during initial setting up of the receiver on installation, or for emergency use should the transmitter be inoperative. Upward stepping is achieved by pulsing pin 20 of the SAA5012 chip to 5V: downward stepping is achieved by pulsing pin 20 to 5 V and pin 2 to 0 V simultaneously.

Resetting and Analogue Controls

In receivers using a system like this the mains power switch carries a pair of auxiliary contacts which momentarily make when the shaft of the on/off switch is pushed fully in. These contacts serve to reset some of the logic circuits in the SAA5012 to ensure that the receiver comes on with programme one selected and the four analogue controls normalised. "Normalised" settings of the four analogue controls (volume/brightness/contrast/colour) are provided by preset controls which can be mounted on the control panel or elsewhere in the receiver.

Remote control of volume/brightness/contrast/colour is achieved by digital-to-analogue conversion of the outputs from four separate counters driven by the clock pulses. When an analogue up or down command is received the

Fig. 5: Conversion of a pulse-width modulated "analogue" output from the SAA5012 to a d.c. control voltage.
appropriate counter is driven by the clock pulses in whichever direction it is instructed. The counter's six-bit binary output is then converted to analogue form, controlling the pulse width of a squarewave derived from the clock oscillator. Since a six-bit binary signal will provide a maximum count of 64 , including zero, the analogue control voltages vary in steps totalling 64, with the normalised setting at the half-way point - see Fig. 5(a).

The pulse-width modulated outputs at pins $10,11,14$ and 15 of the SAA5012 chip are of 12 V p-p amplitude. These are converted to d.c. control voltages by integration - see Fig. 5(b). With a small pulse width the charge on the capacitor is not very large. With equal pulse on/off times (32:32) the integrator's output will reach half the amplitude of the p-p squarewave, i.e. 6 V . It will rise higher as the pulse's on time increases. Integration in this way gives a small time-constant to the rise and fall of the d.c. output. Further speed control of the analogue functions can be obtained by using pin 12 of the i.c., but for most applications this pin is grounded.

Pin Round Up

The input at pin 17 is obtained from a teletext decoder. It's at 0 V when teletext is in use, freezing the programme selection counter and the brightness, contrast and colour analogue controls - remote volume control is still possible however. For a normal TV picture display pin 17 will be at 5 V . Audio muting is included with the analogue controls simply because it's operated from the switched 12 V supply.

Pin 6 has an output from the flip-flop, which is reset by an input from the pair of auxiliary contacts on the receiver's on/off switch. This reset signal makes pin 6 go low, allowing the main power supply to energise the receiver. Receipt of a standby signal drives pin 6 high.

As previously mentioned some of the analogue controls are disabled in the teletext mode. Programme selection cannot be used either, as the numerical part of the keypad is required for page selection. This data is decoded by the SAA5012 chip in the normal way but is passed to the teletext module via pin 5 - with pin 7 supplying clocking information to synchronise the teletext unit with the incoming command data.

On receipt of any command pin 16 goes low. This output is used to light a LED to indicate that a message has been received, telling the user that this portion of the remote control system is functioning correctly.

Remote Control Interfacing

The SAA5012's analogue control and programme selection outputs require further processing before they will interface with the rest of the receiver. The teletext side is

Fig. 6: Analogue control interfacing circuits.

Fig. 7: Programme selection and indication system.
a subject all of its own and can't be covered here.
As we've seen, the outputs from pins 10, 11, 14 and 15 consist of pulse-width modulated positive-going squarewaves. After integration (see Fig. 5) the d.c. control voltage is passed via a buffer amplifier to the receiver's control circuits - d.c. voltage control is used with modern sound and video signal processing i.c.s. A buffer amplifier is necessary to provide a degree of current gain and any control characteristic shaping that may be called for where a logarithmic law is required for example. Only linear amplification is normally required however. Fig. 6 shows the kind of buffer circuits used - (a) shows a simple emitter-follower and (b) an arrangement used to provide higher gain and a greater control range.

Channel Selection

Since the programme selection command outputs from the SAA5012 are in binary-coded decimal (BCD) form further decoding is necessary. This form of output is used because it's the accepted type of drive for a "one of sixteen" decoder chip and for seven-segment indicator decoder chips - if you like to put it this way, BCD is the common language for these devices. In a sixteen-programme receiver all four lines are used (see Fig. 7), the ABCD inputs to the "one of sixteen" and the sevensegment driver decoders being connected in parallel. The seven-segment decoder is a non-standard type that decodes 0000 as $1-0000$ is normally the BCD equivalent of zero. This non-standard arrangement is used to obtain sixteen channels from a four-line counter - the BCD equivalent of 16 is usually 10000 , which requires five lines. A standard "one of sixteen" decoder can be used but it's more usual to employ a special type designed to switch the

33 V tuning voltage through to one of the outputs - some standard "one of sixteen" decoders will not stand this voltage. Fig. 7 shows a pair of decoder chips in a typical arrangement. The details tend to vary between manufacturers and even between different chassis in one manufacturer's range. With an eight-programme receiver the D output is not used and the decoder D inputs are grounded.

Developments

Similar remote control systems abound, but the SAA5000 is a good example of its type. The increasing use of microcomputer chips further widens the range of functions offered by remote control systems. Devices like the Philips MAB8410 and the Texas TMS1000 series are already known in the TV trade. With a bit of expansion you could also use the remote control handset to control the room lighting, cat-flap, teasmade and so on. Developments in this area of TV circuitry are breaking down the divisions between TV and other consumer electronics and electronically-controlled equipment.

Cable '86 Report

Cable '86, the fourth Cable and Satellite TV Exhibition and Conference, was held at Brighton on July 8-10th. How things can change! Back in 1983 the accent was very much on cable TV; Cable ' 84 and Cable ' 85 saw a swing towards MATV systems while this year's show was mostly concerned with the TVRO market. You get a lot more for your money with a TVRO installation as the months go by: suppliers are striving to keep their packages down to the $£ 1,000$ levell whilst incorporating remote control for channel selection, also polarisation and dish position. Offset dishes are gaining in popularity. Their improved efficiency along with the development of quieter LNBs makes for much smaller packages.

There were few novelties or surprises. We were a bit startled however when Anderson Scientific from the USA set up a card table and 2 ft dish on the tarmac of the "dish farm" down on the beach and within seconds of their arrival displayed snow-free Music Box signals - to the consternation of the engineers on the signals distribution side who'd been struggling with their 3 m dishes. Sat-Tel showed a 1.4 m rectangular offset receiving dish which is unpriced as yet. Unlike the elliptical offset dish the square dish gives equal performance with both vertically and horizontally polarised signals. It's said to provide the same performance as a 1.8 m circular dish and to have a very low sidelobe response. SATVRN demonstrated clear pictures from the Intelsat V satellite which carries three German channels from a position low on the horizon at $60^{\circ} \mathrm{E}$. They were using a 1.8 m dish. One of this satellite's channels is a Musicbox programme that could become a second choice to our own Music Box.

DBS seemed to be something of a dirty word at the show. Even allowing for the deferred launches due to recent rocket failures neither the broadcasters nor the public showed much enthusiasm. More than one exhibitor suggested to us that the future lay with clean PAL signals and financing by advertising revenue. "Watch out for Luxembourg's SES" one of them said knowingly.

Cable ' 87 will be held at Brighton on June 2nd-4th 1987.
H.P.

Sharp VC9300

Reel motor faults are well known on these machines (occasional refusal to either wind forward or backwards, at first "curable" by pressing the opposite button, slowly leading to complete refusal to work). Take care before replacing the motor however: the plastic sleeve on the motor shaft can sometimes ride up, causing very similar results. Listen for the motor whilst the machine isn't rewinding. If it's running, check that the sleeve hasn't ridden up the shaft - even an eighth of an inch is enough and check that the jocky wheel isn't worn (there's no clutch, so something has to wear!). If the motor doesn't start up (common), replace it. Expensive aren't they? Incidentally, a motor out of the unit will normally run off the current supplied by an Avo on the ohms range, a useful check if start-up is the problem.

Intermittent stopping in any mode of operation (play, record, rewind, etc.) is often caused by the trip counter. This is because the take-up reel drives the motion detector via a belt, a further belt driving the counter from the detector. A worn gear in the counter can thus stop the motion detector, causing the shut down. A good tip is to reset the counter before giving the machine a test. If it always stops at a certain number you've found the cause of the fault - check by removing the counter belt before ordering a replacement. In a rare burst of honesty I must confess to knackering a counter mechanism: if you don't line up the reset button with its hole when replacing the front panel . . .
H.A.

JVC HRD140

This machine had three faults that at first seemed to be unrelated. The drum speed was varying, the pinch roller was turning in a most erratic manner, and the resulting picture suggested that the video heads were dirty - though curiously enough there was video coming through on the top two inches of the monitor's screen. The common factor came to light when I slowed down the head drum with a finger: what seemed to be the Channel 4 test card on my test tape appeared upside down and back to front at the top of the screen. You've guessed it - the heads were spinning backwards. A check in the drum servo circuit revealed that the drum servo error voltage that's fed to the drum motor amplifier was virtually non-existent instead of the 2.8 V the manual said it should have been. Zener diode D408 (5.1V) turned out to be leaky. C.H.

Ferguson 3V23

Frame jitter or frame roll on playback with VHS machines is normally due to a problem in the area of the left-hand tape roller and shows up as part of the f.m. signal envelope being missing. Causes can be the guide roller itself, the guide roller base assembly not sitting correctly in the vee block, the base assembly being bent in such a way that the tape is not presented to the heads correctly, or insufficient back tension. The other point that can give rise to this sort of problem is incorrectly set head switching points.

The machine concerned was operating correctly in all these respects however. The f.m. signal envelope was as
perfectly formed as any I've seen, while altering the back tension by manipulating the cue head that acts as a backtension arm produced no improvement. When the picture did stop jumping for a few seconds I could see on the monitor, with the height altered, that the switching points were spot on. The only clue was that the picture had a slightly weakish loak about it, as though the video heads were worn. Since this could conceivably cause the field jitter a new drum was fitted, to no avail - furthermore the picture quality was still poor.

The search moved to the luminance panel, where test point 6 showed good line sync pulses but no field pulses, their absence being very noticeable when the machine was returned to the E-E mode. Tracing through the signal path led us to C44 ($33 \mu \mathrm{~F}$) which, when checked with an ohmmeter, seemed to be low in value. After replacing it, refitting the original drum, and resetting the previously twiddled (in frustration) left-hand guide pole we were rewarded with a rock steady picture.
C.H.

Ferguson 3V29

The complaint was failure to record, but the actual fault was a very overloaded E-E video signal with good sound. The signal entering IC201 on the bottom luminance panel, at pin 26, was good but nothing came out at pin 5 . Since all the relevant d.c. voltages around the i.c. seemed to be correct there appeared to be a good case for changing it. Needless to say this proved to be a fruitless exercise. Close comparison between the conditions in a good working machine and the faulty one eventually showed that the signal at pin 26 of the good machine sat on a d.c. level of 6 V while the signal in the faulty machine was sitting on 4 V d.c. Further checks showed up what should .have been obvious from the start: the playback 9 V line was present in the E-E mode, with the result that Q208 was switched on. The playback 9 V line was there because Q103 was on: the culprit eventually turned out to be Q107 (2SB643) which was leaky.
C.H.

Ferguson 3V36

It's quite common on these machines for the mechacon microcomputer chip IC201 to "crash" and cause odd faults. Switching the mains supply off and on usually provides a cure. On this occasion however the machine wouldn't come out of standby after doing this. Checks around IC201 revealed that the clock oscillator was running, the supply was $o . k$. and the power switching signal was reaching the chip, but it wasn't taking any notice. The reset signal was over so quickly that it couldn't be seen on the scope, so a few d.c. checks were made in the reset pulse generator circuit. Zener diode D203 (5•1V) turned out to be leaky.
P.B.

Sharp VC3300

I had quite a few lightning damaged items after a thunder storm. One of them was a VC3300 - the strike had come along the mains, destroying the mains adaptor. When the machine was powered via the bench supply the loading,
reel and capstan motors were all going backwards. The mechacon F / R (forwards/reverse) line was found to be permanently high, but quite a few devices on three different boards are connected to it. After a lot of disconnecting pins and plugs and sockets the capstan F/R switch chip IC711 was found to be faulty.
P.B.

Sanyo VTC5000

This machine would play prerecorded tapes all right but wouldn't play back its own recordings without having to adjust the tracking control from the click position. It had a small subpanel called the "control pulse rec/play circuit" mounted piggy-back on the main servo panel SV1 (this subpanel is not fitted on later versions). The fault turned out to be on this subpanel, which has to be unsoldered from the main servo panel before you can work on it. Oscilloscope checks revealed that the tracking pulses to pin 8 of IC4501 were of reduced amplitude and incorrect shape. The culprit was C 4505 , a tiny $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ working capacitor which was virtually open-circuit. Replacement restored normal operation.
R.T.R.

Sharp VC9700, VC381, etc.

When replacing the cassette lamp, beware - it's not the usual $12 \mathrm{~V}, 60 \mathrm{~mA}$ type, the rating being $5 \mathrm{~V}, 100 \mathrm{~mA}$. We found this out the hard way with a Philips VR501/79, which in New Zealand is a Sharp VC9700 clone. A normal VHS lamp produced incorrect operation of the microcomputer chip when the machine was cold. The reason for this is that the lamp current flows via R872-5 (four 270Ω resistors in parallel), the voltage drop across these resistors providing a feed to IC802. The correct lamp gives 8 V but a $12 \mathrm{~V}, 60 \mathrm{~mA}$ lamp produces 4 V which makes IC802 unreliable.
B.W.

Panasonic NV300/NV333

One of these machines had the not uncommon fault of failure to record the sound. This time it wasn't caused by the bias oscillator transistor Q4014 failing to start, and
we'd already done the modification of bridging out its emitter resistor R4049. To complicate things the voltages around Q4001 and Q4002, which switch the audio head from record to playback, were all wrong. The culprit turned out to be the STR1096 regulator IC1001 in the power supply. Its 9 V output had gone up to $10 \cdot 8 \mathrm{~V}$, which was enough to upset the bias on Q4001/2. Why such a small increase in the voltage on the 9 V rail should completely upset Q4001/2 is hard to see, but it did. Much time had been spent changing audio transistors to no avail before the regulator was changed.
B.W.

Ferguson 3V44

The complaint with this machine was no operation. We inserted a cassette which the machine promptly swallowed, but it wouldn't run in any mode. Neither would it eject the cassette. Attention was turned to the microcomputer chip IC601. Using a logic probe we eventually discovered that pin 32 hovered at $3 \cdot 2 \mathrm{~V}$ regardless of the position of the cassette housing switch. The cause was D628 which was leaky: instead of clamping the logic level at pin 32 to 5 V it was confusing the microcomputer chip by producing an indeterminate logic level. Replacing the diode restored normal operation.
K.N.B.

Sharp VC9300

The ticket said "deck service", the fault being the usual Sharp take-up one. I tackled the problem by removing the supply/take-up spools then cleaning and lightly lubricating the shafts. The idler was replaced and the grooves in the chassis it sits in were treated to a smear of silicone grease. All surfaces were cleaned and the tape path was given a good clean up. After doing all this and carrying out a functions check I found that the machine wouldn't reverse search. At least it wouldn't with a tape inserted. Without a tape the machine would reverse search and there seemed to be plenty of torque. Replacing the reel motor cured the fault. We get a lot of these Sharp machines with this type of fault and are forced to reflect on how badly off we would all be without "stock problems" like this. S.L.

TV Fault Finding

Reports from Richard Roscoe, Alan Shaw, Roger Burchett, J. R. Armagh, Geoff Fardon and L. Dinsdale

Decca 80 and 100 Chassis

In the May 1983 issue I reported that the bulk of the problems we'd been having with our Decca 80 and 100 series chassis had centred around failure of the triplers and line output transformers, either singly or both together. Up to about eighteen months ago the pattern remained broadly the same. Well over half the calls were to dead sets with blown mains fuses - the previous report gave the procedure we adopt in such cases.

Since then, as the sets have got older, there's been a change in the pattern of stock faults. We now have to deal with many more dry-joints associated with the numerous plugs and sockets on the PCBs. The plugs and sockets on the line output and convergence panels have always been suspect of course, due to the high currents they carry and the heat generating components mounted close to them. But even such cool running and lightly loaded connectors as those on the i.f. panel are now no longer above
suspicion. Field jitter, colour flashing, hum bars, line shake, low gain, poor sync, field roll on picture change and many more obscure symptoms have been encountered during the past year or so and traced to the poor condition of PCB connections.

