JULY 1985

11GHz Low-noise Amplifier
VCRs and the Mains Supply BBC Micro Test Pattern Program Making PCBs • VCR Clinic Approaches to TV Servicing DX-TV• TV Fault Finding

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

\star 40) different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required

* Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service. Also available with VHF Modulator.
Price of Kit
$\mathfrak{£ 7 0 . 0 0}$
Case ($100^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$) app.
$£ 7.40$
$£ 3.90$
Built_\& Tested in Case including Sound Module
£105.00

REPORT

Post/Packing $£ 2.50$
'TELEVISION' Add VAT 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT
£30.00. CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS
SUPPLY KIT $£ 4.20$ (Combined P\&P £2.20).
MK 4 (BATTERY) BUIIT \& TESTED $£ 58.00+£ 2.20$ P \& P.
MK 4 (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20$ P \& P
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS $£ 5.75$.
EASILY ADAPIED FOR VIDEO OUTPUT \& C.C.T.V.
GEC TELETEXT EXTERNAL ADAPTOR UNIT
Complete \& ready for use. Converts any TV into a Teletext Receiver with Infra-Red Remote Control (incl. 25 Button Handset) £130.00 p.p. $£ 3.00$
TELETEXT EXTERNAL ADAPTOR KIT (Less case) TEXAS with cable remote control $£ 120.00$ p.p. $£ 3.00$
THORN TX10, teletext
Mullard Decorder panel + Interface $£ \mathbf{5 5 . 0 0}$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{8 6 0 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and I week from receipt of order). ADD VAT 15\%

LOPTs, TRIPLERS, PANELS, TUNERS. SELECTORS ETC. SPECIAL OFFER GEC-Hitachi NP8CQ Chassis Colour TV Chassis, New ${ }^{\text {Boxed }} \mathbf{5 3 5 . 0 0}$ p.p. $£ 3.00$
SPECIAL OFFER Philips, Pye KT3 Series infra-red remote control handsets ex rental (untested) Teletext or normal versions available $£ 2.50$ p.p. 80 p (5 for $£ 10$ p.p. $£ 1.50$). CTX, K35 Teletext + Video $£ 5.00$ p.p. 80 p .
THORN 9000 Fault Finding Guide $£ 1.00$ p.p. 30 p.
SPECIAL OFFER NEW VALVES Branded makes
PCF80, PY88, PFL200, PCL 84 FOUR for $£ 2.00$. PL504 $£ 1.00$ p.p. $£ 80$ p
TXIO Remote \& Tuning control panel (1515) $£ 9.40 \mathrm{p}$.p. £1. 50
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver $£ 7.50$ p.p. $£ 1.50$
THORN TX10 Series Facia Control Panel with 8 position Channel Selector

PHILIIS LHF Modulator (Audio \& Video Input) £15.00 p.p. £1.00
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V Sound \& Vision. £29.50 p.p. $£ 1.20$.
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{~} 7.50$ p.p. 80 p.
PAL DECODER KIT (Video to RGB) for Monitors $£ 27.00$ p.p. $£ 1.00$
PAL ENCODER KIT (RGB to Video) $£ 18.50$ p.p. £1. 30 .
TELETEXT DECODERS New \& Tested Mullard VM 6101 £30.00, Texas XM11 $£ 40.00$, KT3 Tested $£ 30.00$, Untested $£ 5.00$ p.p. $£ 1.60$
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. £2.50 p.p. $£ 1.20$ 5 V Stab. Power Supply $£ 3.80$ p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator. Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $£ 12.00$ p.p. 84 p . Alum. Case $£ 2.55$, De Luxe Case $£ 6.80$ P.p. £1.40).) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p

PiHF SIGNAL STRENGTH METER KIT $£ 22.00$ (Viff version £24.00) Alum. Case $£ 2.55$. De Luxe Case $£ 7.40$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR KIT For Colour \& Mono with Panel
Meter Indicator - car be adapted for latest CRTs $£ 28.60$ p.p. $£ 2.80$.
BUSH A823 Convergence. Time Basc Panels $£ 5.00$ each. p.p. $£ 1.80$
BUSH 2718 BC610) series IF Panel $\mathbf{5 5 . 0 0} \mathrm{P}$.p. 90 p .
BUSH A816 IF Panel (Surplus) $\$ 1.00,5$ for $\mathbf{~} 4.00$.
GEC 2040 Convergence Panels, Decoder Panels, $£ 1.50$ p.p. $£ 1.80$.
GEC 2110 PANELS Frame $£ 8.50$ p.p. $£ 1.40$. Sound $£ 2.50$ (tested) p.p. 80 p .
GEC 20AX Switch Mr de Power Supply $\mathbf{£ 5 0 0}$, IF-Decoder $£ 12.50$ p.p. $£ 1.80$.
PYE 691-7 CDA Pansls. Makers tested stock. £6.00 p.p. $£ 1.45$.
THORN TX9 Panel.s ex factory for small spares. Includes I.Cs \&
Semiconductors etc. $£ 5.00$ p.p. $£ 2 .(0)$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. £10.00 p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $\mathfrak{£ 2 0 . 0 0}$ p.p. $£ 2.80$.
THORN TX10 T.B. Pancls salvaged ex factory. $£ 15.00$ p.p. $£ 3$. 00 .
THORN TX10 IF/Decoder Panels salvaged ex factory $£ 15.00 \mathrm{p} . \mathrm{p} . £ 2.00$.
THORN $3000 / 3500$ Power supply P.C.B. $£ 3.50$ p.p. 1 i. 00 .
THORN 8000/8500 IF/Decoder Panels salvaged $£ 3.20$ p.p. $£ 1.80$
THORN 9000 IF/Decoder Panels Salvaged. $\mathbf{E 5 . 0 0}$ p.p. fi. 60
THORN 9000 Series. Long panel facia unit incl. 6 Position Channel Selector \& Loudspeaker $\mathrm{E}^{6.00} \mathrm{~F} \cdot \mathrm{P}$. $£ 2.00$.
PHILIPS C8/G9 IF/Decoder Panels for small spares incl ICs $\mathbf{£ 2 . 5 0}$ p.p. $£ 1.60$ G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$ (tested). G11 PANELS, Power, Frame, IF, Decoder, £18.00 each. p.p. $£ 2.00$ (tested). GRUNDIG 8630 Series Varicap Tuners $£ 5.00$ p.p. $£ 1.00$
VARICAP. ELC1043/5 $£ 7.80$ p.p. 80p. Makers Controls PYE CT200 4PSN £7.50, BUSH 4PSN $£ 4.30$, DECCA 4 PSN $£ 5.80$, 6 PSN $£ 6.80$ p.p. 80 p . etc. BUSH "TOUCH TUNE" Varicap Control Z179, 2718 types $£ 3.80$ p.p. 95 p. VARICAP UHIF-VHF ELCZOON $£ 9.80$, BUSH $\mathbf{£ 7 . 8 0}$ p.p. 90 p
VARICAP VHF PHILIPS, $\mathbf{6} .90$. ELC $1042 £ 7.90$ p.p. 80 p
UHF/625 TUNERS, meny different types in stock. DECCA Bradford 5 position, MULLARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$.
TV SOUND IF Panels $\mathfrak{\text { £n. } 8 0}$ p.p. $£ 1.0$).
LOPT TESTER, service Dept approved $£ 15.90$ p.p. $£ 1.20$.
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins $80 p$.
BUSH, MURPHY 74 series..............58.50 R R.B.M. T20. T22

FERG, HMY, MARCONI, ULTRA DECCA Bradford (state Mod No)
14(x), $15(5)$) 1590 . 1591

GEC senes \& \& 2........................58.00 ITT CVC25.CVC30 serie

MURPHY 1910 to 2414 (iwin panel) 5
PHILIPS 170, 210, 3(0) series $\mathbf{8 7 . 6 5}$
PYE, INVICTA, EKCO, FERR
$368,169,569.769$ senes
DECC SPECIAL OFFER
DECCA 20/24, 1700), 20000, 2401 .
GEC 21143/Junior Fineline
PHILIPS 320 .
REM AK23 20640, 21010
PYE 791 -697 (state model no.)
PYE 725 (90 0°)

PHILIPSG9
PHILIPS 570.571
PHILIPS KT3.
THORN 30003500 SCAN EHT
THORN $8000,8500,8800$
£4.80 THORN 9000 to
THORN TX9.
.................

TRIPRS AVALLABLE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 80(0) (2 lead) EHT Tray $£ 2.80$ p.p. 80p.
6.3 V CRT Boost Transformers for Colour \& Mono $£ 5.40$ p.p. $£ 1.20$.

THORN TX10 focus control 88.80 p.p. 80 p .
THORN 8000 mains input choke £6.80 P.P. $£ 1.41$
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED IARGE SELECTION TESTED COLOUR PANELS POPLLAR MODELS TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE
Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St) (St Pancras, Bedford) W. Hampstead (Brit Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11
PLEASE ADD VAT 15\% TO ALL PRICES

Vol. 35, No. 9 Issue 417

COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 13$ in the UK, £15 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $\mathbf{£ 1 - 2 0}$ p inclusive of postage and packing.

QUERJES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

483 Leader

484 Letters
489 Big Foot
Les Lawry-Johns
Someone seems to be getting error prone. He might even end up in court.
490 Teletopics News, comment and developments.
492 11GHz Low-noise Amplifier

Hugh Cocks

Building and testing a low-noise amplifier for satellite TV reception in the 11 GHz band. The unit provides a gain of 25 dB or better with a noise figure of around 3 dB .
496 VCRs and the Mains Supply
Derek Snelling VCRs are prone to a number of faults due to defective mains supplies. Symptoms and remedies.
497 Approaches to TV Servicing
One can work through test procedures that will
One can work through test procedures that will
eventually reveal the causes of most faults. Or one can assess the symptoms carefully and take short cuts
based on experience. The latter course can save a great deal of time. Advice with examples based on common chassis.
499 Next Month in Television
500 The Lid off Microcomputers, part 3
Mike Phelan
This time a look at the basic system - CPU, memories, etc. - used in the Amstrad CPC464 microcomputer.
502 TV Fault Finding
Reports on TV faults and servicing from J. K. Potts, David Rainey, Mick Dutton, Philip Blundell, Eng. Tech., Stephen Howe and Malcolm Burrell.
506 VCR Clinic
Reports on video faults from B. Ross, Steve Beeching, T. Eng., Derek Snelling, John Coombes and Philip Blundell, Eng. Tech.
508 Long-distance Television
Roger Bunney
Reports on DX conditions and reception, news from abroad and notes on DX equipment.
511 Making PCBs
Malcolm Burrêll
A simple approach based on experience gained from producing boards for prototype equipment.
512 More on the Philips G8 Chassis

Dennis Apple, B.Sc.

Notes on servicing and fault finding. These sets can still give years of reliable operation if casefully serviced and adjusted.
514 Sonys and Suchlike
Nick Lyons
What have we done to deserve some of the odder problems that come our way? Sonys, a Contek portable and a troublesome monitor.
516 BBC Micro Test Pattern Program Patrick Kniveton, B.Sc.Eng. A program that provides most of the patterns normally produced by a TV pattern generator including a composite test card with circle.
518 Service Bureau
519 Test Case 271

OUR NEXT ISSUE DATED AUGUST WILL BE PUBLISHED ON JULY 17

HAVE MOVED
104 ABBEY STREET, ACCRINGTON, LANCS BB5 TEE.
TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
$A D D \quad 75 \mathrm{p}$ per order $P+P$ Goods are despatched on the day we receive your cable, service aids els e.g. order. If for any reason we aeosible. We try our best coils please allow $£ 1.30 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and efficient service. V.A.T. (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you cost. First Class Mail is used service. Please ask if what you need is not listed - we IAT to possibe. Addere it motice to help. Prices are subject to change without states zero rate.

TRADE ANNOUNCEMENT

LARGE QUANTITIES AVAILABLE OF THE FOLLOWING:-

FERGUSON 3V16/3V22 VHS VIDEOS THORN 8800/9000/9600 COLOUR TV's
 MAINLY REMOTE CONTROL

 HAND UNITS NOW AVAILABLEMINIMUM PURCHASE 5 UNITS LOWEST PRICES IN U.K.
$\star \quad \star \quad \star$
TELEPHONE
BOB MUNSON 01-985 6111

**ぇぇ GOOD NEWS FOR YOU! $\star \star \star \star$ \star HUSSAIN CENTRAL TV LTD NOW ALSO \star \star COLLECTING FROM RUMBELOWS TO OFFER

LATEST T.V.'s NOW IN STOCK

 G11 TELETEXT \& REMOTE, ITT REMOTE CONTROL DECCA 80/88/100 SERIES, THORN REMOTE CONTROL THORN 9800/9600/9000/8800/8500/8000

[^0]
NEWS FLASH

G11 TUBES TESTED £20.00 A56-120 REGUNNED TUBES £15.00

HOT LINE BIRMINGHAM
021-622 1023
021-622 1517 48/52 PERSHORE STREET, BIRMINGHAM B5 4RR
*

HOT LINE LONDON	HOT LINE SOUTH WALES
$01-807$ 4090	O291-271000
01-884 1314	UNIT 4,
CEDAR HOUSE, NOBEL ROAD,	BULWARK INDUSTRIAL ESTATE,
ELEY ESTATE,	CHEPSTOW, GWENT

WE WILL ONL QUALITY, BRAND REPUTATION C	SUPPLY TOP COMPONENTS. NTS WITH US	G.G.L.COMPONENTS108 SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 $9 E Y$ 108 SCO PHONE (0228) 20358/39693				BUY WITH					
INTEGRATED	TYPE PRICE ($\mathbf{(1)}$	TYPE PRICE (E)	TR	TYPE PRICE	TYPE PRICE	UNE OIP TR.					
CIRCUITS	SAF1039P 4.55	TCA270................ 1.55	SISTORS	BD235 32	BU826A 3.20	DECCA 8095					
TYPE PRICE (¢)	SAS560S 1.95	TCA800.................... 5.45	TYPE PRICE	BD236 43	R2010B........... 1.45						
AN214.................. 1.95	SAS570S 1.95	TCA940................ 1.55	BC107 14	BD237 40	R2540............ 2.35	ITCVC 20 \qquad 7.75		DIODES			
AN301....................... 3.45	SAS580S 2.40	TDA1002................... 1.50	BC108 14	BD238 39	TIP31C 46						
AN303..................3.45	SAS590S 2.40	TDA1003............... 2.80	BC109 14	BD410 50	T1P32C 47	ITT CVC 458.85		TYPE ${ }_{\text {BY127 }}$ PRICE ${ }^{\text {c }}$			
AN305..................3.50	SL901 5.65	TDA1004A 3.95	BC141 26	BD434 50	TIP33................. 80			${ }_{\text {BY13 }}$ BY127			
AN7110.................1.93	SL907 7.35	TDA1006A 2.95	BC142 23	BD437 70	TIP34 95	PHILIPS G11............... 13.50		BY164 40			
AN7114E 2.33	STK0039...............6.45	TDA1035T 2.75	BC143 25	BD438 78	TIP41C 48	PHILPS KT3............ 9.95		BY179 … …. 65			
AN7115................. 2.37	STK0040 5.95	TDA1037...............1.95	BC147 09	BD707 1.05	TIP42C 48	PHILIPS K30 16.50		BY210/800 30			
AN7116................ 2.35	STK0050 7.50	TDA1044.,.............3.10	BC148 09	BF194............... 12	2 TIP47................. 75	RBM T20A 11.50		BY223 $\quad .86$			
AN7145................3.25	STK0777.25	TDA1170............... 1.80	BC157 10	BF195............... 13	3 TIP2955............. 70	THORN 1615............ 9.75		8Y227M			
BA312..................1.25	STK078................ 7.45	TDA1270...............2.20	BC158 11	BF196................ 11	1 TIP3055............. 70	THORN 1690/19.05		BY229/600 . . ${ }^{\text {B7 }}$			
BA511A 1.95	STK0829.75	TDA2002................1.85	BC159.............. 11	BF197............... 11	1 2N3055............. 50						
BA521 1.85	STK415 9.66	TDA2003...............2.33	BC182L............. 11	BF241............... 15	5 2N3773..........3.45	SONY SPARES		${ }_{\text {BYX10 }} \ldots$			
BA532................... 1.95	STK430 7.75	TDA2004...............3.15	BC183L............. 11	BF256LC............ 25	15/80H........... 2.25			BYX55/600 26			
BA536 2.55	STK433 6.50	TDA2006...............2.25	BC184L............. 11	BF258............... 25	5 15/85R............. 2.25	C5/C7 Rewind Kit....... 4.85		BYX71/600 ... 93			
HA1166................ 2.65	STK4356.75	TDA2020...............2.95	BC212L............. 10	BF259............... 26	6 2SA771.......... 2.35	C6Rewind Kit 4.35		SKE4F206 . . 80			
HA1322................ 2.10	STK437 7.25	TDA2190M 4.95	BC213L............. 10	BF337............... 28	8 2SA 835.......... 1.55			$\begin{array}{ll}\text { SKE5F3/10 } & 1.45 \\ \text { W }\end{array}$			
HA1338................ 2.78	STK439 7.55	TDA2522............... 1.80	BC237 11	BF338............... 30	2SB618.......... 2.45			W005 55			
HA1339................ 2.40	STK441 8.50	TDA2523............... 2.25	BC327 11	BF458............... 30	2SC 867A 3.25			N $4001-7$ N5401-8			
HA1342A 2.20	STK4597.35	TDA2530............... 2.10	BC328 12	BF459............... 36	6 2SC 10344.85						
HA1366WMR 1.95	STK461 7.95	TDA2532............... 2.20	BC337 11	BF757.............. 75	5 2SC 1061 1.15	ANTI-SURGE FUSES					
HA1370................ 2.75	STK463................ 9.30	TDA2540............... 1.95	BC338 10	BFR90 1.60	0 2SC 1114 $\ldots4 .75$			CVCNS MOTORS 5.00			
HA1374................ 2.45	STK465 9.95	TDA2560............... 1.80	BC547 10	BR100 18	8 2SC 1124........... 97	AS20MM 80MA 2.75		9VCN. 5.00			
HA1377................ 3.80	TA7193P 4.30	TDA2581...............2.15	BC548 10	BR101 32	2 2SC 1316........3.20	100, $160,200 \mathrm{MA}$........1.70		12VCW 5.00			
HA1388................ 4.20	TA7202 2.25	TDA2582............... 2.20	BC557 10	BR103 55	5 2SC 1413A...... 3.95	315, 400, 500, 630...		13.2 VCNW .4 .85			
HA1397................ 3.90	TA7203P2.25	TDA2591 2.30	BC558 10	BT106............. 1.15	5 2SC 1739......... 2.45						
LA1201 1.75	TA7204P 1.90	TDA2593...............2.30	BD124M 1.05	BT116............. 1.30	30 2SC 1942 2.95						
LA1230 2.30	TA7205AP 1.40	TDA2594............... 2.95	BD131 33	BT151/.	2SC 1962......... 1.65	2, 3.15, 4, 5A 1.35		G8 TRANSDUCTOR 225			
LA1365 2.45	TA7208P 1.95	TDA2600...............5.95	BD132 33	800R 1.10	0 2SC 257.......... 2.45			G8 ON/OFF SW. 1.40 G1IENCDil 1.65			
LA3350 1.65	TA7222AP 1.85	TDA2611A 1.50	BD201 80	BU126 1.78	8 2SD 588A 1.97	VALVES					
LA4031 2.45	TA7223P............... 2.85	TDA2640...............2.40	BD202 70	BU205 1.42	2 2SD 725			GliLin Coil . 1.80			
LA40322.30	TA7227P 2.95	TDA3560...............5.10	BD203 70	BU208A 1.45		PCF802.................... 90		G11 Bridge Coil 1.35 G11 EHT Lead. 225			
LA4101 1.50	TA7310................ 1.55	TDA3561A5.35	BD204 83	BU208D 1.85				GYEIF GainMOD 7.85			
LA4102 1.95	TA7313................ 1.45	TDA3562A 5.50	BD222 50	BU326A 1.48		PCL86.......................... 93		On/OtSW - ${ }^{\text {a }}$			
LA4400 2.50	TAA550................... 43	TDA4600............... 2.85	BD225 55	BU407 1.12		PCL504 1.50		THORN ON/OH SW 1.00			
LA4430 2.45	TBA120AS 95	TDA9503...............2.35	BD232 50	BU500 1.80		PL508........................ 2.20		CUT OUT 2A 1.95 IXIO FOCUS UNIT 8.95 VCR Pilot Bulb . . .70			
LA4440 3.55	TBA120SB 90	UPC555C 70	BD233 37	BU508A 1.95	5 Sony SG613	PL509/519					
LA4460 2.95	TBA120T .-............. 1.25	UPC566C2.10	BD234 40	BU526............ 2.	6533.............. 8.70	PY500A 1.95					
LA4461 \ldots.............. 2.95	TBA120U 1.00	UPC585C 1.40			PUSH BUTTONS/		Available also a range of 2SAB/C/D Transistors. Phone or write for lists.				
MB3712 2.30	TBA520................ 1.30	UPC1031H 2.95	DECCA $30(400 / 400) 350 \mathrm{~V}$.............. 2.95								
ML231B 2.35	TBA540................... 1.37	UPC1156H 2.45	DECCA $80-80 / 100(400) 350 \mathrm{~V}$		DECCAITT 6 way 7.95						
ML232B................... 2.55	TBA550.................. 2.45	UPC1181H 2.20	PHILIPS G8(600)300V 2.20		PHILIPS G8 S/L 14.90						
ML237B 2.50	TBA560................... 1.60	UPC1182H 2.20			PS G8S/Q... 12.00						
ML238B4.22	TBA720A 2.65	UPC1185H 3.30	PHILIPS G9(2200)63V				ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELIVERY BY RETURN ON ALL STOCK ITEMS.				
SAA1124 3.45	TBA750 2.45	UPC1230H 3.95			HITACHI 4 way8.95						
SAA1125 4.70	TBAB00................... 80	UPC1238H 2.35	PYE 691/7(200-300)350V RBMAB23(2500/2500) 30 V $\mathbf{2 . 1 0}$								
SAA1250 3.85	TBAB10................ 1.35	UPC1350C 4.50	THORN3500 (175/100/100/		ITT CVC8/9 12.80						
SAA1251 4.95	TBA820................ 1.40	UPC1353C 2.60									
SAA5010 5.10	TBA890............... 2.95	UPC1365C	400)350V 2.25		$1043 / 05$......... 8.95 U321						

The World of .

"'Tele Panels"

52 Mount Pleasant Road, Chigwell, Essex. Telephone 01-729 0506.
COMPARE OUR PRICES!
COMPARE OUR SERVICE

6 WAY TUNER SWITCH BANK
3.50
1.75
5.00
4.50
P.O.A.

Other makes of panels - telephone for prices!
TRIPLERS FOR ALL MODELS $\mathbf{£ 3 . 0 0}$ SPEAKERS $£ 1.50$
P+P 1 PANEL £1.50 2 PANELS OR MORE £3.00
CASH WITH ORDER - PLEASE
POST OFF YOUR CHEQUE NOW! \& YOUR PANELS SENT BY RETURN OF POST!!!

FREE CAREER BOOKLET

Train for success, for a better job, better pay!
Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.
Learn in your own home, in your own time, at your own pace through ICS home study, used by over 8 million already!
Look at the wide range of opportunities awaiting you. Whatever
your interest or skill, there's an ICS Diploma course there for you to use.
Send for your FREE CAREER BOOKLET today - at no cost or obligation at all.

Please send FREE DETAILS for the courses ticked above.
Name
Address
P. Code

Dept. EGS75, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568/9 or 041-221 2926 (all hours).

Get on the hot-line today!
> suberior qualir tuees
> 428 DELTA RE-BUILDS 4288777 most types of Inline Re-builds or new ex-stock

- 2 YEAR WARRANTY

Deita Rebuilds Inline Rebuilds

Up to 19"	Up to $22^{\prime \prime} \ldots \mathbf{E 4 0}^{\prime \prime}$
Up to 22' ${ }^{\prime \prime}$................. $\mathbf{£ 3 0}$	Up to $26^{\prime \prime}$. $\mathbf{£ 4 5}$
Up to 26" \ldots............ £34	A56-540x £56
110° up to $22^{\prime \prime}$.......... £34	A66-540x £58
110° up to $26^{\prime \prime}$......... £38	Bonded Coil . . . $+ \pm 5$
Low focust£2	
A47342 New f28	ALL SIZES OF
17FHP New £30	NEW MONO TUBES
470EHB New £30	AT COMPETITIVE PRICES
Delta only. Less 5\% 5+	

IN LINE TYPES EX-STOCK SELECTION Not rebulos

370 HFB-A37-590.	£45	560 DMB	£62
370 HUB	¢45	AXT 56-001.	£62
AXT 37-001	£45	660 AB	£65
420 CSB	¢45	A67-701	£65
420 EDB-A42-590	£45	670 CZB	£65
420 EZB	£45	A66-540	£65
420 ERB	£45	420FSB	£55
470 KUB	£50		
510 UFB/A51-590	$£ 55$	CARRIAGE $£ 5$ Singles. 2-3 $£ 10.4 \mathrm{f12}$ 10 £15. $10+$ Carriage paid	
510 VSB	£60		
AXT 51-001	E60		
560 DYB-560 DTB	E62	EXCLUSIVE OF VAT	
560 EGB	¢ 62	TERMS Cash with order	
560 CGB	£62		

QUANTITY
DISCOUNT AVAlLABLE

* OUR TECHNICAL DEPT WILL ADVISE YOL ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES
Ask for details DELIVERY: Ex stock items immediate dispatch on receipt of order THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterworth or Betty Ford ON: 051-428 8777

EAST CORNWALL COMPONENTS

Valves		TRANSISTORS＋DIODES		Price（f）	Type Price（f）	Type	Price（E）	Type	Price（E）	Type \quad P	Price（E）	Type	Price（f）	Type	Price (E)	Trpe	Price（f）
Type	Price（E）	Type Price（E）	Type														
DY802 ${ }_{\text {OY } 8687}$	0.88	AC127 0.30 AC128 0.30		${ }_{0}^{0.10}$	$\begin{array}{ll}\mathrm{BC} 302 & 0.32 \\ \mathrm{BC} 303 & 0.32\end{array}$	${ }_{\text {BD244A }}$	${ }_{0}^{0.65}$	${ }^{\text {BF258 }}$ BF259	0.30 0.32	BTY 101300 BT $10+1500$	1.125	BY $\times 36150$ $\mathrm{BY} \times 366500$	$\begin{array}{r} 0.22 \\ 0.028 \end{array}$	TIC106A		2AC1449	
DY86887	0.75	AC128 0.30 $A C 128 \mathrm{~K}$ 0.34		${ }_{0}^{0.14}$		${ }^{88375}$		${ }_{\text {BF262 }}^{\text {BF29 }}$		－BT107／500							－0．63
ECC8\％	0.65	AC128K 0.34 AC132 0.55 A	${ }_{\text {BC113 }}^{\text {BC114 }}$	0.12	${ }_{\text {BC308A }} \quad 0.10$	${ }^{\text {BDA }} 34$	${ }_{0.68}$	${ }_{8}{ }^{\text {BF2623 }}$	0.30	BT102500	1.65	BYX493300	0.47	TP3	0.40	2SC1758	${ }_{0} 0.68$
есС83	1.10	AC141 0.26	BC115	0.12	${ }^{\text {BC323 }}$［ 0.0 .99	${ }^{\text {B0436 }}$	0.68	BF270	0.30	BT106	1.50	${ }^{\text {BY }} \times 5553500$	023	T1P3	0.60	${ }^{25 C 1909}$	1.20
ECC84	0.65	${ }^{\text {AC141K }}$	－${ }_{\text {BC116 }}^{\text {BC117 }}$	0．15	$\begin{array}{ll}\text { BC327 } \\ \text { BC328 } & 0.14 \\ & 0.14\end{array}$	${ }_{\text {B }}^{\text {BDa } 38}$	${ }_{0}^{0.76}$	${ }_{\text {BF273 }}^{85271}$	－ 0.18	${ }_{\text {BT109 }}^{\text {BT109 }}$	1.30 1.18		0.33 1.18	${ }_{\text {TIP3 }}^{1 / 2}$	0.63 0.72	${ }^{2}$	－0.30 2.88
ECC	0.90	$\begin{array}{ll}\text { AC142 } & 0.26\end{array}$	BC118	0.17	${ }_{\text {BC337 }} \quad 0.12$	BDA39	${ }_{0.68}$	BF274	0.32	BT116	1.25	BYz12	0.42	TIPAIC		${ }_{2 S C 1953}$	0．74
ECC88	0.95	AC142K 0.48	ВС119	0.30	вс338 $\quad 0.12$	BD507	0.48	8F323	0.92	BT119	3.62	C106D	0.80	TIP42A	0.52	${ }_{2 S C 1957}$	0.76
ECF80	0.95	$\begin{array}{ll}\text { AC151 } & 0.45\end{array}$	BC125	0.12	$\begin{array}{ll}\text { BC350 } & 0.14\end{array}$	BD508	0.53	BF336	026	BT120	3.60	E1222	0.40	T1P4	0.60	2SC1969	2.88
ECH81	0.75	${ }^{\text {ACC152 }}$	BC140	0.28	BC440 $\quad 0.30$	BD509	0.54	BF337	0.26	BT121	3.02	E5024	0.30	T1P170	0.88	2 SC 2028	0.73
ECH84	0.75		BC141	0.42	${ }^{8 C 441} \quad 0.32$	BD510	0.48	${ }^{\text {BFF338 }}$	0.26	BTT138／500	1.30	GET872	0.48	TIPP9555	0.60	${ }_{2}{ }^{2 S C 2029}$	2.10
ECL82	0.75	AC176K $\quad 0.46$	${ }^{8 C 142}$	0.30	${ }^{8 C 461}$	B55	0.56	BF535	0.42	BT151／560R	090	1174	0.04	TIP305	0.60	${ }_{2}{ }^{\text {SCC2 }}$	1.05
ECL86	0.98	${ }^{\text {A C } 187}$	${ }^{\text {BC }} 143$	0.30	${ }^{\text {BC5447 }}$	B55	． 0.65	${ }^{\text {BFF363 }}$	0.82	8T151／30	1.15	ITT20	0.11	${ }^{T 1 / 543}$	0.32	${ }^{25 C 2093}$	73
EF8	0.65	AC187K	${ }^{\text {BCla }}$	0.08	${ }^{\text {BC5488 }}$	B0099	1.25	${ }^{\text {BFF371 }}$	0.24	Brioca	280	MEOA02	0.20	TS	0.40	${ }_{25}^{252098}$	2．920
	1.60			${ }_{0}^{0.08}$		BD718	2．38	BF422	0．38	${ }_{\text {BUl }}{ }^{\text {a }}$		MEU21	0.60	TIS91	028	${ }_{2 S}{ }^{\text {SC2 } 2166}$	3.20 1.20
EFF183	0.75	${ }_{\text {ACY } 40}{ }^{\text {a }}$	A or B	0.10	ВС550C 0.18	B0x32	2.10	BF450	0.38	BUl0s	1.20	M 4400	1.25	2TX108	0.12	${ }_{2 S C 2314}$	0.80
EF184	0.75 0.94	ADP142	${ }^{\mathrm{BCC} 149}$	0.09	${ }^{\text {BC5557 }}$	${ }^{\text {BFP15 }}$	0.32	${ }^{8 F 457}$	${ }_{0}^{0.33}$	${ }^{\text {BU105 }}$	1.56	MJ2955	0.90	27x109	0.12	${ }_{\text {2SC2335 }}$	1.50
EL34	3.25	ADias A．96	${ }_{\text {BC158 }}^{\text {BC15 }}$	（ 0.10		${ }_{\text {EF119 }}^{\text {8F } 17}$	0．54	${ }_{\text {BFas }}$	$\stackrel{0.36}{0.4}$	${ }_{\text {BU108 }}^{\text {Bul }}$	1.75	MJJ．${ }_{\text {M }}$	${ }_{0}^{1.60}$		0.28 0.05	${ }_{2 S}^{2 S C 2371}$	${ }_{2} 0.90$
El84	0.69	AD161 $\quad 0.42$	BC159	0.10	BCY70	BF 120	0.38	BFR39	0.22	BU126	1.25	M，JE340	0.54	IN40	0.05	2SC2752	． 60
	7.85	AD162 0.42	BC160	0.30	BCY7		0.40		0.22		1.80	M．JE370		IN400	0.06	34	64
EM87	2.55	AD161／AD162	BC161	0.30	$\begin{array}{ll}\text { BCY72 } & 0.18\end{array}$	BF125	0.42	BFR4	0.22	BU204	1.35	M． 3 E520	0.48	1N4006	0.07	48	30
EYP6／8	0.67	Af	BC 1	0.12	${ }^{\text {BC210 }}$		0.38		O．30		30	M．JE2955		N4007	07		
	1.65	$\begin{array}{ll}\text { AF114 } & 2.10\end{array}$	${ }^{\text {BC169C }}$	0.10	$\begin{array}{ll}\text { BCZ211 } & \begin{array}{ll}1.45 \\ \text { BD124P }\end{array} \\ 0.80\end{array}$	${ }^{\text {BFF } 152}$	0．16	BFR61	－0．32	${ }^{\text {BU }} 102068$	1.75	MJE3055	0．70	N41	0．05	2S．500	5.20
${ }_{\text {PCCC85 }}$	0．50	$\begin{array}{ll}\text { AFF115 } & \\ \text { AF116 } & 210 \\ \text { 2．10 }\end{array}$	${ }_{\text {BC170 }}^{\text {BC170 }}$	O．12	$\begin{array}{ll}\text { BD124P } \\ \text { BDI30Y } & 0.80 \\ 0.68\end{array}$	${ }^{\text {BF15 }}$	O．40	${ }_{\text {BFR888 }}^{\text {BFR6 }}$		BU208A	1.63	MRF475	2.50	in5402	0.15	${ }^{\text {2SKK134 }}$	80
PCC89	0.74	AF117	${ }_{\mathrm{BC} 171}$	0.10	${ }_{\text {BD131 }} \begin{array}{ll}\text { B13 } & 0.34\end{array}$	BF158	0.22	BFR90	1.72	BU20802	2.05	MRF479	5.20	IN5		${ }^{3} 126$	
PCC189	0.85	AF118 0.85		0.10	BD132 0.34	BF159	0.24	BrI41	0.38	BU32	1.75	MRP47	10.00	in540	0.18	3N211	52
PCF80	0.75	AF121 0．62		0.08	BD131／BD132 0.95	BF160	0.23	Br／43	038		1.65	OA47	0.10	in54	20	3SK45	76
	1.25	AFt24 0.48	BC172	0.08	$\begin{array}{ll}\text { BD135 } & 0.32\end{array}$	BF167	0.30	8FW	0.79	BU407D	1.80	OA30	0.08	15920	0.08	3SK88	0．66
${ }^{\text {PCFF200 }}$	1.95	AFP125 0.48	A or ${ }^{\text {8 }}$	0.12	80136 80173	BF173	0.25	BFW4	0.76	Bux 80	${ }^{3.70}$	OA91	0.09	2N	0.55	3SK1	20
PCF801	1.45	AF126 0.48	BC177	0.20	80137 0.36	BF177	0.42	$8 \times \times 29$	028	BUY2	1.75		0.18	2N70			
PCF802	1.00	AF127 0．48	BC178A	0.2	80138 0.38	BF178	0.30	BF $\times 30$	0.30	BUY69A	2.60	Aaz	0.06	2 N		I．c．so	KETS
${ }_{\text {PCFF }}{ }^{\text {a }}$	1.20		Bс182	0.09	BD139 0.38 BD140 0.38	${ }^{\text {BFF }} 189$	032		3．56	BUY698	1.98	OA202	2．15	${ }^{2 N 2906}$	24	Dil to Dil	
${ }_{\text {PCLC83 }}$	0.90 2			${ }_{0}^{0.09}$			${ }_{0} .35$	BFx85		BY118	${ }^{0} 1.18$	${ }^{0} \mathrm{C} 26$	1.70	${ }_{2}{ }^{\text {N305263 }}$	0．40	8 8 in 0.08	0．70／10
${ }^{\text {PCLI84 }}$	1.30	AF279S $\quad 0.75$	A, B or C	0.09	8D145	8F182	0.32	BF×86	0.26	8 Br 22	0.68	$\bigcirc \bigcirc$	1.50	2 N 3054	0.56	16 pin 0.1	$1.00 / 10$
${ }_{\text {PCLL865／85 }}$	1.15 1.35 1	AL100 2.50 Al 102 5.50 1850	${ }_{\text {BCB or }} \mathrm{B}$	${ }_{0}^{0.09}$	$\begin{array}{ll}\text { BD150A } & \mathbf{0 . 5 1} \\ \text { BD159 }\end{array}$	${ }_{\text {EF }}^{\text {BF183 }}$	0．32		0.65	${ }_{\text {BY126 }}$		OC29 OC35	2.47 1.75	${ }_{\text {2N305 }}$	－0．45	22 pin 02	$1.95 / 10$
PD500	3.75	$\begin{array}{ll}\text { ALl13 } & \\ \text { Al200 }\end{array}$		0.08	${ }^{\text {BD } 160} \quad 1.65$	BF185	0.32	BFY50	0.21	BY133	0.16	ОС36	1.75	$2{ }^{23704}$	0.10	40 pin 0.3	4． $10 / 10$
${ }_{\text {PfL200 }}$	1.35	ASY80 $\quad 1.75$	A，B	0.12	BD165 0.45	BF1	0.08	${ }^{8 F 5} 51$	0.21	BY135	0.25	${ }^{\text {OC42 }}$	0.72	${ }^{2} 3708$			
PL33	1.50	AUl10 1.40		0.10	BD175 0.60	BF195	0.10		0.21	BY164						Capact	
${ }_{\text {PLL }}^{\text {P131 }}$	1.45	$\begin{array}{ll}\text { AY102 } & \\ \text { BA102 }\end{array}$		0.10	$\begin{array}{ll}\text { B18182 } & 1.00 \\ \text { BD183 }\end{array}$	${ }_{\text {BF197 }}^{\text {BF } 196}$	O．10	${ }_{\text {BFFY9 }}$	0．90	BY179	0．87	${ }^{\text {OC44 }}$	0．72	${ }^{2} \times 137$	2.70	Metallis sed	Paper
${ }_{\text {Pl82 }}$	${ }_{0}^{0.85}$		${ }_{\text {BC208 }}^{\text {BC27 }}$	－1．15	$\begin{array}{ll}\text { BD183 } & 1.10 \\ \text { BD184 } & \\ 1.20\end{array}$	${ }_{\text {BF } 198}$	S． 0.14	${ }_{\text {BrY900 }}$	1.34	${ }_{\text {BY184 }}$	0.80	OC7	0.50	2N3909	${ }_{0} 0.16$	$2 \mathrm{2F} 600 \mathrm{~V}$	AC 24p
PL83	0.65	BA121 0.40	BC212	0.09	BD201 0．72	BF199	0.16	8R100	0.20	BY187	0.72	OC72	0.52	2 N 294	0.48	10nF 100	DC 22 p
${ }^{\text {PLP4 }}$	0.75	BA129 0.38	A B or	0.10	BD202 0.87	BF200	0.26	BR101	0.44	BYı	4.75	OC8	0.68	2N61		F500V	O
Pl95	2.20	${ }^{\text {BAI488 }}$	${ }^{\text {BC212L }}$	0.08	B224 $\quad 0.80$	${ }^{\text {BFF222 }}$	0.48	${ }^{\text {BR103 }}$	0.58	BY198	0.4	OC200	2.46	${ }^{\text {2N6 } 126}$	88	FF 300	${ }^{\text {AC }}$ AC 320
${ }^{\text {PLL508 }}$	240	EAA54 0.08 BA155 0.10 8		${ }_{0}^{0.109}$	$\begin{array}{ll}\text { BD222 } & 0.880 \\ 8 D 225\end{array}$	${ }_{\text {cke }}$	0.16		${ }_{0}^{1.76}$	BY206	0．24	${ }_{\text {ORP12 }}$	2．85	2SC49	1.60 0.65	200 nF	
P1509／519	5.95	${ }_{\text {BA156 }}{ }^{\text {BAPO8 }}$	A or B	0.10	${ }_{\text {BD232 }} \quad 0.45$	${ }_{\text {BF } 240}$	0.20	BRY56	0.42	BY207	0.24	R20088	1.50	${ }_{2 S C 1172 Y}$	2.90	470 nF 1	D
PY88	1.80	8A157 0．28	BC213L	0.10	BD233 $\quad 0.60$	BF244	0.20		0.86	BY21044	0.25	R20108	1.52	${ }^{2 \mathrm{SC1} 173 \mathrm{Y}}$	0.82		60p
PY500A	2.40	BA164 0.14	A or 8	0.10	BD234 0.62	BF244	026	8SS17	0.56	Br 210600	0.26	SHG	0.40	${ }^{2 \mathrm{SCC} 1302}$	40	HV Disc Co	cramic（t）
026	1.90	${ }^{\text {B8104B }}$	${ }^{\text {BC238 }}$	0.12	D235 ${ }^{\text {20，}}$	${ }_{\text {BEF24AC }}$	0.28	${ }_{\text {BSx }}$	0.92	${ }^{\text {Br223 }}$		边	1.78	${ }_{2 S}{ }^{\text {Sc }}$	0． 50	dvisecor	\％
UC182	1.70	${ }_{881056} \quad 0.48$	BC239C	0.14	BD237 0.65	BF245A	0.28	BS $\times 20$	0.34	8イ227	0.26		0.40	2 SC 1	0.92	8kV 10	56.
${ }_{\substack{656 T}}^{6597}$	1.75	881108 0.42		0.12	88238 0.56 0241 0.50	${ }^{\text {BF254 }}$	0.15	${ }^{\text {BS } 5 \times 79}$	0.62	${ }^{\text {BY229 }}$	0．30	${ }_{\text {THC4 }}$	0.45	${ }_{2} 2 \mathrm{CC} 1$	1.40 1.70 1.0	82	．
${ }_{3051}$ 6St	1．60			－	$\begin{array}{ll}\text { BD241 } & \\ \text { BD243A }\end{array}$	${ }_{\text {BF257 }}^{8826}$	${ }_{0}^{0.32}$	${ }_{\text {BT }}$	${ }_{0}^{0.29}$	8Y238	年0．68	－	（0．78	－${ }_{\text {2SClia }}$	2.70 1.45	${ }^{180}$	－

EAST CORNWALL COMPONENTS 119 HIGH STREET WEM

SHROPSHIRE SY4 5TT TEL： 093932689

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake

01-261 5897

Please note that the telephone numbers above are for contact with the advertisement departments only. Editorial enquiries should be sent to the editor at the address given on page 473.

