NOVEMBER 1985

SERVICING•PROJECTS•VIDEO•DEVELOPMENTS

Servicing with a Logic Probe

also inside:

Transistor Field Timebase Circuits Servicing Hybrid Colour Sets
Commissioning TVRO Systems VCR Clinic • TV Fault Finding Microcomputer Monitors • DX-TV

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV $\&$ VCR．

\star Broadcast transmission accuracy（fully interlaced sync pulses with correct picture blanking）
\star EBU colour bars，BBC colour bars，whole rasters \＆split bars（specially useful for VCR service），white，yellow． cyan，green，magenta，red，blue and black．
\star Chequerboard．
\star Mono outputs with border castellations，cross hatch， grey scale，vertical lines，horizontal lines and dots． UHF modulator output plugs straight into receiver aerial socket．
\star Additional video output for CCTV \＆VCR
\star Facilities for sound output．
\star Easy to build kit，standard parts．Only 2 adjustments． No special test equipment required
\star Mains operated with stabilised power supply．
\star All kits fully guaranteed with back－up service． Also available with VHF Modulator．
Price of Kit
Case（ $\left.10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 44^{\prime \prime}}\right)$ app．
Optional Sound Module（ 6 MHz or 5.5 MHz ）
Built \＆Tested in Case including Sound Module

DEC．1982＿」 Add VAT 15\％TO ALL PRICES

PAL COLOUR BAR GENERATOR（Mk4）

\star Output at UHF，applied to receiver aerial socket
\star In addition to colour bars R－Y．B－Y etc．
\star Cross－hatch，grey scale，peak white and black level．
\star Push button controls，battery or mains operated．
\star Simple design，only five i．c．s on colour bar P．C．B．
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30．00．CASE $£ 7.40$ ．BATT HOLDERS $£ 2.80$ ．MAINS SUPPLY KIT $\mathbf{~} 4.20$（Combined P\＆P $£ 2.20$ ）．
MK 4 （BATTERY）BUILT \＆TESTED $£ 58.00+£ 2.20 \mathrm{P}$ \＆ P ．
MK 4 （MAINS）BUILT \＆TESTED $\mathbf{2 6 8 . 0 0}+\mathbf{£ 2 . 2 0} \mathrm{P} \& \mathrm{P}^{2}$
VHF MODULATOR（CH I to 4）FOR OVERSEAS £5．75．
EASIL．Y ADAPTED FOR VIDEO OUTPLT \＆C．C．T．V

GEC TELETEXT EXTERNAL ADAPTOR UNIT

Complete \＆ready for use．Converts any TV into a Teletext Receiver with Infra－Red Remote Control（incl． 25 Button Handset） new，boxed and fully tested． $\mathbf{£ 1 3 0 . 0 0}$ p．p．$£ 3 .(0)$

THORN TX9 MK2／3，TX10，teletext

Mullard Decorder panel＋Interface $\mathbf{£ 5 5 0 0}$ p．p．£1．80
THORN TX10，PHILIPS G11 PRESTEL
Mullard Units VM 6230， 6330 plus Line Coupler \＆Interface $\mathbf{£ 4 8 . 0 0}$ p．p．$£ 2.50$
Goods available if in stock immediately over shop counter（Mail order between 3 days and 1 week from receipt of order）．ADD VAT 15%

TV SERVICE SPARES

BACKED BY TWFNTY YEARS EXPERIFNCE \＆SIAFF OF TECHNICAL．EXPERTS
IUP ${ }^{Y}$ IS，TRIPIEERS，PANELS．TUNERS．SELECTORS ETC PIIILIPS GII PANELS（lested）．
 PHILIISS G11 PANELS ex rental（untested）
Power，frame．If（iecoder $\mathbf{£ 1 0 . 0 0}$ each pep $\ddagger 2$（ 0 ）
SPECIAL OFFER Philips．Pye KT＇3 Series infra－red remote control handsets ex rental（untested，Teletext or normal versions available $£ 2.50$ p．p． 80 p

THORN 9000 Fatuit Finding Guide $£ 1.00 \mathrm{p}$ p． 30 p ．

THORN 8OMO，8500，880I， 9800 Power Supply Pancls Tested／lexchange £ 8.80
PR．$£ .50$ ．
TX10 Remote de Tuning control panel（1515）£9．40 p．p．£1．50
THORN TXIO Facia Control Panel incl．Infra Red Remote Control receiver 77.50 p．p．$£ 1.50$ ．

THORN TX10 Series Facia Control Panel with δ position（hamel Selector L5．00 p．p．£I．50．
PHILIPS UHF Modulator（Audio \＆Video Input） $\mathbf{£ 1 5 . 0 0}$ p．p．$£ 1$（o）
SAW FILTER IF AMPLIFIER PLUS TLNER complete and tested for＇T．V． Sound \＆Vision．£28．50 p．p．£1． 20
THORN TX9，TX10 Siw Filter If Pincl．£7．50 p．p．sop．
PAL DECODER KIT（Video to RGB）for Monitors £27．00 p．p．El（o）
PAL ENCODER KIT
RGB to Video）
PAL．ENCODER KIT（RGB to Video）£18．50 p．p．£1．30．
 XM1I £ \＆（1）．M0，KT3 Tested $£ 30.00$ ，Untested $£ 5.00$ p．p．$£ 1.60$
TELETEXT 23 Buthon De－Luxe 1 handset with 5 yds Cable．$£ 2.50$ p．p．$£ 1.20$ ． Suas．Pouer Suppl $\mathrm{E}_{3} 80$ P．p．E．
ROSS HATCH INIT KIT，Aerial Input type incl．T．V．synce and UHF Modulator．Battery Operated，atso gives Peah White \＆Black Levels．can be used for any set £12．10 1 p ． 80 p ，（Alum．Case $£ 2.55$ ，De luxe Case $£ 6.80$ fiff fl 40 ）ADDITIONAI．（GREY SCALE Kit $£ 2.90$ p．p． 45 p ．
CHF SIGNAL．STRENGTH METER KIT $£ 22.00$（VIIF version $£ 24.00$ ） Alum，（ase 22.55 ．De Luxe Case 87.40 p．p．$£ 1.80$ ．
CRT TESTER \＆REACTIVATOR KIT For Colour \＆Mono with Pancl Meter Indicator－can be adapted for latest CR＇T＞£28．60 p．P．£2．No
BUSH A823 Convergence．Time Base Pancls $£ 5 .(0)$ each．P．p．£1．80
BUSH 7718 BC 6 l（0）scries IF Pancl $£ 5.00$ pro．Mop．

（3EC 2040 Decode Panels．£1．50 p．p．£1．so．
（ECC 2110 PANELS Frame 88.50 p．p． $\mathfrak{f 1} 140$ ．Sound $£ 2.50$（tested）p．p． $8(p)$ （；EC 20AX Switch ifode Power Supply $\mathbf{8 5 . 0 0}$ ，［F－Decoder $£ 12.50 \mathrm{p} . \mathrm{p}$ ． $\mathrm{£} 1 . \times 0$ YE 691－7（DA Panels．Mahers tested stock．E6．（N）p．p．fi． 45
THORN TXY Pancls ex factory for smatl spares．Includes I．C＇s \＆

THORN TX9 Panels salvaged ex lactory for spares incl．Lople \＆Mains Transiomers．£10．＊0 p．p．£2．so．
THORN TX9 Panes ex facton salvaged complete eond．£20．00 p．p．£2．80．

THORN 8OMOH500 IF／Decoder Panels Panch Tested £10．00 p．p．E2．30

PHIIIIPS（ $38 / \mathrm{G} 9$ IFIDecoder Pimels for small spares incl ICs $\mathbf{£} 2.50$ p．p．$£ 1$ ．（nt GI1 PANELS，Ex zental S（AN（incl $1 . O P{ }^{\prime}$ ）$£ 28.00$ p．p．£2．50（tested）． GII PANELS，Power，Frame，IF，Decoder £IR．（N）each．P．p．£2．（O）（tesied） GRUNDIG 8630 Suries Varicap Funcrs E5．00 p．p．£1．06．
VARICAP．EI CIH3／5 £7．80 p P，Kip．Mahers Controls PYE（T200 4PSN 7．50，BLSSI HPSN゙ £4．80，DE（CA LPSN £5．80，GPSN £6．80 BUSH＂TOUCH TLNE＂Varicap Control 2．179． 7.71 s types e 3.80 p．p． 95 p ．

YARICAP VHF PHHLIPS，£6．90．ELC $10+2 £ 7.90 \mathrm{p} . \mathrm{p}$ ．S（\％p．
UHF／625 TUNERS，many different types in stock．DECCA Bradtord 5 position．MULLARD + position $£ 2.50$ ，JAP Rotary $\mathbf{~} 4.80$ p．p．$£ 1.80$
TV SOUND IF Pat cls $\mathbf{£ 6 . 8 0 ~ p . p . ~ £ 1 . (\%) . ~}$
LOPT TESTER，Service Dept approved £15．90 p．p．£1．20．
LOPTS New and guar．P／P Mono £1．35，Colour £1．50，Bobbins 80p．
BUSH，M1 RPHY 774 series．．．．．．．．．．．． 89.80 R．B．M．T20．T2
BUSII，ML＇RPHY ASInscrics．．．．．．．．．．£9．80 R．B．M．＇I20．I22 Bobbin
ERG．，HMV，MARCONI，IITRA
1 H（x），15（k），15th）， 1591 ．．．．．．．．．．．
THORN IOMO．I615．ITM），1691
；ECseries 1 \＆
INDESIT 2W2 2 EGB

ME，INYICTA FKCO
308，169，569， 769 scrics． DECCA Bridtord（state Mod No．

SPECLAL．OFFER
E9．15 DECCA 10 （1） 10

FER
（iEC $211+1 /$／umw Findine
PIIIIIPS30．
RBMAN23

PYE 713． 715,571
PIIIIIPS．570．571

£7．65 ITTCVC＋5
［1） 641 －697（state model no．）
PYE 255 （ $\left.(4)^{\prime \prime}\right) 73110741$
PIILIPSGA
PIILIPS（i）

THORN G81M
THORN TY
OTHERS AVAILABLE，PRICES ON REQUEST．ALSO LOPIS．
TRIPIFRS Full range availathe Mono \＆Colour．

$6.3 V$ CRT Boost Transformers for Colour \＆Mono $55.40 \mathrm{p} . \mathrm{p}$ ．$£ 1.20$
THORN TX10 focus control ex 80 ．
THORN TX10 focus control $£ 8.80 \mathrm{p} . \mathrm{P}$ ． $8(1 \mathrm{p}$ ．
CHORN $8(000$ mains input choke $£ 6.80$ p．p．$£ 1.40$
HOOUS
THOUSANDS OF ADDITIONAI．ITEMS，ENQUIRIES INVITED LAR（EE SELECTION TESTEID COLOUR PANELS POPULAR MOIELS STILL AVAILABLE
Telephone 01－794 8751， 7947346
MANOR SUPPLIES
172 WEST END LANE，LONDON，NW6 1SD
NEAR：W．Hampstead Tube Stn．（Jubilee）Buses 28，159，C11 pass door
W．Hampstead Brit．Rail Stn．（Richmond，Daiston，Stratford，N．Woolwich） W．Hampstead Brit．Rail Stn．（St．Pancras，Bedford）

Access from all over Greater London．
Mail Order： 64 GOLDERS MANOR DRIVE，LONDON NW11 9HT PIEASE ADD VAT 15\％TO ALL PRICES INCL P＋P

An annual subscription is the most convenient way of keeping up-to-date with all the latest news and developments in chassis design and servicing techniques in the world of

If you read Television regularly, why not save yourself trouble by placing an annual subscription order using the form overleaf and the FREEPOST envelope attached.
Start a subscription now, and keep yourself posted for all that vital information in the months to come.

		12			6
SUBSCRIPTION	UK, CI, IOM, IR				
RATES	months	months			
	Overseas surface mail	$£ 13$	$£ 6.50$		
	Air Mail rates available	on request.			

Please register the TELEVISION subscription(s) below:
\qquad
12 months $\square \quad 6$ months $\square \quad$ Price-_
I would like to arrange a gift subscription to the person below:
(Enter your own name and address above as Donor).
\qquad
Address

12 months $\square \quad 6$ months \square Price

- I enclose payment of $£$
(Cheques payable to Television)
- Please charge my credit card account the amount of $£$ \qquad

Valid from \qquad to \qquad
\qquad
Name and address of cardholder
Name \qquad
Address \qquad

Tetconclon

COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in ali drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonabie precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK, f15 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

13 Leader14 Long-distance TVRoger BunneyReports on DX conditions and reception and news fromabroad. Details of a Band III log-periodic aerial for DIYconstruction and a test report on the new LabgearCM7271 masthead u.h.f. amplifier.
19 TV Fault FindingReports from Lawrence Ingram, Chris Avis, PhilipBlundell, Eng. Tech., Jeff Herbert, Roger Burchett andSteve llidge.
21 Servicing with a Logic ProbeDavid BottoA logic probe is the simplest and easiest device to usefor fault finding in the ever increasing amount of digitalcircuitry used in TV sets and VCRs, not to mentionhome microcompułers. Details of logic states and basiccircuits, probe requirements and servicing procedures.
24 The Lid off Microcomputers, Part 7
Mike Phelan
Monitor requirements and details of the mono and RGB monitors in the Amstrad range. Plus a further note on computer fault finding.

26 VCR Clinic

Fault reports from Derek Snelling, Steve Beeching, T. Eng. and William G. Lockitt.
28 Letters
Including more on the notorious h.t. reservoir capacitors in the Philips G11 chassis.
30 Rociking all the time
The antics at Thames-side Kent get stranger and stranger. People talk a different language now, sets do odd things and there are unusual occurrences at the Coach.

31 Next Month in Television

34 Field Timebase Circuit Survey, Part 2 S. W. Amos and E. Trundle The advent of transistors revolutionised field timebase design. Various types of class A, B and A/B circuits have been used and one widely-used design employed the Miller integrator technique.

38 Teletopics

News, comment and developments, including the latest manoeuvres in the satellite TV field.
41 Quick Checks: Hybrid CTV Chassis
S. Simon
The Decca Bradford and ITT CVC5-CVC9 series chassis have proved to be remarkable for their long-term reliability and many are still in use. Quick checks to enable common fault conditions to be dealt with speedily.
44 Commissioning TVRO Systems
Geoff Lewis
Satellite TV transmissions are available and it's now perfectly lawful to tune in. This could be the next big development in the domestic TV market. A question-and-answer guide on what TVRO installations involve.
46 Service Bureau
47 Test Case 275

OUR NEXT ISSUE DATED DECEMBER WILL
 BE PUBLISHED ON NOVEMBER 20

P. V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADO 87 p per order $P+P$ Goods are despatched on the day we receive your
(U.K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try (U.K.). Heavier parcels e.g. order. If tor any reason we are out of stock we wilt try
cable, :tervice aids, degaus. to inform you as quickly as possible. We try our best cable, tervice aids,
coils please allow $£ 1.50$ P +P . to give a speedy, tair and efficient service. V.A.T. (U.K.) Export orders charged invoice on request. Give us a ring - we'll give you at cost. First Class Mail is used service. Please ask if what you need is not listed - we whenever possible. Add 15% will try to help. Prices are subject to change without VAT to total except where it notice. In some cases we may have to supply an states ztro rate. equivalent.

vanicap tuners

On/off gen. purpose 4A

G8 onioff

G11 on/off
G11 on/off remote
Gen. purpose rotary
Thom Tx $9 / 10$
GEC 2040
Thom 1591 push on/off Rank tuner buttons (while stocks last)
$11 / 2^{\prime \prime} x^{1 / 2 / 2}$
$2^{\prime \prime} \times 1 / 2^{\prime \prime}, 2^{\prime \prime} \times 3 / 8^{\prime \prime}$
$11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}, 2^{\prime \prime} \times 1 / 2^{\prime \prime}$
Rank drive cams
GEC 2110 tuner neons Thom 3500 A1 beam
GEC 2110 A1 cont. R/B/G ITT CVC5 on/off
IT mains switch + solenoid Rank mains switch + soleno Rank T20 on-off switch Sony OnOff

MIOGET CONTROLS Insulated Spindle Length 44 mm	
Log or Lin Without Switch	
5K-10K-25K-50K-100K-250K-500K-1M 54	
With D.P.S.T. Switch	
Log: $\begin{array}{ll}5 \mathrm{~K}-10 \mathrm{~K}-25 \mathrm{~K}-50 \mathrm{~K}-100 \mathrm{~K} & 1.26 \\ 250 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M}\end{array}$	
Dual gang Controls 1.25	
16 mm Rotary Controls $10 \mathrm{~K}, 22 \mathrm{~K}$,	
10K, 100K. 1 M	

THICK FILM RESISTOR NETWORK
THORN 3500 (5 pin connection) $\quad 1.98$ $\begin{array}{lll}\text { THORN } 9000 \text { (Circuit Ref. R7047) } & 2.15\end{array}$

1 (U321)
lips G11 (U321)

PUSH BUTTON ASS.
Decca 4 way
GEC 21106 way
GEC/ITI/PYE 7 Way
Pye 6 way (207/715)
Pye 697 repair
Pye $725-735$
Pye 725-735 with tuning head
Philips 68 (arly) Philips G8 (late) Rank A823
Rank T20A
Philips G11 unit
Phiilips KT3
Philips KT30
ITT CVC $8 / 9$ (mod)
Thom 9000 switchback
Decca 7 way piano key
replacement kit
-1.99
m. SAT 9.30 a.m
RECTIFIER TRAYS

SUPERIOR QUALITY TUBES 4288777 DELTA RE-BUILDS most types of Inline Re-builds or

Delta Rebuilds

Up to 19"	f28
Up to 22"	f30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+£2
A47342 New	£28
17FHP New	£30
470EHB New	£30
Delta only. L	\% 5+

IN LNE TYPES EX-STOCK SELECTION NOT REBuLDS
Please enquire types not listed

370 HFB-A37-590 £45	560 DMB $\mathbf{6 6 2}$
370 HUB £45	AXT 56-001 £62
AXT 37-001.............. £45	660 AB $\mathbf{£ 6 5}$
420 CSB $£ 45$	A67-701 £65
420 EDB-A42-590 £45	670 CZB $£ 65$
420 EZB $£ 45$	A66-540 $£ 65$
420 ERB £45	420FSB £55
470KUB $\mathbf{f 5 0}$	
510 UFB/A51-590...... £55	CARRIAGE
510 VSB................... $\mathbf{E 6 0}^{\mathbf{4}}$	
AXT51-001............. £60	$10 £ 15.10+$ Carriage paid
560 DYB-560 DTB £62	EXCLUSIVE OF VAT
560 EGB	TERMS Cash with order
560 CGB $\mathbf{£ 6 2}$	

QUANTITY DISCOUNT AVAILABLE
Ask tor details

* OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES
items immediate dispat
Others allow 14 days.

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

NEW PANETS	
THORN 4000 LOPT Panel	£15.00
G11 IF Panel	$\mathbf{8 8 . 0 0}$
G11 LOPT Panel	£14.00
G11 Decoder Panel	£12.00
G11 Frame Panel	£12.00
G11 611 Condenser 470/250V	89p
G9 Power Panel	£3.50
G9 Frame	88.00
HITACHI LOPT Split Diode 2432871	£7.00
RANK T20 Fouces Pot	75p
RANK 718 Foucs Pot	£1.00
THORN 9000 LOPT Panel	£12.00
$26^{\prime \prime}$ HITACHI LOPT Split Diode 2432301	$\mathbf{8 8 . 0 0}$
16" HITACHI LOPT Split Diode 2433481	£6.00
HITACHI Trum P2270851	50p
HITACHI AE Socket	30p
$\cdot 1$ CONDENSER Axail Leads 450 A/C 1200 D/C	15p
MAINS TRANSFORMER 240 v in/20v/8v	£1
VM6103/GBR01 Decoder Teletex	53
CANON Tape Motor 6 v	60p
MICROPHONE with Switch	30p
HITACHI $6 \times 4-8 \Omega$ Speaker	50p
ET5016 UHF V/CAP Tuner, small	£2.50
FIDELITY Panels with I.C.	£1.00
FIDELITY LOPT Split Diode AT2076/80	£3.00
FIDELITY FBS 1245AE LOPT Mono	£1.00
FIDELITY Split Diode FCC2015BE	£5.00
HI-FI MICROPHONE N8501 Philip	£8.00
G8 TUNER V/CAP on Panel	£3.50
THORN 9000 Sound OP Panel	£30p
THICK FILM, Hitachi RB-32 4A	£2.00
ET-614 UHF V/CAP Tuner	£2.00
$6 \times 21 / 4$ SPEAKER 5W Hitachi 8Ω	50p
K35 20 Turn Pots	6p each
K35 12 way Push Button Unit	£1.50
PP3 DURACELL 4 for	$£ 1.00$

SENDZ comoneners 63 BISHOPSTEIGNTON,

 SHOEBURYNESS, ESSEX SS3 8AF. SAME DAY SERVICE All items subject to availability. No Accounts: No Credit Cards. Postal Order/Cheque with order Add 15\% VAT, then £1 Postage. Add Postage for Overseas.Callers: To shop at 212 LONDON ROAD, SOUTHEND. Tel. 0702-332992
Open 9-1/2.30-6. GVMT + school orders accepted on official headings. Add 10% handling charge.

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

Large Quantities of Late Model Thorn TVs. All with first class cabinets.

TELE-TEXT/ULTRASONIC/INFRARED/REMOTES

 All at UNBEATABLE PRICES for QUANTITY \& QUALITYAlso Philips G11/Pye G11/Basic/Remote/TELE-TEXT Some examples of QUALITY working TVs

THORN 8800 ************** $\mathbf{~} 25$ THORN 8800 (remote) $\star \star £ 30$ THORN 9000 * $\star \star \star$ £ 30
THORN 9000 (remote) $\begin{gathered}\text { (} \\ \text { (}\end{gathered}$

THORN 9600 (full feature remote) $\star \star \star £ 45$

THORN 9600 TELETEXT from $\mathbf{£ 7 5}$
(VARIOUS MODELS)
THORN 9900 ***************£ $\mathbf{5} \mathbf{5}$
THORN 9900f/fremote $\quad \star \star \star \star \star \star \star \star$ £60
PHILIPS G11 $\star \star \star$ £ 55
(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.

1000s of UNTESTED Colour TVs

I.E. DECCA 30s

GEC 2110
GRUNDIG
TANBERGS

G8s 520s-550s
Thorn 3500/8000/8500 TT PYE, ETC.
(Many of these untested TVs just switch on) ALL AT LOW LOW PRICES
VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New. TV Trolly Stands £4.95 Also Video Stands POA Colour TV panels \& tubes available
All prices subject to V.A.T. CALLERS WELCOME
Export Orders Welcome for those Countries using the P.A.L. System

> 419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501

WE WIL ONLY SUPPLY TOP
OUALTY, BRANDED COMPONENTS.
REPUTATION COUNTS WITH US

INTEGRATED	TVPE

CIRCURATS

AN214........... PRICE (£)
AN303....
AN305.....
AN7114E......
AN7115...... AN7145.... BA312.... BA551A ... BA521...... BA552....... BA536....... HA1166..... HA1338...... HA1339...... HA1342A. HA1366 WM WR
HA1370............... HA1374.... HA1377.... HA1388....
HA1397 HA1397.... LA1201 LA1230.... LA1365 LA3350 L44031 LA4032 LA4102 LA4400 LA4430 L44440..... LA4460.... LA4461 MB3712 \ldots...
MB3713... MB3713.... ML231B.... ML232B ML238B SAA1124... SAA1125... SAA1250 ... SAA1251.. SAA5010. SAA5012.
G.G.L.COMPONENTS

108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693
TPE (0228) 20358/39693
YPE PAICE (t) ITAN TVPE PRICE TPE

A NEW COMPANY IN THE NORTH WEST

 OFFERING A FRIENDLY, FIRST CLASS SERVICE TO THE TRADE AT COMPETITIVE PRICES OUR RANGE INCLUDESG.E.C. PYE PHILIPS I.T.T. DECCA R.B.M.

Now in stock V.H.S. V.C.R.s from $\mathbf{£ 6 0}$ plus full range of Thorn remote control including T/Text

ฝ DISCOUNT FOR QUANTITY \star

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

COME TO JUNCTION 11, M62, YOU'LL FIND US HERE JUNCTION 11 TV TRADE DISPOSALS LTD., Unit 11, Prestwood Court, Leacroft Road, Birchwood, Warrington. Phone 0925826387.
Open 6 days $9-5.30$ (later by appointment)

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS

Alberice
MEIERS LIMITED
MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202) 674272 87-89 Sterte Avenue, Poole, Dorset. BH15 2AW. Telex: 418253 LUMIC G

OSCILLOSCOPES	NEW EOUIPMEN	
	EG OSC	
	Delay Sweep. Component Tester.	
	HAMEG OSCILLOSCOPE 203.5. Dual Trace	
Portable $8 \times 10 \mathrm{~cm}$ display. With Manual $\mathbf{E 2 0 0}$	20 MHz Component Tester $\mathbf{2} 70$	
Portable AC or Extemal DC operation $8 \times 10 \mathrm{~cm}$ disptay. With Manual	BLACK STAR FREQUENCY COUNTERS P\&P ¢4	
	Meteor $100-100 \mathrm{MHz}$.............................. 299	
TEKTRONIX 547 DUAL IRACE SOMMZZ Dual TB,	Meteor $600-600 \mathrm{MHz}$... 1126	
Delay Sweep. With Manual....................... 1740	Meteor 1000-1GHz ... 1775	
TELEOUIPMENT D43. Dual Trace 15MHz. With Manual \qquad	BLACK STAR JUPITOR 500 FUNCTION GENER-	
	ATOR. Sine/Square/riangle. $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$.	
PHILIPS DIGITAL MULTIMETERS 4 digit, auto ranging. Complete with batteries and leads TYPE PM2517E (LED) (pap m5) \qquad		
	HUNG CHANG DMM 6010. $31 / 2$ digit. Hand held 28 ranges including 10 Amp ACJC. Complete with batteries \& leads. P\& P $£ 4$ E33. 50 MULTIMETER type U4324. 33 ranges. Complete with batteries and leads. P\&PE4 \qquad . 16	
MULTIMETERS AVO 8 Mk IV and AVO 9 Mk IV, complete with batteries \& leads. FOR ONIY.. 665	OSCILLOSCOPES PROBES. Switched $\times 1$; $\times 10$. P\&P£2 \qquad	
	ADVANCE AM/FM Signal Generator type SG63. $7.5-230 \mathrm{MHz}$ \qquad	
AVO TEST SET No 1 (Similar to Avo8 Mk3). Complete with batteries, leads \& carrying case 580		
AVO Model $7 \times$. Complete with batteries, leads \& carrying case	ADVANCE AM Signal Generator type 62.150 kHz	
	METRIX WOBBULATOR type 210.5 -	
AVO Modei 73. Pocket Multimeter (Analogue) 30	METRIX WOBBULATOR type 210. 5 - $\overline{1}$ Z20MHz.	
ranges. Complete with batteries \& leads $£ 25$ AVO 72 - Similar to above but no AC current range. With batteries \& leads	LABGEAR COLOUR BAR GENERATOR.	
AVO TRANSISTOR ANALYSER CT446. Suitcase style - battery operated (batteries not supplied). With Information ONLY EZO EACH	LABGEAR CROSSHATCH GENERATÖR. CM6038. Input 240V AC or 6 V DC E25P\&PE2	
AVO TRANSISTOR TESTER TT169 Handheld. GONO GO for In-situ Testing. Complete with batteries, leads \& instructions. (p p £3) NOW ONLY $£ 12$	WAYNE KERR COMPONENT BRIDGE. B521 (CT375) L 100uH - 500 KHz ; C 1pF-5F; R 1 milliohm- 1000 Mohm \qquad	
MARCONI RF MILLIVOLTMETER TF2603 50 KHz -¢1751500MHZ 1 mV -3V. FSD	HUNTS CAPACITANCE ANALYSER \& RESIS-	
	TANCE BRIDGE type CR3B 220 P\&PE 7	
MARCONI ELCTRONIC VOLTMETER TF2604	PROFESSIONAL $g^{\prime \prime}$ GREEN SCREEN MONITORS	
FSD ..ES	made by KGM for REUTERS Gives quality 80	
MARCONI VALVE VOLTMEIER TF2600 10Hz-	column $\times 24$ line display. Composite video in.	
10 MHz	Cased. Good conditionONLY £40 each	
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check avair ability before ordering. CARRIAGE all units £12. VAT to be added to Total of Goods \& Carriage. Please allow 21 days for delivery.		
STEWART OF READNG		
110 WYKEHAM ROAD, READING, BERKS RG6 1PL		
$\frac{\text { gaiclarcand }}{\text { VISA }}$		

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days

 w

 100p 74 LS2

 PEASE PHONE US FOR TYE NOND OUOT
WE ARE HOLONG 3000 TMEMS AND OUOT
ARE GIVEN FOR LARGE OUANTIES
 GRANDATA LTD
9 THE BROADWAY, PRESTON ROAD,
WEMBLEY, MIDDLESEX ENGLAND Telephone: 01-909 2093 \& 904-1115/6

Telex No: 932885 (Sunmit)

EAST CORNWALL COMPONENTS

EAST CORNWALL COMPONENTS 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 093932689 TELEX: 35565

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Pat Bunce
01-261 5942

Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 1 .

