DECEMBER 1984

 TELEUISION

 TELEUISION SERVICING•PROJECTS-VIDEO-DEVELOPMENTS SERVICING•PROJECTS-VIDEO-DEVELOPMENTS
 Servicing the Sony KV1612UB

Video Cameras • Vintage TV VCR Clinic• TV Fault Finding Replacing GCSs with Transistors

DX-TV • Teletalk on Colour Scrambling for French TV

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.
\star Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking)

* EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
ڤ Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
\star Facilities for sound output.
ڤ Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.
$\begin{array}{lr}\text { Price of Kit } & \mathbf{£ 7 0 . 0 0} \\ \text { De Luxe Case }\left(10^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime}\right) & \mathbf{£ 7 . 4 0}\end{array}$
Optional Sound Module (6 MHz or 5.5 MHz) $\mathbf{£ 3 . 9 0}$
Built \& Tested in De Luxe Case including Sound Module [Special test
$£ 105.00$
REPORT
TELEVISION' Add VAT 15\% TO. ALL PRICES

PAL COLOUR BAR GENERATOR (Mk4)
 4TH SUCCESSFUL. YEAR

\star Output at UHF, applied to receiver aerial socket.

* In addition to colour bars R-Y, B-Y etc.
\star Cross-hatch, grey scale, peak white and black level.
\star Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. DELUXE CASE $\mathbf{£ 7 . 4 0}$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P £2.20).
MK 4 De luxe (battery) bullt \& TESTED e58.00 $+\varepsilon 2.20$ P \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED $£ 68.00+$ \&2.20 P \& P. VhF MODULATOR (CH 1 to 4) FOR OVERSEAS $£ 5.75$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.v.
(ADD VAT 15% TO ALL PRICES)

TELETEXT EXTERNAL ADAPTOR KIT (Less case)

with cable remote control $\mathbf{£ 1 2 0 . 0 0}$
THORN TX10, PHILIPS G11
Mullard Teletext Decoder + Interface panels suitable for either the above $\mathbf{£ 5 0 . 0 0}$
Additional Prestel units including line coupler $\mathbf{£ 5 0 . 0 0}$ p.p $£ 2.50$
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

TV SERVICE SPARES

BACKED BY TWENTY YEARS EXPERIENCE \& STAFF OF TECHNICAL EXPERTS
LOPTs. TRIPLERS, PANEI.S. TUNERS, SEIECTORS ETC
SPECIAL OFFER NEW VALVES
Branded makes, PCF80, PY88, PFL200, PCL84 FOUR for $£ 2.00$ p.p. 80p. THORN TX10 Teletext Interface Panels for Mullard Decoders $\mathbf{£ 2 . 5 0}$ p.p. 80p

7 50N TX10 Facia Control Panel incl. Infra Red Remote Control receiver 7.50 p.p. £1.50.

THORN TX 10 type Remote \& Tuning Control Panel $\mathbf{£ 9 . 4 0}$ p.p. $£ 1.50$.
THORN TX 10 Series Facia Control Panel with 8 position Channel Selector P5.00 p.p. $£ 1.50$.
PHILIPS UHF Modulator (Audio \& Video Input) $£ 15.00$ p.p. $£ 1.00$.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and test ed for T.V. Sound \& Vision. $£ 28.50$ p.p. $£ 1.20$.
THORN TX9, TX 10 Saw Filter IF Panel. $\mathbf{£ 8 . 5 0}$ p.p. 80 p.
PAL DECODER KIT for RGB Monitors $£ 27.00$ p.p. \mathfrak{f}. 00.
SPECIAL OFFER TEXAS XM11 Teletext Decoder New \& Tested at reduced price. $\mathbf{£ 4 0 . 0 0}$ p.p. £1.60.
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $\mathbf{£ 6 . 8 0}$ p.p. $£ 1.20$. XM11 Stab. Power Supply. $\mathbf{8 3 . 8 0}$ p.p. £ 1.20 .
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated. also gives Peak White \& Black Levels, can be used for any set. $\mathbf{1 1 2 . 0 0}$ p.p. 80 p. (Alum. Case $£ 2.55$, De Luxe Case $\mathbf{£ 6 . 8 0}$ p.p. £1.40.) ADDITIONAL GREY SCALE Kit £2.90 p.p. 45p.

UHF SIGNALLSTRENGTH METER KIT $£ 20.00$ (VHF version also avall-
able). Alum. Case $\mathbf{£ 2 . 5 5 .}$ De Luxe Case $\mathbf{£ 7 . 4 0}$ p.p. $£ .80$. able). Alum. Case £2.55. De Luxe Case $\mathbf{£ 7 . 4 0}$ p-p. $£ 1.80$.
c2800 $£ 28.00$ p.p. $£ 2.80$
BUSH 7718 BC6100 series IF Panel $\mathbf{£ 5 . 0 0}$ p.p. 90 p.
BUSH A816 IF Panel (Surplus) $£ 1.65$ p.p. 90 p .
DECCA 80 Series IF, Frame, T.B. £5.00 p.p. £1.40.
GEC 2040 Convergence Panels, Decoder Panels, $£ 2.50$ p.p. $£ 1.80$
GEC 2040 IF Panels 2.60 p.p. 11.60 .
Frame $\mathbf{8 . 5 0}$, Preset (Touch Tune) Control $£ 5.00$, Convergence $£ 5.00$. p.p. $£ 1.80$.
GEC "20AX" Series Switch Mode Power Supply $\mathbf{5 5 . 0 0}$ p.p. $£ 1.80$
PYE 691-7 CDA Panels. Makers tested stock. $\mathbf{6} 6.00$ p.p. £ 1.45
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconductors etc. $£ 5.00$ p.p. $£ 2.00$
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $\mathbf{£ 1 0 . 0 0}$ p.p. $£ 2.80$
THORN TX9 Panels ex factory salvaged complete cond. £20.00 p.p. £2.80.
THORN TX 10 T.B. Panels salvaged ex factory. $£ 15.00$ p.p. $£ 3.00$.
THORN TX10 IF/Decoder Panels salvaged ex factory. $\mathbf{~} 15.00$ p.p. $£ 2.00$
THORN 3000/3500 Power supply P.C.B. £ $\mathbf{3 . 5 0}$ p.p. fi. 00.
THORN $8000 / 8500$ Frame T.B. Panels salvaged 3.20 P.p. $\mathfrak{f l}$. 80.
THORN 8000/8500 Frame T.B. Panels salvaged/spares $£ 2.50$ p.p. $£ 1.40$.
THORN 9000 Series Control \& Receiver Unit $\mathbf{5 6 . 8 0}$ p.p. $\mathfrak{f 1 . 8 0}$
THORN 9000 Series. Long panel facia unit incl. 6 Position Channel Selector \& Loudspeaker $£ 6.00$ p.p. $£ 2.00$
PHILIPS (88/G9 IF/Decoder Panels for small spares £1.50 p.p. £1.40. G9 Scan Panel. Basic PCB in Fibreglass £14.50p.p. £1.80.
G11 PANELS, Power, Frame. IF, Decoder. $£ 18.00$ each, p.p. $£ 2.00$
GRUNDIG 8630 Series Varicap Tuners $£ 5.00$ p.p. $£ 1.00$.
VARICAP. U321. U322, ELCI $043 / 5$ £6.80 p.p. 80p. Makers Varicap Controls PYE (TT200 4PSN $£ 7.50$, BUSH 4PSN 44.80 , DECCA 4PSN $£ 5.80$, 6PSN $£ 6.80$ p.p. 80p. etc.
SPECIAI OFFER EI.EVEN POSITION Varicap Control Unit UHF/VHF £1.80 p.p. £ 1.00.
BUSH "TOUCH TUNE" Varicap Control Z179. Z718 types $\mathbf{£ 3 . 8 0}$ p.p. 95p. YARICAP UHF-VHF ELC 2000 £ $£ 9.80$, BUSH $£ 7.80$ p.p. 90 p.
VARICAP VHF PHILIPS, $£ 6.90$ p.p. 80 p .
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5 position, MULLARD 4 position $£ 2.50, \mathrm{~J}_{\text {AP }}$ Rotary $£ 4.80$ p.p. $£ 1.80$ TV SOUND IF Panels $£ 6.80$ p.p. $£ 1.00$
IOPT TESTER, Service Dept approved $£ 15.90$ p.p. $£ 1.20$.
LOPTS New and guar. P/P Mono $\mathbf{f} 1.35$, Colour $\mathbf{f 1 . 5 0}$, Bobbins 80p.

BUSH 161 to 186 (twin pand)
BUSH, MURPHY 774 series) $\mathbf{8 5 . 9 0}$ BUSH, MURPHY 774 series...
BUSH, MURPHY A8I 88.50 FERG., HMV, MARCONI, CLTRA 450. 1400 . 1500. 1580 . 1590 . 1591 £5.90 THORN $1600.1615 .1690,1691 \quad £ 9.15$ GEC 2000 to 203x series................ $\mathbf{8 6 . 8 0}$ GEC series 1 \& 2 $\mathbf{8 8 . 0 0}$ INDESIT 20/241:GB.............................. 87.65 1TT/KB VC.200. 300 $£ 7.65$ PHILIPS 170. 210.300 series PYE, INVICTA, EKCO, FEKR
368. $169,569,764$ series
368. 69 SPECIAL OFFER

DECCA 20/24.1700. 2000. 2401
GEC $21141 /$ Junior Fineline
PYE 4(1.67.... $\mathbf{8}$ (2.80
KB V(FLEVEN (1 (0) 3) $\quad \mathbf{£ 1 . 7 5}$
KB V (! ..
OTHERS AVAILABLE PRI...e2.80 THORN 9000 to 96041. RIPIER FALLABLI, PRICES ON REQUEST. ALSO LOPTS RIPERS Full range avaiable. Mono \& Colour.
Special Offer: Thorn 8000 (2 lead) EHT Tray $£ 2.80$ p.p. 80 p
TRANSDUCTORS suitable for G8, A823, Bradford ctc. $£ 1.50$ p.p. 60 p .
3.3 V CRT Boost Transformers for Colour \& Mono £5.40 p.p. $£ 1.20$.

CALLERS WELCOME AT SHOP PREMISES
THOUSANDS OF ADDITIONAL ITEMS, ENQUIRIES INVITED LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS TELEVISION MAGAZINE PROJECT PARTS \& REPLACEMENTS STILL AVAILABLE
Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W.6.
NEAR: W. Hampstead Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampstead British Rail Stns. (Richmond, Broad St) (St Pancras, Bedford) W. Hampstead (Brit. Rail) access from all over Greater London. Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W. 11 PLEASE ADD VAT 15\% TO ALL PRICES

December 1984

COPYRIGHT

© IPC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, $£ 12$ overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20$ p inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope.
Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

RGB-Linear Interface Circuit
K.M. Curtis, B.Sc. (Hons)

Designed to link an RML 3802 microcomputer's RGB-
linear outputs to the RGB output stages of a Panasonic
TC6200 projection set for large-screen software
displays.
R Clinic
Reports on VCR servicing from Steve Beeching, T. Eng., Derek Snelling and John Coombes.

Fault reports, mainly on the Philips K30 chassis.
N1700 Timer Modification
Michael Pitt
A. Bouskill

A method of extending the duration of timed
recordings when a machine has been modified for halfspeed operation.

9 Don't Panic

Les Lawry-Johns
You can't get a big head when you've only yourself to rely upon. It's a question of don't panic - run for your life!
Vintage TV: The View Master
Chas. E. Miller
Features and performance of an early TV receiver kit
sponsored by a group of component manufacturers.
Taming the Sony KV1810UB Bernard Pruden, B.Sc., A.M.I.E.E. Modifications to the chopper and line output stage circuits to use transistors in place of the troublesome and expensive gate-controlled switches.
Servicing the Sony KV1612UB
David Botto
A servicing guide to this attractive 16 in . colour portable.

88 Video Servicing
Mike Phelan
A look at the technical aspects of video cameras,
starting with the lens system, the tube, viewfinders, zoom and auto-iris circuits.

91 Next Month in Television
94 Long-distance Television
Roger Bunney
Reports on DX conditions and reception, plus news and latest equipment.
96 Teletopics
99 Teletalk on Colour
Malcolm Burrell
Colour displays seem to have changed with
developments in TV receiver technology, leading to a
consistent but perhaps mediocre standard.
100 TV Fault Finding
Reports from Mick Dutton, John Coombes, Hugh Allison and Malcolm Burrell.
Canal Plus Scrambling
Andy Emmerson
The vision/sound scrambling system used by the French fourth TV network.

Service Bureau
105

Test Case 264
OUR NEXT ISSUE DATED JANUARY WILL BE PUBLISHED ON DECEMBER 19

HAVE MOVED

Telephone: Accrington (0254) 36521
Accrington (0254) 32611
Telex: 635562 Griffin G (For P.V.)
SUPPLIERS
104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
OF TELEVISION COMPONENTS
TRADE COUNTER OPEN MON-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

ADD HOW TO ORDE
(U.K.). 750 per order $P+P$. Goods are despatched on the day we receive your cable. sevvice parcels e.g. orrder. If tor any reason we are out of stock we will try coils please allow $£ 1.30 \mathrm{P}+\mathrm{P}$. 10 give a speedy, fair and efficient service VAT (U.K.). Export orders charged invoice on request. Give us a ting - we'l . . . Ahe yo at cost First Class Mais er is or give you whenever possibile. Add 15% will try to help. Prices are subject to change without VAT to total except where it notice. vat to total ese
states rero rate.

SUPERIOR QUALITY TUBES DELTA RE-BUILDS 4288777 most types of Inline Re-builds or

Delta Rebullds

Up to 19"	£28
Up to 22"	£30
Up to 26"	£34
110° up to $22^{\prime \prime}$	£34
110° up to $26^{\prime \prime}$	£38
Low focus	+f2
A47 342 N	

Delta only. Less 7 $7 \% 5+$ Less $10 \% 10+$ and over

nline Rebutids	
Up to $22^{\prime \prime}$	¢ $£ 4$
Up to $26^{\prime \prime}$	£45
A56-540x	.£56
A66-540x	¢58
Bonded Coil	+£5
ALL SIZES OF NEW MONO TUBES AT COMPETITIVE PRICES	

BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstancing performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

WE WILL. QUALITY, BRA REPUTATIO	DED COMPO COUNTS W	TOP S HENTS. 108 H US PH	C. B. $_{108}$ SCOTLAND PHONE (0228)	D ROAD, CA 20358/39693	LISLE,	JMB	IA	13 9EY	BUY		
INTEGRATED	TYPE PRICE (E)	TYPE PRICE (E)	TYPE PRICE (E)								THORN1500-5S 5.40
CIRCUITS	LA4031 1.66	STK036 12.67	TBA800.......... 80	UPC1176C ... 2.15	sistors	$B C 548$	$\text { } 10$	BR100 18	RBM T20/22A	12.20	THORN3500 8.25
TYPE PRICE (¢)	L44031P 2.45	STK04311.33	TBAB10AS ...1.15	UPC1177H2.30	TYPE PRICE	BC557	-.. 10	BR101 32	RB		THORN88000 5.20
AN103 1.95	L44032 2.34	STK050 20.75	TBA820........ 1.40	UPC1178C ... 2.20	AC127 22	BC558.	... 10	BR103 55		22.5	THORNB500/8800 . 7.76
AN214 2.25	LA4051 2.79	STK070 21.95	TBA890......... 2.95	UPC1 180C ... 3.05	AC128 22	BD124P	... 70	BT106 1.15	PHILIPS G8.		THOR N9000 8.70
AN240 220	LA4101 1.88	STK077.........8.56	TBA9200...... 1.50	UPC1181H 2.20	AC128K 30	BD131.	... 33	BT116 1.30	PHILIPS G9..		PYE 731 730
AN253 1.93	LA4102 1.97	STK078 8.45	TBA950/2X ... 2.65	UPC1182H ... 2.35	AC187K 30	BD132.	.. 33	BU126.... 1.78	PHILIPS G11	13.50	DECCA 2230 7.720
AN315 1.66	LA4112 2.97	STK0829.75	TBA990........ 1.55	UPC1183H	AC188K 33	BD201	... 80	BU205.... 1.42	THORN 1590/1		DECCA 80 7.720
AN3186.95	LA42012.95	STK086 12.89	TCA270S 1.30	UPC1185H2 ..3.30	AD149....... 70	BD202.	. 70	BU208A. 1.40	THORN $1690 /$		DECCA $100 \ldots \ldots . .735$
AN337 4.41	LA4400 2.80	STK4159.66	TCA800....... 4.10	UPC1188H	$\left\|\begin{array}{c\|c\|c\|c\|} \hline A D 161 \\ \text { AD162 } & \ldots42 \\ \hline \end{array}\right\|$	BD204.	$\begin{aligned} & . . .70 \\ & \ldots . .83 \end{aligned}$		THORN 1615. THORN TXIO		$1 \mathrm{IT}^{\text {CVC }} 20 / 30$....6.85
AN360 1.45	LA4420 1.94	STK433 7.25	TCA940........1.55		AF127 36	BD204 BD222	$\begin{aligned} & \ldots . .83 \\ & \ldots . .50 \end{aligned}$		PYE $731 / 713$	$\begin{aligned} &1250 \\ & \ldots . .10 .20 \end{aligned}$	Universal 5.90
AN63326.97	LA4422 2.75	STK435 7.75	TDA1002A 1.50		$\left\|\begin{array}{l} \text { AF127 } 36 \\ \text { AU110 3.10 } \end{array}\right\|$	BD232.	... 50		$\text { PYE } 725 \text { (90). }$	$\cdots . .1020$	
AN7110 1.93	LA4430 1.93	STK437 7.77	TDA1003A 2.80	UPC1200V 1.90	AU1113 3.10	BD233	.. 37				ES
AN7114 2.33	LA4460 2.95	STK439........ 7.86	TDA1004A 2.70	1208C	AC107 ... 4.60	BD234					
AN7115 2.37	LA4461 2.95	STK441 9.52	TDA1035 3.20	UPC1211C	BC107 14	BD234	. .40 .32	BU826....3.20			BY127 10
AN7120 2.43	MB37122.30	STK443 11.33	TDA1044..... 3.10	UPC1215V ... 2.50	8C108 14	BD235.	. 32	R2008B R2010	DECCA $80 .$.		BY127 $10{ }^{\text {BYI33 }}$
AN71402.10	MB3713 225	STK4599.55	TDA1170...... 1.80	UPC1216V ... 2.00	BC109 14	BD236.	.. 43	R20108 ... 1.45	OECCA 10		
AN7145 3.25	MB8719 5.20	STK4619.95	TDA1412........ 90	UPC1217G ... 335	BC141 26	BD237.	. 40	R2540 2.35	IT CVC 20		BY164
AN71502.89	MC1327A.....1.00	STK463 10.88	TDA2004A 4.35	UPC1218H 2.75	BC142 23	BD238	.. 39	TIP31C 46	1 TH CVC 25/30/	FUSES	BY179 60
AN71512.89	MC1358P 1.60	STK501 8.98	TDA2020 2.95	UPC1222 2.05	BC143 25	BD410	. 50	TIP32C 47	ANTI-SURGE	FUSES	BY210/800 30
HA11372.30	MC1330P 90	TA7072P 2.75	TDA25221.80		BC147 09	BD434	. 70	TIP338 80	A/S20MM 80	... 275	BY223
HA1144........2.39	ML231B 1.95	TA7108P2.10	TDA2523...... 225	UPC1226 255	BC148 09	BD437	.. 70	TIP41C...... 48	100, 160, 200 MA170	
HA11511.97	ML232B1.70	TA7120P 2.05	TDA2530 2.10	UPC1227.......2.10	BC157 10	BD438	...78	TIP42C $\ldots48$	315, 400, 500		
HA1156 1.97	ML237 2.50	TA7129....... 3.00	TDA2532 2.20	UPC1230H.3.45	BC158 11	BD707	-... 1.05	TIP $2955 ~$ TIP3055 55	$800 \mathrm{MA}, 1 \mathrm{~A}$,		7
HA1166 2.65	ML238 422	TA7130P 1.20	TDA25401.95	UPC1245......1.99	$\mathrm{BC1}_{89}$........ 11	BEX32	-... 1.65	TV106/02 1.60			
HA1197........2.30	SAA1024 2.55	TA7139P 2.80	TDA2560.......1.80	UPC1250 2.45	BC160 22	BF194	.. 12	TV106/02 1.60	2, ${ }^{2,15, ~ 4, ~ 5 A ~}$		
HA1199........2.30	SAA1125 4.70	TA7157P 3.00	TDA2581...... 1.70	UPC1350C ...4.50	BC172 10	BF195 BF196	$\begin{array}{r}\text {... } 13 \\ +.11 \\ \hline\end{array}$		DY802.	$\ldots . .72$	B2
HA1202........ 1.75	SAA12503.85	TA7171P 3.40	TDA2590 225	$\begin{array}{lll}\text { UPC1353C } & . .2 .60 \\ \text { UPC1356C2 } & 3.05\end{array}$	BC1 BC182 22	$\text { BF } 197$	$\ldots .11$	$2 S C 1172 Y$	PCFPO2.	$\ldots . .188$	B2Y88-ra
HA1211........ 1.87	SAA1251 5.20	TA7172P......3.40	TDA2591 2.70	UPC1358H3.05	$\left\|\begin{array}{l} \mathrm{BC} 182 \ldots10 \\ \mathrm{BC} 182 \mathrm{~L} \end{array}\right\|$	BF198	$.14$ 1.85	PCLB2..	.. 71	
HA1306........2.97	SAA50105.10	TA7176AP ...2.90	TDA2593 2.30		BC183L 11		. 15				
HA1319.........2.99	SAA50125.70	TA7193P 4.20	TDA2600 $\ldots . . .5 .5 .50$	UPC1365C …5.05	$\left\|\begin{array}{l} \text { BC183L } \\ \text { BC184L..... } 11 \\ ~ \end{array}\right\|$	BF256L					
HA1322........ 2.10	SAS560S1.83	TA7202P 3.00	TDA2611A 1.50	UPC1366C …285	$\left\lvert\, \begin{array}{\|l\|l\|} \mathrm{BC} 184 \mathrm{~L} ~ \\ \text { BC208 } 12 \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { BF256 } \\ & \text { BF258 } \end{aligned}\right.$ 25	$\left\lvert\, \begin{array}{ll} 2 S C 1969.245 \end{array}\right.$			6-9-12-132V Motors 5.00
HA1325........2.30	SAS570S1.90	TA7203P..... .3 .00	TDA2640..... 2.30	UPC1367C ...2.85	$\left\|\begin{array}{l} B C 208 \\ B C 212 L ~ \\ B 0 \end{array}\right\|$	$\begin{aligned} & \text { BF258 } \\ & \text { BF259 } \end{aligned}$	$\begin{aligned} & \cdots .25 \\ & \ldots .26 \end{aligned}$		PFL200		
HA1338........2.78	SAS580 2.40	TA7204P1.80	TDA35605.10	UPC1368C … ${ }^{3} 76$	BC212L 10	BF259	. 26				
HA1339........2.80	SAS5902.40	TA7205AP 1.60	UPC41C.......2.95	UPC1370C2 ..3.80	BC213L 10	8F337	.. 28		PL504.		
HA1342A 2.33	SL901B5.65	TA7208P 2.20	UPC554C1.30	UPC1373H 120	BC214L $\ldots10$	BF338	... 30	NEW	PL509...		
HA1366	SL917B6.95	TA7210P 5.60	UPC555H0.70	UPC1377C 4.60	BC2378	BF458	.. .30 .36		PY589/519	5.85	
W/WR230	SN76003N ...2.30	TA7222P...... 1.70	UPC566H3 $\mathbf{2 . 1 0}$	UPC1378H 3.80	BC337 11	BF459	\ldots				
HA1368........ 2.20	SN76013N2.30	TA7223P 3.15	UPC577H 3.00	UPC1384C ...5.50	BC338 $\ldots110$ BC547	BFR90	. 1.60	6533 8.50			
HA1371....... 2.97	SN76023N2.30	TA72274.65	UPC585C 1.40	UPC2002H2.20	8C547 10		... 22	6533 8.50	PY81/800.		
80	S				OLYTICS			BUTTONS	ERS		
HA1388......... 420	SN76227N 1.00	TAA550 28	UPC1018C1,15	DECCA 30	150	2.55	DECC				
HA13974.15	SN76660N 65	TBA120AS 70	UPC1025H3.30	DECCA 80/100	350 V		DECCA	6	-		
HA11211.......2.43	STK00396.45	TBA120SB 90	UPC1026C1.45	(800)250V		2.90	PYE201		15		
K1A72172.75	STK00405.95	TBA120U 1.00	UPC1028H \ldots...2.15	PHILIPS G8(600)3		2.00	PHILIP	S			
HA11221 2.77	STK0050 7.50	TBA395........ 125	UPC1031H 2.85	PHILIPS G9(2200))63V	1.15	PHILIP	WS	12.00		
LA1201 1.88	STK011 7.35	TBA396.......... 85	UPC1032H	PHILIPS G111470)	0)250V	1.95	HIT			lea	dd 50 p For P/P U.K.
LA1230 230	STK0147.65	TBA520......... 130	UPC1035C ... 2.50	PYE 691/7(200-30	200)350V	2.10	ITT			dd	VAT To This Total.
LA1365 225	STK0157.15	TBA530........ 1.00	UPC1042C ... 2.40	RBMA82312500/2	2500)30V	1.10					Orders - Cost.
LA2200 225	STK016 7.45	TBA540 1.27	UPC1043C	THORN3500 17 4001350 V	/100/100/			TFK)			RY BY RETURN ON
LA3122 2.10	STK0209.05	TBA550 1.40	UPC1156H.. .2 .45	$\begin{aligned} & 400) 350 \mathrm{~V} \\ & \text { THORN3500 } 10 \end{aligned}$			U321		$\begin{array}{r} 8.30 \\ .7 .95 \end{array}$		

TV LINE OUTPUT TRANSFORMERS

Delivery by return of post.	
RANK BUSH MURPHY	ITT: VC200, VC205, VC207 9
A774 with stick rectifier $\quad 9.78$	VC300, 301, 302, 400, 401,402 9.20
A816, T16, T18, Z712, 2715	CVC1, CVC2 (FDRGESTONE) $\quad 11.50$
T20, T22, T26, Z179, A823 $\quad 11.50$	CVC5, CVC7, CVC8, CVC9 series $\quad \mathbf{9 . 2 0}$
2718 Basic unit 13.50	CVC20, CVC30, CVC32, CVC45 9.20
T24e, T24h split diode P.O.A.	CVC40 split diode $\quad 16.74$
	Fillo, FT111. P/no AT2063/02 11.50
$\begin{array}{lr}\text { DECCA: 1210, 1211, } 1511 & 11.50 \\ \text { 1700, 2001, 2020, 2401, } 2404 & 9.20\end{array}$	PYE: 169, 173, 569, 368 series $\quad 9.20$
CS1730, 1733, 1836, 1835 (9.20	CT200, CT200/1, CT213 series $\quad 10.35$
$30,70,80,90,100,110,130$ Series 9.20	725-731, 735, 737, 741 Series $\quad 9.78$
FERGUSON, THORN: 1590, 15919	PHILIPS: $170,210,300$ series $\quad 9.20$
1690, 1691. built in rect. 9.78	320 series 9.78
$1600,1615,1700$ series $\quad 11.78$	TX, T8 mono series P.0.A
1790 mono portable $\quad 9.39$	KT2, KT3 series colour 9 9.20
3000, 3500, 8000, 8500, 8800 P.O.A.	G11 series split diode P.0.A.
9000, 9200, 9300 series 12.00	G8 and G9 Series 9.20
9500, 9600, 9650 series $\quad 10.99$	
9800, TX9, TX10 series P.0.A.	BINATONE: 9909 mono 13.04
MOVIESTAR 3781, 3787	GRUNDIG: most models in stock NORDMENDE: FC125, Z206, Z306 11.50 SANYO: CTP5101, 5103, TJ series 11.50
FIDELITY: FTU12 mono 10.35	
CTV14R, CTV14S colour $\quad 15.83$	SHARP: C1851H, C2051H 12.32
	TELETON: TH14 mono 13.68
G.E.C. 2047 to 3135 mono 7.50	TANDBURG: 190, CTV2-2, CTV3-3 P.0.A TELEFUNKEN: most models in stock
1201H, 1501H, 2114, 3133, 313599.20	
DUAL \& SINGLE hybrid col. $\quad 10.00$	
SINGLE STD solid state 12.00	LINE OUTPUT TESTER 16.79
SINGLE STO split diode P.O.A.	Tidman Mail Order Ltd., 236 Sandycombe Road, Richmond, Surrey. Approx. 1 mile from Kew Bridge. Phone: 01-948 3702 Mon-Fri 9 am to 12.30 pm \& $130-430 \mathrm{pm}$ Sat 10 am to 12 noon.
INDESIT: 24EGB hybrid $\quad 9.50$	
$12 \mathrm{LGB}, 12 \mathrm{SGB}$ mono portables $\quad 10.35$	
WINDINGS	
TYNE: main winding $\quad 6.80$	
RBM: T20, T22, T26, 2179	
WALTHAM: W125 eht winding 2.37	
WALTHAM: W190, W191 eht coil 6.00	
KORTING: hybrid winding $\quad 6.90$	

Telegen-1
PRICE £17.20 (Inc. VAT)

- EXCEPTIONALLY LIGHT AND DURABLE
- POCKET SIZE FOR OUTSIDE SERVICE
- PP3 bATTERY POWER SOURCE
- FIVE DIFFERENT TEST PATTERNS FOR COLOUR \& MONO TV
- Chosshatch grid - dot matrix
- White raster
- horizontals * verticles
- 3.5 mm JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide ive essential test patterns for correct instalation, fast checks and repairs. Pattern stability is first class and compares favourably with other more costly buliky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switched 3.5 mm jack socket allows use of external power supply with battery in situ.
Telegen-2
PRICE £34.45 (Inc. VAT)

* EXCEPTIONALLY LIGHT \& DURABLE

COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$

- RED RASTER - GREEN RASTER
- bLUE RASTER
- COLOUR BARS
* 3.5 mm JACK SOCKET FOR P.S.U. * PROVIDES UHF SIGNAL APPROX CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yet is extremaly effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour effective, stable and durable. It is the perfect compliment to Telegen 1 , giving colour
bars arranged in the following sequence: white, yellow, cyen, green, magenta, red, bars arranged in the following sequence: white, yellow, cyen, green, magenta, red,
blue and black. The unit provides a signal in the UHF band approx. Channel 35 and biue and black. The unit provides a signa
requires a supply of 14 to 18 volts O.C.

