FEBRUARY 1986

SERVIGUNG-PROUECTS-VIDEO-DEVELOPMENTS

Developments in VCRs

The Decca-Tatung 160 Chassis Amstrad CPC462 Servicing Notes TV Fault Finding • DX-TV Video Scrambling Techniques VCR Clinic • Test Report

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket Additional video output for CCTV \& VCR Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply

* All kits fully guaranteed with back-up service. \star Also available with VHF Modulator.
Price of Kit
$\mathbf{£ 7 0 . 0 0}$
Case ($\left.10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}\right)$ app.
Optional Sound Module (6 MHz or 5.5 MHz)
$£ 3.90$
Built \& Tested in Case including Sound Module
£105.00

special test
 REPORT
 Post/Packing $£ 2.50$
 'TELEVISNON Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE $£ 7.40$. BATT HOLDERS $£ 4.20$. MAINS SUPPLY KIT $\mathbf{£ 4 . 2 0}$ (Combined P\&P £2.20).
MK 4 (BATTERY) BUILT \& TESTED $£ 58.00+£ 2.20 \mathrm{P} \& \mathrm{P}$
MK 4 (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20$ P \& P.
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS 55.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.
GEC TELETEXT EXTERNAL ADAPTOR UNIT
Complete \& ready for use. Converts any TV into a Teletext Receiver with Infra-Red Remote Control (incl. 25 Button Handset) new, boxed and fully tested. $£ 130.00$ p.p. $£ 3.00$.
THORN TX9 MK2/3, TX10, teletext
Mullard Decorder panel + Interface £35.00 p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Linc Coupler \& Interface $\mathbf{£ 4 8 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15%

TV SERVICE SPARES
BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC.
PHILIPS GII PANELS (tested).
Power, frame, IF, decoder $£ 18.00$ each p.p. $£ 2.00$. Scan Panel $£ 28.00$ p.p. $£ 2.80$. PHILIPS GII PANELS ex rental (untested).
Power, frame IF, decoder 110.00 each p.p. $£ 2.00$
SPECIAL OFFER Philips, Pye KT3 Series infra-red remote control handsets ex rental (unested) Teletext or normal versions available $£ 2.50 \mathrm{p} . \mathrm{p}$. 80 p $(5$ for $£ 10 \mathrm{p} . \mathrm{p}$ £1.50). CTX, K35 Teletext + Video $£ 5.00 \mathrm{p} . \mathrm{p}$. 80 p .
THORN 9000 Fault Finding Guide $11.00 \mathrm{p} . \mathrm{p}$. 31p
THORN REMOTE CONTROL HANDSETS
8800/9800 (2-tutton) $£ 10.00$; TX9 ULTRASONIC (3-button) $£ 15.00$; TX9, TX10 Infra red £18.00; TX9, TX10 Infra red Teletext $£ 20.00$, p.p. $£ 1.20$. TX10 Remote \& Tuning control panel (1515) $£ 9.40$ p.p. $£ 1.50$
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver ${ }^{27.50}$ p.p. £1. 6.
THORN TX10 Series Facia Control Panel with 8 position Channel Selector ${ }^{26.50}$ p.g. $£ 1.40$.
PHILIPS UHF Modulator (Audio \& Video Input) $£ 15.00$ p.p. $£ 1.00$.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$.
THORN TX9, IX 10 Saw Filter IF Panel. $\mathbf{5 7 . 5 0}$ p.p. 80 p.
PAL DECODER KTT (Video to RGB) for Montors $£ 27.00$ p.p. $£ 1.00$ PAL ENCODER KIT (RGB to Video) £18.50 p.p. £1.30.
TELETEXT DECODERS New \& Tested Mulard VM $6101 \mathbf{~} \mathbf{3 0 . 0 0}$, Texas XM11 $£ 40.00$, <T3 Tested $£ 30.00$, Untested $£ 5.00$ p.p. $£ 1.60$
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator. Battery Operated. also gives Peak White \& Black Levels, can be used for any set. $£ 12.00$ p.p. 80 p. Alum. Case $£ 2.55$, De Luxe Case $\mathbf{£ 6 . 8 0}$ p.p. f1.40.) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p .

UHF SIGNAL STRENGTH METER KIT $£ 22.00$ (VHF version $£ 24.00$). Alun!. Case $£ 2.55$. De Luxe Case $£ 7.40$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono with Panel Mcter Indicator - can be adapted for latest CRTS $\mathbf{2 2 8 . 6 0}$ p.p. $£ 2.80$.
BUSH A823 Coivergence, Time Base Pancls $£ 5.00$ each. p.p. $£ 1.80$
BUSH $Z 718$ BC, 100 series IF Panel 55.00 p.p. 90 p
BUSH A816 IF ?anel (Surplus) £1.00 p.p. 90 p. 5 for $£ 4.00$ p.p. $£ 1.40$.
GEC 2040 Decoder Panels, $£ 1.50$ p.p. £1.80.
 GEC 20AX Switih Mode Power Supply $\mathbf{\text { E. } 5 0 0 , \text { , IF-Decoder } £ 1 2 . 5 0 \text { p.p. £1.80. }}$ PYE 691-7 CDA Panels. Makers tested stock. $£^{6} .00$ p.p. $£ 1.45$.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors 2 tc . $\mathbf{£ 3 . 0 0} \mathrm{p} . \mathrm{p} . £ 1.80$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $\mathbf{f} \mathbf{1 0 . 0 0}$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $\mathbf{£ 2 0 . 0 0}$ p.p. $£ 2.80$.
THORN TX10 T.B. Panels salvaged ex factory. $\mathbf{£ 1 5 . 0 0}$ p.p. $£ 3.00$.
THORN $3000 / 3500$ Power supply P.C.B. $£ 3.50$ p.p. $£ 1.00$.
THORN $8000,8800,88001 \mathrm{~F}$ Decoder Panels Tested $\mathbf{8 1 0 . 0 0}$ p.p. $£ 2.30$.
THORN $8000 / 8500$ IF/Decoder Panels salvaged $£ 3.20$ P.p. $£ 1$ p 80.
THORN 9000 IF,Decoder Pancls Salvaged. 5.00 p.p. ifi. 60.
PHILIPS G8/G9 iF/Decoder Panels for small spares incl ICs $\dot{2} 2.50$ p.p. £1.60). G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$ (tested). G11 PANELS, P(wer, Frame, IF, Decoder. £18.00 each. P.p. £2. 00 (tested) GRUNDIG 8630 डeries Varicap Tuners $£ 5.00$ p.p. $£ 1.00$.
VARICAP. ELCi(43/5 87.80 p .P. 81 p . Makers Controls PYE CT200) 4PSN £7.50, BUSH 4 PSN $£ 4.80$, DECCA 4 PSN $15.80,6$ PSN $£ 6.80$ p.p. 80 p . etc. BUSH "TOUCH TUNE", Varicap Control Z585, 710 £3.80 p.p. £. 1.00 . VARICAP UHF-YHF ELC2(OC)S $£ 9.80$, BUSH $97.80 \mathrm{p} . \mathrm{p}$. 90 p .
VARICAP VHF YHILIPS, $\mathbf{£ 6 . 9 0}$. ELC $1142 £ 7.90$ p.p. 80
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position. MULLARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$. TV SOUND IF Pancls $\mathbf{8 6 . 8 0}$ p.p. $£ 1.00$
I.OPT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$

LOPTS New and guar. P/P Mono 11.35 , Colour $£ 1.50$, Bobbins 80p.

FERG; HMV. MARCONI, ULTRA \quad D.BECA Bradiord (state Mod No).
1400. $15(10)$ I $5 \times 41,1591$

TIORN 1 1×10, $1615,1690.1691$

PYE691-697
368, 169, 569. 7 69 4enes $\mathbf{8 . 6 5}$ PYE 725 (90 $)^{\circ}$) 731 to 741

RBM A823...........................4.80 THORN 840 (8 . 8500.8800

PHILIPS 570.57186.80 THORN9800
OTHERS AVAILABLE, PRICES ON REQUEST.
TRIPLERS Full rarme available. Mono \& Colour.
Special Offer: (iEC $3(44 / 210) E H 7$ Tripler $£ 2.50$ p.p. $£ 1.30$
THORN 80NO EHT TRAY (2 lead) $£ 2.80$ p.p. £1.00
6-3V CRT Boost Tramsommers for Colour \& Mono $\mathbf{5} .90$ p.p. £1.40.
THORN TX10 focus control $\mathbf{E 8 . 8 0} \mathrm{p} . \mathrm{P} .80 \mathrm{p}$.
THORN 8ON mains mput choke $£ 6.80$ Po. £1. 40
ME AT SHOP PREMISES
THOUSANISS OF ADDITIONAL. ITEMS, ENQUIRIES INVITED IAR(BE SEIECTI(IN TESTEI) COLOUR PANELS POPULAR MODELS TELEVISION MAIIAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE
Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, NW6 1SD
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead Brit Rail Stn. (Richmond, Dalston, Stratford, N. Woolwich) W. Hampstead Brit. Rail Stn. (St. Pancras, Bedford) Access from all over Greater London.
Mail Order: 64 golders manor drive, LONDON NW11 9HT PLEASE ADD VAT 15% TO AIL. PRICES INCL P+P

COPYRIGHT

(C) IPC Magazines Limited, 1986, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK, £15 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20 p$ inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries .relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

221 Leader
222 Teletopics
224 Teamwork
Anne Avis
The husband-wife approach to running a radio/TV business.
227 Decca-Tatung Chassis Up-date, Part 2
Ray Wilkinson
Technical features of the 160 and 165 series chassis.
230 Quick Tests: Philips Solid-state Chassis
S. Simon

Tackling common faults on the G8, G9 and KT3 series chassis.

231 Next Month in Television
232 Developments in VCRs, Part 1 Steve Beeching, T. Eng.
Dual-speed operation and helically-recorded hi-fi sound are features of the JVC HRD725 VCR, which is taken as an example of recent developments.
237 TV Fault Finding
Reports from Alan Shaw, Philip Blundell, Eng. Tech.,
Steve Illidge, Hugh MacMullen, Jeff Herbert, J. G. Grieve, Malcolm Burrell and Steve Leatherbarrow.
239 The Human Element
Nick Lyans
This aspect plays a large part in servicing: some people are decidedly helpful, others can leave a set in a very dangerous condition.
240 Letters Including more on the NordMende FIV/FC25 chassis.
242 Test Report: The Portasol Soldering Iron
Eugene Trundle
243 And There's Another Funny Thing Les Lawry-Johns Some sets can do some very odd things - like Miss Converge's little portable.
246 Long-distance Television
Roger Bunney
Reports on DX reception and conditions and news from abroad. The new Tandy dual-standard portable is reviewed.
249 Servicing Notes on the Amstrad CPC464 Christopher Holland
Video Scrambling Techniques
Andy Emmerson, G8PTH
Vintage TV: The Bush T91
Chas E. Miller
The first post-war Bush TV set. Comments on the vintage scene.
VCR Clinic
Reports from Christopher Holland, Les Harris, Philip Blundell, Eng. Tech., John Cahill and Eugene Trundle.

Servicing Teletext Receivers, Part 2
Mike Phelan
Computer Aided PCB Design
Malcolm Burrell

Service Bureau

Test Case 278

OUR NEXT ISSUE DATED MARCH WILL BE PUBLISHED ON FEBRUARY 19

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
AOD 87 p per order $P+P$ Goods are despatched on the day we receive your
(UK.). Heavier parcels (U K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try cable, service aids, degaus.
coids please allow $£ 1.50 \mathrm{P}+\mathrm{P}$
to give a speedy, fair and efficient service. VA.T. (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please ask if what you need is not listed - we whenever possible. Add 15\% will try to help. Prices are subject to change without VAT to total except where it notice. In some cases we may have to supply an states zero rate notice.
equivalent.

P. V. TUBES
 HAVE MOVED

Telephone: Accrington (0254) 36521 Accrington (0254) 32611
Telex: 635562 Griffin G (For P.V.) SUPPLIERS

OF TELEVISION COMPONENTS
OF TELEVISION COMPONE
ELOSED WEDNESDAY p.m.

TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m

5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

HUSSAIN CENTRAL T.V. LTD. TRADE ANNOUNCEMENT

NEW BRANCH NOW OPEN AT

TO OFFER YOU TOP QUALITY VIDEOS \& T.V.s

JUST LOOK AT WHAT WE CAN OFFER YOU!

VIDEO

HITACHI	- 9700-9500-8700-5000-5500-8000-VT17E
PANASONIC	- NV2000 - NV7000 - NV7002
J.V.C.	- HR7655EK - HR7700EK - HRD120EK - HR7200EK
SHARP	- 8300-9300-7300-7700
FERGUSON	- 3V31-3V29-3V23-3V22-3V16
MITSUBISHI	- SH303B - SH304B - SH310B - R00302 - SOH300 -
NORMENDE	- R0500-VOV100 - VOV101 - VOV500
G.E.C.	VO4001-SO4000
TATUNG	- SO8300-FISHER - V00615-VO0520
AKAI	RVS5EK
BETAMAX	```- SONY - C9 - C7 - C6 - C5 - FLC9UB - RO8080-SO8000 -```
SANYO	- VTC500-VTCM10-TO5150
TOSHIBA	- T09600

 ALL PRICES ARE BASED ON QUANTITY AND + 15\% VAT.

UNIT 439
OAKSHOTT PLACE
WALTON SUMMIT IND. EST.
PRESTON (M6 Junc. 29)
0772312101

48-52 PERSHORE STREET BIRMINGHAM 021-622-1023
 021-622-1517

HUSSAIN CENTRAL T.V. LTD.

the LARGEST RANGE AT THE

 LOWEST PRICES IN THE U.K.B GRADE T.V.s - REMOTE - TEXT \& STEREO TEXT

LATE LATE MODEL T.V. GRUNDIG TEXT 7400, 6400, AND 16" TEXT 100's in stock

VIDEO CAMERA, CAMCORDS, VRC100P, SANYO LATE LATE TANDBERG - PANASONIC - SONY - SANYO ITT - FERGUSON TX - G11 TEXT 20-20 VIDEO, working $£ 30$, untested from $£ 8$ V.H.S. VIDEO, untested - 100's in stock STILL THE No. 1 FOR EX-RENTAL T.V.s

LARGE STOCKS OF QUALITY T.V.s

200 T.V.s A DAY ARRIVING AT OUR PRESTON BRANCH. WHY NOT COLLECT STRAIGHT FROM OUR LORRY? RING FOR DETAILS AND DELIVERY ARRANGEMENTS OR LOADS DIRECT FROM SOURCE TO YOUR DOOR.

ALL PRICES ARE BASED ON QUANTITY AND + 15\% VAT.

$$
01-807-4090
$$

01-884-1314
CEDAR HOUSE
NOBEL ROAD
ELEY ESTATE
EDMONTON
LONDON N9.

suefaior oualtriv tuas DELTA RE-BUILDS
 most types of Inline Re-builds or
 ON ALL OUR TUBES

Delta Rebutis	Intine iebullos
Up to 19"	Up to 22" £40
Up to 22"	
Up to 26"'	A56-540x 55
110° up to $22^{\prime \prime} \ldots \ldots \mathbf{f l 3}^{\prime \prime}$	A66-540x 558
110° up to $26^{\prime \prime}$ Low focus	Bonded Coil +£5
A47 342 New £28	
17FHP New £30	NEW MONO TUBES
470EHB New £30	AT COMPETITIVE PRICES

IN LINE TYPES EX-STOCK SELECTION not rebuldos

Please enquire types not listed

370 HFB-A37-590..... £45	560 DMB $\mathbf{6 6 2}$
370 HUB £45	AXT 56-001 $\mathbf{£ 6 2}$
AXT 37-001 £45	660 AB
420 CSB	A67-701.................... $£ 65$
420 EDB-A42-590 £45	670 CZB
420 EZB £45	A66-540 $£ 65$
420 ERB £45	420FSB £55
470 KUB $£ 50$	
510 UFB/A51-590...... £55	CARRIAGE
510 VSB	E_{5} Singles. $2-3$ ¢ $10.4 £ 12$
AXT 51-001 £60	10 E15. 10+ Carriage paid
560 DYB-560 DTB £62	EXCLUSIVE OF VAT
560 EGB £62	
560 CGB $\mathbf{£ 6 2}$	Cash with order

QUANTTTY DISCOUNT AVAILABLE
Ask for details

* ASK FOR DETAILS. OUR TECHNICAL DEPT WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES DELNERY: Ex stock items immediate dispatch on receipt of order
Others allow 14 days.
THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

PHILIPS YEARS AHEAD THE CREDIT CARD CALCULATOR SOLAR POWERED $\mathbf{£ 6 . 0 0}$	
NEW PANES	
THORN 4MO LOPT Panel	£15.00
G11 IF Panel	£8.00
THORN 9600 Line Panel	£12.00
G11 Decoder Panel	£12.00
POWER SUPPLY 731	£6.00
G11 611 Condenser 470/250V	89p
G9 Power Pancl	£3.50
G9 Frame	£8.00
KT4-KT3-K30 Hands. Replacement HT520 METER 20,000 Fuse Diode Protector Logic Test Facility	$\begin{aligned} & \mathbf{~} 8 \text { set. } \\ & \mathbf{8 1 5 . 9 0} \end{aligned}$
9000 SERIES Decoder 01929014080 Thorn	$\underline{5.00}$
THORN TX remot panel. 51.C. ML923-SL490-MC14528B-MC14493P-SL470\& Main Trans$\$ 5.00$	
HITACHI LOPT Split Diode 2432871	¢7.00
RANK T20 Fouces Pot	75p
RANK 718 Foucs Pot	11.00
THORN 900) LOPT Pancl	£12.00
$26^{\prime \prime}$ HITACHI LOP' Split Diode 2432301	88.00
$16^{\prime \prime}$ HITACHI LOPT Split Diode 243348I	£6.00
HITACHI Transformer P2270851	50p
HITACHI AE Socket	30p
-1 CONDENSER Axail Leads $450 \mathrm{~A} / \mathrm{C} 1200 \mathrm{D} / \mathrm{C}$	15p
MAINS TRANSFORMER 24ik in/20 $\mathrm{l} / 8 \mathrm{v}$	£1
GREEN LEED Flat l(0)0)	£20. Type
CANON Tape Motor 6 v	35p
MICROPHONE with Switch	25p
HITACHI 6×4 - 8S Speaker	50p
ET5\%6 UHF V/CAP Tuner. small	£2.50
FIDELITY Panels with I.C.	£1.00
FIDELITY LOPT Split Diode AT2076/80	£3.00
FIDELITY FBS 1245 AE LOPT Mono	$\underline{1.00}$
FIDELITY Split Diode FCC2015BE	£5.00
HI-FI MICROPHONE N8501 Philip	£8.00
G8 TUNER V/CAP on Pancl	£3.50
THORN 900) Sound OP Panel	230p
THICK FILM, Hitachi RB- 32 +A	£2.00
THICK FILM, Hitachi Frane	£5.00
K9 THORN Tuner Panel with ICS Pots	13.00
$80 \Omega 2$ THORN Speaker	15p
900) Speaker	11.00
HITACHI Split Diode 2433752	£6.00
THORN CHASSIS 160 ()-1700) Series Mono	£10.00
THORN 1600 Rec- \& Anode Cap	50p
ET-614 UHF V/CAP Tuner	£2.00
$6 \times 21 / 4$ SPEAKER 5 W Hitachi 8Ω	50p
K35 20 Turn Pots	6 p each
K35 12 Way Push Button Unit	£1.50
K35 I..O.P.T. Split Diode	£6.00
RANK T20 Front Panel	£6.00

SENDZ components

 63 BISHOPSTEIGNTON,SHOEBURYNESS, ESSEX SS3 8AF. SAME DAY SERVICE All items subject to availability. No Accounts: No Credit Cards. Postal Order/Cheque with order Add 15\% VAT, then £1 Postage.

Add Postage for Overseas.
Callers: To shop at
212 LONDON ROAD, SOUTHEND.
Tel. 0702-332992
Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10\% handling charge.

Telegen-1

PRICE £18.35 (Inc. VAT) EXCEPTIONALLY LIGHT AND DURABLE POCKEI SIZE FOR OUTSIDE SERVICE pP3 battery power source - FIVE DIFFERENT TEST PATIERNS FOR COLOUR \& MONO TV

* CROSSHATCH GRID * DOT MATRIX
* WHITE RASTER
* horizontals * verticles
* 3.5 mm JACK SOCKET FOR OPTIONAL PS.U.
A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.

Telegen-2

PRICE £34.45 (Inc. VAT)

- EXCEPTIONALIY LIGHT \& DURABLE
* COMPACS RASTER * GREEN RASTER
* BED RASIER RASER
* colour bars
* 3.5 mm JACK SOCKET FOR P.S.U.
* PROVIDES UHF SIGNAL APPROX

CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2.
IICE E4.55 (inc
ALL ITEMS POST AND PACKING 11.44 (Inc. VAT) All goods should be delivered within 4 working days.
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 773122

MAKE YOUR INTERESTS PAY:
 Train at home for one of these Career Opportunities

More than 8 million students throughout the worid have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help YOU. Post or phone today for your FREE INFORMATION PACK on the course of your choice. (Tick one box only!)

Electronics $\quad \square$	Radio, Audio \& TV Servicing	\square
Basic Electronic Engineering (City \& Guilds)	Radio Amateur Licence Exam (City \& Guilds)	\square
Electrical Engineering	Car Mechanics	\square
Elec. Contracting/ Installation	Computer Programming	\square

Name

Address:
P. Code

International Correspondence Schools, Dept. EGS26, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568 or 041-221 2926 (both 24 hours).

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft. etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

 Satellite TV SystemSatellite TV is now available in the U.K. This heralds the start of a new television era.

Connexions have now available the first low cost satellite signal receiving system designed for the consumer market.

With this equipment up to fourteen new channels of entertainment and information are available to the consumer - whether private home, pub, club, disco, hotel, restaurant or educational establishment.

The channels currently available are broadcasting a wide range of top quality material including current cinema films, national/international and minority sports, pop videos, childrens programmes, news channels and general entertainments.

Connexions Satellite Systems Ltd

125 East Barnet Road, New Barnet, Herts. EN4 8RF Telephone: 01-441 1282 (5 lines) Telex: 295181 SMC G

EAST CORNWALL COMPONENTS

NEW 1986 CATALOGUE is now available - range of components greatly increased - over 136 pages fully illustrated. Price $£ 1.00$ per copy (free upon request with orders over $£ 15$). Includes 50p Credit Note, Special Offer Sheets, Order Form and Pre-Paid Envelope. Order your copy now - will be despatched within

Valves		TRANSISTOES + DIODES						$\begin{aligned} & \text { Trpe } \\ & \text { BFIT17 } \end{aligned}$	
Type	Price (c)	Type	Price (E)	${ }^{\text {Type }}$	(5)				
DY802	0.95	AC127	0.28	${ }^{\text {BC1 }}$ BC17	0.22			${ }_{\text {BF }}$	
DY8687	0.66	${ }^{\text {AC } 128}$	0.30	${ }^{\text {BC118 }}$	0.16	ВС338	. 12	bF1	0.42
ECC81	1.00	${ }^{\text {AC128K }}$	0.34	${ }^{\text {BC1 }} 19$	0.28	BC350A	0.24	BF127	0.41
ECC82	0.92	${ }^{\text {ACl141 }}$	0.58	${ }^{\text {BC }} 1215$	14	BC351	0.16	BF154	0.14
ECC83	1.00		0.38	BC140	0.27	BC440	0.36	BF157	0.45
ECC84	0.80	${ }_{\text {ACC }}{ }^{\text {ACl42 }}$	0.56	${ }_{\text {BC141 }}$	0.24	${ }^{\text {BC44 }}$	0.48	BFF 158	. 30
ECC85	0.95		- 0.45	${ }^{\text {BC143 }}$		${ }^{\text {BC461 }}$			
ECC88	1.25	AC152	- 0.45	${ }^{\text {BC }} 147$	-18	${ }^{1}$		BF	
${ }^{\text {ECF80 }}$	1.20	AC153	0.57	BC1478	0.14	${ }_{\text {BC547 }}$	0.12	${ }_{\text {BF } 178}$	0.22
ECH81	1.40	${ }^{\text {AC153K }}$	0.46	BC148	0.10	A or B	0.10	BF180	0.27
ECH84	1.50	${ }^{\text {ACL176 }}$	0.30	${ }^{\text {BC148B }}$	0.12	BC5	0.12		
ECL182	1.10	AC176K	0.38	BC149	0.10	ABor C	0.10	BF1	32
	1.75	AC187	0.28	BC149C	0.14	BC5	0.10	BFI	
EF80	0.75	${ }^{\text {AC187K }}$	0.38	BC157	0.10	A or	0.10	BF1	30
EF86	1.80	AC188	0.28	BC5 5	0.12	BC55	0.10	BF 1	
EFF3	0.90	ACr832	-38	${ }^{\text {BCI }} 59$	0.12	${ }^{\text {A or }}$ B	0.10	BF 199	
EF184	1.00	ACr2\%	1.50	${ }^{8 C}$	0.14	BC557	0.10	BF 195	
EH90	0.98	AD143	1.80	${ }^{\text {BC160 }}$	0.30	${ }^{\text {BC5558 }}$	0.10	${ }^{\text {Bra }}$	38
KT66\|G.E.C.	16.00	AD149	0.72	BC1688	- 20	${ }^{8 C 770}$	0.16	BF22	
${ }^{\text {K18 }} 881 \mathrm{IG.E.C}$.	119.00	AD161/	1.20	BC169C	0.12	BCZ11	3.21 2.60	${ }_{\text {BF22 }}$	2. 20
EL34	3.25	AD162	0.52	BC170		BD124P	0.70		
${ }^{\text {El84 }}$	1.00	AF114	1.20	A B or C	0.16	$8{ }^{8129}$	0.90	BF241	30
EL509	7.85	AFF115	2.10	BC17		BDi30Y	0.68	BF244	. 34
${ }_{\text {EMM }}$	2.55	AFP16	2.10	${ }^{\text {A }}$ or ${ }^{\text {B }}$	0.12	B0131	0.36	BF249A	
EY500A	- 2.50	${ }_{\text {a }}^{\text {AF } 421}$	${ }_{0}^{0.42}$	-		B0, 32	0.36	BF257	22
PCCBA	0.60	AF 125	0.58	BC177	0.24	${ }^{80} 136$	0.26	${ }_{\text {BF }}$	- 0.26
${ }_{\text {PCC889 }}$	1.75	${ }_{\text {AF }}^{\text {AF } 127}$	0.58	${ }_{\text {A B or }}$	0.24	${ }^{80137}$	0.28	${ }^{\text {BFF262 }}$	0.34
PCC189	0.85	${ }_{\text {AF }}$	O.40	${ }_{\text {A, or C }}$	0.10	${ }^{\text {BDI }}$ - 138	0.30	${ }_{\text {BF2 }}{ }^{\text {B2 }}$	38
PCF80	0.95	AF178	2.28	BC 182 L	0.12	BD 140	0.28	Br	28
PCF86	1.25	Af239	0.50	la lotc	0.10	BD142		BF2	28
PCFF80		${ }^{\text {AF2795 }}$	1.40	BC183	0.10	BD145		BF274	0.34
PCF882	1.05	${ }^{\text {ALL } 102}$	5.40	AB or C	0.10	BD150A	0.72	B2594	32
PCFP06	120	ASY80	5.20	LALBLC	0.10	${ }^{\text {BDO }}$ B00 165			
${ }_{\text {PCL82 }}$	1.00	AS217	2.00	BC184	0.10	${ }^{\text {B1 } 183}$	0.70	${ }^{\text {BF }}$	${ }_{0} 0.28$
${ }^{\text {PCLB3 }}$	2.50	AU110	2.80	a b cllc lb	0.15	BD201	0.52	BF3	
${ }_{P C 186}$	1.00	A $40{ }^{\text {a }}$	4.40	BC207	0.15	BD202	0.57		5
${ }_{\text {PCLI805 }}$	1.05	${ }^{\text {B4a } 110}$	${ }_{0}^{1.03}$	${ }^{\text {BC212 }}$	0.10	${ }^{80204}$	0.50	BF	24
PO500	2.90	BA115	0.14	${ }_{\text {BC2 } 212}$	0.09	${ }_{\text {co225 }}^{8022}$	0.80	${ }_{\text {BFa }}^{\text {BF3 }}$	0.27 0.20
PFL200	1.85	BA121	0.40	LA LB	0.10	BD232	0.45	Bfaso	${ }_{38}$
(L33	1.75	${ }^{\text {BA129 }}$	0.38	${ }^{\text {BC213 }}$	0.10	BD234	0.30	BF457	36
PL81	0.85	BA155	${ }_{0} 12$	${ }_{\text {ACPI O }}$	${ }_{0}^{0.10}$	${ }^{\text {BD235 }}$	0.30	${ }^{\text {BF458 }}$	37
Pl82	0.75	BA157	${ }_{0} .28$	LA LBLC	0.10		${ }_{0}^{0.38}$		36
PL83	1.25	881058	0.30	237	0.11	bisto	0.76	BfR61	32
${ }_{\text {PLL95 }}$	0.75	881	0.48	${ }^{82238}$	0.12	${ }^{\text {BDO434 }}$	0.58	BFR	
PL504	1.40	BC107	${ }_{0}$	${ }_{4 B}$	0.14	B0438	0.58	BF/41	8
PL508	2.70	-	0.12	BC262	0.20	${ }^{\text {B00441 }}$	1.00	${ }_{\text {BFW }}{ }^{\text {Br }}$	${ }^{86}$
PL509/519	525	${ }^{\text {BC }} 108$	0.10	A^{8}	0.28	BD507	1.05	Bfw44	0.88
PY500A	${ }_{2}^{1.80}$	${ }_{8 B}^{\text {AB }} 109$	-10	${ }_{\substack{8 C 301 \\ 8 C 302}}$	0.30	${ }_{\text {B06887 }}^{\text {B05 }}$	1.20		28
426	1.90	A,B or C	0.14	вC303	0.30	BD707	${ }_{0} .88$	${ }^{1} \times 188$	78
UCH81	2.00	BC113	0.42	BC307A	0.18	-	1.00		0.35
U05122	150	${ }_{\text {BC11 }}$	0.12	BC317A	0.12	BD×32	1.48		
30 Fl 12	1.60	BC116	0.12	BC323	0.90	BF11	0.32	BFY	0.22

RESISTOA KITS - each value Individually packed

AESISTORS - WIREWOUNO. Generally 5%
 17W-1R0 to 22K - A
ZENER DIODES

ZENER DIOOE PACK

400 mW - 5 each value - 11 values

EAST CORNWALL COMPONENTS 119 HIGH STREET WEM
 SHROPSHIRE SY4 5TT TEL: 093932689

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce

01-261 5942

Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 209.

COVER PHOTO

This month's front cover photo shows a close-up view of the head drum assembly used in the Panasonic Model NV870, which features VHS hi-fi sound. The cassette housing - it's a front loader - was removed to obtain a better view.

HELP WANTED

Does any reader know where spare parts/service data can be obtained for Nikkai colour sets, also the Perdio monochrome portable Model RP206?

TELEORSDOM

Here We Go Again

Ever since TV has been a practical proposition there's been debate about standards. As is well known, the debate in the UK had not been resolved by the time TV broadcasting started in November 1936. The Selsdon Committee, which had been appointed by the government to advise on TV standards, had been unable to come to a conclusion. So we started off with dual-standard operation, using the Baird 240 -line and EMI 415 -line systems on alternate weeks. It didn't take long for the operational advantages of the EMI system to become apparent: the Baird system was dropped in February 1937.

The debate in the USA went on rather longer. In early 1933 RCA demonstrated allelectronic TV, using a 240 -line system. As the depression was at its height there was no great urgency to get TV broadcasting started. By June 1936 however the FCC, which had been set up two years previously, started to take an interest. The Radio Manufacturers Association (RMA) proposed to the FCC a 441 -line system. In October 1938 the FCC assigned channels for TV use and the RMA put forward slightly revised proposals (vestigialsideband operation came in). TV broadcasting started on April 30th, 1939 - but on an experimental basis only, using the RMA system. The FCC still couldn't make up its mind and held further hearings in June 1940. In addition to the RMA standard Philco proposed a 605 -line system and Du Mont a 625 -line system. The industry became involved in a standards battle and the FCC wouldn't come to a decision (the same thing was to happen with teletext and stereo TV sound many years later). To end this unhappy situation - since a full, commercial service couldn't start without an agreed standard - the RMA set up the National Television Standards Committee which held its first meeting on June 31st, 1944). The debate continued and it wasn't till January 1941 that the NTSC made its first report to the FCC. It favoured a 441 -line system, with f.m. sound. The FCC wasn't happy with a line standard dating from 1936 and asked the NTSC to have a further think. Two months later the NTSC came up with the 525 -line system.

It wasn't long before standards debates were to be with us once more. In the UK the problem was what standard to adopt for post-war TV. In the event 405 -line transmissions were restored, though other proposals were put forward. The decision seems to have been taken on the grounds that the public had already invested in 405 -line sets (about 20,000 of them!) and that the BBC was ready to go with its 405 -line equipment. It was left to Europe to take up the argument about standards. France adopted 819 lines while the rest of Europe eventually adopted 625 lines.

The only time when there appears to have been little debate on standards was the start of colour broadcasting in the USA. An experimental field sequential system had been tried in 1948 but had not been a commercial success. The sets were unreliable and the programmes few. In particular the system was non-compatible - you couldn't see the programmes in monochrome on a black-and-white set. RCA had been working on colour since before the war and by the late forties had notched up a series of advances: it demonstrated the shadowmask tube to the FCC in March 1950. During July and October 1951 RCA publicly demonstrated compatible colour TV and by November of that year had agreed a set of specifications with the NTSC. There was no competing colour TV system in sight and when RCA petitioned the FCC in June 1953 the RCANTSC system was accepted.

When it came to colour for Europe we were back with standards battles once more. During the mid-sixties the argument raged over NTSC, PAL, SECAM - all in various forms - and a few other proposals. It was never resolved. Today one can perhaps say that neither PAL or SECAM has any particular advantage over the other - technological advances have made the earlier disputes seem almost irrelevant.

The field of TV and video has been dogged by debates on systems and standards ever since. Which VCR standard to use, which disc system and what standard for satellite TV? The VCR and disc battles have differed from previous ones in that the broadcasting authorities have not been involved. While it's sometimes said that Beta gives a better picture, once again technical developments have ensured that no system has any great advantage in the longer run.

The debate over a system for European DBS broadcasting seems to have been decided in favour of the IBA developed MAC system - in conjunction with sound systems of continental origin. One can't be too sure until DBS services actually start - variants on PAL and SECAM have also been proposed.
We're by no means at the end of the road however. High-definition TV with an aspect ratio change is the next step being considered and here there are already the makings of a hot dispute. The Japanese developed a $1,125-\mathrm{line}, 60 \mathrm{~Hz}$ system some while back. It provides superb results and has received the backing of the Americans. The Japanese and Americans are now pushing for its acceptance as a world-wide HDTV standard. This would of course overcome the old problems of standards conversion and simplify the provision of studio/broadcasting equipment. But it's not compatible with existing services - we're back with the old compatibility problem. The alternative "Enhanced MAC" system developed by the IBA has the great advantage of compatibility with basic MAC. The additional picture information required for a $5: 3$ aspect ratio display is incorporated in some of the space otherwise devoted to sound signals: higher resolution is achieved by using some IBA developed techniques about which little has been publicly said.