COVER PHOTO

The digital logic probe shown on our cover this month is available from Tandy under part number 22-302-see article on page 21. Our thanks to Tandy for providing the transparency.

SPARES AND DATA

Our thanks to several readers who have supplied information on Contec sets. Briefly, these were sold by Dixons and manuals/spares are available from Dixons Service Division or Mastercare. Further details next month. Now does anyone know about Tensai sets?

Satellite TV Manoeuvres

In 1977 the World Administrative Radio Conference produced quite a detailed plan for European satellite TV, specifying channel allocations, satellite orbital positions and so on. It was, I suppose, logical at the time to reach agreement on a plan for the allocation of the frequency space available in the proposed satellite broadcasting band. But the concern then must have been mainly for the politico-geographical and technical niceties rather than about what anyone was likely to do in practice. For example, the republic of San Marino (population 4,150) was allocated five channels using a satellite at $37^{\circ} \mathrm{W}$. Andorra (population about 20,000) was allocated five channels from the same orbital position. And so on. Was it seribusly thought that the good people of San Marino and Andorra would get together and arrange for the launich of a satellite that would be able to provide them with five-channel services? That hardly seems likely. One has to assume that the effort was an exercise - perfectly justifiable - in bureaucracy, to get some sort of plan agreed to forestall future squabbling and perhaps to form the basis for future horsetrading.
Eight years on we are more concerned with the practicalities of satellite TV - how can the satellites and channels be financed and the programmes provided? It no longer seems quite so important to ensure that Monaco, Lichtenstein and the Vatican City get a square deal. It's a question of who can find the funds and how they'll go about it.

The first UK attempt to get DBS services started collapsed ignominiously three months ago. As was then expected, the government's next move was to ask the IBA to have a go at seeing what could be done. The IBA has now called for submissions from interested parties - those who'd like to start broadcasting and those who might wish to provide finance etc. The IBA made its announcement on September 3rd and called for replies by the end of October. Why this unseemly haste? This is after all an important and complex matter, and to ask for responses within two months looks suspiciously like chivvying. But then it may have been felt that those interested have already had quite a time to consider what they might wish to do and ought therefore to be able to rough out proposals fairly quickly. There might also have been a feeling that matters are already moving quite fast and that there's a possibility of satellite services being established while the traditional broadcasting authorities are napping. Two or three recent moves suggest that this interpretation is quite likely.
First we have the consequences of the deregulation that's already taken place, with viewers entitled to receive TV transmissions from existing low/medium power satellites on payment of a modest, once for all licence fee ($£ 10$) provided they enter into agreements with the channel providers and can afford the necessary receiving hardware. The price of the latter is already falling sharply, with talk from several quarters of installations at under $£ 1,000$ (the figures that are bandied about are usually rather vague about VAT, installation charges and exactly what would be included in an installation), Japanese manufacturers already advertising equipment, and suggestions that this Christmas would be a good opportunity to get sales rolling. It's clear that if manufacturers can think and plan in terms of Europe-wide sales then prices will indeed come down appreciably.
Secondly we have the intriguing French proposals reported in Teletopics last month. It seems that the French are determined to get a DBS satellite up and providing services first. To do so they are prepared to go about things in a way that was hardly foreseen by the planners at WARC 77. All and sundry seem welcome to participate in providing the finance required, and the satellite may well carry English, German and other language programming and maybe channels.
Thirdly, once you start thinking in terms of Europe-wide footprints and channels supported by advertising you're into a whole new ball game. The deliberations of the Peacock committee begin to look parochial in the extreme, and the channel allocations to Andorra and the like take on a new significance. Such an approach neatly sidesteps the established arrangements for the control of broadcasting, and for its viability depends solely on being able to persuade people to buy the necessary equipment and to change their viewing habits. The decision by the IBA to ask Robert Maxwell to relinquish his directorship of Central Television in the event of his going ahead with plans to run one of the French TV satellite's channels has to be seen in this light.
Would it matter all that much if the established broadcasters were left in control of their existing terrestrial networks while brash newcomers took over the provision of satellite TV services? It would certainly represent a total change in the way in which the provision of TV services has developed so far, in the UK at any rate. Traditionally it's been a question of ensuring that best use, in the interests of the public at large, is made of the limited amount of broadcasting bandwidth available. Satellite broadcasting bandwidth is also finite of course, but what if the existing networks are unable to make use of it? Do we allow a free for all, within a possible trans-European context, and does it matter? From the long-term viewpoint it could mean that the existing networks are left providing a second-best service while the newcomers reap the benefits of improved signals, higher definition and in due course lower costs.

These are not easy questions to answer, and at present it looks rather likely that we shall just have to wait and see. There's a great deal of manoeuvering going on just now and a great deal of uncertainty as to the form that European satellite TV broadcasting will eventually take.

Long-distance Television

Roger Bunney

Now that autumn has arrived propagation via the E layer has greatly reduced. At the time of writing, in early September, conditions are extremely quiet. There were several high-intensity Sporadic E openings during August however, though these were nothing like the activity experienced during June/July. The Perseids meteor shower, which peaked on August $12 / 13$ th, provided some meteor scatter signal pings: the 13th was the more active day though pings were present in Band I on both days and there was evidence of "super pings" at the low end of Band III (i.e. chs. E5/R6). Sunspot activity has declined to a minimum and on many days during August there were no visible spots on the sun's surface. A minor Aurora was logged in Scotland on August 26th, producing Scandinavian TV signals in Band I.

There were two tropospheric openings during August. The 14th produced short-distance signal propagation in Band III and at u.h.f., with Norwegian Band III signals being well received in east Scotland and Dutch, Belgian and the nearer W. German stations being seen in Anglia and the south east. The only signals received here in central southern England came from TDF (France), though they came from as far as the French/German border and were present in both Band III and at u.h.f. The tropospheric opening on the 28 th was much better. Very strong French signals were received in the Southampton area throughout Band III/u.h.f. while W. German Band III/u.h.f. signals were received in the south east. As I type these words on September 6th a slow-moving highpressure system is building up over the UK and may well provide a traditional September opening - a pity it couldn't have been on the weekend of the $14 / 15$ th to coincide with the ATV International contest!

The $\mathrm{SpE} \log$ for August to early September is as follows:
7/8/85 RAI (Italy) ch. IA, IB; JRT (Yugoslavia) E3, 4; TVE (Spain) E2, 3, 4; TSS (USSR) R1, 2; SR (Sweden) E2, 3.
8/8/85 TSS R1; TVP (Poland) R1; SR E2; NRK (Norway) E2.
9/8/85 TVE E2, 3; RAI IA, IB; NCT (Italian "private" station) E3; JRT E3; ARD (West Germany) E2; CST (Czechoslovakia) R1, 2; TVP R1.
10/8/85 DR (Denmark) E3; TVP R1; TSS R1, 2; MTV (Hungary) R2; RAI IA, IB; TVE E2, 3; RTP (Portugal) E2.
11/8/85 TSS R1; TVE E2, 3.
12/8/85 DR E3; SR E2, 3; TSS R1; TVE E2.
13/8/85 TVP R1, 2; SR E2.
14/8/85 MTV R1, 2; TVR (Rumania) R2; CST R1; TVP R1; TSS R1, 2; RAI IA.
15/8/85 MTV R1; CST R1, 2; ORF (Austria) E2a; RAI IA, B; TSS R1, 2.
16/8/85 NRK E2; SR E2; TVP R1; ARD E2; TVE E2.
17/8/85 + PTT (Switzerland) E2; ORF E2a, E3; RTS (Albania) IC; TDF (France) F3; JRT E3; MTV R1, 2; RAI IA, B; ARD E2, 3; CST R1, 2; DFF
(East Germany-GDR) E4; TVP R1, 2; TSS R1, 2; SR E2, 3; NRK E2; TVE E2, 3, 4; RTP E2, 3.
18/8/85 RTP E3; TVE E2; RAI IA, B; ORF E2a; JRT E3, 4; +PTT E2; ARD E2; TSS R1, 2; NRK E2, 3; TVP R1, 2.
19/8/85 TVP R1; CST R1; ARD E2; +PTT E2; SR E2; NRK E2.
21/8/85 NRK E2; SR E3; DR E3; RAI IA; TVE E2.
22/8/85 CST R1; SR E3.
23/8/85 TVE E2, 3; SR E3; RAI IA; ORF E2a.
25/8/85 RAI IA; YLE (Finland) E3.
26/8/85 SR E2.
27/8/85 TVE E2.
31/8/85 RAI IA.
7/9/85 TSS R1, 2.
Unfortunately it seems that the transatlantic SpE opening on July 30 th from $2230-2400$ GMT was missed by UK TV-DXers - at any rate no reception reports have come in. N. American 50 MHz amateur radio stations in Philadelphia, Maryland, Delaware, South Carolina, Virginia and as far as Florida, operating with powers of only a few watts, established two-way contacts with UK stations in central England, so it's more than likely that ch. A2 signals could have been received. In past seasons transatlantic reception has occurred during late evenings (say 1900 onwards) in July. On an otherwise dead evening it might be rewarding to turn the aerial towards the west/ north west . . .

My thanks to the following who sent in reception reports this month: Roger Pates (Nottingham), Bill Cotterill (Tipton), Dave Shirley (Hastings), Jeremy Cecil (Shoreham), Lain Menzies (Aberdeen) and Simon Hamer (Powys).

News Items

Czechoslovakia: We've received a report that a network transmitting the TSS (USSR) programme one has been set up. Apparently it's not too popular apart from sporting events. The signals appear to be supplied via Gorizont's 3.675 GHz Euro-beam. Transmitters and channels are as follows (transmitter powers are not known at present): ch. R1 Zvolen; ch. R21 Karlovq Vary; ch. R27 Ruzomberok, Kosice, Plzen; ch. R41 Prague (Praha); ch. R49 Banska Bystrica, C. Budejovice; ch. R50 Bratislava; ch. R51 Ostrava; ch. R52 Brno.
Stereo sound: Various transmitters in Finland and Holland are at present carrying stereo/two-channel sound test transmissions and Italy hopes to start transmissions by the end of the year. A Dutch correspondent comments that a normal TV set or VCR, i.e. one without dual-channel sound facilities, shows a +6 dB higher signal in the mono and two-channel sound modes than in the stereo mode, also that both f.m. sound transmitters are modulated with the same programme/test-card audio during normal transmissions.
France: Further information on the plans for private stations is emerging. The government favours two terrestrial networks, one with the emphasis on musical programmes and the other carrying general entertainment material. Up to fifty local independent stations could also be fitted into the existing channel allocation system without giving rise to interference problems. A map published in the August 2nd isue of Le Monde shows that two transmitters could operate in the Channel coast areas of Dunkirk, Bethune, Lens and Arras while two network and a local transmitter are possible at Amiens, Rouen,

Caen, Rennes, Brest and at other main population centres away from the W. German border. The transmitters at sites in S.E. France are likely to be low powered and located at new positions in the town whereas co-siting with existing transmitters will be possible elsewhere.
In brief: Teletext tests using the Antiope system are being carried out in New Delhi, using English initially. If successful up to fifteen languages might be used . . . The 1985 World Radio-TV Handbook reports that RUV (Iceland) transmits Norwegian TV prior to the start of its own programming. The NRK programmes are received via ECS-1 . . The French-language service TV5, broadcast via ECS-1 using the SECAM system, is likely to change to PAL shortly... The AFRTS ch. A2 transmitter at Iraklion, Crete is still in operation: the transmissions are regularly seen in Hungary via SpE propagation . . . CNN (Ted Turner's Cable News Network) has announced that it intends to scramble its Atlanta, USA programme output in the near future.

Satellite TV News

Space Communications (SAT-TEL) Ltd. of Edgemead Close, Round Spinney, Northampton NN3 4RG hope to introduce shortly a $10 \cdot 9-11 \cdot 7 \mathrm{GHz}$ receiving package (TVRO) intended for domestic reception of the various satellite TV downlinks at present available and intended primarily for cable operators. The suggested price of the package, which will consist of a 1.2 m offset feed plastic dish, a low-noise amplifier/converter, an automatic polarisation rotor and remote control receiver, is approximately $£ 995$ plus VAT, something of a breakthrough. With a 1.8 m dish to enable the half transponder Intelsat downlinks to be received the suggested price is $£ 1,175$ plus VAT. A motorised elevation/azimuth mount with programmable controller is expected to be available at $£ 350$. If sales across Europe pick up it’s hoped that the price of the complete package with motorised dish could fall to $£ 700-£ 800$.

If interest in satellite TV reception grows it's likely that Premiere (the Movie Channel) will start to use scrambling. Other satellite TV channel providers may welcome increased viewing figures since these could boost advertising revenue.

Oxmann Ltd., who have been advertising in this magazine, have introduced a $3 \cdot 7 \cdot 4 \cdot 2 \mathrm{GHz}$ band downconverter with $400-900 \mathrm{MHz}$ tunable i.f. and have indicated their intention of marketing attractively priced receiving equipment for the $3 \cdot 7 \cdot 4 \cdot 2 \mathrm{GHz}$ and $11 \cdot 7 \cdot 12 \cdot 5 \mathrm{GHz}$ bands.

Home Box Office, the major US provider of programmes for cable system operators, is to introduce scrambling once its present customers have equipped themselves with decoders. Individuals will be able to purchase a decoder for $\$ 395$ from dealers and pay a monthly fee which will include "electronic authorisation" of their addressable decoders. There seems however to be some disagreement in the US cable industry over the type of scrambling to use. Showtime, another programme provider, has expressed interest in a simpler system requiring decoders that cost only $\$ 50$ each: subscribers have an "electronic ticket/key" mailed to them each month.

If FCC approval is obtained a company called Antares Satellite Corporation is planning to launch two satellites with twelve 100 W Ku band (12 GHz) transmitters each at 61.5° and 157°, covering London to Tokyo. Use of a dish system retailing at about $\$ 500$ and monthly payments of

NEW FROM LABGEAR - the Ultra Low Noise CM7271 masthead amplifier suitable for all UHF TV transmissions within Bands $4 / 5$ (channels $21-68$). The Specification makes this unit particularty useful for fringe/weak signal work and TV-DXing. This amplifier has a gain of 15 dB and a noise figure of only 1.6 dB . It is unique because of its high signal handling capacity 200 mV (equivalent to $106 \mathrm{~dB} \mu$) this means it has 5 times more output capability than most other 'domestic" types of amplifier, far less chance of overloading even under the most difficult conditions. SOUTH WEST AERIALS provide a complete and comprehensive service for all types of TV/FM aerial system - local, fringe and DXing - and backed with an in-depth knowedge of reception engineening by noted experts in the field Our range of Aerials, Amplifiers, Rotators, Filters and many other items, too numerous to mention, are all listed in our 22 page CATALOGUE costing only 60p. Why not send for a copy today.
-LABGEAB CM7271 15dB Gain UHF Wideband Masthead Pre-Amplifier, with very low Noise Figure of only 1.6 dB
 TV-DXing For The Enthusiast' by Poger Buply (new adition) TV-PICTURES EUROPE' New high quality, up to date 114 page TV Test Card Book..................... JVC CX- $606^{\prime \prime}$ screen Colour Television, Mutti-Standard PAU/SECAM Systems B/G//D/K VHF/UHF $5.5 / 6 / 6.5 \mathrm{MHz}$ Sound switching, $12 / 240$ volt operation..

Also available from us Colour Multi-Standard PAL/SECAM Televisions made by JVC, SALORA \& THOMSON. Specialist advice given on ALL reception problems (SAE please). Our expertise is TV \& PM DXing.

All prices inclusive of VAT and Carriage
Delivery nomally 7-10 days ACCESS \& VISA Mail and Telephone orders welcome

SOUTH WEST AERIALS (T)

11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 0202736232.

$\$ 20$ for the service provided are foreseen.

It's expected that a million 4 GHz satellite TV receiver systems will be sold in the USA this year. Dealers have been advised to sell dual-band $(4 / 12 \mathrm{GHz})$ systems though 12 GHz retrofit kits for attachment to 4 GHz systems may be possible. Lowrence Electronics of Tulsa, Oklahoma are at present marketing a dual-band system consisting of a common dish, dual feedhorn, separate LNAs and downconverters and output switching to a common i.f. for the receiver.
Steve Birkill reports that a form of "Voice of America TV" is now available on the ECS-1 satellite's transponder four from 1200-1400 GMT daily Mondays-Fridays. The service is provided by the US Information Agency and includes a news/information package. Cable operators are being encouraged to make use of the material which is free of copyright. Many US embassies are installing receiving equipment to enable the material to be made available to interested parties in videocassette form.

A recent report of a Russian Soyuz launch to the Salyut 7 space station mentions voice communications being monitored on various passes at 121.75 MHz . A further frequency mentioned, again with voice communications, is $142 \cdot 4 \mathrm{MHz}$. Any scanner should resolve these frequencies with ease.

New Labgear Masthead Amplifier

The quest for improved weak-signal reception is never ending. Very recently Labgear have introduced a new u.h.f. masthead amplifier that provides an effetive improvement in this demanding field, particularly in areas where there are strong local signals close to the wanted

Satellite TV reception by Frank Lumen at Denver, Colorado - see last month. Left: RTP-Azores test pattern via Satcom-3, transponder 5. Centre: CNN news feed to New York via Westar-3, transponder 21. Note that noise is present on this transponder: others on the same craft are noise-free, suggesting that transponder 21 has low output. Right: News link to Korean Broadcasting, Seoul, from a Washington facility studio via Westar-5 transponder 5.
weak ones. The CM7271 has replaced the previous CM7060: both are single-stage amplifiers. The CM7060 featured a gain of 10 dB with a 12 V supply and a noise figure of 1.8 dB : the signal handling capability of 40 mV for one throughput signal wasn't too good however, particularly with four signals in a given group. The CM7271's gain is quoted as $15 \mathrm{~dB} \pm 2 \mathrm{~dB}$ at 12 V , with a noise figure of 1.6 dB and a dramatically improved signal handling capability of 200 mV for a single throughput signal. The CM7060 used the extremely stable, reliable, low-noise BFR91 transistor: the four-lead device used in the CM7271 doesn't carry an identification. As with the earlier amplifiers in the Labgear series the CM7271 is housed in a circular, dark green case with cable connections via saddle clamp/screws.

I've no facilities for measuring noise performance but have made a gain check across the intended bandwidth. The following voltage gain figures were obtained with a 12 V supply (current drawn 12.5 mA) and 75Ω matching: 13.9 dB at $470 \mathrm{MHz}, 14 \mathrm{~dB}$ at $500 \mathrm{MHz}, 14 \mathrm{~dB}$ at 600 MHz , 14.5 dB at $700 \mathrm{MHz}, 14 \mathrm{~dB}$ at 800 MHz and 15 dB at 850 MHz .

The ultimate test is operational use. The mast was scaled, the existing Fringe Electronics 1.9 dB noise preamplifier removed and the CM7271 fitted in its place. The local group A signals produce very high-level receiver inputs at this location, typicaly measured at 48 dB when amplified by a 26 dB head amplifier (the use of Triax Grids tends to give a level response on all the local channels). Even with an earlier CM7060 cascaded with a Wolsey Orbit a degree of amplifier overload occurred. The CM7271's lower througput gain coupled with its claimed (and confirmed) higher signal handling capability provided a marked improvement, allowing the aerials to be swung very much closer to the local signal direction before overloading took over. Noise checks on known weak signal sources, particularly Crystal Palace BBC-2 (ch. E33), gave a noticeable improvement with a lower noise ("snow") level.

In conclusion I was impressed with the marked improvement obtained with this amplifier, in terms of better weak signal quality, reduced overloading and reduced cross-modulation between adjacent channels. I can recommend it for weak signal/DX use.

From Our Correspondents . . .

Roger Pates (Nottingham) has sent in useful information on the receiver he's at present using and an efficient Band III log-periodic aerial he's designed. The set was purchased because of its system L (French) reception
capability: it's an inexpensive multi-standard set that seems to be ideally suited to DX use. Roger bought the French manufactured Thomson Model T2502PI from Greens (in Debenhams) for $£ 299$: it's a 16in. PAL/ SECAM set with full remote control, able to resolve system $B / G / I$ and L vision and sound with full colour. System D (E. Europe) sound can't be received but the SECAM colour locks. The $48-300 \mathrm{MHz}$ continuous v.h.f. and $470-860 \mathrm{MHz}$ u.h.f. coverage is available via a preprogrammed frequency synthesizer or by scanning. Switching between PAL and SECAM decoding is automatic when the input signal reaches a preset level. Other facilities include a SCART connector, headphone socket, remote tuning, nineteen preset channels and digital channel readout identification. Roger reports that the tuner's gain is "about average" though the selectivity is very good. It can be operated from the mains or a $12-24 \mathrm{~V}$ d.c. input.

(a)

(c)

Fig. 1: Roger Pates' Band III log-periodic aerial. (a) Dimensional details. (b) Method of cross-connecting the dipoles. (c) Insulator assembly. (d) Tiltswivel clamp.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 0PO. Telephone 0268690868 Telex 99305

TRADE COUNTER OPEN

 ORDERS DESPATCHED SAME DAY ADD 75p P\&P, THEN 15\% VAT. ADD POSTAGE FOR OVERSEAS ORDERS. ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

TRADE ANNOUNCEMENT

CHROMA VISION (Manchester) NOW OPEN!!!

95 LANGWORTHY RD, SALFORD M6 5PH. Tel. No. 061-736-6333 811 WASHWOOD HEATH RD, WARD END, BIRMINGHAM 8. Tel. No. 021-784-2561 Large range of late model TV's and Videos at low, low prices THORN AND PHILIPS TELE-TEXT, REMOTES AND BASICS

GETAH:SNDWith EMHI $\overline{3}$ Replacement

MANUFACTURERS GUARANTEE 1500 Hrs

MANUFACTURERS GUARANTEE 1500 Hrs	
11	
CGS (WSTERCARE) LTI	34ss (y) ummensal
CPC LTB-Proston	MC. AKNI.FERGUSO\% STEA.
COOPERS - Dutlin	Branotetectioniole
COMPONENGT BURENU- Mmbriage	GRIS
CHARLES HYOE, SONLIB-York	CONTINEMTAL EDSONPATME MARCONI
DOUBLE 'D' DISTMM MUTS - Poole	
HAS ELECTAICAL CO Eiminaham	MBTIONAL PANASONIC
KILROY BROS. - Dublin	
MONOLITH ELECTRICAL CO.LTO -	MAT-PAN-NV 370-NV 380
Somerset	3H[3-3-(N) TME
NORTHERN IRELAND ELECTRONICS -	MAT-PAN-NV330-NV77
Belfast	FFY TrPe
PV TUBES - Accrington	FUNA - INTERVIDEO-INGERSOLL
NORMAN ROSE - London	
PACT - Peterborough	SOWY-WEGA.TOSHIEA-NEC
RADIO SUPPLIES - Harticpool	
SEME - Metion Mowbray	HITACH1.5000.8000. 6500.8500-7000
TATT COMPONENTS - Glasqow	Trionischer mill
WILLOWVALE ELECTAICAL LTO'	9350.5000.5350.5500. Dincish
Reading	$\begin{aligned} & 9850.5900 .5350 .5500 . \\ & 9300.9455-9500 \end{aligned}$
WIZARD - Manchester	SHATP TVPE
McLELLAND - Leeds	6300.7300-8300-9300

Satellite Receiving Systems

1 m and 2 m Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available.
Demonstration by appointment.

> L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.
> Telephone: Bridgwater (0278) 421719

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.

* All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'
* Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ. Phone: (0902) 773122.

Details of Roger's log-periodic aerial are shown in Fig. 1. He comments that the gain over much of the bandwidth equals or betters that of a commercial, twelve-element wideband Yagi for Band III. The gain of a Yagi rises with frequency, from typically $7-8 \mathrm{dBd}$ on ch. E5 to perhaps $10-$ 11 dBd on ch. E12. With a \log-periodic the gain will be more even at around $7-8 \mathrm{dBd}$ across the band, higher than that of a Yagi at the lower end of the spectrum. In addition the polar response is much smoother though the forward -3 dB beamwidth will be wider at the higher frequencies.

Roger made his aerial with materials intended for outdoor use. This could present difficulties for those with no source of insulators in the quantity required - buying new insulators could cost around $£ 20$. So improvisation could be the order of the day unless loft mounting is to be used. The cross-connections between elements are made with copper wire soldered to the tags shown. If the aerial is to be used outside, protect the soldered connections
with silicon caulk to prevent corrosion. The feeder is connected to the front of course - use 75Ω coaxial cable. Since the log-periodic is a balanced system, for a good match to unbalanced coaxial cable either use a 1-to-1 balance/unbalance transformer based on ferrite or run the cable back to the mast taped tightly to the boom. It's also important to mount the aerial at the top of the mast since the mast's metal will degrade the low-frequency performance if it's allowed to pass through the array.

Our thanks to Roger, who's a professional aerial rigger/ engineer, for providing these details. I'd be interested to hear from anyone who makes the aerial - or any other aerial for this or the other TV bands.

Lastly Mr. R. J. Lewin is seeking a couple of 19 in . monochrome TV sets with wide/narrow i.f. selectivity, positive/negative video switching and v.h.f./u.h.f. tuners an older dual-standard set that could be modified would be ideal. Mrs Lewin's address is 345 Tom's Lane, Bedmond, Watford, Herts WD5 0RA and he can collect.

TV Fault Finding

> Reports from Lawrence Ingram, Chris Avis, Philip Blundell, Eng. Tech., Jeff Herbert, Roger Burchett and Steve Illidge

Hitachi/GEC Field Problem

Many Hitachi and some GEC sets use various sorts of thick-film module in the field output stage. We've had several cases of field scan variation, sometimes very intermittent. Dry-joints occur where the module joins the main board and also on the modules themselves, at the lead-out point. A satisfactory repair can usually be made, with care and a small iron, if the module is very carefully removed and all leads and the end lugs are fixed firmly in a vice.
L.I.

Rank T20 Chassis

Intermittent blowing of the 1.6 A d.c. power supply fuse after several days was found to be due to a loose contact on the main electrolytic. It just happened to be a red item bearing the Pye label. Shades of the G11 . . .
L.I.

Thorn 9600 Chassis

This set gave us quite a bit of trouble. It came in with a blackened mains fuse and a short-circuit chopper transistor (VT512). Before replacing VT512 we checked the drive waveform across its base-emitter junction. It wasn't right due to R 518 (1Ω) having gone high in value. Another check on the drive waveform was made after replacing R518 and as it looked right we replaced VT512 and switched on. Result: shattered fuse and VT512 shortcircuit. A cold check revealed that diode W514, which is connected between the emitter of VT512 and the trip circuit, was leaky. A check from the emitter of VT512 to chassis produced a reading of less than an ohm and the drive was still o.k. Fit another VT512 and start the set up slowly, with the fuses in the supplies derived from the chopper circuit lifted to eliminate loading effects.

After a minute or so the set went off again. This time we found that VT512's emitter resistor R522 was opencircuit while its decoupler C520 gave a reading of less than one ohm. After doing all that was necessary we switched on again. The set switched itself off a few seconds later and this time zener diode W520 in the trip sensing circuit
was the culprit. Replacing this produced a very welcome e.h.t. rustle and the c.r.t. heaters lit. Victory at last!

I turned the set round to check the raster and found that it was only about two-thirds of the correct size all round. It transpired that VT814 (BC147) in the widthheight compensation circuit had a considerable leak. Try again. This time the width was correct but there was field cramp due to VT804 (BF256C). The customer admitted that the picture had been intermittently reducing in size for a long time. Questions: which caused what to happen, how do you make the customer believe it, and how much do you charge him?!
L.I.

Thorn 3500 Chassis

An elderly 22 in. Ferguson set fitted with the 3500 chassis sat on the bench. The complaint was that "the picture flickers'. The picture was indeed flickering, at random on all channels, and after checking for erratic beam limiter/ brightness presets and faulty connections around the 1.5Ω wirewound resistor R907 on the beam limiter board I noticed that it was the contrast rather than the brightness that was fluctuating.

A spare tuner panel was quickly hooked up as a check but the problem persisted. Faulty i.f. transistors can cause assorted effects on this chassis, so each received the arctic/ tropical treatment from freezer and hairdryer. The outlook still remained changeable! The voltage across the a.g.c. smoothing capacitor $\mathrm{C} 179(10 \mu \mathrm{~F})$ was not unexpectedly found to be varying in sympathy with the displayed symptom, and to discover whether the tail was wagging the dog its associated feed resistor R172 was disconnected and a suitable low d.c. voltage was hooked up instead. Success! The Channel 4 test card was displayed crisply on the recently replaced tube, with not even a flicker of misplaced interlace to mar the view. Not wishing to waste further time hunting for some obscure troublemaker in the a.g.c. circuit I fitted a known good i.f. panel and switched on. The fault was back, defiantly flickering with renewed vigour!