The first few faults of this sort we came across were laboriously tracked down to the individual cause. We soon came to the conclusion however that each particular fault we were dealing with was only the tip of the iceberg. A much better approach is to strip out each PCB (easily done in these chassis), then systematically resolder all the plugs and clean all the sockets on each one. This takes only half an hour or so and avoids a lot of fruitless prodding and tapping.

A component that's now giving a lot of trouble in the 100 series chassis is the 37 V supply reservoir capacitor C407 ($680 \mu \mathrm{~F}$). The usual symptoms are weak line sync or
line pulling on picture content. We find it worthwhile changing this capacitor every time. Even if it seems o.k. electrically it's usually in a sorry state physically due to its closeness to the hot EW modulator diodes.
R.R.

C-sick Skantics

A monochrome Skantic receiver, type 1241, had a rolling picture when first switched on. It would settle down after half an hour, but the field lock was still touchy. Now if the line or field sync is weak in a Skantic set our first thought is always the power supply decoupling. Scope checks showed that all the main supply lines were fairly smooth, but when we looked at the video output from the i.f. can it had a definite hum component. Inside the can were three fine examples of the Red Breasted Decoupler (Genus Tantalum), C515, C518 and C530, all $10 \mu \mathrm{~F}$, a species widespread in Scandinavia and notoriously fickle. For future reliability we replaced all three, and were rewarded with not only solid field lock but also a marked improvement in picture contrast.

Another of these Skantic breeds worth noting is the Yellow Bellied Axial, whose natural habitat is the switchmode power supply of Skantic colour chassis types 4751, 5151 and 5661. This power supply was covered in detail in the January 1982 issue of Television. There are two of these electrolytics in the circuit, $\mathrm{CN} 04(10 \mu \mathrm{~F})$ and CN 05 $(4 \cdot 7 \mu \mathrm{~F})$. Now that these sets are getting a bit long in the tooth, in almost every example we come across one or both of these capacitors is in a bad way. The result is low or, worse, high output voltages with poor regulation. R.R.

Plustron Palladium C14ENS

This set was a real stinker and had apparently led many engineers a merry dance. I bought it when my local co-op closed down. The only certainty was that the tube had plenty of life left - it hadn't worked long enough to wear out, having been in and out of two or three houses and back to the workshop a number of times. All this travelling hadn't done the cabinet any good, and the line hold control knob (it's a customer control, and it needed it!) was missing. Still, it was cheap and I didn't have any qualms. I should have done!

On soak test there was first loss of colour then loss of line lock. Left to itself it had a fit of the sulks and after a sharp crack it went off. After finishing the set I was doing I investigated and found a fuse blown, caused by the line output transistor being short-circuit. A new fuse and BU208A were fitted but the result of switching on was nothing . . . While checking around the line oscillator it came on again - and stayed on all day. Next day we had a repeat performance. On the third day the set changed its tactics. When it did start up it screamed at me and stopped before I could switch it off. Fit a new BU208A this is beginning to get expensive.

To shorten a long story, once the set started it performed well, though the line hold was still drifting. The merest touch with a meter would start it, either correctly or with painful protests from the line output stage. There eventually came a quiet day and, armed with infinite patience, it was down to component changing. Out came the transistors, resistors and then the capacitors in the line driver and oscillator stages. In went new ones until we came to $\mathrm{Cd} 07(0.047 \mu \mathrm{~F})$ in the line oscillator circuit (feedback coupling). When this was changed the set started up nicely and is still going strong. Cd07 checked all
right out of circuit of course. I'm not putting the set out to a customer just yet however. Anybody want to buy a set with four careful lady owners?
R.B.

Decca 70 Series Chassis

An epidemic of tuning problems on these sets has broken out in our area. The culprit is the tuning voltage stabiliser feed resistor R108 ($33 \mathrm{k} \Omega$). Sometimes the tuning drifts off then corrects itself a few times before finally succumbing.
R.B.

Thorn 9000 Chassis

A dead set due to a short-circuit Syclops transistor proved quite a headache as each replacement R 2540 transistor died either immediately or after several hours. We eventually found that R419 ($33 \mathrm{k} \Omega$) which biases the base of the driver transistor was going open-circuit intermittently - it had a loose end cap.
A.S.

Hitachi NP9A Chassis

Now and again 6 or 7 would show on the digital display when the channel 5 or 6 button on the remote control handset was pressed. The i.c.s and one or two transistors on the remote control receiver/decoder panel were tried without success. I then decided to replace the 4.43 MHz crystal, using the old-fashioned, big reliable type - one obtained from a Pye 725 test panel. We now got standby only. The "reliable" crystal was leaky! Fitting another one cleared the fault.
J.R.A.

Bush T20 Chassis

There was a rush of sound then the set went dead - power supply o.k. No it wasn't 4R16 (910 2) in the 12 V regulator circuit! 4 C 19 in the line oscillator start circuit was bridged with a $5.6 \mathrm{k} \Omega$ resistor to ensure that the line oscillator was working but this made no difference. Neither did fitting a known good line output stage panel, so attention was turned to the scan drive panel. At this point I did something not normally advised - I overrode the trip circuit by placing a bridge across 5 C 4 . This provided a clue $-4 R 9(330 \Omega)$ in the field output stage started to burn up. Checks here revealed that one of the field output transistors (4VT4) was leaky while the driver transistor 4VT2 was short-circuit. Replacing these transistors and 4 R 9 plus removal of the link across 5C4 restored a good picture.
The fault with another of these sets was a background drone. $3 \mathrm{C} 75(0.47 \mu \mathrm{~F}$ electrolytic) in the base circuit of the constant-current transistor 3VT15 had gone almost opencircuit.
G.F.

Philips G11 Chassis

This set had a negative picture. The waveform at pin 15 (luminance output) of the vision detector module U5600 on the i.f. panel was found to be negative-going instead of positive-going. Changing the TCA270S chip within the module cured the fault.
G.F.

Bush T26 Chassis

The trouble with this set was no colour. The colourdifference signals were present at the outputs from the TDA2522 chip but were of low amplitude - they could be
seen to vary slightly when the colour control was adjusted. A new TDA2522 i.c. was tried, and the usual troublesome capacitors in this area were replaced (C84 - use a polyester type - C83, C85 and C87). All to no avail. The hairdryer was then brought into play. When the area around VT5, i.e. the sandcastle pulse generator circuit, was heated the monochrome picture first went darker than usual then colour appeared. Replacing VT5 made no difference: the culprit eventually turned out to be C58 (330 pF) which was intermittently open-circuit.
G.F.

Thorn 9000 Chassis

After replacing the tripler we were confronted with an uncontrollable brightness fault. We decided to check around the tripler circuit before getting involved in the

RGB output stages. R725 ($180 \mathrm{k} \Omega$) and R724 ($22 \mathrm{k} \Omega$) in the beam limiter circuit were both found to be opencircuit, but the fault was still present after replacing them. Diode W722 measured o.k. but when the parallel capacitor C729 $(0.1 \mu \mathrm{~F})$ was checked out of circuit it was found to have a $3 \mathrm{k} \Omega$ leak. Fitting a replacement cured the fault. These oblong, white capacitors are usually extremely reliable - this is the first time we've had one break down.

We had another brightness fault on one of these sets recently. This time the first anode voltage was high and the preset control R721 had no effect. R722 ($2 \cdot 2 \mathrm{M} \Omega$) on its earthy side turned out to be open-circuit.

No sound in another of these sets was traced to R141 (470Ω) being open-circuit. This resistor provides the supply for the SN 76666 N intercarrier sound channel chip IC2.
L.D.

Long-distance Television

Roger Bunney

Reception conditions during June were quite remarkable. Sporadic E propagation produced excitement for many, with a very active start to the month but tending to die away later on. Very warm weather caused by stationary high-pressure systems produced tropospheric openings during the middle and final two weeks of the month, with signals in Band III and at u.h.f. - generally of "super DX" quality.

The first tropospheric opening occurred on the 14th, giving Band III/u.h.f. signals in south, central and eastern UK from Holland, Denmark, W. Germany and France there had been improved French/Benelux signals in the south and central areas over the $12 / 13$ th. Tropospheric conditions in Scotland improved over the $15 / 16$ th, when Derek Juniper (Arbroath) received good signals from NRK (Norway) and W. Germany. A lull followed until the 19th when conditions again picked up, particularly in the north and eastern areas, with more Norwegian, Denmark, German (W. and E.) and Benelux reception. The most active period seems to have been the 19th-23rd, though tropospheric enhancement continued on and off, varying from area to area, until July 2nd - an unusual and difficult period to report in fact due to the regional variations. During the main peak period there were really
strong signals from E. and W. Germany, Denmark, Norway and the Benelux countries - Canal Plus from France was noise-free for most of the time!

Further reports of reception of the French TV5 service in the south and London areas have been received. Simon Hamer (Powys) sent in a very extensive report, including several E. German Band III and u.h.f. stations - a commendable effort considering the distance from the east coast. Simon's peak days were the 21st and 26th. In late June Swiss signals in chs. E9, E12, E24, E29, E31 and E34, also French TV6 service signals, were received at St. Leonards-on-Sea.

There seems to have been little 435 MHz ATV activity despite the latest lift. Cyril Willis (Downham Market) noted only two contacts between Dutch and UK stations. There are rumours that part of the $430-440 \mathrm{MHz}$ band could be allocated to commercial mobile radio: this could well end 435 MHz ATV if more activity isn't seen.

Overall then a rewarding period for tropospheric reception, enhancing an already busy SpE period. A small aurora was noted in Scotland on the 11th, giving the usual Norwegian Band I signals.

As far as SpE propagation is concerned much of the excitement was produced by the reception of Arabic signals. RTM (Morocco) was received on many days on ch. E4, though some confusion has been caused by a new country operating on this channel - RTT (Tunisia) from a site at Remada. We hope to obtain more details of this transmitter shortly. So care is necessary to check whether ch. E4 Arabic signals are from RTM, RTT or Bahrain. A further transmitter is now operating on ch. E3, from Abu Dhabi, UAE (Habshan, 1 kW e.r.p.). A pleasure to note stations opening in Band I rather than the reverse. The extensive $\mathrm{SpE} \log$ for the month is as follows:

Left: RTT Tunisia ch. E4 received by Michel Dubernat via SpE in France. Centre: Russian first programme news caption, received by Derek Juniper in Arbroath on ch. E2. Right: TV de Galicia test card received by Michele Dubernat in France.

TVE (Spain) chs. E2, 3, 4, TVE-2 E2; RAI (Italy) IA, B; RTP (Portugal) E3; + PTT (Switzerland) E2; ARD (West Germany) E2; TSS (USSR) R1; MTV (Hungary) R1, 2; TDF (France) LA: EPT (Greece) E3; RTT (Tunisia) E4; RTM (Morocco) E4.

MEV R1, 2, RTP E3; BRD E2, 3, ORF (Austia) E2; R1, 2, RTP E3, ARD E2, 3; ORF (Austria) E2a; CST (Czechoslovakia) R1; DFF (East Germany) E4; TVP (Poland) R1; RTS (Albania) IC; RTM E4. R2; ORF E2a; MTV R1, 2; SR (Sweden) E2; TVP R1, 2; CST R1, 2; TSS R1, 2, 3; NRK (Norway) E2; ARD E2, 4; RTS IC; JTV (Jordan) E3; RTT E4.

13/6/86 TVE E2, 3, 4; RAI IA, B; TVR R2; TSS R2.
14/6/86 TVE E2, 3, 4; RTP E3; RAI IA; TVE-2 E2; ARD E2.
15/6/86 RAI IA, B.
16/6/86 TSS R1; RAI IA; CST R1.
17/6/86 RTP E3; ARD E2; CST R1; TVP R2; TVE E2.
18/6/86 TVP R1, 2; TSS R1, 2; MTV R1; JRT E3; RTP E3; RTS IC; TDF L3.
19/6/86 RAI IA, B; JRT E3; TVE E2, 3: ORF E2a, 4; ARD E2; TDF L3; +PTT E3; CST R1, 2; NRK E3; TSS R1, 2, 3; EPT E3; JTV (Jordan) ch. E3 at 1050BST; TVP R1, 2; MTV R1; YLE (Finland) E3,4.
20/6/86 TVR R2; MTV R1, 2; TSS R1,2; RAI IA; TVE E3, 4. 21/6/86 TVE E2.
23/6/86 TVE E3; RAI IA; JRT E4; TSS R1.
24/6/86 RUV (Iceland) E3, 4; DR (Denmark) E3; TVE E2, 3, 4; RTP E3; RAI IA, B; ARD E2; MTV R1, 2 ; TVP R1; CST R1, 2; +PTT E3; ORF E2a, 4; JRT E3, 4; TSS R1, 2.
25/6/86 RUV E3, 4; RTP E3; TVE E2, 3, 4; MTV R1; DFF E4; RTT E4.
26/6/86 RTP E3; RUV E3, 4; SR E2, 3; NRK E2, 3, 4; JRT E3; TSS R1, 2, 3; CST R1; TVP R1.
27/6/86 SR E3; NRK E2.
28/6/86 TVE E3, $4 ;+$ PTT E2; RAI IA, B.
29/6/86 TVR R3; JRT E3; RAI IA, B; MTV R1, 2; TSS R1, 2; DR E3; ARD E2; TVE E2, 3, 4.
30/6/86 CST R1; TVP R1, 2; TSS R1, 2; MTV R1, 2; ARD E2; EPT E3.
1/7/86 RAI IA, B; TVE E2, 3; ARD E2; MTV R1, 2; TSS R1, 2; EPT E3.
2/7/86 CST R1; TVP R1; RAI IA; TSS R1, 2; MTV R1; ORF E2a; TVE E2, 3, 4.
3/7/86

TVE E2, 3 , 4, RTP E3,, RA1 IA; ORF E2a, 3 , TSS R1, 2; CST R1, 2; TVP R1, 2; SR E2, 3, 4; TVR R2, 3; ARD E2; MTV R1, 2; +PTT E3; Radio Tele Uno, ch. IA (Italian private station). RAI IA.
RAI IA; TVE E3, 4; CST R2.
JRT E3, 4; RAI IA; ORF E2a; TVE E3; EPT (Greece) E3. RAI IA.

Certainly an active month for SpE then! Several points arise. System L (France) colour bars on ch. L3 $(54 \mathrm{MHz}$ vision carrier) were logged on the 19th at 1142 BST most likely from Le Plessis-Robinson at only 16W. The Italian private station Radio Tele Uno was received several times on ch. IA: it has a distinctive test pattern with white/black squares across the top and a moving series of letters at the lower centre - I'm told this is an advertisement. The Czechoslovakian Fubk pattern was

NEW CONTINENTAL STANDARD TV!

YOKO MODEL F1

VHF/UHF SYSTEM B/G/I Operation £89.95

NEW FROM AERIAL TECHNIQUES -
the YOKO MODEL F1 $5^{\prime \prime}$ mono multiband TV for full Band 1, Band 3 and UHF TV/DXing coverage or for Continental travelling. This high gain chassis features System $B / G / 1(5.5 / 6 \mathrm{MHz})$ sound spacings for UK and Continental usage, switching is automatic between the various systems and with an exclusive sound muting (squelch) facility (cuts out the 'shash' in no signal conditions). The front panel includes a clear slide rule tuning scale, band change and other The integral controls with unique 'Band in use' different colour indicator LEDs. tuner via an internal 'booster' wideband amplifier to ensure optimum gain, tuner via an internal booster wideband amplifier to ensure optimum gain,
signal/noise over the wide tuning range.
Sound cutput is from an internal 3 " speaker or external 3.5 mm jack for earpiece
Sound cutput is rom an internal 3 speaker or external 3.5mm jack for earpiece or extension 160 hm speaker.
 external $12 v$ source (lead supplied) or via the supplied AC mains PSU. The attractively styled grey cabinet features a carrying handle doubling as a Stand, weighs just 2 kg and is a compact $4.6(\mathrm{w}) \times 7.6(\mathrm{~h}) \times 10$ (deep) inches. further technology innovation by AERIAL TECHNIQUES.
YOKO model F1 multiband VHFIUHF $5^{\prime \prime}$ screen TV (System B/G/I) £89.95 Carriage UK - £4.95; elsewhere FOA.
We are the specialist aerial company for all instaliations - domestic, fringe, distribution or DX. Our Catalogue al 65p tells you all, please include SAE with enquiries. TVRO satellite systems for 11 GHz supplied at very competitive prices; we are appointed dealers for SALORA and LUXOR Multi-standard TV's. For
catalogue send large stamped (22p) addressed envelope.
All prices inclusive of VAT
Delivery 7-10 days.
ACCESS \& VISA Mail and Telephone orders welcome.