A decision about HDTV standards will not be essential for some while, though the issue is to be considered by the International Radio Consultative Committee in May. The argument is hotting up. Oh yes: we forgot to mention the various (at least four) competing stereo TV sound systems and the arguments about teletext systems . . .

Teletopics

JAPANESE-EEC AND INTERNATIONAL TRADE

The EEC Commission has increased the customs duty levied on imported VCRs (other than for professional use) from 8 to 14 per cent, effective from January 1st. To conform with GATT regulations, balancing cuts have been made on semiconductor device duties (down from 17 to 14 per cent) while duties on electronic calculators, portable radios, portable cassette decks and alarm radios have been completely removed. Most imported VCRs come from Japan of course though some are now coming from S. Korea. Talks with Japan on the extension of former agreements on export limitation to the EEC continue, though the Japanese Ministry of International Trade and Industry (MITI) has announced that these will be maintained - MITI will continue to monitor shipments of VCRs, also CTVs and tubes, cars, light commercial vehicles, forklift trucks and numerically controlled machine tools. For VCRs, MITI suggests that 1.5 to 1.7 million machines would be the appropriate export level for 1986. Japanese VCR exports to Europe during 1985 are expected to have been some 1.8 m , well within the 2.25 m level set by the previous voluntary export restraint agreement.

The next sensitive trade item is likely to be the compact disc player, which at present carries a 19 per cent import duty in the EEC. Japanese production capacity is understood to have grown by a factor of four last year to 4.3 m units and is expected to more than double to 8.7 m this year. A report by stockbrokers Vickers da Costa points out that such production levels are in excess of current demand: as a result price cutting is expected, especially in the EEC where prices are "relatively high". As if to emphasise the point, Sharp recently announced the first CD players in the UK at under $£ 200$. There are two models that differ only in styling: they both have a suggested retail price of $£ 199$. In the USA the price of CD players has fallen from around $\$ 1,000$ in 1983 to just under $\$ 300$.

Philips has doubled its share of the European VCR market since starting to produce and sell VHS machines. It claims to have 12 per cent of the UK market, which puts Philips in second place to Thorn EMI. Philips' share of the European market is estimated to have risen to 14 per cent last year. Its video business is understood to be close to break even point after past heavy losses. Production of V2000 system VCRs has now ceased - sales are expected to continue for a further six months or so while stocks last. Philips has also announced that the LaserVision disc player has been withdrawn from the W. German market. Its sale in the UK will continue.

NEW PLANTS

The S. Korean based Samsung Electronics group is understood to be close to a decision on where to establish a manufacturing facility in the UK. Sites in the NE and in the West Midlands have been under consideration. Samsung proposes to start manufacturing VCRs, television sets and microwave ovens in the UK. At present Samsung imports VCRs and microwave ovens from its Korean plants and 14 in . colour sets from a plant in Portugal. Samsung has a 4.5 per cent share of the UK microwave oven market. The aim in the TV field would
be to develop and manufacture in the UK large-screen sets for the European market.

Hitachi has announced plans to convert part of its CTV plant at Anaheim, California to manufacture of VCRs. Initial capacity will be 100,000 VCRs a year, rising to 5 600,000 machines annually within two years if market conditions justify this.

GIANTS PLAN MERGER

The US General Electric Company (GE) has signed a $£ 4 \cdot 46 \mathrm{bn}$ agreement to take over the RCA Corporation. The aim of the deal is to strengthen the competitive position of the companies in high-technology manufacturing. It will be the largest non-oil merger in US company history, creating a corporation with annual sales approaching $\$ 40 \mathrm{bn}$, a workforce of over 400,000 , and interests in aerospace, broadcasting, financial services, consumer and industrial electronics and heavy electrical manufacturing.

Both GE and RCA have a long history in consumer electronic equipment manufacture while RCA has broadcasting interests that include ownership of the NBC network. RCA demonstrated electronic TV broadcasting, using a 240-line system, in the early months of 1933 and in the forties developed the colour system that came to be known as the NTSC system. GE and RCA have both been major TV receiver manufacturers. GE now sells sets produced by Matsushita (see Teletopics, December 1985) while RCA assembles sets from parts imported from Mexico and Taiwan.

Both companies became conglomerates when this was fashionable in the sixties and seventies. GE's interests extended to cover coal mining and energy while RCA's extended to greetings cards, frozen foods and the Hertz car rental business. During the last few years both companies have been selling off businesses not related to their core activities. In 1984 GE had sales of $\$ 28.9 \mathrm{bn}$ (13 per cent consumer products) and RCA $\$ 10 \cdot 1$ bn (22 per cent consumer products, 23 per cent broadcasting and $6 \cdot 1$ per cent records and video).

PHILIPS-DU PONT DISC VENTURE

Philips and the Du Pont Company of the USA have established a $50 / 50$ joint venture company which combines their interests in optical information storage discs for the audio, video and data markets. The new company, called Philips/Du Pont Optical (PDO), aims to capture a major share of the world optical disc market, which is expected to exceed $\$ 4 \mathrm{bn}$ a year by 1990 . It's expected to generate annual sales of about $\$ 900$ within five years. Initial assets of the new company include 50 per cent of the PolyGram CD factory (the world's largest) in Hanover, W. Germany, and the LaserVision disc operation at Blackburn, Lancs. The company has announced plans to introduce a combined audio/video optical disc player to boost the consumer section of the optical electronics market. In addition to playing CD and video discs it will be possible to use the player with a microcomputer for data storage. The price of the player is expected to be around $£ 370$ initially.

THORN EMI TO SELL CABLE TV INTERESTS

Thorn EMI plans to sell off its cable TV interests which include the satellite delivered cable TV channels Music Box (50 per cent stake), Premiere (41.2 per cent stake) and The Children's Channel (wholly owned), also the cable franchises at Swindon (wholly owned), Coventry (51 per cent stake) and Ulster Cablevision (20 per cent stake).

It seems that all these operations are at present loss making, though Thorn EMI say that the decision to sell out is strategic - in order to concentrate on the firm's core business interests of technology, lighting, domestic equipment (including Ferguson) and the rental/retail outlets. Since our last column Thorn EMI has sold its cinema and film making business to a management-based group, leaving the cable interests rather out on a limb.

UK SATELLITE TV

The IBA's report on the prospects of establishing a UK DBS TV service was due to be presented to the government by the end of December. One of the companies that put forward proposals to the IBA is Carlton Communications, whose managing director Michael Green comments that he could put together a consortium of "significant companies" to run such a service - provided the operator could use a satellite system of his own choice and be given freedom over financing arrangements and programme scheduling (subject to normal decency standards). The IBA is expected to emphasis the need for an early start to DBS broadcasting and a completely commercial approach.

According to a Goodall Partnership survey sales of satellite TV receiving installations in the UK during the latter half of 1985 totalled some 1,800 - nowhere near this number of licences have been issued by the DTI however. It expects sales of about 30,000 installations over the next two years. The government has announced that from March planning permission will no longer be required to instal dish aerials of up to 0.9 m at the front of a house planning permission will still be required in national parks, conservation areas and areas of outstanding natural beauty.

THE 50MHz BAND

Terms for allocating the $50-50.5 \mathrm{MHz}$ band for use by radio amateurs have been finalised by the Department of Trade and Industry and become effective from February 1st, 1986. The conditions are as follows: the allocation shall be primary within the UK; class A licensees only will be permitted use of the band initially; maximum transmitting aerial height to be 20 m above ground level, with horizontal polarisation; no mobile, portable or temporarypremises operation will be allowed; there will be no restriction on modes or hours of operation; no repeaters will be allowed; existing permits will be withdrawn. Use of the band by radio amateurs is based on non-interference to European broadcasting services.

FIFTH UK TV CHANNEL?

The Peacock Committee, which was set up to consider the future financing of the BBC , is to investigate the feasibility of starting a fifth TV broadcasting channel in the UK, also local city TV stations. The decision to commission independent research on the possibility of such services was made by the Committee on the basis that TV financing in the UK is related to the number of services available.

MULLARD SECAM-PAL TRANSCODER IC

Mullard have introduced a Secam to PAL transcoder i.c., type TDA3592A, which is able to convert a Secam input to a PAL signal. The input is identified by a built-in circuit. If a PAL signal is received this passes directly to the chroma output. If a Secam signal is received the PAL path is automatically switched off: the signal then passes
via limiting/amplification, demodulation, clamping, deemphasis, blanking and reinsertion circuits to a PAL modulator which produces a true PAL output.

A power-saving feature operates when the supply voltage falls below 5 V . In this event the Secam processing shuts down but the non-Secam (PAL/monochrome signal path) remains active. The 24 -pin chip operates from a 12 V supply and requires typically 90 mA .

NEC SATELLITE TV EQUIPMENT

According to Simon Orme of NEC Business Systems (Europe) Ltd. "everything is now in place" to deliver significant quantities of the NEC NESAT satellite TV receiver system to the UK market. The system is designed to plug into an existing TV set and is available through master distributors who will be responsible for installing the equipment, including the aerial. It's also available on rental through some branches of DER.
The NESAT system comprises a dish aerial to suit the location. a low-noise converter and an indoor tuner unit. Gallium arsenide devices are used in the LNC, which has been designed so that two units can be stack-mounted for reception of signals of either polarity. These are fed to an i.f. $(0.7-1 \cdot 7 \mathrm{GHz})$ combiner unit before going to the tuner via a single cable. The approximate price of the NESAT system is $£ 1.500$. For further details contact Simon Orme. NEC Business Systems (Europe) Ltd., 35 Oval Road, London NW1 7EA (01-267 7000)).

NEW BRAND

Judging by our post bag, one of the things that causes readers most problems is unknown brand names. So note Questar, which has just been launched by Asda for use on small appliances and brown goods sold in their ninety electrical departments nationwide. No TVs yet, but a VCR is promised. Servicing of Questar products, which come from Japanese and other Far Eastern suppliers, is carried out by Serviscope, a national organisation owned by Visionhire.

PUBLICATIONS/CATALOGUES

This year`s IBA Yearbook of Independent Broadcasting (Television and Radio 1986) takes a new look in a larger format with 224 pages lavishly illustrated in colour. It's available from bookshops at $£ 4.90$ or direct from Independent Television Publications Ltd., Circulation Department, Whippendell Road, Watford, Herts at $£ 7$ including postage and packing.

Tandy's 1986 catalogue is available from Tandy Corporation (Branch UK), Tameway Tower, Bridge Street, Walsall, West Midlands WSI ILA. Tandy claim to be the world's largest electronics retailer, with 215 stores and 135 dealers in the UK. The catalogue contains a vast array of equipment and components including two monochrome portable TV sets with LCD displays and a full-feature VHS VCR which is priced at $£ 379.95$.

VISNEWS ARCHIVE MATERIAL

All material in the Visnews Library is now available on one inch video tape. During the last three years technical experts at Visnews Facilities have been working their way through four million feet of historic archive material held at the library: the process, using the latest technology, has greatly enhanced the picture and sound quality. The material includes coverage of the coronation of Tzar Nicholas II (1896), the diamond jubilee of Queen Victoria (1897) and the 1911 Delhi Durbar.

Teamwork

Abstract

Anne Avis "What's it like to live over a TV repair shop?" ask new visitors to our home, their curiosity aroused by the constant sound of the shop bell and the persistent telephone calls. I suspect that they have their doubts, but for Chris and I as married business partners the arrangement has worked very well. I've noted a lack of contributions in Television from the many "other halves" of small businesses like ours - wives who've become business partners not only because the accountant thinks it expedient but because we have our own contribution to make, quite apart from feeding the engineer. Even Honeybunch doesn't say how she copes with Les Lawry-Johns.

Opening Shop

Our business partnership started three years ago when Chris had the opportunity to buy the business he'd worked in for ten years. We'd married three years previously and though we'd hoped for our own business eventually this unexpected chance seemed at first a less inviting "wedding". We had to sell our much loved and worked on first home in order to buy suitable business/ domestic accommodation, and the more I saw of available property within our price range the more despairing I became. But at last we found a place I knew could be home and Chris knew was ideal for business. Despite the surveyor's opinion that it was a "rattlebag old property", despite nerve-racking planning permission delays and frustrating missing links in house purchase chains, we finally harnessed the muscle power of friends and family, hired a van and moved house and business in two chaotic weeks. Our ten month old daughter found the packaging and paraphernalia a marvellous adventure playground, but our pleasure and relief came when I was able to photograph Chris at the shop door with the "open" sign. Since then a lot more emulsion paint has flowed and we've suffered a heartbreaking family tragedy, but the partnership has survived and developed into a comfortable way of living.

What's Involved

My major contribution is bookkeeping. This was no easy task for an ex-nurse with an aversion to maths, but I have a good friend and teacher in the lady who previously worked part-time for the business and bequeathed me a sensible system when she retired. I've nevertheless endured hours of frustration chasing odd pence that won't balance, and suffered an anxious day trying to look busy with housework while the VAT inspector politely but persistently combed the books at the end of our first year. Thankfully the errors were small, but the whole process reinforced my resentment of the unrewarding time spent on VAT.
Books, cleaning and coffee-making apart, there are plants in the shop window to be tended (not geranium diodes, as Chris suggested) and well-meaning but timewasting acquaintances to be siphoned off when they "pop in for a chat" - as well as the occasional lifting assistance required when a giant 26 in . Dynatron in a fancy cabinet
puts in an appearance (perhaps the hospital training helps with that, though the patients had softer edges).

And of course I have to hold fort when Chris has to answer an outside call. His absence guarantees the appearance of someone wanting an obscure part or technical assistance. I can manage plugs, batteries and fuses now, and can even demonstrate reconditioned sets, but have yet to graduate in styli, belts and semiconductors. It's sometimes difficult to stem the flow of a customer's technical jargon, though I suppose I should feel flattered when they assume I know about using TVs with computers and why their picture goes bright green. However falsely, I can actually sound quite knowledgeable on things like field collapse and ghosts.
Working on the spot meant that I didn't have to "give up work" to have our new baby girl and that we don't have to employ a child minder as we would if I'd resumed my old career - quite an advantage over some of my excolleagues who keep asking "when are you coming back?".

Snags

There are inevitable snags, like the customer who interrupted the Queen's Christmas Day broadcast and the intrusion of shop into house. I endeavour to limit the latter as gently as possible, but the dining table frequently has sets nestling beneath it and the coat cupboard recently housed a large TV set for two months while it awaited a guarantee-replacement part (thanks, Disastercare). My nest of tables spends more time displaying sets in the window than it does in the sitting room, and I nearly lost one to a passer-by who thought it was for sale.

Summing Up

Some might find themselves too much under each other's feet, but during the day we usually meet properly only for snacks, and even those are likely to be interrupted by the telephone or shop bell. Working so closely makes it almost impossible not to understand each other's problems, so there's no argument about Chris spending an extra hour or two in the workshop when the jobs waiting clip is bulging, nor about some help for me when the baby's been very demanding and visitors are expected.
We are fortunate to share common goals and to have our living in our own hands - so far as the government allows. What's more I get my TV mended for nothing when there's time . . .

Chris and Anne Avis at RadioVision Exeter.

POST A PART ELECTRONICS
 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPQ. Telephone 0268690868 Telex 99305

TRADE COUNTER OPEN
ORDERS DESPATCHED SAME DAY ADD 75p P\&P, THEN 15\% VAT. ADD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN

Thom 10020 W (3500) R75) Safety Resistor Pye 713 Complete Tube Base Panel
Pye 725 Complete Tube Base Pane! ${ }^{1} 1010$ Completete Tube Base Panel 1x90 Complete Tube Base Panel
Pye 713 Control Knobs
Tube Base Socket ITT CVC32 Tube Base Socket Thom 3000 8000 etc Large IC Extracto
Crystal 4.43 MHz
nodead \& Cap for Split Diode Lopt Sanyo Anode Cap Assy + Lead. 12 TCD-C
Degause YDR E2990/HP230 3000800 Degause Thermister C8-RDH (TX90) niOt Knob Thom IX9 uush Button Assy Thom Tx90 Tube Neck Correction Assy. zoAX AT108! 5 BF259 with Heatsink
129/130/131 Coil
MHz Ceramic Fitter
$0 L 700$ (Philips) Chroma Delay Line
T9006A Lum Delay Line
Plastic Cover for 3 K 5 SP 838
P99 Back Ground Control 10k XX9 Gain Control 100R
Thom 2000 Focus Pot Thom 9000 Focus Pot hom 9600 Focus Pot
Thom 8 K 5 Focus Pot Thom 4000 Focus Po
Thom T $\times 10$ Focus P

SERVICE AIDS

Ambersil MS4 Silicone Grease Ambersil Freezer
Ambersil Ambertron
Ambersil Anti-Static Screen Cleaner Ambersil Amberclens Foaming Cleaner 1302 Ambersil Circuit Lacquer

THICK FLM RESISTDR UNITS

 3500 Them (5 Pin Connection) vid4000 Thom (4 Pin Connection) $725 / 731$ PYe is Pin Connection
713 Pye (6 Pin Connection)

Thom Mains IX 30003500

 Thom Mains TX 8000/8500 hom Mains TX 9000 (T701)Thom Mains TX 9600
T512
hom S.O.P.T 8000/8500
Thom EHT TX 3000/3500
Thom LOPT 9000
Thom LOPT 9600
hom LOPT 1590/91
Thom LOPT 8000
Thom LOPT 8500
Thom LOPT TX9
Thom LOPT TX9
hom LOPT TX90
ye LOPT 725
Pye LOPT 731
Philips LOPT G9
GEC LOPT 3113
Diode Split LOPT AT2076/35
anyo LOPT AM-WM-21
Sanyo LOPT AM-WM-4
Philips LDPT G8
Sanyo LOPT (CW21) 4-2751-44700
$1 T$ LOPT CVC30
ITT LOPT CVCA5
Baird 8750
Baird 8752
Thom Line Drive TX TX9 (T2)
Thom Line Drive IX. 9 KK (T005)
Thom Switch Mode TX 9KG (T511)
Thom Input Choke TXS (L64) 5
50
50
50
50
50
50
50
5
7.50
10.00

\section*{| .00 | M |
| :--- | :--- |
| | |
| 00 | M |}

 Line Connectors

Decca-Tatung Chassis Up-date

Part 2: The 160 Series

Ray Wilkinson

The introduction of the 160 series chassis marked a number of milestones for Deccacolour/Tatung CTVs. It was intended to drive 90° tubes in screen sizes from 14 to 22 in . and the original concept included neither remote control nor export versions. In the event the chassis proved to be so successful that such versions were subsequently called for.
In conjunction with the Production Engineering and Test Instruments departments in the factory the PCB size and shape were carefully worked out so that a new in-line production line could be designed specifically for the chassis. The test equipment is even more automated than before to increase the reliability and consistency of the sets.
As with the $140 / 145$ series all the circuitry apart from that on the tube base panel is arranged on a single PCB. Two tube base layout designs are required however: while the 20 and 22in. tubes have standard necks, as in the 140 series, the 14 and 16in. tubes have mini-necks and different pin connections. The bare PCB has both types of tube base panel attached with perforations, like postage stamps. The production schedule determines which model is to be made at any particular time. After assembly, test and alignment of the whole panel and the appropriate tube base section the base sections are broken away and the main panel is fitted in the cabinet. The unwanted base section is either discarded or used for spares.

Test Equipment

All the test equipment used in the production of the chassis was designed and built by the factory's Test Instruments department. It consists of six sequential in-
line stations placed after the flow-solder and inspection sections. Each station carries out component checks, voltage or current measurements, waveform checks and adjustments to coils or preset potentiometers. Most of these tests are carried out automatically under microprocessor control. Where an operator is required, for example to check a critical waveform, the test gear will be making other checks at the same time.
The chassis is supported by a pair of tapes as it moves along the assembly line. These tapes carry the chassis to each test station in turn. As the chassis stops over the test equipment the pin bed beneath is raised by pneumatic rams so that the pins contact the appropriate test points on the copper track.

Automatic Adjusters

Each automatic adjuster for a coil or preset potentiometer is driven by a precision motor and gearbox included within a servo feedback loop, the motors and gearboxes being supported above the chassis in a transparent plastic safety cover. It's fascinating to watch one of these adjusters in operation. For example, to adjust the coupling between the tuner and the i.f. strip the system injects a frequency sweep at the tuner test point and displays the response on the monitoring oscilloscope. Then, as the system measures the amplitude of the response at four critical frequencies, the adjuster automatically tweaks the core of the coupling coil in the tuner. You can see the result on the scope, as the response curve gradually takes on the correct shape.
The tests are split up so that the time spent at each test station is the same. This is essential since the assembly line

Fig. 1: Simplified block diagram of the 160 series chassis.

The basic 160 series chasssis.
noves continuously.

The 160 Chassis

Now to the 160 chassis itself. If you compare the accompanying photo with the 145 chassis shown last month you can see the simplification that's been achieved. The main contributory factor to this simplification is the TDA4503 chip that became available at the time we started to design the chassis. You can see from Fig. 1 how many circuit sections are incorporated within this chip.

The vision i.f. section of the chip is based on the TDA2540/1 series chips we used previously, so we were able to make use of our earlier experience in the development of this part of the set. A significant difference however is that there is only a single coil to serve the dual purpose of detector tank and a.f.c. coil. The phase shift required for a.f.c. operation is generated within the i.c.

The sync processor section of the chip is based on the TDA2578, but the second phase-locked loop is not present. This is the loop that would control the possible shift in flyback pulse phase as the beam current, and hence the collector current and switch-off time of the line output transistor, change. In other words you could get sideways kinks in the picture as the brightness varies. We've minimised this effect by ensuring that the line output transistor just stays out of saturation, making its switch-off time much more consistent.

Fig. 2: The line driver stage and the line output transistor's base circuit. The values of R402 and R403 depend on the size of the tube.

Fig. 2 shows the line output transistor's base drive circuit. The line driver transformer T401 drives the line output transistor Q403 hard on but the combination of D406 and the few extra turns on T401 prevent its collector voltage going too low - the extra turns provide enough voltage to turn on D406. This extra winding is designed so that Q403 remains just on the edge of saturation during the scan period, thus reducing its dissipation to a minimum.

The other main simplifications achieved are in the colour decoder and RGB output stages. The TDA3565 PAL decoder chip is an 18-pin version of the TDA3561A (used in the 145 chassis) without provision for RGB inputs or teletext. We've removed the preset adjustments we had on the customer controls in the 140/145 series. This means that we can't adjust for spreads between i.c.s, but with care in the design and the choice of test limits this hasn't been a problem - and it does simply the test procedure.

Another alignment operation that's been simplified is the previously mentioned tuner coupling. In earlier designs we always had an adjustable coupling coil in addition to the one in the tuner: it formed part of a bottomcapacitance coupling between the tuner and the SAWF driver transistor - this arrangement was explained in detail in my previous series of articles. In the 160 chassis the second coil is fixed - it forms part of the printed circuit track. Its value is thus very consistent between sets. A screen is necessary to reduce interference but this is simply fitted as a hand-inserted component.

The PAL decoder has no luminance delay line. This is because we were able to use a SAWF that incorporates the required delay.

Two other features that ease assembly are the single heatsink/strengthening rail at the back of the chassis and the use of a mains switch that fits straight on to the PCB.

Remote Control - the $\mathbf{1 6 5}$ Chassis

The success of the 160 chassis in its basic form prompted the marketing department to ask for a remote control version that would complement the existing range of remote control chassis described last month. The i.c. chosen for this purpose is a single-chip version of the M104/M293 combination used in the 145 series.

From the system block diagram shown in Fig. 3 you can see that most of the circuitry, including the display driver, is contained in the M491, a 40-pin NMOS LSI chip. This i.c. provides voltage-synthesis tuning for sixteen programmes, in a similar manner to the System 40 arrangement, with remote control of channel selection, volume and on/off (standby).

The TDA8160 infra-red remote control receiver chip is a small 8 -pin device we've been able to fit on the main PCB with its own screen around it.

The system's mode of operation is very similar to the M104/M293 arrangement described last month but the action of some of the circuitry may not be immediately apparent.

Diodes DR02/3/4 decode some of the seven-segment display driver lines so that on channels 14/15/16 QR04's collector voltage falls. The collector of this transistor is connected to the coincidence detector pin in the sync processor section of the TDA4503 chip to give a short line time-constant for VCR use.

When you switch the set on you normally want it to come on fully rather than in standby. If pin 25 is connected to 0 V the standby output at pin 26 will be set to

Fig. 3: The tuning and remote control system used in the 165 series chassis.
"on" as soon as the 5 V line powers up. If pin 25 is connected to 0 V permanently however then with the set in standby a mains interruption would result in the set coming on when the mains supply returned. This is obviously unsafe. Hence the need for QR01 and its associated components. When the mains switch is pressed the momentary make contacts (SR06) on it connect a -15 V supply, potted down directly from the mains reservoir capacitor instead of from the switch-mode power supply, to QR01's base. This ensures that pin 25 is connected to 0 V when the 5 V supply appears: the signal at pin 26 is then set to on. For any mains supply interruption other than pressing the switch, SR06 will not close and the set will come on only in standby.

A BF492 was chosen for use in the QR02 position because of its reverse base-emitter voltage rating. Its collector is connected to the a.f.c. line and so needs to swing through about 9 V under normal operation. The signal available at pin 16 of the M491 chip is only 0 V or 5 V however. Consequently RR20 and RR21, connected to the 13.6 V line, need to ensure that QR02's base is taken above the maximum a.f.c. voltage when this transis-

Fig. 4: 11.5 V regulator with standby switching 1165 series chassis).
tor is switched off. QR02's emitter must be connected to the 5 V line since this is the centre voltage of the a.f.c. line - QR02 is switched on between channel changes and whilst tuning.

On this chassis we were able to use a much simpler method of switching the set to standby. This was made possible because a zener diode and transistor, with a lot of care in the tolerancing, are used to stabilise the main l.t. line (11.5 V) instead of an i.c. voltage regulator. It was a simple matter to design a circuit to switch off the stabiliser transistor (Q501) when the standby signal is received from the remote control system (see Fig. 4).

Since the TDA4503 is operated from the 11.5 V line all the vision and sound i.f. functions and, most importantly, the sync processing/timebase generator functions are switched off in standby. With the removal of the line drive signal from this i.c. the line driver and output stages remain off although the supplies are still present. Since there are no e.h.t., first anode or heater supplies the tube remains blanked and the only current taken from the power supply is the small amount required to maintain the remote control system in standby. QR10 (Fig. 4) switches the decoder's blanking pin high to avoid a nasty, jagged bright line when the set is switched to standby.

The M491 and TDA8190 are supplied from a 5 V stabiliser chip to ensure that their supply is kept within close tolerances.

You can see from the photo on the front cover last month how well the design engineers were able to fit the extra circuitry into the space vacated by the 160 chassis' channel selector unit. The front control panel, with its programme and channel selector buttons and seven-segment display, is fitted on the main chassis in a similar way to the versions of the 145 series with integral controls. The infra-red remote control beam passes through a plastic lens that pokes through the front panel (this increases the angle of reception) before it hits the receiving photo diode.

The extra tests required for the 165 chassis were provided by adding another test position after the six
already used for the basic 160 chassis.

In Conclusion

With its reduced component count and more automated production the 160 series has proved to be a popular chassis within the factory. It's giving even more consistent
performance and reliability in the field than its predecessors - and we thought they were good!

Finally, I would like to take this opportunity to thank all my colleagues at the laboratory and the factory for their help and friendship over the years. Also my thanks to the management of Tatung (UK) Ltd. for their permission to publish these articles.

Quick Tests: Philips Solid-state Chassis

S. Simon

This time we'll report on some of the solid-state Philips CTV chassis that often come into the workshop - the G8, G9 and KT3. We'll skip over the G11 (20AX chassis) since it was thoroughly covered in these pages quite recently - see the October 1985 issue.

THE G8 CHASSIS

The G8 has also been extensively covered in the past, so we'll just provide some notes that may be of help.

As the tube's heaters are supplied by the mains transformer the first check to make is a visual one - are the heaters alight? If they are we know that the mains supply to the set is intact and that the $3 \cdot 15 \mathrm{~A}$ mains fuse (antisurge type) is o.k. If the tube's heaters are not glowing, check the mains supply to the on/off switch and the condition of the mains fuse. It's on the extreme left side, under a cover. Remove this and check the appearance of the fuse. If it's blackened, check the mains rectifier thyristor. This is roughly in the centre of the power panel (left side) and is usually a BT106 on a stud mounting though occasionally a flat type, e.g. a BTl16, will be found. Check for shorts. The mains filter capacitor is rarely at fault in this chassis: it's located bottom left, on the inside (C1366).

Also check the condition of the large h.t. reservoir capacitor $(600) \mu \mathrm{F}-\mathrm{C} 1385)$ at the bottom left. The tags are to the front and a mirror can be used to check the appearance of the business end. Any burn marks, corrosion or bumps should condemn it to the waste bin. This capacitor is now failing more regularly and should be a "first check" in these sets.

Very often no shorts or other reasons for fuse failure will be found and a replacement will bring the set back to life. Suffering from the rigours of a spiky mains supply over a long period of time tends to kill off these fuses.

If the mains fuse is intact and the tube's heaters are alight but the set is otherwise dead, check the voltage at the rear edge h.t. fuses. Some 200 V should be found here. If this voltage is present, transfer attention to the right side line output panel and check the 800 mA fuse roughly half way up the rear edge. If this fuse is intact (200 V at both ends) proceed to the front end and locate the large 47Ω wirewound, vertically mounted anti-breathing resistor R5535. There may be 200 V at one end but not at the other. If this is so you're lucky, a replacement being all that's necessary. If however there's 200 V at both ends you will probably have to look for a dry-joint. Most often the poor contact will be found on the top line drive panel where the black wires join to the earth tag. It may be necessary to remove this small panel in order to resolder the contacts on the print side. This will normally restore the operation of the set.

If the 800 mA line scan panel fuse has failed - and this is the usual situation - the chances are that the line output transformer has failed. This must not be assumed however. Disconnect the tripler - remove the plug from the nipple on top of the transformer - and check the current drawn (meter across the fuse). If the current is still over 500 mA , switch off and check the resistance to chassis from the top end of the 47Ω resistor previously mentioned. If the reading is low, check the line shift control (shorted to case?) and the two line output transistors. Check these anyway.

If the transistors are o.k., examine the transformer to see if there are any signs of burning on the top (not essential) winding. If so, cut the winding out and run the nipple from the original feed tag. Check the current drawn and if this is normal refit the tripler plug and try again (in case the tripler was the cause of the failure in the first place). The top winding is not usually at fault however. The majority of transformer failures are due to shorts in the main winding. This necessitates a new transformer - an extremely common occurrence with the G8, as most of us in the trade know only too well. The imported type of replacement transformers (brown) seem to be more reliable than the original ones.

If the tube's heaters are alight but there's no voltage at the left-hand h.t. fuses, note the front end, long vertical dropper resistor. There should be a.c. at the two bottom tags and h.t. (d.c.) at the upper two. It's common for a section to fail. The value of the bottom, surge limiter section is 2.2Ω while the upper, h.t. smoothing section is 68Ω. If the lower section is intact, don't put the meter across the upper two tags to check it. Switch the meter to 250 V or so and then apply the leads. The reason for doing this is that if this section has gone open-circuit one tag may still be fully charged by the $600 \mu \mathrm{~F}$ reservoir capacitor which must be discharged before risking an ohmmeter check. If in doubt connect a resistor of say 50Ω value across the tags to discharge the electrolytic. You've been wamed! If both sections are intact check the print side of the lower panel - poor connections here are not unknown.

So much then for dealing with a "dead" G8. For further information on servicing this chassis refer to the May and July 1985 issues.

THE G9 CHASSIS

The G9 chassis can be looked upon as a 110° version of the G8. The signals panel is the same and the power supply panel follows similar lines but the rest is quite a bit different. The approach required is also different.

The left side power supply panel is obscured by the convergence board and some care is required if this is moved with the set on. Be very careful - don't let it flop
around. The mains fuse is the one at the bottom of the power supply panel and is again a $3 \cdot 15 \mathrm{~A}$ anti-surge type. The h.t. fuse is the lA one near the top of the panel. The voltage here should be 205 V and usually is.

The main source of trouble in these sets is over to the right, on the line output panel. You'll find a $2,200 \mu \mathrm{~F}$ capacitor here, C5138. It's subject to the strain of trying to hold a steady supply of about 45 V across the two resistors in series with the emitter of the line output transistor. This 45 V supply is available only when C5138 is in good order. All too often it isn't, and it should be the first suspect when a variety of symptoms present themselves - rapid variations in picture size etc. Much time in the past has been spent in checking the power supply for a fault only to find that the culprit was this large electrolytic over on the line output panel. The associated zener diode D5134 is also a possible suspect - type BZX79/C51. Dry-joints here are a bit of a pain and can occur on both sides of the panel. The audio output stage feed resistor R3141 (39 Ω) takes its supply from C5138 and can suffer when the electrolytic is defective - it's on the signals panel.

The G9's line output transformer is also suspect, but not to the extent of the one on the G8. It's smaller but retains the tripler nipple which makes disconnection easy if this item is suspect - note that the G8 and G9 use a different type of tripler.

Just one word about the power supply. There's no surge limiting resistor in the feed to the thyristor (which has a soft-start circuit), just the bottom right filter choke. The front end "dropper" is the h.t. smoothing resistor and has a value of 56Ω.

Sorry, but that's all I have to say about the G9. Further information on the chassis can be found in the August 1981 issue.

THE KT3 CHASSIS

Finally this month a few words on the KT3 chassis. Not many because this is a reliable design spoilt by the tendency of just one item to fail. Had the design of the KT2 (the earlier 14in. chassis) been followed this one item would not have been included. The KT2 had a surge limiter in the supply to the h.t. rectifier: it consists of two 10Ω resistors in parallel. The KT3 has a single 4.7Ω surge limiting resistor that follows the main bridge rectifier. It fails time and time again. The circuit reference number is R6191 and it's on the bottom right subpanel.

The KT3 chassis was used in a variety of models ranging from 14 to 20 in . sets. The K30, used in larger screen sets with 110° scanning, is similar. Later came the CTX chassis with its single, horizontal board. All these chassis have the devilish 4.7Ω resistor, so be prepared to find it open-circuit in the various models in this range.

Three sixteen-pin i.c.s that have control over the twelve channels are to be found at the rear of the selector drawer used in some of these models. If some channels can be selected and perform well but some can't, one of the i.c.s is usually responsible. Care is required when handling these i.c.s - fingers and tools should be discharged to earth to prevent any i.c. touched being ruined by static. Most standard models have a tuning assembly in the side of the cabinet. Access is by removal of a panel. This is pretty obvious however: most of the troubles are caused by plug and socket contacts and the occasional dry-joint.

Some servicing notes on the KT3/K30 chassis appeared in the November 1983 issue (where R6191 was incorrectly shown in Fig. 1 as R6291).

next month in

- SERVICING THE HITACHI NP6C CHASSIS

This chassis was used in a number of Hitachi models with tube sizes from 13 to 20in. It's hard to believe that some of these sets are now ten years old! There are still a lot of them around and wh le the circuitry is fairly zonventional some fault ccnditions can cause problems. John Coombes providəs a detailed guide to fault finding.

- VHS THE PHILIPS WAY

Philips' position in the European VCR market has improved significantly since the firm adopted the VHS system. But Philips always like to do things their own way. As a result, the operation of Philips menufactured VHS machines differs from that of Japanese produced machines. This can catse some confusion, as łarold Peters explains.

