JANUARY 1985

TELEUSIOM
 SERVICING•PROJECTS•VIDEO-DEVELOPMENTS

Simple Pattern Generator

The VHS Hi-Fi Sound System Servicing the s-s Indesit T24
Test Report • Christmas Lights
Goodbye to 405•DX-TV
VCR Clinic • TV Fault Finding

MANOR SUPPLIES

NEW MKY PAL. COLOUR

 TEST GENERATOR FOR TV \& VCR.
TEST DEMONSTRATIONS AT 172

 WESt END LANE
$\star 40$ different patterns and variations.

* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
* Chequerboard
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket
* Additional video output for (CTV \& VCR.
\star Facilities for sound output.
\star Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
- Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
$\begin{array}{lr}\text { Price of Kit } & \mathbf{£ 7 0 . 0 0} \\ \text { De Luxe Case }\left(1\left(y^{\prime \prime} \times 6^{\prime \prime} \times 21 / 4^{\prime \prime}\right)\right. & \mathbf{£ 7 . 4 0} \\ \text { Optional Sound Module }(6 \mathrm{MHz} \text { or } 5.5 \mathrm{MHz}) & \mathbf{£ 3 . 9 0}\end{array}$
Built \& Tested in De Luxe Case including Sound Module

RPECIAL TEST

£105.00
Post/Packing £2.50
$\left.\begin{array}{c}\text { TELEVISION' } \\ \text { dEC. } 1982\end{array}\right\}$ Add VA'T 15\% TO ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)

\star Output at UHF, applied to receiver aerial socket.

* In addition to colour bars R-Y. B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
- Push button controls, battery or mains operated.

Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. DELUXE CASE £7.40. BATT HOLDERS £2.80. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P $£ 2.20$).
MK 4 DE LUXE (BATTERY) BUII.T \& TESTEI) £58.00 $+\mathbf{£ 2 . 2 0} \mathrm{P}$ \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 68.00+62.20$ P \& P. VHF MODULATOR (CHI 1 to 4) FOR OVERSEAS E5.75.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V. (ADD VAT 15% TO ALL PRICES)
TELETEXT EXTERNAL ADAPTOR KIT (Less case) with cable remote control $\mathbf{\$ 1 2 0 . 0 0}$

THORN TXIO, PHILIPS G1I

Mullard Teletext Decoder + Interface panels suitable for either the above $\mathbf{~} 50.00^{0}$
Additional Prestel units including line coupler $\mathbf{£ 5 0 . 0 0}$ p.p $£ 2.50$
Goxds available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF FECHNICAL EXPERTS
LOITS. TRIPIERS, PANELS. TUNERS, SELECTORS ETC SPECIAI. OFFEK NIEW VAIVES
Branded makes, PCF80, PY88. PFL200, PCLSt FOUR for $£ 2.00$ p.p. SOp. TIIORN TXIO Facia Control Panel mel. Infra Red Remote Control receiver f7.50 p.p. $£ 1.50$

THORN TXIO Scrics Facia Control Bancl with 8 prsition Channel Selector E5.(M) D.D. ©1.50.

SAW FILTER IF AMPLIFIER PLUS TUNEK complete and tested for T.V Sound \& Vision. $£ 28.50$ P. P. $£ 1.20$.
THORN TX9, TXIO Saw Filter IF Panel. E7.501 p.p. $8 / 1 \mathrm{p}$.
PAI. DECODER KIT for RGB Monitors $£ 27.00$ p.p. $£ 1.00$
SPECIAL. OFFER TEXAS XMII Teletext Decoder New \& Tested at reduced price. £4l.(0) p.p. $£ 1 .(x)$
TELETEXT 33 Button De-Luxe Handset with 5 yds Cable. $\mathbf{£ 6} .80$ p.p. $£ 1.20$ XM11 Stab. Power Supply £3.80 p.p. £1.20.
CROSS IAATCH UNIT KIT, Aenal lnput type. inct T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be
 RSD (1 Ho ADIITIONAL GREY SCALE Kit $£ 2.90$ p.p. +5 p .
fiff Signal STRENGTH METER KIT $£ 20.00$ (Vifir version $£ 22.00$) Alum. (ase $£ 2.55$. De luxe Case 47.40 p.p. 11.80 .
CRT TESTER \& REAC TIVATOR PRO, JECT KIT For Colour \& Mono £28.00 P.p. \ddagger ? 20 .
BUSH Zhis BCoion series IF Panel 55.00 p.p. Wp
BUSH A816 IF Panel (Surplus) E1.65 PN. APP.
DECCA 84 Series IF Frame, T.B. 55 .00 p.p. f1. +1
(EEC 2040 Convergence Pamels. Decoder fianels. E2.50 p.p. f1.80
(GEC $2(440$ IF Pancls $£ 2.80$ p.p. $f 1$. (x)
(GEC 2110 PANELS Frame Es.50. Preset (Touch Tune) Control $55 .(00)$ Convergence 85.00 . p.p. f1.80.
(GEC ${ }^{-20 A X}$ " Series. Switch Mode Power Supply 55.00 p.p. 11.80
PYE 691-7 CDA Panels. Makern ested stock. ©6.(0) P.p. 1.15.
THORN TX9 Panels ex factory for small spares. Includes 1.Cs \& Semiconductors etc. E5.01 p.p. \mathfrak{f} ? (x)
THOKN TX9 Panels salvaged ex tactory for spares incl. I.Op ${ }^{2}$ \& Mains Transtomers, E10.00 p.p. E. 80 .

THORN TX10 T.B. Panels salvaged ex factory £ 15.00 p.p. $£ 3.0$
TIIORN TX10 IF:/Decoder Pancls salvagel ex factory Cis.00 p.p. £2.00.

TIIORN \%(x)O Serics. Long pancl facia unit incl. 6 Position Channel Selector \& Laudspeaker 26.00 p.p. 12.00
PHILIPS (; /G9 IF\%Decocker Panels for small spares incl ICs $\mathbf{~} 2.50$ p.p. £1.(t) G11 PANEIS, Ex Rental S('AN (incl LOPY) £28.00 p.p. $\mathfrak{2} .50$.
G11 PANELS, Power, Frame. IF. Decoder $\mathfrak{£ 1 8 . 0 0}$ each. p.p. $£ 2.00$.
GRUNDIG; 86.30 Series Varicap Tuners $\mathbf{£ 5 . 0 0}$ p.p. EI. (0).
 trols PYI C T20 4 PSN £7.50, BUSH 4PSN E4.80, DECCA 4PSN £5.80, GPSN E6.80 RP YOp. Etc
SPECIAL OFFER ELLEVEN POSITION Varicap Control Unit Uhf/VHF f1.80) P. flo (n)
BUSH "TOLCH TUNE" Varicap Control 2179,2718 types $£ 3.80$ p.p. $95 p$.

VARICAP VHF PHILIPS E6.90pp. Milp.
IHF/625 TUNERS, many ditferent types in stock. DECCA Bradford 5 position. MUILARI) 4 grition $£ 2.50$, JAP Rotary 4.80 p.p. $\mathfrak{f l} .80$.
TV SOUND IF Panels $\mathbf{E} 6.80$ p.p. E1. 00 .
LOPV TESTER. Service Det approved $\mathbf{E 1 5 9 0}$ p.p. £1.20
LOPTS New and guar. P/P Monce £1.35, Colour $£ 1.50$. Bobbias 80p.

	[5.90		
SII, MURPHY 774 weric	Ex.50	к. B. M. 2178	
BUSH, MURPHY Axtos	Ex.50	к.в.м. 210.122	
ferg., hmy marconi, ultra			
	55. ${ }^{1}$	DExC'A Brialtord (starc M	
THORN Ita(k), 1615, 1690, 1691	£9.15		
	¢6. ¢ 6)	GEC2328.204). 210	
GECCenes 182	(8.14)	(ixC2111 eries	
INIDESIT 20/24EGB	£7.65	mTCVCstog. CVC3	
Itrekb Ve $2(1) .3(1)$	¢7.65		
MLIMPIIY 1910 to 2414 ((wim panct)	[5.9)		
	67.65	PYE713.715	
PYE, INVICTA. EKCO, remr.		PYE 725 (90) 73	
6k, 169. 5699.769 senes	57.65	Philimigi	
SPECIAL OFFER		PHILIPK ${ }^{\text {a }}$	
	(3.8)	Phillix 570.57	
GEC' $2114 \mathrm{~J} / \mathrm{dumur}$ Fineline	E2.80	PIILIISKIS	
PYEH1.67	11.75	THORN Mantistm SCAN. EIT	
KBVCCELEVIEN(4)3)	£1.75	THORN Mildisim	

KB VC ELEVIEN (M)3)
KBVCI
OTHERS AVAILABLE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour
Special Offer: Thorn sum) (2 kead) EHT Tray $£ 2.80$ p.p. 80 p
TRANSDUCTORS suitable for G8. AX23, Bradford cte. it. 50 p.p. (o) p. 6.3V CRT Bcost Transformers for Colour \& Mono E5.40 p.p. 1.20. THORN TX10 fox us control \&8.80) p.R. 81%
THIORN 8 (O00) mann input choke e6. 80 P.p. 11.41
THOUSANDS OH DDIT ONA SHEP PREMISES
 TELEVISION MAG TESTED COLOLR PANELS POPULAR MODELS TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE

Tetephone 01-794 875I, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Str. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St) (St. Pancras, Bedford) W. Hampstead (Brit. Rail) access from all over Greater London.

Mail Order: 64 GDLDERS MANOR DRIVE, LONDDN N.W.11.
PIEASE ADD VAT 15% TO ALL PRICES

TELEUISION SUBSCRIPTION SERVICE

A TV licence enables a householder to enjoy viewing without fear of interruption by callers from the BBC detector van. In the same way a subscription to Television enables you to update yourself on the latest developments without fear of interruption because copies have been sold out.

A regular subscription overcomes this problem. You know how annoying it can be when you have a gap in an important series of monthly articles. Why not avoid sell-out disappointment by arranging for Television to be delivered to you direct from the publisher? Just fill in the the order form overleaf and post in the addressed envelope attached. Then leave us to do the rest.

GIFT SUBSCRIPTIONS

A subscription to Television makes an ideal gift for someone in the same line as yourself. All you have to do is complete the appropriate section of the order form and post in the same way. When we receive it, then we take over. We'll even send a card announcing your gift with your own personal message on it.

TELEVISION
 Subscription Service ...we'll keep you posted.

TELEUIS

	Twelve Months	Six Months UK, UI, IOM, IR
Overseas	$£ 11$	$£ 5.50$
E12	$£ 6$	

AIR MAIL rates available on request.
Please register the Television subscription(s) below:

- Charge my credit card account:

- I enclose paymont (cheques payable to Television)
name of card

Name 52 weeks

26 weeks \qquad

I would like to arrange the gitt subscription to the person named below. (Enter your own name and address above as donor).
\qquad 52 weeks \qquad

Address
26 weeks \qquad

\qquad
GIFT SUBSCRIPTION MESSAGE TO RECIPIENT

COPYRIGHT

© IPC Magazines Limited, 1985, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, $£ 12$ overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

129 Leader
130 Teletopics
135 Christmas Lights William Harrison
How to get the travelling light effect with a sequencer and strings of LEDs.
136 VCR Clinic
Reports on VCR faults and servicing from Derek
Snelling, Steve Beeching, T. Eng., Dewi James, Philip
Blundell, Eng. Tech., Keith Hamer and Garry Smith.
138 My friend Jim
Les Lawry-Johns
Jim's more interested in building than TV servicing, so
what does he do with sets he doesn"t like the look of?
139 Letters
141 Next Month in Television
142 Long-distance Television
Roger Bunney
Reports on DX conditions and reception plus news and an investigation into wideband inductive combiners/splitters.
145 Test Report: Tele-Part Pattern Generators
Eugene Trundle
146 TV Fault Finding
Notes on TV faults from Malcolm Burrell, Philip
Blundell, Eng. Tech., Chris Avis, Paud Hardy, Keith Hamer and Garry Smith.
150 Simple Pattern Generator
Barry J. Thurlow
An inexpensive video/TV pattern generator based on
the Ferranti ZNA234E chip. Fits into a small Verobox and
provides grey-scale, peak white, crosshatch, dot, vertical line and horizontal line displays.
151 Suspect Transistors
George Wilding
You may think that the transistor in a faulty stage is the obvious suspect but may well be wrong.
152 Goodbye to 405 lines
Pat Hawker
This month sees the end of the sysiem that's served the UK since 1936. A fond farewell.
Postscript on 405
Nick Lyons
Video Servicing
Mike Phelan A look at camera electronics.
Servicing the solid-state Indesit T24EGB
Mike Phelan A set with some unusual circuitry but fairly predictable faults.
Colour Bar Program
G. J. Phillips, B.Sc., C.Eng. How to get colour bars from the BBC Model B microcomputer.
MISFITS
Richard Roscoe Multiple independently sited faults in TV sets!
Book Notice
VHS Hi-Fi Sound
Derek Snelling
How the new VCR hi-fi sound systems work, with particular reference to the Panasonic NV830/NV850.
Service Bureau
163

Test Case 265
OUR NEXT ISSUE DATED FEBRUARY WILL
BE PUBLISHED ON JANUARY 16

P. V. TUBES HAVE MOVED
 your order
 through, we do the rest.

104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.

OF TELEVISION COMPONENTS TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

HOW TO ORDER
ADD 75 p per order $\mathrm{P}+\mathrm{P}$ Goods are despatched on the day we receive your
(U.K.). Heavier parcels e.g. order. If for any reason we are (U.K.). Heavier parcels e.g. order. If for any reason we are out of stock we will try cable, service aids, degaus. to inform you as quickly as possible. We try our best coils please allow $£ 1.30 \mathrm{P}+\mathrm{P}$ to give a speedy, fair and efficient service. V.A.T. (U.K.). Export orders charged invoice on request. Give us a ring - we'll give you whenever possible. Add 15% will try to help. Prices are subject to change without VAT to total except where it wotice to heip. Prices are subject to change without states zero rate.

WE WILL QUALITY, BRA REPUTATION	ONLY SUPPLY ANDED COMPO N COUNTS W	TOP ONENTS. 108 TH US PH	$\begin{aligned} & \text { C. } 108 \text { SCOTLANL } \\ & \text { PHONE (0228) } \end{aligned}$	D ROAD, CA 20358/3969	LISLE,	$\mathbf{J M}$	$1 \mid A$	A3 9EY	BUY W		
		TYPE PRICE (E)	TYPE PRICE (£)	TYPE PRICE (£)	TRAN-		PRICE		$\begin{aligned} & \text { LINE O/F } \\ & \text { RBM T20/22A } \end{aligned}$		THORN1500-5S5.40
CIRCUITS	$\left\|\begin{array}{c\|cc\|} \hline \text { L4031....... } 1.66 \end{array}\right\|$	$\text { STK036....... } 12.67$	$\text { TBAB00.......... } 80$	UPC1 176C ... 2.15	sistors	BC548..	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	BR 100 18	RBM T20/22A	$.{ }^{. .220}$	THORN3500 8.85
TYPE PRICE (¢)	LA4031P 2.45	STK043 11.33	TBAB10AS 1.15	UPC1177H ... 2.30	TYPE PRICE						THORNBCOOO
AN103 1.95	LA40322.34	STK05020.75	TBA820........ 1.40	UPC1178C ... 220	AC127....... 22						THORN8500/8800 . 7.50
AN214 2.25	LA40512.79	STK070 21.85	TBAB90.........2.96	UPC1180C ... 3.05	AC128...... 22						THORNS080 8.70
AN240 2.20	LA4101 1.88	STK077 8.58	TBA9200 1.50	UPC1181H ... 2.20	AC128K 30						PYE 731 730
AN2531.93	LA41021.97	STK0788.45	TBA950/2X ...2.85	UPC1182H ... 2335	AC187K 30	B0132.		BU126..... 1.78	PHILIPS G11		DECCA $2230 \ldots . .120$
AN3151.66	LA4112 2.97	STK0829.75	TBA990 1.55	UPC1183H 235	AC188K 33	BD201.	.. 80	BU205.... 1.42	THORN $1590 /$		DECCA 80720
AN3186.95	LA42012.95	STK08612.89	TCA270S 1.30	UPC1185H2 ..330	AD149........ 70	BD202.	..70	BU208A 1.1 .40	THORN 1690		DECCA $100 . \ldots . . .735$
AN337 4.41	LA4400 2.80	STK415 9.66	TCAB800........ 4.10	UPC1188H.. .3330	AD16142	BD203	. .70 +83		THORN 1615.		17 CVC 20/30 \ldots. . 6 595
AN360 1.45	LA4420 1.94	STK433 725	TCA940........ 1.55	UPC1190C ... 2.10	AD162 42	BD204	$\begin{gathered} \ldots .83 \\ \ldots .50 \end{gathered}$		PYE 731/713	$\ldots 1 . . .1200$	Universal 5.90
AN63326.97	LA4422 2.75	STK435 7.75	TDA1002A ... 1.50	UPC1198H ... 1.30	AF127 36	BD222	$\begin{gathered} \ldots .50 \\ \ldots . \\ \hline \end{gathered}$		PYE 725 (90)	.. 1020	
AN71101.93	La4430 1.93	STK4377.77	TDA1003A ... 2.80	UPC1200V 1.90	AU110 ...3.10	BD232		$\left\lvert\, \begin{aligned} & 8 U 500 \ldots . . . \\ & \text { BU526.... } 2.00 \\ & \hline \end{aligned}\right.$	ITT CVC 1-9		DIODES
AN71142.33	LA44602.96	STK4397.86	TDA1004A ... 2.70	UPC1208C 1.85	AU113 4.60	BD234		BU826... .. 3.20	OECCA 2230	830	TYPE PRICE
AN7115 2.37	LA4461 2.96	STK4419.52	TDA1035..... 3.20	UPC1211C	BC107 14 BC108 14 1	BD234.	$\begin{gathered} . . .40 \\ \ldots . .32 \end{gathered}$	R2008B ... 1.45	DECCA $80 . .$.	85	BY127 10
AN7120 2.43	MB37122.30	STK443 11.33	TDA10443.10	UPC1215V ... 2.50	BC108 14	BD236.	$\begin{aligned} & . .32 \\ & \ldots . .43 \end{aligned}$	R2010B ... 1.45	DECCA 100	8.5	BY133 15
AN71402.10	MB3713 225	STK459 -....... 9.55	TDA11701.80	UPC1216V ... 2.00		$\left.\right\|_{\mathrm{BO} 236} ^{\mathrm{BO} 237 .}$	$\begin{array}{r} . \quad 43 \\ +. .40 \end{array}$	R2540 2.35	ITT CVC 20	1.75	BY16
AN7145 325	MB87195.20	STK4619.95	TDA1412........ 90	UPC1217G.. .335 UPC1218H. .2 .75		BD237.		TIP31C 46	IT CVC 25/30	8.00	BY179 60
AN71502.89	MC1327A......1.00	STK463 10.88	TDA2004A ... 4.35	UPC12181 2.25		BD410.		TIP32C 47	ANTI-SURGE	RUSES	BY210/800 30
AN7151 2.89	MC1358P 1.60	STK501 8.98	TDA2020..... 2.95	$\text { UPC1222...... } \frac{2.05}{3.40}$	$\left\lvert\, \begin{array}{\|l\|l\|l\|l} \mathrm{BC} \\ \mathrm{BC} 147 & ~ & 25 \\ \hline \end{array}\right.$	BD434	. 50	TIP33B 80	A/S20MM 80 M 275	BY223 9
HA11372.30	MC1330P 90	TA7072P2.75	TDA2522 $\ldots \ldots . .1 .80$	UPC1225.......3.10	BC148 199	80437	70	TIP41C....... 48	$100,160,200 \mathrm{MA}$ 1.70	BY227M
HA1144........ 2.39	ML231B1.95	TA7108P 2.10	TDA2523 225	$\text { UPC1226...... } 2.55$	BC157 10	BD438 78	TIP42C 48	315, 400, 500,	,	BYX 10 20
HA1151........1.97	ML232B1.70	TA7120P 2.05	TDA2530..... 2.10	UPC1227..... 2.10	BC158 11	80707 1.05	TIP2955 … 70	800 MA , 1 A ,		BYX55/600 26
HA1156........1.97	ML237 2.50	TA7129 3.00	TDA2532 $\ldots \ldots .220$	UPC1230H ... 3.45	$\left\lvert\, \begin{aligned} & \mathrm{BC} 158 ~ \\ & \mathrm{BC} 159 \\ & 11 \end{aligned}\right.$	BD×32	... 1.65	TIP3055 55		120	OA90 07
HA1166 2.65	ML238 422	TA7130P 120	TDA2540......1.95	UPC1245 1.99	BC160 22	BF194		TV106/02 1.60	$2,3.15,4,5 A$	135	1N4001-7 07
HA1197 2.30	SAA10242.55	TA7139P	TDA25601.80	UPC1250..... 2.45	BC172 10	BF195		2N3054 55	NEW VA		1N5401-8 12
HA1199........ 2.30	SAA11254.70	TA7157P	TDA2590........ 225		BC177 22	BF196	. 11	2N3055 50	DY802.	72	BZX61-range 18
HA1202 1.75	SAA12503.85	TA7171P	$\left\|\begin{array}{\|l\|} \text { TDA2590...... } 2.25 \\ \text { TDA2591 } 2.70 \end{array}\right\|$	UPC1356C2 . 3.05	BC182 10	BF197	11	$2 \mathrm{SC1172Y}$	PCF		BZY88-range 11
HA1211 1.87	SAA1251 5.20	$\begin{aligned} & \text { TA7172P } 3.40 \\ & \text { TA7176AP ...2.50 } \end{aligned}$	TDA2593 2.30	UPC1358H3.05	BC182L 11	BF198		1.85	PCL82		
HA1306........ 2.97	SAA50105.10		TDA2600 5.50	UPC1363C ... 320	BC183L 11	BF241		2SC2029 . 2.00	PCL84		
HA1319........ 2.99	SAA50125.70	TA7193P 420	TDA2611A 1.50	UPC1365C ...5.05	BC184L 11	BF256L	LC 25	2SC2078 . 2.20	PCL805		5.00
HA1322........2.10	SAS560S1.83	TA7203P3.00	TDA2640 2.30	UPC1366C ... 2.85	BC208 12	BF258		2SC1969 . 2.45	PC186.		
HA1325 2.30	$\begin{array}{lr}\text { SAS570S } & \text {.....1.90 } \\ \text { SAS580 }\end{array}$	TA7203P 3.00	TDA35605. 10	UPC1367C ... 2.85	BC212L 10	BF259			PFL200		
HA1338........ 2.78 HA1339......2.80	SAS580 2.40		$\text { UPC41C } 2.95$	UPC1368C,. .3 .76	BC213L 10	BF337			PL504.		
HA1339.......2.80 HA1342A2.33	SAS590 2.40	TA7208P 220	UPC554C 1.30	UPC1370C2 . $\mathbf{3 . 8 0}$	BC214L 10	BF338			PL508.		PYE IF GAIN MOD .785
HA1342A 2.33 HA1366	SL90185.65		$\text { UPC555H } 0.70$	UPC1377C 4.60	BC237B 11	BF458			PL509/519	5.55	E/W COIL G11165
HA1366 W/WR 2.30	SN76003N 2.30	TA7222P 1.70	$\text { UPC566H3 ... } 2.10$		BC337 11	BF459	.. 36	Sony			VA1104 .i. 70
W/WR 2.30 HA1368....... 220		TA7223P3.15		UPC1384C …5.50	BC338 10	BFR90	. 1.60	SG613/	PY500A		GB TRANSDUCTOR 225
A1368....... 220	SN76013N $\ldots .2 .30$ SN76023N	TA7223P 3.15	UPC577H3.00	UPC2002H 220	BC547 10	BFY51	... 22	6533 8.50	PY81/800...	69	GB ON/OFF SW. . . 1.40
1374.......... 2.95	SN76110N 90	TA7310P1.70	UPC1009H ...2.15								
A1377......... 380	SN76226DN .1.45	TA7313P2.10	UPC1017G 2.55						ERS		
HA1388........ 420	SN76227N ...1.00	TAA550 28	UPC1018C 1.15	DECCA 301400/400) 350	5					
HA1397........4.15	SN76660N 65	TBA120AS 70	UPC1025H ...3.30	DECCA 80/100/400	(00)350V						
HA112112.43	STK00396.45	TBA120SB 90	UPC1026C	(800)250V …...							
K\|A72172.75	STK0040 5.95	TBA120U1.00	UPC1028H 2.15			$\begin{aligned} & 2.00 \\ & 1.15 \end{aligned}$		G8S/L	12.00		
HA11221 2.77	STK0050 7.50	TBA395 1.25	UPC1031H			$\begin{aligned} & 1.15 \\ & 1.95 \end{aligned}$	HITAC	II AW	8.95		
LA12011.88	STK011 7.35	TBA396......... 85	UPC1032H		200)350V.	$\begin{array}{r} 1.95 \\ .2 .10 \end{array}$	$\begin{aligned} & \mathrm{H} \Pi \mathrm{CV} \\ & \text { IT CV } \end{aligned}$		10.40		
LA1230 2.30	STK014 7.65	TBA520 1.30	UPC1042C		2500130 V	$\begin{array}{r} 2.10 \\ .1 .10 \end{array}$	ITT CV	8/9	12.80		
LA1365 2.25	STK015 7.15	TBA530....... 1.00		THORN35001175	/100/100i		PHILIPS	G11	26.90		
LA2200 225	STK016 7.45	TBA540 1.27		$4001350 \mathrm{~V}$		2.25	1043/				UMS
LA3122 2.10	STK0209.05	TBA5501.1.40		THORN350011			U321				
LA33011.97	STK032 11.32	TBA5600 1.60	$\text { UPC1170C } 1.55$	$\text { THORN } 9000(400)$	3400 V	2.75	U322 Tf		7.40		

TV LINE OUTPUT TRANSFORMERS
 PRICES INCLUDE VAT \& CARRIAGE

EAST CORNWALL COMPONENTS

1985 CATALOGUE AVAILABLE - Many prices reduced - range increased - 123 pages fully illustrated. Price 65p, per copy (free upon request with orders over (5) - includes 30p Credit Note, special offer sheets, order form and pre-paid envelope. SEND NOW FOR YOUR COPY.

[^0]

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-2615897

TELEORSLOK

The Video Boom is Over

That remarkable phenomenon the video boom seems to have blown itself out the world over. In the UK the boom peaked in the second quarter of 1983, when deliveries of VCRs to retail and rental outlets totalled 680,000 . The figure for the second quarter of 1984 was 268,000 - in fact deliveries for the first half of 1984 were less than for the second quarter of 1983, and the year on year first half comparison shows a decline of 53 per cent. At the peak of the boom, VCR shipments to the UK were exceeding those to the USA and there were more V'CRs per household in the UK than in Japan! The rental chains played a great part in getting the VCR established as a household item in the UK but came close to panic earlier last year (1984) when VCR returns rose to the same level as new rental contracts. It seems that the end of the summer produced some increase in consumer demand for VCRs, but rental companies could still be holding very large stocks of returned machines.

