NOVEMBER 1984

Australia $\$ 1.80$, New Zealand $\$ 2.20$, Malaysia $\$ 5.50$ (2)

SERVICING-PROJECTS-VIDEO-DEVELOPMENTS

EXTRA PAGES + DATA CARD

All about Lenses • DX-TV
 Remote Control for VCRs
 Variable IF Sound Channel
 Grundig's VHS Machine Simple CRT Tester/booster VCR Clinic • TV Fault Finding

MANOR SUPPLIES

NEW MKV PAL COLOUR TEST GENERATOR FOR TV \& VCR.

$\star 40$ different patterns and variations.

* Broadcast transmission accuracy (fully interlaced sync pulses with correct picture blanking).
\star EBU colour bars, BBC colour bars, whole rasters \& split bars (specially useful for VCR service), white, yellow, cyan, green, magenta, red, blue and black.
\star Chequerboard.
* Mono outputs with border castellations, cross hatch, grey scale, vertical lines, horizontal lines and dots. UHF modulator output plugs straight into receiver aerial socket.
\star Additional video output for CCTV \& VCR.
* Facilities for sound output.
* Easy to build kit, standard parts. Only 2 adjustments. No special test equipment required.
\star Mains operated with stabilised power supply.
\star All kits fully guaranteed with back-up service.
\star Also available with VHF Modulator.

Price of Kit

$\mathbf{£ 7 0 . 0 0}$
De Luxe Case ($10^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime}$)
$£ 7.40$
Optional Sound Module (6 MHz or 5.5 MHz) $\quad \mathbf{~} 3.90$ Built \& Tested in De Luxe Case including Sound Module

[Special test

£105.00
REPORT
Post/Packing $£ 2.50$
DEC. 1982_ Add VAT 15\% TO ALL PRICES
PAL COLOUR BAR GENERATOR (Mk4)

* Output at UHF, applied to receiver aerial socket.
* In addition to colour bars R-Y, B-Y etc.
* Cross-hatch, grey scale, peak white and black level.
* Push button controls, battery or mains operated.
\star Simple design, only five i.c.s on colour bar P.C.B.
PRICE OF MK 4 COLOUR BAR GENERATOR KIT £30.00. DELUXE CASE $£ 7.40$. BATT HOLDERS $£ 2.80$. MAINS SUPPLY KIT $£ 4.20$ (Combined P\&P £2.20).

MK 4 DE LUXE (BATTERY) BUILT \& TESTED $£ 58.00$ + $£ 2.20$ P \& P. MK 4 DE LUXE (MAINS) BUILT \& TESTED £68.00 + $£ 2.20$ P \& P. VHF MODULATOR (CH 1 to 4) FOR OVERSEAS $£ 5.75$.
EASILY ADAPTED FOR VIDEO OUTPUT \& C.C.T.V. (ADD VAT 15\% TO ALL PRICES)

MANOR SUPPLIES TELETEXT ADAPTOR KITS (LESS CASE)

MK 1 (Texas XMII) remote control $£ 120.00$ p.p. $£ 3.00$.
MK 2 (Mullard) infra red remote control $£ 150.00$ p.p. $£ 3.00$
Further details on request. Tel 01-794 8751/7346
Goods available if in stock immediately over shop counter (Mail order between 3 days and 1 week from receipt of order).

television magazine project parts. COLOUR portable, mono

 PORTABLE, MONITOR, TEST GENERATORS, ETC.THORN TX10 Teletext Interface Panels suitable for Mullard Decoders $\mathbf{8 2 . 5 0}$ p.p. £1.00.
T.p. £1.00 TX10 Facia Control Panel incl. Remote Control receiver $\mathbf{£ 7 . 5 0} \mathbf{~ p . p .}$ THORN TX10 type Remote \& Tuning Control Panel £9.40 p.p. £1.50.
THORN TX10 Series Facia Control Panel with 8 position Channel Selector £5.00 p.p. £1.50.
PHILIPS UHF Modulator (Audio \& Video Input) £15.00 p.p. £1.00.
SAW FILTER IF AMPLIFIER PLUS TUNER complete and tested for T.V. Sound \& Vision. £28.50 p.p. £1.20.
THORN TX9, TX10 Saw Filter IF Panel. $\mathbf{5 8 . 5 0}$ p.p. 80 p.
PAL DECODER KIT for RGB Monitors £27.00 p.p. £1.00.
SPECIAL OFFER TEXAS XM11 Teletext Decoder New \& Tested at reduced price. $£ 40.00$ p.p. $£ 1.60$.
TELETEXT 23 Button De-Luxe Handset with 5 yds Cable. $\mathbf{£ 6 . 8 0}$ p.p. $£ 1.20$.
XM11 Stab. Power Supply, $\mathbf{£ 3 . 8 0}$ p.p. $£ 1.20$.
CROSS HATCH UNIT KIT, Aerial Input type, incl. T.V. sync. and UHF Modulator, Battery Operated, also gives Peak White \& Black Levels, can be used for any set. $\mathbf{£ 1 2 . 0 0}$ p.p. 80 p. (Alum. Case $\mathbf{£ 2 . 5 5 , ~ D e ~ L u x e ~ C a s e ~} \mathbf{£ 6 . 8 0}$ p.p. £1.40.) ADDITIONAL GREY SCALE Kit $£ 2.90$ p.p. 45 p.
UHF SIGNAL STRENGTH METER KIT $\mathbf{£ 2 0 . 0 0}$ (VHF version also avail-
able). Alum. Case £2.55. De Luxe Case $£ 7.40$ p.p. $£ 1.80$.
CRT TESTER \& REACTIVATOR PROJECT KIT For Colour \& Mono
£28.00 p.p. $£ 2.80$.
BUSH A816 IF 100 series IF Panel $£ 5.00$ p.p. 90 p.
DECCA 80 Series IF, Frame, T.B. $\mathbf{~} 5$.p.p. 90 p p.
GEC 2040 Convergence Panels, Decoder Panels, $£ 2.50$ p.p. $£ 1.80$.
GEC 2040 IF Panels $£ 2.80$ p.p. $£ 1.60$.
GEC 2110 Convergence Panels $£ 5.00$ p.p. $£ 1.80$.
GEC "20AX" Series Switch Mode Power Supply $\mathbf{2 5 . 0 0}$ p.p. $£ 1.80$.
PYE 691-7 CDA Panels. Makers tested stock. E6.00 p.p. £1.45.
PYE 725 T.B. Unit. Makers tested stock. $\mathbf{£ 2 0 . 0 0}$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory for small spares. Includes I.Cs \& Semiconduc-
tors etc. 55.00 p.p. $£ 2.00$.
THORN TX9 Panels salvaged ex factory for spares incl. LOPT \& Mains Transformers. $£ 10.00$ p.p. $£ 2.80$.
THORN TX9 Panels ex factory salvaged complete cond. $\mathbf{£ 2 0 . 0 0}$ p.p. £2.80.
THORN TX 10 T.B. Panels salvaged ex factory. $£ 15.00$ p.p. $£ 3.00$.
THORN TX10 IF/Decoder Panels salvaged ex factory. $£ 15.00$ p.p. $£ 2.00$.
THORN $\mathbf{3 0 0 0 / 3 5 0 0}$ Power supply unit. New cond. $£ 10.00$ p.p. $£ 2.80$
THORN $8000 / 8500$ IF/Decoder Panels salvaged $£ 3.20$ p.p. $£ 1.80$.
THORN 8000/8500 Frame T.B. Panels salvaged/spares £2.50 p.p. £1.40.
THORN 9000 Series Control \& Receiver Unit $\mathbf{1 6 . 8 0}$ p.p. $£ 1.80$.
THORN 9000 IF/Decoder Panels Salvaged. $\mathbf{£ 5 . 0 0}$ p.p. $£ 1.60$.
THORN 9000 Series. Long panel facia unit incl. 6 Position Channel Selector \& Loudspeaker £6.00 p.p. $£ 2.00$.
PHILIPS G8/G9 IF/Decoder Panels for small spares $\mathbf{£ 1 . 5 0}$ p.p. $£ 1.40$.
G8 Decoder Panels salvaged $£ 3.80$. Panels for spares $£ 1.75$ p.p. $£ 1.40$.
G9 Scan Panel. Basic PCB in Fibreglass $£ 14.50$ p.p. $£ 1.80$.
G11 Frame Panels, IF Panels $£ 18.00$ each p.p. 22.00 .
GRUNDIG 8630 Series Varicap Tuners $\mathbf{5 5 . 0 0}$ p.p. £1.00.
VARICAP. U321, U322, ELCl043/06, ELC1043/5 86.80 p.p. 80 p. G.I. type (equiv. 1043/05) $\mathrm{E}^{2} 50$ p.p. 80p. Makers Varicap Controls PYE CT200 4PSN £7.50, BUSH 4PSN \&4.80, DECCA 4PSN £5. 80 p.p. 80 p.
SPECIAL OFFER ELEVEN POSITION Varicap Control Unit UHF/VHF £1.80 p.p. £1.00.
BUSH 'P TOUCH TUNE" Varicap Control Z179, Z718 types $£ 3.80$ p.p. 95p.
VARICAP UHF-VHF ELC2000S, ELC2060 $£ 9.80$, BUSH £7.80 p.p. 90 p .
VARICAP VHF MULLARD ELC 1042 , PHILIPS, £6.90 p.p. 80 p.
UHF/625 TUNERS, many different types in stock. DECCA Bradford 5
position, MULLARD 4 position £2.50, fAP Rotary £4.80 p.p. £1.80.
TV SOUND IF Panels $£ 6.80$ p.p. £1.00.
LOPT TESTER, Service Dept approved $\mathbf{£ 1 5 . 5 0}$ p.p. $£ 1.20$.
LOPTS New and guar. P/P Mono $£ 1.35$, Colour $£ 1.50$, Bobbins 80p.

BUSH 161 to 186 (twin panel) $\mathbf{5 5 . 9 0}$	R,B.M. A823 54.90
BUSH, MURPHY 774 series $\mathbf{8 8 . 5 0}$	R.B.M. $\mathrm{Z179}$.............................. £9.80
BUSH, MURPHY A816 series 88.50	R.B.M. T20, T22......................... £9.80
FERG., HMV, MARCONI, ULTRA	R.B.M. T20, T22 Bobbin $\mathbf{\Sigma 5 . 6 0}$
950, 1400, 1500, 1580, 1590, $1591 £ 5.90$	DECCA Bradford (state Mod No) ... 88.80
THORN 1600, 1615, 1690, 1691 ¢9.15	DECCA 80, 100 88.80
GEC 2000 to 2038 series 86.80	GEC 2028, 2040, 2100 $£ 5.80$
GEC series 1 \& 2 88.00	GEC 2110 series $£ 10.60$
INDESIT 20/24EGB $\mathbf{8 7 . 6 5}$	ITT CVC 5 to 9, CVC20 $\mathbf{8 9 . 8 0}$
ITT/KB VC200, 300 $\mathbf{8 7} 65$	ITT CVC25, CVC30 series 88.80
MURPHY 1910 to 2414 (twin panel) $\mathbf{5 5 . 9 0}$	PYE $691-697$ (state model no.) $\mathbf{1 0 . 0 0}$
PHILIPS 170, 210,300 series $£ 7.65$	
PYE, INVICTA, EKCO, FERR.	PYE 725 (90°) 731 to $741 \ldots \ldots159 .20$
368, 169, 569, 769 series $\mathbf{5 7 . 6 5}$	PHILIPS G8 88.80
SPECIAL OFFER	PHILIPS G9 $£ 10.80$
DECCA 20/24, 1700, 2000, 2401 ... $\mathbf{5 3 . 8 0}$	
GEC $2114 \mathrm{~J} / \mathrm{J}$ unior Fineline............$~ £ 2.80 ~$	THORN 3000/3500 SCAN, EHT ... $\mathbf{8 6 . 9 0}$
	THORN 8000/8500/8800 $\mathbf{1 2 . 9 0}$
KB VC ELEVEN (003) 11.75	THORN 9000 to 9600 $\mathbf{1 2 . 9 0}$
£2.	THORN 9800 19.05

OTHERS AVAILABLE, PRICES ON REQUEST. ALSO LOPTS.
TRIPLERS Full range available. Mono \& Colour.
Special Offer: Thorn 8000 (2 lead) EHT Tray $£ 2.80$ p.p. 80 p .
TRANSDUCTORS suitable for G8, A823, Bradford etc. $£ 1.50$ p.p. 60 p. 6.3 V CRT Boost Transformers for Colour \& Mono £5.00 p.p. $£ 1.20$.

THOUSANDS OF ADDITIONAL ITEMS ENOUIRIES IN
THO SEIEDTION TESTED COLOUP PANELS POPULAR
LARGE SELECTION TESTED COLOUR PANELS POPULAR MODELS Telephone 01-794 8751, 7947346

MANOR SUPPLIES

172 WEST END LANE, LONDON, NW.6.
NEAR: W. Hampataad Tube Stn. (Jubilee) Buses 28, 159, C11 pass door W. Hampatead British Rail Stas. (Richmond, Broed St) (St Pancres, Bedford) W. Hampstend (Brit. Rail) access from sll over Greater London.

Mail Order: 64 GOLDERS MANOR DRIVE, LONDON N.W.11.
PLEASE ADD VAT 15\% TO ALL PRICES

TEL 1984

COPYRIGHT

9PC Magazines Limited, 1984, Copyright in all drawings, photographs and articles published in Television is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Television to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", King's Reach Tower, Stamford Street, London SE1 9LS. Editorial correspondence should be addressed to "Television", IPC Magazines Ltd., King's Reach Tower, Stamford Street, London SE1 9LS.

SUBSCRIPTIONS

An annual subscription costs $£ 11$ in the UK, £12 overseas (by surface mail). Send orders with payment to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex, RH16 3DH.

BINDERS AND INDEXES

Binders ($£ 4.50$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Prices include postage and VAT. In the case of overseas orders, add 60p.

BACK NUMBERS

Some back issues are available from the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF at $£ 1 \cdot 20 p$ inclusive of postage and packing.

QUERIES

We regret that we cannot answer technical queries over the telephone nor supply service sheets. We will endeavour to assist readers who have queries relating to articles published in Television, but we cannot offer advice on modifications to our published designs nor comment on alternative ways of using them. All correspondents expecting a reply should enclose a stamped addressed envelope. Requests for advice on dealing with servicing problems should be directed to our Queries Service. For details see our regular feature "Service Bureau". Send to the address given above (see "correspondence").

this month

9 Leader

10 Variable I.F. Sound Channel
Hugh Cocks
A tunable sound channel for the reception of satellite TV transmissions.
12 CRT Tester/Booster
Jim Littler
A simple circuit using the mains transformer from the Decca Bradford chassis.
15 Grundig's VHS Machine - Model VS200 Steve Beeching, T. Eng. A review of the first VHS machine designed in Europe.
16 The Tangle Web
Les Lawry-Johns
A little monochrome portable causes more trouble than
a whole host of colour TVs. Also a strange colour tube
defect.
17 Teletopics
19 30V Battery Eliminator
Peter H. Dolman, T. Eng.
A simple oscillator plus rectifier circuit that produces a
30 V tuning supply.
20 All About Lenses Vivian Capel
To get the most out of a video camera it's as well to
know something about lenses. Basic optics plus a look at the features found on video cameras.
23 A Look at Monitors, Part 2
Eugene Trundle
This concluding instalment is concerned mainly with monochrome and colour displays and standard monitor inputs.
28 VCR Clinic
Reports on VCR faults and servicing from Steve
Beeching, T. Eng., Derek Snelling, Philip Blundell, Eng.
Tech., Les Harris, John Coombes and Dewi James.

30 Letters

34 Remote Control for VCRs
Derek Snelling
A review of VCR remote control systems with notes on
faults and suggestions for adding remote control.
37 The US Scene in the Fifties
Chas E. Miller
A look at the techniques used in US TV sets in the
fifties, with a full NTSC decoder circuit of the period.
39 Next Month in Television
40 Long-distance Television
Roger Bunney
Reports on DX conditions and reception, news from abroad and details of an i.f. selectivity unit.
43 TV Fault Finding
Notes on TV receiver faults from M.S. Barakat, Peter H.
Dolman, T. Eng., Mick Dutton, Jim Rainey, Philip Blundell,
Eng. Tech. and Malcolm Burrell.
45 Pye/Philips Remote Control Systems
Harold Peters
A guide to the bewildering variety of remote control systems that have been used with Pye, Philips and Dynatron receivers.

48 Service Bureau

49 Test Case 263

OUR NEXT ISSUE DATE DECEMBER WILL
 BE PUBLISHED ON NOVEMBER 21

 Telex: 635562 Griffin G (For P.V.)SUPPLIERS
OF TELEVISION COMPONENTS
104 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE.
TRADE COUNTER OPEN MEN-FRI 9 a.m. -5 p.m. SAT 9.30 a.m. -5 p.m. TRADE COUNTER CLOSED WEDNESDAY p.m.

P. V. TUBES

PLEASE NOTE OUR NEW ADDRESS - COME AND SEE US 104 ABBEY STREET, ACCRINGTON, LANCS BB5 $1 E E$. Tel: 0254 36521/32611 Telex: 635562 Griffin G (For P.V.)

 (U.K). Emor ories sharyed

 Stats zero tate

CUSTOMER CAN'T PAY? DONT LOSE HIM FIT A TV METER

COINAGE AVAILABLE 10 p
50 p 50 p
E 1
COMPLETELY VARIABLE TIMINGS

METERS LIMITED

MANUFACTURERS OF TV COIN OPERATED METERS CONTACT (0202)674272 87-89 Sterte Avenue, Poole, Dorset. BH15 2AW. Telex: 418253 LUMIC G

HOCKLEY DISCOUNT
 TELEVISIONS
 94 Soho Hill, Hockley,
 Birmingham B19 1AE
 Telephone: 021-551-2233
 BEST QUALITY SETS AVAILABLE AT UNBEATABLE PRICES

Philips G8, G11, Bush T22, GEC, Starline, Japs., Deccas, Pye 222s, BRC 9000, 9600, 9800, Sony, latest Hitachi, ITT, CVC30, CVC45, plus remote control models.

PRICES START FROM $£ 6$ WORKING SETS FROM $£ 18$ FROM OUR SHOWROOM

DISCOUNT ON QUANTITY

NORTHERN T.V. DISTRIBUTORS
Unit 2, Perth Court
Team Valley Ind. Estate,
Gateshead, Tyne \& Wear
Telephone: 091-487 5389
Opening hours 9-7 Monday - Saturday
Sundays by appointment.

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU WANT AND POST TODAY

WE WILL ONLY SUPPLY TOP QUALITY, BRANDED COMPONENTS. REPUTATION COUNTS WITH US			PHONE (0228) 20358/39693						BUY WITH		
INTEGRATED	TYPE PRICE (¢)	TVPE PRICE (£)	TYPE PRICE (£)	TYPE PRICE (£)	TRAN-		PRICE				THORNI500-5S . . . 4.55
CIRCUTS	LA3122 2.10	TBA520........ 1.30	STK0050 7.50	UPC1185H2 ..3.30	sistors	 10	$\begin{aligned} & \text { TYPE PRICE } \\ & \text { BR100....... } 18 \end{aligned}$	$\text { RBM TVO } 22 \mathrm{~A}$	1220	THORN3000/3500 . 7.75
TYPE PRICE (£)	LA33011.97	TBA530 1.00	STK011 7.35	UPC1188H ... 3.30	TYPE PRICE			BR101 32	RBM 27181		THORNB500 4.00
AN1031.95	LA3350 1.93	TBA540......... 127	STK014 7.65	UPC1190C ... 2.10	AC127 22	BC55		BR 103 …..... 55	пВ	22.55	THORNB500/8800 . 6.50
AN214 225	L44031 1.66	TBA550........ 1.40	STK015 7.15	UPC1198H1.30	AC128 22	BD12	4P..... 55	BT106 1.15	PHILIPS G8.		THDRNSO00 640
AN2172.44	L44031P	TBA5600 1.60	STK016 7.45	UPC1200V ...1.90	AC128K 30	8013		BT116 1.30	PHILIPS G9.	8.75	PYE 731 6.55
AN240 220	LA4032 ….... 234	TBA7500 2.45	STK020 9.05	UPC1208C ...1.85	AC187K 30			BU126..... 1.78	PHILIPS G11.	13.50	DECCA 2230 630
AN2531.93	LA4051 2.79	TBAB00......... 80	STK03211.32	UPC1211C ...4.05	AC188K 33	BD2	180	BU204 1.50	THORN 15901	858	DECCA $80 \ldots .6 .630$ DECCA 100
AN264 ….....1.77	LA4101 1.88	TBA810AS ...1.15	STK035 12.67	UPC1215V ...2.50	AD149 70	BD20		BU205..... 1.42	THORN $1690 / 1$	9.68	OECCA 100 6.76
AN315 1.66	LA41021.97	TBA820........1.40	STK036 12.67	UPC1216V ... 2.00	AD161 42	BD20		BU206..... 1.35	THORN 1615		
AN3186.95	LA4400 2.80	TBA890 2.95	STK04311.33	UPC1217G ...3.35	AD162....... 42	B020		BU208A .. 1.40	THORN TX10..	12.50	Universal 5.50
AN337 4.41	La4420 1.94	TBA9200 …. 1.50	STK050 20.75	UPC1218H 2.75	AF127 36	BD22		BU208/021.70	PYE 731/13 1	.. 1020	
AN3601.45	LA4422 2.75	TBA950/2X ...2.65	STK070 21.95	UPC1222 2.05	AU110 ... 2.10	8023	2 50	BU326A .. 1.48	PYE 7251901	.. 1020	
AN5431 2.76	LA4430 1.93	TBA9901.55	STK077 8.56	UPC12233.40	AU113 3.50	BD23	3 37	BU407 1.12	ITT CVC 1.9		
AN63326.97	LA4460 2.95	TCA270S 130	STK078........ 8 A5	UPC1225..... 3.10	BC107 …… 14	BD23		BU500 1.80	DECCA 2230		diodes
AN7110 1.93	La4461 2.95	TCA800 1.95	STK082 9.75	UPC1226 2.55	BC108	BD23		BU526 2.00	OECCA $80 .$.		PE PRICE
AN71142.33	MB3712 2.30	TCA940........ 1.55	STK08612.89	UPC1227......2.10	BC109 14	BD23		BU826..... 3.20	DECCA 100		BY127 10
AN7115 2.37	MB3713 225	TDA1002A 1.50	STK4159.66	UPC1230H ...3.45	BC141 26	8023		R2008B ... 1.45	ITT CVC 20		BY133 15
AN7120 2.43	MB8719 5.20	TDA1003A 2.80	STK433 725	UPC1245...... 1.98	BC142 23	BD23		R2010B ... 1.45	ITT CVC $25 / 30$		BY164 40
AN7140 2.10	MC1327A..... 1.00	TDA1004A 2.70	STK435 7.75	UPC1250..... 2.45	BC143 25	BD41		R2540 2.35	ANTI-SURGE	FUSES	BY179 60
AN71453.25	MC1358P 1.60	TDA1035...... 320	STK4377.77	UPC1350C $\ldots . .4 .50$	BC147 …… 09	8D43	450	TIP31C 46	A/S2OMM 80 M	A... 2.75	BY2108800 30
AN7150 2.89	MC1330P 90	TDA1044 \ldots.....3.10	STK4397.86	UPC1353C ... 2.60	BC148 09	BD43	770	TIP32C 47	100, 160, 200 M 1.70	BY223 86
AN7151 2.89	ML2318	TDA1170 1.80	STK441 9.52	UPC1356C2 . 3.05	BC157 10	8D43	8......... 78	TIP338 80	315. 400. 500,	,	
HA11372.30	ML23281.70	TDA1412......... 90	STK443 1133	UPC1358H ...3.05	BC158........ 11	BD70 1.05	TIP41C 48	800MA, 1A, 12		BYX10 20
HA1144........ 2.39	ML237 2.50	TDA2020...... 2.95	STK4599.55	UPC1363C ... 320	BC159 11	BD×3	22 … 1.65	TIP42C 48		... 120	BYX55/600 25
HA1151........ 1.97	ML238 422	TDA25221.80	STK46310.88	UPC1365C5.05	BC160 22	BF194	4 ….... 12	TIP2955..... 70	2, 3.15, 4, 5A	1.35	BY771/000 78
HA1156........1.97	TA7072P 2.75	TDA2523 225	STK501 8.98	UPC1366C ... 2.85	BC172 10	BF195 13	TIP3055..... 56	NEW VA		0A90 . \cdots....... $\mathbf{D 7}$
HA1166........ 2.65	TA7108P 2.10	TDA2530 2.10	UPC41C 2.95	UPC1367C ... 2.85	BC177 22	BF196 11	TV106/02 1.60	DY802.......		
HA1197........2.30	TA7120P 2.05	TDA2532..... 2.20	UPC554C 1.30	UPC1368C ...3.76	BC182 10	BF197 11	2N3054 …. 55	PCF802		1 N 54018 12
HA1199.........230	TA7129........ 3.00	TDA2540......1.95	UPC555H $\ldots0 .70$	UPC1370C2 . 3.80	BC182L 11	BF198	. 14	2N3055 50	PCLB2		BZX61-range 18
HA1202........1.75	TA7130P 120	TDA2560...... 1.80	UPC566H3 ... 2.10	UPC1373H 120	BC183L 11	BF241 15	2SC1172Y	PCL84		BZY88-range 11
HA1211........ 1.87	TA7139P2.80	TDA25811.70	UPC577H	UPC1377C 4.60	BC184L 11	BF256	LC 25	. 1.85	PCL805		
HA1306....... 2.97	TA7157P 3.00	TDA2590...... 225	UPC585C 1.40	UPC1378H3.80	BC208 12	BF258 25	2SC2029.2.00	PCL86..		
HA1319........ 2.98	TA7171P 3.40	TDA2591 2.70	UPC1009H ...2.15	UPC1384C ...5.50	BC212L 10	BF259		2SC2078.2.00	PFL200.		
HA13222.10	TA7172P 3.40	TDA2593...... 230	UPC1017G2.55	UPC2002H 220	BC213L 10	BF337		2SC2078.2.20	PL504	1.50	SUNDAIES
HA1325........ 2.30	TA7176AP 2.90	TDA2600...... 5.50	UPC1018C1.15		BC214L 10	BF338		2SC1969 . 2.45	PL508.	2.50	PYE IF GAIN M00 .7.as
HA1338........ 2.78	TA7193P 420	TDA2611A 1.50	UPC1025H ...3.30		BC237B...... 11	BF458	. 30		PL509/519	5.65	EN COIL G111.区下
HA13392.80	TA7202P 3.00	TDA2640 1.80	UPC1026C ...1.45		BC337 11	BF459 36		PY88		VA1104 70
HA1342A 2.33	TA7203P 3.00	TDA3560 5.10	UPC1028H		BC338 10	BFP90 1.60	SG613/	PY500A.		G8 TRANSOUCTOR 225
HA1366	TA7204P 1.80	SAS560S1.83	UPC1031H2.40		BC547 10		... 22	6533 8.50	PY81/800		$.1 .40$
HA1368........ 222	TA7208P 220	SAS580 2.40	UPC1035C ... 2.50		OLYTICS						
HA1371........ 2.97	TA7210P 5.60	SAS5902.40	UPC1042C ... 2.40	DECCA 301400/4	0)350V	2.55	DECCA	4W			
HA1374....... 2.56	TA7222P 1.70	SL9018 4.80	UPC1043C ... 2.45	DECCA 80/100/400	0)350V		DECCA	6W	7.95		C/D Transistors.
HA1377 3.80	TA7223P3.15	SL917B 6.95	UPC1156H2.45	(800)250V		2.90	PYE201	6W	15.80		or write for lists
HA1388........ 4.20	TA7227 4.65	SN76003N2.05	UPC1168C ... 2.70	PHILIPS G8(600)30		2.00	PHILIPS	G8S/L	13.90		
HA1397........ 4.15	TA7310P 1.70	SN76013N 1.80	UPC1170C 1.55	PHILIPS G9(2200)63		1.15	PHILIPS	8S/0	12.00		
HA11211 2.43	TA7313P2.10	SN76023N 1.80	UPC1176C ... 2.15	PHILIPS G11(470)2	250 V	1.95	HITACH		8.95		
KLA7217 2.75	TAA550......... 28	SN76110N 90	UPC1177H 230	PYE 691/7(200-300)	0)350V	2.10	ITT CVC5	7W	9.40		dd 50p For P/P
HA11221 2.77	TBA120AS 70	SN76226DN . 1.45	UPC1178C ... 220	RBMA823(2500/25	500)30V	1.10	IT CVC8		12.80		
LA1201 1.88	TBA120S8 90	SN76227N 1.00	UPC1180C ...3.05	THORN3500(175/1	100/100		PHMILIPS	G11 (TIP SW	25.80		Orders - Cost.
LA1230 2330	TBA120U 1.00	SN76660N 65	UPC1181H 220	4001350 V		2.25	1043/05T		8.30	LVE	RY BY RETURN ON
LA1365 2.25	TBA395........ 1.25	STK00396.45	UPC1182H ...2.35	THORN3500 100		. 85	U321 TFK		7.95		STOCK ITEMS.
LA2200 225	TBA396.......... 85	STK00405.95	UPC1183H $\ldots . .235$	THOR N9000(400) 4	400 V	2.75	U322 TFK		7.40		

U.K. Post Paid, Export orders welcome, please deduct V.A.T. and enquire for Overseas carriage cost. Barclaycard/Access orders welcome, or Cheque, Bank Draft, etc., with order please. Large S.A.E. for technical leaflets of complete range. Delivery normally within 7 days.

TELEVISION/COMPUTER TRANNNG

(FULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICAL EDUCATION COUNCIL)

$$
2 \text { YEAR }
$$

BTEC National Diploma ELECTRONIC \& COMMUNICATIONS ENGINEERING (Electronics, Computing, Television, Video, Testing \& Fault Diagnosis) 15 MONTHS BTEC National Certificate
ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Recorders, CCTV, Testing \& Fault Diagnosis) 15 MONTHS BTEC National Certificate COMPUTING TECHNOLOGY
(Electronics, Computing Sotware/Hardwere, Microelectronic Testing Mathods) 9 MONTHS
BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Feult Diagnosis, ATE, Robotics) THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS
Shortened Courses can be arranged for applicants with previous knowledge.