OBSCURE BRANDS

Many thanks to several readers who have provided information on Sovereign TV. We will be reporting next month. We have also received letters asking about Sonatel TV but have been unable to trace any source of spares, data etc. Can anyone provide information on this brand?

A DIFFICULT MONTH

Our apologies for any shortcomings this month. We've been involved in an office move (the address remains the same) which hasn't helped exactly. More seriously Dave Davies, who does our technical drawings, is in hospital. We are sure all readers will join in wishing him a speedy recovery.

FRONT COVER

This month's cover photograph shows a night scene at The London Teleport, British Telecom International's satelliteearth station in the Docklands. The Teleport transmits TV channels to cable networks in the UK and continental Europe. Our thanks to BTI for permission to reproduce the photograph.

Reflections at Show Time

This year's radio and TV trade shows were not noteworthy for displays of innovatory consumer electronics products. But then what should we expect? You can hardly have major advances on an annual basis. For the present it's stand still time, though business appears to have been good. What lies ahead? Well, there must obviously be satellite TV receiving equipment to sell once DBS services have started, but for the present the satellite TV equipment field is very much a specialised one, with small batch production. One impression left behind is of the overwhelming dominance nowadays of the Japanese in the consumer electronics field. Japanese manufacturers certainly had a good year in 1984 - it's been company reporting time. As mentioned last month, Matsushita had a record year. Since then Hitachi have reported profits up 37 per cent. Mitsubishi Electric profits up 52.3 per cent, Sharp profits up 21.5 per cent and Toshiba profits up 38 per cent, all on substantially increased turnover. These profit/turnover increases are for the parent companies however and cover a wider field than just consumer electronic products. In this connection it's perhaps more relevant that JVC, which is predominantly a producer of consumer electronic products, managed a profit increase of only four per cent on turnover up by 18 per cent. Stiff price competition in the VCR field was one of the main factors blamed for this relatively poor result.

Japanese manufacturers have had a good run for their money. It looks as if they will do well again in 1985. This time the extraordinary thing is a sudden explosion in consumer demand in China, where over seven and a half million TV sets (a market size similar to that of Japan itself) are expected to be sold this year. The market is on Japan's doorstep, but it could well be an unpredictable one - demand has also been high recently for the whole range of domestic electrical products, from refrigerators and washing machines to pocket calculators. China is at present running a trade deficit and it's unlikely that the authorities will allow the situation to deteriorate to any marked extent. Furthermore the increased demand has been fuelled by an explosion of credit, which is unusual to say the least in a communist country. The central bank has expressed concern. There is of course a way around the trade ceficit problem - another traditional Japanese ploy. This is to start up plants in the Chinese home market. Several joint venture projects have already been announced, by Philips as well as by Japanese manufacturers. It's a way of ensuring continued presence in a particular market, but one wonders how successful the ploy is financially. Japanese TV and VCR plants in the UK presumably exist primarily to guarantee a presence in the large EEC market, but they don't seem to have been wildly successful on a trading profit basis.

Internationally however fate has smiled upon the Japanese electrical manufacturers. When the European market reached saturation a couple of years ago there was a sudden increase in US demand. Now that the US market has turned flat the Chinese are clamouring for Japanese products. For how long can such a run of luck last? No sales chart has ever shown indefinite rising growth, and at some stage a halt to the rise is bound to occur. The developing world could certainly take a lot more production, but could it pay for this? One thing the Japanese expect is payment (you don't see Japanese banks lending billions upon billions to shaky S. American regimes - they leave that sort of thing to US and UK banks!). There is also the prospct of increased competition from Korea, which expects to export some two million VCRs over the next twelve months. We shall be seeing some of these in the UK, and they will sell at highly competitive prices. But Japanese electronics firms have managed to maintain their position despite competition from a number of lower cost producers in the far east. It will be interesting to see how the situation develops. After all Korea put the Japanese shipbuilding industry out of business many years ago now. But shipbuilding and steel manufacture are at the low-technology end of modern manufacturing. With consumer electronics the situation is rather different: the Japanese now dominate the techoology, while the sheer size of their investment in modern plant would be hard to match. For the time being the Japanese lead in the field of TV and VCRs, but these are now mature markets in every sense. Product sales levels have reached saturation point in most markets, while technical development seems to have reached the end of its present phase. Money wouldn't have been poured into the FS tube if flat-screen displays were likely to be competitive, in terms of performance and price, in the foreseeable future, while digital TV doesn't for the present seem to offer much by way of improved performance. The field memory will give trick performance of the sort we're used to with VCRs, but will consumers want such features? One field that does offer scope for development and increased business is satellite TV of course.
In this connection the government's decision to relax the regulations on satellite TV reception in the UK is a curious one. Unnecessary restrictions should certainly be removed, but an odd situation could develop. Just suppose that a reasonable market develops for equipment to receive the medium-power satellites at present in operation providing signals intended primarily for cable networks. Mightn't this make it more difficult to get true DBS broadcasting, started, something that's proving difficult enough as it is? The decision looks to be a bit of a gamble, maybe just to get something, somehow, moving.

Letters

IBA's TELETEXT EXPERIMENTS

Eugene Trundle's words of wisdom on "Dealing with Teletext Interference" (May issue) were useful and timely. As a result of the IBA tests he mentioned, the use of up to seven lines per field for teletext has now been authorized for all ITV regions. We had hoped to extend this to perhaps ten lines per field, but the tests in selected ITV regions showed that significant numbers of receivers that experience top-of-the-picture interference when a higher number of lines is employed are still in regular use. These are mostly older models and the number of lines will be limited to seven until most of these sets have either been modified or discarded.

On a point of history I'd like to make a correction. It was the IBA that made the first experimental transmissions of teletext-type signals from the Crystal Palace transmitter, during April 1973 - including "live" computer editing. The very first transmission was made during our "Engineering Announcements" on April 3rd, 1973. It was announced by Peter Ashforth as follows: "Just before we go this week, some of you may be interested to hear that for the past ten minutes or so during the bulletin we've been transmitting a special type of signal which carries information in data form: the information is transmitted during the blanking interval of the television and so, of course, can't be seen on a normal receiver." A filmed report of that early IBA teletext system, by Peter Fairley, then science correspondent of ITN, was broadcast during May 1973.
The IBA later willingly co-operated with the BBC, BREMA and the Home Office in establishing in 1974 the unified UK standard for teletext now used in some twenty countries across the world. Transmissions to this standard were first made by both the IBA and the BBC during the September 1974 International Broadcasting Convention. During our 1973 tests we identified the problems of data buzz and top-of-the-picture interference and the 1974 teletext specification took care to minimise the problem, which is inherently a question of receiver design.

The IBA "Engineering Announcements" referred to above still continue on the Channel $4 / \mathrm{S} 4 \mathrm{C}$ network on Tuesdays at $9.15 \mathrm{a} . \mathrm{m}$. and $12.15 \mathrm{p} . \mathrm{m}$. IBA engineering information is also available at all times on Oracle page 590 (C4/S4C), with a list of Channel 4 transmitter conversions on page 390 (ITV).
Pat Hawker,
IBA Engineering Information Service.

SCOTCHTAPE CASSETTES

With reference to Mr. Henniker's letter in your May issue, the Lifetime Guarantee that 3 M pledges with its market-leading Scotch videocassettes is supported by prompt, responsive action whenever a VCR owner or a retailer brings a faulty tape to our attention. It's a necessary part of the Guarantee that tapes presumed to be faulty are returned to us. To make returns painless - and free - for our customers all Scotch cassettes are sold with a Freepost label addressed to our Gorseinon, Swansea videotape factory. We check returned tapes to identify the problem - which in seven cases out of ten is due to machine damage or mishandling. We work closely with hardware manufacturers and retailers' service depart-
ments to ensure fault elimination and constant product improvement. What we cannot do is to replace tapes without seeing them.
Before writing to you Mr. Henniker was contacted by our Glasgow sales office, by our Bracknell head office, and was visited personally by our area representative - all in an attempt by 3 M to give him satisfaction for his allegedly faulty L250 tape. On all occasions he has refused to return the tape to us.
Perhaps I can use your columns to appeal again to Mr. Henniker to send us the cassette? It will be replaced immediately with a new tape, and we would welcome the opportunity for our engineers to investigate the alleged fault.
D. J. Skinner, Field Service Manager,

Video Technical Centre, 3M United Kingdom PLC.

PYE HYBRID CTV MODIFICATION

I was recently asked by a friend to repair an ageing Pye hybrid colour set ($691-697$ chassis). The main fault was quickly dealt with. On viewing the picture however there appeared to be a lack of d.c. restoration, which I found annoying. The set had at some stage been fitted with a LEDCo CDA panel, so I looked up the circuit diagram given in the June 1979 issue of Television. This revealed a design problem with the link to the brightness control and since I wanted to do a good job for my friend (and I might occasionally have to watch the set myself) I decided to seek a solution. Although these sets are old many of them must still be in use so other readers may be interested in the solution I found. It's not perfect since the beam limiter action isn't as effective as it was.
Fig. 1(a) shows the initial arrangement with the luminance signal coupled by C39 to the first transistor (VT701) on the LEDCo panel. It will be seen that the base of VT701 is forward biased by R701/2. The voltage at the slider of the brightness control will be negative however (or possibly slightly positive - D39A will prevent the voltage at the top end of the control being much above zero). Hence the d.c. restorer diode D39 will always be heavily reversed biased and no d.c. restoration can take place. In the original valve circuit the luminance output pentode's control grid would have been biased negatively from the brightness control via R201 and D39 would have prevented any part of the video signal going below the voltage on C201, set by the brightness control. D.C. restoration of the signal was thus achieved.

The solution adopted was to remove R701 and R702 from the LEDCo panel and alter the brightness control

Fig. 1: Brightness control/d.c. restorer circuit used in the Pye 691-697 series chassis, (a) before modification, (b) after modification. Modification was required due to the use of a LEDCo solid-state CDA panel. Note that the collector of the beam limiter transistor VT35 is connected to the junction of resistors R212/R213, so the modification affects the limiting action.
circuit to provide a positive voltage on C201 so that the circuit could bias the base of VT701 directly, as it did the PL802's control grid in the original valve circuit. The modification is quite simple - see Fig. 1(b): D39A and R202 are removed, R212 is replaced with a link and an extra $10 \mathrm{k} \Omega$ resistor is added between the bottom end of the brightness control and chassis.

The results were quite rewarding: dark pictures are really dark and bright pictures bright, with no black crushing. The only slight drawback is inadequate beam limiting: if the brightness or contrast is set too high there's severe loss of focus. This is no problem however with sensible settings of the controls. Time prevented further investigation into this problem - and I'm not sure that the tube wasn't partly responsible anyway. All in all a worthwhile exercise which should help keep these sets alive even longer.
Anthony Marlow, M.A.,
Sale, Cheshire.

BBC MICROCOMPUTER PROGRAM

Some alterations are required to the BBC microcomputer program in the June issue (page 446). First, the bit in brackets at the end of line 50 should be (10 , "."). The difference is in the spacing - the string is too long with the additional spaces you had at each side of the stop. Secondly, in lines 70 and 806% should in each case read c\%.

Adding an extra line at the beginning of the program as follows:
5 *TV0, I
stops the interlace jitter.
Changing the last line to:
180 IF GET=9
MODE7:PRINTTAB(13,12)"GOODBYE": END ELSE UNTIL 0
causes GOODBYE to be printed when exiting the program.
Roger Goodman,
Wandsworth, London SW18.

POINTS ON VCRs

In the May VCR Clinic Steve Beeching said that the Hitachi VT8700 was the first VCR he'd come across that would work without a cassette lamp. This gives the impression that the machine will work in the event of cassette lamp failure, which is not the case. As with all the VCRs in the Hitachi 8000 series, lamp failure is detected by the control microcomputer i.c.'s dew sense input (IC901, pin 33). Failure results in the stop condition with the stop light flashing. The relevant bit of circuit (for the VT8700) is shown in Fig. 2. Under normal operating conditions the lamp is alight and the cathode of zener diode ZD651 is held at a low voltage. If the cassette lamp fails there's no current flow via R653 and ZD651's cathode is at 15 V . Being a 9 V zener diode it conducts and, via D651, provides a high to IC901's dew sensor input. In Steve's case the lamp was o.k. but the feed resistor was open-circuit, so the safety circuit didn't operate. A weakness in the design perhaps, but it's the first case of this resistor going open-circuit I've heard of and I've had only two faulty cassette lamps.

On the subject of liquids spilt into VCRs, a colleague recently had a Panasonic NV2000 which a pet had used as

Fig. 2: Cassette lamp/dew sensor circuit used in the Hitachi VCR Model VT8700.
a toilet. It took three weeks to clean and locate the faults, was back with the customer for two weeks then had to come back for further repairs (it's still not fixed). The problem is that as fast as one fault is cured another appears, and they are all obscure faults that wouldn't happen under normal ciscumstances. I reckon we average one machine a month with spillage of some sort. With chargeable jobs, if the household insurance won't cover the repairs it can be uneconomical to try even without replacement panels - which some manufacturers won't provide anyway.

Finally, I must make a few comments concerning the letters about the present state of the TV trade and its future. I consider training in all industries to be the employer's responsibility, and that this is one of the country's biggest failings in the present economic climate. As to the future, while the service side is no longer expanding the increasing number of VCRs and microcomputers requiring attention are beginning to take up the slack caused by the increased reliability of TV sets. I agree that it's going to be difficult to get into the trade, but for those already in it the future should be reasonably secure, at least for another five to ten years - provided you keep up with the trends.
Derek Snelling,
Brownhills, Staffs.

TELETEXT BLANKING CIRCUIT

While chasing an intermittent fault in a Beovision 2600 I thought I'd try out the blanking circuit shown in Fig. 3(a) on page 372 of the May issue. I was suspicious about the connection shown to the field output transformer, feeling that the phasing wa: incorrect. Sure enough it is! If you connect up as shown the bottom half of the picture is blanked out with teletcxt flashing merrily in the upper half. The $0.1 \mu \mathrm{~F}$ capacitor has to go to the same point on the transformer as the blanking circuit feed, i.e. the top of the winding shown in Fig. 3(a) not the bottom. Wired like this is works fine.
Keith Cummins,
Southampton, Hants.

PORTABLE CRT TESTER

With reference to Tony Thompson's comment about a portable CRT tester (May 1985) the converter circuit shown in Fig. 3 will produce a 240 V a.c. output from a

Fig. 3: Converter circuit for 12 V d.c. to 240 V a.c. Tr1, 2 type 2N3055; R1, 2 100』, 10 W w.w.; transformer T1 is rated at 20VA and has $12-0-12 \mathrm{~V}$ and 240 V mains windings.

12 V rechargeable dryfit lead-acid battery. It can be used with James Dilworth's CRT tester/booster which was described in the August 1981 issue of Television.
N. E. Hawkins,

Milton Keynes, Bucks.

THAT G11 MULTIFAILURE

With reference to Ivan C. Tucker's article on G11 problems, I'm sure that a lot of us have by now had first-hand experience of the red $470 \mu \mathrm{~F}$ capacitor causing damage to the tube, the TDA2600 and the BU208A. Unfortunately the blue capacitors are not 100 per cent reliable either: I had to replace one two weeks ago because it destroyed BU208As.

So what happens if the same thing occurs again six months after replacing these parts? The customer complains to you! You return the tube with its unmistakable little star in the neck to the supplier, who won't replace it because he knows it was caused by the capacitor! The supplier of the capacitor might replace that but not the chip etc. Has anyone out there got a sensible answer before one of us gets really stung?
J. Hopkins, The TV Workshop,

Wisbech, Cambs.

SLIPPED SHADOWMASK

Here's an unusual "horror story" concerning a Bush set fitted with the Z718 chassis. On switching on one evening the picture showed severe colour errors, e.g. the snooker table was brilliant purple. A replacement decoder panel made no difference, so maybe it was a degaussing fault or a slipped shadowmask? The degaussing circuit turned out to be o.k., and putting the set on its side in the hope that the mask might return to its correct position brought no change.

We checked to see which guns were firing at which phosphors. Result, red was firing at green, green at blue and blue at red. So let's reconnect the video outputs appropriately. This gave true colours but shameful convergence. At this point we had a bit of luck, which we needed. Whilst examining the convergence strip at the top of the chassis we accidently removed the convergence waveforms by disconnecting the plug from the line output board. With no waveforms to displace the beams we found we had an almost correctly converged picture. This was optimised by adjustment of the red and blue static convergence magnets, giving correct colour across four fifths of the screen with aberrations on the left-hand side. Viewing from ten feet gives a very reasonable picture which has remained stable for some three years.
P. R. Atkins,

Southall, Middx.

SPECTRUM TEST PATTERN PROGRAM

As a result of correspondence following my Spectrum test card program (May) I've discovered that not all editions of the Spectrum manual contain a colour bar program. Also when the colour bar program is included it has the bars at two brightness levels and they don't fill the bottom lines of the screen. They also have numbers printed on them to indicate the keys relating to the colours. This feature may be required to set up the Spectrum with a TV set or monitor, but for TV test purposes full-brightness bars filling the entire screen area are required.
Unfortunately there's no way in which the bars can
extend all the way to the border, but it's possible to use the bottom two lines by using the PRINT \#1 command.

The original program can be modified as follows. Load the program, then enter the following lines:
472 IF i\$="b" THEN BRIGHT 1: CLS: FOR $n=0$ to 21: FOR $\mathrm{c}=1$ to 8: PRINT PAPER c(c);
" " $\because:$ NEXT c: NEXT n: PRINT \# $1 ;$ AT 0,$0 ;:$ FOR $\mathrm{n}=0$ to $2:$ FOR $\mathrm{c}=1$ TO 8: PRINT \#1; BRIGHT 1 ; PAPER c(c); " $\quad ":$ NEXT c: NEXT n: LET $i \$=\times "$ 474 IF i\$="c" THEN BRIGHT (): CLS: RUN
572 IF i $\$=$ "b" OR i $\$=$ "c" THEN GO TO 472
In addition, change line 100 to:
100) POKE 23658,0: LET nn=0: BORDER 1: PAPER 0: INK 7: CLS

Adding the POKE in this line ensures that the shift is in lower case. Note that there are four spaces between the first two sets of quotes. After testing, resave the whole thing on your cassette or microdrive.

When the program is run the card now appears as usual. If you press "b" you get bars, if you press "c" you get the test pattern. Pressing ENTER stops the program. Pressing any other key turns the music on or off.

If you wish to enter the bars as a stand-alone program, enter just line 472 without the IF . . . THEN and lave out (c), i.e. use PAPER c instead of PAPER c(c). Then enter line 474 as follows:

474 IF INKEY\$=‘‘’THEN GOTO 474

Do not leave this line out. The colours won't appear in the same order as the full program. Pressing any key ends the program.

All cassettes sent out from the address in the original article after May 10th contain the additions.
John de Rivaz, B.Sc. (Eng.),
Truro, Cornwall.

MORE ON PLUGTOPS

I've not seen all the correspondence mentioned in the letter headed "plugtop hints" in the March issue. It seems that readers have been concerned about burning of the neutral pin in 13A plugs. My working life mainly involved trouble-shooting for a large manufacturer of switchgear, control gear and accessories, and in my experience burning of the neutral pin is almost always due to the pin having receded into the plug moulding. In most plugs the neutral pin retention is different from that of the live pin. The neutral pin is usually held in position by the cap moulding pressing against its square head, there being a recess in the cap to accommodate the head of the pinching screw.

When a poorly designed plug or one made of inferior material is pushed into a good quality socket with good socket pressure, either the neutral pin cap retaining corners crumble (thermosetting material) or the neutral pin pushes into the cap (soft PVC or some other thermoplastic materials). The metal head in cheap plugs is often smaller than in good ones so that there's less area of plastic to withstand the force. If the cap is of soft PVC the heat from a well loaded fuse softens the whole cap and the pin recedes even more readily.

Once the pin has receded, contact in the socket is reduced and burning of the pin end occurs.
L.E. Bevan,

Moseley, Birmingham.

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft. etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

CentreVision

TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB
OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 TELEVISION/VIDEO (VHS + BETA) FROM £85

* ITT CD752 REMOTE WORKING £90
* PHILIPS G11 FROM £40
* GEC STARLINE 22-20 (Remote) £35
^ PYE CHELSEA £25
* THORN 9000 20" $0^{\prime \prime}$ ③5
* DECCA $22^{\prime \prime}$ BLACK FRONT VERICAP £15
* RANK T20 REMOTE $£ 48$
* PHILIPS 550 IN 10's £18

PRICES SUBJECT TO VAT OPENING HOURS:
 MONDAY - FRIDAY 9.00-5.30 SATURDAY 9.00-1.00

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT ATV METER

COINAGE available

50p
COMPLETELY VARIABLE TIMINGS

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272

87-89 Sterte Avenue,
Poole, Dorset. BH15 2AW.
Telex: 418253 LUMIC G

Big Foot

Les Lawry-Johns

I thought I was the only one here who put his foot in it at least once a day - often more frequently. Now there are two of us. That puppy Zeb has grown rapidly and is now rather large. He'll get bigger - if he lives that long. Honey Bunch tried to bash in his brains (?) the other day after he'd ripped her prize plants out of the ground and then pulled them to pieces. I tried to act as peacemaker and ten minutes later was ready to kill him myself. He'd chased the cat through the shop and she'd leapt up on to a shelf and knocked off a record player just as the owner called to collect it.

Now that the weather is warmer I get a brief respite because he stays outside on a long lead for at least five minutes during which I can get just a little work done. To be fair though that's all we seem to be getting lately - just a little work, not really enough to pay the bills. Charge more they all shout. No. Not when there's not much work coming in. The time to charge more is when there are plenty of jobs and you can afford to lose a few.

What am I rabbiting on about? Sorry, it's the dog you see, he's having an effect on my nerves. When customers try to talk to me I stare past them with my face twitching and they think I'm going funny. Of course I'm not . . . I'm not . . I'm not.

The CTV14R

Like the chap who brought in the Fidelity CTV14R. "It didn't cost much to buy so I don't want to spend much on having it repaired. Not more than say fifteen pounds."

So I took it in, hoping for a nice dry-joint. What a hope. The fuses were intact and there was a high voltage at the collector of the BUX84 chopper transistor. There was the same voltage, instead of 120 V , at its emitter. It was short-circuit. So I stuck another one in. Switched on and there was a funny tripping noise as the h.t. started to rise and then collapsed. I was afraid that the line output transformer was at fault but didn't want to think about it. I checked the line output transistor carefully and then the diodes fed from secondary windings. One (D34) was short-circuit. Glory be. Now normally I would have checked around to see what had killed it, but I had to put my big foot in it. I put another diode in and of course the result was the same tripping. The reservoir electrolytic has shorted I thought, but although a short was found to be present it wasn't the capacitor's fault. When I isolated pins 2 and 5 of the TDA1170 field timebase i.c. the tripping stopped and a nice bright white line appeared across the screen to show that the set was happy to work without the chip to upset things.

So I looked for a TDA1170. I looked where they should be and then where they shouldn't. Perhaps I couldn't see properly? I looked at my glasses. They were smudged. I wiped the lenses and one broke away from the frame as the screw snapped off. Not my new glasses, my old ones as you'll recall I can't wear my new ones as I can't see close up with them. I even have to take my old ones off to see really close. I knew I didn't have any screws small
enough so I had to stick a piece of wire through the metal frame and solder both sides as I'd done when the lens at the other side broke away long ago. That's why I got the new ones I can't wear. I still couldn't find any TDA117()s however.
"What's wrong" asked Honey Bunch, who was playing ball with the dog.
"I can't find any TDAll70s love, even though l've cleaned and mended my glasses."
"Perhaps you've used them all."
"If I'd used them they'd be on the order sheet."
So I looked at the crder sheet and they were on it. Then back it came in a blinding glimpse of the obvious. The Normende. That's where they went, together with the 630 mA fuses. So I whipped a TDA26(0) off the shelf and dashed down to swap it with Don and Ray.
"Ah Les" they greeted me. "Glad to see you. You don't happen to have a spare TDA26() up at your shop do you? We're right out what with all these Gll's gobbling them up." So I produced the TDA2600 from my pocket and they were astounded. I modestly looked at the ceiling and then at the teapot.
"What do you want in exchange for it?" asked Don.
"Nothing really, but I'll take a TDA 1170 if you like."
So after joining them over a cup of tea (they don't have whisky down there) I nipped off carrying my precious chip which completed the Fidelity repair when fitted. The heatsirk is a pest to get off but nowhere near as difficult as the one on the Normende. Perhaps it's my Weller soldering gun that's getting old (tighten up the nuts you fool).

Mack and Millie

These very nice people are old friends of mine and live not too far away in a select area where not very much happens except when their grandchildren visit and all hell breaks loose. Mack had phoned to say that their 26 in . G11 had broken down. Their house was on the right as I drove up so I pulled over and ran the nearside wheels on to the path outside their gate and switched off the lights. Now Millie is a local magistrate, and when I went in she was going on about thoughtless motorists parking on the pavements all over the town. After exchanging the usual pleasantries I got on with the set and found a funny fault in the power supply. To save time I nipped out to the car to get my spare panel and was back in a flash.
"My God that was quick" commented Millie.
"Well I've parked on the pavement just outside" I admitted.
"YOU'VE DONE WHAT?"
"See you in court Millie."

The Estimate

A chap had left an ITT CVC20 and a message to the affect that $£ 25$ was his limit. After quite some time it transpired that the tripler was faulty and that the line output transformer was overheating with the tripler disconnected. After replacing the BU208 and fitting all new parts (I was curious) a blank raster with just a shadow of a picture was resolved. The sound seemed to be o.k. but the contrast control had no effect. Tests cast doubt upon the TBA560 but replacing this merely produced an overbright raster with no signal (vision) at all. At this point I removed all the new stuff and carefully replaced all the faulty items. I should suffer. He was most upset when given an estimate.

Teletopics

IT'S NOW LEGAL

The government has altered the rules on satellite TV reception. Until now it has been necessary to apply to the Department of Trade and Industry for a licence, which was granted only to cable TV operators and organisations carrying out research. Individuals can now apply for a licence under the Wireless and Telegraphy Act - local planning permission to erect a dish aerial of any size is also likely to be necessary. Licences will also be available for linking TV signal distribution systems, for example in hotels and blocks of flats, to a master satellite TV receiver. Restrictions will be imposed to protect the interests of cable TV networks - a licence for SMATV (satellite master aerial TV) operation will not be provided in areas where a wideband cable franchise has been awarded or where a franchise has been advertised or is pending. The move has been welcomed by cable concerns and the TV industry, the hope being that business opportunities will be openned up, leading to increased UK production of satellite TV receiving equipment. Thorn EMI, Telefusion and Visionhire are amongst the companies that have already announced plans to supply satellite TV receiving installations.

SHOWTIME

As we go to press the annual London hotel radio and TV trade shows are in full swing. The main theme on the TV side is a far wider range of models fitted with FS tubes and greater emphasis on cabinet styling - the FS type tube seems to favour "monitor-look" cabinets. Mullard have announced the FSQ tube which is supposed to be even flatter and squarer and should be available in Philips and Pye sets later this year. Doric were showing large-screen (20-26in.) sets fitted with the new Rediffusion Mk. 6 chassis. The new Network 14in. colour portable, Model NWC1430, is of interest in that full remote control can be added to an initially manually controlled version.

SATELLITE TV NEWS

Fresh hopes for the start of a UK DBS service have come with the announcement from Unisat of sharply reduced quotes for the provision of a satellite system. Unisat have offered the DBS consortium ten options for different degrees of satellite system management and operation. Meanwhile tentative agreement has been reached on what should be shown on the three DBS channels: the first channel would be used for recently released films and for TV series prior to their being shown on the existing networks, the second would concentrate on live sports coverage and a 24 -hour news service while the third would feature popular entertainment such as TV games and soap operas.

GEC McMichael have developed an elliptical dish aerial which is claimed to offer much improved performance compared to the conventional circular designs. The dish is already being used in the Newshawk 14 GHz portable satellite news gathering system. It features an offset feedhorn, maximum side-lobe rejection, reduced wind resistance and excellent portability.

Agreement has been reached between Ireland, Spain and Portugal to share a DBS satellite - the three countries were allocated the same orbital position at $31^{\circ} \mathrm{W}$ under the 1977 Geneva ITU agreement.

AUTOMATED TV PLANTS

Most TV receiver assembly lines have been highly automated for many years now, with the use of automatic component insertion in the PCBs. This is fine for the smaller components but larger, more awkward components have always presented problems. The difficulty is being overcome by adding robots to the assembly lines. The use of computer-controlled robots by Toshiba has for example increased the proportion of components that can be auto-inserted to 95 per cent. Use of computer control has additional advantages in that board revisions can be put into effect simply by keying the required information into the computer. Once a board design has been changed it can take as little as half an hour for the computer to revise the operation of the line robots.

Thorn EMI Ferguson have set up an advanced manufacturing development centre at their Enfield factory to investigate the application of the latest automation technology to the assembly of TV sets and VCRs. Amongst its facilities is a pilot assembly line using IBM robotics systems to insert a range of odd-form electronic components. The centre undertakes feasibility studies based on experimental data from working models. IBM's robotics systems employed at the centre are programmed using the IBM Advanced Manufacturing Language (AML), a highlevel language designed for manufacturing engineers and manufacturing application programmers. Its key features are manipulator control, sensing, intelligence (the ability to modify system behaviour in accordance with preprogrammed ways) and data processing. These are being harnessed to investigate flexible assembly techniques.

SINGAPORE'S TELEVIEW SYSTEM

A consortium of UK firms lead by GEC has been awarded the contract to develop Singapore's Teleview system. This is an advanced system that combines features of teletext and viewdata: it's also a high-capacity system, enabling the service to carry high-definition pictures, graphics and Chinese language characters in picture form. Marconi are to supply an initial 1,100 terminals to Telecoms of Singapore - 800 with hand-held keypads for residential use and 300 keyboard versions for business use. The contract also includes editing terminals, some with full typewriter style keyboards: each terminal will double as a 256 K RAM personal computer. Teleview uses both telephone links and off-air data transmission: users send out requests via the telephone link and receive signals offair on their terminals. The service will also operate in both directions via the telephone links in the event of TV signal interruption. The Singapore Telecommunications Authority hopes to have a million subscribers to the service by 1990.

SERVICE BRIEF - THORN TX90

Cases of failure of the line output transistor TR112 in the Thorn TX90 chassis have been traced to leakage in transistor TR109 (BC307B) in the overvoltage trip circuit. This leakage results in reduced line drive. To overcome
the problem R246 ($47 \mathrm{k} \Omega$) has been added between the base and emitter of TR110: it's recommended that this resistor is added in all cases of failure of TR112.

VCR NEWS

1984 was certainly the year of the VCR in the USA: sales increased by over 86 per cent, from just over four million to well over seven and a half million. The markets are now awaiting VCR exports from Korea - up till now these have been prohibited under the terms of the licence agreements with Japanese manufacturers. Models from Samsung are expected to be available in the UK this autumn - two models were on display at the Samsung trade show. The basic model is expected to sell for around £370.

VCRs using an improved Betamax specification are to be introduced in the USA. The new system - Super Beta - features increased luminance bandwidth plus new video noise reduction and pre-emphasis circuitry. According to Sony the result is a picture resolution of 300 lines and a signal-to-noise ratio of around 45 dB .

The launch of Kodak 8mm video equipment in the UK has been postponed until next year "at the very earliest".

The Ferguson Videosafe is an anti-theft device that sells for around $£ 24$. It’s in the form of a VHS cassette that can be slotted in the machine and locked in place. If an attempt is made to move the machine or eject the device a 98 dB alarm signal is produced until switched off using the right key. It's also available as the Videolok.

NEW TV SCREEN FILTER

A new range of easy-to-fit filters for use with TV sets and VDUs has been announced by Wireless and Electronics Ltd., 5 Lansdowne Way, London SW8 1HL (01-735 7910). The filter covers the whole screen and is available in sizes from 9in. to 26 in . Each one is individually boxed and comes with neat brackets and clips to make fitting a simple matter. The filters are made of a hard plastic material and result in reduced flicker and the removal of most of the ultra-violet light radiation from the tube.

VIDEO CERTIFICATION

Certification of prerecorded videocassettes under the Video Recordings Act is to be carried out by the British Board of Film Censors which is to be renamed the British Board of Film Classification. Certification relates to films - music programmes are exempt unless they include depiction of sex and violence to "a significant extent". There are 58,000 titles on the Department of Trade and Industry's register: certification of these will be carried out over a three year period from the implementation of the act - new releases will require immediate certification. Lists of certified films will be available from the Home Office at about $£ 20$ a set.

CABLE NEWS

Work has started on the installation of the Clyde CableVision and Croydon Cable Television systems. The Clyde system is of the switched-star type, qualifying for a 23 -year licence. A key component is a new switch jointly developed by GEC and Delta Kabel for the UK market. British Cable Services have started work on the Guildford service. This will use the advanced System 8 network.

Just one application has been made for each of the five

GEC McMichael's Newshawk satellite news gathering system features their new elliptical dish aerial.
recently advertised second group of cable TV franchises London Docklands, W. Surrey/E. Hampshire, Wandsworth, Bolton, and Cheltenham/Gloucester. The Cable Authority has announced that it is not disappointed with the lack of competition for these franchises and that each application will be given the fullest scrutiny.

A monthly publication in full colour, the Cable TV Guide, started with the May issue. It covers the five main channels (The Movie Channel, Screen Sport, Sky Channel, Music Box and The Children's Channel) seen by 90 per cent of UK Cable viewers and is being sent free to some 500,000 cable TV subscribers and potential subscribers. It will also be available through newsagents at 35 p a copy.

Qualified optimism on cable TV is expressed in a new report from Communications and Information Technology Research. 8.5 per cent of households in W. Europe are now connected to a cable network and the percentage is expected to double over the next ten years. Holland, Belgium and Switzerland have the highest percentage of households connected to cable systems. CIT believes that 6.5 per cent of UK homes will be linked to a cable network by 1989.

The Joint Industries Committee for Cable Audience Research (JICCAR) has carried out the first audience research survey of UK cable TV users. It gives cable TV a somewhat down-market image, though the incidence of VCR and microcomputer ownership amongst cable users is well above average. The specific cable channels account for 19 per cent of viewing in households connected to a cable network.