THE NETWORK NW1402R WITH EMS

A Korean set using European technology! No wonder that engineers can be puzzled when they have to deal with it. EMS stands for Electronic Memory System - the SGS M193 non-volatile programme/ channel memory chip. Information on the system seems difficult to come by so Denis Mott provides an explanation of how it works - also details cof a simple modification to overcome the problem of tuาing drift.

MORE ON VCR DEVELOPMENTS

In the second part of his article on VCR developments Steve Beeching describes the half-spæed system and t'ee techniques that were evolvec to make it possible. A "jump" circuit is required for stable colour in the search mode, and a video noise reduction system is used to improve the signal-to-noise characteristics - this employs zarrier shift during rezording and a CCD delay line circuit for playback. Picture sharpening is also described.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Developments in VCRs

Two major developments in VCRs over the last year or so have been dual-speed operation, giving up to eight hours of recording and playback, and hi-fi stereo sound, with the sound signals laid down on helical tracks along with the video signal. These and other features are all part of the specification of the JVC Model HRD725 which we'll use as an example in describing recent VCR developments.

With the HRD725 JVC came up with not just a hi-fi VCR but one that has other capabilities above and beyond previous models. Apart from the hi-fi sound there are normal stereo sound tracks with Dolby, as in previous models. These tracks can be post-dubbed together as a stereo pair, or individually for bilingual use, or used to keep the original background sound with a post-dubbed commentary added.

Six-head Drum

The HRD725's head drum has six head tips, two for hifi audio, two for standard video recording/playback and two for long-play video. Considerable thought was put into the use of the long-play (LP) and standard-play (SP) heads to provide noise-free visual search, still field and step-field variable playback. We'll look into all these modes of operation in some detail. I'd like to make the point at the outset that various low-cost "equivalents" of the HRD725 don't incorporate the full electronic playback processing: because of this they have noise bars in visual search and omit the variable-speed playback feature. Another point worth noting is that several machines with hi-fi sound have monaural standard audio tracks, making them non-compatible with previous stereo sound models.

The positions of the six heads in the drum are shown in Fig. 1. The audio heads are mounted 138° in advance of the following video heads. Each is $26 \mu \mathrm{~m}$ thick, so the audio tracks are $26 \mu \mathrm{~m}$ wide. In addition the audio heads are mounted on a plane higher than the video heads, so that the $26 \mu \mathrm{~m}$ wide audio track lies within the $49 \mu \mathrm{~m}$ wide

Fig. 1: Arrangement of a VHS head drum for standard/long play and hi-fi audio record/playback.

Fig. 2: Use of different heads in the various modes of operation. For SP stills one LP and one SP head is used. All four video heads are used in the SP search mode.
track traced by the following video head. The audio heads record the audio tracks prior to these being traced over by the video heads. This is one of the principles of the depth multiplex recording system used for video hi-fi sound.

The pairs of video heads are constructed as a single unit, each head having its own winding. For a reason that will become clearer later, an LP and an SP head of opposite azimuth are mounted together: they are precisely two lines apart when recording or playing. The Ch. 1 SP head is slightly thicker than $49 \mu \mathrm{~m}$ while the Ch. 2 SP head is much thicker - more like $56 \mu \mathrm{~m}$ (an estimate) - though each records a standard $49 \mu \mathrm{~m}$ track since one head over records the excess track of the other head. To ensure this, the tape speed is such that the tape moves $49 \mu \mathrm{~m}$ along during each head scan. The LP video heads are $25 \mu \mathrm{~m}$ thick and record $25 \mu \mathrm{~m}$ wide tracks. The advantages of having a thicker Ch. 2 SP head to get noise-free still pictures will become clearer later.

Visual Search and Still Picture Modes

Before getting involved in the electronics, let's consider the use of the multiple heads to read the recorded video. tracks in the visual search and still picture modes. Slow motion is simply the use of the capstan motor in the stepping mode to provide sequential frame displays, forward or reverse.

The head selection chart (Fig. 2) shows the differences in head thickness and gap tilt (azimuth offset). (A) shows normal record/playback, using the Ch. 1 and Ch. 2 SP heads alternately. (D) shows slow-speed record/playback, using the Ch. 1 and Ch. 2 LP heads alternately. The LP heads are also used for LP still pictures (E) and picture search (F). Noise bars are apparent therefore during the LP picture search and still frame modes. Note that it's still frame as opposed to still field.

In the SP still picture mode (B) the thicker Ch. 2 SP head is used in conjunction with the Ch. 2 LP head. The result is a still field with the same track read alternately by these two heads. This is illustrated in Fig. 3, where the advantage of using the thicker Ch .2 SP head to cover the Ch. 2 track without missing any f.m. video signal can be seen. With the tape stationary the heads scan the tape at a more acute angle than when the tape is moving during record. The replay path is thus longer, covering at least some portion of three adjacent tracks, though the head azimuth matches only the central track. The adjacent tracks are ignored. Since it's thinner, the Ch. 2 LP head doesn't cover so much track. It can lose out at the very top and introduce noise if the tracking is not spot on. For this reason the machine's still picture quality is perfectly noise free only with its own recordings and is not necessarily clean with a library tape. This is true of most machines with still-picture and slow-motion modes.

All four heads are active in the SP picture search mode (C), in forward or reverse. At nine times normal speed each head crosses a number of tracks, some eight-nine (see Fig. 4). Each head can replay only alternate tracks since those between have the wrong azimuth. Hence the noise bar with traditional machines. The HRD725 how-

Fig. 3: SP still playback.
ever incorporates a circuit that selects the best f.m. carrier of the four at all times during the visual search mode, giving noise-free SP visual search.

Noise-free SP Search

Fig. 5 shows how this is achieved. Transistor switches Q1 and Q2 switch off the SP heads in the LP mode or earth the playback side of the windings in record. Q5 and Q6 provide the same action with the LP heads. For SP visual search Q1, Q2, Q5 and Q6 are all open. Selection of the outputs from the preamplifiers in IC1 and IC2 is done by the drum flip-flop signal. This is in antiphase between the LP and SP heads. IC3 selects the outputs from the SP or LP heads and routes the signal to the

playback f.m. demodulator circuitry. IC4 monitors the f.m. signals from each set of LP or SP heads: its output at pin 7 is low if the signal level from the SP heads is greater than that from the LP heads and vice versa. IC405 produces a pulse that corresponds to the peak f.m. carrier from the LP or SP heads, this pulse being used by the automatic tracking system to detect the position of the noise bar within a still picture and remove it.

The microcomputer chip IC413 controls the head switching and selection. During visual search it selects the LP or SP heads via IC419 according to the highest value of f.m. signal detected by IC4. As IC419 is clocked by the playback line sync pulses switching between heads occurs at the start of a line. The result is a noise-free SP visual search - only thin switching lines with a slight horizontal

Fig. 5: Block diagram of the video head selection system.

Fig. 6: Block diagram of the switch timing system.
displacement can be seen. IC413 also controls the colour phase via IC419, by issuing a colour rotate signal to the chroma circuits when head switching occurs.

Head Switching Control

In a standard VCR the video heads are mounted 180° apart and take 40 ms to complete a single revolution. Thus each head scans the tape during half a revolution, i.e. 20 ms . It follows that $40 \mathrm{~ms}=360^{\circ}$ of drum rotation and any scan angle can be expressed as an equivalent time period. The r.f. switching pulse, or drum flip-flop as I prefer to call it, is generated by the drum servo as a symmetrical squarewave. In a hi-fi/LP VCR three flip-flop trains are required - for the SP, LP and hi-fi head switching. As we saw earlier the LP heads are displaced from the SP heads by two TV lines (2 H). Thus a two-line time shift is required between the SP and LP head switching flip-flops. The audio heads are displaced by a 138° advance, so a 42° delay will bring the flip-flop switching edges to the correct time.

Fig. 6 shows in block diagram form the circuitry used for this. The LP heads are the most advanced and coincide with the primary timing edges from IC402. The SP timing edges are delayed by 2 H . Since the azimuths of the SP heads are opposite to those of the LP heads, inverted flip-flop pulses are required for one lot with respect to the other: the LP flip-flop pulses are taken via the inverter.

From this point the flip-flop pulse train is distributed to the other parts of the system that require head timing information. For the audio head selector circuits the flipflop is given a 42° delay to time the edges correctly. There is also an inverter to get the switching polarity correct for audio in the LP and SP modes.

Fig. 7: VHS hi-fi track pattern.

The V-pulse output circuit provides synthesised field sync pulses for use in the slow/still and visual search modes to ensure stable field locking with the tracking noise bars out of the picture area, i.e. pushed into the field sync period.

Hi-fi Audio

For hi-fi audio recording the two left and right channel signals are frequency modulated on to two carriers at 1.4 MHz and 1.8 MHz respectively, the heads (see Fig. 1) having an azimuth offset of $\pm 30^{\circ}$. The $26 \mu \mathrm{~m}$ wide audio track is centred on (beneath) the corresponding video track as shown in Fig. 7.

Fig. 8 illustrates the depth multiplex recording principle. As the audio head has a wider gap (not track) than the video head its recording penetrates the $4 \mu \mathrm{~m}$ magnetic layer on the tape to a greater depth than the corresponding video signal. The surface portion of the audio recording is then erased by the following video head as this records to a depth of only about $1 \mu \mathrm{~m}$. This leaves a twolayer magnetic recording with the audio signal below the video signal. The attenuation of the audio signal by the erasure of its top layer is only some 12 dB - this varies depending on the tape energy level. Separation of the audio and video carriers during playback is achieved through the azimuth difference between the audio and video heads - the video heads at $\pm 6^{\circ}$ and the audio heads at $\pm 30^{\circ}$ "see" only their own carriers.

The f.m. deviation for hi-fi audio recording is $\pm 150 \mathrm{kHz}$. Incidentally, for Beta hi-fi the carriers are at $1 \cdot 44 \mathrm{MHz}$ and $2 \cdot 1 \mathrm{MHz}$, the deviation being $\pm 500 \mathrm{kHz}$. Fig. 9 shows the VHS video and audio signal spectrums with hi-fi sound.

Record/Playback System

The basic hi-fi record/playback system is shown in Fig. 10 . The input is selected by IC5 which can accommodate simultaneous TV and f.m. radio broadcasts by allowing the machine to record TV from its tuner and hi-fi audio via an external f.m. radio input. There's a choice of a.g.c. or manual recording level, selection of the latter being indicated on an LED ladder array. The a.g.c. is of the limiter type so that noticeable variation in level with

2.

Fig. 8: The principle of depth-multiplex recording.

(a)

Fig. 9: Frequency spectrum for VHS hi-fi: (a) video signais, (b) the two f.m. audio signals.
sudden changes in input level - often called "breathing" is avoided.

IC9 provides muting on power up and power down to prevent spurious noise. IC13 also contains muting control, mainly for playback purposes.

In the record mode the dynamic range of the signal is reduced by a compressor arrangement in IC15 - we'll return to this later. Pre-emphasis is next carried out by IC12 in conjunction with the $R C$ network connected to pin 6. The signal is then limited and passed via a low-pass

Fig. 11: Audio compression/expansion for noise reduction.
filter to the f.m. modulator in IC13. A voltage-controlled oscillator is used as the f.m. modulator. The record level control is incorporated to prevent over-recording (the f.m. modulator being driven to a deviation in excess of 150 kHz). The low-pass filter cuts off at 20 kHz - this reduces harmonic intermodulation, particularly from the f.m. broadcast stereo pilot tone at 38 kHz . After modulation the left signal at 1.4 MHz is added to the right 1.8 MHz signal. The two signals are then sent to the audio heads via the record drive amplifier.

In playback the 1.4 MHz and 1.8 MHz signals are amplified, with a.g.c., by $\mathrm{IC} 1, \mathrm{Q} 4$ and Q 13 and are then separated by bandpass filters before passing to their respective demodulator and dropout compensator circuits. Demodulation is performed by making use of the voltagecontrolled oscillator as part of a phase-locked loop - the error signal produced by a phase comparator is the recovered audio signal. The following hold circuit eliminates audible glitches caused by dropouts and the head switching pulses - we'll return to this. De-emphasis is then applied before the signal goes to the expander circuit to correct for the compression applied during recording.

Signal Compression/expansion

Signal compression/expansion (see Fig. 11) is used to improve the signal-to-noise ratio significantly while maintaining an 80 dB dynamic range. Compression is applied during the recording process, the playback signal being subjected to a corresponding expansion. The processes are logarithmic and a special i.c. has been developed to

Fig. 10: Simplified block diagram showing the audio signal processing - one channel only.

Fig. 12: Block diagram of the record compression system.
perform these operations.
In the Dolby noise reduction system only the highfrequency components of the signal are modified during record/playback. Low-level, high-frequency signals are amplified before being recorded then attenuated during playback. This reduces the tape noise level during playback. The compander/expander used in the JVC HRD725 works at all frequencies and signal levels, the frequency response being tailored by the pre-emphasis/deemphasis networks. It provides a 10 dB compression/ expansion of the signal for every 60 mV change with respect to a set 0 dB level.

A block diagram of the record compression system is shown in Fig. 12. The input signal is applied to the noninverting input of an operational amplifier, then to a further amplifier, before being subjected to pre-emphasis. Compression is carried out by applying feedback to the inverting input of the operational amplifier. A voltagecontrolled amplifier/attenuator (VCA) is included in the feedback circuit. It's controlled by an r.m.s. detector which converts the level of the audio signal to a d.c.
control voltage. This is transformed to a control current to control the gain of the VCA.

During playback the VCA is in series with the signal path (see Fig. 13). It now works in reverse to the record mode. All frequencies that were compressed are expanded with the result, in conjunction with the pre-emphasis/de-emphasis applied, that tape noise is reduced over a much wider frequency range than that achieved with Dolby. It's not unlike the DBX system.

An r.m.s. (root mean square) detector is used since neither a mean-level nor a peak level detector will give an accurate output when a complex signal input is applied. What the r.m.s. detector does is to take the peak value of the input, square it, then take the square root of the mean value of successive squared peaks to produce an "effective value" output.

Audio Head Switching

The drum flip-flop pulses are used to switch between the outputs from the two heads during playback. This is done to eliminate noise from the head not actually scanning the tape. As the audio heads lag the video heads by 42° the drum flip-flop pulses cannot be used directly to carry out the switching. Two monostables triggered by the drum flip-flop pulses are used in conjunction with a flipflop multivibrator to introduce the 4.7 ms delay required for the switching pulses.

Dropout System

If a tape dropout occurs the level of the playback audio f.m. carrier falls to a level where it's insufficient to recover the audio without distortion or noise. Further noise and distortion occur during the switching between the outputs

Next four courses commence on JAN. 27th, MARCH 17th, MAY 12th \& JUNE 30th

VIDEO CASSETTE RECORDER SERVICING COURSE

INTENSIVE COURSE INTENDED FOR OUALIFIED TELEVISION SERVICE ENGINEERS OR APPLICANTS WITH SIMILAR BACKGROUND. THE COURSE COMBINES THE ADVANTAGES OF INDUSTRIAL AND ACADEMIC TRAINING WITH A HIGH PERCENTAGE OF PRACTICAL WORK.

Further details from:
of the two heads. Both dropout and switching noise must be removed without affecting the quality of the sound reproduction. This is done in IC13 (see Fig. 10). A switched hold circuit is used. In the event of a dropout the hold circuit, activated by a pulse from the dropout detector, holds the demodulated audio level at about 75 per cent of peak level for the duration of the dropout. Deemphasis and filtering smooth the effect of this hold action. Filtering is assisted by differentiating the audio signal and feeding the result back to the hold circuit. The audio flip-flop pulses are used to activate the hold circuit during the head switching periods.
As a check on the quality of the sound I've recorded the output from a compact digital disc on the tape. It's

Fig. 13: Block diagram of the playback expansion system.
difficult to tell the difference between the output from the disc itself and that obtained from tape playback. In fact the system works very well.

Next month we'll look at the long-play system in more detail.

TV Fault Finding

Reports from Alan Shaw, Steve Illidge, Philip Blundell, Eng. Tech., Hugh MacMullen, Jeff Herbert, J. G. Grieve, Malcolm Burrell and Steve Leatherbarrow

Toshiba FST Sets

We've had the following faults with the latest Toshiba sets with FST tubes.
First there was a Model 211E with tuner drift. A common enough fault maybe, but when we removed the 33 V stabiliser i.c. DA05 it was found to be a 1 N 4148 diode. Fitting a ZTK33B cured the fault. Over the next few weeks we came across many new sets with the wrong part fitted in this position. A phone call to Toshiba confirmed that there had been a production boob - maybe the symptom shows up only when a set is tuned to the higher channels?

The second problem we had with this model was purity errors. The set would degauss, but a few days later there would be another service call for the same complaint. The degaussing arrangement in this set consists of just one coil around the c.r.t.: Toshiba now supply a conventional pair of coils with connecting leads and plugs - fitting this completely overcomes the problem.

A blown mains fuse is usually caused by the 2SC3409 chopper transistor Q802 but beware - the SI8100D control chip IC801 will probably also be dud.

Video faults such as a smeary, negative-looking picture should cast suspicion on the TA7699AP chip IC501, though we did have one very peculiar negative-looking picture due to R 210 ($1 \cdot 6 \mathrm{k} \Omega$) being open-circuit.

Overall the FST Toshibas give an excellent picture but the 211 E 's sound quality leaves something to be desired as a result of its rather small loudspeaker. The plate glass screen needs to be removed quite frequently for cleaning. Be very careful when transporting these CTVs as the light grey cabinet finish on some versions is easily damaged.
A.S.

Tandberg/Lowe-Opta CTV4

This example of a rare breed had been fitted with a new tuner the week before. Now when switched on from cold it wouldn't tune in a station though the frequencysynthesis circuit was trying very hard to find something. For the first ten minutes the tuning voltage ramped furiously, then suddenly the picture would appear and would be fine for the rest of the day.

Freezing the tuner and the frequency-synthesis tuning module had no effect but the frequency divider module was found to be temperature sensitive: freezing the BC557
in this can brought the fault on, but replacing this transistor had no effect. Scope checks then revealed that the divided signal was being modulated by a line-frequency componenf which was coming in on the 5 V line. This supply comes from a winding on the line output transformer: the associated reservoir capacitor had dried up.
P.B.

ITT CVC820 Power Board

The problem with this set was no sound or vision and a quick check showed that the chopper output was very low at 40 V instead of 124 V . When the line output transistor was unplugged and a dummy load was connected the 124 V line returned to normal, so battle commenced in the line output stage. The diodes fed from the line output transformer were all blameless, so in went a new transformer (diode-split type). This failed to restore normal operation and the cause of the trouble was eventually found to be the horizontal shift transformer TR404. P.B.

Bang and Olufsen 7530/7802

Several of these sets have come to our attention with a faulty character generator chip (IC3). The fault shows up as horizontal green lines in the bottom right-hand corner of the screen - in one case it built up over a few minutes to a green square that covered the lower right-hand corner.
S.I.

Grundig 5010

The unusual fault with this set was field collapse after about ten minutes. As a first check we found that by just moving the field collapse service switch the fault would clear, only to return some ten minutes later. So we shorted out the switch, which quite often becomes intermittent due to dirt, but after the same period we had field collapse again. Whilst checking voltages under the fault condition we found that touching almost any point in the field timebase circuit with the meter probe restored the field scan. By being very careful we noted that under the fault condition the two GD241 output transitors were cold and had 30 V at their collectors. We eventually found that a gentle squeeze on the BD135 emitter-follower driver
transistor would restore the field scan. Changing this transistor cured the trouble, though no fault could be found with it.
H.MacM.

Hitachi CPT1471

This set had all the usual faults involving the chopper and field output chips and the field flyback transistor, with burnt resistors. But after exactly four hours the set would switch off with the customary chopper chip symptoms. After lengthy checks with the cabinet on and off heat was found to be the basic cause of the problem, mainly on the long, thin tin heatsink for the chopper and the line output transistor. By bolting on a fairly heavy piece of $5 \times 2 \mathrm{in}$. aluminium above the chopper itself to spread the heat upwards the fault was completely cured. The chopper chip is much too expensive to keep on having to change it, and the manufacturers don't take kindly to the return of solidstate components.
H.MacM.

Purity Problem

Despite checking the auto-degaussing circuit and manually degaussing this set (a Sony KV2020UB) there were intense purity errors. On a red raster test signal ninety per cent of the screen was blue, with lighter bands at the top and bottom - the only red was a small round blob on the right-hand edge of the screen. I concluded that the tube's shadowmask must have become detached but on fitting a replacement almost identical results were obtained.

Sony technical suggested that there was a scan coil fault and mentioned that they'd come across a case where a lightning strike had left the metal shield around the tube heavily magnetized. Sure enough by manually degaussing the shield, taking the coil over the top, sides and bottom of the cabinet, good purity was restored. The normal method of degaussing with the coil in front of the set had no effect on the purity, so the shield must have become permanently magnetised. Be sure to degauss the shield before suspecting the tube itself if there are persistent purity errors - it turned out to be an expensive lesson! J.H.

Philips CTX-S Chassis

This set suffered from low voltages - the e.h.t. was only 10 kV and the chopper's 125 V output was low, as was the line output transformer derived 150 V supply. The supply to the chopper was high. Replacing the two transistors in the chopper control circuit restored normal operation Tr7322 (BC548) and Tr7323 (BC558).
J.G.G.

Some Quickies

Rank T20 chassis: A two-inch high picture was found to be due to one of the field output transistors being opencircuit. Fortunately they're easy to change.
Sony KV1810UB: This one had a bright, smeary display. The $4.7 \mu \mathrm{~F}$ reservoir capacitor for the h.t. supply to the RGB output transistors was found to be the cause (C543 in earlier sets, C596 in the Mk. II version).
Körting hybrid CTV chassis: An intermittently dark picture was found to be the result of varying c.r.t. first anode supplies. These arrive at the tube base via a plug. and socket arrangement at the front of the chassis (from rear). The Paxolin panel here was discoloured: scraping the carbonised sections provided a cure.
Recent Finlux chassis: This set was dead with a short-
circuit chopper transistor. A circuit wasn't available but visual examination revealed a discoloured $270 \mathrm{k} \Omega$ resistor that read $1.5 \mathrm{M} \Omega$. Replacing this produced some of the best pictures we've ever seen on the face of a c.r.t. The resistor was of course the usual one that gives this symptom in a power supply of this type - for example the $150 \mathrm{k} \Omega$ resistor in the GEC 20 AX chassis and the ITT CVC20 etc. chassis.
S.L.

GEC C2110 Series

We still have a number of these sets out on rental, many still giving good results. Whilst field roll is usually due to C452 $(4.7 \mu \mathrm{~F})$ we recently had a case where it was due to the oscillator timing resistor R455 ($470 \mathrm{k} \Omega$). Incidentally, opening of the thermal resistor R 601 , giving a bright raster with flyback lines and no sound, has in our experience always been due to a power supply fault - usually the thyristor giving a high h.t. voltage.
S.L.

Decca 30 Series Chassis

Slowly decreasing width with a Decca 30 series chassis, coincident with brightness reduction and eventual springing of the line output valve's screen grid feed resistor, was caused by two old favourites - the line oscillator valve's $33 \mathrm{k} \Omega$ anode load resistor and the $330 \mathrm{k} \Omega$ resistor in the width circuit.
S.L.

Sony KV2704UB

One day this set developed what seemed to be a standby fault. When standby was pressed on the remote control unit the set went completely dead and the red LED at the front went out. Repeated operation of the on/off switch could bring the set to life but this required a certain knack. I lived with it for about a year (it's my own set) but friends found the set impossible to use. Investigation on board M (remote control etc.) showed that there were no supply voltages in the standby mode. This suggested a fault on power supply panel F2, which was removed for investigation. Since most modern sets are fairly reliable I tend to suspect high-value resistors. The circuit is the Siemens self-oscillating type chopper, with the start-up circuit consisting of D605, R605 (330k Ω), R 606 ($470 \mathrm{k} \Omega$), C609 and R607 (100Ω). A check on the values of R605 and R606 showed that they were both open-circuit. It was a relief to find that the set was fully operational once these resistors had been replaced and the board refitted. M.B.

Sony KV1810UB

I'm sure we all know these sets, by reputation if not by experience. It was with some trepidation that I received a call from a friend to look at one of them. "It smoked" he said, "so we switched it off". R608 in the start-up circuit and R642 in the switch-off protection circuit were clearly distressed, but the associated components D604, D605 and Q602 read o.k. when checked with a meter. Replacing the defective resistors and powering up resulted in a burst of smoke from R642, which disintegrated, leaving the set apparently working happily though R608 was noticeably hot.

There's not a lot in this part of the circuit. The start-up GCS Q602 also turns on when the set is switched off so that the pulse-width modulator monostable in the chopper power supply continues to operate to the very last otherwise the line output GCS Q510 can suffer. Q602 is
switched on and off by Q601. It's also necessary to keep the line oscillator running as long as possible at switch off, again to protect Q510. To this end D604, which is reverse biased during normal operation, is connected between the chopper output and the anode of Q602 to maintain the 19 V rail from which the line oscillator is run.

In normal operation the voltage at the anode of Q602/ cathode of D604 should be high - about 280 V . In this case however the voltage was very low. Clearly Q602 was not
being switched off as it should have been following the start-up action. Its base resistor R609 was found to be open-circuit while Q601 itself was short-circuit. A BC184 was found to work well in this position - Q602 was replaced as a precaution. This restored normal operation after a check for other impending troubles in the power supply and replacement of $\mathrm{C} 605(22 \mu \mathrm{~F})$ in the chopper driver start-up circuit - it had lost some of its capacitance.
M.B.

The Human Element

Who said "we're all in this together"? I can't remember, but he should have been in the TV trade. Now we can all make mistakes (like criticising PCL86s for example) and I'm not alone in this respect. We humans also tend to get into jams not of our own making - when wholesalers for example don't have in stock the parts they should. The individual dealer can't keep in stock every obscure part for every set, but the importers/agents for the relevant specimens might have the decency to do so - always assuming that you can find out who they are. When one's own and the agent's stock control and competence fail, what's one to do?

Help with a Decca 100

Sometimes on the other hand one gets unexpected help. One Saturday morning some time ago I was in attendance on a Decca 100. I found myself caught short on highvoltage zeners - there's a 186 V one on the power panel. No wholesalers were open of course so it looked like a loan set for the weekend. It then occurred to me that I could perhaps prevail on the chaps on Burley Road. Now it's a little bit off my patch and I'd never set foot in the place before, much less did I know any of them.

I strode into the shop and explained my predicament to the chap who said he didn't repair many Deccas and didn't have one of them in stock. But he did have an 80 "on the pile" and I was welcome to anything off that. He then proceeded to remove the relevant component from the set and point blank refused any payment for it.

The day was saved and they have my thanks: what a pity not everyone subscribes to the same ideals! On the phone the other day to a rather close neighbour in the business I was lectured in the most haughty manner on my naivety in expecting any such assistance and was made to feel rather like something you might tread in whilst walking the dog. Never mind, next time they want something - every dog has his day!

An Ageing Rank A823

Later that week an ageing (aren't they all?) Rank A823 chassis appeared, bearing Co-op livery and attempting to display a picture on its 19 in . tube. The owner said it made loud cracking noises. He realised that the picture was poor but said it would do. The cracking worried him however.

Well, in the dry atmosphere of our workshop it never murmured for hours on end. While I was waiting for something to happen I though it might be an idea to cure some of the more obvious faults. The poor convergence was easily put right by replacing the relevant potentiometers. In fact the convergence was so good that I decided to "blast" the tube.

Nick Lyons

At this point I should say that on the appearance of my home-brew "blaster" the other members of the staff are usually to be seen cowering behind substantial pieces of furniture. The blaster has an enviable record of success however, and this set was no exception. I was confronted with an A823 displaying one of the finest pictures I'd ever seen on one of these sets. My mind began to tick over: what had caused that original cracking? Perhaps, I surmised, the customer's living room suffers from a lot of condensation due to a gas fire, or maybe the kitchen is close by? If I cleaned around the cavity connector and dried it off well it should be all right.

So I reached forward to pull off the cavity connector. Zapp - a very nasty shock. After recovering from this I came to the conclusion that the cavity connector had decomposed. It seemed wise to prod around the cavity with a shorting lead to deck. Touching the plastic didn't produce any response, but when the lead strayed near the Aquadag - crack!

Having made sure that the 'dag and the cavity proper were fully discharged I set about examining the tube. The Aquadag earthing had all been removed. On trying to clean around the cavity connector I found that the glass was cracking in zig-zags for about two-three inches from the cavity while chips of glass were missing from the surface. Clearly the tube had been severely tracking across from the cavity to the Aquadag and some lunatic had thoughtfully "cured" the problem by disconnecting the earth from the 'dag and just allowing it to charge to the e.h.t. potential. The loud cracking noises the customer had heard were not actually the tube itself flashing over but the charged Aquadag flashing across to the metal tube shield!

On explaining the situation to the customer he said that as he had two small children who often played around near the set the possibility of the tube imploding was not something he could risk. Could we dispose of the set as we thought fit?

Well, the more we looked at the cracks in the tube's glass cone the more nervous we got. Ken said he didn't fancy having to carry it outside as it was somewhat colder there and the glass contracting suddenly might finish the thing off whilst he still had hold of it. In the event we dispatched the tube in the workshop, with a couple of old coats thrown over it and a length of Dexion - a long length.

The most worrying aspect of this little tale is that there are people who will carry out such work as was performed on this set, leaving the potential (no pun intended) risk of death or serious injury from severe shock and/or the effects of the tube imploding. In my view "cowboy" is not a strong enough term for such people.

Letters

THE NORDMENDE FIV CHASSIS

Pete Saunders' article on the NordMende FIV chassis (December issue) was comprehensive but I'd like to add a few notes - incidentally, the FC25 is the later version incorporating a Full Check 25 point diagnostic connection system.

The first step when working on one of these sets should always be to check the mains connection. Ensure that the neutral lead goes to chassis and the live lead to the fuse. Earlier sets have black and blue leads but the later ones with brown and blue are as often as not incorrectly connected.

In a technical circular NordMende stated that the M010 protection module must always be removed. At the same time D532, which is not present in early sets, must be added in series with the mains rectifier thyristor. It's type SSCIC0880. Whilst I was told by NordMende that a 3A, 1 kV type would do a number of 1 N 5408 s I fitted subsequently failed, leaving a charred mess and often damaged print. I now use a BY223. To fit, cut the print adjacent to the thyristor's anode and drill one hole: fit the anode leg of the diode through the hole and bend the cathode leg up to solder it to the thyristor's heatsink.
A more reliable replacement for the EW modulator driver transistor T410 when this fails is the TIP42. Mount it upside down on the heatsink, with extension wires down to the PCB for the base and emitter. The collector lead can be snipped off - the heatsink will make this connection.

I've found that a full linear scan is seldom obtainable when a 2 N 3055 is used as a replacement for the SM5C field output transistor. A TIP35C always works satisfactorily in this position. Intermittent height variation was traced to a dry-joint on R408 in the U2 supply circuit.

Loss of sound is occasionally caused by short-circuit turns in the sound output transformer. Intermittent sound has also been caused by the loudspeaker - this is annoying after confidently replacing the audio module only to hear the phone ring next day with the same complaint!

In common with some other continental TV sets tuning drift is made worse by having the tuning supply stabiliser (TAA550/ZTK33) dissipate too much power. NordMende changed the feed resistor (R219) from $11 \mathrm{k} \Omega$ to $16 \mathrm{k} \Omega$. I always use an $18 \mathrm{k} \Omega$ resistor byt then I've plenty of these removed from Grundig sets - I replace these with a $27 \mathrm{k} \Omega$ resistor. A green or grey metal-oxide type must be used.

Sticking on a particular channel can be caused by CB31 $(0.01 \mu \mathrm{~F})$ in the case of channel one or the equivalent $0.0033 \mu \mathrm{~F}$ capacitor in the case of channels $2-8$ (CB35/41/ $45 / 51 / 55 / 61 / 65$) going leaky. This will show up using an Avo on the high ohms range.

If R128 in the 24 V supply fails replace it with a 27Ω resistor as in later sets - I use the $1 / 3 \mathrm{~W}$ metal-film type.
That loud buzz, generally due to the mains filter choke L531 being in need of replacement, foxed me once. A new choke provided no cure and I eventually found that R557 ($470 \mathrm{k} \Omega$) in the active filter circuit was open-circuit. Remove to test. R557 has also been found to be responsible for ripple on the U1 h.t. line, though the more common cause of this is the active filter transistor T506
(MJ3000 in earlier sets, MJ3001 in later ones).
Occasionally a set won't start up due to a "lazy" thyristor: the same thyristor will normally work perfectly in another set . . .

A moiré like patterning, sometimes with colour running through, has been traced to the 11.5 V stabiliser transistor T203 - d.c. conditions o.k. but a scope check will show "grass".

Instant BU208 line output transistor deaths have cost me on occasions. No definite reason for this has been traced but the cause is probably poor plug-socket contact in the line scan circuit. As well as the BU208, D543 (TAA550/ZTK33), T501 (S6002), T506 (MJ3000/MJ3001) and sometimes the mains rectifier thyristor D538 (TAG6600 recommended replacement) are simultaneously killed.

A spare male pin stuck in a wooden handle can be used to check for a good fit of all the females in the line scan plug/socket connections. If you find a bad one, don't attempt to tighten it by squeezing. Find a better one there are dozens of unused connectors on the various cables running round the set.

Another warning: note if any of the plastic location spades are missing when plugs are removed. If they are, mark them with a dab of paint. If you're not familiar with this chassis it's very easy with missing spades to reconnect plugs in the wrong place - it's impossible to find a place for all the plugs if any are wrong when the spades are present and correct.

Odd N/S correction faults can be caused by R461 $(2 \cdot 7 \mathrm{k} \Omega)$ going either open- or short-circuit.

No mention was made of the awesome remote control system used with the NordMende FIV. It has as many wires inside as the early Dynatron remote control systems (but only two screws on the back - Les L-J.). The circuitry seems frightening, with an extra nineteen integrated circuits. To read the technical description in the manual is too much. Fortunately every "funny/intermittent" fault I've encountered has been on the 5 V line - due to the bridge rectifier or the 5 V stabiliser i.c.

Another bloomer: some of the remote control sets have a $240: 220 \mathrm{~V}$ autotransformer to supply the remote control circuits and many of these were wired incorrectly. Instead of 220 V , approximately 260 V is presented to the transformer. This doesn't seem to cause problems but rewiring is obviously desirable.

Finally, while we all know that L. L-J. hates/fears NordMendes some of us think that the FII, FIII and FIV were well ahead of their time. Does anyone know where I can find one of the four-screen sets? - I want one to play with. Or a teletext adaptor for the FIV remote control sets as a pressie for my favourite typist, who prefers the NordMende to the much more modern Grundig teletext set we're now watching.
Les Austin, Managing Director,
Ochre Mill Technical Services Ltd.,
Lower Moddershall, Stone, Staffs.

ELECTRON PATTERN PROGRAM

Users of the Electron microcomputer test pattern program (page 96, December 1985) can solve the aspect ratio problem mentioned in your editorial note by changing line 2010 as follows:
$2010 \mathrm{Y}=0.923 *(\operatorname{SQR}(\operatorname{ABS}(\mathrm{R} * \mathrm{R})-(\mathrm{X} * \mathrm{X})))$
If, like me, you prefer to work with a larger circle try R $=500$ in line 1960 , and for tidier text displays change line 20 to:

20 VDU 23,1,0;0;0;0;
Line 630 should read "IF INKEY . . ." of course.
Colin McLaughlin,
Harlaxton, Grantham.

SPECTRUM 48K COLOUR BARS

The following program for the Sinclair Spectrum 48K produces five colour bar patterns that fill the entire screen, including the border. Pressing and releasing the space key will sequence through them.

