SERVICING-PROJECTS-VIDEO-DEVELOPMENIS

Servicing the Panasonic NV7000 Colour CRT Electron Gun Technology Servicing Notes on Sonatel and Morphy Richards Mono Portables Line Output Stage Operation The Grundig CUC Chassis • DX-TV VCR Clinic• TV Fault Finding

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
*
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.

* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 70.00$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$) app.
Optional Sound Module $(6 \mathrm{MHz}$ or 5.5 MHz)
$£ 8.60$
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 3.90$
Built \& Tested in Case including Sound Module
£108.00

f SPECLAL TEST

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT $\mathfrak{£ 3 0 . 0 0}$. CASE $£ 8.60$. BATT HOLDERS $\mathbf{~} 4.20$. MAINS SUPPLY KIT $\mathbf{£ 4 . 2 0}$ (Combined P\&P $£ 2.20$).
MK 4 (BATTIERY) BUILT \& TESTED $£ 58.00+£ 2.20 \mathrm{P} \& \mathrm{P}$. MK 4 (MAINS) BUILT \& TESTED $£ 68.00+\mathbf{2 2 . 2 0} \mathbf{P}$ \& P VHF MODULATOR (CH 1 to 4) FOR OVERSEAS E5.75. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

THORN TX9 MK2/3, TX10, teletext

Mullard Decorder panel + Interface $\mathbf{5 3 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL, TEILETEXT
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{£ 3 8 . 0 0}$ p.p. $£ 2.50$

EXTERNAL TELETEXT ADAPTOR
(RADOFIN) with cable remote control. Fully tested. $\mathbf{£ 1 5 0 . 0 0}$ p.p. $£ 3.00$. Plugs into aerial socket of any T.V
SPECIAL OFFER (shop customers only)
SURPLUS 'AYR' TELETEXT EXTERNAL ADAPTOR UNITS. Ideal for experimental use $\mathbf{£ 5 0 . 0 0}$.

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC. SPECIAL OFFER Ex rental T.V. Sound \& Vision Tuner Units. Ideal as front end for Monitors, Portable Video, HiFi, etc. Deluxe Cabinet, mains operated, 8 position selector, Saw Filter IF. Only $£ 15.00$ p/p $£ 2.80$.
SPECIAL OFFER Mullard/Philips quality UHF modulator (audio \& video input) ex new equipment $£ 5.00$ p.p. £1.(0).
PHILIPS GII PANELS (tested).
Power, frame, IF, decoder $£ 18.00$ each p.p. $£ \mathfrak{£} .00$. Scan Panel $£ 28.00$ p.p. $\mathfrak{£ 2 . 8 0}$. PHILIPS GII PANELS ex rental (untested).
Power, frame, IF, decoder $£ 10.00$ each p.p. $£ 2 .(0)$
PHILIPS HANDSETS Ex rental, Teletext, Untested. KT3, K30, CTX, KT4, K35 etc. $\mathbf{5 5 . 0 0}$ p.p. 80p.
THORN 9000 Fault Finding Guide $£ 1.00$ p.p. 30 p .
THORN REMOTE CONTROL HANDSETS
8800/9800 (2-button) £10.00; TX9 ULTRASONIC (3-button) $£ 15.00$; TX9,
TX10 Infra red $£ 18.00$; TX9, TX10 Infra red Teletext $£ 20.00$, p.p. $£ 1.20$. TX10 Remote \& Tuning control panel (1515) $\mathbf{~} 9.40$ p.p. $£ 1.50$
TX9/TX10 Teletext interface panel (1524) $\mathbf{E 5 . 0 0}$ p.p. 80 p
THORN TX9 Ultrasonic Remote/Control/Receiver panels. $£ 8.50$ p.p. $£ 1.50$. THORN TX10 Series Facia Control Panel with 8 position Channel Selector
SAW $\mathbf{f 6}$ F.p. fi.50. Sound \& Vision. £28.50 p.p. $£ 1.20$.
THORN TX9, TX 10 Saw Filter IF Panel. $\mathbf{5 5 . 0 0}$ p.p. 80 p .
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$.p.p. $£ 1.00$.
PAL ENCODER KIT (RGB to Video) $£ 18.50$ p.p. $£ 1.30$.
TELETEXT DECODERS New \& Tested Mullard VM 6101 £30.00, Texas XM11 $£ 40.00$, KT3 Tested $£ 30.00$, Untested $£ 5.00$ p.p. $£ 1.60$
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $\mathbf{£ 1 2 . 0 0}$ p.p. 8 (pp. (Alum. Case $£ 2.90$, De Luxe Case $£ 6.80$ P. P. $£ 1.41$.$) ADDITIONAL GREY SCALE Kit £ 2.90$ p.p. 45 p .

UHF SIGNAL STRENGTH METER KIT $\mathbf{~} 22.00$ Alum. Case $\mathbf{1 2 . 9 0 \text { . De }}$ Luxe Case $£ 8.60$ (Built \& Tested $£ 48.00$) p.p. $£ 2.30$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono complete with Case, Panel Meter Indicator - can be adapted for latest CRTs $£ 29.50$ p.p. £2. 80 .
BUSH A823 Convergence, Time Base Panels $£ 5.00$ each. p.p. $£ 1.80$.
BUSH $Z 78$ BC6100 series IF Panel $£ 5.00$ p.p. OOp.
BUSH A816 IF Panel (Surplus) $£ 1.00$ p.p. gip. 5 for $£ 4.00$ p.p. $£ 1.40$.
GEC 2040 Decoder Panels, 11.50 p.p. $£ 1.80$.
GEC 2110 PANELS Frame 88.50 p.p. f1.40. Sound $£ 2.50$ (tested) p.p. 80 p. GEC 20AX Line Time Base £18.00. IF-Decoder $£ 12.50$ p.p. $£ 2.00$
PYE 691-7 CDA Panels. Makers tested stock. E6.00 p.p. £1. 45.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors etc. $\mathbf{3 . 0 0}$ p.p. $£ 1.80$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $\mathbf{f 1 0 . 0 0}$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged completc cond. $\mathbf{£ 2 0 . 0 0}$ p.p. $£ 2.80$.
THORN 8000 8500 8800 IF Decoder
THORN 8000, 8500, 8800 IF Decoder Panels Tested $£ 10.00$ p.p. $£ 2.3$
THORN $8000 / 8500$ IF/Decoder Panels salvaged $£ 3.20$ p.p. $£ 1.80$.
THORN 9000 IF/Decoder Panels Salvaged. For spares ${ }^{2} 2.50$ p.p. $£ 1.80$.
THORN 9000 Frame Time Base $£ 8.50$ p.p. $£ 1.80$.
PHHLIPS G8/G9 IF/Decoder Panels for small spares incl ICs $\mathbf{£ 2 . 5 0}$ p.p. $£ 1.60$).
PHILIPS G8 Line Driver Panel incl. Equalizing Coil. $\mathbf{1 1 . 0 0}$ p.p. 60 p.
G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00 \mathrm{p} . \mathrm{p}$. $£ 2.50$ (tested)
G11 PANELS, Power. Frame, IF, Decoder, 18.00 each. p.p. $£ 2.00$ (tested). GRUNDIG 8630 Series Varicap Tuners $£ 5.00$ p.p. $£ 1.00$.
U321. ELCL $143 / 5 £ 7.80$ p.p. 80 p . Makers Controls PYE CT200 4PSN $£ 7.50$,

BUSH "TOUCH TUNE" Varicap Control Z585, 710 £3.80 p.p. £1.00.
VARICAP UHF-VHF ELC 20 OUS $\mathbf{8 9 . 8 0}$ p.p. fI . 00 .
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 position $£ 2.50$ JAP Rotary $\mathbf{£ 4 . 8 0}$ p.p. $£ 1.80$.
TV SOUND IF Panels $£ 6.80$ p.p. $£ 1.00$
LOPT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$.
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins $80 p$.

PERG., HMV, MARCONI, LLTRA ${ }^{\text {E9 }} 80$ RECCA Bradford (state Mod No)
FERG., HMV, MARCONI, ULTRA
$1500) .1590 .1591 .1612 .16131712$,
THORN I $6001,1615,1690,1691$
GECseries $1 \& 2$
INDESIT 2024EGB
TTT/KB VC2(0),3(1)
PHLLIPS I70, 210, 300series
PYE, INVICTA, EKCO.
368, 169. 569,769 series
DECCA 1700200120002401
GECCA 170), 2001, 2020, 2
GEC2II4J3U
KBM AK23
PYE713. 715 .
$\mathbf{5 4 . 8 0}$ DECCA Bradfor
$\mathbf{~ D E C C A ~} 80,150$

PHILIPS 570.571
$\begin{array}{ll}\mathbf{8 8 . 0 0} & \text { GEC } 2110 \text { series } \\ . \mathbf{~} 7.65 & \text { ITTCVC } 5 \text { to } 9, \text { CVC }\end{array}$
$\mathbf{7 7 . 9 0}$ ITTCVC25, CVC30 series £7.65 TTTCVC45.

PYE 691-697 (state model no.)
PYE 725 (9 (9) ${ }^{\circ}$) 731 to 741 .
PHILIPS G8
PHILIPS G9
PHILIPS KT3
PHILIPS KT3. $\begin{array}{ll}£ 3,80 \\ £ 2.80 & \text { PHILIPS KT3 } \\ \text { THORN } 30103510\end{array}$
84.80 THORN $8(M)(1), 85(9), 8 \$(0)$
.54 .80 THORN 9000 to $9(1) 0$
$\begin{array}{ll}.86 .80 & \text { THORN } 98101 \\ .56 .80 & \text { THORN TX } 9\end{array}$
OTHERS AVAILABLE, PRICES ON REQUEST.
TRIPLERS Full range available. Mono \& Colour
Special Offer: THORN $3000 / 3500$ EHT Tripler $£ 2.50 \mathrm{p} . \mathrm{p} . \mathrm{£1} .30$.
 THORN TX 10 focus control $£ 8.80$ p.p. 80 p .

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENOUIRIES INVITED
IARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS
Goods available if in stock immediately over shop counter (Mail order between 3 days and I week from receipt of order). ADD VAT 15%

Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Str. (Jubilee) Buses 28, $159, \mathrm{C} 11$ pass door W. Hampstead Brit Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit Rail Stn. (St Pancras, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD VAT 15\% TO ALL PRICES INCL P+P

COPYRIGHT

© IPC Magazines Limited, 1986. Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs E 14 in the UK, £17 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH

BINDERS AND INDEXES

Send orders for binders ($£ 4.50$) and indexes (75 p) to the Editorial Office, Television, IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS. Prices include VAT and postage. Add 60p for overseas orders.

BACK NUMBERS

Some back issues published during the last six months are available from the Editorial Office at $£ 1.40$ inclusive of postage and packing. Address as above.

queries

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to 'our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

557 Leader

558 Long-distance Television
Roger Bunney
Reports on DX reception and conditions, news and a wideband DX aerial design for Bands ///il.
563 Servicing Sonatel and Morphy Richards Monochrome Portables
lan M. Rees
Fault notes on these popular portables which sold
widely through retail chains and mail order catalogues.
Details of an a.g.c. modification for some models.
565 TV Fault Finding
Reports from Steve lllidge, Mick Dutton, Chris Avis,
Philip Blundell, Eng. Tech., Paul Hardy and
D. R. Bracknell.

567 Thorn 8000 Series IPSU Modifications
Tony Livesley, G8JAI
How to modify earlier sets to use the more reliable
dropper assembly employed in later models.

568 Teletopics

News, comment and developments.
570 Return of the French Lady
Les Lawry-Johns
The French Lady, the Lad's Mother-in-Law, Beardy's
Brother - the owners give almost as much trouble as the sets themselves
571 Next Month in Television
572 Servicing Sinclair Microcomputers, Part 3
Ken Taylor
A start on the Spectrum, with details of the digital
computing and supply generator circuits.
575 Letters
578 VCR Clinic
Reports from Derek Snelling, Les Grogan, Mick Dutton,
Steve Beeching, T. Eng. and Philip Blundell, Eng. Tech.
582 Modern Receiver Circuitry, Part 4
J. LeJeune

Operation of the line output stage and EW modulator and generation of the e.h.t.
584 The Grundig CUC Series Chassis
Peter Stubb and Steve Beeching, T. Eng.
Most troubles with these chassis relate to the switchmode power supply. How it works, how to tackle faults and some symptoms to note.

586 The Development of Colour Tubes, Part 2
Eugene Trundle
Tube gun and electron lens design. Operation of the neck magnets.
590 Servicing the Panasonic NV7000
David Botto
Fault notes on this popular VHS machine with a full
account of the power supply arrangements.
595 Service Bureau
596 Test Case 283
OUR NEXT ISSUE DATED AUGUST WILL
BE PUBLISHED ON JULY 16

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO OROER
AOD 87p per order P+P Goods are despatched on the day we receive your cable, service aids coils please allow $\mathfrak{L i} .50 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and efficient service. V.A.T. U.K.). Export orders charged invoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please ask if what you need is not listed - we whenever possible. Add 15% will try to help. Prices are subject to change withou VAT to total except where it notice. In some cases we may have to supply an states zero rate.

P. V. TUBES
 104 ABBEY STREET, ACCRINGTON

SUNDRY EQUIPMENT	
Test Lead Set	4.20
Degaussing Coil Stick	19.00
Signal Ejector	4.00
Elect. Circuit Tester	1.50
5A Choc Bloc (12)	40
Fuse Wire 5A, 15A, 30A	05
4-way 13A Mains Conn.	5.00
Safe Block (mains)	8.50
13A Plug Top (box 10)	4.00.
Probes (x10)	10.90
Probes ($\mathrm{x}^{\text {1) }}$	10.90
Micro Pliers	4.20
Micro Cutters	5.00
Philips Switchable Probes $(\times 1.2 \times 10)$	13.25
Factory recon. Avo meters 1	119.00
Avo Battery	2.95
Vero Board	2.59
LG Solder Sucker	6.20
Solder 500g	7.00
D.I.Y. Solder	45
Solder Sucker Antistatic	5.40
Nozules	81
Trim Tools	
Metal End	30
Solda Mop Sted.	74
Sidecutters sm.	1.20
Long Nose Pliers	1.20
Surge Protector Plug	12.50
Quick Set Adhesive	75
Sm. Neon Screwdriver	40
Lg. Neon Screwdriver	65
I.C. Inserters	1.18
Automatic Wire Strippers	6.95
Scart Plugs	2.95
Scart Leads	3.50
TA81 Car Battery Leads/port. TV	V Thom
1690/91	4.47
TA51 Car Battery Leads/port. TV	V Thom
1613/1615	3.66
Car Battery Leads/port. TV Philips	3.95
Universal Car Accessory Cable	1.99
Oynascan 467 Rejuv.	399
Dynascan 470 Testers	299
$B+K$ tube bases Dynascan	
No. $1 \quad 9.09 \quad$ No. 14	16.63
No. $3 \quad 9.50 \quad$ No. 15	16.44
No. $5 \quad 9.09 \quad$ No. 18	10.83
No. $6 \quad 11.08 \quad$ No. 19	10.83
No. $7 \quad 9.09 \quad$ No. 21	14.40
$\begin{array}{lll}\text { No. } 8 & 10.08 & \text { No. } 23\end{array}$	13.86
$\begin{array}{lll}\text { No. } 9 & 9.09 & \text { No. } 24\end{array}$	27.07
No. $13 \quad 11.11 \quad$ No. 25	12.57
C15 computer cass.	30
C20 computer cass.	33
$51 / 4 / 4$ fioppy disc s/s s/d	1.61
2M Ay Lead	70
4M Fy Lead	1.20
10M Fy Lead	1.90
Figure 8 Mains Lead	62
Computer to TV	97
7 pin din to 5 pin din	98
5 pin din to 5 pin din	98
Fluorescent Starter 4-80W)	150
Tinned Copper Wire	
14SWG 100 Amp	1.86
17SWG 60 Amp	1.86
19SWG 45 Amp	1.86
20SWG	2.75
22SWG 25 Amp	1.86
Insulated Copper Wire (0.4mm dia.) 9.11	
Battery Press Studs Min.	11
Std.	15

LOCKING CABLE TIES	
Up to 25 mm diameter, Up to 55 mm ,	$\begin{array}{r} 100 \text { at } 54 \text { p } \\ 100 \text { at } £ 1.41 \end{array}$
SOCKETS ELECTRICAL BA	
320A Singie Gang	1.30
3208 Single Switched	1.95
320C Two Gang	2.53
3200 Two Switched	3.92
Swithes	
320E One Gang/One Way	80
320F One Gang/Two Way	1.05
320G Two Gang/two Way	1.78
CABLES 100 m	
F031 2 Core Round . $75 \mathrm{~mm}^{2}$	${ }^{2} \quad 15.47$
F032 3 Core Round . $5 \mathrm{~mm}^{2}$	2 15.75
F035 3 Core Round $1.25 \mathrm{~mm}^{2}$	$\mathrm{m}^{2} \quad 28.21$
F041 Speaker 702 mm	3.90
Coaxial 75R	13.50

FILAMENT LAMPS

Hes ROUND bulbs
$23 \mathrm{~m} \times \mathrm{D}$

ULIPUT (L.E.S.) BULBS $\frac{20 \mathrm{~m} \times 05 \mathrm{~mm}}{6 \mathrm{~V}}$ $\begin{array}{ll}6 \mathrm{~V} \\ 12-14 \mathrm{~V} & 0.025 \mathrm{~A} \\ 0.1 \mathrm{~A}\end{array}$
CAPLESS LMMPS
L11 mm \times DAm 6 V 0.04 A

TUBULAR LAMPS CAPPED $31 \mathrm{~mm} \times$ D6. 3 mm $\begin{array}{ll}6.3 \mathrm{~V} & 0.15 \mathrm{~A} \\ 6.3 \mathrm{~A} & 0.25 \mathrm{~A} \\ 6.3 \mathrm{~V} & 0.3 \mathrm{~A}\end{array}$ $\begin{array}{cc} \\ 8 \mathrm{l} & 0.3 \mathrm{~A} \\ 8 \mathrm{~V} & 0.15 \mathrm{~A} \\ 8 \mathrm{~V} & 0.2 \mathrm{~A}\end{array}$

6

mRE ENDED LAMPS

 0.04 A
0.04 A $\begin{array}{ll}12 \mathrm{~V} & 0.04 \mathrm{~A} \\ 14 \mathrm{~V} & 0.025 \mathrm{~A}\end{array}$ 14 V 0.0
04.2 mm

8 -
PLUGS ANO SOCKETS 5 pin DIN plugs 180° 5 pin DiN chassis sockets 180° 5 pin DiN line sockets 180°
5 pin DiN plugs 360° 5 pin DiN plugs 360°
5 pin
DIN chassis $50 c k e t s ~$
360°
5 pin DiN chassis sockets 360°
5 pin
DIN line sockets
360°

$$
6 \text { pin DiN plugs }
$$

$$
\begin{aligned}
& 6 \text { pin DiN chassis socke } \\
& 6 \text { pin DiN } \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 7 \text { pin DiN ine sockets } \\
& 8 \text { pin DiN pluos }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { pin DiN chassis socketts } \\
& 8 \text { pin DiN line sockect }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { pin DiN line sockerts } \\
& \text { Piono olluns }
\end{aligned}
$$ Phono line sockets

2.5 mm Jack pluos 2.5mm Chassis sockets 2.5 mm Line sockets BNC plugs

0

$$
\begin{aligned}
& 6 \text { pin UN purgs } \\
& 6 \text { pin DiN chassis sockets }
\end{aligned}
$$

$$
7 \text { pin DiN plugs soc }
$$

$$
8 \text { pin DiN pugs }
$$

$$
\begin{aligned}
& \text { Ptrono plugs } \\
& \text { Phono chassis }
\end{aligned}
$$

PTono chassis sockets
${ }_{3}^{3.5 \mathrm{~mm} \text { Jack plugs }}$
3.5 mm Line sockets 3.5 mm Stereo jack plugs 3.5 mm Steree chassis sockets
3.5 mm Stereo line sockets 3.5 mm Stereo line sockets
6.3 mm Stereo jack plugs 6.3 mm Steres jack line sockets Standard mono jack plugs
Lud speaker plugs 2 pin Loud speaker pluss
I.D.C. plugs 36 con.
i.c. sockets 36 conn. Coax plugs
Pack of ten
Line connectors Double ended female sockets Car renial plugs
P259 with reduce Reducers for the PL259 FM pluss
Crocodile Cli In Line Socket (Metal)

We have a fulty equipped computer store - Come and visht us -
 PAMAS
PAASS
SANY
SNY
JNC

SUNDRY YIDEO ACCESS. WHS Drum Motor
WHS Capstan Motor Sanyo 50,
HHS loder
Video Lamps
3V23 Lamps with Plug Video Care Kit Video Head Cleaner Sharp Reel Motor Sharp Idier (Sharp) 381/383/386/9100/3300/9500 JUC Cutch Ass.

3HSS UH
4HS VHS
4HS VHS
Philips V2000
Philips 1700
Sanyo $93009455 / 950$
Sanyo 5000/5300/5400
Toshiba V5470A BDP
Toshiba 9600 Upper Ass.
Toshiba 9600
Sharp 2300
Sharp 6300
Sharp 7300/7700/7750
Sharp 8300
Sharp 33000700
Hitachi HIVI

VIDEO IDLER TYRES

NV7000 NVB300-333-370-777 VIC9300:VBS7000 C7:7:SLT TCE 3V00-01-06-16- 23-24 JVC HR2200-3320- 3330 $3660-1100-7700$ VS9700 VT5000 VC6300-6500

Hitachi VT33EGEC 4004
Hitachi VT11/GEC 4100
Beta eccentricity gauge

LVC 1700\} Philips 1200
NEW LABGEAR

- CM7271-MHA 15db
8.6
21.45

SERVICE AIDS
SERVISOL Freeze-lt
SUPER SERVISOL

SERVISOL Foam Cleanser
SERVISOI Plastics Seal
SERVISO Plastics Seal
SERVISOL Silicone Grease
SERVISOL Tubes Silicoane Grease
SERVISOL Aero Klene
K30 chassis inc. foil unit button matrix and

$\begin{aligned} & \text { Philips part numbers: } \\ & \text { Foil } 21227582 \text { of } \\ & 21227583 \text {. } \end{aligned}$	
Button matrices: 43237037 or	
No. 1 without Teletext, No. 2 with Teletex	£4.50

SERVISOL Excel Polish SERVISOL V
Super 40
Fuper Extinguisher 640G

Heat Sink Compound 25 G
Siticone Rubber Tube 1106
Solda Mob

REMOTE CONTROL HAND UNITS
DECCA 100/101 US Nom T.Tex
GRUNDIG TELEPILOT 12 IR
GRUNDIG TELEPILOT 8 IR
GRUNDIG TELEPPLOT 8 IR
GRUNDIG TELEPILOT 300 IR
PHILIPS G11 US Non Text
PHILIPS G11 8 way.IR Text
PHILIPS G11 US 31 Button
PHLLIPS G11 US 2 function
PHHLLPS KT3/30 IA Text 1234
PHLLIPS KIT3/30 IR MA M Text 1201
THORN IX10/JVC IR Text
Remote Control Tester
Remote Control Tester $\quad 29.94$

DATA BOOKS (Zero VAT)	EVER READY BATTERIES	
Pair of A-Z2N2S TV180 ${ }^{\text {a }}$ (1) 8.50	$\begin{aligned} & \text { R20S } \\ & \text { R6B } \end{aligned}$	39 15
LIN IC Books (data only not Equiv.) LINI 5.95	$\begin{aligned} & \text { R6B } \\ & \text { R14S } \end{aligned}$	33
IC equivalent boodet $\mathrm{E3} .25$ and transistor mentralent bookdet B .25	R038	18
TDV1 Trans. Data Dictionary $\quad 7.50$	${ }_{\text {PP3S }}$	74
	PP6	15
TURNTABLE DRIVE BELTS		17
	1289	53
TB42 Most Thorens Models		
T850 Most Garrard Models	RX6 (HP7)	
1870 Most Hitachi Models		2.31
TB60 Some Sanyo Models	RX20 (HP2)	2.61
tr01 Most Panasonic, Sony, Pioneer, Tech-	RX22 (PP3)	4.89
nics and Sansui.	Universai Charger	7.50

P. V. TUBES

HAVE MOVED
104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.

VICO43-05
\quad VARICAP TU
ELC1043-05
ELC104305 Mullard
ELC1043-06
ELC2003
Philips G8/G9
Philips G11 (U321)
U322
U341
U342
TX10 Tuner
${ }_{\text {T1 }}^{4342}$ Tuner

PUSH BUTTON ASS.	
Decca 4 way	7.93
GEC 21106 way	10.92 10.29
GEC/IT/PYE 7 Way	16.87
Pye 6 way (207/75)	18.40
Pye 697 repair kit	10.35
Pye 725-735 (also Red Mk.1)	12.60
Pye 725-735 tuning head with	812.50
Philios G8 (earty)	17.82
Philips G8 (late)	18.97
Rank 4823	12.36
Rank T20A	11.21
Hitachi 4 way	12.36
Philips G11 unit	26.50
Philips KT3	16.67
Prilips KT30	13.22
ITI CVC 899 (mod)	13.80
ITT 6 way with VCR	8.90
Decca 7 way piano key	
replacement ktt	22.42
GEC Conversion kit	16.50
Decca 4/6 way conversion kit	17.50
Thom 8500 Push Button	6.50

SWITCHES \& ACCESS	0
G8 ondoff	1.98
G11 onvoft	1.58
G11 on/oft remote	1.58
Gen. purpose rotary	66
Thom Tx 9/10	2.98
GEC 2040	98
Thom 1591 push on/off	2.90
Rank tuner buttions (while stocks la	t)
	20
GEC 2110 tuner neons	35
Thom 3500 Al beam	86
GEC 2110 A1 cont. R/B/G	58
ITI CVC5 on/off	1.24
17 m mains switch + solenoid	4.50
Rank mains switch + solenoid	4.50
Rank T20 on-oft switch	1.95

With D.P.S. T. Swith	
Loor: 5k-10k-25k-50k-100k	26
Dual gang Controis 16 mm Rotary Controls $10 \mathrm{~K}, 22 \mathrm{~K}$, $10 \mathrm{~K}, 100 \mathrm{~K}$	1.25

THICK FILM RESISTOR METWORK

$\begin{array}{ll}\text { THORN } 3500 \text { (5 pin connection) } & 1.98 \\ \text { PYE } 731 \text { (} 6 \text { pin connection) } \\ \text { THORN } 9000 \text { (Circuit Ref. } & 270477) \\ 2.15\end{array}$

CONVERGENCE POTS	
3W/5R-6RR-10R-2OR	
$50 R-100 R-200 R-500 R$	

$\left.$| METRIC | |
| :--- | :---: |
| CONVERGENCE POTS | |
| PHILIPS G8 | |
| $5 R-10 R-15 R-20 R-50 R$ | |$\quad 60 \right\rvert\,$

SKELETON	SLIDER
Standard or	Lin or Log
m miniture	470R-1K-2K2
Horizontal or Vertical	10k-47K-470K 75p

LINE OUTPUT TRA R.B.M. T20A R.B.M. A774 Mono R.B.M. $71822^{\prime \prime}$ PHILIPS 320 PHHLIPS 210300 Mono PPILLIPS G9 PH LiLIPS G11 PYY 697 ((rinted) PYE 713731 PYE 169 DECCA 80 DECCA 100 DECCA 1700 DECCA 2230 GEC 2110 GEC 2040 iT CVC 1-9.9 $\prod_{\text {THORN }} 2000$ EHT THORN 3000 SCAN THORN 8000 THORN $3000 / 3500$ Mains 1615 THORN 1691 ThORN TX9 THORN 1615 PHUPS 1 rank bushranger Earty Ti6A RANK BUSHRANGER Late T18A $B+0$ $8+0$ $8000,3000)$ $\mathrm{B}+\mathrm{O}\left(30000^{\circ} \mathrm{EHT}\right)$ Prilips 7×2 Philips TX3

RECTIFIER TRAYS

REP
PYE 16
PHILIP
DECCA
DECC
DECC
PHILIP
PHLLIP
PHILIP
PYE 6
PYE 731
RBM
RBM
RBM
RR1 T
IT CV
IT C
GEC
GEC
GEC
GEC 2
THOR
THOR
THORN
THOR
THOR
THORN
THORN

REP
PYE 169
PHILIPS
DECCA
DECCA
DECCA
PHLLPS
PHLLIP
PHLLIP
PYE 69
PYE 731
RBM A
RBM
RBM 2
RR1 T2
IT CVV
ITT CVC
GEC 21
GEC 20
GEC 20
THORN
GEC (2

$250 \mathrm{ma}, 500 \mathrm{ma}, 630 \mathrm{ma}, 750 \mathrm{ma}, 850 \mathrm{ma}$,
1 A,

$1 \mathrm{~A}, 1.25 \mathrm{~A}, 1.5 A, 2 \mathrm{~A}$
$2.5 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}$
20 mm ANTSURGE
80 ma
100 ma 20 mm ANTISURGE
80 ma
100 ma
$160 \mathrm{ma}, 200 \mathrm{ma}$ $160 \mathrm{ma}, 200 \mathrm{ma}$
$315 \mathrm{ma}, 500 \mathrm{ma}, 630 \mathrm{ma}, 800 \mathrm{ma}, 1 \mathrm{~A}$, $315 \mathrm{ma}, 500 \mathrm{ma}, 630 \mathrm{ma}, 800 \mathrm{~m}$
$1.25 \mathrm{~A}, 1.6 \mathrm{~A}, 2 \mathrm{~A}$
$2.5 \mathrm{~A}, 3.15 \mathrm{~A}, 4 \mathrm{~A}, 400 \mathrm{ma}, 5 \mathrm{~A}$ $2.5 \mathrm{~A}, 3.15 \mathrm{~A}, 4 \mathrm{~A}, 400 \mathrm{ma}, 5 \mathrm{~A}$
20 mm OUICX BLOW 315 ma
$100 \mathrm{ma}, 250 \mathrm{ma}, 500 \mathrm{ma}, 630 \mathrm{~m}$ $100 \mathrm{ma}, 250 \mathrm{ma}, 500 \mathrm{ma}, 630 \mathrm{ma}, 800 \mathrm{ma}$
$1 \mathrm{~A}, 1.25 \mathrm{~A}, 1.6 \mathrm{~A}, 2 \mathrm{~A}, 2.5 \mathrm{~A}, 3.15 \mathrm{~A}, 5 \mathrm{~A}$ $1^{\prime \prime}$ MANSS

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE

Tel: 0254 36521/32611
 WE CAN NOW SUPPLY ON AN

ONLY EXCHANGE "HEAD FOR HEAD" BASIS
£22

+ VAT
inc P8P

Nemile
MDEO HEADS

THORN EMI VIDEO HEAD UPPER DRUM ASSEMBLIES						SEND YOUR OLD HEAD PACKED UP CAREFULLY AND WE WIL SEND AN EXCHANGE ONE BY RETURN POST NAMES TO TRUST
		(L)	(J)	r	(1)	
JVC MODELS	HR 366 HR 7650 HR 7700	HRD 110 HRD 120	HR 7200 HR 7300 HR 7350	HR 33 HR 33 HR 4	HR 3300	
akai models	Vs 9700	VP 77		vs 93		
FERGUSON MODELS	$\begin{aligned} & 3 \mathrm{~V} 16 \\ & 3 \mathrm{~V} 23 \\ & 3 \mathrm{~V} 24 \\ & 3 \mathrm{~V} 38 \\ & 3 \mathrm{~V} 49 \end{aligned}$	$\begin{aligned} & 3 V 31 \\ & 3 V 35 \\ & 3 V 36 \\ & 3 V 39 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} 29 \\ & 3 \mathrm{~V} 30 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} 01 \\ & 3 \mathrm{~V} 22 \end{aligned}$	$\begin{aligned} & 3 V 00 \\ & 3292 \end{aligned}$	
BAIRD MODELS	$\begin{aligned} & 8904 \\ & 8924 \\ & 8941 \end{aligned}$	$\begin{aligned} & 8943 \\ & 8944 \end{aligned}$	$\begin{aligned} & 8930 \\ & 8940 \end{aligned}$	$\begin{aligned} & 8900 \\ & 8902 \\ & 8922 \end{aligned}$	8928	
DECCA MODELS	8400	8500	8300			
TATUNG MODELS	8400		8300			
I.T.T MODELS	VR360	VR3905	VR3913			
New Life Upper Drum Assembiles have been thoroughly life tested and carry a 12 month guarantee covering normal domestic use.						

HUSSAIN CENTRAL TV LTD Sale Sale Sale of the Century

BEST QUALITY AT THE LOWEST PRICES IN BRITAIN TODAY

G11 • 660
PYE G11
G11 REMOTE (with hand set)
G11 TEXT (with hand set)
G11 ELECTRONIC TUNER
THORN 9600
THORN 8800
PYE 222
GEC SOLID STATE
£25 ITT CVC 20/30 £15
£30 DECCA 80/100 £15
$£ 45$ ITT REMOTE (with hand set) £30
£55 TX TEXT (with hand set) £55
£30 THORN 9000 REMOTE £15
£25 THORN 9200 £27
£10 THORN 9800 £15
£10 G8 22" £10
£10 GEC STARLINE £15

MANY MORE LATE MODEL TVs IN STOCK INC. REMOTE, TEXT, STEREO TEXT AND 14", 16" PORTABLES

All TVs have excellent cabinets

VHS: Working. Bring your own tape and try them yourself at £65 Untested Electronic VHS £90

Working Electronic VHS £135 Ferguson 3V29, Hitachi 8000, J.V.C. 7200

ALSO IN STOCK

PANASONIC 7200, 7000, 2000, 2010, 366, NV777
HITACHI VT14, VT11, 9700, 9500, 8700, 8500, 8300
FERGUSON 3V31, 3V30, 3V23
ELECTRONIC Beta Full working £60
Untested Beta from £35
PLUS MANY MORE LATE MODEL VIDEOS IN STOCK
Prices are subject to 15% VAT
Deliveries arranged on quantity or call at our branches for fast and friendly service from the professionals

BIRMINGHAM	PRESTON	LONDON	CHEPSTOW
48-52 PERSHORE ST.	UNIT 439	CEDAR HOUSE	UNIT 4
021-622 1023	OAKSHOTT PLACE	NOBEL RD.	BULWARK IND. EST.
021-622 1517	WALTON SUMMIT IND. EST.	ELEY ESTATE	GWENT.
	M6 JUNCTION 29.	EDMONTON N18 3BH.	0291271000
	0772312101	01-807 4090	
		01-884 1314	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US} \& \multicolumn{4}{|l|}{G.G.LCOMTPONENTS
108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693} \& \multicolumn{2}{|l|}{BUY WITH} \& \multirow[t]{3}{*}{} \\
\hline CIRCUITS \& STK00396.45 \& TDA440................... 3.25 \& TYPE PISTORS PRICE \& \begin{tabular}{l}
BD701 \\
BD7.............. 85 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \text { 2N3055................ } 50 \\
\& \text { 2N3773........ } 3.45
\end{aligned}
\] \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{large range of SPARES FOR ABOVE}} \& \\
\hline TYPE PRICE (f) \& STK0040............... 5.95 \& TDA1006A 2.95 \& TYPE PRICE \& BD707 \& \& \& \& \\
\hline AN214.................. 1.95 \& STK0050 7.50 \& TDA1035T 2.75 \& BC107 14 \& BF337.............. 28 \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SPARES FOR ABOVE MAKES OF TVI}} \& \\
\hline AN301..................3.45 \& STK077 7.25 \& TDA1037............... 1.95 \& BC108 14 \& BF338.............. 30 \& \& \& \& TyPE DIODES PRICE \\
\hline AN303.................. 3.45 \& STK078................ 7.45 \& TDA1044...............3.10 \& BC109 14 \& B \& \& \multicolumn{2}{|l|}{VIDEOS INCLUDING} \& TPPE
BY127 \\
\hline AN305..................3.50 \& STK082 9.75 \& TDA1170............... 1.80 \& BC141 26 \& BF459............... 36 \& \& \multicolumn{2}{|l|}{INSTRUCTION AND} \& \({ }_{\text {BY1 }}{ }^{\text {BY1 }}\) …........................ 15 \\
\hline AN7110................ 1.93 \& STK2129 8.50 \& TDA1270............... 2.20 \& BC142 ……....... 23 \& BFR90 1.60 \& \& \multicolumn{2}{|l|}{SERVICE MANUALS.} \& BY164 …- \\
\hline AN7114E 2.33 \& STK415 9.66 \& TDA1470................3.65 \& BC147 ……......... 25 \& BR100 1.6 \& \& \multicolumn{2}{|l|}{PHONE OR WRITE} \& BY17968 \\
\hline AN7115................. 2.37 \& STK430 7.75 \& TDA2002............... 1.85 \& BC148 09 \& BR101 32 \& 2SC 1061 1.15 \& \multicolumn{2}{|l|}{FOR NEW LISTS. WE} \& 8Y210/800 \(\ldots\) \\
\hline AN7116................. 2.35 \& STK4332 5.95 \& TDA2003................ 2.33 \& BC157 10 \& BR103 55 \& 2SC 1114..........4.75 \& \multicolumn{2}{|l|}{CAN ALSO SOURCE} \& BY223 \\
\hline AN7145................. 3.25 \& STK433 6.50 \& TDA2004................3.15 \& BC158 11 \& BR303 2.95 \& 2SC 1124 97 \& \multicolumn{2}{|l|}{\& SUPPLY OVER} \& \\
\hline BA312.................. 1.25 \& STK 435................. 6.75 \& TDA2006.............. 2.25 \& BC159 11 \& BT106.............. 1.15 \& 5 2SC 1316.......... 3.20 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \\
\hline BA511A 1.95 \& STK437..................7.25 \& TDA2020............... 2.95 \& BC237 …….......... 11 \& BT116...............1.30 \& \[
0 \text { 2SC 1413A...... } 3.95
\] \& \& \& BY2991800 25 \\
\hline BA521 1.85 \& STK439 7.55 \& TDA2522.............. 1.80 \& BC327 …............... 11 \& BT151/................... \& \[
\text { 2SC } 1739 \ldots2 .45
\] \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{THREE THOUSAND I/Cs \& SEMI CONDUCTORS.}} \& BYX10 \\
\hline BA532.................. 1.95 \& STK441................8.50 \& TDA2523............. 2.25 \& BC328 12 \& 800R 1.10 \& 0 2SC 1942 2.95 \& \& \& \multirow[t]{2}{*}{} \\
\hline 2.55 \& \& TDA2530............... 2.10 \& BC337 11 \& BU126........... 1.78 \& 8 2SC 1962 1.65 \& \multicolumn{2}{|l|}{} \& \\
\hline HA1322................... 2.10 \& STK463.................... 9.30 \& TDA2532............... 2.20 \& BC338 10 \& BU205 1.42 \& 2SC 1969......... 1.95 \& \multicolumn{2}{|l|}{SONY SPARES} \& SKE4F206 \\
\hline HA1338................ 2.78 \& STK465..................... 9.95 \& TDA2540. \& BC547 10 \& BU208A 1.45 \& 5 2SC 2078 1.55 \& \multicolumn{2}{|l|}{C5/C7 Rewind Kit....4.65} \& W005..................... 55 \\
\hline HA1339................ 2.40 \& TA7193P................. 4.30 \& TDA2560............... 1.80 \& BC548 10 \& BU208D 1.85 \& 5 2SC 2335 (Kit) .7.55 \& \multicolumn{2}{|l|}{C5/C7 Bett Kit........ 3.50} \& IN4001-7 \\
\hline HA1342A \& TA7204P 1.90 \& TDA2578A 3.25 \& BC557 10 \& BU326A 1.48 \& 8 2SC \(2369 \ldots \ldots . . .3 .25\) \& \multicolumn{2}{|l|}{C6 Rewind Kit 4.35} \& IN5401-8 \\
\hline HA1366 WM WR 1.95 \& TA7205AP 1.40 \& TDA2581.............. 2.15 \& BC558 10 \& BU407 1.12 \& 2 2SC 257.......... 2.45 \& \multicolumn{2}{|l|}{C7 Pinch Roller....... 485} \& \\
\hline HA1374............... 2.45 \& TA7208P.............. 1.95 \& TDA2582............... 2.20 \& BC637 35 \& BU407D 1.45 \& 5 2SD 588A 1.97 \& \multicolumn{2}{|l|}{SG 613/6533 8.95} \& \multirow[t]{2}{*}{STR 441 ACHI \({ }^{\text {cs }} 6.95\)} \\
\hline HA1377................ 3.80 \& TA7222AP 1.85 \& TDA25912.30 \& BC638 25 \& BU500 1.95 \& 5 2SD 725.......... 7.95 \& \multicolumn{2}{|l|}{CX 143A6. 6.95} \& \\
\hline HA1388................ 4.20 \& TA7223P 2.85 \& TDA2593............... 2.30 \& BC639 25 \& BU508A 1.95 \& 5 2SD870.......... 5.95 \& \multicolumn{2}{|l|}{} \& \multirow[t]{2}{*}{\begin{tabular}{lll}
STR 451 \& 6.95 \\
STR 6020 \& \& \(7\). \\
\hline
\end{tabular}} \\
\hline HA1397................ 3.90 \& TA7227P 2.95 \& TDA2594.............. 2.95 \& \multirow[b]{2}{*}{BD131 33} \& BU526 2.00 \& \& \& \& \\
\hline LA1201 1.75 \& TA7310 1.55 \& \multirow[t]{2}{*}{TDA2611A.............. 1.50} \& \& BU807............ 1.30 \& LINE OPP TR. \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Large range of Sony spares available}} \& STR 6020 \\
\hline LA1230 2.30 \& TA7313 1.45 \& \& BD132 33 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { BU826A } 3.20 \\
\& \text { R2010B }
\end{aligned}
\]} \& 20 DECCA \(807 .95\) \& \& \& SUNDRIES \\
\hline LA1365 2.45 \& TAA550................ 43 \& TDA2640.............. 2.40 \& BD222 50 \& \& 5 DECCA 100............ 8.50 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{VALVES}} \& \multirow[t]{2}{*}{\begin{tabular}{ll}
G8 TRANSOUCTOR \& 225 \\
G8 ON OFF SW. \& 1.40 \\
GIS \& 1.40
\end{tabular}} \\
\hline LA3350 1.65 \& TBA120AS 95 \& TDA3560................ 5.10 \& BD225 55 \& \& 5 IT CVC 20........885 \& \& \& \\
\hline LA41011.50 \({ }^{\text {LA4102 }}\) \& TBA120SB 1.90 \& TDA3561A 5.35 \& BD235 32 \& TIP31C 46 \& 6 ITT CVC 25/30/32 \(\ldots .8 .85\) \& \multicolumn{2}{|l|}{PCF802.................. 1.09} \& G11 EW Coil \\
\hline LA41021.95 \& TBA120T............... 1.25 \& TDA3562A 5.50 \& BD236 …........... 43 \& TIP32C 47 \& 7 ITT CVC \(458 .855\) \& \multicolumn{2}{|l|}{PCL82.................... 97} \& G11 Lin Coill \(\quad 180\) \\
\hline LA4430 2.45 \& TBA520................. 1.30 \& TDA4600................ 2.85 \& BD237 40 \& TP33............... 80 \& 05 \({ }^{\text {PHILIPS G8, }}\) PHI.......8.75 \& \multicolumn{2}{|l|}{PCL85.................. 1.03} \& G11 Bridge Coil 135 \\
\hline LA4440 3.55 \& TBA5300 1.00 \& TDA4600-16PIN3.95 \& \& \& \& \multicolumn{2}{|l|}{PCL86.................. 1.07} \& \\
\hline LA4445 2.65 \& TBA540................ 1.37 \& TDA9503............... 2.35 \& \& \& \& \multicolumn{2}{|l|}{PL504 1.59} \& \(1{ }^{1+1} 0 \mathrm{OHf}\) SW \\
\hline LA44602.95 \& TBA550................ 2.45 \& UPC555C …............. 70 \& \& TP47................... 75 \& \& \multicolumn{2}{|l|}{PL508................... 299} \& \multirow[t]{2}{*}{THORN On/OH SW.. 1.00
CUT OUT 24} \\
\hline LA4461 2.95 \& TBA560................ 1.60 \& UPC566C 2.10 \& BD438 78 \& TP47............... 75 \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PL509/519............. 5.99}} \& \\
\hline MB37122.30 \& TBA720A2.65 \& UPC585C ….......... 1.40 \& BD439 ……....... 70 \& TP2955 70 \& \% THORN 169019.........9.65 \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
TX10 FOCUS UNIT .. 8.95 \\
VCR Pilot Bulb \\
\hline
\end{tabular}} \\
\hline MB3713 2.25 \& TBA750................ 2.45 \& UPC1031H95 \& \multicolumn{3}{|l|}{BD677 70 TP3055 70 THORN 169019.6n} \& \multicolumn{2}{|l|}{PY500A 225} \& \\
\hline 2318 \& TBA810 \& UPC1156H \& \multicolumn{2}{|r|}{OL} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
PUSH BUTTONS \\
NEN TUNERS
\end{tabular}}} \& \multicolumn{2}{|l|}{\multirow[t]{5}{*}{Available also a range of 2SAB/C/D Transistors. Phone or write for lists.}} \\
\hline L232B 2.55 \& TBA810.................... 1.35 \& UPC1181H.............2.20 \& \multicolumn{2}{|l|}{\multirow[b]{3}{*}{DECCA \(30(400 / 400) 350 \mathrm{~V}\)
DECCA \(80-80 / 100(400) 350 \mathrm{~V}\)}} \& \& \& \& \\
\hline SAA1251 4.95 \& TBA890.................. 2.95 \& UPC1182H \& \& \& \multicolumn{2}{|l|}{DECCAITT6 way 8.50} \& \& \\
\hline SAA5010 5.10 \& TBA920................ 1.50 \& UPC1185H ….......3.30 \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{PHILIPS G8S L 14.90}} \& \& \\
\hline SAA5012 5.70 \& TBA950................ 2.65 \& UPC1230H ……....3.95 \& \multicolumn{2}{|l|}{(800)250V
PHILIPS G8(600)300V