Full Prospectus from

LONDON ELECTRONICS COLLEGE (Dept TF) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-378 8721

TOP TWENTY VIDEO SPARES

Cassette lamp (Ferg/JVC) $£ 1.80$ Video head (Ferg) (state model) $\mathbf{5 3 7 . 5 0}$ Cassette lamp (Panasonic) …............ $£ 1.80$ Video head (Panasonic) (state model) $\mathbf{E 3 9 . 5 0}$ Take-up clutch (Ferg)56.50 Head cleaning fluid51.50 Belt kit (Sony/Toshiba early)£6.50 Head cleaning sticks (each)50p Belt kit (Ferg) (state model)f6.50 Head cleaning tepes (VHS/Beta)f5.95 Belt kit (Panasonic NV7000)f6.50 Loading Belt (SL8000)51.50 Bett kit (Sanyo 9300) Bett ki (Sa (S 3300f6.50 Loading Belt (Sanyo 9300) Rewind kit (Sony C7) E6, 55 Owerhal kit (Ferg) (state modell.............50 Reel idler (Sharp VC)45 Overhaul kit (Sony) (state model)£19.95 Video head (Sony C7) ….................... $\mathbf{£ 9 . 5 0}$ Overhaul kit (Sharp) (state model)£19.95

TELEVIDEO SERVICES NOTTINGHAM (0602) 226070

 76 Wollaton Rd., Beeston, NottinghamPlease add 50 p post \& packing and then add 15% VAT to total
ALL ORDERS DESPATCHED BY RETURN OF POST

1984 CATALOGUE AVAILABLE - Many prices reduced - range increased - 123 pages fully illustrated. Price $65 p$, per copy (free upon request with orders over $\mathbf{£ 5}$) - includes 30 p Credit Note, special offer sheets, order form and pre-paid envelope. SEND NOW FOR YOUR COPY,

EAST CORNWALL COMPONENTS
119 HIGH STREET
WEM
SHROPSHIRE SY4 5TT TEL: 093932689

EDITOR
John A. Reddihough
ADVERTISEMENT
MANAGER
Roy Smith
01-261 6671

CLASSIFIED ADVERTISEMENTS

Barbara Blake
01-261 5897

COVER PHOTO

Our cover photo this month shows the Frowds Surveyor VI CCTV camera with the covers removed. The Surveyor VI is a versatile, fully weatherproofed camera with circuit refinements to maintain the performance over a wide range of lighting conditions. It's designed for continuous unattended operation in industrial or open-air environments. Our thanks to Frowds Ltd., 4 Northarbour Road, Cosham, Portsmouth, Hants PO6 4TJ.

VIDEO SERVICING

Mike Phelan's Video Servicing feature will be resumed next month.

PIN CONNECTIONS

The pin connections for the LM324 i.c. (Fig. 4, page 658) were omitted last month. Pin 4 is the supply input and pin 11 chassis. Gate one's connections are pin 1 output, 2 - input, 3 + input.

TEST PATTERN GENERATOR

We have been asked to make it clear that the cost of the set of preprogrammed EPROMS for the Test Pattern Generator project (MaySeptember 1984) from JRW Developments is $£ 29$ inc. VAT - this is for the four 2532s, not three as stated in the article. This price will be held while stocks last. It may be necessary to increase the price at a later date.

Whatever happened to Prestel?

Well it's still going, just about, but has hardly made the impact the Post Office expected when it started the service five years ago. The original plan was for some 100,000 installations during the first year, with escalating growth thereafter. Had all gone well we might have seen say two million installations after five years. The actual figure is some 45,000 . Whatever went wrong?
Prestel arrived at the time when Information Technology was considered to be the thing of the moment. We were entering an information orientated society. Or so some dreamers thought. We would soon have vast amounts of information at our fingertips and the availability of this information would change our way of life. You can make out a case for this. If you're in the market for a house or a car for example, wouldn't it be nice to dial up the details of what you want and can afford and have the relevant items on offer flashed on the screen before you? No more trudging between estate agents and car dealers.

Yes indeed, but how often do you buy a house or a car? Not all that frequently. So the expensive system sits there awaiting its occasional use. Ah, but then there's the weekly shopping, banking, and all that other information for one's use. Banking maybe. The dreary procession to the bank to then stand around in a slow-moving queue is something we could all do without. Except that the banks have already moved to change that, with their cash dispensers, credit cards and so on. Shopping? A failure of psychology here. Yes, it would be nice to go out armed with a list of keenest prices and special offers, but the idea was that you'd do it all by dialling from home. Shopping however is part of a way of life. A chance to get out and look around. Meet a few people and get up to date with the local gossip. The better retailers know all this and have put a lot of thought into shop layout and presentation, to their own benefit and it seems to the public's approval. I wouldn't care to say how many times over the years I've read articles suggesting that the end of department stores and Oxford Street is imminent. Yet people still flock to Oxford Street, stores are full, and it's likely that this will continue for many years to come. Shops may theoretically be a rather inefficient mode of goods distribution, and can be frustrating and time wasting. But to get in amongst the goods, to see and sample what you want, is more atuned to human needs than dialling up for a printout on the screen.

If what you're after is impartial guidance in the home, then Which? does a far better job. And here you have another point that was overlooked by the information technology enthusiasts. We were assured that the printed word would soon be a thing of the past. Information would be provided by computers rather than journalists, and would be dialled up instead of being typeset, printed and carted around in the form of great bundles of paper. How inefficient! Yet in practice the printed page is a far more appropriate means of presenting information than the TV screen. Just compare the amount of information you can get into a page with what you can get on to a TV screen. Then you can flick through a paper, magazine or book, which will hopefully be presented in a logical form to assist with the information seeking quest. You can go back to the bit you were unsure about - or the point where you fell asleep! If you buy a publication regularly you know what to expect and how to use it. Information held in a computer is a rather different matter. You've got to know exactly what you want at the outset, then you've got to know how the computer stores it, i.e. how to ask the computer for what you want. Prestel involves a rather laborious search system for getting the information out - always assuming that it's there to start with. And going through the procedure can be expensive and time consuming.

Which brings us to cost, another drawback with Prestel. The information and the equipment to get it don't exactly come cheap. So interesting the public in it involves the hard sell. The PO, more recently British Telecom, haven't been exactly successful here. But then the public is rightly suspicious of new ideas and services, and is generally conscious of prices and value for money. Information as a cold collection of facts is hard to sell. How do you convince the man in the high street that he's starved of information? How do you go about selling him a databank he doesn't understand let alone feel a need for?
The basic problem with Prestel has been its blunderbuss approach. Trying to sell to the public at large something as unspecific as "information" is hardly likely to be a success. It seems that Prestel has learnt this lesson and that the sales pitch will in future rely on selling specific information to identified markets - a recent example of this is the Farmlink service. But even here it will meet with strong competition from the established information providers - the specialist press, which has been a growth area of publishing in recent years. Back to the point that the printed page can do it better!

Prestel has been a failure as a mass information service, though there's reason to feel that it may have a viable future as a provider of specialised information. To overcome the problem of the cost of equipment - a classic chicken-and-egg situation - it might be better to have Prestel available in the high street for use when it's wanted, which for most people would not be very often. You could then go along to get the information you want when you want it. True this is not the armchair access concept that was fundamental to the original idea of viewdata. That might come later if and when the cost of the technology falls dramatically. What in fact went wrong with Prestel was that the idea and the technology arrived before its usefulness could be properly assessed.

Variable IF Sound Channel

Hugh Cocks

Satellite TV transmissions use a variety of frequencies for the associated sound channel, the sound subcarrier frequency varying between 5.5 MHz and 7.5 MHz (see Table 1). Since there's no standard frequency, reception calls for a tunable demodulator with high sensitivity - especially with the new 11 GHz services. Good sensitivity is a must as the sound subcarrier that accompanies the f.m. video is generally transmitted at a reduced level: as often as not the whole transmission is weak, which can lead to buzzing and noise if the input preselection and gain are not all they could be.

Basic Design

The sound channel described in this article uses a TDA1190Z i.c. which in addition to the demodulator includes an audio amplifier. The advantage of this is a low component count. Other intercarrier sound i.c.s such as the TBA120 should work just as well with the same tuning and preselection arrangements. A Philips G8 chassis sound selectivity module is used for input tuning: it's still available cheaply and is simple to modify for external tuning with varicap diodes. The module can easily be mounted on the PCB that holds the demodulator i.c. As a bonus, the quadrature coil for the i.c. consists of a redundant coil removed from the module. The circuit can also be used as a $4.5 \mathrm{MHz}-6 \cdot 5 \mathrm{MHz}$ terrestrial TV intercarrier sound channel with no problem. If reception of only part of the band is required, e.g. Gorizont 7 MHz and 7.5 MHz , or the $6 \cdot 5-6.8 \mathrm{MHz}$ range, ordinary lowcapacitance swing v.h.f. tuning diodes such as the BB103BB109 series can be used. If the full band is required, h.f. tuning diodes such as the KV1235 must be used. These are available from Ambit International.

The Selectivity Module

The original circuit of the Philips U500 sound selectivity module is simple (see Fig. 1). The output from the video detector enters at pin 4 and is then split two ways, going to the base of the BF194 transistor (some units use equivalents) and via L3 to pin 5 (feed to the video processing chip in the G8). When used in the G8, the chroma signal is taken from the emitter of the transistor, via pin $8 . \mathrm{L} 1$, L2 and the associated components form a top-capacitance coupled bandpass tuned circuit for the sound signal which is tapped from the junction of $\mathrm{C} 2, \mathrm{C} 3$. A 12 V supply is fed

Table 1: Satellite sound subcarrier frequencies.
Gorizont (Russia) 7MHz, 7.5 MHz .
US Forces TV 6.8 MHz (low-deviation radio channel around 6 MHz).
TV5 (France) 6.6 MHz (wide deviation).
RAI (Italy) 6.6 MHz .
Teleclub (Switzerland) $6.5 \mathrm{MHz}, 5.5 \mathrm{MHz}$ (unused at present). Intelsat services $6.6 \mathrm{MHz}, 6.65 \mathrm{MHz}$.
Argentina 6.3 MHz .
Libya $6 \cdot 2 \mathrm{MHz}$.
Spain 6.6MHz, 6.65 MHz .
in at pin 2: pins 3, 6 and 7 are connected to chassis.
Since the chroma output is no longer required, the gain of the unit can be increased by decoupling the transistor's 560Ω emitter resistor. A 100 pF decoupling capacitor, connected from pin 8 to chassis, seems to provide optimum results - a higher value causes buzzing on sound, probably due to the chip being overloaded. The capacitor can be fitted on the print side or, more elegantly, on the main board.

Coil L3 and its associated tuning capacitor are removed from the board. This leaves pin 5 free, which is useful for feeding in the tuning voltage. When 30 turns have been removed from L 3 it can be used as the quadrature coil. Do this carefully, ensuring that there's a good soldered joint on the securing pin when the unwanted turns have been removed.

If the full range is required, using h.f. diodes, remove C 1 and take eight turns off each side of the centre-tapped coil L1 (16 turns in all). Solder $0.0047 \mu \mathrm{~F}$ (nominal) d.c. blocking capacitors to each side of the coil with a varicap diode between - see Fig. 2. The $100 \mathrm{k} \Omega$ (nominal) d.c. feed resistors can go straight into the holes left by L3 and its associated capacitor. Ensure that the diode is inserted the right way round or very odd tuning effects will cause head scratching later. If only partial coverage is required, using v.h.f. diodes, leave C 1 in circuit but remove the same number of turns from L1.

Remove 20 turns from L2 and change $\mathrm{C} 2 / 3$ to around 82 pF each (leave at 270 pF with a v.h.f. diode). Since one side of this coil is connected to chassis only a single feed resistor and blocking capacitor are required. The tuning feed for the diode used with this coil has to come a little way over, either from the same point as the resistor going to D1 or from the hole left by L3's tuning capacitor. Mount the resistor by the diode and run a wire over to the d.c. input point.

The tuning diodes can be tucked in neatly by the coils so that the original can just fits over - if you can get one (most have long gone unfortunately). Be very careful not to short anything out. When removing the coils for modification be careful not to peel the print - this is easily done. When resoldering, ensure coil d.c. continuity at the print itself to avoid problems later. Also double check that the d.c. feed resistors are of high value $(100 \mathrm{k} \Omega$ or more) as odd effects will occur if the tuned circuits are accidentally damped by using a low-value resistor. The modules themselves are reliable. The worst problem is hairline cracks at points of most mechanical stress. On one occasion a noisy transistor had to be replaced.

Demodulator/AF Circuit

The demodulator/a.f. circuit is conventional, see Fig. 3. Be careful with the layout if using Veroboard etc. as instability may arise. Ensure that after modification the quadrature coil has d.c. continuity or weak hissing will be noted at low volume settings - with everything cutting out at normal levels! The Philips quadrature coil is best glued to the board vertically, with short leads (use resistor offcuts) taking the connections through. There's provision

Fig. 1: Circuit of the U500 sound selectivity module.

Fig. 2: Selectivity module after modification.
on the board (Fig. 4) for the coil to lie horizontally, but this makes access to the core difficult. The speaker coupling capacitor C 4 can give rise to instability at highish

Fig. 3: Demodulator and a.f. circuit.
volume (screeching). C3 in the Zobel network across the speaker can do similar things - without this network virtually nothing occurs apart from low-level buzzing.

There's no damping resistor across the quadrature coil as the audio seems to be better without one, probably due to the Q being lowered a little by the diode. If the audio is a little distorted or a diode is not going to be used (fixed tuning) a damping resistor can be added. Start with $10 \mathrm{k} \Omega$ and reduce the value till distortion is no longer heard. Add a 33 pF tuning capacitor when using a v.h.f. diode.

The resistors are all 0.25 W types. Note that with some i.c.s there's weak sound at minimum setting of the volume control and that volume increase is very sudden when the control is advanced. Top and bottom presets may be a good idea here. If a u.h.f. modulator or TV monitor that requires a low-level input is to be used, turn the volume control setting down a little.

The PCB has space for four presets to enable two sound channels to be switched by means of a front-panel mounted rotary switch (see Fig. 5). Modification for continuous tuning is simple. Don't link A to B, and solder in only two presets, one for quad coil tuning and the other

Fig. 4: Component layout. The components are mounted on the groundplane side of the board. Board actual size.
HF
22 k
2 t Front panel
tung control

Fig. 5: Alternative tuning arrangements. (a) For continuous tuning, (b) for two-position switched tuning.
for selectivity. Wire the outputs into the tuning voltage inputs. Use a front panel potentiometer for tuning - link the 12 V supply to this and take the slider back to point A on the board. The presets then serve for tracking.

Testing and Setting Up

Before trying the unit out, check that the tuning voltage is reaching the diodes and that they have been inserted the right way round. Turn up the volume and check that a good hiss is obtained without squegging/instability at high volume. If this is heard check the components previously mentioned. Tuning across the band will probably produce some noise variation. In the absence of a signal generator or satellite signal, connect a 6 MHz UK sound TV signal and see that the tuned circuits peak up well.

To some extent the setting of L2 is not critical. The diode appears to make a difference only at the top end of the band, above 7 MHz . Indeed a low-swing v.h.f. type can sometimes be better. The h.f. types are sold in blocks of three however, so it may be best to experiment. Tuning below the 6 MHz UK signal will reveal the PAL subcarrier at 4.43 MHz as a distinct buzz at one point. The voltage required to go from 4.5 MHz to 7.5 MHz is rarely more than $4-9 \mathrm{~V}$, so limiting presets in series with the tuning potentiometer may be useful.

To set up on Gorizont, ensure a "smooth" transition from the 7 MHz TV sound channel to the 7.5 MHz radio channel with no background from the unwanted subcarrier. With BB103s used to tune from 7 MHz to 7.5 MHz the action of the quadrature coil diode will be very sharp with only a small voltage change, but the preselection diodes will require virtually the full $0-12 \mathrm{~V}$ swing, so set the 7 MHz preselection preset to zero volts and peak L2 and L1, then adjust the 7.5 MHz preset for best signal, again with no background from the 7 MHz channel (easy to get with the tracking slightly off). Note that the Gorizont audio always sounds slightly distorted due to the pilot tone compression system used (for an expansion circuit, see Nick Harrold's article in the December 1983 issue).

The $6 \cdot 5-6 \cdot 8 \mathrm{MHz}$ subcarriers from other satellites are easily tuned in and there's no compression to worry about. Indeed one service promises stereo sound using a multiplex system by the time this is read. The unit should be highly sensitive with 4.5 MHz (ever hopeful in the UK!), $5 \cdot 5 \mathrm{MHz}$ and $6 \cdot 5 \mathrm{MHz}$ terrestrial DX signals.

The board can be installed in the TV set, taking the
place of the existing sound circuits. Ensure that the feed to the old circuit is removed or some loading may occur at 6 MHz , causing loss of sensitivity.

On very marginal signals the use of a phase-locked loop detector circuit can be an advantage (see page 85, December 1983) - it can be preceded by the modified selectivity module - though one has to say that the difference is not very great in practice unless the deviation is restricted (as can happen with certain American signals). In this case the quadrature circuit will produce a lot more noise.

Component Sources

The KV1235 varicap diodes are described as "triple a.m. tuning" types and are available (order code 1212355) from Ambit International, 200 N. Service Road, Brentford, Essex CM14 4SG at $£ 2.75$ plus VAT for three. Range is $30-450 \mathrm{pF}$ from $8-2 \mathrm{~V}$. Check the cathode/anode connections with a meter - the body indication is vague. Sendz have a good stock of the obsolete BB103 type (cathodes banded). The BB109 type ($15-42 \mathrm{pF}$ nominal) is available from Ambit (order code 12-01095) at 27p each plus VAT (cathodes banded). U500 selectivity modules are available from Manor Supplies (probably without can) at about $£ 3$ each tested. Ready etched boards can be supplied by Hugh Cocks TV Services, Cripps Corner, Robertsbridge, Sussex. Made up units may be available.

My thanks to Dave Lewis for his assistance with the experimentation and in developing the unit.

CRT Tester/Booster

Jim Littler

This simple unit was designed to test and reactivate tubes. It's cheap to make and simple to use. The mains transformer was taken from a scrap Decca Bradford chassis.
In the test position the grid and cathode of the gun being checked are connected to chassis while some 60 V is applied to the first anode. The meter (0.5 or 1 mA f.s.d.) indicates the current flow, which for a good gun should be about $100 \mu \mathrm{~A}$.

In the reactivate mode h.t. is applied to the relevant grid while the cathode is connected to chassis. The current flowing via the cathode-grid "diode" will light the pygmy bulb L1 ($240 \mathrm{~V}, 15 \mathrm{~W}$). When the "diode" conducts, the dead coating is stripped from the cathode. As a result cathode emission is increased - this can be confirmed by switching to the test position. Never reactivate for more than five seconds. Don't try a second reactivation or the tube could die a violent death.

Fig. 1: C.R.T. tester/booster circuit.

POST A PART ELECTRONICS

236 FURTHERWICK ROAD, TRADE COUNTER NOW OPEN CANVEY ISLAND, ESSEX Telephone 0268690868

 Telex 99305 ROSSER G.Thom 102 20W (3500) R751 Safety Resistor 75 Pye 713 Complata Tube Basa Panel with Focus Slider a Leads Pye 713 Control Knobs
Tube Base Socket ITT CVC32 Tube Base Socket Thom 3000/8000 etc IC Inserter 16 Pin
Large IC Exrracto
Crystal 4.43 MHz
EHT Lead \& Cap for Split Diode Lopt

Anode Cap

Sanyo Anode Cap Assy + Lead. 12TCD
Degause Thermistors PT3IP. IT/GEC
Degause VDR E299D/HP230 3000/8000
Casters Set of 4
ouble Fuse Holder on Small Pax Board 20 mm type
Single Fuse 20 mm type
Direct Panel Mounting 20 mm Fuse Clips
Singla Fuse Holder on Small Pax Bard (pair) 15p As per sarly 3000 mains input
EHT Cabie 34 Plugs
BF259 with Heatsink
TIPI10 with Heatsink
IIPI10 with Heatsin
L129/130/131 Cois
$\mathrm{L} 129 / 130 / 131$ Coh
SMHz Caramic Fiter
blito (Philips) Cliroma Delay Line
050 Chroma Deley Line
T 900 á Lum Delay Lina
BK5/9K Lum. Delay Line
Plastic Cover for $3 \mathrm{K5}$ £.P8385
TX9 Back Ground Control
IX9 Gain Control 100R
1500 Metal Chassis Su
Thorn 8K5 Focus Pot
Thorn 4000 Focus Pot
Thorn 182 gW (3K5) R752
SERVICE AIDS
Ambersil MS4 Silicone Grease
Ambersil Freazer
Ambersil Amberlube
Ambersil Anti-Static Screen Cleaner Ambersil $40+$ Protective Lubricant $14.102 \quad 215$ Ambersil Amberclens Foaming Cleaner $130 z 1.26$
Ambersil Circuit Lacquer
1402
2.15

THICK FILM RESISTOR UNITS
$\begin{array}{ll}3500 \text { Thom (5 Pin Connaction video } & 1.70 \\ 4000 \text { Thom (4 Pin Connection) } & 1.90 \\ 725 / 731 \text { Py } 6 \text { Pin Connection) } & 2.20 \\ 713 \text { Pye (6 Pin Connection) } & 2.20\end{array}$

FUSES	
20 mm	$14^{\prime \prime}$
50MA 10 for 70p 250MA	10 for 65p
315MA A/S 10 for 50p 750MA	10 for 65p
500MA 10 for 50p 7A	10 for 50p
1A 10 for 50p 10A	10 for 50 p
2.5A 10 for 1.00 20A	10 for 50p
$3.15 \mathrm{~A} \quad 10$ for 1.00 50A	10 for 50p
Thorn Mains IX 3000/3500 7.50	
Thorn Mains TX 8000/8500	10.00
Thorn S.O.P.T $8000 / 8500$	3.50
Thorn Scan IX 3000/3500	6.00
Thorn EHT TX 3000/3500	6.00
Thorn LOPT 9600	12.00
Thern LOPT 1615	7.25
Thorn LOPT 1590/91	7.25
Thorn LOPT 1690/91	7.25
Thom LOPT 8000	9.80
Thorn LOPT 8500	9.80
Thorn LOPT TX9	9.85
Pye LOPT 713	10.00
Pye LOPT 725	9.85
Pye LOPT 731	10.18
Philips LOPT G9	8.80
Phtilips LOPT G11	13.75
GEC LOPT 3113	7.40
Diode Split LOPT AT2076/35	14.75
Samyo LOPT AM-WM-21	6.75
Saryo LOPT AM-WM-4	7.30
Philips LOPT 68	7.00
Saryo LOPT (CW21) 4-2751-44700	5.00
$1 T \mathrm{LOPT}$ CVC5-9	9.60
17 LOPT CVC30	8.75
ITT LOPT CVC45	9.75
Baird 8750	10.25
Eaird 8752	10.25
Korting AZ9100	10.25
Korting B92-170	10.25
Korting Az2101	10.25
Korting A/2103	10.25
Korting ZTR1001	10.25
Siamens V1156	11.75
Siemens V1823	11.75
Zanussi BS222]	10.25
Zanussi BS2223	10.25
Salora frious	10.25
Salora flouza	10.25

300 Mixed Resistors 300 Mixed Capacitors 150 Mixed Electrolytics 100 W/W Resistors 20 Mixed Conv Pots 40 Mixed Pots
 20 Mixed Sliders 40 Mixed Presets

20 Mixed VDR \& Thermistors

20 Mixed Ferrite Cores

100 Mixed Ceramic Discs

Manchester's No. 1 in Ex-Rental TVs Over 2,000 TVs in stock Special Offer on Working Colour TV's

* available| Thorn | 10 for $£ 125$ |
| :--- | ---: |
| Philips | 6 for $£ 90$ |
| Bush | 6 for $£ 80$ |
| GEC | 6 for $£ 60$ |
| Decca | 6 for $£ 60$ |
| Mono TVs avail. s/s | $£ 4$ each |

New TV trolly stands.
All sizes
£4.95
All Prices subject to V.A.T.

Discount on quantity

Ex Equipment Panels \& Tubes Available Deliveries may be arranged to the North and Scotland. Ring for quote. Callers welcome.

419 Barlowmoor Road, Chorlton, Manchester 21 2ER. Tel: 0618618501

Telegen-1
PRICE E17.20 (inc. VAT)

- EXCEPTIONALLY LIGHT AND DURABLE - POCKET SIZE FOR OUTSIDE SERVICE
- pp3 batteay power source
- FIVE DIFFERENT TEST PATTERNS FOR

COLOUR \& MONO TV

- CROSSHATCH GRID * DOt matrix
- CROSSHATCH G
* WORIZONTALS * VERTICLES
- 3.5 mm JACK SOCKET FOR OPTIONAL P.S.U.

A lightweight, extremely portable and versatile pattern generator for black/white and colour T.V. alignment and service at the customer's home. At the turn of a switch, the generator can provide five essential test parterns for correct installation, fast checks and repairs. Pattern stability is first class and comparas favourably with other more costly bulky generators only suitable for bench work. The generator is pocket size measuring $10 \times 7.5 \times 4 \mathrm{~cm}$ and weighs only 190 grams. Switchad 3.5 mm jack socket allows use of external power supply with battery in situ.
Telegen-2
PRICE E34.45 (inc. VAT)

* EXCEPTIONALLY LIGHT \& DURABLE
- COMPACT $10 \times 12 \times 4.5 \mathrm{cms}$
- RED RASTER * GREEN RASTER
- blue raster
- colour bars
- 3.5 mm JACK SOCKET FOR P.S.U
- PROVIDES UHF SIGNAL APPROX CHANNEL 35

Telegen 2 is a colour bar generator at a very modest price and yat is extremely effective, stable and durable. It is the perfect compliment to Telegen 1, giving colour bars arranged in the following sequence: white, yellow, cyan, green, magenta, red, blue and black The unit provides a signal in the UHF band approx. Channel 35 and requires a supply of 14 to 18 volts O.C.

Power Supply
A switchable power supply ideally suited to both Telegen 1 and Telegen 2. PRICE £4.55 (Inc. VAT) POST AND PACKING $£ 1.44$ (Inc. VAT)
32 TEMPLE STREET, WOLVERHAMPTON WV2 4AN. TEL: (0902) 773122

ATIENTIONII!
 CHROMA VISIONS OFFER TO THE EXPORT AND HOME MARKET
 We have a large quantity of GEC CTV's, UHF and VHF, all in excellent working condition, with excellent tubes and cabinets. No tubes are boosted.
 Also in stock are brand new, boxed, TV and Video Stands from $\mathbf{£ 4 . 0 0}$ each.
 TV sets ideal for rental or retail market.
 Enquiries please ring:
 0217842561
 811A Ashwood Heath Road, Birmingham. P.S: WE DO NOT SELL ANY RUBBISH

TRADE AND.QUANTITY DISCOUNTSfree local deiverr - same dar o fithig seryice ezoFAST MALL OMDER GB 2-3 DAYS - OVERSEAS ON REQUEST.
A47 32/343X 470 BCB22 37
470 ESB22/EFB22/ERB22 $\mathbf{f 4 5}$
A51-220X/192X £37
510 JKB22/JEB22/JDB22/ALB22 $£ 45$
A56-120X/123/140/410 f48
560 D2B22/HB22/AKB22 E39
A63-120X $\mathbf{E 3 9}$
20AX A56-500X/510X A66-500X/510X $£ 48$
30AX A56-540X/A66-540X £48
H your tube type is not in stock we can arrange collection - rebuilding + redefiver PLEASE PHONE BEFORE CALLING
061-799 0854. 24 hour answering service
43 Clarke Crescent, Little Hulton, Worsley, Nr Manchester M28 6XL

Grundig's VHS Machine
 - Model VS200

At last we have a truly European VHS machine, not one designed in Japan or built from a Japanese kit of parts. It's typically Grundig and looks like their 2080 V2000-format machine - in fact it appears to be a VHS machine built into a V2000 chassis. The systems control and power supply arrangements are thoroughbred Grundig designs developed from the previous machines. The new sections, new to Grundig that is but familiar to many of us, are the VHS parts, but even these are more characteristic of Grundig than the Nipponese.

It was strange to see the V2000 machine's tape transport system with its U-wrap mechanics re-engineered to the VHS tape track standard. A new set of i.c.s has been developed by Grundig and Mullard. These are as follows: TDA3750 colour a.f.c. and phase-locked loop; TDA3760 VHS colour record/playback processor; TDA3771 video signal switching and level clamping; TDA3780 VHS f.m. modulator.

Tuning is similar to that used with current Grundig TV sets - auto search and store or select the programme number and punch in the u.h.f. channel number. So that programmes can be monitored, the machine will produce E-E pictures without going into record. This is done by using the programme plus and minus buttons and then manually stepping through the channels. But you can't then go into record without first cancelling $\mathrm{E}-\mathrm{E}$ with the stop button followed by "programme number select" and then "record", record starting when output monitoring returns. Not difficult to cope with, but a curious arrangement nonetheless.

One very nice facility is the ultra-long life power source (which I haven't found yet) that enables you to unpack the machine, fit a plug and switch it on to find that the clock and date are set correctly. The date is set as part of the programmable timer which allows for seven programmes over a year. My God! 365 Crossroads!

An interesting feature is the EPROM. Early versions are designated E42. Later ones are designated E43 and contain a whole host of extra service codings. The primary coding, 8500 , enables the customer to lock the machine with a four digit number. The machine won't operate until that number is re-entered, unless you know the way to overcome it . . . no tales! Andy reckons that the kids will be punching all sorts of numbers in so that their parents can't watch their video nasties and we'll have to cancel the codes. It could bring in a nice little income that could. Other 8500 codes allow for continuous playback or recording and various special servicing features. 8508 for example inhibits all safety functions, so that if say a microswitch or end sensor is playing up operation can be continued during fault finding. I'm not sure about a keyboard fault though.

The picture quality is fairly good, certainly acceptable enough for me to be able to record and replay programmes without being aware of visual impairment. On a test pattern, a static picture or a picture with hard contrast detail, such as bare tree branches against a light sky, you may find that there's excessive detail correction. There's an internal correction adjustment for "best visible response". The problem is what's the best setting? Sets with
soft tubes will want a sharper response: others, like my 40 in . Cinema 9050 unit, will require less. It would have been better to have had a preset sharpness control at the rear rather than an internal preset.

These comments are not based on a single machỉne. We've had several, and some points have been taken up with Grundig. When we recorded a test tape on a centre tolerance JVC HR7200 we found that the colour frequency was off by about 150 Hz . The Grundig machines wouldn't replay it in colour while other VHS machines would. I.think the heads are incorrect on one machine: certain prerecorded tapes play back with black speckles on peak white edges and the machine will not clear the picture noise on still frame - a similar problem occurred with the first batches of HR7650s and their Ferguson equivalents. Another machine is excellent, with no speckles and perfect still frame. There's no jitter on either of these machines.

The VS200 will assemble edit all recordings. This is a very neat function. If a series of timed recordings is made the replay is free of any disturbances at the joints. A fellow reviewer commented on a time delay with the audio muting when an edit occurs, but there's no break on the actual recording, only on the $\mathrm{E}-\mathrm{E}$ monitoring. An investigation revealed that this is due to the series of operations that occur when record start is selected. The tape threads up, rewinds slightly, then plays so that the new and already recorded signals are phased. The machine finally goes into record to give a beautiful edit. This takes ten-twelve seconds, during which the $\mathrm{E}-\mathrm{E}$ audio is muted. It's not a significant problem and you can be sure that the signal is being recorded about ten seconds after you give the order.

I certainly like this Grundig VHS machine. The teething problems are doubtless due to early production problems. Versions with stereo and VHS hi-fi sound are expected to follow. I hope that Grundig and Mullard will develop frequency interleaving between tracks to reduce noise: less edge emphasis will then be needed, with edge noise reduced to the level found on current JVC machines.

Inside Grundig's first VHS machine, Model VS200, which was produced from the drawing board in just seven months and is of more than 95 per cent European origin. The recommended retail price is $£ 459$.

The Tangled Web

Les Lawry-Johns

We'd known Mr. Spyder for a number of years and had always been on good terms with him. So when he popped in with his daughter's rather old monochrome portable we had no hesitation about accepting it for repair, even though it was a Thorn 1580 with valves and things in it.
"It goes all right for about half an hour, then funny things happen. Sort of goes into oscillation if you know what I mean."

