

SERVICING•PROJECTS•VIDEO•DEVELOPMENTS

Servicing the Hitachi NP6C Chassis Long-play VCR Operation Network Remote Control CTVs Vintage TV • VCR Clinic VHS the Philips Way TV Fault Finding • DX-TV

MANOR SUPPLIES

MKV PAL COLOUR
TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.

* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking)
* EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots UHF modulator output plugs straight into receiver aerial socket.
\star
Additional video output for CCTV \& VCR.
$+$ Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
Price of Kit
$£ 70.00$
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}$) app. $\mathbf{£ 8 . 6 0}$
Optional Sound Module (6 MHz or 5.5 MHz)
£3.90
Built \& Tested in Case including Sound Module
£105.00

SPECIAL test
 REPORT
 Post/Packing $\mathfrak{£ 2 . 5 0}$ TELEVISION' DEC. $1982 \quad 1$

PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
* Simple design, only five i.c.s on colour bar P.C.B.

PRICE OF MK 4 COLOUR BAR GENERATOK KIT £30.00. CASE $£ 7.40$. BATT HOLDERS $£ 4.20$. MAINS SUPPLY KIT $\mathbf{£ 4 . 2 0}$ (Combined P\&P $£ 2.20$).
MK 4 (BATTERY) BULLT \& TESTED) $£ 58 .(0)+£ 2.20 \mathrm{P} \& \mathrm{P}$. MK 4 (MAINS) BUILT \& TESTED $\mathfrak{e 6 8 . 0 0}+\mathfrak{£ 2 . 2 0} \mathrm{P}$ \& P VHF MODULATOR (CH I to 4) FOR OVERSEAS £5.75. EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

THORN TX9 MK2/3, TX10, teletext
Mullard Decorder panel + Interface $\mathbf{£ 5 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL, TELETEXT
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{£ 4 8 . 0 0}$ p.p. £2.50

SPECIAL OFFER (shop customers only)
SURPLUS ‘AYR’ TELETEXT EXTERNAL ADAPTOR UNITS. Ideal for experimental use $\mathbf{5 5 0 . 0 0}$.

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC. SPECIAL OFFER Mullard/Philips quality UHF modulator (audio \& video input) ex new equipment $£ 5.00$ p.p. $£ 1.00$.
PHIIIIPS GII PANEIS (tested)
 PHILIP'S Gil PANELS ex rental (untested).
Power, franle, IF decoder $£ 10.00$ each P.p. $£ 2.00$.
PHILIPS HANDSETS ex rental (untested) CTX, K4, K35 etc. Teletext + Video 55.00 p .7 .80 p .
THORN 9000 Fault Finding Guide £1.00 p.p. 30p.
THORN REMOTE CONTROL HANDSETS

TX10 Infra red £18.00; TX9, TX10 Infra red Teletext $£ 20.00$, p-p. $£ 1.20$.
TX10 Remote \& Tuning control panel (1515) £9.40 p.p. £1.50 ${ }^{\text {P }}$
TX9/TX10 Telatext interface panel (1524) $£ 5.00$ p.p. 8 pp.
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver $£ 7.50 \mathrm{p} . \mathrm{P} . \ddagger 1.50$.
THORN TXIO Series Facia Control Panel with 8 position Channel Selector
$\mathbf{6 6 . 5 0}$ P.p. $£ 150$
SAW fil. TER iF AMPLIFIER PLUS TUNER completc and tested for T.V Sound \& Visiom. $£ 28.50$ p.p. f1. 20 .
THORN TX9, TXI0 Saw Filter IF Panel. $\mathbf{£ 5 . 0 0}$ p.p. 80 p
PAL DECODER KTT (Video to RGB) for Monitors $£ 27.00$ p.p. $£ 1$. (0).
PAI ENCODE KIIT (RGB to Video) $£ 18.50$ p.p. $£ 1.30$.
TELETEXT DECODERS New \& Tested Mullard VM 6101 £30.00, Texas XM11 $£ 40.00$, KT3 Tested $£ 30.00$, Untested $£ 5.00$ p.p. $£ 1.50$
CROSS HATCI UNIT KIT, Aerial Input type, incl. T.V sync. and UHF Modulator. Batery Operated, also gives Peak White \& Black Levels, can be used for any se $\mathbf{1 1 2 . 0 0}$ p.p. 80p. Alum. Case $£ 2.90$, De Luxe Case $\mathbf{8 6 . 8 0}$ P.P $£ 1.49$). ADITTIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p.

UTHF SIGNAL STRENGTH METER KIT $£ 22.00$ (VFFF version £24.00)

CRT TESTER \& REACTIVATOR KII For Colour \& Mono wit? Pane
Meter Indicator - can be adapted for latest CRTs $£ 28.60$ p.p. $£ 2.80$.
BUSH A823 Convergence. Time Base Panels $£ 5.00$ each. p.p. $£ 1.80$.
BUSH Z718 BC $610 \mathrm{~N}_{5}$ series IF Panel $£ 5.00$ p.p. 90)
BUSH A816 IF Panel (Surplus) £1.00 p.p. P9p. 5 for $£ 4.00$ p.p. £1.41
(iEC 2040 Decoder Panels, $\mathbf{1 1 . 5 0}$ p.p. f1.80
 GEC 20AX Swiech Mode Power Supply $\mathbf{£ 5 . 0 0}$, IF-Decoder $£ \mathbf{1 2 . 5 0}$ p.p. $£ 1.80$ PYE 691-7 CDA Panels. Makers tested stock. $\mathbf{£ 6 . 0 0}$ p.p. £. 45.
THORN TX9 Panels ex factory for small spares. Includes i.Cs \&
Semiconductors etc. $\mathbf{£ 3 . 0 0}$ p.p. $£ 1.80$.
THORN TX9 Fanels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $\mathbf{£ 1 0 . 0 0}$ p.p. £ 2.80 .
THORN TX9 Pinels ex factory salvaged complete cond. $£ 20.00$ p.p. $£ 2.80$.
THORN 3000/3500 Power supply P.C.B. £3.50 p.p. £1.00
THORN $8000, \$ 500,8800$ IF Decoder Panels Tested $£ 10.00$ p.p. $£ 2.30$.
THORN 8000/8500 IF/Decoder Panels salvaged $£ 3.20$ p.p. $£ 1.80$
THORN 9000 IF/Decoder Panels Salvaged. For spares $£ 2.50$ p.p. $£ 1.80$.
PHILIPS G8GS IF/Decoder Panels for snall spares incl ICs $£ 2.50$ p.p. \& 1 . 60 G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$ (tested) G11 PANELS, Power, Frame, IF, Decoder. $\mathbf{x 1 8 . 0 0}$ each p.p. $\mathfrak{f 2 . 0 0}$ (tested) GRUNDIG 863 senies Vancap Tuners $\mathbf{5 5 . 0 0} \mathrm{p} . \mathrm{p}$. $\mathrm{f} 1 .(0)$.
VARICAP. ELC1043/5 $\mathbf{8 7 . 8 0}$ p.p. KOp. Makers Controls PYE CT201) 4PSN £7.50, BUSLI 4 4SN £4.80, DECCA 4PSN $£ 5.80,6$ PSN $£ 6.80$ p.p. 8 (p. etc. BUSH "TOUCH TUNE", Varicap Control Z585, $710 £ 3.80$ p.p. $£ 1.01$. VARICAP VHF PHILIPS, £6.90. ELC 1042 a 7.90 p.p. 80 p
UHF/625 TUNFRS, many different types in stock. DECCA Bradford.
position. MULL ARD 4 position $£ 2.50$, JAP Rotary $£ 4.80 \mathrm{p} . \mathrm{p}$. $£ 1.80$
TV SOUND IF Janels $\mathbf{~} 6.80$ p.p. $£ 1 .(0)$.
LOPT TESTER Service Dept approved $£ 15.90$ p.p. $£ 1.20$.
LOPTS New an 1 guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Botbins 80p.
 FERG., HMV. M\&RCONI, ULTRA DECCA Bradford (state Mol No)
$1+(1) 15(150), 1590,1591$..................
THORN 16(N), 1615. 16401691
GECseries $1 \& 2$
GDESIT \& 2.... 59.15 GEC 2110 series
INDEST 2024EGB8. 7.65 ITTCVC569. CVC20

PYE, INVICTA, EKCO 7.65 PYE 691-697 state madel n .
364, 164.569 .769 series57.65 PHILIPSG8
DECCA 1700, $2(101.2020 .2401 .2420 \pm 3.80 \quad$ PHILIIPS KT
GEC2114J/Junior Fineline $\mathbf{2 2 . 8 0}$ THORN 3 MO/350 SCAN, EHT

RBM AX2380 THORN YMO1 TO 9 (xK
GEC 202x, 2(15), 2100
PYE 713, $715 \ldots .$.
$\begin{array}{ll}\text { E4.80 THORNYMM } \\ \text { f4.80 } & \text { THORN YsAK }\end{array}$
E6.80 THORNTX9

$£ 9.80$ $£ 5.60$
¢8.80
¢8.80
£10.60
f9.80
68.80
¢9.80
¢ 10.00
. 59.20
88.80
f11.50
f9.80
86.90
¢12.80
£12.90
$\underline{19.80}$
¢14.80

OTHERS AVAII ABLE, PRICES ON REQUEST
TRIPLERS Full range available. Mono \& Colour
Special Offer: GEC $2040 / 2100$ EHT Tripler $£ 2.50$ p.p. $£ 1.30$.
THORN 8000 EHT TRAY (2 lead) $£ 2.80$ p.p. £ $1 .(0)$
6-3V CRT Boost Transformers for Colour \& Mono $£ 5.90$ p.p. £1.40. THORN TX 10 focus control $£ 8.80$ p.p. 80 p .

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COIOUR PANELS POPULAR MODELS
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead Brit. Rail Stu. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit Rail Stn. (St Pancras, Bedford)

Access from all over Greater London.
Mail Order: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT PLEASE ADD VAT 15% TO ALL PRICES INCL P+P

Tら

COPYRIGHT
（C）IPC Magazines Limited，1986．Copyright in all drawings，photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden．All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable．We cannot however guarantee it and we cannot accept legal responsibility for it．Prices are those current as we go to press．

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager，＇Television＂， King＇s Reach Tower，Stamford Street， London SE1 9LS．Editorial correspondence should be addressed to＂Television＂，IPC Magazines Ltd．，King＇s Reach Tower， Stamford Street，London SE1 9LS．

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK，£15 overseas（by surface mail）．Send orders with payment to Quadrant Subscription Services Ltd．，Oakfield House， Perrymount Road，Haywards Heath，Sussex， RH16 3DH．

B／NDERS AND INDEXES

Send orders for binders（ $£ 4.50$ ）and indexes （45p）to the Editorial Office，Television，IPC Magazines Ltd．，King＇s Reach Tower， Stamford Street，London SE1 9LS．Prices include VAT and postage．Add 60p for overseas orders．

BACK NUMBERS

Some back issues are available from the Editorial Office at $\mathbf{E 1} \cdot 40$ inclusive of postage and packing．Address as above．

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets．We will endeavour to assist readers who have queries relating to articles published in Television，but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them．All correspondents expecting a reply should enclose a stamped addressed envelope．
Requests for advice on dealing with servicing problems should be directed to our Queries Service．For details see our regular feature＂Service Bureau＂．Send to the address given above（see ＂correspondence＂）．

this month

293 Leader

294 Servicing the Hitachi NP6C Chassis

John Coombes
These popular sets，with screen sizes from 13 to 20 in ．， were on sale between 1976 and 1980．Fault finding notes plus a description of the chopper power supply．

296 Next Month in Television

299 You Won＇t Believe Me
Les Lawry－Johns
Strange things happen to sets－and to people too．
300 Developments in VCRs，Part 2
Steve Beeching，T．Eng．
A look at the problems associated with long－play
operation and the techniques used to overcome them．
304 Teletopics
Including the latest news on the DBS front and details of a DBS tuner unit developed by Philips．

306 Servicing Teletext Receivers，Part 3
Mike Phelan
Operation of the test acquisition control chip and the
way in which the RAM memory i．c．s are addressed．
308 VCR Clinic
Reports from Steve Beeching，T．Eng．，Les Harris，Philip Blundell，Eng．Tech．，R．S．Narwan and William G．Lockitt．
309 VHS the Philips Way
Harold Peters
Philips designed VHS machines don＇t operate in quite
the same way as Japanese designed machines，which can cause confusion．An account of the differences and the range to date．

314 The Network EMS System
Denis Mott
The present range of Network models use an electronic programme memory system．An account of how it works with servicing notes and modifications to deal with tuning drift problems．

317 TV Fault Finding
Reports from Mick Dutton，P．A．Smith，Bob McClenning and Maurice Kerry．

319 Letters

Including servicing tips on popular microcomputers．
320 Vintage TV：The Vidor CN377
Vivian Capel
A look at the techniques used in one of the popular sets of the late forties．

322 Long－distance Television
Roger Bunney
Reports on DX reception and conditions，news on DX subjects and a look at bowtie u．h．f．arrays．

325 Service Bureau

326 Test Case 279

OUR NEXT ISSUE DATED APRIL WILL BE PUBLISHED ON MARCH 19

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADD 87p per order
(U.K.). Heavier parcels
e.g. cable, service aids. degaus. to inform you as quickly as possible. We try our best coils please allow $£ 1.50 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and etticient service. V.A.T (U.K.). Export orders charged inwoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please ask if what you need is not listed - we whenever possible. Add 15% will ty to help. Prices are subject to change without VAT to total except where it notice. In some cases we may have to supply an states zero rate. equivalent.

P. V. TUBES
 HAVE MOVED

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

WE WILL ON QUALITY, BRAN REPUTATION	Y SUPPLY TOP ED COMPONENTS. OUNTS WITH US	G.G.L.COMPONENTS 108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693				BUY WITH					
INTEGRATED		CE				THORN/SONY					
		TDA440............. 3.25	SISTORS								
	SAS580S 2.40	TDA1002................. 1.50 TDA1003............ 2.80	BC107 14	B0707.	$2 \mathrm{~N} 37733 .45$	LARGE RANGE OF SPARES FOR ABOVE					
AN301	SL1430 1.95	TDA1006A 2.95	BC108 14	8F338.	15/80H..						
AN303.	SL1432 1.75	TDA1035T 2.75	BC109	BF458	2SA771.	MAKES OF TVI					
AN305.................. 3.50	STK00396.45	TDA1037................... 1.95	BC141	BF459	$\begin{aligned} & \text { 2SA } 771 \ldots35 ~ \\ & \text { 2SA } \\ & \hline \end{aligned}$	VIDEOS INCLUDING INSTRUCTION AND					
AN7110................ 1.93	STK0040 5.95	TDA1044................ 3.10	BC142	BF757	2SB618............. 2.45	SERVICE MANUALS.		BY133. 15			
AN7114E 2.33	STK0050 7.50	TDA1170................ 1.80	BC143	BFR90	2SC 867A 325						
AN7115................ 2.37	STK077................. 7.25	TDA1270............... 2.20	BC147	BR100	2SC 1034	PHONE OR WRITE					
	STK078................ 7.45	TDA1470	BC148	BR101	2SC 1061	FOR NEW USTS. WE					
AN7145................ 3.25	STK082	TDA2002...............1.85	${ }^{\text {BC157 }}$	BR103.	2SC 1114..........4.75	CAN ALSO SOURCE		$\left\lvert\, \begin{aligned} & \text { BY23 } \\ & \text { BY27M }\end{aligned}\right.$			
	STK415................ 9.66	TDA2003			2SC 1124.	\& SUPPLY OVER					
BA5211.85	STK433..................... 6.75	3.15		BT106............ 1.1	2SC 1316......... 3.20	THREE THOUSAND					
. BA532...................1.95	STK435...................6.75	TDA2006.............. 2.25	BC327 11	BT15	2SC 1739........... 2.45	I/Cs \& SEMI CONDUCTORS.					
BA536................. 2.55		TDA2190M 4.95	BC328 12	OOR 1.10	10 2SC 1942.						
HA1322.....................2.10 2.65	STK441.................. 8.50	TDA2522..................1.80	BC	BU1	2 S	SONY SPARES					
HA1338................. 2.7	STK		BC547		2 SC	C5/C7 Rewind Kit....4.05					
HA1339............... 2.40	STK461	TDA2530...............2.10	BC548	BU2080	${ }_{2 S C} 2335$ (Kit)						
HA1342A								1-7			
		TDA2540............... 1.95	$\begin{aligned} & 8 C 55 \\ & \text { BC558. } \end{aligned}$					I5401-8			
	TA7193P...............4.30		BD								
HA1374.............. 2.245			131.	BU500.............. 1.45							
			${ }_{\text {BD1 }}{ }^{\text {a }}$.................... 33	BU508A 1.85	5 2SD 870			5			
3.90			BD201 80	BU526	2S						
-A1201..................... 3.75	TA7205AP1.40		BD202	BU807........ -....1.30		Large range of Sony spares available					
LA1230 230	TA7222AP		BD203.............. 70	BU826A 3.20	20 DECCA $807 .95$						
L41365 2.45			BD204 83			VALVES					
	TA7227P	TDA2611A............... 1.50									
L44031 2.45	TA7310................ 1.55	TDA2640................. 2.40	BD225 55	TIP31C 46	46 ITTCVC 25/30328.00	PCF802................. 1		5			
LA40322.30				P32C 47	7 ITTCVC 45.	PCL82.......-............ ${ }^{97}$					
		$561 A$		TIP33................ 80	0 PHILIPS 68.........an			$\mathrm{G}^{\text {G1 Bridge Coil - ... } 1.35}$			
LA4102	TBA120AS	,	8D237 40	TP34................ 95	5 PHILPS G11.	PC186.................. 1.07					
LA4400 2.50		TDA4500................ 5.85	BD238 39	TIP41C 48	8 PHILIPS кT3.						
430 2.45	BA1200		80410 50	T1P42C 48	8 PHILIPS K30.	PL504....................150		THORN O OLOH SW			
LA44403.55	TBA120	TDA4600-16PIN...... 3.95		T1P47 75	5 RBM TZOA	PL509/519....................999					
LA4461.....................2.95	TBA5300	UPC555C	8.	T1P2955 70	THORN 1615			TX10 FOCUS UNIT. $\mathbf{8 . 9 5}$			
	TBA550.................. 2.37	UPC566C2.10			HORN 169019	PY500A 225					
		UPC10314 2.95	TV ELECTROLYTICS								
ML23282.55	TBA720A 2.65	32 H	DECCA 80-80/100(400)350V		NEW TUNERS		Available also a range of 2SAB/C/D Transistors. Phone or write for lists.				
ML2378.............. 2.50	TBA750............... 2.45	UPC1156H........... 2.45			DECCAIT6 Way 7.95						
SAA1125............. 4.70	TBA810.................... 1.35	UPC1182H................2.20			PHILIPS G8 S/Q.......................... 12.00						
SAA1250 3.85	TBA820................ 1.40	UPC 1185H 3.30			PYE-G11 P/B......................8.8.50HITACHI 4 way.................8.95		ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELVERY BY RETURN ON ALL STOCK TEMS.				
SAA1251............. 4.95	TBA890										
	-	UP1230H............ 2.35	RBM A823(2500/2500)30V 1.65		ITT CVC5 7 Button 10.40						
12.	TBA950............... 2.65	350C 4.50									
SAF 1039 P 4.25	TCA800.................1.5. 1.55	2.60	THORN1690/1(4700)25V 94		10431058.95						
SAS560S 1.95	TCA940..................1.5	UPC2002H 1.8	THORN3500(1000)70V.................$~$THORN $9000(400) 400 \mathrm{~V}$		U321 …..						

THE DOMESTIC VIDEORECORDER SERVICING BOOK
 THE ENGINEERS BIBLE

UPDATED SECOND EDITION IS NOW OUT WITH NEW CHAPTER ON HI FI, DIGITAL SERVOS, LUMINANCE AND CHROMINANCE SIGNAL CIRCUITS, FAULT GUIDES AND CONNECTION DATA
A MUST FOR ALL VIDEO REPAIRERS AND STUDENTS. THE COMPLETE REFERENCE TO VIDEORECORDER CIRCUITS
ORDER YOUR COPY NOW FOR ONLY $£ 16.95$ inc P\&P FROM:

NEWARK VIDEO CENTRE

(0636 71475)
OR DIRECT FROM:
GROVE FARM, LONG LANE, BARNBY IN THE WILLOWS, NEWARK, NOTTS. NG24 2SG.
Cheques and PO's payable to D. BEECHING.

MAKE YOUR INTERESTS PAY:

 Train at home for one of these Career opportunitiesMore than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICs has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your free Information Pack on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square

GCE over $40^{\prime} 0^{\prime}$ \& 'A' level subjects

Name:
Address:

International Correspondence Schools,
Dept. EGS36, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or' 041-221 2926 (both 24 hours).

GUARANTEE
 [CHIDTMOV
 nuill
 Get on the hot-line today!

suberior dualtr tuees DELTA RE-BUILDS

051
 4288777

 most types of Inline Re-builds or

Defta Rebuilds	Inline Rebutids

IN LINE TYPES EX-STOCK SELECTION NOT RESUIDS

Please enquire types not listed

370 HFB-A37-590...... £45	560 DMB $\mathbf{E 6 2}$
370 HUB	AXT 56-001 £62
AXT 37-001 £45	660 AB $£ 65$
420 CSB $£ 45$	A67-701 $£ 65$
420 EDB-A42-590 £45	670 CZB $£ 65$
420 EZB £45	A66-540 $\mathbf{6 6 5}$
420 ERB $£ 45$	420FSB $£ 55$
470 KUB $£ 50$	
510 UFB/A51-590 $£ 55$	CARRIAGE
510 VSB $£ 60$	£5 Singles. $2-3$ £10, 4 £12
AXT51-001 $£ 60$	10 £15. $10+$ Carriage paid
560 DYB-560 DTB £62	EXCLUSIVE OF VAT
560 EGB $£ 62$	Cash with order
560 CGB $\mathbf{£ 6 2}$	

[^0]* ASK FOR DETAILS. OUR TECHNICAL DEPT

WILL ADVISE YOU ON PROBLEMS YOU MAY
NCOUNTER ON FITTING INLINE TUBES

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

Consumer Credit Trade Association

 3, Berners Street, London W1P 3AG. (01-636-7564)We sell a wide range of Consumer Credit, Hire Agreements and Ancillary Documents on a cash with order basis.

Examples:

RA (Rental Contract with 2 copies) $10=£ 7.03$
$50=£ 17.26$
RC (As RA but cancellable)
$10=£ 8.59$
$50=£ 24.53$
HPA (Hire Purchase contract with 2 copies)
$\begin{array}{rrr}10= & \mathbf{£ 7 . 0 3} & 50=£ \mathbf{£ 1 7 . 2 6} \\ & \text { HPC (As HPA but cancellable) } \\ 10 & =\mathbf{£ 7 . 7 2} & 50=£ \mathbf{£ 1 . 3 6}\end{array}$
All prices are fully inclusive nothing to add.
Quotations are available for larger orders or other types of forms.
We also stock a range of Short Guides to various aspects of the Consumer Credit Act.

Please ask for a Publications List and/or details of Membership.

HUSSAIN CENTRAL T.V. LTD. THE LARGEST RANGE AT THE LOWEST PRICES IN THE U.K. NEW YEAR SALE ON NEW T.V.'s.
 BRAND NEW 14" PORTABLES
 £105
 BRAND NEW STEREO-TEXT
 £235
 TX STEREO-TEXT
 £150
 SANYO TEXT
 £205

ALL TYPES AND SIZES IN STOCK $\star \star \star$ WORKING VIDEO'S FROM $£ 80 \star \star \star$ PLUS SALE ON EX-RENTAL T.V.'S
PYE G11 EX-CAB £34 + G11 TEXT £55
G11 $660 £ 28$ + TX TEXT £60
G8 $550 £ 8$ + DECCA S/S $£ 20$
G8 $520 £ 5$ + ITT S/S $£ 20$
PYE $222 £ 10$ + ITT REMOTE WITH HANDSET $£ 35$
PYE $18^{\prime \prime} £ 10$ + HYBRID T.V. $£ 2$

200 T.V.'s A DAY ARRIVING AT OUR BRANCHES

WHY NOT COLLECT STRAIGHT FROM OUR LORRY. RING FOR DETAILS and delivery arrangements. LOADS DIRECT FROM SOURCE TO YOUR DOOR. LOTS OF LATE MODEL T.V.'s IN STOCK.
GRUNDIG TEXT - TANDBERG - PANASONIC - SONY - SANYO +2020 VIDEOS FROM £8
BRAND NEW BETA CAMCORDERS, VCR 100P.
ALL PRICES ARE BASED ON QUANTITY AND + 15% VAT

BIRMINGHAM
48-52 PERSHORE ST.
021-622 1023 021-622 1517

PRESTON

UNIT 439
WALTON SUMMIT IND. EST.
OFF M6 JN 29
07723121010772312102

[^1]
E．B．K．ELEGTROWIOS Dont T．
 UNIT 5，COMET WAY，SOUTHEND－ON－SEA，
 ESSEX．SS2 6TR TEL：0702－527572

													75			VIDEO BELT KITS			
	9.75	Cx157		HA1118	50	MS	75						80		7	AKAI VS－2E	£1．50		
	\square	Cx160		HA	50	MB3712	${ }_{\text {ci．}}$	Tarlia		UPC103		${ }^{\text {2SALP5 }}$	\％ 20.35		80.30	AKAI VS 9700EG		An5033	55.25
${ }^{\text {AN2 } 2140}$	${ }^{51.80}$	${ }_{\text {cxild }}$	${ }^{2} 2.50$		50	MB3730	${ }_{\text {¢ }}$	Ta714	\％2．50	UPC103	80.75	${ }_{2 S A 1702}^{254}$	¢1． 90	${ }_{\text {2SC16 }}$		FISHER VBS 7000 （6）	$\underline{2} 20$	AN5630x	¢6．25
		${ }_{\text {Cx162 }}$	${ }^{83} 5.40$		50	M83731	${ }_{52} .50$	TA74		UPCO1			¢1．90			FISHER VBS 9000 （3）	¢1．00	AN6387	£5．63
	$\underline{5}$	${ }_{\text {cki }}$		${ }_{\text {HA }}{ }_{\text {HA134303 }}$			52.60		¢1．60	UPCC115	${ }_{51}^{50.40}$	2SAATO	E1．90	2SC1815	20．28	HiTACH VT5000（	91.70	HA11440A	13.75
AN	E．30	HA112	\＄2．75	Lal11	co． 80	M888	ต． 50	TA717	¢1． 50	UPC1	¢0．75	2Sa1705	$\underline{5} .25$	$2 \mathrm{SC1826}$	c0．60	JVC HR3300／3600	$\underline{2} .00$	HA12001W	£6．50
		HA112	51.50	Lal201	20.85	Pllota	¢2．30	TA7193	${ }^{3} .50$	UPC 116	50.60	2 Sal 106	$\underline{2} .50$	$2 \mathrm{CC1}$	c0．30	JVC HR3360／3660（7）	$\underline{2} .00$	HA12038	£6．75
${ }_{\text {AN }}$				Lat		PLL03	${ }^{\text {E．4．95 }}$	Ta7200			80.70		20．35		${ }^{\text {E．} 50}$	JVC	2	LA1	75
	0.75	HA1	52.50	lat240	${ }^{1} 175$	STK011		taz202					20．40	${ }_{2 S}^{25 C 1}$	2． 50	PANASONIC NV333（5）	¢1．40	La3370	£2．80
					． 50	STK013	${ }_{60.25}$	ta7zo3	¢1． 80	UPC117	¢1． 50				${ }^{20.10}$	Panasonic nvz	c1．40	LA4126	£2．50
		HA116		La	20	STK0	EcF^{25}	Tazzo	51.10	UPC11	¢1．20	2583	${ }_{52} 2.60$	$2 \mathrm{2SC}^{2}$	${ }_{50} 30$	PANASONIC NV7000（5）	$\ldots 1.25$	LA4507	£4．85
${ }_{\text {AN }}$							． 00	Itazosa	¢1．00		c1．20	25	E0． 80	2 SC 2	${ }_{\text {c0．}}$	PANASONIC NV8600（7）	$\Sigma 1.75$	LA7016	£2． 50
												2S83	5.60	25 C 20	E0． 15		5	La7215	
an		HA1300	E1．60	La3	c1． 60		． 50		$\underline{7} .00$	UPC	ต1．00	2S86	${ }^{\text {c2a }}$	2 SC	50.25	SAN	5.25	LA7521	£4．50
		HA131				STK022	c5． 25		50		c1． 00	286692	20.75	$2 \mathrm{SC2}$	20．75	Shaf	9.75	La77	4.75
													¢1．70		co． 0	Shanp VC		LA7755	95
	5	HA1342A		通	\％1． 40		95		c． 20		12.20		50.60	25	20．95	SHARP VC93		LA7801	£2．95
AN	81.20	HA1366	E1．50	La3301	1.20	STK078	${ }_{65} 5.50$	tapzz	${ }^{1} .20$	UPC11	${ }_{\text {c1．}} 10$	2 S	${ }_{\text {c1．}}$	2 SC 2	${ }_{\text {c0．}}^{10.95}$	SONY SLITMET	${ }^{17.30}$	LA7808	¢2．50
				LA3350	20				c1． 95	UPC	c0．95			2 SC	． 65	SONY SLC7 $/ .17$（6）	19.70	La7910	
	¢175		${ }^{\text {c1．}} 60$	Lasa	20	sik	． 75	TAA		UPC	0.95	${ }^{25659}$	${ }^{20} 0.30$	$2 \mathrm{SC2}$	20 70	SONY SL8008080（6）	8	LC4066B	
							c9．75		\％ 20		${ }_{\text {c0．} 80}$			28	E15	TOSHIBA V547（6）	51.70	M5102L	£4．95
							50	tapza	51.50	UPC	20．95	2 289720	50.90		ctic 25	TOSHIEA V7540（5）	11.75	${ }^{1}$	
AN	${ }_{\text {¢1．}}$	Hal	${ }_{5}^{92.50}$	LA410	． 50	STK4335	c5．00	${ }_{\text {Ta }}^{\text {TA2223 }}$	${ }_{61.75}^{83.00}$	UPC	${ }_{\text {c1．}} 1.95$		${ }_{50.30}$	20	${ }_{5170}$	TOSHIBA V8600（6）	$\underline{1}$	UPC1397H	
				La410	81.00														
		Hal 1389	81.75																
	\％ 20	Ha13	${ }^{\text {ci．}} 30$	Las	${ }^{1} .40$	Sika	56.00	IA73	11.30	UPC	51.40		${ }^{20.30}$	25	${ }^{82} 20$			，vis	
ANTI10	${ }_{6.40}$	HA1394		La4120	50	STK	c5． 50	IA ${ }^{\text {a }}$ ，	${ }^{1} 1.75$	UPT	¢1．		${ }_{50.70}$	2 S 21	cis			Casstit	
			$\underline{2} .50$	La41	8.00		${ }^{55} 75$		c0．95										
	E1．40	HA1	${ }^{20.90}$	AA1182	${ }_{20}^{20.00}$	STK461	7． 50 ع6．50		${ }_{\square}^{1.60}$	UPC	${ }_{\text {c10．}}^{17.25}$		¢00．50	2 SO	51.60				
AN7130	51.50	HA	¢4．25	La41922	81.95		E7．40	IA760	E．3 50	UPC	$\underline{4.50}$		${ }_{50} 0.30$	25	${ }^{\text {cl．}} 95$				
AN7146	85	HA	${ }_{5}^{5.30}$	Lataz	¢1．20		${ }_{\text {ctich }}$	tap	\％． 30	UPCC12	${ }^{\text {c0．}} 105$		¢． 2.20	2503	50			ERAMIC SOUMD	
							¢4．35	ta76	ci． 50					2503	50				
							\＆4．25		¢4．80		2． 50	${ }_{2 S}$	£0． 50	2503	c1．30	或			
ANNI58		Ha）		La	91． 20		R5．90		8		¢1．20		30	2504	E1．50				
	${ }_{50} 80$	${ }_{\text {HA1 }}$	E4	Las	${ }_{51.30}$		${ }_{\text {ctioc }}$		¢1．20	URC	${ }_{\text {c1．}}^{\text {ci }}$		${ }^{30}$		30				
													15		50		，	5 MC	${ }_{80.30}$
	${ }^{2}$	HA	${ }^{6}$	${ }_{\text {La }}^{\text {La466 }}$	¢1．75		${ }_{5075}^{86.50}$		5		${ }^{51.60}$								
	${ }^{\text {c．}} 175$	HA11	${ }^{4} 4.75$	La4	\％ 2.50		E6．00		80.60	UP	\ldots		$\underline{.17}$					Le	
${ }_{\substack{\text { ba } \\ \text { BAA02 }}}$	${ }^{5} 7.35$	HA	${ }^{25} 5.50$	La4505			¢9．75		8.00						50				
BA5114	¢1． 810	HA	${ }^{56}$	Larzoo	¢1．95	STK5	${ }^{\text {che }}$	UPC5	${ }_{8}$	UPC， 1366 BH	${ }_{\text {E1．}}$		¢0．35	23949					
	ci．${ }_{\text {cis }}$	${ }_{\text {HA }}^{\text {Ha }}$	${ }_{5}$		50		${ }^{8} 8.50$		${ }_{50.35}$	UPCL1370C	${ }_{81} 8.95$	${ }_{2}^{2 \mathrm{CO}}$	（80．35		51．00	，			
		HA	${ }^{\text {E6 }}$	${ }^{\text {LC77130}}$	${ }^{53.50}$		¢6．80	UPC	¢1．00	UP	E1．95	80	$\underline{50.95}$		2.70				
	${ }^{\text {c／}}$ ． 25	${ }_{\text {Hal }}$	ci．75	${ }_{1}$					${ }^{5}$		80． 75		ร0． 50		c0．60				
	51.80				9.75		¢0． 80	UPC	0.75		50.9	2 C	m^{175}		20，		硡		
					\％2． 25		81.70	UPC58	50.95		Ea．		20．80	2S	£4．00	SNaCCESS ACCEPT		PPHOME ORDER	
330	${ }_{\text {cx }}$	HA11727	${ }^{159.50}$	M5	${ }_{21}^{21.75}$		${ }_{51} 90.80$	UPC599	ต0．	${ }_{\text {2SAL35 }}$	20．		\％ 9.80 .85		75				
	${ }^{98} 8.20$	${ }_{\text {HA }}^{\text {HA }}$	¢15．00			TAP					50.35		\％．75		${ }^{\text {c0．}}$ 50				
	5.50	HA	${ }_{69} 50$	M5		TA					${ }_{50.30}$		E．						
		Ha17797	c． 50	M51514A	8.75	Ta710			ร1． 30										
			E5．00	M5	${ }_{\text {c．}}$	tar10	${ }_{6.30}$				50． 5	－				LOND			
$\begin{aligned} & c \times 1 \\ & c \times 1 \end{aligned}$	${ }_{\text {¢ }}$	HA	${ }^{58}$		${ }_{51}^{51}$				ciclen		\％ 5.70				${ }^{\text {¢1．}}$	I：01－723 924	6	nswer	
${ }^{1} \times 136$	Ex． 50	HA 11768	${ }^{18.50}$	M51521AL	E1．75	TA7130	$\underbrace{}_{1.0}$	UPC 1026 C	${ }_{\text {c1．}}$	2，	E1．95	${ }_{2 S C 14198}$	${ }_{50.75}$	DA2030	${ }_{81.40}$	SPA	F WI	48 HOURS	

VISA EAST CORNWALL COMPONENTS

NEW 1986 CATALOGUE is now available - range of components greatly increased - over 136 pages fully illustrated. Price $\mathbf{£ 1 . 0 0}$ per copy (free upon request

ORDERING: All components are brand new and to full specification. Please add $65 p$ postage/packing (uniess otherwise specitied) to all orders

 and then add 15% VAT to the total. Minimum order $\mathbf{E} 5.00$. Either send cheque/cash/postal order or send/telephone your Access or Visa number. Otficial orders from schools, universities, colleges etc most welcome. (Do not forget to send for our 1986 catalogue - only $\mathbf{E 1 . 0 0}$ per copy). Delivery by return on ex-stock items.