The rapid reversal in UK demand was of little consequence to Japanese manufacturers so long as demand in other markets, particularly the USA, continued to increase. But the peaks of the boom appear to have been passed everywhere. Japanese VCR exports rose to a record of just under two million last August. Since then there's been a weakening US demand, accompanying a general economic slow down there, while exports to Europe have continued to decline and sales in Japan itself fell in September. As a result, the Electrical Industry Association of Japan revised its estimate of VCR production for 1984 from 27 million down to 25.7 million. Not a great percentage drop perhaps, but something that hasn't happened before. This levelling off or reduced production is already beginning to affect other parts of the Japanese electronics industry, in particular the semiconductor manufacturers and suppliers of parts to the VCR makers.

The consumer should certainly benefit from this, as price cutting goes hand-in-hand with the introduction of machines offering more features and thus better value. Hi-fi sound and longer playing times are not things that have been easily achieved: they require considerable advances un the basic technology used in VCRs. The Japanese Ministry of International Trade and Industry has been trying to co-ordinate VCR production levels in an attempt to avoid excessive price cutting, but this may have only a limited impact at the retail end of the distribution chain. It's also of significance that South Korean VCR manufacturers are about to start exporting machines - to date they've been limited to domestic production under the terms of the technology transfer agreements entered into with Japanese manufacturers. The next few months may well turn out to be a good time to buy a VCR.

The problem of an over-supplied market does not apply to VCRs alone. Cassette production capacity world wide rose sharply in 1984. Whilst capacity in 1983 has been estimated at being able to supply only 70 per cent of demand, during 1984 it's reckoned to have increased to the point where twice the current demand can be supplied. This again is leading to increased price competition on the one hand and improved quality on the other -3 M for example have been advertising a "lifetime guarantee" for their tapes. 3M's approach has involved considerable investment in tape research and improved production technology. Greater precision has been achieved in specifying parameters for the oxide coating, film and solvents and in monitoring the dispersal of material on the film - specially designed laser scanners are now used for this purpose. Slitting the sheets of coated tape to the width required for spooling has always presented problems. It's claimed that the percentage of satisfactory quality tape coming from the slitters at 3 M 's Swansea plant has increased from between $60-70$ per cent in 1983 to over 95 per cent. The plant is at present in the middle of an investment programme aimed at tripling production. This is against the background of reduced demand - a "serious decline" is the way in which Jarvis Astaire, chairman of Intervision Video (Holdings), has put it. It's evident that the profitability of the distribution side of the tape industry has been badly hit.
One can't help wondering what the Japanese consumer electronics industry will come up with next. There's always been something to offer once a particular market has reached saturation level. Transistor radios, audio equipment, television sets, personal portable audio, then the VCR: the obvious follow-ups would be electronic photography/ movie equipment and personal computers. Much work has gone into both fields - 8 mm video and camcorders on the one hand, the MSX system on the other. Active video has never been a major market however. People tend to treat video as they do other domestic electronic equipment - as something you switch on and let it do its stuff. Movie making is a world apart and something that by its nature has a much more limited market. With electronic still photography the problem remains that quality is inferior to traditional chemical photography while being a lot more expensive. With the personal computer it could be that the Japanese onslaught on the market has for once come too late. Microcomputer demand has weakened in the main markets - the US, UK and Japan - and MSX hasn't met with the instant success that's usual with Japanese offerings.
Is this the end of the boom for the Japanese consumer electronics industry? That's hardly likely. Customers will start to buy again before long, and what's then bought will depend on the continuing efforts of manufacturers. One thing Japanese manufacturers have always done is to maintain their R and D work whatever the market conditions, something that pays off in the long run.

Teletopics

TRADE SCENE

Trade figures (from BREMA) for the first six months of 1984 compared to 1983 show a dramatic fall in deliveries of VCRs, a small fall in large-screen CTV deliveries and a continued rise in small-screen CTV deliveries. Though the totals are relatively small, an increase of 95 per cent in teletext receiver imports, to 39,000 , is worrying. Basic figures are as follows:

Product	Jan-June 1983 $(000 \mathrm{~s})$	Jan-June 1984 $(000 \mathrm{~s})$	Change $(\%)$
VCRs	1,230	572	-53
CTVs, large	995	899	-10
CTVs, small	504	699	$+38^{*}$
Mono TVs	449	326	-27

* UK produced $+27 \%$, imports $+46 \%$.

Stocks are at present large. The latest survey, Media Leisure, from Leisure Consultants (Lint Growis, Foxearth, Sudbury, Suffolk, price £210) suggests that sales and rentals of VCRs and TV sets, also home computers, will drop in 1985/6, with consumer spending in the domestic electronics field remaining static. TV rentals may be given a fillip by the advent of more sophisticated sets with FS tubes, stereo sound and digital circuitry. An even sharper fall in VCR deliveries is forecast.

At mid-1984 there were 47,000 terminals linked to the Prestel network and $2 \cdot 16$ million teletext sets were in use, a household penetration of ten per cent.

SATELLITE SCENE

The setting up of a privately owned, Luxembourg based TV satellite system called Coronet was mentioned in this column last July. Since then the project's sponsors have been seeking financial backing. The Swedish industrial holding company Investment AB Beijer has now taken a ten per cent stake in the scheme and it appears that the US Home Box Office cable film channel service has taken a further five per cent interest. It thus seems that the scheme, which has the backing of the Luxembourg government, is on the move. The cost of putting up the two satellites (one as a reserve) is expected to be around $\$ 180$ million and a launch date in early 1987 is planned with a service start in about June of that year. Coronet will be responsible for launching and operating the satellites: a consortium is to be set up to provide the actual programme material. The medium-power satellites will have a footprint covering most of western Europe - the EIRP for the primary service area will be 51 dBW , and most of the UK will be within this area. The satellites are being designed to provide a sixteen channel service in the $12 \cdot 5-12 \cdot 75 \mathrm{GHz}$ band, i.e. just above the 12 GHz broadcast DBS band. While the primary purpose of the project is to distribute programme material to cable TV networks there's no hiding the fact that direct broadcasting to domestic viewers is envisaged. Beijer's investment will give it an interest in two Nordic language channels.

As a result of recent changes to the plans for a UK DBS service the design of the satellites is under review.

When the BBC originally arranged for the design and construction to be undertaken by United Satellites a two TV channel service with extra transponders for telecommunications use was envisaged. Present plans for a three-channel service could lead to the elimination of the satellites' telecommunications channels. In addition cost reductions are being sought to improve the economics of DBS.

The first chairman of the Satellite Broadcasting Board, which is being set up to regulate the UK's DBS services, will be the IBA's chairman Lord Thomson of Monifieth. The board will have six members, half from the BBC and half from the IBA, with the chairmanship alternating annually between the chairmen of the BBC and the IBA. The board has not been formally set up since agreement between the participants in the DBS scheme has yet to be reached. Lord Thomson recently commented that "the challenge the Board will face is to find imaginative new ways of providing the public with services which the present four TV channels cannot fully meet and for which the public will be prepared to pay extra".

The Nordic Council of Ministers has given the go ahead to the establishment of a Scandinavian DBS service (Nordsat) with four TV channels, using the CMAC/Packet Iransmission standard. The service is expected to come into operation in 1990.

CABLE DEVELOPMENTS

The government has now announced the names of the majority of the members of the Cable Authority, which is being set up to regulate the provision of cable TV services in the UK. Professor James Ring has been appointed deputy chairman to Richard H. Burton, whose appointment as chairman was announced last August. Other members are Paul Johnson, Elizabeth MacDonald-Brown and Peter Paine. Two further appointments remain to be made. At present the authority doesn't have very much to regulate, but it hopes to start awarding new franchises at the rate of five every four months: Mr. Burton, who feels that the gloom over cable prospects has been overdone, says the "first and paramount priority of the authority will be to get the franchising process moving as fast as possible".

The Cable Television Association's chairman Peter Gosling has appealed to the government for greater help for a "cash hungry business in its formative years". Minister for Information Technology Geoffrey Pattie has ruled out any of the financial concessions proposed by the Association however. He's reported to have commented "I may wish them well but that's all I'm going to do", though he added that "if there's something so fundamentally amiss that there's a danger of them (the cable companies) being wiped out then obviously we would look at it again very carefully indeed".

Plessey Scientific-Atlanta, the Anglo-US joint venture that was set up to develop and sell cable TV equipment in Europe, has ceased operations. Plessey's director of technology Dr. Keith Warren, who was chairman of the joint venture, reported that the parent companies were not prepared to continue to spend money when there was little prospect of any orders materialising. A similar joint venture, GEC-Jerrold, was terminated last March. Plessey Scientific-Atlanta had developed a prototype two-way cable switch which had been specified by three of the original eleven cable

TV franchisees, Clyde, Croydon and Ealing, but no orders have been placed.

Thorn EMI, with British Telecom and local newspaper group Courier Press (Holdings) as minority shareholders, has announced that the Coventry Cable service is expected to begin operations this spring. Meanwhile Thorn EMI's cable activities in Swindon seem to have aroused local opposition - a pressure group called CACTUS (Concern About Cable Television Under Swindon) has been formed. Complaints include the fact that cable ducts are being laid to every house in the area whether the householder wants it or not, the disruption caused by the cable laying operations and the unacceptable condition in which the pavements have been left.

WHICH? ON VCR RELIABILITY

The latest issue of the Consumers' Association monthly Which? reports that VCRs are unreliable generally while some models are a lot less reliable than others. The report is based on a survey of 6,340 users in the UK, W. Germany, Holland, Belgium and Denmark. It was found that there's "at least" a one in three chance that a VCR will need repair before it's two years old. The least reliable brands failed four times as often as the most reliable. Panasonic did best with 18 repairs per 100 machines. With all machines the most common faults were streaky pictures and fast wind/rewind problems. A quarter of the repairs to Akai machines related to poor sound, while Sanyo machines tended to go "completely wrong". In the first two years only seven per cent of machines needed new heads: the figure rose to seventeen per cent in the fourth year. The average time taken to repair an owner's VCR in the UK was 8.3 days while rented machines were dealt with in 3.2 days.

MATSUSHITA UK'S TEN YEARS

Celebrations attended by Prince Phillip as guest of honour were held at the Panasonic factory in Cardiff on November 2nd to mark the tenth anniversary of Matsushita Electric UK's establishment. The Cardiff factory now employs over 600 people. Production is expected to reach 220,000 sets this year (1984) of which 45 per cent will be exported. The factory is being extended to increase the production capacity to 300,000 sets a year - there are also plans to start VCR production. Approximately 70 per cent of the components used come from UK or continental sources and productivity is the same as in Matsushita's Japanese plants.

Amongst the interesting items on show at a technology exhibition held at the factory was a record/playback colour video disc system using semiconductor laser technology. The 8in. disc has a playing time of just over thirteen minutes. At present the system is intended for commercial/industrial use.

MITSUBISHI'S COLOUR VIDEO PRINTER

Mitsubishi, who introduced the world's first printer for the instantaneous printout of TV pictures in 1983. has developed a colour version. This consists of five main sections. In the first, composite NTSC video signals are demodulated to provide RGB outputs. These are then converted into digital form and stored in a memory which holds a frame of picture. The signals read from the memory next have to be converted to yellow, magenta and cyan since a subtractive colour printing process is

Mitsubishi's colour video printer.
used. The final section produces a full colour print with sixteen gradations by means of a thermal transfer system.

When the print button is pressed a TV frame in digital signal form is stored in the memory, which consists of twelve 64 kb it DRAM i.c.s. The memory's output is then processed and the print made on plain paper. The whole process takes about a minute. The ink sheets are easy to change since they're in cassettes that hold enough sheets to produce 100 pictures.

SERVICING HOME COMPUTERS

The problem of servicing the hundreds of thousands of home computers sold recently once their warranties have expired has been taken up by Computer-fix, which has set up a national network of five hundred dealers (initially) offering cheap, guaranteed repairs in only 48 hours plus the time required for delivery to and from the firm's headquarters at Camberley, Surrey. Faults are diagnosed by a computer called ACUMEN (Advanced Computer Memory Tester) which can detect a fault in any of the top brands of home microcomputers in just seconds - it doesn't even need to be told the make or model it's testing. Prices seem very reasonable, ranging from $£ 15 \cdot 50$ for the $\mathrm{ZX80} / \mathrm{ZX81}$ to $£ 40 \cdot 25$ for the BBC model, inclusive of labour, spares, postage, insurance and VAT. All repairs are covered by a threemonths parts and labour guarantee. Further details can be obtained from Computer-fix, Albany Park Estate, Frimley Road, Camberley GU15 2PL.

THE TV LICENCE FEE

Every three years the BBC has to apply to the Home Office for a review of the TV licence fee. And every three years the same old rows seem to resurface. This time the BBC has asked for an increase of roughly forty per cent in the colour licence fee, from $£ 46$ to $£ 65$, which would provide the BBC with an extra $£ 1$ billion a year. The haggling has started, but a decision is not expected until after January, when the accountancy firm Peat, Marwick Mitchell's "value for money" inquiry into the BBC will be completed. The BBC's case is based on the cost of maintaining the present services, with a modest amount for growth, taking inflation into account. As usual when this triennial business arises there have been calls from the advertising industry for the BBC to cover some of its costs by carrying advertising the Institute of Practitioners in Advertising has called on the Home Secretary to allow advertising on all UK
radio and television networks. Well it would, wouldn't it? The government appears to be paying little attention to this lobbying. The ITV companies don't seem too happy with the idea either, since it would most likely spread much the same amount of advertising more thinly. The levy on the profits of the ITV companies is also under review. What with all this and the problem of financing a future DBS service the broadcasting organisations seem to be rather on edge at present.

VIDEO MATTERS

TDK have introduced a range of new formulation (Super Avilyn) cassettes for use with Beta and VHS hi-fi VCRs.

Fuji has announced that it will shortly be introducing in Japan an 8 mm camcorder, the Fujix-8. It seems that the photographic rather than the traditional video companies are pushing this format at present. There's also the Fujix TV-Photo system which enables you to view colour photographs via a television set: the system involves making a magnetic recording of the photographs on a 47 mm floppy disc which can be played back. You buy the player unit - at around $£ 200$ - but the recording is done as a service at between $£ 3$ and $£ 7$ per disc. The Fujix-8 and TV-Photo system both operate on the NTSC standard only at present.

The recently opened National Interactive Video Centre in London is being funded by Thorn EMI, Philips and the government. Its purpose is to promote the use of interactive video systems in industry, commerce, education and the professions.

Japanese components manufacturer Alps Electric is setting up a $£ 5$ million factory at Milton Keynes to produce tuners and u.h.f. modulators for use in VCRs. It's expected that the factory will employ some 230 people by the end of the year.

ITT SAFETY NOTE

Reference was made in this column last October to a safety recommendation issued by ITT concerning certain of their TV sets. ITT have now advertised the problem in the national press and will reimburse dealers according to a fixed fee for carrying out the work required. Models affected are as follows: CB502, CB602, CB702, CS512, CS712, CS522, CS622, CS722, CB9504, CB9602, CB9604 and CB0506.

TV AND NECK ACHE

It's perhaps not too widely appreciated that the neck is quite a sensitive part of the body and that stress/strain here can give rise to many problems. Most large-screen colour sets have for many years been supplied with a stand that sites the set below the normal seated adult's eye level. This means that much viewing is done with the head lowered excessively, which doesn't seem to be a particularly healthy situation. Maybe some of our readers with medical knowledge would like to comment?

1985 TRADE SHOWS

The agreed date for the annual London hotel trade shows this year is May 19th-22nd. In addition it's proposed to hold a trade/public exhibition, Vidtel 85, at the National Exhibition Centre, Birmingham, from August 29th to September 1st. This event, called the International Home Video and Television Show, would have two trade-only days followed by two days open to
the public. For the present it doesn't seem to be eliciting much enthusiasm from the industry.

SOLID-STATE IMAGERS FROM MULLARD

Two imaging devices for use in solid-state cameras have been announced by Mullard. The new arrivals are charge-coupled, frame transfer devices which produce two interlaced 289 -line fields with a $4: 3$ aspect ratio. Both provide a 604×575 pixel disply giving a horizontal resolution of 420 TV lines, meeting CCIR standards. The NXA1010 (monochrome) and NXA1020 (colour) sensors have a 7.5 mm image diagonal that matches the half-inch camera tube format so that they can be used with low-cost, commercially available lenses. They are suitable for all types of $625-\mathrm{line} / 50 \mathrm{~Hz}$ PAL/SECAM cameras (525 -line, NTSC compatible devices are expected to be announced shortly). The NXA1020 has an on-chip colour-stripe filter to provide RGB outputs. Complementary i.c.s have been developed to provde the necessary timing and drive signals.

THE EUROMAX AERIAL

With the needs of those touring in caravans in mind Maxview Aerials (Maxview Works, Setch, King's Lynn, Norfolk PE33 0AT) have introduced the Euromax Universal aerial. This is in effect two aerials in one, covering both the v.h.f. and u.h.f. bands. The fixing kit supplied with the aerial includes strong suction pads and a bracket and mast. Price is $£ 23.75$ including VAT and the aerial comes in a box which gives fitting instructions in eight European languages plus Arabic.

NEW VCRs

Three new VCRs have been added to the Ferguson range. The 3 V 43 is a full-specification machine with hi-fi stereo sound, two-speed operation and a suggested price of around $£ 679$. The 3 V 42 replaces the 3 V 36 as a midrange model with a suggested price of around $£ 549$ while the 3 V 39 is intended as a budget model selling for around $£ 399$.

Sanyo have introduced a Beta hi-fi VCR, Model M40, at around $£ 600$. The new Mitsubishi HS306 is intended as a budget machine, carrying a suggested price of $£ 440$. Grundig's second VHS machine, Model VS220, features stereo sound. Suggested price is $£ 489$. Both machines now have infra-red remote control as standard. The first Philips all European VHS machine, Model VR6560, has been released with a suggested price of $£ 459$. There are also three new Philips V2000 format machines, Models VR2334, VR2350 and VR2840.

AERIAL CATALOGUE

South West Aerials (11 Kent Road, Parkstone, Poole, Dorset BH12 2EH) have published their 1985 catalogue which is available at 60 p per copy. An extensive range of aerials and associated equipment, including a 6 in . v.h.f./u.h.f. TV set of particular interest for DX reception, is available from the firm.

SONY PROJECTION SYSTEM

A new Sony projection TV system being sold in the USA for around $\$ 3,000$ is of interest in employing a $5 \cdot 25 \mathrm{in}$. beam indexing tube. This type of colour tube has a single beam to which the R, G and B signals are applied in sequence, in synchronism with the phosphor

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPQ. Telephone 0268690868 Telex 99305 ROSSER G.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY ADD 60p P\&P, THEN 15\% VAT.
ADD POSTAGE FOR OVERSEAS ORDERS ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN

stripes - indexing stripes laid on the screen tell the control circuitry which colour stripe is being scanned. The advantage is the increased brightness obtained by avoiding the need for a shadowmask - Sony say the brightness level is about seven times more than that obtained with a good shadowmask tube, an important point with a projection system. An ethylene glycolwater cooling system is required.

PICTURES VIA THE TELEPHONE

The Philips slow-rate transmission system for sending video pictures via the telephone system has been given BT approval for connection to the network. Further details can be obtained from Philips Business Systems, Cromwell Road, Cambridge.

TV SETS AND MONITORS

Akai's first TV set on the UK market is a 14 in . colour model with infra-red remote control and facilities for RGB and composite video inputs. Suggested retail price is $£ 279$. Both ITT and Grundig have announced colour sets fitted with 20 in . FS tubes. The Grundig FST range also includes two 14in. models. Samsung Electronics UK Ltd. (Hook Rise, Business and Industrial Centre, 225 Hook Rise South, Surbiton, Surrey KT6 7LD) have released a couple of monochrome portables, the 12 in .

Model BT309K at around $\mathfrak{£ 5 0}$ and the 14 in. Model BT351K at around $£ 60$.

Philips' BM7502 monitor has a 12in. green phosphor tube that gives a full screen display of 25 lines with up to 80 characters per line. The circuitry has been designed for minimum distortion and is suitable for graphic displays. There's a built-in speaker for sound and the suggested price is $£ 79.95$. It's intended for home computer users and is compatible with most home/personal computers, e.g. the Apple II series, Commodore Vic 20 and BBC .

TV HEADPHONES

Ross Electronics (49-53 Pancras Road, London NW1 2QB) have introduced a headphone set, type RE2280, designed specifically for use with TV sets and VCRs. The frequency response is given as $20 \mathrm{~Hz}-20 \mathrm{kHz}$. The price, which includes a 6.4 mm stereo jack plug, an adaptor for 6.4 and 3.5 mm monosound sockets and $16^{1 / 2 f t}$ of cable, is $£ 8.95$.

NEW MULLARD LINE OUTPUT TRANSISTOR

Mullard's new BU508D line output transistor is an uprated version of the BU508A incorporating a parallel efficiency diode. Like its predecessor, the BU508D is encapsulated in the easy to mount SOT93A pack.

Christmas Lights

William Harrison

The mains-driven light chain is a perennial Christmas hazard. A safe alternative is a low-voltage chain using 5 mm LEDs of the type available from Sendz. Wire them in colour sequence to get the "travelling" effect. These LEDs require 2 V and should be operated at around 20 mA for a long life. The red type has a slightly lower voltage drop. To correct for this, I used six LEDs in the green and yellow chains and seven LEDs in the red chain. If the voltage is above 12 V it may be necessary to add a series resistor - adjust the value for 20 mA drive current.

Fig. 1 shows the basic circuit which uses a 4001B CMOS i.c. as the sequencer. Only three of the four gates in the i.c. are used - the other gate could be used to get four outputs, but I found that start-up was then erratic. The three outputs from the i.c. drive 2N2905 transistors which supply the strings of LEDs.

Fig. 2 suggests some alternative output arrangements to drive longer strings of LEDs. The ULN2003 incorporates seven Darlington amplifiers which can supply 0.5 A each. For a still larger output, the ULN2003 can be used to drive TIP2955 power transistors, which will require heatsinks. Note that while the 4001B will work at a lower voltage than 12 V the ULN2003 requires a minimum of 12 V .

The LEDs are wire-ended, the longer wire being the positive connection. Don't shorten the wires: bend at right-angles, in opposite directions. They can then be soldered in series, in colour sequence along a four-wire cable, to obtain the moving-light effect.

If 2 mm LEDs are used the current required is 10 mA .
The unit was housed in a Verobox type $303(120 \times 80$ $\times 35 \mathrm{~mm}$), with the components on a piece of stripboard.

A five-way DIN socket with a mating plug on the light chain completed the job. The LEDs can be obtained from Sendz or from Cricklewood Electronics Ltd., 40 Cricklewood Broadway, London NW2 (who can also supply the box and i.c.s).

Fig. 1: Basic circuit, with sequencer to drive three chains of LEDs alternately to give the travelling light effect. If miniature electrolytics are used, connect the positive sides to pins 1, 5 and 8 of the 4001B i.c.

Fig. 2: Alternative arrangements for driving longer strings of LEDs.

VCR Clinic

Hitachi VT9700

Intermittent no operation was the complaint with an Hitachi VT9700. At switch on all was well for five minutes after which the counter and operate light began to flash on and off though the clock remained steady. We've had problems with the voltage regulator i.c.s used in this machine. They are on the rear panel, bolted to the heatsink. In this case the 9 V regulator's output was intermittent, a replacement curing the problem.
D.S.

Panasonic NV333

A Panasonic NV333 came in with the symptoms playback o.k., no record. In fact no stations could be tuned in with the machine in the E-E mode. The tuner proved to be faulty - only the second faulty tuner I've had in a VCR in three years.
D.S.

Hitachi VT8000/VT8500

There are two $1.5 \mathrm{k} \Omega$ resistors in the Hitachi VT8000/8500 power supply circuit (syscon panel), R054 and R069. I've had both fail on several occasions, but not together. R069 has been mentioned before and gives the no record symptom as there's no not-playback 12 V line when it goes open-circuit - this line supplies the tuner and the i.f. strip. When R054 goes open-circuit there's no operation, with no operation light, as the regulated 15 V supply is no longer present. If you get no operation but the operation light comes on, check the 5 V supply to the microcomputer IC901: I've had zener diode D055 (RD5-1EB) go shortcircuit on a couple of occasions.
D.S.

Ferguson 3V35

The complaint with a Ferguson 3V35 was that there was no TV picture on three channels with the machine connected. Sure enough when I got there a quick check showed that with the aerial connected directly to the TV set (an old GEC model) everything was o.k. (ignoring a flat tube and half a dozen minor faults) but when the VCR was connected only BBC-2 worked, the other three channels producing a blank screen. All four channels were present in the E-E mode however. Luckily I had a Philips colour portable in the car. A quick check with this showed that all was well with the VCR or did it? Closer examination showed that the picture was slightly noisy. In fact the VCR's aerial amplifier turned out to have marginally low gain as far as the TV set was concerned, a replacement curing the problem. Obviously something was faulty or out of adjustment in the TV set to produce a blank screen when the signal was only marginally down - in fact if it hadn't been for this the customer would probably never have noticed the slight loss of gain.
D.S.

Sharp VC9700

One of these popular VCRs came in with the complaint "chews tapes". On trying the machine we found that it had very little take-up torque but too much supply reel
torque. The take-up torque is adjustable but the supply reel torque isn't. To measure the take-up torque you monitor the voltage across R7783, which is in series with the reel motor. This resistor is driven by transistor Q708 which turned out to be short-circuit.
P.B.

Hitachi VT8500

Little did I know when my friend Geoff sent me an Hitachi VT8500 that wouldn't eject what trouble and expense it would cause. The machine wouldn't unlace and it was found that Q902 in the loading motor drive circuit (see Fig. 1) was open-circuit. The curious thing was that it turned out to be a BD131. Other transistors had been removed and replaced as well - legs were sticking out at all angles. I hate to see this sort of thing. Why can't some people be bothered to tidy up? Three i.c.s had also been soldered and may or may not have been removed. The 9 V supply for this part of the circuit comes from the series regulator transistor Q060: R081 ($2 \cdot 2 \Omega$) which is in series with this transistor was opencircuit. I replaced it with a posistor, a standard modification, but this didn't have any bearing on the main fault.
When Q902 was changed to a sturdier TIP31 the threading problem was cured. So the machine went back to Geoff with the comment that it had already received attention. Geoff phoned the following day to complain that it wouldn't wind fast forward and enquired whether I'd checked this? Well yes, play, record, rewind - but perhaps not fast forward. He also said his customer was adamant that apart from head cleaning the machine had received no servicing attention during the three years he'd had it. This time one of the transistors in IC906 (TA4193) was open-circuit. So the i.c. was replaced and Geoff took the machine back to check it for himself as a final quality control. The remote control unit didn't work due to corroded batteries and he had some difficulty in setting it for timer recordings, but apparently the customer wasn't too concerned about the timer.

A week later Geoff called with a "guess what?" comment to tell me that the Hitachi had again blown up. This time we had more accurate information. The customer had left the machine in fast forward and had subsequently returned to find it stopped and smoking. Back on the bench we found Q902 once more opencircuit and R081 burnt up. This was getting serious: it was obvious that the problem was of a somewhat unusual nature.

After replacing the defective components I left the machine in fast forward. After a while Q902 got very hot. So did IC906. This was strange as Q902 should be off for fast forward. I left the machine to cool down then put it into fast forward in order to make a few measurements. Result: there was 600 mV that shouldn't be there at the base of Q902. It took some time to find the source of this voltage. Tracing back I found that it came via pins 6 and 7 of IC905 from pin 6 of IC 906. Within IC906 the current was flowing via Tr4, a 265Ω resistor, a diode and a 220Ω resistor. Q901 and Tr1 are

Fig 1: Reel motor drive circuit, Hitachi VT8500. 0901/Tr1 drive the motor for fast forward; Tr2/Q902 drive the motor for rewind. Q901 and Q902 are also part of the loading motor drive circuit.