Power Supply

A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE E4.55 (Inc. VAT)
POST AND PACKING £1.44 (Inc. VAT)
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 773122

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

JOHN GREEN TELEVISIONS FOR BEST QUALITY EX-RENTAL TVs ALL SETS IN A1 WORKING ORDER

BUSH 20"-22"
DECCA 17"-26"
FERGUSON 17"
GEC $22^{\prime \prime}$
PHILIPS 550

Single/Double IC Decoder
6 Button, Varicap Tuner Hybrid Chassis
Solid State
Plastic or Wood Cabinet
6 Button, Solid State
Solid State

ALL $£ 20$ + VAT
ALL £25 + VAT
ALL $£ 25$ + VAT
ALL $£ 30$ + VAT
ALL $\mathbf{£ 3 0}+$ VAT

EDITOR

John A. Reddihough

ADVERTISEMENT MANAGER

Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMEN TS

Barbara Blake
01-261 5897

TELEORSTOM

Cable TV - bordering on farce

The cable TV situation in the UK is becoming a greater shambles by the day. We were given to believe, by those who produced the Information Technology Advisory Panel report on cable TV back in January 1982, that by now the cable layers would be busy ripping up the roads while people would be falling over themselves in the scramble to get connected up to the new multi-channel cables. In's all turned out rather differently. So differently that many of the firms that promoted the idea of "recabling Britain" are now falling over each other in the scramble to get out and forget the whole thing as fast as possible.

As mentioned on a later page, the two largest cable operators in the UK, BET (Rediffusion) and ERG (Visionhire), are in the process of pulling out. For many years Rediffusion virtually was cable TV in the UK. The company started with audio cable distribution in 1928, adding TV to the network in 1951 . Its service is available to about six per cent of households in the UK and it has 600,000 subscribers. There are 128 Rediffusion networks, 53 of which are reasonably large scale. Thirty one of the larger networks have been converted to provide a four-channel service (channels other than the broadcast ones). But Rediffusion is reputed to be losing around $£ 3$ million a year on its UK cable networks. The company operates in several overseas countries and has much technical expertise. It obtained only one of the initial batch of eleven new cable franchises awarded last year. Visionhire entered the cable field in 1978 when it bought networks with 240,000 subscribers. All but ten of the networks have been closed down in recent times and the company failed to win any of the new franchises. Both BET and ERG have decided that the economics of cable no longer make commercial sense over any acceptable time span for business investment. Rediffusion is being sold off while Visionhire is closing down and will make no applications for future franchises.

Whether BET came to its decision to sell unaided or was forced into it by others' refusal to provide financial backing is not clear. Thirty million was required to establish the Guildford network but the sum couldn't be raised. Of the eleven cable franchises awarded last year, only Thorn-EMI's Swindon network has actually started operations, though it will take some time, and an investment of $£ 16$ million or so, before all 53,000 households in the area can be offered the service. Most of the other franchise holders seem to have put their schemes into mothballs, some after failing to obtain any financial backing whatever from the city.

The government has come in for some criticism over all this - for failing to act promptly and for changing the financial conditions with the last budget. This is perhaps a little unfair. That famous ITAP report did after all place great emphasis on the fact that "recabling" the UK would require no public assistance and could be done with readily available private sector finance. In fact a lot of the blame for what's gone wrong can be attributed to that ITAP report, which put forward a number of reasons for encouraging cable operations without providing a coherent overall view of what cabling was to be about or for. Was it to be a cheap and cheerful addition to existing off-air services? Or the start of a much more sophisticated information network? Or a bit of both? No one seemed too sure, perhaps with good reason. A complex information network, computers and all, could have ended up as an expensive white elephant. One feels that the ITAP emphasised the information network aspect because it lent prestige to the idea of cable. In retrospect it would probably have been better to encourage cheap and cheerful entertainment to start with, moving on to the computer network approach at a later date when the usefulness of such a service would have been easier to assess.

The government seems to have been particularly badly advised on the subject of cable. But some criticism nevertheless seems justified. Firstly on the financial aspects. The cable companies could before the last budget take advantage of tax allowances to offset their initial investments in installing the networks. The aim of the government's change however was to encourage investment that made money sense rather than tax sense. Cable was always doubtful without tax concessions. Criticism over dilatoriness on the other hand is probably more justified. Compare the haste with which the Hunt committee was set up and ordered to report on cable in 1982 with what's happened since. The Cable and Broadcasting Act was not passed until July 1984, confirmation of the initial franchises was delayed, and the Cable Authority which is to supervise the whole thing has still be to established - at present it has a chairman but no members.

One of the strangest aspects of the whole fandango is the emergence of Robert Maxwell as almost a monopoly in cable TV. Having bought (assuming the sale is approved) Rediffusion's cable interests, which bring with them a 14 per cent interest in Ten - The Movie Channel, Robert Maxwell has been having talks with Merseyside Cablevision and Clyde Cablevision. Thorn-EMI Cable Television's managing director Peter Gosling commented "it's very encouraging to see that someone like him is prepared to invest in the future of cable". That may be so, but surely the original intention was not monopoly tendencies in the cable field. Why Robert Maxwell should be so interested in cable is hard to say. But if you were to back cable TV with powerful press support (Maxwell now owns the Mirror newspaper group) the whole thing could possibly be made worthwhile. Just think - a bingo channel maybe?

All this is surely far from what was originally intended. Whatever was envisaged at the start of the great "recabling Britain" saga - and it was always rather vague - the result so far has been a shambles bordering on farce.

RGB-Linear Interface Circuit

K. M. Curtis, B.Sc. (Hons)

The advent of microcomputers has brought with it a need to be able to demonstrate software to large audiences. Most microcomputers are equipped with a u.h.f. modulator so that they can be connected to a standard domestic or projection TV set. Modulating a computer's characters/graphics then demodulating them introduces distortion however. This, combined with the fact that most projection television systems have a relatively narrow frequency response, makes them unsuitable for displaying 80 -column text. Some microcomputers come with a 1 V peak-to-peak composite video output that can be directly plugged into many projection receivers.

Most microcomputers provide either RGB-linear (RML 380 Z etc.) or RGB-TTL (BBC etc.) outputs. With both of these there are four separate signals. In the case of RGBlinear there are three analogue R, G and B signals that vary between 0 V and 1 V and a composite sync signal. RGB-TTL differs in that the RGB signals are at either 0 V $=$ off or $5 \mathrm{~V}=$ on.

Our problem at the Computing Studies Unit, University of Leicester, arose when we wanted to demonstrate software using a Panasonic TC6200G/H/A projection receiver. We decided to interface the RML 380Z microcomputer's RGB-linear outputs with the projection set's RGB output stages. The RGB-linear input signals need to be amplified 4.5 times to drive the output stages. We decided to use two common-emitter stages for the purpose, each with a gain of $2 \cdot 25$ (see Fig. 1). The reason for this was the good frequency response and low cost. A final emitter-follower was incorporated in each RGB amplifier to supply the current drive required. VR2 sets
the bias at the output.
The RML 380Z's composite sync output is handled by a single 2 N 2222 A transistor (see Fig. 2) which is driven into saturation by the sync pulses, providing a pulse output with sharp rising and falling edges.

The outputs from the three emitter-followers are fed to pin 4 on $L(R), L(G)$ and $L(B)$. The sync output is connected to pin 2 on board D2.

The system has been used successfully for over three years.

Fig. 1 (above): Single video channel. All transistors type 2N2222A.
Fig. 2 (left): Sync pulse shaper circuit.

VCR Clinic

JVC HR7350

Star date: Aug 1984. Place: Newark Video Centre ... Beam the spares down Scotty!!!

Sorry, I got carried away again. Andy reckons that I should be! After a short holiday in Chroma (sorry, Cromer) for a much needed rest I returned to find a large pile of broken VCRs.

First a JVC HR7350 with an intermittent tape transport fault. Every third blue moon the pinch roller failed to operate, sometimes. In one fleeting moment I saw the solenoid drive pulse on the scope at a time when the pinch roller didn't move. Obviously an intermittent solenoid wasn't it? No it wasn't! The trouble with a fault like this is that one doesn't know one's got it wrong until the item in question has been replaced (after a struggle), the machine's been sent back to the customer after meticulously testing it for three days, and the call then comes to say it's happened again.
It's fairly well known that the UL switch slider in these machines is liable to stick because the grease has aged and hardened, thus preventing the drum motor switching off. A similar problem was the cause of the fault under investigation. In the front right-hand corner of the chassis

Reports from Steve Beeching, T. Eng., Derek Snelling and John Coombes

a sliding lever from the solenoid was found to be sticking on the grease, thus preventing solenoid operation from time to time.
S.B.

Sharp VC381 and VC9300

For poor fast forward, rewind and visual search within the warranty period I usually replace the idler pulleys, though they sometimes respond to cleaning with emery paper. One customer had the cheek to complain that visual search was too fast after I'd replaced the pulley. Sound warble can be due to the reel motor, the capstan motor or both.
S.B.

Sony C7

As this machine ages various common faults are appearing - there's also the well known rewind kit job. Lately I've encountered worn audio/sync heads, some audio and some sync. The capstan bearings are tending to squeak loudly: the only cure is to replace the motor, which is a bit of a bind. Failure of the power supply is now more often
due to electrolytics than to semiconductor devices: I suggest that replacement of all the high-voltage electrolytics is in order if one fails. Use only Sony replacements.
S.B.

Sharp VC7300

The tape was looping after rewind. No messing about here, I replaced the take-up turntable, the main brake and idlers. It's more economical in the long run to replace all suspect items.
S.B.

Toshiba V9600

In a few cases we've had head failure after 15 to 20 months. We also have a lot of trouble with upper cylinder wear. As with the earlier V5470, a mechanical overhaul can be very beneficial - Toshiba machines repond well to this, giving them many more years' life.
S.B.

Toshiba V8600

There was no colour on playback - probably none on record either. The colour a.f.c. loop was working normally - all waveforms checked out - but there was no 685 kHz input to the submixer as the divide-by-eight circuit wasn't functioning. It's in IC208 (MB14300).
S.B.

The New Machines

To my mind Sony have dropped a b . . k with their new hi-fi machine. It has mono sound on the linear audio track, making it non-compatible with SLC9 stereo tapes if the customer wants to upgrade. The machine of the autumn is
without doubt the JV'C hi-fi (Ferguson will say that their's has the bést sound Previn has ever heard and for once be right). I can say no more at this stage than six heads on the drum, no glass delay line in the luminance replay system, multi-speed playback and a host of other goodies that boldly go where no video has ever gone before . . Beam me up Scotty!! It's getting too much: I have to work with this idiot.
S.B.

Mitsubishi VCRs - Colour Trouble

Here's a fault that's becoming common on Mitsubishi VCRs. The symptom may be no colour on playback, no colour on record or both, and may be intermittent. The problem is that the various 4.43 MHz oscillators need adjustment. A frequency counter is essential for this as they must be within 50 Hz of the nominal figure. You'll usually find that at least one of them is over 200 Hz out. The trouble seems to show up when the machines have had about eighteen months' use.

Sanyo VTC9300

A problem that's showing up on Sanyo VTC9300s is intermittent playback. The cause is dry-joints in the can that houses the head preamplifiers. It's on board W1 - the one on the left. D.S.

Toshiba V8600

A grainy picture/no test signal can be due to low supply to the r.f. converter as a result of the switching transistor Q661 (2SC2236Y) on the servo/logic panel being highresistance. J.C.

IV Fault Notes

Philips K30 Chassis

One of the main chassis we deal with is the Philips K30. The arrival of the 30AX tube caused a lot of unnecessary worry, with lots of complaints about "coloured patches" around the edges - remember? I wonder how many engineers had to go out just to push the scan coil assembly back into its correct position? Things like that become routine after a while, and worth checking anyway.

An interesting fault we had recently with one of these sets was red static convergence errors. This caused havoc for a while as the merits of adjustmentless tubes were discussed. Then we noticed that one of the small metal shields just in front of the screw collar which locks the position of the scan coils had disappeared - though the locking substance used by Philips was in full view. The missing shield was retrieved from right inside the yoke and realigned back to the existing marks: hey, presto - instant convergence!

An old favourite that crops up occasionally to keep you awake is partial field collapse, generally the lower half: the usual cause is the field scan coupling capacitor C1521 $(1,500 \mu \mathrm{~F})$.

Always check that the chopper's h.t. output (HT2) is 139 V on this chassis. J've found it set anywhere between 125 V and 146 V , which can give you some pretty awkward moments.

The sync ran wild on another of these sets about ten
seconds after switching on. A replacement TDA2571AQ sync/line generator chip produced only a slight improvement and it was necessary to replace the four transistors on this panel (line/field generator module) to get a complete cure.

Philips KT3 Chassis

A loud "clack" woke up the department when a KT3 was switched on. On inspection we found that C1581 $(0.033 \mu \mathrm{~F}, 600 \mathrm{~V})$ which decouples the first anode supply was flashing across to the focus preset.

Decca 80 Chassis

The problem with a Decca set fitted with the 80 chassis and touch-button tuning was no channel change. We found that $\operatorname{Tr} 713$ on the little panel behind the buttons, associated with the AV button, was at fault. D300 on the timebase panel was also defective - replace it with a 1 N 4003 as in later production (not 1 N 4148).

Hitachi NP8CQ Chassis

Hitachi sets are another of our lines. A dead CBP222 (NP8CQ chassis) came along recently - not really dead,
the tube heaters were very intermittent. The cause was a dry-joint on pin 11 of the line output transformer. Another set fitted with this chassis produced an audible whine from the power supply and once again the heaters were out. Hitachi have a fault-finding guide to help with this problem: it points to a number of possible candidates. All too frequently however, as on this occasion, it's simply $\mathrm{R} 717(1 \Omega)$ open-circuit. As a result there's no 12 V rail. A fairly common fault with the remote control version of this chassis is that the set comes on in standby only. In this event investigate stand-by panel PC036, paying particular attention to the two 10 V zener diodes, the two BC548 transistors and the $4.7 \mu \mathrm{~F}$ and $22 \mu \mathrm{~F}$ electrolytics. The $1000 \mu \mathrm{~F}$ electrolytic may also need to be replaced.

Sanyo CT7118

It's not often that a Sanyo CTV comes my way nowadays. A CT7118 however had the EW fault that was so common with this model initially. D601/2 and R626 in the diode modulator circuit required replacement, also the
driver transistor's (Q752) emitter resistor R764. At switch on the collector of Q752 was at 48 V , as a result of which R626 again died. A new Q752 (BD537) and R626 restored normal operation.

Mitsubishi on/off switches

Finally a moan. If you get called to a Mitsubishi set with an intermittent on/off button, be prepared to stay there a while. Not one of the easiest components to change, as it's right down in the bottom left-hand side. On Model CT2027TX you have to remove the remote control receiver panel then the huge mains transformer just to reach the required position to undo the screws holding the mains switch assembly in place. If you don't secure the mains transformer out of your way its sheer weight will encourage it to flip over and crash down on the main panel - the effect can be compared to hitting the board with an 111 b hammer. Care is essential here, which is o.k. in the workshop but not with the customer watching your every move.

N1700 Timer Modification

A. Bouskill

A major drawback remains after modifying the Philips N1700 for half-speed operation as described in the April 1983 issue of Television. This is the inability to make an unattended recording of more than two hours due to the timer i.c.'s limitations. A two-hour timer limit is inconvenient at normal speed: on long-play, with up to six hours' recording time available, it's restrictive to say the least.
Users of the N1700 will know that if the VCR is set to make an unattended recording and starts at the preset time, pressing the' on/off button for a few seconds will return the machine to the untimed mode so that it will record to the end of the tape. This feature of the design is the basis of the modification to be described.

An examination of the timer board and a few measurements showed that to modify the timer itself would be complicated and, if the timer i.c. was damaged, probably expensive as well. Five colour-coded leads emerge from the timer board and go via a plug and socket to the timer connection subpanel (see Fig. 1). They are then linked via another plug and socket to the rest of the machine. Pin 3 of the timer plug goes high during a timed recording and this aspect of the design can be used to operate a relay.
The circuit adopted is shown in Fig. 2. When pin 3 of the timer plug goes high transistors Tr 1 and Tr 2 switch on. They form a Darlington pair that energises relay RL1. With RL1 energised, the normally-open contacts 1 and 2 close, short-circuiting the normally-open contacts of the N1700's on switch. Contacts 3 and 4 also close, connecting R 2 across C1. The capacitor discharges slowly, and after a few seconds Tr 1 and Tr 2 switch off, releasing the relay. D1 protects the transistors against the relay coil's back e.m.f.

To install the modification, remove the cassette lift then the top cover (bearing in mind that it's a tight fit). Take off the top half of the cabinet by removing the four crossheaded screws in the corners and then a fifth screw, visible when the record key is depressed, in the front centre of the cabinet. When the right-hand side panel is hinged vertically the timer connection subpanel can be seen, held

by a single screw.

Build the modification circuit on a piece of Veroboard approximately $50 \times 25 \mathrm{~mm}$, with two 75 mm long wires to connect to pins 1 and 3 on the subpanel. Use two longer wires (approximately 500 mm) to connect contacts 1 and 2 of RL1 to the N1700's on switch, in parallel with the existing wires which in the modified machines are white and blue/white tracer. Use two wires about 150 mm long to connect the 12 V supply at pin 4 of the timer connection subpanel via a single-pole switch to the modification panel. Label this switch "timer override" and mount it on the front panel between the tuner buttons and the timer control panel, where the plastic is thin and accessible to the rear. The modification panel can be fitted to the base of the VCR, close to the fixing screw for the timer connection subpanel, by means of a stiff wire soldered to the Veroboard copper and trapped under a convenient screw.

The cost of this modification shouldn’t exceed $£ 2 \cdot 00$. It will greatly extend the machine's flexibility - this is worth doing since these VCRs are basically very reliable. The prototype has worked well for some months now. Use a small double-pole relay with two sets of normally-open contacts and a coil with a resistance of more than 180Ω.

Fig. 1 (left): Timer connection subpanel.
Fig. 2 (right): Relay circuit adopted.

POST A PART ELECTRONICS 6 CHAPMAN COURT, CHARFLEETS ROAD, CANVEY ISLAND, ESSEX SS8 OPQ Telephone 0268698868 Telex 99305 ROSSER \mathbf{G}.

TRADE COUNTER NOW OPEN
ORDERS DESPATCHED SAME DAY
ADD 60p P\&P, THEN 15\% VAT
ADD POSTAGE FOR OVERSEAS ORDERS
ORDERS WITH AEROSOLS, PLEASE ADD 25p PER CAN

PORTABLES GALOREI! B/W PORTABLES
 PHILIPS $\quad 12^{\prime \prime} \quad £ 36.50$
 $14^{\prime \prime} \quad £ 40.00$
 12" REM. £44.00
 CLASSIC PORTABLES £25.00 COLOUR SETS
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">INLINE</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">INLINE</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2110</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2011</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2211</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2021</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">G.E.C.</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">2221</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | |
| :--- | :--- |
| G.E.C. | INLINE |
| G.E.C. | INLINE |
| G.E.C. | 2110 |
| G.E.C. | 2011 |
| G.E.C. | 2211 |
| G.E.C. | 2021 |
| G.E.C. | 2221 |</table-markdown></div>
 18"
 $£ 50.00$ WRK $26^{\prime \prime}+22^{\prime \prime} \quad \mathbf{£ 8 0 . 0 0}$ WRK.
 20"
 $\mathbf{E} 35.00$
 $20^{\prime \prime} \quad \mathbf{£ 4 0 . 0 0}$
 22" $\quad \mathbf{E 4 5 . 0 0}$
 20"
 £45.00
 22"
 $£ 50.00$

VCR STANDS TO FIT COLOUR SETS FROM E4.OO ALL COLOUR SETS ARE VCR MODED
ALL READY TO GO STRAIGHT TO THE CUSTOMERS HOUSE
ALL PRICES ARE PLUS V.A.T.

CHROMA VISION
 811A WASHWOOD HEATH ROAD, WARD END, BIRMINGHAM 8 2NP TEL: 021-784 2561

LONDON'S LARGEST TELEVISION WHOLESALER with over $4 \frac{1}{2}$ thousand sq. feet.

"TELEMANN"

8-10 RHODA STREET,

(Off Bethnal Green Road) LONDON E.2. FREE CAR PARK TEL: 01-739 2707

PHILIPS 22" Parcel of 10 £15 EACH G8/550 (Piano Keys)
(THE SAME PARCEL IN A $26^{\prime \prime} £ 13$ each)
\star FREE DELIVERY TO THE LONDON AREA * THE only wholesaler with a guaranteed single price. If the sets work or not our price is the same!

CALLERS WELCOME! or TELEPHONE BARRY 01-739 2707-LINES! -01-739 3123
Genuine "CASH DISCOUNTS" for quantities

FURTHER SPECIAL OFFERS

PHILIPS VCR 1700
. $\mathbf{f 3 0 . 0 0}$
PIL C/R/ TUBES $\mathbf{f 1 9 . 5 0}+$ guaranteed MONO $24^{\prime \prime}$ (parcel of 10)
£2.50

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
Components: Chip capacitors and Resistors, Microwave Substrate, PTFE etc.

HARRISON ELECTRONICS

22 Milton Road,

Westcliff-on-Sea, Essex SS0 7JX. Telephone: Southend (0702) 332338

TELEVISION

DIGITAL TV - SATELLITES - TV REPEATERS MICROWAVE TV - COMPUTER CONTROL - VIDEO RECORDING - SPECIAL EFFECTS - TV COMMUNICATION Don't get left behind. There's something for everyone in television, the fastest growing interest around.
The BRITISH AMATEUR TV CLUB deals with every aspect of TV but in a way that the non-professional can understand. CQ-TV MAGAZINE is loaded with construction projects, articles, information, news etc., and the club produces books and publications as well as printed circuit
boards and components to heip the TV enthusiast. boards and components to heip the TV enthusiast.

JOIN THE TV REVOLUTION
Send a large ($9^{\prime \prime} \times 6^{\prime \prime}$) SAE stamped with $21 p$ for a sample magazine and membership details to BATC, 'Grenehurst', Pinewood Road, High Wycombe HP'12 4DD

Don't Panic

Les Lawry-Johns

If there's one thing you can't get in this job it's a big head. As soon as you've cleared up one impossible problem and are congratulating yourself (no one else will) on being a clever boy, along comes another swine that completely deflates you, leaving you lonely, frightened, deflated (always that) and dreading the next customer with a set that's "an easy job - won't take you more than five minutes".

It's all right for ET down there on the south coast, surrounded by his comrades, senior, medium and junior technical advisers plus a caravan full of thin wire spẹcialists, but when you're on your own and there's no one to turn to except Honey Bunch who always diagnoses a dryjoint (very helpful except in the case of G11s where even I can often find the right one) it's more awesome. I can phone Geoff but he tends to laugh and say "you've a weirdie there old boy, let us know what it turned out to be - cheers". It's nice to have friends, real friends who send you funny cards when you're in hospital, wishing you the best of bad luck. Thank you Jan, Geoff, Eddie - I know you didn't mean it, er . . .

The $\mathbf{T 2 0}$

Listen to this and wonder. A friend from the Medway towns sent the set along but I won't mention his name because he's a reader. I confidently approached it with my one ohm resistor, my BU208A, my 910Ω resistor and my BYX71s at the ready. But the problem turned out to be that the remote control receiver showed only a 0 , which couldn't be moved, in the window. Despite my inclination to rush at the chips (SAS580/590) on the touch-tune panel I employed the slowly, slowly catchee monkey approach, which is to check the voltages carefully throughout to see where they vary from normal. I had the correct 200 V h.t. supply on the line output stage panel so I checked at the EW modulator diodes - and was surprised to find negative voltages here. I looked at the meter and checked the 200 V again. Yes, the leads were right. Move over and check the 12 V regulator. Negative.

Feeling a bit shaken I made sure the diodes were the right way round and then checked the earth pin 4Z2-2 second one up on the swing-down timebase panel. It was heavily negative, as was the earth on the line output stage panel. I could have kicked myself. The panel screws were loose and tightening them restored normal voltages and my sanity. The window still said 0 however and wouldn't

Fig. 1: Rank T20 chassis, touch tune power supply circuit. The tuning voltage is separately derived.
shift. So out came the panels involved with tuning and I soon found that 8 R2 (470Ω) on the supply subpanel (see Fig. 1) had burnt out. I replaced it and the new resistor got hot with the voltage low at the pin 2 end. I accused zener diode 9D23 of being leaky but it wasn't. I replaced the SAS580 and the voltage remained low so I refitted it. Remove the SAS590 and the voltage goes up to normal. Ah ha! In went a replacement and we could now select half the numbers. A new SAS580 also had to be fitted before we had full selection. The set now worked well and we were left wondering whether the poor earthing on the line output panel had had anything to do with the demise of the SAS chips.

Later that day

A chappie in the trade popped in. "Hallo Les, you don't happen to have a line output transformer for the ITT CVC32 chassis do you? I'll pay you for it."

I looked on the shelf. Only one left. So I let him have it. After all I wasn't likely to need another right away, was I? Not right away, no. Just next morning. I told the customer I'd phone him as soon as I'd got one and fitted it. Right away I phoned those nice people at SEME and, bless them, the parcel was in my hands within 24 hours. What a contrast to . . . well, never mind, you probably know who I mean.

When Stan Westover came in for his order later in the week I told him how pleased I was with this speedy service. "Think nothing of it" he smugly replied. "Yes Stan, but when I give the order to you it takes four days to come through."
"Well it has to be processed you see Les."
"Oh I see. Thanks for explaining it Stan."
Stan wasn't happy. The true explanation dawned on him.
"And in addition to that Les, I do take your order on Friday, so taking the fourth day as Monday it's still speedy service."
"Er, yes, of course" I mumbled. "Should have thought of that."

Why is it that whenever I try to shoot someone down in flames I always seem to get fried myself? Still he's not a bad bloke, really, and I don't mind HB making him a cup of coffee when he calls, not really. It would be different if he took milk and sugar in it. No wonder his humour has a bitter edge.

More Panic

This chap came struggling in with a white Philips G11. I smiled and suggested that he waited a minute or two for my immediate diagnosis. He said it had given a couple of short cracks, then the picture had severely decreased in size and finally gone, leaving the sound and a small blank raster.

Two possibilities raced through my muddled head. The line output stage tuning capacitor could have gone opencircuit, resulting in a large increase in e.h.t. (hence the arcing). In doing so the beam limiter might have suffered, hence the partial shut down and loss of signals.

With these things mulling around in my mind I whipped out the power supply panel and attacked the beam limiter. The transistors read all right but l've been fooled by this before - they're interconnected. I unsoldered the npn one (BC148) and it read faulty. "What about that!" I thought as I fitted another BC148 and refitted the panel.

