
\square 82

SERVICING•PROJECTS•VIDEO•DEVELOFMENTS

Servicing the Hitachi NP8CO Chassis

 Design of the FS-type Tube VHS VCR Audio/control Heads VCR Clinic• TV Fault Finding Unscrambling Canal Plus • DX-TV Servicing the Toshiba V9600
SAVE EVEN MORE!

THE TELEVISION FILM SERVICE

So many satistied customers have been delighted with this award winning film service that the economies made are now being passed on to you in the form of substantial price reductions You can now save up to 75 p on last year's prices For 36 successful Superprints you pay only $£ 295$ inc. VAT Compare this with last year's $£ 3.70$ and with the prices in the shops. Postage and packing is 30p extra as betore Here is the new price range-and remember, Superprints give you 30 per cent more picture area than standard prints at no extra charge
\(\left.\begin{array}{ll}No. of Superprints \& Price (inc VAT)

12 \cdot 15 \& £ 1.65

24 \& £ 2.20

36 \& £ 2.95\end{array}\right\}\)| PLUS P/P |
| :--- |
| |

RELLABILITY AND QUALITY

All our colour prints are made on Kodak Luxury Lustre paper Prints have square corners and are borderless to give you maximum picture area All prints are checked at every processing stage for accurate colour reproduction in a laboratory which is the winner of five recent successive Kodak Gold Awards for Quality No other processing laboratory has been able to match this record After allowing for postal and peak-period delays, you should normally expect your prints after seven to ten days.

ALL YOU HAVE TO DO

Send any make of colour print film together with your cheque or postal order inside the Freepost ϵ nvelope enclosed with this issue Or fill in the coupon below and send together with your film and remittance in a strong envelope to: Television Film Service, FREEPOST, Watford WD1 8FP Half-frame films are welcome, and these are charged at double the full-frame price

PERSONALISED SERVICE

Readers know we care for their prints. If you have any queries, contact our service's ten-line switchboard (01) 9539911

SPECIAL FILM OFFER

Films from the high-resolution emulsion 'ColorFast' range are available to all readers at highly competitive prices. And when you order three, you get another FREE

110/24, 126/24, 135/24 11.40 each OR 4 for price of $3-£ 4.20$. Konica disc $£ 1.60$ OR 4 for price of $3-£ 4.80$. $135 / 36$ £1.80 OR 4 for price of $3-£ 5.40$.

SPECIAL ALBUM OFFER

An attractive flip-type album, padded in black with gold embossing and holding 100 Supersize prints (in the shops $£ 5.75$) is offered to readers for only $£ 3.99 \mathrm{inc} . \mathrm{p} \& \mathrm{p}$ All prices are correct at the time of going to press and are for UK readers only

USE THIS LABEL IF YOU HAVE NO ENVELOPE, OR PASS TO A FRIEND.

To: Television Film Service, FREEPOST. Wattord WD1 8FP.
From: Television Film Service, FREEPOST, Watford WD1 8FP.
Name
*Print my enclosed film
*Rush me of 110/24 ___of $126 / 24$
of $135 / 24$ _of $135 / 36$ ___ of Disc/15 film
*Rush me alhum(S)
Approx sizes of Superprints
for whinch I enclose cheque/Po payable to Teievision
£
Address
| Film Service
LTVS
Post Code
$6^{\prime \prime} \times 4^{\prime \prime}(35 \mathrm{~mm}) 51 / /^{\prime \prime} \times 4^{\prime \prime}(110$,
Disc and 135 Half Frame) $4^{\prime \prime} \times 4^{\prime \prime}(126)$.

[^0]

Vol. 35, No. 8 Issue 416

COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, $£ 12$ overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 450$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERJES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

425 Leader

426 Teletopics
News, comment and developments.
428 TV Fault Finding
TV fault reports and servicing hints from Mick Dutton, Jim Rainey, Malcolm Burrell, Michael Pitt, Philip Blundell, Eng. Tech., Brian Renforth, Á. Davies and Geoff Fardon.

432 Servicing Notes on the Toshiba V9600
John Coombes
Mainly the mechanical problems that occur with this popular VCR.
433 Guide to Satellite TV Reception, Part 2
Hugh Cocks
An outline of the main features of the receiver unit, with notes on performance requirements.
435 Unscrambling Canal Plus
Sotires Elefthêriou
Europe's first pay-TV broadcast service started last
November. The signal scrambling system used has led to various successiul attempts at decoding.
438 Servicing the Hitachi NPBCQ Chassis
David Eotto
This very reliable chassis was used in a number of
Hitachi, GEC and Expert models. Some problems,
particularly on sets with remote control, can
nevertheless be difficult to deal with.
441 Book Review
"Servicing Personal Computers", recently published by Newnes Technical Books.
442 VHS VCR Audio/Control Heads
Derek Snetling
How to adjust and if necessary replace the audio/
control head assemblies used in VHS machines.
443 Sid's Secret Weapon
Les Lawry-Johns
Amongst other problems Les comes up against that
Ferguson colour portable with a thyristor line timebase.
446 Letters
447 Next Month in Television
448 Design of the FS Tube
Eugene Trundle
The design of the FS tube presented tricky engineering
problems. A loak at these difficulties and the advantages of the new tubes.
450 VCR Clinic
Fault reports from Philip Blundell, Eng. Tech., Steve
Beeching, T. Eng., Derek Snelling, Dewi Jamés, C. T. Marden and Michael J. Cousins,'T. Eng.
452 Long-distance Television
Roger Bunney
Reports on DX conditions and reception and news from abroad.
455 Service Bureau
456 Test Case 270
OUR NEXT ISSUE DATED JULY WILL
BE PUBLISHED ON JUNE 19

MANOR SUPPLIES

MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
\star Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.

* Additional video output for CCTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service. * Also available with VHF Modulator.

Price of Kit
£70.00
Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}$)
Optional Sound Module (6 MHz or 5.5 MHz)
Built\& Tested in Case including Sound Module
SPECIAL TEST

£105.00

PAL'COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.
\star In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P £2.20).
MK 4 (BATTERY) BUILT \& TESTED $£ 58.00+£ 2.20$ P \& P.
MK 4 (MAINS) BUILT \& TESTED $£ 68.00+£ 2.20$ P \& P.
VHF MODULATOR (CH 1 to 4) FOR OVERSEAS 55.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V.

GEC TELETEXT EXTERNAL ADAPTOR UNIT

Complete \& ready for use. Infra-red remote control $£ 130.00$ p.p. £3.00
TELETEXT EXTERNAL ADAPTOR KIT (Less case) with cable remote control $£ 120.00$ p.p. $£ 3.00$
THORN TX10, teletext
Mullard Decorder panel + Interface $£ 35.00$ p.p. $£ 1.80$
THORN TX10, PHILIPS G11 PRESTEL
Mullard Units VM 6230, 6330 plus Line Coupler \& Interface $\mathbf{8 6 0 . 0 0}$ p.p. $£ 2.50$

Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order). ADD VAT 15\%

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs, TRIPLERS, PANELS, TUNERS, SELECTORS ETC SPECIAL OFFER GEC-Hitachi 2055 Series Colour TV Chassis, New £38.00
S.p. CB .00 OFFER Philips, Pye KT3 Series infra-red remote control handsets ex rental (untested) Teletext or normal versions available $£ 2.50$ p.p. 80 p (5 for $£ 10$ p.p. $£ 1.50$).
THORN 9000 Fault Finding Guide 81.00 p.p. 30p.
SPECIAL OFFER NEW VALVES Branded makes $\quad £ 1.00$ p.p. £80p PCF80, PY88, PFL200, PCL84 FOUR for $£ 2.00$. PL504
THORN TX10 Facia Control Panel incl. Infra Red Remote Control receiver £7.50 p.p. $£ 1.50$
THORN TX10 Series Facia Control Panel with 8 position Channel Selector $£ 5.00$ P. P. $£ 1.50$
PHILIPS UHF Modulator (Audio \& Video Input) $\mathbf{£ 1 5 . 0 0}$ p.p. $£ 1.00$ SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$.
THORN TX9, TX10 Saw Filter IF Panel. 57.50 p.p. 80 p.
PAL DECODER KIT (Video to RGB) for Monitors £27.00 p.p. $£ 1.00$
PAL DECODER KIT (Video to RGB) for
TELETEXT DECODERS New \& Tested Mulard VM 6101 £30.00, Texas XM11 $£ 40.00$ p.p. $£ 1.60$
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $£ 2.50$ p.p. $£ 1.20$. 5 V Stab. Power Supply $£ \mathbf{3 . 8 0}$ p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be Modulator, Battery $£ 12.00 \mathrm{p} . \mathrm{p}$. 80p. Alum. Case $£ 2.55$, De Luxe Case $£ 6.80$ used for any set. 12.00 p.P.
p.p. £1.40.) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p.
Pip £1 40) ADDITIONAL GREY SCALE KIG Alum. Case $£ 2.55$. De Luxe Case $£ 7.40$ p.p. $£ 1.80$.
Alum Tester \& REACTIVATOR KIT For Colour \& Mono with Panel Meter Indicator - can be adapted for latest CRTs $£ 28.60$ p.p. $£ 2.80$.
Meter Indicator - can be adapted forlatest
BUSH A823 Convergence, Time Base Panels $£ 5.00$ each. p.p. $£ 1.80$.
BUSH Z718 BC6100) series IF Panel $£ 5.00$ p. p. 90 p .
BUSH 278 BC6100 senes I Pl Panel $\mathbf{1 5 . 0 0}$ p.p. 90 .
BUSH A816 IF Panei (Surplus) $£ 1.00$, 5 for 4.00 .
GEC 2040 Convergence Panels, Decoder Panels, $£ 1.50$ p.p. $£ 1.80$
GEC 2110 PANELS Frame $£ 8.50$ p.p. $£ 1.40$. Sound $£ 2.50$ p.p. 80 p
GEC 20AX Series Switch Mode Power Supply £5.00, IF-Decoder 112.50 p.p. ${ }^{\text {GEC }} 1.80$.
PYE 691-7 CDA Panels. Makers tested stock. $\mathbf{£ 6 . 0 0}$ p.p. $£ 1.45$.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors etc. $£ 5.00$ p.p. $£ 2.00$
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $£ 20.00$ p.p. $£ 2.80$ THORN TX 10 T.B. Panels salvaged ex factory. $£ 15.00 \mathrm{p} . \mathrm{p} . £ 3.00$.
THORN TX10 IF/Decoder Panels salvaged ex factory. $\mathbf{x 1 5 . 0 0}$ p.p. $£ 2$
THORN 300013500 Power supply P.C.B. $£ 3.50$ p.p. ± 1.00
THORN 8000/8500 IF/Decoder Panels salvaged $£ 3.20$ P.p. $£ 1.80$
THORN 9000 IF/Decoder Panels Salvaged. $\mathbf{E 5 . 0 0}$ p.p. $£ 1.60$.
THORN 9000 Series. Long panel facia unit incl. 6 Position Channel Selector \& Loudspeaker 66.00 p.p. $£ 2.00$
PHILIPS G8/G9 IF/Decoder Panels for small spares incl ICs $£ 2.50$ p.p. $£ 1.60$ G11 PANELS, Ex Rental SCAN (incl LOPT) $£ 28.00$ p.p. $£ 2.50$.
G11 PANEIS, Power, Frame, 1F, Decoder, $\mathbf{1 8 . 0 0}$ each. p.p. $£ 2.00$
GRUNDIG 8630 Series Varicap Tuners $£ 5.00$ p.p. $£ 1.00$.
GARICAP. ELC1043/5 57.80 p.p. 80 p. Makers Controls PYE CT200 4PSN VARICAP. ELCISN 14.80, DECCA 4 PSN $£ 5.80,6 \mathrm{PSN}$ £6.80 p.p. 80p. etc. BUSH "TOUCH TUNE" Varicap Control Z179, Z718 types \&.3.80 p.p. 95p. VARICAP UHF-VHF ELC2000S $£ 9.80$, BUSH 87.80 p.p. 90 p.
VARICAP VHF PHLLIPS, E6.90. ELC 1042 £7.90 p.p. 80p.
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 position $£ 2.50$, JAP Rotary $£ 4.80$ p.p. $£ 1.80$.
TV SOU'ND IF Panels $£ 6.80$ p.p. $£ 1.00$
LOPT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins 80p.
BUSH 161 to 186 (twin panel)
(
BUSH, MURPHY A816 series......
FERG., HMV, MARCON, ULTRA
THORN $1600,1615,1690,1691$
GEC 2000 to 2038 series
GEC series 1 \& 2 .
NDESTT 2024EGB
TT/KB VC200, 300
MURPHY 1910102414 (twin pane)
PHILIPS 170,210, 300 series.
PYE, $\mathbf{N V I C T A}$, EECCD, FERR.
$368,169,569,769$ serie
OECCA 2024,170020002401
GEC 2114///unior Fincline
PHILIPS 320
KB VC ELEVEN (003) …........................ $\mathbf{£ 2 0}$
KBVC1.
KB VC1 $£ 2$.
THORN 9000to 9600
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 8000 (2 lead) EHT Tray $£ 2.80$ p.p. 80 p.
TRANSDUCTORS suitable for G8, A823, Bradford etc. $£ 1.50$ p.p. 60 p.
6.3 V CRT Boost Transformers for Colour \& Mono $£ 5.40$ p.p. £1.20.

THORN TX10 focus control $88.80 \mathrm{p} . \mathrm{P}$. 80 p .
CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE
Telephone 01-794 8751, 7947346
MANOR SUPPLIES
172 WEST END LANE, LONDON, N.W.6. NEAR: W. Hampstoad Tube Str. (Jubilee) Buses 28, 198, C11 pess door W. Hampstaad British Rail Stens. (Richmond, Broad Se) (St' Pancras, Bedford)
W. Hampstead (Brit. Rail) access from all over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11.
PLEASE ADD VAT 15\% TO ALL PRICES
G8 $550 \quad 22^{\prime \prime} \quad £ 20.00$ALL SETS HAVE FIRST CLASS CABINETS

G11 TUBES TESTED $£ 20.00$ A56-120 REGUNNED TUBES $\mathbf{£ 1 5 . 0 0}$

HOT LINE BIRMINGHAM
021-622 1023 021-622 1517
48/52 PERSHORE STREET, BIRMINGHAM B5 4RR

HOT LINE LONDON 01-807 4090 01-884 1314
CEDAR HOUSE, NOBEL ROAD, ELEY ESTATE, EDMONTON, LONDON

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADD 750 per order $P+P$ Goods are despatched on the day we receive your (U.K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try cable, service airds, degaus. to iniorm you as quickly as possible. We try our best coils please allow E. 30 P+P to give a speedy, fair and enicient service. V.A.T. cost. First Class Mail is used service. Please ask if what you need is not listed - we thenever possible. Add 15% will toy to help. Prices are subiect to change without at total except where it notice.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SEMICONDUCTORS} \& \multirow[b]{2}{*}{BF355} \& \multirow[b]{3}{*}{\(\begin{array}{ll}0 T 121 \& 1.91 \\ \text { R2008B } \& 1.90\end{array}\)} \& \multicolumn{2}{|l|}{INTEGRATED CIRCUITS} \& \multirow[t]{2}{*}{\[
\text { TCA910 } \quad 2.20
\]} \& \multirow[b]{3}{*}{UPC1197C 1.06 UPC1198C} \& OIOOES \\
\hline AC107 35 \& BC558 \& \& \& AN2140 3.91 \& SN76131N \(\quad 2.00\) \& \& \& AA119 \\
\hline AC126 30 \& BCY72 \& BF362 68 \& \& AN240 3.84 \& SN762260N 2.00 \& TCA940 \(\quad 1.95\) \& \& BA102 17 \\
\hline AC127 32 \& BD115 45 \& BF363 72 \& R20108 1.92 \& AN318 \(\quad 3.98\) \& SN76227N \(\quad 1.18\) \& TDA440 2.20 \& UPC1200V 1.18 \& BA115 13 \\
\hline AC128 32 \& BD116A 65 \& BF371 30 \& \begin{tabular}{ll}
R2265 \\
\hline 1.50
\end{tabular} \& AN262 2.45 \& SN76533N \(\quad 1.70\) \& TDA1002 \(\quad 1.95\) \& UPC1211V 2.70 \& BA145 17 \\
\hline AC128K 40 \& B0124P 79 \& BF392 35 \& R2322 62 \& AN301 \(\quad 5.15\) \& SN76033N \(\quad 2.49\) \& TDA1003A 5.50 \& UPC1212V 1.34 \& BA148 17 \\
\hline AC141K \(\quad 39\) \& BD131 50 \& BF422 34 \& R2323 67 \& AN7150 \(\quad 3.97\) \& SN76544N 2.35 \& DA1004A \({ }^{\text {d }}\) \& UPC1215V 1.66 \& \({ }^{\text {BA154 }}\) \\
\hline AC142K 38 \& 80132 \& BF423 46 \& R2461 1.50 \& AN6340 \(\quad 7.85\) \& SN76650N 1.05 \& IDA1006A \(\quad 2.50\) \& UPC1216V 1.20 \& 8A155 14 \\
\hline AC176 35 \& 80133 60 \& BF435 35 \& R2540 2.80 \& AN6341N \(\quad 5.10\) \& SN76660N 80 \& \begin{tabular}{ll}
TDA1005 \\
TA1010 \& 3.60 \\
\hline 154 \\
\hline 150
\end{tabular} \& UPC1217G 1.13 \& 8 BA156 15 \\
\hline AC176K \(\quad 35\) \& BD135 38 \& BF457 35 \& RC4558 \(\quad 2.20\) \& AN6344 \(\quad 7.85\) \& SN76666N 80 \& TDA1035 \(\quad 4.70\) \& UPC1223C \(\quad 2.80\) \& \begin{tabular}{rr}
BA317 \\
\(\operatorname{BAX13}\) \& 26 \\
\hline 1
\end{tabular} \\
\hline AC186 \(\quad 41\) \& BD136 38 \& BF458 43 \& RCA16334 90 \& BA521 2.80 \& SN76530A 1.47 \& TDA1037 2.95 \& UPC1225H \(\quad 2.00\) \& BAX16 \\
\hline AC187 \(\quad 38\) \& 8 B137 38 \& BF459 43 \& RCA16029 99 \& BA536 \(\quad 3.00\) \& \(\begin{array}{ll}\text { STK015 } \& 6.25\end{array}\) \& TDA1044 4.37 \& UPC1226C \(\quad 1.50\) \& BB1058 30 \\
\hline AC187K \(\quad 38\) \& BD138 \(\quad 35\) \& BF460 \(=\) BF462 86 \& RCA16039 99 \& CA555 40 \& STK032 \& DA1060A 4.44 \& UPC122N 1.20 \& BB105G \(\quad 30\) \\
\hline AC188 35 \& BD139 35 \& BF469 46 \& RCA16092 99 \& CA556 \({ }^{\text {a }}\) \& STK078 \& TDA1062 \(\quad 1.56\) \& UPC1228H 54 \& BY126 12 \\
\hline AC188K \(\quad 39\) \& BD140 \& BF470 66 \& RCA16040 96 \& CA741 25 \& STK043 11.05 \& TDA1083 1.68 \& UPC1230H 3.95 \& BY127 11 \\
\hline AD143 62 \& \({ }^{8 D 144} 1.70\) \& BF597 10 \& RCA16041 84 \& CA748 \& STK433 \& IDA1170S 3.00 \& UPC1238V 1.16 \& BY133 15 \\
\hline AD161 54 \& \begin{tabular}{ll}
\(8 D 150\) \\
RD159 \& 60 \\
\hline
\end{tabular} \& BF757 \& RCA16334 90 \& CA3065 \(\begin{array}{ll}\text { Ca }\end{array}\) \& \(\begin{array}{ll}\text { STK435 } \& 9.06 \\ \text { STK436 }\end{array}\) \& TDA1190 3.50 \& UPC1245V 1.35 \& BY164 45 \\
\hline \begin{tabular}{lrr}
AD162 \\
AD161/62 MP \& \\
\hline 1.15 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
BD159 \& 65 \\
BD166 \& 5 \\
\hline 85
\end{tabular} \& BF758
BF7 \& RCA16335 \& \(\begin{array}{ll}\text { HA1151 } \& 3.89\end{array}\) \& \begin{tabular}{ll}
STK436 \& 5.50 \\
SIK437 \& \\
\hline 185
\end{tabular} \& TDA1180 2.91 \& UPC1350C 4.15 \& BY176 85 \\
\hline \begin{tabular}{ll}
AD161/62 MP \\
AF106 \& 1.15 \\
\hline 19
\end{tabular} \& BD166
BD179 \& BFR39 \& RCA16957 2.88 \& \(\begin{array}{ll}\text { HA1532 } \& 3.65 \\ \text { HA1322 }\end{array}\) \& \begin{tabular}{ll}
SIK437 \& 7.85 \\
STK439 \& 6.62 \\
\hline
\end{tabular} \& DDA1200 \(\quad 2.95\) \& UPC1353C 1.92 \& BY179 63 \\
\hline AF114 89 \& \begin{tabular}{ll}
BD182 \\
\hline
\end{tabular} \& BFR40 \(\quad 30\) \& ticas 90 \& HA1342 2.49 \& \begin{tabular}{ll}
STK459 \\
\hline 8.20
\end{tabular} \& TDA1220A 2.12 \& UPC1365C 6.38 \& BY182 87 \\
\hline AF118 1.20 \& BD183 75 \& BFR79 85 \& TIC46 60 \& HA1306N 2.60 \& STK441 8 \& [DA1270 \({ }^{\text {DA1327 }}\) \& \({ }^{\text {UPC135136C2 }}\) \& BY184 \\
\hline AF121 75 \& BD201 85 \& BFR90 1.74 \& Tll32 65 \& HA1366WR 2.80 \& STK \(461=465 \quad 9.60\) \& \(\begin{array}{ll}\text { DA1352B } \& 1.60\end{array}\) \& UPC1378H \(\quad 2.70\) \& \begin{tabular}{ll}
BY \& \\
\\
\hline
\end{tabular} \\
\hline AF124 48 \& BD202 91 \& BFT42 39 \& TIL78 48 \& HA1392 3.95 \& STK463 14.30 \& TDA1412 \& UPC1358H \({ }^{1.88}\) \& BY210,600 28 \\
\hline AF125 46 \& BD203 80 \& BFT43 39 \& TIP29C 43 \& HA11219 2.49 \& SW153 2.74 \& TDA1415 \(\quad 1.40\) \& UPC1360C \(\quad 2.20\) \& BY2101800 33 \\
\hline AF126 46 \& BD204 99 \& BFW10 60 \& TIP30A 47 \& HA11244 1.98 \& TA7050p \& DA1470 4.67 \& UPC1363C 2.16 \& BY223 90 \\
\hline AF127
AF139 \& \begin{tabular}{ll}
BD222 \& 46 \\
\\
\hline 1223
\end{tabular} \& BFX29 40 \& IIP30C 43 \& LA4031P \(\quad 3.21\) \& TA7051P \& DDA1770 5 \& UPC1366C 1.84 \& BY227 28 \\
\hline \& B0223 \& BFX84 42 \& TIP31C 55 \& LA4032P \(\quad 2.90\) \& TA7063P 2.20 \& TDA2002 2.80 \& UPC1368H2 2.15 \& BY298 22 \\
\hline \(\begin{array}{ll}\text { AF178 } \\ \text { AF239 } \& 1.54 \\ \text { A }\end{array}\) \& BD225 4 \& BFX85 30 \& TiP32C 42 \& LA4102 3.37 \& TA71089 \& TDA2003 \(\quad 1.20\) \& UPC1370C2 \(\quad 2.58\) \& BY299 22 \\
\hline \begin{tabular}{ll}
AFL39 \& 1.90 \\
AL102 \& 4.90 \\
\hline
\end{tabular} \& \(\begin{array}{ll}80232 \& 68 \\ B D 233 \& 60\end{array}\) \& BFX86 \(\quad 30\) \& TIP33B \(\quad 75\) \& LA4400 3.05 \& \(\begin{array}{ll}\text { TA7120P } \& 3.43\end{array}\) \& TDA2004 2.52 \& UPC1382C 1.08 \& \(8 \times 10\) \\
\hline AU106 \(\quad 2.50\) \& B0234 63 \& BFX88 \& TIP34B 1.06 \& LA4422 3.28 \& TA7129AP 3.76 \& DAAO20 200 \& UPC1447 \({ }^{\text {a }}\) \& BYX \(36 / 10\) \\
\hline \(\begin{array}{ll}\text { AU113 } \& 5.20\end{array}\) \& B0235 60 \& Y50 30 \& TIP41C \& LC7130 \(\quad 5.93\) \& TA7130P 1.93 \& TDA2140 \({ }^{\text {D }}\) \& UPCCA1C \& \begin{tabular}{l}
BYX 551600 \\
\(8 Y\) \\
\hline \(1 / 600\) \\
\hline 90
\end{tabular} \\
\hline BC107 20 \& BD236 65 \& BFY51 \& TIP42C 50 \& LC7120 5.87 \& TA7146P \(\quad 4.67\) \& TDA2150 \(\quad 2.22\) \& UPC5743 \& \({ }_{\text {DY224 }} \quad 2.00\) \\
\hline BC108 \& BD237 5 \& BFY52 24 \& TIP47 70 \& LC7137 5.50 \& TA7193P 5.85 \& TDA2020 \(\quad 4.66\) \& UPC577H 2.46 \& \(0 \mathrm{A47}\) - \\
\hline BC109 20 \& BD238 65 \& BFY90 \& TIP120 65 \& LM1011 3.25 \& TA7171P 1.85 \& TDA2030 \(\quad 2.80\) \& UPC585C 1.28 \& OA90 10 \\
\hline BC114 \& \begin{tabular}{l}
B2243 \\
\hline 85
\end{tabular} \& \begin{tabular}{ll}
BR100 \& 34 \\
\hline 15101
\end{tabular} \& TiP2955 90 \& LM1340T 75 \& TA7172P 1.85 \& IDA2522 \(\quad 2.40\) \& TDA 1011 \& OA91 10 \\
\hline \begin{tabular}{ll}
BC115 \& 17 \\
BC16A \& 16 \\
\hline
\end{tabular} \& BD244 \& BR101 45 \& TIP3055 63 \& MB3712 1.95 \& TA7173P 1.85 \& TDA2523 \(\quad 3.40\) \& 1144112 \& OA95 6 \\
\hline \begin{tabular}{ll}
BC116A \& 16 \\
BC117 \& 30 \\
\hline
\end{tabular} \& BD410 79 \& BR103 83 \& TIS91 21 \& MC1307 1.99 \& TA7176P 2.50 \& TDA2524 \(\quad 2.25\) \& TAA570 3.98 \& OA202 11 \\
\hline \begin{tabular}{ll}
BC117 \& 30 \\
BC118 \& 34 \\
\hline \(8 C 19\)
\end{tabular} \& \begin{tabular}{ll}
BD434 \& 74 \\
BD437 \& 86 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { BR303 } \& 1.46\end{array}\) \& TU106/02 1.80 \& MC1310P \(\quad 1.60\) \& \(\begin{array}{ll}\text { TA7202P } \& 4.7 \\ \text { TA7204P } \& 3.7\end{array}\) \& TAA2525 4.00 \& \& in914 4 \\
\hline \(\begin{array}{ll}\text { BC119 } \& 36 \\ \text { BC19 }\end{array}\) \& \({ }^{\text {BDD438 }}\) \& \begin{tabular}{ll}
BRC4443 \& 94 \\
\\
\hline 8 CP 4444
\end{tabular} \& 2 2N696 \& MC1327 1.70 \& TA7205AP 3.72 \& \begin{tabular}{ll}
TDA2530 \& 2.70 \\
TDA253 \& 2.56 \\
\hline
\end{tabular} \& While stocks last \& \(\begin{array}{ll}\text { in } 4001 \\ \text { in } 4002 \& 4 \\ 4\end{array}\) \\
\hline BC139 28 \& BD507 5 \& \begin{tabular}{ll}
BRC4444 \& 98 \\
BRY39 \& 56 \\
\hline
\end{tabular} \& \(\begin{array}{ll}2 \text { 2N918 } \& 82 \\ \text { 2N2904 } \& 51\end{array}\) \& \(\begin{array}{ll}\text { MC1351P } \& \\ \text { MC134 }\end{array}\) \& TA7208P \(\quad 3.40\) \& TDA2540 3.3 \& \& IN4002
IN4003 \\
\hline BC140 \& 80508 \& \(\begin{array}{ll}\text { BRY39 } \& 56 \\ \text { BRY55 } \& 45\end{array}\) \& 2N2905 \& \(\begin{array}{ll}\text { MC1349 } \& 1.99 \\ \text { MC1350 } \& 1.50\end{array}\) \& TA7210P 6.60 \& TDA2541 3.84 \& \& IN4004 5 \\
\hline \begin{tabular}{ll}
BC141 \\
BC142 \& 36 \\
\hline 00
\end{tabular} \& \(\begin{array}{ll}80509 \& 56 \\ 80510 \& 60\end{array}\) \& BRYY56
BRY6 \& 2N3054 60 \& \(\begin{array}{ll}\text { MC1352 } \& 1.75\end{array}\) \& \begin{tabular}{ll}
TA7222 \& \\
TA723P \& \\
\hline
\end{tabular} \& TDA2560 \(\quad 3.50\) \& \& IN4005 5 \\
\hline BC143 31 \& BD278A 81 \& BSR59 \(\quad 1.80\) \& 2N3055 60 \& \(\begin{array}{ll}\text { MC1358P } \& 1.50\end{array}\) \& \(\begin{array}{ll}\text { TA7227P } \& 5.98\end{array}\) \& TDA2571 2.5 \& \& IN4006 \\
\hline BC147 \(\quad 13\) \& BD517 60 \& BSV57B 89 \& 2N3702 11 \& MC1495L 3.00 \& TA7228P 5 \& TDA2576A 3.75 \& \& iN4007 \\
\hline BC148 9 \& BD520 7 \& \(\begin{array}{ll}\text { BT100 } \& 1.65\end{array}\) \& 2N3703 10 \& MC140118CP 66 \& TA7310p 2.78 \& TDA2577 4.50 \& \& in4448 \\
\hline BC149 \& BD535 82 \& BT101 1.20 \& \({ }^{2 N 3705} 10\) \& MC14049UB \({ }^{43}\) \& TA7609P 4.39 \& TDA2581 3.30 \& \& INS401 12 \\
\hline \begin{tabular}{ll}
BC 157 \& 16 \\
\hline 8
\end{tabular} \& \({ }^{\text {BD5 36 }}\) \& \(\begin{array}{ll}\text { BT1022500 } \& 1.20\end{array}\) \& 2 N 3706 Cl \& \(\begin{array}{ll}\text { MC7742 } \& 1.35\end{array}\) \& TA7611AP \(\quad 2.92\) \& IDA2582 \(\quad 2.60\) \& \& IN5402 14 \\
\hline BC158 \& BD696A \(\quad 1.49\) \& \begin{tabular}{ll}
BT106 \& 1.60 \\
\\
\hline 10
\end{tabular} \& 2N3708 \& \(\begin{array}{ll}\text { MC7812 } \& 1.35\end{array}\) \& TAA310 \(\quad 2.83\) \& IDA2590 3.25 \& \& IN5403 12 \\
\hline \begin{tabular}{ll}
8C159 \\
\hline 8 C 160 \& 15 \\
\hline 82
\end{tabular} \& \(\begin{array}{ll}80697 \& 1.24 \\ 80695 \& 1.39\end{array}\) \& \begin{tabular}{ll}
BT108 \& 1.69 \\
BT109 \& \\
\hline 199
\end{tabular} \& 2N5294
2N5296 \& \(\begin{array}{ll}\text { ML231 } \\ \text { ETTR6016 } \& \mathbf{2 . 2 0}\end{array}\) \& \(\begin{array}{ll}\text { TAA320 } \& 2.00 \\ \text { TAA550 } \& 55\end{array}\) \& TDA2591 \(\quad 2.95\) \& COMPUTER \& IN5404 12 \\
\hline BC161 28 \& \begin{tabular}{ll}
80698 \& 1.50 \\
\hline 807
\end{tabular} \& \begin{tabular}{ll}
BT116 \& 1.21 \\
\hline
\end{tabular} \& 2N5298 69 \& ML 232 L 2.20 \& TAA630 3.90 \& \begin{tabular}{ll}
DA2593 \& 2.95 \\
\hline TDA2600 \& 5.30 \\
\hline
\end{tabular} \& SPARES \& IN5405 \\
\hline BC170B \(\quad 15\) \& BD707 95 \& BT119 3.66 \& \(2 \mathrm{SB337}\) 1.86 \& ML236 \(\quad 5.35\) \& TAAB400S 1.1 .96 \& TDA2610 \({ }^{\text {P3,20 }}\) \& PLEASE ASK FOR \& IN5407 \\
\hline BC171 \& \(\begin{array}{ll}\text { BD } \& 3 \\ \\ \\ \end{array}\) \& \({ }^{\text {BT120 }}\) \& 2 N 5496 \& ML237 \(\quad 2.50\) \& TAA661B 1.20 \& IDA2611A \(\quad 1.95\) \& TEEMS WHICH ARE \& in5408 20 \\
\hline BC172 \& BF115 \& \begin{tabular}{ll}
BT151/800 \& 1.20 \\
\hline
\end{tabular} \& 2 2N6107 75 \& ML238 6.60 \& TBA120A \({ }^{80}\) \& DDA2640 \(\quad 2.92\) \& NOT LISTED \& \(\Pi\) T12002 \(=\) BAX16 \\
\hline \begin{tabular}{ll}
BC173 \\
\hline 8 C 174 \& 12 \\
\hline 10
\end{tabular} \& BF117 36 \& BU104 2.00 \& \(2 \mathrm{N6109}\) - 81 \& ML239 \(\quad 2.50\) \& (A), (S), (AS), (SA). \& TDA2652 \(\quad 7.31\) \& \(2764 \quad 7.50\) \& Y969-Disc. \\
\hline \begin{tabular}{ll}
BC174 \& 10 \\
BC177 \& \\
\hline 10
\end{tabular} \& \begin{tabular}{ll}
BF125 \& \\
BF127 \& \\
\hline
\end{tabular} \& \begin{tabular}{ll}
BU105 \& 1.58 \\
BU108 \& 1.80 \\
\hline 1.8
\end{tabular} \& \(\begin{array}{ll}\text { 2SA715 } \& 1.98 \\ \text { 2SC495 } \& 1.10\end{array}\) \& \(\begin{array}{ll}\text { ML920 } \& 4.12 \\ \text { ML922 } \& 3.29\end{array}\) \& \begin{tabular}{lr}
TBA120B \& 1.3 \\
TBA120SB \& 1.30 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
DA2563 \& 5.90 \\
\hline DA2680 \& 3.40
\end{tabular} \& \(\begin{array}{ll}\text { 2116-2 } \& 3.40\end{array}\) \& REP BZX85 30 V \\
\hline BC178 \& BF154 23 \& BU124 1.90 \& \(\begin{array}{ll}\text { 2SC496 } \& 1.31\end{array}\) \& \(\begin{array}{ll}\text { ML928 } \& 2.18\end{array}\) \& TBA120T 9 \& \begin{tabular}{ll}
DAP2680 \\
DA 2690 \\
\hline 1.35
\end{tabular} \& 4532 3 3.00 \& \\
\hline BC182L 9 \& BF158 \& BU126 1.75 \& \(\begin{array}{ll}\text { 2SC643A } \& 1.50\end{array}\) \& MM5387ANN 4.15 \& TBA120U 1.10 \& \begin{tabular}{ll}
TDA3190 \& 2.35 \\
\hline 2.00
\end{tabular} \& \(280 \mathrm{CPU} \quad 3.53\) \& \\
\hline BC183L 12 \& BF160 27 \& BU204 1.50 \& \(\begin{array}{ll}\text { 2SC1096 } \& 1.72 \\ \\ 2 S C 172 \%\end{array}\) \& MPF475 \(\quad 2.50\) \& \(\begin{array}{ll}\text { TBA395 } \& 1.20\end{array}\) \& TDA3500 6.90 \& \(\begin{array}{ll}\text { ITX } 213 \& 17 \\ \text { TX } 313 \& 17\end{array}\) \& \\
\hline BC184L \(\quad 14\) \& BF167 24 \& BU205 1.42 \& \(\begin{array}{ll}\text { 2SC1172Y } \\ \\ 2 \mathrm{SC1172Y} \& 2.20\end{array}\) \& MRF477 10.00 \& TBA396 \({ }^{\text {P60 }}\) \& TDA3560 6.00 \& \& \\
\hline BC186 \& BF173
PF177 \& \(\begin{array}{ll}\text { BU206 } \& 1.80 \\ \text { BU208 }\end{array}\) \& 2SC1173Y