ODDS ' N ' ENDS

A 13A moulded plug-and-lead set is now available to equipment manufacturers from Mullard. It's been introduced in the interests of improving the safe use of both industrial and domestic electrical equipment. The advanced design of the CW3102 plug-and-lead set incorporates the usual safety features plus extras including sleeved line and neutral pins, a built in fail-safe system and very high mechanical strength.
Non-electrical soldering is what you get with the Oryx Portasol soldering iron which is available from STC Electronic Services, Edinburgh Way, Harlow, Essex CM20 2DE. The iron uses a built-in butane gas supply that provides a power equivalent to 60 W with a variable bit temperature up to $400^{\circ} \mathrm{C}$. A single gas refill gives up to one hour's continuous use.

11GHz Low-noise Amplifier

Hugh Cocks

The 11 GHz low-noise amplifier to be described is intended as a companion to the low-noise downconverter featured in the February issue. The use of waveguide at the input and output means that different LNA and downconverter combinations can be tried. Construction of the unit is reasonably straightforward if one is experienced in r.f. techniques. Those who have built LNAs for use at 4 GHz will find the unit similar but more compact. A matching regulated power supply built around a d.c.-d.c. converter i.c. is used: alternatively the power unit described in the 4 GHz LNA article (September 1983) can be adopted, though it's much larger physically.

The LNA's housing is similar to that of the downconverter module. Fairly elaborate screening is required between each of the gallium arsenide f.e.t.s to prevent instability which could occur since the width of the housing is sufficient to support waveguide propagation. Constructional details of the metalwork will be provided, though ready made metalwork and p.c.b.s are available. Before going farther a word of warning. If you're unsure about your abilities with this type of construction it's advisable to leave well alone - the GaAs f.e.t.s alone cost over $£ 100$ and are quite easily destroyed if care is not exercised.

Circuit Description

The design of the LNA is based on an application note from California Eastern Laboratories covering an 11.7$12 \cdot 2 \mathrm{GHz}$ (US satellite band) LNA which employed two transistors. The circuit has been rescaled for 10.95 11.7 GHz and an extra transistor has been added to increase the gain. The overall gain should be at least 25 dB with a noise figure of around 3 dB . The first two GaAs f.e.t.s are NEC type NE71083, the final one being an NE70083. Other devices, such as the Mitsubishi series, will work but since the board is not optimised for these

Photograph of the LNA case, with the input and output flanges and the LNA board fitted and the side holes for the power supply feeds drilled.
odd tuning effects will oscur due to mismatches. The circuit is shown in Fig. 1; the PCB track layout is shown in Fig. 2.

The incoming signal is transferred by a pickup wedge (see later) to a 50Ω section of printed track. A 10 pF chip capacitor then couples the signal to a section of track that acts as a 36Ω, quarter-wave transformer which is followed by two 23Ω open-circuit stubs. This network matches the 50Ω input impedance to the optimum source impedance of 26Ω. The coupling between the first and second stages is less complex because the source and load impedances are similar: a $50 \Omega, 0.538$ wavelength transmission line is used. The second stage's output matching network is series resonated with a $50 \Omega, 0 \cdot 04$-wave line and a 21Ω, quarter-wave stub which is then coupled into the third stage via a 50Ω transmission line section and a 50Ω, quarter-wave stub (in practice this must be shortened, see later). The output from the third stage uses the same series resonant network as the second stage. This is coupled by a 10 pF chip capacitor to a 50Ω section of track which feeds the output wedge, i.e. microstrip to waveguide launcher.

The bias and drain supplies for each stage are brought in via printed chokes, with $1,000 \mathrm{pF}$ decoupling chip capacitors. The arrangement is identical to that used in the 4 GHz LNA. The 10 pF coupling chip capacitors are special types with a high Q at $11-12 \mathrm{GHz}$. Mount them with the body's dot indication on the side rather than parallel with the board. This is due to the unwanted resonance effects that can occur with capacitors used at this frequency - the 4 GHz type of 10 pF capacitors shouldn't be used.

Mechanical Details

The f.e.t. source leads go through the board. Due to the slight inductance still present a screen is placed across each transistor, with silver epoxy adhesive used to bond the screen to the source lead protruding above the board. These screens also prevent 11 GHz signals being propagated down the housing.

The PCB is Teflon based, has a dielectric constant of around $2 \cdot 2$, and is 0.01 in. thick! Both 3 M Cu -Clad 217 and Rogers Duroid 5880 have been used with good results. Working with a PCB as thin as this takes a little getting used to: the main point to remember is that with too much heat the track will start to peel away, also that the board is easily marked by sharp objects.

The case is similar to that of the downconverter modulator. Make the main body of about 0.9 mm thick tinplate. With the prototype units the two sides and the bottom were bent from a single piece (see photo), flanges being soldered to each end. It's convenient to make the flange size identical to that of the downconverter module.

The unit's lid is sectional and may be made from thinner gauge tinplate if required. The input and output sections of the lid have the pickup wedges (see Fig. 3) attached to them. The upper, rear sections of the wedges go through slots in the lid, to which they are soldered: the wedges must not be soldered on the inside of the case.

Fig. 1: Circuit diagram of the low-noise LNA.

Fig. 3: Details of the case and screening.
Once the panel has been mounted in the case the wedge/ cover assemblies are put in place and the "tips" of the wedges are soldered to the input and output striplines. Tuning screws can be inserted in the input and output waveguide sections in the same place as the downconverter input tuning screw. Wedge thickness does not appear to be too critical. The Mitsubishi downconverter module uses very thick metal: the prototype LNAs used about 0.5 mm thick tinplate. Some experimentation here may prove beneficial.

Attach the PCB to the bottom of the case in a similar manner to that used in the downconverter: drill a small number of holes in the bottom of the case, tin the bottom

Fig. 4: Power supply circuit. Veroboard can be used.
of the PCB, then put solder through the holes carefully. It's a good idea to hold the board in place with a block of metal to act as a heatsink and prevent it warping in the heat. Make larger holes where the transistor source leads go through the board so that they can go right through to the outside of the case.

Six holes must be drilled in the side of the case to allow the bias and drain supply connections to be made. Because of the extremely small size of the circuitry normal feedthrough capacitors cannot be used - they are much too large. With the prototype units a ferrite bead was used on the inside, covering each lead going to its pad, and a ferrite bead was used in each hole. Sufficient decoupling is provided with the chip capacitors on the board. Solder the decoupling capacitor earthing pads to the side of the case.

After the amplifier has been built screening must be placed over the PCB. An internal wall runs along the length of the PCB over the dead area of the board to prevent any waveguide propagation. The three screens covering the f.e.t.s are then attached to this wall and to the unit's outer wall. By the time the ferrite beads are in place there's not too much room to attach the screening to the outer wall. Silver epoxy adhesive can be used here if it's difficult to use a soldering iron. A cutout for each transistor must be made in the screening: it must be a tight fit and silver epoxy must then be used to cover the remaining sections of source lead and connect to the screen (do this with extreme care, see later).

The lid covering the PCB must be cut into three sections. Odd effects can occur when these are put in place and this must be checked during construction.

The Power Supply

The power supply is relatively straightforward (see Fig. 4). The incoming 12 V supply is fed via R1 to a 78 L 055 V regulator i.c. which has a 6.8 V zener diode connected across its output to provide protection in the event of regulator failure. Resistors R2-4 provide the drain supplies for the f.e.t.s. A simple d.c.-d.c. converter chip, type 7660 (RS stock no. $304-598$), is used to generate the negative gate bias required by the f.e.t.s. The output from pin 5 of the i.c. is rectified by D1 and smoothed by R5/C2, with the 3.3 V zener diode D2 providing regulation. VR1-3 set the gate bias voltages, the sliders being linked to the gates via R6-8. Miniature presets (RS 185-937) were used to fit the small board. By mounting the feed resistors vertically the board is small enough to fit on the bottom of
the LNA housing.
I recommend fitting a transient suppressor across the 12 V input to prevent possible spikes killing the transistors. Provision for this is not made on the board but the suppressor can be soldered to the top of the input resistor (R1) and to the ground plane on the component side of the board. The type used is RS stock no. 283-261 which cuts in at 16 V . Its response time to a transient is of the order of a picosecond - so far no transistors have blown in mysterious circumstances! The band end goes to the positive side of the supply.

As previously mentioned the 4 GHz LNA power supply could be used but is much larger.

Test the unit thoroughly before connecting it to the f.e.t.s. On some boards D2 tends to load down IC1 a little. If this occurs, disconnect D2 - the negative supply obtained from the chip is fairly stable and only a small percentage of the available supply is required. By increasing R5 to say $22 \mathrm{k} \Omega$ the potential dividing action with the presets will drop the voltage sufficiently.

Construction

Start soldering the components on the board after soldering the board to the case. Solder all six decoupling capacitors in place first then check for possible shorts across them - this can happen, and once a transistor is in place it's all too easy to blame it. Next fit the 10 pF coupling capacitors. Follow the previously mentioned instruction about mounting them the correct way and use a very fine soldering iron bit and as little solder as possible, consistent with a good joint.

At this point it's advisable to connect the power supply and check that the voltages are reaching the stripline. The board can be fitted to the bottom of the case using either copper wire legs or double-sided tape: ensure that the print side of the board cannot be short-circuited to the case if pushed hard. Use thin, insulated wires through the ferrite beads. It's easiest to glue each bead on to the board and into the holes after taking the wire through.

Next comes transistor fitting - always a worrying time! Ensure that the thick source leads fit through the board: the best way to do this is to use a small, flat screwdriver blade to punch the board gently. The gate and drain leads must be cut as short as possible to connect with the stripline that buts right up to them: no appreciable length of lead should be on the stripline. The lead with the diagonal slash in it is always the gate lead, the one at 180° to it being the drain (the two source leads are much wider). NEC have moved the position of the red dot from being adjacent to the drain to adjacent to the gate lead recently so this is not an accurate guide. Once the leads have been cut it's all too easy to mount the device the wrong way round, so make a note of which way round the dot is to the gate/drain leads.

Solder the source leads initially using only a small amount of solder underneath, consistent with good earthing, in case the transistor (heaven forbid!) should need to be removed if it has died. Lay the gate and drain leads - what there is of them, no more than $0 \cdot 1 \mathrm{in}$. - flat on the stripline and solder quickly, using a minimum amount of solder. Normal soldering precautions should be taken with the GaAs f.e.t.s - earth the iron's bit to the case and make sure that you're not at a potential to the whole assembly. Never use a soldering gun if you wish the transistors to work afterwards!

When all three transistors have been connected, and
before the screening is inserted, check each one individually with its connections made to the power supply. Set the gate bias at around $0.5-1 \mathrm{~V}$ negative (avoid using a meter at the gate connections) and monitor the drain current by checking the voltage at the drain feed resistor. The voltage should vary between 5 V with high negative bias at the gate to less than $1 V$ with minimum bias. Optimum bias is with around $2 \cdot 5-3 \mathrm{~V}$ at the drain. If all three transistors are connected to the power supply without screening and without the input/output terminations in place bad instability will occur. This will show as erratic drain current variations.

If all's well, solder the source leads properly on the bottom. If you find that the drain voltage won't move from around 0.5 V there's either a short-circuit in the feed to the gate or the transistor has died. If the drain voltage is stuck at 5 V it's not reaching the stripline. If there's a problem here cut the feed choke on the board to isolate the transistor as it could well be that the decoupling capacitor has shorted out or has a sliver of solder underneath it.

The screening must next be fitted. Fig. 3 shows the approximate positions of the screens. The sub-wall is attached to the main wall by two stand-off pieces of tinplate. The end of this sub-wall should be soldered to the output wedge/lid assembly in due course but avoid soldering to the input wedge/lid assembly initially - sometimes the signal is better with it disconnected (check on a live signal later).

It's a good idea to smear the silver epoxy between the transistor and the screen as each transistor screen is fitted. Start with the centre screen and work outwards. Smear the adhesive just where the source leads protrude from the body. Be very careful not to smear any between the gate or drain leads and earth or the transistor won't work, being effectively shorted out by the glue. Silver epoxy has a consistency that's slightly different from normal epoxy it's similar to hard butter. Small granules can come adrift, so make sure that it's firm. It also takes a long time to dry, but this doesn't affect the electrical performance materially.

Once this has been done, solder the input and output wedge lids to the case (on the outside only) and carefully solder the rear tip of each wedge to the panel, using only a small amount of solder. Leave any tuning screws at the input/output screwed fully out and check that all three transistors behave correctly as the d.c. bias is varied. Leave each transistor with about 3 V at its drain. If all's well here we can proceed with the testing.

Testing

First of all cut down the stub between the second and third transistor to about half its original length - this is easier to do before the screening is in place. Access to it will be needed when the LNA is being tuned however.

Bolt the LNA (initially less any image filter) to the downconverter module and switch on the downconverter but not the LNA. When the LNA is switched on a vast increase in noise should be seen on the screen - the noise will vary depending on the settings of the bias presets.

If you find a mass of carriers/patterning on the screen as you tune across the band there's instability. See if it disappears when the output lid is placed over the third transistor. If it does, solder the lid in place, preferably leaving the cut down stub exposed for adjustment. If this doesn't cure the instability, try soldering the internal wall

Fig. 7 (right): Power supply component layout.
to the front cover - these two actions should stop any instability. It's also worthwhile checking that the source leads are well earthed as poor earthing here will produce instability. Instability is in general much easier to cure than with a 4 GHz LNA, though it can look more violent on the screen.

Connect the LNA to the feedhorn and keep a fairly high i.f. $(700-800 \mathrm{MHz}$). Use of a subreflector feed system helps a lot when testing and peaking the unit as all the electronics will be at the rear of the dish. When the dish is aligned with the satellite the signals should appear a lot stronger and u.h.f. breakthrough from local transmissions should be minimal. Without an image filter, signals at the top end of the band may seem noisier than those at the low end. This effect is caused by image frequency noise. With an i.f. of 700 MHz the image of a signal at 11.6 GHz is around $10 \cdot 2 \mathrm{GHz}$: the amplifier's gain at $10 \cdot 2 \mathrm{GHz}$ will still be quite high and the noise produced will be superimposed on the wanted $11 \cdot 6 \mathrm{GHz}$ signal. With the same i.f. and an 11 GHz signal the image at 9.6 GHz will be at a point where the LNA's response is much lower.

Peak the tuning screws and voltage presets for optimum pictures. If the signals are too strong for subjective evaluation of the picture quality move the dish slightly off the satellite. Screwing the downconverter tuning screw inwards from fully open will produce a notch where the wanted signal is lost. Just beyond this point the image frequency will be notched out, giving an improvement to a specific signal. The exact notch point will vary from signal to signal. If a signal meter is being used the signal strength will appear to fall due to the loss of image frequency noise drive to the meter.

If no microwave test gear is available alignment of the LNA is virtually impossible without a wideband image filter. Arrangements have been made to supply a filter in waveguide form to fit between the LNA and the downconverter. It has an insertion loss of 0.5 dB and an attenuation of some 30 dB at 10 GHz . Because of the tight tolerances of the tuning elements in the waveguide it's not practical to give constructional details. Assuming that a filter has been obtained, final alignment of the LNA can begin.

Final Alignment

Check the effect of placing the remaining two covers over the first two stages of the LNA. The signals may increase slightly with the middle cover in place but with the input cover on they may decrease. If this is a problem it's probably best to glue a stout piece of plastic in place of the first metal cover.

Note the effect on the third stage of varying the length of the 50Ω stub. A useful tuning tool consists of a flat piece of wire on the end of a holder - note that due to the
dielectric effect of the plastic this can peak the L.NA as well! Some performance compromise may be needed between the top and bottom end of the band. A small piece of wire soldered to the rear end of the input wedge can increase the signal level.

In general the input stripline won't need adjustment. The optimum settings of the bias presents may vary a little across the band. This is fairly normal and is caused by slight variation of the transistor S parameters with different currents - this alters the stripline tuning. If you get a violent effect the transistors aren't matched to the board: this should not occur if the specified types are being used.

It should be possible to achieve good signals from ECS1 in the UK using a 1.5 m dish and this LNA. The noise figure is around 3 dB or a little better.

Once the system is working well, find a box to house the electronics. It may be best to use a "dead" section of waveguide at the input so that the LNA is a little away from the elements: cover the front with plastic to prevent ingress of moisture. Take great care to prevent this: microwave signals hate any form of corrosion!

Sources and Acknowledgements

Aspen Electronics Ltd. of 2 Kildare Close, Eastcote, Ruislip, Middlesex (01-868 1188) are the UK agents for the Dielectric Laboratories Inc. (DLI) 10pF chip capacitors type DI 2A 100 K 50 LD . The $1,000 \mathrm{pF}$ decoupling capacitors are not too critical. Hugh Cocks TV Services of Cripps Corner, Robertsbridge, Sussex TN32 5RY (058083 317) can supply the 10 pF capacitors. ready etched LNA boards, metal housings and waveguide bandpass filters.

The NEC GaAs f.e.t.s can be obtained from Castle

\&MITSUBISHI

MGF-1402
MGF-1403
MGF-1412 GaAs FETs MGF-1801

Aspen Electronics Limited
UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip
Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

Microwave Ltd., Brookfield Drive, Aintree, Liverpool L9 7AN (051-523 4011). Printed circuit board material is available from Walmore Electronics, 11-15 Betterton Street, Drury Lane, London WC2 (01-836 1228) - the board must have a dielectric constant of 2.2 and be 0.01 in . thick. The silver loaded epoxy adhesive is RS type 555-
673.

Finally my thanks to everyone who helped with this project: Dave Lewis for the PCB drawings and prototype case design, the two Johns for the image filter, and Mike Stone who had great fun playing with the prototypes and put much work into getting the project off the ground.

VCRs and the Mains Supply

The mains supply, or to be more accurate various forms of interference associated with it, can be responsible for many problems with VCRs. The most obvious problem is random fuse blowing: the mains fuse or fuses blow for no apparent reason, a replacement restoring normal operation. Less obvious are the effects on the various microcomputer i.c.s in a VCR caused by transients appearing on the supply lines.

Clock/Timer Problems

Clock/timer circuits are particularly susceptible, with faults such as all the days displayed, a.m./p.m. appearing on a 24 -hour clock, the clock losing time dramatically, a meaningless display such as $64 \cdot 83$ hours, or inability to set various timer functions. The problem is often that an internal switch in an i.c. gets tripped into the wrong state: for example, some microcomputer i.c.s have automatic 50 60 Hz switching which can get tripped into the 60 Hz condition with the result that the clock loses time. The cure in such cases is to unplug the machine from the mains supply, count to ten, then reconnect it. This resets the microcomputer and clears the problem. In some cases a longer disconnection time is required to discharge the backup battery.

Control Circuit Troubles

Microcomputer troubles we've had apart from the clock/timer circuit have been confined to the Mitsubishi HS700 and HS304. With the former the usual symptom is that the cassette can't be ejected or that the lid won't stay closed. Luckily this machine has a reset button near the clock setting controls. Pushing the button with the point of a biro resets the micros and clears the fault. With the HS 304 the symptoms are difficulty with closing the cassette lid, the motor running without a cassette in, very slow response to the controls or no response at all. With this machine you need to unplug from the mains, as for clock faults.

Fuse Blowing

Many years of experience have shown that with the exception of some Toshiba V31 and V33 VCRs, for which a modification was introduced, intermittent fuse blowing is generally caused by a faulty mains socket. On a couple of occasions the problem was due to a faulty wall socket; in a few more cases it was caused by a worn multiplug; in over ninety per cent of such cases however the cause has been a worn or faulty two-three way adaptor - the sort of thing where you can put plugs in at the top, front and sides. These adaptors are often worn to the point where a plug will fall out under its own weight. I even had a case
where the live pin stayed in place when the adaptor was pulled from the wall socket.

It's fair to say that when a VCR has a wall socket to itself and the socket is in good condition random mains fuse failure is very rare. One other possible source of trouble however is when the machine is unplugged each night. Not all VCRs have a mains on-off switch (the Mitsubishi HS306 for example), so unplugging and plugging in can result in sparking at the socket and a blown mains fuse.

In view of this, why do some VCRs suffer from random mains fuse failure more than others? The difference lies in the design of the mains filter and the choice of fuse size. For example, the Ferguson 3V29/30 have a 1.25 A fuse and an $0.022 \mu \mathrm{~F}$ mains filter capacitor while the Toshiba V31 was originally fitted with a 315 mA fuse and an $0 \cdot 1 \mu \mathrm{~F}$ filter capacitor. The Ferguson machines don't suffer from fuse blowing while the Toshiba V31 does. Obviously the smaller the fuse value the more likely it is to fail under surge conditions: fuse sizes have been reduced to the limit in recent times in order to get BEAB approval. Also, the higher the mains filter capacitor value the lower the impedance presented by the capacitor at any specific frequency.

To overcome the problem of random mains fuse failure two courses can be adopted: increase the fuse rating and/ or decrease the value of the filter capacitor. Care is required when increasing the value of the mains fuse otherwise safety problems will arise. Toshiba have officially increased the rating of the fuse used in the V31/33 to 630 mA . Decreasing the value of the mains filter capacitor is less risky but reducing it to too low a value could allow too many mains-borne spikes to enter the machine and do damage. Toshiba recommend reducing the value of the mains filter capacitor in the $\mathrm{V} 31 / 33$ to $0.0047 \mu \mathrm{~F}$.

In Conclusion

To sum up, mains or mains related troubles can cause microcomputer confusion and fuse blowing. Can they cause one-off faults? The two established mains related faults have been confirmed by their relatively frequent occurrence. Apart from these I've had one instance where the capstan i.c. in a Mitsubishi HS306 failed and I'm ninety per cent sure that the cause was a faulty wall socket - I recall that when I did TVs repeated line output transistor failure in the Philips G11 chassis was often caused by faulty mains plug wiring. It would be interesting to hear from readers of any faults they can squarely attribute to a spiky mains supply.

Finally I'd like to emphasize that when I mention a spiky mains supply or mains interference the cause in the vast majority of cases lies within the household rather than coming via the mains distribution network.

Approaches to TV Servicing

We all have our own ways of tackling faulty equipment and tend to get rather set in our ways if we are not usually in the company of others engaged in the same profession. My own approach is to weigh up the symptoms reported and try to make a direct attack on the likely source of the trouble, basing this attack on my previous experience of the model concerned.

With a "no raster, sound o.k." condition for example the approach depends wholly upon the model. If the voltage supply for the sound circuits is obtained from the line output stage, as in most sets manufactured in recent years, it's likely that the line output stage is working and that e.h.t. is present. My first action therefore would be to check the tube base voltages to ensure that the cathode voltages are not too high and that the first anode voltages are high enough, i.e. about 150 V at the cathodes and 400 V at the first anodes. The next move depends on what these readings reveal.
It's quite common for example to find the first anode voltages missing in a receiver such as one of the GEC C2110 series though the line timebase is clearly in order (e.h.t. o.k. and sound present). My first move in this case would be to check the first anode supply presented to the convergence panel. I would expect to find it present and it usually is. The common failing is the resistor on this panel between PL30-4 and the first anode presets - R506, $560 \mathrm{k} \Omega$. In later production this resistor is not on the convergence board - instead it's on the small panel over the line output transformer where it's designated R616. The two nearby $1 \mathrm{M} \Omega$ resistors $\mathrm{R} 607 / 8$ are also highly suspect in this chassis and are often found burnt up.

Thoroughness

I had an occasion recently to visit a local workshop and was present when one of these sets was put on the bench for servicing. The symptoms were as described above and I was interested in the young man's approach. First he stripped the supply plug and rewired it, checking the fuse etc. He then checked the condition of the $3 \cdot 15 \mathrm{~A}$ mains fuse in the set itself - at the top left - and its holder. Next he checked for shorts across the h.t. line and across the thyristor mains rectifier. Satisfied that all was well, he plugged the set in and listened for the e.h.t. to rastle up. He proceeded to check the h.t. voltage against that given in the manual, then most of the voltages on the video panel. Finally he turned to the tube base and found that the first anode supply was missing.

He saw my look and turned his nose up. "We were taught to be thorough in order to avoid comebacks" said he. I crept away and vowed that I too would be more thorough in future. But old habits die hard and I still tend to jump in at the deep end and leave the plugs etc. unchecked.

The Ferguson 9600 Chassis

Shortly after this a Ferguson set fitted with the 9600 chassis required attention. The no raster condition this time seemed to be the result of high cathode voltages at the tube base. We chased this condition back to the
signals panel where we found the 24 V supply absent. So we moved over to the power supply panel where we expected to find fuse F511 open-circuit (34 V feed to the 24 V regulator on the scan panel). There was no voltage at either side of F511 and we then found that the relevant rectifier diode W518 (SKE2G2/02) was non-conductive in either direction. If we'd been more thorough and checked the supplies first we would have saved ourselves some time. Next time we'll check at the diagnostic sockets fitted as the makers suggest.

Pye 725 Chassis

The Pye 725 chassis is the one with the vertical panels. It's given us some headaches in the past. In this case the mains supply was present at the anode of the mains rectifier thyristor but there was nothing at the h.t. fuse and the associated resistors (surge, smoothing and antibreathing). Not wishing to fall for the old one we carefully checked the continuity of these wirewound resistors (if the surge limiter section goes open-circuit there's no h.t. at either end and nothing starts up). As all was well we returned to the power unit. The two $82 \mathrm{k} \Omega$ charging resistors R898/9 in the trigger pulse generator circuit are suspect and one of them was found to be open-circuit. In went another and we confidently switched on, expecting to hear the rush of sound and e.h.t. Silence.
We spent a lot of time checking this panel before we returned to the centre h.t. fuse. We were then surprised to find just over 100 V present. Resetting the h.t. presets brought the voltage up to normal and the set then behaved impeccably. How were we to know that eager little fingers had adjusted the presets wrongly?

Incidentally if the centre h.t. fuse is found to be opencircuit, waste no time - look into the top of the screened line output section and note the position of the capacitor right at the top (C561, first anode supply reservoir). Note its leadout wires to the print and check for a direct short. Failure to do this can lead you on a merry dance - a replacement tripler can be the first of many unnecessary acts as disconnecting this may leave the fuse intact. We all know this one by now of course, but it's an example of how methodical testing according to the book can lead one astray. Incidentally C 561 is $0.1 \mu \mathrm{~F}$, rated at 1.25 kV .

Rank T20/T22 Chassis

Mention of the Rank T20/T22 chassis will bring groans from those who are fully conversant with these sets. This isn't for you: it's for the majority who are not so fortunate. It's essential with these models to have a clear idea of how the system works. The power supply module is situated beneath the tube. It's a fairly complex selfoscillating chopper circuit designed to deliver a 200 V h.t supply to the right side line output panel. In most cases it does this, the fault or faults being elsewhere.

If the 200 V supply is absent, remove the plug from the upper right side, thus isolating the power supply for fault tracing. There are two fuses. The front left side one is the mains fuse. Failure of this should direct attention to the bridge rectifier diodes 7D14-17: it's common to find two
of them shorted, not one. BY127s are suitable for replacement purposes - they have a higher voltage rating than the BY126s originally fitted. If the diodes are not at fault, check the degaussing circuit posistor $7 \mathrm{TH1}$ and the mains filter capacitor 7C19. Remove them for a positive check, though their appearance will often leave no doubt as to which one is at fault. If there is doubt, remove the posistor and shake it: if it rattles, fit a new one (there's science for you). In all probability however the mains fuse will be intact and the fuse that will have failed will be the one at the rear of the panel - the 1.6 A HRC (high rupture capacity) d.c. fuse which is connected in the negative side of the supply. If it's open-circuit, carry out a general check on the BU326 chopper transistor and the associated diodes and thyristors.

HT Present

It's far more common to find that the 200 V supply is present at the line output panel although the tube's heaters (fed from a winding on the line output transformer) show no signs of life. If the 27Ω wirewound antibreathing resistor 5 R 11 is hot or the 800 mA fuse 5 FS 1 (if fitted) has failed, the voltage at the body of the BU208A line output transistor, which is on the metal panel, will be low, suggesting that the transistor has gone short-circuit collector-to-emitter. Check for this. But don't replace it and reconnect the supply until further checks have been carried out. Possible causes of the death of the transistor could be failure of the $9 \cdot 1 \mathrm{nF}$ tuning capacitor 5 C 14 , which goes open-circuit, a shorted tripler (disconnect from the line output transformer) or a poor earth connection at pin 2 of $4 Z 2$ on the centre, swing-down timebase panel. This is the long plug on the right side: if in doubt about the earth connection solder a long lead from pin 2 to the earthing on the line output panel.

BU208A Intact

It's more common to find that the full 200 V is present at the body of the BU208A. In this event it's logical to check that the supply is also present at the collector of the driver transistor 5 VT 3 . Under normal conditions the voltage here should be 125 V : it's common to find the full 200 V present, thus showing that the driver is inactive. In this event it's essential to appreciate the nature of the kick-start circuit used in these sets. The line oscillator is provided with an initial kick by $4 \mathrm{Cl} 9(10 \mu \mathrm{~F})$ on the right centre swing-down panel. With the set switched on this capacitor has 200 V on one plate at all times: at the moment of switch on it charges via 4R49 and zener diode 4D14 on its negative side, the kick being applied via 4D13 to pin 3 of the TBA 950 so that this i.c. gets going for long enough to enable the rest of the line timebase to come into operation - if it's in a condition to do so. The 12 V regulator circuit should then start up and take over the supply to the TBA950 and the other low-voltage circuits. Shunting 4C19 with a wirewound resistor of some $5-10 \mathrm{k} \Omega$ will maintain the supply to the TBA950 so that the trouble can be sorted out.

Short Cuts

That's the logical way to start fault tracing. In practice the writer employs a short cut once he's established that the 200 V supply is present at the body of the BU208A. Release the top screws and unhinge the chassis outwards -
with the set switched off. With the meter switched to the low ohms range, check the EW modulator diodes 5D7 and 5D6 at the front end of the print. 5D7 should read about 20Ω both ways due to the circuit. 5D6 should read about 20Ω one way and 200Ω the other. One of the diodes could well be open-circuit or perhaps short-circuit. If these are o.k. move farther to the rear and check 5R8 which is in series with the BU208A's base. It should read 1Ω. It will often be found to read higher and when removed be found to be open-circuit. If 5R8 is in order, move over to the left side of the swing-down panel to check the value of 4 R16 in the 12 V regulator circuit. It should read 910Ω. If it's open-circuit the 12 V regulator won't provide an output and the set will fail to get going after the initial kick start. These few quick checks will save a great deal of time.

Philips G11 Chassis

We've discussed the Pye/Philips Gll chassis in the past. There are now large numbers on the second-hand market however, so it will do no harm to outline the habits of this chassis briefly.

Most of these sets have two $3 \cdot 15 \mathrm{~A}$ anti-surge fuses mounted on the lower rear panel (some sets have only one fuse here). This is a convenient starting point in the event of a dead set. Are these fuses intact and is there 240 V between them? If they have obviously blown one would assume that the fault is on the lower right power panel, and this would be so if the h.t. fuse F4037 on the upper left of the power panel is 1 A as it's supposed to be. All too often however a higher rated fuse is found in this position so that if the fault is on the upper line timebase panel the excess current flows via the mains fuses which accordingly fail. So check this point first. If the h.t. fuse is rated at 1 A , concentrate on the power supply panel: in particular, check the four diodes in the bridge rectifier circuit. Two of the diodes also form a bridge with the two thyristors which are far less often at fault. This "double bridge" arrangement means that the two diodes that form part of both bridges work harder than the other two: these will most often be found to be short-circuit, thus explaining the blown fuses.
If the fuses are intact and there's about 120 V a.c. at the anode of each thyristor but no voltage at the h.t. fuse it's likely that trigger pulses are not being applied to the gates of the thyristors. There can be many reasons for this but a weak point is transistors $\mathrm{T} 4085 / 6$ in the excess beam current protection circuit. Since these two transistors are d.c. coupled and one is an npn device while the other is a pnp device it's impossible to check them by means of incircuit ohmmeter readings: the pins from which a reading is required must be isolated. T4085 is the BC148 npn device and T4086 the BC158 pnp device.

A prime cause of trouble in these sets is poor connections - where the original soldered connections have become dry or burnt away, possibly due to arcing. Examine the panels very closely for signs of minor volcanic eruptions. Don't omit to look into the partially concealed corners of the panels.

HT but No Results

If there's h.t. at the 1 A fuse but otherwise no results continue the search in the upper line timebase panel: this is a hotbed for dry-joints and close inspection really does pay dividends. The h.t. from the power panel does not go
direct to the line output stage. It's routed via the dynamic convergence correction panel (top centre) - through pins 3D7, 15A15, 15A16 and back to 3D6. This ensures that the h.t. is removed from the line output stage when the scan coils are disconnected. Check these contacts carefully if h.t. is not reaching 3D6 and pin 12 of the line output transformer. Check also the plug and socket connections that go off to the BU208A - these are at the top of the panel.

Remove this white plug in order to check the BU208A properly. The only readings to be obtained are from the base to the emitter and from the base to the collector (body). Switch to a high range to ensure that there's no reverse leakage.

If the h.t. supply is reaching the BU208A, check the supply to the driver transistor T3102 (BF355). There should be 127 V at its collector. The supply comes via R3106 (82) 2) which often goes open-circuit.

HT Fuse Blown

If the 1A h.t. fuse has blown, check whether the BU208A (remove the plug to do this) or the BY223 EW modulator diode D3133 has gone short-circuit. The BY223 is the flat, black diode with the heatsink clip on it. There should be a low reading in one direction only. If it has gone short-circuit, the condition of the EW driver transistor T2150 (BD238) - upper left on heatsink should also be checked. A shorted BY223 often signals the demise of the BD238. Failure to check this may result in the raster sides being curved in, i.e. no EW correction.

Access

To gain access to the components, fuses etc. check whether the original transit screws are still fitted, one at either side. Remove them and swing open the top clip. Lift the frame slightly and swing it open. The separate panels can be removed if necessary once the edge connectors have been pulled off (carefully, noting their positions and the holes for the locating pins). There are clips on the same side as the plugs: these allow the panel to be eased off the locating pegs and out of the slots at the outer edges.

We mentioned fuses. There's a row of them on the line timebase panel. Of these, the one most likely to fail is FS3143 (8000 mA) in the 37 V supply to the field timebase.

Field Timebase

The TDA260 field timebase chip is located on the left side upper panel. It's concealed beneath a Vee-shaped heatsink which is secured in position by two soldered tags above and below the staggered pins of the i.c. holder. Check the soldering to these pins in the event of erratic height variation, particularly the upper right pin 16 (output) - this is the most likely one to be found dry-jointed. If the holder is found to be discoloured at pin 16 when the heatsink is removed it must be replaced.

Apart from this pin, the holder can be responsible for erratic height, linearity etc., as can the TDA2600 itself. The chip has an appetite for fuses: the associated components can also be responsible for fuse blowing - amongst other things. The two $1,000 \mu \mathrm{~F}$ scan coupling capacitors C2099/C2100) are particularly likely to short and blow the fuse. As they are shunted by a 470Ω resistor they should be isolated for checking.

next month in

『ELEOTSTON

- THE BEOVISION 20AX CHASSIS

Esgene Trundle provides a run-down on common faults and guidance on circuit operation and setting $u \geqslant$ in the sections of the chassis unique to this design - mainly the remote control system, the power supply (a full-wave thyristor circuit) and the auto grey-scale correcticn system. These sets are not too difficult or expensive to sort out once their habits and operating principles are understood.

- VCR RECONDITIONING

Steve Beeching decided to buy a batch of ex-rental VCRs (Sony and JVC/Ferguson) to do up during slack moments. A report on the sorts of troubles you can expect to encounter in second-hand machines.

THE STRANGEST SET EVER

Our vintage TV series has looked at some odd sets in the past but the oodest so far must be the Murphy V134CN136C. The fne timebase used a pair of par allel-cornected beam tetrodes in a self-oscillating arrangement while the field timebase employed the scan coils as a feedtrack transformer. The joys of TV in 1948 !

- INITIAL VCR CHECKS

is it safe to insert a tape in a faulty machine that's just come into the warkshop? A few moments spent checking the tape leck and operating the machine without a tape can save a lot of time and expense. William Lockitt outl nes a simple test procedure.

- COMMODORE 64 PROGRAM

This test pattern program provides a crosshatch then overlays colour bars on the upper part of the screen and a grey-scale wedge at the bottom. There's also switchable scund - a harmonious three-voice chord!

- APPROACHES TO TV SERVICING

S. Simon describes fault-finding problems with the ITT CVC20 cr assis.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO

(Name of Newsagent)
Please reserve/deliver the August issue of TELEVISION (E1-10), on sale July 17th, and continue every month until further notice.

NAME

ADDRESS

The Lid off Microcomputers

In the first two parts of this series we took a fairly general look at the subject of home microcomputers. This time we'll take a closer look at a particular machine, the Amstrad CPC464. Its features include a 64 K RAM, fairly powerful BASIC and a built-in cassette deck for saving/ loading programs. Saving is recording on tape something that's in the computer's memory - usually a program, but it can also be other data, e.g. the screen part of the memory or a data file. Loading is playing back from the tape into the computer. The CPC464 comes with a monitor - either colour (RGB drive) or green screen monochrome (green instead of black and white to make viewing for long periods easier on the eyes).
To reduce the tangle of wires, the 5 V supply for the computer/tape deck is obtained from the monitor. Thus there's a mains lead to the monitor and only two leads from the monitor to the computer - for $\mathrm{RGB} /$ sync and 5 V . A modulator unit which contains a 5 V supply and a PAL encoder is available to enable the computer to be used with a TV set that doesn't have RGB inputs (or 5 V out!).
The layout inside the CPC464 is quite neat: apart from the cassette electronics, everything is on one large PCB. The keyboard is of the rubber membrane type, giving a nice feel and offering a degree of protection for the PCB against the various comestibles and liquids which descend in showers from the owners and their friends/relatives. Phelan's Law states that the amount of feeding electronic equipment receives is in proportion to the square of its intrinsic value.
A simple block diagram for the CPC464 is shown in Fig. 1. The CPU/microprocessor chip is a Z80A. The $16-$ bit address and 8 -bit data buses are shown along the top. A simple reset generator consisting of an $R C$ charging circuit and a couple of gates is used. The inverted reset line goes to the Z 80 A , the CRT controller i.c. and the

ULA i.c. (uncommitted logic array - a collection of gates etc. used for various purposes): the reset line goes to the PIO (parallel input/output) chip. The 64K RAM consists of eight i.c.s - one for each bit of the data word. At this point it's useful to take a look at the CPC464's memory map - see Fig. 2.
This shows the ROM divided into two blocks of 16 K . The addresses used are also used by the RAM. So how does the CPU know whether an address refers to ROM or RAM? This brings us to the first function of the ULA, which starts life as just that - an assortment of gates and other logic units with no interconnections. The i.c. can be used for a variety of purposes therefore since the connections can be tailored to suit the job in hand. As far as home micros go the ULA is simply an assortment of bits of circuitry that don't fit in anywhere else - in early computers a dozen or so i.c.s would have been required to do the same work. One of the ULA's jobs is to produce control signals for the ROM and RAM. If the CPU is writing to a memory it must obviously be the RAM, but if it's reading information either the ROM or RAM could be the source of the required data. If the address is between \#4000 and \#BFFF it can't be the ROM. ULA produced control signals sort the matter out otherwise.