Lines $20-30$ put the code into the memory. Line 40 checks for correct checksum but is not infallible, so save the program before trying it out. Lines $50-110$ produce the patterns by using the machine code routine located at address 32976.

Poking address " A " switches the reference bar on or off (1 to 54).

Poking address " B " changes the colour of the reference bar (0) to 7).

10 LET $\mathrm{A}=33104$: LET $\mathrm{B}=33114$: LET $\mathrm{C}=0$
20 FOR X=32976 TO 33177: READ N
30 POKE X,N: LET C=C+N: NEXT X
40 IF C $<>22074$ THEN PRINT "CHECK DATA LINES": STOP
50 POKE A,54: POKE B,0: GOSUB 100
60 POKE A,1: POKE B,7: GOSUB 100
70 POKE B,2: GOSUB 100
80 POKE B,1: GOSUB 100
90 POKE B,4: GOSUB 100: GOTO 50
100 IF INKEY $\$=$ CHR $\$ 32$ THEN GOTO 100
110 RANDOMIZE USR 32976: RETURN
120 DATA $33,251,201,34,34,128,62,7$
130 DATA $50,141,92,50,72,92,205,178$
140 DATA $13,62,10,237,71,237,94,33$
150 DATA $0,88,62,7,14,1,205,7$
160 DATA $129,61,6,6,197,14,5,205$
170 DATA $7,129,61,193,16,246,14,1$
180 DATA 205,7,129,205,31,129,201,245
190 DATA 203,39,203,39,203,39,17,32
200 DATA $0,229,6,24,119,25,16,252$
210 DATA $13,225,35,32,241,241,201,118$
220 DATA $6,27,16,254,6,62,205,116$
230 DATA $129,221,35,134,16,248,14,192$
240 DATA $62,7,211,254,6,9,16,254$
250 DATA $62,0,211,254,6,3,16,254$
260 DATA $237,68,13,32,235,35,205,16$
270 DATA $129,14,0,237,68,237,68,6$
280 DATA $54,205,116,129,221,35,78,16$
290 DATA $248,62,7,211,254,62,127,219$
300 DATA $254,31,48,2,24,185,62,62$
310 DATA $237,71,237,86,62,0,211,254$
320 DATA 205,107,13,201,62,7,211,254
330 DATA $211,254,62,6,211,254,62,5$
340 DATA 211,254,0,62,4,211,254,62
350 DATA $3,211,254,0,62,2,211,254$
360 DATA $62,1,211,254,0,62,0,211$
370 DATA 254,201
M. J. Edis, G4RPT,
Broughton, Nr. Kett, Northants.

G9AED - POSTSCRIPT

I think I can provide some information of interest to Andrew Emmerson whose article on G9AED appeared in the December issue. If I'm right, the vehicle is still in everyday use.

Its last operational job for the IBA was at the Dover transmitter site (Church Hougham). In about 1964/5 my friend and mentor Geoffrey Hutson was instrumental in

TV LINE OUTPUT TRANSFORMERS

persuading the IBA to donate the caravan to the Canterbury College of Technology where Geoff used it to run the first colour TV courses in Kent. Eventually, when a colour TV laboratory became available, "The Caravan" became a development laboratory and office for members of the Electronics Section.

In about 1978/9 the caravan was donated to the Canterbury and District Model Engineering Society at Sturry near 'Canterbury, where it's in regular use as a store and committee room cum tea-bar.
Geoff Lewis,
Canterbury, Kent.

VIDEO FADER CORRECTION

Here's a correction note on the video fader unit featured in the May 1985 issue, page 376 . The sync separator transistor $\operatorname{Tr} 9$ is shown as type BF178 in the components list. This is an npn type, while the circuit shows that a pnp transistor is required in this position. I've found that a BFX88 works all right - the base connections are the same.
Mark Lamb,
Birkenhead, Merseyside.

RANK $\mathbf{Z 7 1 8}$ CHASSIS

Reader J. Thomas of Durham (full address not supplied) asks if we've published anything on servicing the Rank Z718 chassis, pointing out that information is difficult to obtain since Rank withdrew from the domestic radio/TV field. Readers with this problem will find a detailed article in the August/September/October 1982 issues of Television.

Test Report: The Portasol Soldering Iron

Eugene Trundle

The denigrators of sound broadcasting often refer to it as "steam radio". What would they make of the subject of this review - a gas soldering iron, in portable and rechargeable form? It works with ordinary butane gas, dispensed from the sort of pressurised refill cylinder you can buy at a tobacconist: one fill of gas is sufficient to run the iron for up to an hour, depending on the heat setting used.

The Portasol iron is 173 mm long and 19 mm in diameter. It has a removable protection cap incorporating a pocket clip and uses an ignition system that consists of an abrasive wheel and an ordinary cigarette lighter type flint. Replacing the cap automatically shuts off the gas valve and shrouds the bit to prevent risk of burn damage when the iron is put down.

The bit is nickel plated and incorporates the burner system and three cooling fins to prevent heat conduction to the plastic body. It screws in for easy replacement and is available in two tip sizes, 3.2 and 2.4 mm - the latter is supplied as standard. Bit life is quoted as up to thirty hours. At the opposite end is the filler valve and regulator wheel to control the heat output. The instrument is finished in bright orange and weighs about 65 grams when fully charged.

On Test

I started at the newsagents where seventy odd pence bought me a big refill - enough I would think to run the iron for many months in normal use. This dispenser came with several adaptors, one of which fitted the Portasol. The fuelling time was four seconds.

It's easiest to light the tip with the iron's regulator at maximum. This also gives the fastest warm-up time of course. From lighting to reaching the melting point of solder took about seventeen seconds at normal room temperature. I found that the heat regulator's range was quite wide, and would agree with the quoted equivalent dissipation range of $10-60 \mathrm{~W}$.

When used flat out the heat developed was sufficient to make a good hot puddle of molten solder on the top casing of an ELC1043 varicap tuner - this is the most practical and familiar illustration I can make of its capabilities. When turned to minimum the iron was well able to deal with small work on fine PCB tracks etc. - I did some repairs to a cracked panel at the minimum heat setting with good results, bridging the cracks with 5A fuse wire.

> O.OM1-बNO.

The Portasol soldering iron.

Out of doors next to see how it performed in the open. Once lit even a howling gale (simulated on this still evening by running round the garden with the iron held aloft in Olympic style) failed to extinguish it. The great outdoors did not diminish its soldering capability, though higher heat regulator settings were required. The man next door, already suspicious of my eccentricity, must have become convinced that I'm ready for the Funny Farm - he's probably right.

Applications

The iron wouldn't be used for bench repair work in normal circumstances because of the need to refuel it, ignite it and wait for warm up. Since it has no element or electrical connections however it can't cause trouble with voltage spikes or current surges, while the absence of an earth permits its use on floating or isolated components. These are points worth remembering. The Portasol really comes into its own for outdoor work where no convenient electric power source is available. Such pastimes as maintenance of cable TV distribution networks, mending TV surveillance cameras in situ, dealing with masthead and microwave dish mounted amplifiers and terminations, and telecommunications field work suggest themselves.
The iron should be a boon to those who deal with in-car or marine electronic equipment. Irons that operate at 12 and 24 V are available, but it's not always easy or convenient to hook up to the battery and the high current connecting wire required for low-voltage irons is heavy and inflexible. It's not easy to trail a wire to the car's rear speaker mountings, down to the cruiser's bilge or up to the cabin roof! Perhaps it's me, but operation from a large lead-acid battery seems to produce more spitz-andsparken, bangs and burns per hour than the average Guy Fawkes night . . . The other advantage of the Portasol in these situations is that its wide $10-60 \mathrm{~W}$ capability enables it to replace two sizes of conventional soldering irons.

Conclusion

While it's not suited to bench work the gas iron seems to me to be excellent in all other situations. It's far cheaper in first cost than a rechargeable electric soldering iron, needs less maintenance, is lighter and has a greater thermal capacity than most. It's the most "ready" soldering iron possible, with little to go wrong and an ability to work anywhere from the chimney stack to the river bank or down a mine if required. Provided it never develops a gas leak - as cigarette lighters sometimes can - it should have a long service life.

A lot of thought and ingenuity has gone into this patented design, and it shows. At its cost of about $£ 17 \cdot 50$ plus VAT to the trade it's well worth considering - unless you're tied hand and foot to the indoor bench. The price quoted includes two interchangeable bits, 3.2 and 2.4 mm : replacement bit-burner assemblies cost about $£ 2.70$ each plus VAT. Wichita and Watford linemen, ICE vendors and mobile menders take note! I can also thoroughly recommend this iron to aerial erectors and dish riggers,
field engineers and cablepersons.
The review iron was lent to me by SEME Ltd., Units 2 E and 2 F , Saxby Road Industrial Estate, Melton

Mowbray, Leics. LE13 1BS (0664 65 392). The Portasol is also available from Anglia Components and Phab Electronics.

And There's Another Funny Thing

Les Lawry-Johns

What strange things some sets can do. When Miss Converge brought in her Pye T194 portable (Philips TX chassis) I thought it would be another quick job. So she stood there while I fumbled about. She said it was the on/ off switch and I wanted to show her that it wasn't. The supply was reaching the series regulator transistor but its output was only about 2 V . So I checked the control circuit and everything seemed to be o.k. I took the tube base off to check for shorts or heavy loading but found nothing.
"Try the switch again" said Miss Converge.
"It won't make any difference" I growled.
Just to show her I switched the set on again and the sound burst out loud and clear. The only thing that was different was the disconnected tube base. I put this back on and the heater glowed merrily, followed by a raster. She smirked.
"It's not the switch" I insisted.
"All right then, try it again."
So I switched off, waited a while and switched on again. Nothing happened. I removed the tube base and the sound burst out. Put the tube base back on again and a picture appeared.
"If you fit a switch it'll be all right."
"Yes dear, if I fit a switch to turn the tube's heater off until the set has started up it'll be all right."
"Well do that then."
I was in no mood to argue, so I fitted a single-pole switch on the back cover and wired it in series with the tube's heater. I realised I was doing something wrong, but if that's the way she wanted it at least this would save me having to think. We could now switch the set on with the rear switch off, then close the rear switch and the tube would light up and everything was fine. I made sure she understood the procedure - keep the rear switch in the off position until the sound comes through.

After she'd departed, feeling satisfied that she'd been right all along, I was left to wonder what part of the control circuit had been at fault. I'd checked everything (I -thought). Have you had a funny feeling like that? You probably found out what it was, like I should have done.

To Sweat or Not to Sweat

It's not often that a G11 makes me sweat, but one did the other day. The chap said he didn't want to spend more than twenty quid on it and I told him I didn't think that would be necessary.

I checked the h.t. line for a start. There was a short that disappeared when I removed the BU208A's plug, from the top. So I removed the line output transistor subpanel, fitted a new one and also a 1 A fuse in the h.t. fuseholder (the one in there was $2 \cdot 5 \mathrm{~A}$). Both the 3.15 A mains fuses were intact.

With the new panel fitted I switched on. There was a flash from the $3 \cdot 15 \mathrm{~A}$ mains fuses and I found that two of the bridge rectifier diodes were dead short. I wondered
about this but fitted two BY127s and new fuses and tried again. There was a brief rush of sound and a spark from the tube base, then nothing. The glow switch on the power panel glowed and some smoke came from a resistor. The 1 A fuse had failed and the new BU208A was short-circuit. Oh yes, I'd also taken out the green $470 \mu \mathrm{~F}$ h.t. reservoir electrolytic and fitted a nice blue one.

The price was beginning to escalate so I thought I'd better check the tube. It was cracked. I took my blue . $470 \mu \mathrm{~F}$ electrolytic out and wrapped the whole thing up.
"Sorry sir, it'll be a lot more than twenty quid I fear."

Sam Boy

Sam is a local character who is slipped the odd pound by everyone who receives his "Morning Guv" greeting. This enables him to live comfortably without the need to work - except to clean the occasional car or something. He reminds me of a song we used to sing during the last war.
"Sam boy was a lazy goon
who never would work in the afternoon,
too tired was he, too tired was he.
Into the woods he used to go
just to get his head down low
under a tree.
When along came a bee
making this noise
bzz, bzz, bzz, bzz.
Go away you bumble bee
I ain't no rose, no silly little flower,
get off my (censored) nose, away from here.
If you want a bit of
you can
but you'll get no here.
A silly song maybe, but an evocative one. It brings back memories of the pubs in Gib (Main Street) and Alex (Beer Street) . . .
Prodnose: I don't see the point of all this and suspect you're merely trying to be vulgar. Your editor has been consulted and you are asked to stick to TV matters. Myself: I'm sorry. I'll try to do just that.

Nobody Told Me

So where do all the turkey eggs go? The question occurs to me at this time of year and no one's ever been able to shed any light on the matter. Until the other day in the pub this Sunday lunchtime.
"I asked him why you can't buy turkey eggs. The farmer said they only lay fertile ones which are hatched. The rest of the time they just gobble."

Well I never. Not like chickens after all. I also heard it said that farmers don't know how long pigs would live if they were allowed to. Then they turned to me and asked how long a TV set lives? I had to say that after ten years it's anybody's guess.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

16181	1.04	2SC1124	126	${ }^{2 S 0348}$	16.13	AN5435	308	${ }^{\text {BC186 }}$	027	BD222	0.69	BF195	0.14	BSR59	129	B7X79 RANGE	
16182	1.04	2SC1151A	4.72	250350	520	AN5610	7.3	${ }^{8 C 187}$	0.20	B0225	0.49	${ }^{\text {BFI } 196}$	0.17	${ }^{\text {BSAS33 }}$	129		0.10
16334	0.98	${ }^{2 S C 152}$	4.68	250350 A	280	AN5612	351	BC204	0.16	B0228	0.63	BF197	0.16	${ }_{\text {BSTBE }}$	4.98	${ }_{\text {Clob }}$	0.10
16335	09	2SC1162	1.05	250353	7.50	AN5613	350	BC207	0.14	BD229	1.15	BF198	0.17	BSTC0146	248		0.5
16446	0.98	2SC1172	22	250389	241	ANG630N	429	BC212	0.11	B0231	0.50	BF199	0.17	BSTC0246	69	C1310e	0
16600	1.38	2SC1172\%	220	250401	3.50	ANC236	3.58	BC2128	$0 \times$	B0232				BSTE240	20.0	Calsio	2
16799	289	2SC1195	325	$22^{2} 551$	20	ANS342	151		010	80324	0.5	Brato	0.37	BSTCO233	612	CA3044	350
16801	0.54	2SC1213	0.89	250588 A	1.9	ANG344	58	${ }^{\text {c }}$	0	-	0.	BF216	0.35	BSIC1z3	134		200
16802	127	2SC1226	1.46	250600	325	ANG353	16.00	BC213	0.10	${ }^{\text {B0238 }}$	0.4	BF20	0.3	BSTC3146	0.9	ca3060	1.65
16883	5.30	2SC1306	1.8	2 S0621	127	AN6551	135	BC2131	0.10	BD239	0	-	0.0	ESTCCO143	3.07	ca3065	129
16905	0.86	2SC1307	1.9	250636	0.40	AN6552	0.68	BC2131B	0.15	${ }_{\text {BD240 }}$	0.37	${ }^{\text {BF23 }}$	0.17	BSTC0643	3.31	CA3089	0.88
1774	9.30	2SC1316	4.10	2SD657	280	AN7115	25	BC214	0.10	B0241	0.39	8F240	0.10	${ }^{\text {BSV578 }}$	3.49	CA30095	1.40
1712	351	$2 \mathrm{SC1364}$	0.49	250679	3.35	AN7145	200	BC214L	0.14	B0242	0.39	${ }_{8 F 241}$	0.17	${ }^{\text {BS }} 19$	0.00	Ca3094	220
1 N 4001	0.06	$2 \mathrm{SC1338}$	120	${ }^{2 S 0731}$	211	AN7146	9.90	${ }^{\text {BC214L }}$	0.26	BD243	0.50	8F244	0.57	BS 20	0.34	CA3131EM	3.12
in iname Namb	0.05	2SCC1388 2SC1410	${ }_{239}^{0.9}$	${ }^{250737 E}$	50.02	AN7150	245	${ }^{\text {BC225 }}$	0.10	${ }^{802434}$	037	BF245A	0.37	BSX21	0.87	CAH76023N	6.60
inames in 4004	0.0 .05	2SC1413	239	${ }_{2 S 0883}^{250811}$	${ }_{15} 5$	AN7151	278	${ }^{\mathrm{BC} 23}$	0.10	${ }^{82244}$	0.51	BF255	0.20	BSV52	0.50	CBF $16848 \mathrm{~N}-07$	1.56
inalos	0.08	2SC1505	1.00	2 25056	6.51	AN7158	675	${ }_{\text {BC2384 }}$	013	B024a	0.5		028	BSTV9	0.51	C04001	0.38
1N4006	0.08	$2 \mathrm{SC1578}$	8.74	250869	7.17	AN7218	1.64	${ }_{\text {BC239 }}$	0.12	B0246C	0.98	${ }_{\text {BF25 }}{ }_{\text {Bras }}$	0.02	${ }^{\text {Blibas }}$	1.61	CDS002	02
1 N 407	0.07	2SC1617	329	$2 \mathrm{SDOs98}$ TR	5.45	AP58076	4.68	BC2998	0.25	${ }^{1} 8253$	1.05	${ }_{\text {BF258 }}$	0.36	${ }^{\text {BTIOB }}$	1.45	C040811	8.20
1 141488	000	${ }^{2 S C 1670}$	3.13	40408	0.50	AS560S	1.58	BC251A	0.12	B0278A	0.80	8F259	034	BT109	1.45	C04012	02
${ }^{1} \times 14488$	0.05	2SC1678 2SC1810	1.98	40594	1.53	AU113	297	BC252	0.12	80317	260	BF262	0.5	BT112	248	CD4013	0.4
ins402	0.15	${ }_{2 S C 1815}$	0.65	40536	1.3	AY0k	208	BC25	025	B0318	25	BF223	0.57	BT113	248	C04016	0.45
1N5423	0.16	2SC1829	22	40871	1.53	BA130	0.14	${ }^{\text {BC262 }}$	02	${ }^{8037}$	0.20		0.31	BTIt6	120	CO4017	0.80
1 N 5694	0.15	2SC1855	1.88	40872	1.53	BA1310	1.9	BC287	0.50	BD379	0.76	${ }_{\text {BF273 }}$	0	${ }^{\text {BTIV2 }}$	1.76 217	C04020	123
1 N 5408	0.35	$2 \mathrm{SCL1875}$	4.7	6085	121	BA1320	1.38	${ }^{\text {BC234 }}$	0.50	80380	0.76	8F274	020	BT121	248	C04023	0.28
${ }^{1} 1 \mathrm{~N} 914$	0.009	${ }_{\text {2SCl1891 }}$	${ }_{3}^{3.09}$	${ }^{744530} 7805$	0.35	${ }_{\text {BAl }}{ }^{\text {BA } 1350}$	275	${ }^{\text {BC3O1 }}$	0.55	BD410	0.52	BF324	023	BT122	248	c04025	0.6
155012 A	0.81	${ }^{2 S C 1929}$	225	${ }_{7805} 70.3$	1.16	${ }_{\text {BAIL8 }}$	0.19 0.35	${ }_{\text {BCan }}$	1.05	BD412		${ }_{\text {BFF337 }}$	0.33	${ }^{\text {BTI }} 123$	1.98	C04028	08
15921	0.05	2SC1942	5.70	7806	0.73	BA154	0.40	8C307	0.18	BD433	0.47	${ }_{\text {BF3 }}{ }^{88}$	0.40	BT125 BT126	248	C04049	0.4
${ }^{2 N} 1313015$	027	${ }_{2}{ }^{2 S C 1945}$	4.53	7808	230	BA156	0.05	BC307A	0.14	BD434	0.49	BF355	0.49	BT128	248	CDS050	0.55
2N1303 2N218	0.38	2SC1953 2SC197	1.98	${ }_{7812} 7812 \mathrm{TO}-380$	285	${ }_{\text {BAIL }}$	0.20	${ }^{\text {BC308 }}$	0.18	${ }^{\text {BDa }} 35$	0.40	${ }^{\text {BF352 }}$	0.96	${ }^{\text {BT } 1288}$	3.07	C04052	0.7
2N219A	0.40	2SC1959	0.31	${ }_{7815}^{7812}$	0.51	${ }^{\text {BA }}$	0.19	${ }^{\text {bcasen }}$	0.11	${ }^{80436}$	0.00	BF333	0.00	TBA970	306	C04053	0.80
2N2222	0.38	2SC1962	1.98	7818	0.92	bazz	1.56	${ }_{\text {BC317A }}$	0.13	${ }^{\text {BDO438 }}$	0.40	${ }_{\text {BF391 }}$	0.50	BT1518007	1.15	CDA069	029
2N2646	0.80	${ }^{\text {2SC1599 }}$	220	7824	0.54	bazza/2	0.17	BC327	0.15	BDa41	1.2	BF393	1.9	BTT6018	28		${ }_{0}^{0.75}$
2 N 2304	0.36	2SC1985	0.55	AC107	0.73	84301	0.87	BC328	0.11	BDa42	0.66	BF47	0.4	BTT6218	251	CDA511	1.10
${ }^{2} \mathbf{N 2 0 0 5}$	0.43	${ }^{2 S C 19883}$ TR	7.00	${ }^{\text {ACLI }} 17$	0.33	BA302	124	${ }^{\text {BC337 }}$	0.09	${ }^{80507}$	0.90	BF418	187	8T78024	4.43	CP5521	17.85
2N2306 2N3053	0.37	asczove 2Sc2ne9	0.34 233	${ }_{\text {A }}{ }_{\text {AC128 }}$	0.43	BA311 BA312	1.35	${ }^{8 C 3} 38$	0.12	${ }^{\text {B0509 }}$	1.0	BF423	029	8T18124	4.89	CVI2F	3.07
2 N 3504	0.98	2SC2027	1.12	AC138	0.09	BA313	0.76	${ }_{\text {BCa }} \times 8$	0.24	${ }^{\text {B0518 }}$	1.50	${ }^{\text {Brams }}$	0.12	817824 BTT824	2.97	${ }^{\text {cxa34 }}$	${ }_{\substack{11.83 \\ 314}}$
${ }^{2} \mathrm{~N} 3055$	0.61	${ }^{2 S C 2} 288$	211	${ }^{\text {ACL141 }}$	029	BA317	0.01	ВС440	1.09	B0519	1.50	BF450	0.35	BU105	1.50	C×104	${ }_{9.64}^{3.14}$
	0.05	${ }_{\text {2SC2057 }}$	1.18	${ }^{\text {ACLI42K }}$	0.43	${ }^{\text {BA3 }}$	0.09	${ }^{\text {BCAA }}$	0.45	${ }^{80529}$	130	BF451	029	BU106	248	Cx108	9.16
2N3702	0.14	2SC2078	239	${ }_{\text {AC153 }}$	0.34	${ }^{\text {BA3238 }}$	1.73	8C455	0.36	B0530	1.10 0.5	${ }_{\text {BFA57 }}$	0.41	${ }^{\text {BU108 }}$	1.50	Cxiog	7.86
2 13703	0.14	${ }^{2 S C 2091}$	1.30	AC176	0.30	bag01	0.51	BC460	0.2	B0534	0.53	BF459	0.52	${ }^{\text {BUU10 }}$	220		${ }_{818}^{1183}$
2 23704	0.14	${ }_{2 S 2}{ }^{\text {2SC2122A }}$	5.12	AC179	027	BA511 (C)	298	BCa61	0.4	B0535	0.7	BF460	1.56	BU1119	4.16	C×131	11.83
2N3705 2N3706	0.14	2SC2141 2SC2166	1.86	${ }_{\text {AC183 }}$	0.72	${ }^{\text {BA552 }}$	20	${ }^{8 C 462}$	0.30	${ }^{80553}$	0.61	${ }^{85469}$	0.31	BU124	1.38	C×134	11.0
2N3707	0.16	${ }^{2 S C 216}$	0.09	AC187K	0.6	${ }^{\text {BAF25 }}$	8.98 78	BC464	0.54	${ }^{805538}$	0.74 0.67	BF470 BF 47	${ }_{0}^{0.55}$	${ }^{\text {Bul26 }}$	0.50	${ }^{\text {Cx }} 136$	11.49
2N3711	0.11	${ }^{2 S C 2 z 33}$	220	AC188	0.25	BA532	257	BC465	0.6	805448	0.83	BF472	0.33	${ }^{\text {Buzo4 }}$	1.58	${ }^{\text {cx }}$ (139	11.83
${ }^{2} \mathbf{2} 3711$	200	${ }^{25 C 271}$	4.14	AC1880. 1	0.40	${ }^{\text {B4as3 }}$ (IC)	295	${ }^{\text {BC4 }}$	0.3	BD580	1.17	8F479	0.51	Bu205	1.08	C×157	4.81
	1.71		1.14	ACI 188 K AC193k	0.40	${ }_{\text {bab304A }}$	258 396	BC478 BCA79	0.38	80590 80598	1.17	BF480	0.00	${ }^{\text {Bu2ab }}$	127	${ }_{\text {cxis }}$	4.10
2N3819	0.41	2SC2335	10.41	AC 194K	0.65	BAV18	0.21	BC532	0.28	${ }^{8067}$	0.53	${ }^{\text {BF4995 }}$	0.6	${ }^{\text {Bu20] }}$	1.12	cx170 Cx 17 col	7.02
2 N 3823	1.17	${ }^{2 S C 2526}$	187	AD140	1.06	BAVI9	0.11	${ }^{\text {BC546 }}$	0.17	B0679	0.57	BF506	0.43	BU20802	1.97	CX506	${ }_{9} 9$
2N3904	0.02	${ }^{25 C 2551}$	1.20	ADI45	1.00	bavzo	0.11	${ }^{\text {BC54 }} 7$	0.10	${ }^{\text {B06080 }}$	0.76	${ }^{\text {BF509 }}$	0.41	Buzaba	1.12	Cx507	7.62
2 N 4101	1.30	${ }_{2 S c} 5570 \mathrm{~A}$	1.05	${ }^{\text {ADD }}$ A 161	${ }_{0}^{0.56}$	BAV21	0.11	BC548 BC 549	0.10 0.10	BD681 $\mathrm{BDC95}$	2.48	${ }^{81553}$	0.20	BU2080	1.95	Cx755	1295
2 N 4240	330	2SC2578	6.35	AD162	0.45	BAX13	0.11	BC550	0.40	BD996	247	BP595	027	${ }^{\text {BU238 }}$	25	-1693	${ }^{29}$
2 N 4444	0.90	${ }^{25 C 2644}$	4.82	AD228	1.05	bax16	0.11	BC556	0.16	80697	3.50	BP596	0.18	BU312	238	DEC1	220
2Na914 2 55064	0.72	${ }^{\text {2SC2571 }}$	1.99	${ }_{\text {AFP114 }}^{\text {AF1 }}$	247	${ }^{88119}$	0.17	${ }^{8 C 555}$	0.10	${ }^{80698}$	1.85	BF597	027	BU326	200	DEC2	220
2N5233	0.50	2SC2785	0.75	${ }_{\text {AFF1 }}$	0.50	${ }_{\text {BCiof }}$	0.13 0.11	${ }^{\text {BC5559 }}$	0	${ }^{80699}$	3.9 3.7	8F617 Bf618	1.05 1.05	BU326A BU328S	220	E1222	0.40
${ }^{2} \mathrm{~N} 5294$	0.50	${ }^{2 S C 3} 72$	1.40	AFF178	120	BC108	0.15	BC560C	0.14	B0702	3.70	${ }_{\text {BF694 }}$	0.20	${ }^{\text {BU4 }} 406$	1.0	E5326	028
${ }^{2} \mathbf{2 N 5 2 9 6}$	0.49	${ }_{2 \text { SC373 }}$	1.16	AF127	0.50	${ }^{8 C 1088}$	0.15	${ }^{\text {BCams }}$	0.36	B0707	1.06	BF75	0.59	BU407	0.80	E5529	0.25
${ }^{2} 2 \times 5298$	0.50	2SC388	1.33	${ }_{\text {AFF }}^{\text {AFF } 179}$	0.53	${ }_{\text {BCLIO98 }}$	0.12	${ }^{\text {BCam }}$	0.20	80709	1.12	${ }^{87758}$	0.65	BU4070	1.00	E8021	129
2 25490	1.40	2SC394V	0.81	AF179	0.5	BC113	0.14	${ }^{8} \mathbf{C} 638$	0.20	${ }^{\text {B0807 }}$	0.80 0.3	${ }^{85759}$	0.077	${ }^{\text {BU4412 }}$	5	E99033	0.46
2N5496	0.50	${ }_{2 S} 2$ S41	219	AFI 180	0.55	BCII6A	0.25	BC639	0.20	BD809	0.75	BF762	0.75	BU426A	1.67	ESM432C	${ }_{4}^{0.50}$
${ }^{2} \mathbf{2 N 6 1 0 7}$	${ }_{1}^{0.58}$	${ }^{2 S C 458}$	0.34	AF181	0.53	BC119	035	BC640	024	BD810	0.69	BF870	0.30	Bu500	1.95	ESM532C	4.60
2N6109 2N6122	1.58	2SC495 2Sc508	0.92 370	${ }_{\text {AFF }}^{\text {AF } 182}$	${ }_{0}^{0.55}$	${ }^{8 C 126}$	0.020	${ }^{\text {BC879 }}$	0.39	B0899	0.74	${ }^{\text {BF781 }}$	181	BU508A	1.89	ESM632C	4.60
2 2N6130	0.72	2SC515A	185	AF239	0.43	${ }^{\text {BCL }} 135$	0.14	${ }_{\text {BCx }}$	0.0	${ }^{80} 88895$	231	${ }^{8 \times 595}$	0.88	BU56080	1.50	ESM 732 C ETR5016	4.600
${ }^{2} \mathbf{N 6 1 3 3}$	125	${ }^{25 C 536}$	029	AF279	0.88	BC137	0.18	BCX33	02	80899	24	BF970	0.69	BU807	1.80	${ }_{\text {¢ }}$	${ }_{5} 5$
2N6178 2N6180	0.73	2SC537 2SC58	${ }_{369}^{0.54}$	Al100	4.03	${ }^{8 \mathrm{BC} 138}$	-0.34	${ }^{\text {BCX34 }}$	0.40	${ }^{\text {B0901 }}$	0.79	Bfras	0.4	Bu826a	1.76	FT3055	1.16
${ }_{\text {2 }}$	0.73	2Sc6051.	1.16	${ }^{\text {All } 102}$	${ }_{268}^{5.68}$	${ }_{\text {BC149 }}$	${ }_{0}^{0.25}$	${ }_{\text {BCX }}{ }^{\text {B }} 70$	0.57 0.30	BDS BDV64	${ }^{0.4}$	${ }^{\text {BfR52 }}$	0.50	BIN46	1.00	GF758	0.94
2N693	0.43	${ }^{25 C 652}$	1.46	All13	1.36	BC141	034	BC71	0.21	BDV65B	120	BR79	0.29	Biwsia	3	GF761	1.13
2 N 707	0.40	${ }^{25 C 673}$	123	AN115	3.58	${ }^{\text {BC142 }}$	0.31	BC772	0.20	B0×32	1.15	BFR81	0.50	BuW84	1.39	GH3F	19
${ }_{\text {2SA10276 }}$	0.45	${ }^{25 C 5881}$	4.40	AN155	1.80	${ }^{\text {BC143 }}$	033	B0115	0.36	B0X53	125	BFR26	1.09	BUX84 TRAN	1.00	HA11211	253
${ }_{2 S A 329}$	0.40	${ }^{2} 565885 \mathrm{~A}$	289	AN208	358	${ }_{\text {BC147A }}$	0.12	${ }^{80124}$	10.71	B0x53A 80×538	4.93 3	${ }_{\text {BFFR }}^{\text {B }}$	1.03 0.30	${ }^{8 Y 125}$	0.13	HA11215	500
$2 \mathrm{SA351}$	1.17	${ }^{25 C 693}$	0.53	AN210	228	BC148	0.13	BD124P+KIT	0.69	BDX54B	251	BF/42	0.43	BY133	0.11	HA11235	4.00
2SA4899	1.17	$2 \mathrm{SC710}$	0.09	AN214	228	BC1488	0.13	${ }^{80131}$	0.0	BDX62A	195	BF/43	0.43	BY164	0.47	HA11226	8.71
2SA493	1.07	${ }_{\text {2SC734 }}^{2 \mathrm{SC} 717}$	1.20	AN2140 AN231	240 14.89	${ }^{\text {BCILA8C }}$	0.11	${ }^{80132}$	0.42	${ }^{\text {BDX }}$ 853A	1.95	Br94	0.40	${ }^{8 Y} 176$	1.58	HA11229	288
2SA628	1.14	2 CC735	1.16	AN234	${ }_{5} 14.82$	8C1498	0.13	${ }^{\text {BDO }} 13$	${ }_{0}^{0.35}$	-	261 261	${ }_{\text {BFPN }}$	${ }_{0}^{0.60}$	${ }^{\text {BYY }}$ BY9	0.08	HA11235	248
254637	1.46	${ }^{25 C 782}$	247	AN236	378	${ }^{\text {BC153 }}$	0.14	80136	026	B0x76	0.98	BFX30	0.05	BY194	0.47	${ }_{\text {HAl }}$	${ }_{28}^{28}$
$2 \mathrm{SA673}$	12	2SC790	1.71	AN238	6.79	${ }^{\text {BC154 }}$	0.14	${ }^{80137}$	0.36	Boyzo	121	BFX84	0.37	${ }^{\text {BY187 }}$	0.7	HA1125	429
${ }^{2 S A 683}$	1.51	${ }^{25 C 806}$	$\stackrel{1129}{139}$	AN239	5	${ }^{8 C 157}$	0.14	80138 80139	${ }_{0}^{0.46}$	BDY6201	4.68	${ }^{\text {Bra }}$ 8 85	0.41	BY189	${ }_{1.2}^{1.76}$	HA11251	4.47
2SA748	1.08	2 2SC328	0.28	AN241	1.71	${ }^{\text {BC1 }} 159$	0.16	${ }_{\text {BD }} 140$	${ }_{0.3}$	${ }_{\text {BF115 }}$	0.10	Brx $8 \times \times 88$ 88	0.53	BY201/2	1.50	${ }_{\text {HA1 }}$	287
254818	1.80	2sca87A	301	AN245	4.46	BC150	0.40	8 B 144	1.13	BF117	0.65	BFX89	0.44	BY20320	0.41	HA1148	5.06
${ }^{2 S A 8335}$	250	2SC876 2Sc301	${ }_{4} 0.56$	AN247P	425	BC161	0.28	80150	0.75	${ }^{\text {BFF } 118}$	0.67	BPY50	032	${ }^{\text {BYa }}$	0.17	HA11414	5.65
${ }_{2}$ SAS59 1	1.26	23c923A	1.50	AN253	297	${ }_{8 C 168}^{8 C 167}$	0.35	${ }^{80157}$	0.67	${ }_{\text {BF }}^{\text {BF } 212}$	0.05	${ }^{8 \times 5} 5$	007	BY208	0.45	HA1144	7.8
${ }^{2 S A 956}$-Y	1.16	${ }^{25 C 930}$	0.54	AN262	1.98	BC169C	0.16	BD160	1.00	${ }_{\text {BF1 }} 17$	0.13	${ }^{\text {BLY49 }}$	220	${ }^{8 \times 210-400}$	0.18	HA11580	1.16 9.00
${ }^{2 S 88325}$	387	${ }^{25 c} 935$	4.13	AN272	7.99	BC170	0.16	${ }^{\text {BD163 }}$	0.71	BF137	029	BR100	022	-	0	HA1160	4.18
2S8375 2SE400	3.7	2Sc936 2Scso	${ }_{3}^{5.58}$	AN281	${ }_{5.52} 6$	${ }_{\text {BC171 }}$	0.11 0.10	BD165 BD186	0.02	${ }^{8 F 152}$	033	${ }^{\text {BRILO1 }}$	0.70	${ }^{\text {Brez3 }}$	0.05	НА1166X	5.36
2 2S407	324	${ }^{25} \mathbf{C 9 4 0}$	4.68	AN301	5.55	${ }_{\text {BC172 }}$	0.1	${ }_{\text {BDI }} 188$	0.73	${ }_{\text {BFI54 }}$	0.58	${ }_{\text {BR88B }}$	0.66	BY24-400	0.99	HA1186	1.55
${ }^{2 S B 411}$	330	2SCS92	0.70	AN302	399	BC173	0.17	80175	0.43	8 F 157	0.33	BRC-M-300	0.97	${ }^{\text {Braz6 }}$	1.13	${ }_{\text {HAlI711 }}$	20.16
${ }_{2}^{2 S 8554}$	250		0.5	AN330	4.39	${ }^{\text {BCLI74 }}$	027	${ }^{8017}$	0.43	BF158	0.18	BRC116	0.67	$8 \mathrm{Br27}$	0.49	HA11713	${ }_{8.13}$
${ }_{2 S B 56}^{2 S 54}$	1.39 280	2SD1128	225	AN305 AN313	9.471	${ }^{\text {BCII7 }}$	020 026	${ }^{\text {BD179 }}$	0.49	${ }^{\text {BF159 }}$	0.18	${ }_{\text {BRCI330 }}$	1.76	${ }^{\text {BY228 }}$	0.60	Hal1714	7.76
2586184	27	2SD1265	0.76	AN315	246	BC179	026	${ }^{\text {BDO }} 182$	0.99	${ }^{\text {BFF } 167}$	0.38	${ }_{\text {BRCP443 }}$	1.00	${ }_{\text {BY298 }}$	1.07	HA17174 HA1715	8.13 8.13
${ }^{258681}$	3.95	2 2S01398	225	AN316	553	BC182	0.09	BD183	0.99	BF173	0.34	BRC4444	1.00	8Y299	0.60	${ }_{\text {HA1 }}$	22\%
${ }_{2}^{2 S 88955}$	1.98	2SD1453	0.75 38	AN318	${ }_{5}^{62}$	${ }^{\text {BC1 }}$ B22	0.11	${ }^{80184}$	121	${ }_{8517}{ }^{\text {PF }}$	0.55	BRC5296	0.7	$\mathrm{BLW}^{\text {B }} 6$	0.34	HA11725	18.26
${ }_{2 S 8861}$	0.05	${ }_{2 S 034}$	0.39	${ }_{\text {AN }}$	5.59	-	0.25 0.10	${ }^{80187} 8$	${ }_{0}^{0.53}$	${ }_{\text {BF178 }}^{\text {BF179 }}$	0.40 0.36	BRC6109 BRCP8	10.80	B7/ ${ }^{\text {B }}$ 855-350	029	HA11738	2285
${ }^{2 S C 1034}$	6.55	${ }^{250235}$	0.60	AN337	5.37	BC18218	0.14	8D190	0.09	${ }_{\text {BF1 }} 180$	0.36	${ }_{\text {BRCz }}$	219	BYイ55-600	0.15	HAA1180 HA192	5.15 0.00
${ }^{25 C C 1050}$	5.06	250237	298	AN340p	1.17	${ }^{\text {BCI }} 183$	0.10	${ }^{80201}$	0.53	BF181	0.33	BRC84	200	BX6I RANGE	0.18	HA11989	7.18
${ }_{\text {2SCLIO69 }}$	1.128	${ }^{2 S 0291}$	29	AN335		${ }_{\text {BC1 }}^{\text {BC1831 }}$	0.11	${ }^{80202}$	0.00	${ }^{85182}$	034	${ }^{\text {BRXX4 }}$	0.50	$8 \mathrm{~B} \times 11.600$	125	HA12005 in	9.00
${ }_{2 S C 1104}$	1.16 3	${ }^{2 S 0313}$	259	ANS5111	129	${ }_{\text {BCIO4 }}$	0.25 0.13	${ }^{80} 80204$	0.050		0.39 0.43	BRX49 BRY39	0.53	$8 \times 211-350$ $8 \times 71-600$	0.02	HA 1203 HA1306	1.72
2SC1106	454	2 20315	291	AN5132	4.39	BCIP4L	0.14	B0207	1.79	BF185	0.39	BRY55	0.67	B7x94	0.14	${ }_{\text {HAIS30 }}$	728
${ }^{2 S C 114}$	675	2503250	0.91	AN5250	289	BC184LB	025	B0208	123	BF194	0.14	BRY56	0.50	BW56	120	HA132	218
IF YOU	T	EE IT UST	ASK	FOR OU	E. GI	E MAKE M	DEL	LOCATIO	EM	MBER	DD 0.	60p	HAN	UNG.	15%	VAT TO 1	TAL