SC1306 \& MSN5807 7.87 \& TBA440N 2.75 \& DDA3561 6.50 \& \& SKE 4F 51.09

\hline | BC187 | |
| :--- | :--- |
| BC204 | 25 |
| 10 | | \& | BF 177 | |
| ---: | ---: |
| BF 178 | 52 |
| 189 | | \& | BU208 | 1.60 |
| :--- | :--- |
| BU208A | 1.65 | \& $\begin{array}{ll}\text { 2SC1306 } & 2.73 \\ 2 S C 1307 & 3.00\end{array}$ \& | MS1513L | $\mathbf{2 . 8 9}$ |
| :--- | :--- |
| MS1515L | 3.28 |
| SAA | | \& (TBA1441)

TBA40P \& \& ALSO SEE \& | SKE 5 F | $\$ 1.19$ |
| :--- | :--- |
| Y 723 | $\$ 1.30$ |

\hline BC208 $\quad 13$ \& BF179 28 \& $\begin{array}{ll}\text { BU2080 } & 2.20\end{array}$ \& 2SC1449 1.67 \& SAA1025 4.40 \& TBAA800 $\quad 1.50$ \& TDA4420 4.22 \& 74LS RANGE \& Y827 $\quad \mathbf{8 7 . 4 2}$

\hline BC209 10 \& BF180 39 \& = BU8800 \& ${ }_{2 S C 1520}^{68}$ \& SAA1124 2.50 \& TBA510 3.00 \& DDA4600 $\quad 2.95$ \& \&

\hline $\begin{array}{lr}\mathrm{BC} 212 \\ \mathrm{BC212L} & 9 \\ \\ \mathrm{CC}\end{array}$ \& BF181 $\quad 39$ \& BU208802 2.10 \& $2 \mathrm{SC1678}$ \& SAA1250 $\quad 3.94$ \& TBA520) ${ }^{\text {P }}$ (1.68 \& DA9503 2.50 \& \&

\hline | $\mathrm{BC212L}$ | 13 |
| :--- | :--- |
| BC 213 | 13 | \& | BF182 | |
| :--- | :--- |
| BF183 | 36 |
| | | \& | BU326A | 1.75 |
| :--- | :--- |
| BU407 | 1.70 |
| 104 | | \& $\begin{array}{ll}\text { 2SC1909 } & 2.90 \\ \text { 2SC1953 } & 1.44\end{array}$ \& $\begin{array}{ll}\text { SAA1251 } & 4.90 \\ \text { SAA5000 } & 4.39\end{array}$ \& $\begin{array}{ll}\text { 1BA530(0) } & 1.38 \\ \text { TBA540 } & 1.68\end{array}$ \& TEA1002 3.50 \& We will ty to \& ZENER

OLOOES

\hline BC214 10 \& BF184 36 \& BU426 3.07 \& 2SC2028 1.82 \& SAA5010 $\quad 6.30$ \& TBA5600 1.59 \& | EA1009 | 1.37 |
| :--- | :--- |
| UPC554 | 1.34 | \& supply the \&

\hline BC237 14 \& BF185 36 \& BU500 $\quad 2.30$ \& 2SC2029 2.60 \& SAA5012 6.50 \& TBA570 $\quad 1.79$ \& | UPC566 H | 2.95 |
| :--- | :--- | \& original part \& B2X61

B2061 Range
20

\hline BC238 $\quad 14$ \& BF 194/394 $\quad 16$ \& BU526 $\quad 2.46$ \& 2SC2078 $\quad 2.90$ \& SAA5020 5.90 \& TBA690 $\quad 1.50$ \& UPC575C2 3.40 \& when we can. \& $$
(1.3 \mathrm{~W})
$$

\hline $\mathrm{BC251A}$
BC 252 \& BF195
BF196 \& $\begin{array}{ll}\text { BU508 } & 3.20 \\ \text { BU806 } & 1.40\end{array}$ \& $\begin{array}{ll}\text { 2SC2091 } & 1.34 \\ \text { 2SC2166 } & 2.73\end{array}$ \& $\begin{array}{ll}\text { SAA5030 } & 8.25 \\ \text { SAA5050 } & 8.50\end{array}$ \& $\begin{array}{ll}\text { TBA641BX1 } & 3.50 \\ \text { TBA673 } & 2.45\end{array}$ \& UPC576 1.1 .90 \& Under certain \& 88×79 Range

\hline $\begin{array}{ll}\text { BC252 } & 12 \\ \text { BC261 } & 18 \\ \text { CR20 }\end{array}$ \& $\begin{array}{ll}\mathrm{BF} 196 & 16 \\ \text { BF197 } & 16\end{array}$ \& | BU806 | 1.40 |
| :--- | :--- |
| BU807 | 2.94 |
| 1 | | \& | 2SC2166 | |
| :--- | :--- |
| DEC1 | 2.73 |
| 2.20 | | \& $\begin{array}{ll}\text { SAA5050 } & 8.50 \\ \text { SAA3210 } & 2.93\end{array}$ \& $\begin{array}{ll}\text { IBA673 } & \mathbf{2 . 4 5} \\ \text { TBA700 } & \mathbf{2 . 1 2}\end{array}$ \& $\begin{array}{ll}\text { UPC587C2 } & 1.60 \\ \text { UPC1025 }\end{array}$ \& cumstances \& (400mV)

\hline BC262 18 \& BF198 18 \& BUWB4 $\quad 1.45$ \& | DEC2 | 2.20 |
| :--- | :--- | \& SAS560S 1.89 \& IBA720 $\quad 2.64$ \& | UPC1025 | 2.95 |
| :--- | :--- |
| UPC1028H | 2.52 | \& we may have to \& BZY88 Rang (400 mV)

\hline BC300 50 \& BF199 21 \& BUW91A 3.84 \& THY15/80 2.20 \& SAS570S $\quad 1.89$ \& TBA750 $\quad 2.98$ \& UPC $1032 \mathrm{H} \quad 64$ \& \& BZY93, 901.18

\hline BC301 53 \& BF200 35 \& $\begin{array}{ll}\text { BUX84 } & 1.50 \\ \text { E122 }\end{array}$ \& $\begin{array}{ll}\text { THY15/85 } & 2.20 \\ \text { RUW81A }\end{array}$ \& SAS660 \& TBAB00 $\quad 1.62$ \& UPC1042C 1.56 \& equivalent. \& (18V)

\hline $\begin{array}{ll}\text { BC303 } \\ \text { BC307 } & 33 \\ \text { c-30 }\end{array}$ \& BF224 \& | E1222 | |
| :--- | :--- |
| MCR101 | 40 | \& $\begin{array}{ll}\text { BUW81A } & 3.8 \\ \text { T6006V } & 1.50\end{array}$ \& $\begin{array}{ll}\text { SAS670 } & 3.25 \\ \text { SAS580 } & 2.90\end{array}$ \& | TBAB10AS | 1.10 |
| :--- | :--- |
| TBAB20 | |
| 1.70 | | \& UPC1156H 4.26 \& \&

\hline | BC308 |
| :--- |
| 15 | \& BF241 25 \& MCA220 1.50 \& T6021V 9 \& SAS590 $\quad 2.90$ \& TBAB2OM 1.25 \& \& \&

\hline BC323 99 \& BF256 5 \& ME0411 20 \& T6022V 1.80 \& SL9018 $\quad 5.50$ \& TBAB90 3.94 \& UPC1167C2 94 \& \&

\hline BC327 18 \& BF257 28 \& MJE340 68 \& T6026V 90 \& SL9178 $\quad 6.50$ \& TBA920(Q) $\quad 3.00$ \& UPC1168C $\quad 1.28$ \& \&

\hline $\begin{array}{ll}\text { BC328 } & 18 \\ \mathrm{BC} 337\end{array}$ \& BF258 - 25 \& MJJ5520 50 \& T6027N 63 \& SL1310 1.80 \& TBA950(2X) 3.25 \& UPC1176C 1.46 \& CHRISTINE \& EQUEST

\hline | BC337 | |
| :--- | :--- |
| RC338 | 18 |
| 18 | | \& BF259 35 \& MJ3000 1.98 \& T6028V $\quad 66$ \& SL13270 1.20 \& TBA970 4.09 \& UPC1177H $\quad 1.56$ \& \&

\hline | BC338 | 18 |
| :--- | :--- |
| BC 461 | 30 |
| Cl | | \& BF262

8 F 263 \& $\begin{array}{ll}\text { MPSA92 } & 35 \\ \text { MR814 } & 45\end{array}$ \& $\begin{array}{ll}\text { T6029V } & 2.50 \\ \text { T6034V } & 81\end{array}$ \& $\begin{array}{ll}\text { SL1430 } & 1.25 \\ \text { SL1432 } & 3.36\end{array}$ \& $\begin{array}{ll}\text { IBA990 } & \\ \text { TBA14406 } & \text { 2.90 }\end{array}$ \& UPC1178C 1.28 \& THAT ALL \& NQUIRIES

\hline | BC547 | 13 |
| :--- | :--- |
| 8 | | \& BF271 24 \& MR854 $\quad 55$ \& T6036V 90 \& SL76544 2.05 \& TCA160 2.50 \& $\begin{array}{ll}\text { UPP1180C } & 1.84 \\ \text { UPC1181H } \\ 1.62\end{array}$ \& MUST BE A \& CCOMPANIED

\hline BC548 ${ }^{13}$ \& BF273 24 \& MR475 $\quad 2.46$ \& T9002V 1.12 \& SN76003N 2.4 \& TCA760 $\quad 2.30$ \& UPC1182H $\quad 2.95$ \& Y \& RTICULARLY

\hline ${ }_{8 C \times 32}=8 C 63739$ \& BF274 24 \& MR479 2.60 \& T9003V 60 \& =SN76013N
SN76023N \& TCA270SO 2.50 \& UPC1183H $\quad 1.38$ \& \&

\hline ${ }_{8}^{8} 5550$ \& BF336

B 337 \& $\begin{array}{ll}\text { ON447 } \\ \text { ON448 } & 99\end{array}$ \& kit ${ }_{\text {kit }}$ T066, 103. \& SN76110N $\quad 1.15$ \& TCAB30 3 \& | UPC1185H | |
| :--- | :--- |
| UPC1188H | |
| | 3.60 |
| 2.20 | | \& QuiRI \&

\hline BC557 \& BF338 41 \& OT112 1.91 \& TO220AB 30 \& SN76115N 2.27 \& TCAS00 2.20 \& UPC1190G ${ }^{\text {U }} 1.20$ \& VERSEAS. \&

\hline \multicolumn{4}{|c|}{SONY REPLACEMENT PARTS} \& \multicolumn{5}{|l|}{\multirow[t]{9}{*}{}}

\hline TL494CN \& 84.70 \& \multicolumn{2}{|l|}{\multirow[t]{8}{*}{| Idler assembly SL3000, C5 \& C7 |
| :--- |
| Power switch KV1810/20/22 \& KV2000 |
| Push button switch 2060/1400 |
| Power switch KV2704/2020/2022 |
| Slide switch REC |
| Slide switch REC/PLAYBACK |
| Push switch KV2020/2066 |
| limer lid C5 \& C7 |
| Motor DC BHF-110D C5, C7, SL3000 |}} \& \& \& \& \&

\hline SG6533 \& \$12.36 \& \& \& \& \& \& \&

\hline Forward Bett C5, C7 \& 23 p \& \& \& \& \& \& \&

\hline Capstan Bett C5, C7 \& ${ }^{87 p}$ \& \& \& \& \& \& \&

\hline | Capstan Bell SL8000/80 |
| :--- |
| Extension Belt SL8000 | \& 88080 \& \& \& \& \& \& \&

\hline Drum Bet SL8000/80 \& ${ }^{(1)}$ \& \& \& \& \& \& \&

\hline Rewind kit SLC5/SLC \& £4.14 \& \& \& \& \& \& \&

\hline Rewind kit SLC6 \& £2.61 \& \& \& \& \& \& \&

\hline
\end{tabular}

TRADE ANNOUNCEMENT

LARGE OUANTITIES AVAILABLE

OF THE FOLLOWING:-

FERGUSON 3V16/3V22 VHS VIDEOS
 THORN 8800/9000 COLOUR TV's (MAINLY REMOTE CONTROL)

$\star \quad \star \quad \star$

TELEPHONE
BOB MUNSON 01-986 9026

EAST CORNWALL COMPONENIS

1985 CATALOGUE AVAILABLE - Many prices reduced - range increased - 125 pages fully illustrated. Price 75p, per copy (free
orders over $£ 5$) - includes 30 p Credit Note, special offer sheets, order form and pre-paid envelope. SEND NOW FOR YOUR COPY

valves
 UuEs
Price (f)

Price
0
0.30
0.32
0 \qquad

 GRy

TELEORSUOM

No Way to run a Broadcasting Service

Not this time a UK matter: instead a look across the ocean at the extraordinary tale of Ted Turner and the Columbia Broadcasting System (CBS).

CBS is America's leading broadcasting network. Its CBS News service is particularly significant in the USA where national newspapers, with the exception of the quirky Wall Street Journal, do not exist. But CBS's established position in the news field has led to criticism from the right for its "pro-liberal bias". A group that calls itself Fairness in the Media has been trying to gain control of CBS, a feat that would not be easy - last year CBS made profits of $\$ 212 \mathrm{~m}$ on a turnover of $\$ 4 \cdot 8 \mathrm{bn}$. Enter Ted Turner.

Forty six year old Ted Turner is a controversial character to say the least. His business career started in 1963 when he bought an ailing Savannah billboard company that his father had previously owned. In 1970 he entered the TV broadcasting field when he bought the financially strapped Atlanta TV station WTBS for $\$ 2.5 \mathrm{~m}$. This was considered to be something of a gamble at the time, but Ted Turner was amongst the first to spot the potential for using satellites to distribute TV programmes/services to cable networks across the USA, where cable TV has been a growth industry during the last decade. Hence the formatıon of Turner Broadcasting, which in 1980 inaugurated the round-the-clock Cable Network News service (CNN). Turner Broadcasting has expanded rapidly but has not been particularly profitable. In 1984 it made a profit of $\$ 10 \cdot 1 \mathrm{~m}$ on a turnover of $\$ 282 \mathrm{~m}$. One of the reasons for the poor profit record is CNN , which is reported to cost $\$ 50 \mathrm{~m}$ a year to run and to be a considerable drain on TBS. It was apparently started as a counter to the US habit of turning to the main networks CBS, ABC and NBC - for news coverage.

It came as something of a surprise then when TBS announced an offer to acquire a controlling 67 per cent interest in CBS. The offer is a complex one that values CBS at some $\$ 155$ a share - the pre-bid market price was around $\$ 110$. How could the comparatively small, heavily indebted TBS finance such an offer? In part through the latest Wall Street fad, "junk bonds", i.e. bonds that offer very high yields and carry correspondingly high risks (if the company flops, the bondholder comes bottom of the list of creditors). It seems that the offer could to some extent be made to work out by doing a bit of asset stripping.

Ted Turner's offer sems cheeky to say the least, and its chances of success are doubtful. "TBS is a highly geared company, its ratio of long-term debt to equity capital being $\$ 175 \mathrm{~m}$ to $\$ 26 \cdot 5 \mathrm{~m}$. Acquisition of CBS by issuing junk bonds would create a vastly more highly geared operation. It looks like the business economics of the madhouse, but then Ted Turner is on record as feeling that the main US broadcasting networks are "anti-American, materialistic, anti-family, anti-religion and anti-government." He would like to control one and could gain strong backing to do so. To us, this hardly seems the right way to go about running a broadcasting service.

Is there a moral in this for the UK? It's perhaps irrelevant to try to draw conclusions in view of the present wide differences in the broadcasting arrangements in the UK and the USA. But one can say that the story serves as a cautionary tale. Those who would like to dismantle the UK's broadcasting system should beware of chaos this could unleash.

Euro Blues

1984 was not a good year for the European consumer electronics industry. The giants of the industry, Philips and Thomson, failed to make profits in this sector. In the UK, Ferguson is understood to be struggling to break even. Meanwhile on the other side of the globe Matsushita, Japan and the world's largest consumer electronics manufacturer, had another record year. Most other Japanese consumer electronic products manufacturers also reported increased profits.

As mentioned overpage, Thomson's chairman Alain Gomez has called for measures to protect the European industry against foreign competition, particularly against increased competition from Japan. Philips" president Dr. W. Dekker on the other hand, in his foreword to the 1984 Philips annual report, writes: "We consider a free flow of goods on the basis of reciprocity to be of vital importance for the continued development of world trade. Optimum conditions for production and selling can exist only if there is free competition. Protectionist measures aimed at shielding industry are therefore rejected by us." An interesting contrast of views, but then Philips operates on a worldwide basis and Dr. Dekker does emphasize "reciprocity".

For Europe the problems are excessive capacity in relation to local demand, which looks like remaining static for some time to come, while competition from Japan is enhanced by the undervalued Yen. It's hard to see just what can be done to alleviate/ improve the situation and interesting to note that at a recent Financial Times conference Dr. Dekker talked of the possibility of Philips moving its centre of activities away from Europe. He is reported as saying: "If Europe does not unite, industrial innovation will pass Europe by: multinational companies will then be forced to adjust their geographic priorities . . . If Europe is neither able nor willing to develop its economic structure, then the consequences of that must be drawn."

Teletopics

1984 TRADE FIGURES

Deliveries of TV sets and VCRs in the UK during 1984 are summarised in the following table:

Goods	Deliveries during Small-screen CTVs	Percentage change on 1983.
La00s)	+613	$+28 \cdot 4 \%$
Teletexcreen CTVs	1,959	$-12 \cdot 5 \%$
Total CTV	645	$-8 \cdot 8 \%$
Monochrome portables	3,572	$+2 \cdot 2 \%$
VCRs	657	$-40 \cdot 8 \%$
	1,417	$-34 \cdot 4 \%$

The star performance once more came from the smallscreen (16 in . and smaller) colour TV section of the market, with monochrome portables doing poorly and the VCR market in decline. According to Byron Davies, chairman of the British Radio and Electronic Equipment Manufacturers Association's economics and statistics committee, the UK last year had the highest per capita demand for small-screen CTVs of any large market. The fact that the small-screen CTV has become the standard second set in the UK once more led to an increase in CTV imports. Some 420,000 CTVs worth almost $£ 100 \mathrm{~m}$ were exported during the year, along with over 250,000 VCRs worth about $£ 70 \mathrm{~m}$. Sad to note a further small decline in deliveries of teletext-equipped sets, though the total of over 2.5 million teletext-equipped sets installed in the UK far exceeds that of any other country.

CES LONDON 86

Next year's "under one roof" brown goods trade show will be called the Consumer Electronics Show after the famed annual exhibitions at Chicago and Las Vegas in the USA. The show is being organised by Montbuild Ltd. of 11 Manchester Square, London W1, who organised last year's CETEX, and will be held between April 20th-23rd at Earl's Court, which is to be refurbished with carpeting throughout and the roof draped - there will also be two extra catering areas and a private retailers' lounge and clubroom. The organisers say that the show will be bigger, better and more lavish than any previously organised for the trade in the UK. There will be seven product categories: audio; video; computers; personal (calculators, microwaves, health products, watches, clocks and selected small appliances); communications (telephone equipment and cellular radio); general (aerials, batteries, home security, etc.); and retailer services (specialist shopfitting, instore security and fire alarm systems, signs etc.). It's intended to have walk-in seminars and business workshops covering all aspects of consumer electronics.

3M's VIDEO TECHNICAL CENTRE

3 M , producer of Scotch brand videocassettes and manufacturer of the world's first commercial videotape almost thirty years ago, has completed construction and fitting out of a technical centre at Gorseinon near Swansea. The $£ 2.5 \mathrm{~m}$ centre has been built alongside 3M's Gorseinon factory, which has been producing videocassettes since 1974, and is equipped to analyse every aspect of videocassette and VCR performance. Three main functions are being undertaken at the centre. First, tests of videocassette performance under normal use conditions.

Secondly, detailed physical, chemical and component analysis of videocassette characteristics. Thirdly, a pilot plant enables new videotape formulations to be tried out on a small scale.

The Technical Service Laboratory carries out tests on domestic, professional and broadcast VCRs in all formats. More than 120 VHS, Beta and V2000 machines are linked to computerised dropout measurement and mechanical function controls and are played continuously to allow 3M engineers to monitor the dropout performance of Scotch and other videotapes over thousands of passes, also to check the performance of the mechanical components in a videocassette.

The Product Engineering and Analytical Laboratories contain sophisticated measurement equipment for the analysis of materials and components. Physical measurement equipment includes electron microscope examination of tape and recording head surfaces to a magnification of 180,000 , apparatus for measuring the dimensions and surface uniformity of cassette components to tolerances of hundredths of a micron, and equipment to test tapes and components for their friction, abrasivity, static and environmental qualities. Amongst the chemical analysis equipment there's an infra-red spectrophotometer to test surface and material tolerances and check whether new batches of Scotch tape are precisely within formulation specification. Since human nature isn't perfect and someone else's tape stuffed into a similar looking housing is sometimes sold, those engaged in such practices might like to know that the spectrophotometer can "fingerprint" and identify the actual manufacturer of any videotape in 200 secs.

The Gorseinon factory's present production level of 1.75 million videocassettes a month is to be increased to 3.75 million a month in 1987.

A LONG-RUNNING CASE

The case of Thorn EMI Ferguson versus Compagnie Francaise de Television SA (CFT), owners of the patents relating to the SECAM colour television system, has come to an end after fifteen years. On April 2nd the Court of Appeal dismissed CFT's appeal from an earlier High Court decision, which also found in favour of Ferguson, and awarded costs against CFT.

Thorn were originally taken to court as a leading representative of UK TV manufacturers, the case being that manufacturers of PAL colour sets infringed patents relating to the SECAM system - both systems employ a line-duration delay line for signal decoding. Legal and technical argument has long continued over exactly how the patents relating to the use of such a delay line in colour sets should be interpreted. The fact is that the way in which the line is used for PAL and SECAM decoding differs, and this was the crux of the case. Had CFT been successful they might have obtained a multi-million pound settlement in damages: the court's finding removes this threat from Thorn and also from the rest of the UK TV industry, against whom similar suits were pending. A hell of a time to argue over the use of just one component! The legal costs of the case exceeded $£ 1 \mathrm{~m}$.

JVC's LATEST VCR

The JVC HRD455 mentioned last month is the first of a new range of machines that will be replacing current models. This month sees the introduction of the HRD140 as a replacement for the HRD120, with a suggested retail price of around $£ 449$. Features include "Auto-Power" - it
switches on and off as the cassette is loaded and ejected remote control, freeze frame, frame advance, nine times shuttle search and auto back-spacing to avoid gaps between recordings. The new range features slim styling the machines are just 10.5 cm high.

EC INTERFERENCE

The European Commission has decided to stick its nose into broadcasting practice. An EEC broadcasting practice Green Paper entitled Television Without Frontiers has been published and is expected to be followed by a Commission directive by the end of the year. Amongst the proposals are a maximum advertising time of twenty per cent - the IBA at present has a maximum of ten per cent - and it's thought that this might lead to pressure for more advertising on ITV. The IBA feels that broadcasting standards should be set by the national broadcasting authorities rather than by formal EEC legislation. Quite right. It wasn't so long since that the Commission tried to tell us all what our beer should taste like.

CABLE LATEST

Aberdeen Cable has become the second of the original eleven franchisees selected in November 1983 to begin operations - in the Westhill and Beilside areas of the city. Clyde Cablevision has managed to complete its financing arrangements and is expected to start laying the cable this month: a twenty channel service is expected to start in October. Services in Croydon, Coventry and Westminster are also scheduled to start later this year.

At a speech to the Royal Television Society conference at Birmingham John Butcher, parliamentary under secretary for industry, once again said that the government was not prepared to give cable TV financial backing, commenting that progress would have to depend on consumer response to what the industry had to offer.

PROTECTIONIST PRESSURE FROM THOMSON

Alain Gomez, chairman of the state-owned French consumer electronics group Thomson, has called for protective measures to be adopted to safeguard the European brown goods industry against increased competition from Japan. He pointed out that Japan already controls 80 per cent of the European hi-fi and VCR markets and has a cost advantage of 25 per cent. With the present economic downturn in the USA, where the Japanese have an even greater share of the market, Japanese competition in Europe could well increase. Whether the correct answer is to call for increased EEC duties is debatable however.

MINIATURE SOLDERING STATION

Litesold (Light Soldering Developments Ltd., 97/99 Gloucester Road, Croydon, Surrey CR0 2DN) has introduced a variable temperature miniature soldering station for use on very fine work and sensitive components. The PC478/38 comprises the Model 38 soldering iron which weighs only 7 g and handles like a fine pen and the Model PC478 power unit which enables the soldering temperature to be adjusted between approximately 180 and $380^{\circ} \mathrm{C}$. Applications include soldering/rework with surface mounted components, calculator and instrument repairs and fine production work.

GEC TO PRODUCE BBC'S DIGITAL PAL DECODER

A digital PAL decoder designed by the BBC is to be manufactured and marketed under licence by GEC-

McMichael. The new decoder takes a composite PAL input signal and produces a digital bit-stream of RGB and chrominance/luminance (YUV) information at its output. Other outputs include digitally multiplexed YUV to the EBU parallel interface specification, analogue RGB or YUV and mixed syncs. The use of digital signal processing in this high-quality comb filter PAL decoder achieves a high standard of performance: the separation of chrominance and luminance information is carried out by. means of a combined vertical and temporal comb filter, totally suppressing fine cross-colour and giving some attenuation of coarse cross-colour and noise. The new decoder is designed to decode PAL signals for processing in digital video effects equipment and electronic stills stores and could be used in PAL-CMAC conversion. It created great interest at the 1984 IBC and is to be shown at Montreaux this summer.

VIDEO PROCESSING ADC/DACs

Mullard have announced the availability of the video AD converter type PNA7507 and DA converter type PNA7518 mentioned in our feature on chips for tomorrow's sets last month. The two chips are low-power NMOS devices that operate at a sampling rate of 20 MHz . The 7 -bit PNA 7507 has 129 comparators, a reference resistor chain, transcoder stages and TTL output buffers. It requires no external sample and hold, has a high input impedance and is encapsulated in a 24 -pin DIL package. The digital output can be selected in twos complement or binary coding. The PNA7518 8-bit DAC has TTL input levels with transparent latch inputs and requires no deglitching circuit. It's encapsulated in a 16 -pin DIL package.

IMPROVED VIDEOTAPE FROM JVC

JVC's new Dynarec Titanium Oxide tape is aimed at the VHS hi-fi and AV markets, offering greater durability and improved dropout performance with repeated use. Titanium monoxide is added to the base film resin to make the tape conductive, thus eliminating static dust build up, to darken the tape for improved optical tape motion sensing, and to provide a matt back surface for improved spooling. Removal of three base film additives results in a stronger tape with greater dimensional stability - tape stretching is a major cause of signal loss. Titanium dioxide is added to the coating to act as a dispersant, binder and tape conditioner, replacing three coating constituents. This gives a greater concentration of magnetic material in the coating, improves the magnetic retentivity and increases the toughness of the playing surface.

IN BRIEF

Marconi Communications Systems Ltd. have been awarded a contract to undertake a major re-engineering project at the BBC's Crystal Palace transmitter. The Marconi supplied 40 kW klystron transmitters are to be converted to beam-modulated operation to increase their efficiency and reduce station running costs. Marconi will be supplying new 7500 series drives, new vision and sound combiners and other peripheral equipment. The work is due for completion early next year . . . The Japanese watch firm Citizen plans to launch miniature TV sets using liquid-crystal displays in the UK later this year. There will be monochrome and colour pocket models and a "wristwatch" model. The sets are already on sale in Japan and the USA . . . Seiko is to introduce a "wristwatch"
computer display unit using a two-line, 24 -character dot matrix LCD. Listed as Model RC100, the unit is expected to sell for around $£ 110$, acts as a watch/calendar in the time mode and has a 2 K memory that can store up to 80 "pages" of 24 characters . . . A colour video camera with
a solid-state image sensor and mechanical shutter, Model SVC09, has been announced by Prostab International Ltd. of Bracknell. Exposure time is adjustable from 0.120 msec . The camera is intended for movement analysis, producing sharp images of fast moving action.

TV Fault Finding

Monochrome Portables

Although there are many different portable TV chassis and each set we open up seems to be different we don't often get caught out by awkward faults. Lately however we've had a spate of these small sets that have caused us headaches.

The first was a Mitsubishi Model BB1204B, a nice, straightfoward, well laid out chassis. The line output stage was dead so we did the usual checks around the line output transistor and on the rectifiers fed from the line output transformer. Everything seemed o.k. so we moved back to the line driver stage. The voltage at the collector of the transistor seemed about right at approximately 0.6 of the supply rail voltage so we moved back to the line oscillator stage. After a lot of time wasting we got the scope out. This showed that the oscillator was running and that the waveform was reaching the base of the line driver transistor. But there was no waveform at its collector. The set burst into life when a replacement transistor was fitted.

Next a Bush Ranger, Model BM6714A. The complaint was no sound. A dab at the input to the sound output stage produced a healthy burp so we moved back to the TBA120SB intercarrier sound chip. Dabbing around here still produced audio noise but there was no off-air noise. We changed the TBA120SB but there was still nothing. We eventually found that $\mathrm{C} 32(0 \cdot 02 \mu \mathrm{~F})$ at one of the input pins (pin 13) was faulty.

The next one was a Sanyo $10-\mathrm{T} 150 \mathrm{H}$ which was dead with a blown fuse. We replaced the fuse and found that the power supply was heavily loaded down. Disconnecting the supply to the line output transistor restored the correct rail voltage so the fault was clearly in the line output stage. We started by checking diodes etc. then went on to disconnect the output transformer's secondary connections. When the scan coils were disconnected the rail voltage came up and we feared the worst - faulty scan coils - but we decided to try a replacement scan coupling capacitor first. Our luck was in and the set came back to life - we had to order the correct item however due to its large value (C622, $7 \mu \mathrm{~F}$, lacquer type).

The problem with a GEC 2114 was excessive height with poor linearity. $\mathrm{C} 215(10 \mu \mathrm{~F}, 25 \mathrm{~V})$ in the field linearity network was open-circuit.
M.D.