At any rate the i.f. panel had been cleared of suspicion. What else was there? A "set-white" switch is provided on the video panel for making grey-scale adjustments. It alters the operating conditions in the a.g.c. and brightness control circuits and collapses the field scan by disconnecting the 60 V supply to the field output stage. The switch is of the same type as used for first anode supply switching in early models and suffers from the same fault - internal tracking. In this case the tracking was between the contacts of the a.g.c. and 60 V rail switch sections, and resulted in the persistent picture flicker symptom. The switch can be replaced but a cheaper and adequate remedy is to remove the offender and bridge the appropriate holes in the board.
C.A.

Hitachi NP81CQ Mk II Chassis

These sets are prone to dry-joints around the STR441 chopper i.c.'s base circuit (usualy at C912 or R905/6). The result is an intermittent whistling noise from the power supply with the picture going unstable on bright scenes. For field foldover at the top of the raster replace the field scan coupling capacitor $\mathrm{C} 610(220 \mu \mathrm{~F})$.
P.B.

ITT 80-90 ${ }^{\circ}$ Chassis (CVC820 PSU)

A common fault on this chassis causes it to be dead but burst into life for five seconds after being switched off! This is due to R 405 ($820 \mathrm{k} \Omega$) in the power supply going open-circuit.
P.B.

Sharp C2095

This set was the first Sharp TV I've come across with electronic tuning - and of course it had a tuning fault. You could search and find a station but you couldn't memorise it. The power supplies on the board were checked first: the 5 V rail was o.k. but the 10 V line was low at 6 V while the -7 V rail was high at -10 V . The stabiliser transistors are driven by an X0135 i.c. so this was changed as a first step: the fault persisted. Several biasing resistors go to this i.c. from the 115 V line. These were checked and one of them, R1072 $(33 \mathrm{k} \Omega, 0.5 \mathrm{~W})$, turned out to be open-circuit.
P.B.

Philips K35 with VST Tuning

I've had a rush of these sets recently, all with the following fault. Intermittently the set won't respond to remote control and the buttons on the local keyboard have to be held down for a long time before the set reacts. Even if the fault isn't present it's worth checking the voltage at pin 13 of the VST microcomputer i.c. The reading should be 0 V with the remote control unit not in use. If it's higher than this check D32 which is likely to be leaky.
P.B.

Thorn TX10 Chassis

We recently had a very intermittent problem with one of these sets - it was a stereo/teletext version. The complaint was field roll and tripping on and off with the stereo indicator LEDs flashing. The obvious thing to try was the focus unit but the fault persisted. In fact we never could get a hold on the fault - it seemed to be dependent on temperature and the way the wind was blowing . . . After replacing various i.c.s we eventually traced the source of the problem to breakdown on the main PCB between
ferrite bead FB721 and the core of the chopper transformer. After removing the bead and cutting away the burnt section of board with a knife we resoldered the bead clear of the panel. We've since heard of other TX10s that have suffered from the same problem, so it's one to watch out for. It took us two months and many calls to get to the bottom of this fault.

Thorn TX9 with Remote Control
The problem with this set was intermittent loss of colour with the volume going to full, returning to normal when the reset button on the remote control unit was pressed. The cause turned out to be internal arcing in the c.r.t. itself - it upset the remote control receiver. The only clue was black arcing lines across the screen on white parts of the picture. The fault showed up when changing channels; in addition clicking could be heard from the speaker in sympathy with the black arcing lines.
J.H.

Philips G11 Chassis

This set gave the no results symptom but there was plenty of h.t. We found that there was no line drive and that R2010 ($5 \cdot 6 \mathrm{k} \Omega$) which provides the TDA2590Q sync/line oscillator i.c. with a start-up supply was getting warm. The cause of the trouble was that the isolating diode D2015 (BA317 or BA318) was short-circuit.
R.B.

Thorn 9000 Chassis

All the electric light bulbs in the house blew when the overhead power lines were struck by lightning. Unfortunately the set had been on at the time. The obvious damage was a "welded-on" mains switch, a short-circuit mains rectifier, open-circuit surge limiter and blown fuse. These items were replaced but the new fuse shattered at switch on. No short could be detected but the set wouldn't work until the h.t. reservoir capacitor C702 $(400 \mu \mathrm{~F})$ had been replaced.
R.B.

GEC C2110 Series

Having replaced R506 ($560 \mathrm{k} \Omega$) to cure a case of low first anode voltages I was surprised to get a call-back for the same fault within a week. R506 was intact and the first anode controls were o.k. so I turned the controls up and got a very washed out picture. A certain amount of time was wasted checking around in the contrast control circuit - the customer contrast control was doing very little before I realised that it was another "old friend", R701 ($180 \mathrm{k} \Omega$). When this resistor goes high in value the beam limiter circuit is brought into operation.
R.B.

Sanyo CTP5103W

This is a rare set for us. The field scan consisted of a three-inch, non-linear horizontal band at the centre of the screen. We found that C451, a non-polarised $330 \mu \mathrm{~F}, 10 \mathrm{~V}$ capacitor, was leaky.
S.I.

Hitachi NP81CO Chassis

A quickie. One of these sets came in with the symptom lack of brightness. R308 ($56 \mathrm{k} \Omega$) was found to be opencircuit, as a result of which the brightness control was inoperative.
S.I.

Servicing with a Logic Probe

David Botto

Pete stared at the VCR on his bench, noting with dismay the intermittently flashing LED indicators and the cassette that refused to load. Inside the machine the video heads spun round merrily, ignoring the stop command. "It must be a faulty microcomputer control i.c." he said to himself. "But suppose it isn't? Forty pins to solder and unsolder on fine print! And it'll have to be ordered from the manufacturers."

Pete's problem serves to illustrate one of the difficulties that TV/video engineers face today. TV sets, and VCRs especially, contain a bewildering complexity of digital and microcomputer circuitry.

A typical VCR system control board - taking as our example the Panasonic NV7000 since we deal with quite a lot of these - contains ten digital logic i.c.s, a forty-pin microcomputer i.c., thirty five transistors and diodes in profusion - all contained on just one of the PCBs! Understanding how the circuitry works before even starting to locate the cause of a fault is no easy task. To make life even more difficult some TV engineers are now expected to service domestic microcomputers as well . .

A digital logic probe is a great help in servicing digital circuitry. It's extremely useful because by simply touching the probe tip to the point under test you get an instant indication of the circuit condition there. In fact it enables fast checks to be made around various digital i.c.s without having to spend hours of expensive time working out exactly how, in minute detail, all the circuitry interacts. If you're not already using such a probe you'll soon find it an indispensible addition to your test gear. It certainly won't collect dust on the shelf.

Logic States

As Television readers will know, in logic circuitry we deal with signals that assume one of two binary states, binary one or binary zero. In its simplest form a digital logic probe does no more than indicate whether a binary or logic one or zero is present at a given point in a digital circuit. Using positive logic (as almost all the digital circuitry a TV engineer encounters does) the logic one voltage will be high and the logic zero voltage low.

Fig. 1 shows at (a) a simple inverter circuit that operates from a 5 V d.c. supply and at (b) its logic symbol. If a logic one is fed to the input of this circuit the output will be a logic zero. A logic zero at the input will be inverted to give us a logic one at the output. Logic one will in fact be about 3.6 V d.c. and logic zero about $0 \cdot 4-0 \cdot 8 \mathrm{~V}$. You'll often find several such inverters incorporated in a single i.c. In the following text we'll use H (high) to represent

(b)

0216
Fig. 1: Inverter circuit (a) and symbol (b).
the logic one condition and L (low) for logic zero - this is what most TV and VCR service manuals use to indicate logic levels.

An extremely simple logic probe circuit is shown in Fig. 2. When the probe detects an H condition the output from the first inverter will be in the L condition and the output from the second inverter in the H condition. Thus LED2 will light to indicate that H is present at the probe tip. When the probe detects an L condition LED1 lights to indicate this. The circuit is all right for experimenting but is of little use for practical servicing.

Probe Requirements

For professional TV and VCR servicing a digital logic probe must not only indicate static H and L conditions, it must also respond to fast-changing levels and pulse trains - something the type of oscilloscope generally used for servicing can't handle. When you obtain a logic probe, make sure that it has at least the following features:
(1) A high input impedance of not less than $100 \mathrm{k} \Omega$.
(2) The ability to operate with d.c. supplies of about $4 \cdot 8$ 15 V with low current consumption, and that it's protected against overloads and wrong polarity connection.
(3) Full compatibility with TTL, CMOS, MOS and other types of logic circuitry, including memories and microprocessor/microcomputer i.c.s.
(4) Capable of detecting pulse trains, responding to very narrow pulse widths of as little as 50 ns .
(5) An operating frequency of at least 10 MHz .
(6) In addition to visual indication of logic levels (usually by means of different coloured LEDs) an audio indication of levels is a useful and worthwhile feature.
(7) It should be light and easy to handle and robust enough to stand up to workshop conditions.

You may feel that such a probe will be expensive. Not long ago it would have been. Several companies now offer digital logic probes that easily meet the above requirements for well under twenty pounds however.

Probe Use

Before starting to make any checks on digital circuitry always measure the supply rail voltage with a digital voltmeter to ensure that it's correct within the specified limits. The logic probe has two power supply leads, fitted with small crocodile clips, to connect across the supply rail of the equipment under test at some convenient point.

Fig. 2 (left): Simple digital logic probe.
Fig. 3 (right): Typical TTL logic gate circuit.

Next set the probe's selector switch (usually a slide switch) to the type of logic device you're going to check. This may be TTL (transistor-transistor logic) or MOS/CMOS (complementary metal-oxide semiconductor, i.e. a f.e.t. type arrangement) - note that you'll sometimes find i.c.s of both types on the same board. With MOS/CMOS devices an H will be around $70-75$ per cent of the supply rail voltage while an L will be about $28-32$ per cent of supply rail voltage. You don't have to worry about exact voltage levels because the digital logic probe adjusts itself to these.

When the probe is connected to a digital i.c. pin in the L condition the low (usually green) LED will light and if the probe has an audible indication a low-tone sound will be heard. If the probe is connected to an H point the high LED (usually red) will glow and a high tone will sound. If neither LED lights and no sound is heard there's either an open-circuit or the circuit is well out of tolerance. Always make sure that the supply voltage (Vcc) is actually present at the appropriate pin(s) of the i.c. and that the chassis connection pin (GND) is actually connected to the negative side of the supply (note that with CMOS i.c.s the supplies are labelled Vdd and Vss respectively).

With the probe's slider switch in the "pulse" position pulse activity is indicated by a third LED, usually yellow in colour, and a warbling sound tone.

Logic Circuitry

Most TV engineers are by now familiar with the truth tables for the various types of logic gate, but for your convenience the tables for the usual types of gates encountered in TV, VCR and microcomputer servicing are shown in Table 1. For fast servicing with a logic probe you really need to memorise the principles of the various logic gate conditions so that you don't have to continually refer to truth tables. This is not as difficult as it sounds - many readers will already have done so.

Fig. 3 shows a typical TTL AND gate circuit and Fig. 4(a) the logic symbol. There can be more than two inputs. The simple rule is that every one of the inputs must be in the H condition for the output to be at H . If pulse signals varying from H to L are applied to the inputs and are in phase a pulsed output will be obtained. The thing to remember is that all inputs must go high together - or one must be permanently high with pulses fed to the other. Fig. 4(b) shows the NAND circuit symbol. In this case when every input is at H the output will be at L. Any other condition gives an H output.

The other basic gates are the OR, NOR, exclusive-OR and exclusive-NOR gates. The symbols are shown in Fig. 4(c)-(f) and the input/output conditions in Table 1.

You'll also meet the three or tri-state buffer gate (Panasonic are very fond of this one!). The symbols are shown in Fig. 5. These have an enable input which may call for an H or L signal for the gate to function. In the Panasonic NV7000 (first version) system control board 1 has two μ PD 4503 i.c.s, IC6004/5, each with six buffer gates. Each buffer has an inverter at its enable input - Fig. $5(b)$ - four of these enable inputs being connected to pin 1 of the i.c. and the other two to pin 15 . Only when the correct logic levels are applied to pins 1 and/or 15 will the buffers operate and pass signals.

Another basic logic circuit is the flip-flop. It's again easy to check with the digital probe. All that a flip-flop does is to store one bit of binary information, H or L .

There are various kinds of flip-flops (bistable
multivibrators) from the simple latch to the D type and JK version. The type one usually seems to encounter is the D one - in its various versions. Fig. 6(a) shows how this type of flip-flop can be produced using four NOR gates and an inverter. Fig. 6(b) shows the logic symbol. There are two inputs, D (data) and T (toggle), and two outputs (Q and inverted- Q). When Q is high and inverted- Q low then the flip-flop is said to be set. If Q is low and inverted-Q stores a high the flip-flop is reset. In the circuit shown the D line responds to H and L inputs only when input T is high. There are two D-type flip-flops in each of the μ PD4013 i.c.s (IC6706/7) on the Panasonic NV7000's still board. The 4013 has its two toggle inputs labelled C for clock as these inputs are often driven at high speed by the pulse output from a clock oscillator. It also has extra S (set) and R (reset) connections.

The logic probe enables the conditions at all the pins of these D-type flip-flops to be easily checked even when the flip-flop is rapidly changing states. For example, at pin 11, the clock input for one flip-flop in IC6706, the probe will initially indicate an L. The relevant Q and inverted-Q outputs will be at H and L respectively. Press the VCR's play button and the probe should show pulse activity at pin 11 as the clock oscillator starts up: pins 13 and $12(\mathrm{Q}$ and inverted-Q) will also show pulse activity, indicating that the flip-flop is switching from set to reset as the C input toggles it.

Waveform Duty-Cycle

If the H LED is brighter than the L LED when the logic probe detects pulse activity this indicates that the waveform is as shown in Fig. 7(a). If the L LED is the brighter one the waveform will be as shown in Fig. 7(b).

Servicing Procedures

If you handle certain models of TVs, VCRs and microcomputers on a regular basis you'll find it helpful to make notes of the various logic levels encountered, marking these on the appropriate circuit diagrams. We deal with fair numbers of the Panasonic NV7000, so here for your reference (see Table 2) are the logic levels found at the pins of the MN1400VP microcomputer i.c. on system control board 1 , together with the changes in these logic levels produced by pressing the various operating buttons. The logic probe must be switched to MOS/CMOS when checking this device.

So how did Pete solve his problem (see earlier - he'd an NV7000 on the bench)? He first connected the supplies to his probe - connector P 6001 , pin 1 on system control board 1 is a handy place for 5 V d.c., the other side to chassis. He then turned his attention to the MV1400VP microcomputer i.c. Pin 40 produced a logic indication of $H+P+L$ at high speed, so he knew that the clock oscillator was running. Pins $10-13$ showed the correct pulses. But many of the pins that should have given L logic readings showed up as H . The i.c. was definitely faulty! Removing it isn't too bad a job provided you use a temperature-controlled soldering iron and really good quality desoldering braid. Rather than solder a new MN1400VP straight on to the board fit a forty-pin i.c. holder - you might need to change it again one day.

The cassette lid then closed and the fast forward and rewind functions worked. But the machine wouldn't play. Using the logic probe once more the search speedily ended at IC6003, a 4049 containing six inverters. The

(e)

Fig. 4: Logic gate symbols. (a) AND gate. (b) NAND gate. (c) OR gate. (d) NOR gate. (e) Exclusive-OR gate. (f) Exclusive NOR-gate.

Fig. 5: Tri-state gate symbols.

(a)
(b) D220]

Fig. 6: D-type flip-flop made from an inverter and four NOR gates. (a) Circuit. (b) Symbol.

Fig. 7: Duty-cycle waveforms.
input to gate $\mathrm{C} 0(\mathrm{pin} 3)$ receives a pulse input from pin 13 of the microcomputer i.c., so the correct indication was obtained here. The output, an inverted pulse reading of H $+\mathrm{P}+\operatorname{dim} \mathrm{L}$, should appear at pin 2. As the probe indicated no activity at all at pin 2 Pete knew that inverter C0 was faulty. When he replaced IC6003 the machine worked correctly in every respect.

If the output of an inverter or gate appears low whatever the input, before condemning the i.c. desolder the relevant output pin to clear the print on the board and check again with the probe. This is to make sure that some other component in the circuit isn't pulling the logic level down, or perhaps the print is shorting due to a solder link.

Besides gates and microcomputer i.c.s a logic probe is useful with decoders - which consist of gates within an i.c. - such as the ones that feed seven-segment LED indicators and various remote control and tuning devices. In fact a probe is useful with any digital circuitry, especially when it comes to domestic microcomputers. The more you use a logic probe for servicing the more indispensible it becomes.

The author first used a digital logic probe when the early PET microcomputers began to appear on the workshop bench. That first probe had a response of just 1 MHz and cost quite a sum of money. You can now obtain excellent 10 MHz probes from such firms as Continental Specialities, Heathkit (Maplin), RS Components and others. The one I use in the workshop at present is a Tandy $22-302$ which cost just $£ 13 \cdot 95$. It comes with a very useful instruction leaflet - and it incorporates audio tone indication as well as LEDs.

Table 1: Standard gate truth tables.

AND gate			
Inputs		Output	
L	L	L	
L	H	L	
H	L	L	
H	H	H	

OR gate		
Inputs	Output	
L	L	L
L	H	H
H	L	H
H	H	H

NAND gate

Inputs		Output
L	L	H
L	H	H
H	L	H
H	H	L

Inputs		Output
L	L	H
L	H	L
H	L	L
H	H	L

Exclusive-OR gate			
Inputs	Output		
L	L		
L	H		
H	L		
H	H		
	H		
	L		

Exclusive-NOR gate Inputs Output

L	L	H
L	H	L
H	L	L
H	H	H

Table 2: MN1400VP pin conditions in NV7000 VCR

PiQ	No operations	Button(s) operated	Probe indication
2	H + P	Play/record/ rewind/FF/eject	L
3	L		
4	L	Play	H + P after few seconds
5	L	Cue/FF	H + P
6	L	Eject	H+P
7	L	Eject	$H+P$
8	L	Pause	
9	L	Play	$H+P$ after six seconds
14	L	Stop held down or review	H+P+L
15	L	Cue	$\mathrm{H}+\mathrm{P}+\mathrm{L}$
16	L	Review/playl pause when held down	$H+P+L$
17	L	FF held down	H+P+L
18	$L+P$		
19	L	Play	$H+P+L$
20	$\begin{aligned} & \mathrm{H}+\mathrm{P}+ \\ & \operatorname{dim} \mathrm{L} \end{aligned}$	Play/FF/ review	$\operatorname{dim} H+P+L$
21	H+P+L		
22	L	Review held down	H
23	L	Play	L
24	L	Play	H
25	L	FF/rewind	H
28	H		
29	L		
30	H+P+L		
31	L	Play	H
32	L		
33	L	Review	H
34	L	Record	H
35	L		
36	L	Review	H
37	L	FF	H
38	L	Eject	H then L

Notes: $\mathrm{P}=$ pulse reading. Pins 1 and 26 are connected to chassis. Pins $10-13$ are always $L+P+$ very dim H. Pin 27 records H in the TTL position. Pin 39 is connected to the 5 V line. Pin 40 is the internal clock oscillator $-\mathrm{H}+\mathrm{P}+\mathrm{L}$.

The Lid off Microcomputers

Part 7: Microcomputer Monitors

Mike Phelan

Many home computers spend their lives hooked up to the family TV set. For several reasons this isn't an ideal arrangement. In particular the luminance signal bandwidth is insufficient for good text reproduction - with 40 or 50 characters per line you may just get away with it, but many home micros can now use the 80 characters per line business standard. The same problem arises with graphics displays that have fine lines. If we try to reproduce colour as well the effect is even worse - the 1.5 MHz chroma bandwidth makes 80 c. p.l. text totally illegible (even more so with say blue text on a red background).

Alternative Approaches

Nevertheless a small-screen colour set with good crosscolour performance, an effective notch filter for the 4.43 MHz subcarrier and low decoder noise can give passable results, without the crawling subcarrier becoming too obtrusive (this is most noticeable on a black and white, i.e. no chroma, background).

The next best solution is to use a set with composite video input, thus bypassing the computer's modulator and the set's tuner and i.f. strip. This will produce better results with less noise on the display, but the bandwidth problem remains. Some computers don't have a composite video output but the signal will be there, in the feed to the modulator.

The ideal approach is to employ a purpose-built monitor: either one with RGB plus sync inputs or a monochrome one which may have a white, green or orange phosphor c.r.t. This will provide much better results, free of noise, as the signal is being applied directly to the video output stage(s). The definition is limited only by these stages and the c.r.t. itself. Colour monitors have poorer resolution than monochrome ones, all other things being equal, due to the tube's slotmask structure. Despite this there are many professional monitors with highdefinition colour tubes and near perfect convergence you get what you pay for.

Sadly some home micros don't have RGB plus sync outputs: furthermore these signals may be present in the computer only within an i.c.

Amstrad Range

Two monitors are available for the Amstrad CPC464 computer we've been considering in previous instalments, the GT64 green screen monochrome one and the CTM640 colour monitor. Both give excellent results for the price. The GT64 is very simple - see Fig. 1. Both monitors provide a stabilised 5 V supply for the computer. In the GT64 Q501 looks after this - it's input is taken from a separate winding on the mains transformer. The stabiliser chip IC501 provides Q501 with drive. To provide protection, Q503 monitors the current through R506. If the current exceeds 3A Q503 conducts, turning on Q504/ 5. This turns Q506 off and as IC501 is then without a supply line Q501 is deprived of drive and switches off. Q503 then turns off once more and the supply starts up. If the overload is still present the cycle repeats.

The line output stage is conventional, the output transistor being transformer driven and a Hartley type oscillator being used as the line generator stage. The sync amplifier Q601 feeds the line and field oscillators via the usual $R C$ differentiating and integrating networks respectively. An i.c. is used for the field timebase.

The luminance input goes to a three-stage video amplifier (Q602/3/4) which drives the output transistor Q605. The latter is mounted on the c.r.t. base panel and has a low-value load resistor $(2.7 \mathrm{k} \Omega)$: these features result in an excellent bandwidth. The 100Ω resistors connected to the RGB inputs are included to preserve the correct d.c. levels at the computer's RGB outputs. Since the luminance signal is a mixture of RGB , derived within the computer, omission of these resistors would mean that

Fig. 1: Basic arrangement of the circuitry used in the Amstrad GT64 monochrome (green screen) monitor which also provides the power supply for the microcomputer.

Fig. 2: Switch-mode power supply arrangement used in the CTM640 RGB monitor.
only eight shades of green would be available inslead of 27.

This raises another interesting point. Many professional monitors have logic rather than linear inputs, i.e. the RGB signals are applied to logic gates which recognise only logic zero or one inputs. As the Amstrad computer is designed to provide its monitor with a linear input the use of a monitor with logic inputs would give only black, white and six colours, not 27 as produced by the Amstrad monitor - if you recall (see Fig. 3, July) the computer produces its RGB outputs using tri-state logic (zero, one or open-circuit) in conjunction with resistive matrixes, part of which are in the monitor.

The RGB Monitor

The CTM640 RGB monitor is naturally a little more complicated. Fig. 2 shows the power supply arrangement, which again includes a separate 5 V section to power the computer. This time a chopper circuit is used to provide the h.t. and computer 5 V supplies - the monitor's l.t. supplies are derived from the line output stage in the usual way.

The bridge rectifier produces approximately 310 V d.c. which is applied to the chopper transformer's primary winding. The chopper transistor is actually part of IC501, which contains most of the circuitry. R502 (1 Ω) monitors the current, providing feedback to IC501. One end of the tapped secondary winding is returned to R502 and the chopper transistor's emitter. The tap is connected to the base of Q501 which is normally off as its emitter has a 3.6 V zener diode and an ordinary diode in series with it. If the output voltage from the chopper circuit rises, due say to reduced demand over and above that in normal use, the pulse at Q501's base will be sufficient to switch it on. Q501's collector current then acts on IC501 to reduce the h.t. The remaining connection on the tapped secondary winding feeds a negative pulse to IC501. This is rectified internally to provide a feedback voltage for stabilisation.

The circuits driven by the chopper transformer are completely isolated. A simple diode rectifier produces the h.t. supply. Q502/IC502 provide a stable 5 V supply for the computer. As with the GT64 there's an excess current
trip. IC502 receives its supply from the line output stage via Q504.

One of the video output stages (red) is shown in Fig. 3. There's nothing unusual about this - it's a conventional class A stage. The common chassis return for the RGB output stages is via Q 403 , whose emitter is normally at about 6 V . This voltage is determined by the setting of the brightness control which sets Q401's base bias. Composite blanking is applied to the base of Q402 which is otherwise non-conductive. When positive-going flyback blanking pulses turn Q402 on, Q403 and the output stages turn off.

Under normal operation with no signal applied a slight residual current flows via the $6 \cdot 2 \mathrm{~V}$ zener diode and the 100Ω and $2.7 \mathrm{k} \Omega$ resistors in series with it. The output transistor's base will thus be at about 6.3 V and the appropriate tube gun will be cut off. VR801 and its counterparts in the blue and green output stages enable the cut-off points to be set. When the input signal goes high the 6.2 V zener diode is forward biased and the video output stage turns on to an extent set by the brightness control and VR402, which effectively set the gains of the three output stages. VR804 and its counterpart in the blue channel thus provide highlight settings. As the input

Fig. 3: The CTM640's red video output stage circuit.
signals are a known quantity there's no provision for beam limiting, so don't set the preset brightness control VR402 too high: the display can remain stationary for hours (or days) and phosphor burn is a real risk.

The rest of the circuit is conventional, with a diode-split line output transformer and i.c.s for the field output and the line and field generator stages. A trip circuit shuts the line oscillator down if the e.h.t. rises drastically. This works by monitoring the conditions at one of the pulse taps on the line output transformer. The manual refers to it as an X-lay protector . . .

Computer Fault Finding

Now for something we should have said last month when discussing microcomputer servicing. When sur-
rounded by so much logic circuitry it's easy to forget certain basic fault-finding principles. Don't overlook the fact that many weird and wonderful fault symptoms even apparently intermittent ones - can be caused by very simple fault conditions such as unstabilised or incorrect supply rails. Also don't forget to check supply decoupling and all earths. With so many high-speed switching signals about, simple continuity of the supply and earth is insufficient: typically each i.c.'s supply is decoupled, as closely to the chip as possible.

To Follow

Next month we'll go on to a totally different subject, the Philips/Mullard teletext decoder, with particular reference to the Philips G11 chassis.

VCR Clinic

Hitachi VT5000

The complaint with this fairly early machine was that the playback was too fast. On test we found that the capstan speed was excessive in playback but correct on record. This was unusual to say the least. Loss of the reference puises on playback could result in an unlocked capstan, but the machine would probably switch off - and anyway the capstan wasn't unlocked, it was running at about twice the normal speed. A look at the circuit showed that the record and playback 9 V lines are fed to the capstan circuit separately, but checks revealed nothing amiss here. Whilst carrying out various checks in the hope of finding a clue I noticed that the machine wouldn't go into pause when pause was pressed. Now a pause circuit is fairly easy for fault finding so I decided to approach the problem from this angle. It was at this stage that fate took a hand. Following the pause line back from the capstan circuit brought me (so I thought) to IC504. This was changed and the problems were cured. The i.c. forms part of the circuit for shunting the noise bar off the screen in pause, and it was only later that I discovered that the line I'd been tracing back didn't in fact go to this i.c. - I'd crossed wires while tracing through the diagram. Still, it makes a change to have luck on your side.
D.S.

Hitachi VT8000 Series

The following problem is becoming common on Hitachi VT8000 series machines. The impedance roller - the large brass roller next to the full erase head - consists of a brass cylinder on a plastic or nylon hub. The problem is that the rim of this hub tends to shear off, allowing the brass sleeve to fall. This obviously affects the tape path and causes tape damage and tracking errors - as if the guide rollers are off. We've had half a dozen cases of this trouble in the last six months.
D.S.

Ferguson 3V22

The complaint with a 3 V 22 was no tracking. A check showed that there was no sound either. It was as if the audio/control head was way out of alignment and sure enough the tape was well up the head which missed the control part completely. Adjusting the head brought the sound back and stabilised the picture but the screws were

Reports from Derek Snelling, Steve Beeching, T. Eng. and William G. Lockitt

almost fully out - and anyway how did they come to be out of adjustment? I then noticed what I should have seen straight away: the pinch roller arm was bent, causing the pinch roller to meet the capstan at an angle. As a result the tape rode up the head. Straightening the arm and realigning the head to its original position cured the problem.
D.S.

Mitsubishi HS710

We've just had in the new Mitsubishi HS710 - the replacement for the popular HS700. Unlike the HS700 it has infra-red remote control as standard, has insert edit and audio dub and comes supplied with a rechargeable battery. A cassette light has been fitted so that if a button is pressed the cassette compartment is illuminated to enable you to see how far through the tape you are, something long overdue on VCRs. Otherwise the HS710 retains all the features of its predecessor in a restyled cabinet.
D.S.