So he left it with me and the hours of frustration started. Work on it till something else demands attention, put it on one side and go back to it later. This dragged on all over the weekend. The complicated colour sets that came in were repaired in no time with no bother worth mentioning. A new line output transformer here, a new tripler there, a replacement bridge rectifier, new tuner selectors all run of the mill jobs that any fool could do. But that little portable had me by the short and curlies. Maybe it was because I've not been feeling too well lately and my mind's a bit cloudy. So on I blundered. As Mr. Spyder said, it went into oscillation after half an hour, first showing a very noisy picture.

My diagnosis was that the fault was in either the tuner or the a.g.c. circuit. I plugged in a spare tuner but the oscillation proceeded apace. So I checked the voltage at the collector of the a.g.c. transistor VT8. It was nearly 2 V instead of 0.5 V . All the associated components were checked and the main suspects changed, including the transistor itself. Something stirred in my mind. The transistor is gated on during the line flyback periods by pulses from the line output transformer. So I went over to the other side to ensure that the transformer's pulse winding (tags B and C) and its connections were intact and good. They were. Back to the i.f. strip.

The voltages around the i.f. transistors were correct but I changed the transistors just in case. I checked the decoupling, using a $33 \mu \mathrm{~F}$ electrolytic and an $0.01 \mu \mathrm{~F}$ capacitor as appropriate. All the capacitors were in order. In a fit of temper I decoupled the collector of the first i.f. transistor to chassis with the $33 \mu \mathrm{~F}$ electrolytic, expecting the signals to vanish. There was a marked improvement and reception became almost normal!

I decided not to pursue this red herring and put it down to the capacitor's inductance. The a.g.c. transistor's base samples the voltage at the emitter of the video driver transistor VT5. Maybe the fault lay in the video circuits. There was a heavy negative voltage at the collector of the video output transistor VT6 instead of some 85 V , proving that the whole thing was in a state of oscillation. I checked all the decoupling but nothing made any difference.

I put the chassis the right way up and looked at it. I was aware that something simple was eluding me and that I was too stupid to put my finger on it. I turned the set on its side once more and the picture became perfect. Put it down again and it burst into oscillation. I was amazed. Up, o.k. Then all buggery let loose again as it was put down.

A little voice said check the a.g.c. gating pulses right back to source. I looked at the small figure of E.T. He was pointing his finger at me as usual. So I plodded back across the panel from the pulse coupling/a.g.c. capacitor C55 to the source of the pulses, a potential divider across
the transformer's pulse winding. The resistors checked o.k. individually, but the reading across all three was high when it should have been low, i.e. the d.c. resistance of the pulse winding. But I'd already checked the winding which was in order. At last the penny dropped and I stared at the connecting leads, each in its Sistoflex sleeving. The sleeves are fitted to ward off the heat from the PL81 and PY81 valves, but the wire inside had burnt through and made only when the set was cold - or when it was turned on its side, sometimes.

A new lead dressed well away from the valves completed 'a very simple repair and left me feeling guilty. Why? Because of the severe line pulling that had accompanied the oscillation. This should have lead to an early check on the reference pulses at source since they are also used in the flywheel line sync circuit. I'd put this down to severe video oscillation distorting the sync pulses. Live and learn.

When Mr. Spyder came back for the set he laughed as I told him what a headache it had been. "Just a little thing like that" he said.
"Clear off" I said, or words to that effect.

Another Headache

Now you wouldn't think that a Decca Bradford (30 series) could give one a nasty turn. Normally they're no sooner in than out again. A shorted boost capacitor here, a faulty sound output stage there, no real trouble. Not until Mrs. Footrot arrived that is. Her son carried in the 22 in. Bradford and didn't say a word. Mrs. Footrot made up for his silence.
"You put a new tube in this set three years ago. Here's the guarantee card showing that it still has another year to run. I'll leave it here until Saturday, so please give me a chit to say that you have it. You can't trust anyone these days." She rabbited on in a similar vein for quite some time before I could get a word in.
"What's wrong with the set please, Mrs. Footrot?"
"Oh yes, the colours are funny and keep changing. It's like watching disco lights."

So they departed and I took a look at the disco lights. It frightened me. At first only the comers flashed their impurity at me, then the centre joined in with an odd pulsing effect, the colours continuously changing. I pulled the green and blue drive leads off to leave the red display on its own. The screen showed a patch of red in the centre changing to green and blue while the outside comers were pulsing all three colours.
"Degaussing" I thought and showed it to Honey Bunch. She said she'd never seen anything like it in her life and I had to confess that I hadn't either.
"What does that?" she asked.
"The degaussing coils are being charged and discharged at a rapid rate when they shouldn't be" I explained weakly. H.B. trotted off to feed the bird and change his (her?) water, leaving me to check the degaussing components carefully.
They were all in order. I unplugged the feed to the degaussing circuit from the on/off switch. The display
continued apace. It was as if a dozen powerful magnets were being constantly moved about in front of the tube. I took the shield, coils and degaussing components complete from another set and fitted the lot in Mrs. Footrot's set. Still the same and I now knew what the trouble was,
though I didn't like to admit it. So I replaced the scan coils and the purity magnets. Still the same, confirming that the tube would have to be replaced. This restored normal operation. What the hell was going on inside that tube to make it produce such a display? Does anyone know?

Teletopics

CED FADE OUT

The CED video disc system, which was launched in the UK by RCA, Hitachi and GEC in October 1983, is being phased out. The original plan was to sell 25,000 machines during the 1983 pre-Christmas selling period and a further 100,000 machines this year but in the event only some 5,000 have been sold. The 40,000 players held in stock by Hitachi are to be sold off at $£ 99$ each, with 20 free discs. Discs will continue to be sold as long as stocks last - the present catalogue lists 250 titles.

RCA are reported to have made a loss of $\$ 580$ million on the CED disc system. Some 700,000 players have been sold in the USA since the system was launched there in 1981. RCA have announced that they will continue to manufacture discs for the US market for at least three years or as long as there is sufficient demand.

DBS PROGRESS

A report to the Home Secretary by the DBS consortium (the BBC, the ITV companies and five non-broadcasting companies) says that considerable progress has been made with plans to launch the UK's DBS service. Agreement has been reached on making $£ 350,000$ available for the project's next stage, and a business plan has been drawn up. This envisages a profit of $£ 300$ million over a ten-year period after substantial losses initially ($£ 320$ million during the first four years). One assumption made is that viewers would be prepared to pay $£ 20$ a month, to include the cost of the receiving equipment, for three DBS channels. A more pessimistic projection suggests that the service would still find it hard to make a profit after fifteen years.

RTEEB EXAMINATION CHANGES

Two new practical tests, at Part III level of Course 224 (Electronics Servicing), have been announced by the Radio, Television and Electronics Examinations Board. The tests are on VCR and colour television servicing.

TAKE-OVER BID FOR FIDELITY

An agreed bid for Fidelity Radio, valuing the company at $£ 14 \cdot 1$ million, has been made by Caparo Industries which had built up a 32.4 per cent stake in the company in recent months. Caparo Industries is a diversified engineering group headed by Mr. Swraj Paul who says that the aim in taking over Fidelity would be to get his group into "slightly higher technology". A counter bid was considered by Amstrad but was dropped on the grounds that the companies have similar product ranges and the same customer base. Since the Amstrad factory at Shoeburyness is at present being expanded the company is not interested in acquiring Fidelity's manufacturing capacity. Amstrad's chairman Alan Sugar commented that Fidelity would be "a bargain at the price Caparo is offering". Fidelity had a difficult time during its last financial year, due mainly to problems with test specifications for its cordless tele-
phones and a difficulty with its new CTV chassis (a timebase i.c. that has been designed in failed to perform to specification initially).

MARKET BLUES

The VCR, TV and other consumer electronics markets have been distinctly weak in recent months. VCR sales/ rentals for 1984 are expected to end up at around 1.55 million compared to the level of 2.2 million reached in both 1982 and 1983. CTV sales/rentals are expected to be roughly the same as in 1983, though a peak was reached in the early months of the year. The situation is highlighted by comments made at the Thorn-EMI plc Annual General Meeting by Chairman and Chief Executive Peter Laister. For Ferguson, sales of TV sets and VCRs have so far been "substantially lower" this year than last. Thorn's rental operations have fared rather better however. Thorn claim to have 25 per cent more subscribers per outlet than any of the competition in the rental field and are maintaining CTV subscribers overall. In fact Thorn claim to be increasing their share of both the. TV and VCR rental market. Peter Laister's comments on "new opportunities such as cable and satellite" are interesting. "In such cases we will invest to the extent of marking our position in their future, but will place limits on our short-term costs."

PHILIPS' TV MILESTONE

Philips, the world's largest TV manufacturer, has now produced over one hundred million TV sets - that doesn't include those produced during the pre-war period! To mark the event, simultaneous presentations of 100 sets each were made at Eindhoven and in London. The Dutch sets were presented to Princess Margriet for use by the Red Cross while the UK sets were presented to the National Society for the Prevention of Cruelty to Children which is celebrating its centenary this year. Philips' Electronics UK chairman Anton Poot commented that it took 35 years for Philips to produce its first 100 million sets but that the second 100 million should be produced in under ten years - "every three seconds day and night a Philips set is sold somewhere in the world".

TV DODGER CAMPAIGN

The Home Office has started a new campaign to catch TV licence dodgers. A fleet of 22 new vans, each costing more than $£ 20,000$ and ten times more sensitive than previous ones, will tour cities and major towns. Other elements in the campaign are computerised records that show unlicenced households, an increased maximum fine and a TV commercial.

TELETEXT ADVANCES

According to research carried out by the ITV teletext service Oracle more than two million homes in the UK now have sets equipped for teletext reception. This represents a market penetration of ten per cent. Market penetration is highest in the London area, at 22 per cent, and in the socio-economic class AB, at 27 per cent, though
the greatest growth at present is "down-market". Oracle's research is being continued and is part of its campaign to sell teletext advertisements. It claims a daily audience of two million who watch an average of almost two hours a week, and says that 74 per cent of Oracle users report seeing teletext advertisements.

PRE-WAR TV - THE MARCONI CONTRIBUTION

Our article on pre-war television last month omitted to mention the Marconi Company's considerable contribution to the early development of television in the UK. By chance an interesting article on the subject appears in the September issue of the Marconi Broadcasting Division's publication The Undistorted Truth.

The Marconi Company set up a television research group in 1930, and in 1932 transmitted from Chelmsford on the 25 m band a low-definition (50 lines, 12.5 frames/ sec) head-and-shoulders picture which was received in Australia. More significantly the company had by 1932 produced a v.h.f. transmitter operating at 44.7 MHz and capable of being modulated at 250 kHz for TV use. The joint Marconi-EMI Television Company that developed the 405-line system was formed in March 1934.

ANGLIA CONSUMER WALLCHART

The second issue of the Anglia Consumer Wallchart, featuring many new items, is now available free of charge from Anglia Consumer, Burdett Road, Wisbech, Cambs PE13 2PS (telephone 0945 63281). Amongst the new items are a new range of teletext i.c.s, an extended range of audio i.c.s, and a competitively priced universal tripler.

TV CHIPS

Developments in i.c.s for TV and related uses continue apace. Mullard have developed a new videotext chip, type SAA5350, for level three text systems (broadcast teletext is level one). Level three text offers DRCS (dynamically redefinable character sets), i.e. the incoming signals contain data to programme the decoder's character generator, enabling foreign alphabets and improved graphics to be displayed (each character cell is based on a 12×10 dot matrix). The SAA5350 is known as a EUROM and offers many additional features including an 80 characters per row option in colour, multi-page memory, broadcast standard sync, serial and parallel attribute storage and cursor and smooth scroll.

The new Siemens TDA6000 chip for use in the i.f. section of a TV set has been developed for "hi-fi quality vision and sound". It uses frequency-phase-locked loop synchronous demodulation to ensure that no matter how complex the signal a weighted intercarrier signal-to-noise ratio of 50 dB is achieved - even with superimposed text there's no crackle from the speaker. The performance specification includes 1° differential phase and one per cent differential gain (typical values for a tuning range of 1 MHz and 150 per cent a.m.).

Mitsubishi have introduced a combined i.f./colour decoder i.c., type M51307SP, for use in NTSC receivers. This is claimed to be a world first and is intended primarily' to enable more compact 14 and 15 in . sets to be produced. Mitsubishi Electric plan to produce 200,000 of these 52pin i.c.s a month. European i.c. manufacturers are known to be working on similar chips for PAL signals - Mullard's i.c. will be the TDA4501.

Philips have described a frame store, charge-coupled device i.c. for adding memory capability to TV sets. The
chip is referred to as an MPIP (multiple picture in picture) i.c. and would enable the viewer to see nine channels at a time on the screen, view one "main" channel while monitoring three others in a strip at the side, or monitor just one extra channel in a small box at the corner.

THORN-EMI's NEW RESEARCH DIRECTOR

Dr. K.W. Gray, B.Sc., Ph.D. has been appointed Director of Research for Thorn-EMI plc, responsible for the Central Research Laboratories at Hayes, Middlesex and for advising the company generally on research and technology. Kenneth Gray was previously Deputy Director of the Royal Signals and Radar Establishment, Malvern, the largest electronics technology research laboratory in Europe. The development of stereo recording techniques and electronic, high-definition television broadcasting in the period from the late twenties to the mid-thirties have been amongst the many achievements of the Central Research Laboratories.

EEV's MASSIVE TV DISPLAY

EEV plan to enter a field at present dominated by the Japanese - large TV displays for use at race-tracks, sports stadia, etc. The company has spent $£ 1 \mathrm{~m}$ on developing a $27 \times 20 \mathrm{ft}$ prototype screen that weighs twenty tons, claiming that the resolution is twice as good as competitive displays whilst the device consumes only a quarter of the power. The screen, called Starvision, uses some 10,000 miniature c.r.t.s assembled in groups of eight per glass module. This is a highly specialised field - only some thirty large, outdoor TV displays are in use worldwide, mainly in the USA - but EEV hope to achieve sales of about three a year.

DIY TELECINE

The Tele-Cine Converter, which costs only around $£ 50$, has been introduced by Markplan Ltd. (Old Colony House, South King Street, Manchester M2 6DQ, telephone 061-832 2765) to enable the images on slides and 8 or 16 mm cine films to be transferred to videotape. It uses precision optics to transfer the film projector's output to a high-contrast rear projection screen from which the video camera records. The camera's controls can be used to compensate for faded film images and a bonus is easy editing and the possibility of adding zoom and soft-focus effects.

FIRST WIDEBAND CATV SERVICE STARTS

Thorn-EMI's subsidiary Swindon Cable has started the first wideband cable TV service in the UK, offering 13 channels initially (the network has 32 -channel capacity). The 13 channels consist of BBC-1 and -2, Channel 4, three ITV channels, the Premier feature film channel, Music Box, Screen Sport, Children's Channel, a local Swindon programme, local teletext and a stereo radio channel. The service will eventually be available to 53,000 households, the cost of cabling being between $£ 14 \mathrm{~m}$ and $£ 18 \mathrm{~m}: 5,000$ households will be able to receive the service by the end of the year. The basic charge to viewers is $£ 8$ per month, plus $£ 7$ extra for Premier (which is not available separately). Nearly a third of those initially contacted have agreed to take the service.

TRAINING TAPES

Flintdown Ltd. (Montauban Chambers, 339 Clifton Drive South, Lytham-St. Annes FY8 1LP, telephone 0253725
499) have produced three videotape programmes on the theory and practice of colour TV. Part 1 deals with the colour signal itself, with a detailed account of NTSC and PAL encoding; Part 2 covers PAL decoding, with practical demonstrations of decoder fault conditions; Part 3 covers receiver installation and setting up. The cassettes are available in all formats. An additional audio-visual tape/slide programme covers soldering techniques.

CCTV CAMERA CONTROL SYSTEM

Pelco Coaxitron, a low-cost, computerised system for the remote control of up to sixteen CCTV cameras, has been introduced by Norbain Imaging Ltd. (Norbain House, Boulton Road, Reading, Berkshire RG2 0LT, telephone 0734864411). The control signals use the video coaxial line to avoid extra cabling: pan and tilt, auto-scan, vari-able-speed zoom, focus/iris/auto-iris setting, on/off switching, wash wipe and infra-red illumination can all be controlled. The system is a preprogrammed, nonaddressable one using an intermediate video switcher to address the cameras.

NEW TVs

The new Salora DigiComputer range incorporates a microcomputer to provide an "automatic equalising system". This enables the user to preset the colour, contrast, brightness and sound levels separately on each of 27 channels to cater for different input sources. The basic J chassis is used, featuring the Ipsalo-2 circuit (see Television, September 1984). Other features include parallel sound and a tuning system that covers 100 channels with 27 storage positions. A full range of optional extras is available.

The recently introduced Ingersoll Model XK510 is a combined $4 \frac{1}{2} \mathrm{in}$. monochrome receiver, m.w. and f.m. radio receiver and a digital alarm clock with twelve-hour red LED display. The suggested price is around $£ 130$.

The 11209 in . colour portable is the first set from Philips to be fitted with the new flat, square type tube. Its suggested price of $£ 260$ may seem on the high side but the set's features include mains/battery operation, 60 channel presets with direct access via a keypad beneath the screen, and a comprehensive set of sockets to enable the set to be used as a domestic or professional monitor.

BACK INJURY

The problem of back injury due to lifting TV sets has come up again with the case of Colin Flowerday who is claiming damages against Visionhire - regular readers will recall Harry Todd's case against Radio Rentals. Colin Flowerday says the injury occurred whilst carrying a Philips 520 series G8 set which he estimates weighed some 60 lbs . He is now a permanent invalid.

VCR LOCKS

Mention of VCR locks was made in this column last month, in particular the lock fitted to the new Grundig Model VS200. We have been asked by Robert E. Barwick, a freelance electronics engineer from Stockport, to mention that he filed a patent application covering VCR locking techniques on November 4th, 1984. Bob Barwick's Roblock system provides selective VCR disablement so that the machine will still make timed recordings. He is of the opinion that Grundig's lock infringes his patent and is in dispute with Grundig over the matter.

30V Battery Eliminator

Peter H. Dolman, T.Eng.

The 15 V battery eliminator circuit featured in the letters page recently (August) prompts me to report on a similar project, this time a 30 V battery eliminator for use with the well-known Rank u.h.f. signal strength meter (Mastercare have been selling these off cheaply). The latest version of this instrument uses two batteries, a 9V PP7 for the receiver circuitry and a 30 V B123 to supply the varicap tuning voltage.

The B123 is expensive and difficult to obtain. To overcome the problem the circuit shown in Fig. 1 was devised. It enables the 30 V supply required to be obtained from the PP7 and uses readily available components. The circuit consists of an oscillator and rectifier, the oscillator being built around the line oscillator coil used in the Z504 timebase panel (Rank A823A chassis). The circuit can be built on a small piece of Veroboard - use 0.5 W hystab resistors.

Output is $30-36.5 \mathrm{~V}$ for 9 V supply variations between $5 \cdot 5-9 \mathrm{~V}$. Operation is maintained with a supply exceeding 9 V , which is desirable as new batteries can deliver potentials somewhat above the rated value. The ripple is less than 20 mV . Circuit operation is dependable over a wide temperature range: it's tolerant of inadvertent reversal of the 9 V supply polarity and shorting of the 30 V output.

A 27 V zener diode should be added across the tuning potentiometer in the signal strength meter to ensure that the channel tuning range remains 21-68 regardless of
battery ageing effects down to 5.5 V . Even below this the meter is usable, the most noticeable effect being loss of sensitivity - this falls off fairly rapidly below 7 V (the manufacturers recommend that the battery should be replaced when its on-load voltage falls below 7.5 V).

Adjust the coil for maximum output, on load, measured at the cathode of the BY206 rectifier diode. The tuning is extremely flat - correct adjustment corresponds to a collector waveform period of around $40 \mu \mathrm{sec}$.

Fig. 1: Oscillator circuit used to obtain a 30V tuning voltage supply from a 9 V battery.

All About Lenses

Vivian Capel

Increasing use is being made of video cameras in conjunction with VCRs, in particular with portable machines. The electronic aspects have been touched upon in other articles, but what about the big chunk of expensive looking optics that sits at the front of the thing? Photographic enthusiasts will have few difficulties in mastering its use since they'll be familiar with all features except for the zoom facility. Those whose experience is limited to the simpler types of film camera may find the lens and its various adjustments rather more daunting - in fact many good shots can be lost while the operator is fiddling with the various controls, trying to get everything right. The ability to make quick adjustments to capture fleeting shots comes with experience in handling a camera, but an understanding of the lens - what it does, how it works and its limitations - goes a long way towards obtaining successful results. We'll start off with some basic optics.

Refraction

Contrary to popular belief, the speed of light is not constant. It slows down when it passes through a dense, transparent material such as glass. If the light falls on to the glass surface perpendicularly there's no observable effect: if it strikes at an angle however the ray is bent. When the ray leaves the glass on the other side it's again bent, assuming that the path of the light is not at right angles to the glass surface. A perpendicular path is known in optics as the normal. The bending effect is termed refraction and the amount of bending a given material causes is termed its refractive index. The latter is the ratio of the velocity of light in the material to that of light in a vacuum. A vacuum thus has a refractive index of 1 . Air at sea level has an index figure of approximately $1 \cdot 0003$, but the difference between this and a vacuum is so small that it's usually taken to be 1 . The figure for water is about $1 \cdot 33$, and for glass $1 \cdot 5$. Glass varies according to its composition however: flint glass has a high refractive index while the figure for crown glass, which is made without metallic additives, is lower. As we shall see, this can be very useful.

The angle at which a light ray strikes a glass surface relative to the normal is termed the angle of incidence (see Fig. 1), while the angle from the normal of the refracted ray within the glass is its angle of refraction. The one depends on the other: if the angle of incidence changes, so does the angle of refraction (to be more technical, the sine of the angle of refraction is equal to the sine of the angle of incidence divided by the material's refractive index).

Convex Lens

It follows from this that if a bunch of parallel light rays is directed on to a curved glass surface the angle through which each ray is bent will differ - because the curvature encountered by each ray differs. If the surface is convex, there will be a point at which the rays converge after emerging from the other side of the glass. A glass plate with one convex side thus acts to concentrate or focus the light passing through it at some point on the far side. It
forms a simple lens. If the second side is also convex (see Fig. 2) the rays will again be bent, bringing the focal point closer to the lens. It's the convention with such a lens to regard the right-hand curve (on the left) as positive and the left-hand curve (on the right) as negative. Despite this they bend the rays in the same direction - because at the first intersection the rays pass from a low-density medium (air) to a high-density one (glass) while at the second intersection the passage is from high to low density.

Lens Power

The total curvature of the lens is obtained by subtracting the reciprocal of the radius of one curve from that of the other: when this is multiplied by the difference between the refractive indexes of the materials (glass and air) we get the power of the lens. The unit of power is the dioptre. Power is also equal to the reciprocal of the focal length in metres. Thus a lens with a focal length of 1 metre has a power of 1 dioptre.

Concave Lens

A lens may have one or both surfaces concave instead of convex. These will diverge the beams instead of converging them (see Fig. 3). With such a lens the beams are considered to come from an imaginary focal point at the front of the lens, the distance between this point and the lens being taken as its focal length. Such a lens is said to be negative while a convex lens which converges the light rays is termed positive.

Chromatic Aberration

The angle of refraction is determined by the wavelength of the light as well as its angle of incidence and the refractive index of the glass: short wavelengths (blues) are refracted at slightly different angles to the longer ones (reds). As a result, the image produced by a simple lens has coloured outlines, red on one side and blue on the other. This is called chromatic aberration.

The colour separation produced by a positive (convex) lens can be corrected to some extent by following it with a negative (concave) one. As both lenses have the opposite effect, the positive one must be the stronger to achieve a convergent effect from the combination. By making the convex lens of crown glass (low refractive index) and the concave lens of flint glass (high refractive index) almost complete cancellation of colour fringing is achieved. Two such lenses cemented together to form a single unit are called achromatic, literally "colourless". This doesn't mean that the lens won't transmit a coloured image of course: it means that the lens doesn't split white light up into the colour primaries.

Focus

In considering the focal point we referred to a bunch of parallel light rays. Only rays that come from very distant objects can be considered to be almost parallel however.

Fig. 1: When a ray of light strikes a dense medium such as glass it's refracted. The angle of refraction away from the normal is dependent on the angle of incidence.

Fig. 2 (left): When parallel rays encounter a convex glass surface they are bent inwards. The angle of refraction is greater for the outside rays than for the inner ones because the angle of incidence is greater, due to the surface curvature. Thus all the rays converge at a certain point lthe focal point).
Fig. 3 (right): With a concave lens the rays are refracted outwards and appear to come from a single point.

All other rays are divergent: the closer you are to their point of origin, the more divergent they are. With a lens consisting of several elements, the light source may be a few feet from the first (called the objective) lens element, but the source for succeeding elements is much closer the lens immediately in front. The focused image produced by a lens appears at a distance from it that depends on the lens's focal length and the distance between the lens and the light source. The actual relationship is based on the reciprocal of each dimension: the reciprocal of the distance of the focused image from the lens is equal to the sum of the reciprocals of the focal length of the lens and the distance of the object in front of it.

Thus in theory a lens or lens system can produce a truly focused image only when the object is at a certain distance in front of the lens. In practice however anything from a few feet to infinity is in reasonable focus, because the geometry of divergent rays is such that their deviation from the parallel state at such distances is negligible. For nearby objects the deviation is much greater of course. Many simple lenses are of the fixed focus variety: they save the fuss of focusing each shot but cannot be used for close work unless an extra lens is added. Variable focus lenses have a movable element that changes the focal length of the whole system, permitting close-quarter focusing. Moving objects that are close must stay at the same distance however otherwise they'll go out of focus, since focusing is critical with close objects.

Macro Facility

With some lenses it's possible to extend the distance between the optical system and the rest of the camera by means of either an add-on tube or a built-in spacing arrangement. This is called a macro facility and allows very close focusing - to within millimetres from the lens. Stamps, photographs and other small, flat objects can thus
be brought into focus. At such very close distances the lens itself may obstruct the light, making it necessary to use back lighting or some other special means of illumination. An add-on iens can be used to achieve closer than normal focusing with a camera that doesn't have a macro facility alternatively if the camera has a detachable C-mount lens this can be unscrewed a few turns - be careful not to unscrew it too far.

Depth of Field

Depth of field is the axial distance over which objects remain in focus and is a particularly important factor. With a shallow field, objects remain in focus within confined limits only, being defocused before and beyond these limits. A deep field has much wider limits.

Now depth of field is inversely proportional to the square of the magnification. As a camera lens reduces the size of the focused image, it follows that its depth of field is directly proportional to the square of this reduction in size. So the smaller the image, the deeper the field. Hence a video camera with a zin. pickup tube has a deeper field of focus than a 35 mm film camera in the same conditions, though not as deep as an 8 mm cine camera's field.

Another consequence of this is that because a highmagnification (telephoto) lens has a low reduction factor its field of focus is shallow. As it's proportional to the square of the magnification, the field depth reduction with a $\times 8$ zoom will be 64 times from wide angle to telephoto. Careful focusing is thus required with telephoto settings. An out-of-focus background for special effects is sometimes obtained by using a telephoto lens focused on a close-up foreground. Field depth is further restricted by using a large aperture setting.

Another telephoto characteristic is foreshortening - the foreground is magnified less than the background. The result is that they appear to be closer together than normal while movement towards the camera seems to be slow. Wide-angle lenses have the opposite effect: the backgrounds appear to be more distant and smaller, with the speed of moving objects that approach the camera appearing to be faster.

Blooming

Individual lens elements are commonly given a coating, or "bloom", of magnesium fluoride which is deposited in a vacuum chamber. A more accurate and expensive method is electron beam coating (EBC) - a layer is built up to the required amount by successive microcoatings. Why is this necessary?

When light strikes a polished glass surface some of it is reflected, at angles governed by the angles of incidence. With a multi-element lens system internal reflections can cause loss of light transmission in addition to producing ghosts or multiple images and all sorts of undesirable effects. Blooming is done to prevent such reflections. The thickness and nature of the coating has to be carefully chosen and its application rigidly controlled.

Aperture

Even with a video camera that incorporates automatic sensitivity control circuitry it's necessary to be able to regulate the amount of light that passes through the lens. Without this either the tube would be overloaded in bright sunlight, causing flattened highlights, or dim, noisy pic-

Fig. 4: A typical detachable zoom lens. The first control from the end is the focus ring, which is calibrated in feet and metres. More adjustment is needed at the near end of the scale than the distant one, as the wider spacing of the calibration shows. Next is the zoom control, which is sometimes calibrated with focal length. Finally there's the iris control, which is marked with the f numbers. The C position denotes closed, i.e. no light enters.
tures would be obtained at low light levels - possibly both conditions might be experienced. For this reason most lens systems incorporate an iris consisting of several leaves of matt black metal arranged so that the central aperture between them can be enlarged or reduced. Others with automatic aperture control by means of an electronic eye usually employ a single leaf in which there's a widening channel to admit an increasing amount of light as the leaf is advanced.
Specific aperture openings have values which are specified by f number. These are based on the ratio of focal length to aperture diameter and determine the amount of light admitted. There are click stops on some lenses with manually controlled apertures, though the iris is continuously variable. Stop numbers are $\mathrm{f} 1 \cdot 4, \mathrm{f} 2, \mathrm{f} 2 \cdot 8, \mathrm{f} 4, \mathrm{f} 5 \cdot 6, \mathrm{f} 8$, $\mathrm{f} 11, \mathrm{f} 16$ and f 22 . The lower the number the larger the aperture: each stop up reduces the amount of light by half. The largest aperture for a particular lens may not correspond with a standard f number, while the cost of a lens rises dramatically with small increases in maximum aperture. Large apertures are useful for film but are not necessary for video cameras using modern, high-sensitivity pickup tubes.

Zoom Lenses

Amateur photographers will be familiar with most of what's been said so far. There's one feature of the video camera lens that will probably be new - except perhaps to cine enthusiasts. This is the zoom feature (see Fig. 4). By means of this the view can be changed from a wide-angle, distant scene to a narrow-angle, close-up one without moving the camera. This is done without materially affecting either the focus or the amount of light passing through the lens, and is accomplished by a complex arrangement of lens elements. A dozen or more individual optical units assembled in groups are required, relative movement between the groups producing the zoom effect.

Focus is not always maintained over the whole range with the cheaper zoom lenses, so there may be loss of definition at one or both extremes. Lenses for home video use are generally not made to the same standard as photographic ones: since VCR definition limitations tend to mask lens defects, a better and much more expensive lens will give no observable improvement. Another factor is that the aperture is not, as it should ideally be, kept constant over the whole zoom range. This is known as ramping and is more prevalent over large zoom ranges. A
video camera's automatic sensitivity control circuits compensate for minor changes, so this is less of a problem than with film.

The focal length of the lens is changed when the zoom control is operated. Zoom lenses are usually rated by their focal length, a typical example being $12.5-75 \mathrm{~mm}$. The lower figure is the wide-angle setting and the larger the telephoto one. Notice that in this example the ratio is $6: 1$ - the zoom is said to have this range. The largest range for amateur lenses is around 10:1. For lower price cameras the range may be as low as $2: 1$. This will still give useful results however. Excessive use of zoom is irritating and is usually due to inexperience. The full zoom range is rarely required.

The principal advantage of a zoom lens is that framing of the picture can be achieved without having to get closer to or farther away from the subject. Remember the points made earlier about foreshortening: if good perspective and separation of the foreground and background are desired, it's often better to use a medium- to wide-angle setting and get closer to the subject physically. Another factor to bear in mind is that with high magnification settings the slightest movement produces an unsteady picture. Always use a tripod for these. Unsteadiness has much less effect with wide-angle settings.