ROM Functions

When the computer is switched on the "bottom" section of ROM is started, clearing the memory etc. This then transfers control to the "top" BASIC interpreter section which awaits an input from the keyboard.

RAM Functions

Part of the RAM is used as working space by the operating system. The character set is also loaded into the

Fig. 1: Simple block diagram for the Amstrad CPC464.

RAM by the operating system. This is done so that we can redefine characters without in any way affecting the permanent character set. The screen memory is the "top" 16 K section of the RAM and is arranged as follows. Each line of the screen consists of 80 bytes or 640 bits. This gives us 200 lines for 16 K . Since each character consists of an 8×8 matrix it occupies eight lines, giving us 25 lines of characters. The top 80 bytes is the top line across the screen, the next 80 the ninth line and so on - this means that the top lines of all character rows are stored in a block, then the second lines, etc. Or, to put it another way, there's a 2 K jump between adjacent lines.
The CPC464 has three screen modes. Mode one gives forty characters per line and four colours, mode zero twenty characters and sixteen colours, mode 2 eighty characters and two colours. The information stored in the screen section of the RAM is arranged to have what are called parallel attributes: this means that each byte contains information on what colour is to be displayed. Those who have had much to do with teletext will have met the alternative system where each screen memory byte contains either a character (ASCII) code or a control code that sets the foreground or background colour, graphics, double height etc. for the rest of the line. Some home micros use this system, which has the advantage of using less memory for the screen -25×40 takes up 1 K , not 16K. On the debit side, a control code (attribute) takes up one character square which can be occupied by nothing else - so you cannot, for example, have two adjacent letters of different colour. The parallel attribute system used in the CPC464 uses a lot more memory space but is much more flexible since each individual pixel colour can be determined by the user.
Each character consists of 8×8 pixels irrespective of mode. Since there are always 80 bytes or 640 bits per line of the screen the number of bits per pixel varies with the mode. In mode two there are 80 characters per line, so each character is one byte and each pixel is one bit which can be only zero or one - therefore only two colours can be used, one for foreground and one for background. In mode one the characters are wider, so each pixel is two bits giving four possible values or four colours. In mode zero with only twenty characters per line each pixel consists of four bits so we can have values from 0 to 15 , giving sixteen colours. Table 1 summarises this.

From the software point of view there is no reason why a complete screen cannot be put in the portion of RAM from \#4000 to \#7FFF (it will be invisible of course) and then instantly (or nearly so) transferred to the top 16 K . The effect from the user's point of view is that the whole display changes within a fraction of a second. This idea is made use of extensively in games software, where a

Fig. 3: Tri-state switching. (a) Logic zero output from the ULA provides OV at the VDU; (b) logic one (5V) provides about 2 V at the VDU; (c) the open-circuit state provides about 0.5 V at the VDU .
complete screen can be loaded without being visible: a machine code program is then used to shift it to the visible screen section of the RAM.

Uses of the ULA

The ULA is driven by a 16 MHz crystal clock. It divides this by four to provide a clock signal for the CPU. The clock signal also goes to the CRT controller IC108 whose job is to select the correct addresses in the RAM to provide screen information to the ULA, also to generate sync and blanking signals. The RAM is shared between the CRTC and CPU by means of the data selectors IC104, 5,9 and 13 which switch the address bus between the CRTC and the CPU with a time ratio of 3:1 respectively. These i.c.s are controlied by signals from the ULA.

Next on the list of jobs for the ULA is the provision of a composite sync signal from the separate sync outputs provided by the CRTC. The ULA also contains a "palette latch" which is fed with information from the data bus to decide which colours to use - the CRTC decides which parts of the screen are to be of a particular colour. The software determines this. A total of 27 colours can be used, the number in use at any one time being restricted by the mode in use.

The palette latch output consists of a five bit code which is decoded within the ULA to give R, G and B outputs. How can we get 27 colours with only three bits? If each bit can be only zero or one we would have eight possible combinations. The answer lies in tri-state logic, in which each output can be one, zero or open-circuit. If you look at Fig. 3 you'll see how this works: each input to the colour monitor can be at one of three possible levels, i.e. there are $3^{3}=27$ possible combinations. Matrixing is used to produce a luminance signal to which the sync signal is added.

The ULA also stores the mode information until it's changed. It also generates the switching signals for RAM section selection: these are synchronised with the 4 MHz clock. Each CPU instruction can take up to four clock cycles to complete. On the fourth, the CPU is halted by a

Table 1: CPC464 display modes

Mode	0	1	2
Bits per line	640	640	640
Characters per line	20	40	80
Colours available	16	4	2
Bits per pixel	4	2	1
Bytes per character	4	2	1

TELEVISION JULY 1985
signal from the ULA: the CRTC is then connected to the RAM for one clock cycle.

Buffers

In an earlier instalment we mentioned that in computer parlance a buffer is a temporary storage area for small amounts of data. Computers also need to use the other sort of buffer with which we are more familiar - a stage to provide impedance conversion or isolation between its input and output. The various buses - data, address etc. are connected to several parts of the circuit. It would not do for this to be done directly, otherwise if one bit went high or low the corresponding connections everywhere else would follow suit. To prevent this, tri-state buffers are used at the inputs and outputs: if a device is not in immediate use its ports are switched to the open-circuit state.

We also have buffer i.c.s that store one byte of information and read it out later. IC114 and IC115 are examples. The printer latch IC106 is another. Since a printer operates at a much slower speed than a computer
we must stop the computer after each byte has entered the latch. This is done by a "busy" signal from the printer. The CPU is restarted when each byte has been printed (one byte $=$ one character). Larger computers have print buffers of typically 64 K capacity: the computer ends up quite a long way in front!

VCR Microcomputer ICs

All this should have given you a better understanding of the operation of microcomputer i.c.s in video and TV equipment. The popular μ PD552 and μ PD553 used in JVC products are CPUs with their own ROM - the suffix number tells us which one. The ROM contains a complete program to operate the machine - and spends most of its time waiting for the user to press a key! These are 4 -bit micros. The other main type is that used by Sharp and Toshiba, with a few parallel inputs for safety functions (these can be regarded as several levels of interrupt) and a serial input bus for key scans etc.

Next month we'll look at the PIO, sound and cassette electronics in the CPC464.

TV Fault Finding

Reports from J. K. Potts, Mick Dutton, Philip Blundel, Eng. Tech., David Rainey, Malcolm Burrell and Stephen Howe

GEC C2110 Series - Touch Tuning

Erratic channel changing and difficulty with changing stations are common problems with these sets. The usual solution is to change the neons then if necessary to change the high-value resistors. On one occasion this approach had little effect so we decided to strip down the touch tuner head assembly. When the aluminium escutcheon was removed we found that the centre carbon insert which connects the escutcheon to the rear panel via a spring had seized up and was not making contact due to an accumulation of dirt. We remoyed the insert and connected the escutcheon directly to the rear panel with $20 \mathrm{~s} . \mathrm{w} . g$. wire bent and trapped between the escutcheon and the front panel. This remedy has worked reliably on several of these sets.
J.K.P.

Thorn 9800 Chassis

The fault was excessive width plus e.h.t. flashover after ten-fifteen minutes. A quick check revealed that the h.t. was high at about 210 V instead of 181 V . Further checks suggested that the fault lay in the ramp generator circuit. R724 ($120 \mathrm{k} \Omega$) in the ramp generator transistor's base bias circuit turned out to be high in value. It's mounted on the little auxiliary panel on the power supply board. D.R.

ITT CVC1200 Chassis

I've been having a few problems with the power supply in this chassis. Here's an example of how to learn the hard way. The set was dead since a short-circuit BU508A chopper transistor had blown the mains fuse. In went a new BU508A, fuse and protective zener diode D702. Switch on: bang! - another BU508A short-circuit. Another BU508A was fitted, the other seven transistors in the power supply were replaced, a dummy load was connected instead of the line output stage and the set was powered from a variac set to 90 V . The bulb (dummy load) lit but an arcing noise could be heard coming from
the set and a burning smell drifted across the workshop. A puff of smoke could be seen coming from the filter capacitor C701 which was arcing internally. So now the drill is to fit a new BU508A, D702 and C701, connect the dummy load and variac, then switch on with your left hand touching wood . . .
P.B.

Philips CTX-E Chassis with VST

The report by \mathbf{P}. Walsh in the May issue made interesting reading - it showed that I wasn't the only one having problems with these sets. When the mains bridge rectifier or the 4.7Ω surge limiting resistor fails the TDA2541 i.f. i.c. sometimes goes short-circuit, open-circuiting its supply resistor and a coil in the earth line - L9157, which is not shown on the circuit diagram. With this coil open-circuit the supplies to the tuner and VST module go haywire, causing them dire distress. The VST microcomputer i.c. often dies, but when you've replaced it you could well find you've still got problems. Such as:

No green tuning line - check D5852.
Will not stop tuning when a station is found. If the tuning speed slows down when a station is found, suspect the LM339 or an incorrect a.f.c. signal from the main panel. If the tuning speed doesn't slow down, check that the mute/transmission ident signal at pin 2 of VST module plug V11 goes to 0 V on station. If it does, the microcomputer isn't reading the signal. Suspect transistor T7856 and diodes D6840, D6841. The mute signal is generated in the line oscillator i.c.
P.B.

Sharp C1491/Rediffusion Mk V

One of these colour portables came in with the complaint that the picture went off when the set warmed up. Sure enough when we tried it the set worked o.k. for about twenty seconds then the raster disappeared and a loud ticking noise came from the power supply. When the back
was removed it was clear from the way in which all the semiconductor devices in the power supply had been changed for European types that an unknown engineer had had a long and meaningful relationship with this part of the set. Now the switch-mode power supply and the line output stage work together in this set, and if the line timebase doesn't start up that ticking noise is what you get. A scope check showed that the line oscillator stopped when the fault occurred, so attention was turned to the protection circuit which acts to shut the oscillator down. Sure enough pin 9 of the i.c. in which the line oscillator lives (an IX0065CE) went high just before the oscillator stopped. The protection circuit monitors the beam current, the amplitude of the flyback pulses and the conditions in the field output stage. It transpired that zener diode ZD602 in the beam current sensing circuit was short-circuit.
P.B.

Grundig 2210

Last August I mentioned a tuning fault on the Grundig 2210 (not 2222 - sorry). I've since learnt that the tuning system is very prone to board cracking. The solution is to replace the board containing the carbon tracks. It's quite easy. Unsolder the lugs and slide the old one out. Move the contact wipers to one end, raise them with a strip of paper, then slip in the new board. Don't forget to remove the strip of paper.
M.B.

Rank T20 Chassis

This set was described as dead though a loud whistle came from the power supply. The h.t. was about 50 V instead of 200 V so I dived for the line output transistor which turned out to be faultless. Only then did I notice the tell-tale burn mark around plug $5 \mathrm{Z1}$. Replacing this together with its socket provided a cure. The moral is, and always has been - make a quick visual inspection first
M.B.

Binatone 01/9860

This set came in with the description "smoking". R512 which supplies the line driver stage was a little discoloured but not open-circuit. The line output transistor TR503 was short-circuit. Replacing this failed to produce any appreciable e.h.t. and I was beginning to have expensive thoughts. I then found that the boost reservoir capacitor C512 ($220 \mu \mathrm{~F}, 16 \mathrm{~V}$) was hot. It tumed out to be leaky, a replacement restoring normal operation. I think this could become a common problem and since it upsets the operation of the line output stage it's always worth a check. Incidentally the line output transistor is type 2 SC 508 or 2SC2233: a BU508 (expensive) or a BD535 can be used.
M.B.

Grundig 5012

We got caught out nicely the other day with this set. It had two problems. First there was no blue tilt or parabola control. Simple this - C725 ($0.22 \mu \mathrm{~F})$ had gone opencircuit. I've come across this one on several occasions. The second problem was excessive width. The width control worked, but at minimum the picture was still several inches too wide. We spent a lot of time checking the width control circuit - as everything seemed to be running cool we thought we were looking for a control circuit fault. Eventually we turned our attention to the scan circuit. The scan-correction capacitor was an $0.68 \mu \mathrm{~F}$
metal type. We thought this couldn't possibly be faulty Wrong: a replacement cured the problem.
M.D.

Thorn 9800 Chassis

This set had no blue. There was no blue first anode voltage due to the $100 \mathrm{k} \Omega$ series resistor R 612 being opencircuit. A replacement got very warm however and we found that the associated spark gap was leaky. M.D.

Philips TX Chassis

A quickie: the fault was no sync, due to $\mathrm{R} 370(820 \mathrm{k} \Omega)$ which provides the sync separator transistor TS370 with base bias having gone open-circuit.
M.D.

Philips KT3 Chassis

The complaint with a Philips colour portable fitted with this chassis was no picture when warm. We ran the set up and found that after a few minutes the screen went blank. Turning up the brightness control produced a very faint picture. We checked the voltages around the decoder panel, which was of the older two-chip type, and found that with the contrast control at maximum the voltage at pin 16 of the TDA 2560 Q chrominance/luminance amplifier i.c. was only 0.7 V instead of something like 4 V . $\mathrm{C} 3205(0.022 \mu \mathrm{~F})$ which decouples this pin turned out to be leaky.
M.D.

Rediffusion Mk III and Mk V

Now that Rediffusion has been taken over by Granada we're finding that calls to service Rediffusion sets are beginning to come in. One of the first sets to come our way was fitted with a Sharp chassis (Rediffusion Mk. V chassis). The problem was field collapse. As we didn't have a circuit we wasted a lot of time trying to work out what did what

Eventually we found that R513 ($1 \cdot 2 \mathrm{k} \Omega$) was opencircuit: come to think of it this was the subject of a Test Case item not so long since.

Another set was fitted with the Mk. III chassis. This one was dead. The fuse had blown and as we could find no obvious shorts we fitted a replacement and switched on. The set started to come on then tripped. We removed the power supply panel and found a dry-joint on the regulating thyristor 6 THY 2 , but resoldering this failed to stop the tripping. Now regulation with this type of circuit is a sort of line output stage damping action, and for this purpose 6THY2 has to be fired - if it isn't fired excessive voltages build up and the trip operates. 6THY2 wasn't receiving trigger pulses because 6R17 (68 $)$ was opencircuit.

A couple of weeks later we had another of these sets tripping. This time the trouble was due to a faulty tripler.
M.D.

Thorn TX10 Chassis

The set would start up at switch on but after a few seconds it would shut down again. The set didn't go through the normal shut down/start up sequence: it simply remained dead after its first shut down. The fault was traced to the BC547 regulator transistor TR801 which provides the 12 V supply for the chopper control i.c. It had gone shortcircuit. In addition the associated 12 V reference zener diode D802 was leaky.
S.H.

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

15880 H	2.48	$25 A 884$	2.15	$2 \mathrm{SC620}$	1.46	AC138	0.09	BA318	0.09	BC463	0.64	80538					
15885R	2.48	2SA340	1.81	2SC643A	1.54	AC141	0.29	ba328 [ICl	47	${ }^{\text {BC4 } 464}$	0.64	85548	0.67	Brat9	0.61	BUIIIY	4.16
16029	124	2SA940-2	214	$2 \mathrm{SC668}$	0.67	AC151	023	BA333 (ic)	1.31	${ }_{8}{ }^{4} 465$	0.64	${ }^{80} 5850$	1.17	${ }^{\text {BFF490 }}$	0.60	BU124	1.38
16181	1.04	$2 \mathrm{SA951}$	126	$2 \mathrm{SC673}$	123	AC153	0.34	ba401 (iC)	0.64	вC47	0.3	80590	1.17		0.49	Butis	248
16182	1.04	2SA966	0.54	$2 \mathrm{SC681}$	4.40	AC176	0.30	basilia (IC)	5.97	BC478	0.32	${ }^{80598}$	125	${ }_{\text {Bras }}$	0.64	BU126	${ }^{0.95}$
16334	0.51	2 28325	3.87	$2 \mathrm{CC684}$	1.05	AC179	028	BA511 (IC)	2.18	BC479	0.41	8067	0.53	${ }_{\text {BF509 }}$	0.41	BU134S Bu20	4.57
16335	0.80	2SB375	387	$2 \mathrm{SC685}$	0.00	AC183	0.72	BA521 (IC)	202	BC532	0.28	${ }^{80630}$	0.76	${ }_{85} 23$	0.21	${ }^{\text {Bu }}$	${ }_{1.08}^{1.58}$
16446	0.98	2SB400	0.40	$25 C 6854$	289	AC187	0.39	BA526 (IC)	7.98		0.17	BD681	1.48	BF594		${ }^{\text {Bu206 }}$	
16600	1.38	${ }^{258407}$	324	2 SC693	0.63	AC187k	0.0	BA532 (iC)	1.83	BC547	0.10	B0695	230	${ }^{\text {BrF595 }}$	027	${ }^{\text {BUL }}$ B207	1.27
16799 16801	2.52 0.54	${ }_{\text {2S8B449 }}$	3.30	2SC710	0.69	AC188K	0.43	BA533 (IC)	3.44	BC548	0.09	B0696	2.47	В ${ }^{\text {F }} 96$	0.18	BU208	1.12
16802	1.14	2S8511	6.0	2SC717	0.50	AC194k	0.05	Ba6209 (IC)	4.71	BC549	0.10	B0697	3.60	BF597	0.27	Bu20802	1.97
16903	5.30	${ }_{2}$ SSB54	1.39	${ }_{2 S C 734}$	1.14 1.43	${ }_{\text {A }}^{\text {ACl }} 140003 \mathrm{~N}$	272 1.06	${ }_{\text {babis }}$ bata (IC)	${ }_{3}^{298}$	BC550 BC556	0.46	${ }^{805988}$	185	$8{ }^{86517}$	1.05	BUZOSA	1.12
16905	0.86	2 2S8546	3.64	2 2SC735	1.16	AD145	1.00	${ }_{\text {BAV18 }}$	0.31	${ }^{\text {BC555 }}$	0.16 0.10	80699 80700	3.3 .9	${ }^{85618}$	1.05	BU2080	1.43
17052	5.61	2SB56	223	2SC782	247	AD149	0.90	BAV19	0.11	BC558	0.10	B0701	3.48	${ }_{8757}$	0.22		1.93 239
17074	6.60	2SB618A	1.83	2 SC783	3.98	AD162	0.45	bavzo	0.11	BC559	0.10	B0702	3.70	B758	0.55	${ }^{\text {BU }}$ B12 12	239
17088	4.80	${ }_{2 S 8631}$	325	${ }^{2 S C 806}$	1129	AD262	1.05	BAV21	0.34	BC560C	0.10	B0709	1.12	B7759	0.34	BU326	238 200
17089 17127	5.55	2S8643	${ }_{3} 0.40$	${ }^{25 C 814}$	1.39	AF114	2.47	BAX12	0.11	${ }^{\text {BCa33 }}$	020	B0710	0.80	87760	0.65	BU326S	200
17376	1.58	2S8681	3.96	2Sc367A	0.8	AF17	124	${ }^{\text {baxis }}$	0.11	${ }^{\text {BC63 }}$	020	B0807	0.34	B7762	0.34	BU406	1.35
17523	1.38	2SB695	1.98	2SC876	3.04 0.96	AFI18	120	BAX16	0.11	${ }^{\text {BC637 }}$	024	${ }^{80809}$	0.75	BF870	0.30	BU407	0.82
17524	1.32	${ }^{2 S 875}$	1.04	2SC926A	1.42	AF127	0.50	BC107	0.13	BC639	020	B0810 B8879	0.71	${ }^{\text {BF87900 }}$	1.81	BU4070	129
1 N 4001	0.06	2 28819	0.87	2 2C930	0.54	AF139	0.53	BC107A	0.11	BC640	024	B0880	0.79	${ }_{\text {BF907 }}$	279	BU412	4.80
114002	0.06	2SB881	0.85	$25 C 935$	4.13	AF178	1.45	BC1078	0.11	вс879	0.31	B0895	2.18	${ }_{\text {Bf959 }}$	0.42	${ }^{\text {But }}$	1.50
12 4003 in 4004	0.06	2 2SC1050	4.013	${ }^{25 C 537}$	3.58	AF179	0.55	BC1088	0.15	BC880	0.31	B0899	2.48	BF960	1.90	Bu500	1.67
IN4004 in 4055	0.08	2SCC1061 2SC1096	1.16	${ }_{2 S C} \mathbf{2 S C 4 0}$	4.68	AF180	0.55	BC1098	0.15	BCX32	0.42	B0901	0.00	BF970	0.61	BU508A	1.89
1N4006	0.08	2SC1104	2.60	2SC982	4.00	AF182	0.55	BC113	0.14	${ }^{8 C \times 23}$	027	80902	0.61	BFR39	0.44	BU526	202
${ }^{1} 1 \times 007$	0.07	${ }_{2 S C} 1106$	4.54	2SD1051	0.75	${ }_{\text {AF186 }}$	0.53	${ }_{\text {BC12 }}$	0.25	BCx34 $\mathrm{BC} \times 37$	0.40	B0V64B	126	BRF52	0.50	Bu6080	1.57
1 ${ }^{1} 4148$	0.04	$2{ }^{2 S C 1114}$	6.75	2SO1128	225	${ }_{\text {AF239 }}$	0.53	BC132	0.14	${ }_{\text {BCY70 }}$	0.30	${ }^{80} 8032$	1.75		0.50	BU705	${ }^{3.51}$
1 1 4448	0.05	2SC1124	126	2SO1138	0.86	AF279	0.88	BC135	0.14	BCY71	021	B0X53	0.88	${ }_{\text {Bffril }}$	0.50	BU800	${ }_{1}^{1.57}$
N N 5401	0.14	${ }_{2 S C 1128}$	0.00	2S01265	0.76	Al100	4.03	BC+37	0.18	$\mathrm{BCY}^{\text {P2 }}$	020	B0x53a	4.05	BFR36	1.08	BU8060	1.79 1.49
in 5402 in 5403	0.15	${ }_{2 S \mathrm{C}}^{2} 1129$	0.34	2 SO 1453	0.75	Al103	2.88	8C138	0.34	BD115	0.36	B0×538	3.35	BFR89	0.43	BU807	1.49
iN5404	0.15	${ }_{2 S C 151 A}$	4.72	${ }_{2 S 0234}$	3.87 0.47		1.36	8C139 BC141	028	B0116 80124	${ }_{0}^{0.70}$		2.61 106	${ }_{8}^{81} 41$	0.30	BU826A	3.94
1 1N5408	0.87	$2 \mathrm{SC1} 152$	4.68	2 SD 235	0.60	AN206	258	${ }_{\text {BC142 }}$	0.34	${ }^{\text {B0, }} 124 \mathrm{P}+\mathrm{KIT}$	0.31	${ }^{\text {B0x }}$ B0663A	1.96	${ }_{8}^{\text {BFF42 }}$	0.43 0.43	BUV46	1.53
1 N 914	0.04	$2 \mathrm{SCC1157}$	4.54	${ }^{2 S 0257}$	2.94	AN208	3.55	BC147	0.11	B0131	0.42	BDX64A	2.61	BFI84	0.40	BUWB1a	124 3.06
1544	0.09	${ }_{2 S C 1172}$ TR	1.05	${ }^{2 S 0288}$	0.00	AN210	228	BC147A	0.12	80132	0.42	B0X65A	261	BFW10	0.60	Buw ${ }^{\text {d }}$	1.39
1S5012A	0.81	${ }_{2 S C 1172 Y}$	220	${ }_{2 S 0292}$	295	AN2140	22.86	${ }_{\text {BC148B }}$	0.13 0.13	${ }^{80133}$	0.53	B0X76 BOY\%	0.59	BF29	0.34	Bux84	1.00
${ }_{1}$ S9821	0.10	${ }^{25 C 1195}$	3.02	2 SD313	2.59	AN231	14.43	${ }_{\text {BC }} 148 \mathrm{C}$	0.11	${ }^{80136}$	0.36	${ }^{\text {BOY }}$ B201	4.62		0.05	BUY69A	2.04
2N1302	027	${ }^{2} \mathrm{SC1306}$	1.98	2 SD348	16.13	AN238	3.33 5	${ }_{\text {BC }}{ }^{\text {BC143 }}$	0.13	${ }^{80138}$	0.46	8 BF 115	0.40	B7X87	0.55	BY133	0.11
2 N 1303	0.38	${ }_{2 S C 1307}$ TR	1.98	250350	520	AN239	4.35	${ }_{\text {BC1 }}$	0.14	${ }^{80139} 8$	0.34	BFF17 BF118	0.40	BFX88	0.34	BY176	1.52
${ }^{2} \mathbf{N 2 1 4 8}$	627	${ }^{2 S C 1316}$	4.10	$2 S 0350 \mathrm{~A}$	229	AN240P	1.72	BC157	0.14	B0144	1.13	${ }_{8 F 121}$	0.65	-	0.44	BY'79 BY182	1.42
${ }_{\text {2N2218 }}$	0.20	${ }_{2 S C 1317}$	0.87	${ }_{2 S} 2$ S03539 TRA	6.12	AN241	1.71	BC158	0.10	BD150	1.19	BFi23	0.13	BFY52	027	${ }_{8} \mathrm{BY} 184$	1.05 0.47
2 N 2222	0.38	${ }_{2 S C 1383}$	120	2SD0401	3.55	${ }_{\text {AN247P }}$	4.49	${ }_{\text {BC151 }}$	0.16	B0157 80159	0.67	${ }^{\text {BF }} 127$	0.13	BfY90	0.61	BY187	0.7
${ }^{2} \mathbf{N} 2646$	0.80	2SC1391	2.45	250551	2.42	${ }_{\text {AN252 }}$	257	${ }_{\text {BC }}{ }^{\text {BC6 }} 6$	0.36	${ }^{80150}$	${ }_{1}^{0.50}$	${ }_{\text {BF152 }}$	${ }_{0}^{0.13}$	BLY49 BR100	220	${ }^{\text {BY } 189}$	1.76
${ }^{2} \mathbf{N} 2904$	0.36	2 SCl 338	0.84	${ }^{2505888 A}$	1.98	AN253	2.97	BC168	0.36	B0163	0.71	${ }_{\text {BFF } 153}$	0.58	${ }^{\text {BRIO1 }}$	0.70	BY201/2	1.62 1.50
2 N 2906	0.38	${ }^{2 S C 1413}$	235	2 2Sb60	325	AN262	1.98	${ }^{\text {BCLI }} 17$	0.16	${ }^{80165}$	0.62	BF154	0.26	BR103	0.66	BY203/20	0.20
2 22926 GRN	0.15	${ }^{2 S C 1413}{ }^{\text {a }}$	3.53	${ }_{2 S 0636}$	126 0.25	${ }_{\text {AN281 }}$	5.45	${ }_{\text {BCil7 }}$	0.10	${ }^{80166}$ B0168	0.43	${ }^{\text {BF } 157}$	0.33	${ }^{\text {BR303 }}$	126	BY206	0.17
${ }^{2} 22926$ RED	0.19	${ }_{2 S C 1475}$	0.37	2 20657	280	AN295	5.52	${ }_{\text {BC172 }}$	0.27	B0175	0.43	${ }_{\text {BF }}$ BF9	0.18	BRR8B ${ }_{\text {BR }}$	0.64	${ }_{\text {BY207 }}$	0.27
- ${ }_{\text {2N3053 }}$	0.27	${ }_{\text {2SC1514 }}$	1.37	2 2S0669	3.67	AN301	5.55	${ }^{\text {BCiT3 }}$	0.17	B017	0.43	BF160	0.31	BRC116	0.67	BY210-400	0.46 0.18
2N3055	0.61	${ }_{2 S C 1578}$	8.74	${ }_{2 S 0731}$	3.11 2	${ }^{\text {A }}$ AN302 ${ }^{\text {a }}$	3.99 439	$\mathrm{BC1748}$ BC 17	027	${ }^{80179}$	0.49	${ }^{\text {BF } 167}$	0.38	BRC1330	1.76	BY210-600	027
${ }^{2} \mathrm{~N} 3055 \mathrm{H}$	0.85	2SC1617	3.89	2S0787E	0.58	${ }^{\text {AN305 }}$	888	${ }_{\text {BC178 }}$	0.26	${ }^{80182}$	0.99		0.34 0.55	BRC300 BRC444	2.01	${ }^{\text {BY210-800 }}$	0.34
2 N 342 2 3 772	1.16	2 2SC1670		2 S0811	5.54	AN313	3.41	BC179	026	B0183	0.99	${ }^{\text {BF178 }}$	0.40	${ }_{\text {BRC4444 }}$	1.02	${ }_{\text {Br224 }}$	0.85 0.99
2N3703	0.14	${ }^{2 S C 1810}$		${ }_{2 S 083}$	1.98	${ }^{\text {AN315 }}$	2.46	${ }^{\text {BCL } 182}$	0.11	B0184	121	BF179	0.36	BRC5296	0.7	BY225-100	1.13
${ }^{2} \mathbf{N} 3704$	0.14	2SC1815	0.66	2S0856	6.61	${ }_{\text {A }}$	6.53	${ }_{\text {BCli82B }}$	0.09	80187 80189	0.53	${ }_{\text {BF180 }}^{\text {BF } 189}$	0.36	${ }^{\text {BRC66109 }}$	0.83	BY226	0.25
${ }^{2} \mathbf{N} 3705$	0.14	2SC1829	22	2 20869	7.17	AN320	5.47	BC1821	0.10	80190	0.65	${ }_{\text {BF1 }}$	0.34	BRC82 BRC83	1.08 219	${ }_{\text {BY278 }}^{\text {BY27 }}$	0.49
${ }_{\text {2 }}^{2}$ (37306	0.14	${ }^{2 S C 1875}$	4.7	${ }_{2} 250889$	021	AN331	4.58	BC182LB	0.14	B020	0.67	BF183	0.39	BRC94	208	${ }_{\text {BY229800 }}$	0.00 0.00
2N3707 2 N3711	0.16 0.11	${ }^{\text {2SCL }}$ 28981K	298	${ }_{\text {2S08988 }} \mathbf{N}$	0.30	AN3 37 A 340 p	532	${ }^{\text {BC1 } 183}$	0.10	${ }^{80202}$	0.60	${ }^{\text {BF } 184}$	0.43	BRX44	0.50	BY255	1.07
2 23371	2.04	${ }^{2 S C 1893}$	3.02	${ }_{\text {2SK105H }}$	2.15	AN355	1.17	-	${ }_{0}^{0.11}$	80203 80204	0.60	${ }^{\text {BF1 } 195}$	0.39	${ }_{\text {BRX }}{ }^{\text {Pr39 }}$	0.53	${ }_{\text {BYY }}$	0.81
2N3772 2N373		2SC1929	225	2SK152	2.46	AN362	1.75	BCi84	0.13	80207	122	${ }_{\text {BF19 }}$	0.14	${ }^{\text {BRYY55 }}$	0.67	${ }_{\text {BYY } 298}$	0.20
${ }_{2}{ }^{\text {N3819 }}$	0.40	${ }^{\text {2SCLI938 }}$	7.50	${ }^{\text {2SKK34 }}$	0.76 1.07	${ }_{\text {ANS111 }}$	2.29	${ }^{\text {BCI } 1844}$	0.14	B0208	123	BF196	0.17	BRY56	0.50	BY409	0.60 1.49
2N3823	1.17	2SC1942	1.75	2SK79	2.98	${ }^{\text {ANN5250 }}$	239	${ }_{\text {BCI }}$	026 027	8023	0.49	${ }^{\text {BF }} 197$	0.16	BSFS9	129	BY448	0.67
${ }^{2} \mathbf{N 3 9 0 4}$	0.62	${ }^{2 S C 1995}$	4.53	43408	0.50	AN5435	3.08	${ }_{8}{ }^{\text {BC187 }}$	0.20	${ }_{80228}$	${ }_{0}^{0.63}$	${ }_{\text {BFF } 199}$	0.17 0.17		0.59	${ }^{\text {BY4 }}$ 876A	${ }_{0}^{0.34}$
2 23308 2N4101	0.62	${ }_{2 S C 1953}$	1.93	40594	1.53	AN5602	0.00	BC204	0.16	80229	1.05	BF200	0.37	${ }_{\text {BSTB01409 }}$	2.73	${ }_{\text {BrW }}^{\text {Bra }}$	0.46 0.34 0.3
2 N 4240	3330	${ }^{2 S C 1959}$	${ }_{0}^{0.95}$	${ }_{40635}^{4059}$	1.53	AN5610	7.43 3.51	${ }^{\text {BC207 }}$	0.14	80231	0.50	${ }^{\text {BF216 }}$	0.36	BSTB0140E	4.81	BY10	0.29
${ }^{2}$ N4444	0.90	2SC1962	1.93	40871	1.53	AN5613	3.41	${ }_{\text {BC2 }}$	${ }_{0}^{0.11}$	80232 80234	0.50	${ }_{\text {BF22 }}^{\text {BF218 }}$	0.36	BSTCO146	2.48	${ }^{8 \times 1} \times 55-350$	0.53
${ }^{2 N 4914}$	0.72	2SC1969	2.92	40872	1.53	AN5602	425	BC2121	0.10	${ }^{80237}$	0.47	${ }_{8 F 237}^{8 F 2}$	0.56	${ }^{\text {BSSTCO223 }}$	${ }_{6}^{6.12}$		0.15 125
${ }_{2}$ 2N50293	0.71	$2 \mathrm{2SC2009}$	0.34	${ }^{744500}$	0.40	AN5703	1.42	BC212LB	0.26	B0238	0.55	BF240	0.17	BSTC1233	4.34		125 0.83
2N5294	0.50	${ }^{2 S} 220278$	2.11	${ }^{74 L 504}$	0.40	${ }_{\text {anc }}$	$\stackrel{5}{4.15}$	${ }_{\text {BC213 }}$	0.10	${ }^{80240}$	0.37	BF241	0.17	BSTC3146	0.79	BYX93-24	1.75
${ }^{2} \mathbf{N 5 2 9 8}$	0.49	2SC2029	233	741508	0.70	AN6340	${ }_{6}{ }^{4} 46$	${ }_{\text {BC22318 }}$	0.15	${ }^{802242}$	0.39 0.50	${ }^{\text {BF }} \mathrm{F} 2454 \mathrm{~A}$	0.47	${ }_{\text {BSTCCOL14 }}$	3.07	$8 \mathrm{BX93}-\mathrm{CNV}$	1.35
2N5297 2N5298	0.50	${ }^{2 S C 2057}$	1.18	${ }^{74 L S 10}$	0.90	ANG342	1.51	${ }^{\text {BC214 }}$	0.10	B0243	0.50	BF255	0.20	${ }^{\text {BSt }}$	3.35 285	BYX94	${ }_{1}^{0.14}$
2N5930	1.6	${ }_{2 S C 2078}$	1.54	7415123	1.05 0.53	AN6344	5.87	${ }^{\text {BC2 }}$ C214	0.14	B0243A	0.37	BF256	028	BSV578	3.31	B2V15-C12	1.58
2N5496	0.50	2SC2091	2	74.5132	0.80	AN6531	1.95	${ }_{\text {BC223 }}$	0.40	BD244 BD244	0.51	${ }^{\text {Pr256LL}}$	0.42	BSW68	0.60	B2V15-C128	128
${ }^{2}$ N6107	0.59	2SC2122A	5.12	7415138	0.94	AN6551	0.68	${ }^{\text {BC237 }}$	0.10	${ }^{\text {B0245C }}$	${ }_{0}^{0.85}$	${ }^{85}{ }^{85258}$	0.34 0.33	BSX19	0.34 0.34	${ }_{\text {B2V15-C24 }}^{\text {B2V15-C24 }}$	0.80
2N6109 2N612	1.58	2SC2141	1.86	74.5157	0.87	ANG552	0.58	BC238	0.10	B0246C	0.86	BF259	0.34	BSK21	0.87	${ }_{\text {B215-C30R }}$	1.09 0.80
2N612 2N6130	1.76 0.72	2SC2166	1.98 0.69	744S161AN 7415196	${ }_{1}^{272}$	${ }_{\text {AN }}$ AN61114F	5.40	BC238A	0.13	${ }^{80253}$	1.05	BF262	0.57	BSY52	0.50	82793C30	1.80
${ }^{2}$ N6133	125	2SC2233	220	${ }^{7} 41520$	0.41	AN7115	252	${ }_{\text {BC252 }}^{\text {BC298 }}$	0.25 0.10	${ }^{\text {B0278A }}$	0.70 235	${ }^{\text {BF263 }}$	0.57	${ }^{\text {BSTV9 }}$	0.51	C10188	16.52
${ }_{\text {2N6 }} \mathbf{2 N 6 1 7 8 0}$	0.73	2 SC 2231	3.64	74.15244	1.82	AN7145	280	BC258	025	${ }^{80318}$	2.59	${ }^{85} 271$	0.34	${ }_{\text {BT100 }}$	1.181	C1060 C1129	${ }^{0.30}$
2N6292	0.73 0.62	2SC2278 SC2314	1.14 0.81	${ }^{7415245}$	281	${ }_{\text {ANP146 }}$	9.90	${ }^{\text {BC261A }}$	0.2	${ }^{80375}$	0.42	BF273	0.20	${ }^{\text {¢ }} 108$	1.45	Caliliot	0.58 2.0
2N696	0.43	2SC2320	0.21	74L530	0.53	${ }_{\text {AN7151 }}$	2245	${ }^{\text {BC262 }}$	0.02	${ }^{8037}$	${ }_{0}^{026}$	${ }^{\text {BF274 }}$	020	BT109	1.45	CA1352	2.05
${ }^{2} \mathbf{N 6 9 8}$	0.43	${ }_{2 S C 2355} \mathbf{S C L T}$	10.41	7415367	1.16	AN7156	226	${ }_{\text {BC294 }}$	0.50	${ }^{\text {B03390 }}$	${ }_{0}^{0.76}$	${ }^{\text {BFF324 }}$	023	${ }_{\text {BT112 }}^{\text {BT12 }}$	248	${ }^{\text {ca3304 }}$	3.50
2SA1011	0.43	${ }_{2}$ SCC2526	1.87	74.5373	1.79	AN7158	6.75	BC300	0.45	80410	0.49	${ }^{8 F} 337$	0.36	${ }_{\text {BTI }}$	120	CA3046 Ca3000	${ }_{1.06} 200$
2SA1027R	0.45	${ }_{2 S C 2570}$	239	74L573	1.16	${ }_{\text {AP5 }}$ A 21878	1.64	BC301 BCO 22	${ }_{0}^{0.53}$	${ }^{80412}$	678	${ }^{\text {BFF338 }}$	0.40	BT119	1.76	ca3065	129
${ }_{2 S A 1076}$	1.96	2SC2570A	1.05	741574	0.6	As560S	1.58	${ }_{\text {BC303 }}$	1.04	B04188 80433	0.76 0.41	${ }_{\text {BF355 }}$	0.04	${ }^{\text {BTI }} 120$	217	ca30as	0.83
${ }_{\text {2SAIOS }}$	237	${ }_{2 S C 5}{ }^{\text {SC278 }}$	6.75	744S75	0.58	AU113	297	BC307	0.18	B0434	0.43	${ }_{85363}$	0.50		248	${ }_{\text {casaga }}$	1.43
2SA329	${ }_{0}^{6.50}$	${ }_{\text {2SC2671 }}$	1.89	${ }^{744.586}$	${ }_{0}^{0.54}$	${ }_{\text {AY }}^{\text {AYOSK }}$	208	${ }^{81} 83078$	0.14	B0435	0.49	BF371	0.50	BT123	1.98	CA3094	1,38 20 18
2SA351	1.17	2SC2785	0.75	${ }^{74 L 592}$	0.83	BA130	1.09 0.14	${ }_{\text {BCa }}^{\text {BC308 }}$	0.18	${ }^{\text {B0a36 }}$	0.50	${ }_{8 F 393}$	0.25	${ }^{\text {B1/25 }}$	248	CA33131EM	3.12
2544989	1.17	${ }^{2 S C 3772}$	1.40	74L593	0.41	BA1310 (IC)	1.98	ВСЗ309	0.17	${ }^{80438}$	$\stackrel{0}{0.41}$	${ }_{\text {BF4 }}{ }^{\text {8F33 }}$	0.05	${ }^{81126}$	248	CAH7023N	267
${ }_{\text {2SA493 }}$	1.6	${ }_{2}^{2 S C 373}$	1.16	74.5958	0.94	BA1320	1.38	BC317A	0.13	B0441	1.42	BF418	1.87	${ }_{8 \text { BT128P }}$	2.48 3.07		${ }_{1}^{6.50}$
2SAS64	0.4	2SC388	1.3 0.50	${ }_{78005}^{7005}$ T0-320	0.63 1.16	${ }_{\text {BA145 }}^{\text {BA }} 133$ (IC)	275 0.19	BC327 BC38	0.15	${ }^{\text {BD }}$ 822	0.66	BF42	029	tBA970	3.06	C04001	1.38
2SA614	4.88	2 Sc 394 V	0.81	7806	0.73	BA15]	0.22	${ }^{8} \mathrm{BC} 37$	0.11	${ }^{80507}$	0.050	${ }_{\text {BF423 }}$	029	${ }^{\text {B }}$ 1151-800	1.15	C04002	027
2SA628 2SA637	1.14	${ }_{2 S C 403 C}$		7808	239	BA159	0.12	BC338	0.12	B0517	0.00	BF450	0.35	${ }_{\text {B B }}$	1.38 212	CD4088 CO 4011	1.06 0.29
${ }_{2 S A B 73}$	1.47	${ }^{\text {2SCA1 }}$	2.19 0.34	7812 10-3	0.64 1.16	${ }^{\text {BA }} 1828$	0.19	${ }^{\mathrm{BCa} 500}$	0.34	B0518	1.50	BF451	0.29	ВП16218	24	CD4013	0.49
2SA683	1.61	2SC495	0.92	7815	0.64	${ }^{\text {bazasan }}$	1.17	${ }_{\text {BCC40 }}$	024 1.09	${ }^{80519} 8$	1.50	${ }^{\text {BF4457 }}$	0.41	${ }^{8178024}$	4.43	CD4016	0.45
2SA684	1.33	${ }^{2 S C 508}$	3.70	7818	0.70	BA301 (IC)	0.87	BC441	0.4	B05 80	1.10	${ }^{\text {Bra } 459}$	0.59 0.52	878124 $B \Pi 824$	4.89 297	CO4017	0.82
2SA699	1.75	${ }_{2}^{2 S C 515 A}$	1.85	7824	0.61	BA302 (IC)	124	BC454	0.36	B0533	0.67	${ }^{\text {BF4 }} 460$	${ }_{0}^{0.99}$		297 1.50	C04020	123 0.39
2SAB17	1.08 0.48	${ }_{2 S C 533}^{2 S}$	0.05	${ }_{\text {ACl107 }}$	0.73	${ }^{\text {BA3111 }}$ (IC)	1.38	${ }^{\text {BC455 }}$	0.36	${ }^{\text {B0534 }}$	0.53	BF469	0.31	Butos	2.48	C04023	0.39 028
2SAB18	1.82	${ }_{2 S}^{2 S 558}$	${ }_{3.69}^{0.65}$	${ }_{\text {AC }}$	0.0 .43	BA332 Bali (IC)	0.97	${ }^{\text {BC4460 }}$	0.02	B0535 ${ }_{\text {B05 }}$	0.7		0.51	${ }^{\text {BU108 }}$	1.50	CD4025	0.64
2SA835	2.50	2Sc605L	1.16	AC128	0.28	${ }_{\text {BA317 }}$ Bal	0.00	${ }_{\text {BC462 }}$	0.47 0.30	${ }^{\text {B0533 }}$	0.61	${ }_{\text {BF471 }}^{\text {BF472 }}$	0.31 0.33	BU109S	225	CDO4028	${ }_{1}^{0.84}$
	NT S	EE IT UST		FOR QUO	GIN	E MAKE	DEL	location	EMEI	EMBER TO	D 0.6	60p PO	HAN	BUNG. A	5.6\%	VAT TO TO	