Toshiba Models V31/V33

We've had several instances recently of the following problem with Toshiba V31/V 33 machines: noisy, rattling, pulsing or slow rewind. The cause is rattling guides on the loading ring and wear on the upper cylinder. We've had five machines with this trouble in the last two months generally after the machine has been in use for about ten months. A temporary cure for the noise can be achieved by putting a little grease on the guide shafts, taking care not to get it near the tape path. For a permanent cure however the loading ring should be replaced.
D.S.

Hitachi VT8000 and VT9000 Series

Regular readers will know about the problem of intermittent vision in the record/E-to-E mode with Hitachi VT8000 series machines due to dry-joints in the earthing on the i.f. module. I've just had a VT9300 in with the same problem due to the same cause. It seems that the VT9000 series machines use the same i.f. module as the VT8000 series, so the problem can be expected on these as well.

While on the subject of VT8000 series machines, we've
had a couple in recently that refused to complete the loading sequence. In both cases this was due to a stretched loading belt. The belt is at the back of the machine, behind the luminance/chrominance board, and is easy to replace.

Ferguson 3V29

The reported complaint with this machine was no picture. When I arrived and tried to play a tape I found that the head was ready to take off. IC201 (VC1029), the fre-quency-to-voltage converter in the drum servo, turned out to be faulty.

Ferguson 3V44

We've recently had in the new Ferguson 3V44. It's a nonremote control, front-loading machine made in W. Germany and has a one-event, two-week timer, instant record and a picture sharpness control. There are a couple more novel features: the clock can be switched to either twelveor 24 -hour operation, and in addition the display can be switched off altogether, presumably in response to claims that burglars look out for the light of VCR displays at night when deciding where to strike. After the front loading problems with the $3 \mathrm{~V} 35 / 36$ this machine seems to have a much lighter operation. The pause is of the stop it dead type but doubles as a frame advance, so it's possible to shunt the noise bar off screen by successive operations of the pause button. The machine is otherwise standard, with the good picture quality we've come to expect from most current machines.
D.S.

Aerial Sockets

A fairly common problem we get with Ferguson 3V29/30 machines is failure of the aerial socket. The cause of the trouble is that the socket has no reinforcing ring around the outer earth: so if the aerial plug is knocked sideways the socket breaks - particularly if an attenuator has been fitted. The problem is by no means confined to these machines or this brand, it's just that we have more of them out on rental than most others. It needn't happen of course if better quality sockets with a reinforcing ring were fitted. As far as I know the sockets are not available from the manufacturers separately, so a replacement r.f. booster has to be ordered. This is a bit expensive however just for a socket, so a colleague has devised a way of removing the old socket and fitting a chassis-mounting type that's available from local suppliers. This has the added advantage that the socket is of better quality than the original one.

To replace the socket, remove the booster amplifier from the machine and take off the covers. Desolder the socket's centre pin thoroughly then, with a large pair of pliers, turn the whole socket anti-clockwise until the securing nut beneath is loose enough to undo by hand you'll find it almost impossible to get at the nut with anything other than the end of your finger. After removing the nut and the old socket clean the area thoroughly with emery cloth and tin slightly using a 60 W iron. Thoroughly clean and tin the new socket and fit it in place, then solder it to the chassis of the booster. It's a good idea to fit an aerial plug in the socket while doing this as the heat can make the plastic of the socket soft with the result that the centre pin goes off-centre - if it's not held in place. All that's now necessary is to enlarge the hole in the booster cover slightly to accommodate the

TV LINE OUTPUT TRANSFORMERS				
Delivery by return of post.				
RANK BUSH MURPHY		ITT: VC200 to VC402	9.20	
A774 with stick rectifier	9.78	CVC1, CVC2 (FORGESTONE)	11.50	
A816, Ti6, T18, Z712, 2715	10.35	CVC5, CVC7, CVC8, CVC9 series	920	
T20, T22, T26, 2179, A823	11.50	CVC20	10.35	
2718 Basic unit	13.50	CVC25, CVC30, CVC32, CVC45	9.20	
T24e, T24h split diode	P.OA.	CVC40, CVC1200, 1210, 1215	P.0.A.	
DECCA: 1210, 1211, 1511 1700, 2001, 2020, 2401, 2404 CS1730, 1733, 1830, 1835 $30,70,80,90,100,130$ Series	1150	F110, Flll1. P/no AT2063/02	11.50	
	920	PYE: 169, 173, 569, 368 series	920	
	920	CT200, CT200/1, CT213 series	10.35	
	920	725-731, 735, 737, 741 Series	9.78	
FERGUSON, THORN: 1590, 1591	920	PHILIPS: 170, 210, 300 series	9.20	
1690, 1691. built in rect.	9.78	320 series	9.78	
1600, 1615, 1700 series	P.O.A.	TX, T 8 mono	P.OA	
1790 mono portable	POA.	G8 and G9 Series	9.20	
3000, 3500, 8000, 8500, 8800	P.OA.	KT2. KT3. series colour	9.20	
9000, 9200, 9300 series	12.00	G11. K30. split diode	P.OA.	
9500, 9600, 9650 series	10.99			
9800, TX9, TX10 series MOVIESTAR 3781, 3787	P.0.A.	BINATONE: 9909, 9798, 9860 DORIC Mk3	P.OA. 11.50	
	12.00	FNLUX 9560, 9670	P.0.A.	
FDELTTY: FTV12 mono CTV14R, CTV14S colour	10.35	GRUNDIG: most models in stock		
	CTV14R, CTV14S colour		NORDMENDE: FC125, 2206, 2306	11.50
			SANYO: 5101, 5103, 7118, 7130	P.OA.
	9.20	SHARP: C1851H, C2051H	P.0A.	
1201H, I501H, 2114, 3133, 3135	920	TOSHIBA: C800, C800B	19.45	
DUAL \& SINGLE hybrid col.	10.00	TANDBURG: 190, CTV2-2, CTV3-3	P.0A.	
SINGLE STD solid state	12.00	TELEFUNKEN: most models in sto		
SINGLE STD split diode	P.OA.	LINE OUTIPUT TESTER	16.79	
INDESTT: 24EGB hybrid 12LGB, 12SGB mono portables	$\begin{array}{r} 9.50 \\ 10.35 \end{array}$	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey.		
WINDINGS				
TYNE: main winding	6.80	Approx. 1 mile from Kew Brid		
RBM: T20, T22, T26, Z179 WALTHAM: W125 eht winding	633 237	Phone: 01-948 3702		
WALTHAM: W190, W191 eht coil	${ }_{\text {E6 }}^{6.00}$	Mon-Fri 9 am to 12.30 pm 8		
KORTING: hybrid winding	6.90	$1.30-4.30 \mathrm{pm}$		

larger socket. The result is perhaps not as tidy as the original but is probably stronger and is certainly cheaper than fitting a replacement booster unit.
D.S.

Sony SLC7

After about two months this machine came back with the same fault - no E-E sound. I'd previously replaced the TBA120UB intercarrier sound chip to cure intermittent loss of audio. Could the second TBA120UB have failed? - the demodulator certainly wasn't working. In fact the cause of the trouble was C521 ($0 \cdot 047 \mu \mathrm{~F})$ which is connected from one of the input pins to chassis: it was shortcircuit. The defective capacitor could have been responsible for the previous intermittent sound trouble.
S.B.

Sony SLC7

In the event of sound and picture muting on certain tapes, first check for tape edge damage. If the tape is o.k. suspect the audio/control head.

One machine we had wouldn't change from channel number 18. The cause of this was a defective gate in IC7 on the timer board.

The problem we had with another of these machines was that the cassette compartment wouldn't open after unthreading. The cause was the threading ring turning. Adjustment of the threading ring friction with the roller at the back of the drum mechanics put matters right.

Finally on this machine a worthwhile modification. To increase the gain of the control signal amplifier change R123 from $1.5 \mathrm{k} \Omega$ to $2.7 \mathrm{k} \Omega$ and replace D30 with a 180Ω resistor.
W.G.L.

Letters

BELT BOILING

I object to the inference by E.T. in your magazine (VCR Clinic, September) that Newark Video "boils belts". This is not true. Well not all of them anyway. This inference comes from a so-called engineer who appears to spend hours changing the belts on the loading drive motors of the $3 \mathrm{~V} 29 / 30$ and HR7200/7300/7350 instead of replacing the whole assembly. In order to replace the drive belt the motor and worm gearing must be removed and replaced, avoiding grease contamination of the new belt. When the belt reaches the point at which it has to be replaced the motor will also be well worn. In many cases we've found that the motor has failed within three months of belt replacement, resulting in an under-guarantee loss for motor replacement. The whole assembly, including the belt, costs only about $£ 10$ retail (plus VAT). Surely the labour cost of replacing the belt is much more than this unless E.T. is paying very low wages!
Steve Beeching, BBC (Belt Boilers Confederation), Newark, Notts.

PHILIPS 10CX1120

The problem we had with two of these sets (the 9in. portable with FS tube) was varying brightness, volume and colour levels in conjunction with the channel indicator trying to light up 88 . The fault was traced to the output from the L387 5 V regulator that supplies the microcomputer i.c. varying between 5 V and $5 \cdot 5 \mathrm{~V}$. Changing the regulator didn't cure the trouble however. Tests showed that the 5 V regulator's earth pin was at $0-0.5 \mathrm{~V}$ above chassis potential. Resoldering the chassis connections still didn't provide a cure. We had to connect a wire from the earth pin to chassis.
K. W. Howle, Director,

Telefaults (S-O-T) Ltd., Stoke-on-Trent.

Editorial comment: Other readers have reported trouble in this area. The 5 V regulator i.c. can draw over 500 mA yet deliver only 250 mA to the microcomputer i.c. Naturally this blows the 500 mA anti-surge fuse S 661 - which doesn't look at all like a fuse. The Pye version is Model 25KX1201.

AERIAL-MAINS ISOLATION

Having read the letter from Rothley Stevens in the September issue (page 614) I feel I must make the following observations. I've been engaged in the radio/TV servicing trade for over 35 years and have yet to encounter a TV receiver that doesn't, by design, have isolation between the mains supply and the aerial socket in one of the following three ways: (1) by use of a double-wound mains transformer; (2) by use of isolation components in the aerial socket; (3) as in modern sets, including the Hitachi one mentioned, by use of the switch-mode power supply to provide isolation. Isolation components in the aerial socket are unnecessary with arrangement (3). In the instance quoted by Rothley Stevens, surely the set's fuse would have blown, via the earth lead on the amplifier, had the isolation been defective.

The problem is more likely to have been the result of the set being inadvertently connected to the preamplifier's
input socket or the preamplifier's isolation capacitor being short-circuit or maybe not fitted. This would effectively put a short-circuit across the 12 V supply for the amplifier, via the tuner unit's input circuit, thus blowing the fuse in the amplifier.

It's most unlikely that any setmaker would omit isolation from his sets in these safety-conscious times. That would give rise to many other problems - not least the possibility of some unsuspecting aerial rigger being thrown off the roof, having received a shock on touching an aerial with the mains voltage applied to it.
R. E. Foster,

Ganegrade Ltd., Nottingham.

BUZZING MAINS TRANSFORMER

Mention of the problem of coils whistling annoyingly at line frequency has been made in the past in Television. A similar problem was present in a monochrome portable I had for repair, only the complaint this time was of a 50 Hz buzz that emanated from the mains transformer. Rather than scrap the transformer I decided to tackle the fault, which of course was due to the laminated sections vibrating against the transformer's outer casing. After applying Araldite Rapid to the casing and laminated section, followed by reassembly, the noise had completely gone.

A tip perhaps for anyone who has a buzz problem and who may be unable to obtain a transformer for an older set.
G. Pattinson,

Glenrothes, Fife.

ITT SERVICE DEPARTMENT

You mention ITT's change of premises in your September issue (Teletopics, page 639, under the heading "Business Moves"). Unfortunately your information regarding service departments was incorrect. The main service department at Chester Hall Lane also moved to the new premises in Paycocke Road - all service matters should now be referred to:

ITT Consumer Products Services, Paycocke Road, Basildon, Essex SS14 3DR.
The telephone number is 026827788 - for spares orders phone 0268 288818/9.

The service departments at East Kilbride and Kearsley were closed earlier this year, though the depots remain for warehousing and distribution.
P. R. Brook, Service Manager,

ITT Consumer Products Services.

THE G11's HT RESERVOIR CAPACITOR

The problem of the h.t. reservoir capacitor in the Philips G11 chassis is not as simple as S. Simon suggests in the September issue. First, in addition to red and green capacitors I've also found several silver coloured cans that are just as suspect. Secondly and more importantly, replacement blue capacitors can be suspect. I've fitted only capacitors supplied by Philips and have had no trouble with these. Recently however I've had three G11s in the workshop fitted with blue L.C.R. capacitors by other repairers. The first set took me a while to deal with as I didn't suspect the capacitor, being a new blue one. Examination of the three blue capacitors showed burning around the rivets however. I believe these L.C.R. types
were supplied by independent wholesalers. Oddly enough the latest capacitors supplied by Philips are an L.C.R. type, but they have the code number 3PC 471 ED 250 W and much longer rivets.
Alan V. Turner,
Warrington, Lancs.

ITT CVC45/1 CHASSIS

Keith Harmer and Garry Smith mention a dead ITT set (CVC45/1 chassis) with R809 open-circuit. When this situation is met it's recommended that R808, R809, R818, R829 and R833 are all changed. Failure of R833 ($1.5 \mathrm{M} \Omega$) will cause repeated failure of the BU326 chopper transistor. If the problem persists D8 and D10 (both type 1N4148) should be changed. ITT recommend replacing. R833 as a matter of course whenever one of these sets is serviced. The same comments apply to the CVC40 (16in. tube) chassis.
Paul J. Bradford,
Whitley Bay, Tyne and Wear.

TAPE RELOADING

With reference to M. Catchpole's attempt at reloading V2000 cassettes (Letters, September), I was faced with the same problem but was a little more successful. I'd previously used a Philips N1500 VCR and had quite a number of redundant LVC cassettes which I decided to try to make use of. I obtained from Stan Willets of West Bromwich second-hand VCC120 Philips instruction tapes at 50 pence each and reloaded these with tape from the LVC cassettes. Computer tape stop foils were placed at the beginning and end (three, spaced at about six inches
for safety). This has given good results with my Grundig 1600 machine and increased the tape playing time eightfold. I hope this information will be of use to previous N1500 and N1700 owners.
F. Holt,

Walsall, W. Midlands.

MISIDENTIFIED CLOCK

An error occurred in your September issue's DX-TV section. In the caption to the photographs it says that the clock received by Ryn Muntjewerff on May 20th at 1927 GMT is the Syrian clock on ch. E3. In fact it's the Jordan TV clock. In addition Jordan is plus three hours to GMT and the time shown on the clock is 2300 local (2000 hours GMT), the time of the second news bulletin in Arabic. I hope this information will help Mr. Muntjewerff to correct his records for future reference.
G8206I68 JT M. B. Sayers,
12 SU RXER site, BFP053.

PHILIPS G9 CHASSIS

The fault with one of these sets was wavy horizontal contraction of the raster sides, coinciding mostly with points of high brightness, such as shots panning to the sky, or when advancing the brightness control's setting rapidly. After hours of unsuccessful fault finding 1 eventually found that the trouble appeared to be due to poor regulation in the line output transformer. Replacing this item cured the fault. I hope this may be of help to anyone else faced with this baffling condition.
Michael J. Levy,
Harrow, Middx.

15 CAPACITORS	68 Grundig 3010/1500 300	180 TOA2540	032 Thom 7×9	SPECIFC COMPONENTS	G8 Metal	460 ELC1043/06 Tun	
$915 \times .0047 / 1500$ AB23	69 Thom 3500	180 TDA2540 1.65	032 Thorn $\dagger \times 9$	351 Thorn 1591	Switch	661.00	
Chassis ${ }_{92} 10{ }^{1.50}$	70 Thom $8500 \quad 5.40$	181 TDA2541 267	Chass. 14.50	Speaker 200	391 G8 Line Stor/Eql.	461 U321 New Tuner 7.95	
$9210 \times 220 \mathrm{MFD} 16 \mathrm{~V}$	71 Philips 68 6830	182 TDA2560 3.28	${ }^{033}$ Philips KT3 8.00	352 Thorn 1600	Coil 225	$462 \mathrm{U322}$ New Tuner 7.95	
Elect 0.50	72 Pye $731 \quad 4.50$	183 TDA2571 215	034 RR1 T24 Chass. 14.00	352 Thorn 1600	392 G8 R/G Symetry	46398003 Posister 0.99	
$9310 \times .047 \mathrm{MFD} 400 \mathrm{~V}$	$8910 \times$ Anti Track EHT	184 TDA2591 0.58	035 Sanyo CTP5101 9.50	Dropper 0.50		46498009 Posister 0.99	
Mul Pol 0.50	Cap 200	185 TDA2593 233	037 Split Diode EHT	353 T $\times 10$ Preset		465 Mull.DL50 Delay	
$945 \times 4.7 / 100 \mathrm{~V}$ C514		190 TDA2600 4.85	Lead 1.35	Drawer 3.00	Fuse 3.15154 ASS 20 mm	line 0.95	
T3500 1.25		191 TDA2611 124		354 T $\times 10$ CRT Base	$39820 \times 800 \mathrm{MA}$ AS	$4665 \times$ VA1104 270	
$95 \quad 5 \times .47 / 1000$		24023		Assy $\times 10$ CRT Base	$33820 \times 800 \mathrm{MA}$ AS	469 Cut Out Metal GEC	
Dubilier 3.00		6016			20 mm Fuse 1.50	2100	
$9710 \times 0.1 / 2000 \mathrm{~V}$	WTEGRATED CIRCUITS	016	PUSH BUITON UNITS	355 3" Round BR	$33920 \times 2.5 \mathrm{~A}$ A/S 20 mm	$4705 \times \mathrm{GEC2100} 3$ Leg	
W/E 200		220 SL901B Int Circuit 5.00		Speaker 1.00	Fuse 1.00	Thermist 1.00	
$985 \times 1 / 250$ Supp 1Π	$1405 \times$ TDA440 3.00		110 Pye 7134 Way 7.7 111 Pye 7156 Way 1155	$3585 \times$ Thor3500 200	$40020 \times 2 A$ ASS 20 mmmFuse1.00	$4795 \times$ Gen. Purp. Rotary Swtch. 3.60	
etc. 1.50	$\begin{array}{lll}1415 \times \text { TBAI20AS } & 1.80 \\ 1425 \times \text { TBA540 } & 4.00\end{array}$		112 Phil G8 Square 1275 113 Phil G8 Sloping 14.58	Conv. Pot 1.00			
	$1435 \times$ TBA5400 $\quad 4.00$			$3595 \times$ Tha/3500 50R	${ }_{401} 20 \times 1$ ASS 20 mm	Swtch. 4805 5	
5017 CVC 59			114 Thom 9000 250	Conv. Pot 1.00		Swtch. 3.75	
51 Decca 1730/1830 5.00	$1465 \times$ TBAB10S 3.00	LNE OUI	115 Thom 16154 Way 7.87	$3605 \times$ TCE3500	$4220 \times 1.25 \mathrm{~A}$ AS 20 mm	$48120 \times$ Neons GEC	
52 Decca 80 Series 4.50	$1475 \times$ TBAS200 4.50	001 Philips G8	116 Decca 6 Way 6.55	Rectifier 0.7		etc. 2.25	
53 GEC 2040 Hytrid 3.00	$1485 \times$ TBA990 $\quad 3.25$	002 Decca 30 Series 9.00	117 Decca 4 Way 6.50	362 T9000 Rem. Receive		$4825 \times$ Univ. Aerial Skt.	
54 T1500 5 Stick 3.50	$1495 \times$ TBA5200 4.00	003 Decca 100 Series 6.50	118 GEC 21106 Way 7.85	Assy $\quad 5.00$		Kit 5.50	
55 Thom $9000 \quad 7.00$	$1505 \times$ TBA530 4.25	004 ITI CVC 25/30/32 7.00	119 GEC 2136/7	363		$10 \times$ Metal Coax	
56 Thom 1400200	$1515 \times$ TBAS 50	005 Philips G9 7.50	Tapered $\quad 7.95$	364 T8500 Mains XX 7.50			
57 Philips $69 \quad 3.50$	$15410 \times$ TCA270SO 4.00	006 RRI T20 9,92	120 ITT CVC5 925	365 T8500 (Plastic) Cut			
58 Universal ITT Type 4.50	$1555 \times \mathrm{MC13270} 2.50$	007 RRI A823 7.00	121 IT CVC8 11.45			Type 125	
$595 \times$ TV11 EHT Rec for	160 TDA1170 1.35	008 RRI $271818{ }^{\prime \prime} 1125$	122 ITT 6 Way with	370 Pye 731 Thick FilmResis.1.50	$\begin{aligned} & \text { Speaker } \\ & 41310 \times \text { TDA2600 } 1.00 \\ & \text { IC } \end{aligned}$	485 Foc/Unit Thom 8500	
PTV's 1.00	161 TDA1190 1.90	009 RRI 2718 20122/26"	V.C.R. 7.55 123 RRI A823 otc. 7.55			486 4.43Mhz Crystal 0.40	
$603 \times$ TV45 EHT Rec	162 TDA 1006A	010 RRI AD7 Mono 10.95			Holder $\quad 1.50$	$48810 \times$ Ring Type Spk/	
2718	164 TDA1035 1.83		124 Hitachi 4 Way 7.55	Resis. 371 Pye 713731 Vis. Gain	415 PALKT3 Speaker 1.50	Gap 1.50	
611 IT CVC $45 \quad 4.00$	165 TDA1044 273	011 Thom 169091 7.00	125 RRRI T206 Way 8.55	Mod. 6.50			
63 RRI $2179 \quad 3.00$	166 TDA1190167 TDA1412	012 Thom 6615 8.50		372 Pye 7313 R3 50 W Metal cld.129	Fusible 0.50	Unit $\quad 797$	
64 Pye $691 / 697 \quad 3.50$			$6.50 \longrightarrow$		$4365 \times$ Decca $303 \mathrm{R9}$		
65 Pye CT200 4 Lead 3.50	$\begin{array}{ll}167 \text { TDA1412 } & 0.50 \\ 172 \text { TDA2002 } & 1.80\end{array}$	014 Phil TX Chass.	373 100K×3 Drawer P'set		$\begin{array}{ll}\text { Modulohm } & 1.75\end{array}$		
66 Pye CT200 5 Lead 4.50	$\begin{array}{ll}172 \text { TDA2002 } & 1.80 \\ 173 \text { TDA2020 } & 2.50\end{array}$	015 RRI Ranger $1 / 25.50$		Alt Pye 731	437 Decca 30 47k	${ }_{498}$	
67 Korting 90 DGR	$\begin{aligned} & 174 \text { TDA2030 } \\ & 178 \text { TDAZ523 } \end{aligned}$	016 ITT CVC 5/9017 Philips E2 Chass. 5.00018	CAP	Grundig 50106010 Vid	Vol. + Switch 125	Tool 1.00	
Hyb 5.00			$80220 / 400$ CVC32/20 120	Mod. 4.00	$4535 \times 5 R$ Universal		
			$81200+300$ Pye 691200	3345×10 Phit. $\begin{array}{r}\text { G8 } \\ \text { Conv. Pot } \\ \end{array}$	Conv. Pot 1.00		
All components are A1 quality from prime manufacturers, and are dispatched by post same day as order received together with any refund due. All goods should be delivered within 4 working days. Please add 15\% VAT and 90p P \& P		019 Thom $9500 / 950088.50$020 Polish 161 Mono 6.00	$82600 / 300$ Phil G8 1.50		$4545 \times 20 \mathrm{R}$ Universal	TRANSISTOR/DIODES	
		${ }^{83} 5000175+100+100$	$3855 \times 15 R$ Phil. G8	Conv. Pot 100	$23010 \times$ AC128 $\quad 1.50$		
		021 Thom 3500 Scant 4.50		Conv. Pot 2.40	$4555 \times 100 \mathrm{R}$ Universal	$23550 \times$ BC213L 250	
		023 Thom 1590/91 81.50	85470 Mfd G1t	$3865 \times$ Phil. G8 $2 \mathrm{k} \times 2$ Lin.	Conv.	$25010 \times 8 \mathrm{Cl} 124 \times 9.00$	
		024 Thom 150015 KV 4.00	$86400+400$ Decca 30	Bright 250	4565	$25110 \times 8 D 131$	
		025 GEC 2040/2100 Hybrid		$3875 \times$ Phil. G8 10k Log.	457 io $\times 100 \mathrm{k}$ Tun/Pr	$27010 \times$ BU208A 8.50	
			$87200+200+75+2511$	Colour 2.50		$27110 \times$ BU208 7.50	
		026 Bush 161 Mono 5.00	CVC5/9 1.50	$3885 \times$ Phil. 68 47k Log.	$45810 \times 100 \mathrm{k}$ Tuner Pre-	$27210 \times$ BU326 $\quad 10.00$	
		027 GEC Single Std	$88400 / 400 \mathrm{~V}$ Tho 90001.50	Vol. 250	set G8 3.00	$2735 \times$ BU205 3.75	
		Mono 028 Pye 691 (wired) 5.00 5.00	8991 4700/25 Thom $\begin{array}{r}1590 \\ 0.60\end{array}$	389 G8 Plastic MainsMwitch0.75	459 ELCI043/0s Tuner		
QUICK SAVE T.V. SPARES MUXTON HOUSE, MUXTON, TELFORD, SALOP. REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.							
						$29010 \times$ BT106	
						Thyristor 9.00	
						$2935 \times$ BT120 $\quad 4.50$	
MUXTON HOUSE, MUXTON, TELFORD, SALOP. REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.						$335 \quad 50 \times 8 \mathrm{BY} 127$	
						Diodes $\quad 3.00$	
						$34025 \times$ TIP41A 6.50	

Rocking all the time

Les Lawry-Johns

Things are most certainly not what they used to be. People even talk a different language now and I find it difficult to know what they are on about. Take Mr. Flasher for example. He held up a small Philips TX2 portable.
"Thought I'd let you have a look at this for me, right? Picture valve's gone, right? Don't mind paying you to look at it right? l'd do it myself but haven't got the time, right?"
"No. If it needs a valve, tell me which one and I'll sell it to you. I don't want to look at it because it's white and white gives me spots before my eyes and makes me feel ill, especially this soon after breakfast."

Mr. Flasher was taken aback. "Don't know what you're on about, right? What I'm saying is I'll pay you to put a new picture valve in my set, right?"
"I could put a valve in your set but it would just flop around because there's nowhere to fit one. If you want me to repair the set because you've not the time you'll have to leave it here. It won't involve valves because the set doesn't have any, right?"

So he left it and went out muttering about shopkeepers who had no right to have a shop and the government ought to do something about it.

I took the shell off the little Philips set so that it wouldn't hurt my eyes, plugged it in and switched on. The sound sounded but the screen showed only a line down the centre. So I checked the scan coupling capacitor and it had capacitance, then I checked the tracks to the line output transformer and they were intact. Next I wondered.

I checked the winding on the transformer. It was opencircuit. Oh dear, I certainly didn't have one of these little perishers. With enormous dexterity and wonderful presence of mind I removed the transformer and located the break. It could be soldered and it was. Back it went and the set now showed a picture. But it was upside down. My eyes narrowed as I got Mr. Flasher in my sights. So he'd been flashing around. I looked again at the scan coils. They hadn't been disturbed. I looked at the print. It didn't look as though it had been disturbed. Mr. Flasher was a phantom. So I reversed the field scan coils and the picture was the right way up. I could read the news on BBC-2 in the mirror. Something stirred in my brain. I've never been able to do that before, and people always shake hands with their left hand in the mirror. I looked directly at the screen: the picture was back to front. This made me very angry but everything looked all right when I'd reversed the line scan coil leads. I wrote the bill out with amazing attention to detail.

In fact it was Mrs. Flasher who came to collect the set. "I told Harry there's nothing much wrong with the set, right? I said why don't you do it as you're always pulling the radio to pieces, right? But he said 'I don't know about TVs, they've got valves in them'."

I gave up and ushered her out of the door - the dog wanted to go across the road and chase his ball on the green.

Now you'd think a simple thing like taking the dog across the road to play with his ball would be a simple thing, right? No wrong. In the first place he's still a puppy,
albeit a rather large one. In the second place chasing a ball is to him the most exciting thing on earth. As soon as he catches sight of his lead and the ball he goes berserk. Absolutely mad. I'd like to see Barbara Roadhouse calm him down. A choke chain? He's got one and it's high up but he chokes himself to death because he can't get the ball out of his mind.

We eventually cover the few feet across the road to where he knows the chain is coming off and the struggling reaches fever pitch. Whilst I'm trying to remove the chain he hurls himself this way and that until he finally rips my arm off and runs away with it. I manage to retrieve it and tuck it inside my cardigan and throw the ball with my left arm. When he eventually tires we make our way back to the shop, him panting like a steam engine (you can hear him miles away). With him laying on the floor lapping his water because he's too tired to stand Honey Bunch asks "Why did you let him do that? Come here and I'll stick it back on. You'll have to mix the glue though, I can't stand the smell of that stuff."