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 281 .

COVER PHOTO

This month's cover photo shows a set fitted with the Hitachi NP6C chassis. See article on page 294.

CORRECTIONS

The line output valve used in the Thorn 1500 chassis was given as a PL509 in our February issue (page 176). This should of course have been type PL504.

A couple of modifications to the Sharp VC9700 were mentioned in VCR Clinic last month (page 255). The recommended value for R693 should have been given as $10 \mathrm{k} \Omega$, not 10Ω.

Two corrections to the Spectrum 48 K colour bar program on page 241 last month appear in a letter on page 319 this month.

ADDRESSES ETC.

Several readers wrote to provide us with the address for Nikkai colour sets. These are distributed by Nikkai Imports, Nikkai House, Unit 3, Ashley Industrial Estate, Sackville Street, Leeds LS7 2BS (0532 622 404). Our thanks for this help.

Does anyone know the spares agents for the Sonar 77 portable? The set was made in Taiwan.

Cable Standstill

In November 1983 eleven broadband cable TV franchises were awarded. It was to be the beginning of a great new era, with groups of five franchises being advertised by the Cable Authority at four monthly intervals - remember all that talk about "recabling" the UK? To date one such group of franchises has been awarded and a second, after the Authority delayed its last advertising exercise, is about to be announced, extending the new style services to Camden, Cardiff, Edinburgh, Preston and Southampton. It's hardly been a dynamic start to the new era, and in practice there's a huge difference between being awarded a franchise and actually starting a service. This difference is caused by the problem of raising the finance required once a franchise has been obtained: it's been estimated that current franchise holders are at present seeking around $£ 250$ million of risk capital. They are finding it far from easy - it can't help that one of the original eleven franchise companies, Shaw Cable (Wandworth), went into receivership before laying any cable at all. Just four of the original franchise holders have started to provide services, in Swindon, Aberdeen, Coventry and Croydon. One of the problems in obtaining finance is the length of time required to show any profit - an estimate of ten years "at the earliest" has been made. And that of course is pure guesswork since no one is likely to make a profit from the new style networks for a good few years to come. It has often been said that the City is slow to provide finance for new ventures, especially where new technology is concerned, and that it should be prepared to invest with a view to a longer profitability time scale. That might be reasonable with real high technology, but ten years seems a fair enough time scale for an activity like a cable franchise.
How are current cable operations faring? During 1985 the number of homes connected to a cable TV service declined by three per cent. Not a large drop, but on the other hand one would expect a reasonable increase if the new services are making any impact. The drop occurred despite the fact that the number of homes with cable TV available increased by over 41 per cent last year. For the record, at the end of December there were 126,262 cable TV subscribers in the UK while cable services were available to 976,671 homes. Just $12 \cdot 9$ per cent of those who could take a cable TV service chose to do so.
A distinction has to be made between the newer broadband services and the older networks originally set up to provide services in areas where off-air reception was poor. Some of the latter have been updated to provide extra channels, and you might think that this would help keep them going. In fact the drop in the number of cable TV subscribers is due to disconnections from the older networks. By far the largest provider of these older type services is Robert Maxwell's British Cable Services, which took over the Rediffusion networks a while back. British Cable Services has some 75,000 subscribers in over forty towns and recently announced that active selling in 24 of these areas is to stop. The sales force is being reduced from 130 to 100 and will concentrate on the sixteen areas considered to have the best long-term potential. Without a detailed knowledge of local conditions it's hard to see why Bristol, Hastings, Oxford, Reading and Southampton should be considered good prospects while Exeter, Hartlepool Newcastle and Plymouth are to be put on ice, though the areas selected for continued sales effort are in the more prosperous parts of the country.
This last point leads to what could be regarded as a serious criticism of cable TV as a broadcasting medium. Traditionally in the UK the aim has been to make broadcasting available to all. The BBC and the IBA have gone to great lengths to maximise the coverage provided by their transmitter networks - the cost per viewer of providing services soars in the more remote parts of the country. Even when enthusiasm for cable as an exciting new medium was at its height during the ill fated Information Technology Year it was never envisaged that cable TV would serve more than half the country those viewers who could be reached at a reasonable cost. It now seems that the potential cable TV network will be much more severely restricted. For a cable service to be viable the area it serves will have to be compact, reasonably homogeneous and relatively prosperous. It's sensible to start off in areas that provide the best economic prospects but it all seems a far cry from the idea of broadcasting as a public service.
While optimism is still being expressed by some of those in the cable TV industry the omens are at present not very reassuring. Thorn EMI, a company that was expected to become a major operator of the new style broadband services, has decided to reduce its involvement in both programme and network provision: talks have taken place on the sale of its operations in Swindon, Coventry and Belfast. There has already been cos cutting at Swindon, where the local news service has been closed down. This employed nine people to provide two bulletins a day and three fifteen-minute programmes a week for the network's 12,000 subscribers, which was hardly an economic proposition. Raising finance and getting subscribers is proving far harder than was once envisaged - it's a sort of chicken and egg situation of course. Relief has been expressed by the Cable Authority that applications for franchises are still being made. But each franchise recently advertised has attracted only one applicant, which is a bit different from the original idea that the Authority would be responsible for making a careful selection between competing groups of prospective cable TV operators.

Servicing the Hitachi NP6C Chassis

John Coombes

The NP6C chassis was used in a number of Hitachi models that were on sale from late 1976 to 1980, including the CWP132, CRP143, CTP203, CTP213, CTP215, CTP216 and CTP217. Tube sizes range from 13 to 20 in . and some models have an ultrasonic remote control system for channel selection, volume and standby. The chassis is in two main sections, the power supply and deflection circuits being on a large horizontal panel at the base of the cabinet while the signal stages are on a vertically mounted panel at the left-hand side - the chroma panel, which includes some but not all of the decoder circuitry, is mounted on this. The RGB output stages are on the c.r.t. base panel. Our front cover photograph shows the general arrangement.
The circuitry is mostly in discrete component form. Early sets have just two i.c.s, an HA11580A (IC501) in the decoder and an HA1124D (IC401) as the intercarrier sound/audio preamplifier channel. In later sets an HA1126DW (IC001) a.f.c. chip appeared while a μ PC1351C (IC502) took over most of the decoder circuitry not contained in IC501. There's a transistor line output stage with diode-split transformer and a chopper power supply. The latter includes a multivibrator start-up arrangement. Two thick-film voltage divider/reference voltage modules (CP901, CP902, type HM9102) are used in the power supply. They are none too reliable. Another thick-film module is used for the field driver and output stages (M601, type HM6231) - faulty connections can give problems here.

Poor Soldered Joints

Poor soldered joints are in fact a common problem with these sets - dry-joints on the chopper (T902), chopper driver (T901) and line output (T703) transformers are often responsible for intermittent operation. Dry-joints also tend to occur on the resistors mounted above the board in the power supply - R918, R924, R928, R933 and R935. R937 is another resistor in this area whose connections are worth checking. Suspect joints should be cleaned and fluxed before resoldering.

Power Supply Circuitry

As with most modern TV receivers the chopper power supply is the heart of the set. The circuit is shown in Fig. 1 and to assist with fault-finding it's helpful to appreciate how this works. Mains bridge rectifier CR901-4 produces across C909 a d.c. supply which is fed to the collector of the chopper transistor TR906 via the primary winding of the chopper transformer T902. CR908 rectifies the pulses developed across the secondary winding, producing a stabilised 110 V h.t. supply across C925. Stabilisation is achieved by adjusting the mark-space ratio of the drive to the chopper transistor, i.e. its on/off times.

TR905 is the chopper driver transistor while TR904 is responsible for adjusting the mark-space ratio of the drive. Pulses from the line output transformer are integrated by R910 and C915 to produce a sawtooth at the base of TR903. This transistor acts as an inverting
amplifier whose output is coupled to the base of TR904 via C916. The point at which TR904 conducts during the sawtooth at its base is set by TR907, which is controlled by the thick-film unit CP901. The latter produces a reference voltage for the emitter of TR907 and a feedback sample for its base, derived from the h.t. line via a divider. The use of this thick-film unit enables precise control of the h.t. to be achieved without the need for any adjustment.
During normal operation the circuit depends on the presence of pulses from the line output transformer, so a start-up system is required. For this purpose R908/R935/ R909/CR906 provide a supply for TR904 and TR905 while the multivibrator TR901/2 provides a squarewave to drive TR904. At switch on C910 begins to charge via R902, enabling TR901/2 to operate. Once C901 has charged TR901/2 can no longer function. When the h.t. line has been established TR904 and TR905 are supplied via CR907.
Overload protection is provided by TR908/9, CP902, CR709, CR712, CR713 and the associated components. CR709 rectifies pulses from the line output transformer, producing across C753 a d.c. supply which is divided down in CP902 and applied to the internal zener diode (via pins $3 / 2$). In normal operation the voltage is insufficient for the zener diode to conduct. Excessive voltages in the line output stage will result in the zener diode conducting, producing a voltage across R931 to bring TR908/9 into conduction. These transistors latch on, shorting the supply to TR904's emitter so that the chopper drive is removed. CR712 is linked to the earthy end of the e.h.t. rectifier system in the line output transformer. CR713 senses the voltage developed across R726 (20ת, 10W) which is in series with the emitter of the line output transistor TR704. In the event of a leaky or short-circuit line output transistor CR713 will conduct to bring the protection circuit into operation.
The 12 V supply for the small-signal stages in the set is derived from a winding on the line output transformer. CR705 (V09C) is the rectifier diode and $\mathrm{C} 735(1,000 \mu \mathrm{~F}$, 16 V) the reservoir capacitor. Smoothing is provided by L 705 and $\mathrm{C} 736(2,200 \mu \mathrm{~F}, 16 \mathrm{~V})$. The 1Ω fusible resistor R733 provides protection/surge limiting.

If it's necessary to replace any of the following components only Hitachi supplied/approved types should be used: CP901, CP902, TR907, TR908, TR909, CR705, CR709, R928, R931, R932, R934, C753, C932 and T703 (line output transformer).

No Results

The most common fault with these sets is no sound or raster. The first thing to do is to check for dry-joints around the higher-wattage resistors in the power supply. Next check the voltage at the collector of the chopper transistor TR906. If there's no reading, F903 is probably open-circuit - check TR906 before replacing this. If F903 is all right check the mains fuse F901. If this has blown check the mains bridge rectifier diodes CR901-4. If both fuses are o.k. check TR906 by replacement and check the

Fig. 1: The switch-mode power supply circuit used in the Hitachi NP6C chassis.
continuity of the chopper transformer's primary winding.
If the voltage at the collector of TR906 is correct something between 230 V and 360 V should be recorded check whether CR908 is open-circuit. If CR908 is all right but there's no voltage at its cathode, remove R941 and try again. If you now get a reading of 110 V and the line sync is normal check TR908 and TR909 by replacement, then CP902. If there's still no voltage at the cathode of CR908 replace R941 and short out C910 briefly. If this fails to restore the voltage at CR908's cathode check TR901 and TR902 by replacement. If necessary go on to check TR904, TR905 and TR907, then both CP901 and CP902 by replacement.

If shorting out C910 produces a reading of about 60 V at the cathode of CR 908 check the 12 V line at terminal B1. If there's no voltage here check CR705 and R733. If the reading is 5 V or so check TR 903 by replacement.

In our experience the line driver and output stages are remarkably trouble free.

Field Faults

In the event of field collapse, check that the 110 V line is correct then check the temperature fuse TF601. If this is open-circuit, check whether the decoupling capacitor C610 $(22 \mu \mathrm{~F})$ is short-circuit, then check the thick-film module M601 by replacement. If TF601 is all right check the voltage at pin 1 of M601. If the voltage here is less than 70 V check the preamplifier transistor TR602 (2SA673B/C) for being short-circuit: if the voltage is more
than 70 V check the field oscillator transistor TR 601 (2SC458B/C) by replacement - if necessary check capacitors C601 ($0 \cdot 068 \mu \mathrm{~F}$), C602 ($1 \mu \mathrm{~F}$), C603 ($0 \cdot 01 \mu \mathrm{~F}$), C604 $(1,000 \mu \mathrm{~F})$ and $\mathrm{C} 605(470 \mu \mathrm{~F})$ by replacement.

The field output thick-film module can usually be repaired on an outside call - look for dry-joints around the field output transistors. You may get intermittent or permanent field ${ }^{\xi}$ collapse, lack of height, bottom cramp, top foldover or picture jitter. It's best to replace the module however.

If the sync and height are not correct though the 110 V line is o.k. check the setting of the hold control R605 and the height control R607. If still confronted with poor sync and excessive height check C602 ($1 \mu \mathrm{~F}$) and C611 ($0 \cdot 1 \mu \mathrm{~F}$) by replacement. For poor sync and lack of height check C $601(0 \cdot 068 \mu \mathrm{~F}), \mathrm{C} 604(1,000 \mu \mathrm{~F}), \mathrm{C} 607(100 \mu \mathrm{~F})$ and C 611 $(0.1 \mu \mathrm{~F})$ by replacement. For top foldover check C606 $(10 \mu \mathrm{~F})$ and $\mathrm{C} 610(22 \mu \mathrm{~F})$ by replacement.

1

Sync Faults

For loss of field sync first try adjusting R605 then check C602 ($1 \mu \mathrm{~F}$) and R601 ($6 \cdot 8 \mathrm{k} \Omega$) for being open-circuit and C601 ($0 \cdot 068 \mu \mathrm{~F}$) by replacement.

For incorrect line lock try adjusting T701 then check TR701 (2SC458B/C) and TR702 (2SA844D/E) by replacement. If necessary check the flywheel line sync discriminator diodes CR 701/2 (1 N 34 A) which can be leaky, then go on to check the other components associated with

next month in

- TV/VCR SPARES GUIDE

A recurrent problem for those in the TV/video servicing business is the unknown set, brand name or manufacturer. A great deal of time can be wasted trying to find a source of spares. By far the most frequent request for help we get from readers is for this type of information. Even well known manufacturers keep changing their service department locations and phone numbers. So we've compiled a list of brand names and spares sources and have made it as comprehensive as we can. It will be up-to-date at the time of printing and will be supplied with the April issue, printed on a separate card so that it can be kept in a handy place for reference.

The guide will be available only with copies of Television sold in Eire and the UK since readers in other countries will have their own local sources of supply.

- MODERN RECEIVER CIRCUITRY

Advances in component and circuit technology mean that today's sets differ substantially from the type of receiver common only a few years ago. It seems time to take a look at current techniques: J. LeJeune kicks off with switch-mode power supplies.

- QUICK CHECKS: THE FIDELITY CTV14R

S. Simon on how to go about fault-finding in the Fidelity CTV14R (ZX2000 chassis). Large numbers of these 14 in . colour sets were sold.

- DEVELOPMENTS IN VCRs

The latest luminance crosstalk cancellation techniques used in VCRs are described in the present issue. Following demodulation and crosstalk elimination further processing can be applied to the luminance signal. Steve Beeching describes an interesting picture sharpening circuit: since this tends to enhance h.f. noise it's used with an h.f. noise reduction system. A dynamic aperture correction circuit - in effect a record picture crispener - is also described.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:

TR701/2. Note that TR701 handles both the line and field sync pulses.

If there's complete loss of sync short out diode CR253. If this restores sync check CR253 (1S2076) and the noisecanceller transistor TR251 (2SC458E/C) by replacement. If shorting out CR253 makes no difference check the voltage at the collector of the sync separator transistor TR252 (2SA673B/C/D). If there's no voltage check TR252: if the reading is normal $(0.7 \mathrm{~V})$ check whether TR701 ($2 \mathrm{SC} 458 \mathrm{~B} / \mathrm{C}$) is open-circuit. If necessary check whether R701 ($15 \mathrm{k} \Omega$), R702 $(1.5 \mathrm{k} \Omega)$ or R703 (430Ω) is open-circuit. The voltage at the base of TR252 should be about 8.8 V . If this is incorrect check the a.g.c. transistors TR254 (2SC458B/C) and TR253 (2SA836/2SA844D/E). If the picture is dark check the first two i.f. transistors TR201 and TR202 (both 2SC1855).

Brightness Faults

If the sound is all right but the brightness cannot be adjusted check TR304 (2SA836/2SA844D/E) and TR305 (2SA673C/D) either of which can go open-circuit. If there's no raster check the setting of the brightness control R328 then the voltage at the collector of TR304. If the voltage is high at around 10 V check TR304. If the voltage is slightly high at around $7-8 \mathrm{~V}$ check TR305. If the voltage is correct at about 6.5 V check TR305 and IC501 (HA11580A). If a raster still cannot be obtained, the line output transformer T703 could be defective - if the c.r.t. heaters are out check fuse F701 (630 mAT).

Colour Faults

In the event of no colour or floating colours connect a $20 \mathrm{k} \Omega$ resistor from pin 21 of IC501 (HA11580A) to chassis. If there's still no colour check for about $0 \cdot 2 \mathrm{~V}$ p-p of chroma at pins 19,2 and 3 of the i.c. If any of these waveforms are absent, replace the i.c. If adding the $20 \mathrm{k} \Omega$ resistor produces unlocked colour check for a 1.8 V p-p reference oscillator signal at pin 8. If the waveform is correct, check the adjustment of the phase control R525 and if necessary the associated circuitry around pins 9 and 10 of the i.c. If no faults can be found here replace the i.c. If the waveform at pin 8 is incorrect check the 4.43 MHz crystal X501 and associated components as necessary.

For Hanover blinds first check the setting of the gain balance control R564 and the adjustment of coil L551. If necessary check the chroma delay line DL551 by replacement. Other things worth checking are T551, TR551 ($2 \mathrm{SC} 458 \mathrm{~B} / \mathrm{C}$) and the condition of R564's track.

Sound Faults

In the event of no sound make a hum check at terminal F3 on the signals panel - apply a screwdriver with finger on the blade. If hum is present check the intercarrier sound i.c. (IC401, HA1124A). If there's no hum check the voltages around the audio output transistors TR401 and TR402 (both either $2 \mathrm{SD} 478 \mathrm{C} / \mathrm{D}$ or $2 \mathrm{SD} 401 \mathrm{~K} / \mathrm{H}$) and the coupling capacitor $\mathrm{C} 415(10 \mu \mathrm{~F})$. There should be 110 V at the collector of TR $401,40 \mathrm{~V}$ at its emitter and at TR402's collector. If these voltages are missing, check R422 ($100 \Omega, 1 \mathrm{~W}$), the temperature fuse TF401 and the transistors. If everything is in order check the continuity of the speaker - a reading of 8Ω should be obtained across terminals D1 and D2. C415 can be responsible for poor/ distorted sound.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPO. Telephone 0268690868 Telex 99305

Thom 10 N 2OW (3500) R751 Safety Resistor 7 Tsp Pye 713 Speaker
Yye 713 Complete Tube Base
wit with Focus Slider \& Leads
Pre 725 Complete Tube Base Panel XP9 Complete Tube Base Panel XX10 Complete Tube Base Pane|
TX90 Complete Tube Base Panel Pye 173 Control Knobs
Tube Base Socke ITM CVC3 Tube Base Socket Thorn $3000 / 8000$ et IC Insenter 16 Pin
Large IC Extractor

Large IC Extracto
Crystal 4.43 MHz

Crystal 4.43MHz
EHf Lead \& Cap for Split Diode Lopt
 Degause VDR E2990/PP230 30008000 Degause Thermister C8-ROH (TX90) Control Knob Thom TX90 Push Button Assy Thorn TX90 Tube Neck Correction Assy ZOAX AT1081 EHT Cable
BF259 with
BF 259 with Heatsink
$\mathrm{TIP110}$ with Heatsink

D 1700 (Philips) Chroma Delay Line
D 50 Chroma Deiay Line
T 9006 A Lum Delay Line
8K599K Lum. Delay Line
Plastic Cover for 3 K 5 SP8385
Plastic Cover for 3 K5 SP8385
IX \times Back Ground Control 10 K
TX9 Gain Control loor
Thorn 2000 Focus Pot
Thiorn 9000 Focus Pot
Thom 96000 Focus Pot
Thorn 8 KK Focus Pot
Thorm 4000 Focus Pot
Thorn 4000 Focus Pot
Thorn TX10 Focus Pot (New Type)

\section*{Ambersil MS4 SERVICE AID
 Ambersil Freezer
 Ambersil Ambertron
 Ambersil Anti-Static Screen Cleaner
 Ambersil $40+$ Protective Lubricant 14,102215 | Ambersil Amberclens foaming Cleaner | |
| :--- | :--- |
| Ambersil Circuit Lacquer | 1402 |
| 215 | |
 THICK FILM RESISTOR UNITS 3500 Thwo (5 Pin Connection) vid

 713 Pre (6 Pin Connection)}

	FUSES	
	20 mm	
50 MA	10 for 70p	250MA
250MA	10 for 50p	750MA
315MA	10 for 50p	7A
500MA	10 for 50 p	10A
2.54	10 for 1.00	20A
3.15A	10 for 1.00	50A

Thorn Mains IX $3000 / 3500$
Thorn Mains IX $8000 / 8500$
Thern Mains DX 9000 (T701)
Thorn Mains TX 9600 (T512)
Thorn S.O.P.T 800008500
Thorn Scan IX $3000 / 3500$
Thorn EHT TX $3000 / 3500$
Thorn LOPT 9000
Thom LOPT 9600
Thom LOPT 1590/91
Thorn LOPT 1690/91
Thorn LOPT 8000
Thorn LOPT TX9
Thom LOPT D 10
Thorn LOPT TX9
Pye LOPT 713
Pye LOPT 713
Pye LOPT 725
Pye LOPT 731
Pye LoP LOPT G9
GEC LOPT 3113
Oiode Split LOPT AT2076/35
Sanyo LOPT AM-WM-21
Philips LOPT G8
Sanyo LOPT (CW21) 4-2751-44700
1π LOPT CVC5-9
IT LOPT CVC45
Baird 8750
Baird 8752
Thom Line Drive TX. TX9 (T2)
Thorn Line Diviv IX. 8K etc. (T402)
Thorn Line Drive DX. 9 K (T05)
Thorn Switch Mode TX 9 KG (T511)
Thorn Choke IX90 (L120)

10 for 10 10 10

웅응
10.00
10000
10.00
3.50
6.00
6.0
6.0
10.0

TED CIRCUITS

	INIEGRATED CIRCUITS	
BRC1330	1.40	SN76013N0
BRC3064	1.00	SN76023N
BRC/M/200	1.00	SN76033
BRC/M/300	1.00	SN76115
CA3060	1.50	SN76131N
LM1303P	1.48	SN76226N
ML231B	220	SN 7627 N
ML237B	2.00	SN76530P
ML239B	286	SN76622N
MC1327AP	1.25	SN766EOON
MC1358P	1.30	SN76636\%
MC1455P	18 p	SN76744
MC14516BCP	60 p	SY153A
SAA 1025	720	TA7117P
SAA1124	450	TA7109AP
SAA5010	6.00	TAA611
SL432A	1.80	TBAIz0B
SL1430	250	TBAIzOC
SL1432	2.50	tBalzoca
SN 15846N	68p	TBAIz0S
SN74123N	68 p	TBAI:OU
SN $74154 N$	1.40	tBA335
SN76001N	1.40	tba4300
SN76110N	1.14	tBA510

Them 8/8K5 ex eqtip panels Thom $3 / 3 * 5$ ex equip panels

UHF TV Aerial for portable 50 Coax Plugs to Help Combat Ghosting Pmoblems Line Connectors
-

EHT TRAYS	
Thorn 3000	5.50
Thorn 8000	4.50
Thorn 8500	6.00
Thorn 9000	7.90
Thom 9600	6.00
Thom 900/950	1.50
Thorn 15003 stick	240
Pye 7134 lead	5.83
Pye 7135 lead	5.97
Pye 725	6.35
Decca Bratford	5.00
Baird 8750	7.10
Korting A29100	7.10
Prilips G8 (520)	6.50
Philips G8 (550)	6.50
Universal	5.00

MULTISECTION CAPACITORS $220+47$
$200+150+50350 \mathrm{~V}$ 이
609
$200+200+100$
$200+200+750 \mathrm{~V} 55 \mathrm{p}$ $\begin{array}{ll}205 V & 34 p \\ 32+32+16 & 275 V \\ 200+200+100+32\end{array}$ $320+200+100 \mathrm{~J} 70 \mathrm{p}$
$100+50+150350 \mathrm{~V} 58 \mathrm{p}$
$400+400$ $\begin{array}{ll}100+50+150 & 350 \mathrm{~V} 58 p \\ 400+400 & 200 \mathrm{~V} 72 p \\ 32+32+16 & 350 \mathrm{~V} \\ 52 p\end{array}$ $\begin{array}{llll}32+32+16 & 350 \mathrm{~V} 52 \mathrm{p} & 150+150+100 & 6 \mathrm{~V} \\ 120 & 120\end{array}$ $\begin{array}{ll}205+35 & 350 V \\ 700 \\ 200+200+100\end{array}$
$\begin{array}{ll}200+200+100 \\ 200+100 & 350 \mathrm{~V} 70 \mathrm{p} \\ 325 \mathrm{~V}\end{array}$
$200+100 \begin{array}{r}325 \mathrm{~V} \\ 200+100+100+50 \\ 350 \mathrm{~V} \\ 60 \mathrm{p}\end{array}$ $200+47$
$500+500175$
Thom TK9
$175+100+100$
$\overbrace{250 \mathrm{~V} \quad 1.80}^{350}$
\qquad Thom 3 KF 2 225
400 400V Thorn 9 K 250
470.250 V Weldel Type

CAN TYPES 0.2 MF 250V 50p	1250 MF 40 V	$50 p$
2MF 250V 50,	1250MF 50V	50p
22MF 275V 50p	1500MF 100V	1.05
50 MF 275V 50p	2000MF 30 V	50 p
100MF 150V 650	2200 MF 40 V	
100 MF 250 V 70p		950
220 MF 450 V Thorn ${ }^{4 \mathrm{~K}}$	2200 MF 63 V	
1.30		125
400 MF 350 V Thom 8 K	2500 MF 35 V	650
1.00	2500 MF 40 V	650
400 MF 400 V Thern 9 K	3000 MF 30 V	659
2.5	3300 MF 16 V	50 p
800MF 250V 70p	3300 MF 25 V	609
1000MF 100V Thorm	4700MF 16V	72p
TX90 2.50	4700 MF 40 V	75μ
Thom/Decca/GEC On/OH Switch. Push to make		
Philips G11 On/Off Switch. Push to make ITT CVCS On/Ot1 Switch + Relay		
Prilips G8 On'Off Swith Tisp		
Them 313500 A1 SwitchThomm 4000 Al Switch		
Koring Shit $P_{015} 5002$		
2.5A Push to make on/oft switch i5p		
Thorn Tk90 On/Ott Swich 1.55		
10K Lin Pot DX9/X90 15p		

AA112 AA119 AA143 BA115 BA154 BB103 BB105B BR103 BT106 BT116 BT119 BTIz BT151 650 BY127 BY188 BY204 BY206 BY207 BY208/800 BY223 BY225 BY227 BY298 $81 \times 22 / 400$ BYX55/600 BYX71/350 BZV15 C12R BZV15 C24R IN60 IN2070 IN4001 iN4002

\square 프는
 NOW＠－ENAT

MES JUNOTON EO

EX RENTAL TVs AND VIDEDS．
TELETEXT，PDRTABLES， B GRADE ALDID ETC．
PANELS，REMDTES AND FRIENDLY SERVICE．
ONLY 2 MINபTES FROM DARTFDRD TUNNEL．
THDRN TELETEXT HANDSETS E15＋VAT
9600 LINE PANEL EB＋．
JVC VIDED BELT SET E3．50＋
卫 BREA PH ROAD
WEST THUREGEK
PURFLEET
ロ7ロ8 861404

You won't believe me

Last month I commented on the fact that TV sets can do some strange things. Here's another case, this time involving a Thorn TX9 chassis.

The TX9

A chap brought the set in and put it on the bench. I was busily engaged on a portable but he asked me to do a quick job, at the same time looking anxiously at the clock. So I put the portable to one side and whipped the back off the TX9. The 1.6 A mains fuse had shattered and a light shone on the board revealed that the bridge rectifier diodes were in a sorry condition. I removed them and the red cover and wired the replacement diodes underneath for a quick test. After fitting a new fuse 1 switched the set on. The e.h.t. rustled up, a picture appeared and a look of profound relief showed on the chap's face. The picture then suddenly disappeared and a bright blank screen took its place. Very bright, as you get on certain GEC sets (PIL/20AX chassis) when the $82 \mathrm{k} \Omega$ resistor in the RGB output stage clamp circuit goes open-circuit. Before I could take any action the 1.6 A fuse failed again, with a pop. This time a check on the bridge rectifier diodes revealed that they were innocent, and no shorts could be recorded. I fitted another fuse and tried again. The picture came on and seemed fine. Suddenly the blank screen appeared and while I was making some quick checks in the RGB output stages the fuse once more failed. Since the screen appeared blank white I reasoned that something was affecting all three RGB output stages, but why this should have blown the fuse puzzled me.