P-} \& \& \& \&

\hline SAF1032P 3.25 \& TCA270............... 1.55 \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{2}{|l|}{PHILIPS G8S/O........................14.75.} \& \multicolumn{2}{|l|}{\multirow[t]{7}{*}{| ORDERING |
| :--- |
| Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELVERY BY RETURN ON ALL STOCK ITEMS. |}}

\hline SAF1039P 4.55 \& TCA940................... 1.55 \& UPC 1350C 4.50 \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{HITACHI 4 way
ITT CVC5
Button 8.95
10.40}} \& \&

\hline SAS570S1. 1.95 \& TDA2190M 6.95 \& UPC1365C 5.05 \& \multicolumn{2}{|l|}{RBM A823(2500/2500)30V 1.65} \& \& \& \&

\hline SAS580S 2.40 \& TDA2576A 3.95 \& UPC1394C 2.95 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{RBM T20A(220)400V
THORN1690/1(4700)25V}} \& \multicolumn{2}{|l|}{IT CVC5 7 Button80
ITTCVC89} \& \&

\hline SAS590S 2.40 \& TDA2577............... 4.85 \& UPC2002H 1.85 \& \& \& \multicolumn{2}{|l|}{| 1TrCVC89 |
| :--- |
| $1043 / 05 . ~$ |} \& \&

\hline SL1430 1.95 \& TDA3651AO 3.75 \& 7805.................... 0.65 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{THORN3500(1000)70V
THORN $9000(400) 400 \mathrm{~V}$
.................. 39}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{U321 …................................. 8.75}} \& \&

\hline SL1432 1.75 \& TDA3652................ 4.35 \& 7812................... 0.65 \& \& \& U322 \& \& \&

\hline
\end{tabular}

U.K. Post Pald, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Chequẹ, Bank Draft, eic., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normaliy within 7 days.

4664 ELC 104305 ECCH TUNER
4663 ELC 104305 NEW TUNER

 ASSY
IRE
ARM AS
YY
ASSY
ASSY
ASSY
SPINDE
SPROCKE
AP
ASSY
ASSY
ARSY
AR
ASSY
AL道 1.20
1.20
1.7
1.7
38.7
23.00
38.15
40.75
20.63
18.13
5.40
5.40
4.00
5.50
4.50 V4OOOH UPPER CYINDE
VAOOOH MRLAY VAOOOH CAPSTAN MOTOR V4000H TAPE SENSOR LAM
V4001H PINCH ROLLER
V4002H UPPER CYINDER V4004 CLUTCH ASSY
V 4100 AUODOD CONTROL V4OOOH SERVICE MANUAL
V4OOH SERVICE MANUAL
V 402 OH SERVICE MANUAL V4004 SERVICE MANUAL
V4ICO SERVICE MANUAL BOOO UPPRER CYARES
8000 AUDO CONTRO 8000 AUDO CONTROL
800 ETWN REWINO
$\$ 3300 \mathrm{FRELAY}$
2300 TAPE SENSOR LASY NPER CYLINOER TIE FFWD REWINO A
TIIE CAPSTAN MOTOR HEADS
LIST FOR
 $\begin{array}{ll}\text { SERVISOL VIDEO HEAD CLEANER } & 0.95 \\ \text { SODER } 0.5 \text { KILO REEL } & 8.60 \\ \text { SUPER WICK ZMMMI } & 8 \mathrm{M} \\ \text { N LOOP AERIAL } & 0.95 \\ \text { WEUER INST. HEAT GUN TIP } & 0.55 \\ & \mathbf{0 . 6 2}\end{array}$

O- Get on the hot-line today!
suberior quality tubes 6812959 most types of Inline Re-builds or new ex-stock
PRICES SUBJECT TO
GLASS EXCHANGE

Delta Rebuilds

	Up to $22^{\prime \prime}$.. From $£ 40$
Up to $19^{\prime \prime}$ $£ 28$ Up to $22^{\prime \prime}$	Up to $26^{\prime \prime}$.. From $£ 45$
Up to 26"................... $\mathbf{£ 3 4}$	A56-540x $£ 56$
110° up to $22^{\prime \prime}$.......... $£ 34$	A66-540x............ £58
110° up to 26" ${ }^{\prime \prime}$........... £38	Bonded Coil $+£ 5$
Low focus $\mathbf{+} \mathbf{2}$	
A47342 New £28	D
17FHP New £ $£ 30$	NO TUBES
470EHB New £30	AT COMPETITIVE PRICES
Delta only. Less 5\% 5+	
TW LINE TYPES EX-STOCK SELECTION not rebulds	
Please enquire types not listed	
370 HFB-A37-590...... $£ 45$	AXT 56-001 £62
370 HUB $\mathbf{£ 4 5}$	660 AB $£ 65$
AXT 37-001 $\mathbf{\pm 4 5}$	A67-701 $£ 65$
420 CSB $\mathbf{4 5}$	670 CZB ……-...... $£ 65$
420 EDB-A42-590 $\mathbf{f 4 5}$	A66-540 with coil $\mathbf{£ 8 5}$
420 EZB $\mathbf{£ 4 5}^{\mathbf{4}}$	420FSB $£ 55$
420 ERB $\mathbf{4 5}$	
470 KUB £50	
510 UFB/A51-590...... $£ 55$	MIN. CARRIAGE f5
510 VSB $\mathbf{£ 6 0}$	10+ CARRIAGE PAID
DYB-560 DTB £62	ash with order
560 EGB $£ 62$	ALL PRICES
560 CGB ……........... $£ 62$	CLLUSIVE OF VAT
560 DMB . .-........... $£ 62$	

OUANTTY

DISCOUNT
AVAILABLE

* ASK FOR DETAILS. OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES JELINERY: Ex stock items immediate dispatch on receipt of order.
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD., PUMP STREET, HOLLINWOOD, OLDHAM OL9 7LR
Ask for Mr Butterworth ON: 061-681 2959

$\star \star$ CHANGE OF ADDRESS $\star \star$

all orders should now be sent to our new address shown below

TOP 50 VIDEO SPARES

CASSETTE LAMP (FERG/JVC) CASSETTE LAMP (PANASONIC) CASSETTE LAMP ISHARP, 9300 ETC BELT KIT FERGUSON (STATE MODEL) BELT KIT SHARP (STATE MODEL) BELT KIT PANASONIC ISTATE MODEL BELI KIT SANYO $(9300,5300,5400)$ BELT KIT SANYO 50000) BELT KIT HITACH (STATE MODEL) REWIND KIT SONY C5/C7 REWIND KIT SONY C6 REEL IDLER ISHARP, 9300,381, ETC FF/REW IDI FF/REWIDLER(HITACHIVT8000) FF/REWIDER (HITACHIVTOZ00 REEL IDLER (FERG, 3V29/30) PLAYIDIER (HITACHI9300) FF/REWIDIER (NAT/PAN NV370 REEL IDLER (NAT/PAN) STATE MODE PLAY IDLER (NAT/PAN) STATE MODEL PLAY CLUTCH (PAN NV7000) PINCH ROLLER (FERG) PINCH ROLLER (SHARP)

. 80	PINCH ROLLER (SANYO)	95
f1.80	PINCH ROLLER (SONY $\mathrm{C} / \mathrm{C} 7$)	65.95
.f215	VIDEO HEAD DRUM (FERG)	8750
. 66.50	VIDEO HEAD DRUM (PANASONICI	$E 39.50$
¢6.50	VIDEO HEAD DRUM (PAN NV366)	E56.95
£6.50	VIDEO HEAD DRUM (HITACHI)	539.95
56.50	VIDEO HEAD DISC (SONY C5/C6/C7	539.50
C6.50	VIDEO HEAD DISC (SONY SL8000)	£44.50
81.99	VIOEO HEAD DISC (SANYO)	¢49.90
f6.50	VIDEO HEAD (SHARP 7300, 7700)	E51.58
¢6.95	VIDEO HEAD (SHARP 9300, 381 ETC)	[499.90
E6.95	VIDEO HEAD (TOSHIBA 9600)	E49.95
53.50	VIOEO HEAD (TOSHIBA 8600)	C54.60
¢6.50	REEL DRIVE PULLEY (SANYO 5000)	18888
64.72	REEL MOTOR (SANYO 5000 ETC)	£14.20
¢4.75	REEL MOTOR (SHARP 9300, 381, ETC)	C15,30
¢3.45	CAPSTAN MOTOR (SONY C5/C7)	[3985
56.50	A.C.E. HEAD (SONYCS/C7)	f26.45
¢4.50	CAPSTAN MOTOR FERG/JVC 3V72 ETC	f36.45
53.45	DRUM MOTOR FERG/JVC 3V22 ETC)	1536.60
14.72	TAKE-UP CLUTCH (FERG/JVC)	66.95
15.50	CLUTCH ASSY (FERG 3V29/30)	¢4.50
65.95	AUDIO RELAY (SONY C5/C7)	£3.96
17.90	HEAD CLEANING STICKS	50.50
E5.95	HEAD CLEANING FLUID	f1.50

MOST SPARES AVAILABLE FOR HITACHI, PANASONIC, SONY, SANYO, SHARP ETC. RING FOR AVAILABILITY.

TELEVIDEO SERVICES

NOTTINGHAM (0602) 226070
145 STATION RD, BEESTON, NOTTINGHAM.
Please add 50p post \& packing and then add 15\% VAT to the total ALL STOCK ITEMS ARE DESPATCHED BY RETURN OF POST Send $17 p$ stamp for full list

MAKE YOUR INTERESTS PAY\&

 Train at home for one of these Career OpportunitiesMore than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATIDN PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square
GCE over 40 ' 0^{\prime} \& 'A' level subjects		

Name:
Address

P. Code

International Correspondence Schools, Dept. EGS76, $312 / 314$ High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).
NEW 1986 CATALOGUE is now available - range of components greatly increased - over 136 pages fully iliustrated. Price fi.00 per copy (free upon request with orders over £15). Includes 50p Credit Note, Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now - will be sent within 7 days.

EAST CORNWALL COMPONENTS 119 HIGH STREET
WEM
SHROPSHIRE SY4 5TT TEL: 093932689

EDITOR

John A. Reddihough
Please note that the telephone numbers below are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 545.

ADVERTISEMENT MANAGER

David W.B. Tilleard
01-261 6671

SECRETARY

Janet Reeve
01-26 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

ADVERTISEMENT COPY AND MAKE-UP

Ron Scorey
01-261 6035

CAN YOU HELP?

Does anyone know where spares and/ or service data can be obtained for Winthronics monochrome portables?

FRONT COVER

This month's cover photograph shows a Panasonic NV7000 with the top casing removed. See servicing article on page 590.

Broadcasting Changes

The control of broadcasting seems to be a perennial concern of governments and politicians. Rigid government control is of course a feature of totalitarian societies where broadcasting is a state organ used primarily to inform the population of the state's views, edicts and wishes, with some state approved entertainment thrown in to leaven the mixture. Many democratic countries do little better. Some try ever so hard and end up with monumental dullness. One thing we can be proud of in the UK is the independence of our broadcasters, both from detailed control by the government of the day and excessive commercial interests, and the general quality of the services they provide. The tradition of independence was established by the early leaders of the BBC and has been strengthened in more recent decades by the IBA. The system has served us well and we should be grateful for it.
But this doesn't stop governments and politicians from questioning the system and generating a certain amount of fuss from time to time. This usually starts when the subject of financing the broadcasters comes up for review. Primarily this means the licence fee and the BBC's budget. The rapid inflation of the seventies made matters a lot worse since the BBC kept having to ask for substantial increases. Last time round the problem wasn't so much money as the hope of a section of the advertising world that it could persuade the government to open up the BBC's services to advertising. This would have meant lots of work for agencies but in the event has been largely discounted by the view that spreading advertising, which is unlikely to expand greatly in total, too thinly across the various services would simply jeopardise the existing independent TV operators. Be that as it may the government's reaction last time round, in March 1985, was to set up the Peacock Committee on the future financing of the BBC
The Committee is due to report to the Home Secretary this month (June), with publication of the report likely in July. In view of the amount of leaking and press comment on the Committee's deliberations the report should contain few surprises. It's understood that the main conclusions will be that advertising on BBC television would not be of overall benefit to TV broadcasting in the UK, that the BBC's licence fee should be linked to the cost of living for the next ten years, that Channel 4 should be financed independently of the rest of the ITV network, and that the radio broadcasting arrangements should be altered
There's good reason to review the broadcasting arrangements from time to time. After all what's appropriate at one time is not necessarily suitable at another. Times change and in particular broadcasting technology is likely to evolve rapidly over the next few years as satellite systems are established. The BBC has been with us for nearly 60 years and the IBA was set up 30 years ago. They continue to do a good job and the Peacock Committee's recommendations don't sound particularly alarming. More like minor adjustments here and there. Publication of the report is nevertheless quite likely to cause a stir. That's inevitable considering the publicity conscious nature of broadcasters and the fact that a few interests are likely to feel they've not been treated fairly.

On the technical side the Peacock Committee may recommend joint transmitting operations for the BBC and the IBA services. It was logical to combine the provision of programmes with the technical side in the early days of broadcasting when the overriding concern was to put the two on a secure financial footing. It's less logical that the two should be so closely linked in today's changed circumstances. Both the BBC and the IBA run impressive technical operations that have been responsible for many major developments. Would their efforts be any less effective by being run on a joint basis? The decision appears to be one that will have to be taken on administrative rather than technical grounds.
The IBA's operations have also been in the public eye recently. Speaking at the Royal Television Society's recent dinner the IBA's director-general John Whitney called in question the present system of awarding eight-year franchises to the ITV companies. He proposed a system of "rolling contracts", with more rigid enforcement of public service broadcasting obligations and less strict control over the ownership of ITV companies. The present system in which the franchises have to be advertised every eight years is hardly popular. As the IBA's chairman Lord Thomson put it after the last franchise round "there has got to be a better way". The problems relate to the time, effort and expense required in making franchise applications and the fact that whatever it decides the IBA will come in for criticism. Just how do you judge a collection of promises and proposals? The present system is essentially a compromise that was considered to be a suitable approach in the early days of ITV. A different compromise would seem to be more appropriate in today's changed circumstances. Mr. Whitney also criticised the levy imposed on ITV profits, something that at its present level seems to reflect reaction to the earlier period of the famed "licence to print money".
Meanwhile changes are also afoot on the other side of the channel. The new French government plans to privatise TF-1, the largest and oldest network which is heavily indebted. The status of the regional network FR3 is to be reviewed. On the satellite TV front the government has decided to revise the financial arrangements and wants to cancel the agreements made by the previous government for the operation of the channels.

Long-distance Television

Roger Bunney

Following months of winter gloom April at last produced increased reception. During the first half of the month there was little SpE or indeed any other activity apart from the usual meteor shower pings but the second half was considerably more active.

For those who made a note of the meteor shower predictions given in the February issue April 22nd was very rewarding. The active MS conditions lasted into the evening and reports were received from several enthusiasts. Since many of the signals received consisted of programme material identification was difficult. Those stations/countries definitely identified were as follows: RTP (Portugal) chs. E2 and 3; TVE (Spain) E2; TVP (Poland) R1, 2; TSS (USSR) R1, 2; CST (Czechoslovakia) R1. Unfortunately no Band III signals were reported.

SpE propagation improved towards the end of the month, suggesting a good season ahead. From 23 years of DX-TV experience I've noted that a good opening in April usually means that the summer months will be productive. There were excellent openings on the 28 th and 29th at around midday. The $\mathrm{SpE} \log$ is as follows:

10/4/86 SR (Sweden) ch. E3; NRK (Norway) E2; RUV (Iceland) E4.
24/4/86 TSS R1; MTV (Hungary) R1; SR E2, 4; NRK E2; DFF (E. Germany) E4.
25/4/86 CST R1.
27/4/86 TVP R1.
28/4/86 RAI (Italy) IA, B; RTP E3; SR E2; CST R1; TSS R1; TVP R1.
29/4/86 TVE E2, 3; RAI IA, B; ORF (Austria) E2a; JRT (Yugoslavia) E3; CST R1, 2; +PTT (Switzerland) E3; ARD (W. Germany) E2, 3, 4; TVP R1; DFF E4; DR (Denmark) E4; SR E3.
\section*{30/4/86 CST R1; DR E4.}

Thanks to Cyril Willis (Norfolk), Simon Hamer (Powys), David Martin (Poole), Iain Menzies (Aberdeen), Derek Juniper (Angus), Bill Cotterill (Tipton), Tony Privett (Basingstoke) and Roger Pates (Nottingham) for sending in reception details.

Two things to look out for. First TVP-2 transmits Polish
teletext for some ten minutes after close down, with about 25 pages. Secondly amongst the increasing number of French TV5 and TV6 stations being received in the UK there's now a Band I outlet: a French DXer reports that a ch. L4 transmitter is now operating in the Lille area, carrying TV6.

During the first few days of May Halley's comet passed by: increased MS reception had been expected but monitoring during the early morning hours was very unproductive.

News Items

UK: The first programmes from London's latest pirate TV station Network 21 were transmitted on March 21st, using ch. E21. The transmission lasted for about half an hour from 2400 and the station has been on air on subsequent Fridays. There have been no reports to date of reception by DXers.
Spain: A bill being introduced will break TVE's present monopoly, at least three private channels being envisaged. There will be ten year contract periods with funding by either Spanish or EEC organisations. Several Spanish and one Italian group have already expressed interest.
France: The new government is considering substantial revision of the arrangements for TV services.
Belgium: TV-Team, a subsidiary of RTL, could well start a third network. RTBF has encountered strong opposition to the installation of a high-power transmitter at Ittre, 20 kM south of Brussels, as a replacement for Wavre (ch. E28). A new site may have to be found.
In brief: Commercials are now included in the Saudi English service (Channel 2), though initially only for locally produced goods . . . Nepal-TV began operations on December 29th last, with a fifteen minute daily news programme and other material received via satellite downlinks. The service area is at present restricted to the Kathmandu valley . . . Ghana TV (GBC-TV) began colour transmissions in early May.

New Products

Tim Healey (Plymouth) tells us that he recently erected an inexpensive lattice mast produced by a small local company run by Ken Arnold of Portland Cottage, Pensilver, Cornwall. The range of towers is anti-corrosion painted but not galvanised, the prices being some $30-40$ per cent below those of conventional communications masts. Examples include a telescopic lattice tower to say 42 ft using lin. vertical seamless pipe, $3 / 8 \mathrm{in}$. strut and tiltover at $£ 260$ (usually around $£ 410$); a 40 ft square tube tiltover with winch and ground post at $£ 160$ (usually

Left: French TV6 network logo received by Dave Shirley (Hastings) from Lens on ch. E54. Centre: MTV-2 (Hungary) received in Holland by Ryn Muntjewerff - an advertisement on ch. R37. Right: Advertisement received from Hungary on ch. R9 by Keith Chaplin at Barrow-on-Soar, Leics. Both Hungarian signals were received on October 27th 1985.
around $£ 260$); and a 32 ft lattice tiltover at $£ 160$. Delivery can be arranged. For details write enclosing a foolscap s.a.e. plus two 12p stamps (UK only).

Brian Lee of 31 Merton Avenue, Farsley, Pudsey, W. Yorkshire LS28 5DX (0532 567 642) has produced a wall rotor bracket in $1 / 4 \mathrm{in}$. thick mild steel using a very strong triangular configuration. The upper bracket is fitted with two plastic bearing units that fit snugly around a $11 / 2 \mathrm{in}$. o.d. mast, the two bearings being welded in parallel to prevent side-by-side motion. The rotor fits at the bottom of the bracket: thus the plastic bearings replace the conventional alignment bearing. Each bracket is tailormade to customer's dimensions (i.e. wall stand-off etc.) and variations in the brackets can be supplied. The wall rotor bracket costs $£ 23.50$ plus $£ 4.50$ post and packing, UK mainland. Please include s.a.e. with any enquiries.

Satellite Scene

Channel Master is now selling a VideoCipher-II unscrambler in the USA at $\$ 395$. Scrambling is a controversial matter in N. America at present. CNN recently reported that an HBO downlink was being jammed by an anti-scrambling lobbyist who beamed a signal on the 6 MHz uplink frequency, resulting in complete loss of the 4 GHz downlink signal. The VideoCipher-II system is likely to be adopted as an industry standard in the USA.

Tony Dunnett of SAT-Tel, Motueka, New Zealand is now receiving good signals from AUSSAT-1's transponder 7 (eastern time ABC network) and transponder 5 (SBS - intended for distribution, at 12W). He reports that Intelsat V at $180^{\circ} \mathrm{E}$ provides several programme sources in the 4 GHz band, including CNN/NBC, JISO (Japan news feed from the USA), CBS/ABC, AFRTS and an Austra-lian-New Zealand news feed. Most channels provide entertainment quality reception using a 5 m dish, $55^{\circ} \mathrm{K}$ LNA and a home produced 27 MHz bandwidth receiver.

Table 1 shows satellite TV signals at present available in the UK. ECS-1 is at $13^{\circ} \mathrm{E}$, ECS-2 at $7^{\circ} \mathrm{E}$, Intelsat V at $60^{\circ} \mathrm{E}$ and Intelsat VA-F11 at $27.5^{\circ} \mathrm{W}$. The listing was accurate at the time of compilation (end April) but changes keep taking place.
The Neville Cresdee satellite location/bearing/azimuth service for all known TV transmitting satellites above your horizon in both the 4 GHz and $11 / 12 \mathrm{GHz}$ bands now runs to twelve pages and includes predictions of solar "outrages" - when the sun aligns itself with the focal point of your dish, producing solar noise interference. The cost is £20 (\$36 US), from 14 Arminers Close, Clayhall,

Wall rotor bracket available from Brian Lee.

TRIAX OMNI-FM AERIAL

FRINGE FM RADIO AMPLIFIER
The TRIAX OMNI-FM represents fine value in omni-directional reception. This high quality aerial gives a level pick-up from all directions - ideal for locations where diverse transmitter -sites are avzilable.
For increased omni-directional gain (unity), 2 similar aerials can be stacked one above the other, a further advantage being reduced pickup above/below the aerials Igives reduced aircraft flutter and household electrical interference). No complicated phasing harness needed - just equal feeder lengths to a TRIAX Stripline stacking fiter!
To compliment the above systems we recommend the new RRINGE ELECTRONICS FTM RADIO SET-BACK AMPUAER. Very low noise (1.9dB), HIGH gain (20dB) and with excellent signal handling characteristics are the essential features of this attractively housed mains powered unit
Indoor use allows optional amplification on weak signals only and for DXing-we suggest also very low loss coaxial feeder to maintain optimum low noise input performances. When thinking FM, Think TRLAX
TRIAX OMNFFM, Horizontally polarised $88-108 \mathrm{MHz}$ balun matched aerial.
TRIAX Twin OMNI-FM Aerials, higher output system which includes the Triax 721/BII stripline. stacking filter/combiner
FRINGE Electronics FM Radio set-back amplifier, High ZOdB Gain, very Low Noise figure only TRIAX 'Steree 8 88-108MMZ Continental' '.. 80 reflectors, Gain 9.5 dB

WHETHER YOUR NEED IS FOR LOCAL OR FRINGE RECEPTION. ALTERNATIVE CHANNELS, TV/FM DXING, OR FOR A DISTRIBUTION SYSTEM, AERIAL TECHNIOUES IS THE 'ONE STOP' ADDRESS FOR AII EOUIPMENT

AERIAL TECHNIQUES IS UNIQUE -
OUR HIGH QUALTY CATALOGUE COSTS ONLY 65p.
Send for your copy today - please include an SAE with all enquiries.
All prices inclusive of VAT and carriage
ACCESS \& VISA Mail and Te!ephone orders welcome Delivery 7-10 days.

11 Kent Road, Parkstone, Poole, Dorset BH12 2EH. Tel: 0202738232

Gosport, Hants PO12 2HB - send an s.a.e. with enquiries and if ordering include the co-ordinates of your location or, if these are not known, sufficient details to enable your location to be established.

Not exactly a DX-TV matter perhaps but worth men-
Table I: European satellite TV transmissions

Programme/polarisation	Frequency $G H z$	Satellite
	10.9866	ECS-1
Teleclub (V)	11.005	ECS-1
RAI-1 (H)	11.015	Intelsat V
WDR-3 (H)		
Premiere Children's Channel (H) 3-SAT (H)	11.015	Intelsat VA-F11
RTL+ (V)	11.057	ECS-1
Worldnet (H)	11.087	ECS-1
Music Box (H)	11.093	ECS-2
Screen Sport/Life Style/	11.135	Intelsat V
ARTS (H)		
Filmnet/ATN (H)	11.135	Intelsat VA-F11
Eurovision (V)	11.1403	ECS-2
CNN (V)	11.142	ECS-2
BR3 (H)	11.155	ECS-2
Europa (H)	11.175	Intelsat V
MirrorVision (H)	11.115	ECS-1
EBU (H)	11.175	Intelsat VA-F11
SVT-1 (V)	11.176	ECS-2
New World/TV5 (H)	11.468	ECS-2
SAT-1 (V)	11.472	ECS-1
Worldnet (H)	11.507	ECS-1
SVT-2 (V)	11.512	ECS-1
NRK (H)	11.635	ECS-2
Sky (H)	11.642	ECS-2
Music Box (V)	11.650	ECS-1
	11.674	ECS-1

Fig. 1: Basic wideband Band I/III DX-TV aerial design with u.h.f. add-on option.
tioning I feel: photographs of the UK taken from the Landsat satellite, using its thematic mapping system, are now available. The photograph of central, southern UK covers from Swanage to Chichester and from the coastline to Warminster and Haslemere. Even roads can be seen. A 10×8 in. photograph costs $£ 5$, a 20×16 in. photograph $£ 20$. If interested, enquire about your area at Space Frontiers Ltd., 30 Fifth Avenue, Havant, Hants PO9 2PL, enclosing a stamped, addressed envelope.

From our Correspondents . .

David Patuzzo (Nottingham) has sent us a report of his activities. He's been DXing for two and a half years and has assembled a wide range of equipment. The indoor part of his installation fits inside a wardrobe and consists of four TV sets - a system I Hitachi set, Plustron TVR5d, JVC CX601GB and a Sandra system L Band I/III/IV/V set purchased on a day trip to Boulogne. He uses a fourelement Band I array, a ten-element Band III array and a Wolsey Colour King, with a variety of Fringe masthead amplifiers etc. David broke new ground with in-flight TVDX using a lin. Sony Walkman at $33,000 f t$ while flying to Majorca. Using its telescopic whip he received French, W/E German, Swiss and Spanish stations. Particular catches were TVE-Catalunya and EBT in northern Spain - TVE was logged half way across France! All signals were in Band III or at u.h.f. Special permission for the set to be operated was given by the aircraft's captain. An unusual DXing feat!

Dave Shirley (Hastings) was the first UK TVDXer to receive the new French fifth and sixth network signals, from Lens in northern France. The accompanying photograph shows his TV6 reception on ch. E54: the fifth network signal consisted of the PM5544 pattern with identification RES.5.

Compact DXing Aerial

Band I/III aerials tend to be rather conspicuous nowadays, with the result that it's often necessary to seek a compromise between signal performance and environmental impact. We've recently designed an aerial to meet these requirements - see Fig. 1. It's ideal for use on a flat balcony, as a portable aerial for a field day excursion or as an unobtrusive aerial for house/chimney fixing.

Fig. 2: Wideband Band IIII DX-TV aerial with two-element Band I section and eight-element Band III section.

The signals received in Band I will generally be propagated via SpE or MS, with tropospheric reception as well in the east/south east. For this a wideband dipole should suffice. The array uses the proven unity-gain B1 design which gives coverage of $48-68 \mathrm{MHz}$. Band III operation on the other hand calls for a measure of gain and directivity, especially in view of PMR signals. The Band III section of the array consists of a wideband $(175-230 \mathrm{MHz})$ six-element design based on the Tru-match dipole system (Antiference patent). The version shown should provide a gain of 5 dB at 175 MHz rising to 7 dB at 230 MHz , with a front-back ratio of typically 20 dB and a -3 dB beamwidth of 60° at mid-band. The boom extends ahead of the first Band III director to allow a lightweight clamp holding a 4 in . or so vertical stub to be added to permit rear clamping of an Antiference TC10/W wideband u.h.f. Yagi array (obtainable from Tandy stores under the Archer label), thus creating an in-line boom array with wideband capability over Bands I/III/IV/V. The performance specification for the Antiference system is approximately $5 \cdot 5 \mathrm{dBd}$ gain on ch. $21,12 \mathrm{dBd}$ gain on ch. 60 with a frontback ratio of $21-25 \mathrm{~dB}$. For the more adventurous DXer Fig. 2 shows a design with a two-element Band I section and eight-element Band III section. This should provide a gain of 3 dBd at 60 MHz and 7 dBd at 175 MHz , rising to 9 dBd at 230 MHz .

The v.h.f. output can be taken via individual feeders or diplexed into a single downlead. It's recommended that the u.h.f. output be kept separate. A diplexing amplifier could be used to advantage provided it has good signalhandling capability and a low noise level - these characteristics are much more important than high gain.

The prototype has a lin. o.d. boom - the $6 \mathrm{ft} \times 1 \mathrm{in}$. o.d. standard TV alloy mast is ideal. The elements are made of $1 / 2 \mathrm{in}$. o.d. seamless tubing. Lengths of this are available from aluminium stockists, though these are usually upwards of 4 m . The element ends should be plugged to stop whistling in the wind. For Band I hard-drawn should be regarded as essential, though this is more expensive. The Jaybeam 9892 alloy lin. to 1 in . clamp is recommended as a stub mast clamp.

If sufficient interest is expressed there's a possibility of obtaining dipole insulators etc. for the project (lin. boom, $1 / 2 \mathrm{in}$. element fixtures only). Those interested should write in, with s.a.e., indicating requirements.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPO. Telephone 0268690868 Telex 99305

TRADE COUNTER OPEN

ORDERS DESPATCHED SAME DAY
ADD 75p P\&P, THEN 15\% VAT.
ADD POSTAGE FOŔ OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

Thom 10020 W (3560) $\mathrm{R751}$ Satery Resistor 75

with Focus Slider \& Leads
Pye 725 Complete Tube Base Panel
Xxa Complete Tube Base Panal
Nx Complete Tube Base Panel
X $\times 10$ Complete Tube Base Panel
${ }^{\text {IX }}$ T90 Completete Tube Base Panel
Pye 713 Control Knobs
Tube Base Sccket ITT CVC32
Tube Base Socket Thorn 3000/8000 atc
iC Insenter 16 Pir
Large IC Extractor
Crystal $4.43 \mathrm{MMH}^{2}$
EHT Lead \& Cap for Split Diode Lopt Anode Cap
Sanyo Anode Cap Assy + Lead. 12TCD-CTDegause VD Ex90j/HP230 300008000 Contoil Knob Thom I $\times 90$
Push Button Assy Thom TX90 Tube Neck Correction Assy. 20AX AT1081
${ }^{2} \mathrm{EFF59}$ with Heatsink
$1129 / 130131$ Coil
6MHz Ceramic Filter
OLTo0 Chilips) Chron
DLTV0 (Phiilips) Chroma Delay Line

- 5006 Chroma Delay Lum

SK5:9K Lum Delay Lise
Plastic Cover for 3 K5 SP8385
IX9 Back Ground Control 10
Tx9 Gain Control 100 R
Thon 2000 Focus Pot
Thorn 2000 Focus Pot
Thom g200 Focus Po:
Thom 9600 Focus Pot
Thom 8k5 Focus Pot
Thorn 4000 Focus Pot
Thorn P 10 Focus Pot (New Type)

SERVICE AIDS Ambersil MS4 SER
Ambersil Freezer
Ambersil Amberube
Ambersil Amberron

Ambersil Ambertion Ambersil $40+$ Protective Lubricant 14021.95 | Ambersil Circuit Lacquer | 1402 |
| :--- | :--- |
| 215 | |

THICK FLLM RESISTOR UNITS 500
.000
Thom (Them
4
5 Pin Connection) video ${ }_{725 / 731}$ Pye (6 Pin Connection) 713 Pre (6 Pin Connection)

FUSES			
	20 mm 10 for 70		
50MA	$\begin{aligned} & 10 \text { for } 70 p \\ & 10 \text { for } 50 p \end{aligned}$	$\begin{aligned} & 250 \mathrm{MA} \\ & 750 \mathrm{MA} \end{aligned}$	
315 MA	10 for 50p		10 tor 509
500 MA	10 for 50,	${ }^{104}$	10 for 500
2.5 A 3 3	10 for 1.00	204	10 for 509
3.15 A	10 for 1.00		10 for 50p
Thom Mains Ix 3000/3500 $\quad 7.50$			
Thom M	Mains IX 9000 (T)		0
Thom Mains TX 96000 (T512) 10.00			
Thom Scan Tx 300033500 6			
Thom LOPT 9000			
Thom LOPP 9600			
	OPT 159091		725
Thom LOPT 88000Thom LOPT 8500			
Thom Lo	OPT $\times 10$		19.0
Thom LOPT TX90 ${ }^{\text {a }}$	OPT X190		13.75
Pro LOPT 713 l			
Pe LOPT 73			
Prilips LOPT G9			
Philips LOPT G11$1375$			
Diode Solit LOPT AT2076/35 14.75			
Sanyo LOPT AM-WM-21			
Philios LOPT G8			
IIT LOPT CVC30$\begin{aligned} & 9.60 \\ & 8.75 \end{aligned}$			
ITT LOPT CVC45 9.75			
Baird 8750 1025 Baird 8752 1025			
Thom Line Drive IX. TX9 (T2) ${ }^{\text {Them }}$			1.5
Thom Line Drive \times P 9 K (TV05)			200
Thom Swith Mode \times X, 9 K6 (15111			375
			4.00

300 Mixed Resistors			1.5010 Spark Gaps			
300 Mixed Capacitors			1.50 10-16	Quil IC So	cket	
150 Mixed Electrolytics			2.00	ted TV Knol		10
100 W/W Resistors			1.00 10-16 pin Quil to Dil IC Socket 100 Mixed Diodes			p
20 Mixed Conv Pots						
40 Mixed Pots			$1.50{ }^{300}$ Mixed Resistors \& Capacitors 1			
20 Mixed Sliders			1.00 10-16 p	Dil to Dil	IC Socket	1.00
40 Mixed Presets					Capacitors	1.00
20 Mi	ed VDR \& Th	rmistors	$\begin{array}{ll}600 & 50 \\ 1.00 & 50 \text { Mectrolytics \& } 50 \\ \end{array}$		cito	00
100 Mi	ed Ceramic	iscs			20 Mixed Valve Bases	. 0
20 Mi	ed Valve Ba		1.00	z^{2} BFR52	31 NKT276	
AC128	$39 \mathrm{BC174B}$	$23 \mathrm{BC} \times 33$	27 BF	29 BFR81	${ }_{28} 28$	${ }^{\circ}$
	${ }^{40} \mathrm{BC} 17$	$248 \mathrm{BCX34}$	1185179	$32 \mathrm{BFR87} 7$	\% 01121	8
${ }_{\text {ACl }}$	33 BC1832	12 BD 131	$308 \mathrm{BFP1}$	30 Bra91	200811039	
AC142K	${ }_{38} 38 \mathrm{BC184}$	1380132	${ }^{46}$ BFF 184	3087	30 R 20088	
${ }_{\text {AC17 }}{ }_{\text {AC1 }}$	${ }_{39} 39 \mathrm{BCL} 187$	${ }^{24} 1580138$	${ }_{36}{ }^{59} 8 \mathrm{Br} 89$	3081683 168×38		
${ }^{\text {ACL }} 176 \mathrm{~K} /$	BC208	9 BD140	$388 \mathrm{BF95}$	16 BrY50	$30 \mathrm{R2} 265$	1.30
${ }^{\text {ACliz8k }}$	${ }_{33} 8 \mathrm{BC212L}$	9. 81744	1.70 8 BF 198	16 BrY	${ }^{34} \mathrm{R2305}$	
${ }_{\text {AD }}{ }^{\text {AL1 }} 1828$	- $1.18 \mathrm{BC237}$	12 80150	8F197	15 Bry ${ }^{19}$	${ }_{1} 50.8284243$	
AD143	1.08 BC2238	8 BD201	BF199	15 BRC1693	1.10 RCAI644\%	
	98 BC2381	8 BD2n			100 RCA1659	25
AD161	33 BC250A	15 BD204	BF224	19 BU126	1.10 RCA1660]	1.40
${ }^{\text {ADO } 23}$	1.05 BC252A	2080225	${ }_{52}{ }_{5}{ }^{\text {a }}$	$9{ }^{9} \mathrm{BU} 208$	1.15 LCA 16800	
AF127	45 BC 294	${ }^{3} \mathrm{BD} 232$	50 BF241	21 BU208a	1.15 RCA1600?	
139	${ }^{38} \mathrm{BC301}$	32 80233	${ }^{60} \mathrm{BF} 255$	BU326a	1.30 RCA16815	
	${ }^{1} \mathrm{BC} 233$	${ }^{31}$ B0234	BF25618	BU407	1.70 Sp8385	
${ }^{81} 107$	${ }^{15}$ 15 BC307	${ }^{10} 88 \mathrm{BD237}$	BF	${ }_{27}^{20} 8 \mathrm{BU408}$	276 230 S28000	225
${ }_{\text {BC109 }}$	15 15 15 B 6309	${ }_{14}^{8} 80802418$		${ }_{78}^{78} 8$	${ }_{26}^{2365880000}$	
${ }_{\text {BCL }} 115$	16 BC327	$18 \mathrm{BD244}$	${ }_{85} \mathrm{BF} 271$	25 BU806	1.80 T6052	
BC117	21 BC 328	18 BD278A	818 BF 274	11 BU807	29419003 V	
${ }^{8 C 125}$	${ }^{26} 8 \mathrm{BC} 37$	17 BD336	${ }^{68} \mathrm{BF} 537$	$29 \mathrm{Cl129}$	9 T9010V	
${ }^{\text {BC12 }} 17$	${ }^{23} \mathrm{BC} 338$	$17 \mathrm{BD433}$	71 BF338	$3{ }^{1 / 1728}$	9 I9053V	. 30
${ }^{\text {BCl139 }}$	${ }_{34}{ }^{2} \mathrm{BCO}$	${ }^{8}$	- ${ }^{80}$	50	${ }^{2} 8190509$	O
BC142	$30 \mathrm{Bcas4}$	8 BD5 59	12085391	21 E9005	25 ticasx	
${ }^{8 C 143}$	${ }^{37}$ BCas5	${ }^{8} \mathrm{BD6779}$	$1358 \mathrm{BF394}$	16 MEE404	10 TIC46	
BC147	$12 \mathrm{BC456}$	10 BD679	1.0 BF422	47 ME0412	10 IIC106C	
148		40 BD701	1.04 BF423	$53 \mathrm{ME6002}$	$10 \mathrm{TIP29}$	
${ }^{8 C 149}$	12 BC 463	2280702	1.12 BF	13 MJ 252	238 TIP30	
${ }^{\text {BCI }} 153$	${ }_{16}^{16}$ BC546		BF	${ }_{3} 3$ M M M 53001	2211	
${ }_{\text {BCL }}$ (54	16 BC 548	1280839	130 BF459	40 M M E520	50 tip33	
${ }^{\text {BC157 }}$	12 BC 549	${ }^{8}$ B ${ }^{1} \times 10$	93 BF 461	${ }^{59}$ MJEE2955	$1.00 \mathrm{TPP}^{1 / 2}$	
158	12 BC 557	$10 \mathrm{BDY20}$	$1.09 \mathrm{BF556B}$	${ }^{35}$ M.JE3055	50.11942	
59	${ }^{15}{ }^{15} \mathrm{BC558} \times$	10 BDY82	$9 \mathrm{BF596}$	${ }_{15}^{15}$ NKT241W	8 TIP110	
${ }_{\text {BC1 }} 172$	$9 \mathrm{BC595}$	${ }_{8}^{8} \mathrm{BF} 153$	20 BF75	62 NKT 241 Y	8 ITX550	0

EHT TPAYSThorn 3000 Thom 8000 Thorn 8500 Thom 9000 Thorn 9600 | Thom 900 950 | 6.00 |
| :--- | :--- |
| 1.50 | | Thorn 15003 stick 240 Pye 7134 lead 583 Pye 7135

Pye 725
\qquad Baird 8750 $\begin{array}{ll}\text { Korting AZ9100 } & 7.10 \\ \text { Philips }\end{array}$ $\begin{array}{ll}\text { Philips G8 (520) } & 6.50 \\ \text { Philips G8 (550) } & \mathbf{6 . 5 0}\end{array}$

CAN TYPES			
0.2 MF 250 V	50 p	1250 MF 40 V	500
2 MF 250 V	50	1250MF 50V	500
22 MF 275V	500	1500MF 100 V	1.05
50 MF 275 V	50	2000 MF 30V	50p
100 MF 150V	$\mathrm{ELP}^{\text {P }}$	2200 MF 40 V	
100MF 250 V	\%p		95p
220 MF 450V	m4k	2200MF 63V Ph	
	130		125
400 MF 350 V	mb_{8}	2500 MF 35 V	5p
	1.00	2500 MF	Ep
400 MF 400 V	\% 9 K	3000 MF 30 V	\%
	295	3300MF 16V	500
800MF 250 V	70p	3300MF 25 V	600
1000 MF 100 T	\%	4700 MF 16 V	72 p
1 $\times 90$	290	4700 MF 40 V	750
ThomDecta/GEC ONOH SWrch. Push 10Philios G11 On/Off Switch. Push to make Philigs GVC9 On/Off Swith + Relay			
Phtips 68 On/OH SwnthThom 33500 Al Swich			
Thom 4000 A1 Switch			
Stiom			
DIODES			
AA112AA119			
BA154			
88103 ${ }^{\text {81/ }}$			
BT119			
			140
BY206 16p 15025			
[l\|llll			
BY227 28p MCR106/ 1.00			
BY238 ${ }^{2}$			
BY×71350 300			
	8 p	MCRIOG/	1.00
NataIN4001			
\|N4002	$4 p$		

3 WEEK FULL-TIME

COURSES HIGH PERCENTAGE OF PRACTICAL WORK INTENDED FOR QUALIFIED SERVICE ENGINEERS.