Panasonic TC682GR

The picture on this colour portable suddenly went dark only slightly dark, which we found we could correct by slight adjustment of the first anode preset. There were several striations down the left-hand side of the screen however. These were similar to what you get when the damping resistor across a line linearity coil goes opencircuit, but in this set the coil is preset and doesn't have a damping resistor. We checked the voltages around the line output stage for a clue and found that the line output transformer derived 190 V supply was low at only 155 V .

Reports from Mick Dutton, Jim Rainey, Malcolm Burrell, A. Davies, Geoff Fardon, Michael Pitt, Philip Blundell, Eng. Tech. and Brian Renforth

The relevant reservoir capacitor $\mathrm{C} 155(10 \mu \mathrm{~F}, 250 \mathrm{~V})$ was open-circuit.
M.D.

Nordmende Portable CTV

This set was tripping and a loud knocking noise was coming from the line output stage. When we removed the back the cause of the trouble was obvious. The core of the line output transformer had cracked in half and when the set tried to run the two halves knocked together. We were able to repair the core with Araldite.
M.D.

Panasonic TC2203 (U1 Chassis)

No results was the complaint with this set. It uses a selfoscillating chopper circuit and we found that while the rectified mains supply was present at the collector of the chopper transistor Q801 there was no voltage at either its emitter or base. The start-up resistor R803 ($150 \mathrm{k} \Omega$) had gone open-circuit.
M.D.

Thorn TX10 Chassis

I've had two cases recently where the symptoms were low brightness, the user control having very little effect, and an audible hum from the speaker with the volume control at minimum. In both cases TR654 in the blue output stage was short-circuit base-to-emitter. This transistor forms part of a cascode circuit with its base biased from the 12 V line and one can only assume that the symptoms were related to the transistor's effect on the 12 V supply. J.R.

Thorn 9600 Chassis

This set had a very washed out picture with no colour. The cause was VT115 (BC147) in the decoder short-circuit base-to-emitter. This transistor forms part of the pulse shaping circuit, its failure removing the black-level clamp and burst gate pulses.
J.R.

Thorn TX90 Chassis

The complaint with this set was "intermittently dead", but it worked perfectly on soak and even a tap around the board failed to produce any trouble. When the board was slipped out for inspection I found that two of the connections to the line output transistor TR112 were dry-jointed.
M.B.

Intermittent Shut Down

Sometimes a TV set with the complaint that it switches off intermittently comes into the workshop but no amount of soak testing or tapping around will make it go off. As a matter of course these days we give the set a good cleanup around the high-voltage points such as the e.h.t.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPQ

Telephone 0268690868
Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY ADD 60p P\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN.

Diract Panal Mounting 20mm Fuse (pair) 15p
Clips
Singta Fuse Holder on Sruall Pax Board. As per sarly 3000 mains input EHT Cable
13A Plugs
13A Plugs
BF259 with Heatsink
IIP110 with Heatsink
L129/130/131 Coin
SMHz Coramic Fitter
6M
DLT00 (Philips) Chroma Delay Line
DL50 Chrome Delay Line
TS006A Lum Devay Line
BK5/9K Lum. Delay Line
Plastic Cover for 3 K 5 SP8385
Plastic Cover for 3 Control 10 K
TX9 Back Ground Cons
7×9 Gain Control 100R
1500 Metal Chassis Supports Pair Thorn 8K5 Focus Pot
Thorn 4000 Focus Pot Thorn 4000 Focus Pot
Thorn 18Ω 9W (3K5) R752

SERVICE AIDS
Ambersil MSA SERCONICE Grease
Ambersil Freezer
Ambersil Ambertion
Ambersil Anti-Static Screen Cleaner 1602 1.55 Armbersil 40+ Protective Lubricant 14.1022 .15 $\begin{array}{ll}\text { Ambersil Amberdens foaming Cleaner } 1302 & 1.26 \\ \text { Ambersil Circuit Lacquer } \\ 1402 & 2.15\end{array}$

THICK FILM RESISTOR UNTS 3500 Theon (5 Pin Connection) vidoo

4000 Thom (4 Pin Connection)
$725 / 731$ Pye (6 Pin Connact
713 Pye (6 Pin Connection)

Thorn Mains TX $3000 / 3500$
Thorn Mains TX $8000 / 8500$
Thern S.O.P.T $8000 / 8500$
Thorn Scan TX 3000/3500
Thorn EHT TX $3000 / 3500$
Thorn LOPT 9800
Thorn LOPT 1615
Thern LOPT 15so/91
Thorn LOPT 1690/91
Thorn LOPT 8000
Thorn LOPT 8500
Thorn LOPT TX9
Pyo LOPT 713
Pye LOPT 725
PY LOPT 731
Philips LOPT G9
Philips LOPT G11
Phimps LOPT G11
GEC LOPT 3113
GEC LOPT 3113
Diode Split LOPT AT2076/35
Dodry LOPT AM WM-21
Sorvo LOPT AM WM-4
Serry LOPT AM-
Phitips LOPT G8
Semy LOPT G8 CW21) 4-2751-4700
IT LOPT CVC30
IT LOPT CVCA5
Baird 9750
Baird 875 ?
Korting Az9100
Korting A29100
Korting $898-170$
Korting A 2101
Korting AZ2103
Korting ZTR1001
Siemens V1155
Siemens V1823
Siemens V1823
Zanussi BS 2222
Zanusssi BS2203

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US

G.G.L.COMPONENTS

108. SCOTLAND ROAD, CARLISLE, CUMBRIA CA3 9EY PHONE (0228) 20358/39693

	BUY WITH		E.H.T. TRAYS OECCA OECCA 100 $\mathbf{7 . 2 0}$ 1TCVC 2030 $\mathbf{7 . 3 5}$ PHILIPS $68-50$ $\mathbf{6 . 8 5}$ PHILIPS KT3 $\mathbf{7 . 9 0}$			
ICE	LINE O/P TR.		THORN 8500/88007.60			
3.20	DECCA 80....................95		THORN 9000 … $\quad 8.70$			
1.45			Universal ._._. 5.95			
5	ITT CVC $20 \ldots \ldots7 .75$					
46			DIODES			
47	$\begin{array}{lll}1 T \mathrm{CVC} & 25 / 30 / 32 & \ldots . .00 \\ 1 T \mathrm{CVC} & 8.00\end{array}$		TYPE PRICE			
80	PHILIPS G8 8.75		8Y127			
95	PHILIPS G11 1350		BY164			
48	PHILIPS KT3............ 9.95		BY179 ……........... . 65			
48	PHILIPS K30 16.50		BY210800			
75	RBM T20A $\quad 11.50$		$8 \mathrm{8} 223 \times \quad .86$			
70	THORN 1615 9.75		8Y227M $\quad . \quad 23$			
70	THORN 1690/7 9.65		BY229/600 $1 \times . \quad . \quad . \quad . \quad 87$			
			$8 Y 299 / 800$ $81 \times 1025 ~$ 80			
25	SONY SPARES		8×15			
2.25	C5/C7 Rewind Kit...... 4.85		BYX $1 / 600 \quad . \quad 93$			
2.35	C5/7 Belt Kit 3.50		SKE4F206			
1.55	C6 Rewind Kit 4.35 C7/J7/SLT7		SKE5F3/10			
2.45			W005 $7 \quad . \quad 55$			
3.25	pinch roller 4.85		$\begin{array}{ll}1 N 4001-7 & .07 \\ \text { in5 }\end{array}$			
			IN5401-8 16			
	ANTI-SURGE FUSES		CASS MOTORS			
4.75 .97						
97	AS20MM 80MA 275		9VCN $\quad 5.00$			
3.20	100, 160, 200MA 1.70		12 VCN - $\quad . \quad 5.00$			
3.95	315, 400, 500. 6		13.2 VCW - 4.85			
2.45 295	800 MA . $1 \mathrm{~A}, 1.25,1.6$,					
2.95			SUNDRIES			
1.65						
2.45	2,3.15,4,5A 135		G80N/OFF SW. 1.40			
1.97	VALVES		G11 EW Coil - 1.65			
3.65			G11 Lin Coil. $\quad 1.80$			
	PCF802.................... 94		G11 Bridge Coil 1.35			
			G11EHT Lead $\quad 225$			
	PCL85 98		PYE IF Gain M00 $\quad 7.85$			
	PCL86...........93PCL504...............50		1 TT On/Off SW			
			THORN ON/OHf SW.. 1.00			
	PL508 PL509...............................		CUT OUT 2A ${ }^{\text {a }}$ (195			
			TX10 FOCUS UNIT . 8.95			
8.70	PY5004 1.95		VCR Pilot Bulb			
TTONS/ UNERS 7.95		Available also a range of 2SA/B/C/D Transistors. Phone or write for lists.				
12.00						
	$\begin{aligned} & 8.50 \\ & 8.95 \end{aligned}$	ORDERING Please Add 50p For P/P U.K. Add 15\% VAT To This Total. Export Orders - Cost. DELIVERY BY RETURN ON ALL STOCK ITEMS.				
	10.4012.80					
8.95						
8.35						
7.40						

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.
connector and c.r.t. base. The point of this is that some homes still suffer from condensation in damp weather, but when the set has arrived in the fairly warm, dry workshop the cause of the trouble is no longer present. In fact if you don't find the cause of the problem during a field visit it's worth trying this. Just a single leakage is often sufficient to cause a modern power supply to trip.
M.B.

Sanyo CTP430

Like the Hitachi CNP190/192 these old Japanese sets seem to soldier on. They give little trouble apart from the odd dry-joint or poor inter-board connection that causes intermittent loss of picture or field collapse. The fault on this set was more elusive however since the raster would partially collapse, leaving about an inch of field scan. Replacing the field driver transistors Q403/4 cured the trouble - BC115s were used as they were the most suitable transistors to hand.
M.B.

Philips TX Chassis

We had a strange fault with this monochrome portable - it wouldn't switch off! The front mounted switch worked mechanically but not electrically. Now we've all at some time spiked ourselves on the sharp undersides of boards after all that's how new swear words are invented. The fault was caused by excessive component lead length. Both 2A fuses had blown, but still the set operated! The on-off switch was ineffective in either position, the set coming on and staying on as soon as it was plugged in. Having disconnected the mains supply we removed the plastic board strengthener from under the mains transformer and there was the cause of the problem: two excessively long leads from wirewound resistors were bypassing the fuses and it seemed much else as well. Simplicity itself to put right with a decent pair of side cutters.

The fault on another of these sets was a bright, uncontrollable raster. The cause was the video emitterfollower transistor TS350 (BC558). Note that this is a pnp transistor with its collector connected to chassis. A third problem we encountered in one of these sets was the switch-off spot suppression capacitor C571 ($22 \mu \mathrm{~F}$) in need of renewal.
M.P.

Thorn TX9 Chassis

The problem with one of these sets was field bounce which during investigation gave way to field collapse. Replacing the TDA1170S field timebase i.c. cured the collapse but did nothing for the bounce. The two $0.1 \mu \mathrm{~F}$ capacitors C215/6 in the ramp generator circuit were the cause of the bounce.

Purity errors can be a problem with some of these sets fitted with 22 in . tubes. It seems that the chassis was not originally intended to drive 22 in . tubes and as a result there's a marginal difference in the purity tolerance between 20 and 22 in . sets. The problem mainly arises when housewives push the set out of the way to vacuum the lounge - this can result in a call to the tele company!

As many of you may know, the simple T718 ultra-sonic handset can give a bit of trouble. On one occasion recently the sound level would immediately fall to minimum when either of the sound function buttons was released. There were two possibilities for this: either the small circular pressure discs on the handset PCB were short-circuit so that the unit was transmitting all the time,
or the MC 14029 B i.c. on the remote control receiver panel had developed a dislike for sound. It turned out that the i.c. was defective, but it's a good idea to change the three handset pressure disc switches anyway - prevention is better than cure! The newer infra-red T725 handset is vastly superior.
M.P.

ITT CVC820 Power Board

I've had quite a few sets lately with power supply faults caused by the h.t. smoothing electrolytic C431 ($10 \mu \mathrm{~F}$). If it goes slightly low in value the result is cogging on verticals when the set is first switched on. If it goes opencircuit the result is a low h.t. line (80 V) with an arcing sound coming from the chopper transformer.
P.B.

ITT CVC1200 Chassis

If you have a CVC1200 series set with a blown mains fuse as often as not you'll find that the BU508A chopper transistor is short-circuit. Sometimes however it's the $10 \mu \mathrm{~F}$ filter capacitor C 701 that has gone short-circuit. If the chopper transistor goes short-circuit every couple of days change zener diode D702 (ZPD5•1).
P.B.

Thorn 1500 Chassis

This 24 in .1500 set came in with the complaint sound but no raster. A new tripler was all it needed, but not having one in stock I decided to try the type used in the earlier 1400 chassis - the 1400 type is similar electronically but fits on the line output transformer horizontally instead of vertically. The set worked well with the 1400 unit fitted and I was about to replace the back cover when I noticed a few horrors. The 20Ω section of the mains dropper had gone open-circuit and been bridged with a 47Ω resistor, while the mains filter capacitor C84 and the h.t. rectifier's protection capacitor C85 were both missing. I assume that the capacitors must have gone short-circuit at some time and simply been snipped out. When these matters had been put right the set was left running on soak. The next thing I noticed was that there was lack of width on the left-hand side. This didn't respond to fitting new valves in the line output stage, and checking components in this area revealed nothing amiss. The scan coils maybe? A Plessey type was fitted and adjusting the line linearity sleeve and the picture centring magnets only made matters worse. Full width was instantly restored when a set of Thorn coils was tried.
B.R.

Binatone 01/9496

Loss of sync on this monochrome portable was traced to D302 (1N34A) which is in series with the signall feed to the sync separator transistor. There was also sibilant sound due to a dry-joint on C510 which smooths the supply to the audio circuit.
A.D.

Philips KT3 Chassis

Here's a strange one for you! When the set was tuned to a strong signal the result was a very dark picture with just the highlights showing, colour present and the sound o.k. With a weaker signal there was a near normal picture except for the graininess to be expected. The cause of the trouble was poor contact (a dry-joint, though it looked perfectly all right) at the focus control pin on the main board - the pin along the track from R1581. G.F.

Servicing Notes on the Toshiba V9600

John Coombes

This front-loader is far more prone to mechanical than electronic problems. As with most Beta machines the most common trouble is with rewind - Sanyo seem to have been the only Beta manufacturer to beat this problem. It's a great help in reducing the wear that causes the trouble if the customer uses only L250 or L500 tapes it's seldom necessary to use a three-hour L-750 tape to record a programme.

Poor Rewind/Playback

For poor rewind/playback first check the upper drum for wear - check for scratches or a highly polished surface with a ridge embedded in the drum. If necessary replace the drum, but be sure to check that the rubber wheel on the clutch idler assembly hasn't been chewed up - replace it if small particles of rubber are present on the surface below the idler assembly.

The next step is to connect a scope to check the playback f.m. envelope at TP101. If the waveform is as shown in Fig. 1 there's no output from one of the heads. Check that both heads are clean and that there's no dust build up due to excessive upper drum wear or maybe the use of poor quality or old tapes. If the problem persists replace the video head disc and set up with an eccentricity gauge - set to within $1 \mu \mathrm{~m}$. When the eccentricity is correct the tracking and picture should be stable and there should be no wow or flutter.

After setting up the head disc check that the back tension is correct - if it's badly out the result will be excessive drum wear. The back tension should be 47-57 grams - if it varies by more than 10 grams from the beginning to the end of the tape replace the band brake.

If the upper drum/disc assembly has been replaced and the picture is noisy instead of clean and crisp, make a recording then play it back while checking the f.m. envelope at TP101. If the output from one head increases while that from the other falls as the tracking control is rotated the playback frequency response controls R150/ R151 may need attention - check the condition of the carbon tracks. If the problem persists check the dihedral

Fig. 1: No output from one head.

Fig. 2: Distorted f.m. playback envelope.

Fig. 3: Correct f.m. playback envelope.
setting (head height) which can be varied by adjusting the Allan screw on the top of the head. It's very often quicker however to replace the disc instead of working out a graph to set the head height. Adjusting the height can upset the angle of the head.

If after fitting the modified upper drum type 7037-1301 the picture is noisy in parts and the playback f.m. envelope is as shown in Fig. 2 try removing the shims between the upper drum and the support wall. This has proved to be a very successful way of getting the correct waveform (see Fig. 3). If the picture is still noisy the tape path alignment should be set up.

Loud Howling on Playback

Loud howling on playback can be due to rubbing on the upper drum. Check the flywheel assembly - remove and clean the shaft, put a spot of oil on a cloth and lubricate the shaft then reassemble. This should clear the problem. A very dry shaft can cause sound and picture jitter.

Squealing on Rewind

Squealing on rewind can be caused by a badly worn upper drum but is usually due to worn ceramic rollers on the guide ring. To prove this or effect a temporary cure while awaiting replacement rollers from Toshiba, turn the rollers upside down.

Streaking across Picture

Streaking across the picture is very often caused by incorrect setting of the playback frequency response controls R150/R151. Alternatively the head disc may need replacement or, more likely, IC 102 is faulty.

Excessive Picture Jitter

Excessive picture jitter can be caused by poor tapes or a worn clutch idler assembly. Other possible causes are a faulty bearing in the drum unit or a faulty drum motor stator.

Cassette won't Load

If the cassette won't load, check the voltage at pin 37 of IC601 while inserting the cassette in the machine. The voltage should drop from 4 V to zero. If this doesn't happen check the cassette in switch S651 and that the switch lever spring hasn't dropped off. The problem can also be caused by a faulty front loading motor - first ensure that l.t. reaches the motor terminal. Also check the condition of the loading belt.

Stops when Record/Playback Selected

If the machine stops when record/playback is selected check the setting of the leaf switch S656 and that the switch lever on the slack detector is operating correctly. It's best to check the leaf switch by replacement. Check the switch lever for being misshaped. If the auto-stop
doesn't operate when adjustment has been completed suspect faulty leaf switch contacts.

Picture Noise/Sound Wow

In the event of noise bands on the picture andior wow on sound, first check that the 200 Hz waveform is present at TP508. If it's missing check for 200 Hz at pin 1 of P503. If a 200 Hz signal is present here suspect IC502 (TA75902P). Also check whether the capstan belt is dirty
or stretched. The capstan motor could be faulty. To eliminate the servo circuitry, check that the voltage at pin 7 of IC501 varies when the capstan motor is slowed.

Drum Motor not Operating

If the drum fails to rotate, try rotating it by hand. If this starts the drum motor the stator is problably at fault. If the motor doesn't start the servo circuit will have to be checked.

Guide to Satellite TV Reception

Part 2

This month we'll take a look at receiver systems. The first point to make is that all satellite TV transmissions use f.m. for the video signal, primarily to reduce the loading on the satellite's power supply.

One of the worst reception problems with a signal of barely sufficient strength (due to rain fade or the use of a small dish for example) is excessive noise on saturated colours. This problem should disappear when the MAC transmission system comes into use - a multiplicity of digital sound channels will be another advantage of the proposed DBS system. The system used at the moment, with a subcarrier for the audio channel, can reduce the overall power level (albeit marginally) from the satellite and can cause patterning on the video together with buzzing from saturated colours if the signal is weak.

At the moment the only MAC transmissions are Norwegian ones via the ECS-2 satellite. The Australian Aussat satellite, which is due to be launched into orbit this August, will be the first satellite to use MAC for DBS transmissions.

Provided the signal is of reasonable strength, which means using a dish with a minimum diameter of 1.2 m in the UK for ECS transmissions, none of the problems mentioned above should cause too much aggravation.

Several UK manufacturers already produce satellite TV receivers, mainly for the cable market and for the master aerial market (SMATV - satellite master antenna television - to use the accepted term) that's expected to open up shortly, providing satellite TV signals for blocks of flats, hotels etc. Apart from experimental ones, domestic satellite TV receivers for the UK market are at present something for the future - though let us hope the not too distant future. References in the present article to domestic receivers relate mainly to those used for the US 4 GHz band. The indoor part of such receivers is very similar to that required for 11 GHz reception, though the input will be at around 500 MHz instead of the 800 MHz used in Europe.

IF Section

In Europe, the signals in the $10.95-11.7 \mathrm{GHz}$ or the future $11.7-12.5 \mathrm{GHz}$ band are downconverted at the dish aerial to a standard first i.f. of $950-1,750 \mathrm{MHz}$. Covering 800 MHz in one sweep has caused manufacturers great headaches, mainly due to the range the local oscillator has to cover and the r.f. tracking. One enterprising manufacturer has introduced a double-downconverter: 11.4511.7 GHz band signals are converted first to $1,500-$ $1,750 \mathrm{MHz}$ and then to $950-1,200 \mathrm{MHz}$. This is a tricky

Hugh Cocks
conversion as the unwanted low-band signals from the LNC are still present at $950-1,200 \mathrm{MHz}$ and the second harmonic from the 550 MHz local oscillator falls within the wanted i.f. range. Nevertheless the unit, which is switched in and out of line by means of switching diodes, works very well.

The second i.f. used varies. 70 MHz is rather low as the unwanted image frequency is only 140 MHz away. A new choice is around 140 MHz : the image frequency at 280 MHz is much easier to filter out by means of a tuned r.f. stage preceding the first i.f. mixer.

Another new choice is in the low 400 MHz band, just below the 70 cm amateur band $(432 \mathrm{MHz})$ and well away from local TV transmissions that would cause breakthrough problems. The image frequency at over 800 MHz is well above the band of interest, easing problems considerably. A new generation of PLL and quadrature f.m. demodulators has been developed by various manufacturers to detect 400 MHz f.m. signals. These will in the fullness of time be complemented by SAW bandpass filters to feed the demodulator i.c. Discrete filters are mainly used at the moment: at 400 MHz these consist of several tuned lines in a small metal can. Alignment of the filter is carried out by bending copper tabs adjacent to the lines (similar to the system used with the old rotary u.h.f. tuners).

70 MHz SAW bandpass filters are now quite common in the USA, where a large market for C Band "DBS" has developed.

Unfortunately three different i.f. bandwidths, 27, 30 and 36 MHz , are at present in use with the ECS and Intelsat V satellites. When we get DBS in Europe 27 MHz will be used. Sophisticated cable receivers can switch between these bandwidths (often referred to as deviation frequencies of 18,20 and 25 MHz): if a dedicated receiver is used at the cable head end there's no need for

Fig. 1: Block diagram showing the basic features of a satellite TV receiver unit.
switching.
Less complex receivers for domestic/semi-domestic use generally have only a single bandwidth. This can cause problems when all the transmissions available are to be received. Too wide a bandwidth with a narrow-band signal can result in excessive noise on the picture. Too narrow a bandwidth with a wideband signal on the other hand can cause irregular signal distortion which is most noticeable as "sequined" saturated reds. A signal a little below the f.m. threshold (see later) produces a similar effect: saturated reds break into noise when the other colours are o.k. The compromise solution is a bandwidth of around 30 MHz , though some receivers with simple alteration of the bandpass filter via the front control panel are becoming available.

Tuning Systems

Normal voltage tuning is used to tune across the first i.f. range. Cable grade receivers generally use synthesised tuning in order to remain on station for a considerable time without adjustment. A.F.C. has to be added with synthesised tuning to cope with the downconverter local oscillator's frequency drift of up to about 5 MHz at worst with temperature extremes. Domestic type receivers use either a series of pushbuttons with the tuning voltage stabilised in the conventional manner or just a rotary tuning control with a.f.c. applied to the tuning line to grab the signal once found. Though good, the stability would not be sufficient for very long periods of unattended operation (weeks or months).
A.G.C. is often applied to a meter for dish alignment or terminals for connection of a remote meter at the dish may be provided. Cable receivers often don't have this feature as it's considered best to align the dish with a spectrum analyser or a specialised signal meter in the first place. Having installed a variety of dishes to date I can say that a receiver signal meter by the dish is by far the easiest method, the peak in dish alignment being very easily seen.

Energy Dispersal

Standard energy dispersal techniques are used with most transmissions; i.e. a 25 Hz triangular wave with about 500 kHz deviation is added. This results in a flickering picture unless d.c. clamping is used. Some clamps are better than others at removing the dispersal: look for residual flicker in peak white and saturated red (that old bogey) areas of the picture. Residual flicker is often present when a signal is a little below the f.m. threshold.

With encrypted signals using sound in sync the video output from the demodulator has to be unclamped otherwise the decoder (particularly the Oak Orion unit as used by Sky Channel) won't work. Cable receivers have both outputs available at the rear or a front panel switch to disable the clamp.

Audio Standards

A receiver for general use must be able to tune to the various audio subcarrier frequencies employed - $5 \cdot 5,6 \cdot 5$, 6.6 and 6.65 MHz together with the $7.02 / 7.2 \mathrm{MHz}$ narrowband stereo frequencies used by Music Box. Encrypted signals generally use sound in syncs, but at least one service (TV5) has clear audio with scrambled video (similar to the Canal Plus system).

Another area that causes problems is audio pre-em-
phasis. In addition to the standard CCIR system a new standard called CCIT-J17 is used for several transmissions. This has a very high peak-deviation value and results in sibilant hissing with standard CCIR de-emphasis. Special techniques have to be employed to demodulate the audio properly. Needless to say, the French TV5 channel was the first to use this system. Ironically, on their own Telecom satellite they use standard de-emphasis at both 4 GHz and 12 GHz .

Another problem with certain receivers is that a very high-level 5.5 MHz carrier is used to carry out switching operations at cable head ends. With a 6.5 MHz audio subcarrier, the 5.5 MHz and 6.5 MHz signals can beat to produce a 1 MHz interference signal that gives bad crosshatching. The cure is to have a proper 36 MHz i.f. passband, a linear video amplifier and possibly some notch filtering to remove the beat-frequency interference.

Noise/FM Threshold

The f.m. threshold point is best defined as the point where for every 1 dB increase in the carrier-noise ratio (c / n ratio) there's only 1 dB increase in the video signal-tonoise ratio. Below this point, down to about 6 dB below threshold, every 1 dB gives a dramatic increase in signal-to-noise ratio on the picture.

Dish size and the head unit noise figure determine the carrier-noise ratio of the incoming signal at the receiver. With a cable head end, where high-quality signals are a must and space for dishes is not at a premium, systems are designed for at least a $16 \mathrm{~dB} \mathrm{c} / \mathrm{n}$ level. On most receivers the threshold point is $8-10 \mathrm{~dB} \mathrm{c} / \mathrm{n}$. This kind of signal level calls for a dish of about $3-3.7 \mathrm{~m}$ in the UK.

With a domestic/semi-domestic installation where the dish size is all important there's much less margin above threshold. A 2 m dish is the largest one is likely to find in use, giving at most a margin of $3-4 \mathrm{~dB}$ above threshold from some ECS transponders in the UK. Under adverse weather conditions (mainly cloudbursts, where the sky goes very dark) several dBs of signal can be lost. Indeed the writer once noted virtually complete fadeout of ECS signals for two-three minutes during a severe summer thunderstorm using a 2 m dish.

When the signal is at the threshold $(1 \cdot 2-1 \cdot 5 \mathrm{~m}$ dish, 2.9 dB head unit noise figure in the UK) receivers tend to display noise in different ways. Some show "violent hailstones" all over the screen even when the signal is only a fraction below threshold. Others give a softer, finer noise display though these receivers often produce a paler picture when the signal is strong.

Reducing the bandwidth also reduces the threshold point - going from 36 MHz to 18 MHz gives a 3 dB reduction - though this can produce severe distortion on saturated reds and white captions. If a small dish has to be used and the lowest noise figure head unit is obtained, the minimum dish size for the southern UK is 1.2 m with offset feedhorn (this gives some improvement in dish efficiency) - the beam centre is off the Kent/Essex coast - but don't look too hard at saturated colour bars in heavy rain.

The new French Telecom-1 satellite has power levels 3 dB up on ECS in the $12 \cdot 5-12 \cdot 7 \mathrm{GHz}$ band (around 50 dBW at beam centre near Luxembourg) and can give good pictures with an offset dish as small as 90 cm . UK DBS should be 12 dB up on Telecom-1 and should produce similar quality pictures with a 22.5 cm offset type dish. Allowing for rain fade margins, 30 cm should do very well.

Unscrambling Canal Plus

Sotires Elefthériou

Towards the end of last year Canal Plus, France's new pay-TV channel, had the December issue of the magazine Radio Plans seized by a French court to prevent publication of a design for a decoder. The interesting thing about the Radio Plans' decoder is that it works on principles quite different from those used by the official decoder and is thus in no way a copy. The complaint against Radio Plans was not on technical grounds: it was of "incitation to theft", i.e. that it encouraged readers to receive programmes they had not paid for. The reply from Radio Plans was that the design was intended for readers in Belgium, Switzerland and Monaco: while the transmissions can be received in these countries, Canal Plus does not issue decoders to would-be viewers outside France. There was even the case of an enterprising retailer in Switzerland taking out subscriptions for his customers via an accommodation address in France, but a stop was soon put to his initiative.

Canal Plus started operations last November 4th, using SECAM L, both sound and vision scrambling and, for the most part, the old 819-line v.h.f. network. SECAM L has 625 lines, positive-going video, 6.5 MHz vision-sound carrier spacing and a.m. sound modulation. Unscrambled programmes are broadcast between 19.10 and 20.30 each evening. Earlier last year Sylvain Anikini, the Canal Plus
man responsible for the choice of a scrambling system, had been widely quoted in the media as saying that the system adopted was completely hacker proof. This made the Radio Plans article particularly unwelcome.

Scrambling

Mr. Anikini was confident in his predictions. After all, the official decoder uses specifically manufactured i.c.s and contains a RAM chip powered by a battery - this is used to store essential information that's lost if a tamperer gets to work. Stealing or copying a decoder, or simply keeping one after the end of a subscription to the service, would be no good. Each decoder has a different number stored in its memory chip: the product of this number and the number the viewer has to type in at the beginning of each month gives the correct decoding sequence, i.e. the number of delays given to each line of picture information over a six field cycle (see later). Thus when the sequence is changed at the beginning of the month a new number must be typed into each decoder if it is to produce clear pictures. Canal Plus keeps records of each subscriber's eight-digit number in a computerised data base.