The chap became very agitated and said that if it was going to take any longer he'd rather return the set "to her". I didn't argue as I could see that he was upset, so I removed the bridge diodes to allow the red cover to be refitted and he took the set away.

Upon reflection, the strange thing was that the full h.t. was present at the collectors of the RGB output transistors, which are d.c. coupled to the tube's cathodes. I'd have thought that some 190 V here would have blanked the tube instead of being accompanied by a bright, blank raster. The only conclusion I can come to is that C209 $(0 \cdot 1 \mu \mathrm{~F})$, which decouples the bias applied to the tube's grids, must have been going short-circuit intermittently. It's taken to the 190 V line instead of to chassis to provide hum cancellation. But why should this have blown the fuse? I wish he hadn't been in such a hurry.

The Philips G6

You may recall the Philips G6 I mentioned a couple of months back - the one I sold many years ago when I could have sold my first G8. Well Mr. Furnace has since died but the set still carries on under the guidance of Mrs. Furnace. She phoned recently to say that the colour was now very slow to appear, so I went along to investigate. I was amazed at the clarity of the picture, though there was no colour. So I changed the EF183 and EF184 valves in turn. This made no difference, and the voltages all seemed about right. I then tried a cautious turn on the
core of the reference oscillator's coil. "Colour" cried Mrs. Furnace. "Bingo" I replied.

So there it still is, working and giving a perfect picture with a tripler in place of the previous e.h.t. overwinding etc. Supplied in 1970. How about that?!

Infra Red

1
Ray brought in this Fidelity handset and was moaning because it wouldn't work. I had a radio set on the bench at the time so I switched it to long wave, tuned it to 200 metres and directed the handset at it. Nothing. I replaced the battery (Alkaline MN1604) and again pointed it at the radio. There was a series of clicks as the buttons were pressed.
"Well I'm blowed" said Ray. "Is that all it was? It's three years since I bought that set from you and I never thought about it having a battery in it". I nipped upstairs and tried it on our CTV14S and it worked perfectly, as the radio set had said it would.

Thanks Denis

I'd like to thank those of you who offered me help with the Network colour portable whose start-up resistor would intermittently spring open. Special thanks are due to Network's service manager Denis Mott. I took down all you said Denis - about directing heat at the suspect components - and will follow this advice when the set comes back, as you all say it will.

Bounce, bounce, bounce

I was quite annoyed with a well known store that expressed doubt about taking my cheque (business account). Having identified myself, they accepted the cheque and overcharged me sixty three pounds. I got that put right and went away mumbling about their strange way of doing business.

Later that same day a nice man came into the shop and said he wanted a portable set for his daughter. He selected a nice black and white Pye and said he'd collect it later but would pay for it now. He presented me with a cheque for sixty nine pounds, on his business account, and wrote his address on the back. H.B. gift wrapped it and it looked splendid there waiting to be collected. He came back next day and expressed delight with H.B.'s efforts. He left in high spirits and we were pleased.

Next week we were not so pleased. The cheque had been returned as his account had been cancelled. I wrote a note to him at the address he'd given. This came back from the Post Office marked "gone away". Oh well, a small price for experience - it could have been a lot more.

Problems with Scotch

As I write this the festive season (Christmas through to the New Year) is at its peak. Here's a little story about a friend who's also a reader. He was at this party and had had a few beers. The host brought him a scotch (neat) which he was not used to drinking. So he topped up his
glass from a nearby water jug. "Um, not bad" he thought. There was a repeat performance and after that he began to feel funny but quite happy. Before he passed out like a light he was vaguely aware of a young lady emptying her glass into the water. "Wassat?" he enquired. "Vodka" she replied, "I've been doing it all evening - can't stand the stuff but you can't very well say so".

Next day he was decidedly out of salts. Daft you may say, but it can happen - especially if you're basically a beer man.

While on the subject of Scotch, an apology. Some time ago I did a job which was a bit of a swine for Mr. Webb. He gave me a china bottle in the shape of a ship's bell. Now I drink a lot of that brand of whisky and I said the contents were nice but not that brand. A few days ago I was presented with an ordinary shaped bottle of the same brand, with a black label marked twelve years old. It was identical to the scotch in the china bottle. Sorry Mr. Webb, I'm so used to the cheaper stuff. I feel ashamed of myself . . .

Developments in VCRs

Part 2

The first long-play VHS machines were introduced in 1983. For long-play operation the tape is run at half speed $(11.7 \mathrm{~mm} / \mathrm{sec})$. This has several implications. First the track width is reduced by half, from 49 to 25 microns: as this reduces the signal-to-noise figure new noise reduction techniques have been adopted. Secondly for stable playback in the long-play search modes special "jump" circuits have been designed. Further luminance signal correction is used to reduce h.f. noise.

LP Track Characteristics

The characteristics of the LP track are determined by the slower tape speed and the extra set of LP video heads fitted to the dead drum. In some early models the LP heads were mounted at an angle of 70° with respect to the standard-play heads, though in later models the two sets of heads are mounted on single assemblies as described in Part 1 last month.

With standard-play VHS operation the tracks are laid down side-by-side with a 1.5 TV line offset between the start of each track to ensure that lines with the same colour phase lie next to each other on adjacent tracks and that the line sync pulses on adjacent tracks line up. It's not possible to achieve this symmetry in the LP mode, due to the effects of tape speed and track angle. Fig. 1 shows the difference between the SP and LP tracks: you can see that with the LP tracks shown at (b) the 0.75 line offset (half the 1.5 line SP offset) results in the adjacent line patterns being displaced. The adjacent colour phasing is also displaced: whereas lines 2 and 316 in the SP mode carry the same PAL phasing the correlation between lines 2 and 316 is shifted by 0.75 of a line in the LP mode.

The standard colour crosstalk system used in VHS machines will cope with colour crosstalk in the LP mode but extra measures are required to eliminate the increased luminance crosstalk.

Picture Search

The main problems occur during picture search however, when due to the increased linear tape speed a video head will cross over a number (usually around five) of its own video tracks as it traverses the width of the tape. In the SP mode the line sync pulses replayed by a video head as it crosses the tracks it recorded occur in regular order with drum speed correction - at $64 \mu \mathrm{sec}$ intervals. Picture search at the same speed will with LP tracks produce line sync pulses that are by no means at $64 \mu \mathrm{sec}$ intervals: without correction the result will be considerable picture skew (sideways pulling).

Steve Beeching, T. Eng.
A section of recorded tape is shown in Fig. 2: the upper edge of the tape is to the right and the lower edge to the left (the slanting recorded tracks are shown horizontally to make things clearer). A ch. 1 head is shown scanning across the tracks in the forward picture search mode. The burst phase is 135° on lines shown as clear blocks and 225° on lines with diagonal-line shading. In this example the head crosses over four of its own recorded tracks.

The top line of the timing part of the diagram, line (1), shows the original signal - it's a reconstruction of the replayed lines and colour phases as the head crosses over its own ch. 1 recorded tracks, i.e. tracks 1, 2, 3 and 4. You

Fig. 1: $S P(a)$ and $L P(b)$ track characteristics.
can see that when demodulated the replayed TV lines do not occur at regular $64 \mu \mathrm{sec}$ intervals - the irregularities are in fact at half-line intervals, i.e. the small squares of original signal are half a line long. Line (3) shows how the line sync pulses are replayed. It should be clear then that without correction there will be severe line pulling in the LP cue and review modes, due to the half-line errors in the video signal.

Correction of the half-line error is done by producing a half-line $(0.5 \mathrm{H})$ jump pulse. A data signal is derived from a phase-locked oscillator working at twice line frequency: when the output from this oscillator is divided by two the signal shown in line (2), a symmetrical squarewave, is produced. This signal is compared with the replayed line sync pulses in a clocked bistable. If the data signal is low when the bistable is clocked by a line sync pulse the output is low: if the data signal is high when the clocking occurs the output is high. With a clocked bistable the input level appears at the output which remains in this state until the next clock pulse arrives. This arrangement provides the 0.5 H jump pulse shown in line (4).

A half-line delay is included in the playback signal path. The $0 \cdot 5 \mathrm{H}$ jump pulse controls a switch which selects direct or delayed signals alternately - with line sync pulses as shown in lines (3) and (5). After the switching a corrected output with the errors removed is obtained.

Two methods of obtaining an 0.5 -line delay have been used. The earlier method was to f.m. modulate the video on to a 14 MHz carrier, feed it through an $0 \cdot 5$-line delay line and then demodulate it. Fairly crude, but don't forget that we're in visual search! The second and more up-todate method is to use a 423-bit CCD serial delay line, clocking the signal through this with a $13 \cdot 3 \mathrm{MHz}$ clock signal. 13.3 MHz is equivalent to a period of $0.075 \mu \mathrm{sec}$: clocking 423 bits at 0.075μ sec is 0.075×423 which is $31 \cdot 8 \mu \mathrm{sec}$ or about half a line.

If the composite video signal is being switched by a halfline period clearly the colour phase must be inverted to compensate - otherwise the PAL signal will have half a line in one phase and the second half in the other phase. To prevent this happening and to synchronise the colour phase with the video signal switching a 1 H jump pulse is produced by the jump pulse generator.
Fig. 2 also shows a simplified block diagram of the above arrangements. The jump pulse generator produces the half-line frequency jump pulses from the replayed line sync pulses and the 1 H jump pulse from the $7 \cdot 8 \mathrm{kHz}$ colour ripple signal. The circuitry is usually contained within one or two i.c.s.

Noise Reduction

A video noise reduction system is used to improve the signal-to-noise performance. The noise to be reduced is low-frequency f.m. crosstalk between tracks - frequencies in the range $1-2 \mathrm{MHz}$, forming the lower sideband of the video f.m. carrier. The $\pm 6^{\circ}$ azimuth offset of the two video heads is used to reduce the pickup by one head of the other head's f.m. carrier, but the technique becomes less effective at the lower frequencies. Hence the need for the noise reduction system.

The technique used is to shift the f.m. carrier recorded by one head by 7.8 kHz . The ch. 1 head records the normal $3 \cdot 8-4 \cdot 8 \mathrm{MHz}$ f.m. signal: the ch. 2 head records this with a 7.8 kHz shift. Now when the ch. 1 head replays residual ch. 2 f.m. picked up from either side as crosstalk the crosstalk signal has a 7.8 kHz shift - half line fre-

Fig. 2: Picture search in the LP mode.
quency. A signal at half line frequency will complete a cycle over a two-line period: it will have a positive polarity on one line and a negative polarity on the next, i.e. there's phase inversion on every line. The principle also holds for ch. 1 crosstalk picked up by the ch. 2 head. The point to remember is that introducing a half-line frequency shift into the recorded f.m. results in crosstalk noise that changes polarity at line rate.

One method used to apply the 0.5 line frequency shift is shown in Fig. 3. It affects the f.m. modulator in an HA11724 i.c. - you'll be able to identify the circuitry in various makes of machines. The video signal is clipped and clamped and fed to the f.m. modulator internally though there's a test point at pin 12. The carrier frequency is set to 3.8 MHz for the sync pulse tip by the $\mathrm{Ik} \Omega$ potentiometer, the thermistor being included to provide

Fig. 3: One method of applying an 0.5 line frequency shift during recording for crosstalk noise reduction.

Fig. 4: The technique used in the JVC HRD725.
temperature compensation against drift. The drum flipflop signal is applied to the circuit via a $1,000: 1$ potential divider, so its level at the f.m. modulator is very small. The result is that the . f.m. oscillator is stepped up by 7.8 kHz for the ch. 2 head and back down again to the standard frequency for the ch. 1 head. In some machines the level of the flip-flop signal is set by a potentiometer: don't touch this - setting up requires the use of a spectrum analyser.

The example shown in Fig. 4 is used in the JVC HRD725. This uses the rotary control signal, which is
derived from the drum flip-flop (see Fig. 5 last month). It controls the colour phase selection, hence "rotary". Q22 is switched on and off at 25 Hz , taking the junction of R97/R102 to chassis via $47.2 \mathrm{k} \Omega$, again a ratio of $1,000: 1$. The very small shift in the d.c. level of the signal applied to the f.m. modulator results in a 7.8 kHz frequency change.

Fig. 5 shows a typical playback system in which the dropout compensation delay line is also used for noise cancelling. It's easier to understand the arrangement used in the HRD725 if we look at this one first. An a.g.c. system stabilises the signal which is then fed via the dropout switch to an f.m. equaliser - in later, dual-speed machines SP/LP compensation is provided at this point. The signal is then sent along two paths, to the direct demodulator and via the one-line delay line to the delayed demodulator. The output from the delay line goes to the dropout switch, for dropout compensation, as well as to the delayed demodulator.

The output from the direct demodulator, (a), is filtered and applied to a mixer. The output from the delayed demodulator, with 180° phase-shifted noise, is filtered and used as one input to a differential amplifier. This is waveform (b). The clean signal output from the mixer, (c), is the other input to the differential amplifier whose output is waveform (d), phase-shifted crosstalk noise. Adding (a) and (d) in the mixer gives us the noise-free signal (c). Prior to the limiter the output from the differential amplifier will contain large amounts of

Fig. 5: Typical playback noise reduction system, with the dropout compensation delay line also used in the noise cancelling arrangement.

Fig. 6: Playback system used in the JVC HRD725.

Fig. 7: Operation of the CCD delay line.
unwanted video in addition to the noise. If this was allowed through to the mixer without clipping the result would be impairment of the displayed picture.

Now to the HRD725 where other new concepts are introduced, see Fig. 6. It looks deceptively simple in block diagram form, but the circuitry used is actually very advanced. After a.g.c. and equalisation the f.m. signal passes through a double limiter and is then demodulated. In this case the delay line comes after demodulation because a CCD (charge-coupled device) delay line is used instead of a glass delay line.

As a result of the action of the delay line the noise in signals (a) and (b) applied to the subtractive mixer is of opposite polarity. The subtractive mixer cancels the video component of the signal to leave just the noise signal (c). This is amplified and limited and applied to the additive mixer along with the direct signal (a). The mixing process this time gives noise instead of video signal cancellation, resulting in the clean signal (d). You will notice that one small licence has been taken. During a dropout the noise will be additive. This happens for only very brief periods however and is not visually perceptible.

The action of the CCD delay line is shown in Fig. 7. The analogue input is sampled and sent along the line as clocked "bits". At the output a sample-and-hold circuit restores the analogue signal. There are 848.5 "bits" within the delay line, clocked at 13.3 MHz - this is conveniently obtained as the third harmonic of a 4.43 MHz colour crystal oscillator. The clock period is 75 nsec , the delay through the line being $63.8 \mu \mathrm{sec}(0.075 \mu \mathrm{sec} \times 848.5)$. A further delay of 200 nsec is gained in the equalisation and filtering circuit, giving $64 \mu \mathrm{sec}$ in all. The use of a delay line at baseband video improves the signal-to-noise perfor-
mance by avoiding the losses inherent in a glass delay line at low carrier levels.

Fig. 8 shows the arrangement used in the HRD725 in greater detail. The playback luminance signal enters IC8, a T8004, at pin 7. It's first clamped and then sent along two paths. The main path is via the dropout (DOC) switch to the noise-canceller section, after which it emerges at pin 2. The other path is to the noise-detector, where oneline delayed video is subtracted. In the subtraction process the video components cancel and the noise components add. The amplified noise emerges at pin 3 and is fed back in at pin 1 where it's limited to reduce high-level video spikes to the level of the noise. The noise is then subtracted from the main path video in the noise-canceller circuit.

The horizontal correlation detector monitors the signal level at the output from the noise amplifier. If there's no horizontal correlation between tracks the noise amplifier's output rises and the detector mutes the noise limiter. The noise cancelling system cannot work without horizontal correlation because the noise component will not change polarity on each line. The system then breaks down - this happens in visual search when tracks are crossed, and in slow motion and still picture when only one field is replayed continuously.

The input to the CCD chip IC9 is taken from pin 4 of IC8. The circuitry around Q30 and Q31 filters out the $13 \cdot 3 \mathrm{MHz}$ clock switching spikes as well as introducing a 200 nsec delay. The delayed signal is fed back into IC8 at pin 6 and is then clamped to prevent d.c. drift and ensure that the black levels of the direct and delayed signals are the same. The DOC switch is driven by dropout pulses derived from the f.m. a.g.c. circuit - this is standard practice. It's a cyclic dropout compensator, so that if the dropout is longer than a line the switch stays over and the signal continues to circulate. I've not found the cyclic effect as noticeable as in Grundig machines, where a single line can be repeated down the screen giving a pattern of vertical, wiggly lines.

In the concluding instalment next month we'll look at further luminance signal processing - h.f. noise reduction and picture crispening.

Fig. 8: Crosstalk noise cancelling system used in the JVC HRD725, shown in greater detail.

Teletopics

DBS LATEST

It's understood that the IBA's report to the Home Secretary on the prospects for UK DBS TV services is cautiously optimistic. An announcement from the government giving the IBA the go-ahead to advertise DBS franchises is expected by the end of February. One favourable factor is an assessment made by John Jackson, chairman of Celltech and a member of the British Technology Group, the holding company for the government's investments in new technology. Mr. Jackson believes that a project offering viewers three DBS channels on a subscription basis could be established by 1989 and that it could attract fifteen per cent of viewers within seven years of starting. The cost is estimated as being some $£ 200$ million, spread over several years.

A proposal for a joint UK-Irish satellite system has been put forward by James Stafford, chairman of Atlantic Satellites, the company chosen by the Irish government to start a DBS service. Ireland and the UK share the same satellite orbital allocation at $31^{\circ} \mathrm{W}$. A six-channel system (three channels controlled by each country) has been suggested in talks between the Department of Trade and Industry and the Irish government - the proposal has also been formally submitted to the IBA.

An independent satellite TV news and information service has been established in London to offer the growing number of European private TV stations an alternative to EBU services. Independent Satellite Network expects to be able to provide between six and twelve hours of transmissions daily by April 1st.

It's understood that an agreement has been reached between Satellite Racing Development, a consortium of large bookmakers, and British Telecom to provide live coverage of horse and greyhound racing for betting shops, using an Intelsat satellite. The signals would be scrambled and the source would be video equipment already installed at racecourses for stewards' use.

Launch of the French TDF-1 DBS satellite has been put back from July to November - the delay is a result of schedule changes following an abortive Arianespace mission last September in which two satellites, including ECS3, were lost and the failure of the French government to reach a final decision on the financing of the satellite. It's also understood that a final decision on the transmission standard has still to be made. This is delaying plans by European setmakers to start production of satellite TV receiving equipment. Arianespace is due to launch the Luxembourg SES satellite in May 1987.

REVISED DBS PLAN

A revised plan for DBS TV transmissions was approved by the 1985 World Administrative Radio Conference. Under the new plan the 500 MHz band between 12.2 and 12.7 GHz is to be used for 3224 MHz channels, with leftand right-hand circular polarisation to maximise band use (the previous plan approved at WARC 1977 was for 4027 MHz channels in the band $11 \cdot 7-12 \cdot 5 \mathrm{GHz}$). Satellite orbital position spacing varies from 1° to 11° under the new plan instead of being a regular 6°. The allocation of orbital positions to countries has been changed (several countries in addition to the USSR have been assigned more than
one orbital position) and the previous five channel per country allocation has been dropped. The minimum power flux density at the outer edge of each satellite's service footprint has been reduced from $-103 \mathrm{dBW} / \mathrm{m}^{2}$ to $-107 \mathrm{dBW} / \mathrm{m}^{2}$.

SATELLITE TV RECEIVING EQUIPMENT

The latest issue of the Philips publication Electronic Components and Applications contains brief details of an indoor receiver unit designed by the company. A block diagram is shown in Fig. 1. Because of the high gain now achieved with head units the tuner has been designed for minimum intermodulation distortion rather than an optimum noise figure. Surface mounted components are used to minimise parastic inductance and capacitance and reduce the size of the unit - the prototype has a board area of only $70 \mathrm{~cm}^{2}$.

An input bandpass filter is used to suppress image frequencies and match the input from the head unit to a high-gain, broadband amplifier stage using a BFG67 transistor. This advanced device has a cut-off frequency of 7.5 GHz . A filter between the broadband amplifier and the mixer is used to isolate the local oscillator signal from the input. It's tuned by two BBY39 varicap diodes - these devices have an extremely low capacitance. The high i.f. of 479.5 MHz has been chosen to reduce the number of tuned circuits required and has the advantage that all image frequencies are outside the input from the head unit. The BFR92A transistor used in the local oscillator stage has very low feedback capacitance. A buffer stage is used to isolate the local oscillator from strong input signals.

Use of a BF990 dual-gate MOSFET in the i.f. amplifier makes it easy to apply a.g.c., which is necessary to prevent the SAWF driver stage being overloaded. The design of the PLL f.m. demodulator, which has excellent threshold performance, depends on the transmission standard used.

Prototype $60-90 \mathrm{~cm}$. parabolic dish aerials have been produced in W. Germany using Bayer's Novodur ABS engineering thermoplastic and have been subjected to exhaustive tests. Stability at wind speeds up to $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. has been established by tests carried out in a high-speed wind tunnel and the plastic has been found to have good rigidity, high heat resistance and good dimensional stability. The surface of the plastic dish is covered with a reflective metal layer. This can be done by placing aluminium foil or wire mesh in the injection mould or by applying a conductive coating, either by flame-spraying a metal alloy or by chemical electroplating. The result in an inexpensive dish that meets all design requirements.

AERIAL CATALOGUE

A new catalogue and price list is available from Aerial Techniques, 11 Kent Road, Parkstone, Poole, Dorset BH12 2EH (0202 738 232) for 65p inclusive of postage. The catalogue lists an impressively wide range of aerials and associated equipment, including amplifiers, splitters and combiners, converters, rotors etc.

VISIONHIRE REORGANISATION

The Electronic Rentals Group (Visionhire) has started a major reorganisation following its acquisition of Telefusion last October. The Telefusion headquarters at Blackpool is being closed down and about half the 200 outlets will be closed. Thirty former Telefusion shops are

Fig. 1: Block diagram of the Philips indoor unit designed for satellite TV reception.
to become Visionhire outlets, bringing the total to 453. Some seventy former Telefusion Connect outlets will be relaunched. The two companies' cable TV interests are to be merged and run from the Telefusion Westhoughton centre.

ITT's SOPHISTICATED DIGITAL TV SET

The latest model in the ITT Digivision range, the Multicontrol, introduces some interesting features. The picture-in-picture facility enables a second picture to be displayed in a postcard sized area at the top right-hand side of the screen - a sixteenth of the total screen area. Freeze frame can be applied to this smaller picture area, which can also be used to monitor other parts of the house in conjunction with a video camera. The inset image can be interchanged with the main picture: a computer display can be seen on the main area of the screen while viewing a TV channel in the "window", or alternatively a video or TV channel can be monitored while the main screen area is used for teletext.

PERITELEVISION SWITCHING IC FROM MULLARD

The TDA8440 switching chip has been introduced by Mullard for use with a Peritel connector, offering flexibility and low-distortion performance. The i.c. enables signal sources to be selected under microcomputer control, eliminating the need for manual interchanging of cordsets at the rear of a display unit or TV set. The circuit can also be controlled by the d.c. level on the Peritel connector's function switching pin.

The TDA8440 can select one of two video channels together with their stereo/dual sound channels. An off position can also be selected, enabling the input signal to be taken from another TDA 844). The device incorporates two three-state switches for the audio channels and one three-state video channel switch. A video amplifier with a selectable gain of one or two is incorporated and expansion with up to seven devices is possible. The minimum video switching crosstalk attenuation is 60 dB and the total, maximum audio harmonic distortion 0.1 per cent. The chip operates from a supply voltage of $10-13 \cdot 2 \mathrm{~V}$ and requires a maximum unloaded supply current of 50 mA . It's encapsulated in an 18 -pin plastic DIL pack and has static short-circuit proof outputs.

VIDEO NEWS

According to a Keynote report the UK VCR market has now reached saturation level. Over 42 per cent of households now have a VCR and some 8.6 million machines are in use. Annual sales are now running at a level of around $1.5-1 \cdot 7$ million. An increase of some 200,000 is expected when the machines sold during the boom year come to be
replaced but this is not likely to be before $1989 / \% 0$. It's thought that only about 40 per cent of machines are now rented. The report is available from Keynote, 28-42 Banner Street, London ECIY 8QE at $£ 79$.
Sanyo has introduced a range of three VHS machines (Models VHR1100E, VHR1300E and VHR1500E) in the UK - Sanyo manufactured VHS machines have been on sale under the Fisher brand name since 1982. The new Sanyo models will initially be imported from Japan but assembly at the Lowestoft plant is expected to start in the near future. Sanyo will continue to assemble Betamax machines at Lowestoft. The new VHS models will be promoted under the Proformance (professional performance) label, which is also to be used for TV sets.

BUSINESS NEWS

The latest half-yearly report from Thorn-EMI shows profit reduced from $£ 40 \cdot 2$ million to $£ 11.4 \mathrm{~m}$ on turnover up from $£ 1,436 \cdot 9 \mathrm{~m}$ to $£ 1,533 \cdot 6 \mathrm{~m}$. The Ferguson TV manufacturing operation is now back in profit: increased profits were recorded by the rental and retail sides of the business. Problems at Inmos have been the main cause of the profit shortfall.

Matsushita's profits for the year to November 20th, 1985 increased by ten per cent on turnover increased by five per cent. Sales of video equipment (VCRs and TV sets) increased by eight per cent, with the growth mainly in the US market, but there was a fall of five per cent in audio equipment sales. Virtually static profits are expected for the current year due to appreciation in the value of the Yen and reduced VCR sales.

VCR SOUND RECORDING INTERFACE

The VSR-1 sound recording interface module has been introduced by Video Interface Products Ltd., Charlton House, 32 Charlton Lane, Cheltenham, Gloucestershire GL53 9DX (0242 581383). At present it's available by mail order only, at $£ 49.99$ inclusive of VAT and postage. A free brochure is available.

The VSR-1 comes complete with leads and an instruction manual. Its advantage is that radio programmes (or audio material) can be recorded in the same way as TV programmes on a VCR. So you can make timed recordings running to several hours. The video part of the tape is blacked out and playback is through a TV set. It may be thought that this is rather wasteful of tape, but the point is that lengthy timed recordings can be made without fuss: if • the material is to be kept it can be transferred to audio tape. The VST-1 is a compact unit measuring only $120 \times$ $65 \times 40 \mathrm{~mm}$ and weighing 150 g . Two further modules, an f.m. tuner with five preset stations and a preselector, are to be introduced. They will all bolt together.

Servicing Teletext Receivers

Part 3

Mike Phelan

This month we'll look at the TAC - text acquisition and control - i.c., type SAA5040 or SAA5040A (M914A in very early decoders), which is probably the most complicated of the chips in this decoder set. We'll also look at the row/column decoder system.

The 'TAC Chip

A block diagram of the TAC chip is shown in Fig. 1. The processed data from the VIP chip enters at pin 2 and goes to one of the inputs of an AND gate. The DEW (data entry window) gating signal goes to the other input, via pin 7. Serial data passes through the gate when the DEW signal goes high. The data is required in parallel, not serial, form however, so the next step is to feed the data into a shift register. If this holds eight data bits, the register will make one byte of teletext data available. As the data arrives at the rate of 6.93 MHz the shift register must be clocked at this frequency. The clock signal from the VIP chip enters at pin 3.
Before any use can be made of the data checks on its

Fig. 1: Block diagram of the SAA5040 text acquisition control (TAC) chip.
integrity must be carried out. And before this can be done the electronics must be synchronised with the data, i.e. the electronics must know which is the first bit of each byte. The "framing code" - see Fig. 2 - is used for this purpose.

When the framing code detector recognises the presence of the framing code (11100100 binary) it provides a reset pulse for the divide-by-eight section of the i.c. This section divides the 6.93 MHz clock signal, which has already been synchronised with the data by the VIP chip, by eight, i.e. one "tick" per byte. The reset pulse ensures that the correct groups of eight bits are accepted as bytes. The 870 kHz signal is used for various timing functions within the i.c.

There are two forms of error checking - a Hamming check and a parity check. The former, more elaborate, system is used to check the row address information, the latter the display data. Minor display errors are not too important but if the rows of information weren't presented correctly the display would be useless.

The eighth bit of each teletext data byte is a parity bit whose state is made such that the total number of one bits in the byte comes to an odd figure. If the total comes to an even figure there's an error in the byte which can thus be rejected instead of being fed into the page memory.

With the Hamming system four of the bits in each byte are parity bits, the other bits comprising the message: the message and parity bits are interleaved. Error checking consists basically of carrying out four sets of additions of the bits in each byte. If there's no signal corruption the result of each addition check is an odd number. The advantage of doing it this way is that the checks will indicate which bits are in error and the corrective action required. If more than one bit is wrong the byte is rejected. Otherwise correction consists of inverting the incorrect bit - this is accomplished within the TAC.
The display data emerges at pins $16-22$ of the TAC seven bits now instead of eight since the parity bit has been dropped.

Page Selection

The pages are transmitted in numerical sequence (more or less). If we were unable to select the page we required they would all flash before our eyes as transmitted. This would clearly be of no use at all. Page selection is done by keying the appropriate number into the remote handset. The remote control signals from the SAA5010 remote control receiver chip arrive at pins 5 and 6 of the TAC chip. The data at pin 6 is in the form of a serial code at a frequency of 62.5 kHz . It's converted to seven bits of parallel code within the i.c., using another shift register. As with the serial teletext data, a clock signal is required to drive this. It comes in from the SAA5010 chip at pin 5 and is referred to as the DLIM (delimiter) signal. The seven data bits comprise two that specify TV/text/mix and five for the text functions, including page numbers.

A page is displayed when the transmitted page number (in the page header line) matches the selected page number. The four ones from the Hamming code parity

Normal line
Fig. 2: Data composition of the page header and an ordinary display line.
check go to an AND gate: if all are o.k. the output goes high to enable the page selector. This carries out comparison between the page number in the header and the selected page: when they match the WOK (write OK) signal appears at pin 15 . Note the second AND gate: the other input to this is high only when the parity check on each display byte is o.k. - thus corrupt bytes are rejected. The WOK output goes low to write data into the memory during the DEW period, also during the EDIL period (line 40) when status data is transmitted to show which channel is in use.

Addressing the Memory - Row and Column Decoding

We have display data leaving the TAC at the correct times then: where do we put it? We need some sort of clock to keep track of the locations in the memory. The RAM i.c.s used to store the display data have to be told whether to read or write data and the correct addresses.

The seven RAM i.c.s used have a capacity of 1 Kbyte each (1,024 bytes). This is unfortunate since 960 bytes (40 columns by 24 rows) are required to store a page of text. The TAC provides a five-bit row address (counting 0-23) but there's no way in which this can be used to address a RAM. Consider for a moment why this should be. Each 1,024 byte RAM stores one bit of the seven-bit character display code. To address each location in the RAM we'd need a ten-bit address - to put it another way, to count up to 1,024 in binary we need ten bits $-1,024$ is 1000000000 in binary. We can't use so many bits for rows and the rest for columns as 1,024 won't factorise into anything like 40 $\times 24$. The nearest we can get is 32×32, which is of no use to us.

To get round this snag a clever bit of circuitry is used employing three TTL i.c.s (see Figs. 3 and 4). Two of these form a counter which counts up to 39 , for which six bits are required. Each 74LS161 four-bit counter will count up to 15 , so we pass a carry pulse from the first to the second and use only two bits from the latter. This gives us the six bits to count from 0 to 39 .

After a byte from the TAC has been written into the RAMs, WACK (write address clock) sends a pulse to the counter i.c.s to prepare the next address. The GLR (general line reset) pulses reset the two counters at the end of each line. Note that during the display period, when the RAMs are being read, WACK is replaced by the RACK (read address clock) signal from the SAA5020 TIC chip.

We still have the 40×24 problem however. Back to the counters, which provide a count of 0-39 in six bits, from WACK or RACK which give one "tick" per byte. The TAC chip provides at pins 23-27 a five-bit row address to count up to 23 (during the display period a fivebit row address comes from pins 19-23 of the TIC i.c. this was not shown in Fig. 1, Part 1). Note that the two sets of row addresses and the WACK and RACK outputs are directly connected between the i.c.s, so tri-state

Fig. 3: Way in which the TAC and TIC i.c.s address the memory. This partially corrects Fig. 1 in Part 1.

Fig. 4: The row/column decoder arrangement.
outputs are required with the outputs not being used switched to the high-impedance state.