Fig. 2: Modifications to the control circuit: (a) original version; (b) version in the faulty machine; (c) the later version.
on for fast forward: as Tr 1 heated so Tr 4 turned on more until eventually Q902 turned on. At this time the only circuit I had for the machine was one that didn't show Q927: telephone calls to Hitachi confirmed that there had been modifications to this part of the control circuit.

İ suggested to Hitachi that the transistor that should be used in the Q902 position, type 2SC1162WT, might have some special characteristics. It transpired that the Vbe of a 2 SC 1162 WT is 800 mV , so some were sent for. On fitting one things were a little better, but as IC906 got hot 800 mV was reached at the base of Q902 and it switched on. Cooling IC906 with freezer reduced Q902's base voltage and it switched off.

A new reel motor was tried to see if it ran without heating up IC906 too much. The temperature stability
was much improved, but not to my satisfaction as there was some 650 mV at the base of Q902. Not enough margin with respect to 800 mV for safety. The new reel motor was accused of consuming too much current and thus causing IC906's temperature to rise. Another new motor produced quite good results: I could run fast forward through an E180 cassette without overheating, but that 650 mV was still there!

Whilst making further checks it was discovered - by accident - that if the recorder was put into the timer record mode while hot the reel motor turned in a slow rewind. This was due to Tr 4 turning both Tr 2 and Q902 on. As Tr 2 was not fully on it got very hot.

At this point attention was directed at the circuitry around Q927, since a modification had been carried out here. The connection to the collector of Q927 had been cut, leaving pin 5 of IC906 open-circuit, and a diode (D090) had been added between pins 8 and 9 of IC901.

IC906 was replaced but the rogue 650 mV persisted. Pin 4 of IC906 was disconnected and it went away. The microcomputer system-control i.c. (IC901) was next suspected and changed but we were still no nearer a solution. It was then realised that the modification had left the base-emitter junction of Q927 in circuit. Now the reverse breakdown voltage of such a junction is only $2-3 \mathrm{~V}$, so a leakage current path was present via D090, Q927 and the base circuit resistance. It was enough to turn Tr4 on.

Fig. 2 shows the circuit changes in this area - (a) the original version of the circuit, (b) the version in the machine in question and (c) the final version.

Whoever was responsible for the defective (b) version will probably never be known. What I do know is that the repair was carried out over a number of weeks and cost me a fortune. It cost the customer very little. I wonder who put the BD131 in?
S.B.

Ferguson 3V35

A one month old machine came in with the complaint "no clock display". The various supply voltages were in order but on disturbing the filament power generator subpanel, which is mounted on the reverse side of the tuner/presetter board, the display returned. Further disturbance extinguished the display but there was no visual evidence of dry-joints around the oscillator. We resoldered all the connections in this area but the intermittent fault remained. The connections inside the oscillator coil screening can were the only ones untouched: to gain access we had to remove the complete coil assembly from the board. We then spotted the cause of the trouble - a loose lump of solder on pin 6 at the base of the oscillator coil (T1) was intermittently shorting to the can. At least it made a difference from having too little solder on the connections. K.H.-G.S.

Panasonic NV333

We've had several problems with this machine, as follows. Intermittent audio erase: Remove R4049 (4.7 Ω) in the bias oscillator circuit and replace it with a shorting link.
Intermittent chroma on record: Connect a fast-acting diode (MA161 or MA162) between pins 11 and 12 of IC6003 on the syscon board, cathode to pin 11.
Clock not lighting, capstan motor not turning: No 18 V regulated line due to Q1002 (2SD973) being opencircuit.

My friend Jim

Les Lawry-Johns

I've known Jim for a good few years now. He's in the trade and often pops in to buy some bits and pieces he needs and hasn't got in stock. Usually my last G8 line output transformer or 9000 tripler - you know, the kinds of things you're going to need during the next minute or so. He's not all that interested in servicing however. His main interest seems to be in building. The upshot is that whenever he gets a set he doesn't like the look of he'll bring it along with a comment like "have a look at this for me old chap, only I've got a floor up and really must fix it before the wife comes home". And off he goes leaving me with a bitch of a job.

The Thorn 9600

He carted this Ferguson 9600 in and left it with me. The $2 \cdot 5 \mathrm{AT}$ mains fuse had blown in a nasty way so I went straight for the filter capacitor, which was innocent. Next the bridge rectifier, which was short-circuit. So I whistled a happy tune as I replaced it, stuck a new fuse in and switched on. There was the usual pause, then it started up normally. A white line appeared across the screen so I checked the supply to the field timebase and then the output transistors. These were all o.k. It wasn't until I turned to the line/field oscillator subpanel on the righthand side that I found a BC147 transistor (VT402) opencircuit.

With this replaced we had full scan, quite a nice picture and loud, clear sound. I then remembered something else Jim had said. Apparently the set often worked all right for some ten minutes or so and then tripped out. I left it on for some time and sure enough it suddenly gave a few gulps and went into a strike situation. I noticed that just before it did this the sound went down. So with enormous presence of mind I removed the 500 mA fuse (F513) in the supply to the audio panel. The set then came on when asked to and apparently stayed on.

I removed the left-hand side audio panel and checked each transistor separately. They all proclaimed their innocence of course. The output pair were on heatsinks but the driver wasn't, so bearing in mind the loss of volume before the set tripped I reasoned (wrongly of course) that the driver could well be at fault. This is a BD386, which I didn't have in stock. I put in a BD204 instead, confident that it wouldn't give in easily. Quite right, it didn't. The set behaved happily for an hour or so then Jim came in to collect it.

Jim's Return

Within the hour Jim was back with it. "Tripped after ten minutes" he said. So I removed the audio panel and left the set on without it. After half an hour it tripped. Back went the audio panel and the set played away happily enough for quite some time. Then the sound decreased and off it went into sullen silence. Everything shut down except the supply to the chopper circuit. I checked everything in sight and out of sight. Then I started to think.

The sound went down before the set tripped, and the
fault wasn't in the audio panel. So I removed the 500 mA fuse F511 in the feed to the 24 V regulator. This upset the field timebase but the set didn't trip. To cut a long story short, it wasn't until I removed the supply to IC2 (MCl 358 P) on the signals panel that the tripping stopped. When this i.c. was replaced our troubles were over. The intercarrier sound and audio preamplifier chip for heaven's sake. What next? Jim then came to collect the set.

The GEC-Hitachi

An hour later he was back again. This time however he didn't lug in the Thorn. Oh no! That was just a forgotten incident now. This time he had a GEC set we didn't recognise. It was a C2265 (Hitachi NP81CQ chassis) and it took me some time to realise that what I took to be a chopper transistor was in fact a chopper i.c. (IC901, STR441). So I studied the notes in the manual, hoping to get a clue as to how to start the thing up. They did provide a lead, and when I put the meter on R605/6 in the chopper feedback line the set sprang to life. It frightened the life out of me because the sound had been left turned fully up. I turned it down and switched off. When I switched on again the set remained dead until I prodded around the feedback network - the chopper is a sort of blocking oscillator arrangement. The set then came to life. Until the meter probe slipped. There was a nasty flash and the 2.5AT mains fuse disintegrated. "Oh dear" I said.

Like a fool, I put another fuse in and tried again. FLASH! I checked the strange STR441 and found it short-circuit. So I ordered one and got it (along with some other things) next day. I fitted the three-legged device and bravely switched on. The fault was still there. I checked each item in the feedback network and they all read right. I then took them out to make sure. They were all right, so I put them back again and after that the set performed perfectly. Just another dry-joint? Must have been, but it certainly didn't show.

Thanks Frank

On the subject of GEC I must pass on a message of thanks from several of my trade friends who have had cause to be grateful to Frank Pretty of the GEC technical advice department. He's been most helpful to all who have phoned asking for advice and have received more than they hoped for. I haven't had the pleasure of talking to Frank yet, but I very nearly did over the C2265.

The Passing of Ben

You no doubt remember me chattering about our dog and cat (and bird). Well Ben isn't with us any more and we do miss him. Spock seems to complain all day long, loudly. Ben lost the use of his back legs and was unable to digest his food. He passed away peacefully but still seems to be around. Thanks Ben. I do wish that cat would shut up.

Letters

STREAMLINING THE TRADE

I'd like to discuss a couple of improvements that I feel would greatly improve the TV business. Most of the work of engineers, and most of the content of Television, are concerned with the repair of TV sets and VCRs that are a few years old. It strikes me that this whole area could be streamlined, leading to greater efficiency and profit for each individual engineer and company. The following ideas could also provide profitable business opportunities for anyone putting them into operation.

More often than not, repairing an old piece of equipment involves a long and laborious process of testing this, that and the other, working one's way around the equipment often without a circuit diagram. Once the faulty items have been located there starts an equally laborious hunt around for replacement parts. For many sets these are no longer available from the original manufacturer. Even when they are, the prices are often ridiculous in relation to the value of the set - so wherever possible it makes sense to fit second-hand parts in second-hand sets.

Here's how we could improve on all this.
(1) Compile an exhaustive list of every model sold in this country. List first by brand/manufacturer. then chassis, then individual model. On this list should go the manufacturer's address and phone number.
(2) List the common faults on each chassis. List by symptom, and opposite this put the action and parts required, with suitable equivalents. Such information is not supplied in service manuals since common faults show up only after thousands of sets have been in use for some time. Most of the information could be obtained by going through Television from around 1970 onwards. The result would be a complete list of models sold in the UK, with the common faults found over a 14 year period and how to deal with them. Surely this would be welcomed by all, especially employers who would prefer to pay for such information rather than continue to pay for their engineers to do their own trial and error research!

All this information could eventually be transferred to computer storage. This would enable a subscriber to get access to information on a particular set within seconds.
(3) List inexpensive sources of further information, i.e. circuit diagram or service manual.
(4) Approach suppliers of second-hand parts from stripped sets for details of what they can supply at what price. This information could be used to expand the list.

When repairing an older set, the action would be (a) to check that the symptoms are as described by the customer, (b) refer to the list, (c) check whether you have a stock fault, (d) look across for the action required, (e) look further for names of suppliers of second-hand parts.

I think this would help us rapidly clear our repair backlogs, don't you?

The converse of this is the business opportunities.
(1) Companies could set themselves up as specialists in new and second-hand parts for particular makes of chassis.
(2) They could advertise, offering to buy abandoned sets cheaply. This would provide a source of parts.
(3) The fault compendium previously described would provide a guide as to the stock levels required for particular parts.

Wouldn't this be better than the present hunt for a line output transformer here, an i.c. there and a speaker somewhere else?

I hope this sets some minds athinking. These suggestions could make a lot of dollars for some people and provide a lot of relief for the rest of us!
Colin Guy,
Telly-Centre,
Tunbridge Wells, Kent.

DISCO-LIGHT EFFECT

Les Lawry-Johns mentions a strange disco-light effect with a Decca Bradford chassis (November issue). I had something similar with a Thorn 3500 and feel sure that it was due to the shadowmask kinking. The mask would kink back and forth, upsetting all purity adjustments. There was also a very slight pinging sound.
Philip J. Lomas,
Television, Audio and Video Repairs, Coal Aston, Sheffield.

MAINS FUSE PROBLEM

Over the past few weeks I've been plagued by a mains fuse blowing problem with three early GEC C2110 series sets. In the first case I replaced the fuse in the customer's home and could find no other fault. The

All valves listed above are new, boxed and guaranteed 90 days. All types listed are in stock today, and prices are correct on $6 / 11 / 84$. + Denotes foreign brand of valve. Mul denotes Mullard brand in original blue box. Maz = Mazda

SUBSTANTIAL DISCOUNTS FOR QUANTITY
We stock a huge range and can obtain valves for Japanese audio + T.V. equipment. Also valve sockets.
Send a large، stamped S.A.E. for our latest catalogue
CATHDDE RAY TUBES (Brand New + Boxed). We stock a wide range, S.A.E. quotation on your requirements.

USED VALVES Tested working. Clean. Boxed. 28 days guarantee.
Reduced to 20p: DY87, EF80, EF183/4, PFL200, PY33, 6F23. At 25p: GY501, PCF808, PCL82, PCL84, PL36, PY81/800/801, U191. At 100p: PY500A, PCL83, PD500, PCF200, PZ30. * PL504 35p - KT88 £3.00.

Most orders are despatched ist class post, same day as receiving order. Please allow for Christmas postal delays.
WE WISH TO PURCHASE VALVES E.G.: PX4, PX25, PP3/250, PP5/400, DA30, DA60, DA100, 807
same with the second set. After going through this procedure on several more occasions with both sets a third came into the workshop. I replaced the blown fuse, switched on and all was well. The set was left working while attention was turned to another one, then suddenly the fuse blew again. After a quick check I replaced the fuse and discovered that the holder was very hot. It was an old rectangular type with a poor grip on the fuse, so I replaced it with a standard screw-in type in a hole just below the original holder. Result: no more problems! The same action was then taken with the two sets in the field. I hope this word of warning will be of help to others: in future I shall always change the holder just in case.
Kenneth D. Bunting,
Huntingdon, Cambs.

PLUGTOP MYSTERY -1

The subject of loosening terminals has been with us for many a year. I remember first reading about it in the sixties, when a contributor to another journal complained of having to keep retightening immersion heater terminals. I've often come across the problem and have discussed it with colleagues. Two main points have always been made: (1) that the effect is generally evident only with higher current equipment; (2) that as far as anyone can remember it never occurred with d.c. mains supplies.
Two theories have been put forward. First, that with high currents the terminal contact pins heat up. This continual heating on load and cooling off load and consequent expansion/contraction loosens the terminals. This however doesn't explain why the effect is not present with a d.c. supply. Secondly, around any current carrying conductor there's a magnetic field, therefore between any two conductors there's a force generated by that field. With an a.c. mains supply this field/force will be absent a hundred times a second (at the waveform zero crossover points) and will then rise to a peak. This alternate presence and absence of force will result in vibration - it's the same sort of force that makes transformers hum, LOPTs whistle and electric fires sing. Could it be this vibration that loosens the terminals?

On a totally different matter, I take Mr. Bird's point (letters November) about the return visits to the PCL86 fault. In mitigation I'd like to say that many a "valve" fault turns out to be due to an intermittent passive component fault - how many good valves have been slung away because a new one apparently cured the fault, only for it to return a few days later? In this case it just happened to be what it should have been! Also I don't charge the customer for popping my head around the door - it takes only a few minutes when you're in the area anyway!
Nick Lyons,
Normanton, W. Yorks.

PLUGTOP MYSTERY -2

I've been following the correspondence on loosened connections in 13A plugtops with interest. It seems that some of your correspondents, in talking of electron flow from "negative" to "positive", assume the use of a halfwave rectifier in the equipment supplied. With an a.c. mains supply however the neutral pin remains at earth
potential while the live side alternates positively and negatively with respect to neutral. Consequently the electron current is alternating too and so far as the load is concerned the crossing over of the brown and blue leads makes no difference - though safety demands that we should follow the code correctly at all times.

I've heard people suggest that "a.c. shakes screws loose" but have no evidence to support this. What I have observed is that both neutral and earth connections can get loose while live generally remains tight. The live connection is usually of a different mechanical type from the simple hole and screw used in the neutral and earth pins. As G.C.C. Wride pointed out, the fuse provides some mechanical isolation for the live termination while neutral and earth can wag about. The cheaper and nastier the plug, the more the likelihood of looseness and burning.

Lastly, a method I've used for years when fitting these plugs. It's never let me down. Strip off enough insulation to provide a length of bared strands twice as long as you need. Twist them first, then double back the end, giving you double thickness. With a heavy cable you'll only just be able to get this into the hole in the terminal, with the screw nearly falling out. Then do up the screw with a good, solid screwdriver (not a grubscrewdriver) as tightly as you can without splitting the screw head. Also use a respectable make of plug. These measures will substantially reduce your troubles. Note also that the quite expensive MK plugs with rigid "bending-post" terminals have never caused me any trouble, even with hefty loads.
Keith Cummins,
Southampton.
Editorial comment: Our thanks to several correspondents who have written on the subject of the a.c. mains supply and the importance of fitting good quality plugs. David McIntyre points out that some cheap imported plugtops bear a marking stating that they are manufactured to BS 1363 , but if they don't display the BS kite mark they don't need to be tested by the standards authority and are still suspect. The concensus of opinion is that the different mechanical arrangements at the neutral and live terminations are the cause of burning/ looseness at the neutral pin.

THE THORN 1400 CHASSIS

The Thorn 1400 was probably the last dual-standard monochrome chassis to remain in production. I've been using a couple of these sets, with 23in. tubes, for over two years for domestic and DX-TV purposes. They've given trouble-free service following renovation and provide pictures that are far superior to those produced by sets of more modern manufacture, despite the fact that both sets are fitted with the original tubes which must be getting on for seventeen years old. I've always found that the 19 and 23in. types of tube lasted much longer and gave much better picture quality than the later 20 and $24 i n$. types.
The 1400 can be recommended for DX-TV use because of its excellent gain and the ease with which it can be modified to receive 625 -line v.h.f. transmissions. All that's necessary is to move the lead from tag 43 to tag 44 (marked 625 -VHF) and to cut the middle (grey) lead from the microswitch on the v.h.f. tuner, leaving the systems switch inoperative. The v.h.f. coils, accessible
at the front after pulling off the tuning knob, now need to be reset for the European channels. There's also a demand for sets modified in this way in areas where RTE can be received at v.h.f.
I hope other readers will find the following notes on renovating these sets of use.

First, whether you're a DX enthusiast or not, it's worth carrying out the systems switch modification described above. We all know the trouble that systems switches give, and there would be nothing worse than getting a phone call from a customer to say that the set switched to 405 but wouldn't switch back to 625 ? Both contrast controls continue to operate when the modification is done as described.

Secondly, the manual suggests that a PCF808 is a suitable alternative to the 30FL14 sync separator/ flywheel sync amplifier valve. This is definitely not the case. I've seen the PCF808 advertised at somewhat cheaper prices than the 30 FL 14 , but using one in the V4 position produces a picture miles out of tolerance with severely loaded-down e.h.t.

If you get the no-results symptom with the 1.5 A mains fuse blown the cause is almost certainly the mains filter capacitor C101. It's rated at 600 V d.c. but a 1.5 kV d.c. rated type should be fitted. As in all sets these filter capacitors can go short-circuit at any time - at switch on or after anything up to several hours' use. Another possibility for fuse blowing at switch on is the BY127 h.t. rectifier diode to the right of the fuse.

No results with the heaters alight usually means that there's a broken mains dropper section. It's better to replace the dropper complete - exact replacements are not expensive. The fusible resistor R145 (100) , 5W) on the dropper will give similar symptoms when open. Note that dropper section R135 was changed to $1 \cdot 7 \mathrm{k} \Omega$ in later production to eliminate field cramping.

If you have the six-inch grid pattern an inch from the right-hand side of an otherwise perfect picture, replace the line output valve's screen grid decoupling capacitor C 115 . This is usually $1 \mu \mathrm{~F}$ but was changed to $0 \cdot 1 \mu \mathrm{~F}$, 350 V for greater reliability in later production.

Loss of signals on u.h.f. only with background noise is normally due to a faulty u.h.f. tuner. These are available very cheaply. You may well find that the preset channel selector knobs need replacing since modern Thorn tuners use quarter-inch spindle shafts rather than the eighth-inch type previously used.

The $1 \mathrm{M} \Omega$ width control and its $330 \mathrm{k} \Omega$ series resistor can fall in value resulting in lack of width - a lowemission PL504 can produce the same symptom.

The most difficult fault I've had to deal with on one of these sets was an intermittent sound spluttering problem (sound intermittently blocked by crackles and spluttering). This was particularly bad while viewing RTE in Band III (I could receive this at times when I lived in Devon). The cause of the fault was eventually traced to one of the ratio detector diodes, W8, which is in the sound detector can. Access to the components in this can is not easy - care is needed while removing the aluminium can itself since the coils can easily break.

As with the later 1500 chassis, the line output transformer is so reliable that it can virtually be forgotten about, which is probably why so many of these sets are still in use. The tripler can give trouble, though I've not personally had this one.

Spares are readily available from advertisers in this magazine - triplers from Manor Supplies, tuners from

next month in

EXTRA PAGES!

Features in next month's bumper issue include:

SERVICING THE PANASONIC TC2205

Features of this set (U2 chassis) include a selfoscillating chopper circuit that provides mains isolation, magic-line tuning, infra-red remote control and 10W audio output. The design lends itself to systematic fault finding. David Botto tells how.

- LNC FOR 11GHz RECEPTION

Many TV signals are available at relatively high le'vels from the ECS-1 satellite, while components for use at these frequencies are becoming readily available: Hugh Cocks describes a low-noise converter using the latest devices - details of a companion low-noise amplifier will be given in a la-er article.

- WORKSHOP DECODER ALIGNMENT

Denis Mott describes a simple method of aligning PAL decoders where $R-Y$ and $B-Y$ outputs are available. Using the technique, engineers are able to test, align and repair up to 70 decoder panels a day.

- HIGH-POWER UHF TRANSMITTERS

High-power u.h.f. Iransmitters are a world on their own, with oatput powers ranging from about 1 kW us to 55 kW peak sync. To achieve such powers at u.h. ${ }^{\circ}$. requires special techniques. Nigel Cawthorne describes what's involved.

- HINTS ON THE CVC5-9 SERIES

The ITT CVC5-9 series hybrid chassis seems to be the great survivor of the breed - large numbers of these sets contirue to give good service. Chris Avis provides hints and tips based on his experie ce of renovating these sets.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Sendz Components, the main electrolytic and dropper from PV Tubes, to name just a few items. PM components (Selectron House, Wrotham Road, Meopham Green, Meopham, Kent DA13 0QX) can supply all the valves at decent prices - their Selectronic brand valves are very reliable.

Finally, don't forget to reconnect any earthing strips/ leads to the chassis after servicing one of these sets.

Failure to do so can lead to static problems which can be difficult to solve if you don't realise that a lead or strip has been disconnected somewhere! For a more detailed coverage of the 1400 chassis (with circuit and component layout diagrams) refer to Les Lawry-Johns' articles in the August/September 1976 issues of Television.
Brian Renforth,
Wallsend, Tyne and Wear.

Long-distance Television

Roger Bunney

October proved to be more active than usual, with relatively plentiful Sporadic E reception and two tropospheric openings. Meteor scatter signals also provided some excitement, with several enthusiasts reporting reception in the lower Band III channels. First the SpE log:

9/11/84 CST (Czechoslovakia) ch. R1.
11/11/84 Unidentified signals in chs. E2/R1.
12/11/84 TVE (Spain) E2-4; TVP (Poland) E3.
13/11/84 RAI (Italy) IA, B; JRT (Yugoslavia) E3; TVE E24; RTP (Portugal) E3.
14/11/84 RAI IA, B; TVE E3, 4; RTP E3; MTV-1 (Hungary) R1; EPT (Greece) E3.
16/11/84 RAI IA.
17/11/84 TVE E2-4.
21/11/84 TVE E2, 4; RAI IA; CST R1; NRK (Norway) E24; RUV (Iceland) E3, 4; also unidentified ch. R1, 2 signals.
22/11/84 TVE E2, 3; RAI IA; RTP E2, 3; SR-1 (Sweden) E2, 3.
24/11/84 TVE E2-3.
25/11/84 TSS (USSR) R1.
26/11/84 TSS R1; TVP R1.
27/11/84 TSS R1; TVE E2; plus unidentified ch. E2/R1 signals.
28/11/84 SR-1 E2; TSS RI.
29/11/84 RAI IA; TVE E3.
30/11/84 CST R1.
31/11/84 TVE E3, 4.
Our auroral reporter Iain Menzies observed several occurrences. The 11th produced identifiable NRK signals on chs. E2-4 and SR-1 ch. E2 between 21-2300 BST; auroral activity returned on the 18th and 19th, and on the 20th there were identifiable SR-1 signals on chs. E2 and 3. Apart from auroras, which result from storms on the sun, solar activity is at a very low level - we're entering the depth of the present solar cycle.

The two main tropospheric openings could hardly be termed "wide open" unfortunately. During the 12-16th there were widespread signals from the Benelux countries, W. Germany and (unusually) RTE (Eire) in Band III and at u.h.f. RTE Mullaghanish ch. D vertical caused some confusion for most of us, using horizontal Band III arrays. Canal Plus in Band III was widely seen throughout the UK, as far north as Scotland, as were the usual French u.h.f. stations. Conditions tended to favour a more northsouth path by the $15-16$ th, bringing Tyne-Tees ch. 29 to the south coast and NRK (Norway) on all Band III channels to the central/southern UK for example - with

Denmark ch. E10 as a bonus. French ATV signals, notably F1EDM and F3LP, were seen over a wide area in south/SE UK. One interesting signal was the new ARD (W. Germany) logo - a figure one with various regional identifications inserted. The second tropospheric opening over the $30 / 31$ st produced signals from the Benelux countries, France and W. Germany, in Band III and at u.h.f., also DFF (E. Germany) ch. E11 and RTL (Luxembourg) ch. E7 at quite startling levels.

Canal Plus started operations in early November, with scrambling during the evening transmissions - we had been given to understand that scrambling would not start until January.

My thanks to Iain Menzies (Aberdeen), Tim Anderson (Bexhill), Dave Shirley (Hastings), Cyril Willis (Ely), Tony Privett (Basingstoke) and Gareth Foster (Twickenham) for sending in details of their reception.

From our Correspondents . . .

Remember June 22nd, 1984, when an afternoon SpE opening gave UK reception of multi-hop signals with CBHT, Halifax, Nova Scotia ch. A3 and a mysterious "NTV" caption at 1600BST on ch. A2? Frank Lumen (Denver) has now identified Don Bassnett's reception of the NTV caption in Glasgow as Newfoundland Television. NTV is the new logo of the Newfoundland Broadcasting Company Ltd. The ch. A2 outlet operates at 3 kW e.r.p. from Grand Bank. It's part of the CTV Network (Canadian TV), with the NTV main office/studios at St. Johns, Newfoundland. Congratulations to Don and thanks to Frank!

During a recent holiday in Bombay Bindu Padaki received Oman TV chs. E5, 7, 10 and u.h.f., Abu Dhabi ch. E9 and Yemen ch. E5. Bindu reports that the Indian government is establishing a network of 180 Band III transmitters, with typically 1 kW e.r.p., to relay the INSAT-B programmes from New Delhi.

Marios Colocassides (Nicosia) has sent us a couple of photos showing "Middle East Television", ch. E12. The station operates from a site in the Lebanese mountains and was established by the "High Adventure Ministries" of California, then sold to another broadcasting concern. The signals are well received in the Lebanon, Syria and Israel as well as Cyprus.

Wenlock Burton (Victoria, Australia) recently sent several photocopies of old DX-TV articles from the magazine Radio, Television and Hobbies, the earliest dated January 1949. An item in this issue reports on the conversion at the Moscow TV Centre from 343- to 625line operation, while the Leningrad TV centre was changing from 240 lines before the war (with regular programmes twice weekly) to 440 lines with programmes four times weekly "soon"! Interesting that such regional variations in transmission standards should have existed concurrently. The March 1957 issue contained reports on London/Sydney ch. B1 reception using a Hallicrafters

SX28 which produced the 41.5 MHz sound and a 45 MHz vision buzz "several times". The $41 \cdot 25 \mathrm{MHz}$ French TV sound was also heard.