CD4049 CD4053
CD4069
CD4081
CD4093 CD4069
CD4081
CD4093
CD4511 CD4081
CDA4093
CD4511
CD4516 CD4516
CP521 CX034
C×0950
C $\times 194$ C $\times 108$
C×109
C× CX121
CX130
CX131
0.58

\section*{| | 39015 | 324 |
| :--- | :--- | :--- |
| | M5847 | |
 | 324 | M58478P |
| ---: | ---: |
| 1716 | MA06 |} | 15 | 0490 |
| :--- | :--- |
| 07 | $0 A 91$ |
| 72 | 0495 | OA90

OA91
OASS $\stackrel{0.08}{0.09}$
 ${ }_{3}^{335}$

$\underset{ }{\text { Tisesa }}$

6.5

 ${ }_{2,137}^{1,3}$

 | |
| :--- | :--- | 37

 0
 and
$\rightarrow+$

A066
A1457
MA8001
MB3705
MB3712
MB3713 뭉즈․․․․․․

\[
$$
\begin{aligned}
& 233 \\
& 203 \\
& 200 \\
& 210 \\
& 246
\end{aligned}
$$

\] \square | $\mathbf{5 2 3}$ | $T 9010 \mathrm{~V}$ |
| :--- | :--- |
| 2.7 | $T 9011 \mathrm{~V}$ |
| 2.7 | $T 9013 \mathrm{~V}$ |
| 3.08 | $T 9014 \mathrm{~V}$ |
| $\mathbf{2 . 9 0}$ | $T 9006$ |
| $\mathbf{1 . 0 5}$ | $\mathrm{T9019W}$ |
| 1.57 | $T 9024 \mathrm{~V}$ | M以 M M安灾岂

$$
\frac{8}{4} \frac{8}{4} 5
$$

 1
1
1
1馬気星家 N神宽 －

$\xrightarrow{C+0}$
－

VCR Clinic

Sharp VC381

This machine would play back in colour but wouldn't record in colour. Everything was checked - a.f.c., 4.35572 MHz carrier, there was even a down-converted output to the record drive stages. The level of the 625 kHz signal seemed to be low however, though there were no levels shown in the service manual to confirm this. So the i.c. was changed - to no avail. At this point Andy made coffee and was asked to prohibit all disturbances whilst intense concentration took place. The conclusion reached was that the 5.06 MHz output from filter FL 503 was very low. Although a large difference does occur between the input and output from this filter, in this case the output was very, very low. The filter was suspected with some trepidation, since filters don't usually fail - unless it's in a Sharp VC381 that is! So beware: it's now a known stock fault. Just as a point of interest, the down-converted colour signal level at pin 1 of the colour i.c. should be 500 mV p-p on colour bars. The carrier signal at pin 28 should also be around 500 mV .
S.B.

Mitsubishi HS300

The fault on this machine could be termed a video nasty. It was a classic symptom to put the blood pressure up a few points. The machine would run for a couple of seconds then stop - a system control fault. On closer inspection we noticed that the playback picture broke up into noise bars just before the machine stopped. This indicated that the r.f. switching pulse (flip-flop to you) was breaking up, which was confirmed when the trusty scope was connected to TP4C. The signal from the drum pickup coil was correct at IC401 (AN6340) and no other problems were evident, so the i.c. was diagnosed as faulty and was replaced. Well, er, anyway the fault remained.

The monostable signals from within the i.c., at pins 21 and 22 , were checked and found to remain stable even as the flip-flop pulses disintegrated. Rather disconcerting, since everything that followed was within the i.c. which we'd just changed. I then noticed that the pulse level at pin 22 was not as high as that at pin 21 - it was only about a third of the amplitude. Both monostables within the i.c., PG1 and PG2, are identical, with the same timeconstants, but there's an extra "switching control" external to the PCB linked to pin 22. This control is mounted at the back of the machine and is labelled "still adjustment". We found that a screened cable to a plug marked ED had been badly positioned at some time and was forced tight against the potentiometer tag, cutting the PVC coating and forming a resistive path chassis. This reduced the voltage to the potentiometer. While the timeconstant remained the same, the pulse level was reduced and this affected the triggering of the following internal bistable flip-flop. Phew!
S.B.

Sony SLC7

The 400 mA fuse (F004) had blown. Another blew whilst I tried to check the operate and standby switches. With a six inch nail across the fuseholder I was able to ascertain that the machine didn't switch off - it was on all the time. First impressions were that the clock display was reading

Reports from Steve Beeching, T. Eng., Derek Snelling, B. Ross, John Coombes and Philip Blundell, Eng. Tech.

"E:E" and that all the red LEDs on the programme timer were lit. The power supplies were o.k. and something smelt hot: it was transistor Q 3 on the timer panel - I got a blister on my finger! The programmable timer IC 1 didn't have any switching pulses at pins 22-27, though the clock pulses at pin 1 were present and correct. A new i.c. (MB8841-180) and Q3 restored normal operation. The reason for the machine failing to switch off was that pin 11 of ICl remained high, holding the power supply on via D1. It seems that most of the i.c.'s output pins were set high, hence the demise of Q3.
S.B.

Sony SLC5

Eject and rewind were o.k. but there was no playback or fast forward. Move straight to the forward sensor i.c. (IC8) on the systems control panel. Output pin 8 was high with the result that the system control microcomputer i.c. thought the tape end sensor had operated. I think IC8 (BX342) also has a tendency to play up intermittently.
S.B.

Grundig VS200

This is a fine machine but we have had a couple of problems. One had a faulty r.f. amplifier. As this is fixed to the tuner/i.f. panel it must be removed before being returned to Grundig - it's not necessary to replace the lot. A second VS200 produced spots on playback, similar to static discharge: there was also some noticeable sideways shift to the picture, as though the drum speed was changing. The cause was found to be grease on the motor wiper contacts, inside. If you have to remove the bottom fixing plate, mark it with respect to the outer casing of the motor - the reason for this is that rotating the plate with respect to the motor body (stator) will cause more interference. The plate is rotated during assembly for minimum electrical noise: either reassemble it where it was or carry out the "tuning" adjustment as specified in the manual.
S.B.

Watch this Space!

We've just purchased some duff Sony SLC5s and SLC7s from one of the bulk suppliers in Birmingham. Most of them seem to have been abandoned due to system control faults. Watch this space!
S.B.

The New Mitsubishis

A few words on the new Mitsubishi models. The HS307 is a two-speed version of the HS306, with infra-red remote control. No skew correction etc. is incorporated in the long-play mode so visual search in this mode is poor. On the other hand narrower heads have been used than in the HS330, giving a better long-play picture. One possible problem is that there's no indication as to whether L.P. or S.P. has been selected.

The HS400 is a single-speed hi-fi machine. The standard sound is in mono and the pause is of the "instant stop" type with a noise bar where it happens to stop.

There are facilities for TV/external stereo/simulcast recording and the machine can be used as an audio only hi-fi recorder. The record levels can be set manually or automatically, two bar-type meters giving indication of the levels. There's audio dropout compensation for head switching.
D.S.

Mitsubishi HS304

A fault we've had several times recently with these machines is dry-joints on IC2A0 (M51450P). This can give rise to various symptoms - intermittent picture on record, intermittent colour on record, intermittent speed variation and intermittent plackback luminance. Care must be taken when resoldering this i.c. as many machines have a soft varnish sprayed over the solder side of the panel in this area: the varnish must first be scraped off thoroughly to make correct soldering possible. In fact it seems to be the machines with this varnish that suffer from dry-joints.

A weakness that's shown up on this model is the remote control socket. It's mounted directly on the corner of the presetter board and we've had four cases so far where the customer has pushed too hard when inserting the remote control plug with the result that the corner has broken off the panel. This can cause loss of signals as the return path for the tuning potentiometers passes near the socket. If the customer wishes to continue using the remote control system the panel should be replaced, since any repair is likely to fail after a couple of insertions of the remote plug. Fortunately the panel is quite cheap. D.S.

Ferguson 3V32

Dead VCRs are usually easy, aren't they? Don't be fooled, not all of them are! This one looked dead at first glance, until you noticed that the off light was illuminated. A quick check on the supply lines showed that nothing was wrong except that the switched 12 V line was missing because the relay wasn't energising when the on switch was operated. Attention was turned to the tuner/timer board as this drives the relay. The clock oscillators were running and the reset/interrupt lines were normal. A study of the manual was called for. One of the tables shows the functions of all the microcomputer pins in detail. Using this we scoped each pin in turn. Pin 36 of the i.c. (IC206) is shown as being the power off/a.c. detector and was low when it should have been high. D207 rectifies an a.c. input from the tuner/timer subpanel and was found to be open-circuit.
P.B.

Grundig 2×4 Super

The machine was playing back when unthreading was selected by remote control. It unthreaded and ejected the cassette but thereafter refused to load a cassette. Switching on subsequently started the head and reel motors, the machine appearing to be in the "stop" (still frame) mode. Fifteen seconds later the tape fault logic put a stop to things - confirmed by the keyboard (system control) module lines WS $1 / 2 / 3$ all reading high. The threading ring switch contacts and cassette compartment switches were checked, including the one hidden inside the cassette retaining lip. All were in order, as was the operation of the reel brake solenoid and the c/o switch.

We turned the threading motor manually to load and thread a cassette, switched on and found that the machine unthreaded correctly. Attention was then directed to the keyboard module, particularly to the power supplies.

During fault chasing the symptoms changed to playback LED lit, no motor action, with lines WS1/2/3 all low, meaning "tape" (stop mode). The relay remained deenergised.

At switch on a $150 \mu \mathrm{sec}$ reset pulse is sent to the microcomputer i.c. This is followed by an initiation cycle. If the power supplies to the keyboard module are low or slow to build up this time window may be missed. The back-up batteries and accumulator module were removed and tag A and AC1-5 on the power board linked. No improvement. Meter and scope checks on the reset line revealed a blip at switch on, implying that the reset pulse was present. The 15 V rail was correct and the 5 V line read 4.8 V (it comes via a transistor until the relay energises). Further checks were made on the keyboard module. The clock signals were present and no obvious faults could be found. The previously mentioned switches were meter checked from strobe lines 5 and 6 to input lines $\mathrm{AF} 1 / 2 / 3$, proving that the connections via the motor connection board were sound - this is an area where poor connections can give trouble.

We diagnosed a faulty microcomputer i.c., but as the cost of this is half the cost of an exchange module and much of the board logic is interrelated an exchange unit was fitted. This produced play, record and the wind functions but cassette eject produced nothing followed by no other control functions. Controlled anxiety (deep depression) followed. We wound the threading motor manually to unload the cassette and return the slide rack to the end stop. Thereafter cassettes would load and unload and all functions worked. We can only assume that during fault finding the relative positions of the sliding rack and ring drive gear on the threading mechanics became displaced. One question remains: did the remote control unit that operates the strobe and input lines to the microcomputer i.c. cause the damage?
B.R.

Mitsubishi HS320

For poor or no fast forward check the pinion cog which can slide down the shaft, removing the drive to the take-up reel. If you order the pinion cog for the HS330 you'll find that it has two grub-screw fitting, giving more secure positioning on the shaft. This fault can also break the tape in the playback or rewind modes and has been known to chew the tape in playback.
J.C.

Hitachi VIP201P Disc Player

In the event of no stylus arm movement first ensure that the cartridge cover is locked in. If this is all right and the disc loads correctly but there's no arm movement check the arm motor. In one case we found the motor seized up: a drop of oil released the shaft to prove the point, a new arm motor restoring correct operation.
J.C.

Panasonic NV333

The fault was no field lock in playback. The sync signal amplitude turned out to be only 1 V p-p instead of 2 V due to IC3003 (AN6327) in the luminance channel being defective.

Mitsubishi HS303

In the event of intermittent hum on sound, check the audio head switching relay K3F0 by replacement. J.C.

Long-distance Television

Roger Bunney

April saw a dramatic improvement in long-distance signal propagation, particularly towards the end of the month with improved Sporadic E conditions. There has also been productive auroral activity. A small event on April 9-10th gave Band I reception from Scandinavia in the northern UK. Over April 19-21st there was a much larger auroral event. A sudden, high-level disturbance on the sun produced storm conditions which were particularly intense on the 20 th, giving auroral 144 MHz amateur band propagation from Leningrad to the UK. During this period Band I was full of characteristically "hummy" vision signals from Scandinavian and E. European sources. The auroral conditions continued through to the early hours of the 21 st , a smaller auroral opening occurring during the afternoon. Following this major event, ionospheric conditions remained very unsettled up to the end of April.

Tropospheric conditions also improved marginally over the month. During the evening of the 19th Benelux and W. German signals were received in the south and east of the UK in Band III and at u.h.f. A more intense tropospheric opening late on the 22 nd produced more sustained Benelux, French and W. German signals over much of the UK, as far as the Midlands. As I write this on May 6th it looks as if a further tropospheric opening is about to occur. Several enthusiasts have reported an increased number of Band III Canal Plus stations during the slightest of tropospheric lifts. Caen ch. F9 has proved to be an easy catch here in the Southampton area. Lille ch. F5 can be received throughout much of the UK and along the N.E. coast - as it could be when the old 819 -line system E transmissions were in use.

SpE provided the main excitement towards the end of the month, with four consecutive days of openings, most being of long duration with intense signal strengths. This is undoubtedly a sign of better things to come. Unfortunately some of the openings occurred during weekday working hours and will thus have been missed by many. The $\mathrm{SpE} \log$ is as follows:

9/4/85 SRG (+PTT - Switzerland) ch. E2; ARD (W. Germany) E2; TSS (USSR) R1; CST (Czechoslovakia) R1.

15/4/85 ORF (Austria) E2a; CST R1.
29/4/85 TSS R1, 2; CST R1; ORF E2a; JRT (Yugoslavia) E3; RAI (Italy) IA, B; SRG/ +PTT E2; TVE (Spain) E2.
1/5/85 TSS R1 (very strong during the early morning); ORF E2a, 4;MTV (Hungary) R1; RAI IA; TVP (Poland) R1; TSS R1, 2.
2/5/85 ORF E2a; JRT E3, 4; unidentified ch. R1 and 2 signals.
3/5/85 EPT (Greece) E3; JRT E3, 4; RAI IA, B; TVP R1, 2; TVR (Rumania) R2.
An opening during the morning lasted up to 1200. Ray Davies (Norwich) received EPT during much of the morning period.

My thanks to Iain Menzies (Aberdeen), D. Patuzzo and Roger Pates (both in Nottingham), Dave Shirley (Hastings), Reg Roper (Torpoint), Cyril Willis (nr. Cambridge) and Ryn Muntjewerff (Holland) for their reception reports which supplement my own log.

Roger Pates mentions a mystery transmitter radiating Anglia TV in colour on ch. E10. It was noted towards the end of April - a query to the IBA failed to produce any information. Roger checked his immediate neighbourhood for a faulty, i.e. radiating, receiver then set out on a trip to try to establish the source of the signals, which are weak in the Nottingham area. He thinks they come from the Lincoln area.

From our Correspondents . . .

Fred Pilkington (Newmarket) lives for part of the year near Torremolinos in Southern Spain. In addition to TVE, signals can be picked up there from Morocco and Gibraltar. He reports that GBC presents problems, with only 250 W e.r.p. at 70 miles - Fred is now using a ZL special Yagi to receive GBC, which has moved from ch. E12 to ch. E11 to avoid interference from RTM (Morocco).

News Items

France: Advertisements on Canal Plus during unscrambled transmission times started in early May: the service now claims to have over 300,000 subscribers. The TV5 French language satellite channel is to increase programming to four and a half hours this autumn: a further extension to eight hours is planned. A reciprocal agreement for the exchange of programmes has been reached by TV5 and Canada.
Greenland: The 50.045 MHz amateur radio beacon OX3VHF at Denmarks-Haven has closed down. Plans are to start up from another location in late July/early August.

Left: Gibraltar PM5544 test pattern received by Fred Pilkington at his flat near Torremolinos, S. Spain. Centre: Moroccan test pattern received by Fred Pilkington in S. Spain. Right: EBU News exchange at 4 GHz , received by Frank Lumen in Denver,
Colorado via a Satcom downlink.

Lattice aerial mast for the 900 MHz cellular phone network, at Rhownams near Southampton. The mast carries several vertically polarised colinear arrays with corner reflectors.

New Zealand: Advertisements are to be allowed on the TV1 and TV2 networks for a similar amount of time daily - but not on Sundays, Christmas Day or Good Friday.

Pakistan: A second network is under construction. Programmes will be mainly educational. Three studio centres are being established, at Lahore, Karachi and Islamabad, feeding a network of eighteen transmitters via an extensive microwave link system.
USA: Ted Turner's CNN cable news service is to be made available to European cable networks this autumn, linked via an Intelsat satellife.

High Spec Ch. E2/R1 Amplifiers

The end of UK TV broadcasting in Band I has left the band relatively wide open for DX reception, though cordless phones are causing headaches for some enthusiasts. Multiple-hop SpE sometimes brings in ch. E2 signals from the Ghana/Nigeria region. In the past such signals have often been marred by distant BBC-TV signals on ch. B2. Along the south coast it would be worthwhile monitoring ch. E 2 for the weak, scattered SpE signals that are commonly seen in central and southern France but are less frequently noted in the UK.

There's great interest at present in the $50-52 \mathrm{MHz}$ amateur radio allocation, use of which is currently on an experimental basis and restricted to non-TV hours. This interest has resulted in the appearance of high-specification 50 MHz aerial amplifier kits on the market. It occurred to me that this type of preamplifier could be retuned to cover ch. E2, providing high gain, very low noise and good selectivity (i.e. no overloading from local CB operators, something that can happen with wideband preamplifiers). Apart from the specialised Mutek Model BBBA500u $20-500 \mathrm{MHz}$ aerial amplifier with its 1.5 dB noise figure, most commercial amplifiers tend to have a noise figure of around 4 dB at best.

The Cirkit Holdings PLC (Park Lane, Broxbourne, Herts EN10 7 NQ) kit type 40 -08006 is available at $£ 7.25$ plus 60 postage, excluding VAT, for use on the six metre amateur band. I bought the kit with a view to using it to cover the ch. E2/R1 section of the band, though there's enough gain to pass ch. E3/R2 signals (ch. E4 signals suffer attenuation). Maximum gain of some 20 dB is available over a bandwidth of around 3 MHz , the gain

falling rapidly on each side: the noise figure is $1 \cdot 5-2 \mathrm{~dB}$. Construction is very simple apart from the need to wind a wideband toroidal transformer. The kit comes complete with a metal case, BNC sockets, PCB and all components. A dual-gate m.o.s.f.e.t., type 3 SK45, is used: fitting a 3SK88/BF960 provides increased gain with a slightly reduced noise figure. The preamplifier was originally a REW project by Graham Leighton. Using the tuning capacitors and Toko coils provided I found that the input circuit wouldn't peak to give maximum gain on ch. E2 further shunt capacitors were needed. With 4.7 pF added across C 1 and 3.9 pF across C 3 the bandpass coils L 1 and L2 could be peaked as required. As a specialised amplifier for ch. E2/R1 DX use this project can be highly recommended.

For the more adventurous the narrow-band 50 MHz

$4 \mathrm{GHz}+11 \mathrm{GHz}$ SATELITE TV RECEIVING EQUIPMENT

> 4GHz LOW NOISE AMPLIFIERS, RECEIVERS, DOWNCONVERTERS, FEED HORNS. 11GHZ BLOCKCONVERTERS, DEMODULATORS. ANTENAS FOR BOTH FREQUENCIIS. SATELLITE RECEPTION FEASIBILITY REPORT.

A full report on reception feasibilities at a given location. PRICE: $£ 50.00$. Please state longitude and latitude.

For further details contact:
HARRISON ELECTRONICS
22 milton road, WESTCLIff-ON-SEA, ESSEX SSO 7JX. Tel: (0702) 332338

Fig. 1: G4IJE's 50 MHz narrow-band preamplifier. $L 1$ consists of 9 turns, 22 g , tapped $21 / 2$ turns from the chassis end; L2 has 10 turns, 22 g , tapped $11 / 2$ turns from the 12 V end.
preamplifier (see Fig. 1) designed by Paul Turner (G4IJE) is worth serious consideration. Once again a dual-gate transistor is used, this time the higher performance BF981 which provides higher gain and lower noise than the device used in the Cirkit project. The input and drain load circuits are both tuned by miniature variable trimmers (565 pF , RS type 125-660) and can be peaked above and below the 50 MHz band. This circuit is for the more experienced r.f. operator, since care must be taken over the screening, decoupling and close observation of v.h.f. constructional techniques (i.e. minimal lead lengths etc.) if stability is to be achieved. Our thanks to Paul and the Six Metre Group for permission to reproduce the circuit which originally appeared in their bulletin Six News.
We'd be interested to hear from DXers of the results they achieve with narrow-band Band I amplifiers and if possible any observations on comparisons with the use of wideband amplifiers.

PAL/SECAM Converter Module

News of a converter module which can be fitted to a normal PAL-only colour receiver to enable it to display PAL or SECAM signals has come from our Dutch DXTV friends. It's made in W. Germany by Dahner Elektrik and is available from S.A.P. of Wiesbaden-Bierstadt as Module KS478/SM1. It's suitable for use with most PAL only sets and will switch automatically on reception of an E. European SECAM signal, i.e. from GDR or another OIRT source. There are just eight wired connections and the module requires 85 mA (typical) at between $12-30 \mathrm{~V}$ d.c.

We understand that $6 \cdot 5 \mathrm{MHz}$ system D sound adaptors are also available. The S.A.P. company will indicate connection points for specific receivers and the cost, at carly April 1985 , was DM 142 plus 14 per cent VAT. Ryn Muntjewerff tells us that he has been using one of these modules and that good SECAM is resolved.
For French system L SECAM reception, a VTKl

Fig. 2: Mike Gaskin's selective i.f. preamplifier circuit.
module can be used in conjunction with an SMI to give vision and sound on a standard PAL receiver. It appears however that certain teething troubles have been experienced as a result of which marketing of the package has been delayed. We will pass on any further news received from our Benelux/German friends.

Simple Selective IF Preamplifier

Mike Gaskin (Caterham) has sent in the simple but effective i.f. preamplifier circuit shown in Fig. 2. It provides good selectivity using a 40673 dual-gate m.o.s.f.e.t. in a simple, non-critical circuit. The doubletuned, lightly coupled input transformers give (depending on whether peaked or stagger tuned) a variable bandpass characteristic. It's suitable for cascading, each stage providing a gain of some $12-15 \mathrm{~dB}$.

Mike used i.f. transformers taken from old transistor i.f. strips. He feels that they may give less than optimum matching to the 40673 transistor and suggests that experimentation could give improved results. Cirkit have a range of Toko 35 MHz i.f. transformers that could be used in the circuit. Although Mike's prototype has the input tapped in at the hot end of the first coil there's no reason why the input shouldn't be experimentally coupled to the top of this coil.

Commercial Corner

East Cornwall Components (119 High Street, Wem, Shropshire SY4 5TT, telephone (093()-32689) tell us that they can supply 22 in. remote-control v.h.f.-u.h.f. Decca/ Tatung TV sets in single-standard format (e.g. system B/G with 5.5 MHz sound) for either PAL or SECAM colour (the latter with a slight delay) at $£ 295$ inclusive of VAT, carriage paid in the UK. Apart from the French system L, sets for any system in use throughout the world can be supplied - apparently the service is used by people returning from the UK to countries where the prices of TV sets are vastly in excess of UK prices. Send enquiries to Mr. M. Cox at the above address.

The Worthing and District Video Repeater Group has available for ATV enthusiasts considering $23 \mathrm{~cm} / 1.3 \mathrm{GHz}$ operation a kit of parts to make a three full-wave colinear plus reflector aerial system with a gain of 10 dBd over a dipole and a horizontal beamwidth of 6$)^{\circ}(-3 \mathrm{~dB}$ points $)$. The array covers the whole $23 / 24 \mathrm{~cm}$ band and has been found to give excellent results into France as far as Paris. The kit of parts costs $£ 10 \cdot 95$, with instructions, and can be obtained from Mr. R. Stephens, Toftwood, Mill Lane, High Salvington, Worthing, W. Sussex - the price includes post and packing. The group has no other products available at present.

Satellite News

We understand that Sky Channel is to drop scrambling - this should be of interest to exiled UK residents along the south coast of Spain/Portugal.

The 4 GHz Spacenet- 2 satellite at $69^{\circ} \mathrm{W}$ has been received in Yorkshire (elevation 5°) with the CNN cable news feed.
The Intelsat organisation has given permission for their TV programme feeds to be downlinked via several US satellites, including Satcom 1,3,5, Comstar D4, Spacenet-1 and Galaxy-1. Frank Lumen in the USA checked and found that various European news feeds, including ITN, TG1 (Italy) and certain EBU services, were available via transponder 11 on Satcom F1.

Making PCBs

Malcolm Burrell

It often happens that you want to build something or even replace a damaged subassembly in a piece of equipment but the cost of a new board is exorbitant or one simply isn't available. The disadvantage of using Veroboard is that you can easily make mistakes while the amount of cutting and wiring can be time consuming. Varying the component layout can also sometimes cause problems. The solution is to make your own board.

Unless you are likely to be involved with a large number of projects the investment required for photographic board production is not worthwhile. It also remains a time consuming process. Recently I wanted to make a small number of boards. I couldn't afford much time or money but devised a compromise method that worked well.

Layout Design

The first step was to design the layout. I'd a working prototype built on Vero V-Q board and it was quite easy to sketch in the components on the paper template supplied. The previously wired sections were then linked as tracks and gradually a layout was developed. One thing to remember is that the print pattern is the reverse of the component layout. Dealing with this is quite easy really: draw your design on paper then soak it in varnish so that you can see the layout on the reverse side. This can be photocopied so that you have a record of the original design however much you mutilate the original drawing.

Making the Holes

Starting with the original drawing, it's easiest first to mark out the component mounting holes. Tape the drawing to the top of the board and use a 1 mm drill to make the holes. The miniature drills advertised by firms such as Maplin are a useful investment. It's possible to use the average household DIY type of drill but these are clumsy and you'll all too casily break the small bits. If you intend to make two or three boards to the same circuit they can be stuck together with tape and drilled in one go. It's best to drill the mounting holes in the corners first, then temporarily fix the boards together using say 6 BA screws.

Print Pattern

This will leave you with a plain board full of holes but with no print pattern. The holes will act as a guide: you can join them up by sketching in the print design with a felt-tipped pen. For a really neat job you can buy dryprint transfers - these are especially useful for i.c. pads.

Using this method of drilling the holes first you must make sure that all burrs have been removed. Then clean the board with alcohol to leave a clean surface for the transfers. A pen and ruler can give quite a good pattern without transfers however.

One way to make neat i.c. pads is to link all the holes
with a paint marker pen When the paint is completely dry, score lines between the holes with a knife so that the bright copper shows through.

Having laid out the tracks I like to make each one as thick as possible without adjacent tracks touching. The paint marker pen is useful for this purpose since it gives thick, even lines that are less likely to be eroded by the etching acid. There are two other reasons for keeping the tracks thick - unless you're concerned with v.h.f. circuits. First, some circuits take a considerable current: there's nothing worse than to spend a lot of time making a neat board only to see the tracks melt like fuses when the power is switched on. Secondly, the acid can be reused several times: since its strength decreases as more copper is dissolved it's best to etch away only as much copper as necessary, leaving the rest behind to strengthen the board and ensure satisfactory connections.

Etching

Check the board before etching it. For the etching bath a good disposable plastic tray such as an old polythene sandwich box can be used, preferably with some plastic tongs. If you wish, attach a piece of thread to one corner of the board so that it can be moved without direct contact.

Take everything into the garden shed away from everyone - and wear old clothes! Pour enough acid into the tray to cover the board. Etching is a tedious business: agitate the acid every minute or so or it will take a very long time indeed. Etching should be complete after twenty to thirty minutes. Carefully remove the board from the etchant and plunge it into cold water. Cover the acid and rinse the board thoroughly under a tap - remember that all traces of acid must be removed from the holes.

Hints and Tips

If you wish to store the acid, either pour it into the original bottle using a funnel or use a secure glass bottle labelled "acid". I understand that it's dangerous and undesirable to dispose of acid into the sewerage system. If no neutralising agent is supplied the best course is to dig a hole in the garden and pour the used acid into this.

Painted markings on boards can be quite easily removed with alcohol. A touch with emery cloth will leave a bright copper surface for soldering. Once the components have been mounted and soldered it's a good idea to brush the print with varnish to help protect it from corrosion.

The print patterns are often given with projects in the magazine. If they are to scale it's better to photocopy them rather than to cut the magazine, using the photocopy as a template for drilling. It's all rather like painting by numbers, but you have the option to vary the layout or increase the size of the circuit to suit yourself.

Mounting the board in its case is easy if you use 6BA threaded spacers. Screw these into the case first, then use $1 / 4 \mathrm{in}$. 6BA screws to secure the board. Alternatively plastic stand-offs can be used. These need slightly larger fixing holes, typically 0.2 in . - I find a $3 / 16 \mathrm{in}$. drill useful for these.

Prototype Working

A final hint. For prototype working, off-cuts of printed circuits can be etched without drilling and the components mounted on the print side.

More on the Philips G8 Chassis

Dennis Apple, B.Sc.

Tony Thompson's article in the May issue contained much valuable information on the Philips G8 chassis. The following notes may also be of interest to readers - they are based on experience gained servicing a large number of these sets.

Connector and Panel Faults

Before switching on, check the various plugs and sockets on all panels. A small needle can be used to close up slightly all tired spring holders within these connectors. Don't forget the tube base. Also ensure that the various fuses are all securely fitted in their holders. Finally the flying leads, especially those on the line scan panel, should be checked for tightness. A quick spray of cleaning fluid such as WD40 on all connectors prior to reassembly helps prevent further problems. It's surprising how many baffling, intermittent faults disappear after this treatment!

You may also find hairline cracks around each panel where the edge connectors are located, no doubt caused by someone's over-zealous attempt in the past to tighten the two retaining screws without first ensuring that the edge connector is correctly mated. The timebase panel is the one most likely to be affected by this problem. You will almost certainly find that the print under the contrast and field hold controls has suffered stress due to careless back cover fitting in the past: insert the knobs through the holes in the cover before locating the cover in its retaining groove.

Setting up the HT

The correct h.t. voltage at TP67 (either of the h.t. fuses) should be 205 V under normal working conditions. The official setting up procedure is as follows:
(1) Turn the set h.t. control R1370 to approximately midposition.
(2) Turn the overvoltage preset R1396 fully anticlockwise to disable the overvoltage protection circuit.
(3) Turn R1370 until the reading at TP67 is 225 V .
(4) Turn R1396 clockwise until this reading falls to 220 V .

On a working set the picture will then flutter, showing that the overvoltage protection circuit is operating.
(5) Turn R1370 to obtain 205 V at TP67.

If you cannot carry out this procedure the power supply is faulty. The most common faults are picture flutter, inability to obtain the correct voltage, and intermittent fuse blowing.

Picture Flutter

The causes of picture flutter are usually as follows:
(1) Defective BR100 trigger diac (D1377) in the power supply. In an emergency this device can be reversed. Testing is difficult since the device measures virtually infinite resistance both ways - substitution is the best way of proving the guilt or innocence of this component.
(2) Defective power supply thyristor (SCR1379). A standard fault on the G8. It should be replaced whenever the power supply is suspect. The thyristor can appear to be all
innocent when checked with a tester but play silly games when in circuit. For example, in one case of picture flutter the thyristor was found to be light sensitive: its anodecathode resistance fell to a few thousand ohms when a bright inspection light was shone on to it! Gentle heat had the same effect.
(3) H.T. smoothing capacitor C5536 ($600 \mu \mathrm{~F}$) on the line scan panel defective.
(4) Very low field sync pulse amplitude due to a defective TBA550Q i.c. on the signals panel.
(5) H.T. reservoir capacitor $\mathrm{Cl} 385(600 \mu \mathrm{~F})$ on the power supply panel defective: this capacitor tends to leak hor-rible-looking gunge as it slowly loses capacitance.

Incorrect HT

Causes of inability to obtain correct h.t. voltage (205V) are usually:
(1) Thyristor becoming leaky as the set warms up.
(2) Assuming that no other faulty component is found, you'll probably find that one or both of the two highstability resistors R1368 (470k Ω) and R1369 ($8 \cdot 2 \mathrm{k} \Omega$) has changed value. Such changes are usually small and difficult to detect using a normal test meter - substitution is by far the quickest way of testing these components. Temporarily dabbing a $1 \mathrm{M} \Omega$ resistor across these suspects will show which - if either - has changed value. Be careful not to blow the set up by careless testing in this area: as you probably know, the line output transformer in this chassis has suicidal tendencies.

Fuse Blowing

The mains fuse is rated at $3 \cdot 15 \mathrm{~A}$ and is of the anti-surge type. It's useful to distinguish between violent fuse blowing (blackened, charred debris) and peaceful demise. In either case check the thyristor first by substitution.
Violent fuse blowing is often caused by:
(1) The insulation between the "mains dropper" R1367/ R1381 and the chassis mounted fixing lugs becoming defective.
(2) A defective mains switch, especially when of the earlier open variety.
(3) A short-circuit mains filter capacitor - $\mathrm{C} 1366,0.33 \mu \mathrm{~F}$.