Switch on and check the voltage at the h.t fuse. 100 V instead of 150 V . I pulled out the BU208A's plug to disconnect it, at the same time wondering why the fuse hadn't failed if the load was excessive. The voltage remained low. Out with the panel and in with my spare one. Still 100 V - and the line output stage was still inoperative. Either the fault was still there or my panel was faulty in exactly the same way. I didn't believe that. Check beam limiter voltages which were again wrong. There was a line coming off marked "only on some chassis" - remote control ones. This was such a set. So I pulled out the lower plug and the voltage immediately rose above 150 V . I replaced the line output transistor plug and the set burst into life.
"It's on the remote control panel" I explained.
"Never use it" he said. Coward to the last I let him take the set away without investigating further - having cleaned off the e.h.t. cap etc.

The Final Drama

We'd sold this Fidelity CTV14S some months ago to a couple we knew. We'd sung its praises and here it was tripping like mad. "Put it right in no time" I assured them.
${ }_{1}$ I checked the usual things (the TDA2581 chip and dryjoints in the power supply) but they were without fault. When the line output transistor was disconnected the tripping stopped, but the transistor itself was all right. Theservices provided by the line output transformer all declared their innocence, so we were left with the line output transformer itself. This was of the original type, round and black. I whipped a stock set out of its box. The LOPT was smaller and white with the focus and first anode presets on it (these were on the tube base board on the set we'd sold).
"I'll have to phone for one. Won't keep you long. I'll give you a ring."

The husband was back a couple of days later, looking a bit peeved. "It's not come in yet" I explained. Just at that moment it arrived. "Oh good" he said. "I can wait for it then."
"Well, er, if you wish" I said dubiously. How right I' was. The replacement transformer was of the same type as the one in the stock set, white with knobs on. It came with a small subpanel and a note giving instructions on the modifications required. So I suggested he popped off for an hour or so unless he wanted to stay and see me suffer. He said he didn't mind and elected to watch.

It's no easy job to remove the original type and I could hear him sighing as I struggled. Eventually it was out and the new one went in - much better. The original focus and first anode controls had to be removed from the tube panel and the leads from the new transformer fitted directly, but it was done at last.

Now was the time to test it. What if I'd been wrong? What if the set still tripped? Not giving a sign of my inner turmoil, I smiled and switched on. There was the usual grrump and on it came. A pig looked at me from the screen and winked. I winked back.
"Well done" said Mr. Savage. "How much do they pay you for doing that?"
"They don't. They only supply the parts. The labour is one of love."
"Oh well. I suppose it comes out of the profit you make when you sell the set."
"Yes sir, all seven pounds fifty of it."
I could see that he didn't believe me but it's true, give or take a penny or two. I suppose I should buy in larger quantities to get larger discounts. Never mind, I was never cut out for business.

Vintage TV: The View Master

Chas E. Miller

For several years after World War 2 home constructors of TV sets relied extensively on ex-services equipment - in particular the Pye radar i.f. strip, which operated at a frequency close to that of the Alexandra Palace transmitter, and the VCR97 electrostatic c.r.t. The latter had a screen diameter of about 6 in ., a length of just over $16 \frac{1}{2} \mathrm{in}$., and a green fluorescent screen, so it could hardly be called ideal for domestic viewing! Nevertheless it found its way into innumerable amateur sets of the late 40 s . As a matter of fact I've one on the desk as I write this, complete with its Mumetal shield!

It was obvious that something better was needed, and in 1949 a group of component manufacturers sponsored the design of a set that was to be made available in kit form and would be up to the standards of contemporary commercial models - in fact it excelled them in some respects. The result was the View Master, designed by W.I. Flack. Constructional details were sold in a packet for $5 /-$ and the various parts were available from the sponsoring firms. Considering the general complexity of most commercial receivers at that time, W.I. Flack's design was little less than inspired and fully realised his hope that it would result in "a television set that embodies all the latest technical developments and when finished will be a credit to the constructor's workmanship and skill,

one he'll be proud to own".

So that the set's receiver section could be aligned by an amateur enthusiast without the aid of a signal generator, a t.r.f. design was chosen. The valves used were the well known (one might almost say notorious) EF50s. For the benefit of younger readers, these were among the first allglass valves designed for h.f. amplification and were widely used in wartime radar equipment. They were not particularly small - somewhat larger than the latter-day PL508 - and were permanently fitted with a metal screening can that extended right round the base pins as well. The pins were a little too short for comfort, and much of the criticism levelled at the EF50 was due to poor base connections. For applications where expense was unimportant the valves were supplied with gold-plated pins to help alleviate the problem. On the good side the valve's mutual conductance was high for the period, at $6 \cdot 5 \mathrm{~mA} / \mathrm{V}$. Depending on circuit application, it could be controlled by applying between 0 V and -6 V to the control grid or 0 V to -55 V to the suppressor grid. Another advantage so far as the home constructor was concerned was the fact that services equivalents (ARP35, VR91) could be obtained from surplus stores at a fraction of the price.

Three EF50s were used to amplify the vision signal
prior to detection, the first being common to the sound signal as well. The detector was one half of an EB91 double diode whose second half acted as the sync separator. Another EF50 was used as the video amplifier (see Fig. 1). As an example of Mr. Flack's attention to detail, a negative bias supply was provided for the valve's control grid to avoid the loss of gain that would have occurred with a cathode bias resistor. As a result, the stage gain was just over 30 , only slightly below the theoretical maximum. The shunt peaking coil L10 was adjustable to increase the response at $2 \cdot 7 \mathrm{MHz}$ by some 6 dB . Interference suppression was provided by a Westinghouse miniature metal rectifier (MR5) and capacitor connected across the video amplifier's anode load. This clipped signals above peak white. Since there was inevitably some peak white clipping and the rectifier's capacitance degraded the video response, the recommendation was to omit the interference suppression network where there was little interference or the signal strength was high.

The simple diode sync separator V4b was driven into conduction by the positive-going sync pulses at its anode, developing the sync pulse output across its load resistor R20. The diode's heavy conduction charged C18 whose time-constant with R 21 resulted in the diode remaining cut off until the arrival of the next sync pulse.

The sound receiver was a simple three-valve affair EF50 r.f. amplifier, EBC33 detector/amplifier and EL33 output. Sound interference was again undertaken by a Westector metal rectifier - hardly surprising as Westinghouse was one of the firms involved!

Timebases

Both timebases used thyratron generators driving pentode output valves but, wonder of wonders, the line output stage was right up to the moment with flyback e.h.t. and a boost diode (the boost voltage was 320 V). As Mr. Flack pointed out, this reduced the line output stage consumption to 20 W as opposed to the 32 W a straight class A amplifier output stage would have consumed. The boost and e.h.t. diodes were both Westinghouse metal rectifiers, though provision was made for using an EY51 e.h.t. rectifier instead if wished.

Power Supply

The power supply was very simple, with a transformer to supply the heaters and a Westinghouse 14A86 metal rectifier plus choke-capacitor filter to provide the 285 V h.t. line. The only complications were a network to

Fig. 1: The View Master's video output stage and the diode sync separator circuit.

BILLINGTON VALVES

Irwin Drive, Horsham, W. Sussex RH12 1NL (Mail Order Only. No Callers)							
3 3T28	f4.60	EF85 Mul	11.75	KT88 (USA)	¢12.00	PL36	
30F. $1 / 2$	f1.50	EF85	. 0.35	PCPBCR	50.60	PL504	
DY86/7 Mul	. 1.50	EF86 Mul	f4.00	PCL82 Maz	1125	PL508	
DY87 +	c0.53	EF183 Maz	£1.00	PCL83	12.00	PL509	
DY802	10.85	EF184	. 20.50	PCL84 Mul	$\underline{200}$	PL519	
ECC81	. 60.95	EL34	12.50	PCL84 +	60.80	PL802	
ECC82 Phil	. 50.90	El34 Mul	. 4.00	PCL85	50.90	PY81	
ECC83 Mul	. 2.30	EL84 +	c0. 70	PCL805/85 Mu	¢1.05	PY88	
ECH81 Mul	. 83.00	EL509	. 66.50	PCLB6 +	10.80	PY500A	
EF80 Mul	1.20	EL180	520.50	PFL200 Maz	11.30	PY800	
Ef80 +	c0.30	KT66 (USA	.c8. 50	PFL200	co.	PY	
PLEASE ADO postage/packing at 700 and V.A.T. at 15%							
Valves listed are new, boxed and guaranteed, bu us, for 90 days. All types listed are in stock today and prices are correct on 1/11/84 ' + ' denotes imported brand of valve, 'Mul' = Mullard, 'Maz' = Mazda							
SAE FOR OUOTATION ON ANY TYPE NOT USTED							
Send large, stamped SAE and 15 p in stamps for our latest catalogue We wish to purchase all types of valve, e.g. PL509/19, PCL805, PX4, PX25, PP3/250, DA30							
Most orders are despatched 1st class post, same day as receiving order, but allow for Christmas							

provide the negative bias for the video output stage and a neon tell-tale to guard against live-chassis operation - it gave instant indication that the mains plug should be reversed.

Getting it Together

Several alternative c.r.t.s were available for use with the set: 9 or 12 in . tubes could be used, from the Ferranti, GEC, Mazda or Mullard ranges. Focusing was by means of a permanent magnet, a much better idea than the electromagnetic system then prevalent (this usually required frequent adjustment during the course of an evening's viewing). Cabinets of either the table or console type could be bought in flat kit form for home assembly.

When correctly assembled and aligned the View Master's performance was first rate. This was as well, since it was in no way a cheap proposition for the constructor, even though the individual items sound remarkably cheap at a first glance at the price list. The receiver chassis for example, of 24 s.w.g. tin plate, was supplied by the Whiteley Electrical Radio Co. Ltd. with eight valveholders, insulating bushes, screens and all screws at an inclusive price of $£ 12 \mathrm{~s} 6 \mathrm{~d}$. The larger timebase chassis with its four valveholders cost the same - but I could just have afforded both for one week's wages at the time! A complete set of 59 capacitors, made by the Telegraph Condenser Co. (for whom Mr. Flack was a senior engineer) cost $£ 7$ complete with fixing clips. The Morganite resistor kit retailed at $£ 115 \mathrm{~s} 11 \mathrm{~d}$ while the Plessey line output transformer was priced at $£ 11 \mathrm{~s} 3 \mathrm{~d}$. My copy of the original construction manual has an annotated shopping list by an unknown hand totalling $£ 557 \mathrm{~s} 11 \frac{1}{2} \mathrm{~d}$, of which the major items were the tube ($£ 116 \mathrm{~s} 5 \mathrm{~d}$), the valves ($£ 10$ 10 s 0 d) and the cabinet ($£ 617 \mathrm{~s} 6 \mathrm{~d}$).

Despite omission of the cost of the constructor's time, this total was a lot more than the price of some contemporary commercial sets. The 9in. GEC model BT2147 and 12 in . Model BT5144 cost $£ 3617 \mathrm{~s} 5 \mathrm{~d}$ and $£ 480 \mathrm{~s} 4 \mathrm{~d}$ respectively for example. But then, as the instruction manual said, "the satisfaction and thrill of being able to say 'I built it and it works' is the great incentive."

Firms Involved

The firms associated with the View Master project were Belling and Lee, Bulgin, Colvern, Ediswan, Morganite Resistors, T.C.C., Wearite, Westinghouse and Whiteley Electrical. Assistance was provided by Cossor, Ferranti, GEC, Mazda and Mullard.

Taming the Sony KV1810UB

Bernard Pruden, B.Sc., A.M.I.E.E.

There can be few service engineers who don't greet the request to repair a Sony KV1810UB with some trepidation. The cause of this is the tendency of the expensive gate-controlled switch devices (GCSs) used in the chopper circuit and line output stage to commit hara-kiri for no obvious reason. The main cause of the problem relates to GCS characteristics. The GCS is basically a thyristor that can be turned on and off by applying positive and negative pulses respectively to its gate. Troubles usually begin when there is a momentary interruption of gate drive to either or both of these two GCSs. Such a seemingly trivial fault may leave either or both GCSs on for a long enough time to destroy the two devices well before mains fuse F601 blows. Repair by GCS replacement is likely to lead to further expensive failures at switch on or perhaps hours or days later unless the underlying cause is found. If the fault is intermittent this can be a difficult and frustrating task, with large numbers of components being replaced in an attempt to eliminate the fault.

When my own KV1810UB (Mk.I) ate its third pair of GCSs I set about designing a modification to eliminate these troublesome devices. The modification replaces the two main GCSs used in the chassis (Q603 chopper, Q510 line output) with modern high-voltage silicon transistors. Use of transistors in these positions ensures that any drive interruption will leave them in the off condition. This will stop the set working, but won't result in destruction of the transistors.
The modification involves- some minor mechanical changes to mount the different case styles of the transistors. In addition, as the transistors require a greater current drive than the GCSs, modifications to the drive circuits are necessary. These include replacement of the chopper and line drive transformers (T603 and T502 respectively). The cost of the components for the modification is less than the cost of two GCSs. This assumes the use of new components: if driver transformers from scrapped chassis are used, which is quite feasible, the cost is significantly reduced. The suggested modifications could save many a KV1810UB from being declared beyond economic repair.

Modified Chopper Circuit

Fig. 1 shows the modified chopper circuit. The changes are confined to board PR, its heatsink and surrounding metalwork. Note that new or modified items are asterisked and have reference numbers starting " 16 ". The transistor selected for the chopper position is the BU426A, which is in a plastic TO218 package. It lends itself to being conveniently mounted in approximately the same position as Q603 which it replaces. The increased drive current is provided by a BFX85 transistor (Q1601) plus heatsink in the driver position and a driver transformer (T1600) of the type used in the Thorn 3500 chassis. It's also preferable to use a crowbar over-voltage protection circuit if the set hasn't already been modified in this way.

To carry out the modification, proceed as follows. Remove Q603 (SG6533 or equivalent), D607 (HF-1Z)
and R619 (15Ω) from board PR. Make a small bracket to mount the replacement driver transformer T1600 on the PR board's metal frame (see Fig. 2). The replacement transformer's spring clip has to be dismantled to accept the bracket, then reassembled. Mount the bracket and transformer as shown, using two suitable self-tapping screws. Fig. 2 also shows how to mount the BU426A (Q1600), using one of the bush clearance holes vacated by Q603. Take care to use heatsink compound on the mica washer and the high-voltage type of insulating bush, which requires a 6 mm clearance hole. Incorporate a solder tag on the transistor mounting screw, on the copper side of the board. Connect the BU426A to the pads vacated by Q603 - emitter to cathode, base to gate and collector to anode. Connect Q1601 (BFX85) directly in place of Q604 and fit it with a short corrugated heatsink. Connect R1602 (3.9 , 4W) in place of D607 on the copper side of the board. This completes the chopper circuit modifications.

Crowbar Circuit

The suggested over-voltage protection circuit shown in Fig. 1 can be built on a piece of Veroboard approximately $60 \mathrm{~mm} \times 40 \mathrm{~mm}$ and mounted, using two suitable selftapping screws, on the PR board's surrounding metalwork, alongside the ETC board. The layout is not critical. On the PR board itself, cut the track joining R607 and R610. Remove R607, replacing it with R1600 (10 , 17W). Connect R1601 ($2 \cdot 2 \Omega, 4 \mathrm{~W}$) between R1600 and R610, effectively bridging the track cut just mentioned. All these components should be mounted on the copper side of the board. This change ensures reliable operation of the crowbar thyristor THY1. Disconnect the supply end of R608 and reconnect it to the junction of R1600 and R1601. As Fig. 1 shows, this point should also be connected to the crowbar thyristor. This ensures that in the event of R1600 going open-circuit the start-up circuit is disabled, thus protecting R608 and Q602 on the PR board.

The voltage sensing input connection is made to pin 19 on the PR board. Don't make the connection at this stage however.

Modified Line Output Stage

The modified line output circuit is shown in Fig. 3 and is confined to the VH board and associated heatsink. The type of line output transistor chosen is the BU208A. Base drive for the transistor is obtained from the modified driver stage, which uses a BD131 transistor (Q1500) and the driver transformer from the Rank A823 chassis (use one secondary winding only).
Since the BU208A has a different outline from the GCS it replaces, it's mounted in a different position on the VH board heatsink - see Fig. 4. This diagram also shows the mounting positions for the BD131 (Q1500) and the new driver transformer.
Carry out the modification as follows. First remove the following components from the VH board: driver transis-

Fig. 1: Modified chopper circuit. Asterisks indicate new or modified items.

Fig. 2: PR board - physical details.

Fig. 3: Modified line output circuit.
tor Q509 (2SC1475); driver transformer T502; D585 (SIB01-02); R597 (56 , 2W); GCS Q510 (SG6533 or equivalent). Note that D585 may be marked as D582 on the copper side of the board. Also remove the field output transistors Q503 and Q504 (2SC867) and the efficiency diode D517 (TD15) with its heatsink - do this carefully as these items have to be replaced later.

The VH board heatsink can now be removed. Make holes to mount the BU208A as shown in Fig. 4: using a TO3 mica washer as a marking template, drill the transistor fixing holes for the high-voltage type of insulating bush, as used for the BU426A. Then drill the mounting

Fig. 4: VH board - physical details.

Fig. 5: D517 heatsink modification.
holes for the BD131 and the new line driver transformer in the approximate positions shown. Mount the BD131, BU208A and the transformer on the heatsink - remember to use heatsink compound with the transistors, and make sure that the heatsink surfaces in the area beneath the mica washer are free from burrs. Incorporate a solder tag for the collector connection to the BD131 - on the top face of the transistor.

Mount the following components on the VH board itself: R1500 ($2 \cdot 2 \Omega, 4 \mathrm{~W}$) in place of D585 and R1501 (22 2 , 0.5 W) across the gate-cathode junction of Q510 (now the base-emitter junction of Q1501). These two items should be mounted on the copper side of the VH board.

Modify D517's heatsink as shown in Fig. 5 and replace this assembly on the board. This modification ensures adequate clearance between Q1501's base-emitter pins and D517.

Reassemble the heatsink on the VH board, taking care

Fig. 6: (a) Chopper drive waveform - at secondary of the driver transformer. (b) Waveform at the emitter of Q1600 with 100 V r.m.s. input. (c) Waveform at the emitter of 01600 with 240 r.m.s. input.
to ensure that Q503 and Q504 are properly mounted and that the mica washers are in good order. Connect Q1500 directly in place of Q509, using sufficiently thin wire to pass through the holes in the board ($1 / 0 \cdot 4 \mathrm{~mm}$ is suitable). Connect the replacement transformer directly to the connection pads vacated by the previous one (see Fig. 4). Connect Q1501 to the pads vacated by Q510, using $1 / 0.4 \mathrm{~mm}$ wire as follows: emitter to the cathode connection, base to the gate connection, collector to the anode connection. Use additional sleeving over the wire from Q1501 where it passes through the heatsink to avoid any possibility of insulation breakdown.

The VH board can now be replaced in the chassis. Check for broken wires at pins 1 to 15 on the board these single-strand wires are particularly prone to breakage during the above modification.

Setting up

Now to get the modified set working. The following procedure assumes that a variac and an oscilloscope with $10: 1,10 \mathrm{M} \Omega$ probe are available.

Start with the chopper circuit.
(1) Disconnect the wires from pins 19, 21 and 22 of board PR. This prevents the h.t. from the chopper circuit reaching the rest of the receiver. Do not connect the set to the mains supply.
(2) Connect a 19 V supply between chassis and pin 17 on the PR board (positive to pin 17), using a stabilised supply or two PP9 batteries (the former is preferable since the current drain is a substantial 280 mA or so).
(3) Connect the oscilloscope to monitor the chopper drive - earth probe to the emitter of Q1600, probe tip to the transformer side of R1602. The waveform should be as shown in Fig. 6(a). Adjust VR504 (line frequency) until the period of the displayed waveform is $64 \mu \mathrm{sec}$. Time tA should then be approximately $18 \mu \mathrm{sec}$.
(4) Turn the h.t. control VR601 fully clockwise (as viewed from the copper side of the board) and temporarily connect pin 17 to the junction of R618/R637. This should have no effect on the waveform.
(5) Turn VR601 slowly anticlockwise whilst monitoring the waveform. Ensure that at some point during the travel of VR601 time tA increases to approximately $40 \mu \mathrm{sec}$ with some increase in amplitude. This test provides a manual check on the ability of the control circuit to vary the markspace ratio of the chopper drive.

Remove the temporary connection and set VR601 to mid-position.
(6) Disconnect one end of D605. This will keep Q602 turned off during subsequent testing and prevent R608
overheating. Connect the set's mains input to a variac, set initially to zero volts. Connect a 240 V , 150 W lamp between pin 19 on board PR and chassis. Connect a multimeter between pin 19 and chassis, and the scope between the emitter of Q1600 and chassis.

Increase the input from the variac to approximately 100 V r.m.s. The d.c. output should be about 70 V and the waveform should be roughly as shown in Fig. 6(b). If all is well, continue to increase the input from the variac whilst monitoring the chopper output voltage. At about 200 V r.m.s. from the variac the output should settle at around 130 V and remain at this value after increasing the input to 240 V r.m.s. The waveform displayed by the scope should approximate to Fig. 6(c). Check that adjusting VR601 from end to end varies the multimeter's reading by about $30-40 \mathrm{~V}$. Reset VR601 for 130 V output at 240 V r.m.s. input. Then set the variac to zero output and disconnect the scope.
(7) With the lamp load still connected to pin 19, connect the overvoltage circuit's sense input to pin 19. Set the variac for 240 V r.m.s. input and check that the voltage at pin 19 is 130 V as before.
(8) Momentarily short-circuit zener diode D1602. This should result in F601 blowing in spectacular fashion and the 130 V rail dropping to zero. Disconnect the mains input, replace F601 and remove the short from D1602. Reconnect the mains input and check that the h.t. supply at pin 19 returns to 130 V with 240 V r.m.s. input.

Disconnect the lamp load and the multimeter. This completes the chopper circuit checks. Now to the line output stage.
(9) Leave the 19 V supply connected as during the chopper tests (no mains input). Connect the oscilloscope to check the waveform between the transformer side of R1500 and chassis. The waveform should be as shown in Fig. 7(a). If it's not correct, find out why not and take whatever action is necessary before proceeding further.
(10) Connect an 82Ω, 1 W resistor between the positive side of the 19 V supply and pin 7 on board VH. Measure the voltage between pin 7 and chassis with the multimeter. The reading should be approximately 14 V . This test checks the impedance of the 130 V input to board VH.
(11) Connect the scope between the collector of Q1501 and chassis. The waveform should be as shown in Fig. 7(b).

If all's well it's time to connect the chopper and line output stages together.
(12) Disconnect the scope and multimeter and remove the 82Ω resistor. Reconnect the wires disconnected from pins 19,21 and 22 on board PR. Connect a rectifier diode, e.g. 1 N 4001 , in series with the external 19 V supply, with the cathode end to pin 17 . This diode ensures that the 19 V supply generated in the line output stage and the external 19 V supply don't interact.
(13) Connect the mains input via the variac. Increase it from zero to 100 V while monitoring pin 10 (200 V supply) on board VH with the meter. The reading should be about 150 V at 100 V r.m.s. input. Slowly increase the input from the variac. The multimeter reading should increase and stabilise at approximately 200 V from 200 V r.m.s. input through to 240 V r.m.s. Disconnect the meter.
(14) Disconnect the 1N4001 diode and the external 19V supply. Reconnect D605 on board PR. Increase the input from the variac from zero. If the chopper start-up circuit is working, the 130 V rail (pin 19 on board PR, monitored with the meter) should jump to about 20 V with an r.m.s. input of 70 V . Increase the input and ensure that the
voltage at pin 19 stabilises at 130 V between 200 V and 240 V r.m.s. input.

The set should now be working satisfactorily and the variac can be disconnected. Check for overall satisfactory performance with the set connected directly to the mains supply. No adjustments other than those mentioned should be required as a result of the modifications.

The KV1810UB Mk. //

As noted earlier, the modifications described were carried out with the Mk. I version of the KV1810UB. Although we've not had an opportunity to try out the modifications with the Mk. II version, they should be applicable when due account is taken of Q510's slightly different drive circuitry. The following approach is suggested for anyone wishing to modify a Mk. II set.

Carry out the chopper modification as described above. With the line output stage, proceed as for the Mk. I but instead of removing R597 remove R556 and R574 (both $22 \Omega, 2 \mathrm{~W}$). This will result in a line output stage as shown in

Fig. 7: (a) Line drive waveform - at secondary of the line driver transformer. (b) Waveform at the collector of Q1501 in the test condition.

Fig. 3 apart from the fact that L508 will not be present. This difference should have little effect on the operation of the circuit.
In conclusion, I hope that the modifications described will be of value to anyone wishing to extend the useful life of a Sony KV1810UB. The author's modified set has worked faultlessly for many months and can be used with confidence that if anything goes wrong it won't be the fault of a GCS - unless of course Q602 should fail. But then it can probably be replaced with a transistor . . .

Servicing the Sony KV1612UB

David Botto

We rather like the Sony KV1612UB: it's a well-made 16 in . set that gives a good picture. Though the circuitry is quite complex it's arranged on just a few boards that, as usual with Sony sets, are identified by letters.

Panel Layout

After removing the casing you'll see the large D board, which contains the power supply and the complete line and field timebase circuitry, mounted horizontally at the bottom of the set. To the left, again mounted horizontally at the bottom, is the M2 board which contains the circuitry for the a.f.t., the remote control, mute, volume and the picture and colour control. At the left side (we're looking in from the rear) you'll see the vertically mounted A board. This contains the tuner, the i.f. strip and the decoder. Also on the left, towards the front, are two small horizontally mounted boards, one above the other. The smaller is the X board that carries the remote control receiver; the larger one is the M1 board which contains the channel selection circuit and presets. Slightly towards the right are two vertically mounted boards, H which carries the customer controls and M3 with the channel indicator and its drive circuit. The letter C is used for the tube base panel which houses the RGB output stages. There's also provision for a plug-in teletext board.

Power Supply

At first sight the power supply looks a lot like those used in earlier Sony models. There are some significant differences however. The circuit is shown in Fig. 1 from which it can be seen that the main elements are a series chopper, its driver, a pulse-width modulator, protection circuits and the mains rectifiers.

The 240 V a.c. mains supply comes in at plug D1. It passes via the mains fuse F601 and filter circuit, also thermistor TH605, to the bridge rectifier D601/2/8/9 (all

U05Gs). A mylar polyethylene capacitor is connected across each side of the mains filter coil T601 - C601 and C602. We've been waiting for one of these to go shortcircuit, but to date this hasn't happened!
The power switch S901 has an extra switch pole which is used to reset the remote control i.c. (IC002, M58485P) at switch on. This i.c. is on board M2 and is the heart of the remote control system. If it was not reset the receiver would switch on in the standby mode.
The a.c. mains input also goes to the degaussing circuit and to transformer T603 which drives a full-wave rectifier (D611/612). This produces 39 V across the reservoir capacitor C623. The following regulator circuit (Q607, D613) provides a stabilised 13 V supply for the remote control i.c. an board M2 and remote control receiver board X.
A 5 V supply derived from the line output transformer is fed via connector D3 (pin 3) to boards M1-M3. Suspect R804 ($1 \cdot 2 \Omega, 0 \cdot 25 \mathrm{~W}$ carbon nonflammable) if this supply is missing.

Chopper Action

The chopper circuit is conventional and produces a regulated 110 V supply. Q605 is the chopper transistor and L603 the series choke. Diode D606 conducts to maintain the current flow when the chopper transistor is off. The driver transistor Q604 receives its base drive from the astable multivibrator circuit Q602/3 which acts as the pulse-width modulator under the control of the error detector/amplifier transistor Q601.

Protection Arrangements

In the event of excessive h.t. current the voltage developed across R637 will be sufficient for Q608 and Q609 to switch on, shorting the base of Q602 to chassis. The chopper drive will thus be temporarily removed. In
the event of a short or serious overload the voltage developed across R651 will turn transistors Q651/2 on. These will latch on and stop the multivibrator, shutting the set down.

Dealing with a Dead Set

The problem when confronted with a dead set is whether the fault is in the power supply or elsewhere. The way to tackle this is to remove R513, R514, L501 and R563 from board D, thus rendering the line oscillator, driver and output stages and the field output stage inoperative. Connect a 240 V , 100 W bulb across the, smoothing capacitor C621 and supply the set from a variac or a tapped mains transformer. Gradually increase the mains input to 240 V . If the bulb lights at about half brilliance, the power pack is o.k. When you replace the choke and resistors, make sure you fit the right one in the right place or the results will be horrible!
Should the power pack prove to be faulty the first items to check are Q651/2 (a component tester will enable you to check these quickly). These transistors sometimes fail, removing the 110 V supply. If necessary carry out further component checks in the following order: D651, C654, Q608, Q609, Q607, D613. Smoothing capacitor C621 changing value can give rise to all kinds of trouble, including excessive h.t. The chopper circuit transistors are very reliable. If necessary check them in the following order: Q605, Q604, Q601 - then D603.
The multivibrator circuit can be tested by disconnecting the set from the mains, connecting a scope via its $10: 1$ probe to the collector of Q602, and powering the circuit from an external 18 V supply (two PP9 batteries or a very well smoothed supply) connected between the junction of R603/R609 and chassis. The waveform seen should be similar to that shown in Fig. 2. As the multivibrator is running free you might not get quite this waveform - the important thing is that it's there.