VCR SERVICING

NEXT COURSE STARTS ON JUNE 30th - TUITION FEE £575

MICROCOMPUTER SERVICING NEXT COURSE STARTS ON JULY 21st - TUITION FEE £690

(MSC grants available on JTS/ATS training schemes, subject to approval. If you are unemployed, or are currently employed and require retraining, or updating, you or your employer may be eligible for financial assistance under one of the above schemes.)

Further details from:
LONDON ELECTRONICS COLLEGE (VC Dept.) 20 Penywern Road, Earls Court, London SW5 9SU Tel: 01-373 8721

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE	
Deliver by return of post.	
	PYE: 169, 173, 569, 368 C725-7311, 735, 737, 741
FDELTT: FTV12 mono 10.35 ZX2000 ZX3000 P.0.A.	
NOEST: 2466, 12168, 12568	
MaM: wesw whenem	
NN:	

Servicing Sonatel and Morphy Richards Monochrome Portables

Abstract

The brand name Sonatel was used by House of Carmen, the monochrome portables sold under this name being amongst the first to break the $£ 50$ price barrier. They were sold widely through the big retail chains and mail order catalogues. When House of Carmen took over the electrical goods manufacturer Morphy Richards the Sonatel brand name was dropped in favour of the well known Morphy Richards name.

Range Covered

The original Sonatel Model T750 12in. monochrome portable was at first continued in a restyled Morphy Richards cabinet and was given the model number T730. This chassis was of discrete component design. A subsequent chassis used mainly i.c.s: this was put in the T730 case and given the model number $\mathrm{T} 730 / 2$. When ordering spares for these models, be very careful to state whether the parts are for the 7730 or the later T730/2. Model T739 followed, incorporating a digital clock/timer and a modified T730/2 chassis.

Sonatel Model 7750

We'll start with the T750 which employed conventional technology and apart from a few quirks was very reliable.
The fault you'll encounter most often is failure of the line output transistor TR801, especially if it's a BU409. Replace it with the better BU407. Other alternatives often fail after a time.

If the $15 \Omega, 0.5 \mathrm{~W}$ feed resistor R 716 in series with the line driver transformer shows signs of overheating, with no line drive, check the driver transistor TR703 and the associated components.

The B+ voltage (stabilised I.t. rail) should be set at 11.6 V (VR901) otherwise the efficiency diode D801 (V06C) will fail - it becomes discoloured.

A gaggle of repetitive dry-joints occur on this chassis, showing up after movement of components or heavy handling of the set.

Intermittent line hold when tapped is usually the result of a poor joint on $\mathrm{C} 801(2,200 \mu \mathrm{~F})$ which decouples the supply to the line output and driver stages.
No line lock can be traced to a poor joint at pin 8 of the line output transformer (pulse feedback to the flywheel sync discriminator circuit).
For no line scan examine the connections to the line scan coupling capacitor $\mathrm{C} 805(6 \cdot 8 \mu \mathrm{~F}, 25 \mathrm{~V})$.
Horizontal cramping is caused by mis-setting of the line hold control 7701 which has a wide locking range. The most accurate way to set it is to disable the sync input to the flywheel sync circuit by connecting an $0 \cdot 1 \mu \mathrm{~F}$ capacitor between the base of the phase-splitter transistor TR701 and chassis, then adjust T701 for a stationary lock.

The power supply gives few electrical faults. Rough handling causes the plastic battery panel to break, making the power supply chassis drop down and putting a strain on the front panel. Beware when working on the power supply panel as live mains is present at fuse F901 (0.5 A).

Failure of this fuse can be caused by a faulty primary winding on the mains transformer: the d.c. resistance should be a nominal 65Ω. Absence of the B+ supply is usually due to dry-joints at the external supply socket or failure of the socket itself.

A low-gain transistor in position TR604 (2SD476B) in the field output stage causes cramping at the top of the picture.

Some sets went out with the wrong value resistor in position R621 in the field flyback blanking circuit. If flyback lines are visible check that the value is correct (100Ω).
An improvement in field linearity can be made by increasing the value of the field scan coupling capacitor C611 from $1,000 \mu \mathrm{~F}$ to $2,000 \mu \mathrm{~F}$.
No or distorted sound is in nearly every case due to failure of the pnp transistor TR403 (2SA673C) in the audio output stage. Loss of sound can also be due to failure of the earjack speaker cutout to remake after jack insertion. Note that this model uses a 25Ω speaker.

A very dark picture can be caused by incorrect a.g.c. level setting (VR301). This is adjustable from under the set with the back on.
Vertical black lines on the picture can be easily cured by repositioning the c.r.t. cathode lead away from the line output transformer.

A blank raster with flyback lines visible and low or no sound should direct attention to the 1 N 60 vision detector diode D101 and filter coils L106, L107 and L108 which go open-circuit. If the picture only is affected, check coil L203 in the video output stage.
Sound breakthrough on vision can be due to a dry-joint on $\mathrm{C} 403(100 \mu \mathrm{~F})$ which decouples the supply to the audio circuits: alternatively C 403 may be open-circuit.

An effect similar to soot and whitewash can be due to peaking coil L202 in the video output stage being opencircuit - or, dare I say it, a faulty tube ...
A small i.f. preamplifier stage rides on the back of the tuner. This is present to compensate for the loss of gain a v.h.f. tuner in a different version would have given. If the output coil L002 is not correctly set you can get a multitude of symptoms from lack of gain through to instability and ringing. A slotted adjustment tool is re-

Fig. 1: Power supply circuit used in the Sonatel Model T750 and Morphy Richards Model 7730.

Fig. 2: Power supply circuit used in the Morphy Richards Model T730/2.

Fig. 3: Power supply circuit used in the Morphy Richards Model T739 which incorporates a digital clocktimer.
quired to reset the core, which will break if the locking wax is not softened before adjusting. Don't screw the core down as it will jam against the PCB and be very difficult to remove. Normal setting will be found near the top of the former or even with the core protruding.

Transistors TR1 (2SC1070) and TR2 (2SC1730) in the tuner do give trouble and can be replaced provided care is taken to fit the replacements in exactly the same position (a new tuner is expensive). Look out for poor or unsoldered connections on the aerial panel and the phono type connector on the tuner in the event of low gain.

Morphy Richards Model 7730

The comments above also apply to the Morphy Richards Model T730. Spares should be distinguished by model however.

Morphy Richards Model T730/2

The newer chassis used in Model T730/2 uses some of the same parts as the earlier chassis, including the c.r.t., the tuner, the line output transformer and the scan coils. As with any new model this one suffered from teething problems which were overcome in later production.
The most perplexing fault came about as a result of flashover in the tube, particularly when new. This will cause loss of most of the i.c.s and the tuner and some of the transistors. To reduce the likelihood of this pin 7 of the c.r.t. should be disconnected and linked to the earthy end of the heater. This is shown as pin 4 on the circuit diagram but in practice it may be pin 3 .
To improve the field lock change C 301 from $1 \mu \mathrm{~F}$ to $0 \cdot 1 \mu \mathrm{~F}$ - this is the sync separator transistor's input coupling capacitor.

Video and field breakthrough on sound require a number of actions. Video breakthrough can be simply

Fig. 4: Tuner a.g.c. modification. (a) original circuit, (b) modified circuit, (c) physical details.
adjustment of the sound detector coil L401 or filter coil L201 (if L201 won't peak, check C201/2 - both 47 pF). If still in trouble dress the video output transistor TR201 and coupling capacitor C207 away from the TDA3190 sound chip (IC401) by bending them and trapping the video lead to the c.r.t. between, taking care not to take it too close to the line output transformer. The problem can also be due to a defective video output transistor (2SC2229-0) or vision i.f. chip IC101 (μ PC1366C).

A blank raster with flyback lines can be caused by IC101, TR201 or TR301 (2SA1015-Y) in that order of likelikhood.

If C705 $(3,300 \mu \mathrm{~F}, 16 \mathrm{~V})$ which decouples the supply to the line output stage becomes disconnected or faulty two or three vertical lines or bars will appear on the picture, visible only on certain scenes.

No line timebase operation with a charred 10Ω l.t. feed resistor R601 means a new TDA1180P line generator chip (IC601).

Check that the boost diode D702 (V09E) isn't overheating: if it is, check the boost capacitor C704 $(330 \mu \mathrm{~F})$ for dry-joints.

The sound chip seems to be reliable but unstable or harsh sound can be due to $\mathrm{C} 406(47 \mu \mathrm{~F}, 10 \mathrm{~V})$ in the feedback circuit being faulty. The speaker is a 16Ω type this time.
Failure of choke L105 in the l.t. line will give a blank raster, flyback lines and no $\mathrm{B}+$ supply to the i.f. section.

The previous notes on tuner faults (Models T750/T730) also apply to this set.
The solid-state regulator chip IC801 (2200C) seldom fails but it should be noted that there is no switch in the supply to the mains transformer which has an internal thermal fuse (not removable). If the transformer fails, check the diode bridge and associated components and that the wiring to the 2 A d.c. fuse F 801 is in order.

Morphy Richards Model 7739

Apart from the power supply and the addition of a clock the T 739 is identical to the $\mathrm{T} 730 / 2$, so the previous comments apply.

In later production additional modifications to those incorporated in the $7730 / 2$ were included in this model. These should be made to any set returned for service.

Drifting hum bars that move slowly down the screen can be cured by isolating the negative side of the mains
bridge rectifier D801-4 by cutting the track. Make the connection via a short jump lead directly to the negative tag of the reservoir capacitor C805. If R901 (180 2) overheats and falls in value, causing increased ripple on the supply, replace it with a 1 W resistor. If R 905 is positioned between the clock PCB and the front panel it should be removed and soldered on the top side to prevent it melting the plastic front.

The clock is built on a small PCB and mounted with its set switches directly on the front panel. A few problems do occur with this unit which by nature of its construction is difficult to service. The set buttons can get stuck in the on position, jamming in their cutouts. Release the PCB fixings and manipulate the panel until free operation is achieved. If the clock steps forward by itself this is usually because either C 902 or C 903 (both $0.01 \mu \mathrm{~F}$) is leaky.

Replacement of the Texas clock i.c. or display is tricky. It's probably better to replace the complete module.
If the set is dead but the fuses are intact have a look for a short between the clock PCB and the chassis.

AGC Modification.

Late production versions of the T730/2 and T739 had improved a.g.c. fitted to compensate for very strong or weak reception conditions. This so improves performance that all sets will benefit from incorporating it. The change involves modifying the tuner to accept a.g.c. at the base of
the r.f. amplifier transistor TR1: the a.g.c. comes from the vision i.f. amplifier chip.

Fig. 4 shows the relevant parts of the tuner and main PCB print. Proceed as follows:
(1) Open the top of the small i.f. preamplifier fitted to the tuner. If a 150Ω resistor is fitted in series with the output from the tuner remove it and terminate directly at $\mathrm{C} 001 /$ L001. Reset L002 as previously described.
(2) Remove the tuner from the chassis. Open the cover and carefully remove R1, R2 and C2.
(3) Fit a small-bodied $1 \mathrm{k} \Omega$ resistor as shown in Fig. 4, allowing the body to come through the side of the tuner (without shorting).
(4) Add an $0.02 \mu \mathrm{~F}$ capacitor, a $47 \mu \mathrm{~F}$ (10V) electrolytic and a $120 \mathrm{k} \Omega$ resistor external to the tuner as shown.
(5) Cut the track on the main PCB and add a $1 \mathrm{k} \Omega$ resistor and $10 \mathrm{k} \Omega$ preset as shown (the preset has to be reversed on the T730/2 - the diagram shows the T739).
(6) Connect an unscreened flylead as shown.
(7) Set the preset for best a.g.c. action, using strong and weak signals and noting the background grain.

Spares

Spare parts for Sonatel and Morphy Richards sets are available from Morphy Richards Consumer Products Ltd., Technical Services, 6 Albany Parade, Brentford, Middlesex (01-560 5331).

TV Fault Finding

Hitachi NP81CQ Chassis

The card was completely blank under the column marked "fault": the shop assistant had obviously intended this one to be a surprise! In fact the set was dead. In the past I've found that the best way to prove that the power supply in these sets is all right is to disconnect it from the rest of the set and provide it with a load consisting of a 100 W bulb. We did this, switched on and found that the bulb lit and the h.t. was correct at 110 V . To be able to work on the line timebase separately we connected an external 110 V supply to the set. With the exception of a little hum on the picture caused by our supply's poor regulation the set worked perfectly. So why wouldn't the set work with its own power supply? The only conclusion we could come to was that the power supply wasn't able to deliver sufficient current to start the line output stage. Taking a closer look we discovered that the surge limiter resistor R901 measured 11Ω instead of 7.7Ω - though it looked as new as the day it was made. A replacement cured the fault. S.I.

Lloytron 142C

A fault we've had on several of these colour portables is failure to start from cold - the power supply can be heard ticking. The problem is caused by R 228 ($1 \mathrm{k} \Omega$) going opencircuit or by dry-joints around this resistor or the line driver transformer.

Fidelity ZX3000 Chassis

By now we are quite familiar with the chopper transistor going short-circuit at switch on when the collector load

Reports from Steve Illidge, Mick Dutton, Chris Avis, Philip Blundell, Eng. Tech., Roger Burchett, Paul Hardy and D.R. Bracknell

simulation resistor (usually $270 \mathrm{k} \Omega$) has gone high in value or open-circuit in self-oscillating chopper circuits using the TDA4600 control i.c. We were surprised to find that the relevant resistor (R91) in the Fidelity ZX3000 chassis is a tiny little half or even third watt type. In one set that came our way this resistor was open-circuit, the TDA4600 chip had been destroyed, the BU426A chopper transistor had gone short-circuit and R90 (22 Ω) between the BU426A's base and emitter was open-circuit.
We've had to change a number of line output transformers in these sets. The symptoms in each case were no results with the h.t. low and the power supply making a noise to show its distress. A point to note is that the 20 and 22 in . chassis use different transformers.

An improved mains filter panel was introduced to prevent medium-wave radio interference.
M.D.

Panasonic TC361

This set was tripping. It's an elderly model with a thyristor line output stage, but it has proved to be very reliable. The tripping problem with this one was due to the 24 V supply rectifier D554 being short-circuit.
M.D.

Philips TX Chassis

This portable gave no results, though there was hum from the speaker. The 11 V line was found to be high at 15 V and couldn't be reduced. After fruitless checks on the transistors in the regulator circuit realisation dawned that there was no line whistle. The set was then powered more
safely from the 11 V bench supply and attention was turned to the line timebase. A scope check showed that there was line oscillation at the base of the line driver transistor but not at its collector. A replacement BC337 cleared the fault and restored correct regulation. To improve the e.h.t. regulation, the error detector transistor in the series regulator circuit samples the 26 V boost line instead of the 11V rail. With no line drive the boost voltage was absent and the regulator circuit inoperative the supply was coming via the parallel, unloaded resistor, hence the misleading 15 V .
C.A.

Sanyo CTP6132 (80P Chassis)

At switch on or anything up to four hours later line lock would suddenly go out beyond the range of the main hold control. Adjusting the preset VR410 would then produce a locked picture displaced about 4 in . to the right. A previous repairer had already replaced the LA7800 sync/ timebase generator chip so the fault had to be elsewhere. Various strange faults on this chassis can sometimes be caused by poor connection of the metal strap from the line output transistor heatsink, but unfortunately not this time. After a lengthy search the culprit was found to be an erratically open-circuit capacitor ($\mathrm{C} 4012,0.039 \mu \mathrm{~F}$) in the "AV Control-2" circuit on the deflection subpanel. C.A.

Teleton CPL144

This colour portable gave no picture until the sub-brightness preset VR305 was wound up, producing plenty of monochrome picture but no colour. Backing off the killer bias preset VR304 then produced unlocked colours. Waveform checks around the $\mu \mathrm{PC} 1365$ colour decoder i.c. revealed a lack of line pulses at pin 19. These pulses come from the line oscillator on the timebase subpanel via a 15 mH filter choke, L502, which was open-circuit. C.A.

ITT CP9210

This oddball 14in. portable of W. German origin had no line lock. Positive- and negative-going pulses from a centre-tapped winding on the line output transformer are fed to the flywheel line sync discriminator circuit via two $22 \mathrm{k} \Omega$ resistors, R518 and R519. Both were open-circuit. The owner later confirmed that the picture had been "wriggling for several weeks". . .
C.A.

Philips CTX-S Chassis

I knew I'd got trouble as soon as I took the back off this one: there was the mains fuse, wrapped in blackened silver paper! The chopper transistor was short-circuit but when it was replaced the set was still dead. The trip transistors Tr 7330 and $\operatorname{Tr} 7331$ were both short-circuit and the associated resistors R3334/7/8 were open-circuit: coil L5355 which is in series with the chopper transistor was also open-circuit.
P.B.

Thorn $\mathbf{3 0 0 0}$ Chassis

This case is ideal as a reminder of what some people will put up with before requesting service. The trip was operating and the following faults were dealt with. The tripler had a number of pinholes; one video output transistor was short-circuit; all three driver transistors were leaky; one of the thick-film unit load resistors was
open-circuit; two of the first anode supply switches were leaky; one of the $1 \mathrm{M} \Omega$ first anode control feed resistors was open-circuit; most of the electrolytics in the field timebase had dried up; the volume control was noisy. Any idea what the owner could see on the screen? R.B.

Philips G8 Chassis

I had a filthy, smelly, nicotine filled G8 in for overhaul recently and decided to add D.R. Bracknell's soft-start circuit suggestion (September 1985, page 613). I can confirm that the h.t. supply now builds up slowly and without the tendency to overshoot he describes, so I'll be modifying other suitable candidates that come in. Thanks Mr. Bracknell!
The problem with another G8 was picture size variations. The h.t. voltage was found to be varying and an examination of the power supply revealed that one of the charging/phase shift resistors, R1373, had a burn nearly right round. It was rated at 0.5 W though all the panels I've checked since have had 1 W resistors in this position. The h.t. reservoir capacitor $\mathrm{C} 1385(600 \mu \mathrm{~F})$ had already dried up.
R.B.

ITT CVC9 Chassis

Les isn't the only one (page 698, October 1985) to have trouble with the power supply electrolytics not being earthed: intermittent fuse blowing can be traced to an arc at the tags if these are dry-jointed.
R.B.

Grundig GCS100 Chassis

I must admit that I never got to the bottom of this one. The complaint was low contrast, and sure enough the picture had a washed out look with the customer contrast control doing nothing. It seemed that the beam limiter might be operating, but disconnecting this made no difference. Discrete component checks on the RGB board revealed nothing, so we decided to change the TDA2800 matrixing i.c. This is not the most common of chips, but I eventually found that Telepart of Wolverhampton had some. By this time I'd noticed an intermittent fault in the blue output stage and as business was pressing I decided to get a new RGB board. Sendz Components were able to supply a board at a much cheaper price than the Grundig exchange service (they were in short supply at Grundig anyway). Fitting this restored normal operation but whether it was the chip or the board that was at fault remains a mystery. Any comments?.
R.B.

Sony KV1810UB

To remove teletext interference on these sets check all the electrolytics in the field timebase, replacing any that are suspect. If this doesn't work increase the value of C559 from $1 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$.
P.H.

Sony KV1820UB

The problem with this set was a ripple on the line scan accompanied by a loud whistle from the power supply five-ten minutes after switching on. A check on the h.t. line during the fault condition revealed that the voltage was normal: reducing it by means of VR601 cleared the fault, producing a stable but smaller picture. Although the switch-mode power supply is normally locked to the line frequency I decided to check it out of circuit using a 100 W
bulb as the load, across pins 1 and 3 of connector CNF3. When operated in this way the power supply worked correctly, with an adequate range of h.t. adjustment. The same results were obtained using a 200 W bulb as the load. It seemed therefore that the fault was independent of the output voltage and load.

After much examination of the power supply panel D612 in the kick-start circuit was found to be shorted, but
replacing this didn't clear the fault. The pulse-width modulator waveforms were o.k. - but not when the power supply was restored to the set, with the line sync feed connected. There was now ripple, whistle and a horrible waveform. Further checks revealed that the 18 V supply to the pulse-width modulator had a 2 V ripple on it. Replacing the reservoir capacitor $\mathrm{C} 612(3 \cdot 3 \mu \mathrm{~F}, 25 \mathrm{~V})$ restored normal, "quiet" operation.
D.R.B.

Thorn 8000 Series PSU Modifications

Tony Livesley, G8JAI

The Thorn 17in. 8000 chassis has been around for a long time but continues to give good service - apart from its notorious power supply. Most of the trouble here is caused by failure of two h.t. resistors that are vertically mounted on the panel - R727 and R729. In the later $8000 \mathrm{~A} / 8500 / 8800$ chassis these resistors are part of the mains dropper assembly. The fact that the 8000's power supply is not interchangeable with those used in its largerscreen relatives is also a problem.
Most 8000 chassis will by now have been fitted with a replacement dropper of the 8000/8000A type which has four sections. When this type of dropper is used in the 8000 chassis the $1 \mathrm{k} \Omega$ and 56Ω sections are not used - in this chassis they are the previously mentioned vertically mounted R727 and R729. Using these sections of the dropper in the 8000 chassis gives improved reliability however: details are given below. The two types of dropper are shown in Fig. 1. A further modification enables the 8500 or 8800 power supply to be used in the 8000 chassis. This is the best course to adopt since it means that only one type of power supply needs to be kept in stock.
First the modification to use all sections of the dropper in the 8000's power supply. Having succeeded in coaxing the power supply from the bowels of the set, remove resistors R 729 ($1 \mathrm{k} \Omega$) and R 727 (56Ω). Check the panel carefully for faulty connections and cracks, especially at plugs PL8/9/10 and resistors R701, R730 and R704. Refit the power supply in the set and turn the h.t. preset R725 fully anticlockwise (minimum h.t.). Disconnect and isolate the lead that goes to the collector of the line output transistor VT401 - this will ensure that it's not damaged in the event of excessive h.t.

Using the continental metric type push-on terminals at each end, make up a 2.5 in . wire link covered with heatresistant sleeving. Fit one end of this on to the double tag at one end of the 47Ω section of the dropper resistor. The existing lead here should be yellow: it goes to C704 $(700 \mu \mathrm{~F})$. Fit the other end of the new link to the centre of the $56 \Omega / 1 \mathrm{k} \Omega$ sections of the dropper.

Using another terminal and sleeve, run a length of wire from the top tag of the dropper's 56Ω section to either one of the right-hand tags on L406, which is fixed to the chassis frame at the bottom of the timebase panel adjacent to the contrast control. The existing lead on the tag required is red/grey or red/white - depending on how faded the colour is!

By the same method fit another length of wire to the lower tag of the dropper's $1 \mathrm{k} \Omega$ section and run this across the bottom of the chassis: solder it to the print side of pin 5 on plug 11 at the bottom of the timebase panel.

Now check your wiring! Monitor the h.t. at the double
tag on the 47Ω section of the dropper. The reading should be about 120 V when the set has been switched on. If o.k., switch off and reconnect the lead to the collector of VT401. Power up again and adjust the h.t. for a reading of 170 V . This completes the dropper modification.
Now for the modification to enable an $8500 / 8800$ power supply to be used in an 8000 chassis. You will first have to carry out the modification just described.

Remove the red/yellow lead and its socket pin from position one of plug 10 on the power supply. This can be done by inserting the blade of a very small screwdriver or a hat pin between the socket pin and plug moulding at the opposite end to the wire outlet and carefully pressing down the small tab which can be seen through the plug's semi-opaque material. Be careful not to distort the socket during this operation as it will then be impossible to remove.
By the same method remove the brown wire and its socket pin from position 8 of plug 10 . Slightly retension the tab and insert this brown wire into position one of plug 10 - where the red/yellow lead previously went.

If difficulty is experienced the leads can be cut, the one from 10/1 about an inch from the top of the plug, that from $10 / 8$ flush with the top. The brown wire can then be joined to the remaining stub of the red/yellow wire. A neater way of going about this is to remove the previously described wire to pin 5 of plug 11 on the timebase panel, shorten it as required and join it to the now dormant red/ yellow wire that originally went to pin one of plug 10 on the power supply.

Now fit an 8500 or 8800 power supply to the set. Adjust R725 for minimum h.t. and set up as described for the 8000 panel.

Some 8000 series power supply panels can be converted to the 8500 arrangement simply be refitting R 730 ($8 \cdot 2 \mathrm{k} \Omega$) in the alternative horizontal position indicated. R727 and R729 will of course have to be removed.

Fig. 1: Different types of dropper used in the Thorn 8000 chassis. (a) Early type. (b) 8000A type.

Teletopics

RESULTS FOR '85

1985 was another good year for CTV sales in the UK. Deliveries of colour sets to the trade rose by 4.3 per cent to $3,670,000$, following a rise of $2 \cdot 2$ per cent in 1984 . In contrast to 1984 however stocks at the end of 1985 were in line with current trading levels. An increase in sales of large-screen sets is put down to the advent of the FS tube. The percentage of imported sets fell to $34 \cdot 5$ per cent. VCR deliveries increased from $1,417,000$ to $1,656,000$ following a sharp fall (34.4 per cent) in 1984. Twenty per cent of the VCRs were UK manufactured. Deliveries of teletext equipped sets rose to $745,000-15$ per cent of homes now have a teletext set. Camcorder deliveries increased to 50,000 . Elsewhere CD player deliveries rose from 33,000 to 147,000 while deliveries of home computers fell from 1,700,000 to 945,000 .

JAPANESE FIRMS HIT BY YEN

The rise in the value of the yen, up from 214 to the dollar last October to about 160 to the dollar at present, has knocked the profits of many Japanese electronics firms. Most firms end their financial year on March 31st. Hitachi has reported a profit decrease of 38.2 per cent, the first for eleven years, Toshiba a 44 per cent decrease, JVC a 51 per cent drop, Mitsubishi a 52.6 per cent fall, Casio Computer a $21 \cdot 1$ per cent decrease and Fujitsu a fall of 68 per cent. All these percentages are on the pre-tax figures. Sharp on the other hand managed a 1.6 per cent increase. The profit falls are despite increased sales in many cases. Since the rise in the value of the yen occurred in the latter part of the year further profit falls are expected this year. Sony's chairman Akio Morita summed up the situation in pointing out that "at 200 yen to the dollar the hourly wages in our San Diego and our Japanese factories are the same". Despite all this Japanese firms have been slow to increase their prices in overseas markets: it seems that market share is the prime consideration, to maintain factory loading. Various measures are being taken to mitigate the effects of the increased value of the yen. Several firms have announced steps to increase overseas production. Sharp is to try to change its export/home sales ratio from 60:40 to 40:60. As a defensive measure Sanyo plans to merge with its associated company Tokyo Sanyo Electric.

thorn service department to move

Thorn EMI Ferguson Ltd. has announced plans to move the firm's service department from Edmonton, North London to a new location at its Enfield complex. An investment of some $£ 1.5 \mathrm{~m}$ is being made in the company’s service activity. The new site will be designed and equipped to speed up the delivery of spares to dealers and improve the turnround time of customers' repairs. This will be achieved through automated spares handling procedures, new computer systems and additional test and repair equipment. The project is due for completion by the end of the year.

24-HOUR TV

The IBA has given Yorkshire Television permission to transmit all-night TV for a three-month trial period
starting in June. Programmes from Virgin's Music Box pop music satellite TV channel are being broadcast from $12.30 \mathrm{a} . \mathrm{m}$. to $6.15 \mathrm{a} . \mathrm{m}$. when TV-a.m. comes on air. Advertising is being sold to cover the service's cost. YTV has a 20 per cent stake in Music Box.

Channel 4 has announced plans to move gradually to a 24-hour service over the next two years. IBA approval would be required. Channel 4 hopes to use the increased transmission hours for further educational broadcasts and programme repeats to enable viewers to record programmes they've missed.

NO WORLD STANDARD FOR HDTV

The International Radio Consultative Committee (CCIR), meeting in Dubrovnik, Yugoslavia during May, failed to adopt a world standard system for high-definition TV. The Japanese developed 1,125 line, 60 Hz system, which was backed by the USA and Canada, did not receive the necessary support due to opposition by European countries which favour the enhanced C-MAC system. The next plenary session of the CCIR will take place in 1990.

CABLE TV DOES BETTER

According to the latest figures from the Cable Authority the number of UK households connected to a cable TV service increased by 12.8 per cent during the first quarter of 1986 , to 143,877 . The proportion of households connected to a cable TV service has risen to 14.5 per cent almost a million homes now have access to a cable service.

Robert Maxwell's company British Cable Services is to be reorganised. The aim is to restore the older systems to profitability and develop new franchises. A senior management team from the US cable company Viacom is to join BCS on a contract basis.

TV BRANDS

Fidelity's parent company Caparo Industries has entered into an agreement with Great Universal Stores' subsidiary company J.J. Silber to use the Murphy brand name on TV and video products. Silber, who acquired the brand name from Rank Radio International in 1981, will continue to sell Murphy branded merchandise including audio and telecommunications equipment. Silber had previously licenced the brand name to Rediffusion and a number of Murphy sets were sold fitted with the Rediffusion Mark 4 chassis. Fidelity have in the past had the rights to use the HMV brand name - the last HMV sets fitted with Fidelity chassis appeared in 1984. Caparo's chief executive James Leak says the firm will not rush into the release of Murphy brand sets: "a sensible, well thought-out marketing plan" is to be devised. The sets could be of UK manufacture though not necessarily produced in the Fidelity plant - Mr. Leak points out that "it's not going to be a simple job of badge engineering".

A 16in. transportable colour set is now being sold under the Hinari brand by Hinari Consumer Products Ltd., $20-$ 22 Payne Street, Port Dundas, Glasgow G4 0LF (0413 327 795). The firm has also sold sets under the Trical brand name.

Network is now selling a range of Korean produced TV sets under the NEI brand name. During the course of May Network Industries and its associated company Network Marketing went into receivership and were subsequently bought by Network Electronic Industries.

Heron Electronics has given up the Thomson franchise
which will probably be taken over by Oxford Audio. Heron will continue to market Ingersoll and York equipment.

A further correction to our TV/VCR spares guide (April 1986) is required. The Amstrad phone number should have been given as 0277230222 (the final 2 was omitted).

IEE's TV CONFERENCE

An international conference on the history of television, from the early days to the present, is to be held by the Institution of Electrical Engineers at its headquarters, Savoy Place, London WC2 from November 13-15th 1986. The IEE is organising the conference to commemorate the 50th anniversary of the start of the world's first highdefinition TV service in 1936. It will cover progress from the first proposals for television through the experiments of the twenties and the subsequent low-definition transmissions to the realisation of high-definition TV in the thirties and all subsequent advances. Contributions to the conference have been invited from people with firsthand experience of TV development, including its commercial and political aspects, in all parts of the world.

LCD TV SETS

Matsushita (Panasonic) expects to launch a pocket TV set with a 3 in. colour liquid-crystal display panel next year in Japan. The LCD panel has 89,280 pixels and the price of the set is expected to be around $\$ 300$. The individual pixels (240×372) are driven by thin-film transistors integrated on to the panel. Colour filters are used to produce triangular RGB elements which are set against a black background. Six AA alkaline cells would provide a viewing time of some five and half hours.

Citizen (see article on page 512 last month) is at present producing LCD TV sets at a rate of 50,000 a month, 20 per cent with colour. Production is to be doubled by the end of the year. It expects the price of monochrome LCD sets to fall to around $£ 50$ by 1988 as volume production builds up.

NEW FROM MULLARD

Mullard has introduced a new delay line comb filter, type CF873, for use in European PAL standard VCRs. It offers optimum filtering, low insertion loss and low spurious reflection. Based on the DL872 the new delay line differs in incorporating a direct path resistor matched to the line. The nominal frequency at $25^{\circ} \mathrm{C}$ is 4.433619 MHz with a minimum -3 dB bandwidth of 1 MHz : the delay time is $128 \mu \mathrm{sec}$. The CF873 consists of a very thin slab of zero temperature coefficient glass provided with a split transducer, mounted in a shock-proof housing.

The new Mullard TDA4565 colour decoder chip features improved colour transient performance, reduced chroma bandwidth and enhanced definition and gradations.

UNDERWATER CAMCORDER

An accessory pack has been introduced by Sony to enable its Handycam 8 mm camcorder to be used for underwater filming - to a depth of 130 ft . The MPKM8 marine pack sells at $£ 450$ and includes a piezoelectric microphone. Optional accessories include the HVL80D underwater lamp ($£ 300$), NP3000 battery ($£ 70$) and LC780 carrying case ($£ 138$) which holds the kit and a battery charger.

THE FULL THORN RANGE now available from

 SOUTHPARK DISTRIBUTORS

 SOUTHPARK DISTRIBUTORS
 Unit 4 Rubastic Road, Southall, Middlesex 015744631 EXT 28

9K-9K6-TX9-TX10 TEXT \& FULL REMOTE ALSO VIDEOS V.H.S. \& BETA. LOTS OF
 WORKERS FOR BUSY DEALERS

The alternative SPKM8 sports pack, at $£ 80$, is described as splashproof and is intended to provide protection for outdoor use.

ATV AERIAL

On-glass Aerials Ltd. have developed a range of u.h.f. aerials that feature no-hole fixing. Though developed primarily for the private mobile radio market the OW432 version can be used on the 70 cm band by amateurs not wishing to drill holes in their vehicles. The price is around $£ 35$ plus VAT and a v.h.f. version (2 m band) is expected to become available shortly. Enquiries should be sent to B.D. Price G4DVB, 93 Highview, Vigo Village, Kent DA13 0TG.

FAST ACCESS TELETEXT

It's hoped that a new chip plus new editorial techniques at Ceefax/Oracle will enable FAT - fast access teletext - to be introduced next year. The system gives instant access to four pages related to a selected page: cue marks appear at the bottom of the screen, relating to colour-coded buttons on the remote-control unit. The extra chip is used to keep the cue pages in store. A FAT decoder would add about $£ 20$ to the cost of a set. Work is at present being carried out on developing the editorial techniques required.

SATELLITE TV EQUIPMENT

A new company has entered the satellite TV field. Satellite Technology Systems Ltd., Satellite House, Blackswarth Road, Bristol BS5 8AU (0272 554 535) has introduced two TVRO terminals, one aimed at the domestic market and the other providing for signal distribution to up to 200 standard TV sets. The domestic STS300 series system comprises a $1 \cdot 2 \mathrm{~m}$ offset parabolic dish aerial, low-noise converter and SSR7700 receiver unit. It sells at around $£ 1,000$. A polarotor is available as an optional extra. The company has set up a training centre for dealers at its Bristol headquarters.

Connexions Satellite Systems (125 East Barnet Road, New Barnet, Herts EN4 8RF (01-441 1282) is now offering a "starter" satellite TV receiving system at $£ 895$ including VAT. It has a 1.2 m offset polar mounted dish that can be motorised at a later date if required.

Carlton Communications plans to market 10,000 satellite TV receiver systems in the UK and Europe this year through its Skyscan subsidiary. The system will include a 1.2 m motorised dish aerial and the suggested price is around $£ 1,150$ including installation.

Return of the French Lady

Les Lawry-Johns

You may recall the French lady whose ex-husband taught Scottish rig workers how to swim (she said). She has another set now and it's giving trouble. A Pye 731 which also gave me trouble, mainly because I didn't want to carry it from her flat, round the square and out to the car.

The Pye 731

First there was intermittent sound which I thought was due to a dry-joint. It turned out to be a poor plug/socket connection. After getting this right the sound still wasn't clear - it sounded as if the speaker was rubbing. So I said I'd be back with another speaker as soon as I could. Shortly after I was back with a nice new speaker with a free floating cone and proceeded to fit it. She was nattering away and I vaguely heard something about the picture going off. With the speaker fitted the sound was fine and the picture showed no sign of going off. I tapped around but it wouldn't do anything wrong. So I left it at that.