To convert from the six column and five row bits to the ten bits required to address the RAMs we use the lowest four row bits as they are - this counts up to 15 . The first four column bits will also count to 15 . We add the highest three column bits to the highest two row bits to give two row and two column bits respectively, thus converting the 24×40 matrix to $32 \times 32(1,024) . \mathrm{X} 0-\mathrm{X} 4$ and $\mathrm{Y} 0-\mathrm{Y} 4$ in Fig. 4 are the RAM address lines.

Next month we'll discuss the final chip in the decoder, the TROM, and servicing aspects of this decoder.

VCR Clinic

Sanyo VT9300

There was no servo lock on record, but it would play back known good tapes. A quick check through the servo soon showed a distinct lack of monostable output pulses at pins 17 and 19 of the control track record i.c. Q101. Separated field sync pulses were present at pin 15 but were of a suspect, low level. I had to cross check with another VT9300 that the 1.25 V p-p field pulses were indeed correct. The faulty component was actually C 108 , which is part of the monostable timing for dividing the field syncs by two.
S.B.

Hitachi VT11

This machine would thread up, run for a few seconds and then stop. The dealer who'd sent it in had already changed the capstan motor. The fault was caused by the threading motor not reaching the after loading position however. Changing this motor and the accompanying belts cured the trouble.
S.B.

JVC HR2200/Ferguson 3V24

I was interested in E.T.'s report (December issue) on a problem caused by $\mathrm{C} 11(3.3 \mathrm{~F}, 1.6 \mathrm{~V})$ whose sole purpose is to retain the counter memory when the machine isn't powered. In the case I had the leakage was to the remote control socket print. This brought about permanent rewind by raising the voltage level on control line B2. S.B.

Hitachi VT5500 - No Clock Display

This was difficult to solve, not because the problem was complex but because of Hitachi's aggravating production modifications not being shown in the service manual. The clock i.c. we found in the machine was an HD38845A-36. I thought at first that the dealer who'd sent it in had replaced it with the wrong type. We confirmed that the replacement was of the correct type, but it hadn't cured the fault. After lengthy tests and yet another HD38845A36 I was getting nowhere fast. The chip just wouldn't run despite checking and double checking everything. One problem was that I was using a VT8500 service manual because the chips and circuits in the machine bore no relation to anything I could find in the VT5500 manual. It appears that there's an updated manual, reference no. 1311, so this was sent for.
It could be deduced from the VT8500 manual that the HD38630A-26 is an earlier equivalent of the HD38845A36, then from the revised VT5500 manual that it could be an HD38630A-36 (or an HD38630A-06 or HD38630A-26, provided one, both or either sub or sub-2 PCBs are fitted). Confused? Yes, so was I.
Anyway, the i.c.'s internal clock was running but nothing else - no output strobe pulses anywhere. The -30 V line was present - actually it was -45 V , due to the machine being of NAFFI origin for a 220 V mains supply. While I was playing around with the power supply I discovered that a 6 V rail was missing, due to R 954 being open-circuit. This was repaired - and the clock came on! Now this 6 V line goes nowhere near the clock i.c. It just runs through the timer PCB to the programme selector

Reports from Steve Beeching, T. Eng., Les Harris, Philip Blundell, Eng. Tech., R.S. Narwan and William G. Lockitt
panel. What's more it doesn't even exist on the VT8500 circuit. It didn't seem possible that the 6 V line could affect the clock i.c. but it did, via the programme selector. Q703 in the programme selector circuit is normally off: with the 6 V supply missing it turns on via the tuning supply. This held pin 35 of the clock i.c. at chassis potential, which is a permanent interrupt, holding the i.c. off. Unfortunately the service manual incorrectly shows pin 35 as being at 0 V , which means that innocent souls fault-finding wouldn't think twice about it.
S.B.

Grundig 2×4 Super

The problem with one of these machines was no modulator output. R25 ($2 \cdot 2 \mathrm{k} \Omega$) which feeds the -22 V supply to zener diode Di27 within the modulator was open-circuit. Another fault on one of these machines was no E-to-E audio. The TBA120T chip on the i.f. panel was defective.
S.B.

Mitsubishi HS330

The complaint with this machine was an intermittently snowy picture on long play. After much panel waggling we found that flexing the top PCB around the head amplifer section caused the fault to appear and a relay could be heard clicking in and out. The head amplifier screening can was shorting to the link by R20.
P.B.

Ferguson 3V29

A loan machine would not record sound though there was playback sound from a prerecorded tape and in the E-E mode. The audio signal was present at the record amplifier output from IC1 (TP2) and the erase oscillator was working, but there was hardly any bias signal at TP3. We found that the voltage at the collector of Q11 in the control circuit was permanently low - it should go high in the record mode. Zener diode D7 in its base circuit was short-circuit.
P.B.

Toshiba V8600

Poor pictures were obtained with both playback of a prerecorded tape and E-E operation - the pictures were "nasty", with flaring. A scope was used to check the video signal along the E-E path. Everything was o.k. up to the point where the path splits two ways - to the r.f. modulator and to the video output socket. As a quick check I fed the video output to the video input of another machine and obtained a perfect picture on the monitor. The supply to the r.f. modulator was then measured - only 4V. Switch transistor Q661 on the servo logic board was faulty. A meter check on this produced a base-emitter reading of 500Ω both ways - I've had Q661 open-circuit on several occasions but never before has it been half way!
L.H.

Panasonic NV7200

There was no timer programming on this machine, which had been subject to liquid spillage at some time - the
timer and operation boards were affected and had received a lot of attention. The clock worked so I decided to check the programme switch. It had 5 V at one side but when pressed produced only 1.5 V at the other side. A replacement programme switch cured the trouble. R.S.N.

Sony SLC9

The problem with this machine was no signal from the tuner, no clock and no programme numbers due to no 38 V supply from the d.c.-to-d.c. converter module on board D (check for 38 V at pin 3 of the module). W.G.L.

Panasonic NV366

The complaint was intermittently incorrect capstan speed. The machine was put on soak test and after half an hour the capstan speed increased. A scope was used to check the capstan FG signal at TP2007 - it was missing. We
checked back to the motor and found that when this was gently tapped the speed corrected itself. A new motor restored normal results - the capstan FG generator is built into the motor.
R.S.N.

Ferguson 3V31

This machine would work all right for a short time then the drum speed would increase. The trouble was traced to IC13 (μ PC1458).
W.G.L.

Sony SLC5

The head drum wouldn't rotate, though turning the drum by hand would get the machine to work until switched off. The fault was eventually iraced to D1 (1S1555) on audio/ servo board AS6 - it was short-circuit. As a check, pin 18 of the drum servo i.c. (IC1) should be at 10.8 V at switch on: D1 short-circuit gives a low reading.
W.G.L.

VHS the Philips Way

When Philips took up the VHS format to improve their share of the VCR market they were reluctant to abandon some of the features of their V2000 system. The result has been something of a compromise: machines that are indisputably VHS but have the Philips philosophy applied to their operation and use. This can be a little confusing to someone who has just got one to replace an early Japanese machine, or to engineers who have to deal with a mixture of the two types. The instruction books don't help, being multilingual (or alingual!) and badly set out with the exception of a limited edition for the VR6462, revised in the UK. Nor does the fact that their authors, following the practice of "positive thinking", don't tell you what the things won't do. Let's try to straighten matters out. We'll look first at the differences between the Japanese and Dutch approaches, then run through the range of Pye/Philips machines released up to the time of going to press.

Different Approaches

The Japanese philosophy, which up to now covers the majority of VHS/Beta machines and means that if you can operate one model you can get by on all the rest, is as follows:
(1) The user's on/off switch is used to turn the machine on: it remains on until you turn it off again.
(2) Timed recording programs, once entered, lock the machine so that it cannot subsequently be used or accidentally "dusted to error".
(3) Tracking errors are compensated by adjusting a control which must be reset after the mistracked tape has been played.

The Philips philosophy, based on the electronics of their V2000 system, is totally different:
(1) There's no on switch, only a standby button. To start the machine you merely press the button for the required function, e.g. play, wind or eject. If the machine is not used for a few minutes it automatically reverts to standby, i.e. only the clock and infra-red receiver are on.
(2) Personal use overrides timer settings. Dad can come in with a borrowed tape and watch it despite Mother having
booked the VCR to record Coronation Street. At 7.30 Dad wonders why the display starts flashing.
(3) Tracking should be automatic. The V2000 format uses dynamic track following, with the video heads mounted on bendable arms. Compatibility precludes the use of this arrangement with the VHS system. Instead Philips use a tracking button: push it till the sparklies move out of the picture and it holds that setting while the tape is played, resetting itself at the end.

So much for the basic differences. Now let's see how they have been applied. As you'll see, only partially at first. We'll consider the machines in the order in which they were released: the model number in brackets is the Pye version, which differs only in style and presentation.

Philips VR6520 (65VR20)

To get Philips VHS off the ground the initial basic Models VR6520 (65VR20) were imported from Japan they are in fact the Panasonic NV370 with restyled fronts. Naturally they conform fully to the Japanese philosophy, with on/off switches, locked timer programming and a tracking knob. They stay on till you turn them off. What you can't do is to watch a broadcast on its own channel while the machine is in the play mode. This is a Panasonic feature introduced to avoid beat patterning in areas where the lower u.h.f. channels are in use: it can be overcome by linking pins 5 and 6 of P1 on the modulator.

The VR6920

The VR6920 (no Pye version) was an adaptation of the Panasonic NV850 stereo hi-fi model. The use of helical audio recording gives sound quality comparable to that from a compact disc. It's "helical stereo only", the lateral sound track on the edge of the tape being mono only in both the record and playback modes. As with the VR6520 the broadcast channels are inhibited during playback, and since the VR6920 can be used purely as a sound recorder - in conjunction with a hi-fi - this feature prevents other members of the family watching TV while someone is using the machine as a sound recorder. If required the
remedy is the same as with the VR6520: link pins 5 and 6 of Pl on the modulator.

The Japanese philosophy of on/off switching, timer lock and a tracking knob is maintained, but Philips replaced the infra-red remote control circuitry with their own RC5 board (see January TV), permitting remote control to be linked to TV handsets of the flat 53 series. The handset supplied, type AV5567, controls all the VCR functions and will also control a restricted range of functions on any Philips group TV set that uses the RC5 code. Two orange buttons on the right of the "calculator" part of the keypad give selection betwen VCR/TV control. A word of warning here. Although it doesn't say anything about it in the instruction leaflet, the act of inserting the batteries in a new handset puts it into the TV mode. The writer, unaware of this, unpacked three samples before a chance encounter with a teletext set in the showroom told him that he hadn't received a batch of duds.

Model VR6560 (65VR60)

The middle range Model VR6560 (65VR60), which is capable of programming up to five items in advance, was the first purely Philips machine. It's a top loader with the lift controlled by touch buttons. The temptation to push it down by hand should be resisted. Much of the cabinet and electronics are derived from the V2000 format Model VR2324 and the machine has the full Philips philosophy: it turns off after eight minutes of non-operation, personal use overrides the timer and tracking is by pushbutton. Setting the clock requires you to enter the date - day, month and year, even though it never asks questions about the latter.

Test Program

Due to its compact size this is not the easiest machine to service. It does however contain a comprehensive test program in its microcomputer, part of which is initiated every time the machine is plugged in. The rest is detailed in the manual, but we'll mention two useful sections.

The first is the ability to read off the number of hours the machine has been used. Press standby once then press store and, while holding it down, press search (not the other way round). If you ignore the decimal point the time display will then show the total number of hours of use, i.e. 2.35 indicates 235 hours' use. To clear, release store and search and press standby once again.

The other feature of the test program useful to the servicing fraternity is a life test mode. Make up a dummy DIN plug to fit the camera socket at the back of the machine, with a diode connected between pin 4 (anode) and pin 5 (cathode). Put a tape in, unplug the machine, fit the plug and reconnect the mains supply. The machine will now play the tape to the end, rewind, replay the tape again and so forth until the mains supply is disconnected. Should an intermittent fault occur the machine will stop and an error indication, which can be looked up in the manual, will appear on the display. This is also a useful feature for display purposes.

The VR6460 (64VR60)

The VR6460 (64VR60) was the first front loader with the Philips philosophy. This is considered to be a basic machine even though two programmes can be entered in the timer. A "one touch recording" counts as one of the
two, i.e. filling both timer "blocks" will prevent a "one touch" recording being made. Manual operation overrides the timer and after eight minutes of idleness the machine automatically goes to standby.

The AV5561 plug-in infra-red unit gives remote control operation: it can be used with the AV5562 handset or with many of the current range of Philips TV handsets that employ the RC5 code (more on this later). There's a builtin test program similar to the one just described, but since the machine uses a Panasonic deck which is similar to that used in the VR6520 the two features specifically mentioned above are not available.

The VR6462 (D464)

The VR6462 (D464) is destined to be the basic model for the coming season and after. This two-program development of the VR6460 differs in having a Philips deck as well as Philips electronics and a built-in remote control receiver unit. This latter feature means that any user of a recently bought Philips TV set which employs the flat 53XX type handset can use this to control the majority of VCR operations. Further details will be given later. Again the full Philips philosophy applies: shutdown after eight minutes of non-operation, manual use overrides the timer and there's pushbutton controlled tracking. Also the "one touch" button requires an empty timer block to function.

A limited number of these machines came complete with an easy-to-read instruction manual printed in the UK. Its illustrations are in blue and black, so you can tell it from the "Euromanual" which is printed in red and black. Unhappily it doesn't have a code number, so if you' send for a manual you'll get the Euro version. Neither manual mentions the fact that there are two versions of the machine - "swallowers" and "stoppers". If empty a swallower will accept a cassette, even if in standby, and lower it into the deck, staying in the on state. The stoppers go into the standby mode with the cassette lift down, thus preventing the insertion of a cassette until the machine has been turned on by pressing the eject button.

As with other models a comprehensive test program is built into the microcomputer chip. This is triggered on every POR (plug in) and gives fault indications that can be looked up in the manual. Its "life test" mode is similar to that of the VR6560 but you don't need a diode plug.

Model VR6660

The VR6660 is a full-specification front loader with the mechanics of the VR6462 and the electronics of the VR6560, plus extras. As the shutdown after eight minutes without use and the timer lock are optional the machines can be run following either philosophy.

The most noticeable feature is an alphanumeric display beneath the standard four digit time/counter figures. The function (play, record, wind, search, timer etc.) appears on this in large letters. The second thing you notice is that everything, including setting the timer, can be done from the remote control handset. There's also audio dub and, provided you've entered the type of cassette you're using, e.g. E180, a time remaining readout can replace the conventional counter display. Like the VR6560 the clock setting requires the date with year. Once you've set it, and the TV channels it is to monitor, these details remain in store for up to three months. So there's no need to reset after every power cut and more predelivery work can be
done in the workshop.
You can override the eight minute turn off by selecting a broadcast channel during standby, turning the machine into a high-quality tuner. There's also a tamperproof lock: you open the store, enter any four digits and store them all while the set is in standby - and the word "locked" appears on the display. Only by opening the store again, re-entering the same four digits and closing the store can the machine be unlocked. The machine cannot be used in the locked mode, but any programs booked into the timer before you locked the machine will be carried out. What if you forget the four-figure code? Hard luck! There's obviously a way to restore the machine to normal use but you'll be asked a lot of embarrassing questions (we hope) before anyone will come out and do it. If in normal use you override the timer when it should be recording a programme the machine will emit bleeps to warn you.
The POR test program is similar to the VR656('s, including a "life test" that requires the same diode plug.

VR6860 Matchline

The VR6860 is the Matchline version of the VR6660. It has hi-fi stereo sound recording facilities via helical tracks, as with the VR6920, and all the features mentioned above. It should be noted that the linear track is mono only and that audio dubbing can be carried out only on the linear track.

Remote Control

For the last eighteen months or so most remote control and teletext Pye/Philips TV sets have come with a flat handset that includes some VCR functions. They were originally designed for use with the later V2000 series

VCRs but will also remotely control the VR6560, VR6462, VR6660 and the Pye equivalents for the following functions: play; record; forward search; reverse search; channel change; standby; stop; pause; and a few others depending on the combination of handset/TV. Three functions are available only via the remote control handset - triple forward speed playback, normal speed reverse playback and slow forward. The TV/VCR button at the side of the unit has to be held in when VCR functions are being selected. Fast wind and fast rewind are not available via remote control - due I've been told to no one asking the designer to include them. Finding this hard to believe, I dug a bit deeper. The more plausible explanation is that the system was designed for use with V 2000 machines and in this respect doesn't require wind and rewind since all V2000) machines have a "go to" feature which is quicker and more effective.

Service

Hitherto Philips Service have held courses at various regional centres to train dealers' engineering staff on the servicing techniques required for new models. In the case of the VHS machines these courses have been replaced by packages of instructional material that amount to a tidier form of the notes you'd have taken had you gone on a course. In addition to the service manual each package includes a circuit description and fault-finding guide - the latter emanating, thank goodness, from Croydon itself and thus being in a language we all understand.
Issued so far are VR6920, code No. 727 17992; VR6460, code no. 722 17197; and VR6462, code no. 722 17202. Each package comes in a zip-up wallet and, at $£ 25$ a time, is a lot cheaper than sending a man on a two-day course. you are unemployed, or are currently employed and require retraining, or updating, you or your employer may be eligible for financial assistance under one of the above schemes.)

Further details from:

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

ECOMOMCDE																	
HA1338	1.50	M1130	5.35	NEE46N	298	SAS560	1.85	SN76620	259	TA7109	3.71	TCA063BP	434	tdaz611a	28	TPSOC	0.30
HA1339	233	M191	632	NEGSON	4.34	SAS560S	225	SN7662	1.8	TA7120P	0.54	TCAISO	1.79	TDA28120	4.60	T1P31A	034
HA1342	205	M193	1855	NEE544EN	4.18	SAS560	5.42	SN76623	0.0	TA1128/P	0.9	TCA1608	1.79	TDA22020	1.9	T1P318	038
HA1350	3.75	M51102	6.3	NP1106	5.11	SAS570	1.86	SN78630	25	TAF124P	$\stackrel{234}{12}$	TCAz700	1.7	TDAz30	1.5	TIP31C	0.50
HA1305	40	M5115P	524	0az20	0.11	SAS550S	29	SN76640	424	TAP130P	12	tcazos		TDAz33		п1P328	0.08
HA1366WR	1.85	${ }_{\text {M }}^{\text {M } 5124219}$	300 4.81	OA322	0.11	SAS550'	${ }_{2} 5$	SNN7656ion	25		127 0.9	TCAzosa	230	TDA26343	1212	${ }_{\text {T1P332 }}$	${ }_{0}^{0.40}$
HA1367	438	M5134-3341		0aso	0.00	SAS5000	289	SN76665N	1.40	TAP141AP	37	tcatza	216	tDazs51	4.65	TP34	1.18
HA1368	1.90	M51394P	11.9	OA91	0.09	SAS590	25	SN76666	1.11	TA7146P	423	tca40	1.98	TDA2052	6.5	TP41A	0.49
HA1368R	245	M5142P	5.19	0ass	009	SAS5900	256	SN76705N	134	TA)148P	1.57	TCAL500A	215	tDaz653	5.68	TIP418	0.05
HA1350	3.7	M5143P	733	OC28	25	SASE80	297	SN/7670]	4.39	TAJ149P	326	TCA530	216	tDaz654	618	TIPAIC	0.45
HA1374	4.80	M5144P	37	${ }_{0} \mathrm{C}_{2} 9$	215	Sas6600	133	SN76709	5.12	TAJ161P	5.5	TCA640	1025	TDA26558	5.4	TPP42A	0.45
HA137	356	M51513L	25	${ }_{0} \mathrm{C} 35$	106	SAS660S	133	SNIG709N	5.5	TA1162P	299	TCAS50	203	TDA2860	277	${ }^{1 / 4} 428$	0.79
HA1389	239	M51515BL	323	OC36	128	SAS6610	133	SN76730	535	TA7169	9.54	TCASb08	330	TDA2561	247	TP442C	0.53
HA13398	205	M51516L	295	OCA	0.35	SAS670	396	SNT6810N	0.60	TA7171P	279	tcar30	381	TDAzero	248	TIP47	0.65
HA1392	3.50	M51517L	3.71	OC45	0.18	SAS6700	1.33	SNT/6920N	290	TA7172P	1.41	TCA740	248	TDA2670A	19 3 3	TP48	0.92
HA1394	395	M5152	288	OC75	0.4	Sas670s	1.33	SN94041	5.54	TA7776	240	TCA750	225	TDAz880	320	T1P49	${ }_{3} 0.61$
HA1397	3.70	M51522	4.7	ON188	1.81	SAS6710	1.33	SN94042	4.35	TA7193AP	65	tcasoo	5.58	idazespa	205	TPP5A	
HA13988	${ }^{388}$	M5191P	49	ON236	100	SASse800	253	SP8385	$0{ }^{0.5}$	TA7193P	550	TCA8000	5.58	tDA2780a	5.14	Tista	${ }_{134}$
HA1406	207	M5192	220	OT112	1.08	SAS6810	110	STA441C	275	TA.7201P	27	TCAB80S	238	TDA27900	6.52 250	nisso	138
HA1452	1.63	M5194AP	5.74	07121	1.3	SBA5508	4.50	STK0029	5.54	1A7202P	247	tcasoo	204	TDA2791	270	TIS91	028
HA1TTZ	594	M5323P	1.02	PD144	224	S8A750	1.61	STk0039	575	TAT203P	218	TCA910	1.185	TDA2795	${ }_{258}^{278}$	TMS1000NL	11.26
HBF4403a ${ }^{\text {a }}$	28	M5374P	1.33	PT2014	0.8	SC9488P	208	STK0050	7.5	TA7204P	216	TCASOOE		TDA3000	${ }_{115}^{258}$	TMS374NS	${ }^{11465}$
HD33850A53	87	MA06	1.07	P15006	24	SCS503	1.86	STK0059	7.13	tapzos	138	TCE330	${ }_{18} 38$	toasicsa	11.9	TMS4116	206
H04480	17.16	MA8001	0.82	PT6042	1.79	scasoup	7.5	STkDoso	9.16	TA72065P	625 331	TCE527	${ }_{108}^{106}$	TDA3190 TDA3300B	2817	TMS4116	206 1.16
H044801A0S	17.49	MB3705	1.81	${ }^{\text {R1038 }}$	219	SCP911P	209	STK011	3.35	TA7207P	334 215	TCEE2	1.08	TDA33008	48	$\underset{\text { TV60 }}{\substack{\text { T108 }}}$	1.16 297
HEF4001P HEF40016P	0.07	MB3712	1.15	${ }_{\text {R1039 }}^{\text {R20 }}$	219 13	SCRES7	1.33 526	STKO13 STK014	8984		215 358	TCEE3	1.08 1.08	TDA3500	725		1.14
HEF4011	029	M83713 M 8373	1.10	${ }_{\text {R200 }}$	13	SGGOB	526	STK015	7.75	TA7214P	353	TCEP1000	10.5	tDA3506	9.98	U143M	308
HEFA528	0.00	${ }_{\text {M }}$	622	${ }_{\text {R2000 }}$	133	SG613	275	STK016	69	TA7215P	258	TCEP100	9.61	tDa3510	6.5	U37003	0.16
HM6231	9.19	MC1303P		R2029	133	SG629	87	STK002	525	ta7217AP	1.37	TD190	0.5	tDA3520	9.7	UA7z3Ca	553
HM6232	88	MC1307P	198	R2230	133	SG6533	10.31	STK025	12.50	tarzoz	1.95	TD3F700	6.50	TDA3521	1339	UA 588 FPC	559
HM9102	32	MC1310P	130	R2257	238	SI-1125HD	1385	STKO4O	2.70	ta727p	281	TD3F800	4.85	TDA3540	298	UA7ar3	328
HM9104	324	MC1327P	130	R2285	1.19	S11125	7.50	STKO43	10.48	ta7298p	4.45	TD3F3008	3.56	TDA3s50	5.00	UAA180	236
HM9105	324	MCI3 30 P	1.60	R2305	1.18	SKE2F 104	1.39	strasa	7.13	TA7233P	532	TD3FSOOH	4.16	tDas561	6.50	U121265	1.19
HT420]	17.16	MCI349P	0.99	R2306	1.36	SKE2G 204	0.95	stramo	223	TAT240ap	783	tDalocasa	1.79	TDA3561A	750	UIN204	7.10
1172003	020	MCI350P	1.51	R2332	0.50	SKE2G 304	098	STK0 7	7.7	TA7245P	750	TDA10054	22	TDA3571A	${ }^{624}$	UN2216F	215
K174P	3140	MC1351P	133	R2323	0.70	SKE4F 102	139	STK078	${ }_{115}^{858}$	TA7314	59 1.15	TDA1006A	1.15	TDA3510	283	UPC, 1009 C	663
KA2101 KC581C	298	MC1332P	1.12 215	${ }_{\text {R2343 }}$	201	SKELF SKE4 1206	0.75	STK082 STK006	1158 1359	taf3esp	1.15 3.17	TDA1011	$2{ }_{20}^{1.15}$	TDA3580	7109	UPC.1001H	278 124
KC562C	3.9	MCI358P	130	R23548	201	SKE4F 208	085	STK2101	6.32	147676P	281	TDA1028	25	TDA35908.	154	UPC. 1028 H	200
KC533C	554	MC14001	240	R2441	0.49	SKEAF 210	124	STK2110	733	1AA300	297	TDA1029	4.89	tDa4050A	3.47	UPC1020 H	27
L129V	0.25	MC14013	0.41	R2443	0.9	SKE4G 2102	0.96	STK2330	7.70	tab310a	1.16	TDA1035T	255	TDA4180P	1.92	UPC1025	290
L200CV	1.09	MC14016CP	as	R2461	150	SKESF 3/10	1.0	STK415	7.70	taszzaa	12	TDA10348	20	tDA4280	1.54	UPC.1032	0.2
LA1111AP	$0{ }^{0}$	MC14011	025	R247	1.02	SL1310	3.14	STK433	4.95	taazsoa	0.80	TDA1037	1.98	IDA4230	720	UPC1230	27
Lal201	1.0	MC14025	0.69	R2501	12	SL1327E	133	STK435	599	tanazs	188	TDA10375	325	TDA4230	4.4	UPC10314	4.50
LA1230	${ }_{29}^{15}$	MC14099UBC	0.55	R2540	198	SL1430	139	STK438	721	TAAS50	0.37	tDal04t	216	TDA440	4.50	UPC1 $1031 \mathrm{H}^{2}$	${ }^{6.00}$
LA1330	27	MC1438R	1.05	R2540X	330	SL1430T	23	STK437	780	TAA5\%	1.74	tidalou4	262	TDA4400	22	UPCC1154	1.93
LA1352	1.5	MC14493P	28	R2615	0.57	${ }_{\text {SLI }}$	$\frac{28}{39}$	STK439	831	TAAG11812	130	TDA1097	4.10	IDA4420	328	UPCCI185	${ }_{29}$
LA1357N	11.07	MC145568CP	314 38	RCA195NB RCA10083	216 5.30	SS432A	3.4	SIK43	1029	tasato	424	TDA10598	080	TDA4430	4.78	UPCC1182	18
LA1363	${ }_{301}^{621}$	MC7724CP	31.9	RCA RCA16003	201	S1437	7.18	STK459	9.40	IAABEIB	120	TDA1006	259	TDA4431	27	UPC1186H	105
LAlis64,	300 304	MC7818C	218	RCA16334	1.0	SL439	248	STK460	10.75	IAA700	29	tDA 1088	3.06	tDA432	227	UPCL181H	125
${ }_{\text {Lal }}$	3.45	МС7824CP	4.8	RCA16335	136	SL480	314	STK461	9.6	tAAB40	250	tDA 104	5.51	TDA4400	287	UPC1213C	0.98
LA1385	19	MC78M12	0.83	RCA16600	1.31	${ }^{\text {SLS }}$ S 4901 O	238	STK463	11.53	tah930	4.57	TDA1151	1.17	TDA4600	24	UPC12176	27
LA1387	710	MC78M24	0.9	RCA16799	238	${ }_{\text {S }}^{\text {S } 19178}$	1196	${ }^{\text {STK408 }}$	10.31	taAg\%o	283	TDA117\%	237	TDAA610	311	UPC 1351 C	181
LA3155	125	MCR100	0.38	RCA16801	0.58	SL918A	9.07	STK466	11.n	TAD100	25	TDAII70S	335	TDA6500	273	UPC1353	7.5
La3300	154	MCR101	0.5	RCA16832	1.08	SN16861N07	272	STR441	8.15	TAG232-600	0.73	TDA1180	325	TDAS5000	273	UPC1350C	1.07
La3s61	123	M MEPOZO2	0.17	${ }_{\text {RCAI }}$	1.5	SN168956	${ }_{1025}$	T600N	0.95	tBaizas	1.5	TDAI220A	1.43	tDA94C3	3.15	UPCC302	7.10
LAACOOP	4.20	medat	026	RCAE085	4.55	SN2715N	6.04	T6007	0.52	tbaizas	124	TDAIz20	1.55	TDAS503	250	UPC 1366	1.14
${ }^{\text {Lamail }}$	320	me04042	0.47	RGP10	0.50	SN2716N	3.56	T8016	0.00	tbalizs	1.05	tdaizo	323	TDA9513	5.4	UPCI360C	4.51
Lambzesp	235	ME0411	028	RT402	1.58	SN2971 ${ }^{\text {N }}$	7.19	T6017	0.72	tBAIzSB	1.05	TDAIZ3	318	${ }_{T 5528}$	138	UPCC1456	266
LaM0SOP	1.57	ME0412	029	RT905SA	23	SN2972	11.5	15018 V	0.72	TBA120]		TDAA2「0		${ }_{\text {TE538 }}$		UPP2722	1.46
	1.79	MEE102	0.50	S0280	214	SN29273AN	278	${ }_{1}^{160022}$	${ }_{3}^{0} 0$	${ }_{\text {T8AI20U }}$	203	TDA137]	150	TEAIOO2	1.48	UPCOOC	251
LA4101	1.30	MEEE022	${ }_{0} 020$	S1299	4.74	SN29964AN	138	18028	0.8	tBA1400G	120	TDA1330	1.76	TEA1009	125	UPCAIC	110
LAITR	281	ME6102	023	\$175	31.48	SN29767	4.98	T6027	081	TBA141	1.62	TDA1355	6.98	TEAlozasp	821	UPC554C	1.85
LAA125	235	MEDA11	0.75	\$2800	7.3	SN297IBN	493	T6022V		TBA3S5	1.10	TDA1420		nC106C	0.71	UPC5 21	${ }_{3.87}$
LAA138	338 1.15 15	M. 25011	330 039	S28000 S2802	5.54 3	SN297728N	251		0.50	${ }_{\text {TBA3S6 }}$	1.10	TDA1512	200	TC116	207	UPC575C2	200
LA4192	3.65	M. 35000	23	S3mers	6.15	SN297T0AN	225	T6035	0.3	tba400	239	TDA1670	4.6	пСа	0.72	UPC576	258
L44220	1.2	M M 3 3001	1.89	S3703F	52	SN29991	157	${ }^{16036}$	0.57	TBA40P	245	TDA1770	685	TC45	07	${ }_{\text {UPC5 }}$	0.13
LS4400	225	Mu3028	205	S3701	4.38	SN29895	236	T6037	211	TBA480	157	TDA1905	1.76	HC47	0.35	UPC507c 2	${ }_{13}$
LA4420	1.72	M 4481	1.53	S40W	1089	SN29048	1.06	T60alV	0.3	TBA4800	130	TDA 1998	320 1.55	${ }_{\text {TIP120 }}$	${ }^{1.05}$	UPC592\%	1.13
LA4422	1.72	M ${ }^{4} 802$	1.45	S551	45	SN23861	229	${ }^{16094 \mathrm{~V}}$	${ }_{120}^{0.50}$	TBAS ${ }^{\text {TBA }}$	131	TDA1990	1580	T1P12	0.8	UPD1514C	838
L44460	232	MJE2955	1.68	S5s52 S6000	${ }_{8} 8$	SN288720	0.4	${ }^{1}$	1.5	tBas200	1.68	TDA2002	0.90	TP117	0.95	UPX27C	218
L44461	258	M $\mathbf{L E 3 4 0}$	0.49	S6087AR	4.90	SN7510N	0.3	T6052V	0.87	tBa530	1.30	TDAzas3	1.75	TP120	0.50	Х00335 ${ }^{\text {x }}$	5.11
LA4520	215	MUE520	0.49	SaAliozo	4.76	SN76001ANa	1.5	T6058	0.58	TBA5500	1.30	TDA20] ${ }^{\text {T }}$	27	${ }_{7 P 121}$	0.87	र0056CE	5.11
Lasilen	283	${ }^{\text {M1231 }}$	3.33	SAA1021	4.76	SNT 5003 N	5.59	${ }_{\text {Trama }}$	0.0		1.15	TDA2206	1.58	${ }_{\text {TP127 }}$	1.13	X0062CEE	6.52
447225	805	M1237	251	SAAIOOS	4.40	SN75013N	399	T9009V	0.95	TBA550	4.50	tDA22020	2π	T1P2955	0.86	隹	420
La707	9.35	ML238	5.7	SAA1050	4.16	SNIf6013NDG	250	T9005V	230	TBA5500	450	IDAzcso	190	T1P29A	0.46	X0109CE	9.30
LA7800	265	MLI71CS	0.58	SAAIOS1	5.83	SNT 7023 N	396	TS010	0.2	TBA550C	1.00	TDA2140	1.59 6020	${ }_{\text {TPP98 }}$	0.63	X1074AF	700
LA7801	4.15 3.08	${ }_{\text {MLIOS26 }}$	330 3.5	SAA1061 SAAIOT5	361	SN76CO2ND SNT603N	350	T5011V	${ }_{7} 0.96$	${ }_{\text {tBA550 }}^{\text {TBAO }}$	1.60 1.00	TDA2750	620 1.90	${ }_{\text {nPPSOS }}$	0.00	${ }^{\text {xCS494P }} \times$	133 0.05
LC40118	124	MM 5314 N	4.00	SAAIOSE	8.5	SNTIOSN	0.51	T90014V	1.6	IBA570A	1.7	IDAziso	4.01	Ipsoa	0.41	Y969	0.82
103120	1.13	MM5316N	425	SAA1121	4.43	SN76110N	0.50	T9016	1.0	tBa5500	1.35	TDA2161	15	TP308	0.70		
LM101N	3.209	MM5318N	3.11	SAA1124	325	SN/6115AN	1.61	T9004V	138	jbabzas	217	IDA2190					
LM1017N IC	4.29	MM 5369 N	200	sa41130	4.90	SN/5131	1.98	Tr903V	1.38	${ }^{\text {TBAEA25B }}$	217	TDA2520	237	Full lis	availa	able with	der
LM1311	1.92	MM5387AAN	${ }_{6}^{16.40}$	SAA1174 SAA1250	7.7 3	SN76280N	1.98		9.20	${ }_{\text {IBACALIBXI }}$	217	TDAZ222	35 1.50				
LM1310PN	138	$M_{\text {MP8112 }}$	1.49	SAA1251	5.75	SN1628N	327	T9063V	1.41	tBa641A12	4.13	tdazzz	3.13		Pleas	5	
${ }_{\text {LM }}$	10.5	MP8113	1.40	SAA5000	295	SN76231	253	T9054V	0.75	tragbl	1.76	TDAES24	${ }_{3} \mathbf{4} 50$		phone	answeri	
LM317CKC	138	MP8512 ${ }_{\text {MPF256C }}$	1.57 0.50	SAA5010 SAA5012	5.15	SN76242	523 523	${ }_{\text {T9065 }}^{\text {T905 }}$	0.70 329	TBA673 TBATOO	250	IDAE35	320 20				
LM339N	0.00	MPS6500	0.4	SAA5020	5.78	SN76322	27	TAS814	1.49	ibatzo	1.50	TDAS32	250				
ММЗ307	1.01	MPSA42	0.0	SAA5030	2×5	SN76350	217	tapoeap	40	tBatzo	250	idazrs	230		24	hours	
LM34017	0.64	MPSA56	0.27	SAA5040A	1623 7.74	SN76390	308 290	tames	4.7	${ }_{\text {TBA760 }}$	2.0	TDARS41	215 248		0952 .	712083	
LM34075	0.00	MPSLICS	0.50	SAAG6ib	190	SNTESION	1.05	taposi	1.74	tBa780	1.5	TDA235450	594				
LM322N	0.0	MPSU10	1.56	SAA700	330	SNTr6532N	0.97	tatoouap	0.71	tbasoo	1.08	TDAZ550	217		or Acc	cess and	
	1.0	MPSU55	0.98	SAB 10098	4.90	SN77c33N	247	TAT061AP	127 311	tiabioas	100 101		3.50		Barcl	aycard	
LM342P 5 V	1.0	MPSU56	10.30	SAB1006P	4.13 734		1.57 3	TATOOOP	${ }_{10}$	TBABALSD	1.09	TDA2 275 A	285				
LM348N	215	MR510	0.50	SAB3012	588	SNT 5650 N	198	TApm1	309	TBA890	1.51	TDA3551	3.70		cust	omers	
LM380N	220	MR812	027	SAB3013	5.5	SN76550N	198	TA7072P	25	TBASOO	248	TDA2581	109 218		tock q	queries by	
LM567CN	1.71	MR914 ${ }^{\text {M }}$	0.51		790 135	SN/5564	2.85	TANOT	1.98	TBAS200	231	TDAS580	250				
6M748	1.82	M M S 480	0.31	${ }_{\text {S }}^{\text {SAB330238 }}$	1230	SNJESA9	29	taforsp	7.50	Tbaseo	170	TDATE91	250				
LMR2300	327	M S S 460002	0.61	SAB3024	${ }_{5}^{636}$	SN76550	0.37	tatosem	1.5	tBasso	1.75	TDAFs510	0.08 208				
LM8361	329	NEE55	0.38	SAB3209 SAB3210	558	SN76551 SN75570	1.10 308	TATosesp	1.98	tbag7o	1.79 328	TDA2593	27 300	Or	from	ovt. Instituti	
M1024	2217	NEE560N	36	SAFF1031	253	SN76500	121	tanosp	359	IBA990	120	tiaze00	5.50	School	Nation	als etc., ac	
M1025	5.17 20	NE565N	133	SAFF1039	335	SNTBEON	0.00	TATIO2P	558	tBa9900	1.08	TDA2310	279		with offic	cial order.	
M1124	200	NE645BN		SAS5010		SN76811	259	TAIIOBP	1.1	tBAZ31	25	TDA2611A	125			poods spuw be	