Fig. 3 shows the waveforms at the collector of Q604 and at the junction of coils L601/2/3 when the receiver is working correctly with a 240 V a.c. mains supply.

The Timebases

If all's well with the power supply and R513/R514/ R563/L501 have been replaced correctly there's probably a fault in the line timebase. It's possible that a fault on one of the other boards could be loading down the 110 V line, but we've not had this happen yet.
The first item to check is the 2SD869 line output transistor. Then check the driver transistor's feed resistor R514 ($2 \cdot 2 \mathrm{k} \Omega, 2 \mathrm{~W}$). If necessary check rectifier diodes D801, D802, D803, D811 (all type GH3F), the line oscillator transistor Q501 (2SA677) and the line driver transistor Q502 (2SC2230A).
A few failures have been experienced as a result of shorted turns in the line output transformer T801. The only reliable test is by substitution. Since the e.h.t. rectifier is encapsulated within the transformer, you'll need to remove the tube's e.h.t. connector. It helps a lot if you've got the correct tool - part number 3-702-436-01. Don't forget to short both the cap and the tube's anode to chassis: high voltage could be lurking there in waiting for you ... Note that the tube's anode cap has two connections. Short them together and you'll have three nice pictures!
Line timebase waveforms are shown in Fig. 4.

Field timebase faults are uncommon. The coupling capacitors C555 ($33 \mu \mathrm{~F}, 25 \mathrm{~V}$) and C557 ($330 \mu \mathrm{~F}, 25 \mathrm{~V}$) can cause no or reduced field scan if they fail. We've not so far had any problems with the transistors used in the field timebase.

The Receiver Side

From serial number 523,001 some changes were made. Boards M1, M2, M3, C and D were altered though the circuitry remains the same. Modifications were made to the remote control unit and board A .
The first version of the remote control unit used a 6 V battery supply: with the second version the supply is 4.5 V . Version one contains two transistors (type FRB828B, 2SC945 or 2 SC1364): the second version has a single 2SC1364 transistor. Both use the same M58484P encoder i.c. There's little to go wrong with these units. A scope (with 10:1 probe) and counter should show 6 V and 6.2 V peak-to-peak 480 kHz signals at pins 2 and 3 of the i.c. The best and fastest check is to try the unit with a known good receiver.

On the remote control receiver board the scope and counter should show a 15 V 480 kHz waveform at pins 12 and 13 of IC002 (M58485P). The only problem we've had with this board is the tendency for transistor Q005 (2SA733 or 2SA1027R) to fail. This can have a couple of effects: the sound and picture can mute, or the set may go into the standby condition and refuse to come out.

We've not had any faults on boards X, M1 and M3.
In the earlier version of the set a U321 tuner followed by a couple of 2SC2009 i.f. preamplifier transistors were used on board A. The later version has a BT882 tuner followed by a single 2SC1128 i.f. preamplifier transistor. The earlier panel has a tuner a.g.c. drive transistor Q214 (2SC1128, 2SC1364 or equivalent) which can fail. In the later version the tuner a.g.c. drive is taken direct from pin 5 of the TDA1440G i.f. i.c. (IC201). These seem to be the only differences between the two versions of the panel.
If the fault is a raster but no picture and Q005 on board M2 is all right, the cause of the trouble could well be in the beam limiter circuit. Short the emitter of Q304 (2SC633A, 2SC1364 or equivalent) to chassis. If this restores the picture, the beam limiter circuit is at fault. Check Q304 first. Next suspect C318 ($0.47 \mu \mathrm{~F}, 50 \mathrm{~V}$), C319 ($3.3 \mu \mathrm{~F}, 50 \mathrm{~V}$) and then R802 ($180 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ - on board D).
If necessary check Q301 (2SA733), C305, C306 (both 470 pF) and make sure that the video mute diode D304 (1S1555) is in order.
The decoder i.c. is a μ PC1365C (IC301). Don't be in a hurry to take it out - so far faults have always proved to lie elsewhere. We've found no simple way of disabling the colour killer - Sony didn't know either! - but it's quite easy to check the waveforms. With a colour-bar input signal, start at TP12 on board A where the composite video signal should be present. Next check at the collector of Q305. The waveform should be as shown in Fig. 5. The 4.43 MHz reference signal should be present at pin 21 of IC301. Other waveforms are clearly shown on the official circuit diagram. If all is not well, suspect components associated with the i.c., starting with capacitors C320 $(4.7 \mu \mathrm{~F}, 25 \mathrm{~V})$ and $\mathrm{C} 321(3.3 \mu \mathrm{~F}, 50 \mathrm{~V})$ which can give various strange effects when they fail.
Decoder adjustments are best left untouched. The only one that may, not all that often, need to be adjusted is the a.p.c. control RV303. To do this, solder a $100 \mathrm{k} \Omega$ resistor from pin 13 of IC301 to chassis and a $10 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitor

Fig. 1: Power supply circuitry, Sony Model KV1612UB.

Fig. 2: Waveform at the collector of 0602 with an 18 V supply. The waveform can vary a lot - the important thing is that it's present.

Fig. 3: (a) Waveform at the collector of 0604 with 240 V input. (b) Waveform at the junction of $L 601 / 2 / 3$.
from the junction of C335/6 to chassis. Set up RV303 on a colour transmission for a steady picture.
The RGB output transistors on panel C are of the reliable 2 SC2278 type. Only very rarely does one fail,

Fig. 4: (a) Waveform at the collector of 0502. (b) Waveform at the collector of Q50.3 (measure with care).

giving the predominance or absence of one colour symptom.

If the sound has failed, check whether R230 (180Ω, 0.25 W carbon nonflammable) has gone high-resistance.

Finally, it's best to use a digital meter for all measurements.

Video Servicing

Mike Phelan

This month we'll take a look at the principles involved in TV (or perhaps we should now say video) cameras - in particular the non-professional types intended for the consumer market. There are not many monochrome cameras in this category so we'll concentrate on colour ones. Apart from the electronics, the camera consists of a lens system to focus the image on the target, the tube itself (usually a vidicon type) and some sort of viewfinder.

The Lens

Taking these in order, the lens will be a high-grade optical component with the front element movable for focusing purposes. Most video camera lenses also have a zoom facility. This means that by operating a lever the positions of some of the elements in the lens system can be altered in the longitudinal direction so as to vary the effective focal length, i.e. the magnification. A typical range is $\times 6$.

With a photographic camera there are two ways of altering the amount of light that passes through the lens: the lens aperture and the length of time during which the shutter is open can both be varied. Since video is a continuous process there's no shutter and only the aperture can be varied. This is done by means of an iris diaphragm that's similar to that used in a still camera but has the option of automatic setting by means of a small servo motor. This is operated by a type of a.c.c. system that senses the mean signal level and adjusts the iris accordingly. Unfortunately the auto-iris tries to make the average picture content a medium grey. This is all right if the picture content averages out at this level, but at the extremes, e.g. snow scenes or night shots, it's not much good: these subjects need to end up at high and low average brightness respectively. Because of this there's always a manual override for the iris, with some sort of warning in the viewfinder to draw attention to under- or over-exposure. There's also occasionally an auto position giving "one stop above" for back-lit subjects etc.

The motor and reduction drive to operate the zoom are also attached to the lens assembly. As this has to be manually adjustable as well, some sort of a slipping clutch arrangement is used. Many lenses have a macro setting for focusing down to less than one inch, operated by turming the zoom ring beyond the end of its travel.

Some cameras, e.g. the Ferguson 3V06, have interchangeable lenses with a screw fitting known as a C mount. This means that the connections to the iris servo and zoom motor must be made by plug and socket and that care must be taken to cap the camera when the lens is out.
With artificial light it's necessary to take the colour temperature of the light into account. To put this simply, a tungsten bulb gives a redder (lower colour temperature) output than natural light. To correct for this a filter must be inserted in the light path. It can be fitted on to the front of the lens or built into the camera and operated by means of a knob. There may also be a semi-opaque filter to insert when the camera is not in use. The Grundig FAC1900
(Sony) camera has a four-position switch for different light sources, introducing both mechanical and electronic correction.

Precautions

Before we go any further, a word on the care of camera equipment. The most important "don't" is not to point the camera at a very bright scene (with or without the lens) for any length of time. Otherwise an impression that may be permanent will be made on the tube's target. Accidentally pointing the camera at the sun will almost certainly write off the tube.

Next lenses. I know that there are such things as lens tissues, brushes and all sorts of other paraphemalia around for cleaning lenses, but my advice is don't rub the surface of a lens with anything. O.K., you may pick up a few specks of dust on the surface. But if they won't blow off, leave them. The amount of light lost is infinitesimal anything on the surface of the lens is completely out of focus and therefore invisible on the picture. Far worse is the pattern of fine scratches produced by rubbing the soft lens coating with a tissue. This scatters light, reduces the picture contrast and impairs definition. The resultant "soft-focus" effect may look great for still portraits but is of little use for anything else. Lenses are coated to reduce light scatter. The coating is soft and will also be etched by fingermarks. If you should be unfortunate in having a lens with a thumb print on it, don't dry to rub it out.

The kindest thing you can do for a camera lens is to buy it an ultra-violet filter. These are available to fit any front thread and will reduce haziness on distant summer shots. Much more importantly, the filter will protect the lens. It should be left on all the time therefore. The light loss is minimal and a UV filter is much cheaper than a lens!

The Tube

The next thing in the chain is the vidicon tube (see Fig. 1) which looks something like a long, thin valve. The usual size is $\frac{2}{3}$ in., so the deflection angle is very narrow. It's essential that the lens and tube are held in rigid mechanical alignment with each other - especially in the case of a colour camera. The tube is clamped in a Mumetal shield to provide magnetic screening, the shield being rigidly mounted on the diecast chassis. The deflection coils are inside the shield - due to the narrow scan angle they are cylindrical in shape. A couple of beam alignment magnets (like purity rings) are mounted on the tube's neck.
The vidicon has six grids (or anodes, if you like). The sixth is the mesh electrode which in operation is at about 1.5 kV . It acts as the final beam accelerator. G3 and G5 form a converging lens with the focus electrode G4. G2 is at about 350 V and G1 is held negative with respect to the cathode, the bias being adjustable.

The target, a layer of semiconductor material on a glass plate, closes the front of the tube: the minute signal is taken off via a metal ring connector. A stripe filter in front of the target produces colour signals. It also has an optical black portion at the bottom to provide a reference level during the field playback. In front of the stripe filter there's an optically flat glass faceplate.

Without going into detail on the theory of operation, what basically happens is that the beam scans the target and a signal corresponding to the light falling on each part of the scanned target is taken off at the ring connector. This signal enters the head preamplifier, which is mounted

Fig. 2: Optical viewfinder arrangement.

Fig. 3: The auto-iris circuit used in the Ferguson Model 3V20 colour camera.
in a screened box adjacent to the tube's shield in order to keep the input lead very short. The signal is thus amplified to a value suitable for passing to the later signal stages without loss or stray pickup.

Viewfinders

Viewfinders fall into two categories. At the lower end of the camera price range an optical viewfinder is used (see Fig. 2). About a quarter of the light from the scene is reflected into the viewfinder by an unsilvered mirror, leaving the remainder of the light to pass to the tube. A second mirror is required to turn the light path through a right angle for ease of viewing. Note that the light for the viewfinder is taken off prior to the iris to allow maximum viewfinder image brightness. This type of viewfinder is found on the Ferguson 3V17 and other similar cameras, especially monochrome ones.

The other type of viewfinder is the electronic type (EVF) - used on the Ferguson 3V06 and 3V20 for example. In effect it's a very small TV monitor with a c.r.t. screen about $1 \cdot 5$ in. square. As the input is video (CVBS) there's no tuner, i.f. strip or sound channel. The timebases use very little power, so the unit is extremely compact. It's mounted separately on the 3V06: an extension lead
together with a remote start/stop control can thus be used - useful when filming in a situation where there's no access to the camera. In the $3 V 20$ the EVF is built into the camera's body. To facilitate mounting, the EVF's c.r.t. is in some cameras aimed at a 45° mirror.

One advantage of the EVF is that with suitable switching the camera can receive a playback signal. A recorded section of the tape can thus be checked and if necessary retaken. For the same reason an earpiece to check the audio can be plugged into most cameras. The EVF screen can be used to display other information along with the picture. One of the most common arrangemenets is to have a horizontal white line whose position on the display varies with the iris setting - for correct exposure it should be about half way up. When the trigger is pulled the line shortens to prevent the picture being obscured.

Both types of viewfinder can incorporate LEDs to show various items of information. Three LEDs may show correct, over- or under-exposure; alternatively one LED may illuminate the whole display if there's insufficient light available (as with the Sharp XC30). There's usually an LED to show whether the VCR's battery is going low this is often done by making one of the diodes flash rather than using an extra LED. On cameras with an optical viewfinder an indication that the tape is running is necessary - again a LED. On the Grundig/Sony 3000 it's duplicated on the front of the camera so that the subject knows he or she is "on the air"!

Before considering the main parts of the camera's electronics we'll look at the auto-iris and power zoom circuitry - these items have no connection with the rest of the circuitry.

Power Zoom

The power zoom circuit is simply a four-transistor bridge that drives the motor, opposite quadrants being switched on by the switches. The motor has a built-in reduction gearbox and the final pinion drives a toothed ring on the lens assembly. This ring is a friction fit so that manual zooming places no strain on the gear teeth.

Auto-iris Circuit

The auto-iris circuit can take various forms. On the 3V20 (see Fig. 3) the iris is controlled by a type of motor that resembles a moving-coil meter's movement. The moving parts are very light so little power is required - the motor is driven by an operational amplifier. This particular circuit is rather ingenious, as it eliminates the potentiometer that's usually driven by the servo motor in similar arrangements - this is a source of extra friction of course. The emitter-follower X504 is fed with a video signal whose amplitude depends, amongst other things, on the light passing through the lens. The voltage at pin 5 of IC501 is set by the preset iris control R509. R515/R514/ C502 form a T-filter that removes instantaneous video level variations, giving the circuit a time-constant.

If the iris is closed and the ambient light level decreases the amplitude of the video signal will decrease. The voltage at pin 6 of IC501 falls and as a result the voltages at pins 7 and 2 increase, driving current through the motor in the direction required to open the iris. If the voltage at pin 2 rises above that at pin 3 , pin 1 will fall to nearly chassis potential and the current through the drive coil will further increase. The system eventually finds a balance with the voltages at pins 5 and 6 equal. To prevent
hunting, a brake coil and limiting resistor (R506) are connected across pins 5 and 6 - while there's a voltage difference between the two pins, current flows through the coil and damps the movement of the iris motor.

If insufficient light is available the iris will open fully. The voltage at pin 6 will be low and current will continue to flow through the drive coil. The voltage developed across R512 will forward bias X502, illuminating the under-exposure LED. It will be apparent that this LED may flash momentarily each time the iris opens: these flashes are of very short duration however and of no consequence.

Next month we'll take a look at the rest of the electronics.

Letters

BAIRD'S STUDIOS

Thank you for Harold Peters' interesting article on prewar TV. I feel I must make a correction about the Baird studios however. As I understand it, the flying spot of light technique was used in only the earliest studios, to increase the sensitivity of the "camera" by using large arrays of photocells and also to avoid frying the performer with the enormous amount of light that would otherwise have been necessary. By the time the Baird intermediate film technique came into use the studio lighting was of the conventional type, the scanning process taking place in the telecine unit. Apart from the fact that there would have been no point in scanning twice, it would have been impossible to record in this way using any conventional film process.
Antony P. Marsden, MBKS,
Poole, Dorset.

PRE-WAR TELEVISION

I found Harold Peters' article on pre-war TV (October issue) very interesting, particularly his recollections of the programmes: I hope there'll be no offence if I correct one or two technical points.

Baird's high-definition system of 1936 used 240 lines, not 202. I think Mr. Peters has confused the intermediate film system with the spotlight studio. In the former a cine camera was used to record the scene in a studio lit by conventional film lighting. The film, which incidentally was 17.5 mm not 35 mm , was then immediately processed and scanned in the manner described by Mr. Peters. In the spotlight studio the single performer sat in darkness except for a flying spot of light that came from an arc lamp via a Nipkow disc. The light reflected from the subject was picked up by sensitive photocells that produced a video signal directly. Both these systems were in use at Alexandra Palace in 1936-7 but they were clearly clumsy compared to the flexible Emitron cameras. It was this operational difference rather than considerations of picture quality that led to the Baird system being abandoned after only three months of regular service.

As Harold Peters correctly points out, the fact that the electron gun in the Emitron tube was mounted at an angle to the target resulted in the need to use keystone correction in the scanning waveforms. This correction could be preset however, rather after the manner of EW and NS
correction in a shadowmask tube, and was not the reason for the famous tilt and bend controls. These were needed because the Emitron tube was subject to spurious shading effects due to the clouds of secondary emission electrons that were released from the target by the high-velocity electron beam. These secondary emission electrons upset the charge distribution across the target and hence the average brightness of the picture. To provide correction, sawtooth (tilt) and parabolic (bend) waveforms were added to the video signal. As the effect was picture dependent, these controls had to be readjusted for every scene. The Emitron tube had a gamma of 0.5 which was ideal for transmission purposes: thus gamma correction wasn't necessary.

For anyone interested in this period of TV history Bruce Norman's recent book Here's Looking at You, published by the BBC, makes fascinating reading.
David Looser,
Ipswich.

HISTORICAL RECORD

I gather that other correspondents have dealt with various technical points arising from Harold Peters' article on prewar TV. May I put the record straight on some historical matters?
(1) It was not the EMI team who developed radar in the UK, though many of them worked on it later, during the war, when two of the team - Alan Blumlein and C.O. Browne - were killed in an aircraft crash while flighttesting H2S. Credit for the early radar experiments is due to Sir Robert Watson-Watt, a scientific civil servant. The work was done at the Radio Research Station, Slough. Most of the electronic equipment for the early radar chains was manufactured by A.C. Cossor. It was originally called "RDF", later "radiolocation": it was finally agreed to adopt the American term "radar".
(2) The EMI team didn't develop the complete 405 -line package. The original transmitters and aerials were contributed by the Marconi Company, with whom EMI formed Marconi-EMI in 1934. While the Ally Pally station took about 18 months to complete, the electronic TV system was the result of several years' work. The Emitron camera tube, though developed independently, owed something to Zworykin's work at RCA where electronic interlaced scanning was developed. The early work on v.h.f. television in Germany should not be overlooked - the intermediate film technique used by Baird was also developed in Germany. Baird used this for his "live" transmissions, but he also had a good telecine for transmitting film. In fact apart from more flicker his film transmission gave significantly better results than the original Marconi-EMI 405 -line telecine.
(3) Finally the article was less than fair to the BBC in suggesting that they came near to backing the wrong horse. The BBC had been virtually forced by the PMG to transmit Baird's 30 -line system and were much impressed by the EMI work as early as 1932. The decision to share the high-definition service between Baird and MarconiEMI stemmed from the Selsdon Television Committee of 1934 and the subsequent Television Advisory Committee. Baird's pioneer work on low-definition TV and his later wartime work on high-definition colour deserve to be acknowledged but the 405 -line fully-electronic system was what the UK needed in 1936 (though not in 1946) and that came from the EMI and later Marconi-EMI team: the BBC seems to have recognised early on that this would be
the final solution to their long and often bitter struggle with Baird lasting, with occasional lulls, from about 1927. Pat Hawker,
Dulwich.

RADIOLYMPIA

I must be in the same age bracket as Harold Peters, for I too can remember the burning down of the Crystal Palace, though it was only a faint glow in the clear night sky to us at Herne Bay some 60 miles distant. Because of my enthusiasm for wireless my father took me to the pre-war Radiolympias. The 1937 one stands out in my memory as the first and last time that I saw a television set operating from the Town Gas supply. Hundreds of little bunsen burners heated thermocouples and the set showed what appeared to be an OB from Henley. In 1937 there were still thousands of houses in the London area with gas lighting only, so there may have been a market for such a device.

Harold Peters mentions the 1939 theatre show. In fact the show was being televised live from the theatre in 1937 - I still have my 1937 theatre programme, autographed by the stars of the show. The TV cameras were on the stage, supported on frames equipped with bicycle wheels, and the compère made jokes about the colour of the shirt he had to wear so that it would appear as a proper white in viewers' homes. There must have been public doubts about the reliability of the push-button tuners used on some radio sets at the time, as several manufacturers' displays had life testing machines punching away at the push-buttons in turn: as the radios were on, the sound kept changing from programme to programme, causing absolute bedlam around the stands.

The 1938 Radiolympia was more disciplined in that all receivers had to be tuned to the same programme. For a mischievous schoolboy this naturally took some of the fun from the show. I still have my Bulgin component catalogue from that show, price 3 d , which I could just about afford. I didn't get to the 1939 show.
W.R. Harris,

Potters Bar.

TV AUDIO VALVES

Nick Lyons suggested in the October issue that the PCL86 is a less reliable valve than the PCL82. I can only say that during a period of six years servicing ITT and Decca hybrid colour sets I had to replace over fifty PCL82s while jusi two PCL86s failed. This might of course be due to the better design of the ITT audio circuit but certainly doesn't point to the PCL86 being unreliable.
Derek Snelling,
Brownhills, Staffs.

THE PLUGTOP MYSTERY

I've read with interest the various letters on the great plugtop mystery. Here's my solution. Think of the neon bulb. When it lights, it's the negative connection that "holds" the glow. If you consider the neutral and live plugtop connections as the leads of a neon bulb and whatever consumes the current as the neon gas you'll appreciate why it's the neutral plugtop connection that gets burnt.
Lim Chin Siang,
Singapore.

next month in

- SIMPLE PATTERN GENERATOR

The heart of this pattern gernerator is a Ferranti ZNA234E i.c. which provides grey-scale, dot, crosshatch plus vetical and horizontal line outputs. The circuit used also enables black and peak white rasters to be selected. The PCB has been. designed to fit into a compact Vero box with battery holder. Though originally intended for video circuit testing, a u.h.f. modulator will fit into the case to provide an r.f. output.

- THE VHS HI-FI SYSTEM

VHS and Betamax VCRs featuring hi-fi stereo sound have recently appeared on the market. The same basic system is used with both formats. Extra heads on the drum record the audio, on f.m. carriers, along helical tape tracks. Derek Snelling explains the system and the techniques involved.

- GOODBYE TO 405

January sees the close down of the 405 -line network that's served us well for nearly fifty years - since the BBC started the world's first public ligh-definition service in 1936. Pat Hawker looks at the technical history and some of the things that never happened - you could have had two networks in Band III for example, with colour!

- SERVICING THE S-S INDESIT T24

The solid-state Indesit T24 was technically one of the most interesting sets sold - a sort of big brother to the T12. Mike Phelan describes common faults and some of the unusual circuitry the line output -ransistor is emitter driven for example.

- CHRISTMAS UGHTS!

Well the next issue will be published just before Christmas, so William Harrison decided to present a flashing light circuit using LEDs and a 12 V supply.

PLUS ALL THE REGULAR fEATURES

ORDER YOUR COPY ON THE FORM BELOW:

TO
(Name of Newsagent)
Please reserve/deliver the January issue of TELEVISION ($£ 1$), on sale December 19th, and continue every month until further notice.