Two viewing angle figures are often quoted for each zoom limit, one horizontal and the other vertical - because the picture is wider than it is high. Typical horizontal angles are 38° at $12.5 \mathrm{~mm}, 27^{\circ}$ at $25 \mathrm{~mm}, 7^{\circ}$ at $75 \mathrm{~mm}, 5^{\circ}$ at 11 mm and 4.5° at 110 mm - these vary between models.

A motorised zoom gives a smooth zoom in or out and can be stopped at any point. Many enthusiasts prefer manual operation however, as the zoom can be slowed towards the end, giving a more pleasing effect than the abrupt stop of a motor. In addition the speed can be varied to suit the subject, from a dramatic quick zoom in to a leisurely, almost imperceptible inching forward or backward. A two-speed motor zoom is an improvement but still lacks the flexibility of manual control.

How Lenses Come

Most CCTV cameras are sold without the lens. You buy the model you want then choose the lens, which is screwed in and can be changed over for another at any time. Because of the complications introduced by motor zooms, auto-irises and other such features, most home video cameras have integrated lenses that cannot be changed.

Used surveillance monochrome CCTV cameras can often be bought cheaply. This is a way of getting into home video shooting at minimum expense. Always ask to see the camera demonstrated via a video monitor, and watch out for vidicon tube burns. These show up as white patches that don't move as the camera is swung round.

Most video cameras are fitted with a $\frac{2}{3}$ in. pickup tube, though some have 1 in . tubes. Lenses intended for 1 in . tubes can be used with a ${ }^{2}$ in. tube camera, though the angle of view will be narrower than that quoted for the lens. The reverse, i.e. using a ${ }^{2}$ in. tube lens with a 1 in . tube camera, cannot be done successfully.

Whatever the lens on your camera, it's worth experimenting with the various features. Try the effect of different settings, noting such characteristics as depth of focus, minimum distance focus and foreshortening. You'll then appreciate its limitations and strengths and will be able to use it to best effect when making serious recordings.

A Look at Monitors

Part 2

Eugene Trundle

Part 1 last month was mainly concerned with monitor requirements - resolution and other characteristics. This month we shall concentrate on displays, in particular with the various types of colour tubes used in monitors, and the input standards in use.

Monochrome Monitors

Monochrome monitors are used mainly as computer display devices. An increasing trend is to use a greenphosphor tube, the P31 type (medium short persistence) being the most common. Green is generally accepted as being the most restful colour to watch and corresponds to the greatest sensitivity of the human eye in terms of brightness and definition. If a long-persistence green phosphor (P39 type, decay about 50 msec) is used, the interline flicker mentioned earlier is considerably reduced, though too long a persistence will leave noticeable comet tails when scrolling the display. Some monitors have green light filters over what's basically a black-and-white screen. This is cheap but inferior on the grounds that some of the phosphor light is wasted while the long persistence characteristic of some green phosphors is not present. Amber phosphors (type LA) are also appearing in the latest monochrome monitors. For black-and-white monitors in professional applications, particularly where they are used alongside colour monitors, it's important that the colour temperature of the light emitted is illuminant D - most

Fig. 7: The four alternative gun/mask/screen shadowmask tube configurations, (a) delta gun, (b) dots with in-line gun, (c) striped screen with slots and in-line gun, (d) Trinitron system.
domestic monochrome tubes give a very cold, bluish image.

In a conventional monochrome tube the electron beam diameter is typically $0.2-0.4 \mathrm{~mm}$ at the point where it strikes the phosphor screen, and this is well suited to a 625/50 standard display. Indeed, too small a spot diameter will leave dark spaces between the scanning lines, which can be a definite disadvantage. The ideal scanning spot diameter is that which permits the lines of a correctly interlaced raster to just touch one another. For a 51 cm (20in.) tube this is 0.5 mm and for a 37 cm (14in.) tube 0.3 mm . An ordinary monochrome tube and video amplifier can cope with 80 character per line data (see later) without too much difficulty.
Conventional picture tubes suffer from various forms of scanning spot aberration, mainly as a result of the deflection mechanism. For very high resolution applications, high-grade tubes are available with special gun assemblies that have high-quality electron lenses providing a small spot size. Special scan yoke assemblies are also available to minimise deflection defocusing and astigmatism. Some quite inexpensive monitors (the Ferguson 12in. green screen Model MM02 for example) have dynamic focusing - a line-rate parabola is fed to the tube's focus electrode to compensate for the longer beam path at larger deflection angles.

Using the above techniques, allied sometimes to magnetic focusing with an axial coil carrying a preset and fed with a stabilised current, the resolution can if required be pushed well beyond 1,000 lines without too much difficulty.

Colour Monitors

Apart from the last sentence, the foregoing comments also apply to colour monitors. In this case however the crucial limiting factor for resolution with a shadowmask tube of whatever type is the dot structure on the screen. It's well known that the colour screen consists of a glass faceplate whose rear surface is coated with a matrix of phosphor dots or a series of vertical stripes (the principle remains the same, but to simplify the description we'll stick to dots for the moment). The dots are arranged in groups of three (triads) and plainly no pixel can be smaller than one triad. So the dot spacing determines the tube's resolution capability - dot spacing is the distance between the centres of each triad group and corresponds to the holes in the shadowmask (whether they're circular, rectangular or, as in the Trinitron tube, continuous slots). The triad groups can be arranged in four ways, as shown in Fig. 7. The delta-gun arrangement - Fig. 7 (a) - is still very much alive in the world of monitors, being used for very high-quality, high-definition picture monitors where the ultimate in performance is required: a broadcast grade 1 monitor may be regarded as virtually a measuring instrument. Versions of delta-gun tubes are available with four times as many dots as conventional colour tubes. A 51 cm tube of this type (0.31 mm dot spacing) can resolve 770 TV lines on a total of 1.32 million triads - four million individual dots!

Fig. 8 (left): To achieve the same order of resolution, a striped screen tube needs a finer "triad" structure than a delta-format tube.

Fig. 9 (below): Resolution capabilities of various types and sizes of colour tubes. A pixel width of two triads is assumed for reliability and readability. In practice display lines can, with difficulty, be discerned down to one triad per pixel.

The in-line dot system - Fig. 7 (b) - combines the advantages of the in-line gun approach (no dynamic convergence adjustments) with the high resolution capabilities of the delta-gun tube and is a good compromise for high-quality monitors. Its resolution performance falls between those of the delta and slot systems. The latter, Fig. 7(c), is the standard arrangement used in current consumer TV tubes.
Slot tubes are in fact the most common types found in monitors and share with the Trinitron type - Fig. 7 (d) the advantage over delta-gun tubes of higher brightness for a given beam current. This stems from the greater "transparency" of the shadowmask (an improvement of around 20 per cent). The reason for the poorer horizontal resolution capabilities of slot-mask, in-line gun tubes (compared to delta- and in-line dot types with a comparable phosphor pitch) is shown in Fig. 8. From this it can be appreciated that for the same subjective fineness in the picture structure the width of each phosphor stripe must be about half the diameter of the individual phosphor dots in the delta format. This however is traded off against vertical resolution, which in the slot tube is not limited by the dot structure - the horizontal tie bars between triads are negligibly thin (30-100 microns, i.e. $0.03-0.1 \mathrm{~mm}$) compared with the scanning lines themselves. So the vertical pixel count depends on beam diameter and scanning line structure. This is also the case with the Trinitron of course.

Dot Pitch

For consumer tubes the standard stripe pitch is 0.6 mm for small screens, i.e. 37 cm (14 in .), and 0.8 mm for 51,56 and 66 cm (20,22 and 26 in .) screens. Thus a 37 cm tube will have almost 1,500 vertical phosphor stripes across its display width of about 281 mm , giving 500 as a theoretical maximum number of pixels per scanning line. A 26 in. 20AX or 30 AX tube has 650 triads per 444 mm display width and a 20 in . (404 mm display width) tube some 505.

Taking this last figure and harking back to our previous calculations on line structure and pixels, with 430 lines as a practical vertical definition figure and 570 or so dots along each line, the broadcast analogue picture has some $430 \times 570=245,000$ pixels. No problem with resolving the scanning lines themselves but the stripe pitch, with its 500 triads across, will considerably reduce the total available pixel count - in fact to below 150,000 because to avoid what might be called a "horizontal Kell" one broadcast pixel ideally needs to cover the width of two phosphor triads. That's why you won't see the 5.25 MHz test card gratings on an ordinary colour TV screen - and in many cases miss the 4.5 MHz ones too, even with no luminance notch filter in operation.

The worst performers in this respect are the very small 13 and 15 cm (5 and 6 in .) colour tubes used in miniportable colour sets. With these the dot pitch is not reduced in proportion to screen area - in fact they have a screen matrix comparable with those of their bigger brothers. These tubes can resolve only 100-200 lines per picture width, though higher resolution types are available for use in mini-monitors, VTR editing consoles and as viewfinders in colour TV cameras.

To increase the display's information density a finer dot pitch is required. Slot-mask tubes are available with an 0.43 mm pitch, giving about 860 dots per line in the 51 cm size and 650 dots per line in the 37 cm size; and with an 0.31 mm pitch, which gives almost 900 dots per line in the 37 cm size. These are known as medium- and highresolution types respectively. To indicate the relative costs of these tube types, the current Microvitec price list quotes $£ 199$, $£ 299$ and $£ 440$ respectively for 37 cm monitors in standard-, medium- and high-resolution grades. The differences are very largely accounted for by the tube prices alone. Fig. 9 indicates the resolution capabilities of some

Fig. 10: (a) Constant mask/screen spacing used with earlier delta-gun tubes. Distance d2 is greater than d1, and the phosphor dots are more widely spaced at the extremes of the display. (b) When the mask and screen have different radii distances $d 1$ and $d 2$ remain the same and the dot pitch is uniform over the entire screen area.

Fig. 11: Convergence error zones.

Fig. 12: Block diagram of the precision convergence system used by Barco with high-resolution delta-type tubes.
typical tubes in terms of lines per picture width. It's interesting to relate this to Fig. 4.

Pitch Grading

In earlier delta-gun tubes the spacing between the shadowmask and the phosphor layer was constant - see Fig. 10 (a) - which meant that the dot spacing was wider towards the edges and corners of the screen. It's easy to see why. The three beams cross over at the mask aperture and then diverge on to their own phosphor dots. At large deflection angles the divergent paths (mask to phosphor) are longer, so the three beams spread farther before striking the screen: hence the need for progressively larger triads towards the extremes of the display. The situation is a little more complex in practice due to the mechanics of the deflection process and the need to provide a larger guard band (for beam landing tolerance, i.e. purity) at the edges of the display. The latter requirement is achieved by making the mask holes $5-10$ per cent smaller in these areas. This grading technique marginally reduces both the brightness and resolution at the extremes of the picture.

Most in-line gun tubes have mask and screen radii that result in a constant path length for the diverging beams as shown in Fig. 10 (b). This avoids the need for pitch grading, though I'm told that the new FS (flat, square) tubes have some grading.

Beam Diameter

In an ordinary colour tube the beam diameter is about 0.45 mm at its focal point, and in conjunction with an 0.6 or 0.8 mm stripe spacing this is adequate. Beam diameter (or scanning spot size) depends on several factors, the main one being beam current. To maintain a small spot size, a monitor's beam current limiter circuit comes into operation at a lower level $(450-600 \mu \mathrm{~A}$ total for the three beams, depending on screen size) than in a conventional TV set in order to prevent defocusing. For medium- and particularly high-resolution tubes an additional design feature is a special gun incorporating a high-performance electron-optic lens to ensure a very finely focused scanning spot. The scanning yoke requirements are also more stringent with these tubes, not only with regard to deflec-
tion defocusing and astigmatism but also in terms of convergence performance.

Convergence

There's little point in improving one aspect of a system without upgrading the rest of the links in the chain to match. If the capabilities of a high-grade tube's fine dot structure are to be exploited fully the convergence performance must also reach a high standard, ideally converging to within half a pixel over the entire screen area. This goal in unapproachable with current tube technology! The best high-definition, in-line gun tubes can achieve maximum error figures of $0.3,0.8$ and 1 mm in zones A, B and C shown in Fig. 11. This compares with about $0.4,1 \cdot 2$ and $2 \cdot 2 \mathrm{~mm}$ respectively with a production domestic tube. Topflight delta-gun tubes manage, in conjunction with fairly complex dynamic convergence circuits and controls, to contain the errors within $0.3,0.5$ and 0.7 mm for a 51 cm screen and $0.3,0.4$ and 0.6 mm for a 37 cm screen. Corner convergence is far less critical for picture reproduction than for data displays, where small characters and fine detail can reach right to the screen edges.

A block diagram of the convergence system used in the Barco delta-gun monitor is shown in Fig. 12. A line flyback pulse enters at the upper left in the diagram and is first integrated to produce a sawtooth, then polarity split to provide complementary sawtooth waveforms. The negative sawtooth is further integrated to form a parabola. The positive sawtooth goes to a threshold switch whose output is a squarewave - high for the first half of the line scan, low for the second half. Complementary squarewaves go to switches 2 and 3 whose outputs consist of the first and second halves of the parabola respectively. Each half is separately controlled in amplitude and, for corner convergence purposes, is modulated by an adjustable field-rate sawtooth before recombination at switch 4 and application to the output amplifier and blue horizontal dynamic convergence coil.

The red-green lune dynamic convergence system uses the same half parabolas from switches 2 and 3: each is processed in a voltage-controlled attenuator i.c. which has two outputs and two control lines. For each chip, one control line sets the amplitude of both outputs while the

Fig. 13: (a) 7×5 dot matrix used for data displays. (b) Dots, cells and their relationship to the TV raster.

Fig. 14: Character structure for an 80-column display, related to a 37 cm screen. Beam diameter is of the order of 0.45 mm .
other determines the ratio between them. The two half parabolas are combined in switches 5 and 6 for application to the red and green output stages and convergence coils.
Field dynamic convergence is conventional so far as compass points N, S, E and W are concerned: a transistor switch 7 equalises the operation for $50 / 60 \mathrm{~Hz}$ scan rates.
Corner convergence adjustments are based on the action of a pair of diode clamps, across each of which appears only one half of the vertical sawtooth waveform: thus one bank of controls operates on only the upper half of the display while a second bank operates on the lower half. The carefully shaped half sawtooth waveforms pass into the previously mentioned electronic attenuator chips as control voltages.

In all there are 22 dynamic convergence controls, ten of which are concerned with corner convergence. Three additional controls are provided for static convergence. Nine i.c.s and thirteen transistors are used in the circuit.

Colour Phosphors

A monitor will normally have phosphor emission colours that match the transmission parameters. These colours are much more relevant to analogue picture monitors of course than to those intended for data display. The normal standards are specified by the EBU and are known as the EBU chromaticity co-ordinates. For data monitors different co-ordinates can be used, especially where longer phosphor decay times are required to suppress interline flicker in high-definition displays.

We touched on phosphor persistence when discussing monochrome tubes. Standard persistence as used in ordinary colour tubes is JEDEC classification P22. The red decay is about lmsec, green $150 \mu \mathrm{sec}$ and blue $100 \mu \mathrm{sec}$, in each case to ten per cent of initial brightness. Colour tubes for data display are available with longer persistence of up to 150 msec - except for the blue phosphor, where no material has yet been found that combines the correct primary colour with a long decay time. Hence the "long-
persistence, short-blue" type tube whose characteristic is better flicker performance combined with a tendency to show a yellow comet tail effect on scrolling characters. Long persistence phosphors have a lower lumen efficiency than medium and short types, giving about 50 per cent less light output for the equivalent beam energy.

Computer Displays

In a 625/50 standard TV display the basic pixel count is approximately $575 \times 575 \times(4 / 3)=440,000$: provided the video amplifier and display tube are up to it, more pixels can be introduced by increasing the dot count per scanning line. For the purpose of displaying characters and graphics, the raster is divided into rows and characters, the information density possible depending on the number of these. Starting with the simplest displays, i.e. standard teletext, Prestel and low-price computers, the screen area is divided into 23 rows of information with each row containing a maximum of forty characters. So the information density is 920 characters. Each character can be regarded as a cell which consists of a matrix of dots: these dots are the basic TV pixels. There are various cell arrangements, $7 \times 10,7 \times 9$ and particularly 5×7 being common. The letter P in a 5×7 dot matrix is shown in Fig. 13 (a), and the arrangement of the character cells across the screen in Fig. 13 (b). To separate adjacent characters and rows, a single line of blank dots is inserted beside and below each character cell. Thus each complete 5×7 cell is in fact 6×8 pixels.

We've already seen that each pixel-dot needs to cover two phosphor triads to ensure adequate resolution and visibility. 40 -column text is easily reproduced by standardresolution tubes, as witnessed by the excellent teletext displays on domestic TV sets. The next step is 80 -column text, e.g. mode 0 with the BBC microcomputer. Here we have 25 rows, giving a total data density of 2,000 characters. In this mode each $5 \times .7$ matrix cell is about 2.5 mm wide and 3.5 mm high on a 37 cm screen (see Fig. 14), so a high-resolution tube with 720 or 800 dot capability across its screen width is required. A standard-resolution tube will display 80 -column text, but it's tiring to decipher and not suited to long-term viewing.

Computers used for fine graphics in CAD, imaging, mapping and simulation can generate 132 -column graphics (even more for special purposes like digital highresolution TV) so a very high-resolution tube is required, preferably larger than 51 cm if this sort of data density is to be discemed and appreciated!

Character-generator Outputs

Whether the data source is off-air, off-line, a microcomputer or a full-blown computer, the data displayed is generated inside a character generator chip. The video signals from this consist of square pulses that are precisely timed with respect to the line and field scanning rates. Plainly, the higher the column count the narrower the pulses. In the case of a colour display they are separately generated for R, G and B, and will usually be at TTL level, i.e. 5 V on, 0 V off. Simple on/off signals used to control each tube gun can give the three primary colours plus, in combination, their complementaries and white, i.e. a total of eight distinctive colours - white, yellow, cyan, green, magenta, red, blue and black, corresponding to the standard colour bars.

Most ordinary home computers costing $£ 100-£ 200$

Fig. 15: Representative computer monitor video input circuitry. TTL or linear operation is selected by means of links TL103R/ G/B. The exclusive-OR gates in IC101 invert the video pulses when link TL101 is changed and the line sync pulses when TL102 is present. Transistor Tr101 forms the upper leg of a resistive attenuator for contrast control in the TTL mode. Tr103/4/5 and the accompanying zener diodes provide level-shifting and temperature compensation.
provide these eight colours. Some computers, i.e. the Amstrad 464, have two levels of drive for each RGB output. These extra levels give a total of 27 colours. Other sources offer Y plus RGB outputs, with the separate Y signal setting the brightness of each colour, typically with two levels to give 16 colours (WYCGMRBB plus eight half tones). The Acorn Electron, BBC B and Commodore 64 provide 16 colours in this way. The Sinclair Spectrum is unusual in having YUV access only, so that an interfacing circuit is required to convert to RGB drive. Some commercial monitors (e.g. the Microvitec 1431/MZ) have a suitable converter built in. Alternatively an interface unit can be made up - see for example John de Rivaz's article in the July issue.

Sockets

There are several standards for monitor input signal levels and a wide variety of socket types. For professional monitors in analogue applications the BNC socket is most popular, usually with looped-through outputs to corresponding BNC output sockets. DIN and BNC sockets are used on TV receiver/monitors and I've come across phono socket inputs on small monochrome monitors. Professional data monitors are often fitted with a Cannon 9 -pin D-type socket, while commercial monitors for home
computers tend to use a standard 6 - or 7 -pin 240° DIN socket. What's important here is to ensure that you have the correct connecting lead to link computer and monitor! Monitor manufacturers are very helpful in this area. Finally the SCART socket is making a welcome appearance on all types of AV equipment.

Inputs

Regarding input signals for monitors, the standards that have been established are as follows.
(1) Composite video. Video signal plus sync (7:3 ratio), 1 V peak-to-peak at 75Ω. This applies to most monochrome monitors.
(2) CVBS. Input signal encoded to the PAL or other standard. Vision/sync/burst ratio 7:3:3, total 1 V p-p at 75Ω.
(3) RGB-linear. Separate wideband analogue inputs for R, G and B at $1 \mathrm{~V} / 75 \Omega$. A separate composite sync input is usually provided, looking for sync pulses of between 1 V and 8 V peak. Positive or negative sync is in most cases catered for by means of a rear-mounted switch or movable links. Some monitors will accept sync with the analogue input (called composite RGB) in which case the sync pulses are generally taken from the G channel. For data and graphics display in this mode, 1 V corresponds to on and 0.3 V to off, as opposed to TTL-linear.

The above three analogue standards are usually acceptable within an amplitude tolerance of $\pm 6 \mathrm{~dB}$.
(4) RGB-TTL. This is the most common mode for computer operation. The separate RGB inputs are designed to take TTL pulses (0 V off, 5 V on, into $1 \mathrm{k} \Omega$ or $1.5 \mathrm{k} \Omega$) direct from the output pins of a character generator chip. In practice the computer's outputs have interfacing buffer stages to protect the chip. To eliminate hash, computer noise or possible shading effects, the monitor's RGB amplifiers (now operating in effect as switches)
change state at about 1 V , input level variations above this threshold having no effect on the brightness level. An input circuit operating in this way is shown in Fig. 15. It's important to remember that this "switched" RGB mode can offer only eight colours (including white and black), and that for 16 or more colour displays recourse must be made to RGB-linear inputs.
(5) TTL-linear. This mode permits brightness control by the computer. It has the 5 V for white capability of the RGB-TTL mode but no two-state threshold switch.

VCR Clinic

Toshiba V9600

After replacing some prematurely worn video heads on a Toshiba V9600 (not an uncommon occurrence) and an upper drum cylinder I noticed that the head drum still rotated after stop had been selected. This explained why the heads had worn to a frazzle. I suppose that when the customer stopped the machine and left it the heads just kept on going. The capstan motor did too. There was no tape transport as the pinch roller was off. Attention was directed to the systems control section and it transpired that whilst motor control pin 7 of the microcomputer chip IC601 went from high to low when play was selected it didn't go back to high when stop was selected. The chip (TMP4320P-6202) was changed to the satisfaction of all concerned.
A point worth noting is the video head heights. When the tracking control was rotated the f.m. replay levels from the two heads rose and fell in opposite directions with the test tape. This results in a noisy picture. Head height adjustment is very critical and should not be attempted without experience. On some occasions it's given extended head life to a V9600 where poor picture has been due to differential heights and not just wear.
S.B.

Grundig 2×4 Super

A Grundig 2×4 Super produced very spotty pictures when monitored in the record mode. Unfortunately we changed the tuner before we discovered that the trouble was due to the i.f. preamplifier transistor TR2302 (BF324) in the i.f. can.
S.B.

Sony C7

Andy was singing a variation on "We'll meet again some SONY day" as he carried in a C7 from Geoff. It needed no, not a rewind kit - new heads. After fitting the heads replay was interrupted by much muting of the sort usually caused by tape edge damage. This time the cause was a worn control track head. So a new audio/control track unit was fitted - personally I'd have preferred to fit just the head itself rather than half a machine.
S.B.

Ferguson 3V29/3V30

A few cases of failure to erase the sound on Ferguson 3V29/30s have come in recently. In three machines this was due to the wires that go into the plug on the erase head. Crimped connectors are used, and the wires fell out with a gentle pull. In two cases the trouble was due to dry-

> Reports from Steve Beeching, T. Eng., Derek Snelling, Philip Blundell, Eng. Tech., Les Harris, John Coombes and Dewi James

joints where the small PCB solders on to the erase head. Another problem that's beginning to show on these machines is failure to complete loading. The arms load fully but the mechanism doesn't operate enough to close the after-load switch. This is caused by the loading belt.
D.S.

Hitachi Eject Mechanism

Here's a problem you may get with the eject mechanism on certain Hitachi models. On some of these the eject is damped by a hydraulic clutch. If the VCR is kept in a warm position the oil in the clutch tends to thin and run out, with the result that after about twelve months the cassette housing comes up like a rocket. I've had this on a VT11 and a VT9500 so far. The clutch is sealed and thus has to be replaced.
D.S.

Sanyo VTC5150

The fault on this machine was no colour on playback. A burst with the hairdryer and freezer proved that IC1009 (M51439P) was heat sensitive, but a replacement was just the same. When the fault was present there was no chroma signal at pin 27 (TP1016). Voltage checks were next made around the i.c., the only discrepancy being at pin 26. When the resistor connected to this pin (R1297, $12 \mathrm{k} \Omega$) was checked it was found to be high in value at some $40 \mathrm{k} \Omega$.
P.B.

Ferguson 3V35

A rather unusual fault came my way recently on a Ferguson 3V35. The problem was no playback, though EE and record worked satisfactorily. We took the machine to the workshop and removed the top so that tests could be carried out. A quick check showed that the fault was still present. I decided to check the playback 9 V supply: the transistor that switches this is on the luminance/ chrominance board, which is mounted upside down at the top of the machine, over the video heads. Because of its position and the presence of ventilation holes directly over the board dust tends to gather here. This one was thick with it. A paintbrush was used to clear the dust so that the relevant transistor could be located when lo and behold the fault disappeared. No dry-joints could be found, and anyway the board hadn't been tapped, just brushed. I can only conclude that some of the fluff or dust was of a conductive nature - the machine's been back with the
customer now for some three weeks with no recurrence of the problem.
D.S.

Hitachi VT33E

This machine would work in all modes except fast forward. After making a few checks I decided to change the systems control board to speed up diagnosis. This made no difference however. The capstan/reel drive i.c. is on the power supply panel, and on changing this one the fault went. Three data lines go to pins 10,11 and 12 of the capstan drive i.c. (M545484): 11 and 12 were shorted together due to a solder short under PG112.
L.H.

Ferguson 3V31

This machine would run all right for about twenty five minutes on playback. Its drum speed would then increase. This was traced to the $\mu \mathrm{PC} 1458$ dual operational amplifier i.c. (IC13) - pin 7 went high in the fault condition. L.H.

Toshiba V8600

A V8600 came in from one of the branches with the complaint that playback of prerecorded tapes was o.k. but a noisy picture was produced when its own recordings were replayed. I decided to check around IC401 (TA7637P) which contains the f.m. modulator (amongst other things). As the f.m. waveform (TP202) was crushed the i.c. was replaced, but this made no difference. The f.m. comes out at pin 30, and on making some voltage checks there was found to be a 2 V difference between pin 30 and TP202. R400 which links these points was $1 \mathrm{k} \Omega$ instead of 100Ω.
L.H.

Toshiba V8600

A couple of faults we've had with this machine. Picture jumping in the record, playback and still modes has been caused by the TM4217P servo i.c. (IC501). If the on indicator is not alight or flashes on and off check R816 (15Ω) which may be intermittent or open-circuit. J.C.

Sanyo VTC5300

In the event of failure to load or unload, try moving the guide ring. If this produces the required action replace the loading belt.
J.C.

See also page 607, September - Editor.

Toshiba V9600

Problems we've had with this machine have been as follows.
No results: Check fuse F804 (500 mAT). The fuse can blow due to transients on the power supply. This usually happens with the machine in the standby mode.
Luminance smearing: Check IC201 (TA7637P) by replacement.
Smearing on playback: Check IC104 (TA7636) by replacement.
Ejects cassettes: Check the cassette in switch S651 on the loading unit. If the switch is all right check whether the spring has dropped off the switch lever. The lever sometimes cracks.
No colour on playback: Check the pilot burst removal i.c. (IC206, TA7347P).

No rewind or slow rewind: Check the rewind idler assembly. The idler wheel can be changed on its own but it's best to replace the idler clutch assembly complete.
Capstan running at full speed: Check crystal X961 $(2.968 \mathrm{MHz})$ on the servo clock panel (U961).
No line lock: Check the adjustment of T961 on the servo clock panel (U961). Adjust for a stable picture on reverse search.
All function lights on, cassette loading and unloading automatically: Check the voltages around the microcomputer i.c. (IC601). If o.k. check the clock frequency $(455 \mathrm{kHz})$ at pins $24 / 5$. If this is missing replace the ceramic resonator (Z601).
J.C.

Mitsubishi HS303

We've had the following faults on this model.
For tape looping, no cue or review, poor rewind or a noise bar on the screen check for a faulty reel motor.

In the event of no record, playback all right, check the carrier set trimmer VC2B0 (50 pF) in the f.m. modulator circuit (Y/C panel) by replacement - it can go high impedance.

If the drum speed is unlocked and the capstan speed varies, check IC4A0 (AN6350) by replacement.

If the capstan runs fast and won't switch off, check the waveform at pin 7 of IC4A1 (AN6341N). If this is missing, replace the i.c. If not, check the capstan drive transistor Q4A3 (2SC2603).

For displaced colour/cogging/intermittent snowy picture in the playback mode check for a squarewave at pin 25 of IC4A0. If this is missing check back to pins 9/10 of IC4A6 (TC4066BP), then pin 11, pin 7 of plug/socket VH and back to the junction of diodes D601/2. Next check that the 4.43 MHz oscillator is producing an output (TP6N) check with a frequency counter at pin 3 of IC603 (AN6342N). Trouble here is likely to be due to the $4 \cdot 43 \mathrm{MHz}$ crystal (X601). Trimmer VC601 (45 pF) is also suspect.
J.C.

Sony C7

These machines tend to blank off the sound and vision when playing back their own recordings - the problem can occur at the beginning, end or middle of the tape and is due to slight wear on the control head and perhaps insufficient control head amplifier gain. To improve matters the gain of the control amplifier (AS3 board) can be increased by changing the value of R 123 from $1.5 \mathrm{k} \Omega$ to $2.7 \mathrm{k} \Omega$ and replacing D 30 with a 180Ω resistor.

Channel display stuck on ch. 18 was traced to gate chip IC7 on the timer board.
D.J.

Hitachi VT19

We've had a few cases where the counter display clears itself in the fast forward and rewind modes. This is due to the microcomputer i.c. IC2010 which should be replaced (type HD38805A27).
D.J.

Panasonic NV370

The problem we had with one of these machines was that it went into fast forward when the play button was pressed and into fast rewind when record was selected. There was also no eject. The culprit was C6011 on the syscon board - it was open-circuit.
D.J.

Letters

THE IPSALO-2 CIRCUIT

I was particularly interested in the description of the Ipsalo-2 circuit in the September issue. Its principle of operation is covered by British Patent Specification number 1502074 which was filed in April 1976. This patent was the result of further development work following an earlier patent, the work being carried out whilst I was working at Texas Instruments Ltd. in the early 70s. It's interesting to note the effect of time on design objectives. The earlier patent minimised the number of then high-cost power semiconductors while the later one minimised the use of by then high-cost wound components and had to provide mains isolation.
From the designer's point of view the system has several advantages over the more common arrangement with separate switch-mode power supply and line output stages. Only one transformer instead of two is required, and in addition high leakage inductance (wide spacing) is necessary between the primary and secondary windings for good isolation. Energy is transferred to the deflection side of the circuit during the flyback, resulting in a longer efficiency diode conduction time and hence better scanning linearity.

Eight years is a long time in the television industry, and it's gratifying to find that even after such a time Salora considers the idea worth putting into production. What happened to the earlier patent? That one lapsed some years ago but lives on in service engineers' memories not as a number but in the name Syclops!

M.J. Maytum,

Willington, Bedford.