During the first month of operation a simplified code was used, enabling all the official decoders to work

CAPACTTORS	69 Thom $3500 \quad 750$	179 TDA2532 200	032	SPECIFC COMPONENTS	390 G8 Metal	460 ELC1043/06 Tuner						
$915 \times .0047 / 1500$ AB23	69 Thom $3500 \quad 1.50$	180 TDA2540 1.05		351 Thorn 1591	Switch 123							
Chassis $\quad 1.50$	70 Thom $8500 \quad 5.40$	181 TDA2541 257	Chass. 14.50		391 G8 Line Stor/Eql.	461 U321 New Tuner 7.55						
$9210 \times 220 \mathrm{MFD} 16 \mathrm{~V}$	71 Philips G8 6.30	182 TDA2560 328	033 Philips KT3 8.00	Speaker 352	Coil	462 U322 New Tuner 7.55						
Elect 0.50	$731 \quad 4.50$	183 TDA2571 215	034 RR1 T24 Chass. 14.00	352 Thorn 1600	392 G8 R/G Symetry	46398003 Posister 0.99						
$9310 \times .047 \mathrm{MFD} 400 \mathrm{~V}$	$8910 \times$ Anti Track EHT	184 TJA2591 0.98	035 Sanyo CTP5101 9.50	Drapper 0.50	392 Coil	46498009 Posister 0.99						
Mul Pol 0.50	Cap 200	185 TDA2593 223	037 Split Diode EHT	$353 \mathrm{~T} \times 10$ Pres	Col 39720×3.154 A/S 20 mm	465 Mull.DL50 Delay						
$945 \times 4.71100 \mathrm{NC514}$		190 TDAZ600 4.00	Lead 135	Drawer 3.00	39720×3.15 Fuse	Line 00.55						
T3500 $\quad 125$		191 TDA2611 124		354 T $\times 10 \mathrm{CRT}$ Base	Fuse	$4665 \times$ VA1104 270						
$95 \quad 5 \times$.47/1000		192 TDA2640 236		Assy $\times 10$ CRT Base	$39820 \times 800 \mathrm{MA}$ AS	469 Cut Out Metal GEC						
Dubilier 3.00		016			20 mm Fuse 1.50							
$9710 \times 0.1 / 2000 \mathrm{~V}$	INTEGRATED CIRCUTS	6016	PUSH BUTTON UNTTS	355 3' Round BR	$39920 \times 25 A$ AS 20 mm	$4705 \times$ GEC2100 3 Leg						
W/E 200		212 ВTT6018 228		Speaker $3585 \times$ Tho/3500 1.000 200		Thermist. 1.00						
$985 \times 1 / 250$ Supp $17 T$	$1405 \times$ TDA440 300	220 SL901B Int Circuit 5.00				$4795 \times$ Gen. Purp. Rotary Swich. 3. 10						
etc. 1.50	$1415 \times$ TBA120AS 180											
50 ITT CVC 5/9 3.00	$1435 \times$ TBA5400$1455 \times$ TBA560		113 Phil G8 Sloping 14.58	359	$40120 \times 1 \mathrm{~A}$ AS 20 mm Fuse	$4805 \times$ Gen. Purp. Push/						
			114 Thom 9000 250									
51 Decca 1730/1830 5.00	$1465 \times$ TBAB $10 S 3100$	LNE OU	115 Thorn 16154 Way 7.87	Conv. Pot 360 $5 \times$	$40220 \times 1.25 \mathrm{~A}$ A/S 20 mm	$48120 \times$ Neons GEC						
52 Decca 80 Series 4.50	$1475 \times$ TBA9200 4.50	001 Philips 68	116 Decca 6 Way 6.55	$3605 \times$ TCE3500 A1 Rectifier	Fuse 1.40	etc. 225						
EC 2040 Hybrid 3.00	$1485 \times$ TBA990 325	002 Decca 30 Series 7.00	117 Decca 41 Way 6.50118 GEC 21106 Way 7.95	Rectifier 0.75	${ }_{\text {Base }}^{403} 5 \times$ RRI T20 Tube	$4825 \times$ Univ. Aerial Skt. Kit						
15005 Stick 3.50	$1495 \times$ TBA5200 4.00	003 Decca 100 Series 6.50		Assy								
55.	$1505 \times$ TBA530 425	004 ITT CVC 25/30/32 7.00	119 GEC 21367		$\begin{aligned} & \text { Base } \\ & 410 \text { Phil. G11 EW Load/ } \end{aligned}$	$\begin{aligned} & \text { Kit } \\ & 483 \\ & 48 \end{aligned} \text { Metal } \begin{array}{r} 5.50 \\ \text { Coax } \end{array}$						
56 Thom $1400 \quad 200$	$1515 \times$ TBA950 4.50	005 Philips $69 \quad 7.50$	Tapered	364 T8500 Mains TX 7.50	$\begin{aligned} & 410 \text { Phil. G\$1 EW Load/ } \\ & \text { Coil } \end{aligned}$							
57 Philips G9 3.50	$15410 \times$ TCA270SQ 4.00	006 RR1 T20 9.88	120 ITT CVC5		$\begin{array}{lllr}411 & \text { Phil. } 611 & \text { Bridge } \\ \text { IX } & & 1.50\end{array}$	484 Focus Unit $\begin{gathered}\text { T20 } \\ 125\end{gathered}$						
58 Universal ITT Type 4.50	$1555 \times$ MC13270 250	007 RRI A823 7.00	121 ITT CVC8 11.65	Out 1.50	TXX 1.50 412 Phillips G11							
$595 \times$ TV11 EHT Rec for	160 TDA1170 1.35	008 RRI $27188^{\prime \prime}{ }^{\prime \prime}$ 14.E5	122 ITT 6 Way with			Type $485{ }^{\text {Foc/Unit }}$ Thom 8500 8050						
PTV's 1.00	161 TDA1190 1.50	009 RRI 2718 20/22/26"	V.C.R. 7.95	370 Pye 731 Thick Film Resis. $\quad 1.50$		T85 Foc/Unit Thorn 8500 Type 125						
$603 \times$ TV45 EHT Rec	162 TDA1006A 1.45	12.55	123 RRI A823 atc.		$41310 \times \text { TDA2600 IC }$	$48810 \times$ Ring Type Spkj						
2718	164 TDA1035 1.3	010 RRI A774 Mono 1087	$\begin{array}{ll}124 \text { Hitachi } 4 \text { Way } & 7.55 \\ 125 \text { RRI T20 } 6 \text { Way } & 8.55\end{array}$	Resis. 371 Pye $713 / 731$ Vis. Gain	Holder 1.50							
61 ITT CVC $45 \quad 400$	165 TDA104 223	017 Thom 1690/91 700		371 Pye 713/731 Vis. Gain Mod. \qquad		Gap 1.50						
63 RRI 2179	166 TDA1190 1.50	$\begin{array}{ll}012 \text { Thom } 1615 & 6.50 \\ 013 \text { ITT CVC } 45 & 6.50\end{array}$	125 RRI T20 6 Way 8.ss	372 Pye 731 3ค3 50 W Metal cld.	Fusible $4365 \times$ Decca 30 0.50 489	496 TX10 Chass. Focus						
64 Pye 691/697 3.50	167 TDA1412 0.90					497 De-Soldering						
65 Pye CT200 4 Lead 3.50	172 TDA2002 1.20	014 Phil TX Chass. 5.00		$373100 \mathrm{~K} \times 3$ Drawer P'set	Modulohm $\quad 1.75$							
66 Pye CT200 5 Lead 4.50	173 TDA2020 250	015 RRI Ranger 1/2 5.00		At Pye $731 \quad 200$378 Grundig 5010/5010 Vid	$\begin{array}{lll} 437 \quad \text { Decca } & 30 & 47 \mathrm{k} \\ \text { Vol. }+ \text { Switch } & & 125 \end{array}$	${ }_{4}^{\text {Pump }} 1 \times 10 \text { Trimming } \quad 3.50$						
67 Korting 90 DGR	174 TDA2030 215	016 ITT CVC $5 / 9 \quad 850$	CAPACTIORS									
Hyb 5.00	178 TDA2523 235	017 Philips E2 Chass. 5.00	$80220 / 400$ CVC32 20120	378 Grundig 5010/5010 Vid	$4535 \times 5 R$ Universal Conv. Pot 1.00							
		018 Thom 9000	$81200+300$ Pye 691200 $82600 / 300$ Phil G8 1.90	3845×10 R Phil. G8 Conv. Pot. \square								
All components are A1 quality from		019 Thom 9500/9600 8.51			Conv. Pot. $4545 \times 20 R$ Universal	TRANSISTORDIODES						
prime manufacturers, and are dis-		021 Thorn 3500 Scant 4.50	$83 \quad 175+100+100$	$3855 \times 15 \mathrm{R}$ Phil. 68	Conv. Pot 1.00	$23010 \times$ ACl28 $\quad 1.50$						
		$\begin{array}{lll}\mathrm{T3500} \\ 842000 / 100 & \text { Volt } & 1.50 \\ 0.50\end{array}$		$4555 \times 100 R$ Universal Conv Pot 100	$23550 \times$ BC213L 250							
atched by post	e day as order		023 Thom 159091 8.50	85470 Mfd G11 1.50	$3865 \times$ Phil. $682 k \times 2$ Lin.	Conv. Pot.	25010×80124					
eived togethe	th any refund	024 Thom 1500 15KV 4.00	$86400+400$ Decca 30		Conv. Pot. 1.00	25110×80131						
		025 GEC 2040/2100 Hybrid			457 10 $\times 100 \mathrm{k}$ Tun/Pres	$\begin{array}{ll}27010 \times \text { BU208A } & 8.50 \\ 27110 \times \text { BU208 } & 7.50\end{array}$						
due. All goods should be delivered within 4 working days.		CTV 4.00 O26 Bush 161 Mone 5.00 027 GEC Single Std Mono 500	$87200+200+75+25$	$3875 \times$ Phil. G8 10k Log.	TCE etc. 300							
		CVC5 $/ 9$$88400 / 400 \mathrm{~V}$ Tho 90001.50	$3885 \times$ Phil. 68 47k Log.Vol. 250	$45810 \times 100 \mathrm{k}$ Tuner Pre-	$27210 \times$ BU326 $\quad 10.00$							
		set G8 3.00		$2735 \times$ BU205 3.75								
Please add 15\% VAT and 90p P \& P			Mono 028 Pye 691 (wired) 5.00 5.00	89 91	$\begin{array}{ll}389 \text { G8 Plastic } & \text { Mains } \\ \text { Switch } & 0.75\end{array}$	459 ELC1043/05 Tuner 600	280×25 (Texas)					
5												
MUXTON HOUSE, MUXTON, TELFORD, SALOP. REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.						$\begin{aligned} & 2935 \times \text { BTICO } \\ & 335 \times 50 \times 50 \\ & \hline \end{aligned}$						
						REG. OFFICE ONLY. CALLERS STRICTLY BY APPOINTMENT. UK ONLY. PLEASE QUOTE STOCK NO.						

The effect of Canal Plus video scrambling.
whatever number was typed in. But from December 1st you could no longer get the correct code number from your neighbour if you had managed to acquire (or copy) an official decoder without subscribing to the service. Canal Plus had been obliged to find a very secure method of scrambling. Even in the USA, where the public is reputed to respect speed limits and parking restrictions, pay TV stations estimate that they lose $25-30$ per cent of their custom to pirates. In a country like France, where fiddling - not to mention failure to respect red traffic lights - is considered to be a national sport, the percentage of those likely to try to get round Canal Plus restrictions was bound to be high.

Canal Plus Reception

The Canal Plus decoder is connected to the SCART socket that's been a legal requirement on every colour set sold in France since 1981. It receives the scrambled composite video and sound signals via the socket and feeds the decoded outputs back to the appropriate socket input pins. A 12 V switching signal is applied to pin 8 of the socket to bring this input/output arrangement into operation. This procedure led to all kinds of problems initially. Very few viewers had tried to use the sockets before, and on many sets they weren't up to standard they couldn't provide the various outputs and inputs at the same time and in many cases the switching function didn't work. In some sets the contrast control was rendered inoperative. And no monochrome sets have a SCART socket. The alternative arrangement consists of a "modulator" - in fact a tuner, vision/sound i.f. strip and u.h.f. modulator: this sold at $£ 100$ but supplies dried up.

Decoding the Sound

The scrambled sound is easy enough to decode. Scrambling consists of frequency inversion around 12.8 kHz , i.e. single-sideband transmission on a 12.8 kHz subcarrier, with $75 \mu \mathrm{sec}$ of pre-emphasis. The SECAM L standard uses a.m. for the sound, but the same kind of scrambling could be employed with an f.m. system as used in the U.K. True single-sideband transmission, i.e. suppressing the a.m. carrier and transmitting only one set of sidebands, wouldn't have been a practical proposition. The use of a.m. precludes the use of an intercarrier sound system - the limiting used to remove vision buzz would also remove the sound modulation. So a crystal-controlled
b.f.o. working at 39.2 MHz (the standard sound i.f. in France) and a tuner kept stable to within a few Hertz would have been necessary. Even if these requirements could be met, perish the thought of viewing Canal Plus via a VCR in the E-E mode.

The official decoder uses an 8 MHz oscillator phase locked to the line frequency $(15,625 \mathrm{~Hz} \times 512=8 \mathrm{MHz})$, the output being divided by $625(8 \mathrm{MHz} \div 625=$ 12.8 kHz). The Radio Plans' design uses a $3 \cdot 2768 \mathrm{MHz}$ crystal oscillator however $(3.2768 \mathrm{MHz}$ is a commonly used frequency in computer circles) with a 4020 CMOS i.c. to divide by 256 . An MC1496 double balanced mixer and a single transistor active filter to get rid of the earsplitting 12.8 kHz complete the sound section.

Experience has shown that injecting 12.8 kHz from an a.f. signal generator into a set's audio section can give barely usable results. A frequency counter must be connected to monitor the frequency, which has to be readjusted every few minutes.

The system has an interesting side effect. While it's perfectly possible to decode a recording of scrambled video the same is not true of the sound. This is because very few VCRs have an audio bandwidth large enough to record the whole of one sideband: on playback and decoding the frequencies below 1 kHz are so attenuated that sound is unintelligible.

Video Decoding

Decoding the video is more of a problem. The video on each line is delayed by either zero, 902 nsec or $1,804 \mathrm{nsec}$ after the blanking and colour burst, the timing of the sync pulses being rigorously maintained. The video delay varies from line to line over a six field sequence. The result, with an undecoded signal, is the ragged effect shown in the accompanying photograph.

The solution adopted by Radio Plans is to pass the composite video through two 888 nsec delay lines (there is

Fig. 1: Block diagram of the video delay system used in the Radio Plans' Canal Plus decoder.

Fig. 2: (a) Coded video with variable delay at the start of each line. (b) Decoded video with the same delay on each line.

Fig. 3: Start of video detection circuit.
some disagreement as to the exact length of the delay). Each line is separately analysed to determine the delay required. If the video is found to have been delayed by one unit, the output is taken after passing through delay line DLl (see Fig. 1). If the video is delayed by two units the output prior to the delay lines is used. When the line is not delayed the output from the second delay line is used. A little gating has to be carried out so as not to disturb the sync, blanking and burst in the process. The result of all this is that every line is delayed by two units (see Fig. 2) so that the verticals are once more straight. The dark band on the left-hand side of the screen is not objectionable and in most cases is lost in the overscan.
The main problem lies in determining whether the video has been delayed once, twice or not at all.'For this purpose the Radio Plans' decoder detects the signal rise from the blanking level to luminance at the start of each line - in the worst case, with a low-key scene, this rise is about three per cent.
The circuit used is shown in Fig. 3. Transistors T3 and T4 form an active low-pass filter to remove the chrominance information. IC4 then amplifies the resulting luminance only signal five times, which means that we have to detect a rise of 150 mV . IC7, a 4016 CMOS switch, samples the luminance signal during the $4 \mu \mathrm{sec}$ sandcastle line blanking pulse (SC), charging C28. The output from IC8 (a buffer) is fed to IC5, an LM360 comparator i.c., which compares the charge on C28 with the video signal from IC4. Transistor T5 changes the output from IC5 to a level suitable for IC9a.

IC9b is connected as a monostable multivibrator which produces a fixed length pulse following the line blanking period (it's triggered by pulse SC). This output pulse is used to enable the other monostable multivibrator IC9a during this period. As a result, the start of video information signal is accepted only during a window of a few microseconds after the end of the blanking period. Two more flip-flops are used to check whether the leading edge of the pulse from IC9a falls within a first, second or third window about 800 nsec wide so as to decide which of the video delay periods to use.

Outcome

The Radio Plans' circuit went down well with the public. Enough copies leaked out for photocopies to be readily available to anyone who wants them, and only generally
available components are used. Component shops in Paris openly sell PCBs - they have to reorder them by the caseful! Fully made up boards are on sale at the flea markets and at technical colleges. Most of the more unusual i.c.s are now in extremely short supply - the TDA2593 sync separator/pulse generator, TDA 1034 video amplifier - not to speak of the TDA4560 CCD delay lines. Alternative versions have become available using luminance delay lines instead of the scarce TDA4560s. Rumour has it that electronics engineers in every research establishment in France, including Thomson and the Atomic Energy Commission, spend a large proportion of their time developing new methods of decoding Canal Plus!

The Canal Plus pictures are almost watchable in their scrambled state, particularly when the accompanying sound has been successfully decoded. It has even been said that the erotic films shown on Canal Plus during the early morning hours have a greater effect when seen in the "zig-zag mode". Presumably they leave more to the imagination!

Canal Plus could still counter this illicit decoding. The 902 nsec delay periods could be filled with peak white, grey, 1 MHz or whatever. But then the hackers will always find a way round whatever is done. Another suggestion has been to store the coding sequence. The number of delays given to each line follows a six field sequence and can be stored in a RAM: the two problems are to determine each month's sequence and provide synchronisation. Canal Plus uses line 310 for synchronisation, but a pseudo-sync signal on a different line could easily be transmitted to confuse the pirates rather like the pseudo-sync pulses that were used for certain anti-pirate VCR systems. Random sync will give a one in six chance of being right on changing channels: the burden could be taken out of this by using remote control - the viewer switching channels till the picture comes into sync.

Another method that's been suggested for determining the line delay sequence is to use a circuit that produces a movable rectangle on the screen - with monostables and a joystick. The viewer would place this over a contrasty vertical and a comparator of the type previously described would do the rest. The user would have to start again at the beginning of each month of course.

With all this illegal decoding it's perhaps not surprising that Canal Plus has reported heavy losses.

Servicing the Hitachi NP8CQ Chassis

David Botto

This chassis is used in a number of Hitachi sets such as the CTP208, CBP220, CBP222 and CBP226, in the GEC Models $\mathrm{C} 2055 \mathrm{H}, \mathrm{C} 2255 \mathrm{H}, \mathrm{C} 2057 \mathrm{H}$ and C 2257 H , and in certain Expert sets. The main difference between the GEC " 55 " and " 57 " series is that the latter incorporates remote control - an almost identical system is used in some of the Hitachi sets. Since the author is most familiar with the remote control GEC sets this article is based on these. Any minor differences will be noted as we go along.

The C 2057 H is a 20 in . model while the C 2257 H is the 22 in . version. Picture and sound are excellent and the
reliability is good. Perplexing faults can occur however, giving mystifying symptoms. There are two power supplies, the main chopper power supply and a stand-by supply on a small printed board labelled PC021 .(nonremote control sets omit the stand-by supply). Once the operation of these two power supplies is understood you'll find the receiver straightforward to service. We'll list the most important interconnections between the panels as this can save you hours spent tracing them through to their various destinations.

The a.c. mains supply passes via the on/off switch S901 (see Fig. 1) to pins 1 and 2 of connector PL22 on stand-by

Fig. 1: Power supply arrangements used in the GEC Models C2057H and C2257H.
power board PC021, then via the $3 \cdot 15 \mathrm{AT}$ mains fuse F1601 and thermal fuse F1602 to the primary winding of transformer T1601. A mains feed to the main board is taken off prior to the transformer and its thermal fuse: this goes via PL17-1/3 and P901/2 to fuse F901 (2AT) on the main panel.

The transformer's secondary winding feeds a bridge rectifier which produces 24 V across C 1603 . In addition to feeding the 18 V regulator IC 1601 the 24 V supply is fed via connector PL19-1 to the coil of a relay which can switch S 901 off. The other end of the relay's coil is returned to chassis via PL19-2 and thyristor TH1601 whose gate is connected via ZD1601, R1607, PL18-2 and PL3-3 on the remote control/tuning panel (PC987) to pin 6 of the SAA1251 remote control decoder i.c. When pin 6 of this i.c. goes high on receipt of the off command TH1601 is fired and the relay operates to switch off the receiver. Once this occurs the set can be switched on again only by manually operating S 901 . Note that some of the Hitachi sets with remote control do not have the remote off feature (stand-by power supply panel PC036).

The regulated 18 V line powers transistors Q1601/2 and is also fed via PL19-4 to a microswitch which is part of the mains on/off switch assembly S 901 . When the receiver is switched on, the microswitch closes momentarily, connecting the 18 V supply to PL19-3. This point is connected via PL18-4 to PL3-5 on panel PC987 where the supply goes via R1505 ($1 \mathrm{k} \Omega$) to pin 19 of the SAA1251 remote control i.c. At the same time the base of transistor Q1601 is connected to the 18 V line via R1611.

Q1601 produces a positive-going pulse at PL20-1. This goes to connection RF3 on the main chassis, then via R908 to the base of the chopper transistor Q901. The chopper power supply is thus started. Q901 is connected in a blocking oscillator configuration, with feedback from the secondary winding on the transformer to its base via R902/R909 and C908 ($0 \cdot 27 \mu \mathrm{~F}, 200 \mathrm{~V}$ polypropylene). The feedback switches Q901 off, after which current reversal in the feedback winding switches Q901 on again. Oscillation is thus sustained.

The microswitch action sets a bistable circuit in the SAA1251, as a result of which pin 19 of this i.c. remains at 18 V after the switch has opened. Q1601 and Q1602 are thus held on. A remote stand-by command will reset the bistable in the SAA1251, as a result of which pin 19 goes low. Q1601/2 switch off and the voltage at PL20-2 rises. This voltage is fed via RF1 on the main chassis, then R915 and D913, to the base of the chopper control transistor Q903 which thus turns fully on, shorting the base of the chopper transistor Q901 to chassis. The main power supply then shuts down. When the user selects a channel, Q1601/2 switch on again so that the chopper circuit starts up.

On remote control sets the junction of R911B and R914 is connected to chassis. On non-remote control sets this circuit is rearranged to provide the start-up action, see Fig. 2. In this case the chopper transistor is forward biased at switch-on via R911, R907 and R908. In the event of a short-circuit across the 108 V h.t. line D908 switches on, reducing the chopper transistor's base bias to provide protection against excessive dissipation.
Power is taken from the secondary winding on the chopper transformer T901, the two rectifier diodes D906 and D907 producing 108 V and 54 V respectively across C909 and C910.
The chopper circuit is synchronised to the line timebase by feeding line-frequency trigger pulses from the line

Fig. 2: Chopper circuit differences in non-remote control versions of the chassis.

Fig. 3: The excess current/voltage trip circuit.
output transformer to the base of Q901 via C912. Voltage stabilisation is provided by CP901, which samples the 108 V line at pin 2, Q902 and Q903. H.T. line voltage variations alter the bias applied to the error amplifier transistor Q902 whose collector voltage thus changes. This adjusts the chopper transistor's base current via the control transistor Q903. Note that there is no h.t. preset control.

Trip Circuit

Comprehensive pratection is provided by connecting* thyristor Q705 as a crowbar in series with R729 across the 108 V line (see Fig. 3). When Q705 is fired the chopper circuit's output is shorted to chassis and the circuit stops oscillating. Q704 fires Q705 under various fault conditions: its base senses the current flowing in the line output stage, though R714 which is in series with the emitter of the line output transistor, the current flowing in the field output stage, via R625 which is in series with the field output transistors, and the voltage conditions in the line output stage. Voltage sensing is done by CP701: pin 1 of this device is connected to C730, the reservoir capacitor for D705 which rectifies the pulses developed at pin 2 of the line output transformer. D706 produces a voltage proportional to the line scan waveform.

Access

To gain access for servicing, remove the back cover by taking out two screws at the bottom and then turning the
four plastic "turnbuckles". When you remove the plastic ties which keep the wiring harness tidy be sure to note their exact positions first. Ease the plastic retainers at the front of the chassis and slide it out. The chassis will turn through 90° and fit into its plastic parking bracket at the bottom left of the cabinet (looking into the reciever from the back).

A parking hook is cunningly concealed at the top of the cabinet: it pulls out to hold the chassis in the parked position. You can now get at the print side of main panel PC940, which should be on the left when the chassis is parked upright. Sadly, your view will be obscured by various hefty chunks of plastic, and to obtain access to some components you'll have to remove the panel from its plastic surround. Unfortunately these always seem to be the parts you want to check!

Dead Set

If you've a completely dead set you may at first get that sinking feeling! Is the fault in the main power supply, the stand-by power supply, or is it due to an overload, probably in the line output stage?

Start by checking F1601 and/or F901. These fuses have been known to die of old age with no sign of blackening. Be careful when handling the stand-by power supply panel as the print easily cracks.

Next remove the line output transistor's collector connection on the line output subpanel PC945, which is mounted on the main panel near the line output transformer. Connect your d.c. meter - preferably a digital one - to the lead you've removed. Connect the a.c. mains supply and switch on. If you get a reading of 108 V d.c., the fault is in the line output stage. If there's no voltage, transfer the test lead to the cathode of rectifier D906 to see whether the 108 V h.t. is present at this point. If it is, switch off the receiver and check for dry-joints between line output subpanel PC945 and the main chassis. If the 108 V is completely absent, experience indicates that one of the power supplies is faulty. Since they both interconnect, how can you decide which power supply has failed?

Connect your d.c. oscilloscope or digital voltmeter to the base of the chopper transistor Q901. Switch the set on and hold the mains switch S 901 in . A positive kick-up voltage pulse should be detected. If the pulse is missing, connect the voltmeter to Q901's collector where a reading of about 250 V d.c. should be obtained. If 250 V is present here but the kick-up pulse is missing you've a fault in the stand-by power supply.

First make sure that the interconnecting plugs are clean and making good contact. Next measure the d.c. voltage at each side of the 78 L 18 regulator i.c. ($\mathrm{IC1601} \mathrm{)} \mathrm{-22V}$ and 18 V d.c. should be present at the input and output respectively. If the 22 V is absent, check R1601, the bridge rectifier diodes D1601-4 and thyristor TH1601. Examine the panel carefully for dry-joints and print breaks. Then check Q1601, Q1602, ZD1602 and ZD1603 in that order.

The fast, reliable way to check these is with a component tester. You can easily check the operation of the microswitch by connecting an ohmmeter (mains disconnected of course) across PL19-3 and PL19-4: press and hold switch $S 901$ and check for a zero reading.

If the kick-start pulse is present at the base of Q901 or there's no 250 V d.c. at its collector the fault is in the main power supply. The first suspect is Q901 itself - it's the usual item that fails. Before replacing it, check its emitter
resistor R917 ($0 \cdot 3 \Omega$, 1W w.w.). Should Q901 be in order and the 250 V supply missing, check the mains bridge rectifier diodes D901-4 and the surge limiting resistor R901 ($7 \cdot 7 \Omega$, 8W w.w.). Although these components seldom fail, they can do so on occasion. A fairly common fault is dry-joint(s) at the chopper transformer's pins. 'In the non-remote control versions R911, R907 and R908 are prone to failure, with the result that the circuit fails to oscillate. If necessary check Q903, Q902, D909-D912, D905 and ZD901 in that order. It's possible for CP901 to fail: the only sure test is by replacement.

Tackling the Line Timebase

The line generator lives in IC701 (HA11235) along with the sync circuitry and the field generator. It's powered from the 54 V rail via R 703 and R 734 which provide 12.7 V at pin 11 in conjunction with an internal stabiliser. The line drive output is at pin 10: it's fed via R710 to the base of the line driver transistor Q701 (2SC1722-BK) which is transformer coupled to the base of the line output transistor Q702 (2SC1942).

Various supplies are produced in the line output stage. D703 and C714 develop 900 V for the tube's first anodes. D704 and C719 develop 180V for the RGB output stages. D707 and C729 produce the 12 V supply for the low-power stages. Fusible film resistors are incorporated in the 180 V and 12 V supplies - R713 (2.2 2) and R717 (1 Ω) respectively.

The most common line timebase fault is failure of the output transistor. Before replacing it check D703 (V11N) and the efficiency diode D702 (GH35) - they are on the same panel as Q702.

With Q702 out of circuit, check for line drive at its base connection using the scope with a $10: 1$ probe. If drive is not present, check at the collector of the driver transistor Q701, then at the junction of R710/R711. See Fig. 4. Don't be in a hurry to condemn IC701: check the associated components and voltages and look for dryjoints first. Other items to check in the line output stage are R714 ($5 \Omega, 8 \mathrm{~W}$ w.w.), D706 (RH1Z) which is part of the protection circuit, and the fusible resistor R717 which. shuts the line output stage down when open-circuit.

The line output transformer T703 is of the diode-split type, and sadly is prone to failure. Substitution is the only reliable test.

Field Faults

As previously mentioned, IC701 produces the field drive waveform. To set the field hold connect a $100 \mathrm{k} \Omega$ resistor between pins 6 and 8 (TP601/2) and adjust R605. If the field display is unsteady or varying up and down, suspect the thick-film field output module M601 (HM6232).

Tuner and IF Strip

The tuner, Hitachi type ET546, is mounted on the main panel. Its output is fed to the HA11215 i.f. i.c. (IC201) via SAW filter CP201. The 6 MHz sound signal is taken from pin 2 of IC201 via ceramic filter MF401 to pin 2 of the HA1124A intercarrier sound i.c. (IC401). The audio output appears at pin 12 of this i.c. and is fed via C415 $(10 \mu \mathrm{~F})$ to the audio output transistors Q401/2 (both type 2SD401 or 2SD478). Zener diode ZD401 (HZ11) in the audio coupling network has been known to cause sound

Fig. 4: Line drive waveforms (a) at the junction of R710/1 and (b) at the collector of Q701.
distortion problems. Should the receiver tend to drift off tune, check diodes D054 (1S2076A) and ZD051 (μ PC574J). The composite video signal appears at pin 24 of IC201: it's fed via R701 to the sync separator transistor Q703 and via L207 to decoder panel PC942.

Decoder

The video signal arrives at connection B7 on the decoder panel where it's fed via the chroma bandpass filter T501 to the TA7193P decoder i.c. (IC501) and via R301/2 to the first luminance amplifier transistor Q301. You won't have problems with complex colour faults in these sets since virtually all the chroma circuitry is contained in IC501 which is reliable and either works or it doesn't. It has been known to cause green faces however. It's useful to know how to set up the subcarrier oscillator. Connect pin 21 of IC501 (TP504) to chassis via a $22 \mathrm{k} \Omega$ resistor and link the junction of L501, C506 and C507 (TP503) to chassis. With a colour bar input to the receiver, adjust R514 for correct colours. Normally you won't have to make this adjustment unless the set has been got at by some person unknown.

If you get a raster with a dimly visible picture and uncontrollable brightness, check diodes D303-6 (all type 1S2473H), then zener diodes ZD301, ZD501, ZD502 and ZD503 (all type HZ11) and transistor Q304 (2SC458). Then suspect IC501.

CRT Base Panel

The RGB output transistors are on c.r.t. base panel PC015/PC029. Should you find the 180 V supply missing, check R713 and D704 in the line output stage. Some Hitachi models were fitted with an "instant picture" c.r.t. - it had directly heated cathodes. This involved a different base panel with a transformer (T805) to provide the heater
supply to the cathodes. The system was not a great success and for replacement purposes modification is recommended (see Television December 1982, page 74).

Remote Control

So far we've had no problems with the infra-red remote control signal amplifier panel PC981, nor have we had a faulty remote control handset.

The SAA 1251 remote control decoder i.c. (IC1501) lives on panel PC987, just above the loudspeaker. It works hard for its living but we've yet to have one fail. The infra-red commands enter at pin 16 in the form of serial binary data. Commands which override the manual brightness, colour and volume controls emerge at pins 3, 4 and 5. The outgoing information at pins $8-10$ serves a dual purpose. It's applied to IC1502 (SN76709AN) on the same panel: this i.c. selects the correct tuning potentiometer for the channel required. It also goes via PL1 to the LM1017 seven-segment display driver i.c. (IC1771) on panel PC018. The FND500 seven-segment LED indicates the channel to which the set is tuned. IC1501 also interprets information from the manual channel selector switches on board PC995.

Should the $4 \cdot 433 \mathrm{MHz}$ crystal XTAL1501 be faulty the clock oscillator in IC1501 will stop and the i.c. will ignore all commands. To check its operation connect a frequency meter or an oscilloscope to pin 23 of the i.c. where the clock frequency of 4.433 MHz should be present.

IC1502 is easy to check using a logic probe or digital voltmeter. With a channel selected one of pins 10-13 and $15-18$ should be at binary 0 (low) and the rest at binary 1 (high).

If the channels change but the FND500 LED does not indicate the selected channel correctly suspect IC1771 but first make sure that there is 5 V d.c. at pin 16 (from IC1772-78L05A). The FND500 itself is extremely reliable - we've never known one to fail in any piece of equipment.

Soak Test

In conclusion, after repairs have been completed and a thin coat of circuit varnish has been applied to all joints soldered it's best to soak test these sets for at least three hours.

Book Review

Servicing Personal Computers by Michael Tooley, published by Newnes Technical Books (Borough Green, Sevenoaks, Kent TN15 8PH) at $£ 17.95$.

As far as we know this is the first book on servicing microcomputers to be published in the UK. Newnes are to be congratulated on its timely appearance. There are now large numbers of microcomputers in homes and offices and their reliability is not too good. It's very likely therefore that a large new servicing market is in the process of opening up. In addition to reliability problems, it's reported that the manuals etc. for many microcomputers leave much to be desired.

This book is not exactly cheap at $£ 17.95$ for just over 200 pages (size $234 \times 165 \mathrm{~mm}$). Is it worth the price? This of course depends on whether or not you really want to get into the subject. If you do, I'd say it's invaluable.

Secondly, how much background knowledge do you require to be able to follow the book? I'd say that anyone who reads this magazine will find it remarkably easy to come to grips with the subject through a study of this book. It's not full of obscure logic circuitry but instead treats microcomputers basically in block diagram form, outlining what each section contributes to the microcomputer. This is not to suggest superficiality: the common microprocessor, ROM, RAM etc. chips used in microcomputers are described, with pin connections etc., so that one can have little doubt when looking at a microcomputer board what does what.

The fault diagnosis chapter is detailed and covers everything from simple power supply failures to test procedures for different sections of a microcomputer. This is followed by chapters on tape and disk drives, printers and monitors. The author is Principal Lecturer at the Department of Technology, Brooklands Technical College. All in all I feel that this is a very worthwhile publication.
J.A.R.

VHS VCR Audio/Control Heads

Derek Snelling

Many of you are probably familiar with the heads used in audio cassette recorders and may have changed one, finding no difficulty with the setting up which usually involves the adjustment of just one screw for azimuth alignment. The audio/control head assemblies used in VHS video recorders are slightly more difficult, with four adjustments that are to some extent interdependent. The purpose of this article is first to show how the two adjustments that may require alteration during the life of a head assembly should be carried out and then to provide, for the more ambitious, some guidelines on replacing an audio/control head assembly.

In the normal course of events the only adjustments required are for azimuth and tilt, to compensate either for head wear, tape wear or the fact that the manufacturer didn't set them up correctly to start with.

Azimuth Adjustment

If the treble response on sound is lacking with prerecorded tapes and those recorded on other machines but is all right with the machine's own recordings the azimuth setting probably needs adjustment. If you have an alignment tape, use the portion with the 3 kHz tone and adjust screw A (see Fig. 1) for maximum volume. If you don't have an alignment tape, use a recording made on a known good machine, the newer the better: select a recording with music and a lot of treble (violins are good) and adjust screw A for maximum treble. Note that there is no point in making this adjustment using a tape previously recorded on the machine being adjusted.

Tilt Adjustment

If the problem is varying sound level, usually only on the machine's own recordings and often with certain tapes, the tilt may need adjustment. The cause of the problem here is that the tape is not contacting the top of the head assembly properly. This can be due to low back tension, so check this first if possible. It can also be due to a tape stretching and getting a wavy edge. If the tension is correct and the tapes aren't excessively worn, the cure is to tilt the top of the head assembly slightly forwards to improve its contact with the tape.