The Network EMS System

Network NWC1402 series colour receivers employ an electronic programme memory system (EMS). It's a volt-age-synthesis tuning arrangement based on the SGS M193 i.c. Inevitably faults can occur and the service engineer then has to try to cope. The service manual will probably be consulted but it's seldom obvious from a circuit diagram how things are supposed to work. It's about this time that my phone goes . . .

The M193 incorporates a non-volatile memory, i.e. the memory retains the information stored in it when the power supply is interrupted - SGS quote the memory storage time as being ten years. With a volatile memory, i.e. one using RAMs as in the earlier Network NWC1401 series, a back-up battery is required to ensure that the stored information is not lost when the main power supply is switched off.

Fig. 1 shows a simplified block diagram of the M193. It's been simplified because some of the facilities incorporated in this i.c. are not used in the NWC1402 - data display control and band switching for example. The memory is organised as 17 bits of information, 12 to provide the varicap tuning voltage, three for fine tuning and two for band selection. A digital-to-analogue converter (DAC) provides the tuning output at pin 15: the output depends on the twelve bits of information obtained from the memory.

Denis Mott

The four input lines PA-PD receive a binary-coded input to address the memory. Pulses are applied to pin 9 when a new programme is to be stored. The timing of these pulses depends on the store output at pin 14: the pulse trains differ for memory erase and memory store during a store cycle the previously stored programme is first cancelled then the new one is written in. The band select, a.f.c. and auto-tune facilities incorporated.in the i.c. are not used.

Fig. 2 shows a basic block diagram of the EMS system. The EMS panel is used in both remote and non-remote control versions of these sets. For remote control the preamplifier unit is added.

The EMS system is shown in rather more detail in Fig. 3 to enable its operation to be understood. The $\mu \mathrm{PD} 1937 \mathrm{C}$ remote control receiver/decoder i.c. (IC1301) receives both the remote control commands and the programme/volume up/down signals from the touch board. The i.c. is clocked by a 455 kHz resonator (X1301) connected between pins 10 and 11 . Pin 13 receives the remote control input signals from the preamplifier while pins $1-5$ receive the local commands - pin 1 power on/off, pin 2 channel up, pin 3 channel down, pin 4 volume up, pin 5 volume down. The outputs are at pins $6,7,14$ and 15. Pin 6 goes high when an on command is received. Pin 7 provides an 18 msec pulse output for volume control: the

Fig. 1: Simplified block diagram of the M193 programme memory chip.

Fig. 2: Block diagram of the EMS system used in the Network NWC1402 series.

Fig. 3: Interconnections between the various i.c.s used in the EMS system.
mark-space ratio is short for low volume, long for high volume. Pins 14 and 15 both provide 18 msec pulses, pin . 14 when channel up is selected, pin 15 when channel down is selected. There should be a 20 V peak-peak 455 kHz sinewave at pin 10 .

The up/down pulses from IC1301 go to pins 5 and 6 of the thick-film hybrid i.c. HIC1301 whose job is to gate the up/down signal on to a single line - the output is at pin 2. In addition it provides a clock signal at pin 7. The up/down and clock outputs pass to IC1302 which provides an interface with the M193 memory chip. This is an

MC14516B 4-bit bi-directional counter whose outputs are taken from pins $2,6,11$ and 14 . These outputs go to the M192 LED driver i.c. IC1501 as well as the memory chip.

When a data input is applied to pins 5-8 of the memory chip IC1601 an output will be obtained at pin 15. This comes via a digital-to-analogue converter, but since this is clocked the output at pin 15 consists of pulses rather than d.c. The mark-space ratio of these pulses alters to provide the tuning voltage required. The following thick-film hybrid i.c. HIC1601 inverts and integrates the pulses from pin 15 of IC1601, producing the tuning voltage at pin 6 . It

Fig. 4: Power supply arrangement for the M193.

Fig. 5 (top left): Memory erase signal at pin 9 of the M193. Fig. 6 (lower left): Memory write signal at pin 9.
Fig. 7 (top right): Ramp waveform at pin 12 of the M193.
can also be used for band changing on v.h.f./u.h.f. sets. When data stored in the memory is to be changed, i.e. a channel location is to be retuned, pin 28 (search up/down) of the M193 is connected to a comparator i.c. (IC1701) via the mode switch SW1702 - an indicator LED then lights.

The power supply arrangements for the M193 chip are a bit ticklish. It requires 12 V at pin $13,18 \mathrm{~V}$ at pin 10 and a 30 V supply for memory write/erase. The 12 V supply must arrive first (D1601 provides the initial supply for pin 10). The 18 V supply is derived from the set's 112 V h.t. supply, which is delayed slightly. The 32 V tuning voltage supply is also derived from the 112 V line, in the usual manner. Fig. 4 shows the main items in the power supply system.

M193 Pinning

The M193 is a 28 -pin device but not all pins are used in this application. Useful pin information to note is as follows:
Pin 2: Voltage falls to 0 V when the memory switch is operated.
Pins 5-8: Data address signals from IC1302 at 12V logic levels. A low on all inputs gives programme one, a high on all inputs programme 16. Programmes 2-15 are given by different combinations of 1 and 0 on the four lines.
Pin 9: 30V peak-peak pulses are applied to this pin for memory erase/write. For the erase part of the cycle the pulse duty cycle is 0.4 msec (see Fig. 5). For the write part of the store cycle the pulse duty cycle is 0.6 msec (Fig. 6).
Pin 11: Clock oscillator pin. A $3 \cdot 58 \mathrm{MHz}$ crystal is connected to this pin. If you suspect that the crystal is faulty, connect a X10 scope probe to this pin via a $1 \mathrm{M} \Omega$ resistor. A 150 mV p-p sinewave should be displayed. If the $1 \mathrm{M} \Omega$ resistor isn't included the oscillator will stop.
Pin 12: An $R C$ network is connected to this pin to set the frequency of an internal oscillator which produces the
scan ramp in the search mode. The ramp is normally of 0.6 msec duration (Fig. 7) but shortens to 0.2 msec initially (see later).
Pin 14: Pulses as at pin 9.
Pin 15: 5 V p-p pulse train. A small mark, wide space will eventually tune in channel 68: for channel 21 a wide mark and small space are required.
Pin 27: Sound muting. Goes high (5V) when changing channel.
Pin 28: Memory data up/down selection. When low the data clock counts down, when high the data clock counts up. At 6 V the data clock is inhibited.

The Comparator Chip

The final i.c. on the EMS panel, IC1701 (LMN324), is a quad comparator of which three sections are used.

Comparator A provides the up/down information for pin 28 of the memory i.c. The non-inverting input of this comparator is fed by VR1701. The inverting input is supplied with a potted down portion of the tuning voltage. If the non-inverting input is positive with respect to the inverting input the output will go high and the memory data will scan up to provide a new channel. The opposite applies with reversed inputs.
Comparator C provides sound muting for approximately one second when the channel up or down button is pressed.
Comparator D alters the search speed at pin 12 of IC1601 for approximately one second after the up, down or mode switch is operated.

Fault Finding and Modifications

The two most common failures are no output from pin 15 of the M193 memory i.c. and failure of some memory locations to store data.

When there's no output from pin 15 of the M193 the device usually gets very hot due to an internal short.
Failure to store data at some memory locations is caused by an internal problem which can be checked by monitoring the waveform shown in Fig. 6. New data will not be entered if the memory erase waveform (Fig. 5) is seen.

Tuning drift has been a problem with some of these sets. There are two possible reasons for this: (1) temperature drift; (2) a.f.c. locking range.

When the temperature within the set reaches $40^{\circ} \mathrm{C}$ the varicap tuning voltage starts to drop. This is caused by the inverter transistor in thick-film module HIC1601 not turning on fast enough. Eventually, the changed output voltage will be too much for the a.f.c. to handle and the set will go off tune. To eliminate this effect remove the thick-film module HIC1601 from the EMS panel and add a tantalum bead capacitor as shown in Fig. 8: any value between $0 \cdot 22 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ will do.

The other problem arises from the fact that on one

0300
Fig. 8: Temperature drift modification.

Fig. 9: A.F.C. disable modification.
version of the chassis there's no a.f.c. disable when programming the memory. This may cause the set to appear to have drifted off tune when changing channel - it usually happens when going from a higher to a lower frequency. To overcome the problem add diode D171 (1N914 or 1N4148) in the vision i.f. screening can, add R174 ($22 \mathrm{k} \Omega$) near P104, add link J3 and add a connection wire from P104/4 to SW1702. See Fig. 9.

There's a version of the EMS panel which is electrically correct but R1713 (820Ω) is incorrectly sited so that the a.f.c. disable doesn't operate. To correct this, remove R1713 from the panel and replace with a wire link. Fit R1713, with extended leads, in place of link J10 (see Fig. 9).

To ensure correct operation, check as follows:
(1) The voltage at P104/4 should be $11-12 \mathrm{~V}$ when the mode switch is pressed.
(2) The voltage at TP14 should be $5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ when the mode switched is pressed.
(3) The voltage at TP14 should remain as at (2) when the mode switch is released after tuning.

If the voltage at TP14 is incorrect or tuning drift still occurs the a.f.c. coil L171 may be incorrectly tuned. The following procedure is suggested:
(1) Desolder the a.f.c. pin of the tuner from the PCB pad.
(2) Connect a variable bias supply to the a.f.c. pin. A PP9 battery and $10 \mathrm{k} \Omega$ potentiometer can be used.
(3) Set the bias at 5.5 V with respect to chassis and tune the set to a good signal.
(4) Alter the a.f.c. bias and note the effect. The tuning should shift visibly. If not, suspect the a.f.c. varicap circuit in the tuner.
(5) Reset the bias to $5 \cdot 5 \mathrm{~V}$.
(6) With the set correctly tuned, monitor TP14 with a meter. The reading should be $5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$. If the voltage is incorrect, retune L171 slightly to bring the voltage back to 5.5 V .
(7) Disconnect the a.f.c. bias and reconnect to the PCB.

I hope the information provided in this article will be of help to engineers who come across the NWC1402 and its variants. Hopefully my telephone will cool down a bit! My thanks to Network Industries for permission to publish these service notes.

TV Fault Finding

Rediffusion Mk. 4 Chassis

We've had several chopper transistors fail in this chassis. In every case the cause of the problem has been poor soldered joints on the chopper transformer. It's a good idea to remove the transformer, clean the legs then resolder it.
M.D.

Philips CTX Chassis

A portable set fitted with this chassis was brought in because it was tripping. It was fairly new and we were surprised to see the rust marks on the chassis - it must have been kept in very damp conditions. To cure the tripping we had to change the tube (cracked glass), the TDA2577 sync/timebase generator/chopper control i.c., the TDA3651 field output chip and the 26 V rectifier D6590.

Another of these sets had an intermittently dark picture. Flexing the PCB would produce the fault but we could find no cracks or dry-joints. After a lot of probing around we found that $\mathrm{C} 2656(0.039 \mu \mathrm{~F})$ on the earthy side of the e.h.t. circuit had never been soldered through the panel - the beam limiter line is linked to this capacitor.
M.D.

Panasonic U3W Chassis (TC2211)

The complaint with this set was line tearing. We found that the supply lines were low which led us to check the h.t. reservoir capacitor $\mathrm{C} 853(100 \mu \mathrm{~F})$. It had gone rotten, dropping to pieces when we removed it from the panel. The h.t. smoothing capacitor $\mathrm{C} 854(47 \mu \mathrm{~F})$ also had to be

Reports from Mick Dutton, P.A. Smith, Bob McClenning and Maurice Kerry
replaced. These blue high-voltage capacitors used by Panasonic often seem to give trouble, causing all manner of weird effects
M.D.

Thorn 9000 Chassis

Fuse blowing in this set was caused by a shorting chopper transformer. We've never had that one before though the sets have been around for a long time now.
M.D.

NordMende 3602 (F8 Chassis)

This colour portable, fitted with the F8 chassis, had no luminance with red flyback lines showing. The set employs a TDA3300 colour decoder chip, which we first suspected, but the problem turned out to be due to the TDA1170 field timebase i.c.

The problem with another set fitted with this chassis was blue smearing that looked like a low-emission tube. RV43 ($47 \mathrm{k} \Omega$) in the blue output stage had gone high in value.
M.D.

Philips G8 Chassis

The owner of one of these sets complained of picture jitter. We were short of time so we swopped the power panel, but the owner phoned back to say that he still had a problem. The cause of the trouble was the $600 \mu \mathrm{~F}$ h.t. smoothing capacitor C5536, which is mounted on the line output panel - it had gone open-circuit. A clue is given by the fact that the power supply won't set up correctly, with jitter at 200 V or less and no jitter at 205 V .

TV LINE OUTPUT TRANSFORMERS	
Deivery by return of post.	
RANK BUSH MURPHY	IT: vc200 to vC402 $\quad 920$
A774 with stick rectifer 9.78	CVCI, CVCC Iforgestone) 11.50
	CVC5, cvc7, cvCs, cvc9 series 920
T20, T22, T26, 2179, A823 11.50	Cucz ${ }^{\text {a }}$
2718 Basic unit 13.50	cvc25, cvc33, cvc33, cva45 920
T24e, T24h split diode P.OA.	cvcat, cvCl200, 1210,1215 P.OA
DECCA: $1210,1211.1511$	F110, F111. P/no AT203302 1150
1700, 2001, 2020, 2401,2404 920	PYE: $169,173,569,368$ series 920
CSII30, 1733, 1830,1835 $\quad 920$	CT200, с12001, С CT213 series 10.35
30,70, 80, 90, 100, 130 Series $\quad 920$	725,731, 735, 737, 741 Series ${ }_{9}$
EfRGUSON, THORN: 1590, 1591920	PHII
1690, 1691. buitt in rect 9, 9 ,78	
1850, 1615, 1700 series $\quad 14.36$	TX, T8 mono. TX2, TX3 P. 0 A
1730 mono portable P.0A	68 and 69 Series E920
3000, 3500, 8000, 8500,8800 P. 0 A	KT2. k 3. series colur $\quad 920$
9900, 9200, 9300 series $\quad 1200$	G11. K33. split diode P.0A
9550, 9600,9650 series $\quad 10.99$	
9800, TX9, TX10 series P.0A	Binatone $9909,9798,9860$ P.0A
MOVIESSAAR 3781, 3787	OORIC MK3
HoElur: FTV12 mono 10.35	GRUNDIG: most models in stock
Z 22000 ZX3000 P.0A	NORDMENDE: FCL125, $2206,7336{ }^{1150}$
G.EC. 2047 to 3135 mono 920	SANTO: 5li
DUAL \& SIINGLE hybrid col. 10.00	TANDBURG: 190, CVV2-2. Cvv-3P.OA
GLE STD solid state 1200	TILFUNKEN: most models in stock
SINGLE STD split diode P.OA	UNE OUTPUT TESTER
INDESST: 2 24GGB hybrid	Tidman Mail Order Ltd. 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm \& $1.30-4.30 \mathrm{pm}$ Sat 10 am to 12
WINDINGS	
HHAM: W190, W191 ent coil 6.500	

Another of these sets, fitted with the combined i.f./chroma panel, suffered from loss of colour. This led us a merry dance until we found that the voltage at pin 7 of IC3540 (TBA560C), the burst output, was low while the voltage at pin 5 of IC3550 (TBA540), the input to the burst detector, was high. The two pins are connected by a filter, U3008, which contains a series 220 pF capacitor. It turned out that this capacitor was leaky.
M.D.

Hitachi CPT1471

This 14in. colour set was tripping. When switched on the e.h.t. came up then the power supply shut down. On two previous occasions we've had faulty chopper chips in these sets, IC901 (STR6020), but with both these cases the power supply would shut down intermittently when warm. We changed lC901 just in case but this made no difference.
No shorts etc. could be found in the line output stage so we decided to try disconnecting the various rectifiers fed from the transformer. When we lifted D771 the set came to life. This diode provides the main 12 V line so we started to disconnect the various sections of the set this feeds. When R 604 was lifted the set ran with sound but no raster. At this point we took a closer look at the circuit. R604 feeds IC701 (LA7801) which contains the sync circuitry, the line oscillator and the field oscillator and driver stages. It's in two "halves" with separate supplies, 12 V via R604 to pin 12 for the field circuits and a supply from the emitter of the line driver transistor to pin 15 where an internal zener diode provides the supply for the rest of the chip - the line driver transistor is fed from the main 115 V h.t. rail so there's no need for a start-up
supply. Replacing IC701, also the STA441C field output chip IC681, cured the problem. If the line output stage in these sets is unloaded the power supply doesn't regulate properly, so it's essential to reduce the mains input, preferably by using a variac, to prevent damage to the line output transistor whilst testing. With the sort of fault we had (field timebase) Hitachi recommend replacing the flyback switching transistor Q681 (2SC1213A) as well.
M.D.

Zanussi 22ZT505

This was an oddball - we'd never seen one of these sets before. The complaint was intermittent no results. After a long soak test and much prodding around we found that the collector of the chopper transistor was dry-jointed, causing the set to go into standby.
M.D.

Philips G11 Chassis

We came across an unusual fault recently on a G11 power panel. The screen symptom was a small picture and a check on the h.t. voltage at fuse F 4037 revealed that this was low at 130 V instead of 153 V . After much scratching about we discovered that zener diode D4048 in the trigger pulse phase control circuit had decided to become a 6.1 V zener instead of a 7.5 V zener. Replacing this item cured the trouble - a large brandy setted my nerves.
P.A.S.

ITT CVC1100/CVC1200 Chassis

These sets incorporate the CMR800/1 r.f./i.if. module. When the problem is low volume with distortion, before leaping to change the TDA1035T sound i.c. replace C228 ($100 \mu \mathrm{~F}, 16 \mathrm{~V}$) which stabilises the audio feedback. The symptom sounds like a very badly stuck speech coil. This module is used in a wide range of ITT models. B.McC.

Hitachi NP83CQ Mk. II Chassis

This set produced a bright, high-contrast picture and loud sound, with the sound, brightness, colour and contrast controls inoperative. A PCD8571 memory i.c. mounted on a panel (difficult to get at) under the c.r.t. stores the digital level codes for the above controls. These are fed to the SAB3037 chip on the main panel, where they are converted to analogue signals. The memory chip (IC1502) proved to be at fault.
M.K.

Hitachi NP81CQ Chassis

An STR441 chopper chip (IC901) had been ordered by another engineer but when I fitted it the set remained dead. There was a supply of 345 V at pin 1 , which is connected to the collector of the chopper transistor in the i.c., but no voltage at its base (pin 4). Apart from feedback and bias components a standby switching transistor (Q901) is connected to this pin. There's a zener diode (ZD901) between the base and collector of this transistor and a check revealed that it was leaky (150Ω). The set remained dead when a replacement was fitted and it then seemed that Q901 had a base-emitter short-circuit, though it checked all right out of circuit. The apparent short was due to link J907 touching IC901's heatsink - this link goes to the base of Q901. After removing the short and switching on the set was still dead, due to R905/6 in the chopper feedback path being open-circuit. Replacing these restored normal results with a good picture. M.K.

Letters

MICROCOMPUTER FAULT FINDING

Now that TV engineers are being asked to take on home computers your readers may be interested in some of the more common faults l've encountered whilst servicing these beasties.

The BBC Model B has proved to be an excellent and reliable machine with only a few common faults. The keyboards on later versions tend to have one or two characters that are either over or under sensitive: contact cleaner spray seems to have little effect and the only cure is to replace the offending switch. The screen filling with rubbish after an hour or so of use is usually caused by the video ULA (IC6) which is sometimes fitted with a clip-on heatsink to relieve the problem. Later versions of this chip don't seem to suffer from this problem however - they are available from advertisers in the magazine BBC Micro User. Failure to load or save programs on cassette can be due to incorrect cassette recorder volume setting or failure of the LM324 chip which is located next to the cassette socket at the rear of the machine.

The early Dragon 32 microcomputer suffered from loss of colour. This can be easily corrected by adjusting a preset inside, towards the rear of the PCB. These machines are quite critical about cassette recorder volume level and care must be taken to ensure that it's correct. The Dragon's mains transformer is prone to developing shorted turns - a replacement is available from advertisers in the magazine Dragon User.

The Commodore VIC 20 has two recurrent faults. First blowing of the 1 A l.t. fuse for no apparent reason: I replace it with an anti-surge type and have had no returns. Secondly no picture and/or no sound due to the lead from the computer to the modulator unit developing internal breaks. A Commodore 64 that came in recently had a blown 1.t. fuse but it seemed that the cause was the flying earth lead on the cassette plug having come into contact with the expansion edge connector at the back of the computer. As there doesn't seem to be anywhere to fasten this I taped it to its own lead. Commodore cassette recorders give few faults and head cleaning is usually enough to get them working. I have however had cases where the head is slightly out of alignment, giving occasional data errors. With one head the attached tape guide was out of alignment with the head itself.

The Sinclair Spectrum seems to produce a blank or rubbish-filled screen in response to faults, the most common of which is failure of the ZTX450 transistor that forms part of the power supply circuit. It produces -5 V from the 9 V supplied to it and is mounted near a small coil on the right-hand side of the board. This coil forms part of an oscillator circuit with the transistor - a buzzing noise is heard from the coil when the oscillator is working correctly. Replace the transistor with a ZTX650 or ZTX651.

Beware of add-ons that are plugged into the back of these machines: always ask the customer to bring all the bits in. A poorly locating joystick controller can short out the pins on the expansion port and blow the transistor again. Check that the index locating peg is correctly positioned and not bent.

The 48 K memory is built up using eight 16 K chips and eight 32 K chips. The 32 K chips are prone to internal shorts - an oscilloscope is required to determine which chip has developed the fault.

A keyboard that doesn't respond properly may be due to the connectors linking the board and the keyboard being split. They are made of thin, flexible plastic on which tracks are laid. If the break is at the board end it's possible to cut a little off the connector and remake the end. If the connector has been creased or broken along its path a repair is possible using stiffening pieces made from cardboard and conductive paint - don't put a soldering iron near these connectors as they disintegrate.

Finally, test the whole machine - add-ons as well. It'll save a lot of hassle later.
G. Jackson,

Hyde, Cheshire.

SPECTRUM PROGRAM CORRECTION

There were a couple of errors in the Spectrum 48 K colour bar program of mine you published on the letters page last month (page 241). The last number in line 130 should be 175 , not 178 ; the last number in line 260 should be 116, not 16 .
M. J. Edis, G4RPT,

Broughton, Nr. Kett, Northants.

THE PHILIPS T8E CHASSIS

A bit of a problem arose recently with a Pye monochrome portable fitted with the Philips T8E chassis. The initial fault was poor line sync. Naturally the video/a.g.c./sync chip IC607 was suspected. It's shown as a TBA690 on the circuit diagram, so a couple of these were obtained. When tried, both died instantly. It wasn't until another of these sets came in for a different video fault that a clue was obtained. This set was unmistakably fitted with a TBA890. Fitting one of these put matters right. A further check with the manual showed that a TBA890 is specified in the semiconductor list at the front and in the parts list at the back, so presumably the circuit is wrong.

The fault in the second set was an overbright picture with flyback lines and very weak contrast due to the BF422 video output transistor being leaky.
These sets are not all that simple to service - they might be worth an article in Television.
Laurie Watkinson, Telesonic Services,
Holsworthy, Devon.
Editor's note: Thanks for the tip! Anyone want to contribute any notes etc. on the T8E and the similar T8?

TELETEXT DECODING FAULTS

With reference to G. Beard's letter in the January issue on degraded text decoding with a Tifax XM11 module the following notes may be of assistance.
The XM11 was designed to accept more data lines when they became available, so it's more likely that Mr. Beard's fault is due to either short-term echoes (ghosting) because of an aerial problem or misadjustment of the video signal amplitude fed to the module. The make of receiver being used isn't mentioned but the three makes using the XM11 that I'm familiar with, i.e. ITT, Rank and Thorn, all have provision for adjusting the amplitude of the video input to the XM11 module (plug 2, pin 16).

Texas specify a p-p value of $2-3 \mathrm{~V}$. This however needs to be adjusted to compensate for differing power supply voltages and the characteristics of the video and i.f. circuits in the receiver and the module itself.
The video interface circuit usually consists of an emitter-follower. ITT suggest that adjustment is done as follows. Reduce the signal strength progressively, using an aerial attenuator, until errors start to appear in the display. Adjust the video input level to the XM11 for fewest errors, using the preset provided. Progressively increase the attenuation, adjusting the preset for fewest errors with greatest attenuation.

This will correct faulty decoding only if the aerial and the i.f. circuits are o.k. of course. The data bit rate with the teletext system is 6.9 MHz , which means that a delay of only 140 nsec is sufficient to cause errors. My company still has some of these decoders in the field: we've had no similar complaints from our customers.

It's also possible that the transmissions are at fault. At the time of writing the data bridge at Leeds is causing decoding problems from Leeds northwards. This sometimes results in missing rows of text, but the most annoying fault (on Ch. 4 only) is that the next page in the magazine appears instead of the one you call up, i.e. if
you call up 597 you get 598. The IBA engineers are aware of the fault but because it's very intermittent a solution hasn't been found.

During regional opt out on BBC-1 from my local transmitter (Emley Moor) the clockcracker page displays errors. The engineers at Leeds say the signal leaving there is o.k. and blame the fault on local reception conditions. I've checked the clockcracker page at a number of customers' premises throughout our service area however and all show the same fault, so there must be a problem at the transmitter. There are no problems when network programmes are on.

In conclusion, Mr. Beard is not suffering from the effects of an early design - though modern decoders are much improved. My first decoder was an XM11. I now have an XM12, which has background colour, double height and four pages of memory. I think it's a lot better than the Mullard decoders. Unfortunately Texas no longer make any teletext or viewdata decoders and I'm unable to obtain circuit diagrams etc. for the XM12. Can anyone help with this information?
L.D. Sears, Chief Engineer,

Hepworth and England Ltd.,
Mirfield, W. Yorks.

Vintage TV: The Vidor CN377

Vivian Capel

To start with, Vidor was a name associated solely with batteries and torches. Then other things came along such as boiling rings and grillers, and like their rivals Ever Ready they started to produce a range of portable radio sets. It was something of a surprise when the first television sets were announced in the late forties, and some people felt that the firm might be overreaching. itself. The manufacture of Vidor television sets continued until 1956 however. By that time a number of models had been released and the sets had become quite popular.