Next day she phoned again and read out a long list of the times when the picture had gone off, apparently for very short periods and with no regular pattern. So I sallied forth again and this time managed to make the picture go off by applying pressure to the TBA990 chip on the decoder panel. I immediately resoldered every joint in the vicinity. After this I couldn't make it go off so I departed, thinking that that was the last of the matter. It wasn't. I had to return several times subsequently, replacing in turn the line output transformer, the BU208 line output transistor, the tripler and for good measure the $0 \cdot 1 \mu \mathrm{~F}$ first anode supply reservoir capacitor C563 ($1 \cdot 25 \mathrm{kV}$). It was a nightmare and every time the phone rings I dread hearing that voice "allo, allo, this is ze French woman talking". And talking, and talking.

Mother-in-law's Set

A young fellow brought in this ITT hybrid colour set (CVC8 chassis) and said it belonged to his mother-in-law. I'd no idea whom he was talking about. The repair took some time as the boost capacitor had gone short-circuit (as usual) but had this time taken the PY500A boost diode and 56Ω h.t. feed resistor with it. I did all that was necessary and wrote out the bill, charging fifteen pounds. A fortnight later all hell broke loose.

A voice which I vaguely recognised phoned to say that the TV set I'd "thoroughly overhauled" was giving trouble after being moved round the room. So I got the car out and nipped over to see what I could do. I was appalled when she opened the door. I knew her all right, and knew the language to expect. Talk about that young girl with the long blonde hair, she was a saint in comparison. Leaving aside the language, the woman was demanding to know why a set that had been "overhauled" so recently should give trouble so soon. She waved the bill in my face.
"Look at this, fifteen ${ }^{* * * *}$ quid. You should be ashamed of yourself."
"If I'd known it was your set I wouldn't have touched it in the first place" I bawled back.

Anyway, she insisted that I saw the set working. The
picture was wavy and the colour was in bars. I thought that moving the set had disturbed a poor earth connection. It transpired however that the AD161 l.t. regulator transistor (left side) was leaky. I had one with me and it was in before you could say knife. The picture was now perfect.
"I wonder how long that will last. You people certainly know how to rob us poor ****s."
"Well this poor ${ }^{* * * *}$ is going off now, having performed a miracle in front of your eyes. I don't intend to repeat the performance. Goodbye."

I got to the car while she stood at the garden gate waving the bill in the air and bawling about wanting her money back.

Beardy's Brother

I thought I'd seen the last of beardy and hope I have. His brother came in however, struggling with a 26 in . TX10. The back cover was held on by Sellotape and I felt sorry for myself.
"This television you see, there's very little wrong with it. Just a little something that stops it working properly. I'll leave it with you and call back later when you've fixed it for me."

I switched it on and the tube's heaters glowed. Oh well, that's a start. He'd left the remote control unit and although I pressed the brightness button no raster appeared. The first anode voltage was low at about 200 V . I smelt a rat - someone had been messing about. I turned up the first anode control until the voltage measured 400 V . The raster was now present but with an aerial plugged in there was no picture. I checked the tuning but nothing could be resolved. The tuner was suspect but a new one had recently been fitted. So I turned my attention to the i.f. module. Fitting a replacement made no difference. Back with the original and out with the tuner, using a yard of desoldering braid because whoever had fitted it had been over generous with the solder. I fitted a new 1043 and got a picture that was very grainy. A.G.C. I thought, so I adjusted the small preset on the i.f. panel and it made no difference at all.

I thought the new tuner might be faulty and like a fool fitted another. Again no difference. The aerial socket may be? I connected a new one to the tuner, just hung it on so to speak. The picture was best with only the inner connected, the braiding left off. This confused me so I fitted another aerial socket which did the same thing. I left it for a moment to serve a customer who wanted to know why he was getting severe interference in the shape of another picture floating around on top of the one he wanted.
"Continental interference" we advised him. "Leave it alone and it'll go away."

When I got back to the TX10 I'd forgotten what conclusion I'd reached, and came to the conclusion I'd not reached one. I then injected signals into the i.f. module and found that the output was weak. So I refitted the new one. This restored normal reception and I wrote out a bill for a very reasonable (I thought) $£ 20$. I was prepared for a performance and I got one.

Abstract

"Both these things faulty? One I can understand but not two. Are you sure?" "Yes I am sure and it took me long enough to work it out. In any case I've only charged you for one." "Twenty pounds is a lot of money. Can you make it fifteen?" "I'll make it nothing" I snapped, tearing off the Sellotape that held the rear cover. "I'll put back your tuner and your i.f. unit and you can take it elsewhere." "Oh no, no. I was only joking. Here's your twenty pounds. I never argue about money."

I refitted the Sellotape and off went beardy's brother, nattering away in a language I didn't understand.

Fidelity Portables

The 14in. Fidelity portables (ZX2000 chassis) are now using up line output transformers at a rate of knots. If you handle them you must keep a couple of transformers in stock, complete with the small subpanel that enables the newer type to be fitted to the older type of panel. A leaflet explains the steps to be taken - remove the focus unit and first anode control etc.
One came in the other day with the complaint that though it chattered away in various tongues it didn't show a picture. I didn't at first associate this with the line output transformer as the fuse usually fails when the transformer is defective. In this case it hadn't because the $10 \Omega, 2 \mathrm{~W}$ h.t. smoothing resistor, in the feed to the line output stage, had gone instead. This left the chopper working and the supply to the TDA3190 sound i.c. intact.

Mrs Steadfast's New Set

Mrs Steadfast has bought a new Fidelity from us. She complained because it didn't have a carrying handle and I complained because of the tuning arrangement. It has three buttons at the rear: up the scale, down the scale and store. It would have been easier if these had been at the front or on the side. It's easy once you've had a bit of practice however. Her old set, a 26 in. Swedish monster, had to be carried out through the door, along a corridor and into the back room. I did it alone, though there was a male who didn't lend a hand present. I'll remember that Harold: the set was very heavy, and me in my condition. But I didn't complain. I never do.

Whatever Next?

I had a shock the other morning. I got up fairly early to let the dog out and was pottering around in the kitchen when I heard a knock on the shop door. There was a large van outside, with Sheepless Nights on the side. The man at the door asked whether it would be all right to bring the bed in.
"I haven't ordered a bed" I said.
"I did" came Honey Bunch's voice from the toilet.
So in came this great big bed, which she assembled later in the day, and out went my nice comfortable favourite.

As we sat there that evening H.B. asked why I was knocking back the whisky (Cutty Sark this time).
"So I can face getting into that high, firm monster in there" I growled.
"We'd had that old one for twenty years. It had a dip in your side and was all misshapen."
So we went to bed and had a good night's sleep, much to my surprise. New bed - what next?

next month in

- installing tvro terminals

Part 1 of a new series by Harold Peters on the principles and practice of satellite TV reception. Next month's instalment deals with basic installation - dish mounts and siting and tuning in the receiver.

- THE ELECTRIC MOTOR

The large numbers of VCRs nowadays being handled by service defartments have brought with therr a need to know something about electric motars. Mike Phelan's new series explains their operation and, since they can be expensive items, provides hints on ways of repairing them. The many different types of electric motor will be described.

- TIMEBASE SYNCHRDNISATION

J. LeJeune deals with sync circuits, from the simp e one-transistor sync separator stage to the complex arrangements used in modern sync processing i.c.s. Flywheel line sync will be explained, also the generation and use of sandcastle pulses.

- RGB INTERFACING CIRCUIT

Brian Webb presents a simple circuit that can be used to interface a microcomputer with RGB plus sync sutputs to an older set with a delta-gun tube. An inexpensive way of obtaining an RGB monitor.

- SCAN YOKES FOR COLOUR TUBES

In Pat 3 of his series on colour tube technology Eugene Trundle takes a look at the scan yoke and the ways in which yoke design has evolved to meet the needs of modern self-converging and pinfree tube systems.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Servicing Sinclair Microcomputers

Part 3

Ken Taylor

This month we start on the Spectrum. Let's first take a quick look at the development of this machine over the past few years. There have been four standard PCBs marked issue 1,2,3 and 3B. After each change a few modifications were generally required to make the new design operational or to implement further improvements - even the 3B board has now been modified. It's often possible to determine the issue number without opening the case. The clues are as follows:
(1) If the rubber keys are a light fawn colour it's an issue 1 board.
(2) If the keys are dark grey, look into the edge connector slot to see whether an aluminium heatsink is visible especially at the power socket end. If you don't see the heatsink it's an issue 2 board which has the heatsink near the forward corner of the board, under the keyboard.
(3) If the heatsink is visible it's an issue 3 or 3 B board there is very little difference between them.

The Spectrum Plus usually has an issue 3B board, but watch for earlier models that have been fitted with a Spectrum Plus keyboard kit - this can now be obtained separately.

In this write-up I shall be dealing primarily with issue 3 and 3B models, though I hope to mention the earlier models where the differences are important.

Circuitry

The Spectrum differs from the ZX81 (see last month) in two major respects. First it's designed to carry the full memory (48 K RAM) on the PCB. Secondly the TV display is serviced automatically by the ULA chip and a
dedicated i.c. (type LM1889) which also provides the video output in colour. This latter arrangement explains why with an otherwise dead machine a vertical striped pattern of "bricks" flickers up and down the screen and goes on working even when the CPU has been removed.

Which reminds me - I haven't explained why we're not providing a block diagram for the Spectrum. I don't see that this would be of much advantage. Apart from illustrating the two differences I've just mentioned it would be much the same as the block diagram given for the ZX81. Instead I'm showing most of the circuitry, which by now should be fairly self-explanatory.

The first circuit section is shown in Fig. 1. This includes the basic digital computing circuitry. For clarity, most of the decoupling and smoothing capacitors have been omitted. The input/output circuitry, including the TV output, tape input and output and the keyboard connections have also been omitted: these will be shown later.

Fig. 2 shows the layout of the issue 3 Spectrum to enable you to find the main components as we refer to them. The differences between this and the issue 2 board are not very great. Because of the changed position of the heatsink, the keyboard socket at the right-hand side of the board has been moved slightly rearwards and the regulator is in the middle of the right-hand edge. Most of these features become obvious when you compare an earlier issue board with the layout shown in Fig. 2.

Access

You can't do that however till you open up the machine, so here goes:

Fig. 2: Layout of the issue 3 Spectrum panel.

Fig. 3: Temporary heatsink for use when carrying out servicing work on the Spectrum.
(1) Turn the machine over and remove the five screws eight with the Spectrum Plus.
(2) Turn it back, carefully holding the two parts together. Lift the top, tipping it on to its rear edge so that the keyboard tails can be removed from their sockets. Remember what we said when dealing with the ZX81 about the fragile nature of these tails: the Spectrum is just as vulnerable in this respect.
(3) As with the ZX81, the machine should still initialise when the keyboard has been disconnected, and on start up should display "c 1982 Sinclair Research Ltd." on the bottom line. The keyboard can be left disconnected until this has been achieved.
(4) Before much serious work can be undertaken the heatsink must be removed to provide access to the components beneath. This is even more important with issue 3 and 3B models which have a larger heatsink that covers many of the more important components. The temporary heatsink I use when working on any Spectrum board is shown in Fig. 3. Don't worry if you cannot find a piece of copper or aluminium exactly the right size - the only important section is the little bent-up end which has to fit under the regulator. Even here, if your metal is too thin you can stick another shim of metal to the back so that the regulator legs are not distorted when you screw the heatsink underneath it.

Fault Finding

The internal voltage generator circuit is shown in Fig. 4. This is one of the circuit areas that often suffers when a fault develops. It consists of a 5 V regulator and a blocking oscillator (TR4) whose output is rectified to produce the 12 V and -5 V lines required by the 4116 memory i.c.s that provide the initial 16 K of RAM. An interesting regulation technique is used: the blocking oscillator's timing capacitor(s) are charged by the constant-current transistor TR5 whose base is controlled by feedback from the 12 V line. The outputs are taken to the edge connector and perhaps this is the problem. It seems that TR4 dies when there's the slightest extra load. This is often caused by a joystick interface being removed or fitted while the machine is switched on and probably shorting out one of the supplies. But the 4116 memory i.c.s sometimes develop shorts and then the problems start.

I've shown the oscillator current in Fig. 4. It's often necessary to supply the board from a bench supply and monitor this current. With a supply provided for the 5 V rail, wind up the supply to the oscillator slowly from zero. Monitor the current drawn by the oscillator: if the reading exceeds 300 mA switch off quickly and remove one/some of the memory i.c.s or cut the 12 V supply tracks to pins 8 .

Finding the faulty memory or memories is very hit and miss but if you've a good record at pontoon or the football pools you may be lucky!

Earlier circuits were slightly different from the issue 3/3B circuit shown but the differences were often only in the component values and it's worth noting that all issues use the same component reference number for components in the same circuit position.

One more point. Because of the omission in earlier versions of the asterisked $22 \mu \mathrm{~F}$ electrolytic capacitor, unless you have the 3 B version the 12 V line will be at about 11 V even when the oscillator is not working. This can present a very confusing situation, so ensure that your first check is always on the -5 V line, which will be absent if the oscillator isn't working. The frequency of oscillation, which isn't very critical - or stable - is about 6.6 kHz .

Having eliminated faults in the voltage generator circuit and hopefully in any of the 16 K RAMs, why doesn't the thing work? Assuming that you are still getting the flickering vertical columns the ULA and the TV video generator chip appear to be o.k., so what else? Remember that your check on the memory i.c.s, made whilst

Table 1: Signals on the i.c. pins

Pin	IC1	IC2	$1 \mathrm{C5}$	IC6	IC15
1	P	P	OC	L	L
2	PH	PH	PH	P	P
3	P	P	P	PH	PH
4	PH	P	P	P	P
5	P	P	P	P	P
6	P	P	P	P	P
7	P	P	P	P	P
8	P	P	P	H	H
9	P	P	P	H	H
10	P	P	P	P	P
11	P	H	P	P	P
12	PH	P	P	P	P
13	H	P	P	P	P
14	H	P	L	P	P
15	P*	P	P	P	P
16	P*	PH	P	L	L
17	PH	H	P		
18	P	H	P		
19	H	P	P		
20	H	PH	P		
21	P	P	P		
22	P	PH	P		
23	H	H	P		
24	H	H	P		
25	P	H	P		
26	H	H	P		
27	P	P	P		
28	L	P	P		
29	P	L			
30	P	P			
31	P	P			
32	P	P			
33	PH	P			
34	P	P			
35	P	P			
36	P	P			
37	P	P			
38	P	P			
39	\dagger	P			
40	L	P			
$\begin{aligned} & P=\text { pulse, high and low } \\ & P^{*}=\text { LEDs lit. } \\ & P H=\text { pulse LED only lit. } \\ & P^{2} \text { high LEDs lit. } \end{aligned}$				$\begin{aligned} H & =\text { high LED lit. } \\ \mathrm{L} & =\text { low LED lit. } \end{aligned}$	
				$\dagger=$	ay aff

Fig. 4: Voltage generator circuit used in the Spectrum - issue $3 B$ version. With the issue 3 version R60 is 270』, C49 is $47 n F$ and the asterisked components are omitted. Edge connector numbers suffixed A are on the underside of the board, those suffixed B are on the component side (top). The input from the power supply is approximately 11 V on load (650 mA).
repairing the voltage generator (if necessary), detected only those i.c.s taking excessive current, not those with other faults. So first try the piggy-back check I suggested for the ZX81 last month. Clip a good 4116 on top of each of the remaining original memories and see whether this makes a difference. If the extension memory chips (IC15IC26) are fitted they can be turned off either by removing the memory chips or IC25 (one of the 74LS157 multiplexer chips). Alternatively the 5 V supply track to pin 16 of this i.c. can be cut, but this is not easy with the issue 3 board as the track is thicker than usual.

The 4116 memories are also addressed via the 74LS157 multiplexers IC3-4. You may recall our earlier comment that dynamic RAMs such as the 4116 are addressed by a row/column sequence so that only half the theoretically required number of address pins are needed. The internal system stores the first half of the address and then combines it with the second half to provide the full 16 -bit address. The ULA has this facility built in, so it doesn't
require multiplexers to address the RAMs.
Note the buffer resistors in the address lines between the ULA and multiplexers IC3-4. These allow the ULA to take control of the address bus when the screen needs updating, irrespective of the demands of the CPU. These buffer resistors are very useful when you are fault finding. Any loss of signal tends to be isolated to one side of the buffer, enabling the faulty i.c. to be detected. In this case, if the fault is on the ULA/RAM side removing the ULA or cutting the track will usually pinpoint the fault.

If you still have a fault, it's probably in the CPU or the ROM and a full check on the circuit will be necessary. Table 1 shows the signals that should be present at each pin of the main i.c.s, with the keyboard disconnected and the Sinclair logo displayed, when monitored using a logic proble (a Tandy Micronta was used). This should enable you to isolate and replace the faulty i.c.
Next month we'll look at the rest of the circuit and some of the variations and modifications.

Letters

SERVICING MATTERS

I would like to add some comments to S. Simon's note about the Thorn 1690 chassis (May issue, page 444). He is quite right in saying that when the e.h.t. rectifier goes short-circuit the line output transformer's windings are damped and the l.t. supply is severly reduced. But he fails to say what to do if, after removing the anode cap from the tube, normal operation is not restored. The answer is simple. Undo the two nuts on top of the transformer, lift off the overwinding, replace the top C core on the transformer and retighten the nuts. Switch on and you should find that the l.t. supply is back to normal. The reason for this is that when the e.h.t. rectifier diode goes short-circuit the overwinding overheats and does the same thing.

He also mentions adding an external diode, well insulated, when the internal diode has gone short-circuit. This is bad practice and not to be recommended when you are dealing with voltages of some 11 kV , especially when a new overwinding with diode, lead and anode cap can be obtained from Sendz for only $£ 2 \cdot 50$ and fitted in minutes.

In the April issue Alan Shaw mentioned loss of colour in the Rank T24 chassis when the pulse feed resistor R229 goes high in value (TV Fault Finding, page 372). We had this fault some months ago but the symptoms were more obscure. The initial complaint was loss of colour on changing channels. After a period of time on soak test the symptoms started to change: there was random colour drop-out, followed later by intermittent Hanover bars. As we were working without a manual many hours were spent on wild goose chases before R229 was located and changed - it was completely open-circuit.
Michael Dranfield,
Buxton, Derbyshire.

RANK Z179 CHASSIS

We had a strange fault recently with an old Rank set fitted with the Z179 chassis. There are still a few of these sets around, producing acceptable pictures. This one wasn't in fact it was brought into the workshop with the report "dead".

When we pressed the reset button the h.t. began to rise. Then "click" and the cutout had tripped. On disconnecting the cutout protection circuit, using the link provided in the crowbar thyristor's gate drive circuit, and switching the set on a picture was present and sound as well. A
check on the h.t. voltage, using an Avo 8, produced a reading of some 290 V - over 100 V more than the correct figure of 187 V . Thus the e.h.t. was running at a steady 36 kV . In view of X -ray radiation the set was switched off pronto.

To cut a long story short, when the set e.h.t. control 4RV18 ($1.5 \mathrm{k} \Omega$) was set to minimum e.h.t. the actual voltage was still 32 kV . So we fitted a $3 \cdot 3 \mathrm{k} \Omega$ preset and were able to reduce the e.h.t. to approximately 24.8 kV . Phew!! The h.t. was now correct.

I've mentioned this to several engineers in the Devon area and it seems that the fault is not unknown. Maybe just a few sets are prone to this, but I've not seen it mentioned before in Television.
Mike Austin, Austin Electronics,
Bere Alston, Devon.

GRUNDIG 6010 SOUND PROBLEMS

In the April issue Service Bureau it was mentioned that gradually rising sound in the Grundig Model 6010 can be caused by leakage in either the paddle switch or the memory cell. It can also be caused by whistle from the line timebase. To check, disconnect the NS transductor from the TD panel. It appears that a harmonic and a subharmonic could be producing a beat frequency - the line frequency $\times 5 / 2$ (third harmonic minus second subharmonic maybe?) gives 39.06 kHz : the control frequency for sound increase is 38.5 kHz .

I've also recently experienced a faulty PCL86 audio valve in an ITT set fitted with the CVC5 chassis - the triode's cathode had shorted to the pentode's cathode. The PCL86 has a shield between the two sections, connected to the pentode's cathode. The wire from the triode's cathode to pin 2 is dressed around this shield and in the faulty valve it was touching the shield. I hope these observations will be of help.

Incidentally woodglue is very good for damping the cores of line output transformer's etc. when whistling is suspected.

S. Pearson,

Chipping Norton, Oxon.

GEC C2110 SERIES TIP

I recently had a GEC 2015 H whose field timebase refused to lock. All the obvious checks proved fruitless so the relevant tracks etc. were visually examined using a magnifying glass. Pin 7 of the TBA 920 Q sync separator/line generator chip (IC401) was found to have little solder around it: making this good restored normal operation.
D. C. Robinson, Stronsay, Orkney.

LED INDICATION FOR BOOSTERS

Many tube reactivator designs have been published in Television over the years, most of them based on the circuit using a 15 W pygmy sign bulb first published in the sixties. Two comments: first, many tubes won't respond to the process unless the heater voltage is raised; secondly a pulsed method is quicker.

I use a treasured antique sold in the early days under the name Radar. Its heater supply has six outputs switchable $2-13 \mathrm{~V}$ plus a four-way switch that boosts the heater voltages by up to 50 per cent. When I bought it the booster was useless: it languished in my loft until that first booster article was published in Television. It was then "recycled" and has been in use for many years. Few tubes

Fig. 1: Use of LEDs to give goodness indication with a tube reactivator.
have failed to respond and none have been spoilt, despite the dire warning given with some designs.

The reappearance of a circuit of this type in the May issue made me think about possible improvements. A LED goodness indicator seemed a good idea (see Fig. 1). This may appeal to engineers using a booster when the punter is present. Four 5mm LEDs, two red, one amber and one green, work in traffic light sequence, the green LED indicating good cathode emission. Check the LEDs before fitting: a red 5 mm LED should draw $20-25 \mathrm{~mA}$ when operated with a 2 V supply, the other colours requiring a slightly higher voltage.

This is an inexpensive addition. I've used it with the design published in the April 1978 issue but it's suitable for use with any similar reactivator.
William Harrison
Windsor, Berks.

TEST CIRCUIT FOR THE COMMODORE 64

Alignment of the Commodore 64 microcomputer's cassette deck is made very difficult by the fact that it's powered from and controlled by the computer itself. If a load error is detected the computer stops the tape.

We've found that the easiest way to check the alignment is to use the test circuit shown in Fig. 2. If the circuit is made up on a small piece of tagstrip it's possible, with a bit of ingenuity, to make a plug connector to match the tape deck socket and connect the two with flexible leads. I used an old Siemens 365 daughter board to make my plug connector. The connections are $10 \mathrm{~V}, 25 \mathrm{~V}, 3$ cassette motor, 4 cassette read -5 and 6 are not used. The locating lug is between pins 2 and 3 .

To use, all that's necessary is to plug the test circuit into the tape deck, insert an alignment tape and press play. The azimuth adjustment is then made for steady illumination of the LED. If a scope is available it can be used to monitor the test point where a continuous squarewave should be present.

Fig. 2: Cassette deck test circuit for use with the Commodore 64 microcomputer. Any type of LED can be used.

The circuit's electronics are simple. An LM 309 K 5 V regulator chip is used to provide a stable supply - since its earth pin is raised to 1.2 V by diodes D1 and D2 the output is approximately 6.2 V . This is used to power the deck motor. The deck's electronics require 5 V which is obtained by using D4 and D5 to provide a 1.2 V drop. The pulses coming from the deck are rectified and shaped by D3, C1, R1 and C2 and used to drive transistor Trl which in turn drives the LED. They are available for visual examination at the test point. When an azimuth tape is being played back there should be a square waveform with an even mark-space ratio at this point. If the azimuth is wrong either the mark-space ratio will change or dropouts will appear in the waveform. If alignment seems to be very critical the head is probably faulty. If the output waveform is noisy check whether the cassette motor is the cause by disconnecting it.

One further point. It's always worth making a final check that the deck loads, and especially saves, using a computer. We had a customer who brought in a six months old Sinclair machine with the complaint that it wouldn't save. In fact the machine hadn't saved a programme since the day it was made - the output coupling capacitor hadn't been fitted! Presumably it had spent the first six months of its life just playing games. . .
Peter Richards,
Criccieth, Gwynedd.

G8 CONVERGENCE PANELS

There were a couple of articles on the Philips G8 chassis in Television last year. Both mentioned the poor performance of the later (550 series) convergence panel compared with the more reliable, front mounted 520 series panel. Some time ago I bought a batch of ex-rental 550 series sets and noticed that one of them had been fitted with a 520 series convergence panel hung down and mounted on the chassis crosspiece. As the set was performing correctly with good convergence I've since then on many occasions used the older type panel to replace a later type panel. All the plugs and sockets match up and the only action required is to drill one extra hole to match the panel and fasten the extra wiring carefully in the harness clips on the existing chassis. I hope that this tip proves useful to other readers.
P. Smith,

Hathersage, Sheffield.

SPECTRUM ADD-ONS

Quite a lot on the Spectrum microcomputer has appeared in Television recently. Some add-ons can cause the computer to either crash or not work with various games. The Currah Microspeech and the Kempston interface are but two examples. Both of these can be successfully, easily and cheaply modified to work with all games however. First the Microspeech. Some games won't work because the game and the Microspeech try to occupy the same section of memory, so the computer crashes. The cure is to earth line A3: the Microspeech stays connected but the Spectrum ignores it. As this is a dead-ended device with no through connector most people who want to use more than one add-on will use some form of extender, the usual sort being a 56 -way socket to fit the Spectrum's rear connector and two or more sockets on the end of a piece of ribbon cable. These extra sockets will require a printed circuit "back-to-back" to connect them to whatever accessory is being used. It's this piece of back-to-back that's

Fig. 3: Modifications for use with Spectrum add-ons.
modified. This has several advantages, the main ones being that modification can be done without connection to either the computer or the Microspeech, so that a careless solderer won't do any damage, and that neither the computer nor the Microspeech has to be dismantled so no guarantees are nullified.
Back to the Microspeech. Break the A3 line. Counting from the double-earth connections (taking these as one and two) at one side of the keyway A3 is the seventh - see Fig. 3(a). Fit a double-pole, two-way toggle switch with sufficient wire to enable it to be taped to the side of the Microspeech's case. Two poles are used - see Fig. 3(b) so that one pole can be used for a LED to indicate on or off. The slider of one pole goes to the A3 line for the Microspeech, the fixed contacts going to earth and the A3 line from the Spectrum respectively. The other pole is used to connect a LED with a resistor of about 470Ω in series between the 5 V line (the second edge connector from the keyway on the same side as the double earth) and 0 V . Irrespective of whether the Microspeech is on or off the Spectrum sound will come from the TV set's speaker - and so sound a lot better than the Spectrum's own feeble beep.

The next device is the Kempston interface for joysticks. You'd think that games designers would take this into account as it has become an "industry standard" joystick interface, but no. The game "Chickin Chase" (their spelling, not mine!) will crash if the Kempston is connected. This modification - see Fig. 3(c) - is very simple. Just switch off the 5 V supply to the interface and the Spectrum will ignore it. Although it's a bit late now the game "Ghostbusters" will, despite having a Kempston option in the menu, crash if the Kempston is connected unless you moan to Activision who will replace the game with a Kempston compatible one (and also refund your postage if you ask nicely). To test the Kempston interface use the following short program:
10 PRINT IN $31 ;:$ PRINT" ";:PAUSE 25: GOTO 10
With the interface switched off the answer should be 255. With it switched on you should get the following: up 8; down 4 ; left 2 ; right 1 ; fire 16 - or combinations thereof.

I know that the alternative to these modifications is to keep unplugging the devices but I feel sure that the Spectrum's rear connector was not designed for constant plugging and unplugging. I hope that Amstrad, having taken over Sinclair's computer range, will repackage the 128 K and 48 K with a built-in joystick interface.
Michael Harris,
Cheadle, Cheshire.

VCR Clinic

Ferguson 3V29

On changing channels this machine would sometimes appear to drift off tune. Closer inspection however showed that the fault was more like a.g.c. instability. In addition the tuning was very critical and prone to smeary video, and the r.f. gain control wasn't working correctly. As the a.g.c. voltage to the tuner was correct we first tried a new tuner. This made no difference. The fault turned out to be due to the AN5111 i.f. chip.
D.S.

Mitsubishi HS318

There was a rather unusual fault with this machine: the TV picture went low gain when the VCR was switched on, though the channels through the machine were fine. A faulty aerial booster can cause this sort of problem but it doesn't usually depend on whether the machine is switched on or not. A check on the supply to the booster/ converter showed that instead of being 9 V it was at 10 12 V with the VCR off, falling when the machine was switched on and the load on the lines increased. A new 9 V regulator cleared the fault.
-D.S.

Booster/converter Units

We've had four booster/converters fail recently; two in Toshiba V65Bs and two in Finlux VR1010s - all within a couple of miles of each other. Perhaps there's some environmental factor at work here. Like the Panasonics whose boosters would fail when there was a thunderstorm in the area.
D.S.

Mitsubishi HS304

This machine wouldn't play because the capstan motor didn't rotate, though all other functions appeared to be in order. A check at pin 17 of IC4A0, the capstan reverse output, revealed that this was permanently high. Disconnecting the pin proved that the high was coming from elsewhere - it was traced to an inverter in IC4A2. Replacing this i.c. cured the problem.
D.S.

Toshiba V65B

No play was the complaint with this machine. When play was selected the machine would lace up then after a few seconds it would unlace and stop. A quick check showed that the head drum wasn't rotating, though slight pressure on the plug and socket to the lower drum assembly would start it up. We stripped down the assembly and resoldered all the joints. This failed to produce a cure and no cracks could be found. A replacement lower drum assembly cured the fault.
D.S.

Mitsubishi HS700

Here's a tip for anyone with one of these machines that has a broken camera socket. This item is available from Mitsubishi only if you order a complete Y/C board. The later Model HS710 uses a similar camera socket however - in fact it's a better quality, metal one. This is available as

Reports from Derek Snelling, Les Grogan, Steve Beeching, T. Eng., Mick Dutton and Philip Blundell, Eng. Tech.
part of a terminal assembly that's very reasonably priced. Simply remove the socket from the assembly and fit it as a direct replacement in the HS700.
D.S.

Grundig VS180

The symptoms were no tape transport, with the winding motors running fast. This fault is indicative of a power supply line failure. Water was evident on the inside of the bottom plate however - corrosion too. Some water was found around the upper case edges but as it had been raining heavily when Andy brought the machine in we didn't worry too much. The power supply lines were all correct at the power supply edge connectors, but there were tide marks about and it was damp beneath the tuner - green with open-circuit, corroded print. It took about half a day to strip everything out, repair the print, relacquer and test.

As it was a rental machine I was concemed about where the water had come from. More to the point I kicked up merry hell with the customer for spilling water/ gin/vodka or whatever into the machine. Denials all round. The wife didn't like flowers in the house and the VCR was kept within a cabinet, so it was a mystery where the water had come from. When the VCR was returned to the customer he found water inside his cabinet and inside the aerial connectors which had been plugged together in the absence of the VCR. The water was coming down through the cable, which had to be replaced.
S.B.

Sony SLC7

The problem with this machine was that it wouldn't change channels after it had warmed up - the trouble was intermittent. It looked like a difficult fault and we approached it with trepidation. When the fault was present the machine wouldn't change channels and the programmable timer couldn't be set, though the clock could be. Panic set in! When a channel is selected the decoder chip ICl on the tuning panel sets the binary conditions on lines ABCD . $\mathrm{IC1}$ on the timer panel counts, and when its ABCD output back to the tuning panel matches the selected channel the count stops. Count start/ stop is controlled by an AND gate in IC7 (pins 1/2/3). In the fault condition the output at pin 3 of IC7 was high, indicating count, but IC1 (timer panel) wasn't counting. Why? Because it was busy doing something else. One of its strobe inputs, pin 33, was active. This could be traced back to switch S 20 (clear) which was faulty, with no spring return. It opened and closed when it felt like it, stopping the channel change.
S.B.

Grundig 2×4 Super

This machine came in for a new on/off switch - the latching spring was missing. I was not prepared for what followed. After completing the switch repair a check was made and we found that the drum servo wasn't locking up. Better lock was obtained as the machine warmed up, but the drum motor would then suddenly slow down. Everything was checked and we found that the trouble
seemed to be associated with the comparator IC1501: a replacement made no difference however and for some reason output pin 13 would inexplicably go high, slowing the drum motor. Nothing was wrong with the inputs and nothing seemed to be amiss on the power panel. As a last resort agent $003 \cdot 5$, Grundig Pete, was contacted.

Pete said it was the power supply. Either C446 or C447 - or maybe both - had dried up. But you can't put just any capacitor in - it has to be a high-current PCB type, better still a direct Grundig replacement. Anyway replacements were fitted - and the problem remained. Pete was around like a shot. We found that there was about 0.5 V peak-peak ripple across C447 - and at the chassis-connected negative pin! I didn't like this at all. Pete fitted a replacement power panel to prove that the cause of the trouble was on this panel, confirming that it was. So it was a case of narrowing down the source of a 32 kHz ripple (it's a switch-mode power supply) that appeared to be everywhere on the faulty panel. It was Pete who discovered that the cause of the trouble was the 15 V supply decoupler $\mathrm{C} 451(1,000 \mu \mathrm{~F})$ even though we had to put in a $470 \mu \mathrm{~F}$ type temporarily until the correct type could be obtained.
S.B.

JVC HR7200/Ferguson 3V29

No sound on E-E and recordings was due to D14 on the audio-video board being leaky. This diode forms part of the circuit used to mute the sound in the still and shuttle modes.
L.G.

Hitachi VT8000

We've had a couple of faults recently on these machines. First no functions with the operate LED out was due to R054 ($1.5 \mathrm{k} \Omega$) being open-circuit. This resistor biases the regulator transistor Q053. Secondly absence of E-E sound and video with a normal test signal was due to the not-PB 12 V line being absent -ZD 053 in the regulator circuit was short-circuit.
L.G.

Sharp VC8581

Intermittent recording on one of these machines was traced to a defective HA11744NT1 video processor chip (IC401). A scope check revealed that the luminance was arriving at pin 20 , but there was no f.m. oscillator signal at pin 12 - and thus no f.m. output to the video heads. L.G.

Sharp VC7750

It's not very often that you get an electrical fault on this model - most faults are mechanical. This one was dead due to an open-circuit Darlington transistor, Q908. A replacement was fitted but on switching on the supplies were found to be low and the chopper transformer was making a squealing noise. C920 had gone low in value.
P.B.

Ferguson 3V32

This machine had a cassette inside. When this was played it looked as if the recording consisted of line tearing. An accompanying note said that the fault was intermittent and that when it occurred a noise came from within the machine. Sure enough after an hour or so of playing this tape a noise could be heard. So while it was still playing
the top was removed. The noise was coming from the area of the audio/control head. No it wasn't the head (as with the early Hitachis) but a wire rubbing against the tape!
P.B.

JVC HR7200/Ferguson 3V29

Intermittently stops was the complaint with this one every so often the capstan would stop, and it wasn't dryjoints around Q216 either! We found that the pause control line went high when the fault occurred. This comes from the mechacon board where Q17 had a dryjoint at its emitter.
P.B.

Ferguson 3V35

There was no colour on playback or record. A check at test point TP402 revealed that the amplitude of the 625 kHz signal was low. Voltage checks at the pins of the HA11741 colour signal processing chip were then carried out. The voltage at pin 15 was found to be low due to C433 ($0.022 \mu \mathrm{~F}$) being short-circuit. Several other cases of no colour with these machines have been traced to filter BPF401 - resoldering its connections often provides a cure.
P.B.

Hitachi VT9300

This machine would load but there was no tape rotation. We removed the top cover and noticed that the capstan wasn't moving. When we removed the bottom covers we found that the capstan motor wasn't running because its bearings had seized almost solid. Removing it, cleaning and oiling provided a cure.
M.D.

Ferguson 3V24

This portable would intermittently go into the alarm mode, with the mode indicators flashing sequentially. This would sometimes happen when the machine was switched on from standby, or if rewind or fast forward was selected. Play was normal but when we tried to select picture search the machine went into the alarm mode and we couldn't get it back into play. The machine had to be unloaded by hand before we could get anything to work. Checks were carried out on the various sensor inputs to the microcomputer chip: eventually we found that the pinch solenoid switch S17 was intermittently sticking on. Retensioning this provided a cure. M.D.