To do this, adjust screw B. You'll probably need a jewellers' screwdriver, and may have to clean off some of the sealing paint first. Turn the screw clockwise by no more than one full turn - adjusting any farther than this may cause the bottom edge of the head to lose contact with the tape, and as this is where the control head section is the result could be speed variation problems. To check whether the fault has been cleared, make a recording on a tape which previously showed the fault up. If the fault is still present, try further adjustment, but once a full turn in total has been made no further adjustment should be attempted - a new audio/control head assembly may have to be fitted. After making this adjustment the azimuth should be checked as previously described, with the difference that in this case the adjustment can be made
using one of the machine's own previous recordings. Note that the tilt adjustment is not made whilst playing a tape and will not "bring back" the sound on the faulty recordings, only eliminating the problem with future recordings.

Head Assembly Replacement

Now for those brave enough to attempt head assembly replacement. If the machine has a height adjusting nut, e.g. Hitachi and Panasonic machines, removal of the head assembly complete with the base plate is a matter of undoing this and removing the assembly: unhook the spring if fitted. It's best to count the number of turns of the nut to aid refitting at the correct height. After removing the head/base plate assembly, the head assembly must be removed from the base plate by undoing screws A and C . Take care not to lose any springs. Transfer screw B from the old head assembly to the new one, counting the number of turns as you undo it and screwing it in the same number of turns on the new assembly. Refit to the base plate using screws A and C and any springs, screwing the assembly down to approximately the same height. Transfer the head PCB to the new head. Put the whole assembly back in the machine, reconnecting any springs, and screw the height nut down the same number of turns as on removal. Insert a previously recorded cassette in the machine and set it to play. Adjust the height nut for maximum sound while maintaining a locked picture, i.e. no rolling noise bar. Adjust screw A for maximum treble, then recheck the adjustment of the height nut. Screw B should not need adjusting but if necessary refer to the instructions given previously.

If the machine doesn't have a height adjusting nut Ferguson machines for example - removal means undoing the three screws after which the head assembly can be taken out: in this case the base plate remains in the machine. Before removing it, measure the height of the audio/control head assembly above the base plate to the nearest millimetre to aid refitting. Take care not to lose the springs from under the head assembly. Transfer the head PCB to the new head assembly and fit this in the machine at the same height as previously. To adjust the height on these machines all three screws must be turned the same way a little at a time until maximum sound is

Fig. 1: Typical audio/control head assembly layouts, (a) with height adjustment nut, e.g. Hitachi models, (b) without height adjustment nut, e.g. Ferguson 3V22.
obtained. Azimuth and tilt are then adjusted as before.
The thing to remember when adjusting a new head is that the final alignment will match that of the machine on which the tape used was recorded, so be certain of the alignment of the machine whose tape you use for the
purpose.
Finally X adjustment. On some machines this is a conical screw, on others the base plate is mounted via slotted holes. In either case centre the tracking control and adjust for best picture.

Sid's Secret Weapon

Les Lawry-Johns

Our old friend Sid popped in the other day and left a Ferguson 3787 with us for repair. "No hurry Les, I'll be back on Saturday." Since this gave me four days I agreed to have a go, despite my in-built fears of these Nordmende made colour portables that have given me so many hours of torment in the past. I wish an expert on these horrors would write an article for us outlining the pitfalls to be expected when idiots like me try to fumble around in them in the dark. Can you hear me someone out there? . . . help!

I removed the rear shell, loosened the two wing nuts and lowered the chassis. The blue line output transformer at the bottom right caught my eye. It didn't look right. I decided to switch on however to see what would happen. To my surprise the set started up, but in a half-hearted way. I felt the top of the $4 \cdot 7 \Omega$ surge limiting resistor RA05: it was stone cold. When I'd switched off I found that it was open-circuit. The set had been trying to work via the soft-start circuit, which was why RU05 (680』) was hot and bothered. So I fitted a new surge limiter and tried again. The sound came on but the tube's heaters didn't glow: the h.t. was correct but all the line output transformer derived voltages were low.

I looked at the transformer again and realised that the top half of the core was missing. I'd a suitable old transformer with a similar core so I stripped it down: the core fitted nicely and I glued it in position. Everything then seemed to be in order. A BBC-1 picture appeared and looked good. It stayed on until I pressed the second button for BBC-2. The set then immediately shut down.

I switched off and tried again after a few minutes. The set came on for a few seconds then shut down. I removed plug II, the feed to the tuner control unit, and tried again. The set now came on,. but without any picture or sound of course. There was plenty of noise however to show that the set was willing. It stayed on like this for an hour. Then I replaced plug II and it immediately shut down. So I removed the tuner control unit and checked just about everything. Finding no faults at all I refitted it and tried once more. The set now came on, but on switch position five - and wouldn't be budged. It seemed as though the SAS590 had taken exception to my probing. After fitting a new one the set came on, on channel 1 , and didn't object to changing channels. I felt relieved and left it on for quite some time.

I thought I'd disconnect the aerial and let it play away to itself. The act of disconnecting the aerial resulted in the set shutting down and this made me very angry.

I decided that the set was working in too sensitive a condition and studied the circuit at some length. Perhaps if I adjusted the set-e.h.t. control RZ13? I did so carefully, for 27 V at the slider. After doing this the aerial could be removed and channels changed at will. "Why didn't I do that in the first place?" I scolded myself.
The set behaved itself until Sid came to collect it. He
phoned yesterday to say that it works o.k. until the aerial is plugged in, then it shuts down. He'll be bringing it back in as soon as he has a chance. Back to square one . . .

The Quiet Life

When the Nordmende had departed life settled down for a few days to a more peaceful run of routine jobs. You know the sort of thing:
"You put a new element in my kettle last week and now it's burnt out. Surely these things are guaranteed?"
"Yes madam, if they are automatic. The one you had wasn't, and you did opt for the cheapest one without a cut-out. If you let it boil dry and cook up you can hardly blame the makers, or me."
The Thorn 9000 which had a new SKE diode (the one in series with the Syclops transistor) fitted six months ago and now has a tripler arcing to the frame. "I thought all work was guaranteed for a year."
Not all customers are unreasonable however. Some are quite understanding. Mainly men, but some women are, especially when you tell them you have a stiff leg (the remainder of this passage is censored - editor).

The Philips CTX-S

We seem to be getting a fair number of Philips sets fitted with the CTX-S chassis in lately. They are nice little sets with only a few common faults. Probably the most common, as with the KT3 etc., is failure of the 4.7Ω surge limiter in the power supply. One came in the other day however with the 300 V supply present right up to the collector of the BUX84 chopper transistor.
The chopper drive circuit uses discrete transistors, so fault finding is fairly straightforward. The driver transistor is a BF422, a small 250 V npn video type. It had failed. I prefer to fit the more beefy BF337, but it's essential to remember that the base is in the middle with this type, so it must be turned to present the base at one end as marked on the print. Provided this is done and plenty of clearance is left for the body (collector) more reliable operation is assured without the need for a heatsink.

These items, the BUX84 and its drive arrangement, occupy the front right side looking from the rear and are easy to get at as the panel slides out once the reaz cover is removed (four screws). Since the lady who'd brought the set in had been told the repair would be difficult and costly she was very happy to have it back in two hours.

Haunted . . .

What a contrast to the Nordmende that continues to haunt me. I'm sure it's only a simple adjustment but I did set it up according to the manual, honest. When it comes back I'll set it up according to me, so there . . .

16029	1.58	2SC1061	0.51	2508988	207	AN320	4.57	BC171	0.10	BD166	0.30	BF137	0.11	Bly 49	200	BY20320	0.18
16181	1.13	2SC1096	1.05	40408	0.45	AN322	4.38	BC172	0.09	BD168	0.66	BF152	028	BR100	0.20	BY206	0.17
16182	1.13	2SC1104	200	40594	1.39	AN331	290	BC1728	024	BD175	0.30	BFI53	0.52	BR101	0.37	BY207	0.22
16334	088	2SC1106	4.12	40535	1.39	AN337	3.98	BC173	0.15	8 D 17	0.39	BFI54	023	BR103	0.45	BY210-400	024
16335	0.7	2 2SC1114	5.81	40336	0.96	AN310P	1.06	BC1748	024	80179	0.4	8F157	023	BR888	0.58	BY210-600	027
16446	0.89	2SC1124	1.10	40071	1.39	AN335	336	BC17	0.18	BD181	0.50	BFI58	0.16	BRC-M-300	1.58	BY210-800	0.30
16500	125	2SC1151A	429	40872	1.39	AN362	1.97	BC178	0.23	BD182	0.50	BF159	0.16	BRC116	0.50	87223	0.55
16799	2.16	2 SC 1152	425	60857	1.10	AN5111	234	BC179	0.3	BD183	0.50	BF100	0.29	BRC1330	1.00	BY224400	0.50
16801	085	$2 \mathrm{SC1157}$	4.12	7415132	0.7	AN5132	3.59	BC182	000	BD184	1.10	BF167	0.34	BRC300	182	BY225-100	0.79
16802	1.03	$2 \mathrm{SC11162}$	0.95	74.13138	0.85	AN5250	333	BC1828	0.23	BD187	0.48	BF173	0.30	BRC4443	1.12	8Y226	0.28
16803	4.81	2SC1172	1.92	74 S157	0.78	AN5435	200	BC182	0.09	BD189	0.35	BF17	0.50	BRC4444	1.12	BY227	0.44
169905	1.35	2SC1195	283	74L161AN	1.18	AN5610	6.75	BC1821B	0.12	BD 190	0.59	BFF78	0.36	BRC5296	0.70	BY228	0.54
17074	6.00	2SC1213	0.75	745196	125	AN5613	372	BC183	0.09	8D201	0.54	BFI79	0.32	BRC6109	0.75	BY255	0.97
17127	3.91	2SC1236	137	744L20	025	AN5520]	4.63	BC183	0.08	BD202	0.54	BF180	0.32	BRCP2	0.58	Br298	0.25
17376	1.43	2 2C1306	085	74.L224	1.05	Anczizon	319	BC1831B	0.23	BD203	0.54	BF181	0.29	BRC83	0.98	BY299	0.25
1N4001	0.05	$2 \mathrm{SC1307}$	135	74.530	029	ANG32	135	BC184	0.08	BD204	0.54	BF182	0.30	BRCB4	0.58	BY476A	0.76
1 1 4002	0.05	2SC1316	3.40	74/5367	1.05	AN634	4.68	BC184L	0.09	BD207	1.00	BF183	0.35	BRX44	0.54	BYW56	0.30
1N4003	0.05	$2 \mathrm{SC1} 1364$	0.49	74.2373	1.5	ANG303	1020	BC184LB	03	BD208	1.00	BF184	0.39	BRX49	0.45	BYX10	026
124004	0.06	2SC1383	139	744.547	1.05	AN6551	0.56	BC186	024	BD2m	0.4	BF185	0.35	BRY39	0.50	BYX $55-350$	0.48
1N4005	0.07	$2 \mathrm{SC1338}$	0.51	74LS73	0.39	ANGS52	0.58	BC187	0.18	8025	0.4	BF194	0.15	BRY55	0.60	BYX55-600	025
1 14406	0.07	${ }^{2 S C 1410}$	2.17	74.574	035	AN145	200	BC204	0.14	8028	0.57	${ }^{\text {BFF}} 195$	0.12	BRY56	0.38	BYX71-350	0.67
1 14007	0.07	2SC1413	3.68	74.575	0.52	AN7150	22	BC207	0.12	80229	0.63	BF196	0.15	BSR59	1.17	BYX71-600	0.95
1 14148	0.03	2SC1505	0.56	744.586	0.49	AN7151	205	BC212	0.10	80231	0.45	BF197	0.14	BSS38	0.30	B7X94	0.18
1 12448	0.12	2SC1578	6.67	74.593	0.75	AN7156	205	BC212B	023	BD232	0.4	BF198	0.15	BSTBD1409	248	BY56	1.09
1N5401	0.12	2SC1617	335	741592	0.75	AN7158	234	BC2121	0.09	8023	0.38	BF199	0.15	BSTB01405	4.37	BZV15-C12	0.72
1 N 5402	0.13	${ }^{25 C 1670}$	28	74.593	0.5	AN7218	1.4	${ }^{\text {BC21213 }}$	023	${ }^{80235}$	0.43	${ }^{\text {BFF200 }}$	0.38	BSTCO146	225	BZV15-C12R	0.72
1 15403	0.14	$2 \mathrm{SC1} 1678$	125	74.595B	0.5	AP58076	425	BC213	0.09	B0236	0.45	BF216	0.3	BSTC0233	225	B2V15-C24	0.72
1 15404	0.15	2SC1810	1.40	7805 T0-220	0.63	AS560S	1.43	BC2131	0.03	${ }^{80237}$	0.38	${ }^{\text {BFF218 }}$	03.3	BSTCO246	4.51	8ZV15-C248	0.72
1 N5408	0.18	2SC1815	0.41	7805 T0-3	1.05	AU106	1.96	BC21318	023	B0238	029	BF23	0.50	BSTC1233	3.97	BZV15-C30R	0.12
1 N 914	0.05	2SC1829	201	7806	0.66	AU110	1.96	BC214	0.09	B0239	0.4	BF224	0.15	BSTC3146	0.71	BZX61 Range	0.16
1544	0.06	2SC1875	4.7	7808	0.54	AU113	2.15	BC2141	0.12	BD240	0.35	BF237	0.59	BSTCC0143	279	B2070-C11	0.54
155012A	0.73	2SC1891	3.35	7812 T0-3	0.51	AY102	20	BC2141B	023	B02400	0.47	BF240	0.15	BSTCO643	3.06	BZX70-C12	0.54
${ }_{15921}$	0.09	2SC1929	225	7812 10-220	1.05	AYYOSK	120	${ }^{8,285}$	024	B0241	0.45	BF241	0.15	BSS578	265	B27 $70-\mathrm{C} 15$	0.54
2582	1.9	2SC1942	5.70	7815	0.5	AY106	1.9	BC237	0.09	BD242	0.45	BF24	0.23	BSW68	0.38	BZX70-C30	0.54
2N1302	024	2SC1945	4.11	7818	0.5	BA102	0.30	BC238	0.09	B0243	0.4	BF245A	0.33	BSX19	0.30	B2X70-C47	0.54
2N1303	0.34	2SC1953	1.75	7824	0.55	BA 1310 (1C)	1.72	BC238A	0.11	BD243A	0.50	BF255	0.18	BSX20	0.30	B2X79 Range	0.09
2 N 218	0.38	2SC1987	0.86	AC107	0.66	BA1320 (1C)	1.2	BCZZ98	0.08	BD244	0.4	BF256	025	BSX21	0.45	BZY88 Range	0.09
2N2198	029	${ }^{25 C 1959}$	0.36	AC117	0.33	${ }^{\text {ba }} 1330$ (IC)	1.88	${ }^{8 C 251 A}$	0.15	${ }^{\text {B2244A }}$	0.7	BF2561C	0.38	BSY52	0.45	B2793-C12	0.99
2 N 2 m 2	0.3	2SC1962	1.75	${ }^{\text {ACl23 }}$	0.39	BA145	0.17	8C252	0.12	${ }^{\text {BD24SC }}$	0.68	BF257	0.30	BSY79	0.46	82793-C18	0.99
${ }^{2} \mathbf{N} 2646$	0.75	2SC1989	250	AC128	0.28	BA154	0.0	BC258	027	BD246C	0.74	BF258	029	BTICOA	1.46	BZY93-C24	0.99
${ }^{2} \mathbf{N} 2904$	0.32	2SC2027	26	AC138	0.08	BA155-01	0.12	${ }^{\text {BC261A }}$	020	${ }^{\text {BD2233 }}$	0.58	${ }^{\text {BFF259 }}$	0.30	${ }^{\text {BTIO }} 106$	120	B7r93-C24R	0.99
2N2905	0.39	2SC2028	1.91	AC141	025	BA156	0.12	BC762	0.20	B02784	0.00	BFz62	0.51	BT108	1.31	82793-C30	0.99
2N2906	0.34	2SC2029	1.49	AC142K	038	${ }^{\text {BA }} 157$	0.17	${ }^{\text {BC287 }}$	0.05	${ }^{80317}$	1.96	${ }^{85223}$	0.51	${ }^{\text {BTI } 109 ~}$	1.31	${ }^{87293-474}$	0.99
2 N 3053	024	2SC2057	1.07	AC151	0.25	BA159	0.12	BC294	0.45	8 8318	208	8F264	0.33	BT112	225	82793-C68	0.99
2 N 3054	0.50	2SC20]3	1.00	AC153	0.30	BA182	0.17	BC301	0.36	80375	0.38	8 F 271	0.30	BT113	225	827933-C75	0.99
${ }^{2} \times 3055$	0.55	2SC2078	125	AC153K	0.36	BA222 (IC)	125	${ }^{\text {BC332 }}$	0.30	${ }^{\text {BD37 }}$	0.3	${ }^{\text {BF723 }}$	0.18	${ }^{\text {BTIII }}$	1.50	21K33	0.39
2 N 3055 H	0.7	2SC2091	0.59	AC176	0.17	BA284/2	0.15	вca33	0.34	8D379	0.60	BF274	0.18	8T119	1.60	2818	2.47
2 N 3442	1.05	2SC2123A	4.05	AC176K	0.40	${ }^{\text {Ba } 301}$ (IC)	0.92	${ }^{\text {B C }} 307$	0.09	${ }^{\text {BD }} 380$	0.68	${ }^{\text {BF324 }}$	0.16	${ }^{\text {BTI20 }}$	1.60	${ }^{1065}$	0.46
2N3702	0.12	2SC2141	1.09	AC179	025	8A302	0.50	BCO27A	0.14	8 C 10	0.4	${ }^{\text {BF336 }}$	027	${ }^{\text {BT121 }}$	225	${ }^{\text {C1123 }}$	0.52
2 N 3703	0.12	2SC2156	1.35	AC183	0.65	BA311 (IC)	1.06	${ }^{\text {BCase }}$	0.12	80412	5.70	BF33	0.35	8112	225	CAI310E	245
${ }^{2} \mathbf{N} 3704$	0.12	${ }^{25 C 216}$	0.20	${ }^{\text {ACI }} 106$	030	BA312 (IC)	12	${ }^{\text {BC308A }}$	009	${ }^{80418}$	0.76	${ }^{8} \mathrm{BF} 338$	036	${ }^{\text {BTI23 }}$	180	CA3044	318
${ }^{2} \mathbf{N} 3705$	0.12	2SC233	220	AC18Sk	0.50	BA313 (IC)	127	${ }^{\text {BC309 }}$	0.15	80133	0.33	BF355	0.36	BT125	225	ca3046	223
${ }^{2} 31706$	0.12	2SC271	3.51	AC187	0.35	BA316	0.07	BC317A	0.11	80434	0.38	BF352	0.51	${ }^{\text {BTI26 }}$	225	CA3050	1.50
${ }^{2} \mathbf{N} 3707$	0.14	${ }^{25 \mathrm{C} 278}$	1.03	AC187-01	0.00	${ }^{\text {BA317 }}$	0.07	${ }^{81233}$	008	BD435	0.0	BF353	0.54	${ }^{\text {BTI28 }}$	225	ca3065	1.17
2N3711	0.14	$25 \mathrm{Cz2335}-\mathrm{K} \mathrm{K}$	7.51	AC187K	0.39	BA318	0.08	BC327	0.15	BDA36	0.2	BF371	0.45	BT123P	279	ca3069	3.35
2N371	1.85	2SC2526	1.70	AC188	0.33	BA328 (IC)	0.00	${ }^{8 C 328}$	0.10	BD43	0.41	BF391	0.35	${ }^{\text {BT129 }}$	225	CA3089E	1.30
2N372	1.55	2SC2551	0.85	AC188-01	0.10	BA333 (IC)	124	8c33	0.08	B0438	0.4	BF393	0.90	BTT51-800	1.47	ca3090	125
2N373	1.56	2522570	1.80	AC183k	0.39	BA401 (IC)	0.58	BC338	0.10	BD441	129	BF417	1.20	BT151 500R	125	CA3094	200
2N3819	028	25.25504	0.95	AClis3	0.59	BA511 (IC)	1.8	BC380	0.30	${ }^{\text {BDO }} 42$	0.56	BF418	1.0	${ }^{816018}$	220	CA3131EN	288
2 N 3823	1.06	25 C 264 A	4.38	ACl94k	0.58	BA521 (IC)	1.11	BC368	0.23	B050	0.54	BF422	026	BT6218	220	ca3132EN	283
2 N 3904	0.56	${ }^{25 C 22671}$	1.59	AD140	0.96	BA532 (1C)	12	BC40	0.90	B0508	0.54	BF423	0.26	8178024	4.02	CaH76023N	6.00
${ }^{2} \mathbf{N 3} 3908$	0.56	${ }^{25 \mathrm{C} 2728}$	0.95	AD142	0.56	${ }^{\text {B4536 }}$ (IC)	27	${ }^{8 C 441}$	0.40	80509	129	Br435	0.99	ВT78124	4.4	CBFIE848N-T	1.41
2 N 1101	1.10	$2 \mathrm{SC372}$	127	AD143	0.56	BA63304A (IC)	205	BCA54	0.3	8 B 510	0.4	BF450	0.30	8178214	5.4	CO4001	024
2N4240	3.00	${ }^{25 C 373}$	1.05	AD145	1.55	BAB43 (IC)	3.00	BCA55	03	80518	1.35	BF451	0.25	817822	270	CO4002	0.24
2 N 443	135	2Sc33	120	AD149	0.81	bAVIO	0.10	BC460	0.38	80519	135	BF457	0.37	BUlos	1.66	C04008	0.5
2 N 4444	1.12	${ }^{25 C 3} 388$	0.45	AD161	030	bavir	0.10	${ }^{\text {BCa }}$ 61	$0 \cdot 10$	80529	0.38	${ }^{\text {BF458 }}$	0.35	BU106	225	CDA011	0.23
2 N 4914	$0 . .85$	${ }_{2 S C A 1}$	1.99	AD162	0.30	BAV19	0.10	${ }^{8 C 462}$	027	B0530	0.00	BF459	0.35	${ }^{\text {BULOB }}$	1.90	CO4012	024
2N5064	0.64	2SC458	0.55	AD262	0.95	BAVZ	0.10	BC463	0.58	${ }^{80533}$	0.00	BF460	0.54	BUIOSS	1.90	CD4013	0.37
2N5233	0.45	${ }^{2 S C 495}$	0.33	AF114	224	bav21	0.17		0.58	${ }^{\text {BD534 }}$	0.35	87469	027	BU110	252	C04016	037
${ }^{2} \mathbf{N} 52939$	0.5	${ }^{2 S C 508}$	3.36	AFI15	079	bax12	0.10		0.5	${ }^{80535}$	0.4	$8 \mathrm{B470}$	028	Bu111Y	376	CD4017	0.74
2N5296	0.40	2 2S515A	128	AF116	0.79	bax13	0.10	BCA 7	025	80536	0.5	8F471	023	BU124	125	CO4020	0.92
2N5297	0.45	$2 \mathrm{SC537}$	0.90	AF117	075	BAX16	0.10	BCA78	029	${ }^{80537}$	0.50	BF472	0.28	${ }^{\text {Bul26 }}$	1.11	C04021	024
2N5298	0.55	${ }^{25 C 5588}$	3.35	AF118	0.5	${ }^{\text {B8105B }}$	027	${ }^{\text {BCa79 }}$	028	${ }^{80558}$	0.00	BF479	0.55	8U134S	4.15	CO4023	0.25
2N5490	1.35	25 c 505 L	1.05	AF121	0.50	B8119	0.15	BC532	0.25	BD5448	0.75	BF480	0.54	Bu204	129	CD4025	0.54
${ }^{2} \mathbf{2} 54496$	0.45	${ }^{25 c 520}$	138	AF124	0.35	${ }^{81} 107$	0.13	${ }^{\text {BCS546 }}$	0.15	${ }^{80580}$	1.05	${ }^{87495}$	0.58	BU205	0.88	CO4428	0.76
2N6107	0.53	2SC643A	1.40	AF125	0.35	BC1778	0.14	BC547	0.09	8D590	1.06	BF506	0.39	8U206	120	C04047	0.56
2 26109	1.3	${ }^{25 C 673}$	1.11	AF126	0.35	BC108	0.12	ВС548	0.09	8D598	1.13	$8 \mathrm{BFO9}$	0.3	BU207	1.50	CD4049	0.52
2N6122	1.60	${ }^{2 S C 681}$	4.00	AF127	0.36	BC108A	0.12	BC549	0.08	B0645	3.2	Bri23	0.18	Buz28	0.98	CD4050	0.50
2N6130	0.65	${ }^{25 C 688}$	1.50	AF139	0.8	BC1088	0.15	BC550	0.35	8067	0.50	BF594	024	Bu20802	0.98	CD4052	0.68
2N6138	0.57	2 25c685A	2.20	AF178	0.75	BC109	0.11	BC556	0.12	80680	0.09	BF395	024	BU208A	0.98	C04053	0.72
2N6178	0.66	${ }^{25 C 693}$	0.89	AF179	0.50	8C1098	0.13	${ }^{8 C 555}$	0.09	B0681	134	Bf596	0.16	BU208D	1.43	C04069	023
2N6180	0.66	$2 \mathrm{SC710}$	0.6	AF180	0.50	BC113	0.12	BC558	0.09	80695	209	Br597	024	Buzos	1.50	CD4081	025
${ }^{2}$ 2696	0.39	${ }_{2}^{2 S C 717}$	1.98	AF181	008	${ }^{\text {BCOL14 }}$	0.17		0.08	${ }^{80896}$	224	Bf617	0.55	${ }^{\text {BU2 }} 126$	208	C04033	0.72
${ }^{2 N 658}$	0.39	${ }^{2 S C 734}$	1.30	AF1128	0.50	${ }^{\text {BCOLI }}$	0.14	${ }^{\text {BC5soc }}$	0.10	B0697	371	Bff18	0.5	B1312	2.16	C04511	1.00
2 N 707	0.39	${ }_{2 S}^{2 S C 735}$	1.05	${ }_{\text {AF }} \times 28$	O,	${ }^{\text {BCCII6 }}$	0.30	${ }^{\text {BCaz3 }}$	018	B0ess	1.17	Bffest	020	BU326	075	C04517	1.05
${ }^{2541027}$	1.15	${ }_{2 S}^{2 S 782}$	224	AF239	0 Ca	${ }^{\text {BC116A }}$	0.53	B6a36	018	80699	317	B7757	0.59	Bu3364	1.40	CP5522	1620
${ }_{2 S 1076}$	1.75	${ }^{25 C 790}$	1.15	AF279	0.30	${ }^{\text {BC }} 117$	0.18	${ }^{86537}$	0.18	80700	336	B7758	0.99	Bu326S	225	CV-12E	249
${ }^{25 A 329}$	0.36	${ }_{2}^{2 S C 3006}$	1025	Allico	3.06	${ }^{8 C 118}$	0.18	${ }^{80} 538$	0.18	${ }^{80702}$	290	8 BF 59	030	88406	1.35	cx034	10.5
${ }_{\text {2SAAS39 }}$	1.06	${ }_{2}{ }_{2 S C 878}^{2 S 814}$	126	${ }_{\text {Allios }}$	1.75 2.3	BC119 BC125	0.0 .18	BCC39 8 c640	0.18	${ }^{80707}$ B0709	0.51	${ }^{8 F 750}$	0.0 .59	${ }_{\text {BUU407 }}$	${ }_{12}^{0.74}$	CX0950	88.49
2SA990	1.51	2Sc987A	2.40	${ }_{\text {ALl } 13}$	180	${ }^{\text {BCi26 }}$	0.18	${ }^{\text {B4879 }}$	0.23	BD710	0.72	Braro	0.27	BU412	480	Cx108	6.92
2SA493	0.95	$2 \mathrm{Sc926A}$	129	AN208	32	BC132	0.12	Bc880	0.3	BD807	0.60	BF871	0.8	BU426	1.95	Cx109	6.92
2SA623	1.03	2SC930	0.69	AN210	207	${ }^{\text {BC1 }} 135$	0.12	${ }^{\text {BCX32 }}$	0.33	BD809	0.00	BPS50	0.68	buaza	1.57	CX121	10.75
${ }^{254637}$	1.38	${ }^{25 C 935}$	375	AN214	205	${ }^{\text {BCO }} 136$	0.15	${ }_{8 \times 23}$	024	${ }^{80810}$	0.60	${ }^{8 P 597}$	1.62	B4427	267	C×130	4.90
2SA673	1.11	${ }^{25 c 938}$	1.51	AN2140	205	${ }^{\text {BC137 }}$	0.16	${ }_{8} \mathrm{BC3} 34$	0.36	80879	0.60	Bf959	038	BU500	1.61	Cx131	10.75
${ }^{25 A 583}$	1.46	${ }^{25 \operatorname{css} 7}$	325	ANZ31	5.56	${ }^{81} 138$	0.30	${ }_{8 \times \times 3}$	0.00	B0880	0.65	BP970	0.50	BU508A	1.33	${ }^{\text {CX134 }}$	10.75
2SA684	1.33	${ }_{2} 2 \mathrm{C} 940$	4.25	AN24	5.0	${ }^{8 C 139}$	0.38	8CY70	027	80895	1.5	$8 \mathrm{Br39}$	0.36	${ }^{8}$	1.05	${ }^{\text {Cx136 }}$	10.5
${ }^{25 A 748}$	0.68	${ }^{2 S D 1138}$	0.71	AN235	48	${ }^{\text {BCC140 }}$	033	${ }^{\text {BC771 }}$	0.19	${ }^{80899}$	225	Bris2	0.45	${ }^{\text {BUL }}$	10	${ }^{\text {cx13 }}$	1075
2SAB18 2SAB35	1.05										1.14	Bff62	036		129	${ }^{\text {CX1 }} 139$	10.75
2SAB3S 2SA940	227	250234 25025	0.0 0.54	${ }_{\text {AN }}{ }^{\text {AN238 }}$	${ }_{3} 4.58$	${ }_{\text {8CC142 }}$	0030	BD115 BD116	029	BDV64 BDV5	1.14		0.09	BU8060 BU807	1.35	CX157 CX158	4.40
${ }^{\text {2SAS40 }}$	1.64	${ }^{25025}$	267	AN240P	${ }_{108}$	${ }_{\text {BC147 }}$	0.10	${ }_{80} 812$	1.19		1.50	${ }_{\text {Bram }}$	0.9	Bu826A	279	${ }^{\text {Cx }} 1780$	3.4
2SA966-Y	0.54	250291	257	AN241	1.55	BC147A	0.2	${ }_{80124 P+K T T}$	0.52	8DX53	0.80	8 FR 89	0.39	BUV46	1.13	Cx17	5.99
258325	3.51	2 20292	235	AN245	25	BC148	0.11	BD131	0.38	BDX53A	3.69	BFT41	027	BUV84	1.12	CX506	2.48
${ }^{2583337}$	1.05	250313	259	AN247P	20	BC1488	0.11	BD132	0.31	BDX548	237	BFT42	0.39	BUNB1A	315	CX507	6.92
258375	3.51	$2 \mathrm{SD315}$	26	AN252	233	BC148C	0.11	${ }^{\text {BD }} 138$	0.4	BDX62A	1.9	8 BF 43	0.39	BUNBA	1.56	Cx758	6.92
${ }^{258400}$	0.36	2503550	136	AN253	270	BC149	0.10	${ }^{80135}$	0.32		1.95	8FF4	0.36	BUXP4	1.47	01693	235
2S8407	294	2 2SD350	7.03	AN262	158	${ }^{\text {BC1498 }}$	0.11	${ }^{80} 138$	0.3		237	${ }^{\text {BFFN10 }}$	0.79	${ }^{\text {BY1 }} 126$	0.11	DEC1	1.52
${ }^{2 S 84511}$	3.00	${ }^{25103504}$	209	AN272	5.35	${ }^{8 C 153}$	0.12	$8{ }^{80137}$	0.31	80x65A	237	${ }^{\text {BFO} 29 ~}$	0.30	${ }^{\text {BY } 127}$	0.11	DEC2	1.52
$2 \mathrm{SB511}$	1.18	${ }^{2503533}$	325	AN281	5.52	${ }^{8 C 154}$	0.12	${ }^{80138}$	0.41	${ }^{80 \times 76}$	0.58	Bfa 30	0.39	BY133	0.11	E120	0.36
2 2854	125	2 20389	2.19	AN235	5.01	BC15	0.14	8 D 138	027	BDrzo	1.10	BPXPA	0.33	BYY64	0.50	E5024	0.25
2 28856	128	2 2S401	157	AN301	330	BC158	0.00	BD140	0.33	BDYE201	420	BFXS	025	BY176	13.	E5386	0.2
${ }^{25886188}$	1.40	2SD551	220	AN3O2	308	${ }^{8 C 159}$	0.14		1.30		1.07	${ }_{\text {BFX }}^{\text {BF8 }}$	0.50	${ }^{\text {BY179 }}$	1.2	E5529	0.23
${ }^{2 S 88681}$	2.4	${ }^{2555688}$	125	${ }_{\text {A A }}$	325	${ }^{8 C 160}$	035	${ }^{80150}$	1.00	${ }_{\text {BF1 }}{ }^{\text {BFI }} 15$	0.38		0.30	${ }^{\text {BY1 }} 182$	0.95	${ }^{\text {E80221 }}$	1.17
${ }_{2 S 875}$	1.70	${ }^{2 S D 621}$	254	${ }^{\text {AN305 }}$	3.10	${ }_{\text {BC167 }}^{\text {BC16 }}$	030	${ }^{80157} 8$	0.00	${ }^{\text {BF1 }} 178$	0.60		0.036	${ }_{\text {BY187 }}$	0.02	E9903	0.41 0.45
${ }_{2 S 8861}^{25875}$	0.00	${ }^{2 S 05731}$	1.12	AN315	212		0.3	${ }^{80160}$	1.45	${ }_{\text {BFF } 121}$	0.02	${ }_{\text {BrY5 }}$	029	BY189	120	ER1400	10.12
2SC1034	5.51	258811	388	AN316	5.5	BC169C	0.14	80163	0.64	BF123	0.11	Bf52	024	BYY98	238	ESN3108P	3.86
2SC1050	3.65	258869	2.0	AN318	4.75	BC170	0.14	BD16s	0.55	BF127	0.11	BFY90	0.56	BY201/2	136	ESM432C	4.18
IF YOU	T	SEE IT UST	D ASK	OR Qu	-	VE MAKE M	DEL	LOCATHON	REME	EMBER T	ADD 0	0.60p PO	HA	NDING. A	15\%	VAT TO TO	TAL

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

Letters

COMMODORE 64 PROGRAM

Recent letters on microcomputer colour bar programs prompt me to send you the following one for the Commodore 64. It consists of nine lines from line 10 (pokes border to grey) to line 50 in steps of 5.

```
    5 REM TV COLOUR BARS BY D. J. JACKSON
10 POKE53280,11
15 PRINT" \(s\) ":FORY=0TO24:FORX=0TO4:
    POKE1024+X+40*Y,160:POKE55296+X + 40*Y,0:
    NEXTX,Y
20 FORY=0TO24:FORX=5TO9:
    POKE1024+X+40*Y, 160 :
    POKE55296+X+40*Y,6:NEXTX,Y
25 FORY=0TO24:FORX=10TO14:
    POKE1024+X+40*Y,160:
    POKE \(55296+X+40^{*} \mathrm{Y}, 2:\) NEXTX,Y
30 FORY=0TO24:FORX=15TO19:
    POKE1024+X+40*Y,160:
    POKE55296+X \(+40^{*} \mathrm{Y}, 4\) :NEXTX, \(Y\)
35 FORY=0TO24:FORX=20TO24:
    POKE1024+X+40*Y,160:
    POKE55296+X+40*Y,5:NEXTX,Y
40 FORY \(=0\) TO24: \(\mathrm{FORX}=25 \mathrm{TO} 29\) :
    POKE1024+X+40*Y,160:
    POKE55296+X+40*Y,3:NEXTX,Y
45 FORY=0TO24:FORX=30TO34:
    POKE1024+X+40*Y,160:
    POKE55296 + X + 40* \(\mathrm{Y}, 7:\) NEXTX, Y
50 FORY=0TO24:FORX \(=35 \mathrm{TO} 39\) :
    POKE1024+X+40*Y,160:
    POKE55296 + X + 40* \(\mathrm{Y}, 1:\) NEXTX,Y:GOTO50
```

I hope this will be useful to readers.
D. J. Jackson,

Llanelli, Dyfed.