So I mixed up the epoxy with my left hand and made it good and strong. H.B. stuck my arm back so that I could work properly, then ran her iron over the joint so that it would harden quickly and I'd be able to get on with the jobs.

Puppets heal very quickly you see.

The Decca 80

An old friend then arrived with a set I'm not familiar with: I've done a few, but not many. A Decca CT0802 80 series chassis. I plugged it in and switched on. Nothing, or at least I couldn't hear anything. The tube base voltages were present, as was the e.h.t., so I came to the conclusion that the l.t. supplies were absent. I looked for the circuit. A very brief reference in the book that did mention it referred me to the 1977-8 book for full details. I'd just lent that one to Tony. No not that Tony, the other one (sorry Tony).

So I swung up the chassis and took the cover from the line output stage. Everything seemed to be in order but I didn't like the look of the soldering on the l.t. output socket. I resoldered the contacts to make them look better, then switched on. The sound roared out and after a short wait the screen lit up. I plugged in the aerial and the picture looked good. So what? The moral is that if you lend someone a manual for a set you're not too familiar with one will promptly come along. Right?

Looking in the Window

For a long time I've been struck by the fact that nearly every female that walks past the shop turns to smile in at me. Well I can't help being an attractive man. Reliable, sort of, maybe a little staid, sort of . . . I don't know, just fascinating I suppose. After all, those girls can't all be wrong, especially when the sun is shining. Yes that's another thing, they seem to look in more when the sun is shining. It was shining the other morning when I went across the road to post a letter. Coming back I was
surprised to note that I couldn't see inside the shop at all. All I could see was myself . .

Fading GEC

It was just an ordinary GEC 2120 or something like that, with the complaint that the picture would fade out for varying periods before returning as good as ever. I had it on test and had left the rear cover on to keep the heat in. After about half an hour the picture faded out, so I whipped the back off to make my definitive tests. These were not required since the picture had returned. So I left the back off. About an hour later the picture faded out and I leapt to the tube base to check the voltages. They were all present and the picture had returned.

I resolved to do nothing the next time. I just looked - at the tube base socket. The tube's heaters faded out. Ah, ha! I checked the heater supply and it was present - and the tube's heaters were glowing normally. So I left the prods connected and lay in wait. The tube's heaters faded but the meter continued to record some 4 V a.c. It just had to be pin contact. A thorough clean of the tube's base pins and the socket cleared the trouble, well for a while I suppose.

More Fading

The next day a similar GEC set appeared. Complaint: picture fades out leaving the sound normal. I resolved to play it cool: meter on the tube base socket to read the applied heater voltage, watch it carefully. After a while the picture faded leaving the heaters glowing merrily. The smile faded and when the meter was switched to the 1 kV range we found that all three first anode voltages were missing. There was plenty of voltage at one end of the $560 \mathrm{k} \Omega$ feed resistor (R506) on the convergence board but little at the other end. A new resistor restored normal, continuous viewing.

At the Coach

Having had a couple upstairs, perhaps three or four, we decided to go next door to the Coach. Dave's place. Not Dave from the garage, Dave from the pub. We had quite a few while H.B. tried to beat the machine, and of course Dave kept filling my glass so that I was having twice as much as H.B.

Towards the end of the evening I was dully aware that Tony and Jim had come in. They slapped me on the back to make me growl and I did. So they got their drinks and moved over to H.B.

Now H.B. loves to tease Tony because he blushes so easily. So she set out to make him blush and he did. "Got your black tights on tonight?" she asked, "see you haven't got your high heels on."
Tony went along with it all. "Thought I'd give 'em a rest so's not to make all you girls jealous."
Quite unexpectedly a young man standing by broke in. "If he wants to wear black tights and high-heeled shoes why shouldn't he?"

Tony blushed an even deeper red. "They're only joking" he muttered to the young man.
"Maybe they are" said the Y.M., "but what's wrong with you doing it if you want to? I'm fed up with this place and its narrow minds. I'm off."

As he went out Dick came in. H.B. loves teasing him too. Er, I think we'll leave it at that. Whatever next?

next month in

Abstract

- SIGNAL STRENGTH METER

A snowy picture and an awkward customer can present a difficult situation. Is it the set or the signal, and how do you explain matters? This signal strength meter gives an instant guide to the signal level reaching the set and a handy way of proving to the customer that it may be his aərial that requires attention - after all a meter can't lie, can it?! Useful also for aerial alignment. The meter is simple to build and inexpensive - it uses a commercial tuner/i.f. strip so that only the power supply and meter drive circuits have to be constructed. The unit also provides video and audio outputs.

- IC FIELD TIMEBASES

Most TV chassis now use an i.c. for the field timebase, but it's not always clear what goes on kehind the various pins and what the peripheral components do. Following our articles on valve and transistor field timebases it's time to get up to date with their ic. successors.

- ELECTRON PATTERN PROGRAM

The various computer programs to provide TV test patterns published earlier this year created considerable interest - at last you can get the micro to do something useful! Andrew Heron has written a comprehensive program for the Acorn Electron microcomputer, providing a blank raster iา a choice of eight colours, colour bars, split bars, horizontal bars, vertical bars, a crosshatch, dots, a chequerboard and a centre circle.

- SERVICING THE NORDMENDE FC25

The NordMende FC25 chassis was used by a number of rental companies in the early seventies. These large-ssreen sets still have a modern appearance and with a bit of attention can give years of trouble-free service. Pete Sanders provides a comprehe sive guide to faults and fault finding.

- TEST REPORT

Eugene Trundle has put the Doranuro desoldering iron through an extended bench test.

ORDER YOUR COPY ON THE FORM BELOW:

Please reserve/deliver the December issue of TELEVISION ($\mathbf{1} 1 \cdot 10$), on sale November 20th, and continue every month until further notice.
NAME

ADDRESS

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

IF YOU DONT SEE IT LSTED ASK FOR QUOTE. GIVE MAKE MODEL LOCATION. REMEMBER TO ADD O.60p POST \& HANDUNG. ADD 15% VAT TO TOTAL

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

REGISTERED OFFICE: THE COACH HOUSE, MUXTON LANE, TELFORD

Field Timebase Circuit Survey

Part 2: Transistor Circuits

S. W. Amos and E. Trundle

The advent of transistors in TV receiver circuits revolutionised the design of field timebases. Because a transistor can operate at a low voltage and high current it's ideally suited to driving low-impedance scan coils. If the decision is taken to use a matching transformer between the transistor and the coils the output transistor's low optimum load means that the primary inductance need not exceed a fraction of a Henry, so a small transformer is adequate. Moreover the Ic-Vb curve of a transistor is a closer approximation to the ideal shape for the primary current waveform (see Fig. 6 last month) than the corresponding valve characteristic is. The low-supply voltage that can be used for transistor operation is an attractive feature since it makes possible the production of portables powered by a 12 V battery. There are nevertheless some problems. One is the need to ensure that the output transistor is not damaged by the voltage peak generated across the scan coils during the flyback. A second problem is the limited voltage available for the charging circuit that generates the basic sawtooth waveform.

Early Transistor Circuits

It's not surprising that the first transistor field output stages followed a similar basic design to that used in valve output stages. In some sets the scan coils themselves formed the collector load of a class A stage with a sawtooth input, the static beam deflection being offset by permanent magnets built into the scan coil assembly - see Fig. 1(a). This circuit requires good stabilisation of the mean collector current, and the dissipation in both the

Fig. 1: Some early class A transistor field output stages.

Fig. 2 (left): A sawtooth and the parabola derived from it by integration have opposite forms of curvature.
Fig. 3 (right): A commonly used method of linearising a sawtooth produced by a charging circuit.
coils and the transistor is high. Consider for example a pair of coils requiring a peak-to-peak deflection current of 0.5 A . The mean collector current could be stabilised at 0.3 A : this means that if the power supply voltage is 12 V the power taken from the supply is 3.6 W . This power is dissipated in the coils and the transistor, so a power transistor fitted with a heatsink is necessary. Stabilisation of the mean collector current in the circuit shown in Fig. 1(a) is carried out in the conventional manner: the potential divider R1/R2 provides a base bias voltage while Re determines the mean current.

To reduce the dissipation in the coils and operate with a higher collector voltage a common technique used in early transistor circuits was to employ a choke with the scan coils in parallel - see Fig. 1(b). The choke was sometimes tapped to provide a connection for the transistor's collector or the coils, enabling the output transistor to be presented with a suitable load impedance value. In this case the choke acts as an autotransformer of course. Sometimes a coupling capacitor was included - see Fig. 1(c) - even though an enormous capacitance value (typically $2,000 \mu \mathrm{~F}$) was required in order to preserve the lowfrequency response. The capacitor was not bulky since only a low voltage rating was needed. $R C$ coupling between the transistor and the coils was not favoured due to the dissipation in the resistor and the loss of collector voltage.

Drive Waveform Linearisation

The input sawtooth waveform for these early transistor output stages was obtained in the conventional manner, from a capacitor which was charged from the supply line to give the forward stroke, being discharged during the flyback time by a blocking oscillator or multivibrator oscillator. In a valve circuit where pérhaps 10 V out of a possible 250 V is used for the forward stroke the linearity is good, but with a transistor circuit where perhaps 2 V out of 12 V is used the curvature is significant and requires correction.

A common linearising technique is to add a fieldfrequency parabolic waveform to the sawtooth. As Fig. 2 shows, the sawtooth and parabola have opposite curvature: combining the two gives a good approximation to a straight line. As Fig. 14 in Part 1 indicated, a parabola can be obtained from a sawtooth waveform by integration. A suitable sawtooth is often available at the emitter of the field output transistor. Fig. 3 shows a typical circuit using this principle. The sawtooth developed across Re is integrated by R1 and C1, the signal developed across C1 being applied to the base of Trl via C2. The series combination of C 1 and C 2 functions as the charging capacitor, the oscillator being represented by switch S1.

For full integration the time-constant of R1, C1 should be long compared to the field period $(20 \mathrm{~ms})$, but in a number of circuits it's comparable. The purpose of the circuit is not to carry out a precise mathematical operation but to obtain a satisfactory sawtooth and it may well be that the shape of the correction waveform produced by a comparable time-constant is more effective than that

Fig. 4: Class A circuit used in the Thorn 3000 chassis.

Fig. 5: Two-transistor class A output stage and driver.
given by a longer time-constant. Resistor R1 is often a preset to provide linearity control.

Class A Output Stages

Fig. 4 shows, simplified, the field driver and output stages used in the Thorn 3000 chassis - dating from 1969. Apart from the emitter-follower driver transistor the circuit follows the arrangement shown in Fig. 3. The integrating resistor R5 acts as a linearity control: a second linearity control is provided by R2 which limits the voltage to which C 1 and C 2 can be charged, thus modifying the shape of the voltage rise across the capacitors.

The output transistor Tr 2 is cut off during the flyback, which is produced by the collapsing magnetic field around the inductive load components. The positive-going flyback pulse developed at the collector of the output transistor could damage the transistor unless steps are taken to limit its peak value. Protection is provided by the clamp circuit D2, R7, C3. Diode D2 conducts when the pulse tries to exceed the supply rail voltage: the charge developed across C3 ensures that D2 remains cut off during the forward scan.

In some class A field output stages the choke was replaced by a transistor, giving the arrangement shown in

Fig. 6: Early field timebase with class B output stage.
Fig. 5. The output transistors $\operatorname{Tr} 2 / 3$ are connected in series across the supply, with the parallel field scan coils connected between the output stage's mid-point and the slider of a potentiometer that acts as the shift control. From the signal point of view the $400 \mu \mathrm{~F}$ electrolytic C 4 acts as the field output coupling capacitor.

With $\operatorname{Tr} 3$ cut off $\operatorname{Tr} 2$ will be saturated by the bias provided by D2, R5 and R6. One side of the field scan coils will then be at approximately 20 V . With Tr 3 saturated the voltage developed across R9 and R10 will cut off Tr 2 and the same side of the scan coils will be at roughly -20 V . During the forward scan Tr 3 is driven progressively into saturation and Tr 2 is driven progressively towards cut-off, the coils thus being driven by a 40 V ramp. C3 provides drive to the base of Tr 2 - the timeconstant of C3, R5 is long compared to the field scan period so there is little loss in the coupling network.

The flyback starts when Tr 3 is abruptly cut off - Tr 1 is driven to saturation by the discharge action of the field oscillator, providing a short-circuit between the base of Tr 3 and chassis. What happens next is rather ingenious. Because of the inductance of the field scan coils the positive voltage jump at the mid-point exceeds 40 V . This voltage is applied to the base of Tr 2 by C 3 as a result of which $\operatorname{Tr} 2$ is saturated, connecting the field scan coils and C 2 in parallel. The resonant circuit thus produced begins a half-cycle of oscillation, the positive-going excursion reverse biasing D2 and D3 so that the active part of the circuit is disconnected from the supply line. At the end of the flyback the circuit tries to swing negatively: D2 and D3 then commence to conduct and Tr 3 receives drive from Tr 1 .

Class B Output Stages

Class B operation is more efficient than class A but in a field output stage brings the problem that any distortion at the crossover point causes objectionable nonlinearity. Nevertheless a number of class B circuits have been used. A very early example is shown in Fig. 6. The coils are fed via an autotransformer connected to a complementarysymmetry pair of output transistors ($\operatorname{Tr} 4 / 5$) which are driven by a phase splitter transistor (Tr3). A.C. feedback is applied over three stages and the charging circuit C 1 , R1 is isolated from the following amplifier stages by the emitter-follower Tr 1 . This straightforward circuit owes an obvious debt to audio techniques.

A later and more elegant circuit is shown in Fig. 7. Tr1Tr 5 form a direct-coupled amplifier, with Tr 1 a common-

Fig. 7: Class B field timebase using the Miller integrator technique.
emitter stage, $\mathrm{Tr} 2-\mathrm{Tr} 3$ a complementary-symmetry driver stage and $\operatorname{Tr} 4-\mathrm{Tr} 5$ a complementary-symmetry output stage. The field coils are fed from the collectors of Tr4Tr5 via the $1,000 \mu \mathrm{~F}$ coupling capacitor C4. There's a significant difference between this circuit and those previously described: the charging capacitor C 2 is returned to the amplifier's output terminal instead of to chassis. It thus bridges the amplifier's input and output terminals, making this an example of a Miller integrator, a standard circuit arrangement well known for its ability to generate a sawtooth output of good linearity and of amplitude nearly equal to the supply voltage. The circuit shown was widely used in monochrome portables produced during the early seventies - it was also used in the Rank A816 large-screen solid-state monochrome chassis.

An interesting feature of the circuit is the effective multiplication of the charging time-constant (a feature of the Miller integrator). For every volt placed on one plate of C2 by resistors R1 and R2, A volts are placed on the other plate by the output transistors, where A is the amplifier's voltage gain. So the capacitor behaves as though its capacitance is $(\mathrm{A}+1) \mathrm{C} 2$, and in order to achieve an effective time-constant of 500 ms (typical of the values used in earlier circuits) a physical time-constant of about 20 ms is used. Thorn for example in the $1590 / 1591$ series chassis used an $0.047 \mu \mathrm{~F}$ capacitor and a charging

Fig. 8: The class B output stage in this field timebase circuit incorporates mid-point voltage stabilisation.
resistance of $370 \mathrm{k} \Omega$ (with the height control at midsetting), giving a time-constant of 17 ms - less than a field period!

R10, R11 and C5 form an integrating circuit, the parabolic waveform generated across C5 being fed to Trl's base via R9. R10 is a preset to provide linearity control.

Positive-going pulses from the field oscillator initiate the flyback. The pulse passes via D1 to the bases of $\operatorname{Tr} 2 / 3, \operatorname{Tr} 2$ switching on while $\operatorname{Tr} 3$ switches off. In consequence Tr4 saturates and Tr5 is cut off. Thus the voltage at the output terminal rises smartly to supply positive. At this point the scan coils resonate with C5 to produce a flyback pulse of some $60-70 \mathrm{~V}$ peak amplitude. D3 is reverse biased during this period. After a half-cycle of oscillation D3 and Tr4 conduct to clamp the output at the supply rail voltage. As a result, C 2 is charged to the full supply voltage - its input plate is effectively earthed by conduction of Tr1. The duration of the flyback is controlled by the time-constants in the oscillator circuit. When the pulse from the oscillator

Fig. 9: Field timebase with class A/B output stage, incorporating mid-point voltage and quiescent current stabilisation.
stage (a multivibrator) ends, C2 begins to discharge via R1 and R2. This is the start of the forward stroke. The voltage at C2's output plate falls while that at its input plate rises (driving Tr 1 progressively on), the ratio between the two voltages being A, the amplifier's voltage gain. This is the Miller integrator action: both voltages change linearly with time until the output voltage falls to chassis potential at which point, if the circuit is properly adjusted, both voltage changes are abruptly halted by the arrival of the next pulse from the field oscillator.

Mid-Point Voltage Stabilisation

One of the aims in the design of the amplifiers shown in Figs. 5 and 7 is to obtain an output sawtooth with a peak-to-peak amplitude as great as the supply rail voltage permits. To obtain this maximum output, the average voltage at the mid-point must be at half the supply rail voltage and must remain at this value despite any changes in circuit constants caused by temperature change, ageing or any other cause. Accordingly a d.c. feedback loop was introduced in some circuits to stabilise the mid-point voltage. An example, from the Philips 320 chassis, is shown (simplified) in Fig. 8.

The first stage consists of an emitter-follower which also provides scan-correction. C6 couples the output from Tr1 to the base of the driver transistor Tr 2 which is directly coupled to the complementary-symmetry output pair Tr3/ 4. The field scan coils are capacitively coupled to the midpoint of the output stage but the coupling capacitor C 9 is included in the earth return path so that a direct-coupled feedback connection can be made via R16 and R11 to the base of Tr2 to stabilise the mid-point voltage. Any rise in the mid-point voltage increases the conduction of Tr 2 , thus lowering the voltages at the bases of Tr 3 and Tr 4 to offset the initial rise. R16 is adjusted to set the mid-point voltage at precisely half the supply voltage. The voltage across R21 is proportional to the current flowing in the scan coils and is returned to Tr2's base as a.c. feedback to improve the linearity of the output.

During the forward stroke Tr receives a rising sawtooth voltage from $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ as these capacitors charge via R1. This gives a falling sawtooth at the collector of Tr2. During the early part of the forward scan Tr2's collector voltage is high: Tr3 conducts while Tr4 is cut off. A falling current flows through the scan coils and charges the high-value capacitor C 9 to provide the positive section of the sawtooth current output. At the mid-point of the forward scan the current flowing via Tr3 has fallen to a minimum and Tr 4 is about to start to conduct. At this instant there is no current through the coils to C9. During the second half of the forward scan $\operatorname{Tr} 3$ is cut off and $\operatorname{Tr} 4$ is driven progressively into conduction: C9 discharges via the coils and Tr4 to provide the negative section of the sawtooth current output.
One of the difficulties with a class B output stage is that of choosing and maintaining a suitable value of forward bias. If the bias is set too low there's a risk of crossover distortion which is annoying because it produces vertical linearity anomalies at the centre of the screen, where they are most noticeable. If the bias is set too high the dissipation in the transistors increases and the efficiency of the amplifier is impaired. So a compromise is needed and R15 is adjusted to give this compromise. The negativetemperature coefficient resistor (thermistor) R14 is included in the base circuit to maintain the chosen value of quiescent current as the output transistors warm up.

The forward scan is terminated and the flyback initiated when the field oscillator switches on and discharges $\mathrm{Cl} / 2 / 3$ via D1. Tr1 and Tr2 switch off, and as the voltage at the collector of Tr2 rises Tr3 saturates and Tr4 is cut off. The scan coils with their inherent capacitance form a resonant circuit which produces a half-cycle of oscillation, causing the current to reverse. During this period D2 and Tr3 clamp the mid-point to the supply voltage. The bootstrap capacitor C 7 ensures that Tr 3 remains on and Tr 4 remains cut off during the flyback. During the forward scan the bootstrap capacitor provides positive feedback, increasing the circuit efficiency.

Another interesting feature of this amplifier is the method adopted to provide scan correction. Correction at the beginning of the scan is carried out by R6/C3/C2 which integrate the sawtooth waveform at Tr1's emitter and apply the resulting parabola to its base. As we've already seen, this arrangement can be used to give overall linearisation. Here the component values have been chosen to produce a flattening effect at the start of the scan. Correction during the latter part of the scan is provided by the components in Tr1's collector circuit. R8 and C5 partially integrate the falling sawtooth voltage developed across R7, the resulting waveform being divided by R2/R3 and applied to Tr1's base via the bottom linearity preset R4. This circuit has little effect during the first half of the scan, but the low voltage reached towards the end of the scan imposes progressing loading at Trl's base, thus reducing the drive to give the required flattening effect.

Quiescent Current Stabilisation

The need to maintain the quiescent current of a class B output stage at a value that minimises crossover distortion led to the use of negative d.c. feedback to ensure that the current is kept at the correct value. The final example of a field amplifier in this article is one that incorporates both quiescent-current and mid-point voltage stabilisation. Several manufacturers including Rank (Z718, T20 and T22 chassis) and Thorn (9000 chassis) used versions of the circuit. That shown in Fig. 9 is a simplified version of the circuit used in the Thorn 9000 chassis.
Tr4 and Tr5 are the output transistors, Tr3 and Tr6 the drivers. Tr 2 is an amplifier that also looks after linearity and scan-correction and mid-point voltage stabilisation. Tr 1 is a source-follower that isolates the charging circuit R1/R2/C1 from Tr2 and provides Tr2 with a low source impedance. Stabilisation of the mid-point voltage is achieved by R6, D2 and R13 which provide Tr2 with a forward base bias dependent on the mid-point voltage. Diodes D4 and D5 are used to stabilise the quiescent current. They are forward biased via R18 and thus apply a reference voltage to the base of Tr6 via R17. The quiescent output stage current flows via R14 and the voltage across this is applied to Trb's emitter. Tr6 thus compares the two voltages. If the quiescent current increases, the voltage at Tr6's emitter falls causing Tro's collector current to decrease. This reduces the voltage across R16 and hence the voltage at Tr5's base. The quiescent current is thus reduced to offset the initial rise.
The charging circuit incorporates a potential divider ($\mathrm{R} 1 / 2$) that limits the voltage to which C 1 can charge to about 15 V . The voltage rise across C 1 (used to provide the forward scan) thus starts linearly and becomes progressively curved towards the end of the charging period. This curvature provides scan-correction during the second half of the scan. Scan correction during the first
half of the scan is provided by the feedback network C3/ R9/R8. The voltage developed across R19 is proportional to the current flowing through the scan coils. This is fed back to the base of Tr2 via R7 to provide general control of the linearity. The feedback loop is modified by the parallel path that C3/R9/R8 provide. This network's timeconstant averages 10 ms (half the field period) so that it has maximum effect during the first half of the scan to provide the required form of scan correction.

The operation of this amplifier is somewhat different from those so far encountered since Tr 4 remains conductive throughout the forward scan, thus working as a class A amplifier, while $\operatorname{Tr} 5$ helps out during the second half of the scan and thus operates as a class B amplifier. The positive-going sawtooth voltage waveform generated across C 1 is applied to the base of Tr 2 via $\mathrm{Tr} 1 . \mathrm{Tr} 2$ and Tr 3 both provide signal inversion so that a positive-going drive waveform appears at the base of Tr 4 . Since this is a pnp transistor it's driven progressively towards cut off. The biasing arrangements ensure that Tr 4 conducts hard at the beginning of the scan. The large scan-coupling capacitor C5 then charges via the scan coils and Tr4. Tr4's emitter current, flowing via R14, generates sufficient voltage to maintain D3 in conduction, thus short-circuiting Tr6's input (Tr6 is emitter driven) so that both Tr6 and

Tr5 are cut off. As the scan proceeds the voltage at Tr4's base rises and its emitter current decreases. The current flowing through the coils and R14 thus decreases and, just before the mid-point of the scan, the voltage at Tr4's emitter rises to a value at which D3 becomes reverse biased and Tr6 starts to conduct, thus bringing Tr 5 into operation. At mid-scan the currents flowing through Tr4 and Tr 5 are equal and zero current flows through the scan coils. Thereafter $\operatorname{Tr} 4$ is driven towards cut-off while $\operatorname{Tr} 6$ and Tr 5 are driven to increasing conduction. During this second half of the scan the current flowing in the scan coils reverses as C 5 discharges via Tr5.

The field oscillator discharges C 1 to initiate the flyback. This produces a negative-going excursion at the base of $\operatorname{Tr} 4$ as a result of which $\operatorname{Tr} 4$ saturates and $\operatorname{Tr} 6 / \mathrm{Tr} 5$ cut off. The coils then produce a half-cycle of oscillation to return the beam to the top of the screen, the positive-going flyback pulse being prevented from exceeding the supply rail voltage by D6 - the clamping action of this diode is included to protect the output transistors.

To Follow

Next month's instalment takes us from discrete transistor field timebase circuits to the use of i.c.s.

Teletopics

8mm NOW FULL VIDEO SYSTEM

Sony's view that 8 mm will become a full video system competing with Beta and VHS in its own right, not just a system for camcorder use, is confirmed by Sony's launch of six new 8 mm video products including two nonportable, mains only 8 mm VCRs. Sony now offer a comprehensive range of 8 mm video equipment to cater for a variety of user preferences.

Sony's original CCDV8 camcorder (see Teletopics May) has been replaced by the CCDV8AF which incorporates autofocusing. The suggested price is $£ 1,150$. The new CCDM8 Handycam is described as the world's smallest and lightest camcorder and has a suggested price of $£ 800$. It's been designed for simplicity in use, with a fixed lens, three focus settings and record-only facilities. The weight is 1.4 kg with the battery and cassette fitted and the size is such that it can easily be held with one hand. Both camcorders feature dual-speed operation.

The two non-portable VCRs are the EVA300 which has a suggested price of $£ 480$ and the full-specification EVS700 whose suggested price is $£ 750$. The EVA300 is a basic machine with built-in tuner/timer, a three-week, four-event program and infra-red remote control. It can be up-graded to provide stereo digital sound by adding the PCMEV10 PCM processor unit which comes at $£ 200$. The EVS700's specification includes a three-week, six-event timer which can also be used to control a separate f.m. tuner for simulcast or mono sound, noiseless slow motion, freeze frame, a time-remaining indicator, insert editing, an auto editor (optional) and PCM digital stereo sound facilities. Both machines have a SCART socket and dualspeed operation, giving up to three hours record/playback with a P590 cassette.
The EVC8 compact portable VCR weighs 1.5 kg including an NP22 ni-cad battery and has a suggested price of
$£ 500$. It can be used with the previously announced TTV8 tuner/timer unit.

The new P590 cassette gives 90 or 180 minutes' record/ playback time depending on the speed used and has a suggested price of $£ 11$.

One major question of interest to prospective users will be the availability of prerecorded tapes. Sony are encouraging this and report that most major video software firms have now installed 8 mm duplicating equipment.

CABLE STARTS

Coventry Cable has now been "formally launched" with over 500 subscribers - several hundred were connected on an experimental basis in the early summer and according to John Ross-Barnard, the chief executive, all have signed one-year contracts.

Croydon Cable Television is also now providing services, following three years of planning.

Thus four of the original eleven broadband cable franchisees are now in operation (the other two are Swindon and Aberdeen). While the new broadband services are now getting under way it seems that most of the older Pay-TV networks are losing subscribers.

SATELLITE TV LATEST

At the government's request the IBA has called for approaches from organisations that would be interested in providing one or more DBS TV channels for the UK. The IBA hopes to be able to report to the Home Secretary by about the turn of the year. Submissions are also being invited from any organisations that might wish to provide relevant evidence on the circumstances necessary to establish and run successful DBS services. Detailed guidelines have been issued and include the comment that a foreign satellite could be used provided the supplier didn't quote a price less than the cost. It's assumed that the IBA's CMAC (packet) standard would be used, with satellite channel powers of up to 230 W in accordance with the provisions agreed at the WARC held in 1977. Those wishing to express an interest in providing services or to
provide evidence are asked to contact Kenneth Blyth, Chief Assistant to the Director General, IBA, 70 Brompton Road, London SW3 1EY by the end of October. Contractors appointed by the IBA would be responsible for the provision of the transponder(s) while the IBA would be responsible for provision of the uplink.

Rupert Murdoch's Sky Channel is setting up a joint company with Groupe Bruxelles Lambert, the main shareholders in RTL (Radio-Tele Luxembourg), "to study and develop projects in the fields of terrestrial and satellite broadcasting, including DBS". It will also consider the feasibility of programme production. As mentioned in Teletopics last month, RTL is expected to run two of the channels broadcast by the French DBS satellite TDF-1 which is due to be launched next July. Granada Television has held talks with the European Space Agency on the prospects of providing DBS services covering most of western Europe. Granada considers that a single satellite covering the UK, France and W. Germany and providing up to ten channels would be commercially viable. Granada director Andrew Quinn, who coordinated the ill-fated consortium of 21 , now believes that only a Europe-wide consumer market would be large enough to cover the costs of launching high-power DBS satellites and that the WARC decision in 1977 to give each European country five channels for single-nation DBS services appears to have been mistaken.