AERIAL TEOHRNIOUES (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 0202738232.
logged (ch. R1) with a different identification, "DDK 2"any ideas? I understand that Rumania has reduced weekday programming to $2000-2200$ local time, with the test pattern often not seen until 1945.

I feel that the catches of the month were RTT and RTM on ch. E4, Ryn's reception of Aramco ch. E3 and Iran ch. E4, and Derek Juniper's reception of BFBS (British Forces TV, W. Germany) on chs. E23, E41, E48 and E51 at Arbroath during a tropospheric opening on June 28/29th.

The FY7THF (French Guiana) $50 \cdot 39 \mathrm{MHz}$ beacon (amateur band) was heard via multiple-hop SpE on June 2nd and 5th. On June 7th, SpE at 144 MHz gave two-way UK amateur contacts with Yugoslavia, Rumania and Hungary.

My thanks to the following for supplementing my own loggings during this active month: Roy Fussell (Torpoint), Bill Cotterhill (Tipton), Tony Privett (Basingstoke), Roger Pates (Northampton), Iain Menzies (Aberdeen), Dave Shirley (Hastings), Tim Anderson (St. Leondards-on-Sea), Cyril Willis (Downham Market), Gareth Foster (Middlesex), Derek Juniper (Arbroath), Keith Chaplin (Leicester) and Ryn Muntjewerth (Holland).

It seems that the next edition of my TV-DXing book, in a new larger format, will not be published by Bernard Babani (publishing) Ltd. till late next year.

From our Correspondents...

Michael Dubernat (France) has sent us a shot of "TV de Galicia" which he says is well received in France during tropospheric openings. The ch. E31 transmitter is at

Lugo, Spain.
George Gaskin (Gibraltar) reports that TVE (Spain) now operates from the early morning: TVE-1 starts at 0730 local time on weekdays, 0930 on Saturdays and 0830 on Sundays. He mentions that GBC (Gibraltar) operates the transmitters round the clock, with programmes from 1900-2400 daily. The main transmitter operates on ch. E6 at 1 kW e.r.p. Relays operate on chs. E12, E53 and E56.

A correction from Tony Dunnett, New Zealand (see June issue). His firm SAT-TEL is at Motueka, South Island but the reception from AUSSAT-1 was near Auckland, North Island. Overspill from the south-east beam gives signals there from transponders 5 and 7 - with transponder 8 to be used for commerial transmissions later. SAT-TEL manufactures 5 and 7 m dishes, NTSC-to-PAL converters, decoders and TVRO receivers, but the head electronics at present have to be imported.

News Items

UK: An interesting development of the Racal-Vodaphone cellular telephone network: during a visit by the French premier slow-scan TV pictures were transmitted from a moving police vehicle near Canterbury to Maidstone.
Belgium: The price of the "List of European Television Broadcasting Stations", no. 31, published by the EBU, 32 Avenue Albert Lancaster, Centre Technique, Bruxelles B-1180, Belgium will increase to BF1,000 this summer. It's the most accurate TV transmitter listing for the European broadcasting area.

USSR: The 1,125 -line HDTV standard has been "approved" by the broadcasting authorities.
Iceland: A commerial TV station, "Islenska Sjonvarpsfelagid", is due to start operations this month. The 20 kW e.r.p., ch. E12 transmitter is located at Reykjavik, with omni-directional, horizontally polarised aerials.

Dual-channel TV sound: WDR-1 and WDR-3 (W. Germany) now carry two-channel sound during test transmissions. The main channel (ton 1) carries the normal TV sound/music while the second channel (ton 2) carries the WDR-4 radio programme. A new station in Lima, Peru is understood to be the first in Latin America to have stereo sound. It operates on ch. 33 at 10 kW .

Transmitter news: A new DR (Denmark) transmitter at Kalundborg operates on ch. E58 (vertical) with under 100W e.r.p. The W. German ch. E42 Kassel HR-3 transmitter closed at the end of May.
Satellite TV: The American forces SEB network via transponder 9 on the Intelsat V F2 satellite at $1^{\circ} \mathrm{W}$ has changed polarisation to left-hand circular. CNN-Europe has been seen with scrambling via both Intelsat V F2 at $1^{\circ} \mathrm{W}(4 \mathrm{GHz})$ and Intelsat VA F11 at $27.5^{\circ} \mathrm{W}(11 \mathrm{GHz})$. The VideoCipher-II system is used, apparently with sound in syncs. Decoders can be obtained from the USA for $\$ 395$, plus a fee to CNN.

Signals at $\mathbf{4 9 M H z}$

For TV-DXers the 49 MHz part of Band I means ch. R1 whose vision carrier frequency is 49.75 MHz . Unfortunately there's extensive use of cordless phones in this part of the spectrum, despite the fact that it's illegal. A major manufacturer of such phones, Supaphone, lists some 22 channels for base station use, paired with remote handset
frequencies in the $67-70 \mathrm{MHz}$ spectrum. The list is as follows:

Channel.	Base $(M H z)$	Handset $(M H z)$	Channel	Base $(M H z)$	Handset $(M H z)$
1	49.68	70.275	12	$49 \cdot 44$	70.025
2	49.71	70.335	13	49.29	67.550
3	49.74	70.365	14	49.32	67.60
4	49.80	70.425	15	49.35	67.55
5	49.77	71.745	16	49.38	67.70
6	49.62	71.775	17	49.41	67.75
7	49.65	71.805	18	49.11	69.84
8	49.59	70.225	19	49.08	69.81
9	49.56	70.185	20	49.05	69.78
10	49.53	70.125	21	49.02	69.75
11	49.47	70.080	22	48.99	69.72

As you can see the frequency spread is quite wide - and these are just one manufacturer's channels. The powers used can be several watts, giving a range of several miles with external aerials. Walkie-talkies from toy shops and importer/retail outlets commonly operate at $49 \cdot 86 \mathrm{MHz}$. During a recent SpE opening I heard a base station at $49 \cdot 86 \mathrm{MHz}$ calling CQ, giving a location at Southampton and a callsign GC1PF - the operator was complete with a CB echo mic.!
To make matters even more difficult the DTI has announced that on-site paging services will be offered a 500 kHz allocation at 49 MHz . This is because the UK CB band has been given 40 extra channels at around 27 MHz to comply with European standards. Existing 27 MHz paging systems are expected to co-exist with the new CB band for the present. The long-term aim is that site paging should be at 49 MHz with 12.5 kHz spacing. The DTI hopes to commence licensing the new 49 MHz paging services this autumn. At present some 8,500 systems are licensed for operation in the $26 / 27 \mathrm{MHz}$ spectrum. There are three hospital channels at 31 MHz (no change here) but a hospital allocation at 49 MHz will also be available later this year.
A further DTI sheet advises that radio-controlled models are to be offered frequencies at 40 MHz for surface use and 35 MHz for airborne use. The problem here is that the new $26 \cdot 96-27 \cdot 4 \mathrm{MHz}$ CB allocation could cause interference to model operators. Hence the need to establish clear radio control frequencies. The existing UK CB band and the new Euro CB band will operate side-by-side for some years: the original UK CB allocation will eventually be withdrawn.

405-line Corner

In a recent column I mentioned that I had a couple of 405 -line sets dating from the mid-fifties for disposal otherwise they'd be dumped. The response was quite surprising, with ten local requests for the receivers. It seems therefore that there's a continuing interest in System A and the equipment for use with it. If you're thinking of scrapping a working 405 -line set you may care to write in to put it on offer. Those seeking such sets may also care to write in. Please include a s.a.e. in both cases. It would be up to the parties themselves to arrange for collection etc. Even old 405 -line VTR recordings could be useful.
We have a request from an established historic wireless/ TV collection in the Dorset area for a System A signal source/pattern generator of the 405 -line era. If any workshop has a disused one here's a good home for it. Please write in.

Service Bureau

Abstract

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{£ 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ITT CVC20 CHASSIS

The first problem we had with this set was a three-inch picture displacement accompanied by loss of colour. This was traced to a poor joint on the TBA920 sync/line oscillator chip. The fault that's now present is a slight disturbance of about ten successive lines on picture highlights, e.g. captions, the rest of the picture being perfect. All voltages in the line timebase are normal and the only clue is that the effect is diminished when the contrast control is set to zero. We suspect the line output transformer or tripler but are reluctant to replace either as the e.h.t. is constant.

This sort of problem can be caused by a fault in the line oscillator department. Check the supply decoupler C701 $(100 \mu \mathrm{~F})$, the sync separator bias resistor R $702(1-2 \mathrm{M} \Omega)$ and $\mathrm{C} 708(4.7 \mu \mathrm{~F})$ in the flywheel line sync filter network. It's just possible that the TBA920 itself is responsible. If necessary check the 25 V supply reservoir capacitor C45 $(4 \cdot 7 \mu \mathrm{~F})$ in the power supply before suspecting the tripler rather than the line output transformer: before replacing either, make sure that the c.r.t.'s outer Aquadag coating is properly earthed.

TOSHIBA V8600B

The only thing that works is the clock. The rest of the machine is dead. The fuses are o.k. but after a few seconds IC604 (TD62003P) on the servo/logic panel becomes red hot.
Pin 9 of IC604 is fed from the 12 V line. Disconnect this pin and confirm that the 12 V line and the rest of the machine perk up. If so check diodes D626-D631 in the chip's output circuitry for shorts. If these are o.k. it's almost certain that the chip is faulty, with an internal short between pin 9 and one of the other pins.

THORN 9000 CHASSIS

I have purity problems that can't be removed by degaussing on a couple of these sets, i.e. incorrect patches of colour. One set has a red patch, the other yellow shading down the right-hand side. Known good chassis have been tried, proving that the trouble is to do with the tubes.
In theory the tube's purity (and convergence) rings are set and sealed at the factory. In practice small purity errors can be corrected by setting up a red raster then carefully adjusting the two rings nearest the tube base for the purest red field. Large adjustments should be avoided as this might upset the convergence, necessitating disturbance of the other ring magnets. Before carrying out any such adjustments confirm that the degaussing circuit is working: feel posistor X701 which should run warm.

MITSUBISHI HS303B

The original fault with this machine was failure to record sound. Replacing the AN262 audio i.c. provided a cure but the fault is now intermittent. I've tried cleaning the relay contact (K3F0) but the problem persists - the owner says it's been present from new.

In our experience there are two possibilities for this fault - provided the relay is in good condition. The more remote possibility is that the switching chip IC3F1 (4066B) is in trouble. It's more likely however that the alignment of the audio head is incorrect. Adjust carefully following the instructions given in the manual.

DECCA 70 SERIES CHASSIS

The problem with this portable is no colour - the decoder panel is the earlier one with a TDA2522 i.c. in position 2IC2. Disabling the colour-killer usually produces unlocked colour - occasionally the colour is stable but incorrect. Both i.c.s have been replaced and fine adjustment of the reference oscillator trimmer didn't help.

These symptoms can be caused by a small degree of jitter or mistiming of the sandcastle pulse. Check C301 $(22 \mu \mathrm{~F})$ and $\mathrm{C} 306(220 \mu \mathrm{~F})$ in the line timebase before suspecting $2 \mathrm{C} 16(1 \mu \mathrm{~F}), 2 \mathrm{C} 18(4 \cdot 7 \mu \mathrm{~F})$ and $2 \mathrm{C} 24(47 \mu \mathrm{~F})$ in the decoder and finally the crystal 2 XL 1 .

PHILIPS G11 CHASSIS

The set works perfectly when used with the remote control system. When using the touch buttons to change channels however the unit sometimes sticks on any one of the six positions and can be changed only via the handset.

It's possible that some of the high-value resistors in the control head have changed value but more likely that the buttons need cleaning - this can be done with a toothbrush soaked in white spirit. Another possibility is that the user has hard skinned fingertips or is standing on an especially dry floor. It's sometimes necessary to moisten one's fingertips or hold a radiator when changing channels on these sets.

ITT CVC9 CHASSIS

The initial fault was intermittent loss of sound and could be instigated by tapping the cabinet. It appeared to be in the area of the muting circuit. The fault then became permanent. Bridging the E299DD/P344 VDR (R409) in the muting circuit with a high-value resistor brought back distorted sound, so the VDR appears to be suspect. It seems to be difficult to obtain however.

R409 commonly fails, giving this fault. If you can't get a VDR from a scrapped set try using a fixed resistor of around $100 \mathrm{k} \Omega$ - choose a value that gives 115 V at the junction of R409 and R413.

285
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Tuning drift is never an easy fault to deal with, especially when it's intermittent - as is usually the case. It can be a nightmare with self-seeking and synthesis tuning systems. The set in our spotlight this month, a Sony Model KV1820UB, incorporated no exotic arrangements of this sort but nevertheless proved difficult to sort out.

The set is one we have out on rental and the problem started, as these things usually do, with a call to the house. From the customer's description the fault certainly sounded like tuning drift but at the time of the technician's call all four channels were present and correct. The hard-pressed technician was a practical man: not for him the niceties of millivolts per MHz or a.f.c. capture range. He thrashed the programme buttons, squirted them and the a.f.c. slide switch with an aerosol switch cleaner, and knocked seven bells out of the varicap tuner with the handle of a screwdriver. None of this had much effect on the Channel Four test pattern display and the technician (can we call him that?) was soon on his merry way. The customer didn't know whether to laugh or cry.

He wasn't laughing next day when he telephoned to say that the drift problem was still present. Was it doing it right now? Yes. Within minutes the man with the switch cleaner, screwdriver and carefree air was on the spot. He found that the Channel Four picture was coming and going, never completely disappearing into snow and sometimes passing through the correct tuning point. The other channels were similarly afflicted. After another screwdriver attack on the tuner, again with no effect on what was happening on the screen, the man bundled the set into the van and installed a tatty loan set in its place. Back to the ranch!

The diagnostic technique adopted in the workshop was more scientific if just as fruitless. The set was switched on and tuned to a strong local transmission. A digital voltmeter was hooked to the tuner's varicap tuning pin and the reading $(12 \cdot 12 \mathrm{~V})$ was carefully noted and recorded. There followed a long and uneventful period during which the set behaved perfectly. Sod's Law in action once again. Finally the set did start to drift about. As before the range of drift was fairly limited but the DVM indication didn't help at all - the third and fourth digits in the display gave a fair imitation of a bell fruit machine while the second digit flickered to one now and again. Was this the cause of the trouble or, via the a.f.c., the effect? The probe was transferred to the cathode of the $\mu \mathrm{PC} 57433 \mathrm{~V}$ tuning voltage stabiliser, on the front
panel, where a rock-steady reading of 32.8 V was recorded, proving that this device at least was blameless.

A microammeter was next connected in series with the varicap tuning pin. Again there was a long period free from drift, then a frenzied (but limited) thrash around the correct tuning point. Two points emerged from this. First the microammeter's needle moved not a jot, ruling out leakage within the tuner. Secondly the drift effect was present whether or not the a.f.c. was switched in.

The tuning potentiometer bank next came under suspicion. As the right type wasn't in stock a good quality $22 \mathrm{k} \Omega$ preset was substituted for the whole potentiometer bank and wired to channel selector switch one. After a lengthy run the set drifted just as before! The next proposal was to check the tuner by substitution. But before this could be done someone sensible disconnected one resistor as a test: he soon had the correct diagnosis. Which resistor was it? See next month.

ANSWER TO TEST CASE 284 - page 667 last month -

Decoder faults are quite rare these days, but the one described last month was solidly present. The trouble was no colour and the technician, unfamiliar with the Philips range and, it seems, with modern decoder practice, was completely thrown by the presence of the burst signal and nothing else - in the chroma delay line circuit. This led him to replace the first of the two i.c.s in the decoder, the TDA 2560 Q which provides luminance and chroma signal amplification and brightness/contrast/colour control. The new chip left the fault condition as before.

In this decoder the amplified chroma signal passes from the TDA2560Q i.c. to the delay line circuit where the $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ components are separated in the usual way. These are then fed to the second, TDA2523/4Q i.c. Since the burst phase detector and the a.c.c. detector are both in this second i.c. the burst signal has to pass through the delay line circuit along with the chroma signal proper. Furthermore it must pass through the first chip and the delay line circuit at constant level, unlike the chroma signal whose amplitude is affected by the colour and contrast controls. The action of these controls within the TDA2560Q i.c. is gated so as not to affect the burst signal.