THORN TX9 CHASSIS

In reply to the query raised by Robin D. Smith in the September issue (TV Fault Finding, page 594), D66 is not required on the PC1040 main panel (TX9 chassis) due to the revised circuitry around the mains rectifier thyristor. With the later circuit configuration D67 also carries out the function previously performed by W66, i.e. preventing the thyristor's protection capacitor C142 affecting the zero crossing point of the rectified mains.
John Jameson, Technical Publications,
Thorn EMI Ferguson Ltd., Enfield.

MUSIC CENTRES

I'm prompted to write to you following the mention in Les's column (June) of premature failure of SN76003 i.c.s and their replacement, after appropriate circuit modifications, with SN76023s. I too used to have this problem with what I assume is the same chassis (Fidelity). There seem to be three failure modes with these units. (1) Customer induced, due to lengthening the speaker leads and shorting them out. (2) Excessive h.t. voltage. (3) Customers again, unplugging and replacing the speaker plugs with the unit switched on.

There's not much one can do about the first problem except replace the i.c.s and tell the owner not to do it again, but it's a good opportunity to carry out the modifications described below. The problem of excessive h.t. is easily put right though I find the reason for it
inexplicable. There are two ways to reduce the h.t., which can be anything up to $32 \mathrm{~V}-28 \mathrm{~V}$ is common - instead of the 24 V specified. One is to insert a dropper resistor in the lead from the transformer's secondary winding - about 15Ω, wirewound works well. It's far easier to unwind a layer of turns from the secondary winding however. Fortunately it's easy to get at, doesn't take more than a few minutes to do and works well. The third problem, with the speaker plugs, can (other than not doing it!) be cured by adding a $1 \mathrm{k}-2 \cdot 2 \mathrm{k} \Omega$ resistor across each speaker socket, inside the case. This has negligible effect in normal use compared to the 8Ω or so of the speaker but prevents the coupling capacitor charging so quickly when the speaker is plugged in that the i.c. is destroyed. It takes only a minute, and prevents bouncers - particularly as most customers will never admit to having done it in the first place, which can lead to an embarrassing argument. This last modification is also well worthwhile with Stereosound music centres using TDA2611 i.c.s.
Fidelity chassis often use a cluster of components to deliver 12.5 V to the preamplifier stages. These components often cause problems. An uprated transistor will help, but a once and for all solution is to fit a 12 V i.c. voltage stabiliser (50 p from Sendz) and ditch all the other bits. I keep meaning to try one of these in a Ferguson 3816 (1590 chassis). A 6 V voltage stabiliser is a very worthwhile addition to those green and yellow Philips clock radios: it makes such a vast improvement that one wonders why they were not fitted in the first place - but of course they were not invented then!

None of this has much to do with TV, but I would guess that most engineers get involved in these related fields from time to time and may well do so more often as TV sets become more reliable.
Alan J. Gamble,
Ormskirk, Lancs.

HEATHKIT GR9900

There seems to be considerable difficulty in obtaining i.c.s for use in the Heathkit GR9900 12in. monochrome portable - in particular the SN76001 which was used in the audio and field output positions. There appear to have been several versions of this i.c., the type required having heatsink tabs. One faulty chip I have is labelled SNX76001ND which no one seems to have heard of. Have other readers had to replace these i.c.s? Have they any suggestions about what to use?
Dr. R.C. Armstrong, FZS,
Holme-on-Spalding-Moor, York.

COMPONENT TESTER

In the letters page last month Dr. Rankin described a modification to the component tester to reduce the X output. The simplest way to do this is to use a switch as

Fig. 1: Suggested method of reducing the output voltage provided by the component tester.
shown in Fig．1．This will also reduce the Y output，but nevertheless works well．Dr．Rankin＇s method would appear to be perfectly satisfactory．Normally however it shouldn＇t be necessary to reduce the output．I＇ve used and tested the unit with a wide variety of scopes，including the Telequipment D61．Large numbers of workshops use this model，which is one of the best service scopes around． Variations did occur with the D61－some for example had 5 mm sockets instead of BNC inputs－and this might account for Dr．Rankin＇s experience．It＇s important to use the correct RS mains transformer as a slight increase in the a．c．output voltage could cause problems．

I hope other users are obtaining good results with their component testers．
David Botto，
Bournemouth，Dorset．

SOUND TROUBLES

Sorry to disagree with Les Lawry－Johns（October issue） but the volume control in the Decca 30 series chassis is $50 \mathrm{k} \Omega$ linear．I find it puzzling that the sound came up loud and clear with the wrong type fitted．Also Nick Lyons mentions trouble with the PCL86 used in the ITT CVC8 chassis．Wouldn＇t it have been simpler to change this 90 p valve in the first place rather than pay repeated visits to the set？
C．P．Bird，
Selby，N．Yorks．
Editorial note：Sorry for the confusion．It was a 1730 ，not an 1830 ．The 1730 ，as with the earlier 10 series chassis， uses a $500 \mathrm{k} \Omega$ semi－log volume control．The 1830 and other 30 series sets use a $50 \mathrm{k} \Omega$ linear volume control with other changes in the coupling network between the intercarrier sound i．c．and the PCL82．

WORTH NOTING

A couple of problems I＇ve had recently may be of interest to other readers．The first concerned a GEC 3133 monochrome portable with start－up problems－it＇s the set with the＂switch mode pump＂circuit．The trouble was traced to the boost diode D205（BYX55／300）which was short－circuit，holding down the start－up supply．The sec－ ond problem was with a Decca colour set fitted with the 90 series chassis．Due to severe internal flashover a new tube and a new beam cut－off transistor（ Tr 213 ）had to be fitted．Result－no picture but a blank raster with flyback lines when the first anode preset was advanced．Two days later I discovered that the PC board printing for the connections to $\operatorname{Tr} 213$ was the wrong way round．Naughty that！
C．A．Jackson，
Sutton－on－Forest，York．

MODEL NUMBERS

I find the servicing articles in your magazine most helpful but there＇s one big difficulty－relating the chassis types you always quote to the set on the bench，which often has a model number and nothing else．A case in point is the Grundig GSC100 and GSC200 chassis dealt with in the September issue．Couldn＇t you publish some tables of model numbers linked to chassis，as Thorn do from time to time in Ferguson Feedback？

Thanks anyway for all the gen－I always read Les before all else！Incidentally I＇d like to find good homes for

BILLINGTON VALVES
Irwin Drive，Horsham，W．Sussex RH12 1NL Mail Order Only；No Callers Please Specialist Valve and Vintage Service NEW，BOXED，GUARANTEED VALVES

3AT2B	64.60	ECHE4	60.70	EY86／7	50.65	PCFB01．Mul	¢2．35	PL95	$¢ 2.00$
6.5	22.50	ECLP0．Maz	11.40	EY500A	¢1．50	PCPEO＋	50.60	PL504	c0．95
6S．J7M	55.50	ECL82＋	60.50	E730	£1．00	PCFEOP	50.60	PL508	£1．90
12BYA	6.15	ECL84	50.90	EZ81	f1．00	PCPEOS	11，00	PL509．Mul	£7．00
12HG7	84.20	ECL86	50.95	GY501	£1．45	PCFPOO6	$\underline{1.15}$	PL519＋	¢4．45
17DW4A	63.75	ECL85	\＄1．00	GZ32	\＄1．60	PCF808．Maz	£1．65	PL802T	84.50
21 LUB	$\underline{5} .10$	EF80＋	60.30	G734．Mul	63.45	PCH200．Maz	$\underline{1.45}$	PLS02	¢6．90
30FL1／2	81.50	EF80．Mul	\＄1．20	KT88．（USA）	£12．00	PCL81	02.00	PY88	¢0．50
30 FL 12	1．60	EF85	50.35	KT88．（UK）	£15．00	PCL82	2080	PY500A	¢1．60
DY86／7．Mul	81.50	EF85．Mul	£1．75	KT66．（USA）	88.50	PCLE33．Mul	22.50	PY81／800	¢0．69
DY87＋	c0．53	EPB9．Mul	¢2． 10	PC86．Maz	£1．45	PCL84．Mul	52.00	PY801	¢0．69
DY802	E0．85	EF95．Mul	¢5． 75	PC88	¢0．75	PCL84．	E0， 80	U26．Maz	¢1．70
EABC80．Mul	¢125	EF183	¢1．00	PC92	83.00	PCL85＋	50.90	UCC85．Mul	¢1．60
ECC81	£1．10	EF194	50.50	PC97	¢1．00	PCL86＋	50.20	UCH81．Maz	62.20
ECC82	¢0．95	EHSO	50． 50	PCC84	20．50	PCL805＋	¢1．00	UCL82．Mul	81.70
ECC83	f0．76	EL34．Mul	83.45	PCC89	80.70	PD500	¢2．90	UCLB3	1185
ECC84	E0．80	EL84＋	50.70	PCC189	50.70	PFL200．Maz	81.30	UP69．Mul	82.50
ECC85	E0．55	ELSO	¢180	PCC805	£130	PFL200＋	c0，85	UL41．Mul	E4． 60
ECC88	f0．95	EF66	£1．40	PCFED．Maz	¢1．50	PL36	50.20	Ur85．Maz	E1．30
ECPEO	60.74	EL509	56.90	PCFE6	£120	P181．Mar	60.50	$\times 78$	£18．00
ECFE2	f0． 05	EU80	520.50	PCF200．Mul	83.45	PLP3	¢1．40		
ECH81＋	E0．50	EM87	12.30	PCFEOO	¢135	PL84	60.75		

＋Denotes imported brand of valve．Mul＝Mullard，Maz＝Mazda S．A．E．QUOTATION ON ANY TYPE NOT LISTED
New valves are guaranteed 90 days．If denoted＂Mul＂，＂Maz＂，valves supplied are assured to be Mullard，Mazda respectively．Types denoted
＂+ ＂are imported brands．All other types are good quality brands． All valves listed are in stock at time of going to press．Discounts on $25+$ of one type．
USED VALVES Tested working．Clean．Boxed． 28 days guarantee． At 20p：DY87，EB91，ECL80，EF80，EF183，EF184，PCC189，PFL200，PY33， 6F23．At 25p：GY501，PCF808，PCL82，PCL84，PL36，PL504，PY81／800，

PY801，U191．At 100p：PC＇F200，PCL83，PD500，＇PY500，PZ30． We have in stock Cathode Ray Tubes，Valve Sockets，certain transistors and I．C．s：S．A．E．for quotation on your requirements．
We can supply，from stock virtually any valve－radio，TV，audio， transmitting．Send S．A．E．for quotation by return or $35 p$ for October catalogue．
WE ARE KEEN TO PURCHASE ALL TYPES OF VALVES．
Please add 60p post＋packing，then add VAT＠15\％．
the following：G6 not working，Pye hybrid working， several 405 －line sets some working， 405 －line signal gener－ ators，many reel－to－reel tape recorders and lots of junk－ mostly free to callers．
E．J．Gordon Madgwick，
Thursdays，Whitmore Vale，
Hindhead，Surrey GU26 6JA．
Editor＇s comment：Most manufacturers produce a few basic chassis which are used in large numbers of different sets，hence our use of chassis type numbers for identifica－ tion．To tabulate models would in some cases be difficult without going into other aspects such as control and tuning arrangements etc．For the record the GSC100 was used in Models $1514 \mathrm{~GB}, 4415 \mathrm{~GB}, 6215 \mathrm{~GB}, 6415 \mathrm{~GB}$ and 6615 GB ；the GSC200 was used in Models 1644 GB ， $1645 \mathrm{~GB}, 4245 \mathrm{~GB}, 4445 \mathrm{~GB}, 6245 \mathrm{~GB}$ and 6445 GB ．

MORE ON PLUGTOPS

I read with interest the letter from C．A．Burrows concern－ ing burning of the neutral pin in mains plugs－also previous letters commenting that the neutral pin seems to undo itself．May I suggest that the reason for these effects is simply electron flow？Remember that electrons flow from negative to positive．One doesn＇t get a shock from the neutral side of the supply because one＇s already charged to this potential－it＇s the potential difference at the positive side that draws current and gives you a shock．

Wasn＇t it a gentleman named Ampere who said that current flows from positive to negative？We now know better！
Rothley Stevens，Radio and Television，
Coventry．

ECONOMIC DEVICES, PO BOX 228, TELFORD TF2 8QP

IF YOU DONT SEE TT LLSTED ASK FOR QUOTE. GNE MAKE MODEL LOCATION. REMEMBER TO ADD O.60p POST \& HANDLING. ADD 15% VAT TO TOTAL

ECONOMIC DEVICES, REGISTERED OFFICEE 14, BEELANE

Remote Control for VCRs

Derek Snelling

Since the remote control systems used with VCRs rarely if ever seem to get mentioned in VCR Clinic I thought a short survey of such systems and some common faults would be of interest. The remote control systems used in VCRs fall into two categories, the wired type and infra-red ones. We'll look at the wired type first.

Wired Systems

The simplest are those with a screened lead and jack plug connection to the VCR. Examples are the Hitachi VT8000/VT8300/VT9300 and the Ferguson 3V29/3V30, plus the equivalents in other ranges. The one used in the VT8300 is typical: it consists of a thick-film resistor network in a ladder configuration, the various resistors
being switched by push switches - see Fig. 1. At the VCR end the Hitachi and Ferguson systems differ slightly. With the VT8300 the remote control unit is simply connected in the line from the front panel switches to the command decoder i.c., in parallel with the panel switches. In the Ferguson 3V29/3V30 however the remote and front panel switches are connected to separate comparator/converters in IC3 before being combined to address the microcomputer IC2 - see Fig. 2.

The wired remote control units used with the Mitsubishi HS303, HS304 and early Panasonic NV7000s have multicore cables with DIN-like plugs to connect them to the VCR. The NV7000 unit consists of a duplicate of the front panel controls, i.e. a dozen switches and diodes arranged as a matrix, a simple system that unfortunately

Fig. 1: Circuit of the Hitachi VT8300's remote control handset.

Fig. 2: Arrangement used in the Ferguson 3V29 to combine the remote and on-board control commands.
calls for eight connecting wires - see Fig. 3. The arrangement used with the HS304 is even simpler, containing just six switches and no diodes: it requires five connecting leads - see Fig. 4.

Faults

Faults with wired remote control systems are usually easy to trace. The Ferguson 3V29/3V30 arrangement is particularly unreliable. The plug is prone to disintegrate or, less obviously, to develop a crack around the outer conductor. The wire has a tendency to break or leak between the core and the screen - this latter fault causes

Fig. 3: Multicore cable remote control switch circuit used with the Panasonic NV7000.

Fig. 4: Remote/on-board switching circuit, Mitsubishi Model HS304.

Fig. 5: Infra-red remote control transmitter circuit, Ferguson Models 3V35/3V36.
incorrect functions. Finally the switches themselves can go leaky. I've not as yet had a faulty thick-film resistor network.

I've had a few switch failures with the Hitachi units. Otherwise the system is reliable. With the Panasonic unit I've had a wire come off in the plug (I assume): this however means replacing the lead as the plug is a solid, moulded on block that comes only with a new cable.

It's possible of course that a faulty socket or other part of the machine might be encountered, but I have to report that with wired remote control systems the faults I've come across have all been due to the handset.

Infra-red Remote Control

Most current infra-red remote control handsets use a single encoder/oscillator i.c. and a few external transistors to drive the LEDs. The unit used with the Ferguson 3V35/3V36 VCRs is typical - see Fig. 5. IC1 contains an oscillator and the necessary encoder for the key matrix. The encoded output at pin 17 passes to Q1 and then to Q2 which drives the transmitter LEDs D1/2 and the indicator LED D3. Other infra-red remote control units

Fig. 6: Block diagram of the infra-red remote control transmitter used with the Hitachi VT8500.
use different i.c.s, and may have a separate transistor to drive the indicator LED, but are generally similar.

The remote control transmitter used with the Hitachi VT8500 is rather different however, using six i.c.s and five transistors (see Fig. 6). When a button is pressed, an input is applied to IC01 or IC02. These i.c.s provide encoding and parallel-to-serial conversion. Button operation also brings into action several multivibrators formed from gates. These provide clock pulses, synchronisation and the

Fig. 7: Infra-red remote control receiver circuit, Ferguson Model 3V35.
carrier. A conventional transistor LED driver circuit is used.

VCRs with infra-red remote control differ rather more at the receiver end. Fig. 7 shows the circuitry used in the Ferguson $3 \mathrm{~V} 35 / 3 \mathrm{~V} 36$. The remote input is detected by D202 and then passed to IC203 where it's amplified and mixed with the output from the VCR's own keyboard the two sets of signals are of course the same at this point. The output from IC203 is decoded by the microcomputer i.c. The Panasonic NV7000's optional infra-red remote receiver system uses two i.c.s and a transistor in the detector/amplifier channel, the pulses from this going to another large i.c. and a number of gates which appear to the machine as a key matrix (this optional remote receiver is attached to the side of the machine, being plugged into the wired remote socket, so it's output has to appear like that from a wired unit). The Mitsubishi HS320 has an i.c. preamplifier on a small subpanel, the output from this being fed to a couple of filters and then the command decoder i.c. The decoded outputs pass to the mechanism control i.c.

Faults

By far the most common trouble with an infra-red remote control system is simply a flat battery. The Hitachi VT8500 can be particularly heavy on batteries, and a small modification was introduced to reduce consumption - pin 10 of IC01B should be connected to chassis. The only faults I've had have been dry-joints on the output LEDs with the Hitachi VT8500, faulty buttons on a similar unit, and a faulty button on a Mitsubishi HS320 handset (the buttons here take the form of a rubber keypad and the whole thing has to be replaced).

Infra-red Detector

If you want to be able to tell whether an infra-red remote control handset is producing an output the circuits shown in Fig. 8 should be helpful. The LED lights up when an infra-red transmission is detected (note however that this doesn't mean correct information is being transmitted). The two-transistor circuit is much more sensitive but can be affected by sunlight. Check with known good remote transmitter units to get an idea of the detection range to expect and how brightly the LED lights. The circuits are also useful for checking the infra-red LEDs

Fig. 8: Infra-red detector arrangements that can be used for test purposes. Adjust the value of R1 in (b) for the sensitivity required: add R2 if necessary to control the brightness and current.
used instead of cassette lamps in most current VHS machines. I built mine in a plastic box used to supply record player cartridges, with the detector mounted on the end of a Biro. No originality is claimed for these circuits in fact the single-transistor one has appeared in an Hitachi technical bulletin.

Adding Remote Control

Finally a few words for those whose VCR has no remote control but are perhaps wondering about the possibility of adding this feature. A wired remote system is fairly easy to make: if your machine uses a ladder resistor network, duplicate this and wire the remote output across the existing control network. A matrix type remote control will require multicore cable plus a plug and socket but is otherwise simple. Check whether facilities for remote operation are already fitted, as they are in the Hitachi VT33, Ferguson 3V29 and Panasonic NV333 for example.

Infra-red remote control is rather more tricky. In some machines, such as the Ferguson 3V38, the holes for the infra-red receiver used in more expensive models are
provided on the circuit board. A transmitter unit will have to be bought or built however, so the proposition is not really economic. If your machine doesn't have more upmarket relatives with remote control, then even if you build a transmitter and receiver you've got the problem of matching its output to the machine's control circuitry.

Getting an output that the machine's microcomputer will understand is likely to be very difficult.

For those with mechanical keyboard type machines the only kind of remote operation that's feasible is a pause control by means of a switch wired across the microswitch used for the purpose in the machine.

The US Scene in the Fifties

Chas E. Miller

For this vintage article I'm going to cross the Atlantic to take a look at the US scene in the fifties. After several false starts, due mainiy to arguments about standards, regular scheduled TV transmissions started in the USA on July 1st, 1941 - from just two transmitters, both in New York. The start was slow, with only four transmitters in operation by the spring of 1942 and sales of TV sets then standing at around 10,000 . It was not long after that World War II halted further expansion. Nevertheless the later start to TV in the USA, compared to the UK, enabled advantage to be taken of a number of technical developments. To start with, 525 lines instead of 405 , giving better definition. Then negative-going video modulation, which gave immunity from electrical interference and improved synchronisation - the sync pulses represent 100 per cent modulation and thus peak transmitter power. There was f.m. for the TV sound channel, and the higher field frequency of 60 Hz - corresponding to the 60 Hz standard for US mains supplies. The basis of US broadcasting, that the listener or viewer should have the right to a wide choice of stations, meant that multichannel tuners were in use long before they were in the UK. In their wake came vision a.g.c. to compensate for different signal strengths, and flywheel sync to stabilise the operation of the line timebase. Even so, when looking at representative US receiver circuits of the fifties one notes a more than passing resemblance to contemporary UK practice, especially of the slightly dotty kind.

Valve as Dropper

An example was the use of a valve as a high-wattage resistor (see The Case of the Curious Cossor, February 1984). But at least the Yanks got the valve to do two useful jobs. The sound output pentode was used as a dropper by tapping the h.t. supply for the i.f. stages from its cathode. With an h.t. supply of 240 V at the anode of the sound output valve the cathode voltage was typically 135 V . A resistive potential divider produced a supply of about 130 V to bias the valve's control grid. Since the effective voltage across the valve was only some 100 V , it seems odd that a 240 V h.t. line was chosen in the first place. Why didn't they settle for about 120 V , which would have been easy to obtain from the standard $110 / 120 \mathrm{~V}$ mains supplies? A parallel situation was to be seen in contemporary Ultra UK sets which used an elaborate voltage doubler circuit to obtain an h.t. supply of 435 V which was promptly dropped back to 260 V with the use of resistors!

Focus Arrangements

Another way of getting the sound output valve to do two things was to include it in an electromagnetic focus
circuit. Philips did this over here, by using the focus coil to provide the valve's anode and screen grid voltages. The focus control adjusted the bias applied to the valve. US practice was to connect the coil in series with the cathode of the valve, with a variable wirewound resistor in parallel. This was simpler, but again sharply reduced the effective voltage across the valve. In addition the cathode would be at a fairly high potential, increasing the risk of a heatercathode short.

Receiver Circuits

Initially, separate sound and vision i.f. channels were used, but it was not long before the intercarrier system became general. This seemed puzzling to UK engineers at the time - we'd not then had any experience of f.m., even for radio. We couldn't figure out why the sound signal was tapped from the anode of the video output valve! Just as odd seemed the use of a triode as a sound i.f. amplifier. Crystals were only just beginning to be used as detectors. Video amplifiers were similar in most respects to those found in UK sets, with slight modifications to extend the frequency response to upwards of 4 MHz . The unusual feature in this stage was the use of a variable cathode bias resistor as the contrast control.

Tubes

Both grid and cathode c.r.t. drive were in vogue, and what tubes they could be! The smallest was of 10 in . diameter, the largest 30 in . Bearing in mind that this was in the days of narrow deflection angles, the overall size of a 30 in . tube must have been awesome (the length for round c.r.t.s was usually at least half as much again as the diameter). I saw one of these monsters at an exhibition many years ago: I've never handled one, which I don't regret in the least!

Timebases

E.H.T. supplies had by the fifties developed along the same lines as in the UK, with line flyback e.h.t. the norm. In fact the circuit of a typical US line timebase differed little from a UK one. The main difference was that parallel heater chains survived longer in the US than they did here. This was presumably due to the low mains supply voltages, which made power transformers almost essential to get a reasonable h.t. voltage: if you had a transformer for the h.t. supply, you might as well use it for l.t. supplies as well.

Triode field output valves were often used, with autotransformer coupling to the coils. The anode supply might be taken from the boost rail, which in those days ranged from about 350 V to 550 V . At around the same

Fig. 1: The colour decoder circuit used in late-production 1957 RCA Super and Special models. The burst/reference signal section was simplified by the use of a passive subcarrier regenerator, hence no need for an a.p.c. loop. Demodulation was carried out on the $B-Y$ and $G-Y$ axes, with matrixing to obtain the $R-Y$ colour-difference signal. Only a single chroma amplifier stage was used.
time the celebrated Plessey 12 in . chassis, used in countless badge-engineered models in the UK, also employed a triode (6L18) field output valve: it was operated with an anode voltage of only 230 V , as there was no boost line in this chassis.

Tuners

US tuner units initially had to cover only the v.h.f. channels A2-A13, so they were not unlike the turret tuners used in UK receivers in the mid-fifties. The use of u.h.f. came much earlier than in the UK however, though it was not popular to start with. This isn't surprising if the tuner circuit I have to hand is at all typical. It employed a crystal mixer with a simple triode oscillator and no r.f. amplification, so what the gain was like is anyone's guess. In the event, the situation that developed was not unlike that in the UK when BBC-2 first went on air a dozen years later. After an initial boom, viewers decided that the u.h.f. stations didn't offer a sufficiently attractive alternative to the existing v.h.f. services to make it worth their while to install converters and aerials. Only in areas where there were no v.h.f. stations did u.h.f. really take off. By the mid-fifties nearly a hundred u.h.f. stations had closed down, and a much larger number that had been authorised never went on air at all. About a hundred were active, mainly in areas that lacked v.h.f. competition or operated by non-commercial organisations.

The twelve v.h.f. channels could support over 600
separate stations in the USA, but the FCC wanted to allocate even more. The only way to do this was to use u.h.f., which with 70 channels could provide another 1,500 outlets. Thus arose a typical chicken-and-egg situation. Would-be station operators would not use u.h.f. because there were so few receivers capable of u.h.f. reception (an "insignificant proportion of the nation's 56 million sets" according to one report), while the public would not buy u.h.f. sets because there were so few stations for them to tune to. One proposed solution was to reallocate the existing v.h.f. stations so that some of them would have to use u.h.f.: not surprisingly their owners protested vigorously and the idea was shelved. Eventually Congress took a hand, and in mid-1962 President Kennedy signed a bill requiring that henceforth all TV receivers produced must incorporate a u.h.f. tuner.

Colour

The big event in the fifties however was the start of colour TV - regular transmissions, using the NTSC system, commenced in December 1953. The foregoing comments on contemporary US monochrome receivers might suggest that colour sets when they came would be extremely complicated beasties, especially as virtually no semiconductor devices were used. Not a bit of it! My first impression when I looked at the círcuit diagram of the RCA Super series was that it had been considerably simplified to clarify the operation. This was not the case
however. Everything was there, and the valves and components really were as sparse as they appeared to be at a first glance. What we'd call the decoder used just ten valve sections and a handful of capacitors, resistors and coils - see Fig. 1. This circuit, dating from 1957, may possibly have looked complex at the time. Today it looks ridiculously unsophisticated. Let's take a closer look.
The chroma take-off transformer, in the anode circuit of a video amplifier at the end of the i.f. strip, was tuned to $3 \cdot 58 \mathrm{MHz}$. A 4.5 MHz sound trap was incorporated at this point. The chroma signal thus developed was applied to the control grid of V1a, a tuned amplifier with a bandwidth of 500 kHz . This drove the grids of the four triodes V2/3 used for synchronous demodulation. We'll return to these in a moment.

A coil in V1a's anode tuned circuit fed the cathode of the burst gate/amplifier triode V5a, which was gated on by 70 V line-frequency pulses applied to its grid. The burst signal developed in its anode circuit was applied to V5b for further amplification. This pentode was also gated, at its screen grid. A phase shift network in the coupling between these two valves provided hue control, with a range of $\pm 45^{\circ}$. The subcarrier regenerator was of the passive type, i.e. the output from V5b drove the tuned circuit that included the 3.58 MHz crystal. V6 amplified the reference signal and drove the cathodes of the synchronous detector triodes via transformers that provided the required phase conditions.

A rather odd aspect of the circuit was the use of pulses to provide gain control in both the chroma and burst channels and colour killing. 180V line flyback pulses were applied to the grid of V4a, which developed a negative voltage of -107 V at this point by grid current action. The negative bias thus produced was applied to the control grid of V5b via the burst gain preset to control the gain of the burst amplifier. The positive-going pulses developed at the cathode of V4a were similarly used for saturation control and colour killing. The $1 \mathrm{k} \Omega$ colour control fed the pulses to the control grid of the chroma amplifier V1a, developing a bias voltage of -14 V at this point. Obviously the greater the amplitude of the pulses the greater the bias voltage developed. A second pulse feed was applied to the cathode of the colour-killer triode V1b. On a monochrome transmission the amplified pulses appearing at its anode produced a sufficiently negative bias at the control grid of V1a to cut it off. The reference oscillator circuit, being of the driven type, was active only when the bursts were present. The negative bias then produced at the control grid of V6 was applied to the grid of V1b, cutting this triode off so that V1a was left under the control of the saturation potentiometer. All rather crude but no doubt effective.

Back to the synchronous detector triodes. These conducted on the negative-going tips of the 3.58 MHz waveforms applied to their cathodes, producing the $\mathrm{B}-\mathrm{Y}$ signal at the anode of V2a, the G-Y signal at the anode of V3b, and the R-Y signal after mixing in the anode circuits of V2b/V3a. The high-level outputs produced by these triode synchronous detectors drove the tube's grids without need for further amplification. Colour-difference drive was used of course, with the luminance signal applied to the tube's cathodes.
So there we have it. Colour as well for only five and a half bottles. NTSC has been referred to as "never twice the same colour", though you have the hue control to get it right. One wonders how things are today in the US: maybe someone over there would care to comment?

next month in

- SERVICING THE SONY KV1612UB

This interesting 16 in . colour portable is fitted with infra-red remote control as standard. In some respects it's rather more anglicized than the Sony sets we've covered before, with i.c.s such as the TBA120U, TBA1440G and $\mu \mathrm{PC} 1365 \mathrm{C}$, but other sections are thoroughly Sony. David Botto on the servicing aspects.

- TELETALK ON COLOUR

Malcolm Burrell's commentary concentrates on colour, from the early days when there were excellent bright displays but considerable variation from set to set to today's "rather mediocre" but consistent standard.

- VIDEO SERVICING

This time Mike Phelan takes a look at video cameras and the problems they present to the service engineer. In particular setting up can be a lot more critical than with most consumer electronics equipment.

- TAMING THE SONY KV1810UB

There can be few service engineers who don't greet the request to repair a Sony KV1810UB with some trepidation. The reason for this is the tendency of the expensive gate controlied switch devices used in the chopper and line output circuits to commit hara-kiri. It's possible to modify the set to get rid of these troublesome devices however. Bernard Pruden gives full details of how to change over to the use of transistors.

- THE VIEW MASTER

Vintage TV takes a look at an early kit for the constructor. The View Master appeared on the scene in 1949 as a design sponsored by a number of component manufacturers. It was simple by contemporary standards but capable of excellent results.