NOTES ON THE SPECTRUM

I noted Oliver J. Bowry's letter on the use of the Spectrum microcomputer as a TV pattern generator. The idea occurred to me some months ago. As you may know, the Spectrum is limited by using only the central area of the screen as its display. However, I've used the introductory software package Horizons which contains a system called Draw. With this you can create lines, circles, rectangles and squares on the "paper" and fill them in with the colour of your choice or leave them as an outline. When you've completed the pattern you want to use, it's an easy matter to save it on tape with the statement: SAVE "filename" SCREEN\$.

To reload, type: LOAD "filename" SCREEN\$. Draw is not necessary for reloading.

I found a crosshatch pattern of white lines on a black background very useful for convergence adjustment and a coloured pattern of vertical rectangles (stripes) filled in with white, yellow, cyan, magenta, red, blue and black useful as a colour bar/grey-scale wedge. A concentric pattern of circles (bullseye) is useful for width/linearity adjustments.

After completing convergence adjustments it was necessary to increase the horizontal/vertical separation settings slightly so that the whole screen area is covered.

Provided care is exercised, this is fairly straightforward.
It's important to tune the computer's signal in "on the nose". I found that this was achieved when the graphics (black on white) appeared to shimmer with blue and yellow alternately and the sound had just reduced to a minimum.
John P. N. Husband, Marital Electronics (Consultants), Dover, Kent.

BBC MODEL B PROGRAM

I've used the following BBC Model B computer program for the last two years as a workshop tool. It gives a dot, colour bar and grid pattern, the latter being ideal for convergence adjustment.

Any key will take the program on to the next pattern. The program is terminated by pressing the TAB key to end the grid pattern.
J. M. Collick,

Westbury-on-Severn, Glos.

MICROCOMPUTER BLOCK DIAGRAM

I feel that Fig. 1 in The Lid off Microcomputers, Part 1 (page 307, April) is a bit misleading since it suggests that the data and address buses pass through the RAM and ROM and that the ROM has no connection to the control bus (read/write, interrupt, etc. lines). I think that readers not familiar with this subject will find Fig. 1 herewith a little less confusing in this respect.

Also, the comment in the final paragraph seems to forget about data bus buffers, tri-state buffers etc. It's unfortunate that words such as buffer have different

Fig. 1: Basic microcomputer block diagram.
meanings, but I suppose we can't avoid this sort of thing with a living language.
J. Blackwell, Grad.I.E.E.I.E.,

Bakewell, Derbyshire.

SPECTRUM PATTERN PROGRAMS

With reference to Mr. Bowry's letter (March) I've had a Sinclair Spectrum microcomputer test pattern on the market for the last six months. It's suitable for both the 16 K and 48 K models and as well as colour bars it also generates a crosshatch, dots, a checkerboard, plus red, blue, green, black and white rasters. The only drawback with the Spectrum is its inability to print the crosshatch and dot patterns in the border area. The program is available on cassette from the address below for $£ 3.50$ which includes post and packing.
Graham Wells,
Graham Wells TV Service,
1 Eachard Road, Cambridge CB3 0HZ.
Editor's note: Mr. Bowry's letter brought a deluge of Spectrum programs from readers. Our thanks to John Yobec, Ken Bones, Michael A. Harris, Divinder Flora, David Thornton, Geoff Fardon, M. Stevens, Neil Poskett, C. I. Large, John F. Watts and John Hodges. Also to Bill Tillett who kindly lent me a Spectrum to try out. We hope to publish some of the programs sent to us in future issues.

THE SONY KV1810UB

Recent articles and letters on the Sony KV1810UB have interested me greatly. You see my son bought one of these sets some ten years ago and at the time my heart sank in anticipation of the troubles I might be called upon to deal with. After five years of reliable operation the fuse and the two main GCSs blew and I knew that my initial worries were right - a check on all relevant components revealed no faults! Sony were very helpful in suggesting what to check but couldn't be expected to suggest an examination of the power supply panel for dry-joints, using a magnifying glass. When I did this I found a wire loose in the middle of its solder with a minuscule amount of free movement available. So the set had worked for five years with a physically unsoldered joint (as have many sets of many makes over the years). Resoldering this joint and replacing the fuse and GCSs restored reliable operation for another three years.
The only other trouble has been severe flashover in the e.h.t. box, which incorporates the $47 \mathrm{M} \Omega$ horizontal static convergence potentiometer VR852. The flashovers were accompanied by colour separation and jazzy pictures. Several applications of Plastic-Seal were unsuccessful and when the cost of a replacement box was checked it came to light that this would set us back by almost a three figure sum. Our first reaction was not worth it, in view of the set's age. With nothing to lose however we decided to purchase some Dow Corning Aquaseal, which has a convenient applicator nozzle that can be cut as required. Holes were drilled in the areas adjacent to the e.h.t. output/VR852 (the control was also replaced for good measure) and Aquaseal was injected into them to fill the space between VR852's insulated platform and the potted transformer. The control's top connections were also well covered with Aquaseal. Patience was required next: Aquaseal takes 24 hours per millimetre to cure, an acid

next month in

11GHz LOW-NOISE AMPLIFIER
This unit has been designed as a companion to the low-noise converter described in the February issue. It features waveguide input and output which means that different LNA/LNC combinations can be tried. The circuit uses three gallium arsenide f.e.t.s and has an overall gain of at least 25 dB with a noise figure of around 3 dB . A ma-ching regulated power supply built around a d.c.d.c. converter i.c. is used.

- VCRs AND THE MAINS

Mains borne interference and defective mains supply connections can be responsible for many problems with VCRs. A faulty mains plug/socket connection is often the cause of random tuse blowing, a problem to which some models are more prone than others. Interference can cause various fault corditions when microcompter chips are affected by transients on the supply lines. Derek Snelling investigates.

- BBC MICROCOMPUTER PROGRAM

A useful servicing aid, providing most of the items normally produced by a pattern generator plus a few others, i.e. crosshatch; colour bars; dots; vertical lines; horizontal lines; red/green/ blue/magenta/cyan/yellow/white/black rasters; circle; composite test pattern.

- APPROACHES TO TV SERVICING

There are various ways of going about TV tault finding. You can give the set a systematic check, which will eventually lead to the fault, or gc for the trouble spot on the basis of symptom assessment and experience of the chassis concerned. S. Simon on the alternatives, with hints on particular chassis/fault conditions.

- MAKING PCBs

Malcolm Burrell describes simple method; of designing and making PCBs for DIY projects, with hints on avoiding possible pitfalls.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:

Please reserve/deliver the July issue of TELEVISION (£1.10), on sale June 19th, and continue every month until further notice.

NAME
ADDRESS
being given off in the process. It's advisable to let this happen in a warm room and, owing to the difficulty in determining the thickness applied (below the platform), to leave it for at least three days. Fortunately the treatment proved to be a complete success, the set giving reliable operation ever since.

This tip may be of interest to other readers. Incidentally a report to Dow Corning brought forth the comment that their other caulk products using silicone rubber should work equally well.
P. R. Atkins,

Southall, Middx.

Design of the FS-type Tube

Eugene Trundle

What does FST stand for? Full Square (Toshiba), Flatter' Squarer (ITT), Square Flat (Mitsubishi) and so on. In fact the tube faces are not flat, nor are they square - nor even rectangular. There are very good reasons why they are not.

Surface Loading

Since a picture tube's envelope is evacuated, the full force of atmospheric pressure bears on its outer surface. At sea level the air pressure is about $1 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$, so we have a total force of around $1,600 \mathrm{~kg}$ on the faceplate of a 51 cm diagonal tube - over $11 / 2$ tons!

If you had to support the weight of a four-door saloon car by means of a tea-tray sized piece of glass held only at its edges, how would you go about it? You would need to specify very thick glass and then dome its surface, following the engineering principle used in bridges and dams to convey the thrust to the edges. Provided the edges were braced strongly the system would work safely. Fig. 1 shows how bridges, dams and picture tubes contain the forces that load them: the curved load-bearing surface conveys the stress to the outer edge where, in the case of a picture tube, it's contained by the combined strength of the glass bowl rim and the rimband.

Consider for a moment a dam (or a picture tube) whose face is dead flat. It's a daunting prospect. In this case the force has to be sustained entirely by the material of the wall, whose intrinsic strength must be much greater than before. We could maybe brace a flat dam or bridge with a series of joists - but we couldn't do this with a tube's faceplate! Only in tubes smaller than about 17 cm diagonal (mainly scope and viewfinder tubes) is it practical to provide an optically flat screen surface.

The FS Faceplate

The faceplate of a conventional 51 cm (20in.) tube has a glass thickness of 10 mm at its c\&ntre, the radii of curvature of the inner and outer surfaces being 792 and 820 mm respectively - see Fig. 2. With a comparable FS tube $(51 \mathrm{cmV}, 53 \mathrm{~cm}$ glass diagond) the thickness at the centre of the faceplate is 12.5 mq while the inner and outer radii are 1310 and 1730 mm . Thus the FST faceplate thickness is much greater towards the screen edges. This extra glass thickness increases the tube weight by about fifteen per cent.

Next, the problem of square dorners. This means in effect the profile of the glass env\&lope - not only at the four corners of the faceplate, byt the whole transition from faceplate to rim, both at the internal and external edges. The question is again one of stress, not so much from atmospheric pressure (a comer is in this respect very
strong) but from glass internal and shock- and weightinduced stresses. It's a basic engineering rule that these stresses will be concentrated at the point of an abrupt change in profile or cross-section. For safety, stress must be avoided by providing gentle contours and radii - curvy is safe as well as beautiful. So current FS tubes have slightly curved edges.

Front Screens

The fact that many FST-equipped TV sets have additional "smoked"-glass screens has led to a misconception that additional protection from possible implosion is required as it was in the early days of television. In fact FST type tubes have full BSI approval for direct viewing and

Fig. 1: How a curved load-bearing surface transfers the thrust to its braced edges. The pressure thus tends to "consolidate" the structure. Examples show bridge, dam and c.r.t.

Fig. 2: Picture tube envelope construction - not to scale illustrating the greater thickness and bracing required in the faceplate of a "flat"-faced tube. (a) Conventional tube; (b) FS-type tube. The radii quoted are in each case for the corner-to-corner profile.

Fig. 3 (left): Comparison of useful screen area based on the visible screen diagonal.

Fig. 4 (right): Comparison between the optical distortion introduced with a curved screen (a) and the true image on a flat faceplate (b), exaggerated for emphasis.

Fig. 5: Screen reflections - (a) conventional tube, (b) FS tube. For an infinite and evenly illuminated viewing area, 30 per cent less light will be reflected from the faceplate of an FS tube.

Fig. 6: The FS tube is legible over its entire screen area from wider viewing angles than with an ordinary display tube. (a) Conventional tube; (b) FS tube.
comply with BS415 and equivalent world-wide requirements. What the extra darkened "window" does is to increase the contrast by attenuating ambient light reflection from the internal aluminised tube faceplate. The idea is that reflected light from external sources has to pass twice through the low-transmission glass screen while the phosphor produced light passes only once. The additional screen introduces the disadvantages of reducing the brightness of the display and producing double reflections: for this reason many setmakers provide for its removal if wished.

Advantages

What advantages does the FS tube bring? We are told that the squarer comers result in three per cent more screen area. This must be based on the overall glass diagonal, since as Fig. 3 shows a square display area will actually reduce the size of the displayed picture if the
diagonal dimension remains the same. The FS tube gives a definite improvement in terms of optical distortion however, as Fig. 4 shows. When we view a conventional screen we look at a section of a sphere and thus see the distortion shown at (a): the more the faceplate approaches flatness, the less the distortion, as (b) shows.
There's a further advantage with respect to reflection of ambient light. The light "capture area" of a convex reflector is much greater than that of a flat one, as Fig. 5 shows: an FS tube provides a reduction in ambient light reflection of about 30 per cent. If the offending source of light is on or near the tube axis however the reflection will be as great, which is why it's so difficult to take a head-on photograph of a TV set without getting a beautiful superimposition of yourself and your photographic gear! In this respect some very misleading adverts have been produced by a certain setmaker who suggests that on-axis reflections disappear like magic when an FS tube is fitted. The situation does not of course arise when a set is viewed in subdued or zero (as we should!) ambient light.

Light path angles are also relevant to legibility at the comers of the screen and maximum viewing area. Screen edge and corner display legibility are determined by the angle of incidence formed by the tangential plane of the faceplate at the viewing point. A flat faceplate offers fifteen per cent better screen edge legibility in terms of maximum viewing angle - see Fig. 6.

Other Aspects

In other respects FS tubes are similar to conventional ones. The PIL configuration is used, with 90° deflection angle for small tubes and 110° for the larger sizes. Deflection yokes follow normal practice, giving pincush-ion-distortion free, self-converging displays, while the screen phosphor coating incorporates all the latest features such as black matrixing, pigmented phosphors, etc. Mitsubishi have incorporated their "blue diamond" screen in an FST envelope while a particularly interesting FS type tube has been announced by the pioneers of the technology, Toshiba. This is a 28 in . tube, the $66 \mathrm{cmV} 110^{\circ}$ type E6154A, which uses (in common with other FS tubes from the same source) a prestressed shadowmask with ceramic coating on the screen side, an improved electron gun design and screen phosphors with purer primary colours. These and other aspects of modern colour tube technology will be covered in a subsequent article.

Summary

So how do we sum up the advent of the FS tube? The price premium for the receiver is at present about eight per cent. For this you do get a very worthwhile improvement in overall performance. I believe however that some of the claims at present being made for the FS tube are a bit on the lavish side - especially the claim that it represents the most significant development in tube technology since the introduction of colour. That honour has to go to the invention of the in-line, self-converging tube, pioneered by RCA.

As yet, FS tube technology is the exclusive province of the Japanese tube makers. Mullard/Philips are currently sitting on the fence: their stated aim is to develop a "really" square and flat c.r.t. envelope - the next generation of FST? We're informed that much research and investment is at present going into this and that the result could emerge within a year. Watch this space!

VCR Clinic

Sharp VC9700

A fault that's becoming common on this model is tuning drift, with the clock display going dim, as the machine warms up. The tuning and display supplies are both generated on the PWB-E audio board, and we've found the cause of the fault in each case to be thermistor PR6601. It looks like a pulse ceramic capacitor and is fitted on the solder side of the board.
P.B.

Mitsubishi HS304

A customer's machine would play its own recordings all right but was very poor with library tapes. With the alignment tape in use we found that the f.m. signal at the output from the head amplifier was rounded off at the points corresponding with the drum entry and exit points. When the tape run along the head path was stutied it could be seen to "fall off" the step in a number of places. Attention was turned to the guide rollers which were found to be loose, even though the set screws had not been disturbed. The guides were reset as per the manual and the set screws checked to ensure that they did lock the guides in position before we sealed them with paint. P.B.

Ferguson 3V35/JVC HRD120

We've been having quite a few faults caused by the AL and UL switches on these and similar machines, for example the machine goes to stop one second after threading up at switch on, with or without a tape, or the machine rewinds for a couple of seconds then won't accept any further commands. Cleaning the switches has cured these faults, but it's strange to have to clean switches on such new machines.

Have you noticed that the block containing the AL and UL switches has a third switch in later models? It's connected in the cassette lowering motor circuit to prevent the microcomputer i.c. trying to eject the cassette while threaded up if it loses track of what mode it's in.
P.B.

Tatung VRH8400/JVC HRD120

When the operate button was depressed the operate light just flickered a bit and went out. No functions could be selected. We had visions of a complex system control fault so various checks were made to ascertain the status of the system. All the operate signals were present and correct and the "power on" signal was being passed to the power supply from the system control department. A relay in the power supply switches the supply rails: it had operated but two independent supplies were not available. The cause was the relay contacts, a new relay putting matters right.
S.B.

Sharp VC9100

The tape would load and the machine would run in play for a few seconds. It would then stop. The screen remained blank as the muting circuits continued to operate. All the signals that should have been present at the microcomputer i.c. were there - drum and reel rotation and no reason for the failure could be found. So the i.c. was replaced... but the fault persisted. After much

Reports from Philip Blundell, Eng. Tech., Steve Beeching, T. Eng., Derek Snelling, Michael J. Cousins, T.Eng., Dewi James and C.T. Marden

searching we found that the AL switch was not operating, but unlike other microcomputer i.c. programs forward run was engaged. This unusual condition was misleading. The AL/VS/UL switch assembly had to be repositioned to ensure correct operation of the AL switch.
S.B.

Ferguson 3V22/JVC HR3320

The trouble started with fuse blowing and the 0.47Ω series resistor in the capstan motor circuit going open-circuit. It was at first thought that the associated electrolytic decoupling capacitor was going short-circuit but after a couple of weeks toing and froing the capstan motor went noisy. The bearings had failed and were going tight intermittently.
S.B.

JVC HR7200/Ferguson 3V29

The initial fault was that the machine would load the tape and run in play for a few seconds then stop and unlace. A check through the control circuits revealed that the reel rotation signal was missing. This was due to failure of the optocoupler, which was replaced. After completing this repair the machine was given a bench test during which a second fault was discovered: after threading up there were long delays before the pinch roller solenoid operated. This often led to unthreading via the action of the reel rotation detector circuits.

In the threading up process the tape guides are latched on to the end stops and the threading (or loading) motor carries on until the AL switch has operated. In this case however the threading motor was running out of power as the load upon it increased during the later stages of the operation and it couldn't make the final lap to the AL switch. The loading drive belt was slipping, but even after stripping out the loading mechanics and regreasing them the motor couldn't cope, so it had to be replaced. Note that removal of the threading machanics and drum shouldn't be undertaken without due forethought! S.B.

Fisher

Fisher VCR's have been known to suffer from a problem relating to the UL switch. The result is overdrive of the unthreading mechanics to such an extent that when play is next selected the machine won't run as the mechanism is jammed. The cure is to adjust the UL switch - which is made difficult by the fact that there's no provision for this!
S.B.

Sony SLC7

A strange sight this time - the picture pulsating sideways. I had to fetch Andy in to have a look. The left-hand side of the picture was stable but the right-hand side was moving as if the picture was being stretched horizontally.

The drum servo pulses were erratic and the sampling was thus incorrect: the problem was present in both the play and record modes. It was easiest to work in the record mode. There was a 20 msec pulse, derived from the field sync pulse, at pin 12 of the drum servo i.c. (IC1) but the output at pin 13 had a duration of 80 msec instead of 40 msec ! Clearly something was dividing by four instead of
by two. The input at pin 12 goes to a delay monostable multivibrator and then to a divide-by-two circuit within the i.c. The multivibrator has an $R C$ network connected to it at pin $11-\mathrm{R} 11 / \mathrm{C} 11$. Across C 11 we had a 40 msec instead of a 20 msec pulse. The cause of the trouble was C11 ($0.47 \mu \mathrm{~F}$ electrolytic). The monostable multivibrator should by triggered by the field-frequency pulse after which it resets and is then triggered again. The problem was that the reset time was greater than 20 msec so that it was missing every other trigger pulse and effectively dividing by two. With a second division by two introduced by the following divider the servo was being incorrectly timed. C 11 seemed to be perfectly healthy but a replacement put matters right.
S.B.

JVC HR7650/Ferguson 3V31

This machine had an unusual fault on playback - an unstable picture, breaking up in a manner similar to a TV set with severe a.g.c. instability. The problem was where to start: most modern VCRs have progressed from mechanical record/playback switches to switching by means of i.c.s controlled by various voltage lines. It transpired that the E-E control line was energised during playback due to an emitter-collector leak in Q103 (2SB643R). This transistor is on the chroma board.
M.J.C.

Ferguson 3V32/JVC HR7655

This two-speed machine gave excellent results on all manually set recordings. With a timed recording however you'd get no colour on playback to start with though the colour would eventually appear. Experience has taught me that the frequency adjustments in the chroma circuitry are not usually made to a very close tolerance. A check through the various adjustments as per the manual revealed that the a.f.c. adjustment was well out of limits. Resetting R339 for $625 \pm 5 \mathrm{kHz}$ produced correct colour with timed recordings.
M.J.C.

JVC HR7350

With the audio selector in the stereo position on playback the sound was accompanied by a regular blipping noise, with the selector set to A there was no sound at all and with the selector set to B there was mono sound with no blip, so the fault was clearly in one channel only. Voltage checks revealed differences between the conditions in the identical stereo sections of IC2 and IC5. We eventually found that $\mathrm{C} 9(22 \mu \mathrm{~F})$ in the 32 dB preamplifier stage of IC2 was going short-circuit intermittently. M.J.C.

Sony SLC9

The fault with this stereo machine was low, muffled sound on E-E (and hence on record) with a clicking noise coming through the monitor's speaker. A scope check on the two inputs to the record/playback switching i.c. (IC521) showed that the Ch. 1 signal was of low amplitude with disturbance present. The inputs to the preceding operational amplifier i.c. (IC520, type μ PC1458) were in order. A new $\mu \mathrm{PC} 1458$ restored normal operation.
M.J.C.

Ferguson 3V30/JVC HR7300

No playback colour was the fault noted on the label and when the bottom audio/video board was opened up we discovered that liquid had at some time been spilt into the
machine. Unfortunately when this happens the board acts as a catchment area: the liquid lays on the component side, where its natural acidity (hopefully just fruil juice) eats through the legs of various components. In this case there were no burst gating pulses going into IC401 (AN6360): they were missing due to L407 having become a single-legged device! Fitting a replacement and cleaning off the offending dried liquid restored normal operation.
M.J.C.

Ferguson 3V00/JVC HR3330

The symptoms with this machine were no fast forward and intermittent picture in the playback mode. When fast forward was selected nothing happened - even the motors didn't turn - yet rewind was perfect. Playback was sometimes perfect, at other times there was a blank raster - not even noise on the screen.

We decided to tackle the fast forward problem first. From previous experience I knew that the drum motor could be operated by one of the microswitches along the front of the machine, behind the keys. Perhaps the capstan motor was switched in this way during fast forward? Fast forward was selected and each switch was tried in turn. Sure enough S4 (operate/stop) started the motor and fast forward operated normally. Careful examination then showed that due to wear on the latching bars if rewind was selected the switch operated normally but if fast forward was selected the operating lever didn't move quite far enough forward to actuate the switch. The play switch, between the other two, sometimes operated S4 and sometimes didn't. In playback this switch doesn't control the capstan motor but one of the voltage lines, via logic circuits on the mechacon board. Hence the blank screen. Luckily the wear was such that slightly bending the arm on the microswitch provided sufficient compensation. Otherwise a long job of stripping down the key mechanism would have been necessary.
D.S.

Panasonic NV777

In the event of intermittent non-operation of the cassette or tape loading motor replace IC6004 and IC6005 (type BA6029). There was a bad batch of these, so replace both at the same time.

C7512 ($4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$) on the timer board can cause various problems - "no lights" on plugging in, time may or may not come on eventually, or the machine might switch itself off after a period of time.
D.J.

Sharp VC8300

Fast forward and rewind were o.k. but when play was selected the picture was in pause/still - the pause/still LED didn't light up. On investigation I found that the tape was loaded, all the motors ran but the tape was at a standstill. The pinch roller solenoid had operated, but with insufficient force to move the play idler to the engaged position. A further check showed that there was no supply across the pinch roller solenoid. On slitting the solenoid's insulation a thermal cutout was found, marked $250 \mathrm{~V}, 98^{\circ} \mathrm{C}, 2 \mathrm{~A}$. It's not shown on the circuit diagram and was open-circuit. A replacement and a dab of Super Glue on the tape solved the problem.

This sort of thing seems to afflict the solenoids used in these Sharp models. The main solenoid is also fitted with a thermal cutout, as previous items in VCR Clinic have mentioned.
C.T.M.

Long-distance Television

Roger Bunney

After some months of relatively quiet conditions there has at last been some increase in long-distance signal propagation, with Sporadic E becoming active on several occasions during the month to provide sustained colour signals. Hopefully this is an indication of a good SpE season to come: it's perhaps unwise to speculate on the possibilities at this stage, but sustained openings during the second/third weeks of April would give every hope of an excellent season from mid-May onwards. Certainly that was the pattern in the 1960 s - mid-April activity followed by a lull and then intense openings from mid-May.

Tropospheric conditions have been quiet, though a small lift occurred on March 8-10th when a high-pressure system over the UK produced enhanced signals from the Benelux countries in central southern UK, London and the midlands. During this event PMR (paging or mobile radio) tones at approximately 180 MHz were noted towards the south east of Southampton, consisting of a series of four-second bursts of 3 kHz tone at varying intensities: inaudible during flat conditions, they would appear to be a French system - see later under Canal Plus. There have been the usual daily MS pings in Band I, solar conditions have been quiet and no auroras have been reported. The SpE \log is as follows:

9/3/85 RAI (Italy) ch. IB.
11/3/85 TVE (Spain) E2.
12/3/85 TSS (USSR) R1.
14/3/85 MTV (Hungary) R1; unidentified ch. E1 and R1 signals.
17/3/85 ARD (W. Germany) E2; RAI IA.
20/3/85 TSS R1, 2 - very strong signals.
22/3/85 CST (Czechoslovakia) R2.
23/3/85 ARD E2; very strong unidentified early morning signals on chs. E3, 4.
24/3/85 CST R1 - very strong mid-morning.
26/3/85 TSS R1; unidentified ch. E2 and R1 signals.
Two reports have been received of CST using the 1956 RETMA monoscope test pattern on ch. R1, with the identification "Ceskoslovensko" in black letters at the top of the circle. This is good news in these days of
electronically generated patterns! Canal Plus from further transmitters, including Rouen ch. F7 and Caen ch. F9, was noted during the recent tropospheric lift. The temporary 80 m WDR ch. E11 mast is at present transmitting from Teutoburger Wald: the replacement ch. E36 100 kW transmitter at Bielefeld carries the identification "Deutches Bundespost Fernsehsender Bielefeld Kanal 36".

The solar cycle has now reached the minimum section: extremely low sunspot counts are, expected during the summer and autumn. The absolute minimum is expected to occur next January/February with a predicted low of twelve spots.

My thanks to Tony Privett (Basingstoke), Gareth Foster (Twickenham), Simon Hamer (Powys), Ryn Muntjewerff (Holland) and Reg Roper (Torpoint) for their reports this month.

From our Correspondents . . .

Tony Privett has decided to use a five-element Yagi array with 10 dBi gain for 435 MHz ATV reception having experienced overloading with wideband Triax grids. He reports reception of G3PZH using a BBC micrographics identification display so the Yagi is working well.

During the tropospheric lift over March 8-10th Reg Roper experienced difficulty with RTE-1 (Eire) reception due to strong French signals coming from the rear of his Yagi array. Adding extra reflector elements $31 / 4 \mathrm{in}$. above and below the existing one solved the problem. With a ten-element Yagi this would give a $3-4 \mathrm{~dB}$ improvement in the front/back ratio to perhaps 30 dB .

Mike Gaskin has moved to a site some 575 ft . a.s.l.

Sporadic E

The arrival of the 1985 Sporadic E season may make new readers wonder what this phenomenon that veteran TV-DXers enthuse over is all about. To recap, the E layer of the ionosphere at 70 miles above the Earth's surface is normally opaque to incident v.h.f. signals which travel straight through it into space. During parts of the year however intense patches of ionisation occur in this layer, the electron density being sufficient to reflect v.h.f. signals. This usually occurs with signals below 100 MHz , though reflection at over 200 MHz can occur. Band I signals can thus return to Earth at distances of $500-1,500$ miles from the transmitter in the case of a single reflection, or up to 2,500 miles with a double reflection - triple reflections have also been experienced but are rare. Unfortunately, Sporadic E propagation cannot be predicted. The SpE season generally lasts from about midMay to late August/early September. There is also often a

Left: SDR-Stuttgart from the Heidelberg ch. E35 transmitter, received by Ryn Muntjewerff in Holland. Centre: Regional FR3 transmission from the Cherbourg ch. E59 transmitter, received by Ryn Muntjewerff in Holland. Right: Danish local TV (see last month) - the Aarhus Kanal A (ch. E54) test pattern. Photo courtesy of Tele-Audiovision.
$\mathrm{mid} / l a t e$ December spell of SpE and in good years you get SpE activity in mid-April. Isolated SpE openings can occur at any time during the year however.

During some openings the ionised patches extend over a wide area, the result being that many signals are reflected and received simultaneously. At other times isolated patches give reception of just one or two signals. Since the patches move about, different transmitters at various distances will be received during an opening. Signals can be very strong - I've measured 3 mV on ch. E2 across 75Ω from a dipole mounted at only 7 ft . Really distant single-hop signals can resemble weak tropospheric ones, with slow fading: signals from more nearby sources may give multiple imaging.

An opening can occur at any time of the day, but signals will be received only during transmission times of course. In the UK, signals can be received from well into the USSR, from the Middle East down to the Gulf, from Nigeria, Ghana and the Canary Islands and from N. America to the east - all this in addition to the European area. There have been some remarkable loggings of Canadian system M signals in recent years. For further information on this and other propagation modes, see my book "Long-distance Television" published by Babani (BP52)!

News Items

Italy: The government has given the go-ahead for microwave links between private TV stations - previously network coverage was provided by transmitting recorded programmes simultaneously. Several Belgian cable networks now carry RAI-1 via the Eutelsat F1 satellite.
Low Countries: Separate masts may be used for the BRT ch. E25 and RTBF ch. E28 transmissions, 15 km and 30 km to the south west of Brussels respectively, from late next year. These transmissions were carried by the Wavre mast that collapsed towards the end of last year. From this autumn the Brussels ch. E56 transmitter will provide a local TV service from approximately 1900 nightly prior to the start of the TV5 evening programmes. The projected NOS-3 transmitter at Goes may operate on chs. E35/36 when the Brussels airport radar (at Zaventem) closes at the end of the year.
Sweden: The SBC hopes to start a popular entertainment pay-TV channel towards the middle of next year.
S. Africa: The TV4 service mentioned last month came into operation in the Johannesburg region at the end of March. Its extension to Cape Town is planned.
Uganda: Nippon Electric is to provide new facilities to improve the UTV coverage throughout the country. At present the ch. E5 Kampala transmitter provides a reliable service over a $40-50$ mile radius but transmitters elsewhere suffer from technical problems and breakdowns.
Australia: The Aussat satellite due for launch this August will have five spot beams with 42-51dBW e.i.r.p. and two $35-41 \mathrm{dBW}$ e.i.r.p. continental beams. The MAC-B transmission system is to be used, with 45 MHz channel bandwidth. Interesting to note that a UK estimate for a $1.5 \mathrm{~m}, 12 \mathrm{GHz}$ TVRO installation is $£ 700$.
New Zealand: Commercial stations are to be set up to expand the TV service. Teletext has proved a success in New Zealand - adverts are to be added.