Panasonic Clock Faults

The NV2000 seems to be prone to clock failure - we've changed four over the past few months for faults ranging from no display to alternating between 12- and 24 -hour operation. Other Panasonic machines also suffer. We've had a couple of defective clock i.c.s in the NV333 - the symptom in both cases was no display. An NV366 came in with the same fault - no display. The 36 V rail was found to be missing due to the 10Ω safety resistor R 7632 being open-circuit. When this was repaired there was no hours display and the clock wouldn't set. We were just about to order a chip when we noticed a deposit on the print. Further investigation revealed that the back-up battery had gone rotten and leaked down the panel. A careful clean up and a new battery cured the problem. M.D.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

1589 H	3330	${ }^{2 S A 940}$	181	${ }^{2 S C 535}$	0.79	AF180	0.5	${ }^{\text {B46566 }}$	89	${ }^{8 C 5600}$	0.14	${ }^{\text {B0X653a }}$	19		027	BY/71-350	0.72
15885R	3.30	2SA940-2	214	${ }^{2 S C 536}$	0.41	AF181	0.53	BA7100	10.85	B6635	0.35	BPYY2	121	BFF79	0.49	${ }^{817 \times 4}$	0.14
16039	0.79	2SA950	0.72	$2 \mathrm{SC537}$	0.54	AF186	0.53	BAB41A	16.72	BC536	0.4	B0Y81	1.18	BFY90	0.61	BY56	120
16181	1.09	2SA951	126	${ }^{25 C 5051}$	1.16	AF239	0.43	babab	356	8C637	024	BF115	0.00	BLY49	220	B27r3c30	186
16182	1.04	2SA966-Y	1.16	256620	1.\%	AF279	0.89	BA854	5.76	8C639	0.20	BF117	0.65	BROO	027	BZY88 RANGE	0.10
16334	0.90	2SA999	136	$2 \mathrm{SC643A}$	1.54	Al13	136	BAV18	0.21	8С640	0.24	BF18	0.67	BROOI	0.75	BZX61 RANGE	0.18
16335	0.94	2SB74	1.15	2SC668	0.67	AN115	3.8	BAV19	0.11	BC879	0.38	${ }^{\text {BFI21 }}$	0.3	BROS	0.75	BZX79 RANGE	0.10
16446	0.95	2 SB185	1.13	$2 \mathrm{CC881}$	4.40	AN155	1.89	BAV20	0.31	BC880	0.31	BF123	0.13	BRR3	126	C1060	0.46
16500	1.38	2 SB375	387	$25 C 682$	189	AN206	258	BAV21	0.34	${ }_{8 C \times 34}$	0.40	BF127	0.13	8RC116	0.67	C106M	0.76
16802	127	2SB400	0.40	${ }^{25 C 684}$	1.55	AN208	35	BAW62	0.19	${ }^{\text {BCY70 }}$	030	${ }^{\text {BF }} 137$	029	BRC350	201	${ }^{\text {C1129 }}$	0.58
17052	5.51	2SB405	1.03	2SC693	0.63	AN210	228	BAX12	0.4	BCY71	021	${ }^{\text {BF }} 153$	0.58	BRC5296	0.7	ca3046	200
17053	5.51	258407	324	2 SC710	0.09	AN211	325	BAX13	0.11	BC772	0.20	BF154	0.25	BRC6109	0.83	CA3099	0.88
17074	9.30	2584498	6.93	2SC711A	0.50	AN2140	275	BAX16	0.11	BD115	0.46	BF157	0.33	BRC82	1.08	ca3090a	325
17099	5.35	2 2S5511	250	2 SC717	128	AN231	14.55	BC107	0.13	80116	0.70	${ }^{8 F 158}$	0.18	8RC83	219	CA3094	220
17127	351	25854	1.39	2SC734	1.43	AN234	5.92	BC107A	0.11	BD124	131	BF159	0.18	BRC84	209	CA3131E	3.12
17376	1.50	2S8546	3.75	2SC761-Y	0.95	AN236	3.78	BC1078	0.18	BD124P+KIT	0.69	BF160	0.31	BRX44	0.00	CBFIE848N-071	1.56
17523	1.32	2 2856	280	$2 \mathrm{SC783}$	3.58	AN239	6.95	BC108	0.15	BD131	0.42	BF167	0.38	BRX49	0.53	CO4001	0.38
17524	138	2SB618A	22	2SC790Y	1.54	AN240P	1.52	8C1088	0.15	BD132	0.12	BF173	0.34	BRY39	0.69	CO4002	027
1N4001	0.06	2SB631	325	$25 C 828$	023	AN241	1.71	BC109	0.12	80133	0.53	${ }^{8 F 5} 7$	0.35	BSS38	0.87	C04008	1.35
1 14002	0.06	2SE643	0.54	2 25887A	3.05	AN245	4.49	BC1998	0.15	80135	036	8F178	0.00	BSTBD140G	573	C04011	029
1N4003	0.06	2SB669	3.7	${ }^{25 C 876}$	0.95	AN2S3	297	${ }^{\text {BC109C }}$	0.12	${ }^{80136}$	025	8F179	030	${ }^{\text {BSICO246 }}$	75	C04012	0.24
1 N 4004	0.06	258681	396	2 Sc 930	0.54	AN260	385	BC113	0.14	80137	035	${ }^{8 F 180}$	0.36	BSTCO233	125	C04013	0.47
1 N 4005	0.08	258695	1.88	${ }^{25 C 935}$	4.13	AN222	158	BC119	0.35	${ }^{80138}$	0.45	BF181	0.38	BSICCOI43	3.07	CD4016	0.45
in4006	0.08	2S875	1.04	$2 \mathrm{SC936}$	8.66	AN272	798	BC126	0.20	BD139	0.34	BF182	0.34	${ }^{\text {BSTD1043 }}$	285 3	CO4017 C04020	${ }_{123}{ }^{2} 8$
1N4007	0.07	2SB74	0.65	${ }^{2 S C 940}$	4.68	AN281	${ }_{5}^{6} 5$	${ }^{\text {BCCI }} 132$	0.14	${ }^{80140}$	0.70	${ }^{\text {BFF183 }}$	0.038	BSV578 BSW68	0.00	CD4021	123 0.39
1 ${ }^{1} 148$	0.04	$2 \mathrm{SB819}$	0.89	2SD1128	290	AN295	5.52	BC135	0.14	${ }^{80144}$	1.25	BF184	0.38	${ }_{\text {BSN68 }}$	0.30	C04023	${ }_{0}^{0.38}$
IN4448	0.05	2SC1034 2SC1050	6.75 5.06	2SD1138	0.98	AN301	5.55 3.99	${ }_{\text {BC138 }}$	0.18 0.34	${ }^{\text {BDI }} 157$	0.67	${ }_{\text {BFI } 194}$	0.14	BSK20	0.34	CD4025	0.64
in5401	0.14	2SC1096	1.16	${ }^{2 S 01453}$	12.75	AN303	4.39	${ }_{\text {BC1 }}$ 39	024	${ }^{\text {BDO }} 160$	1.50	BF195	0.14	BSY52	0.50	CD4028	0.84
in5403	0.16	2SC1104	398	2SD152K	251	AN305	9.4	BC140	0.45	BD163	0.71	BF196	0.17	BS779	0.51	CD4040B	0.85
1 N 5404	0.15	${ }_{2}{ }^{25 C 11106}$	4.54	${ }^{2 S D 198}$	3.8	AN315	245	${ }^{\text {BC141 }}$	0.34	B0165	000	BF197	0.16	${ }^{\text {BTI }}$ 100A	1.61	CD4047	1.06
1N5408	035	2SC1114	6.75	2 SO 234	0.46	AN316	5.53	BC142	0.34	${ }^{\text {B0166 }}$	0.02	BF198	0.17	${ }^{\text {BTIOS }}$	1.5	C04049	0.4
1 N914	0.04	2SC1116	4.95	2 2S0235	0.60	AN318	67	${ }^{\text {BCC143 }}$	033	${ }^{80168}$	0.73	${ }^{\text {BFI } 199}$	0.17	${ }^{\text {B17 }} 108$	1.15	CO4052	0.75
183403	5.00	2SC1124	126	2SO24	229	AN320	5.7	${ }^{\text {BC147 }}$	0.08	${ }^{80175}$	0.0	${ }^{85200}$	0.37	${ }^{\text {BII }} 19$	1.76	${ }^{\text {co4066 }}$	0.38
1 151555	0.20	${ }^{2 S C 1129}$	0.34	${ }^{250257}$	29	AN321	25	BC148A	0.10	BD179	0.69	${ }^{\text {BF218 }}$	0.36	${ }^{\text {BT120 }}$	217	${ }^{\text {C04069 }}$	029
1544	0.10	$2 \mathrm{SCl131}$	0.50	$2 \mathrm{SO292}$	298	AN322	588	${ }^{\text {BCL148B }}$	0.13	80181 80182	0.99	${ }^{8 F 224}$	0.17	${ }^{\text {BTI } 121}$	128	C04070 C04081	${ }_{0}^{0.65}$
155012 A 15921	0.818	${ }^{2 S C 1158}$	338 1.05 1	${ }^{2 S} 25031350$	298	AN331	5.39	${ }_{\text {BC149 }}$	0.11	${ }^{80} 80188$	ass	${ }_{8 F 240}^{8+29}$	0.17	TBA970	3.05	C04093	0.72
15921 2 N 1303	0.10 0.36	${ }^{2 S C 1172}$	20	${ }^{2 S 0348}$	16.13	AN340P	1.17	BC1498	0.13	BD184	121	BF241	0.17	BT151-800R	1.15	C04511	1.10
2N2219A	0.00	2SC1195	326	2 SD 350	520	AN355	5.58	BC153	0.14	B0187	0.53	BF245	0.50	8TT6018	26	CO4528	204
2 N 2222	0.38	${ }^{2 S C 1212 A}$	1.97	${ }_{2} 250350 \mathrm{~A}$	280	AN362	1.75	${ }^{8 C 154}$	0.14	80189	0.08	${ }^{\text {BF245A }}$	037	${ }^{\text {BTIB124 }}$	4.89	C04556	3.45
2N2646	0.80	2SC1213	0.89	2 20353	7.50	AN370	3.58	BC159	0.35	${ }^{\text {BDI }} 10$	0.00	${ }^{\text {BF2458 }}$	0.9	8U106	$2{ }^{50}$	CRO2AM-8	1.5
2N2904	0.36	2SC1226	1.46	2 2S339	241	AN5010	5.70	${ }^{8 C 160}$	0.0	${ }^{\text {B0201 }}$	053	BF246A	250	BU108	1.50	CV12E	3.01
2N2905	0.43	2SC1293	0.50	2 2S401	25	ANS111	258	${ }^{\text {BC161 }}$	023	B0202	0.50	${ }^{85255}$	028	${ }^{\text {BUJ }} 109$	56	C×104	${ }_{9} 104$
${ }^{\text {2N2 } 2906}$	0.38	${ }^{\text {2SCL }} 13068$	1.10	2SO414 250471	1.518	ANSI20N AN5	4.30	$\stackrel{\text { BCI699 }}{ }$	0.16	${ }^{80} 80204$	0.50	${ }_{\text {BF256LB }}$	0.12	Bulity	4.16	${ }^{\text {cxios }}$	10.50
2N2926	0.15	${ }_{\text {2SC1317 }}$	0.10	${ }_{2} 255560$	295	AN5250	289	BC170	0.16	BD207	1.79	BF256LC	0.2	BU125	248	Cx109	786
${ }_{\text {2N3053 }}$	027	${ }^{2 S C 1364}$	0.89	2S5588A	1.95	ANS435	3.08	BC171	0.11	B0208	123	BF257	0.34	BU126	1.50	Cx130	8.76
2N3055	0.51	2SC1383	120	2SD600	325	AN5610	7.48	BC172	0.13	B022	0.49	BF258	0.36	BU137	9.25	Cx134	11.04
2 N 3442	1.56	2SC1391	245	2SD601R	0.55	AN5612	3.31	8C1728	027	80225	0.49	8F259	0.34	BU205	1.08	${ }^{\text {cx }} 136$	11.10
2N3702	0.14	$2 \mathrm{SC1} 338$	0.94	${ }^{250613}$	1.03	AN5613	380	${ }^{\text {BCO}} 173$	0.17	${ }^{80228}$	0.03	${ }^{85262}$	0.57	${ }^{\text {Bu206 }}$	127	Cx139	11.83
2N3703	0.14	2SC1413A	3.05	${ }^{250621}$	1285	AN5530	305	${ }^{\text {BCCI748 }}$	027	8029	1.5	BF263	0.57	${ }^{\text {BU207 }}$	1.12	Cx158	${ }_{4} 8$
2N3705	0.16	${ }^{2 S C 1446}$	127	${ }^{250636}$	0.55	AN570in	1.5	${ }^{\text {BC17 }}$	0.20	${ }^{80232}$	0.50	${ }^{8 F 271}$	030	BU20802	1.12	${ }^{\text {cxi }} 17$	4.10
${ }^{2}$ N3706	0.14	${ }_{2 S C 1447}$	207		0.85	AN6250	295	BC178	026	${ }^{80237}$	0.4	${ }_{\text {BF274 }}$	020	BUZOAA	1.12	Cx187	526
2N3707 2N311	0.16 0.11	${ }^{\text {2SCC1505 }}$	10.30	${ }_{\text {2SDO657 }}$	285	AN6310	8.74	${ }^{\text {BC182 }}$	0.09	${ }^{80238}$	039	BF324	023	BU2080	1.95	Cx755	12.55
2N3711	204	2SC1514	1.41	2SD6671A	0.80	angz20N	428	BC182L	0.10	80239	0.5	${ }^{\text {BFF33 }}$	0.33	${ }^{\text {Bu209 }}$	193	CX8854	6.85
2N372	1.71	2SC15730	125	${ }^{2} 50731$	245	ANG340	${ }^{6} 4.4$	BC18218	0.14	${ }^{\text {B20 }} 20$	037	${ }^{85337}$	0.90	BU226	295	DEC1	220
2N3773	229	2SC1578	8.74	${ }^{2 S 5073}$	0.35	AN6341	26	BC183L	0.11	B2241	039	${ }^{\text {BFF338 }}$	0.4	${ }^{\text {BU }} 13226$	200	DEC2	220
2 N 3819	0.12	${ }^{2 S C 1583}$	1.17	${ }^{250811}$	5.54	ANG342	1.61	BC18318	0.3	${ }^{\text {BD242 }}$	0.39	${ }^{\text {Br3355 }}$	0.49	${ }^{\text {BU3326A }}$	220	OSS3487	433
${ }_{\text {2N }}^{2 N 3823}$	0	${ }^{\text {2SC67517 }}$	13.41	2SO823 2SO837	1.120	AN6363	16.00 9.24	BC184 BC184	0.13 0.14		0.3 0.79	${ }_{\text {B }}{ }_{83536}$	0.60	${ }^{\text {BUS }}$	1.40	E1232	0.40
$2{ }^{2} 35904$	0.62	${ }_{\text {2SC1678 }}$	1.19		3.25	ANN6387	795	BC184LB	0.25	BD24	0.51	BF371	0.50	BJ4460	1.99	E5024	023
2N3908 2N4101	0.62	${ }_{2 S C 1741}$	125	${ }^{2}$ SD856	225	AN6531	1.98	BC186	0.7	80244C	0.79	8 F 391	025	BU407	0.82	E5386	025
2N4240	330	2SC1810	1.70	2 S08570	1.4	AN6551	1.35	BC187	028	${ }^{80245 C}$	0.99	${ }^{85417}$	0.4	BU4070	1.09	E9903	0.45
2 N 4444	1.73	2SC1815	0.66	$2 \mathrm{SO882}$	1.50	ANG552	0.68	BC204	0.16	${ }^{802465}$	0.9	${ }^{8 F 418}$	1.87	BU412	9.15	Es ${ }^{\text {E9005 }}$	0.50
2N5293	0.50	2SC1826	0.65	${ }^{250894}$	1.50	ANf6610	200	BC27	0.14	${ }_{\text {BD278 }}$	1.05	${ }^{85422}$	029	BU426a	1.65	ESM3108P	4.15
${ }^{2} \mathbf{N} 5294$	0.50	${ }^{2 S C 1829}$	22	${ }^{2 S 50838}$	5.15	AN6677	${ }_{1}^{6.60}$	${ }_{\text {BC212 }}$	${ }_{0}^{0.11}$	${ }_{\text {B03 }}{ }^{\text {B27 }}$		BF450	0.35	BU508A	1.89	GC374	1.0.6
2N5296 2N5297	0.0 .90	${ }_{\text {2SCli87 }}$	5.19 280	2SK105H	225	ANT114E	${ }_{5}^{1.95}$	${ }_{\text {BC213L }}$	0.10	${ }^{80318}$	285	${ }^{\text {BFF451 }}$	029	${ }^{\text {Bu536 }}$	5.80	G0243	4.95
2N5298	0.51	2SC1893	300	${ }^{2} \mathbf{2} \times 134$	0.76	AN7115	1.75	${ }^{\text {BC2131B }}$	0.15	80375	0.12	BF457	0.41	BU608	205	GF758	0.84
2N5771	1.18	2SC1906	0.98	2SK41	1.07	AN7120	4.5	${ }^{\text {BC214 }}$	0.10	80380	0.76	BF458	0.39	Bu705	4.07		1.82
2N6109	1.58	${ }^{2 S C 1921}$	1.3	25K79	288	AN7145	280	${ }^{\text {BC214LB }}$	0.5	80810	0.52	${ }^{85} 459$	0.52	${ }^{\text {Bu806 }}$	1.79	HA11215	5.06
2N6130	0.7	${ }^{25 \mathrm{SCl} 1923}$	1.07	40408	0.50	AN7146	4.35	${ }^{81225}$	0.40	80433	0.7	8F460	155	BU807 ${ }^{\text {Buga }}$	20.80	HAl1211 HAl122	253
${ }_{2}^{2 N 6133}$	125 095	${ }^{\text {2SC1929 }}$	225	${ }_{40635}^{40594}$	1.53	${ }_{\text {AN7151 }}$	228	${ }_{\text {BC2373J }}$	0.12	B0434 B0435	0.49	${ }_{\text {BF470 }}$	0.55	BUW84	${ }_{1} 215$	${ }_{\text {HAl }}{ }_{\text {Hal }}$	8.71
2N6180 2N6292	${ }_{10.95}$	${ }^{\text {2SC1942 }}$	4.50	${ }_{4}^{40636} \times 1$	1.43	${ }_{\text {AN77158 }}$	6.75	${ }_{\text {BC238 }}$	0.10	${ }^{8} 80436$	0.90	${ }_{\text {BF471 }}$	0.31	BUXB4	1.00	HA11229	288
2N6292		${ }^{2 S C 1959}$	0.31	741	0.30	AN7218	1.5	BC238A	0.13	80437	0.49	BF472	0.33	BUX85	1.10	HA11235	248
${ }^{2} \mathbf{N 6 9 8}$	0.43	2 2SC1957	1.09	7805-T022	0.03	AN723	425	8C238B	0.13	80438	0.40	BF479	0.61	BUY69A	204	HAll124	525
2SA1006	1.50	2SC1533	1.93	7806	0.3	AU107	350	${ }^{\text {BC239 }}$	0.12	${ }^{\text {BDP41 }}$	1.2	Br480	1.38	${ }^{\text {BY }} 126$	0.13	HA11244	288
2 SA1011	1.05	2SC1962	1.93	7808	0.85	AU110	225	${ }^{\text {BC2 } 2988}$	025	${ }^{80} 442$	0.06	8F491	1.59	${ }^{8 Y} 127$	0.13	MA1251	4.4
2 SA1015	0.49	2SC1969	3.10	7812-1022	1.16	${ }^{\text {AUV13 }}$	525	BC231A	0.12	$8 \mathrm{B509}$	1.10	BF495	0.64	${ }^{\text {BY1 }}$ B3	0.11	${ }_{\text {HA1125 }}$	429
${ }_{\text {2SAIOLO }}$	125	2SC1983	8.5 0.5	7818	0.64	${ }_{\text {AY }}^{\text {Aliosk }}$	208	8C294 BC300	0.50	${ }_{80519}^{80510}$	1.00	${ }^{\text {BF5509 }}$	0.41	${ }^{\text {BY }}$ BY764	0.57	${ }_{\text {HAl }}$	287 503
${ }_{\text {2SAIO2OY }}$	0.85	${ }_{\text {2SC2009 }}$	0.34	7824	0.64	BA524	821	${ }_{\text {BC301 }}$	0.45	80529	1.30	${ }_{8} 523$	0.24	BY179	0.02	HA11414	5.65
${ }_{\text {2SA473 }}$	0.75	2SC2029	233	7905	0.80	B250	205	BC302	053	BD530	1.10	BF532	0.45	BY182	1.05	HA1144	7.87
${ }^{2547665}$	4.95	2SC2028	211	9358	10.70	840	1.5	$\mathrm{BCO}_{5} 38$	1.04	B0533	0.7	BF596	0.18	BY184	0.7	HA1156	1.16
2SC1173	1.25	$2 \mathrm{SC2063}$	0.90	${ }^{\text {AAII3 }}$	0.12	BA130	0.14	8C30	0.18	80534	0.53	${ }^{85597}$	027	${ }^{\text {BY187 }}$	07	HA1160	4.78
${ }_{2 S C 1474}$	1.25	${ }^{25 C 2078}$	239	${ }^{\text {ACL } 133}$	0.12	BA 1310	1.98	${ }^{\text {BC30307A }}$	0.14	${ }^{80535}$	0.79	${ }^{\text {B6694 }}$	027	${ }^{8 Y} 189$	1.79	HA1166	525
${ }_{2}^{2 S C 1509}$	1.35	${ }_{\text {2SC2073 }}$	1.51	${ }_{\text {AC127 }}$	0.03	${ }_{\text {BA }}{ }^{\text {BA } 1322}$	1,38 395	BCa308A	0.18	${ }_{\text {B0536 }}$	0.74	${ }_{\text {BF759 }}$	0.47	${ }^{\text {BY}} \mathrm{B} 201 / 2$	1.50	HA166x HA167	5.36 5.36
${ }_{\text {2SOL }}{ }_{\text {2SAIO95 }}$	4.10	2SC2091-0	1.30	${ }_{\text {ACl }}$	0.34	${ }^{\text {BAP }}$ B 330	275	BC309	0.17	BD538	1.95	${ }^{8} 761$	1.05	BY203/20	0.59	HA11706	9.50
2SA1103	6.50	2SC2141	1.96	AC138	024	BA145	0.19	BC317A	0.13	B05448	0.38	B762	0.75	BY207	0.2	HA11705	8.00
2 2A329	0.40	2SC2166	1.98	AC141	029	BA148	0.30	${ }^{8 \mathrm{Ca} 27}$	0.15	${ }^{\text {B05958 }}$	12	${ }^{\text {BF8689 }}$	0.05	${ }^{\text {Br208 }}$	0.45	HA17703	${ }_{9} 9.55$
$2 \mathrm{SA351}$	1.17	${ }^{2 S C 2216}$	0.09	AC142K	0.4	${ }^{\text {BAII54 }}$	0.40	${ }^{8} \mathrm{C} 238$	0.11	${ }^{8067}$	0.53	${ }^{\text {BF870 }}$	0.30	BY210-400 BY210-600	0.18	HA11701 HA11710	${ }_{9}^{9.55}$
${ }^{254489}$	1.17	${ }^{2 S C} 2233$	220						0.31	${ }^{80} 8680$	0.76	${ }^{\text {BFF560 }}$	0.08	BY210-800	0.3	HA11713	
${ }^{2 S A 499}$	1.57	${ }_{2 S C 2}{ }^{\text {S }} 238$	1.05	${ }_{\text {AC }}^{\text {AC } 176}$	0.0 .30	BA156 BA159	0.05	${ }_{8}^{8 C 338}$	034 0.24	${ }^{80630} 8$	1.76	${ }_{\text {BF9670 }}$	0.09	${ }_{\text {BY218 }}$	${ }_{1}^{0.64}$	HA1713 HA1711	8.13 20.16
2SA493 2SA562	225	2SC2278	1.14 217	${ }_{\text {ACl }}{ }^{\text {ACI }} 18$	0.72	${ }_{\text {BA1 }}{ }^{\text {BA }}$	0.24	BC440	1.09	${ }^{80696}$	207	BFR39	0.4	BY2z3	123	HA11715	8.13
2SA564	0.58	2SC2335-K1	10.41	${ }^{\text {ACLIB7 }}$	0.39	bazzo	1.06	${ }^{8 C 441}$	0.4	80699	3.49	BFR61	0.50	BY224.600	1.88	HA11714	7.76
2SA614	4.58	2SC2251	126	AC187K	0.45	ba302	124	${ }^{8 C 454}$	0.36	${ }^{80700}$	3.06	Bff62	0.50	${ }^{8 Y 2255-100}$	1.13	HA11716	13.10
2SA628	1.14	2SC2565	${ }^{3} 36$	AC188	0.5	${ }^{\text {BA3311 }}$	1.3	${ }^{86460}$	0.02	80707	1.06	BfR79	029	$8{ }^{82} 26$	025	HA11725	18.26
${ }^{25 A 6339 S}$	1.50	2SC2570	1.85	AC188-01	0.49	8A312	0.97	${ }^{\text {BC461 }}$	1.17	80709 80710	1.12	${ }_{\text {BFR8B1 }}$	1.05	${ }_{\text {BY227 }}$	0.49	- ${ }_{\text {HA11725MP }}^{\text {HA17555P }}$	16.00 623
${ }^{254659}$	0.49	${ }^{25} \mathbf{2 5 2 5 7}$	1.75	AC 188k				${ }_{\text {BC4 }}$	0.64	${ }^{80809}$	0.75	${ }_{\text {BrReg }}$	1.63	${ }_{\text {BY229 }}$	1.12	HAII781	${ }_{8}^{629}$
${ }^{254673}$	127	${ }^{2 S C 2578}$	6.75	AC193k AC194K	${ }_{0}^{0.55}$	${ }_{\text {BA318 }}^{\text {BA3 }}$	0.08	BCA63 BCAT	0.37	80809	0.75	${ }_{\text {BFRP90A }}$	1.1 .30	${ }_{\text {BY229 }}$	1.12	HA1780	5.15
${ }^{25 A 684}$	1.61	2SC28726	1.20	${ }_{\text {AD } 140}$	1.06	${ }_{\text {BA323 }}$	4.71	${ }_{8 C 478}$	0.32	B0879	0.74	${ }^{8} \mathrm{FT} 42$	0.43	BY255	0.69	HA1196	7.43
2SA699	1.15	2SC288A	1.45	AD143	125	ba333	1.37	BC479	0.41	80880	0.79	BrT43	0.43	BY295-600	1.03	HA13001	625
2 SA715	0.55	${ }^{2 S C 3153}$	5.26	AD145	1.00	BA335	67	${ }^{\text {BC532 }}$	028	80895	231	${ }^{87 T 84}$	0.40	BY298	0.20	HA1306	228
254747	8.26	${ }_{2} \mathbf{S C} 5372$	1.15	AD161	0.56	BA5102A	378	${ }^{\text {BC546 }}$	0.17		248	BFW10	0.00			HA1338	7.50
254748	1.08	2Sc373 2Sc33	${ }_{1}^{1.15}$	${ }_{\text {AD } 162}$	0.45	${ }_{\text {BASI }}$ BAL	228	BC547 BC548	0.10	BD901 B0902	0.79	BrX29	0.34	${ }_{\text {BY407 }}$	0.84	HA1339 HA13402	238
$25 A 817$ $25 A 818$	${ }_{1.82} 0.6$	2SC3388	133 0.50	${ }_{\text {AFF }}^{\text {A } 214}$	129	bA514	200	-	0.10	${ }^{\text {B0, }}$	1.56	${ }^{\text {BFXX }}$	0.41	${ }^{\text {BY448 }}$	0.60	HA13342	285
2SA835	250	2 Sc 394 V	0.81	AF115	124	BA524	89	BCC50	0.10	${ }^{\text {BDW }} \times 34 \mathrm{C}$	1.56	${ }_{8}^{86 \times 888}$	0.36	${ }^{87713}$ 8W191000	1.10	${ }^{\text {HA13365 }}$	1.02
2SA836	0.89	2SCHOSC	0.39	AF118	120	BA526	7.8	BC556	0.16	80x32	1.75	$8{ }^{88 \times 87}$	0.55	8WW19/1000	0.09	HA1366WR	180
2SAB44	0.30	${ }_{2}^{2 S C 41}$	219	${ }_{\text {AF }}^{\text {AF } 127}$	0.50	${ }^{\text {BAL527 }}$	28	BC55]	0.10	${ }^{80 \times 533}$	438	Brx88	0.3	${ }_{8}^{81} 56$	0.30	${ }_{\text {HA }}{ }_{\text {HA13688 }}$	4.38
${ }_{\text {2SABP84 }}$	0.70	2SC458	0.39	${ }_{\text {AF }}^{\text {AF179 }}$	1.58	${ }_{\text {BAF32 }}$	1.55 295	-	0.10 0.10	B0x538	216	88×859	0.38	BY\55-600	0.19	${ }_{\text {HA1368R }}$	29 1.90
${ }_{\text {2SASOP7 }}$	297	${ }_{2 S C 515 A}$	25	${ }_{\text {AFFI7 }}$	0.55	${ }_{\text {BA6209 }}$	4.75	BC5598	0.11	B0x62A	215	BFY51	0.50	BY771-600	125	HA1370	3.71
IF YOU	N'	SEE TT LS	ASI	OR	GIV	Mak	ODEL	LOC	EM	ABER T	D	60p P	HAN	DUNG. AD	15\%	VAT TO TO	OTAL

-																		
HA1374	4.80	$L \mathrm{~L} 3419$	937	NES65S	133	SKE4F208	124	STK3042	${ }_{5}^{11.05}$	TA7312P TA7313AP	251	$\begin{aligned} & \text { TD62105P } \\ & \text { T062109P } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { TDA3560 } \\ & \text { TDA35710 } \end{aligned}$	$\begin{aligned} & 525 \\ & 2.97 \end{aligned}$	TUAZ000 TV106	$\begin{aligned} & 8.98 \\ & 1.76 \end{aligned}$	
HA1377	3.98	LR3471	9.37	NE645BN								${ }_{\text {T }}$	4.50	TDA3576	7.09	TY60108	297	
HA1399R	205	LU141	727	NP1106	5.61	SKE4F210	124	SIK4019	4.50	TA734	315	TALIOO1B	23		5.79		114	
HA1339	239	LU52012	5.95	0a202	0.11	SKE46202	0.95	STK430	${ }^{11.5}$	TA7323P	3.15	TDA10003	23	TDA3591	${ }_{6} 5$	U1N2204	11.45	
HA1392	3.50	LU52011	4.95	OA47	0.14	SKE553/10	1.00	STK4333	515	TAFS3P	1.15	TDAIOOSA	220	tDa3s50	750	UPA53C	4.91	
HA1394	3.95	Lu03112	123	0A91	009	SKS1/10	215	STK435	59	TAT300p	550	TDA1003A	211	TDA3652	5.4	UPC1003	4.95	
HA1397	376	M193	127	OC28	205	SL14300	231	STK4352	1225	ta7gTAP	13.50	tdaioloar	4.25	tDa3651A	296	UPC1009C	6.38	
HA1398	3.39	M21C		OC28	215	SL144	3.0	STK436		TA7609	328	tDA1011	238	TDA3651	330	UPC1025	29	
HA1406	207	M212	18	0c29	215	SL414	3.4	STK436	780	Ta7603	4.50		1.15	tDa3351a	265			
HA1452	1.63	M23C	0.3	-00	03	SL4323	3.4	STK437	780		5.80	TDA1010	5	TDA3950	4.58	UPC1028H	200	
HBP403OAF	24		9.15	0 C 44	0	SL439	248	STK4372	3.85	TA76i2ap	19	TDA1028	25	TDA4050B	3.95	UPC 1020 H	27	
HD14538	201	M51102L	6.35	OCA5	0.14	SL471	4.7 314	SIK439	${ }_{1128}$	TA76z8P	$5{ }_{50}$	TDAIC34B	20	TDAA280	720	UPC1032	20	
HD38702-A2	7.45	M5115P	524	OC72	0.4	SL480	314 231	STK441	$\underset{1128}{120}$	TA76z8P	750	TDAIO35S	295	TDA4230	4.17	UPC1042C	8.95	
HD38750A53	2.71	M51203L	315	ocrs	0.4	${ }_{\text {SLIC00 }}$	231	STK43	13	TA7530P	258	TDAIOSST	255	TDA400	27	UPCC156	296	
HD38750A-7	125	M51231P	304	ON236	1.06	${ }_{\text {S }}$		STK460	14.83		1.19	TDA1037	1.9	tda420	5.01	UPC1158	\%	
HD38800450	14.09	M5134-3341	4.13	ON782	1.15	SL918A	4.95	STK461	${ }_{9}^{14.68}$	TA7672P	1.15	TDA10370	205	TDA4422	8.32	UPC 1161C	4.50	
H044801405	1825	M51353P	525	${ }^{01121}$	1.45	SNI63662ANO	${ }_{2}$	STK463	11.53	TA7696P	281	TDA1044	202	TDA427S	9.00	UPC1182	1.8	
HEF4001BP	0.67	M51381P	4.50	P16032	245		1028	STK466	11.7	TATIRSP	1025		4.10	TDA4431	22	UPC1	. 05	
HISH1010	8.59	M513934P	71.78	${ }^{\text {P188504 }}$	2.91	SN16960 ${ }_{\text {S }}$	${ }_{7}^{10}$	STK4833	16\%	TAATza	17	TDAIO598	0.80	TDA4440	287	UPC1181H	125	
HISH1004	6.00	M51394P	11.97	${ }^{R 1038}$	219	SN29717N	7.19	SIK4833	${ }_{6} 16.5$	taaz5aa	0.00	TDAIOSAM	121	TDA4442	4.85	UPC 1185 H	29	
HISH1002	9.50	M5142P	${ }_{4} 5$	${ }_{\text {R2008B }}$	219 13	SN29715N	6.04	STK502	5.74	tas570	1.74	tDA1060	260	tDa4500	730	UPC1188	6.95	
HM6231	989	M5144P	225	${ }_{\text {R20038 }}$	1.8	SN29722	11.95	STK5314	9.48	TAA621ax 1	205	TDA1082	325	TDA4600	284	UPC1213C	0.99	
HM6232	88	${ }_{\text {M }}$	233	${ }_{\text {R20100 }}$	1.38	SN29723AN	7.5	STK5730	3.95	tasaz1al2	214	TDA1151	12	TDA4610	4.80	UPC1212C	1.12	
HM6251	5.20	M51515BL M51517L	323	${ }^{\text {R20102 }}$	1.33	SN29764AN	1.38	STK7216	1267	TAAS61B	20	tDailios	225	TDA4620	4.78	UPC 1225H	325	
HM7103	246 30	M51517L M5192	230	${ }_{\text {R }}$	133 1.33 1	SN29767	4.98	STKT72	6.95	TAA591	8.59	tDAl190	211	TDA5500	4.78	UPC1230	724	
HM9932 HM9012	32	MS194AP	5.74	R2257	3.71	SN2970BN	4.24	STR1096	4.50	taajod	3.5	TDA11907	356	TDA5700	200	UPC1238	298	
HM9015	324	M5231L	1.95	R2265	1.19	SN297728N	4.91	STR4090	11.5	tase30	4.87	TDA1200	150	TDAT720	25	UPCC1263	3.5	
H14207	17.16	M5374P	1.33	R2205	1.18	SN297118N	4.98	STP440	7.5	IAA970	238	TDA1235	328	TDA8190	347	UPCL127H	$5{ }^{505}$	
HT42088	182	M54532P	215	${ }^{\text {R2322 }}$	0	SN29791	1.9	STR441	6.50	IAA110	259	TDAI236	4.30	TDA9403	3.15 29	UPCL278H	181	
- N 5401	0.11	M54544	4.75	${ }^{\text {R22323 }}$	0.70	SN27938N	5.50	STR451	${ }^{2} 1.16$	${ }_{\text {TAG }}$	1.05	TDA1327a	1.35	TDAS513	5.4	UPC1350C	1.40	
${ }_{1} 122403$	425	M55478 ${ }^{\text {M }}$	${ }^{6.75}$	${ }_{\text {R2354A }}$	201	${ }_{\text {SN }}$	0.34	STRT54	2.16 7.50	TBAR20AS	1.24	TDA1412	1.05	IDB1033	6.08	UPC1353	185	
1R2005	02	$\begin{aligned} & \text { M58485P } \\ & \text { MA06 } \end{aligned}$	$\stackrel{1074}{1.07}$	${ }_{\text {R2243 }}$	20	SN7401N	036	STPE5020	0.31	tBaizosb	1.05	TDA1420	1.5	TDE1081	6.61	UPC1355C	213	
${ }_{1}$ 1R3P66	225	MAO6 MAB001	1.07	${ }_{\text {R2461 }}$	150	SN7402N	0.05	T6029V	5.5	TBA120T	0.95	TDA140	3.5	TE626	1.49	UPC1363	420	
${ }^{183 P 08}$	${ }_{6} 6.58$	MA8003	1.16	${ }_{\text {R2540 }}$	231	SN7404N	0.24	T6035V	0.73	tBal20U	250	TDA1470	3.16	TEA1002	3.4	UPC1362	1.5	
1/19751	285	MB3705	19	R2540x	3.30	SN7408N	027	T6036	0.57	tBaizaA	1.05	TDA1470P	425	TEA1009	1.86	UPC1365C	6.98	
$1{ }^{17425}$	0.18	MB3712	1.85	R2615	0.6	SN7410N	077	T8037	211	TBA1440	203	TDA1506	7.65	TEA1014	315	UPCL1356	725	
1200036 E	5.37	ME3713	1.81	RCA16029	201	SN74121	1.00		120	${ }_{\text {TBAI440G }}^{\text {TBA }}$	1.02	TDA1510	298	Ticloci	821 0.61	${ }_{\text {UPC } 13787}$	4.25	
[20020GE	5.33	MB3730	${ }_{35}^{325}$	RCAA RCA 6800	108	SN743N	235	T6049	1.5	TBA1441	1.\%	TDA1515	16.00	TIC106M	0.7	UPC141C	3.5	
K174YP	3.6	MC13002	225	RCA16802	6.60	SN74151AN	151	${ }^{160552 V}$	0.87	tbazata	3.99	TDA1559	315	TIC16Y100	207	UPC1458	2.66	
K42101	292	MC1327P	20	RCA17376	1.58	SN74154N	127	T6058	0.50	tBa395	1.10	TDA1670	4 4	TIC44	0.72	UPC15IC	295	
KC581C	6.38	${ }_{\text {MCII330P }}$	1.13	RCA17524		SN741930	200	T6059	0.55	tвA3550	1.10	TDA1770	${ }_{6.5} 5$	ticas	0.7	UPC2	4	
KC5822	3.97	$\xrightarrow{\text { MCLI335P }}$	1.61	- ${ }_{\text {RCAI }}$	0.83	SN7420N	0.34	T9003V	125	tBA396	0.80	TDA1905	1.16	tica	0.35	UPC20C	251	
Kçs83C	${ }_{1} 5$	MC1351P	3.96	RCA2050	200	SN7430	0.49	T9005V	238	T8A400	230	TDA1908	287	TIP120	1.06	UPC324C	4.70	
$\underline{L 1201}$	1.0	MC1352P	250	RGP01-15	0.70	SN740N	az	Tsoliv	0.49	teamop	245	TDA1940	1.55	TIP10	0.53	UPC322	4.94	
LA1210	1.56	MC1357P	215	RGP10	0.50	SN7472	154	T5013V	785	tipabion	1.30	TDA1950	4.5	TIP 12E	0.85	UPC339C	4.90	
LA1230	287	MC1358P	1.5	RGP30M	0.58	SN7474N	0.4	T9014V	250	TBasoop	658	tdazoos	508	T1P112	0.88	UPC41C	4.10	
LA1320	287	MC14001	200	${ }^{\text {RT402 }}$	1.58	SN7490AN	Qs3	T9016	100	teasio	211	tidazoos	1.5	TP17				
LA1352	1.75 110	MC14013	0.41 3.4	RTS953 S1299	5238	SN74LS26N SN76001N	${ }_{1}^{0.53}$	${ }_{\text {T }}$ T9019W	1.38	TEA5200	1.68	TDA2002	20.30	${ }_{\text {T1P126 }}$	0.13	UPC554C	1.85	
Lai357N	1107	MC14493P	314 215	S1299	31.48	SN76013ND	$2{ }^{4}$	TS035V	1.39	tbas30	130	toaz003	1.51	T1P132	1.40	UPC566H	295	
LA1333	310	MC14497	3.6	S20620	207	SN760232N	5.15	T9051	7.45	teas30.	1.30	toazolo	125	TIP137	1.50	UPC574	325	
[A1365J]	3.4	MC14510BAL	3.5	S28800	5.54	SN76023ND	396	T9054V	1.15	TBA540	1.15	tdazz20	2π	TIP29	0.56	UPC575C2	240	
LA1385	1.9	MC145118CP	1.10	${ }^{52802}$	3.47	SN76023N	4.15		0.70	${ }_{\text {TBAS500 }}$	1.15	TDA2230	1.99	${ }_{\text {T1P29a }}$	0.45	UPC57\%	2.25	
LA1387	7.70	MC144288CP	270 38	${ }_{\text {S22182 }}$	${ }_{6} 6.15$	SN76110N	1.51	${ }_{\text {T }}$	${ }_{1} 0.51$	tBA560Ca	1.00	TDA2150	620	TIP298	0.63	UPC578C	7.35	
LA3155	1.05	MC5192	1350	${ }_{\text {S40w }}$		SN76131	1.90	TA6002	4.35	tBa5700	1.00	TDA2151	1.93	T1P29C	0.40	UPC580C	4.13	
La3350	1.45	MC724CP	3.19	S66808	20	SN7627N	1.38	TA7027	480	TBA509A	1.71	TDA2160	4.01	TIP290	0.5	UPC587C2	1.3	
${ }_{\text {La3361 }}$	123	MC7818C	218	SA8063	5.17	SN76280N	1.58	TA7050	1.74	T8A641A12	4.13	TDA2161	1.85	TIP3055	0.5	UPC592H	215	
143365	3.3	MCRIOOT	1.55	SAA1006	1.5	SN76288	327	TATOSI	1.74	TBA641872	313	TDA2170	28	TIP30A	0.41	UPC595	295	
LA3390	425	MCR106-5/6	0.95	SAA1020	4.70	SN76242	85	TATO54	25	TBA651	${ }_{2}^{1.76}$	TDA2190	4.55	${ }_{\text {IIP331a }}$	0.16	UPC596	1.98	
La4030	420	MCR220]	223	SAA1025	4.40	SN76243	523	ta7060ap	0.71	${ }_{\text {İ }}^{\text {TBA673 }}$	280 1.85 10	TDA22310	${ }_{7} \mathbf{4} 8$	${ }_{\text {T1P31B }}$	0.38	UP02819C	4.98	
LA4C31P	320 235	ME0402	0.47	SAA1024	285		290	TA7069	3.13	tBA720	15	tDA2520	23	TIP31C	0.50	UP04013B	4.00	
${ }_{\text {LA4 } 100}$	125	MEOA11	0.28	SAA1121	5.14	SN76532N	295	TA7070P	1.3	tBa730	35	TDA2522	3.45	tiP32A	0.53	UPD4066B	4.95	
La4101	130	Me6002	0.26	SAA1124	335	SN76545	4.7	TA7072P	25	18A7500	250	TDA2524	4.50	T1P328	0.69	UPD553-164	${ }^{1925}$	
LA4102	281	ME6102	023	SAA1130	49	SN76546N	3.7	TA7073P	58	TBA7FO	1.08	TDA2525	3.50	${ }_{T 1 P 33}$	0.95	\times ¢0007A	4.6	
La4112	4	ME8001	${ }_{0}^{0.75}$	SAA1174	7.7 3.95	SN76549	${ }_{3}^{208}$		150	TBAs310S	1.61	TDA2532	250	${ }_{\text {T1P33 }}$	1.05	X0022CE	5.75	
La4its	3.38	M M 2501	3.30	SAA1251	9.5	SN76611	29	TAT009P	1.50	tBAB10T	150	TDA2530	220	TIP33C	0.80	X0029CE	4.9	
LAA140	1.15	M. 33001	1.09	SAA11351	4.55	SN76520	28	TA7092P	7.50	trabioas	1.00	TDA2541	248	${ }_{\text {T1P34 }}$	354	X0031CE	4.95	
La4192	4.29	${ }^{M} .481$	153	SAA3027P	1003 255	SN78660N	2.4	TA7033P	3.39	${ }_{\text {TBAB2OM }}$	1.52 0.82	TDA25450	215 594	TIP41B	0.05	${ }^{\text {¢ }}$	4.50	
L44220	1.02		12.5	SAA5000		SN/766060	4.86	TA7108P	1.61	「BABSO	250	TDaz56a	217	TIP41C	0.49	X0042CE	4.35	
LA4400	$\underset{25}{625}$	MJE3055	10	SAA5012	520	SN7609	5.12	TA7109	37	rbaszo	189	idaz573	0.50	TIP42A	0.49	Х0043CE	2π	
LA4420	1.72	MJE340	0.9	SAA5020	5.78	SN76709N	5.5	TA71228/P	0.8	tbagzoo	23	TDA2571Aa	350	${ }_{\text {T1P428 }}$	0.53	¢0056CE	5.11	
L44422	1.72	M. M L2520	${ }_{3}^{0,93}$	SAAS530		SN76707N SN7605		TA7124P	23	tBa990	184	TDA2571a		TiP47	0.05	X0062CE	6.52	
La4430	1.56	${ }_{\text {M }}^{\text {M } 2323}$	333 215	SAASOS0 SABIOOPB	6.81	SN76730	536	${ }_{\text {TA7130P }}$	127	tBaso	1.79	TDA2573A	4.95	T1P49	0.92	X0065CE	5.75	
LA4440	4.95	M1237B	251	SAB3011	7.31	SN76810	0.60	ta733ap	127	tbasgo	182	TDA255A ${ }^{\text {a }}$ +K	1235	TP49	3.61	$\times 00746 E$	10.00	
La4460	232	M 1238	5.7	SAB3013	5.51	SN76832N	325	TA7137P	0.98	tBagsoo	1.8	TDA2581	225	TIP55A	3.65	$\times 00776$	15.96	
La4461	285	ML23	330	SAB3021	790	SNSMO41	5.54	TA7141AP	3.80	TC40018P	325	T0A2582	218	TIS43	1.43	X0079CE	4.95	
LA4505	59	M ${ }^{\text {L26 }}$	358	SAB3024	6.38 58	SN94042	${ }_{0} 0.35$	TA7146	250	${ }_{\text {TC40138P }}^{\text {TC40118P }}$	3.35	TDA5594	250	Tlinicp	1.05	X0096CE	429	
${ }_{\text {LATO20 }}$			4025	SAB32310	3.40	SP55384	1.50	TA7148P	15	TC40168P	3.15	TDA2593	27	11072	285	X0109CE	10.90	
L47025	8.05	MM5318N	3.11	SAF1032P	6.50	ST1702L	0×9	TA7749P	326	TC40538P	4,34	TDA259910	0.83	TL494CN	${ }_{2} 674$	X0113CE	207	
47027	9.35	MM 53359 N	201	SAF1039	335	STA401	${ }_{27}^{676}$	TA7152P	1.72		152 27	TDA26800	5.50	${ }^{\text {TMP4320 }}$	${ }_{1500}$	X02024E	8.74	
147040	920	MM5387AAN	6.80	SAS5010	229	STA441C	27.7	TA7161P	5.45	TC40818P	325	toaz6ila	298	TMS 1024NL	6.86	X0261CE	8.5	
La7092	205	MNS 400 VL	${ }_{9} 96$	SAS560T	5.12	STK0029	5.54	TA7162P	29	IC40H000	1.5	TDA26120	4.68	TMS1025N	6.25	$\times 122345$	3.63	
La7801	4.15	M ${ }^{1405}$	95	sas500	5.4	STK0039	535	TA7169	954	TCA5148P	4.15	toazaila	125	TMS3720ANS	19.50	IXO111CE	298	
${ }^{1.81274}$	3.08	MN1435VX	${ }_{205}^{11.56}$	SAS570S	250		1200	TA7172P	1.41	TC90028P TCA2700	$\stackrel{11.95}{1.7}$	TDAz200	215	TMS3755	13,55	TDA3310	215	
1278800 103120	920 1.13	MNE016A	$\stackrel{2050}{50}$	SAS6600	25	STKK0080	9.16	TA7193AP	6.5	icazzos	215	tDazzio	1.96	TMS3894NL	1925	ZPY120	0.55	
103150	2.3	MP2794	4.00	SAS660	29	STK011	336	TA7193P	550	tcazzosa	1.5	TDAzzes	273	MS5102NL	6.25	2TK33	0.3	
LM1017N	429	MP2812	5.07	SAS6700	1.35	STK013	98	TA7201P	271	icarsana	238	TDAz640	238					
LM187	10.18	MP8512	215	SAS670	${ }_{123}^{35}$	STK014 STK015	7.75	TAT203P	218	TCA TCA4 240	216 1.93	TDA2653	${ }_{1}^{13,5}$	Full list	vaila	whle with		
LM24 LM2008	1,75	MPC536	213 0.50	SAS6710 SEA50	1.15	STK016	6.98	Tap205p	1138	TCA530	216	TDAzs54	6.18	or SAE	pl	ase $9^{\prime \prime}$		
LM2877	4.93	MPS5570	0.3	SC84233	19.3	STK022	525	TA7206P	6.35	TCA640	735	TDAzi70	${ }_{320} 24$					
Lm317ckc	138	MPSA42	0.0	${ }_{\text {SCas504 }}$	1155	STKO25 STKC31	125	${ }_{\text {TA }}^{\text {TA }}$ T2727P	334 215	TCAE560	200 3,	TDAAE590a	200	Telep	hone	answe		
LM324N	0.80	MPSA56	0.07	SDA2006	1855 125	STKC331 STK040	${ }_{127}^{129}$	TAR208	215	TCA 730	3.81	TDA2340	6.00	mac	hine	availa		
LM340K	11.15	MPSU05	0.5	SG264A	526	StK013	134	TA7214P	310	TCA750	225	tDazzsana	514		24	hours		
LM342P	1.52	MPSU10	1.55	S6613 S629	$8{ }^{8 / 7}$	STKO54 STKO58	7.13 188	${ }_{\text {TA }}^{\text {TA2215P }}$	258	${ }_{\text {TCAAODOO }}^{\text {TCABOS }}$	${ }_{26} 6.5$	TDA2095	27 25					
LM342P	1.02	MPSU56 MPSU60	${ }_{1}^{0.64}$	SG629	127 1031	STKO58 STKOTI	${ }_{7}^{185}$		1.5	TCAsso	2,4	TDAES10	1325			712083		
LM348N	215	MR818	0.33	SI-1020	1080	STK078	852	ta7236	1025	TCAs00	204	tDasa00	25		Acc	dess and		
LM380N	200	MR854	0.12	S1-1125HD	1750	STK080	16	TA727P	281	TCA910	1.68	${ }_{\text {TDAS3300 }}$	9.00 3.30	Barc	aycar	d custome		
LM33ANO1	3.71 1.71	MR914 ${ }^{\text {M }}$	1730	S ${ }_{\text {Sl1225 }}$	717.73	STK082	1185	TA123P	4.9	TCASAOE	120	TDA3506		Stack	querie	s by post		
LM567CN	1.10	MSM5840H	19.15	S $116330+1$	17.85	STK1039	5.75	TA7232P	6	TCEE33	389	TDAA501	725	for quam	ties of	f 100+ per		
LM6402a093	10.15	MVS460-02	0.5	S16930	1200	STK2110	7838	${ }_{\text {TA }}^{\text {T } 2323 P}$	558	TCEP1000 TCEP100	1025	TDAA5500 TDA	${ }_{6} 45$	Please	ask for	special qu		
LM748	182 307	NE542 NE545	${ }^{2} 50$	SKE1/02 SKE2F104	1.38	STK2145	${ }_{7.0}^{15.8}$		780	TCEP100	359	tDA3520	${ }_{9}^{6.7}$	Schools,	rom G	ove insitutio		
LM8360 LM3361	337 357	NE545B NE55S	4.30	SkE26304	1.05 1.05	STK2240	14.40	TA7230	6.75	TD3F8000	398	TDA3540	298			cial order.		
LR2612	11.50			SKE4F1/06		STK2250		ta7310P	215	TD3F500		\| TDA354		330				
REGIST	RED	OFFICE	THE	COAC	HOU	USE, MU	TON	LANE,	ELFO	RD	AIL	ORDER O	NLY			隹 4 morking		