News Items

UK: The RSGB, Alma House, Cranborne Road, Potters Bar, Herts EN6 3JW would welcome reports on reception of the new $50 \cdot 1 \mathrm{MHz}$ beacon. Send to the General Manager.

The "Channel 36 " pirate transmitter mentioned last month, operating on ch. E21, was closed down by the DTI on October 18th. It was working from Church Road, Crystal Palace, London. Thameside TV, operating on ch. E 28 , has continued however, using an accommodation address - 1 Grosvenor Parade, London W5. Incidentally Rotterdam is at present free from TV pirates: the cable companies now monitor the system output following main transmitter closedown - if a pirate signal appears it's removed and a "cable test card" is inserted.
Belgium: The Law Courts, Brussels ch. E48 transmitter has been closed following improved coverage from the Botanic Gardens ch. E25 outlet (BRT-2). TV-5, the French programme distributed by the ECS satellite, has been seen on ch. E64: the source is not known.
Australia: New channel allocations have been announced (see below). The new system allows for the introduction of two-channel sound.

Ch.	Frequency $(M H z)$	Ch.	Frequency $(M H z)$	Ch.	Frequency $(M H z)$
0	$45-52$	33	$561-568$	53	$701-708$
1	$56-63$	34	$568-575$	54	$708-715$
2	$63-70$	35	$575-582$	55	$715-722$
3	$85-92$	39	$603-610$	56	$722-729$
4	$94-101$	40	$610-617$	57	$729-736$
5	$101-108$	41	$617-624$	58	$736-743$
$5 A$	$137-144$	42	$624-631$	59	$743-750$
6	$174-181$	43	$631-638$	60	$750-757$
7	$181-188$	44	$638-645$	61	$757-764$
8	$188-195$	45	$645-652$	62	$764-771$
9	$195-202$	46	$652-659$	63	$771-778$
10	$208-215$	47	$659-666$	64	$778-785$
11	$215-222$	48	$666-673$	65	$785-792$
28	$526-533$	49	$673-680$	66	$792-799$
29	$533-540$	50	$680-687$	67	$799-806$
30	$540-547$	51	$687-694$	68	$806-813$
31	$547-554$	52	$694-701$	69	$813-820$
32	$554-561$				

New Products

Antiference have added a twin-input (v.h.f./u.h.f.) diplexing amplifier, Model UP3301, to their Uniplus range. The amplifier draws 37 mA at 12 V and is housed in a CS1000 type case. Performance figures are as follows. V.H.F.: passband $40-230 \mathrm{MHz}$ with gain $27 \mathrm{~dB} \pm 1 \cdot 5 \mathrm{~dB}$, a noise figure of $2 \cdot 8 \mathrm{~dB}$ and typical maximum signal handling capability $35 \cdot 5 \mathrm{dBmV}$. U.H.F.: passband $470-$ 860 MHz with gain $23 \cdot 5 \mathrm{~dB} \pm 2 \mathrm{~dB}$, a noise figure of better than 3.5 dB and typical maximum signal handling capability of 36 dBmV .

Another interesting unit is the UP1300/V wideband v.h.f. amplifier. Coverage is $40-230 \mathrm{MHz}$ with gain $19 \mathrm{~dB} \pm$ 2 dB , noise 2.5 dB and maximum handling capability 26.5 dBmV .

Handling relates to a four-channel throughput at 46 dB

SOUTH WEST AERIALS
Our NEW 1985 CATALOGUE
features many new products, it is an essential reference for the aerial user/ enthusiast with its extensive listings of aerials, amplifiers, filters, rotators and multi-standard VHF/ UHF televisions etc covering domestic, fringe and DXing installations. Send for your copy today only 60p.

EQUIPMENT \& PROFESSIONAL ADVICE

South West Aerials offer a unique blend of the best equipment and impartial professional advice.
Examples from our range:
JAYBEAM NEW DY20 High Gain (16.5dB) UHF Aerial, available in Groups A, B, C/D and Wideband (chs. 21-68). 46.85

LABGEAR CM7068 High Gain UHF three stage Masthead Amplifier, average gain 28 dB ; available in Groups $\mathrm{A} B$ \& C / D... $\mathbf{f 1 6 . 7 5}$
LABGEAR CM7066 High Gain (26dB) low noise, less than 2dB; Wideband (chs. 21-68) UHF Masthead Amplifier c1825
LABGEAR CM7061 Matching Power Supply Ior use with above amplifiers13.50 JVC CX610 $6^{\prime \prime}$ Colour Television/Monitor, Multi-Standard PALSECAM System B/G/l/ D/K VHF-UHF; $5.5 / 6 / 6.5 \mathrm{MHz}$ sound switching; $12 / 240$ volt operation $\mathbf{\text { £281.45 }}$ WALTHAM $4166^{\prime \prime}$ screen VHF/UHF mono Television, System B/G operation 15.5 MHz sound); covers Bands $1,3 \&$ UHF 12 wolt and mains operationE73.7

Above set can be adjusted to 6 MHz sound for an additional cost of $£ 2.50$.
We are THE DXing Specialists, advice given on ALL reception problems (SAE please) All prices inclusive of VAT \& Carnage. Deliven 7-10 days. Access \& Visa welcome.

SOUTH WEST AERIALS
11, Kent Road, Parkstone,
Poole Dorset, BH12 2EH. Tel: 0202738232
r.m.s. peak and noise to the complete unit - not the devices.

The W. German Hirschmann company has introduced a new type of Yagi aerial. It has a rather higher gain than previous types as a result of using a double director chain. There's a conventional multi-element director assembly chain with a chain of standard half-wave elements interspaced between the full-wave director assemblies. The result is an increase in gain of some $1-1 \cdot 5 \mathrm{~dB}$. An array with fifteen full-wave director assemblies and the additional complement of half-wave directors spaced along the boom has, in the wideband version, a gain of $12 \cdot 5 \mathrm{~dB}$ at ch. 21 rising to 16 dB at ch. 40 and 18 dB at channel 60 , with reference to a half-wave dipole. The front-back ratio is between 27 and 30 dB . Ryn Muntjewerff has been testing one recently at his Beemster, Holland location and has found that the system bettered two stacked Fuba XC391 aerials at the group E end of the spectrum though the Fuba aerials had the edge in group A .

Wideband Inductive Combiners/Splitters

Wideband inductive combiners/splitters are available from most UK aerial manufacturers and aerial retail/rigging firms. There are two main versions: external for mast mounting, usually provided with some form of clamp, and indoor types of either wired or integral plug/socket construction. I recently had a need for such a unit with a specific performance requirement and as a result obtained six units from different manufacturers and carried out tests on them.

The performance figures quoted by manufacturers usu-

Fig. 1: Results of inductive splitter/combiner tests carried out by Fringe Electronics. (a) Antiference CS1000 unit. (b) Fringe unit. (c) Labgear CM6011. (d) ACL M1S/Maxview ST3. (e) Triax 7200. (f) Wolsey CS1/4.

Fig. 2: Results of tests on the CM6011 carried out by Wolsey using different equipment.
ally show an insertion loss of around -3.5 dB at v.h.f. and -4 dB at u.h.f., with a spur isolation figure of about -20 dB . My tests showed quite severe variations from manufacturers' specifications, so much so that fluctuations of several dB were occurring within a 10 MHz spectrum at v.h.f. Clearly something was wrong and consultations were held with the various manufacturers. The upshot was that for accurate testing of even such a simple device as an inductive combiner/splitter expensive test equipment is necessary. Fringe Electronics tested all six filters for me, for both insertion loss and spur isolation. The results are shown in Fig. 1. Labgear tested their own unit, with the results shown in Fig. 2. These graphs show the performance of the better known splitter/combiner units at present available in the UK (the Maxview unit is made by ACL) and will enable enthusiasts to decide for themselves which unit best matches their particular needs.

The units are all housed in PVC/polythene boxes. The Antiference CS1000 is perhaps the most attractive, in black with a reusable ratchet type cable strap for mast mounting. The Fringe unit also has a reusable strap, the housing being a distinctive bright red. Triax's 7200 was the largest, housed in a standard "continental" plastic amplifier case with plated bracket/wing nut for mast mount-
ing. Labgear's CM6011/OS fits inside the standard dark green circular plastic box while the Maxview M1S is housed in a square, chocolate-brown PVC box. These two have once-only use ratchet straps for mast mounting. The most compact filter, again with once-only use strap, is Wolsey's cream coloured PVC CS1/4. All these units incorporate a PCB with various discrete components and a large ferrite toroid (or several smaller toroids). Constructional standards are good, with generally minimal lead lengths and boards designed for the purpose - the exception here is Triax which seems to use a generalpurpose board.

All the units tested have d.c. throughput on one spur and the d.c. block on the other can generally be shorted to give a d.c. pass on both spurs - the blocking capacitor is usually of about $0.001 \mu \mathrm{~F}$, mounted adjacent to the d.c. blocked spur connection.

In use as a splitter the insertion loss is less than with a resistive unit though an inductive splitter is more expensive.

An inductive combiner is useful where severe ghosting is present and two identical arrays are stacked (using equal feeder lengths!) to obtain a suitable polar response with reduced horizontal beam width.

Don't use a wideband inductive combiner on its own to link the outputs from two different channel group aerials, e.g. where an extra ITV station is required. Since the bandwidth of this type of combiner is over $40-860 \mathrm{MHz}$, pickup of the local signals on the distant aerial and vice versa will produce a confusion of signals at the output. This is likely to be destructive for teletext reception and, depending on the relative phasing of the signals, ghost pickup etc., degraded pictures are likely to be obtained. For this application an appropriate frequency-selective diplexing arrangement with sufficient out-of-group rejection should be used.

Labgear have recently introduced a u.h.f. combiner/splitter, type CM9035, for the $470-860 \mathrm{MHz}$ band. It's housed in the usual round case and features stripline techniques. The insertion loss is less than -4 dB , typically $-3 \cdot 5 \mathrm{~dB}$, with spur isolation -15 dB . D.C. passage on both spurs is available. For combining the outputs from different channel group aerials, use 9034 group bandpass filters.

Test Report: Tele-Part Pattern Gènerators

Eugene Trundle

In the seventeen years (ye gods, is it really that long?) that we in the UK have been in the colour television business, the evolution of the pattern generators we use for test purposes has largely mirrored the development of the sets themselves - in terms of price, circuit integration, current consumption and simplicity. The need for a pattern generator is diminishing with the latest colour sets. Gone are the days when a new set had to be completely set up at the time of installation, and even for routine servicing thereafter the pattern generator tends to stay in the van. Converging a TV set, once a source of satisfaction (or frustration?), is rapidly becoming a lost art, while modern decoders are virtually go/no go devices whose rare failures usually show up in the form of complete loss of colour or an absence or surfeit of one primary colour.

The need for specialised test patterns still exists however, and to meet it two generator "modules" have been introduced by Tele-Part of Wolverhampton. The simpler one, Telegen 1 , is a pocket-size $(10 \times 7.5 \times 4 \mathrm{~cm})$ instrument powered by an internal PP3 battery or an external power source via a 3.5 mm jack socket. It provides five monochrome patterns - crosshatch, dots, white raster, horizontal lines and vertical lines. Its output is at around channel 32 , via a flying lead with a standard u.h.f. plug.

On test I found that the twelve vertical and eight horizontal lines are sharp and well defined. The plain white raster is free from hash and patterning, and a scope test showed that the vision/sync ratio is correct at 7:3 on all patterns. The field sync pulse is of the "simple" type (a single broad pulse), but this is quite adequate for the job in hand. The u.h.f. output measured about 4 mV , with virtually no spurious radiation on "ghost" channels and a complete absence of frequency drift. Current consumption came out at just over 10 mA at 9 V : I found that the unit will operate satisfactorily down to 6.3 V , still without modulator drift. Good!

I next dismantled the unit and found a little fibreglass PCB mounted to the case by the pattern selector switch, which is a good quality, fully-enclosed type. Three i.c.s, three transistors and 57 other bits complete the ensemble, which I've no doubt will be very reliable.

Turning attention to its big brother Telegen-2, not very big actually at $12 \times 10 \times 4.5 \mathrm{~cm}$, I found a similar design and construction. This is the colour "module", offering standard colour bars and plain rasters in red, green and blue, selected by a four-position switch. Telegen-2 works from an external $14-18 \mathrm{~V}$ supply via a 3.5 mm jack socket and provides a similar u.h.f. output to Telegen-1. It contains five chips, an 8.86 MHz crystal, a 5 V stabiliser i.c. and an on-board u.h.f. generator, all on a similar PCB to that used in Telegen-1. The switch and mounting method are also similar.
I was happy with the colour bars, which scope checks proved to be correct in every sense, particularly with regard to the chroma/burst/sync ratios and the burst timing (the latter is a weak point with some inexpensive colour generating equipment). The plain coloured rasters, particularly blue, were somewhat marred by a spurious patterning due to a form of internal signal breakthrough -
the effect disappeared when the instrument was dismantled, but returned when it was reassembled! This didn't distract much from the usefulness of the patterns however. The review model suffered from intermittent colour, due I believe to an internal dry-joint, and a tendency for the u.h.f. oscillator to drift with time and temperature, but this was probably pure bad luck and I wouldn't expect it to happen with other samples.

With some types of TV set it's not always possible to lose the colour completely - the colour control sometimes won't turn it down fully, and an efficient a.f.c. system with no cancelling switch may prevent you from mistuning to try for a monochrome display. For this reason, and since Telegen-1 has no grey-scale pattern, I'd have liked a colour/mono switch on Telegen-2 to facilitate easier greyscale tracking adjustment with these "difficult" sets.

A mains power pack in the form of a "block" mounted directly on to the pin configuration of a 13 A plug was supplied with the review pattern generator modules. At $£ 4.55$ one cannot complain on grounds of cost, but cheap and cheerful is the only way to describe it! It has six unstabilised output voltages (3 V to 12 V) which are selected by a slide switch. When modestly loaded by one of the Telegen modules it gave an output voltage between 42 and 90 per cent higher than specified, depending on range. This overvoltage caused no damage to either Telegen model during sustained tests, neither did incorrect polarisation of the (reversible!) plug on the d.c. output lead.

Verdict

The odd negative comments in the above review must be considered in the light of the very reasonable price of the units $-£ 17.20$ for Telegen- $1, £ 34.45$ for Telegen-2 and $£ 4.55$ for the power supply, to which must be added $£ 1.44$ post and packing. I found them portable, convenient and useful, and would regard them as good value for money.

The units are available from Tele-Part, 13 Worcester Street, Wolverhampton, WV2 4LJ (telephone 0902-773 122).

The modules under review. Left the monochrome Telegen1, right the colour Telegen-2, top the mains adaptor.

TV Fault Finding

Reports from Philip Blundell, Eng. Tech., Paul Hardy, Keith Hamer, Garry Smith, Malcolm Burrell and Chris Avis

ITT CMC301 Module

I've had a number of faults on the CMC301 remote control/frequency synthesis tuning module. Here's a typical one. The set wasn't tuning a station in - there was just snow on the screen. The scope was used to check the tuning voltage at connector TC12. For our transmitter (Sutton Coldfield) this is normally around 10 V , but in this case a ramp voltage varying between 20 V and 30 V was present.

Checks were made on the counted-down local oscillator signal coming back from the tuner/i.f. module (plug FD1) but the waveform was correct - a 4 V p-p sinewave. The frequency divider switching signal at plug FD3 was also correct - a 5 V p-p squarewave. As the ramp on the tuning line wasn't going below 20 V , the transistors in the D-A converter circuit were checked out of circuit. T1414 turned out to be leaky.

Other faults we've had in this area are as follows:
One inch wide bars across the picture due to C1425 $(2 \cdot 2 \mu \mathrm{~F})$ in the tuning voltage smoothing network going open-circuit.

Intermittent switching to standby due to C1419 (2.7 pF) in the crystal clock oscillator circuit being leaky.
Stuck on standby due to the standby power supply mains transformer $\operatorname{Tr} 1401$ being open-circuit.
No tuning voltage due to $\mathrm{C} 1072(0.47 \mu \mathrm{~F}$ blue tantalum) on the main panel being short-circuit. P.B.

ITT CVC1100 Chassis

Here's an impossible one for you! The reported fault was no sound on VCR operation, and sure enough there was no sound on any signal tuned in via the VCR button. The interstation mute was operating: this is sensed by the TDA1940F syne separator/line oscillator i.c. but a replacement chip made no difference. The VCR button modifies the phase detector time-constant of course, so something in the line generator circuit just had to be out of tolerance. We checked the black electrolytics in the area (usual practice with I'TT sets) to no avail. The digital voltmeter was next brought into play so that the voltages around the i.c. could be more carefully checked. The VCR select pin (pin 5) went high as it should have done, but went 1 V too high (to 8.5 V instead of 7.5 V). The pin is fed via a potential divider (R601/R631) and R631, which is connected to chassis, was found to be open-circuit.
P.B.

Grundig GSC100 Chassis

This was a real pig! The field engineer said that every three weeks he had to resolder R607. Now this resistor normally runs very cool, because it's part of the start-up circuit, and goes open only when the line output stage fails. After a lot of soak testing and probing I found that on certain fairly cold days the set would trip in this way when first switched on. Much time elapsed before I concentrated on the e.h.t. control module, which controls the supply to the line output stage. It contains a 74 -series monostable multivibrator chip. Now these digital chips like a supply of exactly 5 V : go much higher or lower and
they won't work. This one is supplied by a rail that's stabilised by a 4.7 V zener diode, Di2502. At times the voltage across this diode was as low as 3 V . Replacing Di2502 cured the problem.
М.B.

Philips K30 Chassis

One of these sets had cross-modulation lines on the picture, as if the r.f. amplifier was being overloaded. A lot of time had been spent trying to locate the exact cause of the fault, which was cleared by replacing the tuner unit.

The fault on another of these sets was field collapse. A quick check revealed that there was no 32 V rail, due to R1590 (1.2Ω) being open-circuit. When this was replaced it started to cook while the raster disappeared towards the bottom of the screen. The field scan coupling capacitor $\mathrm{C} 1521(1,500 \mu \mathrm{~F})$ was short-circuit.
M.B.

Thorn TX9 Chassis

Lack of width was the customer's complaint with this set. On test card the verticals were seen to be bowed while the width and pincushion controls had no effect. Obviously something to do with the EW correction circuit. A check at the emitter of the EW modulator driver transistor TR72 (TIP110) produced a slightly high voltage reading (not much higher than I'd have expected though - the normal reading is quoted as 0.15 V). I decided to check the emitter resistor R251 (2.7Ω) which turned out to be high in value. The transistor seemed to be o.k., and replacing the resistor restored normal operation.
M.B.

Philips K30 Chassis

The set was brought in because it was tripping. All the usual things around the line output stage, even the deflection coils, had been checked by the field engineer. It was difficult to find the cause of the problem until I decided to try disconnecting pin 6 (excess current protection) of IC7322 (TDA2581Q) - not something to do lightheartedly. A picture then appeared, modulated with 100 Hz hum. The fault clearly lay in the power supply and was soon traced to the 285 V supply reservoir capacitor C1460b.
M.B.

Philips K30 Chassis

A sudden drop in contrast with the control itself having no effect led us to suspect a fault in the contrast control network. The fault corrected itself before we could take any further action however and the set remained all right during a prolonged soak test. All we could do was to return it to the customer. Six weeks later it was back with the same fault. Beam limiting is also carried out via the contrast control network, so attention was paid to this. The sample point for the beam limiting is C1565 $(0.068 \mu \mathrm{~F})$ which is connected to the earthy side of the e.h.t. circuit. This capacitor, which is close to the smoother at the bottom of the hinged panel, turned out
to be open-circuit. We've since had the same fault on two other K30s - in both cases it was intermittent.
K.H.-G.S.

Thorn TX10 Chassis

We were called out to a six-month old Ferguson colour receiver fitted with the TX10 chassis. The customer had complained that the set was dead, but on arrival we found that it was tripping. Disconnecting the e.h.t. lead made no difference so we humped the set back to the workshop for a more detailed examination. Further checks revealed that the h.t. rail was higher than the specified 150 V - the supply was building up and shutting down as soon as the overvoltage protection system came into action. Reducing the setting of the set-h.t. control stopped the tripping and restored normal operation but the control was at one end of its travel. Further checks showed that the feedback resistor R813, connected between the control and the 150 V rail, was high in value at $160 \mathrm{k} \Omega$ instead of $121 \mathrm{k} \Omega$.
K.H.-G.S.

Philips K30 Chassis

"Dead" said the job card. Good we said, thinking we'd be in and out of the house in five minutes. The cause of this fault is usually the mains bridge rectifier's surge limiting resistor R6291 (4.7) going open-circuit. Not this time however. The set worked for several minutes before the gain suddenly fell to zero, producing a blank raster. Lowering the chassis disturbed the fault and the picture and sound returned - but not for long. The tuner is unpluggable so we carried out a quick substitution. This made no difference. Back in the workshop we soon found the culprit. No, it wasn't the TDA2540 i.f. amplifier/detector i.c. A can of freezer (not a whole can incidentally) and a hairdryer led us to the a.g.c. reservoir capacitor $\mathrm{C} 2147(0 \cdot 022 \mu \mathrm{~F})$ which is connected to pin 14 of the i.c. It was going leaky.
K.H.-G.S.

Thorn TX9 Chassis

This set was fitted with the U725 remote control panel. The complaint was line drift. The line generator i.c. had already been changed so I put the set on soak and set up the line oscillator. Nothing happened till I switched off and on again. The line timebase was then slightly off frequency. Checks were made on the components around the chip but the only clue was obtained by changing channels. When the line was unlocked, pressing button cight (AV) restored lock until the set was switched off. Disconnecting R207 in the AV line resulted in immediate picture lock, as did disconnecting the AV connection on the remote control panel. Moving over to the remote control panel itself brought me to D916 (F425) which turned out to be leaky.
M.B.

Grundig 6100

We've dealt with the basic models in the Grundig range for the past two-three years and have found them very predictable with regard to faults. Callouts usually concern tuning troubles, especially on earlier models. With the 6100 we would find that ITV and sometimes Channel 4 had to be retuned every few weeks. If the trouble persisted we would change the tuning voltage supply stabiliser - after removing the fiddly front panel and
button unit from inside the cabinet. This wasn't the right diagnosis however as the stations didn't drift to the same extent. We eventually found the true cause of the trouble. What happens is that the cabinet can warp and distort the press-button unit mechanics as the room temperature alters. This distortion affects mainly the middle positions of the assembly. The only cure we know is to remove the assembly, twist it round a little and put it back! In stubborn cases, try telling the customer to get the central heating thermostat checked.

Later models aren't affected in this way because the button unit is directly mounted on to a vertical side chassis assembly. We still get problems however. Customers somehow manage to engage all the buttons. They follow the instructions on delatching given in the Grundig booklet, then we're called out to a broken button unit damaged by hairpins, screwdrivers and, by the look of some of them, garden spades! K.H.-G.S.

Thorn 3000/3500 Chassis

Many of these BC (Before Ceefax) vintage sets are still in use. They're prone to displaying teletext "morse code" over the top couple of ir.ches of the picture. I've tried a couple of suggestions relating to the field oscillator circuit without success but a recent consultation with the oracle at the Ferguson service department produced a simple and effective cure: increase the value of R441 in the flyback pulse limiting network across the field output transformer from $2.2 \mathrm{k} \Omega$ to $5.6 \mathrm{k} \Omega$.
C.A.

Thorn 1500 Chassis

The complaint was intermittent loss of picture, which turned out to be due to a faulty ring trap - the plastic had cracked with the result that the c.r.t. heater was shorting out. Whenever a tube is scrapped I always keep the ring trap if it's any good, so a spare was soon fitted and the set sent on its way. It was back a few days later however, the symptoms being no picture or sound with a visible raster. This time the ring on the replacement trap was grounding pin 1 of the tube so that the set's I.t. supplies, which are derived from the end of the heater chain, were removed. It turned out that the tube's evacuation pip was malformed, as a result of which the plastic base couldn't be pushed firmly home against the end of the tube - it sprang out. All that was necessary was to file the plastic base till it fitted the tube, then apply some adhesive to ensure that it stayed there. P.H.

Philips G8 Chassis

Every six months or so the 250 mA fuse on the power supply panel would blow. No shorts could ever be found on any of the panels or in the wiring loom, a replacement fuse working for a time until it blew for the same inexplicable reason. This went on for a couple of years! There was obviously a fault somewhere however. Close inspection of the panels revealed a very slight burn mark on the component side of the combined i.f./decoder panel, adjacent to R212. R414, which is beside R212, was mounted horizontally instead of vertically, with the result that the earthed side of R414 was very close to the end of R212 that carries 205 V . The 205 V was intermittently flashing over from the end cap of R212 to the earthed leg of R414. Repositioning these resistors has provided a cure - to date!