The lrish government has decided "in principle" to accept a proposal by the Irish company Atlantic Satellite to provide a DBS service which would be receivable throughout the UK and in parts of Northern Europe as well as Ireland. The satellite would be supplied by the US firm Hughes Communications: the cost is expected to be around $£ 80$ million and it's hoped that the satellite would be operational in just over three years' time.

It's thought that the SPACE/STTI Nashville Show '85, held in early September, was the largest satellite TV trade show ever. There were over 400 operating aerials in the outdoor display area and over 75 exhibition booths indoors. A convention co-sponsored by SPACE, a trade organisation, and STTI, which produces trade shows for the industry, was held at the same time. STTI's president Rick Schneringer pointed out that in its first five years the satellite TVRO industry in the USA has reached a turnover of \$1 billion annually, with over a million TVRO systems sold prior to 1985 and expectations of a further half million system sales this year. He added that much of the growth can be credited to the deregulation that occurred in 1984.

Peter Gray, chairman of Satellite TV Antenna Systems Ltd. of Staines, Middlesex reports that his company, which has been working on the development of satellite TV consumer electronics for four years, has "achieved a major breakthrough in being able to reduce the cost of receiving equipment from the current price of $£ 2,000$ to under $£ 1,000$ - complete systems to retail at as low as $£ 995$ can now be offered". He points out that the 50,000 TVRO systems being sold each month in the USA at present are much larger than those necessary in Europe, whose later entry into the satellite age has enabled more sophisticated technology to be employed, and believes that the market for low-cost earth stations will now expand rapidly throughout Europe.

The European Telecommunications Satellite Organisation Eutelsat has now achieved "definitive status", its Convention and Operating Agreement having come into force. Twenty five European countries are
members of Eutelsat. Unfortunately Eutelsat's ECS-3 satellite, which was insured for $\$ 80 \mathrm{~m}$, was lost when the fifteenth Ariane rocket was destroyed. Eutelsat has held talks with the European Space Agency with a view to bringing forward the launch of ECS-4, which is currently scheduled for 1987.

As a start to W. German satellite TV broadcasting the Bundespost is now using two transponders on ECS-1 to transmit programmes receivable throughout Germany, giving viewers up to seven additional channels. The Bundespost has also leased three transponders, each with two channels, on an Intelsat satellite for broadcast use.

The DTI reports that over 400 applications for satellite TV receiving licences have been received and that applications are arriving at the rate of about twenty a week.

LARGE AND SMALL TVs

Mitsubishi have started to sell a 35 in . colour set in Japan. The fine-pitch, square tube has a horizontal resolution of 560 lines and a tinted faceplate. Amongst the set's features are video input/output terminals and terminals for connecting a VCR, video disc player, audio equipment, a tuner, a videotex system and a home computer.

At the other extreme, Sanyo and Casio showed smallscreen' sets at the recent Berlin Radio and TV Fair. Sanyo's 3 in. colour set (a working prototype) used a flat tube which employs the beam-indexing principle with sequential RGB input to a single gun. Casio's 5 in . monochrome set was announced at around $£ 80$ (in Germany) and incorporates an a.m./f.m. radio. It uses a liquid-crystal display device.

Philips are working on a flat c.r.t. at their Redhill, Surrey research laboratories. The problem of bending the beam has been overcome by using a very low beam current (less than $1 \mu \mathrm{~A}$) and an electron multiplier array which is positioned behind the 12 in . screen and provides a gain of several hundred. In the colour version the single gun is sequentially driven by RGB signals. Line deflection is provided by plates close to the gun while field deflection is provided by plates behind the electron multiplier array. Several types of colour screen have been tried. The one that seems to be favoured uses a striped phosphor screen in conjunction with deflection electrodes between the electron multiplier and the screen. See Fig. 1.

VIDEO MATTERS

Two particularly interesting video items were on show at the recent Berlin Radio and TV Fair. Toshiba showed a VHS machine incorporating a digital field store. In addition to providing freeze-frame and picture-within-a-picture features the field store can be used to improve the display by eliminating line jitter. Hitachi showed a video disc system that provides once-only recording. The scanning laser operates in two modes to provide recording or playback.

Fig. 1: Intemal arrangements of the Philips flat c.r.t.

The Kindermann Dia-video 8320 slide viewer.
The first S. Korean manufactured VHS VCR has now been introduced in the UK, the Samsung V1510T. The suggested price is $£ 350$.
A recent report finds that many households are becoming "lapsed VCR users". It appears that in the year to July $1985 \quad 1.2$ million UK households got rid of their VCRs, twenty per cent more than in the previous year. Most of the machines were rented.

TV SLIDE VIEWER

J. J. Silber Ltd., Engineers Way, Wembley, Middx HA9 0EB (01-903 8081) have introduced in the UK the Kindermann Dia-video system which enables colour slides to be viewed on the screen of a TV receiver. The units (there are two models) incorporate a MOS camera to convert the slide to a video signal that can be plugged into any TV set equipped with a standard video input socket. Model 8300 has a built-in tray for the slides while Model 8320 has an 80 -slide carousel.

NEW VCR PLANTS

A jointly operated plant for the production of VHS VCRs is to be set up in Japan by Philips and Marantz (which is in turn half owned by Philips). Production is expected to start next year at the rate of 100,000 machines annually. Philips is already building a VCR plant with a capacity of $400-500,000$ machines a year in South Korea. It's expected that most of the machines produced in the two plants will be to the NTSC standard for sale in the Far East and N. America.

ITT's W. German subsidiary SEL (Standard Elektrik Lorenz) has set up a joint venture with the Italian stateowned group REL (Ristrutturazione Elettronica) to build Italy's first VCR plant. Production is expected to start next year and to rise to a capacity of 200-250,000 machines annually. The joint venture will be called Vidital and will produce a mid-range machine, the Eurocorder 3946.

SECURITY TV WITH NO CABLES

Modular Technology Ltd. of Zygal House, Telford Road, Bicester, Oxford OX6 0XB (0869 253361) has introduced a security TV system, called the Interlaser Free-Space System, that uses either infra-red or laser beams to link security and surveillance video cameras to video recorders and monitors at a distance of up to 1 km . Expensive cabling is made unnecessary by wiring the cameras to a duplex optoelectronic transceiver. Infra-red LEDs are used for distances of up to 200 m and low-power, solidstate lasers for distances up to 1 km . Video, audio and data signals can be handled by the system. The $5 \cdot 5 \mathrm{MHz}$ bandwidth allows for colour or monochrome operation
while the bi-directional link provides camera control and talkback. A typical video link for colour use at up to

EPROM MICRO PROGRAMMER

Cambridge Microelectronics Ltd. of 1 Milton Road, Cambridge CB4 1UY (0223 314 814), who pioneered the use of EPROMs and CMOS RAMs in low-cost home microcomputers, have introduced an EPROM programmer for use with the BBC microcomputer. In use the programmer, type $\mathrm{BB}-\mathrm{PROM}$, requires a $\mathrm{BBC}-\mathrm{B}$ micro and disc drive: it plugs into the micro's user port by means of the cable and connector provided. The driver program for the programmer is supplied on an EPROM for use as a sideways ROM in the BBC micro. Use of the BB PROM enables frequently used programs to be readily accessible with the speed and reliability of ROMs. Price in the UK is $£ 34.44$ including VAT, post and packing. Slightly lower prices apply for overseas orders (no VAT).

Cambridge Microelectronics have also introduced a compact, economical EPROM eraser.

TV LICENCE DEFAULTERS

In a report on the control of broadcast receiving licence revenue the Commons Public Accounts Committee says that revenue of at least $£ 65$ million a year is being lost due to defaulters and that the figure is rising sharply. It feels that the fines at present being imposed on defaulters are not a sufficient deterrent and has asked the Home Office to convey its views to the courts. It also calls for fixed fines to be considered. The 18.6 million licences issued during the year 1983-4 produced revenue of $£ 763$ million.

CUT-BACKS

GEC has announced that its GEC McMichael subsidiary at Slough will be closed by the end of next March. One contributory factor mentioned is the slow growth of cable TV in the UK. Production of GEC McMichael's cable TV and videoconferencing equipment is being transferred to GEC's main communications subsidiary at Coventry while production of satellite news gathering equipment, studio and broadcasting products will move to Marconi, Chelmsford.

Rediffusion Consumer Manufacturing has now sent redundancy notices to nearly all its employees (see Teletopics last month). Two overseas companies that had expressed an interest in buying the RCM plants withdrew in September but talks with a further company continue.

Matsushita Electric has announced a 30 per cent cut in colour set production at its Japanese plants, which had been turning out 2.2 million sets annually. The cause of the cut is reduced exports to China, which until recently had been the biggest importer of Japanese colour receivers.

in brief

We have been asked by TV panel suppliers Argo Services of Birmingham to draw attention to their recent move to 53 Lawley Street, Birmingham 4, just round the corner from HRS. It seems that many customers are still turning up at the old premises . . . The venue for next year's Consumer Electronics Show has been changed from Earls Court to Olympia-2 . . . Michael Boyle is the 1985 Pye Young Technician of the Year. He works as a service engineer for Martin Dawes, a major retailer in the north of England.

Quick Checks: Hybrid CTV Chassis

S. Simon

There are still plenty of hybrid colour sets around. For some reason they seem to confuse the more up-to-date service engineer. We hope that the following notes will help to clear away any such confusion. The hybrid chassis that have proved to be most reliable from the long-term point of view are the Decca Bradford and the ITT CVC5CVC9 series, so these are the ones we'll deal with. The Decca models are still in the majority of cases capable of giving a fine picture.

DECCA BRADFORD CHASSIS

Dead Set

In the event of a dead set, appreciating one or two facts will make the approach easier. First, the tube's heaters are fed from a secondary winding on the mains transformer while the series-connected valve heaters are fed from a tap on the transformer's primary winding. Secondly most models have a series thermal cutout in the live mains supply connection. Remove the rear cover and observe the tube's heaters and the valves. Are they alight? If not, check the thermal cutout and the mains supply, on/off switch, etc. If the valves are alight, assume that the h.t. supply is faulty. The first thing to check is the $3 \cdot 9 \Omega$ surge limiter resistor R603 - the large wirewound resistor in the supply to the BY127 h.t. rectifier. These items are at the front left-hand side, near the PCL82 audio output valve. Access may be easier if the bottom left i.f. panel is removed. The main frame can be withdrawn, riding on the bottom rollers, when the screws on each side at the top have been removed. With the main frame in a secure position the set can if necessary be turned on its side - the frame can easily break free of the bottom runners, causing damage, if security is not ensured. It's quite common to find the 3.9Ω resistor open-circuit. This may be due to the BY127 having gone short-circuit but is more often the result of sheer weariness. In any event the diode should be checked: red probe to the cathode, black to the anode, a low reading; red to anode and black to cathode no reading. If the 3.9Ω resistor is intact there will be a reading this latter way round due to the circuit: if there's doubt, disconnect one end of the diode. With this no h.t. voltage condition a whisper of sound may still be heard even though there's no supply to the PCL82.

Valves Out

Tube heaters alight, valves out implies that there's a break in the heater chain (one out all out, unless one is cracked). In this event start at pins 4 and 5 of the first valve in the chain, the PY500A. If there's voltage at one pin but not the other the heater is open-circuit and the valve must be replaced - but not until possible causes have been investigated. These include a heater-cathode short in say the PL509. If the PY500A's heater is intact check at pins 4 and 5 of the PL509. If both valves record the same voltage at all heater pins move along the chain, checking the PL508, PCF80, PCL82 and PCF802 in that order. With these it's easier to remove each valve in turn and
check the resistance between pins 4 and 5, discarding whichever one is found to have an open-circuit heater. You'll usually find the PY500A or the PL509 at fault however - or sometimes you'll find that both are defective.

No Sound

The picture but no sound symptom may still leave you with a whisper of audio though this may be difficult to hear. There are two items to check first. One is the PCL 82 audio output valve, the other the $12 \mathrm{k} \Omega$ wirewound resistor that supplies the screen grid of the output section of the valve and the anode of the triode section. In later models this resistor also supplies the anode of the output section and its value is much lower ($1.8 \mathrm{k} \Omega$). Check the marked value before fitting a replacement, though this may not be necessary as it may only be sprung to denote an overload. In this event check the PCL82 and if necessary the coupling capacitor C82 and cathode decoupler C81. If all seems well around the PCL82 and there is hum from the speaker check back to the intercarrier sound i.c. on the lower left i.f. panel. The type of i.c. used varies with different versions of the chassis. It's marked IC1.

Sound, No Raster

In the event of sound but no raster, allow time for the set to warm up then note the appearance of the PL509 line output valve. If there's no sign of overheating, hold a neon screwdriver close to this valve's glass - it must not touch the top cap. If the neon lights, the line output stage is probably in order and voltage checks should be made at the tube's base socket - for first anode supplies and normal cathode voltages. Around 400 V is to be expected 'at the three first anodes and around 120 V at the three cathodes. If the first anode supplies are missing check back to the convergence panel where the three presets are mounted and if there's nothing here check R475 ($220 \mathrm{k} \Omega$) on the timebase board, lower right. If the cathode voltages are high check on the upper left side decoder panel to find out why the RGB output transistors are not being turned on. This could be due to the l.t. feed resistor R298 (39) being open-circuit (10 series chassis with no chip on the decoder panel). This is not a common fault.

Insufficient Width

Insufficient width is a very common fault and although it could be due to several things the most mundane is probably the most common cause. The width control is of the slider type, at the bottom right. A mere touch here could be all that's required to restore normal conditions. If moving this control produces no improvement, check the nearby high-value resistors - R452 ($1.5 \mathrm{M} \Omega$) and R450) $(5 \cdot 6 \mathrm{M} \Omega)$. R 453 ($330 \mathrm{k} \Omega$) is also suspect. A word of caution: the width control is connected directly to the line output stage and is very much alive, i.e. move it with an
insulated tool. If all seems well in this area try a new PL509, or possibly a new PY500A. If the PL509 is overheating check the PCF802 and its associated resistors, particularly R 440 ($33 \mathrm{k} \Omega$) - this often changes value and causes the PL509 to overheat.

Back to No Raster

Mention of the PL509 overheating brings us back to the sound but no raster symptom. Various other things can cause the PL509 to overheat when this symptom is present. The tripler (doubler in the small-screen versions), the capacitors associated with the line output transformer and the transformer itself for example. Most often however a fault in one of these items will blow the 500 mA fuse, thus removing the strain from the valves.

HT Fuse Blown

If the fuse has blown, first check the $0.22 \mu \mathrm{~F}, 1 \mathrm{kV}$ capacitor C 436 on the lower right side (the boost capacitor). It is white or blue and white and is very likely to be the culprit. If this is not at fault look at the top of the transformer to find the tuning capacitor $\mathrm{C} 435(150 \mathrm{pF}$, disc type). This is also likely to short and blow the fuse. If a short is indicated by the meter, remove the PY500A's top cap to clear this valve of suspicion - it's often guilty.

Field Faults

By lack of height we mean that the field timebase is working but there's a gap at the top and bottom of the screen. Quite often a touch on the height control will prove that this is the culprit: it probably only requires a clean. If this control has already been moved to its maximum setting check whether R $402(820 \mathrm{k} \Omega)$ has gone high in value. If necessary go on to check R405 ($270 \mathrm{k} \Omega$).
In stubborn cases of field collapse check the voltage at the screen grid of the PL508 field output valve: the feed resistor R415 $(3.9 \mathrm{k} \Omega)$ often goes open-circuit, robbing pin 3 of its supply. The associated decoupler $\mathrm{C} 406(32 \mu \mathrm{~F})$ can short to damage this resistor. It can also become opencircuit to produce lack of height.

The PL508 itself is often the cause of reduced height or no field scan at all, either losing emission or suffering from loss of vacuum due to a crack in the glass. The PL508 also acts as part of the field oscillator, in conjunction with the triode section of the PCF80.

Poor Sync

The pentode section of the PCF80 is the second sync separator (there's also a transistor sync separator stage on the decoder panel). The $100 \mathrm{k} \Omega$ resistor R419 (screen grid feed) can go high in value to cause poor field and line sync.

The Decoder

The decoder is the upper left side panel, the design of which was altered in later models - the ones that have an MC1327P i.c. The main problems in this area relate to the RGB output stages: the transistors are suspect, as also are the presets which give a good deal of trouble, suffering from poor contact etc. A design fault in the earlier version of the decoder placed the blue signal coupling capacitor $\mathrm{C} 214(5 \mu \mathrm{~F})$ too close to a heat dissipating component. So
this capacitor will often be found faulty, having been subjected to local heat over an extended period. The symptoms can be blue smearing or loss of blue drive.

So there we have the items to check in the event of the usual faults experienced with the Decca Bradford chassis.

ITT CVC5-CVC9 SERIES

If there's one thing that can be said for the ITT CVC5CVC9 series of colour sets it's that they are very kind to their tubes. The author has still never had to replace one, though the 26 in . versions are now showing signs of wear. The 20 and 22 in . versions seem to have as good a picture as when they were made. This long life effect is no doubt due to the moderate cathode drive: the heaters are supplied in the usual way and the first anodes are operated at approximately 400 V , as in other ranges whose tubes (same make) have a much shorter life. Tubes apart however these sets do have their failings, which seem to follow a common pattern.

No Results

In the event of no results, first note, as with the Decca Bradford chassis, whether the valves are heating up. If they aren't, look to the left side front control panel where the mains and transformer fuses live. F1 is the mains supply fuse which may be 4 A or $3 \cdot 15 \mathrm{~A}$ anti-surge. F3 is the 315 mA fuse in the live supply to the transformer. If either has gone open-circuit there'll be no valve or tube heater supply. It's F1 that is far more likely to be found open-circuit and the cause may not be far away. Several versions of the chassis use a mains filter capacitor that's rated at 200 V a.c. It's coloured yellow. This type is likely to burn up without blowing the fuse, i.e. clouds of grey smoke are given off while the picture and sound remain normal. Often however the capacitor goes short-circuit, blasting the mains fuse and possibly the plug fuse as well. This type should be replaced with the 250 V a.c. type, usually grey. On the original models (early CVC5 chassis) a different type altogether was used - the more familiar $0 \cdot 1 \mu \mathrm{~F}, 600 \mathrm{~V}$ d.c. type which has a well-known tendency to go short-circuit. It's not common for the h.t. rectifier diode(s) to go short-circuit, but this is a possibility to bear in mind. In later models with only one h.t. rectifier diode you may find a thermal link on the mains transformer: we mention this since the transformer may not be operating though F3 is intact, hence no valve or tube heaters glowing. Don't worry about this however: the thermal link seldom goes open-circuit.

If there are no results when the set has had time to warm up don't jump to the conclusion that the trouble must be in the h.t. supply. It could be, but more often than not it's the line output stage that's at fault. Why no sound? Because the set has a sound muting circuit linked to the line output stage. The thing to do is to switch off and check the 400 mA (could be 640 mA) fuse in the supply to the line output stage. If it hasn't blown, check the wirewound resistors at the top centre: R380 (56Ω) may have sprung open due to excessive current flow. If the fuse has blown or R380 is open-circuit check for shorts across the boost capacitor C310 which is half way down the right side. Its value is $0.47 \mu \mathrm{~F}(1 \mathrm{kV})$ and it's immediately under the line output transformer: it goes short to break the circuit more often than any other item. The fuse and resistor mentioned are situated on the power board at the top centre position: the fuse is the right side one. If
the fuse is rated at 400 mA a short in the capacitor will have blown it. If it's a 630 mA fuse the resistor is more likely to have gone open-circuit.
If the boost capacitor is not at fault check the PY500A for shorts, also the condition of the capacitors on the line output transformer subpanel: the 210 pF and 330 pF capacitors are both suspect. Whilst on the subject of the subpanel, here's one tip that may save you hours of torment. When you are faced with a weird fault such as narrow spikes vertically across the screen, look at this panel and resolder any suspect joints. If in doubt resolder them all - to save yourself a lot of trouble later.

Poor Focus

Poor focus is a common complaint with these sets. First check the focus voltage feed resistor on the tube base simply because this is the easiest course to take. If it's intact at $2 \cdot 2 \mathrm{M} \Omega$, remove the screen from the line output stage and note the focus control slider. There's a $4 \cdot 7 \mathrm{M} \Omega$ resistor from the tripler to the top of the focus element and another from the bottom to chassis. Check the value of these two resistors. If they are correct, note that a lead from the slider is connected to a 210 pF disc capacitor. This often leaks to completely upset the focus control's operation. Disconnect it as a test.

Back to No Results

Back to no results with the heaters alight. If the PL509 line output valve is overheating, check the voltage at pin 1 of the valve's base, i.e. the line drive. The voltage here should be heavily negative to indicate that the PCF802 line oscillator is supplying the drive waveform. If the PCF802 isn't working properly there will be no or severely reduced line drive and the PL509 will overheat. If the PCF802 itself isn't responsible, i.e. a new valve produces no improvement, check the voltages at pins 1,3 and 6 . There should be 215 V at pin $1,220 \mathrm{~V}$ at pin 3 and 165 V at pin 6 . Check the feed resistors as necessary - note that R403 ($180 \mathrm{k} \Omega$) in the feed to pin 6 can be overlooked and can give trouble. If necessary check the polystyrene capacitors (the silver see-through types).

If line drive is present, disconnect the tripler to see whether this relieves the PL509's distress.

No or Very Dim Picture

If the line timebase is working but there's no or a very dim picture, check the voltages at the tube's base. If the first anode supplies are missing move down to the lower right side of centre to locate the decoupling capacitor C311 $(0 \cdot 01 \mu \mathrm{~F}, 1 \mathrm{kV})$. Disconnect it to see whether the first anode voltages are then restored. This is a frequent offender and its location should be established at an early stage. Also check the cathode voltages to ensure that they are not too high. About 120 V is correct -400 V for the first anodes.

Field Faults

Rather unusually a PCL805 is used as the field oscillator and output valve. We say unusually because most hybrid CTV chassis use the more robust PL508 in conjunction with another valve. The choice of the small PCL805 has proved to be justified however, though the valve is suspect if field hold takes too long to lock, the height is insuffi-
cient mainly at the bottom or there's total field collapse. The presence of a diode in series with the cathode of the triode section of the valve should be appreciated since this is often the cause of fiedd timebase troubles, i.e. loss of lock or field collapse. It's an OA91 but it's better to use a more substantial diode for replacement purposes. It's numbered D46f.

Bottom cramping should direct attention to the PCL805: if the condition is severe, check the pentode section's cathode decoupler C247f ($250 \mu \mathrm{~F}$).

Sync Faults

The sync separator transistor T42f (BF117) lives over to the left of this same panel. Its base bias resistor R330f ($3 \cdot 3 \mathrm{M} \Omega$) tends to go high in value, thus upsetting the line and field sync. We must point out however that later versions of the chassis have a centre supporting strut, and it's often the case that when the chassis has been lowered for servicing reasons the strut is out of alignment and doesn't settle between the panels after the chassis has been swung back up again. It tends to swing sideways and touch the sync separator, thus shorting out the sync pulses. Note this point on models that have a centre strut.

Wrong Colours

The three colour output stages, identified by the leads coming from the tube's base, are just to the left of the tube. The usual faults here are defective transistors (BD115), poor soldered contacts in this area and faulty lead contacts (white plug and socket connectors in later models). The contacts to the right of the transistors are the main cause of trouble, requiring resoldering to restore normal colour.

Loss of Colour

In the event of loss of colour concentrate on the top left side, carefully checking the transistors - particularly T34, T27 and T28, also the associated capacitors.

Hum Bar

Another of the habits of these sets is for a fault in the l.t. supply to give the effect of deficient h.t. smoothing, a check on the h.t. smoothing electrolytics and their earthing producing no results as the hum bar continues to climb up or travel down the screen, kinking the sides as it does so and probably tripping the field. There are several causes to be investigated: the AD161 series regulator transistor, the l.t. bridge rectifier (the most likely suspect), the electrolytics in this area (C262, C263 and C265) and D11. This latter item is a zener diode (or i.c.) which stabilises the tuning voltage as well as providing the reference voltage for the l.t. regulator: it's located on the bottom left side and is linked to the base of the regulator driver transistor $T 45 d$ via a $36 \mathrm{k} \Omega$ resistor. Check these various items and your hum bar should go. Perhaps you are puzzled by our mention of a zener diode or i.c.: though a zener diode (LZ36B) is usually fitted you may find a TAA550 (two pins). As well as causing these mysterious conditions it will of course cause loss of signals when it goes short-circuit. In these models however the tuner selectors are more likely to be the cause of tuning troubles, particularly in later models (with square buttons).

Commissioning TVRO Systems

Geoff Lewis

Radio and TV engineers have a long history of adapting to technological change. In fact continuing improvement in the reliability of domestic electronic equipment means that their very existence has come to depend on this adaptability. A recent example has been the appearance of VCRs on the scene. They came at a very convenient time, as much improved reliability reduced the CTV workload considerably. The next technological leap for the trade could well lie in satellite TV reception.
Though it will probably be some years before there's a full UK Direct Broadcasting by Satellite (DBS) service, it appears that the French TDF-1 satellite will start such a service sometime next year. The transmissions will be receiveable in the southern part of the UK at least. Apart from this there are already available in the UK pseudoDBS signals that are provided by Eutelsat and Intelsat satellites. These are primarily intended for cable systems, but with the deregulation that came into effect in May this year they have become available legally to the single-site user. Officially, only services provided by a satellite using an orbital position, power, frequency and footprint as laid down by the WARC 1977 conference are known as DBS services: TV transmissions from low-power satellites such as Eutelsat and Intelsat are referred to as Fixed Satellite Services (FSS).

Much has been written about the technological aspects of satellite TV but to date little has been said to assist service engineers in selecting, installing and commissioning Television Receive Only (TVRO) systems - as satellite TV receiving systems are known. The following report is an attempt to redress the balance and provide some practical guidance.

Which satellites are of particular interest in the UK?

Two satellites, ECS-1 (Eutelsat I-F1) and Intelsat VA F11, currently radiate six English language channels in the Ku Band (11 GHz). They also provide some Continental channels. See Table 1.

What polarisations are used?

Both these satellites use linear polarisation, either vertical or horizontal, to allow frequencies to be used twice and minimise interference. Thus some form of polarity switching may be necessary.

How are azimuth and elevation angles calculated?

The bore sights or "look angles" for the required satellites have to be calculated from the latitude and longitude of the proposed site. An Ordnance Survey map will provide you with the latitude and longitude. The site should also be surveyed to ensure that there's a clear line-of-sight path to the satellite - beware of future building development plans and future tree growth.

Many programs have been written to enable azimuth
and elevation angles to be calculated using a home computer. They are just as easy to calculate using a pocket calculator and the following furmulae:

Azimuth angle $=\operatorname{Arctan}(\tan \mathrm{A} / \sin \mathrm{B})$, where A is the longitudinal difference and B the latitudinal difference add 180° if the satellite is west of the receiving site.

Elevation angle $=$ Arc tan $[(\cos \mathrm{C}-0.151269) / \sin \mathrm{C}]$ where $\mathrm{C}=\operatorname{Arc} \cos (\cos \mathrm{A} \times \cos \mathrm{B})$.

These calculations simplify because, the satellite being in equatorial orbit, the latitude difference is the actual site latitude.

What type of aerial mount should be used?

If the aerial is to be used to receive signals from more than one satellite the bore sight angles will need to be changed. How this is done controls to some extent the type of mount used. With remote control of this operation a polar mount is more convenient since it requires only one drive system. The azimuth/elevation type of mount is more suitable where manual adjustment is acceptable. With a polar mount it's necessary to calculate only the offset angle when the dish is pointed due south. This angle can be calculated from the formula:
Arc $\cos \left[1.81 \times \sin\right.$ latitude/(3.36 - cos latitude) $\left.{ }^{0.5}\right]$.

What type and size of dish will be required?

The most common arrangement in current use is a parabolic dish with a prime-focus feedhorn. Offset feed dishes (see Fig. 1) are more efficient: in general an 1.2 or 1.8 m diameter dish of the latter type will provide good signals, particularly in southern England.

Glass fibre dishes are cheapest, spun aluminium dishes are more expensive and the petallized or sectioned type is most easy to assemble on site. Because of surface errors, the gain of the latter type is generally $2-3 \mathrm{~dB}$ less than that of the other types. It's important to remember that both

Table 1: Main FSS channels available in the UK.