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

Long-distance Television

Roger Bunney

November was an extremely gloomy month - with reception matching the weather. Very few Sporadic E signals were received: Iain Menzies (Aberdeen) noted RUV (Iceland) ch. E4 on the 5th, late in the evening, and that's about the only item of importance. The Leonids Meteor Shower produced lively results here in the Southampton area, with many pings of miscellaneous material in Band 'I, particularly on the morning of the 17th. You'll get very short pings of signal via MS reflection in Band I on most mornings of course - if you're prepared to wait with a receiver on tune and with good sync locking. The lack of signals is depressing but is to be expected during the winter months, with only Belgium ch. E3 and Holland ch. E4 rising at times here above the noise level to confirm that the receiving system is actually working!

Robert Copeman (Sydney) reports that the Australian SpE season has started, with many Australian ch. 0-2 signals present, also Dunedin ch. 2. The new sunspot cycle has commenced, with a count of 32 on the 8 th rising to 50 on the 14/15th then dropping towards the end of the month. Hopefully we'll in due course experience another record peak of solar activity, with world-wide reception of the low v.h.f. channels, as we experienced in the late seventies.
During the October tropospheric openings Keith Chaplin (Barrow-on-Soar, Leics.) received a suspected MTV-1 (Hungary) signal in Band III. It was photographed at 1842 GMT on October 27th. The ch. R9 signal

The transmitting site at La Dole, Switzerland.
couldn't be identified at the time but the "Video Reklam" caption suggested MTV. It's now been identified by Igor Hajek as an advertisement for a domestic furniture factory at Kanisza, Hungary. From this information it appears that the transmitter was the 5 kW outlet at Miskole, north east of Budapest. A remarkable catch! Apparently an ARD-1 (W. German) signal faded and the stronger MTV signal came up for some two minutes before fading back again beneath ARD-1.
The \log of October tropospheric reception received from Ryn Muntjewerff (Holland) is more like a list of EBU TV transmitters: 21 E. German, 9 Swiss, 2 Austrian, 15 Polish (including TVP-1 Ploc ch. R29), 11 Czechoslovakian, 17 Danish (inclduing 2 regional), 18 Norwegian, 49 Swedish and 10 Russian stations were received in Band III and at u.h.f. The Norwegian signals all came from low-power relays. The most impressive Russian reception was from Vilnius on ch. R31 $(600 \mathrm{~kW}$ e.r.p.) at a distance of $1,350 \mathrm{~km}$. This was on the 17 th at 0957-1120. Other transmitters received include Slonim, Kaunas, Klaipeda, Srodno and Kalingrad, mostly on the 27th from 0630 onwards. Ryn comments that many of the signals were S5. Ducting was present since they were swamping the nearer stations. Ryn lives in an excellent, flat area of course and has a high lattice tower with stacked multiple director u.h.f. arrays for each group.

News Items

Switzerland: A correspondent recently visited the La Dole transmitting site and took the accompanying photograph of the mast. The Telecine aerial panel is just below the u.h.f. cylindrical shroud (which houses the SRG/TSI arrays), on the opposite side to the microwave dish, and appears to be horizontally polarised. There are also Band I/I/III arrays on the mast - the use of the Band III system is not known.
New Zealand: Four regional "warrants" are being offered for New Zealand's third channel, which is to be commercially financed. Three warrants will cover the North island, comprising the Auckland, Bay of Plenty and Wellington regions, while the South island will be offered as a single region. A fifth warrant is on offer to provide a news service. A Maori group, the Aotearoa Broadcasting System, which has NZBC support, is applying for one warrant and says that if successful a third of its programme output will be in the Maori language.
S. Korea: Three of the five TV networks started stereo/ dual language transmissions last October, using a modified (for the system M standard) version of the W. German system. The main sound is at 4.5 MHz , as usual with system M, the second carrier being at 4.724 MHz . The Japanese single carrier f.m.-f.m. system was tried but dropped in favour of the W. German two-carrier system. Dual-sound receivers are available at typically $£ 350$ for a 16 in. colour set, and for about $£ 50$ you can get a sound tuner for use with an older set. My thanks to Jean-Louis Dubler for this and other information on Korean TV.
Satellite news: The Orbita Technologies Corporation of New York is offering a terminal capable of tracking the Russian Molniya craft, which is in an elliptical orbit. The terminal costs some $\$ 56,000$ and is intended for use by universities to provide Russian first programme material for language studies. The system includes a 15 ft dish with head electronics and standards conversion to system M for feeding to a standard USTV set. Though Gorizont is visible along the eastern seaboard no geosynchronous

Russian craft that carries TV can be seen farther west. Molniya operates in a non-geosynchronous orbit to provide TV coverage of far northerly Russian outposts that can't receive signals from a satellite in orbit over the equator.
In brief: The NOS Goes transmitter has been seen using the FUBK pattern with a "Goes" identification during the early morning period. . . . A decision on how to operate the Swedish third channel, either as a commercial or PayTV service, has still not been made though a start is due later this year. . . . Despite funding problems the third Egyptian channel has now opened, with two hours of transmissions on most days, four hours on Thursdays and Saturdays.

Tandy Dual-standard Portable Review

We were recently able to test the new Tandy dualstandard 5in. monochrome portable Model 16-9030 - the "Portavision". At the time of writing this set is in short supply, but it should be readily available in Tandy stores from late January. The UK version features full coverage of Bands I/III/IV/V system I (UK), with switching for system L (French standard). A variant that initially came into the UK by mistake (in very small numbers) is a 220 V version for systems $\mathrm{B} / \mathrm{G} / \mathrm{L}$.

It's an attractive set measuring $8 \times 47 / 8 \times 107 / 8 \mathrm{in}$. Power is from a 240 V a.c. mains supply (lead supplied), an external 12 V d.c. source (lead not supplied) or nine HP2 (D) internal batteries. A standard 3.5 mm earpiece jack with speaker muting is fitted. The seven-section telescopic aerial extends to $315 / 8 \mathrm{sin}$. A flush, coaxial socket is fitted on the left-hand side and adjacent to this are switches for internal/external aerial selection and system changeover (I / L).

For tuning there's a vertical thumbwheel and a band switch for u.h.f., v.h.f.-H (Band III) and v.h.f.-L (Band 1). The tuning control is positive in action with no backlash. Tuning indication is via vertical tuning scales and a moving centre strip - which proved accurate. The scales are marked 2, 3, 4 (chs. E2/3/4), 5 through 12 (chs. E5-12), 1 through 6 (chs. L1-6) and at u.h.f. chs. 21-68. The numbering for $1-6$ is based on the provisional French channel numbering when the Band III services were being re-engineered: in practice the channels are L5-10 (L2-4 are in Band I). Since the French Band I channels have reversed sound/vision spacing, Band I reception of French signals will not work correctly (there's no reference to French Band I reception in the instruction book).

The Tandy 5in., dual-standard Portavision Model 16-9030.

AERIAL TECHNIOUES

WE
HAVE
IT
ALL
HERE

Yes indeed we have - and it's all in cur CATALOGUE FOR 1986 packed with Aerials, Amplifiers, Fitters, Rotators, Hardware etc. etc. for all types of aerial installation, requirement including TV/FM DXing within Bands 1 to 5 inclusive. Multi-Standard PAL SECAM colour televisions are featured for DXing, Domestic and Overseas television reception. AERIAL TECHNIQUES also provide a complete and comprehensive consultancy service for All reception queries/problems (SAE please). We can now offer an attractively priced 11GHz Satellite System for the reception of ECS 1, INTELSAT V and other Satelifites, separate leaflets are available on request.
For a speedy dispatch, ACCESS and VISA Mail \& Telephone orders may be placed for any of the tems listed in our comprehensive Catalogue.
We are active TV/FM DXing specialists - your guarantee of honest and knowledgeable advice
Xers-Special Offer:
ANTIFERENCE UP1300 VHF Masthead Amplifier ($40-230 \mathrm{MHz}$) for Bands 1,2 \& 3 Gain 19 dB , Noise figure only 2.5 dB

C16.90
Matching 12 V Power supply unit for use with the above amp $\mathrm{C1125}$
WHETHER YOUR NEED IS FOR LOCAL OR FRINGE RECEPTION, ALTERNATIVE CHANNELS, TVFFM DXING, OR FOR A DISTRIBUTION SYSTEM, AERIAL TECHNIDUES IS THE 'ONE STOP' ADDRESS FOR ALL. EQUIPMENT.

AERIAL TECHNIQUES IS UNIQUE OUR HIGH QUALITY CATALOGUE COSTS ONLY 65p.
Why not send for your copy today - please include an SAE with all enquiries. All prices inclusive of VAT and carriage Delivery 7-10 days.

AERIAL TECHNIQUES (T)
11 Kent Road, Parkstone,
Poole, Dorset BH12 2EH. Tel: 0202738232

Measurement showed the following coverage: Band I $46 \cdot 5-70 \cdot 25 \mathrm{MHz}$, Band III $175-228 \mathrm{MHz}$, Bands IV/V $456-$ 872 MHz . Internal (non-user) adjustments are provided for I.f. and h.f. tracking, so it's possible that the u.h.f. coverage could be extended downwards to take in the 435 MHz ATV band.

The construction of the electronics is relatively good. The two tuncrs are minute, each measuring $15 / 8 \times 1 \times$ $1 / 2 \mathrm{in}$. Both have varicap tuning and three stages - r.f. amplifier/mixer/local oscillator. The u.h.f. tuner's i.f. output is taken to the v.h.f. tuner for further amplification and both tuners have a.g.c. The i.f. strip consists of a fixed-gain preamplifier, a SAW filter and an i.c. for gain/ a.g.c./detection etc. Switching for positive- or negativegoing vision is via a buffered phase inverter. On the sound side there's switch selection between a system I intercarrier circuit and a tuner-fed system L i.f. strip.

The gain was found to be good, the screen being very lively and the contrast adequate. The i.f. selectivity, given the wide i.f. bandpass characteristic, showed a very sharp fall at h.f., indicating an excellent SAWF skirt response. A degree of adjacent channel interference will be inevitable under strong SpE conditions with the transmitted carriers 2 MHz or so apart. For fringe reception at u.h.f. the selectivity was found to be good, the gain high and the picture quality sharp. The receiver responded well to weak Band 1 MS signals, with immediate locking. Timebase locking showed a wide pull-in range, even on weak signals. Slightly different line lock positions were noted for positive- and negative-going vision signals.

When used for Band I reception the telescopic aerial produced instability across the entire band, but perfectly stable results were obtained with an external aerial. In any
event the telescopic aerial would not be used for efficient reception - the enthusiast would use a more conventional aerial array. There's a clear circuit diagram in the booklet supplied.

I felt that the flush-mounted coaxial socket was rather fragile - it could possibly cause intermittency in time. It -might be better to use a short coaxial lead terminated in a line socket to avoid wear on the panel-mounted socket. It seems a pity that the three W. European standards (I, B/ G and L) are not covered - no mention is made of the scrambled Canal Plus Band III signals.

In conclusion I was very impressed with the performance and potential of the receiver - in fact I bought one. Available from Tandy stores at $£ 89.95$ inclusive.

1986 Meteor Shower Dates

The Quadrantids Shower occurred on January 1st-6th. The rest of this year's meteor showers will take place as follows:

Lyrids, April 19-25th peaking on the 22nd.
May Aquarids, April 24th-May 20th, peaking on May 5th.

Delta Aquarids, July 15th-August 20th, peaking on July 29th.

Perseids, July 25th-August 20th, peaking on August 12th.

Orionids, October 16-27th, peaking on the 21st.
Taurids, October 20th-November 30th, peaking on November 1-10th.

Leonids, November 15-20th, peaking on the 17th.
Geminids, December 7-15th, peaking on the 13th.
Ursids, December 17-25th, peaking on the 22nd.
Our thanks to the British Astronomical Association (Meteor Section) for the above information.

An unusually high peak of intense MS activity was produced by the Draconids/Giacobinids Shower (which is not expected to produce activity this year) on October 8 th, 1985 between $0730-1300$ GMT. The receiver system used for monitoring (a BAA forward-scatter radar tuned to $7(0 \cdot 312 \mathrm{MHz})$ saturated over the $0915-(9955$ period. Dr. J. W. Mason would like to receive reports of identified reception and any observations at 51 Orchard Way, West Barnham, West Sussex PO22 0HX - not questions or requests for information please, just reports which will enable enthusiasts to contribute to original research. Send details of reception, time and location.

New Aerials

Three new aerials have become available in the UK over the past few weeks.

The South Midland Communications Ltd. (Rumbridge Street, Totton, Southampton) HS965V is a vertical, colinear sleeved receiving system housed in a fibreglass tube some 1.86 m long. It clamps at the base end to a support mast while the upper end features a form of topcapacity hat. This takes the form of three horizontally positioned fins. The base stub has three ground-plane radials. It's intended to cover the range $60-950 \mathrm{MHz}$ (the suppliers say it provides useful gain down to below 50 MHz). The gain is 3 dBd over the upper part of the coverage.

Revco Electronics Ltd. (Modbury, Devon) have introduced the Radac wideband $25-550 \mathrm{MHz}$ system which is intended for use with scanners. Revco describe it as a "nest of dipoles" - it has twelve elements arranged around a central support insulator. The lower-frequency elements are inductively loaded.

The above aerials have SO239 terminations. The Radac can be obtained from Garex Electronics, 7 Norvic Road, Tring, Herts. - we hope to review a sample shortly.

The Wolsey Colour King and Triax BB Grid are familiar aerials to most TV enthusiasts, comprising four full-wave dipoles stacked one above the other with a large reflector plane. This arrangement gives a wide operating bandwidth. Jaybeam Ltd. (Kettering Road North, Northampton) have now introduced a similar system called the Aluminium Billboard (Model JBB/4). This covers 470860 MHz with a peak gain of 13 dBd , a typical front-back ratio of 25 dB and a horizontal beamwidth of $48^{\circ}(-3 \mathrm{~dB}$ points). A balun is fitted.

French System LChannels

The French System L channel allocations are as follows:

Channel	Bandwidth (MHz)	Vision carrier (MHz)	Sound carrier $(M H z)$
L2	49-57	55.75	49.25
L3	53.75-61.75	60.5	54
L4	57-65	63.75	57.25
L5	174.75-182.75	176	182.5
L6	182.75-190.75	. 184	190.5
L7	190.75-198.75	192	198.5
L8	198.75-206.75	200	206.5
L9	206.75-214.75	208	214.5
L10	214.75-222.75	216	222.5

French Fifth Service Channel Allocations

The following list indicates when channels allocated for the new fifth French TV service will become available for use. Actual service starts may take a considerable time but throughout the coming year we should be able to receive an increasing number of French private (commercial) TV stations, particularly during tropospheric openings.

Channels allocated at end 1985:

Lyon - 22, 25, 28
Toulon-57, 60, 63
Grasse-Cannes - 63
Cherbourg - 35
First quarter, 1986:
Paris - 33, 36, 35
Marseilles - 32, 38
Nantes - 65, 21, 58
Lens/Bethune/
Douai/Arras - 51, 54
Nancy - 49, 52, 55
Le Havre -4,53,56
Dijon - 46, 57
Reims - 58, 64, 61
Second quarter, 1986:
Bordeaux - 40, 43, 46
Toulouse-29, 32, 34
Valenciennes - 49, 37
Saint Etienne - 2, 28
Tours - 30, 33, 36
Rennes - 31, 34, 55
Orleans - 35, 32, 47
Brest - 57,60, 63
Angers - 51, 54, 39
Dunkerque - 59, 62
Le Mans - 59, 62, 65
Le Creusot - 23, 60, 63
Bayonne - 30, 33
Troyes - 50, 53, 56
Valance - 65, 53

Lille - 47
Grenoble - 34, 37, 4
Montpellier - 31, 37, 34
Nimes - 31, 37, 58

Metz - 47, 50
Poitiers - 41, 44, 47
Perpignan - 41, 44, 47
Sant Nazaire - 49, 52, 55
Besancon-37, 21
Maubeuge - 32
La Rochelle - 48, 51, 54

Caen - 38, 60, 63
Avignon-51,54,57
Limoges - 38, 45
Amiens - 49, 52, 55
Thionville - 59
Lorient - 59, 62, 65
Angouleme - 31, 34, 37
Saint Quentin - 30, 33, 36
Montlucon - 49, 52, 55
Nevers - 41, 46, 36
Bourg-en-Bresse 38, 52, 32
Pau - 57, 60, 63
Aix-en-Provence - 59, 62
Hagondange - 56

Servicing Notes on the Amstrad CPC464

Christopher Holland

Following last year's series of articles on microcomputers, which used the Amstrad CPC464 to illustrate the techniques involved, the following servicing notes should be of interest: they are based on eighteen months' experience of this computer and its accompanying monitors, the colour CTM640 and the green screen GT64.

First, the good news for all TV technicians is the fact that the great majority of problems encountered with these units relate to the monitors and tape decks, which should be familiar territory. Microcomputer faults as such are relatively rare and tend to show up early in the warranty period. The fault-finding principles here are similar to those required with modern microcomputercontrolled VCRs, although the relationship between the symptoms displayed on the monitor's screen and the actual fault is not always obvious. The i.c.s used in the computer are very reliable, which is just as well since most of them are soldered directly into the double-sided print: a useful rule of thumb is that the i.c.s that normally give trouble are the ones the designer has decided to fit in i.c. holders.

Computer Faults

The most common computer fault is that at switch on the monitor's screen is either blank or full of garbage. The cause is usually failure of the ULA chip IC116 (20RA043) or the microprocessor chip IC111 (Z8OA). If possible, substitution is the simplest check as both are pluggable. If this fails to effect a cure, try the following steps:
(1) Check the 5 V supply and earth lines to the major chips, particularly the ULA, the Z80A and the ROM i.c. (IC103, TMM-23256P-1950). In the event of an intermittent 5 V supply, check the socket for the supply lead from the monitor.
(2) Check the clock pulses - a frequency counter is needed for this. Note that the 16 MHz crystal X101 rarely gives trouble, also that the wire link soldered across the body of the crystal is a convenient earth connection point for probes etc. (the ULA's heatsink is not earthed). Check for the 16 MHz clock pulses at pin 8 of the ULA: if absent suspect the ZN7400 clock oscillator IC125. The Z80A is clocked by a 4 MHz pulse at pin 6 : if missing check transistor Q103 (ZTX312L - shown as TR3 on the PCB) and confirm that 4 MHz pulses are leaving the ULA at pin 39.
(3) Check the reset pulse. This is fed to pin 26 of the Z80A, pin 35 of the PIO chip (IC107) and pin 37 of the ULA. Failure of these reset pulses is normally due to IC110 (74LS132).

Other problems experienced with the computer include the following.

If any of the keyboard buttons fail to respond or do so intermittently, suspect dust or dirt on the keyboard contact PCB: this is a fairly robust panel and is not prone to broken tracks.

The complaint "crashing out", or in layman's terms a program that stops at some point while it's running, accompanied by failure of the computer to respond to any instructions, is invariably caused by the ULA i.c.

Liquid spillage normally seems to occur via the printer and disc ports. While the most common liquid spilt into VCRs seems to be beer, home computer users seem to be coffee drinkers. I'm not sure what conclusions we can draw from this! While I ve seen a few VCRs effectively written off by beer, the CPC464*s PCB seems to be fairly tolerant of coffee and cleaning the areas affected should provide a cure.

The Cassette Deck

As previously mentioned, problems with the computer section of the CPC464 are fairly rare: much more common are faults with the tape deck causing programs not to load or to load partially or intermittently. This shows up. on the monitor as "read error A" or "read error B" messages. The first steps to take are to clean the tape deck heads and to confirm that the problem is not due to poor quality tapes - watch out for distinctly second-hand looking C 90 tapes that have provided years of audio use before being acquired for the computer.

Once the heads have been cleaned, check the head alignment by attempting to load a good quality prerecorded software tape - the "welcome tape" that comes with each CPC464 is suitable as it comprises cleven blocks of data. If "read error" messages appear as soon as loading commences, realign the head while monitoring the data being loaded at pin 7 of IC302 on the cassette recorder PCB.

Should the tape load perhaps seven or eight blocks of data before a "read error" occurs, or even intermittently load the whole program, suspect a faulty cassette motor. These can develop wow and flutter after a period of use in some bad cases this can be heard from the internal loudspeaker and be seen on a scope.
"Read error A " is usually caused by a faulty motor while "read error B" is due to incorrect head alignment. This should be taken as a guide however, not as a hard and fast rule. Failure to load anything usually means that the heads are way out of alignment. Note that the heads themselves don't usually give trouble.

Monitors

Finally the area where TV technicians will feel most at home, the CTM640 colour monitor and the GT64 green screen monitor. The circuitry used is straightforward but the following notes may be of help.

With a dead colour monitor the usual culprit is the switch-mode power supply chip IC501 (SKT7308). If this should fail be sure to check all the following components unless you want to see the replacement i.c. disintegrate at switch on: resistors $\mathrm{R} 501(5 \cdot 6 \Omega, 5 \mathrm{~W}), \mathrm{R} 502(1 \Omega, 3 \mathrm{~W})$, R511 ($10 \Omega 2,0.25 \mathrm{~W}$), R521 ($1 \Omega,(0.25 \mathrm{~W}$) and zener diodes D507 (RD3.6FB1) and D510 (SR2M). With a dead set whose power supply is functioning normally, check zener diode D4(1) (RD11EB2) in the protection circuit if there's no line timebase activity.

The only other problem likely to be encountered is one of the primary colours missing. In this event check the
relevant output transistor on the tube base panel.
The only thing to watch out for on the green screen monitor is the complaint "goes into lines after a few hours". In this case check the adjustment of the line hold control L703. We've had to reset this on a number of monitors after they've been in service for about a year.

The easiest method of doing this is to centralise the picture with $L 703$ after programming in a border of a different shade of green to the rest of the screen. Lack of line and field sync, as well as video problems, is often due to the lead that connects the keyboard to the monitor these leads can have a hard life.

Video Scrambling Techniques

Andy Emmerson, G8PTH

The main reason for encoding or scrambling a video signal is to prevent unauthorised viewing. Whether the material is being broadcast or distributed via cable it's likely to be available to those not supposed to watch the programmes. In the USA, receiving and decoding subscription signals without payment is legally "theft of service". In addition to the commercial aspects there are also political reasons for scrambling. For example, several European governments have insisted that satellite TV signals are encoded to prevent their reception by domestic viewers - this is the reason why Sky Channel uses such an elaborate scrambling technique (Oak-Orion) which I believe has not to date been cracked by enthusiasts. Other scrambling techniques are usually less sophisticated and present little challenge to those prepared to experiment or alternatively buy a readymade pirate decoder. It's estimated that in the USA between 25 and 30 per cent of subscription TV viewers are pirates.

To the broadcast professional any form of scrambling is a profound nuisance. Not only is the encoder another piece of equipment to go wrong, it also introduces deliberate video signal distortion. No broadcaster likes to transmit a degraded signal, particularly if he has no control over its linear restoration at the receiving end.

Basic Scrambling Arrangements

Video signal encoding systems can be classified in several ways. The simplest division is between off-air and cable-only arrangements. The former tend to be more sophisticated. Scrambling implies the need for a key or reference signal to be sent to make descrambling possible. If this signal can be sent along the same cable, disguised by being at a different frequency, the decoding circuitry can be much simplified and the cost to the operator reduced. This option is not available to off-air broadcasters however, making the decoders much more complex.

A more interesting method of classification is by the technique used. These include (1) concealed channels, (2) traps, (3) reverse traps, (4) video inversion, (5) sinewave sync suppression, (6) outband gated sync suppression, (7) inband gated sync suppression, (8) variable line delay and (9) active line rotation. These techniques can all be applied on either a static, pseudo-random or dynamic basis. In addition they can be used singly or in various combinations. The accompanying audio signal can also be handled in a number of ways.

With dynamic encoding an incomplete signal is transmitted. A complex algorithm is required at the receiving end to reconstitute the signal in its original form. The algorithm can be supplied in the form of a magnetic card which the subscriber inserts in his decoder - this "smart card" would be supplied only to paid-up subscribers. Further, the algorithm/card can be changed regularly.

Many systems use addressable decoders which require a signal supplied by the broadcaster to turn them on. Each decoder has a digital "serial number" and is activated by a code transmitted during the field blanking interval. Stolen decoders and defaulters can have their service instantly withdrawn from the broadcaster's central computer.

The Concealed Channel Technique

The concealed channel technique is simple but effective so long as viewers have normal TV sets. It involves using "mid-band" channels on cable TV networks. Many frequencies cannot be used for broadcasting since they are allocated to other radio services. There is no reason why a subscription cable TV service should not use them however. They can be made viewable to customers by means of an r.f. converter. This technique is becoming less popular as TV sets and VCRs in both Europe and the States are increasingly being supplied as "cable ready" with all-band tuners that cover the between band frequencies.

Traps and Reverse Traps

Traps and reverse traps are cable TV techniques. The trap is nothing more than an effective notch filter tuned to whatever channel is used for the premium programme. When placed in shunt across the customer's feeder cable he's prevented from seeing this programme: it's simply removed when the customer pays the subscription fee. Clearly a secure housing is required for the trap generally a locked case.
The reverse trap is just as crude. With this technique a "spoiler" signal is injected in the guard band between the upper end of the vision bandwidth and the audio subcarrier. It distorts both signals, making the subscription channel unusable unless the cable company inserts a notch filter to remove the spoiler. In this case however the knowledgeable viewer can provide his own notch filter.

Video Inversion

Static video inversion is a simple technique and requires the decoder to turn the signal the right way up again. When performed on a quasi-random, line-by-line or frame-by-frame basis, as in the Oak-Orion system, it is much less simple to deal with. The clue to decoding this mess may be supplied by signals in the line or field blanking intervals or by an algorithm in the decoder itself.

Sinewave Sync Suppression

With a standard video signal the most negative-going part of the signal excursion is the sync section that's used to control the scanning. If a line-rate sinewave is added to
the signal - see Fig. 1 - the receiver will instead lock to the deepest part of the video waveform, with most unattractive results! The sinewave required for decoding is transmitted as low-level a.m. on the audio subcarrier. Unscrambling the video involves demodulating the sinewave, inverting it and using it to "straighten out" the distorted video signal.

Gated Sync Suppression

Outband gated sync suppression is another cable TV only technique as it requires a separate pilot frequency for the decoding signal. As we've already noted, a TV set relies on a negative-going sync signal to time the line and field scanning. If we suppress the sync pulses by 6 dB in amplitude the receiver will lock to random video information, producing a scrambled picture (see Fig. 2).
To restore the picture to normal, the scrambling waveform is inverted and transmitted as a.m. on a separate frequency known as the pilot frequency. This pilot frequency is generally hidden in a section of the r.f. spectrum not used for TV, often between $93-114 \mathrm{MHz}$. The demodulated signal is added to the scrambled waveform to boost the sync pulses by 6 dB .

The inband gated sync suppression technique is similar to that just described, only in this case the descrambling signal is contained within the bandwidth of the TV channel as amplitude modulation of the audio subcarrier, as in the sinewave sync suppression technique previously described. This makes it suitable for broadcast use.

Variable Line Delay

Variable line delay is the technique used for scrambling the French Canal Plus signals. It's also used in N. America. The principle is to delay some lines of the TV frame to a greater or lesser extent, on a pseudo-random basis (see Fig. 3). This creates a picture with much reduced definition. The decoder has to switch in delay lines of variable length in the correct sequence in order to reconstitute a clean picture. Further information on the system used for Canal Plus and a pirate decoder design that hit the headlines was given in the December 1984 and June 1985 issues of Television.

Active Line Rotation

Active line rotation is a BBC technique proposed for DBS use. It's the most ingenious of those described in this article since the TV line is sliced across its length at up to 256 points. The resultant line segments are then transmitted in quasi-random sequence. A decoder provided with the appropriate algorithm has the task of reassembling the line segments in the correct order. The algorithm would be provided by a "smart card" and the subscriber would need both the card and a personal identity number (PIN) to make his decoder work.

New Ideas

New scrambling systems are being devised all the time to defeat the signal pirates. Here's a plaintive note from a Canadian experimenter. "They go positive and negative and put a sinewave into one of the fields. The result is that the picture flashes like hell. That's not all. They go positive and negative with a twist: one field is all positive, the other all negative - odd and even lines are not of the

(c)

(c)

Fig. 1 (left): The sinewave sync suppression technique. (a) Normal video signal. (b) Line-frequency sinewave. (c) Result of combining signals (a) and (b).
Fig. 2 (right): The gated sync suppression technique. (a) Normal video signal. (b) Sync suppression signal. (c) Result of combining (a) and (b).

Fig. 3: The variable line delay technique. (a) Normal line. (b) Line with $1 \mu \mathrm{sec}$ delay. (c) Line with $2 \mu \mathrm{sec}$ delay.
(c)
same polarity. And they switch merrily at different speeds between all these modes." No wonder it's called dynamic encryption!

The Audio Signal

Several audio scrambling systems are in use. After the video signal chicanery previously described these may sound a bit tame. One system is to transmit the audio signal on a subcarrier in the same way that US f.m. radio stations transmit an auxiliary uninterrupted music service or bleeps for radiopaging. The audio signal frequency modulates a 32 or 62.6 kHz subcarrier: you cant hear 32 let alone 62.5 kHz , nor can the TV speaker reproduce these frequencies, so a special decoder must be used.

Another system is to transmit the sound in the form of suppressed carrier a.m. on a 12.8 kHz subcarrier - this is the technique used for Canal Plus. One dodge is to treat the audio as a stereo signal and transmit the difference between the identical left and right channels on a 19 kHz subcarrier.

In all cases the normal audio channel can be used as a "barker" service, advertising what's being missed by not subscribing to the premium service, or for community news and information.

The latest systems use digital techniques. The conventonal audio subcarrier is not present: instead, two digital audio channels are carried in the line sync period. The sound is digitised into twelve-bit words which are then compressed into eight bits. This technique gives total security and enhanced signal quality at low carrier-tonoise levels.