PLUS ALL THE REGULAR FEATURES
ORDER YOUR COPY ON THE FORM BELOW:

Long-distance Television

Roger Bunney

August was an extremely productive month, with excellent Sporadic E openings during the earlier part and a really dramatic period of tropospheric reception towards the end. Lots of news, so without further ado here's the August UK SpE log:

7/8/84 TVE (Spain) chs. E2, 3, 4; RAI (Italy) IA; ORF (Austria) E2a; TSS (USSR) R1; CST (Czechoslovakia) R2.
8/8/84 RAI IA; JRT (Yugoslavia) E3, 4; ORF E2a; + PTT (Switzerland) E2; MTV (Hungary) R1; TVP (Poland) R1; TSS R1; TVE E2.
9/8/84 TVP R1; CST R2; TSS R1, 2; SR (Sweden) E2; RUV (Iceland) E4; NRK (Norway) E2, 3; TVE E2; RAI IA.
10/8/84 TVE E2, 3, 4; JRT E3; RAI IA; DFF (East Germany) E4; TVP R1, 2; TSS R1, 2; CST R2; SR E2.
11/8/84 TSS R1, 2; TVP R1, 2; CST R1; SR E2, 3, 4; NRK E2, 3, 4; MTV (Hungary) R1; ORF E2a; + PTT E2; RAI IA; TVE E2, 3, 4; TVE-2 E2; RTP (Portugal) E3; ARD (West Germany) E3.
12/8/84 TVE E2, 3; TVE-2 E2; RAI IA, B; DFF E4; SR E2; NRK E2; TSS R1.
13/8/84 RAI IA; CST R1; NRK E2.
14/8/84 CST R1; DR (Denmark) E3; RAI IA.
15/8/84 TVP R1; CST R1; TSS R1; NRK E2.
16/8/84 CST R1, 2; TVE E2.
17/8/84 TVP R1; TVE E2.
18/8/84 TSS R1; CST R1; NRK E2; +PTT E2.
19/8/84 RAI IA, B; TVE E2, 3, 4; TVP R1.
20/8/84 TVE E2, 3; RAI IA; JRT E3, 4; MTV R1; ARD E2; TSS R1, 2.
21/8/84 ORF E2a; TVP R1; TVE E2, 3, 4.
22/8/84 TVP R1.
23/8/84 CST R1.
24/8/84 RAI IA; TVE E2, 3, 4; MTV R1, 2.
27/8/84 TVE E2, 3, 4; RAI IA, B.
28/8/84 RAI IA.
30/8/84 TSS R1, 2.
31/8/84 RAI IA; TSS R1.
1/9/84 SR E2.
Pressure remained high during most of August, resulting in two periods of good tropospheric conditions. The first was from the 10 th to the 17 th, when many enthusiasts received Holland, Belgium, Denmark and numerous Norwegian Band III stations almost daily. In the best locations reception at over 500 miles was possible using relatively simple equipment. From the letters I've received it's clear that many relatively new enthusiasts achieved their first "real" tropospheric results. Of particular interest, Cyril Willis (Ely) received system M (525 lines, 60 fields) signals from the AFRTS/AFN base at Shape, Holland, on ch. E34. He found that his valved KB Featherlight receiver locked well without any adjustment. I owned the set myself at one time and remember some years back receiving ch. A2 (system M) signals on many occasions when the conditions in the F2 layer were good.

After a brief lull a further period of enhanced tropospheric activity started on the 20 th, with signals from
much of central Europe though with a tendency for reception on a north/south path to predominate. Conditions peaked on the 25th/26th with Band III and the u.h.f. channels literally jammed. Examples of reception on the 25th include Switzerland and the French Canal Plus programme (in colour on ch. F5) in Scotland, plus teletext DX from W. Germany at the same location. Iain Menzies (Aberdeen) comments that ZDF, NDR, WDR, DR, RTB/BRT, NOS and NRK signals filled the band. A bonus was RTL Plus (Luxembourg) on ch. E7. Norwegian Band III signals reached as far as the southern UK while, unusually, NOS/RTB/BRT were well received on ch. E4 over much of the UK as far as the W. Midlands and north Scotland. Unfortunately I missed this opening as I'd just gone on holiday. Typical, but a good time was had by most, with the main W. European Band III and u.h.f. transmitters received with varying degrees of clarity. On the amateur radio front, I gather that the Faroe Islands were received in the UK and the Shetlands in the London area during this opening.

An interesting sea path opened on July 4th when Dave Last (Truro) had two-way contact at both 144 and 435 MHz with EA8XS in Las Palmas, Canary Islands. On the following day EA8XS was received in S. Wales!

Dave Shirley (Hastings) reports that there's an Antenne 2 (TDF) programme called "Le Club du Television du Monde" every Thursday night at 2035 French time. It includes programme examples from overseas TV services with station logos, opening/closing routines etc.

My thanks to the following for sending in reports: Cyril Willis (Ely), Dave Shirley (Hastings), Iain Menzies (Aberdeen), Simon Hamer (Powys), Keith Chaplin (Bar-row-on-Soar), Paul Barton (Harrogate), Bill Cotterill (Tipton) and Alan Beech (Dollar, Scotland).

For the record, Dave Shirley received RAI-1 ch. IF Udine, N. Italy via tropospheric propagation on May 5th last at 1300 BST , the programme material consisting of a football match and interviews with Roma FC players. G3COJ had two-way contact with W6JKV/OX (Greenland) at 50 MHz on June 24th (2308 GMT). On June 30th/July 1st GJ3YHU at St. Lawrence, Jersey, Channel Islands had two-way contact with 46 stations along the US/Canadian eastern seaboard between 2234-0057 GMT, again at 50 MHz .

News Items

UK: Racal are applying for planning permission for lattice masts, typically 30 m high, throughout the UK to carry PMR and communications aerials for the cellular radio service. The siting seems quite close: in south Hampshire for example a mast two miles north of Southampton has been approved and permission is being sought for another 19 miles away at West Cowes, Isle of Wight. Many of the services will operate in Band III.

The British Amateur Television Club has produced a booklet entitled "Introducing Amateur Television" for all new members. Membership details can be obtained from BATC, Grenehurst, Pinewood Road, High Wycombe, Bucks HP12 4DD - include s.a.e. with enquiries.
France: Canal Plus scrambling will include suppression of the a.m. sound carrier. A decision on DBS standards is being kept open though narrow-band MAC transmissions have been carried within the normal system L bandwidth by the Rennes "Reseau 4" v.h.f. transmitter. Breakfast TV may start this autumn.
Belgium: The French TV5 satellite downlink channel now
has scrambled vision: a $1-2 \mu \mathrm{sec}$ delay on a random basis is introduced at the beginning of each line, giving the appearance of several overlapping pictures. A digital signal is incorporated in the field blanking interval to synchronise the descrambler's random generator. Canal Plus has been seen using a similar type of scrambling. The Brussels TV5 output on ch. E56 is unscrambled but cable operators have to do their own unscrambling. A Pay-TV service for French speaking Belgium is being planned by RTBF and the Dupuis publishing company: descramblers would cost $2,500 \mathrm{Bf}$ and the programme content would consist mainly of feature films on a rotating schedule.
Luxembourg: The Coronet consortium is to commence its DBS service in the summer of 1986 using a medium power satellite $(-50 \mathrm{dBW})$ at $19^{\circ} \mathrm{W}$.
Satellites: The common SRG/ORF/ZDF programme via ECS is to start on December 1st, with five and a half hours' programming daily. The Japanese firm Uniden, noted for its CB rigs, has entered the 4 GHz satellite field with a complete TVRO package which is marketed under the Unisat label. Prices are expected to drop to the extent that later next year an upmarket TVRO package should cost much the same as a full-feature VCR. Uniden also intends to produce 12 GHz equipment. The Electra Company which manufactures Bearcat scanners has also entered the 4 GHz TVRO market.
Spain: New EBU listings - TVE-1 Madrid ch. E49, TVE2 Madrid ch. E55, 117 kW e.r.p. horizontal in both cases.

IF Selectivity Unit

The U800 i.f. selectivity module from the Philips G8 chassis has been widely used by DXers to obtain reduced i.f. bandwidth - essential where channels are close (e.g. E2/R1 vision) in order to minimise signal overlap and floating images. The idea is to incorporate the unit between the tuner and the main i.f. strip, with the module modified for narrow/normal operation. Unfortunately the module is no longer available: to overcome this problem Paul Barton has designed an alternative (see Fig. 1).

The coils can be tuned to provide a very narrow i.f. passband of some 1 MHz . This will result in degraded picture quality of course, so a compromise is required between quality and minimum adjacent channel interference. The bandwidth can be widened to some $3-4 \mathrm{MHz}$ by adding $1.5 \mathrm{k} \Omega$ damping resistors across L1 and L2. Alignment is relatively easy and is best done on an actual signal. L 1 and L2 have a sharp peaking, notch-like effect whereas L3 has a relatively flat response. Tune to a steady fringe

Fig. 1: Circuit of Paul Barton's i.f. selectivity module. 11 and $L 2$ consist of 15 turns, close spaced, of 28 s.w.g. wire on a $3 / 16 \mathrm{in} .(4.5 \mathrm{~mm})$ former with core. $L 3$ is the same but centre tapped.

SOUTH WEST AERIALS proudly announces its NEW 1985 CATALOGUE - fresh from the printers and packed with Aerials, Amplifiers, Components and Hardware, lots more Filters and Multi-Standard TV's. Whilst retaining most of the established and popular lines, we have taken the opportunity to include lots of new exciting items based on the experience of many years successful trading as the Premier Aerial Mail Order Company, and relating to what you the customer is seeking.
We are pleased to announce a replacement to the recently discontinued Export Band 1 \& 3 combined Aerials - the new Fernseh-Antenna model DR1712 - available exclusively from us. A new introduction is an attractively priced replacement to the discontinued Hirschmann RO250 Rotatur.
We are active TV/FM DXing specialists - your guarantee of honest and knowledgable advice.
Our New high quality Catalogue (regarded by many as a reterence in its own right) is priced only $60 \mathrm{p}-$ no enthusiast should be without a copy. Customer Consultancy service available for DXing, difficult, and general reception queries (include SAE please). ACCESS \& BARCLAYCARD orders welcome. Delivery 7-10 days.

SOUTH WEST AERIALS (T)
11, Kent Road, Parkstone,
Poole, Dorset, BH12 2EH. Tel: 0202738232.

VISA

signal or a local signal attenuated to give a weak, noisy (but non-fading) signal. Peak L3 first. Though its response is flat, picture improvement should be seen. Note the definition. Peak L1 at the I.f. end (core in) and L2 at the h.f. end (core out). Balance L3 and observe the picture, preferably on a test pattern so that the bandwidth reduction can be assessed. If a smeary picture lacking detail is seen, the bandwidth is likely to have been considerably narrowed. Stagger tuning L1 and L2 will then increase the bandwidth to the extent you consider necessary. Personally I feel that a bandwidth of 2 MHz provides a reasonable compromise.
Paul found that the ET021 tuner likes to see a 100Ω resistor across its output. $3-30 \mathrm{pF}$ trimmers could be used in place of the $18 / 22 \mathrm{pF}$ tuning capacitors to give a wider range of alignment where alternative coil formers are used. The unit exceeds the performance of two peaked G8 units in series: it can easily separate ch. R1 vision from a strong local ch. B2 signal. Let us know how you get along with it.

Satellite TV Services

An increasing number of TV programmes are available to the satellite TV enthusiast, particularly in the 12 GHz band. There are the well-known three Gorizont channels at 4 GHz , and in the not too distant future Arabsat signals will be available with channels in the 2.6 and 4 GHz bands. It may be helpful to list present and future channels intended for downlinking to cable operators at $11-12 \mathrm{GHz}$. The London based Sky Channel has been on air since April 1982. It uses Oak/Orion scrambling and is downlinked by transponder six on ECS-1. Other ECS-1

Left: TVR (Rumania) FUBK test pattern, Bucharest ch. R2, received by Ryn Muntjewerff in Holland. Centre: Syrian news announcer received by Petri Pöppönen in Finland. Right: Ras Munif-Ajlun, Jordan ch. E9 500kW, received in Cyprus by Marios Colocassides, with Syrian co-channel.

Lett: 4 GHz (C band) satellite reception by Frank Lumen in Denver, Colorado. Centre: Another example of Frank Lumen's C band reception of signals from Los Angeles. Right: Satellite reception in Europe - ECS-1 transponder 7 downlink signal, Teleclub programme source.
transponders in use are as follows: 12 - Thorn-EMI "Music Box" pop video programme; 4 - French-language TV5; 10 - PKS, a German entertainment programme from Frankfurt; 7 - PaySat, a Swiss feature film channel. The TV5 service is scrambled at times using a system called Discret-1 (see News Items, Belgium). Planned ECS services are: Euro-TV, a Dutch based movie/entertainment channel due to start this autumn; a Germanlanguage programme compiled by ZDF from the various German TV networks, using transponder 2 and probably with system SIS/PCM2 scrambling; and Esselte, a Swedish channel expected to be on air early next year, using transponder 9. There's also a vague plan for a European service to be called Eurikon, originating from Hilversum.

Other UK based services in operation are: TEN with nine hours of movies and other entertainment daily from Intelsat 4W; the Premier movie channel from Intelsat 6W; and Screen Sport, six hours daily, from Intelsat 3W.

Planned for next summer are a Childrens channel, a telesoftware channel, and a 24 -hour World News Network channel run by Visnews. W.H. Smith plan to start a Games Network with computer games and business data, and Wyvern TV (Swindon) plan to start a channel offering general programmes and documentaries.

From our Correspondents . . .

Frank Lumen of Denver, USA (formerly Glasgow) has been successful with reception from several satellites, using a 1.8 m dish and 4 GHz (C band) receiver. He reports that the Olympic Games kept the communications craft busy - Frank logged signals going to all parts of the globe, many from Intelsat 4 at $53^{\circ} \mathrm{W}$.

Wenlock Burton (Victoria, Australia) comments on the problem of interference produced by computers. Apparently the TRS80 and Apple 2 microcomputers have to be
fitted with an r.f. shield for sale in the USA in order to comply with stiff FCC regulations. The shields are omitted from export versions, apparently due to relaxed or nonexistent radiation regulations. The Australian Department of Communications plans to clear TV channels $3,4,5$ and 5a and establish extra channels between the existing 9,10 and 12. A stereo TV sound system using a second carrier spaced at 242 kHz above the main sound carrier, with 50 kHz deviation, has been approved.
Keith Chaplin of Barrow-on-Soar, Leics had considerable success during the recent SpE and tropospheric openings. He's well equipped, with a Vega 402D, a dualsound/teletext Luxor receiver, wideband aerials for Bands I/III and u.h.f., amplifiers, a rotor and more importantly a clear take-off at 500 ft a.s.l. from south to north!

Nick Harrold (Essex) recently visited the Canary Islands to assist with the installation of a large satellite dish for TV reception high up on a mountain. The installation belongs to some exiled Canadians who wanted to watch AFRTS from Intelsat at $1^{\circ} \mathrm{W}$. In addition to this it was found that virtually noise-free pictures could be obtained from Satcom 2 R at $72^{\circ} \mathrm{W}$.

Tropical Aurora

An article on this subject appeared in a N. American radio magazine recently. It seems that in equatorial regions the extreme outer fringe of the ionosphere thickens and is rendered reflective by constant, direct solar bombardment. The phenomenon occurs at $\pm 15^{\circ}$ of the Equator and is similar to a polar aurora. Strong v.h.f. signals are reflected, giving incident signals with a characteristic fluttery quality, present at times when F2 layer activity is low. One result is that many Argentinian paging stations operating in the 40 MHz spectrum are well received in N. America.

TV Fault Finding

Panasonic TC2203 (U1) and TC2205 (U2)

A common fault with these sets is normal sound, blank screen. There are three likely causes. (1) The 7.5 V zener diode D351 which links the emitters of the RGB output transistors to chassis. (2) The 6 V zener diodes D818 and D819 (D857/8 is the U2 chassis) which provide the reference voltage in the 12 V regulator circuit. What usually happens is that the zener characteristics change, as a result of which the regulator's output rises to 13 V or more, producing saturation in the TDA2530 i.c. (IC301). Note that if the regulator's output falls below 10 V the result is loss of colour. (3) If R621 ($82 \mathrm{k} \Omega$) is opencircuit the TDA2530 will receive no clamp pulses at pin 8 . The result is blanking (no modulation).
The TDA1104SP field timebase i.c. in the U2 chassis can cause loss of raster - it contains a safety circuit. To check, probe pin 8 with the meter switched to its lowest d.c. range to shunt the safety blanking pulses. You may then find loss of field scan or partial field collapse.
A small picture with a hum bar and sound that varies in sympathy with the contrast and brightness in the U2 chassis means that the 160 V line reservoir/smoothing electolytics C852 ($100 \mu \mathrm{~F}, 250 \mathrm{~V}$) and C857 ($47 \mu \mathrm{~F}, 250 \mathrm{~V}$) are defective. I usually replace them with 350 V or 400 V types.

Sound fading with the U2 chassis can be due to any of the following items on the remote control decoder panel: transistors Q1003/4 (both type BC237B), D1008 (OA91), D1006 (5V zener diode) and R1015 ($12 \mathrm{k} \Omega$).
M.S.B.
fallen to less than 1 V instead of being clamped to 15 V by D1017. A 1 W type is suggested rather than 0.5 W as originally fitted.
P.H.D.

Amstrad 22in. CTV

Poor field lock has been a problem with a few of these sets, but the recommended method of setting up the hold control is not exactly obvious. First set the field hold control RV801 to mid-position, then connect a meter (preferably a digital one) to measure the voltage at the junction of RV805/R816 with respect to chassis. Adjust RV801 for a reading of $15 \cdot 1 \mathrm{~V}$. This cures the fault. J.R.

Finlux 9510

A new set came into the workshop to have a teletext decoder fitted. When it was tested however it wouldn't work correctly in the mix mode - instead of the picture appearing behind the text there was a grey background. Substitution proved that the decoder was at fault, so scope comparisons were made between the two boards. The only signal that differed on the faulty board was the blue drive signal to the TV set. This was 1 V too large and didn't respond to adjustment of the blue text amplitude control Pt4 which turned out to be open-circuit. The TDA3560 colour decoder i.c. in the set must have been objecting to the excessive signal input.
P.B.

ITT80 - 90° Chassis

The problem with this set (Model CC1814) was intermittent colour on channel 8 only. This would normally be due to a faulty 1 N 4148 diode in the tuning potentiometer circuit, but in this case the picture was hooking at the top as well. The cause was $\mathrm{C} 721(100 \mu \mathrm{~F})$ being low in value this electrolytic decouples the supply to the TDA9503 line generator i.c.
P.B.

ITT CVC1204 Chassis (CVC1200 Series)

The latest ITT service bulletin has a fault-finding procedure for these sets, so when one came in I pounced on it, thinking that the repair would be easy. It wasn't. The set was dead, so I removed the scan coil plug and loaded the h.t. reservoir capacitor C 733 with a 60 W bulb. The h.t. read 20 V then, after a couple of seconds, the switch-mode power supply shut down with a cheep. This proved that the power supply was at fault, and as the guide suggested I

Fig. 1: 10 V regulator used in the Sharp Model C2092's digital tuning system.
went on to replace the various diodes and transistors, getting nowhere in the process. In desperation I resorted to plan A and got the scope out. This showed that the supply was oscillating faster and faster until it gave a cheep and shut down. All likely looking capacitors were changed to no avail so I rang Mr. ITT. He said that the switchmode power supply transformer itself set the frequency of oscillation, though he didn't sound too sure about what was wrong. Anyway a new transformer restored normal operation - three cheers for Mr. ITT!
P.B.

Philips 1250

This set is fitted with the K30 chassis and has teletext and full remote control. The customer's complaint was no picture except via their VCR. On investigation we found that there was no tuning on channels 1-4 though the VCR worked correctly via channel 12 . We were able to tune in TV stations on the other channel positions so the problem was to do with the first four positions. The fact that the correct LED display was being shown suggested that the key pad, encoder and TMS1000 microcomputer i.c. were working correctly and providing the appropriate digitally coded outputs for the tuning drawer. This incorporates three decoder i.c.s, one for every four channels. The problem was due to the failure of the SN29770BN responsible for selecting channels 1-4.
M.D.

Grundig CUC40 Chassis

Field collapse was the problem here. We soon found this one. D2758 (SKE2F1/01) on the deflection subpanel was open-circuit, leaving the output section of the TDA2655B field timebase chip with no power supply.
M.D.

ITT CVC1200 Chassis

We've had several of these sets in the workshop recently. On the whole they seem to be reliable. Two have had faulty BU208D line output transistors and several have had tuner/i.f. module faults such as tuning drift and snowy pictures. The TDA3561 decoder i.c. occasionally gives lack of one colour, usually intermittently. On remotecontrol sets the push-button mains switch is soldered to the printed panel and we've had one burn up caused by a bad joint, just like earlier ITT sets.

One colour weak with flyback lines in this colour has been caused by the BF393 transistor in the relevant output stage going short-circuit. When this happens the collector resistor usually burns up.

One fault that lead us a merry dance was due to transformer Tr712 which couples the drive to the switchmode power supply board. It went open-circuit intermittently, the result being a small raster with the h.t. supply falling from 117 V to about 80 V . The fault would come and go when the chassis was flexed.

One new set was found to have a cracked tube. This produced a pretty display of fireworks but also did quite a lot of damage. The tuner/i.f. module wouldn't tune in, two of the video output stages had blown up, there was no colour due to the failure of the TDA3561, and there was only a blank raster in the picture mode with the teletext display normal. After a lot of searching we found that R503 ($39 \mathrm{k} \Omega$) in the beam limiter circuit was open-circuit. Replacing this didn't provide a cure but when the associated decoupling capacitor C503 $(0.056 \mu \mathrm{~F})$ was bridged a
normal picture returned. When C503 was removed it was found to have no inside - and there was a burn mark on the board where it had been.

A common fault is a blank raster due to no h.t. supply to the RGB output stages. This is caused by rectifier diode D505 (BA159) going short-circuit as a result of which the $1 \cdot 5 \Omega$ surge limiting safety resistor R514 goes open-circuit.
M.D.

Grundig 5010 Series

I've never been very fond of these sets, though I'm now beginning to get to grips with them. One we had would work for half an hour and then go dead, leaving channel selector number 4 illuminated. After some time the set would start working again and automatically switch to the channel 1 position. A search for dry-joints didn't reveal anything so some voltage checks were made. This led us to the transistors in the 15 V regulator circuit ($\mathrm{Tr} 635 / 6$). Changing them cured the problem.

Another of thse sets would occasionally blow its cutout. The usual checks for dry-joints around the commutating transformer etc. didn't help. Eventually with the chassis hinged down I noticed an arc in the area of one of the thyristor holder fixing screws. One of the ceramic capacitors was earthed to this and cleaning its tag and tightening the screw solved the problem.
M.B.

GEC 1402

These GEC 14in. portables are fitted with the ITT CVC801 chassis. One came in recently with no sound when switched on: after a couple of minutes there was distorted sound. The TDA1035T sound channel i.c. is in the r.f./i.f. module. On taking this to pieces and checking around in the sound section I found that $\mathrm{C} 228(100 \mu \mathrm{~F})$ was leaky.

The problem with another of these sets was intermittent low-frequency whistle from the line timebase area. Careful probing led us to the linearity coil L505, but soaking in resin and repositioning it failed to cure the fault. It took only half an hour to remove, unwind, then rewind the coil. This produced a complete cure.
M.B.

Thorn 1696 Chassis

The complaint was that the field scan became cramped, mainly at the top, when the set had warmed up. Well, there's not a lot in the circuit! Replacing the TDA1044 field timebase chip made no difference; the resistors were all within tolerance; and none of the capacitors gave any indication of being leaky. There was a production modification to cure cramping - R67 was changed from $33 \mathrm{k} \Omega$ to $27 \mathrm{k} \Omega$. So I checked this and found that it was $27 \mathrm{k} \Omega$. Perhaps if I changed it back? This did the trick! There was still some slight non-linearity at the bottom of the picture so I changed $\mathrm{R} 65(15 \mathrm{k} \Omega)$ and obtained much better results - perhaps this was a tolerance problem (the set was almost new).
M.B.

Philips KT3 Chassis

l've had a number of interesting faults with these sets recently. In one case (Phase II version) there was no green and a scope check showed that the TDA3560 decoder i.c. wasn't producing a green output signal. The green clamp
reservoir capacitor $\mathrm{C} 45(0.022 \mu \mathrm{~F})$ was leaky.
Another problem was tripping when first switched on. I eventually removed the field scan coil plug and the tripping stopped. Changing the yoke cured the problem though resistance measurements failed to reveal the cause of the trouble.
I always hate remote control faults! The set concernced was fitted with the Telco remote control decoder panel and the fault was no remote or front panel control. I
grabbed the only chip available and plugged it in - the SAF1032P. Fortunately this restored everything to normal.

As most of you in the field will know, a dead KT3 usually means that the 4.7Ω surge limiter resistor R291 is open-circuit. Before leaving the rectifier panel and starting on the switch-mode department a quick check on the 12 V zener diode D300 could save you time. In a recent dead set case I found that it was short-circuit.
M.B.

Pye/Philips Remotes

Harold Peters

I simply couldn't believe it. Knowing the Pye G11 like the back of my hand I dived into a Philips G11 offering the same facilities and found myself in a strange new world. The front end was totally different. This led me to check up on what goes with each set, and I was dismayed to find eighteen different, incompatible combinations in use with the G11 chassis alone. Philips have used about a dozen basic systems with forty incompatible subdivisions. Let's start at the beginning.

Dynatrons

The earliest remote control systems you're likely to encounter are the wired ones used in certain Dynatron models. A screened, multicore cable links the hand unit to the set: if it should pass close to high electric fields or an unbalanced mains supply hum will be induced on the varicap tuning line. There are two versions, the later one with a mains standby switch, and they don't interchange. A loose shorting plug hangs inside the set, permitting the assembly to be removed for service without leaving the set inoperative (second version only).

Some hybrid Dynatron models were fitted with an ultrasonic (US from now on) full remote system, and again there were two versions. The earlier had buff handsets, a totally screened receiver unit and analogue controls with only eight abrupt steps. The later version had black handsets, an open receiver board and twentystep analogue controls. Pressing a button sent out one US tone for a certain time, after which it changed to a second frequency. Cats and dogs usually left the room.

Philips G8 and G9 Chassis

A simple "pinger" unit was employed with the G8 and G9 chassis. The handset has a mechanical tuning fork which is plucked each time the button is pressed. Gives sequential channel changing via an i.c. inside the touchbutton panel on the set. Effective, but so is a bunch of keys.

There was a restricted issue of G9 sets with teletext, using the Tifax module. The handset did teletext only, with no analogue controls or channel change. Tifax modules can be identified by having to press a page button before the page number.

The G11

A most bewildering series of remote control arrangements was used with the G11 chassis: simple remote, full
remote, three phases of teletext and a viewdata version all in US form, then full remote, teletext and viewdata in infra-red form (IR from now on). Pye and Philips sets have different front ends, resulting in eighteen incompatible combinations. We'll look at the US range first, ignoring the few viewdata sets that had a modem beneath in the legstand plinth. US systems can select six channels, IR eight.

Philips sets with US remote control have a common tuner drawer for the simple remote, full remote and teletext versions. Pye sets have a common front control panel for simple and full remote, and the same board for teletext but with differences in the volume control: a separate PCB contains the touch-tune i.c. (it's in the tuner drawer in Philips models). Simple remotes use a two-tone system -39 kHz mutes the sound, 37 kHz changes channel. Handsets mostly need tuning up and the touch-button i.c.s can stick on one channel. Full remotes use fifteen precise frequencies from 33 kHz to 44 kHz , divided down from a 4.43 MHz crystal. Most of these tones produce an audible note when a working handset is held close to the ear.

Handset faults are common and expensive to cure. A coarse, audible tone suggests a faulty transducer. Any fluid will kill off the keypads immediately. Totally dead handsets could have a loose i.c. For poor range, try the transducer, the position of the receiving transducer in its tube, and $\mathrm{C} 9(4 \cdot 4 \mu \mathrm{~F})$ and $\mathrm{C} 13(22 \mu \mathrm{~F})$ in the receiver i.c. can.

Teletext systems with US remote control came in three phases. Phase 1 (white label) has development type i.c.s (numbers begin M...), no double-height facility and three buttons are missing from the handset. Incompatible with later types. Phase $1 \frac{1}{4}$ (yellow label) has SAA type i.c.s, double-height facility and a small regulator board that plugs into the side of the decoder panel. Compatible with phase $1 \frac{1}{2}$ (green label) after removing the regulator board.

There were full remote and teletext versions of the G11 IR system, with common front ends though different for Philips and Pye. Hence four combinations. The teletext system is phase 2 (blue label). This is as phase $1 \frac{1}{2}$ but with an SAA5040A i.c. in place of the SAA5040 for eight channels. There were Pye and Philips viewdata versions with a three-tier modem inside the set and an extra button on the handset. For the workshop a teletext handset can be converted for viewdata use by making a small hole in the keypad where the extra button comes and pressing the bubble beneath with a ball pen.

Note that with phase $1,1 \frac{1}{4}$ and $1 \frac{1}{2}$ teletext decoders the power supply comes from a large chopper board on the floor of the cabinet. Power for the phase 2 decoder comes from the line output transformer which has extra windings

- the line scan panel is distinguished by the blue fibreglass board with two extra pins coded blue and yellow.

K Series Chassis

The G11 was the last Croydon design. The subsequent K (Kleuren) chassis are of European design adapted to standard I (with suffix /05 or /15 after the model number). There are several remote control systems, all IR, including Long, Telco, VST and TRDIV.

Long comes in two versions. The 868 used with the projection set and video centre selects 29 channels, with coloured horizontal bars superimposed across the picture to assist the tuning. The F8 is at present confined to Model 3761.

Telco (KT3, K30 and K12 chassis) is a twelve-channel system using the same RC4 command codes as Long 868. The other facilities are standby mute, three analogue controls and a granny button. Identified by absence of knobs (all pushbutton) and coming out of mute when channels are changed.

The handsets for these systems have an aversion to fluids. Failure of the SAF1032 i.c. on the Telco decoder panel is not uncommon.

RC5 Handset Code

VST, TRDIV, a system we'll call RC5 Teletext and some simple remote systems use a handset code called RC5 - the handset numbers all start RC5. In a showroom, any RC5 handset will affect all RC5 sets, but not necessarily in the same way!

The Mullard teletext decoder boards respond to handset codes such as those generated by the G11 and Thorn chassis. RC5 was primarily developed for Continentals who like to have forty channels at their fingertips. For use with Mullard teletext boards an interpreter is required to translate RC5 into English. This takes the form of a TMS 1000 microcomputer i.c. on a panel between the controls and the teletext decoder. The TMS1000s come in two mask versions which are incompatible. Philips Service issue only mask MP0096, with fitting instructions for earlier boards. So on KT3/K30 sets the signal from the handset goes from the eyeball IR receiver to the control panel then to the encoder/CCAM (computer-controlled analogue memory) panel (hinged on the control panel back on the KT3), next to the TMS1000 board and finally to the teletext decoder.

VST and TRDIV

Up-market models apart, VST is the current system for all remotes and teletext models. The MSM5840H chip on the VST board does the combined work of the control, the encoder/CCAM and the TMS1000 boards on RC5 KT3s. Tuning is by a yellow band that moves across the screen from ch. 21 (left) to ch. 68 (right) and stops at all stations. When you get to one you want it can be stored in any of twenty programme cells. Granny setting of the analogue controls is done in the same way. The VCR cell is 0 : the a.f.c. doesn't like double-sideband signals much and may shoot past the VCR or computer signal (if this happens, go round again and slow the action down with the fine tuner $+/$ - buttons just before the VCR etc. signal arrives). Memory is retained by a nicad battery on the board. Remember this when servicing - the memory is still going when you have the board in your hand. There's a
systematic fault-finding procedure that can be followed after grounding pin 16 of the microcomputer i.c. VST boards in the CTX, K35 and KT4 chassis don't interchange.

TRDIV is the up-market version of VST, with many extra code possibilities that come in handy with stereo models and the set that has a built-in teletext printer. It's distinguished from the VST systems by the ability to select channels by number, to store them in fifty different cells, and the absence of an on-screen tuning bar. Some models have "Supertext" which is the ability to store teletext page numbers in cells - this doesn't improve the access time (only a bank of raMs on the teletext panel would make that possible). The microcomputer i.c. doesn't have the same service mode facility as with VST, but under certain fault conditions shows error indications on the 99 -digit display in "calculator overload" fashion.