The amplitude of the chroma signal is set by the voltages at pins 4 (d.c. colour control voltage) and 16 (d.c. contrast control tracking voltage) of the TDA2560Q i.c. The problem lay at pin 4 , where the voltage should vary from 2 V to 4 V as the customer colour control is operated. In this set the voltage was permanently low, cutting off the chroma amplifier - during the chroma signal periods, not the burst periods. Pin 4 is taken to pin 17 of the decoder module and an ohmmeter check between this point and chassis (pin 1) produced a very low resistance reading. It remained low with the module removed from the set. The culprit was the colour control voltage decoupling capacitor $\mathrm{C} 3204(0.01 \mu \mathrm{~F})$ which was leaky - it measured about 50Ω. The man (technician?) is still kicking himself. Are you?

[^1]

Telegen-1

PRICE £18.35 (Inc. VAT)

* EXCEPTIONALLY LIGHT AND DURABLE
* POCKET SIZE FOR OUTSIDE SERVICE
* PP3 BATIERY POWER SOURCE
- FIVE DIFFERENT TEST PATTERNS FOR

COLOUR \& MONO TV

* CROSSHATCH GRID * DOT MATRIX
- WHITE RASTER
* horizontals * Verticles
* 3.5 mm JACK SOCKET FOR OPTIONAL P.SU.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other
more costly bulky generators only suitable for bench work. The generator is packet more costly bulky generators only suitable for bench work. The generator is packet
size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Swit
socket allows use of external power supply with battery in situ.
Telegen-2
PRICE E34.45 (inc. VAT)

* EXCEPTIONALLY LIGHT \& DURABLE
* RED RASTER * GREEN RA CTER
- BLUE RASTER GREEN RASTEA
- colour bars
* 3.5 mm JACK SOCKET FOR P.S.U
* PROVIDES UHF SIGNAL APPROX.
 CHANNEL 35
Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 votts D.C.

Power Supply
A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE £4.55 (inc. VAT)
ALL ITEMS POST AND PACKING £1.44 (Inc. VAT) All goods should be delivered within 4 working days.
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 29022
(U.K. ONLY)

TV LINE OUTPUT TRANSFORMERS FAST RETURN OF POST SERVICE	
19.00	
	$\begin{aligned} & \text { PYE } \\ & \text { RED } \end{aligned}$
${ }_{\text {febguson }}^{1600}$ HMV MARCON ${ }_{\text {8,00 }}$	
Indesit 20EGB $24 E 68$ mono 8.00	
All lopts and windi	
Oen Mon.fi.i 10.50	
PAPWORTH TRANSFORMERS	
London SW19 18E	

SPECIAL OFFER THIS MONTH

PHILIPS YEARS AHEAD

NEW PANELS	
Gx lumk Pots on Pantl \& Lead for 6 Push Rutton Unit	¢2.00
K.40 Mains Swich remers	[1.(6)
$K 35$ Misins Switch remote	75p
K35 Aerral Sucker and Plug in Lead to Tunet	51.50
h73-k.30 Slider Pois 477 hu 47 ku	20 e each
Lakge foucs Pots. Fits Pye, GEC, ITT, Decca	75p
Gis Power Supply Panel	64.00
Ex becca 160 Line O/P Pancl	57.00
EX DECCA ! (X) Decower	c7.00
ex decca llx) Frame	E7.00
THORN 8000-8590-8800 Decialer	c6.00
GLASS BEADS Diodes 3M0/1.2A	25 for $£ 1.00$
Gill If Panel	28.100
TIfORN Mal Line Panel	\$12.100
GII Decoder Pamel	${ }^{28.100}$
POWER SUPPIY 73	E6.100
Gil itil Condenser 47/22siv 19\%	[1. 50
G9 Power P'anet	c3.50
Os Line Pancl	[12.100
G8 n Push Bution	£9.00
KT4-KT3-K 30 Handset Replacement HI 520 METER 20.000 Fuse Diode Protector	18.00 $£ 15.90$
	$\underline{5} .00$
THORN TX remot panel. 5i.C. ML.923-SL+441-MC14.528B-MCI 4493 P-SI. 5711 \& Main Trans	cs.00
21 AX GEC 1. Opt Panet with Splir Dionde	\&4.00
L.OPI Sphil Diode 2432871	57.00
RANK T2ll Foucen P'or	75p
RANK 718 FWUCS POP	E1.00
THOKN M(M) LOPT Panel.	\$12.00
$26^{\prime \prime}$ LOPF' Splu Disule 2432.301	E8. 100
	E6.00
Ex Panel Split Diodes 2432871/24324x1	15
Hifachi Mains Swich	sap
HITACHI AE Sochel	30 p
1 CONDENSER Axail Leads 450) A/C [210) D/C	15p
MAINS IRANSFORMER 240 N in $20 \mathrm{l} / \mathrm{/kv}$	£1.00
GREEN FLAT, NEC, LED's	ch 100 for $£ 2$
240V 50HZ	
$12+12 \mathrm{~V} 2.8 \mathrm{VA}$ Print $\mathrm{l}^{\prime \prime} \times \mathrm{l}^{\prime \prime}$	75 p
HTTACHI $6 \times 4-801$ Speaker	50 p
ET5\% UHF V/CAP Tuncr. small	£2.50
Fidelity Panels with I.C.	E1.00
Fibelity Lopt Spha Diode ATE076xit	53.00
Fidelity fes i2tsat Lolit Mono	E1.00
Fibelity Sphi Dude FCC2015BE	$\underline{5} 5.00$
HI-Hi MICROPHONE Nx501 Philip.	28.00
G8 TUNER V/CAP on Panel	c3. 50
G8 SPEAKER	75p
9, (1K) SPEAKER	£1.00
5 AMP METERS, AC. DC	£2.00
THORN 9000 Sound OP Panel	E30p
ONE 1.C K 35 Decoder	¢7.00
THICK FILM, Hitachi RB-32 4A	$£ 2.00$
K30 1F/K35 if	E3.00
THICK Flidi, Hitachi Frame	E5.00
THORN Lept 85 (x--88\%)	E4.00
TX9 THORN Tuner Panal with ICS Pots	£3.00
N.E.C. Light Emiting Dıodes	40p
Split Diskic 2433752	c6.00
By223 Replicement	30p
THORN CHASSIS 1 (1)(1)-7x) Series Mono	£10.00
THIORN 1600 Rec- \& Anckle Cap.	50 p
KT3-K. 30 Slider Pors 4.7 k	$\underline{51.00}$ for 10
ET-614 UIfF V/APAP Tuner	$\underline{2.00}$
6, 21/4 SPEAKER SW HHtichi 882	Sup
K 35211 Turn Pots	ap euch
HITACHII \& GEC 20h Pois	20 for $£ 1.00$
KT3 K.30 Speather	30p
K35 Sorund O.P Pancl Plug in	£3.00
$K 3512$ wivy Push Bution Unit	$\underline{1.50}$
K35 L., O.P.T. Solit Diode	¢6.00
Rank Tzo Fromt Panel	£6.00
Cis 6 Bullon Unit, New Type	¢9.00
6 off LED DISPLAYS, Mixed	\&1.00
hand set tester, Infia Red	E8.00
PHILIPS SBC 4712 Wax Stereo licadphone with Volume Controls	£17.00
AERIAL. SPIATTER with filler	f1.00
DINAMIC STEREO HEABPHONE EM Tl^{146}	\$10.00
Philisps uni birectional Dynamic Mmiophone	£10.00
20 TURN POTS with Band Switch	100
PUSH BUTTON Mains Swith with Screw Holes Fixins	+ (tor £ 1
PYE, 713 Line Trans	E4.50
PYE 731 Line Trans	23.50
	20 for $¢ 1.00$
Gill 6 Touch Unil with Cible Forms (Drawer (Unil)	£ 12.00
Kr3 Linc Outpui Translormer	55.00

[^2]
$\star \star$ CHANGE OF ADDRESS $\star \star$

ALL ORDERS SHOULD NOW BE SENT TO OUR NEW ADORESS SHOWN BELOW

TOP 50 VIDEO SPARES

CASSETTELAMP(FERG/JVC) CASSETTE LAMP (PANASONIC) CASSETE LAMP (SHARP, 9300 ETC) BELT KIT SONY (STATE MODEL) BELT KIT FERGUSON (STATE MODEL) BELT KIT SHARP (STATE MODEL) BELT KIT PANASONIC (STATE MODEL) BELT KIT SANYO $(9300,5300,5400)$ BELTKIT SANYO (5000)
BELTKIT HITACHI (STATE MODEL) REWIND KIT SONY C5/C7 REWIND KIT SONYCG. REELIDLER (SHARP, 9300,381, ETC) FFFREW IDLER (HITACHIVT-11, ETC) FFFREW IDLER (HITACHIVT-11, ETC
FFREW IDLER (HITACHIVT8000) FFREW IDLER (HITACHIVI8000)
FFREW IOLER (HITACHI VT9300) FfREW IOLER (HITACHIVI 30
REEL IOLER (FERG, 3V29/30) REEL IDLER (FERG, 3V29/30)
PLAY IDLER (HITACHI 9300) PLAYIDLER(HITACHI 9300)
FFREWIDLER(NAT/PAN NV 370) REEL IDLER (NAT/PAN) STATE MODEL PLAYIDLER (NAT/PAN) STATE MODEL PLAY CLUTCH (PAN NVIOOO) PINCH ROLLER (FERG) PINCH ROLER (SHARP) PINCH ROLLER (PANASONIC)
f1.80 PINCH ROLIER (SANYO)
f1.20 PINCH ROLLER(SONY C5/C7)
€215 VIDEO HEAD DRUM (FERG) f6.50 VIDEO HEAD DRUM (PANASONIC) f6. 50 VIDEO HEAD DRUM (PAN NV 366) fa.50 VIDEO HEAD DRUM (HITACHI) 56.50 VIDEO HEAD DISC (SONY C5/C6/C7) Saso VIDEO HEAD DISC (SONY SL 8000) 1. 97 VIDEO HEAD DISC (SANYO) 66.50 VIDEO HEAD (SHARP 7300, 7700) E6.95 VIDEO HEAD (SHARP 9300,381 ETC E6.95 VIDEO HEAD (TOSHIBA 9600) f6. 50 REEL DRIVE PULLEY (SANYO 5000) f4.72 REEL MOTOR (SANYO 5000 ETC) f4.75 REEL MOTOR (SHARP 9300,381, ETC) $E 3.45$ CAPSTAN MOTOR (SONY C5/C7) E6.50 A.C.E. HEAD (SONY C5/C7). £4.50 CAPSTAN MOTOR FERG/JVC 3V22 ETC E3.45 DRUM MOTOR FERG/JVC 3V22 ETC E4.72 TAKE-UP CLUTCH (FERG/JVC) E5.50 CLUTCH ASSY (FERG 3V29/30)
E5.95 AUDIO RELAY (SONY C5/C7)
£7.90 HEAD CLEANING STICKS £5.\% HEADCLEANING FLUID
35.45

E66.60
E6.55

14.50

$E 4.50$
$E 3.55$
150

.20 .50
6150

MOST SPARES AVAILABLE FOR HITACHI, PANASONIC, SONY, SANYO, SHARP ETC. RING FOR AVAILABILITY.

TELEVIDEO SERVICES

 NOTTINGHAM (0602) 226070 145 STATION RD, BEESTON, NOTTINGHAM.Please add 50 p post $\&$ packing and then add $\mathbf{1 5 \%}$ VAT to the total. ALL STOCK TEEMS ARE DESPATCHED BY RETURN OF POST Send $2 \times 17 p$ stamps for full list

Also available to special order SECAM. Video Composite, and R.G.B. versions. Details available upon request
U.K. POST PAID, export enquiries welcome, Visa/Access or cheque with order, payable to B.K. Electronics. Official orders welcome from Govt. Depts., Colleges, P.L.C.s etc. Large S.A.E. for technical leaflets of complete range delivery normally
within 7 days.
B. K. ELEGTRONIGS Dent. 'T',

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572HERE AS
ATIONS
Colleges,
ol large
all brand

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

Large Quantities of Late Model Thorn TVs. All with first class cabinets.
TELE-TEXT/ULTRASONIC/INFRARED/REMOTES
All at UNBEATABLE PRICES for QUANTITY \& QUALITY
Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT
Some examples of QUALITY working TVs

THORN $8800 \star \star$ £ 25
 THORN 9000 * $\star \star £ 30$ THORN 9000 (remote) $\star \star \star$ £ 35 THORN 9600 * $\star \star £ 40$
THORN 9600 (full feature remote)

THORN 9600 TELETEXT $\star \star \star$ from $£ 75$ (VARIOUS MODELS)
THORN $9900 \star £ 50$ THORN $9900 \mathrm{f} / \mathrm{fremote} \boldsymbol{*} \star \mathrm{£} 60$

(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.
1000s of UNTESTED Colour TVs
I.E. DECCA 30s, GEC 2110, GRUNDIG, TANBERGS, G8s $520 \mathrm{~s}-550$ s, Thorn $3500 / 8000 / 8500$, TT, PYE, ETC.
(Many of these untested TVs just switch on)
ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands
£4.95 Also Video Stands
POA
Colour TV panels \& tubes available
CALLERS WELCOME
Export Orders Welcome for those Countries using the P.A.L. System 419 BARLON MOOR ROAD,
CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working VHS VIDEOS FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010 SHARP
620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" $20^{\prime \prime}$ 22" $26^{\prime \prime}$ Hybrid/ Solid State CTVs Remote Control \& Teletext

 Discount for Quantities Complete loads delivered from pick up point
JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

COSSOR CDU150. Dual Trace 35MHz Solid State. Portable $8 \times 10 \mathrm{~cm}$ display. With Manual 200	Labgear colourwatch pattern gemerator Type CM6038-DB Crosshatch/Grey ScaleeBlank Raster. Mains or Battery. ONLY £12 each (P\&P £2)
TELEQUIPMENT D61 bual Trace 10MHz With	ADVANCE AM/FM SIGNAL GENERATOR Type SG63a
Manual....................................... 1150	
ADVANCE OS250TV. Dual Trace 10 MHz With	ADVANCE AM SIGNAL GENERATOR SG62B. 150 K
Manual.	220 MHz .
S.E. LABS SM111. Dual Trace 18MHz Solid Stais	ADVANCE AM SIGNAL generator type 62.
Portable AC or External DC operation $8 \times 10 \mathrm{~cm}$ display. With Man ual	
display WiPMENT D43. Dual Trace 15MMz. With	PHILIPS WOBBULATOR G M2877S 5-220MH2 \& 440.
Manual...................................... 5100	
TELEQUIPMENT S54A. Single Trace 10MHz	(PRP¢4)
Solid State. With Manual 1110	VIDEO CIICUIUS
TELEOUIPMENT S43 Single Trace 25MHz With	(Sc
Manual.. 575	
IIPS DIGITAL MULTMMETER	
4 digit, auto ranging. complete with batteries and	RACAL 32 MHz 836 with Mantual.................................. 50 50
TYPEPM2517X (LCD)175	
MULTIMETERS	
AVO 9 Mk4 (Identical to AVO 8 Mk4 but scaled	MARCONI VALVE VOLTMETER TF2600 10Hz-10MHZZ;
AVO 8 Mik Complete with Batteries \& Leads \&	(PRSP55) \qquad
Above liems in GOED WORKING ORDER	PHILIPS COLOURBAR GENERATOR पyPe 5500. Video
appeara	out. Many Functions................. $¢ 125$
AVO TEST SET No 1 imilitary version	TES FIEL ${ }^{\text {d STA }}$
Complete with batteries, leads \& Carrying	Case (P\&PE5)
Case AVO Model $7 \times$ Complete with batteries, leads $\&$	ISOLATING TRA
carrying case 4^{40}	In-240V Out 500VA $\{15$ each P
AVO Model 73. Pocker Multimeter (Analogue) 30	
ranges. Complete with batteries \& leadsE18	
AVO 72 - Simiar to above but no AC current range. With batteries \& leads....................... 110	OSCILLOSCOPE 605. Dual Trace 60 MHz .
led. GONO GO for In-situ Testing. Complete with batteries, leads \& instructions.	Component Tester All Other Models Available.
($\mathrm{p} \& \mathrm{P}$ £) MOW ONLY E12	
PROFESSIONAL $9^{\prime \prime}$ GREEN SCREEN MONITORS	Meteor $100-100 \mathrm{MHz}$
made by KGM for Reluters Gives	Meteor $600-600 \mathrm{MHz}$..................................126
column $\times 24$ line display	Meteor $1000-16 \mathrm{~Hz}$.
Cased. Good condition	BLACK STAR JUPITOR 500 FUNCTION GENERATOR.
W125mm, 175 mm , D180mm. Cased,	
Un-used. Onl	
make. Cased.....................e5 each (P8P	
Various $51 / 4^{\prime \prime}$ Floppy Disk Drives and Step	£2 811
	T to be added to Total of Goods \& Carriage.
STEWART	FF READING
Telephone	3468041 on.-Fri. (untill 8 pm Thurs.)