NAME
ADDRESS ...
\qquad

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

				D 다 롱			REGISTERED OFFICE: 14, BEE LANE, FORD HOUSE, WOLVERHAMPTON WV10 6LF							All goods should be delivered F. within 4 working days.			
ESME32C	4.18	LM1303P/N	1.50	MPSUOS	0.71	SAA5010	4.5015	SN74190	181	Trovey	4.41	TBA3s5 TBA3950	$\begin{aligned} & 1.35 \\ & 1.0 \end{aligned}$	TDA1230 TDA1235	$\begin{aligned} & 2.58 \\ & 3.52 \end{aligned}$	TDA9503 TDA9513	${ }_{2}^{2.00}$
ESMmerec	4.18	LMi310P/N	1.25	MPSU10	0.7	SAA5012	6.50	SNT420N	0.30								
ESMMTEC	4.18	Liscosin	0.7	MPSUS5	0.50	SAascro	525	SN7430	028	18033	0.73	trasss	217	TAA1327a	${ }_{1} .45$	TE538	0.35
ETT0016	2.5	LM317CKC	1.30	MPSU56	030	SAA5030	7.59	SNTHON	024			tramop		TDA1327	1.6	TE626	1.35
ETTR8016	2.15	LM330N	0.0	MPSUso	120	sab500a	14.75	SN7473	0.5	10036	-4.	Tbatap		TDA1330	10	TEA1022	3.15
PNOS00	525	Lu307	129	Ma5to	0.30	SAA5050	8.50	SN7474	0.72	${ }^{18033}$	-1.	TBAsco	1.97	TDA1365	6.35	TDA1009	0.95
FT3055	1.8	LM3075	0.75	MR812	0.0	SAAB618	1.0	SNTISgaN	0.935	Trow	0	TBA500Pa	4.95	TDA1412	0.95	teaicosp	534
GF758	$0{ }^{1}$	Lmatil	0.75	MR994	0.4	SAATOO	3.00	SNT5110N	20.75	${ }_{\text {T }}^{50005}$	1.00	TBAS510	1.55	TDA120	1.48	TEA1097	0.46
67759	$1{ }^{1} 2$	LM3015	0.75	MSSDT00	0.5	SAB1093	${ }_{3.68}$	SNTGODSN	28.1	T6049	1.10	tbasios	6.39	TDA1470	2.08	${ }_{\text {IIClOSC }}$	0.55
GF761	0.7	LMECN	0.5	MVS240	0.52	SAB1046P			3.18	TECOLV	0.76	TBA520	1.57	TDA1512	220	TIC105M	0.55
GHFF		LM3 ${ }_{\text {L }}$	10	MVS460	0.30	SAB3011	734 54	SN76013ND	2.25	${ }_{\text {TRE058 }}$	0.4	T8A5200	135	TDA1670	3.85	TIC1160	0.20
HA1211	230	LM5678	1.30	MES565	${ }_{2} 0.55$	SAB3013	331	SNTEOO 3 NDG	3.07	TE659	1.85	tbas30	0.3	toaito	5.56	IIC4	0.65
HAP1215	4.en	LM748	1.05	ME545B	${ }_{3}^{2.95}$	SAB3m1	7.18	SNTODCS3N	2.35	Treoiv	1.09	tBas500	0.05	tDAl905	125	TIC45	0.70
HA1123S	3.50	LMasso	27	ME563	1.4.	Sabser	12.3	SNTbeczand	1.9	Tsocev	0%	TBA510	0.98	TDAI908	2.95	T1C47	0.70
HA11299	3.51	M1025	4.8	ME556	0.75	Sabzer 4	4.7	SN76105N	236	Tgoid	0.87	TBA550	1.95	TDAI940	${ }_{2}^{29}$	T1P10	0.4
HA1124	4.70	M1124	2.54	ME5560N	3.16	SAB3099	4.75	SN76110N	1.13	T9011V	127	${ }_{\text {TBASEAC }}$	225	TDazor	120	TIP117	0.0
HA12 24	4.32	M1130	57	MEs5s	120	SABz310	2.85 1275	SN76131	1.74	${ }_{\text {T9014V }}$	1.52	t'asooca	1.15	tDaz003	1.05	TIP120	0.73
HA1125	3.390	M191	15.74	MEBSEAN	3.00	SAFIT31	-1279	SNT62260N	120	${ }^{\text {T }}$ T0015	0.98	TBA5\%	1.55	toazon	2.52	T1P121	1.06
HA11251	3.57 20	M 4193	18,56	MEESSON	3.0	SAFIOSS	5.00	SN 18227 N	0.6	t9002N	0.39	tBaspa	1.55	toazos	125	${ }_{T 1 P 126}$	0.96
${ }_{\text {HAl }}{ }_{\text {HAl38 }}$	3.51	M5115P	4.4	ME6T5BN	3.0	SAFI099	11.65	SN7628N	2.97	Tsoav	125	tpasfoo	1.35	tidazol0	2.79	${ }_{\text {TIPP2955 }}$	1.30
HA11414	2.50	M51231P	279	MP1106	0	SAS5010	\%	SN7231	231	rsocev	125	Tragzas	1.97	tidazaso	${ }_{1}^{2} 1.5$		0.41
HAIIM	6.38	M5124P	438	0asm	0.10	SAS500	1.4	SNT72022	4.75	${ }_{\text {TSOEF1 }}$	2.55	TBA625C	1.97	TDA2140	1.4	TIP298	0.57
HA1156	123	M5134934	3.75	0asaz	0.10	SAS500S	297	SNTV233	4.75	${ }^{190651}$	${ }_{1.08}$	taAgatal2	3.75	TDA2150	5.00	71P29C	0.40
HA11580	710	M51394P	${ }^{2} 25$	0A47	0.10	SAS560\%	285	SN7632	197	TTosav	0.38	tBAbAlax 1	2.07	tDa2151	1.75	tip3055	0.05
HA1180	3.45	M516P	4.3	0A90	0.8	SAS570	1.61	SNT76390	200	T906TN	0.13	TBAES 1	1.00	TDA2150	3.4	TIP30A	0.41
HA1166	3.0	M5143P	6	OA91	0.00	SAS570S	0.00	SN7733909	20	TSocia	2.9	TBAET3	235	TDA2161	1.0	T1P308	0.00
HA1167	5.13	M514P	3.42	0495	$0 \cdot 1$	SAS5501	2.50	SN76510	2.05	TAS814	1.35	tba7000	2.19	tdaz190	3.11	T1P318	0.35
HA11711	16.13	M51513	2.05	OC28	0.95	SAS560	2.48	SN76530P	1.90	tatisop	4.35	teazzo	2.5	tDa2510	120	TIP31C	0.63
HA)1713	6.70	M51515BL	3.10	OC29	1.95	SAS5500	2.55	SNT6552N	190	tamel	4.35	tea730	1.75	TDA2520	2.15	T1P328	0.35
HA1174	7.05	M51516L	${ }^{3.40}$	OC35	0.98	SAS550		SN76533N		tando	1.58	tba7500	1.45	TDA2521	2.15	T1P32C	0.66
HA11715	7.55	M51517	250	0c36	1.16	SASE80	2.50 2.5	SNT6540N	1.50	TADE51	1.5	tba760	1.55	tDA2522	2.81	TIP33C	127
HA11718	6.79	M51521	1.90	${ }_{0}^{0}{ }_{0}$	0.40	SASEemo	1.20	SN7054	1.00	tafocoap	0.6	tBA780	3.00	TDA2523	2.75	TIP34	1.07
HAAl1724 HAll	15.90 16.6	M5191P	4.49	0 C 75	0.40	SASceos	120	SN765t5	4.55	tapobiap	0.7	tibasco	0.00	TDA2524	2.50	${ }_{\text {TIPIPIA }}^{\text {TiPa }}$	0.39 0.21
HA1180	4.0	M5192	2.00	ON188	1.70	SAS8610	120	SN 76546	3.15	TAF009	24	teabios	1.4	TDA2530	2.19	TIPAIC	0.4
HA1203	1.5	M5273P	0.9	ON238	2.90	SAS670	2.50	SN76546N	3.15 2.35	TA>071	3.35	trasiot	1.4	TDA2532	2.51	T1P42A	0.39
${ }^{\text {HA13306 }}$	1.74	M $53274{ }^{\text {a }}$	120	DT112	0.70	SAS670S	120	SN76550	2.30	TA\%onp	1.35	tBaszo	0.80	tDAz333	2.09	T1P428	0.71
HA1322	1.74	MACSOOI	0.97	${ }_{\text {PD }} 14$	283	SAS6710	120	SN76551	135	TA7073P	4.05	TBA8zOM	1.05	TDA2540	1.95	TIP4	0.4
HA1339	1.7	MABEOO	1.74	${ }^{\text {PTJ }} 1017$	243	SASE600		SN/6570	200	ta ${ }^{\text {a }}$ /4P	1.95	tBABSO	1.55	TDA2541	1.95	T1P47	0.65
HA13M2	10	M833712	2.05	${ }_{\text {Pr }}$	278	${ }_{\text {SASE610 }}$	230	SN76800	1.10	TA7066P	4.95	tbasod	225	TDA25450	3.15	T1P48	0.18
${ }_{\text {HAl }}$	3.95	MB3713	2.30	PTE0N	118	SBA5508	1.95	SN76611	2.35	tapoes	1.41	tragzo	1.50	TDA2560	1.97	TiS43	322
HA1336WR	1.10	мвз730	2.4	R1088	1.99	SBC750	1.16	SN76E20	235	tapoeap	${ }_{3}$		2.70 1.70	TDA2575A	2.95	tis90	
HA1367	320	MC13002	4.en	$\stackrel{\text { R1009 }}{ }$	1.98	SC9488P	1.50	SN76E22	1.50	${ }^{\text {taposp }}$	${ }_{1.4}$	trasso	1.55	TDA2576A	2.58	tiS91	0.26
HA1358	1.69	MC1303P	1.5	R22088	120	SCs500	1.50	SN/6823	2.81	ta7cor	${ }_{5} 3$	taisto	2.05	TDA2577	5.31	T107C	2.08
HA13588	185	MC1307P	1.50	R2009	120	Scssolp	1.15	SN76640	235	TA7108P	1.40	tragto	2.9	TDA2581	1.95	TMSICOONL	10.7
HA1370	2.97	MC1310P	125	R20018	120	Sçshl1p	1.90	SNT 76650 N		TA7109		T8A990	1.65	TDA2582	1.98	TMS3748NS	11.65
HA13T	20	MC1327P	120	R2029	120	SCRO57	120	SNTV6061	124	TA7120P	0.51	T8A9900	1.95	TDA2590	200	TMS4116	
HA1399	1.12	MC1330p	123	R2300	120	SG264	738	SNTGeson	225	TA7128/P	0.5	t8az31	233	TDA2591	200	TV106	120
HA13939	1.74	MC1349P	120	R2237	2.16	SG689	68	SNTE665	1.35	TA7124P	2.00	TC4001	129	TDA25910	250	TY60108	2.70
HA1332	2.0	MC1350P	1.10	R2205	1.95	SG629	623 9.37	SNTE6E6	1.35 0.9	TA 4130 P	1.15	TC.10538P	3.94	TDA2593	2.24	U05G	1.03
HA1397	2.97	MC1351P	0.75	${ }^{\text {R2305 }}$	1.07	ST-1020	9.76 4	SN7605	3.31	TA7135AP	1.15	TCA150	1.8	TDA2594	2.0	U143M	200
HA1398	28	${ }^{\text {MC1352P }}$	1.07	${ }^{\text {R2306 }}$	123	SI-1125HD	1.070	SNT6705N	3.99	TA7137P	0.55	TCA1608	1.2	TDA2800	5.00	U3700	0.55
HA1406	110		1.95	${ }_{\text {R2323 }}$	123	Sl-1130N	1.30	SNT670N	3.99	ta71alap	3.51	TCA2700	1.55	tDAz610	2.53		
	5.40 225	${ }_{\text {MC1 }}^{\text {MC1488 }}$	1.15	${ }_{\text {R2348 }}$	12	SKB2/08	0.70	SN76709	4.E5	TA7146P	s.0.0	TCAZOS	1.95	tDAz611A	125	UATz3CA	5.02 306
H04430	+15.60	MC14011	0.23	R2334	12	SKE2F 1/04	1.2	SN76709N	4.58	TA7148P	1.51	TCA270SO	1.65	toaz6ila	${ }_{2}^{2.55}$	UA783P3C	3.05 1.07
HD44001A05	15.90	MC14013	0.37	R2354	1.2	SKE2G 2 204	0.95	SN76730	423	TA7149P	2.10	TCALza	${ }_{1} 2.50$	TJA2200	1.95	UAaito	2.14
himazil	8.50	MC14016CP	0.3	R241	123	SKE26 3/04	1.95	SN/888ion	${ }_{2} .20$	TA716P	5.58	TCA40	1.65	tdazazo	234	uatiso	2.14
HMEZ23	7.71	MC14025	0.54	$\mathrm{C}_{2} 43$	0.20	SKE4F 1 1/8	128	SNTE92ON	2.85 3.45	TA71®P	425		1.95	tDAz631	2.4	ULN2165	1.35
HM9102	2.82	MCinague	0.52	R2461	210	SKE4F 1006	${ }_{2} .10$	SNSH041 SN9H042		Ta7169		TCA530	1.80	toazato	225	ULN2zo4	7.00
HM9104	2.94	MC1438	0.95	${ }^{8247}$	0.82	SKE4F 2006	2.10	SP8385	0.50	TA7171P	2.53	tcas\%	2.63	tdazal3	6.93	ULN2216F	1.95
HT420	15.80	MC1493P	256	${ }^{82501}$	1.16	SKE4 SKE4 2708	8.07	STAMIC	2.27	TA7172P	123	TCA650	185	tDazesi	2.95	UPCIOOOH	2.50
15699	187	MCC145108AL	3.15	${ }_{\text {P25 }}$	100	SKE4G 2 2/12	1.45	STK00eg	3.42	TA7176P	225	TCASEOB	200	tDAzes,	7.05	UPC1009C	5.74
15751	1.7	MC145568CP	3.15	${ }_{\text {R28 }}^{\text {R20x }}$	3.00	SkL1310	2.45	STK00389	4.00	TA7193P	4.4	icaso	3, ${ }^{\text {a }}$	tDazes3	2.95	UPCCIO20H	2.12
$\prod_{\text {K1744P }}$	0.20 2.95	MC1712	3.51 3.17	${ }_{\text {RCA }}$	1.5	SLI327E	120	STK0050	4.56	farzop	325	TCA700	225 175	TDA2854	2.91	UPCIIO25	2.29
kA2101	2.5	MC7818C	1.8	RCA19029	12	SL1430	126	ST100059	6.48	Lazzep	2.24	TCAT50	1.75		224	UPCIO28	0.50
KC581C	5.47	МС78е4С	4.25	RCA18003	4.81	SL14300	210	ST10000	320	latazip	1.95	TCAs00	${ }^{2} .65$	TDA2681	224	UPCIOOOH	2.05
KC5s82C	3.45	MC78M12	0.75	${ }_{\text {RCAICOM }}$	0.32	SL1432	225 3.35	ST10013	7.04	tazos	125	TCAB000	2.25	TDA2870	2.50	UPC1033	8.05
${ }^{1} 125858$	4.8	MC78924	085				3.12		7.14	ta	1.55	tcabzos	1.94	toaz6704	1.76	UPC1031H2	6.00
${ }^{11290}$	1.7	MCR101	1.17	${ }_{\text {RCAI }}$	2.15	SL437	5.80	STK015	5.12	taziop	325	TCAsO0	125	tidaze8	2.30	UPC1 $1 \times 32 \mathrm{H}$	0.94
Lal111AP	0.0	mсrzzof	134	RCA18801	$0 \times$	SL439	225	STKO16	$4{ }^{4}$	TA7214P	2.50	TCA910	1.50	TDA28989		UPCC1 15 H6H	1.45
LA1201	0.98	MEDM	0.27	RCA1890	0.58	SL480	1.78	STITBP2 STKRes	1720	ta7217ap	${ }_{135}$	TCE330	3.53	TDA2 2900	5.98	UPC11814	125
LA1210	1.45	MEOPO	0.42	RCA RCA1 7074	${ }_{6} 2.00$	SL9018	\% ${ }^{6}$	STK00 ${ }^{\text {a }}$	7.09	ta7z2	1.95	TCE527	137	TDA2791	2.50	UPC1182H	120
${ }_{\text {Lal332 }}$	1.6	ME011	0.45	RCA17376	1.43	SL9178	7.95	STKOMS	7.09	1A72727	1.90	TCEE82	0.50	TDA2795	2.95 6.12	UPC11856	2.95
LAII3in	5.90	meodil	021	RCAAOB57	4.50	SL9184	5.03	STKO54 STKOOP	${ }^{6} \mathbf{6} 28$	${ }_{\text {TAT3 }}^{\text {TAPP }}$	1.10	TCEA	0.5	TDA3000	2.31	UPC1212C	0.95
LAI354	2.74 2.79	MEA108	${ }^{0} 0.10$	${ }_{\text {RG4 }}$	${ }^{0.45}$	SNIESOIN07	1.59	STK0\%	7.00	tarbi3ap	136	TCEP100	4.00	TDA3000A	10.45	UPC1213C	0.95
LA1335J	1.70	MEE002	023	HT905A	2.00	SNicoendol	1.6	STK078	5.52	TAF314	5.10	TCEP1000	9.31	toajiso	1.75	UPC1217C	${ }_{1}^{224}$
LA1337	4.57	ME6102	0.45	scoso	1.9	SN188mon	3.30	STKOES	7.5	TA7609	3.30		${ }_{6} 0.5$	TDA3500	5.95	UPC1351C	1.6
LA3155	0.90	MES001	0.8	scors 1	1.94	SN16985	8.13 5.49	STK2101		TA7676P	3.05		225	TDA3501	10.99	UPC1353	5.75
LA3300	1.40	M12501	4.95	solip Sorep	1.4. ${ }^{\text {1. }}$		5.49	STK2110	6.e5	tas300	2.99	TD3F8000	321	TDA3506	10.12	UPCLI360C	4.10
LA3301	1.38	M. ${ }_{\text {M }}$	12.15	S0299	4.30	SN29716N	3.32	STK2230	6.6	tab310a	0.75	TDJFsgour	3.7	TJA3510	5.95	UPC1352	7.95 5 5
LA3361	1.30	M 33301	1.30	S175	18.55	SN29717N	6.53	STK115	S.9	ta ${ }^{\text {a } 23350}$	1.15	Tozfecmaz	3.7 2.10	TDA3520	8.12 12.17	UPC1356	${ }_{4} 9.23$
Lamasop	237	M 33128	240	\$22620	120	SN29722	${ }_{6}^{10.95}$	STK133	5.45	tana	1.05	tDatioca	2.15	TDA3550	6.07	UPC1458	787
Lamasip	3.0 1.4 10	musal	1.39	${ }_{\text {S28000 }}$	2.55	SN2974N	2.04	STK436	5.70	taA550	0.35	tDaiona	215	TDA3561	7.50	UPC2002	${ }_{2}^{1.42}$
LAN050P	1.12	MJEE2955	1.71	S2202	3.15	Snl29764aN	33:		8.10	TAA570	1.58	TDA10054	2.15	${ }_{\text {TDA35571a }}$	225 5.67	UPCOS2C	4.49
LA4061P	1.0	M M E E3055	0.7	${ }_{\text {S }}^{537205}$	4.73	SN29767	3.51 204	STK439 STK	6.8		1.50 2.00	TDA1mo	2.43	TDA3576	4.76	UPC41C	3.72
Latilo	1.18	MJJ300	0.4	${ }_{\text {S }}$	4.73 3.12	SN297178N	4.23	STK43	9.35	taAmis	3.31	TDAIM11	2.00	TDA3950	281	UPC554C	${ }_{3}^{1.67}$
latioe	2.55	ML231	228	S.0W	7.99	SN297T2BN	421	STK459	6.58	TAAGAO	3, 1.5	TDAIOR8	22	TDA395080	1.40	UPC566S	3.7 2.7
La4112	4.35	M1238	3.30	S551	4.12	SN2973	${ }_{1}^{221}$	STK400	7.71	${ }_{\text {TAAB618 }}$	1.59	TDA1c34	220	TDA1809	1.74	UPC572	3.51
L44125	2.400	ML2378 $\mathrm{ML239}$	228	$\stackrel{\text { Scoseos }}{ }$	275	${ }_{\text {SN297sen }}$	1.51 3 109	STK461	8.14	TAABM	227	TDA1005T	1.38	TDAL250	1.40	UPC575C2	3.72
L4A138	2.00	MLIMICS	0.30	S80877A	4.45	SN2ge45	2.14	STK45	7.32	tiasso	4.42	TDA103]	1.45	TDA 2830	6.45	${ }_{\text {UPC5 }}$	${ }_{0}^{200}$
LA4192	20	MLL23	2.18	SAailide	4.38	SN2S948	1.6	STK466	10.70	TAA9\%	2.57 1.91		1.51	TDAF30	1.95	UPC5\% ${ }^{\text {U }}$	23
141220	13	ML0526	325	SAAIOP1	4.32	SN29961	$2 . .0$	STK501	5.74 5	TAG223800	0.9	TDA1m7	2.14	TDA400	2.06	UPC592H	1.00
La4a0	2.04	MM53314N	3.72 3.7			SN29892	2.4.0	STRM1	\%39	TAG626 600	0.4	tDA1054M	1.10	TDAM20	425	UPD1554C	7.56
LAMEO	1.56	MME3316N	3.720	SAAAl1025	3.18	SNTJOON	0.24	STR453	6.75	t8aizo	0.95	TDA10598	0.90	TDAN22	5.10	UPD951	14.39
Latk3	1.46	MMS3309	1.12	SAA1051	5.30	SNTIDOM	0.24	STfegro	720	tbaiza	0.95	TDA1350	2.01	TDAM30	$4{ }^{4} 4$		${ }_{3}^{1.98}$
La4*0	1.92	MM53877AAN	11.50	SAA1061	321	SNTMCN	0.59	Treor	0.69	teaizas	0.95	ToA 1982	${ }_{5}^{2.55}$	TDAM32	2.05	хо035ta	3.35
Lath61	2.0	MM 5541N	5.90	SAA1075	4.41	SNTH04N	0.21		0.38	teaizos		Toal115	${ }_{0.05}$	TDAA40	2.52	X0056CE	3.90
LA5112N	1.0	MPP112	${ }_{1}^{1.35}$	SAA 1082		SNTIUOEN SNTIION	0.24	${ }^{18016}$	0.05	TBA120T	0.95	toailiz	2.15	TDAEE0	2.58	x0032CE	4.95
lateo	${ }_{7.31}$	MPP113	123	SAA1121	4.35 258	SN74121	120	reols	0.05	teaizou	0.95	TDA,ilios	125	TDAA610	2.02	XOOBSCE XOIOSCE	${ }_{6}^{3.48}$
La7es	7.11 2.12	MPP256C	0.54	SAA1130	4.5	SN7412	0.95	TGEPI	0.35	TBA12OUB	3.47 204	TDA1180	2.25 1.91	TDAA60	2.48	X0109CE	6.38
LA7801	3.6	MPS6570	0.43	SAA1174	5.75	SN7413N	10.33	${ }_{\text {T6020 }}{ }^{\text {T802V }}$	3.58 0.9	TEAI400	${ }_{3.00}^{2.4}$	TDA 1900	225	TDA5500	2.8	хC99P	120
103120		MPSAL2	0.59	SAA1250	3.7 5.3	SN7141/	1.51	${ }_{\text {TGMOR }}$	0.73	TBA141	1.59	Tdaizma	1300	- TDAS5700	2.10 200	730 rgea	0.24 0.60
$\xrightarrow{\text { LM }}$ LM1011 N	2.50	MPSA56	0.24 1.11	${ }^{\text {S }}$ SAAS500	${ }_{3} 305$	SN74154N	1.15	temg	0.35	tBA200A	3.12	toaizo	225] TDA9903	2.50		0.60
IF YOU	ONT	ETLIS	ED ASK	K FOR Q		IVE MAKE	DEL	L LOCA	E	EMBER	0.	0.60p POS	HA	NDUNG	15\%	VAT	

Long-distance Television

Roger Bunney

September was a very poor month for long-distance signal propagation of all types. By tradition, September is usually a good month for tropospheric reception. Not this time however. The rains have caught up with those who spent a dry, hot summer! There was the usual autumn SpE decline, so there's little to report. Solar storms and associated ionospheric disturbances towards the end of the month produced auroral activity - from the 17 th onwards - though the effects of this were restricted to northern locations. The main auroral activity occurred on the 23rd and 30th. This month's short $\mathrm{SpE} /$ auroral \log is as follows:

```
7/9/84 TSS (USSR) ch. R1; ARD (W. Germany) E2.
8/9/84 TVE (Spain) E2.
9/9/84 TSS R1, 2; TVP (Poland) R1, 2; CST (Czechoslovakia)
    R1, 2; ORF (Austria) E4; ARD E2, 4; +PTT (Swit-
    zerland) E2, 3; JRT (Yugoslavia) E3; RAI (Italy) IA;
    TVE E2,4.
10/9/84 TSS R1, 2; TVP R1, 2; CST R1.
11/9/84 TSS R1, 2; TVP R2; CST R1, 2; ORF E2a; JRT E3, }4
12/9/84 TSS R1.
13/9/84 TVE E2, 3.
17/9/84 Auroral activity noted in Band I.
23/9/84 Strong auroral activity throughout Band I, with signals
    (of sorts) seen on all channels - though with the usual
    identification problems. RTE (Ireland) IB.
29/9/84 TVE E2.
30/9/84 Strong auroral activity in Band I.
1/10/84 CST R1; ORF E2a.
```

My thanks to Dave Shirley (Hastings), Cyril Willis (Ely), Paul Barton (Harrogate), Simon Hamer (Powys) and Iain Menzies (Aberdeen) for sending in reception reports. Dave mentions that the present World Television Club series (Antenne-2, TDF) has come to an end. It will be resumed next year.

TV Pirates - UK Style

On the evening of October 7th a pirate TV transmitter was noted testing from 1930 on ch. E28 with the caption "Thameside TV". Observations from the Esher and Teddington areas suggest that the station's location is in the Croydon/Thornton Heath area. The caption features a circle within which there's an outline of London buildings and the "Thameside TV" identification - a further identification, "Channel 28 Thameside TV", appears at the bottom. The background colour is orange and the sound channel carries music. The transmission continued for several hours, with programmes from 2200. The sound is also transmitted at 90.5 MHz (f.m.). Press reports earlier in the week had suggested that the transmissions would be on ch. E36.

Thameside returned at 2200 on the 8 th, with programmes from 2300 until 0100 . On the 9th a pirate transmission with excellent quality was received in the Twickenham area with the carrier some 1 MHz below ch. 21. The identifications were " 36 " and "Late Night London Television" - there were no signs of signals on ch. 36. Programmes started at 0100 and continued until 0230,
with pop videotapes and an Egyptian film - the programme content is intended for Greek/Arabic viewers. It was announced that this "test transmission" will be followed by future programmes. It seems that the London airwaves could become an interesting field for late night DXing.

News Items

UK: The Dolby company is working on a stereo TV sound system using delta modulation as a possible alternative to the digital system proposed by the BBC.
France: Although Canal Plus transmissions started on November 4th, scrambling is not likely to be used before January 1985 - the idea is to get some initial publicity for the programming on offer. Apparently over 100,000 subscribers had signed up by the end of September. Boulogne and Amiens-St. Just will operate on ch. F10.
Denmark: Some independent (of Danmarks Radio) lowpower local TV transmitters are now in operation, including Horsens ch. E52 (seen at over 100 miles during tropospheric openings), Copenhagen-1 E52, Odense E53, Aarhus E54, Copenhagen-2 E56 and Bornholm E59.

Satellite Equipment

Frank Lumen has sent further details of his satellite reception in Colorado (see last month). His garden sited parabolic dish is a 12 ft diameter mesh type with a gain of 41 dBi and a beamwidth of 1.5° : it can be swung from $53^{\circ} \mathrm{W}$ to $143^{\circ} \mathrm{W}$ and elevated to 45°. The LNA is a $90^{\circ} \mathrm{K}$ Aventek that feeds a Dex downconverter mounted just below the actuator arm. The receiver is a Drake ESR240 with infra-red remote control. Interesting that the downcoverter provides a single conversion to 70 MHz at 72Ω, with an image rejection figure of 20 dB . The receiver has an i.f. bandwidth of $25 \mathrm{MHz}(-3 \mathrm{~dB})$ and a threshold at 8 dB carrier-to-noise ratio. The audio is tunable and the modulated output is available on ch. A2 or A3 at 3 mV .

We've received information from North East Satellite Systems on some relatively inexpensive dishes and supports they can supply. A 1 m diameter dish complete with stand, elevation/azimuth adjustment mount and a feed tripod is available at $£ 140$ plus VAT and carriage (depends on distance). The dish is of spun aluminium and is accurate to within $\pm 3 \mathrm{~mm}$. It can be used at 4 or 12 GHz but as there's little margin for signal attenuation, e.g. in wet weather, a 1.5 m dish has also been produced. Both Hugh Cocks and North East can supply electronics for Music Box and other downlink transponders in the $11-12 \mathrm{GHz}$ band. For rock music fans North East offer a stereo decoder/expander for disco use, taking its feed from a satellite baseband output receiver. The cost of the 1.5 m dish assembly, based on an initial production run of 50 , is quoted as $£ 249$ plus VAT. For further information write to the company at Cropton, Pickering, N. Yorkshire telephone 07515598.

Wideband Band I Aerial

Weston Developments (33 Cherville Street, Romsey, Hants SO5 8FB) have introduced a new four-element wideband ($47-68 \mathrm{MHz}$) Band I array with the emphasis on higher gain. The elements are spaced for optimum gain over the band, matching back to 75Ω unbalanced with an in-line matching cable section. A $1: 1$ balanced-to-unbalanced ferrite transformer is available for use with this and other aerials in the WB1-4 series. Gain is 2 dBd at 50 MHz rising to $5 \cdot 5 \mathrm{dBd}$ at 65 MHz with the front:back ratio typically 20 dB . Wideband aerials for the higher OIRT
channels R3-5 and the OIRT $67-73 \mathrm{MHz}$ f.m. band are also available.

TV Station List

The EBU's "List of European Television Stations, No. 29 " is now available at 750 Belgian Francs from the EBU, 32 Avenue Albert Lancaster, B-1180, Bruxelles, Belgium. This annual publication lists TV transmitters with powers down to mW operating in the European broadcasting area, including N. Africa and the closer Middle East, and is updated bimonthly with supplements. Highly recommended to all TV-DXers.

Circular Polarisation

In his Technical Topics column in Radio Communication (September 1984) Pat Hawker mentions the use of circular polarisation, particularly in Band II. The advantage is that reception is more acceptable and siting less critical with the types of aerials commonly used with portable receivers. For amateur satellite reception, crossed Yagi arrays with a phasing harness for switching between rotation modes gives circular polarisation. Bill Sykes (G2HCG), well known in the aerial industry and previously associated with J-Beam, has designed a device called "Polaplex" for use with crossed Yagi arrays: it provides accurate matching and control of the phasing between the two feeders over a full 360° so that all polarisation modes can be catered for using a control next to the receiver. This would make it easy to optimise reception from a satellite as it passes across the sky and might also make it possible to minimise ghosting and cochannel interference problems. It's hoped that the device will be made available commercially though there are no firm plans to do so at the time of writing.

TV from the Air

In the late 60 s there was great press excitement when Ronan O'Rahilly announced that he intended to start commercial u.h.f. TV transmissions from an aircraft flying a figure-of-eight over the North Sea. No more was heard of it however and nothing was seen. The subject of

Frank Lumen's 12ft. dish in Colorado, USA.

SOUTH WEST AERIALS

The WALTHAM 416 is a VHF/UHF $6^{\prime \prime}$ screen mono TV for System B/G operation (5.5 MHz sound) and is ideal for serious TV/DXing, or Continental travel and domestic use. Operation is via mains power or an external 12 volt source (all plugs and leads supplied). This receiver has a modern moulded cabinet and carrying handle, the controls are in a conveniently recessed but easily accessible position on the top of the television.
The 416 features extremely good sensitivity and sharp selectivity with its 4 individually tuned IF stages. All bands (VHF and UHF) feature continuous varicap tuning for ease of operation. Tuning controls and a clear scale readout are situated at the front of the receiver. ALL Band 18 3 TV/DX channels are covered, together with all UHF channels 21-68. Aeriall input is via a 75 ohm coaxial socket, in addition a strong ten Aerial input is via a 75 ohm coaxial socket, in addition a strong ten
section whip antenna ($40^{\prime \prime}$ extended) is provided at the rear. Two section whip antenna ($40^{\prime \prime}$ extended) is provided at the rear. Two internal speakers for maximum sound quality are another feature of the
416. The WALTHAM 416 is a modern and reliable export receiver made 416. The WALTHAM 416 is a modern and reliable export receiver made
for the W. German market. South West Aerials are the sole UK distributor for this model.
WALTHAM $4166^{\prime \prime}$ screen VHF/UHF mono TV (5:5MHz sound) inclusive of VAT $£ 69.95$ plus $£ 3.75$ carriage and insurance (adjustment to 6 MHz sound is available at an additional cost of $£ 2.50$). Delivery $3-5$ days.
Send 60p for our NEW extensive 1985 CATALOGUE detailing Aerials (DXing and domestic). Amplifiers, Filters, Rotators etc. Customer consultancy available to solve difficult reception problems, TV/FM DXing our speciality (include SAE with all enquiries please). ACCESS \& VISA mail and telephone orders welcome.