Canal Plus and Private TV

Unscrambled signals are to be transmitted daily on Canal Plus from 1800-2030, also between 0700-0900 from

SOUTH WEST AERIALS

 £69.95

TV-DX RECEIVER DOMESTIC RECEIVER COMPUTER MONITOR
These are some of the uses of the flexible WALTHAM 416. This $6^{\prime \prime}$ screen VHF UHF TV is for System B/G operation (5.5 MHz sound offset) but can easily be altered to System I operation (6 MHz sound offset) for UK reception. This TV serves as a set/monitor for the potential TV-DXer and Amateur TV enthusiast - and it even copes as a v.d.u. for the home microcomputer.
Features of the 416 are sharp selectivity and good sensitivity via 4 individually tuned i.f stages and the VHF tuner has 2 r.f. stages. Bands 1,3 \& UHF are completely covered, all bands (VHF \& UHF) feature continuous varicap tuning for
operation, the set has two internal speakers for maximum sound quality
A ten settion telescopic whip antenna is situated at the rear, also a 75 ohm coaxial aerial input socket. Power is derived from either A.C. mains or a 12 volt D.C. source, all plugs and cables are supplied. The controls of this modern receiver are in a conveniently recessed but easily accessible position on top of the television, together with a fold-away carrying handle. Tuning control and a clear scale readout are situated at the front of the receiver. The WALTHAM 416 is a modern and reliable television receiver made for the W.German market.
WALTHAM $4166^{\prime \prime}$ screen VHF/UHF mono TV (5.5 MHz sound) . . f 69.95 inc. of VAT. Carriage and insurance $£ 3.75$ (adjustment to 6 MHz sound offset for UK TV standard available at an additional cost of £250\}. Delivery normally $3-5$ working days.
STOP PRESS STOP PRESS ... Much sought after PHILPS Ged $€ 2.50$ each or $£ 4.50$ for 2 (inclusive of post \& packing).
Our 1985 CATALOGUE features the above receiver and contains extensive listings of Aerials iDXing and domestic). Amplifiers, Filters, Rotators etc and many other associated items. Send for your copy only 60 p . A customer consultancy service is associated to solve difficult reception problems (enclose SAF please) TV/FM DXing is our speciality. ACCESS \& VISA Mail and Telephone orders welcome.

SOUTH WEST AERIALS (T)
11, Kent Road, Parkstone,
Poole, Dorset BH12 2EH. Tel: 0202738232.

TV LINE OUTPUT	RANSFORMERS \& CARRIAGE
Deliveny by return of post.	
RANK BUSH MURPHY	ITT: VC200 to VC402
A774 with stick rectifier $\quad 9.78$	CVC1, CVC2 (FORGESTONE) $\quad 11.50$
A816, T16, T18, $7712,771510.35$	CVC5, CVC7, CVC8, CVC9 series 920
T20, T22, T26, Z179, A823 11.50	CVC20
2718 Basic unit $\quad 13.50$	CVC25, CVC30, CVC32, CVC45 9,20
T24e, T24h split diode P.OA.	CVC40, CVC1200, 1210, 1215 F110, F111. P/no AT2063/02
DECCA: 1210, 1211, 1511	
1700, 2001, 2020, 2401, 2404 920	PYE: 169, 173, 569, 368 series $\quad 920$
CS $1730,1733,1830,1835 \quad 920$	CT200, CT2001, CT213 series $\quad 10.35$
30,70, 80, 90, 100, 130 Series 9	725-731, 735, 737, 741 Series 9.78
FERGUSON, THORN: 1590, 1591	PHILPS: 170, 210, 300 series 9.20
1690, 1691. built in rect. 9.78	320 series 9
1600, 1615, 1700 series P.0.A.	TX, T8 mono P.OA
1790 mono portable P.OA.	68 and G9 Series $\quad 9$
3000, 3500, 8000, 8500, 8800 P.0A	KT2. KT3. series colour ${ }^{9220}$
9000, 9200, 9300 series $\quad 12.00$	G11. K30. split diode P.OA.
9500, 9500, 9650 series $\quad 10.99$	BINATONE: 9909, 9798, 9860 P.0
9800, TX9, TX10 series P.0.A.	DORIC Mk3 ${ }^{\text {a }}$
MOVIESTAR 3781, 3787	
FDEUTY: FTV12 mono 10.35	FNLUX 9560, 9670 P.OA. GRUNDIG: most models in stock
CTV14R, CTV14S colour 15.83	NORDMENDE: $\mathrm{FC1255}, 2206,230611.50$ SANYO: $5101,5103,7118,7130$ P. 0 A .
G.E.C. 2047 to 3135 mono 9.20	SHARP: C1851H, C2051H P.OA
${ }^{1201 H}, 1501 \mathrm{H}, 2114,3133,31359920$	
DUAL \& SINGLE hybrid col. $\quad 10.00$	
SINGLE STD solid state $\quad 12.00$	TELEFUNKEN: most models in stock
SINGLE STD split diode P.OA.	UNE OUTPUT TESTER 16.7
INDESTT: 24EGB hybrid 9.50	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge.
12LGB, 12SGB mono portables	
WINDINGS	
TYNE: main winding $\quad 6.80$	
R8M: T20, T22, T26, Z179 ${ }^{633}$	Phone: 01-948 3762
WALTHAM: W125 eht winding 233	
WAITHAM: W190, Wi91 eht coil 56.00	Mon-fli.30-4.30 pm
KORTING: hybrid winding	Sat 10 am to 12 noon.

Monday-Friday and from 2030-2100 on Wednesdays and Fridays, with general entertainment but no feature films. Dave Shirley (Hastings) reports reception of unscrambled quiz, "Top Fifty" and Rendez-Vous programmes. It's expected that Canal Plus will loose some $£ 40 \mathrm{~m}$ during its first year. One of the things that's hit Canal Plus is the proposal for private TV in France. Two groups, Teleurop and RVS, have already applied for permission to start services in Paris and Rouen respectively. Channel allocations have to be made by the authorities but enthusiastic "privateers" may jump the gun - the Rouen-based Television Vallee de Seine has already carried out tests at u.h.f. South coast DXers should keep a look out for interesting signals!

Along with the above information comes news that mobile radio (PMR) on Band III frequencies removed from the local TV services is now permitted in the larger French cities. The band used in the Paris area is 192.5207.5 MHz .

IF Preamplifiers

The i.f. selectivity module used in the Philips G8 chassis has been widely adopted for DX-TV reception since it can be easily incorporated between the tuner and i.f. strip and then peaked to reduce the bandwidth and thus improve the selectivity. This is particularly helpful with weak signals or signals on adjacent/overlapping channels (e.g. E2/R1). Switching can be added to give narrow/wideband operation. Unfortunately these modules have been in short supply in recent times. A limited quantity (ex-rental stock) has now been obtained by South West Aerials (11 Kent Road, Parkstone, Poole, Dorset) who can supply them at $£ 2.50$ each or two for $£ 4.50$ including UK postage and packing. They are brand new and come with screening cans and connection data. G8 vision gain modules are also available at the same price.

An alternative approach is to use the simple n-channel f.e.t. i.f. preamplifier shown in Fig. 1 - the circuit was devised by Paul Barton. It has an untuned coupling to the gate and a double tuned circuit as the drain load. Since the two windings are individually tuned the coils can be stagger peaked to widen the response or tuned to the same frequency for a narrower response. The procedure is to start with the two slugs at the extreme ends of the coil former and screw them in to a point where, Paul says, they "peak beautifully". Paul adds that the performance is similar to that of the G8 unit despite being much simpler. As with any r.f./i.f. circuit care should be taken to adopt a sensible layout with minimal lead lengths. With the preamplifier following the tuner and peaked for a narrow-

Fig. 1: Simple f.e.t. i.f. preamplifier circuit. $L 1$ and $L 2$ are each 13 turns close spaced, separated by about 10 mm on a quarter inch coil former with two slugs. If the output is fed to another biased stage, add an $0.01 \mu \mathrm{~F}$ d.c. isolating capacitor.
band response the sound will of course be lost.
The circuit was originally developed for use in a TV sound receiver. To widen the response for vision reception a damping resistor is added across the primary winding. Paul suggists using $2 \cdot 2 \mathrm{k} \Omega$. Lower values will widen the response, which with $1 \mathrm{k} \Omega$ becomes approximately 6 MHz . The high-impedance output may need to be matched to the following stage by means of a simple emitter-follower stage which will introduce damping across the secondary winding.

The North American Scene

Radio Shack (Tandy in the UK) is selling a 4 GHz TVRO (TV receive only) package in its main Canadian stores, particularly those in the more remote areas. The dish is of the sectional petal type, with aluminium ribs and vacuum formed plastic petals metallic flame-spray coated. The receiver features remote control and stereo sound. Price is in the $\$ 2,200$ region. At present the package is not being sold on the US market, which is already well catered for.

All's not well at 12 GHz in N . America. USCI's narrowbeam scrambled DBS service for the Indianapolis area has met with consumer disinterest. At the beginning of 1985 about eleven 12 GHz band channels, including five used for Pay-TV, were available via the Anik C2, C3 and SBS1 satellites. At 4 GHz single satellites such as Galaxy-1 provide twenty or so channels. The marketing and supply of 12 GHz equipment has not been all that good and the net result is that for the present satellite TV in N. America means almost entirely the 4 GHz band. According to one publication, the 12 GHz band is now used primarily for computer interactive services and office/ mobile communications. The new Anik C1 satellite, which was due to be launched in February for TV use, has been put up for sale by the Anik operators Telesat Canada. The 4 GHz band is favoured in N. America because the satellites in use give wider coverage and the cost of equipment is lower.
As a result of the lack of US interest in 12 GHz operation General Instruments are understood to have considerable stocks of unwanted, Japanese made receiving equipment - rumours have it that some 30,000 units were on offer at the end of last year. Global Instruments of Toronto are the distributors and have been allowing interested dealers to sell the units off. Quoted retail price is $\$ 1,795$. Perhaps a UK surplus TV equipment firm might like to make a phone call to Toronto!

Gateway Rubber of Denver claims to have invented a new material that's 99 per cent reflective and will make possible mass production of low-cost satellite receiver aerials. The company has apparently signed with a large Japanese concern to produce the electronics and with a US manufacturer to produce dishes made of the new material, the result being a low-cost 4 GHz system.
Philips, have recently announced ideas for achieving improved picture quality with weak, noisy satellite signals - or alternatively allowing a smaller dish to be used. The proposed system would give acceptable pictures with a carrier-noise ratio as low as 2 dB (with current 4 GHz receivers a ratio of around 8 dB is generally required). The system works by reducing the bandwidth as the noise level rises and employs two PLL filters for the purpose. As with any system that relies on bandwidth reduction, there's loss of definition under weak/noisy signal conditions: as the signal strength rises, the bandwidth is increased to give greater fine detail.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ cheque or postal order (made out to IPC Magazines Ltd.), the query coupon and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

THORN TX9 CHASSIS

The problem with this set is no colour despite trying two replacement TDA 3560 colour decoder chips. Chroma enters at pin 3 and the 8.8 MHz signal is present at pin 25 but the output to the delay line circuit at pin 28 is totally wrong. With the brightness and contrast reduced to produce a dim picture very faint, unlocked colour is visible and responds to adjustment of the reference oscillator trimmer CV63. Pin 6 (colour control) doesn't rise above 0.8 V as the control is adjusted but the associated components seem to be o.k.
It should be possible to vary the voltage at pin 6 from $0.7-5 \mathrm{~V}$. We suggest you apply an external source of 3 V at this point. If the colour returns, check the components in the colour control network carefully. If there's still no colour the sandcastle pulse could be of incorrect shape or amplitude. The line-frequency component of this pulse is generated in the TDA9503 sync/line oscillator chip (IC54).

DECCA 100 CHASSIS

The problem is no results. The power supply and the line output stage have been checked without finding anything amiss. The only clue I have is that $\mathrm{R} 317(6 \cdot 2 \mathrm{k} \Omega, 9 \mathrm{~W})$ on the timebase board gets very hot. Replacing the timebase panel clears the fault but I'd like to repair the original panel.

R317 provides the start-up supply for the TBA920 sync/ line oscillator chip. Replace it with a $5 \cdot 1 \mathrm{k} \Omega$ type and check the associated $12 \mathrm{~V}, 1 \mathrm{~W}$ zener diode D301. If necessary, replace the TBA920. If there are still no results, the line driver stage is in trouble: start by replacing the BF355 transistor ($\operatorname{Tr} 304$).

THORN 1500 CHASSIS

The trouble with this set is ultra-critical setting of the line hold control. I've replaced the sync separator valve and the flywheel sync diodes and checked all the resistors in the sync/line oscillator circuitry, also the flywheel sync d.c. amplifier transistor, but the problem persists.

We suggest checking $\mathrm{C} 51(1 \mu \mathrm{~F})$ in the flywheel sync filter circuit and the h.t. decoupling capacitor $\mathrm{C} 102(12 \mu \mathrm{~F})$ by substitution. We once spent many hours on this fault eventually to find that the hold control itself had gone high in value. Check for $470 \mathrm{k} \Omega$ total, and that the silder end resistance varies smoothly. You'll have to remove the control from the panel to check it.

PHILIPS G8 CHASSIS

We have two of these sets with the same problem, tuning drift. The tuner locks to the selected channel but on return to the selector button after using other channels the station
is way off tune and has to be brought back by using the preset tuning potentiometer. After several goes the set will settle down and work all right but at switch on some time later the fault returns. The tuner voltages all seem to be in order and the TAA550 tuning voltage stabiliser and its associated feed and decoupling components have been replaced.

Cleaning and retensioning the contact springs and a clean of the PC pads will sometimes sort the problems out. If this cure doesn't last we suggest you fit the more reliable switch unit available from SEME Ltd.

FERGUSON 3V29

Every time this machine is used for playback it starts with a four inch noise bar that travels from the top to the bottom followed by no sound for a couple of seconds - the no sound period ends up with whistle. This impression is left permanently on the tape played, even with no safety tab. It seems that every time we use the machine for playback it removes a portion of the recording.

It seems that the machine is momentarily going into record at the start of playback. The usual cause of this is the print between the collector and emitter of the rec-9V switching transistor Q105 on the AV board not being etched completely. Also check Q105 for leakage.

HITACHI NP6C CHASSIS

The problem with this set is intermittent variation in the height with slight fluctuation in the brightness. The set can work for several days without the fault appearing. I've soldered the connections on the field output module - this cured the same fault on another of these sets.

We suggest that you monitor the 12 V rail with a sensitive voltmeter or scope: any jitter should lead to a check on the 12 V rectifier CR705, the connections to pins 1 and 2 on the line output transformer, and the reservoir/ smoothing capacitors C735/6. A second possibility is leakage or bad jointing in the blanking line - C $641(10 \mu \mathrm{~F})$ and CR641 are suspect here. Bad joints on the M601 field output module do cause height variations but we've never known these to have any effect on the brightness.

THORN 3500 CHASSIS

The picture is unstable with a blue cast and four rows of coloured dots along the top. R733 on the convergence panel was found to be burnt out. After replacing this and the pincushion potentiometer R781 the width shrank by about an inch at each side and the picture is still unstable.

Burning of R733 is invariably caused by short-circuit turns in the pincushion correction transductor 775 which will have to be replaced. Make sure that you get the correct type - this one is a "special". Changing the value

of R441 to $5 \cdot 6 \mathrm{k} \Omega$ should clear the teletext lines at the top of the screen.

ITT CVC9 CHASSIS

No raster was found to be the result of the boost reservoir capacitor C310 going short-circuit. After replacing this the set had to be retuned to get a picture and there is now a kink in the side of the picture with a hum bar. In addition field lock can be held for only a few seconds despite replacing the PCL 805 field timebase valve.

The problems are almost certainly due to hum ripple on the 20 V line as a result of leakage in the AD161 stabiliser transistor T46d. Why this fails when C310 shorts we've no idea, but it often happens!

270
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical fauls.

Despite their age many sets fitted with the Philips G8 chassis continue in use. Some of them have managed to double the expected seven-year life span of a TV set, and all credit is due to their design for this achievement. The economic situation as we find it is that servicing and repair of these sets is viable only when the fault is a relatively minor one: if a line output transformer or tube replacement is required we generally advise a customer to replace the set and be grateful for its many years of faithful service.
The last job we had on one of these sets turned out to be a rather long drawn-out affair however. It was initially dealt with on site - the symptom was an intermittently red screen. The owner described this as horizontal red flashing bars and occasional screen flooding with red, especially when the set was warm. As is all too often the case with faults of this type our field technician saw nothing of it when he called, so he checked on the type of chrominance panel fitted (BA12 version) and studied the circuit diagram. He then replaced the BD115 red output transistor with a BF337 and carefully checked for dry-joints on the panel and the c.r.t. base assembly. Not finding any he departed, asking the owner to let him know the outcome of his efforts.

Needless to say the phone rang a couple of days later, the depressing message being "same as before". On the second visit a great deal of tapping and flexing of the PCB failed to instigate the fault, so the red output transistor's $5.1 \mathrm{k} \Omega$ collector load resistor was replaced - on the assumption that it might be going open-circuit intermit-
tently: a new TBA530 RGB matrixing i.c. was also fitted, along with a replacement for its external red output load resistor (R7326, 39k Ω). Further study of the circuit suggested that $\mathrm{R} 7344(47 \mathrm{k} \Omega)$ in the red channel feedback network could be responsible, so in went a new one. For good measure the c.r.t. base pins and socket connections were cleaned and checked. A conscientious and worthy effort in the face of a lot of grumbling and misery from the owner who had yet to pay one penny in service charges!

The trouble bounced within a week of course, and this time the owner was asked to leave his set running for some hours before our technician's late afternoon call. Despite this the colour was correct. In with a loan set, out to the van with the G8 - what a life! Back in the workshop the set was left on soak. At last we saw the fault: after some five hours, the screen started to flash red. The rear cover was removed so that a voltmeter could be hooked to the tube's red cathode pin. This gave a steady reading of about 150 V and a nasty red smear on the picture due to its capacitive loading effect - but the red-flood symptom just wouldn't show up with the back removed!

At the suggestion of the RWS (resident workshop sage) a better test was set up, one that would prove conclusively where the fault lay and did not require the set's rear cover to be left off. It was the work of minutes to arrange, and finally led to a definite diagnosis of the faulty item. What was this test procedure, and can you guess the conclusions it led to? Details next month.

ANSWER TO TEST CASE 269 - page 401 last month -

Our problems last month were with a Sony KV2000UB Mk II. To start with we dealt with a line output stage fault. We then had to replace the chopper transistor which went short-circuit at switch on. After doing this we found that the chopper circuit would for some reason shut down after a few tortured seconds despite the fact that the h.t. line was now correct in terms of voltage and of current drain.
The key to the problem lay with the current-sampling resistors R635/6 - to arrive at the required value of 0.55Ω a parallel combination of 1Ω and 1.2Ω is used. The heavy current that flowed when the chopper transistor went short-circuit proved to have been too much for R635, which had promptly gone open-circuit. The voltage developed across R636 on its own by the new chopper transistor was of course excessive. As a result the current limiting transistor Q608 came into operation (causing the squeal effect) and then Q602/3 latched on to remove the chopper transistor's drive. We replaced both resistors on the premise that R636 had probably been subjected to a damaging overload.

How fortunate that R636 had held out. Had it not, the short-circuit current would probably have wrought havoc amongst the delicate resistors and semiconductor devices in the excess current/voltage trip circuitry - there's a lot of energy in the national grid, and with but a 3A fuse and a few ohms between them, well . . .

[^1]52 Mount Pleasant Road, Chigwell, Essex.
Telephone 01-729 0506.
COMPARE OUR PRICES!

COMPARE OUR PRICES! COMPARE OUR SERVICE! V 6 WAY TUNER										
	If	tuner	DECODER	G8/69 DECODER IF COMBINED	LINE OUTPUT	POWER	CONVERG	FRAME	VIDEO	6 WAY TUNER SWITCH BANK
	IF	TUNER	7.00	15.00	14.00	8.00	5.00	5.00		3.50
PHILIPS G. 8	5.00	4.50	7.00		8.00	8.00	5.00	6.00	5.00	1.75
THORN 3000/3500	2.00	5.75	4.00		12.00	6.00	5.00	5.00	5.00	5.00
GEC 2110	10.00		5.00		18.00	10.00	7.00	8.00		4.50
PYE 731			10.00		18.00		5.00	14.00		
PUSH Z7118	7.50	6.50	14.00		2					
BUSH T/20	7.50	6.50	14.00		19.00	19.00	5.0	14.0		
DECCA BRADFORD	3.00		7.00			4.00		$\begin{aligned} & \text { FRAME } \\ & \text { TIME } \\ & \text { BASE } £ 4 \\ & \hline \end{aligned}$		
80	12.00	P.O.A.	14.00		12.00	10.00		14.00		P.O.A.

Other makes of panels - telephone for prices!
TRIPLERS FOR ALL MODELS $\mathbf{£ 3 . 0 0}$ SPEAKERS $£ 1.50$
P+P 1 PANEL $£ 1.50 \quad 2$ PANELS OR MORE $\mathbf{£ 3 . 0 0}$
CASH WITH ORDER - PLEASE
POST OFF YOUR CHEQUE NOW! \& YOUR PANELS SENT BY RETURN OF POST!!!

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE					
RANK BUSH MURPHY		PHILIPS			
Z146 A640 dual std mono	9.00	170 series dual std mono	9.00 9.00		
Bush A792, A793		210300 series mono	9.00 8.50		
single std mono	9.00	G8 \& G9 series colour	8.50		
A774 single std mono	9.00 9.00				
A816 solid state mono	9.00	PYE 368, 725 -741 colour	9.00		
DECCA MS1700200120202401mono 7.00					
CS1830 1835 colour $\quad \mathbf{8 . 0 0}$		Crown 14CX25 $\quad 15.00$			
100 series colour 8.50				T20a T22, T26 Pri \& Sec 6.00 2718 primary state $18^{\prime \prime}$ or $22^{\prime \prime} 6.00$	
FERGUSON HMV MARCONI16008.00					
		Z718 EHT OVerwind 8.00 SONY 1320 UB overwind 15.00			
G.E.C. 2047 to 2105 2000 to 2064 dual std mono 8.00 8.00 2147 single std $\quad 11.00$		SOVEREIGN FARA £15.00			
		SOVEREIGN FARA PLUSTRON PALLADIUM			
Indesit 20EGB 24EGB mono 9.00		ULTRA THORN			
KB - ITT $205 \mathrm{VC207}$ mono 8.00		$\begin{array}{ll}\text { 1690-1691 EHT overwind } & 7.00 \\ 1590 \text { EHT overwind } & 6.00 \\ \end{array}$			
CVC5 CVC7 CVC8 CVC9 col. 9.00 Waltham 190 EHT overwind 8.00					
CVC20 series colour $\mathbf{9 . 0 0}$ CVC30 CVC32 series colour 8.50 CVC45 $\mathbf{8 . 5 0}$ T1100 FT110 state p/no. $\mathbf{1 0 . 0 0}$ TXV80 $\mathbf{1 0 . 0 0}$					
		PRICES INCLUDE$\text { P.P. 8. } 15 \% \text { VAT }$			
All lopts and windings are new and guaranteed					
Open Mon.-Fri. 9 to 5.30 pm Delivery normally by return.		REWIND SERVICE For orders			
PAPWORTH TRANSFORMERS		Barclaycard and			
		Access welcom			
		$\frac{\pi N a x}{\sqrt{x S N}}$			
80 Merton High Street,					

FREE CAREER BOOKLET

Train for success, for a better job, better pay!
Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.
learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today - at no cost or abligation at all.

Please send FREE DETAILS for the courses ticked above.

Name
Address \qquad
P. Code

Dept. EGS65, 312/314 High St., Sutton, Surrey SM1 1PR. Tel: 01-643 9568/9 or 041-221 2926 (all hours).

Telegen-1
*EXCEPTIONALLY LIGHT AND DURABLE * POCKET SIZE FOR OUTSIDE SERVICE * PP3 BATIERY POWER SOURCE * FIVE DIFFERENT TEST PATIERNS FOR colour \& mono TV - WHITE RASTER * HORIZONTALS * VERTICLES 3.5mm JACK SOCKET FOR OPTIONAL A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test patterns for correct installation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly bulky generators only suitable for bench work. The generator is pocket
size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.

Telegen-2

PRICE C34.45 (Inc. VAT)

* EXCEPMONALLY IGHI \& DURABLE * RED RASTER * GREEN RASTER * BLUE RASTER
* COLOUR BARS
* 3.5 mm JACK SOCKET FOR P.S.U.
* PROVIDES UHF SIGNAL APPROX. CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremely effective, stable and durable. It is the pertect compliment to Telegen 1, giving colour blue and black The requires a supply of 14 to 18 votts D.C.

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE $\mathbf{f 4 . 5 5}$ (Inc. VAT) POST AND PACKING £1.44 (Inc. VAT)

32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 773122

D.I.Y. TV TUBE POLISHING

with our DIY Polishing Kit
The Kit includes everything you need to polish approx. 25* tubes to a high standard. Detailed instructions on how to do the polishing. All you require is
Kit Price $£ 49$ inc P\&P and VAT. Aveilable from Luton only.
AQUADAG COATING $£ \mathbf{1 7 . 2 5}$ per litre inc P\&P and VAT. Sufficient for approx 100 tubes. Available from Luton only
TV TUBES FREE DELIVERY* 5\% DISCOUNT ON TUBES COLLECTED FROM LUTON Quality, High Temperature Reprocessing

TUBE
TUELTA i.e.
SIZE

OSCILLOSCOPES COSSOR CDU150. Dual Trace 35 MHz Solid State.		
cossor CDUi50. Dual Trace 35 MHz Solid State Portable $8 \times 10 \mathrm{~cm}$ display. With Manual 2200 S.E. LABS SM111. Dual Trace 18 MHz Solld State		
VANCE OS250TV. Dual Trace 10MHz. With		
TELEQUIPMENT S54A. Single Trace 10MHz	隹eor $600-600 \mathrm{MHz}$ -	
Solid State. With Manual		
TELEQUIPMENT D43. Dual Trace 25 MHz . WithManualc110	BLACK STAR JUPITOR 500 FUNCTION GENER-	
TELEQUIPMENT S43. Singte Trace 25MHz. WithManual		
析	28 ranges including 10 Amp ACDC. Complete 	
PHILIPS DMM2517. 4 digit. Auto ranging. Complete with batteries \& leads. (Un-used) AVO TEST SET NO 1 (Uniar to Avo Misa)	MULTIMETER type U4324. 33 ranges. Camplete with batteries and leads. P\&PE4	
	OSCOPES PROBES	
Complete with batteries, leads \& carrying case £80		
AVO Model $7 x$. Complete with batteries, leads \&		
AVO Model 73. Pocket Mutimeter (Analogue) 30 ranges. Complete with batteries \& leads AVO 72 - Similar to above but no AC currentrange. With batteries $\&$ leads.		
	ADVANCE AM Signal Generator type 62	
UNBELIEVABLE	220 MHz	
AVO 8 Mk V FOR ONLY £65 Complete with batteries \& leads.		
NOW ONLY £12 p\&p $£ 3$		
AVO TRANSISTOR TESTER TT169 Handheld. GO/NO GO for In-situ Testing. Complete with batteries, leads \& instructions.		
	UHF	
This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for Lists. Please check avairability before ordering. CARAIAGE all units $£ 12$. VAT to be added to Total of Goods \& Camage.		
STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041		
ELECTRON GUNS TV TUBE COMPONENTS If you are rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology. Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers World-wide. Please request our current catalogues and Data Information. NEW ROAD, STUDLEY, WARWICKSHIRE B80 7LY ENGLAND.		

Get on the hot-line today! Suberior ouality vues DELTA RE-BUILDS 4288772 most types of Inline Re-builds or

Delta Rebuilds
Up to 19"................... $£ 28$ Up to $22^{\prime \prime}$ …..................
Up to 26"
110° up to $22^{\prime \prime}$
110° up to $26^{\prime \prime}$ Low focus A47 342 New £34 £34 +......... 17FHP New $£ 28$ 470EHB New ….......... $\mathbf{£ 3 0}$
Delta only. Less 5\% 5+

nfne iebuncs	
Up to 22"	£40
Up to $26^{\prime \prime}$	£45
A56-540x	£56
A66-540x	£58
Bonded Coi	+£5

IN LINE TYPES EX-STOCK SELECTION not rebulds

37C HFB-A37-590
370 HUB
AXT 37-001
42 C CSB
420 EDB-A42-590
420 EZB
420 ERB
470 KUB
510 UFB/A51-590
510 VSB
AXT 51-001
560 DYB-560 DTB
560 EGB 560 CGB
QUAVTITY
DISCOUNT
AVAILABLE
AVAILABLE
Ask for details

* OUR TECHNICAL DEPT. WILL ADVISE YOU ON PROBLEMS YOU MAY ENCOUNTER ON FITTING INLINE TUBES ms immediate dispat

THE COMPANY WHO PUT HIGH STANDARDS FIRST

CHIOTMDV

CHROMAVAC LTD. UNIT 7, BEAR BRAND COMPLEX, ALLERTON ROAD, WOOLTON, LIVERPOOL 25
Ask for Mr Butterwortb or Betty Ford ON: 051-428 8777

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

VIDEO CASSETTE RECORDER SERVICING 6 WEEKS FULL-TIME (September 16th to October 25th) Intensive course intended for qualified television service engineers or applicants with similar background. The course combines the advantages of industrial and academic training and includes a high percentage of practical work.

12 MONTHS
 LEC Diploma

TELEVISION \& VIDEO SERVICING
(Basic Electronics, TV, VCR, CCTV, Testing \& Fault Diagnosis)

6 MONTHS
 LEC DIPLOMA

TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training - e.g. BSC. HND, CGL, B/EC, etc.l
(All the above courses commence on Sept. 16th)

ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL
(These courses commence on Sept. 16th)
2 YEAR
BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)

15 MONTHS

BTEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis)

15 MONTHS
BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Software/Handware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessors, Microcomputer Fault Diagnosis, Robotics \& Control Systems, CADCAM 8 CAE Principles).

MSC grants of up to 1 year available for selected applicants with previous electronics training and work experience.
overseas students welcome at uk student TUITION FEE RATES

Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS

METERS LIMITED MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202) 674272 87-89 Sterte Avenue, Poole, Dorset. BH15 2AW. Telex: 418253 LUMIC G

SEND NO MONEY

Your order despatched C.O.D. from our comprehensive stocks of Audio, Video and T.V. spares.
Price list sent with your first order.

Simply phone us 0934-419147

Freeway Components, The Airport Weston Super Mare, Avon BS24 8RA

HOCKLEY DISCOUNT TELEVISIONS

North-East Branch:
NORTHERN T.V. DISTRIBUTORS,
Unit 2, Perth Court,
Eleventh Avenue,
Team Valley Trading Estate,
Gateshead, Tyne \& Wear
Tel. 091-487-5389
ASK FOR JOE

* Delivery can be arranged.

SATELLITE RECEIVING SYSTEMS

1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems. Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other

Demonstrations by appointment.
L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719
frequencies available. Bridgwater Somerset. [

Midlands Branch:

HOCKLEY DISCOUNT TELEVISIONS, 94 Soho Hill,
Hockley, Birmingham B19 1AE.
Tel. 021-551-2233
ASK FOR JAZZ

```
NOW THE MOST RAPIDLY EXPANDING WHOLESALERS WITH HUGE STOCKS
TO ENSURE YOU OF BETTER BARGAINS! LORRY LOADS DELIVERED DIRECT FROM SOURCE!
PRICES START FROM £6
WORKING SETS FROM \(£ 12\)
```


100's OF G11's IN STOCK 22" \& 20". VHS VIDEO'S NOW IN STOCK UNLIMITED SELECTION OF:

```
\begin{tabular}{ll} 
PHILIPS G8's (G11 Now in Stock) & SONY \\
PYE SOLID STATE & LATEST HITACHI \\
PYE CHELSEA & I.T.T CVC30, CVC45 \\
GEC SOLID STATE, STARLINES & BUSH T20,T22 \\
\multicolumn{2}{l}{ SPECIAL OFFER ON VARICAP 6 BUTTON DECCA }
\end{tabular}
    NOW THE MOST RAPIDLY EXPANDING WHOLESALERS WITH
                                    HUGE STOCKS
                O ENSURE YOU OF BETTER BARGAINS!
                        LATEST HITACHI
                        I.T.T CVC30, CVC45
                        BUSH T20,T22
```

$Q D B A B E$	
10 BUSH 2 CHIP	E50
10 SALORA	E50
10 GEC SOLID STATE	£150
10 DECCA 6-BUTTON 2	\& 22' £120
10 REDIFFUSION	MARK 1
REVAMP	£120
10 THORN 8000 17"	£150
ALSO BUSH T20, G11, 9000, 9600, 9800, GEC STARLINES	
DIRECT LOADS FROM SOURCE RING FOR QUOTE	
ALL + VAT	
TELETRADERS Forde Road, Brunel Industrial Estate, Newton Abbot, Devon Telephone: (0626) 60154	
THE NO. 1 WHOLESALER	N THE SOUTH

NORTH WALES TELEVISION SUPPLIES FLINT 5878
 SPECIAL OFFER
 $$
\text { PHILIPS G8's } 550
$$ COMPLETE LOTS OF TEN £15.00 EACH G11's ALSO IN STOCK
 Unit 32, Manor Industrial Estate, Bagillt, Clwyd.