One of the first sets to appear was the CN377, a twochannel, 9 in. table model that was very like a table radio receiver in appearance. There was a large, fabric-covered speaker baffle at the front left and to the right of this, where you'd expect to find the station scale, there was the screen. Four knobs were arranged along the bottom of the cabinet - contrast, volume-on/off, focus and brightness.

To further increase the resemblance to a radio set there was a wavechange switch with wafers similar to those used in the radio counterparts. It was mounted at the back of the r.f. subchassis however, and operated with a screwdriver as a preset channel selector - the two channels were London and Birmingham of course.

The Receiver Unit

Being of superhet design, the receiver unit was more advanced than its many t.r.f. contemporaries. It used what would later have been considered rather low i.f.s however -9.75 MHz vision and 6.25 MHz sound. There were nine valves on this compact subchassis, seven EF42s, a couple of EB91s and the EL41 audio output valve. The first three EF42s were used as the r.f. amplifier, local oscillator and mixer. There were two vision only i.f. stages using EF42s and a single EF42 sound i.f. amplifier stage. The final EF42 was used as the video amplifier. The two

EB91s acted as detectors and interference suppressors in the vision and sound channels. The use of the largish, eight-pin EF42 was an odd choice - the contemporary console Model CN370 used seven-pin EF91s in the same positions (this difference led to surprisingly few circuit or even component value changes). A sensitivity control was provided in one corner of the subchassis: it set the cathode bias applied to the r.f. amplifier valve.

Video and Sync Circuitry

The video and sync separator circuits are shown in Fig. 1 - V7 and V8 were on the main chassis. The negativegoing detected video developed across the load resistor R25 was applied to the video output valve's control grid. Series and shunt peaking coils, L9 and L10 respectively, were included in the valve's anode circuit, R27/8 being the load resistors. C23 coupled the positive-going video signal to the c.r.t.'s grid - the voltage at the c.r.t.'s cathode was set by the brightness control. The coupling to V7, which acted as the sync separator, was via C22.

As so often in those early days the sync circuit was a little unusual. The video signal, with negative-going sync pulses, was fed to the cathode of the first section of the EB91 sync separator. It's anode was biased by the voltage developed across R38. This section of the valve remained cut off during the positive-going section of the video waveform, conducting when a negative-going sync pulse appeared at its cathode. The pulse output was d.c. restored by the second section of the EB91 and applied to the control grid of V8, which acted as a sync pulse amplifier. Note that the d.c. restoration action also affected the c.r.t. drive, via R31. The line sync pulses developed across R36 were differentiated by C28 and R39 and fed to the line oscillator. The field sync pulses were integrated by R34 and C26 and coupled to the field

Fig. 1: The video amplifier and sync separator circuits used in the Vidor CN377.
oscillator by C27. In the absence of a sync pulse input V8 was conductive since its control grid and cathode were linked via R35.

Timebase Circuits

Thus positive-going sync pulses were developed at the anode of V8. These were applied to the control grids of the T41 gas-filled triodes (thyratrons) used in the line and field oscillator circuits. While it was quite common to use a thyratron as the field oscillator it was not so common to used one as the line oscillator - a hard-valve oscillator was generally preferred here. The use of the same type of valve in each timebase is an advantage from the servicing point of view however, since the valves can be swapped over to provide a quick check. Thyratrons tend to be temperamental, and it could well be that one is more effective at line than field frequency or vice versa.

The two timebase oscillator and output stages were very similar, and it was easy to get them mixed up from a brief glance at the circuit. Even the two sets of deflection coils were both series connected. An EL33 was used in the field output stage and an EL38 in the line output stage easily distinguishable by its top cap connection. Both output stages used transformer coupling - in the otherwise similar CN370 $R C$ coupling was used in the field output stage.

The main presets were situated at the rear of the main chassis and consisted of four linear sliders with locking control knobs. From the top to bottom they were field hold, line hold, height and width. The last two functioned by varying the h.t. applied to the appropriate output valve. They were in the cathode rather than the anode circuits: since the control grids were returned to the positive ends of these controls they did not affect the bias applied to the valves.

Each timebase also incorporated a linearity control. These were mounted on the main chassis alongside the respective output valves - they were screwdriver operated rotary presets. The field linearity control was part of an $R C$ network in the output valye's control grid circuit: as it varied the amplitude of the waveform it also affected the height. The line linearity control was part of an $R C$ damping network across the line scan coils: it controlled the left-hand part of the screen. The line output valve was
operated as a class A amplifier, the damping network being used to remove the post-flyback overshoot.

The Power Supply

Perhaps the most significant feature of this receiver was the transformer power supply, complete with mainsderived e.h.t. - never a very popular feature with service engineers! A 6.4 V winding on the transformer supplied the parallel connected valve heaters, a separate 4 V winding being used for the thyratrons. A third heater winding was used for the h.t. rectifier, a GZ32 in a full-wave circuit. This produced 360 V across its $16 \mu \mathrm{~F}$ reservoir capacitor. There was choke smoothing with the choke tuned to a minimum frequency of 100 Hz by a parallel capacitor combination ($0.2 \mu \mathrm{~F}$ plus $0.5 \mu \mathrm{~F}$ in parallel). The focus coil also formed part of the smoothing circuit. Further $R C$ smoothing was incorporated in the feeds to the anode of the field output valve and to the receiver subchassis.
An HVR2 rectifier produced some 5 kV across its $0 \cdot 1 \mu \mathrm{~F}$ reservoir capacitor. A point to note here is that the earthy end of the e.h.t. winding on the mains transformer was connected to chassis via a $270 \mathrm{k} \Omega$ resistor. If this went open-circuit it could be wrongly assumed that the winding itself was open-circuit - if a check was made from the hot end to chassis.

Switch-off Spot Suppression

A form of switch-off spot suppression was incorporated: a switch opened to add a $10 \mathrm{M} \Omega$ resistor in the c.r.t.'s cathode circuit to ensure that the cathode bias didn't fall too rapidly.

The CN390 Series

The following CN390 series was similar in many respects but in some ways moved to what was to become standard practice - it used cathode c.r.t. drive and a conventional pentode sync separator for example. The EL38 line output valve was used in a self-oscillating arrangement, with feedback to its control grid from the line output transformer's secondary winding: an overwinding and an EY51 rectifier produced the e.h.t.

Long-distance Television

Roger Bunney

From the DX-TV viewpoint a major event during the past year was the end of 405 -line transmissions in Band I. It left the band wide open for DXing, clear of local TV signals. The problem of the 49 MHz cordless phone continued, though the situation has become no worse now that legal 47 MHz versions are available - the kiddies' 49 MHz walkie-talkies seem to have disappeared from the market stalls. We have still to see what the effects of the amateur $50-50 \cdot 5 \mathrm{MHz}$ allocation will be: ch. R1 vision will suffer to some extent, and the use of horizontal polarisation by amateurs won't help. For over two decades now I've advocated reduced i.f. bandwidth operation for DX reception. This does help to reduce interference and improve weak signal performance. Those who use the full i.f. bandwidth will suffer most from interference problems perhaps this is the time to consider adding an in-board i.f. preamplifier with integral i.f. notch tuning by means of a simple varicap system. Interference from microcomputers has declined now that interest in them has fallen and types with improved suppression have been introduced - at one time in my town centre location three Spectrums and an upmarket word processor were producing visible interference in Band I! It's unlikely that we shall see any official PMR activity in Band I during 1986.
Looking forward to the prospects for 1986, since we are in the early stages of sunspot cycle 22 there's no chance of enhanced F2 or early evening transequatorial skip reception - we shall have to wait another two-three years for these rather more exciting Band I signals. I'm hoping for a good year for Sporadic E reception, perhaps slightly better than 1985 when we all received signals from the Middle East. Pirate TV activity at u.h.f. is likely to be minimal and confined to the London area - transmissions on ch. E36 were expected over Christmas, from the Crystal Palace area, but there have been no reports of reception. Look out for the first independent French TV stations from February onwards, and the Munich "TV Weiss Blau" station on ch. E59 from around May/June.
December 1985 was a quiet month. There was a sudden tropospheric opening on the $15 / 16 \mathrm{th}$, giving really strong W. German Band III and RTL ch. E7 reception across the south east and south, spreading as far as Cornwall, with noise-free reception until close downs. Meteor scatter/shower reception was disappointing. The Ursids just before Christmas gave only a small lift to the residual pings and the quadrantids similarly had little effect - the peak for the latter was at midnight on January 4th when most European TV stations were off air. The mornings during this period, traditionally a good time to watch, proved disappointing.
The minimal SpE signal \log is as follows:
13/12/85 TVP (Poland) chs. R1, 2 from 2100 onwards. 14/12/85 + PTT (Switzerland) E2; ORF (Austria) E2a 15/12/85 from 1500 onwards.

322

21/12/85 TSS (USSR) R1-5 (ch. R5 heard on scanner only): ARD (W. Germany) E3; MTV (Hungary) R1; NRK E2, 3 from 1200 onwards.
25/12/85 RUV (Iceland) E3 (at midnight).
26/12/85 SR (Sweden) E2; TVP R1; ARD E2; TVE (Spain) E2 from 0730-0930.

1/1/86 TVE E3 at 0830.

As usual then there was the characteristic mid-December opening. A thin month - my thanks to lain Menzies (Aberdeen), Simon Hamer (Powys) and Reg Roper (Torpoint) for supplementing my meagre loggings.

The 50 MHz Amateur Band

As mentioned in Teletopics last month (page 223) the band $50-50 \cdot 5 \mathrm{MHz}$ has been allocated to class A licensed radio operators from February 1st, running in any transmission mode but limited to e.r.p.s of 14 dBW carrier and 20 dBW peak envelope power (for SSB). The transmitting aerial should not be more than 20 m above the local terrain and must be horizontally polarised. No repeaters will be allowed. The situation will be reviewed after a year with a view to allowing class B operators use of the band. All precautions must be taken to avoid interference to Band I broadcasters elsewhere in Europe should interference prove to be troublesome the allocation will be cancelled. There's every possibility of extending the band at a later date if no problems arise.

Another Threat to Band I

A recently received leaflet illustrating a new portable radiophone system being marketed under the Bohsei brand name, available through a telephone retailer in Brentford (though the leaflet is marked "export only"), represents another threat to Band I. The base station transmits in the $48.9-50.99 \mathrm{MHz}$ spectrum, using f.m. at 10 W (into 50Ω). The portable unit, housed in a black brief case, features a push-button telephone, cassette recorder and transmitter/receiver system: it transmits in the $146-152 \mathrm{MHz}$ spectrum, at 10 W . Both units are crystal controlled with a claimed range, subject to local terrain,

Nick Harroid's íft. dish for 4 GHz satellite TV reception.
of $18-25$ miles. The base and mobile unit can both be operated with a type $50 / 70$ linear amplifier which provides up to 70 W output with 10 W input: ranges of up to 75 miles are claimed. The 48 MHz output could be a problem for DX-TV enthusiasts but perhaps of more concern is the mobile $146-152 \mathrm{MHz}$ coverage since this is allocated to police communications following Band II re-engineering. The information has been passed to the appropriate authorities and hopefully problems will not arise.

From our Correspondents . . .

Hugh Cocks, formerlly resident in East Sussex, has moved to the Algarve, Portugal where he's busy producing and installing TVRO equipment for the 11 GHz band. The Eutelsat and Intelsat signals there are some 6 dB down on UK levels -2.8 m dishes are used to compensate for this. He comments that Moroccan Band III TV stations are well received during the evenings.

Nick Harrold has sent us a photograph of his homemade 16 ft . diameter dish. It's fitted to a polar mount and is used in conjunction with a $110^{\circ} \mathrm{K}$ LNA and a Sat-Tec 5000 receiver unit. Sparkle-free reception across the 4 GHz band is obtained down to 26 dBW on half transponder signals.

Terrestrial Interference Shield

Continental Satellite Systems, a US company, has introduced what it calls a terrestrial interference shield for fitting to dishes of its own manufacture. The shield consists of a sectional lip that fits to the rim of the dish. So far as terrestrial interference is concerned it reduces the focal length to 0.3 - the focal length for satellite signals remains at $0 \cdot 36$. This changed focal length reduces terrestrial interference by up to 12 dB .

A Decade of Satellite TV

Satellite TV reception in 1986 usually means signals at around 11 GHz - and for a few the lower $3 \cdot 675-4 \cdot 2 \mathrm{GHz}$ international telecommunications band. Yet ten years ago in 1975/6 a few enthusiasts were having their first experience of the joys and frustrations of satellite TV - at u.h.f.! These were the pre-Ekran (714 MHz) days as well.

NASA launched ATS-1 in 1966. It was the first in a series of "application technology satellites" that featured on-board experiments covering solar measurement, telecommunications/propagation and other diverse packages. Of interest to TV enthusiasts was the sixth in the series (ATS-6) since this carried a high-power TV transmitter with f.m. video, the purpose being to establish the feasibility of low-cost receiving terminals and obtain general technical data. If you recall the beam was directed at India, whose government wanted to know whether a satellite broadcasting system for general entertainment and instructional programmes was a practical proposition. The craft had a thirty food parabolic aerial with ribs supporting a mesh, giving an f / d of 0.44 . The equipment for uplink reception and downlink transmission was housed in a 54 in . cube. The experiment was called SITE (satellite instructional television experiment) and was to last a full year from August 1975 to July 1976. The satellite was initially at $94^{\circ} \mathrm{W}$ where it carried out various communications experiments for a year. Moving it to $35^{\circ} \mathrm{E}$ for the SITE experiment took nearly three months. It arrived in the new orbital position in early July 1975. The TV uplink from Delhi or Ahmedabad was at 5.950 GHz

Yes indeed we have - and it's all in our CATALOGUE FOR 1986 packed with Aerials, Amplifiers, Filters, Rotators, Hardware etc. etc. for all types of aerial instalation/ requirement including TV/FM DXing within Bands 1 to 5 inclusive. Multi-Standard PAL SECAM colour televisions are featured for DXing, Domestic and Overseas television Cection AERIAL TECHNIOUES also provide a complete and comprehensive consulreception. AERAL LENiNes (SAE please). We can now offer an tancy service attractively priced 11 GHz Satellite System for the reception
other Satellites, separate leaflets are available on request.
For a speedy dispatch, ACCESS and VISA Mail \& Telephone orders may be placed for For a speedy dispatch, ACCESS and VISA Mail \& Telepho
any of the items listed in our comprehensive Catalogue.
any of the items listed in our comprehensive Catalogue.
We are active TV/FM DXing specialists - your guarantee of honest and knowledgeable advice.
DXers-Special Offer:
ANTIFERENCE UP1300 VHF Masthead Amplifier ($40-230 \mathrm{MHz}$) for Bands 1, 2 \& 3. Gain 19 dB , Noise figure only 2.5 dB
516.90

Matching 12V Power supply unit for use with the above amp
LABGEAR CNGOO/RA UPCONVERTERS (ideal for TV-DXing) with gain control, mains powered, limited stock at this special price
72.50

WHETHER YOUR NEED IS FOR LOCAL OR FRINGE RECEPTION, ALTERNATIVE WHEIHER TV/FM DXING OR FOR A DISTRIBUTION SYSTEM, AERIAL TECHNIQUES CHANNELS, TV/FM DX THE 'ONE STOP' ADDRESS FOR ALL EQUIPMENT.
aERIAL TECHNIOUES IS UNIDUE -
OUR HIGH QUALITY CATALOGUE COSTS ONLY 65p.
Why not send for your copy today - please include an SAE with all enquiries

AERIAL TECHNIQUES (T)
 11 Kent Road, Parkstone,
 Poole, Dorset BH12 2EH. Tel: 0202738232

with the downlinks at 860 MHz and 3.750 GHz , using a 30 MHz bandwidth. The Indian government installed some 2,500 direct receiving terminals and 2,700 receivers adjacent to existing v.h.f. transmitters for rebroadcast throughout the country. The broad objectives of the experiment were successful in establishing that transmission of wideband f.m. signals from a satellite at u.h.f. worked well. On the ground there were certain problems - where terminals were installed in remote areas without mains electricity for example. The experiment came to an end when the satellite was moved to $105^{\circ} \mathrm{W}$ for further research purposes.

Details were given in this column up to two years before the start of the SITE experiment. It was generally felt in UK DX circles that there was little chance of receiving the signals in the UK. How wrong we were! On Christmas Eve 1975 I received a Christmas card from Steve Birkill in Barnsley enclosing some dramatic shots of Indian TV which he'd received using a five foot dish, a head amplifier feeding a conventional u.h.f. tuner and an f.m. video demodulator. This started a flurry of activity. Various dishes were constructed from chicken wire, using a dipole/reflector arrangement at the focal point, with domestic preamplifiers. Before long reports of reception began to trickle in - some enthusiasts were using standard TV sets with slope detection of the f.m. signals. Perhaps the excitement was that it could be done, with poor to fair results, using normal DX-TV equipment with the addition of a simple dish. The cost was minimal and signals were received daily.

Professional broadcasters took an interest, including RTE, TDF, IBA (Israel) and RAI, but it was the

Fig. 1: The Jaybeam ModeI JBB/4 stacked bowtie array.
amateurs who proved that it was possible - Steve Birkill, Ian Beckett, Hugh Cocks, Clive Athowe, Reg Roper, Peter Jaansen, myself and a few others. All that was ten years ago and since then satellite TV for Europe has moved to 11 GHz . This is much more demanding and amateur interest seems to have declined, presumably due to the cost and complexity. Where, I wonder, will we be ten years from now?

Bowtie UHF Aerials

The new Jaybeam "Aluminium Billboard" wideband u.h.f. bowtie array, Model JBB/4, was briefly mentioned in this column last month. This type of array has been popular for DX use for some years now because of its wide bandwidth, relatively level gain across the band (compared to a Yagi type array), minimal wind resistance and visual impact and the fact that it's relatively inexpensive. Such arrays are available from several manufacturers including Jaybeam, Triax, Wolsey, Fuba, Hirschmann and Wisi - some of these manufacturers supply other firms who market the aerials under their own names. Wolsey also have a two-bay version (the Colour Prince) which is mainly sold as a caravan aerial. Stacked colinear and broadside are other names for the stacked bowtie system. The Jaybeam JBB/4 is 80 cm high, 60 cm wide and weighs 1.5 kg . It has easy adjustment for vertical or horizontal polarisation.

There's some confusion about the performance of this type of array, particularly with respect to gain. The gain figures quoted by Wolsey for their Colour King are some 2 dB or more up on a standard array, though no reference
standard is given. Aerial gain is normally in dB relative to a half-wave dipole (dBd). It's known for manufacturers to quote dBi figures (dB power gain with reference to an isotropic source) which add another $2 \cdot 1 \mathrm{~dB}$ with respect to the half-wave dipole standard. Wolsey quote neither dBd nor dBi . For the record we quote the following figures for the Hirschmann Fesa 805 Alu array:

Channels	$21-31$	$32-41$	$42-50$	$51-60$	$61-68$
Gain (dBd)	10 dB	11 dB	12 dB	13 dB	12 dB
Front-back ratio	20 dB	22 dB	22 dB	23 dB	20 dB
Horizontal beamwidth 50°	47°	42°	39°	37°	
Vertical beamwidth	40°	35°	31°	29°	28°

The beamwidths are at the -3 dB (half power) points. The vertical beamwidths are smaller because of the phase cancellation produced by stacking the dipoles side by side.
Early versions of this type of array used solid aluminium bowties. It was subsequently found that an equivalent bandwidth product could still be obtained after cutting away the central part of the bowtie to leave a skeleton outline - stiff rods normally subtending an angle of 30°. The four-bay, full-wave dipoles are stacked with half-wave spacing between each bay, the spacing between the dipoles and the rear reflector screens normally being between 0.15 and 0.2 wave - at mid-band. To ensure inphase coupling of the bays and a predictable main lobe the feed lines between the outer and inner dipoles are reversed. The reflector screens are usually at least 0.25 wave greater than the bowties all round to give a good front-back ratio figure: some imported versions have the reflector screens bent round at the edges for optimum front-back performance.

The full-wave stacked bowtie system is coupled with balanced line and the nominal output impedance at the centre point is 300Ω (the dipole stack/reflector screen spacing is set to give the desired impedance). Where balanced ribbon feeder is used the downlead connection is at this point. Where coaxial downleads are used - in the UK for example - a balun is used at the centre point to get correct wideband matching to the feeder. Imported W. German/Dutch arrays are normally supplied with details for either type of connection.

A stacked bowtie array works well for DX/weak signal use, the wide vertical capture area producing an even response from a transmitter over its four channels. Aerial riggers often find that a Yagi array at a difficult location gives two good channels, one not so good and the fourth awful: moving the Yagi shuffles the combination about but you inevitably end up with unequal signal levels. The bowtie array will often overcome this problem. The relatively wide forward beamwidth with horizontal polarisation is a problem for DX use, but stacking two arrays in close proximity, coupled using a wideband coupler such as the Triax stripline 720/U, will substantially reduce the beamwidth and increase the power gain by almost 3 dB .

I've used twin Triax grids for some two years at my location, which is pretty poor for reception, and have found that the results are good compared to those achieved with a multi-director Yagi array. The Triax grids work well down to the ATV 435 MHz band and have even given useful reception at $1,300 \mathrm{MHz}$ (ATV again), the arrays still maintaining their directional characteristics!

My thanks to Jaybeam and Hirschmann for information provided. For further reading I suggest the $A R R L$ Antenna Book and the aerial section of the RSGB's VHF/ UHF Manual.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $\mathbf{5 1 . 5 0}$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

SONY KV2062UB

There's bowing at the sides with bent verticals. Adjusting the pincushion amplitude control won't correct the problem without bending at the top and bottom edges. The set seems to have had the fault from new.

If the set is an early one (serial number below 561100) try replacing R808 with a series combination consisting of a $1.8 \mathrm{k} \Omega$ fixed resistor and a $3.3 \mathrm{k} \Omega$ preset. If adjustment of this preset doesn't improve the situation it's likely that T802 has insufficient inductance. Replace it (part no. 1-421-610-00).

NATIONAL TC261G

This set gives a very snowy picture at switch on. If the aerial plug is disconnected then replaced the picture usually returns to normal and stays all right until the set is switched off and on or there's a break in the transmission. We've tried replacing the aerial socket, also the three i.f. amplifier transistors.

The problem could well be due to a fault in the a.g.c. circuit. Try putting a fixed potential of 5 V on the tuner's a.g.c. pin, i.e. across C1003. If normal operation is obtained, check the AN331 "jungle" i.c. (IC301) and $\mathrm{R} 102(68 \mathrm{k} \Omega)$ in the i.f. a.g.c. feed network. If the fault persists the tuner itself is suspect.

GEC HYBRID CTV

This set still has a good tube and I'd like to use it with a VHS VCR. The trouble is jitter on playback and occasional loss of line hold on picture search. Are there any recommended modifications to this chassis for VCR use?

Normally these sets don't require any modification for VCR use. We suggest you check the flywheel line sync filter capacitor C505 ($0.01 \mu \mathrm{~F}$), the discriminator block D500 (FSY41A) and C69 ($150 \mu \mathrm{~F}$) which smooths the HT3 line used by the sync separator transistor, then if necessary try reducing the values of the anti-hunt components R508 ($33 \mathrm{k} \Omega$) and $\mathrm{C} 506(0 \cdot 1 \mu \mathrm{~F})$ by up to fifty per cent. Ensure that any such modification doesn't impair normal off-air reception. It may be worth checking with another VCR to ensure that the one being used is not faulty or in need of a service.

RANK T22 CHASSIS

After replacing the line output transformer and line generator chip and carrying out repairs to the scan board this set is now running nicely except for no colour. The three decoder chips have been replaced and shorting test points TP9/10 to override the colour killer produces unlocked, horizontal colour bars.

The fact that unlocked, floating colour bars are produced when the colour killer is overridden indicates that the reference oscillator is way off lock. This will give the no-colour symptom. Try replacing the $8 \cdot 8 \mathrm{MHz}$ crystal X1 then if necessary check the trimmer VC1.

ITT FT110

The problem with this set is jitter that affects the top of the picture more than the bottom. It's intermittent in that the fault is not present every time the set is used. Switching off and on again sometimes clears the fault.
This could be a nasty one, involving tedious component substitution checks. Start with C719 ($100 \mu \mathrm{~F}$) which smooths the supply to the line oscillator, then check the following items in the flywheel line sync circuit: diodes D701/2, C714 ($0.47 \mu \mathrm{~F}$ electrolytic) and R713/4 (both $2.7 \mathrm{M} \Omega$). If necessary check the sync separator and line oscillator bias resistors R 702 ($3 \cdot 3 \mathrm{M} \Omega$) and R 721 ($1 \mathrm{M} \Omega$) respectively, also for smooth operation of the line hold and horizontal shift potentiometers.

GRUNDIG 8635GB

This set works all right on BBC-1 but the other channels appear to be unstable, with line jitter: there's also very unstable video from a VCR. The contrast seems to be low on the poor channels - I suspect the i.f. amplifier chip. The aerial installation has been checked.
This sort of thing is very often due to an a.g.c. fault. It would be as well to check the a.g.c. smoothing/decoupling capacitors before replacing the chip - indeed replacing all the electrolytics in this area should help.

FINLUX PEACOCK 67990

There's colour only when the tuning is right at one end of the channel, i.e. almost off tune. The colour then obtained is locked and steady but rather weak.

The a.c.c. control sange is not very great with this model. It can be improved by interchanging $\mathrm{R} 03(1.2 \mathrm{k} \Omega)$ in the chrominance module with $\mathrm{R} 01(12 \mathrm{k} \Omega)$ in the colour sync module. Set the a.f.c. by carefully adjusting L1 on the a.f.c. module for correct tuning: leave the tuning door shut when you do this.

ITT VC300 CHASSIS

The problem is field collapse. T12 (BC140/10) in the field output stage was found to be open-circuit but a replacement has failed to cure the fault. The other transistors in the amplifier/driver/output stages have also been tried. The voltages are only slightly different from those quoted in the manual and there are no obvious faults such as print breaks or dry-joints. The flyback diode and the electrolytics in the output stage have also been checked.

QUERY COUPON

Available until 19th March 1986.
One coupon, plus a $£ 1.50$ (inc. VAT)
cheque or postal order, must accompany EACH PROBLEM sent in accordance with the notice above. TELEVISION MARCH 1986

It's difficult to fault find in this d.c. coupled circuit without a scope. Use of a scope to check the waveforms would quickly indicate whether the failure is in the oscillator or amplifier sections of the timebase. As you've checked the most likely culprits in the amplifier/output section it could well be that the oscillator is at fault. If the two transistors here (T6/7) are o.k. check the components in the timing circuit, R77 ($100 \mathrm{k} \Omega$) and C65 $(0.33 \mu \mathrm{~F})$ these have been known to stop the oscillator.

Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

For several years now most GEC sets have been fitted with Hitachi chassis. The reliability of these chassis is excellent - none more so than the NP8CQ, which was the subject of a servicing article in our June 1985 issue. It's rare to find one of these in the workshop, rarer still to have to struggle with it!

The set we had was in fact an Expert Model C2261H, which is basically the GEC C2255H. The symptoms were complete lack of sound and vision: there was no e.h.t. and the tube's heaters were not lighting up - their supply comes from the line output transformer. Since it was a Saturday morning and the workshop radio was tuned to one of those "remember the sixties" pop programmes your scribe's mind went back to the TV sets he used to repair in the days of the Beatles and the Rolling Stones. No i.c.s, no choppers - and no faults like this one! Lashing Radiospares' dropper sections into pre-BEAB sets, diagnosing open-circuit heaters with a flick of the neon screwdriver, cleaning system switches - no-go sets. were easy to sort out then. But we digress.

The e.h.t. could be heard to rustle up at switch on, and some minutes were lost in finding out that the e.h.t. voltage appeared fleetingly at switch on then disappeared, as did the 108 V h.t. supply from the chopper circuit. Some sort of power supply problem then.

Investigation of the power supply revealed that there was virtually no voltage on the 108 V and 54 V lines while a low-pitched squeal was coming from the chopper transformer (T901). An oscilloscope check at the collector of the chopper transistor (Q901) produced a display of very narrow reedle pulses at a low repetition rate. Knowing that the thick-film module CP901 (HM9102) which supplies the error amplifier with reference and feedback voltages can misbehave we fitted a replacement. This didn't have the slightest effect. Cold ohmmeter checks
were carried out on the error amplifier (Q902) and driver (Q903) transistors in circuit. There were no obvious shorts or open-circuits. Each time the set was switched off however the squeal would continue for a second or two after which there would be a brief burst of energy, with a clear line whistle and the momentary appearance of the e.h.t. and first anode voltages, and presumably scanning energy as well.

If every stage in the set seemed to be capable of working, even if only for a second or two at switch on and switch off, there was little point in looking for the sort of excessive-loading faults one might otherwise have suspected. Instead we hooked up a variac and slowly wound up the mains input to the set. This was much more rewarding! At about 32 per cent of the mains supply the set would perk up and produce about 80 V across the h.t. reservoir capacitor C909 on the output side of the chopper transformer. When the tube's heaters had had time to warm up a raster of sorts could be seen, with blurred snow. As the variac was wound up to give 40 per cent of the mains input the raster filled out and a good, locked picture could be tuned in. Further increments of the variac pushed the 108 V h.t. line beyond its normal voltage, and at around 120 V the set shut down, reverting to the lowpitched squeal condition previously described.

The experiment was repeated with a voltmeter connected to the collector of the error amplifier transistor. This showed that the voltage here rose dramatically as the 108 V h.t. line reached and then passed its correct level. At this point the diagnosis was almost complete. What more was required? See next month.

SOLUTION TO TEST CASE 278 - page 260 last month -

Last month's test case was not quite the horror it sounded - in fact it was quite a simple one, the answer being summed up in the last few sentences of the story. You'll recall that the set, a Decca receiver fitted with the 70 series chassis, had an intermittent fault: the supply lines would rise in voltage during the second or two before the chopper transistor blew up.

The main possibility in a circuit of this type, with separate secondary windings on the chopper transformer feeding half-wave rectifiers, is a chopper drive waveform whose duty cycle is incorrect. This implies that the control i.c. is failing to give the required regulating action. In addition the over-voltage facility was inoperative, and the only discrete component likely to have been responsible for this (the voltage sensing zener diode) had been eliminated from the search. Both these factors pointed the finger of suspicion at the TDA2581 chip. And so it was: fitting a replacement restored correct operation on a permanent (we hope!) basis.

We had a similar situation with a Ferguson Model 37340 (TX10 chassis). In this case the chip is a TDA2582 which is presumably a later version: it was blowing chopper transistors as quickly as they could be fitted.

[^2]
MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock Large Quantities of Late Model Thorn TVs. All with first class cabinets.

TELE-TEXT/ULTRASONIC/INFRARED/REMOTES
All at UNBEATABLE PRICES for QUANTITY \& QUALITY
Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT
Some examples of QUALITY working TVs

$$
\begin{aligned}
& \text { THORN } 8800 \text { * } \star £ 25 \\
& \text { THORN } 8800 \text { (remote) } \star * * * £ 30
\end{aligned}
$$

$$
\begin{aligned}
& \text { THORN } 9000 \text { (remote) } \star \text { £ } 35
\end{aligned}
$$

THORN 9600 TELETEXT $\star \star \star$ from $£ 75$ (VARIOUS MODELS)
THORN 9900 * $\star \star \star$ £ 50

(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.

1000s of UNTESTED Colour TVs

I.E. DECCA 30s, GEC 2110, GRUNDIG, TANEERGS, G8s $520 \mathrm{~s}-550 \mathrm{~s}$, Thorn $3500 / 8000 / 8500$, TT, PYE, ETC.
(Many of these untested TVs just switch on)
ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands
$£ 4.95$ Also Video Stands
POA
All prices subject to V.A.T.
Colour TV panels \& tubes available
CALLERS WELCOME
Export Orders Welcome for those Countries using the P.A.L. System
419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER.

TEL: 061-861 8501

V.H.S. VIDEOS

PIANO KEY \& ELECTRONIC SONY BETAMAX VIDEOS WORKERS $£ 68.50$ EACH + V.A.T. MINIMUM LOT OF 5 COLOUR T.V.s WORKERS OR NON-WORKERS

DECCA G.E.C. PHILIPS

FERGUSON DORIC ETC.

PANELS AND VALVES ALSO AVAILABLE SOUTHPARK DISTRIBUTORS Unit 4 Rubastic Road Brent Park Industrial Estate Southall, Middlesex UB2 5LL 01-574 4631 Ext. 28

QENDT COMPONENTS

 63 BISHOPSTEIGNTON, SHOEBURYNESS, ESSEX SS3 8AF. SAME DAY SERVICEAll items subject to availability. No Accounts: No Credit Cards.
Postal Order/Cheque with order Add 15\% VAT, then £1 Postage. Add Postage for Overseas. Callers: To shop at 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10\% handling charge.