Modern Receiver Circuitry

Part 4: Line Output Stage Operation

J. LeJeune

The line scan and e.h.t. generator sections of a TV set have been linked since the early days of television, though many sets produced in the thirties and forties derived the e.h.t. from a mains transformer. This was a dangerous arrangement and had to be respected by the engineers of the day. The danger was reduced when the e.h.t. came to be produced by rectification of the line flyback pulse, though contact with the 10 kV or so produced by early flyback e.h.t. systems was still a very unpleasant matter and it's the same today. The other bonus of flyback e.h.t. is greater efficiency. This is also true of the technique of using an efficiency diode to recover the flyback energy to contribute to the scan. In older sets the line output transformer did what its title suggests, driving the scan coils via a secondary tap. The component that goes under the same title today acts mainly as a feed choke between the h.t. supply and the line output transistor.
Before we consider the line output stage it's as well to make clear that although the screen is scanned from the left-hand side to the right-hand side, with a rapid flyback to the left-hand side to start the following line, the scanning spot's rest position is at the centre of the screen. This is the position where the current flowing in the scan coils is zero.

Basic Circuit

The basic elements of a modern transistor line output stage are shown in Fig. 1. Inductance Ly represents the scan coils which are connected in series with capacitor Cs . The latter is commonly referred to as the scan-correction capacitor or d.c. blocking capacitor: both terms are correct but the capacitor does more than this, as we shall see. Tl is the line output transformer, Q the line output transistor, D is the efficiency diode and Ct provides flyback tuning.

With transistor Q switched off capacitor Cs will be charged from the h.t. rail via Tl and Ly. When Cs has fully charged no current will flow in the scan coils and the spot will rest at the centre of the screen. To move the spot across to the right Q is switched on, discharging Cs via Ly. The transference of energy from Cs to Ly is what shifts the spot to the right-hand side. At this point Q is switched off to initiate the flyback. Ct, which had previously been short-circuited by Q , is now rapidly charged by the energy stored in Ly. The current flow is reversed, with the result that the spot moves rapidly from the right-hand side to the centre rest position. We want it back at the left-hand side of course, and since Ct and Ly form an oscillatory circuit this is precisely what we get from the second part of the half-cycle of oscillation that occurs when Q is switched off. During the flyback, a positive-going voltage pulse is produced at the junction of Ct and Cs . The second halfcycle of oscillation would produce a negative-going pulse at this point. The efficiency diode D is then forward biased, damping the tuned circuit C / Ly. The resultant decaying current flow moves the spot back from the lefthand side towards the centre of the screen.
During the forward scan, either D or Q is conductive. The charge on Cs is replenished during the flyback period,
when both Q and D are off. Cs is in series with Ct but has little effect on the flyback action since its value is forty to fifty times that of Ct. The value of the latter capacitor is chosen so that it will receive and return all the energy stored in Ly during the $12 \mu \mathrm{sec}$ allowed for the flyback. D remains conductive for about the first 45 per cent of the forward scan, after which Q is switched on. In some designs the line output transistor's collector-base junction provides the efficiency diode action.
Looked at another way, Ly is made to resonate at two widely different frequencies - see Fig. 2. The forward scan is really a portion of a low-frequency sinewave ring produced by Cs and Ly . Since the value of Cs is large the frequency is low, probably just under half the line scan frequency. The portion of scan achieved by this action is shown between A and C in Fig. 2. At C the line output transistor is switched off, D is already off and Ct appears in series with Cs . Ct and Ly then provide a half-cycle of oscillation at a much higher frequency to produce the flyback. Switching between the two resonant frequencies is provided by D and Q. Flyback tuning is generally at an harmonic of the line scan frequency, up to the seventh.

Flyback EHT

During all this action Tl plays the part of a feed choke, but more can be got from it. With D or Q conducting, the full h.t. appears across T1's primary winding. Current flows in the primary, causing a build-up of magnetic flux in the transformer's core. When Q is switched off to start the flyback the field rapidly collapses, producing a large back-e.m.f. in the primary and any secondary windings. By using a secondary winding with many more turns than the primary winding a useful e.h.t. voltage with adequate current for the c.r.t. is generated. The value of the e.h.t. voltage produced in this way depends on the flyback time. Thus if the flyback time varies for any reason the e.h.t. will also change. Returning to Fig. 1, diode G rectifies the flyback pulse produced across the secondary winding, charging the capacitance formed by the Aquadag coatings on the inside and outside of the c.r.t. bowl (with the glass as the dielectric). In many respects the operation of a flyback e.h.t. generator is that of a chopper circuit without any stabilisation measures.

Raster Correction

Raster correction is required with most 110° tubes. The cause of the problem is illustrated in Fig. 3, which shows that uncorrected scanning produces a pincushion-shaped raster. When the electron beam is scanning the top or bottom line of the raster, A and C, the distance of the beam from the centre of the deflection coils to the screen is greater than when the beam is scanning the centre line B. With present-day 90° tubes the design of the yoke provides the compensation required, but this is more difficult with 110° tubes. Yokes for 110° tubes provide north-south correction but east-west correction must be done in the deflection circuit.

The fact that with a wide-angle tube the deflection centre is much closer to the screen than the screen radius

Fig. 1: Basic transistor line output stage circuit.

Fig. 2: One cycle of line scan, showing the two resonant frequencies for scan and flyback.

Fig. 3: Pincushion distortion with a wide-angle tube. (a) The effect on the display. (b) Showing how the distance from the deflection centre to the screen varies during the course of the scan.
also means that without correction the speed of the spot will vary as it scans the screen, i.e. the raster would be stretched towards the left- and right-hand sides. Correction for this is achieved by making the value of Cs less than that needed to give a linear scan waveform. This imposes curvature on the line scan ramp waveform - the effect is shown in Fig. 2.

Diode Modulator Circuit

Whilst scan-correction is simple to achieve the way in which east-west pincushion distortion is overcome is somewhat less easy to follow. We come now to the EW modulator. In essence this places a variable impedance in series with the scan coils to modulate the scan current. Fig. 4 shows a typical arrangement. One of the problems with adding an impedance in the line scan circuit is that the flyback time will be altered. This will in turn vary the e.h.t. and thus the raster size. The diode modulator is designed to prevent this.

If the circuit shown in Fig. 4 is compared with that shown in Fig. 1 it will be noticed that the line scan coils Ly are now returned to chassis via Lb and Cb . You'll recall that Cs is charged during the flyback time, when Q and D are off. This charge will now be shared by Cs and Cb , i.e. the charge on Cs is reduced. Q1 provides the variable element. When fully conductive Cb is shorted out: hence the charge on Cs is increased and so is the width. By

Fig. 4: Diode modulator circuit to provide EW correction.

Fig. 5 (left): Diode-split e.h.t. generator.
Fig. 6 (right): Line output stage with boost diode Db.
applying a variable field-frequency parabolic drive to the base of Q1 width correction throughout the field scan period is achieved. Cm is added in series with Ct and Lb in series with Ly to maintain the correct flyback tuning conditions. Cm and Cb have the same sort of relationship as Ct and Cs . Lf is simply a filter choke to protect Q1 against line-frequency transients.

The drive circuit is straightforward, consisting of the differential amplifier Q2/3. The width control sets the d.c. level at the base of Q 3 : since $\mathrm{Q} 3 / 2 / 1$ are d.c. coupled, moving the slider towards the 12 V end increases the conduction of Q1 and thus the line scan amplitude. A field-frequency parabola is a.c. coupled to the base of Q3 via the pincushion control, which is adjusted to produce a raster with straight sides. A field-frequency sawtooth waveform is fed to the base of Q2 to counteract keystone distortion. Links to the h.t. line and to a point sensitive to beam current changes are often provided to stabilise the width.

Diode-split LOPT

Trouble-free e.h.t. generation is a feature of modern colour sets and is very largely due to the use of a line output transformer with a "diode-split" e.h.t. winding. Fig 5 shows the arrangement. The e.h.t. secondary is divided into four identical windings each of which delivers a quarter of the required e.h.t. voltage. Each winding has
its own built-in rectifier and is wound on a precision bobbin which controls the capacitance between the bottom ends of each of the four windings.

When the line flyback occurs the high pulse voltage developed by the primary winding causes each of the secondary sections W1-4 to produce a 6 kV pulse. These pulses are rectified and added to give a final output of 24 kV which, because of the good insulation, is available with greater safety - and also at a substantially lower output impedance than was available with previous methods of e.h.t. generation. The diodes are operated well within their ratings and the separate capacitors used in a tripler, with their attendant insulation problems, are done away with. Present day diode-split line output transformers go a step further in incorporating the first anode and focus controls within the transformer's encapsulation.

Circuit with Boost Diode

Transistor line output stages in colour sets are normally operated from a stabilised h.t. supply of around 120 V . With a mains-battery monochrome portable the main stabilised supply rail is only around 11 V . It's desirable to
operate the line output stage at a higher voltage than this and the incorporation of a boost diode and capacitor will provide an effective supply of around 24 V which can also be used in other parts of the set. The boost technique was originally developed for valve receivers, where a single diode acted as both the boost and efficiency diode, providing energy recovery to contribute to the scan and a supply of up to 1 kV for the output stage and other purposes.
Fig. 6 shows the type of circuit generally used in monochrome portables. D is the efficiency diode and Db the boost diode. During the forward scan either D or Q is conductive and pin 3 of the transformer is at chassis potential. Db is forward biased. By simple autotransformer action pin 1 of the transformer will be at a voltage multiplied by the turns step-up ratio. Db provides conventional rectifier action with current flowing in the direction shown. As a result a voltage of about 13 V is developed across the boost capacitor Cb. This voltage is in series with the 11 V supply, giving a total of 24 V with respect to chassis. During the flyback Q, D and Db are all off and the charge on Cs is replenished from Cb . Thus in effect the line output stage is operated from the 24 V boost line.

The Grundig CUC Series Chassis

Peter Stubb and Steve Beeching, T.Eng.

CUC? Yes, it stands for Compact Universal Chassis. As my mate Steff said you either know these Grundigs or trust to luck. Well, as every engineer should know luck plays a very small part in electronics servicing. So to help understand these confounded Grundigs we'll provide a run-down on the section that's the usual cause of concern, the switch-mode power supply. The whole CUC range uses a simple but effective flyback converter circuit. The main elements in this are a transformer, a chopper transistor and a Siemens TDA4600 control i.c.

Circuit Operation

The circuit is shown in much simplified form in Fig. 1. When the chopper transistor T634 switches on current flows in the primary winding of transformer TR651. As a result energy, in the form of a magnetic field, is stored in the transformer. During this process the h.t. rectifier D656 and the l.t. rectifier D661 are reverse biased. Therefore the secondary windings can draw only a maximum current whose value is related to the energy stored in the transformer while T634 is switched on. When T634 is switched off C634 provides circuit continuity and the rectifier diodes are forward biased by the collapsing field. The reservoir capacitors C657 and C662 are thus charged.
Pulse feedback is taken from pin 13 of the transformer to the bistable in the TDA4600. This toggles, switching T634 on when the magnetic field has completely collapsed. Thus T634 is automatically switched on and the only problem that remains is to time its switch-off to provide regulation. The on time is determined by the secondary current required.

Regulation is determined by feedback from winding 1315 on the transformer. This monitors the rate of change of flux during T634's off period, providing a voltage propor-
tional to the current being drawn. If the secondary current is low the induced voltage is high and vice versa. D647 provides rectification, producing across C647 a voltage which is subtracted from the reference voltage at pin 1 of the i.c. The resultant voltage is applied to the noninverting input of the voltage comparator within the i.c. The output from this comparator resets the bistable and turns off T634 once the ramp voltage at its inverting input (pin 4) exceeds the voltage at its non-inverting input (pin 3).

The ramp is produced by C646 which is charged by R646 from the mains-derived 300 V line - this gives stabilisation against mains voltage variations. This ramp forms part of T634's drive waveform. For correct timing, C646 must start at 0 V at the beginning of each duty cycle. The second output from the bistable triggers a transistor within the i.c. to discharge C646 during T634's off time.
The output voltages obtained from the circuit are adjusted by setting R647 which controls the feedback to pin 3 of the i.c. With the CUC chassis this is always set with reference to the + A voltage (h.t.) required. This is the supply for the line output stage and varies according to the screen size and tube beam current requirements.
By counting the variable mark-space switching pulses the i.c. can ascertain the set's working conditions. The frequency of operation is approximately 35 kHz for normal operation with a nominal load. For protection the i.c. checks this frequency which falls to about 20 kHz if the load increases: if the load increases further the i.c. switches the bistable itself at a rate of about 18 kHz , limiting the maximum output current. The power supply will run even with a short-circuit line output transistor, though a PTC thermistor ensures that a load of greater than 100Ω is present at all times.
For over-voltage protection, if a supply from the trans-

Fig. 1: Switch-mode power supply used in the Grundig CUC series chassis - simplified circuit.
former goes missing so that less current is drawn the frequency of operation increases. The upper limit is 60 70 kHz , which equates with a remote control set in the standby condition or running the power supply with no load.

Note however that if all the rectifier diodes connected to the transformer's secondary windings are disconnected the result will be instant destruction of the power supply. This is because the transformer is without damping and the collapsing field is so large that the voltage pulses generated destroy T634 and the i.c.

In the event of the drive coupling capacitor C631 going low in value the i.c. will shut down: it will then cycle and keep trying to restart.

Further protection is necessary because the i.c. can operate effectively only with mains inputs between 165 V and 265 V . This protection is coupled with the start-up system. The i.c.'s supply pin 9 is provided with a start-up supply by D616. This supply is 9 V with an internal cut-off at less than 7V. Further protection is provided by the link to pin 5 via R632. If the voltage here is less than 2.2 V the i.c. shuts down. Because of the slow-start action the voltage across C633 does not initially reach 9 V : the i.c. will try to get going five or six times before the charge on C633 rises above 7V. Once the circuit has started up D633 charges C633 to just over 12 V .

Fault Finding

So much for basic operation, now for fault conditions. With all chassis that use this type of circuit the charging resistor connected to pin 4 of the i.c. is notorious. If R646 goes high in value or open-circuit T634 is left switched on and instantly turns into a piece of wire. If C646 goes opencircuit switching will occur at a very high frequency - too fast for the i.c. to regulate - and T 634 will turn into a heating element before again turning into wire. C631 or R631 open-circuit will cause the power supply to shut down and hunt, as will C633 low in value or D633 opencircuit.

Checking is best done in a systematic fashion as follows: (1) Check the voltage at pin 9 of the i.c. To start up it must be greater than 7 V and for normal running it should
be 12 V . If it's at 40 V the i.c. is open-circuit.
(2) The voltage at pin 5 (safety circuit) of the i.c. must be greater than $2 \cdot 2 \mathrm{~V}$.
(3) During start-up 4 V squarewave pulses should be present at pin 1 of the i.c.
(4) Check that a squarewave of greater than 1 V is present at pin 7 of the i.c. and the base of T634.
(5) If still in doubt check the frequency at which the power supply is running.

Some Symptoms

Finally a résumé of symptoms with the power supply running.
Uncontrollable h.t.: D647 or C647 leaky or open-circuit. Intermittent start-up from cold: C633 low in value (it was increased to $220 \mu \mathrm{~F}$ in later production) or R647 intermittently open-circuit (faulty connecting rivet, usually with 110° remote control sets).
Relay on 110° remote control sets chatters at switch on: R647 faulty.
All components in the power supply o.k. but won't start up: One of the diodes fed from the transformer's secondary windings short-circuit.
Screen patterning which varies in frequency with the brightness/contrast: H.T. or l.t. reservoir capacitor opencircuit, i.e. 35 kHz ripple on the l.t. line.
Set intermittently goes to standby (C range remote control models): D661 going high-resistance. Replace R661 at the same time and upgrade D661 to a Motorola MR824-400 or Siemens GI824.

D634 and R633 should be checked whenever it's necessary to replace T634. If T634 goes short-circuit base-tocollector C631 and the i.c. should also be replaced.

Voltage Conditions

All voltage checks on the primary side of the power supply circuit are with reference to the -300 V line, i.e. the negative side of C626: all voltage checks on the secondary side of the circuit, including the setting of R647, are with respect to chassis.

The Development of Colour Tubes

Part 2

Eugene Trundle

Last month we provided a brief outline of colour tube evolution, looking at the main features of successive types of tube. We intend next to consider in greater detail the various items that go to make up a tube and its deflection system. The best place to start is where the beams themselves do, at the electron gun.

The gun is an assembly of electrodes that produce, modulate, accelerate and focus an electron beam. The electrons that go to make the beam are produced at the coated surface of the cathode, as a result of thermal agitation caused by the heating element inside. The beam is controlled by the grid (really a cylinder or plate with a pinhole in its face) and accelerated towards the screen by a series of cylindrical anodes which together form an electron lens. We should perhaps qualify the phrase "controlled by the grid". The beam is modulated by varying the voltage applied between the cathode and the grid. So we can hold the cathode at a fixed voltage and vary the grid voltage or hold the grid voltage steady and vary the cathode voltage. The latter technique is generally used.

Heater-cathode Assemblies

The heater is a spiral of tungsten wire coated with an insulating layer of alumina (aluminium oxide). The first colour tubes used gun assemblies similar to those in contemporary monochrome tubes, and for many years each colour tube heater drew 300 mA at 6.3 V . The cathode assembly was large and thermally inert, taking some thirty seconds to reach operating temperature. Modern heater-cathode assemblies are very small and light, with a typical energy requirement of 33 mA each, corresponding to about 0.65 W - see Fig. 14. The active part of the heater is concentrated in the "hot spot" immediately beneath the centre of the small, light cathode. This runs cooler than a conventional cathode while the operating temperature is reached in about five seconds - the normal operating temperature for a tube cathode is around $1,100^{\circ} \mathrm{K}$. The cathode is coated with oxides, typically of barium and strontium, which at high temperatures are prolific emitters of free electrons.

The grid, still sometimes called a Weinhelt cylinder, is a cup-shaped nickel shroud or plate. For small spot size its central hole is of typically 0.5 mm diameter. For high gain, i.e. lowest voltage drive requirement, the grid-cathode spacing when hot is around $0 \cdot 1 \mathrm{~mm}$ - not a lot!

Electron Lens

In an optical lens system the paths of the light rays are modified by the characteristics of the glass through which they pass. In manipulating an electron beam the same

Fig. 14: Progress in heater-cathode design. Left a $2 W$ assembly, right the 650 mW type.
effects are achieved by electrical fields produced by (usually) cylindrical anodes - hence the term electron optics. Except in the Trinitron, separate lenses are provided for each of the beams in a colour tube, whether the tube has separate (delta, 20AX and 30AX) or unitised (PIL, 45AX etc.) gun assemblies. In the description that follows we are concerned with focusing an individual beam to form a sharp spot at the tube's phosphorescent screen. Aiming the three separate beams so that the coloured images they produce overlay (convergence) is a deflection rather than a focusing process and will be dealt with separately.

Effect of Potential Gradient

Lines of electric force exist in the space between two electrically charged plates, each line forming an imaginary voltage boundary in similar fashion to the contour lines on a geographical map. When an electron, which has a negative charge, is present in this region it will be attracted to the positive plate. If it's travelling through the lines of force however (see Fig. 15) the effect will depend on its direction. When the electrons in a beam are travelling up a potential gradient, i.e. through regions of increasing voltage, the effect will be to straighten the beam and direct it at right-angles to the lines of force. The electrons are accelerated and set on a converging path to form a point of focus at some plane beyond the lens. Conversely when a beam is travelling through a field of decreasing electrical strength, i.e. travelling down a potential gradient, the electrons will experience a lateral deflection force that tends to align them with the lines of electric force.

Unipotential Gun

A simple electron lens system is shown in Fig. 16. After leaving the cathode the electrons travel on a diverging path through the pinhole in the cylinder grid and are then rapidly accelerated by the high voltage applied to the first anode. The cathode-grid-first anode combination forms a strong positive lens (steep potential gradient) that brings the beam to a point of sharp focus in the vicinity of the first anode disc. This region is often called the prefocus lens, and since the spot at the tube's screen is an image of this beam crossover point it's important to have minimum aberration here.

After passing through the first anode disc the diverging beam is greatly accelerated by the second anode which, like the fourth anode, is at the full e.h.t. potential. As it approaches the third (focus) cylinder, which has about 500 V applied to it, the beam finds itself travelling down a potential gradient. As a result, it decelerates and diverges. It soon comes under the influence of the fourth (final) anode which produces an increasing potential gradient, sending the outer electrons in the beam on a converging path, the focal point being at the screen. The A3 (focus electrode) region is called the main lens: its focal point can be varied by adjusting the voltage applied to this electrode. This is the principle of the unipotential lens, as used

Fig. 15: Electron trajectories through electric fields. The electron travelling to the left is decelerated and takes a divergent path. That travelling to the right is accelerated and aligned along the axis of the cylindrical electrodes.

Fig. 16: Unipotential electron gun.

Fig. 17: Bipotential electron gun.

Fig. 18: Hybrid lens with coupled unipotential and bipotential sections.

Fig. 19: Multistage system consisting in effect of three bipotential lenses in series.
in monochrome, many Trinitron and some types of deltagun tubes. They are characterised by a low and noncritical focus voltage which is sometimes provided by fixed voltage taps rather than a potentiometer.

Bipotential Gun

The widely used bipotential gun system requires a focus voltage approximately 20 per cent of the final anode voltage. See Fig. 17. Here the focus anode (A2) comes directly after the first anode and takes the form of a long cylinder, often with its rear end protruding into the cupshaped first anode to give a steep potential gradient at this point. The final anode A 3 , at about 25 kV , gives the
electrons in the beam tremendous acceleration and sets them on a converging path.

High Bipotential System

A refinement of the bipotential lens system is the highbipotential focus (HBF) system in which the focus cylinder (A2) is made much longer (hence a longer gun and neck) to form a weaker lens with less beam aberration. This involves the use of a higher focusing voltage (between 27 and 32 per cent of the e.h.t. potential) and is capable of better performance. It's used in certain 90° PIL type tubes and also in 30AX tubes, which accounts for the longer tube neck and higher voltage requirement for these compared to the 20AX.

Multi-lens Systems

There are more elaborate electron-lens systems in which multistage (compound) lens principles are used. A hybrid lens is formed by coupling a unipotential lens to a bipotential type, see Fig. 18. A multistage focus system can be made up as shown in Fig. 19. These more elaborate gun systems are generally required only for high-definition tubes with small screens, though consumer tubes with large deflection angles and narrow necks sometimes use them to compensate for the necessarily small lens diameter in mini-neck (22.5 mm) systems - as in light optics, the larger the lens diameter the better the performance.

Refinements

Since the lenses in modern tubes are side-by-side the diameter of each is limited to slightly less than one third of the internal diameter of the tube neck. In their 45AX system Mullard/Philips use a specially designed unitised gun incorporating an aberration reducing triode (ART) focusing system. With this the prefocusing lens is designed so that the aberrations in the cathode image, prefocus and main lens partially cancel each other: the main lens is a high-bipotential type requiring 31 per cent of the e.h.t. potential - approaching 8 kV .

The design of the electron gun varies considerably between different manufacturers and depends on many variables - screen size, neck diameter, phosphor dot pitch and particularly the yoke characteristics. Sometimes the gun is called upon to predistort the beam shape to compensate for deflection distortion: this can be achieved by providing slit apertures rather than circular holes in certain of the gun's electrodes.

Neck Diameter

The choice of tube neck diameter is a very difficult one. A wide neck (36.5 mm) permits relatively large diameter electron lenses for minimum spot size and least aberration. The widely spaced beams are difficult to converge however, since they take such different paths through the deflection field. Much deflection power is needed to generate the required field strength in the large neck cross-section, particularly with wide-angle tubes. Narrow neck (29 mm) and mini-neck (22.5 mm) tubes require much less deflection energy and their closely spaced beams need less convergence correction. Their necessarily small diameter electron lenses do not make for a small spot size however, hence the multistage focus lenses described

Fig. 20: The three sizes of gun for in-line tubes - 36.5, 29 and 22.5 mm . Note that the gun on the right has a multistage electron lens.
above. New electron lens technology permits the effective lens discs to overlap each other however. In this way the 5.5 mm lens diameter typical for a 29 mm neck is effectively increased to 8.2 mm (plus 50 per cent). Similar improvements have been made in mini-neck guns. Fig. 20 shows the three basic gun types - large, narrow and mini.

Gun Flashover Protection

Two main flashover phenomena exist in a picture tube. They show up mostly during the first few hundred hours of operation. The rocky-point discharge (as it was called for many years) is due to high electrostatic field strength at a micro-protrusion on an electrode. This can break down the vacuum insulation to an adjacent electrode, the result being sparking. The likelihood of this is reduced by providing a high surface finish to all electrodes, by rounding the ends of anode cylinders (see gun on left in Fig. 20) to prevent steep voltage gradients, and by spotknocking - the deliberate use of excessive voltage to induce flashovers and break down micro-protrusions.

The second main cause of flashovers is called the trigger arc and arises from a complex insulator charging phenomenon. It takes place on the inside surface of the glass neck, or more commonly on the multiform glass rods that support and space the gun electrodes. To prevent it the glass rods are fitted with an electrically floating conductive path or a wire conductor from a nearby anode. This prevents the build-up of high static charges and forestalls trigger arcing. The wires around the two support beads can be seen on the gun on the right in Fig. 20. More flashover-reduction technology will be described later in this series.

Neck Magnets

On their journey through the tube's neck the beams encounter a series of carefully tailored fields produced by
permanent magnets whose function is to prealign the beams so that they enter the deflection region correctly aligned and at the right angles. With in-line tubes the fields are provided by pairs of ring magnets which are adjusted and sealed by the tubemaker or at the TV factory.

Purity

First we must orientate all three beams so that they pass through the points in the deflection centre corresponding to the positions of the light sources used to fix the phosphor on the screen. This requires a pair of two-pole ring magnets, see Fig. 21, by means of which the strength and direction of a simple vertical field can be set to move all three beams together horizontally so that they strike the correct phosphor stripes. This is the purity adjustment of course.

Static Convergence

Since the centre beam (which we'll assume to be green) is always on the tube axis it undergoes least geometrical distortion in the scanning process and can be likened to the single beam in a monochrome tube. The images formed by the two outer beams, blue and red, are made to conform to that of the green beam in the convergence process, so the magnetic fields generated by the other rings (the static convergence rings) are designed to affect only the paths of the outer beams - no flux is set up at the tube's axis, so the trajectory of the centre, green beam is not affected.

To align the blue and red rasters so that they overlay the green raster exactly we need complete control over the positioning of the outer beams. First comes a pair of four-pole ring magnets (Fig. 22). Both are identical, so that by rotating them with respect to each other the effective fields can be cancelled or doubled to get the required field intensities: the direction of the fields thus established can be adjusted by rotating both magnets together. As the intensity of the four-pole fields is varied the outer beams are moved differentially in a horizontal plane: as the direction of the four-pole fields is varied the outer beams are moved differentially in a vertical plane. Thus by relative and co-adjustment of the four-pole rings the blue and red beams can be superimposed to give a magenta cross at the centre of a crosshatch display. This will not necessarily coincide with the green cross however, and this where the third ring magnet pair comes in.

The correction fields required this time come from a six-pole ring magnet pair. Once again the strength and direction of the fields can be set by relative and coadjustment of the two rings as described for the four-pole pair. The six-pole pattern is shown in Fig. 23, where it can be seen that the outer beams only can be deflected together in the vertical and horizontal planes as required. This superimposes the magenta on the green cross at screen centre to complete the static convergence process.

Fig. 21: Effect of a two-pole ring magnet.

Fig. 22: Effect of a four-pole ring magnet.

[043]

Fig. 23: Six-pole field pattern.

Fig. 24 shows the order of the ring magnets on the neck of a typical PIL type in-line gun tube (Hitachi).

Raster Symmetry Magnet

The same two-, four- and six-pole fields are used with 20AX tubes. Also required is an additional ring magnet pair with a two-pole field to generate horizontal lines of force to deflect all three beams vertically. This raster symmetry control compensates for any curvature of the

Fig. 24: Assembly of magnets on the neck of a 90° PIL type colour tube.

Fig. 25: Multipole cluster on the neck of a 20AX tube, showing the effects on the electron beams.
horizontal centre line of the raster due to the barrelshaped vertical deflection field acting on an off-centre beam formation - the three individual guns used in this type of tube cannot be assembled and positioned with as much accuracy as with a unitised gun system.

The 20AX multipole assembly, as the ring-magnet cluster is called, incorporates gearwheels to give automatic contra-rotation of each ring pair, with the gearwheel frame rotatable by a second lever in each case. This greatly simplifies purity and convergence adjustments on the rare occasions when they're required. The sequence and effect of the ring magnets in the 20AX system is shown in Fig. 25.

Internal Magnet System

In later Mullard/Philips designs the multipole assembly is dispensed with altogether. The 30AX (triple gun) and 45AX (unitised gun) tubes have a single magnetic ring mounted at the end of the gun assembly. At a late stage in manufacture all beam-alignment tolerances are taken up by a computer-controlled magnetising jig which prints into the ring a combination of two-, four- and six-pole fields to bring beam alignment to centre tolerance. This not only eliminates all manual adjustments on the tube neck but also permits any $30 \mathrm{AX} / 45 \mathrm{AX}$ deflection yoke (of the correct type for the tube size) to be used.

Red Gun Centre

Note that with some PIL type tubes the red gun is the centre one.

Next month we will be considering deflection yokes.

Servicing the Panasonic NV7000

David Botto

We've handled a fair number of these popular VHS machines which enjoyed a wide sale. Before tackling any repairs you'll find a little time studying the circuitry a good investment. We'll consider the various sections of the NV7000 and some of the fault conditions that can occur.

Access

To gain access for servicing is straightforward. First remove the two non-magnetic screws from the cassette cover. These are special screws, so be careful not to lose them. Next remove the two screws at the top corners at the back of the machine. You'll then be able to lift off the whole top portion of the case. Should you need to remove the bottom metal plate to expose the printed boards at the bottom of the case, place the machine upside down on a soft surface, remove the six screws that hold the plate and lift it away. Of the two PCBs thus exposed the smaller is the servo and subsystem control board and the larger the luminance and chrominance signal processing board.
To open the bottom printed panels remove three screws at the front and three at the rear. These screws are usualy reddish-gold, making them easy to identify. By pushing back the front of the boards to clear the knobs and jacks etc. the boards are freed and can be swung outwards (hinged at the rear of the machine) for inspection. To remove the VCR's front panel - don't do this unless it's essential - remove three screws at the top and gently ease the panel off. It's best to start by removing just the cassette cover and top casing however.
In servicing these VCRs a special rubber bench mat, such as those supplied by Philips, RS Components, etc., is almost essential to avoid scratching or damage to the machine. You'll also find that a special magnetic screwdriver speeds things up and avoids screws being dropped into sections of the machine where they are difficult to retrieve.

Power Supply Arrangements

Looking into the top of the machine with the top casing removed you'll see the power supply board (VEP0177A) mounted upright at the rear left-hand side. A plate behind it holds IC1501 (HA17806) and transistor Q1501 (2SA1061).
The power supply circuit, together with operating voltages, is shown in Fig. 1. The mains supply is fed via the power switch at the rear of the machine to connection points 13 and 14 on the panel, passing via the fuse, filter coil L1001 and connector P1008 to the mains transformer T1001 which has its windings so arranged that selector S1002 can provide adjustment for inputs from 110 V to 240 V a.c. - always check that the setting is correct.

T1001 has three secondaries providing a.c. outputs of $20 \mathrm{~V}, 12 \mathrm{~V}$ and 38 V which are fed back to the board via connector P1007.
The 20 V a.c. supply is fed via fuse F1002 (4A) to D1006 which produces 20 V across C1007 and bridge rectifier D1001-4 which produces approximately 18.3 V across C1002.

The voltage across C1002 is applied to two separate regulators. First Q1003 whose base voltage is held steady by zener diode D1015. The voltage at the emitter of Q1003 goes to pins 6 and 7 of P1002 and via D1008 to pin 1 of P1003. Secondly Q1501, via P1001/1, which produces a stabilised 12 V supply at its collector. This voltage is present at P1001/5 and at pins 1-4 of P1004. The base of Q1501 is driven by a conventional control circuit whose main elements are Q1001, Q1002 and zener diode D1012. Preset R1007 provides adjustment. To set up, connect a digital voltmeter between the 12 V line and chassis and adjust for exactly 12 V with the machine in the stop mode. Recheck after half an hour. Get it accurate to within $0 \cdot 1 \mathrm{~V}$. Always check this voltage before tackling obscure faults.
The 12 V at pin 1 of P1003 goes via pin 1 of connector P1507 to power switch S 1507 on the power/timer/NR select board which lives at the right-hand side of the front of the machine, behind the front panel. The switches on this little board are operated by three small pushbuttons on the front right-hand side of the machine. Pins $6 / 7$ of P1002 supply pin 1 of connector P704 on the TV demodulator section board which is on the extreme right looking into the top of the machine.
The regulated 12 V supply at P1004 goes to various parts of the VCR as follows. Pin 1 feeds pin 2 of connector P3007 on the luminance/chrominance board. Pin 2 feeds pin 1 of connector P2005 on the servo and subsystem panel. Pin 3 supplies pin 2 of connector P6203 on the system control II board. Pin 4 supplies pin 2 of connector P704 on the TV demodulator section.
The unregulated 20 V supply produced across C1007 passes via pins $4 / 5$ of connector P1006 to pin 3 of connector P2005 on the servo and subsystem control board and pin 1 of connector P6203 on the system control II board (this board is cunningly folded together with the system control I board and hidden inside the machine on the right-hand side, under the two main bottom PCBs the larger is the I board and the smaller the II board). The 20 V supply is also fed via the $4.7 \Omega, 10 \mathrm{~W}$ resistor R1501 and connector P1006/3 to pin 2 of connector P2005 on the servo and subsystem board.
The 20 V a.c. winding on the transformer also supplies pins $1-2$ of P1006. This supply goes to pins $1-2$ of connector P3008 on the luminance/chrominance board, emerging from this board at pins 1-2 of connector P003 to power the PTC heater inside the little cast fitting near the back of the video heads.
The output from the 12 V winding on T 1001 is fed via F1003 (1A) to a second bridge rectifier, D1009-10, which develops 12 V across the reservoir capacitor C1013. This supply goes to pins $5-6$ of connector P1004. Pin 5 supplies pin 1 of connector P1515 on the power transistor panel while pin 6 supplies pin 4 of connector P7501 in the timer section. It also goes to pin 4 of connector P1001, then to regulator IC1501 whose 6 V output appears across C1027. This supply goes via P1003/2 to P7501/5 in the timer section. It's also reduced to 5 V via D1007 and is then fed via P1003/3 to P6001/1 on the system control I board.
The output from the 38 V winding on T1001 goes via

Fig. 1: Power supply circuitry used in the Panasonic NV7000.