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied 'off the shelf".
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street,
Wolverhampton WV2 4LJ. Phone: (0902) 773122.

REBUILT TUBES?

Come to one of the most experienced firms in the business. We have been rebuilding cathode ray tubes for industry, broadcasting authorities, major airlines, M.O.D. universities, and, of course, the TV trade in general since the '60's.

	WE ARE LOCATED IN UXBRIDGE At probably the most accessible part of S.E. England. Constructional work on the Poyle/ Uxbridge section of the M25 is now in progress. When completed we shall be less than 10 minutes from M3/M25 junction 2/12. M4/M25 junction 4/14. M40/M25 junction 1/15.
LOCAL AREA MAP AND PRICE LIST AVAILABLE ON REQUEST	
DISPLAY ELECTRONICS LTD. UNIT 4, SWAN WHARF, WATERLOO ROAD, UXBRIDGE, MIDDLESEX. UXBRIDGE (0895) 55800.	

TEL-X BLACKBURN
 CAN SAVE YOU £, £, £, £'s ON THESE 1985 PRICES

GEC Plastics
GEC Wood (modern)
DECCA $22^{\prime \prime}$ Varicap
DECCA $17^{\prime \prime}-20^{\prime \prime}$ Varicap
G8's
BUSH A chassis
HYBRIDS
INLINE
OTHER MAKES
£12
£14
£12
£10 from $£ 10$ £ 8 from $£ 4$ from £25 from £10
These prices are for 10 sets or above

WORKERS TO ORDER

Prices subject to V.A.T.

UNIT P3, ROE LEE IND. ESTATE, WHALLEY NEW RD., BLACKBURN, LANCS (0254) 679984

1000 sets now being
taken per week. All
makes and sizes.
Untouched off the pile. Ring now for prices. From E 3 .

PRICES AVAILABLE ON THESE SETS NOW!!!

PYE G11's
PYE CHELSEA's
PYE 721s, 731s, 725s PHILIPS 520s, 550s
BUSH T20, T22, T24s (Remote Control)
THORN 8000 \& 8800s THORN 9000, 9200, 9600
(Remote Control)
OF THE ABOVE SETS, MOST HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

Massive reductions for bulk Minimum 5 Sets
20 Salora $22^{\prime \prime}$ Colour £100
Big reductions for export orders over 100 sets

> COLOUR
> TELEVISION \& MUSIC CENTRE

35 Stafford Road,
Weston Super Mare, Avon
Opening hours: 9-6 Mon-Sat, Sundays by appointment
(Weston Super Mare 413537)
(Note new address)
(15 minutes past Bristol Southward on M5)

HITACHI VHS COLOUR CAMERAS
 Mains/Mains Battery Portable
 TESTED WORKING

FERGUSON - SHARP NATIONAL PANASONIC

Arriving in Quantities.

BETAMAX SONY \& SANYO

Arriving in Quantities.
PLUS
17" 18" 20" $22^{\prime \prime} 26^{\prime \prime}$ Hybrid/ Solid State CTVs Remote Control \& Teletext Discount for Quantities

Hitachi
 VHS Video machines playback only

17", 18", 20" Rebuilt Tubes available

$\mathbf{£ 1 5}$ (+ £2.25 VAT) each
JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON
Phone: 0602303124

CentreVision

TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB

OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 TELEVISION/VIDEO
(VHS + BETA) FROM £165

```
* ITT CD752 REMOTE
£115
```


PHILIPS G11
 $£ 50$

GEC STARLINE 22-20 (Remote) £35

* PYE CHELSEA £25
* THOFN 9000 20" $£ 39$
\star DECCA $22^{\prime \prime}$ BLACK FRONT VERICAP $£ 25$
\star RANK T20 REMOTE £50
* PHILIPS 550
£25
PRICES SUBJECT TO VAT OPENING HOURS:
MONDAY - FRIDAY 9.00-5.30
SATURDAY 9.00-1.00

IRISH T.V.
 DEALERS \& ENGINEERS

Make extra money selling Ex-Rental Colour TV's. NEW LOW summer prices. Off the pile from $£ 30$, good working order from $£ 50$, all prices VAT INCLUSIVE. Most leading makes in stock, fresh stocks weekly. Delivery to any part of Ireland. Export orders welcome for countries using PAL System. We also stock VHS Videos and regunned Colour tubes.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

TOP TWENTY VIDEO SPARES
 Cassette lamp (Ferg/JVC) $\quad \mathbf{f 1 . 8 0}$ Video head (Ferg) (state model) $\mathbf{6 7 5 0}$

 Cassette lamp (Panasonic)80 Video head (Panasonic) (state model) 539.50 Take-up clutch ${ }^{\text {Ferg }}$)........................56.95 Head cleaning fluid...............................51.50 Belt kit (Sony/Toshiba early) 56.50 Head cleaning sticks (each)50p Belt kit (Ferg) (state model)..............56.50 Reel Drive Pulley (Sanyo VTC5000).....58.8e Belt kit (Panasonic) (state model) $\mathbf{5 5} 50$ Reel Motor (Sanyo VTC5000) $\mathbf{£ 1 4 2 0}$ Belt kit (Sanyo 9300)......................... Rewind kit (Sony C7). \qquad E6.50 Loading Belt (Sanyo 9300) $\mathbf{E 1 . 5 0}$ Reel idler (Sharp VC)......................................45 Overhaul kit (Sony) (state model)........19.95 Video head (Sogy C7).......................E39.50 Overhaul kit (Sharp) (state model)£19.95
TELEVIDEO SERVICES NOTTINGHAM (0602) 226070

76 Wollaton Rd., Beeston, Nottingham
Please add 50 p post \& packing and then add 45% VAT to total ALL ORDERS DESPATCHED BY RETURN OF POST Send 22p stamp for full catalogue.

NEW OFFER

LONDON'S LARGEST TELEVISION WHOLESALER . . . with over $41 / 2$ thousand sq. feet. "'TELEMANN"

8-10 RHODA STREET, (Off Bethnal Green Road) LONDON E2. FREE CAR PARK Tel: 01-739 2707

01-739 3123

NOW
AVAILABLE

We specialise (where the other wholesalers don't) for the busy dealer who wants a clean compact parcel of six SERVICED Colour Televisions delivered to his doorstep! . . .

SERVICED $\underset{\text { TELEVISIONS }}{ } £_{\text {EACH }}^{35}$

 PSSpecial FREE opening offer . . . 6 Monos Included - NO CHARGE!

DELIVERY FREE TO THE GREATER LONDON AREA AND A SMALL CHARGE FOR OUTSIDE LONDON!

LORRY LOADS DELIVERED DIRECT FROM SUPPLIERS - NO CHARGE FOR DELIVERY! TELEPHONE BARRY OR JOHN $01-7392707 \rightarrow$ LNES $^{2} \leftarrow 01-7393123$ FREE CAR PARK + NO YELLOW LINES OUTSIDE!

N.G.T. COLOUR TUBES
First Independent Rebuilder with B.S.I. CERTIFICATION
DELTA - IN-LINE - PIL - BONDED YOKE including
AXT Series, DZB series 20AX - 30AX A56 610/67 610 series, A51 570/580/590X A51 161X, Sony types etc.
\star Rebanded with new adhesives
\star Excellent high voltage clean-up
\star Accurate alignment of Gun and Yoke for optimum convergence
N.G.T. ELECTRONICS LTD.,
120 SELHURST ROAD, LONDON SE25 Phone: 01-771 3535.
25 years experience in television tube rebuilding.

IRISH T.V. DEALERS

Large selection of fully reconditioned precision in-line UHF-VHF colour T.V.s at keen prices Quantity discount. Delivery arranged.

SPECIALISTS IN OVERSEAS ORDERS
T.V. TRADE SALES

EDI House, Kylemore Park West, Ballyfermot, Dublin 10. Tel: 01-264139

Also now at
Clover Place, College St., Killarney.
(Beside Failte Hotel). Telephone 06433655
(Open 10 a.m.-5.30 p.m.)

SETS \& COMPONENTS

THORN, GEC, DECCA's. Stripped for spares, panels, tuners from $£ 2.50$. Phone for prices: Wellington, Dartford 0322337212.

QUALITY SETS FROM CORNWALL. Workers/nonworkers. Spares, panels, etc. Details ring 0726815389.

WANTED - SURPLUS COMPONENTS, Valves. Transistors, Transformers. ICS Capacitors. Ring (0246) 211682 , immediate scttlement.

COMPLETE GRUNDIG, Nordmende televisions, telequipment, oscilloscopes, panels, manuals, spares. Ocre Mill. Tel. 0785814643.
JAPANESE COLOUR TVs, Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only. J.M. Pearson Television. 0484863489

NEW VIDEOS, Televisions boxed guaranteed below retail prices. Details Hemel Hempstead 44351.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

SECOND HAND TELEVISION PANELS, - Send stamp for lists. 154 Poplar Ave, Edgbaston, Birmingham B17 8EP.

PHILIPS G11 AND BUSH T20 regular supplies. For prices phone 01-845-2036

VINTAGE 1954 TEKTRONIX 513 Oscilloscope c / w handbook $£ 50$ o.n.o. Delivery possible. 0531820904.

Philips G11s
Panels from $\mathbf{£ 1 0 . 0 0}$, Breaking for spares, Push button units, Tube bases for sale or exchange etc. All good working order.
68 line panels with new LDPT E16.00. Timebase, good working $£ 6.50$.
RADIO and TELEVISION SERVICING BOOKS
(MacDonalds). New $74 / 75$ £15: 7576, $76 / 77$ 7778. 7879, 7980, 80/81, 81/82, 82/83, $83 / 84$ £27.50.

MAINS ISOLATING TRANSFORMERS
500 Vott/Amp $\mathrm{EP9}$ inclusive.
1000 Vott/Amp $E x$ inclusive
FREE DELIVERY All prices are inclusive U-VIEW
29, Warmsworth Road,
Doncaster, Yorkshire DN4 0RP. Tel: 0302855017.
Callers ring first, open every day including sunday $1 / 2$ a mile from A1

No other consumer magazine in the country can reach so effective those readers who are wholly engaged in the television and affiliate electronic industries. They have a need to know or your products ar services.
The prepaid rate for semi display setting $£ 6.30$ per single column cen metre (minimum 2.5 cms). Classified advertisements 37 p per woi

IRISH TV TRADE CAN WE BE OF SERVICE TO YOU? Regular supplies of Quality Colour TVs LOWEST PRICES

Working Sets from $£ 18$
 Non-working Sets from $£ 8$

 FREE DELIVERY ANYWHEREป. TI. G. Electionics
Omagh, Co. Tyrone, Northern Ireland. Omagh (DE62) 46032 night Omagh (06S2) 47911 day

COLOUR TV PANELS Fully Tested \& Working

	IF	CDAI Video	Decoder	LTB	Line Board	Power
GEC 2040	3.50	3.50	4.00	5.00	Board	Power
DECCA 13/30	3.00	-	7.00	5.00	-	4.00
BUSH A823	4.00*	-	10.00*	5.00 *	2.50	4.00
THORN 8/81	-	-	10.00	5.00	. 5	5.00
PYE 205	3.00	3.50	5.00	10.00	-	-
THORN 3/31	5.00	5.00	5.00	8.00	-	10.00
	6.00	-	8.00	7.00	15.00	5.00
*Please specify					fitted with	
Please add 15\% VAT to above pricas, then add post + packing. brand new Post + Packing: 1 panel $£ 1.50 ; 2$ panels $£ 2.25$; $\mathfrak{3}$ panels $£ 3.00$ etc.						
Hybrid panels do not include valves.					Terms cash with ord	

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock
GOLCAR T.V. SERVICES (formerly Lavite Ltd.),
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Callers by appointment only.

(GP))) $)$ Euro Am Ltd.
 Philips G11; Bush T20, T22, T26;
 Decca 80/100; ITT CVC20, CVC30; Pye 725 etc.
 Working sets from $£ 20$ Non-working from $£ 12$ Ring (0827) 52491
 Ask for Chris or Ron

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex.
Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ \mathbf{3 1 . 5 0}$ INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.

All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

EERUICE PQEES

minimum 12 words), box number 70p extra. All cheques, postal orders :tc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Freasury notes should always be sent registered post. Advertisements, ogether with remittance, should be sent to the Classified Advertisement Jept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

 COLOUR SETS FROM MONOS FROM
 £5,00
 £3.00
 PANELS BY POST - PRE-CALIBRATED WORKING SETS TO ORDER TV Business

NDEPENDENT TELEVISION

 AND VIDEO COMPANYSuppliers of colour and mono sets to the trade.
Worker and/or direct from source, van loads negotiable.
Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800, 9000 and 9600, Bush T20 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.

For quotation and prompt service:
Ring Notts (0602) 864627 UNIT $3+3$ A,
Meadow Trading Est. Meadow Lane,
Nottingham NG3 3HO.

TELEVISION

GOOD QUALITY TRADE TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES AND MODELS

GENERAL UNON STREET DONCASTER DN1 3AE FACTORS
 TEL (0302) 68416
 GOOD MOTORWAY ACCESS

WOODSDALE COMPONENTS

 RANK BUSH MURPHY TRANSFORMERSLine Ouput
2718 (T703A, T706A)
New (Complete)
Less Focus Module and
Rectifier
£19.50

T20, T22 (T705A)
T26 (T705B)
E10.50
$£ 11.00$
TDA2190 Plug-in Replacement module suitable for Bush T22/26 and any set using same device $£ 7.50$ Switch Mode
T114A/B
$£ 8.00$
Genuine RBM Units
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.
34 Field End Road, Eastcote, Pinner, Middlesex. HA5-20T. Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

EAST ANGLIA SUPPLIES

For your fully serviced colour televisions ready for sale or rent at realistic prices with free delivery (just petrol charged) anywhere for sensible sized orders.

G11s $£ 70$ + VAT MANY OTHER
T20s $\quad \mathbf{5} 65$ + VAT
T20s $\quad \mathbf{E 6 5}+\mathrm{VAT}$
S/state from
ITTs $\mathbf{£ 5 5}+$ VAT
Decca from
555 + VAT
MAKES REGULARLY
STOCKED AND
CHEAPIES FROM ONLY £25 + VAT FULLY SERVICED.

Contact John, Dave or Steve for personal
friendly attention on
022369215 or 035361462

REBUILD THOSE BROKEN G11 UNE SCAN UNITS!
New glass fibre P.C.B.'s to suit all versions. £7.50 each P\&P 30p.

From:

15 Parkside Avenue
Littlehampton, Sussex BN17 6BG
Tel. (0903) 716633

WORKING CTVs THE BEST \& CHEAPEST IN LANCASHIRE
 SPECIAL OFFER

Working Decca Bradford Including Black Fronts
$18^{\prime \prime} 20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 20.00$ each in 6 units
Working GEC Plastic \& Wooden. All models $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $\mathbf{Z 2} 200$ each in 6 units Working Bush $20^{\prime \prime} 22^{\prime \prime} 26^{\prime \prime}$ ONLY $£ 15.00$ each
Philips G8 (520) $22^{\prime \prime} \& 26^{\prime \prime}$ ONLY $£ 2.00$ each
Plus many more makes \& sizes in stack,
inc. Tanburg, Nordmende, Thorn. 1st COME 1st SERVED
ALL SETS TESTED \& WORKING CALL JOHN POWNEY
TRADE TV SALES \& SERVICE Unit 31 Progress Industrial Estate, Kirkham, nr Preston (0772) 683392

UNTESTED PANELS FOR ALL MAKES OF TV
f1.25 per panel olus post \& packing

RY

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished. These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.

Mratal Marteting Lid,	Phone 021-471 3023
Breedon Cross	Teiex 335540-6
Storage,	Ask for Les
Dale Road. Selly Oak,	
Birmingham B29 6AC	

NWEEECTRONICS 25 YEARS SUPPLYING THE TRADE

New Low Prices Thais a Fac!!

100's of good class HP Repos and Ex Rental Colour TV's reduced to ROCK BOTTOM PRICES!

> Bush T20 (Excellent Ca Bush 718 P.I.L. Tube Bush 2 Chip Decoders Philips G8
> Philips GIl
> GEC 2010
> Thorn 3500
was $£ 60$ \qquad NOW £40 was £30 \qquad NOW £25 was £15 NOW £8 was £28 NOW £23 was £70 NOW £55 was £25 NOW £20 was £12 NOW £8

Hybrids $£ 5$ all makes!

Models include Bush T20, Pye Gll,Pye KT3, Bush Z718, GEC. Ring for Quotation. Nono Lys cl each (lots of 25)
Thorn $1500 £ 4,1600 £ 12$. Discount for Quantity (like new). No cheques.

thinte goods

Hoover Twins from £6. Hotpoint 1460 from $£ 10$. Autos all makes from £10.

Sparest sparss! TV pantis

	1.15	DECODE日	LINE OIP	POWER	CONVERG.	VIDEO	frame 33
BUSH 2 CHIP	3.00	8.00	8.00	3.00	300	-	5.00
300013500	2.00	4.00	8.00	8.00	5.00	5.00	6.00
G8	5.00	7.00	14.00	8.00	5.00	-	5.00
	WITH SOUND						
GEC 2110	10.00	5.00	12.00	5.00	5.00	5.00	5.00
BUSH 718	B. 00	15.00	25.00	3.00	5.00	-	15.00
BUSH T20	8.00	15.00	20.00	20.00	5.00	-	15.00
THORN 9000		12.00	25.00	-	-	-	10.00
PYE 222	15.00	10.00	15.00	10.30	4.00	-	6.00

Unit 12, Wharfedale Road M606 Euroway Estate Bradford

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00,3$ panels $£ 2.50$ etc. Quick Despatch - C.W.O. please. All prices plus VAT
CASH ONLY-NO CHEQUES DELIVERY CAN BE ARRANGED-TRADE ONLY
(0274) 688458 OPEN6 DAYS AWEEK OPEN MON-SAT 9-5.30 Don't forgetl We are open all day Saturday!

WIZARD DISTRIBUTORS TV \& VIDEO SPARES

Visit our trade counter and see the huge range of components inc. tubes and video heads. Only minutes from the town centre and motorway routes.
Fast friendly service and techincal assistance available.
Come in and see our trade counter special offers.

Open Monday to Friday 9 am to 4.45 pm Trade Only
EMPRESS STREET WORKS Empress Street
Manchester M16 9EN
Tel: 061-872-5438, 061-848-0060

STARLITE ELECTRONICS

NOW MOVED TO: WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.

- TV TUBES -

2 year guarantee
Most types available
Japanese including Sony
Ex-Rental TVs from $£ 15.00$
Untested Panels......................... $\mathbf{£ 4 . 0 0}$

TELEVISION TUNER REPAIRS

BRITISH, EUROPEAN JAPANESE ETC.

ELC 1043/05 TUNERS AS NEW $£ 4.60$ inc. MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

BRISTOL TELEVISION TRADE DISTRIBUTORS (BTTD)

4 Victoria Street (Bristol Bridge) BS1 6BN

Ex-rental/trade in TV sets, supplier to trade only, wide range, large quantity, right price, regular supply.

Tel: (0272) 25266

TELEVISION

Trade \& Retail supplies of s/h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS
 Unit 4 Rubastic Road,
 Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

TRADE REPAIR WORKSHOP

VIDEO, T.V., HI-FI. ANY MAKE.
EXCHANGE PANELS G8, G9, G11, PY713, Grundig SO11 6011.
COLOURTRONIC SERVICES, 96 Ifford Lane, Ifford, Essex. 01-478 0782

Tpert Tubes

31 RADCUFFE ROAD,
WEST BRIDGFORD. NOTTINGHAM THE QUALTTY REBULDER PHONE: (0602) 813329
ALL TUBES CARRY A TWO YEAR GUARANIEE EXTENDABLE TO FOUR YEARS
All Sizes of Standard Dehtas
ONLY $£ 29.50$ (A56-120-A66-120 etc.) Buy 10 at ONLY $£ 26.00$ ea.
A5t-161-A51-163 £42.00
A55-66 500/510 (20 AX) £43.00
A56-S40-A66-S40 |30 AX) £49.00
560 OZB 22 £46.00-560 EGB 22-510 VLB 22 £46.00 1000's more available. VDUs, MONOs, Industrial etc WE NOW REBUILD SONY TUBES Phone for details From $\mathbf{£ 5 5 . 0 0}$ STOCKISTS
Peterborough: H. DONNOR 073371809
TECHNICAL ADVICE SERVICE All prices + VAT \& Exchange
Suppliers to Broadcasing Authorities and Natonal Companies Quantity Discounts
WE ARE SPECIALISTS IN
REBUILDING JAPANESE TYPES

IRISH DEALERS
Contact our sole Irish Agent,
Conway Bros., Cookstown
Tel. 0648763771.

T. V. $\begin{gathered}\text { SPARESAR, PANELS } \\ \text { PHILIPS } \cdot \text { GRUNUALS }\end{gathered}$

TELEVIEW 01-994 5537
194, Acton Lane, London W.4.

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame $\begin{array}{llllll}\text { Philips GII } & 18 & 16 & 20 & 18 & 18\end{array}$ $\begin{array}{llllll}\text { Bush T20 } & X & 12 & 16 & 15 & 12\end{array}$ | Bush T26 | X | 16 | 18 | 15 | X |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Bush 718 | X | 12 | 18 | X | 12 | All panels are repaired and aligned according to rank std.

Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels quaranteed for 3 months.
T. K. PANELS SERVICE

37 Bronte Paths, Stevenage (0438) 61567

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for f
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

NAME
ADDRESS

Send to: Classified Advertisement Dept.
TELEVISION
Classified Advertisement Dept. Room 2612.
King's Reach Tower, Stamford Street, London SE1 MLS. Telephone 01-261 5846. Fate
3ip per word, minimurn 12 words. Box No. The eatra
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

SERVICE SHEETS

TECHNICAL INFO SERVICES - 76 Church St - Larkhall - Lanarks (18y return of post service in most cases.)
Sole suppliers of the Unique Comprehensive T.V. Practical Course and The Complete Radio Repair and Servicing Course

ONLY $£ 9.50$ each
We stock every published service sheet plus produce more ourselves.
All service sheets are top quality, full-size sheets supplied in complete sets. $\mathbf{£ 3 . 5 0}+\mathbf{I . s . a . e .}$ for CTV or Music Centres - $\mathbf{E} .50+1.5$. .a.e. any others. WORLD'S LARGEST COLLECTION SERVICE MANUALS
Can be seen at our premises any evening 4-6pm. Manuals from 1930 to the latest issue. Col + Mono TVs, Videos, Audio, Com + Test Eqpt. in stock for immediate despatch - Over 400 dif. CTV - Over 200 dif videol

Sample CTV prices: G8 or Pye 697 or A823 or Autovox early (poor copy) at $\mathbf{£ 7 . 5 0 \text { each }}$ Most manuals are unobtainable anywhere else.
WORLD'S BIGGEST PUBLISHER OF TV/VIDEO REPAIR MANUALS
British CTV Integrated Repair System (3/5)
Foreign CTV Integrated Repair System (2/4)
Mono TV Integrated Repair System (2/6)
Video Integrated Repair System $(2 / 10)$.
First figure for giant collections of circuits/layouts in binders,
2nd figure for number of repair manues. Other items not show
The Complete Integrated TV Repair System - covering TVs colour \& mono, British \& foreign, circuits, layouts, repair data plus much servicing data. Around $£ 300$-worth ..

ONLY £220
Free 50p magazine with pricelists, efc. to every query or order -please enciose s.a.e.
FOR FAST QUOTES - PHONE 0698883334

Alba, Cossor, Baird, GEC,

30,000 SERVICE SHEETS IN STOCK ALL AT £3. 00 + SAE Defiant, Echo, Ferguson, Philips etc. etc. ALSO COLOUR MANUALS AVAILABLE AT f6.00 EACH TV Sheets, Black and White, also Radiograms, Record Players, Music Centres. Japanese models in stock. Circuit diagrams only. Also Tape Recorders etc. Car radios also in stock. Radio Mobile, Car Radios, Philips, Sharps etc. Service sheets. Please forward s.a.e. Old radios AM/FM Ferguson, Pye, Send cheque or P.O. and Valves. Sanyo. Mono C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX. old transistors, TV.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885

LARGE QUANTTTY SERVICE SHEETS, TV radiograms etc. dated from 1936. Any reasonable offer accepted. Further details telephone Heathfield (143524655).

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock. Colour $£ 2.00$ Mono $\mathbf{£ 1 . 5 0}$
 Manual pric

FOR SALE

Sabaco

For a great dea!!

VAN LOAD DIRECT FROM SOURCES

ALL SETS OFF THE PILE
Most makes/sizes available, any quantities. e.g. Black faced Decca $\mathbf{£ 1 0}$, solid state GEC £10, PYE 22"118" (solid state) $£ 12$, Thorn $8800 / 9000$ etc. $£ 20$, Thorn $3500 £ 8$, Philips G8 (550/520) £9, ITT (CVC5, 8, 9) £9, Grundig 5010/6010 £10, $26^{\prime \prime \prime}$ (3500/G8 etc.) $£ 5$, Jap $£ 10$, Pye GEC Hybrid $£ 4$, BN £1.
All above offers minimum quantity of 15 sets or more.
ALL PRICES SUBJECT TO VAT \&
AVAILABILITY.
Sabaco
Saba House,
46A Derby Road, Sandiacre,
Nottingham.

BUSH 823 2-CHIP TEST RIG

Complete with tube, panels and isolating transformer $£ 50$. V 33 tube tester $£ 30$. Nordmende colour bar generator (requires attention) $£ 10$. Manor supplies colour bar $£ 25$. Heathkit TV alignment generator $£ 35$. Advance AF generator $£ 15$. 0-300 volt regulator power supply $£ 15$. Tel: Gravesend 22660.

COMPLETE TUBE RE-GUNNING PLANT fully overhauled. Also some brand new items. Electric ovens with automatic process control. Re-gunns 15 colour (Sony Trinton, Pil, In-Line etc) tubes 24 hour cycle. Training provided and assistance available for installation and setting up of the plant. Export enquiries welcomed. Only $£ 8,50$). Tel 0582410787.
WORKING COLOUR/B\&W Televisions, also panels, good prices. FOUR ACES ELECTRONICS, 74 Old Oak Comon Lane, London W3. 01-749 9338.

ELC 1043 TUNERS equipment, $£ 2.00$ each $+£ 1.00$ P\&P. LN TV's, 163 Victoria Road, Horley, Surrey. Tel. 0293785415
T.E.S. MC666C FIELD strength meter, leather case, mint condition. Telephone $03038734.34, £ 150.00$.

VINTAGE BUSH TV22, Bakelite, $9^{\prime \prime}$, $£ 45$ o.n.o. Tel. (0533) 530770

WE ARE SO SHAW SURE!
 OF OUR QUALITY PRODUCTS THAT WE GUARANTEE THEM ALL FOR ONE FULL YEAR!

THIS MONTH'S SPECIALS: L.O.P.T.'S

1. RANK T152A £5.75
2. PYE $691 / 7$ PCB
3. PYE $713 / 715$
$P+P £ 1.00+V A T$
Shaw electronic services
38 RUDLAND CLOSE
THATCHAM BERKS RG13 4XW
S.A.E: For lists of other BARGAINS

MONITORS

Quantities of $20^{\prime \prime} 22^{\prime \prime}$ GEC Starline converted to monitors ideal for BBC computer good definition. $\mathbf{£ 4 0 . 0 0}$

Tel: (0602) 397555.

TUBES BY DEVONICS
 Deltas £30-£36 In line from £41 2 YEAR WARRANTY on Quality Rebuilds Phone 0803-33035 or call 2A BARTON HILL ROAD, TORQUAY TQ2 8JH

BUSINESS OPPORTUNITES

[^2]
MISCELLANEOUS

GET GHARP PARTS FAST TELEPHONE

0734-876444 TELEX 848953 EHABP WTE Main U.K. Spare Parts Distributor
Audio-TV-Video \star Microwave \star Photo-copier \star Typewriter
All U.K. model spares available. Same day despatch of orders received before 1 pm.
Microwave, photocopier and typewriter spares to authorised service dealers/centres only. WILLOW VALE ELECTRONICS LTD.,
11 Arkwright Road, Reading, Berks.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.

The Colour Signal
Part 2.
The Receiver Decoder
Part 3. Receiver Installation

VHS $\star \star \star V 2000 \star \star \star$
BETAMAX $\star \star \star$ UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night) Or send for precise details FUNTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS

TEL:

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.
A.Z LIST OF MANUFACTURERS ADDRESSES. All major TV, audio etc, plus many hard to get ones. Send cheque/PO for $£ 3.75$ to DOWNS ELECT, 79 High Street, Dalkeith, Midlothian.

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

FULL SIZE TOP QUALITY service sheets $£ 2.50+$ 1.s.a.e. CTV/Music Centres $£ 3.50$ + I.s.a.e. Repair data almost any named TV/Video $£ 10.50$ inc. circuits. L.s.a.e. brings any quite free magazine/pricelists. TIST, 76 Churches, Larkhall, Lanarkshire. Tel. 0698883334.

RADIO AND TELEVISION SERVICING BOOKS New 74/75 £15. 75/76, 77/78, 78/79, 79/80), 80/81, 81/82, 82/83, 83/84 £22.50 each. Free delivery. UVIEW, 29, Warmsworth Road, Doncaster. 0302 855017. Callers ring first.

EVERYTHING NECESSARY for multi-gutlet and high gain installations. Cables, outlets, splitters, channelpass filters, diplexers, masthead amplifiers, distribution amplifiers, brackets, masts, aerials, etc. Use trade gear and save pounds. Catalogue 50 p (refundable). Professional advice. WRIGHTS AERIALS, 43 Greaves Sike Lane, Micklebring, Rotherham.

AERIAL BOOSTERS

B45H/G-UHF TV next to the set fitting, gain about 20dbs, PP3 battery or 8 V to $14 \mathrm{~V} /$ working. Price E8.70. P\&P 30p.
UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to $14 \mathrm{~V} / \mathrm{W}$. Price $£ 2.50$. PsP 30 p . SET/TOP AERLAL and matching aerial booster (trebles and gaini. Price 18.70. P\&P 50p. SINCLAIR SPECTRUM COMPUTER. For DC on/off unit, can be fitterd in seconds. Saves unplugging the DC lead. Price E2.70. P\&P 30p.

ELECTRONIC MAILORDER.
62 Bridge Street, Ramsbottom, Lancashire, BLO 9AG.
Tel: Ramshottom (070 682) 3036.
S.A.E. for leaflets. AccessNisa Welcome.

CLEARVIEW AERIALS

Clearview have pleasure in announcing a full and compretensive range of signal amplification equipment. For example: low noise electronicaly remole controled masthead pre-amp 1.6 db noise. Ch. 4 in 1 or 2 in 1 etc. Combiners for 2 UHF aerials 3db gain or 46 db gain. Trade and retail.

Send large SAE for our comprahensive catalogue
CLEARVIEW AERIALS
173 Kings Road,
Kingston Upon Thames, Surrey

WANTED

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

USED TVs AND VIDEOS

Export UHFNHF models only in high quantities
Please send your offer and telephone number to:

TV WHOLESALE \& RETAIL PO Box 1124, 4955 Hille, w. Germany.
and we will ring back.

LATE MODEL COLOUR TELEVISIONS, videos, etc. Any quantity. Monitec. Tel. 0299 400)233/4(00933.

WANTED EX RENTAL COLOUR TVs. Any quantity, prompt collection, cash paid. BOLTON TV WHOLESALE. Tel Mike: 020422592.

VIDEOS WANTED. Working or not. VHS and Beta only. Upminster (040227) 20549.
ION0 COLOUR SETS WANTED. Send fullest details and prices to LACOSTE, Box 3514, Vineta, Swakopmund, Namibia

VIDEO

EX RENTAL VHS VIDEOS

$\star \quad \star \quad \star$
100's IN STOCK
$\star \quad \star \quad \star$
CONTACT MICK ON 021-772 1591

EUROLEC VIDEO SERVICES

Tel: 01-669 2611

Address for correspondence only:
35 Sandy Lane South, Wallington, Surrey SMb MRF N1700 Library Cassettes New unused, some opened and erased with library labels removed.
removed
LVC 120
LVC 90
LVC 60
Now and broxed LVC Cassettes
LVC 90
LVC 60
1500 Format Cassettes Used/Tested
VC 60
VC45
VC 30
VC 30
VC 15
$£ 10.00$
$\Phi .50$
(All the above prices include VAT + Postal NTSC - PAL Transiers, phone for details VAT Reg. No. 335709645

FOR INFORMATION ON CLASSIFIED ADVERTISING

PLEASE RING
PAT BUNCE
01-261 5942

[^0]: and ihe processing chargespald NO CRFMTSGUS We will only accept your ilm on the strict understanding that our lability in the case of loss or darnage will nol exceed the replacement cosi of the unex posed inim

[^1]: Fubiished on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland f11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN $0032-647 \mathrm{X}$.

[^2]: T.V. VIDEO \& HI-FI REPAIR \& RECON

 SALES BUSINESS Ifford area.
 Established 9 years. Long lease. Large fully equipped workshop. Shop showroom. Great potential

 Capital investment needed.
 Would consider partnership
 or for sale $£ 20,000$ BOX No. TV 196