SPRING SPECIALS

10 BUSH 2 CHIP £50
10 BUSH T20 £250
10 REDIFFUSION MARK 3 £250
10 REDIFFUSION MARK 1
REVAMP
£120
10 THORN 8000 17" £150

LARGE QUANTITIES OF BETA VIDEOS RING FOR SPECIAL PRICES

ALL + VAT
TELETRADERS
Forde Road, Brunel Industrial Estate,
Newton Abbot, Devon
Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

CentreVision

TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB

OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4

FERGUSON VHS VIDEO $£ 75$

MANY TOP QUALITY REMOTE

 CONTROL WORKING TV's.PHONE FOR LATEST PRICES
PRICES SUBJECT TO VAT OPENING HOURS: MONDAY - FRIDAY 9.00-5.30 SATURDAY 9.00-1.00

		BC33	${ }^{6 p}$	BFis4							p	${ }^{8 Y 296}$	20 p	${ }_{7824} 7818$	$35 p$ 35			LA-4461		TBA560 TBa750		$74 \mathrm{LS} 28$	
AA119	$9 p$	BC338	${ }_{6 p}$	BF185	200	BFY64 BFY90	${ }^{25 p}$	TIP32C	$\begin{aligned} & 280 \\ & 500 \end{aligned}$	$\frac{2 N .132}{2 N}$	${ }_{24}^{28 p}$	$8 Y 298$ $8 Y 299$	26p	7824 7905	$35 p$ $35 p$	$\begin{aligned} & \text { PF1 } 200 \\ & \text { PLL } 36 \end{aligned}$	$\begin{aligned} & 889 \\ & 800 \end{aligned}$	$\begin{aligned} & \text { LA. } 5112 \\ & \text { LM301 } \end{aligned}$	$\begin{gathered} 120 \mathrm{p} \\ 260 \end{gathered}$	TBA750 tBA800	$\begin{aligned} & 1000 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & 74 L S 24 \\ & 74 L \$ 26 \end{aligned}$	$\begin{aligned} & 38 p \\ & 17 p \end{aligned}$
	9p	8C557	6 p	BF194	${ }^{50}$	aryso	${ }_{85}^{45 p}$	${ }_{\text {T1P33 }}$	50 c	2N. 1711	249						$45 p$	LM311	260	tibabios	60p	$\begin{aligned} & \text { 14LS26 } \\ & 74 \mathrm{~L} 527 \end{aligned}$	
AC107 AC126	28p	8Cr32	1500	$8{ }^{8195}$	5 p	${ }^{\text {ELY448 }}$	85p	Tipata	22p	${ }^{2 N} 2102$	${ }_{50}^{24 p}$	${ }_{8 Y}{ }^{\text {Bra }} 10$	15 p	7915	40 p	PL83	320	LM311	350 350	tBa820	75p	${ }^{744528}$	17p ${ }_{17 p}$
${ }_{\text {AC }}{ }^{\text {AC127 }}$		${ }^{8 C Y 33}$	150 p	${ }^{8196}$	${ }^{6 p}$	Br100	$85 p$ 140	TTPAIC	$25 p$	2N. 2160	$300 p$	BY $\times 55 / 350$	30p	7918	40.	PL84	50 p	LM324	45p	tbagzo	${ }^{1000}$	74L530	${ }_{17 p}$
AC128	$15 p$		${ }^{150}$	${ }_{\text {BF }}^{\text {BF } 197}$	$7 \mathrm{7p}$	BR101	$43 p$	TIP42A	22 p	2N. 22184	24p	BY $\times 55 / 600$	30p	7924	40 p	PL95	8409	LM339	${ }_{400}$	т8A950	100 p	74L532	$17 p$
AC128k	${ }^{23 p}$	BCY56	169	${ }_{\text {BF }} 199$	6 p	BR103 BS $\times 20$	37p	${ }_{\text {T1P47 }}^{\text {T1P4 }}$	${ }^{250}$	2N.2219	${ }_{23 p}^{24 p}$	BYK558800 BY 70300	${ }^{32 p}$	${ }^{78105}$	28 p 28 28p	PL500	\$10p	LM348	600	trag90	1000	74LS33	17p
${ }^{\text {ACl }}$ A 14 K	30p	BCr70	169	8F200	160	BSX20	150	${ }_{\text {T1P4 }}^{\text {T1 }}$	40p	2N. 22222	23 p 23 p	BYK705500	${ }_{32 \times}$	78815	28 p		-70p	LM380	100 p	TCA800	200 p	74L537	17p
	300 23 p	BCY7	$18 p$	8F240	150	- ${ }_{\text {BS }} \times 29$	${ }^{189}$	TIP50	${ }^{60 p}$	2N. 2369	$15 p$	$8 Y \times 70800$	36p	78L18	$28 p$	PL519	450	LM381	150 p	TCA940	100p	74L538	17p
AC176	16p	${ }^{\text {BCOH115 }}$	26	${ }_{8}^{\text {BF2 } 255}$	12 p	BT106	90	TIPS1	120	${ }^{2 N} 2484$	$20 p$	BYx71/600	${ }^{30 p}$	78824	$28 p$	PY81	700	LM382	${ }^{130}$	TDA1170	${ }^{100 p}$	74L540	17 p
${ }_{\text {AC }} \mathrm{AC} 176 \mathrm{~K}$	${ }_{10}^{20 p}$	80124P	50 p	BF256	18 p	- ${ }^{\text {BT109 }}$	${ }_{800}^{900}$	${ }_{17 \mathrm{P} 53}$	1200 1200	2N. 2646	20 p	OA49	4	${ }^{796125}$	45 p	PY P 500 A	180 p	LM30971L	100p	TDA2002	${ }_{80 \mathrm{p}}$	74isal	70p
	20	80124	110	8F257	$18 p$	BT119	${ }_{1000}$	TIPSA	140\%	2N. 2905	$20 p$	OA91	4	7915	48p	LINEAR K		LM723	40p	tDaz003	150p	74LS48	pp
AC188	17p	80128 80131	25	¢FF258	180	BT120	100p	TIP105	65p	2N. 2906	18p	OA200	$7{ }^{7}$	LM309\%	1000	AN. 214 P	200p	LM741101L	18p	TDA2020	140 p	74LS5:	17p
AC188k	23p	${ }_{80132}^{80131}$	25p	${ }_{\text {BF262 }}$	185	81100	1100	${ }_{\text {TIP106 }}$	${ }^{65 p}$	${ }^{2 N} 2907$	$18 p$	OA202	70	LM317k	${ }_{1800}^{2200}$	AN-240P	150p	LM741 MET	45p	TDA2030	140 p	74LS54	$17 p$
ACr 18 ACY19	48 p	80135	$20 p$	BF263	25p	8U104	800	TPP110	${ }_{47 p}^{65 p}$	2N. 2926	28p	(N. 90001	$4{ }_{4}$	LM3231	1800 4200	AN-360	1200	$\mathrm{L}_{\text {LM748 }}$	35p	TDA2530	100p	74L573	280
${ }_{\text {AD }} 142$	60%	80136 80137	200	QF270 BF273	180	Bu108	1000	Tip 111	500	2N 3053	18 p	in 4002	$4 p$	LM 723	32p	AN-7114	${ }^{1800}$	IM 14588	33 p	TDA2532	${ }^{100} \mathrm{p}$	741574	$26 p$
AD149	45	${ }_{80}^{80137}$	${ }_{20 p}^{20 p}$	${ }_{\text {EF3\% }}$	15	BU110	1100	TIP112	40 p	2N. 3054	$35 p$ 350	IN. 4003	40		5720,	AN. 7115	160p	LM3900	${ }_{180}$	${ }^{\text {TDA2540 }}$	${ }^{1000 p}$	${ }_{741575}$	32 p 280
${ }_{\text {AD }}^{\text {AD161 }}$	22 p	80139	200	8F324	$25 p$	Bu124	80p	HP116	45p	2N. 3 . 30555	350 500	N-4005	4	78 GWIC	1900	AN-7120	${ }^{1400}$	M. 51515 BL		TDA2593	100p	741578	$34 p$
AF124	$25 p$	BD 140 BD144	${ }_{90}^{200}$	8F336 883	${ }_{200}$	Bu126	70p	TPP17	50 p	2N 3440	58p	IN. 4006	$4{ }^{4}$	79GU1C	${ }^{2150}$	AY3-1350	300p	M-51516	280p	TDA2690	${ }^{100 p}$	74L583	46 p
AF 125	250	${ }^{\text {BDO }} 150$	30p	${ }_{\text {BF338 }}$	200	时204	75	TP120	43 p	${ }_{2 N} \mathbf{2} 3742$	${ }^{85}$	IN. 4007	${ }_{20}{ }^{\text {P\% }}$	79HGKC	670p	AY3-8910	360p	M-51517L MR3712	${ }^{2800}$	UPC.-555 UPC-556	80p	74LS85 $74 \mathrm{LS6}$	500
AF126	25p	80157	$38 p$	${ }^{\text {BF } 535}$	$28 p$	${ }^{\text {BU } 2008}$	75	T1P122	479	2N. 3703	9	IN. 5400	P	VALVES		${ }_{\text {AY }}{ }^{\text {AY }}$ - 369	${ }_{5700}$	M 83730	2800	UPC-575C2		74LS50	39
AF139	22 p	80158 80166	38	8F362 BF36	30p	BU208A	80 p	${ }_{\text {TIP } 125}$	47p	2N 3704	9	IN. 5401	$10 p$	${ }^{\text {DF96 }}$	${ }_{50 p}$	caspo	40p	M83756	${ }_{260}$	UPC.577		741551	750
AF239	22p	80175	30%	${ }_{\text {BF3 }} \mathbf{8} 71$	$17 p$	${ }_{8}^{\text {BU2088 }}$	1009 550	TIP126	56	2N. 3705	9	IN.5403	11 p	OL92	470	CA3046	${ }^{60 p}$	MC1327	70p 20p	UPC-10011		${ }^{74 L S 93}$	${ }^{480}$
${ }_{\text {AL }}$ AL112	80p	8017	309	8F414	$18 p$	${ }^{81}{ }^{\text {B426 }}$	${ }^{35 p}$	TIP14 ${ }^{\text {P }}$	${ }_{90}$	-N. 3707	9	IN. 5404	$11 p$	OY86	50p	${ }_{\text {cas }}^{\text {ca3048 }}$	1900	NE556	40 p	UPCC-1025	230 p	741595	52 p
AS215	1009	${ }_{8}^{88179}$	32 p 45	88420 BF421	18 p	$8 \cup 406$	${ }^{85 p}$	T1P142	90	2N 3708	${ }^{95}$	IN. 54005	120	DY802	45p	Cajobde	70p	SAS560	110 p	UPCC-102	105 90	${ }_{741596}$	63p
${ }_{\text {All }}^{\text {ASZ17 }}$	1100	B0182	609	BF422	$21 p$	BU40	${ }_{75 \%}^{95 p}$	T\|P146	${ }^{650}$	${ }_{2 N} \mathbf{N} .3772$	${ }^{850}$	N-540]	130	EABC80	50p	${ }_{\text {CA }}^{\text {CA3086 }}$	55p	SN76003N	${ }_{140} 110 \mathrm{p}$	UPC-1031h		$74 L 5109$	36p
AY102	180 p	BD183 80187	600	BF423 $8 F 440$	${ }^{15 p}$	BU4070	$95 p$	TPP47	1000	2N.373	100 p	iN. 5408	135	${ }_{\text {EREF }}$	44p	CA30990A		SN76013N	140 p	UPC	1800	74.5112	380
AY106	180p	${ }^{80201}$	33p	BF451	$17 p$	BU408	$85 p$	T1P2955	42 P	2N. 3819	${ }^{298}$	zeners		EBF89	50p	CA31	80p	SN76023N		UPC-1032		741513	32 O
BA145	10p	BD202	38	BF455	14 p	${ }^{\text {BU4409 }}$	95p	TP3055	${ }_{42 \mathrm{p}}$	2N. 3893	110	400 MV		ECC82	400	CA3130S	${ }^{1000}$	SN76100	70	UPC-115	1400	74LS122	$44 p$
HA148	${ }_{\text {Op }}$	80203 PD204	420 420	BF458	19	BU426	120p	$1 \mathrm{TS}_{4}$	$45 p$	2N. 3904	$11 p$	BY288 Ran 2V7 1039 V		ECCAS	${ }_{40 p}$	CA3189E	250p	SN76115	${ }^{70 p}$	UPC-118	$115 p$	74LS123	50,
${ }_{\text {BA }} 157$	12 p	BD222	${ }_{31 p}$	BF461	60p	BU500	110p	${ }_{\text {TiS4 }}$	40 p	2N. 3905	11 p	1.3W Zener		ECCA5	40p	CA3240E	90p	T28000	${ }_{5}^{52 p}$	UPC- 118		7445124	850 360
B8101	13 p	BD225	$31 p$	BF462	${ }^{62 p}$	BU526 BU801	${ }_{95 p}^{80 \%}$	\#S88a	15p	2N. 4031	${ }_{25}{ }^{25}$	82X61 Ran		ECH81	490	HA ${ }^{\text {HA } 1156 \mathrm{~W}}$ HA-197	1150p	TA.7137P	83 p			74LS126	42p
88103	169	${ }^{80232}$	31p	8F469	28p	Bus06	120p	TiS90	15p	2N. 4036	${ }^{25 p}$	2 V 7 to 39 V	120	ECL80	52p	${ }^{\text {HA-1306W }}$	170	TA.7146P	400p	UPC-135	150p	7415132	449
${ }_{8 C 107}^{8 B 2088}$	${ }^{2} 8$	${ }^{\text {BD236 }}$	${ }^{30}$	BF479	30 p	C1060	23p	กS93	20p	2N. 4058	${ }_{76 p}$	TRANSIS	OfS	ECL8	57p	HA-1339	1700	TA. ${ }_{\text {T }}$	2000	744LS00	$1{ }_{170}$	744LS136	35 p 38 p
${ }^{\text {BCCIOB }}$	7 p	$8{ }^{802}$	$21 p$	8 BF	$18 p$	M 32500	100p	VK1010	${ }^{88} \mathrm{p}^{\text {p }}$	2N. 4444	76	2SB324 $2 S 8507$	${ }^{559}$	ECL85	57p $49 p$	HA-1342		TA-7203	1800	74LS01	17 p	7445139	409
- ${ }_{\text {BC115 }}$	${ }^{70 p}$	80238	249 50	BF949 BF595	16p	${ }^{\text {M }} .12501$	110 p	VN.46AF	${ }^{680}$	2N. 5061	20 p	${ }_{2}$ S88754	${ }_{80} 8$	EF80	$31 p$	-	160 p	TA.7204	1100	${ }^{741502}$	17 p	74LS145	83p
BC118	11 p	80245	500	BF596	16 p	MJ2955	55p	VN. 66 AF	100 p	${ }_{\text {2N }}$ 2N 529296	30% $30 p$	${ }^{25 C 495}$	${ }_{969}$	EF85	340	MA-136	${ }^{160 p}$	TA-72050	200p	${ }^{744503}$	17 p	${ }^{7415148}$	110 p
$8 \mathrm{BC140}$	190	8043	${ }^{28 p}$	${ }^{85597}$	100	MJ3000 M 33001	$115 p$ $115 p$	VN. 888 F	${ }^{115 p}$	${ }_{2 N} \mathrm{~N} .6106$	400	${ }^{\text {2SC1060 }}$	2000	${ }_{\text {EFP }}^{\text {EF }} 183$	439	HA-1377 HA-1389	220p	TA-72222AP		741505	17 P	7415151	38 p
${ }_{\text {BCl4 }}$	190	80434	31 3	87615 $8 F 758$	318	MJE29A	${ }^{30 \mathrm{p}}$	9A	110p	2N.6107	400	2SC1096	780	EF184	53p	HA 1392	${ }^{230 p}$		120 p	${ }^{744508}$	17 p	74LS153	${ }^{420}$
${ }_{80}$	19	B0437	${ }^{38 p}$	${ }^{\text {BFFb9 }}$	22 p	MJE30A	30p	ZTX 107 TTP108	11p	${ }_{\text {2N. }}^{\text {2N109 }} 128$	${ }_{50}{ }^{40}$	${ }_{\text {2SC11 }}$	${ }_{1}^{11} 10$	E134	${ }^{1900}$	HA-1397	250p	TA-7310P	270 ${ }^{1009}$	${ }^{\text {74LSSO9 }}$	178	74 7S155	51p
$8 \mathrm{BC147}$	${ }^{6 p}$	80438	36\%	BF870 BF872	22p	M.E.350	${ }_{80}{ }^{2}$	2TX109	$12 p$	$3 \mathrm{~N}, 143$	65p	${ }_{2 S C 1306}$	90p	ELB4	50p	La-1201	885	TAA550	${ }^{16 p}$	$74 \mathrm{S11}$	17p	74LS156	490
- ${ }_{\text {BCC148 }}$	${ }_{6 p}^{6 p}$	BD439 $8 D 440$	${ }_{400}$	${ }_{\text {BF960 }}$	${ }_{38} 3$	MJE520	${ }^{300}$	210212	27 p	Dfodes		${ }_{2 S C 1307}$	100p	EL95	500	La-1352	120p	TBA120S	${ }_{600}^{45}$	74S12	${ }^{178}$	${ }^{744 \text { LS15 }} 7$	p
BC157	8 p	8 B 441	400	BF963	400	MJE2955K	90p	21 $\times 301$	18p	A4119	${ }^{9 p}$	2SC1678 2SC1969	${ }_{1300}^{120}$	ELL500	800 1000	LA.1365	1400 120	T8A396	${ }_{80}$	74514	30p	74 - 160	52 p
BC159 BC182	${ }^{6 p}$	BD442 80533	50p	${ }_{8}^{8 F 9696}$	380 $40 p$	OC28	${ }_{\text {100p }}^{100 p}$	271302	${ }_{24 \mathrm{p}}^{16}$	BY1 BY0 103	42p	2SC2028	${ }_{750}$	EYG6	1010	LA-3350	120	TBA520	100 p	74515	170	${ }^{74 L 5161}$	
BC_{1822}	EP_{p}	BD534	38p	BFR40	25p	OC35	100 p	-18303	${ }_{17 p}^{24}$	${ }^{\text {BY1 } 126}$	${ }^{6 p}$	${ }_{2}^{2 S C 2029}{ }_{2}$	${ }_{120}^{120}$	${ }_{\text {EY888 }}^{\text {EY87 }}$	$31 p$	La.33	115 p 2000	tbas40	100 p	74LS21	17 p	${ }_{74 L 5163}$	50 p
${ }^{\text {BC } 183}$	${ }^{6 p}$	BD535	${ }^{38 p}$	BFR59	29	OC36	${ }^{120 p}$	21×320	29p	${ }_{\text {BY127 }}^{\text {BY' }}$	$8 \mathrm{8p}$	2 SC 2078	120p	EY888	${ }_{45}$	LA-40		PLEASE PHONE US FOR TYPE NOT LISTD HERE AS WE ARE HOLDING 3000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES. Please send 50 p P\&P and VAt at 15%. Gov, Colleges, erc. Orders accepted. Quotations given for large quantities. Please allow 7 davs for delivery. All brandnew Components. All valves are new and boxed					
- ${ }_{\text {BC1 } 184}$	${ }_{6 p}$	-	38p	BFR62 BFR79	25p	${ }_{0} \mathrm{OC} 71$	30p	27x326	290	${ }_{\text {BYY64 }}$	${ }_{40} 8$	LOW PRO-		EZ80	50 p	L4. 4032	140 p						
BC184L	${ }^{6 p}$	${ }^{80538}$	40p	8FRso	52	OC72	500	21×500	13p	BY176	${ }^{85 p}$	SOCkET	p	Ez81	55p	L4-4050	${ }_{1800}^{130 \mathrm{p}}$						
${ }_{8}^{8 C 212}$	${ }_{8 p}{ }^{\text {p }}$	${ }^{\text {BD } 67575}$	40 p		929	OC200	1800	$2{ }^{21} \times 502$	18 p	BY179 BY182	${ }^{35 p}$	14 in	$3 p$	GZ34	1800 1009	LA-4051	160 p 1200						
${ }^{\text {BC213 }}$	${ }_{8 p}$	BD666 BDG77	${ }^{48 p}$	${ }_{8 F}^{8 \times 89}$	200	R20088 R2010日	$100 p$ 100%	$\frac{27 \times 503}{\text { TT } 504}$	18p	${ }_{8 Y} 8184$	32 c	16 pin 18 pin		PCC85	42 p	LA-4101	100p						
BC2134	${ }_{\text {P }}$	${ }^{\text {BD677 }}$	40 p	${ }^{8 F \times 85}$	200	R20108	100p	21 ${ }^{2} \times 5504$	${ }_{24 p}^{25 p}$	BY187 BY196	32p	20pin	14p	PCF20 PCF20	${ }^{58} \times$	LA-41025	140 p						
${ }_{\text {BC2 }}{ }_{\text {BC2 }}$	${ }_{6 p}^{6 p}$	80679	40 p	$8 F \times 87$ $8 F \times 88$	$15 p$ $15 p$	TAG4443	76p		$28 p$	BY2	${ }_{11 p}$	${ }_{22 \mathrm{pin}}$	$13 p$	PCF801	110p	LAA125	210 p	- ANDATA					
${ }_{8 C 237}$	${ }_{7 p}$	80681	$45 p$	8 8 889	600	TIP29	159	2N. 697	22p	BY207	$11 p$		20p	PCFF802	57p	LA-4140	70 p						
BC238	$7 p$	80682	45p	BPF1	3300	tip29a	22p	2N.698	40%	${ }^{8 Y} 20810$	180	40 pin	25p	- PCF8066	1150 1000	LA.4201	1200 1200	9 THE BROADWAY, PRESTON ROAD,					
BC 300 BC 301	${ }_{18 p}^{18 p}$	BD $\times 32$ 80×65	${ }^{100}{ }_{80}$	${ }_{\text {BFY18 }}^{\text {BFY4 }}$	4808	${ }_{\text {TiP30 }}^{\text {TiP29C }}$	280	${ }_{2}^{2 N} \mathbf{2 N} .7$	22p	${ }_{8 Y} 823$	22p	voltage		PCL81	${ }_{54} 100$	LA-4400	190 p						
${ }_{-1}$	$18 p$	${ }^{80} 9$	100	BFY50	14 p	T1P300	300	2N.709	22 p	8 Y 225	120 p	regulat	RS	PC182	$63 p$	L4.4420	140 p		BLE		ESEX	ENG	ND
${ }^{\text {BC303 }}$	180	$8 \mathrm{FF180}$	${ }^{16 p}$	BFY51	$14 p$	${ }_{\text {Tlp314 }}^{\text {TiPaic }}$	240	2N. 914	${ }_{36 p}^{28 p}$	$8 Y 226$ $8 Y 227$	$18 p$ 190	${ }_{7812}^{7805}$	35	${ }^{\text {PCLL }}$	50p	La	Op	Teleph	hone:	01-904	2093	. 904	15/6
8C327 BC 328	6p	BFF181 BF	18p	${ }_{8 \times 56}^{8+Y 5}$	14p	TP32	24p	${ }_{2 N}$ N.930	18 p	${ }_{8 Y 2}{ }^{\text {Bra }}$	${ }_{32 \mathrm{p}}$	7815	335	PCL86	550	La-4460	1700		Tele	No: 93	885	unm	

:JUNCTION 11:A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES

OUR RANGE INCLUDES
G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $£ 60$ plus full range of Thorn remote control including $T / T e x t$

\star DISCOUNT FOR QUANTITY \star

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

[^3]COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.
Open 6 days 9-5.30 (later by appointment)

UNTESTED EX-RENTAL CTVs
 OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES

BEST SOURCE IN U.K.

COLOUR TVs FROM £3

VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT
VIDEO RECORDERS FROM £50: SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON : GRUNDIG ETC.

> CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY
FRANK FORD (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24
DECCA 80/100
GEC STARLINE
HITACHI ITT (full remote)
PHILIPS G8
PHILIPS GII PHILIPS KT3
THORN 9600 including TELETEXT
THORN 8800 THORN 9000 (remote)
(remote)
THORN TX
VHS VIDEO from $\mathbf{£ 8 5 \text { (working) }}$
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone:
COLIN BROOMFIELD,
UNIT 7, STATION STREET, BROMSGROVE, WORCS. (0527) 37037

CREWE WHOLESALE TV 77 COLERIDGE WAY, CREWE Tel: 0270582924

G11S working

$£ 50$

G11 2111 from $£ 11$
Delivered in Bulk
BUSH T2O T22 and 24s ITT CVC 20 Upwards Series 3 DORIC working trom $£ 40$
Remote + Text Available Large range of
THORN from 8800 upwards. Price and availability on request CASH ONLY UNLESS BY PRIOR ARRANGEMENT ALL PRICES + 15% VAT

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the ' 60 's.
WE ARE LOCATED IN
UXBRIDGE
At probably the most accessible
est junction of the M25 is only
about 1 mile away and we are
less than 10 minutes from the
interchanges on the M25/M3,
M25/M4, M25/M40.

W. TREE CASH \& CARRY UNIT 9, STONEBRIDGE MILLS, STONEBRIDGE LANE, LEEDS 12. Tel: 638804

TRADE WAREHOUSE.

NEW YEAR

 SPECIAL OFFERLatest model VHS Video Recorder Akai VS-112EK 4 programme, 14 day timer, infra red remote control, search facilities and freeze frame. Limited supply only
f279 + vat

VIDEOS

FERGUSON 3V22, working	£110
SONY C5, working	885
SONY C5, off pile	¢35
SONY 8080's	£55
SANYO 9300's	55
SONY C6's off pile	£45
Teletext makes include P FERGUSON	E and
NOW IN STO Top grade fully remote	
Mint condition c	
Makes include PHILIP PANASONIC, HITACH SALORA	

FERGUSON 3V22, working £110SONY C5, off pile£35
SONY 8080 'sSONY C6's off pile£45

Teletext makes include PHILIPS, PYE and FERGUSON

NOW IN STOCK

Top grade fully remote T.V.s from $£ 65$

Mint condition cabinets

Makes include PHILIPS, NATIONAL PANASONIC, HITACHI, SONY and SALORA

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working VHS VIDEOS

FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC
NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP
620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" 20" 22" 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext
Discount for Quantities
Complete loads delivered from pick up point

> JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124
$\star \star$ CHANGE OF ADDRESS $\star \star$
all oraers shoul now be sent to our new address shown below

TOP 50 VIDEO SPARES

CASSETTELAMP (FERG/JVCI....
CASSETTE LAMP (PANASDNIC)
CASSEITE LAMP ISHARP, 9300 ET
BELTKIT SONY ISTATEMODEL....... BETKIT SMAPP (STATE MDOEL BELT KIT PANASDNIC (STATE MD EELT KIT SANY 19300 5300 5401 BEIT KIT SANYO (5000) BELT KIT HITACHI (STATE MDDEL) REWIND KIT SDNY C5/C7 REWIND KIT SDNY C6
REEL IDLER (SHARP, 9300, 381,ETC). F/REW IDLER (HITACHIVT-11, ETC) FF/REW IDLER (HITACHIVT8000) FF/REW IDLER (HITACHIVT9300) REEL IDLER (FERG, 3 V29/30) PLAY IDLER (HITACH 9300). FFREWIDLER (NAT/PAN NV370). REEL IDLER (NAT/PAN) STATE MDDE PLAY IDLER (NAT/PAN) STATE MDDEL PLAY CLUTCH (PAN NV7000 PINCH RDLLER (FERG) PINCH RDLLER (SHARP) PINCHRDLLER (PANASONIC)
f1s0 PINCHRDLLER (SANYO) f1.80 PINCH RDLLER (SDNY C5/C7) ©2.15 VIDED HEAD DRUM (FERG) 650 VIDED HEAD DRUM (PANASDNIC) 650 VIDED HEAD DRUM (PANNV36G) 550 VIDED HEAD DISC (SDNYC5ICSIC) 550 VIDED HEAD DISC (SDNY SI 8000 c1. 99 VIDED HEAD DISC (SANYD) 555 VIDED HEAD (SHARP 7300 c6.95 VIDED HEAD ISHARP 9300 , 381 EIC C695 VIDEE HEAD (THAR 330,381 ETC) £3.30 VIDED HEAD (TDSHIBA 8600). f6.50 REEL DRIVE PULLE (SANYD 5000) f4.72 REEL MDTDR (SANYD 5000 ETC). f4.75 REEL MDTDR (SHARP 9300, 381, ETC) E3.45 CAPSTAN MDTDR (SDNY C5/C7) £6.50 AC.E. HEAD (SDNY C5/C7) E450 CAPSTAN MDTDR FERG/JVC $3 V 22 E I C$ E3.45 DRUM MDTDR FERG/JVC $3 V 22 E T C)$ f4.72 TAKE-UP CLUTCH(FERG/JVC) 55.50 CLUTCH ASSY (FERG 3V29/30) E5.5s AUDID RELAY (SDNY C5/C7) 67.90 HEAD CLEANING STICKS E5.95 HEADCLEANING FLUID

TELEVIDEO SERVICES

 NOTTINGHAM (0602) 226070 145 STATION RD, BEESTON, NOTTINGHAM.Please add 50p post \& packing and then add 15% VAT to the total. ALL STOCK TTEMS ARE DESPATCHED BY RETURN OF POST
BOLTEN LTD45/46 London House,
271, King Street, London W6 9LZTel: 01-748 4137 (2 lines)Telex: 262421 BOLTEN G
Video Heads
Ferguson/JVC (Universal) $£ 29.50$
National Panasonic (Universal) $£ 29.50$
Sony C5/C7/T7 $f 29.50$
Toshiba 5470 $£ 29.50$
National Panasonic 370/380 $£ 32.95$
Hitachi $£ 32.95$
Sanyo £44.95
Belt Kits (Most Models) $£ 3.99$
Pinch Wheels (Various Models) f5. 95
Remote Controls
Grundig/Philips) £16.95
Video Cable Kit (any model to any model) £7.50
Cutters/Minipliers/Snipper/Microshear/Wire strippers£4.95
Solder Pumps Midsize £4.95
Solder Pumps Large f5. 95
Please add 15\% VAT plus $£ 2.00 \rho \& p$ per order.Delivery within 7 days.

JUST OPENED

FOR
South Yorkshire/Derbyshire Dealers
Come and see our range of Colour TVs from $£ 6$ BARGAINS GALORE
South Yorks Trade Supply, Anderson House, Callywhite Lane, Dronfield, Sheffield, S18 6XR.

PHONE 0246411325
Chesterfield

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
MIT Price E49 inc P\&P and VAT. Available from Luton only. "Depends on depth and area to be polished. TV TUBES FREE DELVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON
Quality, High Temperature Reprocessing

$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	DELTA i.e. A51-110X A56-120X A66-120X A67-120X	DELTA SPECLALS i.e. A47-32X 470CTB22 S10GLB22 A56-410X A66-410X A67-150X A67-200X	IN LINE \& P1L i.e. 470ESB22 470ERB22 A51-161X A51-570X 510 JKB22 560AKB22 560 BYB 22 A56-510X A66-510X	HITACHI IN LINE etc. AXT37-001 AXT51-001 AXT56-001 $510 \mathrm{VLB22}$ 510VSB22 $560 \mathrm{DZB22}$ $560 \mathrm{EGB22}$ A56-540X A56-711X A66-540X A67-711X	SONY TRINITRON 330AB22 400EFB22 470BEB22 470DLB22 $5200 \mathrm{KBR22}$ 520 SB 22 $570 E B 22$ 570HB22 680DB22
UP TO 20"	£30	£32	£40	£44	£58
UP TO 22'	£34	£36	£42	£46	£64
UP TO 26"	£36	£38	£44	£48	E70

All tubes sold with 1 or 2 vear guarantee, with optional extension by extra 2 vears. Prices shown are for 12 months guarantee. All tubes exchange glass required.
Your gocd, working tubes with scratches or small chips, can be POLSHED with our purpose built polishing equipment. From $£ 7$ per tube.
Delivery charge on colour tubes: Within 40 miles of Luton Nationwide delivery available, charges on apolication Nationwide delivery available, charges on application.
add 15% VAT to all prices. Callers welcome. Please phone first

Open Mon-fri 8am-6pm, Sat 9am-1pm. Tel. 0582-410787.
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
H. K. Television, London, E.2. Tel. 01-729 1133.