Simple IR Remotes

Simple IR remotes offer channel selection by stepping up/down, volume control and standby. KT3s use a TMS1000 board and Telco handset codes. CTX sets use a similar circuit with RC5 codes. Monochrome TX sets use much the same arrangement as in the CTX chassis. Incidentally the CTX/S has a large ELC2003 tuner and is produced in Singapore. The CTX/E has a small U411 tuner and is produced in Europe. There are many electrical differences between the two versions.

Simple US Remote

Finally a simple US remote control system was used with two TX 12 in . portables, giving channel change and standby only. The action is very slow and the electronics consist of discrete components on a subpanel.

List of Models

Table 1 lists the various remote-controlled models and the systems used.

Testing Handsets

When it comes to testing handsets in the workshop, the usual trouble is to find a set with which to check them. Apart from the early Dynatrons and simple remotes, which call for a frequency counter, most types can be dealt with using very simple test gear.

For US handsets, use a good transducer connected to a scope's Y amplifier (set to near maximum gain) to receive the signals. The scope's screen will tell you all about the handset's performance, range and, roughly, its operating frequency. A typical US display consists of bursts of about 10 mV peak-to-peak amplitude.

To test IR handsets use the same set-up but with an eyeball type IR receiver (eyeball plus IR preamplifier) the best one to use is from the eight-way G11 remotes or teletext units. Connect the preamplifier's output pin to the scope's Y input, set at about $2 \mathrm{~V} / \mathrm{div}$. Power for the receiver can be from a 9 V handset battery (it takes only 5 mA). Pulse trains of about $5-7 \mathrm{~V}$ amplitude should be seen with a working handset. The eyeball receiver mentioned above, using discrete components, will test any IR system. Other receivers with decoder chips work well only with their own system.

A small meter unit reading 10 V or 30 mA interposed between the battery and the handset under test gives a
good indication of its performance. Most IR transmitters show a pulsing current of 15 mA or more when a button is depressed. A good battery should not show a dip of more than 1.5 V when a button is pressed. Fluids spilt into the handset show a constant leakage current, and in bad cases send data to the set continuously.

Although almost any good US transducer will do for the

US test described above it's important to fit the right one when making a repair. The transmit and receive transducers have offset resonances to produce a bandpass effect with equal sensitivity on all signals. Using the wrong mix will reduce the range with some commands. With the G11, also look out for the wiring of the receiver's transducer plug - not all use the same two pins.

Table 1: What's in which set

Model	System	3245	K35 VST
Dynatron		3275	K35 VST
CTV9-14	Wired remote, no standby	3715, 3723	KT3 RC5 Teletext/full remote
CTV15-19	Wired remote with standby	3745, 3775	K35 VST plus teletext
CTV20-25	US full remote	3850, 3880	K35 TRDIV plus teletext
CTV33	US full remote	3890	K35 TRDIV, Supertext plus printer
CTV41	G11 US full remote	3895	K35 TRDIV plus Supertext
CTV43	G11 US full remote	4206	KT4 TRDIV plus teletext
CTV50	G11 US full remote	4360	K40 TRDIV
CTV54	G11 US full remote	4418	KT4 TRDIV
CTV55	G11 US full remote	4616	KT4 TRDIV plus teletext
CTV59	G11 US full remote	4626	KT4 VST plus teletext
CTV60	G11 US full remote plus phase $1 \frac{1}{2}$ teletext	4718	KT4 TRDIV plus teletext
CTV61	G11 IR full remote plus phase 2 teletext	4728	KT4 TRDIV plus teletext
CTV62-64	G11 IR full remote	4860	K40 TRDIV plus teletext
		4880	K40 TRDIV plus Supertext
Philips		6620	KT4 TRDIV plus teletext
G22K556	G8 pinger	6720	K40 TRDIV plus teletext
G22K566	G8 pinger	6820	K40 TRDIV plus teletext
G22K567	G8 pinger		
G22K569	G8 pinger	Pye	
G26C583-586	G9 pinger	CT452	G11 US simple remote
G26C594-595	G9 US teletext only	CT454	G11 US full remote
G26 C597	G9 US teletext only	CT457	G11 US full remote plus phase $1 \frac{1}{1} / 1 \frac{1}{2}$ teletext
G22C661	G11 US full remote	CT462	G11 IR full remote
G22C662	G11 US simple remote	CT464	G11 IR full remote
G22C663	G11 US full remote	CT467	G11 IR full remote plus phase 2 teletext
G22C664	G11 US simple remote	CT468	G11 IR with viewdata
G22C665	G11 US full remote	CT474	G11 IR full remote plus phase 2 viewdata
G22C666	G11 US full remote plus phase $1 \frac{1}{2} / 1 \frac{1}{2}$ teletext	CT481	G11 US full remote
G26C671	G11 US simple remote	CT483	G11 US full remote plus phase 1 teletext*
G26C672-673	G11 US full remote	CT484	G11 US with viewdata
G26C674	G11 US full remote plus phase 1 teletext	CT492	G11 IR full remote
G26C675	G11 US with viewdata	CT493	G11 IR full remote plus phase 2 teletext
G26C676	G11 US full remote	CT494	G11 IR with viewdata
G26C678	G11 US full remote	194	TX US simple remote
G22C701	G11 IR full remote	1022	K30 Telco
G22C703	G11 IR full remote	1042	K30 Telco
G22C705	G11 IR full remote	1062, 1152	K30 RC5 Teletext/full remote
G22C706	G11 IR full remote plus phase 2 teletext	1826	K12 Telco
G22C708	G11 IR with viewdata	2013	TX2 IR simple remote
G26C722-723	G11 IR full remote	2056	K12Z Long 868 projection
G26C724	G11 IR full remote plus phase 2 teletext	2062	CTX simple remote
G26C726	G11 IR full remote	2162	CTX VST
G26C728	G11 IR full remote	3052, 3062	KT3 simple remote
G26C730	G11 IR full remote plus phase 2 teletext	3152	KT3 simple remote
G26C731	G11 IR with viewdata	3157, 3237	KT3 RC5 Teletext/full remote
797	K12 Telco	3267	KT3 RC5 Teletext/full remote
912	TX US simple remote	3457	K30 RC5 Teletext/full remote
928	KT3 Telco	3508	K35 TRDIV plus teletext
934	KT3 Telco	3757	K30 RC5 Teletext/full remote
1201	K30 Telco	3808	K35 TRDIV plus teletext
1205	K30 Telco	3908	K35 TRDIV plus teletext and printer
1234, 1250	K30 RC5 Teletext/full remote	4146	KT4 VST plus teletext
2206	CTX simple remote	4184, 4187	KT4 TRDIV plus teletext
2216	CTX VST	4266	KT4 VST plus teletext
2226	CTX VST	4284	KT4 VST
2601	K12Z Long 868 video centre	4287	KT4 VST plus teletext
2605	K12Z Long 868 projection	4309	KT4 TRDIV plus teletext
3205	KT3 simple remote	4508, 4509	K40 TRDIV plus teletext
3215	KT3 simple remote	4808	K40 TRDIV plus teletext
	*CT483/1 phase 11, CT483/2 phase $1 \frac{1}{2}$.		

Service Bureau

Requests for advice in dealing with servicing problems must be accompanied by a $£ 1.00$ postal order (made out to IPC Magazines Ltd.), the query coupon from page 49 and a stamped addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets nor answer queries over the telephone.

ITT CVC9 CHASSIS

We've had the same problem with several of these sets poor convergence of blue verticals and, more important, a bowing of the red and green horizontal lines, particularly on the right of the screen about a third of the way down. Most of the relevant components on the convergence panel have been checked but they all seem to be within tolerance.

Sometimes the blue verticals on one side of the screen fall on the "wrong" side of the yellow crosshatch so that no blue width adjustment will get it right. The trick is to rotate the radial convergence yoke to equalize the error, then readjust the blue lateral dynamic convergence. For the red/green bowing effect D58z and D59z are worth checking, but the problem is probably due to tolerances in the scan yoke/tube combination. Try to distribute the error along the line, even off-setting the static convergence a tiny bit if necessary.

PANASONIC U1 CHASSIS

This set (Model TC2203) was completely dead. Checks in the power supply revealed that D809 and D818 were short-circuit, so these components were replaced and the set powered via a variac. We find that the h.t. voltage reaches the correct figure of 160 V with a mains input of only 120 V .

D812 should first be replaced as it could have been damaged when D809 went short-circuit. Then check the h.t. preset R810 which could be at fault. The range of the regulator in this chassis is very good however, and you may well find that with the h.t. set at 160 V it will remain constant with a mains input right up to 240 V . If the h.t. rises above 170 V as the input is increased, check the error amplifier transistor Q803 and the chopper transistor Q801 which could be leaky or short-circuit.

ITT CVC20

The tripler was sparking to chassis and the power supply then tripped. A new tripler was fitted but all we have is a weak, colourless picture with the brightness control turned up. The contrast control has no effect at all.

The sparking tripler will have damaged components in the beam limiter circuit. Replace D3 and C7 and if necessary check the transistors T1 and T2.

RANK T20 CHASSIS

The fault on this set is intermittent though it's now present most of the time. The picture disappears, leaving just snow or maybe a faint, snowy picture, as though there's a severe loss of gain. The aerial and tuner connections seem to be o.k., and I've tried feeding the signal to the collectors
of the transistors in the tuner. I've also tried new i.f. transistors. Heat and cold don't affect the fault and no amount of tapping will cure it.

Arm yourself with a $10 \mathrm{k} \Omega$ potentiometer and a 6 V or 9 V battery so that you can apply a variable bias to the tuner's a.g.c. input. Adjust for maximum gain, probably around $2-3 \mathrm{~V}$. If a noise-free picture can be maintained with the a.g.c. thus overridden, suspect the TCA270Q vision demodulator/a.g.c./a.f.c. chip. If the snow persists, change the tuner.

PHILIPS N1700

The problem is intermittent field jitter. Constant adjustment of the tracking control minimises the problem.

This symptom is usually due to a fall-off in the video f.m. envelope at the beginning of the head scans, so that the field sync pulses are noisy or partially obliterated. It may be that head cleaning and careful adjustment of the head entry guide will clear the fault. If not it's likely that the heads are worn, with the result that there's insufficient tape penetration at the extremes of the head wrap.

ITT CVC32 CHASSIS

There's a wasp-waisted picture, also a white band across the top of the screen. The field hold and height controls had to be set to maximum but a new BU208 put that right by bringing the voltages up.

The wasp-waisted effect is almost certainly due to failure of the 320 V supply reservoir capacitor C35 $(220 \mu \mathrm{~F})$. More remote possibilites are C37 $(10 \mu \mathrm{~F})$ and the 12 V zener diode D801 - these components stabilize the 12 V supply to the switch-mode power supply control i.c.

SIEMENS FC211/SHARP VC9700

With this combination I get picture pulling on prerecorded tapes - some tapes won't play at all. Any ideas for modifications in the TV set's line sync circuit?
Our experience has been that these Siemens sets are not very happy with VCR operation. The line timebase is unusual in employing a BR101 SCS as the oscillator. You could try reducing the values of the capacitors in the flywheel sync filter circuit. The ones to go for are C2 and C 27 , both $4.7 \mu \mathrm{~F}-$ try $2 \cdot 2 \mu \mathrm{~F}$ or $1 \mu \mathrm{~F}$. C9 could also be reduced from $0.01 \mu \mathrm{~F}$ to say $0.0047 \mu \mathrm{~F}$.

SHARP C2072

There's occasional colour dropout on change of station or scene. Changing channels four or five times restores the colour. The set's tuning has been checked and doesn't seem to play a part in the fault condition.

Earth TP803 when the fault is present. If this results in horizontal bands of colour it may well be that the reference oscillator has drifted, in which case adjustment of R811 (preferably by the method given in the manual) may be all that's required. If the result is no colour, check Q801 and Q802 (both 2SA495) before suspecting the decoder chip 1801 (RH-1X0063CE).

FERGUSON 3V00

There's a distinct left-right movement of the picture on playback, with smearing of the reds to the left of the image. At worst the picture is unwatchable.

The usual causes of this fault are wear of the pinch roller or incorrect back tension adjustment. Remove the pinch roller, taking great care not to apply any downward pressure on the screw, and check against a straight edge.

Any wear will be shown by light passing between the two. Adjustment of the back tension can be done only with the correct jigs. Less likely causes of the trouble are either motor defective or a tape path fault causing the lower edge of the tape to ripple as it passes the control head.

263
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical fauts.
Mrs. Waghorn rents a little Japanese colour set from us and has done so for many years. Like most of its ilk, it has given very little trouble. Until a week ago that is. "It keeps going into lines dear - I haven't seen the nine o'clock news for days. Come and have a look at it." So off we went.

It's a Panasonic TC481GR - M6A chassis, similar to the TC333G - and in our experience is a very well behaved model. It was behaving the day we called. Good line lock, clear pictures - another intermittent fault! We wondered about Dave, six doors along. He's got a CB rig, and if the rig itself is legal the aerial it's hooked to certainly isn't. The BBC themselves would have been proud of Dave's transmitting aerial. We got him to fire up his rig, and with his "1-4 for a copy ... 1-4 for a copy" ringing in our ears we went hotfoot back to the Waghorn residence. The TV was quite unaffected. We set up the line hold and away we went.

The inevitable phone call came next morning. It was arranged that the set would be left running and that we would call later in the day. That afternoon we finally saw the effect - complete loss of line hold, and the best the line hold control R511 could do was to straighten the picture momentarily before it took off again, with a wild squealing from the line output section. We loaded up the set and bore it back to the peace and privacy of the workshop.

The line oscillator and flywheel sync circuits are quite conventional, consisting of a transistor sinewave oscillator stage and a double-diode discriminator circuit, with the usual filtering etc. We decided that the germanium discriminator diodes D501/2 were the most likely culprits, so in went a matched pair of OA91s. Four hours later we found that the picture was jittering sideways with a "false line lock" effect. Strangely, cooling the oscillator section had no effect on the fault. While it was present we took the opportunity to monitor the line sync pulses, which were correct, and the flyback sample pulses, which were of correct amplitude but out of lock as the timebase had once more become totally unhinged. The line hold control's track was checked and found to work smoothly, and a physical assault on the line oscillator coil T501 with the
handle of a screwdriver had no effect. Finally the picture came back into lock and stayed there.

Next came the weary business of substitution and soak tests. The oscillator circuit tuning and coupling capacitors C510 and C509 were exonerated in this way, as were most of the components in the flywheel sync discriminator and filter circuits, including the reservoir capacitor C506 and the anti-hunt capacitor C507. Supply filter capacitor C508 was also proved innocent by substitution.
By way of experiment we connected a low-impedance voltage source to the oscillator in place of the error output voltage from the sync circuit. While sync was of course lost, the line frequency remained reasonably constant. Armed with this useful clue we finally struck gold and cured the problem once and for all. It's only fair to add that in most sets using circuitry of this type the fault couldn't arise. What was the cause of the trouble? You'll know next month - if you don't suss it out meanwhile.

ANSWER TO TEST CASE 262 - page 679 last month -

We were in the conversion business last month, with a W. German Sharp VCR of the VC3300 variety. You'll perhaps recall that our enterprising lads had converted its intercarrier sound strip to 6 MHz by changing the filter and retuning, and had changed the relevant traps in the video circuits.

Traps in fact were the key to the remaining problem! The vision i.f. strip includes a series of filters and traps for tuning and rejection. In common with most current i.f. designs, bandpass shaping is carried out by a SAW filter its designation is SF1501. By leaving the original SAW filter in circuit, the adjacent sound and vision filtering and the co-sound notch were all at the wrong frequencies. While this had little effect in the "quiet" area of the local workshop, it was otherwise in some of the districts in which the machine had been used - hence the patterning and buzzing effects.

A complete cure was achieved by replacing the SAW filter with one of the type used in UK machines. This had to be done at no charge of course, which removed the profit from the job. The old bits are being held on to in case the owner ever decides to return to W. Germany with the machine - any ideas as to how to retune the modulator sound to $5 \cdot 5 \mathrm{MHz}$ spot on?

[^0]

COLOURTRADE
 MANY YEARS OF SUPPLYING TRADE WORKING COLOUR TVs PHILIPS 550 $£ 35.00$ BUSH $\mathbf{£ 2 5 . 0 0}$ BUSH 2718 $£ 45.00$ THORN $22^{\prime \prime}$ V-CAP $£ 35.00$ THORN 8-800 $\mathbf{£ 4 5 . 0 0}$ JVC 20" £35. $\mathbf{~} \mathbf{0 0}$ GEC ... ITT . . . DECCA . . . etc!

> DISCOUNT FOR QUANTITY
> WIDE RANGE OF MAKES AND MODELS ARRIVING DAILY - ALL WITH GOOD CABINETS - MANY TO CLEAR FROM 'ONLY' $£ 5.00$. MIXED LORRY LOAD OF SETS DELIVERED TO YOUR DOOR DIRECTLY FROM SOURCE!

> TELEPHONE NOW 021-359 0449 COLOURTRADE 221 Bridge Street West, Hockley, Birmingham B19 2YU

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising. Code.

Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA Ltd, Dept 2 Brook House, Torrington Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising.

The World of "Tele Panels"" 52 Mount Pleasant Road, Chigwell, Essex. Telephone 01-729 0506.										
	IF	TUNER	DECODER	G8/G9 DECODER IF COMBINEO	$\begin{aligned} & \text { LINE } \\ & \text { OUTPUT } \end{aligned}$	POWER	CONVERG	frame	VIDEO	$\begin{aligned} & 6 \text { WAY TUNER } \\ & \text { SWITCH } \\ & \text { BANK } \end{aligned}$
PHILIPS G. 8	5.00	4.50	7.00	15.00	14.00	8.00	5.00	5.00		3.50
THORN 3000/3500	2.00	5.75	4.00		8.00	8.00	5.00	6.00	5.00	1.75
GECC 2110	10.00		5.00		12.00	6.00	5.00	5.00	5.00	5.00
PYE 731	8.00		10.00		18.00	10.00	7.00	8.00		4.50
PUSH Z/718	7.50	6.50	14.00		24.00	3.00	5.00	14.00		
BUSH T/20	7.50	6.50	14.00				5.00	14.00		
DECCA BRADFORD	3.00		7.00			4.00				
DECCA 80	12.00	P.O.A.	14.00		12.00	10.00		14.00		P.O.A.
		Othe P+P 1	makes FOL PANEL CA	of panels L MODELS 1.50 SH WITH OR	teleph E3.00 ANELS ER - PL	ne for SPEAK OR MOR ASE	rices! ERS $\mathbf{f 1}$ E 3.00	50		
POST OFF YO	IR C	EQUE	NOW	\& YOUR	PAN	S S	T BY	RETUR	0	POST!!!

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production.
A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.
NEW ROAD.

- BRIFTRONIC STUDLEAD E mission lto WARWICKSHIRE B80 7LY ENGLAND.
Telephone: 052-785 2684 or 2639 Telex: 336924 Grifem G.

SEND NO MONEY

Your order despatched C.O.D. from our comprehensive stocks of Audio, Video and T.V. spares.
Price list sent with your first order.

Simply phone us 0934-419147

Freeway Components, The Airport Weston Super Mare, Avon BS24 8RA

TV LINE OUTPUT TRANSFORMERS

FAST RETURN OF POST SERVICE

RANK BUSH MURPHY	
Bush A792, A793	
single std mono	7.00
A774 single std mono	7.00
A816 solid state mono	9.00
DECCA	
MS1700200120202401 mo	
MS2404 24202424 mono	7.00
CS1730 1733 colour	8.00
CS1830 1835 colour	8.00
'30' series Bradford colour	8.00
80 series colour	8.00
100 series colour	8.00
FERGUSON HMV MARCONI	
	8.00
G.E.C.	
2047 to 2105	7.00
2000 to 2064 dual std mono	7.00
DUAL STD hybrid colour	8.00
SINGLE STD hybrid colour	0.00
Indesit 20EGB 24EGB mono 9.00	
KB - ITT	
VC200 VC205 VC207 mono	7.00
CVC5 CVC7 CVC8 CVC9 col.	8.00
CVC20 series colour	8.00
CVC30 CVC32 series colour	8.00
CVC45	8.00

PHILIP	
170 series dual std m	
210300 series mono	
G8 \& G9 series co	
PYE 368, 169, 569, 769 mono	
725-741 colour	
or,Korting.	
f15.00 inc pp, VAT.	
WINDINGS	
SOVEREIGN FARA PLUSTRON PALLADIUM	
${ }^{14}{ }^{\prime \prime}$ colour overwind	
RANK BUSH MURPHY	
T20a T22, T26 Pri\& Sec ${ }^{\text {6 }}$ 6.00	
2718 EHT overwind	
ULTRA THORN	
1690-1691 EHT overwind	
1590 EHT overwind	
173P, 174P, 175P, 577 chas	
EHT overwind	
or send old LOPT for rewind £10.00	
RIC	
P.P. \& 15\% V	

All lopts and windings are new and guaranteed
Open Mon.-Fri. 9 to 5.30 pm
Delivery normally by return.

PAPWORTH TRANSFORMERS

80 Merton High Street, London SW19 1BE
S.A.E. all enquiries Barclaycard and Access welcome

01-540 3955

TEL: 0222-44754 SLOPER ROAD LECKWITH CARDIFF CF1 8AB

OPPOSITE CITY FOOTBALL GROUND 5 MINS FROM M4

* WORKING SETS *

TELEVISION/VIDEO

 (VHS + BETA)MOST IN WORKING ORDER WITH STAND

* ITT CD752 REMOTE £115
\star PHILIPS G11 (some remote) £65
\star GEC STARLINE 22-20 (Remote) £55
* PYE CHELSEA £38
* THORN 9000 20" £39
* DECCA 22" BLACK FRONT VERICAP £30
* RANK T20 REMOTE £65
\star OFF THE PILE SETS FROM £8
PRICES SUBJECT TO VAT
OPENING HOURS:MONDAY - FRIDAY 9.00-5.30SATURDAY 9.00-1.00
TV TUBE POLISHING
Your Own Premises with our DIY Polishing Kit
The Kit includes:
Everything you need to polish approx. 25^{*} tubes to a high standard. Detailed instructions on how to do the polishing. All you require is an Electric Drill.
Kit Price $£ 45$ inc PRP and VAT.
Available from Luton only.
*Depends on depth and aree to be polished.
TV TUBES TUBE POLISHING FREE DELIVERY*
Quality, High Temperature Reprocessing

Colour Tubes Deita	One year guarantee (optional extension up to three years)	Two year guarantee (optional extension up to tour vears)
90° up to $200^{\prime \prime}$	¢26	E 29
90° up to $2^{\prime \prime}$	$E 30$	¢33
90° up to $26^{\prime \prime}$	$\underline{52}$	£35
$110^{\circ} 26^{\prime \prime}$	E33	$\mathrm{f}^{\mathbf{3}} \mathbf{6}$
(fiast heat, narrow neck) In line \& PIL		
Up to $20{ }^{\prime \prime}$	E36	842
Up to $2^{\prime \prime}$	E38	£44
Up to $\mathbf{2 6}^{\prime \prime}$	$\underline{40}$	¢46

Your good, working tubes with scratches or small chips, can be POLISHED with our purpose built polishing equipment. Only $£ 7$ per tube.
Delivery charge on colour tubes: Within 40 miles of Luton. 1 tube f4. 2 or more tubes FREE DELIVERY *
Please add 15% VAT to all prices. Callers welcome. Please phone first

WELL VIEW

114-134 Midland Rd, Luton, Beds.
Open Mon-Fri 8am-6pm, Sat 9am-5pm. Tel. 0582-410787
Your Local Tube Stockist:
Well Viow, Southampton. Tel. 0703331837.
Rotech Ltd., Northwood, Middx Tel. 09274-27019
West One Distributors Ltd., Chesham, Buckinghamshire.
Tol. 0484-778197
Rushden Rentals Led., Rushdon, Northanta. Tel. 0933-314901 Daventry Rentala, Daventry, Northants. Tel. 0327277436 Rea : Holland, Ipswich, Suffolk. Tol. 0473827562
WANTED A56/A66-510X/540X Old glass for cash

TUNERS + TUNERS

\star If you repair sets regularly - phone us today and we will dispatch immediately - no need to send cash 'up front'.
\star All tuners dispatched by first class post for receipt by you the next day.
\star All popular tuners/tuner repairs supplied ‘off the shelf'.
\star Unusual types repaired same day as received (subject to spares availebility).

32 Temple Street, Wolverhampton, WV2 4LJ. Phone: (0902) 773122.

TUBESURE LTD

UNIT 11,
MIDDLEMORE INDUSTRIAL ESTATE
SMETHWICK, WEST MIDLANDS
Tel: 021-558 7777

\star REBUILDERS OF HIGH QUALITY CRT's INCLUDING THOSE FOR PROJECTION SETS \& GAMING MACHINES
\star MANY PIL TUBES IN STOCK NOW
\star SUBSTANTIAL DISCOUNTS FOR QUANTITY ORDERS

* TWO YEAR GUARANTEE

DISTRIBUTORS REQUIRED ANY AREA CONSIDERED

TV LINE OUTPUT TRANSFORMERS PRICES INCLUDE VAT \& CARRIAGE			
Delivery by return of post.			
RANK BUSH MURPHY		ITT: VC200, VC205, VC207	9.20
A774 with stick rectifier	9.78	VC300, 301, 302, 400, 401, 402	9.20
A816, T16, T18, 2712, 7715	10.35	CVC1, CVC2 (FORGESTONE)	11.50
T20, T22, T26, Z179, A823	11.50	CVC5, CVC7, CVC8, CVC9 series	9.20
2718 Basic unit	13.50	CVC20, CVC30, CVC32, CVC45	9.20
T24e, T24h split diode	P.0.A.	CVC40 split diode	16.74
		FT110, FT111. P/no AT2063/02	11.50
1700, 2001, 2020, 2401, 2404	9.20	PYE: $169,173,569,368$ series	9.20
CS1730, 1733, 1830, 1835	9.20	CT200, CT200/1, CT213 series	10.35
30, 70, 80, 90, 100, 110, 130 Series	s 9.20	725-731, 735, 737, 741 Series	9.78
FERGUSON, THORN: 1590, 1591	9.20	PHILIPS: 170, 210, 300 series	9.20
1690, 1691. built in rect.	9.78	320 series	9.78
1600, 1615, 1700 series	11.78	TX, 18 mono series	P.0.A
1790 mono portable	9.39	G11 series split diode	
3000, 3500, 8000, 8500, 8800	P.O.A.	G8 and G9 Series	$\text { £9. } 20$
9000, 9200, 9300 series	12.00		P.0.A.
9500, 9600,9650 series 9800, TX9, TX10 series	$\begin{gathered} 10.99 \\ \text { P.0.A. } \end{gathered}$	BINATONE: 9909 mono	13.04
MOVIESTAR 3781, 3787	12.00	GRUNOIG: most models in stock NOROMENDE: FC125, 2206, 230611.50	
FIDELITY. FTU12 mono			
CTV14R, CTV14S colour	15.83	SHARP: C1851H, C2051H	12.32
		TELETON: TH14 mono	13.68
G.E.C. 2047 to 3135 mono	7.50	TOSHIBA: C800, C800B	19.45
1201H, 1501H, 2114, 3133, 3135	9.20	TELEFUNKEN: most models in stock	
OUAL \& SINGLE hybrid col.	10.00		
SINGLE STD solid state SINGLE STD split diode	12.00	LINE OUTPUT TESTER	16.79
	P.0.A.	Tidman Mail Order Ltd.,	
INDESIT: 24EGB hybrid 12LGB, 12SGB mono portables	9.50	236 Sandycombe Road,	
	10.35		
WINDINGS		Approx. 1 mile from Kew Bridge.	
TYNE: main winding	6.80	Phone: 01-948 3702	
RBM: T20, T22, T26, 2179	6.33	Mon-Fri 9 am to 12.30 pm	
WALTHAM: W125 eht winding	2.37	$1.30-4.30 \mathrm{pm}$	
KORTING: hybrid winding	6.90	Sat 10 am to 12 noon.	

IRISH TV NOTICE
 (SUMMER SALE)

We can supply in good working order Bush, Pye and Ferguson from $\mathbf{£ 6 0}$, Philips G.8. From $\mathbf{£ 8 0}$, Decca from $\mathbf{£} 90$, B/White $£ 25$, Re-Gunned C.R.T.s from $£ 40$ (We have our own Re-Gunning plant). 500 sets to choose from. Fresh stocks weekly. Phone now for full price list to Ireland's largest distributor of used TVs to the trade.

ALL PRICES INCLUDE V.A.T.
We can deliver to any part of Ireland.
TELE SPARES LTD.
Unit 113, Elm Road,
Western Industrial Estate,
Dublin 12, Ireland.
Telephone: Dublin 521211/521756.

TEL-X BLACKBURN

 FOR THE VERY BEST INTELEVISION DISPOSALS

Decca Thorn Pye Bush
Philips ITT GEC + Remotes
$\begin{array}{lr}\text { HUNDREDS TO CHOOSE FROM } \\ \text { WORKERS FROM } & \mathbf{£ 2 5 . 0 0} \\ \text { Off the Pile from } & \mathbf{£ 8 . 0 0}\end{array}$
$\dot{\hat{y}} \dot{\hat{y}} \dot{\boldsymbol{y}} \dot{\boldsymbol{j}} \dot{\boldsymbol{y}}$

DELIVERIES ARRANGED ON QUANTITY

TEL-X BLACKBURN

Unit P3, Roe Lee Industrial Estate, Whalley New Road, Blackburn, Lancs. Tel: 0254679984

VIDEO CASSETTE RECORDER SERVICING COURSES

6 WEEKS FULL-TIME
(Jan 7th to Feb 15th)

Intensive course intended for qualified television service engineers or applicants with similar background.
The course combines the advantages of industrial and academic training and includes a high percentage of practical work.

Selected applicants will be eligible for a full grant from MSC under TOPS to cover tuition fees and maintenance.
(Refresher and beginners courses also available in Electronics, TV and Video from 3 to 15 months with high Practical content commencing Jan and April -full-time \& evenings).

Prospectus from:

LONDON ELECTRONICS.COLLEGE (Dept TVC)
20 PENYWERN ROAD, EARLS COURT.
LONDON SW5 9SU. Tel: 01-373 8721

TV DISTRIBUTORS NORTHERN

Leeds newest wholesaler is now open WORKING COLOUR TVs
PHILIPS 550 £35.00
THORN 8000 £30.00
THORN 8800 £45.00
JVC 20" £35.00
HYBRID MIXED
$\mathbf{£ 8 . 0 0}$
GEC - DECCA - ITT - PYE
OFF THE FLOOR PRICES AVAILABLE ON REQUEST For further details:
Telephone now: 0532624996
TV DISTRIBUTORS NORTHERN
Unit 10, Ashley Trading Estate, Buslingthorpe Green, Leeds LS7 2HG

SATELLITE RECEIVING SYSTEMS
1 m and 2 m glassfibre dishes other sizes available.
Feeds, support and mounting systems. Low noise amplifiers, downconverters. Complete terminals for 4 Ghz , other frequencies available.
Demonstrations by appointment.
L \& S Bear Electronics Ltd. Yeo Lane, Colley Lane, Bridgwater, Somerset.
Telephone: Bridgwater (0278) 421719

THE ONE TO WATCH....