Vintage TV: The Bush T91

Chas E. Miller

Most older engineers will remember the "Bush 9in." with affection. The small Bakelite-cabinet models from-the TV12 onwards set standards of reliability and ease of servicing that were seldom equalled for many years. This vintage piece takes us back farther however, to the first post-war Bush television set, the Model T91. It was a solidly built a.c. only receiver with a number of interesting features. It had a total of eighteen valves plus the c.r.t. and employed the twin-chassis arrangement that was to become a feature of Bush sets for many years thereafter.

Vision Receiver

The vision receiver was of the t.r.f. type, using the wellknown (notorious?) EF50 r.f. pentode, fresh from its triumphant or otherwise appearance in World War Two radar equipment. To be fair, apart from the poor base connections due to the short pins the valves had a useful performance, with a slope of $6.5 \mathrm{~mA} / \mathrm{V}$. Stagger tuning was used to get the required bandwidth.

Four EF50s were used to provide r.f. amplification in the receiver section, the first two handling both the sound and vision signals. The strip was designed for dualsideband reception from the Alexandra Palace transmitter, the alignment frequencies being 43 MHz and 47 MHz , i.e. 2 MHz on each side of the vision carrier. Curiously enough there were no sound rejectors as such, the alignment instructions stipulating that the first two common r.f. amplifier stages should provide a gain of at least ten at the sound carrier frequency of 41.5 MHz - if this was not achieved you had to retrim the stages until satisfactory results were obtained at the vision and sound frequences. Thereafter we must assume that the sound take-off coil provided adequate rejection before the signal was passed to the other two vision only r.f. amplifier stages.

The arrangement of the coils in the t.r.f. strip was simplicity itself. Tuned anode, tuned grid coupling was used for all except the second stage, the coils being designed to produce the required bandwidth without being shunted by other components.

The decoupling arrangements used in the t.r.f. strip were characteristically elaborate, a forest of 500 pF decouplers being connected between just about everything in sight and chassis. Following the normal practice of the time, each valve had a common earthing point to avoid spurious inductances being established via badly arranged. chassis connections.

Tube Drive

The vision detector was a miniature diode, type EA50, another fugitive from radar sets. Another EF50 was used as the video amplifier, with the very low-value anode load resistance of $3 \cdot 3 \mathrm{k} \Omega$ (R22, Fig. 1). The output was d.c. coupled to the c.r.t.'s grid, so no d.c. restoration was required.

The cathode of the MW22-7 c.r.t. was strapped to the 1 heater (no naughty heater-cathode leaks for Bush owners!) and was isolated from direct earth by a separate
mains transformer winding which was returned to an h.t. potential divider: it was set to $160-270 \mathrm{~V}$ by the action of the brightness control. The tube's first anode was supplied with around 200 V from a tap on a bleeder network across the e.h.t. supply. The latter employed a separate mains transformer which delivered 3.7 kV to the anode of an HVR2 rectifier and 2 V to this rectifier's highly-insulated heater. The e.h.t. obtained from this arrangement was 4.5 kV , with a brace of $0.02 \mu \mathrm{~F}$ reservoir/smoothing capacitors capable of holding a nasty shock for the unwary engineer.
The contrast was controlled by means of a potentiometer which set the cathode bias applied to the second and third r.f. amplifier. An additional local/distant switch varied and bias supplied to the first r.f. amplifier by a large factor.

Sound Receiver

For the sound strip the Bush designers decided to use a superhet circuit. The sound signal from the second r.f. amplifier was fed to a standard radio type ECH35 triodehexode frequency changer. To prevent breakthrough of the local oscillator signal into the vision strip a rejector was fitted close to the hexode's grid coil. The i.f. was 725 kHz , with an average bandwidth of 40 kHz . Thus the full a.f. radiated by the transmitter could be realised with ease, and in Alexandra Palace days the sound didn't have to travel via frequency-limiting land lines (as radio programmes did!).

The ECH35 was followed by an EF39 i.f. amplifier stage, then an EBC33 double-diode-triode which provided detection, a.f. amplification and a.v.c. clamping. All akin to standard radio practice of the period. The output stage used an EL33 to provide approximately 4W of audio. A tone control was fitted, no doubt so that those unfamiliar high a.f.s could he reduced to the comfortable "mellow bellow" apparently beloved by contemporary radio listeners.

Sync Separator

The sync separator was simplicity itself (see Fig. 1), consisting of another EA50 diode (V7) which produced the line and field sync pulses at its cathode. The video signal, with positive-going sync pulses, was capacitively coupled to its anode from the cathode circuit of the video output pentode. A side benefit of this arrangement was reduced capacitive loading on the tube's video feed. In fact quite a bit of care went into the design of the video output stage. There was frequency-selective negative feedback in the cathode circuit and, in the anode circuit, a series peaking coil and l.f. boost.

Timebases

Both timebases employed thyratron oscillators, either a Mullard EN31 or Mazda T41 according to availability minor adjustments to one or two component values were required depending on which type of valve was used. The

Fig. 1 (left): The Bush T91's video amplifier and sync separator circuits. A simple diode (V7) sync separator was used, the video signal developed across R20 being coupled to its anode via C32, but what a lot of trouble went into the design of the video output stage! At very low frequencies R21/C28 form part of the output valve's anode load, increasing the I.f. gain. The small-value screen grid and cathode decoupling capacitors introduce selective (medium-liow-frequency) negative feedback however. The stage's frequency response was obviously given careful consideration by the designers.
Fig. 2 (right): The T91's field output stage. Linearising negative feedback was introduced by returning the scan coupling circuit to the cathode of the output pentode.
gas-filled triode makes a simple oscillator circuit that's easy to synchronise. The problem occurs when the valve ages and becomes somewhat erratic in its firing.

An EL33 was used in the field output stage and an EL38 in the line output stage. The field output stage used $R C$ plus transformer coupling (see Fig. 2) with negative feedback in the cathode circuit. A simple two-winding transformer was used for coupling in the line output stage, which looks particularly uncluttered to the modern eye in the absence of boost and flyback e.h.t. circuitry. Lowimpedance scan coils were used for both line and field deflection.
One snag with the type of set where the e.h.t. continued unabated in the event of line timebase failure was the vertical white line that would be displayed if the set was left running in the fault condition. Fortunately the low e.h.t. voltage and the vigilance of early TV owners reduced the likelihood of a permanent burn on the screen.

The Power Supply

The hefty power supply had two mains transformers, one for the e.h.t. and the other for the h.t. and heater supplies. 310 V was presented to the anodes of the two IW $4 / 350$ h.t. rectifiers which were used in a full-wave circuit. There was a great deal of h.t. smoothing employing no fewer than six large value electrolytics, two chokes and the focus electromagnet. The latter fed the h.t. to the line timebase and was shunted by a focus control network. Anyone who had experience of this type of focusing will recall that the heating-up effect of the electromagnet caused the sharpness of the picture to deteriorate frequently during an evening's viewing, calling for much adjustment. One could never bring oneself to leave the setting alone when the set was next used from cold and rely upon the warm-up to bring the picture into focus, because the programmes were so sparse one couldn't afford to miss out on anything!

Later Bush Sets

The T91 was one of the last TV designs to have a "traditional" power pack. The following TV1 (9in.) and TV2 (12in.) were of the live chassis type. While most of the circuitry remained as in the T91 an important change
was the move to flyback derived e.h.t. These sets retained the focus coil and required even more electrolytics because a half-wave mains rectifier was used. They were followed by the TV12, the first of the classic Bakelite cabinet 9in. sets, which had lots of EF50s (again) and was of the a.c./d.c. type (but still had the focus coil!). This model and its companions were followed by the TV22 series, which employed mostly miniature valves and a circuit that remained largely unchanged for many years, even when Band I/III models appeared.

A Vintage Restoration

405 may be dead but it won't lie down! Vintage sets are still being used to display vintage pictures, thanks in no small measure to articles that have appeared in Television on recording 405 -line material. Steve Rowley tells me he's just restored a 1939 Ekco Model TA201. This was a small (7in.) table model that provided a vision display only - the accompanying sound had to be fed to the pickup sockets of an ordinary radio receiver. Steve's set up consists of a Philips VCR and a professionally made modulator. It enables him to view genuine archive material, including good old Andy Pandy and the Flower Pot Men, as well as the fondly remembered BBC Test Film of the early fifties. Congratulations Steve - may your success encourage others.

Thirty Years of Independent TV

On September 22nd last Independent Television celebrated its thirtieth birthday. It was on that day in 1955 that the then ITA came on air for the first time from the Croydon Ch. 9 transmitter. The occasion was marked by special compilations of archive material on Channel 4 and S4C, mostly of official opening ceremonies but interspersed with actual programme extracts and early commercials. This was followed by a special showing of the first episode of the made-for-TV Robin Hood series.

Sadly, the man who played the hero in this series, Richard Greene, didn't live to see this replay. He passed away earlier last year after a lengthy illness, in his 67th year. For those of us who were around when ITV started Richard Greene's Robin Hood will always typify the occasion. Episode one was shown in the Midlands area on
the very first night, 17th February 1956, and seemed to revolutionise television for us. It's difficult to believe ${ }^{4}$ now that this was the first filmed series to be seen on our screens, opening up a vast new dimension. Prior to this, drama productions had been made in comparatively cramped studios, with all the limitations that this implies. Technicalities alone wouldn't have made the new series succeed however: Richard Greene brought to the part the experience of nearly twenty years in films, much of his time having been spent in Hollywood - a thoroughly professional and engaging performance.

An Early Home-built Set

Reader E. Bligh has sent me details of a home-built set he made in the late forties - from the floor up, including the mains transformer. It used the well-known VCR67 radar tube which gave a green picture with a diagonal measurement of about 6 in .
Much of the circuitry is reminiscent of the Bush T91 we've been considering, with EF50 vision and sound t.r.f. strips and EA50 detector diodes. The video amplifier used another EF50 while the sound was taken care of by a 655 driving a 6 V 6 output tetrode. The sync circuit was rather more elaborate, with a brace of EA50s and yet another EF50. Both timebases used T41 thyratrons followed by 6SN7 push-pull output stages.

The power supply was a most impressive piece of work

- winding the transformer must verily have been a labour of love! It provided all the voltages required in the set, including the e.h.t. - according to Mr. Bligh's notes the e.h.t. winding alone required some 12,000 turns of wire. The five other secondary windings provided 2 V at 2 A for the heater of the e.h.t. rectifier, 4 V at 1 A for the c.r.t.'s heater, 6.3 V at 3 A and 4 V at 4 A for the valve heaters, $400-0-400 \mathrm{~V}$ at 150 mA for the h.t., and 4 V at 2.3 A for the h.t. rectifier. The vision and sound stages were operated at 280 V h.t. while the timebases received the full 400 V . The loudspeaker field coil formed part of the smoothing network. A U21 was used as the e.h.t. rectifier and an MU14 as the h.t. rectifier.

Interestingly, the contrast control varied the h.t. applied to the first three r.f. amplifiers. An $0-1 \mathrm{~mA}$ meter was wired into the video amplifier's grid circuit, presumably to monitor the strength of the incoming signal. Mr. Bligh used the set in Cricklewood, London NW2, so reception from Ally Pally must have been excellent at a distance of only four-five miles.

Comments Welcome!

One can imagine Mr. Bligh's sense of achievement when he first saw pictures on this genuinely homeconstructed set. I'm most grateful to him for letting me see the circuit, and would welcome letters from other readers on such sets and vintage topics generally.

VCR Clinic

JVC HRD120/Ferguson 3V35

With the exception of the troublesome cassette loading mechanism, mechanical problems have been virtually non-existent with this generation of JVC machines. So when I was confronted with the "no fast forward or rewind" condition I was inclined to suspect an electronic fault. On these machines fast forward and rewind drive are provided by the capstan motor, the direction being altered by reversing the polarity of the voltages at pins $1 / 2$ of connector 28 on the main servo/mechacon panel. A check here showed that no voltage was present, and since the front indicators lighted when the relevant function was selected I felt that the operation i.c. and the microcomputer chip were probably in order. The main suspects were Q206, Q207 and IC206 which functions as a series of switches controlled by the microcomputer i.c. These switches route the capstan motor current in the required direction, the current being supplied by Q207.

Since the switching control voltages appeared to be correct the voltages at pins 2 and 8 of IC206 (input from Q207) were checked and found to be absent. Q207 was checked out of circuit and appeared to be fine so IC206 was replaced. This seemed to do the trick but while the spools turned in the fast forward and rewind modes when asked to do so they did this very slowly. It turned out to be my fault: when I replaced Q207 and refitted its heatsink I somehow managed to break the print to its collector. A few minutes spent with the soldering iron and everything was once more in order.

I've since had a further problem in this area. A machine intermittently damaged tapes because they were not being wound back into the body of the cassette during

Reports from Christopher Holland, Philip Blundell, Eng. Tech., Les Harris, John Cahill and Eugene Trundle

unloading. Checks in the drive circuit just mentioned showed that adequate voltage was being made available to the drive motor at all times, so the belt that transmits this drive from the motor was checked. It turned out to be o.k. Consistent loading torque was restored only after fitting a new motor.
C.H.

Ferguson 3V29

A slow, rolling noise bar appeared every few seconds during playback. I've encountered the symptom on a number of occasions, due to the capstan servo not locking because the control pulses are missing. Cleaning the control head normally provides a cure but on this occasion a scope check showed that the problem was in the drum servo - a trapezoid with no reference pulse was present at TP4.

I'd encountered this once before and a note in the comer of the circuit mentioned that the cause had been an open-circuit tracking control. Not this time however: the control declared its innocence when checked with an ohmmeter. Checks were next made around IC3 (HA11711). This showed that pulses were absent at pin 10. So the i.c. was very carefully removed - I've falsely accused HA11711s before. Sure enough a replacement i.c. made no difference.

Further checking finally brought me to the record phase switch preset R35 - its wiper had somehow become pushed in and no longer made contact with the track. Since the video heads appeared to have been changed at some stage I can only presume that the wiper was
dislocated by someone going through the head alignment procedure.
C.H.

JVC HR7200/Ferguson 3V29

The card simply said "no picture" and my immediate reaction was that a simple head cleaning job would be all that was required. At switch on I was confronted with a blank raster however. As a first step I checked the camera/TV switch - most customers seem to flick this to the auxiliary position whenever anything goes wrong - but this one was in the correct position. I then noted that the channel indicator lights were o.k., and when the monitor's volume control was turned up there was good E-E audio. Off with the top cover for a quick check for foreign objects in the mechanism, then a check with the test tape. This showed that I could forget about head cleaning - a grey, unmodulated raster appeared, similar to that in the E-E mode.

Having confirmed that Ch. 4 was showing its test pattern a scope check was made at pin 24 of IC201. A good signal was present here but it was not re-entering the i.c. at pin 13. At this point I came unstuck because the circuit ceased to resemble the diagram. Then from the recesses of my mind I recalled a modified and revised diagram that JVC had kindly supplied some while back. This soon led to Q221, which had gone open-circuit base-to-emitter.
C.H.

Sharp VC9700

These machines are renowned for not recording the sound every time. Changing the relays will often effect a cure but Sharp recommend changing C648 to $0.01 \mu \mathrm{~F}$ and R 693 to $10 \Omega(0.25 \mathrm{~W})$ as well.
P.B.

Sharp VC581/2/3

The loading motor circuit in these machines has been modified to prevent intermittent system control faults such as won't play after going into search, the LED lights up when a function command is given but the machine won't carry out the command, and the mechanism won't go to a given position. The modification is simply to remove $\mathrm{C} 8001(47 \mu \mathrm{~F})$ which is connected across the loading motor - on PWB-W.
P.B.

ITT TR3913

Rewind and fast forward were o.k. but when play was selected the play LED lit, the brake solenoid clunked and nothing else happened. The cause of the problem turned out to be the cassette lamp - the vibration when the brake solenoid pulled in interrupted the lamp's filament - but only on playback! Which fool took this machine back to the workshop for a new cassette lamp . . .
L.H.

Ferguson 3V29

The machine was tried out after fitting a new cassette lamp. A recording was made and this played back all right. The machine was stopped, rewound and playback was then selected again - but this time the pause, audio dub and play LEDs lit! As the fault was found to be intermittent the mechacon panel was replaced in an attempt to speed up diagnosis. This made no difference and control via the remote handset was found to give
correct operation. So the playback switch was replaced. This cleared the fault, though an Avo check on the switch failed to show the suspected high resistance. As a check the switch was fitted to another machine - the fault then showed up on this one!
L.H.

Mitsubishi HS303

No sound erase, intermittent sound recording or no sound at all seems to be a stock fault on this machine though I've not seen it mentioned in VCR clinic. The cause is plug VK: Mitsubishi recommend soldering the wires straight to the print.
J.C.

Mitsubishi HS302

The fault was noise bars on the screen after about two hours use. As the machine was completely enclosed in a timber cabinet I suspected heat to be the cause of the problem. A lot of time was wasted in the workshop before I found, using a hairdryer and freezer, that IC4(I) was faulty.
J.C.

Fisher FVHP615

This machine ejected the tape immediately and there was no rewind. Examination showed that the tape was spilling out of the take-up spool because the take-up pulley was jamming under the chassis. A drop of oil on the pulley bearing cured the problem.
J.C.

Mitsubishi HS303

The customer complained of a whirring noise and wobbling picture. It turned out that the capstan flywheel has a type of rubber glued to the bottom: some of this was loose and was rubbing as the capstan rotated, causing the noise. The wobbling was due to VR4A0 in the drum servo being misadjusted.
J.C.

Toshiba V57

This machine was dead and on examination the mains fuse, located in a plastic box, had shattered. The cause was a short-circuit mains filter capacitor ($0 \cdot(022 \mu \mathrm{~F}, 250 \mathrm{~V}$). I later discovered that children had been switching the machine on and off continuously with the remote control unit. Presumably this had produced spikes to cause the fault.
J.C.

JVC HR3660/Ferguson 3V16

This one would apply to any Ferguson/JVC piano-key machine. The problem was no colour in record or playback, first intermittent then permanent. Checks showed that the chroma signal was reaching pin 13 of IC202 (AN305) which contains, amongst other things, the a.c.c. circuit and the main mixer, but there was no output at pin 11. Burst gating pulses were present at pin 1 but there was obviously no chroma feedback to pin 15 . The voltage at pin 11 was abnormally high at around 10 V . A bypass capacitor connected between pins 13 and 11 didn't restore colour - until pin 11 was disconnected from the print! The chip was faulty, with a low-impedance path from pin 11 to some signal-earthy point within the device. It's important to set up R216 (converter balance) and R335 (a.c.c.) when IC202 is replaced.
E.T.

Servicing Teletext Receivers

Part 2

Mike Phelan

This month we'll consider the functions of the VIP (video input processor) and TIC (timing chain) chips in the Mullard/Philips teletext decoder.

The VIP is an SAA5030 or, in earlier versions, an M913 - the pin connections of these devices are the same. A block diagram is shown in Fig. 1. The incoming video is fed to pin 16 - the input comes via a 6 MHz notch filter to remove the sound carrier which would create problems in a chip containing a 6 MHz oscillator! It then follows three different paths.

The shortest one leaves the i.c. at pin 12, provided pin 10 is low as it is in the G11's teletext decoder. When pin 10 is high, an AHS (after hours sync) output is obtained at pin 12 - this is generated in the TIC by division of the 6 MHz signal. The G11's decoder doesn't use this facility.
The second path takes the video to an adaptive data slicer. The input to this is a.c. coupled so that the ones and zeros of the data signal become positive- and nega-tive-going excursions. The amplitude and quality of the signal can vary enormously at this point (see Fig. 2). After rectification each half of the signal charges the capacitors connected to pins 23 and 24: these maintain the slicing level at half of each opposite-going excursion of the signal. This gives us a much cleaner signal, though still one of varying amplitude - approximately half the original data signal amplitude. What we require is a TTL compatible signal of 5 V peak-to-peak, with fast rise times, suitable for driving logic circuitry. The answer to this requirement is to pass the signal through a series of limiting amplifiers to square the signal before it emerges at pin 19 .
It's important to appreciate that the data signal leaving the VIP at this pin still contains the remains of any low-
level composite video as no attempt has so far been made to gate this out - this is done in the TAC (text acquisition and control) chip. The signal will not contain chroma information since this would be of sufficient amplitude to be removed by the slicer. The burst would still be present however: we'll see how this is removed later.

The data signal from the slicer/squarer is also passed to the high- Q tuned circuit C1/R1/L1 connected to pin 21. The clock run-in at the beginning of each row (10101010) causes this to ring - it continues to do so until the arrival of the next clock run-in - shades of the passive chroma subcarrier generator used in the Rank A823 chassis! This signal is very important: after squaring, it's fed to the TAC chip.

The final path for the video input at pin 16 is to a sync separator. The field sync output obtained at pin 13 is adjustable in phase - this is necessary because it resets the line counter in the TIC chip. The line sync output is used to phase lock the 6 MHz crystal oscillator (dot clock). Part of the phase-lock loop is in the TIC which (see Fig. 3) divides the 6 MHz signal by six, then by 64 , to obtain a $15,625 \mathrm{~Hz}$ output. A sandcastle pulse is produced from this - externally to the TIC. This is fed back to pin 5 of the VIP.

The sandcastle pulse is separated into its two components within the VIP. The portion between 2.5 V and 5 V (CBB - colour burst blanking) goes to the adaptive data slicer to remove the burst from the video signal before slicing - a low-level $4 \cdot 43 \mathrm{MHz}$ signal with no luminance content would upset the operation of the slicer. The bottom half of the sandcastle pulse $(0-2.5 \mathrm{~V}-\mathrm{PL}$, i.e. phase lock) is used as the reference signal for the phase

Fig. 1: Block diagram of the SAA5030 video input processor i.c.
detector. This is followed by the customary d.c. amplifier and varicap diode and what should be a familiar looking network hung on pin 7 (loop filter).

As you probably know, any phase-locked loop has the conflicting requirements of a wide pull-in range and stability. Most flywheel line sync circuits, VCR servo circuits etc. use a two-stage process to avoid the need for a compromise. The SAA5030 achieves this by using the AHS output from the TIC i.c. This enters the chip at pin 11: it's a composite sync signal produced by processing the 6 MHz dot clock signal and, when the loop is locked to the incoming video, should be an exact facsimile of the off-air sync. The two signals are compared in a coincidence detector in the VIP: if they differ, a $4 \cdot 6 \mu \mathrm{sec}$ pulse is produced at pin 3 of the chip. This is used to reset the counter in the TIC i.c. so that the sandcastle pulse falls within the pull-in range of the loop. The reset pulse is called FLR (fast line reset) and should be present only at initial switch on or after a channel change.

A block diagram of the SAA5020 TIC i.c. is shown in Fig. 3. As we've already noted, this chip generates various pulses, most of them by dividing the 6 MHz dot clock signal from the crystal oscillator in the VIP i.c.

The 6 MHz signal enters the TIC chip at pin 2. After buffering it emerges at pin 3 and is passed to the TROM (teletext ROM) chip to control the pixel (dot) repetition rate. Within the TIC the 6 MHz undergoes three stages of division, first down to 1 MHz . This signal is used by the TROM chip to control the repetition rate of the characters displayed, also by the TAC chip to process the remote control signals received by this i.c.

The next stage provides division by 64 to give linefrequency pulses. This is followed by 625 division to produce a field-frequency output. These two sets of pulses are processed in a sync generator to produce a normal sync signal - AHS. The line-frequency pulses also go to a couple of monostables to produce the PL and CBB signals - these are added externally via a $6.8 \mathrm{k} \Omega$ resistor to provide the sandcastle pulse for the VIP. The sync generator can be reset by the previously mentioned FLR pulse.

The off-air field sync pulse from the VIP enters the TIC at pin 10 - this maintains the correct relationship between the generated and off-air field sync signals. The field sync pulses are also differentiated and divided by two to produce a 25 Hz squarewave called CRS (character rounding select). We'll return to this when we get to the TROM.

Most of the intermediate signals produced by the chain

Fig. 2: The principle of adaptive slicing.

Fig. 3: Block diagram of the SAA5020 timing chain chip.
of dividers are fed to a decoder which consists of a collection of counters and monostables. Another group of inputs to this decoder arrive at pins 15,17 and 18. They are all to do with the double-height character function. As you probably know, double-height characters can be transmitted by preceding the character with the appropriate control code (serial attribute), the result being that instead of the whole character being displayed only the top or bottom half appears on the screen depending on whether the row of characters is odd or even. The attribute remains in force until the end of the row or until a normal height attribute is sent, whichever occurs first.

In addition to this the user can select double height for the complete page, with the option to display either the top or the bottom half of the page. Pin 17 received a BCS (big character select) sugnal from the TAC chip when either of these options is selected. The BCS signal also goes to the TROM. Pin 18 T/B (top/bottom) tells the TIC which half of the page is required (low for top). This signal also comes from the TAC: there's no need to tell the TROM this - the signals sent from the TIC to the teletext decoder's RAM determine which bits of page are read out. The signal at pin 15 (TCL - text character large) goes low when the TROM detects a broadcast largecharacter attribute.

The decoder produces several outputs. The DEW (data entry window) output at pin 14 goes high for sixteen lines of each field - this output is used by the TAC chip to gate out the data and by the TROM to reset its counter. It's also divided down in the TROM to give the flashing character attribute.

The five-bit row address is fed out to the teletext decocier's RAM i.c.s when pin 16 goes low. As pin 16 (HE - high impedance enable) is connected to the DEW output the row address is switched off during the data entry period and on during the read period (the active part of the field when the teletext is displayed). During the DEW period the address lines go high impedance and the RAM is "written into" by the incoming data. RAM i.c.s need clock inputs to clock data in and out. The out clock is provided by pin 24 of the TIC chip: this is called RACK - read address clock. It's at 1 MHz (the character
rate) and is switched off during the DEW period when WACK (write address clock) from the TAC chip takes over. Don't forget that a teletext decoder has two functions which don't occur simultaneously - to receive and store signals, and to produce the teletext displays.

The final output, at pin 13 - LOSR enable (load output
shift register enable) - goes to the TROM chip to reset its control character flip-flops prior to the start of each line of the display. This signal also defines the character display period. At the end of this series we'll provide a glossary of all these strange mnemonics and abbreviations as a quick reference guide.

Computer Aided PCB Design

In the early days of electronics the components were hand wired to tagstrips which werc usually mounted on a solid metal chassis. The assembly process required manual soldering of each connection, involving a large labour force, and not infrequently resulted in connections that were either left unsoldered or were badly made - dryjoints. Interconnections were made with insulated copper wire.

Enter the PCB

By the fifties the concept had evolved of preconfiguring the wiring in the form of thin copper tracks on a flat surface. The desired pattern of tracks is photographically transferred to a thin layer of copper on a paxolin or fibreglass base: etching away the unwanted areas of copper leaves what we call a printed circuit. Holes can then be drilled and the components inserted in their correct positions, with each connection made to a portion of track that links it to the other associated components. The entire assembly is passed over a bath of molten solder which can make perhaps hundreds of connections in a single operation.

Early printed circuit boards were notorious, due to hairline cracks and poor connections. They were not well suited to the high temperatures produced by thermionic valves in confined spaces, though perhaps much of the problem was basically due to the aesthetic demands made on designers of consumer electronics products at the time.

Modern techniques and solid-state circuitry, together with double-sided boards having independent wiring on both sides, have resulted in highly reliable products. Extremely complex electronic circuits can be assembled at a much lower cost.

PCB Layout

Designing the layout of a printed circuit board used to be something of a hit-and-miss process. With a fairly large number of discrete components, a certain amount of compromise was necessary. For example a supply rail might be conveniently run along one edge of the board, just out of reach of a resistor on the far side. To make contact with this one component it might be necessary to use longer connecting leads, vary the hole spacing and/or realign the tracks. Alternatively you could use additional pads with wire links between. Double-sided boards largely overcame this problem but created a design constraint similar to three-dimensional chess!

The use of integrated circuits and microprocessors changed many design concepts. Most chips don't come with long connecting leads, and although few peripheral components are needed with digital circuitry each i.c. pin will have a separate function. These connections are arranged in neat rows, with as few as eight pins on a timer chip to perhaps sixty on a microprocessor. The circuit
designer is not always aware of the problems involved in interconnecting a dozen chips, each having say sixteen connections. He designs the interconnections required to make the circuit work from a theoretical point of view. The PCB designer has to find ways of linking these 192 connection pins according to the original instructions. If an unforscen problem or error occurs it may well be "back to the drawing board".

CAD Systems

Various CAD (computer-aided design) systems are available. They usually employ a VDU, keyboard and joystick interfacing with a computer which has a documented memory of component pin-outs and the physical profiles of the components to be used.

The designer presents his initial circuit diagram to the operator who then calls up the components by reference numbers from the data base. Having entered the information on the required interconnections between each component the operator plots the physical positions on the display and checks that the position of one component won't affect the placing of another. The autochecking facility assists in locating design errors by drawing attention to such things as any attempt to duplicate the number of a connecting pin.

Rubber Banding

Once the interconnection format has been inserted the operator moves on to the stage of "rubber banding". This gives on the VDU's screen a spaghetti-like presentation of all the component connections. By moving the cursor he can optimise the layout and separate the tracks that are to be on the top or bottom sides of the board. Since it's an interactive process, he can chose to vary the track widths to suit the circumstances - increasing the widths of supply rails for example.

Tracks can be laid vertically, horizontally or at an angle of forty five degrees. It's normal practice to run tracks vertically on one side and horizontally on the other. Where tracks on the top and bottom connect, a "via" hole is inserted.

To Final Artwork

Autochecking allows the operator to ensure that all programmed tracks have been laid. Track widths are checked and drilling information is produced. Four "films" are produced for the artwork in the case of a double-sided board: two give the top and bottom track information, a third gives the silk screen information and the fourth defines the solder resist pattern. Stored on dise or tape, the information can then be fed to a photoplotter that produces the final artwork.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ITT CVC9 CHASSIS

There's intermittent loss of picture and sound signals, with only a blank raster and buzzing sound (occasionally sound from a foreign station is heard breaking through the buzz). The fault lasts for only about five seconds, its intermittent nature making it very difficult to make any conclusive checks.

We've had this fault on one or two occasions and have found it to be the result of one of the i.f. amplifier transistors T15/16/17 going open-circuit between the base and emitter. In view of the difficulty of diagnosis and access we'd suggest replacing all three transistors. T15/16 can be replaced with BF196s and T17 with a BF197. These lockfit types will fit directly. Ignore the original earth (screen) holes in the print - and beware of solder blobs.

PYE 725 CHASSIS

A stable picture can be obtained only with the brightness and contrast controls turned well down. Any increase in the setting of either control first affects the top two inches of the picture, where shading appears with verticals kinking at the intersection and slight hum on sound; further increase introduces field roll with the field then reducing to about half scan while the trip rate increases. The greater the white content of the picture the greater the effect. The h.t. is correct.

The earthy end of the contrast control is taken to the beam limiter sensing point in the line output stage. This point is smoothed by $\mathrm{C} 573(4 \cdot 7 \mu \mathrm{~F})$, failure of which is the usual cause of this fault. It's beside the gun switches on the line timebase panel.

MITSUBISHI CT180B

The problem is lack of width - about an inch or so on either side. Initially the h.t. was slightly low with no control: replacing the 12 V zener diode D901 in the error detector circuit put that right. The adjustments on the pincushion correction board have no effect on the fault.

An oscilloscope will be required to check the duration of the line flyback pulse. If it's less than 11μ sec one of the bunch of flyback tuning capacitors C531/2/3/4 may have gone open-circuit. If it's correct check the boost diode D576 (SB-2) before suspecting short-circuit turns in the line output transformer.

FERGUSON TX10 CHASSIS

The mains fuse was open-circuit and the chopper transistor short-circuit. Are there any stock faults that could cause
this? Some checks have been made on the components on the primary side of the chopper transformer but everything appears to be o.k.

We don't know of any stock faults for this condition but we did have the same fault on one occasion and spent a lot of time before we found that the TDA2582 chopper control i.c. was faulty. Check also for shorts on the h.t. line. It s always worth replacing the focus control assembly on these sets. It tends to flash over, with dire consequences in various parts of the set. An improved type is now supplied.

SHARP VC6300

First the machine switched itself off during a recording. Now every time it's switched on it goes off again after the tape has moved about six inches.
There's either no take-up reel rotation or the machine thinks so. Check that the reel isn't stopping - if it does clean all belts and tyres and if necessary replace the clutch. If the reel isn't stopping check the output from the sensor at socket AF4: it should be $5-10 \mathrm{~V}$ peak-to-peak - if not replace the opto unit under the take-up reel.

PYE V2000 VCR

This machine is working but produces a rather grainy picture with new tape and cleaned heads. A good service would seem to be required: any suggestions about what should receive attention?

Little preventive maintenance is possible with these machines, a good motto being to leave well alone! The symptoms of a worn head are snowy recordings while known good tapes are played back satisfactorily. To clean the heads properly, use isopropyl alcohol on chamois leather. Press the moistened leather against the heads on the drum and, keeping the finger still, rock the drum to and fro across the leather. Ingrained base material sometimes takes a long time to shift.

GEC V4000H

This machine is basically the same as the Hitachi VT80008500 series. It has the following intermittent fault. Whatever mode is selected - play, record, fast forward or rewind - the machine goes to stop after five-ten seconds (in play or record the machine first unlaces).

First check the operation of the after-load switch, which is not the most accessible of components in this machine. Towards the end of the loading sequence the load on the threading motor increases considerably and a loading belt that slips will prevent load completion - check visually that the loading poles go fully home. If the loading belt is in good condition it should be possible to stall the toading

motor by grasping the large white nylon pulley. If the above points are in order a scope will be required to check for the presence of drum tacho pulses to the mechacon: absence of these shuts the machine down as a safety feature.

278
Each month we provide an interesting case of TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Current TV technology has greatly improved the performance and reliability of today's sets while considerably reducing their cost in real terms. What it hasn't done is to ease the difficulty of diagnosis when something goes wrong. A self-destruct situation is often present, particularly in power supplies and timebases, giving rise to the problem of how to attempt a diagnosis in the milliseconds (microseconds?) that it takes for a semiconductor device often a large/elusive/expensive one - to be destroyed.

There are ways of countering this situation - cold checks, the use of external power supplies/variacs, dummy loads and current-limiting resistors - but occasionally a set that seems to defy all attempts at logical diagnosis comes along. This month's test case is one such example.
The guilty party was a Decca set fitted with the 70 series chassis. It arrived in the workshop with a job ticket bearing the single word "dead". And dead it was, with the 1AT fuse F601 (in series with the chopper transformer's primary winding) shattered and blackened. It was no surprise to find that the BUW81A chopper transistor was dead short. This sometimes happens in these sets for no particular reason, so a new BUW81A was fitted. The items in series with its emitter - diodes D608 and D610 and resistor R636 (0.398) - were also faulty and had to be replaced. Quick in-circuit checks on the driver pair Tr603/ 4 then proved that neither was short-circuit, so in with a new 1A fuse and switch on

Pow! Bang went the fuse, a wisp of smoke arose from the new R636 and the technician's morale plummeted. He'd enough problems without this! Diodes D608 and D610 (1N4007) had this time survived but were nevertheless replaced, along with the still gleaming BUW81A and R636. A more careful check on the chopper driver transistors revealed that the top one, $\operatorname{Tr} 603$, had some leakage. A new driver pair was fitted and L601, the coil in series with the base of the chopper transistor, was checked for continuity and good jointing. Since it was o.k. the decision was taken to apply the mains power - from a safe distance! It was a relief to hear the e.h.t. rustle up and the
loud sound (why do people always turn the sound and brightness up when a TV set fails?).