F1004 (0.5A) to P1002/3 and to the full-wave voltage doubler circuit D1013/4/C1021/2. This produces 45 V across C1021 and -45 V across C1022. The positive supply goes via P1002/1 and 2 to power switch $\$ 1507$ on the power/timer/NR select board. The negative supply goes via P1002/4 and 5 to P7501/3 on the timer section. The timer board can be seen from the top of the machine to the left of the TV demodulator section with the case removed.

Connector P1005 simply connects the chassis side of the power supply to all the various boards to ensure that all chassis connections are linked.

An appreciation of the power supply and its various outputs helps a great deal when servicing the NV7000.

Power Supply Faults

A completely dead machine showing no signs of life can simply be due to failure of F1001 - it tends to die of old age. In this event fitting a new fuse will restore operation. If F1001 is blackened check the filter capacitors C1028 ($0.047 \mu \mathrm{~F}$ mylar) and $\mathrm{C} 1001(0.0047 \mu \mathrm{~F}$ ceramic). These are usually extremely reliable but they have been known to go short-circuit.

If F1001 is in order and the machine is dead or not operating on all functions check fuses F1002-4. Before going on to check for the causes of involved faults do first ensure that the correct voltages are present at all the power supply outlets.

Regulator IC1501 sometimes fails, producing an upwards voltage surge on the 6 V line. Protection diode D7542 (QA107R) on the timer board, just in front and paraliel with IC7505, then goes short-circuit - probably permanently. With a new regulator and the 6 V supply restored the machine will work normally with D7542 snipped out. Don't be tempted to leave it out - if IC1501 should fail at a later date the damage could be extensive. D7542 is a special zener diode and the correct replacement type from Panasonic must be used. When fitting, also test diode D7536 (EM1Z) on the timer board - at the right-hand side of connector P7509.

When the 12 V regulator transistor Q1501 goes shortcircuit the 12 V supply becomes an $18-22 \mathrm{~V}$ supply (this often happens when there's a tape in the machine). When you now press the play button nothing happens except that a rather interesting te-chunk, te-chunk noise is heard coming from somewhere inside the machine. Fortunately the excess voltage doesn't seem to do much harm. Just the same, disconnect the machine from the mains supply quickly, replace Q1501 and be sure to test transistors Q1001/2 and diodes D1011/2. With the regulated 12 V supply restored and set up correctly you'll usually find that all functions are operating normally.

Component Tester Checks

The fast easy way to check all power supply components is with a component tester (see Television, June
1984). With the mains supply removed and the plugs disconnected from the power board you can effectively test every transistor, diode and capacitor in minutes.

Programmable Timer Board

We'll look now at some of the boards that have given us problems, starting with the programmable timer board. First ensure that all the supply voltages are present and correct. Measured between connector P7501 and chassis you should get readings of 3 V a.c. at pin $2,-45 \mathrm{~V}$ at pin 3 , 12 V at pin 4 and 6 V at pin 5 .

The usual cause of failure on this board, giving rise to various weird symptoms, is a faulty microcomputer chip. There are two, IC7505 (MN1400VL) and IC7506 (MN1405VM). A logic probe is ideal for fault tracing on this board: Table 1 shows the readings to expect at the pins of IC7505/6.

Before fitting a new microcomputer chip it's a good

Table 1: Microcomputer pin conditions.

IC7505		IC7506	
Pin	Reading	Pin	Reading
1	OV	1	OV
2	L	2	L
3	L	3	L+P
4	L	4	H
5	H+P	5	L
6	$\mathrm{H}+\mathrm{P}$	6	L
7	$\mathrm{H}+\mathrm{P}$	7	L
8	$\mathrm{H}+\mathrm{P}$	8	L
9	$\mathrm{H}+\mathrm{P}$	9	L
10	$\mathrm{H}+\mathrm{P}$	10	L
11	$\mathrm{H}+\mathrm{P}$	11	L
12	$\mathrm{H}+\mathrm{P}$	12	L
13	L	13	H
14	L	14	L
15	H	15	L
16	H+P	16	L
17	Slow pulse	17	L+P
18	L+P	18	P
19	H+L+P	19	P
20	$\mathrm{H}+\mathrm{L}+\mathrm{P}$	20	Slow pulse
21	L+P	21	$\mathrm{H}+\mathrm{P}$
22	H+P	22	L+P
23	$\mathrm{H}+\mathrm{P}$	23	$\mathrm{H}+\mathrm{P}+\mathrm{L}$
24	L	24	$\mathrm{H}+\mathrm{P}+\mathrm{L}$
25	L+P	25	L+P
26	L	26	L+P
27	H	27	L
28	H	28	H
29	L+P	29	H
30	H+P	30	L+P
31	$\mathrm{H}+\mathrm{L}+\mathrm{P}$	31	L+P
32	H+L+P	32	L+P
33	H+L+P	33	L+P
34	H+L+P	34	L+P
35	H+L+P	35	$L+P$
36	H+L+P	36	L+P
37	H+L+P	37	L+P
38	H	38	L+P
39	5 V	39	5 V
40	H+P+L(osc.)	40	H+P+L(osc.)

Notes: $\mathrm{H}=$ high, $\mathrm{L}=$ low, $\mathrm{P}=$ pulse.
Taken with front on button pressed but no function button pressed. Clock operating normally, reading Sun 1-07 when the readings were taken.
idea, after carefully removing the old one using a small, temperature-controlled soldering iron and good quality desoldering braid, to fit a forty-pin holder. If the fault should turn out to be elsewhere you can then easily replace the original chip - besides, it might fail at a future date...

If things seem to be otherwise in order but the clock display is rather strange the usual cause is one of the TA57 i.c.s (IC601-3). Check them with your logic probe or by replacement. There are four DN852 i.c.s on the board, IC7501-4, but we've so far never had any problems with these.

After you've carried out any repairs necessary on this board always check fuse F7601 (1AT). The clock will operate if this fuse is open-circuit but the back-up battery system won't.

The various diodes and transistors on the board can be quickly checked - they rarely fail - with your component tester. When testing be sure to desolder one end of each diode and two connections to each transistor. The small electrolytics dry up and corrode, causing mystifying faults, so examine them carefully for drying out.

Luminance/Chrominance Panel

Fortunately few problems occur with the luminance/ chrominance panel. When a fault does occur however it can be extremely puzzling due to the complex circuitry used. First a warning: don't disturb the highly critical adjustments on this panel unless this is absolutely essential - if you do you may well spend many a happy hour getting them right again!

A fault that can occur - first make sure that it's not due to the video heads - is the luminance being poorly recorded or not recorded. With a colour-bar input to the VCR, observe the waveform at TP3001 - all test points on this panel are clearly labelled. Use a $10: 1$ probe with the scope. You should see the complete picture signal. From here the signal goes via R3002 and C3002 to pin 1 of IC3001 (AN6310) which can fail - this i.c. contains the a.g.c., sync separator, f.m. modulator, clamp and emphasis clip stages. The signal emerges at pin 24 of this i.c. and goes via L3001/C3003 and C3005 $(0 \cdot 047 \mu \mathrm{~F}$, type VCY25473KX, order specially from Panasonic) back to pin 5 of the i.c. The output at pin 24 also goes via C3006, Q3031 etc. to pin 21, emerging at pin 22 and then going via the deviation control R 3019 and $\mathrm{C} 3018(47 \mu \mathrm{~F}, 6 \mathrm{~V})$ to pin 19. Make sure that C3018 has not dried out or lost capacitance. After passing through an internal amplifier the signal reappears at pin 18 and is then fed via a nonlinear emphasis circuit and emitter-follower to pin 16. After clamping the signal goes to the emphasis clip section (see Fig. 2). The white and dark clip presets are connected to pins 10 and 12 - both these adjustments are critical. C3022 between pins 13 and 14 provides frequency adjustment $(3 \cdot 8-4 \cdot 8 \mathrm{MHz})$. Understanding what happens in this i.c. is important when servicing the luminance/ chrominance panel. The output at pin 9 goes via C3025 to TP3009, where you should see the f.m. signal waveform (at approximately 5 V p-p), then via the record level preset R3025 to the record amplifier which consists of transistors Q3005 (2SC2377), Q3006 (2SC2206), Q3007 (2SB641) and the associated components. Should you ever need to replace any of these transistors (they rarely fail) do use exact replacements or you may get all kinds of puzzling results.

The chrominance circuitry is reliable and despite the numbers of these VCRs we've serviced not many prob-
lems have been encountered. IC8001 (AN6360), a device used in various VCRs, can fail however. Whenever we meet this i.c. we regard it with suspicion. Perhaps we've just been unlucky.

Record signals arrive at pin 1 of IC8001 via filter FL8001 (VLF0113), the playback signals going to pin 18 via FL8002 (VLF0085). These filters - there are a number on the board - sometimes cause problems, but check the soldered joints before condemning them. You should see the standard cotton-reel colour-bar signal with burst information at TP8001 (pin 7 of IC8001).

A good monochrome playback signal with no colour may mean that the a.p.c. preset (C8050) and/or the reference oscillator preset (C8024) needs very slight adjustment. Don't turn either of these to find out because if the fault should prove to be elsewhere you'll make yourself a lot of work. Insert a tape, switch to record and set the input select switch (front of the VCR next to the tracking control) to the camera position. Connect a digital frequency counter to TP8008 via a 10:1 probe. It should indicate 4.433619 MHz to within $\pm 50 \mathrm{~Hz}$ (the figure in the service manual, 4.435572 MHz , is incorrect). Next switch to the stop mode. With the counter connected to TP8002 a reading of $4.433619 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ should be obtained. If either or both of these frequencies is incorrect carefully adjust the preset capacitors as necessary. If the waveform at TP8002 is missing suspect IC8002 (AN6352). Before changing any i.c. on the board however always check the small surrounding electrolytics.

Puzzling effects can occur if one of the connector plugs on the board is not pushed right home into its socket. Check them all.

System Control Boards

The system control I board contains the microcomputer chip IC6001 (MN1400VP) together with a variety of i.c.s packed with logic gates, inverters and other types of logic, plus the usual diodes and transistors. The only practical

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:

BUSH T20/24 DECCA 80/100
 GEC STARLINE
 HITACHI ITT (full remote)

PHILIPS G8
PHILIPS GII PHILIPS KT3 THORN 9600 including TELETEXT
THORN 8800
THORN 9000
(remote)
(remote)
THORN TX
VHS VIDEO from $\mathbf{£ 8 5}$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit - we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

STOP PRESS
Electronic Video including Ferguson 3V29/30, Amstrad 7000, Sharp 9300, now in stock at unbeatable prices. We also specialise in direct loads delivered to your door direct from source.

For further details phone:
COLIN BROOMFIELD,

0UNIT 7, STATION STREET, BROMSGROVE, WORCS. (0527) 37037/71186
way to fault-find is to use a logic probe (see details given on pages $22-23$ in the November 1985 issue) after first checking the board's supply voltages. All sorts of interesting problems can occur, such as indicator LEDs flashing on and off when they shouldn't, functions refusing to

Fig. 2: Block diagram showing the luminance signal processing in the record mode.
work, motors turning on and off when they feel like it, etc. Often the fault lies in IC6001, but it can be due to a faulty logic gate or inverter in one or other of the various logic i.c.s. Favourite logic i.c.s to fail seem to be IC6002 (4081), IC6003 (4049) and IC6004/5 (both 4503s).

Interestingly, with so many of our customers owning NV7000s we've had no problems yet with the system control II board, nor with the little front panel that holds the selector switches operated by the front panel function select buttons.

In later models the system control I and II panels were replaced by a single board using a new specially developed microcomputer chip (IC6001, type MN1405VK). This seems to be more reliable that the system control I board microcomputer chip. You'll probably mostly encounter the two-board version however.

Audio and Still Boards

The audio board has not troubled us yet and we've only rarely had faults on the still board. This latter board contains mostly NAND, AND, and OR gates plus D-type flip-flops so you need use only your logic probe and for the individual transistors your component tester.

Servo and Subsystem Board

If the drum motor is running very fast indeed replace capacitors $\mathrm{C} 2033(0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$ ceramic) and C 2034 $(0.068 \mu \mathrm{~F}, 50 \mathrm{~V}$ mylar) connected to pins 14 and 13 of IC2001 (AN6350). When the motor won't lock in properly first check diodes D2009/10 (both type MA150) and capacitors C2036 and C2037 (both $0 \cdot 1 \mu \mathrm{~F}, 50 \mathrm{~V}$ mylar) connected to pins 11 and 9 of the i.c. If these components are in order you'll have to try replacing the i.c.

Other servo problems that cause failure of the drum motor to lock properly can be caused by IC2008 (μ PD4011C) which contains four NAND gates and is thus easily checked. Watch out for sneaky tricks caused by diode D2012 (MA165) which is connected between pin 2 of this i.c. and chassis.

Problems in IC2002 (AN6677) can result in failure of the drum to rotate. Check Q2019 (2SD389) first however.

If the capstan motor doesn't lock in correctly the suspects are IC2001, IC2004 (AN6341) and IC2007 (μ PD4528C). The quickest way to find out which is the culprit is by replacement.

Various Faults

When the tape loads and then immediately unloads after pressing the play button the loading belt is probably at fault. If you need to replace this belt it's best to fit a complete new set of belts to prevent future troubles.

Noise bands running up and down the recorded picture can be caused by a faulty tracking control - this is usually due to a heavy-handed user.
If the tape won't play make sure that the cassette lamp isn't open-circuit. I know that this is an obvious fault - but one can still get caught.

If the tape unloads when a cassette is played and the counter reads 0006 to 0007 it's possible that the Hall-effect i.c. (DN838) under the supply reel is at fault. It's best to replace this by cutting the legs off the old i.c., then soldering the new one to these - this is the official instruction we had from Panasonic. This is also a good place to say how helpful the engineers at Panasonic have
been whenever we've phoned them for advice. It's appreciated, believe me!

A much more likely cause of trouble when the tape halts at $0006 / 7$ is the capstan motor. These motors are expensive however. So carefully unplug the connector to the motor, unbolt and remove it from the machine. Take out the three screws that hold it together and separate the pieces. Don't lose any of the special parts that make up the motor. Lubricate the bearings with just the slightest trace of Castrol DWF lubricant. When reassembling lubricate the spindle - again the slightest trace - where it passes through the top plastic washer (this washer looks like an inverted top hat when removed from the motor). Don't push it down too far when reassembling. You'll nearly always find that the problem has been cured when the capstan motor is refitted.

The Heads

Provided they are regularly cleaned the video heads enjoy quite a long life. Clean the whole video drum thoroughly before condemning them - also the audio/ control and erase heads. Clean the entire tape path using only a proper video head cleaning kit and fluid. Good heads are easily ruined by incorrect cleaning materials.

A fair picture from a prerecorded cassette but a poor one from a recording made by the machine can be a sign of worn heads. You can check the heads by playing the Panasonic alignment tape (part no. VFM8100H3D) and observing the f.m. envelope at pin 10 of IC3002 (AN6320) on the luminance/chrominance board, using a scope with 10:1 probe. Make sure that the tracking control is in its fixed position. We find however that the best method, provided you've a spare drum to hand, is to try a new set of video heads. This is quick and reliable - it's done in minutes, just two screws and four soldered connections. The leads are colour coded, so it's difficult to wire them incorrectly. It's been done though! If you get a winding reversed you can end up with a nice monochrome picture, i.e. no colour.

It's always best to fit the correct heads supplied by Panasonic. You'll find it cheaper in the long run because with the correct heads fitted no or minimal adjustments should be necessary

Tuner/Demodulator Panel

The tuner never seems to fail but it can drift off tune after an hour or so. If this occurs first check for 12 V at pins 1 and 2 of connector P704 and 45 V at pin 4 . Then check D7011 (RD5•1EB) and D7013 (μ PC574JK), also transistors Q7007 and Q7019 (both type 2SA684). Another suspect is D7026 (MA150). On rare occasions IC7001 (AN5701) gives trouble.

A dusty picture in the E-to-E mode only is caused by a faulty r.f. booster unit (part no. ENPE702). Replace the unit, don't waste time trying to repair it.

General Advice

In conclusion I'll repeat my usual advice about applying a little circuit varnish to any joints you may have resoldered - but use a tiny brush to do so. The Panasonic alignment tape is well worth having as it will save you much time in servicing and any necessary adjustments. For voltage measurements I recommend using only an accurate digital multimeter.

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

TOSHIBA V9600

The picture is full of snow except for two inches or so at the bottom of the screen. This part is viewable but has no colour. The sound doesn't seem to be affected and the fault sometimes clears after a short run.

It sounds as if most of the f.m. envelope is missing in the fault condition - the machine is probably not lacing up correctly. When the fault doesn't clear while the machine is running it's possible that the back-tension pole is outside the tape. The pole is adjustable. Otherwise observe the lacing action with the cover off: the back-tension arm could be sticking up or reaching its stop before contacting the tape.

THORN 1590 CHASSIS

The problem is bottom fold-up and bent verticals. Also the picture rolls when the video content changes - adjusting the field hold control restores field lock.

Poor field sync can be caused by a number of things in this chassis: failure of the sync phase-spitter transistor VT8 or its base bias resistor R46 ($100 \mathrm{k} \Omega$); C1, C2 (both $10 \mu \mathrm{~F}$) or $\mathrm{C} 17(4 \cdot 7 \mu \mathrm{~F})$ in the a.g.c. circuit drying up; incorrect setting of the preset contrast control R2; or C36 $(4 \cdot 7 \mu \mathrm{~F})$ in the video driver transistor's base bias circuit drying up. Ideally you need a scope to check the vision detector's output (waveform B in the manual) - look at the quality of the field sync pulse. Careful examination of this will direct you back to the i.f. amplifiers or forwards to the video and sync departments. If the bottom foldover remains when the sync problem has been solved check the setting of the regulated l.t. supply then if necessary check the lower field output transistor VT20, the field scan coupling capacitor $\mathrm{C} 78(1,000 \mu \mathrm{~F})$, and C 80 (change to $10 \mu \mathrm{~F}$ if $25 \mu \mathrm{~F}$) in the field linearity feedback circuit.

SANYO VTC5300P

There are intermittent noise bars and field jitter. The noise bars usually start at the top of the picture: adjusting the tracking control removes them but they return soon after. The picture is otherwise o.k. I've gone through the setting up procedure in the manual several times and can't find anything wrong, though I did notice that the pinch roller is very sloppy on its spindle.

The pinch roller is given some play to enable it to align with the capstan shaft. If you've cleaned the heads, guides and entire tape path, set up the guides using an oscilloscope to view the envelope pattern with an alignment tape, and in particular checked and adjusted the backtension as specified, it's likely that the head disc itself is in need of replacement.

SONY KV1320B

The problem is foldover at the bottom of the picture. No adjustment of the controls removes this effect and I suspect a leaky capacitor in the field timebase. Any ideas?

First check that the h.t. voltage is correct - there should be 115 V at the emitter of the series regulator transistor Q903. If this is correct check the following electrolytics in the field timebase in this order: $\mathrm{C} 511(1,000 \mu \mathrm{~F}, 16 \mathrm{~V})$, $\mathrm{C} 506(33 \mu \mathrm{~F}, 16 \mathrm{~V}), \mathrm{C} 507(2 \cdot 2 \mu \mathrm{~F}, 10 \mathrm{~V})$. If the problem persists and adjustment of the vertical bias control VR503 doesn't clear it check the field output transistor Q901 (2SC867) and the driver transistor Q502 (2SC633A) for leakage.

ITT CVC2O CHASSIS

When this set is switched on with the correct h.t. setting there's no sound or picture, just a 1 kHz whistle. If the h.t. is increased and pin 3 or 4 of the TBA920 line oscillator chip is touched the set will start with the e.h.t. high (2830 kV). Backing this down to 25 kV will give normal operation.

The whistle you describe indicates that the line output stage is drawing no current. This is almost certainly due to lack of drive to the base of the BU208 line output transistor. First check the earthing of the line driver transistor's emitter (T13). This is connected to the metal chassis frame via a lug at the top left of the chassis. If this is o.k. the driver transistor itself is suspect - its collector voltage should be 117 V .

SONY SL5

When play is selected the machine shuts down, though the LED indicator remains lit. The fault can be cleared by turning the mains supply off and then on again - the machine will then operate normally for quite a time. The play solenoid has been adjusted and all belts and pulleys have been cleaned.

This symptom is normally the result of the threading ring failing to rotate. The cause could be belt slippage, failure of the capstan motor or a fault in the capstan motor's drive circuit. If the tape does thread up before deck shutdown, check the operation of the slack sensor lever and reed switch.

PANASONIC U1 CHASSIS

There's sound only on this set. I'm told that the picture sometimes appears but I've yet to see it.

The usual cause of this fault is failure of zener diodes D818/9. In this event the voltage at pin 9 of IC301 (TDA2530) will be in excess of $12 \cdot 6 \mathrm{~V}$. Replace both diodes (type QA106SB) and change their feed resistor R819 to $560 \Omega, 0.5 \mathrm{~W}$.

SANYO VTC5000

This machine is slow on rewind and stops before the tape is completely rewound, sometimes leaving a tape loop protruding from the cassette. If the reel brakes are held off manually the tape will fully rewind, though a little slowly.

The back end of the deck used in this machine is a fairly common source of problems. A complete cure will be obtained by replacing the reel motor and reel drive pulley unit and roughening the surfaces of the reel brakes. The parts required are not too expensive or difficult to fit.

283
Each month we provide an interesting case of $T V / v i d e o$ servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

As we said in test case 279 (March) the Hitachi NP8CQ chassis is very reliable. Even so, a dealer who looks after large numbers of these sets will inevitably see them in the workshop from time to time - and when they do come in they seem to have such interesting faults!

The set featured this month is an Hitachi Model CBP220. The fault seemed straightforward enough: the complaint was of a smeary picture and a technician was despatched forthwith to the address given. When our man arrived he found a very messy display on the screen. The picture was dark at the left, bright at the right and ill defined. It seemed certain that the c.r.t.'s cathodes were being modulated by a line-frequency sawtooth waveform and the most likely source of this was the line output transformer derived 180 V rail which powers the RGB output transistors. A $10 \mu \mathrm{~F}, 250 \mathrm{~V}$ electrolytic capacitor was dug out of the spares box and dabbed across points K2 (180V) and K3 (chassis) on the tube base panel. Hey presto!, our technician was rewarded with a clear, sharp and evenly illuminated picture. It was the work of minutes to remove the decaying 180 V supply reservoir capacitor C719 $(4 \cdot 7 \mu \mathrm{~F})$ on the main PCB and fit a new one in its place. Replacing the volume control potentiometer, which was found to be "çrackly", took somewhat longer!

Some money and a cup of tea changed hands and our technician went on to his next call. The next call after that was to the recently repaired Hitachi - "goes all bright with lines across the screen" was the telephoned complaint. When our technician returned the set was behaving itself and couldn't be provoked into the fault condition. After a careful check on the work just done and a look at the connections to the relevant pins (3 and 10) on the line output transformer he hoisted the set into the car and brought it back to the workshop.

The fault didn't show up till the set was switched on
next morning. The screen then lit up brightly, with prominent flyback lines: the brightness next fluttered up and down at random before the set returned to normal operation. During these capers the brightness control had very little effect. The workshop worthies hooked a meter to one of the tube's cathode pins and another one to the common first anode pin. The readings obtained were around 110 V and 500 V respectively, but the picture was now normal.

The set was powered once more after lunch and sure enough the high brightness condition had returned. A check on the meters revealed that the cathode and first anode voltages were both marginally lower than before. Excessive first anode voltage was thus ruled out as a cause of the fault, while the very slight reduction in cathode voltage could not have been responsible for such a large brightness increase. The only other relevant tube electrode seemed to be the grid, and since this is connected to chassis there's no circuitry to check. In theory an internal leak in the tube can cause this type of fault, but gridcathode leaks rarely appear from cold and disappear as the temperature rises - the opposite is usually the case.

As it turned out the tube was innocent though the root of the fault was not very far away from it. In fact the problem area is prominently shown in the June 1985 issue cover photo! See next month for the solution.

ANSWER TO TEST CASE 282
 - page 524 last month -

The poor trainee struggling with the Pye 725 would probably not have found the answer to his problem in his college courses. The set had come in because of an intermittently snowy picture, but on the bench the dominant symptoms were low h.t., a small fluttering picture and a squealing noise from the power supply panel - in fact from the mains feed choke L909.

Many checks had been made and all TechnoSupersleuth's suggestions had been followed up. The trainee was in fact wasting his time because there was nothing wrong with the set's power supply department, as he would have seen had he looked at the waveform at the anode of the rectifier/regulator thyristor D888. The waveform would have had big "bites" missing from it at each firing point of the thyristor. So would the waveform at the mains input fuse F913, where there should be a perfect sinewave.

It's a characteristic of this type of half-wave rectifying thyristor circuit that large, short-term gulps of current are taken from the mains supply. Fine on "raw" mains, though the electricity supply authorities don't like it, but in this case the supply was via a 200 W isolating transformer. Though this was theoretically adequate in terms of power rating it wasn't providing a "stiff" enough a.c. power source: the impedance of its secondary winding limited the charging current available for the h.t. reservoir capacitor C880.

The intermittently snowy picture? Bad joints at the front end of the vilion i.f. strip, as usual.

[^0] TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES
G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $£ 60$ plus full range of Thorn remote control including $\mathrm{T} / \mathrm{Text}$

^ DISCOUNT FOR QUANTITY *

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.
Open 6 days $9-5.30$ (later by appointment)

PHILIPS YEARS AHEAD THE CREDIT CARD CALCULAT SOLAR POWERED SEW PHILIPs SBC SO33 Solar \& Batery Powered Calculator	TOR £10.00
NEW PANELS C8 100K Pots on Panel \& Lead for 6 Push Button Unit K30 Mains Switch remote Ki5 Mains Switch remote K35 Aerial Socket and Plug in Lead to Tuner KT3-K.30 Slider Pots 4.7 ku 47 ku	$\begin{array}{r} £ 2.00 \\ 51.00 \\ 75 p \\ \varepsilon 1.50 \\ 20 p \text { exch } \\ \hline \end{array}$
LARGE Foacs Pots. Fits Pye, GEC, ITT, Decca	50p
G8 Power Supply Panel THORN 4000 LOPT Panel THORN 9000 Line Panel THORN 8000-8500-8800 Decoder	$\begin{array}{r} \$ 4.00 \\ \$ 15.00 \\ \mathbf{1 2 . 0 0} \\ \$ 10.00 \\ \hline \end{array}$
Glass beads Diodes 200v/1.2A	25 for $£ 1.00$
GII IF Panel THORN 9600 Line Panel GII Decoder Panel POWER SUPPLY 731 GII 611 Condenser 470250 V ITT G9 Power Panel G8 Line Panel G8 6 Push Button	
KT4-KT3-K30 Handset Replacement HT520 METER 20,000 Fuse Diode Protector Logic Test Facility	¢8.00
9000 SERIES Decoder 01929014080 Thom	¢5.00
THORN TX remot panel. 51.C. ML.923-SLA90-MC145288-MC14493P.SL470 \& Main Trans	5 5 55.00
20AX GEC LOPT Panel with Split Diode LOPT Split Diode 2432871 RANK T20 Fouces Pot RaNK 718 Fous Pot THORN 9000 LOPT Panel 26° LOPT Split Diode 2432301 16" LOPT Split Diode 2433481 Ex Panel Split Diodes 2432871/2432981	
HITACHI Mains Switch	sop
HITACHL AE Sockel	30 p
1 CONDENSER Axail Leads 450 A/C $1200 \mathrm{D} / \mathrm{C}$	13 p
MAINS TRANSFORMER 240v in/20/8v	E1.00
GREEN FLAT, NEC, LED's	3p each 100 for $£ 2$
$12+12 V$ $2.8 V A$ Print $1^{\prime \prime} \times 1^{\prime \prime}$ $240 \mathrm{~V} \quad 50 \mathrm{HZ}$ $8+8 \mathrm{~V}$	$\begin{array}{r} 75 \mathrm{p} \\ 75 \mathrm{p} \\ \hline \end{array}$
HITACHI $6 \times 4-89$ Speaker ET596 UHF V/CAP Tuner, small FIDELITY Panels with I.C. FIDELITY LOPT Split Diode AT2076/80 FIDELITY FBS 1245AE LOPT Mono FIDELITY Split Diode FCC2015BE	
Hl-F1 MICROPHONE N8501 Philip	58.00
G8 TUNER V/CAP on Pane!	¢3.50
G8 SPEAKER	75p
*000 TRIPLERS	E.3,50
9,000 SPEAKER	E1.00
5 AMP METERS, AC, DC	¢2.00
THORN 9000 Sound OP Panel	E20]
ONE I.C K35 Decoder	27.00
THICK FILM, Hitachi RB. 32 4A	$\underline{22.00}$
K30 1F/K35 17	53.00
THICK FILM. Hitachi Frame	E5.00
THORN Lopi $8500-8800$	\&4.00
TX9 THORN Tuner Panel with ICS Pots	63.00
80Ω THORN Speaker	15 p
Split Diode 2433752	E6.00
BY223 Replacement	30 p
THORN CHASSIS $1600-1700$ Series Mono	$\underline{10.00}$
THOR 1900 Res \& Anode Cap	500
KT3-K30 Slider Pots 4.76.47kC	[1.00 for 10
ET-614 UHF VICAP Tuner	¢2,00
$6 \times 21 / 4$ SPEAKER SW Hilachi 89	500
K35 20 Tum Pors	60 each
HITACHI \& GEC 201k Pois	20 for ¢1.00
KT3 K 30 Speaker	3000
K 35 Sound OP Panel Pluy in	£3.00
K35 12 way Push Button Unit	51.50
K35 L.O.P.T. Spliu Diode.	86.00
RANK T20 Fronl Panel	£6,00
G8 6 Bution Unil New Tyre	¢9.00
6 Off LED DISPL.AYS, Mixed	£1.00
HAND SET TESTER, Infra Red	58.00
PHILIPS SBC 4712 Way Stereo Headphone with Volume Controls	817.00
AERIAL SPLITTER with filter	£1.00
DYNAMIC STEREO HEADPHONE EM 6146	\&10.00
PHILIPS UNI DIRECTIONAL Dvnamic Microophone	£10.00
PUSH BUTTON Mains Switch with Screw Holes Fixing	4 for El
PYE 713 Line Trans	\$4.50
PYE 731 Line Trans	c3.50
Sovv DIODES at 3 amps. Glass Beads	each 20 for $£ 1.00$
PYE 6 Touch Bution Unit for G1! with IC and Cable Forms KT3 Line Output Transformer	$\begin{array}{r} \$ 10.00 \\ \hline 5.00 \\ \hline \end{array}$

SENDZ components 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 8AF. SAME DAY SERVICE
 All items subject to availability. No Accounts: No Credit Cards. Postal Order/ Cheque with order. Add 15\% Vat, then \&1 Postage. Add Postage for Overseas. Callers: To shop at
 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992 open 9-1/2.30-6. GVMT + school orders accepted on ofticial headings. Add 10% handiling charge.

that there is a real difference at Cricklewood Electronics That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, compertive prices and service from the U.K.'s number one 100% component shop. No gimmicks, no gadgets o computers, just components, millions of them. all easily available by mail order. calling or credit card telephone orders. Just pick up the phone lor a pent to get you FREE copy now (no SAE required) You have nothing to lose

CRICKLEWOOD ELECTRONICS LIMITED

 40 Cricklewood Broadway, London NW2 3ETTel: 01-450 0995/01-4520161
Telex: 914977

HITACHI VHS COLOUR

 CAMERASMains Only Tested/ Working

VHS VIDEOS

FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P
Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" 20" 22" 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext Discount for Quantities
Complete loads delivered from pick up point

JOHN CARTER
 (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

CINEMAVISION

 PROJECTION UNITS$\star \star \star \star$

Philips, Grundig, Toshiba, National Panasonic and ITT. 40", $45^{\prime \prime}$ and $78^{\prime \prime}$ screens.
Floor and suspended models. New boxed and used. Quantity of test equipment.
Oscilloscopes, cross hatch - pattern - colour match - colour bar and signal generators.
Avo and Taylor test meters. Televerters slot meters.

RADIO TELEPHONE SYSTEMS

$$
\star \star \star \star
$$

John Carter (Electrical) Ltd., Furnace Road, Gallows Inn, llkeston, Derbyshire. Phone 0602303124

CHROMAVISION MANCHESTER and BIRMINGHAM 061-736 6333
 021-7842561

WORKING, NON WORKING + UNTESTED TV'S

AT LOW, LOW PRICES

 MOST MAKESTHORN, ITT, BUSH, PHILIPS, ETC.

WORKING SETS FROM E25.00 TELETEXT, REMOTES, BASICS ALSO COLOUR PORTABLES, NORDMENDE, T.X. ETC.

 CLOCK TRIMS FOR 3V16/22 VCRs $£ 2.00$ CASH ONLY CHROMAVISION, 95 LANEWORTHY RD, SALFORD, MANCHESTER M6 5PH

Open 6 days a week 9.30 a.m. -6.30 p.m. Sundays by appointment

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock Large Quantities of Late Model Thorn TVs. All with first class cabinets.
 TELE-TEXT/ULTRASONIC/INFRARED/REMOTES

All at UNBEATABLE PRICES for QUANTITY \& QUALITY
Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT

Some examples of QUALITY working TVs

$$
\text { THORN } 9600 \text { (full feature remote) } \star \text { £45 }
$$

 (VARIOUS MODELS)

NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.
1000s of UNTESTED Colour TVs
I.E. DECCA 30 s , GEC 2110, GRUNDIG, TANBERGS, G8s 520 s- 550 s, Thorn $3500 / 8000 / 8500$, TT, PYE, ETC. (Many of these untested TVs just switch on) ALL AT LOW LOW PRICES VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands
$£ 4.95$ Also Video Stands
POA Colour TV panels \& tubes available

CALLERS WELCOME

All prices subject to V.A.T.

Export Orders Welcome for those Countries using the P.A.L. System
419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501
 ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK. IF WE DONT STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.
TRANSISTORS - BIPOLARS - GERMANIUM AND SILICON
SMALL SIGNAL

SMAL SIGNAL
DARUNGTONS - ALL SHAPES AND SIZES
VHFNHF DEVICES - ALL SHAPES AND SIZES

FTIS - POWER MOSFETS UNIJUNCTIONS

DIODES - GERMANIUM AND SILICON RECTIFIERS AND BRIDGES OPTO-ELECTRONIC DEVICES LEDS OF ALL SHAPES AND SIZ THYRISTORS AND TRUACS - ALL

SHAPES

WIEGRATED CRRCUITS:

MICROPROCESSORS AND PERIPHERALS

$$
\begin{aligned}
& \text { THORN } 8800 \text { * }{ }^{*} \star £ 25 \\
& \text { THORN } 8800 \text { (remote) } * * * * * * * * * * \star \star \star \star \text { £ } 30
\end{aligned}
$$

$$
\begin{aligned}
& \text { THORN } 9000 \text { (remote) } \star \text { E35 }
\end{aligned}
$$

SICHT \& SOUND
 185 UTTOXETER ROAD, LONGTON, STOKE-ON-TRENT STOKE-ON-TRENT 0782335262
 Factory Reconditioned I G11
 Infra Red Video I T-20
 Cord Remote Video I THORN 9600
 Infra Red Video I G11 TEXT
 Cord Remote Video I COLOUR pORTABLES Basic Video I THORN 9000

FERGUSON 3V23
NAT-PAN 7200
NAT-PAN 366
HITACHI 8600
HITACHI
NAT-PAN 2010
D.I.Y. TV TUBE POLISHING
with our DIY Polishing Kit
The Kit includes everthing you need to polish approx. 25^{*} tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price E49 inc P\&P and VAT. Available from Luton only.
"Depends on depth and area to be polished. TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON
Quality, High Temperature Reprocessing

$\begin{aligned} & \hline \text { TUBE } \\ & \text { SIZE } \end{aligned}$	$\begin{aligned} & \text { DELTA i.a. } \\ & \text { A5II-10X } \\ & \text { A56-120x } \\ & \text { A66.120x } \\ & \text { A67-1200 } \end{aligned}$					
UP TO 20'	£30	£32	£40	¢44	£44	£58
UP TO 22'	£34	£36	f42	£46	£46	£64
UP TO 26"	£36	£38	¢44	£48	£48	£70

Tube types not listed, please enquire.
All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2 years.
Prices shown are for 12 months guarantee. All tubes exchange glass required, Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. From $£ 7$ per tube. 1 or 2 tubes $\mathbf{£ 6}$. 3 or more tubes RREE DELVERY* Nationwide delivery available, charges on application. Please add 15\% VAT to all prices. Callers welcome. Please phone first.

WELL VIEW

Open Mon-Fri 8am-6pm, Sat 9am-1pm. Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
H. K. Television, London, E.2. Tel. 01-729 1133.

West One Distributors Ltd., Gt. Missenden, Buckinghamshire. Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901
Rea \& Holland, Ipswich, Suffolk. Tel. 0473827562.
Phone between 12-2p.m., 8. 6-9 p.m.
WANTED A56/A66-510X/540X, Hitachi and Sony, old glass for cash
BOLTEN LTD.45/46 London House,
271, King Street, London W6 9LZ.Tel: 01-748 4137 (2 lines)Telex: 262421 BOLTEN G
Video Heads
Sony C5/C7/T7 $£ 31.95$
Ferguson/JVC (Universal) £30.95
National Panasonic (Universal) £30.95
National Panasonic (370/380) $£ 33.95$
Hitachi £33.95
Sanyo £44.95
Fisher VHS Genuine £51.95
Akai (most Models) £30.95
Sharp. £44.95
Heads suitable for many other Brands also available.Please call for full list.
Belt Kits (Most Models) £3.99
Remote Controls for T.V.Grundig/Philips.
\qquadVideo Cable Kit 16.95
(any model to any model) £7.50
Pinch Wheels (Various Models) £5.95
Please add 15% VAT plus $£ 1.00 p \& p$ per order.
Delivery within 7-14 days
subject to availability\square

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

OSCILLOSCOPES COSSOR CDU150. Dual Trace 35MHz Solid State.	Type CM6038-DB Crosshatch/Grey Scale/Blank ter. Mains or Battery. OWLY E12 ach (P8 P
Portable $8 \times 10 \mathrm{~cm}$ display. With Manual TELEQUIPMENT D61 Dual Trace 10 MHz With	ADVANCE AM/FM SIGNAL GENERATOR Type SG63a
	7.5-230MH2 ${ }^{\text {ADVANCE AM SIGNAL GENERATOR SG62B. } 150 \text { KH2- }}$
ADVANCE OS250TV. Dual Trace 10MHz With	
Manual... $£ 16$	ADVANCE AM SIGNAL GENERATOR SG62B. $150 \mathrm{kH2}$ 220 MHz $£ 45$
S.E. LABS SM111. Dual Trace 18MHz Solid State	ADVANCE AM SIGNAL GENERATOR Type 62.
10	
	$150 \mathrm{KHz}-220 \mathrm{MHz}$ \qquad PHILIPS WOBBULATOR GM2877S $5-220 \mathrm{MHz}$ \& 440-
LQUIPMENT D4	
	PROMPS WOBBUL... 1400
	LABGEAR COLOUR BAR GENERATOR CM6037 (PRPE4)
	VIDEO CIRCUITS V31A CRT ANALYSERBOOSTER (Scratched Case) \qquad
TELEQUIPMENT S43 Single Trace 25MHz With	
	WAYNE KERR COMPONENT BRIDGE B521 (CT375) 100uH 500KH: 1of 5 F. 1 milliom-1000Mohm
	$100 u H-500 \mathrm{KH} ; 1 \mathrm{DF}-5 \mathrm{~F} ; 1$ milliohm-1000 Mohm . E 35
lead	RACAL 32MHZ UNIVERSAL COUNTER TIMER Type 836 with Manual
	MARCONI TF2604 (Later version of TF 1041 VTVM) $20 \mathrm{~Hz}-1500 \mathrm{MHz}$ AC/DC/Ohms AC $300 \mathrm{mV} \cdot 300 \mathrm{~V}$
MULTINETERS FSD ...160	
	MARCONI VALVE VOLTMETER TF2600 $10+1 \mathrm{z}-10 \mathrm{MHZ}$1mV-300V FSD
	PHILIPS COLOURBAR GENERATOR type 5501
bove Items in	
not	PHILIPS COLOURBAR GENERATOR type 5508. Vibeo
AVO TEST SET No 1 (Military	TES FIELD STRENGTH METER type HC661 in CarryingCase (P\&P $\mathbb{C} 5$) ...to
Complete with batteries, leads	
AV0 Model $7 \times$. Comprete with battenes, leads \&	
carrying case .. $\mathbf{4} 40$	
AVO Model 73. Pocket Multimeter (Analogue) 30	
ages. Complete with batteries 8	NEW EQUIPMENT hameg oscilloscope 605. Dual Trace 60 MHz . Delay Sweep. Component Tester515 HAMEG OSCILLOSCOPE 203.5. Dual Trace 20MHz. component Tester All Other Models Available.
AVO 72 - Similar to above but no AC current	
range. With batteries \& leads.	
AVO TRNNSISTOR TESTER TT169 dled. GO/NO GO for In-situ Testing. Complete	
	BLACK STAR FREQUENCY COUNTERS P\&P
PROFESSIONAL $9^{\prime \prime}$ GREEN SCREEN MONTORS	Meteor 100-100MHz999
made by KGM for REUTERS Gives quality	Meteor $600-600 \mathrm{MHz}$.. $\mathrm{El2}^{126}$
alumn $\times 24$ line display. Composite video	
sed. Good condition OMLY E32	BLACK STAR JUPTTOR 500 FUNCTION GENERATOR. Sine/Square/triangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$. P\& P 84 E 110
out. Stze: W125	HUNG CHANG DMM 6010. $3^{1 / 2}$ dipit. Hand held 28 ranges including 10 Amp ACIDC. Complete with batteries \& leads. P\&P 44 E33.50
Owerty keyboard (as in Lynx Micro)	
	$\begin{array}{\|l} \hline \text { OSCILLOSCOPES PROBES. Switched } \times 1 ; \times 10 . ~ \end{array}$
Various 5 $1 / /^{\prime \prime}$ Floppy Disk Drives and Stepping Motors Available.	
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units $£ 12$. VAT to be added to Total of Goods \& Cariage.	
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL	
Telephone: 073468041 Callers welcome 9 am- 5.30 pm Mon.-Fit. (untill 8 pm Thurs.)	