SOUTH WEST AERIALS (T)
11, Kemt Road, Parkstone,
VISA
Poole, Dorset BH12 2EH. Tel: 0202738232
airborne transmissions came up recently in an American magazine. In addition to a project for Band III transmissions from a Super Constellation flying over Vietnam a considerable number of test transmissions were carried out in the USA. Harry Caul (KIL9XL) writes that radio transmissions at $19,100 \mathrm{kHz}$ and 532 kHz with "This is the Voice of Blue Eagle" were heard over a wide area. The FCC took no action apart from announcing that the pirate station had been warned of the penalties, and it subsequently transpired that the transmissions were being organised by the military to gain information on coverage at various heights. It seems that a converted C121 was used as a flying radio/TV studio. These tests continued throughout 1964, then ceased. In 1965 the aircraft was used over the Dominican Republic following an attempted revolt and in 1966 it appeared over Saigon with two u.h.f. TV transmitters aboard - though there were no u.h.f. receivers in the area at the time! Rumour has it that some 1,500 receivers were subsequently distributed to the local population, and a second TV plane arrived. The planes seem to have operated at $20,000 \mathrm{ft}$, on ch. A12. Information is rather vague however - has anyone more substantial details?

Band I

The use of cordless phones in the 49 MHz band has been a considerable nuisance to TV-DXers in recent times. Their use has now become a criminal offence and if a unit is attached to the public network BT are obliged to report this to the DTI - prosecution could result in a fine of $£ 2,000$ for both the user and retailer, with the latter's stocks liable to be seized.

A further 60 special permits for operation in the $50-$

52 MHz band are expected any time now. The RSGB's 50.05 MHz beacon is operating on a 24 -hour basis at 15 W from the Potters Bar HQ, using crossed dipoles.

From our Correspondents . . .

Reg Roper (Torpoint) has been experimenting with CB aerials. He's found that two "Firestick" CB mobile aerials fitted on to an X 90° insulator work very well as a DX-TV aerial! I'd anticipate that direct connection to a 75Ω coaxial feeder would result in considerable mismatch, though this could be corrected by using a transistor amplifier for each element, combining down to 75Ω. Since $2 \times 27 \mathrm{MHz}=$ 54 MHz performance could be good - further details are awaited.

Robert Copeman (Melbourne, Australia) reports that closure of SBS-TV ch. 0 has been delayed until 1986 to allow more people to obtain u.h.f. sets (there are at present parallel transmissions on chs. 0 and 28).

I've received a long letter from Peter Tomlinson (Bristol), who works for the r.f. design company Iosis, following comments in this column on microcomputer interference. He says that the AR2001 general-coverage receiver seems to suffer from poor cross-modulation performance, with breakthrough from police, radio amateurs, radar and other sources. Others have reported this problem in areas where there's a strong local group A u.h.f. TV signal and Lowes (Matlock) apparently have available a modification sheet to overcome it. Peter
continues: "There's a new generation of high-resolution video display units at present being designed with video dot rates in the range $200-300 \mathrm{MHz}$. One display designer tells me that he can stop radiation through the c.r.t. by using a metal shield that acts as a waveguide. Properly designed, this blocks r.f. The video signals have large components at submultiples of the dot rate however. The same designer reports that the electronics generating the digital video signals seem to be more of a problem from the radiation point of view than the c.r.t." All this suggests increasing interference problems ahead. Perhaps the DTI should introduce legally enforceable standards as required by the FCC in the USA rather than guidelines.

East Germany

An official DFF transmitter list has been published by Tele-Audiovision. The channels for the first and second services respectively are as follows ($\mathrm{V}=$ vertical polarisation, $\mathrm{H}=$ horizontal):

Berlin	E5 H	E27 H Leipzig	E9 V	E22 H
Brocken	E6 H	E34 H Lobau	E27 H E39 H	
Dequede	E12 V	E31 H Marlow	E8 H	E24 V
Dresden	E10 V	E29 H Schwerin	E11 H E29 H	
Helpterberg	E37 H	E22 H Sonneberg	E12 H E33 H	
Inselberg	E5 H	E31 H Cottbus	E4 H	
Karl Marx Stadt	E8 H	E32 H		

The Cottbus E4 transmitter may close in 1986, transmissions moving to ch. E53.

Teletopics

CABLE CONFIDENCE FADES

The two largest operators in the UK cable TV industry, BET (Rediffusion) and Electronic Rentals Group (Visionhire), have decided to pull out. In addition, Thorn EMI is reconsidering the extent of its financial commitment to CATV. The Visionhire East Kilbride network is being closed and other networks will be continued only until contractual commitments come to an end. The company will not participate in any further cable TV activities. BET is selling its Rediffusion cable interests, subject to Home Office and DTI approval, to Robert Maxwell's Pergamon Press for $£ 11$ million. Rediffusion had the "showcase" Guildford cable TV franchise, which was expected to be the most successful of the systems approved last year, but had been unable to raise the $£ 30$ million it would have required to install the cables. Robert Maxwell, whose other interests include the British Printing and Communications Corporation and Mirror Group Newspapers, is also chairman of the small and so far lossmaking cable company SelecTV. He now becomes the UK's largest cable operator and it will be interesting to see whether he can make a go of cable where others have so far largely failed.

BET and ERG both blame delays in getting cable TV started, and the changes in the treatment of capital allowances introduced with the last budget, for their decisions to withdraw from cable TV. As David Hurley, managing director of ERG, put it "we now believe that the prospects of generating meaningful profits from this area on a normal commercial time-scale are too remote to justify our continued involvement". Thorn EMI says it has no intention of pulling out but is looking for minority
shareholders to assist with financing some of its franchises.
Earlier this year (see Teletopics, July) BET sold its Rediffusion TV rentals operation to Granada. This has led to union trouble since Granada recognises the electricians' union EEPTU while Rediffusion recognises the General, Municipal and Boilermakers' Union. Strike action has been threatened over Granada's plans to rationalise the Rediffusion operation.

HIGH STREET CHANGES

Changes are afoot amongst the high street electrical chains. Dixons, which has 280 stores, has announced a take-over bid for the family-run Currys group which has 531 outlets plus 25 Bridgers discount centres and 16 Carousel Colourhire shops. The bid follows the announcement of poor interim results by Currys and is being opposed by the Currys board. It seems that Dixons' trading has not been as badly affected as most other electrical retailers in recent months. The general situation is highlighted by Amstrad's announcement that it is for the time being withdrawing from the large-screen CTV and VCR markets to concentrate on audio and its home computer, which has been well received. Amstrad's founder and chief executive Alan Sugar has predicted a price war in the video and large-screen CTV fields.

Further high street rationalisation has resulted in the merger of the Trident retail and Telefusion rental chains to form the new Connect group.

DIGITAL TVs AND LCD DISPLAYS

TV sets using digital signal processing circuitry have been announced by Toshiba, Panasonic and Zenith in the USA. It's understood that all these sets use the ITT Digivision range of chips. Most have a "picture-within-picture" feature enabling a picture from an external video source, e.g. a VCR, computer, etc., to be displayed in the corner of
the screen, with remote switching between the two as the main picture. Mitsubishi have also announced a digital TV set, in this case with a still picture function using a one frame video memory. Other features of the set are a timelapse mode that enables nine different TV programmes to be monitored on the screen simultaneously, with image renewal at four second intervals. Alternatively the ninesection display can be used to provide stroboscobic pictures, the intervals between shots being variable with a minimum of one thirtieth of a second - this feature is useful for studying golf form and providing other slowaction sport's shots. The set is expected to go on sale in Japan next autumn.

Casio has demonstrated a prototype 6in. liquid crystal colour TV display in Tokyo and plans to start production next year in various screen sizes from 2.5 to 12 in . Seiko have announced a 2 in . screen colour TV set in the USA, using a liquid crystal display with fluorescent backlighting and 52,800 pixels, each separately driven by a thin-film transistor. The liquid crystal is of the twisted-nematic type. Similar sets are planned by Citizen and Sanyo.

DISCS

Interactive video discs have been launched by JVC in Japan. The VHD discs can be used with a domestic computer to give realistic displays on the screen. As a result of interfacing the disc player and computer the user can modify and control the display. Programmes on the initial discs include road racing, casino games and chemical experiments. The move could well boost the prospects for disc systems - Philips have already announced an interactive LaserVision disc player in the UK, Model VP831, for the professional market, with computer interconnection via an RS232 port.

Thorn EMI is to supply VHD discs to Toshiba for sale in Japan. Deliveries are expected to reach 50,000 a month by the end of the year.

Hitachi have announced that spares for their CED disc players, now no longer in production, will be available for at least seven years.

FERGUSON CAMCORDER

The Videostar C Model 3V41 camcorder has been added to the Ferguson range of video equipment. This combined colour camera/VHS-C recorder has numerous features including an electronic viewfinder with eight recorder/ camera mode indicators, a half-inch saticon tube, colour picture search and back space edit. The comprehensive range of accessories includes a super-directional microphone (which can be used with other Ferguson cameras) and a character generator. The latter enables the user to generate captions and titles when filming - four different types of pages, different sizes of lettering and options for positioning on the page make a variety of styles possible.

8 mm VIDEO

The Kodavision series 2000 8mm video system has now been launched in the USA. A significant advance is a twohour cassette which is to be made available for worldwide distribution in mid-1985. The tape is produced for Kodak by TDK and is 10 microns thick - the present ninety minute cassette uses 13 microns thick tape. There's still no date for the UK launch of the Kodavision system.

Sanyo has announced an 8 mm video system in the USA, comprising a separate VCR and a camera that looks like a 35 mm photographic one and takes standard 35 mm lenses. The Electronic Industries Association of Japan
expects sales of 8 mm equipment to reach six million annually in seven years' time, accounting for some 20 per cent of the world VCR market.

JAPANESE-EEC MOVES

The Japanese Ministry of International Trade and Industry has asked Japanese VCR manufacturers to reduce their exports of complete, i.e. non-kit, VCRs to the EEC by over ten per cent during the current financial year in order to avoid excessive price cutting. There has already been an 11.7 per cent decline in Japanese VCR exports to the EEC, where demand is currently slack. Not that the Japanese VCR manufacturers need worry unduly: exports rose to a record $1,993,000$ in August, with $52 \cdot 5$ per cent going to the USA and only $19 \cdot 1$ per cent to Europe.

A standing joint committee to decide on common standards for consumer electronics goods has been proposed at a Japanese/EEC conference attended by eighteen leading electronics companies. The Japanese delegation was led by Sony's chairman Akio Morita while the European delegation was led by Philips' president Wisse Dekker.

CHANNEL FOUR COVERAGE

Almost fifty million people can now receive the Channel 4/S4C transmissions, roughly 97 per cent of the population. Ultimately the coverage should equal that of ITV/ BBC at over 99 per cent. During 1985 another one hundred low-power relay stations will be equipped for Channel 4/S4C transmission, bringing a further 600,000 people within range. This will leave roughly 200 transmitters to be equipped in 1986/7 to complete the programme. In addition, new fill-in relays for all IBA/BBC channels continue to be built at the rate of about one a week.

PRESTEL MAILBOX NATIONWIDE

Prestel's 24 -hours a day electronic message service Mailbox is now available throughout the country at local call rates, enabling messages to be sent instantly between any of the 47,000 terminals on the Prestel network. There are no sending/receiving charges above the normal Prestel operating costs. Mailbox was launched in 1981 as a local service for London subscribers, though users elsewhere could use it by making a long-distance call to the Mailbox computer. Users can either send their own messages via a typewriter keyboard or, if they have only a standard Prestel numeric keypad, they can select from a list of over 400 stock messages and phrases. To despatch the message the sender keys in the recipient's Mailbox code: the recipient is informed that a message awaits him whenever he calls Prestel. Up to five messages can be stored indefinitely in the Mailbox computer until called up by the recipient. The use of personal code numbers ensures that messages go only to the correct destination without interception by other users. A recorded delivery feature is to be added next year.

V2000 HI-FI

Now that Betamax and VHS VCRs with hi-fi sound are with us, using the same basic techniques, what about the V2000 system? Not to be left out, a prototype V2000 hi-fi machine was on display at the recent Dusseldorf Hi-Fi and Video Show. Models are expected to be released during 1985, though whether they will appear in countries other than the Netherlands and W. Germany, where the system has a reasonable share of the market, remains to be seen.

The technology involved is quite different from Beta/ VHS: the audio is converted to digital form, using pulsecode modulation, and is compressed so that it can be inserted in the video waveform's field blanking period it's laid down in the 0.325 mm centre section of the tape originally intended as a cue track but never in practice employed for this purpose. The introduction of models on the market awaits the development of i.c.s to carry out the audio signal processing, which in addition to compression/ expansion and coding/decoding involves noise reduction in both the recording and playback modes. The audio heads are mounted on the same piezoelectric actuators as the video heads so that both are subject to the dynamic track following that's a major feature of the V2000 system.

As to the future of the V2000 system, it's interesting that Philips' president Wisse Dekker commented in a recent interview with Electronics Weekly that "Philips is certainly not as strongly committed to V2000 as it was a year or so ago". In his view the decision by Philips to manufacture and market VHS machines should have been taken earlier while "now it's up to the market to decide". Grundig expects its VCR production to settle at two thirds VHS to one third V2000.

CHANNEL 7

Atlas Leisure has launched a video service called Channel 7 for the 2,000 large-screen video projectors installed in pubs and clubs by TeleJector. The service will consist of a mixture of sport, comedy, films, music, travel and news and will carry advertisements (the advertising rate is $£ 2,800$ for two thirty second slots shown daily for a week). Atlas hopes to increase the number of installations to 3,000 by mid- 1985 and eventually to serve one in five of the UK's pubs and clubs. The use of satellite transmission is planned.

FOREIGN NEWS

The Australian government has decided to use the MACB transmission system for the AUSSAT satellite radio/TV service which is due to start next year, carrying $A B C$ programmes to the outback... The Italian government has issued a decree making the three private TV networks legal - magistrates had earlier closed the networks in three areas on the grounds that they infringed the state-run service's monopoly ... Grundig is to supply VHS VCRs in kit form to China for local assembly under licence. The company already has an agreement with China on CTV production... The launch of the first French DBS satellite, originally planned for November 1985, has been postponed until late 1986 due to technical problems with the high-power output tubes.

BBC AT IBC 84

The BBC's sound-in-syncs system for the distribution of mono sound and video signals via a single link was developed over fifteen years ago and has since been widely used throughout the world. The BBC is at present developing a system for two-channel sound, taking advantage of an important development in digital audio techniques - the NICAM-3 near-instantaneous companding system. In order to get twice the information into the same bandwidth and much the same time slot, a quaternary coding system and slightly more of the line sync pulse period are used. The technique was amongst several interesting exhibits shown by the BBC at IBC 84.

Of particular interest to TV engineers will be the fact that the BBC now have a digital generator for test card F.

The geometric patterns are generated by computer techniques with reference to the original drawings, with edges both vertically and horizontally anti-aliased for optimum accuracy. The central picture with the little girl was copied from a slide by means of a YUV "picture grab", the resulting data being inserted into the geometric pattern during the computer preparation process. So it seems that the well known and much appreciated pattern will be with us for some time yet.

VIDEO NOTES

Panasonic's latest VCR, Model NV730, is less than four inches high. It's a two-speed machine expected to retail at about $£ 633.50$. BSR is to manufacture under licence Mitsumi r.f. modulators for VCR use at its Stourbridge, W. Midlands factory. Akai's new European VCR factory is to be built at Honfleur, western France, where the company already has a plant manufacturing hi-fi equipment and assembling VCRs. It had been hoped that Akai would set up the factory in the UK.

Panasonic have developed a still-picture camera using electronic technology. Up to 25 colour shots can be stored in digital form on a magnetic disc. The system is similar to Sony's Mavica camera and is expected to go on sale in a couple of years" time.

WILLOW VALE TRADE SHOW

The next Willow Vale Electronics trade show will be held at the Ladbroke Mercury Motor Inn, Exeter on November 28th, 1984. For further details apply to the Sales Manager, Willow Vale Electronics Ltd., 11 Arkwright Road, Reading, Berks (telephone 0734876 444).

HEAD CLEANER AEROSOL

Electrolube have introduced a Video Tape Head Cleaner aerosol that loosens and removes accumulated deposits of dirt and tape oxide, drying quickly without leaving any residues on the tape. It's designed for use on all magnetic tape heads and comes in a 110 gram can. Application is by spraying directly on to the heads and the tape path alternatively it can be sprayed on to cleaning tapes or other cleaning devices such as cotton buds. For further details contact Electrolube Ltd., Blakes Road, Wargrave, Berks RG10 8AW (073 522 3014).

PROPOSED ATV REPEATERS

A number of people have expressed interest in a 23 cm ATV repeater for the Southampton/Bournemouth area and several possible locations have been considered. It has been suggested that two separate repeaters, one for the Bournemouth/Poole area and another for Southampton, would give better coverage of low-lying areas. Amateurs interested in 23 cm operation are invited to contact Nick Foot, G4WHO, 47 Mallard Road, Colehill, Wimbourne.

EXHIBITIONS

The next Berlin Radio Show, now known as the Audio and Video Fair Berlin, will be held on August 30September 8 1985. Details can be obtained from AMK GmbH, Postfach 1917 40, Messedamm 22, D-1000, Berlin 19.

The twelfth annual Audio Visual Exhibition, AV85, will be held on April 22-25 1985, at the Wembley Conference Centre. The organisers are Maclaren Exhibitions Ltd., PO Box 138, 79-81 High Street, Croydon CR9 3SS. AV85 will be sponsored by Audio Visual magazine.

Teletalk on Colour

Malcolm Burrell

I was mulling over the question of colour picture quality recently. It seems that one result of so much circuitry being taken over by the silicon chip is greater consistency with our colour pictures. When colour started in 1967, and became more popular in 1969 as it spread to all channels, everyone would remark on the variation between the sets on display. True, variation still exists, but it's now more a matter of how well the set is tuned in and things like that. Most of us probably tend to take colour pictures for granted: the quality is more consistent than it was, but I feel that it's settled at a rather mediocre level of consistency.

The Early Sets

In 1967 we had dual-standard hybrid sets like the Decca CTV25, the GEC 2028 and the Philips G6. They used valves in the output stages and colour-difference drive, i.e. luminance at the tube's cathodes and the three colourdifference signals at its grids. This made grey-scale adjustment much simpler and somehow gave slightly better colour. To me the first G6s had a certain something that amounted to richer colour. The reds were red and flesh tones had a certain Technicolor golden hue that few other sets matched.

By 1969 we had single-standard sets. These often bore a more than passing resemblance to their predecessors but had somehow begun to loose something. I personally thought that the Thorn sets of the era, with their solidstate circuitry and RGB drive, never quite made it for colour quality, though a friend of mine still has a 25 in . one that gives quite exceptional pictures for one of this breed. Decca went on to make the famous 10 and 30 series Bradford chassis which, though beloved by many engineers - they were excellent for quick servicing - somehow lacked something when it came to colour quality. They gave good pictures but the colours were not outstanding. Even the single-standard G6 didn't quite match its elder brother unless you got a really good one.

The K70

Then suddenly the Philips K70 came upon the scene. A few of these appeared in discount stores while some went to the rental outlets. The first thing of note about them was the use of varicap tuning, something we'd not experienced before in the UK. Imagine, I thought, no more mechanical tuners to fall to pieces! When you switched one of these sets on the next thing that became apparent was the superb sound quality, which was almost as well matched by the picture.
I remember being bewildered when I first made a call to service one of these sets. It had an elaborate but flimsy chassis that hinged outwards. The layout looked much the same as the G6 - but there were two line output valves! I always admired the sound reproduction, which came from the combination of just a single PCL86 and two speakers. I wondered what the secret was. The speaker at the front was a tweeter while the side-mounted bass unit was of special construction. I can remember substituting (temporarily) an ordinary type to compare the results. The
difference was startling. I'd secret designs on the speaker in the set but had to return it reluctantly to its rightful place. In subsequent years I did manage to get one from a scrap set but found that it didn't give much of an improvement when installed in a conventional TV set. It just shows how much thought was put into this Philips system - the loudspeaker, the circuit, the output transformer and the cabinet.

Orientals

I first encountered a 13 in . Sony portable a good few years ago. The Trinitron system impressed me, as did the overall picture and colour quality. I subsequently bought a KV1810UB and found the pictures acceptable though not quite so outstanding. My main reason for buying this set however was its hue control - it was the last set sold in the UK to feature one of these. It enabled me to trim the phase of the reproduced colour slightly - unlike the tint controls provided on some sets (these altered the greyscale as well). The 1810 had a $114^{\circ} 18 \mathrm{in}$. tube that didn't quite seem to have the sparkle associated with the earlier 90° types. It seems that the early 110° tubes that were used mainly in sets of Continental origin didn't produce sparkling pictures for very long.

I had thought that most 90° delta-gun tube sets had long passed their prime. Then last year I encountered an Hitachi CNP190 that had never required a service call in all its nine years of operation. Amazingly, the tube gave a superb, clearly defined picture with vivid, rich colours and would have put many a new set to shame. I must admit however that most of these sets are now well passed their best.

I live with a Sony KV2704 now, and though the colours don't sparkle they're certainly very good. Why did I buy it? First because I wanted a large screen and prefer the Trinitron's shape to the conventional goldfish bowl type. Secondly the Trinitron grill principle seems to me to be a more sensible one for in-line gun tubes than the seg-mented-slot arrangement. Thirdly the "turbo-drive" - a sort of dynamic focus system that was described briefly in the November 1981 issue (page 39) - really does seem to give sharp images right out to the edges of the screen.

What is True Colour?

As to what is true colour, it depends I suppose on what you're watching. A newsreader should look natural. If he's been sitting inside a studio all his life perhaps he should look pasty-white, but isn't it nice to see an old British film with scenes of London where the buses are much redder than they would ever have been in real life?

Then I think of photographs and slides. Do you remember the experimental colour test transmissions during the 50 s and 60 s , with endless slides of telephone boxes and young ladies in hats?! I came across a slide recently of a picture taken from a GEC 405 -line colour receiver (TT4, see Practical Television early 1959) working on the NTSC system. Being from a photograph, the flesh tones were rich and golden. I once wrote to the IBA with some comments on Test Card F - that one should aim to get a
sort of warm golden brown in the upper arm area of the little girl. I think this caused some amusement, but I found that subjectively if you got this then a vectorscope was irrelevant!

In Conclusion

This is not to suggest that we return to the days of the G6. Most engineers who remember them prefer today's sets. In any case, I think that for clarity the in-line tube is preferable. It's not likely that one can improve on years of design work. A TV set is designed to give a certain picture quality at a price. Minor improvements sometimes work, also correct adjustment. Why for example was it that
almost every Decca 30, certainly the ones l've encountered, seems to have left the factory with Hanover bars when quite a simple adjustment puts this right?

A few weeks ago I had to attend an elderly Thorn 8000. It was working with a grotty aerial but the picture was noisier than usual. Out came the decoder/i.f. panel and we soldered the broken print around the i.f. input from the tuner. Having checked that there was indeed a colour picture I zoomed off. One whole month later the call "green faces" came. In my haste I'd accidentally swapped the green and red leads to the tube. I could go on about the old lady who watched a GEC set with a flat blue gun (all yellow) and after I'd fitted a new tube said "it's not as good as it used to be", but I'll close here.

TV Fault Finding

Reports from Mick Dutton, Hugh Allison, John Coombes and Malcolm Burrell

ITT CVC801 Chassis

The problem with this set was no results, though on closer examination we found that there was 320 V across the mains bridge rectifier's reservoir capacitor C658. The chassis has a chopper power supply, with the drive coming from the line oscillator chip and the line output transistor driven from a secondary winding on the chopper transformer. Quick checks showed that none of the obvious semiconductor devices was at fault, so the question was where to go from here?

We decided to power the line oscillator from an external supply, and were rewarded with line whistle and a chopper output of some 30 V instead of 110 V . We then replaced the line output transistor with a low-wattage bulb. The h.t. remained low, proving that the fault was in the chopper control circuit. Voltage and waveform checks were then made in the power supply. Everything was o.k. up to the collector of T731, the pulse-width modulator transistor that drives the chopper driver transistor T750. T750's base waveform was incorrect, T731's collector voltage was slightly high and the voltage reading at the collector of T750 was low. The problem was traced to D750 (1N4148) being slightly leaky - this diode is connected between T750's 28 V supply and the 20 V rail that supplies the rest of the chopper control/drive circuit.
M.D.

ITT CVC1100 Chassis

Another case of no results. There was 300 V across the mains bridge rectifier's reservoir capacitor C658 but no 115 V h.t. rail. This was due to the fuse being open-circuit and the over-voltage zener diode D658 short-circuit. It's important that the set isn't run with D658 removed as excessive h.t. can result in the e.h.t. rising alarmingly, with possible damage to the tube. The recommended procedure is to check for obvious shorts, then connect a lowwattage bulb across D658 as a load for the power supply. Next disable the line output stage by shorting together the base and emitter of the line output transistor. When we did this the bulb lit and the h.t. line was steady at 115 V .

With the bulb still in circuit, we removed the line output transistor short. This produced an h.t. line of about 40 V with some obvious straining noises from the chopper transformer. Fine we thought, the power supply is o.k. and there must be an excessive load somewhere. We checked
the secondary supplies provided by the line output transformer and found that the 150 V rectifier D504 was shortcircuit. This is quite common but usually the associated safety resistor R514 is burnt out. In this case it was intact and replacing the diode made no difference to the overload condition. We checked everything, including the line output transformer by replacement, without success.

Time for thought. Maybe the fault was in the power supply after all? The chopper circuit is self-oscillating, the feedback pulses from tag e on the chopper transformer going via a winding on the line output transformer (to synchronise the action), R722 (4.7』), C714 and R723 to the base of the chopper transistor. It turned out that R722 was open-circuit, as a result of which the chopper was operating in the start-up mode. Replacing R722 restored the correct h.t. voltage, but there was a lack of brightness and the picture was much overscanned. We'd left the replacement line output transformer in the set - refitting the original one produced a perfect picture. Our replacement transformer and the two others we had in stock turned out to be faulty.
M.D.

ITT CVC20 Chassis

The trouble started with faint horizontal lines across the picture when the chassis was in the normal, raised position. To cut a long story short, there was a high-frequency ripple on the h.t. line caused by a spurious oscillation in the TDA2640 chopper control i.c. Before we discovered this another engineer had changed the line output transformer in an attempt to cure the fault. Having sorted things out I had to replace the original transformer. This led to loss of the 24 V and 12 V lines due to an earthing lug on the transformer connected to D24. Then the contrast became low with no colour. This turned out to be due to D3 (1 N 4148) in the beam limiter circuit having gone short-circuit. It would have been cheaper to leave the new transformer in the set and say nothing!
M.B.

Rank Colour Portable

One of these sets, manufactured in W. Germany by Saba, came in with the complaint that there was line pulling and field jitter when it was first switched on. This looked like an a.g.c. problem, and we found that bridging the a.g.c.
time-constant capacitor C284 $(4 \cdot 7 \mu \mathrm{~F})$, which is connected between pin 4 of the TDA440 i.f. chip and chassis, cured the field jitter. We were left with bent verticals except when the channel 8 button was selected. Replacing C923 $(47 \mu \mathrm{~F})$ which decouples the supply to the TDA2590 sync/ line generator i.c. cured this problem. In both cases the capacitors seemed to be o.k. when tested.
M.B.

Thorn TX9 Chassis

The fault was field cramping a third of the way from the top of the raster. Voltage checks around the TDA1170S field timebase i.c. (IC55) revealed the fact that the output pin 4 was at around 18 V instead of 13.8 V . Everything else seemed to be o.k. A replacement i.c. failed to cure the trouble and I eventually found that R288 in the d.c.. feedback loop was high at $50 \mathrm{k} \Omega$ instead of $18 \mathrm{k} \Omega$. If R288 goes open-circuit you get complete field collapse - I tried it out of curiosity!
M.B.

Hitachi CNP190/CNP192

These sets are built like battleships and seem to soldier on and on. One came in with various complaints that were cured once the main problem was appreciated. The picture was oversize, with a ripple, and the clue was that the h.t. rail was at 150 V instead of about 120 V . The set h.t. control R911 had no effect and almost every voltage around the series regulator seemed to be 150 V . R912 ($18 \mathrm{k} \Omega$) which links one end of R911 to chassis turned out to be open-circuit - it must be checked out of circuit. M.B.

Hitachi NP81CQ Chassis

No sound led to a quick check at the d.c. supply pin (pin 10) of the TDA1035S sound channel i.c. The supply was missing, due to a dry-joint at pin 8 of the chopper. transformer T901. Note that a lot of intermittent faults are caused by dry-joints in this area.
M.B.

Thorn TX9 Chassis (Stereo)

This stereo sound version of the chassis came in with a tricky problem. Sometimes when the set was first switched on there would be no sound and field collapse! Of course it wouldn't go wrong in the workshop to start with, and when it did go wrong it corrected itself when dismantled. I tried to find a common link between the field and sound circuits on the main board, but there isn't one. There is on the stereo board itself however, since this incorporates 5060 Hz selection for video disc reproduction. Probing here brought to light a hairline crack in the print from PL121/1 to R1243 (12V supply line).