In the event of non-violent fuse blowing simple replacement may restore normal operation. If not, suspect the h.t. reservoir capacitor C1385 and the line output transformer - the latter may blow fuse FS5557 (800 mA) on the line scan panel.

Timebase Panel

The most common fault on the timebase panel is failure of the transductor, which can suddenly go up in a cloud of smoke. A quick check is to disconnect plug H , which will take the line section of the ttansductor out of circuit, but leaving the plug out permanently will impair the picture geometry. This can normally be observed only on a crosshatch pattern. Its importance depends on the screen size and the cost of repair.

Inability to set up the line hold can be caused by the 18 V zener diode D4531.

Poor field lock and picture jumping between scenes can be caused by the TBA550Q i.c. on the signals panel.

Field collapse sometimes occurs when R4533 (if fitted) springs open. Resoldering often provides a permanent cure. Later boards were modified to prevent this.

C4452 in the field charging circuit can leak to give bottom foldover when cold.

Note that although the field scan coupling capacitor C4479 is shown with the correct polarity on circuit and wiring diagrams on some panels the connections are incorrectly printed. If the capacitor is fitted the wrong way round the whole picture floats gently upwards, no amount of field shift control adjustment restoring correct conditions. This occurs because as C 4479 becomes more leaky more unwanted d.c. flows through the field scan coils.

Lack of height can be caused by the bootstrap capacitor C4469 $(220 \mu \mathrm{~F})$ falling in value.

Line Scan Panel

The line scan panel, on which the driver and output stages are mounted, causes the majority of faults in the G8 chassis. The dreaded line output transformer lives here. Anyone attempting to service G8 chassis should have a stock of replacement transformers to hand if only to prove the innocence of this component should a weird symptom present itself. The cost of replacement transformers is fortunately not high and they are easy to obtain - perusal of advertisements in the magazine will soon confirm this.

For the uninitiated, the line output transformer can cause the following symptoms: (1) failure of fuse FS5557 $(800 \mathrm{~mA})$, often intermittently; (2) reduced width with overheated windings; (3) intermittent crackles and picture fluctuations; (4) smoking from the overwinding.

If both line output transistors go short-circuit FS5557 blows. It's more common for one transistor to go shortcircuit however, leaving the other to plod on. In this event the symptoms are a slightly oversize picture with low brightness and contrast, the picture size changing with alteration of the brightness control setting. In general the picture looks drab and lacks sparkle, giving the impression that the tube is about to meet its maker. Low h.t. voltage will also produce this state of affairs of course, so the prudent engineer will always start by checking the voltage at the two fuses on the power supply panel.

A quick, reliable check on the output transistors is to measure the voltages at the two heatsinks. Under normal conditions one voltage should be about half the other, i.e. 190 V and 90 V . If both collectors are at about 190 V one transistor is probably short-circuit. The originals were BU105s: a pair of BU208s make ideal replacements.

There's a trap here for the unwary however. After replacing both transistors with known good ones the original fault symptoms may persist, with both heatsinks still at about 190 V . In this case the fault is nearly always due to the balancing coil L 5003 , which is at the extreme top of the panel. In fact this may be all that was originally wrong. You'll almost certainly find that the core is stuck,

Fig. 1: Details of the line output transistor balancing coil L5003, which is at the extreme top of the line scan panel.
and any attempt to force it will result in the little metal cap breaking off. A replacement coil can be purchased, but a quick way of dealing with it is as follows:
(1) Unscrew the four mounting screws then unsolder the whole coil from the upper board (take care not to leave little solder bridges across the print).
(2) Very carefully cut around the centre of the coil former with a junior hacksaw until you just hear the blade contact the stuck ferrite core (see Fig. 1).
(3) Unscrew one half of the assembly from the other, gently - they are not connected electrically.
(4) Gently unscrew the protruding ferrite core from one half of the assembly, using hand pressure only.
(5) The threads of the former can now be cleaned and the core reinserted with a trace of silicone grease on its threads. The whole assembly can then be resoldered to the board. Use a small amount of Araldite to hold the cut halves of the coil together.

After refitting the coil, turn the core while observing a stationary test pattern. At the correct core position the picture will be of minimum width and the e.h.t. will be at its correct, maximum value. The voltages at the two transistor heatsinks should then be at approximately 190 V and 90 V . Note that zero voltage at the heatsink of the "lower" transistor T5532 can also be caused by misadjustment of L5003.

The whole surgical operation on the coil takes about five minutes and is easily carried out using the simplest of tools.

Always make the output transistor heatsink voltage test when dealing with this chassis - it saves so much heartache!

Failure of F5557 has been traced to D5567 (OA91) going short-circuit (very early version of the panel with original type of beam limiter circuit). Failure of F5560 (1.25 A - late version of the panel) has been traced to the 25 V rectifier diode D5539 (BY210-400).

It pays to check the various diodes on the line scan panel before condemning the output transformer.

Sound Faults

A crackling sound with the volume control turned to zero has been traced to noisy BD131 audio output transistors, also a noisy TAA570 intercarrier sound i.c. This i.c., used in the earlier versions of the chassis, has also been responsible for a range of symptoms including no sound and severe buzz. If the assorciated quadrature coil L2601 is misadjusted the result will be low sound with buzz.

Crackling on one channel only (or when using a VCR) can usually be removed by very careful adjustment of the extreme left-hand core in vision selectivity can U2800, i.e. L2807. Distorted sound can occur when one of the BD131 audio output transistors goes open-circuit. Usually however the print to one of these transistors becomes detached, giving the same symptom even though the voltages may not appear to be too far from their correct values.

Convergence Panels

The earlier, sturdy vertically mounted front convergence panel was very reliable. This cannot always be said of the later, rear chassis-mounted panel used in the 550 series. Convergence drift is caused by the heat-sensitive AC128 transistors and the electrolytics on this panel. The
electrolytics dry up in the heat produced by the convergence potentiometers, especially the infamous R1934 ($10 \Omega-\mathrm{R} / \mathrm{G}$ parabola) which often causes the whole board to burn up. A replacement panel may well cost more than the set is worth. Guard against R1934 overheating by removing the printed card and placing a heatsink around R1934. Noisy potentiometers on this panel can easily be cleaned with a spray of silicone oil. This should be done before attempting convergence.

Chroma Panel

Faults on the chroma panel are usually due to defective i.c.s. Sometimes a dry-joint develops on the luminance delay line (or the print underneath it), causing a double side-by-side image. This symptom is very often intermittent and can make one feel schizophrenic until one realises the cause. Loss of one primary colour is usually caused by a dud output transistor, a broken track or a dryjoint, e.g. on one of the output transistor emitter resistors. The $39 \mathrm{k} \Omega$ TBA530 load resistors R7326/R7346/R7363 change value to give incorrect colours.

In General

I agree with Tony Thompson's remarks regarding trade disposal sets. A sharp eye is indeed required when examining sets prior to purchase. One supplier swore on a stack of bibles that all his sets were complete but denied all responsibility when I later found that two panels were missing from one set.

A very good indication of what's wrong with a set is often given by the state of its interior. A line scan panel
hastily put back in position so that it almost falls out of the set usually means line output transformer trouble. The tube base left disconnected suggests bad news about the tube. A thick layer of dust over everything usually means that the set has simply died and the owner decided to exchange it for a new one. In such cases the fault is often a trivial one and the set can be got going as good as new bearing in mind that the tube may not be in its prime.

The biggest problem is usually with the state of the cabinet. Very often an otherwise excellent looking set bears horrible scratches on its highly polished surface. Attempts to mask such defects usually fail because the wood becomes discoloured. The only complete solution when dealing with cabinet defects is to scrape the wood along the grain, in the same direction, using a very sharp wide chisel, until the whole surface is restored to its original pristine condition. Two coats of semi-matt clear varnish will then bring the appearance back to new. The discoloured wood veneer surrounding the tube can also be given this treatment - be careful not to crack it as it's very brittle. Use a barely wet fine brush and silver paint to restore the worn tracery around some models. With patience the cabinet can be made to look like new, but only you can decide whether the time spent on this is worthwhile for the return it brings.

It's essential to soak test a G8 before delivering it to the customer. Some faults, such as convergence drift or varying field height, may make their appearance only the morning after delivery, the set having worked faultlessly the previous day. Generally speaking the G8 is an excellent chassis with readily available spares: provided it has been conscientiously serviced and adjusted, a set will give many years of trouble-free viewing.

Sonys and Suchlike

Oriental chassis can sometimes be a little mysterious to an old "Empire" brain. Few are more mysterious than Sonys. Although generally very reliable and providing good pictures, there are some models I find it hard to forgive. I do forgive the modified NTSC decoders used in the early colour sets, honest. Also the otherwise superb KV134() which just looked as if it had two dozen boards, half of which were no bigger than a large box of matches, linked together with a wiring loom like a telephone exchange. There's one sin so vile however that I cannot find forgiveness within me: the gate-controlled switch. Why Sony found it necessary to use these when everyone else managed without I don't know. Anyway, enter on cue a KV1810 with a terminal tube, the bottom of the picture a third of the way up the screen and atrocious linearity. Ever wishing to avoid this set with its GCSs, I suggested to the owner that any fault worse than a loose mains plug wasn't worth bothering about with the tube in such a shocking state. This was not his view however, so without further ado battle commenced. At least the bloody GCSs hadn't gone I thought. More on that later.

The KV1810, Part 1

A lincarity control tweak just made matters worse, i.e. the bottom started to fold over. Never trusting linearity networks my first and entirely useless move was to check the two $2 \cdot 2 \mu \mathrm{~F}$ electrolytics that are connected in series
with the linearity control. Let's move to the other end of the field timebase I thought and see what the output stage is doing. Well, what it was doing wasn't quite right. The Avo proved that the output transistors were o.k. but the scope revealed drive problems. Always suspicious of electrolytics, especially non-polarised ones, I pulled out the bootstrap capacitor $\mathrm{C} 520(10 \mu \mathrm{~F}, 16 \mathrm{~V})$ and also the similar but polarised coupler C522. Both were useless: having replaced them (C520 with a non-electrolytic typeit was huge, but as half the circuit was on the back of the board anyway . . .) things looked better but not completely right. It was not until $\mathrm{C} 529(10 \mu \mathrm{~F}, 16 \mathrm{~V})$ in the height circuit and $\mathrm{C} 533(1 \mu \mathrm{~F}, 160 \mathrm{~V})$ in the field amplifier circuit had also been replaced that the correct range of height and linearity could be achieved.

This left the set displaying a remarkably linear picture on a very weak tube - not only dim and largely green, but it was of the "by the time it's bright enough to see you can't focus it any longer" variety. Focus adjustment on these sets is another pain, being a solder tag effort - this really isn't good enough on a colour set. It did however improve the performance - to pretty bad!

Attention was next turned to the grey scale - magenta blacks, pink dark greys and lime green white. Not very promising. Much twiddling proved that this was about the best of which the tube was capable - at this heater voltage. Now naughty though this is, I thought that the only recourse with this tube was to bump up the heater
voltage. The mains transformer in these sets (it was a Mark I version) supplies only the c.r.t. heaters and the primary is tapped at 200$), 220$ and 240 V . I thought it would be a good idea to put a crocodile clip on the transformer tap tlyhead so that I could quickly change taps with the set running to see whether any worthwhile improvement was achieved. Well it did seem a good idea at the time, but I'd reckoned without the GCSs. As soon as I moved the flylead from the 240 V tap and dabbed it on the 220 V tap bump, hum and the set was dead. The back-e.m.f. from the transformer had put enough of a pulse on the mains to kill off the GCSs. By now I was beginning to think that the whole thing was a bad idea: both GCSs had gone dead short - heaven alone knows how well these sets fare in households with poorly suppressed vacuum cleaners and the like.

After replacing the GCSs and putting the tube on the 200 V tap a barely passable image could be discerned in a dimly lit room, but at least it was in focus. Time to get it back to the customer in haste. It was to return however, almost as hastily. But first for something completely different.

Monitor Trouble

Professional video monitors are a strange breed and never like to do anything by halves. Here's a case in point. At switch on the e.h.t. rustled up: all should have been well but there was no raster. In this sutuation, with e.h.t. present but absolutely no screen illumination, it's always been a habit of mine to glance at the tube's heater before doing anything else - of course it's always been lit and the trouble has been elsewhere. Always that is except this time. No light at all. Out with the Avo which recorded around IV across the heater pins. So the heater wasn't open-circuit, but something was amiss. The circuit diagram showed that there's a heater winding on the mains transformer, but this isn't connected directly to the heater. Nothing as crude as that. A bridge rectifier, reservoir capacitor, series resistor and an 8 V regulator chip were all present. As with all hi-tech equipment it was the hi-tech bit, i.e. the chip, that had failed.

Slow Slog

It seems to me that I have to slog through even the simplest of faults. I must have been the last person on Earth to attribute almost any fault on a Rank T20 chassis to 4R16. I always attribute faults on these sets first to the start-up circuit then to the line output transistor's series base feed resistor. It seems however that there are those who are slower than I: a colleague was amazed at my revelation that the field cramping on his ageing relative's set (Thorn 1400 chassis) was due to the diode dropper in the heater line going short-circuit. It's successful diagnosis like this that keeps me going. Going where?

The Damaged Portable

Well, on my way to do a little training the chap at the sports centre counter waylaid me to recount a tale of woe. Apparently his dog had had a little sport with the family's Contek portable, bowling it over in the process. Although the case had suffered minimal damage, the same couldn't alas be said of the PCB. Quite extensive damage had occurred in the general area of the heaviest component, the line output transformer. Fortunately the cracks were
for the most part visible and the board could be patched up. In cases like this I always find switch-on to be a bit dicey. This was no exception. A fearful display of arcing from the line output transformer occurred, though the rest of the set seemed quite happy. Close examination showed that the transformer's case was cracked, with particularly bad damage around the moulding where the e.h.t. lead leaves. A new transformer would have cured the fault but one wasn't to hand and the expense had to be considered.

Repairing the LOPT

Strips of tape were used to make a pouch over the cracks in the casing, the tape forming the outer wall of the pouch which stood about an cighth of an inch away from the casing. A proprietary epoxy resin was then mixed and poured into the pouch. A piece of plastic pipe about $3 / 4 \mathrm{in}$. in diameter and about as long was used to repair the damaged e.h.t. moulding. The pipe was slit open so that it could be got over the e.h.t. lead without having to remove the cavity connector, then positioned on top of the transformer around the lead moulding. Preparations were completed by taping the bottom of the pipe to the transformer and taping up the slit. Epoxy was poured in and left for half a day to set, after which the tape was removed, revealing a neat-looking job. But would it stand the best part of 30 kV across it? I switched on with trepidation. The set sprang to life and all was well. Some weeks later it still is. So kor a couple of feet of tape, a bit of tube, about a quarter of a pack of epoxy and not a lot more time than it would have taken to fit a new transformer if I'd had one the set was back in service. I wouldn't expect this to work with all transformers or in every case but with transformers of this type of construction (similar to TXIO types) a reasonable success rate looks likely.

The KV1330

Set dead said the report, and so it was. This particular Sony KV1330 had run faultessly from new (must have been the best part of ten years). The input fuse had popped with some force. On replacing it and measuring the mains input with an Avo a dead short was recorded. Clearly the mains filter capacitor had died and there it was, obvious on the input panel. I removed it, a brown toffee-fooking thing, and fitted a purpose-designed mains filter capacitor. Sony had been generous, drilling several sets of spare holes in the panel to accommodate various lead spacings. Incidentally I'd recommend fitting purposedesigned mains filter capacitors for both safety and reliability - if you do use a standard type, use one rated at 1 kV d.c. or 40 OV a.c. at least. Having said all this, as you'll probably have guessed by now the fuse blew at switch on. Why"? Well there are actually two such capacitors in this set, the other one residing on the power regulator panel. It was actually this one that had died. C601 by name.

Return of the KV1810

Which brings us back to the KV1810 which had by now reappeared with more field trouble. Weंd replaced most of the electrolytics last time. What was left? Well the scan coupling capacitor C517 ($22 \mu \mathrm{~F}, 160 \mathrm{~V}$) for a start. When it was removed a ring of goo was left on the panel. It had indeed gone to its maker.

BBC Micro Test Pattern Program

Patrick Kniveton, B.Sc.Eng.

The following program was designed to provide most of the patterns normally produced by a TV pattern generator plus one or two extras. All operations are called from the function keys - a small identifying strip can be used to label each key. Operation of one of the keys calls up the appropriate procedure: these are all initially listed on the Menu screen which can be recalled at any time by pressing f8. The program is written in BASIC and is therefore slow in parts - readers will no doubt be able to suggest improvements.

The patterns available are: crosshatch; colour bars; dots; vertical lines; horizontal lines; circle (for linearity setting); red, green, blue, magenta, cyan, yellow, white and black rasters; a composite test card. The program can be saved on tape or disc.

20 REM TV SERVICING AID
40 REM BBC MICRO B
60 REM (C) P.E. KNIVETON 1985
100 *KEYO MODE0:M PROCxhatch:M
110 *KEY1 MODE2:M PROCcbars:M
120 *KEY2 MODE2:M PROCdots:M
130 *KEY3 MODE0:M PROCvert:M
140 *KEY4 MODE0:M PROChoriz:M
150 *KEY5 MODE0:M PROCcircle:M
160 *KEY6 MODE5:M PROCraster:M
170 *KEY7 MODE2:M PROCcard:M
180 *KEY8 MODE7:M PROCmenu:M
190 PROCmenu
200 END
210 DEFPROCxhatch
220 CLS
230 FORY=0TO1023 STEP 64
240 MOVEO,Y
250 DRAW1279,Y
260 NEXTY
270 FORX=91TO1188 STEP 91
280 MOVEX,0
290 DRAWX,960
$300 \operatorname{MOVE}(X+2), 0$
310 DRAW $(X+2), 960$
320 NEXT X
330 ENDPROC
340 DEFPROCcbars
350 CLS
360 MOVE0,1000
370 PLOT85,0,0
380 FORbar=1T08
390 IF INT(bar/2)=bar/2 THEN colour=(8-bar)/2 ELSE colour $=(8$-bar) + INT $($ bar/2)
400 GCOLO, colour
410 PLOT85,(bar* 160), 1023
420 PLOT85,(bar* 160), 0
430 NEXTbar
440 VDU23,1,0;0;0;0;
450 ENDPROC
460 DEFPROCdots
470 CLS
480 FORX=91TO1 188 STEP 91
490 FORY $=0$ TO 1023 STEP 64
500 MOVE X,Y
510 DRAW, $Y+1$
520 NEXTY
530 NEXTX
540 VDU23,1,0;0;0;0;

550 ENDPROC
560 DEFPROCvert
570 CLS
580 FORX=91TO1279 STEP 91
590 MOVEX, 0
600 DRAWX,959
$610 \operatorname{MOVE}(X+2), 0$
620 DRAW $(X+2), 959$
630 NEXTX
640 VDU23,1,0;0;0;0;
650 ENDPROC
660 DEFPROChoriz
670 CLS
680 FORY $=0$ TO1023 STEP 64
690 MOVEO,Y
700 DRAW1279,Y
710 NEXTY
720 VDU23,1,0;0;0;0;
730 ENDPROC
740 DEFPROCcircle
750 CLS
760 VDU29,640;512;
770 MOVE350,0
780 FORC $=0$ TO2.1*PI STEP 0.05
790 PLOT5,350*COSC,350*SINC
800 PLOT5,352*COSC,352*SINC
810 NEXTC
820 VDU23,1,0;0;0;0;
830 ENDPROC
840 DEFPROCraster
850 CLS
860 IF GET\$ $=$ "K"THEN VDU19,0,0,0,0,0
870 IF GET\$="R"THEN VDU19,0,1,0,0,0
880 IF GET $\$=$ " G "THEN VDU $19,0,2,0,0,0$
890 IF GET\$="Y"THEN VDU19,0,3,0,0,0
900 IF GET $\$=$ " B "THEN VDU19,0,4,0,0,0
910 IF GET $\$=$ " ${ }^{\prime}$ "THEN VDU19,0,5,0,0,0
920 IF GET $\$=$ " C "THEN VDU19,0,6,0,0,0
930 IF GET\$="W"THEN VDU19,0,7,0,0,0
940 IF GET\$="E"THEN GOTO960
950 GOTO860
960 VDU19,0,0,0,0,0
970 ENDPROC
980 DEFPROCmenu
990 CLS
1000 PRINT TAB(9,2);CHR\$(141);CHR\$(130);"TV SERVICING AID"
1010 PRINT TAB(9,3);CHR\$(141);CHR\$(130);"TV SERVICING AID"
1020 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f0"; CHR\$(156);CHR\$(135);"Crosshatch"
1030 PRINT
1040 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f1"; CHR\$(156);CHR\$(135);"Colour bars"
1050 PRINT
1060 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f2"; CHR\$(156);CHR\$(135);"Dot pattern"
1070 PRINT
1080 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f3"; CHR\$(156);CHR\$(135);"Vertical lines"
1090 PRINT
1100 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f4"; CHR\$(156);CHR\$(135);"Horizontal lines"
1110 PRINT
1120 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f5"; CHR\$(156);CHR\$(135);"Circle"

1130 PRINT
1140 PRINT CHR $\$(129)$;CHR\$(157);CHR\$(135);"f6"; CHR\$(156);CHR\$(135);"Raster"
1150 PRINT TAB(9);"(Press R for Red, G for Green,"
1160 PRINT TAB(10);"B for Blue, C for Cyan,"
1170 PRINT TAB(10);"M for Magenta, Y for Yellow,"
1180 PRINT TAB(10);"E to ESCAPE raster routine)"
1190 PRINT
1200 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f7"; CHR\$(156);CHR\$(135);"Test card"
1210 PRINT
1220 PRINT CHR\$(129);CHR\$(157);CHR\$(135);"f8"; CHR\$(156);CHR\$(129);"RETURN TO THIS MENU"
1230 VDU23,1,0;0;0;0;
1240 ENDPROC
1250 DEFPROCcard
1260 CLS
1270 FORY=0TO 1023 STEP 64
1280 MOVEO.Y
1290 DRAW1279,Y
1300 NEXTY
1310 FORX $=91$ TO1188 STEP 91
1320 MOVEX,0
1330 DRAWX, 960
1340 NEXTX
1350 COLOUR 132
1360 PRINT TAB(8,28);"
1370 PRINT TAB $(8,29)$;"TSA1"
1380 PRINT TAB(8,30);" ":COLOUR 128
1390 PRINT TAB $(0,0)$
1400 VDU29,640;512;
1410 GCOLO,0
1420 MOVE0,0
1430 MOVE0, 1
1440 FORD=0TO2.1*PI STEP 0.1
1450 PLOT4,0,0
1460 PLOT85,315*COSD,315*SIND

1470 NEXTD
1480 MOVE320,0
1490 GCOL0, 7
1500 FORC $=0$ TO2.1*PI STEP 0,02
1510 PLOT5,320*COSC,320*SINC
1520 NEXTC
1530 MOVEO,0
1540 MOVE309,75
1550 FORF $=0.24$ TO3.0 STEP 0.1
1560 PLOT85,309*COSF,309*SINF
1570 PLOT85,0,0
1580 NEXTF
1590 MOVE-100,0
1600 MOVE-100,-201
1610 PLOT85,100,0
1620 PLOT85,100,-201
1630 GCOLO,0
1640 MOVE-100,0
1650 MOVE-100,201
1660 PLOT85,100,0
1670 PLOT85,100,201
1680 GCOLO, 7
1690 MOVE-60,0
1700 DRAW-60,303
1710 MOVE-300,-75
1720 MOVE-300,75
$1730 \mathrm{~L}=-225$
1740 FORJ=1TO8
1750 IF |NT(J/2)=J/2 THEN $\mathrm{B}=(8-\mathrm{J}) / 2$ ELSE
$\mathrm{B}=(8-\mathrm{J})+\operatorname{INT}(\mathrm{J} / 2)$
1760 GCOLO,B
1770 PLOT85,L,-75
1780 PLOT85,L,75
$1790 \mathrm{~L}=\mathrm{L}+75$
1800 NEXTJ
1810 VDU23,1,0;0;0;0;
1820 ENDPROC

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

BEOVISION 4000 CHASSIS

The problem is fluctuating h.t. It will steady if the voltage is reduced to below 150 V by using the h.t. preset.

A common cause of this problem is failure of one of the two $56 \mathrm{k} \Omega$ resistors 6 R 29 and 6 R 30 in the thyristor's trigger pulse generator circuit. They tend to go high in value. If necessary go on to check $6 \mathrm{C} 20(47 \mu \mathrm{~F}), 6 \mathrm{R} 27$ (1Ω) and the setting of the current limiter trip preset 6R33. We've also known leakage in the 39 V zener diode 6 D19 in the excess current sensing circuit to cause this fault.

WAX-SEALED CORES

I've been trying to convert a foreign Hitachi portable (Model 1A-51) for use in the UK. 6MHz coils have been fitted but there's still a buzz present. Hitachi have suggested tuning T401 and T402 for best sound but the cores are fixed with hard wax.

We've found that the most effective way to deal with waxed-up cores is to invert the chassis and gently heat the relevant can, using a hairdryer, until the wax runs out. The cores should then be movable after applying a couple of drops from a commercial ear-drop preparation. Tune carefully for minimum buzz on a vision with teletext or similar transmission with lots of hard white captions.

BUSH BC6004

The trouble with this Saba manufactured 14in. colour portable is that the chopper/line output transistor (Wessel circuit) lasts for only a few weeks. We've replaced the damping components C841/R841 and have made thorough checks but have been unable to find anything amiss. To start with the transistor would last for about three months: now it's down to a few weeks.

On past experience we'd suggest replacing D687 (SKE4F1/10) which is in series with the line scan circuit, the efficiency diode D688 (BY223) and the flyback tuning capacitor C688 ($0 \cdot 0013 \mu \mathrm{~F}$), also R941 ($100 \mathrm{k} \Omega, 1.5 \mathrm{~W}$) which biases the base of the driver transistor. In addition, check thoroughly for dry-joints and similar "physical" faults.

DECCA 10 SERIES CHASSIS

The colour control has to be turned by at least threequarters of its travel before there's any colour. The colours are otherwise all right, but surely the control shouldn't operate like this?

This effect is not uncommon on some Decca 10 series sets. There may however be some lack of chroma gain. If there's any sign of Hanover bars, check the setting and condition of the controls in the chroma delay line
matrixing circuit - VR267 and L206. If the matrixing is all right, check the following components in the order given: the second chroma amplifier transistor's emitter decoupling capacitor $\mathrm{C} 230(5 \mu \mathrm{~F})$, the a.c.c. reservoir capacitor $\mathrm{C} 222(5 \mu \mathrm{~F})$ and the chroma delay line driver transistor's emitter resistor R268 (82Ω).

SONY C5

The trouble with this machine is failure to record sound off-air. There's sound with playback of prerecorded tapes. I understand that this is not uncommon.

On every occasion when we've encountered this fault the cause has been the TBA120U intercarrier sound i.c. If replacing it falls to restore the sound an oscilloscope will be necessary to check and trace the signal.

RANK T20 CHASSIS

There's ringing on the left-hand side of the screen, similar to the effect that occurs when a line linearity coil's damping resistor goes open-circuit. Adjusting the fifth harmonic tuning coil has reduced the vertical bands considerably but they are still noticeable.

We assume that you've checked the line linearity coil's damping resistor 5R12 (680). If not, check this, the EW correction coupling capacitor $5 \mathrm{C} 15(1 \mu \mathrm{~F})$ and if necessary $5 \mathrm{C} 16(0.068 \mu \mathrm{~F})$ in the first anode supply network. For reliability, it's important that the fifth harmonic tuning coil 5L3 is correctly adjusted as per the manual. If replacing the above mentioned components fails to clear the fault and 5L3 cannot be set up correctly it's likely that the line output transformer is defective.

THORN 1690 CHASSIS

The original problem with this set was caused by a faulty line output transformer. When this was replaced the picture was found to be greatly expanded in the middle. The height control will correct the top and bottom of the picture but the linearity control has very little effect. I've checked the electrolytics and transistors in the field amplifier/driver/output stages.

The field waveform is generated across $\mathrm{C} 104(0.047 \mu \mathrm{~F})$. Check this item and the associated charging resistor R128 $(330 \mathrm{k} \Omega)$. The next suspects are the 390Ω resistors R133/4 which bias the emitters of the driver transistors. They can and do change value. This is also true of R132 ($27 \mathrm{k} \Omega$), the amplifier transistor's load resistor.

SONY SLC7 VCR

After fitting a Sony chopper power supply replacement kit and a new control i.c. the machine came to life for five seconds then went dead again. On investigation the chopper transistors, the surge limiter resistor and the mains fuse had failed. With a replacement fuse the readings on the control i.c., powered via the start-up supply, were found to be correct - apart from the pins linked to the chopper supply output of course. Any suggestions before a second replacement kit is fitted?

The operation of the control i.c. can be checked by disconnecting D204 (soft-start control circuit) and applying an external source of 12 V to C 203 . A 3 V sawtooth should then be seen at pin 5 of the i.c. (TP1) and a 20 V pp squarewave at pins 8 and 11. If these waveforms are o.k., the rectifier diodes $\mathrm{D} 201 / 2$ and the $4 \cdot 7 \mu \mathrm{~F}$ electrolytics C110/1 are in order, and no excessive loading is present on the 12 V line, suspect short-circuit turns in the chopper transformer T102 - it can happen.

DECCA 30 SERIES CHASSIS

The problem is intermittent horizontal bands across the screen. They are about half an inch wide and comprise six scanning lines, the first two lines being quite dark while the rest are progressively less intense.

This sort of thing can be caused by discharges inside the focus spark gap. Try replacing it - also check the earthing connections between the tube's outer coating and the base panel, thence to chassis.

271
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

It's generally acknowledged that Bang and Olufsen TV sets have always had the edge over the competition in terms of picture and sound quality. Their reliability has not always been of the best however, and early solid-state chassis from this stable are no strangers in our workshop. No matter what the source, many of the faults that arise in these sets result in a "pumping" action in the power supply as a result of one or other of the protection circuits coming into operation. This month's story is about one such Beopump
The set was a Beovision 6002 (type 3522-3532) with a beautiful rosewood cabinet - and a complete lack of raster and sound. A gentle pumping sound at a rate of about once per second came from within it. Some quick preliminary checks showed that no obvious short-circuits were present in the line output stage while the h.t. line, which should record 148 V at 6 TP 2 , was pulsing to about 100 V on each pump cycle. A scope check at 5 R 18 (18) which is in series with the 148 V h.t. line produced a waveform with an amplitude of about 16 V , about twice what's normal, indicating that excessive current was flowing in the line output stage.
It didn't take long to unload the various power supplies derived from the line output transformer: 6D9, which produces a 37 V supply for the field timebase and the EW modulator drive circuit, was found to be heavily burdened - its removal brought the set to life, albeit with no field scan. We decided to check the field timebase module, 8003200 , where a dead short to chassis was found at the supply input point - P19-5. A few more minutes investigation showed that the TDA1270 field timebase chip 7IC1 was the culprit - pin 2 was solidly shorted to the heatsink tabs.

After fitting a new chip we confidently replaced the module and switched the set on. No pumping - but no field scan either! In the next twenty minutes we had the
module in and out several times while we checked the output transistors, their joints, the module socket connections and so on. Then we got sensible and reasoned that if there was no field scan activity the white line on the screen would fade within seconds of switching on - which it didn't - due to lack of gating pulses in the auto greyscale shift circuit. Sure enough a scope check at the i.c.'s output pin 4 produced a 50 Hz waveform which was also found to be present at the emitters of the output transistors $7 \mathrm{TR} 2 / 3$. The waveform wasn't the usual "spikedsawtooth" however: it was virtually a squarewave with a peak-to-peak amplitude of almost 40 V . At this point experienced TV trouble-shooters will be leaping up and down with the correct answer. Are you amongst them? If so, what's the accompanying symptom that sometimes gives a further clue to the cause of the trouble? For the answer to both these questions, see next month

ANSWER TO TEST CASE 270 - page 456 last month -

In our last "tableau" we were huddled around a Philips colour set fitted with the G8 chassis. Its problem was an intermittent red raster that occurred only spasmodically and only when the set had thoroughly warmed up. Various substitution checks had been made in the field and the set was now on the workshop bench for investigation.

The simple and effective way to deal with this situation is to interchange the video drive between the suspect channel (red in this case) and a known good one. So the red and green leads to the tube base were swapped over and the resulting strange colours were suppressed by turning the saturation control to zero. When the fault next occurred the monochrome picture became suffused with red, and since the red gun was now being driven by the green channel this implied that the tube was faulty.

So it turned out to be, though exactly what was happening within the tube was not clear. Any interelectrode short involving the red control grid would have elevated all three grids to a high potential and turned on all three guns. We suspect that the red grid connection to pin 3 was going open-circuit intermittently, though this is very uncommon with the type of Mullard tube used.

No, the customer didn't have a new tube fitted - and we didn't get a bean for all our efforts!