CREWE WHOLESALE TV
77 COLERIDGE WAY, CREWE Tel: 0270582924

G11S working........................ $\mathbf{£ 5 0}$
GEC from $£ 11$ Delivered in Bulk
BUSH T2O T22 and 24s ITT CVC 20 Upwards Series 3 DORIC working \qquad from £40
Remote + Text Available Large range of
THORN from 8800 upwards. Price and availability on request CASH ONLY UNLESS BY PRIOR ARRANGEMENT
ALL PRICES + 15\% VAT

BRITAIN'S

 LARGEST SUPPLIERS OF Ex RENTAL TV \& VIDEOsOVER 1500 ARRIVING WEEKLY
Makes inc. PHILIPS, GEC, HITACHI, ITT, BUSH, PANASONIC, SONY, DECCA, FERGUSON, GRUNDIG etc.

COLOUR TV VIDEO RECORDERS

from $£ 5$
from $£ 40$

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

FRANK FORD

(TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

HOCKLEY DISCOUNT TELEVISIONS

We give "The Best Deals" that's why we have the cleanest reputation in the trade!!!

Prices start Working sets
From $£ 6.00$ From $£ 12.00$

OR

Lorry loads delivered from SOURCE

We have huge stocks of TV's + V.H.S. Videos to offer, including:-

Philips G8's, G11's
Thorn 8000, TX9,
Pye Solid State. 9000,9600, TX10,
Pye Chelsea Latest Hitachi G.E.C. Solid StateIT.T. CVC30, CVC45, Rediffusion Mkl, MkIII Bush T20, T22

ALSO
VIDEO + T.V. STANDS AVAILABLE!

DON'T HESITATE TO CONTACT US BECAUSE YOU WILL NEVER LOOSE!!

MIDLANDS BRANCH:-
Hockley Discount Televisions, 94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551-2233 - Ask for Jazz

NORTH-EAST BRANCH:-

Northern TV Distributors, Unit 2, Pert Court,
11th Ave, Team Valley,
Gateshead, Tyne \& Wear.
091-487-5389 - Ask for Joe

CentreVision

TEL: 0222-44754 SLOPER ROAD, LECKWITH, CARDIFF CF1 8AB OPPOSITE CITY FOOTBALL GROUND, 5 MINS FROM M4

FERGUSON VHS VIDEO

many electronic videos in stock MANY TOP QUALITY REMOTE CONTROL WORKING TVs PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS: MONDAY - FRIDAY 9.00-5.30; SATURDAY 9.00-1.00

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this pubilication are required to conform to the British Code of Advertising Practice. In respect of mall order advertisements where money is paid In advance, the code requlres advertisers to fulfil orders within 28 days, uniess a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proot of postage/despatch
as this may be needed. Mall Order Protection Scheme If you order goods from Mail Order advertisements in this magazine and pay by, post in advance of delivery. Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided
(1) You have not received the goods or had your money returned; and than 28 days the Publisher of Television summarising the situation not earlier from that day.
Please do not wait u保 tell you how to make your claim and what evidence of payment is required. procedure as soon as possible after the Advertiser has been declared bankrupt or
insolvent.
This guarantee covers cnly advance payment sent in direct response to an
advertisement in this magazine not for example, payment made in response to advertisement in this magazine not for example, payment made in response to
catalogues etc., received as a result of answering such advertisements. Classified catalogues etc., recelved as a result of answering such advertisements. Classified advertisements are excluded.

GRAND OPENING OFFER SUPER WORKING PANELS

P+P 1 PANEL $£ 1.75$

 2 PANELS OR MORE $£ 3.50$
N.B. All panels despatched by recorded delivery to avoid loss.

	IF	TUNER	DECODER		$\begin{aligned} & \text { UNE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS 6.8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	8.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
PHILIPS G11	$\begin{gathered} 14.50 \\ \text { WITH COMBNED } \\ \text { SOUND MODULE } \end{gathered}$		12.00		19.00	19.00	5.00	11.50		
DECCA 80	12.00	P0A	14.00		12.00	10.00		14.00		POA

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

N.G.T. COLOUR TUBES
First Independent Rebuilder with B.S.I. CERTIFICATION DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
* Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,
120 SELHURST ROAD, LONDON SE25
Phone: 01-771 3535.
25 years experience in television tube rebuilding.

SPECIAL ANNOUNCEMENT

From:
 NORGROVE TV TRADE SERVICES

Water Street, Birmingham B4 6BJ.
Hundreds of TVs and Videos arriving weekly. Available for sale to the trade.

Most makes in stock including the full Thorn range, RBM, Philips, Pye, ITT, Hitachi, Sony, Pansonic, Sharp, Sanyo, Decca and many others.

Spares available. Deliveries arranged. Export enquiries welcome.

OPEN SUNDAYS BY APPOINTMENT.
For quotation. Please ring:
0212369616

SETS \& COMPONENTS

NEW AND SECONDHAND COLOUR TV SPARES. Panels \& Tubes most makes also panel repair service. Tel. Southport (0704) 74411 anytime (24 hr).

GRUNDIG 2×4 SUPER VIDEO remote control VIF-K। with tele-pilot TPV355. Brand new, boxed $£ 12.95$ p\&p $£ 2$ (plugs straight in). STAN WILLETTS, 37 High Street, West Bromwich, West Midlands B70 6PB. Tel. 0215530186.

CASH PAID Now for your surplus TV spares, transistors, I.C.'s etc. Tel. MR. FORSHAW, 090229022.

SPECIAL OFFER New Samsung 14" TV tubes suitable for Fidelity CTV 14R etc and Ferguson TX9. £45 plus VAT complete with scan-coil. Telephone $020440918 /$ 025431934.

GENUINE GRUNDIG SPARES. Fast helpful service. Sensible prices. TELEQUIPMENT PHILIPS Oscilloscopes. Test equipment, manuals. OCHRE MILL TECHNICAL. Stone 0785814643.

REDIFFUSION SPARES AND PANELS for Mk3 and Mk4 etc, mostly new and refurbished. Approx. 25 large cartons. $£ 1,500$. TELESCENE, Notingham (0602 291665.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

NORTHERN IRELAND Mechanical videos, VHS, working. Telephone Keady 538604.

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp, fully refurbished. PEARSON TELEVISION 0484863489 . Delivery arranged.

WIZARD DISTRIBUTORS MANCHESTER

 TV \& VIDEO SPARESWe stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT.
FIDELITY SPARES MAIN DISTRIBUTOR Did you know we also stock FUSES TUBES AERIALS AERISTORS CAPACITORS CAPACITORS
VALVES HANDSETS I.Cs
TOOLS VIDEO LEADS VIDEO LEADS
AUDIO LEADS SEMCONDUCTORS SEMICONDUCTORS
SERVICE MANUALS
TESTEOUPMENT TVNIDEO TROLLEYS Counter open Monday-Friday 9am-4.45pm TRADE ONLY
EMPRESS STREET WORKS, EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060.

PRECISION VISION LTD.

For:
\star LATE MODEL USED COLOUR TVs
\star REFURBISHED TO HIGH STANDARDS
\star BECOME ONE OF OUR REGULAR
HIGHLY SATISFIED CUSTOMERS
\star EARLY COLOUR TVs FROM £5
Unit 10, Chilterm Business Centre, Garsington Road, Cowley, Oxford (next to B.L. Works).
Phone 0865711966

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40p per word (minimum 12

PRICE BUSTERS IN BIRMINCHAM FOR TESTED AND UNTESTED TV's AND VIDEO's ALSO AVAILABLE DIRECT LORRY LOAD RING - 021-772 2733 WILTSGROVE LIMITED
 (Next Door to UNCLE'S DISCOUNT STORE) 128-130 Ladypool Road, Sparkbrook, Birmingham B12 8JA. CASH ONLY "STOP PRESS" NOW IN STOCK ELECTRONIC VIDEO'S AT UNBEATABLE PRICES

STARLITE ELECTRONICS

WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238. EX RENTAL TVs UNTESTED FROM $£ 15.00$ WORKING TVs £20.00 RE-GUNNING TUBES

2 year guarantee
Most types available including Sony

T.V. SPARES, PANELS

 PHILIPS • GRUNDIGTELEVIEW 01-994 5537
194, Acton Lane, London W.4.

PHILIPS VIDEO SPARES

Model VR 2324. Brand new unused includes power supply tuner, timer clock, R.F. panels, cabinet, electronics only, no mechanism $£ 35$ inc VAT and postage.

EAST ANGLIA SUPPLIES (BARRY T.V. SERVICES)

 We specialise in late model televiSIONS AND V.H.S. VIDEOS.T.V.'s

G11's, KT3, K30, K35, CTX
Other makes available.
VIDEOS
Ferg 3V29, 3V30, 3V35, 3V36.
Nat Pan 2000, 2010, 333
Hitachi 8000.
Mitsubishi - various models
All items fully serviced and ready for sale or rent in excellent condition. Free delivery for sensible size orders (petrol only charged).

Phone today for prices and availability to CAMBRIDGE 69215

EERULCE PAGES

words), box number 70 p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 204B (H.H.), IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1' 9LS. (Telephone 01-261'5942).

COME OVER TO DATEL LTD. FOR GREAT DEALS ON SUPER SETS

> * 96 CHASSIS IN 5's $£ 25.00$ \star 9,000 CHASSIS IN 10's $£ 17.00 \star$ \star VHS VIDEO'S FROM £50.00 \star All Thorn range in stock from 8.8 to TX 10 Stereo Large stocks of working TV's and Video's. Phone or call in today. You won't be disappointed. Delivery to you can also be arranged.
Also complete postal service for all Thorn range of panels and spares. All panels and spares for mech. videos.
DATEL LTD.
0245469779
2 Oyster Place, Montrose Rd., Dukes Park Ind. Est., Chelmsford, Essex

FYLDE T.V. AND VIDEO DISTRIBUTORS Unit 7, Arkwright Court.
 Blackpool/Fylde Industrial Estate Very End of M55 left at roundabout.

UNLIMITED SELECTION OF
THORN 8800
PHILIPS G11
8800 R/C
9000
9000 R/C
GEC
9600 R/C
9600 TTX
JVC 20"
MONO's $20^{\prime \prime}+24^{\prime \prime}$

AND MANY MORE

TRADE WORKERS TO ORDER
PHONE BLACKPOOL
(0253) 64413

NORMAN ENTERPRISES LTD
 Weston-Super-Mare, Avon. Tel: 518335

Colour TVs fully engineered with a special care on tubes Hitachi 217 Remote Control $£ 85$ Thorne 9000 Remote Control $£ 42.50$ Pye G11 £47.50
Rank T20 $£ 42.50$
Pye Chelsea 6 Button....... $£ 27.50$
Pye 725 $£ 37.50$
Pye 721 ….................. $£ 27.50$
Thorne 9600.................. $£ 45$
Thorne 9200 $£ 42.50$
Bush T 20 Remote Control $£ 49.50$
Bush T24
. $£ 55.50$

ITT 20 INLINE TUBE $\mathbf{£ 4 5 . 0 0 ~ + ~ V A T . ~}$

All above prices include hand sets if available. Ready for sale.
Phone now, limited number each month. All the above off the pile, less a 3rd

```
IRISH T.V. DEALERS New re-gunning plant - TUBES -
Super View - Delta - In-line - PIIL. CHRIS KELLEHER'S T.V. Kanturk, Co. Cork
Lange stock G. 8 - Deccia - Ferg - T.V.'s UHF/VHF 029-50046 - Cash/Carry
```


B.G. COMPONENTS
 T.V. \& VIDEO SPARES

We supply spares for most makes including Sony and Fidelity all at competitive prices.
We also stock a comprehensive range of rebuilt C.R.T.'s including Hitachi and Sony.

Open Monday-Saturday.
Hill Street, Oldham OL4 2AG. 061-624 1753.

NORTH WEST ELECIRONICS 25 YEARS SUPPLYING THE TRADE

NEW TRADE SHOWROOM NOW

 OPEN. WORKING TVS AND VIDEOS ON SHOW.| | | | |
| :---: | :---: | :---: | :---: |
| | | | |
| Refurbished TV's | Annual Clearance Rock Bottom Prices | | Tide |
| BUSH T20/T26£45 | PYE Gll EXC CAB.£40 | PYE KT3.......... 850 | SHARPS 7300,8300 |
| Gl1£50 | HITACH1 191..........£20 | THORN 3000.......£7 | 93 |
| PYE KT3£65 | FERGUSON TX (NOT D.E.R. Etc.) 565 | GRUNDIG G415/4206 | VTIl, FERGUSON 3V29 |
| to | GEC 2010.......................... 20 | over 2000 in stock $\mathbf{~} 90 \%$ of our TV's Switch on) | (Not ExD.E.R.etc.) |
| | PHILIPS 550............ $£ 15$ | Special Price Quoted | ANYO, SO |
| OUANTITY | BUSH 2 CHIP............ 88 | For Bulk Purchases From Source. | BETA |

20/22" BUSH T20/22 MODEL EXC CABINETS IN 100 LOTS £25 EACH + VAT
EX EQUIPMENT BUSH PANELS NO EXCHANGE REQUIRED

	IF	Decoder	Line	Power	Frame
	X	14	Scan	Supply	18
T20/22	X	16	18	17	14
T26		20	17	X	

All prices inclusive of postage but plus VAT
Cheque with order please

LAUREL STREET, LEEDS ROAD, BRADFORD, W. YORKSHIRE BD3 9TP.

5 MINS FROM MOTORWAY

TV Business

COLOUR SETS FROM	£5.00	Phone Baldock 894s05
MONOS FROM	S3.00	SETION 3, UNT 4,
PANELS BY POST - PRE-CALIBRATED	LONDON ROAD,	
WOBKING SETS TO ORDER	BALDOCK, HRTS	

TELEVISION WORLD,
 Thornton Road, Bradford, West Yorkshire Telephone 0274722499

Why Waste Time Ring in an order and it will be waiting.

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD LONDON W2 TEL. 01-258 0328
 ALL VHS PARTS AVAILABLE. EXAMPLES.

 VIDEO HEADSJVC, Ferguson, Akai, Saba, Telefunken $\$ 35.00$ Sony (Betamax) .. $£ 45.00$ National Panasonic .. $£ 45.00$ All Hitachi heads from $\mathbf{£ 2 . 0 0}$ INTEGRATED CIRCUITS
UPC 1365C
UPD 553C ... 26.30 $\Sigma 10.20$
UPD 552 C . 29.56
HA11711 . 10.50 All makes of iders, pressure rollers, clutch assembly and motors in stock.
Many other parts avallable. Send SAE for list. ALL PAICES INCLUSIVE OF VAT

ADD $£ 2.00$ FOR P $\&$ P

[^1]INDEPENDENT TELEVISION AND VIDEO COMPANY
LARGE STOCKS TO CLEAR EVERY WEEK COMPETITIVE PRICES

EXAMPLES:
B\&W 20"-24" COLOUR:
Bush 1-2 I.C.
From $£ 1.00$
£4.00
Philips 520-550, 26" £6.00
Thorn 3500
£6.00
GEC-Decca-ITT
£6.00

Philips 550 22"
£10.00
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime}$
GEC 20"-22" $26^{\prime \prime}$
Thorn 8800-9000-9800
£15.00

Many Other Modern Sets and VHS Videos

PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from $£ 40$
Phone Frank: Nottingham
(0602) 864627

Unit 3
Meadow Trading Estate, Meadow Lane, Nottingham NG2 3HQ.

[^2]
'BOBS'

TELEVISION

WAREHOUSE

A NEW CONCEPT IN EX-RENTAL T.V. \& VIDEO
BOB IS BACK AND OPENS HIS NEW WAREHOUSE IN ESSEX ON JULY 1ST

NO FREE HOLIDAYS OR WINE.
JUST THE USUAL GOOD HONEST T.V. \& VIDEO AT GOOD HONEST PRICES. WORKING T.V. AND VIDEO ENGINEERED TO THE HIGHEST SPECIFICATION READY FOR YOUR SHOWROOM.
NON-WORKING GUARANTEED COMPLETE AND UNCANNIBALISED.
COMPLETE LOAD'S DIRECT FROM SOURCE. NEW GRADE "B" T.V. \& VIDEO AT LOW PRICES. DELIVERY SERVICE AVAILABLE.

PHONE BOB BEAN ON: 0268728966
AND DISCUSS YOUR REQUIREMENTS - ALL MAKES AND MODELS AVAILABLE

BOBS T.V. WAREHOUSE, 1 Swinbourne Ct, Burnt Mills, Basildon, Essex

G.11s Pye \& Philips

ITI Full Remote

T/TEXT Infra Red

GEC Modern 2242-2642 Types Mint E35
ALSO JN STOCK
THORN, DECCA, BDFD, 80-83-100, PYE CHELSEA 222, TT CVC 20, 23, 30, 32 Remare, PANASONIC, HITACH, TANDBERG, GRUNDIG, GEC 2002, 2242, 2642, 2202, and many others, changing daily.

VIDEO as avalable. from $£ 20$.

W/TS HITACHI, 9500, 9300, VT9, 8500, 8300, 8000,
PANASONIC, 366, 7200, TRIUMPH 9500, JVC, FERGUSON.
$B E A M A X$ sONY C5-C6, C7, SANYO, 5000, TOSHIBA. 2000 SYSTEM PHILIPS 2020, 2021, 2022, GRUNDIG 244.

STANDS. SLOT METERS, PANELS, SETS FOR SPARES, CLEARANCE COLOURS CHEAP
PRICES BASED ON QUANTITY. ALL PLUS VAT.

GENERAL FACTORS UNION STREET, DONCASTER, SOUTH YORKS. 0302-49583

CASH NO CHEOUES. ONLY 21⁄2 MILES FROM (A1M) FOR M18-MH. 10 am to 5 pm Daily

PIEASE
MENTION
TEEEVISION
WHEN
REPYYMG
T0
ADVERTISEMENTS

WE HAVE FURTHER SUPPLIES OF VCR CASSETTES
BASF LVC £8.00, LVC 150 £6.50, LVC 120 £5.00, ouler wrappings removed but are all new)
Above prices include V.A.T. \& P\&P. NTSC-PAL-NTSC tansrers, VHS, BETA, +UMATIC, (lapes mcluded in price) per minute, tape \& postage extra. We specialise in the sale \& equipment \& recorder/players.

Mail Order aodress:
Telephone 01-669 2611

TRADE TVs

 \& VIDEO'S Ex-Rental \& Repossessed video's from $£ 20.00$ TV's Colour 85.00 TV's B/W E1.00 Working TV's Colour from £10.00 Spares, Panels from 50p Tél. Bradford 480281733373 TELEFIX1 Ellingthorpe St, Wakefield Rd.,

New RF Heat Technique for Jap Blackstripe, Ferg, Bush in lines G11 GLASS with neck pinhole, no problem Nissan van munster circuit.

CHRIS KELLEHER'S TV
Kanturk, Co. Cork
Rental dealer supplies 02950046 10-10pm

PHILIPS GII AND BUSH T20 regular supplies. For prices phone 01-845 2036.

Abstract

EXPRESS PANELS A highly skilled staft using specialized service jigs and some of the most up to date tectniques and test equipment available means we can save you time, money and heartache.

EXAMPLES FROM OUR RANGE (exch. basis) Bush T20/22/26 Sony $1820 / 2000 / 2204$ | Bush T20/22/26 | Sony 1820/2000/22 |
| :---: | :---: |
| pewer supply | power supply | ARGO SERVICES (B.HAM) 53, Lawley St, B.Ham B4 7XH

\section*{WANTED}

GOLD PLATED SCRAP WANTED. Scrap edge connectors, circuit boards, anything considered. Contact P \& F TURNER \& SONS. Tel. Oxford (0865) 50293.

MACDONALD/NEWNES $81-82 \quad 64-65 \quad 63-64 \quad$ 61-62. Good price paid. Ring Ray (0272) 568764.

WANTED FOR CASH. Ex rental colour televisions and videos. Large or small quantities. Will collect. Tel. 0272 211179.

WANTED SUPPLIER OF QUALITY USED COLOUR TV'S AND VIDEOS FOR NEW WHOLESALE OUTLET IN THE NORTH OF SCOTLAND. WE WILL COLLECT FROM ANY SOURCE IN THE U.K.
Tel: Inverness (0463) 790994/238695

> WANTED Ex RENTAL COLOUR TVs IN BULK QUICK COLLECTION Phone 0742312832
> (Sheffield) IN STRICTEST CONFIDENCE

WANTED VIDEOS Sanyo VTC 5000. Hitachi 8000 series. Any condition/quantity. Cash paid. Box No. 218.

WANTED VIDEO'S, Portables, colour TV etc. Any quantity. Immediate collection, cash paid. Tel. Stoke on Trent 416401

CASH PAID now for your surplus TV spares, transis tors, I.C.'s etc. Tel. MR. FORSHAW, 090229022.

REPAIR SERVICE

INSTRUMENT REPAIRS, Oscilloscopes, generators, multimeters \& more. 'Phone VIKING ELECTRON ICS 0394450006.

BRISTOL - SOUTH WEST SOUTH WALES

Scratched and chipped CRTs can be Re-polished.
Tel: 0454778635 for details

PRINTED PANEL REPAIR SERVICE
 for example: $\quad \mathrm{G} 11$ - T20 - AX PSU - £15.00

 G11-T20-AX -LTB - £16.00 Most makes and models covered RING 0934418545for price list or quotation

BUSINESS OPPORTUNITES

CHESTER. Small specialist rental business, 400 plus colour, mostly Decca 100/110. Optional low rental shop in suburban precinct. $£ 60,000$. Box 219.

VIDEO AND TV SERVICE BUSINESS for sale with three bedroomed detached house, own driveway and garage workshop 100 sq.ft. Room for expansion. Suit self-employed TV technician. $£ 40,000$ o.n.o. Near Bedford. Apply Box No. 220.

> TV VIDED-AUDIO SALES AND SERVICE BUSINESS FOR SALE
> Modern premises shop and workshop. Good class North London area. Ideal for ambitious engineer. Established 30 years, new lease.
> PRICE £18,500 + S.A.V.
> Details: Box 201

WELL ESTABLISHED (19 YEARS) Video, Audio, Hi Fi Sales \& Service Business for sale in popular N. Devon resort. T/O $£ 62,000$ (without V.A.T.). Only $£ 12,500$ for quick sale plus S.A.V. Details. Box No 216

```
VIDEO
```


V.H.S. VIDEO'S 100's IN STOCK

Famous brands:

JVC • PANASONIC • FERGUSON
Also stockists of Grade B Units, Microwaves, $\mathrm{Hi}-\mathrm{Fi}$, Radio/Cassettes etc. etc. CONTACT MICK ON:

TELEOUISIOM

GET
 GHARP PARTS FAST
 TELEPHONE

0734-876444
TELEX 848953
GHAPP
Main U.K. Spare Parts Distributor
Audio-TV-Video \geqslant Microwave \geqslant Photo-copier \geqslant Typewriter
All U.K. model spares available. Same day despatch of orders received before 1 pm. Microwave, photocopier and typewriter spares to authorised service dealers/centres only. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks

MISCELLANEOUS

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.
The Colour Signal Part 2.

The Receiver Decoder Part 3.

Receiver Installation

For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details
FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1 LP (enclosing this advert)
NAME
ADDRESS
TEL:

MAIL ORDER MANUALS BURROWS SERVICE 33 HANCOCK ROAD, LONDON SE19 3JN.
 £1 LISTS (Refundable on orders)

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

MANOR SUPPLIES MK V Gen, Manor CRT tester, various repair manuals etc. Phone Soton. (0703) 899062.

C.R.T. REBUILDING PLANT AND EQUIPMENT

Installation, commissioning, training and technical after sales assistance. C.R.T. INTERNATIONAL 136 Badmington Road, Coalpit Heath,
Bristol BS17 2SZ
Tel: 0454778635

nOW TOTAL spares suppoit for b FIDELITY
 from

ALL from STOCK (Subject to availability from Fidelity) Trade Prices subject to official order - all others supplied at retail CABINETS \star KNOBS \star TUNERS \star CONTROLS \star CRT'S \star TRANSFORMERS SEMI'S * I.C.'S * CAPACITORS * REMOTES * TRIMS * END USER PARTS

EERUICE PQEES

SERVICE SHEETS
TECHNICAL INFO SERVICES (T) - 76 Church St, Larkhall, Lanarkshire ML9 1HE, World's Sole Publishers of Comprehensive TVNideo Repair Manuals \& Largest Known Stockists of Service Manuals and Service Sheets for all kinds of equipment both Bitish and Forergn from 1935 to latest issues.
Big Catalogues of thousands of Service Sheets \& Manuals + Chassis Guide + £4 Vouchers - saves time and expense ≈ 3.

Any published single service sheet for $£ 2.50$ + Isae except ctv/mus-c/combis from $\sum 3.50+$ Isae A selection from our stocks of thousands of Service Manuals ready for despatch by retum post. Any Sony: Hitachi ctv from $£ 8.50$. Thom $3000 / 3500$ £9.50. Thorn 8000/8004/8500/8600 £9.50. Philips G8 complete ce 50. Decca $30 / 31$ £8,50. Ferguson/JVC 1st video £19.50 or 3V00 types basic manual £19.50. Any Finlandia: Tyne CTV $\mathbf{E 9 . 5 0}$ each. Rank A823 complete $\mathbf{\Sigma 9 . 5 0}$.

COMPREHENSIVE PRACTICAL TV REPAIR MANUAL E9.50 PRACTICAL RADIO SERVICING \& REPAIR COURSE 89.50 THE 11 TUNBRIDGE REPAIR MANUALS MAN OM E88 THE 5 MCCOURT REPAIR MANUALS ANY SET OF 5 NOIVIDUAL VIDEO REPAR MANUALS FOR 51250 OR ALL 3 SETS (15 MANUALS) FOR 538
UNIQUE COLLECTIONS OF CIRCUITS, LAYOUTS, ETC. . . . FANTASTIC VALUE
British ctv from hybrids to modem ($\mathbf{3}$ binders) £58 Videos, all types (3 binders) £58 . . any 1 for £20 Mono TV (2) £38 Foreign ctv (2) £38 Domestic Eqpt (2) £38 Portable British ctv (1) £20.

COMPLETE REPAIR SYSTEMS . . . huge savings from published prices

British ctv 3 binders of Circuits plus 6 Repair Manuals plus ref books, etc.
for only $\varepsilon 140$
Foreign ctv 2 binders of Circuits plus 4 Repair Manuals, etc.
for only $£ 65$
Videos 3 binders plus 15 individual Repair Manuals cover all the commonest models for only E 85
Complete integrated T.V. Repair System
only E250 or in 12 sections at E25 per section. Contents: 8 binders of circuits/16 Repair Manuals/dozens of other manuals Any new publications from us within 1 year of ordering 1st section will be added at no extra charge.
NEW - PRACTICAL TRANSISTOR - NEN - VIDEO REPAIR SYSTEM 3 E28 - NEW

From beginners/students elementary theory to more advanced. Huge section British/Foreign equivalents/ alternatives/other data. $\mathbf{E 5} .00$ Post Free.

Repair data/Circuits/Service data almost any individual mono tv $£ 12.50$ basic ctv $£ 16.00$ ctv 812.00 mono tv E10.50 3V31/32 Sharp 2300 to 9700 Philips Laser Disc Pan 7000/ 7200/7800. Binder of Circuits alone 5 Rep 5 Repair Manuals $£ 1250$ LSAE BRINGS ANY REQUESTED QUOTATION - FLLER DETALS - FPRE MACAZME - PRICE ULSTS ETC. PHONE 0698884585 Mon-Fri before 5pm or 0698883334 any other time - FOR FAST QUOTES

SERVICE MANUALS, SERVICE SHEETS
 For Television, Radio and V.C.R. Units. Prices from $£ 2.00$. Send large s.a.e. for free catalogue with your enquiries, Mail Order only. TECHNICAL DEPARTMENT, YOLANCEN LIMITED, 1 Buckingham Street, York YO1 1DW.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. 11.50) plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 505885.
$\star \star \star \star$ PLEASE IMENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS
SERVICE PAGES SERVICE PAGES
$\star \star

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European and Japanese models in stock

Colour $£ 3.00$
 Mono £2.00

Manual prices on request.
Send stamped envelope for free co and packing costs.
SANDHURST TV SERVICES (MAIL ORDER)
57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

METERS

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guaratee.

213 Cheltenham Road, Redland, Bristol. 0272553817

TELEVISION METERS. All types required for cash We collect. P \& J WALES, Tel. (1803) 25832.

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD (0202) 683498.

THE DOMESTIC VIDEO RECORDER SERVICING BOOK

THE ENGINEERS BIBLE
WITH CHAPTERS ON HI FI, DIGITAL SERVOS
LUMINANCE AND CHROMINANCE SIGNAL CIRCUITS, FAULT GUIDES AND CONNECTION DATA.

A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS. THE COMPLETE REFERENCE TO VIDEO RECORDER CIRCUITS
ORDER YOUR COPY NOW fop ount $£ 16.95$ inc. ppp FROM MEWARK YIDEO CENTRE (D636) 71475 OR DIRECT FROM:
gROVE FARM, LONG LANE, BARNBY IN THE WILLOWS, NEWARK, NOTTS CHEQUES AND PO'S PAYABLE TO D. BEECHING.

SPECIAL OFFER

 MACDONALDS RADO \& TV SERVICING BOOKS, NEW 74-75, 75-76, 76-77 77-78, 79-80, 80-81, 82-83, 83-84, 84-85. Macodonalds Price OUR PAICE24.30 dellvered
two or more
Full set of 10 Prices inctude delivery
U-VIEW, 29 Warmsworth Road,
Doncaster, Yorkshire DN4 0RP.
Tel. 0302-855017. Callers ring first
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 50588 .

SUCCESSFUL TELEVISION DEALING, Practical Business Guide, f4. S.A.E. details: J. P. PUBLICA TIONS, P.O. Box 213, Wolverhampton WV11 2PQ.

FOR INFORMATION ON CLASSIFIED ADVERTISING PLEASE RING PAT BUNCE 01-261 5942

AERIALS

MLLTI-OUTLET/MULTI-CHANNEL Installations Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $\mathrm{f1}$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham. (0709) 813419.

SATEILITE TELEVISION

Buy direct from the manufacturers, low cost, full band satellite TV systems. Full band system $£ 650+$ VAT and Carriage
Write or telephone for details or call in at our factory showroom
NETWORK SATELLITE SYSTEMS LTD.
Unit 7-8, Newburnbridge Ind. Estate, Hartlepool, Cleveland
Tel. 0429274239 or 869366
$\left.\begin{array}{cc}\text { Euro-Sat } \\ \text { Parabolic Dish Antennas } \\ \text { (Parent company est. in } \\ \text { TV communications since 19gs) } \\ \text { SATELLITE VRO ANTENNAS } \\ \text { TOP QUALITY SOUD }\end{array}\right\}$

SATELLITE TV

RECEPTION EQUIPMENT
Dishes 0.9 to 2.8 m , complete systems 10.9 $12.7 \mathrm{GHz}, 4 \mathrm{GHz}$. LNB's, demodulators, and all those accessories.
Manufacturers and Distributors of high quality satellite TVRO equipment

KESH ELECTRONICS
Main St., Kesh, Co. Fermanagh, N.I. Phone: KESH (03656) 31449

FOR SALE

TUBE TESTER - Reactivator/L.O.T. Tester: Willow Vale Type: 6A, triple meter, (similar to B \& K 467), nearly new, cost $£ 350$, only $£ 190.074976095$.

NEW PHILIPS V2000 Head $£ 40.00$ leader LCT 910A rejuv $£ 150.10$. 052238754.

NEWNES RADIO/TELEVISION Servicing complete to 1980, 30 books. Offers. Tyneside 2579792.

VCR 1500 Used tapes still available, $1-4 £ 2.50$ each. 5$10 £ 2.10$ each including postage. C.W.O. please to wORRELL, 34, Curlew Close, Beverley HU17 7QN.

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale: Training provided. From only £3,995. Tel. 0582-410787.

DEVONICS

Quality Rebuilt Tubes 2 YEAR WARRANTY
470 ERB22
$£ 43$
510 KCB22 $£ 45$
A51-161/500/510/
570/580/590X
$£ 45$
560 AKB/DZB/TB22 £45
A56-500/510X
£45
A56-540X
$£ 53$
A66-500/510X
£46
A66-540X
£53
670 XB22
£46
Deltas from $£ 30$ Plus carriage and VAT 2A BARTON HILL ROAD, TORQUAY TO2 8JH

0803-33035

ESabaco For a great deal! TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO‘S OFF THE PILE (Mostly switch-ons)
Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips $550 /$ Grundig \& many more. BRAND NEW SETS AT LOW PRICES

VHS VIDEO'S

Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc.
Also a selection of brand new video \& E180 video tapes OPENING HOURS: MONDAY TO SATURDAY 9am to 5.30pm SUNDAY 10am to 4 pm
CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES AND DELIVERY DAYS, BE HERE WHEN LORRY ARRIVES FOR FIRST CHOICE - PHONE US NOW ON:

INDEX TO ADVERTISERS Aerial Techniques \qquad	
	5
Argo Services (B'ham)	611
Asco TV and Video Centr	612
Avon Meters	613
Barry TV Services	
Besco T/A North West Electronics	608
B. K. Electronics	52,562,598
Bobs Warehouse .. 610	
Bolten Ltd. .. 602	
Burrows Service 612	
Carter, John (Electri	599
Cettel ... 554	
Centrevision	
Chromavac Lto	554
Chromavision ... 600	
CMJ Electronics.	
Crewe Wholesale TV	
Cricklewood Electronics Ltd	
C.R.T. Intemational. 612	
Datel Limited .. 607	
Devonics.. 614	
Display Electronics Ltd. 604	
East Cornwall Components 556	
Economic Devices	
Efjay Products.	
Eurolec (UK)	
Euro-Sat.	
tdown Ch	
Fylde T.V. and Video D	
Garton, D.G.. 611	
General Factors	
G.G.L. Components	
Grandata Ltd. .. 600	
Halton TV Trade Disposal 609	
Hillier's	
Hockley Discount Televisions............................ 604	
Hussain Central T.V. Ltd. 551	
Independent Television and Video Co.	
Junction 11 T.V. Trade Disposais Ltd. 597	
Kelleher, Chris... 607	
Kent Ledgerwood Wholesale Ltd	
Kesh Electronics	
London Electronics College............................ 562	
Manor Supplies	
Monitec .. 601	
Monolith Electronics Co. Ltd., Th	
Network Satellite Systems Ltd. 613	
Newark Video .. 613	
N.G.T. Electronics Ltd.	
Norgrove TV Trade Services	
Norman Enterprises Ltd................................ 607	
Papworth Transformers 597	
Post A Part Electronics 561	
Pownell, T, John, Trade TVSales and Service 6509	
Precision VisionLtd. 606	
P.V. Tubes........................ 546, 547, 548, 549, 550	
QuickSave T.V. Spares 553	
Repossessed T.V. Centres Ltd. 615 Riscompltd	
Sabaco 614	
Sandhurst TV Services................................. 613	
Sendz Components 598, 616, Cover III, Cover IV	
Southpark Distributors	
Starlite Electronics 606, 611	
Stewart of Reading 603	
Technical Information Service 613	
Telefix ... 611	
elemann .. 602	
Telepanels.	
Tele-part.	550, 602, 615
eletraders ... 597	
Televideo Services 555	
Teleview.	606
Television World	
idman Mail Order Ltd. 56.	
Trent Tubes .. 607	
VS Trade Services	
T.V. Trade Sales	
Universal Semiconductor Devices Ltd. 601	
U-View Tubes .. 613	
Video Hi FiElectronics. 609	
Well View... 612Willow Vale Electronics Ltd.	
Witsgrove Limited .. 606	
Wing Electronics	
Wizard Distributors	
Yolabcen Limited	

INDEX TO ADVERTISERS

Apollo

Argo Services (B' ham)
sco TV and Video Centre
Avon Meters
Barry TV Services
aro Thorth West Electronics
. 607
.K. Electronics
Bolten Ltd. 12
Carter John (Electrical) Ltd Celtel 59

Centrevision
hromavision .
Crewe Wholesale TV
Rlewood Elecironics Lid
Datel Limited.
Devonics
Display Electronics Ltd
conomic Devices
jay Product
uro-Sat.
Flintdown Channel 5
ord, Frank
Garton, D.G. .
General Factors
Grandata Ltd.
Halton TV Trade Disposal
Hockley Discount Televisions
位san Central T.V. Lid.
Independent Television and Video Co. 555

Junction 11 T.V. Trade Disposais Ltd.
Kent Ledgerwood Wholesale Ltd.
esh Electronics
Electronics College

Mantel.
Monolith Electronics Co. Ltd., The
Newark Video
N. G. T Electronics Ltd

Norgrove TV Trade Services
Norman Enterprises Ltd
ost A Part Electronics
owen, T.
Precision Vision Ltd
546, 547, 548, 549, 550
Quick Save T.V. Spares
Repossessed T.V. Centres Ltd.
ablat.
andhurst TV Services
598, 616, Cover III, Co
\& G Trade and Retail ight and Sound
outhpark Distributors
tarlite Electronic
Technical Information Service
elefix
elepanels
eletraders
eleview
elevision World
Idman Mail Order Ltd
rent Tubes
Vrade
Universal Semiconductor Devices Ltd
U-V Tube
Well View.
Willow Vale Electronics Ltd.
Wing Electronics
izard Distributors
613

REPOSSESSED T.V. CENTRES LTD. 061-273-2854 YOUR CHOICE

MINT WORKING SETS. These arrive at our premises in A1 working order, cabinets are superb. £45 to $\mathbf{£ 7 0}$ GUARANTEED UNTESTED SETS. These are just as they arrive, in good condition with plenty of plug in workers. We do not sort them as we have our separate source of working sets.
£10 to £35

VHS Videos in stock.

Well stored in large centrally heated premises. Ample viewing space and stored only four high! Come and have a look round.

TRADE WAREHOUSE,
DAISY WORKS,
345 STOCKPORT ROAD,
335-341 STOCKPORT ROAD LONGSIGHT,
(NEXT DOOR)

IRISH T.V. DEALERS

(PLEASE NOTICE)
LARGE SELECTION OF RECONDITIONED PRECISION-IN-LINE UHF-VHF COLOUR TVs, SOME WITH RE-GUN TUBES FITTED, "CABINETS RESTORED TO A1 CONDITION", PRICES START@ £60.00 VAT INCLUDED. ALSO $20^{\prime \prime} \& 22^{\prime \prime} R E-G U N$ TUBES IN STOCK, QUANTITY DISCOUNT, DELIVERY ARRANGED. VIDEO HEADS ALSO IN STOCK.
(EXPORT SPECIALISTS)

T.V. TRADE SALES
 E.D.I. HOUSE
 KYLEMORE PK. WEST DUBLIN 10.

ALSO

Tel: 0001-264139 (Local calls 01-)
T.V.T.S.

CLOVER PLACE COLLEGE ST. KILLARNEY.
Tel: 064-33655

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
IF YOU NEED SPARES FAST - RING NOW!
ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. onlv
32 TEMPLE STREET,
WOLVERHAMPTON (0902) 29022

 ご $\stackrel{\sim}{\sim}$ 				
 药苞 				

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by the The Riverside Press Ltd., Thanet Way Whitstable, Kent. Sole Agents for Australia and New Zealand - Gordon and Gotch (Asia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $£ 14$, overseas (surface mail) £17 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: Thom 3000/3500
 TRIPLERS Thorn 9000 UNIVERSALI' year guarantee
 £ 4.95= The UNIVERSAL TRIPLERcan be used in most G.E.C.. I.T.T.. Pye. Rank. Decca \& Continental sets.

 WING ELECTRONICS
 15 Waylands, of Tudor Rd, Hayes End, Midalesex

[^2]: WORKING CTVs
 THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER
 Working Decca Bradford Including
 Black Fronts
 $18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
 Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 2.00$ each in 6 units Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
 Philips G8 (520) 22" \& $26^{\prime \prime}$ ONLY $£ 20.00$ each
 Plu's many more makes \& sizes in stock,
 inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
 ALL SETS TESTED \& WORKING CALL
 JOHN POWNEY
 TRADE TV SALES \& SERVICE
 Unit 31 Progress Industrial Estate,
 Kirkham, nr Preston
 (0772) 683392
 untested panels for all makes of iv
 £1.25 per panal plus post \& packing