West One Distributors Ltd., Gt. Missenden, Buckinghamshire. Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901
Daventry Rentals, Daventry, Northants. Tel. 0327277436
Rea \& Holland, Ipswich, Suffolk. Tel. 0473827562
WANTED A56/A66-510X/540X and Sony. Old glass for cash

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street, Wolverhampton WV2 4LJ. Phone: (0902) 773122.

Satellite Receiving Systems

1 m and 2 m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available.
Demonstration by appointment.

L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.

Telephone: Bridgwater (0278) 421719

HOCKLEY DISCOUNT TELEVISIONS

We give "The Best Deals" that's why we have the cleanest reputation in the trade!!!

Prices start From $£ 6.00$ Working sets From $£ 12.00$

OR

Lorry loads delivered from SOURCE

We have huge stocks of TV's + V.H.S. Videos to offer, including:-

Philips G8's, G11's
Thorn 8000, TX9,
Pye Solid State 9000,9600, TX10, Pye Chelsea G.E.C. Solid StateI.T.T. CVC30, CVC45, Rediffusion Mkl, MkIII

ALSO

VIDEO + T.V. STANDS AVAILABLE!

DON'T HESITATE TO CONTACT US BECAUSE YOU WILL NEVER LOOSE!!

MIDLANDS BRANCH:-
Hockley Discount Televisions,
94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551-2233 - Ask for Jazz

NORTH-EAST BRANCH:-
Northern TV Distributors, Unit 2, Pert Court, 11th Ave, Team Valley, Gateshead, Tyne \& Wear. 091-487-5399 - Ask for Joe

OSCILLOSCOPES

TELEQUIPMENT D67 Dual Trace 50 MHz Delay
SWeep with manual. COSSOR CDU150. Dual Trace 35 MHz Solid State. Portable $8 \times 10 \mathrm{~cm}$ display. With Manual
ADVANCE 0 S 250 TV . Dual Trace 10 MHz With ADVANCE OS250TV. Dual Trace 10MHz With
Manual S.E. LABS SM111. Dual Trace 18 MHz Solid State. Portable AC or External DC operation $8 \times 10 \mathrm{~cm}$ TELEQUUPMENT D43. Dual Trace 15 MHz . With Manual. TELEOUIPMENT S54A. Single Trace 10MHz. Solid State. With Manual TELEQUIPMENT S43 Single Trace 25MHz With

PHILIPS DIGITAL MULTIMETERS
4 digit, auto ranging. Compiete with batteries and
TYPE PM2517X (LCD)
(patp 575
MULTIMETERS
AVO 8 Mk 4 Complete with batteries \& leads. $£ 50$ AVO 8 Mk 2 Complete with batteries \& leads. . $£ 50$ AVO TEST SET No 1 (Military version of AVO 8) Complete with batteries, leads \& Carrying Case carrying case
AVO Model 73 Pocket Multo (A) $£ 40$ ranges. Complete with Multumeter (Analogue) 30 AVO 72 - Simitar to above but no AC current range. With
ELEMIC Muttertes \& leads
$£ 10$
mithers. Un-used. Supplied leads \& batteries.
EBM 20-37ranges
SUPER $50-57$ ranges (incl. Carrying Case $£ 20$ Other models available.
PROFESSIONAL $g^{\prime \prime}$ GREEN SCREEN MONITORS made by KGM for REUTERS Gives quality 80 column $\times 24$ line display. Composite video in. DISK DRIVE PSU.240V 1N; 5V 1.6A \& 12V 1.5A out. Size: W125mm, H75mm, D180mm. Cased Un-used. Only $£ 10.00$ each (P\&P £2)
Owerty keyboard (as in Lynx Micro). Push to make. Cased£5 each (P\&P£2) Various $51 / a^{\prime \prime}$ Floppy Disk Drives and Stepping Motors Available.

LaBGEAR COLOURMATCH PAITERN GENERAIOR Type CM6038-DB Crosshatch/Grey Scale/Blank Ras-
ter. Mains or Battery.

ONIY $£ 12$ each (P\&P $\%$) ADVANCE AM FM SIGNAL GENERATOR Type SG63A 7.5-230MH2 $£ 75$ ADVANCE AM SIGNAL GENERATOR SG62B. 150 KHz ADVANCE AM SIGNAL GENERATOR TyPE 62 . | $150 \mathrm{KHz}-220 \mathrm{MHZ}$ | |
| :--- | :--- |
| METRIXWOBBULATOR Type 210.5-220MHZ | $£ 20$ |
| 30 | |

 PHILLIPS WOBBULATOR GMEB
880 MHz
$5-220 \mathrm{MHz} \& 440-$
$£ 100$ LABGEAR COLOUR BAR GENERATOR CM6037 (P\&P V2) VIDEO CIRCUITS V 31 CRT ANALYSERIBOOSTER (Scratched Case)
WAYNE KERR COMPONENT BRIDGE B521 (CT375) WAYNE KERR COMPONENT BRIDGE B521 (CT375)
$100 \mathrm{uH}-500 \mathrm{KH}$: IDF-5F: 1 milliohm-1000Mohnm $£ 355$
 836 . $20 \mathrm{~Hz}-1500 \mathrm{MHz}$. AC'OC $/ \mathrm{Ohms}$ AC $300 \mathrm{mV}-300 \mathrm{~V}$ MARCON VALVE VOLTMETER TF $260010 \mathrm{~Hz}-10 \mathrm{MHz}$ 1 mV -300V FSD
Handled GOU TRANSISTOR TESTER TT169 Handied. GONO GO for In-situ Testing. Complete with batteries, , eads a instructions NEW EQUIPMENT
HAMEG OSCILLOSCOPE 605 Dual Trace 60 MHz . Delay Sweep. Component Tester $£ 515$ HAMEG OSCILLOSCOPE 203.5. Dual Trace 20 MHz . All Other Models Available. BLACK STAR COUNTER TIMERS

P\&P ${ }^{5}$ APOLLO $10-100 \mathrm{MHz}$ Ratio/Period/Time Interval APOLLO 100-100MHz (AS above - with more BLACK STAR FREQUENCY COUNTERS P\&P ${ }^{2} 4$ Meteor $100-100 \mathrm{MHz}$ Meteor $1000-16 \mathrm{~Hz}$
BLACK STAR JUPITOR 500 FUNCTION GENER $£ 175$ Sine/Square/Triangle 500 FUNCTION GENERATOR. HUNG CHANG DMM 6010: $31 / 2$ digit. Hand held 28 ranges including 10 Amp ACDC. Complete with tat teries \& leads. P\&P£4............................... $\mathbf{5 3 . 5 0}$ OSCILLOS
P\&PE2
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordening. CARRIAGE all units $£ 12$. VAT to be added to Total of Goods \& Carnage.

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041

QUALITY COLOUR T.V./AUDIO

Large quantities now available of new BRAND NAMED STOCKS

Various Stacking/Hi-Fi's A \& B grade . $\mathbf{£ 5 5 . 0 0}$ Portables $14^{\prime \prime}$ \& $16^{\prime \prime}$ Text.......................P.O.A. 20" Text, R/C, Basic.............................P.P.A. 22" Stereo Text-R/C-Basic...............P.O.A. 26" Text, R/C..P.O.A.
Videos From £120.00
3V26 Power Supply£20.00
Radios etc. ..P.O.A.
(P.O.A. price on application)

```
NEW STOCK AT SECOND HAND PRICES!!!!!!!!!!!!!!!!
COLOURTRADE
221 Bridge Street West, Hockley, Birmingham B19.
Tel: 021-359 0449
```

The World P+P 1 PAN 2 PANELS O £3.00	$\begin{aligned} & 50 \\ & \text { RE } \\ & 52 \end{aligned}$					5ER.	01		WORKING PANELS GALORE!	
	If	TUNER	DECODER	G8/G9 DECODER COMBINED	$\begin{aligned} & \text { UNE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	8.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00		4.00		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

APOLLO MANCHESTER

FAST MAIL ORDER GB 3-4 DAYS ALL AREAS PLEASE PHONE FOR COST FREE LOCAL DELVERY SAME DAY FITTNG SERVICE £ZO
2 YR GUARANTEE - Quantity discounts - PIL Glass bought
A47342/343X-470 BCB22/CTB22/BGB22/DHB22
470-ESB22/EFB22/ERB22/FIB22
A51-220X/192X
A51-161X/162/163/168.
510 JKB22/JEB22/JDB22/JGB22/ALB22/GUB22
510-VLB22(C555) DTB22/001/RFB22/RCB22/SFB22
A51-570X/580/001/210/241.
A56-120X/123/140/410...
560-DZB22(E53)/HB22/AKB22/1B22/AWB22
560-E1B22/DTB22/CSB22/DMB22/DNB22
A56-611X/615X
A66-120X/A67-120X/140/150/200/410
20AX-A56-500X/510X-A66-500X/510X
30AX-A56-540X-A66-540X

I your tube type is not in stock we can arrange collection - rebuilding + redeliver PLEASE PHONE BĖFORE CALLING
061-799 0854. 24 hour answering service
43 Clarke Crescent, Little Hulton, Worsley, Nr Manchester M28 6XL

T.V.'s FOR EXPORT

PHILIPS G8 and G9, DECCA, BUSH and FERGUSON
All sets with VHF/UHF Tuners and suitable for countries using the PAL system. We also supply the home market.

TELE SPARES LTD.

Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.
EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES
ETC. ETC. ALL SPARES READILY AVAILABLE

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within sever days, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided
(1) You have not received the goods or had your money returned. and

You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required. ith the above procedure as soon as possible atter the Advertiser has been declared bankrupt or
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Clessified advertisements are excluded.

N.G.T. COLOUR TUBES

First Independent Rebuilder with
B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX
A56 610/67 610 series, A51 570/580/590X
A51 161X, Sony types etc.

* Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE25
Phone: 01-771 3535.
25 years experience in television tube rebuilding.

SETS \& COMPONENTS

OCHREMILL TECHNICAL the GRUNDIG SPARES PEOPLE. Fast helpful service, thousands genuine items stocked, sensible prices, also manuals TELEOUIPMENT Oscilloscopes, assorted test gear 0785814643.

THORN, GEC, DECCA's stripped for spares. Panels, Tuners from $£ 2.50$. Phone for prices: WEILINGTONS. Darfford 0322337212.

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC. Sharp, fully refurbished. PEARSON TEL.EVISION, 1484863489 . Delivery arranged.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wistech. Cambs. 0945584188 . Immediate settlement.

15 UNUSED RE-GUNNED Delta colour tubes plus two Sony tubes for sale together at $£ 385$ inc. Also some tested ex-equipment Delta and Mono tubes available separately. Tel. Watford 4559).

PHILIPS GII AND BUSH T20 regular supplies. For prices phone 0I-845-2036.

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD
 LEL. 01-258 0328

ALL VHS PARTS AVAILABLE. EXAMPLES
VIDEO HEADS
JVC, Ferguson, Akai, Saba, Telefunken Sony (Betamax) .
National Panasonic
All Hitachi heads from 845.00 545.00

INTEGRATED CIRCUITS
UPC 1365C
UPD 553 C
UPD 555C
c6.30
UPD 552 C
HA 17111
ع10.20
£10.50
All makes of idlers, pressure roliers, clutch assembly and motors in stock
Many other parts available. Send SAE for list. ALL PRICES INCLUSIVE OF VAT

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40p per word

FOR THE BEST QUALITY AND BEST PRICES IN BIRMINGHAM. TESTED AND UNTESTED TV's AND VIDEO's RING - 021-772 2733 WILTSGROVE LIMITED
 (Next Door to UNGLE'S DISCOUNT STORE) 128-130 Ladypool Road, Sparkbrook, Birmingham B12 8JA. CASH ONLY

EXPRESS PANELS

A highly skilled staff using specialized service iigs and some of the most up to date tecthinques and test equipment available means we can save you time, money and heartache. EXAMPLES FROM OUA RANGE (exch basis) Bush T20/22/26 Sony 1820/2000/220 power supply power supply $£ 14.75$ G11 £14.60 £16.75 GEC 20AX/30A power supply

All prices subject to VAT, P\&P FREE (if orders over $£ 10.00$) Panels also available for outright sate, odiscount for quantities (any mix) all panels guaranteed 3 months, are chemically cleaned and pint re lacquered, and have no damaged print etc, so they not only work they look good too Send S. A. to NEW CATALOGUE or ring with your requirements.

TRADE SERVICE AVAILABLE for VCR's.
Callers by appointment only. Telephone orders accepted using Access \& Visa.
$021-3593753$
ARGO SERVICES (B.HAM) 53 Lawley St, B.Ham B4 7XH

SERUICE PGGES
(minimum 12 words), box number 70p extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

NDEPENDENT TELEVISION AND VIDEO COMPANY $-\mathrm{O}$ LARGE STOCKS TO CLEAR EVERY WEEK
 COMPETITIVE PRICES

EXAMPLES:
B\&W 20"-24"
COLOUR:
Bush 1-2 I.C.
From $£ 1.00$
$£ 4.00$
Philips 520-550, 26" £6.00
Thorn 3500
GEC-Decca-ITT

Philips 550 22"
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime}$
GEC $20^{\prime \prime}-22^{\prime \prime} 26^{\prime \prime}$
Thorn 8800-9000-9800

WOODSDALE COMPONENTS

 RANK BUSH MURPHY
TRANSFORMERS

Line Ouput
2718 (T703A, T706A)
New (Complete)
$£ 19.00$
Less Focus Module and
Rectifier
£10.50
T20, T22 (T705A)
£11.00
T26 (T705B) £11.00
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\quad \mathbf{£ 6 . 0 0}$
Switch Mode
T114A
£6.00
Genuine RBM Units
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote
Pinner, Middlesex. HA5-2QT
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment anly.

Many Other Modern Sets and VHS Videos
PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from £40
Phone Frank: Nottingham (0602) 864627

Unit 3

Meadow Trading Estate, Meadow Lane, Nottingham NG2 3HO.
£10.00
£10.00
£12.00
£15.00

LOOK HEAR TV

THE BEST TRADE WAREHOUSE IN THE EAST MIDLANDS FOR QUALITY TV'S AND VIDEOS * HUGE SELECTION COLOUR TV'S

- ALL MAKES, SUBJECT TO AVAILABILITY
- VHS VIDEOS, ANY QUANTIT
- MOST STOCK CLEAN, TESTED AND WORKING - OFF THE PILE ALSO AVAILABLE
- MO MIMIMUM QUANTTTY
- PANEL REPAIR SERVICE AVAILABLE, PLEASE ENQUIRE

OPEN: Mon-Sat 10-5.30, Sunday 10-12.30 CASH ONLY PLEASE
Unit 4, King Street Buildings, King Street, Enderby, Leicester. Only 5 mins from Junction 21, M1 Ring ADRIAN BALMER on LEICESTER (0533) 867530
hral

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
Mrat Marketing Ltd.
Breedón Cross
Storage,
Phone 0.021-471 30:3

Storage
Telex 35540-6
Dirming Selly Oak
Ask for Les
Birmingham 829 6A0

WIZARD DISTRIBUTORS MANCHESTER
 TV \& VIDEO SPARES

We stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY, DECCA + ITT
FIDELITY SPARES MAIN DISTRIBUTOR
Did you know we also stock

FUSES

TUBES
AEROSOLS
AERISTORS
CAPACITORS
VALVES
HANDSETS
AND MUCH MOR
Counter open Monday-Friday Sam-4.45pm
TRADE ONLY
EMPRESS STREET WORKS,
EMPRESS STREET,
MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060 .

STARLITE ELECTRONICS

WILLOWS FARM, A 13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238. EX RENTAL TVs

UNTESTED FROM £15.00

 WORKING TVs $£ 20.00$ RE-GUNNING TUBES2 year guarantee
Most types available including Sony

* STAR BUYS ON QUANTITY Finterfiechise orwine WHEN YOU SPEND OVER ON OUR SUPER MARCH DEALS ALL PRODUCTS CAN'T BE BAD £250

Philips G8s £7, Clearance Colours £5, G11s, G8s, 550-520 GEC, 2002, 2242, 2202, 2220. Finelines, Decca BDFDS 80/88/ 100, Grundig, Tandberg, Korting, from ع7. ITT CVC 20/23/30 Remotes. Thorn 9000, 9200, 8800, 9600 TX older types from E8. Panasonic, Hltachi, Mitsubishi, Sony. Small Screen Colours from $£ 8 \times 17^{\prime \prime} \& 18^{\prime \prime}$ Screens, Sony, Panasonic, Pye, Decca, Philips, Hitachi Videos, as available, from £8, VHS, Beta, 2020. Slot Meters from £2, Panels, all types call \& go through them, from 50p, Stands from £2, legs 50p, Valves from 10p, sort through, many new \& boxed.

GENERAL FACTORS

CASH ONLY, NO CHEQUES ONLY $21 / 2$ MILES FROM (A1M) FOR M18-M1

UNION ST., DONCASTER

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame Scan Supply

			20	18	16
Bush T20	X	12	16	15	12

Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months. T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

EAST ANGLIA SUPPLIES

For your fully senviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.
G11s from $\mathbf{£ 7 0}+$ VAT KT3s from $£ 85$ + VAT K30s from $£ 95+$ VAT ITTs from $\mathbf{E 5 0}+$ VAT Decca from $\mathrm{E5} 0+$ VAT T20s from $\mathrm{E50}+\mathrm{VAT}$ 9000 s from $£ 35+$ VAT

VHS Videos.
Ferg $3 \mathrm{~V} 29,3 \mathrm{~V} 30$
NatPan NV2000, NV2010

Contact John, Dave or Steve for personal triendly attention on
022369215 or 035361482

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock.
COLCAR T.V. SERMICES (formerly LAVITE LTD.),
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Callers by appointment only.

NORMAN ENTERPRISES LTD

Weston-Super-Mare, Avon.
Tel: 413991/418545
Colour TVs fully engineered
with a special care on tubes
Hitachi 217 Remote Control...... £85
Thorne 9000 Remote Control $£ 42.50$
Pye G11 . $£ 47.50$
Rank T20£42.50
Pye Chelsea 6 Button......£27.50
Pye 725 $£ 37.50$
Pye 721 $£ 27.50$
Thorne 9600 $£ 45$
Thorne 9200 442.50
Bush T20 Remote Control $£ 49.50$
Bush T24 £55.50
All above prices include hand sets if available Ready for sale.
Phone now, limited number each month. All the above off the pile, less a 3rd

물 Euro Am Ltd.

Philips G11; Bush T20, T22, T26; Decca 80/100; ITT CVC20, CVC30; Pye 725 etc.

Working sets from $£ \mathbf{2 0}$ Non-working from $£ 12$
Ring (0827) 52491
Ask for Chris or Ron

HALTON TV TRADE DISPOSAL
Wide range of TVs available.
Working and non-working. TRADE ONLY
(We have NO retail outiet)

AT LAST!

 QUALITY USED TELEVISIONS \& VIDEOSEXCELLENT CABINETS \& GOOD WORKERS
TELETEXT \& REMOTES (BOTH WITH HANDSETS)
THORN TX 9600, 9000, 9200, 8800 \& 8000 BUSH T20 \& 2 TYPE PHILIPS G11

WORKING VHS VIDEOS FROM £90

MONITEC
The Heathlands, Kidderminster Rcad, Bewdley, Worcs. Tel. 0299 400233/400933

BOURNEMOUTH
 LARGE STOCKS OF WORKING NON-WORKING SETS, MOST MAKES AND SIZES.
 FAIR PRICES - TRADE ONLY
 WAREHOUSE OPEN:
 Mon-Fri 9-1, 2-5; Sat 9-1
 HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

PLEASE

MENTION
TELEVISION
WHEN
REPLYING
TO
advertisements

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE
 SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{Z 2 0 . 0 0}$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY £15.00 each
Philips G8 (520) $22^{\prime \prime} \& 26^{\prime \prime}$ ONLY $£ 20.00$ each
Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn.
1st COME 1st SERVED
ALL SETS TESTED \& WORKING
CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston
(0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
£1.25 per panel plus post \& packing

PRECISION VISION LTD.

For:

\star LATE MODEL USED COLOUR TVs

* REFURBISHED TO HIGH STANDARDS
* BECOME ONE OF OUR REGULAR

HIGHLY SATISFIED CUSTOMERS
\star EARLY COLOUR TVs FROM E5
Unit 10, Chiltern Business Centre,
Garsington Road, Cowley, Oxford (next to B.L. Works).
Phone 0865711966

VIDEO

V.H.S. VIDEO'S 100's IN STOCK

Famous brands:
JVC • PANASONIC • FERGUSON Also stockists of Grade B Units, Microwaves, Hi-Fi, Radio/Cassettes etc. ctc.

CONTACT MICK ON:

$$
021-7721591
$$

VHS VIDEOS
WORKING
NON-WORKING.......................... $£ 75$
PO VAT
PORTLAND VIDEO
O1-843 9942
SOUTHALL, WEST LONDON

SITS VACANT

MANAGER/ESS REQUIRED for wholesale \& retail exrental T.V. \& Video business. Applicant must be skilled T.V. engineer with flair for selling. Excellent opportunity for the right person. (London area). Write Box No. 206.

MULTI-OUTLET/MULTI-CHANNEL Installations. Large or small distribution systems. Equipment and/or consultancy by post or on site. Catalogue (full of trade know-how and trade equipment) $£ 1$ (refundable). WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebnng, Rotherham. (07(9)) 813419.

Euro-Sat

 Parabolic Dish Antennas (Parent compeny est in TV communications since 1989) SATELLTE TVRO ANTENNAS TOP QUALTY SOUD GLASSFBRE DISH ANTENNAS TRADE PRICES M. DIA 11-12-4 GHZ BANDS 1.2M. DIA 11-12-4 GHZ BANDS 2M. DIA. 11-12-4 GHZ BANDS3M. DIA $11-12-4$ GHZ BANDS
Trade \& Export Enquiries Welcome
Pricas do not include delivery
Euro-Sat
107 Cross Street, Sale, Cheshire, England. Tel. 061-437 2631 061-881 4249

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost, full band satellite TV system.
Agents Distributors required Write or telephone for details or call in at our factory showroom
NETWORK SATELLITE SYSTEMS
Unit 7-8, Newburnbridge Ind. Estate,
Hartlepool, Cleveland
Tel. 042974239

AERIAL BOOSTERS

B45-UHF TV next to the set fitting. Gain 10dbs (trebles gain), works off PP3 type battery or 8 V 10101 V working. Price complete (excluding battery) $\mathbf{E 5 . 0 0}$. Video Transmitter. This will transmit good quality pictures and sound m
We also make aerial boosters for VHF/FM radio $£ 7.70$ and VHF television, prices $£ 7.70$ \& 88.70 . p\&p 50 p per order.

ELECTRONIC MALORDER,
62 Bridge Street, Ramsbottom, Lancashire, BLO 9AGT.
Tel: Ramsbottom (070 682) 3036.
S.A.E. leaflets. AccessNisa Welcome.

FOR SALE

PHILIPS TEST EQUIPMENT: PM 3214 Dual trace with delayed timebase OSCILLOSCOPE. Various probes etc. PM5519 Colour TV. Pattern generator. PM 5107 L.F. Generator $10 \mathrm{MHz}-100 \mathrm{MHz}$. PM 2554 AC Millivoltmeter $2 \mathrm{~Hz}-12 \mathrm{MHz}$ PM 2517E Digital Multimeter + various attachments. ALSO spares \& service manuals, mainly Philips/Pye video heads for VR2220, Philips/Pye portable VCR V20(0) system. For further details Te lephone 074632406.

TEKTRONIX SCOPE 533A Manual and probes, perfect order. Offers. Phone 0702522929.

Sabaco TRY US YOU'LL LIKE US TOP QUALITY TV'S \& VIDEO'S AT ROCK BOTTOM PRICES VAN LOAD DIRECT FROM SOURCES ALL SETS \& VIDEO'S OFF THE PILE (Mostly switch-ons)
 Largest selection of 4000/8800/9000/9200/ 9600/Ferg TX9/TX10 Stereo Teletext Colour Portables
 Mainly teletext and remote with handset. Also Pye KT30/G11/T20/T26/Hitachi/ Philips 550/Grundig \& many more. brand new sets at low prices

VHS VIDEO'S

Good Working Order from 3V22, 3V23, 3V29 Portable Video's etc.
Also a selection of brand new video \& E180 video tapes OPENING HOURS:
MONDAY TO SATURDAY 9am to 5.30pm SUNDAY 10am to 4 pm
CASH ONLY All goods subject to VAT \& availability PHONE NOW FOR UP TO DATE COMPUTERISED PRICES AND DELIVERY DAYS, BE HERE WHEN LORRY ARRIVES FOR FIRST CHOICE - PHONE US NOW ON:
${ }^{3}(0602) 397555$

Head Office:
Sabaco
Saba House, 46A Derby Road, Sandiacre, Nottingham (0602) 397555

Sabaco
75 Robertson Street, Glasgow
(041) 221-2146

)

DEVONICS

Quality Rebuilt Tubes

 2 YEAR WARRANTY470 ERB22
510 KCB22
A51-161/500/510/
570/580/590X
560 AKB/DZB/TB22
A56-500/510X
A56-540X A66-500/510X
A66-540X
670 XB22
Deltas from $£ 30$
Plus carriage and VAT
2A BARTON HILL ROAD. TORQUAY TQ2 8 JH 0803-33035

£43
£45
$£ 45$
$£ 45$ £53
$£ 53$

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only £3.995. Tel. 0582-410787.

WANTED

GOOD 320 BTB TUBE WANTED. Phone Windsor 0753860889.

IMMEDIATE CASH PAYMENT for working televisions, videos, microwave cookers etc. $01-7787236$ 24 hr's.

WANTED TELEVISION 1963-82 UHF parts for Regentone 193-6RGD 622-5 Defiant 9A.51-56U etc. Tel. 050846364

WANTED VIDEO'S, Portables, colour TV eic. Any quantity. Immediate collection, cash paid. Tel. Stoke on Trent 416401

REPAIR SERVICE

BRIITOL - SOUTH WEST SOUTH WALES

Scratched and chipped CRTs can be Re-polished.
Tel: 0454778635 for details

PRINTED PANEL REPAIR SERVICE

Printed panels and remote control handsets repaired. Most makes and models serviced.

RING 0934418545
for Price List or Quotation.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SERVICE SHEETS

TECHNICAL INFO SERVICE - 76 Church St - Larkhall - Lanarkshire ML9 1HE World's sole publisher of Comprehensive T.V. Repair Manuals. Largest known stocks of Service Manuals \& Sheets from 1935 to latest for all kinds of equipment, espec. T.V. \& Video.
Save time \& expense - our big catalogues of Service Manuals
Any published Service Sheet $£ 2.50$ \& l.s.a.e. except CTV/Music Centres - $£ 3.50$ \& I.s.a.e.
Service Manuals from $\mathbf{£ 4 . 5 0}$ to $£ 39$ - e.g. Thorn $8000 / 8004 / 8500 / 8600$ only $£ 9.50$.
T.V. Repair Manuals $£ 8.50$ each. Special offers The $5 \mathrm{McCourt} \mathbf{£ 4 0}$. The 11 Tunbridge $£ 88$.

Video Repair Manuals $\mathbf{£ 4 . 5 0}$ per Chassis or all 10 for $\mathbf{£ 2 5}$.
Comprehensive Practical T.V. Repair Manual $\mathbf{£ 9 . 5 0}$. The Practical Radio Servicing \& Repair Manual $\mathbf{£ 9 . 5 0}$ UNIOUE COLLECTIONS OF CIRCUITS \& LAYOUTS
British CTV from hybrid to modern in 3 giant binders for only $£ 55$. Also 2 giant binders packed full for $£ 35$ pain. NEW RELEASE:- Offered to 'TELEVISION' TV. Domestuc Equipment.
Giant collection of modern portable British CTV circuits and layouts.
The Integrated British CTV Repair System - 2 giant binders full of circuits \& layouts with 6 big Repair Manuals Covers 1968 to the '80s. Plus! £140.
The Integrated TV Repair System - 16 big Repair Manuals/8 giant binders plus service data and other manuals. Covers 1968-1985. Priced separately over $£ 300$. Our Offer for $£ 250$ cwo or supplied in 12 monthly sections at $£ 25$ month. range would cost over $£ 1,000$.
The Integrated Video Repair System - 10 booklets and 2 giant binders cover the early videos, all formats to V2000, 3V30, Sanyo 9300 . Only E 5.
S.A.E. brings any quotes required plus free magazine, service sheet \& other offers. or PHONE 0698883334 FOR FAST QUOTES

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European and Japanese models in stock.
Colour $£ 3.00$ Mono $£ 2.00$ Manual prices on request. All our prices include post and packing costs. Send stamped envelope for free catalogue and any enquiries. SANDHURST TV SERVICES (MAIL ORDER) 57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

C.R.T. REBUILDING PLANT AND EQUIPMENT

Installation, commissioning, training and technical after sales assistance.
C.R.T. INTERNATIONAL

136 Badmington Road, Coalpit Heath, Bristol BS17 2SZ
Tel: 0454778635
SPARES/MANUALS BURROWS

SAE QUOTES
AND CREDIT DETAILS SERVICE

415a WHITEHORSE ROAD, THORNTON HEATH, SURREY CR4 8SD. 01-683 1911 (2 lines)
SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by return. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.
BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal Part 2. The Receiver Decoder Part 3. Receiver Installation

VHS $\star \star \star$ V2000 $\star \star \star$ BETAMAX $\star \star \star$ UMATIC $\frac{10}{1 / 250}$ For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS
TEL:

GRUNDIG VIDEO Infra-red remote control VIF-K brand new \& boxed $£ 5.95$, complete with tele-pilot TPV $355 £ 12.95$. p\&p $£ 2$. these units plug strait into Grundig 2×4 super (Trade Supplied) Philips video films, ex-rtntal $£ 2.99$. Videos \& films wanted. STAN WILLEITS, 37. High Street, West Bromwich. West Midlands. Tel. $121-553018 \%$.

TRIPLERS 11 THY and 11 TFV all new STC module £2.50 large type focus, modules 50p, various types of transistors and IC's. Box No. 2019.

BUSINESS OPPORTUNITES

T.V. VIDEO SALES REPAIRS \& RENTAL SHOP

In pleasant Shropshire country market town. Small growing business making good profits run at present by engineer \& wife, on a fairly leisurely 5 day week basis. Excellent 3 bedroomed accommodation attached, with gas c.h., walled garden.

Freehoid $£ 45,000$ 0.n.o. \& S.A.V.
BOX NO. 205 for details

RENTED ACCOUNTS. Small number T.V.Sideo accounts producing a good income. Torbay, Devon. Box No. 217.

SUPERB WELL FSTABLISHED Television Electrical contracting Audio business for sale. Yorkshire Dales Market Town. Excellent profits, wonderful working area. Box No. 208.

BOOKS AND PUBLICATIONS

A-Z LIST OF MANUFACTURERS ADDRESSES. All major TV, audio ete plus many hard to get ones. Send cheques/FO for $£ 3.75$ to DOWNS ELECT. 135 Main Street. Newton Grange, Midothian EH22 2PF
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate. N. Yorkshire. Tel 0423 55885.

MACIONALIS R\&TV BOOKS. New 7475 £ 15.75 76, 76/77. 77/78, 78/79, 79/80. 80/81. 82/83, 83/84, 84/85 $£ 22.50$. Free delivery. U-VIEW, 29 Warmsworth Road, Doncaster. 1312855017.

METERS

METERS. Reconditioned $10 p / 50 p$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

AVON METERS

We buy and sell and repair TV coinmeter Reasonable prices, one year guarantee. 213 Cheltenham Road, Redland, Bristol. 0272-425281

ALARMS

D.I.Y. ALARMS DOOR ENTRY PHONE
CC TV BS 4737 APPROVED
Showroom Demonstration. Same Day Despatch.
FREE CATALOGUE
01-965 1230
SMITHS SECURITY SYSTEMS
43 Park Parade, London N.W. 10.

 羔 									
			年 						
 $\times \times \times \times \times \times 5$ ミミグミグが， ミえぶか号気気 毞がッ • 			 						

[^0]: QUANTITY DISCOUNT AVAILABLE

[^1]: U．K．Post Paid，Export orders welcome，please deduct V．A．T．and enc̣uire for Overseas carriage cost．Barclaycard／Access orders welcome，or Cheque，Bank Draft， etc．，with order please．Large S．A．E．for technical leaflets of complete range．Delivery normally with in 7 days．

[^2]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £13, overseas (surface mail) $£ 15$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^3]: moz mandree JiI) mb2 i/p00L