Channel	Polarisation	Language/ Country	Satellite
Music Box	Vertical	English	Eutelsat I-F1
Sky Channel	Horizontal	English	Eutelsat I-F1
PKS/Sat-1	Vertical	W. Germany	Eutelsat I-F1
TV-5	Horizontal	France	Eutelsat I-F1
Olympus TV	Horizontal	Holland	Eutelsat I-F1
Teleclub	Vertical	Switzerland	Eutelsat I-F1
RAI	Horizontal	Italy	Eutelsat I-F1
Mirrorvision	Horizontal	English	Intelsat VA F11
Premiere	Horizontal	English	Intelsat VA F11
Screen Sport	Horizontal	English	Intelsat VA F11
Children's	Horizontal	English	Intelsat VA F11

the dish and its mount must be capable of withstanding. the elements.

Is planning permission necessary?

Planning permission is generally not required provided the height of the aerial structure is not more than three metres (four metres in some areas) as this comes within permitted domestic development. There are some restrictions however. The aerial should be placed at the rear of the dwelling so as not to be seen from the roadway, while planning permission will be required if the site is a Listed Building or within a Conservation Area.

Has a licence been obtained?

A once only $£ 10$ fee has to be paid for a satellite TV receiving licence. This is in addition to the normal TV licence and can be obtained from the Department of Trade and Industry, Room 513, Waterloo Bridge House, Waterloo Bridge Road, London SE1 8UA.

Has an agreement been made with the programme provider?

At present only one of the English language channels has been scrambled and all are currently described as being temporarily clear. This implies that scrambling is envisaged at some future date. In the interests of copyright preservation a fee has to be paid to the programme company concerned. For the English language channels these are as follows.

For Premiere/Children's Channel/Screen Sport/Music Box apply to Galaxy Television Ltd., Thorn EMI, Central Cross House, 2 Stephen Street, London W1A 4PL. For Sky Channel apply to Satellite Television plc, 31-36 Foley Street, London W1P 7LB. For Mirrorvision apply to United Cable Programmes Ltd., 48 Leicester Square, London WC2H 7LZ.

What are the main site requirements for an installation?

The aerial mount will almost certainly have to be set in concrete. The distance between the head unit at the aerial and the indoor unit should be kept to the minimum possible. Since the link between these typically carries signals with frequencies between 900 MHz and 1.7 GHz very low-loss cable should be used. The aim should be to keep the separation less than about thirty metres. For greater distances it might be necessary to incorporate a line amplifier.

How is the aerial aligned?

Provided its limitations are kept in mind a magnetic compass can be used to obtain the approximate azimuth angle. Errors of 20° can however easily result if there's a steel-framed building or something similar close to the installation. Alternatively reference to the Ordnance Survey Map will provide a bearing - it will also give a figure for the correction needed to take into account the differences between true north and magnetic north. This is typically of the order of 8°, with magnetic north being at 352° relative to true north.

Elevation adjustments can be made to within about 0.5° by using an inclinometer on the vertical edge of the dish's

FOR
South Yorkshire/Derbyshire Dealers

Come and see our range of

 Colour TVs from $£ 6$ BARGAINS GALORE
PHONE 0246411325

Chesterfield
rim. With an offset feed type aerial this angle needs to be about 28° less than that calculated.

Final adjustments should be made using a signal strength meter driven by the indoor unit's a.g.c. system.

What sort of cost is to be expected?

Cost variation for a single-site TVRO system lies between about $£ 1,400$ and $£ 3,000$ depending largely on the size of the dish, the complexity of the mount and whether remote control is used. Several good systems are available for single-satellite operation at a price to the end user of about $£ 1,400-£ 1,500$.

What are the advantages and disadvantages?

The growth in satellite delivered TV material in the UK is likely to be slow at first. After all we already have four good channels and the VCR enables a wide range of material to be viewed. At present a single satellite will provide only an additional two-three English-language channels.

The main argument against installing private TVROs on the present basis lies in the changes that will occur as satellite TV develops. For a start, true DBS signals will be in the $11 \cdot 7-12 \cdot 5 \mathrm{GHz}$ band while the current FSS systems use the $10 \cdot 9-11 \cdot 7 \mathrm{GHz}$ band. Thus change from FSS to DBS reception, for which five channels have been assigned for UK use, would mean a change of head end. If UK DBS transmissions employ the MAC system of vision encoding the indoor unit will also need to be changed.

Satellite Master Antenna TV (SMATV) is another area TV dealers might like to consider. This basically means small cable systems feeding a limited number of receivers, and deregulation also applied to this type of installation. We are preparing a further report on this aspect of satellite TV.

Fig. 1: The offset feed system.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

FERGUSON 3V24

Every time I start to record with a camera there's interference in the form of horizontal white lines and specks that vary from short to long, lasting for a fraction of a second. The tape then runs clear. This happens at switch on and also whenever the trigger is used.

A small amount of noise for only a fraction of a second means that the 3 V 24 's edit start 'is not functioning perfectly. Check that in record pause the pinch roller does not move more than 1.5 mm away from the capstan and that it's perfectly free to move. If this is o.k. adjust the edit-1 and edit-2 presets on the front panel, near the camera sockets. Start off with both midway: adjust either one by trial and error for a clean start to each take on playback.

SONY KV2022UB

At switch on this set can be heard to start up but it then shuts down again. The semiconductor devices in the power supply seem to be o.k.

C514 smooths the supply to the line output stage. From its positive terminal to chassis a reading of about $1 \mathrm{k} \Omega$ should be obtained, a high and rising reading the other way. If these readings are low, suspect the line output transistor Q503 and the efficiency diode D503. If the resistance readings are normal the protection circuit may be operating due to an overvoltage or excess current. For the former check the setting of RV603, zener diode D603 etc. For the latter check the value of the current sensing resistor R651 then disconnect the base of the line driver transistor to remove the load on the power supply. If this brings up a steady 105 V line suspect the line output transformer, choke L502 etc.

THORN TX9 CHASSIS

The fault on this set (main panel type PC1040) appears to be temperature sensitive. It can work normally for up to two days then wavering verticals occur and after a few minutes the picture breaks into two horizontally. This is followed by loss of line hold.
The TDA9503 sync/line generator chip is suspect but before condemning it check the supply decoupler C168 $(220 \mu \mathrm{~F})$ and the time-constant capacitors $\mathrm{C} 164(22 \mu \mathrm{~F})$ and C166 $(4 \cdot 7 \mu \mathrm{~F})$. On one occasion we found that the cause of this trouble was the line driver transistor.

AKAI VS10

This machine is similar to the JVC HR7700. The fault is in the display section. With the front panel switching at off
the word "prog" is illuminated (in addition to the word "clock" and the time digits). With the switching at on "prog" remains illuminated and in addition the lower right-hand segment of the left-hand digit and the lower right-hand segment of the right-hand digit are illuminated at all times.

This type of fault is generally due to one or other of the microcomputer chips involved. If it's an earlier machine with i.c. holders, swap over IC1 and IC2 on the display PCB. If the fault changes, IC1 is probably faulty. Note whether the dim button alters the spurious digits: if not there's probably a leak in the display itself. A last resort is IC2 on the tuner/timer board - this is not an easy item to change. The best approach would be to borrow a display panel to ascertain whether the fault is here as a storage scope is needed to look at the waveforms.

MITSUBISHI CT200B

Following what sounded like an e.h.t. flashover there appeared on the picture seven dark vertical bars. They are faint, one inch wide, two inches apart and extend right across the screen. The picture is otherwise normal.

We suggest you check R581 on the e.h.t. tripler panel, the efficiency diode D556 on the deflection panel, D535/ C 536 (main panel) which provide the h.t. supply for the luminance output transistor and if necessary C581 (across R581) and C534.

GRUNDIG 5010

Channels 1, 2, 4 and 6 can be selected at switch on but any attempt to select channel 3,5 or 7 results in all the neons lighting cyclically with failure to lock to the required channel. The problem clears after about half an hour but use of freezer hasn't helped to isolate the cause. The channel selector i.c.s have been replaced.

Neons get to be very unpredictable in their old age. We'd tackle the fault by replacing the lot then thoroughly cleaning and degreasing the touch pads. In the unlikely event that the fault persists, check the $3 \cdot 3 \mathrm{M} \Omega$ resistors associated with pads 3/5/7.

DECCA 100 CHASSSIS

The picture goes grainy with blotches of colour or no colour and loss of definition, also reduced sound with high background noise. The fault is intermittent but is getting worse.

First check carefully for dry-joints or imperfect plug/ socket connections on the tuner and i.f. panels. If these are all o.k., apply an external source of 3 V to the tuner's a.g.c. input pin (pin 2). If this clears the fault, check IC102 (TCA270S) and the condition and setting of the tuner a.g.c. preset VR127. If the fault remains, replace the tuner - assuming that the aerial and its plug/socket are in order.

SONY KV2204UB

The contrast is always too great when the set is switched on but there doesn't seem to be a preset contrast control. Do you know of a modification that can be carried out to reduce the effects of secondary emission in the tube due to the teletext lines?

Slight adjustment of RV202, labelled "det out", on board A should provide the contrast level required. For the teletext reflections, increase the value of C5I8 on board D until the text lines are blanked - too high a value will cause loss of the top of the picture itself.

TRST CASE

Each month we provide an interesting case of 275 TV/video servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Our sales manager John was having a bad day - a bad week in fact. "I've got technofear, that's what I'm suffering from" he complained. How can a laid-back top-of-theheap salesman be troubled with technofear we wondered? "It's people" said John. "They ring up to know whether their Sony video will interface at baseband with their Hitachi TV, and with what leads; or ask what Secam L is and whether a modified Salora will be able to receive it; or do I know the video bandwidth of a Ferguson video monitor for RGB. One man said he wanted a set only if it could receive Perry Television, and neither he nor I knew that he meant a SCART-equipped set till we'd made some phone calls."

It transpired that the main contributory factor to John's Bad Day was the Mitsubishi colour set he'd brought to the workshop in his car. It was a CT2627TX with remote control, self-seek tuning and teletext. It had run in the showroom for weeks without trouble, but when he took it to a customer's house to give a demonstration he came back with his tail between his legs. The set had refused to work in the self-seek mode, ignoring all the TV stations its green line encountered on its left-to-right sweep across the screen. It was soon hooked up in the workshop and sure enough it would search and seek like a lost soul in the wilderness, without ever latching on to any of the local TV transmitters or even giving the signals a chance to sync up as it swept on towards a hopeless end at channel 68 and a weary restart at channel 21.

Since the set was wanted urgently it was investigated right away. The self-seek magic is performed on the ETS panel, which provides the varicap tuning voltage by a means that's far from clear - there's no circuit description in the manual. On this pancl were discerned a microcomputer i.c., a memory chip, a display driver and a sweep-drive chip. The latter (type M51251P) was jumped on as being the most likely culprit - certainly it took a sync feed from the main panel to monitor signal conditions and a pulse feed from the blanking line. Having confirmed that both sets of pulses were getting through, those involved came to the conclusion that the i.c. was indeed faulty - but there wasn't one in the stores. There wouldn't be, would there? Back to test equipment then. The 12 V line was present and correct, also the 20 V line. A can of freezer was used to cool the suspect chip: no change. A
hairdryer was used instead: again no change.
What next? In the absence of a replacement i.c. a whole ETS (electronic tuning search?) panel was sought and found in a new CT2230TX in a sealed carton in the stores. To secure his sake for John it was proposed to cannibalise this set and storeman Reg was suitably bribed. As the packing was being removed from the sacrificial victim a Real Technician (RT) came on the scene. He took one look at the symptom on the screen of the afflicted set and told his colleagues to repack the 22 in . set. RT took a grub screwdriver from his pocket and in two seconds had the ailing CT2627 working again.

What did he do? What had the others missed? The same symptom could easily occur on wther makes and models with self-seek tuning, so don't get too bogged down in the Mitsubishi circuit diagram before you get next month's issue for the solution

ANSWER TO TEST CASE 274 - page 708 last month -

A Sony C7 VCR was the subject of last month's teaser. Its malady was an intermittent failure to rewind - not for the usual mechanical reasons but because the rewindsensor's oscillator was coughing and dying at random intervals. We'd exonerated the sensor chip IC9, and had observed on an oscilloscope display the faltering oscillations just prior to deck shutdown. There's little to go wrong in this type of circuit and we were very suspicious of the rewind-sensor coil itself, despite the fact that it looked all right.

As a check we interchanged the two sensor coils by crossing over the connections to pin 2 of CN 4007 and pin 5 of CN4013 on board SY11. Since this would have led to certain destruction of the tape-spool anchorage in the cassette, we loaded an empty shell in the machine for test purposes and taped back the slack-sensor lever to enable all deck functions to operate. Thus fooled the machine responded happily to all the control buttons - except, after a while, forward commands. The faulty rewind sensor coil L9501 was now messing up the forward-sensor operation.

What could have happened to the coil? Maybe a shorted turn or two in the winding, or a microcrack in the ferrite core?

[^0]
HITACHI VHS COLOUR CAMERAS

Mains Only Tested/ Working VHS VIDEOS FERGUSON
3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35

NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010 SHARP
620, 630, 640, 2300 H T/P

BETAMAX
 SANYO VTC 9300, 5000, 5300

SONY C5, C6, C7, C9 and SL F1UB T/P
Also Bush, Toshiba, Hitachi and Blau Punkt

PLUS

17" 18" 20" 22" 26" Hybrid/

 Solid State CTVs Remote Control \& Teletext Discount for Quantities Complete loads delivered from pick up point> JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

Telegen-1

PRICE E18.35 (Inc. VAT)

* EXCEPTIONALLY LIGHT AND DURABLE * POCKEI SIZE FOR OUTSIDE SERVICE * PP3 BA TIERY POWER SOURCE * FIVE DIFFERENT TEST PATIERNS FOR colour \& mono TV
* CROSSHATCH GRID * dot matrix
* WHITE RASTER
* HORIZONTALS * VERTICLES
* 3.5 mm JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattern generator for blackwhite and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct instalation, fast more costly repairs. Pattern stability is first class and compares favouralite is size measuring $10 \times 75 \times$ $7.5 \times 4 \mathrm{~cm}$ and weighs only alows use of external power supply with battery in situ
Telegen-2
PRICE f34.45 (Inc. VAT)

* EXCEPTIONALIY LIGHT \& DURABLE
${ }^{*}$ COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
* RED RASTER * GREEN RASTER
* BLUE RASTER
* colour bars
* 3.5 mm JACK SOCKET FOR P.S.U.
* PROVIDES UHF SIGNAL APPROX.

CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black. The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts D.C.

Power Supply
A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE $\mathbf{f 4 . 5 5}$ (Inc. VAT)

HUSSAIN CENTRAL T.V. LTD. THE LARGEST RANGE AT THE LOWEST PRICES IN THE U.K. JUST LOOK AT THESE PRICES WE CANNOT BE BEATEN

UNTESTED
PHILIPS G11 660
PHILPS G8 500
PHILIPS G8 $56020^{\prime \prime}$
THORN 8800
THORN 9000
THORN 9000 Remote
THORN 9600 Remote
DECCA
GEC
ITT
PYE $20018^{\prime \prime}$
PYE CHELSEA $18^{\prime \prime}$
PYE 222 22"

WORKING FROM £10

$£ 35$
PHILIPS G8 550
PHILIPS G8 $56020^{\prime \prime}$
THORN 8800
THORN 9000
THORN 9000 Remote
THORN 9600 Remote
DECCA
GEC
ITT
PYE 200 18"
PYE CHELSEA $18^{\prime \prime}$
PYE 222 22"
$\star \star * * * * * * * * * * * * * * * * *$

ALWAYS THE No. 1 FOR EX-RENTAL T.V.

CAN NOW OFFER YOU LARGE STOCKS OF EX-RENTAL VIDEO'S AND B-GRADE TV's
NATIONAL PANASONIC 2000, 7000 INFRA-RED REMOTE * HITACHI * FERGUSON * ITT VIDEO + T.V, *

MANY BARGAINS IN STOCK

RING FOR DETAILS AND DELIVERY ARRANGEMENTS LOAD DIRECT FROM SOURCE TO YOUR DOOR $\star \star \operatorname{RING} \star \star \star \star \star * * * * * * * * *$ BIRMINGHAM 01-807 4090 01-884 1314 CHEPSTOW 021-622 1023 CEDAR HOUSE, NOBEL ROAD, ELEY ESTATE 0291271000 021-622 11517 EDMONTON, LONDON, N.9. UNIT 4 48-52 PERSHORE STREET, BULWARK INDUSTRIAL ESTATE, GWENT

\section*{AT LAST!!
 Quality Used Televisions
 EXCELLENT CABINETS - GOOD WORKERS
 | Thorn 9600 | Teletext | $\mathbf{£ 8 5 . 0 0}$ Remote | $\mathbf{£ 5 0 . 0 0}$ |
| :--- | :--- | :--- | :--- |
| Thorn 9200 | Full Remote | $£ 55.00$ | Basic Remote |
| Thorn 9000 | Remote | $£ 30.00$ | Basic |
| Thorn 8800 | Remote | $\mathbf{£ 3 0 . 0 0}$ Basic | $\mathbf{£ 2 5 . 0 0}$ |
| Philips G11 | | $\mathbf{£ 5 5 . 0 0}$ | $\mathbf{£ 2 5 . 0 0}$ |
| Bush T20 | Remote | $\mathbf{£ 6 0 . 0 0}$ Basic | $\mathbf{£ 4 5 . 0 0}$ |
 Thorn Mechanical VIDEO 7 day timer $£ 100.00{ }^{\mathbf{E 4 5} .00}$

Non-working VIDEO from $£ 50.00$
 All remotes with handsets We also have large stocks of TV, Video, Small Appliances, etc: MANUFACTURERS END OF LINE MANUFACTURERS B GRADE CATALOGUE RETURNS WESTCO, Unit D, Perrywood Trading Park, Wyld's Lane, Worcester. Telephone: (0905) 359003.}

CREWE WHOLESALE TV 77 COLERIDGE WAY, CREWE TEL: (0270) 582924
SPECIAL OPENING OFI
G11s working $£ 47$ in lots of 5 Decca 80s and 100s working $£ 33$ lots of 5 Philips G8s working £22 lots of 5 GEC 2111 working £25 lots of 5 GEC Starline and 8 channel working $£ 30$ lots of 5 Thorn 9000 working $£ 30$ lots of 5
MANY OTHER MAKES IN STOCK ALL WORKING VHS VIDEOS TO ORDER P.O.A. PANELS AVAILABLE REMOTE CONTROL SETS AVAILABLE
Delivery available on lots of 10 or more

TELEVISION NOVEMBER 1985

TRADE ANNOUNCEMENT

FERGUSON 3V16/3V22 VHS VIDEOS
 THORN 8800/9000/9600 COLOUR TV's
 MAINLY REMOTE CONTROL HAND UNITS NOW AVAILABLE

MINIMUM PURCHASE 5 UNITS LOWEST PRICES IN U.K.

$\star \quad \star \quad \star$

OTV TRADE DIVISION OTV HOUSE 144 LEA BRIDGE ROAD LONDON E5 9RB

Telephone: Bob Munson 01-985 6111

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO

ENHANCE FUTURE EMPLOYMENT PROSPECTS
VIDEO CASSETTE RECORDER SERVICING
3 WEEKS FULL-TIME
(January 6th to 24th)
Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial and academic training and includes a high percentage of practical work.

6 MONTHS

LEC DIPLOMA

TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training - e.g. BSC, HND, CGU, B/EC, etc.)
(Course commences on Jan. 6th)

ADDITIONAL FULL-TIME COURSES
APPROVED BY THE BUSINESS \&
TECHNICIAN EDUCATION COUNCIL
(These courses commence on Jan. 6th - HNC Sept. ' 86 only).
2 YEAR
BTEC National Diploma (OND)
ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Faut Diagnosis)

15 MONTHS

BTEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fauth Diagnosis)

15 MONTHS
BTEC National Certificate (ONC)
COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS (Microprocessors, Microcomputer Fault Diagnosis, Robotics \& Control Systems, CADCAM \& CAE Principles).

OVERSEAS STUDENTS ARE CHARGED THE SAME TUITION FEES AS UK STUDENTS

Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

V.H.S. VIDEOS PIANO KEY \& ELECTRONIC

COLOUR T.V.S WORKERS OR NON-WORKERS

DECCA
THORN SALORA DORIC

PANELS AND VALVES ALSO AVAILABLE

SOUTHPARK DISTRIBUTORS

Unit 4 Rubastic Road
Brent Park Industrial Estate
Southall, Middlesex UB2 5LL 01-574 4631 Ext. 28

TVS TRADE SERVICES BROMSGROVE

Large selection of quality clean TV \& Video always in stock, including:
BUSH T20/24 DECCA 80/100
GEC STARLINE
HITACHI ITT (full remote)
PHILIPS G8
PHILIPS GII PHILIPS KT3
THORN 9600 including TELETEXT
THORN 8800 THORN 9000 (remote)
(remote)
THORN TX
VHS VIDEO trom $£ 85$ (working)
We specialise in working sets, fully serviced and ready to deliver to your customer's home. Spares back up service available to customers. You've seen the junk, so why not now come and pay us a visit we think you will be pleasantly surprised by our prices and the quality of our equipment. Delivery service available.

For further details phone:
COLIN BROOMFIELD,
UNIT 7, STATION STREET, BROMSGROVE, WORCS.
 (0527) 37037

HOCKLEY DISCOUNT TELEVISIONS

GOOD NEWS! We have now expanded our Midlands Branch THAT MEANS! More bargains for you \& more selection

We now have HUGE STOCKS of TV's \& V.H.S. VIDEOS

LORRY LOADS DELIVERED DIRECT FROM SOURCE!

Philips G8's \& G11's
Pye Solid State
Pye Chelsea
G.E.C. Solid State

Rediffusion Mk. I \& Mk. III

Unlimited Selection of:
Thorn 8800, 9000
9600, TX9, TX10
Latest Hitachi
I.T.T. CVC30, CVC45

Bush T20, T22

Midlands Branch: HOCKLEY DISCOUNT TELEVISIONS, 94 Soho Hill, Hockley, Birmingham, B19 1AE.
Tel. 021-551-2233 - Ask for Jazz
North-East Branch: NORTHERN T.V. DISTRIBUTORS, Unit 2, Perth Court, Eleventh Avenue, Team Valley Trading Estate, Gateshead, Tyne \& Wear. Tel. 091-4875389 - Ask for Joe

D.I.Y. TV TUBE POLISHING with our DIY Polishing Kit The Kit includes everything you need to polish approx. 25" tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill. Kit Price $\mathbb{E} 49$ inc P\&P and VAT. Available from Luton only. *Depends on depth and area to be polished. TV TUBES FREE DELIVERY* 5\% DISCOUNT ON TUBES COLLECTED FROM LUTON Quality, High Temperature Reprocessing					
$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	DELTA i.e. A55-110X A56-120X A66-120X A67-120X	DELTA SPECIALS i.e. A47-342X 470CTB22 510GLB22 A56-410X A66-410X A67-150X A67-200X	IN LINE \& PIL i.e. 470 ESB22 470ERB22 A51-161X A51-570X 510.JKB22 560AKB22 560BYB22 A56-510X A66-510X	HITACHI IN LINE etc. AXT37-001 AXT51-001 AXT56-001 510VLB22 510VSB22 560DZB22 560EGB22 A56-540X A56-711X A66-540X A67-711X	SONY TRINITRON $330 A B 22$ $400 E F B 22$ $470 B E B 22$ $470 D L B 22$ 520 KB 22 $5205 B 22$ $570 E B 22$ $570 H B 22$ $680 D B 22$
UP TO 20"	£30	£32	£40	£44	E58
UP TO 22'	£34	£36	£42	£46	E64
UP TO 26"	E36	£38	£44	£48	E70
All tubes sold Your good, wo De Please a $1 /$ E Open Man-Fr Your Local Tu Well View, H. K. Televi West One D Tel. 02406 Rushoden Re Daventry R Rea ${ }^{8}$ Holla WANT	with 1 or 2 Prices A king tubes purpose bu ivery charg 1 or 2 tub Nationwide d 15\% VA 8am-6pm be Stocki outham ion, Lon istributo 3609 ntals Ltd ntals, D nd, Ipsw ED A56/A	ar guarantee, hown are for 12 ubes exchang th scratches or polishing equ on colour tube f6. 3 or more elivery availab to all prices. Ca Sat 9am-1pm on. Tel. 07 on, E.2. Tel Ltd., Gt. N Rushden, entry, Nort h, Suffolk. 6-510X/540X	th optional months gua glass requir small chips nent. From Within 40 ubes FREE charges on ers welcom 114-1 Luton Tel. 331837 01-729 1 ssenden. orthants. ants. Tel el. 0473 and Sony.	tension by tee. an be POLIS per tube. es of Luton IVERY* plication. Please phon Midland eds. 787. 3. uckingha I. 0933 327277 7562 d glass for	ra 2 years. D with our irst. hire. 490\# 6 ash

fast return	

UNTESTED EX-RENTAL CTVs OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES

best source in u.k.
COLOUR TVs FROM £3
VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT
VIDEO RECORDERS FROM £50: SONY C5: C6: C7 \& C9 PANASONIC : SHARP FERGUSON : GRUNDIG ETC.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA COLOUR IN STOCK NOW

CASH ONLY
FRANK FORD (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489

GुED

Uuniversall Ellectrmmic (1D)istrilbuthors 119 JAFROM STREET, LEICESTER LE2 7DX Telephone: (0533) 544849

SPECIAL OFFER. UNIVERSAL TRIPLER ONLY £4.25

SUMMER BARGAINS

10 BUSH 2 CHIP	$£ 50$
10 PHILIPS G8 550	$£ 150$
10 DECCA 6-BUTTON 20"	$£ 70$
10 REDIFFUSION MARK 1	
REVAMP	$£ 120$
10 THORN $800017^{\prime \prime}$	$£ 150$

ALSO BUSH T20, G11, 9000, 9600, 9800, GEC STARLINES

PL509 £1.50, PY500 £1
ELC 1043 Tuners Ex-panel $£ 2.50$
RING FOR QUOTE

ALL + VAT

CentreVision TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB
 OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 TELEVISION/VIDEO
 (VHS + BETA) FROM £85
 \star ITT CD752 REMOTE WORKING $£ 90$
 * PHILIPS G11 FROM $£ 40$
 \star GEC STARLINE 22-20 (Remote) £35
 \star PYE CHELSEA £25
 * THORN 9000 20"
 £35
 \star DECCA $22^{\prime \prime}$ BLACK FRONT VERICAP $\mathbf{£ 1 5}$
 ^ RANK T20 REMOTE
 £48
 * PHILIPS 550 IN 10's
 f18
 PRICES SUBJECT TO VAT OPENING HOURS:
 MONDAY - FRIDAY 9.00-5.30 SATURDAY 9.00-1.00

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

WE ARE LOCATED IN UXBRIDGE
 At probably the most accessible

 part of S.E. England. The nearest junction of the M25 is only about 1 mile away and we are less than 10 minutes from the interchanges on the M25/M3, M25/M4, M25/M40. The Poyle/Colnbrook section of the M25 was completed in September with the exception of the M25/M4 interchange which will be completed soon.

LOCAL AREA MAP AND PRICE LIST AVAILABLE ON REQUEST

DISPLAY ELECTRONICS LTD.

UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX. UXBRIDGE (0895) 55800.

UK ‘Universal’ TRIPLER

from $£ 5.00$ inc post \& VAT

1. Input 200 mm . 2. Output 780 mm . 3. Focus 350 mm 4. Pulse 35 mm .5 . Earth 390 mm . Instruction sheet available on request BEWARE IMITATIONS
1×10 ($£ 5.00$ each) $£ 50.00$ 1×5 ($£ 5.50$ each) $£ 27.50$ 1×3 (£5.75 each) $£ 17.25$ $1 \times 2(£ 5.95$ each) $£ 11.90$

NB: Includes Post \& VAT
Strictly cash with order. Goods despatched by return. Access Barclaycard accepted

32 TEMPLE STREET

TELEPART PHONE (0902) 773122

APOLLO MANCHESTER

FAST MAL ORDER GB 3-4 DAYS ALI AREAS PLEASE PHONE FOR COST free local delvery same day o fiting service fzo
2 YR GUARANTEE - QUANTTTY DISCOUNTS - PIL GLASS BOUGHT
 470-ESB22/EFB22/ERB22/FIB22
A51-220X/192X
510-151822/JER22/JDB22/JGB20/ALB20/GL822
$510-\mathrm{VB} 22(253)$ DTB22'001/RFB22/RCB22/SFB22
A51-550 Now ...
A51-5.0) $/ 580 / 001 / 210 / 24$
A56-120X/123/140/410
560-DDB22(E53)/H1B22/AKB22/TB2/AWB22
$560-E T B 22 / D 1 B 22 / C S B 22 / D M B 22 / D N B 22$.
A56-611X/615X
A66-120X/A67-120X/140/150/200,410
$204 X-A 56-500 \times / 510 X-A 66-500>/ 510 X$
If your tube type is not in stock we can arrange collection - rebuilding + redeliver PLEASE PHONE BEFORE CALLING
061-799 0854. 24 hour answering service
43 Clarke Crescent, Litte Hulton, Worsley, Nr Manchester M28 6XL

POST OFF YOUR CHEQUE NOW! AND YOUR PANELS SENT BY RETURN OF POST!!!