Thorn M2080

The elderly lady who owned this set said that it had spent longer in various workshops than in her own home in the four years she'd had it, while the repairs had cost more than the set itself. The complaint was intermittent tuning instability.

The stabilised supply to the tuning potentiometers was clean, but the output at the tuner was a bit jumpy. The a.f.c. to the tuner was jumping around like a fiddler's elbow but became clean when the aerial was disconnected. So it wasn't an a.f.c. fault. We decided to connect the set's aerial socket to the input of a spectrum analyser and wind the tuning potentiometers to minimum voltage. The tun-

er's local oscillator was found to be rock steady: on winding up the potentiometers the oscillator became more and more unstable. Feeding in a tuning voltage from the bench supply produced the same results, so it seemed that the tuner was at fault. We removed it and fed 12 V to the tuning pin, with no other supply, scoping the varicap diodes in turn. One of them had a volt of noise across it while the rest were quiet. Since the tuner is an oddball type that we didn't have in stock we replaced the varicap diode and realigned the tuner. After refitting it the set worked perfectly.
The old lady and I are both a bit puzzled why the last "engineer" called in to deal with the fault disconnected the infra-red remote control unit and charged $£ 45$ for doing this. If you're reading this, I hope you feel ashamed! H.A.

Mitsubishi CT2206TX/CT2217TX

For no sound, a green/purple display and no remote control operation check the voltage at the collector of the 12 V regulator transistor Q7P1 on the remote control panel. There should be 16 V at this point. If it's missing the series resistor R7Q2 (4.7 $)$ is probably open-circuit. J.C.

National Panasonic TC492G/TC682GR

For high brightness with flyback lines check the 190 V line. You'll probably find this low due to the reservoir capacitor $\mathrm{C} 555(10 \mu \mathrm{~F})$ being open-circuit.
J.C.

Decca 70/90 Chassis (Touch-button tuning)

In the event of a noisy raster, noisy sound and no LEDs alight, check the voltages on the tuning panel, in particular around the SN76705AN channel selector i.c. The voltage. at pin 15 should fall to a low reading when the channel one push button is operated. If this doesn't happen, short the pin to chassis. If this restores results, check the contact between pin 15 of the holder and chassis. If you don't get a short-circuit reading, replace the holder or solder the i.c. into the panel directly.
J.C.

Toshiba C1695

This set wouldn't switch on from standby. We found that the 16.5 V supply on the remote control panel was missing due to D408 (BY210) on the mother board being opencircuit.
J.C.

Canal Plus Scrambling

Andy Emmerson

With the official opening of the Canal Plus service on November 4th, pay-TV took to the French airways. It is, I believe, the first instance of a normal, over-the-air TV broadcast service using encryption, in Europe at any rate. The principles involved can be outlined quite easily, but instructions for a DIY decoder would be a different matter!

Canal Plus is France's fourth national TV network. It's organised by the advertising agency Havas and is backed by various financial interests. Subscribers sign up for six months or a year, paying about $£ 10$ a month for the programmes - films, interviews, news and sport - and a deposit of some $£ 35$ for the decoder. The programming should turn out to be somewhat livelier than the normal French TV fare and is intended for French viewers only: probably for copyright reasons, there will be no foreign subscribers. Reception is nevertheless possible in many parts of southern England Canal Plus is hoping to attract 200,000 subscribers initially. To protect cinema revenue, it's not allowed to announce programme schedules more than two months in advance.

Canal Plus transmissions are mainly in the v.h.f. Bands I and III. Twenty of the planned 57 transmitter sites will use u.h.f. however. Some of the channel allocations and frequencies were given in the October Long-distance Television column. Apart from a v.h.f. aerial, reception requires a hired tuner/decoder and preferably a modern TV set - because the decoder's output is designed to be connected to the set via a SCART socket, which has been a standard feature of new French TV sets for the past three years. To use one of the six million or more pre1981 sets a modulator costing some $£ 66$ is required.
The decoder deals with the encryption of course. Each month paid-up subscribers receive through the post a secret eight-digit number which they tap out on the decoder's keyboard. While the number could easily be discovered (ask your neighbour!) this wouldn't be of much help as Canal Plus repossesses decoders on rental default.
A double scrambling system is used: the sound channel is rendered inaudible by suppressing the carrier, while the picture is scrambled by altering the line timing throughout each frame. The first thing the decoder has to do is to compare the control number keyed in by the subscriber

(c)

Fig. 1: (a) Normal line. (b) Line with $1 \mu \mathrm{sec}$ delay. (c) Line with $2 \mu \mathrm{sec}$ delay.
with the equivalent number transmitted by Canal Plus, probably during the field flyback time. If the two correspond the decoder is unlocked, restoring normal sound and vision.

Listening to the encrypted sound on a normal FV set produces a sputtering noise, since it consists of the a.m. sidebands with no carrier. The decoder supplies a carrier so that the receiver can carry out demodulation in the normal manner (the French TV system uses a.m. for the sound channel). The carrier frequency is pretty low, 12.8 kHz . There's a reason for using this particular frequency. The oscillator that provides the carrier must have great stability, and the easiest way of achieving this is to reference it to a frequency of known accuracy. The reference chosen is the line frequency, 15.625 kHz . When multiplied by 512 (which is a power of two) you get 8 MHz . Divide this by 625 and you get 12.8 kHz . All this is easy to do using binary counters and phase-locked loops.

If unscrambling the sound encryption appears to be a relatively simple matter the vision signal is rather more of a problem. Whereas in a conventional vision transmission the active video commences at a fixed time after the sync pulse on each line, with Canal Plus the period between the sync pulse and the start of the vision signal varies line by line. As Fig. 1 shows, the delay introduced is either nil, $1 \mu \mathrm{sec}$ or $2 \mu \mathrm{sec}$. It varies in a quasi-random manner line by line. On a conventional set a serrated image is displayed. The decoder deals with the problem by switching compensating delay lines into circuit in the required order.

A six-field sequence is used for the pattern of delays. The decoder holds this sequence in a memory which is likely to be a PROM (programmable read only memory). A reference signal is required to indicate to the decoder the start of the sequence. It takes the form of a peak white signal that indicates the last line of the six-field cycle.

The encryption characteristics described have been noted by observation (not by me unfortunately - acknowledgement is due to the magazine Science et Vie). The PROM's programme holds the quasi-random delay sequence but there's nothing to prevent the programme being altered from time to time - provided the alternative programmes have been programmed into the PROM. Signals could be transmitted during the field flyback period to tell the decoder to switch to "sequence two" or whatever. Whether this additional complication has been designed into the system is not so far known.

Effect of the type of scrambling described - photo courtesy of Roger Bunney.

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.50$ postal order (made out to IPC Magazines Ltd.), the query coupon printed below and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

PHILIPS G11 CHASSIS

The set won't start up at switch on - all that happens is that resistors R4019, R4051 and R4052 in the active filter circuit burn up. I've replaced the associated BCX32 transistor but the trouble persists.

This fault is generally caused by the 27 V zener diode D4021 (BZX79-C27) which not only burns up the three resistors mentioned by also carries off the two transistors (BCX32 and BD201) in the active filter circuit.

AKAI VS4

There's intermittent sound distortion during playback of prerecorded and self-recorded tapes. Occasionally part of the picture fluctuates sideways when a prerecorded tape is being played back.

If the sound distortion is in the form of a wow, check that all guide rollers and the capstan are clean and that the reel discs rotate freely. Note whether the tape wrinkles during its passage across the audio/control head - if so the pinch wheel is out of vertical or there's no back tension. Replace the pinch wheel if badly worn. Finally, suspect the. capstan motor: if a scope is available, check for less than 0.5 V ripple across the motor in record pause.

TELEFUNKEN 711 CHASSIS

Bowing at the sides was found to be due to the EW modulator driver transistor T591 (BD135) having gone short-circuit. A transistor with the same voltage rating was tried but this blew. The set is otherwise performing well.

The driver transistor needs to be of the correct type and properly heatsinked. Before fitting a replacement, check the two BYX55 modulator diodes D562 and D563 and the pre-driver transistor T592. BYX55s are best replaced with the beefier and better MR854s.

SONY C7

The machine threads but doesn't play. Fast forward won't operate either. With the end-alarm switch on you get the sound and the tape will rewind.

It seems that the forward sensor oscillator has stopped. If pin 8 of IC8 on the syscon panel is above 2 V , check the continuity of the connectors and the sensor coil, then suspect the chip.

RANK 2718 CHASSIS

The height has collapsed from full to about half, even with the height control at maximum.

If the field scan is linear, the trouble is likely to be due to one of the resistors in series with the height control. You will probably find that $4 \mathrm{R} 9(470 \mathrm{k} \Omega)$ has gone high in
value. If the linearity is poor, check the 32 V line then suspect the electrolytic capacitors and transistors in the field timebase. Check back from the output stage to the field oscillator.

PANASONIC NV7000

When play is pressed the tape threads then unthreads. The same thing happens when a timed recording is attempted. The only way to get the machine to play or record is to press the play button then a moment later the forward one.

The syscon is getting a stop message at the end of threading. Watch the drum to confirm that it starts and reaches a reasonable speed within a second or two. If so it's likely that the after-load microswitch is not making or is mechanically defective. Also ensure that the take-up spool gets going - a slipping drive to this will result in the rotation sensor signalling stop to the syscon.

GRUNDIG 1500GB

There's horizontal foldover at the centre of the screen. The line timebase valves have been replaced and all the waveforms seem to be right.

We've seen this fault in similar sets that use valves in the line timebase. It usually stems from lack of decoupling in the line oscillator stage: check C609 $(16 \mu \mathrm{~F})$ by substitution. This set is a bit unusual in having a transistor driver stage: if the oscillator is o.k., check this transistor (Tr621, BF 259 G) and its base bias resistor R 623 ($1 \cdot 2 \mathrm{M} \Omega$).

NATIONAL PANASONIC TC381G

The line output transistor was replaced using a BU208 instead of the 2SD299 originally fitted. This lasted for a month or so then went short-circuit. Is there some intermittent condition that's killing off the line output transistors?

It's important to use a genuine 2SD299 in this set. Before switching on after fitting a replacement, check the condition and jointing of R520, which is in series with its base, and the line driver transformer T502; also check the anti-breathing resistor $\mathrm{R} 527(5 \cdot 6 \Omega, 5 \mathrm{~W})$ and the efficiency diode D503 (for leakage).

SONY C7

Playback of programmes recorded on this machine is accompanied by severe smearing that cannot be improved with the tracking control. All other functions work perfectly and the only other fault we've had has been the usual rewind problem.

If replay of prerecorded tapes is o.k. and the selfrecorded tapes are smeary rather than having a tracking band the problem lies in the luminance record department. Oscilloscope checks in this area should pinpoint the
cause of the fault. If no fault can be found, or tracking is a problem with playback of the machine's own tapes, it's likely that the head drum is in need of replacement.

NATIONAL PANASONIC TC2201

The complaint with this set is sound but no picture. The c.r.t. cathode voltages are high but nothing else seems to be amiss. Apparently there was low saturation before the screen blanked out. I suspect the AN281 chroma demodulator/output chip - any other ideas?

First make sure that the 12 V supply is present and correct. If so, check the luminance amplifier transistors and clamp transistor TR605. It could be that the beam limiter transistor TR604 is turning down the brightness because it thinks the beam current is excessive. Condemn the AN281 only if its output pins 11,13 and 15 are at a low voltage.

RANK T22 CHASSIS

When the field output stage bias preset is adjusted correctly as given in the manual there's bottom foldover. Increase the bias so that the voltage at 4 C 1 is 20 V instead of 16.5 V and the foldover has gone, though it's difficult to get reasonable linearity. The field output transistors have been replaced and when the bias is set correctly all the voltages in the output stage seem to be correct.

Some samples of the 17466 transistors used in the output stage can show a tendency to produce this fault. It's sometimes worth swapping over 4VT3 and 4VT4, or trying a different make in the 4 VT 4 position. The trouble can also be caused by the 36 V line having a high source impedance. If a scope across 4C4 shows a parabolic
waveform, check this electrolytic and the 36 V line. Other possibles are diodes 4D1/2, the field scan coupling capacitor 4 C 1 and the amplifier/driver transistors $4 \mathrm{VT} / 2$. Finally ensure that 4VT2's load resistor 4R4 ($1 \mathrm{k} \Omega$) hasn't changed value.

ITT CVC20 CHASSIS

With the chassis in the working position there are three or four black lines at the bottom on the screen. When the chassis is hinged back about four-five inches they disappear.

First check that the c.r.t.'s Aquadag coating is properly earthed, then check for dry-joints around the NS correction transductor and the NS phase coil. That there's a problem in this area can be confirmed by shorting out C30, i.e. shorting out the NS correction circuit. If necessary check transistor T9 in the field output stage and the flyback blanking pulse coupling capacitor $\mathrm{C} 24(1 \mu \mathrm{~F})$.

GRUNDIG GSC100 CHASSIS

Two-three minutes after the set is switched on there's suddenly a half inch foldover at the bottom of the screen while the top third of the raster is distorted and slightly brighter than the rest. The field timebase module has been checked by replacement, also the scan coupling capacitor, the components in the centring circuit, and C628 which is the reservoir capacitor for the 18.6 V line that supplies the field timebase.

The checks already made don't leave very much! It seems likely that the cause of the trouble is in the supply to the field timebase. We have had a case of a highresistance fuse (Si627) here. Otherwise, suspect the recti-

fier diode Di627 or dry-joints at pins e or i on the line output transformer. A scope check on the 18.6 V line when the fault is present should show what's happening.

264
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

Monochrome portables seem to have a very long life - we regularly see ten and twelve year old specimens in good condition. Well made sets getting only occasional use will probably last for many more years, but a recent servicing job involving a Ferguson Model 3816 (1590 chassis) put years on us! It's easy to get blasé about simple monochrome sets and the diagnosis of their ills. Now and again however we come across really sticky faults that are interesting, intriguing even, but don't do much for the workshop production schedule or the bottom line of the profit/loss account.

Such a job has just passed through the mill. The symptoms were plain enough - complete loss of sync and a vastly over-contrasted display. On the strength of this we decided that some sort of a.g.c. problem was present and a modest estimate was given to the owner. This was accepted, and with a "ready tomorrow" promise we hung up the phone and returned to the set.

The sync separator transistor VT7 is followed by a phase-splitter transistor VT8 which drives the flywheel line sync discriminator diodes and also provides the field sync pulse feed from its collector. An oscilloscope check at VT8's collector showed that there were no sync pulses at this point. This proved to be due to the transistor's collector being open-circuit. A replacement restored sync of sorts but the picture was jittery, wobbly and had a "soot and whitewash" effect, indicating problems elsewhere.

The voltages at the emitters of the gain-controlled i.f. amplifier transistors VT2 and VT3 and the video driver transistor VT6 were way out, so to avoid a chicken-andegg puzzle in the a.g.c. department we connected a 6 V battery across the a.g.c. reservoir capacitor C 2 , thus overriding the a.g.c. action and providing the correct d.c. conditions for VT2 and VT3. This gave us a correct-level video output from the vision detector diode W2 (manual waveform B) with the contrast now at a reasonable level. The sync performance was still very poor however, with ragged verticals and horizontal pulling: field lock would be lost at the drop of a hat.
The cause of this seemed to lie in the video driver stage - the sync separator transistor is driven from the collector of the video driver transistor VT6. We found that the
voltage at this point was abnormally high, the signal level being low and "crushed". VT6's collector and emitter load resistors were both o.k.. so we turned to the base where the voltage was markedly low at some 1.8 V instead of 5 V . This voltage is normally set up by the potential divider network R32/33, which produces 5.8 V across the decoupling capacitor C36 - the output from the vision detector is superimposed on this bias voltage.

Why was the voltage at this point so low? Literally every component between the collector of the final i.f. amplifier transistor VT5 and the base of VT6 was checked and double checked. The voltage across C36 stood at about 3 V : "increasing this by artificial means increased VT6's conduction but still wouldn't reduce its collector voltage (normally 8.5 V) below about 12 V ! We came to the conclusion that some spurious signal was present in the i.f. stages and was being rectified by the vision detector diode to produce a large negative offset voltage across C36. This theory was checked by turning VT5 off (baseemitter leadouts temporarily linked). VT6's base voltage then rose, but only to about $2 \cdot 5 \mathrm{~V}$. Its collector voltage remained high.
The breakthrough came when we monitored VT6's collector signal with the scope while VT5 was cut off. There still appeared to be sync pulses present! They were upside down however, and therein lay the key to the whole sorry business. You've had an easier ride through the diagnostic process than we had, so we're sure you'll have the answer before it's published in the next issue ...

ANSWER TO TEST CASE 263 - page 49 last month -

Last month we had a line drift with a difference fault the trouble was with a Panasonic TC481GR which suffered from intermittent loss of line hold. Our extensive checks in the line oscillator and flywheel sync circuits had been quite fruitless.

Now this set incorporates an excess-voltage protection circuit that comes into operation in the event of excessive flyback pulses being generated in the line output transformer. The output from one pulse winding is rectified and monitored by an 11 V zener diode which, when it conducts, switches on a pair of transistors (TR551/2) that latch on and short out the supply to the line oscillator transistor. This of course shuts everything down by way of protection. What's significant however is that the oscillator transistor's supply voltage is crucial to the frequency generated. So the protection circuit mustn't load this down in any way.

We found that the symptoms disappeared when we disconnected the protection line and that a varying resistance to chassis was present on the now open-circuited line. Replacing the protection transistors TR551/2 did the trick, though why they didn't latch on when this leakage effect was present remains a mystery. Incidentally the official circuit diagram is incorrect, which doesn't help with a fault like this - it shows a connection from the base of the line oscillator transistor to the protection circuit.

[^0]
VHS COLOUR CAMERAS

Mains/Mains Battery Portable

 tested working
EXPORT

Multiband CTVs 22" \& 26"

 Ideal PAL B
Grundig/Philips 2000 Series Video Recorders

PLUS

17" 18" 20" 22" 26" Hybrid/ Solid State CTVs
Discount for Quantities

COMING SOON

14" 16" 18" Japanese in Quantity

JOHN CARTER (Electrical) LTD FURNACE ROAD, GALLOWS INN, ILKESTON

Phone: 0602303124

NO WORKERS!

WITH OVER 1,000 ARRIVING WEEKLY WE DON'T HAVE TIME

ALL SETS UNTESTED

We Are ONE OF THE OLDEST

 ESTABLISHED EX-RENTAL DEALERS WITH THE SAME RENTAL COMPANY FOR OVER 15 YEARS.
LOW SUMMER PRICES

GEC S/State £15
GEC Hybrid £8
BUSH 1 and 2 Chip £10
DECCA from $£ 10$
AUTOVOX £15
NORDMENDE £15
SALORA S/State, some Remotes £15
SALORA Hybrid £8
TANDBERG S/State Dual Tuners £20
TANDBERG Hybrid Dual Tuners £8
PHILIPS G8 from $£ 10$
17" THORN £15
22/26" THORN from $£ 10$
MONO 20" S/STD $£ 5$
MONO $\mathbf{2 4 "}^{\prime \prime}$ and D/STD £1
BEST DEAL IN U.K. CASH ONLY, IT DOESN'T BOUNCE!
MIXED LOADS DIRECT FROMSOURCE AVAILABLE ATKEEN PRICES
FRANK FORD(TV TRADE DISPOSALS)SCHOOL LANE, GUIDE,BLACKBURN, LANCS.Telephone: 025464489

 N

多

 Please add 50p P\&P and VAT at 15%. Govt, Colleges, etc. Orders accepted. Quotations given for large quantities. Please allow 7 days for delivery. All brand-new Components. All valves are new and boxed.

GRANDATA LTD

9 THE BROADWAY, PRESTON ROAD WEMBLEY, MIDDLESEX, ENGLAND Telephone: 01-904 2093 \& 904-1115/6 Telex No: 932885 (Sunmit)

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
NEW ROAD,

- G

STUDLEY
WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639 Telex: 336924 Grifem G

IRISH TV NOTICE
 (SUMMER SALE)

We can supply in good working order Bush, Pye and Ferguson from $£ 60$, Philips G.8. From $£ 80$, Decca from $£ 90$, B/White $£ 25$, Re-Gunned C.R.T.s from $£ 40$ (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade. ALL PRICES INCLUDE V.A.T.
We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate,
Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

TV LINE OUTPUT TRANSFORMERS

TRAINING COURSES

TELEVISION \& VIDEO SERVICING

THESE FULL-TIME COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS

12 MONTHS
 LEC Diploma

TELEVISION \& VIDEO SERVICING
(Basic Electronics, TV, VCR, CCTV, Testing \& Fauth Diagnosis)

6 MONTHS

LEC Diploma
TELEVISION \& VIDEO SERVICING
(Suitable for applicants with previous electronics training - e.g. BSc, HND, CGLI, B/TEC, etc.)

3 AND 6 WEEK

LEC Diploma
VIDEO CASSETTE RECORDER SERVICING
(Intensive highly practical course suitable for qualified TV Technicians or similar)
6 MONTHS EVENING COURSES in BASIC TELEVISION SERVICING (An introductory practical course)
VIDEO CASSETTE RECORDER SERVIIING
(Professional level course with 50% practical

- covers same ground as 3 week full-time course)

All the above courses commence on January 7th.
ADDITIONAL FULL-TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL

2 YEAR
BTEC National Diploma (OND)
ELECTRONIC \&
COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis)
15 MONTHS
BTEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video, Cassette Recorders, CCTV, Testing \& Fault Diagnosis)

15 MONTHS

BTEC National Certificate (ONC)
COMPUTING TECHNOLOGY
ware/hardware, Microelectronic Testing Methods)

9 MONTHS

BTEC Higher National Certificate (HNC)
COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocesssor Based Systems, Fauh Diagnosis, ATE, Robotics)
Full Prospectus from:
LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT. LONDON SW5 9SU. Tel: 01-373 8721

TEL-X BLACKBURN FOR THE VERY BEST IN TELEVISION DISPOSALS

Decca	Thorn	Pye	Bush
Philips	ITT	GEC	+ Remotes

HUNDREDS TO CHOOSE FROM WORKERS FROM £25.00
 Off the Pile from
 £ $\mathbf{8 . 0 0}$

DELIVERIES ARRANGED ON QUANTITY

TEL-X BLACKBURN

Unit P3, Roe Lee Industrial Estate, Whalley New Road, Blackburn, Lancs. Tel: 0254679984

T.V. DISTRIBUTORS NORTHERN

Leeds newest wholesaler is now open. Stockists of good quality ex rental/part exchange colour TVs. Philips, ITT, Thorn, GEC, Pye, Decca, J.V.C.

DISCOUNT FOR QUANTITY

TEL: LEEDS (0532) 624996
T.V. DISTRIBUTORS NORTHERN

Unit 10, Ashley Trading Estate,
Buslingthorpe Green, Leeds LS7 2HG

TUNERS + TUNERS

* If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
* All popular tuners/tuner repairs supplied 'off the shelf'.
\star Unusual types repaired same day as received (subject to spares availability).

The World	of . MMPA	52 RE OU		easant R ephone S!	ad, C	gwell, 06.	Essex			
	IF	TUNER	decooer	$\begin{array}{\|c} \text { G8/Gg DECODER } \\ \text { IF } \\ \text { COMBINED } \end{array}$	$\begin{gathered} \text { LINE } \\ \text { OUTPUT } \end{gathered}$	POWER	CONVERG	frame	VİEO	$6 \begin{aligned} & \text { WAY TUNER } \\ & \text { SWITCH } \\ & \text { SANK }\end{aligned}$ BANK
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GEC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731	8.00		10.00		18.00	10.00	7.00	8.00		4.50
PUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00				5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00		FRAME TIME BASE £4		
DECCA 80	12.00	P.O.A.	14.00		12.00	10.00		14.00		P.O.A.
		Othe P+PLERS 1	makes FOR AL ANEL CA	of panels M MODELS 1.50 SH WITH OR	teleph 3.00 ANELS ER - PL	SPEAL for R MO SE	rices!	50		
POST OFF YO	R	QUE	IOW	\& YOU		SE	BY	RETU	0	POST!!!

NORTH WALES TELEVISION SUPPLIES FLINT 5878

Working sets from $£ 25$ Untested sets from £15 Mono Portable

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COMPLETELY VARIABLE TIMINGS

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272 87-89 Sterte Avenue, Poole, Dorset. BH15 2AW. Telex: 418253 LUMIC G

2 yr. guarantee APOLLO
 $20 / 30 A X$

TRADE AND QUANTITY DISCOUNTS
FREE LOCAI DRIVERY - SANE DAY - FITING SEBVICE EZO FAST MAIL ORDER GB 2-3 DAYS - OVERSEAS ON REOUEST.
A47 32/343X 470 BCB22
470 ESB22/EFB22/ERB22 .
A51-161X E 45
A51-220X/192X £37
510 JKB22/JEB22/JDB22/ALB22 45

560 DZB22/HB22/AKB22 . 4
A63-120X
A66-120X A67-120X/140/150/200X £45
. £39
(AX A56-500X/510X A66-500X/510X
30AX A56-540X/A66-540X
If your tube type is not in stock we can arrange colloction - rebuilding + redefve PLEASE PHONE BEFORE CALLING
061-799 0854. 24 hour answering service
43 Clarke Crescent, Little Hulton, Worsley, Nr Manchester M28 6XL

SEND NO MONEY

Your order despatched C.O.D. from our comprehensive stocks of Audio, Video and T.V. spares.
Price list sent with your first order.
Simply phone us
0934-419147
Freeway Components, The Airport
Weston Super Mare, Avon BS24 8RA

TV TUBE POLISHING AT

Your Own Premises
with our DIY Polishing Kit
The Kit includes
Everything you need to polish approx． 25^{*} tubes to a high standard．Detailed Everything you need to the polishing．All you require is an Electric Drill．

Kit Price $£ 45$ inc P\＆P and VAT．
Available from Luton only．
＊Depencs on depth and area to be polished．
TV TUBES TUBE POLSHING FREE DELIVERY＊
Quality，High Temperature Reprocessing

Colour Tubes Delta	One year guarantee （optional extension up to three years）	Two year guarantee loptional extension up to four years）：
90° up to $20^{\prime \prime}$	$\ddagger 26$	$\underline{59}$
90° up to $22^{\prime \prime}$	$£ 30$	E33
90° up to $26^{\prime \prime}$	£32	f35
$110^{\circ} 26^{\prime \prime}$	£33	¢36
（tast heat，narrow neck）		
In Line \＆PIL		
Up to $20{ }^{\prime \prime}$	£36	£42
Up to $22^{\prime \prime}$	E38	¢44
Up to $26{ }^{\prime \prime}$	¢40	¢46

All tubes exchange glass required．
Your good，working tubes with scratches or small chips，can be POLISHED with our purpose buitt polishing equipment．Only $£ 7$ per tube． Delivery charge on colour tubes：Within 40 miles of Luton． 1 tube $£ 4.2$ or more tubes FREE DELIVERY \star Nationwide delivery avsilable，charges on application
Please add 15% VAT to all prices．Callers welcome．Please phone first

WELL VIEW

 114－134 Midland Rd， Luton，Beds．Open Mon－Fri 8am－6pm，Sat 9am－5pm．Tel．0582－410787
Your Local Tube Stockist：
Well View，Southampton．Tel． 0703331837
Retach Ltd．，Northwood，Middx．Tel．09274－27019
West One Distributors Lid．，Chesham，Buckinghamshire．
Tel．0494－778197
Rushden Rentals Ltd．，Rushden．Northants．Tel．0933－314901
Daventry Rentals，Daventry，Northants．Tel． 0327277436
Res \＆Holland，lpswich，Suffolk．Tel． 0473827562
WANTED A56／A66－510X／540X Old glass for cash

1000 sets now being taken per week．All makes and sizes． Untouched off the pile．Ring now for prices．From $£ 3$ ．

PRICES AVAILABLE ON THESE

 SETS NOWI！！PYE G11＇s
PYE CHELSEA＇s
PYE 721s，731s，725s PHILIPS 520s，550s BUSH T20，T22，T24s
（Remote Control）
THORN 8000 \＆8800s THORN 9000，9200， 9600
（Remote Control）
OF THE ABOVE SETS， MOST HAVE BEEN ENGINEERED AND ARE IN PERFECT WORKING ORDER

Massive reductions for bulk Minimum 5 Sets

20 Salora 22＂Colour £100

Big reductions for export orders over 100 sets

COLOUR TELEVISION \＆ MUSIC CENTRE 35 Stafford Road， Weston Super Mare， Avon

Opening hours：9－6 Mon－Sat，Sundays by appointment （Weston Super Mare 413537）
（Note new address）
（15 minutes past Bristol Southward on M5）

TELETRADERSForde Road, Brunel Industrial Estate,Newton Abbot, DevonTelephone: (0626) 60154
The Best Quality Sets Available Anywhere
All First Class working order and excellentcabinets.
Philips G8 550 £40
Philips G11 £85
GEC Solid State £35
Thorn 3500 Electronic 22" £35
Thorn 9000 £60
Thorn 8800 £45
Thorn 9800 $£ 55$
Thorn 1500 Mono $20^{\prime \prime}$ very clean £6
Full spares back-up of tubes and panels Bulk terms to other wholesalers
THE NO. 1 WHOLESALER IN THE SOUTH

SATELLITE RECEIVING SYSTEMS

1 m and 2 m glassfibre dishes other sizes available.