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

ESM532C	4.18	M1303P/N	1.50	MPSUCS	0.7	SAA5010	4.9	SN74190	181	Teceg	4.41	TBA395	1.35	TDA1230	2.33	TDA9503	2.60
ESMAB2C	4.18	LMI310P/N	125	MPSUIO	0.71	SAA5012	6.50	SNT7420	0.31	Temezev	$0 \cdot 9$	tBA3950	1.00	TDA1235	52	TDASt 13	0
ESM732C	6.18	LM 3065 N	0.7	MPSU55	0.90	saascro	525	SN7430	0.28	T8133V	0.73	tBass	1.00	TDA1270	2.4	TE527	125
ET10016	2.6	LM317CKC	130	MPSU56	0.30	SAA5030	1.51	SNTHON	0.24	T8005V	0.3	tBAm00	2.17	tDal327a	1.05	TE538	0.35
ETTP8016	2.16	LME3SN	0.0	MPSUEO	120	SAA5010A	14.75	SN1473	0.55	T8036	0.4	TBAMOP	1.55	TDA13278	1.05	TEE26	35
PN0500	525	LM3407	129	MR510	0.30	SAA5050	8. 50	SNTITAN	0.72	18037	1.91	TBA480	1.42	TDA1330	1.00	tealoos	3.15
F13055	1.85	LM31075	0.75	MR812	0.60	SaAb81]	1.8	SN7490AN	0.93	TEOMIV	0 08	TBA4800	1.87	TDA13	35		0.58
GF758	$0 \cdot 10$	LMSUOT 12	0.75	MR914	0.45	SAA700	3.00	SNT5110N	0.75	Tbonk	0 OL	TBA500PO	4.95	TDA1412	0.95	TEAICOOSP	5.4
GF759	1.0	LM310т5	0.75	MSSOTOO	0.65	SABIOOPB	4.51	Snfecoiana	225	T6005	1.09	T8A510	1.55	TDA120	1.48	TEA1097	0.45
GF761	0.71	LMAEN	0.56	MVS240	0.52	SAB1046P	3.04	SN75003N	28	T8009	1.10	t8asios	6.39	TDA140	2.13	${ }_{\text {TICLIOSC }}$	0.55
GH3F	1.05	LM384NOI	1.4	MVS480	0.30	SAB3011	734	SN780013N	3.63	${ }^{\text {T80062 }} \mathrm{V}$	0.7	t8a523	1.97	TDA1512	220	TIC106M	0.55
HA11211	230	LM567CN	1.30	MVS 460.02	0.55	SAB3012	5.34	SN76013ND	225	T8058	0.45	tBA5200	1.35	TDA1670	3.65	TTC1160	0.20
HA1215	40	LM74	1.05	ME545	2.95	SAB3013	32.	SNTE013NDG	1.07	T6059	1.05	TBA530	085	TDA170	5.55	Ticcm	0.65
HA1125	3.90	LME380	27	ME545	380	Sabsmel	7.18	SNTrcman	235	Tro00 V	1.6	tBas500	085	TDA 1905	125	TIC45	0.70
HA11228	1.55	(MR351	271	MEES33N	1.4	SAB3maz 8	1234	SN7GCOzND	1.00	Tr900V	0.*	TBA500	0.915	TDA 1908	2.95	T1P4	0.70
HA11229	2.51	M1024	255	ME555	0.4	SAB32038	11.14	SNT80c33N	2.33	TroosV	2.15	TBA5400	1.15	TDA 1910	238	TPP_{120}	0.9
HA11235	3.00	M102\%	4.78	ME556	0.75	Sabsme 4	4.11	SN76105N	236	T9010	0.7	tras50	1.95	TDAI940		TIP12	0.00
HA1124	4.70	M1124	2.54	ME5500N	3.16	SABzan9	4.75	SN76110N	1.13	r901V	127	tbas50a	225	TDAZOR	120	TIP117	O\%
HA1124	4.32	M1130	$4{ }^{4}$	ME565 ${ }^{\text {N }}$	124	SAB3210	2.93	SN76115AN	1.4	T9013V	${ }_{1}^{5.81}$	${ }_{\text {TBASEOC }}^{\text {TBAFOCa }}$	${ }_{1.15} 1$	tidazoos		TIP120	0.73
HA1125	3.90	M191	5.74	MEbasb	3.0.0	SAB4209	12.75	SNN6131	1.14		1.92		1.55	TDA2004	2.52	T\|P121	${ }^{0.73}$
HA11251	33.	M193	18.55	MEEGEN	${ }_{3}^{3.9}$	SAF1031 SAFIOS2	2.30 5.90		120	${ }_{19016}^{1902}$	0.98	TBA50]	1.55	tDazoos	125	T1P126	0.56
HA137 HA1138	2.55	M5115P	4.31	MEEA5BN	3.90	SAFI039	11.0	SNT623N	2.97	t9030	125	trasma	1.35	TDA2010	2.79	T1P127	130
HA11414	2.50	M51231P	279	MP1106	4.0	SAS5010	7.2	SN76231	2.31	T9035V	1.25	T8A625a	1.97	tDazmo	2.75	T1P2955	0.78
HA114	638	M5124P	4.30	OA200	0.10	SAS500	1.6	SN76242	4.75	T3038V	5.15	TBABESB	1.97	TDAX200	1.05	IPP29A	0.11
HA1 156	123	M5134934	3.75	daza	0.10	SAS500s	290	SN76243	4.75	${ }^{19051}$	2.50	18AESCL	1.97	TDA2150	${ }_{5}^{1.4}$	${ }_{\text {T1P298 }}$	${ }_{0}^{0.57}$
HA11590	1.0	M51394P	125	OAG	0.10	SAS500]	2.55	SN7632	2.51	T9063V	1.09 0.98		3.75 2.07	TDA2150	5.73	${ }_{\text {T1P305 }}$	0.40
HA1160	3.45	M5142P	4.3	0aso	0.07	SAS570	1.61	SN76360	20	${ }_{\text {T }}$	0.83	${ }_{\text {TBA651 }}^{\text {tiabl }}$	1.0	TDA2160	3.4	T1P304	0.41
HA1186	3.00	M5143P	6.8.4	OA91 OA9s	0.00	SAS570S	0.00	SN/76390	200	$\xrightarrow{\text { T9060 }}$	2.94	trab ${ }^{\text {deb }}$	235	TDA2161	${ }_{1.8}^{3.1}$	TIP308	0.63
HA1167 HA17	5.13 16.13	${ }_{\text {M }}$	3.6	${ }_{\text {OC2 }}$	0.56	SAS580	4.41	SN78550N	0.95	TA5814	1.35	Tbarooo	2.19	TDA2190	3.11	T1P318	0.35
HA11713	6.70	M 51515 BL	3.10	OC29	1.95	SAS5800	2.0	SN76530P	1.90	taneop	4.3.	tbaido	225	TDA2310	$1{ }^{1 / 2}$	T1P31C	0.35
HA11714	7.05	M51516	3.40	OC35	0.56	SAS590	4.55	SN76532N	1.20	taper	4.35	teapzo	1.75	TDA2520	2.15	${ }_{11} 11838$	0.35
HA11715	7.05	M5157]	2.50	OC36	1.16	SAS5980	2.38	SN76533N	1.50	taposo	1.55	TBA7500	1.45	TDA 521	2.15	${ }_{\text {T1P32C }}$	${ }_{1}^{0.65}$
HA11718	6.79	M5152L	1.00	OC4	0.40	SAS600	2.50	SNT6560N	100	taposi	1.50	TBA780	${ }_{3}^{1.55}$	TDA2523	2.75	T1P34	1.07
HA17724	15.0	M5152	4.50	OC45	0.10	SAS6800	128	SN7654	1.05	tamosiap	07	t'asmo	0.0	TDA2524	4.50	TIP41A	0.39
HA11725	16.50	M5191P	4.19	${ }^{\text {OC75 }}$	0.40	SASgeas	128	SN76546	3.15	TAT009	2m	tbabinas	1.4	TDA2525	2.96	TIP418	0.29
HA1100	4.6	M 5192	2.00	${ }^{\text {ON188 }}$	1.70	SAS6870	120	SNTE546	3.15 3.15	TATOROP	1.52	tabios	1.4	tDa2530	2.19	TPP4C	0.4
HA1305	1.14	M Ma06 ${ }^{\text {a }}$	0.120	${ }^{0} \mathrm{~T} 121$	0.20	SAS670S	1.20	SN76550	2.30	TA7072P	135	твавго	0.18	TDA2533	2.09	T1P428	0.71
HA1322 HA1399	1.74	MAPS001	0.97	${ }_{\text {PO14 }}$	2.00	SAS6710	1.20	SN76551	1.35	TA7073P	4.05	TBAB20M	1.05	TDA2540	1.95	TIP42C	0.4
HA1342	1.20	M8370	1.2	P1017	243	SAS6880	2.30	SN76570	2.80	tapoup	1.95	TBABso	1.55	TDA2541	1.95	TIP47	0.65
HA1350	2.97	M83712	2.05	Pr2014	2.8	SASE810	1.30	SN76E00	1.10	TA7076P	4.95	tbasoo	225	TDA25150	3.15	T1P48	0.3
HA1355	3.08	M83713	1.30	Proue	1.12	S8A550B	1.55	SN78611	235	TAToegn	1.41	TBA920	1.50	T0A2560	${ }_{2}^{1.97}$	TiP49	${ }_{1}^{328}$
HA1366Wh	1.6	M83730	2.9	R1038	1.99	SBA750	1.45	SN76ere	235	TA7mesp	135	${ }_{\text {TBAgzo }}$		TDA2575A		TIS90	0.22
HA1337	3.20	MC13002	4.E	R1039	1.99	Sçamp	1.50	SN76622	1.50	TANses	35		1.55	TDA2576A	2.58	TIS91	02
HA1338	1.6	MC1303P	1.9	R22008	1.20	SC9503	1.50	SN76E23	${ }_{2} 0.9$	TA7093P	1.4	ticasto	2.00	TDA2577	5.31	Troicp	2.02
HA13588	1.6	MC1307P	1.90	${ }^{\text {P22009 }}$	120	SCCso4p	1.6	SN776630	231 3.5	TA7108P	1.40	tBagroo	2.9	TDA2581	1.95	TMS 1000 NL	0.78
HA1370	2.97	MC1310P	125	R20018	1.20	SCR957	1.90	SNTE8E5ON	124	TA7109		T8A990	1.05	TDA2582		TMS378NS	11.e6
HA13T	2.8	MC1327P	1.20	R2009	120	${ }^{\text {SCR959 }}$	1.20	SNT6est	1.35	TA7120	0.50	tbas900	1.95	TDA2590	220	TMS4116	1.87
HA1339	1.12	MC13309	123	R23030	120		4.31	SNTE8ESON	135 225	TA7123/P	0.54	tBaz31	230	TDA2591	280	TV106	120
HA13998	1.74	MC1349P	1.20	R2257	2.15	SG629		SN76E65 ${ }^{\text {N }}$	1.35	TA124P	2.00	TC1001	129	TDA25910	20	TYE0108	2.70
HA1392	2.6	MC1350P	1.10	R2235	1.95	SG6\%	937	SNTE6E6N	0.95	TA129P	1.15	TC40538P	3.9	TDA2593	224	U056	1.03
HA1397	2.97	MC1351P	0.75	${ }_{\text {R2305 }}^{\text {R2306 }}$	1.07	SG6ezo	4.78	SN7605	3.38	${ }_{\text {TA }}$	1.15	TCA150	1.82	TDA2594	2.0	U143M	2.03
HA1398	22	MC132P	1.09	${ }_{\text {R }}$	123	Sl-1125HD	10.70	${ }_{\text {SN76705 }}$ N	3.99	TA713]P	0.85	TCA1808	1.0	tdazzoo	5.00	U3700	0.55
${ }_{\text {HA1 }}$	5.40	MC1358P	1.55	${ }_{122323}$	123	St-1130N	6.30	SN76707N	3.99	TA1141AP	3.51	TCA2200	1.55	tDaz610	2.53	U37003	0.4
HBF4030AF	225	MC14001	1.15	R2348	1.2	SK82/08	0.70	SN76709	4.65	TA7146P	1.0.	TCAz20s	1.55	toazria	1.25	UA723CA	5.00
HD440	15.50	MC14011	0.23	P2354	1 m	SKEZ 1/04	1.25	SNTromen	4.55	TA7148P	1.51	TCA270sa		toazriaa			3.05
H044601A05	15.50	MC14013	0.37	R23548	$1{ }^{18}$	SKE26 2/04	0.55	SN76730	423	TA7149P	2.10	TCA230A	2.05	TDA26120	425	UA783P3C	1.07 214 18
HM6231	8.50	MC14016CP	0.37	R241 8243	123	SKE26 3/04	0.55	SN76810N	${ }_{2} 0.12$	TA7153P	5.53	TCA4\%	1.90	TDAzz30	234	UAA180	2.14
HME238 HM9102	7.71	MC142as	0.54	$\underset{\substack{\text { R243 } \\ \text { R241 }}}{ }$	2.10	SKE4F	0.8	SN9004	3.45	TA71EP	4.25	TCA15004	1.95	toazr31	2.46	ULN2165	1.35
HM9104	2.9	MC1438R	0.95	P2477	0.92	SKE4F 2006	2.10	SN9\%042	3.55	TA7198	480	TCA530	180	toazalo	225	UIN2O24	7.00
HT4207	15.00	MC1493P	2.55	R2501	1.16	SKE4F 2/88	0.00	Spr3es	0.50	TA7171P	2.53	TCAG10	2.38	tiaza3	6.93	ULNC216F	1.95
IS609	1.7	MC145108AL	3.15	R2510	1.0	SKE4G 2/02	0.87	STANIC	227	TA1172 ${ }^{\text {P }}$	122	TCA650	185	TDA2s51	2.95	UPC1001H	2.50
15751	1.77	MC145568CP	3.15	R2540X	3.00	SKES5 3/10	1.45	STK0029	3.42	TA17178P	225	TCA6608	203	TDA2652	7.05	UPC1009C	2.14
1172003	0.20	MC1712	3.52	R2815	0.00	SL1310	2.5	STK0039	4.00	TA7193P	4.4	TCA730	3.4	Toazex	2.95	UPCICOOH	2.12 2.48
K174YP	2.95	MC7724P	3.17	RC4195NB	1.95	SL1327E	120	STK00050	4.56	TATzo1p	325	TCA710	225		3.91	UPCL1025	1.24
KA2101	2.65	MC7818C	1.50	RCA16029	1 l	SL1430	128	STK0059	6.40	tazasp	224	${ }_{\text {TCAF }}$	1.15 279	TDA28580	3.15 24	UPC1086	124
KC5812	5.47	MC7884P1	4.25	RCA18083	4.81	SL14307	2.18	STKCO80	3.38	tapzosp	1.95	TCAAOOB TCAB00	1.65	TDAz2651	224	UPCIOSOH	2.05
KC5822C $\mathrm{KC5E3C}$	3.45	MC78912	0.75	RCA RCA1633	${ }_{1}^{0.92}$	${ }_{\text {Sl414 }}$	235	STK013	104	TA7205	125	ICAs000	225	TDA2570	2.50	UPC1081H	1.05
L129\%	1.75	MCR101	0.10	RCA1 6800	125	SL1432	3.12	STK014	7.14	TAT208P	1.95	tcabsos	1.94	toazroa	1.76	UPC1081/22	6.00
$1200 C V$	1.4	MCR106/5	1.17	RCA16799	2.16	SL437	6.20	STK015	5.12	TAT210p	325	TCASO0	1.15	TDA2680	230	UPC1032	175
LAll11AP	0.0	MCR220/	134	RCA1880	0.5	SL439	2.25	STK016	$4{ }^{17}$	TAR14P	2.90	TCA910	1.50	TDA27804a	2.18	UPCC15 15 H	1.15
Lal201	0.90	Meame	0.27	RCA 18802	0.35	SL480	5.00	${ }_{\text {STKO2O }}$		TA7215P	12.09	TCAS300	1.51	${ }_{\text {l }}$	5.19	UPC1181\%	1.25
LA1210	1.4.4	MEOMOM/2	0.12	RCA1) RCAI 7074	${ }_{6}^{225}$	${ }_{\text {SLL901B }}$	¢,000	STK02 STK0	7.09	tatiza	1.95	TCE527	1.31	TDA2791	2.50	UPC1182H	12
LA1352	1.40	meall	0.45	RCA17376	1.43	SL9178	1.95	STK003	1.00	tarzzP	1.09	TCE82	0.98	TDA2795	2.95	UPC1185H	2.95
LA1357N	5.90	MEOA12	0.21	RCA6035	4.50	SL9184	5.43	STK05	6.4	TA7229P	4.10	TCE83	0.98	TDA2800	${ }_{2} .12$	UPCC11885	0.95
LA1364	2.74	MEAICR	0.45	RGP10	0.45	SN6848	1.80	STM0\%	20.20	TA7310p	1.95	TCEA	0.9	TDazmom	231 10.4	UPCC1212C	0.95
LA13535	2.79	MESH58	9.10		1.40		1.59	STK07 STK078	7.50 5.52	taf7313ap			9.31	tid	1.175	UPC1217C	224
LA1335 A1337	1.70 1.5	Megove	0.23	R1905A S0280	1.94	SN18862N-OT SNi 1800 N	1.10	STK078 STKDe	7.54	TA7609	5.00 3	TD190	0.54	TDA33008	7.75	UPC1350C	1.75
LA3155	0.90	ME8001	025	S0281	1.9	SN16985	8.13	STK096	9.50	TA\%11ap	3.54	T03Froou	6.00	TDA3500	5.95	UPC1351C	1.4
LA3300	1.40	MU2501	4.95	SOA1P	126	SN16586	5.49	STKM101	5.74	TA7676P	3.05	TD3F800	225	TDA3501		UPC1333	6.15
LA3301	128	MJ2955	134	SoluP	1.46	SN29715N	5.19	STK2110	6.6	taa300	2.98	T03F800	3.1 3.1	TDA3510	10.12 5.95	UPC1362	4.10
LA3350	1.30	M33000	2.15	S1299	4.30	SN29718N	3.32	STK2230 STK415	6.08	ta ${ }_{\text {tabioa }}$	0.27 1.15		3.710	TDA3520	1.2	UPC1365	5.79
LA3361\%	130 230	M 33001 M 30208	1.30 2.40	S175 S20620	11.95	${ }_{\text {SNS2977 }}$	${ }^{10.535}$	STK415 STK43	${ }_{9}^{6.35}$	tamsjoa	1.00	TDAIopia	2.10	TDA3521	12.11	UPC1366	4.23
L403031P	3.00	M 4481	1.39	\$2800	525	SN29723AN	6.95	STK133	5.4	tana3s	1.05	tDatoosa	2.15	TDA3560	6.87	UPC1458	7.1
440302 P	1.4	M 1802	4.95	S28000	255	SN2974N	2.8	STK436	5.70	taA5so	0.33	toaloua	2.15	TDA3561	7.50	UPCz200	1.48
LA4050P	1.12	MJE2955	1.71	\$2802	3.15	SN29764AN	3.38	STK137	8.10	TAA570	1.50	TDAIOOSA	2.15		225		208
LA4061P	1.2	MUE3055	0.70	S3702S	4.73	SN29767	${ }^{3.51}$	STK439	625	TAA611812	1.50	TDA1006A	2.15	${ }^{\text {Tj }}$ TDA35371A	5.76	UPCCSIC	4.49
Lat100	1.2	MuE340	0.4	\$37037	4.3	SAz2970aN	2.92	STKM ${ }^{\text {S }}$	${ }_{8}^{8.95}$	tackias	3.31	TDA1011	2.69	TDA3950	2.81	UPC554C	
LAA101 CAA102	1.18	M M L E523	2.4	\$3707	3.98 7.99	SN2271BN SN29T2BN	423	STK459	9.55 6.50	TAASt0	3, 5	TDAIO28	22	TDA39508	1.40	UPC558C	3.67
14.112	4.35	ML2328	3.30	S551	4.12	SN2973	224	STK400	5.7	tacheib	1.59	TDAILeg	4.4	tdaysios	3.15	UPC566H	2.78
LAA125	2.66	M12378	22.	S552	4.12	SN23791	1.51	STK461	7.14	talion	235	TDALO348	220		1.74	UPC572	3.51
LAA138	2.00	ML238	4.00	S60008	2.75	SN29790N	3.9	${ }^{\text {STK4633 }}$	\% 8 \%	TAABAO	227	TDA1035	118	TDA1280	1.40	UPC575C2	3.12
L44140	0.00	MLITICS	0.36	S6087AR	4.45	SN29845	2.14	${ }^{\text {STK4* }}$	${ }_{10} 18$	TAAS30	4.45		1.45	TDAL290	4.05	UPC57n	${ }_{0}^{2.40}$
44192	${ }_{124}^{20}$	ML223	2.18	SAAIOEO	438	SN2S048 SN29061	1.0	STK406	10.70 5.74	TAA970	2.57	TDAIO4 ${ }_{\text {TDAIO4 }}$	1.96	TDA240	1.95	UPC577C2	${ }_{23}$
La4220	${ }^{1.4}$	${ }_{\text {M M }}$	3.25 3.7	SAAIIQ24	${ }_{2} .35$	SN23961	2.0	STK5CO	5.74	TAG232600	0.9	TDA1047	2.14	TDaheo	2.06	UPC5S2	1.00
La4120	1.56	MM 5316 N	3.72	saciozs	4.70	SN72709	0.40	STR441	6.39	TAG626-000	0.4	TDAIOS4M	1.10	TDAMP0	4.25	UPD1514C	7.56
LA402	1.56	MM5318N	2 l	SAA 1050	3.71	SNT400N	0.24	STPA53	6.75	tBaizo	0.95	TDAIC59B	0.90	TDAME2	5.13	UPD851	14.39
La430	1.4	MM5359\%	1.2	saliosi	5.3 3	SN7401N	0.24	Stamico			0.95			TDAK30		${ }_{\text {X }}$	
LA4400	1.98	MM M $3887 \mathrm{AA} / \mathrm{N}$	11.50 50	SAA1081	3.24			Tecoiv	0.09	TBAIzAS	0.95	TDA1082 TDA1104	${ }_{5}^{2.95}$	TDAM31 TDA432	2.05		3.67 4.35
L44461	2.00	MMSEAIN	15.50	${ }_{\text {SAA1075 }}$	4.41	SNTHON SNTMON	0.24	${ }_{\text {T60076 }}$	030	TBAIzosb	0.95	TDA1151	0.mb	TDALH0	2.52	\times X0066CE	4.35 3.90
- LATM20	6.8.	MP8113	1.35	SAA1121	4.38	SNTHION	0.24	T8017	0.65	T8A120T	0.95	TDA1170	2.15	TDA4600	2.55	XDODECE	4.95
Lapres	7.31	MPE512	123	SAA1124	2.55	SN74121	120	T8018	0.05	t8aizou	0.95	TDAA170s	1.55	TDA610	2.42	XODOESCE	3.48
LAT800	2.12	MPFF256C	0.54	SAA1130	475	SN34122	0.95	T6C21	0.35	TBA 20 UB	3.47	TDA1180	225	TDAGE20 TDA5500	4.50	X0109CE $\times 10744 F$	6.10 6.36
LA7801 LO3120	13.10	MPS6570	0.43	SAA1174 SAA 1250	5.75 3.7	SN713N SN74141	10.33	${ }_{\text {trsez }}^{\text {teg }}$	${ }^{3.56}$	${ }_{\text {tbal40G }}^{\text {tbal40 }}$	2.40	TDAITgoz	1.91 2.25	TDA5500	${ }_{2}^{2.00}$	XC949P	${ }_{1} 120$
${ }_{\text {LM101 }}$	2.20	MPSAS6	0.59	SAAI251	5.31	SN74151AN	1.51	T6027	0.73	TBA144	1.59	TDAIzOA	1.30	TDA5000	2.10	730	024
LM1017N	1.9	MPSAs?	1.11	SAA5000	3.05	SN74154N	1.15	TGORV	0.35	tBA240A	3.42	tDaizzo	225	tDA9403	2.50	Y969	0.60
IF YOU D	ONT S	SEE IT LISTED	ASK	OR QU	TE. GI	MAKE	DE	OCATIO	EM	MBER T	ADD	60p PO	HAN	LING.	15\%	VAT TO	AL.

Simple Pattern Generator

Barry J. Thurlow

This pattern generator was originally devised for monitor alignment and for the go/no-go testing of video switches and cables. For this purpose it provides a standard 1 V peak-to-peak composite video signal (0.3 V sync pulses) when terminated externally with a 75Ω load resistor. An Astec modulator can be incorporated however to obtain a u.h.f. output. The circuit is based around a Ferranti ZNA234E TV pattern generator i.c., with additional circuitry for mixing and providing a reasonable 75Ω output. The whole lot fits into a 705 Verobox which has a compartment for the four 1.25 V Nicad batteries used for
the supply. The small PCB that holds the circuit has been designed to fit into this box.

Fig. 1 shows the circuit. The ZNA234E generates the patterns by counting down etc. from a $2 \cdot 5 \mathrm{MHz}$ crystal oscillator. Vertical line width is set by an $R C$ combination at pin 10 - in practice R8 and the stray capacitance of the pin. These together give a line width of about 100 nsec .

The base of output transistor Tr 1 is biased at 2.7 V by R3 and zener diode D1. This holds the voltage across R4 at a fairly constant 2 V . The junction of Tr 1 and R 4 is used as a current summing point for the video and sync signals.

Fig. 1: Circuit diagram.

O Mounting holes (3)
Fig. 2: PCB print pattern, actual size, left; component layout right. C1 25V axial, C2 6.3 V tantalum, C3 and C5 disc ceramic, C4 polystyrene or plate ceramic.

By virtue of the transistor's gain, a composite signal of about 2 V peak-to-peak is developed across R2. The various outputs from IC2 are buffered by $\mathrm{IC1}$ (Tr 2 in the case of the grey-scale pattern).

If the u.h.f. version is used, the output from the modulator can be connected to the front panel BNC socket. Alternatively a second socket and selector switch could be used. Although the UM1111 modulator should be operated with a 7.5 V supply it seems quite happy operating at 5 V and quite reasonable results were obtained with the capacitive coupling arrangement shown. There's room in the case for the modulator - it can be conveniently mounted inside the top section above the battery compartment. The modulator's bandwidth is limited, so I wouldn't recommend using its output for signal adjustments. The picture provided is quite suitable for adjusting picture geometry however.

The board was originally designed for use with an ITT single-pole, twelve-way switch (see photos). This however is not a stock item. We suggest the use of an RS 327-951 two-pole, six-way rotary switch mounted on the front panel with wired links to the board. The seventh position originally provided, blank raster, is no longer available. To obtain this feature, pin 9 of IC1 was connected to chassis

View of the unit with top cover removed.
with the other switch positions left open.
The case was obtained from Maplin and the ZNA234E from Technomatic Ltd., 17 Burnley Road, London NW10 1ED. An alternative source for the i.c. is Celdis Ltd., 3739 Loverlock Road, Berks RG3 1ED (0734 585 171). It sells for around $£ 10$.

Suspect Transistors

George Wilding

As a general rule, the presence of normal working voltages at the collector, base and emitter of a transistor will indicate that it's operational. Where the connection is to the supply line or chassis via a low value resistor or the connection is made to a potential divider however the voltage change with a defective transistor may be small. Fortunately the condition of a transistor can usually be checked in situ with near certainty by making forward and reverse resistance checks across the junctions and a collector-emitter check for possible punch-through. On occasion however you get symptoms suggesting that a transistor is faulty even though these resistance checks indicate otherwise. Here are a couple of examples.

The first was an ITT hybrid colour set (CVC8 chassis) with total lack of line and field lock. The sync separator transistor was naturally suspect but resistance checks at the junctions proved it to be in order. As Fig. 1(a) shows, the collector is connected to a potential divider. It should normally record 65 V but in this case the reading was nearer 100 V . Considering the proportions of the values of the two resistors in the potential divider network, this suggested that the transistor was cut off all the time. Now this wouldn't be caused by lack of signal at its base, since the input to a sync separator is used to develop the cut-off bias (except during the sync pulse periods). The only possibility therefore was that the $3 \cdot 3 \mathrm{M} \Omega$ base bias resistor R330 was open-circuit - a high-value base bias resistor is generally used with a transistor acting as a sync separator to ensure that it saturates each time a sync pulse arrives. What usually happens is that the resistor goes high in value, giving weak field lock. Since the $3 \cdot 3 \mathrm{M} \Omega$ resistor couldn't be checked in situ a replacement was fitted, restoring perfect timebase locking.

The second case concerned a Thorn monochrome set fitted with the 1500 chassis, the fault this time being no
sound and an unmodulated raster. This could have been due to a tuner, i.f. amplifier or a.g.c. fault. Transistors used as a.g.c. amplifiers seem to be more prone to breakdown than those used in i.f. amplifier stages, so the a.g.c. amplifier transistor VT3 - see Fig. l(b) - was checked. As is usual in a transistor i.f. strip, forward a.g.c. is used, i.e. the controlled transistors are driven on harder as the signal strength increases. Under no-signal conditions the voltage at the collector of VT3 should be about 0.4 V . In fact the collector was at almost the supply line voltage. As a result the controlled transistor would be saturated and thus unable to provide any significant degree of signal amplification.

It seemed likely that VT3 was defective, with one of the junctions open-circuit or the base-emitter junction shortcircuit. Resistance checks on the transistor proved that it was perfectly all right however. Further, placing a short from its collector to chassis or to its emitter restored the sound and vision signals. So the cause of the fault was inadequate forward base bias.

The possibilities were an open-circuit or incorrect value resistor in the base circuit, one of the associated electrolytics being leaky or short-circuit, or maybe the a.g.c. rectifier diode W1 leaky (it normally conducts on the tips of the sync pulses only). In fact the diode had a very low reverse resistance, thus placing R34/5 in parallel with R2.