It would be nice to think that that was the end of the story, but that's not the stuff of a test case item, is it? Here's the nasty sequel. The receiver was set up and put on soak test, displaying a nice Ch. 4 test pattern. The next patient (a Ferguson camcorder, such is the variety of workshop life) was being anaesthetised on the operating table when a sizzling noise attracted our technician's startled gaze. He just had time to register that the picture on the screen of the Decca set had expanded to about 120 per cent of normal width before the splat of the blowing fuse signalled disaster.

After some totally undeserved comments about the parentage of the Decca design team, the shortsightedness of the storesman in having only three BUW81As in stock and the state of the world in general our harassed repairman went back into the Decca. The only clue he had to go on was that a vast increase in the 120 V h.t. line voltage obviously occurred when the fault condition arose. This removed several possible suspects - it was unlikely for example that any of the rectifier diodes (D614/5/6) connected to the chopper transformer's secondary windings were faulty. Why wasn't the over-voltage facility in the highly intelligent TDA2581 chopper control chip being invoked? This depends on the action of zener diode D602, which was tested and exonerated. So what was going on? We'll explain next month.

ANSWER TO TEST CASE 277 - page 187 last month -

The diagnostic procedure adopted to track down what appeared to be a straightforward fault in a Fidelity CTV14 was somewhat shaky. The set had no line lock, and no amount of adjustment and component replacement in and around the line oscillator circuit had any effect on the display.

Careful study of the circuit diagram at the outset would have revealed that the line oscillator in the TDA1180 i.c. is not used to drive the line output transistor directly, and here lay the key to the solution to the fault. The line drive output from the TDA1180 is used to synchronise the oscillator in the TDA2581 chopper control i.c., the line output transistor being driven by a secondary winding on the chopper transformer. If for some reason the TDA2581 chopper control chip doesn't lock to the sync from the line oscillator the scan frequency depends on the timing components R816 and C818 connected to pin 13 of this i.c. Though the problem could have been caused by failure of one of the line drive/sync coupling components R616/C811, the cause of the trouble actually lay within the TDA2581 itself. This was the item that had to be ordered, the replacement providing a complete cure.

To think that every time we wound the line hold control to and fro everything was happening correctly within the TDA1180 - a scope or counter connected to pin 3 (line drive output) of this i.c. would have revealed all!

[^0]| AN1270 | 15.75 | CX443A | 50 | HA11788 | ¢4.59 | M54543L | 28.75 | TA7136P | 91.00 | UPC1028 | 50.90 | 2SAB99 | 20.75 | $2 \mathrm{SC1427}$ | ¢0.30 | VIDEO BELT KITS | | LATE EXTRA | |
| :---: |
| AN203 | 8.20 | Cx $\times 158$ | 9.95 | HA11816NT | ${ }^{26} 50$ | M54548L | ${ }^{28} .75$ | TA7137P | 51.80 | UPC1031 UPC1032 | ${ }_{510}^{51.50}$ | 2SA940 | ${ }_{50}^{20.80}$ | ${ }_{\text {2SC1505 }}$ | ${ }_{50}^{50.70}$ | AKAI VS-2EG/5EG (5) | 1.50 | | 55.25 |
| AN210 | ${ }_{51} 175$ | Cx158 | 0.50 | HA11828NT | 59.50 | M83705 | 51.60 | TA7739P | c1.50 | UPC1032H | c1. 20 | 2SA952 | 50.35 | ${ }^{\text {2SC1546 }}$ | ${ }_{50.30} 50$ | AhAI VS 9700 EG (6) | c1.75 | AN5620 ${ }^{\text {a }}$ | $\underline{56.25}$ |
| AN211A | $\underline{22} 25$ | Cx160 | \% 8.50 | HA12035 | c9. 50 | M83712 | 97.50 | TA7145P | ${ }_{51}$ | UPC1035C | ${ }_{50} 1.75$ | 2SA1015 | 50.30 | ${ }^{2 S C 1664}$ | 8.50 | | $\underline{\square} 20$ | AN5620X | c5. 25 |
| AN2140 | 51.80 | Cx161A | E. 50 | HA12413 | | M 183730 | 51.75 | | ${ }^{2} 150$ | UPC 1037 Cl | 51.5 | 2SA1102 | ¢1. 90 | 2SC1682 | 50.30 | FISHER VBS 9000 | ¢1.00 | AN6387 | ¢5.63 |
| AN2178 | $\underline{720}$ | CX162 | ${ }_{5} 8.40$ | HA13402 | ${ }_{7} 750$ | M83731 | 52.50 | ${ }^{\text {TA7750 }}$ | $\mathrm{cl}_{1.71}$ | ${ }^{\text {UPCCIIIS6H }}$ | ${ }_{9} 1.40$ | 2SA1103 | c1.90 | ${ }^{2 S C 1741}$ | 20.30 | H | 970 | HA11440A | ¢3.75 |
| ${ }^{\text {AN2 }}$ A 28 W | ${ }_{5} 5.75$ | Cx170 | ${ }_{68} 88.50$ | HA13403 | ${ }_{8}^{7} .50$ | M B 3756 | \%. 50 | TA7173P | ${ }^{\text {c1. }} 1.6$ | UPC 1158 H | 50.60 | 2SAP1104 | ${ }^{1} 1.90$ | 2SC1815 | 20.25 | | 87.70 | HA12001W | $\mathbf{5 6 . 5 0}$ |
| AN236 AN2390 | $\frac{8.50}{53} .50$ | CX181 HA1124A | E. 2.75 | Hatilip | 50.50 | MB8719 | 8.50 | TA7176P | ${ }^{\text {c1. }}$ \% | UPC 1161C | 50.75 | 2SA1105 | 0.25 | 2SC1826 | ∞ | JVC HR3300/3600 (9) | 8.00 | HA12038 | c6. 75 |
| AN24 | 91. | HA1125 | 81.50 | Laizo1 | 20.85 | PLL01A | \% 3.30 | TA7193P | 03.50 | UPCC1163H | 20.60 | 2SA1106 | 2.50 | 2SC1849 | 50.30 | | | | |
| AN241P | 51.50 | HA1137 | 51.75 | La122? | 50.80 | PLLO3A | 24.95 | TA7200 | \%.00 | UPC1167C | 20.70 | 2541198 | 20.35 | 2SC1945 | 3.50 | JVC HR7700 (3) | E1.20 | La1140 | 11.75 |
| AN247P | 2.50 | HA1149 | 81.40 | LA1230 | 51.50 | SI-1225H | c7.50 | TA7201 | 9.00 | UPC1168C | 50.90 | 2 2882 | 50.40 | 2SC1946A | 59.50 | PANASONIC NV333 (5) | c7. 40 | LA3370 | £2.80 |
| AN259 | $\underline{2} .75$ | HA1151 | 5.50 | LA1240 | 51.75 | STK011 | 8.75 | TA7202P | 9.00 | UPC1170H | 50.75 | 28854 | 20.79 | 2SC1957 | 20.80 | PANASONIC NV2000 (5) | 17.40 | LA4126 | ¢2.50 |
| AN262 | 9.50 | Ha1156 | 91.10 | Lal320 | ¢9.50 | STK013 | 68.25 | TA7203P | ${ }_{81} 1.80$ | UPC1171C | ${ }_{91} 9.50$ | 25875 | 50.60 | ${ }^{25 C 1969}$ | ${ }_{51} 1.30$ | PANASONIC NV7000 (5) | c1.25 | LA4507 | ¢4.85 |
| AN271A | $\underline{52} 50$ | HA1166 | 51.60 | Lal365 | 51.20 | STK014 | 96.25 | TA7204P | c1.10 | UPC1176C | | 2SB341V | 52.60 | 2SC2021 | 50.30 | PANASONIC NV8600 (7) | c1.75 | LA7016 | |
| AN274 | $\underline{2} .50$ | HA1196 | 8.75 | Lal368 | $\underline{20} 20$ | STk015 | ${ }^{\text {c.en }}$ | tapzosap | ${ }^{1} 1.00$ | UPC1177 | 9.20 | 2S8405 | 50.80 | 2562026 | 20.65 | SANYO VTC5500 (3) | | | |
| AN295 | 03.25 | HA1197 | c1.50 | LA1460 | c1. 95 | STKO16 | $\mathrm{c}_{6} 4.75$ | TA7207P | 91.50 | UPC1178C | | 2S84z6 | 12.60 | $25 C 2028$ | 50.75 | SANYO VTC9300 (4) | ${ }_{9} 10$ | LA7215 | £2.75 |
| AN303 | 2.50 | HA1199 | $\underline{19} 40$ | La2200 | cl^{515} | STK0zo | c. ${ }^{\text {c }}$ 50 | TAT208P | ${ }^{81.51}$ | UPC11880 | 9.40 | $2 S 8471$ | 23/50 | 2SC2075 | 50.25 | SANYO VIC9300 | 28.25 | LA7521 | ¢4.50 |
| AN313U | $\underline{1} 275$ | HA1306W | 51.60 | La3101 | ¢1.60 | STK022 | 25.25 | TA7210P | ${ }_{5} 5.50$ | UPCC11818 | c1.00 | 2 Sc 492 | 50.75 | 2SC2078 | 20.75 | SHARP VC6300 | $\underline{1.75}$ | LA7751 | ¢4.75 |
| AN315 | $\underline{2} .00$ | H41319 | 5.00 | La3155 | 50.95 | STK025 | ${ }_{\text {ciser }}$ | TA7214P | $\underline{81.80}$ | UPC1183 | \%1.20 | 2SB5090 | \$1.70 | 2SC2091 | 50.60 | SHARP VC73007700 (5) | c. 30 | LA7755 | ¢2.95 |
| AN316 | 53.50 | HA1322C | ${ }^{51} 1.60$ | ${ }^{\text {La3160 }}$ | ${ }_{c} 0.90$ | STK041 STK077 | ${ }^{2} .505$ | ta7217AP | \%1. 20 | UPC1185 | 8.20 | 2 28534 | 50.60 | 2SC2092 | c0.95 | SHARP VC8300 (5) | E1.50 | LA7801 | £2.95 |
| ${ }_{\text {A AN331 }}$ | ${ }_{7} 8.75$ | HA1339A | 91.70 | L43300 | \%1.40 | STK078 | Ex. 50 | TA7220P | 51.75 | UPC1186 | 50.80 | 258536 | 50.95 | 2SC2098 | c0.95 | SHARP VC9300 | E1.30 | LA7808 | £2.50 |
| AN360 | c1. 20 | HA1366W | ¢1.50 | LA3301 | 81.20 | STK080 | 57.20 | tavzzaap | 91.20 | UPC1187 | ¢1.30 | ${ }_{2 S 8546}$ | ¢1.50 | $2 \mathrm{SC2166}$ | ${ }^{20.95}$ | SONY SLTTMET7 (6) | \% 7.60 | LA7910 | £1.95 |
| AN362L | ¢1.30 | HA1366WR | c1. 50 | L43350 | c1. 20 | STK082 | E7.75 | TA7233P | ${ }^{21.55}$ | UPC11900 | C0.90 | ${ }^{258569}$ | ${ }^{98} 30$ | 25 C 2238 | 00.65 | SONY SLC7JJ7 (6) | E7. 70 | LC4066B | £2.50 |
| ${ }^{\text {A }} 3366 \mathrm{P}$ | ${ }^{81} 50$ | ${ }_{\text {HA1 }}{ }^{\text {H }} 3678$ | ${ }_{5} 8.25$ | L43361 | 81.20 | STKCO86 | ${ }_{54}$ | TA7224P | $\underline{9.75}$ | UPC1191V | ${ }_{50.70}$ | 2S8698 258754 | | 2 Sc 2278 | 50.70 | SONY SL800/8080 (6) | 82.00 | M51102L | ¢4.95 |
| ${ }_{\text {AN612 }}$ | c1.75 Ex .50 | HA1368R Ha1370 | ${ }_{51} ¢ 1.65$ | La4031P | \%1.40 | STK435 | 25.00 | TA7227P | \%. 50 | UPC12098 | 10.95 | 2S67720 | 58.50 | 2sch365 | 5 | TOSHIBA V7540 (5) | 51.75 | UPG1387C | £2.50 |
| AN5730 | \%.50 | HA1374 | $\underline{8.50}$ | LA4051P | E1.50 | STK436 | ¢. ${ }^{\text {co }}$ | ta7229p | $\underline{3} .0$ | UPC1211V | 51.90 | 256372 | 90.30 | ${ }_{2 S c}$ | E12.75 | 10SHIBA V8600 (6) | E1. 30 | UPG1391H | ¢2. 50 |
| AN5732 | \%1.05 | Ha1377a | \% 2.20 | La4100 | £7.00 | STK437 | 25. 30 | TA7230P | 51.75 | UPC1215V | ¢1.25 | 2sc373 | 50.30 | | | | | | |
| AN5753 | ¢1.95 | HA1388 | 2.35 | LAA101 | ¢1.00 | STK439 | c5. 50 | TA7232P | $\underline{5} .75$ | UPC1216V | ${ }^{50 . \%}$ | ${ }_{\text {2SC380 }}$ | 50.30 | | 81.00 | | | SSETTE MO | |
| AN6250 | E. 30 | HA1389 | 97.75 | La4 102 | ¢1. 20 | STK441 | ${ }^{\text {ct.09 }}$ | TA7310P | $¢_{¢ 1.40}$ | UPC1217G | 81.40 | 2SC458 | ${ }_{50.30}$ | 2SC2579 | $\underline{52.20}$ | ¢ ¢ ¢ | | 32 Volts | 2.50 |
| AN6344 | $\underline{1} .75$ | HA1389R | . 40 | LA4112 | \%1.40 | STK443 | ${ }_{50} 50$ | TA7313AP | ¢1.30 | UPC1220 | 50.90 | 2 SC461 | 50.30 | 2SC2580 | 52.20 | | | CASSETIE HI | |
| AN7105 | $E 2.20$ | hat392 | $\mathfrak{5} 3$ | La4120 | | | ${ }_{65} 5$ | TA7315AP | $\underline{\$ 1.75}$ | UPC 1223 C | ¢1.73 | 2SC503Y | 6.70 | | 50.50 | | | | |
| AN7110 | 51.40 | HA1394 | 8.75 | La4120 | 52.50 | STK459 STK460 | c7.50 | TA7325P | $\underline{50.85}$ | UPC1225 | E1. 60 | 2SC536 | 10.20 | 250170 | 90.50 | | | | |
| AN7115E | $¢_{1.60}$ | HA13988 | $\underline{5.40}$ | LA4140 | 50.70 | STK461 | 56.50 | TA7328 | \$1.60 | UPC1226C | 51.25 | 2Sc537 | 20.25 | 2 SD 187 | c0.60 | 0 | | Rever | 2.75 |
| AN7120 | 51.40 | HA145 ${ }^{\text {N }}$ | $\underline{50.90}$ | La4182 | 22.00 | STK463 | 57.40 | TA7607AP | 52.75 | UPC122T | 20.95 | 2Sccr 20 | 10.50 | 2 SD313 | 50.95 | < | | tereo | 9.75 |
| AN7130 | \$1.50 | HA11215A | ¢4.25 | La4 192 | ¢7.95 | STK465 | 0.50 | TA7608 | ${ }_{6} 1.50$ | UPC12 | 2.50 | $2 \mathrm{2SC6}$ | \%. 30 | 2 20325 | 50.65 | | | 左 | |
| AN7145M | ¢1.00 | Ha11221 | 12.30 | Las200 | ¢1.50 | STK0025 | . 35 | IA 7609 P | 8.30 | UPC1238V | 120.8 | - 5 css ${ }^{\text {a }}$ | | 2 20348 | ¢4.50 | | | | |
| AN7146M | ¢1.85 | HA11223W | ${ }^{\text {E. }}$. 80 | La4220 | ¢1.20 | STK0029 | . 35 | TA7618 | ${ }_{81} 5$ | UPC1275V | $E 1.00$ | 2SC710 | 50.30 | $250352 A$ | c0.50 | | | | |
| AN7154 | $¢_{81} 175$ | HA11225 HA11235 | ${ }_{81} 81.95$ | la4230 | ${ }_{5} 1.75$ | SIK0039 | ${ }_{6} \mathbf{5} .25$ | UHicocol | ${ }^{21} 50$ | UPC1278H | 12.50 | ${ }_{2 S C 17}$ | 12.50 | 250371 | ¢1.30 | \% | | | c0.25 |
| AN7158N | $\underline{6} 25$ | HA11423 | 64.75 | La4400 | ¢1.90 | STK0049 | $5_{5.75}$ | Uhiccou | 5480 | UPC1350C | 17.20 | $2 \mathrm{SC732}$ | 20.30 | 2 2S041 | ¢1.50 | 2 | | OMB | c0.25 |
| AN7168 | $\underline{2} 50$ | HA11701 | ¢1.50 | LA4420 | 51.40 | STK0059 | ¢6.00 | UPC16C | 18.30 | UPC1353C | E1.75 | 2SC733 | 20.30 | 2S04678 | 20.30 | | | . $\mathrm{MB}^{\text {B }}$ | 20.25 |
| AN7310 | 50.80 | HA11702 | ¢4.90 | L44422 | ¢1.20 | STK0080 | 6.50 | UPC20C | 2.20 | UPC1356C | $\underline{6} .50$ | $2 \mathrm{SC7} 92$ | $\underline{5} .85$ | ${ }^{2} \mathrm{~S}$ | ${ }^{2} .50$ | | | | |
| AN7311 | 51.00 | HA11703 | ¢4.50 | LA4430 | ¢1.30 | STK2028 | 6.50 | UPC30C | ¢1.80 | UPCCI35 | $\underline{51.50}$ | ${ }^{2} \mathbf{S C 8 9}$ | 1.7 | 2s0778 | ${ }^{1} 1.50$ | | | | |
| BA301 | 50.75 | Ha11704 | $\{4.75$ | La4440 | $\underline{2} .20$ | STK2029 | 0.75 | UPC41C | 2.00 | UPC1360 | c1.60 | 2Sc828 | ${ }^{20} .20$ | 2 S 0976 | 88.30 | - | | GH | |
| 8A311 | co. ${ }^{\text {ch }}$ | HA11705 | 26.50 | LA4460 | $\underline{1} .75$ | STI | \%00 | | E1.25 | | c1.95 | ${ }^{25 c 840}$ | ${ }^{1} 1.5$ | | 91.75 | | | 4 | |
| ${ }_{\text {BA3 }}{ }_{\text {BA313 }}$ | ${ }_{50} 1.30$ | HA17706 HA11710 | ${ }_{6}^{14 .} 50$ | A44500 | ${ }_{2} 1.50$ | STK3042 | ${ }^{2} 8.50$ | UPC56 | cic_{20} | UPP 136 | 8.50 | 2SC900 | $\underline{20.35}$ | $2 \mathrm{SO1276}$ | c1. 50 | | | A | c0.75 |
| BA402 | 20.75 | HA11711 | ${ }_{50} 50$ | LA6458 | ci. 90 | STK5211 | 5.55 | UPC566H | 20.60 | UPC1367C | 11.50 | 2 Sc 9290 | 10.35 | -SG613 | 55.50 | | | | |
| BAStiA | c1.80 | HA11713 | 56.00 | - 78800 | E7.95 | STK5421 | ${ }^{6} 5.50$ | UPCS71 | $\underline{51.95}$ | UPC1368 | c1.75 | ${ }^{2 S C 3300}$ | ${ }^{20.30}$ | 2SJ49 | ${ }^{1} 4.00$ | | | | |
| BA514 | 51.7 | HA11714 | 8.75 | A7806 | 2.50 | STK5451 | 88.75 | UPC57 | 9.20 | UPC1370C | ${ }^{9} 1.95$ | ${ }^{2 S C 103}$ | ${ }_{3} 175$ | 2SK19 | 50.50 | | | | |
| ${ }_{88521}$ | ${ }_{61} 9.15$ | HA17715 | c5. 25 | LC7130 | ${ }_{\square}^{3} .50$ | STK5730 | ${ }_{50} 15$ | UPC575C | ${ }_{51.00}$ | UPC 1378 8 | 18.95 | 2SC106 \dagger | 20.95 | 2SK38A | $\underline{7} .70$ | | | | |
| 84532 | ¢1.50 | HA11717 | E6. 25 | LC7131 | ${ }_{0} 1.75$ | TA7050P | 50.00 | UPC576H | 51.75 | UPC 138 | 20.75 | 2SC1096 | 50.60 | 2SK49 | 50.60 | | | | |
| B | $\underline{4} 2$ | HA11718 | 14.75 | LC7136 | 2.75 | TA7051P | 53.80 | UPC577 | ${ }^{50} 70$ | UPC13 | $\underline{C} 50$ | ${ }^{2 S C 114}$ | 03.50 | 2Sk120 | 20.9 | d | Hoh | Weekeno | |
| BA612 | c1. 20 | HA11724 | ¢18.25 | [C7137 | 0.75 | TA7054 | 51.70 | UPC580 | $\underline{2.75}$ | UPC14 | 50.90 | ${ }^{2 S C 1115}$ | \% 15 | 2 | 4.00 | | | | |
| BA131 | c1.75 | HA11725 | 116.00 | M5106p | Cl^{25} | | ${ }^{20} 50$ | UPC592 | 5.95 | 2SA103 | ${ }_{60} 60$ | ${ }^{2 S C 116 *}$ | c0. 80 | 3Sk22 | 81.75 | VISNACCESS | | EPHOME 0 | |
| BA1320 | ${ }_{81.75}$ | HA11726 HA1727 | c9. 250 | M5134P | $\underline{8.75}$ | ta7070 | c1. 40 | UPC595C | 81.70 | 2SA350 | 50.60 | 2SC11708 | 2.95 | 3SK45 | 20.60 | | | | |
| BA6304 | $\underline{26}$ | HA11736 | ¢ 16.00 | M5135P | 52.30 | TA7072P | 91.20 | UPC596 | ¢1.50 | 2SA495 | ${ }^{20.35}$ | ${ }^{2 S C 1172}$ | ${ }^{2} 2.75$ | | 50.50 | | | | |
| CX0642 | c8.50 | Ha11745 | c3. 00 | M5155 | c1.50 | TA7073 | 2.25 | UPC1001H | 2.00 | 2Sa539 | 20.30 | 2 Cl 1307 | 51.25 | TAFS5 | 24.30 | | | | |
| CX065B | C2. | HA117 | c9. 50 | M51513L | c1. 50 | TA7074 | ${ }^{51.95}$ | UPC1000 | ${ }_{9} 1.20$ | 2SA562 | ${ }^{20} 50$ | ${ }_{\text {2SC1316 }}$ | ${ }_{7} 9.9$ | TDA2003 | ${ }_{50} 50$ | 6 PADO | 1 | E | |
| C×075B CX095C | 9.80 | HA11747A HA11749 | ${ }_{84} 8.50$ | M51514AL | 5 | | c1.50 | UPC1018C | ${ }_{c} 8.95$ | 2SA643 | ${ }_{50} 10.6$ | ${ }_{2 S C 1317}$ | 50.30 | TDA2004 | 5.20 | | | | |
| Cx1000 | E5. 75 | HA11750 | E5.00 | M51516L | 52.50 | TA7109 | 2.30 | UPC1020 | £1.75 | 2SA673 | 50.35 | $2 \mathrm{SC1342}$ | 00.75 | TDA2005 | $\underline{7.75}$ | | | | |
| Cx101G | c7.50 | HA17533NT | 28. 50 | M51517 | $\underline{2} .50$ | TA7119 | 51.75 | UPC1023H | ¢1. 60 | 2SA684 | c0. 70 | $2 \mathrm{SC1364}$ | 50.40 | IDA2006 | ¢1.20 | 01-723 | 6 | ISW | |
| Cx130 C×136 | E4.50 | HA17758NT HA17768 | ce. 50 84.50 | M51518L | ¢1.75 | ${ }_{\text {TA7130P }}^{\text {TA712P }}$ | ${ }^{51} 9.00$ | UPC1025H | 8.30 | $\begin{aligned} & \text { 2SA699A } \\ & \text { 2SA762 } \end{aligned}$ | ${ }_{\text {c10. }}^{10.05}$ | ${ }_{\text {2SC1419B }}$ | 10.75 | TDA2030 | $\begin{aligned} & { }^{1} 1.40 \end{aligned}$ | DESPA | | | |

Come along and explore the fascinating world of wood from beautiful hand carved figures to cabinet making.

See craftsmen demonstrating techniques such as hand carving, marquetry, woodturning - get a few tips on improving your own skills!

You'll find the widest possible choice of the very latest power tools, woodworking machinery and sophisticated lathes to traditional hand tools.

Or perhaps you're interested in old woodworking tools or antiques. Experts from Christies will be on-hand to provide a FREE VALUATION SERVICE. Bring along your old woodworking tools or photographs of antique furniture.

Or maybe you'll want to buy something from the craft market. Choose from a simple wooden toy to a ready to assemble kit - there's something for everyone.
For safety reasons both pushchairs and dogs (except guide dogas) cannot be admitted into the exhibition.

> EX RENTAL TVs AND VIDEDS. TELETEXT PORTABLES, B GRADE AUDID ETC.
> PANELS, REMOTES AND FRIENDLY SERVICE.
> ONLY 2 MINUTES FRDM DARTFDRD TUNNEL.
> THORN TELETEXT HANDSETS E12 + VAT
> 9600 LINE PANEL E8+. JVC VIDED BELT SET E4+

P BREACH ROAD

WEST THURAOCK

PLRFLEET

CREWE WHOLESALE TV 77 COLERIDGE WAY, CREWE TEL: (0270) 582924

SPECIAL OPENING OFFER

G11s working £47 in lots of 5 Decca 80 s and 100 s working $£ 33$ lots of 5

Philips G8s working £22 lots of 5
GEC 2111 working $£ 25$ lots of 5
GEC Starline and 8 channel working $£ 30$ lots of 5
Thorn 9000 working $£ 30$ lots of 5
MANY OTHER MAKES IN STOCK ALL WORKING \star * \star VHS VIDEOS TO ORDER P.O.A. $\stackrel{\star}{\text { PANELS AVAILABLE }}$ $\star \rightarrow \star$ REMOTE CONTROL SETS AVAILABLE

Delivery available on lots of 10 or more

$\star \star$ CHANGE OF ADDRESS $\star \star$

all orders should now be sent to our new address shown below

TOP 50 VIDEO SPARES

	CASSETTELAMP (FERG/JVC)
	CASSETELAMP (PANASONIC)
	CASSETE LAMP (SHARP, 9300 ETC)
	BELTKIT SONY (STATE MODEL)
	BELT KIT FERGUSON (STATE MODEL
	BELT KIT SHARP ISTATE MODEL)
	BELI KIT PANASONIC (STATE MODEL)
	BELT KIT SANYO $3300,5300,5$
	BELTKIT SANYO (5000)
	BELTKIT HITACHI (STATE MODEL)
	REWIND KIT SONY C5/C7
	REWIND KIT SONY C6.
	REEL LILER (SHARP, 9300, 381, ETC)
	FFRREWIDLEA (HITACHIVT-11,ETC)
	FF/REWIDLER (HITACHIVT8000)
	FF/REWIDLER(HITACHIVIT330)
	REEL IDLER (FERG, 3V29/30)
	PLAY IDLER(${ }^{\text {HITACHI } 9300)}$
	FF/REWIDLER (NAT/PAN NV370)
	REELIDLER (Nat/PAN) STATE MODEL
	PLAYIDLER(NAT/PAN) STATE MODEL
	PLAY CLUTCH (PAN NVIO00)
	PINCH ROLLER (FERG)
	PINCH ROLLER (SHARP)
	PINCH ROLLER(PANASONIC)

f1.80 PINCH ROLLER (SANYO)
£1.80 PINCH ROLLER (SONY C5/C7 £1.80 VIDEO HEAD DRUM (FERG)
f6.50 VIDEO HEAD DRUM (PANASONIC)
66.50 VIDEO HEAD DRUM(PAN NV366)
e6.50 VIDEOHEAD DRUM (HTTACHI)
f6.50 VIDEO HEAD DISC(SONYC5/C6/C7)
E6.50 VIDEO HEAD DISC (SONY SL8000)
61.99 VIDEOHEAD DISC (SANYO)
66.50 VIDEO HEAD (SHARP 7300. 7700) 6.95 VIDEO HEAD (SHARP 9330,381 ETC)
6.95 VIDEO HEAD (TOSHIBA 9650)
3.45 VIDEO HEAD (TOSHIBA 8600)
f4.50 REEL ORIVE PULLEY (SANY 5001
f4.72 REEL ROTRR (SHARP 9300,381, ETC) E3.45 CAPSTAN MOTOR (SONYC5 C7) c6.50 A.C.E. HEAD (SONYC5C7)
f4.50 CAPSTAN MOTORFERG/JVC $3 V 22$ ETC
E3.45 DRUM MOTOR FERG/JVC 3 V22 ETC
E4.72 TAKE-UP CLUTCH IFERG/JVC
£5.50 CLUTCH ASSY FFERG 3V29930)
55.95 HEAD CLEANING STICKS

C5.95 HEAD CLEANING FLUID
MOST SPARES AVAILABLE FOR HITACHI, PANASONIC, SONY, SANYO, SHARP ETC RING FOR AVAILABILITY
TELEVIDEO SERVICES NOTTINGHAM (0602) 226070 145 STATION RD, BEESTON, NOTTINGHAM

Please add 50 p post \& packing and then add 15% VAT to the total ALL STOCK ITEMS ARE DESPATCHED BY RETURN OF POST Send 17p stamp for full list

WD-TV

100's of working Colour Televisions always in stock. From $£ 15.00$

Tested Tubes from $\mathbf{£ 1 0}$.
Spare Panels available for most major makes from $£ 3$.

VHS VIdeos in working order, in good condition from $\mathbf{£ 1 1 0}$.

End of lines and fast changing stock.

WD-TV
 TV Warehouse, Watling Street (A5) Hockliffe, Bedfordshire

 (Junction 12 M1 - 3 Miles)Tel: 0525-210768 \& 210686

HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working

VHS VIDEOS

FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010

SHARP

620, 630, 640, 2300 H T/P
BETAMAX
SANYO VTC 9300, 5000, 5300
SONY C5, C6, C7, C9 and SL F1UB T/P

Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" 20" $22^{\prime \prime}$ 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext
Discount for Quantities
Complete loads delivered from pick up point

> JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLLWS INN, ILKESTON

Phone: 0602303124

D.I.Y. TV TUBE POLISHING with our DIY Polishing Kit The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill. Kit Price $\mathbf{f 4 9}$ inc P\&P and VAT. Available from Luton only. *Depends on depth and area to be polished. TV TUBES FREE DELIVERY* 5\% DISCOUNT ON TUBES COLLECTED FROM LUTON Quality, High Temperature Reprocessing					
$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	DELTA i.e. A51-110X A56-120X A66-120X A67-120X		IN LINE \& PIL i.e. 470ESB22 470ERB22 A51-161X A51-570X $510 . \mathrm{KKB22}$ 560 AKB22 $560 \mathrm{BYB22}$ A56-510X A66-510X	HITACHI IN LINE etc. AXT37-001 AXT51-001 AXT56-001 510VLB22 510VSB22 560DZB22 $560 \mathrm{EGB22}$ A56-540X A56-711X A66-540X A67-711X	SONY TRINITRON $330 A B 22$ 400EFB22 $4708 E B 22$ 470DLB22 520 KB 22 520 SB 22 $570 \mathrm{EB22}$ 570HB22 $680 \mathrm{DB22}$
UP TO 20	$E 30$	£32	140	£44	£58
UP TO 22'	E34	£36	$\underline{42}$	£46	f64
UP TO 26"	£36	£38	£44	£48	£70
All tubes sold Your good, wor De Please add 베든 Open Mon-Fri Your Local Tub Well View, H. K. Televis West One D Tel. 0240 Rushden Ren Daventry Re Rea \& Holland WANT	ith 1 or 2 Prices Al king tubes urpose buil very charg 1 or 2 tub Nationwide 15\% VAT 8am-6pm, Stockis outhamp on, Lond stributor 3609 tals Ltd. atals, Da d, Ipswi D A56/A6	ar guarantee, hown are for 1 ubes exchang th scratches or polishing equi on colour tube £6. 3 or more elivery availabl all prices. Ca Sat 9am-1pm on. Tel. 0703 n, E.2. Tel. Ltd., Gt. M Rushden, N antry, Nort , Suffolk. $-510 \times / 540 \mathrm{X}$	th optional months gua glass requir small chips, nent. From Within 40 bes FREE charges on rs welcome 114-13 Luton, Tel. 0582- 331837 1-729 1 senden, rthants. ants. Tel. I. 0473 nd Sony.	ension by tee. n be POLIS per tube. es of Luton NERY* plication. lease phone Midland R eds. 787. 3. ckingham I. 09333 1272774 7562 glass for	ra 2 years. D with our first. hire. 901 ash

WINTER SPECIALS

10 BUSH 2 CHIP	$£ 50$
10 GEC SOLID STATE	$£ 150$
10 GEC STARLINES	$£ 250$
10 REDIFFUSION MARK 1	
REVAMP	$£ 120$
10 THORN $800017^{\prime \prime}$	$£ 150$

ALSO BUSH T20, G11, 9000, 9600, 9800, GEC STARLINES

PL509 £1.50, PY500 £1
ELC 1043 Tuners Ex-panel £2.50 RING FOR QUOTE

ALL + VAT
TELETRADERS
Forde Road, Brunel Industrial Estate, Newton Abbot, Devon
Telephone: (0626) 60154
THE NO. 1 WHOLESALER IN THE SOUTH

TRADE ANNOUNCEMENT CHROMA VISION (Manchester) NOW OPEN!!!
 95 LANGWORTHY RD, SALFORD M6 5PH. Tel. No. 061-736-6333 811 WASHWOOD HEATH RD, WARD END, BIRMINGHAM 8. Tel. No. 021-784-2561
 Large range of late model TV's and Videos at low, low prices
 THORN AND PHILIPS TELE-TEXT, REMOTES AND BASICS

* WORKING \& SERVICED!!! VHS VIDEOS 100's IN STOCK * 1000's MORE UNTESTED SETS OFF THE PILE
\star Lorry loads direct from source * Delivery arranged *
All prices subject to V.A.T.

WE ARE HERE
Only 2 minutes from
end of motorway

Newnes Technical Books

DOMESTIC VIDEOCASSETTE RECORDERS

 a servicing guide SECOND EDITION including fault patternsThis invaluable guide for service engineers,technicians and students has been thoroughly updated and enlarged. Along with in-depth discussion of the principles and practice of domestic machines, there is a great deal of new material on long-play machines, Hi -Fi systems and digital techniques. 160 Pages. Illustrated. 0408015 73X

Available from bookshops, but in case of difficulty fill in the order form below.

DOMESTIC VIDEOCASSETTE RECORDERS ORDER FORM

Please sendme copy(ies) of Domestic Video Cassette Recorders at $£ 15.95$ (plus £ 1 p. \& p) I enclose a cheque/Postal Order made payable to Newnes Books for $£$ \qquad (CAPITAL LETTERS PLEASE)
NAME ADDRESS

Please send orders to Dept. GB, PO Box31, Newton Abbot, Devon, TQ125XH
UK offer only. Please allow 28 days for delivery. If 1 am not completely satisfied I may return the book/s within 14 days of delivery and you vill refund my money.

UNTESTED EX-RENTAL CTV OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES

BEST SOURCE IN U.K.