[^1]| AA117 | 9 p | 8C337 | 6 p | BF184 | 200 | BFY57 | 25p | TTP32A | 24p | 2N. 1131 | 28p | 8Y296 20p | 7818 | 35 p | PCL805 | 55p | LA. 4461 | 180p | tBA560 | 100p | 74LS22 | 24p |
| :---: |
| A4119 | 9 p | BC338 | 6 p | 日F 185 | 200 | BFY64 | $25 p$ | T1P32C | 280 | 2N. 1132 | $28 p$ | BY299 2Bp | 7824 | ${ }^{35 p}$ | PFL20 | ${ }^{85 p}$ | LA.5112 | 120p | tBa750 | ${ }^{100}$ | 74LS24 | 47p |
| | 9 p | BC557 | 6 p | BF194 | 5 D | BFY90 | ${ }^{45 p}$ | 7P33 | 50 | ${ }^{2 N} .1613$ | 24 p | ${ }^{\text {BY299 }}$ | 7905 | ${ }^{35 p}$ | PL36 | ${ }^{80}$ | LM301 | 26p | tbasio | ${ }^{35}$ p | 74LS26 | 24p |
| AC107 | ${ }^{28 p}$ | 8С¢32 | 150p | BF195 | 5 p | 82Y48 | ${ }^{85 p}$ | T1P34 | 509 | 2N. 1711 | 24 p | ${ }^{\text {BY4 }} \mathrm{BY6}$ - 90p | 7912 | 40 p | ${ }^{\text {Pl82 }}$ | 45p | LM311 | 35p | TEAP10S | 60 p | 74LS27 | 24p |
| ${ }^{\text {ACl }} 126$ | 17p | вС¢33 | 150 p | ${ }_{\text {BF } 196}$ | ${ }_{80}$ | BLY49 BR100 | ${ }_{140}^{850}$ | TPP4AA | ${ }_{250}^{22 p}$ | 2N.2102 | 50% 300% | $\begin{array}{ll}\text { BYX1G } \\ 8 \gamma \times 5 \times 350 & 150 \\ 30 p\end{array}$ | ${ }_{7918}^{7915}$ | ${ }_{40 p}$ | PL83 PL84 | 32 p 50 | LM324 | 35p | Tbaszo Tbagzo | 75p | 741528 | $24 p$ |
| AC127 AC128 | 15p | 8CY34 $\mathrm{BCY42}$ | 150 | 8F197 | $7 \mathrm{7p}$ | BR100 BR101 | 14 p | ${ }_{\text {T1P42A }}$ | ${ }_{22 p}^{25 p}$ | 2N. 212180 | 3009 248 | | 7974 | ${ }^{40 p}$ | | 140p | LM325 | 45p | traszo | 100 p 100 p | 744530 | 24 p |
| AC. 28 BK | 23p | ${ }_{\text {BCY42 }}$ | ${ }_{160}^{200}$ | BFF198 BF199 | ${ }_{6 p} 7$ | BR103 | $37 p$ | T1P42 | $25 p$ | 2N 2219 | 24 | BY×558800 | 78.05 | $28 p$ | PL500 | 110p | LM339 | 40p | t8ag90 | ${ }_{1000}$ | 74.532 | $24 p$ |
| AClaik | 309 | BCY70 | 169 | ${ }_{8 F 200}$ | ${ }_{169}$ | BS<20 | 15p | T1P47 | $40 p$ | 2N 2221 | 23p | BY女7C300 29p | 78112 | 28p | PL504 | 95 p | LM348 | ${ }^{60 p}$ | tcaz70 | 40p | 74L533 | 26p |
| $\mathrm{ACl}^{\text {chak }}$ | 30 | BCry | $16 p$ | BF240 | 169 | 8S×26 | 189 | TIP48 | 400 | 2N. 2222 | ${ }_{45}^{23 p}$ | BYx70500 32p | 78115 | $28 p$ | PL508 | 1700 | LM360 | 100 p | TCAB00 | 200p | 741537 | $24 p$ |
| AC153k | 23 | ${ }_{\text {BCY }}$ | $16 p$ | ${ }_{\text {BF }}$ 241 | 10 p | -sx29 | 1909 | Tipso | ${ }^{600}$ | 2N. 2369 | ${ }^{45 p}$ | 8rx7ar ${ }^{\text {dra }}$ | 781.18 | ${ }^{28 p}$ | PL519 | 450 | LM381 | $150 p$ | tcasio | 100p | 74LS38 | 24p |
| AC176 | 18p | BD115 | 260 | 8 F 255 | 12 p | ${ }^{81} 106$ | ${ }^{90} \mathrm{p}$ | TPP5 | 1200 | 2N.2484 | 200 | BYx717600 80p | ${ }^{78124}$ | ${ }^{28}$ | PY81 | $70 p$ | LM382 | ${ }^{130}$ | TDA1170 | 100p | 741540 | 24p |
| ${ }_{\text {ACl }}^{\text {ACl }}$ A6K | 200 | BD124P | 50p | BF256 | 18p | ${ }_{\text {BT }}$ | ${ }_{80} 9$ | ${ }_{\text {TiP5 }}$ | 120 | 2N.2546 | 200 | $\begin{array}{ll}0447 \\ 0 A 90 & \text { ap }\end{array}$ | 79605 | 450 | Pr88 PY500 | ${ }_{180} 48$ | LM387 | ${ }^{100 p}$ | TDA1412 | ${ }^{60 p}$ | 744542 | 48p |
| AC187K | 20 p | ${ }^{80124}$ | 1100 | 8F257 | 180 | BT119 | 100 | tup 4 | 1400 | 2N. 2905 | 20p | OAG1 4p | 79.15 | 48 p | | | LM $723^{\text {c/ }}$ | ${ }^{300}$ | toaz003 | ${ }^{150} 9$ | | 78 p |
| AC188 | 17p | 8D 128 80131 | $35 p$ 250 | ${ }_{8 \mathrm{BF} 259}$ | ${ }_{18 p}^{18 p}$ | BT120 | 100p | TIP105 | 65p | 2N. 2906 | 18p | OAzOTE $7 p$ | LM309K | 100p | AN | | LM741 | 18 p | tDazozo | 140p | 74.551 | 24 p |
| AC188K | 23. | ${ }_{80} 80132$ | ${ }_{25 p}^{25 p}$ | ${ }_{88262}^{8259}$ | ${ }_{250}$ | 8U100a | 110 p | ${ }_{\text {TIP1 } 106}$ | 65p | 2N 2907 | 18p | $042027 p$ | LM317\% | 220p | AN-240P | ${ }_{1500}$ | LM741 MET | + 45p | tolaz30 | 140p | ${ }^{741554}$ | $24 p$ |
| ${ }^{\text {ACr18 }}$ | ${ }_{48}^{48}$ | BD135 | 200 | BF263 | 25p | ${ }^{\text {Bul }}$ | ${ }^{1000}$ | TP107 | ${ }_{470}$ | 2N. 2926 | ${ }_{280}^{8 p}$ | IN. ${ }^{\text {IN14 }}$ | ${ }_{\text {LM317T }}$ | 1800 | AN 360 | 1200 | LM747 | ${ }^{58 p}$ | TDA2522 | 900 | 744555 | $24 p$ |
| AD142 | ${ }_{60 p}^{48 p}$ | ${ }^{8 D 136}$ | 20 | BF270 | 18 p | BU108 | 1000 | TPP111 | 80p | 2N 3053 | ${ }_{18 p}$ | $\begin{array}{ll}\text { IN. } 4002 \mathrm{z} & 4 p \\ \text { in }\end{array}$ | LM723 | ${ }_{320}$ | AN-7110 | ${ }^{1400}$ | ${ }_{\text {LM }}$ | 35p | TDA2532 | 100 p 1000 | ${ }_{741573}$ | 28p |
| AD149 | 45p | ${ }^{8 D 137}$ | 200 | BF273 | 15p | BU110 | 110 p | TIP112 | 40p | 2N. 3054 | 36p | IN. 4003 s 4p | 78HGKC | 570p | AN-7114 | ${ }_{160}^{1600}$ | LM3900 | 30\% | tDa2540 | 100p | 74.575 | 369 |
| AD161 | 22p | BD139 | 200 | ${ }_{\text {BF324 }}$ | ${ }_{25 \%}$ | BU111 | 140p | TIP15 | 45p | ${ }^{2 N} 3055$ | ${ }^{355}$ | IN. 4004 4p | ${ }^{\text {78HOSKC }}$ | 520p | AN-7120 | 1400 | M-51513L | 180p | TDA2560 | 100p | 744576 | 28p |
| ${ }_{\text {AD162 }}$ | ${ }_{250}^{225}$ | BD140 | 200 | ${ }_{\text {BF }}{ }^{\text {a }} 36$ | 200 | BU124 Bu126 | 600 | T1P116 | ${ }_{50}^{45}$ | ${ }_{2}^{2 N} 30545 \mathrm{H}$ | ${ }_{50 \mathrm{p}}^{50}$ | IN. 4006 \% 40 | ${ }_{\text {78GUIC }}^{78 \mathrm{C}}$ | ${ }^{1900}$ | AY3-1270 | ${ }^{6800}$ | M-515158L | 270p | TDA2593 | ${ }^{100 p}$ | ${ }^{741578}$ | 35p |
| AF 125 | 25p | 8 B 144 | 900 | ${ }^{\text {8F3337 }}$ | 200 | ${ }^{\text {But }} 204$ | 75 | TPP120 | ${ }_{43 p}$ | ${ }_{2 N}^{2 N 3442}$ | ${ }_{85} 8$ | | 79HGKC | ${ }_{670}$ | AY3.1350 | | M-51515 | ${ }^{280}$ | UPC 555 | | ${ }^{744583}$ | ${ }^{65 p}$ |
| AF 126 | 25 p | ${ }^{\text {BDI } 150}$ | 300 380 | BF338 8×355 | 280 | BU205 | 700 | TIP121 | $46 p$ | 2N. 3702 | 9 | IN.414id ${ }^{\text {2p }}$ | valves | | ${ }_{\text {AY }}^{\text {A }}$ 3-89910 | ${ }^{3800}$ | M83712 | 150p | UPC -556 H | $80 p$ | 741586 | 32 p |
| AF 127 | 25p | $8{ }^{8158}$ | 38 p | ${ }^{\text {8F }} 362$ | 30p | ${ }^{\text {BU208 }}$ | 75p | T1P122 | 47p | ${ }^{2 N} .3703$ | 9 | IN.5400 9p | da | ${ }^{60}$ | AY5.3600 | 570 | M83730 | 260p | UPC.575C | 100p | 74LS90 | 45p |
| AF139 | 22 p | BD166 | 30 | 8F367 | 13p | 8U208a | ${ }_{\text {800 }}^{800}$ | T1P125 | ${ }_{560}^{47}$ | 2N 3704 | 9 | $\begin{array}{ll}\text { IN } 540 \mathrm{O} \\ \text { IN } 540 & \text { 10p } \\ \text { 100 }\end{array}$ | DF96 | 50p | CA270 | 40% | M83756 | 260p | UPC-577H | ${ }^{649}$ | 74LS91 | ${ }^{85}$ p |
| ALl12 | ${ }_{70}$ | $8 D 175$ 80177 | 300 | 8F371 | ${ }_{180}^{178}$ | ${ }^{\text {BU } 325}$ | ${ }_{\text {55p }}$ | TIP127 | 56p | ${ }_{2 N} \mathrm{~N} .3706$ | 90 | IN. 5401 ll | DL92 | 47p | ca3046 | | MC1327 | 70 p 200 | UPC-1001 | 220p | ${ }^{741592}$ | ${ }^{50 p}$ |
| Al113 | 80 p | ${ }^{80177}$ | 300 320 | ${ }_{\text {BF420 }}$ | 180 | BU326 | ${ }^{85}$ p | TIP141 | 90p | 2N. 3707 | 9 | IN 5404 11p | DY86 | ${ }^{50 \mathrm{p}}$ | ${ }^{\text {cas }}$ CA3068 | 1900 2800 | NE556 | 40 p | UPC. 1025 | 230p | 741595 | 60 p |
| Asz15 | 100 p | 8 B 181 | 45 p | BF421 | 18 p | 8U406 | ${ }^{85 p}$ | T1P142 | ${ }^{90 p}$ | ${ }^{2 N} .3708$ | 90 | N(5405 | DY802 | ${ }^{45 p}$ | САЗ3080 | 70 p | SAS560 | 110p | UPC-1026C | 105p | 741596 | 80p |
| Asz17 | ${ }_{1000}$ | BDis? | $60 p$ | BF422 | ${ }^{21}$ p | ${ }^{8184060}$ | ${ }_{75 \mathrm{p}}$ | TTP145 | ${ }_{90}^{85}$ | 2N,3771 | ${ }^{850}$ | $\begin{array}{ll}\text { N. } 5406 \\ \text { in } 540 \% & 13 p \\ \text { 13p }\end{array}$ | Eabcso | 50 p | CA3086 | 55 p | SAS570 | ${ }^{110 p}$ | UPC-1028 | ${ }^{90} \mathrm{p}$ | 74LS107 | 39p |
| A A 102 | 1100 | BD183 | 609 | $8 \mathrm{BF423}$ | ${ }^{15}$ | 8U4070 | 95p | ${ }_{\text {TPP147 }}$ | 1009 | 2N. 3773 | 1000 | $\begin{array}{ll}\text { N } 5.540 \% & \text { 13p } \\ \text { i3p }\end{array}$ | E891 | 44p | CA3009E | 150 p | SN76003N | | UPC-1031 | | 7415109 | 39p |
| AY106 | 180 | ${ }^{8 D 187}$ | | BF440 BF 451 | ${ }_{17}^{169}$ | BU408 | 85p | IIP2955 | 42p | 2N 3819 | 29p | TEN | EBF80 | ${ }^{46}$ | CA3090aC CA3130E | ${ }^{300}$ | SN76023N | | UPC-1032 | 70 p | ${ }_{744}{ }^{\text {S }} 113$ | 32p |
| BA145 | 100 | BD202 | 38p | BF455 | 14 p | BU4080 | 95p | T1P3054 | 45p | 2N 3866 | ${ }^{68 p}$ | LENEAS | ECC82 | 40 p | ca3130S | $100 p$ | SN76033N | | UPC-1155 | 200p | 74.5114 | 42p |
| 8 8148 | 10 p | B0203 | 42p | BF458 | 190000 | BU429 | -950 | ${ }_{\text {tis }}^{\text {tis3 }}$ | 45 | 2N. 3903 | 110 | BYZ88 Range | ECC83 | $43 p$ | CA3140E | 38p | SN76110 | ${ }^{70 p}$ | UPC-1156 | H140p | 7415122 | ${ }^{56}$ |
| BA154 | ${ }^{6 p}$ | 80294 80222 | ${ }_{31}^{42 p}$ | ${ }_{8}^{8 F 459} 8$ | 190 | BU500 | 110 p | TIS44 | ${ }_{40 p}$ | 2N. 3905 | $11{ }_{10}$ | 2 V to 399 6p | ECC84 | 40 | ${ }_{\text {Ca }}^{\text {Ca3189F }}$ | ${ }^{250 p}$ | T28000 | 52p | UPC 1182 | 150p | 74 LS 124 | 70p |
| BA157 88101 | 12 p | ${ }_{\text {BD225 }}$ | $3{ }^{31 p}$ | ${ }_{8 F 462}$ | 62p | BU526 | sop | T1567 | $15 p$ | 2N. 3906 | 11 p | | ECC85 | 490 | HA.1156W | 110 p | TA. 7120 | 55p | UPC-11 | H2 | 7415125 | 38p |
| 88103 | 169 | BD232 | 310 | BF469 | ${ }^{30}$ | BU801 84806 | (${ }^{95 p}$ | ${ }_{\text {TIS }}^{\text {TIS88 }}$ | ${ }_{15 \mathrm{p}}^{45 \mathrm{p}}$ | ${ }_{2 N}^{2 N .4037}$ | ${ }_{25 p}^{250}$ | 2 V to 39V ${ }^{\text {12p }}$ | ECH84 | $52 p$ | HA-1197 | $150 p$ | TA.7137P | ${ }^{83} \mathrm{p}^{\text {p }}$ | | ${ }_{150}{ }^{\text {p }}$ p | 7415126 | 42p |
| 88105 B | $18 p$ | 80234 | 32 p | BF 470 | ${ }^{28 p}$ | ${ }^{8 \cup 807}$ | 95p | TIS91 | 18 p | ${ }_{2 N}{ }^{\text {N } 4037}$ | 25p | | ECL80 | 570 | HA-1306W | ${ }^{170}$ | TA-7146P | 400\% | UPC. 1350 | 150p | 7415132 | ${ }^{53} \mathrm{p}$ |
| 88205 | ${ }^{24 p}$ | ${ }^{\text {BD235 }}$ | ${ }^{280}$ | $8 \mathrm{EF47}$ | ${ }_{\text {30p }}^{280}$ | C1060 | 25p | Tis93 | ${ }_{20 p}$ | 2 N 4058 | ${ }_{13 p}^{25 p}$ | JAPANESE | ECL82 | 59 p | HA. 1319 | 250p | TA-7200 | 200p | 74LS SEP | | ${ }_{7} 741515136$ | 350 |
| BC 107 $8 C 108$ | $7{ }_{7}$ | ${ }_{\text {B0237 }}$ | ${ }_{21 p}^{30 p}$ | ${ }_{8}^{88493}$ | 18p | C1060 | 23p | | | 2N. 4443 | 780 | ${ }_{2 S B 321}$ 56p | ${ }^{\text {ECLIES }}$ | 57 | HA. 1339 | 170 p | TA-7201 | 200p | 74LS00 | 24p | 74LS138 | 47p |
| BC109 | $7 p$ | 80238 | $24 p$ | BF494 | $1{ }^{\text {ep }}$ | M 12500 M 2501 | ${ }^{100 p}$ | VN.10KM | 600 | 2N.4444 | 760 | ${ }_{2 S 8507}^{689}$ | ECl86 | 49p | H4. 1366 W | | TA. 7203 | 180 | ${ }^{74 L 501}$ | 24p | 744S139 | ${ }^{45 p}$ |
| 8 Cl 115 | ${ }_{110}^{10}$ | B0244 80245 | 50 p | ${ }_{8}^{8 F 5959}$ | ${ }_{\text {18p }}$ | M ${ }^{\text {MJ25015 }}$ | 56p | VN. 46 AF | 880 | ${ }_{2 N}^{2 N} 5934$ | 30 p | | ${ }_{\text {EF88 }}^{\text {EF85 }}$ | $31 p$ | | ${ }^{160}$ | TA. 7204 | ${ }^{1100}$ | ${ }^{74.502}$ | 240 | 744S145 | ${ }_{1300}^{909}$ |
| BC140 | 19 p | BD433 | $28 p$ | BF597 | 100 | M 33000 | 115p | VN. 8 | 1150 | ${ }_{2}^{2 N} .5296$ | 30p | 2SC1060 99p | EF89 | 43 p | HA. 1377 | 2200p | TA. 7210 | 200p | 74L504 | 249 | 74 LS 148 | 120p |
| $8 \mathrm{BC141}$ | $19 p$ | BD434 | $30 p$ | BF615 | 30p | MJ3001 | $15 p$ 30 p | VN.B9aF | 110 | 2N.6106 | 40 p | 2SC1061 200p | EF183 | 46p | HA-1389 | 1400 | TA.72222 | | 74L505 | 23p | 741 S151 | 45p |
| ${ }^{8 C 142}$ | 19p | BD435 | 31 p | BF758 | ${ }^{41 p}$ | MJE29a | 30 p 30 p | 21×107 | 11p | 2N.6107 | ${ }_{40}$ | $2 \mathrm{SC1046} 78 \mathrm{p}$ | EF184 | 53p | HA-1392 | ${ }^{230}$ | | 120p | 744508 | ${ }^{249}$ | ${ }^{7415153}$ | 80 p |
| BC143 | 19 | BDa37 | $28 p$ | ${ }_{\text {BFP69 }}$ | ${ }_{22 \mathrm{p}}^{22}$ | MJE33a | ${ }^{350}$ | 21×108 | 11 p | ${ }^{\text {2N }} 1.12189$ | 55p | $\begin{array}{ll}\text { 2SC1151 } & 1100 \\ 25 C 1172 \\ & 150 p\end{array}$ | EL34 | ${ }^{180}$ | HA. 1397 | 250p | TA.7310P | ${ }_{270}$ | 74LS09 74.510 | ${ }_{25 p}^{25 p}$ | ${ }^{744 \text { S } 154}$ | 880p |
| BC147 BC148 | $6_{6 p}^{6 p}$ | BD4 BD439 | 36p | BF870 8872 | $\mathrm{22P}_{23 \mathrm{p}}$ | MJE350 | ${ }^{80 p}$ | 27×109 | 12 p | 3 N | 65p | 2SC1306 ${ }^{\text {20p }}$ | EL364 | ${ }_{50 p}^{60 p}$ | HA. 1398 | ${ }^{240 p}$ | TAA550 | $16 p$ | 74 LS 1 | 25 p | 74 LS 156 | 65p |
| BC149 | 6 p | 8 C 440 | $40 p$ | BF960 | 38p | MJE520 M.EF2955k | 30p | 27 ${ }_{\text {2T } \times 312}$ | ${ }_{\text {27p }} 13$ | drodes | | ${ }^{25 C 1307}$ 100\% | EL95 | 500 | L4.1352 | 120 p | TgA120S | $45 p$ | 744512 | 25p | 7415157 | ${ }^{35 p}$ |
| ${ }^{8 C 157}$ | 6 p | ${ }^{80441}$ | 400 | ${ }^{8 / 8593}$ | 400 | MJEE2955k | 90p | $\underline{1 T \times 301}$ | 13 p | A4119 BY'00 | 9p | $\begin{array}{ll}\text { 2SC1678 } \\ \text { 2SC1959 } & 120 \\ 1300\end{array}$ | EL500 | 80 | LA-1365 | 140 p | tita395 | ${ }_{60}^{60}$ | 741513 $741 S 14$ | $30 p$ $40 p$ | 7415158 74.5180 | ${ }^{\text {5p }}$ |
| ${ }_{8 C 189}{ }^{\text {BCLIS }}$ | ${ }_{6 p}^{6 p}$ | ${ }^{80442}$ | 40p | ${ }_{\text {BF964 }}$ | 38p | OC28 OC 29 | ${ }_{800}^{100 p}$ | 27x302 | 16p | | 320 | $\begin{array}{ll}\text { 2SC1959 } \\ \text { 2SC20:8 } \\ & \text { 75p }\end{array}$ | EL504 | ${ }^{1009}$ | LA-330 | 120p | teas 20 | 100p | 74 LS 15 | $24 p$ | $74 \mathrm{LS161}$ | |
| ${ }^{8 C 1822}$ | ${ }_{60} 8$ | B0534 | $38 p$ | BFR40 | 25 | OC35 | 100 p | $\underline{21 \times 303}$ | ${ }^{24 p}$ | ${ }^{\text {BY126 }}$ | ${ }_{6 p}$ | 2SC2099 120 p | EY87 | $31 p$ | L4 3361 | 1150 | teas30 | ${ }^{100} \mathrm{p}$ | 74LS20 | 24p | 7415162 | $58 p$ |
| BC183 | 6 p | B0535 | 380 | EFR51 | $21 p$ | OC36 | 120p | 211 | ${ }^{17 p}$ | ${ }^{\text {BY127 }}$ | 8 p | 2SC20r8 120p | EY88 | 42p | LA-4030 | 200p | tbas40 | 100p | 74LS21 | 24p | 7415163 | 60 |
| ${ }^{\text {8C1 }} 183$ | ${ }^{6 p}$ | ${ }^{80536}$ | 38 p | BFR62 | 21p | OCA5 | 50 p | $\underline{21 \times 326}$ | 29p | ${ }^{\text {BY133 }}$ | 8 8p | LOW Proalle | EZ235 | ${ }_{50} 5$ | $\begin{array}{ll}\text { LA 4.432 } & \text { 140p } \\ \text { LA.4050 } \\ & \text { 130p }\end{array}$ | | PLEASE PHONE US FOR TYPES NOT LISTED HERE AS WE ARE HOLONG 3000 ITEMS ANE OUOTATIONS ARE GIVEN FOR LARGE OUANTITIES
 Please add 50 p P\&P and VAT at 15%. Govt, Colleges, etc. Orders accepted, Quotations given for large quantities. Please allow 7 days for delivery. All brandnew Components. All valves are new and boxed. | | | | | |
| BC18
 $8 \mathrm{BC1}$ | ${ }_{6 p} 6$ | ${ }^{80} 5838$ | ${ }_{40 p}$ | | 52p | OC | 30p | zTX500 | 13 p | ${ }_{\text {BY'17 }}$ | ${ }_{85 p}$ | ${ }_{\text {SoCKITS }}{ }_{\text {Sp }}$ | EZ81 | | | | | | | | | |
| 8 BC 212 | ${ }_{50}$ | 80675 | 40% | BFR91 | 99p | OC200 | 180p | 21×507 | 13p | BY179 | 35p | | 6234 | ${ }^{81800}$ | $\begin{aligned} & \text { LA-4051 } \\ & \text { LA-4100 } \end{aligned}$ | $130 p$ $100 p$ | | | | | | |
| 3C2121 | ${ }^{68}$ | 80676 | 400 | | 200 | R2008B | 100p | 21)503 | 18 | ${ }_{\text {BY182 }}^{\text {BY }}$ | 32p | 14pin
 $16 p$ in
 $10 p$ | ${ }^{\text {PC97 }} \mathrm{PCC85}$ | | | 120 p 100 p | | | | | | |
| BC213 BC 2131 | ${ }_{6 p}^{6 p}$ | 80677 80678 | ${ }^{38 p}$ | $8 \times \times 84$
 $8 F \times 85$
 88 | 200 | R20108 | 100p | $\underline{27 \times 504}$ | ${ }^{25 p}$ | - ${ }_{\text {BY1 } 187}$ | 32 p 32 p | 18pin ${ }^{\text {12p }}$ | | 42p | LA-4,402SK 1400 p | | | | | | | |
| BC214 | 6 p | B0679 | 400 | BF×87 | $15 p$ | tag4443 | 78 p | 2TX550 | 240 | BY196 | 200 | $\begin{array}{ll}\text { 20pin } & 14 p \\ 22 \mathrm{pin} & 18 p\end{array}$ | PCFF200 | 135p | | | | | | | | |
| ${ }^{\text {BC2144 }}$ | ${ }^{6 p}$ | B0680 | 400 | ${ }^{\text {BFX } 88}$ | 15p | tag4a44 | ${ }^{76}$ | ${ }^{2 N} .636$ | 28p | ${ }^{\text {BY206 }}$ | 11p | | PCFB01 | 110p | (La-412 | | C-A ARATA T® | | | | | |
| ${ }_{8 C 238}^{8 C 237}$ | 7 p | | ${ }_{45 p}$ | ${ }_{\text {BFY }}{ }^{\text {BFX }} 17$ | ${ }_{30}$ | TIP29A | 22p | ${ }^{2 N} \mathbf{N} .697$ | 40 | ${ }_{\text {BY208 }}$ | 18 | | PCF806 | 115 | LA-4201 | 120p | | | | | | |
| 8C300 | $18 p$ | BD×32 | $100 p$ | BFY18 | 40 p | TIP29C | 25p | ${ }^{2 N} .699$ | $48 p$ | BY210 | 22 p | | PCH200 | 100p | LA-4220 | 120p | THE BROADWAY, PRESTON ROAD | | | | | |
| $\mathrm{BC3}^{8}$ | $18 p$ | BDX | 80 | BF | 289 | ${ }_{\text {TIP30 }}$ | 25p | 2N. 7064 | 22p | ${ }^{8 Y 223}$ | 729 | | PCLB1 | 54p | La-4400 | 190p | | | | | | |
| BC 303 | $18 p$ | BF180 | ${ }_{16 p}$ | ${ }_{8 F 51}$ | 149 | TIP31A | 340 | 2N.708 | 220 | | 1208 | VREGUGATORS | ${ }_{\text {PCLC } 84}$ | ${ }_{50 \mathrm{p}}$ | LA.4422 | $140 p$ $130 p$ | Telephone: 01-904 2093 8, 904-1115/6 | | | | | |
| BC327 | 6p | BF181 | 18p | BFY52 | 14p | TIP31C | 30 p | 2N. 918 | 36p | BY227 | 19p | 7812 35p | PCLB5 | 55p | LA-4430 | $130 p$ | | | | | | |
| BC328 | ${ }_{6 p}$ | | 20p | BFY56 | 25p | TIP32 | 24p | 2N. 930 | 18p | BY228 | 32 p | 7815 35p | PCL86 | 55p | LA 4460 | 170p | | | | | | |

TV LINE OUTPUT TRANSFORMERS

KENT LEDGERWOOD WHOLESALE GROUP

are pleased to announce A NEW NATIONWIDE CONTRACT OF IMMACULATE THORN EX-RENTAL IV'S \& VCR'S, MOSTIY WORKING, WHICH ENABLES US TO OFEER REMARKABLE QUALITY, VALUE AND DISCOUNIS TO IHE DISCERNING BUYER OF IHORN 8800/9000/9600/9800/ 3V16/3V22 VIS VIDEOS \& 14" NORDMENDE PORIS FRANCHISES AND DELIVERIES ARRANGED

NORTH Tritel 1043 Leeds Road Thornbury Roundabo Bradford Tel: 0274665670	SOUTH 17 West Side Centre Luton Tel: 058224177	SCOTLAND Acorn Unit 4 Peacock Cross Industrial Estate Burnbank Hamilton Hamilon Tel: 0698
AND NOW OPENING IN LONDON KLW LTD, Unit 4, Mill Works, Wembley.(Tel: Bradford Office 0274665670)		

MANTEL

No 1 for Quality TVs \& Videos 100s of V.H.S. Videos in stock

 Large Quantities of Late Model Thorn TVs. All with first class cabinets.
TELE-TEXT/ULTRASONIC/INFRARED/REMOTES

 All at UNBEATABLE PRICES for QUANTITY \& QUALITYAlso Philips G11/Pye G11/Basic/Remote/TELE-TEXT Some examples of QUALITY working TVs

THORN 8800 *************** $\mathbf{£ 2 5}$
THORN 8800 (remote) $\star \star \star \star \star \star \star \star \star \star \star$ £ 30
THORN 9000 ****

THORN 9600 ************** $£ 40$
THORN 9600 (full feature remote) $\star \star \star £ 45$

THORN 9600 TELETEXT from $£ 75$ (VARIOUS MODELS)
THORN 9900 ****************£50

PHILIPS G11 ************** 5 55
(prices quoted are based on quantity)
NO DEALER TOO LARGE OR SMALL. SINGLES SOLD
Brand New Remote Control Hand Sets Available for the majority of British \& European TV sets.

1000s of UNTESTED Colour TVs

I.E.

DECCA 30s
GEC 2110
GRUNDIG
TANBERGS

G8s 520s-550s
Thorn 3500/8000/8500 TT PYE, ETC.
(Many of these untested TVs just switch on) ALL AT LOW LOW PRICES VAN LOADS DELIVERED DIRECT FROM SOURCE RING FOR QUOTE
New TV Trolly Stands $£ 4.95$ Also Video Stands
POA Colour TV panels \& tubes available
All prices subject to V.A.T. CALLERS WELCOME Export Orders Welcome for those Countries using the P.A.L. System

> 419 BARLOW MOOR ROAD, CHORLTON, MANCHESTER M21 2ER. TEL: 061-861 8501

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

VIDEO CASSETTE RECORDER SERVICING

 6 WEEKS FULL-TME(September 16th to October 25th)
Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial and academic training and includes a high percentage of practical work.
Selected applicants will be eligible for a full grant from MSC under TOPS to cover tuition fees and maintenance.

6 MONTHS
LEC DIPLOMA
TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training e.g. BSC, HND, CGLI, BTEC, etc.)
(Course commences on Sept. 16th)

ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL
(These courses commence on Sept. 16th)

2 YEAR

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)

15 MONTHS

BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis)

15 MONTHS

BTEC National Certificate (ONC)
COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessors, Microcomputer Fault Diagnosis, Robotics \& Control Systems, CADCAM \& CAE Principles).

OVERSEAS STUDENTS ARE CHARGED THE SAME TUITION FEES AS UK STUDENTS

Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price $£ 49$ inc P\&P and VAT. Aveilable from Luton only. *Depends on depth and area to be polished.
AQUADAG COATING $\mathbf{£ 1 7 . 2 5}$ per litre inc
P\&P and VAT. Sufficient for approx 100 tubes. Available from Luton only.
TV TUBES FREE DELIVERY*
5\% DISCOUNT ON TUBES COLLECTED FROM LUTON
Quality, High Temperature Reprocessing

$\begin{aligned} & \text { TUBE } \\ & \text { SIZE } \end{aligned}$	DELTA i.e. A57-10x A56 120X A $66-120 X$	DELTA SPECIALS i.e $510 G L B 22$ A47-342X A67-150X	IN LINE \& PIL i.e. A51-161X A51-570X A56-510X A66-510X	$\begin{array}{\|c\|} \hline \text { HITACHI } \\ \text { IN LINE } \\ \text { i.e. } \\ \text { 490DVB22 } \\ \text { 510VLB22 } \\ \text { 560DZB22 } \end{array}$	SONY TRINITRON
UP TO 20'	£30	£32	£40	£44	£58
UP TO 22"	£34	£36	£42	£46	£64
UP TO 26"	£36	£38	£44	£48	£70

All tubes sold with 1 or 2 year guarantee, with optional extension by extra 2
years. Prices shown are for 12 months guarantee years. Prices shown are for 12 months guarantee. All tubes exchange glass required.
Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. From $£ 7$ per tube. Delivery charge on colour tubes: Within 40 miles of Luton. 1 or 2 tubes £6. 3 or more tubes FREE DELIVERY* Nationwide delivery available, charges on application.
Please add 15% VAT to all prices. Callers welcome. Please phone first

WELL VIEW 14.4 .13 mililand did.

Open Mon-Fri 8am-6pm, Sat Gam-1pm. Tel Luton, Beds.
Your Local Tube Stockist.
Well View, Southampton. Tel. 0703331837.
Retach Ltd., Narthwood, Middx. Tel. 0927427019.
West One Distributors Ltd., Gt. Missenden, Buckinghamshire. Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933314901 Daventry Rentals, Daventry, Northants. Tel. 0327277436 Rea \& Holland, lpswich, Suffolk. Tel. 0473827562

WANTED A56/A66-510×/540X Old glass for cash

VIDEO HEADS MONourt
 HIGH QUALITY UNIVERSAL VIDEO HEAD
 REPLACEMENTS FOR ALL VHS AND BETAMAX
 VCR MACHINES
 VHS Part No. 3HSS (5 mm Centre Hole) £29.95 PRICE
 VHS Part No. 4HSS (15mm Centre Hole) £29.95 EACH
 BETAMAX Part No. PS3B $\mathbf{£ 3 8 . 9 5}$ EX.
 REPLACEMENT KIT (17 Pieces Boxed) $£ 17.35$ V.A.T. PLEASE ADD 15\% V.A.T. PLUS P\&P E2.00 PER ORDER OUR FULL CATALOGUE AVAILABLE ON REQUEST. Please allow between 14 and 28 days for delivery.
 AUDIO + VIDEO HEADS - MOTORS - PARTS
 Suppliers to most U.K. Distributors/Service Organizations
 THE MONOLITH ELECTRONICS CD. LTD
 5.7 Church Stneet, Crewkerne. Somerset TA1B 7HR, England
 Telephone Crewkerne (OABD) 74321 Telex 46305 MONLTHG

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

JAPANESE INTEGRATED CIRCUITS				STK077 STK078 STK080	$\begin{aligned} & \mathrm{E} .95 \\ & \mathbf{5 5 . 0 0} \\ & \mathrm{E} 7.20 \end{aligned}$	UPC20 £720 UPC30 £1.80 UPC561 $\mathbf{7 2 0 0}$ UPC565 6120	CASSETTE MOTORS $6 / 9.12 .13 .2$ volts. All $£ 3.50$ each 10 f2,50each	SPECIAL OFFER CERAMIC CAPACITORS All in packs 10 p each. Value 100 caps for only $£ 1.50$
AN 127	11.75	HA1392	¢230	STK430	f4.75	UPC572C $\quad \mathbf{2} \mathbf{2 0 0}$	50	1P/250V, 1P2/500V, 1P5/500V, 1P8/500V, 2P2500V
AN211	¢ 725	HA1397	52.50	STK433	E6.00	UPC573 1230	100 $\mathbf{Z 1 0}$	$2 \mathrm{P} 7 / 500 \mathrm{~V}, 3 \mathrm{P} / 500 \mathrm{~V}, 3 \mathrm{P} 3 / 500 \mathrm{~V}, 3 \mathrm{P} / 500 \mathrm{~V}, 4 \mathrm{P} / 500 \mathrm{~V}$.
AN2140	f1.80	HA1398	52.40	STK435	£5.00	UPC575C2		
AN217	$\underline{20} 20$	HA1457	E0. 50	STK436	E5.00	UPC57	CASSETTE HEADS Mono	Pack 2
AN236	¢250	LA1111P	50.80	STK437	66.30	UPC595	1f1.60	4P3/250V, 4P7/500V, $5 \mathrm{P} 6 / 500 \mathrm{~V}, 6 \mathrm{P} / 500 \mathrm{~V}, 6 \mathrm{P} 8 / 500 \mathrm{~V}$.
AN239	63.80	LA1222	f1.30	STK439 STK441		UPCL1018 E0.95	10f1.50 each	7P/500V, 8P/500V, 10P/500V, 12P/500V, 18P/500V.
AN240	f1.50	LA1230	f1.50 f1.90	STK459	${ }_{65.50}$	UPC1025 ¢230	50 11.40	
AN241	¢1.50	LA1240 LA1365	61.50 $\mathbf{f 1} 20$	STK461	$\underline{56.50}$	UPC1026 $\quad \mathbf{1} 1.00$	100 $£ 1.30$	Pack 3
AN247	f1.50	LA3160	c0.90	STK463	67.40	UPC1028 60.4		22P/500V. 33P/500V, 39P/1000V, 47P/500V, 56P/500V.
AN313	$\underline{62} 75$	LA3201	¢125	STK0039	84.00	UPC1031H2 E1. 10	STEREO RECORD/PLAYBACK	V.
AN315	f2.00	LA3210	1125	STK0040	E5500	UPC1032		
AN318	£3.75	LA3300	81.40	STK0059	E600	UPC1156	102250	
AN331	¢2. 75	LA3301	81.20	STK0080	E6.50	UPC1182 f100		
AN360	f120	L43350	10	TA7028M	f1.90	UPC1185 $\quad 120$	100	550P/500V 820P/500V $1 \mathrm{~N} 500 \mathrm{~V}, 1 \mathrm{~N} 2500 \mathrm{~V}$, $1 \mathrm{~N} 5 / 500 \mathrm{~V}$
AN362 AN7115	f1.30 $\mathbf{f 1 . 6 0}$	L44031	¢1.40	TA7045M	f1. 30	UPC1230 E\%50	100	500P/500V. 820P500V, N/500, in 500 V ,
AN 1145	£1.80	L44032	f1.40	TA7050P	¢1.50	UPC1350 $\quad 1120$	(REVERSE/RECORD/PLAYBA	Wire wound resistors by VTM 5k 9 watts axial
AN7146	£1.85	L44100	f1.00	TA7051P	£1.50	$\begin{array}{ll}\text { UPC1353 } \\ \text { UPD27 } & \mathbf{8 4 . 5 0}\end{array}$	1 .	30 for $\mathbf{5 1 . 0 0}$
AN7156	¢1.80	La4101	£1.00	TA7061P	¢1.70	MINI BULK	10i......e3.00 each	
AN7311	11.00	La4102	£1.20	TA7063P	f1.50			ANTALUM BEAD CAPACITORS
BA301	c0.90	LA4112	51.30	TA7070P TA7072P	f1.40	OFFERS	50 CZ 51 each	$22 / 35 \mathrm{~V} / 35 \mathrm{~V}, 2 \cdot 2 / 16 \mathrm{~V}, 2 \cdot 2 / 35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}, 47 / 50 \mathrm{~V}, 10 / 16 \mathrm{~V}$
BA511A	f1.80	LA4230	£1.75	TA7104P	${ }^{61} 35$	${ }^{10-B C Y 71 ~} \quad 51.00$	MINI STEREO FOR WALKMAN	TV CERAMIC SOUND FILTERS
BA514	f1.75	LA4400	11.80	TA7120P	¢0. 60	5-8D130 $\quad 11.00$		$4.5 \mathrm{MHz}_{2} 25 \mathrm{p}$ 0 50 for
BA521	$\underline{1.75}$	LA4420	51.30	TA7130P	£100	6-8D137 $\quad 11.00$		5 MMHz 2 Sip
BA527	£1.50	LA4422	1120	TA7138P	E1.00	5-80139 \quad ¢1.00	10 G2.50 each	GOMHZ 25p 100 for
BA532	£1.50	LA4430	11.30	TA7137P	21. 00	5-BD140	50f $\mathbf{2} 30$ each	
BA536	¢725	LA4440	020	TA739P	f1.80	6-BD252 f100	100E2.10 each	6.5 MHz 2 Lp
BA612	£1.80	LA4460	¢1.70 $\mathbf{1 1 . 7 5}$	TA7150P	${ }_{6180}$	${ }^{6-8 D 438}$		FM Ceramic Fither
BA1320	${ }_{\text {f1 }} 1.75{ }^{\text {c }}$	LA6458	21.75 60.50	TA7152P	11.70	$\begin{array}{ll}5-80507 & \mathbf{5 1 . 0 0} \\ 5-807885 & \mathbf{5 1 . 0 0}\end{array}$	CAPACITOR BARGAINS	$10.7 \mathrm{MHz} 60 \mathrm{p} \quad 25$ for E 1250
BA1330 CX0642	61.75 68.50	LC7120	E 350	TA7173P	51.60	7-BF180		
C×065B	¢ 250	LC7130	£3.50	TA7176P	51.80	25-BF195 $\quad \mathbf{1} 1.00$	A25 IN/1600V Poly	Enquiries invited for any Japanese 1.6s. As we have
C×0758	5200	LC7131	E3. 15	TA7193P	63.50	20-BF196 $\quad \$ 1.00$	B25 1N5/1000V Ceramic	ported for over 10 year
Cx095C	¢280	LC7136	$\underline{2} .75$	TA7202P	¢200	20-BF196 $\quad \mathbf{1} 1.00$	D5 2N7/5000V Ceramic	ase add 60p post and packing and then add 15\%
CX1000	E5. 75	LC7137	E2.75	TA7203P	¢1.10	20BF224 $\quad 1.00$		ease add bop post and packing and wen add 15\%
CX101G	[7.50	M5106	9275	TA7204P	£1.10	10-BF271 \quad ¢1.00	E5 3N3/5000V Ceramic	to total
CX157	${ }^{6} 3.95$	M5115P	63.50	TA705P	£1.50	$\begin{array}{ll}\text { 20-BFR62 } \\ 10-\mathrm{BFY75} & £ 1.00 \\ \text { 14.00 }\end{array}$	F5 4N7/400V A.C. Ceramaic	Callers by appointment: opening times 10am-5pm
Cx158 C 160	63.00 $C 2.50$	M5134P	1215 -230	TA7208P	¢1.50	$\begin{array}{ll}\text { 10-BFY75 } & \text { E1.00 } \\ 5-\mathrm{BF} \times 81 & \text { f1.00 }\end{array}$	G10 10N/1000V Poly	Mon-Fri, g-12 Sats (closed Bank Holidays).
CX161A	$\underline{5250}$	M51513L	51.50	TA7214P	¢250	6-BR101 $£ 1.00$	J6 10N/2000V Ceramic	
CX162	E3.40	M51515L	6250	TA7215P	¢1.00	6 -BRY56 \quad ¢1.00	K5 12N/2000V Pohy	
CX170	E5. 50	M51516L	0250	TA7217P	51.20	5-0CP71 ¢1.00	L5 47N/1500V Pohy	
CX181	f8.50	M515171	C250	TA7222AP	51.20	4-TIS88A $\quad 81.00$	M5 100N/1000V Poty	
HA1149	£1.40	MB3712	81.50	TA7223P	11.50	$10-\mathrm{TIS90}$ f1.00	N4 100N/1500V PolyP5 100N/2000V Ceramic	
HA1199	£1.40	MB3731	6250	TA7225P	9750	10 TIS91 51.00		
HA1306N	£1.60	PLL01A	f 79.95	TA7226P	81.00	10-2N2721A $£ 1.00$	R4 220N/1000 V Poly 16	DINGTON GREE
HA1319	¢1.00	PLL03A STK013	64.95 66.25	1A7227P	£1.60 $£ 300$	spec devices	S2 910N/210V Poly 10	NDON M?
HA1339A	£1.60	STK013 STK014	${ }_{66.25} 6$	147229P TA7230	${ }_{61,15}$		All above ONLY $\mathbf{f 1 . 0 0}$	10N W2
HA 342 HA1366WR	¢1.70 $\mathbf{1 1 . 5 0}$	STK015	E5.00	TA7310	81.40	PACK	UNE TIEMS	30246 (Answer
HA1387	53.20	STK016	£4.75	TA7313	$\underline{51.30}$	1220 UF 400 V CAN	81.50	39240 (Answerphon
HA1377	92.20	STK020	£4.50	UHICOO1	${ }_{64.80}$	1 1 1600 UFF 400 V CAN		DESPATCHED WITHIN 48 HOURS
HA1388	$\underline{2.75}$	STK025	E6.00	UHICOO4	¢4.80	1600 UF 30V CAN		

:JUNCTION 11: A NEW COMPANY IN THE NORTH WEST OFFERING A FRIENDLY, FIRST CLASS SERVICE to the trade at competitive prices
 OUR RANGE INCLUDES
 THORN PYE/PHILIPS G.E.C.
 I.T.T. DECCA ETC.
 * DISCOUNT FOR QUANTITY

The directors of this new company assure all our prospective customers of a warm welcome, and a fair deal.