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100 GEC STARLINE
HITACHI ITT (full remote) PHILIPS G8
PHILIPS GII PHILIPS KT3 THORN 9600 including TELETEXT
THORN 8800 THORN 9000 (remote) (remote)

THORN TX
VHS VIDEO trom $£ 85$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

STOP PRESS
Electronic Video including Ferguson 3V29/30, Amstrad 7000, Sharp 9300, now in stock at unbeatable prices. We also specialise in direct loads delivered to your door direct from source.

For further details phone:
COLIN BROOMFIELD,
UNIT 7, STATION STREET,
BROMSGROVE, WORCS.
Archavcabo (0527) 37037/71186

AN127Q	$¢ 1.75$	C×136	¢5．50	hat	£4．50	M51521A	¢1．75	TA7130P	¢1．00	UPC10	50.90	2SA	75	$2 \mathrm{SC1505}$	150.70	T． 901 m			
AN203	12.20	CX143A	¢7．50	HA11788	£4．50	M54543L	$\underline{2} .75$	TA7136P	51.00	UPC1031	51.80	$2 \mathrm{SA940}$	50.80	2SC1546	50.30				
AN210	¢1．75	C×157	23.95	HA11816NT	${ }^{26} 50$	M 54548 L	56.75	TA7137P	c0．80	UPC1032H	50.50	2 SA952	50.35	2SC1664	$\underline{2} .50$				
AN211A	$\square .25$	C×158	19.50	HA1 1828NT	${ }^{29.50}$	MB3705	51.60	TA7139P	51.50	UPC 1035C	£1．20	2SA1015	¢0．30	2SC1682	c0．30				
AN2140	¢1．80	C×160	$\underline{2} .50$	HA12035 HA12413	${ }_{\text {c．}}^{5} 50$	MB3712	51.50	TA7145P	51.80	UPC1037H	c0．75	$25 A 1102$	¢1．90	${ }^{2 S C 1741}$	¢0．30				
AN217B	$\underline{\square} .20$	Cx161A	2． 50	HA13402	$\underline{5} 3.50$	MB3730	¢1．75	TA7150P	c1． 80	UPC1043C	¢1． 20	$25 A 1103$	¢1．90	${ }^{2 S C 1815}$	£0．25	LONDON W2 1LG			
AN228W	5.75	Cx162	$\underline{53.40}$	HA13403	97.50	MB3731	02.50	TA7176P	51.50	UPC1158H	50.60	2541104	¢1．90	$2 \mathrm{SC1826}$	${ }^{10} 6.60$				
AN236	$\underline{62.50}$	Cx170	56.50	HA 13430 A	$\underline{3} .50$	M83756	$\underline{5} .50$	TA7193P	$\mathrm{E}_{5} \mathrm{~F} .50$	UPC1161C UPC1163H	$¢ 0.75$ $£ 0.60$ 10	$25 A 1105$ 2SA1106	$\underline{72.25}$	2SC1849	50.30 93.50	Tel：01－723 9246（Answerphone）			
AN2390	¢3． 80	CX181	${ }_{5}^{58.50}$	LA111P	${ }^{20} 0.80$	MB8719	${ }_{5}^{53.50}$	TA7200	${ }_{92}^{59.00}$	UPC1163H	ç． c0． 70	${ }^{25 A 1106}$	$\underset{50.50}{50.50}$	${ }_{\text {2SC1 }}^{\text {2SC1945 }}$	93.50 59.50				
AN240P ${ }_{\text {AN241P }}$	c1． 50 $\$ 1.50$	HA1124A HA1125	9.75 81.50	LA1201 LA1222	${ }_{\text {c0，}}^{60.85}$	PLL01A	12.30 ¢4．95	TA7201	c． 2.00 \％ 200	UPC1167C UPC168C	c0． 70 ca.90	2SA1198	c0．35	2SC1946A	59.50 c0． 80	vo		LATE EXTRA	
AN247P	2.50	HA1137	81.75	La1230	E1． 50	SI－1125H	97.50	TA7203P	91.80	UPC1170H	20.75	2SB54	50.70	2SC1969	¢1．30				
AN259	9.75	HA1149	81.40	LA1240	c1． 75	STK011	$\ldots 3.75$	ta7204	$\$ 1.10$	UPC1171C	¢1．50	2 2875	50.60	2SC2021	c0．30				
AN262	c1．50	HA115t	$\underline{2} .50$	LA1320	c1．50	STK013	68.25	TA7205AP	\＄1．00	UPC1176C	¢1． 20	2SB34iV	2.60	2SC2026	E0．65				
AN2714	22.5	HA1156	¢1． 10	La1365	c1． 20	STK014	66.25	TA7207P	¢1． 50	UPC1177H	${ }^{\text {cr }}$ ． 20	2S8405	20.80	2SC2028	c0． 75				
274	${ }^{\text {c／3．}} 25$	HA1166	¢1．60	LA14660	$\underline{41.20}$	STK015	E5．00	TA7208P	¢1．50	UPC1780C	¢1．00	258426	¢2． 60	2SC2075	c0． 25				
AN303	${ }_{2}^{2} .25$	HA 1196	E3．75	LA2200	$¢ 1.75$	STK016	¢4．75	TA7210P	2．00	UPC1181H	¢1．00	2SB471	23／50	2SC2078	$¢_{0} 0.75$				
AN313U	$\underline{2} .75$	HA1197	¢1．50	LA3101	81.60	STK020	¢4．50	TA7214P	$\underline{27.50}$	UPC1182H	¢1． 00	258492	c0．75	2SC2091	50.60	JV＇HR3360／3660（7） 52.00 HA12038			
AN315	$\underline{\$ 2} 00$	HA1199	$\underline{51.40}$	La3155	c0．95	STK022	Es． 25	TA7215P	c1． 80	UPC1183H	¢1．20	2 2SB5090	$¢ 8.70$	2SC2092	${ }^{¢} 0.95$	JVC HR7700（3）$\quad \$ 1.20$ LA1140 $\quad ¢ 1.75$			
AN316	53.50	HA1306W	¢1．60	LA3160	¢0．90	STK025	¢6．75	TA7217AP	$\$ 1.20$	UPC1185H	$\bigcirc{ }^{5} .20$	${ }^{2}$ SB534	50.60	2SC2098	${ }^{\text {cio }}$	PANASONIC NV333（5）$£ 1.40$ LA3370			
AN318	$\underline{54.75}$	HA1319	$\underline{\square} .00$	La3201	¢0． 95	STK041	¢6．50	TA7220p	¢1．75	UPC1186	${ }^{51} 0.80$	${ }_{2}^{2 S 85356}$	${ }_{51} \sum_{51.95} 5$	2SC2166 2Sc2238	c0．95	PRNASONIC NV2000（5）$£ 1.40$ LA4126			
AN331 AN360	c1． 20 1.20	HA 1339 A HA1366W	¢1．60	la3300 LA3301	$¢ 1.40$ $\$ 1.20$	STK077 STK078	${ }_{55.50}^{55.55}$		181.20 $\mathbf{8 1}$	UPC1187 UPC1190C	c1． 30. c0．95	2SB546 2S8561	${ }_{51.50}^{50.30}$	2SC2238 2SC2278	c¢0．65	PANASONIC NV7000（5）$£ 1.25$ LA4507 §4．85			
AN362L	¢1．30	HA1366W	91.50	LA3350	$\underline{1.20}$	STK080	57.20	TA7224P	2.75	UPC1191V	c0． 95	2SB698	¢0． 30	2SC2335	¢1．50	PANASONIC NV8600（7）$£ 1.75$ LA7016			
AN366P	50	HA1367	93.25	LA3361	¢1．20	STK082	17．75	TA7225P	02.50	UPC1198H	50.70	2SB754	50.95	2SC2365	¢4．25	SANYO VTC5500（3）$\quad \mathbf{\$ 1 . 0 0}$ LA7215			
AN610P	9.75	HA1368	c1． 60	La4030p	$\underline{5} .00$	STK086	$\underline{29.25}$	TA7226P	5.20	UPC1200V	${ }_{50.80}$	2S8755	$\underline{2} .50$	2SC2540	512.75	SANYO VTC9300（4）£．25 LA7521 §4．50			
AN612	$¢ 1.75$	HA1368R	${ }_{5} 1.65$	LA4031P	¢1． 40	STK430 STK433	¢4．75	TA7227P	E1．50	UPC1208C UPC121V	$¢ 0.95$ $\$ 1.90$	2S87720	c0． 90	2SC2570	¢0．70	SHARP VC6300（5）§1．75 LA7751 §4．75			
AN5732	¢1．85	HA1377A	52.20	La4100	51.00	STK436	25.00	ta7232P	2.75	UPC1216V	${ }^{1} 0.95$	2SC373	co． 30	${ }^{2 S C 2578}$	$\underline{\square} 20$	$\begin{array}{lllll}\text { SHARP VC8300（5）} & £ 1.50 & \text { LA7801 } & \\ \text { SHARP VC9300 }\end{array}$			
AN5753	$\underline{51.95}$	Ha1388	\％2． 35	La4101	9.00	STK437	${ }_{6}^{66} 30$	TA7310P	${ }^{\text {c1．}} 40$	UPC1217G	ع1． 60	2SC380A	c0． 30	2SC2579	$\underline{\square} 20$				
AN6250	$\underline{72.30}$	HA1389	¢1．75	La4102	$¢ 1.20$	STK439	E5．50	TA7312P	¢1．30	UPC1218H	c1．40	2SC458	50.20	${ }_{\text {2SC2580 }}$	52.20	SONY SLTMET7（6）¢1．60 LA7910 ¢1．95			
AN6344	£4．75	HA1389R	¢1．40	La4110	¢1． 40	STK441	£6．00	TA7313AP	c1． 30	UPC1222C	c1．90	${ }^{2 S C 460}$	${ }_{5} 9.30$	${ }_{2} 2$ SD24	c0．50	SONY SLC7／J7（6）			
AN7105	$\underline{\%} 20$	HA1392	$\underline{\%} .30$	La4112	¢1． 30	STK443	¢6．95	TA7325P	c0． 85	UPC1223	¢1．60	2SC461	50.30	2SD170	${ }_{50.60}$				
${ }_{\text {ANF }}$ AN7114E	¢1． 60	RA1394 HA1397	5.75	La4125	${ }_{5}$	STK459	${ }_{65} 5$	TA7328	£1． 60	UPC1226C	$\underline{.1 .25}$	2SC5	50.70	2SD313	${ }_{50.95}$	SONY SL8008080（6） E2．00 M51102L ¢4．95			
AN7115E	81.60	HA1398	E． 4.40	La4140	50.70	STK460	17.50	ta 76074 P	8.75	UPC122N	${ }^{50.95}$	2 2C537	50.25	2SD325	20．65	TOSHIBA V547（6） $£ 1.70$ TA7140P $£ 1.75$ TOSHIBA V7540（5） $£ 1.75$ UPC1387C $£ 2.50$			
AN7120	$\underline{\$ 1.40}$	HA1457W	¢0．90	LA4182	92.00	STK461	56.50	TA7608	${ }^{\text {c／3 }} 3.50$	UPC1230H	$\underline{\square}$	2Sc620	50.50	2SD348	¢4．50	TOSHIBA V8600（6）$\quad \mathbf{8 1 . 3 0}$ UPC1391H $\quad £ 2.50$			
AN7130	c1． 50	HA11215A	¢4．25	L44192	¢1．95	STK463	$\underline{7} .40$	TA7609P	\％2．38	UPRC1248V	${ }^{\text {c0．}} 8$	2SC632	50.30	2S0352A					
AN7145M	¢1．80	HA11221	［2． 30	La4200	¢1．50	STK465	¢8．50	TA7611	ci． 73	UPC1245V	c1．	${ }^{2 S C 681}$	$\ldots 2$.	2SD371	${ }_{51.30}$				
AN7146M	c1． 85	Hal123W	¢3． 80	La4220	c1． 20	STK0025	¢4．95	UH1C001	${ }_{\text {c }}$	UPC 1278H	${ }_{2}$	2SC681A	$\square .30$	2SD401	91.50				
AN71	\％	HA112	81.9	lasaco	c1． 90	STK0039	¢4．25	UHIC004	¢4．85）	UPC 1350C	$\underline{61.20}$	2SC710	50.30	2SD4678	cc． 30				
17158 n	\％3． 25	HA11423	¢4．75	La4420	$¢ 1.40$	STK0040	¢5．50	UPC16C	81.31	UPC1353C	$\underline{51.75}$	2SC717	50.50	2SD4688	¢0．50	0			
AN7168	\％ 2.50	HA11701	¢4．50	La4422	51.20	STK0049	¢5．75	UPC20C	8.20	UPC1355C	¢1．50	$2 \mathrm{SC732}$	¢0． 30	2SD718	c1．50				
An7310	$\underline{50.80}$	Ha11702	§4．90	LA4430	¢1．30	STK0059	¢6．00	UPC30C	c1． 80	UPC1358	${ }^{51.50}$	${ }_{2 S \mathrm{SC7}}^{2}$	50.30	$2 \mathrm{CD734}$	c0．30	¢			
AN ${ }_{\text {A } 3011}$	¢1．0	Hal1703 HA11704	${ }_{54.75}$	La4440	88.75	STK008	${ }_{\text {cis }} 5$	UPCA	${ }^{81} 2.25$	UPC1363C	${ }^{1} 1.65$	${ }^{2 S C 799}$	$\underline{51.75}$	${ }^{2 S D 916}$	${ }_{0}^{00.95}$	Ii\％			
BA311	${ }_{c 0}$	HA11705	¢6． 50	LA4461	¢1．75	STK2029	$\underline{63.75}$	UPC555	50.60	UPC13650	$\ldots 3.00$	2SC828	50.20	${ }^{2 S D 1133}$	91.75				
BA313	¢0．75	Hal1706	£4．75	La4500	2.50	STK2230	¢6．00	UPC561C	$\underline{2} .00$	UPC136	51.50	2SC840	51.50	2S	50				
BA318	51.30	Ha11710	¢5．58	LA4505	［2．50	STK2240	¢9．75	UPC566	${ }^{1} 0.60$	UPC1367C	11.50	2 2C867	$\underline{\$ 2} 75$	2 2S149		エ			
BA402	¢0．75	HA11711	¢9．50	LA6458	¢0．90	STK3042	¢6．50	UPC571	$\underline{51.95}$	UPC1368	¢1．75	$2 \mathrm{Sc900}$	50.35		4．00				
BA511A	$\underline{51.80}$	HA1713	¢\％． 00	LA7800	$\$ 1.95$	STK5211	¢．75	UPC573C	$\underline{2} .20$	UPC1370C	$\underline{.1 .95}$	2Sc9290	c0． 35	2Sk19	50.50				
BA514	¢1．75	HA17714	¢5．75	LA7806	0.	STKS421	26．50	UPC57	20.35	UPC137	co． 75	$2 \mathrm{SC930D}$	co． 35	2SK3					
BA527	\＄1．50	HA1715	¢8． 25	LC7130	23． 50	STK5720	${ }_{¢ 6.80}$	UPC576H	91.75	UPC 1382 C	c0．75	${ }_{2 S C 1034}$	${ }_{\xi 3} .75$	2SK120	50.90				
BA532	81.50	HA11717	¢6． 25	LC7131	\％3．75	STK5730	¢6．75	UPC577	50.70	UPC1384	$\underline{2} .50$	2SC1061	20.95	2SK134	． 00				
BA536	0.25	HA11718	¢4．75	LC7136	$\underline{\mathrm{m}} .75$	TA7050p	${ }^{\text {E O }}$ ． BO_{0}	UPCSEB	2.75	UPC1458	co． 90	2 SC 10	${ }^{5} 0.60$	25K135	¢ 4.00				
BA612	${ }^{6} 1.80$	HA171724	¢ 18.25	LC7137	0.75	TA7051P	$\underline{50.80}$	UPC585	${ }^{20}$ ． 55	UPD27	${ }^{1} 4.50$	2SC11	${ }^{3}$	3SK22	$¢ 1.75$	잉NNN			
1	${ }_{61 .} 1.25$	HA11725 HA11726	¢15．00	M5106P	${ }_{5} 5.50$	TA7063	${ }^{1} 0.80$	UPC595C	10.70	2SA350	50．60	${ }_{2 S C 162 C}$	$\underline{20.80}$	$3 \mathrm{SK45}$	50.60	下マm		，	
EA1330	81.75	HA11727	$\underline{9} 9.50$	M5134P	9.75	IA 7066	$\underline{ } 1.50$	UPC596	91.50	254495	50.35	${ }_{2 S C 11708}$	\％2． 95	3SK88	c1． 50	Enquiries invted for any Japanese I．C5．As we have imported			
16304	2.20	HA11736	¢16．00	M5135P	$\underline{7} .30$	TA7070P	9.40	UPC1001H	9.00	2SA539	50.30	${ }_{2 S C 1172}$		TAR2002	c0．80	for over 10 vears．			
642	${ }_{5} 8$	HA11745 HA11747	${ }_{59} 9.50$	M5155	${ }_{61.50}$	TA7073	${ }_{61.95}$	UPCC 1009	ع1．30	2SA634	20．60	${ }_{2 S C 1317}^{2 S C 17}$	${ }_{\text {c }}$	TDa2003	50.90	ITEMS DESPATCHED WITHIN 48 HOURS			
C×075	9.20	HA11747ANT	$\underline{29.50}$	M51514AL	$\underline{51.75}$	TA7104P	$\underline{1} .35$	UPC1018C		2SA643	50.65	2SC1342	50.75	TDA2004	\％ 2.20	Please add 60p post and packing and then add 15\％VAT to total．			
CX095C	$\underline{\$ 7} 80$	HA11749	¢4．50	M51515BL	\％ 7.50	TA7108	¢1．50	UPC1020	91.75	2 2SA673	50.35	$2 \mathrm{SC1364}$	co	TDA2	$\underline{7} .75$				
C×1000	\＄5．75	HA11750	E5． 00	M51516L	$\underline{2} .50$	TA7409	$\underline{7} .30$	UPC 1023H		2SA684	${ }^{\text {co }}$	2 SC 14	E_{0}		9.20	opening times 10am－5pm，Mon－Ffi．9－12 Sats．			
Cx101G	97.50	HA11753NT	c8．50	M51517L	$\underline{2.50}$	TAF119	¢1．75	UPC 1025H	$⿳ ⺈ ⿴ 囗 十 一 ⿺ 𠃊 ⿳ ⺈ ⿴ 囗 十 一 贝$	2SA769	¢0． F1．95	${ }_{2 S C 14}^{2 S C 14}$	¢0．30	TDAZO	51.40	S ACCEPTED MIM．TELEPH			
CX130	$\underline{4} .5$	HA11758NT	c8．50	1518L	c1．	TA7120	20．50	1026	c1．	2SA76	9.95	2 Cl 427	20.30						