Suspect transistors are often completely innocent!

Fig. 1: Sync separator (a) and a.g.c. (b) circuits.

Goodbye to 405 lines

Pat Hawker

The first week of January 1985 sees the end of the TV system that established television in Britain ahead of the rest of the world. All remaining BBC and IBA 405-line v.h.f. transmitters will be switched off. Band 1 (4168 MHz) and Band III ($174-214 \mathrm{MHz}$) will be lost to Britain for TV use, though v.h.f. will continue to provide the main TV channels in virtually every other country. The UK alone is firmly committing its TV future to u.h.f. and to direct broadcasting from satellite in the 12 GHz (and later possibly 40 GHz) band.

It's the end of the black-and-white system with which the BBC launched the world's first public high-definition service in 1936. Its death has been lingering, entering the terminal phase as long ago as November 1969 when the three-channel colour 625 -line u.h.f. service came into being. Broadcasters and the trade have had a decade when few used the 405 -line transmissions, but those few who did presented problems with spares and the need for cannibalisation to keep ageing sets going.

Performance

Yet surely 405 deserves a respectful and affectionate wake before the final burial. It served us well. It was not the system's fault that low-cost line output transformers subjected many viewers to a penetrating $10,125 \mathrm{~Hz}$ line whistle, nor that the pictures viewed were too often off-

Back at the beginning: Alexandra Palace in August 1936. The cantilever arms on the mast supported the wire transmitting aerials which were stretched vertically between pairs of arms. Photo courtesy BBC.
grey rather than with correct gradations from black to white due to the use in TV sets of a.c. coupling without d.c. restoration.

At its best, on studio or transmitter control room monitors, 405 -line pictures were far from negligible. The positive vision modulation may have been all to susceptible to ignition interference but could give a fine peak white. The $41 / 2 \mathrm{in}$. image orthicon cameras of the 1960s gave superbly crisp studio and OB pictures. Admittedly the 377 active lines did show the line structure, though the public seemed to have little inclination to eliminate this by making use of the spot wobble circuit that was a feature of some sets.

The 405-line transmissions could be comfortably accommodated in 5 MHz of precious r.f. spectrum. The IBA could have provided two nationwide channels in Band III, as originally intended, had not the BBC and the radioastronomers intervened! Even 405 -line colour was pretty good, though in the end the IBA (then the ITA) and ITV hopes of putting out colour on v.h.f. were defeated when the BBC convinced the Television Advisory Committee that Sporadic E interference would make colour in Band I a non-starter!

The present 625 -line system gives us marginally better pictures of course, but the time to have dropped 405 without tears would have been in 1946, when EMI proposed a 605 -line system for post-war television.

History

The 405 -line system has served us for almost fifty years, with a six and a half year interruption due to the 1939-45 war. It was "invented" one Sunday morning in 1934 in a private house in the London borough of Ealing, the home of that brilliant electronics engineer Alan Dower Blumlein, a member of the EMI and later the Marconi-EMI research team led by Sir Isaac Shoenberg. Alan Blumlein, a perfectionist, had come to EMI as part of the takeover of Columbia records.
The EMI team started to develop television in the mechanical, low-definition era, but soon turned to the concept of all-electronic TV originally proposed by A.A. Campbell Swinton in 1912. The key element was the development of the Emitron electronic camera initially started as an independent project but in its later stages gaining significantly from the work in the USA of Vladimir Zworykin at RCA, a firm with which EMI had patent and financial links.

Following months of bickering between Baird and EMI, with the BBC anxious to end its agreement with Baird to operate an "experimental" 30-line service in the medium waveband, the government in 1934 set up a Television Committee, chaired by Lord Selsdon, to consider what should be done, after investigating the work going on in Germany and the USA. In 1935 the committee recommended an early start to a UK v.h.f. service with a minimum of 240 lines, 25 frames. Both Baird and Marconi-EMI were invited to supply the transmission equipment. A Television Advisory Committee would make final decisions.

It was intended that there should be a single standard,
possibly 240 lines as advocated by Baird or possibly 243 lines interlaced as initially proposed by Marconi-EMI. Electronic interlacing to reduce flicker had been patented by RCA, although an earlier form of mechanical interlace had been used by Baird and others. But the war between Baird and Marconi-EMI could not be resolved. To compound the problem the EMI team next proposed not 243 but 405 lines.

Back to the house in Ealing where, one Sunday morning in 1934, Blumlein, Cork and Eric White had met to discuss how to breadboard a suitable waveform generator to test a system that would put EMI significantly ahead of the Baird company. Baird's 240 -line system was developed partly by Captain West and drew on techniques developed by Fernseh in Germany, a company which was loosely linked with Baird. The easiest way of up-grading the 243 -line interlaced system proposed by EMI, while retaining this system as a basis for comparison, was simply to change one divide-bythree circuit into a divide-by-five one. Since $243 \times 5 / 3=$ 405 , this was the system developed and later confirmed by Shoenberg and put into the specification offered to the BBC .

The TAC urged Baird and Marconi-EMI to agree on a single standard, but eventually agreed that both the 240 -line, 25 -frame sequential and the 405 -line, 50 -field interlaced systems should be used alternately. It was to be a fight to the bitter end. Baird lost largely because of the inflexibility of his "live" system using the intermediate, fast-processed film technique that had been developed in Germany. He also hoped to use a Farnsworth 240 -line image dissector electronic camera, but this
proved to be a disaster. Baird's 240 -line mechanical film scanner (telecine) on the other hand provided better pictures (though with more flicker) than the original Marconi-EMI telecine.

The 240 -line Baird system was dropped in February 1937, leaving the way open for the progressive improvement of the 405 -line pictures, continuing right up to the 1960s. But it took time for the pre-war public to accept television as an entertainment medium capable of challenging the then dominant cinema. With screens only 12 in . or smaller, apart from a few early projection models, and the cost of a set approaching that of the $£ 100$ Ford motor car, it was almost three years before the number of domestic sets in use increased from the initial 300 to 20,000 . The BBC was committed to radio rather than television, and the service narrowly avoided extinction. It finally ground to a halt on September 1st, 1939, starting again with the Victory Parade in June 1946.

Sadly, few of the major pioneers of British TV lived to see its post-war success. Baird died in 1946, with his major wartime work on colour largely overlooked. His associate Captain West met with a mountaineering accident at about the same time. Blumlein was killed flight testing airborne radar in 1942. Campbell Swinton died before television was even born. Schoenberg lived on till 1963, Zworykin till 1982. Professor McGee who pioneered the Emitron camera, and Lubszynski of CPS Emitron fame, have happily survived. As also has Dr. Eric White, who was actually present at that meeting in Ealing fifty years ago when the 405 -line system was born.

Postscript

Nick Lyons

As I write this the 405 -line system is almost at the end of its career. Few people in large urban areas like mine stayed with it to the end, though the odd set has survived - the subject of some sentimental attachment maybe, or as a second or third set in the kids' bedroom, or possibly propped up in the local chippy. It's in circumstances such as these, often with the most pokey bit of knitting needle or coat-hanger to serve as an aerial, that the ability of this v.h.f. system to provide a passable picture come what may proves itself.

As no new sets capable of receiving this standard only have been made for some fifteen or more years, most of the survivors of this breed inevitably now look tired. The same seems to be true of the equipment at the transmitting end. The standards converters used seem to be prone to a variety of problems, with vertical lines of missing picture elements, vision level changes, hum and so on. It's nothing like the quality achieved when origination was on 405 lines.

It's rather sad that the system should end like this. Younger engineers who looked at a surviving set must have wondered how on earth we ever put up with that sort of picture quality. But at its height, from the midfifties to the time of its supersession in the late sixties, the system provided very fine pictures indeed. The fifties saw Mullard and Mazda perfecting the display tubes, with a high standard of both picture quality and reliability, while the English Electric Valve Co. brought
about a revolution in the camera field with their $41 / 2 \mathrm{in}$. image orthicon tube. This was to become the workhorse of monochrome (or black-and-white as we called it then) television world wide. It was developed by EEV at the BBC's behest for the 405 -line system.

Commercial TV also first came to us in 405-line form. This competition stimulated the BBC to produce some very fine programmes indeed. ITV brought some dross but also introduced us to much that was new and innovative, and gave us a taste for the output of that prolific industry across the Atlantic.

But the 405 -line system rendered us a TV island. Being so different from any other system, no one else bothered to make sets for it. Mind you in the fifties abroad in electronics meant Europe or the USA: the Japanese industry was just beginning to dabble with transistor radios. UK setmakers had a captive market, and though there was much innovation it was almost a cottage-type industry. Who was to step in and upset this comfy situation? It was the Pilkington committee's report that led to the changing face of the British television industry.

Pilkington signalled the end of 405 lines, though even then it had given us a quarter of a century of service. It brought information and entertainment to millions, whatever your taste, from Quatermass to Perry Mason, Dick Powell theatre to What's my Line, be it Kennedy in Berlin or being shot in Dallas, the excitement of the Tokyo Olympics and pictures via Telstar, the nation rejoicing at a Coronation or the nation in mourning as a barge solemnly carried Sir Winston down the Thames for the last time. All this was brought into our homes by the system that was developed in the early thirties by that brilliant team at EMI.

Video Servicing

Mike Phelan

Last month we looked at a few minor bits of camera electronics - items that have nothing to do with actual signal generation. This month we'll consider first the overall camera system - see Fig. 1.

Overall Camera System

We might as well start at the 12 V input line. This input is usually stepped down to 9 V via a simple series regulator - one or two transistors, an operational amplifier and a zener diode. The unregulated 12 V supply is used for the zoom and iris motors. The various high voltage supplies required for the vidicon tube are often generated by an inverter driven by one of the signals from the SSG - sync and subcarrier signal generator. We'll move over to this section next, but in passing should mention that the electronic viewfinder consists of a conventional though small self-contained monochrome receiver whose high-voltage requirements are generated in the line output stage in the usual manner.

Sync and Subcarrier Generator

Most video cameras of the type we're discussing use a dedicated chip, type HD44007A, in the SSG department (see Fig. 2). Few extra components are required. The output from the free-running crystal oscillator linked to pins 24 and 25 is divided by four within the chip to produce the 4.43 MHz chroma subcarrier which emerges at pins 26 and 27 with the correct phase for V $(\mathrm{R}-\mathrm{Y})$ and $\mathrm{U}(\mathrm{B}-\mathrm{Y})$, the V subcarrier being switched through 180° on alternate lines as required for PAL signal processing.
The $L C$ oscillator - pins 3 and 4 - runs at 282 times the line frequency and is locked to the 16 MHz crystal oscillator by a phase detector within the i.c. and an external varicap diode - the filter components are connected to pin 6.
Most of the other i.c. pins provide various outputs at

0051
Fig. 1: Block diagram of the electronics of a typical video camera.
line and field rate. It may be stating the obvious, but the deflection signals that drive the tube's yoke must be in synchronism with the composite sync added to the camera's outgoing video signal. Line and field drive emerge at pins 8 and 7 respectively and go to their respective output stages. The $7 \cdot 8 \mathrm{kHz}$ output at pin 20 , if used, drives an inverter for the high-voltage supplies otherwise these supplies are obtained from the line output stage as in a TV receiver. The various outputs can be buffered or inverted by смos logic gates - if this isn't done it's necessary to fit small-value capacitors, typically 27 pF , from each pin to chassis to remove spurious clock pulses.

Deflection Arrangements

The deflection arrangements used vary from one model to another. Very little power is required and of course the signals are already locked to the master crystal oscillator. A simplified circuit of the arrangements used in the 3 V 17 is shown in Fig. 3 - this camera uses a driven inverter to provide the tube's high-voltage supplies.

The field output stage is contained in IC2, an operational amplifier. Part of IC5 acts as an integrator whose sawtooth output is fed via the height control to the non-inverting input of IC2. Negative feedback from the output to the inverting input enables the linearity to be adjusted - this is more important than in a TV set, for reasons that will become apparent when we come to the chroma encoding. There's a conventional shift control and C11 with R19 provide a path to chassis for the scanning a.c. The parabola generated across R19 is fed back to provide additional linearity correction.

The line output circuit is in two halves. Transistors X1 and X 2 are driven by the line drive pulses from the SSG and in turn drive the line output transistor X3. When X3 conducts, the current in the output transformer T1 rises exponentially. X3's collector is coupled to the scan coil via C 4 . The rate of change of the current flowing in T 1 is governed by the conduction of X 4 and X 5 , this in turn being dependent on the setting of the width control. The other end of the scan coil is driven by a linearising

Fig. 2: Outputs from the HD44007A sync and subcarrier signal generator i.c., and the external oscillator components.

Fig. 3: The deflection and high-voltage supply arrangements used in the Ferguson 3V17 camera - simplified circuits. (a) The field timebase. (b) The line timebase. (c) Inverter used to provide the high-voltage supplies.
sawtooth current produced by IC4 and IC1, the latter having a feedback linearity control. At the start of the flyback X3 is turned off and the scan coils resonate with C 3 . The efficiency diode D1 conducts to damp the overswing in the usual manner. L1 and R8 isolate the a.c. component from the shift control.

What happens if one or other of the timebases fails? No, you don't get a display of line or field collapse on

Fig. 4: Simple audio amplifier used in the 3 V17.

Fig. 5: Video preamplifier circuit used in the 3V20.
the monitor! Consider failure of the field scan. You might think that the vidicon will produce a single line which will be repeated on every line of the monitor's screen - such a display would consist of vague vertical lines. Since the vidicon's target would be ruined in a matter of seconds, protection circuits that monitor the scanning and shut off or reduce the beam current in the event of scan failure are generally incorporated - just one thing to look for when servicing. Only field scan failure protection is required in cameras where the vidicon's supplies are derived from the line output stage.

Audio Channel

The audio circuit is self-contained and independent of the rest of the electronics - all it has to do is to amplify the signal from the microphone to a suitable level. A typical circuit is shown in Fig. 4.

Video Preamplifier

Now to the video circuitry, starting at the front - the head preamplifier, see Fig. 5. This has to take the minute signal from the vidicon's target and amplify it while adding as little noilse as possible. In this example the first stage consists of a cascode f.e.t. arrangement -X101-3. It has the advantage of very high gain with low noise and excellent linearity. The gates of X102/3 are a.c. coupled to the target as the latter requires a d.c. bias of about 25 V , supplied via R101. The reason for using two f.e.t.s in parallel is to reduce noise: as the noise is random, some of it must cancel out - this applies only to noise produced by the f.e.t.s of course. X103 was omitted in later production. X104-7 comprise a direct-coupled amplifier from which feedback is taken to the gate of X102, adjustable by C107. L101 is
toroidally wound on a ferrite core and is included to compensate for the capacitive signal source (the target). X106's emitter is not decoupled so that the gain of this stage can be modulated by a waveform derived from the deflection circuits. This waveform is also used for dynamic focusing - it consists of field- and line-rate parabolas. The reason for applying it to the preamplifier is to increase the gain at the edges of the picture to compensate for the slight darkening that would otherwise
occur. This feature is not used in many cameras.
The entire preamplifier is enclosed in a heavily screened box which is attached to the vidicon's shield the connection to the target is less than half an inch long. Note that the output is labelled "CMS": this stands for colour multiple signal - next month we'll discuss how the colour information comes to be there and how it's encoded to provide a conventional PAL signal.

Servicing the solid-state Indesit T24EGB

Mike Phelan

The 24in. solid-state monochrome Indesit Model T24EGB (chassis C) looks similar to its hybrid predecessor (Model T24EGB, chassis B) both inside and outside, but there are a great many differences. Gone are the mechanical tuner and rotary controls, but there's still a row of wirewound resistors along the top edge of the chassis, and as before they do their best to burn holes in the panel. Still present is the aerial socket that backs away from you when it's approached with a plug, due to the mountings bending.

Chassis Arrangement

The chassis consists of a long, narrow vertically mounted PCB that hinges down to a horizontal position. It looks like the PCB used in the ITT VC200 or GEC Series 1 chassis. The i.f. strip, which consists mainly of a TBA440C i.c., resides in the larger of the two cans along the edge of the panel. The small can houses the TBA120 intercarrier sound i.c. Although most of these Italian made sets should have been converted, one or two slipped through with 5.5 MHz filters fitted - a coil and capacitor conversion was available from the manufacturers, or 6 MHz filters. Sibilance can be reduced by changing the value of Cl 314 in the intercarrier sound can from $0.022 \mu \mathrm{~F}$ to $0.047 \mu \mathrm{~F}$. There are separate modules, each with a TBA800 i.c., for the audio and field output stages. These modules are interchangeable - quite often a TBA800 that gives slight sound distortion works o.k. in the field output position. All cases of sound distortion can't be blamed on the chip however - the speaker can give problems. Another module contains the TBA950 sync/line oscillator i.c. and its associated components.

Circuit Features

Before going farther, a brief description of the circuit, which has some unusual features. The power supply is shown in Fig. 1. Mains rectifier D901 is followed by a series of dropper resistors that supply 170 V to the collector of TR901. This transistor, in conjunction with R906, R928, TR902 and the 6.2 V zener diode D904, reduces the h.t. to a reasonably stable 120 V . This is the supply to the line output stage - the set's other supplies are derived from the line output transformer. The 120 V rail is set by R911 which acts as the width control (set for 120 V at TP20).

D905 produces 30 V across its reservoir capacitor C913. R921/C912 drop this to 25 V for the field output TBA800 while R923/C916/D907 (12V zener diode) produce a stabilised 12 V supply for most of the rest of the circuitry. R924/C919/D909 (12V zener diode) produce a stabilised
supply for the timebase oscillators. D906 produces 26.5 V across C917: R922/C908 and the shunt stabiliser consisting of TR903/D902 and associated components produce a regulated 13 V supply for the audio output TBA800 - this helps to stabilise the current demand from the line output transformer, as the current drawn by the audio output TBA800 is a function of the volume.

Note that the negative side of C901/2/3/4 (common can) is connected to chassis via C 921 . The 2.6 V present across C921 is used as the start-up supply.

Apart from the TBA800, the field timebase consists of a unijunction transistor oscillator (TR401, type 2N4871) and the flyback switch transistor TR501 (BC 327). If the BC 327 goes short-circuit the result will be severe top foldover. The unijunction transistor can cause field jitter - so can the sync separator bias resistor $\mathrm{R} 1406(1 \cdot 8 \mathrm{M} \Omega)$ on the TBA950 module.

The line driver and output stages (see Fig. 2) look very strange - there's no driver transformer for a start. The output from the TBA950 switches TR402 on and off. When it's on, TR403 and TR404 are off. When TR402 is switched off, TR403 and TR404 can conduct. The key to this is D401, which produces some 4.6 V across C406 during normal operation. In addition, C404 is charged by TR404's emitter current. When TR403 switches on C404 is discharged and the emitter of TR404 is at almost chassis potential. The arrangement is self-stabilising up to a point, as the voltage produced by D401 to forward bias the bases of TR403 and TR404 is dependent on the line output transformer's load.

Common Faults

So much for the theory, now for the problems. The usual one is a dead set. In this event check all the wirewounds in the power supply for being open-circuit or having dry-joints - they sometimes burn holes in the PCB. If all is in order there should be 120 V at TP20 - check here or at one end of R907 - and a similar voltage at the collector of TR404. Next check pin 8 of the line oscillator module for a burst of line frequency squarewave at switch on - if this is absent, a 9 V battery connected across C919 will supply a start-up voltage for the oscillator. If everything sounds strained, switch off. A feature of this system is that if anything stops the line output stage working the 12 V l.t. rail will disappear and stay that way until the set is switched off, R925 discharges C903/C921, and the set is then switched on again.

A short-circuit BU205 will open the fusible resistor R902. Other line output stage faults give the h.t. present but otherwise dead set symptom. The most common fault

Fig. 1: The mains input and h.t. supply circuitry. The mains filtering components may not be fitted in UK sets.

Fig. 2: The line output stage, showing the various supplies derived from the transformer. 8922 may be 27Ω 6W with R930 $12 \Omega 4 W$ in series.
of this type is a defective e.h.t. stick - unfortunately it's in the line output transformer. All the large resistors in the line can are worth checking for dry-joints or being opencircuit, as are TR402 and TR403. If the line oscillator isn't working, check $\mathrm{Cl} 407(0.01 \mu \mathrm{~F})$ and the TBA950.
Nothing will happen if the 2.6 V supply is not generated across C921.

If there's no supply to the audio output stage, check D902 (ZPD12) and TR903 (BD433) in the shunt stabiliser circuit. Repeated failure is due to R 920 (33Ω) going opencircuit. The line/field oscillator supply regulator D909 (ZPD12) is prone to going leaky.
The signal sections are fairly reliable. The tuner occasionally fails, as also do the video driver transistor TR201
(BC238B) and the video output transistor TR202 (BF257), failure of TR201 giving a negative picture.

The on/off switch sometimes falls to bits - or the contacts burn out. It's a special type unfortunately.

Spares

Spares, including the line output transformer, for the T24EGB chassis C can be obtained from RTC International Ltd., Victoria Parade, Urmston, Manchester (telephone 061748 1129). Certain spares for other Indesit TV sets can also be supplied (excluding the mains lead and aerial plug for the T12). Spares can be supplied only as long as present stocks last.

Colour Bar Program

G. J. Phillips, B.Sc., C.Eng.

The standard BBC Model B microcomputer can be easily programmed to generate the colour bar test pattern (see below). This may seem like using a sledgehammer to crack a nut, but many establishments now possess a microcomputer that may stand idle for a lot of the time. The program consists of only eleven lines of basic and can be typed in a few minutes.
Line five clears the screen and line six calls up mode two of the microcomputer to facilitate colour graphics. The Move and Plot commands are used to generate a series of triangles which are joined together to form vertical rectangles. Line fifty is an algorithm to convert the rectangle or bar number to the correct colour number recognised by the computer. This number is called up at line sixty. Line 100 is merely a dummy statement which is
jumped to at line 110 : this is done to avoid the computer's prompt appearing - it would contaminate the graphics.

The u.h.f. modulated output can be plugged into the set's aerial socket just as for normal operation. In addition, the BBC microcomputer has a composite video output which can be connected to the video input socket of a VCR to enable the pattern to be recorded for future fault finding use.

Program
1 REM TV COLOUR BAR GENERATOR. G.J. PHILLIPS
5 CLS
6 MODE 2
10 MOVE 0,1000
30 PLOT 85,0,0
40 FOR bar=1 TO 8
50 IF $\operatorname{INT}($ bar $/ 2)=$ bar $/ 2$ THEN colour $=(8$-bar) $/ 2$ ELSE colour $=(8-$ bar $)+$ INT $($ bar $/ 2)$
60 GCOL 0,colour
70 PLOT 85,(bar*160),1023
80 PLOT 85,(bar*160),0
90 NEXT bar
100 REM
110 GOTO 100

MISFITS

Abstract

Richard Roscoe Well over half the sets that come my way turn out to have more than one fault. In line with the modern mania for giving everything a fancy name I call them MISFITS (Multiple Independently Situated Faults in Television Sets). You know the type of thing I mean. The set finally packs up and after you've been called in to replace the tripler or whatever and got it going you find that the tuning drifts, the volume control crackles, or there's a bad hum bar. When you tackle the owner about it you get something like: "Well it's been like that for a while but I didn't think it was worth bothering about, not at today's prices anyway. Mind you, now you're here . . ." In many cases these secondary faults are the work of moments to put right. On the other hand some can take much longer to fix than the fault you were actually called to see - and woe betide you if you try to charge for this extra work. "How much?? - the whole set's not worth that!" I recently had a concentrated burst of these MISFITS. They made a complete mess of an otherwise perfect summer's day.

The Thorn 3500

It started first thing in the morning. Everything was bright and clear - except in the back of a Thorn 3500 where things were decidedly wintry. According to the owner the set had gone off without any warning the previous night. The thermal cutout hadn't tripped and none of the fuses had blown, so I switched on. Meter checks showed that power was getting to the chopper transistor and that the 30 V line was working. Further checks soon revealed that the chopper driver transistor was without collector voltage due to R607 being opencircuit - it's part of the "dropper". Well, it's nice to start the day with an easy one. Switching on after replacing the dropper produced sound and a good picture - but no colour. I turned to the owner who was hovering behind.
"Ah" he said, "it does that. If you twiddle the tuner it'll come back."

I could see the set was on tune so I ignored that. Instead I concentrated on the decoder board. Tap, tap on the top of the board and R312, one of the small presets in the burst detector circuit, fell apart. I prodded the rest of the presets but they remained intact. So far so good, out with the remains of R312 and in with a new $47 \mathrm{k} \Omega$ preset. Colour was now present but was unsteady: the hue was correct but the saturation was going up and down like a yo-yo. I was beginning to wish I'd not started on the set.

I took a deep breath and tried to think. If the hue was correct, most of the decoder circuitry would be in order (burst channel, reference oscillator, etc.). Obviously the gain of the chroma amplifier was varying, which could have been due to a fault in the colour-killer department. The colour-killer action depends on the operation of the ident amplifier (no ident, no turn-on bias, no colour). Voltage checks took me back to the ident amplifier but the d.c. conditions here were correct. So, lacking a scope, I tried bridging the decoupling capacitors. First time lucky: the transistor's emitter decoupling capacitor C321 $(0.22 \mu \mathrm{~F})$ was faulty. A replacement restored good, steady colour: so much for the easy ones.

The GEC C2110

I headed for the next patient on the list, a GEC C2110 (plastic) series, with high hopes. It's one of my favourite designs though getting a little long in the tooth now and the fault on the card, picture rolling, is a stock one - C452 $(4.7 \mu \mathrm{~F})$ in the field sync circuit. I always go equipped with replacements for the other electrolytics on the field timebase panel, C455 $47 \mu \mathrm{~F}, \mathrm{C} 45747 \mu \mathrm{~F}, \mathrm{C} 45822 \mu \mathrm{~F}$ and $\mathrm{C} 462220 \mu \mathrm{~F}$. These usually cure the sagging height and bottom cramping the customer didn't bother to mention. My foresight was well rewarded - they were all well past their best in this particular set.
"Super" said the customer as I set up the picture. "I don't suppose you can stop the hum while you're here?"
"Hum?"
"Yes, in the quiet bits you get this hum. It's not too bad but I thought, you know, while you're here . . ."

Turning down the volume control (noisy, so out with the trusty Servisol) I found that there was indeed a definite background hum. Another electrolytic showing its age? Bridging C195 ($100 \mu \mathrm{~F}$) which smooths the 24 V supply to the audio output chip made no difference, but bridging C121 ($150 \mu \mathrm{~F}$) which smooths the 12 V supply to the intercarrier chip did. In went a spare $220 \mu \mathrm{~F}$, the nearest value I had.

Amidst smiles all round - i.e. the customer smiled, having got two repairs for the price of one; I had more of a fixed, glassy grin - I set off for a Sanyo CTP3101 colour portable. By now I was feeling that this was not my day, and though the reported fault was uncontrollable volume I feared the worst. I was not disappointed.

The Sanyo Colour Portable

As I approached the house I could hear Play School, accompanied by a chorus of blood-curdling screams. The door was opened by a haggard mother who greeted me with obvious relief. Apparently the opportunity to watch tele with the volume at full blast without getting whacked for it was too good for her offspring to miss - and they'd asked all their friends around to join in the fun.