HITACHI VHS COLOURCAMERAS
Mains/Mains Battery Portable

TESTED WORKING

VHS VIDEOS FERGUSON

3V00, 3V22, 3V23, 3V16, 3V29, 3V30, 3V31, 3V32, 3V35
NATIONAL PANASONIC NV8600, 8610, 2000, 7000, 370, 333, 2010
SHARP
620, 630, 640, 2300 H T/P

BETAMAX

SANYO VTC 9300, 5000, 5300 SONY C5, C6, C7, C9
and SL F1UB T/P
Also Bush, Toshiba, Hitachi and Blau Punkt
PLUS
17" 18" $20^{\prime \prime}$ 22" 26" Hybrid/ Solid State CTVs
Remote Control \& Teletext
Discount for Quantities

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

	EW EQUPMENT	
COSSOR CDU150. Dual Trace 35MHz Solid State.	MEG OSCILLOSCOPE 605. Dual Trace 60MHz.	
le $8 \times 10 \mathrm{~cm}$ display. With Manual ... 200	Sweep Component Tester 5515	
ABS SM111. Dual Trace 18MHz Solid State.	HAMEG OSCILLOSCOPE 203.5. Dual Trace	
-10cm	mponent Tester 2264	
VANCE OS250TV Dual trace 10MHz. W	4	
hual	Meteor 100-100MHz	
QUIPMENT S S4A Single Trace 10MHz.	Meteor $600-600 \mathrm{MHz}$.................f126	
State. With Manual 5110	Meteor 1000-1 GHz 8175	
MENT D43. Dual Trace 25MHz. With	Black Star jupitor soi function gener-	
	ATOR. Sine/SquareJTiangle. $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$.	
TELEOUIPMENT S43. Single Trace 25MHz. With	P\&P£4 $£ 110$	
MULTIMETERS		
PHILIPS DMM2517. 4 digit. Auto ranging. Com-	TER type U4324. 33 ranges. Complete	
AVO TEST SET No 1 (Similar to Avo8 Mk3) Complete with batteries, leads \& carrying case $£ 80$		
AVO Model $7 \times$ Complete with batteries, leads \& carrying case c 40		
AVO Model 73. Pocket Multimeter (Analogue) 30 ranges. Complete with batteries \& leads AVO 72 - Similar th above but no AC current range. With batteries \& leads		
	-230 MHz ...	
	ADVANCE AM Signal Generator type 62.150 KHz	
UNBELIEVABLE		
AVO 8 Mk V FOR ONLY E65 Complete with batteries \& leads.		
NOW ONLY ¢12 p\&p £		
	S- 1000 Mohm	
TRANSISTOR TESTER T16	7	
ing. Complete with batteries, leads \&	UHF FIELD STRENGTH METER ${ }_{650}$ P\&P $£ 5$	
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check availability before ordering. CARRIAGE all units £12. VAT to be added to Total of Goods \& Carriage.		
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL		

HIGH QUALITY COLOUR TELEVISIONS

Thorn, Phillips, GEC R/Controls, ITTs, T/Text etc., etc., etc. . . .
NEW BRAND NAMED STOCKS AVAILABLE!

Various Hi-Fi Systems.	£55.00
Videos (Phillips 2020)	£35.00
Computers	ONLY £10.00
TELETEXT COLOUR TELEVISIONS	P.O.A.

LARGE RANGE OF PART EXCHANGE \& EX-RENTAL COLOUR TELEVISIONS IN EXCELLENT CONDITION . . . FROM ONLY £5.00 . . .
Amplifiers (complete with Speakers) AVAILABLE NOW!!!
(P.O.A. - price on application)

EXCELLENT PRICE OFFER FOR ORDERS ABOVE 40 UNITS

[^2]
UNTESTED EX-RENTAL CTVs

OVER 1500 WEEKLY

WITH THIS QUANTITY WE DO NOT HAVE TIME TO PLAY ABOUT.

NO BUMPED TUBES
best source in u.k.
COLOUR TVs FROM £3

VIDEO RECORDERS FROM £60

TANDBURG S/S CTVs DUAL TUNERS IDEAL FOR EXPORT VIDEO RECORDERS: SONY C5: C6: C7 \& C9 PANASONIC: SHARP FERGUSON : GRUNDIG ETC.

CALL \& SEE OUR SELECTION DELIVERY ARRANGED FOR BULK PURCHASES
LOAD DIRECT FROM SOURCE AT VERY KEEN PRICES

22"/26" TELETEXT VIEWDATA

 COLOUR IN STOCK NOW
CASH ONLY

FRANK FORD

 (TV TRADE DISPOSALS) SCHOOL LANE GUIDE BLACKBURN, LANCS TEL: 025464489
WD-TV

 100's of WORKING COLOUR TVs DECCA P PHILIPS G8 \& G11 BUSH • PYE s/s • ITT • THORN $880090009600 \cdot$ GEC s/s KORTING • JAPS PRICES FROM $\mathbf{f 1 5}+$ vat Videos Always Available Tested Tubes All sizes from E10 + VAT Always Scrapping DownDecca, Philips \& Thorn

- Spares Always Available

WD-TV

TV Warehouse (former Tritel Place), The Chestnuts, Watling Street (A5), Hockliffe, Bedfordshire. (Jnct. 12 M1 - 3 miles)

Tel: 0525210768 \& 210686.

HOCKLEY DISCOUNT TELEVISIONS

North-East Branch:
NORTHERN T.V. DISTRIBUTORS, Unit 2, Perth Court,
Eleventh Avenue,
Team Valley Trading Estate,
Gateshead, Tyne \& Wear
Tel. 091-487-5389
ASK FOR JOE

Midlands Branch:
HOCKLEY DISCOUNT TELEVISIONS, 94 Soho Hill,
Hockley, Birmingham B19 1AE.
Tel. 021-551-2233
ASK FOR JAZZ

NOW THE MOST RAPIDLY EXPANDING WHOLESALERS WITH HUGE STOCKS

 TO ENSURE YOU OF BETTER BARGAINS! LORRY LOADS DELIVERED DIRECT FROM SOURCE!PRICES START FROM £6
WORKING SETS FROM $£ 12$
100's OF G11's IN STOCK 22" \& 20". VHS VIDEO'S NOW IN STOCK UNLIMITED SELECTION OF:
PHILIPS G8's (G11 Now in Stock) SONY

PYE SOLID STATE
PYE CHELSEA
GEC SOLID STATE, STARLINES

SPECIAL OFFER ON VARICAP 6 BUTTON DECCA

* Delivery can be arranged.

COMPONENT SPECIALISTS
 Anything - Anywhere Bulk Orders, Export Orders Purchase of Excess Stock Thousands of Components Ex-Stock Simply phone us 0934-419147
 Freeway Components, The Airport Weston Super Mare, Avon BS24 8RA

VHS VIDEOS

$3 \mathrm{~V} 16-3 \mathrm{~V} 22$ etc. Untested, off the pile as seen $£ 85$ each (no minimum quantity)

Thorn 8800s, 9000s, 9600s untested off the pile with a very high percentage of workers - £25 each

DECCA 80/100s - £25 each G11s - £35 each
PHILIPS 550s - £15 each PYE 725s - £15 each

Philips new sealed LVC150 tapes (for 1500/1700 VCRs) £6 each

Free Delivery London area - other areas depending on quantity. All prices exclusive VAT
SOUTH LONDON TELEVISION MISSION HALL, SOUTHEY ROAD, LONDON SW19 01-543 5437

NORTH WALES TELEVISION SUPPLIES FLINT 5878
 SPECIAL OFFER PHILIPS G8's 550 COMPLETE LOTS OF TEN £15.00 EACH G11's ALSO IN STOCK Unit 32, Manor Industrial Estate, Bagillt, Clwyd.

NEW OFFER

 LONDON'S LARGEST TELEVISION WHOLESALER with over $41 / 2$ thousand sq. feet. "TELEMANN"

8-10 RHODA STREET, (Off Bethnal Green Road) LONDON E2. FREE CAR PARK Tel: 01-739 2707 01-739 3123

We specialise (where the other wholesalers don't) for the busy dealer who wants a clean compact parcel of six SERVICED Colour Televisions delivered to his doorstep!...

PS

SERVICED $\underset{\text { TELEVISIONS }}{\text { Colour }} £_{\text {EACH }}^{35}$

AVAILABLE

Special FREE opening offer 6 Monos Included - NO CHARGE!

DELIVERY FREE TO THE GREATER LONDON AREA AND A SMALL CHARGE FOR OUTSIDE LONDON!

LORRY LOADS DELIVERED DIRECT FROM SUPPLIERS - NO CHARGE FOR DELIVERY! TELEPHONE BARRY OR JOHN $01-7392707 \rightarrow$ LNE 2 ES $\leftarrow 01-7393123$ FREE CAR PARK + NO YELLOW LINES OUTSIDE!

Satellite Receiving Systems

1 m and $\mathbf{2 m}$ Parabolic Dishes, other sizes available.
A range of other components available, eg, LNAs, Downconverters, receivers, for both 4 and 11 GHz . Complete Terminals for ECS and Intelsat, both single channel and tunable versions.
Terminals for other frequencies available.
Demonstration by appointment.
L \& S Bear Electronics Ltd Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719

TOP TWENTY VIDEO SPARES

Cassette lamp (Ferg/JVC)f1.80	Video head (Ferg) (state modell $£ 37.50$
Cassette lamp (Panasonic) $\mathbf{1 . 8 0}$	Video head (Panasonic) (state model) $£ 39.50$
Take-up clutch (Ferg)f6.95	Head cleaning fluid............................. $\mathbf{1 1 . 5 0}$
Belt kit (Sony) (state model)............f6.50	Head cleaning sticks (each)50p
Belt kit (Ferg) (stare model).............f6.50	Reel Drive Pulley (Sanyo VTC5000).......88.88
Belt kit (Panasonic) (state model) $£ 6.50$	Reel Motor (Sanyo VTC5000) $\mathbf{f 1 4 2 0}$
Belt kit (Sanyo 9300)....f6.50	Reel Motor (Sharp).................................12.96
Rewind kit (Sony 177)f6.95	Overhaul kit (Ferg) (state model)...........19.95
Reel idler (Sharp 甘C)..................... E 3.45	Overhaul kit (Sony) (state model)......f19.95
Video head (Sony C7/C5) $£ 39.50$	Overhaul kit (Sharp) (state model)£19.95
Most spares available for Hitachi Prices	anasonic, Sony, Sanyo, Sharp etc. request.

TELEVIDEO SERVICES
NOTTINGHAM (0602) 226070
76 Wollaton Rd., Beeston, Nottingham
Please add 50p post \& packing and then add 15% VAT to total ALL DRDERS DESPATCHED BY RETURN OF POST Send 22 p stamp for full catalogue.

TV LINE OUTPUT TRANSFORMERS
 PRICES INCLUDE VAT \& CARRIAGE

Delivery by return of post.

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the ' 60 's.

WE ARE LOCATED IN UXBRIDGE

At probably the most accessible part of S.E. England. Constructional work on the Poyle/ Uxbridge section of the M25 is now in progress. When completed we shall be less than 10 minutes from M3/M25 junction $2 / 12$. M4/M25 junction 4/14. M40/M25 junction 1/15.

LOCAL AREA MAP AND PRICE LIST AVAILABLE ON REQUEST
DISPLAY ELECTRONICS LTD. UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX. UXBRIDGE (0895) 55800.

N.G.T. COLOUR TUBES

First Independent Rebuilder with B.S.I. CERTIFICATION DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up

* Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD. 120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "off the shelf", e.g. LOPTZ - EHT trays - droppers - OSC coils - switches - cans smoothers - I.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

IRISH T.V. DEALERS \& ENGINEERS

Make extra money selling Ex-Rental Colour TV's. NEW LOW summer prices. Off the pile from £30, good working order from £50, all prices VAT INCLUSIVE. Most leading makes in stock, fresh stocks weekly. Delivery to any part of Ireland. Export orders welcome for countries using PAL System. We also stock VHS Videos and regunned Colour tubes.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

SETS \& COMPONENTS

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036.

HITACHI, Mitsubishi, Panasonic, Sony, Toshiba, JVC, Sharp, Sharp fully refurbished. PEARSON TELEVISION. 1484863489 . Delivery arranged.

BRISTOL TELEVISION TRADE DISTRIBUTORS (BTTD)
 4 Victoria Street (Bristol Bridge) BS1 6BN

Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price, regular supply.
Tel: (0272) 25266

THORN, GEC, DECCA's. Stripped for spares, panels, tuners from $£ 2.50$. Phone for prices: Wellington, Dartford 0322337212.

WANTED - SURPLUS COMPONENTS, Valves, Transistors, Transformers. ICS Capacitors. Ring (0246) 211682, immediate settlement.

NEW VIIEEOS, Televisions boxed guaranteed below retait prices. Details Hemel Hempstead 44351

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . Immediate settlement.

QUALITY SETS FROM CORNWALLL. Workers/non workers. Spares, panels. etc. Details ring 0726-81-5389.

GRUNDIG; TELEVISIONS, telequipment oscitloscopes. Also spares. Manuals. Panel exchange. Ochremill. 0785814643.

TELEQUIPMENT STORAGE OSCILLOSCOPES. Normal, variable persistence, store. 25 MHz . Bandwidth but response beyond 50 MHz . Trigger delay simplifies adjustments. From $\mathfrak{£ 3} \mathbf{3}(\mathbf{0}$). Ochremill 0785 814643.

DXTV: MULTISTANDARD 26", British/French/European Pal/Secam, every refinement, privatc, bargain £250. Shoreham (Sussex) 2747.

SECOND HAND TELEVISION panels. Send stamp for lists. 154 Poplar Avenue, Edgbaston, Birmingham BI7 8EP.

BOURNEMOUTH COLOUR TV		
Working Colour Prices		
3500 Elec	£30 8800	
	£30 9000	£40
8500	E30 9200	POA
9600	POA	
Remote and Teletext		
G8550 £35 G11 POA		
ITT, GEC, BUSH, HITACH, et		
(0202) 432884.		

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know or your products and services.
The prepaid rate for semi display setting $£ 6.30$ per single column centimetre (minimum 2.5 cms). Classified advertisements 37 p per word

\section*{ TV Business
 | COLOUR SETS FROM | 55.00 |
| :--- | ---: |
| MONOS FROM | 53.00 |
| PANELS BY POST -PRE-CALIBRATED | |
| WORKING SETS TO ORDER | |
 Phone Baldock 894905 SECTION 3, UNIT 4, SERL COMPLEX, LONDON ROAD, BALDOCK, HERTS. OPEN 6 DAYS 10-6.30pm/10-5pm SAT.}

ThKI

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
Kyyol matresing Lad
Breedon Cross
Storage,
Dale Road, Selly Oak,
Birmingham B29 6A0.

TV SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG TELEVIEW 01-994 5537
 194, Acton Lane, London W.4.

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

 Unit 4 Rubastic Road,Brentpark Industrial Estate, Southall, Middx. UB2 5 IL. 01-574 4631, Ext 28

NORTHERN IRELAND DEALERS

COME AND SEE OUR LARGE RANGE OF S/H COLOUR TVs AT LOWEST PRICES EVER CONTACT:

S. M. ELECTRONICS
 11 SANDHOLES ROAD, COOKSTOWN, CO. TYRONE Telephone: Cookstown 06487/64277

Open: Mon.-Sat. 9.00 am- 6.00 pm (Closed Wednesday)

EERUICE POGES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846),

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.

G11s	$\mathbf{E 7 0}+\mathrm{VAT}$	MANY OTHER MAKES
T20s	E65 + VAT	
S/state	from	STOCKED AND
1TTs	$\mathbf{E 5 5}+\mathrm{VAT}$	CHEAPIES FRO
Decca	from	ONLY £25 + VAT
	855 + VAT	FULY SERVICED

Contact John, Dave or Steve for persona friendly attention on
022369215 or 035361462

TELEVISION

GOOD QUALITY TRADE TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES AND MODELS

GENERAL
UNION STREET DONCASTER DN1 3AE FACTORS

TEL (0302)
68416
GOOD MOTORWAY ACCESS

COLOUR BAR GENERATOR
Pal Colour Generator with 11 patterns plus sound.
hatch, Dots, Chequer Board, Black Raster, White Raster,
OUTPUTS PRO
IDEO OUTPUT
SOUND OUTPUT
LINE PULSE
FIELD PULSE
Same as above plus RGB output $£ 81.50$
Line Output Transformer Tester whit ${ }^{\text {E }} 11.50$
Same as above but with Video Output $\quad £ 20.50$
Capacitance Meter measures 10 pF to $1 \mu \mathrm{~F}$ complete with moving coil meter
S.A.E. for details. - Prices include P\&P \& VAT.
C.M.J. ELECTRONICS
Unit 8, 16 Union Mill Street, Horseley Fields,

> FOR INFORMATION ON CLASSIFIED ADVERTISING PLEASE RING PAT BUNCE 01-261 5942

GOLCAR T.V. SERVICES (formerly LAVITE LTD.).
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Callers by appointment only.

STARLITE ELECTRONICS

NOW MOVED TO: WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.

- TV TUBES -

2 year guarantee Most types available Japanese including Sony
Ex-Rental TVs from $\mathbf{£ 1 5 . 0 0}$ Untested Panels

IRISH TV TRADE

CAN WE BE OF SERVICE TO YOU? Regular supplies of Quality Colour TVs LOWEST PRICES
Working Sets from $£ 18$
Non-working Sets from $£ 8$ FREE DELIVERY ANYWHERE
INDEPENDENT TELEVISION AND VIDEO COMPANY LARGE STOCKS TO CLEAR EVERY WEEK

COMPETITIVE PRICES

EXAMPLES: B\&W 20"-24"	From $£ 1.00$
COLOUR:	
Bush 1-2 I.C.	£4.00
Philips 520-550, $26{ }^{\prime \prime}$	£6.00
Thorn 3500	£6.00
GEC-Decca-ITT	£6.00
Philips 550 22"	£10.00
Pye "8"-20"-22"	£10.00
GEC 20"-22" $26^{\prime \prime}$	£12.00
Thorn 8800-9000-9800	- £15.00

Many Other Modern Sets and VHS Videos
PHILIPS G11 - ITT - Bush T20-T22T26, Hitachi, Nat. Pan. - Sony Off Pile from $£ 40$
Phone Frank: Nottingham (0602) 864627
Unit 3
Meadow Trading Estate, Meadow Lane, Nottingham NG2 3HO.

NWIELECTRONICS 25 YEARS SUPPLYING THE TRADE

New Low Prices Thais a Fac!!

100's of good class HP Repos and Ex Rental Colour TV's reduced to ROCK BOTTOM PRICES!

Bush T20 (Excellent Bush 718 P.I.L. Tube
Bush 2 Chip Decoders Philips G8 Philips Gll GEC 2010 Thorn 3500

was $£ 60 \ldots$. NOW $£ 40$
was $£ 30 \ldots \ldots .$. NOW $£ 25$
was $£ 15 \ldots$. NOW $£ 8$
was $£ 28$. NOW $£ 23$
was $£ 70 \ldots . .$. NOW $£ 55$
was $£ 25 \ldots . . .$. NOW $£ 20$
was $£ 12 \ldots . . .$. NOW $£ 8$

Hybrids $£ 5$ all makes! $\%$ Many more inc Pye KT30, Ferguson TX etc. Fully Refurbishéa IV's Ready for Rent/Sale
Models include Bush T20£55, Pye Gll £68 Pye KT3 £85, Bush Z718£38, GEC£38 Many Other Makes in Stock. Ring for Quotation. White goods
Hoover Twins from £6. Hotpoint 1460 from $£ 10$. Autos all makes from $£ 10$.

Sparast sparmst IV Pantis

	1.8.	DECODER	LME OIP	POWER	CONVERG	VIDEO	FRAME 3
Busw 2 Cmp	300	1.00	6.00	3.00	300	-	5.00
3nerscou	200	4.00	1.00	100	5.00	5.00	5.00
9	$\begin{gathered} 5 \text { 5in } \\ \text { WITH SOUNO } \end{gathered}$	1.00	14.00	1.00	5.00	5.0	5.00
	panel						
GEC 2110	10.00	5.00	1200	5.00	5.00	5.00	5.00
Pusan 718	40	15.00	2500	3.00	5.00	-	15.00
80sw 18	100	15.00	20.00	20.0	5.00	-	15.00
Thopan	m	1200	2500	-	-	-	10.00
PYE 27	15.00	10.00	15.00	10.00	4.00	-	6.00
LOUNSPEAKESS $\mathrm{f1}$ math							

Unit 12, Wharfedale Road M606 Euroway Estate Bradford

CASH ONLY-NO CHEQUES DELIVERY CAN BE ARRANGED-TRADE ONLY P\&P 1 panel $£ 1.50,2$ panels $£ 2.00,3$ panels $£ 2.50$ etc. Quick Despatch - C.W.O. please. All prices plus VAT
(0274) 688458 OPENGDAYS AWEEK

OPEN MON-SAT 9-5.30

Don't forget! We are open
all day Saturday!

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$

 INLINE TUBE TYPE FROM £35.00 MONO TYPES P.O.A.ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

Tpert Tubes
 31 radcluffe road, west bridgFord, notmingham PHONE: (0602) 813329 THE OUAUTY REBUILDER
 ALL tubes guaranteed for 2 YRS EXTENDABLE TO 4 YRS All Standard Delta types one price £29.50
 A51-161 - A51-163 £42.00
 A56-500/510. A66-500/510 (20AX) £43.0 Buy 10 at ONLY $£ 38.00$ ea A56-540, A66-540 £49.00 Buy 10 at ONLY $£ 44.00$ ea 560DZB22. 560EGB22. 510VLB22 £46 SONY types from e55.00
 1000's more available. VDU, MONO, Industrials etc Technical Advice Service. All Prices + VAT \& exchange Suppliers to Broadcasting Authorties \& National Companies WE SPECIALISE IN JAPANESE TYPES
 N \& S Ireland Conway Bros
 Peterborough H Donnor 073371809 0648763771
 STOP PRESS
 A44-271 ONLY £14.00 LMITED QUANTITY

Philips G11s and Bush 2718
Panels from $£ 10.00$, Breaking for spares, Push button units, Tube bases for sale or exchange etc. All good working order.
$\mathbf{G 8}$ line panels with new LDPT $£ 16.00$. Timebase, good working $\mathrm{f6} 50$.
RADIO and TELEVISION SERVICING BOOKS
(MacDonalds). New 7475 f15; 7576, $7677,77 \pi 8$, 78/79, 7980, 8081, 81/82, 8283, 83/84 2250.

FREE DELIVERY
 Except Tubes Es mach

All prices are inclusive
U-VIEW
29, Warmsworth Road, Doncaster, Yorkshire DN4 0RP.

Tel: 0302855017.
Callers ring first, open every day inctuding Sundia $1 / 2$ a mile from A1

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE SPECIAL OFFER
 Working Decca Bradford Including Black Fronts

$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 22.00$ each in 6 units Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) $22^{\prime \prime}$ \& $26^{\prime \prime}$ ONLY $£ 20.00$ each
Plus many more makes \& sizes in stock,
inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL JOHN POWNEY
TRADE TV SALES \& SERVICE
Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF π
£1.25 per panel plus post \& packing
R.B.M. A823 PANELS. S.A.E. for details SCHOFIELD. 28 St Albans Road, St Abbes, Lancs. FY8 1TH.

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS

Line Ouput
Z718 (T703A, T706A)
New (Complete)
Less Focus Module and
Rectifier
£19.50

T20, 122 (T705A)
£10.50

T26 (T705B)
$£ 11.00$
$£ 11.00$
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $\quad \mathbf{7} \mathbf{7 0}$
Switch Mode
T114A/B
$£ 8.00$
Genuine RBM Units.
Prompt Postal Service P\&P Paid.
Add 15\% VAT to all prices.
DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-20T.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

CARTRIDGES AND STYLI at competitive prices. Useful equivalents/price lists. I.s.a.e. GEOFF DAVIES (Radio) 13 Bowen Road, Rugby, Warwickshire.

TRADE REPAIR WORKSHOP
VIDEO, T.V., HI-FI. ANY MAKE.
EXCHANGE PANELS G8, G9, G11, GEC, Grundig SO11 6011.
COLOURTRONIC SERVICES, 96 Ifford Lane, Ilford, Essex. 01-478 0782

C.T.V. PANEL SERVICE

Exch/repair \& sales - chemically cleaned - no burned or damaged print. 3 months g'tee, large range incl. Decca 80 \& 100, G11, G8, ITT, GEC, Rank, TCE, Jap \& euro models, despatched same day
Send S.A.E. for lists or ring with your requirements:
Argo Services (Birmingham), Elliott Road, Birmingham 29.

Tel. 021-471 4697
Teleptone orders accepred using Access/Mastercard ers accepted using Acc
CALLERS RING FIRST

BUSINESS FOR SALE

RETAIL BUSINESS FOR SALE

Bournemouth: established sixteen years: excellent retail outlet producing substantial profits. Situated busy main road and comprising large showroom and workshops with spacious luxury 3 bedroom flat over. Immaculate property. Retirement sale.

FREEHOLD AT £95,000 0202-35653

VIDEO TV. HI FI SHOP NW6 + Stock RoomsWorkshop.
T/O exceeding $£ 115,000$ p.a. ($£ 4,000$ from repair). Main dealership.
12 years new lease. Rent $£ 2,300$ p.a. PRICE $£ 25,000$ FOR QUICK SALE Please reply to.
TV BOX 197

BUSINESS OPPORTUNITES

TELEVISION AND RADIO REPAIR BUSINESS

Shop, workshop and store in affluent area outskirts W. Sussex seaside resort.
$\mathbf{£ 1 8 , 0 0 0}$ for lease (16 years remaining). All current clients.
S.A.V. if required - 024322671.
T.V. VIDEO \& HI-FI REPAIR \& RECON SALES BUSINESS

Ilford area
Established 9 years. Long lease. Large fully equipped workshop. Shop showroom. Great potential.

Capital investment needed.
Would consider partnership
or for sale $£ 20,000$
BOX No. TV 196

Sabaco

For a great deal!

VAN LOAD DIRECT FROM SOURCES ALL SETS OFF THE PILE
Most makes/sizes available, any quantities. e.g. Black faced Decca $£ 10$, solid state GEC £10, PYE $22^{\prime \prime} / 18^{\prime \prime}$ (solid state) $£ 12$. Thorn 8800/9000 etc. £20, Thorn 3500 £8, Philips G8 (550/520) £9, ITT (CVC5, 8, 9) £9, Grundig 5010/6010 £10, $26^{\prime \prime}$ ($3500 / \mathrm{G} 8$ etc.) $£ 5$, Jap $£ 10$, Pye GEC Hybrid $£ 4, \mathrm{~B} W \mathbf{£ 1}$.
All above offers minimum quantity of 15 sets or more.
ALL PRICES SUBJECT TO VAT \& AVAILABILITY.

Sabaco

Saba House,
46A Derby Road, Sandiacre,
Nottingham.

DEVONICS

Quality Rebuilt Tubes 2 YEAR WARRANTY In line from £41 Deltas from £30 NEW TUBES ex stock complete with scan coils 370 KRB 22
A51 JAR00X02 560 DYB 22
£40 ea + £5 carr + VAT
2A BARTON HILL ROAD, TORQUAY TQ2 8JH 0803-33035

WE ARE 50 SHAW SURE!

OF OUR QUALITY PRODUCTS THAT WE GUARANTEE THEM

ALL FOR ONE FULL YEAR!

THIS MONTH'S SPECIALS:
PUSHBUTTON SWITCHERY

1. G8SLOPING PUSHBUTTON ….... $\mathbf{£ 1 2 . 7 5}$
2. G8 PLASTIC MAINS SWITCH $\mathbf{£} .75$
3. PHILIPS G11 WITH REMOTE MAINSSW £1.45
4. ITT 6 WAY PUSHBUTTON WITHVCR
$£ 7.50$
$P+P £ 1.00+V A T$

SHAW ELECTRONIC SERVICES

38 Rudland Close, Thatcham, Berks RG13 4XW.
S.A.E. for lists of other BARGAINS

TUBE RE-GUNNERS. - Radyne Induction Generator Model RDISCD, 1.5 kw with hand lead and coils. Water cooled. Gored condition. $£ 300$. Ring evenings (9980) 610697

TELEVISION SERVICING EQUIPMENT, Oscilluscope 25 MHz , AVO 8 Function Generator. Tools, Pancls, Manuals. Stock. 01-809 2312

TELEQUIPMENT DM64 Storage oscilloscope, dual channels with manual, $\mathrm{f}^{(\%)}$. Chelmsford 75103 after 6 pm .

SOI.ARTRON DUAL TRACE OSC. ISMIIZ B.W test probes and instruction hook. $\mathfrak{f l} 50$ (0) (0) o.n.o. Tel. Colin Mitchell (99) -2.34 (0)37.

THANDAR SCilo OSCLLLOSCOPE as new $£ 150$. Offers? Swap for VHIS video. 2 Philips 2001 rs needing attention - any offers? 0326 311648.

WORKING COLOUR/B\&W Televisions, also panels, good prices. FOUR ACES ELECTRONICS, 74 OId Oak Comon Lane, London W3. 01-749 9338.

76 TELEVISION Copies $1975 / 1976$ to 1981 £35.(0). Tel. (Oldham) 0616525856.

COMPLETE TUBE
 RE-GUNNING PLANT
 FULLY OVERHAULED

Also some brand new items including electric ovens with automatic process control. Regunns 15 colour (Sony,
Trinton, Pil, In-Line etc) tubes 24 hour cycle. Training provided and assistance available for installation and set ting up of a plant

EXPORT ENQUIRIES WELCOMED
ONLY £8,500
Tel. 0582410787

WANTED

FAULT FINDING, Thorn 1615, wanted. Reverse charges. and phone 01-253 9794.

LATE MODEL COLOUR TELEVISIONS, videos, etc. Any quantity. Monitec. Tel. 0299 4001233/400933.

VIDEOS WANTED. Working or not. VHS and Beta only. Upminster (1040227) 20549.

1000 COLOUR SETS WANTED. Send fullest details and prices to LACOSTE, Box 3514. Vineta, Swakopmund, Namibia

WANTED 50-100 Television rental accounts. Norlis Bucks area/radius 30) miles. Box TV 47 .

WANTED EX RENTAL COLOUR T.V.s. Any quantity. Prompt collection. Cash paid. Sheffield 754865.

HUSSAIN CENTRAL TV

URGENTLY REQUIRES UP TO

E250,000 BANKRUPT STOCK.

TELEPHONE 021-622 1023

Electronics Engineers

To work on the maintenance of the extensive viewing facilities at our South Bank Television Centre.

Aged 25-35, you should have several years' workshop experience repairing domestic television receivers and, ideally, some experience in the repair of home video recorders.
Salary $£ 9,729-£ 13,000$ pa according to experience.
Please telephone 01-261 3237 for an application form.
An equal opportunities employer
LVN $/ \bar{\pi}$

London Weekend Television

Alba, Cossor, Baird, GEC,
Defiant, Echo, Ferguson, Philips etc. etc.
30,000 SERVICE SHEETS IA STOCK ALL AT £3.00 + SAE ALSO COLOUR MANUALS AVAILABLE AT 66.00 EACH TV Sheets, Black and White, also Radiograms, Record Players, Music Centres. Japanese models ir stock. Circuit diagrams only. Also Tape Recorders etc. Car radios also in stock. Radio Mobile, Sharps etc., Philips,

Car Radios Service sheets $£ 3$ + SAE. Manuals $£ 6$ + SAE.
Ferguson, Pye,
Please forward s.a.e. Send cheque or P.O.
Sanyo. Mono
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX

Old transistors, TV.

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European and Japanese models in stock.

> Colour $£ 2.00$ Mono $£ 1.50$ All our prices incl prices on request. post and packing costs.

Send stamped envelope for free catalogue and enquiries.
SANDHURST TV SERVICES (MAIL ORDER)
49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

FULL SIZE TOP QUALITY service sheets $£ 2.50+$ 1.s.a.e. CTV/Music Centres $£ 3.50+1$. s.a.e. Repair data almost any named TV/Video $£ 10.50$ inc. circuits. L.s.a.e. brings any quite free magazine/pricelists. TIST, 76 Churches, Larkhall, Lanarkshire. Tel. 0698883334.

RADIO AND TELLEVISION SERVICING BOOKS. New $74 / 75 £ 15.75 / 76,77 / 78,78 / 79,79 / 80,80 / 81$, $81 / 82,82 / 83,83 / 84 £ 22.50$ each. Free delivery. UVIEW, 29. Warmsworth Road, Doncaster. 0302 855017. Callers ring first.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road. Harrogate, N. Yorkshire. Tel. (0423) 55885.

AERIALS

AERIAL BOOSTERS

B45H/G-UHF TV next to the set fitting, gain about 20dbs, PP3 battery or 8 V to $14 \mathrm{~V} /$ working. Price E8.70. P\&P 30p.
UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to 14 VNW . Price $£ 2.50$. P\&P 30p. SET/TOP AERLAL and matching aerial booster (trebles and gain). Price $\mathbf{8 8 . 7 0}$. P\&P 500 .
(trebles and gain). Price E8.7. P\&P 50p.
Video Transmitters transmit with Aerial Boosters Video Transmitters tr
f8.70. S.A.E. Leaflets.

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom, Lancashire, BL0 9AG.
Tel: Ramsbottom (070 682) 3036.
S.A.E. for leaflets. AccessNisa Weicome.

CLEARVIEN AERIALS

Clearview have pleasure in announcing a full and comprehensive range of signal amplification equipment. For example: low noise electronically remote controlled masthead pre-amp 1.6 db noise. CH. 17-69. Set side amplifiers, distribution amplifiers, notch fiters 4 in 1 or 2 m - en. Combiners gain or 4 ddb gain. Trade and retail
Send large SAE for our comprehensive catalogue

> CLEARVIEW AERIALS, 173 Kings Road,

173 Kings Road,
Kingston Upon Thames, Surrey.

EVERYTHING NECESSARY. for multi-outlet and high gain installations. Cables, outlets, splitters, channelpass filters, diplexers, masthead amplifiers, distribution amplifiers, brackets, masts, aerials, etc. Use trade gear and save pounds. Catalogue 50 p (refundable). Professional advice. WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham.

Euro-Sat

Parabolic Dish Antennas (Peroent company est in SATELLTE TVRO ANTENNAS TOP QUALTT SOLD GLASSPBRE DISH ANTENNAS IM. DIA $11-12.4$ GHZ BANDS \quad OOM
 2M DIA 11.12 .4 GHZ BANDS
3 M DIA 11.12 .4 GHZ GANDS 3M DIA 111.12 .4 GHZ BAND
All dishes come complete with taed suppon rade arices include delivery Euro-Sat
107 Cross Street, Sale, Cheshire, England Tel. 061-437' 2631 061-881 4249

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

A-Z LIST OF MANUFACTURERS ADDRESSES. All major TV, audio etc, plus many hard to get ones. Send cheque/PO for $£ 3.75$ to DOWNS ELECT, 79 High Street, Dalkeith, Midlothian.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.

 The Colour Signal Part 2. The Receiver Decoder Part 3.
Receiver Installation

VHS* * *V2000*** BETAMAX $\star \star$ UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precise details FLINTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP ienclosing this advert)
NAME
ADDRESS
"ALARM NEWS" latest discount catalogue out now Phone D.K.S. 021-772 2764.

METERS

METERS. Reconditioned $10 \mathrm{p} / 51 \mathrm{p}$ availatle from stock. Contact THE METER (O). (Poole) LTD. (0202) 683498.

VIDEO

EUROLEC VIDEO SERVICES Telex 893819 Eurle

Tel. 01-669 2611
Address for correspondence only 35 Sandy Lane South, Wallington, Surrey SM6 9RF All Philips VCA Tapes available as per our previous advertisernents.
Second user Umatic and Professional equipment available constantly changing stocks - Export Service avallable. NTSC - PAL - NTSC TRANSFERS per hour plus VAI VAT Reg. No. 335709645

EX RENTAL VHS VIDEOS

100's IN STOCK
CONTACT MICK ON 021-772 1591

皆 								

[^0]: VHS VIDEOS WORKING - 1000's IN STOCK BRAND NEW 14" REMOTE CONTROL £100 BRAND NEW PYE 20", 22", 26" WITH STEREO - TEXT - REMOTES V MANY MORE BARGAINS IN STOCK - PHONE AND HAVE YOUR ORDER READY FOR COLLECTION. LORRY LOADS A DIRECT FROM SOURCES DELIVERED TO YOUR DOOR. ALL SETS HAVE FIRST CLASS CABINETS

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland $\mathbf{£ 1 3}$, overseas (surface mall) $£ 15$ per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: COLOURTRADE
 221 Bridge St West, Hockley, Birmingham 021-359 0449