$\star \star \star$ JUNCTION 11 ： A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY，FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES
 G．E．C．PYE PHILIPS I．T．T．DECCA R．B．M．

Now in stock V．H．S．V．C．R．s from $\mathbf{£ 6 0}$ plus full range of Thorn remote control including $T / T e x t$

＊DISCOUNT FOR QUANTITY ฝ

The directors of this new company assure all our prospective customers of a warm welcome，and a fair deal．

moz m／anives（JII）M62 4000L

COME TO JUNCTION 11，M62， YOU＇LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD．， Unit 11，Prestwood Court， Leacroft Road， Birchwood，Warrington． Phone 0925826387.

Open 6 days $9-5.30$（later by appointment）

CREWE WHOLE 77 Coleridge Way Tel: 0270582 15 mins from Junction 17,	TV
WORKING TVs FULLY ENGINEE TRY THEM BEFORE YOU BUY TUBES.	STED. UNNED
Decca 80s \& 100s	£25
Bush T20 \& T22 etc	£30
ITT CVC 20 \& 30 \& 32 upwards	£25
G11s	£35
GEC Starline	£25
GEC 2110, 2111	£20
Rediffusion Mk 3	£25
Rediffusion Mk 1 \& 1A	£12
Thorn from 8,800 to T/X from	£20
Text Sets Available	POA
LARGE SELECTION OF OFF THE PILE SETS FROM f5 DECCA GEC ITT, BUSH, REDIFFUSION ETC	
ALL UNTOUCHED, CHECK FOR COMPLETION BEFORE YOU BUY UNTOUCHED VIDEO	
ELECTRONIC FROM $\mathbf{£} 90$. WORKING TOUCH TUNE VIDEO FROM $£ 135$. ALL WORKING PRICES	
QUOTED ARE FOR LOTS OF 5. ALL OFF THE PILE ARE FOR LOTS OF 10.	

[^3]
SPECIAL ANNOUNCEMENT
 From:
 NORGROVE TV TRADE SERVICES Water Street, Birmingham B4 6BJ.

Hundreds of TVs and Videos arriving weekly. Available for sale to the trade.

Most makes in stock including the full Thorn range, RBM, Philips, Pye, ITT, Hitachi, Sony, Pansonic, Sharp, Sanyo, Decca and many others.

Spares available. Deliveries arranged. Export enquiries welcome.

OPEN SUNDAYS BY APPOINTMENT.
For quotation. Please ring:

CentreVision

TEL: 0222-44754 SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB OPPOSITE CITY FOOTBALL GROUND, 5 MINS FROM M4

FERGUSON VHS VIDEO £65

MANY ELECTRONIC VIDEOS IN STOCK
MANY TOP QUALITY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS: MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

VIBEO HIEAOS											
ARAlVS9300 VS9960 VS9700 vS9800 [84.90											
FERGUSON 3V00 3V16, 3V22, 3V23, 3V24, 3V29, 3V30, 3V31, 3V35, 3V36....											
${ }^{\text {JVC HR3300, HR3320 }}$. HR3330, HR3660, HR4100. HR7200. HR 76000 , HR7650, HR77700											
VC9700i. .											
SONY SL8000, SL8080 SL8500, SL3600, SLCS. SLC6. SLC7 FISHER VBS 7000 , VBS7320. VBS7500, VES7600. VBS9000. VES9900											
[PINCH HOLLERS]											
Alwa, NEC, Sory Toshiba, etc Akal JVC, Mitsubisht, Nordmende, Saba, Teletunken Thom etc				[4.95	National Panas			¢4.95			
					Sanyo, fisher.			E4,95			
Akai VS9700				. 8.95	Shalp			[4.95			
[MOTOASICLUXCH ASSEMEL - IULERS ETC.											
JCC 8 FERCUSONCAPSTAN MOTOR PUA5979 and JVC 8 ferguson JUC \& FERGUSON CLUTCH ASS: 07×00018729 				126.50	SHARP CAPSIAN MOTOR VCB300 SANYO REEL DRIVE PULLY						
				$\underline{226.50}$				ce. 50			
				¢5.95	SANYO REEL MOTOR 5000			[13.90			
			JUC \& FERGUSON CLUTGH ASS: 01×0018729	55.50	HHAPPREELI	vc387, 9	300, ETC	9.90			
				[4.85	HITACHIFI		300,	${ }_{\text {ci }} 175$			
SHARP CAPSTAN MOTOR VC7300, VC7700, VC7750 ¢19.45 HITACHIPLAY IDLER VT9300								¢6.50			
VIDEOEELT KIS											
AKAIVS2EG VS5EG VS93											
FERGUSON 3292, 3V00, $3 V 01,3 V 16,3 V 22,3 V 23,3 V 24,3 V 29,3 V 30,3 V 31,3 \vee 32,3 V 35,3 V 36$											
SC9700 VC381, VC383, VC385, VC366, VC6000, VO650											
FEETIFİ	ELECTROMTICS				SEmicdiduchais		[IDS [Cont.]				
TRAYS	713715:4EA	AD $\quad 56.50$	Elicimily				TBA800				
THORN	7.93) 693 SLEA		G8600300								
	7258731	${ }_{58} 5.5$		$0 . \quad .44$	80131	Ci. 35	твавго	81.25			
$14003 S T$ I..... 84.00	Rum		G11470250	$50 \quad 525$	80132	20. 35	IBAB2OM	${ }^{50.85}$			
$15003 S T$ $150055 T$ E5. 550			SEMICOH	NI	8 B 139	col 30	TUA170	\%1.56			
	120/120A	7.50	Slpala	Lucions	BD140	cie 30	tuazooz	${ }^{1} .85$			
$\begin{array}{rr}3000 & 88.00 \\ 3500 & 88.00\end{array}$	LIMERSM		TiP31a	${ }_{50} \mathbf{5} 29$	80201	. 01.49	TDA2003.	${ }^{c} 1.60$			
	LIPTS.		${ }_{T 1 P 3}$		BD202	\%0. 49	TDA 2030	${ }^{71.65}$			
3500 8000 			TPQ	${ }_{6}$	${ }^{80238}$. 20.45	UPC575	${ }_{81.10}$			
8500 9000 	68.57 .95	92.25	TIP4IC	50.45	80676	${ }_{50} 10.4$	UPC1181	71.25			
DECCA	G11.	813.95	T1P422	50.45	$8 \mathrm{BLI2}$	\%.10	UPC1182	${ }^{51.25}$			
$\begin{array}{ll}17300 & \text { [4.95 } \\ 1830\end{array}$			TIP 295	c0.65	BU205	${ }_{6} 1.15$	UPC1156	11.76			
	${ }^{\text {A640 }}$		${ }_{\text {IIP } 3055}$	${ }_{50} 8.60$		98.45	UPC1185	${ }^{5} 2.65$			
1830 2030	${ }^{\text {A }} 8723$	${ }_{711} 12.95$	OC148	${ }_{50} 50.10$	BU208A	20.98	UPC1230	${ }_{2}^{2} .25$			
$2230 \quad$ [7.50	${ }_{\text {T } 20}$	1250	${ }_{\text {BC1 }}$ 89	50		18.20		${ }_{9} 9.65$			
${ }^{2630} \quad 87.50$			${ }_{\text {BC157 }}$	${ }_{\varepsilon 0.10}$	81406	50.55		${ }_{6}^{23.25}$			
${ }_{80}^{30} \quad 9$	697 PC	¢13.50	${ }_{\text {BC }} 158$	${ }_{50.10}$	80407	${ }^{60.99}$	HA1397	${ }_{53} 25$			
80 100 7.50	725	510.25		co. 10			STK461	c11.50			
	731735	$9 . .55$	BC189ad	50.10	QY127	cco 09	STK463.	E12.29			
	${ }^{7377841}$	95	BC171a	c0. 10	8Y133	¢0.10	STR451.				
CVC1-9			${ }^{\text {BC237 }}$	50.10			la4100	11.25			
	8000	c18.95	BC327	50.10	ILES			c1.25			
CVC45 $\quad 58.6$	8000	518.95	BC328	¢0.10	IBA520	\ldots	LA4031P.	c1.65			
	8500	1515		11		T					
${ }_{68520530}$	9000	C20.45	ВС338	50.11	tras ${ }^{\text {a }}$	17.45	LA4461	[1.95			
$\mathrm{G8550}^{681}$	9600	[13.45	ВСС546A	50.10	tBa550	E3.95	M51517.	$\underline{2} .65$			
69. 7.50 673	9800	1330.65	BC547	50.10	TBA560.	c1.76	ta7227P	$\underline{92} 9$			
	TX9	819.59		50.19			ta7229P	9.25			
UNIVERSAL ELECTRONIC DISTRIBUTORS 40 SILVER ARCADE, LEICESTER LE1 5FG. TEL: 053329438											
minimum order es.00 please. D ano welcome. please ado gi.00 pap and 15% vat to the total allow more postage on heanier mems. please nlow up to dars for delvery.											

BOLTEN LTD. 45/46 London House,

 271, King Street, London W6 9LZ. Tel: 01-748 4137 (2 lines) Telex: 262421 BOLTEN GVideo Heads
Sony C5/C7TT7 .. $£ 31.95$
Ferguson/JVC (Universal) $\mathrm{£} 30.95^{\mathbf{9}}$
National Panasonic (Universal)90.95
National Panasonic (370/380) $£ 33.95$
Hitachi ..95
Sanyo ... $\mathbf{£ 4 4 . 9 5}$
Fisher VHS Genuine ... $£ 51.95$
Akai (most Models).. $£ 30.95$
Sharp... 44.95
Heads suitable for many other Brands also available. Please call for full list.
Belt Kits (Most Models) ..99
Remote Controls for T.V.
Grundig/Philips... $\mathbf{£ 1 6 . 9 5}$
Video Cable Kit
(any model to any model) ...50
Pinch Wheels (Various Models) $£ 5.95$
Please add 15\% VAT plus $£ 1.00$ p\&p per order.
Delivery within 7-14 days
subject to availability

HOCKLEY DISCOUNT TELEVISIONS

We give "The Best Deals" that's why we have the cleanest reputation in the trade!!!
 Prices start Working sets From $\mathbf{£ 6 . 0 0} \quad$ From $£ 12.00$

OR

Lorry loads delivered from SOURCE

We have huge stocks of TV's + V.H.S. Videos to offer, including:-

Philips G8's, G11's Thorn 8000, TX9,
Pye Solid State 900 , 9600 , TX10,
Pye Chelsea Hitachi
G.E.C. Solid State...........T.T. CVC30, CVC45,
Rediffusion Mkl, MkIII Bush T20, T22

ALSO
 VIDEO + T.V. STANDS AVAILABLE!
 DONT HESITATE TO CONTACT US BECAUSE YOU WILL NEVER LOOSE!!

MIDLANDS BRANCH:Hockley Discount Televisions, 94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551-2233 - Ask for Jazz

Northern TV Distibutors, Unit 2, Per Court, 11th Ave, Team Valley. Gateshead, Tyne \& Wear. 091-487-5389 - Ask for Joe

BRITAIN'S LARGEST SUPPLIERS OF Ex RENTAL TV \& VIDEOs
 OVER 1500 ARRIVING WEEKLY

Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

FRANK FORD
 (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

LOOKAHEAD:

 WITH MONOLITH MAGNETICTAPE HEADS DOES YOUR VCR GIVE WASHED OUT NOISY pICTURES - ITS PROBABLY IN NEED OF A NEW HEAD-FAST FROM OUR EX-STOCK DELIVERIES. SAVE £££'s ON REPAIR CHARGES. N Our replacement video heads fit most models of VHS or Betamax VCR's. Following our replacement guide and with a practical ability, you can do the whole jot in your own home with our head replacement kit. VIDEO HEAD REPLACEMENT KIT

VMC-C 2 KIT ONLY £19.95 inc. VAT. + £2.50 p\&p (Kit does not include video head)
TELEPHDNE US NOW FOR INFORMATION OF THE REPLACEMENT HEAD FOR YOUR VIDEO RECORDER. CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads. Motors, Mechanisms, etc. Please forward 50p p\&p.
THE MONOLITH ELECTRONICS CO. LTD. 5-7 Churct Street, Crewkerne, Somerset TA18 7HR, England. Telephone: Crewkerne (0460) 74321 Telex: 46306 MONLTH G

Universal Semiconductor Devices Ltd.
17 GRANVILLE COURT, GRANVILLE ROAD.
HORNSEY, LONDON N4 4EP, ENGLAND.
TEL. 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STDCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILTIES IN WEST GERMANY AND USA UPON REQUEST
TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON SMALL SIGNAL
POWER
(h) DARLINGTONS - All SHAPES AND SIZES VHFNUHF DEVICES - ALL SHAPES AND SIZES

FETS -

- POWER MOSFETS UNIJUNCTIONS
(B)
(b)
dIODES - GERMANIUM AND SILICON RECTIFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZES \longrightarrow
THYRISTORS AND TRIACS - ALL
SHAPES
電
SIZES

integrated circuits:
CONSUMER - DIGITALANALOGUE
MICROPROCESSORS AND PERIPHERALS
IC SOCKETS
MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST ENCLOSING $£ 1.00$ IN STAMPS, CHEQUE OR POSTAL ORDER.

CATALOGUE

IETIERH-AD IWITHOUT GOVERNMENT INSTITUTI AND DISTRIBUTORS.
SPECIAL dISCOUNTS and Payment terms are available to above INSTITUTIONS.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.
WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

SETS \& COMPONENTS

NEW AND SECONDHAND COLOUR TV SPARES. Panels \& Tubes most makes also panel repair service. Tel. Southport (0704) 74411 anytime (24hr).

PHILIIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845 2036.

GENUINE GRUNDIG SPARES. Fast helpful service. Sensible prices. TELEOUIPMENT PHILIPS Oscilloscopes. Test equipment, manuals. OCHRE MILL TECHNICAL. Stone 0785814643.

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp, fully refurbished. PEARSON TELEVISION 0484 863489. Delivery arranged.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech. Cambs. 0945584188 . Immediate settlement.