COLOUR TVs FROM £3

VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT
VIDEO RECORDERS FROM £50:
SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON : GRUNDIG ETC.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY

FRANK FORD (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WE ARE LOCATED IN
UXBRIDGE
At probably the most accessible part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the M25/M3, M25/M4, M25/M40. The Poyle/Colnbrook section of the M25 was completed in September with the exception of the M25/M4 interchange which will be completed soon.

LOCAL AREA MAP AND PRICE LIST AVAILABLE ON REQUEST

DISPLAY ELECTRONICS LTD. UNIT 4, SWAN WHARF, WATERLOO ROAD UXBRIDGE, MIDDLESEX. UXBRIDGE (0895) 55800.

CentreVision

TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB

OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4

FERGUSON VHS VIDEO £75

MANY TOP QUALITY REMOTE CONTROL WORKING TV's.
PHONE FOR LATEST PRICES PRICES SUBJECT TO VAT OPENING HOURS: MONDAY - FRIDAY 9.00-5.30

SATURDAY 9.00-1.00

TELEVISION/COMPUTER FULL-TIME TRAINING

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL)

2 YEAR

BTEC National Diploma (OND)
ELECTRONIC \&

COMMUNICATIONS ENGINEERING

(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis) 15 MONTHS
BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis) 15 MONTHS
BTEC National Certificate (ONC)
COMPUTING TECHNOLOGY
(Electronics, Computing Soltware/Hardware, Microelectronic Testing Methods) 9 MONTHS
BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS

Microprocessor Based Systems, Faull Diagnosis, AtE, Robotics)
these courses include a high percentage of college based PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR applicants with previous electronics knowledge

NEXT SESSION TO COMMENCE ON APRIL 21st
H.N.C. SEPTEMBER 1986 FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE (Dept TN) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

TELEQUIPMENT D67 Dual Trace 50 MHz Oelay Sweep with nanuai. COSSOR CDU150. Dual Trace 35 MHz Sold State. Portable $8 \times 10 \mathrm{~cm}$ display With Manual $£ 200$ S.E. LABS SM111. Dual Trace 18MHz Solid State. Portable AC or External DC operation $8 \times 10 \mathrm{~cm}$ display. With Manual TELEOUIPMENT D43. Dual Trace 15 MHz . Manual TELEQUIPMENT S54A. Single Trace 10MHz Solid State. With Manual	HAMEG OSCILLOSCOPE 605. Dual Trace 60MHz.
	Delay Sweep. Component Tester \% £515
	HAMMG OSCILLOSCOPE 203.5. Dual Trace 20 MHz . Comporent Tester
	Meteor $1000-1 \mathrm{GHz}$
	BLACK STAR JUPITOR 500 FUNCIION GENER- ATOR. Sine/Square/riangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$
PHILIPS DIGITAL MULTIMETERS 4 digit, auto ranging. Complete with batteries and leads TYPE PM2517X (LCD) (pip 5	
	d
MULTIMETERS AVO 8 Mk 3 . Complete with bateries \& leads	
	OSCILLOSCOPES PROBES. Switched $<1: \times 10$. P\&P2
ONLY 560 AVO 8 Mk 4 . Complete with batteries \& leads. £65	RACAL 32 MHz Universal Counter
AVO Model $7 \times$. Complete with balteries, 'eads \& carying case	
	$A D$
BELEMIC Muttimeters. Un-used Supplied with leads \& batteries.	AM Signal Generator ty
	METRIX WOBBULATOR
	220 N
	Labgear colour
marcom elctronic vottmeter tf2604 20Hz-1500MHz; AC DC:Ohms AC300mV-300V. FSD 	$\begin{aligned} & \text { LABGEAR CROSSHATCH } \\ & \text { CMG004 } \end{aligned}$
	W
PROFESSIONAL $9^{\prime \prime}$ GREEN SLREEN MONTTORS made KGM tor REUTERS Gives quality 80 column $\times 24$ line display. Composite yideo inCased Good conditionONEY E 40 each	mulionm-1000 Monm .i. .i...
DISK DRIVE PSU. 240V $1 \mathrm{~N} ; 5 \mathrm{~F} 1.6 \mathrm{~A}$ \& 12 V 1.5 A out. Size: W125mm, H75mm, 0180 mm . Cased.	
Un-used. Only $£ 15.00$ Various 51/4" Floppy Disk Drives and Stepping	
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARPIAGE all units $£ 12$. VAT to be added to Total of Goods \& Camage	
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL	

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

 Large Quantities of Late Model Thorn TVs. All with first class cabinets.TELE-TEXT/ULTRASONIC/INFRARED/REMOTES
All at UNBEATABLE PRICES for QUANTITY \& QUALITY
Also Philips G11/Pye G11/Basic/Remote/TELE-TEXT
Some examples of QUALITY working TVs

THORN 8800 (remote) $* * * * * * * * * * * * * * * * £ 30$

THORN $9600 \star \star$ £ $£ 40$
THORN 9600 (full feature remote) $\star \star \star \star \star \star \star * * * £ 45$

NO DEALER TOO LARGE OR SMALL. SINGLES SOLD Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.
I.E. DECCA 30s, GEC 2110, GRUNDIG, TANBERGS, G8s 520s-550s, Thorn 3500/8000/8500, TT, PYE, ETC. (Many of these untested TVs just switch on)

ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands
£4.95 Also Video Stands
POA

1000s of UNTESTED Colour TVs

CALLERS WELCOME
Export Orders Welcome for those Countries using the P.A.L. System
419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER.
TEL: 061-861 8501

V.H.S. VIDEOS PIANO KEY \& EleCtronic

SONY BETAMAX VIDEOS WORKERS £68.50 EACH + V.A.T. COLOUR T.V.s WORKERS OR NON-WORKERS

DECCA

FERGUSON
G.E.C.

PHILIPS DORIC ETC.

PANELS AND VALVES ALSO AVAILABLE

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road
Brent Park Industrial Estate
Southall, Middlesex UB2 5LL 01-574 4631 Ext. 28

Prices All Inclusive			
3V00/22/16		Capstan Belt	2.50
Head	36.95	Drum Belt	2.50
Captstan Motor	36.95	Switch S1	1.90
Drum Motor	33.95	Switch S2	1.95
Aud/Control Head	36.50	Micro Switch	2.85
Takeup idler (old)	5.75	Sony C5/7 Head	43.75
Takeup idler (new)	5.95	Sony Rew. Kit	5.45
Pinch Roller	5.50	Sony Capst. Motor	37.25
Comprehensive stock of I.C.'s, Transistors, Coils, Motors, Switches, Levers, Belts, etc. for all J.V.C., Ferguson, and Sony videos available ex stock. Export enquiries welcome. Payment C.W.O. Min. order f7.			
EURO IMPEX Crescent, London NW9 7EY.			

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.

* All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

PHILIPS 550s £10
PYE CHELSEA SERIES £15
THORN 9000s £20
DECCA 80/100s £25
ITTS/STATE £25
PHILIPS G11s £25
VHS VIDEOS 3V16/22 etcoff the pileea $£ 75$

BETA

Various makes and models.

No Minimum Quantities

Quantity Rates Available All Prices Exclusive VAT
Free Delivery London Area, other areas negotiable SOUTH LONDON TELEVISION Mission Hall,
Southey Road, London SW19 Tel: 01-543 5437

	DE
SE	
Water St	whill
Birm	
Tel: 02	
SUPPLIERS 0	APEST
T.V.'s \& VIDE	TRADE
PHILIPS G11	From $£ 30$
THORN 9000	From $£ 20$
THORN 9600	From $£ 20$
THORN 9200	From $£ 20$
THORN 9900	From $£ 30$
PHILIPS KT3	P.O.A.
THORN TX9/TX10	P.O.A.
Many othe	
Prices avai	
Spare	
Quantity dis	uest.

HOCKLEY DISCOUNT TELEVISIONS

We give "The Best Deals" that's why we have the cleanest reputation in the trade!!!

Prices start Working sets
From $\mathbf{£ 6 . 0 0}$ From $£ 12.00$

OR

Lorry loads delivered from SOURCE

We have huge stocks of TV's + V.H.S. Videos to offer, including:-

Philips G8's, G11's Thorn 8000, TX9,
Pye Solid State Latest Hitachi
Pye ChelseaT. CVC30, CVC45,
G.E.C. Solid State
Redifiusion Mkl, MklI Bush T20, T22

ALSO

VIDEO + T.V. STANDS AVAILABLE!

DONT HESITATE TO CONTACT US because you will never loose!!

MIDLANDS BRANCH:Hockley Discount Televisions, 94 Soho Hill, Hockley, Birmingham B19 1AE. 021-551-2233 - Ask for Jazz

NORTH-EAST BRANCH:-
Northern TV Distributors, Unit 2, Pert Court, 11th Ave, Team Valley, Gateshead, Tyne \& Wear. 091-487-5339 - Ask for Joe

A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDES

G.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $£ 60$ plus full range of Thorn remote control including T/Text * DISCOUNT FOR QUANTITY «

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.

Open 6 days $9-5.30$ (later by appointment)

1. Input 200 mm . 2 Output 780 mm . 3. Focus 390 mm . 4. Pulse 35 Cmm . 5. Earth 390 mm . Instruction sheet available on request BEWARE IMITATIONS
1×10 ($£ 5.00$ each) $£ 50.00$ 1×5 ($£ 5.50$ each) $£ 27.50$ 1×3 ($£ 5.75$ each) $£ 17.25$
1×2 ($£ 5.95$ each) $£ 11.90$
NB: Includes Post \& VAT
Strictly cash with order.
Goods despatched by return. Access Barclaycard accepted

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer the purchaser's money must be refunded. Please retain proof of postage/despatch as this may be needed.

Mail Order Protection Scheme
Mail Order Protection Scheme
If you order goods fom Mail Order advertisements in this magazine and pay by post
in ard Advertiser should become insolvent or bankrupt provided.
11) You have not received the goods or had your money returned; and
2) You write to the Publisher of Television surnmarising the situation not earlier than 28 days from the day you sent your order and not later than wo months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required. procedure as scon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to
catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

The World of . . P+P 1 PANEL $£ 1.50$ 2 PANELS OR MORE £3.00										
	IF	TUNER	DECODER	G8/G9 DECODER IFINED COMSINED	$\begin{aligned} & \text { LINE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	FRAME	VIOEO	$\begin{aligned} & 6 \text { WAY TUNGR } \\ & \text { SWITCH } \\ & \text { BANK } \end{aligned}$
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731			10.00		18.00	10.00	7.00	8.00		4.50
BUSH Z718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00		4.00		
DECCA 80	12.00	POA	14.00		12.00	10.00		14.00		POA

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100
GEC STARLINE
HITACHI ITT (full remote) PHILIPS G8
PHILIPS GII PHILIPS KT3 THORN 9600 including TELETEXT THORN 8800 THORN 9000 (remote) (remote) THORN TX

VHS VIDEO trom $\mathbf{£ 8 5}$ (working)

We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone:

COLIN BROOMFIELD,

UNIT 7, STATION STREET,
GACliAcario BROMSGROVE, WORCS.
(0527) 37037

THORN, GEC, DECCA's stripped for spares. Panels. Tuners from ${ }^{2} 2.50$. Phone for prices: WELLINGTONS, Dartford 0322337212.

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

HITACHI, MITSUBISHI, Panasonic, Sony, Toshiba, JVC, Sharp, fully refurbished. PEARSON TELEVISION, 1484863489 . Delivery arranged.

OCHRE MILL TECHNICAL. Grundig sets, panels, manuals. TELEQUIPMENT oscilloscopes, manuals. spares. LABGEAR pattern generators. $1785-814643$

T.V PANELS

REPAIR EXCHANGE SALES SERVICE
PRICES FOR REP. EXC. AS FOLLOWS Chassis If Decoder Line Power Frame Philips GII 18 $\begin{array}{llllll}\text { Bush T20 } & X & 12 & 16 & 15 & 12\end{array}$ $\begin{array}{llllll}\text { Bush T26 } & X & 16 & 18 & 15 & X\end{array}$ $\begin{array}{llllll}\text { Bush } 718 & X & 12 & 18 & X & 12\end{array}$ All panels are repaired and aligned according to rank std.
Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months.
T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

PRECISION VISION LIMITED
 the company that cares

Offers for sale
\star Ex hotel rental colour TVs
\star Graded colour TVs and Audio

* VHS Video Recorders

Please phone for current stock position
Unit 10, Chiltern Business Centre, 198 Garsington Road (Opposite BL works), Cowley, Oxford.
Phone: (0865) 711966.

STARLITE ELECTRONICS
 WILLOWS FARM,

 A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.EX RENTAL TVs
UNTESTED FROM £15.00 WORKING TVs $£ 20.00$ RE-GUNNING TUBES

2 year guarantee
Most types available
including Sony Hornchurch 50238

TELEUIFIOM

No other consumer magazine in the country can reach so effectively thos readers who are wholly engaged in the television and affiliated electroni industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column cent metre (minimum 2.5 cms). Classified advertisements 40 p per wor

JANUARY SALE TIME ON

Colour TV's, Videos, Slot Meters, Stands, Legs, Panels etc.
Colour TV from $£ 5$, Videos from $£ 25, G 8$ s from $£ 7$, G11's from $£ 29$, Remotes from $£ 35$.
Loads of other models, makes, prices. Japanese, European, British, huge selection. (Truck loads by arrangement delivered).

AND OUR SPECIAL JANUARY DEAL

 SPEND OVER £250 ON SELECTED TV IN JANUARY AND GET A CASE OF WINE FREE GIVE YOURSELF SOMETHING TO CELEBRATE WITH
So grab the cash £f£ wagon and head in our direction

GENERAL FACTORS

UNION STREET,
DONCASTER
TELEPHONE 0777-817386

CASH ONLY, NO CHEQUES ONLY $21 / 2$ MILES FROM A1M FOR M18 - M1

> NORMAN ENTERPRISES LTD
> Weston-Super-Mare, Avon. Tel: 413991/418545
> Colour TVs fully engineered with a special care on tubes
> Hitachi 217 Remote Control £85
> Thorne 9000 Remote Contro $£ 42.50$
> Pye G11 $£ 47.50$
> Rank T20 $£ 42.50$
> Pye Chelsea 6 Button......£27.50
> Pye 725 £37.50
> Pye 721 $£ 27.50$
> Thorne 9600 $£ 45$
> Thorne 9200 $£ 42.50$
> Bush T20 Remote Control.... $£ 49.50$
> Bush T24 $£ 55.50$
> All above prices include hand
> sets if available
> Ready for sale.
> Phone now, limited number each month. All the above off the pile, less a 3rd

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS
 Line Ouput
 2718 (T703A, T706A)
 New (Complete)
 £19.00
 Less Focus Module and
 Rectifier
 £10.50
 T20, T22 (T705A) £11.00
 T26 (T705B) £11.00
 TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $£ 6.00$ Switch Mode T114A
 £6.00
 Genuine RBM Units.
 Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices.
 DISCOUNT for QUANTITIES.
 34 Field End Road, Eastcote, Pinner, Middlesex. HA5-20T.
 Tel: 01-868 5580.
 N. Skehan
 Agents Office. Callers by appointment only.

EERULCE PQCES

(minimum 12 words), box number 70p extra. All prices plus 15\% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261'5942).

FOR THE BEST OUALITY AND BEST PRICES IN BIRMINGHAM. TESTED AND UNTESTED TV's AND VIDEO's

RING - 021-772 2733
WILTSGROVE LIMITED
(Next Door to UNCLE'S DISCOUNT STORE)
128-130 Ladypool Road, Sparkbrook, Birmingham B12 8JA.

CASH ONLY

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.
G11s from $£ 70$ + VAT MANY OTHER
KT3s from $£ 85$ + VAT K30s from $\mathbf{f 9 5}+$ VAT ITTs from $£ 50+$ VAT Decca from $£ 50$ + VAT T20s from $£ 50+$ VAT 9000 s from $\mathbf{£ 3 5 + V A T}$

VHS Videos.
Ferg $3 V 29,3 V 30$ NatPan NV2000, NV2010
Contact John, Dave or Steve for personal friendly attention on

```
            JABCO Combination Lopt Tester & full
distance Infra Red Remote Control Tester
            Total price inc. P.P. etc. £22 C.W.O
    Hitachi/GEC Frame module HM6251
        Replacement f7.50 inc. P.P
            J. BAKER & CO.
            IOld Shoreham Road
        Southwick, Sussex BN4 4RD.
            Thwick, Sussex BN4
```


NWVELECTRONLCS

25 YEARS SUPPLYING THE TRADE

COLOUR TTV'S AND VIDEOS

 H.P. REPOS AND EX. RENTALS
PYE G11 EXC CAB $£ 40$
BUSH 718 $£ 20$
BUSH T20/26 CH $£ 35$
BUSH 2 CHIP 88
HITACHI 191 $£ 20$
GRUNDIG 5010 £10
FERGUSON TX PYE KT3 $£ 50$
(NOT D.E.R. Etc.) £65
GEC 2213 £30
GEC 2010 $£ 20$
THORN 3000 £7
PYE 222 £20
GRUNDIG G415/4206$£ 15$
Best Stock in the Country - over 2000 in stock (90% of our TV's Switch on)Special Price Quoted For Bulk Purchases From Source.

100's PX HOOVER JUNIOR VACS - All models in stockFully reconditioned HOOVER JUNIORS (Like new)£27

CASH ONLY
UNAF 12, WhartecaleiodM606 Muroway Bstate1:3achord

COLOUR TV PANELS Fully Tested \& Working

	IF	Video	Decoder	LTB	Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	-
DECCA 13/30	3.00	-	7.00	5.00	-	4.00
BUSH A823	4.00*	-	10.00*	5.00*	2.50	4.00
THORN 8/82	-	-	10.00	5.00	-	5.00
PYE 205	3.00	3.50	5.00	10.00	-	-
THOAN 3/31	5.00	5.00	5.00	8.00	-	10.00
G8	6.00	-	8.00	7.00	15.00	5.00
*Please specify					fitted with	
Please add 15% VAT to above prices, then add post + packing. Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25 ; 3$ panels $£ 3.00$ etc.					brand new transformer	
Hybrid pane/s do not include valves.					Terms cash with or	

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock.
GOLCAR T.V. SERVICES (formorly LAVITE LTD.).
Old C of E School, Church Street, Golcar, Huddersfield. Tel. : 0484643273 Callers by appointment only

WORKING CTVs
 THE BEST \& CHEAPEST IN LANCASHIRE
 SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units

Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) $22^{\prime \prime}$ \& $26^{\prime \prime}$ ONLY $£ 20.00$ each
Plus many more makes \& sizes in stock, inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
All SETS TESTED \& WORKING CALL JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV f1.25 per panel plus post \& packing

T.V.
 SPARES, PANELS
 AND MANUALS

 PHILIPS • GRUNDIG
TELEVIEW
 01-994 5537

194, Acton Lane, London W.4.

IRISH T.V. DEALERS
Brand new re-gunning plant operating - TOP CLASS TUBES BM - Delta - In-Line - P.I.L. CHRIS KELLEHER'S T.V.

Kanturk, Co. Cork
Store open 9 to 8 pm . Sunday 10-1 pm 029-50046

COLOUR BAR GENERATOR
scale, Colour Bars with 11 patterns plus sound. Grey catc, Colour Bars, Red. Green \& Blue Raster, Cros:Half Black \& Chequer Board, Black Raster, White Raster, - E/5.S0

OUTPUTS PROVIDED
UHF OUTPUT
VIDEO OUTVUT
SOUND OUTPUT
LINE PULSE
Same as above plus RGB output
Line Output Transformer Tester
881.50

BN Generator Crosshatch Peak White Dots Half
Black \& White and Grey Scale UHF output Dots, Hat Same as above but with Video Output $£ 20.50$ with moving coil meter

CRT TESTER/REJUVENATOR SEND S.A.E S.A.E. for details. Prices include VAT.

Postage on Colour Bars $£ 1.75$, others 75 pence.
C.M.J. ELECTRONICS

Unit 8. 16 Union Mill Street, Horseley Fields, Woiverhampton WV1 3DW. Tel: (0902) 871563

BOURNEMOUTH

LARGE STOCKS OF WORKING NON-WORKING SETS, MOST MAKES AND SIZES.

FAIR PRICES - TRADE ONLY
WAREHOUSE OPEN:
Mon-Fri 9-1, 2-5; Sat 9-1
HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

PLEASE
MENTIOM

WHEN
REPLYMG
то
ADVERTISEMENTS

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD LONDON W2 TEL. 01-258 0328 ALL VHS PARTS AVAILABLE. EXAMPLES:

VIDEO HEADS

JVC, Ferguson, Akai, Saba, Telefunken $\mathbf{\Sigma 3 5 . 0 0}$
Sony (Betãmax)
National Panasonic ..
All Hitachi heads from
INTEGRATED CIRCUITS
UPC 1365C
UPD 553C
UPD 552 C
UPD 552C
HA 11711 £45.00
... 89.56
All makes of idlers, pressure rollers, clutch assembly and motors in stock.
Many other parts available. Send SAE for list ALL PRICES INCLUSIVE OF VAT ADD $£ 200$ FOR P\&P

GEMINI TUBES

THE PRICE IS RIGHT FOR QUALITY REBUILDS ALL WITH 2 YEAR WARRANTY
Phone now on St. Helens 37672
Or call at Unit 3,
Delphwood Drive,
Sherdley Road Ind. Estate, St. Helens.

C.T.V. PANEL SERVICE

Exch/repair \& sales - chemically cleaned - no burned or damaged print. 3 months g'tee, large range incl. Decca 80 \& 100, G11, G8, ITT, GEC, Rank, TCE, Jap \& euro modell, doespathene same day.
Send SA.E. for lists or ring with your requirements:
Argo Services (Birmingham),
53 Lawley Street, Birmingham B4 7XH. Tel. 0213593753
Telephone orders accepted using Access/MastercardNisa
CALLERS RING FIRST

WH2

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series All working and polished. These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
Krual Marketing Lid. Breedon Cross Storage,
Date Road, Selly 0ak,
Birmingham B29640.

RE-GLOW TUBES

 INLINE TUBE 20AX SPECIALISTS 30AX INLINE-PIL-BONDED DELTAS FROM $£ 28$ INLINE FROM $£ 36$ (VAT ExTRA)RE-GLOW TUBES
(OFF dELCE RD) ROCHESTER, KENT
tel: MEDWAY 43952 (STD 0634)

TELEUUIIIOIN

TV Business

COLDUR SETS FROM MONOS FROM
$£ 5.00$
$£ 3.00$
PANELS BY POST - PRE-CALIBRATED WORKING SETS TO ORDER
Phone Baldack 894805 SECTION 3, UNIT 4, SERL COMPIEX, LONDON ROAD, BALDOCK, HERTS.
OPEN 6 DAYS 10-6.30pm/10-5pm SAT.

Try Us.
We endeavour to provide a fast delivery of top
quality components for the keenest price.

HALTON TV
TRADE DISPOSAL
Wide range of TVs available.
WYorking and non-working. TRADE ONLY
(Ne have NO retail outlet)
St Michaels Industrial Estate, Widnes Tel. 0514231577

REPAIR SERVICE
BRIITOL - SOUTH WEST SOUTH WALES
Scratched and chipped CRTs can be Re-polished.
Tel: 0454778635 for details

PRINTED PANEL REPAIR SERVICE

Printed panels and remote control handsets repaired. Most makes and models serviced.

RING 0934418545
for Price List or Quotation.

SITS VACANT

VIDEO ENGINEERS

We are looking for an experienced Video Engineer. 5 day week. Bench work. Pleasant working environment, salary negotiable.

CELTEL

2, Breach Road, West Thurrock Tel: 0708861404

EXPERIENCED, ENERGETIC Television engineer with real ambition wanted, wonderful working area, excellent prospects. Flat available. Tel. (1969 50227 evenings.

VIDEO

V.H.S. VIDEO'S 100's IN STOCK

Famous brands:
JVC • PANASONIC • FERGUSON Also stockists of Grade B Units, Microwaves, Hi-Fi, Radio/Cassettes etc. etc.

CONTACT MICK ON:

021-772 1591

WANTED

WANTED TELEVISION MAGAZINES, ANY YEAR Phone anytime Richardson 0332-3672 I5.

SERUICE PQCES

FOR SALE

ESabaco
 For a
 great deal!

VAN LOAD DIRECT FROM SOURCES

ALL SETS OFF THE PILE
Large selection of Ferguson TX 9600/9200/9000/ 8800/4000 mainly teletext with remote control at best prices in UK

VHS VIDEOS
Good working order
3V22 £95
Non-working 3V23/3V29 £100
All prices subject to VAT and availability

Junction 25 M1

ANNOUNCEMENT TO SCOTTISH TRADERS TOP QUALITY OF VHS VIDEO'S \& TV'S

Large selection of VHS Video's
and TV's in quantities of
2's or 100's at very
competitive prices.
OPEN 6 DAYS A WEEK
9.30 am to 5.45 pm

For further details telephone:

Sabaco

75 Robertson Street, Glasgow.
Glasgow. 041-221 2146.
(2 minutes from M8).

Sabaco

46A Derby Road,
Sandiacre,
Nottingham. (0602) 397555.

2 SETS OF FULLY RECONDITIONED tube regunning plants for sale. Training provided. From only 23,995. Tel. 0582-410787

DEVONICS

Quality Rebuilt Tubes 2 YEAR WARRANTY

470 ERB22
510 KCB22
A51-161/500/510/
570/580/590X
560 AKB/DZB/TB22
A56-500/510X
A56-540X
A66-500/510X
A66-540X
670 XB22
Deltas from $£ 30$
Plus carriage and VAT 2A BARTON HILL ROAD TORQUAY TQ2 8JH
0803-33035

bUSINESS OPPORTUNITES

SOUTH WEST CORNISH VILIAGE

TV ELECTRICAL BUSINESS
With 25-30) Rentals, cstablished 9 vears, Large modernised DETACLIED 3 bedroomed house with adjoining shop, double garage, workshops etc. No crime and low rates with a
good income available to you from day one. $\mathbf{6 4 8} \mathbf{5} \mathbf{5 (0)}$ FREE. good income availahle to you from day one.
HOLD including van. lixtures \& fittings etc.

SAE (Serious enquiries only) to:
BOX NO. 203

SUPERB WELL FSTABLISHED Television Electrical Contracting Audio business for sale Yorkshire Dales Market Town. Excellent profits, wonderful working area. Box No 214

T.V. VIDEO SALES
 REPAIRS \& RENTAL SHOP
 In pleasant Shropshire country market town. Small growing business making good profits run at present by engineer \& wite, on a fairly leisurely 5 day week basis. Excellent 3 bedroomed accommodation attached, with gas c.h., walled garden.
 Freehold £45,000 o.n.o. \& S.A.V.
 BOX NO. 205 for details

EVERYTHING NECESSARY for multi-outlet and high gain installations. Cables, outlets, spliters, channelpass filters, diplexers masthead amplifiers, distribution amplifiers, brachets, masts, aerials, etc Use trade gear and save pounds. Catalogue 75p (refundable). Professional advice WRIGHTS AERIALS, 43 Greaves Sike Lane. Micklebring, Rotherham

AERIAL BOOSTERS

B45-UHF TV next to the set fitting. Gain 10 dbs (trebles gain), works off PP3 type battery or $8 V$ to 14 V working. Price complete (excluding battery) $£ 5.00$. Video Transmitter. This will transmit good qual ity pictures and sound more than $30 f$. Price $\mathbf{E 8 . 9 0}$ (S.A.E. for more details).

We also make aerial boosters for VHF/FM radio $£ 7 . \%$ and VHF television, prices $\mathrm{E7} .70$ \& $\mathrm{E8} .70$. p\&p 50 p pe order.

ELECTRONIC MAILORDER
62 Bridge Street, Ramsbottom, Lancashire, BL0 9AGT.
Tel: Ramsbottom (070 682) 3036
S.A.E. leaflets. AccessNisa Welcome.

Euro-Sat
Parabolic Dish Antennas Peorent company ast in
communications since 1969 ? SATELUTE TVRO ANTENNAS TOP QUALTY SOLD GLASSFIRRE DISH ANTENNAS TRADE PRICES IM. DIA 11-12-4 GHZ BANDS I2M. DIA 11-12-4 GHZ BANDS 3M. DIA $11-12-4$ GHZ BANDS
Trade \& Export Enquiries Welcome Prices do not include delivery Euro-Sat
107 Cross Street, Sale, Cheshire, England Tel. 061-437 2631 061-881 4249

TENDERS

Mio
 ctanorgan
 COUNTYCOUNCIL

REVIEW OF SELECTED LISTS OF CONTRACTORS

THE MID GLAMORGAN COUNTY COUNCIL is undertaking a review of its Selected Lists of Contrac tors over the whole range of Civil Engineering, Building and Associated Activities.
Those interested in applying for inclusion on any of the following lists may do so by applying for and completing the application forms obtainable firom THE COUNTY CLERK and CO-ORDINATOR, MID GLAMORGAN COUNTY HALL, CATHAYS PARK, CARDIFF CF1 3NE quoting the reference PPS/NM. The final date for applying for the forms is 31 January 1986. Completed forms must be returned to the above address by 28 February 1986.

40 T.V. Off Air Systems
D.H. THOMAS

County Clerk and Co-ordinator,
Mid Glamorgan County Hall,
Cathays Park, Cardiff CF1 3NE.

SERVICE SHEETS

TECHNICAL INFO SERVICE - 76 Church St - Larkhall - Lanarkshire ML9 1HE World's sole publisher of Comprehensive T.V. Repair Manuals. Largest known stocks of Service Manuals \& Sheets from 1935 to latest for all kinds of equipment, espec. T.V. \& video.
Save time \& expense - our big catalogues of Service Manuals
\& Sheets with Chassis Guide \& $£ 4$ Vouchers - only $£ 3$ - updated free
Any published Service Sheet $£ 2.50$ \& l.s.a.e. except CTV/Music Centres - $£ 3.50$ \& l.s.a.e. Service Manuals from $£ 4.50$ to $£ 39$ - e.g. Thorn $8000 / 8004 / 8500 / 8600$ only $£ 9.50$.
T.V. Repair Manuals $\mathbf{£ 8 . 5 0}$ each. Special offers The 5 McCourt $£ 40$. The 11 Tunbridge $\mathbf{£ 8 8}$ Video Repair Manuals $\mathbf{£ 4 . 5 0}$ per Chassis or all $\mathbf{1 0}$ for $£ 25$
Comprehensive Practical T.V. Repair Manual $\mathbf{£ 9 . 5 0}$. The Practical Radio Servicing \& Repair Manual $£ 9.50$. UNIQUE COLLECTIONS OF CIRCUITS \& LAYOUTS
British CTV from hybrid to modern in 3 giant binders for only £55. Also 2 giant binders packed full for $\mathbf{£ 3 5}$ pair.
NEW RELEASE. Offered to 'TEIEVISION' readers for 90 (tull price E^{25})
ull price $\mathbf{E 2 5}$).
The Integrated British CTV Repair System - 4 giant binders full of circuits \& layouts with 6 big Repair Manuals. Covers
The Integrated TV Repair System - 16 big Repair Manuals/8 giant binders plus service data and other manuals. Covers 1968-1985. Priced separately over $£ 300$. Our Offer for $£ 250$ cwo or supplied in 12 monthly sections at $£ 25$ month.

The Integrated Video Repair System - 10 booklets and 4 giant binders cover the early videos, all formats to $\mathrm{V} 2000,3 \mathrm{~V} 30$, Sanyo 9300 . Only $\mathbf{E 5 5}$.
S.A.E. brings any quotes required plus free magazine, service sheet \& other offers

Phone 0698884585 before $5 \mathrm{pm} ; 0698883334$ after 4 pm.

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European and Japanese models in stock. Colour $£ 3.00$ Mono $£ 2.00$ Manual prices on request. All our prices include post and packing costs. Send stamped envelope for free catalogue and any enquiries. SANDHURST TV SERVICES (MAIL ORDER) 57 High Street, Sandhurst, Camberley, Surrey GU17 8HB.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

GERMAN SERVICE SHEET SPECIALISTS

We furnish any kind of German service sheet and manuals. Also thousands of different sheets and manuals available. For any enquiries:

DONBERG-ELECTRONICS
Schoolmasters House, Ranafast,
Co. Donegal, Republic of Ireland Phone: Annagry 175

METERS

METERS. Reconditioned $10 p / 50 p$ available from stock. Contact THE METER CO. (Poole) LTD. (0202) 683498.

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee. 213 Cheltenham Road, Redland, Bristol. 0272-425281

TELEVISION PROJECTOR Converts TV in to 7 ft screen professional assistant $£ 25.00$. Details to: NIYAAZ MOHAMMED, 10 Farm Road, Rylands 7764, South Africa.

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 's/manuals supplied by return. $\$$ 'sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list'magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

GRUNDIG VIDEO Infra-red remote control VIF-K1 brand new \& boxed $£ 5.95$, complete with tele-pilot TPV355 $£ 12.95$, p\&p $£ 2$, these units plug strait into Grundig 2×4 super (Trade Supplied) Philips video films, ex-rental $£ 2.99$. Videos \& films wanted. STAN WILLETTS, 37. High Street, West Bromwich, West Midlands. Tel. 021-553 0186.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes
 Part 1. The Colour Signal Part 2. The Receiver Decoder Part 3. Receiver Installation

VHS $\star \star \star \mathrm{V} 2000 \star \star \star$, BETAMAX***UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS
TEL:

PARES/MANUALS	
OWS	SAE QUOTE
SERVICE	DETALLS
415a WHITEHORSE ROAD. THORNTON HEATH, SURREY CR4 8SD. 01-683 1911 (2 lines)	

C.R.T. REBUILDING PLANT AND EQUIPMENT

Installation, commissioning, training and technical after sales assistance.
C.R.T. INTERNATIONAL

136 Badmington Road,
Coalpit Heath,
Bristol BS17 2SZ
Tel: 0454778635

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

MACDONALDS R\&TV BOOKS. New 74/75 £15. 75/ $76,76 / 77,77 / 78,78 / 79,79 / 80,80 / 81,82 / 83,83 / 84,84 / 85$ £22.50. Free delivery. U-VIEW, 29 Warmsworth Road, Doncaster. 0302855017.

A-Z LIST OF MANUFACTURERS ADDRESSES. All major TV, audio etc plus many hard to get ones. Send cheques/PO for $£ 3.75$ to DOWNS ELECT. 135 Main Street, Newton Grange. Midlothian EH22 2PF.

Satellite Receiving Systems

1m and 2m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available.
Demonstration by appointment.

L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.

Telephone: Bridgwater (0278) 421719

T.V.'s FOR EXPORT

PHLLIPS G8 and G9, DECCA, BUSH and FERGUSON
All sets with VHF/UHF Tuners and suitable for countries using the PAi system. We also supply the home market.

TELE SPARES LTD.

Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

JUST OPENED FOR
 South Yorkshire/Derbyshire Dealers Come and see our range of Colour TVs from $£ 6$ BARGAINS GALORE

South Yorks Trade Supply, Anderson House, Callywhite Lane, Dronfield, Sheffield, S18 6XR.

PHONE 0246411325
Chesterfield

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES

ETC. ETC. - ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY
 TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED.
Applies to U.K. only.

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX
A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,

120 SELHURST ROAD, LONDON SE 25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

与祘 						
耳 						
 $\times \times \times \times \times \times$ 			K 			

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £13, overseas (surface mail) £15 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