Like most modern sets this one uses a variable d.c. voltage for volume control, acting on a voltage-controlled amplifier within a chip, in this case IC161 (AN340). The voltage at pin 4, from the volume control, was o.k., so in went a new chip. The sound was now under control and the lady of the house cheered up enormously, which is more than I did when I caught sight of the picture. All the faces were green.
"The ident's wrong" I squawked.
"Pardon? Oh you mean the tuning." She twisted the rotary tuner and brought it back with perfect colours. "It sometimes comes on with funny colours but I can always get it right. I shouldn't bother about it. Now how much do I owe you for the new volume control?"

It was an emotional moment. Was I to leave this longsuffering paragon of virtue with a faulty set? Of course not! It seemed likely that the flip-flop controlling the $\mathrm{R}-\mathrm{Y}$ switching was not being synchronised by the ident signal. The relevant circuitry is contained in IC252 (TA7161P), and since Sanyo kindly fit holders for their chips it was easy to verify that this was indeed the culprit.

The GEC Series 1

I managed to get back to the van before the kids could let my tyres down. Things were looking up, or so I thought. The next call was to another GEC set, this time a 20 in . monochrome one (Series 1 chassis). The fault on the card was the opposite to that with the Sanyo - almost nonexistent, very distorted sound. I realised that I was in for my fourth consecutive MISFIT when the picture came on rolling badly. The owner cleared his throat, but I got in first.
"Rolls, does it?"
"For a bit, then it stops. I thought, while you're here . . ."

I wearily opened the valve case. Into the set went a new PCL805 and a PCL86. This stopped the rolling but the sound was as bad as ever. Voltage checks then revealed that the audio output pentode's screen grid was without voltage, due to $\mathrm{R} 152(6.8 \mathrm{k} \Omega$) being open-circuit. Replacing this brought the sound up to the normal level with no distortion. Finished, I thought. Not a bit of it. Now the
picture wasn't rolling I could see that the bottom was cramped.

The usual causes of bottom cramping with a valve field timebase are the components in the output pentode's cathode circuit. The resistor can change value and the decoupling capacitor can dry up. In so doing they put more strain on each other and the valve, so that the process is cumulative. The cramping in this case wasn't too bad and the owner hadn't noticed it. Nevertheless the resistor (R208) had fallen in value from 390Ω to 200Ω and the capacitor ($\mathrm{C} 207,250 \mu \mathrm{~F}$) appeared to be on its last legs. So both were replaced.

The Rank 2718

The final MISFIT was a 26 in . Bush Model BC6438 with the Z718 chassis, touch tuning and remote channel change. There'd been a loud crack (damp in the e.h.t. section) after which the set had stuck on Ch. 1 with only snow and noise. This one couldn't be dealt with in the field, so I whipped it back to the workshop where I could dismantle the difficult-to-get-at Z916B touch tuning unit in safety.

The heart of the unit is an ETT6016 i.c. which performs the channel-switching action. There are two associated transistors, 9VT1 (BC157) which acts as a shunt stabiliser for the i.c.'s supply and 9VT2 (BC147B) which is used to ensure that Ch. 1 is selected when the set is first switched on. In view of the fact that the set was stuck on Ch. 1, 9VT2 seemed a likely culprit. A replacement restored channel selection but a couple of channels were faulty. So in went a new chip. Finally 9VT1 was leaky, pulling down the tuning line but not the supply to the i.c.

After all that plus drying out and cleaning the e.h.t. stick and its holder I set about tuning in a picture. Up it came - with very bowed sides! No one had mentioned this of course. So over to the EW modulator circuit.

None of the controls had any effect, while the modulator diodes 5D5/6 and the driver transistor 4VT19 all read o.k. on the meter. Voltage checks took me right back to the first transistor in the control circuit, 4VT15, which was off due to lack of base bias because 4R58 ($82 \mathrm{k} \Omega$) was open-circuit. This resistor is used to provide the basic width/e.h.t. stabilisation in the set, being fed from the 260 V line.

All I had to do after this was to resolder the deteriorating joints on the line timebase plugs and set up the field linearity - about par for the course - then return the set to its owner.

What a day!

Book Notice

A new edition (the third) of Beginner's Guide to Colour Television has been published by Newnes Technical Books at $£ 4 \cdot 50$. The first edition of this book was published as long ago as 1964. This latest edition, revised by Eugene Trundle, is thoroughly 1984 however. Much of the material in earlier editions has been condensed and a great deal of new material has been added. Thus we get for example single-chip decoders, the latest types of colour tubes, teletext developments (CCIR levels 1-5), MAC, high-definition TV and worthwhile sections on satellite and cable TV. A good introduction to current TV technology.

VHS Hi-Fi Sound

Derek Snelling

Both VHS and Betamax machines with hi-fi sound, based on the use of f.m. and recording with rotary heads, are now available in the UK. This article deals with the system used in VHS machines, with particular reference to the Panasonic Model NV850B.

Principles

First the principles involved. The stereo hi-fi sound is recorded on the tape as f.m. by two heads mounted on the video drum assembly. The signals are recorded beneath the normal video signal - or to be more accurate the video signal is recorded on top of the sound signals. The left and right carriers are at 1.4 MHz and 1.8 MHz . The arrangement of the head drum is shown in Fig. 1: the audio heads are mounted 60° round from the video heads and have an azimuth of $\pm 30^{\circ}$ (this compares with $\pm 6^{\circ}$ for the video heads). In addition, the sound head track with $+30^{\circ}$ azimuth is laid down beneath the video head track with -6° azimuth, thus giving a 36° difference to minimise crosstalk.

The sequence in which the tracks are laid down is shown in Fig. 2, starting with audio head 1 which lays down a 26μ wide track. The next head around is video head 2 which lays down a 70μ track on top of the audio one. The audio track is more strongly laid down however, using a higher record current and lower frequency. The f.m. video signal erases the upper part of the audio track but the audio is still present at a deeper level in the tape, as shown in Fig. 3. Audio head 2 next lays down a track, erasing the edge of video track 2. Finally video head 1 records its track, further erasing the edge of video track 2 and the upper part of audio track 2 . We end up with 49μ wide video tracks that have 26μ wide "buried" audio tracks at their centres. Note that audio tracks 1 and 2 are not left and right: both audio signals are recorded by each head. The audio tracks are laid down at the centre of the video tracks to avoid crosstalk - if the audio track was to stray on to the adjacent video track the azimuth difference would be reduced from 36° to 24°.

The audio f.m. level on playback is lower than the video f.m. level, because of the lower frequency and the fact that the video is recorded on top. As a result, there's a danger that drop-outs may occur. To overcome this problem the f.m. detector is followed by a hold circuit which keeps the signal at the same level until the drop-out has passed. By passing the output from the hold circuit through a low-pass filter to smooth out the "kink" effective drop-out compensation is achieved - see Fig. 4.

A problem with having two rotating heads is that you must be able to switch from one to the other. For video switching the PG pulses are used. The same pulses are

Fig. 1 (left): Positions of the video and audio heads in the drum.
used for audio head switching after being shifted by 60° to allow for the different positions of the heads. A further problem arises however because the switching point introduces noise. For video, the switching is arranged to occur off screen during the field blanking period. You can't do this for audio, so the hold circuit is used to maintain the audio during head switching, the head switching pulse being applied directly to the circuit.

Practical Aspects

So much for the theory. Now for a few details of the Panasonic NV830/NV850. The sound is also recorded on the standard linear track for compatability with other VHS machines/tapes but the linear track is mono only. The f.m.

Fig. 2: Sequence in which the tracks are recorded on the tape, starting with audio head one.

Fig. 3: The audio signals are recorded at a deeper level in the tape's oxide coating than the video signals.

Fig. 4: Overcoming the effect of an audio drop-out.

Fig. 5: Drum assembly, Panasonic Model NV850.
sound signals are passed through record level circuits that have a ganged level control with a "click" normal position: left and right record-level meters are provided. The linear audio circuit is the same as with ordinary machines. Recording can be done from the off-air TV or an external source - straight audio, a camera or a simulcast transmission (simultaneous TV and radio broadcast).

It follows from this that the machines can be used as high-quality sound only recorders. This raises a problem in that without video there's no field sync pulse to which the heads can be locked, so in this mode the field sync input to the servo is earthed and a 50 Hz signal counted down from the 4.43 MHz oscillator is used instead.

During record the TV set can be used to monitor either the f.m. or linear sound track - when monitoring the f.m., the E-E sound level varies with the setting of the record controls. A noise reduction system is used during both record and playback to achieve a dynamic range of 80 dB . Audio dub is available but operates with the linear track only: this means that you can have a tape with a stereo track and a separate commentary on the linear track or three separate mono signals - useful perhaps for multilingual recordings. Ch. 1, 2 or linear can be separately selected during playback, which can be either via the TV set or an external sound system.

If a non hi-fi tape is played on the machine or the f.m. output from the heads drops below 50 per cent an f.m. mute circuit switches the machine to linear sound.

The f.m. sound will be affected by the tracking control of course: as the track width is narrower than that for the picture the setting is more critical - because of this one of the record-level meters doubles as a tracking meter during

Table 1: Performance comparison.

Characteristic	Linear operation	Hi-fi operation
Relative speed Dynamic range Frequency	$23.99 \mathrm{~mm} / \mathrm{sec}$	$4,850 \mathrm{~mm} / \mathrm{sec}$
response	80 dB	more than 80 dB
Wow and flutter	0.2%	
Wz		$20 \mathrm{kHz}-20 \mathrm{kHz}$

* The hi-fi frequency response is deliberately limited to 20 kHz by bandpass filters.
the playback of f.m. sound (the f.m. output is fed to the meter via an a.c. to dB converter). As the audio track is in the centre of the video track, optimum audio tracking should correspond with optimum video tracking.

One of the differences between the NV830 and the NV850 is that the latter has an extra video head for super fine stills etc. Because of this the mechanical arrangement of the video/audio head assemblies used in the two machines differs. The NV850 has a separate rotating transformer mounted above the video heads for sound pick-up - see Fig. 5: the NV830 has them all combined beneath the video heads. This is probably because with five heads (NV850) crosstalk could be a problem with a combined transformer whereas with four heads (NV830) the windings can be "spaced out" more so that the problem does not arise.

Performance Characteristics

Table 1 compares the performance figures for conventional linear and hi-fi sound operation.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ postal order (made ouit to IPC Magazines Ltd.), the query coupon from page 163 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

JVC HR3300

I cannot resolve a locked picture in the E-E mode and when a known good tape (made on another machine) is played back there's a negative colour picture with heavy hum on sound - the TV set has to be retuned to get a little sound with the negative picture.
The overloading on playback and E-E points to either the circuitry on the luminance/chrominance board common to both or the r.f. converter (modulator). Try another converter if possible. Should the converter turn out to be o.k., reduce the playback luminance level (R37 on Y/C board). If the converter is at fault, try adjusting it - remove its cover, plug it back into the machine, then adjust the preset farthest from the small coil can.

PHILIPS G11 CHASSIS

There's intermittent cramping at the bottom of the picture - the lower lines of the frame rise by one-two inches though the rest of the picture remains fairly stable.

The trouble could be due to poor regulation of the 33 V or 37 V lines - greatest current consumption occurs at the end of the field scan. Try scoping the LT3 rail and pin 15 of the field timebase i.c. If any significant 50 Hz ripple is present, check C3144 or C2097/8 respectively. If all is well here, look for dry-joints on the convergence panel and the output filter coil L2092 then suspect the field scan coupling capacitors C2099/2100, also C2083.

PANASONIC NV8600B

This machine plays prerecorded tapes faultlessly. In the E-E mode and when recording however there's persistent flashing on the screen while the brightness fluctuates between very high and very low.

First check the record/playback switches on the thin hinge-open board beneath the machine. Clean or preferably replace them. If the switches are o.k., there's almost certainly a dry-joint in the r.f./i.f. stages. You can check by feeding a video signal in at the video input socket or by scoping TP301 on the luminance panel to see if the waveform here varies with the fault.

SONY KV1810UB Mk II

When the set is first switched on a grainy picture appears. The set keeps trying to produce a normal picture and eventually does so, but may alternate between grainy and normal several times. The problem is not present once the set has warmed up. Also the height occasionally fluctuates when the set is cold.

First check the tuner a.g.c. action by applying an external source of 3 V d.c. to the tuner's a.g.c. pin, i.e.
across C133. If this restores normal operation from cold, check the tuner a.g.c. transistors Q211/212 and the associated components as necessary. If not, replace the tuner. Height fluctuations are generally caused by thermistor Th501 in the field output stage. Also check that the field timebase presets are not noisy.

FERGUSON 3V22

The picture has a horizontal wobble, as if there's a tape speed variation. The capstan and other parts in contact with the tape have been cleaned but this has made no difference.

Almost certainly the pinch wheel requires replacement. Be careful not to bend the arm on which it's mounted. Less likely causes are defective ball races in the lower drum or the relay pulley - usually audible - or a defective drum motor (the ripple on the positive side should be less than $0 \cdot 2 \mathrm{~V}$ in pause).

PHILIPS N1700

The fault on this machine occurs only when playing back one of the longer tapes. The picture momentarily goes to monochrome, with vertical white lines equally spaced but tending to zig-zag superimposed. Horizontal bands of colour flash can also be seen at times in this condition. The time between the "drop-outs" can vary between a few seconds and several minutes.
As the fault appears only with longer tapes, i.e. when there is a greater weight of tape on the reels, it would seem that there's either a lack of capstan drive torque (clean the capstan and pinch wheel and check the latter for wear) or more likely the back-tension brake is defective. To gain access to this, remove the reel disc assembly, noting the positions of all shims. Examine the two neoprene brake pads attached to the chassis under the lower reel disc and the felt friction clutch. Clean with alcohol.

NATIONAL PANASONIC TC86G

When the set is first switched on the sound is normal but the picture is very snowy. A clean picture can be obtained by turning the a.g.c. delay control fully anticlockwise then fully clockwise. The set will then operate normally until switched off. In the fault condition the voltage at the tuner's a.g.c. input pin is 1.5 V but when the gain is restored the voltage rises to $\mathbf{5 . 5 V}$. There's a corresponding change at pin 4 of the AN331 jungle i.c. The latter has been changed along with the various electrolytics in this area.
We suspect that the trouble is in the tuner's gaincontrolled stage where there's some sort of leak to chassis. A new tuner would cure this but you might be able to overcome the problem by permanently biasing pin 1 at 5.5 V . Try connecting a $5.6 \mathrm{k} \Omega$ resistor between pins 7 and 1 and a $4 \cdot 7 \mathrm{k} \Omega$ resistor from pin 1 to chassis, disconnecting the a.g.c. line.

JVC HR3300

This machine plays back its own recordings correctly, and they are all right on other machines, but when a prerecorded tape or a tape recorded on another machine is played back there's no colour.

It seems that the colour a.f.c. loop is slightly out of adjustment. Try slight adjustment of R249 on playback return it to its original position if this has no effect. In the absence of a scope and frequency counter, suspect IC204 (AN236) and IC202 (AN305) in that order.

SANYO CTP5101

The fault is tuning drift, with low sound and caption buzz. The voltages around the tuner seem to be o.k. and the a.f.c. and i.f. i.c.s have been replaced.

If the fault can be cleared by retuning it's likely that the tuner itself is defective - we've had trouble with this type of tuner on several occasions. If the trouble is confined to the sound, the picture remaining in colour during the fault condition, concentrate on the intercarrier sound circuit use of heat and freezer should help pinpoint the culprit.

Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

The Decca 30 was one of the better hybrid chassis, though most of these old sets must by now have been consigned to the scrapheap - after long and honourable service. As with all equipment that's approaching the end of its useful life, the decision whether to repair or scrap is a difficult one. So often it happens that a repair is carried out only to have the set fail, due to quite another cause, within a short time.

Such were the circumstances that attended our dealings with a Model CS2230 recently. On its first visit to the workshop we found that the BY127 h.t. rectifier D600 was short-circuit, taking with it the 3.9Ω surge limiting resistor R603. After replacing these items we returned the set to the customer - the picture was reasonable in view of the age and condition of the set. All went well for a couple of weeks, then the set reappeared in our out-patients' department, with a cryptic "same again, recent repair, no charge" label. The symptoms were the same - dead set. The cause was quite different of course, and the "no charge" bit became something of a bone of contention!

This time the h.t. fuse F1 (500 mA) had blown. When we replaced it the anode of the PY500A boost diode glowed cherry red within a few seconds of switching on. The PL519 line output valve remained quite cool. New valves produced similar results. Lack of line drive was discounted because the result of that is generally overheating in the PL519, which remained cool beside its throbbing neighbour. It appeared that there was a short from the cathode of the PY500A to chassis, and an ohmmeter check produced a reading of just a few ohms. The short remained with both top caps removed (measuring from the PY500A's top cap to deck), so the valves were o.k.

The fifth-harmonic tuning capacitor C435 is connected directly from the PY500A's top cap to chassis - it sits on the line output transformer's pins. Disconnecting this item
proved its innocence, so a less direct short-circuit path was sought. The boost capacitor C436 lives down on the timebase panel - it links the transformer's primary winding to chassis via a secondary winding. We confidently snipped it out, but the short-circuit still remained! C431 (feedback to the width control circuit) had no leakage, and disconnecting plug PT/B (timebase panel) made no difference to the short-circuit reading. Continuing along these lines, we disconnected the plugs associated with the scan yoke and the convergence coils, again with no effect on the reading. The tripler connection was next removed, and a careful inspection of the connections and leads to the transformer was carried out. No burn or arc marks were visible, and still the short was there.

At this point the tube was tested to see whether the case was worth pursuing. The emission was reasonable, so after a telephone conversation with the owner the decision to carry on was taken. The culprit was found soon after. What was it? - see next month.

ANSWER TO TEST CASE 264 - page 105 last month -

We were embroiled in the vision detector/video driver/ sync separator/a.g.c. section of a Thorn 1590 monochrome portable last month - no wonder this part of the circuitry was called the jungle when it was put into i.c. form. In the jungle and up the creek without a paddle we were - until we got that scope trace at the collector of the video driver transistor VT6.

When we looked at the waveform at VT6's emitter we were confronted with huge negative-going line pulses. They were larger still at the other end of R1, which links the video signal to the preset contrast control in the a.g.c. detector/amplifier circuit. They were coming through the a.g.c. detector/amplifier transistor VT1, whose emitter was open-circuit and whose collector-base junction was leaky. The a.g.c. gating diode W1 was also leaky, so that there was a clear path from pin 7 of the line output transformer via W1, VT1, the preset contrast control and R1 to the emitter of VT6, where the flyback pulses used to gate the a.g.c. circuit were playing havoc with VT6's operating conditions.

We stuck to our estimate of $£ 16$ (supply and fit two transistors and one diode!) though the true cost of the time spent on this one would have bought a handsome new monochrome portable! It's fortunate that this is not too common an occurrence . .

[^1]

TEL: 0222-44754		
SLOPER ROAD		
	ECKWITH	
	ARDIFF CF1 8AB	
OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4		
TELEVISION/VIDEO (VHS + BETA) FROM £165		
	ITT CD752 REMOTE	£115
\star	PHILIPS G11	£50
	GEC STARLINE 22-20 (Remote)	£35
	PYE CHELSEA	£25
\star	THORN 9000 20"	£39
	DECCA 22" BLACK FRONT VERICAP	£25
	RANK T20 REMOTE	£50
	PHILIPS 550	£25
PRICES SUBJECT TO VAT		
OPENING HOURS: NDAY - FRIDAY 9.00-5.30 SATURDAY 9.00-1.00		

COLOURTRADE	
WORKING COLOUR TVs	
PHILIPS 550 £35.00	
BUSH	
BUSH 2718	
THORN 22" V-CAP £35.00	
THORN 8-800 £45.00	
JVC 20" £35.00	
GEC . . ITT . . . DECCA . . . etc!	
DISCOUNT FOR QUANTITY	
WIDE RANGE OF MAKES AND MODELS	
ARRIVING DAILY - ALL WITH GOOD	
CABINETS - MANY TO CLEAR FROM	
'ONLY' $£ 5.00$. MIXED LORRY LOAD OF	
SETS DELIVERED TO YOUR DOOR	
DIRECTLY FROM SOURCE!	
TELEPHONE NOW	
021-359 0449	
COLOURTRADE	
221 Bridge Street West,	
Hockley, Birmingham B19 2YU	

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology
Our product range includes more than 250 gun types for Colour, In Line Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
NEW ROAD,

- GRIFTRONIC STUDLEY, WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639
Telex: 336924 Grifem G

SATELLITE RECEIVING SYSTEMS

1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems.
Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.

Demonstrations by appointment.

L \& S Bear Electronics Ltd.
 Yeo Lane, Colley Lane,
 Bridgwater, Somerset

Telephone: Bridgwater (0278) 421719

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY
Z146 A640 dual std mono 8.00 Bush A792. A793
single std mono 8.co
A774 single std mono
A816 solid state mono

DECCA

MS1700200120202401mono 7.C0 MS2404 24202424 mono $\quad 7.00$
CS1730 1733 colour $\quad 8.60$
CS1830 1835 colour $\quad 8.60$
' 30 ' series Bradford colour 80 series colour

FERGUSON HMV MARCONI 1600
G.E.C.

2047 to 2105
2000 to 7.064 dual std mon 7.00
DUAL STD hybrid colour $\quad 8.60$ SINGLE STD hybrid colour 8.00

Indesit 20EGB 24EGB mono 9.c0
KB - ITT
VC200 VC205 VC207 mono 7.60
CVC5 CVC7 CVC8 CVC9 col. 9.00
CVC20 series colour
CVC30 CVC32 series colour 8.60 CVC45

All lopts and wind -Fri. 9 to 5.30 pm
 Open Mon.-Fri. 9 to 5.30 pm Delivery normally by return
 PAPWORTH TRANSFORMERS

80 Merton High Street
London SW19 1BE

PHILIPS
170 series dual std mono $\quad 8.00$ 210300 series mono $\begin{array}{ll}\mathrm{G} 8 & \text { G G9 series colour } \\ \mathbf{8 . 0 0}\end{array}$ PYE 368, 169, 569, 769 mono 7.00 725-741 colour $\quad 8.00$
WALTHAM $125 \quad 9.00$
REWIND SERVICE - available for most continental types, i.e. Kuba, Luxor, Korting, T Yne, Berry Skantic, K80 £15.00 inc pp, VAT. Old lopt required.

WINDINGS
 SOVEREIGN FARA $\quad £ 15.00$
 PLUSTRON PALLAOIUM

14" colour overwind
RANK BUSH MURPHY
T20a T22, T26 Pri \& Sec $\quad 6.00$ 2718 primary state $18^{\prime \prime}$ or $22^{\prime \prime} 6.00$ 2718 EHT overwind $\quad \mathbf{7 . 0 0}$
ULTRA THORN
1690-1691 EHT overwind $\quad 7.00$
1590 EHT overwind
6.00

PRICES INCLUDE
P.P. \& 15% VAT
new and guaranteed

01-540 3955
CENTRAL T.V.LATE MODEL T.V. NOW IN STOCK
G. 11 REMOTE + TEXT, ITT REMOTE, THORN 9600, 9800, BUSH T20/T22/T26, DECCA 80/100, G.E.C. IN LINE
SPECIAL OFFERS ON WORKING SETS
10550 G8 22" f220
10520 G8 22" £180
10 ITT CVC 5-8-9 £180
10 DECCA HYBRID £180
10 BUSH MIXED £140
10 THORN 8500 £250
SPECIAL OFFERS ON OFF THE PILE SETS
10550 G8 22" £130
10520 G8 22" £90
10 ITT CVC 5-8-9 £120
10 DECCA HYBRID £120
10 BUSH MIXED £90
10 THORN 8500 f170
10 THORN 3000, 3500 £100
VHS VIDEOS - 100's IN STOCK BRAND NEW 14" AND 16" PORTABLES
BRAND NEW PYE 20", 22", 26" WITH STEREO - TEXT - REMOTES

HOT LINE BIRMINGHAM 021-622 1023 021-622 1517 48/52 PERSHORE STREET BIRMINGHAM B5 4RR

HOT LINE LONDON
01-807 4090 01-884 1314
CEDAR HOUSE, NOBEL ROAD, ELEY ESTATE, EDMONTON, LONDON

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfill orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not reoeived the goods or had your money returned; and
(2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded." Cle

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

32 Temple Street, Wolverhampton, WV2 4LJ. Phone: (0902) 773122.

IRISH TV NOTICE
 (EX RENTAL T.V. SALE)

We can supply in good working order Bush, Pye and Ferguson from $£ 60$, Philips G.8. From $\mathbf{£ 8 0}$, Decca from $£ 90$, BNhite $£ 25$, Re-Gunned C.R.T.s from $£ 40$ (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade.

ALL PRICES INCLUDE V.A.T.
We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate, Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

TV TUBE POLISHING

 ATYour Own Premises with our DIY Polishing Kit
The Kit includes
Everything you need to polish approx. 25^{*} tubes to a high standard. Detailec instructions on how to do the polishing. All you require is an Electric Drill.

Kit Price $£ \mathbf{£} \mathbf{5}$ inc P\&P and VAT. Available from Luton only
area to be polishord
TV TUBES TUBE POLISHING FREE DELVERY*
Quality, High Temperature Reprocessing

Quality, High Temperature Reprocessing		
Colour Tubes	One year guarantee	Two year guarantee
Delta	loptional extension up to three years)	loptional extension up to four years
9° - $\frac{1}{}$ to $20^{\prime \prime}$	¢26	£29
90° up to $27^{\prime \prime}$	£30	£33
90° up to $26^{\prime \prime}$	£32	£35
$110^{\circ} 26^{\prime \prime}$	$£ 33$	£36
(fast heat, narrow neck) In Line \& PIL		
Up to $2 \mathbf{N}^{\prime \prime}$	£36	f42
Up to $22^{\prime \prime}$	E38	f44
Up to $\mathbf{2 6}^{\prime \prime}$	f40	f46

All tubes exchange glass required
Your good, working tubes with scratches or small chips, can be POLSHED with our purpose built polishing equipment. Only $\$ 7$ per tube.
Delivery charge on colour tubes: Within 40 miles of Luton. 1 tube f4. 2 or more tubes FREE DELIVERY \star Nationwide delivery available, charges on application
Please add 15% VAT to all prices. Callers welcome. Please phone first.

WELL VIEW

114-134 Midland Rd, Luton, Beds.
Open Mon-Fri Bam-6pm, Sat 9am-5pm. Tel. 0582-410787
Your Local Tube Stockist:
Well View, Southampton. Tel. 0703331837.
Retach Ltd., Northwood, Middx. Tel. 09274-27019
West One Distributors Ltd., Gt. Missenden, Buckinghamshire Tel. 024063609
Rushden Rentals Ltd., Rushden, Northants. Tel. 0933-31490
Daventry Rentals, Daventry, Northants. Tel. 0327277436
Rea \& Holland, Ipswich, Suffolk. Tel. 0473827562
WANTED A56/A66-510X/540X Old glass for cash

$\star \star
 1000 sets now being taken per week. All makes and sizes. Untouched off the pile. Ring now for prices. From $£ 3$.
 PRICES AVAILABLE ON THESE SETS NOWI!!