$\begin{aligned} & \text { NORMAN } \\ & \text { ENTERPRISES LTD } \end{aligned}$	
Weston-Super-Mare, Avon.Tel: 518335	
Colour TVs fully engineered with a special care on tubes	
Hitachi 217 Remote Contro	£85
Thorne 9000 Remote Contr	2.50
Pye G11	
Rank T20	$£ 42.50$
Pye Chelsea 6 Butto	$£ 27.50$
Pye 725	$£ 37.50$
Pye 721	£27.50
Thorne 9600	£45
Thorne 9200	$£ 42.50$
Bush T20 Remote Control	$£ 49.50$
Bush T24	55.

ITT 20 INLINE TUBE $£ 45.00$ + vat.

All above prices include hand sets if available. Ready for sale. Phone now, limited number each month. All the above off the pile, less a 3rd

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40 p per word (minimum 12
PRICE BUSTERS IN
BIRMINCHAM FOR
TESTED AND UNTESTED
TV's AND VIDEO's
ALSO AVAILABLE DIRECT LORRY LOAD
RING - 021-772 2733
WILTSGROVE LIMITED
(Next Door to UNCLE'S DISCOUNT STORE)
128-130 Ladypool Road,
Sparkbrook, Birmingham B12 8JA.
CASH ONLY
"STOP PRESS"
NOW IN STOCK ELECTRONIC VIDEO'S AT
UNBEATABLE PRICES

CASH PAID Now for your surplus TV spares, Transistors, I.C.'s etc. Tel. MR. FORSHAW 0902 29022.

EXPRESS PANELS

A highly skilled staff using specialized service iigs and some of the most up to date tectiniques and test equipment availabte means we can save you time, money and heartache.

EXAMPES FROM OUR RANGE (exch. basis)
Bush T20/22/26 Sony 1820/2000/s)

power supply	Sony
power supply	
E14.75	E16.75
G11	GEC 20AX/30AX
power supply	power supply

All prices subject to VAT, P\&P FREE (if orders over $£ 10.00$). Panels also available for outright sale, discount for quantites (any mix) all panels guaranteed 3 months, are chemicatly cleaned and print re lacquered, and have no damaged print etc, so they not only work they look good too. Send S.A.E. tor NEW CATALOGUE Or ring with your requirements.

TRADE SERVICE AVAILABLE for VCR's.
Callers by appointment only. Telephone orders accepted using Access \& Visa.
021-359 3753
ARGO SERVICES (B.HAM) 53,
Lawley St, B.Ham B4 7XH

WIZARD DISTRIBUTORS MANCHESTER TV \& VIDEO SPARES

We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR.
Did you know we also stock

FUSES
TUBES
AERIALS
AEROSOLS
RESISTORS \quad AIDEO LEADS
RAPACITORS SEMICONDUCTORS
CaPACITRAS SERVICE MANUALS
VALVES HANDESTS TEST EQUIPMENT AND MUCH MORE
Courter open Monday-Friday 9am-4.45pm TRADE ONLY
EMPRESS STREET WORKS,
EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

EEROICE POCES

words), box number 70p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "'Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261'5942).

FYLDE T.V. AND VIDEO DISTRIBUTORS Unit 7, Arkwright Court. Blackpool/Fylde Industrial Estate Very End of M55 left at roundabout.
 UNLIMITED SELECTION OF
 THORN 8800
 8800 R/C
 9000
 9000 R/C
 9600 R/C
 9600 TTX
 PHILIPS G11
 G11 R/C
 G11 TTX
 GEC $\quad \mathrm{S} / \mathrm{S}$
 JVC 20"
 MONO's $20^{\prime \prime}+24^{\prime \prime}$
 AND MANY MORE TRADE WORKERS TO ORDER
 PHONE BLACKPOOL (0253) 64413

BOURNEMOUTH

LARGE STOCKS OF NICE CLEAN WORKING SETS, MOST MAKES AND SIZES.
FAIR PRICES - TRADE ONLY WAREHOUSE OPEN: Mon-Fri 9-1, 2-5
HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

PLEASE
MENTIOM
TELEVSION
WHEN
REPYYMG
TO
ADVERTISEMEMTS

INDEPENDENT TELEVISION AND VIDEO COMPANY LARGE STOCKS TO CLEAR EVERY WEEK
—○COMPETITIVE PRICES

EXAMPLES:
B\&W 20"-24" COLOUR:
Bush 1-2 I.C. $\quad \mathbf{E 4 . 0 0}$
Philips 520-550, $26^{\prime \prime}$
Thorn 3500
GEC-Decca-ITT
From $\mathbf{£ 1 . 0 0}$ £6.00 £6.00 £6.00

Philips 550 22"
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime}$
GEC $20^{\prime \prime}-22^{\prime \prime} 26^{\prime \prime}$
Thorn 8800-9000-9800

Many Other Modern Sets and VHS Videos

PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from $£ 40$
Phone Steve: Nottingham
(0602) 864627

Unit 3
Meadow Trading Estate, Meadow Lane,
Nottingham NG2 3HQ.

STARLITE ELECTRONICS

WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238. EX RENTAL TVs UNTESTED FROM $£ 15.00$ WORKING TVs $£ 20.00$ RE-GUNNING TUBES

SPARES, PANELS
AND MANUALS
PHILIPS • GRUNDIG
TELEVIEW $01-9945537$
194, Acton Lane, London W.4.

NORTH WEST ELECTRONICS NEW STOCKS ARRIVING DAIIY

NEW TRADE SHOWROOM NOW OPEN. WORKING TVS AND VIDEOS

 ON SHOW.

Refurbished TV's

BUSH T20/T26 £45
 G11
 PYE KT3
 Others done to order.
 DISCOUNT FOR QUANTITY

EX-EQUIPMENT PANELS NO EXCHANGE REQUIRED

If De. Line Power frame $\begin{array}{lllll} & & \text { coder } \\ \text { T20/22 } & & 14 & 18 & 17 \\ \mathbf{x} & 14 & 14\end{array}$ $\begin{array}{llllll}\text { T26 } & \mathrm{X} & 16 & 20 & 17 & \mathrm{X}\end{array}$ ALL PRICES INCLUSIVE OF
POSTAGE BUT PLUS VAT CHEQUE WITH ORDER PLEASE

Annual Clearance Rock Bottom Prices	Tideo
	SHARPS 7300, 8300, 9300 HITACHI, VT11, FERGUSON 3V29 (Not Ex D.E.R. etc.) SANYO, SONY, BETA

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.
 5 MINS FROM MOTORWAY

100's PX
HOOVER JUNIOR
VACS

All models in stock
Te (0274) 660995

P.X. WASHERS COOKERS ETC CASH ONLY (1)PN 6DEKS SIH 9-5.30

'BOBS'

TELEVISION
 WAREHOUSE
 A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO

WORKING TV

 \& VIDEOENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM
NON WORKING GUARANTEED COMPLETE AND UNCANNIBALISED GOOD CABINETS AT LOW LOW PRICES ELECTRONIC, REMOTE, FRONT LOADER VIDEOS NAT PAN, JVC, HITACHI, TOSHIBA, SANYO, SONY, ETC, ETC.
K30, KT3, G11, TEXT, REMOTE AND BASICS
ITT, GEC, BUSH, JAPS., DECCA, ETC.

PHONE BOB BEAN ON:
0268728966
AND DISCUSS YOUR REQUIREMENTS

COLOUR BAR GENERATOR
Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White Raster, Half Black \& White, Mains Powered. $£ 75.90$
OUTPUTS PROVIDED
UHF OUTPUT
VIDEO OUTPUT
SOUND GUTP
LINE PULSE
FIELD PULSE
Same as above plus RGB output
$\mathbf{£ 8 1 . 5 0}$
BM Generator, Crosshatch. Peak White Dots Hal\& Black \& White and Grey Scale UHF output 81850 Same as above but with Video Output $£ 20.50$
Capacitance Meter measures 10 pF to $1 \mu \mathrm{~F}$ complete with moving coil meter

CRT TESTER/REJUVENATOR SEND S.A.E.

> S.A.E. for details. Prices include VAT.

Postage on Colour Bars 51.75 , others 75 pence.
C.M.J. ELECTRONICS

PO Box 214,
Wolverhampton
WV11 3BE.

TUBES

ONE YEAR GUARANTEE
14" 370 - KRB - LHB - HGB - HFB - HUB - BRB - EGB -EFB-MEB - GUB - AXT 37-001-AXM 37-001-37-565 Broken Tube We Can Help.
$16^{\prime \prime} 420 \mathrm{EDB}$ - EFB - CZB, 42 - 001. 42 - 556
20' $51-161,51-500-554-570-575-580-590-51-$
301 AXT 510 - VB - UFB - RNB - UDB - HWB - 510 ABUB from $£ 45$.
22" $56-500,56-540-610-611-615-700-712-560$ HB - DYB - ATB BMB - EW 56-TB-GAB-AXB - ETB 26" 66 -500-510-540-611-615
HITACHI 510 HWB - VLB - VSB - 560 DZB - HWB - 490 DKB22 FROM $£ 34$.
SONY $\mathbb{E} 65$ Cash \& Carry only
DELTAS $£ 29.00$ Reguns.
E14.50 Slighty used 6 month quarantee A44-270-1 A66-120 A49-191 A47-342 or 343 All prices are inclusive U-VIEW
29. Warmsworth Road, Doncaster,

Yorkshire DN4 0RP. Tel: 0302855017 Callers ring tirst, open every day including Sunday 1/2 a mile from Al

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD
 TEL. 01-258 0328

ALL VHS PARTS AVAILABLE EXAMPLES VIDEO HEADS
JVC, Ferguson, Akai, Saba, Teletunken $£ 35.00$ Sony (Betamax) ..
Allional Mitachi heads from
All hitachii heads from
INTEGRATED CIRCUITS
UPC 1365C
UPD 553C
UPD 552 C
HA 11711
俍, pressure rollers, clutch assembly
Many other parts available. Send SAE for list. ALL PRICES INCLUSIVE OF VAT

ADD £2.00 FOR P\&F
HALTON TV
TRADE DISPOSAL
Wholesaler you won't find competing
with you on the High St.
TV and Videos
GEC, Philips, Decca, Doric, Thorn
\& Remember, we have NO retail outlet \star
St Michaels Industrial Estate, Widnes
Tel. 0514231577 TRADE DISPOSAL

Wholesaler you won't find competing with you on the High St. TV and Videos

GEC, Philips, Decca, Doric, Thorn
\star Remiember, we have NO retail outlet \star

Tel. 0514231577

G. 11 s Pye \& Philips ITT Remote with handset G. 11 Text KT3's

ALSO ON STOCK
THORN, DECCA, BDFD, 80-88-100, PYE CHELSEA 222, TTT CVC 20, 23, 30, 32 Remote, PANASONIC, HITACHI, TANDBERG, GRUNDIG, GEC 2002, 2242, 2642, 2202, and many others, changing daily.

VIDEO as avalable from $\mathbf{£ 2 0}$.

VHS ${ }^{\text {HITACHIO } 9500,9800, ~ V T o, ~ 8500, ~ 8300, ~} 8000$
PANASONIC, 366, 7200, TRIUMPH 9500, JVC, FERGUSON.
BETAMAX sONY C5-C6, c7, SANYO, 5000, TOSHIBA.
2000 SYSTEM PHILPs 2000, 2021, 202, Granvic 24.

Stands, SLOT METERS, PANELS, SETS FOR SPARES, CLEARANCE COLOURS CHEAP
PRICES BASED ON QUANTITY. ALL PLUS VAT.

GENERAL FACTORS UNION STREET, DONCASTER, SOUTH YORKS. 0302-49583

CASH NO CHEQUES.

ONLY $21 / 2$ MILES FROM
(A1M) FOR M18-M1.
10 am to 5 pm Daily

'SPECIAL OFFER'

UNIVERSAL NICAD CHARGER - $\mathbf{£ 6 . 9 5}$ with 4 rechargeable AAHP7 cells, (ex equip tested and guaranteed). Charges any combination PP3, AA, C \& D cells,

NICADS

4 for $£ 2$ or 10 for $£ 4.50$ (tested and guaranteed)

> Send 80p P\&P
(E) CROYDON DISCOUNT ELECTRONICS 40 Lower Addiscombe Road, Croydon, Surrey. Tel: 01-688 2950

EAST ANGLIA SUPPLIES (BARRY T.V. SERVICES)

WE SPECIALISE IN LATE MODEL TELEVISIONS AND V.H.S. VIDEOS
T.V.'s

G11's, KT3, K30, K35, CTX.
Other makes available.
VIDEOS
Ferg 3 V $29,3 V 30,3 V 35,3 V 36$
Nat Pan 2000, 2010, 333.
Hitachi 8000.
Mitsubishi - various models.
All items fully serviced and ready for sale or rent in excellent condition. Free delivery for sensible size orders (petrol only charged).
Phone today for prices and availability to: CAMBRIDGE 69215

PHONE 0865711966

For a friendly chat on all your video \& TV requirements. We have 53 years' experience in the radio and $T V$ industry.

NEW \& USED PRODUCTS AVAILABLE

PRECISION VISION LTD,
10 The Chiltern Business Centre, Garsington Road, Cowley, Oxford.

SUPERVIEW TUBES

New RF Heat Technique for Jap Blackstripe, Ferg, Bush in lines G11 GLASS with neck pinhole, no problem Nissan van Munster circuit

CHRIS KELLEHER'S TV
Kanturk, Co. Cork
Rental deater supplies D29 50046 10-10pm

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS
Line Ouput
2718 (T703A, T706A)
New (Complete)
$£ 19.00$
Less Focus Module and
Rectifier
£10.50
T20, T22 (T705A) £11.00
T26 (T705B) $£ 11.00$
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $£ 6.00$
Switch Mode
T114A
£6.00
Genuine RBM Units.
Prompt Postal Service P\&P Paid Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2QT.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

IF YOU OR YOUR COMPANY ARE INVOLVED IN VIDEO SERVICING
READ THIS
VCR PROTECTIVE COVERS PERSONALISED WITH YOUR TRADE NAME

* Fits all modern VCR's - excluding portables - Made from sturdy quithed material
* Gives all-round protection against damagel scratching during transit - no dangling mains fiexes
* Alows discreet removal to and fro - your customer will greatly appreciate this
Celes good caring company mage
Price (including P \& P) DON' DELAY
f6.50 each - ORDER TODAY
Pack of 5-£30 You'll wonder what you
Pack of 10 - $\mathbf{E 5 5}$ did without them!
Just print out your trading name and enclose with your order and cheque/P. 0 . to.
N.F.P.C., 3 Fenham Hall Drive, Newcastle upon Tyne NE4 9UT Tel: (0020) 2724646
Please allow 21 days for defivery

Tpert Trbes

For Professionally Rebuilt Tubes 39A RADCUFFE ROAD, WEST BRIDGFORD, NOTTINGHAM NG2 5FF TEL: (0502) 813329

All STD DELTAS ONE PRICE $£ 33.00$ A56 - A66/540 (30AX) £49.00 560 DZB22 - 510 VLB22
AXT TYPES - A51.161-560 EGB22 etc. ONE PRICE £48.00
A51-A56-A66/500/510 (20AX) £44.00
SONY TYPES FROM $£ 55.00$
Specialist Sony Service Tubes from $£ 55.00$ 1000's more types available. VDUs, M0NOs, Industrials etc. Suppliers to Broadcasting Authorities, Government depts \& National Companies and Manufacturers ALL PRICES EX WORKS + VAT \& EXCHANGE
WE SPECIALISE IN JAPANESE TYPES Insured Delivery UK £6.00
QUANTITY DISCOUNTS. TECHNICAL ADVICE SERVICE
Agents, wholesalers required high discount rates
Agents, wholesalers required high discount rates

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) 22" \& $26^{\prime \prime}$ ONLY $£ 20.00$ each
Plus many more makes \& sizes in stock, inc. Tanburg, Nordmende, Thorn.

1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston
(0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
£1.25 per panel plus post \& packing

AERIALS

SATELLITE TV

 RECEPTION EQUIPMENT

Dishes 0.9 to 2.8 m , complete systems $10.9-12.7 \mathrm{GHz}, 4 \mathrm{GHz}$ LNB's, demodulators, and all those accessones
Manufacturers and Distributors of high quality satellite TVRO ANTENNA equipment.
KESH ELECTRICS LTD.
Main St., Kesh, Co. Fermanagh, N.I. Phone: KESH (03656) 31449

SATELLITE TELEVISION
Buy direct from the manufacturers, low cost, full band satellite TV systems. Full band system £650 + VAT and Carriage
Write or telephone for details or call in at our factory showroom
NETWORK SATELLITE SYSTEMS LTD.
Unit 7-8, Newburnbridge Ind. Estate,
Hartlepool, Cleveland
Tel. 0429274239 or 869366

MULTI-OUTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (fuil of trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham, (07(19) 813419.