THORN GEC Deccas stripped for spares. Panels, tuners from $£ 2.50$, phone for prices. WELLINGTON, Dartford 0322337212

HITACHI, Mitsubishi, Panasonic, Sony, Toshiba, JVC. Sharp. Sharp fully refurbished. PEARSON TELEVISION. 1484863489 . Delivery arranged.

OCHRE MILL TECHNICAL for GRUNDIG sets, moduales, manuals. TELEQUIPMENT OSCILLOSCOPES spares, manuals. Assorted items RECONDITIONED TEST EQUIPMENT. 0785814643.

TURN YOUR SURPIUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

BIRMINGHAM AREA-TRADE. Service workshop, all makes Video-Audio T.V. Free warranty repairs for Sony, Sharp, Ferguson, Sanyo. Two minutes from H.R.S. ARGO SERVICES (B'HAM), B.HAM 4. 121-359-3753.

QUALITY SETS FROM CORNWALL. Workers/non workers. Spares. Panels, etc. Details ring 0726-815389.

OSCILLOSCOPE TELEQUIPMENT S54A. Good working order, £85. No probes. Northallerton (0609) 34 (\%)

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS

Line Ouput
Z718 (T703A, T706A)
New (Complete)
Less Focus Module and
Rectifier
£19.00

T20, T22 (T705A)
£10.50
T26 (T705B)
£11.00
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\quad \mathbf{6 6 . 0 0}$ Switch Mode
T114A
£6.00
Genuine RBM Units.
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES. 34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-2QT.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

VIDEO \& HI-FI ELECTRONICS 379 EDGWARE ROAD

LONDON W2
TEL 01-258 0328
ALL VHS PARTS AVAILABLE EXAMPLES:

VIDEO HEADS

JVC, Ferguson, Akai, Saba, Telefunken. Sony (Betamax).
National Panasonic...
All Hitachi heads from
INTEGRATED CIRCUITS
UPC 1365C
UPD 553C E35.00

UPD 552 C
HA 11711 845.00

All makes of idlers, pressure rollers, clutch assembly and motors in stock.
Many other parts available. Send SAE for list. ALL PRICES INCLUSIVE OF VAT

PRICES INCLUSIVE OF
ADD 2.00 FOR P\&P

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.

The prepaid rate for semi display setting $£ 6.78$ per single column centimetre (minimum 2.5 cms). Classified advertisements 40 p per word

LOOK HEAR TV

NOW OPEN. Our new trade warehouse for the best service and quality in the East Midlands.

* Good quality working TV's
* Off the pile also available
* Low prices
* No minimum quantity
* Limited number of VHS videos
* Lots of TV panels for sale

Open Mon.-Fri. 10-5.30, Sunday 10-1.00 CASH ONLY
UNIT 4, KING STREET BUILDINGS,
KING STREET, ENDERBY, LEICESTER.
Only 5 mins. from Junction 21, M1.
Ríng Adrian on Leicester (0533) 867530.
MR. A. L. BALMER

HALTON TV TRADE DISPOSAL
Wide range of TVs available.
Working and non-working. TRADE ONLY
(We have NO retail outlet)
St Michaels industrial Estate, Widnes
Tel. 0514231577

BRISTOL TELEVISION TRADE DISTRIBUTORS (BTTD)
 4 Victoria Street (Bristol Bridge) BS1 6BN

Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price,
regular supply.
Tel: (0272) 25266

EEROICE PACES

(minimum 12 words), box number 70p extra. All prices plus 15% VAT. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank PLC". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5942).

BOLTON T/N WHOLESALE NEW BUSINESS NO RIP OFFS

PHILIPS G11 £40
PHILIPS G8 £12
THORN 8800 £15
THORN 9000 £20
THORN 9600 £30
GEC 2111 £15
VIDEO 2020 £30
VIDEO FERGUSON from £50
Good Tubes Tested on Rig from $£ 10$
Many more makes in stock
Discount on quantity
Lorry loads direct from source
BOLTON T/VFLASH STREET MILLS, BOLTON.TEL: (0204) 22592
BOURNEMOUTH
LARGE STOCKS OF WORKING NON-WORKING SETS, MOST MAKES AND SIZES. FAIR PRICES - TRADE ONLY WAREHOUSE OPEN:
Mon-Fri 9-1, 2-5; Sat 9-1
HILLIER'S, UNIT 2A, 11-15 FRANCIS AVENUE, WALLISDOWN. TEL: 0202581932

PLEASE

MEMTION
television

WHEN

 REPLYMGT0
ADVERTISEMEITS

T.V SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

TELEVIEW 01-994 5537
194, Acton Lane, London W.4.
C.T.V. PANEL SERVICE

Exch/repair \& sales - chemically cleaned - no burned or damaged print. 3 months $g^{\prime t}$ tee, large range incl. Decca 80 \& 100, G11, G8, ITT, GEC, Rank, TCE, Jap \& Send Suro models, despatched same day. Send S.A.E. for lists or ring with your requirements: Please note new address:
Argo Services (Birmingham) 53 Lawley Street, Birmingham B4 7XH. Tel. 0213593753 Te acopted using Accass/M
CMLLERS RING FIRST

| TELFORD ELECTRICAL SPARES \& SERVICE |
| :--- | :--- | :--- | :--- | :--- |

GEMINI TUBES

THE PRICE IS RIGHT FOR QUALITY REBUILDS ALL WITH 2 YEAR WARRANTY
Phone now on St. Helens 37672
Or call at Unit 3,
Delphwood Drive, Sherdley Road Ind. Estate, St. Helens.

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders. G11s from $£ 70$ + VAT KT3s from $\mathbf{£ 8 5}$ + VAT MANY OTHER K30s from $\mathbf{E 9 5}$ + VAT ITTs from $\mathbf{£ 5 0}+$ VAT Decca from E 50 + VAT 120s from $£ 50+$ VAT 9000 s from $£ 35+$ VAT

VHS Videos.
Ferg $3 \mathrm{~V} 29,3 \mathrm{~V} 30$
MAKES
REGULARLY

VHS Videos.
Ferg 3V29, 3 330
NatPan NV2000, NV2010
Contact John, Dave or Steve for personal friendly attention on
022369215 or 035361462

NKYELECTRONICS 25 YEARS SUPPLYING THE TRADE

COLOUR TV'S AND VIDEOS

 H.P.REPOS AND EX. RENTALS$$
\begin{aligned}
& \text { folvin cos filing }
\end{aligned}
$$

PYE Gll EXC CAB£40
BUSH 718 £20

BUSH 2 CHIP

BUSH 2 CHIP

BUSH 2 CHIP

BUSH 2 CHIP

BUSH 2 CHIP £8 £8 £8 £8 £8
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG 5010 } \\ & \text { PYE KT3......... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213......... } \\ \boldsymbol{£ 2 0} & \text { THORN 3000... }\end{array}$
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG 5010 } \\ & \text { PYE KT3......... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213......... } \\ \boldsymbol{£ 2 0} & \text { THORN 3000... }\end{array}$
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG 5010 } \\ & \text { PYE KT3......... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213......... } \\ \boldsymbol{£ 2 0} & \text { THORN 3000... }\end{array}$
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG 5010 } \\ & \text { PYE KT3......... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213......... } \\ \boldsymbol{£ 2 0} & \text { THORN 3000... }\end{array}$ £10 £10 £10 £10
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$ $£ 50$ $£ 50$ $£ 50$ $£ 50$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$
$\begin{array}{ll}\boldsymbol{£ 2 0} & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } \mathbf{3 0 0 0}\end{array}$ £30 £30 £30 £30
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } 3000\end{array}$
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } 3000\end{array}$
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } 3000\end{array}$
$\begin{array}{ll}\text { £20 } & \text { GRUNDIG } 50 \\ & \text { PYE KT3.... } \\ \boldsymbol{£ 6 5} & \text { GEC 2213..... } \\ \boldsymbol{£ 2 0} & \text { THORN } 3000\end{array}$ £7 £7 £7 £7
GEC 2010 ع20 ع20 ع20 ع20 ع20
GRUNDIG G415/4206

£20 GRUNDIG G415/4206
PHILIPS 550 Best Stock in the Country - over 2000 in stock (90% of our TV's Switch on) Special Price Quoted For Bulk Purchases From Source.

BUSH T20/T26......£45, G11......£50, PYE KT3......£70, Others done to order. DISCOUNT FOR QUANTITY 71D 1
SHARPS 7300,8300,9300,HITACHI,VT11
FERGUSON 3V29 (Not Ex D.E.R. etc.) SANYO, SONY, BETA

100's PX HOOVER JUNIOR VACS

- All models in stock

Fully reconditioned HOOVER JUNIORS (Like new)£27
4H개 0274688458

CASH ONLY
 (1)Pan 6DiKS Stin 9-5.30

 UNHI 12, Wharfedaleid M606 Buroway Istate Bradford
TV Business

COLOUR SETS FROM
MONOS FROM
$£ 5.00$
£3.00
PANELS BY POST - PRE-CALIBRATED WORKING SETS TO ORDER
Phone Baldock 894905
SECTION 3, UNIT 4, SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS.
OPEN 6 DAYS 10-6.30pm/10-5pm SAT.

COLOUR TV PANELS Fully Tested \& Working						
	If	CDAI	Decoder	LTB	Line Board	Power
GEC 2040	3.50	3.50	4.00	5.00	-	,
DECCA 13/30	3.00		7.00	5.00		4.00
BUSH A323	4.00*	-	10.00*	5.00 *	2.50	4.00
THORN 8184			10.00	5.00	-	5.00
PYE 205	3.00	3.50	5.00	10.00	-	
THORN 3/31	5.00 6.00	5.00	5.00 8.00	8.00 7.00	15.00	10.00 5.00
G8 *Please specify	Z. ${ }^{6.00}$		8.00	7.00	fitted with	5.00
Please add 15% VAT to above prices, then add post + packing. Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25$; 3 panel; $£ 3.00$ etc.						
Hybrid panels do not include valves. Terms cash with						
Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock.						
CO		S	/ C	(form	LAVIT	
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Callers by appointment ont.						

likel

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.

Krytal Whrketing Ltd,	Phone 021-471 3023
Breedon Cross	Telex 335540-6
Storage,	Ask for Les
Dale Roac, Selly Oak,	
Birmingham B29 6A0.	

T.V PANELS

REPAIR EXCHANGE SALES SERVICE
PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame $\begin{array}{lllllll}\text { Philips GII } & 18 & 16 & 18 & 20 & 18 & 16\end{array}$ $\begin{array}{llllll}\text { Bush T20 } & X & 12 & 16 & 15 & 12\end{array}$ $\begin{array}{llllll}\text { Bush T26 } & X & 16 & 18 & 15 & X \\ \text { Bush } 718 & X & 12 & 18 & X & 12\end{array}$ All panels are repaired and aligned according to rank std.
Ring for prices to buy panels. Prices shown inclusive of postage, etc. All panels guaranteed for 3 months. T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567
$£ 29.00$
INCLUSIVE, REGUNS TWO YEAR E14.50 GUARANTEE, QUANITIY DSCOUNTS SDX A56-120 A56-140 A51-110 AA9-191 A47-342 or 343 A44-270-1 A66-120 A66-140 (410) A67-120 (All $26^{\prime \prime}$ add 55)
No need to spend $\mathbf{5 5}$ returning old delta tube Slightly used in-line tubes from $£ 29$.

W-UNE	RANTEE		TOSHEA NEW SH-110
51-161		52	47.342 47.343
51.510 $51-570$	¢45		disclusive
56-500	indusive		2
		SPEC	Al Offer mullard
$56-540$ $66-540$	P55		164
$66-500$	melusive	66-540	inclusive

B \cdot FWB DLB KTB KLB 520 HB $330 \mathrm{AB} \cdot 470 \mathrm{KLB} \cdot \mathrm{FWB} \cdot \mathrm{DLB} \cdot \mathrm{KTB} \cdot \mathrm{KLB} 520 \mathrm{HB}$
$\mathrm{TB} \cdot \mathrm{KB} \cdot \mathrm{LB} \cdot \mathrm{NB} \cdot \mathrm{MB} \cdot 570 \mathrm{HB} \mathrm{EB} \cdot \mathrm{DB} \cdot \mathrm{GB} \cdot \mathrm{JB}$ TB - KB - LB • NB • MB - 570 HB EB . DB - GB
MOST IN STOCK. IMMEDIATE DELIVERY

HITACHI

> 490DKB22
> 560 DZB 22
f34
Plus 490 DVB 510 or 560 VLB PROFESSHNAL STICK DE-GAUSSING COILS ± 19.50
RADIO and TEEVISION SERVICING BOOKS
泍9,

FREE DELIVERY
Excopt Tubes Ef esch. All prices are inclusive U-VIEW
29, Warmsworth Road, Doncaster, Yorkshire DN4 0RP. Tel: 0302855917. Callers ring first, open every day inctuding Sunday $1 / 2$ a mile from A1

INDEPENDENT TELEVISION AND VIDEO COMPANY

LARGE STOCKS TO CLEAR EVERY WEEK

COMPETITIVE PRICES

EXAMPLES:
B\&W 20"-24"
From $\mathbf{£ 1 . 0 0}$
COLOUR:
Bush 1-2 I.C. $£ 4.00$
Philips 520-550, $26^{\prime \prime} \quad £ 6.00$
Thorn $3500 \quad \mathbf{£ 6 . 0 0}$
GEC-Decca-ITT £6.00
————
Philips 550 22" $£ 10.00$
Pye $18^{\prime \prime}-20^{\prime \prime}-22^{\prime \prime} \quad £ 10.00$
GEC $20^{\prime \prime}-22^{\prime \prime} 26^{\prime \prime}$
£12.00
Thorn 8800-9000-9800

Many Other Modern Sets and VHS Videos
PHILIPS G11 - ITT - Bush T20-T22-
T26, Hitachi, Nat. Pan. - Sony Off Pile from $£ 40$
Phone Frank: Nottingham
(0602) 864627

Unit 3
Meadow Trading Estate,
Meadow Lane,
Nottingham NG2 3HO.

WIZARD DISTRIBUTORS

 MANCHESTER TV \& VIDEO SPARESWe stock spares for THORN, PHILIPS, PYE, RANK, GEC, SHARP, SONY
DECCA, ITT and now also FIDELITY.
Did you know we also stock

FUSES	I.Cs
TUBES	TOOLS
AERIALS	VIDEO LEADS
AEROSOLS	AUDIO LEADS
RESISTORS	SEMICONDUCTORS
CAPACITORS	SERVICE MANUALS
VALVES	TESTEOUIPMENT
HANDSETS	TVNIDEO TROLLEYS

Counter open Monday-Friday 9am-4.45pm TRADE ONLY

EMPRESS STREET WORKS, EMPRESS STREET MANCHESTER M16 9EN.
Tel: 061-872 5438; 061-848 0060 .

WORKING CTVs
 THE BEST \& CHEAPEST IN LANCASHIRE
 SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units

Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) $22^{\prime \prime}$ \& $26^{\prime \prime}$ ONLY $£ 20.00$ each
Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn.
1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL
JOHN POWNEY
TRADE TV SALES \& SERVICE Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
f1.25 per panel plus post \& packing

Brand new re-gunning plant operating - TOP CLASS TUBES -

BN - Delta - In-Line - P.I.L.
CHRIS KELLEHER'S T.V.
Kanturk, Co. Cork
Store open 9 to 8 pm . Sunday $10-1 \mathrm{pm}$. 029-50046 - Wanted 300 VHS video tapes

COLOUR BAR GENERATOR

Pal Colour Generator with 11 patterns plus sound Gey scale, Colour Bars, Red, Green \& Blue Raster, Cross hatch, Dots, Chequer Board, Black Raster, White Raster Half Black \& White, Mains Powered. $\$ 7590$

OUTPUTS PROVIDED
UHF OUTPUT
VIDEO OUTPUT
SOUND OUTPUT
FIEID PULSE

Same as above plus RGB output
 Line Output Transformer Tester

$£ 8150$
BMW $\mathbf{f 1 1 5 0}$ Black \& White and Grey Sca, Peak White, Dots, Hall Black \& White and Grey Scale UHF output S. Half

$\mathbf{f 1 8 5 0}$ Same as above but with Video Output $£ 2050$ Capacitance Meter measures 10 pF to $1 \mu \mathrm{~F}$ complete Car Alarm with built in Siren | $\mathbf{E} 20.50$ |
| :--- |

S.A.E. for details. - Prices include P\&P \& VAT.
C.M.J. ELECTRONICS Unit 8, 16 Union Mill Street, Horseley Fields, Wolverhampton WV1 3DW. Tol: (0902) 871563

NORTHERN IRELAND DEALERS

COME AND SEE OUR LARGE RANGE OF S/H COLOUR TVs AT LOWEST PRICES EVER CONTACT:
S. M. ELECTRONICS

11 SANDHOLES ROAD, COOKSTOWN, CO. TYRONE Telephone: Cookstown 06487/64277

Open: Mon.-Sat. 9.00 am- 6.00 pm (Closed Wednesday)

NORMAN ENTERPRISES LTD
 Weston-Super-Mare, Avon. Tel: 413991/418545

Colour TVs fully engineered
with a special care on tubes
Hitachi 217 Remote Control. $£ 95$
Thorne 9000 Remote Contro $£ 37.50$
Pye G11
£47.50
Rank T20 $£ 37.50$
Pye Chelsea 6 Button.......£27.50
Pye 725 $£ 37.50$
Pye 721 $£ 27.50$
Thorne 9600 $£ 45$
Thorne 9200................ $£ 42.50$
Bush T20 Remote Control........... $£ 45$
Bush T24 \qquad £55.50
All above prices include hand sets and VAT.
Ready for sale.
Phone now, limited number each month. All the above off the pile, less a 3rd

STARLITE ELECTRONICS

WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.

EX RENTAL TVs UNTESTED FROM £15.00 WORKING TVs $£ \mathbf{2 0 . 0 0}$

2 year guarantee
Most types available ancurcia including Sony

SITS VACANT

TELEVISION ENGINEER

Experienced T.V. engineer required by independent EXETER T.V. dealers. Good salary, pension scheme, company car.
Applications to:
Mr P. I. Howarth F.C.A. HOWARD'S (Exeter) Ltd., 90 Sidwell Street, Exeter.

BOOKS AND PUBLICATIONS

A-Z LIST OF MANUFACTURERS ADDRESSES. All major TV, audio etc plus many hard to get ones. Send cheque/PO for $£ 3.75$ to DOWNS ELECT, 79 High Street, Dalkeith, Midlothian.

MACDONALDS R \& TV BOOKS. New $74 / 75$ £15. 75 76, 76/77, 77/78, 78/79, 79/80, 80/81, 82/83, 83/84, 84/85 $£ 22.50$. Free delivery. U-VIEW, 29 Warmsworth Road, Doncaster. 0302855017.
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years usually in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0423 55885.

BUSINESS OPPORTUNITES

LEASEHOLD FOR SALE Outlet for T.V. Video, Hi Fi \& Domestic Appliances retail \& repairs on busy main road, Sutton area. Established 25 years, big workshop tumover 50 k plus 5 year lease remaining (renewable) £15,000. Tel. 01-979 7380 before 9 am or after $6 p m$.

T.V. VIDEO \& HI-F REPAIR \& RECON

 SALES BUSINESS Ifford area.Established 9 years. Long lease. Large fully equipped workshop. Shop showroom. Great potential

Capital investment needed
Would consider partnership or for sale $£ 20,000$. BOX No. TV 196

WELL ESTABLISHED
TV VIDEO-AUDIO SALES AND SERVICE BUSINESS FOR SALE
Modem premises shop and workshop. Good class North London area. Ideal for ambitious engineer. T/O £65,000.
New 12 year lease
PRICE $£ 18,500+$ S.A.V.
Details: Box 201

WANTED

WE PURCHASE UNDAMAGED old T.V. tubes of types A67-150X A66-500X or equivalents. Good prices paid. Phone 0527852639.

WANTED: 3V24. Price condition. HENNIKER, 44 Ashley Terrace. Edinburgh EH11 1RY. 031-337 3441

WANTED, EX RENTAL colour TVs. Any quantity Prompt collection, cash paid. Sheffield 754865 .

METERS

METERS. Reconditioned $10 \mathrm{p} / 50 \mathrm{p}$ available from stock. Contact THE METER CO. (Poole) LTD (0202) 683498.

AVON METERS

We buy and sell and repair TV coinmeter. Reasonable prices, one year guarantee. 213 Cheltenham Road, Redland, Bristol. 0272-425281

SOLE SUPPLIERS TV/VIDEO Repair manuals/circuits, 1000 s s/manuals supplied by retum. S/sheets $£ 2.50$ except CTV/m.centres/stereos $£ 3.50$. LSAE with every order/query please brings free price list/magazine inc s/sheet - or phone 0698884585 (883334 outside business hours) TIST, 76 Church Street, Larkhall, Lanarkshire.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes
 Part 1. The Colour Signal Part 2. The Receiver Decoder Part 3. Receiver Installation

VHS $\star \star$ *V2000***
BETAMAX***UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precis details
FLINTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH,
LYTHAM ST ANNES FY8 1LP enclosing this advert)
NAME ADDRESS

TEL:

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

REPAIR SERVICE

PRINTED PANEL REPAIR SERVICE

Printed panels and remote control handsets repaired. Most makes and models serviced. RING 0934418545
for Price List or Quotation.

VIDEO

VHS VIDEOS

NON-WORKING WORKING
 £78 inclusive

PORTLAND VIDEO 8439942

V.H.S. VIDEO'S 100's IN STOCK

Famous brands: JVC • PANASONIC • FERGUSON Also stockists of Grade B Units, Microwaves, Hi-Fi, Radio/Cassettes etc. etc. CONTACT MICK ON:

021-772 1591

STANDS

T.V. VIDEO STANDS from $\mathbf{8} 2.50$

Direct from manufacturer, slight seconds, ends of runs and current models. For details . . TELEPHONE: 0422 240011; or write: ACRE PRODUCTS LIMITED Jumples - Mixenden - Haifax - W. Yorks HX2 8UD

Sabaco
 For a
 great deal!

VAN LOAD DIRECT FROM SOURCES
ALL SETS OFF THE PILE Good working
Large selection of Ferguson TX 9600/9200/9000/ 8800/4000
mainly teletext with remote control at best prices in UK
order
3V22 £95 Non-working
3V23/3V24 £100
Any quantity

ANNOUNCEMENT TO SCOTTISH TRADERS TOP QUALITY OF VHS VIDEO'S \& TV'S

Large selection of VHS Video's
and TV's in quantities of
2's or 100's at very
competitive prices.
OPEN 6 DAYS A WEEK
9.30 am to 5.45 pm

For further details telephone:

Sabaco

75 Robertson Street, Glasgow.
Glasgow. 041-221 2146.
Sabaco
(2 minutes from M8).
46A Derby Road,
Sandiacre,
Nottingham. (0602) 397555.

To Advertise on this page Phone Pat Bunce 01-2615942

AERIAL BOOSTERS

B45-UHF TV next to the set fitting. Gain 10dbs (trebles gain), works off PP3 type battery or 8 V to 14 V working. Price complete (excluding battery) $£ 5.00$ Video Transmitter. This will transmit good quality pictures and sound more than 30 ft . Price $£ 8.90$ (S.A.E. for more details).

We also make aerial boosters for VHF/FM radio $£ 7.70$, and VHF television, prices $£ 7.70$ \& $£ 8.70$. p\&p 50p per order

ELECTRONIC MALLORDER,
62 Bridge Street, Ramsbottom, Lancashire, BL0 9AGT.
Tel: Ramsbottom (070 682) 3036.
S.A.E. leaflets. Access Nisa Welcome.

Euro-Sat

Parabolic Dish Antennas (Parent company est. in
communications since 1969) SATELLITE TVRO ANTENNAS TOP QUALITY SOLID GLASSFIBRE DISH ANTENNAS TRADE PRICES M. DIA 11-12-4 GHZ BANDS 1.2M. OIA 11-12-4 GHZ BANDS 2M. DIA. 11-12-4 GHZ BANDS
Trade \& Export Enquiries Welcome
Prices do not include delivery
Euro-Sat
107 Cross Street, Sale, Cheshire, England. Tel. 061-437 2631 061-881 4249

CLEARVIEW AERIALS

Tunable masthead amplifiers for FM and Band 3 (mostet) gain 30 dB . NF $0,7 \mathrm{~dB}$ and UHF incl amateur band gain 30 dB NF. 1, 6 dB .15 dB and 26 dB masthead ampl. WB, grouped NF 2 dB splitters, combiners, notchfilters, diplexers etc. Trade and retail.

Send large SAE for our comprehensive catalogue CLEARVIEW AERIALS 173 Kings Road,
Kingston Upon Thames, Surrey.

SATELLITE T.V. RECEPTION EQUIPMENT $10.9-11.7 \mathrm{GHz}$ low noise block downconverters 2 .way
and 4 -way power dividers 2 m dia GRP dishes and polar-mountsiBrass scalar feedhoms and feed supportsindooor dermodulators and in-set demodulators. SAE for detals to:
KESH ELECTRICS LTD MAIN ST, KESH CO FERMANAGH, N. IRELAND

EVERYTHING NECESSARY for multi-outlet and high gain installations. Cables, outlets, splitters, channelpass filters, dipiexers, masthead amplifiers, distribution amplifiers, brackets, masts, aerials, etc. Use trade gear and save pounds. Catalogue 75p (refundable). Professional advice. WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham.

DEVONICS

Quality Rebuilt Tubes 2 YEAR WARRANTY
470 ERB22
$£ 43$
510 KCB22
$£ 45$
A51-161/500/510/ 570/580/590X
560 AKB/DZB/TB22
$£ 45$
A56-500/510X
A56-540X
A66-500/510X

A66-540X
$£ 53$
$670 \times B 22$
£46
Deltas from E30
Plus carriage and VAT 2A BARTON HILL ROAD, TORQUAY TQ2 8JH 0803-33035

SERVICE SHEETS

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock. Colour £3.00 Mono £2.00
 Manual prices on request
 All our prices include post and packing costs
 Send stamped envelope for free catalogue and any enquiries.
 SANDHURST TV SERVICES (MAIL ORDER)
 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 8DU.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.
 SERVICE PAGES

SERVICE PAGES PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS
SERVICE PAGES
SERVICE PAGES

Thousands of service sheets in stock not listed here. Tape recorders, TV, radio, record players, transistors, amplifiers. All main chassis sheets @ $£ 3.00$ each. Manuals @ $£ 6.00$ / £11.00 each plus large stamped addressed envelope. Please mention name of model when ordering. All orders received 8 am any morning, posted off by 9 am- 1 o/clock same day. Please pass on to a friend, if not wanted. Free fault finding chart if wanted. CAR RADIOS: PHILIPS, MOTOROLA, RADIO MOBILE, HITACHI ETC.
C. CARANNA 71 BEAUFORT PARK, LONDON NW11.

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION

DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67610 series, A51 570/580/590X A51 161X, Sony types etc.

* Rebanded with new adhesives
* Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD., 120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 vears experience in television tube rebuilding.

T.V.'s FOR EXPORT

PHILIPS G8 and G9, DECCA, BUSH and FERGUSON
All sets with VHF/UHF Tuners and suitable for countries using the PAL system. We also supply the home market.

TELE SPARES LTD.

Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, ireland.
Telephone: Dublin 521211/521756.

If you see an advertisement
in the press. in print, on
posters or in the cinema
which you find unacceptable,
write to us at the address
If you see an advertisement
in the press. in print, on
posters or in the cinema
which you find unacceptable,
write to us at the address
If you see an advertisement
in the press. in print, on
posters or in the cinema
which you find unacceptable,
write to us at the address
If you see an advertisement
in the press. in print, on
posters or in the cinema
which you find unacceptable,
write to us at the address
If you see an advertisement
in the press. in print, on
posters or in the cinema
which you find unacceptable,
write to us at the address below.

The Advertising
Standards Authority.
The Advertising
Standards Authority. ASA Led. Dept 3 Brook House, Torrington Place, London WCIE 7HN

IRISH T.V. DEALERS

(PLEASE NOTICE)
LARGE SELECTION OF RECONDITIONED PRECISION-IN-LINE UHF-VHF COLOUR TVs, SOME WITH RE-GUN TUBES FITTED, "CABINETS RESTIRRED TO A1 CONDITION", PRICES START @ £60.00 VAT INCLUDED. ALSO $20^{\prime \prime} \& 22^{\prime \prime}$ RE-GUN TUBES IN STOCK, QUANTITY DISCOUNT, DELIVERY ARRANGED. VIDEO HEADS ALSO IN STOCK.
(EXPORT SPECIALISTS)

> | T.V. TRADE SALES | T.V.T.S. |
| :--- | :--- |
| E.D.I. HOUSE | aLso |
| CLOVER PLACE | |
| KYEMORE PK. WEST | COLLEGE ST. |
| DUBLIN 10. | KILLARNEY. |
| I: $0001-264139$ (Local calls 01-) | Tel: 064-33655 |

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £13, overseas (surface mail) £15 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated cordition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