PYE G11's PYE CHELSEA's PYE 721s, 731s, 725s PHILIPS 520s, 550s BUSH T20, T22, T24s
(Remote Control)
THORN 8000 \& 8800s THORN 9000, 9200, 9600
(Remote Control)

OF THE ABOVE SETS, MOST HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

Massive reductions for bulk Minimum 5 Sets

20 Salora 22" Colour £100

Big reductions for export orders over 100 sets

COLOUR TELEVISION \& MUSIC CENTRE 35 Stafford Road, Weston Super Mare, Avon
 Opening hours: 9-6 Mon-Sat, Sundays by appointment (Weston Super Mare 413537)

(Note new address)
(15 minutes past Bristol Southward on M5)

Philips G8 550	$\mathbf{E 4 0}$
Philips G11	$\mathbf{8 8 5}$
GEC Solid State	$\mathbf{E 3 5}$
Thorn 3500 Electronic 22"	$\mathbf{E 3 5}$
Thorn 9000	$\mathbf{E 6 0}$
Thorn $\mathbf{8 8 0 0}$	$\mathbf{E 4 5}$
Thorn 9800	$\mathbf{E 5 5}$
Thorn $\mathbf{1 5 0 0}$ Mono $\mathbf{2 0 \prime \prime}$ very clean	$\mathbf{E 6}$

Full spares back-up of tubes and panels Bulk terms to other wholesalers

T.V. DISTRIBUTORS NORTHERN (LEEDS)

Large stock of good quality ex rental/part exchange colour TV's.

THORN, ITT, PHILIPS, GEC, PYE, DECCA, BUSH, JVC

```
KORTINGS TO CLEAR FROM ONLY £10.00
                \star
        TEL: LEEDS (0532) 624996
        TV DISTRIBUTORS NORTHERN,
        UNIT 10, Ashley Trading Estate,
    Buslingthorpe Green, Leeds LS7 2HG. KORTINGS TO CLEAR FROM ONLY \(£ 10.00\) *
TEL: LEEDS (0532) 624996 TV DISTRIBUTORS NORTHERN, UNIT 10, Ashley Trading Estate,
Buslingthorpe Green, Leeds LS7 2HG.
```

2 Vv. Guadantee APOLLO $20 / 30$ Ax TRADE AND QUANTITY DISCOUNTS free local deivery - same dar - htinc semice ezo. FAST MALL ORDER GB 2-3 DAYS - OVERSEAS ON REQUEST.
A47 32/343X 470 BCB22

470 ESB22/EFB22/ERB22
A51-161X

510 JKB22/JEB22/JDB22/ALB22
A56-120X/123/140/410 £38
560 DZB22/HB22/AKB22
A60 DZB 2
A63-120X
A66-120X A67-120X/140/150/200X 539
20AX A56-500X/510X A66-500X/510X £48

30AX A56-540X/A66-540X
If your tube type is not in stock we can arrange collection - rebuilding + redefver PLEASE PHONE BEFORE CALLING
061-799 0854. 24. hour answering service
43 Clarke Crescent, Little Hulton, Worsley, Nr Manchester M28 6XL

The World	of . OMPA	52 RE OUR	unt P Te PRICE	easant R lephone S!		gwell 06. MPAR	Essex			
	IF	TUNER	decoder	$\begin{gathered} \text { G8/G9 DECODER } \\ \text { IF } \\ \text { COMBINED } \end{gathered}$	$\begin{gathered} \text { UNE } \\ \text { OUTPUT } \end{gathered}$	POWER	CONVERG	FRAME	VIDE0	$\begin{aligned} & 6 \text { WAY TUNER } \\ & \text { SWITCH } \\ & \text { BANK } \end{aligned}$
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731	8.00		10.00		18.00	10.00	7.00	8.00		4.50
PUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00				5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00		FRAME TIME BASE £4		
DECCA 80	12.00	P.O.A.	14.00		12.00	10.00		14.00		P.O.A.
		Othe P+PLERS 1	makes FOR AL ANEL $£$ CA	of panels L MODELS 1.50 2 SH WITH OR	teleph 3.00 ANELS ER - PL PANE	ne for SPEA OR MO SE	rices! ERS $£ 1$ E $£ 3.00$ (50		
POST OFF YO	IR	EQUE	NOW	\& YOUR	PANE	S S	BY	RETUP	O	POST!!!

HOCKLEY DISCOUNT

 TELEVISIONS 94 Soho Hill, Hockley, Birmingham B19 1AE. Telephone: 021-551-2233 PRICES START FROM £6 WORKING SETS FROM £18 FROM OUR SHOWROOM DISCOUNT ON QUANTITY BEST QUALITY SETS AVAILABLE AT UNBEATABLE PRICESPHILIPS G8 550 FITTED WITH REGUNNED TUBES £38 Philips G8, G11, Bush T22, GEC, Starline, Japs., Decca 1800, Pye 222s, BRC 9000, 9600, 9800, Sony, latest Hitachi, ITT, CVC30, CVC45, plus remote control models.

NORTHERN T.V. DISTRIBUTORS
Unit 2, Perth Court,
Team Valley Ind. Estate,
Gateshead, Tyne \& Wear
Telephone: 091-487 5389
Opening hours 9-7 Monday - Saturday
Sundays by appointment.

TEL-X BLACKBURN

 FOR THE VERY BEST IN TELEVISION DISPOSALS| Decca | Thorn | Pye | Bush |
| :---: | :---: | :---: | :---: |
| Philips | 1π | GEC | + Remotes |

HUNDREDS TO CHOOSE FROM

$$
\begin{array}{ll}
\text { WORKERS FROM } & \mathbf{£ 2 5 . 0 0} \\
\text { Off the Pile from } & \mathbf{£ 8 . 0 0}
\end{array}
$$

DELIVERIES ARRANGED ON QUANTITY

TEL-X BLACKBURN

Unit P3, Roe Lee Industrial Estate, Whalley New Road,
Blackburn, Lancs.
Tel: 0254679984

SETS \& COMPONENTS
BRAND NEW MONOCHROME $20^{\prime \prime} 110$ degrees CRT's $£ 10$. Each. 10% off tens. 01-897 2602 .

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188 . 1mmediate settlement

JAPANESE COLOUR TVs. Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only. J.M. Pearson Television. 0484863489.

TRADE COLOUR TVs ALWAYS 200 IN STOCK
Colour from $\mathbf{£ 5 . 0 0}$ Mono $£ 2.00$ Tested colour tubes from $\mathbf{£ 5 . 0 0}$ plus $\mathbf{p}+\mathbf{p}$
BRAND NEW VIDEOS V2022 and V2023 VHS and BETA
Just in $20^{\prime \prime}+22^{\prime \prime} \text { GEC }$ Boxed with stand $\mathbf{8 8 5 . 0 0}$ ALL STOCK CHANGES WEEKLY
(0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5, Worle Industrial Estate, Weston-Super-Mare. Exit 21 M5.

WOODSDALE COMPONENTS
 RANK BUSH MURPHY

TRANSFORMERS

Line Ouput

2718 (1703A, 1706A)
New (Complete)
£20.50
Less Focus Module and
Rectifier
$\mathbf{T 2 0 , ~} \mathbf{T 2 2}$ (T705A) $£ 11.00$
£10.50
T26 (7705B)
£11.00
Switch M
T114A/B
Genuine RBM Units. AERIALS
UHF Aerials P \& C Wideband 4 Bay
Bowtie (12.5 dB)

Above with built-in Broadband amp.
(27dB) plus stabilised power
supply
£45.00
Prompt Postal Service P\&P Paid. Add 15% VAT to all prices. DISCOUNT for QUANTITIES. 34 Field End Road, Eastcote, Pinner, Middlesex. HA5-20T.

Tel: 01-868 5580 .
N. Skehan

Agents Office. Callers by appointment only

TELEVISION

GOOD QUALITY TRADE TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES AND MODELS

[^2]

No other consumer magazine in the country can reach so effectivel) those readers who are wholly engaged in the television and affiliatec electronic industries. They have a need to know or your products anc services.
The prepaid rate for semi display setting $£ 6.30$ per single column centimetre (minimum 2.5 cms). Classified advertisements 37p per worc

A.B.D. TELEVISIONS

Suppliers of colour and mono televisions to the trade.
Workers and non-workers:
Pye Chelsea, Philips, Pye,
GEC, Thorn 8500, 8800,
9000 and 9600 , Bush 120 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.
For quotation and prompt service:
Ring Notts (0602) 864627
UNIT 3+3A,
Meadow Trading Est. Meadow Lane,
Nottingham NG3 3HQ.
> T.V. SPARES. PANELS SPARES, PANELS
AND MANUALS PHILIPS • GRUNDIG
> TELEVIEW
> 01-994 5537
> 194, Acton Lane, London W.4.

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1.

The Colour Signal Part 2.

The Receiver Decoder Part 3.

Receiver Installation
VHS $\star \star \star$ V2000 $* * *$
BETAMAX $\star \star \star$ UMATIC
For full details telephone
0253725499 (Day)
0253712769 (Night)
Or send for precise details
FLNTDOWN CHANNEL 5
339 CLIFTON DRIVE SOUTH,
LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS
TEL:

Thorn $3000 / 3500$ Thorn 9000 UNIVERSAL I year guarantee The UNIVERSAL G.E.C.. IRIPLERcan be used in most sets. 15.. Pye, Rank. Decca \& Continental 15 Waylands, off Tudor Rd, Hayes End, Middlesex

EERUICE PQGES

(minimum 12 words), box number 70p extra. All cheques, pestal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

IRISH TV TRADE CAN WE BE OF SERVICE TO YOU? Regular supplies of Quality Colour TVs LOWEST PRICES

Working Sets from $£ 18 \quad$ Non-working Sets from $£ 8$ FREE DELIVERY ANYWHERE

COLOUR TV PANELS Fully Tested \& Working						
	${ }^{\text {F }}$	coad	Desoder	478	${ }_{\text {Line }}^{\text {Line }}$	Power
	${ }_{\text {3 }}^{3.50}$		${ }_{\text {a }}^{\text {4,000 }}$	5.00		4.00
			${ }_{\text {10,00 }}^{10.000^{*}}$	${ }_{5}^{5.000}$	2.50	${ }_{5}^{5.00}$
		$\stackrel{3.50}{5.50}$			15.00	${ }_{50.00}^{10.00}$
PPreses specity					futer with	
Hybrid dsanels do notionlude values.						
GOLCAR T.V. SERVICES (formerly LAVITE LTD.)						
Old C of E School, Church Stret Golcar, Huddersfiold. Tol.: 0484843273						

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail shelves. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available (only petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services
on Cambridge 69215 or Ely 61462

STARLITE ELECTRONICS

NOW MOVED TO:

 WILLOWS FARM, A13 RAINHAM, ESSEX. Rainham 23225 also Hornchurch 50238.- TV TUBES -

2 year guarantee
Most types available Japanese including Sony
Ex-Rental TVs fromE15.00 Untested Panels. .$£ 4.00$

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex.
Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$
INLINE TUBE TYPE FROM $£ 35.00$
MONO TYPES P.O.A.
ALL PRICES EXCLUSIVE OF VAT.
All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

MULTISTANDARD Colour Television. LUXOR VHF/UHF TV/Monitors to most standards, including PAL'L/SECAM'L (UK/French) option. $20^{\prime \prime}, 22^{\prime \prime} \& 26^{\prime \prime}$ from £280. ex VAT. PORTATEL CONVERSIONS LID., 25 Sunbury Cross Centre, Sunbury, Middlesex. Tel. 0932788972.

展

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished. These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.

Kratal Marketing Ltd,	Phone 021-471 3023
Breedon Cross	Telex 335540-G
Storage.	Ask for Les
Dale Road, Selly Oak,	
Birmingham B29 6A0.	

NWEELECTRONICS 25 YEARS SUPPLYING THE TRADE Bonanza Clearance!!! New Year Prices...

100's of good class HP Repos and Ex Rental Colour TV's reduced to ROCK BOTTOM PRICES!

> Bush T20 (Excellent Cabs) was £60 was £30 NOW £40 Bush 718 P.I.L. Tube was $\begin{aligned} & \text { was } \\ & \text { w } 15\end{aligned}$ NOW £25 Bush 2 Chip Decoders Philips G8
> Philips G11
> GEC 2010
> Thorn 3500
> was £28 NOW £23
> was £70 NOW £55
> was £25 NOW £20
> was £12 NOW £8

Hybrids $£ 5$ all makes! ZMany more inc Pye KT30, Ferguson TX etc. Video
VHS - Sharp 7300, 8300, 9300. Ferguson 3V28, 3V22. Sony Beta.

Mono IV's \&l each (lots of 25)

Thorn $1500 £ 4,1600$ £12. Discount for Quantity (like new). No cheques.

White goods

Hoover Twins from £6. Hotpoint 1460 from £10. Autos all makes from $£ 10$.

Unit 12, Wharfedale Road M606 Euroway Estate Bradford

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00,3$ panels $£ 2.50$ etc. Quick Despatch - C.W.O. please. All prices plus VAT
CASH ONLY-NO CHEQUES DELIVERY CAN BE ARRANGED trade only (0274) 688458 OPEN 6DAYS A WEEK

OPEN MON-SAT 9-5.30 Don't forgetI We are open all day Seturdayl

```
    11GHz Satellite TV Receiver
Receives 'Music Box' Pop music TV Channel on ECS satellite. Can be supplied with or without dish ( 1.5 M minimum in most of UK). Stereo sound decoders available shortly for this channel. Phone or write for more details. HUGH COCKS TV SERVICES, Cripps Corner, Robertsbridge, Sussex TN32 5RY. Tel: 058083317.
```


T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame $\begin{array}{lllll}\text { Philips GII } & 18 & 16 & 20 & 18\end{array}$ $\begin{array}{llllll}\text { Bush T20 } & X & 12 & 16 & 15 & 12\end{array}$ $\begin{array}{llllll}\text { Bush T26 } & X & 16 & 18 & 15 & X \\ \text { Bush } 718 & \mathrm{X} & 12 & 18 & \mathrm{X} & 12\end{array}$ All panels are repaired and aligned according to rank std.
Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567

WIZARD DISTRIBUTORS TV \& VIDEO SPARES

Visit our trade counter and see the huge range of components inc. tubes and video heads. Only minutes from the town centre and motorway routes.
Fast friendly service and techincal assistance available.
Come in and see our trade counter special offers.

Open Monday to Friday 9 am to 4.45 pm Trade Only
EMPRESS STREET WORKS Empress Street
Manchester M16 9EN
Tel: 061-872-5438, 061-848-0060

WORKING CTV's
 The Best \& Chespest in Lancashire

I.E. Decca $18^{\prime \prime}$ to $26^{\prime \prime}$	$\mathbf{£ 2 4 . 0 0}$
GEC $20^{\prime \prime}$ to $26^{\prime \prime}$	$£ 30.00$
Philips $G 822^{\prime \prime}$ to $26^{\prime \prime}$	$£ 25.00$
Bush $20^{\prime \prime}$ to $26^{\prime \prime} 2$ chip	$\mathbf{£ 1 8 . 5 0}$

All sets are tested \& working
Many more makes \& types available Working mono's only $£ 3.50$. Non workers available.

Phone: John Powney at Kirkham, near Preston (0772) 683392.

FOR SALE

CRT Regunning Plant: Comprising of:-
$2 \times$ Ovens,
$2 \times$ Vacuum Pumps and Diffs,
$1 \times$ Spot Knocker,
$1 \times$ Getter Fireer,
$1 \times$ Welding Machine,
$1 \times$ Annealing Oven,
$1 \times$ Precision Emission Tester,
$1 \times$ Let Down Station,
$1 \times$ Custom Built Extraction System,
All gun and glass stock, plus goodwill. Plus many other items.
To be sold as a complete lot, £6,500.
Contact: Mr Adolpho on
0622872400

REBUILT COLOURTUBES
 EXAMPLE PRICES DELTA

All sizes up to $22^{\prime \prime}$ - $£ 28.00$ 26" From - £32.00
All In Line P.IL. Mono Gaming Machine
C.R.T.s 560EGB22 56-611-510.JKB22 20 AX $£ 40.00$ 30 AX £48.00
Fast U.K. Delivery Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET, OLDHAM, LANCS. 061-665 2668
Wholesalers REG in North \& South Wales Competitive Prices

TELEVISION TUNER REPAIRS

BRITISH, EUROPEAN JAPANESE ETC. ELC 1043/05 TUNERS AS NEW $£ 4.60$ inc.
MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

Order form

Please insert the enclosed advertisement in the next available issue of Television
Heading
Signature
Date
No. of ins.......... Chq/PO

TELEVISION

Classified Advertisement
Department,
NAME AND ADDRESS
Room 2612,
King's Reach Tower,
Stamford Street,
SE1 9LS.
$1 / 85$
PHILIPS G11 and Bush T20. Regular supplies. For prices phone 01-845 2036.

PL519 £4.45. PL508 £1.80 PY500A $£ 1.60$
New - Boxed - Guaranteed
BILLINGTON VALVES
IRWIN DRIVE, HORSHAM

WORKING COLOUR T.V's

TO THE TRADE FROM

£15

LARGE SELECTION OF COLOUR T.V's INCLUDING GOOD DISPLAY OF WORKING SETS, MANY LATE MODELS, IN OUR SHOWROOM
DELIVERY CAN BE ARRANGED
'PHONE MARK WOODWARD 0299-250161 TRADE, UNIT 40 ,
HARTLEBURY TRADING ESTATE,
NA. KIDDERMINSTER, WORCS.

EX-RENTALS TELEVISIONS IN BULK

Most makes including late models. MONITEC 0299400233.

! YOU HAVE TRIED THE REST NOW TRY THE BEST!
 Quality 6 Button TVs on Offer

Ultra 6725 22"
Furg. 3738 22" T/T
Furg 3749 T/T CK505 Furg. 3722 22"' Bush T20
Also $17^{\prime \prime} 8000$ various models + many more to choose from.
SCARBOROUGH TV TRADERS CO LTD 85 Columbus Ravine, Scarborough, N. Yorks. 0723368087.
1 hour from A64/A1 junction

TELEVISION

Trade \& Retail supplies of s/h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

 Unit 4 Rubastic Road,Brentpark Industrial Estate. Southall, Middx. UB2 5 LL. 01-574 4631, Ext 28

SITUATIONS VACANT

WANTED: Exp TV engineer to work in Northern Ireland starting Feb 85 to service ex-rental televisions. Must have good exp on most sets including British and Japanese. Good wages and accommodation. Write to TV Box No. 190.

AERIALS

SPECIALIST VHF AERIALS, $28-170 \mathrm{MHz}$, OIRT/ TV-DX, Amateur, AB/MB/Cordless. Folder SAE, AERIALTECH, 33 Cherville Street, Romsey, Hants SO5 8FB.

EVERYTHING NECESSARY for multi-outlet systems. Filters, diplexers, amplifiers, etc. Use trade gear and save pounds. Catalogue 5 ()p (refundable). Professional system planning/advice $£ 5.00$ (refundable). Quick queries free. Wrights Acrials, 43 Greavesike Lanc, Micklebring, Rotherham.

```
BLRVIEN AERIALS
Clearview have pleasure in announcing a full and comprehensive range of signal amplification equipment. For example: low noise electronically remote controlled masthead pre-amp 1.6 db noise. CH. 17-69. Set side amplifiers, distribution amplifiers, notch fitiers 4 in 1 or 2 in 1 etc. Combiners for 2 UHF aerials 3 db gain or 46 db gain. Trade and retail.
Send large SAE for our comprehensive catalogue CLEARVIEW AERIALS
173 Kíngs Road,
Kingston Upon Thames, Surrey
```


AERIAL BOOSTERS
 B45HG-UHF TV next to the set fitting, gain about 20dbs, PP3 battery or 8 V to $14 \mathrm{~V} /$ working. Price $\mathrm{E8} .70$ P\&P $\mathbf{3 0 p}$
 UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to 14 VM . Price E2.50. P\&P 30p. AMPLIFIED SET TOP AERIALS. Trebles the gain, fully portable, price includes batteries. Price $\mathbf{E 9 . 7 0}$ P\& 50p
 B11 VHF/FM RADIO next to the radio firting, gain 14dbs. Price $£ 770$. P\&P 30 p .

BUSINESS OPPORTUNITES

BUSINESS OPPORTUNITY LUMINANCE DELAY LINES FOR COLOUR T.V.

We are looking for stocking distributors in all the countries for Luminance Delay Lines manufactured by our unit INDIAN TELEVISION INDUSTRIES as per Standard Specifications, and tested and passed by Department of Electronics Govt. of India. Business Houses and individuals interested in this offer are requested to write to us for terms, giving details of their contacts with colour.T.V. manufacturers and other consumers of LDL with technical data and quantity of LDL required by them and market potential they command in their area, within 15 days.

DIPLOMAT PRIVATE LIMITED

49/2, Gurjaipal Nagar, JALANDHAR-144 001 INDIA

SERVICE SHEETS

TELEVISION SERVICE SHEET SPECIALISTS
 Thousands of British, European and Japanese models in stock.

Colour $£ 2.00$ Man Mono $£ 1.50$
Manual prices on request.
All our prices include post and packing costs.
Send stamped envelope for free catalogue and enquiries
SANDHURST TV SERVICES (MAIL ORDER)
49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

30,000 SERVICE SHEETS IN STOCK ALL AT £3.00 ALSO COLOUR MANUALS AVAILABLE AT £6.00 EACH

TV Sheets, Black and White, also Radiograms, Record Players, Music Centres Japanese models in stock. Circuit diagrams only. Also Tape Recorders etc., etc. Please forward s.a.e. Send cheque or P.O.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW 11 6BX.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

EQUIPMENT FOR SALE

COMPLETE TUBE re-gunning plant in good working order. Electric ovens for regunning. Re guns 15 colour (Sony Trinitron, Pil, in line. tubes, etc) Tubes in 24 hour cycles. Only $£ 4,000$ plus VAT. Free training provided. Tel. 0582410787.

VIDEO
ARE YOU A TV ENGINEER WHO WANTS TO KNOW ABOUT VIDEO RECORDERS? THEN YOU NEED "DOMESTIC VIDEO CASSETTE RECORDERS A SERVICING GUIDE" by S. R. BEECHING Available for only E15.50 inc. p\&p From: NEWARK VIDEO CENTRE, 108 London Rd., Balderton, Newark, Notts. Tel: 063671475 ACCESS OR VISA

FOR SALE

Sabaco

For a
great deal!
VAN LOAD DIRECT FROM SOURCES
Remember all sets cleaned and soak tested. Most makes avail able, any quantity e.g. GEC, Bush, Decca, ITT, Pye G11, T22, 9000,9800 etc. Mixed sizes.
WORKING SETS FROM $\mathbf{f} 20$ upwards. e.g. GEC $2110 £ 25 \mathrm{~min}$ of 6 and etc.
COMPLETE NON-WORKERS from $\mathbf{£ 1 0}$ in quantities.
BlackWhite in batches of 10 at $£ 1.50$.
SPECIAL OFFER!
26" G8/3500/HYBRIDS
QUANTITIES OF $10 @ £ 5$ each
SPARE PARTS AVAILABLE AT COMPETITIVE PRICES PLEASE SEE SEPT/OCT ISSUES.
N.B. Add 30p extra per panel.

ALL PRICES SUBJECT TO VAT \& AVAILABILITY.

[^3]

Open 6 days a week
9.30 a.m. - 6.00 p.m.
Telephone: (0602) 397555

FOR SALE

173 TELEVISION COPIES 1962 to 65.1974 to 83 Complete less five copies. Enquiries Chorley 73081.

100 TELEVISION RENTAL accounts for sale in North London/Herts area, turnover $10,000 \mathrm{pa}$. TV Box No. 191.

TRADE ONLY

Closing down warehouse. All stocks to be cleared.
TV Components, Audio, Wire, Electrical, Racking. Etc.
Offers are invited for bulk purchase of stocks listed above.
No reasonable offer refused
Send for catalogue to:
ELECTRONIC SUPPLIES
18 Leucha Road, Walthamstow E17 7LG or
Telephone: 01-521 3912, after 6.30 evening.

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

FULL SIZE TOP QUALITY service sheets $£ 2.50+$ L.s.a.e. CTV/Music Centres $£ 3.50+1$. .s.a.e. Repair data almost any named TV/Video $£ 10.50$ inc. circuits. L.s.a.e. brings any quite free magazine/pricelists. TIST, 76 Churches, Larkhall, Lanarkshire. Tel. 0698883334.

RADIO AND TELEVISION SERVICING BOOKS. New 74/75 £15. 76/77, 77/78, 78/79, 79/80, 80/81, 81/82, 82/83, 83/84 £22.50 each. Free delivery. UVIEW, 29, Warmsworth Road, Doncaster. 0302 855017. Callers ring first.

WANTED

SERVICEABLE TRINITRON TUBE. Type 520KB22 for Sony KV2000UB. Telephone Reading 0734 475869.

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Pleaserphone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

Wanted: Quantity Pye Philips G11. Televisions also Ferguson videos. Telephone (04024 58513.

MISCELLANEOUS

DON'T RELY ON the testcard. Labgear colour bar generators $£ 55$ post paid. Also GEC minitest multimeters (requires Altai leads) f6 post paid. Both working order. Beacon TV, 335a Cotmanhay Road, Ilkeston, Derbys 0602303613.

2 LABGEAR CM6022/RA Tele-Verta. $£ 18$ each. G M LO-VEL, Orchard House, Boscastle. N. Cornwall PL35 0AT.

MANOR SUPPLIES MkV test generator tube restorer books etc. Phone Southampton (0703) 899062.

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

[^4]

> Ifan advertisement is wrong were here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable. write to us at the address below.

The Advertising Standards Authority. ASA Led, Dept 3 Brook Hause, Torrington Place, London WC1E 7HN

Large selection of fully reconditioned precision in-line UHF-VHF colour T.V.s at keen prices
Also in stock: Dual Standard Beta \& VHS Video Recorders

Quantity discount. Delivery arranged.
(Limited amount of spare panels, components, button units, etc.)
SPECIALISTS IN OVERSEAS ORDERS

T.V. TRADE SALES

EDI House, Kylemore Park West, Ballyfermot, Dublin 10. Tel: 264139 ext. 11.
(Open 10 a.m.-5. 30 p.m.)

COLOUR TELEVISIONS

```
THORN 9000, 9200,9600 Remote Control
            PYE 420/450, G11
                MANY OTHER TYPES
            Working panels and tubes available.
                REBUILT TUBES
            Delta - In Line - PIL.
            SOUTHBRIDGE TV CENTRE
                120,Selhurst Rd., London, S.E.25.
            Tel: 01-771 3535.
```


EMCO - EUROSONIC - GRUNDIG - TEETON + ALL BRITISH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE -

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any IV component by return "off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - (.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN IF YOU NEED SPARES FAST - RING NOW!

access and barclaycard accepted.
Applies to U.K. only.
32 TEMPLE STREET
WOLVERHAMPTON' (0902) 773122

[^0]: EAST CORNWALL COMPONENTS
 119 HIGH STREET
 WEM
 SHROPSHIRE SY4 5TT TEL: 093932689

[^1]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Alstralia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^2]: GENERAL
 UNION STREET DONCASTER FAGTOBS DN1 3AE

 TEL (0302) 68416

 GOOD MOTORWAY ACCESS

[^3]: Sabaco
 Elastic Yarns Building,
 Derby Road, Sandiacre,
 Nottingham.

[^4]: When replying to Classified Advertisements please ensure: (A) That you have clearty stated your requirements.
 (B) That you have enclosed the right remittance.
 (C) That your name and address is written in block capitals, and
 (D) That your letter is correctly addressed to the advertiser.
 This will assist advertisers in processing and despatching orders with the minimum of delay.