The easiest way to receive
TELEVISION every month is to start an annual subscription.
Your copy will be delivered direct to
your door regularly-enabling you to keep fully in the picture with the very latest technology and servicing techniques.

SUBSCRIPTION RATES

U.K.	$£ 11.00$
Overseas	$£ 12.00$

COMPLETE AND POST THIS ORDER FORM TODAY!

SUBSCRIPTION ORDER FORM

Complete this form and post it, with payment or credit card authorisation to:
Television
Subscription Dept. Oakfield House,
35 Perrymount Road, Haywards Heath West Sussex RH16 3DH

POST COPIES TO.
NAME: \qquad ADDRESS \qquad

LONDON'S LARGEST

 TELEVISION WHOLESALER . . . with over $4 \frac{1}{2}$ thousand sq. feet.
"TELEMANN"

8-10 RHODA STREET, (Off Bethnal Green Road) LONDON E.2. FREE CAR PARK TEL: 01-739 2707

PHILIPS 22" Parcel of 10 G8/550 (Piano Keys) EACH

 (THE SAME PARCEL IN A 26" £13 each) * FREE delivery to thelondon area * THE only wholesaler with a guaranteed single price. If the sets work or not our price is the same!CALLERS WELCOME! or TELEPHONE BARRY: 01-739 2707 - LINES! - 01-739 3123
Genuine "CASH DISCOUNTS" for quantities
FURTHER SPECIAL OFFERS . . . PHILIPS VCR $1700 . ~ £ 30.00 ~$ PIL C/R/ TUBES . $\mathbf{£ 1 9 . 5 0}+$ guaranteed MONO $24^{\prime \prime}$ (parcel of 10) \qquad

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes Sat-Tec R5000 4GHz Receivers Avcom COM-2B 4GHz Receivers California Amplifier 4GHz LNAs Chaparral Feed Horns
Components: Chip capacitors and Resistors, Microwave Substrate, PTFE etc.

HARRISON ELECTRONICS

22 Milton Road,
Westcliff-on-Sea, Essex SS0 7JX.
Telephone: Southend (0702) 332338

[^1]

SETS \& COMPONENTS

NEED RS. COMPONENTS for your project. No account? We will supply. Phone 0376519208.

GRUNDIG MILLIVOLTMETERS $100 \mu / 300 \mathrm{v}$. Working order $£ 15+£ 3.00$ P\&P. Also P.S.U's isolating transformers, etc. S.A.E. Lists. S.H.E., 5 St Josephs Park, Ballycruttle, Downpatrick BT30 7EN.

> 11GHz Satelite TV Receiver Receives 'Music Box' Pop music TV Channel on ECS satilite. Can be supplied with or without dish (1.5M minimum in most of UK). Stereo sound decoders available shortly for this channel. Phone or write for more details. HUGH COCKS TV SERVICES, Cripps Corner, Robertsbridge, Sussex TN32 5RY.
> Tel: 058083 317.

SECOND HAND Colour TV spares and tubes. Most makes. Telephone Southport (0704) 74411. Anytime.

BRAND NEW Monochrome 20ins 110 degrees CRT's £10 each. 25% off Ten's. 01-897 2606 ANYTIME.

$$
\begin{gathered}
\text { J A B C O } \\
\text { SWITCH MODE POWER SUPPLY } \\
\text { Self oscillating with outputs isolated from } \\
\text { mains. Model A-8v-plus } 18 v \text {-plus } 125 \mathrm{v} \text { or } 150 \mathrm{v} \text {. } \\
\text { Capable of running up most modern T/Vs. } \\
\text { Independent of its own P.S., many of which } \\
\text { need trigger pulses from the Line T.B. } \\
\text { Fit this P.S. complete into SONY } 1340,1810 \text {, } \\
2000 \text { and others for complete reliability. } \\
\text { Model A £32 VAT and postage included. } \\
\text { Model B has an optional 200v output in addi- } \\
\text { tion, £34 inclusive. Full circuit \& instructions. } \\
\text { JABCO LOPT Tester still £16.50 inclusive. } \\
\text { J. BAKKER \& CO. } \\
1 \text { OId Shoreham Road, Southwick, } \\
\text { Sussex BN4 4RD. } \\
\text { Tel: Brighton 593315 } \\
\hline
\end{gathered}
$$

GRUNDIG, WORKING FROM \&40. Reconditioned panels from $£ 4$. Remote handsets wanted. Telequipment oscilloscopes. Ochre Mill 0785814643.

MULTISTANDARD Colour Television. LUXOR VHF/UHF TV/Monitors to most standards, including PAL'L/SECAM'L (UK/French) option. $20^{\prime \prime}, 22^{\prime \prime} \& 26^{\prime \prime}$ from £280, ex VAT. PORTATEL CONVERSIONS LTD., 25 Sunbury Cross Centre, Sunbury, Middlesex. Tel. 0932788972.

> WETSTED UBES PRESENTS AN UNBEATABLE OFFER
> f26 all deltas one price
> f40 ALL PIIL. ONE PRICE
> * SPECIAL CRT POLISHING SERVICE

> WHILE U WAIT Only £5
> * ALL DELTA SIZES FROM STOCK
> * DISCOUNT FOR ORDERS OF 5 CRTS OR OVER
> * FREE DELIVERY WITHIN 20 MILE RADIUS OF MAIDSTONE

> Ring Now
> Maidstone 872400
> or visit our factory.
> Unit 32, Branbridges Ind Est.
> East Peckham, Kent.
> * Agents required in South

> Prices do not include VAT

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronic industries. They have a need to know or your products and services.
The prepaid rate for semi display setting $£ 6.30$ per single column centimetre (minimum 2.5 cms). Classified advertisements 37 p per word

Also a vast selection of modern working and non-working TVs at low prices. Piease ring for current stock.
COLCART,V. SERYMCES (formerly LAVITE LTD.),
Old C of E School, Church Street, Golcar, Huddersfield. Tel.: 0484643273 Cellers by appointment only.

TORBAY (TRADE) T.V.

Have now moved to larger premises. Good quality small screen colour TVs Chelsea's, 560, 207, 9000, etc. 178 Union Street, Torquay, Devon. Tel. (0803) 22767.

TELEVISION TUNER REPAIRS
BRITISH, EUROPEAN JAPANESE ETC.
ELC 1043/05 TUNERS AS NEW £4.60 inc.
MEN-TU ELECTRONICS LTD. SALTERNS LANE, FAREHAM, HANTS.
Tel: 0329-235116

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs. 0945 584188. Immediate settlement.

ELECTRONIC SUPPLIES

MOVING WAREHOUSE LARGE STOCKS OF COMPONENTS TO CLEAR
Record changers 240 N TO CLEAR Transcription decks 12v or 240 N From $£ 4.85+$ P\&P $£ 3.00$ Pair speakers HI3W82D4 Teak From $56.50+$ P8P $£ 3.00$ Pair From E5.00 + P\&P $£ 3.00$ Service ly spaaker cabinets H11W71D51 $\quad \mathbf{2 . 5 0}+\mathrm{P} \mathrm{\& P} £ 2.00$ leads, bulbs, manifier plugs etc. $\mathrm{f5} .00+\mathrm{PSP} \mathrm{E} 1.80$

Send $17 p$ stamp for Catalogue to. 18 LEUCHA ROAD.
LONDON WALTHAMSTOW E17 or Phone 01-621 3912 after 6.30 evenings Trade enquiries for bulk purchase welcome

A.B.D. TELEVISIONS
 Suppliers of colour and mono televisions to the trade.

Workers and non-workers: Pye Chelsea, Philips, Pye, GEC, Thorn 8500, 8800, 9000 and 9600, Bush 720 and TT22, ITT 600 series, Japanese, Hitachi, Nat. Pan J.V.C.
Many other modern sets by popular manufacturers.

For quotation and prompt service:

Ring Notts (0602) 864627
UNIT 3+3A,
Meadow Trading Est. Meadow Lane, Nottingham NG3 3HQ.

EERUICE PAGES

(minimum 12 words), box number 70 p extra. All cheques, postal orders etc., to be made payable to Television, and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Television Room 2612, IPC Magazines Limited, Kings Reach Tower, Stamford Street, London SE1 9LS. (Telephone 01-261 5846).

TRADE-TEL TV DISPOSALS

Tel: 051-709 1734 G8550s from $£ 8.00$ Polished \& Tested $£ 30.00$ UNIT B11A South West Brunswick Dock Liverpool L3 Merseyside

REBUILT COLOURTUBES

EXAMPLE PRICES DELTA

All sizes up to $22^{\prime \prime}$ - $£ 28.00$ 26" From - $£ 32.00$
All In Line P.IL. Mono Gaming Machine C.R.T.s 560EGB22 56-611-510JKB22

20 AX $£ 40.00$ 30 AX $£ 48.00$
Fast U.K. Delivery Call or Phone: RE-LIFE T.V. TUBES PLANE STREET OLDHAM, LANCS. 061-665 2668
Wholesalers REG in North \& South Wales Competitive Prices

TRADE COLOUR TV's ALWAYS 200 IN STOCK Colour from 55.00 Mono $£ 2.00$
BRAND NEW VIDEOS
V2022 and V2023
VHS and BETA
Just in
$20^{\prime \prime}+22^{\prime \prime}$ GEC
Boxed with stand $\mathbf{8} 85.00$ ALL STOCK ChANGES WEEKLY
(0934) 514047/512792/27560 P\&R SUPPLIES, Unit 5, Worle Industrial Estate Weston-Super-Mare. Exit 21 M5.

TV SPARES, PANELS AND MANUALS PHILIPS • GRUNDIG

TELEVIEW
01-994 5537
194, Acton Lane, London W. 4.

RANK SABA KORTING EKCO ETC.

EXCELLENT MOTORWAY ACCESS FROM MOST PARTS VIA M1 OR A1 WE'RE ONLY A SHORT DRIVE AWAY

CANVEY COLOUR TUBES

Unit 3, Charfleets House, Charfleets Industrial Estate, Canvey Island, Essex. Tel: Canvey Island (0268) 690577

CURRENT PRICE LIST

DELTA TUBE TYPE FROM $£ 27.50$ to $£ 31.50$
INLINE TUBE TYPE FROM $£ 35.00$
MONO TYPES P.O.A.
ALL PRICES EXCLUSIVE OF VAT.
All Tubes Guaranteed for 2 YEARS and Reprocessed to Original Manufacturers Specifications.

TELEVISION

Trade \& Retail supplies of s/h colour \& mono TVs. Most makes available, workers or non-workers

SOUTHPARK DISTRIBUTORS Unit 4 Rubastic Road, Brentpark Industrial Estate, Southall, Middx. UB2 5 LL.

01-574 4631, Ext 28

NWEELECTRONICS 25 YEARS SUPPLYING THE TRADE

 HUGE STOCKS OF COLOUR TV'S

 HUGE STOCKS OF COLOUR TV'S 2000 NOW IN STOCK

 2000 NOW IN STOCK}

ROCK BOTTOM PRICES. ALL MAKES, ALL MODELS. 90\% WORKERS (off the pile)
GENUINE REPOSSESSIONS AND EX RENT, NOW IN STOCK! PYE KT 3, PHILIPS G11, G8, BUSH T20, 22, 718, GEC, 2010, 2201, 2002, 2659, HITACHI, SANYO, PYE 222 THORN 9000, 3500, 8800 ETC.

SPECIAL OFFERS

BUSH 2 chip 20" $22^{\prime \prime}$ Exc. CAB Cond. GENUINE CHANGE OVERS £15 EACH (special quotes on bulk orders) . . . Single Chip $£ 10$.
PHILIPS 26" G8 EXC. COND. 550 model_ £20 each BUSH 718 PIL TUBE_ £28
BUSH 22" REMOTE 718 ONLY___ £30
HITACHI 20" MODEL 190 EXC. CAB_ £20
BUSH TZO LIKE NEW- £60
THORN 9000 PIL TUBE $£ 35$ in lots of 50
in lots of 10
£55

VHS VIDEO

SHARP 7300, 8300, 9300. FERGUSON $3 V 28$ 3V22. SONY BETA.

MONO TV'S fleach(lots of 25)

BUSH,GEC,PYE,PHILIPS ETC.THORN 1500 £4.THORN 1600 £12 (like new).

> REFURBISHED TV'S TO ORDER

PHILIPS G11 £80
BUSH T20/22 £70
GEC 2010 £38
LATER MODELS PHONE FOR QUOTATION

WHITE GOODS

HOOVER TWINS FROM £6. HOTPOINT 1460 FROM £10.

 AUTOS ALL MAKES FROM £10| WORKINGT.VPANELS | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | orcout | Luterp poo | | | |
| destricil | ${ }_{\substack{300 \\ 200}}$ | ${ }_{\substack{8,00 \\ 4,00}}$ | | cois | 5.00 | ${ }_{\text {cose }}^{\substack{500}}$ |
| ${ }_{68}$ | minimen | 2.0 | | 5.00 | | 5.00 |
| ${ }^{\text {beren }}$ | come | ${ }_{\substack{\text { cos } \\ 150}}$ | | | 5.0 | |
| (ess 17 | cos | | | 5i.co | | ${ }_{\text {lisen }}^{15.50}$ |

Unit 12, Wharfedale Road M606 Euroway Estate Bradford

P\&P 1 panel $£ 1.50,2$ panels $£ 2.00$,
3 panels $£ 2.50$ etc. Quick Despatch - C.W.O. please ALL PRICES PLUS VAT.
CASH ONLY - DELIVERY CAN BE ARRANGED

(0274) 688458 OPENG DAYS

OPEN MON-SAT 9-5.30
Don't forget! We are open
all day Saturday!

WORKING COLOUR T.V's
 to the trade from
 £15
 LARGE SELECTION OF COLOUR T.V's INCLUDING GOOD DISPLAY OF WORKING
 SETS, MANY LATE MODELS, IN OUR SHOWROOM
 delivery can be arranged 'PHONE MARK WOODWARD 0299-250161 TRADE, UNIT 40,
 hartlebury trading estate,
 NR. KIDDERMINSTER, WORCS.

COLOUR BAR GENERATOR

Pal Colour Generator with 11 patterns plus sound. Grey scale, Colour Bars, Red, Green \& Blue Raster, Crosshatch, Dots, Chequer Board, Black Raster, White Raster,
Half Black \& White
$\mathbf{£ 7 5 . 9 0}$.

C.M.J. ELECTRONICS

Unit 8, 16 Union Mill Street, Horseley Fields, Wolverhampton WV1 3DW. Tel: (0902) 871563
Thorn $3000 / 3500$
Thorn 9000
UNIVERSAL
1 year guarantee
The UNIVERSAL: TRIPLERcan be used in most
G.E.C. I.T.T.. Pye. Rank. Decca \& Continental
sets.
$\mathbf{1 5}$ Waylands, ofr Tudor Rd, Hayes End, Middlesex

STARLITE ELECTRONICS

NOW MOVED TO: WILLOWS FARM,
A13 RAINHAM, ESSEX.
Rainham 23225 also Hornchurch 50238.

- TV TUBES -

2 year guarantee
Most types available
Japanese including Sony
Ex-Rental TVs from \qquad f15.00 Untested Panels. . 44.00

WOODSDALE COMPONENTS RANK BUSH MURPHY TRANSFORMERS

Line Ouput
Z718 (T703A, T706A)
New (Complete)
$£ 20.50$
Less Focus Module and Rectifier
£10.50
$\begin{array}{ll}\text { T20, T22 (T705A) } & £ 11.00 \\ \text { T26 } & (\mathrm{T} 705 \mathrm{~B})\end{array}$
Switch Mode
T114A/B
£8.00
Genuine RBM Units. AERIALS
UHF Aerials P \& C Wideband 4 Bay
Bowtie (12.5 dB) $£ 2$
Above with built-in Broadband amp
(27dB) plus stabilised power supply
$£ 45.00$
Prompt Postal Service P\&P Paid. Add 15\% VAT to all prices. DISCOUNT for QUANTITIES.

34 Field End Road, Eastcote,
Pinner, Middlesex. HA5-20T.
Tel: 01-868 5580.
N. Skehan

Agents Office. Callers by appointment only.

JAPANESE COLOUR TVs. Panasonic, Hitachi, Mitsubishi, Toshiba, Sharp. Fully refurbished. Trade only. J.M. Pearson Television. 0484863489.

WORKING CTV's

The Best \& Cheapest in Lancashire
I.E. Decca $18^{\prime \prime}$ to $26^{\prime \prime} £ 24.00$

GEC $20^{\prime \prime}$ to $26^{\prime \prime} \quad £ 30.00$
Philips G8 22" to $26^{\prime \prime} \quad £ 25.00$
Bush 20" to $26^{\prime \prime} 2$ chip $£ 18.50$
All sets are tested \& working
Many more makes \& types available. Working mono's only $£ 3.50$. Non workers available.

Phone: John Powney at Kirkham, near Preston (0772) 683392.

WIZARD DISTRIBUTORS MANCHESTER

Visit our trade counter and see the huge range of components inc. tubes and video heads. Only minutes from the town centre and motorway routes.
Fast friendly service and technical assistance available.
Come in and see our trade counter special offers.

Open Monday to Friday 9 am to 4.45 pm Trade Only
EMPRESS STREET WORKS
Empress Street
Manchester M16 9EN
Tel: 061-872-5438, 061-848-0060

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Television for
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd and made payable to Television)

CAT. HEADING
NAME

TELEVISION

Classified Advertisement Dept., Room 2612,
King's Reach Tower, Stamford Street, London
SE1 9LS.
Rate
37p per word, minimum 12 words. Box No. 70p extra.

PANELS

GOOD WORKING POST PADD NO VAT
Pown Lien T.Base Decodor if Cin Conver-
 $\begin{array}{llllllll}\text { Thom } \\ \text { Thom } & 8500 & £ 68.00 & - & £ 5.50 & £ 11.00 & - & £ 4.00 \\ £ 5.00\end{array}$ $\begin{array}{lllllllll}\text { GEC S/S } & £ 6.50 & \mathrm{E} 11.00 & 66.50 & 68.50 & £ 11.00 & \mathrm{E} 4.00 & \mathrm{Ex.00}\end{array}$ Buen Twin
Chip Decta

TUBES

$£ 29.00$
INCLUSNE, REGUNS TWO YEAR GUARANTEE, QUANTTTY DISCOUNTS
£14.50
SDX MONTH GUARANTEE
A56-120 A56-140 A51-110 A49-191 A47-342 or 343 A44-270-1 AE6-120 A67-120 (All 26" add E5)
IN-LINE 51-161 56-500 or 510 £48. One year guarantee. Plus 100's more, ring first.
Delivery $\mathbb{5}$ per tube. British .Isles.
No need to spend $\mathbf{E 5}$ returning old tube if you buy from us.
U-VIEN TUBES,
29 Warmsworth Road,
Doncaster, Yorkshire DN4 ORP.
Tel: 0302-855017.
Callars ring first: Open every day including Sundey

RANK BUSH MURPHY TV PANELS

Repair, exchange, sales service, prompt efficient service. All chassis covered. New PCB available to replace burnt T20 line Panel. We charge only $£ 16$ to repair switch mode power supply. Ring Monday to Saturday and ask for Mr. Kheli.
T. K. Panels Service,

31 Bronte Paths, Stevenage, SG2 OPG.
Tel. (0438) 61567.

EAST ANGLIA SUPPLIES

Fully working colour TVs from $£ 25.00$ plus VAT straight from our retail shelves. Most makes are available and small regular orders are welcome. Personal services guaranteed and if we can help you boost your rental or retail trade we would be delighted.
Free delivery available (only petrol charged).
Contact John, Dave or Steve at
Barry T.V. Services on Cambridge 69215
or Ely 61462

! YOU HAVE TRIED THE REST NOW TRY THE BEST!

Quality 6 Button TVs on Offer

Ultra 6725 22"
Furg. $373822^{\prime \prime} \mathrm{T} / \mathrm{T}$
GEC S/S
Furg. 373822^{n} T/T ITT CK505
Furg. 3749 22" \quad Philips 55022 Furg. 3722 22" Bush T20
Also 17" 8000 various models + many more to choose from.
SCARBOROUGH TV TRADERS CO LTD 85 Columbus Ravine, Scarborough, N. Yorks. 0723368087.

1 hour from A64/A1 junction

unvi

* Britain's most reliable source of quality TVs.
* Hundreds of working polished TVs.
* GEC Starline
* Decca 80
* Decca 88
* Decca 100
* Pye G11
* Thorn 8800
* Pye 222 Series

All working and polished. These are not from major companies. A lot are from hotels and have had very little use.
Excellent reliable sets for rental.
Krystal Marketing Lid, Breedon Cross
Storage,
Dale Road, Selly Oak,
Phone 021-471 3023

Dale hoad, Selly oak, elex 335540 -G
Ask

VIDEO

ARE YOU A TV ENGINEER WHO WANTS TO KNOW ABOUT VIDEO RECORDERS?

THEN YOU NEED
"DOMESTIC VIDEO CASSETTE RECORDERS A SERVICING GUIDE" by S. R. BEECHING

Available for only $£ 15.50$ inc. p\&p
From: NEWARK VIDEO CENTRE,
108 London Rd., Balderton, Newark, Notts. Tel: 063671475

ACCESS OR VISA

VIDEO RECORDERS
 VHS 125 Betamax $\mathbf{£ 1 0 0}$.
 Colour TVs $£ 12.50$.
 SMITH'S ELECTRONICS
 43 Park Parade, Harlesden, London NW10. 01-965 1230
 01-961 3997

BOOKS AND PUBLICATIONS

RADIO AND TELEVISION Servicing Books, 30 volumes: 1955-1983. Sensible offers please. Tel. Burnham-on-Sea, 780020.

FULL SIZE TOP QUALITY service sheets $£ 2.50$ + I.s.a.e. CTV/Music Centres $£ 3.50+1$.s.a.e. Repair data almost any named TV/Video $£ 10.50$ inc. circuits. L.s.a.e. brings any quite free magazine/pricelists. TIST, 76 Churches, Larkhall, Lanarkshire. Tel. 0698883334.

RADIO AND TELEVISION SERVICING BOOKS. New 74/75 £15. 76/77, 77/78, 78/79, 79/80, 80/81, 81/82, 82/83, 83/84 £22.50 each. Free delivery. UVIEW, 29, Warmsworth Road, Doncaster. 0302 855017. Callers ring first.
"RADIO AND TELEVISION SERVICING" books, new editions for the last 6 years always in stock. Prices on request. BELLS TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

RADIO AND T.V. SERVICING 1967-68 to 1975-76. Mr. D. CLARK, 100 Shepherd Street, Northfleet, Kent. Phone Gravesend 25910.

AERIALS

Clearview have pleasure in announcing a full and
comprehensive range of signal amplificition equip-
ment. For example: low noise electronically remote
controled masthead pre-amp 1.60 b noise. CH. fise.
$\begin{aligned} & \text { Set side amplifiers, distribution amplifiers, notch } \\ & 4 \text { in } 1 \text { or } 2 \text { in } 1 \text { etc. Combiners for } 2 \text { UHF aerials 3db }\end{aligned}$
gain or 46 db gain. Trade and retail.
Send large SAE for our comprehensive catalogue
CLEARVIEW AERIALS,
Kingston Upon Thames, Surrey.

AERIAL BOOSTERS

B45H/G-UHF TV next to the set fitting, gain about 20dbs, PP3 battery or 8 V to 14 V /working. Price $£ 8.70$.
UHF TVB BOOSTER MODULE. PCB ready made up to cover the complete UHF TV band. Gain 10dbs, noise 1.9 dbs . BV to 14 VV W. Price E2.50. P\&P 30p. AMPLIFIED SET TOP AERIALS. Trebles the gain, fully portable, price includes batteries. Price 89.70 . Pap ${ }^{50}$ P.
CAPACTOR PACKS. Mixed C280 \& Electrolytics, valuestrom,
capacitors $£ .00$. P\&P 50 p .

ELECTRONIC MAILORDER,
62 Bridge Street, Ramsbottom,
Lancashire, BL0 9AG.
Tel: Ramsbottom (070 682) 3036.
S.A.E. for loaflets. Access/Vise Welcome.

SATELUTE TELEVISION DISHES

1.2 Mei:- diameter, kit of 12 aluminium segments with tivets and mounting bracket. Ready to assemble with full instructions. (Limited number availab/el $£ 89.95$ including carriage in
U.K. and Eire. Overseas please enquire.
W. N. JONES,

2 Ty'n Rhos, Gaerwen, Anglesey,
Gwynedd, LL60 6HL, Wales.

SERUICE PQCES

SITUATIONS VACANT

TELEVISION SERVICE SHEET SPECIALISTS

Thousands of British, European, and Japanese models in stock.
Colour $£ 2.00$ Mono $£ 1.50$ (post free)
Manual prices on request.
Send stamped envelope for free catalogue and enquiries
SANDHURST TV SERVICES (MAIL ORDER)
49C Yorktown Road, Sandhurst, Camberley, Surrey GU17 7AG

30,000 SERVICE SHEETS IN STOCK ALSO COLOUR MANUALS AVAILABLE

TV Sheets, Black and White, also Radiograms, Record Players, Music Centres. Japanese models in stock. Curcuit diagrams only. Also Tape Recorders etc etc., ALL AT £3. Please forward s.a.e. Send cheque or P.O
C. CARANNA, 71 BEAUFORT PARK, LONDON NW11 6BX.

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.50$ plus S.A.E. Service manuals on colour TV and Video Recorders, prices on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.
$\star \star \star$ SERVICE PAGES SERVICE PAGES
This space could cost you as little as $£ 4.44$ (i.e. 12 words at 37p). Complete the coupon or ring 01-261 5846 NOW!
SERVICE PAGES SERVICE PAGES

FOR SALE

Sabaco

For a great deal!

VAN LOAD DIRECT FROM SOURCES

Remember all sets cleaned and soak tested. Most makes available, any quantity e.g. GEC, Bush, Decca, ITT, Pye etc.
WORKING SETS FROM $£ 20$ upwards. e.g. GEC $2110 £ 25 \mathrm{~min}$ of 6 and etc.
COMPLETE NON-WORKERS from $£ 10$ in quantities.
Black/White in batches of 10 at $\mathbf{£ 1 . 5 0}$ each.
SPECIAL OFFER!
26" G8/3500/HYBRIDS
QUANTITIES OF 10 @ 55 each
SPARE PARTS AVAILABLE AT COMPETITIVE PRICES
PLEASE SEE SEPT/OCT ISSUES.
N.B. Add 30 p extra per panel.

ALL PRICES SUBJECT TO VAT \& AVAILABILITY.

Sabaco	Open 6 days a week
Elastic Yarns Building,	9.30 a.m. -6.00 p.m.
Derby Road, Sandiacre,	Telephone: $(0602) 397555$
Nottingham.	

TOP QUALITY TELEVISIONS SCOTHISH TRADERS

\star Wide range of CTV's in good working order from $£ 25$ e.g. Thorn $3500,8500,8800$, Bush, Philips G8, GEC S/S CTV etc.
\star Plenty of working and complete non-working sets at competitive prices.
\star Ready to sell or to rent.
\star Speial Offer Bush quantity of over 10 at $£ 5$ each.
For further information telephone
M. S. VISION

72 Robertson Street Glasgow.
Telephone: (041) 221-2146.

TUBE REGUNNING. All plant and equipment. Will not split. $£ 3000$. 0932223426 WALTON.

PYE 205 COMPLETE. Some working. 18 remaining plus assorted spares. Buyer collects. $£ 150.00$ o.n.o. RENTACET of Ampthill. 0525403466.

WANTED

SERVICEABLE ERASE HEAD for Akai X100D reel to reel T/R. Also motor for Philips RN712 I.C.E. Bognor Regis 862242.

WANTED. We will clear any amount of colour sets from small Rental Companies, Hotels, etc. Please phone P \& R Domestic Electrical Clearance Supplies, Weston Super Mare (0934) 514047.

VHS VCR's WANTED

QUANTITIES PURCHASED WOLVERHAMPTON (0902 405103)

EQUIPMENT FOR SALE

COMPLETE TUBE re gunning plant in good working order. Electric ovens. Re guns 15 colour (Sony Trinitron, Pil, in line etc). Tubes in 24 hour cycles. Only $£ 6000$ plus VAT. Free training provided. Tel. 0582410787.

bUSINESS FOR SALE

BOOMING TV/VIDEO Business, Kent. Absolutely unique! Audited turnover $£ 71,500$. Current year predicted $£ 120,000+$. Gross profit 150% ! Behind-thescene secrets just cannot be copied. Must sell quickly for family reasons. Full written details: Box TV189.
$\star \star \star$
SERVICE PAGES SERVICE PAGES
PLEASE MENTION TELEVISION WHEN REPLYING TO ADVERTISEMENTS.
SERVICE PAGES SERVICE PAGES $\star \star \star \star * * * * * * * * * * * * * *$

MISCELLANEOUS

BURGLAR ALARM EQUIPMENT. Latest discount catalogue out now. Phone C.W.A.S. ALARM 0274 731532.
D.L.Y. Projection TV kits. Gives 60 inch picture, RF/ Video input. For details phone 0376519208.
C.R.T. REACTIVATOR New special introductory offer. $£ 27.50$ + P.P. $£ 1.50$. TELE CENTRE, 398 South Road, Sheffield S61AG

> The Theory and Practice of PAL Colour Television in three important Video Cassette Programmes

Part 1. The Colour Signal
Part 2. The Receiver Decoder
Part 3. Receiver Installation
 BETAMAX $\star \star \star$ UMATIC For full details telephone 0253725499 (Day) 0253712769 (Night)

Or send for precis details FLINTDOWN CHANNEL 5 339 CLIFTON DRIVE SOUTH, LYTHAM ST ANNES FY8 1LP (enclosing this advert)

NAME
ADDRESS
TEL:

[^0]: Published on approximately the 22nd of each month by IPC Magazines Limited, King's Reach Tower, Stamford Street, London SE1 9LS. Filmsetting by Trutape Setting Systems, 220-228 Northdown Road, Margate, Kent. Printed in England by The Riverside Press Ltd., Thanet Way, Whitstable, Kent. Distributed by IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Sole Agents for Australia and New Zealand - Gordon and Gotch (A/sia) Ltd.; South Africa - Central News Agency Ltd. Subscriptions: Inland £11, overseas (surface mail) £12 per annum, payable to Quadrant Subscription Services Ltd., Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. "Television" is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired out or otheiwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever. ISSN 0032-647X.

[^1]: MAIL ORDER ADVERTISING
 British Code of Advertising Practice
 Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail ordar advertisements where money is paid in delivery period is stated. Where goods are returned undamaged within seven days. the purchaser's money must be refunded. Please retain proof of postage/despetch as this may be needed

 Mail Order Protection Scheme
 If you Order goods from Mail Order advertisements in this magazine and pay by post in advance of dativery, Television will consider you for compensation if the Advertiser should become insolvent or bankrupt provided:
 (1) You have not received the goods or had vour money returned; and
 2) You write to the Publisher of Television summarising the situation not earlier than 28 days from the day you sent your ordar and not later than two months orn that day.
 ell you how to make until the last moment to inform us. When you write, We guarantee to meet claims from reeders made in accordance with the above procedure as soon as possible after the Advertiser has been deciared bankrupt or insolvent.
 This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not for example, payment made in response to
 catalogues etc., recoived as a result of answering such advertisernents. Classified advertisements are excluded.