Euro-Sat

Parabolic Dish Antennas π Mommin compann eit in N communications sine 1989) SATELLITE TVRO ANTENNAS
TOP QUALTY SOUD TOP QUALTY SOLD TRADE PRICES IA 11-12.4 GHZ BAND TRADE PRICES 1.2M. DIA $11-12.4$ GHZ BAND $\quad £ 77.00$ 1.6M. DIA 11-12-4 GHZ BAND 1.8M. DIA (PETAL) $11-12.4 \mathrm{GHZ}$ BAND $\begin{aligned} & \mathrm{E} 117.00 \\ & \mathbf{2 M} \\ & \mathbf{1 5} .00\end{aligned}$ 2M. DIA. $11-12-4$ GHZ BAND
2.3M. DIA. (PETAL) 11-12-4 GHZ BAND $£ 248.10$ 3M. DIA $11 \cdot 12.4$ GHZ BAND $\quad \underset{\text { E737.00 }}{ }$ Euro-Sat
107 Cross Street, Sale, Cheshire, England Tel. 061-437 2631 061-881 4249

SERVICE SHEETS

TECHNICAL INFO SERVICES (T) - 76 Church SL, Larkhall, Lanarkshire ML9 1HE. World's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both British and Foreign from 1935 to latest issues. Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide $+£ 4$ Vouchers - saves time and
expense \&3.

Any published single service sheet for $\mathbf{\Sigma 2 . 5 0}+$ Isae except ctv/mus-c/combis from $\mathbf{\Sigma 3 . 5 0}+$ Isae .
A seeection from our stocks of thousands of Service Manuals ready for despatch by return post
Any Sony: Hitachi ctv from £8.50. Thorn 3000/3500 £9.50. Thorn 8000/8004/8500/8600 E9.50. Philips G8 complete £9.50. Decca 30/31 £8.50. Ferguson/JVC 1st video £19.50 or 3 V00 types basic manual £19.50. Any Finlandia: Tyne CTV $£ 9.50$ each. Rank A823 complete £9.50.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL £9.50 PRACTICAL RADIO SERVICING \& REPAIR COURSE 9.50 THE 11 TUNBRIDGE REPAIR MANUALS OMY $\mathbf{E} 88$ THE 5 MCCOURT REPAIR MANUALS

OMY E55
ANY SET OF 5 INDIVIDUAL VIDEO REPAIR MANUALS FOR $£ 12.50$ OR ALL 3 SETS (15 MANUALS) FOR 236.
UNIQUE COLLECTIONS OF CIRCUITS, LAYOUTS, ETC. . . . FANTASTIC VALUE British ctv from hybrids to modern (3 binders) £58 Videos, all types (3 binders) £58 ...any 1 ion
Mono TV (2) $£ 38 \quad$ Foreign ctv (2) $£ 38 \quad$ Domestic Eqpt (2) £38 Portable British ctv (1) £20.

COMPLETE REPAR SYSTEJK . . huge savings from published prices

British ctv 3 binders of Circuits plus 6 Repair Manuals plus ref books, etc. for only E140 Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc. within 1 year of ordering 1 st section will be added at no extra charge.

NEW

- PRACTICAL TRANSISTOR -

From beginners/students elementary theory to more advanced. Huge section British/Foreign equivalents/ alternatives/other data. E5.80 Post Free

NEW Binder of Cirfuits alone $\mathbf{E 2 9} 5$ Repair Manuals $\mathbf{5 1 2 . 5 0}$ $3 V 31 / 32$ Sharp 2300 to 9700 Philips Laser Disc Pan 7000 /
$7200 / 7800$ 7200/7800.
Repair data/Circuits/Service data almost any individual

LSAE BRINES ANY REQUESTED QUOTATION - FUUER DETALL - FREE MAGAZINE - PRICE LSTS ETC. PHONE 0698884585 Mon-Fri before 5pm or 0698883334 any other time - FOR FAST QUOTES

GERMAN SERVICE SHEET SPECIALISTS

We furnish any kind of German service sheet and manual. Also thousands of different sheets and manuals available.

For any enquiries:
DONBERG ELECTRONICS
Schoolmasters House. Ramnalast, Co. Donegal, Republic ol Ireland Phone: Annagny 175

SERVICE SHEETS ON MONO TV's, radio etc at $£ 2$ each plus S.A.E We also stock inanuals on video recorders and colour TVs. Please send for yuote: bELLLS TELEVISION SERVICES, 190 Kings Road. Harrogate, N. Yorks HGI 5 JG .

VIDEO

NEW VCR VIDEO CASSETTES

BSAF LVC 180 £7.50: LVC 150 £6.00: LVC 120 £4.50: LVC $90 £ 3.50$: LVC $60 £ 3.00$

NEW U-MATIC VIDEO CASSETTES

KCA 60 £6.75: KCA $30 £ 4.75$: KCA $20 £ 4.25$ KCA $10 £ 3.25$. Once used for promotional film 25% the above prices (LVC 60 KCA 10-30 only) Bargain box 16 KCA60 used but tested $\mathbf{£ 5 5 . 0 0}$ U-Matic portable cassettes, once used by broadcast companies KCS20 BR £5.75: KCS 20K £4.25: KCS20 £3.25. 10% discount on 10 or more tapes. All prices are inclusive.

Mail Order Address,

2 Buckhurst Way, Buckhurst Hill
Essex IG9 6HJ. Tel: 01-504 4177.

BUSINESS OPPORTUNITES

HI FI, TV, \& VIDEO SALES AND SERVICE BUSINESS FOR SALE

This very profitable business is situated in a large town \& service income is virtually monopoly, a one off chance for any competent engineer to obtain a ready made business, the premises are frechold $\&$ comprises of medium size sales \& office with large \& spacious work shop fully fitted out to cater for a large work load, the equipment is plentiful and spares abundant. Any prospective purchaser must be prepared to work all hours to cope with workload, the premises also have the benefit of six bedsits and guaranteed income that will more than cover any mortgage. There are good reasons for the sale of a business built up over the years and has acquired a large \& faithful following of regular customers.

Price $£ 60,000$
 Tel: 0423500333

FOR SALE SHOP IN EDINBURGH SCOTLAND

 TV, VIDEO, HI FI REPAIR AND RECON SALES BUSINESSShop run on a five day a week by husband and wife team for ten years. Nice income from reparrs and sales, a little from remial. Selling due to retirement from TV work. Freeroom. Located on main bus route. Bus stop at door store room. Located on main bus route. Bus stop at door. No may consider $£ 8,500+$ S.A.V. for business plus lease on shop with freehold purchase option

Box No. 222

TELEVISION, VIDEO SALES AND RENTALS Established 27 Years
Excellent premises with good access and vacant large two bedroomed flat in West Sussex town. $£ 12,000$ plus s.a.v. and rentals. BOX NO 223

WANTED

CASH PAII) for service manuals VCR, CTV, or V/ Camera 1971 onwards. Must be complete and originals in new or good-used condition (no photocopies). Tel. 0202892279.

SAWF FI 386 K AND F 13868 ch E $3 / 4$ for VCR modulators CHAPMAN TELECONS LTD. P.O. Box 62. Lyllelton. New Zealand. Phone $6+3287227$.

CASH PAID now for your surplus TV spares, transistors, I.C.'s etc. Tel. MR. FORSHAW, 09012 29022.

WANTED Video's, portables, colour TV etc. Any quantity. Immediate collection. Cash paid. Tel. Stoke on Trent 4 (6tol

> WANTED Ex RENTAL COLOUR TVs IN BULK OUICK COLLECTION Phone 0742312832 (Sheffield) IN STRICTEST CONFIDENCE

COURSES

Run Your Own Aerial Erection Service!

Start off on the right course . . . be fully informed! One week intensive instructional courses, run by an ex-broadcasting engineer. Residential, marvellous accommodation with excellent food. Theoretical and practical "Hands on" instruction. Training covers all aspects of television and radio reception. Become an aerial erector who can provide the best, because he's learnt the best way! Courses throughout the year amidst the beautiful Highland scenery. Non-participating partners welcome at minimum extra cost. Transport provided if necessary

Further details by SAE to: R.B. Mannion,

Badcaul House, Badcaul, Dundonnell, by Garve, Ross-Shire IV23 20Y. Tel: 085-483-213.

NOW TOTAL SPARES SUPPORT FOR

FROM
ALL from STOCK (Subject to availability from Fidelity)
Trade Prices subject to official order - all others supplied at retail
CABINETS \star KNOBS \star TUNERS \star CONTROLS \star CRT'S \star TRANSFORMERS
SEMI'S $\star I . C . ' S \star$ CAPACITORS \star REMOTES \star TRIMS \star END USER PARTS

| Tel:
 0734
 876444 | 11 Arkwright Road, Reading, Berkshire RG2 0LU | 876444 |
| :--- | :---: | :---: | :---: |
| GENUINE FIDELITY PARTS AT STANDARD FIDELITY TRADE PRICES | | |

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

MAIL ORDER MANUALS BURROWS SERVICE 33 HANCOCK ROAD, LONDON SE19 3JN.

£1 LISTS (Refundable on orders)

Abstract

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street,

 Larkhall, Lanarkshire.SWIFT SERVICE. Tested spares tube panels. 0504 41141

REPAIR SERVICES

INSTRUMENT REPAIRS, osciloscopes, generators, multimeters \& more. Phone Viking Flectronics 1394 450 NK K.

AVON METERS

We buy and sell and repair TV coinmeter Reasonable prices, one year guaratee.

327 Church Road, St George, Bristol. 0272559761

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

S4000 TV METERS
S4000 TV Meters 50p or $\mathbf{£ 1}$ from stock. Reconditioned. All other types available plus repairs to all makes.

P \& J Wales,
89 Twickenham Road, Newton Abbot Devon TQ12 4JG.

FOR SALE
"RADIO AND T.V. SERVICING" 1965 to 1981 (16 Volumes) £و(). Tel. (K61-798 7613.

PHILIPS V2(M) TAPES, V2(M) heads \& spares, various service manuals. PM25I7 digital meter. Telephone $17+6.32+106$

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only £3($\left.{ }^{2}\right) 5$. Tel. ($1582-410787$.

VHS VIDEO'S 3V00/3V22 E45 each + VAT Minimum quantity 10 Tel: (0102) 397555

DEVONICS

Quality Tube Rebuilders
2 YEAR WARRANTY
Inline Tubes
Up to $19^{\prime \prime}$
£43
$20^{\prime \prime}$ to $22^{\prime \prime}$
$26^{\prime \prime}$
£45
Bonded Coil
30 AX (-540x)
$+£ 5$

Delta tubes from $+£ 7$

All plus carriage and VAT
We currently seek sound inline glass for narrow neck (29mm) and 30 AX types espeically 560 AWB/BJB/BYB CSB and 510 CalB.

2A BARTON HILL ROAD, TORQUAY TQ2 8JH. 080333035

- Sabaco $\begin{aligned} & \text { For a } \\ & \text { great dea! }\end{aligned}$ TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO‘S OFF THE PILE (Mostly switch-ons) Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips $550 /$ Grundig \& many more. BRAND NEW SETS AT LOW PRICES

VHS VIDEO'S

Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc. Also a selection of brand new video \& E180 video tapes OPENING HOURS: MONDAY TO SATURDAY 9am to 5.30pm

CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES AND DELIVERY DAYS, BE HERE WHEN LORRY ARRIVES FOR FIRST CHOICE - PHONE US NOW ON:

	IF	TUNER	OECODER	$\begin{aligned} & \text { G8/G9 DECODER } \\ & \text { IF COMBINED } \end{aligned}$	$\begin{gathered} \text { LNE } \\ \text { OUTPUT } \end{gathered}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	8.00		3.50
THORN 3000/3500	200	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
PHILIPS G11	$\begin{aligned} & 14.50 \\ & \text { WITHEO CMBNE } \\ & \text { SOUNO MODULE } \end{aligned}$		12.00		19.00	19.00	5.00	11.50		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA
POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!										

AUTUMN SPECIALS

10 GEC SOLID STATE £150
10 BUSH T20 £250
10 ITT CVC35
£300
10 REDIFFUSION MARK 1
REVAMP
£120
10 THORN 8000 17"
£150

LARGE QUANTITIES OF BETA VIDEOS RIING FOR SPECIAL PRICES

All + VAT
TELETRADERS
Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WE ARE LOCATED IN UXBRIDGE

At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the $\mathrm{M} 25 / \mathrm{M} 3$ M25/M4, M25/M40.

Why not telephone Terry Smith on Uxbridge (0895) 55800, to discuss your requirements?

DISPLAY ELECTRONICS LTD.
 UNIT 4, SWAN WHARF, WATERLOO ROAD,
 UXBRIDGE, MIDDLESEX.

REPOSSESSED T.V. CENTRES LTD. 061-273-2854 YOUR CHOICE

MINT WORKING SETS. These arrive at our premises in A1 working order, cabinets are superb. \qquad $£ 45$ to $£ 70$ GUARANTEED UNTESTED SETS. These are just as they arrive, in good condition with plenty of plug in workers. We do not sort them as we have our separate source of working sets.
£10 to £35

VHS Videos in stock.

Well stored in large centrally heated premises. Ample viewing space and stored only four high! Come and have a look round.

TRADE WAREHOUSE,
DAISY WORKS, ALSO AT

345 STOCKPORT ROAD, 335-341 STOCKPORT ROAD LONGSIGHT,
MANCHESTER MI3 OLF
(NEXT DOOR)

IRISH T.V. DEALERS

(PLEASE NOTICE)

LARGE SELECTION OF RECONDITIONED PRECISION-IN-LINE UHF-VHF COLOUR TVs, SOME WITH RE-GUN TUBES FITTED, "CABINETS RESTORED TO A1 CONDITION". PRICES START @ £60.00 VAT INCLUDED. ALSO $20^{\prime \prime} \& 22^{\prime \prime}$ RE-GUN TUBES IN STOCK, QUANTITY DISCOUNT, DELIVERY ARRANGED. VIDEO HEADS ALSO IN STOCK.

(EXPORT SPECIALSTS)

T.V. TRADE SALES
E.D.I. HOUSE KYLEMORE PK. WEST DUBLIN 10.
Tel: 0001-264139 (Local calls 01-)
T.V.T.S.

CLOVER PLACE COLLEGE ST. KILLARNEY.
Tel: 064-33655

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN

 IF YOU NEED SPARES FAST - RING NOW!

[^0]: 100 REMark set up data
 110 REMark
 120 DATA 7,5,3,1,6,4,2,0
 $130 \mathrm{~s}=0$: $\mathrm{i} \$=\times \cdot "$
 140 DIM c(15)
 150 RESTORE : FOR $n=0$ to $7:$ READ $c(n): c(15-n)=c(n)$
 160 WINDOW 512,255,0,0 : MODE 8
 170 :
 180 REPeat control_panel
 190 REMark
 200 CLS : bars : CSIZE 3,1 : OVER 1 : INK 0 : PRINT

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £14, overseas (surface mail) E 17 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 \mathrm{X}$.

[^2]: SENDZ components 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 8AF.

 SAME DAY SERVICE
 All items subject to availability. No Accounts: No Credit Cards. Postal Order/ Cheque with order. Add 15% VAT, then $£ 1$ Postage. Add Postage for Overseas. Callers: To shop at
 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
 Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10% handing charge.

[^3]: APOLLO LANCASHIRE
 MAIL ORDER GB 3-4 DAYS PHONE FOR COST SONY TYPES
 LOCAL DELIVERY - 2 YR GUARANTEE - PULL GLASS BOUGHT
 PORTABLES. 37-590, AKT 37001, 370HUB, NEW E65 INC. DELIVERY A $47342 / 343 \mathrm{X}$-470 BCB22/CTB22/BGB22/DHB22
 470-ESB22/EFB22/ERB22/FIB22
 A51-220X/192X
 A51-161×/162/163/168/......................
 510-M R22(E55) DTB22/001/RFP22/RCB22/SEP2
 A51-590 New
 A51-570 $\times / 580 / 001 / 210 / 241$
 A56-120X/123/140/410
 560-DZB22(£56)/HB22/AKB22/TB22/AWB22
 560-ETB22/DTB22/CSB22/DMB22/DNB22
 A56-611X/615X
 A66-120X/A67-120X/140/150/200/410
 $20 A X-A 56-500 X / 510 X-A 66-500 X / 510 X$
 30AX - A56-540X - A66-540X
 PLEASE PHONE BEFORE CALLING
 LOCAL DELIVERY FROM ACCRINGTON, LANCS
 Phone enquiries and letters to:
 Apollo, The Potters Wheel
 Mullion Cove, Mullion, Nr. Helston, TR12 7ET. 0326240781