Feeds, support and mounting systems. Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.

Demonstrations by appointment.
L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719

CentreVision
TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB
OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4 TELEVISION/VIDEO (VHS + BETA) FROM $£ 165$

\star	ITT CD752 REMOTE	$\mathbf{£ 1 1 5}$
\star	PHILIPS G11	$\mathbf{£ 5 0}$
\star	GEC STARLINE 22-20 (Remote)	$\mathbf{£ 3 5}$
\star	PYE CHELSEA	$\mathbf{£ 2 5}$
\star	THORN 9000 20"	$\mathbf{£ 3 9}$
\star	DECCA 22" BLACK FRONT VERICAP	$\mathbf{£ 2 5}$
\star	RANK T20 REMOTE	$\mathbf{£ 5 0}$
\star	PHILIPS 550	$\mathbf{£ 2 5}$

* PHILIPS 550
£25

PRICES SUBJECT TO VAT

 OPENING HOURS: MONDAY - FRIDAY 9.00-5.30 SATURDAY 9.00-1.00
1,000 EX-RENTAL COLOUR TV's AVAILABLE

Philips 550's $£ 18$
Pye Chelsea Series£15

ITT Hybrid \qquad £14

Philips 520's£14
Pye 725£15
Japanese£18
Decca Bradfords£12
Thorn 8500£15

Mono Single Standard - £2 Various Beta non-wks VCR's - $£ 50$. PHILIPS, LVC (1500/1700) Tapes.

\star SPECIAL \star

MIXED LOADS DELIVERED DIRECT FROM SOURCE UNTESTED AND INCLUDING WORKERS $\mathbf{f 1 5}+$ V.A.T. Also Stands, Panels and Tested Tubes free delivery london area

All Prices Exclusive V.A.T.

SOUTH LONDON TELEVISION

 Mission Hall, Southey Road, London SW19.Telephone: 01-543 5437

COLOUR TELEVISIONS

THORN 9000, 9200, 9600 Remote Control PYE 420/450, G11 MANY OTHER TYPES
Working panels and tubes available.
REBUILT TUBES
Delta - In Line - PIL.
SOUTHBRIDGE TV CENTRE 120, Selhurst Rd., London, S.E.25.

Tel: 01-771 3535.

EMCO - EUROSONIC - GRUNDIG - TELETON + ALL BRITTSH MAKES ETC. ETC. ALL SPARES READILY AVAILABLE -

IMMEDIATE CREDIT AVAILABLE - TRADE ONLY

If you are a trader simply phone for the part you require and we will send it - no quibble - no hold up for status check. Satisfy us over the phone that you are a trader and we will supply almost any TV component by return "Off the shelf". e.g. LOPTX - EHT trays - droppers - OSC coils - switches - cans smoothers - Y.C.'s, etc. etc.

YOU CAN BE 95\% SURE WE CAN SUPPLY ANY TV COMPONENT BY RETURN
 IF YOU NEED SPARES FAST - RING NOW!

ACCESS AND BARCLAYCARD ACCEPTED
Applies to U.K. onhy

IRISH T.V. DEALERS

Large selection of fully reconditioned precision in-line UHF-VHF colour T.V.s at keen prices
Also in stock: Dual Standard Beta \& VHS Video Recorders

Quantity discount. Delivery arranged.
(Limited amount of spare panels, components, button units, etc.)
SPECIALISTS IN OVERSEAS ORDERS
T.V. TRADE SALES

EDI House, Kylemore Park West, Ballyfermot, Dublin 10. Tel: 264139 ext. 11.
(Open 10 a.m.-5.30 p.m.)

SETS \& COMPONENTS
JAPANESE COLOUR TVs. Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only J.M. Pearson Television. 0484863489.

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

PHILIPS G11 and Bush T20. Regular supplies. For prices phone 01-845 2036.

GRUNDIG SETS, PANELS, MANUALS. Nordemende and Telequipment spares, manuals. Ochre Mill. Tel. 0785814643.

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know of your products and services.
The prepaid rate for semi display setting $£ 6.00$ per single column centimetre (minimum 2.5 cms). Classified advertisements 35 p per word

GRUNDIG 6010 R/C $£ 30$. Sony 1820 £25. GEC 2110 R/C £25. A44-271X £35, 560DZB22 £35, Z179 chassis new $£ 30$, GEC 2040 decoder $£ 12$. CDA $£ 6$. 5 Pye 691 triplers $£ 20$. Gravesend 65782 .

TELEVISION

GOOD QUALITY TRADE TVs COLOUR OR MONO SUITABLE FOR SALE OR RE-RENT, WIDE CHOICE OF MAKES AND MODELS

GENERAL UNION STREET DN1 3AE TEL (0302) 68416
 GOOD MOTORWAY ACCESS

WETSTED UBES PRESENTS AN UNBEATABLE OFFER £26 all deltas one price f40 all pill one price * SPECIAL CRT POLISHING SERVICE WHILE U WAIT Only 85 * ALL DELTA SIZES FROM STOCK * discount for orders of 5 CRTs or OVER * FREE deLIvery WITHIN 20 MILE RADIUS OF MAIDSTONE Ring Now Maidstone 872400 or visit our factory. Unit 32, Branbridges Ind Est. East Peckham, Kent. * Agents required in South

TELEVISION TUNER REPAIRS

BRITISH, EUROPEAN JAPANESE ETC.
ELC 1043/05 TUNERS AS NEW £4.60 inc.

MEN-TU ELECTRONICS LTD.

 SALTERNS LANE, FAREHAM, HANTS.Tel: 0329-235116

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ \mathbf{3 1 . 5 0}$ INLINE TUBE TYPE FROM $£ 35.00$ MONO TYPES P.O.A.

ALL PRICES EXCLUSIVE OF VAT.
All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

EX GRUNDIG TEST EQUIPMENT. E.g. $0-15 \mathrm{~V}$ power supply with voltmeter $£ 13.50+£ 2.95$ P\&P. Also millivoltmeters isolating transformers and units for spares, etc. S.A.E. lists, S.H.E. 5 St Josephs Park, Ballycruttle, Downpatrick BT30 7EN.

MULTISTANDARD Colour Television. LUXOR VHF/UHF TV/Monitors to most standards, including PAL'L/SECAM'L (UK/French) option. $20^{\prime \prime}, 22^{\prime \prime} \& 26^{\prime \prime}$ from £280. ex VAT. PORTATEL CONVERSIONS LTD., 25 Sunbury Cross Centre, Sunbury, Middlesex. Tel. 0932788972.

EERUICE PGCES

(minimum 12 words), box number 70p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

IRISH TV TRADE CAN WE BE OF SERVICE TO YOU? Regular supplies of Quality Colour TVs LOWEST PRICES

Working Sets from $£ 18$
 Non-working Sets from $£ 8$

 free delivery anywhere

COLOUR TV PANELS Fully Tested \& Working

Also a vast selection of modern working and non-working TVs at low prices. Please ring for current stock
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Callers by appointment only.

TORBAY (TRADE) T.V.

Have now moved to larger premises. Good quality small screen colour TVs Chelsea's, 560, 207, 9000, etc.

> 178 Union Street,
> Torquay, Devon.
> Tel. (0803) 22767.

STARLITE ELECTRONICS

NOW MOVED TO:

 WILLOWS FARM,A 13 RAINHAM, ESSEX.
Rainham 23225 also Hornchurch 50238. - TV TUBES 2 year guarantee Most types available Japanese including Sony
Ex-Rental TVs from£15.00
Untested Panels .$£ 4.00$

11GHz Satellite TV Receiver

Receives 'Music Box' Pop music TV Channel on ECS satellite. Can be supplied with or without dish (1.5M minimum in most of UK). Stereo sound decoders available shortly for this channel. Phone or write for more details.

HUGH COCKS TV SERVICES,
Cripps Corner, Robertsbridge, Sussex TN32 5RY.
Tel: 058083317.

PANELS PARTS, Tanberg CTV2 A823 Decca 30 GEC 2110 Grundig 5010 tested tubes, all cheap. 731/ 725 panels wanted. S.A.E. lists 2 North Street, Newton, Derbyshire DE55 5TS.

A.B.D. TELEVISIONS

Suppliers of colour and mono televisions to the trade.
Workers and non-workers:
Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800, 9000 and 9600 , Bush T20 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.
For quotation and prompt service:
Ring Notts (0602) 864627 UNIT 3+3A,
Meadow Trading Est. Meadow Lane, Nottingham NG3 3HQ.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brirk, Wisbech, Cambs. 0945584188 . Immediate settlement.

WOODSDALE COMPONENTS	
RANY BUSH MURPHY	
TRANSFORMERS	
Line Ouput $\mathrm{Z718}$ (7703A, T706A)	
New (Complete)	£20.50
Less Focus Module and	
Rectifier	£10.50
T20, T22 (7705A)	£11.00
T26 (T705B)	£11.00
Switch Mode	
T114A/B	£8.00
AERIALS	
UHF Aerials P \& C Wideband 4 Bay Bowtie (12.5 dB) $£ 20.00$	
Above with built-in Broadband amp.	¢45.00
Prompt Postal Service P\&P Paid.	
Add 15\% VAT to all prices.	
DISCOUNT for QUANTITIES.	
34 Field End Road, Eastcote, Pinner, Middlesex. HA5-20T.	
N. Skehan Agents Office. Callers by appointment only.	

Ther

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished.
These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.

Krual Marketing Ltd	Phone 021-471 3023
Braedon Cross	Telex
Storage,	Ask for Les
Date Road, Selly Oak	
Birmingham B29 6AQ	

T SPARES, PANELS PHILIPS • GRUNDIG

TELEVIEW 01-994 5537
 194, Acton Lane, London W.4.

NWIELECTRON/CS 25 YEARS SUPPLYING THE TRADE HUGE STOCKS OF COLOUR TV'S 2000 NOW IN STOCK

 ROCK BOTTOM PRICES. ALL MAKES, ALL MODELS. 90\% WORKERS (off the pile)GENUINE REPOSSESSIONS AND EX RENT, NOW IN STOCK! PYE KT 3, PHILIPS G11, G8, BUSH T20, 22, 718, GEC, 2010, 2201, 2002, 2659. HITACHI, SANYO, PYE 222 THORN 9000, 3500, 8800 ETC.

SPECIAL OFFERS

BUSH 2 chip 20" $22^{\prime \prime}$ Exc. CAB Cond. GENUINE CHANGE OVERS £15 EACH (special quotes on bulk orders) . . . Single Chip $£ 10$.
PHILIPS 26" G8 EXC. COND. 550 model___ $£ 20$ each
BUSH 22" REMOTE 718 ONLY___ £
HITACHI 20" MODEL 190 EXC. CAB__ £20
THORN 9000 PIL TUBE_ $£ 35$

VHS VIDEO

SHARP 7300, 8300, 9300. FERGUSON 3V28 3V22. SONY BETA.

MONO TV'S £1each (lots of 25)

BUSH,GEC,PYE,PHILIPS ETC.THORN 1500 £4.THORN 1600 £12 (like new).

REFURBISHED TV'S TO ORDER

PHILIPS G11 £80

BUSH T20/22 £70
GEC 2010 £38
LATER MODELS PHONE FOR QUOTATION

WHITE GOODS

HOOVER TWINS FROM £6. HOTPOINT 1460 FROM £10. AUTOS ALL MAKES FROM £10

WORKINGTV.PANELS						
		octover	Iureop Pow			
וxish	${ }_{\substack{300 \\ 200}}^{\substack{\text { che }}}$	$\begin{array}{\|l\|l\|} \substack{8.00 \\ 4.00} \end{array}$		$\begin{gathered} 300 \\ 5000 \\ 5000 \\ 500 \end{gathered}$	5.00	
	minion					
$\underset{\substack{\text { ter } 210 \\ \text { gist } 110}}{ }$		$\begin{gathered} \text { 5,0.0. } \\ \text { cision } \end{gathered}$			5.00	

Unit 12, Wharfedale Road M606 Euroway Estate
Bradford

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00$.
3 panels $£ 2.50$ etc. Quick Despatch - C.W.O. please ALL PRICES PLUS VAT.
CASH ONLY - DELIVERY CAN BE ARRANGED

(0274) 688458 OPENGDAYS AWEEK

OPEN MON-SAT 9-5.30 Don't forget! We are open all day Saturday!

TELEVISION

Trade \& Retail supplies of s / h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS

 Unit 4 Rubastic Road,Brentpark Industrial Estate, Southall, Middx. UB2 5LL. 01-574 4631, Ext 28

J A B C 0

SWITCH MODE POWER SUPPLY Self oscillating with outputs isolated from mains. Model A-8v-plus 18 v -plus 125 v or 150 v . Capable of running up most modern $\mathrm{T} / \mathrm{V}_{\mathrm{s}}$. Independent of its own P.S., many of which need trigger pulses from the Line T.B.
Fit this P.S. complete into SONY 1340, 1810, 2000 and others for complete reliability. Model A $£ 32$ VAT and postage included. Model B has an optional 200v output in addition, £34 inclusive. Full circuit \& instructions. JABCO LOPT Tester still $\mathbf{£ 1 6 . 5 0}$ inclusive.

J. BAKER \& CO.

1 Old Shoreham Road, Southwick, Sussex BN4 4RD. Tel: Brighton 593315

马andwell T.V. Centre

1000's of T.v.'s at tremendously low prices. mono's from $£ 1$ 1-00.-- -- --Colour from $£ 7.00$. WORKING HYBRID £15Brunswick F̄ärk ra. We $\overline{\text { dinē }}$ büry:off jct.9.M6.

COLOUR BAR GENERATOR

Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White Raster, Half Black \& White

Line Transformer Tester $\mathbf{£ 1 1 . 5 0}$ B/W Generator, Crosshatch, Peak White, Dots, Half Black \& White and Grey Scale $£ 18.50$
$£ 14.25$ Capacitance Meter measures 10 pF to 1μ F complete with moving coil meter \quad £14
S.A.E. for details. - Prices include P\&P \& VAT.
C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields, Tel: (0902) 871563
! YOU HAVE TRIED THE REST NOW TRY THE BEST!

Quality 6 Button TVs on Offer

Ultra 6725 22"
Furg 3738 22" T
Furg. 3749 22" Philips 550 22"
Furg. 3722 22" Bush T20
Also $17^{\prime \prime} 8000$ various models + many more to choose from.
SCARBOROUGH TV TRADERS CO LTD 85 Columbus Ravine, Scarborough, N. Yorks. 0723368087

1 hour from A64/A1 junction
$\star \star \Rightarrow$ SERVICE PAGES SERVICE PAGES
This space could cost you as little as $£ 4.44$ (i.e. 12 words at 37 p). Complete the coupon or ring 01-261 5846 NOW!
SERVICE PAGES SERVICE PAGES

> RING US NOW $021-523-0698$

Order form

Please insert the enclosed advertisement in the next available issue of Television
Heading
Signature
Date
No. of ins........... Chq/PO TELEVISION
Classified Advertisement Department,

NAME AND ADDRESS

$\star \star

Room 2612,
King's Reach Tower,
Stamford Street,
SE1 9LS.
$12 / 84$

WORKING COLOUR T.V's

TO THE TRADE FROM

f15

LARGE SELECTION OF
COLOUR T.V's INCLUDING GOOD DISPLAY OF WORKING SETS, MANY LATE MODELS, IN OUR SHOWROOM
DELIVERY CAN BE ARRANGED 'PHONE MARK WOODWARD 0299-250161 TRADE, UNIT 40 .
hartlebury trading estate.
NR. KIDDERMINSTER, WORCS.

TpentTubes

 31 RADCLIFFE ROAD.WEST BRIDGFORD, NOTTINGHAM THE QUALITY REBUILDER PHONE: (0602) 813329
all Tubes carry a Two year guarantee EXTENDABLE TO FOUR YEARS
All Sizes of Standard Deltaz
All Sizes of Standard Deltas A51-161-A51-163 £39.00 A56/66 500/510 (20 AX) $\mathbf{~} 42.00$ 10 VLB22 - 560 OZB 22 - 560 EGB22 £43.00 JAPANESE TYPES OUR SPECIALITY 1009's more avadable, VDUs, MONO's. Industrials etc. EXCHANGE PANEL SERVICE WE NOW REBUILD ONY TUBES Phone for details
 073371809 D 0332369132 TECHNICAL ADVICE SERVICE Al prices + VAT \& Exchange

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail shelves. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available (only petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services on Cambridge 69215
or Ely 61462

WIZARD DISTRIBUTORS MANCHESTER

Visit our trade counter and see the huge range of components inc. tubes and video heads. Only minutes from the town centre and motorway routes.
Fast friendly service and technical assistance available.
Come in and see our trade counter special offers.

Open Monday to Friday 9 am to 4.45 pm Trade Only
EMPRESS STREET WORKS
Empress Street
Manchester M16 9EN
Tel: 061-872-5438, 061-848-0060

WORKING CTV's

The Best \& Cheapest in Lancashire
I.E. Decca $18^{\prime \prime}$ to $26^{\prime \prime}$
$£ 24.00$
GEC $20^{\prime \prime}$ to $26^{\prime \prime} \quad £ 30.00$
Philips G8 $22^{\prime \prime}$ to $26^{\prime \prime} \quad £ 25.00$
Bush $20^{\prime \prime}$ to $26^{\prime \prime} 2$ chip
£18.50
All sets are tested \& working
Many more makes \& types available. Working mono's only $£ 3.50$. Non workers available.

Phone: John Powney at Kirkham, near Preston (0772) 683392.

T.V PANELS

REPAIR EXCHANGE SALES SERVICE PRICES FOR REP. EXC. AS FOLLOWS Chassis IF Decoder Line Power Frame Philips GIl Scan Supply Philips GII Bush T20 $\begin{array}{lll}\text { Bush T26 } & X & 12\end{array}$ $\begin{array}{llllll}\text { Bush } 718 & X & 12 & 18 & X & 12\end{array}$ All panels are repaired and aligned according to rank std.
Ring for prices to buy panels. Prices shown inclusive of postage, etc.
All panels guaranteed for 3 months T. K. PANELS SERVICE

31 Bronte Paths, Stevenage (0438) 61567
TRADE COLOUR TVS
ALWAYS 200 IN STOCK
Colour from $\mathbf{8 5 . 0 0}$
Mono e2.00
Tested colour tubes from $£ 5.00$ plus $\mathbf{p}+\mathrm{p}$
BRAND NEW VIDEOS
V2022 and V2023
VHS and BETA
Just in
$20^{\prime \prime}+22^{\prime \prime}$ GEC
Boxed with stand 885.00 ALL STOCK CHANCES WEEKLY (0934)514047/512792/27560 PaR SUPPLIES, Unit 5, Worle Industrial Estate, Weston-Super-Mare. Exit 21 M5.

REBUILT COLOURTUBES

EXAMPLE PRICES DELTA
All sizes up to $22^{\prime \prime}$ - $£ 28.00$ 26" From - £32.00
All In Line P.I.L. Mono Gaming Machine
C.R.T.s 560EGB22 56-611-510JKB22

20 AX $\mathbf{f 4 0 . 0 0}$ 30 AX £48.00
Fast U.K. Delivery Call or Phone:
RE-LIFE T.V. TUBES PLANE STREET, OLDHAM, LANCS. 061-665 2668
Wholesalers REG in North \& South Wales Competitive Prices

VIDEO

ARE YOU A TV ENGINEER WHO WANTS TO KNOW ABOUT VIDEO RECORDERS? then you need
"DOMESTIC VIDEO CASSETTE RECORDERS A SERVICING GUIDE' by S. R. BEECHING
Available for only $\mathbf{£ 1 5 . 5 0}$ inc. p\&p
From: NEWARK VIDEO CENTRE,
108 London Rd., Balderton, Newark, Notts.
Tel: 063671475
ACCESS OR VISA

EQUIPMENT FOR SALE

COMPLETE TUBE REGUNNING PLANT in good working order. Electric ovens. Re guns 15 colour (Sony Trinitron, Pil, in line etc) tubes in 24 hour cycles. Only £6,000 plus VAT, plus training provided. Tel: 0582 410787.

BUSINESS| FOR SALE

BOOMING TV/VIDEO Business, Kent. Absolutely unique! Audited turnover $£ 71,500$. Current year pre dicted $£ 120,000+$. Gross profit 150% ! Behind-the scene secrets just cannot be copied. Must sell quickly for family reasons. Full written details: Box TV189.

WANTED

WANTED. We will clear any amount of colour sets from small Rental Companies. Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

VARIABLE TRANSFORMER WANTED. Preston, Lancashire. Tel. 0772617329.

TELEVISION September 1975 to March 1981 approx Phone Burnley 50574 evenings and weekends.
WANTED. Rediffusion Doric Mk3 20". Price. particulars, Phone 0388745185,746197 evenings.

WANTED. "Radio and television servicing" post 1970 Any service manuals. Lincoln 695678.

BOOKS AND PUBLICATIONS

"RADIO AND TELEVISION SERVICING" books new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.
FULL SIZE TOP QUALITY service sheets $£ 2.50$ + 1.s.a.e. CTV/Music Centres $£ \mathbf{3} 50+1$.s.a.e. Repair data almost any named TV/Video $£ 10.50$ inc. circuits L.s.a.e. brings any quite free magazine/pricelists. TIST, 76 Churches, Larkhall, Lanarkshire. Tel. 0698883334.
RADIO AND TELEVISION SERVICING BOOKS. New 74/75 £15. 76/77, 77/78, 78/79, 79/80, 80/81, 81/82, 82/83, 83/84 £22.50 each. Free delivery. U VIEW, 29, Warmsworth Road, Doncaster. 0302 855017. Callers ring first.

COURSES

FULL-TMME TRAINING COURSES

15 MONTHS

B-TEC NATIONAL CERTIFICATE in TELEVISION 8 VIDEO SERVICING

15 MONTHS
B-TEC NATIONAL CERTIFICATE
in COMPUTING TECHNOLOGY

9 MONTHS

B-TEC HIGHER CERT (HNC) in COMPUTING TECHNOLOGY \& ROBOTICS

- PRINCIPLES OF ELECTRONICS

TELEVISION (MONO/COLOUR)

- VIDEO CASSETTE RECORDERS \& CCTV
- COMPUTERS \& MICROPROCESSORS
- INDUSTRIAL ROBOTICS

Short courses (from 6 weeks) with previous electronics knowledge.
Courses commence
Jan '85, April '85, September '85.
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywern Road, London.SW5 9SU. Tel: 01-373 8721

EERUICE PQEES

SERVICE SHEETS

30,000 SERVICE SHEETS IN STOCK also colour manuals available

TV Sheets, Black and White, also Radiograms, Record Players, Music Centres Japanese models in stock. Curcuit diagrams only. Also Tape Recorders etc etc.,

ALL AT £3. Please forward s.a.e. Send cheque or P.O.
C. CARANNA, 71 BEAUFORT PARK, LONDON NW 11 6BX.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road Harrogate, N. Yorkshire. Tel. (0423) 55885. SERVICE PAGES SERVICE PAGES PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS.
SERVICE PAGES SERVICE PAGES
$\star \star \downarrow$

TECHNICAL INFO SERVICES - 76 Church St - Larkhall - Lanarks
(By return of post service in most cases.)
Sole suppliers of the Unique Comprehensive T.V. Practical Course and The Complete Radio Repair and Servicing
Sole suppliers of the Unique Comprehensive T.V. Practical Course and The Comple Rad...... ONLY E9.50 each.
We stock every published service sheet plus produce more ourselves.
All service sheets are top quality, full-size sheets supplied in complete sets.
$\mathbf{£ 3 . 5 0}$ + I.s.e.e. for CTV or Music Centres - $£ 2.50$ + I.s.a.e. any others.
NORLD'S LARGEST COLLECTION SERVICE MANUALS
Can Can be seen at our premist Eqpt. in stock for immediate despatch - Over 406 dif. CTV - Over 200 dif videol . Most manuals are unobtainable ariywhere else.

> WORLD'S BIGGEST PUBLISHER OF TV/VIDEO REPAIR MANUALS

Mono TV Integrated Repair System (2/6).
Video Integrated Repair System (2/10)...
first figure for giant collections of cincuits/layouts in binders,
2nd figure for number of repair manuals. Other items not shown
The Complete Integrated TV Repair System - covering TVs colour \& mono, British \& foreign, circuits, layouts, repair data plus much servicing data. Around $\mathbf{E 3 0 0}$-worth ..

FOR FAST QUOTES - PHONE 0698883334

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European, and Japanese models in stock.
Colour $£ 2.00$ Mono $\mathbf{£ 1 . 5 0}$ (post free)
Manual prices on request
Send stamped envelope for free catalogue and enquiries
SANDHURST TV SERVICES (MAIL ORDER) 49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

FOR SALE

TUBE REGUNNING. All plant and equipment. Will not split. $£ 3000.0932223426$ WALTON

HEATHKIT CMOS TLL Logic Probe complete wit

Sabaco

For a great óea!

VAN LOAD DIRECT FROM SOURCES
Remember all sets cleaned and soak tested. Most makes avail able, any quantity e.g. GEC, Bush, Decca, ITT, Pye G11, T22, 9000,9800 etc.
WORKING SETS FROM $£ 20$ upwards. e.g. GEC $2110 £ 25 \mathrm{~min}$ cf 6 and etc.
COMPLETE NON-WORKERS from $\mathbf{£ 1 0}$ in quantities.
Black/White in batches of 10 at $£ 1.50$.
SPECIAL OFFERI
$26^{\prime \prime}$ G8/3500/HYBRIDS
QUANTITIES OF 10 @ $\mathbf{£ 5}$ each
SPARE PARTS AVAILABLE AT COMPETITIVE PRICES. PLEASE SEE SEPT/OCT ISSUES.
N.B. Add 30 p extra per panel.

ALL PRICES SUBJECT TO VAT \& AVAILABILITY

Sabaco
Elastic Yarns Building.
Derby Road, Sandiacre.
Nottingham.
Open 6 days a week
9.30 a.m. - 6.00 p.m.

Telephone: (0602) 397555

AERIALS

SPECIALIST VHF AERIALS, $28-170 \mathrm{MHz}$, OIRT/ TV-DX, Amateur, AB/MB/Cordless. Folder SAE, AERIALTECH, 33 Cherville Street, Romsey, Hants SOS 8FB.

AERIAL BOOSTERS

B45HGG-UHF TV next to the set fitting, gain abou $20 \mathrm{dbs}, \mathrm{PP} 3$ battery or 8 V to $14 \mathrm{~V} /$ working. Price $£ 8.70$ P\&P 30p
UHF TV BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . 8 V to $14 \mathrm{~V} / \mathrm{W}$. Price $£ 2.50$. P\& $\mathrm{sp}^{2} \mathbf{3 0 p}$. AMPLIFIED SET TOP AERIALS. Trebles the gain fully portable price includes batteries. Price $£ 9.70$ P\&P 5cp.
B11 VHF/FM RADIO next to the radio fitting, gain 14dbs. Price E7.70. P\&P 30p.

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom
Lancashire, BLO 9AG
Tel: Ramsbottom (070 682) 3036
S.A.E. for leaflets. Access/Visa Welcome

EX-EQUIPMENT DISH, 1.5 metre on mount, as new £130 o.n.o. Tel. 0789764040

```
CLEARVIEN AERIALS
Clearview have pleasure in announcing a full and comprehensive range of signal amplification equipment. For example: low noise electronically remote controlled masthead pre-amp 1.6 db noise. CH. 17-69 Set side amplifiers, distribution amplifiers, notch filters 4 in 1 or 2 in 9 etc. Combiners for 2 UHF aerials 3db gain or 4 6-db gain. Trade and retail
Send large SAE for our comprehensive catalogue CLEARVIEW AERIALS,
173 Kings Road,
Kingston Upon Thames, Surrey
```


MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.

VIDEO/TV TEST EQUIPMENT (PAL)

Philips PM5519 pattern generator 4880 Digitel $04060-01$ noise meter

Contact
Hi-Test 64 Castellain Road,
London W9 1EX. Tel: (01) 2893533

The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal Part 2. The Receiver Decoder Part 3. Receiver Installation VHS $\star \star \star$ V2000 $\star \star \star$ BETAMAX $* * *$ UMATIC
For full details telephone 0253725499 (Day) 0253712769 (Night)
Or send for precise details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH LYTHAM ST ANNES FY8 1LP (enclosing this advert)
NAME
ADDRESS

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland f11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

